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During the last decades, human beings have experienced a significant enhancement in

the quality of life thanks in large part to the fast evolution of Integrated Circuits (IC).

This unprecedented technological race, along with its significant economic impact, has

been grounded on the production of complex processing systems from highly reliable

compounding devices. However, the fundamental assumption of nearly ideal devices,

which has been true within the past CMOS technology generations, today seems to

be coming to an end. In fact, as MOSFET technology scales into nanoscale regime

it approaches to fundamental physical limits and starts experiencing higher levels of

variability, performance degradation, and higher rates of manufacturing defects. On

the other hand, ICs with increasing number of transistors require a decrease in the

failure rate per device in order to maintain the overall chip reliability. As a result, it is

becoming increasingly important today the development of circuit architectures capable

of providing reliable computation while tolerating high levels of variability and defect

rates.

The main objective of this thesis is to analyze and propose new fault-tolerant archi-

tectures based on redundancy for future technologies. Our research is founded on the

principles of redundancy established by John von Neumann in the 1950s and extends

them to three new dimensions:

1. Heterogeneity: Most of the works on fault-tolerant architectures based on redun-

dancy assume homogeneous variability in the replicas like von Neumann’s original

work. Instead, we explore the possibilities of redundancy when heterogeneity be-

tween replicas is taken into account. In this sense, we propose compensating

mechanisms that select the weighting of the redundant information to maximize

the overall reliability.

http://www.upc.edu/
http://www.eel.upc.edu/
mailto:nivard.aymerich@upc.edu


2. Asynchrony: Each of the replicas of a redundant system may have associated dif-

ferent processing delays due to variability and degradation; especially in future

nanotechnologies. If we design our system to work locally in asynchronous mode

then we may consider different voting policies to deal with the redundant informa-

tion. Depending on how many replicas we collect before taking a decision we can

obtain different trade-off between processing delay and reliability. We propose a

mechanism for providing these facilities and analyze and simulate its operation.

3. Hierarchy: Finally, we explore the possibilities of redundancy applied at different

hierarchy layers of complex processing systems. We propose to distribute redun-

dancy across the various hierarchy layers and analyze the benefits that can be

obtained.

Drawing on the scenario of future ICs technologies, we push the concept of redundancy

to its fullest expression through the study of realistic nano-device architectures. Most of

the redundant architectures considered so far do not face properly the era of Terascale

Computing and the nanotechnology trends. Since von Neumann applied for the first time

redundancy at electronic circuits, never until now effects as common in nanoelectronics as

degradation and interconnection failures have been treated directly from the standpoint

of redundancy. In this thesis we address in a comprehensive manner the reliability of

digital processing systems in the coming technology generations.
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Chapter 1

Introduction

C
OMPUTING TECHNOLOGY has become one of the main powerhouses of

human progress today. High-density data storage and high performance

information processors are at the very heart of our society enabling con-

tinuous improvement in our quality of life. This is why, together with the need for

human progress comes the need to investigate and innovate in the technologies of com-

putation. In this regard, the semiconductor industry has driven more than five decades

of improvements in its products mainly thanks to scaling trends. However, ultimate

technology generations with feature sizes at nanoscale dimensions start exhibiting in-

creasingly severe reliability issues. At the same time, this quality problem is magnified

by the fact that new computing systems integrate an ever-increasing number of devices,

and therefore, become more sensitive to device imperfections and failures.

Taking as a precedent the current state of computer technology and the expected is-

sues of future nanoelectronics, this thesis aims at providing in-depth insight on how

to compute reliably in the nanoscale era. Based on the principles of redundancy and

reliable computing established by John von Neumann in the 1950s, we explore several

fault-tolerant architectures based on hardware redundancy with particular emphasis on

nanotechnology issues. In this sense, we extend conventional redundancy and reliability

framework to three new dimensions, namely heterogeneity, asynchrony and hardware

hierarchy. This chapter is organized as follows. In Section 1.1, the current context

of nanoelectronics is presented as well as the main challenges it faces. In Section 1.2,

the need for reliable computation is highlighted together with the need for developing

fault-tolerant techniques. Finally, the outline of this thesis is presented in Section 1.3.

1
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1.1 The Challenges of Nanoelectronics

The origins of modern electronic computers date back to the invention of the transistor in

1947 [3, 4] and the IC in 1959 [5, 6]. Since then, the semiconductor industry has been able

to improve continuously the productivity and performance of its products based on the

CMOS scaling trend. Indeed, thanks to clever engineering solutions and improved device

architectures, designers and manufacturers have made possible to exponentially decrease

the minimum feature sizes of transistors. As a consequence, chip integration levels have

been roughly doubled every two years practically following the Moore’s Law [7] (see

Figure 1.1). Scaling has also enabled the production of faster and less energy consuming

devices. Another important benefit of the scaling trend has been the reduction in the

manufacturing cost. As a result, high-quality and inexpensive electronic applications

with increasingly large memories and higher speeds of computation have been released

into the market every year. Not to mention the huge economic impact it has had in our

society: according to SIA [8], around 25 billion dollars are being invested every year in

semiconductor technologies, of which about one half corresponds to the segment market

of microprocessors.

Figure 1.1: Transistor count of Intel’s processors from 4004 to Xeon Phi against the
year of introduction. (Source: Intel)

From the Intel processor 4004 delivered in 1971 until the Intel Xenon Phi delivered in

2012, minimum transistor dimensions have been reduced by three orders of magnitude

(from 10 µm to 22 nm), the performance has increased by three orders of magnitude

(from 1 MHz to 3.16 GHz), and the transistor count has increased by six orders of magni-

tude (from 2,300 to 5,000,000,000). However, despite this great success and the relatively
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small effort required by the semiconductor industry in the past, the years of “happy scal-

ing” seem to be coming to an end, see Figure 1.2. Every year, technology scaling becomes

more and more challenging as it deepens into the nanoscale regime with minimum fea-

ture sizes below 100 nm. Current fabrication methods based on photolithography are

being pushed toward fundamental physical limitations. Sub-wavelength pattering, de-

terioration of electrical characteristics due to short-channel, quantum mechanical and

transport effects, and intrinsic parameter fluctuations resulting from the discreteness

of charge and the granular nature of matter are some of the main difficulties facing

the scaling trends today. While traditionally the main focus of semiconductor industry

designs was the trade-off between area, delay, and power, reliability appears today as

an unavoidable issue [9]. Process variability (random and systematic), SE (soft errors),

and device (transistor performance) degradation induce increasing levels of unreliability

in the IC components. Therefore, the production of ideal transistors or ICs with very

low defect rates becomes increasingly improbable. In the same way, the percentage of

operating chips at the end of the manufacturing process, usually referred as yield, de-

creases drastically with the latest CMOS technology generations requiring adaptive and

fault-tolerant designs [10].

Figure 1.2: Cumulative interdependent challenges as a function of time and technol-
ogy generation. (Source: G. Declerck, Keynote talk, VLSI Technol. Symp. 2005 [11])

On the other hand, research communities are currently investigating several new alter-

native information processing devices to substitute or extend the functionality of the

current CMOS platform [12]. However, high level of variations, performance degrada-

tion due to stress of materials, and high rates of manufacturing defects are expected for

both ultimate CMOS and beyond CMOS technology generations [9, 13, 14].



Chapter 1. Introduction 4

1.2 Reliable Computation and Fault-tolerance

As stated before, information processing devices have become almost indispensable to

sustain and even enhance the welfare of humankind. From devices that we use everyday

such as cell phones or personal computers, to much more complex computing systems

including medical equipment or aircraft control systems, they all have in common the

use of ICs in order to process information. Obviously a very important characteristic

of these systems is the level of reliability they provide. Depending on the particular

application a single error could lead to catastrophic consequences, for example the control

system of a nuclear plant. In other cases, such as video image encoders, it is perfectly

admitted a certain amount of errors. For this reason, the analysis of reliability and the

proposal of fault-tolerant techniques is of particular interest today due to the high levels

of uncertainty expected for near future computing technologies [15].

Nevertheless, lowering defect rates to a level where perfect or nearly perfect devices can

be produced at reasonable yields, as traditionally with conventional CMOS technology,

has become impossible today. Reliable computing is no longer possible if we keep as-

suming ideal compounding devices. Under these circumstances, we need a change in the

ICs design paradigm.

Back in the 1950’s, John von Neumann analyzed this problem and proposed the pro-

duction of reliable organisms/systems from unreliable components [2]. Indeed, instead

of relying on perfect components von Neumann proposed to design defect-tolerant elec-

tronic circuits that could operate correctly even though compounding devices included a

significant number of manufacturing defects. In this thesis we extend this fundamental

principle and explore new dimensions of reliable computation.

1.3 Outline of the Thesis

This thesis provides an overview of fault-tolerant systems based on hardware redundancy

focusing on three main issues: 1) heterogeneity, 2) asynchrony and, 3) hardware hier-

archy. The organization of this work is as follows. Chapter 2 presents a brief overview

of future nanoelectronics with a description of some key emerging nanodevices. A dis-

cussion on fault modeling, variability characterization and degradation is also provided

together with a discussion on the reliability metrics. In Chapter 3, a review on the

concept of redundancy is presented and the framework proposed by John von Neumann

is described. It is also provided an overview of the main fault-tolerant architectures

proposed in the literature and a particular study on the possible redundancy managers.
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Finally, a brief review on the fundamental error bounds for reliable computing is pre-

sented together with a consideration on asymmetric errors. In Chapter 4, the motivation

for this thesis is presented with some details on the main contributions of this work. In

Chapter 5, a first extension on the redundancy concept is made taking into account

the heterogeneous nature of real electronic components. An adaptive averaging cell is

introduced and analyzed in detail. It is also presented a possible implementation of

reliable gates using the averaging cell on linear threshold gates. In Chapter 6, time-

aware reliable design is considered by proposing and analyzing a partially-asynchronous

structure. In Chapter 7, the hardware hierarchy is taken into account in order to reduce

the redundancy effort by properly distributing redundancy throughout system layers.

Finally, some concluding remarks are presented in Chapter 8.





Chapter 2

Nanoscale Technology Precedents

T
HE REALM of NANOELECTRONICS beyond classical CMOS technology

has begun and with it a vast new world of challenges and opportunities has

been opened up for the research community. While ultimate CMOS tech-

nology generations approach inexorably to its physical limits, current nanoelectronic

communities including universities, research institutes, and industrial research labora-

tories are making huge efforts to develop new nanometer-sized information processing

devices. It is sought to step from current technology state towards much more highly

integrated technologies with billions of devices in the same chip in order to sustain the

historical IC scaling pace and the reduction of cost-per-function in the future. This step

can be done either 1) by extending the functionality of standard CMOS using heteroge-

neous technologies with new emerging devices (also known as “More than Moore”) or 2)

by stimulating the invention of completely new information processing paradigms with

new emerging devices and architectures (also known as “Beyond CMOS”) [16]. How-

ever, in both cases it is required a serious effort in the characterization of these emerging

nanodevices as well as in the development of new reliable architectures to account for

their expected higher rates of defects and variability.

This chapter revisits several emerging nanotechnologies representatives of the future

computing devices and introduce possible models to characterize and analyze them. The

organization is as follows. In Section 2.1, a brief review of the most relevant emerging

research devices is presented highlighting their main properties. In Section 2.2, a model

of faults and variability for the analysis and simulation of future nanodevices is presented,

and in Section 2.3, a model to account for aging and degradation is introduced. Finally, a

metric for characterizing the reliability of computing systems is presented in Section 2.4.

7
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2.1 Nanoelectronics and Nanodevices

There is a wide range of nanodevices under investigation today. Figure 2.1 depicts a

representative taxonomy of emerging research devices. It enumerates the various options

in five different categories from the lowest physical layer representing the computational

state variable to the highest one representing the architecture. The elements shown

in the red-lined yellow boxes constitute the current CMOS platform technology. The

other entries summarize individual approaches that may provide new highly scalable

information processing paradigms.

Figure 2.1: Taxonomy for emerging research information processing devices (technol-
ogy entries are representative but not comprehensive). (Source: ITRS [16])

In the following subsections we present a review of two emerging nanoscale research

devices, namely Nanowire Field-Effect Transistors (NWFETs), and Tunnel Field-Effect

Transistors (TFETs). We have selected these technologies as the most representative

and promising candidates to implement future nanoscale processing systems.

2.1.1 Nanowire Field-Effect Transistors (NWFETs)

NWFETs are structures in which the conventional planar MOSFET channel is re-

placed with a semiconducting nanowire. In these nanodevices, current flows through

the nanowire or is pinched off under the control of the voltage on the gate electrode,

which surrounds the nanowire, see Figure 2.2. For this reason they are also known as

“gate-all-around” transistors. However, because of their small size, single nanowires

can’t carry enough current to make an efficient transistor. Researchers are currently

working on gate-all-around transistor architectures based on small forest of nanowires

that are controlled by the same gate and so act as a single transistor [17, 18].
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Figure 2.2: Structure of a Nanowire Field-Effect Transistor (NWFET). (Source: A.
Hellemans, IEEE Spectrum [19])

Nanowires may be composed of a wide range of materials and it has been demonstrated

that their diameters may be as small as 5 nm [20]. At low diameters, these nanowires

exhibit quantum confinement behavior, i.e, 1-D conduction, that may permit the reduc-

tion of short channel effects and other limitations to the scaling of planar MOSFETs.

Large logic circuits can be implemented using nanowires because Boolean gates up to

a complexity of an XOR gate exhibit signal restoration and they can drive other logic

gates [21]. High gain nanowire based inverters with robust noise margins have been also

demonstrated.

2.1.2 Tunnel Field-Effect Transistors (TFETs)

TFETs are gated reverse-biased p-i-n junctions, see Figure 2.3, whose switching behavior

is expected to be much steeper than conventional MOSFETs, that have 60 mV/dec

subthreshold swing at room temperature [22]. Power dissipation is one of the main

limitations of future nanoelectronic circuits. Decreasing the supply voltage reduces the

energy needed for switching, but current FETs require at least 60 mV of gate voltage

to increase the current by one order of magnitude at room temperature. TFETs avoid

this limit by using quantum-mechanical band-to-band tunneling, rather than thermal

injection, to inject charge carriers into the device channel.

Figure 2.3: Structure of p-type TFET with applied source (VS), gate (VG) and drain
(VD) voltages. (Source: Ionescu et al., Nature [23])
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TFETs are under research due to their potential for low standby leakage current and as

promising candidates for future logic circuits operating with a supply voltage less than

0.5 V. Recent reports suggest that TFETs could be also considered for implementing high

performance switches by using appropriate heterogeneous structures [24]. For example,

TFETs based on ultrathin semiconducting films or nanowires could achieve a 100-fold

power reduction over CMOS transistors, so integrating TFETs with CMOS technology

could improve low-power integrated circuits [23].

2.2 Variability and Fault Modeling

It is difficult to predict exactly which types of nanodevice will end up implementing

future computing systems. However, it is widely accepted by the research community

that they will have associated much higher degrees of uncertainty than conventional

MOSFETs. For this reason, it is very important to define a comprehensive variability

and fault model in order to analyze the reliability of different circuit architectures,

compare results from different approaches, and propose new fault-tolerant mechanisms.

In this section we introduce the fault model we will use along this thesis.

Since the publication of the first study on circuits reliability in 1950’s by John von Neu-

mann [2], many different fault models have been proposed at different levels of abstrac-

tion. Some of them are general and can therefore be applied to different architectures

and technologies. For example, the stuck-off/stuck-open and stuck-on/stuck-short fault

models. Others are specific for a particular technology [25]. In these cases, fault models

tend to be much more complex and difficult to use. In this thesis we will use a general

and technology-independent fault model based on variability. Our goal is to thoroughly

analyze the reliability of computing systems being able to detect, to explore and discuss

all its consequences without getting lost in too specific details of technology.

Before presenting our variability-based fault model let us clarify the meaning of three

different terms in the context of computing technology which are closely related to system

reliability analysis, namely defect, fault, and error. These definitions are coherent with

the taxonomy of dependable and secure computing from Avizienis et al. [26].

• Defect is a physical problem with a final manufactured system which differs from

the intended design as a result of an imperfect fabrication process.

• Fault is an incorrect state of a system due to manufacturing defects, component

failures, environmental conditions, or even improper design. A fault is active when

it causes an error, otherwise it is dormant.
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• Error is an incorrect output of a system. The cause of an error is always a fault.

Errors can be classified into three main groups according to their stability and

occurrence:

– Permanent errors are caused by irreversible physical changes/defects in the

produced system. Normally, permanent errors are originated in the manu-

facturing processes, but they can occur also during the usage of the circuit,

especially when it gets old and starts to wear out. As its name suggest, once

a permanent error occurs, it will not vanish and therefore these type of errors

can be easily identified because the test to detect them can be repeated with

the same results.

– Intermittent errors are occasional error bursts that usually repeat themselves

every now and then but are not continuous as permanent errors. They are

caused by unstable or marginal hardware activated by environment changes

such as temperature or voltage variations. This type of errors can also be

observed when a circuit operates incorrectly only for some input instances

because some path of the circuit may be slower than supposed to but not

totally inoperable. Intermittent errors are very hard to detect because they

may occur only under certain environment constraints or for some specific

input combination.

– Transient errors are temporal single errors caused by some temporary en-

vironmental conditions, such as external radiation or cross-talk. Transient

errors do not make any permanent marks on the chip and therefore they are

also called soft errors or single-event upset (SEU). The occurrence of transient

errors is commonly random and therefore difficult to detect.

Once stated the difference between defects, faults and errors, we proceed with the pre-

sentation of our fault model. We take as a reference the John von Neumann probabilistic

computing framework and extend it to account for heterogeneity. In this sense, we use a

general model applicable to different technologies and we include a relevant characteristic

of future nanoelectronic circuits, i.e., the heterogeneity.

Von Neumann error framework assumes that faults of different gates are uncorrelated.

It also assumes that each gate flips the output with a precise probability ε, while the

interconnections (input and output lines) are assumed ideal/error-free [2]. Our fault

model also assumes statistic independence between faults, but we dismiss the assumption

of homogeneous faults (same signal flip probability for all the gates). Instead, we use

a variablity-based model in order to allow each device to have associated a different

fault probability. Basically, we model each device output signal yi as composed by two
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components:

yi = y + ηi, (2.1)

where y is the error-free version of the signal and ηi is an independent drift that modifies

the signal. Drifts ηi account for all transient faults affecting the manufactured devices.

As a result of this model, signals yi are observed in the system as continuous voltage

levels, where 0 and Vcc stand for ideal logical values ‘0’ and ‘1’, respectively. Without

loss of generality, we use Vcc = 1 V to simplify future discussion. Drift magnitudes ηi

are modeled as Gaussian random variables with null mean and standard deviation σi,

ηi ∼ N(0, σi).

As stated before, we consider drifts as mutually independent, thus our fault model

explores random effects between replicas. Systematic alterations, which affect all the

replicas in the same direction, are specifically evaluated in subsection 3.3.2.1 and they

are shown to cause independent effects on the reliability of the considered fault-tolerant

structures. Therefore, since random and systematic effects can be studied and counter-

acted independently our results are applicable in any case. Moreover, systematic effects

are usually static and they can be easily mitigated by calibration in the initial stages of

system operation.

Using this fault model we can calculate now the probability of error of each signal

yi. Assuming that digital signals are interpreted as logic ‘0’s or ‘1’s by thresholding

decisions, errors occur if and only if the drift magnitude ηi = y − yi reaches Vcc/2 or

−Vcc/2, depending on the logic value y. Using the complementary Gauss error function

we can analytically formulate the error probability associated to each signal yi as follows:

Pe =

∫ ∞
Vcc/2

fε(ε) dε =
1

2
× erfc

(
Vcc√
8σi

)
. (2.2)

Figure 2.4 depicts the relationship between error probability Pe and the ratio σi/Vcc. It

presents a monotonically increasing behavior. Thus, given a maximum admissible error

probability Pmax
e , there is a maximum admissible standard deviation σi max for any

given Vcc. If we take for example Pmax
e ≡ 10−4 as the reference value for the maximum

admissible error probability, then the maximum admissible standard deviation σi max

that fulfills this error specification is 0.1344 V (being Vcc = 1 V ).

2.3 Aging and Degradation Modeling

Emerging nanodevices will pose new challenges for the design and manufacturing of re-

liable computing systems. Variability, soft errors, and device (transistor performance)
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Figure 2.4: Error probability Pe against the ratio between the standard devi-
ation σi and Vcc. The highlighted point corresponds to the reliability reference
value Pmax

e ≡ 10−4 and the corresponding maximum admissible standard deviation
σi max/Vcc = 0.1344.

degradation are considered the main difficulties to be faced in the future [9]. In connec-

tion with this, our previously introduced fault model can account for variability and soft

errors but always with static rates of errors and faults. In this section we present the

degradation model that we use in combination with our fault model in order to include

time-varying effects caused by aging, external aggression, or degradation.

The process of aging and the dynamics of the variability associated to each nanodevice

depend on the particular technology and the environmental conditions. It is therefore

very difficult to establish a relationship between degradation and time. However, based

on the main properties of degradation and using a Probability Distribution Function

(PDF), we can define a general degradation model that serves to simulate and analyze

its effects. In particular, we use the Gamma distribution function to generate positive

random values of variability σ2
i (variance), see Equation (5.15), and update their values

according to increasing levels of degradation. Indeed, thanks to the infinite divisibility

property of this statistic distribution we can easily simulate the influence of increasing

amounts of degradation by simply adding random Gamma-distributed increments to the

initial input variances.
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σ2
i ∼ Γ(x; k, φ) =


1

φkΓ(k)
xk−1e−x/φ if x ≥ 0

0 otherwise
(2.3)

The simulation process comprises the following steps:

1- First we generate the initial variability levels σ2
i using the Gamma distribution

function, see Equation (5.15), with scale parameter φ = 2. These levels of vari-

ability correspond to the initial imperfections already present in fresh devices (non

utilized) mainly associated to the manufacturing process. In the simulations, this

initial stage of the circuits corresponds to the 0 in the axis of degradation in

time (horizontal axis) and, unless otherwise specified, we assume a mean value of

E{σ2
i } = (2σi max)2 (= 0.07V 2).

2- Then, in order to simulate successive moments of the circuit’s life we need to cal-

culate the input variabilities after the effect of increasing amounts of degradation.

To do so we estimate recursively the input variances at consecutive stages of degra-

dation. The variances in the stage n+1 are computed by adding a positive random

increment αi to the variance in the previous degradation stage n:

σ2
i [n+ 1] = σ2

i [n] + αi[n] (2.4)

The increments used to update the input variances are also generated with the

Gamma distribution function and reflect the effect of degradation occurred during

the time between consecutive stages of degradation. In the simulations, we de-

fine the degradation in time unit so that it corresponds to a mean increase in the

replicas’ variance σ2
i of magnitude E{αi} = (σi max)2 (= 0.02V 2). Using this nor-

malized time-scale we avoid using particular degradation-time relationships and

therefore our results are technology independent and can be applied to each par-

ticular case.

Figure 2.5 depicts five variability profile samples generated using our degradation model.

In the graph as well as in future analysis we use a degradation normalized temporal unit

called “degradation in time”. With this unit, instead of relating particular amounts

of degradation to time, we make our model more general and technology independent.

We basically focus our degradation metric on measurable circuit magnitudes that vary

with degradation and associate degradation in time units to these increments. This

technique was utilized in other studies, e.g., Brown et al. [27]. In these cases time is not

directly related to degradation but measurable percentages of parameters shift due to

degradation.
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Figure 2.5: Five samples of variability σ2
i profile against degradation in time units

generated using our degradation model.

2.4 Reliability Characterization

We need a reliability metric in order to predict, optimize and design future computing

systems composed of unreliable nanodevices. If we look at the literature, we can find

a number of parameters defined for this purpose. Some of the most important are

summarized below:

• Reliability R(t), according to IEEE, is the ability of a system or component to

perform its required functions under stated conditions and for a specified period

of time.

• Mean time to failure (MTTF), also called expected life, is the expected value

of the time to failure of a system. It can be calculated by integrating the reliability

parameter R(t) from time zero to infinity.

• Yield is the percentage of acceptable parts (systems or components) among all

parts that are fabricated.

Among all the options available, in this thesis we chose the yield parameter to charac-

terize the reliability of processing systems for several reasons:
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• First, it can be computed from the error probability (Yield = 1 − Pe), which is

directly related to the variability and fault model used along this thesis, see (2.2).

• Second, the yield parameter is an instantaneous measure of reliability (at a par-

ticular time) and therefore it allows us to easily simulate time-varying effects like

degradation. Using an instantaneous reliability measurement also makes it possible

to clearly observe and analyze the system behavior under these circumstances.

• Additionally, parametric yield measurements are widely used by IC designers be-

cause they allow to easily compare different techniques and clearly evaluate the

impact of each modification or improvement in the methodologies and proposed

designs.

Therefore, in the remainder of this thesis we will use yield as a measure of reliability.



Chapter 3

Reliable Redundancy

Architectures

R
ELIABILITY and REDUNDANCY are usually closely related in any physical

system. Intuitively speaking, the higher the level of redundancy, the higher

the reliability level in whatever physical system we can think of. Looking

at the nature itself we can observe this relationship. Take for example the human

brain in which every memory is stored in thousands of synapses. Therefore, despite

its complexity, replication seems the most natural way to increase the reliability of any

physical system.

Obviously, a system with a faultless design and implemented with perfect components

does not require any kind of redundancy to improve its reliability, because it is in

itself perfect. Still, it is often not possible to produce ideal or almost perfect devices

and in that case some mechanism is needed to improve reliability unless we accept

the associated risk of failure. In this chapter we revisit the idea of redundancy to

produce reliable electronic circuits from unreliable devices as first introduced by von

Neumann. The organization of this chapter is as follows. In Section 3.1, we list the

basic principles of redundancy exposed by von Neumann in his celebrated work on

probabilistic logics. In Section 3.2, a review of some of the most important fault-tolerant

architectures based on redundancy that can be found in the literature is presented. In

Section 3.3, we focus on the redundancy managers explaining their characteristics and

presenting different approaches. Finally, a review on the fundamental error bounds for

reliable computing is presented in Section 3.4. A particular contribution is added to this

chapter on asymmetric error designs for enhanced fault-tolerant computing.

17
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3.1 Redundancy by von Neumann

Before proposing new ideas in the field of redundancy it is very interesting to go back to

the origin of the idea itself. For this purpose we shall focus on the excellent work of von

Neumann, who in 1956 wrote a paper entitled “Probabilistic logics and the synthesis of

reliable organisms from unreliable components” [2]. In that paper he established the fun-

damental principles of redundancy in its modern engineering meaning [28]. Afterwards,

this idea of constructing reliable computing circuits by the redundant use of unreliable

components spread in the scientific community and was developed and applied in other

contexts [29, 30].

In the center of von Neumann contribution we find the essence of the reliability problem,

which we summarize below.

3.1.1 Error framework

In the first place, von Neumann defines a simple but comprehensive error framework:

• Every basic component has associated a (precise) error/failure probability ε in any

operation.

• This malfunctioning is assumed to occur statistically independently of the general

state of the system and the occurrence of other errors.

Although he observed that another error model that does not assume independent fail-

ures would be more realistic, von Neumann prefers to adopt the simpler assumption for

ease of analysis.

3.1.2 Difficulty of errors

After defining a model for errors, von Neumann shows through a very clear example the

difficulty introduced by errors in digital computing systems

Consider the memory system of Figure 3.1, which is clearly described in the von Neu-

mann paper [2]. Once stimulated, this circuit should continue to emit pulses forever.

However, suppose that the basic component has associated an error probability ε. If the

system receives a stimulation at time t and no later ones we can compute the probability

of correct output in subsequent cycles:
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Let the probability that the system is still excited after s cycles be denoted ρs, this

corresponds to the probability of correct operation. Then the recursion formula for

small ε can be written as:

ρs −
1

2
= (1− 2ε)s

(
ρ0 −

1

2

)
≈ e−2εs

(
ρ0 −

1

2

)
.

The quantity ρs − 1
2 can be taken as a rough measure of the amount of discrimination

in the system after the s-th cycle. According to the above formula, ρs → 1
2 as s→∞, a

fact which is expressed by saying that, after a long time, the memory content disappears,

since it tends to equal likelihood of being right or wrong. i.e. to irrelevancy.

Figure 3.1: Memory system.

3.1.3 Problem of reliable computing

After defining the context for reliable computing, von Neumann introduces for the first

time the idea of using control mechanisms to prevent the accumulation of errors. Among

the two possible options to increase the reliability of computing systems, namely fault-

intolerance (or fault-avoidance) and fault-tolerance [31, 32], he proposes to organize the

system itself in order to mask or remove the effects of faults, i.e., fault-tolerant design.

In fact, he is the first one to propose and analyze in detail fault-tolerant techniques for

reliable computing.

He defines the problem of reliable computing that underlies all studies on fault-tolerance,

reliable architectures and also this thesis. The problem is divided in two main questions:

• Given δ > 0, can a corresponding system be constructed from faulty components,

which will perform the desired function and will commit an error (in the final

result. i.e. output) with probability ≤ δ? How small can δ be prescribed?

• Are there other ways to interpret the problem which will allow us to improve the

accuracy of the result?

During the rest of his work, von Neumann proposes several fault-tolerant techniques

based on redundancy to improve the reliability of computing systems. The basic idea is

to use more resources than normally necessary so as to upgrade system reliability.
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He analyses the reliability of triplicated systems with single line and also proposes the

use of multiplexing strategy. For each structure we also provides interesting results about

the associated fault tolerance capabilities. Some of these techniques will be discussed in

Section 3.2 together with other techniques well-known in the literature.

Apart from studying particular architectures, he also finds fundamental limits in the

maximum admissible error rates of the compounding devices. These limits along with

other developed to date will be presented in Section 3.4.

3.2 Fault-tolerant Architectures based on Redundancy

Nowadays, we can find in the literature a large collection of fault-tolerant techniques

based on redundancy [1, 2, 31, 33]. All of them use the same fundamental principle

introduced by von Neumann but applied in many different ways. A general classification

for all redundancy based techniques distinguishes two main groups:

• Static redundancy techniques, also called masking or massive redundancy

techniques, in which fault tolerance is implemented into the system structure and is

therefore inherent to the operation of the system. They are able to mask all types

of faults (permanent and transient) and can be classified into three categories:

hardware, time, and information redundancy techniques.

• Dynamic redundancy techniques, also called selective, stand-by or sparing

redundancy techniques, are based on fault detection, location, containment, and

recovery. These techniques are not useful for transient faults because they need

significant amount of time to detect a fault and activate the corresponding circuitry

to perform the corrective action. The main benefit of dynamic redundancy is

higher reliability for permanent and multiple faults and lower overhead than static

techniques.

In the following subsections we revisit some of the most relevant fault-tolerant techniques

based on redundancy.

3.2.1 Modular Redundancy

Triple Modular Redundancy (TMR) is probably the most intuitive and well-known re-

dundancy based technique. It was introduced by von Neumann [2] and later developed in

many papers [34–36]. The TMR technique, graphically depicted in Figure 3.2, basically

consists of triplicating a functional module that we want to improve and combining the
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outputs with a majority criterion. The voting circuitry is usually referred as majority

gate or voter.

Figure 3.2: Triple Modular Redundancy (TMR) schematic.

TMR can be easily generalized to structures with more than three replicated modules

by using majority gates with higher number of inputs. The only restriction in this case

is that the number of replicas has to be odd (R = 3, 5, 7, . . . ) in order to avoid ties in

the voting operation. This scheme is known as R-fold Modular Redundancy (RMR), see

Figure 3.3-a. There are also other approaches based on the TMR such as the Cascaded

R-fold Modular Redundancy (CRMR) of Figure 3.3-b in which each module working in

parallel is another RMR structure [37–39].

Figure 3.3: (a) R-fold Modular Redundancy (RMR); and (b) Cascaded R-fold Mod-
ular Redundancy (CRMR) schematic.

The weak point of this technique is probably the voter, since a fault in this compo-

nent could cause the whole circuit to fail. This problem was already identified by von

Neumann, who also deduced, without proving it, that any circuit built out of 3-input

components (TMR voters) cannot be made reliable if the error probability of the com-

ponents ε is higher than 1/6. In Section 3.4, we will see that indeed 1/6 is the threshold

value for reliable computation with 3-input components.
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3.2.2 Multiplexing

The multiplexing technique was also introduced by von Neumann in his celebrated pa-

per [2] in 1956. This technique was conceived as method to remove the weak point of

the RMR and construct reliable structures whose malfunction could not be caused by

the failure of a single component (the RMR voter) or a small set of components. Von

Neumann presented two versions of the multiplexing technique based on NAND gates

of MAJs (majority gates), although he focused his analysis on the former. Figure 3.4

depicts a schematic view of the NAND multiplexing technique. The grey boxes (U)

correspond to permutation units that

Figure 3.4: NAND multiplexing schematic.

The multiplexing technique incorporates what von Neumann called the “multiple line

trick”. Instead of having a single output line and therefore a single voter that could

cause the whole system to fail, the trick consists of carrying the output on a bundle of

N lines. A positive number ∆(< 1) is chosen and the stimulation of ≥ (1 −∆)N lines

of the bundle is interpreted as a positive message, i.e. logic ‘1’, and the stimulation of

≤ ∆N lines as a negative message, logic ‘0’. Any other number of stimulated lines is

interpreted as malfunction.

In the literature we can find a lot of papers on the multiplexing technique that analyze

its behavior, suggest improved designs, and explore its application in future nanoscale

technolgies [40–47].

3.2.3 Reconfiguration

While modular redundancy and multiplexing are static redundancy techniques, recon-

figuration is a dynamic redundancy technique. This involves quite a different way of
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applying redundancy. In dynamic redundancy techniques, redundant parts of the de-

sign are only activated when a fault appears and a correcting action is needed. The

most representative example of this technique is undoubtedly the “Teramac” computer:

a reconfigurable defect-tolerant architecture [48]. “Teramac” is a massively parallel ex-

perimental computer with a defect-tolerant architecture that incorporates a high com-

munication bandwidth that enables it to easily route around defects. Indeed, the fun-

damental idea behind reconfiguration techniques is to avoid faults by modifying the

system organization so that the defective parts are no longer used. In the “Teramac”

computer, basic unreliable components are assembled in groups to form a configurable

logic block (CLB, shown as a sub-unit in Figure 3.5). At the same time, a number of

CLBs are grouped together to form an atomic fault-tolerant block (AFTB, larger units

in Figure 3.5). The AFTB can be configured to perform some basic set of operations

and they are also grouped in clusters which perform some desired functions. Finally,

the chip is filled with identical and independent copies of a cluster and thereby, after

the appearance of a fault, it is possible to reconfigure the system and continue operating

reliably.

Figure 3.5: Basic structure for the reconfiguration technique theory. (Source: Nikolić,
et al. [1])

Another well-known approach to reconfigurable redundancy techniques is based on em-

bryonics [49]. As a general comment, reconfiguration techniques are mainly suitable for

dealing with manufacturing defects rather than transient errors. This is because the

time required to detect, locate and correct a fault is usually much larger than the time

limit to suppress the impact of such fault.

3.3 Redundancy Managers

Except the dynamic approach, redundancy techniques typically require the use of re-

dundancy managers. That is, devices that combine the information provided by the
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replicas (independent and identical copies of a functional block) according to a major-

ity criterion. The whole system reliability highly depends on the performance of these

managers, and therefore, there is a great interest in their design [50].

In the following subsections we review two well-known voters, namely the majority gate

and the averaging cell, and present their main features.

3.3.1 Majority Gate (MAJ)

Von Neumann was the first to introduce the “majority organ” (MAJ) and use it to control

the errors in redundant structures [2]. The MAJ, graphically depicted in Figure 3.6,

outputs the logic value carried by the majority of its inputs. The number of inputs per

MAJ (R in Figure 3.6) may vary, but should always be an odd number in order to avoid

ties (R = 3, 5, 7, . . . ). Thus, an R-input MAJ is able to mask any set of simultaneous

faults provided it is in minority, i.e., the number of masked faults is always ≤ (R−1)/2.

Figure 3.6: Majority Gate (MAJ) schematic.

In the following we take as example a 3-input MAJ and show some interesting properties.

As clearly analyzed by von Neumann, its operation within the context of redundant

structures can be described by the following equation:

pout = ε+ (1− 2ε)
(
3p2

in − 2p3
in

)
, (3.1)

being pin the error probabilities in the input lines (independent of each other), pout the

error probability at the output, and ε the failure rate of the MAJ. Figure 3.7 depicts

the reliability characteristic described in (3.1) for different values of ε. From this result

von Neumann deduced in 1956, without proving it, that any network of ε-faulty 3-

input elements can not be made reliable if ε > 1/6. In fact, observing the reliability

characteristic of 3-input MAJ we can verify that ε > 1/6 implies that pout is always

higher than pout. 45 years later, in 1991, Hajek and Weller proved that, actually, 1/6

is the threshold value for reliable formulas of 3-input elements [51]. In Section 3.4, we

review all the error bounds for reliable computation that have been found so far.
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Figure 3.7: Output error probability pout against input error probability pin of 3-input
MAJ for different values of gate failure rate ε = {0, 0.1, 1/6, 0.3}.

3.3.2 Averaging Cell (AVG)

The Averaging Cell (AVG), graphically depicted in Figure 3.8, is an analog approach to

the majority voting. While the MAJ operates in the digital domain, the AVG performs a

weighted average of the replicated inputs in the analog domain, thus is potentially more

robust. The AVG stems from the perceptron, the McCulloch-Pitts neuron model [52, 53]

and it is widely known for its application in the four-layer reliable hardware architecture

(4LRA) [54]. It is associated with fault-tolerant techniques based on redundancy and

can calculate the most probable value of a binary variable from a set of error-prone

physical replicas.

Figure 3.8: Averaging Cell (AVG) schematic.
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The AVG output ŷ is an estimation of the ideal input variable y according to (3.2)

and (3.3).

y′ = W (y1, . . . , yR) =
1∑R
i=1 ki

R∑
i=1

kiyi (3.2)

ŷ = T (y′) =

Vcc if y′ ≥ Vcc/2

0 if y′ < Vcc/2
(3.3)

Where yi are R error-prone replicas of the ideal input variable y. Using the fault-model

introduced in Section 2.2, we can describe the replicas as

yi = y + ηi i = 1, . . . , R, (3.4)

where each replica yi has associated an independent drift ηi that modifies its ideal value

y with a Gaussian random distribution ηi = N(0, σi). As a consequence, input signals

yi are observed in the system as continuous voltage levels. All the averaging weights are

positive ki ≥ 0, i = 1, . . . , R and we use normalized weights ci = ki/
∑R

j=1 kj instead of

ki in order to simplify the mathematical formulation.

When y′ is processed by the threshold operation T (y′) an error will be produced if

and only if the deviation in the weighted average ∆ = y′ − y reaches Vcc/2 or −Vcc/2,

depending on the logic value y. Since this deviation parameter ∆ can be expressed as a

linear combination of normally distributed variables ηi, by the properties of the normal

distribution the probability density function (PDF) f∆(∆) can be described as a normal

distribution with parameters

µ∆ = E

{
R∑
i=1

ciyi

}
− y = 0, and (3.5)

σ2
∆ = E

{(
y′ − y

)2}
= σ2

y′ . (3.6)

The variance of the weighted average σ2
y′ can be expressed in terms of the input variances

σ2
i and the averaging weights ci, i = 1, . . . , R:

σ2
y′ =

R∑
i=1

c2
iσ

2
i . (3.7)

Despite the general definition of AVG entails the possibility of using unbalanced weights,

most studies using this structure are restricted to the case of balanced weights (ci = 1/R

for all i) for different reasons. From now on, we refer to this balanced AVG approach as
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the conventional AVG or B-AVG. On one hand, most of the works use the assumption

of homogeneous input drifts equivalent to von Neumann’s hypothesis of homogeneity

(see Subsection 3.1.1), thereby all the inputs are considered to have the same variability

level (σi = σ for all i), for example Martorell et al. in [55]. Under these conditions, a

balanced weight set produces a weighted average y′ with the minimum possible standard

deviation σy′ = σy/
√
R and maximum reliability (1−Pe). The output error probability

Pe decreases with decreasing standard deviation σy′ as observed in Section 2.2 (see

Figure 2.4). On the other hand, due to the symmetry of the structure the balanced

weights approach is also the best possible choice when there is no knowledge about the

different levels of variability present in each of the input replicas.

Finally, as a general comment, we would point out that the conventional AVG is an

efficient redundancy manager that operates in the analog domain. It is difficult to

compare with MAJ because it requires a fault-model that enables analog signals. It

does not require odd redundancy factors and it always provides a reliability enhancement

since it preserves the mean value y (assumed to be correct) and diminishes the variance

of the signal to be read (σ2
y′).

3.3.2.1 Systematic Effects

This thesis does not consider systematic effects when characterizing the reliability level of

averaging structures. However, future scenarios targeted here will probably include this

kind of effects. Fluctuations in temperature and voltage as well as systematic variations

from manufacturing processes usually imply coherent deviations in many devices of the

system at the same time. In this subsection we prove that even when taking into account

these systematic effects the results provided using our random drift-based fault model

are correct.

In (3.5) and (3.6) the statistical model of the AVG deviation parameter ∆ (= y′ −
y) was developed assuming no bias in the input variables, only random effects. The

consideration of systematic effects can be taken into account at this point by adding the

same non-zero mean value δ to all the input drift variables ηi ∼ N(δ, σi). Applying this

change, the statistical distribution of the deviation parameter becomes

µ∆ = E

{
R∑
i=1

ciyi

}
− y = δ, (3.8)

σ2
∆ = E

{(
y′ − y

)2}− δ2 = σ2
y′ (3.9)

while the variance of the weighted average σ2
y′ expressed in (3.7) remains unaltered due

to the fact that the bias effect δ is common to all the replicas. Under these conditions,
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the corresponding error probability Pe is

Pe =

∫ ∞
Vcc/2

fy′(y
′)dε =

1

2
× erfc

Vcc/2− δ√
2σ2

y′

 (3.10)

from which we can draw the conclusion that systematic effects and random effects worsen

the AVG reliability in two independent ways. The effect of systematic deviation trans-

lates into a reduction in the margin of tolerable variation Vcc/2− δ. On the other hand,

random fluctuation increases the variance of the weighted average σ2
y′ , see (3.7). By

applying averaging techniques with different weighting schemes we can mitigate the im-

pact of random variations through the reduction of the deviation parameter variance

σ2
y′ . This is the main target of the AVG techniques. As for the bias effect δ, which

is independent of the random variations, it is not a critical issue. Systematic effects

are usually static and can be mitigated by calibration in the initial stages of system

operation.

3.4 Fundamental Error Bounds

This section provides a review of the fundamental error bounds for reliable computation.

The study of fault-tolerant architectures is of great interest today due to the less robust

and more error-prone components expected in next technology generations. One of

the most challenging problems of this research area consists in finding the fundamental

error bounds beyond which reliable computation is not possible. A good understanding

of these limits allows the scientific community to take the best approach for the design

of reliable computing redundancy techniques.

In the following subsections we present the basic concepts of error bound theory, a

detailed list of all the advances in the field of fundamental error bounds until today, and

finally, our own contribution in the case of asymmetric error designs.

3.4.1 Basic Definitions

Before proceeding with the fundamental error bounds for reliable computation, we define

here the basic concepts of the error bound theory for better understanding. Notice that

the error framework used in this field of research is always the one proposed by von

Neumann 3.1.1.

ε-noisy gate: Logic gate that computes a Boolean function with an error probability

ε.
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Noisy circuit: Circuit composed of ε-noisy gates. The errors of each gate occur inde-

pendently of the other gates.

Circuit and formula: Both circuits (also referred as networks) and formulas have sev-

eral Boolean inputs and one Boolean output without any feedback interconnection.

However, while in circuits gates fan-out may be higher than one, in formulas gates

fan-out is at most one.

Error probability: The maximum over all input combinations of the probability that

a noisy circuit (or formula) computes a Boolean function f incorrectly (outputs

its complement).

Reliable Computation Being δ < 1/2, for every Boolean function there exists a noisy

circuit (or formula) that computes its value with an error probability not higher

than δ. In general this is only possible for specific circuit circumstances: ε-noisy

gates, fan-in and fan-out.

On one hand, it is evident that a circuit composed of perfect/error-free gates (ε = 0) will

compute reliably, provided it has a correct design. On the other hand, it is also evident

that in general a circuit composed of very unreliable gates (ε→ 1/2) will not be able to

provide an output error rate below 1/2. Thus, between these two extremes, there must

be a threshold value for the gates error rate ε∗ such that reliable computation is possible

if ε < ε∗ and not possible if ε > ε∗. This characteristic error rate ε∗ is conceptually

regarded as the threshold error rate and it varies depending on the circuit configuration,

i.e., the type of gates used or, in general, their fan-in, and if it is a circuit or a formula

(fan-out limited to 1 or not). Among the advances to find the threshold error rate ε∗ in

each case, often partial results are obtained which can be separated into two classes:

Positive result: Reliable computation is possible if ε < εlb. We refer to this value as

a lower bound for ε∗ since εlb ≤ ε∗.

Negative result: Reliable computation is not possible if ε > εub. We refer to this value

as an upper bound for ε∗ since ε∗ ≤ εub.

3.4.2 State of the Art

Next, we present a summary of the most relevant advances in the field of fundamental

error bounds. Table 3.1 lists in chronologic order the main contributions and their cor-

responding proven error bounds. In the table it is also specified the circuit configuration

to which the bound applies taking into account the type of gates and the fan-out (1

in the case of formulas and non-restricted for circuits). Some contributions are able to
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prove lower error bounds εlb, other show upper error bounds εub, and finally, few of them

are able to determine exactly the error threshold ε∗ under specific circuit configurations.

Table 3.1: Summary of the main advances in the field of fundamental error bounds
for reliable computation.

Year Author
Circuit configuration Error bounds

Type of gates fan-out εlb εub

1956 von Neumann [2] 3-input MAJ circuits 0.0073

1988 Pippenger [56] k-input gates formulas 1
2 −

1
2k

1989 Feder [57] k-input gates circuits 1
2 −

1
2k

1991 Hajek and Weller [58] 3-input gates formulas ε∗ = 1/6

1998 Evans and Pippenger [59] 2-input NAND formulas ε∗ = 3−
√

7
4

1999 Evans and Schulman [60] k-input gates circuits 1
2 −

1
2
√
k

2003 Evans and Schulman [61] k-input gates (k odd) formulas ε∗ = 1
2 −

2k−2

k( k−1
k/2−1/2)

2005 Gao, Qi and Fortes [62] k-input NAND circuits ε∗ =numeric solution

2008 Unger [63] 2-input gates formulas ε∗ = 3−
√

7
4

Nevertheless, looking carefully at the list of advances we can notice that there are still

some gaps to fill such as:

• Finding the error threshold for k-input gates (k > 2 even) for formulas and circuits.

• Generalizing the Weller’s error threshold (k odd) for circuits.

• Generalizing the basic von Neumann assumptions for more realistic cases.

• Considering other types of gate or circuit designs, such as asymmetric error and

analog logic.

In the following subsection we extend the fundamental error bound for k-input NAND

gates for asymmetric error designs.

3.4.3 Asymmetric Error Designs

In the literature we can find the exact error threshold for circuits built out of noisy

NAND gates under the von Neumann’s probabilistic computing framework [62]. In the
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following we extend this result for asymmetric error designs and demonstrate that it

is possible to compute reliably with 2-input noisy NAND gates beyond the well known

error bound: ε∗ = (3 −
√

7)/4. We further determine the fundamental error bound

for asymmetric error multiple-input NAND gates. To this end we study the nonlinear

interactions among noisy NAND gates, and thereby, we are able to derive the exact error

threshold using elementary bifurcation theory.

3.4.3.1 Asymmetric Error NAND Gates

Until now, the vast majority of work concerned with fundamental error bounds and

fault-tolerant computation use the von Neumann error model framework [2]. According

to this model every logic gate will fail to function correctly in any operation with the

precise probability ε. Statistical independence between gate errors is also assumed. Here,

we propose to extend the von Neumann error model considering asymmetric errors for

logic values ‘0’ and ‘1’.

Figure 3.9: Asymmetric error NAND gate.

We denote by ε1 the probability of an output logic ‘1’ being misread as logic ‘0’ and ε0

the probability of an output logic ‘0’ being misread as logic ‘1’. Assuming statistical

independence between inputs we can calculate the probability of logic ‘1’ at the output

of a NAND gate (Z) in terms of the input probabilities of logic ‘1’ (X, Y ) and the error

probabilities ε0 and ε1 as follows:

Z = (1− ε1)(1−XY ) + ε0XY. (3.11)

However, error probability parameters ε1 and ε0 mix key information on two different

aspects of NAND gates: namely, the amount of uncertainty and the level of error asym-

metry. In the following we describe a parametric fault model that allows us to separate

both dimensions in the analysis of asymmetric error NAND gates. We assume that out-

put logic values ‘0’ and ‘1’ are detected by a threshold device reading a voltage signal z

affected by variability. Signal z can be decomposed into two parts:

z = z0 + δ,
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where z0 corresponds to the ideal value and δ includes the variability/uncertainty of the

NAND gate. We model δ as a normal random variable with null mean and standard

deviation σ (δ ∼ N(0, σ)). Without loss of generality we assume that voltage levels 0V

and 1V are associated to logic values ‘0’ and ‘1’ respectively. The threshold level l of

the decision device can be adjusted to achieve different levels of asymmetry.

With this model we can easily separate the uncertainty of NAND gates, reflected by the

standard deviation parameter σ, and the asymmetry of errors, which is determined by

the threshold level l of the decision device. Under these conditions, the probabilities of

error ε0 and ε1 can be expressed in terms of σ and l as follows:

ε0 =
1

2

(
1− erf

(
l√
2σ

))
(3.12)

ε1 =
1

2

(
1− erf

(
1− l√

2σ

))
. (3.13)

Note that l = 1/2 corresponds to the symmetric case for which ε0 = ε1.

3.4.3.2 Asymmetric Error Reliable Computation with 2-input NAND gates

Taking as a reference the basic von Neumann NAND multiplexing scheme, we determine

the fundamental error bound for circuits built out of asymmetric error 2-input NAND

gates. It is assumed that NAND multiplexing scheme has no feedback loops and the

output of each gate is connected to an input of only one other gate like the circuit

schematic shown in Figure 3.10. Under these conditions the inputs of each gate are

statistically independent.

Figure 3.10: Circuit schematic built out of 2-input NAND gates.
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Proceeding with the bifurcation analysis we take the worst case scenario in which X = Y .

In this case, (3.11) reduces to a nonlinear map:

Z = f(X) ≡ 1− ε1 − (1− ε1 − ε0)X2. (3.14)

We first determine the equilibrium points of a single computation step by solving the

equation f(X) = X, whose roots are:

X1,2 =
−1±

√
5 + 4ε21 − 8ε1 − 4ε0(1− ε1)

2(1− ε0 − ε1)
. (3.15)

Analyzing the argument of the square root we observe that it is always positive 5+4ε20−
8ε0 − 4ε1(1 − ε0) ≥ 0 in the region 0 < ε0, ε1 < 1. However, since any probability must

be contained in the interval [0, 1] we reject root X2 leaving X1 as the unic equilibrium

point for single computation step.

We analyze now the equilibrium points of two consecutive computation steps by solving

the equation f(f(X)) = X. The resulting roots include X1,2, as in the previous case,

and two new solutions:

X3,4 =
1±

√
1 + 4ε21 − 8ε1 − 4ε0(1− ε1)

2(1− ε0 − ε1)
. (3.16)

These X3,4 roots correspond to the branches of asymmetric error 2-input NAND bifur-

cation map. Therefore, analyzing the argument of the square root and imposing it to be

greater or equal to zero, we find the fundamental error bound for reliable computation

with asymmetric error 2-input NAND gates:

ε0 ≤ 1− ε1 −
3/4

1− ε1
. (3.17)

If we impose ε0 = ε1 (≡ ε), the previous condition obviously reduces to the well-known

error bound ε ≤ ε∗ = (3−
√

7)/4. However, as we will see next, if we admit asymmetric

error designs then 2-input NAND gates can tolerate higher levels of variability/uncer-

tainty.

Figure 3.11 depicts the fundamental error bound for reliable computation with asym-

metric error 2-input NAND gates. We observe a clear asymmetry in the error bound

regarding the error rates ε0 and ε1. Indeed, according to this result reliable computation

with NAND gates tolerates higher rates of ε0 than ε1. For example, reliable computation

is possible with ε0 = 0.2 (as long as ε1 < 0.028), but not with ε1 = 0.2 (in fact, never

if ε1 > 0.134). This asymmetric fault tolerance is associated to the fact that the logic

NAND function is an unbalanced gate and it has a different number of ‘1’s and ‘0’s in its

output. In fact, given random independent inputs, it is more probable to obtain a logic
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‘1’ at the output than a logic ‘0’. Therefore, misreading an output logic ‘1’ has a greater

impact on the overall reliability of the logic NAND gate than misreading a logic ‘0’.

Figure 3.11 also shows the contour lines of parameters σ and l for the symmetric design
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Figure 3.11: Fundamental error bound for asymmetric error 2-input NAND gates.

and the optimum asymmetric design. Symmetric design has l = 0.5 and ε1 = ε0 = ε∗.

Consequently, the associated maximum variability level that can be tolerated with the

symmetric error design is:

σ∗ =
1√

8 erf−1 (1− 2ε∗)
≈ 0.37V.

Extending the problem to asymmetric error designs we are able to increase the maximum

admissible variability level for reliable computation. Figure 3.12 shows the maximum

admissible variability level σmax against the threshold level l of 2-input NAND gates.

The resulting curve corresponds to all the configurations (l, σ) over the fundamental

error bound. Because of the asymmetry of the problem, the maximum fault-tolerance

for the NAND gate is achieved by asymmetric threshold devices, i.e. l 6= 0.5. In the case

of 2-input NAND gates we should set the threshold at l = 0.41. With this configuration

we could tolerate a maximum variability level of σmax = 0.38V , which is larger than the

one obtained with the symmetric design (σ∗ = 0.37V ). Now, using (3.12) and (3.13) we

calculate the equivalent symmetric error rate εmax associated to optimum asymmetric

design. Comparing both results we can see how much the fundamental error bound for
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Figure 3.12: Maximum tolerable variability σmax against threshold level l for reliable
computation using 2-input NAND gates.

2-input NAND gates has been extended :

Asymmetric design Symmetric design

σmax ≈ 0.38V σ∗ ≈ 0.37V

εmax ≈ 0.0946 ε∗ ≈ 0.0886

From ε = 0.0886 to ε = 0.0946 the equivalent error bound has been extended a 6.8%.

In this particular case of noisy 2-input NAND gates the gain in fault tolerance is not

very big. However, this is a significant result since it proves that logic gates asymmetry

(unbalanced gates) can be exploited to improve fault tolerance. Additionally, larger

gains are expected for more unbalanced logic gates, such as NAND gates with higher

number of inputs.

3.4.3.3 Asymmetric Error Reliable Computation with k-input NAND gates

We proceed now with the study of multiple-input NAND gates. First, we reproduce the

nonlinear map of (3.14) for k-input NAND gates:

Z = fk(X) ≡ 1− ε1 − (1− ε1 − ε0)Xk. (3.18)
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In this case it is hard to obtain an explicit form for the branches of the bifurcation

map. Instead, to determine the condition of fundamental error bound we combine the

following conditions as suggested in [62]:

• The pairs (ε0, ε1) lying on the fundamental error bound have to be an equilibrium

point X0 of a single computation step (fk(X0) = X0).

• At the same time, the derivative of fk(X) evaluated at the equilibrium point X0

has to be −1, f ′k(X0) = −1 (in order to find an unstable equilibrium point).

Hence, the condition of fundamental error bound for pairs (ε0, ε1) is:

1− ε0 − ε1 =
1

kk

(
1 + k

1− ε0

)k−1

. (3.19)

Figure 3.13 depicts the fundamental error bounds of (3.19) for k = 2 to k = 10.
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Figure 3.13: Fundamental error bound for asymmetric error k-input NAND gates.

In the figure we can observe how the asymmetry of error bound increases with k. The

greater the number of inputs k to the NAND gate, the better the errors ε0 are tolerated

and the worse the errors ε1. As a consequence of this increasing asymmetry, the gain in

the maximum level of tolerable uncertainty (σmax) increases with k. In fact, observe in

Figure 3.14 the maximum admissible variability level σmax against the threshold level
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l of k-input NAND gates. If we compare σmax of symmetric designs (with l = 0.5)
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Figure 3.14: Maximum tolerable variability σmax against threshold level l for reliable
computation using k-input NAND gates.

and optimum asymmetric designs we can see how in the case of symmetric designs it

increases for k < 5 and then decreases again while in the case of asymmetric designs

it keeps increasing with k. Figure 3.15 compares the maximum equivalent symmetric

error bound εmax of k-input NAND gates between symmetric and optimum asymmetric

designs. We use (3.12) and (3.13) to perform the (σ, l) to (ε ≡ ε1 = ε0) conversion. As we

have seen before, symmetric designs have the maximum admissible variability for k = 5.

This is consistent with previous work [62]. In the case of asymmetric error designs,

the fundamental error bound keeps increasing with k and significantly outperform the

symmetric designs. For example, optimum asymmetric designs of noisy 3-input NAND

gates have 17.5% gain in fault tolerance and 5-input NAND gates have 39.8% gain with

respect to symmetric designs. However, if we compare this error bounds with the exact

error threshold for k-input gates (k odd) found by Evans and Schulman in [61], we

observe that they are still below the theoretical maximum, as expected: 16.4% below in

the case of k = 3, 20.3% in the case of k = 5 and gradually increasing with k. That is,

we have significantly extended the error bounds of multiple input NAND gates by using

asymmetric error designs, but for number of inputs k ≥ 3 the resulting error bounds are

still lower than the fundamental error threshold of k-input gates.
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Figure 3.15: Maximum tolerable variability σmax of symmetric and asymmetric
NAND gate designs against the number of inputs k. The exact error threshold for

k-input gates (k odd) is also shown with black markers.

3.4.3.4 Concluding Remarks

Our contribution on asymmetric error designs extends the fundamental error bounds for

reliable computation. We define a parametric fault model for logic gates that allows us

to separate the variability/uncertainty dimension from the level of asymmetry between

the error rates of logic ‘0’s and logic ‘1’s. Using the bifurcation theory we generalize the

well known error bound for noisy 2-input NAND gates and find the optimum asymmetric

design by which the maximum fault tolerance is obtained; in this case, a 6.8% increase

in the equivalent error bound with respect to classic symmetric implementations. Based

on the analysis we associate the asymmetric tolerance to errors in logic ‘0’s and logic

‘1’s to the unbalanced condition of NAND logic function. We also explore the gain in

fault tolerance of optimum asymmetric designs of NAND gates with higher number of

inputs and the obtained results confirm our expectations. Optimum asymmetric designs

of noisy 3-input NAND gates have 17.5% gain in fault tolerance and 5-input NAND

gates have 39.8% gain. The higher the asymmetry or unbalance level of a logic gate is,

the higher the gain in fault tolerance can be achieved by an asymmetric error design.

We also compare the extended error bounds of multiple input NAND gates with the

theoretical error threshold for k-input gates of Evans and Schulman. While our results
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are consistent, the comparison shows that our proposed asymmetric design approaches

the theoretical fundamental limit for reliable computation.





Chapter 4

Thesis Motivation and Objectives

T
HE MISSION of this thesis is to explore and extend the fundamental prin-

ciples of redundancy. Following the seminal work of von Neumann, our

main goal is to investigate and suggest enhanced methodologies to produce

robust computing architectures in the context of future nanotechnologies. As stated

originally by von Neumann, we seek “to synthesize reliable organisms from unreliable

components”. In particular, we want to synthesize digital computing systems with fu-

ture nanoscale technology devices. So far, the reliability level provided by conventional

CMOS devices has been sufficient to prevent the use of advanced fault-tolerant tech-

niques, however, as the scaling trend pushes us towards ever smaller devices it leads us

to scenarios in which it is indispensable the use of fault-tolerant redundancy techniques.

In this context, our thesis serves as a broadening of the research field of fault-tolerant

techniques based on redundancy. To this end, we propose and motivate the investiga-

tion of new computing paradigms such as averaging computation, partially asynchronous

circuits and cross-layer fault-tolerance distribution.

In order to describe in more detail the specific aims of this thesis, we list in the following

a set of fundamental questions that summarize all the points treated in this work. Some

of them can be answered by analyzing the state of the art of computing technology,

other questions are developed in different parts of this thesis.

• Which will be the technologies used to implement future nanoscale com-

puting systems?

We review the main nanotechnologies that have been proposed so far in order to

envision the scenario of future computation. We identify the main features that

the different alternatives have in common, such as reliability level, integration

capability and type of device.

41
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• Which will be the main sources of unreliability associated to future

nanoscale computing devices?

Being the system reliability our main concern, we analyze the sources of unrelia-

bility present in future computing devices. We need to know what kind of faults

will appear in the basic components in order to design robust circuits.

• How can we characterize and model the performance of future nanoscale

computing devices?

Being aware of all the types of device malfunctions, we develop realistic fault and

degradation models to simulate and characterize future nanoscale devices.

• Which are the fundamental reliability limits of computing devices be-

yond which reliable computation is not possible?

We revisit the fundamental limits of reliable computation present in the litera-

ture and try to find new ways to address the problem of reliable computing with

unreliable devices.

• Which will be the most appropriate hardware architectures based on

redundancy to implement robust computing systems in the future?

We review the main fault-tolerant architectures proposed for the design of robust

computing systems. We identify the main advantages of each fault-tolerant ap-

proach in order to gather the necessary knowledge to be able to suggest improved

designs adapted to specific technology conditions.

• How can we extend the principles of redundancy for the future nan-

otechnologies?

Combining the forecasts of future nanoscale technology with the currently avail-

able enhanced fault-tolerant techniques, we want to extend the conventional re-

dundancy approach to adapt and optimize it for reliable computation in future

computing scenarios.

In the following chapters we propose three extensions of the von Neumann redun-

dancy approach. We can describe these contributions as three new dimensions to

consider during fault-tolerant design based on redundancy. Figure 4.1 reproduces

a schematic view of these dimensions: (1D) Heterogeneous-aware Reliable Design,

(2D) Time-aware Reliable Design, and (3D) Multiple-layer Reliable Design.
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Figure 4.1: Schematic representation of the three main contributions of this thesis
to extend the principles of redundancy established by von Neumann in [2]. The three
considered dimensions, namely heterogeneity, asynchrony, and hierarchy, correspond to

Chapters 5, 6, and 7 respectively.





Chapter 5

Heterogeneous-aware Reliable

Design

H
ETEROGENEITY between ideally identical devices will most probably ap-

pear in future technology generations as a result of the expected high levels

of variability and defects. As ICs enter the nanoscale regime, fundamental

physical limits and manufacturing constraints arise that make it impractical to work

with design schemes based on quasi-perfect devices.

In this Chapter, we propose redundancy-based fault-tolerant techniques that take into

account the heterogeneity of future nanoscale technologies. Instead of assuming a precise

error probability ε equal for all the components following the von Neumann’s hypothe-

sis of homogeneity, we take into account the heterogeneity of real nanodevices and use

adaptive architectures to cope with non-homogeneous variability environments. More

specifically, we focus on the averaging cell (AVG) principle, which was previously in-

troduced in Chapter 3 (see page 25), and improve its performance through adjustable

weights systems. Our study gives rise to various fault-tolerant techniques which corre-

spond to different sections of this chapter.

The rest of this Chapter is organized as follows. In Section 5.1, we consider static

heterogeneity between replicas and derive a methodology to determine the specific av-

eraging weights that maximize the reliability of the AVG structure. The implementa-

tion of these optimal weights in the AVG structure gives place to the unbalanced AVG

approach (U-AVG). The U-AVG extends the conventional AVG approach, which uses

balanced weights (B-AVG). In Section 5.2, we take into consideration that circuits are

exposed to degradation, which can induce significant changes on the levels of variabil-

ity during the circuit lifetime, and introduce the adaptive AVG structure (AD-AVG).

45
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The AD-AVG approach embeds a learning mechanism based on a variability monitor

that allows for the on-line input weight adaptation such that the actual weight con-

figuration properly reflects the aging status. To evaluate the potential implications of

this proposal we compare the conventional AVG architecture (B-AVG), the unbalanced

AVG (U-AVG), and the adaptive AVG (AD-AVG) approaches in terms of reliability and

redundancy overhead by means of Monte Carlo simulations. Subsequently, we include

temporal variation of input drifts in the simulations to reproduce the effects of degra-

dation and aging. In Section 5.2.3, specific reconfigurable hardware based on resistive

switching crossbar structures is proposed for the implementation of the AD-AVG, the

weights reconfiguration and the input variability measurement.

5.1 The Unbalanced Averaging Cell (U-AVG)

Starting from the conventional AVG architecture that uses balanced weights (B-AVG),

which was previously introduced in Section 3.3.2 (see page 25), we concentrate here

on the special case of AVGs designed with unbalanced weights (U-AVG) to counteract

the heterogeneity present in the input replicas due to variability. Figure 5.1 shows

a schematic of the Unbalanced Averaging Cell (U-AVG) architecture. Our proposal

consists of adjusting the AVG weighting scheme according to the following principle:

assign greater weight to the less degraded and more reliable inputs, and lower weight to

the ones that are more prone to be unreliable. Intuitively speaking such an approach

should improve the overall reliability.

Figure 5.1: Unbalanced Averaging Cell (U-AVG) schematic.

When the input drifts lose homogeneity due to variability effects, the output standard

deviation increases dramatically for the conventional AVG approach (B-AVG), as shown

in the following subsection, and so does the output error probability Pe. In this section,

we study in detail the benefits that can be further obtained from the AVG structure

by considering extra information related to the specific input variability levels. The

main objective of the U-AVG proposal is to improve the fault-tolerant capabilities of the

AVG structure by adjusting the values of the averaging weights in accordance with the



Chapter 5. Heterogeneous-aware Reliable Designs 47

particular levels of input variability. This approach allows us to deal with scenarios of

heterogeneous variability.

In order to motivate the use of unbalanced averaging, we first analyze a simple case of

heterogeneity where all inputs are exposed to homogeneous variability except one that

has a higher standard deviation than the others. This example demonstrates that a

significant reduction in the variability of the weighted average y′ (in terms of σy′) can

be achieved if we set up the averaging weights according to the U-AVG proposal, when

compared with the conventional AVG with balanced weights (B-AVG). After this ex-

periment we analytically demonstrate the existence of optimal averaging weights that

minimize the output error probability Pe (or equivalently σy′) in any possible heteroge-

neous variability scenario. Then, we find a general formula that allows us to calculate

the optimal set of weights in any circumstance. We conclude this section with the theo-

retical savings in the redundancy level (R) that our U-AVG proposal can provide against

the B-AVG.

5.1.1 Heterogeneous Variability Scenario (Simple Case)

In this experiment we reproduce the most simple case of heterogeneous variability sce-

nario. We simulate the AVG with homogeneous level of variability for all the input

replicas except to the qth input; we assign standard deviation σq to the qth input while

all the rest have the same standard deviation σ. In this experiment, we first consider the

conventional AVG (B-AVG), which uses balanced weights ci = 1/R, i = 1, . . . R. In this

case, the resulting output variance can be expressed as (5.1). This formula is deduced

from (3.7) and the σi model presented above.

σ2
y′ =

R− 1

R2
σ2 +

1

R2
σ2
q (5.1)

Figure 5.2 reproduces, in continuous lines, the analytic expression of the output standard

deviation σy′ against different levels of variability in the qth input. One can observe that

for the modeled heterogeneous scenario (with R = 3, σ = 0.1 V , and σq from 0.1 V to

0.4 V ), the output standard deviation for the conventional AVG (B-AVG) dramatically

increases from σy′ = 0.06 V when σq = σ = 0.1 V to more than its double σy′ = 0.14 V

when σq = 0.4 V .

Next we investigate how much better the overall performance can be when we set up

the weight values ci properly such that they reflect the fact that the qth input has a

different variability. Using the general output variance expression in (3.7), an optimiza-

tion problem can be derived, see (5.2). There are R− 1 inputs with standard deviation
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Figure 5.2: Output standard deviation of AVG and U-AVG with 2, 3, 5 and 10 inputs
subject to heterogeneous variability scenario. The scenario is modeled with a standard
deviation σ = 0.1 V in all the inputs except from the qth that has σq ranging between

0.1 V and 0.4 V .

σ and normalized weight c, while the remaining input has a higher standard deviation

σq > σ and a different normalized weight cq. Notice that (5.2) must hold the normalized

weights condition: (R− 1)c+ cq = 1.

min(σ2
y′)|cq ⇒

d

dcq

(
(R− 1)c2σ2 + c2

qσ
2
q

)
= 0 (5.2)

Making the appropriate calculations to minimize the output variance σ2
y′ by adjusting

the value of weights c and cq, the following expression for the optimum weight copt
q can

be deduced

copt
q =

1

(R− 1)
σ2
q

σ2 + 1
. (5.3)

This formula, depicted in Figure 5.3, clearly demonstrates that the optimal distribution

of weights only depends on the ratio between the input variances, or equivalently on

the relative reliability levels. In the particular case of R = 2 we can easily verify that

the set of optimal weights is (1/2, 1/2) when the variances or reliabilities are equal. If

the variances ratio is higher than 1 then the input qth is less reliable and the optimal

weight copt
q decreases. And vice versa, if the variances ratio is lower than 1 the optimal

weight copt
q increases with respect to the equilibrated case. Figure 5.3 also shows the
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impact of redundancy level R on the relationship between copt
q and the input variances.

We observe that it corresponds to a compression to the origin with scale factor R− 1.

Figure 5.3: Optimal weight coptq against the ratio of input variances σ2
q/σ

2 in a simple
case of heterogeneous variability scenario. All the replicas have the same variance σ2

except form the input qth that has variance σ2
q .

The improvements achieved by the new weight configuration are depicted in Figure 5.2

with dashed lines. One can observe in the figure that the U-AVG approach minimizes

the output standard deviation compared to the AVG. Retrieving the previous example

(R = 3 and σ = 0.1 V ), but now considering the U-AVG approach, we can observe

that an increase in the qth standard deviation σq from 0.1 V to 0.4 V only increases

the output standard deviation from 0.06 V to 0.07 V . Thus, in this particular example,

a 50% net reduction in the output standard deviation σy′ is achieved by the U-AVG

with respect to the AVG. Moreover, one can deduce from the figure that the adjustment

of weights is critical for low R (redundancy) values, which suggests that U-AVG may

potentially require a lower redundancy than AVG for the same targeted reliability.

5.1.2 The Existence of Optimal Weighted Averages in General AVGs

Continuing with the idea of making use of non-balanced weights, we demonstrate in

the following that it always exists a set of weights copt
i , i = 1, . . . , R, that optimally

minimizes the output error probability Pe, or equivalently the standard deviation of the
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weighted average σy′ . First we present a Lemma that displays this concept for individual

input replicas.

Lemma 1: Given a weighted average

y′ =
1∑R
i=1 ki

R∑
i=1

kiyi

of R input random variables yi, i = 1, . . . R, following statistically independent normal

distributions and fixed positive weights ki ≥ 0 for all i = 1, . . . R except i = q, there

always exists a unique value kopt
q for the unfixed qth weight, q ∈ (1, . . . R), that optimally

minimizes the standard deviation of the weighted average σy′ .

Proof: Recalling the expression of the weighted average variance in (3.7), and sub-

stituting the definition of normalized weights (ci = ki/
∑R

j=1 kj), we can express the

dependence of σ2
y′ on the weight kq

σ2
y′ =

k2
qσ

2
q +

∑R
i=1,i 6=q k

2
i σ

2
i(

kq +
∑R

i=1,i 6=q ki

)2 . (5.4)

Differentiating with respect to kq and matching to zero, we get the following optimal

value for the qth weight:

dσ2
y′

dkq
= 0⇒ kopt

q =
1∑R

i=1,i 6=q ki

R∑
i=1,i 6=q

k2
i

σ2
i

σ2
q

. (5.5)

Notice that kopt
q is also positive. Differentiating two times with respect to kq and sub-

stituting kq = kopt
q , we obtain a positive value. This confirms that indeed the value

obtained kopt
q corresponds to the unique weight value that optimally minimizes the σ2

y′

value, and the standard deviation σy′ as well:

d2
(
σ2
y′

)
dk2

q

∣∣∣∣∣∣
kq=k

opt
q

=
2σ2

q

∑R
i=1,i 6=q ki(

kopt
q +

∑R
i=1,i 6=q ki

)3 ≥ 0.

�
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Lemma 1 demonstrates that if we look at the value of a particular weight kq, we can find

a value that optimally minimizes the weighted average variance, and therefore minimizes

the output error probability. In the Figure 5.4, we plot a sensitivity of the output error

probability Pe to the modification of a specific weight in its normalized form cq. For

the analysis, we assume different levels of variability in the qth input modeled with

the parameter σq ranging between 0.0 V and 0.4 V . The rest of inputs are considered

altogether with a fixed contribution to the weighted average variability when the value of

weight cq is null: σy′ |{cq=0} = 0.2 V . One can observe in the figure, the different locations

of the Pe minimum and the relation between optimal weights and different levels of

variability. It clearly shows that it is possible minimize the output error probability Pe

if we properly tune the value of weight cq.

Figure 5.4: Variation of the error probability Pe against the weight cq. Standard
deviation in the input q ranges from σq = 0.0 V to σq = 0.4 V and the standard

deviation of the weighted average due the rest of inputs is σy′ |{cq=0} = 0.2 V .

The following conclusions can be drawn from Figure 5.4:

• There is always one and only one cq value in the range from 0 to 1 that minimizes

the error probability Pe in each possible variability environment.

• The optimum cq value is never exactly equal to 0. Even for large levels of deviation

in the qth input with respect to the others, it is useful to have a contribution from

the input q.
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• The optimum cq value is never exactly equal to 1, except from the singular case

with σq = 0 V , which in practice never occurs. Even for small levels of deviation

in the qth input with respect to the others, it is useful to have a contribution from

the rest of inputs.

• To minimize the output error probability Pe, higher weights (close to 1) should be

assigned to less deviating inputs and vice versa.

• When the deviating effect in the qth input σq is equal to the deviating effect of

the rest of inputs σy′ |{cq=0}, the optimum cq value is 0.5. Note in Figure 5.4 that

the curve with the minimum at cq = 0.5 holds σq = σy′ |{cq=0}.

So far we have proved the existence of an optimal value for a particular weight indepen-

dently from the rest of weights. However, the optimization of the entire set of weights

requires an extra effort because the isolated optimization of averaging weights does not

give rise to a global optimum. For example, if we optimize the values of the weights ki

from i = 1 to i = R following the Lemma 1, we do not achieve a globally optimum. The

optimal weight values found in the proof of Lemma 1 depend on the values of the other

weights [see (5.5)]. Therefore, when we modify a weight the optimal value for the rest of

weights changes. As we are looking for the globally minimum output error probability

we need a further step.

In the following we state and prove the Theorem that leads to the global optimization of

weights. Before this we want to note the existence of multiple sets of optimal weights if

we use non-normalized weights. Let us assume that the optimal set of weights that min-

imizes the variance σ2
y′ of a particular AVG is (k∗1, k

∗
2, . . . , k

∗
R). Then (αk∗1, αk

∗
2, . . . , αk

∗
R)

is also an optimal set of weights. Indeed, as the weighted average variance only depends

on the normalized weights [see (3.7)], any scaling operation in the set of weights does

not affect its value. The following Theorem uses normalized weights ci in order to avoid

multiple solutions.

Theorem 1: Given a weighted average y′ =
∑R

i=1 ciyi of R variables normally distributed

yi ∼ N(y, σi), ∀i ∈ (1 . . . R), and averaging weights that satisfy the normalization con-

dition
∑R

i=1 ci = 1, there always exists a set of weights copt
i , i = 1, . . . , R, that optimally

minimizes the standard deviation of the weighted average σy′ .

Proof: We use recursion to prove this Theorem. Let us express the variance of the

weighted average as follows:
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σ2
y′ =

R∑
i=1

c2
iσ

2
i = c2

Rσ
2
R +

R−1∑
i=1

c2
iσ

2
i (5.6)

= c2
Rσ

2
R + (1− cR)2

R−1∑
i=1

(
ci

1− cR

)2

σ2
i︸ ︷︷ ︸

S2
R−1

If we look at the S2
R−1 definition, we observe that it corresponds to a weighted average

with the first R−1 input replicas. The averaging weights defined as c∗i ≡ ci/(1−cR) add

the unity, and therefore accomplish the normalization condition. Hence, S2
R−1 can be

regarded as a new minimization problem with R− 1 normalized weights c∗i independent

from cR.

Thereby, the σ2
y′ minimization problem can be split into two independent subproblems

(type 1 and type 2):

1. First, to minimize S2
R−1 as a function of R−1 normalized weights c∗i , i = 1, . . . , R−

1.

2. Second, to minimize σ2
y′ as a function of a single weight cR (σ2

y′ = c2
Rσ

2
R +

(1− cR)2 S2
R−1). In this case S2

R−1 is regarded as a constant factor obtained from

the first minimization subproblem.

The second subproblem presents a straightforward solution. The minimization of σ2
y′ as

a function of cR, being S2
R−1 independent from cR, leads to the optimal value coptR =

S2
R−1/(S

2
R−1 + σ2

R). Substituting coptR in the second derivative it yields a positive value

and confirms that coptR corresponds to the unique minimum of the function.

In turn, the first subproblem can be split again into two independent subproblems as

before (type 1 and type 2). If we keep splitting the problem this way, R − 2 times in

succession, we get a subproblem that cannot be split again. It corresponds to a function

S2
2 that only depends on two normalized weights and two input variances. Thus, it can

be solved like the second subproblem type.

So far we have decomposed the problem into R − 2 subproblems of type 2 plus one

of type 1 that can be solved optimally. As a result, we have demonstrated that the

whole problem can be solved optimally, and there exists an optimal set of weights that

minimizes the weighted average variance.

�



Chapter 5. Heterogeneous-aware Reliable Designs 54

5.1.3 Optimal Unbalanced Weights

In the previous subsection we demonstrated that it exists a optimal set of weights that

minimizes the output error probability for the U-AVG structure. Therefore, there must

be a way to express the optimal values of weights independently of the other weights

and that is only function of the input variability levels. In order to find this formula we

perform the following analytic computation. We minimize the variance of the weighted

average σ2
y′ , or equivalently its standard deviation that is directly related to Pe as (2.2)

indicates. To perform this minimization considering all the weights ci simultaneously, we

have to use the Lagrange multipliers introducing the additional restriction of normalized

weights. The target function is the variance σ2
y′ and the variables to optimize are the

magnitudes of the averaging weights ci. The normalized weights condition (
∑R

j=1 cj = 1)

must hold. Therefore the target function is

F (c1, c2, ..., cR, λ) = σ2
y′ − λ

 R∑
j=1

cj − 1

 . (5.7)

Differentiating with respect to the normalized weights ci, i = 1, . . . R, recall (3.7), and

the Lagrange multiplier λ, we obtain the following equations

d(F )

dci
= 2copt

i σ2
i − λ i = 1, . . . , R, (5.8)

d(F )

dλ
= 1−

R∑
j=1

copt
j . (5.9)

Matching to zero (5.8), we obtain that the optimal weights are inversely proportional to

the input variances

copt
i =

λ

2σ2
i

(5.10)

Equation (5.9) equal to zero expresses the condition of normalized weights; combining

both conditions, we deduce the value of λ

λ =
2∑R

j=1 1/σ2
j

. (5.11)

Now we can calculate the explicit formula for the optimal weights

copt
i =

1∑R
j=1 σ

2
i /σ

2
j

i = 1, . . . , R. (5.12)



Chapter 5. Heterogeneous-aware Reliable Designs 55

This is the configuration of weights that optimally minimizes the error probability Pe.

Observe that copt
i values are only dependent on the input variances σ2

i . Depending on

the input drifts distribution, each weight should be tuned according to (5.12) in order

to achieve the lowest possible output error probability Pe. Now we can verify all the

conclusions extracted from Figure 5.4. We can see how the optimal weights are small

when the input variance is large and vice versa.

We can also calculate the magnitude of the minimum possible variance for the weighted

average that we obtain when we apply the optimal set of weights. Using (3.7) and

the expression of optimal weights copt
i = λ/(2σ2

i ), we get a closed expression for the

minimum weighted average variance

σ2
y′ min =

λ

2
=

1∑R
j=1 1/σ2

j

. (5.13)

Therefore, it is possible to express each optimal weight in terms of its input variance

and the minimum possible variance of the weighted average

copt
i =

σ2
y′ min

σ2
i

i = 1, . . . , R. (5.14)

The optimal configuration has all the weights copt
i directly proportional to the constant

σ2
y′ min and inversely proportional to the respective input variances σ2

i . We note that the

particular case in which one or more inputs have null variability σi = 0 has to be treated

separately. If this situation happens, then the output error probability minimization is

straightforward: it would suffice us to assign the maximum weight to the input with

null variability cq = 1 and we would obtain the lowest possible output error probability,

Pe = 0, according to (3.7) and (2.2). However this can never reflect a real case as, in

practice, there is always at least a small noise contribution that affects all the inputs.

5.1.4 AVG versus U-AVG

To assess the implications of our proposal, we carry on a reliability analysis for AVG

with balanced and unbalanced weights. Given a non-uniform input drift scenario, we

calculate the yield of AVG and U-AVG taking as a reliability requirement the reference

value presented in Section 2.2 (Pe < 10−4). The used definition of yield can be found in

Section 2.4. In order to simulate realistic environments with heterogeneous variability,

we use the aging and degradation model introduced in Section 2.3 but in an static form

(not changing with time). We basically generate the per replica drift variances following
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the Gamma distribution function

σ2
i ∼ Γ(x; k, φ) =


1

φkΓ(k)
xk−1e−x/φ if x ≥ 0

0 otherwise
(5.15)

with scale parameter φ = 2 and different shape values k reproducing increasing values

of the input replica variances.

In the following experiment, we simulate the AVG behavior in different technology sce-

narios. Each scenario is modeled with heterogeneous input drift variances σ2
i following

the Gamma distribution function with different mean values. We basically perform

10 000 Monte-Carlo simulations and estimate the yield for both architectures (AVG and

U-AVG). Figure 5.5 presents the simulation results against the redundancy factor. One

can observe that U-AVG can deliver the same yield than AVG with a much lower re-

dundancy level R. For example, if we required a 90% yield, given a variability scenario

with E{σi} = 3σmax, we would need eight replicas with the AVG while only two with

the U-AVG. This corresponds to a 4× redundancy saving.

Thus far we have demonstrated that if we know the distribution of deviations among

the replicas at the design time, we can provide better reliability levels at lower cost by

configuring the AVG weights accordingly. However, this improvement is optimal only

for static variability conditions of the system. If the levels of variation gradually change

in time due to degradation, the unbalanced design may become suboptimal. In the

next section, we make a step further and propose a dynamically adapting structure that

modifies the weight values at run-time in order to keep track with the possible variations

of the input deviations.

5.2 The Adaptive Averaging Cell (AD-AVG)

In the previous section, we analyzed the reliability of AVGs in static environments of

variability. We introduced the concept of heterogeneous variability scenario and we

demonstrated the advantages of configuring the averaging weights according to the dif-

ferent input levels of variability. In this section we also consider time-variation of the

input levels of variability in order to take into account the effects of degradation and

aging and dynamically adjust the AVG configuration such that we can tolerate the max-

imum possible amount of variation. For this reason, we have to equip the AVG with

the capability of dynamically reconfiguring the averaging weights according to the time-

varying input variabilities measured at run-time. We call this dynamic architecture the

Adaptive Averaging Cell (AD-AVG). Our AD-AVG proposal, graphically represented in
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Figure 5.5: Yield analysis of AVG and U-AVG against the redundancy factor for
different technology scenarios. The simulated scenarios identified with letters (from A
to F) have associated heterogeneous input variances following the Gamma distribution.
The mean values for the standard deviation range from E{σi} = σmax in scenario A to

E{σi} = 6σmax in scenario F. σmax corresponds to the reference value 0.1344 V .

Figure 5.6, is based on a Variability Monitor implemented as a disagreement detector

like the one suggested in [35]. In Subsection 5.2.3, we develop in detail the proposed

Figure 5.6: Adaptive Averaging Cell (AD-AVG) schematic.

technology implementation. In the following we analyze the main characteristics of the

AD-AVG structure: redundancy overhead, reliability, and tolerance against degradation.
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5.2.1 Adaptive Learning versus Static AVG

Using the degradation model introduced in Section 2.3, we can simulate realistic situa-

tions of circuits that degrade in time. In the following, we analyze the difference between

using adaptive weights (AD-AVG) and static weights (AVG and U-AVG). To do so, we

perform 10 000 Monte Carlo simulations of the AVG structures with increasing amounts

of degradation. Figure 5.7 depicts the simulation results of yield for different size AVG

circuits against the degradation.

Figure 5.7: Yield of different size AD-AVG, U-AVG and AVG against the degradation
in time units.

We observe that at degradation in time 0, there is no difference between AD-AVG

and U-AVG; both structures are configured with the optimal set of weights and the

AVG yield is maximized. However, as the degradation increases, the U-AVG loses yield

quickly regardless of the redundancy level. The U-AVG weights configuration is static

and only optimal for the initial input variability levels; when the circuit degrades, the

configuration of weights becomes suboptimal and after 18 degradation in time units the

U-AVG yield drops below the 0.5. On the other hand, the AD-AVG technique is capable

of tolerating much higher amounts of degradation and it improves notoriously with the

redundancy level R. We can conclude that the AD-AVG always provides the maximum

yield given any particular redundancy factor R.
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Comparing the characteristic curves of U-AVG and AVG in Figure 5.7, we also observe

that the unbalanced approach is better than the AVG only for low redundancy levels

(< 15). Since the U-AVG does not improve with redundancy but AVG does, in the

conditions of this experiment, the AVG outperforms U-AVG for redundancy levels higher

than 15. This is an interesting property of the static weight approaches. If we configure

the weights according to the information of variability levels of fresh devices, the U-

AVG will provide always better results at degradation in time 0. However, as we consider

higher levels of degradation the AVG happens to outperform the U-AVG. For this reason,

we dismiss the U-AVG technique and focus now on the comparison between AVG and

AD-AVG.

Figure 5.8 depicts the results of 10 000 Monte Carlo simulations comparing the AD-

AVG versus AVG, but instead of using the same redundancy level, we impose the same

reliability target under specific degradation conditions. The figure clearly demonstrates

that the AD-AVG consumes less redundancy than AVG: from 9.5× redundancy saving

for a 90% yield after seven degradation in time units to 4.1× redundancy saving for a

90% yield after 75 degradation in time units.

Figure 5.8: Yield analysis of different size AD-AVG and AVG against degradation.
Redundancy levels are chosen to meet the reliability requirements: 90% yield after 7,

25, 45 and 75 degradation in time units.
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5.2.2 Noisy Variability Monitor in the AD-AVG

Thus far we assumed that the information which is driving the learning process is pro-

vided by an ideal Variability Monitor. In practice this cannot be the case as there are

many sources of noise in a real environment such as temperature, external radiation,

interference within the same operating circuit, and discretization noise. Therefore, the

input variances σ2
i estimated by the Variability Monitor are subject to noise:

σ̂2
i = σ2

i + ξi. (5.16)

We model the noise level ξi as a Gaussian random variable with null mean and standard

deviation σs, ξi ∼ N(0, σs). The Variability Monitor is based on the computation of the

disagreements between the AD-AVG output ŷ and the signal provided by each replica yi.

This mechanism was introduced by Mathur and Avizienis in [35]. The averaging weights

are reconfigured by the Weight Drivers according to the input variance estimators and

the optimal averaging weights’ formula found in Subsection 5.1.3 [see (5.12)]:

ci =
1/σ̂2

i∑R
j=1 1/σ̂2

j

(5.17)

In the following experiment, we analyze the influence of this noise in the effectiveness

of the learning process. We perform 10 000 Monte Carlo simulations of the AD-AVG

against degradation including the effect of different levels of noise in the Variability

Monitor. Figure 5.9 reproduces the obtained results for the yield of different size AD-

AVG.

As expected, the noise added to the measures provided by the Variability Monitor wors-

ens the characteristic reliability of the AD-AVG. We observe that the negative impact of

noise increases with the redundancy level. For example, if we want a 90% yield in two-

input AD-AVG with a noise affecting the monitor with standard deviation σs = 0.06 V ,

then the lifetime is reduced in two degradation in time units with respect to the noise-

free case, whereas the same noise in the case of five-input AD-AVG reduces the lifetime

in seven degradation in time units. From this experiment, we can conclude that the

use of sensors to learn the variability changes over time is useful to improve the reli-

ability of AVG structures as long as the noise in the Variability Monitor is small or

comparable to the variability levels that it has to measure. The characteristic reliability

of AD-AVG degrades with unreliable Variability Monitors, and therefore the particular

tradeoff between reliability and overhead should be analyzed in each case.

If we extend this experiment to AD-AVGs with larger number of replicas, we discover

an interesting but counter-intuitive resonance phenomenon that deserves further study.
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Figure 5.9: Yield analysis of different size AD-AVG against degradation. Simulations
include the effect of different noise levels in the Variability Monitor (from σs = 0 V to

σs = 0.08 V ).

Under particular conditions of noise in the Variability Monitor and redundancy level the

AD-AVG reliability starts diminishing against degradation, as expected, but at a certain

moment in time it increases due to a resonance phenomenon and reaches a maximum.

After this peak of maximum reliability it decreases again with degradation. We refer to

this effect as Degradation Stochastic Resonance (DSR) and devote the next Section 5.3

to analyze in detail its fundaments, the impact it has on the reliability of AD-AVGs,

and the possibility to control it.

5.2.3 AD-AVG Implementation

In the following, we suggest a possible implementation for the AD-AVG technique. Al-

though we did not propose a specific implementation for the U-AVG in the previous

section, this could be obtained similarly to the AD-AVG but simplifying the Variability

Monitor to a Detector that would operate only in an initial state of setting up. The rest

of the structure have exactly the same functionality, and thus uses the same implementa-

tion. The AD-AVG structure graphically depicted in Figure 5.10 is based on the use of a

Variability Monitor, a Weight Drivers block and a crossbar of switching resistive devices,

such as memristors [64, 65]. The dynamic adjustment of weights requires, on one hand,

a technique for gathering the required information and, on the other hand, a technology
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with high reconfiguration capabilities to implement the adjustable weights. The use of

resistive switching crossbars provides this reconfiguration feature and represents a good

candidate for future technology with a high integration capability.

Figure 5.10: Adaptive Averaging Cell (AD-AVG) implementation in switching resis-
tive crossbar technology.

The whole architecture can be decomposed in three layers. The first one corresponds

to the input layer and receives the input signals from the replicas. The second layer

performs the averaging operation and is composed by the resistive switching crossbar,

the Variability Monitor, and the Weight Drivers. Finally, the third layer is the decision

layer, it restores the binary output value by means of a threshold function.

5.2.3.1 Variability Monitor

We first propose a topology for the Variability Monitor implementation. It is based

on a disagreement detector between the AD-AVG output ŷ and the signal provided by

each replica yi, i = 1, . . . R. This mechanism was already used by Francis P. Mathur

and Algirdas Avizienis in [35]. Checking at runtime the differences between the AD-

AVG output, which is statistically more reliable than the inputs, and each of the input

replicas, we can establish a criterion for evaluating the relative variability of each replica.

For example, we can estimate the standard deviation associated to each replica σ̂i by

counting the number of times ni that the difference ŷ− yi exceeds a certain level L in a

given number of clock cycles N . With this number we can access a look up table that

stores the relationship between ni and σ̂i:

σ̂i =
L√

2 inverfc (2ni/N)
i = 1, . . . , N (5.18)
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This mechanism allows us to keep the adapting process running during the circuit nor-

mal operation, and therefore it does not require any test implementation to obtain the

information of input variability levels.

5.2.3.2 Weight Drivers and Switching Resistive Crossbar

In order to implement the adjustable averaging weights required by the AD-AVG ar-

chitecture, we propose the use of switching resistive crossbars. Figure 5.11 reproduces

the basic crossbar layout for the AD-AVGs. In this structure, each input replica is con-

nected to a horizontal metal line that can be connected or disconnected to N vertical

lines by means of resistive switching devices which are located on the crossing points of

the structure. In Figure 5.11, black dots correspond to connected devices. The state of

each device can be easily controlled by the Weight Drivers by selectively applying specific

configuring voltages to the vertical and horizontal lines. The basic idea to implement

an adjustable averaging weight for each input line is to connect or disconnect more or

less devices in the corresponding input line, and thus obtain a configurable connection

resistance. Using this feature we can set up a network of interconnects that averages

the input replicas with specific reconfigurable averaging weights. We refer by ni to the

number of connected devices in the input line i.

Figure 5.11: Crossbar layout view of AD-AVG to configure the averaging weights.

Hence, given a redundancy factor R from the initial stages of the AD-AVG design; this

parameter is associated to the number of horizontal metal lines. The number of vertical

metal lines N determines the maximum number of interconnects per input, and therefore

the minimum resistance value and the maximum accuracy to configure the weight values.

The total area in the crossbar structure is proportional to the number of vertical metal

lines and the redundancy factor (Area ∝ R × N). During the AD-AVG operation
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Weight Drivers receive the information regarding the relative replica variabilities from

the Variability Monitor. Based on these data a different number of cross-points ni in

the switching resistive crossbar are connected or disconnected. In order to increase the

weight value of a particular input, the number of connected cross-points is increased,

and vice versa, to decrease the value cross-points are disconnect in the corresponding

horizontal line. Apart from the configurable region of R × N devices, figure 5.11 also

shows an additional metal line that corresponds to the output signal y′. This line is

connected to all the vertical lines and collects the weighted average of the inputs. The

resulting signal is fed to a threshold function that amplifies the signal and restores the

binary value.

The resistive switching devices exhibit a different resistance value depending on the con-

figuration state (Ron and Roff). For example, in the case of memristors the characteristic

resistances are: Ron ' 1 MΩ and Roff ' 1 GΩ. Analyzing the equivalent circuit we can

calculate the analytic expression of signal y′ in terms of the inputs yi and the crossbar

configuration of connections ni, y = 1, . . . , R, see (5.19).

y′ =
1

RNRon +
∑R

i=1 ni (Roff −Ron)

R∑
i=1

[NRon + ni (Roff −Ron)]× yi (5.19)

In order to prove the feasibility of the proposed implementation we perform a Monte

Carlo simulation of a 5-input AD-AVG with the described topology. The simulation

uses the degradation model introduced in Subsection 2.3. Figure 5.12 depicts the tem-

poral evolution of the input variances (σ2
i ), the adaptive averaging weights (ci), and the

variance of the weighted average (σ2
y′). We can observe how the input variances keep

increasing over time and how the averaging weights are modified in order to minimize

the weighted average variance.

5.3 DSR-aware AD-AVG

In this section, we analyze in detail the Degradation Stochastic Resonance (DSR) phe-

nomenon, which was first mentioned in Subsection 5.2.2, and increase the AD-AVG

design to take notice of it. This counter-intuitive effect takes place in the AD-AVG

structure as a result of the combined effect of hardware degradation and the noise

present in the Variability Monitor, i.e., the AD-AVG part in charge with the evalu-

ation of the variability levels in the input replicas. The DSR effect is related to the

well-known Suprathreshold Stochastic Resonance (SSR), which was first analyzed by

Stocks in 2000 [66]. Some interesting applications of SSR phenomenon are sigma-delta

modulators [67] and analog-to-digital converters [68]. In the case of AD-AVG, DSR
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Figure 5.12: Monte Carlo simulation of a 5-input AD-AVG with the proposed topol-
ogy. The subplots correspond to the five input replica variances (σ2

i ), the five adaptive
averaging weights (ci), and the variance of the weighted average (σ2

y′) against the degra-
dation.

occurrence provides an unexpected reliability enhancement after a certain degradation

level is reached and under specific noise conditions. Our simulations indicate that a

DSR induced reliability peak is reached at a particular amount of degradation in time,

which depends on the AD-AVG reliability level and input variability level. Thus, the

DSR phenomenon implies that while the system degradation increases the AD-AVG re-

liability evolves as follows: after an initial decrease, it improves until a maximum value

is reached at the DSR peak, after which it finally steadily decreases to zero.

For example, if we take a 20-input AD-AVG with a noise level in the Variability Monitor

of 0.06V the reliability evolves as follows (see Figure 5.13): (i) The yield starts from a

high value of 0.97 in fresh devices and gradually decreases to 0.89 when the degradation

level is reaching 35 units; (ii) As the degradation is increasing, due to the DSR effect, the

yield starts increasing up to 0.94, at the DSR peak which corresponds to an accumulated

degradation in time of 60 units; (iii) After the DSR peak the circuit’s accumulated

degradation causes a drop in the yield characteristic. This particular AD-AVG example

was chosen to clearly show the DSR effect. In general, DSR causes different yield

evolutions depending on the circumstances of redundancy, noise and degradation level.

We also want to point out that even in current technology a 20x replication appears to

be unacceptable, due to device scaling, which results among other positive aspects in
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a low reliability, such a solution might be unavoidable. Moreover if we consider some

emerging technologies such as solid-state nanopores high replications levels of up to 20

are not prohibitive any longer [69, 70].
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Figure 5.13: Yield of 20-input AD-AVGs against degradation with noise in the Vari-
ability Monitor of magnitude σs = 0.06V .

As DSR results in yield improvement under certain aging conditions a legitimate question

to ask is: Can one take advantage of DSR over the entire lifetime of the system? In

the following we address this question and propose a method to artificially create the

conditions such that DSR induced yield peaks are obtained for a large part of the system

life time, i.e, from fresh devices (in particular, from the moment when the yield falls

under a minimum acceptable value) up to the end-of-life (the degradation is that high

that no yield improvement is possible any longer).

To this end we first demonstrate that by artificially changing the variability level of the

AD-AVG inputs we can control the DSR peak occurrence and position, thus for any

degradation level we can find an input variability level that induces a DSR yield peak.

Subsequently, we propose to augment the AD-AVG structure with per input controllable

noise injectors and to extend the Variability Monitor such that it can compute, apart of

the required input weight values, also the noise level that virtually increases the circuit

amount of degradation. In this way the AD-AVG is capable of creating the required

conditions for the DSR peak occurrence, regardless of the actual system degradation

level.
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Our simulations indicate that the augmented AD-AVG scheme is capable, besides of

eliminating the yield decrease range that normal AD-AVGs exhibit prior to the DSR

peak, of providing higher yield levels. This extra benefit can be explained by the fact that

even we are placing our structure under the DSR peak conditions the system presents a

lower level of accumulated degradation than the one associated to the DSR peak, which

results in an yield improvement.

If we apply the proposed DSR control by noise injection to the same example as before,

i.e., a 20-input AD-AVG with a noise level in the Variability Monitor of 0.06V, the

reliability evolves as follows (see Figure 5.19): (i) The yield starts from a high value of

0.97 in fresh devices and gradually decreases to 0.94 during the first 6 units of degradation

in time. In this lifetime part no noise injection is needed; (ii) From 6 degradation units

further noise injection is applied and a nearly flat yield curve is obtained until the DSR

peak degradation level (60 units) is reached. In this part of the yield characteristic we

get a minimum guaranteed yield level of 0.94 and a maximum of 0.97; (iii) After the

DSR peak the circuit’s accumulated degradation causes a drop in the yield characteristic

until it eventually reaches zero.

5.3.1 DSR Fundaments

In this subsection, we analyze the DSR phenomenon aiming at better understanding its

basics fundaments. To do so we first focus on a particular case of DSR with a 2-input

AD-AVG structure (R=2). This example reveals us the circumstances of noise under

which the DSR effect occurs. After this example we also perform a sensitivity analysis

of the AD-AVG yield to the degradation of one particular input. This result permits us

to generalize the DSR effect to AD-AVG structures with an arbitrary number of inputs.

Finally, we show simulation results for the AD-AVG structure with different redundancy

factors R and noise levels in the Variability Monitor (σs) in order to conclude a clear

overview of the DSR impact in AD-AVG structures.

5.3.1.1 DSR in 2-input AD-AVG

Focusing on a simple AD-AVG case with 2-inputs we are able to perform an exact

analytical study of the DSR effect. We analyze the case of a 2-input AD-AVG when one of

the inputs has very small, even null variability level (σ1 ≈ 0 V ) and the variability of the

other one (σ2) increases over time as a consequence of degradation. In order to perform

the calculations we model the statistics of the input variability levels with parameters

σ1(≈ 0 V ), σ2, the noise in the Variability Monitor σs, and the reliability specification

of maximum admissible output variability σmax (above this level we assume cell failure).
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First, we perform a Monte Carlo simulation; Figure 5.14 depicts the resulting yield

against the variability in the input 2 (σ2). We observe that the yield is always 1 when
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Figure 5.14: Monte Carlo simulation result of a 2-input AD-AVG yield against σ2
with null variability in the input 1 (σ1 = 0 V ). We consider different levels of noise in
the Variability Monitor (σs) and a maximum admissible output variability of σmax =

0.1344 V .

σ2 < σmax. This is because, in these conditions, any possible combination of weights

gives place to an output with a variability level lower than the maximum tolerated.

However, as soon as σ2 becomes greater than σmax the yield begins to decrease at

different rates depending on the level of noise in the Variability Monitor. Obviously, the

greater the noise the greater the yield loss. This detrimental effect of degradation, or

increase in the variability, happens only during a certain range of input variability. After

a critical variability level in the input 2 (σ∗2) the effect of further degradation changes

and becomes beneficial; this is the starting point for the DSR effect in this particular

case (Figure 5.14). We can understand this phenomenon by realizing that as the input

variability σ2 grows the AD-AVG is capable of calculating more precisely the optimal

value of the averaging weights. The ratio between the variability σ2 and the noise in the

Variability Monitor σs increases and, therefore the measure of input variability necessary

to calculate the averaging weights becomes more reliable. In fact, the AD-AVG gives

more weight to the input 1, which has null variability, and the yield grows up to 1 again.

For this particular case it is possible to prove the effect analytically. Given the condi-

tions described for this example we can calculate the probability density function of the
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averaging weights fc1(c1), fc2(c2) and the yield of the AD-AVG structure Y . Taking the

derivative of the yield with respect to the variability level σ2 we obtain a closed ana-

lytic expression that reveals the impact of degradation in the reliability of the structure,

see (5.20).

dY

dσ2
=

1√
2πσs

√
σmax

σ2
e
−σmaxσ2

2σ2s erf

(√
σ2(σ2 − σmax)√

2σs

)

− σmax

πσ2

√
σ2(σ2 − σmax)

e
− σ22

2σ2s (5.20)

Matching to zero (5.20) we obtain the condition in terms of accumulated degradation

(σ2) that the AD-AVG system must satisfy in order to start experiencing the DSR effect,

see (5.21). In this example we define this characteristic point of change from detrimental

to beneficial degradation as the critical variability level σ∗2.

1√
πa
× e−a2 = erf(a) (5.21)

Where

a2 =
σ∗2(σ∗2 − σmax)

2σ2
s

. (5.22)

Solving this equation we get the expression of σ∗2:

σ∗2 =
σmax

2
+

√(σmax

2

)2
+ 0.769 σ2

s . (5.23)

Substituting this formula with the simulation parameters of Figure 5.14 we can verify

the analytical model, see Table 5.1, when compared with simulation results. Using this

relation it is possible to find the critical variability level σ∗2 of the AD-AVG for any given

noise level and reliability requirement.

5.3.1.2 AD-AVG yield sensitivity analysis

In order to extend the previous result to AD-AVG systems with arbitrary number of

inputs, we perform a sensitivity analysis of the AD-AVG’s yield to the variability level of

one particular input (the ith one). With this experiment we demonstrate the occurrence

of the DSR effect in a general AD-AVG case. To do this we assume an R-input AD-AVG

and analyze the sensitivity of the weighted average variance against the contribution of
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Table 5.1: Critical variability levels (σ∗2) of DSR effect in a particular case of 2-input
AD-AVG with null variability in the first input.

σs (V) σ∗2 (V)

0.00 0.1344

0.05 0.1474

0.10 0.1777

0.15 0.2149

0.20 0.2550

0.25 0.2965

the ith input. We separate the general output variance expression as follows:

σ2
y′ = c2

iσ
2
i +

R∑
j=1,j 6=i

c2
jσ

2
j . (5.24)

We generate random sets of R − 1 variance values σ2
j , j = 1, . . . , R, j 6= i, following

the Gamma distribution function as in previous studies [71]. As for the ith variability

(σi), we swept its value from 0 to 0.4 V in the Monte Carlo simulations. In these

conditions, we estimate the AD-AVG’s yield taking into account different levels of noise

in the Variability Monitor (σs). Figure 5.15 depicts the simulation results against the

influence of σi.

We note in this experiment that ideally (when the noise in the Variability Monitor

is null) the AD-AVG yield is 1 as long as σi < σmax, and after this value the yield

decreases gradually to 0.93. This happens because the AD-AVG structure with null

noise perfectly optimizes the reliability. Therefore, while the ith variability is lower

than the reliability requirement σmax the AD-AVG yield is 1, and after this value the

yield decreases gradually to the maximum yield achievable with the remaining R − 1

inputs. On the other hand, when the Variability Monitor is affected by noise the optimal

weight values are calculated imperfectly and the yield is not maximized. We observe

in the figure that the impact of this imperfect weight configuration is not homogenous

throughout all the values of ith input variability. The yield loss presents a resonance

effect with the ith input variability for different levels of noise in the Variability Monitor

(σs). This result together with the previous example evidences the relevance of the DSR

effect in the AD-AVG structure.
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Figure 5.15: Sensitivity analysis of AD-AVG’s yield with multiple inputs to the vari-
ability of input ith for different levels of noise (σs) in the Variability Monitor. The figure
above shows the AD-AVG yield and the lower shows the yield loss which is defined as

the yield with a null noise in the Variability Monitor (σs = 0) less the yield.

5.3.2 DSR in AD-AVG

Once we have perceived the intuition of the DSR effect and demonstrated its applicability

to general AD-AVG cases we focus in this subsection on the analysis of typical AD-AVG.

Following with the previous simulations we analyze now AD-AVG structures against the

degradation in time and observe the evolution of reliability. This time we need to use the

degradation model described in Section 5.2. We simulate different size AD-AVGs with

different levels of noise in the Variability Monitor (σs) and estimate the corresponding

yield. Figure 5.16 depicts the simulation results for redundancy factors R = 3, 10, and

20.

In the figure we clearly observe how the yield characteristic of AD-AVG changes over

time due to the DSR effect. We also note that the influence of this resonance phenomena

is more significative at higher levels of redundancy. In the examples of Figure 5.16 the

DSR effect is not perceived for the 3-input AD-AVG whereas it does for the 10 and 20

inputs AD-AVG. Another conclusion that we can extract from the figure is that DSR

implies a diminution of the negative influence of noise in the Variability Monitor when the

accumulated level of degradation is significantly higher than the noise level. In fact, both

Figure 5.15 and Figure 5.16 show a negative impact of noise in the Variability Monitor
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Figure 5.16: Yield analysis of different size AD-AVGs against degradation for different
levels of noise (σs) in the Variability Monitor.

that increases for low levels of degradation or input variability and then decreases after

a critical amount of degradation in time. From this point we identify the characteristic

degradation in time units associated to the resonance peak as the DSR virtual age of the

circuit. For example, the DSR age of 20-input AD-AVG with a noise in the Variability

Monitor of σs = 0.06V is 60 units of degradation in time.

Thanks to this effect it is possible to obtain higher factors of AD-AVG yield after specific

amounts of degradation. Regarding the experiment in Figure 5.16 on the DSR effect we

can extract the following counter-intuitive conclusions:

• The DSR effect is more relevant in AD-AVGs with larger number of inputs.

• Given an AD-AVG in a particular situation of degradation in time and noise level

it is not necessarily the best option to use all the available replicas. There are situ-

ations in which less input replicas provide higher yield with the same degradation

in time and noise in the Variability Monitor due to the DSR phenomenon.

• We would increase the system yield if we could artificially increase the amount of

degradation in time up to the resonance peak. This operation is feasible as long

as the level of degradation in time is below the DSR peak degradation level. This

will be contemplated in next section.
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5.3.3 DSR-aware AD-AVG design

In previous subsections we demonstrated that after a certain degradation level the DSR

phenomenon occurs, which results in an yield improvement. Based on this we conclude

that degradation can also have beneficial effects and one can embrace it and try to take

advantage of it whenever possible. However the DSR enhancement becomes effective only

after a certain system degradation is accumulated because one cannot take advantage

of it in fresh devices. In order to extend the DSR benefit over the entire system lifetime

we propose in this subsection a DSR tailored AD-AVG structure. The main idea behind

our proposal is to artificially create degradation symptoms in the AD-AVG such that it

exhibits, regardless of the real degradation level, the DSR peak behavior/yield. To this

end we first analyze the relation between AD-AVG degradation, input variability, and

the DSR occurrence and demonstrate that by increasing the input variability we can

induce DSR peak conditions at any degradation level. In other words by increasing the

input variability a virtual degradation correspondent to the DSR peak can be induced in

the AD-AVG system. Based on this we further demonstrate that by run-time controlling

the input variability we can place the system yield above the DSR peak level for a large

range of degradation levels, i.e., most of the system lifetime span. Finally, we briefly

discuss the practical implications of this method on the AD-AVG cell organization and

sketch a potential implementation of DSR tailored AD-AVG cells.

5.3.3.1 DSR Occurrence Control

The main idea behind extending the DSR effect occurrence is to add virtual degradation

to the system in order to create DSR peak degradation conditions regardless of its actual

degradation level. Thus, to virtually make the system behave as it had the amount of

degradation associated to the DSR peak. Degradation affects the hardware and causes

a variability increase in the input signals. Therefore, one way to achieve this virtual

degradation is to increase the input variability levels to make the system behave like it

would have been in a higher degradation status. However, we have to take into account

that only reversible approaches can avoid reducing the circuit lifespan. In fact, if we

increase the circuit degradation using an irreversible procedure we are maximizing the

reliability at the present moment but we are compromising the future. As degradation

always keeps increasing irreversibly the amount of virtual degradation we need to get to

the resonance peak decreases over time. In this line of reasoning we propose the use of

controllable noise injectors that can easily modify the magnitude of noise added to the

inputs. A detailed explanation of the proposed controllable noise injectors is given in

Section 5.3.3.2. In the augmented AD-AVG structure the practical control of DSR effect

takes place inside the Variability Monitor and Weight Drivers block, see Figure 5.17.
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Based on the estimated input variability levels σ̂2
i it is possible to approximate the

optimum noise level as shown next.

Figure 5.17: Adaptive Averaging cell (AD-AVG) architecture with independent noise
generators added to the inputs.

In order to test the efficiency of this idea we analyze the impact of adding Gaussian

noise to the AD-AVG inputs on the overall system reliability. To perform this analysis

we take as a reference the curve in Figure 5.16 corresponding to 20-input AD-AVG with

a noise in the Variability Monitor of σs = 0.06V and compare it with the case when

noise with different magnitudes is added to the AD-AVG inputs. We basically repeat

the same Monte Carlo simulations which results are depicted in Figure 5.16 but now we

are adding a noise signal εi to each input yi.

yi′ = yi + εi. (5.25)

We assume that the εi signals are independent from each other and follow a Gaussian

distribution with null mean and standard deviation σx (εi ∼ N(0, σx)). Figure 5.18

depicts in thick blue line the yield of the AD-AVG cell with noise of magnitude σs =

0.06V in the Variability Monitor and in thin red lines the impact of adding noise to

the inputs of magnitude σx = 0.05V , 0.10V , and 0.20V . As one can easily observe in

Figure 5.18 the DSR peak is shifted towards lower levels of degradation by applying

different input noise levels σx. For example, if we add an input noise of σx = 0.2V

we shift the DSR peak from 60 to 45 units of degradation in time. This result proves

that we can really control the DSR phenomenon in the AD-AVG structure, and we can

get the DSR peak enhancement conditions at any level of degradation below the DSR

peak. Besides, one can also observe in the figure that this method is not only providing

an enhanced yield earlier than the natural DSR peak but it also improves the yield

significantly over the DSR peak depending on the particular amount of degradation.

For example, in the previous simulation given a degradation level of 45 units we can
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Figure 5.18: Yield against degradation of 20-input AD-AVGs with different levels of
noise added to the inputs. Thick blue line correspond to the AD-AVG cell yield with
noise in the Variability Monitor of magnitude σs = 0.06V . Thin red lines correspond
to the impact of adding noise to the inputs of this cell with different magnitudes:

σx = 0.05V , 0.10V , and 0.20V .

increase the yield from 0.91 to 0.97, which is higher than the resonance peak yield, i.e.,

0.94.

Given that we demonstrated that we can control the DSR peak position by means of

input variation levels we can make a steep forward and define a strategy that allows us to

get the maximum yield during all the circuit lifetime, by enabling DSR peak relocation

as a consequence of degradation evolution. The basic principle of the DSR control is

to check at runtime the instantaneous amount of degradation in terms of the input

variability estimators and update the input noise magnitude accordingly. The target

is to keep the reliability characteristic at the highest value regardless of the particular

degradation level. In order to observe which is the input noise magnitude that we have

to inject into the circuit in order to accomplish our goal we present in Figure 5.19

simulation results for a 20-input AD-AVG with a noise in the Variability Monitor of

magnitude σs = 0.06V sweeping over different input noise levels from σx = 0V to

σx = 0.9V . Figure 5.19 depicts in thick blue line the curve associated to the null input

noise case, thin colored lines are the curves associated to the sweeping values of σx from

0V to 0.9V. We also highlight in the figure in thick black line the curve that the yield

follows when we apply the proper input noise magnitude at each degradation in time.
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Figure 5.19: Yield against degradation of 20-input AD-AVGs with different levels of
noise added to the inputs. Thick blue line correspond to the AD-AVG cell yield with
noise in the Variability Monitor of magnitude σs = 0.06V . Thin colored lines correspond
to the impact of adding noise to the inputs of this cell with different magnitudes from
σx = 0V , σx = 0.9V . The thick black line corresponds to the curve followed by the
yield when the proper input noise magnitude at each degradation in time is applied in

order to maximize the reliability.

If we apply the proper noise magnitude we can move along the involute of the thin colored

curves obtaining a yield even higher than that provided by the resonance peak. Since

finding the exact relation between optimum input noise magnitude σx and degradation

level is impractical, if not impossible, we propose a numerical approach. In the same

example simulated before, a 20-input AD-AVG with a noise in the Variability Monitor of

magnitude σs = 0.06V , we find numerically this relationship and the result is presented

in Figure 5.20. The curve indicates that a nearly linear decreasing relation between

both magnitudes exists. It is, therefore, possible to achieve a good approximation of

the noise magnitude σx based on a numeric approach. DSR control unit only has to

implement a linear decreasing function with the estimated input variability levels. We

can describe the evolution of the injected noise magnitude σx for the DSR control as:

(i) We start with an initial stage in which the circuit is young and healthy and no DSR

yield enhancement is needed. During this period of time a null input noise magnitude

is the best option σx = 0V . (ii) After six units of degradation in time the DSR control

becomes useful with an input noise magnitude of σx = 0.8V . From this moment and

during the rest of the circuit lifetime we have to apply an input noise magnitude that
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Figure 5.20: Magnitude of input noise σx against degradation in time that maximizes
the reliability of a 20-input AD-AVG with noise in the Variability Monitor of magnitude

σs = 0.06V based on the DSR effect.

decreases approximately linearly against the degradation level. (iii) Finally, when the

natural DSR peak degradation level is reached, the optimum input noise magnitude

arrives to zero and afterwards the circuit reliability drops.

5.3.3.2 Controllable Noise Injectors Implementation

In order to virtually increase the instantaneous amount of degradation we may think

of different strategies. In this thesis, we choose the option of adding independent noise

injectors of controllable magnitude εi to the inputs, see Figure 5.17. Using this technique

we can increase the input variability levels at any time with a particular magnitude. We

can also gradually reduce the magnitude of added noise to zero as the circuit continues

to experience degradation.

To implement the noise injectors we propose to make use of diodes designed to work

through avalanche breakdown. We can artificially generate electrical noise for each input

by controlling the avalanche breakdown phenomenon occurring in R different diodes in

the AD-AVG structure, one for each input replica. This phenomenon has been widely

studied [72] and it offers us an easy solution for the DSR control.
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By adding a controllable noise injector to each input we modify the input variability

levels as

σ2
i′ = σ2

i + σ2
x. (5.26)

We assume a normal distribution for the noise added εi to the input signals with a

null mean and standard deviation σx. With the proposed implementation the noise

magnitudes generated by the injectors are independent as required.

5.4 Averaging Cell Linear Threshold Gate (AC-LTG)

In this section, we present a fault-tolerant nanoscale architecture based on the imple-

mentation of logic systems with averaging cells linear threshold gates (AC-LTG). We

compare the tolerance to manufacturing and environment deviation of our approach

and the well known NAND multiplexing technique. We show that the AC-LTG is a

valuable alternative in specific nanoscale conditions. The analyzed structure combines

the concepts of Averaging Cell (AC) [55] and Linear Threshold Gate (LTG) [73]. Both

architectures share the same structure of weighting average and threshold operation, as a

result the extension of the LTG architecture with the AC technique takes full advantage

of its natural capabilities and does not require any additional effort in the design stages.

The AC-LTG combination was first proposed as a way to implement fault-tolerant com-

puting architectures by Ferran Martorell et al. in 2006 [69]. We revisit this strategy

and perform an extensive reliability analysis taking into consideration the sources of

variability that affect both the behavior of devices and the manufacturing process.

5.4.1 AC-LTG Mathematical Model

Every logical operation implemented by an AC-LTG can be expressed by the following

equations [see (5.27) and (5.28)].

ŷ = sign

(
M∑
i=1

wixi − T

)
(5.27)

xi =

N∑
j=1

cjx
j
i ∀i ∈ (1 . . .M), (5.28)

M being the number of input variables (xi) composing the Boolean function, N the

number of available replicas of each input and T (= t · V ) the threshold decision level.

Weights W = (w1, w2, . . . , wM ) define the specific synthesized Boolean function whereas
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c implement the average of each input bundle (c = 1/N). Figure 5.21 shows the generic

scheme of a M -input AC-LTG with redundancy level N .

Figure 5.21: Schematic of M -input AC-LTG with redundancy level N .

Each input xi, ∀i ∈ (1 . . .M), comes from the average of N error-prone physical replicas

xji , ∀j ∈ (1 . . . N), which represent the ideal binary variable x∗i ∈ (0, V ). Logic values

0 and 1 are physically represented by voltage levels 0 and V respectively. We use the

fault model introduced in Section 2.2 to model the variability in the input voltage levels

xji due to internal noise, device parameter deviations, and physical defects:

xji = x∗i + ηj , (5.29)

where ηj ∼ N(0, σηj ). Therefore, by the properties of the normal distribution and con-

sidering homogeneous variability, each input xi follows a normal statistical distribution

with mean µxi = x∗i (the ideal input value) and standard deviation σxi = σηj/
√
N .

After the initial redundancy layer, each input xi is weighted by a parameter wi that

controls its impact on the final average y′. Many different Boolean functions can be

synthesized adjusting the configuration of weights. And finally, a threshold operation is

performed with an equivalent decision level T . As a result, the restored binary variable

ŷ is obtained.

5.4.2 Implementable 2-input AC-LTG Boolean Functions

LTG are capable of implementing unate functions of any number of inputs. All non-

linearly separable Boolean functions have to be constructed by combinations of more

than one LTG. In this subsection, we present all possible non-redundant 2-input unate

functions and the corresponding configuration of weights and threshold needed to im-

plement them in the AC-LTG structure introduced above. The information has been
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obtained from the work by Goparaju et al. [74]. Functions are identified with notation

fi, where i represents the decimal equivalent of binary identification of functional output

values of mimterms of f . It is also assumed a manufacturing process that restricts the

values of weights and threshold to integers in the range [-25,25].

Table 5.2: 2-input LTG functions and the associated configuration of weights and
threshold.

Function fi Configuration {w1, w2, t}

f1 {-25,-25,-9}

f2 ≡ f4 {-25,16,6}

f7 {-18,-18,-25}

f8 {18,18,25}

f11 ≡ f13 {-16,25,-6}

f14 {25,25,9}

5.4.3 N-redundant 2-input NAND AC-LTG

In this subsection we analyze the particular case of 2-input NAND AC-LTG, see Fig-

ure 5.22. We want to study the effects of variability in all possible sources of variability

associated to the AC-LTG architecture. Although we focus on the NAND gate, the

results are easily transportable to other versions of 2-input AC-LTG, such as AND, OR

and NOR gates. We apply the configuration presented in the Table 5.2 for function f7,

which corresponds to the 2-input NAND function:

w∗1 = w∗2 = −18 t∗ = −25 (T ∗ = −25V ) (5.30)

This configuration is optimum for tolerating deviations in the assignment of weights

due to non-ideal manufacturing process. In the literature, the capability to tolerate

deviations in the weights is measured with a parameter dmax that corresponds to the

maximum deviation that can affect the weights and threshold before changing the syn-

thesized Boolean function. In the particular case of NAND function the robustness

parameter is dmax = 3.5.

∆w1 = |w1 − w∗1|, ∆w2 = |w2 − w∗2|, ∆t = |t− t∗| (5.31)
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Figure 5.22: Schematic of N-redundant 2-input NAND AC-LTG with optimized
precision-limited configuration of weights and threshold robust to manufacturing in-

accuracies (W = {−18,−18}, T = −25V ).

max(∆w1,∆w2,∆t) ≤ dmax (5.32)

We make here a parametric analysis of a generic 2-input AC-LTG. Using variables for

the values of weights and threshold W = {w1, w2} and T = t · V we can compute

the probability of producing an erroneous output given the required Boolean function

to synthesize (NAND in this particular case) and the four possible input combinations

{00, 01, 10, 11}. Averaging the four results we obtain a formula to express the gate

output error probability Pe:

Pe =
1

8
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1

σ2
η1
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2
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η2
N + t2σ2

t

)

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(5.33)
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We observe that weights W = {w1, w2}, and threshold parameter t do not depend on

any scaling factor. They can be normalized and no change is produced in the resulting

error probability Pe. Applying this observation we define here the normalized weights

Wn = {wn1 , wn2 } ≡ {w1/t, w2/t} in order to reduce the number of variables involved

in the Equation (5.33). Before introducing this change we present another definition

in order to reorganize and normalize the remaining intervening terms, converting them

into unitless parameters. It refers to the input standard deviations σx1 , σx2 , the drift in

the threshold level σt, the voltage V and the redundancy N :

σn1 ≡ ση1/σt
√
N

σn2 ≡ ση2/σt
√
N

V n ≡ V/σt

Applying all the above definitions into equation (5.33) it yields:

Pe =
1

8

(
1− erf

(
(wn1 + wn2 − 1)V n√

2((wn1σ
n
1 )2 + (wn2σ

n
2 )2 + 1)

))

+
1

8

(
1 + erf

(
(wn1 − 1)V n√

2((wn1σ
n
1 )2 + (wn2σ

n
2 )2 + 1)

))

+
1

8

(
1 + erf

(
(wn2 − 1)V n√

2((wn1σ
n
1 )2 + (wn2σ

n
2 )2 + 1)

))

+
1

8

(
1 + erf

(
−V n√

2((wn1σ
n
1 )2 + (wn2σ

n
2 )2 + 1)

))
.

(5.34)

Equation (5.34) describes Pe and allows us to analyze the effects of variability due to

input drift sources (ση1 , ση2), drift in the threshold decision level (σt) and deviation

in weights and threshold assignment (∆w1, ∆w2, ∆t). It also provides us a way to

study how much the impact of this effects can be diminished by increasing the level of

redundancy N or the source voltage V .

• Ideal Case (Null variability):

Figure 5.23 depicts the Pe color map in the plane of normalized weights for the

ideal case. Cool colors represent low probabilities while hot high probabilities.

In this ideal case, with null variability, there is a region in the Wn-plane where
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Figure 5.23: Pe color map of N-redundant 2-input NAND AC-LTG with null vari-
ability (ση1 = ση2 = σt = 0). In small red marker the optimized precision-limited

configuration W = (−18,−18), t = −25 (Wn = (0.72, 0.72))

the error probability Pe is null (the blue triangle). With small red marker the

position of the previously referred configuration is shown (See Equation (5.30),

W = (−18,−18), t = −25 ⇒ Wn = (0.72, 0.72)). This configuration is robust to

small displacements of the configuration (red marker) in the Wn-plane since it has

been designed to withstand deviations in weights and threshold assignment.

• Non-Ideal Homogeneous Case:

When variability is introduced in the input variables ση1 , ση2 as well as in the

threshold value σt, the shape of the Pe color map deforms as shown in Figure 5.24.

It is observed in this case that the optimal configuration previously presented

(small red marker) is not necessarily the configuration with lower probability of

error Pe (small white cross) as shown in Figure 5.24. Optimizing weights consid-

ering only deviation in the weights assignment produces optimal solutions slightly

different from the ones obtained when considering also other variability sources.

• Non-Ideal and Non-Homogeneous Case:

We consider here different levels of variability depending on the input in order

to model the effect of degradation, which affects randomly different parts of the

system. Figure 5.25 shows an example of non-homogeneous variability.
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Figure 5.24: Pe color map of 10-redundant 2-input NAND AC-LTG with variability
parameters (ση1 = ση2 = σt = 0.1V ). In small red marker the optimized precision-
limited configuration W = (−18,−18), t = −25 (Wn = (0.72, 0.72)) and in small white
cross the configuration with lower probability of error Pe. Yellow contour outlines the

area with error probability Pe < 0.1
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Figure 5.25: Pe color map of 10-redundant 2-input NAND AC-LTG with variabil-
ity parameters (ση1 = σt = 0.1V , ση2 = 0.5V ). In small red marker the optimized
precision-limited configuration W = (−18,−18), t = −25 (Wn = (0.72, 0.72)) and in
small white cross the configuration with lower output probability of error Pe. Yellow

contour outlines the area with error probability Pe < 0.1
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5.4.3.1 Simulation results

Figure 5.26 depicts the impact of redundancy level N in a typical case with variability

parameters ση1 = ση2 = σt = 0.1V and different levels of deviation in the assignment

of weights and threshold d ≥ max(∆w1,∆w2,∆t). Results correspond to the worst

case obtained within the respective range of deviation. In this simulation, deviation

parameter d is configured to sweep levels from 0% to 40% of the maximum admissible

deviation (remember dmax = 3.5).
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Figure 5.26: Output probability of error Pe versus redundancy level N at different
levels of deviation in the assignment of weights and threshold d ≥ max(∆w1,∆w2,∆t).

Case with variability parameters ση1 = ση2 = σt = 0.1V

Figure 5.27 shows the effect produced on the probability of error Pe versus the re-

dundancy N at different levels of homogeneous variability ση1 = ση2 = σt. A great

improvement from N = 1 to 10 is observed. Input levels of variability are extracted

from the previsions of ITRS 2012 [16].

5.4.3.2 Measurement of Tolerance against Manufacturing and Environment

Variability

We have seen that 2-input NAND LTG can tolerate deviations in the weights and thresh-

old up to 3.5 according to the restriction of integer weights within [−25, 25]. This value

is directly related with the radium of the maximum circumference that can be inscribed
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Figure 5.27: Output probability of error Pe versus redundancy level N at different
levels of homogeneous variability ση1 = ση2 = σt and null deviation in weights and

threshold assignment d = 0

in the blue region (Pe = 0) of the Pe-colormap of Figure 5.23. However, this toler-

ance parameter only takes into account deviations in the weights and threshold. In this

subsection we propose a metric to estimate the tolerance against the combined effect

of variability in the inputs and source voltage and the deviations in the weights and

threshold of the LTG configuration.

Our approach consists on determining a satisfiability boundary for weights and threshold

configuration in the Pe-plane. This boundary depends on the levels of variability in the

input signals and in the source voltage. It encloses all the LTG configurations that

achieve output error probability lower than a given probability Pmax. We calculate the

area of the regions of satisfying configurations at different levels of variability and correct

the fault-tolerance parameter dmax to see how it decreases in environments with high

variability. Table 5.3 shows these values of parameter dmax with homogeneous variability

in the inputs and source voltage ranging from σ = 0.0V to σ = 0.4V with requirement

Pmax = 0.1. We can observe that f7 and f8 functions (NAND and AND) have a weak

tolerance against variability while f1 and f14 (NOR and OR) have the best behavior in

spite of the variability in the inputs.

Figure 5.28 reproduces the Pe-plane for the functions f1, f2 and f7. The results for the

rest of implementable functions are symmetric to these three cases.
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Table 5.3: Tolerance Parameter dmax of 2-input LTG functions with different levels
of variability.

Function Fault-tolerance dmax

fi σ = 0.0V σ = 0.1V σ = 0.2V σ = 0.3V σ = 0.4V

f1 7.99 7.95 7.78 7.59 7.37

f2 ≡ f4 4.99 4.80 4.29 3.54 2.29

f7 3.49 3.08 0.00 0.00 0.00

f8 3.49 3.08 0.00 0.00 0.00

f11 ≡ f13 4.99 4.80 4.29 3.54 2.29

f14 7.99 7.95 7.78 7.59 7.37
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Figure 5.28: Pe color map of 10-redundant AC-LTG unate functions with variabil-
ity parameters (ση1 = σt = 0.1V , ση2 = 0.5V ). In small red marker the optimized
precision-limited configuration and in small white cross the configuration with lower

output probability of error Pe.

5.4.4 Reliability Comparison of NAND AC-LTG versus NAND mul-

tiplexing

In this subsection, we compare the presented AC-LTG architecture with the well known

NAND multiplexing technique. Both designs tolerate variability and faulty behavior of

its compounding devices by means of redundancy.

5.4.4.1 NAND multiplexing topology

There are many studies on the NAND multiplexing architecture. Therefore, a set of

useful formulations of its performance have been provided. They allow us to analyze it

and have a clear view of its capabilities. We take advantage of these contributions to

guide our discussion [44].
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Figure 5.29 presents the general topology of a NAND multiplexing unit. It consists of

a first stage performing the NAND operation and a second stage to restore the output

value. Restoration is implemented with two NAND operations in series and intercalated

randomizing blocks (U). This restoring unit can be replicated as many times as necessary

to improve reliability level although this implies an additional increase in overhead.

Figure 5.29: Schematic of a NAND multiplexing architecture

Parameters usually used to formulate the NAND multiplexing characteristics are:

• N , the number of redundant inputs and outputs,

• δ, the ratio between the faulty input lines and the total number of lines N ,

• ε, the probability of a device producing a faulty output

• and n, the number of restoring stages added at the output (the NAND multiplexing

scheme of Figure 5.29 has n = 1).

5.4.4.2 Parameter Equivalences

In order to compare both techniques, NAND AC-LTG and NAND multiplexing, some

equivalences between characteristic parameters must be established. Some of them are

direct, like the level of redundancy N , but others, like ε and δ, require a more detailed

analysis.

• Redundancy N and number of restoring stages n:

We add N threshold operations in parallel at the output of AC-LTG architecture

so as to have the same topology in both fault-tolerant techniques: N redundant

inputs and N redundant outputs. Figure 5.30 presents the general scheme of the

NAND AC-LTG considered in this section. It is remarkable that the effective

number of devices of both architectures differ linearly from each other with the
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number of restoring stages n (See Table 5.4). NAND multiplexing requires more

devices than NAND AC-LTG for the same redundancy N .

Figure 5.30: Schematic of a NAND AC-LTG with N redundant inputs and outputs

Table 5.4: Number of devices versus level of redundancy for NAND multiplexing and
AC-LTG

Architecture Redundancy level Number of devices

NAND multiplexing (N , n) N · (1 + 2n)

AC-LTG N N

• Ratio of faulty input lines δ:

δ parameter from NAND multiplexing is directly related with the input level of

variability in AC-LTG, which is expressed by ση1 and ση2 . Parameter δ expresses

the probability of an input line being faulty. It corresponds to the probability of a

given level of input variability ση deviating the correct value more than V/2. This

relation is expressed by equation (5.35).

δ =
1

2

1− erf

 V/2√
2σ2

η

 (5.35)

• Ratio of faulty operations per device ε:

NAND multiplexing parameter ε is related with the remaining AC-LTG variability

parameters: drift in the threshold level σt and deviation level in weights and

threshold assignment d. All of them concern to device faulty behavior. Given a

certain deviation d, drift in threshold level σt must complete the level of variability

expressed by ε. Equation (5.36) manifests this relation.

ε =
1

2

(
1− erf

(
(dmax − d)V√

2t2σ2
t

))
(5.36)
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5.4.4.3 Comparison Results

The above relations along with the presented formulation of NAND multiplexing archi-

tecture allow us to make a reliability comparison.

Given a logic input X1 = 1, X2 = 1, the worst case, having 10% of errors in the input

bundle (δ = 0.1), the probability of having less than 10% of errors in the output bundle

is computed for both strategies. Results for redundancy level N = 10 and n = 7 are

depicted in Figure 5.31. We have picked these parameters because they imply a good

performance in both strategies and do not require too high redundancy.
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Figure 5.31: Reliability comparison between NAND multiplexing with redundancy
N = 10 and number of restoring stages n = 7 and NAND AC-LTG with redundancy

N = 10 and different levels of inaccuracy in weights and threshold assignment d

We can see in Figure 5.31 that AC-LTG have better performance against device failure

rate than NAND multiplexing provided that deviation levels in weights and threshold

assignment d are lower than 60% of the maximum admissible dmax. Given a restriction

for the probability of having less than 10% of errors in the output bundle, it is easy

to see how NAND AC-LTG improves NAND multiplexing performance. For example,

imposing Pr(Pe < 10%) > 90% implies having ε < 10−2.75 for the NAND multiplexing

technique while ε < 10−0.60 for the NAND AC-LTG with deviation level in weights and

threshold assignment of d = 40% of dmax.
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5.5 Conclusion

This Chapter introduces several redundant reliable structures based on the averaging

cell (AVG) principle. In first place, we introduce the unbalanced averaging cell (U-AVG)

targeting the reliability improvement of nanoscale circuits and systems suffering from

heterogeneous variability. The U-AVG basically consists of adjusting the configuration

of weights in the averaging structure according to the input variability levels that can be

measured prior to operation. A method for determining the optimal averaging weight

values that maximize the reliability of the AVG output is derived. Monte Carlo simula-

tions of U-AVGs operating in different heterogeneous variability scenarios show that our

proposal substantially improves the output reliability at a lower cost than the classic

balanced AVG; i.e., it requires 4x less redundancy for the same reliability requirement.

In second place, we extend the U-AVG by proposing a methodology to on-line learn

the temporal variations on the input drift levels induced by external aggressions and

aging, when the circuit is deployed in the field. This learning augmented scheme is

called the adaptive averaging cell (AD-AVG). Further Monte Carlo simulations of dif-

ferent AVG, U-AVG, and AD-AVG instances in non-static heterogeneous environments

are performed and provide meaningful information about the tolerance against degra-

dation of the different AVG approaches. It is observed that the U-AVG rapidly loses

performance with the circuits degradation and it is outperformed by the conventional

AVG for redundancy factors higher than 15. Comparing the characteristic reliability

of the AVG versus the AD-AVG against degradation, significant redundancy savings

are obtained for the adaptive approach: from 9.5x to 4.1x redundancy reduction when

imposing reliability requirements of 90% yield after increasing amounts of accumulated

degradation. Apart from the significant advantages in terms of redundancy overhead

savings and improved tolerance to degradation, the implications of using a non-ideal

Variability Monitor for the learning process are also studied. Based on this analysis it

is observed that monitor’s noise has a greater negative effect on AD-AVGs with larger

redundancy factors. Given a requirement of 90% yield with Variability Monitor with

noise level σs = 0.06 V , the lifespan of 2-input AD-AVG reduces 2 degradation in time

units while that of 5-input AD-AVG reduces 7 degradation in time units. We also

show a possible implementation of the AD-AVG structure based on resistive switching

crossbars. The proposed topology is capable of reconfiguring the averaging weights at

run-time and to measure the changes in the input variability levels. A simulation of

the final AD-AVG implementation is provided. It is demonstrated that the AD-AVG

proposal is potentially implementable with state of the art technology.
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In third place, we present the Degradation Stochastic Resonance (DSR) effect in the

context of Adaptive Averaging (AD-AVG) architectures. This important but counter-

intuitive effect implies an enhancement in the system reliability against hardware degra-

dation for specific noise conditions. For example, the yield of a 20-input AD-AVG, with

a noise level of 0.06V in the Variability Monitor, decreases from 1 to 0.89 as the sys-

tem degradation is increasing, then it grows up to 0.94 at the DSR peak, and finally

decreases to zero when the system reaches its end-of-life. We analytically demonstrate

this behavior in the particular case of 2-input AD-AVG with null variability in one of

the inputs. We perform several Monte Carlo simulations to generalize the DSR effect

implications to multiple input AD-AVGs. Exploring the main features of DSR we ob-

serve that this effect becomes more relevant in AD-AVGs with large number of inputs

and that the DSR peak conditions enhance the system reliability over the one provided

by equivalent higher redundancy systems, which despite of including more replicas are

outside the DSR peak conditions. Moreover, in order to take full advantage of the DSR

effect, we propose to add controllable noise injectors to the AD-AVG inputs to virtually

increase the amount of hardware degradation and create the DSR conditions regardless

of the degradation level. By this method we shift the characteristic yield to the DSR

peak, regardless of the degradation level, and significantly enhance the system yield.

Simulation results indicate that by applying the proper noise magnitude we can provide

an optimum and nearly flat reliability level at any time before the DSR peak degrada-

tion level. Returning to the earlier example of a 20-input AD-AVG with a noise level

of 0.06V in the Variability Monitor we obtain a guaranteed yield level of 0.94 during

the system lifespan with a maximum yield of 0.97. This clearly demonstrates that by

controlling the DSR phenomenon we can guarantee a minimum yield level for the entire

life of the system. The particular magnitude of input noise that has to be applied in

order to control the DSR effect is numerically calculated and we find that it approx-

imately follows a linearly decreasing relation against the degradation level. Then we

also propose a physical implementation of the controllable noise injectors based on the

avalanche breakdown phenomenon occurring in diodes.

Finally, we propose the combination of Averaging Cells with Threshold Logic Gates AC-

LTG as a way to perform reliable computing in spite of the inherent unreliability of the

compounding devices. We demonstrate that this structure exhibits a good performance

at moderate levels of redundancy (N = 10) against different sources of variability, such as

drift in the input signals and deviation in the LTG parameters. The comparison between

AC-LTG and NAND multiplexing technique determines that under moderate levels of

manufacturing inaccuracies the improvement in tolerance to faulty device behavior is

two orders of magnitude higher in AC-LTG with respect to NAND multiplexing.



Chapter 6

Time-aware Reliable Design

T
HE ASYNCHRONOUS nature of future nanoelectronic computing systems is

addressed in this chapter from the perspective of the reliable design. Based

on current CMOS technology trends as well as beyond CMOS nanoelectron-

ics, it is expected a significant increase in the variability of the compounding devices.

In particular, future nanoelectronic circuits will probably have associated much higher

statistical dispersion in the processing times than current CMOS technology.

Most of the fault tolerant architectures based on hardware redundancy improve the

system reliability by replicating the basic computing element and combining the results

with a majority criterion. In this Chapter, we extend this conventional approach by

introducing the time dimension. Our proposal, called partially-Asynchronous R-fold

Modular Redundancy (pA-RMR), takes into account the asynchronous nature of future

nanoelectronic computing systems by detecting the arrival of each input signal using

tokens. The voter behavior is modified in such a way that it sets the output result

after a determined number of token arrivals. By doing this, we basically add a second

degree of freedom to the RMR structure, which not only has a configurable size (R

replicas), but also allows modifying the number of tokens it waits before giving an

output. As a consequence of this seemingly simple change, we are able to exploit new

possibilities of this redundant structure such as trading system reliability for performance

during operation. The remainder of this Chapter is organized as follows. In Section 6.1,

we introduce the pA-RMR structure and analyze the reliability and time performance

associated to each possible voting policy. In Section 6.2, we show the reliability versus

performance trade-off of the pA-RMR structure and discuss some examples. We also

show the impact of failures in token transmissions. Finally, in Section 6.3, we briefly

summarize our results and make a few concluding remarks.

93
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6.1 The partially-Asynchronous R-fold Modular Redun-

dancy (pA-RMR)

One of the most fundamental and effective fault tolerant mechanisms introduced in von

Neumann’s work [2] in 1952 was the well-known R-fold Modular Redundancy (RMR),

where R replicas (R = 3, 5, 7 . . . ) of a computing subsystem present their outputs to a

voter block that generates a reliable output based on a majority criterion (also known

as the MAJ gate). The RMR, in its R = 3 version (TMR) has been widely used in

the design of systems in environments where reliability is considered a key issue (nuclear

plant control, space applications, bank organization, etc) [75, 76]. These scenarios consist

of low or moderate failure probability subsystems but high reliability requirements at

system level. In modern and future processing systems designed from emergent new

device generations, reliability is becoming a major challenge due to the poor quality of

the basic elements [9, 14]. As a consequence, the research of fault-tolerant techniques

based on hardware redundancy is gaining a renewed interest today. In fact, in the

literature we can find many recent articles analyzing RMR-based structures. Some of

them compare different redundancy factors (R ≥ 3), others combine multiple RMR

cells (MAJ gates) in cascaded or multiplexed architectures [39, 41, 77, 78]. However,

despite the wide spectrum of research works based on the RMR technique, almost all

of them analyze the reliability issue from a static point of view. In other words, given

a set of error-prone data replicas generated by R independent subsystem replicas, the

majority of studies seek to determine the reliability characteristics of the RMR structure

without any temporal consideration. In real applications though, the way data moves or

propagates through electronic circuits has associated significant time-varying processes.

The variability in the time it takes the electronic devices to process the information

and the propagation of signals through buses of different length or load, among others,

induce significant spread in the arrival time of the input signals to the RMR voter. This

temporal variability is even more significant in future nanoelectronic systems in which

we can expect significant statistical dispersion in the processing time [79].

In order to address this issue, in this Chapter we extend the conventional RMR design

considering the time dimension. We propose the utilization of tokens that signal the

arrival of input bits to the voter in order to be able to take decisions even before the

arrival of all the input bits from the replicas and remove this time-consuming limitation.

We name this new RMR concept the pA-RMR, which stands for partially-Asynchronous

R-fold Modular Redundancy. Due to the different number of inputs presented at a

given time to the pA-RMR voter block, each one with its associated error probability,

the problem considered here is an extension of the conventional RMR analysis. The

voter may take decisions depending on the reliability level required by the system. It
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may present outputs before the arrival of the complete set of replicas, allowing a faster

processing of the reliable output data always inside a strategy of decisions taken by the

voter. In the analysis of the pA-RMR concept, the conventional case of synchronous data

arrival time is a particular case. Extending the RMR analysis from the set of failures

probabilities for each replica to the inclusion of arrival time models for each replica’s

data, the analysis presented in this paper evaluates original strategies applicable to

redundant systems. This model could also be used to mimic the behavior of biological

neural structures, where the computation is performed with characteristics similar to

those introduced in our pA-RMR structure. As supported by the literature, this is a key

research topic today [80, 81]. The presented pA-RMR architecture also fits perfectly into

de design environment of cross-layer resilient systems [82], since it provides, by means of

the voter configurability, an easy way to implement most of the characteristic resilience

tasks such as detection, diagnosis, reconfiguration and adaption.

6.1.1 pA-RMR Model

The partially-asynchronous pA-RMR structure, as the RMR, consists of a set of error-

prone replicated computing units and a decision gate (voter) that establishes the global

output based on a majority criterion applied to the input signals, see Figure 6.1. How-

ever, the pA-RMR also includes a token associated to each input replica to indicate the

arrival of a data bit. We assume an independent error probability ε ≤ 1/2 for each

replica. When the processing cycle starts all the subcircuit replicas start at once the

computation of a new data. This process has associated delay mismatch between repli-

cas since they are subject to variations. As soon as a replica finishes its calculation

the corresponding token is activated to signal the voter. In Section 6.2.1 we assume

an fault-free token transmission, but in Section 6.2.2 we generalize our analysis to ex-

ceptional situations in which tokens may be lost or corrupted during operation. We

model the statistics of each token arrival time as an independent exponential distribu-

tion with rate parameter λ [s−1]. By using the exponential distribution, we target future

nanoelectronic architectures with high levels process variability [79]. We call FT (t) the

Cumulative Distribution Function (CDF) of tokens’ arrival time:

FT (t) = Pr(Ttoken i < t) = 1− e−λt i = 1, . . . , R, (6.1)

Ttoken i being the arrival time of token i.

The voter is the responsible for setting the most probable value at the system output.

Its underlying operation principle consists on providing at any time the “best possible”

output from the available inputs, though without activating the associated output token



Chapter 6. 2D: Time-aware Reliable Design 96

until it reaches the final decision. In other words, as the input replicas arrive the

pA-RMR keeps processing and updating the output signal according to the majority

criterion. For instance, if there is only one input available, the pA-RMR outputs this

input value and when other inputs arrive it updates the output accordingly. During

the process it is possible to reach equilibrium states in which the inputs are tied and

the output is not updated. These equilibrium states are immediately broken by the

following arrival that tilts the result in its own direction. This operation contrasts with

the RMR structure that only starts computing the output when all the inputs have

arrived. It is easy to deduce that the pA-RMR can operate faster than RMR in any

case. Indeed, while the RMR has to compute the majority voting of the R replicas, the

pA-RMR only has to update the previous result with the last information bit. Apart

form that, the pA-RMR has an additional feature: it may follow different voting policies

as it can set the output before receiving all the input replicas. Different voting policies

provide different trade-offs between reliability and performance since they base their

final decision on different amounts of information. The pA-RMR output includes a

token that is activated as soon as the configured voting policy is completed. By using

this arrangement it is possible to construct more complex computing architectures with

multiple pA-RMR cells combined in cascade or multiplexed structures.

6.1.2 pA-RMR Reliability

During operation, the pA-RMR voter keeps updating the output according to the re-

ceived inputs in order to minimize the output error probability. After the arrival of

a specific number of tokens, determined by the voting policy, it activates the output

token. According to this strategy, each voting policy provides a different compromise

Figure 6.1: partially-Asynchronous R-fold Modular Redundancy (pA-RMR) archi-
tecture.
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between reliability and performance. In this subsection, we analyze the reliability level

guaranteed by each voting policy.

We identify each pA-RMR policy with an index kpol. This parameter corresponds to the

number of tokens validating the same input information (logic ‘1’ or ‘0’) that the voter

waits before activating the output token. For example, if the chosen policy is kpol = 2,

the voter waits for two tokens validating a logic ‘1’ or a logic ‘0’. This policy may imply

awaiting the arrival of the first two tokens if they are in consensus, or awaiting the first

three tokens if the first two are in disagreement. Notice that in this case the third signal

directly determines the pA-RMR output.

The number of different voting policies in a pA-RMR structure is limited. R being the

number of replicas, policies with index kpol higher than (R+ 1)/2 are not recommended

because high inconsistency situations could lead the system to fail to respond. We choose

kpol = (R+ 1)/2 as the maximum voting policy because it is still free of failure response

and coincides with the RMR structure.

The reliability provided by each voting policy is directly related to the number of tokens

received.

• If we look at the first voting policy (kpol = 1), the least reliable one, it waits only

for the first token and assigns the received input directly to the output. In this

case the output error probability is Pe = ε.

• The second voting policy (kpol = 2) waits for two coherent inputs. In this case,

we have to consider two possibilities: (1) the first two inputs are coherent but

incorrect, and (2) the first two inputs are in disagreement and the third one is

incorrect. This results in an error probability of Pe = ε2 + 2ε2(1 − ε), which is

lower than the one associated with the first voting policy.

• The third voting policy (kpol = 3) waits for three coherent inputs. This may imply

waiting only for the first three inputs, if they are in consensus, or waiting for four

or even five replicas in the worst case (when the first four are tied). Adding the

probability of error associated to each possible scenario it yields a probability of

Pe = ε3 + 3ε3(1− ε) + 6ε3(1− ε)2.

By following this pattern we find the general term for the output error probability

associated with each voting policy.

Pe(kpol) =

kpol−1∑
i=0

(
kpol − 1 + i

i

)
εkpol(1− ε)i (6.2)
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Notice that the reliability levels described by (6.2) are valid for each voting policy in-

dependently of the number of replicas R. The only restriction for these results to be

applicable in a particular pA-RMR is that the number of available replicas must be

larger or equal to 2kpol − 1.

Figure 6.2 depicts the reliability level (1−Pe) of a pA-RMR with 7 replicas against the

error probability of single replicas (ε) when applying different voting policies. In this

case, we can choose between 4 different voting policies. It is easy to see that policies

requiring higher level of input coherency provide higher reliability. For example, if we

require a reliability level of 99% we can only admit an error probability per replica of

ε = 0.01 when using the first policy. However, if we use the fourth policy (kpol = 4) we

can admit an error probability per replica of ε = 0.14.
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Figure 6.2: Reliability provided by the 4 different voting policies of a pA-RMR with
7 replicas against the input error probability ε.

One interesting way to analyze the reliability characteristics of a complex system con-

sists in establishing a target reliability level (1 − Pe) and obtain its tolerance level

against imperfections in the compounding devices. Applying this method to the pA-

RMR architecture we perform an experiment to find its capability of tolerating input

errors without degrading the reliability level under a specific bound. In the experiment,

we set a minimum admissible reliability or, equivalently, a maximum admissible output

error probability (Pemax) and find how much error probability we can tolerate in the

replicas (εmax). Figure 6.3 depicts the maximum admissible error probability per replica
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εmax of a pA-RMR against the voting policy and the targeted output error probability

Pemax. We can find the minimum voting policy we need to tolerate a certain input error
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Figure 6.3: Maximum admissible error probability per replica (εmax) against vot-
ing policies. Different lines correspond to different targets of output error probability

Pemax.

probability. For example: if our reliability target is an output error probability lower

than 0.01 and we use the voting policy kpol = 2 then we can admit a maximum error

probability per replica of εmax = 0.06. If we switch to the voting policy kpol = 3, we

can admit almost twice as much error probability as the previous policy with the same

reliability target.

6.1.3 pA-RMR Performance

Increasing the pA-RMR reliability by switching to higher-level voting policies is associ-

ated with a performance cost. Voting policies with higher level imply waiting longer for

the required number of tokens. In this subsection, we analyze the timing conditions asso-

ciated with each voting policy and the number of replicas. In this case, unlike the levels

of reliability, there is an influence of the number of replicas on the timing conditions for

each voting policy.
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6.1.3.1 Tokens’ Arrival Time

In order to calculate the timing characteristics of each voting policy, we first need to

analyze the tokens’ arrival time taking into account the arrival order. In the following,

the Cumulative Distribution Function (CDF) associated with each token of the arrival

sequence is calculated.

Given a pA-RMR with R replicas, the voter will receive R tokens during the processing

cycle. We call Tisttoken the arrival time of the ist token in the sequence of arrivals. The

CDF of the first token (T1sttoken) can be deduced using the arrival time model described

by (6.1) and applying the property of independent random variables. The probability

of having received the first token at time t after the cycle starts is:

Pr (T1sttoken < t) = 1−
R∏
i=1

Pr (Ttoken i > t) (6.3)

= 1− (1− FT (t))R = 1− e−λRt. (6.4)

In order to calculate the probability of having received the ist token at time t we perform

a a summation over all the situations for which the ith token has already arrived:

Pr (Tithtoken < t) =

Pr (i tokens arrived before t and the rest after t) +

Pr (i+ 1 before t and the rest after t) +

. . .

P r (R− 1 before t and the remaining one after t) +

Pr (all tokens arrived before t)

Developing these probabilities using the combinatorial numbers we obtain the following

expression for the probability of having received the ith token at time t:

Pr (Tithtoken < t) =
R∑
n=i

(
R

n

)(
1− e−λt

)n
e−λt(R−n) (6.5)

Figure 6.4 shows the arrival time CDF of each token in a pA-RMR of 7 replicas taking

into account the arrival order. In the plot we can see that the first token arrives more
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than 95% of the times before t = 0.5/λ and the last one lasts more than t = 3/λ 30% of

the times.
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Figure 6.4: Arrival time CDF of tokens taking into account the arrival order of a
pA-RMR with 7 replicas.

6.1.3.2 Policies’ Response Time

The timing characteristics of each voting policy depend on the token’s arrival time.

This relationship is influenced by the replica error probability ε except for the first

policy case, whose timing characteristics corresponds directly to the first token. Despite

this, in general higher replica error probability means less coherency between inputs,

and as a consequence, this implies waiting for more arrivals before completing the level

of coherency required by the voting policy. For example, the second policy’s timing

corresponds to the second token’s arrival time only in case the first two tokens are

coherent and it corresponds to the third token’s time when there is a disagreement

between the first two tokens. In the previous example, we can easily see that both

agreement and disagreement situations have associated two possibilities: In the case of

agreement, the tokens may be correct or incorrect. In the case of disagreement, the last

one (the one that fulfills the required coherency and determines the system output) may

be correct or incorrect. When computing the relationship between token and policy’s

timing characteristics we have to account for both possibilities. In the following, we

present the relationship between policy’s and token’s timing characteristics:
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Pr
(
Tithpolicy < t

)
=

2i−1∑
j=i

A(i, j, ε)Pr
(
Tjthtoken < t

)
, (6.6)

where the weighting coefficient A(i, j, ε) is:

A(i, j, ε) =

(
j − 1

j − i

)(
εi(1− ε)j−i + (1− ε)iεj−i

)
(6.7)

Note that the timing characteristics of the ith policy only depends on the arrival time

of the ith and subsequent tokens.

Figure 6.5 depicts the response time CDF of each possible voting policy of a pA-RMR

with 7 replicas and two different input error probabilities. It can be observed that the

first policy has a time response independent from the input error probability while the

rest experience a delay with the increase of input error probability.
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Figure 6.5: Response Time CDF of the different policies of a pA-RMR with 7 replicas.
Solid lines correspond to input error probability ε = 0.01 and slashed lines to ε = 0.1.

6.2 Reliability vs Performance Trade-off

Once the reliability and performance aspects of the pA-RMR architecture have been

analyzed, we are able to combine in this section both characteristics and analyze the
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trade-off achieved by the different possible voting policies. The main advantage regarding

the pA-RMR structure consists on the capability of improving performance or reliability

by changing the voting policy. The implications of using a different policy to obtain the

required performance or reliability target are detailed in the following analysis.

6.2.1 Fault-free Tokens in pA-RMR Architectures

Figure 6.6 shows the characteristic reliability (1−Pe) versus performance of different size

pA-RMR assuming fault-free tokens. In this analysis, we apply different voting policies

and establish the error probability per input unit as ε = 0.2. Each line corresponds to a

specific redundancy level ranging from R = 1 to 17 and all the possible voting policies

are indicated in the figure with markers. As stated before, the maximum voting policy

for each redundancy factor R is kpol = (R + 1)/2. The performance metric is based on

the normalized time (Tm), which we define as the time at which the pA-RMR response

has arrived in 99% of the cases. We obtain the performance parameter by computing

the inverse of the normalized response time (1/Tm). Obviously, this definition is not

unique and the resulting measures vary with the chosen percentage. Yet, it is a useful

metric for comparing the voting alternatives since analytically the response time follows

a probability distribution with infinite tail. Note that the pA-RMR with R = 1 has only

one point because it has associated only one voting policy. The trade-off characteristic of

a pA-RMR with R = 3 has two possible voting policies. When we increase the number

of replicas we have more options to play with this trade-off, sacrificing reliability for

performance. Note also that all the voting policies with the same parameter kpol provide

the same reliability level (see all the points are grouped in horizontal levels). The figure

also presents connected with a thick slashed line the characteristic reliability points

(stars in the figure) of conventional RMRs with number of replicas raging between 1

and 17. We can observe in the figure that the conventional RMR is a particular case of

the pA-RMR when it uses the highest possible voting policy.

If we calculate the speedup of each pA-RMR configuration with respect to the classic

RMR technique, we obtain the following conclusion: There is a 3x speedup in the

structure when we choose the first voting policy instead of the second one in the pA-

RMR with three replicas. In general, a pA-RMR is capable of working R times faster

than the classic RMR if we choose the policy kpol = 1. Given a pA-RMR structure with

a redundancy level R the different available voting policies provide us the capability

of improving reliability or performance according to our interests. We observe that

in general better performance specifications are achieved if we increase the number of
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Figure 6.6: Reliability versus performance trade-off for different size pA-RMR from
R = 1 to 17 with an input error probability of ε = 0.2.

replicas (R), provided the same voting policy. And the only way to improve the pA-

RMR reliability and performance at the same time is to increase the number of replicas

and the voting policy.

6.2.2 Faulty Tokens in pA-RMR Architectures

In this subsection, we analyze the impact of non-ideal tokens in the performance and

reliability of pA-RMR architectures. In previous analysis, we assumed that no token is

lost or corrupted during operation, however, real circuits are subject to this issue. Tokens

are utilized to signal the arrival of an input bit, and thus, they are not directly related

with the output information. In fact, only tokens that signal incorrect input information

may degrade the reliability of the pA-RMR while the rest only degrade the performance.

Indeed, a token that fails to signal the arrival of an input bit, no matter the bit is correct

or incorrect, it cannot affect the pA-RMR reliability as it is not taken into account, it

only degrades a little bit the performance because it implies waiting for one extra token.

Similarly, a token activated by error before the arrival of the associated bit, it increases

the pA-RMR performance and only in this case, the pA-RMR reliability could also be

degraded subject to the following two conditions: (i) the associated bit information was

incorrect and (ii) the incorrect token arrived before the pA-RMR structure reached the
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configured voting policy. Therefore, the output probability of failure will increase under

very restricted conditions. In the rest of this section, we extend the pA-RMR tradeoff

analysis between reliability and performance taking into account the impact of losing

signals.

When a token is lost the associated bit information is not considered by the voter. It

is actually equivalently to having one less replica available in the structure, that is, to

reduce the redundancy factor by one unit. Thus, given a pA-RMR structure with R

replicas, if a token is lost, the resulting structure is equivalent to a pA-RMR structure

with R−1 replicas. However, since the classic RMR structure only uses odd redundancy

factors in order to avoid ties, losing one replica in our generalized pA-RMR structure will

give place to systems with even redundancy factors. But this is not generally a problem

for our proposal. In fact, the pA-RMR structure can work with even number of replicas

as long as the voting policy is not higher than R/2 since this particular case could

lead to response failures; i.e. never achieving the required number of coherent input

bits. Therefore, the result of Figure 6.6 can be extended for even redundancy factors.

Figure 6.7 shows the reliability versus performance trade-off for pA-RMR structures

with even and odd redundancy factors from R = 1 to 17. Filled markers are used to

depict configurations with odd redundancy factors while empty markers correspond to

even redundancy factors. In this figure, we can observe the impact of token losses, or
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equivalently of reducing the redundancy factor, on the pA-RMR behavior. When a token

is lost, if we can keep the same voting policy then the reliability level is maintained but

the performance (1/Tm) diminishes. For example: if the chosen voting policy is kpol = 2

and the redundancy factor is R = 5 then the reliability level is 0.896; in this case, losing

one token is equivalent to having a pA-RMR with R = 4, the same reliability level but

a 28.3% reduction in performance (1/Tm).

6.3 Conclusions

In this Chapter, we introduce the pA-RMR structure as an efficient partially-asynchronous

fault-tolerant architecture based on hardware redundancy. We demonstrate the potential

benefits of partially asynchronous architectures in terms of performance and reliability

management. The analysis of the pA-RMR reliability allows to estimate its tolerance

against the imperfections of individual replicas. For instance, consider a reliability re-

quirement of an output error probability lower than Pe < 0.01. Then, if we use the

voting policy kpol = 3 we can tolerate a maximum error probability in the replicas

of εmax = 0.11, but if we use the voting policy kpol = 6 then we can tolerate up to

εmax = 0.19. This enhancement of reliability together with the associated performance

decrease becomes a choice for the system designer thanks to the use of pA-RMR. Re-

garding the influence on the pA-RMR performance, we also find the implications of

using pA-RMRs with different sizes and voting policies. Combining the reliability and

performance results we compare both dimensions together. There is a trade-off between

reliability and performance in terms of the pA-RMR size and the applied voting policy.

This structure provides a flexible way to adapt the system to specific requirements and

achieve different combinations of reliability and performance. Because of this property

we believe that the pA-RMR structure could be used in complex cross-layer resilient

architectures. It provides an easy way of implementing most of the characteristic re-

silience tasks. Errors could be detected by checking the difference between the signaled

result (from the configured policy) and the one achieved after the arrival of all the

replicas. Every single pA-RMR cell could provide in this way additional information

about the reliability of a particular part of the circuit and would help implementing the

diagnosis task. Additionally, the capability of configuring each voter block to improve

reliability or performance according to our interests could be used as the basic element

to reconfigure and adapt the system.



Chapter 7

Multiple-layer Reliable Design

C
OMPUTING systems today are rapidly evolving into increasingly complex

structures with an ever-increasing number of components. This fact, cou-

pled with the significant decrease in the levels of reliability due to tech-

nological scaling makes it increasingly difficult the correct application of conventional

fault-tolerant techniques based on redundancy.

In this Chapter, we present a comprehensive approach to the smart application of re-

dundancy techniques in multiple-layer hierarchical systems. So far, many fault tolerant

techniques based on redundancy have been proposed, implemented and tested by the

scientific community. However, there is not much research on the possible distribution of

redundancy effort through the system layers. System complexity grows with every new

technology generation and so does the number of hierarchy layers. As a consequence,

it is increasingly difficult to determine the optimum level or granularity at which to

apply redundancy. On the other hand, it is also possible to consider distributing the

hardware redundancy effort at different layers simultaneously. In the following sections

we analyze this topic and provide valuable information for designers. The rest of the

chapter is organized as follows: In Section 7.1, we present a model for cross-layer reliable

architectures and show the possible application of static redundancy at multiple layers

simultaneously. In Section 7.2, we introduce a fault model for the entire architecture.

In Section 7.3, we develop the fault model using the Rent’s Law in order to generate

an analysis method which allow us to compare different distributions of redundancy in

cross-layer architectures. In Section 7.4, we show the results of our analysis. We end

this Chapter with some concluding remarks in Section 7.5.

107
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7.1 Cross-Layer Reliable Architecture

In this section, we illustrate the hardware organization of current computing systems

and present how static redundancy techniques can be applied at different layers simul-

taneously. Figure 7.1 depicts a schematic view of a cross-layer system and its multiple

hierarchy layers. Each layer element embeds several elements of lower layers and there-

fore it incorporates a greater number of devices. In the figure we indicate a range for

the approximate device count associated to the elements of each layer (D). In the rest

of the paper we refer to particular layers using this device count parameter.

Figure 7.1: Schematic view of a cross-layer system and its multiple hierarchy layers.
We characterize each layer with a parameter D that indicates the number of devices

embedded in each element.

In the example of Figure 7.1 the first layer in the hierarchy (D = 1) corresponds to

devices, which may be ultimate CMOS transistors or any other nanoscale device. The

second depicted layer (with D between 2 and 10) corresponds to gates which are built

out of a group of devices. The third layer corresponds to blocks composed of gates and

so on. Each new layer integrates elements with a higher count of devices until we get

to the entire computing system which encloses the total number of devices. The whole

system is a composition of millions of devices organized in hierarchical groups of gates,

blocks, modules and cores. Static redundancy in this context consists on the replication

of all the elements in a particular layer D and then combining the resulting redundant

information using a voting system. For example, Figure 7.1 represents a system in which

the third depicted layer (with D between 10 and 100) is replicated 3 times. We can also
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apply redundancy at multiple layers simultaneously but we will need a methodology to

determine which is the best distribution of redundancy effort. In any case, the total

redundancy effort corresponds to the product of all the redundancy factors applied to

the architecture.

7.2 Fault Model

In this section we describe the fault model we use in the reliability analysis of cross-

layer architectures. Our model takes into account the failure probability of both devices

and interconnects. Indeed, instead of assuming perfect interconnects as usual in fault-

tolerant analysis, we introduce a parameter δ that represents the probability of a inter-

connect being faulty. Under these conditions we can approximate the error probability

of the whole system as the probability of at least one device or one interconnect being

faulty:

Pe(Ds) = 1− (1− ε)Ds︸ ︷︷ ︸
devices

(1− δ)Nc(Ds)︸ ︷︷ ︸
interconnects

. (7.1)

Being Ds the total number of devices in the system and Nc the total number of inter-

connects. For convenience we express the number of interconnects and the system error

probability as a function of the number of devices. The parameter ε stands for the failure

probability of each device and δ stands for the failure probability of each interconnect.

Using this model we are implicitly assuming that each device have the same failure

probability ε and it fails independently from the rest. This assumption is quite usual in

fault-tolerant analysis. We also assume that all the interconnects have equivalent and

independent failure probability δ. This assumption might seem unrealistic considering

the wide variety of wires that a complex computing system have, such as shorter or

longer wires needed to connect parts at different distances in the circuit and wider or

narrower wires at different metal layers. However, we take into account that good designs

use wider and more reliable wires for longer connections balancing this way the failure

probability for all the interconnects. Moreover, some of the most important sources

of imperfections in wires depend on critical points, corners or contacts that affect all

interconnects in the same manner.

7.3 Analysis Method

The fault model described in the previous section can be used in any VLSI system

but it is impractical in itself for our purpose. Our target is to analyze the impact
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on reliability of applying different redundancy distributions in cross-layer systems. In

order to take advantage of the proposed fault model we need to know at least how

the number of interconnects and devices vary when we apply redundancy to any given

hierarchy layer. To this end we use the Rent’s Law [83, 84]. We use it as a mechanism

to decompose the global error probability (7.1) at a given hierarchy layer and calculate

the error probability of the elements at the considered layer. Afterwards, we can apply a

redundancy technique and recompose again the global error probability. With the new

reliability level we can make comparisons and extract useful information.

The Rent’s Law, expressed in (7.3), establishes a relationship between the number of

terminals (T ) of a circuit area and the number of devices (D) it contains [83, 84]. In

this formula, terminals of a circuit area (T ) are defined as connections with the rest of

the circuit.

T (D) = k ×Dr (7.2)

It has been observed experimentally that the relationship between terminals and devices

follows a power law with exponent r. This exponent depends on the design style and

remains stable for different partitions of the circuit. Therefore, if we assume hierarchical

consistency as previous work [85], we can use this property in cross-layer systems to

estimate the amount of interconnects at any particular layer and decompose the global

error probability to perform our analysis. Indeed, let us consider a cross-layer system of

Ds devices, see Figure 7.2. If we want to analyze the impact of applying n-fold Modular

Redundancy (n-MR) at layer D we can easily determine how many elements of layer

D are needed to integrate the whole system (Ds/D). And by the Rent’s Law we can

determine the number of terminals associated to the complete system T (Ds) and the

ones associated to each element of the layer D: T (D). With this data we can deduce the

total number of interconnects at this layer, excluding the external connections. Notice

that we represent the interconnects of layer D with slashed lines in Figure 7.2:

N(D) =
k

2

(
Dr−1Ds −Dr

s

)
(7.3)

Now, using the preceding information we can decompose the error probability of the

whole system Peo ≡ Pe(Ds) and find the error probability of the elements of layer D:

Peo =1− (1− Pe(D))
Ds
D (1− δ)N(D)

⇒ Pe(D) = 1−
(

(1− Peo)
(1− δ)N(D)

) D
Ds

(7.4)

Then, we can reconstruct the error probability of the whole system P ∗e (Ds) applying the

n-MR redundancy technique at layer D and then modifying the number of interconnects
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Figure 7.2: Schematic view of terminals and interconnects of a computing system
with Ds devices. Interconnects of layer D are depicted with slashed lines.

at this level according to the extra interconnects required by the redundancy technique

(we assume n− 1 connections for each terminal to implement the n-MR technique):

P ∗e (Ds) = 1− (1− n-MR(Pe(D)))
Ds
D (1− δ)N(D)+T (D)(n−1) (7.5)

With this analysis framework we can study different redundancy distributions and we

can also try applying redundancy at multiple layers simultaneously.

7.4 Redundancy Distribution Simulation Results

In this section we present several analysis and simulation results of cross-layer systems

reliability with different redundancy distributions applied across its layers. To perform

the analysis we use the methodology described in the previous section. Our goal is to

demonstrate the benefits of properly distributing the redundancy and propose a method

to estimate the optimum redundancy configuration.

7.4.1 Redundancy at Different Layers

The first part of the analysis consists on studying the reliability improvement associated

to the application of redundancy at only one particular hierarchy layer. For this reason,

the simulation results in the next example show us the benefits of choosing properly

the hierarchy layer but not of distributing redundancy. Figure 7.3 shows the global

error probability (P ∗e ) of a cross-layer system with Ds = 1010 devices after applying

redundancy n-MR at layer D with a redundancy factor n from 3 to 9. The Rent’s

Law parameters used in the simulation are k = 2 and r = 0.6. In the simulation we

choose a global error probability before redundancy of Peo = 10−2 and the failure rate

of interconnects δ = 10−15. In the figure we also depict the basic components of the
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error probability in slashed lines, i.e.: P devices
e error probability due to devices (ideal

interconnects) and P interconnects
e error probability due to interconnects (ideal devices).
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Figure 7.3: Global error probability P ∗e of a cross-layer system with Ds = 1010 devices
against redundancy layer D with n-MR technique. Slashed lines correspond to the
global error probability components: black curves with triangular markers correspond
to the error probability due to devices (ideal interconnects) and green curves with
square markers correspond to interconnects (ideal devices). The levels of redundancy
are n = 3, 5, 7 and 9. The rest of parameters are k = 2, r = 0.6, Peo = 10−2 and

δ = 10−15.

In the figure we observe that assuming ideal interconnects (triangles, δ → 0) leads to

the conclusion that the optimum layer is always the first one (D = 1) and the higher the

redundancy factor the higher is the reliability improvement. In contrast, if the reliability

is only conditioned by the interconnect failures (squares, δ → 1/2) then the optimum is

close to the highest layers. Combining both components, in realistic situations, we get

different optimum layers in which to apply each possible redundancy factor. If we apply

redundancy at these optimum layers we can improve the system reliability several orders

of magnitude. In particular, given the conditions of the previous simulation the best

possible redundancy configuration at a single layer is 7-MR at layer D = 4 · 108. With

this configuration we reduce the global error probability seven orders of magnitude:

from Peo = 10−2 to P ∗e = 4.4 · 10−9. However, the optimum layers vary with the

interconnects failure probability δ. As δ grows, the optimum layers grow to higher levels

because redundancy at lower layers requires adding more interconnects than at higher

layers, and also the optimal redundancy factor decreases because the factors above are
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progressively saturated by the global error probability component of the interconnects

(P interconnects
e > P devices

e ). Something similar happens but in the opposite direction with

Peo as it varies the devices component instead of the wires one. Therefore, in order to

calculate the maximum reliability improvement in each particular case we have to take

into account both δ and Peo to deduce the optimum redundancy factor and the layer in

which to apply it.

7.4.2 Redundancy at Multiple Layers Simultaneously

In this part we analyze the reliability of cross-layer systems when we apply redundancy

at multiple layers simultaneously. Previous simulation demonstrates the relevance of

choosing correctly the layer at which to apply redundancy. Now we want to see if we

can get even better results by distributing redundancy at multiple layers (two layers).

In order to depict the results of global error probability against two different redundancy

layers D1 and D2 we use colormap figures. Figure 7.4 shows the logarithm in base 10 of

the global error probability (log10(P ∗e )) of a cross-layer system with Ds = 1010 devices

after applying redundancy TMR at two layers simultaneouslyD1 andD2. In the previous

example we simulated redundancy factors from n = 3 to 9. However now, systems with

redundancy distribution have at least redundancy factor n = 9 which comes from two

simultaneous TMR techniques. The Rent’s Law parameters, Peo and δ are the same

as previous simulation (k = 2, r = 0.6, Peo = 10−2 and δ = 10−15). In the figure

cold colors mean low error probabilities and hot mean high error probabilities. First

of all, notice that Figure 7.4 is symmetric with respect to D1 = D2. This is obvious

since we are applying the same redundancy factor to both redundancy layers D1 and

D2. In the following we focus only on the region D1 < D2 for clarity. If we look at the

area with lower error probability, take for instance the region inside the yellow contour of

P ∗e = 1.1·P ∗emin, we realize that it is distributed along a strip located at redundancy layer

D1 close to 1.6 ·109 and the second redundancy layer ranging between 1 and 109. Indeed,

if we are able to compute the characteristic layerD1 = 1.6·109 then it does not have much

influence on the global error probability at which layer we apply the second TMR as long

as it is below the layer D2 = 109 (see slashed line in the figure). Given this result it seems

very interesting to find a strategy to calculate the optimum value for D1. Concentrating

now on the optimum configuration, that is highlighted in the figure with a white dot,

we observe that is located at D1 = 1.6 · 109 and D2 = 3 · 105 and it has associated

the minimum global error probability P ∗emin = 2.4 · 10−9. If we compare this optimum

configuration with the one from the previous part for single redundancy layer we observe

that we have improved the system reliability. In particular, for the simulated system we

have reduced one half approximately the global error probability from P ∗emin = 4.4 ·10−9
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Figure 7.4: Global error probability P ∗e of a cross-layer system with Ds = 1010 de-
vices against redundancy layers D1 and D2. The optimum redundancy configurations
are highlighted with white dot makers and it is labeled the associated minimum error
probability (P ∗emin). The yellow contours enclose the regions with global error proba-
bilities lower than 1.1 · P ∗emin. The levels of redundancy are n = 3 for both dimensions

and the rest of parameters are k = 2, r = 0.6, Peo = 10−2 and δ = 10−15.

to P ∗emin = 2.4 · 10−9. This leads us to the conclusion that redundancy distribution

through hierarchy layers in cross-layer systems is useful to improve reliability.

However, as in the previous part, we have to take into account that the location of the

optimum redundancy configuration is influenced by the interconnects failure probability

δ. Figure 7.5 depicts the impact of the interconnect failure probability δ in the optimum

redundancy configuration of cross-layer systems with Ds = 1010 devices and two layers

with TMR redundancy (layers D1 and D2). The parameters of Rent’s Law are the same

as in previous simulations: k = 2 and r = 0.6. The global error probability without

redundancy is Peo = 10−2. Observing the figure, we first notice how the contour of

reliable redundancy configurations changes with δ. We refer to reliable configurations

as the ones that produce a global error probability lower than 1.1 · P ∗emin. We see that

as the interconnect failure probability δ increases the reliable contour reduces in area

and moves towards configurations with higher D1 and D2. This shift towards higher

layers can be understood by noting that redundancy at lower layers implies introducing

more wires than at higher layers. For example, if we apply redundancy at layer 1 then

we have to interconnect Ds times n-MR structures whereas at layer Ds we only have 1
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n-MR structure to interconnect.

Another relevant aspect observed in the example focusing on the symmetric halfD1 < D2

is that the optimum configurations have always the same redundancy layer D1 regardless

of δ. This fact highlights the relevance of finding a method to approximate this value.

In order to do this, we analyze the equation (7.5) applied to the TMR technique in layer

D1. Since the condition D2 < D1 is met, Equation (7.5) can be used in its current form

and we just have to be aware that the error probability of the replicated elements in

layer D1 depends on the redundancy layer D2. However, since our interest is to analyze

the contribution of δ in the global error probability we concentrate in the exponent of

the term (1− δ), which is:

Dr−1
1 Ds −Dr

s + kDr
1(n− 1). (7.6)

If we optimize this exponent in terms of D1 we find the layer Dopt
1 that minimizes the

exponent, and therefore it minimizes the global error probability since (1− δ) < 1:

Dopt
1 =

Ds(1− r)
2(n− 1)r

(7.7)
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If we apply this expression to the previous example it yields Dopt
1 = 1010/6 ≈ 1.67 · 109

which fits the simulation results. The influence of D2 in the optimum value of D1 is

negligible as the simulation results demonstrate. We can use this approximation to

decide the redundancy configuration of our cross-layer system.

7.5 Conclusions

In this Chapter, we introduce a new methodology to improve the efficiency of fault-

tolerant techniques based on hardware redundancy. We focus our work in reliable cross-

layer systems and analyze the benefits of distributing redundancy techniques across the

hierarchy layers. For this we simulate computing systems under different reliability

scenarios and redundancy configurations using a fault model that takes into account the

failure probability of devices and interconnects using the Rent’s Law. Our results show

the major components of reliability in cross-layer systems and help discern the main

trade-off. We note, for example, that the reliability of a cross-layer system with Ds =

1010 devices and a failure probability of interconnects of δ = 10−15 can be optimized

seven orders of magnitude from Pe = 10−2 to 4.4 · 10−9 by applying 7-MR at layer

D = 4·108 (single layer redundancy). Additionally, using two TMR layers simultaneously

at layers D1 = 1.6 · 109 and D2 = 3 · 105 we can further improve the reliability to Pe =

2.4 · 10−9 (multiple layer redundancy). A correct distribution of redundancy through

the hierarchy layers of complex systems can improve significantly the reliability benefits.

Given the nature of the system we also observe the significant role of interconnects.

We propose a method to estimate the optimum redundancy configuration based on

the minimization of the error probability component associated to interconnects. Our

conclusions may orient system designers to maximize the benefits of redundancy in

cross-layer systems.



Chapter 8

Final Conclusions

This thesis has been motivated and inspired primarily by the work on reliability and

redundancy developed by von Neumann in the 1950s. Grounded in the principles of

hardware redundancy, our research line has delved into three main issues closely re-

lated to future computing technologies, namely: devices’ heterogeneity, processing time

asynchrony, and cross-layer redundancy design. The main objective has been to propose

and analyze enhanced fault-tolerant methodologies based on redundancy to build robust

computing architectures in the context of future nanotechnologies.

In the first place, we focused our attention on the problem of heterogeneity of com-

pounding devices. Our initial proposal was to enhance the robustness of the averaging

cell (AVG) architecture against heterogeneity by optimizing the values of the averaging

weights. The idea was to counteract the uncertainty at the input signals by assign-

ing weights inversely proportionally to the input variability levels. This approach gave

place to the unbalanced averaging cell (U-AVG) structure. Significant improvements in

terms of reliability and redundancy cost were demonstrated by means of Monte Carlo

simulations.

Following up with the heterogeneity issue and our unbalanced averaging approach, we

subsequently introduced the adaptive averaging cell (AD-AVG) in order to deal with

the temporal variations in the input drift levels due to wear-out. The AD-AVG embeds

a learning mechanism based on a variability monitor that allows for the on-line input

weight adaptation such that the weight configuration properly reflects the aging status of

the circuit at any time. Monte Carlo simulations proved that the AD-AVG considerably

reduces the required amount of redundancy for a target reliability level when compared

to conventional AVG and U-AVG techniques.

117
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As a consequence of using a variability monitor, an important but counter-intuitive effect

appeared in the context of the AD-AVG architecture. After running the Monte Carlo

simulations for our adaptive AVG proposal and analyzing the results, we discovered that

noise in the variability monitor causes a resonance effect in the yield versus degradation

characteristic of the AD-AVG. Indeed, while in general the AD-AVG yield characteristic

decreases with degradation, if we take into account a noisy variability monitor it increases

under specific noise and degradation conditions up to a resonance peak (DSR peak)

and then decreases as normal. In this thesis, we proposed to add controllable noise

injectors to the AD-AVG inputs in order to virtually create the DSR peak conditions

at every moment of the circuit lifetime and enhance the whole yield characteristic.

Simulation results indicated that by applying the proper noise magnitude we can provide

an optimum and nearly flat reliability level at any time before the DSR peak degradation

level.

Our last proposal within the topic of heterogeneous-aware design was the combination of

averaging cells with threshold logic gates resulting in what we call Averaging Cells Linear

Threshold Gates (AC-LTG). The key idea behind this structure was the composition

of a weighted average and a threshold operation that met the main purposes of both

compounding structures, namely reliable computing and implementation of Boolean

functions. In this thesis, we demonstrated that AC-LTG enables reliable computing at

moderate redundancy levels. In the simulations, we took into account different sources of

variability, such as input signal drift and parameter deviations from the manufacturing

process.

In the second part of this thesis, we considered the statistical dispersion in the processing

times that comes associated with the high variability levels of future nanotechnologies.

In order to address this asynchrony issue, we included the time dimension as a design

factor in our next redundancy reliable architecture proposal. Indeed, we introduced

the partially-asynchronous R-fold Modular Redudnacy (pA-RMR), the main feature of

which is the detection of input bit arrivals by means of token signals. Applying this small

modification, we basically added a second degree of freedom to the RMR structure, which

now not only has a configurable size (R replicas), but also allows modifying the number

of tokens it waits before giving an output. Our analysis of pA-RMR reliability and

performance resulted in a clear trade-off between both magnitudes and demonstrated

the potential benefits of partially asynchronous redundant architectures in terms of

performance and reliability management.

Finally, we concentrated on the problem of redundancy effort allocation in systems with

many hierarchical layers. We performed several cross-layer reliability studies in order to

provide meaningful orientations for the smart application of fault-tolerant techniques to
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high transistor count systems. Basically, we compared the reliability of complex com-

puting systems operating under different redundancy configurations and demonstrated

that a correct distribution of redundancy through hardware hierarchy layers significantly

improves the overall system reliability. Additionally, we also proved the key role of in-

terconnects in the reliability of complex computing systems.

8.1 Thesis Contributions

The main contributions of this thesis can be summarized as follows:

• The fundamental error bounds for reliable computation have been extended for

asymmetric error designs.

• A general variability-based fault model has been defined for the analysis of circuits

and systems with heterogeneity and degradation effects.

• The optimum set of weights for averaging cell (AVG) architectures analyzed with

the previous general fault model has been found and a method for its application

has been proposed, namely the unbalanced averaging cell (U-AVG).

• An on-line self-adapting averaging architecture has been proposed to counteract

the effects of technology degradation, specifically the adaptive averaging cell (AD-

AVG).

• The so-called degradation stochastic resonance (DSR) effect has been discovered

and analyzed in the context of AD-AVG architectures.

• A DSR-aware AD-AVG design based on noise injection has been proposed that

provides an optimum and nearly flat reliability level over the lifetime of the system.

• A fruitful combination of averaging cells and linear threshold gates has been pro-

posed (AC-LTG) to enhance the reliability of unate Boolean functions in an effi-

cient way.

• A partially-asynchronous redundant architecture (pA-RMR) has been presented

that extends the configuration possibilities to reach different trade-off between

reliability and performance.

• Useful design guidelines have been provided for the smart application of redun-

dancy techniques in complex multiple layer systems.
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8.2 Future Work

During the development of this thesis, many lines of research were open that require

further investigation. In the following list, we summarize some interesting ideas that we

wish to expand upon in the future:

• Exploring the application of redundancy techniques in heterogeneous technology

memory systems. We believe that the correct exploitation of heterogeneity in

redundant memory structures has great potential for the development of high

performance computing systems.

• Refining the final implementation of the AD-AVG architecture using a particular

nanoscale technology to evaluate the reliability benefits and the associated over-

heads. In order to have a fair comparison between AD-AVG and other conventional

fault-tolerant techniques, a more detailed review of their implementation needs to

be done.

• Further developing our partially-asynchronous redundant structure (pA-RMR)

and estimating its potential benefits at system level. Complex functional sys-

tems could be implemented combining multiple pA-RMR cells in series and paral-

lel obtaining as a result the associated advantages of reliability and performance

adjustment and error detection capabilities.
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Publications related to this thesis

Most of the contents of this thesis have already been published in several journals and

conference papers. Below we present a list of publications resulting from work in this

thesis.

A.1 Journal papers

• Nivard Aymerich and Antonio Rubio, “Reliability and Performance Tunable

Architecture using Asynchronous R-fold Modular Redundancy”, IEEE Transactions

on Nanotechnology, 2013.

• Nivard Aymerich, Sorin Cotofana and Antonio Rubio, “Controlled Degrada-

tion Stochastic Resonance in Adaptive Averaging Cell based Architectures”, IEEE

Transactions on Nanotechnology, June 2013.

• Nivard Aymerich and Antonio Rubio, “Fault-tolerant nanoscale architecture

based on linear threshold gates with redundancy”, Microprocessors and Microsys-

tems, July 2012.
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tonio González, “Impact of positive bias temperature instability (PBTI) on 3T1D-
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actions on Nanotechnology, May 2012.
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A.2 Book chapters
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Conference on Nanotechnology, Beijing, China, 2013.
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for Asymmetric Error Reliable Computation”, 9th ACM/IEEE International Sym-

posium on Nanoscale Architectures (NANOARCH), New York City, USA, 2013.
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resonance (DSR) in AD-AVG architectures”, 12th IEEE International Conference

on Nanotechnology, Birmingham, United Kingdom, 2012.
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land, 2011.
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