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Abstract

The so-called “power (or power density) wall” has caused core frequency

(and single-thread performance) to slow down, giving rise to the era of

multi-core/multi-thread processors. For example, the IBM POWER4 pro-

cessor [97], released in 2001, incorporated two single-thread cores into the

same chip. In 2010, IBM released the POWER7 processor [59] with eight

4-thread cores in the same chip, for a total capacity of 32 execution contexts.

The ever increasing number of cores and threads gives rise to new opportu-

nities and challenges for software and hardware architects. At software level,

applications can benefit from the abundant number of execution contexts to

boost throughput. But this challenges programmers to create highly-parallel

applications and operating systems capable of scheduling them correctly. At

hardware level, the increasing core and thread count puts pressure on the

memory interface, because memory bandwidth grows at a slower pace —

phenomenon known as the “bandwidth (or memory) wall”. In addition to

memory bandwidth issues, chip power consumption rises due to manufac-

turers’ difficulty to lower operating voltages sufficiently every processor gen-

eration. This thesis presents innovations to improve bandwidth and power

consumption in chip multiprocessors (CMPs) for throughput-aware computa-

tion: a bandwidth-optimized last-level cache (LLC), a bandwidth-optimized

vector register file, and a power/performance-aware thread placement heuris-

tic.

In contrast to state-of-the-art LLC designs, our organization avoids data

replication and, hence, does not require keeping data coherent. Instead, the

address space is statically distributed all over the LLC (in a fine-grained

interleaving fashion). The absence of data replication increases the cache
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effective capacity, which results in better hit rates and higher bandwidth

compared to a coherent LLC. We use double buffering to hide the extra

access latency due to the lack of data replication.

The proposed vector register file is composed of thousands of registers and

organized as an aggregation of banks. We leverage such organization to at-

tach small special-function local computation elements (LCEs) to each bank.

This approach —referred to as the processor-in-regfile (PIR) strategy— over-

comes the limited number of register file ports. Because each LCE is a

SIMD computation element and all of them can proceed concurrently, the

PIR strategy constitutes a highly-parallel super-wide-SIMD device (ideal for

throughput-aware computation).

Finally, we present a heuristic to reduce chip power consumption by dy-

namically placing software (application) threads across hardware (physical)

threads. The heuristic gathers chip-level power and performance informa-

tion at runtime to infer characteristics of the applications being executed.

For example, if an application’s threads share data, the heuristic may decide

to place them in fewer cores to favor inter-thread data sharing and commu-

nication. In such case, the number of active cores decreases, which is a good

opportunity to switch off the unused cores to save power.

It is increasingly harder to find bulletproof (micro-)architectural solutions

for the bandwidth and power scalability limitations in CMPs. Consequently,

we think that architects should attack those problems from different flanks

simultaneously, with complementary innovations. This thesis contributes

with a battery of solutions to alleviate those problems in the context of

throughput-aware computation: 1) proposing a bandwidth-optimized LLC;

2) proposing a bandwidth-optimized register file organization; and 3) propos-

ing a simple technique to improve power-performance efficiency.
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where I met Professor José Luis Hamkalo, a computer architecture researcher

who opened me the doors of his lab for the first time. I then realized that I

wanted to do processor architectures.

In 2007 I moved again, this time to cross the ocean. I started my Ph.D.
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Chapter 1

Introduction

The well-known limits to transistor miniaturization gave rise to a variety of

multi-threaded and multi-core processors. Since early 2000s, the number of

threads in a core and the number of cores in a chip have been growing steadily

as an answer to the concerns about Moore’s Law sustainability. This trend

crosses different design domains, from general-purpose processors, to graph-

ics processing units (GPUs), to hybrid processors. In the general-purpose

computation domain, the IBM POWER7 processor [59, 104] incorporates

eight cores in the same chip, each one with four hardware threads. Intel’s

Xeon E5 processor family [49], based on the Sandy Bridge-EN and Sandy

Bridge-EP architecture, has up to six cores, two threads each. In the GPU

domain, we can mention the NVIDIA GeForce GTX 580 GPU [74] (based

on the Fermi micro-architecture [76]), with 512 CUDA cores in the same

chip. More recently, NVIDIA has introduced the Tesla K-series GPU accel-

erator family based on the NVIDIA Kepler architecture [77] with up to 2688

CUDA cores. In the hybrid computation domain —i.e., designs combining

general-purpose cores, with GPUs and/or other types of accelerators—, AMD

released in 2011 the Llano [16] variant of the Fusion accelerated processor

unit (APU) [4]. Llano integrates four x86 cores and a Radeon-based GPU

into the same chip. The IBM PowerEN processor [17, 37, 57] is composed of

16 PowerPC-based cores, four threads each, plus six hardware accelerators.

We also have to mention the IBM Cell/B.E. processor [58] with eight Syner-

1
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gistic Processing Elements (SPEs) attached to a POWER-based processor,

intended for multimedia and vector processing applications.

There are two ways to exploit the growing number of execution contexts

(i.e., physical threads and cores) in current chip multiprocessors (CMPs):

an application can be parallelized using a parallel programming models (e.g.

POSIX threads [20], OpenMP [22] or CUDA [75], among others), or multiple

non-parallelizable applications can be executed at the same time, one per

thread or per core. Throughout this thesis, we refer to the former model

as multi-threaded execution, and to the latter as multi-programmed execu-

tion. Also, whenever we refer to physical threads at core level, we mean

Simultaneous Multi-Threading (SMT) [103].

Regardless of the parallel execution model, threads and/or programs

share CMP’s resources, which poses new architectural challenges. This dis-

sertation tackles two of those challenges, which we consider key in the context

of throughput-aware computation:

• Memory bandwidth − how to efficiently share the available memory

bandwidth between physical threads and cores in the chip.

• Power consumption − how to manage the chip power budget in

order to achieve power-proportional computation [8].

In this thesis, we employ the term throughput-aware computation to refer

to scenarios with abundant parallelism, either in the form of multiple threads

or multiple single-threaded applications running at the same time.

1.1 Motivation

In the last years, new designs were introduced in the growing domain of chip

multiprocessors (CMPs). We provided examples of such designs in the pre-

vious section, categorized as: general-purpose computation (IBM POWER7,

Intel Xeon E5), graphical computation (NVIDIA’s Fermi and Kepler-based

GPUs) and hybrid computation (AMD Llano, IBM PowerEN, IBM Cell/B.E.).

The number of execution contexts (threads and cores) in CMPs has been
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steadily growing to mimic Moore’s Law. Today, we can find designs with

tens or hundreds of execution contexts: e.g. 32 threads in IBM POWER7

(grouped in eight 4-way SMT cores) or 512 threads in NVIDIA GeForce

GTX 580. This enables unprecedented levels of parallelism, which is ideal

for throughput-aware computation [40, 73]. Examples of throughput-aware

applications are: real-time computer graphics and video processing, signal

processing, medical-image analysis, molecular dynamics, astrophysical simu-

lation, and gene sequencing [40]. The most important characteristic of these

applications is that they can be decomposed into data blocks for massively

parallel processing.

The memory system in throughput-aware designs can be organized based

on two models: hardware-managed coherent caches and software-managed

streaming memory [64]. In the latter case, the processor usually incorporates

per-core local memories and transfers data to and from those memories using

direct memory accesses (DMAs). DMA transfers overlap computation to hide

latency —technique known as double buffering [23, 89]. The double buffering

technique requires large-enough local (scratchpad) memories to keep both,

the data being processed and the data being prefetched from the memory

system to be processed next. As an example, each Synergistic Processing

Element (SPE) in the Cell/B.E. architecture [58] has a 256-KB local memory.

A SPE-level DMA engine transfers data between this memory and main

memory using high-bandwidth DMAs.

The double buffering technique is an effective way to tolerate high memory

latencies. But the increment in the number of cores in current CMPs moved

the problem from the latency side to the bandwidth side. It is not enough

anymore to feed a core with data quickly. It is also mandatory to feed

many cores. The memory bandwidth became the key limiter for performance

scalability. For example, with only eight SPEs, the Cell/B.E. already had

to resort to a high bandwidth Rambus XDR memory system to deliver 25.6

GB/s [58]. The POWER7, with eight 4-way SMT cores, incorporates two

four-channel DDR3 memory controllers, delivering up to 100 GB/s [92]. The

NVIDIA GeForce GTX 580 GPU feeds its 512 threads with a 192.4 GB/s

DDR5 memory system [74].
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The underlying problem about memory bandwidth is that it grows much

slower than the number of cores. Bandwidth scalability is mainly limited by

chip pin count and power consumption. Adopting large on-chip memories and

caches can reduce memory pressure due to temporal reuse of data. However,

off-chip memory pressure is heavily exacerbated by the increasing number of

cores and threads [42], particularly true for highly parallel applications, to

the point where just large caches are not the solution anymore. Based on this

motivation, we focus on two key parts of the memory system: the last-level

cache and the register file.

In the last-level cache (LLC), we leverage the benefits of the software-

managed streaming memory model with DMA transfers. The main idea is

to avoid data replication (and coherence requirements) in the LLC. Instead,

cores are allowed to access remote cores’ caches. Figure 1.1 shows an illustra-

tive CMP with 32 cores grouped in four clusters. Cores in each cluster share

a local LLC block, and can also access other clusters’ LLCs. With this strat-

egy, each core “sees” a much larger LLC, which is beneficial for bandwidth.

We use double buffering to hide the extra latency to access remote blocks.

The LLC organization proposed in this thesis is presented in Chapter 3.

Figure 1.1: Illustrative 32-core CMP, with the proposed LLC organization.
Eight cores per cluster share a local LLC block, and can access remote blocks
(double buffering hides the extra latency). Data is not replicated in the LLC.
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To further reduce the pressure on the memory system, we adopt a very-

large vector register file. The goal is to keep data as much as possible in

the register file to reduce accesses to the cache hierarchy. The register file

considered in this thesis, which has thousands of vector registers, is presented

by Derby et al. in [29] in the context of an in-line accelerator. In this

thesis, we implement such organization with multiple banks, which provides

a twofold benefit: it keeps wire propagation delay under control, and allows

to exploit local computation in each bank. As explained in Chapter 4, this

processing capability at register file level is implemented with embedded,

small Single Instruction, Multiple Data (SIMD) local computation elements

(LCEs) attached to each bank. Figure 1.2 shows an 8-bank register file with

one LCE per bank.

Figure 1.2: Proposed very-large register file, in this case with eight banks
and one LCE per bank. Each LCE provides SIMD computation support to
its attached bank.

In addition to memory bandwidth, chip power consumption is the other

key obstacle to CMP performance scalability. The “power wall” issue is so

critical that has given rise to a new research field in microprocessor archi-

tectures: to minimize transistor under-utilization (dark silicon) [33]. The

underlying problem about dark silicon is that the available energy/power

budget in today’s CMPs prevents having 100% of the chip powered on all

the time. For example, at 22nm, 21% of a chip must be powered off due to

power consumption constraints [33]. Therefore, it is crucial to understand

what parts of the chip can be powered off during execution, in order to re-

duce energy/power consumption, with minimal performance impact. Even

on highly-parallel applications, it is possible to identify computation phases
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in which not all chip resources are exercised. Figure 1.3 presents the software

thread count frequency for twelve PARSEC multi-threaded applications [12]

executed with 32 software threads and native inputs on an IBM POWER7

processor. As can be observed, multi-threaded applications spend significant

time with fewer threads than the specified thread count (just Swaptions and

Vips execute with 32 threads most of the time). In such scenarios, we may

decide to power off unused resources (e.g. cores) whenever possible to save

energy and power. In this thesis we propose and evaluate a thread consolida-

tion heuristic (TCH) which optimizes processor power-performance efficiency

based on applications characteristics. TCH —which is implemented as a sim-

ple closed-loop control algorithm at operating system level— gets runtime

chip-level power and performance information to infer characteristics of the

applications being executed. Based on this information, the heuristic decides

how to distribute software (application-level) threads across hardware (phys-

ical) threads and cores in a CMP to optimize power-performance efficiency.

We describe the implementation details of this heuristic in Chapter 5.

Figure 1.3: Software thread count histogram for twelve multi-threaded PAR-
SEC applications. Applications are executed with 32 software threads to fully
populate the underlying POWER7 processor. Even in that case, applications
are not able to exploit all the available hardware threads.
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1.2 Thesis Statement

Performance scalability of current CMPs is mainly constrained by memory

bandwidth and chip power consumption.

Memory systems (including register files, caches, interconnections and

memory controllers) are optimized for latency, which is supported by data

replication and coherence. We argue that adopting latency-optimized mem-

ory systems in the domain of throughput-aware computation requires a thor-

ough analysis. Throughput-aware computation is mostly bandwidth bound,

instead of latency bound.

Chip power consumption is the other key factor that limits the amount of

logic that can turned on in a modern CMP. We argue that power management

techniques have to be incorporated into the chip and/or system software

(e.g. operating system kernel). The goal is to attain power-proportional

computation, by power gating unused chip components (e.g. functional units,

cores, memory controllers, etc.).

The main goal of this dissertation is to improve CMP performance scala-

bility in the context of throughput-aware computation, by tackling the mem-

ory bandwidth and power consumption issues. This goal is achieved with new

bandwidth-optimized last-level cache and register file organizations, and a

heuristic for chip power reduction.

1.3 Contributions

In this thesis we evaluate optimizations to improve performance and power

consumption of CMPs under throughput-aware workloads. We next summa-

rize the main contributions of this thesis (an overview is shown in Figure 1.4).

1.3.1 Bandwidth-Optimized Last-Level Cache

A re-design of the last-level cache (LLC) targeting throughput-aware compu-

tation. We present a bandwidth-optimized LLC organization that is suitable

for throughput-aware computation on CMPs. Its most important character-
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istics are the following:

• We avoid data replication to improve effective capacity. Since data is

not replicated in the cache, there is no need to deal with coherence

issues.

• We statically distribute the address space across cache blocks in a fine-

grained interleaving fashion.

The benefit of our LLC organization is twofold: its larger effective capac-

ity delivers higher bandwidth (more data is kept in the LLC, which results

in fewer off-chip memory accesses), and the fine-grained address space inter-

leaving allows multiple transfers to proceed in parallel. These benefits come

at the expense of locality, due to data being spread all over the available

storage. While this trade-off is harmful for latency-aware computation, it is

beneficial for throughput-aware workloads.

1.3.2 Bandwidth-Optimized Register File

A very-large register file that significantly cuts down the number of memory

accesses. It is conceived as an aggregation of banks to keep wire propagation

delay under control. Such organization unveils an additional optimization op-

portunity: SIMD computation support embedded into the register file. This

processor-in-regfile (PIR) strategy is implemented as small special-function

local computation elements (LCEs) attached to each bank. This approach

overcomes the limited number of register file ports. Each LCE is a SIMD

computation element, and all of them can proceed concurrently. Therefore,

the PIR strategy constitutes a highly-parallel super-wide-SIMD approach,

ideal for throughput-aware computation.

1.3.3 Power Management Techniques for CMPs

A heuristic that improves power-performance efficiency in CMPs by dynam-

ically placing parallel applications across physical threads and cores. The

heuristic —which is implemented as a simple closed-loop control algorithm
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at operating system level— gets runtime chip-level power and performance

information to infer characteristics of the applications being executed. For

example, if an application’s threads share data, the heuristic may decide to

place them in fewer cores (at higher SMT level) to favor inter-thread data

sharing and communication. In such case, the number of active cores de-

creases, which is a good opportunity to switch off the unused cores to save

power.

Figure 1.4: Overview of the optimizations considered in this thesis.

1.4 Summary and Concluding Remarks

This thesis evaluates optimizations to improve memory bandwidth and chip

power consumption in the context of CMPs for throughput-aware computa-

tion.

Throughput-aware applications differ from traditional latency-aware ap-

plications in that they can be decomposed into data blocks for massively

parallel processing. This abundant amount of parallelism increases the mem-
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ory bandwidth pressure. Consequently, the adoption of caches optimized

for latency in the domain of throughput-aware computation has to be done

thoroughly: in throughput-aware scenarios, the memory system has to be

designed to tackle the “bandwidth wall” instead of the “latency wall”. The

bandwidth wall, and its implications on CMP performance scalability, moti-

vates us to propose a last-level cache (LLC) and a register file organizations

aimed for throughput-aware computation.

The proposed LLC is composed of a set of independent blocks but neither

multiple copies nor block migration between them is allowed. Instead, data

is statically interleaved across LLC blocks in a fine-grained fashion. This

approach delivers more bandwidth at the expense of higher access latency

—we use double buffering to hide this extra latency.

The proposed register file is a very large storage with thousands of reg-

isters, conceived as an aggregation of banks. We attach a small SIMD local

computation elements (LCEs) to each bank. This processor-in-regfile (PIR)

strategy overcomes the limited number of register file ports: all the LCEs

can proceed concurrently, reading/writing registers from/to its attached reg-

ister file bank. The PIR strategy and the large register file capacity (tens of

kilobytes) enable a novel computation model, suitable for throughput-aware

domains: substantial performance gains can be obtained by loading rela-

tively large blocks of data into the register file (e.g. a cache-line at a time),

operating on the entire block of data, keeping intermediate results in the

register file, and storing the final results to memory a cache-line at a time.

The proposed register file organization provides further advantage when the

produced result is used as the input to another function, a common scenario

in throughput-aware computation. For instance, in graphics processing, a

JPEG compressor applies a chain of functions to the input image. With the

proposed register file organization, the entire image (or a large part of it)

resides in the register file while the LCEs apply the different functions in

situ.

In addition to the bandwidth-optimized LLC and register file, we also

propose a heuristic that optimizes CMP power-performance efficiency. The

heuristic —which is implemented as a simple closed-loop control algorithm
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at operating system level— gets runtime chip-level power and performance

information to decide which is the most efficient way to distribute software

threads across hardware threads and cores. The goal is to place software

threads in as few cores as possible to reduce power consumption on unused

cores, with minimal performance impact.

In conjunction, the techniques presented in this thesis (either for band-

width and power optimization) are intended to alleviate CMP performance

scalability limitations in the context of throughput-aware computation.
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Chapter 2

Methodology

This chapter describes the tools and methodology adopted throughout the

development of this thesis. This includes analytical models, simulators, real

hardware platforms, applications and other resources. As it was explained in

Chapter 1, this thesis focuses on architectural innovations at three different

CMP components: the last-level cache (LLC), the register file and core-level

power gating —the presentation of the methodology is organized following

that same structure.

2.1 Last-Level Cache Methodology

We model the LLC organizations as part of TaskSim, a trace-driven cycle-

accurate CMP simulator [83, 84]. The author of this thesis was part of

the Heterogeneous Computer Architecture group at Barcelona Supercom-

puting Center, the team that developed TaskSim. We present TaskSim in

Section 2.1.1.

We use CACTI to estimate the access latency of the LLCs modeled in

TaskSim. CACTI is a model for cache access time, area and power developed

by HP Labs [102]. We present CACTI in Section 2.1.2.

We adopt a set of parallel scientific kernels to generate the traces to

use in TaskSim. We present the details of these applications and the trace

generation process in Section 2.1.3.

13
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2.1.1 TaskSim

TaskSim is a trace-driven cycle-accurate modular simulator [83, 84] which

targets large-scale multi-core architectures. TaskSim’s most important char-

acteristic is its ability to accurately model large-scale CMPs: tens or hun-

dreds of cores, interconnections, complete cache hierarchy and memory sys-

tem. This ability relies on the use of a task-level abstraction for the internal

simulation of cores. This means that TaskSim does not capture intra-core

micro-architectural behavior. The rest of the components (interconnections,

cache hierarchy and memory controllers) are realistically modeled at cycle

level. The lack of micro-architectural core details in the model is irrelevant

to accurately evaluate the LLCs, while it also provides fast simulation.

Figure 2.1 presents a high-level diagram of the CMP components that

can be modeled using TaskSim. The simulator implements the different

components as modules which are interconnected through ports. Our case

study, shown in Figure 2.1, is a Cell/B.E.-like architecture with 32 processing

elements (workers), each one composed of a CPU (core), a local memory

and a DMA engine. Processing elements group together in clusters and

share a local LLC block. A global network interconnects clusters and a set

of memory controllers. In addition, a master processor is responsible for

assigning tasks to processing elements, which resembles the master-worker

execution model in the IBM Cell/B.E. processor [58]. We leverage TaskSim

modularity to model a variety of configurations, with different numbers of

processing elements and LLC blocks.

Table 2.1 summarizes the main architectural parameters adopted for the

LLC evaluation of Chapter 3. The number of processing elements simulated

are 16, 32, 64 and 128 in clusters of eight (i.e. 2, 4, 8 and 16 clusters,

respectively). The LLC is partitioned in one block per cluster and modeled as

embedded DRAM (eDRAM) [5, 55, 56]. The LLC sizes simulated are 8, 16, 32

and 64 MB. The access to LLC data is based on two schemes: interleaved and

non-interleaved. The former does not replicate data in the LLC —instead,

the address space is interleaved across blocks. The latter corresponds to a

traditional coherence-based organization where data can be replicated across
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LLC blocks. Chapter 3 presents the evaluation of these two LLC schemes.

We model global and in-cluster interconnections as 8-byte/cycle full-crossbar

networks, and the memory interface as four 25.6-GB/s memory controllers

(for a 102.4-GB/s total bandwidth).

Figure 2.1: Illustrative CMP architecture simulated in TaskSim. In this ex-
ample, processing elements are clustered in groups of eight. Each processing
element includes a CPU (core), a local memory and a DMA engine. There is
a LLC block per cluster, and all clusters are interconnected through a global
network. A set of memory controllers are also modeled.

2.1.2 CACTI

CACTI is a tool capable of finding optimal cache configurations in terms of

access time, along with its power and area characteristics [102]. In this thesis,

we adopt CACTI version 5.3 to determine the access latency corresponding to

the different LLC configurations evaluated. Table 2.2 summarizes some of the

most relevant CACTI input parameters chosen. Because we are interested in

the access latency of one LLC block, the cache size parameter corresponds to



16 CHAPTER 2. METHODOLOGY

Component Configuration

Processing
elements

16, 32, 64 and 128 processing elements (eight per
cluster)
Core frequency: 3.2 GHz
Local memory size: 256 KB (one local memory
per core)
DMA engine: up to 16 concurrent DMAs, 128-
byte DMA packages

Last-level cache 4-way set associative, 45nm eDRAM, 128-byte
lines
Size: 8, 16, 32 and 64 MB
Blocks: 2, 4, 8 and 16 (one LLC block per clus-
ter)
Ports: 2 read/write ports per LLC block
Data placement policies: interleaved and with
replication
MSHR: 64 entries each (one independent MSHR
per LLC block)

Interconnections 8 bytes/cycle bandwidth, full-crossbar network
Memory system 4 memory controllers at 25.6 GB/s each

(102.4 GB/s total)

Table 2.1: Simulated architectural parameters.

the size of the block and not the entire LLC. This size varies as a consequence

of the difference LLC sizes and number of blocks explored, which are listed in

Table 2.1. A LLC block is composed of one or more physical banks. In this

thesis we assume a physical bank size of 512 KB. Therefore, the number of

banks depends on the LLC block size. The smallest LLC block size simulated

is 512 KB, which is implemented with just one physical bank. The largest

LLC block size is 32 MB, which is implemented with 64 banks. To model

eDRAM-based LLCs, the data and tag array cell type adopted is logic process

based DRAM (LP-DRAM) [101].
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Parameter Value

Cache sizes (LLC block sizes) 512 KB to 32 MB
Line size 128 bytes
Associativity 4
Banks 1 to 64
Technology Node 45 nm
Read/Write Ports 2
RAM cell/transistor type in data array LP-DRAM
RAM cell/transistor type in tag array LP-DRAM
Interconnect projection type Conservative

Table 2.2: CACTI input parameters used to estimate LLC block access la-
tency.

2.1.3 Applications

In TaskSim, the master and worker CPU modules are fed with traces of

scientific applications written using a task-based programming model. The

traces are sequences of tasks that the master processor schedules on worker

processors. The LLC evaluation presented in Chapter 3 is performed us-

ing six parallel scientific kernels: Check-LU, Cholesky, FFT-3D, K-means,

K-NN and MatMul. These benchmarks were written in the Cell/B.E. vari-

ant of the StarSs [9] programming model. The traces collected from these

benchmarks contain the information about the required computation time

for different phases in the processors as well as the inter-processor commu-

nications through DMA transfers. Table 2.3 shows a summary of the main

characteristics of each benchmark: number of tasks, average task run time,

memory footprint, and estimated bandwidth required per task. The band-

width estimate is obtained from the average task data size and run time.

2.2 Register File Methodology

Due to TaskSim’s lack of support for core-level micro-architecture modeling,

we have to resort to other tools to study the proposed register file. This

part of the thesis is conducted at the IBM T.J. Watson Research Laborato-
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Kernel
Number Average task Problem Estimated BW
of tasks run time size per task

Check-LU 54814 45.7 µs 256 MB 1.11 GB/s
Cholesky 357760 28.0 µs 512 MB 1.68 GB/s
FFT-3D 32768 13.9 µs 128 MB 3.27 GB/s
K-means 335872 30.7 µs 195 MB 1.56 GB/s
K-NN 800768 7.9 µs 36 MB 0.49 GB/s
MatMul 262144 25.8 µs 192 MB 1.42 GB/s

Table 2.3: Simulated benchmarks.

ries, during the internship that the author carries out in the Reliability- and

Power-Aware Microarchitectures group. Due to confidentiality restrictions,

configuration values and results corresponding to this study are normalized.

Still, these disclosure-related issues do not affect the value of the study nor

depreciate the importance of the conclusions presented in this thesis.

2.2.1 In-Line Accelerator and Register File Model

As we explain in Chapter 4, the very-large vector register file proposed in this

thesis is studied in the context of an in-line accelerator for the IBM PowerEN

processor [17, 37, 57]. Figure 2.2 presents an architectural outline of such

in-line accelerator and its interaction with the A2 processor, the PowerEN’s

constituent core.

Execution in the accelerator proceeds in two stages. First, the map regis-

ters (MRs) are accessed to determine which registers will be read or written.

MRs constitute a mechanism for indirect access to the register file using

operand-associated mappings [29], because 5-bit operands are not enough to

index 2048 registers. Vector execution then proceeds in the second stage.

The fetch engine can enqueue two instructions per cycle into the MR issue

queue inside the accelerator. After issuing and reading their input MRs, map

management instructions are executed immediately. Other instructions pro-

ceed through the select pointers stage, which determines the actual registers

read/written, based on the pointers in the MR values read from the register

file. Dependency analysis then determines which prior instructions, if any,
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each vector instruction depends on. Instructions are then enqueued a second

time to wait for vector register dependencies and an appropriate execution

pipeline. Once instructions issue, they read their input values and execute.

Register renaming is impractical for registers in the very-large register file

because the 2048 architected registers would require a highly-ported rename

table with 2048 entries. Instead, the in-line accelerator employs a future file.

The future file holds vector register values until the producer commits. After

commit, future file entries are spilled to the register file, which holds only

committed architected state. Instructions determine the future file entry of

prior in-flight instructions that produce needed input values. After issue,

instructions read their inputs from the future file, the bypass network or the

register file as needed.

Figure 2.2: Micro-architecture model of the in-line accelerator (source: [28])

2.2.2 Performance Evaluation

To study the performance of the proposed register file in the context of an

A2 processor, we use an IBM-internal trace-driven cycle-accurate simulator.

This tool models the most important A2 core micro-architectural details, as

well as first level instruction and data caches, and second level cache. The

simulator is augmented to incorporate the in-line accelerator, of which the

very-large register file is a constituent part.
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We use the simulator to evaluate the register file performance for a single

A2 core. Table 2.4 summarizes the main architectural parameters adopted

for this study. Although the original A2 design is 4-way SMT, in this the-

sis we model a single-threaded core because so are the studied applications.

Among the core execution pipelines, the in-line accelerator is a VMX-like

32-byte-wide SIMD unit. The register file, which is part of the accelerator,

consists of 2048 32-byte vector registers together with an indirection mech-

anism for addressing them dynamically. We discuss the register file features

in Chapter 4. In our model, we adopt perfect (i.e. “infinite”) L1 and L2

caches. Due to its large capacity, the register file is able to keep input and

output data from beginning to end of the computation. Therefore, L1 and

L2 caches do not influence the evaluation.

Component Configuration

A2-like core Single-threaded†, 64-bit PowerPC-based architec-
ture (†original A2 processor is 4-way SMT)
Core frequency: 2.3 GHz
Issue width: 2
Execution mode: out-of-order
Execution units: branch unit, two fixed-point
units, load/store unit and in-line accelerator

Cache hierarchy Perfect L1 and L2 caches
In-line
accelerator

32-byte-wide SIMD unit with fixed-point and
single-precision floating-point arithmetic support
Execution mode: in-order
Register file: 2048 256-bit vector registers (64
KB total), eight 8-KB banks, 4RD/1WR ports
per bank

Table 2.4: Simulated A2 core architectural parameters.

2.2.3 Applications

The benefits of the proposed register file are evaluated in the context of

applications for wireless base stations. We select two classes of algorithms of

particular importance for base stations, namely FFT and Turbo Decoding,
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because they are the most heavily used and perhaps the most significant

consumers of processor cycles.

The adopted FFT implementation is based on Pease’s method [93], which

is explicitly optimized for parallel computation. The evaluated FFT sizes

are 512, 1024 and 2048 complex points, with 16 bits each for the real and

imaginary parts.

The Turbo Decoding algorithm incorporates two constituent decoders,

interleaver, and de-interleaver in a feedback loop, with the decoders imple-

menting the BCJR algorithm [7]. The input to the decoder is a bit stream

(codeword) with two parity bits per each data bit (1/3 rate encoding). We

evaluated a 6144-element codeword because this is the maximum length spec-

ified by the 3GPP Long Term Evolution (LTE) wireless standard [1].

2.2.4 Area and Power Evaluation

Register file area and power consumption are analytically estimated based on

information about PowerEN 45nm SOI-CMOS technology and register file

cell type [31, 57].

2.3 Power Management Methodology

In this part of the thesis we study the power implications of running multi-

threaded workloads on cores with varying SMT levels. This evaluation is

done in the context of a real platform (an IBM BladeCenter PS701 system),

which is explained in Section 2.3.1. We use multi-threaded applications from

the PARSEC 2.1 benchmark suite [12], which are presented in Section 2.3.4.

2.3.1 Experimental Platform

The set-up system used for the experiments is an IBM BladeCenter PS701

machine. The system has one IBM POWER7 processor running at 3.0 GHz

and 32 GB of DDR3 SDRAM running at 800 MHz. The POWER7 chip

multi-processor [59] is composed of eight processor cores, each one capable
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of four-way SMT operation. The eight cores can provide 32 concurrently

executing threads. Each core has access to a private 256-KB L2 cache and

to a local 4-MB L3 region. Eight L3 regions constitute a 32-MB on-chip L3

cache (local L3 regions provide low-latency access to the cores). In addition

to its private L2 and local L3 caches, a core can also obtain data from other

cores’ L2 and L3 caches [92].

The platform runs RHEL 5.7 OS with Linux kernel version 3.0.1. Each

PARSEC benchmark is executed as a single running workload to analyze

its performance and power characteristics. During each run, we explicitly

define the correspondence between software and hardware threads using the

taskset command, which is a Linux tool to set processes’ CPU affinity [91].

Our experimental system consists of an IBM BladeCenter PS701 system

(Figure 2.3), where the proposed thread consolidation heuristic (TCH) exe-

cutes and actuates at OS level. TCH obtains chip-level power measurements

using the IBM Automated Measurement of Systems for Temperature and En-

ergy Reporting software [35, 63]. The software connects to the EnergyScale

microcontroller to download real-time power readings of the POWER7 pro-

cessor under evaluation. In addition, TCH obtains hardware events informa-

tion from processor counters available in the POWER7 chip [32, 69], which

are discussed in Section 2.3.3. With all this information, TCH can make de-

cisions and perform actuations (i.e. to consolidate or unconsolidate threads)

at runtime.

Whenever TCH decides to consolidate threads, cores that are left unused

are switched to nap idle state to reduce power consumption. The nap mode

in POWER7 deactivates instruction fetch and execution and turns off all

clocks to the execution engines in the core, but it still keeps L2 and L3

caches coherent [35, 36].

2.3.2 IBM Automated Measurement of Systems for

Temperature and Energy Reporting

The IBM BladeCenter PS701 system used in our experiments incorporates

firmware which runs on a dedicated microcontroller to provide energy man-
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Figure 2.3: Experimental system for the evaluation of the proposed thread
consolidation heuristic (TCH).

agement support [35, 63]. This subsystem, which is known as the Ener-

gyScale firmware and microcontroller, senses the system at runtime providing

a mechanism to control it based on user directives. The heuristic presented in

this thesis leverages this energy management capability to collect chip power

consumption information at runtime. The EnergyScale microcontroller is ac-

cessed through an interface known as the IBM Automated Measurement of

Systems for Temperature and Energy Reporting software.

2.3.3 POWER7 Performance Monitoring Unit

The POWER7 processor incorporates a built-in performance monitoring unit

(PMU) which makes possible to measure runtime performance through a set

of six thread-level performance monitoring counters [32, 69]. POWER7 PMU

provides an extensive list of more than 500 performance events that can be

measured in the chip, such as cache miss rates, unit utilization, thread bal-

ance, hazard conditions, translation related misses, stall analysis, instruction

mix, cache behavior and memory latency, among others. The six available

counters can be programmed to “count” different event combinations. In

this thesis, we make use of just three events, which are listed in Table 2.5.

The heuristic presented in this thesis employs events PM RUN INST CMPL and
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PM RUN CYC to characterize performance as instructions per cycle (IPC), and

event PM L1 DCACHE RELOAD VALID to detect execution phase transitions.

Event Description

PM RUN INST CMPL Number of instructions completed, gated by
the run latch.

PM RUN CYC Processor cycles gated by the run latch. Op-
erating systems use the run latch to indicate
when they are doing useful work. The run latch
is typically cleared in the OS idle loop. Gating
by the run latch filters out the idle loop.

PM L1 DCACHE RELOAD VALID The L1 data cache has been reloaded for de-
mand loads, reported once per cache line.

Table 2.5: POWER7 performance events measured by the proposed heuristic.

2.3.4 Applications

We adopt the PARSEC 2.1 benchmark suite [12] to study the use of the

optimum combination of core-wise SMT level and number of active cores

as a knob to achieve a desired power-performance efficiency. PARSEC ap-

plications include a representative set of shared-memory parallel programs

for chip-multiprocessors. Parallelism is supported by either POSIX threads

(pthreads) [20], OpenMP [22] or Intel Threading Building Blocks (TBB) [50].

In this thesis, we adopt the POSIX threads version. Table 2.6 presents a de-

scription of the applications used in our experiments (we exclude freqmine

due to its lack of support for POSIX threads). All the executions are done

using native input sets — the largest ones provided in PARSEC and which

resemble real program inputs most closely.



2.3. POWER MANAGEMENT METHODOLOGY 25

Program Domain Description

blackscholes Financial Option pricing kernel that uses the
Black-Scholes partial differential equa-
tion

bodytrack Computer Vision Tracking of a person’s body
canneal Engineering Simulated cache-aware annealing ker-

nel which optimizes the routing cost of
a chip design

dedup Enterprise Storage Next-generation compression kernel
which employs data deduplication

facesim Animation Simulation of the motions of a human
face for animation purposes

ferret Similarity Search Content similarity search server
fluidanimate Animation Fluid dynamics simulation for anima-

tion purposes
raytrace Rendering Real-time raytracing
streamcluster Data Mining On-line clustering
swaptions Financial Analysis Pricing of a portfolio of swaptions with

the Heath-Jarrow-Morton framework
vips Media Processing Image processing application
x264 Media Processing H.264 video encoding application

Table 2.6: Adopted PARSEC benchmarks (source: [12]).
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Chapter 3

Last-Level Cache Design

This chapter presents a last-level cache (LLC) organization conscientiously

designed for throughput-aware computation in chip multiprocessors (CMPs).

As shown in Figure 3.1, the proposed LLC is divided into multiple indepen-

dent blocks. Cores are grouped in clusters, and each cluster contains a LLC

block connected to its local network. The most important characteristic of

the LLC is the lack of data replication. Instead, the address space is inter-

leaved in a fine-grained fashion across blocks. In this way, effective capacity

of the LLC is significantly improved, which boosts memory bandwidth. In

addition, since data is not replicated in the cache, there is no need to deal

with data coherence.

The key insight of our proposal is that a fine-grain partitioning of the ad-

dress space enables higher bandwidth, since multiple transfers can proceed in

parallel, at the expense of locality, due to data being spread all over the avail-

able storage. While this trade-off is harmful for latency-aware architectures,

it is beneficial for throughput-aware computation in CMPs.

In this chapter, we compare our proposal against a memory system op-

timized for latency. Both alternatives are evaluated on a throughput-aware

CMP with a master-worker execution model and support for DMA trans-

fers. The architecture is composed of processing elements (cores) grouped in

clusters interconnected through a global network.

27
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Figure 3.1: Illustrative 32-core CMP, with the proposed LLC organization.
In this particular example, eight cores per cluster share a local LLC block.
Because data is not replicated in the LLC, cores can also access remote blocks.

3.1 Latency- vs. Bandwidth-Optimized Last-

Level Caches

The increment in the number of cores in current CMPs poses additional stress

to the memory system [6]. The cache hierarchy plays a key role by providing

low-latency access to the data, by means of data replication and coherence

mechanisms. In particular, the last-level cache (LLC) helps to cut down

the number of accesses to off-chip memory. For those reasons, we can find

that recent throughput-oriented designs have adopted caches to alleviate the

pressure imposed to the memory interface, whereas previous models in the

same family did not. For example, the NVIDIA Fermi architecture [73, 76, 79]

organizes its 512 cores in 16 clusters of 32 cores each. Inside each cluster there

is a local memory that can act as an L1 cache. Unlike previous NVIDIA

products (like the G80 and GT200), all clusters share a 768-KB L2 cache

to capture temporal data reuse, and reduce off-chip memory traffic. Other

designs were conceived with large LLCs from scratch. For example, the

IBM PowerEN processor [17, 37, 57], a hybrid architecture for network and

server processing, incorporates four 2-MB eDRAM L2 caches. In all those
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designs, however, such caches are traditional organizations from the domain

of latency-aware computation, optimized for latency rather than bandwidth.

From our point of view, the adoption of caches optimized for latency in the

domain of throughput-aware computation has to be done thoroughly, and its

different needs have to be taken into account. Latency-aware computation is

latency bound. Instead, throughput-aware computation is bandwidth bound.

To show this effect, we evaluate a CMP with a master-worker execution model

and support for DMA transfers. The architecture is composed of worker

processors (cores) grouped in clusters. Figure 3.2 shows a configuration with

32 cores. CMPs with 16, 64 and 128 cores were also considered. Besides

the worker processors, there are a small number of high-performance master

processors (not shown in the figure), which spawn tasks to be executed by

workers.

Figure 3.2: Evaluated DMA-based CMP architecture (LLC is not shown for
sake of simplicity).

In this architecture, each worker consists of a low-power in-order CPU, a

local memory and a DMA controller. The worker CPU can only access its

local memory, which is used for both code and data. All external memory

accesses are managed through a programmable DMA controller. Workers

program the DMA controller to fetch the required input data for a task. In

the same way, when the worker finishes the execution of a task, it programs
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its DMA controller again to write back the task output data. After task

execution, the worker notifies its availability to the master processor in order

to receive a new task to be executed. This DMA-based design allows the ar-

chitecture to fully support double buffering without any interference between

execution and data prefetching of subsequent tasks. We use six parallel sci-

entific kernels: Check-LU, Cholesky, FFT-3D, K-means, K-NN and MatMul.

Figure 3.3(a) shows the impact on performance (total execution time) as a

function of the number of cores, averaged for all considered kernels. In this

case, we assume an ideal 0-cycle latency memory system. As it can be ob-

served, the bandwidth provided by the memory system (chart series) has a

very significant impact on the execution time. For instance, in the case of

a memory system providing 25.6 GB/s, increasing the number of cores from

16 to 128 improves performance by 2.1×. However, if the memory system

provides at least 204.8 GB/s, performance is improved by close to a factor

of 6. Figure 3.3(b) also shows the impact on performance as a function of

the number of cores, but considering different latencies (chart series), and

assuming a high-bandwidth memory system. In this case, because memory

bandwidth is large enough, the latency of the memory system has not im-

pact on performance. Therefore, in throughput-aware scenarios, the memory

system has to be designed to tackle the “bandwidth wall”, instead of the

“latency wall”.

As a result, increasing latency in throughput-aware CMPs with DMA-

based memory systems has little impact on performance. This is a key

observation that hints potential optimizations in the cache hierarchy. For

example, it may be not necessary to adopt cache coherence mechanisms with

data replication in the LLC (usually found in latency-aware CMPs). Avoid-

ing data coherence and replication reduces the LLC design time and com-

plexity, and increases its effective capacity. Although processing elements

should spend more time to get data which is not replicated in their local

LLC blocks, this extra latency could be hidden by overlapping computation

and DMA transfers.

In addition to the bandwidth wall problem, the number of pins to access

off-chip memory is not growing at the same pace as the bandwidth require-
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(a) Ideal 0-cycle latency memory system. (b) 819.2-GB/s high-bandwidth memory
system.

Figure 3.3: Performance impact as a function of the number of cores in a
DMA-based CMP. Due to the huge amount of parallelism in the applications,
memory access latency can be hidden, and data bandwidth becomes the
limiting factor. Results are averaged for all considered kernels. Performance
is measured as total execution time.

ments. According to ITRS projections [54], the pin count just grows about

10% per year. Even employing high-performance memory systems, that pin

count increase is not enough to satisfy such bandwidth demands.

To overcome the bandwidth and pin-count scaling walls just mentioned,

it becomes necessary to adopt caches in throughput-aware CMPs to filter

off-chip memory traffic. In this sense, many points arise regarding the orga-

nization of the memory system in such scenarios:

• With data replication to optimize access latency (Figure 3.4(a)) vs.

without data replication to optimize capacity and bandwidth (Fig-

ure 3.4(b)).

• If data is replicated across LLC blocks, the impact of the data coherence

mechanism.

• If data is not replicated, how data should be distributed in the LLC

(address space interleaving granularity), and what is its impact.

• Features from latency-aware cache systems that should (or should not)
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be preserved when moving to the throughput-aware computation do-

main.

(a) Latency-aware organization. (b) Bandwidth-aware organization.

Figure 3.4: Evaluated last-level cache alternatives.

Those questions motivate us to present a cache hierarchy organization

conscientiously designed for throughput-aware CMPs.

3.2 Last-level Cache Organization

As stated in Section 3.1, there is a trend to adopt latency-aware cache-based

memory systems into the throughput-aware computation domain to alleviate

the pressure on bandwidth requirements. Although such CMP architectures

can benefit from caches, we should take into account that traditional cache

systems are designed to optimize access latency rather than bandwidth. For

that reason, in this work we evaluate two memory system alternatives in the

context of throughput-aware computation: one optimized for access latency

and another optimized for bandwidth and capacity (our proposal).

In this architecture, the LLC is divided into multiple blocks. Each clus-

ter contains a cache block connected to its local network, as shown in Fig-

ure 3.5. Each cache block has its own independent Miss Status Holding

Register (MSHR) and two full duplex ports (one for processor requests and

responses, and the other for memory requests and responses). For the scheme
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with data replication, we model an invalidation-based cache coherence pro-

tocol: when a CPU modifies a cache line, all the copies on other caches are

invalidated. Cache access time has been determined using CACTI [102].

(a) Latency-aware organization. (b) Bandwidth-aware organization.

Figure 3.5: Evaluated last-level cache alternatives.

In the scheme optimized for latency, the LLC is composed of independent

blocks and data can be replicated across them. For instance, in the example

shown in Figure 3.5(a), data “A” is replicated and always accessed locally.

In this way, cores have nearby copies of data in order to reduce the latency

to access the cache. However, having multiple copies of data diminishes

the effective capacity of the cache and makes it necessary to implement a

coherence mechanism.

In the scheme optimized for bandwidth, the LLC is also composed of a

set of independent blocks but neither multiple copies nor block migration

between them is allowed. In the example shown in Figure 3.5(b), there is a

single instance of data “A” and some cores have to access it remotely, thus

paying an additional latency. In this scenario, data is statically placed using

bit indexing: a set of bits in the data address is used to choose unambiguously

the cache block where the data is placed. A detailed analysis of this static-

placement technique is presented in Section 3.2.1.
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3.2.1 Interleaving Granularity

In our proposal, the address space is partitioned between LLC blocks based

on the data address. More specifically, for an N -block LLC, we employ

log2(N) bits to determine the destination block (Figure 3.6). Taking the

log2(N) least significant address bits, data placement is interleaved at a fine

granularity across blocks. On the other end, taking the log2(N) most sig-

nificant bits, the placement is interleaved with coarse granularity. Also, any

point in between can be chosen.

Figure 3.6: Example of the mechanism employed in our LLC to map a par-
ticular memory address into a LLC block.

Figure 3.7 shows the impact on bandwidth and performance (total execu-

tion time) attained by the worker processors as a function of the interleaving

granularity, averaged for all evaluated applications. Interleaving granular-

ities range from 128 bytes (the baseline) to 32 KB. In each chart, 16, 32,

64 and 128 cores are plotted in a 64-MB LLC configuration. We can ob-

serve that the finest-grained interleaving (128 bytes) is the best choice for

the considered numbers of cores. In particular, for 128 cores there is an

improvement of 10% on bandwidth and 4% on performance using a 128-

byte interleaving with respect to the typically used 4-KB interleaving, and
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34% on bandwidth and 13% on performance when compared against a 32-

KB interleaving. Fine-grained interleaving shows the highest DMA band-

width and performance because it allows highly-balanced access to the cache

blocks. With coarse-grained interleaving, a cache block could be stressed by

all processors simultaneously during short periods of time, thus becoming a

bottleneck.

(a) (b)

Figure 3.7: Impact on (a) bandwidth and (b) performance of last-level cache
interleaving granularity. Results are normalized to the 4-KB interleaving
case. Performance is measured as total execution time.

For the rest of this chapter, we adopt the 128-byte fine-grained granular-

ity to interleave the address-space across cache blocks because it shows the

highest DMA bandwidth and performance.

3.2.2 Partitioned vs. With-Replication Scheme

In this section, we compare a 128-byte interleaved partitioned LLC (the one

that provides the highest DMA bandwidth) against a latency-aware LLC

with data replication.

Figure 3.8(a) shows the relative bandwidth for the partitioned LLC with

respect to the organization with data replication, as a function of the number

of cores (workers). As it can be observed, the bandwidth improvement for

the scenario with partitioned LLC significantly increases with the number of

cores: for a 64-MB LLC and 64 workers, the bandwidth is 1.5× better, while
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for 128 workers it is almost 4× better. This is because there are (potentially)

more data replication and coherence invalidations in the LLC optimized for

latency, as the number of LLC blocks increases. Figure 3.8(b) shows the

performance speedup (i.e. total execution time reduction) for the partitioned

LLC with respect to the organization with data replication, for the same

experiment. In this case, both alternatives present similar performance for 64

workers or less. But for 128 workers, the scenario with partitioned LLC shows

an improvement near 20% with respect to the LLC with data replication. We

expect this gap to continue growing for larger numbers of workers, because

bandwidth (and not latency) becomes more and more critical as the number

of cores increases.

(a) Relative bandwidth. (b) Performance speedup.

Figure 3.8: Partitioned LLC vs. an organization with data replication. For a
particular number of workers (each point in X-axis), results are with respect
to the organization with data replication. Performance is measured as total
execution time.

As expected, the partitioned LLC scheme is better for throughput-aware

CMPs. The advantage of replicated caches is an increased locality and, hence,

a lower access latency. However, as we have shown in Figure 3.3(b), latency

is irrelevant in throughput-aware scenarios. In such cases, the partitioned

scheme provides higher bandwidth and better off-chip filtering. Figure 3.9

shows the hit rate for both alternatives, adopting a 64-MB LLC. As it can be

observed, the partitioned LLC outperforms the scheme with data replication.

Moreover, the hit rate changes slightly as the number of cores increases,
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while in the LLC with replication the hit rate is significantly affected by

the number of cores. This is due to the fact that, as the number of cores

increases, there are more LLC blocks and, hence, more data replication.

Furthermore, in the scheme with replication, a core may invalidate a cache

line that may potentially be useful for other cores. In the same figure, the

hit rate on invalidated lines is plotted on top of each bar for the LLC with

replication. The number of hits on invalidated lines still present in the LLC

is not negligible — it can be around 6 ∼ 7% of the accesses in some cases

(16, 32 and 64 cores).

Figure 3.9: Hit rate as a function of the number of cores, averaged for all
considered kernels. Results correspond to a LLC with data replication and
data coherence (“W/Replication”) and the proposed partitioned LLC (“Par-
titioned”).

At first glance, the high amount of traffic in the global interconnection

appears as the main drawback of a partitioned LLC with fine-grained inter-

leaving: every LLC access from a core will evenly access all the LLC blocks,

the local one (in its own cluster) and the remote ones. To evaluate this is-

sue, we measure the number of packets in the global interconnection for both

LLC alternatives. For the partitioned LLC, traffic is composed of accesses

to remote LLC blocks (due to the partitioning) and requests to memory.
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For the LLC with replication, besides memory requests, we also consider co-

herence traffic (accesses to remote shared lines and invalidation requests).

Figure 3.10(a) shows the traffic ratio for the partitioned LLC with respect

to the LLC with replication, as a function of the LLC size. As shown in

the chart, the traffic increase for the partitioned LLC is not as high as we

could expect if we take into account the benefits obtained in bandwidth and

performance. For instance, in the scenario with a 64-MB LLC and 128 cores,

the traffic in the global interconnection is 32% higher, but the partitioned

cache provides 3.8× improvement on bandwidth and 1.2× improvement on

performance. Likewise remarkable is the trend: the traffic ratio decreases as

the cache size or number of cores grow, that is what we expect to happen in

future CMPs.

(a) On-chip traffic (global interconnection). (b) Off-chip traffic (memory accesses).

Figure 3.10: Partitioned LLC vs. an organization with data replication. For
a particular LLC size (each point in X-axis), results are with respect to the
organization with data replication.

One of the most important characteristics of our proposal is the off-chip

traffic filtering due to a better use of the LLC capacity. Figure 3.10(b) shows

the off-chip traffic ratio for the partitioned LLC with respect to the LLC

with replication for the same experiment. As it can be observed, the number

of off-chip accesses is substantially reduced and this cut is more noticeable

as the number of cores and LLC size are increased (expected trend for future

CMPs). This is a very desirable effect because off-chip memory access is one
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of the main sources of system power consumption.

3.2.3 No-Write-Allocate Optimization

As previously mentioned, caches for latency-aware computation are designed

to minimize access latency. That means that some optimizations imple-

mented in such organizations do not necessarily perform well on throughput-

aware domains. For instance, write allocation is intended for latency reduc-

tion when a write access misses the cache. However, in DMA-based CMPs,

DMA accesses are usually split into requests that are the same size as cache

lines. In such scenario, if a write access misses the cache, allocating the line

from memory has no impact because the line will be rewritten completely.

Deactivating the write-allocate policy in a DMA-based CMP decreases off-

chip traffic. Figure 3.11 shows the extra number of memory accesses when

the write-allocate policy is activated. In some cases, the additional off-chip

traffic could be significant: for a 128-core CMP with a 8-MB LLC, the traffic

to memory is almost 10% higher when write allocation is employed. When

the LLC size is increased, the additional off-chip traffic decreases because

most of the accesses hit in the cache — but even for a 64-MB LLC, it is still

over 2%. This is extra traffic that can be eliminated by just deactivating an

optimization that works in latency-aware scenarios but not in throughput-

aware designs.

3.3 Off-chip Memory Organization

To improve the off-chip memory bandwidth, we adopt an approach similar

to the one used for the LLC: to access the off-chip memory, we employ more

than one memory controllers, with several channels each, and the address

space is interleaved across channels and memory controllers. Although this

is not a novel technique [19, 94, 99], in this work we analyze what is the

optimal interleaving granularity to obtain the highest bandwidth.

In the scenario evaluated in this section, we consider a 64-MB LLC with

fine-grained (128 bytes) interleaving granularity with one LLC block per
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Figure 3.11: Increment in the number of off-chip accesses when write alloca-
tion is enabled. For a particular LLC size (each point in X-axis), results are
with respect to the organization with write-allocation disabled.

cluster. The configurations evaluated cover scenarios with 16, 32, 64 and 128

cores (workers), and 2, 4, 8 and 16 LLC blocks. Figure 3.12(a) shows the

normalized DMA bandwidth obtained by the cores as the memory interleav-

ing granularity is increased from 128 bytes to 32 KB (baseline: 4 KB). As it

can be observed for a 128-core CMP, the 128-byte interleaving provides 67%

more bandwidth than the 4-KB interleaving, which is the most commonly

used in current memory systems; and 238% more bandwidth when compared

against the 32-KB one. Similar results can be seen for performance in Fig-

ure 3.12(b). Once again, the finest-grained interleaving granularity presents

the best result with a 42% performance improvement (i.e. total execution

time reduction) than the 4-KB interleaving, and a 63% performance improve-

ment compared to the 32-KB one.

Similarly to what was observed for last-level caches in Section 3.2, fine-

grained interleaving also provides the highest DMA bandwidth when em-

ployed to access off-chip memory, because it allows highly-balanced access to

memory controllers and channels. Therefore, we conclude from our experi-

ments that a complete memory system thoroughly optimized at both levels,
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(a) (b)

Figure 3.12: Impact on (a) bandwidth and (b) performance of memory in-
terleaving granularity. Results are normalized to the 4-KB interleaving case.
A 64-MB LLC with 128-byte interleaving is considered. Performance is mea-
sured as total execution time.

LLC and memory, provides significant improvements on bandwidth and per-

formance for throughput-aware CMPs rather than traditional latency-aware

memory organizations.

3.4 Summary and Concluding Remarks

Throughput-aware CMPs have rapidly become an important specimen in the

multicore ecosystem. In such designs, the increase in the number of cores

pushes up the bandwidth demand to access off-chip memory. For that reason,

recent throughput-oriented architectures have adopted caches to alleviate the

pressure imposed to the memory interface. But those caches are conceived

to improve latency, not bandwidth.

In this chapter, we presented a re-design of the memory system targeting

throughput-aware computation. Instead of a traditional latency-aware cache,

we proposed to spread the address space using fine-grained interleaving all

over a shared non-coherent LLC. In this way, on-chip storage is optimally

used, with no need to keep coherence. On the memory side, we also proposed

the use of interleaving across DRAMs but with a much finer granularity than

usual page-size approaches. All these optimizations synergistically provide
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significant improvements on bandwidth and performance. For a CMP with

128 cores and a 64-MB LLC, our proposal shows a 3.8× improvement on

bandwidth due to the LLC organization, and an additional 1.7× improve-

ment due to the DRAM organization (128-byte instead of 4-KB interleaving),

which stack together for a total 6.4× bandwidth improvement. For perfor-

mance, our proposal shows a 1.2× improvement due to the LLC organization,

and an additional 1.4× improvement due to the DRAM organization, which

stack together for a total 1.7× performance improvement (i.e. total execution

time reduction).

The trend is also remarkable: bandwidth and performance improvements

become more significant with the increase in the number of cores or LLC

size. The higher the system size (in terms of number of cores and LLC

size), the greater the number of blocks the LLC has to be split into. In

a latency-aware LLC, that means more data replication and less efficient

use of effective capacity, while in our proposal the effective capacity is not

affected by replication. Moreover, cores can evenly access all blocks in our

LLC organization.

Additionally, we found the write-allocate optimization from latency-aware

caches not to be worth applying on DMA-based CMPs. In such cases, write

cache misses usually are the same size as the cache line. Therefore, allocat-

ing the missing line from memory not only does not help, but it adds extra

off-chip traffic. In the proposed organization, the write-allocate optimization

is deactivated. For 128 cores, our results show close to 10% higher off-chip

traffic when the write-allocate policy is employed. When the LLC size is in-

creased, the additional off-chip traffic decreases because most of the accesses

hit in the cache — but even for a 64-MB LLC, it is still over 2%.
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Register File Design

DMA-based CMPs (as the one evaluated in the previous chapter) move data

from the cache hierarchy into each processor’s local memory by means of

DMA commands. Once in its local memory, a processor moves data into the

register file to satisfy on-the-fly instructions’ input operands. From our point

of view, the adoption of local memories in these scenarios can be avoided by

significantly enlarging the architected register file (e.g. thousands of regis-

ters). This approach presents the following advantages:

• It reduces the cost associated with data movement between the local

memory and the register file. Instead, a processor directly brings data

from the cache hierarchy into the register file, as in a traditional design,

and sends back results to the cache hierarchy once data is not needed

anymore. If the register file is large enough, a processor can move large

blocks of input data into the register file, which is a desirable feature

in data-hungry throughput-aware applications.

• From a programming model perspective, register files are easier to use

with respect to software-managed streaming memories. In a register

file, conventional load/store instructions move data between the regis-

ter file and the cache hierarchy. Coherence is managed by hardware,

and there is no need for software to have knowledge of the precise loca-

tion of the data being accessed. On the other hand, a software-managed

streaming memory requires special instructions to move data between

43
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the cache hierarchy and the local memories, and coherence (if present)

is explicitly managed at software level.

• Data placement and manipulation is also more flexible in a register

file than in a local memory, because it can be supported by regular in-

structions in the Instruction Set Architecture (ISA). This is another de-

sirable feature because throughput-aware applications usually present

phases during which data has to be shuffled or interleaved in some

particular way.

In addition to these benefits, a very-large register file can also be used for

double-buffered computation. This technique —usually implemented with

DMA engines— is key to hide the memory access latency by overlapping

computation and data transferring. To enable double buffering, DMA-based

systems resort to large local memories to keep both, the data being processed

and the data being prefetched from the memory system to be processed next.

Double buffering can still be implemented with the adoption of a very-large

register file. The evaluation of a very-large register file as a means to use

double buffering in DMA-based CMPs is beyond the scope of this thesis.

Instead, we study the virtues of the proposed register file organization in the

context of load-store CMP architecture.

Based on these observations, in this chapter we study the possibility of

significantly re-architecting the user-addressable register file organization,

as well as the impact of a very-large vector register file in the context of

throughput-aware computation. The register file considered in this thesis

was presented by Derby et al. in [29] in the context of an in-line accelerator.

In this thesis, we propose to implement such organization with multiple banks

to keep wire propagation delay under control and exploit local computation

in each bank. As we explain in Section 4.5, this processing capability at

register file level is implemented with small, SIMD computation elements

attached to each bank.

Throughout this chapter, we study the benefits of the proposed very-

large register file in the context of wireless base stations for the third genera-

tion (3G) and fourth generation (4G) wireless telecommunication standards.
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These applications are throughput demanding and heavily bandwidth bound

which make them suitable to study the kind of optimizations presented in

this thesis. The approach involves exploiting the throughput computation

capabilities of the IBM PowerEN processor [17, 37, 57] (a multicore, mas-

sively multithreaded platform) augmented with a layer of in-line universal

acceleration support. These in-line accelerators are incorporated within the

cores and include the proposed register file with embedded SIMD support.

4.1 Wireless Base Stations

In wireless networks, base stations play a key role as an intermediary be-

tween mobile devices and wired networks. With the rapid proliferation of

smartphones, tablets and other mobile broadband devices, base stations are

responsible for operating on large amounts of traffic at high speed rates (in

the order of 1Gbps for 4G). Therefore, it is crucial to provide base stations

with enough computation resources to satisfy such demand on speed and

throughput, in the face of the new coming standards.

Since the release of the PowerEN processor in 2010, IBM is playing an

important role in the development of suitable hardware to meet the com-

putation requirements in the network processing domain. In this chapter,

we analyze the potential benefits that the PowerEN processor could provide

for wireless communication systems, particularly base stations. We leverage

features from PowerEN such as massively multithreaded design and high-

bandwidth networking interfaces. Furthermore, we replace the bus-attached

special-function accelerators by in-line universal accelerators. Instead of be-

ing connected to the bus, the in-line accelerators are incorporated within

all the cores or a selected subset thereof. The benefits of this approach are

twofold. The in-line accelerator can be used as a traditional SIMD unit in-

corporated in a general-purpose processor, avoiding the communication over-

head when employing off-line (bus-attached) accelerators. In addition, from

a programming model perspective, in-line accelerators are easier to use be-

cause the instructions that drive the accelerator are part of the same stream

that drives the host processor.
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In the context of a single core, in this thesis we focus on the in-line

vector-based accelerator (VBA) design, which builds on the indirect VMX

(iVMX) architecture [29]. A key constituent of the proposed VBA is the Vec-

tor String Register File (VSRF). It is a very-large register file which helps to

significantly reduce the number of memory access instructions. To keep wire

propagation delay under control, we conceive the VSRF as an aggregation

of banks. Such organization unveils an additional optimization opportunity:

SIMD computation support embedded into the register file. This processor-

in-regfile (PIR) strategy is implemented as small special-function local com-

putation elements (LCEs) attached to each bank. With this approach, the

limited number of register file ports is overcome. Each LCE is a SIMD com-

putation element, and all of them can proceed concurrently. Therefore, the

PIR strategy constitutes a highly-parallel super-wide-SIMD device, ideal for

throughput-aware computation. In order to target a broader spectrum of

throughput-aware applications in base stations, we also analyze the feasibil-

ity of the PIR architecture implementation based on reconfigurable LCEs.

4.2 IBM PowerEN Processor

The PowerEN architecture targets highly-parallel applications, providing ac-

celeration for network domains. As shown in Figures 4.1(a) and 4.1(b), a

PowerEN chip is composed of 16 PowerPC-based A2 cores (4-way SMT each)

grouped into four clusters, with a shared 2-MB L2 cache in each cluster.

Additionally, there are four bus-attached hardware accelerators for XML,

pattern-matching, compression/decompression and cryptography. The cores

and accelerators are connected through an interconnection fabric (PBus),

which is also responsible for data coherence among the L2 caches. As an-

nounced in 2010 [57], the PowerEN processor is a 2.3GHz, 45nm SOI chip

with a die size of 428 mm2.

At first glance, we would consider adding new hardware accelerators at-

tached to the PBus to target applications such as FFT and Turbo Decoding.

In the physical layer in an LTE base station, the signal going through the

downlink or uplink chains is processed with a sequence of functions (e.g.
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(a) Block diagram (source: [37]).

(b) Die photo (source: [57]).

Figure 4.1: IBM PowerEN processor.

FFT → channel estimation → Turbo Decoding → CRC checking). As we

discuss in Section 4.4.1, a programming model based on in-line accelerators

would be more suitable for base stations to avoid the coordination and data

movement between successive functions. Therefore, we consider replacing

the bus-attached, globally-shared accelerators by in-line accelerators incor-

porated within all the (or a selected subset of) A2 cores.

The envisaged design for the in-line accelerator would be such that it could

be used to compute different functions (e.g. FFT, Turbo Decoding, etc).
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This approach, if deemed attractive from an area, performance and energy

efficiency viewpoint, ostensibly also reduces development complexity in that

the multiple accelerator design efforts can be merged into a single (universal)

accelerator design. The code for such in-line accelerator can be written using

a completely traditional programming model, with data resident in memory

and loaded to the VSRF as needed.

4.3 Area and Power Implications

In this section, we analyze the impact in terms of area and power consump-

tion due to the adoption of in-line universal accelerators. The PowerEN

chip has a die size of 428 mm2. We first remove the four hardware acceler-

ators (XML, pattern-matching, compression/decompression and cryptogra-

phy) because they are not required in the base station computation domain

(“Stripped PowerEN” configuration in Figure 4.2(a)). By connecting just

one Turbo Decoding accelerator to the PBus (“Stripped PowerEN + TD”

configuration), system-on-chip (SoC) area increases by 1.5%, based on an

optimistic estimate for 45nm. On the other hand, by incorporating 16 in-line

universal accelerators (“Stripped PowerEN + 16 In-Line Acc” configuration),

SoC area increases by 22%. However, the latter configuration implies 16

times more acceleration capability than the one with just one Turbo Decod-

ing accelerator connected to the PBus. Moreover, the configuration based

on in-line accelerators constitutes a fully-programmable, scalable design for

a much broader range of applications.

Based on a preliminary assessment for the LTE standard, the complete

digital baseband for a single sector supporting a 4x4 multiple-input multiple-

output (MIMO) antenna configuration in a 20 MHz channel can be imple-

mented with just two to three A2 cores, each with an in-line accelerator

attached [28]. Such configuration, which is suitable for pico and femto base

stations, presents an area that is almost 40% smaller than the one with 16

in-line accelerators (“Stripped PowerEN + 4 In-Line Acc” in Figure 4.2(a)).

Figure 4.2(b) presents a comparison in terms of power consumption for

the same four configurations. Connecting one Turbo Decoding accelerator to
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(a) Area comparison (b) Power comparison

Figure 4.2: Normalized area and power comparison for four particular con-
figurations: a PowerEN without bus-attached accelerators (“Stripped Pow-
erEN”), a stripped PowerEN with a bus-attached Turbo Decoding accelera-
tor (“Stripped PowerEN + TD”), a stripped PowerEN with 16 in-line uni-
versal accelerators (“Stripped PowerEN + 16 In-Line Acc”) and a stripped
PowerEN with 4 in-line universal accelerators to target pico and femto base
stations (“Stripped PowerEN + 4 In-Line Acc”).

the bus (‘Stripped PowerEN + TD”) increases power consumption by 2.6%

with respect to the baseline stripped PowerEN SoC. By incorporating 16

in-line universal accelerators (“Stripped PowerEN + 16 In-Line Acc”), SoC

power increases by 25%, but providing 16 times more fully-programmable

acceleration capability than the one with just one Turbo Decoding accel-

erator. Finally, the configuration suitable for pico and femto base stations

(“Stripped PowerEN + 4 In-Line Acc”) presents a 46% reduction in power

consumption compared to the one with 16 in-line accelerators.

The comparison presented above is conservative. Area and power con-

sumption can be further reduced when memory bandwidth is also taken into

account. To feed 16 A2 cores, the original PowerEN chip resorts to two in-

dependent DDR3 memory controllers, each one with two independent chan-

nels [57]. However, the configuration “Stripped PowerEN + 4 In-Line Acc”

proposed for base stations incorporates just one-fourth the number of A2

cores. Even more, the in-line accelerators within those cores help to reduce

the memory bandwidth pressure. Based on this observation, we may expect
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memory bandwidth demands to be one-fourth (or less) of the bandwidth re-

quired in the original PowerEN chip. Therefore, we can do without one of

the two DDR3 memory controllers. In this case, the “Stripped PowerEN +

4 In-Line Acc” configuration area is 44% smaller and power consumption is

51% less than the “Stripped PowerEN + 16 In-Line Acc” configuration.

From the analysis done in this section, it is possible to infer that the Pow-

erEN architecture has a great potential to target base stations. By adapting

it for pico and femtocells, with four cores and four in-line universal acceler-

ators, significant savings in area and power consumption can be achieved.

4.4 Universal In-Line Accelerator

The vector-based accelerator (VBA) presented in this chapter is an auxiliary

processing unit attached to an A2 core, built upon the indirect VMX (iVMX)

architecture [29]. It takes and executes instructions fetched and passed to

it by the core, and provides essentially the same computational facilities as

VMX. The accelerator includes an extremely large register file, the VSRF,

which can be accessed using an indirection mechanism based on register

mappings. In this chapter, we consider a 2048-entry VSRF implementation.

Each register is 256-bit wide with corresponding subword parallelism (e.g. 16-

wide for 16-bit halfwords, 8-wide for 32-bit fullwords). The VBA incorporates

low-latency gather operations to operate on the register file data. These

operations permit access to up to eight data elements at arbitrary locations

in the VSRF with a single gather instruction.

In [85], Rico et al. present the virtues of an in-line accelerator with a

VSRF, compared to a standard VMX baseline implementation. Applications

benefit from the VSRF size to load large amounts of data at once, operate

locally for a long period and store the results at the end. VMX codes,

instead, require to load and store data much more frequently due to the

limited amount of registers. Thus, the adoption of a very-large register file

leads to significantly less vector load and vector store instructions compared

to having a regular 32-entry register file. Moreover, if the result is to be used

as the input to another function, there is no need to store the output into
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the cache hierarchy.

As shown in [85], the reduction in instruction counts in the VBA+VSRF

case and its CPI improvements over VMX result in significant speedups (up to

80% reduction in execution time). On the other hand, power consumption in

the VBA+VSRF case is higher due to the larger area and additional logic for

indirection. However, the lower CPI and the reduced off-chip traffic lead in

most of the cases to a better energy per instruction consumption compared to

VMX. This fact, in conjunction with the significant code reduction, results in

very large energy savings. Taking into account that electricity consumption

of telecommunications infrastructure grows 16% per year, and that 80% of

such energy is just consumed by base stations [34], energy efficiency is a

highly desirable attribute for any SoC design for base stations.

4.4.1 Programming Model

The VBA can be programmed using a completely traditional programming

model, with memory-resident data loaded and stored as needed. However,

this approach underutilizes the VSRF. Substantial performance gains can be

obtained by loading relatively large blocks of data into the VSRF a cache-line

at a time, operating on the entire block of data, keeping intermediate results

in the VSRF, and storing the final results to memory a cache-line at a time.

The VBA provides further advantage when the produced result is used as

the input to another function. For instance, it can pass the FFT output into

subcarrier demapping in an LTE uplink receiver. In this case there is no need

to store the output of the FFT; the next function is merely given a pointer

to its input within the VSRF.

In a SoC with bus-attached accelerators, cores offload tasks to those hard-

ware accelerators, with frequent coordination and data movement between

them. With the in-line acceleration model enabled by the VBA, a sequence

of tasks is implemented in software in a single A2 core with VBA. Data re-

mains local (ideally in the VSRF and if necessary in the local L2 cache) and

coordination is handled through normal program flow.

Two additional points with respect to the programming model are worth
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noting. First, it remains a load/store model, with load and store instructions

used to move data in and out of a vector unit’s VSRF. Given the PowerEN’s

hardware-managed coherence, there is no need for software to have knowledge

of the precise location of a block of data to be accessed. And, second, the

use of the VBA enables solutions that are highly scalable, since each VBA

can provide acceleration for any of the desired functions, depending on the

code it executes.

4.4.2 Why Such a Large Register File?

The VSRF contains more storage than the L1 data cache found in most

processors. A natural question is why not use the VSRF silicon to augment

the cache storage hierarchy “seen” by the CPU. First of all, the VSRF is in

fact a register file, in that it can supply the contents of up to four on-the-fly

instruction operands per cycle. Its access latency is completely hidden by

pipelining and bypassing. Instead, an L1 cache has fewer ports and higher

access latency.

The VSRF also provides fixed access latency for reading or writing a reg-

ister. This is crucial for computation at physical layer in base stations. As

3GPP specifies for the LTE standard [3], a radio frame is received every 10

ms, partitioned into ten subframes of 1 ms each, and each subframe parti-

tioned into two 0.5 ms slots. In each slot, seven orthogonal frequency-division

multiplexing (OFDM) symbols are received, each one containing a little over

2000 complex samples. Each received symbol has to be processed on time,

to avoid significant performance degradation and situations where recovery

may be extremely difficult (if not impossible). A design with a larger cache

instead of the VSRF, would be more prone to fall behind the processing

deadline, e.g. because of a burst of unexpected cache misses.

To enable application optimizations, the VSRF provides much more data

placement flexibility with respect to a cache. This feature gives to the pro-

grammer the means to split data for parallel processing, as it will be shown

in Sections 4.4.3 and 4.5.1. Moreover, data in a cache is at risk to being

evicted while it is still needed.
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In the next section, we discuss a radix-8 FFT implementation which ex-

ploits the large capacity, low-latency access and flexible data placement of

the VSRF.

4.4.3 Case Study: Fast Fourier Transform

Cooley-Turkey FFT algorithms [25] are used extensively in LTE. These algo-

rithms are commonly implemented using fixed-point arithmetic, with 16 bits

each for the real and imaginary parts of the data array. With interleaved

real and imaginary parts at 16 bits each, the FFT algorithm “sees” the VBA

as providing an 8-wide SIMD. There is a natural affinity between the radix-8

FFT and an 8-wide SIMD, in that eight radix-8 butterflies can be executed

in parallel in place throughout the FFT, with just one step of shuffling the

data array with base-8-digit-reversed indexing. Moreover, a very simple and

clean implementation of the shuffling is possible given the capabilities of the

VBA.

Considering a 512-point FFT, the radix-8 algorithm computes log8(512) =

3 stages, each one with eight 8-wide radix-8 butterflies. The data array oc-

cupies 64 vector registers. A decimation-in-time (DIT) implementation on

the proposed in-line accelerator proceeds as follows:

1. The data array is accessed in sequential fashion for the first stage, which

requires no twiddle factors. The first stage requires about 120 cycles.

2. Groups of eight vectors are transposed in the VSRF, using a sequence

of gather instructions. Each 8x8 transpose requires 8 cycles.

3. The shuffled intermediate data array from step 2 is the input to the

second stage. The access pattern for the array completes the base-8-

digit-reversed indexing. This access pattern is implemented by con-

struction and updating of appropriate sets of pointers in map registers.

The second stage, including multiplication by twiddle factors and the

necessary map management, completes in about 160 cycles. The data

array at the output of this stage is in the VSRF in natural order.
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4. The third stage completes the FFT. Including multiplication by twiddle

factors and the appropriate map management, it completes in about

160 cycles.

The complete 512-point FFT executes in about 550 cycles. This assumes

that the data and twiddle arrays are already in the VSRF at the outset

and that the transformed data array remains in the VSRF at the end. The

overhead to load the data and twiddles and to store the result may increase

the cycle count by 15%. However, in the LTE layer 1, FFTs represent one

step (or a set of steps) in a sequence of functions applied to the baseband

signals. With the in-line programming model supported by the VBA and the

very-large register file, it is realistic to consider the FFT requiring neither

loads from memory nor stores to memory.

The implementation presented here is based on Pease’s method [93]. This

algorithm is explicitly optimized for parallel FFT computation and requires

just one step of data shuffling. This observation is particularly important,

because FFT scalability is usually limited by the data shuffling cost, which

increases significantly with the FFT size. By adopting Pease’s method, the

scaling of processing time from 512 points to 1024 and 2048 points (sizes

commonly found in current base stations) is very close to N×log2(N). For

instance, a 2048-point fixed-point FFT executes in about 2500 cycles in the

VBA; i.e. 1884 millions of samples per second (Msps) at 2.3GHz. In compar-

ison to the state-of-the-art digital signal processor (DSP) solutions [38, 100],

our simulation-based throughput estimation is 1.5 to 3.5 times higher, for the

same clock frequency. Even more, the design proposed constitutes a fully-

programmable, scalable design for a much broader range of applications than

DSPs.

4.5 Processor-in-Regfile Strategy

In the context of throughput-aware applications, exploiting the large amount

of parallelism would require moving a lot of data from the register file to the

computation resources and vice versa. In that case, the available register
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file ports would not be enough to keep the A2 core busy. To alleviate the

pressure on the register file interface, in this thesis we propose to embed

part of the computation resources into the register file. We denote this

strategy as processor-in-regfile (PIR) due to its analogy with the processor-

in-memory (PIM) approach [80]. Our PIR proposal is intended to exploit

local computation in each bank as much as possible. Taking advantage of

the available parallelism, an application is partitioned into smaller parallel

problems, whose working sets fit in each bank. In this way, the pressure

on the register file interface (read/write ports) is significantly reduced. The

embedded logic, referred to as local computation elements (LCEs), is attached

to each bank and provides SIMD support, as shown in Figure 4.3.

Figure 4.3: Organization of the 8-bank register file with 8 embedded LCEs.

Assuming a 64-KB register file with 8 LCEs and 4RD/1WR ports per

bank, a scenario where all the LCEs can proceed in parallel is equivalent to

a register file with 8 × 4RD/1WR ports and a SIMD width 8 times the LCE

SIMD width.

In Figure 4.3 we assume that each LCE is attached (operates on) a par-

ticular bank in the register file. However, this could not always be the case.

Part of the potential of the PIR strategy resides in the innumerable ways to

organize the embedded LCEs. Depending on the targeted market, we could

be interested in exploiting throughput by attaching one LCE to each bank, as

shown in Figure 4.3. In some other scenarios, we could target power and/or

area savings, by embedding fewer LCEs, each one sharing two or more banks.

Moreover, those scenarios could coexist in the same design, in such a way

that each configuration is employed depending on the particular needs of the
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application being executed. The innumerable ways to organize the embed-

ded LCEs in the VSRF makes our proposed PIR strategy a key enabler for

highly-flexible workload-optimized designs for base stations and, in general,

for throughout-aware computation. The flexibility and benefits provided by

the PIR strategy will be next assessed based on a Turbo Decoding application

for base stations.

4.5.1 Case Study: Turbo Decoding

A Turbo Code is a class of forward error-correction code that allows channel

throughput levels very close to the channel capacity [10]. A Turbo Decoder,

as the one considered in this section, incorporates two constituent decoders,

interleaver, and de-interleaver in a feedback loop, with the decoders imple-

menting the BCJR algorithm [7]. The input to the decoder is a bit stream

(codeword) with two parity bits per each data bit (1/3 rate encoding).

Even though decoding a Turbo Code is a sequential process, to take

advantage of the abundant parallelism available in our PIR architecture,

the codeword is divided into as many sub-blocks as the number of banks

in the VSRF (similar to [45]). In this way, each LCE decodes the sub-

block stored in its associated bank, and all the LCEs can proceed in parallel.

The decoding process performed by each LCE involves the computation of

forward recursion probabilities (α values), backward recursion probabilities

(β values), and extrinsic probabilities.

The organization adopted for Turbo Decoding consists of eight banks and

four LCEs, in such a way that each LCE is shared by two neighboring banks,

as shown in Figure 4.4. The benefits of this sharing are twofold: it saves area

and enables the latency through the two-cycle LCE pipeline to be covered.

Each LCE is fed by its even bank on even cycles and by its odd bank on

odd cycles. Figure 4.4 also shows the internal LCE structure required for the

forward recursion computation. Each LCE incorporates 1-byte multiplexers,

saturated adders/subtractors and maximum selectors. This logic is organized

in a two-stage two-cycle pipeline, with an intermediate buffer between stages.

The same logic is used for backward recursion computation.
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Figure 4.4: 8-bank 4-LCE register file organization for Turbo Decoding. Each
LCE decodes the sub-blocks stored in its attached banks. The LCE is or-
ganized in a two-stage two-cycle pipeline, with an intermediate latch-based
buffer between stages. The use of the two stages is multiplexed in time to
hide the latency. Each “1B Mux” selects a 1-byte α or γ value from one of
the 32-byte input registers. The output of the second stage is a set of eight
1-byte α values corresponding to time step k.

In our approach, the 6144-element codeword (the maximum length spec-

ified in LTE) is split into eight 768-element sub-blocks. Each sub-block is

assigned to one particular bank. Making use of their attached LCEs, all the

banks proceed concurrently to compute: first, the 768 time steps of forward

recursion probabilities (α values); second, the 768 time steps of backward

recursion probabilities (β values); and finally, the 768 extrinsic probabilities.

After the decoding phase, all the statistical information generated (ex-

trinsic probabilities) is shuffled (interleaved), based on mapping information

that is also stored in the VSRF. The interleaving, which relies on the gath-

ering support provided by the VBA, implies data movement between banks

and cannot be parallelized. Even in that case, the interleaving phase benefits

from the low wire latency and flexible data placement provided by the VSRF.

Once this data reordering is finished, a new decoding phase begins.

Figure 4.5 shows the performance estimation for the VBA with logic em-

bedded into the VSRF (“VBA+PIR” scenario). The VSRF has 64 KB of
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capacity, with 8 banks and 4RD/1WR ports. As it can be observed, the

VBA+PIR scenario presents significant performance improvements: 72% re-

duction on execution time compared to the VMX baseline, and 43% reduction

compared to the VBA case.

Figure 4.5: Normalized execution time to decode a 6144-bit codeword in six
iterations. “VMX” is a scenario with a 32-entry vector register file, “VBA”
incorporates a 2048-entry VSRF and in “VBA+PIR”, four LCEs are embed-
ded into the VSRF. In all the cases, 256-bit vector registers are considered.

For a maximum-length codeword (6144 bits), the throughput of our Turbo

Decoding implementation is 230 Mbps for a single A2 core with VBA. De-

coding in a base station is performed in the uplink, for which 3GPP specifies

data rates of up to 75 Mbps (LTE) [1] and 500 Mbps (LTE-Advanced) [2].

We can satisfy the LTE requirements by using one A2 core with VBA. For

LTE-Advanced, the requirements can be met with two to three A2 cores with

VBA proceeding in parallel.

In comparison to the existing solutions, the 230 Mbps throughput esti-

mation is similar or slightly lower than two state-of-the-art DSPs [38, 100],

for the same clock frequency. However, as it was mentioned for the FFT case

in Section 4.4.3, this performance is attained with a fully-programmable,

scalable design for a much broader range of applications than DSPs.
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4.6 Opportunities and Challenges

4.6.1 Reconfigurable Processor-in-Regfile Architecture

A PowerEN chip with in-line universal accelerators constitutes by itself a

general-purpose, high-throughput platform that meets the high computation

demand in base stations. In the Turbo Decoding example in Section 4.5.1

we show that such computation capability is further improved when small

special-function computation elements are embedded into the register file.

In the example, each LCE is highly-optimized to perform a particular func-

tion (decoding a codeword sub-block). Even better would be a PIR-based

design with highly-optimized LCEs, while still targeting a broad spectrum

of throughput-aware applications. Based on that motivation, in this section

we briefly discuss rPIR, a PIR-based architecture built upon reconfigurable

LCEs.

In the envisaged rPIR organization, the reconfigurable LCEs attached to

the banks incorporate enough resources to accelerate different throughput-

aware applications. Those resources are basic building blocks (multiplexers,

adders, multipliers, etc.) which can be combined in different ways to perform

different types of computation. We call this approach “reconfigurable” be-

cause such combination of the building blocks can be changed by modifying

the interconnection between them.

To define the type and amount of building blocks to incorporate in the re-

configurable LCEs for a particular market, we analyze a representative suite

of applications for such market. For illustrative purposes, we just consider

FFT and Turbo Decoding for base stations in the following analysis. This

evaluation determines the operations common to both applications: type and

size of additions, type and size of multiplications, type of multiplexers, among

others. Those building blocks are incorporated into each LCE, and intercon-

nected through a reconfigurable crossbar-like network. To further illustrate

it, we consider the radix-8 DIT FFT implementation from Section 4.4.3 and

the Turbo Decoding implementation from Section 4.5.1.

The FFT implementation presented in Section 4.4.3 is based on Pease’s
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algorithm for parallel computation [93]. By leveraging the natural affinity

between the radix-8 FFT and our 8-wide SIMD design, eight radix-8 butter-

flies can be executed in parallel in place (i.e., locally in each bank) throughout

the FFT. Each LCE is an 8-wide SIMD unit, which takes two input 256-bit

vector registers. Each vector register holds eight complex values. Therefore,

to simultaneously add two vector registers, we include 16 2-byte adders, each

one operating on real or imaginary parts (strictly speaking, we implement

the 16 2-byte adders with 32 1-byte adders). In addition, we need 32 2-byte

multiplexers to select real or imaginary parts from the two input registers.

For the butterfly multiplications, we rely on the complex multiplier in the

VBA due to complexity of integrating it in the LCE. Table 4.1 summarizes

the required logic to compute the FFT butterfly additions locally in each

LCE.

The LCE implementation for Turbo Decoding shown in Figure 4.4 com-

prises 16 1-byte multiplexers to select the input γ values, 16 1-byte multiplex-

ers to select the input PIN probabilities, 16 1-byte multiplexers to select the

input α values, 8 1-byte multiplexers for the implementation of the saturated

subtractor, 16 saturated byte adders for the first LCE stage, 8 saturated byte

adders for the implementation of the saturated subtractor, 8 1-byte maxi-

mum selectors and one 8-byte maximum selector. Table 4.1 summarizes the

required logic for Turbo Decoding.

The building blocks listed in Table 4.1 are incorporated into each LCE

as “facilities” and interconnected through a reconfigurable crossbar-like net-

work. The internal LCE organization for this particular scenario is shown

in Figure 4.6. The interconnect network behaves as a full crossbar, and can

take any element (byte, half-word, word or double-word) from any input or

temporal buffer, and feed it to any input in any computation facility. This

flexibility, the key benefit of hardware reconfigurability in our proposal, can

be controlled with a set of bits (top “Select” signal in Figure 4.6). Configur-

ing a particular functionality at run time requires that we specify the group

of control bits to be set in each clock cycle. All the bits associated with a

particular configuration are stored in a look-up table (“Config. LUT” box in

Figure 4.6).



4.6. OPPORTUNITIES AND CHALLENGES 61

Radix-8 FFT Turbo Decoding

1-byte muxes - 56

2-byte muxes 32 -

1-byte adders 32 24

1-byte max selectors - 8

8-byte max selectors - 1

Table 4.1: Required logic for radix-8 FFT and Turbo Decoding computation
at LCE level.

Figure 4.6: Internal organization of a reconfigurable LCE, in one particular
envisaged design.

The rPIR approach presented in this section constitutes a trade-off be-

tween highly-optimized special-function designs and general-purpose proces-

sors. On one hand, rPIR allows special-function computation to accelerate

parts of applications (e.g. butterfly additions in the FFT), but limited to the

building blocks that can be included into the LCEs. On the other hand, the

resources included into the LCEs can be re-used to target different applica-

tions, making an efficient use of the area.

4.6.2 Challenges

Many issues remain open regarding the VBA and the PIR/rPIR approaches.

These challenges are:

• Compilation support for VBA, PIR and rPIR — The large reg-

ister file proposed in this chapter poses an additional challenge to the

programmer. It is not possible to address thousands of registers by

encoding them with just five bits, as it happens with conventional In-

struction Set Architectures. Instead, registers are accessed through an

indirection mechanism based on register mappings [29]. Therefore, it
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would be important to provide the programmer with compiler support

to deal with the thousands of available data registers plus the register

mappings. In addition, the PIR and rPIR proposals also require that

the VBA ISA be extended with extra instructions to drive the embed-

ded LCEs and to set different configurations in the rPIR scenario.

• Use in multi-threaded environments — Although the workloads

evaluated in this chapter are single-threaded, we also envisage a design

where each thread operates upon a particular set of banks and LCEs.

For instance, assuming an 8-bank 8-LCE register file in a 2-way SMT

scenario, each thread may be devoted to operate on half of the regis-

ter file. This configuration could allow, for instance, two independent

applications (e.g., FFT and Turbo Decoding) to proceed in parallel.

• Other application domains — In addition to the advantages for

base stations, the PIR strategy may provide potential benefits for other

types of applications. Just to mention a few examples, parallelizable

sorting, search algorithms and sparse matrix computation could exploit

the bank-based VSRF organization with embedded LCEs. The AA-

Sort sorting algorithm [47] is an example of an application that one

can port. In the original version, AA-Sort first divides the input data

array into blocks that fit into the cache of the processor. Each block

is then sorted independently, and all of them are finally merged to

produce the ordered data array. In a VSRF scenario with embedded

LCEs, one can apply a similar strategy. We first divide the input data

array into blocks, and each block is assigned to one VSRF bank. All the

LCEs proceed in parallel to sort the block in its attached bank. Finally,

all the blocks are merged taking advantage of the low-latency gather

operations provided by the VBA. We expect significant performance

results with this strategy.
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4.7 Summary and Concluding Remarks

Mobile networks and communication systems are currently moving from the

third generation (3G) toward the fourth generation (4G) standardization.

This evolution is facing new challenges regarding the huge amount of ac-

celeration and throughput computation required by base stations. In this

chapter, we expound on the potential benefits that the PowerEN processor

could provide for wireless communication systems, particularly base stations.

In such context, we present potential extensions to exploit the throughput

computation capabilities of the PowerEN processor. These modifications in-

volve replacing the bus-attached special-function accelerators with a layer of

in-line, universal, throughput acceleration support, incorporated within the

A2 cores. In order to highlight the benefits of such an approach, we present

an evaluation of a radix-8 FFT algorithm, which is one of the dominant

applications in the context of base stations.

We analyze the impact in terms of area and power consumption due to

the adoption of in-line universal accelerators. As we show, significant savings

in area and power consumption can be achieved by adapting the PowerEN

architecture for pico and femtocells.

The in-line accelerator incorporates a bank-based very-large register file,

with embedded SIMD support (processor-in-regfile or PIR). The PIR strategy

is key to overcoming the limited number of register file ports, and constitutes

a highly-parallel super-wide-SIMD device, ideal for throughput-aware com-

putation. For a particular Turbo Decoding implementation, we show how

the PIR strategy fits the computation requirements for LTE base stations.

In this case, our proposal shows significant performance advantages over a

traditional VMX-based design as well as a baseline VBA-based design.

Our design presents throughput improvements ranging from 1.5 to 3.5

times for the FFT computation, and similar or slightly lower for Turbo De-

coding, compared to existing DSPs. This performance is attained with just

one design (the VBA), which can be fully programmed to accelerate other

types of applications. Instead, DSPs rely on hardware accelerators, which

are special-purpose designs targeted to tackle particular application types.
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Chapter 5

Power Management

The emergence of high-end multi-core chips in the early 2000s is not just

a consequence of single-thread performance limitations. It is also a result

of the unprecedented power consumption levels being faced by single-core

processors in the late 1990s. In the beginning, power consumption concerns

were mostly linked to thermal issues: power hungry chips demand more

sophisticated (and, therefore, more expensive) cooling mechanisms. With

time, energy bills also became part of those concerns, mostly associated to

data centers power and energy consumption. For example, total data center

power consumption accounted for between 1.7% and 2.2% of total electricity

use in the U.S. in 2010 [62]. As a result, processor design and manufacturing

since the early 2000s was not driven just by performance, but also constrained

by strict power budgets. This phenomenon is usually referred to as the

“power wall”.

The rationale behind the power wall has its origins in 1974, when Robert

Dennard, Fritz Gaensslen, Hwa-Nien Yu, V. Leo Rideout, Ernest Bassous

and Andre LeBlanc, from the IBM T. J. Watson Research Center, postu-

lated the scaling rules of metal-oxide-semiconductor field-effect transistors

(MOSFETs) [27]. One key assumption of the Dennard’s scaling rule is that

operating voltage V and current I should scale proportionally to the linear

dimensions of the transistor in order to keep power consumption (V×I) pro-

portional to the transistor area (A). But manufacturers were not able to

65
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lower operating voltages sufficiently, and power density (V×I/A) kept grow-

ing until it reached the power wall. As a result, frequency scaling slowed

down and industry shifted to multicore designs to cope with single-thread

performance limitations.

The power wall has fundamentally changed the way modern processors

are conceived, particularly in the realm of mobile applications. Multiple

simpler cores were incorporated into the same chip instead of just one fat,

power-hungry core. The multi-core philosophy not only helps to overcome

single-thread performance limitations, but it is also an important strategy to

reduce power density and distribute temperature more uniformly within the

chip. Processors became more aware of power consumption, with additional

on-chip “intelligence” for power management. Two popular dynamic power

reduction techniques are clock gating and dynamic voltage and frequency

scaling (DVFS). Clock gating consists of disconnecting the clock network

—which is responsible for a significant portion of chip power— from un-

used circuit blocks. DVFS allows to dynamically reduce supply voltage VDD

and/or frequency which can result in significant power reductions. Even if

these mechanisms are effective in reducing dynamic power consumption, still

static power accounts for a large fraction of today’s chip power. Power gating

is a circuit-level technique capable of eliminating both dynamic and static

power by cutting off the power supply to a logic macro. The application of

power gating, however, is not trivial. There is a considerable latency associ-

ated with switching a macro on and off. Therefore, it is crucial to identify

(and even, generate) the right opportunities for the actuation of the power

gating knob. In this chapter, we focus on strategies to leverage the software-

hardware interaction to power gate chip components as much as possible

with minimal performance impact.

The incorporation of multiple threads and cores into a single chip sig-

nificantly affects the hardware-software interaction. The operating system

(OS), compilers and, ultimately, the programmer are now aware of the ex-

istence of multiple processing elements. The allocation of software threads

across available hardware threads is a software-level responsibility, with little

or no hardware control (Figure 5.1). In most cases, programmers rely on
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OS schedulers to allocate software threads across hardware threads. Some-

times, programmers can also explicitly establish preferred thread allocations

by setting affinities between software and hardware threads [15].

Figure 5.1: Allocation of six software threads (four belonging to program
“A” and two to program “B”) across eight hardware threads, in a 4-core
2-way SMT CMP. From a program standpoint, hardware threads are “seen”
as eight logical cores. In most cases, the operating system maps software
threads into hardware threads and cores.

The way software threads are assigned to available hardware threads has

performance and power consumption implications. Under multi-threaded

workloads, it is not always evident what is the best thread allocation policy

to improve performance. It is neither evident how such allocation impacts the

power consumption. To illustrate the thread allocation implications for per-

formance and power consumption, we execute a multi-threaded application

in a POWER7 processor with eight 4-way SMT cores in the same chip (i.e.

32 available hardware threads). The evaluated application is Dedup (from

the PARSEC benchmark suite [12]), which is executed with eight software

threads. The platform runs Linux OS with kernel version 3.0.1. Software

threads are pinned to specific hardware threads by setting CPU affinities. In

one scenario, each software thread is pinned to a different core (configura-

tion “8x1”: eight cores with one software thread each). In another scenario,

two software threads are pinned per core (configuration “4x2”: four cores

with two software threads each). Configuration “8x1” mimics what the OS

scheduler usually strives to do: to place different software threads in dif-

ferent cores to minimize inter-thread conflicts and maximize performance.
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Figure 5.2 presents a comparison between these two scenarios (“8x1” and

“4x2”), in terms of execution time, chip power consumption and accesses

to remote caches in the same chip. In POWER7, each core can effectively

access shared data located in remote L2 and L3 caches through the coher-

ence fabric. While execution time is increased by just 5% when configuration

“4x2” is adopted, chip power consumption is cut down by slightly more than

20%. The reason for such small performance degradation when the number

of cores is halved relies on the significant inter-thread data sharing present

in this application. When software threads are executed closer (sharing the

same cache hierarchy), the number of accesses to remote cache regions in the

chip decreases significantly.

Figure 5.2: Dedup application with eight software threads executed in
POWER7. In one configuration, each software thread is pinned to a dif-
ferent core (“8x1”: eight cores with one software thread each), while in other
configuration two software threads are pinned per core (“4x2”: four cores
with two software threads each). Figure presents execution time, chip power
consumption and accesses to remote cores’ caches. The results are normalized
to the “8x1” configuration.

In the Dedup example presented, software threads are statically pinned

to hardware threads. In other cases, multi-threaded applications may not

benefit from statically pinning software threads to fewer cores. It strongly

depends on data sharing degree and working set sizes. It is also determined

by the number of software threads in an application: the larger the number

of software threads, the more the performance is degraded when the number
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of cores is reduced. Therefore, we cannot statically confine multi-threaded

applications to fewer cores and always expect better power-performance ef-

ficiency. Instead, we want to dynamically find those sweet spots (particular

software thread placements which maximize power-performance efficiency).

Our goal is to build and evaluate a heuristic capable of finding the best

power-performance execution points at runtime.

In this chapter we use the term thread consolidation (or TC) to refer

to the method of using fewer cores at higher SMT levels. In the Dedup

example presented before, software threads are consolidated from the “8x1”

configuration (one software thread per core) to the “4x2” configuration (two

software threads per core). The heuristic presented in this chapter is based

on thread consolidation. Its objective is to detect (during an application’s

execution) when it is possible to consolidate threads with minimal (or zero)

impact on performance. Similarly, if threads placed in the same core face

high inter-thread conflicts (e.g. in the L1 cache), the heuristic unconsolidates

them to mitigate the situation.

The key contributions of this chapter are:

• We present a thread consolidation heuristic (TCH) capable of maxi-

mizing power-performance efficiency at runtime for multi-threaded ap-

plications. The heuristic makes use of the TC technique to place soft-

ware threads across hardware threads, with power-performance as its

objective function. TCH is an extremely simple heuristic, which just

requires access to three hardware event counters and on-line chip power

consumption information. TCH does not require any kind of off-line

pre-processing and performs very lightweight computation to make TC-

related decisions at runtime. These characteristics make TCH very

suitable for being implemented either at system software level or at

chip level.

• We implement and evaluate TCH in a real POWER7-based system.

Therefore, results presented in this work are not based on any simpli-

fying assumptions and include all possible overheads associated with
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thread consolidation and unconsolidation. TCH efficiency is also eval-

uated for different software thread counts.

• We study an additional approach to benefit from TC: per-core power

gating (PCPG). When PCPG is adopted, cores that remain unused

after TC are powered off to further minimize power consumption. We

show that the synergy between TC and the PCPG technique can pro-

vide significant power-performance efficiency improvements.

5.1 Thread Mapping and Thread Consolida-

tion

In this work, the placement of software threads across hardware threads and

cores is referred to as thread mapping. Assuming a multi-threaded application

withN software threads executed on a CMP with C cores and S SMT threads

per core (T = C × S hardware threads total), there are multiple possible

mappings. In particular, in this work we assume symmetric placement of

software threads across cores (i.e. software threads are evenly distributed

across cores). In such scenario, multiple possible mappings exist if N ≤ T/2.

For example, the possible mappings when an 8-thread application (N = 8)

is executed in a POWER7 processor (C = 8, S = 4 and T = 32) are

the following: eight cores with one thread each (“8x1”), four cores with

two threads each (“4x2”) or two cores with four threads each (“2x4”). For

an application with 16 software threads (N = 16), they can be placed in

eight cores with two threads each (“8x2”) or in four cores with four threads

each (“4x4”). Figure 5.3(a) presents a scenario where a 4-thread application

executes in an illustrative CMP with four 2-way SMT cores. Each software

thread is assigned to a different core (“4x1” mapping).

Given a particular symmetric thread mapping, thread consolidation halves

the number of assigned cores while doubling their SMT level. Thread con-

solidation results in a new thread mapping. For example, after applying

thread consolidation to the mapping “4x1” in Figure 5.3(a), the new map-

ping “2x2” takes place, shown in Figure 5.3(b). In this work we benefit from
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unused cores to reduce chip power consumption (e.g. by power gating them).

(a) “4x1” mapping (b) “2x2” mapping

Figure 5.3: Placement of four software threads belonging to a multi-threaded
application across four 2-way SMT cores. In 5.3(a), each software thread is
assigned to a different core (“4x1” mapping).In 5.3(b), two software threads
are assigned per core after consolidation. Unused cores can be leveraged to
either save power or boost throughput.

As mentioned before, in this work we assume symmetric placement of

software threads across cores. When non-symmetric placements are consid-

ered, many other mappings are also possible. For example, the four software

threads shown in Figure 5.3 can also be placed in two cores with one thread

each plus one core with two threads (“2x1 + 1x2”). Throughout this chapter

we focus just on symmetric mappings, due to the following reasons:

1. With symmetric mappings, thread consolidation is natural. For exam-

ple, consolidation from “4x1” to “2x2” means that, for the same number

of software threads, the number of cores is halved and the SMT level

per core is doubled. With asymmetric mappings, on the other hand,

thread consolidation becomes a blur.

2. Additionally, for the kind of multi-threaded applications considered in

this work, software threads are usually assigned the same amount of

work. With asymmetric mappings, cores with more software threads

will take longer to complete (e.g. due to higher inter-thread cache

contention), while cores with fewer threads will have to wait for them.

In that scenario, the whole execution will slow down, which will provide

no benefit for the less loaded cores.
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5.2 Thread Consolidation Efficiency (TCE)

The objective of this work is to build and evaluate a heuristic capable of

finding the most power-performance efficient thread mappings at runtime.

Therefore, it is required to have a metric to quantify such efficiency. In this

section we present the thread consolidation efficiency (TCE) metric, which

provides insights about the “quality” of thread mappings, and constitutes

the basis of the proposed heuristic. TCE is defined as follows:

TCE =
Perf(mapping A)/Perf(mapping B)

Power(mapping A)/Power(mapping B)

where Perf and Power are the application execution performance and

power consumption, respectively, for a particular thread mapping. The TCE

metric quantifies the power-performance efficiency when the thread mapping

of an application is changed from mapping B to mapping A. It is important

to note that the TCE metric can be used either with consolidations (e.g.,

from mapping B = 8×1 to mapping A = 4×2) or with unconsolidations

(e.g., from mapping B = 4×2 to mapping A = 8×1). If TCE > 1, the new

mapping (mapping A) provides larger power-performance efficiency than the

previous one (mapping B). If TCE < 1, the new mapping is less power-

performance efficient than the previous one. If TCE = 1, both mappings

perform equally in terms of power-performance efficiency. Ideally, we are

interested in actions (consolidations or unconsolidations) with TCE values

larger than one.

In this work, Perf is represented by throughput (i.e. the total number of

instructions completed by all the threads per cycle), and Power is represented

by chip power consumption. In this case, TCE becomes essentially energy

per instruction of mapping “A” divided by energy per instruction of mapping

“B”.

The use of the TCE metric can be illustrated with the Dedup applica-

tion presented at the beginning of this chapter. As shown in Figure 5.2,

performance is degraded by 5% and chip power is reduced by 21% when the
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application is executed with mapping “4x2” compared to mapping “8x1”.

TCE for “4x2” compared to “8x1” is calculated as follows:

TCE =
Perf(4×2)/Perf(8×1)

Power(4×2)/Power(8×1)
=

0.95

0.79
= 1.20

This means that for the Dedup example presented at the beginning of

this chapter, mapping “4x2” is 1.20× more power-performance efficient than

mapping “8x1”. In this example, performance is slightly hurt due to consol-

idation. In other cases, however, performance may be significantly degraded

and, even so, TCE may be larger than one. For example, let’s assume that

consolidation reduces chip power consumption by 50% and, at the same time,

degrades performance by 40%. This results in TCE = 0.60/0.50 = 1.20.

Even if the new mapping is more power-performance efficient, we will not

accept such a performance degradation. To cope with this aspect of the

TCE metric, the heuristic presented in Section 5.4 is adjusted to favor per-

formance over power reduction.

5.3 Thread Consolidation Opportunities and

Value

In this section, we assess the value of thread consolidation (TC) for power-

performance efficiency, from a static perspective. Static means that a par-

ticular software-hardware thread mapping is set during the onset of the ap-

plication’s execution and kept until the end.

We present the results corresponding to four PARSEC applications out

of twelve evaluated: Blackscholes, Bodytrack, Canneal and Raytrace. These

applications are representative in terms of thread consolidation friendliness.

In some cases, performance degradation due to consolidation is significantly

smaller than power saving. We referred to them as TC-friendly applica-

tions. In contrast, TC-unfriendly applications are heavily affected in terms

of performance when thread consolidation is applied. Each application is ex-
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ecuted with different numbers of software threads: 2, 4, 8 and 16. Software

threads are mapped to hardware threads considering all possible combina-

tions between cores and SMT levels. For example, for two software threads,

applications are executed on two 1-thread cores (“2x1”) and on one 2-thread

core (“1x2”). Figure 5.4(a) presents the execution time, chip power and

thread consolidation efficiency metric (TCE) for Blackscholes, Bodytrack,

Canneal and Raytrace. In all cases, the execution time increases when fewer

cores at higher SMT levels are used (thread consolidation). This is mainly

due to the competition for shared resources among threads in each core. For

example, the more threads at core level, the higher the pressure on the cache

hierarchy is. But at the same time, chip power decreases in all cases. Thread

consolidation results in trade-offs between power reduction and how much

performance we are ready to trade in exchange.

To better understand the performance-power trade-off, we consider the

TCE metric presented in Section 5.2. When two mappings are compared, a

TCE value larger than one means better power-performance efficiency. In the

results presented in Figure 5.4(a), applications executed in more consolidated

configurations show better power-performance efficiency, with a few rare ex-

ceptions (e.g. Bodytrack with two threads). This trend is observed for all

PARSEC applications. In some cases, better power-performance efficiencies

come at the expense of significant performance degradation. For example,

Blackscholes with four threads and “1x4” mapping increases execution time

by 65% compared to the “4x1” mapping. A similar performance degradation

is observed for Bodytrack with four threads. In other cases, performance

degradation for more consolidated configurations is considerably small. For

example, Canneal with 16 threads and mapping “4x4” increases execution

time by 8% compared to the “8x2” mapping, and cuts chip power consump-

tion by 28%. Similarly, Raytrace with eight threads and mapping “4x2”

increases execution time by just 4% compared to the “8x1” mapping, with

25% chip power reduction. In general, we observe that some applications are

more friendly to TC (e.g. Canneal and Raytrace), while others benefit less

from TC (e.g. Blackscholes and Bodytrack).

To better understand the reasons of performance degradation when threads
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(a) Execution time, chip power and thread consolidation efficiency (TCE)

(b) CPI stall analysis

Figure 5.4: Static mapping analysis for four multi-threaded PARSEC ap-
plications on POWER7. Each application is executed with 2, 4, 8 and 16
software threads. For each software thread count, all possible mappings are
considered. In each group, the results are normalized to the first configura-
tion.

are consolidated, we perform a CPI stall analysis based on hardware events

information. This stack is composed of the amount of cycles an instruction is

stalled for completion due to: execution in the fixed-point unit (“FXU”), exe-

cution in the floating-point unit (“FPU”), load/store unit long-latency events

(“LSU”), thread conflicts (“THRD”) and instruction-fetch stalls (“IFU”).
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Figure 5.4(b) presents the stall CPI stack for the same applications and

mappings discussed before. The two most important reasons for instruction

stalling are long-latency events in the load/store unit (e.g. L1, L2 and L3

cache misses) and instruction-fetch stalls (e.g. branch mispredictions). Both

are exacerbated when threads are consolidated because the larger the num-

ber of threads in the same core, the higher the inter-thread interference in

the branch prediction unit and caches. Even though this interference may

determine the success of TCH, it is important to note that in this section

we are analyzing static thread mappings. Instead, TCH can set mappings

dynamically in order to exploit phases of application behavior [53, 90] where

inter-thread interference is minimal and, hence, friendly to TC.

5.3.1 Fully Populated Scenarios

In Section 5.1 we commented that, in order to have options for TC, the

number of software threads N has to be less than or equal to T/2, where

T is the total number of hardware threads. For example, T is equal to 32

in a POWER7 processor. If at any particular moment there are 32 software

threads, just one mapping is possible (“8x4”). For this reason, in Section 5.3

we showed results for software thread counts less than or equal to 16. This

may lead to the perception that TC does not have value in fully populated

scenarios. However, when a multi-threaded application is analyzed from a

dynamic point of view, we observe that the number of software threads is not

constant throughout its execution. Figure 1.3 presents the software thread

count frequency for twelve PARSEC multi-threaded applications executed

with 32 software threads and native inputs on an IBM POWER7 processor.

The figure shows that multi-threaded applications spend significant amounts

of time with fewer threads than the specified thread count (just Swaptions

and Vips execute with 32 threads most of the time). This brief analysis

shows significant potential for TC, even when applications are launched with

as many software threads as the number of available hardware threads. The

heuristic proposed in this work can detect execution phases when N ≤ T/2

and consequently apply TC to maximize power-performance efficiency.
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Figure 5.5: Software thread count histogram for twelve multi-threaded PAR-
SEC applications. Applications are executed with 32 software threads to fully
populate the underlying POWER7 processor. Even in that case, applications
are not able to exploit all the available hardware threads.

5.4 Thread Consolidation Heuristic (TCH)

The ultimate goal of this work is to benefit from TC at runtime to min-

imize power consumption with minimal (or zero) impact on performance.

In this section we present a thread consolidation heuristic (TCH) capable of

dynamically maximizing power-performance efficiency for multi-threaded ap-

plications. During an application’s execution, TCH strives to find the most

efficient mappings by means of consolidations and unconsolidations. After

any decision, TCH computes the TCE metric to evaluate the quality of the

last action. In case of adverse TCE values, TCH may decide to undo the last

action to recover the previous (more efficient) thread mapping.

TCH is an extremely simple closed-loop control algorithm (Figure 5.6). It

is triggered every T milliseconds, but makes decisions if it is enabled (step 1 ).

TCH is enabled only during stable computation phases, which is determined

by sampling the application-level L1 miss count, as explained in Section 5.4.1.

Before making any consolidation/unconsolidation decision, TCH chooses

the right thread bucket (step 2 ). Based on the current software thread count

N , a thread bucket is defined as the minimum number of hardware threads
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Figure 5.6: Thread consolidation heuristic (TCH).

(power of 2) required to support the current number of software threads. For

example, if the current number of software threads is N = 4, the bucket to

be used is 4, or if N = 13, the bucket is 16. By choosing the right bucket,

TCH knows what are the possible thread mappings it can “play” with. All

possible thread buckets in POWER7 are: 1, 2, 4, 8, 16 and 32 threads.

Once the bucket is chosen, TCH sets the most unconsolidated mapping for

that particular bucket to not harm application performance. Throughout the

example, we will refer to this mapping as mapping(i).

The first TCH action is consolidation (step 3 ). Just after a bucket se-

lection, there is no power/performance history because the previous bucket

may have a completely different power/performance footprint. Hence, TCH

begins judging the effects of consolidation on power-performance efficiency.

We refer to this new mapping as mapping(i+1). To compare mapping(i+1)
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versus mapping(i), TCE is then computed and analyzed (step 4 ). If TCE >

1+∆TCE, TCH assumes that the application is traversing a consolidation-

friendly phase, and further consolidates threads (if possible). If, instead,

TCE < 1 − ∆TCE, TCH considers that mapping(i + 1) is less power-

performance efficient than mapping(i), and goes back to mapping(i). TCH

continues in this way, analyzing the TCE of the last action, and making a

new decision based on that (steps 4 and 5 ). Every time TCE ≥ 1−∆TCE

and TCE ≤ 1 + ∆TCE, TCH makes no decision.

5.4.1 TCH Adjustment Knobs

TCH efficiency can be adjusted based on four configuration parameters:

• Monitoring interval (T ): TCH is triggered (and power/performance

values are read) every T milliseconds.

• History length (H): TCH considers the last H power/performance

samples to represent performance and power consumption for the cur-

rent thread mapping. If H = 1, TCH takes just the most recent sample

to represent performance and power consumption of the current map-

ping. If H > 1, the average of the last H samples is used to represent

the current mapping. The smaller the H value, the faster TCH can

make decisions. However, too small history values can lead to wrong

decisions due to lack of information to characterize the current map-

ping. On the other hand, largeH values can help to smooth application

behavior, reducing the risk of wrong decisions due to power and/or per-

formance outliers.

• L1 miss count threshold (K): TCH determines if it is enabled by

computing the average and standard deviation of the last H L1 miss

count samples: L1missavg and L1missstdev, respectively. If L1missstdev ≤
K×L1missavg, TCH assumes that the application is traversing a sta-

ble computation phase and, therefore, it is safe to make decisions. It

prevents TCH from making decisions during phase transitions, which

are wrong in most cases. Too small K values will keep TCH silent most
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Parameter Value Range Explored

T 1000ms
Smaller values are not explored due

to infrastructure limitations to collect

power readings at finer granularities.

H 3 1, 2, 3, 4, 5
K 0.4 0.0, 0.1, 0.2, 0.4, 0.6, 0.8

∆TCE 0.2 0.0, 0.1, 0.2, 0.4, 0.6, 0.8

Table 5.1: Selected TCH configuration parameters and ranges explored.

of the time. On the other hand, too large K values may lead to TCH

decisions even during phase changes.

• TC sensitivity (∆TCE): TCH computes the TCE of the last action

to determine if it has to be emphasized or undo. We prevent TCH

from performing an excessive number of re-mappings (which in some

cases may provide negligible benefits) by using a ∆TCE value whenever

TCE is evaluated. The last action is considered beneficial if TCE > 1+

∆TCE or detrimental if TCE < 1−∆TCE. Too small ∆TCE values

will result in too many re-mappings, while too large ∆TCE values

will make it harder to find a more efficient mapping or undo a bad one.

The current TCH implementation is adjusted to favor performance over

power reduction. This means that the ∆TCE parameter is employed

just during consolidation actions. The goal of this asymmetry is to

create more “resistance” toward consolidation to minimize performance

degradation. In other words, TCH will decide to consolidate if the

power-performance benefit is really significant.

We explore all possible combinations of the TCH adjustment parame-

ters to determine the set which maximizes the power-performance efficiency

averaged across all the applications. The set of parameters used for the

experiments of Section 5.5 are listed in Table 5.1.
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5.5 TCH Evaluation

This section presents the results of the proposed TCH. It is evaluated in

the context of the IBM BladeCenter PS701 system which is described in Sec-

tion 2.3. All PARSEC applications are executed with 4, 8, 16 and 32 software

threads. The baseline configuration consists of the default Completely Fair

Scheduler (CFS) incorporated into the Linux kernel since version 2.6.23 [71].

CFS attempts to maximize CPU utilization by load-balancing the threads

across available cores.

Figure 5.7(a) presents chip power consumption of PARSEC applications

when threads are placed by TCH compared to the case when applications

are scheduled by the Linux kernel. As it is observed, TCH significantly cuts

down chip power consumption by exploiting TC. The reductions averaged

across all the applications are: 21% (4 threads), 14% (8 threads), 8% (16

threads) and 7% (32 threads). In some cases, savings are very significant

(e.g. up to 42% in the case of Raytrace). As expected, the larger the number

of software threads, the smaller the reduction on chip power consumption,

due to fewer TC opportunities when more threads are running. Even under

fully populated scenarios (i.e. 32 threads), TC shows a non-negligible 7%

power saving, due to the arguments discussed in Section 5.3.1.

The “trick” behind chip power reduction lies in the fact that TCH tries

to consolidate threads into fewer cores as long as it implies low performance

impact. As shown in Section 5.3 for static thread placements, TC usually

affects performance negatively. On top of that, TC also has its own over-

head, because it implies software thread migrations across cores. Due to

those reasons, we may expect performance degradations when TCH is ap-

plied. Figure 5.7(b) presents the speedup when applications are executed

with TCH in comparison to the default Linux scheduler. In most applica-

tions, performance degradation is below 8%. Swaptions with 4 threads is one

exception, with a 27% performance degradation. But more surprising is the

fact that TCH can also improve performance compared to the Linux sched-

uler, significantly in some cases: 41% boost for Fluidanimate with 8 threads,

20% for Vips with 4 threads, and 17% for Streamcluster with 8 threads. Av-
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(a) Chip power consumption

(b) Speedup in execution time

(c) Power-performance ratio: speedup
chip power reduction

Figure 5.7: TCH vs. the default Linux scheduler in an IBM BladeCen-
ter PS701 system, in terms of chip power consumption (Figure 5.7(a)) and
performance (Figure 5.7(b)). Figure 5.7(c) presents the power-performance
ratio: values larger than one mean better power-performance efficiency. The
results correspond to all PARSEC applications executed with 4, 8, 16 and 32
software threads.

eraged across all the applications, TCH performance is degraded by just 4%

for the 4- and 32-thread scenarios, it is not degraded for 16 threads, and it

is improved by 4% for 8 threads.

The benefits of TCH are better expressed when both chip power con-

sumption and performance are taken into account. Figure 5.7(c) shows the
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power-performance ratio, computed as speedup divided by chip power reduc-

tion. A ratio larger than one means a better power-performance efficiency,

either because (1) power reduction is larger than performance degradation

or (2) power increase is smaller than performance boost. Swaptions with 4

threads is an example of the former, while Fluidanimate with 8 threads is an

example of the latter. As shown in the figure, power-performance ratios are

larger than one in most cases, being up to 70% for Raytrace with 4 threads.

Averaged across all the applications, TCH improves power-performance effi-

ciency by 23% for 4 threads, 22% for 8 threads, 12% for 16 threads and 7%

for 32 threads.

5.5.1 Analysis of Scenarios

This section analyzes particular scenarios from the set of results presented in

previous section. In advance, we may expect TCH to lower power consump-

tion at the expense of performance degradation. However, Figure 5.7 shows

some exceptions:

• As discussed in Section 5.5, the Completely Fair Scheduler (CFS) tries

to assign computationally intensive threads to different cores. Even if

the number of software threads is smaller than or equal to the number

of physical cores, it does not necessarily mean that each thread in a

PARSEC application will run in a different core. For example, OS

processes or other applications can be running on cores which, from

the scheduler perspective, are in use. Scheduling decisions in such

scenario may result in multiple threads from the PARSEC application

being placed in the same core. But even if no other OS processes

or applications are running in the processor, multiple threads can be

placed together. For example, in the case of Fluidanimate with eight

threads, we observe up to nine threads running together during some

short periods: the main application plus eight children 1. From the

1Child threads are created by the main application to parallelize the computation. The
main application thread is suspended most of the time while children are in execution.
Therefore, we should avoid assigning a dedicated core to the main thread.
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scheduler standpoint, there are nine threads to schedule, with high

chance of having two children assigned to the same core in the 8-core

POWER7 processor. This explains the higher TCH performance for

Fluidanimate with eight threads: CFS may assign multiple children

in the same core whereas TCH will begin placing them one per core.

With just 4 threads, both CFS and TCH place one thread per core.

And with 16 and 32 threads, CFS and TCH necessarily put multiple

children per core.

• Some other scenarios show important chip power reductions just for a

particular number of threads. This is the case of Streamcluster with 4

threads, Swaptions with 4 threads and Vips with 8 threads. In these

cases, TCH was able to find a highly efficient thread placement at the

very beginning of the execution and adhered to it until the end. For

the other thread counts, TCH had to perform some exploration at the

beginning (in terms of consolidations and unconsolidations) to find an

efficient thread mapping. The effectiveness of quickly finding the right

mappings depends in part on the system load in the moment TCH is

executed. Therefore, this kind of results are not rare.

• X264 with 32 threads is also worth commenting on because it does not

present any chip power benefit. In this case, the number of software

threads is larger than 16 throughout the whole execution, preventing

TCH to apply TC.

To illustrate TCH “in action”, Figure 5.8 shows a snapshot of 40 seconds

of execution corresponding to X264 with eight threads. Top figure presents

the number of active cores when X264 is executed under both TCH and Linux

scheduler supervision. TCH begins assigning one software thread per core.

Around second 5 (labeled as “1” in the figure), TCH decides to consolidate

the eight threads into four cores (“4x2”). This action results in TCE = 1.60,

reason for which TCH decides to further consolidate threads into just two

cores (label “2”). This also results in a more efficient thread placement

(TCE = 1.26). However, for the current thread bucket (8 threads), the
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“2x4” mapping is the most consolidated possible placement. The reason

TCH decides to fully consolidate threads is because X264 is a very communi-

cation intensive application [13]. Therefore, consolidation benefit is twofold:

it helps performance by keeping threads as close as possible and it reduces

chip power consumption because just a few cores are needed. Around second

24, performance starts dropping off, due to the nature of the X264 applica-

tion. TCH detects this situation and immediately decides to unconsolidate

(label “3”)2. Even if this action stops performance degradation, its benefit is

not significant enough to further unconsolidate. Around second 36, perfor-

mance starts increasing more than chip power consumption, given rise to a

large TCE. This means that the application is traversing an unconsolidation

friendly phase, leading TCH to further unconsolidate threads (label “4”). In

contrast, the default Linux scheduler keeps using most of the cores all the

time. Not only the scheduler placement is not beneficial for performance,

but it also demands more chip power by keeping the eight cores active most

of the time. As it is shown in this simple example, TCH can find more effi-

cient thread placements at runtime just relying on the TCE metric, without

affecting performance.

5.6 Per-Core Power Gating

One of the most significant components of power consumption on today’s

complementary metal-oxide-semiconductor (CMOS) chips is leakage power

(also referred to as static power). This is the power that a transistor dis-

sipates when it is powered-on, even if it is in a stable logic state. As a

consequence of Dennard’s scaling rule, chip supply voltage has scaled down

every processor generation. Along with supply voltage, threshold voltage

has also been pushed down. Leakage current (and hence power) grows ex-

ponentially as the threshold voltage reduces. As a result, leakage power in

today’s chips accounts for a large fraction of total chip power. One effec-

2The delay between the moment performance starts dropping off (second 24) and TCH
unconsolidation decision (second 27) is due to the H = 3 samples averaged to represent
the current state.
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Figure 5.8: Number of active cores (top), performance (middle) and chip
power consumption (bottom) when X264 is executed under both TCH and
Linux scheduler supervision. Performance and chip power curves are nor-
malized to the maximum value in the Linux scheduler case.

tive approach to cope with the increase of leakage power is power gating, a

circuit-level technique that allows to cut off the power supply to a circuit

block. Power gating is intended to completely turn off an idle circuit block,

in order to virtually eliminate its leakage power. As it is shown in Figure 5.9,

it is implemented with the help of a sleep transistor (“switch”) that is in-

serted as a series header or footer device in the VDD-to-Ground circuit path

that includes the targeted circuit block [46, 78].

The power gating technique can be extensively adopted across the chip.

At coarse granularity, large logic macros (cores, caches, on-chip controllers,

etc.) can be completely power gated. At fine granularity, even functional

units can benefit from this technique. Power gating, however, does not come

for free. Its implementation requires large transistors for the header and

footer switches. It implies an impact on the area consumed by the sleep



5.6. PER-CORE POWER GATING 87

(a) Active mode (sleep transistor on) (b) Idle mode (sleep transistor off)

Figure 5.9: Power gating operation. In Figure 5.9(a), header and footer sleep
transistors are on and, therefore, the circuit block is active. In Figure 5.9(b),
sleep transistors are off and the circuit block is power gated.

transistors as well as the latency to drive them. As a consequence, the

applicability of the power gating technique is not trivial and requires the

identification of long enough idle periods to hide the sleep transistors latency.

In particular, per-core power gating (PCPG) [65] is becoming an increas-

ingly common knob in today’s microprocessors [16, 18, 48]. Nevertheless,

how to make the most use of PCPG is still an open question. For exam-

ple, actuating the PCPG knob every time a core becomes idle may lead to

negative power/performance benefits if the core idleness period is not long

enough. Evidently, processes and software threads have to be scheduled ac-

cordingly across cores to generate opportunities beneficial for PCPG, with

minimal impact on performance. TCH’s ultimate goal is consolidation of

software threads in as few cores as possible with minimal (or not at all) per-

formance degradation. It is capable of detecting execution periods during

which applications can execute in fewer cores with negligible performance

degradation. For all these reasons, we believe that TCH in conjunction with

PCPG can result in important power savings. In this section, we propose to

adopt PCPG in order to switch off the cores that are left unused after thread
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consolidation. The goal is to reduce or even eliminate the power consump-

tion which takes place in the unused cores that is not related to the workload

under evaluation (workload-independent power).

The particular IBM BladeCenter PS701 system utilized for the experi-

ments does not support PCPG. To assess PCPG benefits in the context of

TCH, we build a simple empirical model to estimate the workload indepen-

dent power consumption of an idle core chiplet in POWER7 (Pchiplet idle).

This is the power consumed by a core chiplet (core, L2 and L3 caches) when

it is idling with the OS polling for work. Workload independent power con-

sumption can be almost completely eliminated when the core chiplet is power

gated. To estimate Pchiplet idle, we measure the POWER7 chip power con-

sumption for different numbers of on-line idle cores as it is shown in Fig-

ure 5.10. The rest of the cores in each configuration are switched to nap

mode and cannot be used by the OS. A linear regression across all measured

points reveals that when a core chiplet enters nap mode, its power is reduced

∆Pnap. Based on information about which chiplet components are quiesced

during nap [35], the chiplet power consumption breakdown [106] and ∆Pnap,

we can then estimate Pchiplet idle.

There is an overhead associated with the power gating technique. In

terms of latency, it includes the cost of driving the sleep transistor at circuit

level as well as the activities incurred by the OS to prepare the core either

for powering it down or up. Because the particular IBM BladeCenter PS701

system used in this work does not support PCPG, we estimate the power

gating overhead based on the projections presented in [35]. The projected

power gating overhead adopted in our experiments is 20ms.

We then feed the per-core-chiplet workload independent power estima-

tion (Pchiplet idle) and power gating overhead to TCH and re-evaluate it for

the same configurations considered in Section 5.5 (4, 8, 16 and 32 software

threads for all PARSEC applications). Figure 5.11 presents the power-

performance ratios for both TCH and TCH+PCPG. TCH results are the

same shown in Section 5.5 and are included here for the sake of compar-

ison. Baseline is the default Linux scheduler. As expected, the synergy

between TC and the PCPG technique provides significant improvements in
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Figure 5.10: POWER7 chip power consumption for different numbers of
on-line idle cores, normalized to the eight on-line cores case. Off-line cores
remain in nap idle state, which deactivates instruction fetch and execution
and turns off all clocks to the execution engines in the core, but it still keeps
L2 and L3 caches coherent [35].

power-performance efficiency. Averaged across all the applications, power-

performance efficiency is improved by 2.1×, 1.6×, 1.4× and 1.3× for 4, 8,

16 and 32 threads, respectively. These improvement factors are significantly

larger than the already important benefits of solo TCH, being steeply large

in some cases (e.g. Canneal or Raytrace). It is due to the nature of such

applications, which spend significant amounts of time with very few active

software threads. In those cases, TCH is able to aggressively reduce power

consumption by applying PCPG. It is also worth mentioning that the fewer

the number of software threads, the larger the power-performance efficiency

benefits. With fewer threads in execution, TCH has more opportunities to

power gate a larger number of cores. However, even when PARSEC applica-

tions are executed with 32 threads, the power-performance efficiency is 1.3×
larger on average than the baseline.
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Figure 5.11: TCH+PCPG vs. the default Linux scheduler in an IBM Blade-
Center PS701 system, in terms of power-performance efficiency (values larger
than one mean that chip power reduction is larger than performance degra-
dation). The results correspond to all PARSEC applications executed with 4,
8, 16 and 32 software threads. Per-core-chiplet power reduction and PCPG
latency are based on estimations.

5.7 Summary and Concluding Remarks

In this chapter we investigate the impact of thread placement on power-

performance efficiency of SMT-enabled CMP architectures. The first ob-

servation that arises from the execution of multi-threaded applications in

a real SMT-enabled CMP (POWER7) is that the software-hardware thread

mapping does affect performance and power consumption, resulting in differ-

ent trade-offs. Against conventional wisdom, placing software threads across

cores as much separated as possible is not always the best approach. Due

to particular characteristics of an application, there are execution periods

during which threads need to be closer (located in fewer cores) to favor inter-

thread data sharing. In addition to the performance benefits when threads

are consolidated, it is also possible to save power consumption on unused

cores. As a result, there are great opportunities for power-performance effi-

ciency improvement during an application’s execution.

In this work we present a thread consolidation heuristic (TCH) capable

of maximizing power-performance efficiency at runtime for multi-threaded

applications. The heuristic makes use of thread consolidation and uncon-

solidation to place software threads across hardware threads, with power-

performance as its objective function. TCH is an extremely simple heuristic,

which relies on a few hardware event counters. TCH does not require any
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kind of off-line pre-processing and performs very lightweight computation to

make thread placement decisions at runtime.

We implemented and evaluated TCH in a real POWER7-based system.

Results show chip power reductions of up to 21% (averaged across appli-

cations) compared to the default Linux thread scheduling policy, with per-

formance degradations below 8% in most cases. In the presence of power-

gating, TCH can improve power-performance efficiency by a factor of up to

2.1 with respect to the OS scheduler. Our work shows that intelligent thread

placement exposes the potential for significant boost in power-efficiency in

SMT-enabled CMP architectures. This becomes more evident as the num-

ber of cores and threads keep growing, which makes the software-hardware

cooperation essential for power benefits.
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Chapter 6

State of the Art

This chapter provides an overview of the prior art and current technologies

related to power-performance efficient, throughput-aware multi-core chips.

We focus on works from academia as well as products from industry, and

we contrast them with our approaches to emphasize the novelty of the ideas

presented in this dissertation. This chapter is organized following the thesis

structure: we focus, first, on bandwidth-optimized last-level cache designs;

second, on register file organizations for throughput-aware computation; and

finally, on chip-level power management techniques and optimizations.

6.1 Bandwidth-Optimized Last-Level Caches

In the context of multi-core processors for throughput-aware computation,

the existence of many (tens or hundreds) physical threads and cores puts

a dramatic pressure on memory bandwidth. Scalability is the fundamental

problem behind memory bandwidth: it grows at a much slower pace than the

number of cores in the chip, limited by chip pin count and power consump-

tion. Consequently, it is not surprising that a significant part of academia

and industry research in the last decade was aimed to tackle that problem,

known as the “bandwidth wall”.

93
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6.1.1 Commercial Products

Even with just two single-threaded cores, the IBM POWER4 processor [97]

released in 2001 already incorporated a memory system highly optimized

for bandwidth, with a 100 GB/s shared L2 cache and a 10 GB/s memory

interface [30]. The evolution of IBM’s POWER processor family has given

rise to POWER7, a 4-way SMT, 8-core design released in 2010 [59, 104]. To

feed its 32 physical threads, POWER7’s memory interface is composed of

two four-channel DDR3 controllers to deliver up to 100 GB/s [92]. A key

innovation in POWER7 is the incorporation of a large on-chip 32-MB L3

cache (LLC). It is composed of eight 4-MB “regions”, each one tightly coupled

to a core to provide local fast access, as it is shown in Figure 6.1. Accesses

that miss the L2 cache go to the 4-MB local L3 region. If the local L3 region

is also missed, the other seven L3 regions are accessed through a coherence

fabric. In addition, a cache line can be casted out from one L3 region to

another. In other words, the eight regions constitute an effectively shared

LLC in POWER7. Cache lines can also be cloned between L3 regions when

multiple cores are actively sharing them in order to reduce access latency.

Figure 6.1: IBM POWER7 die photo (source: [92]).
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The Intel Xeon processor also employs a shared large L3 cache to feed

its eight 2-way SMT cores [87]. Similar to POWER7, Xeon’s LLC is also

partitioned in eight regions (“slices”, in Intel’s jargon). It is not clear, though,

if some degree of data replication is allowed in the LLC as it happens in

POWER7. In contrast to POWER7, the memory address space is spread

across LLC slices based on a hash function, which gives Xeon cores a holistic

view of the entire LLC [51].

Similar to POWER7 and Xeon LLC organizations, the design presented

in this dissertation is also composed of “regions” or “slices” (referred to as

“blocks”). In contrast to POWER7 and Xeon, our LLC is highly optimized

for bandwidth instead of latency. For example, our design avoids data repli-

cation between blocks to maximize the effective cache capacity, even at the

expense of higher access time. The double-buffering mechanism is lever-

aged to hide the additional latency to access remote blocks. Another key

difference is coherence. In our case, the memory system is simpler, com-

posed of non-coherent core-level local memories and just one cache level (the

LLC). Similar to Xeon LLC, the address space is also spread across blocks in

our organization. However, we interleave addresses instead of using a hash

function1. Table 6.1 presents a summary of the most important differences

between the LLC presented in this thesis and the ones found in POWER7

and Xeon commercial products.

Parameter IBM POWER7 Intel Xeon Proposed LLC

Size (MB) 32 24 8, 16, 32 and 64
Blocks 8 (regions) 8 (slices) 2, 4, 8 and 16
Optimize Latency Latency Bandwidth
Coherent Yes Yes No
Shared Yes (through Yes (hash Yes (address

coherence fabric) function) interleaving)

Table 6.1: Comparison between POWER7 LLC, Xeon LLC and the organi-
zation presented in this thesis.

1The address interleaving scheme adopted in our design can also be considered as a
special case of a hash function.
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6.1.2 Research Projects

There are several research projects which approach the bandwidth wall prob-

lem. Rogers et al. [86] present an analytical model to study memory band-

width as a bottleneck for performance scalability in CMPs. Starting from a

baseline 8-core CMP, performance scalability is analyzed for the next four

chip generations, according to Moore’s Law. To overcome bandwidth limita-

tions, authors consider different memory traffic reduction techniques: cache

compression, DRAM and 3D-stacked caches, link compression and sectored

caches, among others. While authors adopt an analytical model, we perform

a much more detailed analysis of the LLC based on cycle-accurate simu-

lations. For a given LLC area and size, we emphasize the ways to make

an optimum use of them (for instance, by interleaving the address space in

a fine-grained manner across LLC blocks). The conclusions we obtain are

usually not explicit for analytical models.

Liu et al. [66] present an analytical model to study memory bandwidth

partitioning and its interaction with LLC partitioning in CMPs. Bandwidth

partitioning is implemented using a token bucket algorithm. Each thread

sends off-chip requests to a bucket. A token generator distributes tokens

between buckets with rates proportional to the fractions allocated to different

threads. An off-chip request can leave the bucket as far as there exists a

corresponding token. While Liu et al. model general-purpose CMPs, we

consider throughput-aware scenarios. In their work, threads are implemented

as independent applications: there is neither data sharing among them nor

coherence traffic. In contrast, we consider that data sharing is a more realistic

picture in current chip multiprocessors as well as cache coherence traffic.

Furthermore, while Liu et al. model a small 4-core CMP, we consider larger

scenarios with up to 128 cores.

Hardavellas et al. [44] propose Reactive NUCA, a mechanism for LLC data

placement in CMPs, targeting both latency and capacity. The design relies

on the classification of different cache access patterns in server and multi-

programmed applications: shared data is placed at fixed address-interleaved

LLC blocks, private data is kept in the LLC block closest to the requester, and
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data with a certain sharing degree is replicated across groups of slices. In their

work, Hardavellas et al. consider server and multi-programmed applications,

while we concentrate on throughput-aware workloads that can benefit from

streaming memory systems to tolerate high latencies. In that sense, we

put our attention in the memory bandwidth, because this is the bottleneck

that limits the performance of current throughput-aware CMPs. Because

latency is not a problem in our case, our approach is indeed simpler and

it does not depend neither on the operating system nor on the applications

characteristics to achieve significant bandwidth improvements and optimal

capacity use. Furthermore, we also consider larger systems with tens or

hundreds of processors.

Zhao et al. [105] present a hybrid LLC for CMPs where part of the cache

is shared among all cores and, hence, optimized for capacity. Each core has

also a private portion optimized for latency, along with a directory cache

to locate data lines in remote shared portions. Each core begins looking for

data in its private portion. In case of a hit, data is retrieved with low latency.

In case of a miss, the search continues in the directory first and then in the

shared part. Zhao et al.’s design is optimized for both latency and capacity,

with the expense of additional area for directories. In our work, however,

we tackle bandwidth and capacity instead of latency, without any additional

cost.

Kelm et al. [60] propose the Rigel accelerator architecture, which can

support over a thousand cores. Rigel groups processors in clusters, and cores

within a cluster share a common cache. Clusters are connected and grouped

within a tile, and all tiles are attached to a global LLC. Coherence between

cluster caches is software managed, and supported via specialized synchro-

nization structures. The Rigel architecture closely relates to the architecture

we consider in our work. In Rigel, however, data replication is allowed across

cluster caches, which makes it necessary to support cache coherence. It is im-

plemented at software level, adding responsibility to the application. In our

architecture there is no need to keep coherence, which means no coherence

traffic and no need to deal with coherence issues.
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6.2 Throughput-Aware Register Files

As it was discussed in previous section, there are several commercial prod-

ucts and research projects which tackle the bandwidth wall by optimizing

the on-chip cache hierarchy, with special attention to the last-level cache.

In some other works, the emphasis was on the off-chip memory interface

and associated bandwidth partitioning or management ideas. There are also

architectures that incorporate local memories close to the cores, as in the

Cell/B.E chip [58]. Regardless of the adopted strategy, all those approaches

are intended to keep large amounts of data as close as possible to the pro-

cessing units.

In such prior work, there has been no attention paid to the possibility

of significantly re-architecting the user-addressable register file organization,

even though it constitutes the closest data storage to the processing logic in

terms of access time. Consequently, in this section we discuss some relevant

products and research works in the realm of throughput-aware computation,

even if they do not present significant innovations at register file level. In

particular, we focus on commercial designs for base station applications and

we present a qualitative comparison with graphics processing units (GPUs).

6.2.1 Commercial Products

The base station processor market is unquestionably driven by the contin-

uously increasing demand on smartphones (expected to exceed 700 million

units by 2015) and cellular-enabled tablets [43]. A steady increase in the

number of deployed macro and micro base stations is expected, with a peak

at slightly over 1 million units per year in 2012. This will be followed by a

slight decline in macro and micro base stations, but it will be accompanied

by an explosive growth for smaller pico and femto base stations, exceeding

7.8 million units deployed per year by 2014 [95].

To target pico and femto base stations, TI has announced KeyStone

TCI6612 and TCI6614 processors [43]. Those designs include a Cortex-A8

CPU, C66x DSPs (two in the TCI6612 and four in the TCI6614) and a set

of hardware accelerators. The accelerators are intended to help CPU and
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DSP cores to offload tasks such as FFTs, Viterbi decoding and Turbo encod-

ing/decoding.

Freescale has presented Qonverge PSC9132, a system-on-chip (SoC) that

integrates two PowerPC e500 CPUs with two StarCore DSPs in the same

chip [39]. The PSC9132 supports the performance requirements of the 3GPP

Long Term Evolution (LTE) wireless standard [1], for a 20 MHz single sec-

tor, by handling 150 Mbps downlink and 75 Mbps uplink rates. This is half

the maximum data rate supported by its direct competitors, the TI Key-

Stone TCI6612 and TCI6614 processors (300 Mbps downlink, and 150 Mbps

uplink).

Mindspeed, another chip maker in the base station market, presented the

Transcede 4000/4020 SoCs in 2010. These SoCs incorporate two Cortex-A9

CPUs, ten CEVA R© DSPs and ten DSP accelerators. The Transcede archi-

tecture, as announced by Mindspeed, is conceived to support base stations

ranging in size from macrocells to picocells [70].

Picochip, a pioneer company in the market of small base stations (fem-

tocells), has developed a family of devices for residential and small-business

users. The picoXcell PC323 SoC, the most advanced femtocell solution in

that family, implements a physical-layer NodeB (base station), including

an ARM11 processor, a cryptographic engine, high-speed accelerators, and

peripherals to support the requirements of the 3GPP Evolved High-Speed

Packet Access (HSPA+) wireless standard [81].

From the solutions presented in this section, mainly conceived for the

niche of small base stations, it is possible to infer that the trend is toward

designs with two key characteristics. First, the new solutions should integrate

CPUs, hardware accelerators and DSPs in the same chip. And, second,

they have to be flexible-enough (programmable) to handle the ecosystem

of cellular protocols available today. The solution that we present in this

thesis, based on the PowerEN processor, shares both. Moreover, the in-line

acceleration engine included in the PowerEN cores is universal (and fully

programmable), suitable to handle the current and future protocols, with

minimum (or no) impact on hardware re-design. In this regard, the design

presented enables the signal processing as well as higher-layer functions and
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IT-oriented functions to be run on a common computing platform with a

single architecture, a single toolset, and a single programming model.

Throughput-Aware Register Files vs. Graphics Processing Units

The processor-in-regfile (PIR) strategy presented in Chapter 4 resembles the

streaming multiprocessor (SM) architecture found in modern graphics pro-

cessing units (GPUs) [76, 77]: multiple simple processing elements operating

in a SIMD fashion on large amounts of data. However, there are features

that make the very-large register file with embedded logic more appealing

than GPUs for certain applications. For example, the Fast Fourier Trans-

form and Turbo Decoding applications (discussed in Sections 4.4.3 and 4.5.1,

respectively) benefit from the register file’s low wire latency and conven-

tional data movement instructions during the data shuffling parts, while the

communication cost between GPU threads is usually higher. This is because

GPUs are well-optimized for embarrassingly parallel computation where par-

allel tasks execute more or less independently, without communication. In

addition, even though the proposed register file incorporates specialized em-

bedded logic, it is part of a general-purpose core and can be still used for

general-purpose computation. This flexibility is not present in GPUs, which

are special-purpose computation engines. Table 6.2 presents a list of their

most relevant similarities and differences.

6.2.2 Research Projects

The register file organization presented in this thesis is based on Derby et

al.’s work [29]. Authors propose VICTORIA, an auxiliary processing unit

(APU) which connects to a host core to provide in-line acceleration. VIC-

TORIA incorporates a very-large vector register file with enough capacity to

hold sizable intermediate results. This helps to reduce the negative effects of

limited memory bandwidth and high memory latency. To access such amount

of registers, VICTORIA builds on the indirect VMX (iVMX) architecture,

which provides support for indirect access to the very-large register file us-

ing operand-associated mappings. As we mentioned before, the register file
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PIR-based GPU Streaming
Register File Multiprocessor

Processing element
8 ∼ 16 32 [76], 192 [77]

count
Storage

64-KB register file 64-KB shared memory
size
Programmability relatively simple more complex, it

(in the end, it is requires software
a register file) level support

Execution model lockstep execution independent execution
(all LCEs execute the threads
same operations at the

same time)
Data movement relatively cheap, it costly, not well suited
cost benefits from the low for applications that

wire latency to move demand communication
data between banks between threads

Application general-purpose embarrassingly parallel
domain computation as well as computation

highly parallel
computation

Parallelism
Large Huge

level

Table 6.2: A comparative summary of a register file with embedded SIMD
support and a GPU streaming multiprocessor.

and in-line accelerator presented in Chapter 4 are based on VICTORIA. The

most important innovation in our case is that our register file is partitioned

into multiple banks with embedded logic attached to each one. In addition,

we widen SIMD support from 16 to 32 bytes. Multiple banks with embed-

ded logic and wider SIMD make our design effective for throughput-aware

domains.

Dally et al. [26] present an efficient low-power microprocessor (ELM),

intended to provide the energy-efficiency of application-specific integrated

circuits (ASICs), but with the flexibility of programmable processors. In

their work, the authors identify the main overheads in programmable pro-
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cessors that make them inadequate for embedded applications. Their main

argument is that, in a programmable processor, data and instructions are

supplied in a inefficient way: e.g., for a 10-pJ arithmetic operation, the pro-

cessor spends 70 pJ on instruction supply and 47 pJ on data supply. One

technique adopted in ELM to improve energy efficiency is the placement

of a small, four-entry operand register file (ORF) on each arithmetic/logic

unit (ALU) input. This technique provides energy savings of up to 13×
with respect to the use of a conventional general register file. Similar to

Dally et al.’s work, our register file organization is also intended to pro-

vide acceleration capabilities of specialized hardware, but with the flexibility

of programmable processors. However, we consider that our approach has

a significant advantage in ease of programming and use. First, because it

works as a conventional load/store architecture. And second, because data

movement between banks can be performed with conventional register ma-

nipulation instructions. On the other hand, ELM requires that the compiler

takes additional responsibility coordinating the movement of data between

ORFs and ALUs, among other tasks.

Khailany et al. [61] introduce Storm-1, a stream processor SoC designed

to meet the demands for embedded signal processing. The Storm-1 processor

contains two CPU cores for running the main application threads, a set of

integrated I/Os for embedded systems, and a data-parallel unit (DPU) that

runs kernels using a stream-processing execution model. In the DPU, sixteen

data-parallel lanes combine to deliver high performance. Each lane has a 16-

KB lane register file (LRF) and ten VLIW function units. The function

units’ inputs are fed by dedicated 16-word 1-read 1-write operand register

files (ORFs). This distributed ORF architecture enables more scalability

than a traditional unified register file. The area and power of the ORFs scale

linearly with the number of function units, whereas a multiported register

file scales quadratically with the number of ports. In our case, the quadratic

grow of area and power is mitigated by using multiple banks for the register

file implementation. In addition, we consider that our design is easier to

program and use due to the reasons mentioned before (load/store model and

conventional register manipulation instructions).
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6.3 Chip-Level Power Management

The failure of the Dennard’s scaling rule and the power density increase not

only gave rise to multi-core chips, as it was discussed in Chapter 5, but also

to more power-aware designs. In the last decade, chip power reduction has

been placed on the same level of importance as performance optimization.

Today, most CMP designs incorporate some level of power management at

chip level. Two popular techniques to reduce dynamic power are clock gating

and dynamic voltage and frequency scaling (DVFS), while power gating is

becoming an increasingly adopted knob to eliminate both dynamic and static

power. In this section we present CMP architectures with on-chip power

management, as well as research projects which relate to this dissertation.

6.3.1 Commercial Products

The IBM POWER7 processor implements both clock gating and DVFS [35].

In addition, it provides a variety of sensors to measure the environment

and workloads under which the chip is operating. At system level, the En-

ergyScale firmware and microcontroller presented in Section 2.3.2 accesses

those sensors to control POWER7 behavior at runtime. In other words,

EnergyScale adapts the processor to the changing thermal conditions and

workloads necessities. Its ultimate goal is to improve power-performance ef-

ficiency by either reducing power consumption while maintaining the same

amount of performance or by increasing performance at the same power

level. POWER7 also includes an on-chip controller which adjust voltage

either automatically or based on directives from the EnergyScale microcon-

troller. Frequency can also be adjusted automatically in a per-core basis.

Under maximum performance conditions, frequency is set at its maximum

value, which is known as the turbo mode.

In the Intel Xeon processor, power management is controlled by an on-

chip power control unit (PCU) [88]. The PCU receives the output of core-

level voltage and temperature sensors, and dynamically sets appropriate volt-

age and frequency values accordingly (DVFS). The core voltage is variable

from 0.85 to 1.1 V. The highest voltage is used for the turbo mode, while
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the lowest voltage is used when all cores are active. An important feature of

Xeon is LLC and per-core power gating (PCPG), which is also managed by

the PCU.

The AMD Llano accelerated processor unit (APU) [16] is also worth com-

menting on. In contrast to IBM POWER7 and Intel Xeon, Llano is not a

general-purpose processor but a SoC which combines general processor execu-

tion as well as graphics processing in the same die. Similar to POWER7 and

Xeon, it also incorporates an on-chip power management controller (PMC),

which optimizes power-performance efficiency across the different APU com-

ponents. Power management in Llano is supported by both DVFS and power

gating. The PMC can dynamically adjust voltage and frequency based on

workloads performance and units activity. Power gating is extensively ap-

plied across the different components. For example, each core and its asso-

ciated L2 cache can can be power gated individually, as well as the graphics

unit.

In this dissertation we do not propose any on-chip power management

innovation. Instead, the thread consolidation heuristic (TCH) presented in

Chapter 5 is implemented at system software level. The reason for which we

present the IBM POWER7, Intel Xeon and AMD Llano processors in this

section is because our heuristic can benefit extensively from the power man-

agement capabilities offered by these designs. In particular, we implement

and evaluate TCH on top of POWER7. However, the heuristic can be ex-

tended to, and provide power-performance benefits in, other CMP processors

with per-core DVFS and/or power gating capabilities.

6.3.2 Research Projects

The idea of thread consolidation in SMT-enabled CMPs is discussed in few

prior works. Among them, the most closely related to ours is by Cochran

et al. [24]. They propose to pack software threads onto a variable num-

ber of cores to fit a given power budget, in conjunction with dynamic volt-

age/frequency scaling (DVFS). The work examines different thread packing

and DVFS configurations to maximize performance within variable power
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caps, but it does not take into account the actual software-hardware thread

mapping. In contrast, we show that asymmetries between logical cores (usu-

ally “seen” as uniform units) significantly affect performance and power con-

sumption. Compared to their technique, the thread consolidation heuristic

(TCH) proposed in this thesis is much simpler and does not require any kind

of off-line analysis. In addition, we also consider power gating idle cores,

because it is a more aggressive power saving technique compared to DVFS.

Tam et al. [96] propose a mechanism for thread clustering based on data

sharing patterns. It is implemented at OS kernel level with information from

hardware event counters. This work closely relates to ours in the methodol-

ogy they use, which is also based on dynamic analysis of processor counters.

However, they just tackle performance improvement while we also consider

power reduction.

Gomaa et al. [41] propose a technique to cope with chip overheating by

leveraging SMT in CMPs. Threads are distributed across cores to maximize

heat generation in each core. When a core reaches its critical temperature,

threads are migrated to other non-heated cores to allow cooling.

Rangan et al. [82] present thread motion, a technique capable of fine-

grained power management based on thread migration between cores with

different voltage/frequency (VF) settings.

The use of hardware event counters in the context of multi-threaded ap-

plications is also leveraged in prior studies. In addition to Tam et al.’s work,

Bhattacharjee et al. [11] also propose the use of processor counters to dy-

namically predict thread criticality. A critical thread is the slowest thread in

an application, which limits its performance. They propose to exploit thread

criticality prediction for load balancing and energy saving purposes.

Regarding power management techniques, it is worth mentioning Isci et

al.’s work [52]. They propose the adoption of a global power manager in the

context of CMPs which senses per-core power and performance information

at runtime. Based on variations in application behavior, the power manager

sets particular per-core power levels to fit a power budget.

Madan et al. [67] present a study of two basic PCPG heuristics and their

potential flaws. The heuristics are aimed to reduce power consumption of
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idle cores. The paper also analyzes possible “holes” (which may produce

negative power savings) and proposes a guard mechanism to prevent them.

Also related to robustness of power management in multi-core processors,

Bose et al. [14] provides a broad overview of the potential holes and introduce

the idea of guarded power management.

Power gating in the context of multi-core processors is also tackled by

Musoll [72]. This work considers CMPs where cores are grouped in clusters.

In this scenario, a cluster can be power gated when all its cores are idle.

The author proposes a load-balancing mechanism to distribute load across

clusters and across cores within a cluster. The goal is to reduce overall power

consumption and avoid hotspots with minimal performance degradation.

Teodorescu et al. [98] present scheduling algorithms to benefit from exist-

ing within-die variations in CMPs. The objective of this work is to maximize

throughput at a given power budget.

Meisner et al. [68] propose PowerNap, a power management technique

to reduce the power consumed by idle components in a server. PowerNap

is aimed to minimize the power consumed by an idle server, as well as its

transition time in response to instantaneous load.

To meet a global power budget in a CMP, Cebrian et al. [21] propose the

use of power tokens. Cores exchange tokens in order to balance the CMP

power consumption (e.g. a core under its local budget can cede its remaining

tokens to cores over the budget).

It is important to note that most of the works referenced in this section are

based on simulations. In contrast, in this thesis we implement and evaluate

the proposed heuristic in a real system.

6.4 Summary and Concluding Remarks

This chapter presents an overview of the related work in the context of power

and performance optimizations for throughput-aware computation. We com-

pare the LLC designs of two commercial products (the IBM POWER7 and

Intel Xeon processors) against the one proposed in this thesis. We also dis-

cuss academic projects which tackle the bandwidth wall problem. Some of
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those works present new LLC designs while others focus on models to study

the memory bandwidth restrictions in CMPs.

We find no commercial processors with significant innovations in the reg-

ister file for throughput-aware computation. For such reason and due to the

context where we evaluate our design, we limit our discussion to SoCs for base

station applications. By comparing our in-line accelerator (with a very-large

register file and embedded logic) against base station processors, we want to

emphasize that our solution can handle the ecosystem of cellular protocols

available today with a fully-programmable approach. In contrast, most base

station processors today achieve the throughput demanded by the current

standards by means of specialized hardware accelerators. We also comment

on two research projects, the efficient low-power microprocessor (ELM) and

the Storm-1 processor, which adopt operand register files (ORFs) to provide

more scalability than a traditional register file.

Finally, we analyze the most relevant innovations for chip-level power

management in three state-of-the-art CMPs: IBM POWER7, Intel Xeon

and AMD Llano. Even if our work about power management takes place

at system software level, the proposed heuristic leverages chip-level power

management capabilities to generate power-performance efficiency benefits.

For example, thread consolidation can aggressively reduced chip power con-

sumption by power gating unused cores. We also discuss a variety of research

projects which closely relate to this dissertation. They cover the topics of

thread placement and clustering, use of hardware event counters for perfor-

mance optimization, and power management techniques.
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Chapter 7

Publications
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Chapter 8

Conclusions

This thesis presents three complementary innovations to tacklememory band-

width and power consumption constraints in chip multiprocessors (CMPs) for

throughput-aware computation. Both memory bandwidth and chip power

consumption are key limiting factors for CMP performance scalability. Mem-

ory bandwidth is exacerbated every processor generation with the growing

number of cores in the chip. Power consumption increases as a consequence

of manufacturers’ difficulty to lower operating voltages sufficiently to follow

Dennard’s scaling rule.

First, we present a bandwidth-optimized last-level cache (LLC) which is

suitable for throughput-aware computation in CMPs. The proposed LLC

avoids data replication to improve its effective capacity and, therefore, boost

memory bandwidth. We leverage the benefits of software-managed streaming

memory with direct memory access (DMA) transfers to hide the extra access

latency that arises from the lack of data replication. Secondly, we present a

novel bank-based vector register file with thousands of registers. Due to its

size, data is kept as much as possible in the register file during computation,

which further reduces the pressure on the memory system. We leverage the

bank-based organization to exploit local computation in each bank., with

embedded per-bank Single Instruction, Multiple Data (SIMD) local compu-

tation elements (LCEs). The design is promising in terms of throughput,

power and area reduction, when it is evaluated in the context of applica-
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tions for small base stations. Finally, we present a simple heuristic to reduce

CMPs’ power consumption. The heuristic works at system software level

(e.g. the operating system kernel) by dynamically placing software threads

across physical threads and cores to maximize power-performance efficiency.

Its goal is to place software threads in as few cores as possible with minimal

performance impact, and to power gate the cores that remain unused. We

show important power-performance efficiency improvements when the pro-

posed heuristic is adopted instead of the default Linux thread scheduling

policy. Next, we summarize in more detail the work presented in this thesis.

8.1 Bandwidth-Optimized Last-Level Cache

The first contribution of this thesis is a novel last-level cache (LLC) organi-

zation, which is suitable for throughput-aware computation in CMPs. The

LLC is divided into multiple independent blocks, each one being shared by a

cluster of cores.

The proposed LLC possesses features which make it highly-optimized for

bandwidth. First and foremost of these features is the lack of data repli-

cation to significantly improve the effective capacity of the cache. Instead,

the memory address space is interleaved across LLC blocks and each core

can access either its local block as well as remote ones (i.e. other clusters’

blocks). This scheme results in better hit rates (and, hence, better memory

bandwidth) compared to a LLC with data replication. The hit rate improve-

ment is even more pronounced for larger CMPs because the impact of data

replication in such cases increases significantly.

One key aspect of the presented LLC is the address space interleaving

granularity. Our experiments show that the LLC bandwidth is maximized

when the address space is spread with 128-byte interleaving granularity across

blocks. In this way, multiple LLC accesses can proceed in parallel, at the

expense of locality. The extra latency to access remote LLC blocks is hidden

with the adoption of the double buffering technique, which overlaps DMA

transfers with computation.

We perform a similar study about address space interleaving at the mem-
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ory side. In this case, we also find that fine-grained interleavings across

memory controllers help improving bandwidth. Memory interleaving is not a

novel technique. Our contribution is to determine what is the best granular-

ity to use across memory controllers in conjunction with the proposed LLC

organization. We conclude that both, the proposed LLC and the fine-grained

interleaved memory synergistically improve bandwidth and performance. For

a CMP with 128 cores and 64-MB LLC, our organization shows 21% perfor-

mance improvement over a traditional LLC. Additionally, the fine-grained

interleaving across memory controllers provides an extra 42% improvement

on performance. By adopting both optimizations, we obtain 72% total per-

formance improvement.

8.2 Bandwidth-Optimized Register File

The second contribution of this thesis consists in a register file organization

for throughput-aware computation, referred to as the Vector String Register

File (VSRF). The VSRF is composed of 2048 256-bit registers, organized in

eight banks, which are accessed through an indirection mechanism based on

register mappings. In this thesis, the VSRF is studied in the context of an

in-line vector-based accelerator (VBA) design [29], which is plugged into an

A2 core.

The register file capacity is leveraged to keep data as much as possible and

reduce the accesses to the cache hierarchy. For example, an application loads

large blocks of data on the onset into the VSRF, operates on the entire block

of data, keeps intermediate results in the VSRF, and stores final results at the

end. This computation model reduces the pressure on the cache hierarchy,

which results in higher throughput than some state-of-the-art digital signal

processors (DSPs). For instance, a 2048-point fixed-point FFT executes at

a rate of 1884 millions of samples per second (Msps) at 2.3GHz. This is 1.5

to 3.5 times higher than state-of-the-art DSP solutions, for the same clock

frequency. Even more, the design proposed constitutes a fully-programmable,

scalable design for a much broader range of applications than DSPs.

To further improve throughput, we propose to embed computation logic
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into the register file. We refer to this approach as the processor-in-regfile

(PIR) strategy. By leveraging the register file bank-based organization,

we attach small special-function local computation elements (LCEs) to each

bank. Each LCE is a SIMD computation element, and all of them can pro-

ceed concurrently. In other words, the PIR strategy constitutes a highly-

parallel super-wide-SIMD device, appropriate for throughput-aware compu-

tation. For instance, a Turbo Decoder implemented at LCE level can decode

a 6144-element codeword at a rate of 230 Mbps. In the context of base station

applications, the throughput demanded by the 3GPP LTE wireless standard

(75 Mbps) is met with just one VBA with VSRF and embedded LCEs. For

LTE-Advanced, it can be satisfied with two to three VBAs proceeding in

parallel.

8.3 Power Management Techniques for CMPs

The third contribution of this thesis is a simple heuristic capable of optimiz-

ing power-performance efficiency in CMPs. In the context of multi-threaded

applications, software threads sometimes present high degrees of data shar-

ing. In those scenarios, placing software threads closer (i.e. across fewer

physical cores) may help performance. But placing threads in fewer cores

also generates per-core power gating (PCPG) opportunities to reduce chip

power consumption.

The proposed thread consolidation heuristic (TCH) is implemented at

operating system level and evaluated in an IBM BladeCenter system with a

POWER7 processor. TCH tracks an application’s performance and power

consumption by gathering performance counters and power readings from the

chip. Based on this information, TCH gauges if software threads should be

placed closer (consolidation) or moved away one from the other (unconsoli-

dation). After taking a decision, TCH computes the performance and power

benefits of the new thread placement with respect to the previous one. If the

last decision (e.g., a consolidation) gives rise to a more power-performance

efficient threads placement, TCH may decide to emphasize it (e.g., to con-

solidate more). Otherwise, TCH may undo the new placement and go back
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to the previous (more efficient) one.

In chips with PCPG capabilities, this simple heuristic generates impor-

tant opportunities to actuate the PCPG knob. In such scenarios, TCH can

improve power-performance efficiency by a factor of up to 2.1 with respect

to the default Linux scheduler.
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