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Summary

Granular materials are multi-particle systems involved in many industrial pro-

cess and everyday life. The mechanical behavior of granular media such as

sand, coffee beans, planetary rings and powders are current challenging tasks.

In the last years, these systems have been widely examined experimentally,

analytically and numerically, and they continue producing relevant and un-

expected results. Despite the fact that granular media are often composed

of grains with anisotropic shapes like rice, lentils or pills, most experimental

and theoretical studies have concerned spherical particles. The aim of this

thesis have been to examine numerically the behavior of granular media com-

posted by spherical and non-spherical particles. Our numerical implementa-

tions have permitted the description of the macroscopic properties of mechan-

ically stable granular assemblies, which have been experimentally examined

in a framework of the projects "Estabilidad y dinámica de medios granulares

anisótropos" (FIS2008- 06034-C02-02) Universiy of Girona and "Interacciones

entre partículas y emergencia de propiedades macroscópicas en medios gran-

ulares" (FIS2008-06034-C02-01) University of Navarra.

The thesis is structured as follows. First, we have introduced the main

concepts regarding the topics, which are studied in the subsequent chapters.

Moreover, we also described the algorithms that are used to face the chal-

lenges that arise.

In Chapter 2, we introduced a numerical algorithm to describe the dynamic

fragmentation in multi-particles systems. We have considered that fragmen-

tation is induced by collisions between pairs of particles and perform numeri-

cal modeling for several classes of interaction kernels, and types of breakage

models. The algorithm is validated by comparing our results with previous

v
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analytical findings for symmetric and asymmetric kernels.

In Chapter 3, the cooling dynamics of a 2D granular gas of elongated par-

ticles is examined. We performed simulations on the temporal evolution of

soft particles, using a molecular dynamics algorithm. For weakly dissipative

particles, we found an homogeneous cooling process where the overall trans-

lational kinetic energy decreases analogously to viscoelastic circular particles.

On the contrary, for strongly dissipative particles we observed an inhomoge-

neous cooling process where the diminishing of translational kinetic energy

notably slows down. The rotational kinetic energy, however, always decays

in agreement with Haff’s prediction for the homogeneous cooling state of

inelastic particles. We mainly found that the cooling kinetics of the system

is controlled by the mechanisms that determine the local energy dissipation

(collisions). However, we detected a strong influence of particle shape and in-

elasticity on the structure of the clusters which develop in the inhomogeneous

cooling regimes. Our numerical outcomes suggest that strong dissipation and

the particle anisotropy induce the formation of ordered cluster structures that

retards the relaxation to the final asymptotic regime.

Experimental and numerical results of the effect that a partial discharge

has on the morphological and micro-mechanical properties of non-spherical,

convex particles in a silo are shown in Chapter 4. The comparison of the par-

ticle orientation when filling the silo and after its partial discharge reveals im-

portant shear induced orientation, which affects stress propagation. For elon-

gated particles, the flow induces an increase in the packing disorder which

leads to a reduction of the vertical stress propagation developed during the

deposit generated prior to the partial discharge. For square particles, the flow

favors particle alignment with the lateral walls promoting a behavior opposite

to the one of the elongated particles: vertical force transmission, parallel to

gravity, is induced. Hence, for elongated particles the flow developed during

the partial discharge of the silo leads to force saturation with depth whereas

for squares the flow induces hindering of the force saturation observed during

the silo filling.

In Chapter 5 we examined the effect of an attractive force on the packing

properties of two-dimensional elongated grains. In deposits of non-cohesive
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rods in 2D, the topology of the packing is mainly dominated by the formation

of ordered structures of aligned rods. Elongated particles tend to align hor-

izontally and the stress is mainly transmitted from top to bottom, revealing

an asymmetric distribution of local stress. However, for deposits of cohesive

particles, the preferred horizontal orientation disappears. Very elongated par-

ticles with strong attractive forces form extremely loose structures, character-

ized by an orientation distribution, which tends to a uniform behavior when

increasing the Bond number. As a result of these changes, the pressure dis-

tribution in the deposits changes qualitatively. The isotropic part of the local

stress is notably enhanced with respect to the deviatoric part, which is related

to the gravity direction. Consequently, the lateral stress transmission is domi-

nated by the enhanced disorder and leads to a faster pressure saturation with

depth.

In Chapter 6, we reported outcomes concerning the implementation on

GPUs of an accurate molecular dynamics algorithm for a system of spheres.

The new hybrid CPU-GPU implementation takes into account all the degrees

of freedom, including the quaternion representation of 3D rotations. For ad-

ditional versatility, the contact interaction between particles is defined using

a force law of enhanced generality, which accounts for the elastic and dissipa-

tive interactions, and the hard-sphere interaction parameters are translated

to the soft-sphere parameter set. We have proved that the algorithm complies

with the statistical mechanical laws by examining the homogeneous cooling

of a granular gas with rotation. The results are in excellent agreement with

well established mean-field theories for low-density hard sphere systems. This

technique dramatically reduces computational time, compared with the tradi-

tional CPU implementation.
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Resumen
Los materiales granulares son sistemas de muchas partículas implicados en

diversos procesos industriales y en nuestra vida cotidiana. El comportamiento

mecánico de medios granulares, tales como arena, granos de café, anillos o

polvos planetarios, representa actualmente todo un reto para la ciencia. En

los últimos años estos sistemas se han estudiado ampliamente de forma ex-

perimental, analítica y numérica. Aún así, hoy día se continúan obteniendo

resultados relevantes, y en muchas ocasiones, inesperados. A pesar del he-

cho de que los materiales granulares a menudo están compuestos por granos

con forma anisotrópica, como el arroz, las lentejas o las píldoras, la mayoría

de los estudios experimentales y teóricos se centran en partículas esféricas.

El objetivo de esta tesis ha sido analizar numéricamente el comportamiento

de los medios granulares compuestos por partículas esféricas y no esféricas.

Los métodos numéricos implementados han permitido la descripción de las

propiedades macroscópicas de pilas y columnas granulares, que se han exami-

nado experimentalmente en el marco de los proyectos "Estabilidad y dinámica

de medios granulares anisótropos" (FIS2008-06034-C02-02) de la Universi-

dad de Girona y "Interacciones entre partículas y emergencia de propiedades

macroscópicas en medios granulares" (FIS2008-06034-C02-01) de la Univer-

sidad de Navarra.

La tesis se estructura de la manera siguiente. En primer lugar, realizamos

una introducción a los principales conceptos relacionados con los temas que

se estudian en los capítulos siguientes. Además, se describen los algoritmos

utilizados para resolver los retos que se plantean.

En el Capítulo 2 presentamos un algoritmo numérico para describir la

dinámica de fragmentación en sistemas de múltiples partículas. Para este es-

tudio hemos considerado que la fragmentación es inducida por las colisiones

entre pares de partículas. De ese modo realizamos el modelado numérico para

varias clases de kernels de interacción y para diferentes tipos de modelos de

rotura. El algoritmo creado se validó comparando los resultados obtenidos

con resultados analíticos, obtenidos por algunos colaboradores, para kernels

simétricos y asimétricos.
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En el Capítulo 3 estudiamos la dinámica de enfriamiento en gas granular de

partículas alargadas en 2D. Realizamos simulaciones sobre la evolución tem-

poral de un sistema de partículas blandas usando un algoritmo de dinámica

molecular. Para sistemas poco disipativos, encontramos un proceso de en-

friamiento homogéneo donde la energía cinética de traslación disminuye de

forma análoga a los gases de partículas circulares visco-elásticas. Por otra

parte, para partículas muy disipativas se observó un proceso de enfriamiento

no homogéneo donde la disminución de la energía cinética de traslación se

ralentiza de manera significativa. La energía cinética de rotación, sin em-

bargo, siempre decae de acuerdo con la predicción de Haff para el estado de

enfriamiento homogéneo de partículas inelásticas. Hemos encontrado que la

cinética de enfriamiento del sistema está controlada por los mecanismos de

disipación de energía local (las colisiones). Sin embargo, encontramos una

fuerte influencia de la geometría y elasticidad de las partículas en la estruc-

tura de los clusters que se desarrollan en los regímenes de enfriamiento no ho-

mogéneo. Los resultados numéricos obtenidos sugieren que la alta disipación

y la anisotropía de las partículas inducen la formación de clusters ordenados,

que retardan la relajación a un régimen asintótico final.

Resultados experimentales y numéricos de los efectos de una descarga

parcial sobre las propiedades morfológicas y micro-mecánicas de un silo de

partículas convexas y no esféricas se muestran en el Capítulo 4. La compara-

ción de la orientación de las partículas luego del llenado del silo y después de

la descarga parcial revela cambios importantes en la orientación inducido por

el shear, lo que afecta a la propagación del estrés. Para partículas alargadas,

el flujo de llenado induce un aumento del desorden inicial, que conlleva a

la reducción de la propagación de la tensión vertical desarrollada durante el

proceso de depósito, antes de la descarga parcial. En el caso de las partícu-

las cuadradas, el flujo favorece la alineación de las partículas con las paredes

laterales del silo, lo que provoca un comportamiento opuesto al caso anterior.

Es decir, se induce la transmisión del esfuerzo en dirección vertical. De ese

modo, para las partículas alargadas, el flujo desarrollado durante la descarga

parcial del silo induce la saturación del esfuerzo con la profundidad. Por el

contrario, para los cuadrados, el flujo induce la obstaculización de la satu-
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ración del esfuerzo con la profundidad.

En el Capítulo 5 examinamos el efecto de una fuerza de atracción sobre las

propiedades de empaquetamiento de granos alargados. En depósitos de varil-

las no-cohesivas en 2D, la topología del empaquetamiento está dominada prin-

cipalmente por la formación de estructuras ordenadas alineadas. Las partícu-

las alargadas tienden a alinearse horizontalmente y la tensión se transmite,

principalmente, de arriba a abajo, revelando una distribución asimétrica de la

tensión local. Sin embargo, para los depósitos de partículas cohesivas, la ten-

dencia a la orientación horizontal desaparece. Para partículas muy alargadas

con fuertes fuerzas atractivas se forman estructuras muy desordenadas que se

caracterizan por una distribución de la orientación, que tiende a un compor-

tamiento uniforme cuando se incrementa el número de Bond. Como resultado

de estos cambios, la distribución de la presión en los depósitos cambia cuali-

tativamente. La parte isótropa de la tensión local aumenta notablemente con

respecto a la parte desviadora, la cual está relacionada con la dirección de

la gravedad. Por consiguiente, la transmisión de la tensión lateral está domi-

nada por el aumento del desorden y conduce rápidamente a la saturación de

la presión con la profundidad.

En el Capítulo 6 mostramos los resultados de la implementación de un al-

goritmo de dinámica molecular para un sistema de partículas esféricas, que

utiliza el poder de cálculo de las GPU. El nuevo algoritmo híbrido CPU-GPU

tiene en cuenta todos los grados de libertad de las partículas, incluida la rep-

resentación en 3D de la rotación mediante quaternions. Para más versatilidad,

la interacción entre las partículas se define mediante una fuerza generalizada,

que representa las interacciones disipativas y elásticas. Los parámetros de in-

teracción entre esferas duras se adaptaron para la interacción entre esferas

blandas. Se demostró que el algoritmo desarrollado cumple con las leyes de la

mecánica estadística mediante el estudio del enfriamiento homogéneo de un

gas granular de esferas con rotación. Los resultados obtenidos concuerdan ex-

celentemente con las teorías de campo medio para sistemas de baja densidad

de partículas esféricas duras. Esta técnica reduce drásticamente el tiempo de

cálculo en comparación con las implementaciones tradicionales sobre CPUs.
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Resum
Els materiales granulars són sistemes de moltes partícules implicats en di-

versos processos industrials i en la nostra vida quotidiana. El comporta-

ment mecànic de conjunts granulars, com la sorra, grans de cafè, anells o

pols planetàries, representa actualment un repte per a la ciència. En els úl-

tims anys aquests sistemes s’han estudiat àmpliament de forma experimental,

analítica i numèrica. De totes maneres, avui dia es continuen obtenint resul-

tats rellevants, i en moltes ocasions, inesperats. Malgrat el fet que els ma-

terials granulars sovint estan compostos per grans amb forma anisotrópica,

com l’arròs, les llenties o les píndoles, la majoria dels estudis experimentals i

teòrics se centren en partícules esfèriques. L’objectiu d’aquesta tesi ha estat

analitzar numèricament el comportament dels mitjans granulars compostos

per partícules esfèriques i no esfèriques. Els mètodes numèrics implementats

han permès la descripció de les propietats macroscòpiques de piles i columnes

granulars, que s’han estudiat experimentalment en el marc dels projectes "Es-

tabilidad y dinámica de medios granulares anisótropos" (FIS2008-06034-C02-

02) de la Universitat de Girona i "Interacciones entre partículas y emergencia

de propiedades macroscópicas en medios granulares" (FIS2008-06034-C02-

01) de la Universitat de Navarra.

La tesi s’estructura de la següent manera. En primer lloc, realitzem una

introducció als principals conceptes relacionats amb els temes que s’estudien

en els capítols següents. A més, es descriuen els algorismes utilitzats per

resoldre els reptes que es plantegen.

En el Capítol 2 presentem un algorisme numèric per descriure la dinàmica

de fragmentació en sistemes de múltiples partícules. Per a aquest estudi hem

considerat que la fragmentació és induïda per les col·lisions entre parells de

partícules. D’aquesta manera realitzem el modelatge numèric per a diverses

classes de kernels d’interacció i per a diferents tipus de models de trenca-

ment. L’algorisme creat es va validar comparant els resultats obtinguts amb

resultats analítics, obtinguts per alguns col·laboradors, per kernels simètrics

i asimètrics.

En el Capítol 3 estudiem la dinàmica de refredament d’un gas granular de
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partícules allargades en 2D. Realitzem simulacions sobre l’evolució temporal

d’un sistema de partícules toves fent servir un algorisme de dinàmica molec-

ular. Per a sistemes poc disipatius, hem trobat un procès de refredament

homogeni on l’energia de traslació disminuiex de forma anàloga als gasos de

partícules visco-elàstiques circulars. D’altra banda, per a partícules molt disi-

patives es va observar un procés de refredament no homogeni on la dismin-

ució de l’energia cinètica de traslació es ralenteix de manera significativa.

No obstant això, l’energia cinètica de rotació sempre decau seguint la predic-

ció d’Haff per a l’estat de refredament homogeni de partícules inelàstiques.

Hem trobat que la cinètica de refredament del sistema està controlada pels

mecanismes de dissipació d’energia local (les col·lisions). No obstant això,

trobem una forta influència de la geometria i elasticitat de les partícules en

l’estructura dels clusters que es desenvolupen en els règims de refredament

no homogeni. Els resultats numèrics obtinguts suggereixen que l’alta dissi-

pació i l’anisotropia de les partícules indueixen la formació de clusters orde-

nats, que retarden la relaxació a un règim asimptòtic final.

Els resultats experimentals i numèrics dels efectes d’una descàrrega par-

cial sobre les propietats morfològiques i micro-mecàniques d’una sitja de partí-

cules convexes i no esfèriques es mostren en el Capítol 4. La comparació de

l’orientació de les partícules després de l’ompliment de la sitja i després de la

descàrrega parcial revela canvis importants en l’orientació induït per el shear,

la qual cosa afecta a la propagació de la tensió. Per a partícules allargades,

el flux d’ompliment indueix un augment del desordre inicial, que comporta

a la reducció de la propagació de la tensió vertical desenvolupada durant el

procés de dipòsit, abans de la descàrrega parcial. En el cas de les partícules

quadrades, el flux afavoreix l’alineació de les partícules amb les parets later-

als de la sitja, la qual cosa provoca un comportament oposat al cas anterior.

És a dir, s’indueix la transmissió de l’esforç en la direcció vertical. D’aquesta

manera, per a les partícules allargades, el flux desenvolupat durant la descàr-

rega parcial de la sitja indueix la saturació de l’esforç amb la profunditat. Per

contra, per als quadrats, el flux indueix l’obstaculizatció de la saturació de

l’esforç amb la profunditat.

En el Capítol 5 examinem l’efecte d’una força d’atracció sobre les propi-
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etats d’empaquetament de grans allargats. En dipòsits de varetes no-cohesives

en 2D, la topologia de l’empaquetament està dominada principalment per la

formació d’estructures ordenades alineades. Les partícules allargades ten-

deixen a alinear-se horitzontalment i la tensió es transmet, principalment,

de dalt a baix, revelant una distribució asimètrica de la tensió local. No ob-

stant això, per als dipòsits de partícules cohesives, la tendència a l’orientació

horitzontal desapareix. Para partícules molt allargades amb fortes forces

atractives es formen estructures molt desordenades, que es caracteritzen per

una distribució de l’orientació que tendeix a un comportament uniforme quan

s’incrementa el número de Bond. Com a resultat d’aquests canvis, la distribu-

ció de la pressió en els dipòsits canvia qualitativament. La part isòtropa de la

tensió local augmenta notablement pel que fa a la part desviadora, la qual està

relacionada amb la direcció de la gravetat. Per tant, la transmissió de la tensió

lateral està dominada per l’augment del desordre i condueix ràpidament a la

saturació de la pressió amb la profunditat.

En el Capítol 6 vam mostrar els resultats de la implementació d’un algo-

risme de dinàmica molecular per a un sistema de partícules esfèriques, que

utilitza el poder de càlcul de les GPU. El nou algorisme híbrid CPU-GPU té en

compte tots els graus de llibertat de les partícules, inclosa la representació en

3D de la rotació mitjançant quaternions. Para més versatilitat, la interacció

entre les partícules es defineix mitjançant una força generalitzada, que repre-

senta les interaccions disipatives i elàstiques. Els paràmetres d’interacció en-

tre esferes dures es van adaptar per a la interacció entre esferes toves. Es va

demostrar que l’algorisme desenvolupat compleix amb les lleis de la mecànica

estadística mitjançant l’estudi del refredament homogeni d’un gas granular

d’esferes amb rotació. Els resultats obtinguts concorden excel·lentment amb

les teories de camp mitjà per a sistemes de baixa densitat de partícules es-

fèriques dures. Aquesta tècnica redueix dràsticament el temps de càlcul en

comparació de les implementacions tradicionals sobre CPUs.



Chapter 1

Introduction

Granular Media are one of the most handled materials in industry and every-

day life. As examples of granular media can be mentioned: kitchen salt, sugar,

sand or grains of corn. In general, substances known as granular media (GM),

or granular material, include things that are made up of many distinct grains.

In the physics community, they are considered multi particles systems charac-

terized by a loss of energy whenever particles interact [1].

Huge experimental and theoretical efforts have been made to understand

the global behavior of granular media, in terms of their local particle-particle

interactions. Nevertheless, despite the fact that granular media are often

composed of grains with anisotropic shapes like rice, lentils or pills, most

experimental and theoretical studies have concerned spherical particles.

One of the major problems, currently faced by computational modeling

researchers, is the computational cost of the numerical algorithms, both in

runtime and memory usage. Moreover, the era of Moore’s law [2, 3] is practi-

cally over, and the velocity of new microprocessors is not growing as fast as in

the last years. An irrefutable evidence is that the largest producers of micro-

processors, Intel© Coorporation and AMD© Inc., have stopped substantially

increasing the clock speed of their processors and have chosen to increase the

number of cores. In this framework, it is mandatory to continuously develop

more and more efficient and realistic numerical tools for better describing

natural and technological processes.

In this thesis, several numerical algorithms for modeling granular media

1
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are introduced and discussed, in detail. All the presented results are published

in indexed scientific journals or in preparation for submission.

1.1 Computational Physics

In mathematical modeling, to achieve analytical solutions is always desirable.

However, in many cases mathematical equations do not have analytical solu-

tion or their resolution is not feasible from a practical point of view. In those

cases is where numerical methods acquire greater relevance. However, its ap-

plication is not limited to these cases. Thus nowadays, computational methods

are essential tools for the study any kind of technological and natural issues.

Computational Physics is a branch of science devoted to study and imple-

ment numerical algorithms to solve physical problems, which may or not have

an exact solution. Some researchers regard it as part of theoretical physics,

while others consider it an intermediate branch between Experimental and

Theoretical Physics. Besides simulating physical systems, more general nu-

merical issues are object of study by this branch of science. Many of them

could be considered part of pure mathematics. Such topics include, solving

integro-differential equations, systems of differential equations as well as solv-

ing stochastic processes. Moreover, there are also a large number of applied

areas.

In computational physics, the numerical methods can be divided into two

main groups: deterministic and stochastic methods. A deterministic methods

are Mathematical techniques based on the concept that future behavior can

be predicted precisely from the past values of the data set. These methods

ignore the existence of disturbances that may alter the data’s future pattern.

Contrary, nondeterministic methods refer to numerical algorithms that can

exhibit different behaviors on different runs.

Monte Carlo methods are stochastic techniques based on the use of ran-

dom number generator and probability distributions. They were introduced to

investigate many different natural and applied issues [4]. Its applications can

be found almost in all branches of science, from gambling to nuclear physics,

and of course, granular media is not an exception.
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Molecular dynamics is a computational method used to calculate the time

dependent behavior of discrete systems. Using this approach, the movement

of the particles is always governed by the equation of motion, and the parti-

cles interact through a given potential. This method was first introduced by

Alder and Wainwright in 1950 [5, 6]. In contrast with Monte Carlo methods,

Molecular dynamics is a deterministic method.

1.1.1 Monte Carlo method

Monte Carlo methods provide approximate solutions to a large number of

mathematical and physical problems by performing statistical sampling ex-

periments. Note that this method can be applied to processes with no proba-

bilistic content at all, as well as to those with inherent probabilistic structure.

John von Neumann, Stanislaw Ulam and Nicholas Metropolis are considered

the fathers of the Montecarlo method. They introduced it while they were

working on the Manhattan Project in Los Alamos National Laboratory, USA

back in 1940s. It seems like MC was named "in homage" to the Monte Carlo

Casino, because there was where Ulam’s uncle often gambled away his money

[7]. However, most of the authors say that the reason is that roulette is the

simplest random number generator.

MC algorithms are especially helpful to simulate systems with many de-

grees of freedom, such as fluids, disordered materials, strongly coupled solids

and cellular structures. They are widely used in mathematics [8–10], physics

[11–16], materials science [17], robotics [18–20], medicine [21–26], as well to

model phenomena with significant uncertainty in inputs, such as the calcula-

tion of risk in business [27–30].

Since MC relies on repeated random samplings to compute the results,

it is perfectly suited for calculation on a computer. Among other numerical

methods that rely on the evaluation of N-points in an D-dimensional space

to produce approximate solutions, the Monte Carlo method has absolute error

that decreases asN−1/2 (under the central limit theorem [31]). However, in the

absence of exploitable special structure all others have errors that decrease

as N−1/D at best. This property gives the MC a considerable edge in compu-
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tational efficiency as the system size, N , increases. Moreover, combinatorial

settings also illustrate this fact especially well. Whereas the exact solution to

a combinatorial problem with N elements often has a computational cost that

increases exponentially with N , the Montecarlo method frequently provides

an estimated solution with a tolerable error at a cost that increase no faster

than a polynomial dependence of N [32].

Metropolis-Hastings method

The Metropolis-Hastings (MH) algorithm was developed by Metropolis et al.

[33] in 1953 and generalized in 1970 by Hastings [34]. This method can draw

samples from any probability distribution P (x), requiring only that a function

proportional to the density can be calculated. In statistics this function is

known as probability density function or pdf.

Consider two configurations at time t and t + 1, each of which occurs with

probability proportional to the Boltzmann factor. Then the transition probabil-

ity reads as

Pt

Pt+1
=

e−
E(t)
kT

e−
E(t+1)

kT

= e−
E(t+1)−E(t)

kT (1.1)

where k is the Boltzmann constant and T is the temperature of the system.

In their paper Metropolis et al. [34], noted that we can achieve the transi-

tion probability of Eq.1.1 in a simulation by proceeding as follows

1. Starting from a configuration with known energy E(t), make a random

change in the configuration

2. Calculate the potential energy E(t+1), for the new probable state of the

system and calculate ∆E = E(t+ 1)− E(t)

3. If ∆E ≤ 0 the new state is accepted

4. If ∆E > 0 a random number α between 0 and 1 is generated. If α < e−
∆E
kT

the new state is accepted, otherwise, the new state is refused and the

current state is kept.
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If we follow these rules, then we will sample on the phase space, all possi-

ble configurations with probability proportional to the Boltzmann factor. That

is consistent with the theory of equilibrium statistical mechanics. We can com-

pute average properties by summing them along the path we follow through

possible configurations. The ergodic hypothesis [35–38] states that an ensem-

ble average obtained by MC simulation is equivalent to an average time ob-

tained through a simulation of molecular dynamics in the limit of an adequate

sampling (MC) and sufficient time (MD). In physics and thermodynamics, the

ergodic hypothesis says that, over long periods of time, the time spent by

a particle in some region of the phase space of micro-states with the same

energy is proportional to the volume of this region, i.e., that all accessible

micro-states are equal-probable over a long period of time.

In the next chapter, we describe in details an example of MC called Direct

Simulation Monte Carlo (DSMC). The DSMC method was proposed by Graeme

Bird [39] and uses probabilistic (Monte Carlo) simulations to solve the Boltz-

mann equation. In our case, we examine the solution of the integro-differential

equation that describe the collision-induced fragmentation of a granular gas.

1.1.2 Molecular Dynamics

Molecular systems usually consist of a large number of interacting particles

whose typical size ranges from micrometers to nanometers. Very often, it

is impossible to describe such complex systems analytically, thus, numerical

methods are specially suited.

Molecular dynamic (MD) is a method commonly used to determine macro-

scopic thermodynamic properties of molecular systems. It was first intro-

duced by Alder and Wainwright in the 1950’s to study the interactions of hard

spheres [5, 6]. The next major advance was in 1964, when Rahman carried out

the first simulation using a realistic potential for liquid Argon [40]. In 1967,

Verlet calculated the full phase diagram of Argon, and computed correlation

functions testing several theories of the liquid state [41, 42].

MD describes deterministically the physical movements of atoms and molecules.

That’s why, it either requires the definition of a potential function, or a de-



6

scription of the terms by which the particles in the simulation will interact.

The force acting on a particle can be divided into two classes, short-range and

long-range forces. Short-range forces are the actions exerted by objects that

are near to the particle and that after a certain distance threshold becomes

zero, such as particles collisions. Long-range forces is said of those forces that

do not become equal to zero within any distance. Classic long-range forces are

gravity or external electrical fields.

The application of molecular dynamics algorithms to macroscopic systems

is called by the engineering community Discrete Elements Simulations (DEM).

This is generally distinguished by its inclusion of rotational degrees-of-freedom

as well as state-full contact and often complicated particle shape. Note that

the physics community does not make distinctions between molecular dynam-

ics (MD) and Discrete Elements Simulations (DEM).

Molecular dynamics simulation of granular system

Event-driven

In dilute systems, where the typical collision time is much shorter than the

mean time between successive collisions, particles are rarely in contact with

more than one particle. Hence, most of the time particles propagate along a

ballistic trajectory only interrupted by collisions with other particles. There-

fore, the pairwise collisions of particles can be considered as instantaneous

events, which may be treated separately [43].

In these conditions, after the collision of particles i and j, their final veloci-

ties (~v′ and ~ω′) can be written as a function of their values (~v and ~ω) just before

the collision [44–48]. Considering spherical particles of radius R, mass m, lin-

ear velocity ~v, angular velocity ~w and momentum of inertia I, this functions

can be written as [43]:

~vi
′ = ~vi − 1+ǫn

2
~vij

n + Ĩ(ǫt−1)

2( ˜I+1)
~vij

t,

~vj
′ = ~vj +

1+ǫn
2

~vij
n + Ĩ(ǫt−1)

2( ˜I+1)
~vij

t,

~ωi
′ = ~ωi − ǫt−1

2R(Ĩ+1)
( ~eij

n × ~vij
t),

~ωj
′ = ~ωj +

ǫt−1
2R(Ĩ+1)

( ~eij
n × ~vij

t)

(1.2)
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where ~vij = ~vi− ~vj is the relative velocity, with components in normal ( ~vij
n) and

tangential directions ( ~vij
t). ~e represents a unit vector pointing along the line

of centers of mass from particle i to particle j and Ĩ = I/mR2 is the reduced

momentum of inertia. The normal restitution coefficient ǫn varies between 1

and 0, ǫn = 1 means no dissipation (elastic system) and ǫn = 0 means full

dissipation (perfectly inelastic system). The tangential restitution coefficient

ǫt = 1 goes from −1 (smooth particles) to +1 (rough particles), corresponding

to 0 the maximum coupling. The strength of the coupling between rotational

and translational motion is connected to 1 + ǫt [49–52].

Modeling event-driven MD, only one particle-particle interaction is con-

sidered each step of time. Moreover, the interaction takes an infinitesimal

time. On the time elapsed between two collisions, the particles move follow-

ing known ballistic trajectories. A general outline of the algorithm could be

1. Initialize positions ~ri, velocities ~vi and angular velocities ~ωi (if consid-

ered) for each particle i (i = 1, ..., N).

2. Calculate the time t∗ when the next collision occur. For equal-sized

spheres of radius R

t∗ ≡ min(| ~ri(tij)− ~rj(tij) | = 2R; i, j = 1, ..., N) (1.3)

3. Determine the position of all particles at t = t∗

~ri = ~ri + (t∗ − t)~vi + F ext
i (1.4)

where F ext
i are external long-range forces acting on particle i, as gravity.

4. Compute the new velocities accordingly to Equations 1.2.

5. Update the simulation time t = t∗.

6. Back to step 2 until the stop condition is satisfied.

The event-driven method is specially efficient for the study of dilute, non-

disperse, hard spheres materials [43, 52–55], but its application is not limited

to those systems [56–60]. In the presented algorithm, a constant restitution

coefficient is considered, some authors consider that this is not very realis-

tic [61, 62] and that the restitution coefficient should depend on the relative

velocity [46, 63–69].
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Force-based molecular dynamics

In force-based molecular dynamics the forces that govern the motion of the

particles are determined from the (small) mutual deformation of the particles.

That’s why these methods are more appropriated for describing the micro-

mechanic properties of dense granular media and systems with complicated

particles shapes.

The general idea of molecular dynamics simulation is to numerically solve

the Newton’s equation of motion for all particles i (i = 1, ..., N)

N
∑

j=1

~Fij + ~Fe = mi~̈ ir (1.5)

N
∑

j=1

Lij = Iiθ̈i (1.6)

wheremi is the mass of the particle, Ii is its moment of inertia and ~ri and θi are

the particle’s position and orientation respectively. ~Fe represents an external

field, ~Fij corresponds to the force exerted by particle j on particle i and Lij the

torque related with the force ~Fij, which points in the direction perpendicular

to the plane in which the particles displace. The total force and the total

torque acting on particle i are given as sums of the pair-wise interaction of

particle i with its contacting neighbors. Accordingly, the grains’ trajectories

will be determined by the nature of the collisional forces.

When two particles come in contact they deform inelastically. In force-

based molecular dynamics, rather than describing the actual grain deforma-

tions, the most common strategy consists in keeping the shape of the particles

and allow them to overlap. Hence, the interaction force and torque are deter-

mined in terms of the overlapping distance or area [43, 70–75].

The total force between the two grains, can be decomposed in normal FN
ij

and tangential F T
ij components, to the interface defined by the contact points

of the two particles when they overlap

~Fij = FN
ij · ~n+ F T

ij · ~t (1.7)
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~n and ~t are the vectors in normal and tangential direction of the common

surface.

The normal component of the force contains an elastic contribution, pro-

portional to the pair overlapping distance or area, and a dissipative contribu-

tion FN
ij = FN

e + FN
v . The tangential component of the interaction force is also

characterized by an elastic and a dissipative contribution F T
ij = F T

e + F T
v , and

obeys the Coulomb constraint [76], F T
ij 6 µ | FN

ij |, where µ stands for the

static friction coefficient

F T
ij = −min(F T

ij , µF
N
ij ) (1.8)

In general, for circular or spherical particles it is possible to derive analytic

expressions for FN
ij and F T

ij as a function of the overlapping distance. However,

for particles of irregular shape this is not feasible and it is computed numeri-

cally [43, 71–75, 77, 78].

In Figure 1.1 the interaction of two particles is illustrated. In the case

of interacting disc (Figure 1.1a) all authors agree to apply the force in the

center of mass of the overlap area, while for non-circular particles –where

the overlap area forms more complex shapes– different strategies are used

[74, 75, 77, 78]. In the case shown in Figure 1.1b the force is applied in the

middle of the line connecting the farthest points of the common area.

Integration methods

Numerical integration of ordinary differential equations (ODE) is a frequent

task in numerical analysis of physical and engineering issues [79–88]. As

examples one can mention the simple Euler method (also know as Forward

Euler) [80, 81], Backward Euler method [82], Leapfrog integration [83], Ver-

let integration [41, 42, 84], Runge-Kutta methods [84–86], or the Predictor-

Corrector method [86–89]. In the next sections, Euler’s method, Verlet inte-

gration and the Predictor-Corrector method are explained in detail.

An important point when solving ODE is that a differential equation y(t)

of order n can be represented as a first order ODE in more than one variable

by introducing n− 1 further variables (y′(t), y′′(t), ..., y(n)(t)) and formulating n
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a)
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n t
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FT
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Figure 1.1: Interaction of two particles. The normal force is parallel to the line that connect

the center of both particles and the tangential force is perpendicular to this imaginary line.

a) For interacting disc, the force is applied in the center of mass of the overlap area. b) When

non-regular particles are modeled different points are used to apply the force, in this case the

center of the line connecting the farthest vertex of the overlap area.

first-order equations in these new variables. For that reason, next epigraphs

focus on integration methods of first order differential equations.

Euler integration method

Euler’s method is the most basic first-order numerical method for solving

ODEs [80]. For using this approach two things are necessary, the differen-

tial equation and the value of the function at some point

dy

dt
= f(t, y), y(t0) = y0 (1.9)

The method consist in approximate the solution of Equation 1.9 using the

linear approximation of y around the point P0(t0, y(t0)) (the first two terms of

the Taylor expansion [90])

yn+1 = yn + hf(tn, yn) (1.10)

where h = (tn+1 − tn) is known as the integration step. Equation 1.10 is cal-

culated iteratively until tn < tf . The algorithm in pseudocode is shown in

Algorithm 1.
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y(t0)← y0

n := 0

while tn < tf do

tn+1 := tn + h

yn+1 := yn + hf(tn, yn)

n := n+ 1

end while

Algorithm 1: Pseudocode of Euler’s method. It is the simplest and least accurate first-order

method for solving ODEs. The derivate yn+1 at each point tn+1 is calculated using the derivate

yn at the previous point tn.

The Euler’s method is unsymmetrical, it advances the solution through an

interval h, but uses derivative information only at the beginning of the interval.

That means that the step’s error is of the order of O(h2) [91]. A solution to

minimize the error is decreasing h, however, this action increase the number

of necessaries steps and therefore the computational cost.

This method is not recommended for most problems, mainly because it is

not accurate when compared to other methods running at equivalents step-

size and neither it is very stable [91].

Verlet integration method

Verlet integration was first used by Carl Störmer to compute the trajectories of

particles moving in a magnetic field (hence it is also called Störmer’s method)

[91] and was popularized in molecular dynamics by French physicist Loup

Verlet in 1967 [41, 42]. It is a numerical method used to integrate Newton’s

equations of motion (Equations 1.5 and 3.1) and frequently applied to calcu-

late trajectories of particles in molecular dynamics simulations and computer

graphics. The basic idea is to write two third-order Taylor expansions for the

positions r and orientations θ, one forward and one backward in time.

A related algorithm, and more commonly used in molecular dynamics sim-

ulations, is the Velocity Verlet algorithm, the basic implementation scheme of

this method is presented in Algorithm 2, for more details about the algorithm

see the section Appendix in [92].
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a(t0)← 0

v(t0)← v0

t := 0

while t < tf do

v(t+ 1
2
∆t) = v(t) + a(t)1

2
∆t

x(t +∆t) = x(t) + v(t+ 1
2
∆t)∆t

Derive a(t +∆t) from the forces equations using x(t +∆t)

v(t+∆t) = v(t+ 1
2
∆t) + a(t +∆t)1

2
∆t

t := t+∆t

end while

Algorithm 2: Pseudocode of Velocity Verlet method. It is a second-order method for solving

ODEs, developed for integrating the Newton’s equations of motion and with application in

physics and computational graphics. An intermediate integration is made at the mid-point

between tn and tn+∆t. The step size is called ∆t instead of h

The Verlet integrator offers greater stability, as well as time-reversibility

and preservation of the symplectic form on phase space, at no significant ad-

ditional cost over the Euler’s method. Nevertheless, the error is still of the

order of O(∆t2). The disadvantage of this method respect to Euler algorithm

consist in that, as it is calculated in three stages, it is more computationally

expensive, in both time and memory consuming.

Predictor-Corrector integration method

Predictor-corrector method consists of an implicit method of good accuracy

(corrector equation) and an explicit method (predictor equation) that provides

an initial approximation for the iterative process and the implicit method. Dif-

ferent implementations has been developed, those more often used in molec-

ular dynamics are due to C.W. Gear [87], and consists of three steps:

1. Predictor. From the positions and their derivatives up to order n in t are

obtained the same quantities at t+∆t by Taylor expansions. Among these

quantities are accelerations a. The predictor step for a fourth order Gear
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algorithm can be written in matrix form [44]













rp0(t+∆t)

rp1(t+∆t)

rp2(t+∆t)

rp3(t+∆t)













=













1 1 1 1

0 1 2 3

0 0 1 3

0 0 0 1

























r0(t)

r1(t)

r2(t)

r3(t)













2. Forces. With the positions and the velocities predicted, forces are cal-

culated according to the contact model, and then the accelerations. The

difference between predicted accelerations and the ones calculated in

these step give the error of the method

∆r2(t+∆t) = rc2(t+∆t)− rp2(t +∆t)

3. Corrector. This error signal ǫ is used to correct positions and their

derivatives. The coefficients of proportionality are determined to max-

imize the stability of the method. In matrix form













rc0(t +∆t)

rc1(t +∆t)

rc2(t +∆t)

rc3(t +∆t)













=













rp0(t+∆t)

rp1(t+∆t)

rp2(t+∆t)

rp3(t+∆t)

























c0

c1

c2

c3













∆r2(t+∆t)

In [87], C.W. Geard discusses the best choice for the corrector coeffi-

cients ci, which depends on how many derivatives of ri are used.

The main advantage of the predictor-corrector algorithm is its high accu-

racy. However, it is harder to implement and more time consuming (requires

additional calculations) and, numerically, is unstable against relatively big in-

tegration steps [93].

Boundary conditions

In general the behavior of granular systems are strongly influenced by the in-

teraction of the grains with the system boundaries, i.e., the interaction with

the container or the surface on which the system lays. As examples can be
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Figure 1.2: A dilute granular system evolves in a circular container in the absence of external

forces. Initialized homogeneously (left), the particles accumulate close to the reflecting wall

after a long time (right). Taken from [43].

mentioned the convective motion of granular material in vibrating contain-

ers, the formation of density waves in pipes, the motion of granular materials

on conveyors, and the clogging of hoppers. In these cases, the interaction

with the container has to be examined carefully [43]. Hence, depending on

the applications the implemented boundaries should be different. The most

used types are reflecting boundaries, periodic boundary conditions and heated

walls. In the next section the first and second methods are explained. More-

over, some of their physical implications are discussed.

Reflecting Boundaries

There are two ways of applying reflecting boundary conditions: the first one,

when particles collide with the system walls its velocity component reverts

(conservatively or non-conservatively) perpendicular to the wall, whereas the

velocity component parallel to the wall remains invariant. The second method

is to build walls made of particles that follow the same interaction rules than

"internal particles" obey, varying –if necessary– the particle size. Such walls

are very simple to implement into the MD simulation due to no extra inter-

action rules are needed. The interaction of the particles with the wall are

computed in the same way that a particle-particle interaction.

Molecular dynamics simulations using reflecting boundaries shows strong

system size effect. For instance, after some time the particles clusterize near
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Figure 1.3: The main volume of the simulation (in black color) is repeated in all directions

(drawn in gray), simulating an infinite system from a finite volume.

to the walls (see Figure 1.2). This happens even in the absence of external

forces such as gravity and it is caused by an enhanced collision frequency

close to the walls. Furthermore, at the borders the typical relative velocity

is larger than in the bulk of the system. On average, particles located near

the system boundaries collide more times and with higher relative velocities

than particles locate close to the walls. It leads to a faster temperature decay

in the vicinity of reflecting walls and consequently, decreasing pressure and

increasing particle density [43, 45].

Periodic Boundary Conditions

Surface effects can be ignored for all system sizes if we use periodic boundary

conditions (PBC). In PBC, when a particle reach the limits of the main box it

returns through the opposite side. PBC allows the simulation to proceed as if

the primary volume was surrounded by identical copies of itself (Figure 1.3).

Any particle i at position ri in the primary volume represents an infinite set of

particles located at
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~rk,l,mi = ~ri + k ~X + l~Y +m~Z (1.11)

where ~X, ~Y and ~Z are the edge vectors of the primary volume and k, l and m

are integer numbers taken values from −∞ to ∞. In practice the this set is

reduced to {−1, 0, 1}.
Implementing periodic boundary conditions there are some important de-

tails to take into account:

1. Particles not only interact with those located in its volume, but also with

their periodic images.

2. A particle i can only interact with the closest image of particle j, i.e., two

particles i and j can not interact more than once in a single time step.

3. The distance between two particles i and j is the smallest distance be-

tween i and all images of j.

Moreover, it is important to remark that using PBC the studied system is

thought to be much larger than the simulated number of particles. In gen-

eral, the system size effects are smoothed and better controlled but not totally

diminished.

1.2 Scientific programming

General Overview

One of the major problems, currently faced by computational modeling re-

searchers, is the computational cost of the numerical algorithms, both in run-

time and memory usage. Moreover, the velocity of the new microprocessors is

not growing as fast as in the last years. An irrefutable evidence of this is that

the largest producers of microprocessors, Intel© Coorporation and AMD©

Inc., have stopped substantially increasing the clock speed of their processors

and have chosen to increase the number of cores.

With the introduction of multi-cores processors, computer programmers

have the option to develop their applications to run in parallel on their per-

sonal computers [94–96]. However, the use of multiple cores, specially when
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Figure 1.4: Heterogeneous programming model. The less expensive operations will be exe-

cuted on the CPU, whilst the more time consuming will be executed on a GPU.

the independent cores share the pathway to the system memory, leads to the

advent of thememory wall problem, given by the increasing gap between pro-

cessor and memory speeds. In numerical modeling, where a lot of matrix and

vector operations are required, it is relative simple to reach the point when

this difference becomes a bottleneck. Furthermore, developing a program to

take advantage of multi-cores processors is a complicated task, and in most

cases it does not guaranty a linear increase of the performance with the num-

ber of used cores.

In todays scenario, general-purpose computation on graphics processing

units (GPGPU) [97–99] has become a serious alternative for parallel computing

[100] on personal computers. The methodology that follows this technology

is based on the combined use of a CPU (Central Processing Unit) and GPU

co-processing in a heterogeneous system, where the sequential part of the

program runs on the CPU and the part that is more computational expensive

is accelerated in the GPU (see Figure 1.4).

Although using graphical cards for general purpose computing is currently

reaching its peak, research in this area was also made several years ago [101–

106]. One of the reasons for using GPUs to perform some especial tasks is
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that CPUs are designed for high performance on sequential operations, while

GPUs are optimized for the high parallelism of vertex and fragment processing

[107].

Nowadays, to develop numerical applications on graphics cards there are

three choices NVIDIA© CUDA™, AMD© APP and OpenCL™

• CUDA is NVIDIA’s parallel computing architecture, giving to developers

the necessary tools to perform GPGPU on NVIDIA’s graphic cards [108].

• AMD APP technology is a set of advanced hardware and software tech-

nologies that enable AMD graphics processing cores, working in con-

cert with the system’s cores, to accelerate many applications beyond

just graphics using ATI graphic cards [109].

• OpenCL (Open Computing Language) is the first open, royalty-free stan-

dard for general-purpose parallel programming of heterogeneous sys-

tems. OpenCL provides a uniform programming environment for soft-

ware developers to write efficient, portable code for high-performance

compute servers [110].

Our research, in chapter 6 concerns NVIDIA CUDA, mainly because the

available GPU-hardware was NVIDIA’s graphic cards.

GPGPU with CUDA

In November 2006, NVIDIA© release the GeForce 8800 GTX, the first GPU

built with NVIDIA’s CUDA Architecture. This architecture included several

new components designed strictly for GPU computing, and aimed to allevi-

ate many of the limitations that prevented previous graphics processors from

being legitimately useful for general-purpose computation. Because NVIDIA

intended this new family of graphics processors to be used for GPGPU, the

processor’s ALUs (arithmetic logic unit) were built to comply with IEEE re-

quirements for single-precision floating-point arithmetic and were designed

to use an instruction set tailored for general computation rather than specifi-

cally for graphics [99].
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Figure 1.5: CPU and GPU Architecture. GPU devotes more transistors to data processing.

Taken from [111].

To reach the maximum number of developers, NVIDIA took industry-standard

C and added a relatively small number of keywords in order to harness some of

the special features of the CUDA Architecture. A few months after the launch

of its graphic card, NVIDIA made public a compiler for this language, CUDA

C, which became the first language specifically designed by a GPU company to

facilitate general-purpose computing on GPUs [99]. Nowadays there are third

party wrappers for many programming language, like: Python, Perl, Fortran,

Java, Ruby, MATLAB, and native support exists in Mathematica.

The reason behind the difference in performance of floating-point capabil-

ity between the CPU and the GPU is that the GPU is specialized for compute-

intensive, highly parallel computation. GPU are designed such that more tran-

sistors are devoted to data processing rather than data caching and flow con-

trol (see Figure 1.5). The GPU is especially well-suited to address problems

that can be expressed as data-parallel computations with high arithmetic in-

tensity –the ratio of arithmetic operations to memory operations. Because the

same program is executed for each data element, there is a lower requirement

for sophisticated flow control, and since it is executed on many data elements

and has high arithmetic intensity, the memory access latency can be hidden

with calculations instead of big data caches [111]. The evolution of the num-

ber of floating-point operations per second (FLOP) that a processor can do is

shown in Figure 1.6.

To develop CUDA C applications it is indispensable to have a CUDA-enable
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Figure 1.6: Evolution of the floating-point operations per second performed by processors in

last years. Data extracted from [111].

graphic processor (generally an NVIDIA graphic card), an NVIDIA developer

device driver, a CUDA development toolkit and a standard C compiler. The

CUDA-enable graphics cards are listed in the CUDA GPUs Web Page [112].

The necessary tools from NVIDIA can be downloaded from the NVIDIA GPU

Computing SDK Web Page [113] for different computing platforms. Standards

C compilers exists for most platforms.

As illustrated on Figure 1.7, in a program developed with CUDA there are

a set of functions that run on the CPU and others that do it on a CUDA-enable

graphic processor, the host and the device in CUDA’s argot, respectively. The

operations that run into the CPU are the less time consuming, or those ones

that, by their nature, can not be parallelized. The CUDA functions are known

as kernels.

Besides the expected applications on computer graphics, softwares that

take benefit of the computing capabilities of CUDA have been developed in

many different areas. In oil and natural resource exploration scientists used

to work with very small sample sets, and low resolutions in order to find pos-

sible sources of oil [114–117]. Because the ground reconstruction algorithms
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Figure 1.7: CUDA Heterogeneous Programming Model. Some operations will be executed on

the CPU (Host) and the more expensive operations on the GPU (Device). Taken from [111].
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are highly parallel, CUDA is perfectly suited to this type of challenge. For med-

ical imaging processing CUDA is a significant advancement [118–120]. Using

CUDA, MRI machines can now compute images faster than ever possible be-

fore, and for a lower price. Before CUDA, it used to take an entire day to make

a diagnosis of breast cancer and now this can take only 30 minutes.

In chapter 6 we describe in detail the implementation of a hybrid CPU-

GPU molecular dynamics algorithm of dissipative spheres including rotation.

Starting from the crude CUDA-particles example we have developed a very

accurate algorithm for examining a realistic granular system.



Chapter 2

Collision induced fragmentation:

a simple numerical algorithm

Fragmentation processes are of significant scientific interest and have enor-

mous technological impact. These phenomena usually arise in many natural

and technological processes, such as granulate processing [121], shattering of

solid and shell-like objects [122–124], meteorite [125], mineral grinding [126],

liquid droplets [127] and atomic nuclei [128]. In some cases fragmentation can

be regarded as linear. That is the case when the process dynamics is only sen-

sitive particle properties (such as size) and it does not depend significantly

on particle interaction [129]. Contrary, when the interaction between grains

plays a significant role the evolution of the granular system is intrinsically

non-linear.

Most of the theoretical studies on fragmentation have been carried out

within the framework of Smoluchowski-like equations[129–134], where parti-

cle fragmentation is determined by impacts of pairs of particles. Here, the

role of particle velocity at impact is neglected, and the evolution of the distri-

bution of particle sizes have been described. These studies have led to explicit

results and have addressed the emergence and properties of dynamic scaling

regimes [129–137]. Although less explored, the effect of particle velocity at

collision and its relevance in fragmentation has also been addressed recently

[137–139].

McGrady and Ziff realized that under special circumstances a fragmenting

23
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system can give rise to a singularity the so-called shattering transition [130].

This refers to a finite time, tc, at which a finite fraction of the system mass

is carried by an infinite number of particles of infinitesimal size, which can

be regarded as dust [130, 132–134]. This transition shares close analogies

with the reverse process of gelation in aggregation kinetics, which has also

been analyzed in the context of the Smoluchowski equation where aggrega-

tion arises as a result of two particle interactions [140–142]. The particular

details of the collision-induced fragmentation process may lead to different

types of shattering transitions, which may resemble first or second-order non-

equilibrium phase transitions [133, 134]. Specifically, at the transition either

the entire mass of the system is instantly transformed into dust or the dust

mass gradually increases once the shattering transition occurred.

Because of its complexity, explicit solutions of generic non-linear fragmen-

tation equations are generally not accessible. Hence, in generic cases a de-

tailed study of the dynamics of fragmenting systems requires the use of nu-

merical tools. To this end, we have adapted the Direct Simulation Monte Carlo

(DSMC) technique, which has been widely used in the context of rarefied gases

[143] and granular gases [144, 145], to the study of non-linear fragmenting

systems.

2.1 Mean Field Theory

Collision-induced fragmentation can be described at the mean field level by

the Smoluchowski fragmentation equation of the massdensity c(x, t) as

∂c(x, t)/∂t = −c(x, t)
∫∞
0
dyK(x, y)c(y, t) +

∫∞
x
dy

∫∞
0

dz b(x|y) K(y, z)c(y, t)c(z, t)

(2.1)

which assumes binary collisions and the kernel K(x, y) describes the interac-

tion rate of pairs of particles [x; y]. Equation (2.1) is composed of a loss (first)

and a gain (second) term [131]. In the gain term, b(x|y) represents a con-

ditional probability which describes the distribution of outgoing fragments of

mass x, given that a particle of mass y breaks [130, 131]. Here, one may distin-

guish between deterministic kinetics [131, 133], where a particle breaks into

two equal fragments, hence b(x|y) = 2δ(x− y/2), and stochastic fragmentation
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processes, where a fragment of random mass x breaks off from a particle of

mass y. As mass is conserved in a single breakup event, the outgoing fragment

distribution has to obey the homogeneity requirement, of b(x|y) = y−1b(x
y
). For

simplicity, the standard form b(s) = (β + 2)sβ is adopted and it obeys
∫ y

0
dxxb(x|y) = y, N̄ =

∫ y

0
dxb(x|y) = β+2

β+1
(2.2)

where N̄ is the mean number of outgoing fragments, which satisfies N̄ ≥ 2,

and implies −1 < β ≤ 0. Binary breakup corresponds to β = 0.

The size dependence of the collision kernels depends on the physical pro-

cesses underlaying particle interactions. A variety of collision kernels,K(x, y),

has been proposed in applications of the non-linear Smoluchowski equation

[140, 141, 146]. Because of their physical motivation and mathematical sim-

plicity, most kernels have a sum-product form, such as

K(x, y) = 1, xp + yp, (xy)p, xpyq + xqyp (2.3)

In Equation (2.1), the kernel K(x, y) may also contain the probability that

breakage indeed occurs, expressed as p̄(x, y). Although in general, it will de-

pends on particles’ properties, if we can assume it as a constant we can al-

ready identify three classes of fragmentation kinetics depending on whether

particle x or y breaks: (i) symmetric breakage, where a randomly chosen par-

ticle of the interacting pair (x, y) breaks [131, 133], and where p̄(x, y) = 1;

(ii)L-breakage, where the larger particle breaks, hence p̄(x, y) = θ(x− y); and

(iii) S-breakage, where the smaller particle breaks and p̄(x, y) = θ(y − x); θ(x)

stands for the unit step function. The general expression, Eq.( 2.1) reduces

for L-breakage and S-breakage to

∂c(x, t)

∂t
= −c(x)

∫∞
0
dyK(x, y)θ(x− y)c(y) +

∫∞
x
dy

∫∞
0

dzb(x|y)K(y, z)θ(y − z)c(y)c(z)

∂c(x, t)

∂t
= −c(x)

∫∞
0
dyK(x, y)θ(y − x)c(y) +

∫∞
x
dy

∫∞
0

dzb(x|y)K(y, z)θ(z − y)c(y)c(z)(2.4)

respectively.

2.2 Direct Simulation Monte Carlo Algorithm

Due to the non-linear character of the Smoluchowski fragmentation equation,

it is useful to develop a numerical scheme which can explore efficiently the
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main features of fragmentation kinetics. To this end, we have developed a

numerical approach which follows the basic idea of Direct Simulation Monte

Carlo (DSMC) technique, introduced by Bird to directly simulate the Boltz-

mann equation [143], and which has been extended to study other systems,

such as granular gases [144]. The general idea underlying the approach is

easily generalized to other kinetic equations.

Instead of solving Equation (2.1) numerically, we follow its temporal evolu-

tion through a stochastic sampling of the fragmentation process. We represent

the fragmentation system by N particles with variable masses. These parti-

cles, however, do not correspond to real particles, they rather represent the

continuum distribution which evolves according to the fragmentation equa-

tion. We follow the basic scheme in DSMC and fix a time step ∆t0, smaller

than the characteristic relaxation time of the kinetic equation. We then take

a pair of particles at random, i and j with masses xi and xj respectively, and

make them fragment with a probability

Pcoll(i, j) =
wij

∑N
n=1

∑N−1
m=1 wnm

(2.5)

where we define the fragmentation frequency

wij ≡ K(xi, yj) (2.6)

Following DSMC, we avoid the expensive calculation of the denominator

by estimating the largest fragmentation frequency, wmax, and accept fragmen-

tation events with a probability Pcoll(i, j) = wij/wmax. One can also compute

the number of pairs that must be sampled during ∆t0, since the number of

colliding pairs is fixed by the fragmentation frequency

Mcoll = N2〈w〉∆t0 (2.7)

where 〈w〉 stands for the averaged fragmentation frequency during the corre-

sponding time interval. In order to maintain the proper fragmentation prob-

ability, we must then sample Msample = N2wmax∆to pairs. For the particular

choice ∆t0 = 1/N2wmax, it is enough to increment the time by an amount ∆t0

after each attempt to fragment a pair of particles.
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Instead of using a fixed time increment, it is possible to use the previous

discussion considering that to observe a collision one needs to try to fragment

Msample = wmax/〈w〉 pairs. Hence, wmax/〈w〉 trials need to be carried out before

a pair is fragmented, which corresponds to a fragmentation probability of

P (w) =
w

N(N−1)
2
〉/wmax

(2.8)

Only when a pair fragments is time is incremented by the amount

∆t =
1

N2wmax
(2.9)

to ensure consistency with the previous scheme for a prescribed, constant

time step. Making use of the fragmentation probability associated with this

scheme, the mean time step can be derived from the expression for the general

moments of the fragmentation distribution

〈∆tn〉 =
∑

i

∑

j

wij

N(N−1)
2
〈w〉

(

1

N2wij

)n

=
1

〈w〉N2
〈 1

(N2w)n−1
〉 (2.10)

where 〈w〉 =
∑

i

∑

j wij/(N(N − 1)/2). As anticipated, from the previous ex-

pression for the moments of the distribution we can derive in particular the

mean time step, 〈dt〉 = 1/(N2〈w〉), consistent with Equation (2.9).

Once the fragmentation event is accepted, we need to decide whether par-

ticle i or j will subsequently break. In this work, we study symmetric frag-

mentation, where a randomly chosen particle breaks [131, 133] and asymmet-

ric fragmentation where either the larger L-breakage or the smaller particle

S-breakage breaks [133]. We also distinguish between deterministic fragmen-

tation [131, 133], where the chosen particle breaks into two equal fragments,

and stochastic fragmentation, where the chosen particle breaks randomly into

two off-springs. By following this procedure, it is possible to keep track of the

kinetic evolution of the system, as well as gather statistics on the distribution

of sizes.

In the next sections, we validate the proposed algorithm by comparing the

results of kinetic evolution and statistics of sizes with previous analytical find-

ings for symmetric and asymmetric kernels. In addition, the method allow us

to examine the L-breakage and S-breakage models for generic kernelsK(x, y),

for which no exact scaling solutions are known.
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Figure 2.1: Time evolution of the particle size densities cn(τ) in terms of the average number

of collisions, τ , for the symmetric kernel K(x, y) = 1. The analytic solutions of Equation (2.12)

are also shown for comparison

2.3 Symmetric Kernels

2.3.1 Symmetric Deterministic Fragmentation for K(x,y)=1

Ben-Naim and Krapivsky have examined analytically the fragmentation ki-

netics in systems where particles in a fragmentation event break symmetri-

cally and deterministically into two equal fragments for the simplest kernel

K(x, y) = 1 [133]. Starting from a monodisperse initial distribution where all

particles have unit size a fragment produced after n fragmentation events has

a mass x = 2−n. Using this fact, they derived the dynamic evolution of the

density of fragments cn(t) which have collided n times at time t

d

dt
cn(t) = N(t) [ 2cn−1(t)− cn(t) ] (2.11)

where the total density N(t) =
∑∞

j=0 cj(t) represents to the average number of

collisions experienced by a fragment up to time t. The evolution of Equation

(2.11), in terms of the collision counter, τ =
∫ t

0
dt1N(t1), is linear

d
dτ

cn = 2cn−1−
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cn. Thus, for the initial conditions cn(0) = δn,0, the exact solution reads [133]

cn(τ) = e−τ (2τ)
n

n!
(2.12)

As can be appreciated, the fragmentation leads to a singularity at a finite

shattering time tc = 1 (corresponding to τ =∞) where all the densities vanish:

cn(t = 1) = 0 for all n.

In Figure 2.1, we present numerical results for several particle size den-

sities cn(τ) obtained with the DSMC algorithm, comparing them with the cor-

responding analytical prediction, Eq. (2.12). The simulations have been per-

formed starting with N = 104 particles with unit mass and taking as the colli-

sion frequency wij = K(x, y) = 1. In this case the maximum collision frequency

could also be taken as wmax = 1. The comparison shows excellent agreement

over the entire time range, indicating the good performance of the numerical

scheme.

2.3.2 Symmetric Stochastic Fragmentation for generic a

kernel K(x,y)

The proposed numerical approach can also describe general symmetric frag-

mentation kernels. In this case, a fragmenting particle of mass x splits into

two fragments of mass y and (x − y) with y chosen stochastically from the in-

terval 0 < y < x. For simplicity’s sake, y is chosen uniformly from the interval

[0, x].

We have numerically analyzed product kernels K(x, y) = xpyp and sum-

kernels, K = xp + yp. For these systems, Equation (2.1) has scaling solutions

of the type ϕ(u) with u = x/x∗, which characterizes the late stages of their

temporal evolution [134].

Moreover, for product kernels one can solve exactly the temporal evolution

of the size distribution function and prove that dynamic scaling corresponds

to the asymptotic regime of fragmentation kinetics. The characteristic value

x∗ generally corresponds to the mean value, x∗ = x̄, and for binary breakup

the scaled distribution function, ϕ(u), reads

ϕ(u) ≡ pe−up

/Γ(1/p). (2.13)
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Figure 2.2: Scaled fragment size distribution, ϕ(u), with u = x/x̄ obtained during a stochastic

fragmentation processes with symmetric product kernels, K(x, y) = xpyp. a) and b) illustrate

results for p = 1/4 and p = 3/4, respectively.

Similarly, for sum kernels it has been shown that scaling distribution func-

tions are consistent with the nonlinear fragmentation equation. An explicit

form for such distribution was obtained [134]

ϕ(u) ≡ pe−up

√
uΓ(3/2p)

(2.14)

Starting from a monodisperse ensemble of fragmenting particles, we have

found numerically that the size distribution relaxes towards a scaling distribu-

tion. In Figure 2.2.a and Figure 2.2.b the DSMC results for symmetric stochas-

tic fragmentation for the product kernel K(x, y) = xpyp and two different val-

ues of the exponent p are illustrated. One can observe the relaxation to the

scaling distribution which agrees well with the theoretical prediction over a

significant number of decades. Starting with N = 103 particles we can run

the simulation up to N ∼ 107 fragments which allows us to cover five orders

of magnitude in scaled sizes and eight orders of magnitude in the distribution

function making use of logarithmic sampling. The good agreement over such

a wide rage proves the excellent performance of the proposed approach, and

its value in describing kinetics in systems with a variable number of parti-

cles. Product kernels show a shattering transition if p < 1/2, and hence the

time evolution is quite different for the two examples displayed in Figure 2.2.

Despite this difference, the fast relaxation to the dynamic scaled distribution
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Figure 2.3: Scaled fragment size distribution, ϕ(u) , with u = x/x̄ obtained during a stochastic

fragmentation processes with symmetric sum kernels, K(x, y) = xp + yp. a) and b) display

results for p = 1/2 and p = 3/4, respectively.

shows that shattering for p = 1/4 takes place after the system has reached the

scaling regime.

Figure 2.3 displays the relaxation to the scaling distribution for sum-kernels

K(x, y) = xp + yp for two different values of the exponent p, and the simulation

data are compared to the analytic prediction in the scaling regime. In this

case we only have a prediction for the asymptotic, scaling regime and lack

an exact solution of the fragmentation equation for a general initial condition.

The excellent agreement between the numerics and the asymptotic prediction

shows the relevance of the scaling distributions in the late stages of the ki-

netics of these fragmenting systems. For this kernel both examples display

a shattering transition, which is not reached until the system relaxes to an

asymptotic dynamic scaling regime.

2.4 Asymmetric Kernels

2.4.1 Asymmetric Deterministic Fragmentation for K(x,y)=1

Reference [133] has also examined the asymmetric deterministic fragmenta-

tion process for the simplest kernel K(x, y) = 1. By exploiting the fact that

the fragment mass density develops a traveling wave form and by analyzing

the spectrum of possible propagation velocities of the wave front, they deter-
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Figure 2.4: Evolution of the normalized cumulative size density Fn(n − vτ) for deterministic

fragmentation, using the asymmetric kernels a) K(x, y) = θ(x − y) and b) K(x, y) = θ(y − x).

The opposed asymptotic behavior of Fn(n − vτ) in the two cases is related to the different

properties of the densities linked to the details of the fragmentation process.

mined that the extremal front velocity characterizes the asymptotic behavior

of the mass distribution.

Larger particle splits. K(x, y) = θ(x− y)

In the case the larger particle fragments deterministically, after n fragmenta-

tion events a particle with an initial mass of x = 1 will have a mass of x = 2−n.

Thus, the density cn(t) of particles which have experienced n fragmentation

events at time t reads

d

dt
cn = 4cn−1An − 2cnAn+1 + 2c2n−1 − c2n (2.15)

where An is the cumulative density of fragments of mass 2−n and smaller, and

An(t) =
∑∞

j=n cj(t). As a result, starting from a monodisperse system, the

density c0(t) of unit mass particles gives

c0(t) =
3(1− t)2

2 + (1− t)3
. (2.16)

Equation (2.15) notably simplifies in terms of the normalized cumulative den-

sities Fn(τ) = N−1An(t), which obey a non-linear evolution equation

d

dτ
Fn = 2F 2

n−1 − F 2
n − Fn (2.17)
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in terms of τ , the average number of fragmentation events at time t. Equation

(2.17) also admits asymptotically a traveling wave solution Fn(τ)→ f(n− vτ).

Thus, the front location n∗ ≈ vτ , characterizes typical particle size x∗ = 2−n∗.

For L − Breakage the extremal speed takes the value v = 1.52961, so that the

typical particle size does not correspond to the mean particle size as was the

case for symmetric fragmentation. Such asymptotic behavior associated with

the advancing front solution is consistent with a scaling regime for particle

size distribution, c(x) → N
x∗

F
(

x
x∗

)

, which scales with a typical particle size

of x∗ = 2−vτ and in which the asymptotic shape of the scaling distribution is

exponential for small and decays algebraically for large fragment masses. The

algebraic decay depends on the advancing front velocity, v.

We have carried out numerical simulations to validate the development of

the wave front profile, and in Figure 2.4.a we display the evolution of the nor-

malized cumulative densities Fn(τ). We have used the theoretical prediction

for the front wave speed to show that an accurate collapse in the front wave

is indeed recovered after a short transient. One can see that the smaller the

number of fragmentation events suffered by a particle the larger the devia-

tion from the front wave profile, but that the relaxation is fast and deviations

become negligible after a few fragmentation events. We have also analyzed

the scaled mass distributions ranging over analogous number decades as in

previous examples (data not shown), and have verified that a dynamic scaling

regime is achieved after a short transient. For large fragments, the exponents

characterizing algebraic decay are also consistent with theoretical expecta-

tions.

Smaller particle splits. K(x, y) = θ(y − x)

When the smaller particle splits, the fragment mass density, cn(t), can be found

using the rate equations

d

dt
cn = 4cn−1Bn−1 − 2cnBn + 2c2n−1 − c2n (2.18)

where Bn =
∑n−1

j=0 cj is the cumulative density of particles with mass larger

than 2−n.
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The density of unit mass particles is found by solving ċ0 = −c20 and the c1(t)

can also be found

c0(t) =
1

1 + t
, c1(t) =

2

1 + t

(1 + t)3 − 1

2(1 + t)3 + 1
(2.19)

We have verified (data not shown) that with our simulation scheme the kinetics

for these densities are recovered exactly, within numerical accuracy, in all the

relevant time evolution regimes.

As in the previous case where the large particle splits, the evolution equa-

tion in terms of the relevant normalized cumulative density Fn(τ) = Bn(τ)/N

is also consistent with an asymptotic traveling wave behavior [133]. The pre-

dicted traveling wave velocity is much greater now than in the previous case,

v = 7.14509, signaling a big gap between the mean, 〈x〉, and the character-

istic, x∗, fragment sizes. In Figure 2.4.b we display the simulation results of

Fn(τ) using the predicted value for the wave front speed. The simulations

have been performed starting from a monodisperse system with N = 103 par-

ticles. There is a clear tendency for the normalized densities to collapse to

a universal curve, indicating the relaxation towards the wave front regime.

However, contrary to the situation where the larger particle breaks, the tran-



Collision induced fragmentation: a simple numerical algorithm 35

0.2

0.4

0.6

0.8

1.0

-2 -1 0 1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

1.0

-5 0 5 10 15 20 25 30 35 40

F
n
(τ

)

n− vτ

n=4

n=6

n=8

n=10

a) Big

1
−

F
n
(τ

)
n− vτ

n=18

n=24

n=26

n=34

n=44

b) Small

Figure 2.6: Evolution of the normalized cumulative size density, Fn(n − vτ), for stochastic

fragmentation, using the asymmetric kernels a) K(x, y) = θ(x − y) and b) K(x, y) = θ(y − x).

sient is now much longer, as can be appreciated from the deviations from the

scaling solution. One can see that the relaxation to the asymptotic wave front

becomes heterogeneous. This slower relaxation to the traveling wave pat-

tern also implies that mass distribution will approach the scaling asymptotic

limit more slowly, as displayed in Figure 2.5. This model shows a shattering

transition at tc =
1
No
; the figure illustrates how the predicted algebraic decay,

c(x, t) ∼ x−α with α ≃ 1.20191 is reached for large masses, while deviations for

small sizes still remain very close to shattering. In order to analyze carefully

the slow convergence to scaling, and to sample the widest possible range, we

have run simulations to reach up to N = 108 fragments. In performing these

simulations the scaled distribution functions span five orders of magnitude in

rescaled sizes (data not shown).

2.4.2 Asymmetric Stochastic Fragmentation

The asymmetric fragmentation model with stochastic breaking has also been

analyzed analytically for the simplest uniform fragmentation kernel, i.e. K(x, y) =

θ(x − y) for L-Breakage and K(x, y) = θ(y − x) for S-Breakage. Using the

same theoretical approach as explained in the previous sections, it has been
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shown that both for large and small particle breakage the evolution of the nor-

malized cumulative densities relaxes asymptotically to a front wave solution,

Fn(τ) → f(n − vτ). For large particle fragmentation, v = 1, and hence the

characteristic and mean size coincide, while for small particle fragmentation

v = 9, which is larger than the deterministic fragmentation counterpart.

In Figure (2.6) we display Fn(τ) in both cases to show the convergence

to the wave front solution using the theoretical predictions for v. As it was

the case for asymmetric deterministic fragmentation, the convergence to the

scaling asymptotic regime is slower for small particle breakage, while for large

breakage it seems faster than in the deterministic case. One may speculate

that the deviation between the mean and the typical masses induces additional

kinetic heterogeneity which slows the relaxation to the asymptotic regime.

We have also verified that the scaled mass distribution is also reached (data

not shown) and that the distributions observed are consistent with theoretical

predictions. Again, in accordance with the results obtained for Fn(τ), the

convergence to the scaling distribution c(x, 1) ∼ x−α with α = 10/9 for x >> x∗

for small breakage is slower and more heterogeneous than for L-Breakage

(data not shown).
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Figure 2.8: Scaled fragment size distribution, ϕ(u), with u = x/x∗ for a stochastic fragmenta-

tion with an asymmetric product kernel K(x, y) = θ(x − y)xpyp. The density distributions for

a) p = 1/2 and b) p = 3/4 are shown.

We have analyzed more general kernels where fragmentation is asymmet-

ric and stochastic to discern to what extent the concepts developed for the

simplest fragmentation kernels can be extended to describe the kinetics of

other families of fragmentation kernel. Specifically, in Figure 2.7 we show the

normalized cumulative densities for small breakage for the product kernel,

K(x, y) = θ(y − x)xpyp. In this case we lack a theoretical prediction for the

wave propagation. Hence, we have tuned it and chosen the speed of the wave

front, v, for which we obtain the best fit. Specifically, we have obtained the

front velocities v = 1.05 and v = 1.15 for p = 1/2 and p = 3/4, respectively.

The convergence to the traveling front shape indicates that we can expect a

scaling regime for the fragment size distribution where the shape size distri-

bution function collapses in terms of the characteristic size x∗ = e−vτ . Figure

2.8 shows the corresponding scaled mass distribution functions at different

times to confirm that they do collapse to a scaling form with an algebraic tail.

In both case the power law exponent is consistent with theoretical expecta-

tions for the scaling regime.
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2.5 Discussion

We have introduced a numerical scheme to simulate the kinetics of non-linear

fragmentation equations. The method is based on the Direct Simulation Monte

Carlo (DSMC) technique, developed to solve the Boltzmann equation. The

approach is easily generalized to other type of kinetic equations where the

number of particles can vary during the kinetic evolution of the system.

We have performed careful comparisons for the simplest fragmentation

kernels, where exact solutions exist. We have shown that the proposed ap-

proach can recover the detailed time evolution accurately, and have also vali-

dated the emergence of the asymptotic dynamic scaling regime. Such a com-

parison has shown the ability of the scheme to cover a significant number of

decades in order to capture the broad size distributions characterizing frag-

menting systems, thus making it possible to carry out quantitative, detailed

comparisons. We have analyzed how to assess numerically the evolution of an

advancing front in normalized cumulative size densities. The development of

such a front is consistent with the relaxation to a dynamic scaling regime in

the size distribution function, and hence constitutes an interesting alternative

in situations where the convergence to the scaling regime is slow. Moreover,

this alternative approach provides additional information, since the extremal

velocity which characterizes the front evolution is related to the exponents

characterizing the algebraic decay of the fragment distribution functions.

We have extended and made use of these concepts to analyze general frag-

mentation kernels, where exact analytic predictions for the kinetics of frag-

menting systems are lacking. Furthermore, we have shown that with the

good statistics achieved with the numerical technique proposed, it is possi-

ble to follow the development of an advancing front for generic asymmetric

fragmentation kernels. Such an understanding promotes confidence in the

development of scaling distribution functions, which we have also followed in

time and whose development we have verified. By comparing different frag-

mentation kernels, we have seen that relaxation toward a dynamic scaling

regime, which seems generic in the cases considered, is faster the closer the

advancing front velocity is to 1, which means that the mean and characteristic



fragment sizes remain close to each other. It is reasonable to argue that the

development of two well-separated and characteristic length scales hinder the

temporal evolution of these systems.





Chapter 3

Cooling dynamics of a granular

gas of elongated particles

Granular gases are dilute systems of macroscopic particles, which usually

move randomly loosing energy, due to their inelastic collisions. Starting from

an equilibrium homogeneous state and in the absence of any external driv-

ing, these systems evolve into a homogeneous cooling state (HCS). In such

a state, the kinetic energy, E(t), decreases homogeneously and the time evo-

lution of all variables occurs only through its global temperature [147–149].

Haff showed that the total energy of an inelastic gas of spherical grains, char-

acterized by a constant restitution coefficient, evolves in time as a power law,

E(t) = 1
(1+t/τ)2

, where τ is a characteristic time [150]. Very recently, Haff’s law

has been experimentally corroborated in systems of magnetized latex particles

[151].

For any given inelasticity and above a certain system size, HCS becomes

unstable and the system subsequently evolves into an inhomogeneous state

where the cooling process slows down and decays as E(t) = 1
1+t/τh

indepen-

dently of inelasticity [47, 152]. In this regime the collective motions of parti-

cles and vorticity determine the cooling of the gas, and large inhomogeneities

in density are observed [47, 153, 154]. Hence, large cluster of particles de-

velop, grow and interact due to the energy lost in collisions [47, 153, 154].

While for an infinite system this regime has been argued to correspond to the

asymptotic free cooling evolution of a fluid of inelastic hard spheres, for any

41
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finite system clusters eventually become of the order of the system size; in

this regime the kinetic energy decays as the one in the HCS [45, 47, 54, 151].

These dynamical regimes, predicted theoretically, have also been validated

numerically for hard disks and spheres with constant restitution coefficient

[43, 155]; in particular Haff’s law in the HCS [47], the algebraic decay in the

hydrodynamic regime [152] and the regime where cluster sizes become of the

order of the system size [47] have been validated.

There is experimental evidence that in some materials the restitution coef-

ficient is not constant and that it rather depends on the relative velocity of the

colliding grains. Moreover, there have been a number of theoretical studies

which have analyzed in more detail the particle-particle interaction during the

collision and how inelasticity emerges from such interactions [46, 68, 156].

For soft grains in which the repulsion force depends linearly on deformation,

a constant restitution coefficient can be recovered [70, 157]. A more realis-

tic account of particle deformation implements a Hertzian contact [64, 157],

where the nonlinear elastic repulsive force leads to an algebraic decay of the

kinetic energy during HCS which deviates from Haff’s law, E(t)
E0

= 1
(1+t/t0)5/3

[46, 158]. The implications of variable restitution coefficients in the insta-

bility of HCS and the subsequent inhomogeneous cooling regime have been

addressed for viscoelastic spheres, where homogeneous cooling becomes the

asymptotic state after a long transient controlled by inhomogeneous large

clusters [159].

In the past, it was also shown that particle roughness leads to correla-

tions between translational and rotational degrees of freedom and their cor-

responding kinetic energies [50, 54, 160, 161]. In general, both translational

and rotational kinetic energies decay following Haff’s law but differ from each

other due to the breakdown of energy equipartition leading to correlations

between translational and rotational kinetic energies; such correlations have

been quantified for agitated spherical rough spheres [52, 55]. However, less

is known about the freely cooling evolution of anisotropic particles [56, 162],

although recently there has been an increasing interest in the dynamics of

rod shape grains [163–167]. For example, in vibrated systems the particle

anisotropy leads to net displacements and propulsion [168]. Such types of
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Figure 3.1: In a) A sketch of two interacting particles is presented. The force between two

particles is proportional to the overlap area. The force is applied in the middle point of the line

connecting the intersection points of the particles. In b) we show the total kinetic energy loss

due to the collision of two particles, expressed as the ratio of the total energy after and before

the collision (ET /ET0
). The total energy is computed as the sum of kinetic and rotational

energies. The values shown here correspond to the maximum velocity experimented by the

particles.

collective features favors clusters and other types of patterns, reminiscent of

those observed in system of self-propelled elongated particle in model systems

[169] motivated from biological materials [170, 171].

3.1 2D granular gas of irregular convex poly-

gons

We consider a system of 2D irregular convex polygons, which are generated

by a random Voronoi tessellation. The later allows to generate particles with

variable degree of irregularity systematically [74]. Accordingly, the particle

shape distribution is characterized by a single parameter 0 < a < 1. The

extreme value a = 0 corresponds to a regular distribution of rectangles with

sides S1 = 1 and S2 = d, where d > 1 defines the grain aspect ratio.

Following our description, a system composed by N particles, of mass mi
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and moment of inertia Mi,

When two particles come in contact they deform inelastically. Rather than

describing the actual grain deformations, we keep the shape of the particles

and allow them to overlap and determine the particle forces in terms of the

overlapping area [71, 72, 74, 75, 77]. Accordingly, the total force between the

two grains, can be decomposed ~Fij = FN
ij · ~n + F T

ij · ~t in components, normal

FN
ij , and tangential F T

ij , to the interface defined by the contact points of the

two particles when they overlap. We introduce the normal, ~n, and tangential,

~t, vectors to the common interface, which is depicted in Figure 3.1a. The force

is applied at the middle point of the common interface. Although the center of

mass of the overlapping area could have been chosen as the relevant position

[77], no qualitative changes have been appreciated in tests performed as far

as the results described subsequently are concerned.

The normal component contains an elastic contribution, proportional to the

pair overlap area, Aij, and a dissipative contribution

FN
ij = −knAij −meff

ij · γN · vNij,rel, (3.1)

where kn is the Young modulus, γN is the damping coefficient in the normal

direction, meff
ij =

mi·mj

mi+mj
is the relative mass of the colliding pair and ~vNij,rel =

(~vj − ~vi) · n̂ stands for the normal component of their relative velocity. In

general, for regular particles it is possible to derive analytic expressions for

the overlap area as a function of the separation between the particle center

of mass. For particles of irregular shape, however, it is computed numerically

[71, 72, 74, 75, 77].

The tangential component of the interaction force is characterized also by

an elastic and a dissipative contribution, and obeys the Coulomb constraint,

F T
ij 6 µ | FN

ij |, where µ stands for the static friction coefficient. Accordingly,

we write

F T
ij = −min(−ktξij −meff

ij · γT · | vTij,rel |, µ | FN
ij |), (3.2)

where γT is the damping coefficient in the tangential direction and ~vTij,rel =

(~vj − ~vi) · t̂ corresponds to the tangential component of their relative velocity.

The elastic force is now characterized by ξij, the elastic elongation associated
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to the overlapping pair. It behaves as an Cundall spring [76]

dξij(t)

dt
= vTij,rel, (3.3)

which evolves as long as there is an overlap between the two particles.

The equations of motion, Equations (1.5-), are integrated using a fifth

order predictor-corrector algorithm with a numerical error proportional to

(∆t)6 [44], while the kinematic tangential relative displacement, Equation

(3.3), is updated using and Euler’s algorithm. In the simulations, we have

used the parameters kt
kn

= 0.1, γN

γT = 3 kn = 4 × 102Nm, µ = 0.25, introduced

in previous works [72, 77]. For this range of parameters we have set a time

step dt = 10−6s. The damping coefficients γN and γT quantify the inelasticity

of the collision. In order to address their impact in the evolution of anisotropic

grains, we have varied them. To understand their relationship with the en-

ergy lost in a collision, we have analyzed the interaction between a pair of

rectangles. In Figure 3.1b we display the behavior of the total kinetic en-

ergy, ET , during one collision. For convenience, the values are rescaled to

the total kinetic energy just before the collision starts, ET0 . The data corre-

spond to several damping coefficients γN , which quantifies the variation and

the relevant range of dissipation. The numerical values of the corresponding

effective restitution coefficients are also shown. In general the total energy

lost strongly depends on the initial particles’ relative velocity. Consequently,

to identify the effective velocity depended restitution coefficient is not very

obvious. The values of the damping coefficient displayed range from parti-

cles which loose a rather small amount of kinetic energy up to particles where

around the 70% of the pair incoming relative kinetic energy is lost in one colli-

sion. The data shown correspond to particles with a relative impact velocity of

1 m/s, which is the highest value experimented by the particles in the present

numerical studies.

In the next sections, we focus on rectangles with variable aspect ratio, d.

For the rectangles, when two vertices overlap with the same side, no special

care is necessary as long as the used parameters always warrant that the

maximum overlap is much smaller than the particle size. In the very unlikely

situation where two vertices of one particle overlap with a pair of vertices of
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Real particle
Virtual particle

Figure 3.2: When a particle starts to leaves the system, a virtual particle is created on the

opposite side (Red particles). For the particular case that the particle leaves the box from a

corner then a virtual particles is created at all the other corners (Blue particles).

a second particle, leading to full face to face interaction, the contact surface

is defined by the two middle points between the corresponding closest pair

of vertices. The other steps of the procedure remain unchanged. Systems of

irregular particles characterized by a parameter (1/4 ≤ a ≤ 1/2) (data not

sown) were also explored, without observing any relevant differences with the

results we will analyze below.

3.1.1 Boundary conditions

The simulations are carried out in a square box of size L and a fixed number

of grains, N , at a prescribed area fraction, ν. In order to minimize finite size

effects, we have used periodic boundary conditions. Due to the general shape

of the grains, whenever a particle leaves one side of the box, we need to repli-

cate it in the opposite side. Accordingly, we generate a list of virtual particles

which include all particles that have at least one vertex out of the system. As

soon as a particle starts leaving the system, it is added to the list of virtual

particles. When the center of mass of the particle crosses one of the system’s

boundaries, then the position of the reference particle is updated following the

standard procedure. Such a change alters the status of the reference particle

and the virtual ones, which is updated appropriately in the virtual particle list.
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For consistency in case the particle goes out through a corner three virtual

particles are created, as illustrated in Figure 3.2. The virtual particles are re-

garded as standard particles when computing inter-particle forces. Note that

the force computed for a virtual particle is applied to the corresponding real

particle the virtual particle is linked to. Also the change in position of the real

particle leads to the corresponding change of the virtual particles linked to it.

3.2 Freely evolving anisotropic grains

We have numerically studied the free cooling kinetics of a dilute system of

N = 3000 polygons at area fraction ν = 0.07 confined within a square box. Ini-

tially, the particles are homogeneously distributed and their translational and

rotational velocities follow Gaussian distributions. In order to avoid memory

effects from the initial conditions, we allow the system to execute a few col-

lisions before starting to analyze the particles’ temporal evolution, which we

follow until the total mean translational and rotational kinetic energies have

decayed several orders of magnitude. All data shown correspond to averages

over at least five different initial configurations.

In Figures 3.3 and 3.4 we display snapshots of the density and velocity

fields for rectangular grains with aspect ratio d = 5. We have explored the sys-

tem’s behavior for two extreme damping coefficients (used in Figure 3.1b) to

quantify the inelasticity of typical collisions. In both cases we can distinguish

an initial homogeneous decay, which corresponds to HCS. This state is unsta-

ble and the granular gas develops density inhomogeneities leading to cluster

formation. Since eventually the decay in the grains’ velocity will decrease the

inelasticity lost in the collisions, we expect a homogeneous asymptotic behav-

ior analogous to the one put forward for viscoleastic isotropic grains [46, 159].

The behavior of the granular gas in the inhomogeneous regime shows a

clear dependence on the damping coefficient, γN . For weakly dissipative par-

ticles, γN = 1s−1 (see Figure 3.3), one can appreciate the smooth develop-

ment of a velocity field leading to the formation of clusters which coalesce

and merge into large structures (see Figure 3.3b). At longer times, however,

these big clusters show a tendency to break, avoiding the development of the
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(a)

(b)

(c)

Figure 3.3: Spatial evolution of a system with elongated particles d = 5 and a damping co-

efficient of γN = 1 s−1. The first column shows the screenshots of the system, the second

illustrates the velocity fields. The lighter the particles the faster they are. Pictures at t = 10 s

(a) , t = 100 s (b) and t = 200 s (c) are presented.

clustering instability (see Figure 3.3c), in agreement with the predictions for

viscoelastic grains [159, 172]. On the contrary, highly dissipative grains, with

γN = 103s−1, develop marked clusters of smaller sizes much faster, as can be

appreciated in Figure 3.4. Such clusters are correlated with the quick devel-
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(a)

(b)

(c)

Figure 3.4: (Color online) Spatial evolution a system with elongated particles d = 5 and a

damping coefficient of γN = 103s−1. The first column shows the screenshots of the system,

the second illustrates the velocity fields. The lighter the particles the faster they are. Pictures

at t = 10 s (a), t = 100 s (b) and t = 200 s (c) are presented.

opment of complex vortex structures in the grains’ velocity field. These well

defined, small clusters, tend to coalesce at larger times, although the over-

all process of large cluster development is severely slowed down when com-

pared to the evolution of weakly dissipative clusters. Increasing the particle
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Figure 3.5: Evolution of the translational kinetic energy of the system in time. Particles

with several aspect ratios from d = 1 to d = 5 are studied. Results for two very extreme

damping values are shown, a) γN = 1 s−1 and b) γN = 103 s−1. For comparison the analytical

prediction for a system of viscoelastic circles as well as our best fit for the inhomogeneous

cooling process are shown as lines.

anisotropy (data not shown) enhances this distinct evolution with the particle

energy dissipation. In the past, a similar trend has been observed for rough

spheres, where it has been shown that energy transferred into rotational de-

gree of freedoms delays cluster development [52].

We have quantified the temporal evolution of freely evolving gases of rect-

angular grains by monitoring the mean translational and rotational kinetic

energy of the system, usually referred to as granular temperatures. Figure

3.5 displays the decay of the translational kinetic energy, E(t), of a granu-

lar gas for weak and strong dissipative rectangular grains with aspect ratio

d = 5. After a short transient, t > 0.1 s the decay is algebraic in agreement

with the analytic predictions for the homogeneous cooling state of hard and

viscoelastic grains.

Since the dissipation in these systems is proportional to the relative veloc-

ity difference and the restitution force is a nonlinear function of the overlap-

ping area (see Equation 3.1), one can expect the system evolves analogously

to a gas of hard viscoelastic grains [46]. We have verified that this is con-

sistent with the results obtained for weakly dissipative grains. The algebraic
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Figure 3.6: Evolution of the rotational energy of the system in time. Particles with several

aspect ratios from d = 1 upto d = 5 are studied.Results for two very extreme damping values

are shown, a) γN = 1 s−1 and b) γN = 103 s−1. For comparison the Haff’s analytical prediction

t−2. is also shown.

decay depicted in Figure 3.5a is characterized by the same exponent, β = −5
3
,

analytically predicted for viscoelastic grains [46]. However, this is not the

case for highly dissipative grains, which cool down slower, with a character-

istic smaller exponent, β ≈ −1.2, in the algebraically decaying regime. It is

important to remark that the limitations of the used numerical scheme pre-

vented us to perform calculation with higher dissipative systems, for reaching

the hydrodynamic algebraic decay, E(t) ∼ t−1 limit [152].

On the other hand, for weakly dissipative systems, the decay of the transla-

tion kinetic energy also slows down at longer times. This can be attributed to

the development of stronger velocity correlations. Nevertheless, the narrow

time regime (system size effects) does not allow us to quantify the algebraic

dependence characteristic of the hydrodynamic regime, E(t) ∼ t−1 [152]. Con-

trary, the faster decay (t−
5
3 ), which can be attributed to the dominance of big

clusters is quickly recovered. Larger system sizes will be required to iden-

tify the relevance of the intermediate regimes before reaching the asymptotic

state. For highly dissipative grains the smaller exponent, observed from very

short times, may suggest an earlier departure from HCS. In this case, the in-

terplay of cluster formation and break up with the development of large clus-
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ters and their impact in the overall kinetic energy decay also remains to be

clarified. Nevertheless, Figure 3.5a and Figure 3.5b clearly indicate that nei-

ther the dissipation nor the shape does significantly modify the functional de-

pendence and the characteristic time scales in which the systems cool-down.

Moreover, analogous results (data not shown) are obtained for irregular parti-

cles with (1/4 ≤ a ≤ 1/2).

Figure 3.6 shows the decay of the rotational kinetic energy. After a short

transient, for t > 1 s, we observe an algebraic decay characterized by an

exponent −2 regardless of particle shape and inelasticity. This exponent,

in agreement with Haff’s law, can be understood assuming weak rotational-

translational correlations. The latter can be traced back to the fact that above

the Coulomb threshold, both the elastic and dissipative contributions of the

tangential force are linear functions of the lateral displacement and relative

velocity, respectively (see Equation 3.2). The deviations observed in E(t) at

longer times are much weaker for rotational kinetic energy, suggesting that ro-

tations are much less sensitive to the development of spatial inhomogeneities.

The different behavior in the decay of rotational and translational kinetic en-

ergy indicates a lack of energy equipartition during the whole cooling pro-

cess of the anisotropic grains, both in the homogeneous and inhomogeneous

regimes.

During the cooling process the velocity statistics was also examined (see

Figure 3.7a and Figure 3.7b). Starting from a Maxwellian speed distribu-

tion, the particle velocity distribution evolves with a scale characterized by the

mean translational kinetic energy. For weakly dissipative particles, which cool

down more uniformly over a wide range of times, it is reasonable to expect that

all the temporal dependence enters through the translational temperature and

we can then identify a dynamic scaling regime where the scaled velocity distri-

bution becomes stationary. Such a picture is consistent with the results shown

in Figure 3.7a, where we show the scaled speed distribution, P (c) (c = v
v̄
), at

the initial and final times. Regardless of the particle anisotropy, the distri-

bution shape remains close to a Maxwellian. For highly dissipative grains,

larger fluctuations are observed, although the shape remains also close to a

Maxwellian. In this case, one can argue that such a behavior arises as a result
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Figure 3.7: Scaled speed distribution several particle shapes, ranging from d = 1 to d = 5. In

all cases, the data correspond to very late times; for comparison the initial speed distribution

is also shown. a) Weak dissipative particles, γ = 1 and b) strong dissipative particles, γ = 103.

The insets show the tails of the velocity distribution functions.

of the presence of independently evolving clusters. Finite size limitations pre-

vents us from analyzing the tails of the distributions, where deviations from

the Maxwellian behavior may develop and become good indicators of the dif-

ferent features of weak and strong dissipative granular gases.

To gain insight into the role of particle anisotropy on the collective fea-

tures of freely evolving granular gases, we have analyzed the structure of the

clusters which the system spontaneously develops. In the simulations, two

particles are regarded as part of the same cluster if there is any contact be-

tween them, i. e. when the inter-particle overlap area is larger than 10−6. We

have first considered the radial distribution function of connected particles

G(r) within a given cluster

G(r) = 〈N(r + δr)

2πrδrρ
〉, (3.4)

where ρ = NT/A is the average number of rods per unit of area measured by

counting the total number of rodsNT whose center of mass lies in the analyzed

area A. N(r+ δr) accounts for the number of particles, within the cluster, with

their center of mass at a distance r within a differential of area δS = 2πrδr.

The value of G(r) correspond to a mean value obtained over the whole system.
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In Figure 3.8, the radial distribution function of connected particles, G(r)

is illustrated for particles with different damping coefficients and variety of as-

pect ratios. At short distances, weakly dissipative grains display weak, short

range correlations characterized by the particle’s longest side, clearly visible

in Figure 3.8a. One can appreciate a correlation hole close to contact and

subsequently the radial distribution function develops a smooth peak whose

relative height decreases as the particle anisotropy increases. For strongly

dissipative particles the short range structure is markedly different, as shown

in Figure 3.8b. The inelasticity induces strong short range structures which

correspond to the different structures in which the particles can pack locally,

depending on their aspect ratio. The drawings in the figure indicate some of

the structures where one can find particles either perfectly aligned parallel

to each other along their long faces, or perpendicular to each other alternat-

ing long and short faces. This packing gives rise to clearly marked peaks,

whose positions change with the aspect ratio, d. The relative height of the

peaks also decrease with particle anisotropy, but in all cases their height are

larger than the corresponding particle anisotropies with smaller damping co-

efficient. This tendency to more marked close packed structures arise as a

combined effect of dissipation and alignment induced packing associated to

the particles shape. The insets of Figure 3.8 display the long distance decay

of the radial distribution function. The particle dissipation gives rise to larger

values of the radial distribution function at contact, but in both cases, and for

all the aspect ratios analyzed, we observe a long range decay, characteristic

of the development of long range clusters and structures. Such long range

structures have been observed in agitated isotropic grains as a result of long

range hydrodynamic correlations due to the lack of detailed balance in these

out of equilibrium systems [173].

Further information on the local structure of rod alignment is obtained

from the radial orientational distribution of connected particles within a given

cluster, Q(r), which can be defined as

Q(r) = 〈Qij〉 Qij = cos (2(θi − θj))δ(rij − r) (3.5)

where θi and θj are the angular orientation of particles i and its connected

neighbor j, at a distance rij. This distribution function provides quantita-
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Figure 3.8: Radial distribution function of connected particles obtained for system of particles

with aspect ratios from d = 2 to d = 5. Results for two very extreme damping values are

shown, a) γN = 1 s−1 and b) γN = 103 s−1, In both cases the particle alignment corresponding

to a few relevant peaks in the radial distribution function are drawn.
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Figure 3.9: (Color online) Radial orientation distribution functions of connected particles,

Q(r), as defined in Equation 3.5 for system of particles with aspect ratios from d = 2 to d = 5.

Results for two very extreme damping values are shown, a) γN = 1 s−1 and b) γN = 103

s−1. In both cases the particle alignment corresponding to a few relevant peaks in the radial

orientation distribution function are drawn.
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tive information on the local structure of the clusters because configurations

where the two particles are perpendicular to each other contribute −1, while
particles aligned along their long faces or along their short faces contribute 1.

On Figure 3.9a, the Q(r) numerical data clearly indicates that weakly dis-

sipative systems do not show significant structure. There is a peak at contact

(r = 1), because at this shortest distance only perfectly aligned particles along

their long faces can contribute. At larger distances a small deep indicates

a small preference at these intermediate distances to observed perpendicu-

larly aligned particles. But overall, it is the relaxation from the completely

aligned structure at contact which dominates Q(r). On the contrary, Figure

3.9b shows that after the decay of the compact structure at contact, a series

of maxima (parallel alignment) and minima (perpendicular alignment) develop

at intermediate distances corresponding to the high tendency of these dissi-

pative particles to align in close packed structures. The radial orientation dis-

tribution function shows a faster decay than the radial distribution function,

suggesting that angular correlations are short range.

Finally, in Figure 3.10 we show the local nematic order parameter for the

freely evolving gas, S(t), defined as

S(t) =
1

N

N
∑

i

1

Nc

Nc
∑

j

Qij (3.6)

We restrict the sum of the orientational function, introduced in Equation (3.5),

to the particles which are in contact with a reference particle i, Nc is the

amount of particles that are in contact with i. S(t) naturally captures the local

angular correlation, and it runs from S(t) = 1, representing the maximum lo-

cal correlation to S(t) = 0, which corresponds to a locally disordered system.

Figure 3.10 clearly indicate that particle anisotropy induces local nematicity

in the clusters of particles, even at even at very early stages for highly dissipa-

tive articles. The local ordering into a nematic structure grows with particle

anisotropy. For weakly dissipative particles, however, no local angular corre-

lation is found as shown in the inset of Figure 3.10. For these particles the

clusters gather particles which avoid overlapping each other but without any

significant local angular correlation.
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Figure 3.10: Nematic parameter at contact, S(t). Results for γ = 103s−1 and three different

anisotropies are depicted. The inset shows the corresponding behavior for weakly dissipative

particles, γ = 1s−1.

3.3 Discussion

In summary, we have examined the cooling dynamics of a 2D granular gas

of elongated grains. For weakly dissipative particles, we have found that the

mean kinetic energy decreases asymptotically as E(t)
E0

= 1
(1+t/to)5/3

, in agreement

with Brilliantov and Pöschel predictions for the homogeneous cooling state

regimen (HCS) of viscolestic particles [46, 158]. A higher dissipation induces

an inhomogeneous cooling process and the energy vanishes as E(t)
E0
∼ t−1.2. The

rotational energy, however, always decays as R(t)
R0
∼ t−2, which is agreement

with Haff’s prediction for the HCS of inelastic particles. The lack of energy

equipartition is kept even during the inhomogeneous cooling process where

strong inhomogeneities in the velocity field are presented.

We also have observed a strong influence of the particle shape and inelas-

ticity on the structure of the clusters which develop in the inhomogeneous

cooling regimes. The combined analysis of the radial distribution function,

G(r), the angular correlation, Q(r), and the local nematic order parameter,

S(t), clarify the cluster structure. Highly dissipative grains show amarked ten-

dency to form ordered clusters with strong local angular correlations. There-



fore, the system is nematogenic in this cooling process, and one can expect

that the observed clusters display a significant nematic order. The latter,

which increases with particle elongation, is very closely related to the typical

face to face interaction. The relevance of the interplay between particle shape

and inelasticity has been clearly appreciated by analyzing the structures of

weakly dissipative grains, where the local nematicity is essentially absent and

the density inhomogeneities are statistically much more isotropic. Our numer-

ical outcomes suggest that the strong dissipation and the particle anisotropy

induce the formation of ordered cluster structures and velocity vortices, which

notably slow down the cooling process and retard the appearance of large

clusters which break and reform. Increasing the particle anisotropy enhances

this distinct evolution as a function of the particle energy dissipation. This be-

havior can be attributed to the detailed interaction between ordered clusters

of particles, where rotational degrees of freedom play a relevant role. The

breakup of big clusters of elongated particles as a results of their collisions

leads to the formation of smaller clusters, promoting a faster decay of the

rotational kinetic energy. Such smaller clusters of ordered particles in turn

delay the development of the inhomogeneous cooling regime. Understanding

the impact of these strong correlations in agitated systems where energy is

supplied continuously constitutes an interesting venue in the fundamental un-

derstanding of the physics of anisotropic granulates and the subtle interplays

between particle shape and inelasticity.



Chapter 4

Stress distribution of faceted

particles in a silo after its partial

discharge

The design and exploitation of granular silos benefits from a detailed knowl-

edge of the mechanical properties of particle storages. In fact, a poor un-

derstanding of the impact that the grain properties has on granular deposits

necessary leads to a poor performance of the silo, both in terms of its stor-

age capabilities as well as its overall structural stability. Since the collective

behavior of such systems is not always easy to measure and control experi-

mentally, numerical modeling usually provides a very useful complementary

approach for understanding very complex processes like silo filling and dis-

charging [174–178].

In previous works, it was found the remarkable role that flat faces play

in the stress propagation of granular deposits [166, 179]. Elongation favors

rods’ alignment transverse to gravity, hindering stress transmission to the lat-

eral walls of the container. Then, as the particles increase their length, force

saturation becomes strongly reduced. On the contrary, squares tend to orient

with a diagonal parallel to gravity, transmitting the stress at π/4 with respect

to the gravity. This results in a clear saturation of the pressure with depth,

similar to what is observed in granular silos and known as Janssen’s effect.

In this chapter, we present a systematic theoretical and experimental co-

59
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Figure 4.1: Photograph of the experimental setup of the two dimensional silo. On the right,

as example, there is a zoom of the d = 5.4 rods deposited in the bulk of the granular layer.

ordinated study of the structural and mechanical properties of packings of

faceted particles after their partial discharge from a silo. We show that par-

ticle shape and elongation has a profound effect on the process of silo dis-

charge and consequently, on the stress profiles developed. Hence, grain as-

pect ratio becomes a key parameter which controls the properties of pack-

ings of faceted particles within a silo. The simulations have been developed

by T. Kanzaki and R.C. Hidalgo in the framework of the project Estabilidad

y dinámica de medios granulares anisótropos (FIS2008-06034-C02-02). The

experiment have been conducted by researchers at University of Navarra in

the framework of the project Interacciones entre partículas y emergencia de

propiedades macroscópicas en medios granulares. (FIS2008-06034-C02-01)

4.1 Experiment

The experimental setup consists on a smooth, two dimensional silo filled either

with rods or square nuts (Figure 4.1). Two types of rods of 1.0mm diameter

have been used in this work. Both are monodisperse stainless steel rods with

different lengths: 2.4 and 5.4 mm. Hence, the aspect ratio of the rods is d = 2.4

and d = 5.4. It is important to note that the borders of the rods are truncated
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cones as explained in [179]. The square particles, d = 1, are DIN 557 nuts

3.16 mm wide and 6.9 mm side.

The container is built with two glass plates separated by two stainless-

steel strips 0.1 mm thicker than the particles so that the granular material is

confined in a mono-layer between the plates. The bottom of the silo is flat and

formed by two facing metal pieces whose edges touch each other. Since rods

and squares have different sizes, we have modified the container dimensions

correspondingly to generate analogous deposits. For rods (squares) the silo

is 180 mm (260 mm) wide and 790 mm (950 mm) high. The number of rods

necessary to fill the silo is larger than 5 × 104 and 2 × 104 for d = 2.4 and

d = 5.4 mm, respectively; while the number of required squares is around

5× 103.

The granular sample is introduced through a hopper at the top of the silo by

pouring the grains homogeneously along the whole silo width. The feed rate

is measured to be around 200 particles per second for 2.4 mm rods, around 80

particles per second for 5.4 mm rods, and 70 particles per second for squares.

Once the deposit is generated, an orifice is opened at the silo bottom by sepa-

rating the two metal pieces that conform it. After a layer of rods (squares) of

around 250 mm (300 mm) has flowed out of the silo, the outlet is closed and the

flow is arrested. Then, the silo is completely emptied before a new realization

is performed. The outlet size is chosen to be small enough to stay away from

the silo lateral walls but big enough in order to guarantee the particle flow. At

this point, we remark that the flat faces of the particles provoke jams much

more frequently than in the case of the spheres [180]. Hence, the outlet sizes

selected have been 80 mm, 30 mm and 80 mm for square nuts, d = 2.4 rods

and d = 5.4 rods, respectively. In any case, it should be noted that, although

these dimensions may slightly affect some of the quantitative values obtained

in this work, the qualitative behavior remains unaltered.

A standard 10.2 megapixel camera is used to take pictures of the grains

inside the silo both after the filling and after the partial discharge. The region

recorded covers the whole width of the silo and a height going from 290 mm

to 410 mm for the case of the rods. For the case of the squares, the height

covered goes from 270 mm to 440 mm. In both cases we make sure that this
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region is high enough to avoid the influence of the silo bottom. From the im-

ages, the particles are detected and their position and orientation determined.

In order to obtain good statistics we have performed 100 realizations for each

sample.

4.2 Model of 2D Spheropolygons

We have performed a Molecular Dynamics simulation of a two-dimensional

granular system composed of non-deformable dissipative particles, confined

within a rectangular box of width W . We have simulated 2×104 rods of d = 2.4

and d = 5.4, even so 4×103 squares. In order to generate deposits analogous to

the experimental ones, the system width is set toW = 180 mm (W = 172.8 mm)

for d = 2.4 (d = 5.4) and W = 276 mm for d = 1. The container boundaries

are composed of rigid particles, using one layer for each lateral wall, and two

particle layers at the bottom.

The particles are continuously added at the top of the box with a low feed

rate with random initial velocity and orientation. The granular media is de-

posited under the effect of gravity and it is let cool down until the particles’

mean kinetic energy is several orders of magnitude smaller than its initial

value. At this point, a hole of 80 mm, 36 mm and 80 mm for d = 1, d = 2.4

and d = 5.4 respectively, is opened at the middle-bottom of the container. The

orifice is closed when a grain located at the top-middle position of the hill,

marked as a reference, descends a prescribed vertical distance, s. The dis-

tance s takes the value of 300 mm for d = 1, 150 mm for d = 2.4, and 250 mm

for d = 5.4. After closing the container we let the system to cool down again

and the simulation finishes. To get good statistics, the results presented con-

stitute averages over at least twenty-four different repetitions for each case.

For calculating the particles interaction ~Fij we use a very efficient algo-

rithm proposed recently by Alonso-Marroquín et al [167, 181], allowing for

simulating a large number of particles. This numerical method is based on

the concept of spheropolygons, where the interaction between two contacting

particles only is governed by the overlap distance between them (see details

in [167, 181]). For defining the normal interaction FN
ij , we use a nonlinear
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Hertzian elastic force [182], proportional to the overlap distance of the parti-

cles. Moreover, to introduce dissipation, a velocity dependent viscous damp-

ing is assumed. Hence, the total normal force reads as

FN
ij = −kN · δ3/2 − γN · vNrel, (4.1)

where kN is the spring constant in the normal direction, γN is the damping

coefficient in the normal direction and ~vNrel is the normal relative velocity be-

tween i and j. The tangential force F T
ij also contains an elastic term and the

tangential frictional term. Taking into account the Coulomb’s constraint it

reads as

F T
ij = min{−kT · ξ − γT · |vTrel|, µFN

ij }, (4.2)

where γT is the damping coefficient on the tangential direction, vTrel is the

tangential component of the relative contact velocity of the overlapping pair.

ξ represents the elastic elongation of an imaginary spring at the contact [76],

which increases as dξ(t)/dt = vTrel as long as there is an overlap between the

interacting particles [76, 183]. µ accounts for the statical friction coefficient

of the particles.

The equations of motion are integrated using a fifth order predictor-corrector

algorithm with a numerical error proportional to (∆t)6 [44], while the kine-

matic tangential displacement, is updated using an Euler’s method. In order to

model hard particles, the maximum overlap must always be much smaller than

the particle size. This is ensured by introducing appropriate values for the nor-

mal and tangential elastic constants, which are set to kt
kn

= 0.1, kn = 106N/m3/2.

together with the gravitational acceleration 10m/s2. For these parameters, the

time step should be around ∆t = 5 × 10−5s. Although the results we will de-

scribe are generic for hard particles, to achieve quantitative comparison with

experimental data we have carried out numerical simulations in which we

change both the normal damping coefficient and the static friction coefficient,

choosing the best fitting parameters. The damping coefficients are taken as
νn
νt

= 3, νt = 1 × 102s−1 and µ = 0.5. Thus, we have ensured that the kinetic

energy loss and the dynamics of sediment formation are analogous to those

observed experimentally. It is important to remark that in all the simulations

reported below we do not change the particle’s material properties; only the
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Figure 4.2: Packings of square nuts and simulated particles with d=1. Pictures of the experi-

ment (a) after the silo filling and (c) after the partial discharge. Numerical graphs (b) and (d)

on the same order.

particle aspect ratio has been varied.

4.3 Results

4.3.1 Packing Morphology

In [166, 179] we studied systematically the influence that the particle aspect

ratio has on the micro-mechanical properties of granular packing. Figure 4.2

shows the packings obtained for square particles, d = 1, both experimentally

and numerically. The granular columns resulting from the silo filling process

are presented in Figure 4.2a (exp) and Figure 4.2c (simul). Figure 4.2a con-

firms experimentally the tendency of square particles to align one of their

diagonals with gravity, as it was numerically predicted earlier [166].

We also describe in details the morphological and micro-mechanical changes,
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Figure 4.3: Experimental and numerical orientation distributions of particles, obtained at the

end of the silo filling and after its partial discharge. We illustrate results for different aspect

ratios, a) d = 5.4, b) d = 2.4 and c) d = 1.
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which are induced by partial discharges in granular columns. The packing

morphology that results at the end of the partial discharge of the silo is illus-

trated in Figure 4.2b (exp) and Figure 4.2d (simul). It is noticeable that during

the discharge, the shear between grains induces their rotation and their set-

tlement in more stable mechanical states. Hence, the discharge induces an

alignment of the squares sides with gravity which minimizes the friction and

favors their vertical displacement.

The distributions, f(θ), of the particle orientation with respect to the direc-

tion transverse to gravity are analyzed. Figure 4.3 shows the particle distri-

butions obtained experimentally and numerically at the end of the silo filling

and after the silo partial discharge for three aspect ratios, d = 5.4, 2.4, and 1

(squares). The good agreement between the experimental and numerical re-

sults demonstrates the accuracy of our numerical simulation scheme. At the

end of the silo filling, elongated particles have a strong preference to align

horizontally (Figure 4.3a), in good agreement with previous results [184]. As

the rods become less asymmetric, particles develop a most probable orienta-

tion which decreases towards π/4 for the limiting case of squares. In this case,

it also becomes evident an important effect of the lateral walls which compete

with gravity and lead to a strong preference for parallel ordering of squares

in their vicinity. As a result, a distinct peak around θ = 0 and θ = π/2 can be

also identified in Figure 4.3.c. In sphere packings an analogous wall-induced

particle ordering, which can be significant in stress transmission, has been

previously reported [185, 186].

The packing morphology drastically changes at the end of the partial dis-

charge of the silo. For the case of rods (Figure 4.3a-b) the discharge induces

a decrease of the number of particles oriented horizontally and an increase

of the number of particles oriented vertically. This result may be a conse-

quence of the alignment of elongated particles with the flow streamlines. The

case of squares is completely different as it has been observed that they flow

more easily when one of their sides is aligned with gravity. This change in

the squares orientation, favored due to shearing forces with grains at rest,

leads to a distribution where a single peak is clearly observed at θ = 0 and

θ = π/2 (Figure 4.3c). We clarify below that this configuration minimizes the
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Figure 4.4: Experimental and numerical orientation of the squares for different sectors of the

silo a) at the end of the silo filling and b) after the silo partial discharge. Pπ

2
(x) accounts for

the fraction of particles aligned mostly transversally to gravity, while Pπ

4
(x) accounts for the

fraction of particles mostly aligned with gravity.

friction with the lateral neighboring particles and, consequently, the stress

transmission on the up-down direction is favored.

Although in the previous paragraphs we have analyzed the particle orien-

tation distribution by considering all the particles along the whole silo width,

it should be remarked that the partial silo discharge induces a spatial inhomo-

geneity in the horizontal direction. This effect is observed for all the aspect

ratios but it is specially dramatic for the case of squares. In Figure 4.4 we

quantify the internal structure analyzing the fraction of square particles which

align their side (diagonal) with gravity, at angles 0 < θ < π/8 and θ > π − π/8

(π/4 − π/8 < θ < π/4 + π/8), as a function to the distance to the left parallel

wall of the silo, Pπ
2
(x) (Pπ

4
(x)). At the end of the filling process, most parti-

cles align their diagonals with gravity, except for a narrow region close to the

walls. After the partial discharge, it is evident that the fraction of squares with

a diagonal parallel to gravity is strongly depleted from the wall region, while

in the center, both groups of orientations are present with similar probability.

This result reflects what is observed by visual inspection of the discharge pro-

cess: a column of particles, limited by the orifice size, flows out the central

part of the silo. In the regions closer to the lateral walls the strong friction
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between the moving particles and those at rest favors the growth of clusters

of squares with their sides aligned with the walls. This kind of flow is known

as ratholing, a characteristic and undesirable effect in silo discharge, where

stagnant zones are developed near the walls as only the particles above the

silo outlet are able to flow out [185].

4.3.2 Micromechanics

The study of the micromechanical properties of the granular packings will

provide more insight in the correlation between the deposit microstructure

and stress transmission. We can define the stress acting on a single particle

i in terms of Fc
i , the force it experiences due to its contact c. The local stress

tensor can be calculated as

σi
αβ =

Ci
∑

c=1

lci,αF
c
i,β, (4.3)

where l
c
i is the branch vector related to the contact c. The sum runs over all

contacts of particle i.

Figure 4.5 displays polar distributions of the stress tensor principal direc-

tions obtained for single particles (see Equation 4.3). We present results cor-

responding to columns of rods with d = 5.4 (a and b), and squares (c and d),

after loading (a and c) and after partial discharging (b and c). The data shown

correspond to an area of 100 mm wide at the center of the silo. In each plot,

the discontinuous arrows represent the largest (σ11) and smallest (σ22) eigen-

value of the mean stress tensor, within the whole studied area. The size of the

arrows is normalized with the size of the smallest eigenvalue. Note that at the

end of the silo filling process, the polar distribution for rods d = 5.4 displays

a strong preference for the transmission parallel to gravity (Figure 4.5a). On

the contrary, for squares, a clear symmetry is found in the distributions of the

two stress eigenvalues, evidencing that forces are mainly transmitted along

the π/4 and 3π/4 directions (Figure 4.5c). At the end of the partial discharge,

elongated rods keep the preference for vertical stress transmission, although

the stronger disorder in rod alignment favors a more isotropic stress distribu-

tion, leading to broader distributions of the stress eigenvalues (Figure 4.5b).



Stress distribution of faceted particles in a silo 69

σ22
σ11

0

π/2

π/43π/4

π

5π/4

3π/2

7π/4a)

σ̄11

σ̄22

σ22
σ11

0

π/2

π/43π/4

π

5π/4

3π/2

7π/4b)

σ̄11

σ̄22

σ
22

σ
11

0

π/2

π/43π/4

π

5π/4

3π/2

7π/4c)

σ̄11

σ̄22

σ
22

σ
11

0

π/2

π/43π/4

π

5π/4

3π/2

7π/4d)

σ̄11

σ̄22

Figure 4.5: Polar distribution of the principal directions of the local stress for elongated

particles with aspect ratio d = 5.4 (a) after the silo load and (b) after the partial discharge.

The same results for squares (c) after the load and (d) after the partial discharge.
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Figure 4.6: Profiles of the trace of the mean stress tensor, defined following Equation 4.4, after

the silo loading. The results have been obtained using a Gaussian coarse grained function,

φ(r) = 1
πw2 e

−(|r|/w)2 and several values of w. In all cases the depth h is expressed in units of

the silo width. We also show the Jassen type fitting to the equation σ = σm(1 − exp(−x/hs)),

we have used [σm = −0.06× 106Nm;hs = 1.0].

For the case of the squares, the changes in the stress transmission induced by

the particle flow are more important. Indeed, after the partial discharge, the

stress changes dramatically and becomes mainly transmitted vertically (Fig-

ure 4.5d). This effect correlates with the formation of big clusters of square

particles aligned with the walls. Hence, changes in the particle orientation

induced by the shear affect the microstructure and determine the stress trans-

mission among the faceted particles.

The notable changes in the local stress produced by the partial discharge

of the silo necessary lead to significant variations in the pressure profiles ob-

tained as a function of the silo depth (h). To properly describe these variations,

we examined the mean local stress tensor through the granular column. Pro-

fessor Isaac Goldhirsch and coworkers [187, 188] have recently introduced a

very elaborated definition of mean stress field σ̄αβ. Following their approach
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Figure 4.7: Profiles of the trace of the mean stress tensor (pressure) after the load a) and the

partial discharge b) for rods with d = 5.4. In all cases the depth h is expressed in units of the

silo width.

the stress σαβ(r) at point r, is given by the expression

σ̄αβ(~r) =
1

2

∑

i,j;i 6=j

fijαrijβ

∫ 1

0

ds φ[~r − ~ri + s~rij ], (4.4)

where the sum runs over all the contacting particles i, j, whose center of mass

are at ~ri and ~rj, respectively. Moreover, ~fij accounts for the force exerted by

particle j on particle i and ~rij ≡ ~ri − ~rj. The coarse grained (CG) function,

φ(~R), is positive semidefinite normalized function, with a single maximum at

R = 0. In our case, we used a Gaussian coarse function, φ(r) = 1
πw2 e

−(|r|/w)2,

where the sign convention is that compressive stress is negative. The value of

w defines the coarse grained scale. We note that the data was also evaluated

using less sophisticated mean stress definitions [189, 190] and very similar

results came out (data not shown).

To clarify the effect of the CG scale w on the results, we evaluate the nu-

merical data for several values of w. The stress tensor components –defined

by Equation 4.4– were calculated within specific areas and the contribution of

the contacts within the selected area is weighted by the function φ(r). Hence,

the size of the working area is controlled by the size of the CG scale w. Specif-

ically, the trace of stress tensor (pressure) obtained for a silo of squares was
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Figure 4.8: Profiles of the trace of the mean stress tensor (pressure) after the load a) and the

partial discharge b) for squares. In all cases the depth h is expressed in units of the silo width.

examined in Figure 4.6. Note that the depth of the silo has been normalized

with the width of the deposit x = h/W . Moreover, for comparison, the numer-

ical fit using a Janssen-type formula σ = σm(1 − exp(−x/hs)), are also shown

[191, 192].

Here, the magnitude of σm represents the saturation stress and hs indicates

the characteristic value of depth at which the pressure on the column surface

stabilizes. The pressure profiles were calculated fixing the horizontal coordi-

nate and varying the vertical one (up-down) in units of w. The results reveal

that stress fluctuations at fixed depth vanish when increasing the value of w.

This indicates the existence of a CG scale for which the stress tensor field

is resolution independent [187, 188]. The data presented below have been

carefully evaluated for different values of w. Provided that the stress profiles

are not homogeneous due to the action of the gravity field, we have carefully

chosen the value of w to accurately capture the spatial stress variation.

In Figures 4.7 and 4.8, we display the trace of the mean stress tensor for

rods d = 5.4 and squares, respectively. In all cases, a coarse grained distance

of w = 40mm was used for the calculation of the mean stress tensor. This value

is approximately six and seven times larger than particle size of the squares

and the rods of d = 5.4, respectively. As we pointed out earlier, after the silo
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loading with elongated particles, the stress is transmitted preferentially par-

allel to gravity. As a result, the weak stress transmission on the horizontal

direction hinders pressure saturation, which is not completely reached for the

system sizes studied here (Figure 4.7a). The pressure profiles are very similar

both in the center of the column and in the region close to the walls. After

the partial discharge (Figure 4.7b), notable modifications are induced on the

trace of the mean stress tensor. On the center of the silo, the larger disorder

in particle orientation enhances the stress transmission in the horizontal di-

rection which is typically associated to pressure saturation. Effectively, when

we approach to the bottom of the silo the pressure first reaches a maximum

and then, it decreases at the very bottom. This pressure reduction denotes

arch formation in the region near the outlet. In the region close to the walls

the pressure increases with h until the bottom of the silo, probably due to

horizontal rod alignment induced by the bottom.

For squares (Figure 4.8a), the opposite scenario holds true. After filling the

silo, in the central part of the column the force is transmitted preferentially

at π/4 with respect to gravity, providing an efficient mechanism to channel

stresses towards the lateral walls. Accordingly, a saturation in the pressure

profile seems to be observed. However, close to the walls the strong face

to face interaction induces the particle alignment and, consequently, a linear

pressure profile is developed. The scenario is altered by the discharge of the

square nuts which become preferentially aligned with the silo walls even in the

center part of the column. This vertical alignment results in a stress transfer

to the bottom of the silo which makes pressure saturation hardly visible.

4.4 Conclusions

In this work we have shown that the partial discharge of a silo filled with

faceted grains has a profound effect on the deposit morphology and its stress

distribution. During the discharge, the shear between grains induces their

rotation and their settlement in more disordered arrangements. For elon-

gated particles, the preferred horizontal orientation displayed after the silo

filling disappears. For square particles, the discharge provokes an alignment



of their sides with gravity which minimizes the friction and favors their verti-

cal displacement. Such a structure leads to ratholing, a flow pattern which is

typically associated to cohesive effects, but that here, we show that it can also

be induced by the geometrical properties of the particles.

As a result of the changes in particle orientation, the pressure distribution

in the silo changes qualitatively; while for elongated rods lateral stress trans-

mission is promoted by the enhanced disorder leading to a faster pressure

saturation, the opposite holds for squares. In this latter case the alignment of

squares induced by the flow destroys the initial force chain network which is

replaced by a mainly vertical stress transmission. As a consequence, a signifi-

cant reduction of the pressure saturation effect is observed.

With the results reported here, we attempt to clarify the performance and

stability of silos, which need to support high stresses that become very sensi-

tive to grain shapes and the silo steering history. If we increase the amount of

material flowing out of the silo, or induce a second discharge, we expect that

the observed effect will be enhanced. Although we have focused on weakly

disordered initial deposits, due to the low feeding rates used to fill the silo,

the main features discussed here are expected for other silo filling proce-

dures. Perhaps, increasing the disorder of the initial packing will generically

decrease the relative magnitude of the changes discussed.



Chapter 5

Granular packings of cohesive

elongated particles

Very often, loose and disordered granular structures appear in many tech-

nological processes and even everyday life. They can be found in collapsing

soils [193–196], fine powders [197–199] or complex fluids [200, 201]. Gener-

ally, those fragile grain networks are correlated with the presence of cohesive

forces [197, 202–204]. Typical fine powders have in most cases an effective

attractive force, e.g. due to a capillary bridge between the particles or van der

Waals forces (important when going to very small grains, e.g. nano-particles).

This force is known to be of great importance, e.g. for the mechanical behavior

and the porosity of the macroscopic material [205–208]. This cohesive force

leads also to the formation of loose and fragile granular packings as investi-

gated in detail for structures generated by successive deposition of spherical

grains under the effect of gravity [202, 203, 205, 209].

The main objective of this chapter is to clarify the effect that an effective

attractive force has on the packing properties of elongated grains. Here we

focus on packings generated by deposition under gravity.

5.1 2D spheropolygons with cohesion

We have performed Discrete Element Modeling of a two-dimensional gran-

ular system composed of non-deformable oval particles, i.e. spheropolygons

75
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Figure 5.1: Simulated packings of elongated cohesive particles settled by gravity. Final config-

urations are shown for the same granular bond number Bog = 104 and increasing elongation:

(a) d = 2, (b) d = 3, (c) d = 5 and (d) d = 10.
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[167, 181] composed of two lines of equal length and two half circles of same

diameter. The width of a particle is the smaller diameter, given by the dis-

tance between the two lines (equals the circle diameter), whereas the length

is the maximum extension. The aspect ratio d is defined by the length di-

vided by width. This system is confined within a rectangular box of width W .

Its lateral boundaries as well as the bottom are each built of one very long

spheropolygonal particle, which is fixed. In order to generate analogous de-

posits, the system width is always set toW = 20×d (in units of particle width).

As illustrated in Figure 5.1 the particles are continuously added at the top of

the box with very low feed rate and a random initial velocity and orientation.

The granular system settles under the effect of gravity and is relaxed until the

particles’ mean kinetic energy is several orders of magnitude smaller than its

initial value.

For calculating the particles’ interaction ~Fij we use a very efficient algo-

rithm proposed recently by Alonso-Marroquín et al [167, 181], allowing for

simulating a large number of particles. This numerical method is based on

the concept of spheropolygons, where the interaction between two contacting

particles only is governed by the overlap distance between them (see details

in References [167, 181]).

To define the normal interaction FN
ij , we use a nonlinear Hertzian elastic

force [182], proportional to the overlap distance δ of the particles. Moreover,

to introduce dissipation, a velocity dependent viscous damping is assumed.

Hence, the total normal force reads as FN
ij = −kN · δ3/2 − γN · vNrel, where kN

is the spring constant in the normal direction, γN is the damping coefficient

in the normal direction and vNrel is the normal relative velocity between i and

j. The tangential force F T
ij also contains an elastic term and a tangential fric-

tional term accounting also for static friction between the grains. Taking into

account Coulomb’s friction law it reads as, F T
ij = min{−kT · ξ− γT · |vTrel|, µFN

ij },
where γT is the damping coefficient in tangential direction, vTrel is the tan-

gential component of the relative contact velocity of the overlapping pair. ξ

represents the elastic elongation of an imaginary spring with spring constant

kT at the contact [76], which increases as dξ(t)/dt = vTrel as long as there is an

overlap between the interacting particles [76, 183]. µ is the friction coefficient
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of the particles.

Additionally, here we consider bonding between two particles in terms of

a cohesion model with a constant attractive force Fc acting within a finite

range dc. Hence, it is expected that the density and the characteristics of the

density profiles are determined by the ratio between the cohesive force Fc and

gravity Fg = mg, typically defined as the granular Bond number Bog = Fc/Fg.

Thus, the case of Bog = 0 corresponds to the cohesion-less case whereas for

Bog →∞ gravity is negligible.

The equations of motion, Equations (1.5-3.1) are integrated using a fifth or-

der predictor-corrector algorithm with a numerical error proportional to (∆t)6

[44], while the kinematic tangential displacement, is updated using an Euler’s

method. In order to model hard particles, the maximum overlap must always

be much smaller than the particle size; this is ensured by introducing values

for normal and tangential elastic constants, kT/kN = 0.1, kN = 103N/m3/2.

The ratio between normal and tangential damping coefficients is taken as

γN/γT = 3, γT = 1 × 102s−1 while gravity is set to g = 10 m/s2 and the co-

hesion range to dc = 0.0001 (in units of particle width) to account for a very

short range attraction, as mediated, e.g. by capillary bridges or van der Waals

force. For these parameters, the time step should be around ∆t = 5× 10−6s.

In all the simulations reported here, we have kept the previous set of pa-

rameters and only the particle aspect ratio and the Bond number Bog have

been modified. We have also carried out additional runs (data not shown) us-

ing other particles’ parameters, and we have verified that the trends and prop-

erties of the quantities we subsequently analyze are robust to such changes.

5.2 Results and discussion

We systematically study granular deposits of particles with aspect ratio from

d = 2 to d = 10 and different Bond numbers. In all simulations presented here

we have used 6 × 103 rods. In Figure 5.1 we illustrate the granular packings

obtained for several particle shapes and constant Bond number Bog = 104. De-

spite of the presence of a gravity field acting downwards, the formation of very

loose and disordered granular structures is very noticeable. Moreover, as the
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Figure 5.2: Density profiles of different granular deposits. In a) the circles represent particles

with d = 2, the squares d = 5 and the triangles d = 10. The larger the symbols the stronger

is the attractive force (small: Bog = 0; medium: Bog = 103; large: Bog = 104). In b) the

evolution of the average volume fraction as a function of d is shown.

aspect ratio of the particles increases, the volume fraction of the column de-

creases, showing a tendency to the formation of more disordered structures.

This result contrasts with what was obtained for non-cohesive elongated parti-

cles. In that case, the topology of the packing is dominated by the face to face

interaction and the formation of ordered structures of aligned rods is detected

[166, 210].

For better describing the packing structure, in Figure 5.2a we present the

density profiles depending on depth y/ymax obtained for several deposits of

elongated particles. We plot for each particle aspect ratio density profiles with

increasing strength of the attractive force illustrated in Figure 5.2a by increas-

ing symbol size. In systems composed by elongated particles with strong at-

tractive forces the formation of extremely loose structures is observed, which

are stabilized by the cohesive forces [209]. Moreover, in all cases the density

profiles are quite uniform as function of depth. Typically, for the non-cohesive

case a close packing is expected. For cohesive particles, smaller volume frac-

tion values are found and the density profiles remain constant with depth.

These density profiles have been studied and analyzed extensively for spheri-

cal particles [209] where constant density has been found only for fast deposi-
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Figure 5.3: Orientation distributions of particles for two aspect ratios, a) d = 2 and b) d = 10.

In each case, results for several bond numbers are presented.

tion as strongly influenced by inertia. However, an extremely slow and gentle

deposition process, allowing for relaxation of the deposit due to its own weight

after each deposition, leads to a decreasing density with vertical position. Ob-

viously, here the feed rate is not sufficiently slow. Additionally, as particles are

added at the top they are accelerated before, thus reaching the deposit with a

non negligible impact velocity.

Complementary, in Figure 5.2b a systematic study of the global volume

fraction depending on the particle aspect ratio is presented for different bond

numbers. All curves show the overall trend of decreasing density with increas-

ing aspect ratio d. For packings of non-cohesive particles disordered and thus

substantially looser structures can only be found with very large aspect ratio

as found earlier numerically and experimentally [166, 179]. For very cohe-

sive particles (see Figure 5.1), however, loose and disordered granular struc-

tures can be easily stabilized, leading to much lower densities independent on

shape/elongation. This is notably enhanced as the aspect ratio of the parti-

cles increases and, consequently, the volume fraction of the packings quickly

decreases.

In order to characterize the packing morphology, we examine the orienta-

tions of the particles. In Figure 5.3, the distributions of particle’s orientation
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f(θ), with respect to the horizontal direction, for rods with aspect ratio d = 2

and d = 10 are illustrated. We present results for several bond numbers.

First, for the non-cohesive case, the geometry of the particle dominates the

final structures of the compacted piles. Note that at the end of the deposi-

tion process, long particles (d = 10) most probably lie parallel to the substrate

(θ = 0 and θ = π), while the most unlikely position corresponds to standing

rods (θ = π
2
). Nevertheless, as the aspect ratio decreases, there is a shift in

the most probable orientation, leading to a peaked distribution at an interme-

diate orientation [166, 179]. Furthermore, this shift of the maximum is not

observed for highly cohesive particles. In general, as the strength of the at-

tractive force gets stronger, the final packing tends to a flatter distribution. As

we pointed out earlier, very elongated particles with strong attractive forces

form extremely loose structures. As the aspect ratio gets higher, the rods

form highly jammed and disordered networks because during the deposition

local particle rearrangements are constrained by the attractive force. The lat-

ter, is corroborated by the distribution of the angular orientation, where now

the probability for standing rods which was zero in the non-cohesive case is

enhanced with increasing bond number (Figure 5.3b). It seems that, for suffi-

ciently large aspect ratio d, there is a threshold bond number needed to have

a non-zero probability for standing rods.

The packing morphology is also examined through a radial orientation

function Q(r), defined as

Q(r) = 〈cos (2(θi − θj))δ(rij − r)〉 (5.1)

where θi and θj are the angular orientations of particles i and j, respectively.

Q(r) accounts for the mean value of the angular correlation between a given

particle i and a particle j with their center of mass at a distance rij. Note

that, this distribution function provides useful quantitative information on the

local morphology of the rod packings. Configurations where the two rods are

perpendicular to each other contribute −1 to Q(r), while rods aligned along

their long faces or along their short faces contribute with 1 [166, 179].

In Figure 5.4a and Figure 5.4b the numerical data for packing of cohesive

particles with aspect ratio d = 2 and d = 5 are shown for comparison. Both fig-

ures show a series of maxima (parallel alignment) and minima (perpendicular
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and Bog = 104 is presented.
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alignment), which develop at several distances. This correlates with the high

tendency of the particles to align in closely packed structures, in particular for

low attractive force strengths and the limiting case of non-cohesive particles

[166, 179]. As the strength of the interaction force gets larger looser struc-

tures are formed and consequently the intensity of the maxima and minima

decreases. On the other hand, for very elongated particles (see Figure 5.4.b)

Q(r) clearly indicates that the system does not show significant order. There

is a maximum at contact, which simply indicates that at this shortest distance

only perfectly aligned particles along their long faces can contribute. At larger

distances a deep plateau seems to indicate a small preference at these inter-

mediate distances to observed parallel aligned particles. Only a characteristic

peak corresponding to the contact through the particle length r = d seems to

remain even for very strong attractive strengths. This picture suggests the

lack of significant order and presence of strong density inhomogeneities, in

granular deposits of very cohesive particles. As aspect ratio gets higher, this

effect is notably enhanced.

Furthermore, we can correlate the microstructure with stress transmission

by studying the micro-mechanical properties of the granular deposits. To this

end, we introduce the stress tensor of a single particle i,

σi
αβ =

Ci
∑

c=1

lci,αF
c
i,β, (5.2)

which is defined in terms of the total contact force ~F c
i that particle i experi-

ences at contact c and the branch vector ~lci related to the contact c. The sum

runs over all the contacts Ci of particle i, α, β are the vectorial components.

In Figure 5.5, the polar distribution P (φ) of the principal direction φ related

to the larger eigenvalue of σαβ, obtained for particles with aspect ratio d = 10

is illustrated. For the non-cohesive case (Bog = 0), Figure 5.5 indicates that

forces are preferentially transmitted in the vertical direction, displaying a high

degree of alignment with the external gravity field. Note, that the stress is

dominated by the contribution parallel to gravity (σ11) whose mean value (data

not shown) is also much higher than the stress in the horizontal direction (σ22).

For very cohesive particles (see Figure 5.5), however, the polar distribution of

the principal direction is more uniform, denoting the establishment of a more
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We also show the fitting to the equation σ = σm(1 − exp(−x/hs)), where we used [σm =

2500N/m;hs/W = 1.2] and [σm = 4800N/m;hs/W = 2.2] for case 1 and 2, respectively.

spherical stress state. Hence, in this case the stress is more isotropically

transmitted while the alignment with the external gravity field diminishes.

This effect correlates with the formation of very loose packings and the lack

of significant order and the presence of strong density inhomogeneities.

Finally, we show that the changes in microstructure induced both by par-

ticle geometry and the attractive force lead to significant modifications in the

pressure (trace of the mean stress tensor) profiles as a function of the silo

depth h. The mean stress tensor, σ̄αβ, can be calculated for a given represen-

tative volume element (RVE) with area ARVE resulting in

σ̄αβ =
1

ARVE

N
∑

i=1

wvσ
i
αβ . (5.3)

The sum runs over the representative volume element while wv is an appropri-

ate average weight. Although recently Professor Isaac Goldhirsch and cowork-

ers have developed a very accurate procedure for calculating wv and σ̄αβ

[188, 211], for simplicity’s sake we use particle-center averaging and choose

the simplest weighting: wv = 1 if the center of the particle lies inside the
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averaging area ARVE and wv = 0 otherwise [189, 190].

In Figure 5.6, we display the trace of the mean stress tensor, defined fol-

lowing Equation 5.3, for elongated particles with d = 10. For the calculation

of the mean stress tensor we have used a representative volume element with

a size equivalent to five particle lengths ARVE = 5d × 5d. The depth has been

normalized with the width of the deposit x = h/W . Moreover, for comparison,

the numerical fit using a Janssen-type formula σ = σm(1−exp(−x/hs)), are also

shown. Here, the magnitude of σm represents the saturation stress and hs in-

dicates the characteristic value of depth at which the pressure in the deposit

stabilizes.

As we have mentioned earlier, non-cohesive elongated particles transmit

stress preferentially parallel to gravity. As a result, the weak transmission

to the the lateral walls weakens pressure saturation (Figure 5.6), which is

reflected by the large saturation depth hs and stress σm. The latter is conse-

quence of the horizontal alignment of the flat faces of the rods, which induces

an anisotropic stress transmission, from top to bottom. However, the scenario

changes drastically for very cohesive particles. As we also pointed out earlier,

when the attractive force is increased, particle orientations deviate from the

horizontal and a larger disorder in the particle orientation distribution shows

up. As a result, the spherical component of the local stress is notably enhanced

with respect to the deviatoric part, which is related to the gravity direction.

Hence, for very cohesive particles Bo = 104 of d = 10 we found notably smaller

values of saturation depth hs and stress σm. In this respect, introducing an

attractive force has a very similar effect as reducing the particle elongation.

5.3 Conclusions

We have shown that introducing an attractive force in deposits of elongated

grains has a profound effect on the deposit morphology and its stress profiles.

In deposits of non-cohesive particles the topology is dominated by the forma-

tion of ordered structures of aligned rods. Elongated particles tend to align

horizontally and the stress is mainly transmitted from top to bottom, reveal-

ing an asymmetric distribution of the local stress. Lateral force transmission



becomes less favored compared to vertical transfer, thus hindering pressure

saturation with depth. For deposits of cohesive particles, the preferred hori-

zontal orientation is less pronounced with increasing cohesion. Very elongated

particles with strong attractive forces form extremely loose structures, char-

acterized by orientation distributions, which tend to a uniform behavior when

increasing the Bond number. As a result of these changes, the pressure distri-

bution in the deposits changes qualitatively. The spherical component of the

local stress is notably enhanced with respect to the deviatoric part. Hence,

the lateral stress transmission is promoted by the enhanced disorder and it

leads to a faster pressure saturation with depth.



Chapter 6

CUDA

Nowadays, molecular dynamics is widely accepted as an effective method for

addressing physical and engineering issues concerning dense granular media.

This method is generally distinguished by the inclusion of several degrees-of-

freedom as well as state-full contact. Moreover, it is also suitable for describ-

ing complicated particle shapes (non-sphericity) and polydisperse systems.

Nevertheless, the main disadvantages of molecular dynamics algorithms,

implemented on computing processing units (CPU), are the maximum number

of particles and the computing time of a virtual simulation. Those factors are

usually limited by the CPU speeds and memory capacities. Thus, the con-

temporary molecular dynamics simulations on large cluster of CPU computing

resources are still not able to handle typical technological process where flows

contain billions of particles.

On the other hand, the main disadvantages of the parallel computing reside

in the cost of the hardware required to implement it. In todays scenario, with

the introduction of multicores processors, it is possible to run applications

in parallel on personal computers (PC). However, the processor of a PC is a

general-purpose processor (CPU), and even when it is able to perform millions

of operations per second, it is not that good working with larges volumes of

data. Graphics processing unit (GPU), however, are designed to rapidly manip-

ulate and alter memory. Moreover, their highly parallel structure makes them

more effective than general-purpose CPUs for algorithms where processing

of large blocks of data is done in parallel. Thus, general-purpose computa-

87
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tion on graphics hardware (GPGPU) [97–99] has currently become a serious

alternative for parallel computing on desktop computers.

The NVIDIA GPU Computing SDK provides hundreds of code samples,

white papers, to help you get started on the path of writing software with

CUDA C/C++, OpenCL or DirectCompute [212]. Specifically, the example

called particles-CUDA is a simple system, which includes discrete elements

that move and collide within an uniform grid data structure [213]. However,

as they say "The accompanying code is intended to provide a framework to

which more complicated particle interactions such as smoothed particle hy-

drodynamics or soft body simulation can be added (...) The code included

in this sample is by no means optimal and there are many possible further

optimizations to this algorithm" [212]. Given our previous experience pro-

gramming on NVIDIA’s parallel computing architecture, this chapter concerns

CUDA-NVIDIA programming. We present below some results in molecular dy-

namics simulation of granular media on Graphics Processing Units (GPUs).

6.1 GPGPU vs CPU benchmark

First, in order to compare the runtime difference between typical MD-algorithms

and hybrid CPU-GPU MD-algorithms, two versions of a simple MD-algorithm

have been implemented. A 3D dimensional mono-disperse granular gas was

used as model example. The first version of the code is a hybrid CPU-GPU

algorithm, which uses the GPU to calculate the interaction between particles

(particles-CUDA with periodic boundary conditions), whilst the second ver-

sion fully runs on the CPU. The performance of a particle simulation code is

measured by the Cundall number defined as

C = NTN/TCPU (6.1)

where NT is the number of time steps, N is the number of particles and TCPU

is the length in time of the simulation.

The CPU version benchmark was performed in a personal computer run-

ning Debian GNU/Linux 6.0.2 (squeeze), with a processor Intel® Core™ 2

Quad Q6600 at 2.40 GHz. In the case of the GPU version, the benchmark
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Figure 6.1: Cundall number against N for different simulations. In black color a version

that run only on the CPU. In red and blue hybrids versions. When the number of particles is

relatively small the Cundall number is approximately constant. However, as the system size

gets larger the hybrid version notable enhanced respect to the ones only runs on CPU.

was performed in the same PC with an NVIDIA® GeForce® GT 430 graphic

card, and in an Apple MacBook Pro® with a processor Intel® Core™ 2 Duo at

2.53GHz and a graphic card NVIDIA® GeForce® 9400M. In all cases the mean

value for 10 different executions –1000000 iterations each one– are presented.

The results obtained are shown in Figure 6.1.

Note that when the number of particles is relatively small (from N = 4 to

N = 2048) the Cundall Number is approximately constant, denoting a very

similar performance for all cases. As the system size gets larger, however, the

performances of the hybrid CPU-GPU algorithm are notable enhanced respect

to the ones only runs on CPU. Furthermore, using and NVIDIA GeForce GT 430

graphic card the simulations executed with the hybrid CPU-GPU algorithm

run faster by one and sometimes practically two orders of magnitude than on

the CPUs. It is important to remark, that today there is a new generation of

NVIDIA products (GeForce, Quatro and Tesla), which are based on Fermi and

Kepler architecture, i.e. the latest CUDA architectures. Fermi and Kepler are

optimized for scientific applications with key features such as 500+ gigaflops
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of IEEE standard double precision floating point hardware support.

6.1.1 Realistic molecular dynamics implementation of spheres

on GPUs

The results of the benchmark confirm us that to develop an accurate hy-

brid MD-algorithm is a valid alternative to reduce the computing time in this

framework. Moreover, it leads us to a promising new prospect of real-time

simulations in dense granular media.

Starting from the CUDA particles example we have developed a realistic

molecular dynamics model for spheres with rotation. The first step was to

replace the Euler’s integrator by a Velocity Verlet integration method. This

modification notable improved the numerical output of the algorithm. First,

the global error of the Euler methods is of order one, whereas the global error

of the Velocity Verlet method is of order two. Additionally, this method guar-

anties that the total mechanical energy of the system always oscillates around

a constant value, which corresponds to the exactly solved system. The same

goes for others conservative quantities like linear or angular momentum, that

are always preserved or nearly preserved using this symplectic integrator.

On the other hand, the collision rules were changed to a generalized con-

tact law which is proved to be more realistic than the linear contact. Further-

more, new parameters for the energy dissipation due to collision were added.

The last upgrade, and the most important, was the incorporation of rotational

movement to the particles.

To define the normal interaction FN
ij , we use a nonlinear elastic force, de-

pending on the overlap distance δ of the particles. Moreover, to introduce

dissipation, a velocity dependent viscous damping is assumed. Hence, the to-

tal normal force reads as FN
ij = −kN · δα − γN · vNrel where kN is the spring

constant in the normal direction, γN is the damping coefficient in the normal

direction and vNrel is the normal relative velocity between i and j.

The tangential force F T
ij also contains an elastic term and a tangential fric-

tional term accounting also for static friction between the grains. Taking into

account Coulomb’s friction law it reads as F T
ij = min{−kT · ξ − γT · |vTrel|, µFN

ij }
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Figure 6.2: Six kinds of interactions between bonded particles: Pulling or pressing in ra-

dial direction (left, above), shearing in two tangential directions (middle and right, above),

twisting (left, bottom) and bending around two axes (middle and right, bottom).

where γT is the damping coefficient in tangential direction, vTrel is the tan-

gential component of the relative contact velocity of the overlapping pair. ξ

represents the elastic elongation of an imaginary spring with spring constant

kT at the contact [76], which increases as dξ(t)/dt = vTrel as long as there is an

overlap between the interacting particles [76, 183]. µ is the friction coefficient

of the particles.

Finally we solve the Newton’s equation of motion (1.5-3.1) for all particles

i (i = 1, ..., N)

6.1.2 Sphere Rotation on GPUs

Here, we focus our attention on the rotational part of the Newton’s equation

system

τ bi =
N
∑

j=1

Lij = Iiθ̈i = Iiiω̇i (6.2)

ω̇i =
τi
Iii

(i = 1, 2, 3) (6.3)
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where ω̇i, τi and Iii are angular velocities, resultant torques and principal mo-

ment of inertia measured in the body-fixed frame.

There are different ways to represent orientation of a solid body, such as

Euler angles or quaternions representation. However, it has been demon-

strated that quaternions can offer fundamental computational, operational

and/or implementation and data handling advantages over conventional rota-

tional methods [214]. The unit quaternion q = (q0, q1, q2, q3) = q0+ q1i+ q2j+ q3k

is often used to describe the particle orientation [215, 216] where

i2 = j2 = k2 = ijk = −1
ij = −ji = k

jk = −kj = i

ki = −ik = j

(6.4)

and
3

∑

i=0

q2i = 1 (6.5)

The physical meaning of a quaternion is that it represents a one-step ro-

tation around the vector q1î + q2ĵ + q3k̂ with a rotation angle of 2 · arccos(q0)
[214]. It is a very convenient tool due to some of its interesting features, such

as the fact that sequences of rotations can be conveniently represented as

quaternion product [214].

Quaternion for each particle satisfy the following equations of motion [215,

216]

q̇ =
1

2
Q(q)ω (6.6)

where

q̇ =













q̇0

q̇1

q̇2

q̇3













, Q(q) =













q0 −q1 −q2 −q3
q1 q0 −q3 q2

q2 q3 q0 −q1
q3 −q2 q1 q0













, ω =













0

ωx

ωy

ωz













.

Equations (6.3) and (6.6) govern the rotation of a particle and can be inte-

grated using Fincham’s leap-frog algorithm step by step [217], which is simple

and proved to be accurate enough. The approach obtains q(t + dt) from q(t)
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using

q(t+ dt) = q(t) + dt q̇(t) +
dt2

2
q̈(t) +O(dt3) = q(t) + dt q̇(t+ dt/2) +O(dt3) (6.7)

Hence, quaternion derivative at mid-step q̇(t + dt/2) is required. Equation

(6.6) indicates that q(t+ dt/2) and ω(t+ dt/2) are required, the former can be

easily calculated using

q(t+ dt/2) = q(t) + q̇(t)dt/2 (6.8)

where q̇(t) is again delivered by (6.6), prior to which ω(t) can be calculated

using

ω(t) = ω(t− dt/2) + I−1τ b(t)dt/2 (6.9)

and the later, ω(t+ dt/2), can be determined using

ω(t+ dt/2) = ω(t− dt/2) + I−1dt τ b(t) (6.10)

I is the inertia tensor expressed in the body-fixed frame. Hence, in this

algorithm, only ω(t−dt/2), q(t) need to be stored, the other quantities, such as

q(t+ dt/2), ω(t), q̇(t), q̇(t+ dt/2) are treated as temporary and auxiliary values.

To avoid the buildup errors, it is a common practice to renormalize quater-

nions at frequent intervals (usually done every step). The entire algorithm is

as follows

step 1: calculate torque τ(t) at time t.

step 2: using the stored ω(t− dt/2), update ω(t) using (6.9)

step 3: determine q̇(t) using (6.6)

step 4: using the stored ω(t− dt/2), calculate ω(t+ dt/2) using (6.10)

step 5: compute q(t+ dt/2) using (6.8)

step 6: evaluate q̇(t+ dt/2) using (6.6)

step 7: calculate q(t+ dt) using (6.7)

step 8: renormalize the quaternion q(t + dt).

6.2 Flowchart of the granular gas simulation

The application developed, as most of the GPGPU software, has an hetero-

geneous architecture. This means that some pieces of code run in the CPU
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Figure 6.3: Flowchart of the granular gas simulation. Operations in gray run on the CPU,

subroutines in blue run on the GPU and the ones in oranges run partially in CPU and GPU.
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and others in the GPU. The flowchart of the discrete element method (DEM)

simulation program developed is presented in Figure 6.3. Procedures in gray

run in the CPU and the ones in blue in the GPU. The functions in orange are

executed partially in the CPU and partially in the GPU, and, in most cases,

they require data-interchange between CPU and GPU.

The first steps of the program consist in the initialization of the CUDA-

enable device, the allocation of the necessary memory –in both CPU and GPU–

and loading configuration parameters of the granular gas. Initially, the par-

ticles are homogeneously distributed in the simulation space with a random

velocity for translational and rotational movements (this is done on the host

and afterwards the particles’ information is sent to the device). With the objec-

tive of avoiding the initial configuration effect, the dissipation due to particle-

particle interaction is disable, and a number of free iterations is performed.

After that, the energy loss is enabled again and the main loop of the program

starts, calling in each iteration the Update System subroutine, and with a pe-

riodic frequency printing out the particles information. Finally the resources

reserved are released and the program ends.

The DEM process takes place in the Update System routine. Initially, fol-

lowing the Velocity Verlet integration method, the particles’ velocity in the

mid-point is calculated and with it the positions are updated. Then, with the

aim of minimizing the time used by the collisions method, the list with the par-

ticles that are neighbors to each other is updated. For details about the imple-

mentation of the neighbor function see the documentation given by NVIDIA

Corporation together with the CUDA particles example [212]. Next, the colli-

sions between particles are computed by calculation of the forces and torques

that a particle experiments. Finally, the last step of the Verlet integrator is per-

formed, obtaining the new velocities from the forces and using the algorithm

described in Section 6.1.2 to calculate angular velocities and positions.

6.3 Validation

The numerical accuracy of our model has been validated comparing it to the

mean field analytical solution of the homogeneous cooling of a gas of rough
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and dissipative spherical particles. Luding et al [54] have found that transla-

tional and rotational kinetic energy of granular gas of rough and dissipative

particles in homogeneous cooling is governed by the following system of equa-

tions

d
dτ
T = −AT 3/2 +BT 1/2R
d
dτ
R = BT 3/2 − CT 1/2R

(6.11)

with the constants A, B and C, whose values depend on space dimensionality

D (for details see [54]).

A = 1−e2n
4

+ η(1− η)

B = η2

q

C = η
q

(

1− η
q

)

(6.12)

where η = q(1 + et)/(2q + 2) (in 3D q = 2/5) and en and et are the restitution

coefficients on the normal and tangential direction respectively. Moreover,

the mean time between collisions G = 8(2a)2N
V

√

π
m
g(2a), is used to rescale real

time scale accordingly to τ = 2
3
GT

1/2
tr (0)t. Moreover, the strength of the dissi-

pation can also be included into the characteristic time τ = 2
3
(1− e2n)GT

1/2
tr (0)t

[47].

To compare the numerical output of our code with the theoretical predic-

tions (Equations 6.11), we have to find equivalent dissipation parameters (γn,

γt and kt) that correspond to specific values of the normal en and tangential et

restitution coefficients.

6.3.1 Equivalent dissipative parameters

In the simplest approximation, the normal interaction force between two con-

tacting particles is a linear spring fn
el = kNδ (α = 1 in Equation ??) and a

velocity dependent viscous damping fn
diss = γnδ̇ [70]. Examining the contact

evolution one gets the well known differential equation of the damped har-

monic oscillator [70]

δ̈ + 2ηδ̇ + w2
0δ = 0 (6.13)
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Here w0 =
√

k/m12 is the oscillation frequency of an elastic oscillator and

η is the effective viscosity, obtained as

γn = 2 η m12 (6.14)

where m12 = m1m2/(m1 +m2) is the reduced mass. Solving Eq.(6.13) one can

find the effective restitution coefficient,

en = exp(−πη/ω) (6.15)

where

ω =
√

ω2
0 − η2 (6.16)

is the oscillation frequency of the damped oscillator. Combining Equations

(6.15) and (6.16) and substituting in Equation (6.14) one obtains,

γn =

√

√

√

√

√

4 kn m12
(

π
ln 1

en

)2

+ 1

(6.17)

On the other hand, describing the tangential force between to contacting

particles, one can also consider a tangential spring f t
el = ktδ and a velocity

dependent viscous damping f t
diss = γtδ̇ [70]. For the sake of simplicity, here we

examined the case γt = 0; for which an analytic expression, relating kt and kn,

can be derived,

kt =
knq

1 + q

(

arccos(−et)
π

)2

(6.18)

where q = 2/5 stands for the 3D case [70].

6.3.2 Numerical Results

We have numerically studied the free cooling kinetics of a dilute system of

N = 4096 spheres confined within a square box with l = 2, resulting a volume

fraction of Vf = 0.008. Initially, the particles are homogeneously distributed

in the space and their translational and rotational velocities follow a Gaussian

distribution. In order to avoid memory effects from the initial conditions, we
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Figure 6.4: Comparison of numerical (shapes) with theoretical results (lines). Black for trans-

lational and red for the rotational movement. It can be seen it that a good agreement be-

tween the theory and the numerical method is achieved for both restitution coefficients. a)

en = et = 0.6 b) en = et = 0.8

allow the system to execute a few collisions before starting to analyze the par-

ticles’ temporal evolution. The system is examined until the total mean trans-

lational and rotational kinetic energies have decayed several orders of mag-

nitude. To model hard particles, the maximum overlap must always be much

smaller than the particle size; this is ensured by introducing values for normal

elastic constant, kn = 108Nm and a particle’s density of ρ = 2000kg/m3. To

compare the algorithm performance with the mean field model [54], systems

of particles with two different restitution coefficient were studied, en = et = 0.6

and en = et = 0.8. The corresponding dissipative parameters have been cal-

culated using the equations (6.17) for the normal damping coefficient γn and

(6.18) for the stiffness of the tangential spring kt. For this range of parameters

we have set a time step dt = 10−6s, thus, the equations of motion, Eqs. (??-

??), are integrated using a Verlet-velocity algorithm with a numerical error

proportional to (∆t)6.

In Figure 6.4, the evolution of the translational T and rotational R ki-

netic energies are illustrated. Note that in every case the time scale has

been rescaled using the corresponding characteristic time, resulting in τ =
2
3
(1− e2n)GT

1/2
tr (0)t. As we start from an equilibrium state and the dissipation is
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Figure 6.6: Angular velocity distribution for en = et = 0.8. left) at t = 2 × 102. center)
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with a Gaussian behavior, denoting the homogeneous cooling process at the rotational level.
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low, the system evolves into a homogeneous cooling state. In such a state, the

kinetic energy, decreases homogeneously and the time evolution of all vari-

ables occurs only through its global temperature. For comparison we also

show the corresponding analytic result of Eq. 6.11 for the same restitution

coefficients. The excellent agreement archived for both cases validates the

numerical performance of the new algorithm.

During the cooling process the velocity statistics was also examined. As we

mentioned earlier, the simulations begin from a Gaussian velocity distribution

for both, the translational and angular degree of freedom. Low dissipative par-

ticles cool down uniformly over a wide range of time. Thus, all the temporal

dependences enter through the mean values of the translational and rotational

temperature. Such a picture is consistent with the results shown in Fig. 6.5

(en = et = 0.8) where the speed distribution, D(c) and (c =
√

v2x + v2y + v2z) is

presented at several times. In all cases, the speed distribution remains close to

a Maxwell-Boltzmann speed distribution D(c) = 4π
(

1
πv2mp

)3/2

c2e−c2/v2mp , where

vmp(t) is the most probable velocity. For the rotational degree of freedom, in

Fig. 6.6 we plot the angular velocity distribution for each angular component

obtained at different times. The data proves that cooling process at the ro-

tational level also occurs homogeneously. Thus, the three components of the

angular velocity behave equivalently and with the same characteristic values.

In all cases the distribution follows a Gaussian behavior f(wi) = 1
σ
√
2π
ew

2
i /2σ

2

featuring the expected homogeneous cooling process. The same procedure

was applied for en = et = 0.6 and similar results have been obtained (data not

show).

6.3.3 Optimal number of GPU

In any program that runs in parallel the execution time depends, in conjunc-

tion with the hardware, on the number of tasks running simultaneously. How-

ever, there is no an established way to define the optimal number of processors

to use within the hardware configuration. In programs that manipulate a big

volume of data this number depends, among other things, on the amount of

memory used per thread; the data interchanged between tasks may become a
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Figure 6.7: Cundall’s number (Equation 6.1) of a granular gas or rough particles simulated

with the DEM developed for different number of simultaneous threads. a) 4096 particles

simulated on a graphic card GeForce GT 430. b) 4096 particles simulated on a graphic card

GeForce 9600 GT. c) 32768 particles simulated on a graphic card GeForce 9600 GT.



bottleneck.

To find the optimal value for the DEM created, a benchmark of a granu-

lar gas of rough particles was performed. The comparison was made in two

different NVIDIA graphic cards, in an NVIDIA® GeForce® GT 430 and in an

NVIDIA® GeForce® 9600 GT. In all cases the mean value for 10 different ex-

ecutions –1000000 iterations each one– are presented. In the first GPU the

simulation was of 4096 particles and in the second one the test was done for

4096 and 32768 particles. The result of the benchmark is shown in Figure 6.7.

For our hardware, 32 simultaneous threads seems to be the optimum value.

Furthermore, the results suggest that using a number that is not a power of

two –37 was used during the tests– is a bad decision. This can be inflicted by

taking a look to the architecture of the NVIDIA’s GPUs. The number of CUDA

Cores present in all their graphics cards is a power of two. Therefore, using

a value that is not power of two result in wasting part of the processor each

time.

6.4 Conclusions

In typical technological process the flows contain billions of particles and the

main disadvantages of molecular dynamics algorithms implemented on com-

puting processing units (CPU) are the maximum number of particles and the

duration of a virtual simulation. In this chapter we have described the im-

plementation of an accurate molecular dynamic algorithm for mono-disperse

systems of spheres with rotation, using graphical processing units (GPUs).

The employment of this technique saves a huge computational time versus

the traditional CPU method. Moreover, we have proved that the algorithm

complies with the statistical mechanical laws and the results agree with es-

tablished mean field theories for low dense granular systems. Our results are

in excellent agreement with a previous mean field analytical model, which de-

scribes the cooling dynamics of a system composed by dissipative and rough

spheres. All this leads us to a promising new prospect of real-time simulations

in many different technological scenarios concerning dense granular media.
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General conclusions

A novel numerical scheme to simulate the kinetics of non-linear frag-

mentation equations have been introduced. The method is based on the

Direct Simulation Monte Carlo (DSMC) technique for solving the Boltzmann

equation. This approach have been generalized for solving kinetic equations

where the number of particles vary changes in time. Hence, we have vali-

dated the algorithm examining simplest fragmentation kernels, where exact

solutions exist. The proposed approach recover the detailed time evolution

accurately, as well as the emergence of asymptotic scaling regimes. Such a

comparison has shown the ability of the scheme to cover a significant number

of decades in order to capture the broad size distributions characterizing frag-

menting systems, thus making it possible to carry out quantitative, detailed

comparisons. We have extended and made use of the algorithm to analyze

general fragmentation kernels, where exact analytic predictions for the kinet-

ics of fragmenting systems are lacking. Furthermore, we have shown that

with the good statistics achieved with the numerical technique proposed, it is

possible to follow the development of an advancing front for generic asymmet-

ric fragmentation kernels. Such an understanding promotes confidence in the

development of scaling distribution functions.

The cooling dynamics of a 2D granular gas of elongated grains have

been examined. For weakly dissipative particles, we have found that the

mean kinetic energy decreases asymptotically as E(t)
E0

= 1
(1+t/to)5/3

, in agreement

with Brilliantov and Pöschel predictions for the homogeneous cooling state
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regimen (HCS) of viscoelastic particles [46, 158]. A higher dissipation induces

an inhomogeneous cooling process and the energy vanishes as E(t)
E0
∼ t−1.2. The

rotational energy, however, always decays as R(t)
R0
∼ t−2, which is agreement

with Haff’s prediction for the HCS of inelastic particles. The lack of energy

equipartition is kept even during the inhomogeneous cooling process where

strong inhomogeneities in the velocity field are presented. A strong influence

of the particle shape and inelasticity on the structure of the clusters have

been observed. Our numerical outcomes suggest that the strong dissipation

and the particle anisotropy induce the formation of ordered cluster structures

and velocity vortices, which notably slow down the cooling process and retard

the appearance of large clusters which break and reform. Increasing the par-

ticle anisotropy enhances this distinct evolution as a function of the particle

energy dissipation. This behavior can be attributed to the detailed interaction

between ordered clusters of particles, where rotational degrees of freedom

play a relevant role. The breakup of big clusters of elongated particles as a

results of their collisions leads to the formation of smaller clusters, promoting

a faster decay of the rotational kinetic energy. Such smaller clusters of or-

dered particles in turn delay the development of the inhomogeneous cooling

regime. Understanding the impact of these strong correlations in agitated sys-

tems where energy is supplied continuously constitutes an interesting venue

in the fundamental understanding of the physics of anisotropic granulates and

the subtle interplays between particle shape and inelasticity.

The micro-mechanical properties of deposits of faceted particles

have been examined, in details. For instance, the partial discharge of a

silo filled with faceted grains has a profound effect on the deposit morphology

and its stress distribution. During the discharge, the shear between grains

induces their rotation and their settlement in more disordered arrangements.

For elongated particles, the preferred horizontal orientation displayed after

the silo filling disappears. For square particles, the discharge provokes an

alignment of their sides with gravity which minimizes the friction and favors

their vertical displacement. As a result of the changes in particle orientation,

the pressure distribution in the silo changes qualitatively; while for elongated

rods lateral stress transmission is promoted by the enhanced disorder leading
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to a faster pressure saturation, the opposite holds for squares. In this latter

case the alignment of squares induced by the flow destroys the initial force

chain network which is replaced by a mainly vertical stress transmission. As

a consequence, a significant reduction of the pressure saturation effect is ob-

served. With this results, we clarified the performance and stability of silos,

which need to support high stresses that become very sensitive to grain shapes

and the silo steering history. If we increase the amount of material flowing out

of the silo, or induce a second discharge, we expect that the observed effect

will be enhanced. Although we have focused on weakly disordered initial de-

posits, due to the low feeding rates used to fill the silo, the main features dis-

cussed here are expected for other silo filling procedures. Perhaps, increasing

the disorder of the initial packing will generically decrease the relative mag-

nitude of the changes discussed.

To introduce an attractive force in deposits of elongated grains has

a profound effect on the deposit morphology and its stress profiles.

In deposits of non-cohesive particles the topology is dominated by the forma-

tion of ordered structures of aligned rods. Elongated particles tend to align

horizontally and the stress is mainly transmitted from top to bottom, reveal-

ing an asymmetric distribution of the local stress. Lateral force transmission

becomes less favored compared to vertical transfer, thus hindering pressure

saturation with depth. For deposits of cohesive particles, the preferred hori-

zontal orientation is less pronounced with increasing cohesion. Very elongated

particles with strong attractive forces form extremely loose structures, char-

acterized by orientation distributions, which tend to a uniform behavior when

increasing the Bond number. As a result of these changes, the pressure distri-

bution in the deposits changes qualitatively. The spherical component of the

local stress is notably enhanced with respect to the deviatoric part. Hence,

the lateral stress transmission is promoted by the enhanced disorder and it

leads to a faster pressure saturation with depth.

The implementation of an accurate molecular dynamic algorithm

for mono-disperse systems of spheres with rotation, using graphical

processing units (GPUs) was described in details. The employment of

this technique saves a huge computational time versus the traditional CPU



method. Moreover, we have proved that the algorithm complies with the sta-

tistical mechanical laws and the results agree with established mean field the-

ories for low dense granular systems. Our results are in excellent agreement

with a previous mean field analytical model, which describes the cooling dy-

namics of a system composed by dissipative and rough spheres. All this leads

us to a promising new prospect of real-time simulations in many different tech-

nological scenarios concerning dense granular media.
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