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No, what is important is neither linearity or non-linearity,
but the change, the degree of change

from something that doesn’t move
to other events with different tempos in particular.

— Karlheinz Stockhausen, 1928 - 2007
German composer

a pioneer of electronic music





Abstract

In this manuscript we present an experimental and theo-
retical investigation of quantum-noise-limited measurement by
nonlinear interferometry, or from another perspective, quantum-
noise-limited interaction-based measurement. The experimental
work is performed using a polarization-based quantum interface
between propagating light pulses and cold rubidium-87 atoms
trapped in an optical dipole trap.

We first review the theory of quantum metrology and estima-
tion theory, and we describe theoretical proposals for nonlinear
quantum metrology as developed by the group of Carlton M.
Caves in the University of New Mexico.

We then describe our proposal, made in 2010, to implement
the Caves group’s ideas using nonlinear optical interactions in a
cold atomic ensemble to implement a nonlinear spin measure-
ment. To evaluate this proposal we develop two theoretical
approaches, first an extension of the collective quantum vari-
ables approach, often employed to describe quantum interfaces
and atomic spin ensembles, to nonlinear optical processes. This
results in an effective Hamiltonian containing nonlinear terms
of the form described by the Caves group, and demonstrates
a qualitative equivalence of the two schemes. The second ap-
proach uses the Maxwell-Bloch equations to describe nonlinear
propagation of pulses through an atomic spin ensemble, includ-
ing inhomogeneities and relaxation effects. This latter method
makes quantitative predictions about optical rotation signals un-
der realistic experimental conditions.

We then describe the implementation of the proposal in a
polarization-based light-atom quantum interface. We describe
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the existing trapping and probing system, focusing on the char-
acteristics that make it suitable for shot-noise-limited and pro-
jection -noise-limited atomic spin measurements. We then de-
scribe adaptations to use the apparatus with shorter, higher-
intensity pulses as required for nonlinear measurement, as well as
characterization of the photodetection system under these mod-
ified conditions. Calibration of the nonlinear polarization rota-
tion versus probe laser detuning allows us to produce a nearly
pure nonlinear rotation signal. Finally, experimental results are
presented showing shot-noise-limited nonlinear rotation signals
over three orders of magnitude in photon number N . The results
are consistent with our theoretical models and confirm a major
prediction of the Caves group’s work, in that a two-photon inter-
action gives a scaling for the measurement sensitivity as N−3/2.

A brief discussion relates this experimental observation to
theoretical discussions of the “Heiseinberg limit” of quantum
metrology, and possible further applications of nonlinear mea-
surement techniques.



Resum

En aquest manuscrit presentem una recerca experimental i
teòrica sobre mesures limitades pel soroll quàntic fetes mitjan-
çant interferometria no lineal, o des de un altra perspectiva,
mitjançant interacció. En el treball experimental es va fer servir
una interfície quàntica de polarització entre polsos de llum en
propagació i àtoms freds de rubidi-87 atrapats en una trampa
òptica de dipol.

Primer, farem un repàs de la teoria de la metrologia quàntica
i de la teoria de la estimació, descriurem la proposició teòrica
sobre metrologia quàntica no lineal tal i com la va desenvolupar
el grup de Carlton M. Caves al Universitat de Nou Mèxic.

A continuació descriurem la nostra proposta, feta al 2010, de
com implantar la idea del grup de Caves fent servir interaccions
òptiques no lineals en un conjunt d’àtoms freds amb la finalitat
d’efectuar una mesura no lineal de spin. Per avaluar aquesta
proposta vam desenvolupar dues aproximacions teòriques fent
ús de dos mètodes diferents. En primer lloc vam estendre la tèc-
nica de variables quàntiques col·lectives cap als processos òptics
no lineals, aquesta tècnica sovint és utilitzada per descriure in-
terfícies quàntiques i conjunts de spin atòmics. Això dóna com
a resultat un Hamiltonià efectiu que conté termes no lineals de
la forma descrita pel grup de Caves, i demostra una equivalència
qualitativa entre el nostre esquema i el seu.

El segon mètode fa ús de les equacions de Maxwell-Bloch
per descriure la propagació no lineal dels polsos a través del
conjunt de spins atòmics, tenint en compte deshomogeneïtats i
efectes de relaxació. D’aquesta manera podem fer prediccions
quantitatives sobre senyals de rotació de polarització òptica en
les condicions d’un experiment real.
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Seguirem amb la descripció de com vam implementar al labo-
ratori la nostra proposta teòrica mitjançant una interfície quàn-
tica de polarització entre llum i àtoms. Descriurem el ja existent
sistema de confinament i sondeig dels àtoms, concentrant-nos en
les característiques que permeten fer mesures al limit del soroll
quàntic i del soroll de projecció. Aleshores detallarem com vam
adaptar el sistema per l’ús amb polsos més curts i intensos, tal
i com requereix la mesura no lineal, i al mateix temps com vam
calibrar el sistema de detecció de llum en aquestes diferents con-
dicions. El calibratge de la rotació no lineal de polarització en
funció de la freqüència del làser de sonda, ens permet obtenir un
senyal de rotació casi purament no lineal. Finalment, presenta-
rem els resultats experimentals que mostren senyals de rotació
no lineal limitats pel soroll quàntic al llarg de tres ordres de
magnitud en el número N de fotons. Tals resultats son consis-
tents amb els nostres models teòrics i confirmen una important
predicció del treball del grup de Caves, és a dir que la interacció
de dos fotons dóna una llei d’escala de N−3/2 per a la sensibilitat
de la mesura.

Per concloure, una concisa discussió relaciona aquesta ob-
servació experimental amb discussions teòriques sobre el “limit
d’Heisenberg” de la metrologia quàntica, i amb d’altres possibles
aplicacions de tècniques de mesura no lineal.
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CHAPTER 1

Background on Quantum Metrology

Metrology is that part of science concerned with measure-
ments. The interest in measurement has both a theoretical
origin, because of the question about what is the fundamental
meaning of performing a measurement, and a technological rele-
vance since it will lead to improve instrumentation performances
and standards.

In the context of quantum physics, quantum metrology de-
velops high-resolution and highly sensitive measurements of pa-
rameters using quantum theory to describe the physical sys-
tems, and in particular exploiting quantum entanglement. The
declared aim of quantum metrology is to develop new measure-
ment techniques that provide better precision than the same
measurements performed by classical means.

In this chapter we will introduce the key elements of this
area of physics, how they interplay and what is the commonly
used approach to improve the quality of the measurements.

1.1. Basic vocabulary

The man-in-the-street idea of performing a measurement is
the following: there is a quantity that needs to be measured,
e.g., the temperature of an object. Somebody is provided with
an instrument that responds in someway to temperature, e.g.,
a thermometer. This somebody puts the instrument in contact
with the object under measurement, and reads-out how the in-
strument, in particular some of its properties have been modified
by the contact. From this read-out and some knowledge about
the instrument, the person can infer the object’s temperature.

This scheme is valid for the majority of measurements: there
is an object of which we would like to measure a specific property.

13



14 1. BACKGROUND ON QUANTUM METROLOGY

We can refer to them as the system and its parameter, χ. Then,
we have the measuring instrument, we call it the probe. The
probe will interact with the system during some time and it
will collect so some information about the parameter. Finally
we can observe the probe, learn how it has evolved during the
interaction and estimate the parameter.

The estimation process is typically not perfect, so that we
will know the parameter with an error. It is better to say that
we can have a best guess of the parameter, χ and an uncertainty,
∆χ.

Imperfection has different origins. Measurements could be
affected by systematic errors, e.g., a badly calibrated instru-
ment was in use, or by statistical ones. We can refer to this
random contribution as the noise. The noise can be present in
the knowledge of the state of the probe, ρprobe, i.e., the set of
elements and quantities that defines the condition of the probe.
Moreover, noise can play a role also at the stage of the interac-
tion between the probe and the system, because of unknown, or
not under control, mechanisms, e.g., how the room temperature
affects the thermometer while it is measuring.

It is crucial to make a distinction between sources of noise.
The sources of noise that are technical in principle can be min-
imized and avoided, while the ones that are fundamental come
from physical principles, and can not be avoided. We will see
this better in the following, in fact quantum metrology focuses
on these fundamental sources of noise.

Finally we introduce the sensitivity, δχ, which is a figure-
of-merit of the estimation process: it is the a priori minimum
uncertainty one can expect to have in the estimation process
under consideration. The estimation will not give conclusive
answer if intended for example to distinguish quantities which
differ less than δχ, and a better estimation technique should be
used instead.

We are going to present all these concepts in the framework
of interferometry as this technique is universally recognized as
the ideal benchmark for studying quantum effects of metrologi-
cal relevance [Hariharan and Sanders, 1996].
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1.2. The quantum interferometer

Interferometry is a very powerful technique for performing
measurements. It uses the principle of superposition to combine
two waves and extract relative information regarding the dif-
ference between separate paths before the recombination. This
is possible since the result of the superposition of two waves
with the same frequency is determined by the phase difference
between them:
(1.2.1)

sin(ωt+φ1)+sin(ωt+φ2) = 2 sin

(
ωt+

φ1 + φ2

2

)
cos(φ1−φ2).

Interferometers are widely used in science and industry for
the measurement of small displacements, changes of refractive
index [Woodruff and Yeung, 1982], surface irregularities [Barker,
1972; Heslehurst, 2009; Maji, 1995], etc. All these are examples
of physical processes which induce a relative phase, φ, in the
waves of the electromagnetic field. This phase shift can be mea-
sured relatively to a reference beam, as in a Mach-Zehnder (MZ)
interferometer.

Figure 1.2.1. Mach-Zehnder interferometer.
Figure from an article in SPIE Newsroom by Martin et al.
doi:10.1117/2.1200610.0413
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Quantum mechanics is of the uttermost relevance in inter-
ferometry, principally because of two reasons. The first is that
to sense smaller and smaller quantities, a point will arrive where
the elements of the interferometers show their quantumness: to
give an example, in a gravitational-wave antenna, where dis-
placements below 10−18 m matter, the interpretation of radia-
tion pressure on the mirrors in the interferometer must include
the fact that light is made of quanta, i.e., the photons, whose
bouncing on the mirror surface has an intrinsic quantum ran-
domness [Caves, 1980].

The second reason is more generic, and concerns the fact
that every system is quantum in its nature. Unfortunately we
are not used to such a vision and we do not worry about the
quantum nature of the probes used to perform interferometric
measurements, since the interference phenomena we commonly
experience involve light, sound, radio signals, which evidently
are waves. Conversely, there are interferometers which work
with particles, atoms for example, as probes [Baudon et al.,
1999; Cronin et al., 2009]. The wave-like behavior of atoms
only can be understood in the framework of the wave-particle
duality, which is at the basis of the quantum interpretation of
microscopic objects.

Before proceeding, we need to clarify some more details
about the terminology: in the vocabulary of quantum physics
a measurement is a very specific process with a precise mathe-
matical definition, which involves operations on Hilbert spaces.
There is a correspondence between measurable quantities, i.e.,
observables like velocity, angular momentum, energy, etc., and
Hermitian operators. The results of a measurement process are
tied to the spectrum of its corresponding operator. A real pro-
cess, e.g., the detection of photons by a photodetector with some
level of electronic noise and dark counts, has its corresponding
mathematical positive-operator-valued-measure (POVM) [Hel-
strom, 1976].

In this framework, we stress the difference between the mea-
surement a user performs on the quantum probe after the in-
teraction with the system under investigation, and the whole
estimation process. Once this clarification has been made, I
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want to apologize in advance for confusion in the usage of these
two terms that the reader may find in the rest of the thesis,
confusion originated by the similarity of the two notions in the
common, classical, language.

Let us consider the wave-particle duality and analyze under
this perspective an interferometer where a quantum system is
used as the probing element. We can refer to such a device as a
quantum interferometer.

We need to know, or we have to set, the initial state of the
probe, ρ(0), before the interaction with whatever system is the
object of the estimation, even before the probe is sent into the
input port of the interferometer. One pillar of quantum physics
is the well known Heisenberg uncertainty principle: it says that
specific sets of observable quantities can not be known simul-
taneously with infinite precision [Heisenberg, 1927; Robertson,
1929]. As a consequence it is possible that the initial state of
the probe has a level of uncertainty, which is a source of noise
eventually.

More in detail, if we think of the probe as an ensemble of N
particles, the splitting into the two arms will lead to a binomial
distribution so that the particles in each arm will be distributed
around the mean value, n, within an interval of size δn, with

(1.2.2) n = N/2 and δn =
√
N/2,

in case of having a 50:50 beam splitter at the input port. An
alternative interpretation makes use of the quantum fluctuation
of the electromagnetic field. Although no light is injected into
the interferometer from the port opposite the one where the
probe enters, there are vacuum fluctuations incident from this
direction. They are responsible for the uncertainty δn =

√
N/2

in the distributions of particles in the two arms.
In the two arms of the interferometer, the wave behavior

of the probe plays a role, and in the sensing arm the probe
acquires a phase difference with respect to the reference one,
exactly as in the classical case. The heart of what happens in the
sensing arm is the interaction with the system under estimation,
which can be formalized in the following way: let us assume
an interaction Hamiltonian, Ĥ, where the system parameter to
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estimate, χ, is multiplied by an operator, or by a function of
operators, describing observables of the probe system, Ô,

(1.2.3) Ĥ = χÔ.

This interaction, acting for an interval of time t, will evolve the
probe state in this arm1, through a unitary evolution operator
Û = eiĤt/~.

Finally the two arms recombine and one should proceed to
measure the final state of the probe system, in most of the cases
by measuring the intensity in the two output arms. We can now
think at the probe in the particle-like fashion because measuring
intensity is very close to count the number of particles. The time
arrival of photons on a detector is a random process following
Poissonian statistics. Consequently, in any set of measurements
there will be the following relation between the mean value of
the number of photon counted, µ = n, and the uncertainty,
calculated as the square root of the variance, δn =

√
n.

All the processes described above that introduced uncer-
tainty and imperfection in the interferometer are somehow fun-
damental, i.e. it is not for being an imperfect beam-splitter that
the splitting process is more random than one would desire. We
see that all this randomness follow the same square-root law,√
N : in electronic this is something known as shot-noise, com-

ing directly from the quantization of charge [Schottky, 1918].
From the shot-noise contribution to fundamental imperfec-

tion, we can calculate the sensitivity in the estimation of the
phase, which finally sets the sensitivity in the estimation of the
parameter χ. If N is the total number of particles and n1, n2 are
the counts at the two output ports of the interferometer, then
considering eq. 1.2.2 we have:

(1.2.4) φ ∝ n1 − n2

N
and δφ ∝

√
N

N
= N−1/2.

1The partition of the probe state can be more involved than simply
identifying a sub-state in each arm. Indeed this is what entanglement vs.
separability is about, that is a very important issue. Anyway, the details of
this question are irrelevant at this point, where the goal is formalizing the
effect of the external system.
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Consequently, δχ will also scale asN−1/2. This scaling law of the
sensitivity with the number of particles is known as the Standard
Quantum Limit (SQL) of parameter estimation [Braginsky and
Khalili, 1992; Caves, 1985; Ozawa, 1988; Yuen, 1983].

1.3. From Standard Quantum Limit to Heisenberg
Limit: entanglement

Another way of seeing the rise of fundamental uncertainties
in metrology is through the Heisenberg uncertainty principle. In
the majority of the cases, the principle avoids the full knowledge
of the state of a quantum system. As a consequence, the setting
of the initial state of a quantum probe has some level of uncer-
tainty, and also the comparison between the probe state before
and after the interaction cannot be complete, facts these that
add some level of randomness to the estimation.

However, by using statistics we can make improvements: in-
stead of one single probe, we can use N identical, independent
probes, measure them, and average the results. According to
the central limit theorem, for a large value of N , the error on
the average decreases as ∆/

√
N , where ∆2 is the variance of

the measurement results associated with each individual probe.
Once again we find the SQL square root scaling law [Giovannetti
et al., 2006].

We can show this in an example where the N probes are
photons. Let us introduce a and a† as the annihilation and
creation operators for the optical mode A, and a similar notation
for the other modes in Fig. 1.3.1

The beam-splitter transformations for annihilation opera-
tors, e.g., at the input port in Fig. 1.3.1, are the following:

(1.3.1) a′ =
a+ ib√

2
, b′ =

ia+ b√
2
.

Accounting also the relative phase φ acquired between the arms
A′ and B′, we have for the output modes of the whole interfer-
ometer:

(1.3.2)
c =

a′ + ib′eiφ√
2

= a
1− eiφ

2
+ ib

1 + eiφ

2
=

= −ieiφ/2 [a sin(φ/2)− b cos(φ/2)]
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Figure 1.3.1. MZ interferometer. From an article by
Giovannetti [Giovannetti, 2004]. The modes entering and
exiting the beam splitter are labeled; a phase difference
φ, encoding the signal to estimate, accumulates between
the two arms.

and

(1.3.3)
d =

ia′ + b′eiφ√
2

= ia
1 + eiφ

2
− b1− eiφ

2
=

= ieiφ/2 [a cos(φ/2) + b sin(φ/2)] .

For the creation operators we have:

c† = ie−iφ/2
[
a† sin(φ/2)− b† cos(φ/2)

]
,(1.3.4)

d† = −ie−iφ/2
[
a† cos(φ/2) + b† sin(φ/2)

]
.(1.3.5)

The intensity difference of the two output ports, correspond-
ing to the operator
(1.3.6)

M̂ = d†d− c†c =
(
a†a− b†b

)
cosφ+

(
a†b− b†a

)
sinφ,

is the observable that is monitored for the read-out in estimating
φ.

A photonic system can be described in different represen-
tations of states [Scully and Zubairy, 1997]: among the most
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usual ones there are the Fock states, i.e., states with a well de-
fined photon number. The vacuum state or the single-photon
state are some examples.

Also very well used there are the coherent states, i.e., states
with a well defined phase relation in the sinusoidal oscillation of
the electromagnetic field. They are the most close description
of the field coming out of a laser.

Both of those sets are a basis for the Hilbert space of a
photonic mode meaning that every other state can be expressed
via linear combination.

For the case of a Fock state with N photons entering into
port A and vacuum in mode B, i.e.,

∣∣ψ(in)
〉

= |N〉A |0〉B, we
have:

〈M̂〉 = N cosφ,(1.3.7)

var(M̂) = (δM)2 = 〈M̂2〉 − 〈M̂〉2 = N sin2 φ.(1.3.8)

Performing error propagation we calculate the sensitivity in the
phase estimation to be:

δφ = δM

∣∣∣∣∣∂〈M̂〉∂φ

∣∣∣∣∣
−1

=
1√
N
,(1.3.9)

that is the expected SQL.
Exactly the same will happen if instead of a Fock state we

send a coherent state |α〉 into port A, with |α|2 being the mean
photon number N .

Now let us consider that we are able to manipulate the set
of photons so that they are not independent anymore. The un-
certainty they carry may probably not sum up in a trivial way
because their fluctuations can be correlated. This is indeed what
happens if collectively the N probes are in an initial entangled
state. We can show that this leads to an enhancement in the
sensitivity.

A possible entangled initial state can be the following:∣∣∣ψ(in)
〉

=
1√
2

(|N + 1〉A |N〉B + |N〉A |N + 1〉B) .(1.3.10)
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This is a nonclassical state, with correlations between the inputs
A and B modes that cannot be described by a local statistical
model.

With this kind of states we have [Dowling, 1998]:

〈M̂〉 = (N + 1) sinφ,(1.3.11)

var(M̂) = cos(2φ) + (N + 1)2 sin2 φ(1.3.12)

and at least for small angles, using the same propagation error
rules as before, one can easy calculate the sensitivity

δφ|φ=0 =
1

N
.(1.3.13)

We can see that the sensitivity gains a square root factor
more than in the SQL case. Such a sensitivity achievable with
entanglement is known in the field as the Heisenberg limit (HL).
To be specific, sometimes in the literature there is ambiguity
about if the HL is referred to a particular value function of N ,
or only to the scaling law, i.e., the exponent −1 of N in contrast
with the −1/2 of the SQL. Nowadays, the debate about an exact
definition of the HL is still open [Zwierz et al., 2010, 2012; Hall
et al., 2012; Hall and Wiseman, 2012; Berry et al., 2012].

The term HL was introduced during the nineties decade
[Holland and Burnett, 1993; Lane et al., 1993; Sanders and Mil-
burn, 1995; Ou, 1996], and the relation with the uncertainty
principle was explained in terms of the relation between fluctu-
ation in phase and photon number [Dirac, 1927]:

(1.3.14) ∆φ∆n ≥ 1

In the original works it was clearly stated that the HL is not
derivable directly from the uncertainty principle, because of the
ambiguity in the definition of a phase operator from which de-
riving the relation (1.3.14) [Carruthers and Nieto, 1968; Dirac,
1927; Louisell, 1963; Pegg and Barnett, 1988; Torgerson and
Mandel, 1996; Vorontsov and Rembovsky, 1999]. Nevertheless,
outside the quantum metrology community the terms Heisen-
berg limit and uncertainty principle were mixed, confusion that
helped in consolidating the idea for which the HL is the ultimate
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limit for sensitive interferometric measurements. One of the re-
sults of this thesis is, in fact, the experimental demonstration
that things are not as simple as that.

1/N scaling would also be achieved if in the MZ interferom-
eter the input beam-splitter is replaced with a device capable of
preparing the highly entangled state

1√
2

(|N〉A′ |0〉B′ + |0〉A′ |N〉B′) .(1.3.15)

This kind of states are known as N00N states and are very
difficult to generate but even more difficult to preserve, since
any small scattering event in one of the two modes can reveal
the presence there of the photons and so make collapsing the
wave-function onto a non-entangled state.

The experimental creation of the particular 2-N00N state,
sometime called a diphoton, is commonly performed with a two
photons interference effect as in the seminal experiment by Hong,
Ou and Mandel [Hong et al., 1987]. When two indistinguishable
photons, usually generated with nonlinear optics techniques,
reach a beamsplitter exactly at the same time, they join, i.e.,
the possibility of they exiting the beam splitter on different ports
suffers destructive interference, because of the bosonic nature of
photons. So the final state will be a superposition of both pho-
tons in one arm with both photons in the other arm.

N00N states were proposed for improving the resolution in
the context of lithography [Boto et al., 2000] because of the
peculiar correlations among photons, in particular about their
coincidence in the arrival time onto the target. In the context
of metrology the same concept is applicable: using N00N states
the coincidence signal at the two outputs of an interferometer
has N times faster dependance with φ, than in the case of the
read-out of M̂ with non-entangled state, boosting in such a way
the sensitivity towards the Heisenberg limit.

Another way to improve on top of the SQL is manipulating
the mode in the B port of the interferometer sending there what
is known as a squeezed state, instead of leaving only the vacuum.
The description of squeezed states can be found in any textbook
of quantum optics [Scully and Zubairy, 1997; Bachor and Ralph,
2004; Loudon, 1983], and their use in metrology is widespread.
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Also for squeezed states, improving on top of the SQL means
using nonclassical resources. Squeezing is a feature of the macro-
scopic description of the whole ensemble of probes, while entan-
glement describes nonclassicality at the microscopic level. The
two descriptions have been theoretically tied, before in the case
of atomic systems [Sorensen and Mølmer, 2001] and recently also
in the photonic case [Beduini and Mitchell, 2013].

1.4. Some applications

The research in quantum metrology during the last decades,
in particular in the area of quantum optics or atomic physics,
allowed to boost the performance in terms of sensitivity of many
measurements. Here are some examples.

1.4.1. Gravitational antennas. Gravitational wave de-
tection is one of those fields where the signals are expected to be
incredibly small compared with the usual sources of noise. The
distortion in space-time caused by a big astronomical event, e.g.,
a supernova exploding or two black-holes colliding, is expected
to be of the order of 10−18 m. Laser interferometry starts to
become a plausible option but only when used inside kilometer
long arms. Interferometers of this size has been built in Italy,
USA, Germany and Japan.

The geometry is the Michelson one (see Fig. 1.4.1), and usu-
ally the laser light is recycled in the long arms using cavities
to boost the power up to hundred of Watts reducing in this
way the effects of the photon shot-noise. The counterpart is
that this huge power on the massive sensing mirrors creates
problems because of thermal deformation of the surfaces and
because of radiation pressure. An optimal power is thus found
balancing these effects. This is the origin of standard quantum
limit in this field. It was proposed [Caves, 1981] and has been
recently demonstrated [The Ligo Scientific Collaboration, 2011]
that squeezed light improves the sensitivity of such devices.

1.4.2. Time standards. Atoms have definite features that
only depend on physical constants. One of these features, the
electronic structure, can indeed be used as a reference for energy,



1.4. SOME APPLICATIONS 25

Figure 1.4.1. Michelson interferometer used for
gravitational-wave detection. From the article by
Caves about radiation pressure in interferometers [Caves,
1980]. In the two long arms there are recycling cavities.
The dashed arrow is the unused port from into which
squeezed light is injected.

and consequently for frequency, thanks to Planck’s relation be-
tween energy and frequency, E = hν. This is at the heart of the
modern atomic clocks for time standards.

The atomic interferometer [Essen and Parry, 1955; Sullivan,
2001] used for time standards works in the following way: an
ensemble of atoms, the probe, is initialized in a specific energy
level. A microwave pulse split the atoms sending half of them
into a different energy state. Just after the splitting, the two
ensembles have a definite phase relation specified by the phase
of the microwave. This process is known as a Pi/2 pulse and it
is the analogous of a beam splitter for photons.

The free evolution of the ensembles in the two different en-
ergy levels generates a phase difference ∆φ = t(E2−E1)/~ pro-
portional to the time passing, t. Finally, a second Pi/2 pulse
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recombines the ensembles and by counting the population dif-
ference between level 1 and 2, similarly to what is done in the
optical case for the operator M̂ , one can read out the phase, and
indirectly t.

This technique is called Ramsey interferometry, and its for-
malism is exactly the same as in the case of a photonic MZ.
There are techniques, which are used to extend as much as pos-
sible the time between the two pulses, e.g. atomic fountain.

Another category of atomic interferometry uses the recoil got
while scattering photons, for example in Raman processes, as a
technique to split spatially the free falling wave-packet of atoms
[Bordé, 1989; Kasevich and Chu, 1991]. With these recoil tech-
niques the atomic beam can be also reflected, as photons from
mirrors. In such interferometers where the arms are physically
separated, atoms can experience gradient of forces, acceleration,
etc.

1.4.3. Magnetometry. Some atomic species, alkali atoms
for example, also are very good in probing magnetic fields, be-
cause of their dipole moment and spin. Ramsey technique can
reveal the effect of magnetic field on atomic ensembles, but in-
terferometry also plays a role in this kind of applications in the
optical read-out of atomic properties, like the angular momen-
tum of the atomic sensors.

In optical magnetometers the probing mechanism is the fol-
lowing: a magnetic field affects the angular momentum of a
cloud of atoms, which can affect in turn light properties, e.g.,
polarization. A polarization interferometer uses a rotation of
the polarization plane of an optical field, which can be inter-
preted as a phase shift introduced by a medium between two
orthogonal circular components. This effect is usually known as
Faraday rotation, when related to magnetic fields.

Squeezing in light polarization [Korolkova et al., 2002] has
been demonstrated to be useful for improving sensitivity to mag-
netic field [Wolfgramm et al., 2010], as well as N00N states and
their induced super resolution [Wolfgramm et al., 2013]. En-
tanglement, in particular spin-squeezing [Kitagawa and Ueda,
1993], can also improve on the atomic side, since the precession
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caused by the magnetic field can be resolved better if the quan-
tum fluctuations are reduced in particular components of the
angular momentum.





CHAPTER 2

The formalism of nonlinear quantum
parameter estimation

In the previous chapter we introduced the basic ingredi-
ents of quantum metrology, i.e., the probe, the parameter, the
sensitivity, and presented the Heisenberg limit, which ties the
minimum detectable phase shift to the inverse of the number
of probe particles N , or, equivalently to the inverse of the en-
ergy/resources employed in the probing process.

As already mentioned, there was some ambiguity about the
definition of the Heisenberg limit, if it was stated in terms of a
specific value [Holland and Burnett, 1993; Sanders and Milburn,
1995; Pezzé and Smerzi, 2008] or a scaling-law [Braunstein, 1994;
D’Ariano and Paris, 1994; Luis, 2004; Giovannetti et al., 2006;
Dorner et al., 2009]. Regardless of this ambiguity in the defi-
nition, there was the generalized idea that the Heisenberg limit
was the ultimate bound to the precision of a measurement. Even
if considered just as a scaling-law, it was thought to be the best
possible scaling-law achievable.

In this chapter we will present the proposals that first intro-
duced a different point of view about the hunting for ultimate
limits in sensitivity. The group of professor Carton Caves at the
University of New Mexico developed the new hypothesis that
statements such as “the Heisenberg limit is the ultimate bound”
apply only when the estimation is restricted to linear phase
shifts, i.e., when the generator of the transformation, encoding
the signal into the probe, is proportional to the probe-particle
number operator.

They argued that other estimation strategies, which instead
encode the signal via a nonlinear transformation, have quantum
limits with a significantly different dependence on the number

29
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of particles. We will see how for nonlinear transformations the
uncertainty decreases with probe number more favorably than
the rate established by the Heisenberg limit, even when using
semiclassical input states.

Their arguments were about sensitivity scaling: other things
equal, a scheme that scales as N−2 should in the long-term be
attractive because, by increasing N , it will eventually outper-
form a scheme scaling as N−1, regardless of the pre-factor.

For correctness, before the first article about overcoming
the Heisenberg limit was published in 2007 by the group in
New Mexico [Boixo et al., 2007], the use of nonlinearity for im-
proved sensitivity was already spreading in the quantum metrol-
ogy community. In particular, it is worth to mention the first
works of professor Alfredo Luis at the Complutense University
of Madrid, which were been published since 2004 [Luis, 2004;
Beltrán and Luis, 2005; Luis, 2007].

We will start the chapter recalling the universally known for-
malism of parameter estimation and its quantum extension, and
in this way introduce the concepts used in the articles by Caves
and coworker. Then, we will present their argument, mention-
ing finally some possible experimental implementations, which
the scientific community has proposed in the last years. Our
proposal of experimental implementation is instead the topic of
the next chapter.

In the next two sections I do not present anything new, I
will just present what I think are the most useful points, for the
understanding of this thesis, of a very well structured formalism:
the theory of quantum parameter estimation [Helstrom, 1976;
Holevo, 1982; Yuen and Lax, 1973; Helstrom and Kennedy, 1974;
Braunstein and Caves, 1994; Braunstein et al., 1996].

2.1. Estimation via estimators and their performance

When up to now we were referring generically to uncertainty,
precision and finally sensitivity, we were thinking about the very
basic idea in experimental sciences that measurements are af-
fected by errors. Let us now be slightly more formal and intro-
duce the correct concepts to be used for dealing with sensitivity
in the framework of quantum metrology.
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Let us consider a very easy classical example. We have a
quantity we want to estimate, let say the weight of a person, χ.
We know that there is an instrument sensitive to this quantity,
the balance. We perform a measurement using such an instru-
ment and get an outcome, x, but since we have been told, by
someone very wise, that measurements are noisy processes, we
do not trust a single measurement and so we repeat the process
some more times, say ν, getting in this way a set of outcomes,
{xi}νi=1.

Now that we have this ν outcomes, which may differ among
each other, what do we choose as a good estimator, χ̂, of the
real value of the quantity?

We see that the estimation process is not only using a mea-
surement instrument and getting a number, but a series of steps,
which combine possibly multiple measurement and data process-
ing.

To judge the quality of various possible estimators and fi-
nally choose the best one, we have to make some reasonable
assumptions for the model of noise that affects the measure-
ment. For example, if we have consistency that the instrument
always gives higher values than the real quantity, then we will
say that our best estimator is probably the minimum among the
set of outcomes:

(2.1.1) χ̂_ = min{xi},

and maybe when we have money we could buy a better balance.
A different reasonable assumption for the noise is that this is

Gaussian around the true value with a known, constant width,
σ. In this case anyone, even if they have never heard the name
Gauss, knows that a good option may be performing the mean
of the ν outcomes:

(2.1.2) χ̂m =
1

ν

ν∑
i=1

xi.

Even with the same assumption for the noise, there may be
other estimators different from the mean which would do the
job. Can we say something about the performances of χ̂m in
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doing the estimation? Is it the best possible estimator or there
could be a better one?

To answer this question we introduce the concept of mean-
square-error (MSE) of an estimator, which gives the expected
distance between the guess provided by the estimator and the
real value. The adjective expected, here as in what follows de-
noted with the brackets 〈·〉, means averaged over any possible
random set of measurement outcomes, which the estimator needs
as input to guess the parameter:

(2.1.3) (δχ̂)2 =
〈

(χ̂ ({xi})− χ)2
〉
.

If the estimator is unbiased, i.e., its expected value is equal to
the true value for any value of χ, then the MSE is simply the
variance:

(2.1.4) (δχ̂)2 = Var [χ̂] =
〈
χ̂2
〉
− 〈χ̂〉2 .

The inequality known as the Cramér-Rao bound states that
the MSE of any estimator is limited by the inverse of the Fisher
information, I(χ), and the number of observation, ν, performed.

(2.1.5) (δχ)2 ≥ 1

νI(χ)
.

The Fisher information (FI) is not a property of the specific
estimator. Instead it is a property of the statistical model, which
stays behind the observation process and returns, as the result of
the measurement, the random outcomes {xi} given a particular
value for the parameter χ.

To calculate the FI we start from the probability that we
observe a particular outcome conditioned to a specific real value
of the parameter, the likelihood function p(x|χ). We then take
the logarithmic derivative, i.e., the fractional change [Hedrick,
1913], with respect to χ of the likelihood function, which takes
the name of the score. Finally the second moment of the score
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(or its variance, since its first moment is zero) is the sought FI:
(2.1.6)

I(χ) =

〈(
∂

∂χ
ln p(x|χ)

)2
〉

=

∫
dx

(
∂

∂χ
ln p(x|χ)

)2

p(x|χ) =

=

∫
dx

1

p(x|χ)

(
∂p(x|χ)

∂χ

)2

.

If the logarithm of the likelihood function is twice differen-
tiable than the FI is the expectation value of its curvature with
a change of sign:

(2.1.7) I(χ) = −
〈
∂2

∂χ2
ln p(x|χ)

〉
.

This last aspect of FI has an interesting intuitive connection with
the sensitivity of inferring a parameter: higher FI means sharper
statistical model, i.e., big changes of the possible outcomes with
respect to small changes of the parameter, which finally results
in an easier distinguishability of the parameter. This is another
way to interpret the Cramér-Rao inequality.

Coming back to the simple example we introduced above,
let us try to apply the concepts presented up to now and say
something about the quality of the mean as an estimator for the
parameter of a Gaussian distributed measurement outcomes.

The Gaussian statistical model fixes the likelihood function:

(2.1.8) p(x|χ) =
1

σ
√

2π
e−

(x−χ)2

2σ2 .

and so, applying eq. 2.1.7, we can calculate for χ the FI, which
is 1/σ2. The mean is an unbiased estimator so we only have to
calculate its variance: we consider eq. 2.1.2 and the fact that
the xi are independent variables, each of them distributed with
a variance σ2. Then we have that the variance of the sum of
independent variables is the sum of the single variances and we
conclude that

(2.1.9) Var [χ̂m] =
1

ν2

ν∑
i=1

σ2 =
σ2

ν
.

By comparing eq. 2.1.5 and eq. 2.1.9 and accounting for the
calculated FI of the Gaussian distribution, we see that the mean
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saturates the Cramér-Rao bound, so we can state that it is the
best estimator.

2.2. Extending estimation theory by using quantum
mechanics

Everything said up to now regards the classical theory of
parameter estimation. To add the possibility of using quantum
mechanics for performing parameter estimation we have to in-
clude its peculiar features and extend the concepts consequently.
A detailed explanation of such an extension can be found in the
work by Braunstein and Caves of 1994 [Braunstein and Caves,
1994].

The usual case is when the probe is a quantum system: we
start with a known initial state, ρ0. This evolves under the
influence of an unknown parameter χ. While χ is unknown,
we know the effect that χ would have on the state ρ, which we
describe as a map ρ0

χ→ ρχ.
The other big difference when we have to deal with quantum

mechanics is that the sequence of actions, the recipe, defining an
estimator is more involved. There are clearly two separate steps:
the quantum measurement, i.e., the action of some Hermitian
operator, an observable, on the probe density operator, and the
classical data manipulation of the outcomes. With quantum
mechanics the first step assumes a much more important role
and we will see that this reflects in the explicit dependence of
the Fisher information.

The parameter χ usually does not correspond directly to an
observable, so several times we have to infer it from quantum
measurement of other observables acting on ρχ.

As before, we say that a quantum estimator is thus the ap-
plication of a chosen observable, or more generally a positive-
operator valued measure (POVM), a set of positive semidefinite
Hermitian operators {Πx}, with

∫
dxΠx = I, followed by some

algorithm on the outcomes.
To evaluate the performance of quantum estimators let us go

with the calculation of Fisher information as defined in eq. 2.1.6.
According to Bohr’s rule by knowing the probe density operator
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and the POVM we can calculate the likelihood function:

(2.2.1) p(x|χ) = Tr [Πxρχ] .

We can introduce an operator, which simplifies many calcula-
tions: the symmetric logarithmic derivative (SLD), Lχ, implic-
itly defined in the following way,

(2.2.2)
ρχLχ + Lχρχ

2
=
∂ρχ
∂χ

.

Using the SLD operator we can write the following relation:
(2.2.3)
∂

∂χ
p(x|χ) = Tr

[
Πx

∂ρχ
∂χ

]
=

1

2
(Tr [ΠxρχLχ] + Tr [ΠxLχρχ]) ,

which finally allows us to calculate the FI using the following
formula1:

(2.2.4) I(χ) =

∫
dx

Re(Tr [ΠxρχLχ])2

Tr [Πxρχ]
.

The FI, as before, fixes the limit for the sensitivity of any possi-
ble estimator which is constructed starting from a defined choice
of a particular POVM, by any possible clever algorithm of clas-
sical data manipulation. As we mentioned before, the FI explic-
itly depends on the POVM, i.e., on the set of observables which
defines the quantum measurement.

Conversely, if we were able to maximize the FI over all the
possible POVMs, this procedure will lead to an ultimate limit
on the sensitivity, independent of any possible measurement or
classical data manipulation we can perform. The SLD opera-
tor makes it easy to do this maximization. Without presenting
here all the steps of the demonstration, which can be found in
[Braunstein and Caves, 1994], we can say that

(2.2.5) I(χ) ≥ Tr
[
ρχL

2
χ

]
= I(χ).

The quantity I(χ), which is a lower bound for any possible
Fisher information, is called the quantum Fisher information
(QFI). It depends only on the initial probe state, ρ0, more pre-
cisely on the geometrical property of the map which ties the

1We use the trace property Tr [ABC] = Tr [ACB]?, which is valid for
the product of three self-adjoint operators.
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parameter and the manifold of probe states, χ χ→ ρχ, in the
neighborhood of the origin.

Using the QFI, we can state the ultimate limit for the sen-
sitivity in the parameter. The quantum Cramér-Rao bound
(QCRB) says that

(2.2.6) (δχ)2 ≥ 1

νI(χ)
.

The term ν, which as we said above reports the number of times
the observation has been repeated, accounts simply for the sta-
tistical improvement of repeating the measurement, and since it
is a completely classical effect we will omit ν for the next of the
presentation.

2.3. QCRB and transformation generators

The QFI can be simplified with some very generic assump-
tions. First, let us consider the case that the transformations
of the probe state parametrized by χ are a unitary group, i.e.,
unitary operators transform the density operators and by con-
sequence there should exist an Hermitian operator, K, which
generates the transformation

(2.3.1) ρχ(t) = Uχ(t)ρ0Uχ(t)†, Uχ(t) = e−iχKχ(t).

The generator respects the following equation:

(2.3.2)
∂ρχ(t)

∂χ
= −i [Kχ(t), ρχ(t)] ,

which is the parallel of what happens for the generator of the
transformation in time, t, the well known Hamiltonian operator:

(2.3.3)
∂ρχ(t)

∂t
= − i

~
[Hχ(t), ρχ(t)] .

The second assumption is that the probe is in a pure state,
ρ2
χ(t) = ρχ(t). If we differentiate this relation with respect to χ

we have:

(2.3.4) ρχ(t)
∂ρχ(t)

∂χ
+
∂ρχ(t)

∂χ
ρχ(t) =

∂ρχ(t)

∂χ
,
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and, by comparing with the definition of SLD of eq. 2.2.2, we
can write the following expression:

(2.3.5) Lχ(t) = 2
∂ρχ(t)

∂χ
= −2i [Kχ(t), ρχ(t)] ,

and as a consequence the QFI is:

(2.3.6) I(χ, t) = 4Tr
[
ρK2 − ρKρK

]
= 4Var [Kχ(t)] .

Finally the QCRB assumes the form:

(2.3.7) (δχ)2 ≥ 1

4Var [Kχ(t)]
⇒ δχVar [Kχ(t)]1/2 ≥ 1

2

connecting indeed the optimal bound for estimating a parame-
ter to the variance of the operator which generates translation
in that parameter. The inequality in eq. 2.3.7 is an inequality
known as a Mandelstam-Tamm kind uncertainty relation [Man-
delstam and Tamm, 1945; Helstrom, 1976; Holevo, 1982; Dembo
et al., 1991; Braunstein et al., 1996], or parameter-based uncer-
tainty relation. Such relations, differently from the Heisenberg
uncertainty relation, can be used to find the uncertainty, not
only of operators, but also of parameters, e.g., the phase or the
time, to which there does not correspond any operator.

2.4. Composite probe system and the role of system
size

In this section and the next I will briefly present the argu-
ment developed in Caves’ group, by Dr. Sergio Boixo in partic-
ular, about the scaling property of δχ with the size of a probe
composed of N subsystems.

To approach the explicit dependence of δχ with N , we have
to introduce a new norm for operators and apply it to the gener-
atorK. We say that the seminorm ||·|| of an Hermitian operator
is the difference between its maximum and minimum eigenvalue.
With the seminorm we can set an upper bound for the variance
of the operators,

(2.4.1) Var [Kχ(t)] ≤ ||K||2/4.
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In this way eq. 2.3.7 becomes

(2.4.2) δχ ≥ 1

||K||
=

1

MK −mK
,

whereMK and mK are the maximum and minimum eigenvalues
of K, respectively.

Finally we have to connectK to what describes the dynamics
in time during the interaction between the probe and the system.
A possible Hamiltonian for describing the evolution of the probe
can be of the following form:

(2.4.3) Hχ = ~ (χO +A(t)) .

O is the part containing the probe operators directly connected
to the parameter, while A contains the free-evolution part of
the probe system plus eventual ancillae systems. Terms in A
may have a metrological use in the optimization of the mea-
surement part of the estimation strategy. For example ancillae
system may allow one to easily implement a good POVM for ap-
proaching the ultimate bound of sensitivity. Boixo and cowork-
ers demonstrated that all these auxiliary terms can be neglected
when instead we want to calculate the QCRB: all the impor-
tant factors for that calculation reside only in the generator of
translation in χ, for which we have:

(2.4.4) Kχ(t) = i
∂Uχ(t)

∂χ
U †χ(t) = i

(
∂

∂χ
e−i

t
~Hχ

)
U †χ(t) = tO

If O is a linear function of operators describing a composite
probe system, i.e.,

(2.4.5) O =

N∑
j=1

oj

where oj is the single-unit operator for the j−th probe subsys-
tem, with maximum and minimum eigenvalue Λ and λ, then
using the triangle inequality for the seminorm we have that

(2.4.6) δχ ≥ 1

||K||
≥ 1

tN(Λ− λ)
,

where we found back the Heisenberg limit (HL) scaling that we
introduced in Chapter 1.
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The seminorm is a function from Hermitian operators to real
numbers. ||K|| gives a state independent, lower bound on δχ. To
know the bound for a specific state, we instead have to compute
the variance of K.

In composite probe system the inequality in eq. 2.4.1 is sat-
urated by entangled states with wave function of the following
form:

(2.4.7) |Ψent〉 =
|Λ〉 ⊗ · · · ⊗ |Λ〉+ |λ〉 ⊗ · · · ⊗ |λ〉√

2
.

With such a probe states the QCRB, and the HL, is achieved.
Without entanglement, e.g., with simple product states of

the following form,

(2.4.8) |Ψprod〉 =
N⊗
j=1

|ψj〉

we can just say that the variance of K is additive, i.e., we sum
the variances of the single oj operators on the |ψj〉 part of the
probe wavefunction, and like adding the single variances of inde-
pendent random variables we get the classical square-root rule
of the standard quantum limit (SQL):

(2.4.9) δχ ≥ 1

2Var [K]1/2
∝ 1√

N
.

2.5. Nonlinear Hamiltonian

We are considering that the probe is a composite system
made of smaller parties, e.g., a pulse of photons or a cloud of
atoms. The way they interact as an ensemble with the system
under observation makes a lot of difference, as we will see. In
particular it matters if they act independently or by some kind
of mutual intercorrelation at the moment of getting information
from the system about the parameter to be estimates.

In the previous section, when dealing with linear interaction
Hamiltonians we were considering the case of non-interacting
probe particles. Let us now imagine that among the probes there
are k−body interactions coupled to the parameter to estimate.
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If we assume that the interaction is symmetric over all the probe
particles, then the Hamiltonian has the following form:

(2.5.1) H = χOk = χ
∑

{j1,...,jk}

oj1 · · · ojk .

As before, {oj} are the single-unit operators for the probe sub-
systems and the sum is running over all the possible combina-
tions of k particles among the N composing the whole probe
system. In bounding the seminorm of the generator K, by using
the triangle inequality, we will thus have to find the maximum
and minimum eigenvalues of K starting from the maximum and
minimum eigenvalues of the single-unit operators. For example
if k is odd or if Λ and λ have both the same sign, we will have:

(2.5.2) δχ ≥ 1

||K||
≥ 1

Nk|Λk − λk|t
.

The case with k even and λ ≤ 0 ≤ Λ is discussed in details in
Boixo’s article [Boixo et al., 2008b].

More generically, the nonlinear Hamiltonian can be a more
structured k−degree polynomial, but only the highest order
terms will be relevant, since for sensitivity scaling k will finally
be the dominant factor at large values of N .

Also in the case of nonlinear interaction, the QCRB depends
finally not just on the Hamiltonian but also on the probe state.
The only states that can saturate the best bound permitted
by the k−order dynamics are the maximally entangled ones, as
before. An example is the state in eq. 2.4.7. For this kind of
states we have:

(2.5.3) δχ|ent =
1

Nk|Λk − λk|t
.

The interesting fact now is that if we consider only separable
product state, such as the one in eq. 2.4.8, much more practical
in experiments, then the QCRB in terms of scaling will lose
only a factor of 1/2 with respect to the optimal scaling with
entanglement:

(2.5.4) δχ|prod = f(|ψ〉) 1

Nk−1/2
,
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where f is a factor accounting for the state of the individual
probes. Minimum f , i.e., optimal sensitivity, is achieved typi-
cally when all the probes are in a state such as |ψ〉 = (|Λ〉 +
|λ〉)/

√
2. More details about the demonstration of these last

equations are presented in [Boixo et al., 2008b]. We see that
SQL and HL for linear Hamiltonian are the particular case with
k = 1 of the formalism presented in this section.

We also see that for the simplest two-body interactions, even
product states may achieve a more favorable scaling than the HL
scaling, possibly achieving the optimal 1/N3/2 scaling. We will
refer to all such scalings coming from nonlinearities as super-
Heisenberg (SH) scalings.

2.6. Proposed implementations

In the years since the argument of better sensitivity scaling
using interaction begun to be discussed in the quantum metrol-
ogy community, several groups have proposed different experi-
mental realizations of such a scheme.

• Bose-Einstein condensate
In the group of in New Mexico they considered spin-1/2
dynamics, angular momentum operators and possible
implementation with Bose Einstein condensate [Boixo
et al., 2009]. In the formalisms of the spins they were
able easy to answer to the following important question:
is the entanglement that in some cases is generated by
the nonlinear dynamics responsible for the better sensi-
tivity scaling? They compared two different nonlinear
Hamiltonians, functions of the total spin operators

(2.6.1) H1 = χJ2
z , H2 = χJ0Jz,

where Jz is the z−component of the angular momen-
tum and J0 is the total spin, connected to the total
number of atoms. Acting on the same product state, an
equatorial state on the Bloch sphere, the first creates
entanglement and the second does not. They shows
that both Hamiltonians are able to achieve the 3/2
power-law scaling in the sensitivity of χ [Boixo et al.,
2008a].
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• Nano-mechanical resonators
In 2008 Woolley, Milburn and Caves proposed to per-
form nonlinear metrology with nano-mechanical devices
[Woolley et al., 2008]. In particular, flexural nano-
mechanical resonators have an intrinsic Duffing nonlin-
earity due to extension on bending [Erbe et al., 2000].
The Duffing dynamics appears in systems where the
resonance spectrum is curved by the nonlinearity, intro-
ducing phenomena of hysteresis, bistability and chaotic
behavior [Kozinsky et al., 2007].

This has some practical interests since the Duffing
nonlinearity of a nano-mechanical resonator is an ex-
pression of the applied strain [Carr et al., 2001], and
nonlinear micro electro-mechanical systems (MEMS)
have already been used to make highly sensitive me-
chanical strain sensors and accelerometers; also they
have implication for ultra-sensitive nano-mechanical de-
tection of mass and force [Chaste et al., 2012]. More-
over, technology is progressing toward the point where
these resonators can be cooled to near their ground
state, making them interesting quantum devices.

• Double-pass optical magnetometers
Another implementation was proposed in the context
of magnetometry by Chase et al. [Chase et al., 2009].
Although their proposal has some similarities with our
experimental apparatus, which as we will present in
the following chapters is a magnetometer using alkali
atoms, the approach to nonlinear quantum metrology
is completely different.

They describe a double-pass scheme of read-out
light on the atomic magnetic sensor, where because of
the mutual action of magnetized atoms and polarized
light, and the recirculation of the light along differ-
ent direction, the response becomes nonlinear with the
magnetic field to be measured. Anyway, the authors do
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not proceed to an analytic derivation of any possible ef-
fective Hamiltonian, which would be difficult to obtain
due to the recursive effects involved. They instead ap-
ply a stochastic propagator treatment [Sarma et al.,
2008] for the continuous measurement of the atomic
angular momentum and back-action.

They claim that in specific regimes the improved
scaling originated by the nonlinear dynamics is present,
making preferable double-pass over single-pass schemes,
even if such regimes are probably inaccessible in exper-
imental settings. In any case, they admit having been
constrained to simulate only a very small number of
spins, ∼ 150, when instead the expected collective spin
size is of the order of millions of particles.

• Nonlinear optics
Last but not least, at the beginning of this chapter
we mentioned the work of Luis, one of the first scien-
tist who approached nonlinear metrology. He analyzed
different schemes and combinations of probe state, in-
teraction dynamics and measurement for achieving SH
scaling. His language is much closer to the traditional
nonlinear optics treatment, e.g., quadrature, photon
number, squeezing operators and higher order function
of them, describing the interaction happening between
photons inside nonlinear crystals.

Although in our experiment we have atoms, as we
mentioned, the nonlinear metrology scheme we realized
and we are presenting in this thesis involves interaction
between pairs of photons. In some sense, Luis’ propos-
als are the closest ones to our experiment.





CHAPTER 3

Nonlinear light-atom quantum interface

In the previous chapters we have illustrated the nonlinearity
as a new tool in quantum metrology in the way it was proposed
by several groups with the mathematical derivation of the con-
nection between order of nonlinearity and improved sensitivity
scaling, as well as with some possible practical implementations.

The wide range of nonlinear phenomena, appearing when
close-to-resonance photons travel through atomic samples, mo-
tivated us to look for a suitable implementation of nonlinear
metrology in our experimental apparatus: a polarization based
light-atom quantum interface.

The goal of this chapter is to present how we extended the
theoretical model of light-atom quantum interfaces, which is in
use by our group and others in the same field, and included
atom-mediated photon-photon interactions while showing that
those have the form of nonlinearities of the type proposed by
Boixo et al. [Boixo et al., 2007].

To this aim, we will first briefly introduce the light-atom
quantum interface formalisms, i.e., collective variable operators
and polarizability Hamiltonian in the linear case. Then we will
apply a more sophisticated perturbation theory approach to in-
clude nonlinearity and finally show the useful feature for metrol-
ogy of the high order terms just identified in the extended Hamil-
tonian.

3.1. Collective variables for light-atom quantum
interfaces

Interfaces between different systems capable to operate at
the quantum regimes have been pursued by the scientific com-
munity during the last years for their applications in the field

45
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of quantum network and quantum information. The most ex-
haustively investigated is the interface between light and atoms,
where the first is a good means to transport information over
long distances, and the latter are a good medium to store and
process information.

A common application of a light-atom quantum interface in
metrology is when an atomic sensor is used to probe an external
field but the property of the sensor which is changing is difficult
to be measured directly and needs an optical read-out.

The important features of light-atom quantum interfaces are
many: scientists work to exploit for example versatility, i.e., the
capability of operating under different conditions, spatial mul-
timode for imaging application, bandwidth for time resolution,
long coherence time for memory. A comprehensive summary of
the field can be found in this review by Hammerer et al. [Ham-
merer et al., 2010].

Another important feature is the strength of the coupling
between the photonic and the atomic systems. It is related to
effectiveness of the resources involved to achieve the desired pro-
cess: in the context of quantum memory the coupling strength
is tied to the concept of fidelity between the information im-
printed onto and retrieved from the atomic medium. In the
context of metrology, good enough coupling between the two sys-
tems means that the optical read-out of the atomic sensor affects
minimally the sensitivity to the quantity of interest, e.g., time,
gravity, magnetic field, because the information is transferred
with high fidelity from the atomic sensor to the light probe.

When single particles are used, cavities are commonly used
to boost the coupling between the photon and the atom, but
if one is not restricted to use single particles another way to
achieve a high light-atom coupling is by working with ensembles,
and usually the figure of merit of the coupling scales linearly
with the number of photons NP or number of atoms NA at the
interface.

Commonly used by the scientific community for describing
such many particle systems, the relevant quantities are collec-
tive properties of the whole sample. We follow the approach of
collective continuous variables (CCV), in which both light and
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atoms are described by macroscopic quantum variables. For the
particular system we have in our lab, an optical magnetometer,
the variables of interest are the polarization of a pulse of pho-
tons and the angular momentum of the ensemble of rubidium 87
atoms. We will now introduce the collective operators for such
observables.

3.2. Stokes operators for light polarization

The mathematical description of a light beam can be done
in terms of its oscillating vectorial electric field. Furthermore,
this can be seen as a superposition of several components, the
modes, each one with its specific frequency, as well as a partic-
ular relation between spatial and temporal dependance of the
phase, i.e., the wavefront profile.

The simplest example of such modes is the monochromatic
plane-wave. Although it is not enough by itself to describe a
real propagating pulse of light, this mode is instead enough for
the goal of this section, which is to show the way to introduce
quantum mechanics in the description of light, in fact a very
well established formalism [Scully and Zubairy, 1997; Loudon,
1983; Saleh and Teich, 2001].

Considering the frequency to be ω and the wave-vector to
be along the z direction with magnitude k = ω/c, we have

(3.2.1) E = EEE + EEE∗ = E
∑

p=−1,1

αpepe
−iωt+ikz + c.c.,

where c is the speed of light.
Let us discuss one by one all the terms in eq. 3.2.1. We refer

to EEE as the positive frequency part, while its complex conjugate
is the negative frequency part. This separation is useful for cal-
culating time-averaged quantity such as the intensity, I, which is
related to the modulus square of the electric field averaged over
several oscillation cycles. We have I = 〈|E|2〉/Z0 ≈ 2EEE∗ · EEE/Z0

1,
because of the cancellation of the terms EEE2 and (EEE∗)2 for fast
oscillation at frequency 2ω. The free-space impedance, Z0, is

1This is calculated using the Poynting vector concept and the fact that
for a plane-wave propagating in free space the magnetic field has a simple
expression in terms of the electric field, B = E/c.
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Figure 3.2.1. The Poincaré sphere for represent-
ing polarization.

equal to 1/(ε0c) ≈ 376 Ω, where ε0 is the vacuum permittivity.
The real number E , with the dimension of an electric field, gives
the amplitude of the field oscillation.

We also want to stress the vectorial feature of the polariza-
tion: we consider {ep} being the unit vectors basis of a specific
2-dimension polarization space and {αp} being the respective
complex dimensionless amplitudes. Following the usual conven-
tion in atomic physics, by choosing the quantization axis along
the propagation direction, z, we then have the two circular po-
larized beams, called σ± light, form a basis whose elements are

(3.2.2)
e+ =

1√
2

(−ex + iey)

e− =
1√
2

(ex − iey)

with respect to the spatial x and y. Inverting the rules, linear
polarized light propagating along z can be seen as coherent su-
perposition of circular polarizations. Finally π polarization de-
scribe light with electric field along the quantization axis, which
is only possible for light propagating perpendicular to the quan-
tization axis.
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In the expression for the intensity, the scalar product EEE∗ · EEE
can be developed giving as a result

(3.2.3) I =
2E2

Z0
(α∗+α+ + α∗−α−) =

2E2

Z0
,

accounting that for fully polarized light |α+|2 + |α−|2 = 1. In
addition to that, we can develop a comfortable way to deal with
polarization: the Stokes vector S, with which we can pictorially
see the polarization as a point on a sphere, the Poincaré sphere2,
as in fig. 3.2.1.

Once we define intensities relatively to particular polariza-
tion components, e.g., Ip = (2E2/Z0)α∗pαp, we have that the
components of the Stokes vector are:

(3.2.4)

Sx = Ix − Iy,
Sy = I� − I�,
Sz = I+ − I−,

to which we can add the total intensity, S0 = Ix + Iy = I� +
I� = I+ + I−, which is independent of the choice of the ba-
sis. The Stokes vector can be synthetically defined as Si =
(2E2/Z0)(α∗+, α

∗
−)σi(α+, α−)T , with {σi} being the Pauli matri-

ces and σ0 is the identity.
For having a quantum description of a light beam, we follow

the second quantization rules that are substituting the dimen-
sionless field amplitude in the positive frequency part of the field
with annihilation operators and with creation operators in the
negative frequency part:

(3.2.5)
αp → âp

α∗p → â†p,

2Although for simplicity we use the common labeling {x, y, z} in the
coordinate frame for the Poincaré sphere and the Stokes vector, we have to
say that the space where these entities live does not coincide with the usual
real space. Indeed, some authors prefer a different labeling, e.g., {1, 2, 3}, to
stress that the Stokes vector is defined within a virtual, conceptual space.
As we will see later, our choice of using the common {x, y, z} notation will
result useful in connection with atomic spin systems and their symmetries
in the real space.
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with the canonical commutation rule [âp, â
†
q] = δpq, where δpq is

the Kronecker symbol.
We note that the factors α∗pαp, we have just introduced with

the Stokes vector become â†qâp, which are operators relative to
photon number. For a proper connection of concepts such as
Stokes vector and photons, we need some consideration about
the energy of the light beam.

The electromagnetic energy density for a plane-wave mode
is u = ε0|E|2 = 2ε0E2. If, for example, we consider only circular
plus polarized light, we have Sz = 2E2/Z0, so we can express
the energy density in terms of components of the Stokes vector,
u = ε0Z0Sz.

Until now we have described intensive quantities. The pho-
ton number instead is an extensive quantity, so we have to in-
clude a mode volume for going from the energy density to the
total energy. A finite volume for optical modes is easy identified
inside cavities. For a propagating beam in free-space, a mode
volume can be introduced for temporal defined pulses of light.
With pulses of duration T , the length cT times the transverse
area of the beam, A, is a good approximation for the mode vol-
ume.

Now, we can equate the classical energy, u(cTA), and its
quantum version in terms of photon number

(3.2.6) ~ωn+ = ε0Z0SzcTA⇒ Sz =
~ω
TA

n+,

where n+ is the mean number of circular plus polarized photons,
i.e., n+ = 〈â†+â+〉.

We can define the Stokes operators,

(3.2.7) Ŝi = (â†+, â
†
−)σi/2(â+, â−)T ,
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or explicitly

(3.2.8)

Ŝ0 =
n̂+ + n̂−

2
,

Ŝx =
n̂x − n̂y

2
,

Ŝy =
n̂� − n̂�

2
,

Ŝz =
n̂+ − n̂−

2
.

expressed in terms of the photon number operators for specific
polarizations, n̂p = â†pâp. The relation between components of
the classical Stokes vector and the relative Stokes operator is

(3.2.9) Si =
2γ

Z0
2Ŝi,

with γ = ~ωZ0/(2TA). Comparing eq. 3.2.9 and eq. 3.2.3, we
can identify √γ as the amplitude of the electric field oscillation
for a light pulse constituted by only one photon.

One can easy demonstrate that the Stokes operators follow
angular momentum quantization rules [Ŝi, Ŝj ] = iεijkŜk, where
{i, j, k} ∈ {x, y, z} and Ŝ0 commutes with all the others. The
corresponding uncertainty relation is

(3.2.10) var(Ŝi)var(Ŝj) ≥ 〈Ŝk〉2/4.

For light polarized along x, the expectation value of the rela-
tive Stokes operator is maximum, 〈Ŝx〉 = NP /2, with NP being
the total number of photons in the beam. Thus, assuming equal
uncertainties in the other Stokes components, i.e., what is known
as a coherent polarization state, we have

(3.2.11) var(Ŝy) = var(Ŝz) = NP /4.

That is the way to interpret shot-noise in the polarization con-
text.

3.3. Spin variables for atomic ensembles

For many atomic species and alkali atoms in particular, the
angular momentum properties of the ground state is one of the
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Figure 3.3.1. D2 transition for 87Rb. The 24 states,
8 ground and 16 excited, are labelled by the quantum
numbers for the total angular momentum. The energy
separation between levels is reported on the right.

key features defining the way the atom interacts with polarized
light.

The total angular momentum of an atom is described by a
set of quantum operators, {f̂i}, which get contributions from
the orbital momentum of the electrons, as also from the intrin-
sic spin of electrons and nucleus. In the case of 87Rb, the nu-
cleus has spin I = 3/2 so that the electronic ground state 5S1/2

has two main quantum numbers for the total spin, F = 1 and
F = 2, corresponding to levels with hyperfine energy splitting
of ∆hfs/~ = 2π× 6.8 GHz. The first excited state, 5p, has a fine
splitting due to spin-orbit coupling, resulting in the well known
alkali doublet D1(795nm) and D2(780nm) transitions, respec-
tively 5P1/2 with two manifolds F ′ = {1, 2} and 5p3/2 with four
manifolds F ′ = {0, 1, 2, 3}, each F manifold having its 2F + 1
magnetic sublevels. In fig. 3.3.1 we symbolize the 24 electronic
states within the structure of the D2 transition.

Here and in the rest of the thesis, we will use the notation
F → F ′ to indicate transitions between ground and excited lev-
els. For example 2 → 1′ will denote a transition from F = 2 to
F ′ = 1.
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The angular momentum of the whole ensemble of NA atoms
is thus the sum of all the single spins:

(3.3.1) F̂ =

NA∑
l=1

f̂̂f̂f (l)

The condition of indistinguishability of the atoms among them,
translates into limiting the full Hilbert space of the sum of an-
gular momenta only to the symmetric subspace, having as quan-
tum number simply the sum of the individual quantum numbers,
Ftot = FNA. The dimension of the subspace then grows in a
polynomial and not in an exponential way with the atom num-
ber, being 2FNA + 1.

The components of the spin for the ensemble, as quantum
operators, obey to commutation relation rules:

(3.3.2)
[
F̂x, F̂y

]
= i~F̂z

and cyclic permutations.
The ensemble angular momentum is an important observable

in magnetometry applications because it couples to the external
magnetic field, B, as in the simplest case of the linear Zeeman
effect Hamiltonian, ĤB = −~gB · F̂, which causes Larmor pre-
cessions.

Similarly as for Stokes operators, eq. 3.3.2 is the source of
uncertainty relations such as

(3.3.3) var(F̂i)var(F̂j) ≥
~2〈F̂k〉2

4
.

Also in a similar way as for light, the angular momentum state
can be depicted as a vector pointing on a sphere, the Bloch
sphere.

A coherent spin state (CSS) is the one where the angular
momentum is maximum along a particular direction in space,
let us say x for example,

(3.3.4) 〈F̂x〉 = ~FNA
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and has equal uncertainties in the other two perpendicular com-
ponents3

(3.3.5) var(F̂y) = var(F̂z) =
~2FNA

2
,

the standard level of noise, which in this context is known as
projection noise.

3.3.1. Pseudo-spin 1/2 embedded into a higher F
manifold. If we restrict the angular momentum operators into
a manifold with a defined F , there it is possible to define an-
other set of angular momentum operators. For example, let us
consider the F = 1 ground state of 87Rb: the operators defined
as follows,

(3.3.6)

Ĵx =
F̂ 2
x − F̂ 2

y

2
,

Ĵy =
F̂xF̂y + F̂yF̂x

2
,

Ĵz =
F̂z
2

respect the commutation relations
[
Ĵx, Ĵy

]
= i~Ĵz.

The {Ji} operators so defined are indeed a representation
of a collective pseudo-spin 1/2 system within the F = 1. This
can be seen coming back from the collective down to the single-
spin operators: also for the J operators the following relation
is valid, Ĵi =

∑NA
l ̂

(l)
i . Let us just consider one spin, the basis

of its Hilbert space is a set of states defined by the magnetic
quantum number, {|ψ+1〉 , |ψ0〉 , |ψ−1〉}, after a particular choice
of a quantization axis, let say z. The pseudo-spin operators are
defined at the single-atom level in the following way:

(3.3.7) ̂i =
~
2

(|ψ+1〉 , |ψ−1〉)σi(〈ψ+1| , 〈ψ−1|)T

3The same argument is valid for any direction in the space and the
perpendicular plane to it.
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or explicitly

̂x =
~
2

 0 0 1
0 0 0
1 0 0

 , ̂y =
~
2

 0 0 −i
0 0 0
i 0 0

 ,

̂z =
~
2

 1 0 0
0 0 0
0 0 −1

 .

(3.3.8)

As a pseudo-spin 1/2 system, the atomic angular momentum has
a strong analogy with the polarization of a photon described in
terms of Stokes operators. We can close the analogy with the
photonic system considering the single-atom operator defined
using the 2-by-2 identity at the place of the Pauli matrix in
eq. 3.3.7,

(3.3.9) ̂0 =
~
2

 1 0 0
0 0 0
0 0 1

 ,

and the respective collective operator Ĵ0 =
∑NA

l ̂
(l)
0 , which

counts all the atoms except the ones in the in the |ψ0〉 state.
Let us consider the ensemble with all the atoms in the fol-

lowing superposition state

(3.3.10) |ψ〉 =
|ψ+1〉+ |ψ−1〉√

2
;

This corresponds to the CSS with 〈Ĵx〉 = ~NA/2 and uncertainty
in the other components at the projection noise level,

(3.3.11) var(Ĵy) = var(Ĵz) =
~2NA

4
.

The pseudo-spin operators just introduced are not only an
elegant way to define spin 1/2 system. They have a close connec-
tion with the symmetries of the atomic ensemble. In particular
they represent the alignment of the angular momentum of the
sample, while the {F̂i} operators represent the orientation of
the angular momentum instead.

This implies that the {Ĵi} does not respond as simply as
the {F̂i} to an external magnetic field, i.e., precessing around it.
Anyway, even if [F̂i, Ĵi] 6= 0, they share at least one eigenvector,
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meaning that a specific CSS, the one aligned to maximize 〈Ĵi〉
is invariant under the effect of a Bi field.

In the rest of the chapter we will see how the complete par-
allelism, between the Stokes operator for light polarization and
the pseudo-spin operators just introduced, matters at the mo-
ment of building the mathematical description of the interaction
between the two systems.

3.4. Tensorial polarizability Hamiltonian: the linear
case

As common in dealing with interacting quantum systems,
the Hamiltonian4 can be expressed as a term driving a well
known and solvable free evolution, plus a small perturbation
[Messiah, 1999; Sakurai, 1994]. Let first consider the single-atom
case and then extend to the whole ensemble simply by replacing
single-atom operators such as fff with collective operators, F. We
can assume

(3.4.1) h = h0 + hint.

The free evolution term, h0 accounts for the relevant atomic
energy levels and states,

∑
k ~ωk |φk〉 〈φk|. Similarly it includes

the energy of the light field described by a single-mode model
as in the quantized version of eq. 3.2.1.

(3.4.2) E = EEE + EEE† =
√
γ
∑

p=−1,1

apepe
−iωt+ikz + h.c.,

The main contribution to the coupling between the atom
and the light is the electric dipole interaction, hint = −E · d.
The dipole operator, d = er, can be split into raising d↑ and
lowering part d↓, connecting ground to excited levels and vice
versa.

(3.4.3)

d↑ =
∑
ς,ς′

∣∣ς ′〉 〈ς ′∣∣d ∣∣ς 〉 〈ς ∣∣ ei(ως′−ως)t
d↓ =

∑
ς,ς′

∣∣ς 〉 〈ς ∣∣d ∣∣ς ′〉 〈ς ′∣∣ e−i(ως′−ως)t,
4In this section, we will drop the hat above all the symbols for opera-

tors, for the sake of simplicity.
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where ς stands for a particular combination of quantum numbers
F and mF identifying a specific ground state, while ς ′ does the
same within the excited-state manifold.

We choose the origin of energy such that ωF=1 = 0, and
define ∆hfs ≡ ωF=2. We work in a frame rotating with the laser
frequency ω and define detunings δF ′ ≡ ωF ′−ω. Performing the
rotating wave approximation [Loudon, 1983; Scully and Zubairy,
1997; Cohen-Tannoudji et al., 1992], the single-atom perturba-
tion hint is approximated as hint ≈ EEE · d↑ + EEE† · d↓. Terms with
annihilation operators for photons go with raising dipole opera-
tors and creation of photons goes with lowering dipole operators.

As described by several authors [Kupriyanov et al., 2005;
Geremia et al., 2006; de Echaniz et al., 2008], a simple pertur-
bation expansion method, known as adiabatic elimination, is
applicable in the case of off-resonant light, i.e., when δF ′ is big-
ger than the splitting between the excited states. The adiabatic
elimination is basically a second-order perturbation, where two
ground states are connected by scattering two photons through
a virtual excited state, without populating any real excited state
(see fig 3.4.1).

This method gives rise to an effective Hamiltonian of the
form heff = EEE†· ↔α ·EEE , where

(3.4.4)
↔
α=

∑
ς′

d↓ |ς ′〉 〈ς ′|d↑
~δς′

is the tensor polarizability operator. As shown by John K. Stock-
ton in his thesis [Stockton, 2007],

↔
α can be expressed in terms of

the atomic pseudo-spin operators {ji}, and the dyadic product
can be expressed as a sum of irreducible terms of different rank,
i.e., scalar, vectorial and tensorial.

In the effective Hamiltonian for the whole ensemble, the sin-
gle atom operators sum up into collective operators and any
tensorial term couple with a specific function of light Stokes op-
erator. In particular we have

(3.4.5) Heff = 2γ
[
α(1)SzJz + α(2) (SxJx + SyJy)

]
,
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Figure 3.4.1. Adiabatic elimination. In this second
order perturbation method, two ground states are con-
nected via scattering photons through a virtual excited
state. The real excited states remain not populated, and
this allows their elimination in the treatment.

where α(1) and α(2) are the coefficients for the vectorial and
tensorial polarizability 5, which are basically functions of Clebsh-
Gordan coefficients and detunings from the atomic electronic
structure. In the next section we will derive the explicit form
for the two coefficients but using a different technique from the
adiabatic elimination.

The light propagation axis, z in the considered case, fixes
the roles of the different Stokes and pseudo-spin component.
The ratio between vectorial and tensorial contributions can be
tuned by adjusting the detuning, giving a variety of Hamiltoni-
ans interesting for quantum information tasks [de Echaniz et al.,
2008],

(3.4.6)
α(1)

α(2)
=

5δ0δ1 − 5δ0δ2 − 4δ1δ2

δ0δ1 − 5δ0δ2 + 4δ1δ2
.

Special detunings, which null one of the two coefficients,
are particularly important and deserve to be mentioned (see

5In eq. 3.4.5 we have omitted all the rank-0, scalar terms, which do not
cause rotations of the optical polarization since appear multiplied to S0.
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Figure 3.4.2. Tuning by frequency of the
vectorial-to-tensorial polarizability. The three
vertical bars mark the detunings corresponding to the
three transition: 1 → {0′, 1′, 2′}. The zero-crossing
points are marked with blue circles at ∼36 and ∼462
MHz, while a red circle marks the detuning of ∼502 MHz
where α(2) = 0.

fig. 3.4.2). We sometimes refer to them as “magic” detunings.
For the D2 transition of 87Rb, at 501.79 MHz α(2) goes to zero,
meaning that the polarizability Hamiltonians keeps only its vec-
torial term SzJz.

Even more important for the purpose of this thesis are the
detunings where α(1) goes to zero, instead. In the following
chapters we will explain how we used the detuning corresponding
to 461.71 MHz, distant from the resonances more than the one
at 35.84 MHz, to make the probe insensitive, at a first order, to
the atomic magnetization.

To understand the origin of these magic detunings, we give
an intuition about the physics behind the interaction. Let us
consider the vectorial term, JzSz. It accounts for the following
effect: the two circular polarizations experience different indexes
of refraction because of the population imbalance in the ground
state, Jz, and the overall strength of the dipole moments relative
to the transitions towards the several excited states.
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The result is a phase-difference acquired between the two
circular polarizations, which translate into a change in the po-
larization state of the interacting light.

The strength of the several transitions can be tuned adjust-
ing the laser frequency, and at specific detunings the symmetry
is so between left and right transitions that the index of refrac-
tion becomes insensitive to the population imbalance. These are
the detunings where α(1) goes to zero.

Although the index of refraction, linear polarizability, is bal-
anced between left and right transitions, other effects may not
be balanced, such as the saturation rate of the different tran-
sitions. These other effects can break the symmetry at higher
probe light intensity, giving back sensitivity to the ground state
population in a nonlinear way.

3.5. Degenerate perturbation theory for higher order
interactions

We thus need a formalism which include nonlinear inter-
action. The most relevant interactions we want to describe are
polarization effects of fast electronic nonlinearities including sat-
uration and four-wave mixing.

To find such a formalism for nonlinear effects, we generalize
the CCV method to the nonlinear optics regime, i.e., we include
higher-order processes in the effective Hamiltonian. For this pur-
pose, naïve application of the higher-order perturbation theory
fails due to the appearance of vanishing resonance denominators,
and the degenerate perturbation theory [Klein, 1974] is required.
We did the calculations for 87Rb, but the same formalism is valid
for other alkali species.

We start from the explicit matrix form of the interaction
Hamiltonian. The base we use is the D2 transition manifold,
with the following sorting: before the 8 ground states, |F,mF 〉
with (F,mF ) = (1,−1), (1, 0), (1, 1), (2,−2), . . . , (2, 2), followed
by the 16 excited states are |F ′,mF ′〉 with (F ′,mF ′) = (0, 0),
(1,−1), (1, 0), . . . , (3, 3).

With this notation and considering the rotating wave ap-
proximation, we can write the unperturbed and interaction parts
in the single-atom Hamiltonian of eq. 3.4.1. The unperturbed
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Hamiltonian is

(3.5.1) h0 = ~(0I3 ⊕∆hfsI5 ⊕ δ0I1 ⊕ δ1I3 ⊕ δ2I5 ⊕ δ3I7).

If E± are the amplitudes for the sigma-plus/minus compo-
nents, respectively, of the light field, then the matrix element
of the perturbation part in the Hamiltonian, V = hint, can be
calculated starting from

(3.5.2)
〈
F ′,mF ′

∣∣V |F,mF 〉 = Eq
〈
F ′,mF ′

∣∣ erq |F,mF 〉

with q = mF ′−mF . Note that q = 0 transitions (π−transitions)
are not considered because the z−propagating beam cannot con-
tain this polarization. The dipole matrix elements are related to
the “matrix element” 〈J | |erq| |J ′〉 ≡ DJJ ′ ≈ 3.58410−29C ·m by
angular-momentum addition rules. We follow the conventions
given in Steck [Steck, 2009].

In this way, we arrive to the perturbation Hamiltonian

(3.5.3) V =

(
08 V †↑
V↑ 016

)
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where 0d = 0Id and
(3.5.4)

V↑ ≡
√

5DJJ ′
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As we have mentioned the adiabatic elimination does not
work for higher terms in the perturbation expansion, basically
because such terms will describe 4-photon processes, twice the
process of going from the ground state to the virtual excited
and back. An intermediate level in this process will be at the
same frequency (degenerate) as the initial state meaning that
vanishing denominators will appear.

We have to use a more general method for dealing with this
nonlinear terms. The method, called degenerate perturbation
theory, was introduced by Klein [Klein, 1974]. The notation of
that work is somewhat obscure, so for ease of understanding we
repeat the main results. From equation (A7) of that work, we
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have the t−order contribution to the effective Hamiltonian

(3.5.5) h
(t)
eff =

∑
{k}

A{k}O{k}

Where k1, . . . , kt−1 are non-negative integers, the A are real co-
efficients, the O, denoted “(k1, k2, . . . , kt)” by Klein, are opera-
tors, and the sum is taken over all {k} satisfying

∑t−1
l=1 kl = t−1.

The A are given in Table I of that work and the O are given in
equation (A1) as

(3.5.6) O{k1,...,kt−1} ≡ P0V R
(k1)V R(k2) . . . V R(kt−1)V P0

with P0 being the projector onto the degenerate subspace F = 1,
mF = {−1, 0,+1} and by equation (II.A.5)

(3.5.7) R(k) ≡

{
P0 k = 0(

1−P0

E0−H(0)

)k
k > 0

where E0 is the energy of the degenerate subspace. In our case
we have chosen E0 = 0.

We can then directly calculate the second- and fourth-order
contributions. We are only concerned with heff as it acts on the
F = 1 subspace, that is, with a 3×3 matrix, and it is convenient
to express it in terms of the pseudo-spin operators j0, jx, jy, jz
and the Stokes operators S0, Sx, Sy, Sz defined above. Summing
the second-order contributions we find h(2)

eff , exactly like in 3.4.5.
With B ≡ −D2

JJ ′/24δ0δ1δ2~,

(3.5.8)
α(1) = B(5δ0δ1 − 5δ0δ2 − 4δ1δ2)

α(2) = B(δ0δ1 − 5δ0δ2 + 4δ1δ2)

Similarly, the fourth-order contribution is, dropping terms
in S2

0 ,

(3.5.9)
H

(4)
eff = 4γ2

[
β

(0)
J S2

zJ0 + β
(0)
N S2

zNA + β(1)S0SzJz+

+β(2)S0(SxJx + SyJy)
]
.
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Note that the term in NA arises because h(4)
eff contains a self-

rotation term of the form β
(0)
m=0S

2
zPm=0 where Pm=0 is a projec-

tor onto the state |F = 1,mF = 0〉. We express this in terms of
J0 and NA using

∑
i P

(i)
m=0 =

∑
i(I

(i)
3 − j

(i)
0 ) = NA − J0.

With C ≡ D4
JJ ′/576δ3

0δ
3
1δ

3
2∆hfs~3, the coefficients, shown

graphically in figure 3.5.1, are
(3.5.10)
β

(0)
J = C

(
12δ3

0δ
2
1δ

2
2 − 4δ3

0δ1δ
3
2 + 12δ3

0δ
3
1∆hfs − 10δ3

0δ
2
1δ2∆hfs +

−12δ2
0δ

3
1δ2∆hfs − 10δ3

0δ1δ
2
2∆hfs − 12δ0δ

3
1δ

2
2∆hfs +

+20δ2
0δ1δ

3
2∆hfs + 20δ0δ

2
1δ

3
2∆hfs

)
β

(0)
N = C

(
−12δ3

0δ
3
1δ2 − 24δ3

0δ
2
1δ

2
2 + 4δ3

0δ1δ
3
2

)
β(1) = C

(
−9δ3

0δ
3
1δ2 + 6δ3

0δ
2
1δ

2
2 + 3δ3

0δ1δ
3
2 + 35δ3

0δ
3
1∆hfs +

−5δ3
0δ

2
1δ2∆hfs − 4δ2

0δ
3
1δ2∆hfs − 5δ3

0δ1δ
2
2∆hfs − 4δ0δ

3
1δ

2
2∆hfs +

−25δ3
0δ

3
2∆hfs − 20δ2

0δ1δ
3
2∆hfs − 20δ0δ

2
1δ

3
2∆hfs − 16δ3

1δ
3
2∆hfs

)
β(2) = C

(
3δ3

0δ
3
1δ2 − 6δ3

0δ
2
1δ

2
2 + 3δ3

0δ1δ
3
2 + 7δ3

0δ
3
1∆hfs +

−15δ3
0δ

2
1δ2∆hfs + 16δ2

0δ
3
1δ2∆hfs − 15δ3

0δ1δ
2
2∆hfs +

+16δ0δ
3
1δ

2
2∆hfs − 25δ3

0δ
3
2∆hfs + 16δ3

1δ
3
2∆hfs

)
Terms containing the parameters β are quadratic in S, indi-

cating photon-photon interactions as expected. As in the linear
case, the frequency dependence of the nonlinear terms provides
considerable flexibility in designing a light-matter interaction.

Following the arguments of Chapter 2, when applied to quan-
tum metrology, these terms may produce super-Heisenberg scal-
ing, because they are nonlinear in the Si collective variables,
with the atomic variables Ji as well as NA playing the role of
the parameter.

The terms containing β(0) and β(1) are analogous to Hamil-
tonians considered by Boixo et al. [Boixo et al., 2007]. The
vectorial term containing β(1), which is ∝ S0Sz, in particu-
lar, achieves SH scaling without input or generated entangle-
ment [Boixo et al., 2008a]. Moreover, as well as the linear term
containing α(1), it is an example of a quantum non-demolition
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Figure 3.5.1. Spectra of the Hamiltonian terms.
The first two curves from the top, the left axis: contin-
uous, α(1); dashed, α(2). Lower curves, the right axis:
continuous, β(1); dotted, β(0)

N ; dashed, β(2); dot-dashed,
β
(0)
J . Detuning (MHz) is relative to the transition 1→ 0′

of 87Rb D2 transition. Points A and B indicate detunings
at which α(1) or β(1) vanish.

(QND) Hamiltonian because commutes with Jz, allowing mea-
surement of this variable without affecting it.

The term containing β(2) describes a nonlinear tensorial con-
tribution, and does not appear to have been considered yet for
nonlinear metrology.

3.6. Quantum Noise

In fact, for claiming anything about the possible metrological
use of such nonlinear Hamiltonian terms, we have to investigate
how they deal with quantum noise. To understand the quan-
tum noise in this system, as common in the collective-continuos
variable literature [Mølmer and Madsen, 2004; Koschorreck and
Mitchell, 2009], in the Heisenberg picture we look at input-
output equations for the operators transformed by Hamiltoni-
ans. From these equations we derive the variances of the oper-
ators and discuss the noise-related aspects.
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A typical input state, a coherent state, has 〈(Sx, Sy, Sz)〉 =
= (NP /2, 0, 0) and var(Si) = NP /4. Evolution under the effec-
tive Hamiltonian 3.5.9 produces, to first order in the interaction
time t0,

(3.6.1) S(out)
y = S(in)

y +
t0
~

(α(1) + β(1)2γS0)2γS(in)
x J (in)

z

plus terms containing S(in)
z J

(in)
x that are negligible for the given

input coherent state of the light. This evolution physically cor-
responds to a paramagnetic Faraday rotation of the input linear
polarization. In a metrological scheme one would measure this
polarization rotation and from it estimate the atomic variable
Jz.

For small rotation on the Poincaré sphere, i.e.

(3.6.2) φ ≡ S(out)
y /S(in)

x = 2γt0~−1(α(1) + β(1)2γS0)J (in)
z � 1,

we note that the input polarization noise dominates:
(3.6.3)

var(S(out)
y ) = var(S(in)

y ) + φ2var(Sx) ≈ var(S(in)
y ) = NP /4,

and that the signal-to-noise ratio equals one when 〈S(out)
y 〉2 =

var(S
(in)
y ), i.e., when

(3.6.4)
t20γ

2

~2
N2
P

(
α(1) + β(1)γNP

)2
(J (in)
z )2 =

NP

4
.

We can identify the value of J (in)
z that solves eq. 3.6.4 as the

sensitivity, or precision of the estimation, δJz. We find

(3.6.5) δJz = ~
∣∣∣t02γ(α(1)N

1/2
P + β(1)γN

3/2
P )

∣∣∣−1
.

Thus the sensitivity will have a transition from shot-noise to
SH scaling with increasing NP . As indicated in figure 3.5.1,
there are points in the spectrum where either α(1) or β(1) vanish,
allowing pure nonlinear or pure linear estimation of the same
atomic variable.

Moreover, an unpolarized input state 〈(Sx, Sy, Sz)〉 = (0, 0, 0)

gives rise to dynamics dominated by the β(0) terms ∝ S2
z , some-

times called the “one-axis twisting Hamiltonian.” This describes
a self-rotation of the optical polarization, and can be used to
generate polarization squeezing and also to obtain sensitivity
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scaling as N−3/2
P in the estimation of β(0)

J J0 + β
(0)
N NA, using an

entanglement-generating strategy described in reference [Boixo
et al., 2008a].





CHAPTER 4

Numerical Simulations

In the previous chapter we presented the analytic model
for our proposed implementation of nonlinear metrology using
light-atom quantum interfaces. We derived a nonlinear effective
Hamiltonian and, following Boixo’s guidelines, we guessed an
expected dependence of the sensitivity, δJz, on the number of
probing photons, NP .

With this chapter we want to communicate that having con-
sidered only this analytic model was not enough, and we needed
to verify other aspects before betting on the experimental relia-
bility of our estimation protocol.

In particular for this experiment, there are phenomena not
accounted for in the effective Hamiltonian which could lead to
significantly different results. Examples are temporal depen-
dence of the electronic excitation, relaxation and spontaneous
emission effects as well as geometrical matching of the light and
atomic systems.

Our interest was thus in predicting the performances of our
metrology protocol in a scenario which is as close as possible
to the real one in the experiment. The approach we took and
which we will describe next is the following:

• We begin with the geometrical and propagation issues
and we learn how to connect the overall result of the
interaction, i.e., the polarization rotation, φ, due to the
quantity Jz, to the spin dynamics of a single-atom when
this is excited by the probing light.
• We proceed to numerically solve the single-spin evo-
lution under different illumination conditions. In this
way we can follow in time the development of dipole po-
larizations within the electronic structure of the atom.

69
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We can also study the final state of the atom when the
light excitation has ended, and investigate incoherent
process effects.
• Finally we come back to the geometry matching of the
light and atoms, using the knowledge about single-atom
to calculate an overall response from the whole cloud.

The approach of the calculations in this chapter is semiclassi-
cal, which in the language of radiation-matter interaction means
that the atoms are treated as quantum objects but the field is
assumed to be classical. Such an approach gives correctly the
average rotation angle, 〈φ〉, but is insufficient for calculating the
noise, δφ. To account for this we maintain the simple model of
the light shot noise, presented in the previous chapter, which
gives δφ = N

−1/2
P .

As concerns the sensitivity and the metrological relevance
of the interaction the rotation angle we are talking about is
proportional to the quantity under estimation. In this case, a
simple propagation of errors gives:

(4.0.6) δJz = 〈Jz〉
δφ

〈φ〉
.

A non-trivial dependence of 〈φ〉 on NP , which will result from
the calculations, will have as a consequence the improved sensi-
tivity scalings.

4.1. Mechanisms of polarization rotation:
Maxwell-Bloch equations

In Sec. 3.6 of chapter 3, we introduced input-output equa-
tions for the system of collective operators, mutually interacting
under the action of the effective Hamiltonian,

(4.1.1)
Heff = 2γ

[(
α(1) + 2γβ(1)S0

)
SzJz +

(
α(2) + 2γβ(2)S0

)
(
SxJx + SyJy

)]
+ 4γ2

(
β

(0)
J S2

zJ0 + β
(0)
N S2

zNA

)
.

For example in the case of the Faraday rotation, i.e., linear
polarization rotating into a different plane, the rotation angle
about the z axis of the Poincaré sphere is

(4.1.2) φ ≡ S(out)
y /S(in)

x = 2γt0~−1(α(1) + β(1)2γS0)J (in)
z ,
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and as reminder, γ = ~ωZ0/2TA0. We would like to predict the
quantity φ by calculating the output Stokes components know-
ing the input polarization and initial atomic state, as well as
experimentally relevant details of the interaction, i.e., geometry,
intensity, detuning, density of atoms, etc.

We immediately see that to calculate φ we have to know
more details about the interaction, for example the effective area
A0. Also we notice that the time dependance is not trivial, since
two time factors appear in the formula: the characteristic time
of the light mode, T , and the interaction time t0. In the simple
assumption of having a constant Hamiltonian kept ON for a well
defined duration, much longer than any characteristic response
of the atoms, the two factors coincide. But this is not always
the case.

Indeed, we are interested in the probing light not in a slow,
quasi-static regime. We think that a fast pulsed probing regime
is preferable for many reasons: first of all, we expect that a prob-
ing regime faster than relaxation time of the atoms will put more
in evidence meteorologically useful nonlinearities, which other-
wise would be wiped out by incoherent relaxation processes.

Moreover, with a pulsed probe we can perform time-resolved
metrology and follow interesting time dynamics of the system
under investigation, i.e., directly the atoms and indirectly the
magnetic field. Pulsed probing also facilitates suppression of
low-frequency electronic and technical noise, i.e., fluctuating
laser intensity, via comparing the results of two successive ob-
servations.

When we assume for the light system a time-varying pro-
file of the intensity, as a consequence we also have to consider
that such a pulse propagates over the region of space where the
atomic system is located. Anyway, we will always be in the
regime where the atomic cloud is well contained within the spa-
tial extension of the pulse of photons: our atomic sample is few
millimeters long and the pulses we consider are not smaller than
nanoseconds, which correspond to length of tens of centimeters.
This fact simplifies all the propagation issues.

More in detail, we will proceed with integrating the Maxwell-
Bloch equations in three spatial dimensions x = (x, y, z) plus
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time t. Considering the slowly-varying-envelope approximation
and using retarded coordinates ζ ≡ z and τ ≡ t− z/c, the field
envelope EEE(x, τ) and the single-atom density operator ρ(x, τ)
obey the coupled equations

DEEE =
k2

ε0
PPP(4.1.3)

∂τρ =
i

~
[ρ, h(EEE)] + LΓ(ρ).(4.1.4)

For the field envelope as well as for the polarization envelope,
PPP(x, τ), we are considering only the positive frequency part, for
simplicity.

The first equation is the well known paraxial wave equa-
tion (PWE), where D ≡ ∂2

x + ∂2
y + 2ik∂ζ and k is the wave-

number. The second one is commonly known as the Lindblad
master equation for the density matrix, ρ, where h is the single-
atom dipole interaction Hamiltonian and LΓ is the Liouvillian
describing relaxation. The two equations are coupled by the
Hamiltonian, which depends on the light field envelope, and
by the polarization envelope, which is calculated on the atomic
state,

PPP ≡ np = nTr[ρd↓ ],(4.1.5)

where n is the local atomic number density and d↓ is the dipole
operator describing downward transitions.

We can interpret the system of coupled equations observ-
ing that while, according to eq. 4.1.3, the atomic polarization
acts as a source of radiated field, at the same time, according to
eq. 4.1.4, the light excites atomic polarization. The process ex-
plaining the polarization rotation, which is valid both for linear
and nonlinear interaction, is indeed the interference happening
in the forward propagating direction between the incoming light
and the new, i.e., with a different phase, light coming from the
excited, polarized atoms.

We assume that the field radiated by the polarized sample
is a small perturbation with respect to the total light field, i.e.,
the rotation angle 〈φ〉 � 1. Thus we solve to first order in
NA as follows: We identify a solution to the zero-atom equa-
tion DEEE = 0 as the input field EEE(in). Specifically, we can take
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for example a vertically polarized input field and factorize the
spatial mode, M(x), from the temporal envelope. We thus have
EEE(in) = E0eVM(x)

√
T (τ), where eV is the unit vector in the ver-

tical direction, and |E0|2 is the total energy of the pulse. For the
intensity temporal envelope we can imagine having a Gaussian
pulse

T (τ) =
2

wτ
√

2π
exp

[
−2τ2/w2

τ

]
(4.1.6)

with FWHM equal to wτ
√

2 ln 2.
We find numerically the solution to eq. 4.1.4 with EEE = EEE(in)

as the lowest-order atomic response ρ(1), and from this we calcu-
latePPP(1). We will fully describe in the next section our numerical
approach for Lindblad master equation and its results.

The evolving atomic polarization PPP(1) generates a field EEE(1),
which can be calculated using the Green function, G, for the
PWE. We can write

EEE(1)(x, τ) =
k2

ε0

∫
d3x′G(x,x′)PPP(1)(x′, τ),(4.1.7)

whereG solves the PWE for a delta-function source, DG(x,x′) =
δ3(x− x′).

Specific knowledge of the field in a particular location, i.e., a
2D integral on the surface of a photodetector, Sd, can be recon-
structed upstream in the beam using Green function techniques
[Mitchell, 2009], finally arriving to a 3D integral of its sources:∫

Sd

d2xdτ E(in)
i

∗
E(1)
j =

k

2iε0

∫
d3xdτ E(in)

i

∗
P(1)
j ,(4.1.8)

where with the suffix i and j we denote a specific polarization
component.

In the exemplary case of linearly polarized input field along
the vertical direction, we expect a rotation towards a diagonal
direction. The detector will be thus responding to the Sy Stokes
component, whose expression in terms of the light field in the
specific H,V polarization basis is Sy = I�−I� = E∗V EH+EV E∗H .
The only possible field in the horizontal direction is the one
radiated from the atoms, so the detected signal is the mean
value of the operator, 〈Sy〉 ≡ (~ωZ0)−1 ∫ d2xdτ E(in)

V

∗
E(1)
H + c.c.,
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and from the above discussion this signal is connected to the
atomic polarization in the following way:

〈Sy〉 = (~ωZ0)−1 k

2iε0

∫
d3xn

∫
dτ E(in)

V

∗
p

(1)
H + c.c.(4.1.9)

The rotation angle results from the ratio of this value with the
mean value of the input operator,

(4.1.10) 〈Sx〉 = (~ωZ0)−1
∫
d2xdτ |E(in)

V |2 = (~ωZ0)−1|E0|2.

4.2. Single-atom master equation

Let us focus in this section mainly to the temporal integral
in eq. 4.1.9, that is like we consider no spatial dependance of
the atom density or the light field, while calculating 〈Sy〉, as we
were probing only one atom. Later on we will come back to the
spatial integral and the geometrical issues.

As we said previously, the difficult part of the calculations
is solving the Lindblad master equation 4.1.4 to find ρ(1), and
calculating p(1). The master equation itself is a differential equa-
tion for the single-atom density matrix,

(4.2.1) ∂τρ =
i

~
[ρ, h] + LΓ(ρ) ≡ L(ρ).

The linear super-operator L, called the Liouvillian operator, ac-
counts for coherent dynamics as well as relaxation of the excited
levels because of spontaneous emission. In particular, the non-
unitary part of the Liouvillian acts on the density matrix in the
following way:

(4.2.2) LΓ(ρ) = −Γ

2
(Peρ+ ρPe) + Γ(ε∗ · D↓)ρ(ε · D↑),

where Pe is the projector on the excited state manifold, which
are the states affected by spontaneous decay, ε is the unit vector
in the spherical basis of polarization and D↓, D↑ are the lowering
and raising operators, proportional to the dipole operator vector.

For the coherent part we decided to consider two contribu-
tions to the Hamiltonian: h = hE + hB. The first one, which
accounts for the interaction with the light field E , is the rotating-
wave-approximated, dipole-interaction Hamiltonian, calculated
following the well known literature about alkali atom electronic
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structure, e.g. Steck [Steck, 2009], exactly as done in section 3
of chapter 3.

With the second one we wanted to include the possibility of
simulating the presence of a constant, weak1 magnetic field. We
consider a Zeeman-like Hamiltonian in the following way

(4.2.3) hB = −µBgFB · F

where F are the angular momentum operators, µB is the Bohr
magneton, and gF are the hyperfine Landé g-factors for each F
or F ′ manifold.

The usual approach consists in flattening the density matrix
in a vector of all its elements, ~ρ. If d is the dimension of the
Hilbert space, 24 in the case of the D2 line of 87Rb, the flattened
density matrix is a d2 vector. In this way we have a system of
d2 differential equations,

(4.2.4) ∂τ~ρ =
�
L ~ρ,

where
�
L is a d2 × d2 matrix, acting on the flattened density

matrix, which includes in a convenient way the action of several
operators from the corresponding side they are supposed to act.

All these calculations involving operators, super-operators
and flattened matrices are done very easy using a MATLAB
toolbox dedicated to quantum-optics [Tan, 1999].

In the case of a time-independent Hamiltonian, the toolbox
provides a very simple way to calculate the evolution at time t
of a density matrix, giving an initial condition. At the basis of
the method there is the diagonalization of the Liouvilian, which
in our case is still a rather easy calculation with the Liouvilian
being a 242 × 242 matrix. For the flattened density matrix we
have the following exponential series:

(4.2.5) ρj(t) =
∑
l

(eLt)jlρl(0) =
∑
k

Vjk

(∑
l

V −1
kl ρl(0)

)
eskt,

(4.2.6) ~ρ(t) = e
�
Lt~ρ(0) = V eStV −1~ρ(0),

1We say that a magnetic field is weak if the energy shifts which causes
are much smaller than the hyperfine splitting.
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where S is the diagonal matrix of eigenvalues, {sk}, of
�
L and V is

the square matrix, built column-by-column from its normalized
eigenvectors.

With the knowledge of the density matrix at any successive
time, we can calculate the expectation values of all the most
interesting operators and how those evolve: for example the
population of specific levels, the coherences between two levels,
the single particle pseudo-spin operators, and so on.

In the language of the MB equation treatment we presented
in the previous section, we can calculate the atomic polarization
as the lowest-order atomic response, i.e., the expectation value of
the dipole operator, p(1) = Tr[ρ(1)d↓ ], and calculate the rotation
per atom.
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Figure 4.2.1. Comparison of analytic and numeri-
cal models for Faraday rotation versus detuning in
the linear probing regime. The blue curve reflects the
dependance on detuning of α(1) in the analytic expression
of φ(∆), and the red circles correspond to φ(i) numerically
calculated at four different detunings. The mismatch, rel-
atively small {|φ(i) − φ(∆i)|} = {0.6, 0.8, 1.3, 3} × 10−10,
comes from numerical precision.
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In fig. 4.2.1 we can see the perfect agreement of the two
approaches, the analytical effective Hamiltonian and the MB
equations numerically solved, for predicting the polarization ro-
tation caused by a single atom. We compare them in a regime
of illumination where the atomic response is certainly linear.
We consider 104 photons distributed over 1 ms in a light beam
with 6× 10−6 cm2 of effective area, which correspond to a max-
imum intensity of 4 × 10−4 mW/cm2, i.e., four orders of mag-
nitude smaller than the saturation intensity for the D2 tran-
sitions. Moreover we look at the comparison in a far-off res-
onant frequency regime. The value of Jz of a single, polar-
ized atom is 1/2; the initial state used in the script is ρ(0) ≡
|F = 1,mF = 1〉 〈F = 1,mF = 1|.

4.3. A simple example

In this section we want to give an idea of the things we
can monitor or calculate using the numerical solving techniques
for the Maxwell Bloch equation system in some simple scenario.
For example we can simulate the effect of a magnetic field on
the atom. We can imagine the atom initially in the F = 1
ground state and polarized as before to maximize Jz. We can
set a magnetic field of 0.1 Gauss along the x−axis, which for
our atom corresponds to a Larmor precession of 70 kHz.

We can also add the presence of light field: In Fig. 4.3.1 we
see the population evolution of the 3 magnetic sublevels of the
F = 1 manifold: blue for mF = 1, green for mF = 0 and red
for mF = −1. We can compare three different light illumination
regimes: no light (solid line), intensity of the order of Isat and −2
GHz (dashed line), and finally the same intensity but a much
closer detuning of 462 MHz (dot-dashed line), for which the
incoherent processes caused by the more aggressive illumination
condition are strongly evident.

While we are on the topic of incoherent processes, it is a good
moment to introduce the concept of damage, η. The damage is
related to how different the state of the atom is after a period of
illumination, T . With the simulations we can easy calculate a
quantity to quantify such a change. In the space of the density
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Figure 4.3.1. Illustration of atomic state decoher-
ence due to probe-induced spontaneous scatter-
ing (simulation). The population evolution of the three
magnetic sublevels in the F = 1 ground state: mF = 1 in
blue, mF = 0 in green and mF = −1 in red. Solid lines
are for probing light off, dashed lines are for light OFF
and far detuning, dot-dashed lines are for probing light
ON and closer detuning.

matrices, in fact, the fidelity introduced by Jozsa [Jozsa, 1994],

(4.3.1) F (ρ, σ) =

(
Tr

[√√
σρ
√
σ

])2

gives the possibility of defining a distance between quantum
states. We take this distance as our definition of damage of
to the atomic state,

(4.3.2) η = 1− F (ρ(0), ρ(T )).

4.4. Steps and pulse dynamics

Until now we have presented the simulations in a regime of
constant illumination. Conversely, as we said at the beginning
of the chapter, a pulsed probing regime is closer to a real exper-
imental situation. We had to modify the strategy to solve the
master equation 4.1.4. Simply, we choose to split the evolution
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in steps of length dt sufficiently small for considering the illumi-
nation constant and applying in this way the exponential series
method presented above, step-by-step:

(4.4.1) ~ρ(ti+1) = e
�
Ldt~ρ(ti).
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Figure 4.4.1. Comparison of Faraday rotation ver-
sus detuning as predicted by simulation (pulsed
and CW) and by analytic model. Red circles
are results of simulation assuming constant illumination
regimes, and green circles are for 1 ms FWHM Gaussian
pulse. The blue line is the expected rotation depending
on the detuning as from the analytic expression. The
dashed line is for comparing the small mismatch between
both numerical methods and the analytic one. The de-
tuning is referred to 1→ 0′ transition.

This strategy is definitively time consuming: for example
100 steps are calculated in about 5 minutes. Anyway most of
the scenarios we are interested in simulating do not involve the
F ′ = 3 excited level. If we neglect this level the Hilbert space
dimension reduces to 17 and this speeds up the calculation time
by a factor of 5-6. For our purposes this is an acceptable trade-
off between time and accuracy. Anyway probably better per-
formances could be obtained applying some kind of 4th order
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Runge-Kutta method for density matrices, or performing the
numerical resolution in a C++ code external to MATLAB.

We can evaluate the performances of calculations in the
pulsed regime by comparing their results and the ones with con-
stant illumination regime in a linear probing scenario. For ex-
ample we can look for the zero crossing of the rotation angle in
the proximity of the magic detuning.

In figure 4.4.1 we show the results of three different calcu-
lation methods: the solid blue line is the rotation vs. detun-
ing predicted via the analytic expression of α(1). The green
circles are the results of simulations with the illumination hav-
ing a Gaussian time dependance, with 1 ms of FWHM divided
into 100 steps, for a total number of 104 photons in the pulse.
The red circles are instead the results of simulations assuming
a constant illumination regime with intensity equivalent to the
average intensity of the pulsed regime.

We can see that the two numerical methods give the same
results, although there is a small mismatch with the analytic
calculations. Indeed, the analytic zero crossing is expected at
461.714 MHz, while the numerical seems shifted by the equiva-
lent of 61 kHz (depicted in the graph by the shifted dashed line).
Anyway the mismatch is small if we account typical experimen-
tal laser linewidth (∼ 200 kHz) and in the vertical axis it is of
the same amount as for the far off-resonant regime (see caption
of fig. 4.2.1).

As mentioned, we want to have simulation results in situa-
tions as close as possible to the experimental conditions. In our
lab we create pulses of light using acousto-optical modulators,
as we will see better in the following chapters. We needed to
do simulations including the non-zero raising/falling time of the
physical pulses.

We can generate a stepwise rising edge profile which simu-
lates the switching ON of an AOM by an accumulating sum of a
Gaussian function, in analogy of the well known error function.
We can define:

(4.4.2) TEF (ti+1) = TEF (ti) + TG(i dt− τ0),
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Figure 4.4.2. Illustration of the the pulse shape
function used in the simulations. In dashed blue a
possible curve for simulating a long AOM pulse, with its
rising, constant and falling profiles. Red dots are for the
specific shortest 54 ns FWHM stepwise profile we used in
the simulations. In blue, a vertical rescaled trace from a
photodetector for comparison with the real experiment.

where TG(τ) is a Gaussian time profile such as the one in eq. 4.1.6
parametrized by its waist wτ . We set TEF (t0) = 0, dt is the step
size of our chosen time discretization and τ0 is equal to two wτ .
In this way the relation between the 10-90 rise time of TEF and
wτ is ≈1.28 to 1.

We can join to the rising edge profile an interval where the
value of the pulse is constant, even with a different numerical
resolution if we need so, and finally we can join a falling edge
reproducing symmetrically the initial behavior.

The shortest pulse we can physically create in our lab has 54
ns of FWHM. Its shape is very close simulated by stopping the
rising profile TEF at 98% of the maximum value and immediately
joining a symmetric falling edge (see fig. 4.4.2). This will be
the time profile we used for simulating the nonlinear probing,
explained in the following sections.
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4.5. Simulating the nonlinear probing

We used the described stepwise integration technique for
simulating the nonlinear response of the atom to the incom-
ing probe light. We expect to see that the rotation depends on
the photon number, as from the analytic prediction,

(4.5.1) φ = 2γt0~−1(α(1) + β(1)2γS0)J (in)
z ,

where S0 = NP /2. We would like to make evident the nonlinear
contribution of the rotation, for this reason we do the simulation
at the detuning where we expect to suppress the linear suscep-
tibility, i.e., α(1) ≈ 0.
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Figure 4.5.1. Numerical and analytical predic-
tions for Faraday rotation angle and fidelity be-
tween initial and final atomic state as a function
of photon number at the “magic” detuning. The
black points are the absolute value of the calculated rota-
tion. The dashed curve is the expected rotation calculated
with the analytic formula. Both black dataset are split
into two curves because of a change of sign not visible in
the log scale. The red points are the fidelity between the
atomic state before and after the probing pulse.

As we learn from the graph in fig. 4.4.1, the detuning of
461.65294 MHz satisfies this requirement for a ms long pulse.
We choose to keep this detuning also for the 54 ns long pulse,
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even if in that condition a residual linear susceptibility is present
due to the different spectral properties of the shorter pulse. A
finer choice of the detuning could have removed such a residual
linear susceptibility; anyway in a real experiment, claiming a
detuning precision of few Hz, when the pulse bandwidth is of
some tens of MHz is somehow unphysical.

We simulated pulses with photon number up to 109. In
fig. 4.5.1, we clearly see the rotation angle depending on the
incoming photon number. The graph is in a log-log scale to
better identify the power-law dependance, for the logarithm to
be showed correctly we plot the absolute value of the rotation
angle.

We identify three regions: below 103 photons the residual lin-
ear susceptibility dominates until the nonlinear response start to
become comparable around 104. Because the linear and nonlin-
ear act in different directions this produces a change of sign. In
the range from 105 to 107 photons we see a clear proportionality
of the rotation with the photons, sign of the expected nonlinear
susceptibility.

For the comparison with the analytic expression of eq. 4.1.2
we have to consider that the intuitive correspondence between
the two temporal factors t0 and T is not valid anymore as for
the simple linear case with long probing pulses. Keeping the two
factors as free parameters, we found that the analytic expression
matches the simulations with the following choice: t0 = 150 ns
and T = 112.5 ns. dashed curve in the figure.

In the last region, with photon number above 107, the rota-
tion significantly deviates from the analytic expression. We in-
terpret this as an effect of the change in the atomic state because
of incoherent scattering due the high levels of illumination. For
this reason we also plot in red the calculated fidelity between the
initial and final atomic state, noticing that the deviation from
the expected rotation is correlated with the fidelity going below
80%. We investigated more details about the damage and its
relation with the nonlinearity. This will be the argument of the
next section.
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4.6. Damage and nonlinearity

As we said before our understanding of what happens at
very high photon number, i.e., the deviation from the predicted
dependance of the rotation on the number of probes, is that
incoherent scattering changes the atomic state. Such optical
pumping effects at high level of illumination can be easy demon-
strated by observing the evolution of population in other levels
different from the initial atomic state. In fig. 4.6.1 we see how
the population of the excited states evolves during the pulse,
how the atoms accumulate into the F = 2 manifold, and how
the atoms change magnetic sublevel within the F = 1 manifold.
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Figure 4.6.1. Evolution of the atomic population
among the hyperfine level manifold in a specific
probing condition (detuning and photon number).
Blue, green and red lines are the populations of the three
magnetic substates in F = 1, as labelled. Light blue line
is the sum of all the population in the F = 2. Purple
line is the sum of all the population in the excited states.
Dashed black line is the normalized light intensity profile.
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At high levels of illumination, the fact that the rotation is
affected by such optical pumping effects is itself a nonlinear re-
sponse of the atoms: more photons means more optical pumping
which results in more rotation changing. How to distinguish be-
tween these nonlinearities, which we can denote as bad ones,
from the one we instead want to use to sense the atoms? How
can be sure that the response we simulated in the range between
105 and 107 are not caused by optical pumping nonlinearities?

We played some tricks to investigate these questions. In
the script is relatively simple to make the probe insensitive to
specific sublevels: It is just a matter of arbitrarily putting to zero
the matrix elements of the dipole operator between the sublevels
we want to “silence”, and the excited state manifold.

We apply this strategy for silencing the effect of the atom
pumped into the state |mF = −1〉 as well as for silencing all the
effects from the F = 2 manifold. We compare the results and
find no significant difference caused by the optical pumping in
the range of interest.

Another tool we have in the scripts for tweaking the effects
of incoherent processes is to artificially change, for example to
reduce, the decay rate Γ. Such a change has two effects. First
of all the off resonant scattering rate, hence the damage, re-
duces consequently. Under the same probe intensity, damage
goes proportionally to (Γ/∆)2 [Grimm et al., 2000; Foot, 2005].

Unfortunately also the signal reduces. We can see this from
the analytic expression of the coefficients inside the Hamiltonian,
see eq. 3.5.8 and 3.5.10 of chapter 3. The αs coefficients are
proportional to the square of the D2 transition dipole matrix
element 〈J | |erq| |J ′〉 ≡ DJJ ′ ∝ Γ1/2. The βs coefficients instead
are proportional to D4

JJ ′ . Summarizing, the αs are proportional
to Γ and the βs to Γ2.

An interesting question is the trade-off between nonlinear
signal and damage. In the simulations, we have seen that by
increasing the photon number the response of the atoms in term
of rotation angle increases, until the point where the damage,
we can visualize it from the plotted fidelity, stops this trend. By
the proportionality argument it seems that having a lower scat-
tering rate would be compensated by a lower β. There should
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be no relevant change in the value of the maximum achievable
signal obtained from an atom before the damage starts playing
its undesired effects.

We simulated this hypothetical scenario by changing the
value of Γ from the correct one for 87Rb of ≈ 6 MHz to the
arbitrary value of ≈ 6 kHz, indeed reducing it by three orders
of magnitude. We can in part confirm the analytic argument
about the absence of any improvement by comparing fig. 4.6.2
(A) and fig. 4.5.1.

105 107 109 1011 101310 14

10 13

10 12

10 11

10 10

10 9

R
ot

at
io

n 
pe

r a
to

m

Photons

0

0.25

0.5

0.75

1

Fi
de

lit
y

(a) Train of long pulses
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Figure 4.6.2. Nonlinear probing assuming kHz de-
cay rate. (A): With respect to the case of normal con-
ditions for Γ, simulations reproduce qualitatively similar
results, both in the rotation and in the fidelity, but at
higher photon number. The roll-off of the rotation hap-
pens at lower damage instead, reducing the range of ex-
ploitable nonlinearity. (B): In comparable conditions of
fidelity as for fig. 4.6.1, the final atomic population is only
shared between the two states |1,±1〉 connected via co-
herent processes. The contribution of |1, 0〉 as well as the
F = 2 state is not appreciable at all.

In addition, the simulations with the fictitious Γ return a
worse trade-off. The deviation of the simulated rotation angle
from its predicted value seems sensitive to smaller level of dam-
age. Moreover, by looking at the population distribution after
the pulse in fig. 4.6.2 (B), we can find evidences for a dominant
role of coherent processes, such as Raman scattering, which pop-
ulates the state |1,−1〉, at the expense of incoherent relaxation
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processes, which should for example populate the F = 2 mani-
fold.

4.7. Geometrical mode-matching

We have shown how to use numerical computation power
to get information about the interaction of a single atom with
a probing light field. In this last section of this chapter we
come back to the 3D model of the interaction. We now want to
account for the fact that the atoms have a specific density dis-
tribution inside the trap, at the same time that they are probed
by photons within a specific light mode. Finally, we would like
to know how the single-atom response, which we are able to
calculate numerically, translates into a global response of an in-
homogeneous interface of atoms and photons.

Let us recall the main result of the calculations in section 4.1:
the equation by which we can calculate the signal from the
atoms. In the case of calculating rotation of linear polarization
we have for example:

〈Sy〉 = (~ωZ0)−1 k

2iε0

∫
d3xn

∫
dτ E(in)

V

∗
p

(1)
H + c.c. ,(4.7.1)

where, as a reminder, E(in)
V = E0eVM(x)

√
T (τ).

Using the previously described stepwise integration tech-
nique, we know how to calculate the temporal overlap integral
in eq. 4.7.1, for a specific pulse energy |E0|2 and a specific initial
atomic state, assuming M(x) = 1.

Now that we want to account for the spatial distribution in-
stead, we can proceed in the following way: via interpolation,
for example, we can convert the discrete results from a set of
simulations at different pulse energies, {|E0|2}i, into an explicit
continuous, analytic functionality of the temporal overlap inte-
gral with directly the total photon number and the beam spatial
distribution:

(4.7.2)
{∫

dτ
(
E(in)
V

∗)
i
p

(1)
H + c.c.

}
i

interp.−→ Θ (NP ,M(x)) .
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We can thus predict the overall response from the whole
atomic cloud by calculating the following 3D overlap integral,

(4.7.3)
∫
d3xn(x) Θ (NP ,M(x)) ,

where we can include the total number of atoms and all the
geometrical relevant parameters of the interface. As we will
show in the next chapter, in the analysis of the experiment we
finally used this approach for providing a model to the data.

4.7.1. A qualitative study. At this point, we know that
the single atom polarizability has a complicated dependence on
the incoming field, in particular at high field intensity, where
optical pumping happens. Regardless, there is some useful in-
formation we can still extract from the 3D integral assuming the
simplest nonlinear response of the atoms.

Let us consider the single atom polarizability up to the first
non-zero nonlinear order. For the goal of this qualitative study
we can neglect any tensorial description of how the various po-
larization components interplay and simply deal with scalar field
and polarizability:

(4.7.4) p(1) = AE(in) +B|E(in)|2E(in),

where we can easily identify a linear and a nonlinear contribution
to polarizability. The temporal integral of eq. 4.7.1 will thus
simply results in a part proportional to the field intensity, I ∝
|E(in)|2, and another to the field intensity squared.

Having said that, for the spatial dependence we can consider
the two following overlap integrals:

OL =

∫
d3xn(x)I(x)(4.7.5)

ONL =

∫
d3xn(x)I(x)2.(4.7.6)

A priori, we see see that the geometrical properties of the in-
terface will have different effects on the linear and the nonlinear
probing. How much is this relevant? Another interesting ques-
tion is for example the comparison between a fully homogeneous
model for the interface of both the atomic and the photonic sys-
tem, and any real non trivial spatial distribution.
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For the atom distribution, let us consider a Gaussian with
FWHM wr

√
2 ln 2 and wz

√
2 ln 2 in the transverse and longitu-

dinal directions, respectively:

n(x) = 2
√

2(π3/2wzw
2
r)
−1 exp[−2r2/w2

r ] exp[−2z2/w2
z ](4.7.7)

where r2 ≡ x2 + y2. This cigar-like distribution is a first simple
guess of the shape of the atomic cloud as this is held in a single
beam optical trap. It is calculated in the case of the thermal
energy much smaller than the potential well, approximating the
trapping potential with quadratic functions. Describing the ex-
periment in the next chapters, we will see that this guess is not
far from being correct, with the difference that in the longitudi-
nal axis the real shape is instead closer to a Lorentzian function.
For the moment, we can continue assuming a Gaussian longitu-
dinal profile without much complications.

Moreover we can consider that the light field mode is a sim-
ple Gaussian beam,

M(x) =

√
2

πw2(z)
exp[−r2/w2(z)] exp[iψ(r, z)](4.7.8)

where w2(z) = w2
0(1 + z2/z2

R), w0 is the beam waist at the
focus, zR = πw2

0/λ is the well known Reyleigh length, and ψ is
the wave-front phase,

(4.7.9) ψ(r, z) = −k

(
z +

r2

2z
(
1 + z2

R/z
2
))+ arctan

(
z

zR

)
.

We can also introduce an effective area

(4.7.10) A0 ≡
∫
dxdy |M(x, y, z)|2/|M(0, 0, z)|2 = πw2

0/2.

We can assume that the focus of the light mode coincides
with the center of the atomic cloud, as well as the main axis, but
other scenarios can be considered without much complication.
We can reasonably expect that the relevant parameters would be
the Gaussian waists, i.e., the ratios between them. For example
if we choose a typical aspect ratio for the cigar-shape atomic
cloud of 150:1, and we quantify the matching between the atom
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size and the light mode with the parameter ζ,

(4.7.11) ζ =
w0

wr
,

being the ratio between the two waists, we can plot how OL and
ONL depend on ζ (see fig. 4.7.1). For the homogeneous model,

Figure 4.7.1. Linear and nonlinear overlap inte-
grals as a function of transversal mode matching.
The blue curves in the plot on left correspond to the linear
signal. The red ones, on the right, are for the nonlinear
signal. The dashed lines are for the homogeneous model.
ζ = w0/wr.

the dashed lines in fig. 4.7.1, we consider that the light mode is
a cylinder of area A0, and all the atoms are inside the cylinder.
Since we are considering that the atom density is normalized in
the whole space and the intensity in any transversal plane, i.e.,

(4.7.12)
∫
d3xn(x) = 1 ,

∫
dxdy I(x) = 1 W

we thus have that O(hom)
L = 1 W/A0 and O(hom)

NL = 1 W2/A2
0.

Regarding the case of the linear interface, we learn from the
maximum in the curve that matching the transversal dimensions
of the two systems is important for indeed maximizing the signal.
The case is different for the nonlinear signal where the maximum
is theoretically expected at infinite focusing of the light probe
in the middle of the atom cloud. We can explain this last situa-
tion because the nonlinear signal is proportional to the intensity
square, which means inversely proportional to w4

0. Conversely,
the relevant volume in a Gaussian mode is roughly w2

0zR, where
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the Rayleigh length is proportional to w2
0. The optimality is

thus simply established by the atom distribution, which in our
case is highest in the center.

Of course this last result is misleading, since does not ac-
count for the fact that above some levels of intensity the re-
sponse from the atoms degrades for the reasons explained in the
previous sections.

Finally we can look at fig. 4.7.2 for analyzing inhomogenous
vs. homogeneous interface. The main point is that close to the
optimal matching condition t ≈ 1 to 2, OL is only a fraction,
20 to 60 percent, of what should be in the case of homogeneous
interface. The situation for ONL is accentuated. This fact can
be interpreted as if the atoms in the cloud do not contribute all
in the same way to the signal, and this in average reduce the
signal. In particular the atoms in the center, where the beam is
focused, contribute more than the atoms in the tails, and this is
much more relevant for the nonlinear probe.

Figure 4.7.2. Comparison between homogeneous
and inhomogeneous interface. The blue curve corre-
sponds to the ratio of the signals from the two models in
the case of the linear interface. Similarly, the red one is
for the nonlinear interface.

To simplify the argumentation, our goal is to estimate the
collective variable, e.g., the total spin, of the sample, but in fact
by using the linear or the nonlinear atomic response to probe
light we gather information about two differently weighted func-
tions of the collective atomic variable.
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In any classical scenario, this is not a problem. In particular,
if we always guarantee that the variable is homogeneously dis-
tributed among the whole sample, then the two measurements
will only differ by a constant factor. For the scope of our experi-
ment, it is ok having a simple constant factor, for example when
calibrating the nonlinear measurement using the linear one. In
the next chapters, when describing the initial state preparation
via optical pumping, we will further discuss the achievable ho-
mogeneity we can expect.



CHAPTER 5

Experimental setup

In this chapter I will present the details of the apparatus with
which we implement in our lab the polarization-based quantum
interface between light and cold atoms.

In chapters 3 and 4, we proposed nonlinearity in the light-
atom interfaces as a resource for metrology from a theoretical
perspective. In the way that we developed the theory, for ex-
ample the interaction Hamiltonian, it was easy to identify the
collective pseudo-spin component Jz as the candidate to be the
object of the metrological investigation.

Now that we want to focus more on experimental issues, we
decided instead to stress on the real spin component Fz, because
it has for example more direct connections with magnetometry.
Anyway, it is just a matter of convenience since the two quanti-
ties only differ by a numerical factor, Jz = Fz/2.

The description will follow all the requirements, a sort of
check-list, for the experiment to succeed. From what said in the
previous theoretical chapters, what we need is the following:

• Efficient polarization-based quantum interface between
atoms and light. This means that we are able to col-
lect enough atoms, prepare the correct pulse of photons
and make both systems interacting as predicted theo-
retically. A high optical depth, the figure of merit of
the quality of the interface, indicates that the desired
nonlinear dynamics will show up before other undesired
effects and in such a way we can expect that the only
relevant noise sources are the fundamental, quantum
ones.
• Easy addressing and switching between different prob-
ing regimes. We do it by controlling the intensity, the

93
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time profile and the detuning of the photon pulses used
for interrogating the atoms.
• Shot-noise-limited detection; so that the electronic or
technical noise of the used photodetectors do not affect
the sensitivity, in the range of photons where we expect
to see better-than-Heisenberg scaling.
• Good control of the atomic sample magnetization, with
particular care to the uniformity of the spin polariza-
tion all over the cloud for simplifying the relation be-
tween the linear and the nonlinear measurement.

On this scheme we will structure the rest of the chapter.

5.1. Description of cold-atom machine

As in the majority of experiments with cold atoms, most of
the time in the lab is spent on taking care of the system for
generating and trapping the atomic cloud. The apparatus we
work with in our lab has passed through many hands and has
been used for many experiments since its beginning. Before I
started the PhD, the vacuum system, for example, was phys-
ically moved twice: from Innsbruck to Barcelona and after a
couple of years from downtown Barcelona to ICFO’s actual lo-
cation in Castelldefels. The vacuum never got broken and for
this reason Jürgen Eschner, the professor who started the trap,
is proud to say that there is still good, Austrian vacuum inside.

The atomic trap is described in details in the thesis of pre-
vious students. Matthias Schulz [Schulz, 2002] and Herbert
Crepaz [Crepaz, 2007] built in Innsbruck the vacuum system,
and both the magneto-optical and the dipole traps with the
goal of collecting single atoms; Marcin Kubasik [Kubasik, 2009]
upgraded the dipole trap for working with many atoms, in-
stead, and built the polarization interferometer demonstrating
control of the initial atomic preparation via optical pumping.
Marco Koschorreck [Koschorreck, 2011] implemented an absorp-
tion imaging system and by working on magnetic field compen-
sation he enhanced the coherent time of atomic preparation.
This, together with a two-polarization probing, which Marco
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also implemented, was the way to achieve spin-squeezing. Dur-
ing my PhD I overlapped with both Marcin and Marco, working
together in this continuous effort in taking care of the “baby”.

The final stage of the 87Rb ensemble is a cloud of about
one million atoms, held in a single-beam far-off-resonant dipole
trap (FORT) [Grimm et al., 2000]. Its trapping potential is not
enough to efficiently load room-temperature atoms, so the initial
stage of the loading is done with a magneto-optical trap (MOT)
[Metcalf and van der Straten, 1999], where the kinetic energy of
the atoms is removed via an optical molasses.

Long trap-lifetime and a high loading speed are two features
that depend in opposite ways on the background pressure in
vacuum system. This is why our MOT is in fact a two-stage
MOT. Two regions of the vacuum chamber are kept at differ-
ent pressure by differential pumping. In the region with higher
pressure, a two-dimensional MOT collects atoms from the back-
ground. Along the free dimension, the atoms are sent by a push-
ing beam into the region of the chamber having lower pressure.
Here, a three-dimensional MOT captures the incoming atomic
beam. The loading rate of the 3D MOT is about few 107 atoms
per second. The temperature is fixed by the spontaneous decay
rate of the excited level, Γ ≈ 2π× 6× 106 s−1, corresponding to
the Doppler limited temperature of 146µK.

We cannot perform experiments with long coherence time of
the ensemble of atoms in a running MOT, because of its very
close to resonance laser beams and strong magnetic-field inho-
mogeneity. This is why we finalize the process of preparing the
atomic ensemble into the FORT. The working principle of this
trap is the following: the dipole interaction with light changes
the ground state energy of atoms; this effect is known as the
AC-Stark shift. In a focused beam a potential is then created,
and the atoms can be attracted towards or repelled from the
region of more intensity, respectively for red or blue detuning.
In our case of laser beam at 1030 nm (the Rubidium doublet
is at 780-795 nm), focused down to a waist of 52µm, a power
of 6 W creates a potential well equivalent to a temperature of
200µK, U = kBT .
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Such a potential is capable of trapping the atoms from the
MOT, but for the transfer to be very efficient a stage of sub-
Doppler cooling is required. During the last milliseconds of the
MOT loading the detuning of the cooling light is increased from
2Γ to 15Γ, the repumper light is dimmed to let the atoms ac-
cumulate into the lower energy ground state F = 1 and the
quadrupole coils are switched off achieving in this way a pure
molasses phase. The temperature is then lowered down to al-
most 25µK, a good portion (almost 10%) of the atoms are trans-
ferred into the dipole trap and all the laser of the MOT are
switched off.

In an optimized working regime, two seconds of loading time
are enough to trap up to 1 million of cold atoms, ready to be
used for the designed experiment. The lifetime on the atoms in
the dipole trap exceeds the 30 seconds, allowing the possibility
of repetitive experiments without the need of recapturing atoms.

Moreover an important advantage of having the atoms in the
dipole trap is the shape of the ensemble. The geometry realized
with a single focused beam ends up in a cigar-shape cloud. Using
imaging techniques, both in fluorescence and in absorption, we
measured a transversal Gaussian profile with a FWHM of 19.5
µm and a longitudinal Lorentzian profile with a FWHM of 3
mm [Koschorreck et al., 2011; Koschorreck, 2011].

With such a shape the atoms demonstrate a very high on-
resonance optical depth (OD), a figure of merit of the high light-
atom coupling, when illuminated along the longitudinal axis.
As I will explain better in the following sections, we measured
OD of the order of 50 with about 1 million atoms. To give a
comparison, free-falling atoms from a MOT show typically OD
one order of magnitude smaller.

5.2. Probing the atoms via rotation of light
polarization

In this section I will describe the part of the apparatus we
use for measuring the angular momentum of the atomic ensemble
via the polarization of the light interacting with it, as described
theoretically in chapter 3. We can divide the path of the probing
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light in three big parts: the preparation, the interaction, and the
analysis stage.

5.2.1. The preparation stage: linear and nonlinear
probe. In the preparation stage we set all the light properties
relevant for the experiment, e.g. detuning or timing. Of course
polarization is also a critical feature, but I will comment more
on its preparation in the following stage, the interaction one.

We have two different operational regimes for the probe light:

• Long (µs timescale) pulses, far detuned (≈ GHz). We
refer to this as the linear probing regime. For such
linearity, typically the signals from several pulses in a
train are combined.
• Short (≈ 50 ns) pulses, higher peak intensity, hyperfine-
splitting range detuning (≈ 400 MHz). We refer to this
as the nonlinear probing regime.

We create the probing pulses with acousto-optic modulators
(AOM). In Fig. 5.2.1 the temporal dependence of the probing
light power is plotted as measured by a calibrated reference de-
tector.
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Figure 5.2.1. Different probing regimes. Left:
Train of pulses for linear probing. Right: Short, intense
pulse for nonlinear probing. Both curves are recorded by
a calibrated reference detector and averaged 65 times.
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The light frequency in the two probing regimes is set in two
different ways: in the case of nonlinear pulses we want the spe-
cific detuning ∆0 = +461.7 MHz from the transition 1 → 0′.
We use light from the same laser that we use for all the rest
of processes resonant with the transitions from F = 1, e.g., the
repumper light for the MOT, or the light for the initial atomic
preparation via optical pumping. The laser (we refer to this
physical laser as the “repumper” laser) itself is locked via FM
saturated absorbed spectroscopy to the crossover between tran-
sitons 1 → 1′ and 1 → 2′, meaning that its frequency is al-
ready 72.2+156.9/2=151 MHz. The missing 311 MHz can be
easy achieved with an AOM in double-pass configuration [Don-
ley et al., 2005]. In a following section we will explain the strat-
egy we used for fine tuning the frequency and getting exactly the
specific condition of a null linear susceptibility. The electronics
driving the AOM is stable enough that the only residual fre-
quency instability comes from the laser source linewidth, which
is around 200 kHz.

In the case of the linear probe, the desired detuning is too
large for an AOM to function as an efficient frequency shifter.
We thus use the technique of frequency offset locking between
the repumper laser, which will be our reference laser, and an
independent external-cavity diode laser, which we will finally
use as the source of the far-off-resonant probing light.

A small amount of light from the probe laser is made to beat
against a portion of light from the reference laser, by sending the
two beams into the same single-mode fiber. The fiber output is
monitored with a fast detector, whose signal is used instead of
the voltage-controlled oscillator (VCO) in a phase-locked loop
(PLL) circuit. We use the output of the PLL to feed back the
piezo voltage and current of the probe laser and keep the fre-
quency stabilized at an offset from the reference laser. The PLL
can be programmed very easily via computer and the frequency
lock established with an offset ranging from 300 MHz to 3 GHz.
We can change between blue or red detuning, simply changing
the polarity of the control loop.
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Unfortunately the linewidth of the offset-lock laser is bigger
than that of the reference laser. Ideally, similar offset-lock tech-
niques can achieve a perfect phase-lock between the two lasers
[Appel et al., 2009], which is a crucial requirement for Raman
or EIT like experiments. Anyway, in our experiment the large
detuning from resonance makes enough just simple frequency
lock, with drifts in the beating frequency of few MHz.

5.2.2. The interaction stage. Now that we have well pre-
pared in time and frequency the probe light, we have physically
to deliver it to the atoms and make the two systems interact-
ing. All the laser lights for the experiment, including the probing
light, arrive close to the atom trap trough polarization maintain-
ing fibers: this is basically for improving alignment stability. We
clean the polarization at the fiber output using good polarizers
(extinction ratio ∼ 10−5), so polarization maintaining fibers are
also needed to minimize power fluctuations.
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Figure 5.2.2. Schematic of the optics at the inter-
face with the atoms.

We want to send the probing light along the longitudinal
direction of the sample. Usually, for experiments in our lab we
define a reference frame, and as a consequence a quantization
axis, with respect to the dipole trap longitudinal direction; we
call this the z−axis. The x−axis is in the vertical direction and
the y is in the horizontal one transversal to the dipole trap.

The overlap of the 780 nm probe beam with the 1030 nm,
powerful, laser beam that traps the atoms, is realized on a
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dichroic surface. Downward in the path, the two co-propagating
beams are gently focused into the vacuum chamber at the cen-
ter of the 3D MOT with the same achromat, 8 mm lens. With
this lens we generate the dipole trapping potential and as a con-
sequence, the focus of the probe beam appears located in the
same plane as the trap potential minimum. The diameter of the
probe beam is chosen to have the focused waist of about 20µm,
matching in this way the transverse size of the atomic cloud.

After the chamber a second achromat lens, making a 1:1
telescope with the previous one, collimates again the two beams.
A pair of dichroic beamsplitters are placed later on to divert
the trapping light away from the detection. The polarization
dependent transmission of all these optical elements must be
taken into account when calculating any polarization rotation,
and if possible any birefringence must be compensated.

Three sets of Helmholtz coils surround the location of the
atoms to apply designed magnetic fields.

After the fiber delivering the light we have a set of zero-order
wave-plates for pre-compensating the changes until reaching the
atoms: using polarizer filters placed as close as possible to the
glass cell containing the atoms, we can set the polarization of
the probe to be linear with an extinction ratio of one part in 104.
Towards the detection we have again wave-plates to compensate
the birefringence especially of the pair of dichroics, which divert
the trapping light.

We can perform such a polarization correction only without
the presence of the powerful trapping beam, because the need of
using the high quality filters made with plastic. Anyway, in an
external setup we observed not important polarization change
due to heat deposited by the trapping beam on the involved
optics, in particular on the dichroic surfaces. The only thermal
effect noticed was a loss in the degree of polarization of the
pulse, meaning the same of having few percents of a randomly
polarized photons.

5.2.3. The analysis stage. We want to measure changes
in the polarization of the light. Just before reaching the atoms
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we can assume that the Stokes vector has basically one compo-
nent which is macroscopically populated:

〈Sx〉 = NP /2, 〈Sy〉 = 〈Sz〉 = 0(5.2.1)
var (Sx) = 0, var (Sy) = var (Sz) = NP /4,(5.2.2)

where the total number of photons in the pulse, NP , is measured
via splitting a portion of light just after the fiber and using a
photo-detector (Thorlabs PDA10A) calibrated against a power-
meter.

After the cell, the dichroic beamsplitters and the optics for
pre-compensating the polarization, the probe light meets a half-
waveplate at 22.5 degrees with respect to the vertical direction,
and a Wollaston prisms to measure the two orthogonal diagonal
polarizations. The intensity difference between the two beams
exiting the Wollaston is indeed related to the Stokes component
Sy. For each pulse, the resulting energy difference in the two
beams is measured with two photodiodes (Hamamatsu S3883)
in a balanced configuration. The subtracted photocurrent is
then integrated with a charge-sensitive amplifier (Cremat CR-
110), and pulse-shaper (Cremat CR-200) as final stage gives at
the output a clean signal in volts reproducing the time evolution
of the imbalance in photon-flux on the two diodes.

We save the signal from the balanced photo-detector with a
real time oscilloscope (LeCroy WaveRunner X64), together with
the signal coming from the reference detector located before the
trap for the information about the incoming photon number,
NP .

5.3. Measuring the sample OD

As a normal operation, we check the coupling of light to
the atomic ensemble. We quantify the strength of the coupling
by measuring how much a fully magnetized sample rotates the
polarization of probe light at a particular detuning. A strong
reduction of this value from the typical one indicates that align-
ment, imaging or state preparation have problems and need to
be optimized again. We will describe now this measurement be-
cause it is useful for having a global view on the probing mech-
anism.
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After having collected atoms into the dipole trap, we set
them all in the magnetic sublevel |1,+1〉 by means of optical
pumping with 1→ 1′ circular polarized light along the trap axis
(z−axis, the chosen quantization axis).

During the pumping and the following probing phase a mag-
netic field of about 100 mG along the z−axis is kept on. We can
assume that the sample becomes fully magnetized, 〈Fz〉 = NA.
At the end of the chapter we will discuss more details about the
optical pumping and its efficiency.

We stabilize in frequency the probing light with the offset
lock and generate pulses of 1µs with an AOM in a train with
10µs of separation between two subsequent pulses. The re-
sulting detuning (locking+AOM) in this measurement normally
ranges from -600 MHz to -1500 MHz from the transition 1→ 0′.

After having interacted with the magnetized sample, the
pulses arrive at the polarimeter with the polarization rotated.
We extract the information about the polarization rotation from
a collection of 100 pulses (1 ms long train). In terms of the Stokes
components, i.e., on the Poincaré sphere, the rotation angle is
calculated for each pulse by

(5.3.1) φ(i) =
〈Sy〉(i)

〈Sx〉(i)
= 2
〈Sy〉(i)

NP
(i)
.

The principal effect going on in the off-resonant probing is the
linear, paramagnetic Faraday rotation from the QND interac-
tion,

(5.3.2) φ = 2γt0~−1α(1)Fz
2

=
ωZ0t0
AeffT

α(1)Fz
2

= G1
Fz
2
.

The coefficient G1, also referred to as coupling constant, de-
pends on the detuning as well as on all the interaction geometry
issues, which are reassumed in the effective area, Aeff . By using
the analytic expression of α(1) as from eq. 3.5.8, the relation be-
tween the transition dipole matrix element, DJJ ′ , and the decay
rate Γ for 87RbD2 transition (see eq. (38) in Steck [Steck, 2009]
and references therein), and finally assuming t0 ≡ T , we can
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write explicitly the coefficient,

(5.3.3) G1(∆, Aeff) =
Γλ2

16πAeff

(
− 4

δ0(∆)
− 5

δ1(∆)
+

5

δ2(∆)

)
,

where δf ′ = ∆−∆0f ′ are the detuning from each involved excited
state.

At the end of each measurement we take an absorption image
of the trap to count the total number of atoms, NA. To do this,
we first switch off the dipole trap, then we illuminate from the
side the cloud with light on resonance with the transition 2→ 3′,
together with repump light 1 → 2′ from the MOT beams. We
collect the shadow image on a CCD camera (Basler Scout-f) for
300µs.

After 70 ms, the time needed by the camera to read-out
the CCD sensor, we collect the reference image, with the same
illumination conditions as in the shadow image. We also take
a dark image to account for and subtract ambient/background
light. For the same number of atoms we repeat the experiment
for collecting statistics.

We repeat the whole procedure on different number of atoms
in the trap. To achieve this we do not change anything in the
loading phase, but instead we switch off the dipole trap few
hundreds of microseconds to release some atoms (≈ 15%) before
the next pumping and the following probing phases. We fit with
a linear function the rotation vs. the number of atoms and from
the slope we get the coupling constant G1 with its uncertainty.

For example at detuning ∆ = −600 MHz we measure G1 =
1.54 × 10−7. For a figure of merit of the coupling, we better
want a detuning independent quantity, which only accounts for
the geometry of the interaction for example. We can extract the
effective interaction area Aeff from the detuning dependence of
G1.

Comparing Aeff with the theoretical on-resonance scattering
cross-section (σ0 = λ2/π ≈ 1.94 × 10−13 m2), calculated at the
maximum atom number (NA = 8.5 × 105) we are able to trap,
we deduce an optical depth, d0, of the order of 40, by using the
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following expression

(5.3.4) d0 =
σ0

Aeff
NA.

5.4. Looking for the magic detuning

We present now another measurement, which we performed
using the linear, parametric Faraday rotation. In fact, the goal
of this measurement was to minimize the effects of the linear
susceptibility, and in this way achieve the condition of detuning
desired for the nonlinear probing regime.

As already mentioned we generate the nonlinear probe pulses
with an AOM, and we proceeded to an empirical search of the
magic detuning, monitoring the paramagnetic Faraday rotation
from a polarized sample as we were changing the RF frequency
applied to the AOM.

We temporarily extended the probe pulse duration to have
similar illumination condition as for the far-off-resonant, linear
probe. We pumped the atomic sample, as normal, maximizing
the value of 〈Fz〉 to the total number of atoms, NA.

In this condition, by tuning the AOM frequency, we scanned
the probe frequency and observed the coefficient G1 across the
analytically predicted magic detuning at 461.7 MHz, looking for
the point where the rotation changed sign. In the experiment
the crossing point was found at 468.5 MHz, instead. We explain
the origin of this mismatch with a combination of the energy
shift that the dipole-trap light induces on the ground state and
the Zeeman shift from the guiding field.

We have not saved data of when we performed this mea-
surement. For this reason we repeated in a second moment the
search of the magic detuning, with the difference that we took
the new dataset with the laser normally in use for the far-off-
resonant, linear probe. As explained before, it is locked with
the frequency offset lock, whose precision is worse that the one
achieved by simply a spectroscopy locked laser shifted with an
AOM.

In Fig. 5.4.1 we show the results. Each point is a measured
G1 for the specific detuning coming from a linear regression of
the variable Sy measured on the balanced detector vs. the total
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number of atoms in the trap, measured with quantitative ab-
sorption imaging. The error bars come from the uncertainty in
the fit.
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Figure 5.4.1. Spectrum of the linear susceptibil-
ity. Across the magic detuning the sign of the measured
linear susceptibility changes sign. The black line is a fit
to the data keeping a shift in the detuning as a free pa-
rameter. The red line is the analytic expression without
detuning correction and scaled with the value at large red
detuning (inset). Error bars come from the uncertainty
in the fit.

The results are compared with the theoretical dependance
of G1 on the detuning, and with the absolute value calculated
using a similar measurement but at far off resonant detuning of
−1.2 GHz and −0.6 GHz, as shown in the inset of Fig. 5.4.1.

There is a difference of 13 MHz between the theory to the
data, the difference between the red and black curve in Fig. 5.4.1.
We explain the mismatch as a combination of the light shift
induced by the trap and the error in the precision of the offset-
lock.
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5.5. Shot-noise-limited detection

The photodetector, which measures the light polarization
rotations after the interaction with the atoms, is critical for the
overall sensitivity of the spin detection. We typically need to
know two of its characteristics, which summarize its performance
in revealing quantum properties of light: the photon-to-electron
conversion gain and the electronic noise floor.

We already mentioned that the detector is designed to work
with pulsed light, and usually it works in a balanced configu-
ration: the response of two photodiodes is subtracted and then
converted into a readable electric signal. For calibrating the
conversion gain, we analyze the response of the two photodiodes
separately, instead.

We integrate in time each of the electric pulses resulting
from a train of photon pulses in front of one of the two diode,
for example the one which gives output signals with positive
voltage. For background DC subtraction, we also integrate the
signal corresponding to periods without light pulses in an equal
time bin. The results after being averaged over several pulses
are correlated with the input photon number per pulse, mea-
sured with a power meter and corrected knowing the duty cycle
of the train of pulses. We repeat the same procedure for the
diode giving negative outputs. We take the average of the two
separate measurements as the overall conversion gain for the bal-
anced configuration. We say that for each pulse of light entering
in the polarimeter the photodetector reads out photon imbal-
ance between the two diodes with a typical gain of 1.78 × 1011

Photons/(V·s), a value which for light at 780 nm is equivalent
to a responsivity of 22.1 V/µW.

We also typically measure a difference of 2.3% between the
gains of the two diodes. For an ideal balanced photodetection,
we would like to have exactly the same value. This difference
could be a problem for the nonlinear metrology experiment, be-
cause it makes the electric signal from the detector not only pro-
portional to photon imbalance, i.e., polarization rotation, but
also to the total flux of photons. In the next chapter we will
show how in the experiment we excluded any possible fictitious
nonlinearity coming from the instrumentation.
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For calibrating the noise property we use a different method.
We use the fact that we can produce pulses of light in a shot-
noise-limited polarization state. We use this resource as a ref-
erence. We send pulses with energy ranging from 104 photons
to 108, and we measure the variance in the imbalanced photons
on the polarimeter, var (Sy). From the theory of quantum noise
we expect 4var (Sy) = NP . On a log-log chart we can clearly
distinguish the region where the detector is dominated by elec-
tronic noise, from where the detector is well behaving and the
increasing variance is due simply to the shot-noise of the incom-
ing light.

By calculating the proportionality factor in the region where
the electric signal variance is linear with the photon number we
have an alternative method to calculate the conversion gain,
which finally results consistent with the previous value. By ex-
trapolating the variance data at very low photon number, we
can measure the photon equivalent electronic noise floor. We no-
ticed that this value depends on the pulse length. In Fig. 5.5.1
we present the variance analysis for the case of a 50 ns long
pulse, for which we can say that the detector is shot-noise lim-
ited starting from 4× 105 photons.

In previous test [Koschorreck, 2011], the performance of the
detector was checked with different light pulse-widths, starting
from 250 ns. For the case of 1µs long pulses, corresponding
to the condition of the linear probe, the detector starts to be
shot-noise limited from 3 × 105. Technical noise in the light or
in the detector has a quadratic dependence on NP , or equiva-
lently a slope 2 in the log-log plot: In the region of NP under
investigation, we do not detect any evidence of technical noise.

5.6. Optical pumping for atomic-state initialization

In this last section of the chapter we want to explain some
more concepts about the optical pumping process.

For setting the atoms in a desired initial state, we send laser
light resonant with a particular transition through the cloud
of atoms: the direction of propagation and the polarization of
the light define which states of the hyperfine-split ground and
excited states are connected by a transition and which are not.
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Figure 5.5.1. Noise performance of the photode-
tector. The data show a transition between dominant
electronic noise and dominant shot-noise.

In such a way, atoms in some particular states of the ground level
do not scatter photons, and are thus dark for that particular
light. Atoms that decay because of spontaneous emission into
such states, accumulate there since not anymore capable of being
excited.

We mainly perform optical pumping on the 1→ 1′ transition
in the D2 line. We can send such light along the z−, quantization
axis with circular left polarization, obtaining in such way σ+

transitions. In this way we can initialize the cloud in a state
having macroscopic magnetization 〈Fz〉 = NA.

We can also send pumping light along the y−axis, i.e., trans-
versely with respect to the trap, with linear polarization, specif-
ically vertical, orthogonal to the quantization axis which results
in a coherent superpositions of sigmas transitions. This other
optical pump initializes the atoms in a macroscopic Jx state.

Ideally, the pumping is a cumulative process and giving a
certain time, which depends on the light intensity, all the atoms
are sent into the particular dark state. Unfortunately, during
the pumping process, atoms can decay into the undesired ground
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Figure 5.6.1. Resonant circular-polarized light for
optical pumping. Frequency and polarization of the
pumping light set the dark state.

state level with different energy, because the spontaneous emis-
sion does not distinguish between the two 6.8 GHz separated
manifold. For this reason, efficient optical pumping needs to
be supported by an auxiliary light resonant with the undesired
ground state to recycle the atoms accumulating there: we call
this auxiliary light “optical repump”. It is tuned on the transi-
tion 2 → 2′ and reaches the atoms from the 6 directions of the
MOT beams.

For pumping into Fz macroscopic state we typically use 30
nW of resonant light switched ON for approximately 30µs, cor-
responding to 3.6 millions of photons. We also send optical
repumping light for a total intensity at the center of the trap of
about 100 W/m2, counting 6 mm for the MOT beam waist.

The pumping beam, although being aligned with the focus-
ing telescope on top of the dipole trap beam, has a focus spot
wider (100µm waist) than the cloud dimensions. This is for
having a better uniform distribution of the pumping light over
the size of the cloud.

In the lab, we empirically see that such settings maximize
the response of the cloud, e.g., the far-off resonant paramag-
netic Faraday rotation. Anyway we performed some simulations
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for better supporting considerations about optical pumping ef-
ficiency and uniformity over the cloud.

5.6.1. Simulation for optical pumping. We use tech-
niques presented in Chapter 4 to simulate the optical pumping
dynamics of a single atom illuminated by laser light with de-
fined frequency, polarization and intensity. In addition, we can
account for the case of having two lasers at different frequencies,
for example one tuned close to the transitions from the ground
level F = 1 and the other laser, 6.8 GHz away, tuned close to
the transitions from F = 2. This can be achieved performing
two successive RWAs on the dipole Hamiltonian, with the only
restriction that the dynamics of interest must be much slower
that the inverse of the frequency separation between the two
lasers.
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Figure 5.6.2. Pumping dynamics as a function of
optical repump intensity. We plot the population of
the dark state as well as the population in the F = 2 level
for different intensity of the optical repump. There is an
optimal value for the optical repump intensity.

We can simulate for example the dynamics of the optical
pumping process with circular plus polarized light starting from
an initial mixed state of the three magnetic sublevels in F = 1.
The pumping light is chosen to be resonant with the 1→ 1′. In
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this way the level with F = 1 and mF = 1 is a dark state. We
include also optical repumping light resonant with the 2 → 2′

transitions. In the simulation, we define the polarization of the
repumping light to be an equal superposition of σ plus/minus
and π polarization: this is an approximation of the experimental
situation where the light is coming from the 6 direction of the
MOT beams.

We set the intensity of the pumping light similarly to typical
experimental conditions. In fig. 5.6.2 we show the results of such
simulations. The population of the dark state starts from 1/3
and grows towards unity. At the same time also the probabil-
ity of populating F = 2 increases. We found that 8 W/m2 of
repump light is the optimal intensity for maximizing the pump-
ing efficiency into the dark state. The simulations for higher
or lower intensity of repumper show still enough probability of
accumulating atoms into F = 2.

For the optimal repumping intensity the dynamics mimics a
trend with a combination of two exponential decays, as shown
in Fig 5.6.3 . For example the population of the bright state,
P (b)(t), can be approximated with the following analytical ex-
pression

(5.6.1) P (b)(t) =

(
2

3
−K0

)
e
− t
τ1 +K0e

− t
τ2

with K = 0.13, τ1 = 1.8µs, τ2 = 5µs. As shown in Fig. 5.6.3,
lowering the pumping intensity, Ipump, the consequences are an
overall slower dynamics:

Ipump τ1

I0 1.8µs
I0/2 4µs
I0/5 12µs
I0/10 24µs

while the optical repump mechanisms works better, as made ev-
ident by the less number of atoms accumulating at any moment
in F = 2 and by the fact that the second exponential decay is
not appreciable at all.

5.6.2. Pumping an optically thick sample. As men-
tioned before, for pumping the sample into a macroscopically Fz
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Figure 5.6.3. Competitive effects of optical pump-
ing and repumping light on the population in F =
2. Evolution of the population for the dark state, the two
bright states, and the whole set of F = 2 states. In the
insets, semi-log plots to show decaying time-scale of the
bright state population. (A): the case of Ipump = I0 = 1.9
W/m2 with τ1 = 1.8 µs and τ3 = 5 µs. (B): the case
Ipump = I0/10 with only appreciable τ1 = 24 µs.

polarized state we send circular polarized resonant light along
the quantization axis, the direction that corresponds to the lon-
gitudinal size and the high optical depth of the cloud. This
means that the light is strongly absorbed by the initial part
of the cloud, which shadows the following atoms until enough
atoms populate the dark, transparent state.

The pumping process in the dipole trap happens thus slower
than in the single-atom simulations. Trying to model and quan-
tify what happens, we simulated the sample split in several
slices. The first slice is illuminated with the total, constant
intensity of the pumping light, I1(t) = I0, one of the free pa-
rameter in the model. The population of the slice evolves toward
the dark, transparent state. As a consequence the transmission
of the light towards the next slice also increases, and so on the
process is iterated. We note that the results converge quite
quickly with the number of slices, so we finally work with 100
slices.

A second free parameter in this toy-model is the total optical
depth of the sample, d0. We consider an optical depth for each
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slice, di(t), as a fraction of the total optical depth and moreover
depending on the corresponding population of the bright states,
P

(b)
i (t). Knowing di(t) we can easy calculate the intensity illu-

mination on the next slice, Ii+1(t).

di(t) =
d0

N
P

(b)
i (t)(5.6.2)

Ii+1(t) = Ii(t)exp(−di(t))(5.6.3)

To save calculation resources, instead of solving for each itera-
tion the master equation with the time-dependent pumping light
intensity, we use the analytic expression of 5.6.1, adapting the
parameters in function of the time-dependent intensity,

τi(t) = τ1
I0

Ii(t)
(5.6.4)

Ki(t) = K0
Ii(t)

I(0)
(5.6.5)

P
(b)
i (t) =

(
2

3
−Ki(t)

)
e
−

∫ t
0

dζ
τi(ζ) +Ki(t)e

t
τ2(5.6.6)

Figure 5.6.4. The shadowing effect. The dynamics
of the population for the whole ensemble is simulated with
different total optical depths, d0= 2, 5, 10, 20, 30 and 50.
In the inset, for the case of d0=50, the dynamics of every
20 successive slices.
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As shown in Fig. 5.6.4, the speed of the process is expected to
be inversely proportional to the total optical depth. We see that
the effects of shadowing are simply compensated by a slightly
longer pump pulse, which is not a big problem for the range of
optical depth, between 30 and 50, of our cloud.



CHAPTER 6

Testing the nonlinear probe in an
experiment

With the experimental requirements satisfied and a solid
theoretical framework to interpret correctly the results, we per-
formed an experiment to directly use the nonlinear interaction
established by atoms between probing photons for sensing an
atomic quantity, and show that the sensitivity scales better than
the Heisenberg limit when we increase the number of probing
photons.

In this chapter we will describe the details of the experiment.
First we will explain how the hard core of the experiment con-
sists in a calibration procedure of the nonlinear probe making use
of the linear one. Then, we will show how we fitted the numerical
model presented in Chapter 4 to the experimental results. We
will explain also how we excluded possible other sources of non-
linearity, which could have mimicked a better sensitivity scaling.
Finally, we will analyze the possibility of judging the utility of
the new nonlinear technique in terms of absolute sensitivity, as
well as comment about comparing different probing techniques.

6.1. Calibration by sensing the same quantity

Our goal is to use a new metrological technique for measur-
ing via paramagnetic Faraday rotation the quantity Fz of the
atomic sample. By using the correct magic detuning, we expect
that the polarization rotation of the nonlinear probe, φNL, will
be proportional to the total number of photons in the nonlinear
probing pulse, NNL, and of course reproduce the quantity 〈Fz〉,

(6.1.1) φNL = B〈Fz〉
NNL

2
,

115
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In chapter 4 we discussed several factors which are expected to
determine B. Apart from the detuning, there is the geometry
as well the temporal dynamics, both aspects that we know how
to include via the numerical model. Here we explain how we
tested that model and independently determined B. This we do
by comparing to a trusted measurement, very much in the same
way as we calibrate a new instrument by comparison to a older
one.

As we stressed several times, a key point of our apparatus
is that we can achieve very simply different regimes of probing.
We know that the linear probing is a very well established tech-
nique for returning the value 〈Fz〉. In previous work we have
demonstrated that the linear probe is sensitive enough to dis-
tinguish quantum fluctuation in the atomic angular momentum
variables [Koschorreck et al., 2010b]. Moreover it provides a
quantum non demolition measurement of Fz, i.e., after a linear
probe, the quantity is ready to be measured once again, unmod-
ified.

Consequently, we can imagine to interrogate successively the
same atomic sample with the linear and the nonlinear probes.
We thus get a linear Faraday rotation, φL, and use it as indicat-
ing the true value of 〈Fz〉 in correlation with the correspondent
φNL, which we want to calibrate.

The experiment has the following sequence:

#1 Trap loading. We use 2 seconds to collect up to 7.5×105

atoms into the dipole trap.
#2 Optical pumping. We switch ON a guiding magnetic

field along z and send circular polarized light, resonant
to 1→ 1′ supported by optical repump light, for setting
〈Fz〉 = NA.

#3 Linear probing. Fz is precisely measured during 400
µs. We send a train of 1 µs pulses separated by 10
µs, each containing 3 × 106 photons at the detuning
∆L = +1.5 GHz. The signals are summed and can be
considered a single, modulated pulse. We get the rota-
tion φL = A〈Fz〉/2. The quantity A is independently
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calibrated in a previous moment using quantitative ab-
sorption imaging. We have A(∆L) = 3.3(1)× 10−8 rad
per atom.

#4 Nonlinear probing. A single, short and intense pulse
containing NNL photons, with the shape and the de-
tuning as described in chapter 5 from which we get the
rotation φNL.

#5 A second linear probing. We want to know the level
of damage, to the atomic magnetization due to the in-
tense nonlinear probe. We thus repeat a linear inter-
rogation from which we get the rotation φL′ , having
η ≡ 1 − φL′/φL, which is a reasonable experimental
way to estimate the damage connected to the loss of
fidelity between final and initial state.

#6 Thermalization. Any residual magnetization of the sam-
ple is cancelled by a thermalization procedure, shuffling
the atoms with resonant light back and forth between
F = 1 and F = 2, in a condition of no guiding field.
This procedure also causes few atoms to escape from
the trap.

#7 Ranging NA. The sequence is repeated 20 times from
step #2, allowing to collect calibration data in a range
of varying number of atoms after each loading of the
trap, because of the losses in step #6.

We want to show nonlinear behavior as a function of the
total photon number in the nonlinear probe pulse and for this
reason in the step #4 we change the value of NNL in the range
105 to 108. In the same conditions, the whole experiment is
repeated 100 times for gathering statistics.

Both the responses from the linear and the nonlinear probe
are expected to be proportional to the number of atoms. We
group the data according to the photons used in the nonlinear
probe pulse, NNL, and for each value we plot the results of the
linear vs. the nonlinear probe in a kind of correlation plot. In
Fig. 6.1.2 we show these correlation plots for some values ofNNL.
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Figure 6.1.1. Schematic of the experiment. a) The
light pulses interacting with the atoms: along the longi-
tudinal trap axis and sequentially, the optical pumping,
the first linear probe, the nonlinear probe and the second
linear probe. Transversally the absorption imaging light.
b) The detuning of all the light beams which interact with
the atoms.

In each plot, we can identify three classes of data: The green
points correspond to the data without atoms where both the lin-
ear and the nonlinear rotations are zero on average. Comparing
the spreading of this dataset in the two measurement, one can
extract information about the absolute level of noise and con-
sequently of sensitivity. As we expect, the linear probe is more
precise, and so it is a good reference for calibrating the unknown
nonlinear probe.

The red points are data collected ranging the number of
atoms from 1.5× 105 to 3.5× 105. In this range the proportion-
ality of both estimation techniques with respect to the atoms
is well established and these data are fitted to get the calibra-
tion factor at any specific value of NNL. We can also estimate
the underlying sample standard deviation, which we report in
the plots as the grey region and we will consider later on for
calculating the probe sensitivity.

The blue points are data corresponding to the largest num-
ber of trapped atoms. In these conditions, and in particular for
the highest values of NNL, the resulting rotation angles from
the nonlinear probe are no longer proportional to the number of
atoms. What is happening here is that the combination of large
polarization rotation due to the many atoms, and high photon
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Figure 6.1.2. Calibration plots. φNL vs. φL for var-
ious NNL, respectively from top-left: 0.69, 0.94, 2.2, 5.0,
7.9, 11, 15, 27, 37 millions. Green points are for NA = 0.
Red points are for NA between 1.5 and 3.5 × 105. Blue
points are for NA = 7 × 105. The gray areas show one
standard deviation in the residuals of the red points from
their linear regression (black line).

number, causes a signal too strong on the balanced detector,
which simply saturates. These data are excluded from the fit.

As mentioned, we fit the data in each correlation plot with a
line and from the resulting slopes we get the desired calibration.
In particular we analyze the dependence of these calibration
factors on NNL.

We show such dependance in Fig. 6.1.3, where each point
is the slope of the corresponding correlation plot. The error
bars are the uncertainties in the fitted slopes. The observed
dependance on NNL is well fit by a simple model of the nonlinear
response including saturation:

(6.1.2)
dφNL

dφL
=
B(∆0)NNL

A(∆L)

1

1 +NNL/N
(sat)
NL

,
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Figure 6.1.3. Calibration summary. a) Results of
the fit for each calibration plot: slopes and their uncer-
tainty. The red line is the analytic expression of eq. 6.1.2.
b)-c) Two particular calibration plots, resulting in the in-
dicated points.

with a saturation parameter N (sat)
NL = 6.0(8)× 107 and the non-

linear coupling strength B(∆0) = 3.8(2) × 10−16 rad per atom
per photon.

6.2. Calculating the sensitivity scaling

From the analysis on the calibration of the nonlinear probe
we can extract information about its sensitivity and how this
scales with NNL. We can easily understand that there are two
main ingredients which contribute to the scaling: first we clearly
see how the standard deviation ∆φNL, the grey region below
the scattered red points in the calibration plots (see insets of
Fig. 6.1.3), diminishes with the increasing NNL. This is the
expected square root law of the shot noise, with a small con-
tribution from electronic noise of the detector, ∆E, which we
measure independently as explained in chapter 5 and which we
can subtract. We have:

(6.2.1) δφNL =
√

(∆φNL)2 − (∆E)2 ∼ (NNL)−1/2.
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Second, the fact itself that the calibration vs. φL, i.e., the
true value of 〈Fz〉, gets steeper with the increasing NNL, means
a boost in the sensitivity which is genuinely an effect from the
nonlinearity:
(6.2.2)

φNL [NNL, 〈Fz〉] =
dφNL

dφL
A(∆L)〈Fz〉 =

B(∆0)NNL

1 +NNL/N
(sat)
NL

〈Fz〉.

The sensitivity in the estimated variable is thus:

(6.2.3) δF (NL)
z = 〈Fz〉

δφNL

φNL
∼ 1

N
3/2
NL

1 +NNL/N
(sat)
NL

B(∆0)

In Fig. 6.2.1 we report the fractional sensitivity δF (NL)
z /〈Fz〉

for each value of NNL in the experiment. We assume the whole
polarized ensemble, 〈Fz〉 = 7 × 105. For each point the error,
propagated from the errors in the calibration plots, is not visible
because it is smaller than the marker.

On the log-log plot we appreciate a scaling of −3/2 to within
experimental uncertainties in the range NNL = 106 to NNL =
107, and super-Heisenberg scaling, i.e., steeper than −1, over
two orders of magnitude NNL = 5× 105 to NNL = 5× 107.

For photon numbers above NNL & 2× 107, the saturation of
the nonlinear response degrades the optimum scaling. This goes
together with the behavior of the damage to the atomic magne-
tization, η, measured making use of the third linear probe, and
also shown in Fig. 6.2.1. We can clearly correlate substantial de-
viation from the optimum sensitivity scaling with damage above
10%.

Regarding the damage, the minimum non-zero damage found
even for small NNL is understandable as a combination of stray
light and magnetic fields disturbing the atoms during the 20 ms
period between the two linear measurements, time technically
needed in the experiment to switch the position of a shutter.

6.3. Comparison to the theoretical model

Using the theoretical model of the nonlinear light-atom in-
teraction, which we have presented in chapter 4, we can repro-
duce the experiment, in particular the scaling of the sensitivity
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Figure 6.2.1. Sensitivity scaling. Blue points are the
calculated fractional sensitivity. Their error bars, from
the uncertainties in the calibration fits, are smaller than
the marker and so are not visible. Orange curves are the
model for detuning ∆0 ± 200 kHz, and experimentally
measured geometrical features of the interface. Green
points are the damage from the comparison of the lin-
ear probes before and after the nonlinear pulse. We plot
for visual comparison the power law corresponding to the
shot-noise and Heisenberg scaling.

and how it correlates with the damage to the atomic state. The
orange curves in Fig. 6.2.1 are fits of such theoretical model to
the experimental point.

Let us recall the end of chapter 4, where we combined the
results from homogeneous simulations with the spatial geomet-
rical properties of the interface (see overlap integral in eq. 4.7.3).
From that expression of the contribution of the whole cloud to
〈Sy〉, we can calculate the Faraday rotation and consequently
the sensitivity:

(6.3.1) δF (mod)
z = 〈Fz〉δφNL

(∫
d3xn(x) Θ (NNL,M(x))

NNL

)−1

.
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In particular we consider two runs of simulations of the
single-atom dynamics, 200 kHz above and below the magic de-
tuning, to account for the uncertainty in the probe laser detun-
ing. Its effects are mostly evident at low photon number, where
the nonlinear response is not dominant and any residual linear
effect can play a role.

We use real parameters from the experiment, i.e., size of the
cloud and waist of the probe mode, for calculating the overlap
integral. These parameters are generally important in the cor-
rect location of the theoretical curve with respect to the photon
number axis, and also in profiling the bending at high photon
number. We only left as a free parameter the total number of
atom, which basically means the position of the curve with re-
spect to the vertical axis.

6.4. Excluding other sources of nonlinearity

In nonlinear experiments there is a risk that other unde-
sired effects mimic the sought-after behavior. We put effort into
checking that the signal we measured, and its dependence on
the incoming number of photons, were indeed coming from the
expected atomic dynamics.

Typical sources of such unwanted nonlinearities are passive
optical elements in the path or photodetectors. Our experiment
makes it easy to exclude such kind of systematic errors. As
already explained, we noticed problems with a saturating pho-
todetector in particular conditions of too many atoms under
probing with high number of photons. We excluded those data
from the analysis.

In addition, we performed an experiment with no atoms
present at all. We mimic the Faraday rotation signal by us-
ing a wave-plate, in particular intentionally rotating the one in
the normally balanced polarimeter. Everything else was exactly
as in the experiment with atoms.

We choose the new angle of the wave-plate such that for the
highest value of NNL the signal on the detector was comparable
to the case of the experimental data from the maximum atom
number indeed used for the analysis, 3.5×105. As mentioned in
the discussion about the blue points in the correlation plots, we
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observed problems of electronic saturation when using instead
the maximum achievable trapped atoms, 7× 105.
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Figure 6.4.1. Verification of the apparatus linear-
ity. Sensitivity results obtained as in Fig. 6.2.1, but with
a waveplate in place of the atomic Faraday rotation. As
expected the sensitivity shows SQL scaling, providing a
direct verification of the linearity of the equipment and
method of analysis. Error bars plotted are the standard
errors of the measured rotation signal.

The resulting measured rotation without atoms shows no de-
pendence on NNL, and gives shot-noise scaling of the sensitivity,
plotted in Fig. 6.4.1 over the same range of NNL used in the
experiment.

6.5. Sensitivity comparison, a scenario-dependent issue

Although the remarkable point of our research resides in hav-
ing demonstrated the improved scaling of the sensitivity thanks
to nonlinearities, it is understandable to ask a direct compari-
son in absolute terms of sensitivity between the two metrological
approaches, the linear and the nonlinear, we use in our system.

The experimental results illustrate the subtle relationship
between scaling and sensitivity in a nonlinear system. For an
ideal nonlinear measurement, the improved scaling would guar-
antee better absolute sensitivity for sufficiently large number of
probes.
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Conversely, in a real system higher order dynamics, such as
the optical pumping effects we experimented in our apparatus,
are a strong limitation because they constrain to work below a
certain level of probe particle number. So how can we judge
the performances of a nonlinear metrological approach in an
absolute way?

Quantum metrology problems are fundamentally resource-
optimization problems: given a finite resource, e.g. N probes,
how can we best use them to achieve measurement sensitivity.
When comparing linear vs. nonlinear metrology, the measure-
ment systems are necessarily different, and it is not obvious what
is the relevant resource. In contrast, entanglement can be used
or not used in one-and-the-same measurement system, making
that comparison very simple.

Taking our experiment as an example, the linear and non-
linear probe necessarily have different detuning, leading to a
difference in strength of interaction with the atoms, affecting
both the desired effect of optical rotation, and undesired effects
of scattering and decoherence of the atomic state. In this con-
text, it is not clear what is the limited resource to consider, if
the photon number or a level of damage of the atomic state or
even something else.

In fact, nonlinear measurements may be possible in regimes
that are inaccessible to linear measurement. In optics, a lin-
ear measurement implies a limited intensity and (for a given
geometry) a limited flux of photons. Increasing N then means
increasing the duration of the measurement. High-speed linear
measurements, or linear measurements limited by some decoher-
ence time, would have limited N and thus limited sensitivity. A
nonlinear measurement would not be limited in the same way.
In an atomic context, very similar considerations would concern
atomic density and spatial resolution.

When we look at our experiment in a scenario when the time
is a limiting factor, the relevant figure of merit is a “sensitivity-
per-unit-time”, δFzτ1/2, and the measurement duration τ is τL =
40 µs or τNL = 54 ns for the linear or nonlinear measurement,
respectively. Combining this with the results reported above,
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we find

(6.5.1)
δF (L)

z τ
1/2
L = 〈Fz〉

δφ

φL
τ

1/2
L =

2

A(∆L)

N
−1/2
L

2
τ

1/2
L =

= 1.9× 105 Hz−1/2N
−1/2
L

and
(6.5.2)

δF (NL)
z τ

1/2
NL = 〈Fz〉

δφ

φNL
τ

1/2
NL =

2

B(∆0)NNL

N
−1/2
NL

2
τ

1/2
NL =

= 6.1× 1011 Hz−1/2N
−3/2
NL

Given an equal number of photons NL = NNL = N , the nonlin-
ear technique surpasses the linear at N = 3.2× 106, well within
the super-Heisenberg portion of the curve in Fig. 6.2.1.

Conversely, in a scenario with only limitation to the num-
ber of probes, the relevant figure of merit is a “sensitivity-per-
measurement”. Already we can expect that in our experiment
this will always be better in the linear measurement, because it
is required for calibration of the nonlinear one. From the data
in the calibration plots, we can see this fact looking at the green
points, which are the measurements without atoms: the hori-
zontal spread, i.e., the uncertainty in the linear measurement, is
always smaller than the vertical spread.

Specifically, when time is not a limited resource, the sensi-
tivity per measurement is δF (L)

z = 3× 107N
−1/2
L , and δF (NL)

z =

2.6 × 1015N
−3/2
NL . Extrapolating, the ideal crossover point of

δFz = 3.2×103 spins, where the nonlinear technique would sur-
pass the linear at NNL = 8.7 × 107, is never actually reached,
due to the higher-order nonlinearities.



Conclusions and perspectives

The work presented in this dissertation is a study, both the-
oretical and experimental, about a specific nonlinear dynamics
in a polarization-based light-atom interface and its implications
and uses for quantum metrology.

From a theoretical perspective, we focussed our attention
on the perturbative approach for calculating effective interac-
tion Hamiltonians starting from the collective operators of spin
ensembles and pulses of polarized photons, interfaced one with
the other. This gives analytic expressions for the fourth-order
(in field strength) terms in the perturbation series, the first ex-
tension of the collective operators model [Geremia et al., 2006;
Kupriyanov et al., 2005; Deutsch and Jessen, 2010] to nonlinear
optical processes. In this way it is now possible to calculate for
example the detuning dependance of phenomena such as satu-
ration, fast-electronic nonlinearities or four-wave mixing.

The nonlinear terms we developed for describing such photon-
photon interactions mediated by the atoms, are similar in form
to nonlinear Hamiltonians proposed by Boixo and coworkers
[Boixo et al., 2007, 2008a] as a possibly useful resource in quan-
tum metrology. We adapted their argumentation for our system,
in particular we looked at the role played by the quantum noise,
concluding that also in our system, at least analytically, nonlin-
earity would lead to an improved scaling of the sensitivity with
the number of probing photons.

Moreover we studied the nonlinear dynamics from a micro-
scopic point of view, i.e., we simulated the single-atom dynamics
under the effect of the probing light by numerically solving the
system of Maxwell-Bloch equations. In this way we were able to

127
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include in the analysis other effects, such as spontaneous emis-
sion and optical pumping, not accounted by the Hamiltonian.
We also developed a method for calculating the macroscopic ef-
fects of a real interface, including geometrical issues and atom
density or light intensity inhomogeneities, starting from the sim-
ulations for the single-atom.

Our apparatus in the lab has already demonstrated, in other
experiments about spin squeezing [Koschorreck et al., 2010a;
Sewell et al., 2012], the high quality of the interface between
the light and the atomic system. We adapted it in order to be
able to work with shorter and more intense probing pulses. We
find the way to achieve detunings where to null linear contribu-
tions and perform pure nonlinear interrogations of the atomic
variables. We were able to calibrate the nonlinear probing tech-
nique against the trusted linear one on the same physical quan-
tity. We did experiments to exclude other possible sources of
nonlinearities.

We found what theoretically predicted that the nonlineari-
ties under our study were able to achieve a scaling of the sen-
sitivity better than the scaling of the Heisenberg limit for one
order of magnitude in the photon number, and better than the
scaling of the shot-noise limit within two orders of magnitude.
We also found that when the probing duration was taken into
account, there are situations where the sensitivity-per-time of
the nonlinear probe outperforms the linear one. On the other
hand, the sensitivity-per-measurement of the nonlinear probe,
as well as the overall advantage of having a better scaling, was
limited by damaging processes on the atomic state, which were
happening at photon number higher than 20 millions per pulse.

In our opinion there is still room for more investigation about
the nonlinear behavior of polarization-based light-atom quan-
tum interfaces. In the future, the same experimental apparatus
could also be used to study other nonlinearities of the optical
probing. For example dynamics driven by the tensorial terms in
the Hamiltonian should also result in a nonlinear dependance of
the probe response on the photon number, because of the the
mutual action of the atom to the light and viceversa. This could
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led to improved sensitivity scaling, in a similar way as described
in this dissertation.

The analytic expression, which we have developed for the
interaction, includes terms of self-rotation type. Future studies
could be focussed on using these kind of effects. These terms are
good candidates to be useful to measure selectively quantities
related with the mF = 0, magnetic-insensitive sublevel in the
ground state, once the correct probing condition in terms of de-
tuning will be found, together possibly with the right combina-
tion of alternating orthogonal polarizations and post-processing.

Moreover, with the idea of looking for better probe perfor-
mances in a time-limited regime, it would be interesting to study
even faster pulsed interactions, e.g., below the nanosecond scale.

Another remarkable thing to mention is that this research
is part of a debate about the notion of Heisenberg limit, and
in general about the existence and the meaning of a possible
ultimate limit. During these years several theoretical groups
somehow revised and more deeply considered these concepts.

There are those who think that the ambiguity about having
a better scaling of the sensitivity with respect to the generally-
considered-ultimate Heisenberg limit is solved if the resources
used in the estimation are counted not as simply as the probe
number [Zwierz et al., 2010, 2012]. There are also those who,
making consideration about entropy, say that super-Heisenberg
sensitivities can only work locally, with respect to the phase to
estimate, while on the global range, i.e., for a previously un-
known random phase, only Heisenberg limited sensitivity will
remain possible [Hall et al., 2012; Hall andWiseman, 2012; Berry
et al., 2012].

In both cases, it appears that a reconsideration of the term
“Heisenberg limit” is underway within the scientific community,
and a move away from the 2007 definition. Although we never
took active part in the theoretical debate, humbly we are happy
to think that our experiment pushed this change of point of view.

Finally, to conclude with some humor, I can not avoid to
mention here the thread “Heisenberg Limit Broken”, posted in
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march 2011 on a forum about philosophical questions,1 which I
found while searching for comments on our experiment in the
web. The entry reported below, signed by the anonymous user
Uno, does not need further comments. It says “Trust me, please
- if someone really disproves Heisenberg’s Principle, this would
be a theoretician with a pen and paper, not just a group of
ambitious majos bombarding the "atoms" with photons from a
Chinese laser pointer. Spain does not have any serious research
centre, their scientists are mostly involved with studying olive
oil and wine production.”

1http://forums.philosophyforums.com/threads/heisenberg-limit-
broken-46558.html
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