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would like to thank Anna Lladó and Marc Noy for their advice and encouragement.

Vull agrair a la meva familia i mi familia, molt especialment als meus pares i a la Diana,
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Abstract

This thesis presents some contributions in additive combinatorics and arithmetic Ramsey
theory. More specifically, it deals with the interaction between combinatorics, number
theory and additive combinatorics. This area saw a great improvement with the Szemerédi
Regularity Lemma [75] and some of the results that followed. The Regularity Lemma
and its consequences have become a widely used tool in graph theory, combinatorics and
number theory. Furthermore, its language and point of view has deeply changed the face
of additive number theory, a fact universally acknowledged by the Abel award given to
Szemerédi in 2012. One of the main reasons for the prize has been Szemerédi’s theorem,
a result regarding the existence of arbitrarily long arithmetic progressions in dense sets of
the integers [74], the proof of which uses the Regularity Lemma in a key step.

One of the earlier consequences of the Regularity Lemma was the Removal Lemma for
graphs [65, 24, 32] that was used by Ruzsa and Szemrerédi in [65] to show Roth theorem
[64], regarding the existence of 3-term arithmetic progressions in dense sets of the integers,
in a combinatorial way. The Removal Lemma states that in any graph K with few copies
of a subgraph, say a triangle, we can remove few edges from K so that the result contains
no copy of the subgraph. This has become a key tool in the applications of the so-called
Regularity Method, which has extensive literature in combinatorics, graph theory, number
theory and computer science. In [41] Green introduced a regularity lemma for Abelian
groups as well as an algebraic removal lemma. The removal lemma for groups states that,
for a given finite Abelian group G, if there are o(|G|m−1) solution to x1 + · · ·+xm = 0 with
xi ∈ S ⊂ G, then we can remove o(|G|) elements from S to make the set S solution-free.

The main contributions of this work corresponds to extensions of the removal lemma for
groups to either more general contexts, like non-necessary Abelian finite groups, or to linear
systems of equations for finite Abelian groups. The main goal is to give a comprehensive
and more general framework for many results in additive number theory like Szemerédi
Theorem.

In particular, we show that the removal lemma for groups by Green can be extended
to non-necessary Abelian finite groups. Moreover, we prove a removal lemma for linear
systems on finite fields: for every ǫ > 0 there exists a δ > 0 such that if A is a k×m linear
system of equations with coefficients in a finite field Fq and the number of solutions to
Ax = b, with xi ∈ Si ⊂ Fq is less than δ|Fq|

m−k, then by removing less than ǫ|Fq| elements
in each Si we can make the resulting sets solution-free, thus solving a conjecture by Green
[41] to that respect. Even more, if A is an integer linear system, G is a finite Abelian
group, and the determinantal of A and |G| are coprime, then a similar statement holds.
Let us mention that the last result allows us to characterize those linear systems where
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any set S with size proportional to G has a nontrivial solution in S, provided |G| is large
enough. This extends the validity of Szmerédi’s theorem to finite Abelian groups [73].

These extensions of the removal lemma have been used in arithmetic Ramsey theory to
obtain counting results for the number of monochromatic solutions of linear systems. The
main result in Frankl, Graham and Rödl [28] states that the number of monochromatic
solutions of regular systems in integer intervals is in fact a positive proportion of the to-
tal number of solutions. We give analogous results for solutions in Abelian groups with
bounded exponent, for which the main tool in the torsion-free case cannot be applied.
Density versions of these counting results are also obtained, in this case with a full char-
acterization.
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1

Introduction

This thesis presents some contributions in additive combinatorics and arithmetic Ramsey
theory. More specifically, it deals with the interaction between combinatorics, number
theory and additive combinatorics. This area saw a great improvement with the Szemerédi
Regularity Lemma [75] and some of the results that followed. The Regularity Lemma
and its consequences have become a widely used tool in graph theory, combinatorics and
number theory. Szmerédi Theorem, a result regarding the existence of arbitrarily long
arithmetic progressions in dense sets of the integers [74], became one of the earliest an
more prominent statements where the Regularity Lemma was used in a key step.

The main contributions of this work are generalizations of the Removal Lemma for groups
to either more general contexts, like non-necessary Abelian finite groups, or to linear
systems of equations for finite Abelian groups. The main purpose behind these extensions
is to give a comprehensive and general framework for many results in additive number
theory like Szemerédi Theorem, where solutions to linear systems of equations are involved.
In this case we have shown that the linear systems behave in a similar way as graphs do:
they both fulfill, at least, a Removal Lemma statement.

1.1 Background

1.1.1 Szemerédi Regularity Lemma

The Szemerédi Regularity Lemma [75] has been an important tool in graph theory in
particular and for combinatorics in general, with various ramifications to computer science
and number theory. It roughly says that any graph can be partitioned into finitely-many
clusters of vertices, each of equal size, such that between most of the clusters we find
bipartite graphs that have all the properties expected in a random bipartite graph. In
other words, between most of the clusters we have a quasi-random graph (see [17]).

In the Regularity Lemma, the number of clusters can be made as large as desired and the
quasi-randomnes of the pairs, also called regularity, can be made as quasi-random as we
need. Since the vast majority of the pairs are regular, if the number of clusters is large,
then most of the edges will be between regular pairs. Thus we can approximate any graph
by using a finite structure of quasi-random bipartite graphs.

In [55], Lovász and Szegedy present the Szemerédi Regularity Lemma as an analog for
graphs of the result in analysis regarding the arbitrarily-precise approximation of a mea-
surable function using an step function with finitely-many steps. Moreover, in the same
paper, they use this analogy to complete the set of graphs, with a certain norm, using
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symmetric measurable functions from [0, 1]2 to [0, 1] with some additional properties (see
[55] for further details.) Another perspective from which Szemerédi’s regularity lemma
can be seen, due to Tao [76], is as a structure theorem for random variables in a product
probability space.

From its earlier formulations, the Regularity Lemma has seen many applications in graph
theory as well as in number theory. One of its first uses, thanks to a primitive version
of this result valid when K is a bipartite graph, can be found in the original proof of
Szemerédi Theorem [74]. Many of these applications in graph theory have been collected
in the splendid surveys [48] and [47]. Among many others, we can cite a short proof of
Erdős-Stone theorem [21] (the original in [25]), an approximate versions of Loebl-Komlós-
Sós conjecture [58] and Loebl conjecture for large enough graphs [82].

Let us mention that the Regularity Lemma can be “weakened” and “strengthened”. The
upper bound on the number of sets in the partition of the Regularity Lemma, M , is roughly
of order

M ≈ 2
222

... o

≈ǫ−5

.

Gowers showed in [35] that a tower-type bound is necessary. However, if one asks for
weaker properties to the partition, better bounds can be achieved [31]. On the other side,
some applications, for example results in property testing like [6], may require stronger
properties to the partition (see [3] also as [4].) The strong regularity lemmas require even
worse bounds (Wowzer type) than the ones coming from the Szemerédi Regularity Lemma
(tower type) [19].

As it is observed in [55], we can have a continuous range of bounds with a continuous
range of properties that can be asked to the partition. Let us note that a strong version
can be obtained from weaker versions by iteratively applying the latter.

1.1.2 Extensions

The Regularity Lemma has seen extensions to finitely edge colored graphs [48] as well as
to directed graphs [5]. The proofs divide the edge set in different classes, like the different
colors, or different directions of the edges in a bipartite graph, and then regularize for each
of these classes of edges.

Even more, Szemerédi Regularity Lemma has seen extension to hypergraphs. The first
results where due to Frankl and Rödl in [29] and Chung in [16], but the regularity lemma
was not strong enough to show the analogous implications for hypergraphs that the Sze-
merédi Regularity Lemma has for graphs. In [30], Frankl and Rödl proved a version of
the hypergraph regularity lemma for 3-uniform hypergraphs that was strong enough to
show similar implications as the result for graphs, like the (general) removal lemma, for
example.

Recently, several authors have found versions of the regularity lemma for any k-uniform
hypergraphs equivalent to the graph case, in the sense that they imply similar results and
have similar consequences to the ordinary counting and removal lemmas. Let us mention
Rödl and Skokan [62], Gowers [37], Tao [77], Elek and Szegedy [23], Ishigami [46] or Rödl
and Schacht [61].
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1.1.3 Removal Lemma for graphs and hypergraphs

One of the application of the Szemerédi Regularity Lemma is the Removal Lemma for
graphs:

Theorem 1.1 (Removal Lemma for graphs). Let K be a graph of order n and let H be a
graph of order h. For every ǫ > 0, there exists a δ = δ(ǫ, h) > 0 such that, if the number
of copies of H in K is less than δnh, then we can remove ǫn2 edges from K to make it
H-free.

We can see the Removal Lemma as a distance result: if a graph has not many copies of a
certain graph H, then it can be made free of copies of such a graph H by deleting not many
edges. This is, if a graph has not many copies of H then it is close to an H-free graph.
Moreover, the Removal Lemma can be seen as a reciprocal statement of the following
obvious one: if a graph has not many edges, then it does not have many copies of a given
graph H. The straight converse is not true since there are graphs with not many copies
of H but with lots of edges (for example the Turán graphs where H is, for example, a
complete graph on 3 vertices and K is a complete bipartite graph.) However, the Removal
Lemma states that, if there are not many copies of H in K, then they are supported over
few edges, thus it can be seen as a sensible converse.

The first appearance of the Removal Lemma was in Ruzsa and Szemerédi [65] for K being
a triangle. The authors used it to give a purely combinatorial proof of Röth’s theorem on
the existence of 3-term arithmetic progressions in subsets of integers with positive upper
density [64]. However, the bounds on the proportion of integers for which we can ensure a
3-term arithmetic progression given by the Fourier analytic proof by Roth [64] are better
than the ones coming from the Removal Lemma.

The version of the Removal Lemma for the complete graphs Kr was first proved by Erdős,
Frankl and Rödl [24]. In [32], Füredi showed the general case, which also appears in the
surveys [48], [47].

The proof of the Removal Lemma by means of the Regularity Lemma uses what has been
called the Szemerédi Regularity Method. The Regularity Lemma is a graph approxima-
tion result that, using finitely many information, retrieves, among other information, the
approximate number of copies of any bounded-sized subgraphs. In particular, if a graph
has not many copies, the regularity partition cannot see them. As the number of edges
that the regularity partition does not see is small, if a graph K has not many copies of a
fixed sized subgraphs H, then it is close, by removing few edges, to a H-free graph K ′.

The Removal Lemma has seen extensions to colored graphs [48], using finitely many colors,
and to directed graphs [5].

More recently, the Removal Lemma has seen extensions to the hypergraph case. Rödl
and Skokan in [63] have shown it by using the regularity lemma for hypergraphs [62] via
Nagel, Rödl and Schacht’s counting result in [56] (see also [60]). Gowers, in [37] focused
more on a quasi-randomnes approach (see also [36]). Tao in [77] uses a more probabilistic
and information-theoretic approach to show a Removal Lemma for hypergraphs. Elek
and Szegedy in [23] show the result by means of a measure-theoretic approach using non-
standard analytic techniques such as ultraproducts.

Let us mention that the Removal Lemma for hypergraphs has seen extensions to directed
and colored versions, using finitely many colors. These versions can be obtained in a
similar way as the directed and colored versions of the removal lemma for graphs are
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obtained from the Szemerédi Regularity Lemma: by classifying the edges into different
classes according to directions or colors. More explicit statements of directed and colored
versions of the hypergraph removal lemma can be found in Austin and Tao [7] and in
Ishigami [46] .

The Removal Lemma has seen applications in many areas especially in property testing
(see [5, 2, 34, 7] for some examples) and, using the hypergraph version in general, to show
Szemerédi Theorem [74], its multidimensional version (see [33] for the first proof of the
result and [37] for a proof using the hypergraph removal lemma), or other related results
[71].

1.1.4 Proofs without using the regularity lemma

Recently, Fox [27] gave an alternative proof of the Removal Lemma without using the
Szemerédi Regularity Lemma for graphs and was able to substantially lower the bounds
that relate the number of copies of a graph and the number of edges that needs to be
deleted, although the relation is still of tower-type. It is not known whether a similar
approach works for hypergraphs. Fox’s result involves revisiting the proof of Szemerédi
Regularity Lemma with a less strong notion of “regularity”, but sufficient for the purposes
of the removal lemma.

All the known proofs for the removal lemma of hypergraphs come from a regularity lemma
in a direct or indirect way: either the proof of the removal lemma uses a regularity lemma
(like [56, 63], [36] and [77]), or the strategy and the techniques used to show the result
output both at the same time (like in [23]). The Regularity Lemma and the Removal
Lemma seem to be intimately tied.

1.1.5 Removal Lemma vs Analytic methods

Since the very beginning, the graph removal lemma has been applied to additive number
theory. The most famous example is the proof of Roth’s theorem [64] by Ruzsa and
Szemerédi [65] using the triangle removal lemma (to be precise, they used the (6, 3)-
theorem). However, as we have mentioned earlier, the removal lemma does not have a
good relation between the number of copies of a certain subgraph and the number of
edges that support those graphs. This bad relation is translated to the bound for the
proportion of integers needed to obtain a 3-term arithmetic progression in [1, N ], which
can be dramatically improved by using Fourier Analysis techniques. The best currently
known bound is due to Bourgain [10].

The removal lemma seems to be a powerful and versatile tool, yet other, more specific,
tools work much better in many of its applications.

1.2 Framework of this work

The focus of this work has been to translate the use and philosophy of the so-called
Szemerédi Regularity Method from the realm of graphs and hypergraphs, for which it was
originally designed, to more algebraic settings, namely to linear equations over finite fields,
finite Abelian groups or finite groups in general. In particular, we develop removal lemmas
for several algebraic settings and discuss some applications.
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1.2.1 Previous use of the Removal Lemma in algebraic set-
tings

As we have mentioned earlier, one of the first examples of this machinery is the proof
of the Röth’s theorem [64] by Ruzsa and Szemerédi [65] using the graph removal lemma
where H is a triangle (indeed, the so-called (6, 3)-theorem), although the bounds of the
original proof by Roth are better.

Indeed, one of the first uses of the Regularity Lemma was in the original proof of the
Szemeréd’s theorem regarding the existence of arbitrarily long arithmetic progressions in
dense subsets of the integers [74]. However, in the original proof of Szemerédi’s theorem,
the Regularity Lemma is one of the many tools and results used, whereas in [65] the
Removal Lemma plays the central role. The Removal Lemma for triangles has also been
used by Solymosi [69] to show a 2-dimensional version of Semerédi’s result proved by Ajtai
and Szemerédi [1] using a different argument: in dense sets 1 of [0, N ]2, there are 3 points
of the form {(a, b), (a + d, b), (a, b + d)} for some d.

In [30], along with showing regularity and removal lemmas for 3-uniform hypergraphs,
Frankl and Rödl highlighted the usefulness of the hypergraph removal lemma for general
k-uniform hypergraphs to show Szemerédi’s theorem in the case of (k+1)-term arithmetic
progressions. Solymosi [70] used Frankl and Rödl’s result [30] to show that any dense set
of [0, N ]3 has four points in a configuration like {(a, b, c), (a+d, b, c), (a, b+d, c), (a+d, b+
d, c + d)}. Moreover, Solymosi observed that a removal lemma for k-uniform hypergraphs
(more precisely, the equivalent of the (6, 3)-theorem for hypergraphs), would imply the
multidimensional version of the Szemerédi’s theorem, which was proved by Fürstenberg
and Katznelson [33] by means of ergodic theory.

1.2.2 The Removal Lemma for groups

In [41] Green introduces a Regularity Lemma for Abelian groups using Fourier Analysis.
From the Regularity Lemma, he deduces the Removal Lemma for groups, which is an
algebraic version of the Removal Lemma for graphs. The Removal Lemma for groups
states that, for any Abelian group G and each m-subsets of G, S1, . . . , Sm, Si ⊂ G, if the
number of solutions to x1 + . . . + xm = 0, xi ∈ Si, is small, then we can, by removing not
many elements, make the new sets solution-free. Due to the use of Fourier Analysis in its
proof, the result was restricted to the finite Abelian group setting.

Let us notice that, if the sets Si are small, then the number of solutions to x1+. . .+xm = 0
with xi ∈ Si will be necessarily small. The removal lemma for groups can be interpreted
as a reciprocal of this observation: if the number of solutions is small, then the solutions
are supported on few elements.

1.3 Contributions of this work

Let us now present the contributions of this work. The first part, corresponding to the
contributions in Chapters 2-4, involve extensions of the removal lemma for groups. In
particular we show removal lemmas for non-necessarily Abelian groups, a removal lemma

1By dense we understand that the number of points is, for N large enough, at least a constant times
N

2.
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for linear systems on finite fields and a removal lemma for integer linear systems over
Abelian groups. The second part, Chapter 5, consists of applications to arithmetic Ramsey
theory of the results presented in Chapters 2-4.

1.3.1 Extensions of the Removal Lemma for groups

This work presents several extensions of the result by Green. The first result, Theorem 2.1,
extends the removal lemma for groups to non-necessarily Abelian groups. The proof uses
the removal lemma for directed graphs [5]. The main idea of the proof is to represent the
equation using a directed graph in which the edges have identifications with elements of the
group and each copy of a particular subgraph is identified with a solution to the equation
x1 + · · ·+ xm = 0. Then we apply the removal lemma for graphs to this construction and,
using a pigeonhole principle, extract the information of which elements should be removed
in order to delete all the solutions. This construction is similar to all the other applications
of the removal lemma for graphs in the algebraic settings presented in this thesis.

This idea of representing the elements of the algebraic structure by edges and certain
subgraphs as solutions is used in the other extensions of the result. In particular, we use a
(k+1)-uniform hypergraph to represent the given linear system with k equations in a finite
field and we deduce a removal lemma for linear systems over finite fields, Theorem 3.1, thus
solving a conjecture by Green [41]. This result was independently obtained by Shapira
[68] although his representation uses s-uniform hypergraphs with s ≥ k + 1.

The uniformity, or size of the edges, of the hypergraphs can also be denoted as its dimension
and it seems to be related with the complexity of the linear systems; more specifically, with
the different interactions of each variable with various equations of the system. Although
some systems can be represented by graphs (see Theorem 2.4 and Theorem 2.5 and the
discussion in Chapter 6), higher dimensional hypergraphs appear to be a better framework
for those results. An indication for the suitability of the higher dimension hypergraphs to
represent the systems of equations can be indicated by the use, among the combinatorial
removal lemmas, of the hypergraph version of the removal lemma to prove Szemerédi
Theorem ([30] or [70] and [37]); the dimension of the hypergraphs increase with the length
of the progression. Furthermore, there are systems that cannot be represented using graphs
(not representable using graphs by the techniques presented in this work, see Chapter 6
for a further discussion.)

Allowing an even higher dimension on the hypergraph, in comparison to the dimension
used to represent a similar system in the finite fields case, we have been able to show a
removal lemma for linear systems of equations with integer coefficients in finite Abelian
groups Theorem 4.1. The construction of the hypergraph used to represent the linear
system and its solution set is similar to the one used for Theorem 3.1, but we increase
the dimension of the edges to accommodate the fact that the product by an integer is not
always a bijective application. Furthermore, there are some restrictions in the statement
of Theorem 4.1: the order of the group has to be coprime with the k-th determinantal
divisor of the matrix (see Chapter 4 for details.) Although the result seems to be true if the
condition is removed, more refined ideas and a deeper understanding of the construction
and the problem seems to be needed. We refer the reader to Section 6.5 for further
discussion.

These extensions of the removal lemma for groups open the way to continuous versions
of the algebraic removal lemma to compact Abelian groups, a project already started
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by Candela and Sissak [15] for the circle and with a continuation to higher dimensional
compact Abelian groups by Szegedy and the author.

1.3.2 Applications

As it has been mentioned, the removal lemma can be used to provide counting versions of
certain results. For example, a well known application shows that the number of 3-term
arithmetic progressions in a subset of [1, N ] with density ǫ grows as cN2. This counting
statement was due to Varnavides [78]. Most of these counting applications follow the same
scheme: they use the contrapositive of the removal lemma when unavoidable and fairly
popular structures are present. In the previous example the unavoidable structures are
the trivial 3-term arithmetic progressions formed with three copies of the same element.

Using this reasoning, we can characterize the k×m integer linear systems A for which any
set of positive density in a finite Abelian group G will have, at least, c|G|m−k solutions to
Ax = 0 (Theorem 5.27 and Theorem 5.28). This result is similar to the one found in [28]
by Frankl, Graham and Rödl for the integers.

Moreover, using these algebraic versions of the removal lemma, we can find a Roth theorem
for finite groups (Corollary 2.2 or its counting version), as well as versions of Szemerédi
Theorem for finite fields, (Corollary 3.3) or for Abelian groups in general (showed by
Szegedy using a similar framework in [73].)

Combined with the appropriate Ramsey result (Theorem 5.4 or the specifically developed
for this application, Lemma 5.8), the suitable extension of the removal lemma (Theo-
rem 3.1 or Theorem 4.1 respectively) allows us to find some asymptotic counting results
for monochromatic structures. In particular, Theorem 5.5 shows that: for any r-coloring
of Fq \ {0}, the number of monochromatic solutions to the linear system Ax = 0 is pro-
portional to |Fq|

m−k, provided that A is a k × m matrix over Fq and fulfills analogous
conditions to Rado’s characterization of partition regular systems (see [59] or Section 5.1).

Furthermore, Theorem 5.26 shows that a similar counting result can be achieved for finite
Abelian groups where the maximal order of the elements is bounded. In this case, the ma-
trix of the system has integer coefficients and its column space has certain properties that
ensure monochromatic solutions where all the elements have maximal order (Lemma 5.8).
Finally we give a characterization of the systems for which one can state a density version.
Namely, every set with positive density has a positive proportion of the total number of
solutions. These applications are presented in more detail in Chapter 5.

We discuss in Chapter 6 some further directions prompted by our results, including the
consideration of polynomial versions, extensions to orthogonal arrays (where the removal
lemma does not hold in general), the relation with complexity, the conditions on the
determinantal of the matrix in the case of Abelian groups or the extension to arbitrary
abelian groups of the counting results.

1.3.3 Outputs of this work

The results presented in this thesis have been published in several journals. The extension
of the removal lemma for groups to non-necessarily Abelian groups, Theorem 2.1, as well
as Theorem 2.4 and Theorem 2.5 can be found in a joint paper with Král’ and Serra [50].
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Also with Král’ and Serra, the removal lemma for finite fields, Theorem 3.1 can be found
in [52].

The removal lemma for Abelian groups, Theorem 4.1, has been published in the arXiv as
a preprint with Král and Serra [51]; the work has been submitted and is currently under
review.

The algebraic removal lemmas Theorem 3.1 and Theorem 4.1 have seen applications in
Arithmetic Ramsey theory. For instance, Theorem 5.5 is an application of the removal
lemma for finite fields to qualitatively count monochromatic solutions for linear systems in
finite fields. Similarly, Theorem 5.7 or Theorem 5.26 are two counting statement regarding
monochromatic solutions for integer systems in finite Abelian groups. The density version
of these counting results, Theorem 5.28, is also addressed. All these applications can be
found in a preprint with Serra posted on arXiv [66]; this work has been submitted for
publishing.

Let us mention that the removal lemma for finite fields, which was independently proved
by Shapira [68], has been used by Candela and Sissak to show a removal lemma for
configurations on the circle [15].



2

Removal Lemma for Groups

We begin this chapter by introducing some definitions an basic results that will be useful
throughout the thesis. Afterwards we proceed to present the Removal Lemma for non-
necessary Abelian groups, which is natural extension of the Removal Lemma for groups by
Green [41]. The original proof uses Fourier Analysis therefore is restricted to the Abelian
group setting. Here we present a graph-theoretic argument using the Removal Lemma
for directed graphs that allows us to extend the Removal Lemma for groups from finite
Abelian groups to finite groups in general.

2.1 Definitions and basic results

Let us begin by recalling some definitions that are used throughout the work. A graph
H is a pair (V,E), where V is the set of vertices, E is the set of edges, |V | is called the
order of the graph and |E| its size. If E is a collection of two-sets of V , E ⊂

(V
2

)
then H

is said to be an undirected graph or a graph for short. If E is a collection of ordered pairs,
E ⊂ V 2, then E is said to be a . Moreover, if E ⊂

(V
i

)
, with i ≥ 3, then H is said to be

an i-uniform hypergraph.

If a graph has t distinguished sets of vertices V1 ∪ · · · ∪ Vt = V and all the edges have, for
every i, at most one vertex in every Vi, we say that the graph/hypergraph is t-partite.

A circuit c in H is a set of edges {e}e∈c such that there exists an ordering of the edges
that allows us to write ei = {vi, vi+1} with e|c| = {v|c|, v1}. A cycle is a circuit in which
no edge or vertex is repeated.

For a given positive integer r and a graph or a hypergraph H, the function χ : E → [r] is
said to be an r-coloring , and χ(e), e ∈ E, is said to be the color of the edge e.

A map φ is called a graph homomorphism between two graphs H ′ = (V ′, E′) and H =
(V,E) if φ : V ′ → V and, for every {v1, v2} ∈ E′, then {φ(v1), φ(v2)} ∈ E; this is, φ
induces a well defined map between the edge sets of H ′ and H. A graph H ′ = (V ′, E′) is
a subgraph of H if there exists an injective graph homomorphism between H ′ and H. A
copy of H ′ in H is the pair (H ′, φ), where φ is the homomorphism that exhibits H ′ as a
subgraph of H. We say that two copies (H ′, φ1) and (H ′, φ2) of H ′ in H are edge-disjoint
if {φ1(e)}e∈E′ ∩ {φ2(e)}e∈E′ = ∅. Notice that these notions can be naturally extended to
hypergraphs.

Let A be an integer matrix with k rows and m columns. Assume that k ≤ m. We define
the i-th determinantal as the greatest common divisor of all the i × i square submatrices
of A. This notion can be found in Newman’s book [57] as determinantal divisor.
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Recall also the fundamental theorem of finite Abelian groups: if G is a finite Abelian
group of order n then there are some positive integers n1, . . . , ns with n1|n2| · · · |ns and
n1n2 · · ·ns = n such that G ∼=

∏s
i=1 Zni , where Zni denotes the cyclic group with ni

elements.

We denote by [1, N ] the set of integers from 1 to N .

2.2 The Removal Lemma for groups

In the following sections we show the Removal Lemma for groups:

Theorem 2.1 (Král’, Serra, V. [50]). Let G be a finite group of order N . Let A1, . . . , Am,
m ≥ 2, be sets of elements of G and let g be an arbitrary element of G. If the equation
x1x2 · · · xm = g has o(Nm−1) solutions with xi ∈ Ai, then there are subsets A′

i ⊆ Ai with
|Ai\A′

i| = o(N) such that there is no solution of the equation x1x2 · · · xm = g with xi ∈ A′
i.

Rigorously speaking, Theorem 2.1 asserts that for every δ > 0 there exists δ′(δ,m) such
that, if the equation a1 · · · · · am = 0 has less than δNm−1 solutions with ai ∈ Ai, then
there are subsets A′

i ⊆ Ai, |Ai \ A′
i| ≤ δ′N such that the equation a1 · · · · · am = 0 has no

solution with ai ∈ A′
i, and the value of δ′ tends to 0 as δ → 0. Let us emphasize that the

value of δ′ does not depend on the order N of the group G (nor its structure).

The idea of our proof of Theorem 2.1 comes from the original proof of Ruzsa and Szemerédi
[65] of Roths’s theorem [64] on the existence of 3-term arithmetic progressions in sets of
integer in [1, N ] with positive density, this consequence being one of the main motivations
of their Triangle Removal Lemma. Theorem 2.1 can be similarly used to prove an analogous
version of Roth’s theorem for groups.

Corollary 2.2. Let G be a finite group of odd order N and A a subset of its elements. If
the number of solutions of the equation xz = y2 with x, y, z ∈ A is o(N2), then the size of
A is o(N).

Proof. Apply Theorem 2.1 to the equation x1x2x
−1
3 = 1 and A1 = A2 = A, A3 = A2. We

need that the map x → x2 is a bijection: indeed, Lagrange’s theorem yields that xN = 1 for
every x ∈ G. If it holds that x2 = y2 for two elements of G, then xNx−2⌊N/2⌋ = yNy−2⌊N/2⌋

and consequently x = y.

In the proof of Theorem 2.1, we use a directed cycle to represent an equation. Using
similar ideas, we can use a directed graph to represent some systems of equations and
obtain a similar result as Theorem 2.1. Section 2.4 is devoted to this results.

The use of directed graphs to represent systems of equations limits us in the typology of
systems of equation we can deal with (see Chapter 6 for a further discussion). On the
other side, allows us to prove the result using the removal lemma for graphs, instead of
the removal lemma for hypergraphs, and for the more general framework of general finite
groups whereas the results in Chapter 3 and Chapter 4 are restricted to finite fields or
finite Abelian finite groups. Following the result of Fox [27], the use of the removal lemma
for graphs ensures better relations between the bound on the number of solutions and how
many elements we should remove.
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2.3 Proof of the Removal Lemma for groups

In our arguments the following removal lemma, consequence of a variant of Szemerédi
Regularity Lemma for directed graphs [5], becomes useful:

Lemma 2.3 (Alon and Shapira [5] Lemma 4.1). Let H be a fixed directed graph of order
h. If K contains less than o(nh) copies of H, there exists a set E of at most o(n2) arcs of
K such that the graph obtained from K by removing the arcs of E is H-free.

The proof of Theorem 2.1 consists in constructing a blow-up graph of a small graph H
such that any solution of the equation gives rise to N edge-disjoint copies of H and every
copy of H comes, in fact, from a solution of the equation; this construction is similar to
that in [65] or in [70]. We then apply the removal lemma for graphs and, by a pigeonhole
principle, reduce the o(N2) arcs from Lemma 2.3 to the o(N) elements stated in Theorem
2.1.

Proof. [Proof of Theorems 2.1] Fix δ0 > 0 and m ≥ 2. Let G be a finite group of order
N , let g be an element of G and let A1, . . . , Am be sets of elements of G.

We define an auxiliary directed graph K whose vertex set is the set G × {1, . . . ,m}, i.e.,
they are pairs formed by an element of the group G and an integer between 1 and m.
There is an arc in K from a vertex (x, i), 1 ≤ i ≤ m−1, to a vertex (y, i+1) if there exists
an element ai ∈ Ai such that xai = y. This arc is labeled by the pair [ai, i]. The digraph
K also contains an arc from a vertex (x,m) to a vertex (y, 1) if there exists an element
am ∈ Am such that xamg−1 = y. This arc is labeled by the pair [am,m]. Let N0 = mN
denote the order of K. Note that, for each element ai ∈ Ai, K contains exactly N arcs
labelled with [ai, i].

Observe that any directed cycle of K with length m gives a solution of the equation: if
[a1, 1], [a2, 2], . . . , [am,m] are the labels of the arcs in the cycle and it contains the vertex
(z, 1), then za1a2 · · · amg−1 = z by the definition of K. In the opposite way, each solution
a1, . . . , am of (2.2) corresponds to N directed cycles of length m in K:

(z, 1), (za1 , 2), (za1a2, 3), . . . , (za1 . . . am−1,m), (za1 . . . amg−1, 1) = (z, 1) (2.1)

one for each of the N distinct possible choices of z ∈ G. These N directed cycles are
vertex disjoint (and thus edge disjoint) since it is possible to recover the value of z from
any vertex contained in the cycle.

Suppose, using the hypothesis, that there are less than δ0N
m−1 solutions of the equation

x1x2 · · · xm = g with xi ∈ Ai. (2.2)

By the correspondence of the cycles of K and the solutions of (2.2), the directed graph K
contains no more than δ0N

m distinct directed cycles of length m.

Apply Lemma 2.3 to K, the directed cycle of length m as H and with δ = δ0/m
m: since

K has less than δ0N
m = δNm

0 copies of the directed cycle of length m, there is a set E of
at most δ′N2

0 arcs such that K − E contains no directed cycle of length m with some δ′

depending only on δ and m.

Let Bi be the set of those elements a ∈ Ai such that E contains at least N/m arcs labeled
with [a, i]. Since |E| ≤ δ′N2

0 , the size of each Bi is at most m|E|/N ≤ δ′m3N . Set
A′

i = Ai \Bi. Since the size of Bi is bounded by δ′m3N , δ′ depends on δ and m only, and
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δ′ → 0 as δ0 → 0, the theorem will be proven after we show that there is no solution of
the equation (2.2) with ai ∈ A′

i.

Assume that there is a solution with ai ∈ A′
i of the equation (2.2). Consider the N edge

disjoint directed cycles of length m corresponding to a1, . . . , am which are given by (2.1).
Each of these N cycles contains at least one of the arcs of E and the arcs of these N edge
disjoint cycles are labelled only with the pairs [a1, 1], [a2, 2], . . . , [am,m]. Since these N
directed cycles are disjoint and the set E contains at least one arc of each of them, the set
E contains at least N/m arcs labelled [ai, i] for some 1 ≤ i ≤ m. Consequently, ai ∈ Bi

and thus ai 6∈ A′
i. We conclude that there is no solution of (2.2) with ai ∈ A′

i.

Let us notice that we have chosen H to be a directed cycle and not an undirected cycle to
break some internal graph homomorphisms from H to itself that a cycle have. Those would
have created more copies of H in the constructed blowup graph than the ones coming
from solutions of the equation. Even though we could have used directed hypergraphs
to break those internal homomorphisms in the blow-up hypergraph coming from H, in
the next chapters we have used colored hyperedges instead. The coloring breaks the
homomorphisms in clearer way.

2.4 Extension to some systems of equations

In this section we consider an extension of Theorem 2.1 which applies to a particular class
of systems of equations, which however holds in general finite groups and its proof just
requires the removal lemma for graphs.

We start with the Abelian version of the extension. Let G be an Abelian group (with
additive notation) and consider an equation system of the following type:

ǫ11x1 + · · · + ǫ1mxm = 0
...

...
...

ǫk1x1 + · · · + ǫkmxm = 0







(2.3)

where ǫij ∈ {−1, 0, 1}, k ≥ 1 and m ≥ 2. The vector (ǫi1, . . . , ǫim) is referred to as
the characteristic vector of the i–th equation. We say that the system (2.3) is graph
representable by a directed graph H with m arcs (one for each variable in the system) if
the characteristic vectors of cycles in H are precisely integer linear combinations of the
characteristic vectors of the equations, see Section 2.4.1 for details. With this notation,
we state the following result:

Theorem 2.4. Let G be a finite Abelian group of order N . Let A1, . . . , Am, m ≥ 2, be
sets of elements of G. If the equation system (2.3) is graph-representable and has o(Nm−k)
solutions with xi ∈ Ai, then there are subsets A′

i ⊆ Ai with |Ai \ A′
i| = o(N) such that

there is no solution of the system (2.3) with xi ∈ A′
i.

Theorem 2.4 can be also extended to non-abelian groups at the expense of strengthen-
ing the notion of graph representability. With this strong version which is explained in
Section 2.4.2 the same technique allows us to prove:

Theorem 2.5. Let G be a finite group of order N written multiplicatively. Let A1, . . . , Am,
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m ≥ 2, be sets of elements of G. Consider the equation system

x
ǫ1σ1(1)

σ1(1) · · · x
ǫ1σ1(m)

σ1(m) = 1
...

...
...

x
ǫkσk(1)

σk(1) · · · x
ǫkσk(m)

σk(m) = 1







(2.4)

where σ1, . . . , σk are permutations of [1,m], ǫij ∈ {−1, 0, 1}, k ≥ 1, m ≥ 2. If the system
is strongly graph-representable and has o(Nm−k) solutions with xi ∈ Ai, then there are
subsets A′

i ⊆ Ai with |Ai \ A′
i| = o(N) such that there is no solution of the system (2.3)

with xi ∈ A′
i.

Being graph-representable implies that there exists an equivalent linear system which is,
essentially, the incidence matrix of a graph, so, in particular, is totally unimodular. How-
ever, not all the totally unimodular matrices are incidence matrices of directed graphs (see
[11, Theorem 2.3.7]). In particular, this shows that not all the matrices with coefficients
in Z2 are graph-representable.

2.4.1 Systems of equations for Abelian finite groups

Let us now recall the notion of cycle spaces of directed graphs. If H is a directed graph with
m arcs, then the cycle space of H is the vector space over Q spanned by the characteristic
vectors of cycles of H where the characteristic vector of a cycle C of H is the m-dimensional
vector v with each coordinate associated with one of the arcs such that the i-th coordinate
of v is +1 if the i-th arc is traversed by C in its direction, it is −1 if it is traversed by C
in the reverse direction, and it is 0 if the arc is not traversed by C.

A set of integer vectors contained in the cycle space is said to integrally generate the cycle
space of H if they are independent and every vector of the cycle space can be expressed
as a linear combination of these vectors with integer coefficients. It is known [53] that the
vectors integrally generate the cycle space if and only if every maximum square submatrix
of the matrix formed by these vectors has determinant 0, +1 or −1. This turns out to be
equivalent to the fact that a determinant of one such non-singular submatrix is +1 or −1,
more precisely Liebchen and Peeters [54] established the following, also see [53]:

Proposition 2.6. Let H be a connected directed graph with h vertices and m edges. Let
A be the k × m matrix of the characteristic vectors of a set of k = m − h + 1 cycles of
H. This set of cycles integrally generates the cycle space of H if and only if A contains a
k × k square submatrix with determinant in {−1, 1}.

Let us now give some examples. If T is a spanning tree of H, this is, a tree containing all
vertices in H. The addition of an edge in E(H)\E(T ) creates a single cycle, which is called
a fundamental cycle with respect to T . The characteristic vectors of the fundamental cycles
with respect to T always integrally generate the cycle space of H [53]. On the other hand,
an example of a set of characteristic vectors that generate but not integrally generate the
cycle space of a graph is given in Figure 2.1.

Consider now the equation system (2.3). The vector (ǫi1, . . . , ǫim) is referred to as the
characteristic vector of the i–th equation. The system is said to be graph-representable
if there exists a directed graph H with m arcs, each associated with one of the variables
x1, . . . , xm, such that the characteristic vectors of the equations integrally generate the
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v1

v2

v0

v3

v4

Figure 2.1 An example of a set of cycles generating but not in-
tegrally generating the cycle space of a directed graph: the cycles
v0v1v2v0v3v4v0 and v0v1v2v0v4v3v0 generate the cycle space of the
depicted directed graph but they do not integrally generate it: the
cycle v0v1v2v0 can only be written as a rational (not integral) linear
combination of the two cycles in the generating set.

cycle space of H. Such a directed graph H is called a graph representation of the equation
system (2.3). Note that the condition that the characteristic vectors of the equations inte-
grally generate the cycle space can be efficiently tested since it is equivalent to computing
the value of the determinant of a matrix as explained in the previous paragraph.

The proof of Theorem 2.4 follows the lines of the one for Theorem 2.1. In this case we use
the following colored version of Lemma 2.3.

Lemma 2.7 (Removal Lemma for arc-colored directed graphs). Let m be a fixed integer
and H a directed graph with its arcs colored with m colors. If a directed graph G with edges
colored with m colors contains less than o(nh) copies of H (the colors of edges in the copy
and H must be the same), there exists a set E of at most o(n2) arcs such that the graph
obtained from G by removing the arcs contained in E is H-free.

Lemma 2.7 can be proved by combining the proof of Lemma 2.3 with the edge-colored
version of the Regularity Lemma stated for instance in [48, Lemma 1.18].

Proof. [Proof of Theorem 2.4] Let H be a graph representation of the equation system
(2.3). We can assume without loss of generality that H is connected. We view the arc
corresponding to the variable xi as colored with the color i. In this way, the arcs of H are
colored with numbers from 1 to m.

Since the dimension of the cycle space of H is k (as the characteristic vectors of the
equations from (2.3) are assumed to be independent) and H is comprised of m arcs, the
number of the vertices of H is h = m−k+1 (recall that the cycle space of H has dimension
|E(H)| − V (H) + 1, Biggs [9, Theorem 4.5]).

Next, we construct an auxiliary directed graph K. The vertex set of K is G× V (H). For
every arc (u, v) of H associated with xi, the directed graph K contains N |Ai| arcs from
(g, u) to (ga, v), one for each g ∈ G and each a ∈ Ai. The arc from (g, u) to (ga, v) is colored
i and labeled by the pair [a, i]. The order of H is N0 = hN , its size is N(|A1|+ · · ·+ |Am|)
and its arcs are colored with numbers 1, . . . ,m. We call K the blow-up graph of H by
A1, . . . , Am.

Let H ′ be a subgraph of K isomorphic to H (preserving the colors). The arc of H ′ colored
with i is an arc from a vertex (g, u) to a vertex (gai, v) for some ai ∈ Ai. Setting xi = ai

yields a solution of the system (2.3): indeed, if C is a cycle corresponding to the j-th
equation, then the cycle C is also present in H ′ as a cycle (g1, u1)(g2, u2) . . . (gl, vl). If γt

is the color of the arc ((gt, ut) , (gt+1, ut+1)) (indices taken modulo l), then aγt = gt+1 − gt,
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if the arc is traversed in its direction, and aγt = gt − gt+1 otherwise, and thus

0 =
l∑

i=1

(gi+1 − gi) =
l∑

i=1

ǫjγiaγi = ǫj1a1 + . . . + ǫjmam .

Note that we can freely rearrange the summands in the above equation as the group G is
Abelian.

We have seen that every subgraph of K isomorphic to H corresponds to a solution of
the system (2.3). Let us now show that every solution of (2.3) corresponds to N edge
disjoint copies of H. Fix a vertex u0 of H, an element z of G and a solution of the system
a1 ∈ A1, . . . , am ∈ Am. Define ϕ : V (H) → G such that ϕ(u0) = z and ϕ(u′) − ϕ(u) = ai

for an arc (u, u′) of H corresponding to the variable xi. By the graph representability of
the system, the function ϕ is well defined: if there are two paths from u0 to a vertex u in H
they close a cycle C which can be expressed as an integral linear combination of the cycles
in the system. Since the ai’s form a solution of the system, the sum of the labels on the
edges along each of the cycles arising from the system is zero, and therefore this is also the
case for C. Since H is connected, the set of vertices {(u, ϕ(u)), u ∈ V (H)} induce a copy
of H in K. Since there are N choices for z, and two different choices yield edge–disjoint
copies of H, every solution of the system with ai ∈ Ai gives rise to N edge–disjoint copies
of H.

The proof now proceeds as in Theorem 2.1 except that instead of a cycle of length m we
aim to consider copies of the graph H. Fix δ0 > 0 and apply Lemma 2.7 for δ = δ0/h

h

which yields δ′ > 0. If there are less than δ0N
m−k = δ0N

h−1 solutions of the system (2.3),
the directed graph K contains at most δ0N

h = δNh
0 distinct copies of H. By the choice

of δ, there is a set E of at most δ′N2
0 arcs such that K \ E has no copy of H.

Let Bi be the set of those elements a ∈ Ai such that E contains at least N/m arcs
((g, u), (ga, v)) colored with i. Since |E| ≤ δ′N2

0 , the size of each Bi is at most m|E|/N ≤
δ′mN2

0 /N = δ′mh2N ≤ δ′m3N . Set A′
i = Ai \ Bi. Since the size of Bi is bounded by

δ′m3N , and δ′ → 0 as δ0 → 0, the theorem will be proven after we show that there is no
solution of the system (2.3) with a′i ∈ A′

i.

Assume that there is a solution a′1, . . . , a
′
m of the equation system (2.3) such that a′i ∈ A′

i

and consider the N disjoint copies of H corresponding to this solution. For every i, the N
copies of H contain together N arcs colored with i that are of the form ((g, u), (ga′i , v)).
Hence, there exists an i0 such that E contains at least N/m arcs that are colored with
i0 and are of the form ((g, u), (ga′i , v)). Consequently, a′i ∈ Bi and thus a′i 6∈ A′

i which
violates the choice of the solution.

As a final remark, we briefly discuss the condition of graph representability. The key point
in the proof of Theorem 2.4 is the correspondence between copies of H and solutions of
the system: every copy of H in the constructed graph K yields a solution of the system
and every solution gives rise to N edge-disjoint copies of H. This correspondence can be
broken if the system is not graph representable in the sense we have defined. For instance,
in the example from Figure 2.1, it is possible to express only 2C as an integer combination
of the base and thus the stated correspondence does not need to exist for groups with
elements of order two.
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2.4.2 Systems of equations for nonabelian groups

We have already mentioned that, if the characteristic vectors of the equations from a
system corresp to fundamental cycles of a graph H with respect to one of its spanning
trees, then the equation system is graph-representable. If there exists a representation of
this special type, then we say the system is strongly graph representable. More precisely,
the system (2.4) is strongly graph representable if there is a directed graph H with m arcs
colored by 1, . . . ,m and a spanning tree T of H such that the fundamental cycles of H
with respect to T are cycles Ci defined as follows: Ci is the cycle traversing the arcs of
H in the order ei1 . . . eim where some of eij are “empty”, i.e., they do not define an arc
of H. If ǫiσi(j) = +1, then eij is the arc colored with σi(j) traversed in its direction, if
ǫiσi(j) = −1, then eij is the arc colored with σi(j) traversed in the opposite direction, and
if ǫiσi(j) = 0, then eij is empty. Note that the condition on the equation system being
strongly representable implies that every equation contains a variable that is not in any
of the other equations. An example can be found in Figure 2.2 where the graph strongly
represents the equation system arising from Corollary 2.8.

This stronger condition suffices to extend Theorem 2.4 to the non-abelian case.

Proof. [Proof of Theorem 2.5] The proof is analogous to the one of Theorem 2.4. Let H
be a a strong representation of the system. In particular, H has m edges and h = m−k+1
vertices. Let K be the graph with vertex set G×V (H) that contains an arc ((g, u), (ga, v))
for each arc (u, v) in H that has color i and each a ∈ Ai. Such an arc has also color i in
K.

Let H ′ be a subgraph of K that is isomorphic to H (preserving the colors of the edges).
If ((g, u), (g′ , v)) is an arc of H ′ colored with i, set xi = g−1g′. Observe that xi ∈ Ai. We
claim that x1, . . . , xm is a solution of the equation system. Consider the i-th equation and
the cycle (g0, u0)(g1, u1) · · · (gt, ut) = (g0, u0) of H ′ corresponding to this equation (note
that t can be smaller than m as some arcs can be “empty”); note that this cycle does not
need to be consistently directed. We infer from the choice of xi the following:

m∏

j=1

x
ǫiσi(j)

σi(j)
=

m∏

j=1

g−1
j−1gj = g−1

0 g1g
−1
1 · · · gm−1g

−1
m−1gm = g−1

0 gm = g−1
0 g0 = 1 .

Hence, xi’s are indeed a solution of the equation system.

On the other hand, each solution xi ∈ Ai gives rise to N edge–disjoint copies of H in K.
Indeed, let T be a spanning tree of H such that the cycles C1, . . . , Cm corresponding to
the equations of the system (2.4) are fundamental cycles with respect to T . Root T at an
arbitrarily chosen vertex v0. Set gv0 to an arbitrary element of G and define the values gv

for other vertices of the graph H as follows: if v′ is the parent of v in T and the arc vv′

has color i and is oriented from v to v′, then gv = gv′x
−1
i ; if the arc is oriented from v′ to

v, then gv = gv′xi.

Let H ′ be the subgraph of K with the vertices (gv , v) that contains the arc from (gv , v)
to (gv′ , v

′) with color i for every arc vv′ of H with color i. In order to be sure that H ′ is
properly defined, we have to verify that an arc from (gv , v) to (gv′ , v

′) with the color i is
present in K. If vv′ is an arc of T , then K contains the arc from (gv, v) to (gv′ , v

′) by the
definition of gv . If vv′ is not contained in T , there is exactly one equation in the system
that contains the variable xi. We infer by a simple manipulation from the definition of gv

that gv′ = gvxi. Since xi ∈ Ai, the arc from (gv , v) to (gv′ , v
′) is contained in H and its

color is i. Since the choice of gv0 was arbitrary, K contains N edge-disjoint copies of H.
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x1

x3

x2

x4

x5

Figure 2.2 A directed graph representing the equation system (2.5).

The rest of the proof is the same as the last three paragraphs of the proof of Theorem 2.4.

2.4.3 Examples of graph-representable systems

Let us present two corollaries of Theorems 2.1–2.5 which illustrates possible applications
of our results.

Let G be a finite group and A,B ⊆ G. The representation function rA,B : G → N,
defined as rA,B(g) = |{(a, b) ∈ A × B : ab = g}|, counts the number of representations of
an element g ∈ G as a product of an element in A and one in B. We write rA for rA,A.

Corollary 2.8. Let G be a finite group of order N and let A,B,C,D,E ⊆ G. If

1

N

∑

g∈E

rA,B(g)rC,D(g) = o(N2) ,

then it is possible to eliminate o(N) elements in each of the sets to obtain sets A′, B′, C ′,D′, E′

such that ∑

g∈E′

rA′,B′(g)rC′,D′(g) = 0 .

In particular,

1. If 1
N

∑

g∈E r2
A(g) = o(N2), then (A′)2 ∩ E′ = ∅ (A′ is E′–product–free).

2. If 1
N

∑

g∈G\A r2
A(g) = o(N2), then |(A′)2| = |A′| + o(N) (A′ has small doubling).

3. If 1
N

∑

g∈G rA,B(g)rB,A(g) = o(N2), then |A′B′ ∩ B′A′| = o(N) (almost all pairs do
not commute).

Proof. Consider the following equation system:

x1x2x
−1
4 x−1

3 = 1

x1x2x
−1
5 = 1

}

(2.5)

The system (2.5) is strongly representable by the graph H depicted in Figure 2.2.

The number of solutions of (2.5) with x1 ∈ A, x2 ∈ B, x3 ∈ C, x4 ∈ D and x5 ∈ E is
∑

g∈E rA,B(g)rC,D(g). Hence, if it holds that

1

N

∑

g∈E

rA,B(g)rC,D(g) = o(N2) ,
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then there are o(N3) solutions of the system (2.5). By Theorem 2.5 applied with m = 5,
k = 2, A1 = A,A2 = B,A3 = C,A4 = D and A5 = E, it is possible to remove o(N)
elements from each of the sets A, . . . , E obtaining sets A′, . . . , E′ such that the system
(2.5) has no solution with x1 ∈ A′, . . . , x5 ∈ E′.

Applying the above argument with A = B = C = D, we obtain that
∑

g∈E′ r2
A′(g) =

0, which is equivalent to (A′)2 ∩ E′ = ∅. This proves 1. Setting E = G \ A, we get
∑

g∈E′ r2
A′(g) = 0. Since (A′)2 ⊆ A∪ (E \E′), |A \A′| = o(N), |E \E′| = o(N), we obtain

2. Similarly, 3 is derived by applying the Corollary for A = C and B = D.



3

Removal Lemma for Finite Fields

In this chapter we show the so-called removal lemma for finite fields. This result has been
independently proved by Shapira in [68] and by Král’, Serra and the author [52].

Theorem 3.1 (Removal Lemma for systems of equations over finite fields; Shapira [68];
Král’, Serra, V. [52]). For all positive integers k and m, k ≤ m, and every ε > 0, there
exists δ > 0 such that the following holds: Let F = Fq be the finite field of order q and
X1, . . . ,Xm be subsets of F , let A be a (k ×m) matrix with coefficients in F and let b
be a vector in F k.

If there are at most δqm−k solutions of the system Ax = b , x = (x1, . . . , xm), with xi ∈ Xi,
then there exist sets X ′

1, . . . ,X
′
m with X ′

i ⊆ Xi and |Xi \ X ′
i| ≤ εq such that there is no

solution of the system Ax = b with xi ∈ X ′
i.

Using the little o-notation, Theorem 3.1 asserts that if there are o(qm−k) solutions of the
system Ax = b with xi ∈ Xi, then there exist sets X ′

i ⊆ Xi such that |Xi \ X ′
i| = o(q)

and there is no solution of the system Ax = b with xi ∈ X ′
i. We will use more precise

formulations without the little o-notation, but we occasionally use this notation if no
confusion can arise.

By a standard argument Theorem 3.1 implies an analogous result in the integers. In
particular it provides a proof of the following result conjectured by Green [41, Conjecture
9.4]:

Theorem 3.2. Let k and m be integers with k ≤ m and let A be an integer k ×m matrix
of rank k. For every ε > 0, there exists δ > 0 with the following property. Let X ⊆ [N ],
and suppose that there are at most δNm−k vectors x in Xm for which Ax = 0. Then
X = B ∪ C, such that there are no solutions of the system Ax = 0 with x ∈ Bm and
|C| ≤ εN .

Proof. Let c(A) be twice the sum of the absolute values of the coefficients in A plus 1.
Let p be a prime such that c(A) · N ≤ p ≤ 2c(A) · N .

By the choice of p, there is a natural bijective correspondence between the solutions of the
linear system Ax = 0 in Fp with x ∈ Xm and the ones in the integers.

We apply Theorem 3.1 with F = Fp and Xi = X for all i to obtain the result.

A natural application of Theorem 3.2 is the proof of the celebrated theorem of Szemerédi
on the existence of k–term arithmetic progressions in sets of integers with positive density
[74]. Actually Theorem 3.2 proves the strengthening by Varnavides [78] that a set of
integers in [1, n] with positive density contains Ω(n2) arithmetic progressions of length
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k. This is so because the linear system which defines a k–term arithmetic progression in
a set X has |X| trivial solutions (corresponding to constant k–term progressions) which
can only be removed by deleting all elements in X. Theorem 3.1 provides the analogous
statement in the finite field context.

Corollary 3.3. For every positive integer k and every ε > 0, there exists δ > 0 such that
if a subset X of the elements of the q-element field Fq contains at most δq2 arithmetic
progressions of length k, then the set X has at most εq elements.

Corollary 3.3 above can also be proved by using the construction from Frankl and Rödl
[30] and the hypergraph removal lemma (see [63] for an explicit construction). Indeed, the
fact that Szemerédi Theorem can be shown using the hyergraph removal lemma, was one
of the motivation to extend the removal lemma for graphs to hypergraphs.

Our proof of Theorem 3.1 follows the main idea used to show the removal lemma for
groups, Theorem 2.1. When the system is reduced to one equation, our construction
coincides with the one in the proof of Theorem 2.1, thus it can be viewed as its natural
generalization.

Although the techniques used in the proof of the removal lemma for groups to represent
a linear equation using a graph, namely a cycle, can be pushed forward to represent
some systems of equations, see Theorem 2.4 and Theorem 2.5, the use of graphs seems to
impose serious limitations to extend the result for a general system of equations. Instead,
the extensions to hypergraphs of the removal lemma, which have been recently proved by
Nagle, Rödl, Schacht and Skokan [56, 63], Gowers [37], Tao [77] or Elek and Szegedy [22]
seem to be the natural tool to achieve this goal. In particular, and for the same technical
conditions explained at the end of Section 2.3, we use the edge-colored version of the
hypergraph Removal Lemma, see Theorem 3.4 in Section 3.1. Theorem 3.4 follows from a
more general result of Austin and Tao [7, Theorem 1.5].

Independently of us, Conjecture 9.4 from [41] was proved by Shapira [68] (see also [67])
whose method also yields a different proof of Theorem 3.1. Shapira’s proof also reduces
the problem to finding an appropriate representation of the system by a hypergraph in
which one can identify certain subgraphs with solutions, and uses the colored version
of the hypergraph Removal Lemma (Theorem 3.4) as our proof does. However, his proof
involves O(m2)–uniform hypergraphs where our proof involves (k+1)–uniform hypegraphs.
The two proofs follow a common approach but they differ in the particular ideas used to
represent systems by hypergraphs. For a further discussion on the dimension of the edges
of the hypergraph used in our construction see Chapter 6.

We note that Theorem 3.1 might also be derived from the main result in Szegedy [73].
There the author proves a Symmetry-preserving Removal Lemma and describes a frame-
work to apply it to Cayley Hypergraphs. Theorem 3.1 would follow from the Symmetry-
preserving Removal Lemma once the conditions of validity within this setting are properly
verified.

Let us also mention that the conclusion of Theorem 3.1 can be proven in a substantially
easier way if we assume that every k columns of the matrix are linearly independent; Král’,
Serra and the author have reported on this result in [49]. Candela [13] has also proved
this result independently of us.
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3.1 The hypergraph Removal Lemma and outline
of the proof

Our main tool for the proof of Theorem 3.1 is the following version of the hypergraph
Removal Lemma which follows from a more general result of Austin and Tao [7, Theorem
1.5].

Theorem 3.4 (Austin and Tao [7]). Let H be an edge-colored (k +1)-uniform hypergraph
with m vertices. For every ε > 0 there exists δ > 0 with the following property.

Let K be an edge colored (k + 1)-uniform hypergraph with M vertices. If the number of
copies of H in K (preserving the colors of the edges) is at most δMm, then there is a set
E′ ⊆ E(K) of size at most εMk+1 such that the hypergraph K ′ with edge set E(K) \E′ is
H–free.

The general idea of the proof of Theorem 3.1 is to associate to the linear system Ax = b,
where A has size k×m, a pair of edge-colored (k+1)-uniform hypergraphs H and K. The
hypergraph H has m edges and m vertices, and K is an m-partite hypergraph with mq
vertices. The edges of H and of K are defined in such a way that there is a correspondence
between copies of H in K and solutions of the linear system in X1 × · · · × Xm. More
precisely, each solution gives rise to exactly qk edge disjoint copies of H in K.

The bound on the number of solutions of our linear system translates to the fact that K
contains o(qm) copies of H. At this point we apply the Removal Lemma for hypergraphs,
Theorem 3.4, to find a set E′ of edges with size o(qk+1), such that, by removing E′ from
K we delete all copies of H.

Since the qk copies of H corresponding to the same solution are edge–disjoint, a pigeonhole
argument allows us to find o(q) elements from each set Xi whose removal eliminates all
the solutions of the system of equations.

3.2 Reductions of the system

The key point in our argument is the construction of the auxiliary hypergraphs H and
K. Before we explain the details of this construction, we show that we can assume some
properties of the given linear system Ax = b. In what follows, M i denotes the i–th column
of a matrix M and Mj denotes its j–th row.

Lemma 3.5. Theorem 3.1 holds if it can be proved under the following assumptions.

(i) The matrix A has the form A = (Ik|B) where Ik is the identity matrix.

(ii) b = 0.

(iii) m ≥ k + 2.

(iv) Every two rows of B are linearly independent.

(v) Each row of B has at least two non-zero entries.

(vi) No column of A is the zero vector.
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Proof. We will establish these properties sequentially and assume the previous ones at
each step.

(i) Observe that, by the nature of the statement of Theorem 3.1, there is no loss of
generality in assuming that the matrix A has full rank k. Indeed, choose δ to be the
minimum δk′ , k′ = 1, . . . , k, where δk′ is the constant for full rank k′ × m matrices.
Consider a k ×m matrix A. If the rank k′ of the matrix A is smaller than k but the
rank of the matrix (A|b) is k′ + 1, then there is no solution of the system Ax = b at
all and there is nothing to prove. Otherwise, let A′ be a full-rank k′ × m submatrix
of A and b′ the subvector b with entries corresponding to the rows of A′. Observe
that if the system Ax = b has at most δqm−k solutions, then the system A′x = b′

has at most δk′qm−k′

solutions and the statement follows.

By an appropriate choice of basis, the matrix A can be assumed to be of the form
A = (Ik|B), where Ik denotes the k × k identity matrix.

(ii) If A is written in the form (Ik|B), then the general statement of Theorem 3.1 fol-
lows by applying it to the system Ax = 0 once we replace the given first k sets
X1, . . . ,Xk by X1 − b1, · · · ,Xk − bk, where b = (b1, . . . , bk) (and leave the remaining
sets Xk+1, . . . ,Xm unchanged.)

(iii) Note that if m = k + 1 then Theorem 3.1 trivially holds with δ = ε. Indeed,
for each element a ∈ Xk+1 there is at most one solution to the system Ax = 0
with last coordinate a; since the number of solutions is at most δq, there must
be at most εq = δq elements in Xk+1 which belong to a solution of Ax = 0 with
x ∈ X1×· · ·×Xk+1; by deleting these elements from Xk+1, we delete all the solutions.
Thus, we can assume that m ≥ k + 2.

(iv) Suppose on the contrary that rows Bi and Bj of B are not linearly independent,
say Bi = λBj . This implies that every solution of the system Ax = 0 satisfies
xi = λxj. Therefore we can replace Xi by Xi ∩ (λ · Xj), delete the j-th equation
together with the j-th variable, and apply our theorem in the resulting setting: the
obtained system contains one less equation and one less variable.

(v) We may assume that any row Bi of B has at least two non-zero entries. Otherwise
the i–th equation would read xi + bi,jxj = 0 for some j ∈ [k + 1, . . . ,m]. As in the

preceding paragraph, we can replace the set Xj by Xj ∩
(

−b−1
i,j · Xi

)

and consider

the system obtained by eliminating the i-th equation and the i-th variable.

(vi) Suppose that A has a zero column, say Am = 0. Set δ to be εδ′ where δ′ obtained for
k′ = k and m′ = m−1. If the set Xm contains at most εq elements, we can delete all
elements of the set Xm and no solution of the system is left. Otherwise, if the system
Ax = b has at most δqm−k solutions, then the system A′x′ = b, where A′ is the matrix
obtained from A by deleting the m-th column, has at most δqm−k/(εq) = δ′qm−1−k

solutions and we can apply the statement for m′ = m − 1 and k′ = k.
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3.3 Hypergraph representation and proof of The-
orem 3.1

Let Ax = 0 be a linear system, where A is a k × m matrix with entries in F satisfying
the properties (i)–(vi) of Lemma 3.5. For the hypergraph representation of the system
Ax = 0 we shall use an auxiliary matrix associated to the matrix A which is described
in Lemma 3.6 below. The support of a vector x ∈ Fn, denoted by s(x), is the set of
coordinates with a nonzero entry.

Lemma 3.6. Let A = (Ik|B) be a (k × m)-matrix with coefficients in Fq satisfying the
properties (i)–(vi) of Lemma 3.5. There are an (m×m) matrix C and m pairwise distinct
(k + 1)-subsets S1, . . . , Sm ⊆ [1,m] with the following properties:

1. AC = 0

2. rank(C) = m − k (maximal under the first condition).

Moreover, there is an ordering of the columns of B such that

3. For every i, s(Ci) ⊆ Si and i ∈ s(Ci).

4. For every i, there exists a subset S′
i ⊆ Si with |S′

i| = k and Si \ S′
i ⊆ s(Ci) such that

the set of columns {Cj , j ∈ [1, . . . ,m] \ S′
i} has rank m − k.

The proof of Lemma 3.6 is postponed to Section 3.4. We now proceed to define a suitable
hypergraph representation of the linear system which leads to a proof of Theorem 3.1.

Let C be the matrix associated to A and S1, . . . , Sm be the (k + 1)–subsets of [1,m]
satisfying the properties stated in Lemma 3.6.

The hypergraph H is the (k+1)–uniform edge–colored hypergraph with vertex set {1, 2, . . . ,m}
and with edges S1, S2, . . . , Sm, where the edge Si is colored i.

The hypergraph K is the (k +1)–uniform m–partite edge–colored hypergraph with vertex
set Fq × [1,m] and with the following edge set. For every u ∈ Xi, K contains an edge
{(aj , j), aj ∈ Fq, j ∈ Si} if and only if

∑

j∈Si

Cijaj = u,

and this edge is colored by i and labeled by u. Since the support s(Ci) is nonempty and
|Si| = k + 1, K contains precisely qk edges colored by i and labeled by x for each x ∈ Xi.

We next show that the hypergraphs K and H have the needed properties for the proof.

Claim 3.7. If H ′ is a copy of H in K, then x = (x1, . . . , xm) is a solution of the system,
where xi is the label of the edge colored by i in H ′.

Proof. Since H ′ is a copy of H, it has m vertices and an edge of each color. By
Lemma 3.6 (3) we have i ∈ Si for each i which implies ∪m

i=1Si = [1,m]. Hence the vertex
set of H ′ is of the form {(a1, 1), (a2, 2), . . . , (am,m)}. By the construction of K, it holds
that Ca = x where a = (a1, a2, . . . , am). Hence, 0 = ACa = Ax and x is a solution of the
system.
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Claim 3.8. For any solution x = (x1, . . . , xm) of the system Ax = 0 with xi ∈ Xi, there
are precisely qk edge–disjoint copies of the edge–colored hypergraph H in the hypergraph
K.

Proof. Fix a solution x = (x1, . . . , xm) of Ax = 0 with xi ∈ Xi, 1 ≤ i ≤ m. First, we will
show that there is a copy of H in K in which the edge colored i has label xi, 1 ≤ i ≤ m.

Since the matrix C has rank m−k and satisfies AC = 0, the columns in C span the solution
space in Fm and thus there is a vector u = (u1, . . . , um) with x = Cu. In particular,

xi = Ci · u =

m∑

j=1

Cijuj =
∑

j∈Si

Cijuj ,

where the second equality follows from Lemma 3.6 (3). Therefore, for every i, the set
{(uj , j), j ∈ Si} is an edge of K colored i and labeled xi. It follows that the edges
{(uj , j), j ∈ Si}, i = 1, . . . m, span a copy of H in K.

Since the kernel of C is k-dimensional, there are qk vectors u satisfying x = Cu, and
each of them corresponds to a copy of H in K. We next verify that these qk copies are
edge–disjoint.

Let e = {(aj , j), j ∈ Si} be an edge of K colored by i and labeled xi ∈ Xi. We show that
all the qk copies of H in K contain different edges colored by i and labeled xi for each i.
By Lemma 3.6 (4), there is a subset S′

i ⊆ Si of size k such that {Cj, j 6∈ S′
i} is a set of

m − k linearly independent solutions of the system Ax = 0. Hence, we may find a vector
u = (u1, . . . , um) with x = Cu such that uj = aj for each j ∈ S′

i. Moreover, as the element
j ∈ Si \ S′

i is such that Cij 6= 0, we must also have uj = aj for each j ∈ Si and the copy
of H associated to this u contains the edge e. Thus, for each edge colored i and labeled
xi there is a copy of H associated to x in K which contains this edge.

Since there are qk such edges and there is the same number of copies of H associated to the
solution x, no two copies can share the same edge colored i and labeled xi. By applying
the same argument to each of the colors 1, . . . ,m, we conclude that the qk copies of H
associated to the solution x are edge–disjoint.

We now proceed with the proof of Theorem 3.1.

Proof. [Proof of Theorem 3.1] Let H be the family of (k + 1)–uniform edge colored
hypergraphs with m vertices and m edges. Note that H has a finite number of members.
Set ǫ′ = ǫ/m and, for each H ∈ H let δH be the quantity obtained from Theorem 3.4
applied to H. Choose δ to be the smallest such δH .

Assume that the matrix A and the vector b have the form described in Lemma 3.5, and
that the number of solutions of the system Ax = b is at most δqm−k. Let H and K be
the hypergraphs constructed in this section. By Claims 3.7 and 3.8, K contains at most
δqm ≤ δHqm copies of H. By the Removal Lemma for colored hypergraphs (Theorem 3.4),
there is a set E′ of edges of K, |E′| ≤ ε′qk+1 such that, by deleting the edges in E′ from
K, the resulting hypergraph is H-free.

The sets X ′
i are constructed as follows: if E′ contains at least qk/m edges colored with

i and labelled with xi, remove xi from Xi. In this way, the total number of elements
removed from all the sets Xi together is at most m · |E′|/qk ≤ εq. Hence, |Xi \X ′

i| ≤ εq as
desired. Assume that there is still a solution x = (x1, x2, . . . , xm) with xi ∈ X ′

i. Consider
the qk edge–disjoint copies of H in K corresponding to x. Since each of these qk copies
contains at least one edge from the set E′ and the copies are edge–disjoint, E′ contains at
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least qk/m edges with the same color i and the same label xi for some i. However, such
xi should have been removed from Xi.

3.4 Proof of Lemma 3.6

In this section, we prove Lemma 3.6 by constructing explicitly a matrix C with the required
properties.

We first define a family of auxiliary subsets T1, . . . , Tm. For each i let Ti be the maximum
k–subset of [i−m+1, i] in the lexicographic order such that the set of columns {Aj , j ∈ Ti}
(indices taken modulo m) has rank k.

Lemma 3.9. With indices taken modulo m, the following conditions hold:

(i) For each i ∈ [1,m] we have i 6∈ Ti−1.

(ii) For each i ∈ [2,m] we have i 6∈ Ti−2.

(iii) For each i, the set Ti is obtained by adding i to Ti−1 and deleting some element in
Ti−1.

Proof. Note that the set of columns {Aj , j ∈ [1,m] \ {i}} span the column space of A.
This is clearly so for k + 1 ≤ i ≤ m since A1, . . . , Ak is the canonical base. On the other
hand, for 1 ≤ i ≤ k, it follows from Lemma 3.5(v) as every row of B has (at least two)
nonzero entries. The maximality of Ti−1 implies (i).

Similarly, it follows from Lemma 3.5(iv) applied to rows i − 1 and i with 2 ≤ i ≤ k that
the set of columns {Aj , j ∈ [1,m] \ {i− 1, i}} also span the column space of A. The same
conclusion follows from Lemma 3.5(v) when i = k+1, and it is obvious when k+2 ≤ i ≤ m
since the first k columns of A form the identity matrix. This proves (ii).

By Lemma 3.5(vi) no column of A is the zero vector, so that i ∈ Ti for each i. It follows
from (i) and the maximality of Ti that the symmetric difference Ti∆Ti−1 has cardinality
two.

We now define the function g : [1,m] → [1,m] as g(i) = Ti−1\Ti (indices taken modulo m).
It follows from Lemma 3.9(iii) that the function g is well defined. Moreover the following
holds:

Lemma 3.10. We have:

(i) The function g is bijective.

(ii) There is an ordering of the columns of B such that g is increasing in [k + 1,m].

Proof. If g(r) = g(s) = i for some distinct r and s then i has been deleted twice in the
circular process described in Lemma 3.9 (iii) but inserted only once, a contradiction. This
proves (i).

We have Tk = [1, k] for every ordering of the columns Ak+1, . . . , Am. For each i = k +
1, . . . ,m, we may choose Ai to be a column for which the first nonzero coefficient when
expressed as a linear combination of the columns in the base corresponding to Ti−1 occurs
more to the left. This choice minimizes the value of g(i) and makes the function g increasing
in [k + 1,m].
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We will assume that the last m − k columns of A are ordered in such a way that g is
increasing in [k + 1,m], a choice which is possible by Lemma 3.10 (ii).

We can now define the matrix C. The j-th column of C has its support in Tj−1 ∪ {j}.
For i ∈ Tj−1, the entry Cij is the coefficient of Ai in the expression of Aj in the base
{Ai, i ∈ Tj−1}:

Aj =
∑

i∈Tj−1

CijA
i,

and Cjj = −1 (recall that, by Lemma 3.9 (i), we have j 6∈ Tj−1.)

Clearly, each column of C belongs to the space of solutions of the system Ax = 0, so that
Lemma 3.6 (1) holds.

Since all the elements of Ti, i ∈ [k,m−1], are in [1, i], the submatrix of C formed by the last
m− k columns and the last m− k rows is an upper triangular matrix with nonzero entries
on the diagonal which implies that the rank of C is m − k. This proves Lemma 3.6 (2).

By the definition of C the support of column Cj is included in Tj. For j = k we have
Tk = [1, k]. Since g is increasing in [k + 1,m] and, by Lemma 3.9 (iii), each Tj is obtained
from Tj−1 by adding j and deleting g(j), the support of Cj is included in [g(j), j] if
j ∈ [k + 1,m]. For j ∈ [1, k], Lemma 3.9 (iii) and the maximality of the Ti’s imply that
the support of Cj is included in [1, j] ∪ [g(j),m].

Let R ⊆ [1,m] × [1,m] be the area defined by the Ti’s, i.e, (i, j) ∈ R if and only if either
j ∈ [1, k] and i ∈ [1, j] ∪ [g(j),m] or j ∈ [k + 1,m] and i ∈ [g(j), j] (see Figure 3.4 for a
typical portrait of R.)

Figure 3.1 An example of the area R in matrix C which corresponds
to the permutation g(1, 2, 3, 4, 5, 6, 7, 8) = (3, 4, 6, 7, 8, 1, 2, 5).

We define the family {S1, . . . , Sm} of (k + 1)-subsets of [1,m]: Si is the set of indices j
such that Ci,j ∈ R. In other words, the sets Si are obtained by reading off the area R by
rows:

Si =

{
g−1([1, i]) ∪ [i, k], i ∈ [1, k]
g−1(Ti) ∪ {i}, i ∈ [k + 1,m].

By the definition of g, the support of the row Ci is contained in Si for every i ∈ [1,m] and
none of the rows is zero (the entry in the main diagonal is −1).

Let us show that |Si| = k + 1.

It follows from the definition of g that g(i) 6∈ Ti. Since g is a bijection, Si has indeed
cardinality k + 1 for i ∈ [k + 1,m]. On the other hand, we can not have 1 ≤ g(j) ≤ i ≤ k
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for j ∈ [i, k] since this would imply Tk 6= [1, k], a contradiction. Thus g−1([1, i]) and [i, k]
are disjoint and Si has also cardinality k + 1 for i ∈ [1, k].

Let us now show that the sets Si are pairwise distinct.

Recall that the region R contains in a column j ∈ [1, k] the rows [1, j]∪ [g(j),m]. It follows
from Lemma 3.9 (ii) that j 6∈ Tj−2 for j = 2, ..., k+1, which implies g(j−1) > j. Hence Sj

does not contain j − 1 but it does contain j. On the other hand, the column j ∈ [k +1,m]
contains in the region R the rows [g(j), j], so again Sj contains j but does not contain
j − 1.

Let j < j′. If j′ ≤ k then {j′ − 1, j′} ⊆ [j, k] ⊆ Sj , which implies Sj 6= Sj′. If j′ > k then,
either j′ 6∈ Sj or, as g is increasing in [k + 1,m], {j′ − 1, j′} ⊆ Sj, which again implies
Sj 6= Sj′ .

In order to prove the last part of Lemma 3.6, we show that the columns {Cj, j 6∈ Si} form
a set of m − k − 1 linearly independent vectors. Together with Lemma 3.6 (2) and (3),
this fact implies Lemma 3.6 (4) and completes the proof of the Lemma.

Let C ′ = {Cj : j 6∈ Si} be the submatrix of C formed by the columns with indices not in
Si. We divide this matrix into four parts: the upper left UL = {Crs : r < i, s ∈ [1, i]\Si}
formed by the first i− 1 rows of C and the columns with index at most i, the upper right
UR = {Crs : r < i, s ∈ [i+1,m]\Si} formed by the same rows and the remaining columns,
the lower right LR = {Crs : r ≥ i, s ∈ [1, i] \ Si} formed by the last m − i + 1 rows and
the columns with index at most i and the lower left LR = {Crs : r ≥ i, s ∈ [i+1,m] \Si}
with the remaining entries.

By our construction of the matrix C, UR is an all-zero matrix, while, as discussed in the
proof of Lemma 3.6 (2), the columns Cj with j ∈ [i + 1,m] \ Si are linearly independent
because the columns Cj, j ∈ [k+1,m], are linearly independent. On the other hand, again
by the construction of C, UL is an upper triangular matrix (maybe with the steps higher
than one). It follows that the columns of C ′ are linearly independent. This completes the
proof of Lemma 3.6.

3.4.1 Example of a system and a matrix C

To illustrate the construction, let us present an example. Let F = F7, k = 6, m = 13 and
let A = (A1, . . . , A13) be the matrix
















1 0 0 0 0 0 1 2 0 1 2 4 2

0 1 0 0 0 0 3 4 0 1 4 6 3

0 0 1 0 0 0 0 1 2 2 5 2 1

0 0 0 1 0 0 0 2 5 1 5 0 0

0 0 0 0 1 0 2 1 4 1 2 4 2

0 0 0 0 0 1 3 5 5 4 1 2 1
















.

We can observe that A already fulfills Lemma 3.5. Moreover, the order in the columns of
the part B of the matrix A is such that maximizes the sets Ti. The matrix C associated
with A is
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−1 2 6 0 3 5 1 0 0 0 0 0 0

0 −1 0 4 1 4 3 −2 0 0 0 0 0

0 0 −1 2 3 6 0 1 2 0 0 0 0

6 0 0 −1 2 0 0 2 5 0 0 0 0

2 4 0 0 −1 5 2 −3 4 0 0 0 0

0 0 0 0 0 −1 3 −1 5 3 0 0 0

4 0 2 0 0 0 −1 2 0 6 0 0 0

0 0 0 0 0 0 0 −1 0 1 1 0 0

0 3 1 0 1 0 0 0 −1 4 2 0 0

0 0 0 0 0 0 0 0 0 −1 0 2 0

3 4 6 3 0 0 0 0 0 0 −1 1 0

0 0 0 0 0 0 0 0 0 0 0 −1 4

6 2 4 4 2 1 0 0 0 0 0 0 −1





































The darker part of the matrix C (the elements in bold face) corresponds to the region R.

The sets Ti and the values of g are the following:

T6 = [1, 2, 3, 4, 5, 6], g(7) = 1 T1 = [5, 7, 9, 11, 13, 1], g(2) = 5
T7 = [2, 3, 4, 5, 6, 7], g(8) = 2 T2 = [7, 9, 11, 13, 1, 2], g(3) = 7
T8 = [3, 4, 5, 6, 7, 8], g(9) = 3 T3 = [9, 11, 13, 1, 2, 3], g(4) = 11
T9 = [4, 5, 6, 7, 8, 9], g(10) = 6 T4 = [9, 13, 1, 2, 3, 4], g(5) = 9
T10 = [4, 5, 7, 8, 9, 10], g(11) = 8 T5 = [13, 1, 2, 3, 4, 5], g(6) = 13
T11 = [4, 5, 7, 9, 10, 11], g(12) = 10
T12 = [4, 5, 7, 9, 11, 12], g(13) = 12
T13 = [4, 5, 7, 9, 11, 13], g(1) = 4

The sets Si for the matrix C are:

S1 = [1, 2, 3, 4, 5, 6, 7] S8 = [1, 2, 3, 8, 9, 10, 11]
S2 = [2, 3, 4, 5, 6, 7, 8] S9 = [1, 2, 3, 5, 9, 10, 11]
S3 = [3, 4, 5, 6, 7, 8, 9] S10 = [1, 2, 3, 5, 10, 11, 12]
S4 = [1, 4, 5, 6, 7, 8, 9] S11 = [1, 2, 3, 4, 5, 11, 12]
S5 = [1, 2, 5, 6, 7, 8, 9] S12 = [1, 2, 3, 4, 5, 12, 13]
S6 = [1, 2, 6, 7, 8, 9, 10] S13 = [1, 2, 3, 4, 5, 6, 13]
S7 = [1, 2, 3, 7, 8, 9, 10]

We can check that all the properties from Lemma 3.6 are fulfilled.
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Removal Lemma for Abelian
Groups

In Chapter 2, we showed the removal lemma for groups, valid for one equation and any
finite group. In Chapter 3, we proved a removal lemma for systems of linear equations in
finite fields. In this chapter, we prove a removal lemma for integer linear systems over finite
Abelian groups, Theorem 4.1. This result attempts to answer a question by Shapira [68]
regarding an extension of the removal lemma for finite fields to Abelian groups.

4.1 Removal Lemma for linear systems over finite
Abelian groups

Before proceeding to the result, recall that the k-th determinantal divisor dk(A) of an
integer matrix A is the greatest common divisor of the determinants of all the k × k
submatrices of A [57]. For simplicity, we use the shorter term k-th determinantal instead
of k-th determinantal divisor. Our main result is the following:

Theorem 4.1 (Removal lemma for integer linear systems over Abelian groups; Král’,
Serra, V. [51]). Let A be an integer (k × m) matrix, m ≥ k. For any ǫ > 0 there exists
δ(ǫ,A) > 0 such that the following holds.

For every Abelian group G of order n coprime with dk(A), for every family of subsets
X1, . . . ,Xm of G and for every vector b ∈ Gk, if the linear system Ax = b has at most
δnm−k solutions with x1 ∈ X1, . . . , xm ∈ Xm then there are sets X ′

1 ⊂ X1, . . . ,X
′
m ⊂ Xm

with |X ′
i| ≤ ǫn, for all i, such that there is no solution of the system with x1 ∈ X1 \

X ′
1, . . . , xm ∈ Xm \ X ′

m.

In the little ‘o’ notation, Theorem 4.1 states that, if an integer linear system over an
Abelian group of order n (with the condition that the determinantal of the matrix is
coprime with the order of the group), has o(nm−k) solutions, then we can destroy all the
solutions by removing o(n) elements in each set.

Let us remark that the condition over the determinantal dk(A) in the statement of The-
orem 4.1 indicates that the system has, in total, |G|m−k solutions. It also tells us that
the system behaves in a similar way to the finite field case. For a further discussion on
the structure of the system when the coprimality condition is removed see Section 4.5. In
Section 6.5 there can be found several cases for which the condition can be removed, as
well as some thoughts about a general result.



32 Chapter 4. Removal Lemma for Abelian Groups

A general framework for the study of this type of results is discussed by Szegedy [73]. The
author proves a Symmetry-preserving removal lemma and applies it to give a diagonal
version of the Szemerédi Theorem on arithmetic progressions in Abelian groups. The
arguments presented to show Theorem 4.1 follow the ones from Chapter 2 and 3 and the
result provides a general answer for linear systems Ax = b with dk(A) = 1, which includes
the case of arithmetic progressions [73, Theorem 3]. Let us notice that the relation between
δ and ǫ will be worse using our result than the straight construction found in [73], the
main reason being the use of higher-dimensional hypergraphs.

As in Theorem 3.1, the proof of Theorem 4.1 uses the Removal Lemma for colored hyper-
graphs. This result can be deduced from Austin and Tao’s [7, Theorem 1.5] and is stated
also in Ishigami’s [46]. This result appears in Chapter 3 as Theorem 3.4.

Theorem 4.2. For every positive integers m ≥ k ≥ 2 and every ǫ > 0 there is a δ > 0
depending on m, k and ǫ such that the following holds.

Let H and K be colored k-uniform hypergraphs with m = |V (H)| and M = |V (K)| vertices
respectively. If the number of copies of H in K (preserving the colors of the edges) is at
most δMm, then there is a set E′ ⊆ E(K) of size at most ǫMk such that the hypergraph
K ′ with edge set E(K) \ E′ is H–free.

4.2 Circular Unimodular Matrices

In this section we prove Theorem 4.1 in the particular case of homogeneous linear sys-
tems with what we call standard circular unimodular matrices, which enjoy some useful
particular properties. We show in Section 4.3 how the statement extends to the general
case.

Throughout this chapter, and similar as in the other chapters, Ai denotes the i–th row of
a matrix A and Aj its j–th column. Recall that a square integer matrix is unimodular if
it has determinant ±1.

We say that a (k × m) integer matrix is standard circular unimodular if the following
properties hold:

(U1) A = (Ik|B), where Ik denotes the identity matrix of order k.

(U2) For each j = 1, . . . ,m, the determinant formed by k consecutive columns in the cir-
cular order, {Aj+1, Aj+2, . . . , Aj+k} is ±1, where the superscripts are taken modulo
m.

We simply call matrices satisfying property U2 circular unimodular. Note that property
U1 can always be imposed to a circular unimodular matrix by using elementary matrix
transformations. The next key lemma proves Theorem 4.1 for circular unimodular matrices
by constructing an hypergraph associated to a given linear system. The approach is similar
to the one by Candela [13] and by Král’, Serra and the author [52].

Lemma 4.3. Let A be a (k × m) circular unimodular matrix with m ≥ k + 2. For each
ǫ > 0 there is a δ(ǫ,A) > 0 such that the following holds.

For every Abelian group G of order n and every collection of subsets X1, . . . ,Xm ⊂ G, if
the number of solutions of the system Ax = 0 with x ∈

∏m
i=1 Xi is at most δnm−k, then
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there are subsets X ′
i ⊂ Xi with |X ′

i| < ǫn for all i such that there is no solution of the
system Ax = 0 with x ∈

∏m
i=1 (Xi \ X ′

i).

Moreover, if we have Xj = G, for j ∈ I, where I ⊂ {1, . . . ,m} has cardinality |I| ≤ k,
then we can choose the sets X ′

i in such a way that X ′
j = ∅ for each j ∈ I.

Proof. We start by defining an integer (m × m) matrix C from which we will construct
a pair of colored hypergraphs H and K. The purpose of this construction is to establish
a correspondence between solutions of the system Ax = 0 with copies of H in K.

By property U2, the j–th column of A can be written, for every j, as an integer linear
combination of the preceding k columns in the circular ordering:

Aj =

j−1
∑

i=j−k

Ci,jA
i,

where the superscript i is taken modulo m.

For j = 1, 2, . . . ,m we let Cj,j = −1 and, if i does not belong to the circular interval
[j − k, j], then we set Ci,j = 0 . Thus,

∑

i

Ci,jA
i = 0, j = 1, 2, . . . ,m. (4.1)

Notice that, since all the determinants of k consecutive columns of A in the circular
ordering are ±1, the coefficients of C are integers (apply the Cramer’s rule to solve the
corresponding linear systems). By the same reason, we have

Cj−k,j = ±1,

since the determinants of the matrices formed by the columns Aj−k+1, . . . , Aj and by the
columns Aj−k, . . . , Aj−1 are both ±1.

The integer (m × m) matrix C = (Ci,j) will be used to define our hypergraph model for
the given linear system.

Let H be a (k+1)-uniform colored hypergraph with m vertices labelled {1, 2, . . . ,m}. The
edges of H are the m “cyclic” (k + 1)–subsets

{1, . . . , k + 1}, {2, . . . , k + 2}, . . . , {m, 1, . . . , k},

(entries taken modulo m). The i-th edge {i, i + 1, . . . , i + k} is colored with color i. Since
m ≥ k + 2, H contains m different edges of mutually different colors.

Let K be a (k+1)-uniform colored hypergraph with vertex set G×[1,m]. For each element
ai ∈ Xi, the (k + 1)–subset {(gi, i), . . . , (gi+k, i + k)} form an edge labelled ai and colored
with color i if

ai =

i+k∑

j=i

Ci,jgj . (4.2)

Thus the edges of K bear both, a color and a label. Note that, for each fixed ai ∈ Xi,
the system (4.2) has nk solutions. Indeed, since Ci,i = −1, we can fix arbitrary values
gi+1, . . . , gi+k and get a value for gi satisfying the equation. Therefore each element ai ∈ Xi

gives rise to nk edges colored i and labeled ai.
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We next show that each solution to Ax = 0 creates nk edge-disjoint copies of the hyper-
graph H inside K and, also, that each copy of H inside K comes from a solution of the
system Ax = 0.

Claim 4.4. If H ′ is a copy of H in K, then x = (x1, . . . , xm) is a solution of the system,
where xi is the label of the edge colored by i in H ′.

Proof. The copy H ′ has an edge of each color and is supported over m vertices. Indeed,
since the edge colored i contains a vertex in G×{i}, then the copy H ′ has one vertex on each
G×{i}, 1 ≤ i ≤ m. Hence the vertex set of H ′ is of the form {(g1, 1), (g2, 2), . . . , (gm,m)}
for some g1, . . . , gm ∈ G. If the edge ((gi, i), . . . , (gi+k, i + k)) colored i in H ′ has label xi

then, by the construction of K, we have xi =
∑

s Ci,sgs. Therefore, it holds that Cg = x
where g = (g1, g2, . . . , gm). Hence, as all the columns in C are in the kernel of A, we have
0 = ACg = Ax and x is a solution of the system.

Claim 4.5. For any solution α = (α1, . . . , αm) of the system Ax = 0 with αi ∈ Xi, there
are precisely nk edge–disjoint copies of the edge–colored hypergraph H in the hypergraph
K with edges labelled with α1, . . . , αm.

Proof. Fix a solution α = (α1, . . . , αm) of Ax = 0 with αi ∈ Xi, 1 ≤ i ≤ m.

Observe that, by property U2, α is uniquely determined by any of its subsequences
(αi, αi+1, . . . , αi+m−k−1) of m − k consecutive coordinates in the circular ordering.

By the construction of the matrix C, its i-th row Ci has an entry −1 in the i–th column
and has its support contained in columns Ci, Ci+1, . . . , Ci+k (where the superscripts are
taken modulo m.) Therefore, the m−k columns of C with indices in [1,m]\[i+1, . . . , i+k]
contain a unique nonzero entry in the i-th row, is located in the main diagonal and have
a value of −1.

With the previous remark in mind, we observe that, for every choice of a vector (gi+1, . . . ,
gi+k) ∈ Gk (subscripts modulo m), there is a unique vector (gi+k+1, . . . , gi−1, gi) ∈ Gm−k

which satisfies the system Cg = α, where α = (α1, . . . , αm) with αi ∈ Xi is the solution
of the system Ax = 0 we have fixed from the beginning and g = (g1, g2, . . . , gm). Indeed,
for each t, once the values (gi+1−t, gi+2−t, . . . , gi+k−t) have been found, we can determine
gi−t from the equation

αi−t =

i+k−t∑

s=i−t

Ci−t,sgs, (4.3)

since Ci−t,i−t = −1. In this way, starting with the vector (gi+1, . . . , gi+k−1, gi+k) ∈ Gk and
m − k consecutive elements of α, {αi+k+1, . . . , αi−1, αi}, we find a unique m-dimensional
vector g = (g1, . . . , gm). Observe that, if we let β = Cg ∈ Gm, then β satisfies Aβ =
A(Cg) = (AC)g = 0g = 0. Therefore β is a solution of the system Ax = 0 which shares
m − k consecutive values with the given solution α, hence β = α. It follows that the
equations (4.3) hold for all t. Since these are the defining equations (4.2) for the (k + 1)–
tuple (gi, i), . . . , (gi+k, i+ k) to be an edge of K colored i and labeled xi, we conclude that
each vector (gi+1, . . . , gi+k) ∈ Gk defines uniquely a copy of H in K. Hence the solution
α induces nk copies of H in K.

Recall that each entry αi ∈ Xi of α gives rise to nk edges labeled αi in the hypergraph
K. On the other hand, each of these edges belong to a unique copy of H inside K related
to the solution α. Since this holds for each of the edges and for each αi, 1 ≤ i ≤ m, we
conclude that the nk copies of H with edges labelled with α1, . . . , αm are edge-disjoint.
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Claims 4.4 and 4.5 show that there is a correspondence between the solutions of the system
Ax = 0, with xi ∈ Xi for each i, and the copies of H inside K. More precisely, each solution
appears in the ordered labels of nk copies of H in K, and the labels of each copy of H in
K form a solution. Recall that the copies should respect the coloring.

We now proceed with the proof of Lemma 4.3. Given ǫ > 0 let δ > 0 be the value given by
the Removal Lemma of colored hypergraphs (Theorem 4.2) for the positive integers m,k+1
and ǫ′ = ǫ/m > 0. If the number of solutions of the system Ax = 0 is at most δnm−k, it
follows from Claims 4.4 and 4.5, that K contains δnm copies of H. By Theorem 4.2, there
is a set E′ of edges of K with size ǫ′nk+1 such that, by deleting the edges in E′ from K,
the resulting hypergraph is H-free.

The subsets X ′
i ⊂ Xi of removed elements are constructed as follows: if E′ contains at

least nk/m edges colored with i and labeled with xi, we remove xi from Xi (that is,
xi ∈ X ′

i.) In this way, the total number of elements removed from all the sets Xi together
is at most mǫ′n = ǫn. Hence, |X ′

i| ≤ ǫn as desired. Suppose that there is still a solution
x = (x1, x2, . . . , xm) with xi ∈ Xi \ X ′

i. Consider the nk edge–disjoint copies of H in K
corresponding to x. Since each of these nk copies contains at least one edge from the set
E′ and the copies are edge–disjoint, E′ contains at least nk/m edges with the same color
i and the same label xi for some i. However, such xi should have been removed from Xi,
a contradiction.

It remains to show the last part of Lemma 4.3. Let I be a subset of [1,m] with |I| ≤ k, and
suppose that Xj = G for each j ∈ I. Let L be the subgraph of H formed by all the edges
in H except the ones colored with i ∈ I. Note that H contains a single copy of L. Since
every vertex of H belongs to (k + 1) edges, the subgraph L has no isolated vertices. It
follows that a copy L′ of L in K has precisely one vertex in G×{i} for each i = 1, 2, . . . ,m.
By the construction of K, there is at most one copy H ′ of H in K containing L′, namely
the one whose labels are given by equation (4.2) given the gi’s. Since Xj = G for each
j ∈ I, then the label of each missing edge in L′, given by this equation, belongs to the
corresponding set Xj , thus such an edge is indeed present in K. Hence, every copy of L
in K can be uniquely extended to a copy of H. Thus, K contains as many copies of H
as of L. We can apply Theorem 4.2 to L in the above argument to remove all copies of
L by removing only elements from sets Xi with i ∈ {1, . . . ,m} \ I. This completes the
proof.

The condition m ≥ k+2 in the hypothesis of Lemma 4.3 has been used in the proof for the
construction of the hypergraphs associated to the linear system. However, this condition
is not restrictive for the proof of Theorem 4.1; in the remaining cases (when m is k or
k + 1), we apply the following lemma:

Lemma 4.6. Let A = (Ik|B) be a (k × m) integer matrix. If m = {k, k + 1} then the
statement of Theorem 4.1 holds for A.

Proof. For m = k the system has a unique solution and there is nothing to prove.
Suppose that m = k + 1. Then, for each element α ∈ Xk+1 there is at most one solution
to the system Ax = b with last coordinate xk+1 = α. Let X ′

k+1 be the set of elements
α ∈ Xk+1 such that xk+1 = α is the last coordinate of some solution x. Since there are at
most δn solutions we have |X ′

k+1| ≤ δn and we are done by removing the set X ′
k+1. Thus

the statement of Theorem 4.1 holds with δ = ǫ.
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4.3 A reduction lemma

In this section we prove some technical lemmas that will allow us to derive Theorem 4.1
from Lemma 4.3 via a series of transformations to the given linear system. We have
devoted Section 4.6 to an example for clarification of the construction presented in this
section.

Recall that the adjugate matrix of L, denoted by adj(L), is the matrix C with Ci,j =
(−1)i+jMj,i(L), where Mj,i(L) is the determinant of the matrix L with the row j and the
column i deleted.

Throughout the section G denotes an Abelian finite group of order n. For an integer a
coprime with the order n of G the map g 7→ ag is an automorphism of the group. We will
also denote by a this automorphism and by a−1 its inverse. Observe that if an (r × r)
integer matrix L has determinant a = detL coprime with n then the action x 7→ Lx of
L on Gr is invertible with L−1x = a−1(adj(L)x). Thus the linear system Lx = b has the
unique solution x = L−1b. By abuse of notation, in what follows we write L−1b and, for a
matrix M with appropiate dimensions, L−1M , in the sense that division by a means the
action of the automorphism a−1.

Definition 4.7 (Restricted system). A restricted system is a triple {A, b,X} where

• X = X1 × X2 × · · · × Xm is an m–tuple of subsets of G.

• A denote a (k × m) integer matrix such that its k-th determinantal dk(A) satisfies
gcd(dk(A), |G|) = 1.

• b is an element of Gk, and we usually refer to it as the independent vector.

A solution of the restricted system {A, b,X} is a vector x = (x1, . . . , xm) ∈ Gm such that
Ax = b and xi ∈ Xi, i = 1, 2, . . . ,m.

Definition 4.8 (Extension of a restricted system). A restricted system {A′, b′,Y} is an
extension of the restricted system {A, b,X} if the following two conditions hold:

E1: k′ ≥ k, m′ ≥ m, m′ − k′ = m − k, and

E2: There is a subset I0 ⊂ [1,m′] with cardinality |I0| = m a bijection σ : I0 → [1,m] and
maps φi : Yi → Xσ(i) such that the map φ : Y → X with (φ(y))i = φσ−1(i)(yσ−1(i))
induces a bijection between the set of solutions of {A′, b′,Y} and the set of solutions
of {A, b,X}. Moreover, for each i ∈ [1,m′] \ I0, we have Yi = G.

Thus, an extension {A′, b′,Y} of {A, b,X} has the same number of solutions and one can

define a map φ with the following property. Let Y \ Y ′ stand for
∏m′

i=1 Yi \ Y ′
i and assume

Y ′
j = ∅ when j 6∈ I0. If {A′, b′,Y \ Y ′} has no solutions, then {A, b,X \ φ(Y ′)} has no

solutions either (X \ φ(Y ′) refers to
∏m

i=1 Xi \ φσ−1(i)(Y
′
σ−1(i)).)

When {A′, b′,Y} is an extension of {A, b,X} with k = k′, any bijection for σ, and the φi’s
are bijective for each i, we say that the two systems are equivalent.

The purpose of this section is to show that any restricted system which fulfills the hypoth-
esis of Theorem 4.1 can be extended to an homogeneous one with a circular unimodular
matrix. This will lead to a proof of Theorem 4.1 from Lemma 4.3.
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We first show that the matrix A can be enlarged to an integer square matrix M of order
m such that det(M) = dk(A). The following Lemma uses the ideas of Zhan [81] and Fang
[26] to extend partial integral matrices to unimodular ones. We include the proof of the
simpler version we need for our purposes.

Lemma 4.9 (Matrix extension). Let M be an r× s integer matrix, s ≥ r. Let dM denote
the greatest common divisor of the determinants of the

(s
r

)
square (r × r) submatrices of

M .

There is an s × s integer matrix M such that

(i) M contains M in its r first rows, and

(ii) det
(
M
)

= dM .

Proof. Let S = U−1MV −1 be the Smith Normal Form of M , where U and V are
unimodular matrices. We have S = (D|0), where D is an (r × r) diagonal integer matrix
with |det(D)| = |dM | and 0 is an all–zero (r × (s − r)) matrix.

Recall that U and V are the row and column operations respectively which transform
M into S. Observe that the row operations do not modify the value of the determinant
of any (r × r) square submatrix of M . The column operations may modify individual
determinants but do not change the value of dM .

Let S be the matrix:

S =

(
D 0
0 Is−r

)

,

where Ik denotes the identity matrix of order k. We have det(S) = det(D) = dM .

Then, if we let V = V and

U =

(
U 0
0 Is−r

)

,

we obtain the matrix

M = U S V

which clearly fulfills (i) as it contains M as a submatrix in its first r rows, and it also
satisfies (ii) since det(M ) = det(S) = dM , as U and V are still unimodular.

We say that the restricted system {A, b,X} is thin if the set of solutions is a subset of
X1×· · ·×Xj−1×{γj}×Xj+1×· · ·×Xm, for some j and γj ∈ Xj . Note that the statement
of Theorem 4.1 is obvious if the system is thin since it suffices to delete the element γj to
remove all solutions. Thus there is no loss of generality in assuming that our restricted
system is not thin.

Lemma 4.10. The restricted system {A, b,X} is either thin or it has an extension {A′, b′,Y}
such that

(i) k′ = m and m′ = 2m − k;

(ii) the matrix A′ has the form A′ = (Ik′ |B);

(iii) b′ = 0;

(iv) gcd(Bi) = 1, where Bi denotes the i–row of the submatrix B and

(v) maxi,j{|A
′
i,j |} depends on the entries of A but not on the group G.

(vi) for every k′ < j ≤ m′, the restring set Yj is the whole group G.
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Proof. By using Lemma 4.9 we extend the matrix A into an m × m square matrix

M =

(
A
E

)

with determinant det(M) = dk(A). We complete the square matrix M to the m×(2m−k)
matrix

M ′ =

(
A 0
E Im−k

)

= (M |B′).

We now consider the restricted system {M ′, b′,X ′} where b′ = (b, 0) is obtained from b by
adding zeros in the last m − k coordinates and

X ′
i =

{
Xi, 1 ≤ i ≤ m;
G, m + 1 ≤ i ≤ 2m − k.

By letting I0 = [1,m] and σ and φi be the identity maps we see that φ induce a bijection
between the solutions to {M ′, b′,X ′} and the solutions of {A, b,X}. In particular, if y
is a solution of {M ′, b′,X ′} then x = φ(y) is a solution of {A, b,X}. Moreover, for any
solution x of {A, b,X}, there exists a unique y′ ∈ G2m−k solution of {M ′, b′,X ′} such that
x = φ(y′). Therefore {M ′, b′,X ′} is an extension of the original system.

Let U = adj(M) denote the adjugate of M . Since a = dk(A) is relatively prime with n,
we get an equivalent restricted system {M ′′, b′′,X ′} by setting

M ′′ = (UM |UB′) = (a · Im|UB′), b′′ = Ub′

and, by replacing each X ′
i, for i ∈ [1,m], by X̄ ′′

i = a−1X ′
i and X̄ ′′

i = X ′
i, for i ∈ [m +

1, 2m − k], we get a an equivalent system of the form {(Im|B′′), b′′, X̄ ′′} where B′′ = UB′.
The system is equivalent since the matrix U is invertible in G.

At this point we can replace b′′ with the zero vector by letting X ′′
i = X̄i

′′
− b′′i for i =

1, . . . ,m and leaving the other sets untouched. The solutions of the homogeneous system
(Im|B′′)x = 0 with xi ∈ X ′′

i are in bijective correspondence with the solutions of M ′′x = b′′

with xi ∈ X̄ ′′
i . So {(Im|B′′), 0,X ′′} is a system equivalent to {(Im|B′′), b′′, X̄ ′′}, which

fulfills conditions (i)-(iii) of the Lemma.

We observe that, if B
′′

j = 0 for some j, then the j-th equation implies xj = 0. Thus, the

solution set of {(Im|B′′), 0,X ′′} is inside X
′′

1 × · · · ×X
′′

j−1 ×{0}×X
′′

j+1 × · · · ×X
′′

m′ , which
implies that the solution set for the original system is inside X1 × · · · × Xj′−1 × {γj′} ×
Xj′+1 × · · · ×Xm, for some γj′ ∈ Xj′ . Thus, if B

′′

j = 0, then the system is thin. Therefore

we can assume that all the rows in B
′′

are non–zero.

Suppose that gcd(B′′
i ) = s > 1, where B′′

i denotes the i–th row of B′′. Then the i–th
coordinate yi, i ∈ [1,m], of a solution of (Im|B′′)y = 0 belongs to the subgroup s · G of
G. Thus we may assume that X ′′

i ⊂ s · G. Let Yi = s−1(X ′′
i ), where now s−1 denotes

the preimage of the canonical projection s : G → s · G defined by s(g) = sg, and divide
the entries of the i–row B′′

i by s. In this way we obtain an extension of {(Im|B′′), 0,X ′′}
where the map φi : Yi → X ′′

i , i ∈ [1,m], is the multiplication by s. Notice that, for each
value of yi ∈ X ′′

i ⊂ s · G, we can distinguish different solutions according to the value
of (0,−B′′

i /s) · y. In particular, each solution has a unique value of (0,−B′′
i /s) · y. Even

though the transformation is not bijective between X ′′
i and Yi, this transformation allows

us to extend the system by distinguish the solutions according to the different values of
(0,−B′′

i /s) · y. Moreover, it allows the values of the variable yi to be in the whole G and
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not only in s · G, thus making the variable yi more useful in order to parametrize the
solutions.

By repeating the same procedure with each row of B′′ we eventually obtain an extension
{A′, 0,Y} satisfying the conditions (i)-(iv) of the Lemma. Moreover, since all operations
performed on A to obtain A′ depend only on the entries of A and not on G, the condition (v)
also holds. The condition (vi) is satisfied as we have added the last variables corresponding
to the columns in B and they run over the full group G. This completes the proof.

Our final step is to show that, if the restricted system {A, 0,X}, where A satisfies the
conclusions of Lemma 4.10, is non–thin, then it admits an extension with a circular uni-
modular matrix.

Lemma 4.11. Let {A, 0,X} be a non–thin restricted system where A = (Ik|B) and
gcd(Bi) = 1 for every row Bi. There is an extension {A′, 0,X ′} with k′ = k′(A) de-
pending only on the entries of A such that all matrices formed by k′ consecutive columns
of A′ in the circular ordering are unimodular. Moreover, up to a reordering on the indices
j, X ′ = X ×

∏k′+m−k
j=m+1 G.

Proof. The stated extension is based on the following construction. Let M be a
unimodular matrix of order m − k. By adding to M a row at the bottom of the form
M1 +

∑

i=2 λiMi, where Mi denotes the i–th row of M and λi ∈ Z, the last (m − k)
rows of the resulting matrix form a unimodular matrix. By choosing appropriate row
operations at each step we may transform M into the identity matrix. By putting each
such transformation as a new row at the bottom of M we obtain a matrix of the form

M ′ =





M
T

Im−k





such that every (m − k) × (m − k) submatrix of M ′ formed by consecutive rows is uni-
modular. The same procedure can be repeated by adding rows to the top of M to obtain
a matrix of the form

M ′′ =









Im−k

S
M
T

Im−k









and again every (m − k) × (m − k) submatrix of M ′′ formed by consecutive rows is uni-
modular. Note that the dimensions of S and T depend on the number of row operations
needed to transform M into the identity matrix. The operations to build T and S involve
performing an Euclidian algorithm on the rows of M .

We apply the above procedure to the matrix B in the following manner. As each row Bi

of the submatrix B is such that gcd(Bi) = 1, we can apply Lemma 4.9 to the row Bi, by
using M = Bi, r = 1 with s = m − k, and obtain a (m − k) × (m − k) square matrix
Bi with determinant ±1. Thus, by applying the above procedure to each of the resulting
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matrices B1, . . . , Bk we may construct the following k′ × (m − k) rectangular matrix:

B′ =






























Im−k

S1

B1

T1

Im−k

S2

B2

T2

Im−k

· · ·
Im−k

Sk

Bk

Tk

Im−k






























,

for some k′ depending on B. Let
A′ = (Ik′ |B′).

Observe that every set of k′ consecutive columns in the circular order in A′ form a uni-
modular matrix. To check this, let M(i) be the square submatrix formed by k′ consecutive
columns of A′ in the circular order starting with the i–th column.

Since the matrix A′ has the form

A′ =

(

Ik′

∣
∣
∣
∣

Im−k

X

)

for some matrix X, then each matrix M(i) for i = 1, . . . ,m − k is a circular permutation
of a lower triangular matrix with all ones in the diagonal. Hence M(i) is unimodular for
these values of i. Moreover, if i = k′− (m−k)+1, . . . , k′ then M(i) is an upper triangular
matrix with all ones in the diagonal.

For the remaining values of i, detM(i) equals, up to a sign, the determinant of a submatrix
of B′ formed by m − k consecutive rows which, by construction, is unimodular. More
precisely, det [M((m − k) + t)] equals, up to a sign, the determinant of the matrix formed
by the rows B′

t+1, B
′
t+2, . . . , B

′
t+(m−k).

In order to complete the proof of the Lemma we must construct the family X ′ of m′ = k′+
m−k sets. Let I1

0 ⊂ [1, k′] be the set of subscripts i for which the i–row of B′ corresponds
to a row σ(i) of the original matrix B and let I2

0 = [k′ + 1,m′]. Let I0 = I1
0 ∪ I2

0 ⊂ [1,m′].
By setting X ′

i = Xσ(i) for i ∈ I1
0 , X ′

i = Xi−m′+m for i ∈ I2
0 , and X ′

i = G otherwise, we get
an extension (A′, 0,X ′) of the given restricted system with

φ :

k∏

i=1

X ′
σ−1(i) ×

m∏

i=k+1

X ′
i+m′−m →

k∏

i=1

Xi ×
m∏

i=k+1

Xi

the identity map. This completes the proof.

Observe that Lemma 4.10 and Lemma 4.11 can be concatenated to obtain a single, coher-
ent, extension. The variables added in Lemma 4.10, that run over the whole group G, will
also be moving over G after the second extension provided by Lemma 4.11. We summarize
the results of this section in the following Proposition.
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Proposition 4.12. Let G be an Abelian group of order n. Let {A, b,X}, where A is an
integer (k×m) matrix, be a non–thin restricted system with gcd(dk(A), n) = 1. There is an
extension {A′, b′,X ′} of {A, b,X} with k′ = k′(A) such that A′ is of the form A′ = (Ik′ |B),
b′ = 0 and every k′ consecutive columns of A′ form a unimodular matrix.

4.4 Proof of Theorem 4.1

We complete here the proof of Theorem 4.1. We assume that the system is not thin,
otherwise, the result holds by deleting just one element of one set.

By Lemma 4.6 we may assume that m′ − k′ ≥ 2. Let ǫ > 0 and an integer (k ×m) matrix
A be given. Let G be an Abelian group of order n coprime with dk(A), and let {A, b,X}
be a restricted system in G. It follows from Proposition 4.12 that there is an extension
{A′, 0,X ′} of {A, b,X} such that A′ is a circular unimodular matrix of dimension (k′×m′)
with m′ − k′ = m − k and k′ = k′(A). Moreover there is a subset I0 ⊂ [1,m′] with
cardinality m, a bijection σ : I0 → [1,m] and maps φi : X ′

i → Xσ(i), 1 ≤ i ≤ m such that
the map φ : X ′ → X with (φ(x′))i = φσ−1(i)(x

′
σ−1(i)) induces a bijection between the set

of solutions of {A′, 0,X ′} and the set of solutions of {A, b,X}. In addition, I = [1,m′] \ I0

has cardinality less than k′ and X ′
i = G for each i ∈ I.

We apply Lemma 4.3 to the extension {A′, 0,X ′} to obtain a set X̄ ′ with |X̄ ′
i| < ǫn for all

i ∈ [1,m′] such that {A′, 0,X ′ \ X̄ ′} has no solution. We use the last part of Lemma 4.3
to ensure that X̄ ′ can be chosen in such a way that X̄ ′

i = ∅ for each i ∈ I = [1,m′] \ I0.
This shows that {A, b,X \ φ(X̄ ′)} is solution free and |(φ(X̄ ′))i| < ǫn for i ∈ [1,m]. This
completes the proof of Theorem 4.1.

4.5 On the condition over the determinantal

As has been already shown in Theorem 4.1, the removal lemma for linear systems over
Abelian groups holds under the condition of the determinantal condition,. In this section,
we expose a characterization of the systems whose determinantal is not coprime, and we
see how this condition makes the system “well defined”. Let b an integer and let b · G
denote the subgroup of G obtained with the images {b · g}g∈G.

Proposition 4.13 (Union of systems). Let G be an Abelian group of order n, let A
be a k × m, m ≥ k + 2, integer linear matrix, let b be a vector in Gk. Let S be the
Smith Normal Form of A and let d1, . . . , dk be the elements in the diagonal of S. Let
dk(A) =

∏k
i=1 di denote the k-th determinantal of A. Assume gcd(dk(A), n) = d > 1,

then the system Ax = b, x ∈ Gm, is either incompatible, with no solutions at all, or the
solution set is the disjoint union of the solution sets of

∏k
i=1 |G|/|di · G| systems of the

form A′x = b′i for
∏k

i=1 |G|/|di · G| different independent vectors b′i and where A′ is such
that gcd(dk(A

′), n) = 1.

Proof. [Proof of Proposition 4.13] Let S = U−1AV −1 be the Smith Normal Form of A,
where U and V are unimodular matrices. We have S = (D|0), where D is an (k × k)
diagonal integer matrix with |det(D)| = |dk(A)| and 0 is an all–zero (k× (m− k)) matrix.
Denote by di the i-th element in the main diagonal of D.



42 Chapter 4. Removal Lemma for Abelian Groups

Recall that U and V are the row and column operations respectively which transform A
into S. Let A

′
= SV = U−1A and let b = U−1b. Notice that the system A

′
x = b is

equivalent to Ax = b.

As A
′
has been obtained from S by column operations, all the i-th row are integer multiples

of di. Since gcd(dk(A), n) = d > 1, there will be a row j whose dj is such that gcd(dj , n) =

dj > 1. If we read of the j-th equation of the system A
′
x = b, we obtain:

dj

(
A′

j,1x1 + A′
j,2x2 + · · · + A′

j,mxm

)
= bj. (4.4)

Notice that, A′
j,1x1 + · · · + A′

j,mxm is an element of G, and dj

(

A′
j,1x1 + · · · + A′

j,mxm

)

is

an element of the subgroup dj · G ( G. Therefore, if bj is not in the subgroup dj · G, the
system is incompatible.

On the other hand, if bj is in dj ·G, then the solutions to the equation (4.4) are the union
of the solutions to the equations

A′
j,1x1 + A′

j,2x2 + · · · + A′
j,mxm = bi

j , (4.5)

for all the possible preimages of bj through the application “multiply by dj”: bi
j ∈ d−1

j bj .
The set of solutions to the system of equations is the union of the solution sets of the
systems where all the other equations remain untouched and the j-th equation is replaced
by all the possible equations (4.5).

By doing this procedure in all the equations for which gcd(di, n) = di > 1 and considering
that, each time we have to process a new equation, we should consider the equation for
each of the possible independent vectors previously found, we obtain a new matrix A′,
whose row j is the j-th row from A

′
divided by dj , and a set of independent vectors B

with cardinality s =
∏k

i=1 |G|/|di · G|, B = {bi}i∈[1,s].

The whole union of systems, considering A′ and B, has the same solution set as Ax = b,
and fulfills the desired properties since gcd(dk(A′), n) = 1.

As we have seen in the proposition, if the determinantal is not coprime with the order of
the group, then we do not have a single linear system but a union of systems of equations
where the matrix have coprime determinantal and we change the independent vector b. In
the finite field context, this collapses to the case where the matrix A does not have full-
rank. However, in the framework of integer systems for Abelian groups, we are dealing
with a richer variety of possibilities. See Section 6.5 for further comments.

4.6 Example of the construction of the extension
of the matrix A

This final section expose a little example of the construction of the extension of the matrix
A using the procedures in this chapter. This extension allows the matrix C to be an integer
matrix with −1 in the diagonal.

Let A be the matrix: (
2 3 15 14 8

4 9 10 7 6

)

,

for which dk(A) = 1.
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In this case, the first extension of the matrix using Lemma 4.9 leads us to:













2 3 15 14 8 0 0 0

4 9 10 7 6 0 0 0

0 0 1 0 0 1 0 0

−3 −6 −13 −10 −7 0 1 0

−4 −8 −17 −14 −9 0 0 1













,

whose equivalent matrix of the form (I5|B) is













1 0 0 0 0 −44 −35 −27

0 1 0 0 0 17 14 10

0 0 1 0 0 1 0 0

0 0 0 1 0 1 2 0

0 0 0 0 1 1 0 3













.

These are some possible extensions of the different rows Bi (the boldface marks the original
rows in B):

B1 B2 B3 B4 B5

1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 1 1
1 0 0
0 4 3
0 9 7
1 0 0
0 13 10

−44 −35 −27
1 0 0
16 13 10
0 9 7
1 0 0
0 4 3
0 1 1
1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1
1 1 0
0 1 0
0 1 1
1 0 0
0 3 2
0 17 11
1 3 2
17 14 10
−8 −7 −5
3 3 2
1 4 2
0 7 3
0 −5 −2
1 0 0
0 2 1
0 1 0
1 0 0
0 1 1
0 0 1
1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1
1 0 1
1 1 0
1 2 0
0 0 1
1 1 0
1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1
0 0 1
0 1 0
1 0 3
0 1 0
1 0 0
0 1 0
0 0 1
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and we just have to sew together those extensions to obtain our final matrix B that, along
with an identity of the appropriate dimension in front like (Ik′ |B), will fulfill the properties
of Lemma 4.11. This extension of A makes the construction of the matrix C easier.



5

Applications to Arithmetic
Ramsey Theory

In this chapter we discuss some applications of the algebraic removal lemmas in arithmetic
Ramsey theory. In particular we show that, for any r-coloring, the number of monochro-
matic solutions is, under some natural conditions, as large as we might expect for finite
fields Theorem 5.5 and for Abelian group with bounded torsion Theorem 5.26. Moreover,
we show the density case of these Ramsey results.

The chapter is organized as follows. Section 5.1 gives an introduction to the subject and
presents some known results. Section 5.2 is devoted to show the result for finite fields,
Theorem 5.5; it also serves as an example of how to proceed in the proof of the counting
results for finite Abelian groups, Theorem 5.26 and Theorem 5.7. In Section 5.3 we show
the counting result for monochromatic solutions in groups of the type ZM

n for fixed n and
growing M ; this is the main result and the statements for bounded torsion, Theorem 5.26,
follows from it. Section 5.5 is devoted to show Theorem 5.28, the characterization of the
systems such that, in any dense subset, there is a large number of solutions. Finally,
Section 5.6 discusses some remarks on the results of the chapter; for a further discussion
see Chapter 6.

5.1 Introduction

In 1933 Rado [59] characterized the homogeneous integer linear systems for which, for any
coloring (using finitely many colors) of the integers except the zero, there would exist a
monochromatic solution. The notion he used to characterize those systems is the so-called
columns condition.

Let A be a k × m integer matrix. We say that A fulfills the columns condition if we can
order the column vectors A1, . . . , Am and find 1 ≤ k1 < k2 · · · < kt = m (with k0 = 0)
such that, if we set

Si =

ki∑

j=ki−1+1

Aj ,

we have that

(i) S1 = 0 in Zk.

(ii) for 1 < i ≤ t, Si can be expressed as a linear combination of A1, . . . , Aki−1 using
coefficients in Q.
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We say that A is partition regular if, for any partition of Z \ {0} using finite many colors,
there is always a monochromatic solution to Ax = 0.

Theorem 5.1 (Rado [59]). A is partition regular if and only if A fulfills the columns
condition.

In 1988 Frankl, Graham and Rödl [28] showed that if A, a k × m integer matrix, satisfies
the columns condition, then there is not just one, but many monochromatic solutions to
the homogeneous system Ax = 0.

Theorem 5.2 (Frankl, Graham, Rödl [28]). Let r be a positive integer. Assume A fulfills
the columns condition. Then, there exists a constant c = c(r,A) > 0 such that for every
r-coloring of [1, N ], there are at least c

(
Nm−k

)
monochromatic solutions to Ax = 0.

In this chapter, we show that, under certain conditions similar to the columns condition,
the number of monochromatic solutions has the order we might expect in other contexts
such as the finite fields or finite Abelian groups. In particular, we obtain that the number
of monochromatic solutions has to be a constant times the size of the whole algebraic
structure raised to the power of the degrees of freedom of the system; the constant depends
heavily on the number of colors.

5.2 Number of monochromatic solutions inside FN
q

5.2.1 Introduction

In [8], Bergelson, Deuber and Hindman proved Theorem 5.4, a Rado-like theorem for finite
fields. They characterize the partition regular systems for finite fields; this is, the systems
that have monochromatic solutions for any finite coloring of the ℵ0-dimensional vector
space over a finite field F . The notion they used, following the works by Deuber [20], is
the F -columns condition.

Let F be a finite field of order q and let N be a positive integer. For this section, we let
A be a k × m matrix with coefficients in F . Let χ : FN → [r] be a coloring with r colors.
We are interested in solutions of the system Ax = 0, with x = (x1, . . . , xm), xi ∈ FN \ {0}
and χ(x1) = χ(x2) = · · · = χ(xm) (monochromatic). This is, x = (x1, . . . , xm) is a
solution of Ax = 0 if, given (ai,1, . . . , ai,m) the i-th row of A, then

∑m
j=1 ai,jx

k
j = 0 for

all rows (ai,1, . . . , ai,m) and for each of the k ∈ [1, N ] coordinates of x = (x1, . . . , xm)
simultaneously. Moreover, to have a monochromatic solution, each of the xi has to be
painted with the same color.

Let us denote with Ai the i-th column and Aj the j-th row.

Definition 5.3 (F -columns condition). We say that A fulfills the F -columns condition
if we can order the column vectors A1, . . . , Am and find 1 ≤ k1 < k2 · · · < kt = m (with
k0 = 0) such that, if we set

Si =

ki∑

j=ki−1+1

Aj ,

we have that

(i) S1 = 0 in F k.
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(ii) for 1 < i ≤ t, Si can be expressed as a linear combination of A1, . . . , Aki−1 using
coefficients in F .

Using the notion of F -columns condition, the main result from [8] can be stated.

Theorem 5.4 (Bergelson, Deuber, Hindman [8]). Let F be a finite field, let k, m be
positive integers, and let A be a k × m matrix with coefficients in F . The following two
statements are equivalent.

1. For each r ∈ N, there is some M ∈ N, M = M(r,m, |F |), so that whenever n ≥ M
and V is an n-dimensional vector space over F , and V \ {0} is r-colored, there exist
monochromatic x1, . . . , xm ∈ V \ {0} with Ax = 0.

2. A satisfies the F -columns condition.

Following the relation of [28, Theorem 1] (stated here as Theorem 5.2) with respect to
Rado’s Theorem, asking how many monochromatic solutions are there, for a fixed number
of colors, appears to be a natural question. Theorem 5.5 tries to address this issue, at
least asymptotically, in the context of finite fields.

Theorem 5.5 (Number of monochromatic solutions in Finite Fields). Let F be a finite
field with q = pl elements, let k, m, N , r be positive integers, m ≥ k, and let A be a k×m
matrix with coefficients in F . Assume that A satisfies the F -columns condition. Then, for
any coloring of the elements of FN with r colors, there exists a δ = δ(r, q,m) > 0 such
that the system Ax = 0 with x = (x1, . . . , xm) and xi ∈ FN has, at least, ⌊δ(qN )m−k⌋
monochromatic solutions.

Theorem 5.5 says that if the set of monochromatic solutions is non-empty for each col-
oration, then it grows as expected. The proof uses the Removal Lemma for finite fields,
Theorem 3.1, proved independently by Shapira [68] and Král’, Serra and the author [52].

Following the proof in [8], one can check that the M on Theorem 5.4 depends on r, q,
and on the minimal number of parts in the partition used to determine that A fulfills the
F -columns partition (t in Definition 5.3). However, since we use the Removal Lemma to
find the constant in Theorem 5.5, δ depends on m.

5.2.2 Proof of Theorem 5.5

The ingredients of the proof are the following.

1. A Ramsey result that finds monochromatic solutions in a given substructure. This
result is Theorem 5.4.

2. A Counting Statement: the number of substructures where we are able to find
monochromatic solutions is as large as expected.

3. A Removal Lemma: if there are not many solutions, then, by destroying not many
elements, we are capable of destroying all the solutions. This is Theorem 3.1.

4. Argue that, if we remove not many elements, a substructure where we find a monochro-
matic solution has to survive.
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The steps above are the same we use to show Theorem 5.7 and Theorem 5.26.

Let us notice that the operations in the system of equations involve the group structure and
the product by the elements of the finite field. Therefore, we use Theorem 3.1 restricting
the coefficients of A to the field F and we exchange the base field where the subsets Xi

are located by an N -dimensional vector space over F , FN .

Proof. [Proof of Theorem 5.5] Let F = Fq be the finite field over q elements. Let FN be
an N -dimensional space over F . Let r be the number of colors and let m be the number of
columns of the matrix A. Let Yi be the set colored with i, i ∈ [1, r]. Let M = M(r,m, q) be
the constant obtained from Theorem 5.4 such that FM contains a monochromatic solution.

Recall that the number of M -dimensional subspaces in FN is given by the gaussian coef-
ficient: (

N

M

)

q

=
(qN − 1)(qN−1 − 1) · · · (qN−M+1 − 1)

(q − 1)(q2 − 1) · · · (qM − 1)
.

The number of M -dimensional subspaces that go through a point a ∈ FN , a 6= 0 is

(
N

M

)

q

qM − 1

qN − 1
=

(
N − 1

M − 1

)

q

.

Indeed, a generates, using the multiples of a by elements of F , a linear variety inside FN ;
name this variety 〈a〉. The number of M -dimensional subspaces of FN that go through a
is the same as the number of (M − 1)-dimensional subspaces inside FN/〈a〉 ∼= FN−1, this
is:
(

N−1
M−1

)

q
.

Since M is constant, if N is large enough, there exist constants c1 = c1(q,M), c2 =
c2(q,M), c3 = c3(q,M) and c4 = c4(q,M) such that:

c3q
MN ≥

(
N

M

)

q

≥ c1q
MN

and

c4q
(M−1)(N−1) ≥

(
N − 1

M − 1

)

q

≥ c2q
(M−1)(N−1).

At this point, we apply Theorem 3.1 r times, one for each color, with ǫ = c1qM

m2rc4q and
X1 = X2 = · · · = Xm = Yi for i ∈ [1, r]. If the number of monochromatic solutions
is at most δTheorem 3.1(q

N )m−k, we obtain sets Y ′
i , Y ′

i ⊂ Yi with |Y ′
i | ≤ ǫmqN such that

S = FN \
⋃

i∈[1,r] Y
′
i has no monochromatic solution.

As each element x ∈
⋃

i∈[1,r] Y
′
i belongs to, at most, c4q

(M−1)(N−1) M -dimensional sub-

spaces and we have removed, at most, rǫmqN elements, we have destroyed, at most:

rmǫqNc4q
(M−1)(N−1) =

c1

2
qMN

M -dimensional subspaces of FN .

However, since the number of M -dimensional subspaces is, at least, c1q
MN , we should

have, at least, c1
2 qMN M -dimensional subspaces that do not contain any removed ele-

ment. Therefore, using Theorem 5.4, there should exist a monochromatic solution in S,
contradicting the assumptions of the Removal Lemma. Thus, we should have more than
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δTheorem 3.1(q
N )m−k monochromatic solutions. Let N0 be such that c1

2 qMN0 ≥ 1, then by
picking

δ = min

(
1

2(qN0)m−k
, δTheorem 3.1

)

the result is proved.

5.3 Number of monochromatic solutions inside ZN
n

5.3.1 Introduction

In this section, we show that the number of monochromatic solutions in a group ZN
n is

asymptotically as large as one might expect. Let us introduce the notion of n-columns
condition.

Definition 5.6 (n-columns condition). Let A be a (k×m) matrix with integer entries. We
say that A fulfills the n-columns condition if we can order the column vectors A1, . . . , Am

and find 1 ≤ k1 < k2 · · · < kt = m (with k0 = 0) such that, if we set

Si =

ki∑

j=ki−1+1

Aj ,

we have that

(i) S1 = 0 in Zk.

(ii) for 1 < i ≤ t, Si can be expressed as a linear combination of A1, . . . , Aki−1 using

coefficients in Zn; this is, Si =
∑ki−1

j=1 λjA
j with λj ∈ Zn.

The main result of this section is the following.

Theorem 5.7 (Number of monochromatic solutions in ZN
n ). Let r be a positive integer

and let A be a (k×m) matrix with integer entries. Assume that A satisfies the n–columns
condition. There is a constant c = c(r, n,m) > 0 such that every r–coloring of ZN

n \ {0}
has at least ⌊c|ZN

n |m−k⌋ monochromatic solutions of the equation Ax = 0 in ZN
n \ {0}.

The scheme of the proof is the same as in Section 5.2. Unfortunately, a result like Theo-
rem 5.4 or, more precisely, Theorem 5.5 does not give us enough solutions, as the number
of subspaces isomorphic to ZN

p inside ZN
n , for any prime p dividing n, is not large enough.

For this purpose, we prove Lemma 5.8.

Lemma 5.8 (Solutions outside the finite fields). Let n be a composite number (not prime).
Let A be a k × m integer matrix fulfilling the n-columns condition. There exists an M =
M(r, n,m) such that, for any coloring of the elements of ZM

n \ {0}, with r colors, there
exist a monochromatic solution to the system Ax = 0, with xi ∈ ZM

n \
⋃

p|n ZM
p . Moreover,

the order of all the xi is n.

Section 5.3.2 is devoted to show Theorem 5.7 using Lemma 5.8 following the scheme
detailed in Section 5.2, while Section 5.3.3 is devoted to the proof of Lemma 5.8.
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5.3.2 Proof of Theorem 5.7

As in Section 5.2, we use a counting result for subgroups isomorphic to ZM
n in ZN

n . Recall
that if n = pα1

1 · · · pαl
l is the decomposition of n in its prime factors, then ZM

n
∼=
∏l

i=1 ZM
p

αi
i

.

Thus, the number of subgroups isomorphic to ZM
n is the product of the number of sub-

groups isomorphic to ZM
p

αi
i

, for each i:

∣
∣ZM

n ⊂ ZN
n

∣
∣ =

l∏

i=1

∣
∣
∣ZM

p
αi
i

⊂ ZN
n

∣
∣
∣ =

l∏

i=1

∣
∣
∣ZM

p
αi
i

⊂ ZN
p

αi
i

∣
∣
∣ .

Let us recall a result regarding the number of subgroups of a p-group, p prime. A p-group
H is of type (k1, k2, . . . , kη) if H ∼=

∏η
i=1 Zpki .

Theorem 5.9 (Number of subgroups of a p-group, [80]). Let G be a prime power Abelian
group of order pk1+k2+···+kη , type (k1, k2, . . . , kη), where k’s are arranged in ascending order
of magnitude. Let

h1 = h2 = · · · = hm1 > hm1+1 = · · · = hm1+m2 > · · · (5.1)

> hm1+m2+···+mr−1+1 = · · · = hm1+m2+···+mr ,

where m1 + m2 + · · ·+ mr = m ≤ η, be m positive integers not greater than kη, and let νi

be such that kνi < hi ≤ kνi+1 (i = 1, 2, · · · ,m; k0 = 0). Then the number of subgroups of
type (5.1) is given by

pH
m∏

i=1

(pη−νi−i+1 − 1)

/
r∏

µ=1

mµ∏

ν=1

(pν − 1)

where

H =
m∑

i=1

(η − νi + 1 − 2i)(hi − 1)

+
1

2
(m2

1 + m2
2 + · · · + m2

r − m2) +

m∑

i=1

νi∑

µ=0

kµ.

Let us show a small proposition that will be used in the proof of Proposition 5.11.

Proposition 5.10. Let G = Zn1 × . . .× Zns be an Abelian group with n1|n2| · · · |ns. If H
is a subgroup of G isomorphic to Zns, then G/H ∼=

∏s−1
i=1 Zni.

Let us notice that this fact is not true if H is isomorphic to a smaller cyclic group.

Proof. [Proof of Proposition 5.10] Let ni = p
αi

1
1 · · · p

αi
t

t be the decomposition of ni into its

prime factors. So, we have αj
i ≥ 0 and αj1

i ≥ αj2
i if j1 ≥ j2. Then, we can rewrite G as:

G0 =
s∏

j=1

t∏

i=1

Z
p

α
j
i

i

.

Let a be an element of order ns generating H, 〈a〉 = H. If we write a in the canonical
coordinates of G0 then, for any i ∈ [1, t], there exists a coordinate of a in a component
isomorphic to Z

p
αs

i
i

whose value is coprime with pi; otherwise we would have that a has

order smaller than ns. Let I, |I| = t, be the set of indices such that:
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• if j ∈ I, then the j-th component of G0 is isomorphic to Z
p

αs
i

i

, for some pi. Moreover,

for any pi, there exists a unique j ∈ I with Gj
0
∼= Z

p
αs

i
i

.

• if j ∈ I, the j-th component of a, aj , is coprime with the order of the corresponding
component:

〈(0, . . . , 0, πj(a), 0, . . . , 0)〉 = 〈(0, . . . , 0,

j
︷︸︸︷

1 , 0, . . . , 0)〉,

where πj represents the projection onto the j-th coordinate of G0.

Thus, we can choose as our new base, or generators of the group:

{(0, . . . , 0,

i
︷︸︸︷

1 , 0, . . . , 0)}i∈[1,ts]\I ∪ {a} = {ei}i∈[1,ts]\I ∪ {a},

as the elements generated by {ei}i∈I can be obtained by combining a and the {ei}i∈[1,ts]\I .

Therefore, we obtain that G0/〈a〉 = G/〈a〉 ∼=
∏s−1

i=1 Zni .

Let us show a proposition that is used in this section, as well as in Section 5.4 and
Section 5.5.

Proposition 5.11. Let G be an Abelian group of order n. Let ns be the maximum among
the orders of the elements of G. Assume that ZM

ns
is a subgroup of G. Then, there exist

two constants c1 = c1(M,ns) > 0 and c2 = c2(M,ns) > 0 such that

∣
∣ZM

ns
⊂ G

∣
∣ ≥ c1 |G|M

and
∣
∣ZM−1

ns
⊂ G/Zns

∣
∣ ≤ c2 |G|M−1 .

Throughout this work, ns and M will be constants, and the order of the group will be
thought to be large, tending to infinity. Consequently, we can treat c1 and c2 as a constant
for asymptotic purposes.

Proof. [Proof of Proposition 5.11] For each p|n, we use Theorem 5.9 to each of the
components Gp =

∏l
i=1 Zpαi of G, where αi ≥ αj whenever i > j, to find the number of

subgroups of ZM
pαl in Gp. Let lαl

be the number of copies of Zpαl in Gp. We use Theorem 5.9
with:

η = l
m = m1 = M
h1 = · · · = hm1 = αl

νi = ν0 = (l − lαl
), i ∈ [1,m1].

Therefore the number of copies of ZM
pαl in Gp is

1
∏M

ν=1(p
ν − 1)

pH
M∏

i=1

(pl−(l−lαl
)−i+1 − 1) > c

1

2M
pHp(lαl

−M+1)M

= c′pHplαl
M

for some c = c(M,pαl) > 0 and c′ = c′(M,pαl) > 0. On the other side:
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H =
M∑

i=1

(l − (l − lαl
) + 1 − 2i)(αl − 1) + 0 +

M∑

i=1

νi∑

µ=0

kµ

=

M∑

i=1

(lαl
+ 1 − 2i)(αl − 1) + M

ν0∑

µ=0

kµ =

M∑

i=1

(lαl
+ 1 − 2i)(αl − 1) + M





l−lαl∑

i=1

αi





≥ M(lαl
+ 1 − 2M)(αl − 1) + M





l−lαl∑

i=1

αi



 = d′ + Mlαl
αl − Mlαl

+ M





l−lαl∑

i=1

αi





= d′ − Mlαl
+ M

(
l∑

i=1

αi

)

for some constant d′ = d′(M,αl) > 0. Therefore, the number of subgroups isomorphic to
ZM

pαl in Gp is, at least:

c′pd′−Mlαl
+M(

Pl
i=1 αi)plαl

M = c′pd′+M(
Pl

i=1 αi) = c1,pp
M(

Pl
i=1 αi)

= c1,p |Gp|
M ,

for c1,p = c1,p(M,pαl) > 0.

Lets compute an upper bound for the number of subgroups isomorphic to ZM−1
pαl in Gp/Zpαl .

We use Proposition 5.10 to see that if Gp is of the type

(α1, α2, . . . , αl−1, αl),

then Gp/Zpαl is of the type

(α1, α2, . . . , αl−1).

Therefore,

∣
∣
∣Z

M−1
pαl ⊂ Gp/Zpαl

∣
∣
∣ =

1
∏M−1

ν=1 (pν − 1)
pH

M−1∏

i=1

(p(l−1)−(l−lαl
)−i+1 − 1)

≤ c′′pH
M−1∏

i=1

plαl
−i ≤ c′′′pHplαl

(M−1)
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for some c′′ = c′′(M,p) > 0 and c′′′ = c′′′(M,p) > 0. On the other side:

H =

M−1∑

i=1

((l − 1) − (l − lαl
) + 1 − 2i)(αl − 1) + 0 +

M−1∑

i=1

νi∑

µ=0

kµ

=

M−1∑

i=1

(lαl
− 2i)(αl − 1) + (M − 1)





l−lαl∑

i=1

αi





≤
M−1∑

i=1

lαl
(αl − 1) + (M − 1)





l−lαl∑

i=1

αi





= (M − 1)lαl
αl − (M − 1)lαl

+ (M − 1)





l−lαl∑

i=1

αi





= −(M − 1)lαl
+ (M − 1)

(
l∑

i=1

αi

)

Putting both together:
∣
∣
∣Z

M−1
pαl ⊂ Gp/Zpαl

∣
∣
∣ ≤ c′′′pHplαl

(M−1)

≤ c′′′p−(M−1)lαl
+(M−1)(

Pl
i=1 αi)plαl

(M−1) = c2,pp
(M−1)(

Pl
i=1 αi)

= c2,pG
M−1
p

for some c2,p = c2,p(M,pαl) > 0.

Recall that the number of subgroups isomorphic to ZM
ns

⊂ G is

∣
∣ZM

ns
⊂ G

∣
∣ =

∏

p|ns

∣
∣
∣ZM

p
αlp ⊂ Gp

∣
∣
∣ ≥

∏

p|ns

(

c1,p |Gp|
M
)

Therefore,
∣
∣ZM

ns
⊂ G

∣
∣ ≥ c1 |G|M ,

and we have show the first part. To show the second part we use the same argument but
with c2,p instead of c1,p and (M − 1) instead of M to obtain the desired result:

∣
∣ZM−1

ns
⊂ G/Zns

∣
∣ ≤ c2 |G|M−1 .

If we particularize Proposition 5.11 in our case, for a given n,
∣
∣ZM

n ⊂ ZN
n

∣
∣ ≥ c1n

MN , (5.2)

and
∣
∣
∣Z(M−1)

n ⊂ Z(N−1)
n

∣
∣
∣ ≤ c2

nMN

nN
, (5.3)

In particular, we can say that the number of subgroups of the type (Zpα)M ⊂ Gp has
“positive probability”: if we pick M elements uniformly at random from Gp, x1, . . . , xM ,
we have a positive probability that 〈x1, . . . , xM 〉 ∼= ZM

pα .

As our intention is to use the Removal Lemma for Abelian groups, Theorem 4.1, let us
introduce two technical propositions that allow us to circumvent the condition regarding
the primality between dk(A) and n.
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Proposition 5.12 (from n-columns condition to conditions over Z). Let A be a k × m
integer matrix and let n be a positive integer. Assume A fulfills the n-columns condition.
Then, there exists a k × m integer matrix A such that:

• AZn = AZn : A is equivalent to A if we look the matrices in Zn, instead of looking
them as matrices in Z.

• A fulfills the Z-columns condition.

Proof. [Proof of Proposition 5.12] Assume that 1 ≤ k1 < · · · < kt = m define the
partition of the columns that bears the n-columns partition. The first equation reads:

S1 =

k1∑

j=1

Aj Zn= 0

Thus, there exists an integer column µ1 ∈ Zk such that

S1 =

k1∑

j=1

Aj Z
= 0 + nµ1

Now let A
i
= Ai, i ∈ [1, k1 − 1] and A

k1 = Ak1 − nµ1. Observe that A
k1 Zn= Ak1 .

We build the new columns inductively, assume that we have built up to column l and we

want to build the (l + 1)-th. If l + 1 6= {ki}i∈[1,t], then A
l+1

= Al+1. Suppose l + 1 = ks,
for some s > 1, then

ks∑

i=ks−1+1

Ai Zn=

ks−1∑

i=1

λi,sA
i ⇒ Aks +

ks−1∑

i=ks−1+1

A
i Zn=

ks−1∑

i=1

λi,sA
i
⇒

Aks +

ks−1∑

i=ks−1+1

A
i Z
=

ks−1∑

i=1

λi,sA
i
+ nµs

for a certain integer column µs with k components. Thus, defining A
ks Z

= Aks − nµs, we
obtain:

ks∑

i=ks−1+1

A
i Z
=

ks−1∑

i=1

λi,sA
i
⇒

ks∑

i=ks−1+1

A
i Zn=

ks−1∑

i=1

λi,sA
i

By observing that the λi,s can be considered integers, we have built a matrix A that
satisfies the conditions in the proposition.

Proposition 5.13. Let A be a k×m integer matrix. Let G be an Abelian group. Assume
that dk(A) > 1. Let L = L(A) be the set of linear equations satisfied by the columns of A
with rational coefficients. Then, there exists a k × m integer matrix A with:

1. If x = (x1, . . . , xm), xi ∈ G, is a solution of Ax = 0, then x is also a solution to
Ax = 0.

2. The k-th determinantal of A is one, dk(A) = 1.

3. The columns of A satisfy the same linear equations as the columns of A: L(A) =
L(A).
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Proof. [Proof of Proposition 5.13] Lets consider the Smith Normal Form of A: there exist
two matrices U and V such that

UAV = (D|0)

where 0 is a k×(m−k) all-zero matrix, D is a k×k diagonal integer matrix with d1, . . . , dk

in the main diagonal with
∏k

i=1 di = dk(A). Moreover, U and V are square unimodular
integer matrices: U represents the row operations and V the column operations from A
to (D|0).

Let us consider A′ = (D|0)V −1 = UA. As A′ is built from A by integer row operations,
A′ is a system equivalent to A, which means that (1), (2) and (3) hold. Since V −1 is
unimodular, it represents integer linear combinations of columns of (D|0) and we can
observe that all the coefficients in the i-th row of A′ is a multiple of di, the i-th element
of D.

Consider now the matrix A obtained from A′ by dividing the i-th row by di, for all i ∈ [1, k].
The matrix A fulfills (2) as we can consider AV = (I|0) the Smith Normal Form of A, so
dk(A) = det(I) = 1. To check that it also fulfills (1), consider x = (x1 . . . , xm) a solution
to Ax = 0, for all i, the i-th equation reads out as:

ai,1x1 + · · · + ai,mxm = 0,

so, multiplying by di:

diai,1x1 + · · · + diai,mxm = a′i,1x1 + · · · + a′i,mxm = di0 = 0.

Hence, x is a solution of A′x = 0 and, as A′ is equivalent to A, it is also a solution to the
homogeneous system defined by A so (1) follows.

Let L be a linear equation fulfilled by the columns of A′:

m∑

i=1

λiA
′i = 0,

with λi ∈ Q. If we look at the j-th component, we observe that

0 =
m∑

i=1

λia
′
j,i = dj

m∑

i=1

λiaj,i,

hence, we have
m∑

i=1

λiaj,i = 0,

for all i. Therefore L is fulfilled by A with the same coefficients. The argument is reversible:
if di 6= 0 we divide by di, otherwise, we also have that

∑m
i=1 λia

′
j,i = 0. Therefore, we have

L(A) = L(A′) and since A′ is equivalent to A as a system of equations, (3) is shown.

Together, Proposition 5.13 and Proposition 5.12 allow us to show Theorem 5.7 and The-
orem 5.28 by proving them in the case of systems with dk(A) = 1. Indeed, if A has
dk(A) > 1, then we first use Proposition 5.12 to obtain an equivalent, from the point of
view of the group ZN

n , matrix A. Moreover, the equations that determine the n-columns
condition for A can be though to be in Z for A, and thus with rational coefficients.

Afterwards, we apply Proposition 5.13 to obtain a new matrix A
′
with dk(A

′
) = 1 and

also fulfilling the n-columns condition, as the equations that determine the n-columns
conditions for A have not changed.
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Finally, we observe that the number of solutions for A
′
is less than the ones for A. However,

the number of solutions for A is the same as the number of solutions for A since both
matrices are the same in Zn, and the ring operations in ZN

n just require the coefficients in

the matrix to be in Zn, not in Z. Summarizing: the solution set of A
′
is a subset of the

solution set of A, therefore, if the number of solutions is as large as we might expect for
matrices with dk(A) = 1, then the result for matrices with dk(A) > 1 also holds.

Proof. [Proof of Theorem 5.7] Let G be an Abelian group isomorphic to ZN
n . Let A be

a k × m integer matrix such that dk(A) = 1 and satisfying the n-columns condition. Let
χ : G → [r] be an r–coloring. Let M be the value coming from Lemma 5.8 for which
we can be sure that in any r–coloring of ZM

n there exists a monochromatic solution. By
Proposition 5.11 we have that:

∣
∣ZM

n ⊂ ZN
n

∣
∣ ≥ c1n

MN ,

and
∣
∣
∣Z(M−1)

n ⊂ Z(N−1)
n

∣
∣
∣ ≤ c2

nMN

nN
,

Let G1, . . . , Gr be the partition defined by the coloring of G. Let δTheorem 4.1 > 0 be
the value coming from Theorem 4.1 applied with: ǫ = c1

m2rc2
as the portion of elements

removed, X1 = X2 = . . . = Xm = Gi for each i ∈ [1, r] as the sets in which we are
considering the solutions –the monochromatic solutions–, A as the matrix defining the
system and G as the ambient group. Let G′

i be the set of elements removed from Gi.

As we want to apply Lemma 5.8, we are interested in solutions where all the elements have
order n. Therefore, we can consider that

⋃r
i=1 G′

i contains only elements of order n.

Let a ∈
⋃r

i=1 G′
i be a removed element. The number of subgroups isomorphic to ZM

n that
contains a is the same as the number of subgroups inside G/〈a〉 ∼= ZN−1

n isomorphic to
ZM−1

n . The reason is that, given a generic G ∼= ZM
n and a ∈ G with order n, then we

can use Proposition 5.10 to G/〈a〉 and obtain a subgroup isomorphic to ZM−1
n ({a} can be

extended to a subset of M elements that generate G). Therefore, the number of subgroups
isomorphic to ZM

n that survive after removing all the elements in
⋃r

i=1 G′
i is, at least,

c1n
MN − mrǫnNc2

nMN

nN
≥ c1n

MN − r
c1

2rc2
nNc2

nMN

nN
=

c1

2
nMN

subgroups isomorphic to ZM
n inside ZN

n .

Therefore, if c1
2 nMN is larger than one, there exists a subgroup isomorphic to ZM

n inside
ZN

n from which no element of order n has been removed. By Theorem 4.1, we should
find a monochromatic solution. This contradicts the assumption concerning the upper
bound on the number of monochromatic solutions, meaning that there are more than
δTheorem 4.1(n

N )m−k monochromatic solutions.

Let n0 > M is the smallest positive integer for which c1
2 nMN

0 > 1. By defining

c = min

(
1

2nMN
0

, δTheorem 4.1

)

we obtain the desired result. Notice that, by Theorem 4.1, the dependency of c is with
respect to A, not just m.

However, all the operations with A are equivalent as if A were a matrix with coefficients in
Zn. Since n is finite, the number of matrices with k × m entries in Zn is bounded. Thus,
the dependency of c on A can be thought as a dependency on m and n.



5.3. Number of monochromatic solutions inside ZN
n 57

5.3.3 Proof of Lemma 5.8

In this section, we prove the Ramsey-type result, Lemma 5.8, that looks for solutions
outside the finite fields. This result allows us to show Theorem 5.7 by finding more
solutions than the ones coming from the results in [8] or Theorem 5.5.

The proof of Lemma 5.8 will follow the one in [8]: first we will observe that we can find
solutions from a certain form.

Lemma 5.14 ([20], also in [8], for groups of the form ZN
n ). Let A be a k × m integer

matrix satisfying the n-column condition. Let G ∼= ZN
n and let x1, . . . , xm be m elements

in G such that 〈x1, . . . , xm〉 ∼= Zm
n . Let F (x1, . . . , xm) = {xi +

∑m
j=i+1 ai,jxj : i ∈

{1, . . . ,m} and each ai,j ∈ Zn}. If A fulfills the n-columns condition, then there exist
elements y1, . . . , ym in F (x1, . . . , xm) with A(y1, . . . , ym)T = 0.

Proof. Since A satisfies the n-columns condition, we assume that the columns of A are
ordered in such a way that there exist 1 ≤ k1 < k2 < · · · < kt = m with:

(i) S1 =
∑k1

j=1 Aj = 0,

(ii) for 1 < i ≤ t, Si =
∑ki

j=ki−1+1 Aj, can be expressed as a linear combination of the

columns A1, . . . , Aki−1 with coefficients in Zn.

Let Si =
∑ki−1

j=1 λi,jA
j , with λi,j ∈ Zn be the linear combination of Si in terms of Aj .

Then, we can create solutions (y1, . . . , ym) in F (x1, . . . , xm)m recursively.

We start the recursion by setting y1
i = x1 for i ∈ [1, k1]. Assume that yi = (yi

1, . . . , y
i
ki

) is a

solution for Aiyi = 0, where Ai = (A1, . . . , Aki) is the matrix of the first ki columns. Then
we assign yi+1

j = xi+1, for j ∈ [ki + 1, ki+1] and we modify y i
j to y i+1

j , with j ∈ [1, ki], by

letting y i+1
j = yi

j − λi+1,jxi+1.

Let us show that Ai+1yi+1 = 0. Notice that we can separate

yi+1 = (y i
1 , . . . , y i

ki
,

ki+1−ki
︷ ︸︸ ︷

0, . . . , 0) + (−λi+1,1xi+1, . . . ,−λi+1,ki
xi+1,

ki+1−ki
︷ ︸︸ ︷
xi+1, . . . , xi+1).

Therefore

Ai+1yi+1 = Ai+1(y
i+1
1 , . . . , y i+1

ki
, 0, . . . , 0)

+ Ai+1(−λi+1,1xi+1, . . . ,−λi+1,ki
xi+1,

ki+1−ki
︷ ︸︸ ︷
xi+1, . . . , xi+1).

However, both summands are zero; the first one by induction –the column property behaves
well under induction–, and the second is zero because of the n-column property: we can
express the sum of the last ki+1 − ki columns of Ai+1 using the first ki elements by means
of the λ’s.

Notice that, when the induction finishes, we obtain an element of F (x1, . . . , xt)
m where t

is the number of classes of the partition of the columns.

Definition 5.15 (Echeloned generators). Let x1, . . . , xs be elements of G ∼= ZM
n such that

〈x1, . . . , xs〉 ∼= Zs
n and let B = B(ZM

n ) be a base: a set of M elements of order n in ZM
n such
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that 〈B〉 = ZM
n . Then {xi}i∈[1,s] are said to be echeloned generators in B or, echeloned for

short, if xi can be written, in the base B as:

xi = (0, . . . , 0,

ji
︷︸︸︷

1 , . . .)B

with jα > jβ if and only if α > β.

Definition 5.16 ((t, n)-skeleton). Let G be an Abelian group isomorphic to ZN
n . Let B be

a base for G. Let {x1, . . . , xt} be echeloned generators of a G0
∼= Zt

n then the (t, n)-skeleton
of {x1, . . . , xt} is the set of cyclic subgroups generated by y, y ∈ {xi +

∑t
j=i+1 ai,jxj : i ∈

{1, . . . , t} and each ai,j ∈ Zn}. The parameter t is said to be the dimension of the skeleton.

Lemma 5.17 (Graham-Leeb-Rotschild for groups). For any r, s, n, there exists an

MG(r, s, n) such that, for any coloring of the cyclic subgroups X ∼= Zn of Z
MG(r,s,n)
n ,

using r colors, there exists a monochromatic (s, n)-skeleton.

The proof is an adaptation of the one found in Graham-Rotschild-Spencer’s book Ramsey
Theory [40], which is a simplification of Spencer’s proof [72] of the Graham-Leeb-Rotchild’s
result [39]. We use a similar notation as in [40]. We also follow the same scheme: first we
prove the affine version, and then we show the desired version.

Lemma 5.18 (Affine version). For any r, s, n, there exists an MGA(r, s, n) such that,

for any coloring of the affine cyclic subgroups y0 + X of Z
MGA(r,s,n)
n using r colors, with

X ∼= Zn and y0 ∈ Z
MGA(r,s,n)
n , there exist a point x0 ∈ Z

MGA(r,s,n)
n and an (s, n)-skeleton

S, such that all x0 + y, y ∈ S, are monochromatic.

Using the notation from Graham-Rotschild-Spencer’s book, we denote by [V ]1 the 1-
translates of V ∼= Zu

n; this is, the affine subgroups of dimension one: [V ]1 = {a + C | a ∈
V,C ∼= Zn and a + C ⊂ V }. More generally, we can define the i-translate of V by
[V ]i = {a + C | a ∈ V,C ∼= Zi

n and a + C ⊂ V }.

Let B be a (u + 1)-translate inside Zl
n, for some l, B ∈ [Zl

n]u+1, and let p : B → Zu
n be

a surjective projection. Let T be a 1-translate of B, T ∈ [B]1, then p(T ) can be either a
1-translate, a 0-translate (a point) or something in between –the group part of the affine
subgroup could be a strict subgroup of Zn–. If p(T ) is a 1-translate, we say that T is
transverse with respect to p; if p(T ) is a 0-translate, we call T vertical with respect to p,
and if p(T ) is none of them, we call it degenerated.

Definition 5.19. Let p be a projection from a (u + 1)-translate B to Zu
n. A coloring

χ : [B]1 → [r] is called special, relative to χ and p, if the color of a transverse 1-translate
is determined by its projection. More formally, if T1 and T2 are two 1-translates in B such
that p(T1) = p(T2), then χ(T1) = χ(T2).

Lemma 5.20. For all u, r, there exists w = W (u : r) with the following property. Fix
p : Zu+w

n → Zu
n, the projection onto the first u coordinates. For any coloring χ : [Zu+w

n ]1 →
[r], there exists a (u + 1)-translate B special with respect to p and χ.

Recall the definition of a combinatorial line. We define Cn
t the n-cube over t elements by

Cn
t = {(x1, . . . , xn) : xi ∈ {0, 1, . . . , t − 1}}.
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A combinatorial line in Cn
t is a t-set of suitably ordered points in the cube Cn

t , x0, . . . , xt−1,
xi = (xi,1, . . . , xi,n) so that, in each coordinate j, 1 ≤ j ≤ n, either

x0,j = x1,j = . . . = xt−1,j

or
xs,j = s for 0 ≤ s < t,

and the latter occurs for at least one j. Let us recall the Hales-Jewett Theorem [44].

Theorem 5.21 (Hales-Jewett Theorem [44]). For all r, t there exists HJ(t, r) ∈ Z+ so
that, for N ≥ HJ(t, r) the following holds: if the vertices of CN

t are r-colored, there exists
a monochromatic line.

Now, we proceed to the proof of Lemma 5.20.

Proof. [Proof of Lemma 5.20] Let Fu denote the family of u-variable affine linear functions:
f(x1, . . . , xu) = c0 + c1x1 + · · · + cuxu with c0, c1, . . . , cu ∈ Zn. We proof the lemma for

w = HJ(|Fu|, r
v),

where v is the number of 1-subtranslates of a u-translate, and HJ is the Hales-Jewett
function. Fix χ : [Zu+w

n ]1 → [r].

Let f = (f1, . . . , fw), fi ∈ Fu. Define the lifting

f : Zu
n → Zu+w

n

by
f(x1, . . . , xu) = (x1, . . . , xu, y1, . . . , yw), yi = fi(x1, . . . , xu).

We have that f is injective and it is also linear –indeed, affine, as the c0’s are fixed–.
Moreover, it is inverse to p in the sense that p(f(x1, . . . , xu)) = (x1, . . . , xu). We define
(and this is the critical step) a coloring χ′ on (Fu)w by

χ′(f) = χ′(g) iff, for all T ∈ [Zu
n]1, χ(f(T )) = χ(g(T )).

This is, color the lifting f by the coloring of the range f(Zu
n) of the lift: if T1, . . . , Tv are

the 1-translates of Zu
n, then the color of χ′(f) is (χ(f(T1)), . . . , χ(f(Tv))). This coloring is

well defined as f(Ti) is a 1-translate of Zu+w
n .

As χ′ is an rv-coloring, there exists a combinatorial line L in (Fu)w monochromatic under
χ′ –here is when we use the Hales-Jewett theorem–. By renumbering coordinates, we may
write

L = {(f, . . . , f, fη+1, . . . , fw) : f ∈ Fu}, (5.4)

where fη+1, . . . , fw are fixed. We set

B =
⋃

f∈L

f(Zu
n)

= {(x1, . . . , xu, y1, . . . , yw) : yi = y1, 2 ≤ i ≤ η,

yi = fi(x1, . . . , xu), η < i ≤ w}.

B is the desired (u + 1)-translate.

Claim 5.22. B is a (u + 1)-translate.
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Proof. [Proof of Claim 5.22] For B to be a (u + 1)-translate of the form B = b + C, with
b ∈ Zu+w

n and C ∼= Zu+1
n ⊂ Zu+w

n , we can exhibit a b and u + 1 elements from Zu+w
n that

generate C. Let us denote those generators by xi, i ∈ [1, u + 1]. Let ei be the element in
Zu

n with a 1 in the i-th coordinate and 0 in the other coordinates. Then

xi = (

u
︷ ︸︸ ︷

0, . . . , 0, 1, 0, . . . , 0,

η
︷ ︸︸ ︷

0, . . . , 0, fη+1(ei) − cη+1
0 , . . . , fw(ei) − cw

0 ),

for i ∈ [1, u]. Also,

xu+1 = (

u
︷ ︸︸ ︷

0, . . . , 0,

η
︷ ︸︸ ︷

1, . . . , 1, 0, . . . , 0).

Finally,

b = (

u+η
︷ ︸︸ ︷

0, . . . , 0, cη+1
0 , . . . , cw

0 ).

Together, b and {xi}i∈[1,u+1] configure a set of generators.

Observation 5.23. If y1 . . . , yt are echeloned generators of a subgroup isomorphic to
Zt

n ⊂ Zu
n, then y1 . . . , yt, xu+1 form also an echeloned set of generators of a subgroup

isomorphic to Zt+1
n ⊂ Zu+w

n . This also holds without reordering the last w coordinates of
Zu+w

n to better exhibit the combinatorial line as done in (5.4).

If T is a transverse 1-translate T ⊂ Zu+w
n , it can be written as T = g(p(T )), for some

g. Indeed, assume T = t0 + C, with C ∼= Zn, t0 ∈ Zu+w
n . Since p is linear, we have

that p(T ) = p(t0) + p(C). As T is transverse, p(C) ∼= Zn. A general g can be written as
g = (g1, . . . , gw) with gi = ci

0 + ci
1x1 + · · ·+ ci

uxu. If we let t0 = (t10, . . . , t
u
0 , tu+1

0 , . . . , tw0 ), we
have that ci

0 = tu+i
0 , which solves the part for the t0. As for C, we look for a generator γ of

C where some of the first u coordinates, say α1, . . . , αl, are such that gcd(γα1 , . . . , γαl
) = 1:

since T is transverse then we have that p(C) ∼= Zn, therefore the first u coordinates of γ
should generate a cyclic group of order n, which implies that such coordinates, α1, . . . , αl,
have to exist. Therefore, p(γ) will also have the same coordinates, α1, . . . , αl, with greatest
common divisor equal 1. Using Bezout’s identity, let β1, . . . , βl be l integers such that
β1γα1 + · · · + βlγαl

= 1, in particular, if we consider them modulo n we obtain the same
equality. By setting ci

αj
= γu+iβj , for j ∈ [1, l], where γu+i is the (u + i)-th coordinate of

γ, and ci
j = 0 for all j 6∈ {αi}i∈[1,l] ∪ {0}, we obtain the desired result, as C is generated

by this element.

When the transverse 1-translate T is such that T ⊂ B, then T = g(p(T )) = f(p(T )), where
f = (g1, . . . , g1, fη+1, . . . , fw) ∈ L. Indeed, as we already know that there exists a g such
that T = g(p(T )), the only thing left to show is that g ∈ L. As the last coordinates are
completely determined by fη+1, . . . , fw, we can set gη+1 = fη+1, . . ., gw = fw. Since the
first η coordinates added are exactly the same in T as the first one Tu+1, the equalities g1 =
g2 = . . . = gη have to be fulfilled, hence we can choose g = f = (g1, . . . , g1, fη+1, . . . , fw) ∈
L.

Let T1, T2 ∈ [B]1 be such that p(T1) = p(T2) = T ∈ [Zu
n]1. Then T1 = f1(p(T1)) and

T2 = f2(p(T2)) with f1, f2 ∈ L. Hence

χ(T1)
T1=f1(p(T1))

= χ(f1(p(T1)))
T=p(T1)

= χ(f1(T ))
χ′ mon. in L

= χ(f2(T )) = χ(f2(p(T2))) = χ(T2),

and B is special with respect to p and χ.
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After proving the technical Lemma 5.20, we are almost ready to prove Lemma 5.18, again
we follow the lines of [40]. Recall the Extended Hales-Jewett theorem, which follows from
Hales-Jewett Theorem by a simple trick.

Theorem 5.24 (Extended Hales-Jewett). For all n, t, r there is an EHJ(n, t, r) so that,
for N ≥ EHJ(n, t, r), the following holds: if the points of CN

t are r-colored, there exists
a monochromatic n-dimensional combinatorial subspace.

Observation 5.25 (Extended Hales-Jewett and skeletons). The Extended Hales-Jewett
theorem and the skeleton structure are compatible.

Proof. [Proof of Observation 5.25] Let (k1, . . . , kr) be an r-tuple and let ξ be the value
coming from the Extended Hales-Jewett with ξ = EHJ(n,maxi∈[1,r](ki), r). Thus, for any

(k1, . . . , kr), if we paint the elements of Z
ξ
n using r colors, we can ask for a monochromatic

translate of the group isomorphic to Zks
n , name it Gks , for some s ∈ [1, r]. Moreover, if

B = {ei}i∈[1,ξ] is the canonical base of Z
ξ
n with

ei = (0, . . . , 0,

i
︷︸︸︷

1 , 0, . . . , 0),

then there exist a point x0 and ks nonempty and pairwise disjoint subsets of [1, ξ],
{Ij}j∈[1,ks], such that: Gks = x0 + 〈y1, . . . , yks〉 with

yi
j =

{
1 if i ∈ Ij,
0 otherwise

,

where yi
j denotes the i-th coordinate of yj. Even more, the coordinates xt

0 = 0, for

t ∈ ∪j∈[1,ks]Ij . In particular, if K is an affine skeleton in Gks with respect to the base

(y1, . . . , yks), then K is an affine skeleton in Z
ξ
n with respect to the canonical base.

Proof. [Proof of Lemma 5.18] We prove this result by doing an induction on the di-
mension of each color’s larger monochromatic affine skeleton: instead of the original re-
sult, let us show a slight generalized Lemma 5.18. For all k1, . . . , kr, there exists an
mga = MGA(k1, . . . , kr) so that: if the 1-translates of Z

mga
n are r-colored, there exists, for

some 1 ≤ i ≤ r, a (ki, n)-skeleton colored i. The proof uses be a double induction: first
on the dimension of the painted translates –from points to 1-translates–, and then on the
dimensions of the colored affine skeletons (k1, . . . , kr).

Denote by N ′ = N ′(k0
1 , . . . , k

0
r , k

1
1 , . . . , k

1
r ) a number for which, given N ≥ N ′, if we paint

the 0-translates and the 1-translates of ZN
n with r colors, then:

• for some i, there exists an affine subgroup of dimension k0
i where all its elements

have color i.

• for some j, there exists a monochromatic (k1
j , n)-skeleton.

The induction is the following: assume that N ′ exist for all (k0
1 , . . . , k

0
r ) –fixing (k

1
1, . . . , k

1
r),–

and for all (k
1
1, . . . , k

1
r) < (k1

1 , . . . , k
1
r ), then we want to show that there exists an N ′ =

N ′(k0
1 , . . . , k

0
r , k

1
1 , . . . , k

1
r ). Using the Extended Hales-Jewett, this induction is well based

as we can always find large monochromatic affine subgroups (painting the elements)

for any given (k
1
1, . . . , k

1
r). Thus, we just have to concentrate our efforts on showing
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the induction step: if we have found a monochromatic ((k
1
1, . . . , k

1
r), n)-skeleton for all

(k
1
1, . . . , k

1
r) < (k1

1 , . . . , k
1
r ), we want to show that it is possible to find a monochromatic

((k1
1 , . . . , k

1
r ), n)-skeleton –at the expense of, maybe, increase the size of the group Z•

n–.

We set

s = max
1≤i≤r

MGA(k1, . . . , ki − 1, . . . , kr),

u = EHJ(s, n, r),

w = W (u : r),

N = u + w, (5.5)

where EHJ(s, n, r) is the function given by the Extended Hales-Jewett being Zn the base-
space, we paint the elements of Zu

n with r colors and we aim to find an s-translate. W (u : r)

is the output of Lemma 5.20 about the existence of an special projection from Z
u+W (u:r)
n

to Zu
n.

Color the 1-translates from ZN
n arbitrarily by the coloring function χ. By the definition

of w, using Lemma 5.20, there is a (u + 1)-translate B that is special under a projection
p : B → Zu

n. Induce a coloring χ′ of the elements in Zu
n, the 0-translates, by χ′(T ) =

χ(p−1(T )), where p−1(T ) is the unique vertical 1-translate in B that collapses completely
onto T .

By the definition of u, there exists an s-translate S ⊂ Zu
n monochromatic, say of color 1,

under χ′. Then p−1(S) ⊂ B, thought as the pre-images of single points in S, is an special
(s + 1)-translate where all the vertical 1-translates are colored 1. We define a coloring χ′′

in [S]1 by

χ′′(T ) = χ(T ′), where p(T ′) = T, T ′ transversal, T ′ ∈ B with p(T ′) ∈ [S]1.

Since p is special, this is a well defined coloring. As s ≤ MGA(k1−1, k2, . . . , kr) (we apply
induction on (k1, . . . , kr)), there exists an skeleton W ′ ⊆ S so that either

(i) dim(W ′) = k1 − 1; W ′ has color 1 under χ′′,

or

(ii) 2 ≤ i ≤ r, dim(W ′) = ki; W
′ has color i under χ′′.

In case (ii), there exists a ki-translate W ⊂ p−1(W ′) such that p(W) = W ′. If W ′ = v+C,
then we can choose W = p−1(v) + C, for some pre-image of v under p, as p(C) = C
whenever C ⊂ Zu

n. W is an affine (ki, n)-skeleton monochromatic with color i under the
coloring χ in B, thus it is a monochromatic affine (ki, n)-skeleton in the whole group. We
use Observation 5.25 to check that the generators of the skeleton are, indeed, echeloned.

In case (i), we construct the set inductively, we set W = p−1(W ′). We can use the following
observation:

Let W ′ = x0+〈x1, . . . , xk〉 be an affine skeleton, where x0, x1, . . . , xk ∈ Zu
n and 〈x1, . . . , xk〉 ∼=

Zk
n, and the 〈 · 〉 means that we generate only the skeleton, not all the cyclic groups of

length n. By reordering the w added coordinates, we can write B as

B =
⋃

f∈L

f(Zu
n)

= {(x1, . . . , xu, y1, . . . , yw) : yi = y1, 2 ≤ i ≤ η,

yi = fi(x1, . . . , xu), η < i ≤ w},
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where fi(x1, . . . , xu) = ci
0 + ci

1x1 + · · · + ci
uxu. If p : B → Zu

n, then W = p−1(W ′) is a
(k + 1, n)-skeleton with the translation point

x0
′ = (x1

0, . . . , x
u
0 ,

η
︷ ︸︸ ︷

0, . . . , 0, fη+1(x0), . . . , fw(x0)),

and with generating vectors x′
1, . . . , x

′
k+1 such that

xi
′ = (x1

i , . . . , x
u
i ,

η
︷ ︸︸ ︷

0, . . . , 0, fη+1(xi) − cη+1
0 , fη+2(xi) − cη+2

0 , . . . , fw(xi) − cw
0 ),

for i ∈ [1, k], and

xk+1
′ = (

u
︷ ︸︸ ︷

0, . . . , 0,

η
︷ ︸︸ ︷

1, . . . , 1,

w−η
︷ ︸︸ ︷

0, . . . , 0).

Observe that all the cyclic subgroups generated by Ω = {xi
′ +

∑k+1
j=i+1 ai,jxj

′ : i ∈
{1, . . . , k + 1} and each ai,j ∈ Zn} and translated by x0

′, the ones forming the skele-
ton inside W, are either vertical or transverse. Notice that if i ∈ [1, k], then p(xi

′ +
∑k+1

j=i+1 ai,jxj
′) = xi+

∑k
j=i+1 ai,jxj which is of order |Zn|, hence x′

0+〈xi
′+
∑k+1

j=i+1 ai,jxj
′〉

is transverse and, if i = k + 1, then p(xk+1
′) = 0, which has order 0, thus x0

′ + 〈xk+1
′〉 is

vertical.

Moreover, the generators x1
′, . . . , xk

′, xk+1
′ are echeloned: although the coordinates have

been reordered, if x1, . . . , xk were echeloned in W ′, then x1
′, . . . , xk

′ are also echeloned
in W. In addition, xk+1

′ is also echeloned with respect to x1
′, . . . , xk

′. Therefore, we
have seen that W is, indeed, a (k1, n)-skeleton. W is monochromatic with color 1 since,
if T is a 1-translate in the skeleton and it is vertical, then χ(T ) = χ′(p(T )) = 1 because
p(T ) is a 0-translate in S. If T is in the skeleton and is a transverse 1-translate, then
χ(T ) = χ(p(T )) = 1 by (i). As all the 1-translates in the skeleton W are either vertical or
transverse, we have shown the induction step and finished the proof.

Once Lemma 5.18 has been shown, we proceed to the proof of Lemma 5.17.

Proof. [Proof of Lemma 5.17] Let χ be a coloring of the cyclic subgroups and let
MG(r, s, n) = MGA(r, s, n). We paint the 1-translates of ZMG

n using the color of the
associated subgroup. By Lemma 5.18, there exists a monochromatic affine (s, n)-skeleton,
hence, the associated (s, n)-skeleton structure has to be monochromatic. Thus, Lemma 5.17
is shown.

At this point, we follow the strategy in [8] to prove Lemma 5.8.

Proof. [Proof of Lemma 5.8] Let N = MG(r,m, n) and let χ : ZN
n → [r] be a coloring

of the elements of ZN
n with r colors. Choose in ZN

n the canonical base B and say that
(a1, . . . , aN ) < (b1, . . . , bN ) if there exists a j ≥ 1 such that ai = bi for i ∈ [1, j − 1] and
aj < bj, considering the coordinates in [0, n − 1].

Let T be a cyclic group. Let γ be the generator of T with minimum coordinates. We
define a coloring on the cyclic groups isomorphic to Zn, χ′, by χ′(T ) = χ(γ). We apply
Lemma 5.17 to know that there exist x1, . . . , xm echeloned with respect to B such that
all the cyclic subgroups generated by {xi +

∑m
j=i+1 ai,jxj, ai,j ∈ Zn} are monochromatic.

Now we apply Lemma 5.14 to show that there exists a collection {yi}i∈[1,m] with yi ∈
{xi +

∑m
j=i+1 ai,jxj , ai,j ∈ Zn} such that y = (y1, . . . , ym) is a solution of Ay = 0.

Since xi, i ∈ [1,m] are echeloned, if yi ∈ {xi +
∑k

j=i+1 ai,jxj , ai,j ∈ Zn}, then χ′(〈yi〉) =
χ(yi), therefore, y is a monochromatic solution.
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5.4 Extension for bounded torsion groups

In this section we combine Theorem 5.7 and Theorem 5.9 to show that the number of
monochromatic solutions of an homogeneous linear system, for finite Abelian groups with
bounded order, is as large as we might expect, Theorem 5.26.

Theorem 5.26 (Number of solutions for bounded torsion groups). Let b be a positive
integer. Let G be a finite Abelian group or order n such that maxg∈G (|g|) = b. Let r be a
positive integer and let A be a (k×m) matrix with integer entries. Assume that A satisfies
the b–columns condition. There is a constant c = c(r, b,m) > 0 such that every r–coloring
of G \ {0} has at least ⌊c|G|m−k⌋ monochromatic solutions of the equation Ax = 0 in
G \ {0}.

Proof. [Proof of Theorem 5.26] Let r be the number of colors. Let div(b) = {µ | µ divides b} =

{µi}i∈[1,|div(b)|]. Let Mµi be the output of Lemma 5.8 to ensure that Z
Mµi
µi contains a

monochromatic solution, then set M b = maxi∈[1,|div(b)|]{Mµi}. Let ǫ−1 =
∏|div(b)|

i=1 µMb
i =

ǫ(r, b,A). If the order of the Abelian group G is large enough, we can be sure that G

contains a Z
Mµi
µi , for some µi divisor of b .

Let µ = max{µi | Z
Mµi
µi ⊂ G} and consider Gµ = Z

Mb
µ . Let G0 be the maximal subgroup

in G such that Gµ ⊂ G0 and with maxg∈G0 |g| = µ, then

G0
∼=

s∏

i=1

Zni

for some s, with ns = µ and n1|n2| · · · |ns.

Notice that |G0| > ǫ|G|. Indeed, if

G ∼=

h∏

i=1

Zmh

for some h, with mh = b and m1|m2| · · · |mh, then the subgroup G0 can be found in G by
picking, for each factor Zmi in G, the subgroup Zgcd(mi,µ) so that:

G0
∼=

h∏

i=1

Zgcd(mi,µ).

Thus, it can be checked that |G0| > ǫ|G| as, for all m with m|b, we should have, either

ZMb
m ⊂ G, and then m|µ, or ZMb

m 6⊂ G, and then m contribute less than the |ZMb
m | to the

shrinking of G0 with respect to G.

We can successfully apply the same machinery to G0 as we have done for Theorem 5.7 to
find a positive proportion of monochromatic solutions in G0.

First, assuming there are not many monochromatic solutions in G0, we apply the removal
lemma to delete not many elements of order µ in G0. However, there is a significant amount

of subgroups isomorphic to Z
Mb
µ in G0 by Theorem 5.9 and Proposition 5.11. Since each

time we remove an element of order µ, we do not puncture many subgroups, then there

exist a subgroup Z
Mb
µ with no elements removed. In this group with no elements of order µ

removed, we use Lemma 5.8 to find a monochromatic solution were all the xi have order µ
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inside G0. This reaches a contradiction with the assumption of the removal lemma, hence
we find at least ⌊c|G|m−k⌋ monochromatic solutions, for some c = c(r, b,m). Again c only
depends on m as the number of k × m matrices on Zb is bounded.

Observe that we could also ask for groups G where the orders of the elements of G have an
absolute bound b, but this b might not be attained. Due to the variety of groups included
in this notion, we have to restrict ourselves to systems that satisfy, roughly, the b!-columns
condition. To be more precise, we might just want to multiply the largest primer-powers
that divide b.

5.5 Density case

In this section we show the characterization of integer matrices such that, for all finite
Abelian groups and for all sets with positive density, they contain, asymptotically, as
many solutions as we might expect. This result is similar to the version of Varnavides [78]
of the Szemerédi Theorem [74] on arbitrarily long arithmetic progressions in dense sets of
the integers: there is a constant times N2 k-arithmetic progressions in any dense set of
[1, N ].

We say that a (k ×m) matrix A with integer coefficients and m ≥ k + 2 is density regular
if, for every ǫ > 0 there is n(ǫ) ∈ N such that the following holds: for every Abelian group
G of order n ≥ n(r) and every subset X ⊂ G such that |X| ≥ ǫn, there is a nontrivial
solution of the homogeneous linear system Ax = 0 with all coordinates in X. Here by
trivial solution we mean one with all coordinates equal to the same common value.

In the terminology of Rado’s characterization of partition regular matrices, we say that
the k × m integer matrix A, with m ≥ k + 2, verifies the strong column condition if the
sum of the columns is the zero vector in Zk. Our main result is the following:

Theorem 5.27. A matrix is density regular if and only if it satisfies the strong column
condition.

In particular we show:

Theorem 5.28 (Counting for dense sets). Let A be a k × m integer matrix. For every
ǫ > 0, there exists a δ = δ(ǫ,A) > 0 such that: for every finite Abelian group G and for
every set X ⊂ G with |X| ≥ ǫ|G|, Ax = 0 has ⌊δ|G|m−k⌋ solutions with x ∈ Xm if and
only if A satisfy the strong column condition.

The proof of Theorem 5.28 is similar as the one in Theorem 5.7: we use Theorem 4.1, the
fact that each element in s ∈ X bears a trivial solution x = (s, . . . , s) and Proposition 5.13
to remove the technical condition of the determinantal. For the “if” part, we give a
sequence of groups Gi and associated dense subsets Xi such that, if A does not satisfy the
strong columns condition, then there is no solution at all to Ax = 0, x ∈ Xk

i .

Proof. [Proof of Theorem 5.28] Assume A satisfies the strong column condition. Assume
also that dk(A) = 1. Let G be an Abelian group. Let ǫ > 0 be a real number and let X
be a set with density larger than ǫ in G. Then we can find the so-called trivial solutions
to Ax = 0, namely x = (x0, . . . , x0), for each x0 ∈ X.

We use the removal lemma for Abelian groups, Theorem 4.1, to know that there exists
a δTheorem 4.1 = δ(ǫm−1/2, A) > 0 such that: if there are less than δTheorem 4.1|G|m−k
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solutions to Ax = 0, x ∈ Xm, then we can destroy all these solutions by remove at most
ǫ/2|G| elements from X. However, as we have not removed all the elements from X, there
are, still, some trivial solutions. Therefore, the total number of solutions has to be larger
than δTheorem 4.1|G|m−k.

Observe that the strong column condition,
∑m

i=1 Ai = 0, can be expressed as a linear
combination with integer coefficients of the columns of A. Therefore, if dk(A) > 1, we
use Proposition 5.13 to obtain a matrix A′ with dk(A

′) = 1. Moreover, A′ satisfies the
strong column condition and its solution set is a subset of solution set of Ax = 0. Hence,
we use the reasoning from the preceding paragraph with the matrix A′ to check that the
number of solutions is proportional to |G|m−k, which implies that the number of solutions
to Ax = 0, x ∈ Xm is, at least, proportional to |G|m−k.

For the only if part, suppose that there is one equation a1x1 + · · · + amxm = 0 with
∑

i ai = α 6= 0. Take a sufficiently large positive integer r and consider G to be the cyclic
group Z/rZ. Let X ⊂ Z/rZ consists of the elements whose representatives in [0, r] are
congruent to 1 modulo |α| + 1 and lie in an initial segment [0, r0], where r0 = r/(mt)
and t = maxi |ai|. Thus |X| ≥ r/(mt(|α| + 1)). Every element in Xm is of the form
u′ = u(|α| + 1) + 1, where u is an integer valued m–vector and 1 is the all ones vector.
Hence, if a = (a1, . . . , am) and u′ ∈ Xm, we have

a · u′ = (a, u)(|α| + 1) + α,

which, since (a, u) is an integer, a · u′ cannot be equal to zero. Moreover, u′ is nonzero
modulo r because the elements in X are in [1, r0], so (a, u′) ∈ [−r + 1, r − 1]. Thus the
equation a1x1 + · · · + amxm = 0 has no solutions in X.

5.6 Remarks

In light of Bergelson, Deuber, Hindman’s [8, Theorem 2.4] and Rado’s [59] characterization
results, Lemma 5.8 does not characterize those systems in which, for every r-coloring, we
can find a monochromatic solution in groups of the type ZN

n where all the components
have order n.

Using the same techniques displayed in [8, Lemma 2.2] or in [20], we can see that if the
monochromatic solution is inside an (m,n)-skeleton then the system has to fulfill the n-
columns condition. However, the condition “to be inside an (m,n)-skeleton” seems too
strong. Indeed, if a solution is inside an (m,n)-skeleton, then it behaves as if it would
have lain in a finite field. The structure of the skeleton is the translation of the n-columns
condition from the system onto the solution set.

The n-columns condition is, however, a natural generalization of the Fq-columns, which is
the characterization from Bergelson, Deuber and Hindman result: if we restrict the group
to be a power of a prime-order cyclic group ZN

p , both conditions become the same.

Moreover, there are weaker generalizations of the F -columns condition that do not work.
For instance, if the system fulfills the column condition for all p|n in the case of the group
ZN

n , then there are examples of systems, groups and colorings for which no monochromatic
solution with all the elements of order n is found. Hence, an stronger condition is needed.
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Example: Let n = 4 and

A =





1 0 −1 0
0 1 −1 0
0 0 0 2



 .

This matrix fulfills the 2-column condition, as the sum of the columns is 0 with the
coefficients in Z2. However, there is no solution with x4 ∈ Zs

4 \Zs
2, as that variable should

be such that 2 · x4 = 0 mod 4 in all the s coordinates, but this is precisely the condition
for an element in Zs

4 to be in the subgroup Zs
2.

To finish this subsection, let us recall Voigt’s result on groups that fulfill the partition
property [79]. This result generalizes Graham, Leeb and Rotschild’s result [39] from fi-
nite fields to Abelian groups. With the idea of weakening the n-columns condition from
Lemma 5.8, the role of Graham, Leeb and Rotschild’s result in the proof could be replaced
by Voigt’s theorem and ideas. However, this process does not seem to be straightforward.
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Final remarks and future work

In this chapter we discuss some final remarks and comments as well as some open problems
and future work that have been left open in the other chapters.

In particular, Section 6.1 is devoted to a discussion of a possible removal lemma for poly-
nomial systems and the differences of this framework with respect to the linear systems
setting. Section 6.2 present infinite families of examples of combinatorial structures that,
even though they resemble a linear system of equations in some aspects, they do not fulfill
a removal lemma statement.

In Section 6.3 we discuss about the dimension of the hypergraph needed to represent the
system using our techniques. In particular, we present an example of a linear system
that, although a hypergraph is needed, it can be represented by a hypergraph with less
dimension than what is required by the general construction. In Section 6.4 we briefly
explain how our results fit in Szegedy’s framework of the Symmetry-preserving removal
lemma [73]. Finally, Section 6.5 discuss some open problems and future work related with
this thesis.

6.1 Extension to Polynomials

In Chapters 2-4, we have seen how the Removal Lemma for one equation for Abelian
groups can be generalized to systems of equations for finite fields and, then, to systems
of equations for Abelian groups. A possible generalization could be to extend the context
of applications: for example, we could ask for a removal lemma for linear systems in non-
abelian finite groups, or a removal lemma for compact Abelian groups (see [15] for the
result for the circle). Instead, we could rise the question of a possible removal lemma for
polynomial equations or, in other words, for algebraic varieties.

Question 6.1 (Removal lemma for polynomials). Let P1, . . . , Pk be k polynomials on m
variables, x1, . . . , xm of maximal degree d and let Xi ⊂ Fq, with i ∈ [1,m]. Assume that

∣
∣
∣
∣
∣

{

(x1, . . . , xm) ∈
m∏

i=1

Xi ⊂ Fm
q : P1(x1, . . . , xm) = · · · = Pk(x1, . . . , xm) = 0

}∣
∣
∣
∣
∣
= o(qm−k).

Are there some subsets X ′
i ⊂ Xi, i ∈ [1,m], with |X ′

i| = o(q) such that there is no solution
to P1(x1, . . . , xm) = 0, . . . , Pr(x1, . . . , xm) = 0 with xi ∈ Xi \ X ′

i?

We should observe that this problem has a slightly different nature than the one for linear
systems of equations. In the case of a linear system A, there is an integer N = N(A) and
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a constant 1 ≥ δ = δ(A) > 0 such that, for any Zn, n ≥ N , there are subsets X1, . . . ,Xm

such that:

• |Xi| ≥ δn, for all i ∈ [1,m],

• there is no solution to Ax = 0 with xi ∈ Xi.

Moreover, if the sum of the columns of A is not the zero-vector (so A does not satisfy the
strong columns condition,) then we can further assume that Xi = X1, for all i ∈ [1,m].

The removal lemma can be seen as a 2-options result: either the set
∏m

i=1 Xi has many
solutions, of the order of |G|m−k, or it is o(|G|)-close to a solution-free product set. The
observation above shows that these options are non-trivial in the following sense: there
are plenty of large solution-free product sets.

On the other side, a similar observation does not work even for simple polynomials. For
instance, Theorem 6.2 by Cilleruelo exhibits three examples of polynomial equations where
the number of solutions is large for any choice of sets with positive density. Thus, the
hypothesis that the polynomial equation has a small number of solutions turns to be
equivalent to the case in which some of the sets are small (at least for the polynomial
equations in Theorem 6.2.)

Theorem 6.2 ([18]). Let X1,X2,X3,X4 ⊂ F∗
q, then the number of solutions to any of the

equations:

x1 + x2 = (x3 + x4)
2, xi ∈ Xi, (6.1)

or

x1x2 = x3 + x4, xi ∈ Xi, (6.2)

or

x2x3 − x1x4 = 1, xi ∈ Xi, (6.3)

is

Si =
|X1||X2||X3||X4|

q
+ θj

√

|X1||X2||X3||X4|q,

where |θj| ≤ 1 + o(1), j ∈ {1, 2, 3} is a constant depending on each equation and sets, but
absolutely bounded independently of q.

Let us notice that we have a similar behavior in the case of linear systems fulfilling the
strong columns condition; in particular, any dense set will have many solutions. However,
the polynomial equations described in Theorem 6.2 behave differently from the strong
columns condition case in the following sense: if x1 = x2 = x3 = x4, then, in general,
(x1, x1, x1, x1) is not a solution to any of the polynomial equations (6.1), (6.2) or (6.3)
and, in Theorem 6.2, we can choose a different set for each variable.

The fact that the product of large arbitrary sets have large intersection with the algebraic
variety defined by the system of polynomial equations, as illustrated in Theorem 6.2 for one
equation, seems to be a general phenomenon [12]. However, to characterize the polynomial
systems that have large solution-free sets seems to be a hard problem. Besides, although
this behaviour shows that the case for linear equations is substantially different than the
one for algebraic varieties, it is not clear if a removal lemma for polynomials might hold.
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6.2 Orthogonal Arrays

In previous chapters we have seen some algebraic structures that fulfill a Removal Lemma-
like statement. For example: graphs (undirected, directed and edge-colored), hypergraphs,
or linear systems with integer coefficients over finite Abelian groups.

However, certain combinatorial structures, which can be regarded as generalizations of the
solution space of a linear equation, do not fulfill a removal lemma statement.

Our example is an orthogonal array (2, n). So, it is a n2 × 3 matrix where each pair of
columns contains all the ordered pairs with elements in [1, n]. In particular: for any pair
of indices of columns (i1, i2) ∈

({1,2,3}
2

)
and for any given value to (xi1 , xi2) ∈ [1, n]2, there

exists a unique assignment for the third element xi3 , where i3 is the remaining index. This
behavior is similar as the one found in any linear equation with three variables over some
group G with n elements, and where the greatest common divisor of the coefficients of the
equation is coprime with n.

6.2.1 General considerations

Before starting the construction, we make a simple observation about how some orthogonal
arrays of this type can be built up.

Consider the ordered set [1, n] with the natural increasing order. Furthermore, consider
the triples of the orthogonal arrays to be packed in chunks, depending on the value of the
first column: the i-chunk will be the collection of rows in which the element of the first
column is i.

Without loss of generality we consider that each chunk is ordered lexicographically con-
sidering the first two columns: the i-chunk is ordered (i, 1), (i, 2), . . ., (i, n).

Let us start the construction by picking, in the first two columns, all the ordered [1, n]2.
Let us pick a permutation σ of [1, n] so that σ(i) is the third element of the triple for the
first chunk. We also select an n-cycle permutation c. For the second chunk we use the
permutation σc; in general, for the (i + 1)-th chunk, we use the σci permutation as the
element of the third column.

Proposition 6.3. The construction outlined above creates an orthogonal array for any σ,
c and any order of the n chunks.

Proof. By construction, the first two columns contain all the pairs. The first and the
third column fulfill the property by the same reason: as σ and c are permutations, the
i-th chunk will see all the pairs (i, j), with j ∈ [1, n].

The second and the third columns see all the pairs because the powers of the cycle c: once
σ(j) is fixed, we perform an n-cycle permutation i → σci−1σ−1σ(j). Indeed, for a fixed
element in the second column j, when we go through the i-chunks, we have the triples
(i, j, σci−1σ−1σ(j)), with i ∈ [1, n]. If σci1−1σ−1σ(j) = σci2−1σ−1σ(j), then i1 = i2. Thus,
we do go through all the pairs (j, ·). As we can do this for every j, we obtain all the
possible pairs using the second and the third column. As we have seen that each pair of
columns sees all the pairs, we obtain an orthogonal array.
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6.2.2 Construction

The following construction is illustrated by an example in Section 6.2.3. The reader may
want to check it while reading the general construction below.

We consider orthogonal arrays with 3 columns and n2 rows similar to the previous one but
where n is a multiple of 6 and, if n > 12, then n is not a multiple of 4. We use an initial
permutation σ but, instead of a cycle of length n, we use two disjoint cycles of length n/2,
c1 and c2, and the permutation

pt = (c11 , c21)(c12 , c22) · · · (c1i , c2i) · · · (c1n/2
, c2n/2

).

Given some initial permutation of the chunks, Ord, and the permutation σ, the third
column of the i-th chunk in the orthogonal array, which might not be the i-chunk, is
constructed as follows:

• If i ∈ [1, n/2] then the permutation of the elements in the i-th chunk’s third column
is σci−1

2 ci−1
1 (notice that c1 and c2 are disjoint and, hence, mutually independent.)

• If i ∈ [n/2 + 1, n] then the permutation of the elements in the i-th chunk’s third

column is σc
i−n/2−1
2 c

i−n/2−1
1 pt.

In our case we use c1 = (1, 2, . . . , n/2 − 2, n/2 − 1, n/2) and c2 = (n/2 + 1, . . . , n − 1, n),
so pt = (1, n/2 + 1)(2, n/2 + 2) · · · (i, n/2 + i) · · · (n/2, n).

The construction takes place in two steps. In the first one we obtain a configuration and
a set S with |S| = Ω(n) and with no solution at all. Then we modify the construction to
obtain θ(n) pairwise disjoint solutions. Recall that a solution is a row of the orthogonal
array (x1, x2, x3), where xi ∈ S for all i ∈ {1, 2, 3}, and that two solutions, (x1, x2, x3) and
(y1, y2, y3), are said to be disjoint if {x1, x2, x3} ∩ {y1, y2, y3} = ∅.

The goal is to obtain only the solutions of the form (3k − 2, 3k − 1, 3k), with k ∈ [1, n/6].

We define two bijective functions: M , the matching funtion, and Ord, to determine the
order of the chunks.

M : [1, n] → [1, n]

i → i + n/2 mod n, with the usual identification 0 ≡ n,

Ord : [1, n] → [1, n]

i → Ord(i) = the position of the i-chunk.

The initial order of the chunks is the following:

• If i ∈ [1, n/6] the i-th chunk is such that Ord−1(i) = 3i − 2.

• If i ∈ [n/6 + 1, 2n/6] the i-th chunk is such that Ord−1(i) = 3(i − n/6) − 1.

• If i ∈ [2n/6 + 1, n/2] the i-th chunk is such that Ord−1(i) = 3(i − 2n/6).

• If i ∈ [n/2, n] the i-chunk has the position Ord(i) = Ord(M(i)) + n/2.
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We divide each chunk into two pieces depending on the value of the second column. The
part with the second component between 1 and n/2 is called the upper part, and if the
second component is between n/2 + 1 and n we say that it is the lower part of the chunk.

The σ is constructed in such a way that, for j ∈ [1, n/6], the element 3j appears in the
position 3j − 1 + j − 1 mod n/2 (with the identification n/2 ≡ 0) of the lower part (this
means that it really goes to (3j − 1 + j − 1 mod n/2) + n/2.) Then we fill the lower
part with the remaining elements in [1, n/2] arbitrarily. The upper part is filled with the
matching elements of the lower part: if j is the i-th element in the lower part, then M(j)
is the i-th element in the upper part.

The purpose of putting the element 3j in the 4j − 2 spot is that, when we cycle the
permutation σ with the cycles c1 and c2, we would get the element 3j in the right spots
for this stage. This is, after the required modification through the cycles (because we
are moving the permutation between chunks), we will obtain the quasi-wanted solutions
(3j − 2, 3j − 1, 3j + n/2).

To summarize, for j ∈ [1, n/6], σ((3j − 1 + j − 1 mod n/2) + n/2) = 3j and for j ∈
[n/2 + 1, n/2 + n/6], σ((3j − 1 + j − 1 mod n/2)) = 3j + n/2. For the remaining i not
treated before we distribute them arbitrarily with the restrictions that, if i ∈ [1, n/2] then
σ(i) ∈ [n/2 + 1, n] and σ(i + n/2) = σ(i) − n/2. Thus, in the first chunk, the triples are
(1, i, σ(i)), for i ∈ [1, n].

Due to the condition on the n, the operation j → 3j − 1 + j − 1 = 4j − 2 is bijective over
Zn/2, thus making σ a valid permutation. Due to the disjointedness of c1 and c2, a similar
proposition as Proposition 6.3 can be shown, making this construction an orthogonal array.
The difficult part is to see that the second and the third column contain all the pairs in
[1, n]2. If the value of the second column is i ∈ [1, n/2] then, for the first n/2 chunks, we
have all the pairs (i, j), j ∈ [n/2 + 1, n], in the last two columns. In the first chunk, all
the rows with the third coordinate in the range [n/2 + 1, n] are in some spot of the upper
part of the chunk, and the cycle c1 move them in solidarity through the upper part of the
first n/2 chunks. The pairs with i ∈ [1, n/2] and j ∈ [1, n/2] are located in the last n/2
chunks as we apply the permutation pt, which allows us to exchange the roles that the
j ∈ [n/2 + 1, n] played in the first n/2 chunks, for the ones that now the j ∈ [n/2 + 1, n]
plays in the last n/2 chunks and we use c2 instead of c1. The cases in which i ∈ [n/2+1, n]
are treated similarly but, in the first n/2 chunks, we see all the pairs with j ∈ [1, n/2] and
the cycle acting is c2; if i ∈ [n/2 + 1, n] and j ∈ [n/2 + 1, n] we should use pt, the cycle c1

and the last n/2 chunks to find the remaining pairs.

At this point we make two observations. The first one is that, if S = [1, n/2] then S
is solution-free, meaning that there is no triple (x1, x2, x3) in the orthogonal array with
xi ∈ S, for all i. This is clear for the last n/2 chunks, since the first column contains an
element between n/2 + 1 and n. For the first n/2 chunks we have that the upper part of
them is formed by element in S but they are paired with elements not in S in the last
column. Similarly, in the lower part, the elements of the second column are not in S. So,
this construction is solution-free.

The second observation is that, as we have commented before, instead of the triples (3i−
2, 3i − 1, 3i) we have the triples (3i − 2, 3i − 1,M(3i)), for i ∈ [1, n/6]. Moreover, we
have also the triples (3i − 2,M(3i − 1), 3i), for i ∈ [1, n/6]. Observe that we have put
the element 3j paired with the 3j − 1 + j − 1 mod n/2 in the lower part. Once we move
ourselves through j − 1 chunks, the element 3j will be moved by c2 j − 1 times, so that it
will be placed in the (3j − 1)-th position of the lower part. This means that we have the
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triple (3i − 2,M(3i − 1), 3i); therefore, in the pair (3i − 2, 3i − 1, ·), we should have the
matching of 3i, which is M(3i).

At this point we make a further modification to the orthogonal array. In the i-th chunk
for i ∈ [1, n/6], which is the Ord(i)-chunk, we exchange the element 3i in the third column
with M(3i). Since the property of being an orthogonal array has to be preserved, we
would also exchange 3i with M(3i) in the M(i)-th chunk. Indeed, in the M(i)-th chunk
we find the duplicity of the pairs (3i− 1, 3i) and (M(3i− 1),M(3i)) corresponding to the
second and third columns. Once this double exchange has been done, the second and the
third column maintain the property of seeing all the pairs (i, j) ∈ [1, n] × [1, n]. As the
columns 1 and 2 have remained untouched, they maintain the orthogonal array property.
Also, the columns 1 and 3 still contain all the pairs (i, j) ∈ [1, n]2 because all the changes
have been done inside the chunks. Thus, the whole thing is, still, an orthogonal array.

With this exchange, we have created the solutions (3i− 2, 3i− 1, 3i), with i ∈ [1, n/6], and
no more. Thus the number of solutions is n/6, yet, in order to erase all the solutions, we
have to delete one element in each of them. Thus, we have to delete n/6 elements from S,
which is not a function in o(n), although the number of solutions grows as o(n2).

Thus, in general, we could not have a removal lemma statement, similar of the ones showed
in previous chapters, for orthogonal arrays.

6.2.3 Example

In this section we illustrate the construction with a small example, with n = 12.

The order of the chunks is: 1, 4, 2, 5, 3, 6, 7, 10, 8, 11, 6, 12.

Then the initial σ makes the first chunk look like:

1 1 7
1 2 9
1 3 8
1 4 10
1 5 11
1 6 12
1 7 1
1 8 3
1 9 2
1 10 4
1 11 5
1 12 6

where the underlined entries indicate that those are the first placed elements. Those will
be switched with its partner in a later step as they will produce the solutions for the
system. The non-underlined elements have been put arbitrarily in the lower part of the
chunk, and matched with the upper part.

The most significant set of chunks are the first n/6 ones, as they will carry the solutions.
From the second chunk till the (n/2)-th, the last column is produced by cycling the initial
permutation within each part, lower or upper. For the last ones, we would produce them
by exchanging the role of the elements i and i + n/2 from the last column.
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1st 7th 3rd 9th 5th 11th

1 1 7
1 2 9
1 3 8
1 4 10
1 5 11
1 6 12
1 7 1
1 8 3
1 9 2
1 10 4
1 11 5
1 12 6

7 1 1
7 2 3
7 3 2
7 4 4
7 5 5
7 6 6
7 7 7
7 8 9
7 9 8
7 10 10
7 11 11
7 12 12

2 1 8
2 2 10
2 3 11
2 4 12
2 5 7
2 6 9
2 7 2
2 8 4
2 9 5
2 10 6
2 11 1
2 12 3

8 1 2
8 2 4
8 3 5
8 4 6
8 5 1
8 6 3
8 7 8
8 8 10
8 9 11
8 10 12
8 11 7
8 12 9

3 1 11
3 2 12
3 3 7
3 4 9
3 5 8
3 6 10
3 7 5
3 8 6
3 9 1
3 10 3
3 11 2
3 12 4

6 1 5
6 2 6
6 3 1
6 4 3
6 5 2
6 6 4
6 7 11
6 8 12
6 9 7
6 10 9
6 11 8
6 12 10

2nd 8th 4th 10th 6th 12th

4 1 9
4 2 8
4 3 10
4 4 11
4 5 12
4 6 7
4 7 3
4 8 2
4 9 4
4 10 5
4 11 6
4 12 1

10 1 3
10 2 2
10 3 4
10 4 5
10 5 6
10 6 1
10 7 9
10 8 8
10 9 10
10 10 11
10 11 12
10 12 7

5 1 10
5 2 11
5 3 12
5 4 7
5 5 9
5 6 8
5 7 4
5 8 5
5 9 6
5 10 1
5 11 3
5 12 2

11 1 4
11 2 5
11 3 6
11 4 1
11 5 3
11 6 2
11 7 10
11 8 11
11 9 12
11 10 7
11 11 9
11 12 8

6 1 12
6 2 7
6 3 9
6 4 8
6 5 10
6 6 11
6 7 6
6 8 1
6 9 3
6 10 2
6 11 4
6 12 5

12 1 6
12 2 1
12 3 3
12 4 2
12 5 4
12 6 5
12 7 12
12 8 7
12 9 12
12 10 8
12 11 10
12 12 11

To finish we switch the underlined elements in its respective chunk to obtain the final
example. The boldface type expose the solutions.

1st 7th 3rd 9th 5th 11th

1 1 7
1 2 3

1 3 8
1 4 10
1 5 11
1 6 12
1 7 1
1 8 9
1 9 2
1 10 4
1 11 5
1 12 6

7 1 1
7 2 9
7 3 2
7 4 4
7 5 5
7 6 6
7 7 7
7 8 3
7 9 8
7 10 10
7 11 11
7 12 12

2 1 8
2 2 10
2 3 11
2 4 12
2 5 7
2 6 9
2 7 2
2 8 4
2 9 5
2 10 6
2 11 1
2 12 3

8 1 2
8 2 4
8 3 5
8 4 6
8 5 1
8 6 3
8 7 8
8 8 10
8 9 11
8 10 12
8 11 7
8 12 9

3 1 11
3 2 12
3 3 7
3 4 9
3 5 8
3 6 10
3 7 5
3 8 6
3 9 1
3 10 3
3 11 2
3 12 4

6 1 5
6 2 6
6 3 1
6 4 3
6 5 2
6 6 4
6 7 11
6 8 12
6 9 7
6 10 9
6 11 8
6 12 10

2nd 8th 4th 10th 6th 12th

4 1 9
4 2 8
4 3 10
4 4 11
4 5 6

4 6 7
4 7 3
4 8 2
4 9 4
4 10 5
4 11 12
4 12 1

10 1 3
10 2 2
10 3 4
10 4 5
10 5 12
10 6 1
10 7 9
10 8 8
10 9 10
10 10 11
10 11 6
10 12 7

5 1 10
5 2 11
5 3 12
5 4 7
5 5 9
5 6 8
5 7 4
5 8 5
5 9 6
5 10 1
5 11 3
5 12 2

11 1 4
11 2 5
11 3 6
11 4 1
11 5 3
11 6 2
11 7 10
11 8 11
11 9 12
11 10 7
11 11 9
11 12 8

6 1 12
6 2 7
6 3 9
6 4 8
6 5 10
6 6 11
6 7 6
6 8 1
6 9 3
6 10 2
6 11 4
6 12 5

12 1 6
12 2 1
12 3 3
12 4 2
12 5 4
12 6 5
12 7 12
12 8 7
12 9 12
12 10 8
12 11 10
12 12 11

Notice that we just have exchanged the elements of the third column in the [1, n/6] first
chunks and have done the same, but reversed, in its respective pairs of chunks (the [n/2+
1, n/2 + n/6] ones.) The remaining chunks do not suffer any change.

6.3 On the dimension of the representation

In this section, we aim to discuss a technical question about which hypergraph dimension
we need to represent each system of equations.

Following the works in Chapter 2, we can observe that some systems can be represented
by graphs. Using our representation techniques (where each cycle in the graph represents
a valid equation of the graph,) Theorem 2.4 is best possible in the following sense: every
finite graph where each edge is painted with a different colour represents a unique system.
This comment is further developed in Section 6.3.1.

As we have seen in the proof of Theorem 3.1, a similar representation idea applies for
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systems over finite fields. A clear example occurs when every k × k submatrix of a k × m
integer matrix A is invertible: the hypergraph representation turns to be a Hamiltonian k-
cycle1 hypergraph on m vertices. Indeed, we can mix both ideas to reduce the dimension of
the hypergraph that represents the system of equations by increasing the number of cycles
in the hypergraph. We show this reduced dimension with an example in Section 6.3.2.

It is not clear how a general statement regarding the dimension of the representation might
look like. However, the role that the variables play in different equations seems to be the
determining factor responsible for increasing the dimension (at least using the techniques
showed in this work.) In the case of systems representable by graphs, each variable plays
a similar role in each of the equations in which appears. In the example of Section 6.3.2,
we mimic this behavior with a group of variables in order to reduce the dimension of the
hypergraph, but we still need a hypergraph to represent such a system.

6.3.1 The case of graphs (for systems in Abelian groups)

From a graph to a system In a given graph2 G with edges labelled with x1, . . . , x|E|

and where each edge has a given orientation, each circuit c on the graph represents a
natural equation with the variables x1, . . . , x|E|. This representation is the one presented
in Chapter 2 and follows the representation of a single equation by a cycle.

Notice that the leaves3 of graph are useless with respect to the system of equations. Thus,
we might consider just graphs without leaves for the graphs that represent systems of
equations.

Notice that each circuit c comes with an orientation. Let xi1, . . . , xit be the edges of the
circuit starting at v and following the circuit orientation. The equation that c outputs in
the Abelian group is:

ǫi1xi1 + · · · + ǫitxit = 0

where ǫij = 1 if the edge labelled by xij has the same orientation in the graph and in the
circuit, or ǫij = −1 if the orientation of the edge xij is opposite to the circuit orientation.

For a given graph, the orientation of the edges is fixed and consistent throughout all the
circuits and the multiplication by ±1 is an automorphism in any given Abelian group.
Following the lines of Chapter 2, the set of all the circuits form a system of equations. In
this way, any graph outputs a unique system of linear equations over an Abelian group.
The uniqueness is up to automorphisms like changing the name of the variables.

If we just use the circuits that form a base of fundamental cycles FC instead of all the
circuits, we can create all the possible circuits and equations in a coherent way by gen-
erating integer linear combinations of the elements in FC. Indeed, the system generated
by the fundamental cycles and the one that contains all the circuits are equivalent in any
given Abelian group (see [21]).

Therefore, we can obtain the system from a given graph G by picking a base of fundamental
cycles. This representation is unique in the sense that, for a given graph, there exists just
one linear system represented by the graph. The uniqueness is up to change of base
by integer unimodular matrices. This graph representation depends on how we have
translated the cycles into equations.

1see [45]
2may be a multigraph
3Edges that do not belong to any proper cycle.
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From a system to a graph So far we have shown how a graph represents a system. In
the following paragraphs we show how we can construct a graph from a graph-representable
system.

For this section, we say that an k ×m integer linear system of equations S with variables
x1, . . . , xm is graph-representable by G if: there is an orientation and a labeling of the
edges with x1, . . . , xm and an spanning tree T for which S = U · Inc where Inc is the
vertex-edges incidence matrix of the fundamental cycles given by T and U is a unimodular
matrix4.

Recall that a base of fundamental cycles with respect to an spanning tree T , contains the
unique cycles formed by adding an edge e to an spanning tree T , with e ∈ E \ T . Since
each fundamental cycle base can be obtained from another via a unimodular change of
base (see [11]), all of them are equivalent in any Abelian group.

If a system is graph-representable by G, then the deletion of any edge e in G, together with
any leaf in G \ e, creates a new graph and a new system associated with it. To be precise,
it has one less equation and, if we have not created any leafs by erasing e from G, also one
less variable.

We can go from the system induced by G to the one induced by G \e and back by choosing
an spanning tree T ⊂ G which do not contain e as an edge. So e is an edge that closes one
fundamental cycle in G. The set of fundamental cycles/equations in G \ e is obtained by
deleting the fundamental cycle/equation that e creates in T . The other way around also
holds: the equations in G are the ones from G \ e together with the new equation created
by adding e to G \ e. Instead of a single edge we might have to add a path, depending on
whether the deletion of e creates leafs or not in G \ e.

With this two considerations in mind, we can build the graph from the bottom-up: starting
by just one equation and add new equations and variables in a consistent way. If, at some
point, we are not able to add another equation to the system, then the system is not graph
representable.

For a system to be graph representable, there has to be an equivalent system with a totally
unimodular system matrix A. Moreover, we can assume that A contains a k × k identity
matrix.

Assume that A is graph representable using G and that the identity matrix contains 1’s
for the variables x1, . . . , xk. These variables are represented by the edges e1, . . . , ek with
the property that G \ {e1, . . . , ek} is a tree.

Indeed, the rows Ai represent some circuits. Since we are considering that cycles represent
equations and the Ai generates the equation space, then the circuits coming from the
rows Ai generate the cycles space of G. Moreover, as the matrix is totally unimodular,
we can represent the cycle/equation space by integer linear combinations of the Ai. Let
us assume Ai is not a proper cycle containing ei but a circuit. Then the circuit induced
by Ai contains more, shorter cycles c1, . . . , cai . Since A has the k × k identity matrix as
a submatrix, there is a distinguished cycle in Ai, namely the one that contains the edge
that represents xi, let it be c1. As none of the other cycles cj , j ∈ [2, ai] contains the
edge representing xs, s ∈ [1, k], they cannot be generated by an integer linear combination
of the Ai. This means that the cycle space is larger than the assumption, reaching a

4This definition can be extended to other pairs of (system, group) depending on the order of the group
and the determinantal of the matrix S. The definition here posted works for any group, regardless of its
order. See Chapter 2 for more details.
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contradiction. Therefore Ai has to appear in the graph as a genuine cycle.

Thus, we can start to build our graph starting with a the first equation in A: it should be
a (directed) cycle, but the order of the variables and the edges might not be the same as
the order in the system A. We continue to add equations with some variables in common
with the previous set of equations. Since any subset of equations from A, S, should be
also graph-representable, if we cannot build a graph with one more equation, S ∪ {Ai},
then the final system is not graph representable for all the groups. Notice that we might
have to change some initial assignation of the variables to the edges in the previously built
graph in order to accommodate the new cycle.

In this way we can determine, for a given graph, which system does it represents. Moreover,
given a system of equations, we can find a graph that represents it or determine that the
system is not graph-representable.

This discussion arose by a question of Candela [14].

6.3.2 Example of a system with lower dimension

In this subsection we present an example of a system that, even though it has four equa-
tions, it can be represented using a 3-uniform hypergraph.

The system is:

x1 − 2x2 + x3 = 0
x2 − 2x3 + x4 = 0

x1 − x5 + x6 + 3x7 = 0
x5 − 2x6 + x7 = 0







, (6.4)

and its matrix is A.

We can represent this system with a 3-uniform hypergraph on 5 vertices, {v1, . . . , v5} and
7 edges:

Edge representing x1: {v1, v2, v3}. Color 1.
Edge representing x2: {v2, v3, v4}. Color 2.
Edge representing x3: {v3, v4, v1}. Color 3.
Edge representing x4: {v4, v1, v2}. Color 4.
Edge representing x5: {v2, v3, v5}. Color 5.
Edge representing x6: {v3, v5, v1}. Color 6.
Edge representing x7: {v5, v1, v2}. Color 7.

Let H be this coloured hypergraph.

Recall that, to translate the values in the sets Xi to the hypergraph, we use a matrix C.
In this case:

C =













−1 −2 −3 0 0
0 −1 −2 −1/3 0
1 0 −1 −2/3 0
2 1 0 −1 0
0 −1/2 −6 0 −7

1/7 0 −3 0 −4
2/7 1/2 0 0 −1













.
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To build this matrix we have gone through the procedure described in Chapter 3 for the
first two equations first and, afterwards, for the last two. Since they have to share the
edge corresponding to x1, we have had to adapt the coefficients of the matrix accordingly.
Originally, the coefficients C5,2 and C7,2 were −1 and 1 respectively; also C5,3 and C6,3

were previously −2 and −1. Notice that we might need to be in a field, or a group, where
the division by 2, 3 and 7 is allowed.

Once the matrix C has being built, the construction of the graph is exactly the same as
explained in Chapter 3 for the case of finite fields.

To show the relation between solutions and copies of the hypergraph we should notice that,
for each single value gi in Xi, there will be |G|2 edges labelled gi. If we see a hypergraph
with all the edges colored in different colors, then it is supported with one vertex in each
class corresponding with vi. Assume the label of the vertices are ν = (ν1, . . . , ν5). Then its
edges bear a solution as AC = 0 and the edges with label g := (g1, . . . , g7) fulfill CνT = gT.

To see that each solution (g1, . . . , g7) generates |G|2 edge-disjoint copies of H, we pick an
index i and an edge with the label gi. Notice that we have already |G|2 choices for this.
This edge, along with the full solution, determines a whole copy as we can split the system
according to the first two equations or the second pair. Assume i ∈ [1, 4], the other case
is similar. As (g1, g2, g3, g4) fulfill the first pair of equations, and the hypergraph that uses
the vertices v1, v2, v3, v4 can be seen as the representation that would correspond with the
system induced by the first pair of equations, there should be a unique vertex, outside
the i-th edge, that completes a quadruple v1, v2, v3, v4 and that supports both the edge
and bears the solution (g1, g2, g3, g4). Once we have x1, we complete the graph with an
appropriate vertex v5 using the same argument, but with the second pair of equations.
This completes the construction of the example.

6.3.3 Comments on the complexity of the system

The graph/hypergraph dimension seems to be related to the way the variables are tied
together in the equations of the system and not to the structure of the solution set.
However, it is not clear which is the minimal dimension of a hypergraph representing a
linear system and how to determine it. Also, the way of representing a linear system using
a hypergraph is not unique; see [68] for a different representation.

The use of hypergraphs allows us to capture the entangled relations between the variables
that a general linear system of equations can impose. However, it is not clear which
dimension is needed. In our construction, we need uniform hypergrahs whose edges have
dimension k + 1, where k is the number of equations. However, this can be reduced to
dimension 2, or graphs, for some systems where the behavior of the variables is essentially
the same in all the equations (Theorem 2.4 and Theorem 2.5). Also, when the variables do
not behave much different from one equation to the other, it can be reduced below k + 1.
This dimension is, therefore, very dependent on the technique used to represent a system
using a hypergraph. It is not at all clear whether the proof of these algebraic removal
lemmas need the hypergraph removal lemma (or the graph removal lemma at all.)

Moreover, when we represent the system in an Abelian group using the techniques from
Chapter 5, we may use higher dimension than k+1 to avoid problems with the divisibility
by the denominators of the rational numbers that appear in the construction of the matrix
C. However, this extra dimensions might not be necessary as the construction by Szegedy
in [73] shows for the k + 2-term arithmetic progression system.
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In several works, like Green and Tao [42] or Gowers and Wolf [38], the authors introduce
notions of complexity of the system related with the solution set of the system. This notion
of complexity reflects the difficulty of problems. For instance, Goldbach’s conjecture or
the twin prime conjecture has “infinite” complexity (the corresponding system has only
two variables). Whereas arithmetic progressions are defined by low complexity systems.
It was hinted to us that there might be a connection between this notion of complexity
and the dimension of hyeprgraphs, but some examples indicate that the two notions are
of different nature (see also the work by Candela [13].)

6.4 Symmetry-preserving lemma

In [73], Szegedy presented a Symmetry-preserving removal lemma. The proof of this result
is similar to the ones found in Theorem 3.1 or Theorem 4.1: a pigdgeonhole principle is
combined with the automorphim group G in the hypergraph is used to ensure that the
edges removed form a union of orbits of G.

Along with the general framework of the Symmetry-preserving removal lemma, a particu-
lar construction involving a generalization of Cayley graphs for hypergraphs is presented
and the automorphism group is specified. In order to use the result, certain conditions
regarding certain applications and group quotients should be checked. This framework can
be connected with the work presented in this thesis by observing that the construction
of the matrices C, as well as the edges of the hypergraph H in Theorem 3.1 or Theo-
rem 4.1, fulfill the conditions required to apply the Symmetry-preserving removal lemma
either for linear systems in finite fields or in finite Abelian groups. Thus the present work,
although independent from the work of Szegedy, can be seen as a formal completion of his
framework.

6.5 Open problems and future work

Removal lemma for non-abelian groups From the perspective of Chapter 2, it seems
a natural question to ask about a removal lemma for “linear” systems on non-abelian
finite groups as presented in Chapter 2. This question seems hard in a general scenario
and the results in Chapter 2 regarding removal lemmas in non-necessarily Abelian groups,
Theorem 2.1 or Theorem 2.5, deal, apparently, with the systems and equations that behave
closely to the Abelian case.

Deletion of the condition on the k-th determinantal A natural question that has
remained open from Theorem 4.1 of Chapter 4 is whether the condition concering the
determinantal of the system is necessary. Under this condition, the behaviour of the linear
system with respect to the group resembles the case in which the group is a finite field.
As we have seen, if dk(A) = d > 1, then there is an equivalent system in which all the
coefficients of a row are multiples of some divisor of d. This observation indicates that,
even though the condition might seem artificial, it is somewhat natural.

Notice that, if gcd(dk(A), |G|) > 1, then the solution set S(A,G) of a full rank k × m
integer linear system A in Gm does not have size |G|m−k. Indeed, |S(A,G)| is a larger
function depending A and G as shown in Section 4.5. Therefore, two notions of “small
number of solutions” appear: the easier case, where we ask for at most δ|G|m−k solutions,
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or the more natural bound δ|S(A,G)|. Even though the answer seems to be affirmative in
both cases, additional ideas are needed.

The condition over the determinantal can be relaxed in some cases. If the group is close
to a finite field, like Zn

3 × Z2, then some equations can be omitted as they are almost
superfluous. Even more, when the proportion of the subgroup S(A,G) ⊂ Gm with respect
to Gm−k is a constant, then the determinantal condition can be bypassed. Notice that
these two examples represent the extremal cases: either the subgroup |S(A,G)|/|Gm−k | is
a constant fraction of Gi for some i, or |S(A,G)|/|Gm−k | has constant size.

For instance, let G = Zn. By Proposition 4.13 the system Ax = b, x ∈ Zm
n is equivalent to

Ax = b where, for some rows r1, . . . , rs, we have
∏s

i=1 gcd(Ari,1, . . . , Ari,m) = d. Therefore,
the solution set of Ax = b is, either the empty set, or the union of the solutions sets of
the systems A′x = bi for some {bi}i∈[1,|G|/|d·G|] where d · G is the group {dg : g ∈ G}

and dk(A
′) = 1. Notice that |G|/|d · G| < d. If the number of solutions to Ax = b, with

x ∈
∏m

i=1 Xi, is less than δd|G|m then, for each of the bj, the number of solutions to
A′x = bj is at most δd|G|m; using Theorem 4.1, we obtain sets Xi,j with |Xi,j | < ǫ/d|G|
such that A′x = bj with x ∈

∏m
i=1 Xi \Xi,j is solution-free. Therefore, there is no solution

to Ax = b with x ∈
∏m

i=1 Xi \ (∪
|G|/|d·G|
j=1 Xi,j). Since | ∪

|G|/|d·G|
j=1 Xi,j | < ǫ|G|, a removal

lemma is shown.

Although it seems that the determinantal condition might be omitted from Theorem 4.1
and the hypotheses of the theorem changed accordingly, the construction presented in
Chapter 4 does not seem to work in the general case. A deeper understanding of the
structure of the solution set might be needed in order to show a similar result.

Number of monochromatic solutions for all finite groups In Chapter 5 we have
shown that, under some conditions on the system, the number of monochromatic solutions
in certain groups is asymptotically as large as one can expect. The cases treated are those
where all the elements in the ambient group have bounded order. Moreover, using [28,
Theorem 1] and an standard argument we can show:

Theorem 6.4. Let A be a k × m full rank integer matrix with m > k. Let r > 0 be an
integer and ǫ > 0 be a positive number. Let G be an Abelian group of order n. Assume
A fulfills the columns property in Q and there exists a g ∈ G and |g|/|G| > ǫ. Then,
there exist a δ = δ(ǫ, r,A) > 0 such that for any r-coloring, the number of monochromatic
solutions to Ax = 0 is, at least,

⌊δGm−k⌋.

Therefore, we have sufficient conditions to ensure a large number of monochromatic so-
lutions in the two opposite cases of finite Abelian groups: large products of small cyclic
groups and essentially a unique cyclic group. Even though the proofs of Theorem 5.26 and
[28, Theorem 1] rely heavily on the structure of the group, it seems plausible to ask if a
similar result might hold for any Abelian group, but new ideas seem to be needed.

Characterization for solutions of maximal order Based on the comments in Sec-
tion 5.6, one may wonder about a characterization of the systems for which any r-coloring
contains solutions where all its elements have maximal order, or, at least, relax the condi-
tions of Lemma 5.8.
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This is, Lemma 5.8 presents the n-columns condition as sufficient to ensure, for any r-
coloring, monochromatic solutions where all the elements have maximal order. However, it
is not clear which condition might be necessary and sufficient to obtain the same conclusion.

Monochromatic solutions on non-abelian groups In the case of monochromatic
solutions of linear systems in non-abelian groups very little is known. For example [43,
Theorem 3.3.1] shows that: for every r, there exists an N = N(r) such that if a group G
has more than N elements, then every r-coloring contains a monochromatic solution to
the equation x + y = z.

However, a general sufficient condition (of those systems for which any finite group, with
large enough order, have a monochromatic solution for every r-coloring) is missing. A
more concrete question could be: find characterizations of systems for certain families of
groups, like Deuber’s result [20] did for finite Abelian groups.

On bounds of the removal lemma The relation between the number of copies of a
(hyper)graph and the number of (hyper)edges to be removed makes these results not valid
for practical purposes. The original proof of the removal lemma for graphs involved the
use of the Szemerédi Regularity Lemma. This makes the above relation be tower-like: let
K be a graph on n vertices, if the number of edges to be deleted is ǫn2, then the upper
bound on the number of graphs H on h vertices that we can erase is

1

2222
...
}≈1/ǫ5

nh.

This bound comes from the number of pairs needed to obtain an ǫ-regular partition of a
graph. Since Gowers [35] showed that for some graphs

1

2222
...
}≈log(1/ǫ)

partitions are needed, the tower-type bound is unavoidable.

In [27], Fox showed another proof of the removal lemma for graphs without using Sze-
merédi’s regularity lemma and could lower the upper bound from a tower-type of height
1/ǫ5 to

1

2222
...
}≈h4 log(1/ǫ)

.

However, an upper bound for the removal lemma which is not of tower-type is not known.
Moreover, the bounds for the hypergraph removal lemma are even worse than for graphs
and no improvement is known.

Removal lemma for compact Abelian groups A recent result of Candela and Sissak
[15] shows that a removal lemma for linear systems of equations holds for the circle. The
proof can be extended to the groups Tn, but the relation between the measure of the set of
solutions and the measure of the set of elements to be removed depends on the topological
dimension of the compact Abelian group, n in Tn. As it is suggested in [15], it seems
interesting to try to remove such dependence. Szegedy and the author are working on
that direction.
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[55] L. Lovász and B. Szegedy. Szemerédi’s lemma for the analyst. Geom. Funct. Anal.,
17(1):252–270, 2007.
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[61] V. Rödl and M. Schacht. Regular partitions of hypergraphs: regularity lemmas.
Combin. Probab. Comput., 16(6):833–885, 2007.
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graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), volume 260 of Colloq.
Internat. CNRS, pages 399–401. CNRS, Paris, 1978.
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