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Abstract

Electrical Impedance Spectroscopy field has been widely used in clinical and
biotechnological applications for the electrical characterization of a wide range
of materials. When applied to biological materials, Electrical Bio-Impedance
(EBI) provides information the tissue viability and cell morphology as well as
cell membranes and intra/extra cellular spaces. The new Electrical Impedance
Spectroscopy (EIS) techniques based on broadband excitations are expected to
help to understand various unsolved problems in biomedical applications. Novel
experiments that were thought to be difficult to perform in the past years were
explored in order to solve complex problems encountered during the studies of
time-varying biological systems, i.e. respiratory and cardiovascular systems.

The topics research presented in this thesis cover the challenges to measure
time-varying EBI when exciting with broadband signals. On one hand, the
optimal multisine excitation has been designed to overcome the intrinsic loss
of accuracy when measuring in a reduced measuring time. More precisely, this
research activity has contributed to a formal approach for designing the optimal
time and frequency domain multisine excitation in such way that maximum
accuracy is obtained when measuring with time and energy constraints. The
results obtained have helped to understand how the multisine amplitudes and its
frequency distribution contribute to increase the impedance spectrum accuracy.

On the other hand, reducing the measuring time makes the measurements to
be prone to the influence of the transients introduced by noise and the dynamic
time-varying properties of the system under test. While reducing the measuring
time enables to measure the system non-stationary behavior, the low excited
frequencies are prone to be corrupted by the leakage influence because of the
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transients. For that reason, a novel frequency domain approach for impedance
spectrum estimation has been applied by means of the Local Polynomial Method
(LPM), which overcomes the signal processing limitations of current spectral
estimation methods based on cross and auto correlation using windows.

This thesis has contributed with novel findings of relevance from successful
applications where the optimal multisine excitation and the fast LPM has been
together put in practice: (1) in-vivo human lungs tissue characterizaton, and
(2), in-vivo healthy myocardium tissue electrical impedance characterization,
both measurement campaigns with the collaboration of the pneumology and
cardiology services from Hospital Santa Creu i Sant Pau (HSCSP).
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Why don’t you take a holiday Baldrick .... did you enjoy it?.

-Blackadder (1983)

0
Thesis Introduction

0.1 Research Projects
This thesis presents the results of the author’s research work carried out dur-
ing his PhD study in the Electronic and Biomedical Instrumentation Group
at the Department of Electronics Engineering from the Technical University of
Catalonia (UPC) in Barcelona (Spain). As wells as in the Department of Fun-
damental Electricity and Instrumentation (ELEC) from the Vrije Universiteit
Brussels (VUB) in Brussels (Belgium). During these years, the author has been
enrolled in three research projects financed by public funding. The goals of each
of these projects are listed below:

• Development of non-destructive monitoring techniques and minimally in-
vasive cellular engineering applications for myocardial regeneration. The
objective of this project is to develop new techniques for in-vitro and in-
vivo monitorization of cell cultures applied to cardiac regeneration. The
project is carried out in collaboration with the Insuficència Cardíaca i Re-
generació Cardíaca (ICREC) research group from Fundació d’Investigació
en Ciències de la Salut Germans Trias i Pujol (IGTP). Funded by the
Spanish Ministry MICINN through the research project SAF2008-05144-
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C02-02.

• Development of biological matrices to repair the postinfarction scar: Lo-
cal release of stem cells, angiogenic factors and on-line myocardial regen-
eration monitoring. The goal of this project is to regenerate infarcted
myocardium with a novel bioactive implant based on electronic sensors, a
porous biocompatible and biodegradable membrane and a local delivery of
stem cells. The project is carried out in collaboration with the Insuficencia
Cardiaca i Regeneracio Cardiaca (ICREC) research group from Fundació
d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP) and
with the Tissue Engineering Laboratory from Institut Quimic de Sarria
(IQS). Funded by Fundació La Marató TV3 through the research project
080331.

• Regeneration of Cardiac Tissue Assisted by Bioactive Implants. The ob-
jective of the project is to develop a patch to treat post-infarction dam-
aged tissues and to promote remodeling of necrotic areas of the injured
tissue. The project is carried out in collaboration with the Insuficèn-
cia Cardíaca i Regeneració Cardiaca (ICREC) research group from Fun-
dació d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP).
Funded by the 7FP-EU from the European Union.

The tasks developed for the previously mentioned projects have consisted
in:

• Development of a system of combined electrical and mechanical training
to promote stem cell differentiation.

• Development of the measuring techniques for in-vitro non-destructive mon-
itoring of cell viability, proliferation and differentiation stages.

• Contribution to the implementation of a bioactive implant, consisting in
a combination of scaffold, cells, electrodes and a measurement system to
evaluate the engineered tissue viability for myocardium regeneration.

• Development of the methods for on-line dynamic engineered tissue char-
acterization.

0.1.1 Introduction
The electrical impedance of a biological material is known as Electrical Bioimpedance
(EBI) and it refers to the opposition that has a biological material to the pas-
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sage of an electric current. The Electrical Bioimpedance enables to characterize
physiological conditions and events that are interesting for physiological research
and medical diagnosis. Although the Electrical Bioimpedance weakness is its de-
pendence on many physiological parameters, it is a suitable approach for many
medical applications where minimally invasive and real-time measurements with
simple and practical implementations are needed.

The Electrical Impedance Spectroscopy (EIS) techniques based on broad-
band excitations are expected to help to understand various unsolved problems
in biomedical applications. Broadband EIS opens up the possibility of reducing
drastically the measuring time needed to measure EBI time-varying systems.
However, measuring in a short time compromises the EBI accuracy. The way
to overcome this intrinsic loss of accuracy relies on the design of the appropri-
ate time/frequency input excitation properties and the use of suitable spectral
analysis processing techniques.

The presented thesis covers the topics related to the study of broadband ex-
citations for Impedance Spectroscopy in biomedical applications. More specifi-
cally, the influence of the multisine excitation time/frequency properties on the
impedance spectrum accuracy and its further optimization. Furthermore, an
state-of-art signal processing method has been implemented to process in real-
time EBI data under the influence of transients, which is a common situation
when measuring in a short measuring time. The main goal is to apply all this
knowledge for myocardial tissue regeneration characterization. Nevertheless,
any of the research projects that have supported this thesis have issued func-
tional beating tissue at the moment of writing the thesis. For that reason, the
theory presented has been validated over different dynamic EBI applications
where the impedance spectrum non-stationary behavior was pretended to be
characterized.

0.1.2 Thesis research objectives
The purpose of this research is to develop the methods for biological time-
varying tissue characterization using Impedance Spectroscopy. This goal covers
the following topics:

• Study, design and optimization of the broadband multisine excitation for
Electrical Bio-Impedance characterization.

• Study of the non-parametric spectral analysis techniques for short time
impedance spectrum estimation.
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• Design, implementation and validation over a multichannel custom impedance
analyzer system applied to non-destructive biological material characteri-
zation.

• Experimental validation of in-vivo myocardium tissue electrical impedance
measurements.

• Development of tissue state multivariate estimators, including time-frequency
behavior information, for in-vitro detection of stem cell differentiation and
in-vivo heart tissue viability for cardiac tissue regeneration.

0.2 Thesis contents and outline

This PhD thesis is organized in two parts. The first part contains an introduc-
tory report to the research area of the thesis. The second part contains the
manuscripts as a result of this research.

Part I is divided in five chapters that contain the main topics involved in the
research activity performed during the thesis work. Chapter 1 is an introduc-
tory summary to the main concepts and definitions of the Electrical Impedance
Spectroscopy (EIS) applied to Electrical Bioimpedance (EBI) measurements.
Chapter 2 presents a comparative study of EIS using broadband signals and
introduces the motivation for designing the optimal time-frequency excitation.
At this point, the reader is recommended to read Paper A in order to go deeper
into the optimal input excitation design. Chapter 3 examines the problem of
estimating the impedance frequency response from short time measurements
corrupted by the presence of transients. The reader is recommended to read
Paper B to further examine its application for short time in-vivo myocardium
tissue electrical impedance characterization. In Chapter 4 there is a clinical
application where the findings of Chapter 2 and Chapter 3 have been put in
practice for in-vivo human lung tissue characterization. Finally, Chapter 5 lists
the major conclusions obtained in this thesis and the guidelines for future re-
search.

Part II includes the scientific manuscripts originated from the research activ-
ity of this thesis and already accepted for publication in two scientific journals.
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0.2.1 Summary of Publications
0.2.1.1 Scientific Journals

Paper A B. Sanchez, G. Vandersteen, R. Bragos and J. Schoukens, Optimal
Multisine Excitation Design for Broadband Electrical Impedance Spectroscopy,
Meas. Sci. Technol. 22 115601, 2011, doi:10.1088/0957-0233/22/11/115601,
http://stacks.iop.org/0957-0233/22/115601

The aim of this work is to solve the problem of the optimal multisine ex-
citation design for accurate Electrical Bioimpedance estimation. The a priori
knowledge of the impedance spectrum enables to optimize the excitation in the
frequency domain. As a result, the impedance spectrum accuracy is maximized
for a discrete number of excited frequencies under energy and measuring time
constraints. The main finding is the study of the contribution of the multisine
amplitude power spectrum and frequency distributions to the Electrical Bio-
Impedance accuracy for characterizing electrical impedance relaxations. Other
findings of relevance are:

• The calculation of the EBI dispersion function and the study of its relation
to the EBI accuracy.

• The influence of the multisine amplitude power spectrum and the number
of excited frequencies and their distribution to the EBI accuracy.

Paper B B. Sanchez, J. Schoukens, R. Bragos and G. Vandersteen, Novel
Estimation of the Electrical Bioimpedance using the Local Polynomial Method.
Application to in-vivo real-time Myocardium Tissue Impedance Characteriza-
tion during the Cardiac Cycle, Accepted for publication IEEE Transactions on
Biomedical Engineering.

This paper presents a novel approach for impedance spectrum estimation,
based on the Local Polynomial Method (LPM) for real-time time-varying Elec-
trical Bio-Impedance (EBI) characterization. The LPM efficiently rejects the
leakage error’s influence on the impedance frequency response estimation when
the EBI is under the effect of transients compared to the classical spectral anal-
ysis methods based on windows. The theory and instrumentation is supported
by a set of validation measurements compared to a commercial impedance ana-
lyzer. The obtained results present relevant findings of a successful application
of the LPM for real-time in-vivo myocardium tissue electrical impedance char-
acterization. Further research should enable to detect how the systolic and
diastolic function as well as cardyomiocyte contractile activity change during
time in an ischemia process.
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0.2.1.2 Conferences

• Sanchez, B., Vandersteen, G., Bragos, R. and Schoukens, J.: A Novel Ap-
proach for Impedance Spectrum Estimation: the Local Polynomial Method.
International Workshop on Impedance Spectroscopy, Chemnitz, Germany.
September 2011. Presented.

• Sanchez, B., Vandersteen, G., Rosell, J., Cinca, J and Bragos, R.: In-cycle
Myocardium Tissue Impedance monitoring using Impedance Spectroscopy
based on Multisine excitation. 33rd Annual International Conference of
the IEEE Engineering in Medicine and Biology Society, Boston, USA.
August 2011. Presented.

• Sanchez, B., Bragos, R. and Vandersteen, G.: Influence of the multisine
excitation amplitude design for biomedical applications using Impedance
Spectroscopy. 33rd Annual Internation Conference of the IEEE Engineer-
ing in Medicine and Biology Society, Boston, USA. August 2011. Poster.

• Llucia, A., Sanchez, B., Soler, C., Roura, S., Prat, C., Gálvez, C., Rosell,
J., Bragos, R. and Bayes, A.: Electrical stimulation for cardiac bioengi-
neering with subcutaneous and cardiac adipose-tissue derived progenitor
cells (ATDPCs). European Society of Cardiology Congress. Paris, France.
August 2011. Poster.

• Llucia, A., Sanchez, B., Soler, C., Roura, S., Prat, C., Gálvez, C., Bra-
gos, R. and Bayes, A.: Electrical stimulation of adipose tissue-derived
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regeneration purposes. Heart Failure Congress of the European Society of
Cardiology. Gothemburg, Sweden. May 2011. Poster.

• Sanchez, B., Rosell, J. and Bragos, R.: Multifrequency simultaneous bio
impedance measurements using multitone burst for dynamic tissue charac-
terization. International Conference on Electrical Bioimpedance, Florida,
USA. April 2010. Presented.
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Anual de la Sociedad Española de Ingeniería Biomédica CASEIB, Cadiz,
Spain. November 2009. Presented.

• Sanchez, B. and Bragos, R.: Fast Electrical Impedance Spectroscopy mea-
surement techniques for dynamic bioimpedance characterization. Barcelona

18



Forum on Ph.D. Research in Electronic Engineering, Barcelona, Spain.
October 2009. ISBN 978-84-7653-398-7. Presented.

• Sanchez, B. and Bragos, R.: Fast Electrical Impedance Spectroscopy for
moving tissue characterization using Bilateral QuasiLogarithmic Multisine
bursts signals. 4th European Congress of the International Federation for
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scopia de Impedancia Electrica para la caracterización de tejidos biológi-
cos. Aplicación específica a medidas dinámicas. XXVI Congreso Anual
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691-3641-6. Presented.
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Part I

The Far Side, by Gary Larson.

21



This page intentionally left blank.



Baldrick, no! It’s the worst plan since Abraham Lincoln said "Oh I’m sick of kicking around the house tonight,
let’s go take in a show!".
.

-Blackadder (1983)

1
Introduction to Electrical Bio-Impedance (EBI)

Section 1.1 and 1.2 of Chapter 1 introduce the general concepts related to the
study of dielectric properties of materials and their frequency response. The
application to biological systems and living cells is referred as Electrical Bio-
Impedance (EBI) and is described in Section 1.3. Finally, Sections 1.4 and 1.5
introduce the basics of Electrical Impedance Spectroscopy (EIS) and its main
applications.

1.1 Basic Definitions
The Electrical Bio-Impedance (EBI) theory comes from the dielectric spec-
troscopy field, which measures the dielectric properties of a material as a func-
tion of frequency. It is based on the interaction between an external stimulus
and the electric dipole moment of the biological sample, usually expressed as
a function of its permittivity or conductivity. Furthermore, the cell membrane
has a dielectric behavior that, in addition to the ionic conduction of the in-
tra and extra cellular medium, constitutes the basic electrical phenomenon in
the Electrical Impedance Spectroscopy (EIS) field when applied to biological
materials.

23
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A dielectric is an insulator material whose electrons are linked to the atoms
that constitute it. Thus, the electrons can not move freely and will not gener-
ate conduction current. The effect of the electric field in these materials is a
short movement in the charges with respect to the original position, known as
polarization. Then,

→

D is the electrical displacement vector and
→

J the induced
current defined as follows:

→

D = ε0
→

E + →P (1.1)
→

J = σ
→

E (1.2)

where E⃗ is the electric field vector, ε0 is the vacuum’s dielectric permittivity,
σ is the conductivity and �→

P the polarization vector. Taking into account that
the polarization is caused by the electric field, it is possible to find the depen-
dency between polarization and the electric field. Nevertheless, the electrical
susceptibility of the material has to be known. In an anisotropic material, the
polarization and the field have not necessarily the same direction. Then, each
component of the polarization is related to the component of the electric field
according to the polarization vector as follows (Malmivuo and Plonsey, 1995):

→

P (→r , t) = ε0 (T(e1) +T(e2) +T(e3) +⋯) ⋅ →E (→r , t) (1.3)

where T(ei) are in general tensors and correspond to the series Taylor’s coeffi-
cients, also known as the electrical susceptibility of the material.

If an isotropic and homogeneous material is considered, which means that
the polarization is independent from the field orientation and that the electrical
properties of the material are independent of →r , the electrical susceptibility then
becomes a scalar:

→

P (→r , t) = ε0e
→

E (→r , t) (1.4)

Therefore, the displacement vector defined in eq. 1.1 can be rewritten as:

→

D = ε0
→

E+ ε0e
→

E = ε0 (1 + e) →E (1.5)

Then, two parameters that characterize the material can be defined: the mate-
rial’s relative permittivity εr and the material’s permittivity ε:

εr = (1 + e) (1.6)

ε = ε0εr (1.7)
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Figure 1.1: Electrical susceptibility tensor’s components in a three-dimensional Cartesian
coordinate system →

r .

Finally, the displacement vector for any isotropic and homogeneous material
results into: �→

D = ε0εr
�→
E (1.8)

The same procedure can be followed for magnetic materials, so the magnetic
intensity field can be written as follows:

→

B = μ0 (1 +m) →H = μ0μr

→

H (1.9)

where μ0 is the vacuum permeability, m is the magnetic susceptibility factor,
μr is the material’s relative permeability and μ is the material’s permeability.

1.1.1 Complex permittivity and conductivity
Until now, we have assumed that the electric and magnetic fields applied to the
material did not suffer losses. This is a good approach in a vacuum environ-
ment. However, this is not necessarily true inside materials, neither in biological
materials, where ionic currents are present in intra/extra cellular milieu. Con-
sidering the study in the sinusoidal steady state, permittivity and conductivity
are complex numbers, denoted by the superscript ∗, usually defined as:

ε∗ (ω) = ε
′

i (ω) − jε
′′

i (ω) = εr − j
σ

ωε0
(1.10)



26 Chapter 1. Introduction to Electrical Bio-Impedance (EBI)

σ∗ (ω) = σ + jωεrε0 (1.11)
and the relation between the complex conductivity and the permittivity is:

σ∗ (ω) = jωε∗ (ω) ε0 (1.12)

Once the parameters that characterize materials are identified, that is σ, ε and
μ, the next step is to define a section with known dimensions and the current
distribution. A simple approach is to define a material volume formed by a
cross-sectional area A separated by d length as is shown in Figure 1.2. As a

d

0�r�

A

Figure 1.2: Two parallel conductive plates separated by a dielectric.

result, the equivalent capacitor created will present a capacity:

C = εrε0
A

d
(1.13)

and a conductivity as follows:
G = σ

A

d
(1.14)

So, the equivalent electrical impedance, which depends on the angular frequency
ω, is related to the length d and the cross-sectional area A of the material
according to:

Z (ω) = ρ∗ (ω) d

A
(1.15)

where d/A is known as cell constant and has dimensions of [m−1]. ρ∗ is the
complex resistivity and is expressed by:

ρ∗ (ω) = 1
σ∗ (ω) = 1

σ + jωεrε0
(1.16)

1.2 Dielectric relaxations
The dielectric response to an excitation is not instantaneous because time is
needed to re-order the charges. In a first approximation, two assumptions are
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made: (1) the material only has one relaxation process with a single characteris-
tic time constant τ and (2) the polarization increases according to an exponential
curve as a function of time. As a result, the dielectric response when applying
an electric field step excitation can be considered as a first order response, which
means that the response of dielectric to a sinusoidal excitation will depend on
the frequency ω.

1.2.1 Frequency dependence of dielectric properties
The term dispersion is used to indicate that the observed electrical properties
are related to dielectric losses associated with the relaxation of electric dipoles.
Each of these dispersions are characterized by an average relaxation time τ .
In the frequency domain, the dielectric expression is called the Debye’s single
dispersion equation:

ε∗ (ω) = ε∞ + εs − ε∞
1 + jωτ

(1.17)

where εs and ε∞ are the complex values of permittivity in dc and high frequency
respectively. Considering the effect of the static conductivity σs due to the free
charges of the material, the following equation is obtained:

ε∗ (ω) = ε∞ + εs − ε∞
1 + jωτ

− j
σs

ωε0
(1.18)

A similar procedure can be applied for the current density of the material:

σ∗ (ω) = σ∞ + σs − σ∞
1 + jωτ

+ jωε0ε∞ (1.19)

As mentioned above, both expressions are related. The modulus of the complex
permittivity and conductivity are:

∣ε (ω)∣2 = εs
1 + (ωτ2)2
1 + (ωτ)2 (1.20)

∣σ (ω)∣2 = σs
1 + (ωτ1)2
1 + (ωτ)2 (1.21)

1.3 Electrical Bio-Impedance (EBI)
The term Electrical Bio-Impedance (EBI) refers to the opposition of a biolog-
ical material to the pass of electrical current. Biological materials are formed
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by millions of cells submerged into an ionic liquid. In essence, any cell can be
simplified as a compartment with a watery interior that is separated from the
external environment by a membrane (the plasma membrane) that prevents the
free flow of molecules in and out of cells. In addition, each cell is internally
formed by different organelles, i.e. nucleus, endoplasmatic reticulum, golgi ap-
paratus and mitochondodria (see Figure 1.3 left). The basic function of the

Plasma Membrane

Golgi Apparatus

Rough endoplasmatic
reticulum

Vacuole

Nucleus
Nucleoulus

Vesicle formation

Cytoplasm
Cilia

Mitochondrion
Ribosomes

Smooth
Endoplasmic
Reticulum

Lysosome

Centriole

Phospholipid bilayer
Hydrophobic tail

Hydrophilic head

External Surface Membrane
Carbohydrate chain

Protein
Molecule

Glycolipid

Glycoprotein

Internal Surface Membrane

Figure 1.3: Schematic of a mammalian cell and some of its constituents (left); draft of the cell
membrane’s lipidic bilayer (right). Reproduced from (Alberts et al., 2002).

cell membrane is to control cell’s communication. It is composed primarily of
two layers of phospholipid molecules. The phospholipid have a "water-loving"
(hydrophilic) end and a "water-hating" (hydrophobic) end. As it is shown in
Figure 1.3 (right), the phospholipids are oriented with all the hydrophilic ends
directed towards the inner and outer surfaces and the hydrophobic ends buried
within the interior, forming a bilayer that acts like a barrier between the cell
and the Extra Cellular Matrix (ECM). Moreover, the bilayer cell membrane
contains cholesterol and protein channels that provide strength, flexibility and
permeability characteristics.

In fact, the cell membrane presents an electrical impedance which is highly
frequency dependent due to its high capacitive response. As is shown in Figure
1.4, low frequency currents mostly flow through the extra cellular liquid because
the cell’s membrane impedance is too big. Meanwhile, the high frequency cur-
rents flow through intra and extra cellular liquid. Then, the impedance will
be bigger at low frequencies than in higher frequencies, giving as a result the
relaxation of this impedance as a function of ω.

However, the structure of the biological material and its frequency’s depen-
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Low frequency Intracellular liquid

Extracellular
liquid

High frequency

Figure 1.4: Alternating current flowing through a biological sample; low and high frequency
density current lines flow through the Extracellular liquid and through the Extra/Intracellular
liquid respectively.

dance is more complex than this simple approach. This is due to the fact that
there are more factors involved. Therefore, the EBI information will be modified
since a lot of cells exist in the tissue region of interest, and all of them contribute
into the EBI measurement. Thus, the EBI provides useful information about
the passive electrical properties of the tissue measured, which is directly related
to its physiological state.

There are three main characteristic relaxations associated with the Electrical
Bio-Impedance, each one related to a particular phenomenon. Figure 1.5 shows
how the modulus of the permittivity and conductivity of the Electrical Bio-
Impedance change with frequency:

• α is influenced by the intracellular structures, ionic dissemination and
dielectric losses of the material. The frequency range is from mHz up to
10 kHz.

• β represents the interfacial polarization effects and it is the structural
relaxation described in Figure 1.4. The frequency range is from 10 kHz
up to 100 MHz and includes responses from intracellular structures.

• γ has information about the dipolar relaxations, i.e. water molecules and
proteins. The frequency range is from 100 MHz up to 100 GHz.
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Figure 1.5: Dielectric permittivity ε (decreasing) and conductivity σ (increasing) as function
of frequency. Reproduced from (Schwan, 1994).

1.4 Electrical Impedance Spectroscopy (EIS)
One of the techniques used for Electrical Bio-Impedance (EBI) measurements
is the Electrical Impedance Spectroscopy (EIS). EIS has been widely used in
clinical investigation, physiological research and medical diagnosis. In Section
1.5 there is a list of some examples of clinical applications.

In the field of biological materials and tissue engineering, EIS has contributed
to the determination of the tissue and organs state. Historically, EIS measure-
ments have been done using the classical sweep-sine technique. The measure-
ment of impedance using this technique consists in applying an AC current to
the biological system and then measuring the potential through the system.
Supposing that we apply a sinusoidal current excitation I (ω) to a linear sys-
tem, the response to this potential is an AC potential signal V (ω), containing
the excitation frequency ω but with a different amplitude V and phase θ. The
term impedance was introduced by Heaviside in 1886, when he considered both
magnitudes as complex values. So, the impedance can be expressed as the ratio
of the measured voltage response over the excitation current according to the
Ohm’s law:

Z (ω) = V (ω)
I (ω) = V cos (ωt + φ)

I cos (ωt + θ) (1.22)
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Using Euler’s relation, it is possible to express impedance as a complex number:

Z (ω) = ∣Z ∣ ejϕ = ∣Z ∣ (cosϕ + j sinϕ) (1.23)

where ∣Z ∣ is known as the impedance magnitude and ϕ the phase, defined by:

∣Z ∣ = V

I
ϕ = φ − θ (1.24)

1.4.1 Impedance representation
The magnitude and phase of a complex impedance Z (ω) value can be repre-
sented in a two-dimensional reference system. The phase of the imaginary num-
ber ejϕ indicates the direction of the vector impedance magnitude ∣Z ∣. Complex
impedance may be plotted in the plane with either rectangular or polar coordi-
nates, as shown in Figure 1.6 where Zre and Zim are the real and imaginary part

0 re

im Z

Z R e( )

Im

�

�

Z

Z

( )Z

Z( )

0

Figure 1.6: The impedance Z plotted as a vector on the complex plane.

of the complex impedance known in the literature as resistance and reactance
respectively. Resistance and reactance are defined by:

Zre = ∣Z ∣ cos (ϕ) Zim = ∣Z ∣ sin (ϕ) (1.25)

and they are also related to the magnitude and phase according to:

∣Z ∣ = √
Z2re +Z2im ϕ = arctan Zim

Zre
(1.26)

1.4.2 Bio-Impedance electrical modeling
There are many different models of lumped parameters in order to electrically
represent a biological system, from a single cell to more complex systems like
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organs. A first approach for determining a simplified description of the macro-
scopic passive electrical properties of the tissue is to consider a model formed
by a cellular suspension in an extracellular liquid. As shown in Figure 1.7, this
assumption enables to model data within an electrical circuit given by three
electrical components, usually described for representing the β relaxation: (1),
Re resistance models the impedance of the extracellular liquid, (2), Ri resis-
tance models the intracellular liquid, and (3), Cm capacitor which models the
membrane’s capacitance.

R R

R C

e i

m m

CmRm

R R

C

e i

m

Figure 1.7: The equivalent circuit of a living cell including the Rm parameter, which models
the membrane’s resistance.

Due to the frequency behavior and its dependence on the cell’s characteris-
tics, it is possible to assign a frequency impedance relaxation for each type of
tissue. Then, it is possible to identify different tissues located close to each other
in the body (Rigaud et al., 1995). However, this simplified model is far from
reality for many reasons. One reason is that it does not explain multiple relax-
ations. To overcome this limitation, in (Cole and Cole, 1941) was introduced
the concept of distributed time constant for more accurate representations of
the frequency response. This is modeled by the α parameter shown in eq. 1.18:

ε∗ (ω) = ε∞ + εs − ε∞

1 + (jωτ)1−α
− j

σs

ωε0
(1.27)

where α is an empirical parameter characteristic of the distribution of the re-
laxation frequencies. When α is equal zero, the Cole-Cole equation is reduced
to the Debye equation shown in eq. 1.18. It is possible to rewrite the Cole-Cole
equation that models the complex permittivity shown in eq. 1.27 and considers
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the electrical impedance as follows:

Z (f) = R∞ + R0 −R∞

1 + (j f
fc
)1−α

(1.28)

where the central frequency fc is the frequency corresponding to the mean value
of the distribution of the relaxation frequencies. As shown in Figure 1.8, the
equation 1.28 represents an arc of circumference in the complex plane. The
depression of the arc is defined by the α parameter. Impedance data plotted
from Cole equation into the complex plane is usually referenced in the literature
as Cole plot, although Nyquist, Bode or Wessel references are also used.
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Figure 1.8: Representation of the complex plane of the impedance of the Cole plot.

A limitation that have the Cole equation (see eq. 1.28) and the Cole-Cole
equation (see eq. 1.27) is that they do not explain overlapping relaxations. De-
spite of this, both are widely used for Electrical Bio-Impedance analysis. How-
ever, an alternative to the distributed time constant was proposed in (McAdams
and Jossinet, 1995) when multiple relaxations are present. It is based on mod-
eling a pseudocapacitor with constant phase element. Another possibility is to
associate different serial RiCi branches where each branch models a specific re-
laxation. All the mentioned branches are in parallel with an unique resistance
that models the extracellular liquid. A discussion of the convenience of con-
necting equivalent electrical components in series or in parallel is available in
(Smith, 1995).
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1.5 Electrical Bio-Impedance applications
Electrical Impedance Spectroscopy (EIS) is a widespread technology that, dur-
ing the past few years, has become increasingly popular. Proof of this success
is that there are numerous applications that have evolved not only in clinical
investigations, physiological research and medical diagnosis and imaging but
also for food processing (Pliquett, 2010), electrochemical (Orazem and Tribol-
let, 2008) and biotechnological fields. There are many examples of medical
applications, e.g body composition determination (Kyle et al., 2004), skin can-
cer detection (Aberg et al., 2004), and Electrical Impedance Tomography (EIT)
(Brown, 2003) among others. Through animal in-vivo and ex-vivo experimenta-
tion, tissue electrical impedance has been shown to correlate with many phys-
iological states of the tissue (Valentinuzzi et al., 1996), e.g. the regional and
global ischemia processes in myocardium (Salazar et al., 2004), edema (Schaefer
et al., 2002), and detection of rejection episodes following heart transplantation
(Grauhan et al., 1996; Cinca et al., 1998). In electrochemical field, EIS has
been widely used as a detection tool for many different types of biosensors (Bao
et al., 2008; Lisdat and Schäfer, 2008) and to study complex reaction mech-
anisms, corrosion reactions, surface changes, and properties of semiconductor
materials.

Most of the previously cited EIS applications are based on frequency impedance
measurements using frequency sweep technique. A classical example is the char-
acterization of the myocardium tissue state using electrical impedance. This is
usually performed at a single frequency, in the 1 kHz - 10 kHz range (Fallert
et al., 1993) or performing a frequency sweep from 1 kHz to 1 MHz (Gersing,
1998; Salazar et al., 2004). Both in-vivo single-frequency and multifrequency
studies have been reported in (Fallert et al., 1993) for the ischemic tissue (Mellert
et al., 2010) and healed scar (Cinca et al., 1998). Although the time variation of
the impedance signal has information about the tissue dynamics, this informa-
tion has been usually underestimated in all those single-frequency or frequency-
sweep EIS experiments. This is due to the fact that, on one hand, measuring
in a single excited frequency just contains information of the impedance spec-
trum at this excited frequency. On the other hand, the sweep technique has a
measuring time which can be much longer than the system dynamics. As a con-
sequence of this, the measurements are corrupted by noise because the system
non-stationary behavior is undersampled. This noise can be reduced by aver-
aging successive frequency sweeps measurements. Thus, yielding an excessively
long measuring time for a clinical diagnostic tool and losing the non-stationary
information. In the end, any of the measurements have information about the
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mentioned dynamics.
A different Electrical Impedance Spectroscopy approach based on broad-

band excitations enables to collect multiple impedance spectrum data within a
reduced measuring time. Practical examples which would profit of this technique
would not only be biomedical applications for cardiovascular or respiratory sys-
tems characterization, but also the understanding of various unsolved problems
in a wide range of applications where the system non-stationary behavior is of
interest.
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Igor : Dr. Frankenstein...
Dr. Frederick Frankenstein: "Fronkensteen."
Igor : You’re putting me on.
Dr. Frederick Frankenstein: No, it’s pronounced "Fronkensteen."
Igor : Do you also say "Froaderick"?
Dr. Frederick Frankenstein: No... "Frederick."
Igor : Well, why isn’t it "Froaderick Fronkensteen"?
Dr. Frederick Frankenstein: It isn’t; it’s "Frederick Fronkensteen."
Igor : I see.
Dr. Frederick Frankenstein: You must be Igor. [He pronounces it ee-gor ]
Igor : No, it’s pronounced "eye-gor."
Dr. Frederick Frankenstein: But they told me it was "ee-gor."
Igor : Well, they were wrong then, weren’t they? .

-Young Frankstein (1974)

2
Broadband Electrical Impedance

Spectroscopy (EIS)

This chapter covers the problem of measuring biological systems, which is un-
der the discussion of this thesis, by means of Electrical Impedance Spectroscopy
using broadband excitations. A first introduction to the simultaneous multifre-
quency Electrical Bio-Impedance (EBI) measurements is described in Section
2.1. Following, Section 2.2 introduces the motivation of measuring using broad-
band excitations. Next, Section 2.3 presents the time - frequency properties of
the most common broadband excitations, including a short description of their
advantages and disadvantages. Section 2.4 and 2.5 show the influence of the ex-
citation choice on the impedance spectrum accuracy. In Section 2.6 broadband
excitations that allow short time EIS are reviewed and compared according to
the impedance spectrum accuracy.

2.1 Introduction
Electrical Impedance Spectroscopy (EIS) can be used to characterize biological
materials in a wide variety of applications as described in Section 1.5. Classic

37
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EIS based on frequency sweep needs averaging to remove the time modulations
induced by the electrical and mechanical properties of the biological systems
which are time-varying. The potentially useful information contained in the
modulation is lost unless a synchronous averaging technique is used. In con-
trast to classical EIS, broadband signals overcome this limitation and enable
multiple EBI spectrum data collection in a reduced measuring time. Neverthe-
less, the price to pay resides in the intrinsic loss on the impedance spectrum
accuracy. However, such loss of accuracy can be minimized by an appropriate
choice of the excitation as well as its time and frequency properties. This means
that the excitation can be optimized for maximizing the information from the
measurements. That is, to obtain the most accurate EBI spectrum.

2.1.1 Historical overview
There are many different types of electrical stimuli which are used in EIS. The
most common among the various approaches to EIS experiments is the applica-
tion of a single frequency sinusoidal current stimulus to the system under test.
Then, the phase shift and amplitude of the resultant voltage of the response
are measured. The impedance spectrum can be determined by sweeping the
exciting frequency in the frequency range of interest. The major advantage
of this approach relies on the fact that a high Signal-to-Noise Ratio (SNR) is
obtained while increasing the measuring time. For many Electrochemical ap-
plications, this method has been widely used. It is based on a single-sine ac
wave of a given frequency which is overlaid on a dc bias potential and then
applied to the working electrode. This process is repeated by scanning the fre-
quency and computing the impedances from the ac voltage and current data
at desired frequencies. Problems with this approach arise primarily from the
relatively long data-acquisition time required for acquiring the whole impedance
spectrum. This is the reason why the frequency sweep technique is discarded in
those applications where high throughput real-time data and on-line monitoring
are required. This method is viable only for a stable and reversible system in
equilibrium, as the system’s linearity, stability, and causality must be ensured
(Hubin et al., 2005). However, because of the fact that biological objects are
highly sensitive to the electric field applied (Pliquett, 2004; Pliquett and Schoen-
bach, 2009), this transformation is only valid when the signal makes the system
steady state response to be linear. This means that excitations are peak limited
to ensure a linear response of the system under test. When talking about bi-
ological measurements, safety restrictions regarding the energy applied should
be considered aside from the peak amplitude limitation for linearity considera-
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tions. A practical example where energy and measurement time are limited is
in in-vivo patient clinical procedures, where the norm IEC/UL 60601-1 specifies
that the total current injected can not exceed 10 mA rms in any case.

In efforts to reduce the measurement time, researchers have proposed meth-
ods without frequency scanning. Measurements of full impedance spectra were
not made until the 1970s, with publications reported in (Creason and Smith,
1972; Schwall et al., 1977). Their approach was based on the application of
a mixed ac waves of many different frequencies superimposed on a desired dc
bias potential to an electrochemical system. The resultant current signal was
deconvoluted into the component frequencies employing the Fast Fourier Trans-
form (FFT). The impedance was then calculated at each frequency using the
original ac voltage, and the ac current was obtained from the deconvolution of
the current signal. During the same time, a Maximum Length Binary Sequence
(MLBS) generator based on a shift register for characterizing RC circuits was
presented in (Ichise et al., 1974). Later on, the same excitation was applied to
determine the state of bone fractures (Schneider, 1996). Different broadband
impedance analyzer systems have been reported since then in (Hartov et al.,
2000; Morgan et al., 2007; Nacke et al., 2007). Apart from the previously men-
tioned excitations, there are other signals which have already been described in
(Min et al., 2010, 2004) and applied to different biomedical applications (Bragos
et al., 2001; Ogunnika et al., 2008). More recent examples of applications can be
found in (Sun et al., 2007b; Cheung et al., 2010) for single cell characterization
using microfluidic devices.

2.2 Broadband EIS measurements
In contrast to the frequency sweep approach, broadband EIS offers the advan-
tage of simultaneous frequency response data collection. This is due to the fact
that broadband excitation spreads the energy at several frequencies at the same
time, which is reflected into a short measuring time. However, the weakness of
such kind of fast EIS measuring techniques is its intrinsic loss of accuracy. In the
end, the total measuring time does not only depend on the impedance spectrum
accuracy desired, but also to the broadband signal applied, its time/frequency
features, the system non-stationary properties and the signal processing tech-
niques used.

Because there are many broadband excitations, each one with its own time
and frequency properties, a signal quality metric is needed to compare between
them. For instance, a metric to measure how much amplitude is consumed by
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the signal to inject a certain power level into the system is needed in order to be
able to compare the time and frequency properties. Although there are many
merit figures proposed in the literature (Godfrey et al., 1999), the most popular
by far is the Crest Factor (CF). This is because its interpretation is simple, even
by visual inspection.

2.2.1 Crest Factor
Before defining the Crest Factor it is convenient to define the norm of the
function u(t), denoted by lp(u) (Guillaume et al., 1991), taken over the interval
where the excitation is defined [0,T] as:

lp (u) =
⎡⎢⎢⎢⎢⎣
1
T

T

∫
0

∣u (t)∣p dt

⎤⎥⎥⎥⎥⎦
1/p

, p ≥ 1 (2.1)

The Chebyshev norm l∞ (also known in the literature as the minimax norm, the
uniform norm or the maximum norm) of a continuos function u (t) is defined as
its peak value in the interval [0,T]:

l∞ = max
t∈[0,T ]

∣u (t)∣ (2.2)

Finally, the Crest Factor of a function u(t) is then defined as the ratio of its
peak value and its root mean square value (RMS):

CF (u) = l∞ (u)
l2 (u) (2.3)

Another interpretation of the Crest Factor is possible using the Parseval’s the-
orem:

CF (u) = l∞√ ∑
∀ω∈Ω

U (ω)U∗ (ω) (2.4)

where U (ω) is the excitation power spectrum. Note that the Crest Factor is
defined in the frequency band Ω where the impedance spectrum is going to be
measured. This means that the injected power described by the denominator
term is limited to the excited frequencies being measured. In other words, any
power that is injected outside this band will contribute to excite the system,
but it will not contribute to obtain more information from the measurements.
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To sum up, the Crest Factor gives an idea of the signal’s compactness mea-
suring how well distributed the signal values are over the excitation amplitude
range. A small Crest Factor means that most of the amplitude elements in the
excitation are distributed close to the minimum and maximum values of the
signal. In contrast, a large Crest Factor means just the opposite: the amplitude
elements are spread in a poor amplitude range. For a certain amplitude level, the
lower the Crest Factor, the better because more measurement power is provided
to the system. The relation between the Crest Factor and the Signal-to-Noise
Ratio (SNR) from a linear time invariant system measurement is described in
Section 2.2.1.1. The possible values for Crest Factor range from 1 up to ∞, with
the limits representing the best and worst possible cases. Crest Factor reduction
allows, on one hand, a larger energy to be injected for a given input range of the
measurement device, avoiding then to run into A/D or D/A saturations. On
the other hand, small CF keeps the system working in the linear region. This
is is extremely important when exciting biological systems in order to prevent
tissue stimulation.

2.2.1.1 Influence of the Crest Factor on the Signal-to-Noise Ratio
(SNR)

The SNR of an ideal b-bit A/D converter measured over the Nyquist band-
width (dc - Fs/2) without considering distortions when measuring a multisine
input signal is decreased due to the Crest Factor and the number of exciting
frequencies N as follows:

SNR = 6.02b + 1.76 − 20log10 (CF√
2
) − 10log10N (2.5)

Hence, the Effective Number of Bits (ENOB) is given by

ENOB = SNR − 1.76 + 20log10 (CF√
2 ) + 10log10N

6.02
(2.6)

which means that given a Signal-to-Noise Ratio (SNR), the smaller Crest Fac-
tor multisine excitation the better because less bits are needed to obtain the
specified accuracy from the measurement.

2.2.2 Impedance Spectrum accuracy
Consider the impedance spectrum Z0k as the mean impedance spectrum mag-
nitude determined from M averages at exciting frequency k by applying the
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classical spectral analysis based on cross and auto power spectrum using a rect-
angular window. The impedance spectrum variance σ2Z is calculated from the
input-output current and voltage noise estimation σ2I and σ2V (Schoukens et al.,
2009b) as follows:

Z0k = 1
M

M∑
n=1

Zn
k

σ2Zk
= ∣Z0k ∣2

M
( σ2Ik

∣I0
k
∣2 + σ2Vk

∣V 0
k
∣2 − 2Re(σ2VkIk

I0
k

V 0
k

)) (2.7)

where I0, σ2I and V0, σ2V correspond to the mean spectrum magnitude and the
variance of Fourier transformed current and voltage coefficients respectively,
given by:

I0k = 1
M

M∑
n=1

In
k

σ2Ik
= 1

M (M − 1)
M∑

n=1
(In

k − I0k)2
V 0

k = 1
M

M∑
n=1

V n
k

σ2Vk
= 1

M (M − 1)
M∑

n=1
(V n

k − V 0
k )2

σ2VkIk
= 1

M (M − 1)
M∑

n=1
(V n

k − V 0
k )(In

k − I0k)

(2.8)

Note that from the previous expression it is possible to calculate the impedance
spectrum Signal-to-Noise Ratio (SNR), defined at the excited line k as follows:

SNRZk
= ∣Z0k ∣2

σ2Zk

(2.9)

Given the general expression of the variance of the impedance spectrum mea-
surement (see eq. 2.7), it can be shown that the impedance spectrum SNR can
be approximated by:

1
SNRZ

≈ 1
SNRI

+ 1
SNRV

(2.10)

The Noise-to-Signal Ratio (NSR) is, by definition, the inverse of the SNR. Then,
the previous equation can be rewritten as:

NSRZ ≈ NSRI +NSRV (2.11)
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Then, the SNR on both current and voltage measurements should be maximized
if accurate impedance spectra are desired. At this point, the aim of studying the
time / frequency features of signals and its influence on the impedance spectrum
accuracy at the exciting frequencies within the experiment constraints becomes
more important. This is discussed in Section 2.3.

2.3 Strengths and weaknesses of periodic broad-
band signals for impedance spectroscopy

This section compares some general properties of spread-spectrum periodic sig-
nals for frequency response function measurements (Pintelon et al., 1997; God-
frey et al., 1999; Schoukens et al., 2000). The studied excitations are chirp (Min
et al., 2007, 2008, 2010; Paavle et al., 2010), Maximum Length Binary Sequences
(Godfrey, 1991; Rees et al., 1992; Tan and Godfrey, 2002; Godfrey et al., 2005),
Discrete Interval Binary Sequences (van den Bos and Krol, 1979) and multisine
signals (Schroeder, 1970; Van Der Ouderaa et al., 1988; Schoukens et al., 1991;
Guillaume et al., 1991; Horner and Beauchamp, 1996; Simon and Schoukens,
2000; Vanhoenacker et al., 2001).

2.3.1 Maximum Length Binary Sequences (MLBS)
The Maximum Length Binary Sequences (MLBS) are binary periodic signals
generated digitally. They can be easily implemented with very few hardware re-
sources using a Linear Feedback Shift Register (LFSR) (see Figure 2.1). From all
the possible Pseudo-Random Binary Sequences (PRBS) that can be generated
with a fixed register length, the Maximum Length Binary Sequences (MLBS)
are these PRBS sequences with the longest period and the shortest autocorrela-
tion length, which is an approximation of a Dirac pulse. In practice, MLBS are
based on a cascade of D flip-flops using the appropriate XOR feedback function
in order to obtain the longest period. The LFSR is a shift register which, using
feedback, causes the value in the shift register to cycle through a set of unique
values. For a given clock frequency and register length n, and for all the possible
initial non-zero values of the LFSR, the length of the MLBS is:

L = 2n − 1 (2.12)

LFSR feedback can be implemented in two ways: using the Fibonacci or the
Galois form. When implemented in hardware, the Galois topology is usually
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D Q D Q D Q D Q...

...

Sn

clk

...

Xn

Xn-1

G(X)

Figure 2.1: Fibonacci LFSR topology. The outputs of some registers are XORed with each
other and the result G (x) is fed back to the input of the shift register; sn is any initial
sequence of values except all zeros.

preferred due to its reduced number of logic gates in the feedback function.
MLBS are very popular due to its implementation simplicity and its autocor-
relation properties. As shown in Figure 2.2 (bottom), the MLBS amplitude
power spectrum is relatively flat. This behavior is due to the sinc introduced
by the zero-order hold at the output. However, a MLBS has an amplitude spec-
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Figure 2.2: MLBS in time (top) and power spectral density (bottom).

trum whose components decrease inversely proportional to the frequency. This
means that its resulting SNR will be lower compared to a single or a set of fre-
quencies because the energy is distributed over the whole frequency range. The
MLBS signals are binary, so they have the strength that it are robust to noisy
environments and they also have the optimal full-band Crest Factor. Neverthe-
less, MLBS signals are highly sensitive to crosstalk and non-linear behaviors.
As shown in (Schoukens et al., 1988), the MLBS CF varies as a function of
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the spectral band in use (see eq. 2.4), decreasing towards 1 as the band in-
creases towards infinity. In other words, not all the MLBS power is focused on
the frequency band of interest, and part of it is wasted in exciting unwanted
frequencies.

2.3.2 Discrete Interval Binary Sequences (DIBS)
The Discrete Interval Binary Sequences (DIBS) are periodic binary multifre-
quency sequences (see Figure 2.3 top), in which the sign of the signal can change
only at an equidistant discrete set of points during time (van den Bos, 1967;
van den Bos and Krol, 1979). As a result of this, a great part of the excita-
tion power is concentrated in the desired frequency subband. In contrast to the
sweept sine and the MLBS excitations, the DIBS amplitude power spectrum
(see Figure 2.3 bottom) can be optimized by choosing the appropriate switch-
ing sign sequence. Since the DIBS excitations are binary, their full-band Crest
Factor is 1. The author does not have any reference about applying DIBS for
multifrequency EIS analysis despite their inherent superior properties to the
MLBS. In contrast to the MLBS sequence, DIBS focus most of the excitation
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Figure 2.3: DIBS in time (top) and power spectral density (bottom).

energy at a user-defined set of interesting frequencies. In this case, the energy
at the exciting frequencies represent about the 86 % of the overall excitation
energy.
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2.3.3 Chirp

The Chirp excitation is a sine sweep excitation that can easily be implemented
using a Direct Digital Synthesizer (DDS) or using an Arbitrary Waveform Gen-
erator (AWG) defining the excitation parameters set. The corresponding time
domain function for a linear chirp is given by:

u (t) = A sin ((at + b) ⋅ t) 0 ≤ t < T (2.13)

where T is the sweep period, a = π (fmax − fmin) /T is known as chirp rate,
b = πfmin. fmin and fmax represent the lowest and the highest frequency re-
spectively. There are many chirp excitations depending on the frequency vari-
ation with time. Chirp excitations with a frequency variation which is swept
up or down are known as up-chirp or down-chirp respectively. Compared to a
multisine excitation, a chirp excitation is easily generated and all its extreme
amplitude values are the same. As a result, Chirp excitations have a low Crest
Factor (typically about 1.45). However, the main drawback is the lack of free-
dom in choosing an arbitrary amplitude power spectrum. As shown in Figure
2.4 (bottom), the chirp amplitude power spectrum is neither really flat at low
frequencies, nor in the wanted frequency band, due to the ripple.
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Figure 2.4: Up-Chirp in time (top) and power spectral density (bottom).
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2.3.4 Multisine
The application of multisine excitations for frequency domain analysis has been
widely described in (Schoukens and Pintelon, 1990; Schoukens et al., 1991;
Schoukens and Dobrowiecki, 1998; Schoukens et al., 2000; Simon and Schoukens,
2000; Rolain et al., 2006). The idea behind the multisine signal is to keep the
advantages of the sine wave, but to reduce the measurement time. To this end,
the multisine signal expression is formed by the sum of N frequencies, each one
with its own amplitude and phase. The time signal expression for a real-valued
multisine signal can then be represented by a Fourier series, i.e., a trigonometric
sum of order N :

u (t) = N∑
n=1

an cos (2πfnt +ϕn) (2.14)

where N is the number of exciting frequencies, an are the fundamental ampli-
tudes and ϕn the phases. If no specific prior knowledge of the system is available,
the amplitudes are often designed to be equal to excite the system with a flat
amplitude spectrum. If the frequency response function is more or less known in
advance, an can be tuned to decrease the uncertainty of the estimated transfer
function (see Paper A for more information about how to design and optimize
a multisine signal).

2.3.4.1 Multisine time properties

The resulting Crest Factor for a real multisine using Parseval theorem is given
by:

CF = √
2∥u∥∞∥a∥2 (2.15)

with a vector a containing the sinewave amplitudes an (see Appendix). Phases
ϕn have to be chosen carefully because they influence the time-domain signal
shape. Notice that while the multisine rms level is independent of the phase
angles, its peak value is strongly dependent on them. For a given constant se-
quence of Fourier’s coefficient an, the minimization of Crest Factor with respect
to the multisine phases relies on finding the optimal phases that minimizes the
Chebychev norm of the signal.

If all sine (or cosine) waves are set to a 0 degrees phase relation, the peaks
will add coherently producing a maximum peak amplitude equal to the sum of
the individual sinewave peak amplitudes. To illustrate this, Figure 2.5 shows
the resulting multisine, where the Crest Factor is proportional to the square
root of N . This will be the maximum possible Crest Factor for the particular
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excitation power spectrum. Hence, the worst Crest Factor for a real multisine
of unity amplitude tones is

√
2N , which means that the worst-case multisine

periodic overshoot is urms

√
2N .
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Figure 2.5: Flat multisine in time using 0 degree phases (CF=44.72).

The way to control the Crest Factor is to choose the phases of the multisine
appropriately. Minimizing the multisine Crest Factor is not a straightforward
task since the l∞ norm is non-differentiable. This problem was already treated
in (Beller and Newman, 1971), who proposed:

ϕn = πn2

N
, n = 0, ..., N − 1 (2.16)

to minimize the multisine Crest Factor. Figure 2.6 shows how good it works if
unity amplitudes an = a∗ > 0, n = 0, ..., N − 1, are chosen. Note that Newman
phases only need the number of N exciting frequencies as a priori information.
An alternative approach was proposed in (Schroeder, 1970). The only assump-
tion is that the number of exciting frequencies in the specified power spectrum
is large and they are concentrated in a bandwidth that is small compared to its
center frequency:

ϕm = ϕ0 − 2π
m−1∑
n=0

(m − n) ⋅ ∣am∣2
M−1∑
k=0

∣ak ∣2
, m = 1, ..., M − 1, ϕ0 ∈ [−π, π] (2.17)

In contrast to the Newman phases, the Schroeder phases (see Figure 2.7) take
the amplitudes into account and therefore often gets better results in the case
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Figure 2.6: Flat multisine using Newman phases (top) and its amplitude histogram (bottom)
(CF=1.67).

of non unity amplitudes. In the case of unity amplitudes the Schroeder phases
simplifies to:

ϕm = ϕ0− 2π

M

m−1∑
n=0

(m − n) = ϕ0− 2π

M
⋅m ⋅(m + 1) , m = 1, ..., M −1, ϕ0 ∈ [−π, π]

(2.18)
which for ϕ0 = 0 corresponds to the negative Newman phases (see eq. 2.16)
and an additional linear term. The additional linear term is irrelevant, be-
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Figure 2.7: Flat multisine in time using Schroeder phases (top) and its amplitude histogram
(bottom) (CF=2.12).
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cause it corresponds simply to a shift in the starting time of the multisine.
Schroeder’s phases give reasonable results when the user-defined spectrum is
flat and wideband, but under other conditions (i.e. bandlimited or in the pres-
ence of harmonic suppression), the results can be very undesirable (Pumplin,
1985).

Another option is to design the multisine excitations based on uniformly
distributed random phases between 0 and 2π.
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Figure 2.8: Flat multisine in time using random phases (top) and its amplitude histogram
(bottom) (CF=3.10).

As shown in Figure 2.8, the random phases make the multisine amplitude
Probability Density Function (pdf) to be almost Gaussian distributed with zero
mean. In time domain, the random multisine looks like white noise, and that
is the reason why they are known as periodic noise. In contrast to the pure
periodic random noise, the amplitudes of a random multisine are not random.

If the goal is to design the multisine phases for characterizing a system with
maximal SNR, then the random multisine is not the best solution. The best
option is to design multisine phases such that the multisine amplitude pdf signal
has almost a binary behavior (see Figure 2.9). In this case, almost all the multi-
sine energy is focused on the maximum excitation amplitude. This is the same
as minimizing the multisine Crest Factor, where the phases compress the excita-
tion maximum peak. Related solutions to system identification and parameter
estimation of linear systems were shown in (Van Der Ouderaa et al., 1988).
Classical approaches use heuristics or analytical methods to arrange phase an-
gles (Guillaume et al., 1991). Latest approaches use some kind of algorithm
to improve results, i.e. Genetic Algorithms (GA) or solving the optimization
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problem with a Non-Linear Solver (NLS) (Horner and Beauchamp, 1996; Mit-
telmann et al., 2006; Lee et al., 2003). However, the optimization problem of
minimizing the Crest Factor of a multisine signal under time domain constraints
represents a challenging computational task: it is always nonlinear, either in the
objective function, in the constraints or in both. In addition, it is non-smooth
as a consequence of the Chebyshev norm in the objective function. Hence, it
can take a very long time to solve the highly nonlinear equality constraints.
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Figure 2.9: Flat multisine in time with numerically optimized phases (top) and its amplitude
histogram (bottom) (CF=1.45).

2.3.4.2 Multisine frequency properties

From the frequency domain point of view, the multisine spectrum is obtained
computing the Fourier Transform of eq. 2.14:

Su (ω) = 2π
N−1∑
n=1

a2n
4

[δ (ω − ωn) + δ (ω + ωn)] (2.19)

where an and ωn can be designed to place the signal power very precisely to the
exciting frequencies. The multisine frequencies ωn are typically distributed log-
arithmically or equally-spaced. From the point of view of measuring Electrical
Bio-Impedance, both present great disadvantages.

Equidistant frequency distribution has two inconveniences: (1) a high num-
ber of exciting frequencies are needed to cover the EIS frequency range to avoid
loosing impedance spectrum resolution, and (2) any real system is inherently
non-linear. As shown in (Vanhoenacker et al., 2001), the harmonic frequencies
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Figure 2.10: Multisine time (top) and its power spectral density (bottom) (CF=2.30).

introduced by even nonlinearities will be placed at the same even frequencies
being excited, resulting into a mislead on the estimation of the impedance spec-
trum amplitude.

Pure logarithmic frequency distribution also has drawbacks: (1) there is a
great number of exciting frequencies at low and high frequencies, which do not
contribute to characterize the impedance relaxation, and (2) the vast majority
of the low-cost electronic devices used present limitations at very low or very
high frequencies.

One approach to overcome harmonics effect consists on generating each ex-
citing frequency as a result of a fundamental frequency multiplied by a special
sequence value. This solution is based on special sets of multipliers Kn that
are chosen in order to accomplish as many as possible disjunct distortion sig-
nal frequencies and fundamentals signal frequencies. If the multipliers are only
odd integers, the even order harmonic components frequencies do not coincide
with the exciting frequencies. Further elimination of each second order odd
multiplier (OddOdd) enables, in addition, to separate the third order harmonic
components. Such signals were proposed in (Evans and Rees, 1999) and are
denoted in the literature by No Interharmonic Distortion (NID).

2.4 Simulation Results
In order to compare the excitations mentioned in Section 2.3 and to study how
their time - frequency properties influence the impedance spectrum accuracy,
a single Bio-Impedance relaxation model has been simulated. The system has
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been modeled with a three parameter equivalent electrical circuit where the
parameters are given by Cm = 9.75 (nF), Re = 120 (Ω) and Ri = 30 (Ω), rep-
resentative of a myocardium tissue electrical impedance measurement. Figure
2.11 shows the impedance frequency response which is given by:

Z (s) = ReRiCms +Re(Re +Ri)Cms + 1 (2.20)
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Figure 2.11: Impedance magnitude (top) and phase (bottom) frequency response simulated.

Twenty-one excited frequencies log-odd distributed have been considered in
the frequency band from 1 kHz up to 1 MHz. Input and output noise distur-
bance, nu (t) and ny (t) respectively, have been considered in the model and are
assumed to be additive, mutually independent and Gaussian distributed with
zero mean and standard deviation of 0.01. Hence,

u (t) = u0 (t) + nu (t)
y (t) = y0 (t) + ny (t) (2.21)

Impedance spectrum Z0 (k) is the mean impedance spectrum magnitude cal-
culated using eq. 2.7. Figure 2.12 shows the impedance plot obtained from
the data when using the excitations compared to the theoretical model (see eq.
2.20). It shows that MLBS data are more affected by the presence of the output
noise at low frequencies than at high frequencies. In contrast to the MLBS, the
chirp excitation fits better at high frequencies than the MLBS. However, the
chirp data are dispersive at low frequencies. This is due to the up-chirp exci-
tation focus all the excitation energy at high frequencies. To solve this, others
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chirp excitation should be considered (i.e. exponential chirp). In any case, the
impedance spectrum is more accurate when using the DIBS or the multisine
excitations than when using the chirp or the MLBS excitations. Figure 2.12
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Figure 2.12: Accuracy on the estimated impedance plot with respect to the model (−) con-
sidering input-output disturbances (left); resultant impedance spectrum variance σ2

Z (right);
MLBS (▽), chirp (◯), DIBS ( �) and flat multisine (×).

(right) shows the impedance spectrum variance σ2Z , which is the result of calcu-
lating the averaged impedance spectrum variance given by eq. 2.7. Figure 2.12
(right) highlights the importance of choosing the excitation in order to obtain
reliable measurements. As a result of tis choice, it can be obtained a difference
from 10 dB to 20 dB on the impedance spectrum accuracy.

2.5 Experimental results
In order to experimentally compare the results previously mentioned, all exci-
tations were applied to measure a dummy RC circuit impedance. The merit
figure used to compare them is the Noise-to-Signal Ratio (NSR) (see eq. 2.7).
Two scenarios were considered, first, exciting with the energy limited to 0.35
Vrms (see Figure 2.13), and second, exciting with a peak amplitude limitation
of 1 V and 25 mV (see Figure 2.14).

2.6 Discussion
As an alternative to periodic Chirp excitation, a modified chirp pulse excitation
proposed in (Min et al., 2010) is stated to be the optimal excitation for obtain-
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Figure 2.13: Noise-to-Signal Ratio (NSR) with an energy constraint to 0.35 Vrms; MLBS (▽),
chirp (◯), DIBS ( �) and multisine (×).
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Figure 2.14: Noise-to-Signal Ratio (NSR) with peak value constraint to 1 V (left) and 25 mV
(right); MLBS (▽), chirp (◯), DIBS ( �) and multisine (×).
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ing the most accurate impedance spectrum. The author claims that "Thanks
to unique properties of the chirp function, it is possible to meet the needs for
spectrum bandwidth, measurement time, and Signal to Noise Ratio so that
the most accurate impedance spectrogram is obtained" is not true. According
to the author, this statement is based on the fact that by modifying the ex-
citation bandwidth and its time duration the authors "maximize the amount
of information derived from the data of spectral measurements". However, no
mathematical solution neither experimental results are provided to support the
validity of any of the previously mentioned statements.

Regarding to the first statement, the suggested use of any of the chirp frac-
tional periods rather than full periods should be avoided if accurate impedance
spectrum measurements are desired. The use of fractional excitation periods is
a well-known source of errors because of a misuse of an excitation. This may
affect not only the accuracy on the impedance spectrum estimates due to the
introduced leakage effect, but also will cause a serious loss of information on the
measured system. This loss of information results into a bad Signal-to-Noise
Ratio at certain frequencies that are poorly excited (Simon and Schoukens,
2000). While the leakage effect can be taken into account in the signal process-
ing (Schoukens et al., 2006), the bad SNR due to the loss of information cannot
be compensated in any way. Moreover, the simulation and experimental results
shown in Section 2.4 and Section 2.5 proof that chirp excitation is far from hav-
ing the optimal power spectrum as long as the impedance spectrum accuracy is
the optimality criteria. When the measurement is limited by the energy applied
to the system, Figure 2.13 shows that the MLBS and the chirp excitations have
about 20 dB worse impedance spectrum Noise-to-Signal Ratio than the DIBS
and the multisine excitations. As shown in Figure 2.14, this trend is the same
when the peak value excitation is the design constraint. In this case, the DIBS
and the multisine excitations obtain better impedance spectrum accuracy than
the MLBS and the chirp with independence of the excitation peak amplitude
value.

Referring to the second statement, the way to design an optimal excitation
that maximizes the amount of information from the measurements is much more
sophisticated than just modifying the excitation spectral content by changing
the excitation time duration. The optimal excitation design is based on the
Fisher information matrix as shown in (Ng et al., 1977; Schoukens and Pin-
telon, 1990; Goodwin et al., 2006), where the prior knowledge of the system
to measure must be considered. As shown in (Sanchez et al., 2011b), given an
impedance model structure with unknown parameters, the impedance spectrum
accuracy depends on the identification procedure used. Then, if the estimator
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is a Maximum Likelihood Estimator (MLE), its covariance matrix asymptot-
ically reaches the Cramer–Rao (CR) lower bound. Since the elements of the
Fisher matrix are directly related to the system parameters variance (Goodwin
et al., 2006, 2007), minimizing the covariance matrix is in practice the same as
maximizing the information for a given input excitation.

Like chirp excitation, Maximum Length Binary Sequences (MLBS) are an-
other broadband excitation candidate used in (Schneider, 1996; Sun et al.,
2007a,b). Its major disadvantage is that a great deal of power is spread over
unwanted frequencies. Moreover, the impedance spectrum accuracy may be
improved without compromising the measurement time, providing that the ex-
citation could be designed to concentrate the signal power in a discrete set of
frequencies like the DIBS signals do.

An approach for designing the optimal multisine excitation for impedance
spectroscopy measurements was presented in (Popkirov and Schindler, 1993;
Popkirov and Schlinder, 1994). The authors suggested that the multisine fun-
damental’s amplitudes should be designed following the impedance spectrum
magnitude measured. However, it has been shown in (Sanchez et al., 2011b,a)
that the multisine amplitude distribution that maximizes the impedance spec-
trum accuracy should focus the excitation energy close to the central frequency.
Designing the multisine amplitudes following the impedance frequency response
provides less scattering data at low frequencies at the cost of getting dispersive
points at the central frequencies and high frequencies.
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King Arthur : I am, and this is my trusty servant Patsy. We have ridden the length and breadth of the land in
search of knights who will join me in my court at Camelot. I must speak with your lord and master.
Soldier : What? Ridden on a horse?
King Arthur : Yes!
Soldier : You’re using coconuts!
King Arthur : What?
Soldier : You’ve got two empty halves of coconut and you’re bangin’ ’em together.
King Arthur : So? We have ridden since the snows of winter covered this land, through the kingdom of
Mercia, through...
Soldier : Where’d you get the coconuts?
King Arthur : We found them.
Soldier : Found them? In Mercia? The coconut’s tropical!
to be continued...

-Monty Python and the Holy Grail (1974)

3
A Novel Approach for Impedance Spectrum

Estimation: the Local Polynomial Method

In this chapter, the problem of determining the frequency response of time-
varying systems under the influence of transients is studied on the basics of
the Local Polynomial Method (LPM) described in (Schoukens et al., 2009b;
Pintelon et al., 2010a,b). An introduction related to the LPM theory within an
Output Error (OE) framework is presented in Section 3.2. The solution to the
Error-In-Variables (EIV) model is presented in Section 3.2.2. The processing
and measurement principles are validated through a set of simulations shown
in Section 3.3. The application of the LPM for healthy myocardium tissue
electrical impedance characterization within the cardiac-cycle is presented in
Paper B.

3.1 Introduction
Measuring the Electrical Bio-Impedance (EBI) stationary behavior of a biolog-
ical time-varying system is not sufficient in all the cases. Although the non-
stationary behavior of the impedance signal has information about the tissue
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activity during time, this information has been usually underestimated in all
those studies based on frequency-sweep EIS. In these cases, the time-varying
information was usually removed from the impedance signal by averaging the
spectral data measuring several realizations.
The requirement that needs to be satisfied in order to obtain the impedance

spectrum non-stationary behavior is to acquire several frequencies in a short
measuring time. However, measuring in a short time leads to loose impedance
spectrum accuracy and the low excited frequencies are prone to be corrupted
by the leakage influence when measuring within a non steady-state conditions.
If this is the case, the lower the excited frequency is, the more the impedance
frequency response from the exact value will differ. Smoothing windows are
commonly used to mitigate these errors. Also interpolation methods are applied
in the frequency domain to reduce leakage errors (Ferrero and Salicone, 2010).
Figure 3.1 shows an example of the transients effect in time over a current i (t)
impedance measurement. Both signals are each one a period of a two consecutive
periodic multisine measurement. As it can be observed, the initial samples of
the first period measured contain the system transient state response.

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
m

pl
itu

de
 (V

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1.5

−1

−0.5

0

0.5

1

1.5

time (msec)

A
m

pl
itu

de
 (V

)

1   periodst 2    periodnd

0 0.2 0.4 0.6 0.8 1time (msec)

Figure 3.1: Two consecutive periods of a log-odd multisine excitation (top); difference between
periods are due to the transients and noise error sources (bottom).

As shown in Figure 3.2, if the impedance spectrum is then determined in
the frequency domain using the Fast Fourier Transform (FFT), these transients
errors appear as leakage. As a result of this leakage, the low frequency excited
lines can no longer be distinguished and this results in errors at the impedance
spectrum estimation at low frequencies. However, this does not occur in the
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example considered if only the second period is used. In practice, the time the
transient takes to expire depends on the application, so it could happen that
more than just a single period was corrupted by its influence. Thus, the easiest
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Figure 3.2: First (red) and second period (black) current spectra; the noise floor of the steady-
state current measurement is approximately between 60 and 70 dB below the noise floor of
the current corrupted by the leakage. As a consequence of the leakage, the effective Signal-
to-Noise Ratio (SNR) is reduced.

solution to avoid leakage is to measure the system steady state response. That
means wait until the transient expires. Nevertheless, this is not always afford-
able. Another option consists in increasing the number of samples acquired.
This yields more accurate measurements but at the cost of increasing both the
measuring time and the hardware resources. The classical way to reduce leak-
age errors and to mitigate their effect over the frequency response estimation
is based on using spectral windows. Windowing the spectrum using Hanning
window rejects leakage efficiently and reduces the noise floor. Recent advanced
signal processing techniques, the so called Local Polynomial Method (LPM)
(Pintelon et al., 2010a,b), achieve better leakage reduction than the window-
ing methods (Harris, 1978; Schoukens et al., 2009b). Moreover, the mentioned
method do no compromise the measuring time if low order polynomials are con-
sidered for the analysis. However, there is an increase of the spectral processing
complexity.
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3.2 The Local Polynomial Method (LPM)
There are techniques to reduce the leakage and to enforce the accuracy of the the
spectral data. The assumptions for using the Local Polynomial Method (LPM)
are three: (1) the system frequency response is smooth enough in frequency
so it can locally be approximated by a pth order polynomial, (2), the leakage
error source is produced by the transient, so it is assumed to be smooth in the
frequency domain and that it can be described using a polynomial too, and (3),
the excitation is not smooth (i.e. multisine). When observing that the leakage
contribution to the spectrum, T (ω), is smooth over the frequency, it becomes
clear that it can be removed from the steady-state contributions.

3.2.1 Output Error (OE) framework
The Output Error (OE) model (see Figure 3.3) considers that the measured
output voltage spectrum V (Ωk) is the combination of the input current spec-
trum I (Ωk) multiplied by the impedance frequency response G (Ωk), with an
output additive transient T (Ωk) and noise N (Ωk) error sources:

V (k + r) = G (k + r) I (k + r) + T (k + r) + N (k + r) (3.1)

where Ωk = jωk with 2πkfs/N and fs sampling frequency. The impedance

G(k)I(k) V(k)

T(k) N(k)

Figure 3.3: Input - output discrete Fourier transform (DFT), I (k) and V (k), and the fre-
quency response G(k) at the excited frequency k. T (k) is the additive transient and N(k)
the additive noise source.

spectrum G (k) and the transient frequency response T (k) are both smooth and
parametrized using a pth order polynomial at the excited bins, k. Considering
the neighboring spectral points r = [−n, ...,−1,0,1, ..., n] it follows that:

G (k + r) = G (k) + a1r + . . . + aprp

T (k + r) = T (k) + t1r + . . . + tprp (3.2)

where V, I ∈ C2n+1,1. The impedance spectrum is then estimated by solving the
set of equations:

V = KIθ (3.3)
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with respect to the unknowns θ ∈ C2p+2,1:

θ = [G (k) , a1, . . . , ap, T (k) , t1, . . . , tp]H (3.4)

where the superscript H is the Hermitian (complex conjugate) operator and
KI ∈ C2n+1,2p+2 is given by:

KI = ⎛⎜⎝
I (k − n) . . . −np ⋅ I (k − n) 1 −n . . . −np

⋮ . . . ⋮ ⋮ ⋮ . . . ⋮
I (k + n) . . . np ⋅ I (k + n) 1 n . . . np

⎞⎟⎠ (3.5)

The Least Square (LS) solution is a possible way to solve over-determined set
of equations if 2n + 1 > 2p + 2 (Golub and Van Loan, 1980), namely:

θ̂ = (KH
I KI)−1KH

I V (3.6)

Figure 3.4 illustrates the steps to compute the EBI spectrum according to eq.
3.6. This implicitly assumes that the additive noise, N (k), is independent over

FFT

FFT I KI (KIKI)
KI -1KI

Gk G

k=1,..,N

k k+nk-n
... ...V Vk-n,..,Vk+n

k k+nk-n
... ... Ik-n,..,Ik+n

A/DLPFv(t)

A/DLPF

�(1)

v[n]

i[n]i(t)

Figure 3.4: Scheme of an impedance measurement system implementing the OE-LPM solution;
Upper case characters I and V denote the Fourier transformed time variables current i and
voltage v measured; Dotted line highlights the additional signal processing for calculating the
LPM solution; the LPM needs to be calculated for each excited frequency (N).

the frequency k and has a white power spectrum in the considered frequency
range (ωk−r . . . ωk+r). This Least Square solution has a high computational cost.
Fortunately, since KI only depends on the current spectrum I (k), it only needs
to be computed at the excited frequencies. Hence, if the inputs are known
beforehand, then the Least Square problem can be precomputed using i.e. the
Moore-Penrose algorithm or the Singular Value Decomposition.

3.2.2 Errors-In-Variables (EIV) framework
The fast LPM measurement principle exploits the properties of the Error-In-
Variables (EIV) framework (see Figure 3.5) to compute the Least Square (LS)
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solution considering the voltage and current measurements. As a result, the
impedance spectrum can be estimated multiplying small matrices, which con-
siderably reduce the processing time compared to the general LPM solution.
Consider the system shown in Figure 3.5 with current i (t) and voltage v (t)
measurements:

v (t) = v0 (t) + nv (t)
i (t) = i0 (t) + ni (t) (3.7)

where all observations are corrupted by additive zero-mean measurement noise
sources ni (t) and nv (t) and the reference signal, r (t), is exactly known. The

L (�)r(t) io(t) vo(t)

ni(t) nv(t)

ng(t) np(t)

i(t) v(t)

G (�)

Figure 3.5: Measurement of the impedance spectrum of a system G(Ω) within an Errors-
In-Variables (EIV) stochastic framework in open loop setup. r (t) is the known reference
signal loaded into the Arbitrary Waveform Generator (AWG); ng (t), np (t), ni (t) and nv (t)
are, respectively, the generator, process, current measurement and voltage measurement noise
sources; L(Ω) is the actuator transfer function.

model that yields to unbiased estimates of the input/output spectra, I (k) and
V (k) respectively, and the noise covariance matrix if the input/output observa-
tions are noisy is known as Error-In-Variables (EIV) problem. If the reference
signal r (t) is known, the model to solve is:

Z (k) = GRZ (Ωk)R (k) + HRZ (Ωk)E (k) + TRZ (Ωk) (3.8)

with G (Ω) and H (Ω) the system and noise transfer functions, E (k) the unob-
served white noise sources, and T (Ω) the leakage terms. The system transfer
function GRZ is a column vector (relating R towards the input I and the output
V), TRZ is a column vector containing the transients and HRZ represents the
noise sources obtained by filtering two independent noise sources (hence E is a



Chapter 3. A Novel Approach for Impedance Spectrum Estimation: the Local
Polynomial Method 65

column vector) using a 2x2 filter matrix HRZ :

Z (k)2n+1,2 = [ V (k)
I (k) ] , GRZ (Ωk) = [ GRV (Ωk)

GRI (Ωk) ] (3.9)

and VRZ (k) = HRZ (Ωk)E (k) models that part of the input – output DFT
spectra that does not depend on the reference signal. Although the noise transfer
function, H (Ω), and noise source, E (k), can be identified separately, we will
work with their noise covariance matrices.
A consistent estimates of the impedance spectrum G (Ωk) and the noise co-

variance matrix of the input-output current and voltage spectra, I (k) and V (k)
respectively, can be obtained from the frequency response function ĜRZ (Ωk)
and the noise covariance matrix estimate ĈVRZ

using the following equation:

Ĝ (Ωk) = ĜRV (Ωk) Ĝ−1RI (Ωk) (3.10)

Cov ([ V (k)
I (k) ]) = ĈVRZ

(k) (3.11)

3.2.3 Implementation
In contrast to the general Local Polynomial Method (LPM) described in Section
3.2, the fast LPM precomputes the matrices defined in eq. 3.5 and eq. 3.6 with
respect to the reference signal R (k). If the reference is a multisine signal with
all its exciting frequencies on the DFT grid with at least n zero lines around
the excited frequency k, then KR ∈ C2n+1,p+2. Then, it is possible to reduce
the polynomial model for the system towards the matrix KR where only the
transient parameters need to be estimated in addition to G(k):

KR =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 −n −n2 . . . −np

0 1 −(n − 1) − (n − 1)2 . . . −(n − 1)p

⋮ ⋮ ⋮ ⋮ . . . ⋮
Rk 1 0 0 . . . 0⋮ ⋮ ⋮ ⋮ . . . ⋮
0 1 (n − 1) (n − 1)2 . . . (n − 1)p

0 1 n n2 . . . np

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.12)

Note that if there is not at least n zero lines around the excited frequency ki,
the neighbor excited lines ki±1 must be considered in the analysis. This means
that the size of the KR matrix given in eq. 3.12 (2n+1, p+2) is no longer valid.
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The general expression of KR ∈ C2n+1,2p+2 must then be calculated according to
eq. 3.5.
Consider the matrix KP ∈ C2+p,2n+1 to compute the Least Square solution:

KP = (KH
R KR)−1KH

R (3.13)

In this case, the KP matrix only depends on the reference R (k) and not in the
measurements. For that reason, the KP matrix can be precomputed in advance
for all the excited frequencies Ωk. As a result of this, the run-time computation
time for estimating the impedance spectrum is drastically reduced. That is
because the only additional operations needed to be computed are small matrix
products that aim to determine the frequency response from the reference to
the current and voltage, ĜRI (Ωk) and ĜRV (Ωk) respectively, namely:

θ̂RIp+2,1 = KPp+2,2n+1I2n+1,1
θ̂RV p+2,1 = KPp+2,2n+1V2n+1,1

(3.14)

The division of both is the unbiased estimate of the impedance frequency re-
sponse Ĝ (Ωk) (see eq. 3.10). The conceptual block diagram is shown in Figure
3.6.

FFT

FFT

FFT

..

Rk KR (KRKR)
KR KP

GRV

GRI

v[n]

i[n]

r[n] -1KR

Gk G

k=1,..,N

k k+nk-n
... ...

k k+nk-n
... ...

V

I Ik-n,..,Ik+n

Vk-n,..,Vk+n

Figure 3.6: Scheme of the fast EIV-LPM implementation. The Least Square matrix solution
KP is calculated using the reference signal and it is stored in the program memory.

The residual errors of the Least Square modeling and the covariance matrix
on the estimates can be optionally computed using the projection matricesKN ∈
C2n+1,2n+1 and KCP ∈ C2+p,2+p given by:

KN = I2n+1,2n+1 − KR(KH
R KR)−1KH

R (3.15)

KCP = (KH
R KR)−1 (3.16)
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3.3 Simulation Results
The aim of the simulations is to compare the impedance spectrum accuracy
obtained when using Hanning window and the LPM. Two different frequency
response functions have been considered in the simulations. To provoke spectral
data to be corrupted by leakage, both systems have been excited with a pure
random noise excitation. Figure 3.7 and Figure 3.8 show the complex error of the
frequency response estimated using the classical spectral windowing methods
based on auto/cross correlation using Hanning window and using the Local
Polynomial Method (p = 2, n = 3).
3.3.1 Two Resistors-One Capacitor circuit (2R-1C)
Figure 3.7 (left) illustrates the equivalent electrical circuit and its Nyquist plot.
The parameter values used for the simulations are C = 5 nF, R2 = 130Ω and
R1 = 150Ω, from 1 kHz to 1 MHz. As it can be observed in Figure 3.7 (right),
the leakage errors of the LPM are between 50 dB at and 100 dB less than using
windows.
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Figure 3.7: Equivalent electrical circuit of the 2R-1C system and its Nyquist plot (left);
Complex error between the model and the estimated frequency response using the Hanning
window Z2R−1C − Ẑhann (◯) and the LPM Z2R−1C − ẐLP M (�) (right).

3.3.2 Three Resistors-Two Capacitor circuit (3R-2C)
Figure 3.8 (left) illustrates the equivalent electrical circuit and its Nyquist plot.
The model parameters used for the simulations are C1 = 10 nF, R1 = 150Ω,
C2 = 5 nF, R2 = 40Ω and R3 = 100Ω, from 1 kHz to 100 MHz. As shown in
Figure 3.8 (right), the leakage errors of the LPM are still about 50 dB to 100
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dB below when compared to the Hanning window. This occurs even when the
complexity of the model is increased.
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Figure 3.8: Equivalent electrical circuit of the 3R-2C system and its Nyquist plot (left);
Complex error between the model and the estimated frequency response using the Hanning
window Z3R−2C − Ẑhann (◯) and the LPM Z3R−2C − ẐLP M (�) (right).

3.4 Processing time
The drawback of this improvement on the impedance spectrum accuracy is the
additional computational time added in the data processing after calculating
the voltage and current spectra. Because this is a critical issue that concerns
many real-time applications, Figure 3.9 illustrates the dependency of the LPM
processing time with respect to the neighbour points n and polynomial order p
considered and compared to the FFT time processing. As shown in Figure 3.9,
the processing time added does not penalize the calculation time for real-time
EBI monitoring applications for polynomial orders p < 20. Experimental results
from the LPM implementation are 150 impedance spectra/second (1 period), 75
impedance spectra/second (two periods), 51 impedance spectra/second (three
periods) and 39 impedance spectra/second (four periods). The more periods are
considered, the higher impedance spectrum Signal-to-Noise ratio is measured.
The results presented in Paper B have shown that for a given low order

polynomial (p = 2) and considering a small number of neighbor points (n = 3),
the impedance spectrum Signal-to-Noise Ratio is improved 20 dB to 50 dB
compared to Hanning window at frequencies below 10 kHz.
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Figure 3.9: Time required for the calculation of the voltage V and current I spectra (−−)
(40 Msamples, 2 periods) compared to the calculation time needed for the calculation of the
fast LPM implementation (exciting frequencies N=26)(−). Results obtained with a Personal
Computer (Intel Core Duo, 2.10 GHz) running Matlab R2009b.
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King Arthur : What do you mean?
Soldier : Well, this is a temperate zone.
King Arthur : The swallow may fly south with the sun or the house martin or the plover may seek warmer
climes in winter, yet these are not strangers to our land?
Soldier : Are you suggesting coconuts migrate?
King Arthur : Not at all. They could be carried.
Soldier : What? A swallow carrying a coconut?
King Arthur : It could grip it by the husk!
Soldier : It’s not a question of where he grips it! It’s a simple question of weight ratios! A five ounce bird could
not carry a one pound coconut.
King Arthur : Well, it doesn’t matter. Will you go and tell your master that Arthur from the Court of Camelot is
here?.

-Monty Python and the Holy Grail (1974)

4
A preliminary study on minimally invasive

in-vivo human lung tissue characterization
using Impedance Spectroscopy

This chapter presents the preliminary results of a study that is being performed
at the moment of finishing this thesis. It would be a new application of non-
stationary EBI measurements, aiming to minimally invasive in-vivo character-
ization of human lung tissue pathologies using an electronic biopsy based on
Electrical Impedance Spectroscopy. In Section 4.1 there is an introduction to
the motivation of this research study. Sections 4.4 and 4.5 describe the meth-
ods and materials used. Next, Sections 4.6 and 4.7 describe in more detail
the four-wire electrical impedance measurement system and the issues related
to the measuring system calibration and characterization. Finally, Section 4.9
presents the preliminary results of the measurement campaign carried out in
collaboration with the Pneumology Service from the Hospital Santa Creu i Sant
Pau (HSCSP).
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4.1 Introduction
Respiratory diseases include diseases of the lung, pleura, bronchial tree, trachea,
upper respiratory tract and of the respiratory muscles and nerves.They are
a common and important cause of illness and death among the population.
According to the report from the Instituto Nacional de Estadistica1, in 2008,
the respiratory diseases represented 11,4% of the causes of mortality in Spain.
The same pattern remained of mortality was mantained in 2009. The three
leading causes were diseases of circulatory system (31.2%), tumors (27.3%) (see
Figure 4.1) and respiratory diseases (11.2%).

No screening is currently applied to detect lung cancer, so the majority of
cases are diagnosed after the appearance of symptoms and a radiological study
(usually by Computed Tomography (CT)) showing a pulmonary lesion. Al-
though the symptoms and radiological tests results may indicate the presence
of cancer, the diagnosis needs histological analysis for confirmation and cell
type identification. The cells from lungs are usually obtained from sputum or
by more invasive 3dures such us bronchoscopy. Bronchoscopy consists in the
introduction, usually through the nose, of a flexible tube to explore and obtain
samples from the airways. The procedure is performed under local anesthesia
and sedation to avoid patient’s discomfort by a lung specialist. Several samples
can be obtained from bronchoscopies: bronchial wash and aspiration, bronchial
brush, transbronchial needle aspiration, and biopsies from both, bronchial mu-
cosa and lung parenchyma (transbronchial) The transbronchial biopsy proce-
dure is performed using a tiny forceps that are passed through a channel of
the bronchoscope into the lungs. While the patient is exhaling, the pulmonolo-
gist collects a small sample of the lung tissue. Due to the uncertainty in the
biopsy, it is necessary to repeat this step until several samples are collected for
tissue analysis. In some occasions, X-rays fluoroscopy imaging in real-time is
performed during the bronchoscopy to help in directing the forceps to the area
to be scanned in the lungs.

4.2 Motivation
Experimental evidence show that cancerous skin lesions have different electri-
cal properties compared with non-cancerous lesions or normal tissue (Aberg
et al., 2003, 2004). Therefore, cancerous ones may be differentiated from non-
cancerous lung tissue lesions by comparing the tissue passive electrical prop-

1http://www.ine.es/
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Figure 4.1: Computed Tomography (CT) scanning images corresponding to patient 1467834;
red arrow indicates the presence of a cancerous mass in the left lung (right side of the image).

erties with those of the surrounding healthy tissues. The aim of this study is
twofold: (1), to investigate whether using Electrical Impedance Spectroscopy
may improve the biopsy diagnosis procedure, and (2), whether EIS technique
can differentiate between pathological lung or not. As a preliminary task, this
Chapter presents a feasibility study on how the previously developed technique
presented in Chapter 2 and Chapter 3, can help to improve the lung tissue
characterization at the moment of the biopsy, including the dynamic behavior.

4.3 Measurement Protocol
After the patient’s approval, the bronchoscopy was performed in a special room
designated for such procedures. During the procedure, midazolam sedative and
local anesthetic like lidocaine was used to anesthetise the mucous membranes
of the pharynx, larynx and trachea. The patients were continuously ECG mon-
itored during the procedure. The flexible bronchoscope was inserted with the
patient in a supine position entering through the left nose hole. Once the bron-
choscope was inserted into the upper airway, the vocal cords were inspected.
The bronchoscope advanced to the trachea and further down into the bronchial
system. Each area was visually inspected as the bronchoscope went through it.
Right and left lungs were inspected. Depending on the medical staff decision,
tissue could be sampled using a biopsy (transbronchial biopsy) using real-time
x-ray guidance.
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4.4 Methodology description
The research performed is a cross-sectional population study where, in the ab-
sence of previously in-vivo published data, n has been estimated to 40 subjects.
The subjects will be divided into 4 groups according to the presumptive diag-
nosis by chest CT scan: emphysema, malignancy, pulmonary fibrosis or healthy
parenchyma (i.e. hemoptysis with normal CT). It is estimated that with 10
subjects per group of patients selected according to basic radiological patterns
that were clearly differentiated each other seems to be a reasonable number of
individuals to find differences between them. To be selected for participation
individuals were referred to the medical unit. The inclusion criteria consists on
the indication for bronchoscopy study of respiratory disease, in the opinion of
the medical responsible for the patient, the pulmonary function study and blood
gases at rest and air, CT chest scan, age superior to 18 years and the patient
signed informed consent. Patients were excluded when previous history of poor
tolerance to respiratory endoscopy, the inability to 8-second apnea, any psychi-
atric disorder or limitation to collaboration (i.e. including language problem or
socio-cultural among others), notorious instability (i.e respiratory failure) prior
to bronchoscopy in the opinion of bronchoscopist assume an increased risk for
the patient to be included in the study.

4.5 Materials
In order to perform the EIS measurements, we employed a tetrapolar probe
catheter (Bard Electrophysiology VIKING, 400041) with 115 cm length and
a diameter of 1.65 mm (5F). The probe has a line of isolated polymer with
four platinum electrodes separated by a distance of 2 mm and placed in the
distal shaft section. For safety reasons, a patient front-end previously designed
to accomplish the safety regulation for medical devices (EN 60601-1) (Ramos
et al., 2004) was used. The maximum patient auxiliary rms current injected by
the system in working condition to the patient is 90uA. The catheter was placed
inside the alveolus trough the same interior channel of the bronchoscope used
for the biopsy (see Figure 4.2).

4.5.1 Measurement System
The measurement system shown in Figure 4.2 is composed by three devices:
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1. the isolated front end, which is an optically isolated patient interface bat-
tery power provided including two ECG channels and the impedance front
end.

2. the core of the measurement system based on a PXI system.

3. an analog-optical interface front end to connect the PXI with the front
end.

PXIe-1062Q

PXI-5422

PXI -5122

PXI-8130

ANALOG
      to
OPTICAL

r

v
i

ECG

IMPEDANCE FRONT END

COMMUTED POWER
          SUPPLY

OPTICAL
      to
ANALOGOPTICAL

      to
RS-232

ECG

BATTERY

FRONT END L
R

N

Figure 4.2: Block diagram description of the system setup at the hospital operation room; a
nasal bronschoscopy is performed to the patient to observe the lobar and segmental bronchi.

4.5.1.1 Electrocardiogram (ECG) board

The ECG measurement system has two channels (internal and external). The
external channel has conventional features: a band pass frequency response with
cut-off frequencies of 0.5 Hz or 0.05 Hz (selectable) for the high pass filter and
and 100 Hz for the low pass filter. The instrumentation amplifier for both ECG
channels uses the AD627. External ECG signal is sampled at 945 Hz with a 12-
bit A/D converter integrated in the microcontroller (ADuC 812). This board
has also two channels available for the absolute and differential temperature
measurement that are not used in this application. The PXI controller (PXIe-
8130) is in charge of the acquisition of the ECG signal. It does so using an
optical-RS232 modem within the ECG board available in the front end.
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4.5.1.2 Electrical Bio-Impedance measurement system

The system includes an embedded controller PXIe-8130, a 2 channel high-speed
digitizer card PXIe-5122 (100Ms/s, 64MB/channel, 14bits) and an arbitrary
waveform card PXI-5422 (200Ms/s, 32MB, 16 bits). While the AWG (PXI-
5422) generates the multisine excitation r (t), the two channel digitizer (PXIe-
5122) acquires voltage v (t) and current i (t) system response. The Electrical
Bio-Impedance is estimated in the frequency domain using the Fast Local Poly-
nomial Method described in Section 3.2.2.

The excitation r (t) is converted into an optical signal with the optical-analog
interface connected to the PXI. Then, it is converted again into an electrical
signal inside the front end. The voltage v (t) and current i (t) signals, which are
optically transmitted from the front end to the optical-electrical interface, are
filtered (cut-off frequency 10 MHz) and acquired with the digitizer card.

4.6 Measurement System characterization
This section describes the measurements performed in the laboratory using ex-
perimental models to verify the functionality of the measurement system and
to evaluate its main specifications and limitations.

4.6.1 Impedance measurement errors: linearity
In order to determine the system linearity, we measured ten resistors (5% tol-
erance) with the nominal values of 100 Ω, 150 Ω, 200 Ω, 270 Ω, 360 Ω, 470 Ω,
670 Ω, 750 Ω, 820 Ω and 910 Ω. Terminals HPOT with HCUR and LPOT wit
LCUR were shorted respectively. The impedance spectrum magnitude ∣Z ∣ and
phase ϕ were calibrated using the 100 Ω resistor as a reference values at the
following exciting frequencies:

f (kHz) = 10,13,17,21,26,32,39,48,59,72,87,105,127,154,

186,224,270,325,391,470,565,679,816,981 (4.1)

according to the following equations:

∣Z ∣ = ∣Zmeasured∣
∣Z100Ω∣

⋅ R100Ω
ϕ = ϕmeasured − ϕZ100Ω

(4.2)

Figure 4.3 shows on the x-axis the real value of the resistors measured with a
multimeter (with a accuracy of 0.1%) and on the y-axis the real part of the
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Figure 4.3: Real value of the resistors measured vs. the resistance of the impedance measured
using a multisine excitation at the excited frequencies.

impedance for each frequency. As shown in Figure 4.3, the input impedance
that can be measured by the front end is not higher than 400 Ω. From 400
Ω, the front end stage goes into saturation and its response ceases to be lin-
ear. Nevertheless, it is not expected to measure lung tissue impedance above
this value. It it could seem that the system presents a stronger non-linearities
behavior at high frequencies than at low frequencies within the linear region
(100Ω < Re (Z) < 400Ω). Nevertheless, this effect is due to the input capaci-
tance from the differential amplifier used to measure the voltage v (t) between
HPOT and LPOT terminals, which has higher influence at high frequencies than
low frequencies.

4.6.2 Characterization of the system frequency response
In order to characterize the contribution of system nonlinearities to the Electri-
cal Bio-Impedance, the patient has been replaced by a 100 Ω resistor (5% toler-
ance) with two configurations. In the first configuration, the resistor was con-
nected directly to the Impedance front end box without connecting the catheter.
In the second configuration, the resistor was connected to the tip of catheter
directly to the electrodes and then the catheter connected to the Front End.
Figure 4.6 shows the frequency response function of front end (−−) and includ-
ing the catheter (−). The use of the catheter modifies both the magnitude and
phase. In fact, the way the phase is modified is somewhat unpredicatable since
it is highly sensitive to several uncontrollable factors. These factors are:
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1. the position of the catheter influences on the effective capacitive coupling
from the catheter cable to ground.

2. how the phase is affected by the crosstalk between the catheter cables
remains unclear.

3. the length of catheter introduced into the lungs is not constant, so the
capacitive coupling catheter-patient will vary with each patient measured.

For all these mentioned reasons, it is preferable to obtain knowledge about
the nonlinear and noise source levels than calibrating the measured phase with
accuracy.

4.6.2.1 Study of the Non-Linearities: measuring the Best Linear
Approximation (BLA)

Consider a Error-In-Variables (EIV) framework (noisy input/output measure-
ments), as shown in Figure 4.4, where GBLA is the Best Linear Approximation

A(j�)r(t) u0(t) GBLA(k)

nu(t)

u(t)

yR(t) y0(t)

ys(t) ny(t)

y(t)

Nonlinear system

Figure 4.4: Measurement of the Best Linear Approximation of a nonlinear system within an
Error-In-Variables (EIV) stochastic framework in open loop setup. A (jωk) is the linear actu-
ator transfer function. r (t) is the known reference signal loaded into the Arbitrary Waveform
Generator (AWG). ys (t) is the stochastic nonlinear noise source contribution that depends
on the input power spectrum and the even and odd nonlinearities. nu (t) and ny (t) are,
respectively, the input and output noise sources.

(BLA) related to the Linear Time Invariant (LTI) behavior of a nonlinear sys-
tem (Schoukens et al., 2002, 2008, 2009a). The nonlinear system is modeled by
a linear system GBLA and a output additive nonlinear source of noise ys (t).
Then, the spectrum from the input/output measurements, U (k) and Y (k) re-
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spectively, can be projected to the reference spectra R (k), giving:

UR (k) = U(k)
R(k)

= UR0 (k) + NU (k)
R(k)

YR (k) = Y (k)
R(k)

= YR0 (k) + YS(k)
R(k)

+ NY (k)
R(k)

(4.3)

with
UR0 (k) = A (jωk)
YR0 (k) = GBLA (jωk) UR0 (k) (4.4)

where A (jωk) is the linear actuator transfer function. The phases of UR0 (k)
and YR0 (k) are only dependent on both the actuator transfer function and the
Best Linear Approximation. Then, it follows from eq. 4.3 that the projected
input/output DFT spectra, UR (k) and YR (k), can be averaged over both the
P periods and the M realizations in the measurement scheme of the robust
method presented in Figure 4.5.
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Figure 4.5: Robust method scheme for estimating the Best Linear Approximation GBLA of a
nonlinear system within an Error-In-Variables (EIV) framework, where M different random
phase multisine excitations ri (t) are used.

The steps to estimate the Best Linear Approximation shown in Figure 4.6
are:

1. Calculate the input, output and reference DFT spectra of each period.

2. Calculate the projected input/output spectra of the mth realization and
pth period with respect the reference (see eq. 4.3)

3. Perform a variance analysis of the set of the projected input/output DFT
spectra (see Appendix eq. B.1)

4. Calculate the uncertainty of the frequency response function (see Ap-
pendix eq. B.2, eq. B.3 and eq. B.4)
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The robust method experiment has consisted on ten realizations (M=10) and
ten periods (P=10). For each realization, the excitation consisted on a different
random phase multisine (1 ms, Fs 20 MHz). The exciting frequencies are shown
in eq. 4.1. All the random phases multisines were designed to have the same
energy. As shown in Figure 4.7 (left), the contribution of the non-linear dis-
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Figure 4.6: Magnitude (left) and phase (right) of the Best Linear Approximation frequency
response function when measuring a 100 Ω resistor directly connected to the front end (−−)
and including the catheter (−).

tortions introduced by the front end are negligible in comparison to the system
noise variance. However, Figure 4.7 (right) shows that the catheter increases
the stochastic non-linear distortions. However, the non-linearities introduced
are not critic since they remain about 50 dB below the level of the frequency
response.

4.7 Measurement system calibration
The impedance measurement technique used is a 4-wire and is made available
through the electrodes in the catheter, described in Section 4.5, which is con-
nected to the impedance front end. These electrodes are arranged at the end of
the catheter and its configuration is as follow: Low Current (LC), Low Potential
(LP), High Potential (HP) and High Current (HC), respectively.

4.7.1 Finite Elements Model (FEM) simulation
In order to perform the calibration of the EBI measurement system, different
conductivity solutions were simulated using COMSOL Multiphysics.
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Figure 4.7: Magnitude of the Best Linear Approximation GBLA (jω) (−), noise variance
σ2

GBLA,n
(jω) (◯) and total variance σ2

GBLA
(jω) ( �) which includes the noise and non-

linear distortions of the front end (left) and including the catheter (right).

Figure 4.8: Distribution of the electrical potential at the electrode.
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According to the measuring system calibration procedure, the catheter was
simulated to be placed in the middle of a plastic cylinder containing the cali-
bration solution. The catheter was modeled by the composition of eight piled
cylinders representing each of the electrodes and the polyurethane space be-
tween them. The final assembly produced a Finite Element (FE) mesh with
a limited number of elements simulated under 3D quasi-static/electric AC/DC
conditions.

4.8 Simulation Results
Figure 4.9 shows the expected lung’s Electrical Bio-Impedance according to the
model described in (Gabriel et al., 1996) given by:

ε (ω) = ε∞ +
4

∑
m=1

Δεm

1 + (jωτm)1−αm
+

σi

jωε0
(4.5)

where ε0 is the permittivity of free space and ω the angular frequency. Equation
4.5 models the dielectric data as a summation of 4-Cole-Cole expression (see eq.
1.27) using the electrical conductivity σi and permittivity εm values available
from the study of Carrara, N.2. The tissue resistivity ρ∗ is calculated as the
inverse of the complex conductivity σ∗ as shown in eq. 1.12 and eq. 1.16 using
eq. 4.5. Considering the electrodes having negligible dimensions and being
surrounded by a mass of infinite size, the lung’s impedance measured with 4-
wire technique can be approximated by the following expression:

Z∗ (ω) ≈
ρ∗ (ω)
4πd

(4.6)

where d is the distance between electrodes. For the catheter used (see Sec-
tion 4.5), the distance between the center of the electrodes is d = 3.5mm. In
the range of β dispersion, it is possible to observe that there is a significant
difference in the magnitude when lungs are inflated or deflated. The inflated
lungs show a higher impedance modulus than the deflated lungs due to the fact
that the electrical conductivity decreases as much as the lungs are inflated with
oxygen. Moreover, the major phase relaxation is expected to occur close to 1
MHz in both cases, where the inflated present a lower phase value than when
deflated. Nevertheless, the interpretation of these data must be carefully done:
part of the data were obtained from ex-vivo experimental measurements while

2http://niremf.ifac.cnr.it/tissprop/
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Figure 4.9: Magnitude (top) and phase (bottom) characteristic frequency response simulated
when inflated (−−) and deflated (−).

other were obtained from extrapolating experimental data. However, a clinical
in-vivo trial is a more complex scenario. The Electrical Bio-Impedance signal
will be under the influence of the heartbeat, due to the lung’s blood perfusion,
and the breathing cycle because of the lungs’ ventilation. Furthermore, the
Electrical Bio-Impedance signal is expected to change depending on the physi-
ological state of the lung and on the specific characteristics of the injury being
measured. In addition, noise and artifacts due to complications during the pro-
cedure could influence the measurements. Stridor and dyspnea resulting from
laryngeal edema, laryngospasm, or even bronchospasm are some examples of
complications that are reflected into artifacts in the signal.

4.9 Experimental Results

Figure 4.10 illustrates an electronic biopsy of the lung tissue. The frequencies
used in the electronic biopsy method (see Section 4.6) are chosen to obtain infor-
mation about the clinical tissue relevant properties, such as tissue composition
of intra and extra-cellular environments, cell shape and size.
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Figure 4.10: Catheter placed inside the alveolus, in contact with the lung parenchyma (alveolar
tissue) (patient 430021).

4.9.1 Influence of the ventilatory signal

The major drawback when measuring Electrical Bio-Impedance in humans is
the significant variation of the ventilation rate, which occurs unexpectably. In
contrast to the Electrical Bio-Impedance magnitude, the phase is not subjected
to the modulation of respiration. Figure 4.11 (left) illustrates the changes in
time when the lungs are inflated or deflated.
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Figure 4.11: Detail of the time-variation of the impedance magnitude at 186 kHz due to the
influence of the pulmonary ventilation (left); Variation in time of the impedance spectrum
magnitude at the exciting frequencies due to the cardiac-cycle (right) (patient 1109639).



Chapter 4. A preliminary study on minimally invasive in-vivo human lung
tissue characterization using Impedance Spectroscopy 85

4.9.2 Influence of the cardiac signal
If no respiration is present in the Electrical Bio-Impedance signal, i.e. during
an apnea, the effect of heartbeat would be the only source of disturbance on
the measurement. To achieve this situation, the patients should be able to
maintain a prolonged apnea. As shown in Figure 4.11 (right), the speed of
acquisition of the measurement system and the fast Local Polynomial Method
performance enables to appreciate the cardiac and pulmonary related changes
in the impedance spectrum. Thus, it is not longer necessary to cause an apnea
to patients.

4.10 Discussion
The preliminary data analyzed suggests that the electrical impedance magnitude
changes depending on whether or not the tissue has an injury. It holds promise
on helping histopathologists to diagnose lung cancer. At the moment of writing
the thesis, 9 patients were already measured, which presented different lung
tissue pathologies. A first observation is that there is a significant difference in
the EBI magnitude when lungs are inflated or deflated. Moreover, differences
in the impedance spectrum magnitude suggest that impedance can be a valid
indicator to distinguish lung tumors from healthy tissue.

Being the Electrical Impedance technique a non-invasive approach, the pa-
tient would have a fast and accurate method of detection, undergo less pain,
less bleeding and have greater comfort. However, further research is needed and
more patients should be studied. The Electrical Bio-Impedance data should be
correlated with histologist analysis to reveal real evidences for being used as a
clinical diagnosis tool.
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Dr. Frederick Frankenstein: You know, I’m a rather brilliant surgeon. Perhaps I can help you with that hump.
Igor : What hump?.

-Young Frankstein (1974)

5
Conclusions and Guidelines for future

research

5.1 Conclusions
The general conclusions and topics of research presented in this thesis cover the
challenges to measure time-varying Electrical Bio-Impedance (EBI) measure-
ments. On one hand, the optimal multisine excitation for short time Electrical
Impedance Spectroscopy (EIS) has been designed. More precisely, this research
activity has contributed to overcome the problem of measuring in a reduced
measuring time with energy restrictions. A formal approach for designing the
optimal time and frequency multisine excitation has been presented enabling the
impedance spectrum accuracy to be maximized. Following, there is a detailed
list focusing on the relevant results obtained:

• The main advantage that multisine offers with respect to rest of excita-
tions studied for EBI measurements is that the user has the flexibility to
directly specify the power spectrum (amplitudes and frequencies). The
phases must be selected to minimize its Crest Factor in order to reduce
the overall amplitude span of the excitation. This is done while main-

87
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taining the same level of power in the exciting fundamental frequencies.
Unlike other excitations such as chirp, the user has total control of the
multisine time/frequency domain properties. This can be an advantage or
not, depending on the user experience.

• To identify the most suitable excitation we have to consider that in most of
the applications taking measurements in a limited set of exciting frequen-
cies is enough. The reason why the complete spectrum is not necessary
is due to the EBI frequency behavior. EBI responses decrease monotoni-
cally with frequecny and only a few samples are needed to be fitted into
a model. Considering as constraints the measuring time and the maxi-
mum peak value of the excitation, the impedance spectrum accuracy is
the cost function that should be considered. The optimal time/frequency
domain multisine excitation has been designed by minimizing its Crest
Factor (CF) and the Cramer-Rao (CR) lower bound respectively. The
published results shown in Paper A have contributed to understand the
relation between the multisine exciting frequency distribution, the ampli-
tude power spectrum and the impedance spectrum accuracy. Next list
summarizes the most relevant results obtained so far:

– Not all the exciting frequencies and excitation amplitude power spec-
trum contribute in the same way to increase the impedance spectrum
accuracy.

– The EBI dispersion function maximum value when exciting an equally-
spaced or logarithmic frequency distributions is higher than when ex-
citing with a custom frequency distribution that places more excited
frequencies close to the central frequency of the impedance relaxation.

– The equally-spaced and the logarithmic frequency distributions re-
quire a higher number of exciting frequencies to obtain the same
impedance spectrum accuracy as the previously mentioned custom
frequency distribution.

– The impedance spectrum accuracy is more sensitive to the excitation
amplitude power spectrum than to the excited frequency distribution
used.

– The variance of the impedance spectrum is higher close to the central
frequency of the relaxation than in other frequencies.

– Increasing the number of exciting frequencies contributes to minimize
the impedance spectrum variance. However, its influence is reduced
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as the number of exciting frequencies becomes sufficiently large. As
a result, a discrete power spectrum like multisine with enough ex-
citing frequencies provides the same information as a full grid power
spectrum exciting all the spectral lines.

On the other hand, a novel spectral estimation method has been used for
impedance spectrum estimation based on the Local Polynomial Method (LPM).
The presented method overcomes the limitations of current spectral estimation
methods when processing data under the influence of transients. Through simu-
lations, it has been shown that leakage error’s influence on the EBI is efficiently
rejected at low frequencies. This enables to achieve a greater accuracy on the
impedance spectrum than classical spectral methods based on windows (between
50 dB and 100 dB more accurate depending on the polynomial order consid-
ered). Furthermore, the additional calculation time of the fast LPM version
is negligible compared to the computation time of the Fast Fourier Transform
(FFT) for low order polynomials (only 1ms). Moreover, the improvement in the
accuracy is about 30 dB at 1 kHz and 50 dB at 3 kHz (p=10).

This knowledge has been applied to two different measurement campaigns
within the collaboration from Hospital Santa Creu i Sant Pau (HSCSP) for in-
vivo human lung and myocardium tissue electrical impedance characterization.
The results obtained have shown successful evidences when measuring under
the influence of non-stationary behavior such as the pulmonary ventilation and
the cardiac-cycle time variation, being the cardiac-cycle the most restrictive
application.

5.2 Guidelines for future research
In a view of the work presented in this thesis, various research lines can be
established.

• To study the changes of the myocardium electrical impedance in time
during an acute ischemic process. Simultaneous acquisition of pressure
wave in the ventricle and its correlation with the Cole parameters will
help to interpret the results.

• Increase the number of patients with the aim of achieving a significant
population sample to enable the study of the in-vivo passive electrical
properties of lungs with different diseases. Segmenting the population
according to the type of lung disease, with the aim of studying whether
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EIS can help to perform better biopsies and to characterize different lung
tissue states.

• To study the dependency of the impedance model parameters accuracy
considering the frequency. The goal is to identify whether exists frequen-
cies band or not where it is preferable to measure in order to minimize
the variance of the impedance model parameters.

• To apply the broadband EIS technique for non-invasive monitoring of
the engineered tissue developed within the research projects described
in Section 0.1. Develop tissue state multivariate estimators. This could
include time-frequency behavior information for in-vitro detection of stem
cell differentiation and in-vivo engineered heart tissue viability for cardiac
tissue regeneration.

• To study the possibility to extend the range of applications of broadband
EIS based on multisine to microfluidics, Electrical Impedance Tomography
(EIT) and Electrochemical field.
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Abstract
Electrical impedance spectroscopy (EIS) can be used to characterize biological materials in
applications ranging from cell culture to body composition, including tissue and organ state.
The emergence of cell therapy and tissue engineering opens up a new and promising field of
application. While in most cases classical measurement techniques based on a frequency
sweep can be used, EIS based on broadband excitations enables dynamic biological systems to
be characterized when the measuring time and injected energy are a constraint. Myocardial
regeneration, cell characterization in micro-fluidic systems and dynamic electrical impedance
tomography are all examples of such applications. The weakness of such types of fast EIS
measuring techniques resides in their intrinsic loss of accuracy. However, since most of the
practical applications have no restriction over the excitation used, the input power spectrum
can be appropriately designed to maximize the accuracy obtained from the measurements.
This paper deals with the problem of designing the optimal multisine excitation for electrical
bioimpedance measurements. The optimal multisine is obtained by the minimization of the
Cramer–Rao lower bound, or what is the same, by maximizing the accuracy obtained from the
measurements. Furthermore, because no analytical solution exists for global optimization
involving time and frequency domains jointly, this paper presents the multisine optimization
approach partially in both domains and then combines the results. As regards the frequency
domain approach, a novel contribution is made for the multisine amplitude power spectrum. In
the time domain, multisine is optimized by reducing its crest factor. Moreover, the impact on
the information and accuracy of the impedance spectrum obtained from using different
multisine amplitude power spectra is discussed, as well as the number of frequencies and
frequency distributions. The theory is supported by a set of validation measurements when
exciting with the optimal and flat multisine signals and compared to a single frequency ac
impedance analyzer when characterizing an RC circuit. In vivo healthy myocardium tissue
electrical impedance measurements show that broadband EIS based on multisine excitations
enable the characterization of dynamic biological systems.

Keywords: broadband electrical impedance spectroscopy, optimal multisine excitation,
electrical bioimpedance

1. Introduction

Electrical impedance spectroscopy (EIS) can provide
information about electrochemical reactions at interfaces,

transport processes in electrolytes and electrical properties of

materials. Among the various approaches to EIS experiments,

the most common is the application of a single-frequency
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Abstract—Classicalmeasurements ofmyocardium tissue electri-�
cal impedance for characterizing the morphology of myocardium	
cells, as well as cell membranes integrity and intra/extra cellu-

lar spaces, are based on the frequency-sweep electrical impedance��
spectroscopy (EIS) technique. In contrast to the frequency-sweep��
EIS approach, measuring with broadband signals, i.e., multi-��
sine excitations, enables to collect, simultaneously, multiple my-��
ocardium tissue impedance data in a short measuring time. How-��
ever, reducing the measuring time makes the measurements to��
be prone to the influence of the transients introduced by noise��
and the dynamic time-varying properties of tissue. This paper��
presents a novel approach for the impedance-frequency-response�	
estimation based on the local polynomial method (LPM). The�

fast LPM version presented rejects the leakage error’s influence��
on the impedance frequency response when measuring electrical��
bioimpedance in a short time. The theory is supported by a set��
of validation measurements. Novel preliminary experimental re-��
sults obtained from real-time in vivo healthy myocardium tissue��
impedance characterization within the cardiac cycle using multi-��
sine excitation are reported.��

Index Terms—Broadband electrical impedance spectroscopy��
(EIS), electrical bioimpedance (EBI), local polynomial method�	
(LPM), multisine excitation, myocardium tissue electrical�

impedance.
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Appendix

Appendix A. Multisine Crest Factor
Consider a real multisine defined by:

u (t) =
N−1
∑
n=0

an cos (2πfnt + ϕn) (A.1)

By definition, the energy of a periodic signal can be found solving the following
equation:

Eu(t) ≜

T0/2
∫

−T0/2

∣u (t)∣2 dt (A.2)

Then, if we replace the signal by the multisine time expression:

Eu(t) =

−T0/2
∫

−T0/2

∣
N−1
∑
n=0

an cos (2πfnt + ϕn)∣
2

dt (A.3)

the equation to solve once the quadratic term is expanded is:

Eu(t) =

T0/2
∫

−T0/2

M−1
∑
k=0

M−1
∑

m=0
amak cos (2πf0t + ϕm) cos (2πf0t + ϕk)dt (A.4)

Rearranging the expression using the cosine trigonometric relationship gives:

Eu(t) =

T0/2
∫

−T0/2

N−1
∑
k=0

N−1
∑

m=0
amak

cos (2 ⋅ 2πf0t + ϕm + ϕk) + cos (ϕm − ϕk)
2

dt (A.5)
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This allows to simplify equation A.4 into the following expression:

Eu(t) = 2 ⋅

T0/2
∫
0

N−1
∑
k=0

a2m
cos (2 ⋅ 2πf0t + 2 ⋅ ϕm) + 1

2
dt (A.6)

At this moment, the summation operator can be moved out of the integral as
follows:

Eu(t) =
N−1
∑

m=0
a2m

T0/2
∫
0

(cos (2 ⋅ 2πf0t + 2 ⋅ ϕm) + 1) dt (A.7)

and the solution is:

Eu(t) =
N−1
∑

m=0
a2m ∣t +

sin (2 ⋅ 2πf0t + 2 ⋅ ϕm)
2 ⋅ 2πf0

∣

T0/2

0
(A.8)

Eq. A.8 evaluated at the initial and ending points turns into:

Eu(t) =
N−1
∑

m=0
a2m

⎛

⎝
T0
2

+
sin (2 ⋅ 2πf0

T0
2 + 2 ⋅ ϕm) − sin (2 ⋅ ϕm)

2 ⋅ 2πf0

⎞

⎠
(A.9)

Eu(t) =
N−1
∑

m=0
a2m (

T0
2

+
sin (2π + 2ϕm) − sin (2ϕm)

2 ⋅ 2πf0
) (A.10)

Eq. A.10 can be simplified because of the sin function 2π periodicity into:

Eu(t) =
N−1
∑

m=0
a2m (

T0
2

+
sin (2ϕm) − sin (2ϕm)

2 ⋅ 2πf0
) (A.11)

Finally, we obtain that the energy of a real multisine is only function of the
number of exciting frequencies N and the norm of the fundamental amplitudes
l2 (a):

Eu(t) =
T0
2

N−1
∑

m=0
a2m (A.12)

By definition, the Crest Factor of an excitation u (t) is:

CF (u (t)) =
∥u (t)∥∞�

������
1

T0

T0/2
∫

−T0/2
∣u (t)∣2

(A.13)



Rearranging the denominator term using the expression obtained in eq. A.12:

CF (u (t)) =
∥u (t)∥∞√
1

T0
T0
2

N−1
∑

m=0
a2m

(A.14)

we finally obtain that the Crest Factor for a real multisine excitation is:

CF (u (t)) =
√
2 ∥u (t)∥∞√

N−1
∑

m=0
a2m

=
√
2∥u (t)∥∞

∥am∥2
(A.15)

Appendix B. Measuring the Best Linear Approximation
(BLA): the Robust Method
The projected input/output spectra of the mth realization and pth period are
related to the input/output noise, the Best Linear Approximation, and the
stochastic nonlinear distortions as follows:

U
[m]
R

(k) = 1
P

P

∑
p=1

U
[m,p]
R (k) , Y

[m]
R

(k) = 1
P

P

∑
p=1

Y
[m,p]

R (k)

σ2
U
[m]

R

(k) =
P

∑
p=1

∣U [m,p]
R

(k)−U
[m]

R
(k)∣

2

P (P−1) , σ2
Y
[m]

R

(k) =
P

∑
p=1

∣Y [m,p]
R

(k)−Y
[m]

R
(k)∣

2

P (P−1)

σ2
Y
[m]

R
U
[m]

R

(k) =
P

∑
p=1

(Y [m,p]
R

(k)−Y
[m]

R
(k))(U [m,p]

R
(k)−U

[m]

R
(k))

∗

P (P−1)

(B.1)
Additional averaging over the M realizations gives:

UR (k) = 1
M

M

∑
m=1

U
[m]
R (k) , Y R (k) = 1

M

M

∑
m=1

Y
[m]

R (k)

σ2
UR

(k) =
M

∑
m=1

∣U [m]
R
(k)−UR(k)∣

2

M(M−1) , σ2
Y R

(k) =
M

∑
m=1

∣Y [m]
R
(k)−Y R(k)∣

2

M(M−1)

σ2
Y RUR

(k) =
M

∑
m=1

(Y [m]
R
(k)−Y R(k))(U [m]R

(k)−UR(k))
∗

M(M−1)

(B.2)

and an improved estimate of the input/output noise (co-)variance is given by:

σ2
UR

,n (k) = 1
M2

M

∑
m=1

σ2
U
[m]

R

(k) , σ2
Y R

,n (k) = 1
M2

M

∑
m=1

σ2
Y
[m]

R

(k)

σ2
Y RUR

,n (k) = 1
M2

M

∑
m=1

σ2
Y
[m]
R U

[m]

R

(k)
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Finally, the Best Linear Approximation for the frequency response ĜBLA (jωk),
the noise variance σ2

GBLA
,n (k) and the total variance (including the contribution

of the non-linear distortions and noise) σ2
GBLA

(k) are found as:

GBLA (jωk) = Y R(k)
UR(k)

σ2
GBLA

,n (k) = ∣GBLA (jωk)∣
2

(
σ2

Y R
,n(k)

∣Y R(k)∣2
+

σ2
UR

,n(k)

∣UR(k)∣2
− 2R(

σ2
Y RUR

,n(k)

Y R(k)UR(k)∗
))

σ2
GBLA

(k) = ∣GBLA (jωk)∣
2

(
σ2

Y R

(k)

∣Y R(k)∣2
+

σ2
UR

(k)

∣UR(k)∣2
− 2R(

σ2
Y RUR

(k)

Y R(k)UR(k)∗
))

(B.4)
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