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Abstract

Constructed Wetlands (Cws) are a wastewater treatment technology that benefits
from the inherent water-purification potential of natural wetlands and optimizes
their performance to comply with regulations for treated discharges. These systems
have evolved to become a real and equally performing alternative to conventional
wastewater treatment technologies for small communities (up to 2000PE) with sig-
nificantly lower energy and maintenance costs. Despite their great potential, CWs
still lack reliability, which holds back their full deployment in the territory. This fact
results from the lack of understanding on their internal functioning and also because
they are prone to clogging.

The enormous diversity of CWs typologies and operation strategies, and the fact
that they operate at the mercy of the environmental conditions, makes each CW
unique on its kind, and experimental studies are usually only representative of the
studied system. This fact makes mathematical models an essential tool to evaluate
the relative impact of each parameter on the internal functioning of CWs. Several
mathematical models for CWs have proliferated in the last dozen years to simulate
the behaviour of these systems and to provide supporting tools for their design and
operation as well as more insight into the treatment processes. However, until the
begining of this research, and compared to models utilized in similar disciplines, CWs
models development was still in an embrionary stage.

Accordingly, the main objectives of the current work were, on the one hand,
to develop a CWs mathematical model able to describe the most common processes
taking place within these systems. And, on the other hand, to use this model to shed
some light on the internal functioning of these systems in the long-term.



The model, named BIO_PORE, was built in COMSOL Multiphysics™ and in-
cludes equations to simulate subsurface flow and pollutants transport in porous me-
dia. It also implements the biokinetic model Constructed Wetlands Model number 1
(CWM1) to describe the fate of organic matter, nitrogen and sulphur and the growth
of the most common functional bacterial groups found within these systems. The
model was calibrated with experimental data for an entire year of operation of a pilot
system.

Two empirical parameters (Mcqp and Mpipmas) Were used to improve the de-
scription of bacterial growth obtained with the original formulation of CWMI1 and
to include the effects of solids accumulation on bacterial communities. The effect of
these two parameters was evaluated by means of a local sensitivity analysis. The
model was later used to unveil the dynamics of bacterial communities within CWs.
In addition, a theory was derived from simulation results, which aimed at describing
the most basic functioning patterns of horizontal subsuface low CWs based on the
interaction between bacterial communities and accumulated solids. At the end of
the document a mathematical formulation is presented to describe bioclogging in
CWs and a numerical experiment is carried out to showcase its impact on simulation
results.

The main outcome of the current work was the BIO_.PORE model. This model
was able to reproduce effluent pollutant concentrations measured during an entire
year of operation of the pilot system. Empirical parameters M., and Myio max
proved essential to prevent unlimited bacterial growth predicted by the original
Monod equations of CWM1 near the inlet section of CWs. These two parame-
ters were in great part responsible for the good fitting with experimental data. This
was confirmed with the results from the sensitivity analysis, which helped demon-
strate that they have a major impact on the model predictions for effluent COD
and ammonia and ammonium nitrogen. The theory derived from simulation results,
named The Cartridge Theory, indicated that bacterial communities are not static,
but move towards the outlet with time, following the progressive accumulation of
inert solids from inlet to outlet. This result may prove that CWs have a limited
life-span, corresponding to the time after which bacterial communities are pushed as
much towards the outlet that their total biomass is not sufficient to provide efluents
with acceptable quality. The inclusion of bioclogging effects on the hydrodynamics
of the granular media was seen to be a requisite in order to properly reproduce the
bacterial distribution, fluid flow and pollutants transport within CWs.

Finally, results of this work also showed that more work on the BIO_.PORE
model is required and more experimental data is necessary to calibrate its results.

Keywords: Constructed Wetlands, modelling, finite elements, porous media,
flow, reactive transport, biokinetic reactions, bacterial growth, clogging.



Resum

Els aiguamolls construits (AC) sén sistemes de tractament d’aigiies residuals que
aprofiten la capacitat de purificacié d’aigua dels aiguamolls naturals i n’optimitzen el
rendiment per tal de complir regulacions aplicables als abocaments tractats. Aquests
sistemes han evolucionat per esdevenir una alternativa real i d’eficiéncia equiparable a
les tecnologies de tractament convencionals per a petites comunitats (fins a 2000PE),
amb costos energetics i de manteniment significativament menors. Malgrat el seu
gran potencial, els AC tenen encara una baixa fiabilitat, deguda entre altres coses,
a la manca de coneixement sobre el seu funcionament intern i al fenomen de la
colmatacid, que en redueix considerablement la vida til.

L’enorme diversitat de tipologies i estrategies d’operacié dels AC, i el fet que
operen a merce de les condicions ambientals, fa que cada aiguamoll sigui tinic en el
seu genere. En conseqiiéncia, en forga ocasions, els resultats d’estudis experimentals
en AC no sén extrapolables. Aquest fet converteix els models numerics en una eina
clau per estudiar el funcionament intern dels aiguamolls.

Aixi, en la darrera decada diversos models han proliferat com a eines de suport
per al disseny i operacié dels AC, aixi com per comprendre millor els processos
que s’hi donen. No obstant, fins a I'inici daquesta investigacio, el desenvolupament
de models d’AC encara es trobava en una etapa embrionaria. D’acord amb aixo,
els principals objectius del present treball han estat, d’'una banda, desenvolupar un
model matematic capag¢ de descriure els principals processos que tenen lloc dins els
AC idelaltra, aplicar el model per millorar el coneixement sobre el seu funcionament
intern a llarg termini.

En aquest treball s’ha desenvolupat un model d’AC en COMSOL Multiphysics™
que s’ha anomenat BIO_PORE. Inclou equacions per simular flux subterrani i trans-
port de contaminants en medis porosos. També implementa el model biocinetic Con-



structed Wetlands Model numero 1 (CWM1) per descriure I’eliminacié de materia
organica, nitrogen i sofre aixi com el creixement dels grups bacterians més habituals
en AC. A més, BIO_PORE inclou dos parametres empirics (Mcap 1 Mpiomaz) que
permeten millorar la descripcié del creixement bacteria obtinguda amb la formulacié
original del CWM1.

El model es va calibrar amb dades experimentals d’'un any de funcionament
d’un sistema pilot i ’efecte dels dos parametres introduits es va avaluar mitjancant un
analisi de sensibilitat. Posteriorment el model va ser utilitzat per simular la dinamica
de les comunitats bacterianes dins els AC. Al final del document es presenta una
formulacié matematica per descriure la colmatacié d’origen biologic en medi pords i
es duu a terme un experiment numeric per demostrar I'impacte d’aquest fenomen en
la dinamica dels AC.

El principal resultat d’aquest treball és el propi model BIO_PORE. Aquest model
va permetre reproduir les concentracions efluents de contaminants mesurats durant
tot un any de funcionament del sistema pilot. Els parametres Mcqp i Mpio maa van
demostrar ser essencials per prevenir el creixement bacteria il.limitat predits per
les equacions originals del CWMI1. A la vegada, aquests dos parametres van ser
en gran mesura responsables del bon ajust dels efluents simulats amb els mesurats
experimentalment, fet que es va confirmar amb els resultats de 'analisi de sensibilitat
posterior. Els resultats obtinguts amb el model es van utilitzar per construir un marc
teoric conceptual, que s’ha anomenat the Cartridge Theory, i que descriu els patrons
més basics de funcionament dels AC de flux subsuperficial horitzontal. La teoria
indica que les comunitats bacterianes no sén estatiques, sind que es desplacen cap a
la secci6 de sortida amb el temps, seguint 'acumulacié progressiva de solids inerts
en la mateixa direccié. Segons aquest resultat els AC tenen una vida limitada, que
correspon al temps després del qual les comunitats bacterianes es concentren tan
aprop de la seccié de sortida que la seva biomassa total no és capag de proporcionar
efluents de qualitat acceptable.

Per altra banda, la inclusié dels efectes de la colmatacié biologica sobre la
hidrodinamica del medi granular va demostrar ser un requisit indispensable per poder
reproduir correctament la distribucié de bacteris i el flux i transport de contaminants
dins els AC.

Finalment, de resultes d’aquest treball també es fa evident que és necessari
concentrar més esforcos en el desenvolupament del model BIO_PORE i que calen
més dades experimentals per tal de calibrar-ne els resultats.

Paraules clau: Aiguamolls construits , modelitzacid, elements finits, medi pords,
flux subterrani, transport reactiu, reaccions biocinetiques, creixement bacteria, col-
matacio.
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CHAPTER 1

Introduction

1.1 Global water context

Water is indispensable for all forms of life on Earth. According to the World Health
Organization (WHO) a single human being requires between 50 and 100 litres of
water to ensure that its most basic needs are met. This fact was officially recog-
nised by the United Nations General Assembly on July 28" 2010, which declared
the human right to water and sanitation through Resolution 64/292 (UN-OHCH-
UNHabitat-WHO, 2010). This resolution acknowledges the importance of equitable
access to safe and clean drinking water and sanitation as an integral component of
the realization of all human rights.

Moreover, among The Millennium Development Goals (MDG), established in
year 2000 following the Millennium Summit of the United Nations, goal number
seven was dedicated to Ensure environmental sustainability. Section three of goal
number seven was dedicated to Halve, by 2015, the proportion of the population
without sustainable access to safe drinking water and basic sanitation.

Although this goal was achieved 5 years before schedule, there are still lots of
challenges ahead regarding sanitation and water accessibility and quality. In fact,
at current time approximately 884 million people still lack access to safe drinking
water and more than 2.6 billion do not have access to basic sanitation. It is also
estimated that approximately 1.5 million children under 5 years of age die each
year as a result of water and sanitation-related diseases (UN-OHCH-UNHabitat-
WHO, 2010) and according to WHO, 88% of the diarrhoeal deaths are due to unsafe
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Chapter 1. Introduction

water, inappropriate sanitation and lack of hygiene. In fact, an estimated 1 billion
people (15% of the world population) still practice open defecation. This is of special
concern, since just a small number of people practicing open defecation can threaten
the quality of water resources, which will in turn infringe the right to water and the
right to health (Alburquerque, 2013). Moreover the majority (71%) of those without
sanitation live in rural areas and 90% of all open defecation takes place in rural
areas.

Adding to all that, water is a limited resource and, most importantly, it is badly
distributed geographically. This fact combined with the ever increasing population
living on Earth is expected to be the cause of many conflicts in the future.

Figure 1.1 helps the purpose of showing how water is a scarce resource. In
this figure, the largest sphere represents all of Earth’s water (estimated diameter of
1384.0 km), the intermediate corresponds to Earth’s liquid fresh water (i.e. ground-
water, lakes, swamp water and rivers) and the smallest one is the water in lakes and
rivers.

Figure 1.1: Spheres representing all of Earth’s water, Earth’s liquid fresh water and water in lakes
and rivers (Credit: Howard Perlman, USGS; globe illustration by Jack Cook, Woods
Hole Oceanographic Institution).
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1.1. Global water context

In 2010, nearly all megacities (>10 million inhabitants) were facing water scarcity
and as the world population continues to grow, so has the demand for water (Albur-
querque, 2013). In 2011 world population hit the 7 billion figure, which is twofold the
population on the earth on the 1970. This pace of growth is expected to continue at
least for the next 40 years, and predictions indicate that the population in 2050 will
reach 9.6 billion (United Nations, 2013). Accordingly water withdrawals tripled over
the last 50 years and demand for water for food production is projected to double
by 2050 (Alburquerque, 2013). Moreover, global warming is expected to put water
resources even more at stake.

Moreover, the increasing world population also contributes to the deterioration
of water quality (UNEP-UNWATER-FAOWATER, 2010). Deterioration of water
quality occurs when existing water treatment and/or sanitation infrastructures are
overloaded or when there are no water treatment facilities at all. In those cases
wastewater is discharged directly into the environment and the receiving water body,
and possibly subsurface water are contaminated (UNEP-UNWATER-FAOWATER,
2010).

Enhancing and expanding infrastructure can be very costly and therefore in
general is not keeping up with rapid development. Wastewater management therefore
is emerging as a major global challenge (Alburquerque, 2013). According to the
World Water Development Report of 2012, over 80% of wastewater worldwide is not
collected or treated, and urban settlements are the main source of pollution. And in
developing countries up to 90 % of wastewater is released untreated into the receiving
bodies, which in many cases pollute potable water sources.

However, this is not only a problem concerning developing countries. For in-
stance, and according to the World factbook from the Central Intelligence Agency
of the USA, among the main environmental issues affecting Spain are the pollution
of the Mediterranean Sea from different sources and the water quality and quantity
nationwide.

To this regard Alburquerque (2013) states that in times of financial and economic
crisis, retrogressive measures are more common and their impacts often exacerbated
by austerity measures. Indeed, in the current context of economical crisis, the treat-
ment of wastewater is less of a priority for administrations. For the sake of example,
in Catalonia the lack of financial resources is letting the water management at the
hands of private companies. Nowadays c.a. 80% of wastewater treatment plants in
Catalonia are run by private capital (Garriga Riu, 2013), which may condition the
treatment of water to net profit.

For all the reasons stated before, it is clear that among many other things, the
world needs sustainable, economical and reliable wastewater treatment technologies
to tackle the challenges of the future regarding water quality and accessibility.
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According to Alburquerque (2013), choosing the right technology is essential
to achieving sustainability of water and sanitation services. To this regard, in this
work we focus on Constructed Wetlands technology; these systems are cheap, low in
energy requirements and thus, a sustainable treatment technology. However, as we
will expose in following sections of this work, they suffer from certain issues, derived
from the combined effect of their internal complexity and our lack of understanding
of their functioning, which can hinder their full deployment in the territory.

1.2 Constructed Wetlands for wastewater treatment

1.2.1 General background

Constructed Wetlands (CWs) are engineered systems, based on the principles of
natural wetlands, that are used to treat wastewater originated from different sources
(urban runoff, municipal, industrial, agricultural and acid mine drainage) (Figure
1.2). The most common application of these systems is for the treatment of mu-
nicipal wastewater. CWs are designed to simulate the conditions that allow the
development of the processes occurring in natural wetlands, but in a controlled en-
vironment (Garcia et al., 2010).

T T

——

Figure 1.2: Treatment plant based on Constructed Wetlands technology (Verdi, Catalonia). The
treatment line consisted on three septic tanks in parallel followed by four parallel hori-
zontal subsurface flow Constructed Wetlands and two surface flow wetlands.

This technology is recognized to have low energy and maintenance requirements
and to be easy to operate. These facts make it suitable for wastewater treatment
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1.2. Constructed Wetlands for wastewater treatment

where land availability and land prices are not limiting factors (Garcia et al., 2001;
Puigagut et al., 2007).

CWs have been actively used around the world since the early 70’s as an alter-
native to intensive treatment technologies for the sanitation of small communities
(Puigagut et al., 2007).

1.2.2 Constructed Wetlands typologies

CWs consist of impermeable excavated basins, which use engineered structures to
control the flow direction, liquid retention time and water level (USEPA, 2000). Wa-
ter is fed and retained during a specified time in these systems, which depends on the
inflow rate and the volume of the basin. CWs are planted with aquatic macrophytes,
typical from natural wetland areas. According to the way water circulates through
the basins, they can be classified as either Subsurface Flow Wetlands (SSF CWs) or
Surface Flow Wetlands (SF CWs). In the first case, water circulates underground
through the porosity of a granular medium, whereas in SF CWs water circulates in
contact with the atmosphere (Kadlec and Wallace, 2008).

SSEF CWs can also be subdivided in horizontal flow or vertical flow systems
(Kadlec and Wallace, 2008). In horizontal flow wetlands (HSSF CWs) (Figure 1.3),
wastewater is maintained at a constant depth and flows horizontally below the surface
of the granular medium.

Aquatic macrophytes

Inlet system

Treated
effluent

Drainage pipe

Granular medium

Figure 1.3: Schematic representation of a horizontal subsurface flow CW. Flow circulates from left
to right.

In vertical flow systems (VSSF CWs) (Figure 1.4), wastewater is distributed
over the surface of the wetland and trickles downward through the granular medium
(Brix and Arias, 2005).
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Aquatic macrophytes

Treated

Granular medium 2P effluent

Drainage pipe A

Figure 1.4: Schematic representation of a vertical subsurface flow CW. Flow circulates from top to
bottom.

Combinations of these two types of systems can be used in certain cases, bene-
fiting from the advantages of the two. However, from now onwards, only HSSF CWs
will be considered, although most of the criteria that applies for HSSF CWs does
also apply for VSSF CWs and any combination of the two.

1.2.3 Applications

CWs are designed to eliminate pollutants from wastewater such as: suspended solids,
organic matter, nutrients and faecal bacteria indicators. Other pollutants that are
also removed but that are not commonly targeted when designing municipal wastew-
ater treatment systems are heavy metals, surfactants, pharmaceuticals and personal
care products (PPCPs) as well as other emerging pollutants.

In particular, SSF CWs are one of the most common types of extensive wastew-
ater systems used throughout the world (Garcia et al., 2010). Traditionally, wastew-
ater treatment plants (WWTPs) based on HSSF CWs consist of several in-series
treatment stages. First, the pre-treatment and primary treatment are combined
to eliminate solids, while subsequent stages consist of CWs sometimes combined
with other extensive technologies (Rousseau et al., 2004; Vera et al., 2011; Vymazal,
2005).

Thus, SSF CWs are mainly designed to treat primary settled wastewater, al-
though they are also used to improve the quality of secondary treated efHuents
(Garcia et al., 2010).
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1.2. Constructed Wetlands for wastewater treatment

1.2.4 Design criteria

In engineering practice, the design of SSF CWs is often carried out using the black box
concept. Hence, important design factors such as areal organic loading rate (AOLR),
hydraulic loading rate (HLR), aspect ratio, granular medium size and water depth
are defined mostly from previous experience (Garcia et al., 2005). Other equally
important parameters are the selection of the pretreatment, inflow and collection
systems, as well as the plant species to be planted.

Several experimental studies have focused on studying different systems under
different hydraulic loading rates (HLR) (Garcia et al., 2004a), organic loading rates
(OLR) and other design parameters. Results of these studies have been used to
propose recommended ranges for the different factors.

The main operational problem associated with SSF CWs is the clogging of the
granular media (Knowles et al., 2011; Pedescoll et al., 2011; Rousseau et al., 2005).
Clogging development reduces the infiltration capacity (Caselles-Osorio et al., 2007;
Ruiz et al., 2010) thus causing the hydraulic malfunctioning of wetlands and, in
some cases, the decrease of treatment efficiency (Rousseau et al., 2005). Among the
most important factors contributing to clogging are the retention and accumulation
of wastewater solids, biofilm and plant growth and the accumulation of plant litter
and chemical precipitates (Knowles et al., 2011). Several authors (Langergraber,
2003; Nguyen, 2000; Pedescoll et al., 2011) have reported that correct operation and
maintenance is of great importance to avoid rapid clogging of SSF CWs.

The organic and suspended solids loads are the main operation factors affecting
clogging development (Alvarez et al., 2008; Chazarenc et al., 2007; Winter and Goetz,
2003). In this regard, some authors have suggested that the OLR in horizontal
SSF CWs should not exceed 6 gBOD - m~2d~! (Garcfa et al., 2005; USEPA, 2000).
Organic loads between 8 and 12 gBOD -m~2d~" are generally associated with a total
suspended solids loading of 110 gT'SS-m~2d~! (Kadlec and Wallace, 2008). However,
as reported by Alvarez et al. (2008), little information is available on the maximum
acceptable total suspended solid (TSS) loading rates and only some recommendations
are prescribed for vertical SSF CWs.

It is well known that the reduction of suspended solids and organic content
in wastewater achieved by using a good previous treatment, is essential to delay
clogging development and thus to extend life-span of SSF CWs (Alvarez et al., 2008;
Caselles-Osorio et al., 2007; Pedescoll et al., 2011; Winter and Goetz, 2003). The
life-span of CWs depends directly on solids retention (organic and inorganic) and
on the intrinsic organic matter turn-over rate (decomposition and cycling) (Nguyen,
2000). If the accumulation rate is higher than the turn-over rate then it is likely that
clogging will develop at a rapid peace.
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The HLR applied to these systems is dependent on the allowed OLR, but it is
also considered in the hydraulic design of a wetland.

1.2.5 Contaminant removal processes

The two major mechanisms at work in most treatment systems are liquid/solid sepa-
rations and constituent degradations and transformations (USEPA, 2000). SSF CWs
are essentially fixed-biofilm reactors in which organic matter is removed through in-
teractions between complex physical, chemical, and biochemical processes. Many
studies have shown that organic matter removal rates are not clearly related to
changes in water temperature, which suggests that the principal removal mecha-
nisms are physic-chemical and subsequently biological (McNevin et al., 2000). The
relative importance of the different biochemical pathways for removing organic mat-
ter depends primarily on the redox conditions (Garcia et al., 2010).

The main mechanisms for influent particulate organic mater (POM) (and in
general TSS) retention in SSF CWs are those of physic-chemical nature, and include
impact and retention encouraged by path variations of water flow owing to the grains
of the medium, settling due to low speed movement, and adhesion owing to superficial
interaction forces.

Retained POM either accumulates or disintegrates and undergoes hydrolysis,
which generates dissolved organic compounds that can be degraded by different
pathways that occur simultaneously in a given wetland (Garcia et al., 2010). POM
accumulation in the granular medium is a typical feature of SSF CWs (Nguyen,
2001). Most of the POM is removed close to the inlet, and the remaining dissolved
organic matter is removed more slowly along the entire length of the beds (Garcia
et al., 2010). The removal rates of influent TSS in SSF CWs are usually very high
(>90%).

During the hydrolysis step, which occurs after disintegration, a defined partic-
ulate or macromolecular substrate is degraded into its soluble compounds. Disin-
tegration and hydrolysis are processes that occur either under aerobic, anoxic, or
anaerobic conditions. The hydrolysis reaction is one of the processes that most re-
stricts the removal of organic matter in wastewater treatment plants (Garcia et al.,
2010).

Inflow dissolved organic matter (DOM) and that produced after disintegra-
tion and hydrolysis processes can be removed by aerobic respiration through the
metabolism of a large number of heterotrophic bacteria that use oxygen as a final
electron acceptor. Aerobic respiration requires oxygen, which can be the most lim-
iting substrate for this reaction in SSF CWs, as the amount of oxygen transported
from air to water in a horizontal SSF CW is insignificant in comparison to the oxygen
demand of standard urban wastewater (Garcia et al., 2010).
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Studies carried out in the last 10 years have shown that aerobic respiration
is not the only reaction to exert a significant influence on organic matter removal
in horizontal SSF CWs (Aguirre et al., 2005; Baptista et al., 2003). In fact, aerobic
respiration is not the most important reaction involved in organic matter removal. In
the next few lines, a description of other reactions occurring in constructed wetlands
that also lead to the removal of organic matter is made.

Denitrification is the biochemical reduction of nitrate and nitrite to nitrogen gas.
This process links the C' and N cycles in CWs because it enables denitrifying bacteria
to obtain energy from organic compounds at the same time that nitrate is used as
an electron acceptor. Denitrification is conducted by a wide range of heterotrophic
aerobic facultative bacteria that are able to use nitrate as electron acceptor under
anoxic conditions. These bacteria groups use oxygen preferentially over nitrate as
electron acceptor when it is available in the surrounding environment. Consequently,
significant denitrification rates are only observed in depleted oxygen environments
(Garcia et al., 2010).

Fermentation is a multi-stage biochemical process in which the soluble organic
monomers present in wastewater and those generated through hydrolysis are con-
verted into volatile short-chain fatty acids (VFAs). A large number of heterotrophic
bacteria groups are involved in fermentation reactions. Fermentation occurs under
anaerobic conditions and is therefore an important reaction in horizontal SSF CWs.

Interest in sulphate reduction in SSF CWs has grown in recent years because
research has shown that it can contribute significantly to the removal of organic
matter in horizontal SSF CWs (Aguirre et al., 2005). Sulphate is a normal constituent
of many types of wastewater and can be used as an electron acceptor in the absence
of oxygen by a large group of strictly anaerobic heterotrophic microorganisms called
sulphate-reducing bacteria. These microorganisms can grow by using a wide range
of fermentation products as electron donors (e.g., acetate, lactate, butyrate) (Lloyd
et al., 2004; Stein et al., 2007). Reduced sulphur compounds such as sulphide are
released by the activity of sulphate-reducing bacteria which are known to be potent
inhibitors of plant growth and certain microbial activities (Gonzalias et al., 2007;
Wiessner et al., 2005).

Methanogens are strictly anaerobic bacteria that produce methane as an end
product of metabolism. Methanogens and sulphate-reducing bacteria require envi-
ronments with similar redox potential levels and use the same types of electron donors
(i.e., hydrogen, acetic acid). When these two groups of bacteria grow together and the
COD:sulfate ratio (expressed as COD:S) is lower than 1.5, sulfate-reducing bacteria
are able to outcompete methanogens. When the ratio is greater than 6, methanogens
predominate over sulfate-reducing bacteria (Stein et al., 2007). Methanogenesis can
remove significant quantities of organic matter from wastewater and has been studied
more extensively in recent years (Garcia et al., 2010).
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Despite the extensive literature available on CWs, and all the efforts dedicated
over the years to improve their understanding, there are still some knowledge gaps
which prevent us from being able to optimize their functioning and reduce their
known weaknesses (i.e. clogging development). Over recent decades, several mathe-
matical and numerical models have been developed to help improve the understand-
ing of these systems. The following section is dedicated to update the state of the
art regarding these models.

1.3 Constructed Wetland models

This section is based on the book chapter:

e Samso, R., Meyer, D., Garcia, J., 2014. Subsurface flow constructed wetlands
models: review and prospects, in: Vymazal, J. (Ed.), The Role of Natural and
Constructed Wetlands in Nutrient Cycling and Retention on the Landscape.
Springer, Dordrecht, The Netherlands (in press).

A mathematical model can be simply described as an attempt to translate the
conceptual understanding of a real-world system or process (conceptual model) into
mathematical terms (Eberl et al., 2006). Therefore, mathematical models for Con-
structed Wetlands are a set of mathematical expressions (algebraic or differential
equations), each describing a process that is known to take place within them. Among
the many processes taking place within wetlands, those originated from microbial
metabolism are key to describe their global functioning (Samsé and Garcia, 2013b).
The mathematical models describing the rates at which microbial processes take
place are called biokinetic models.

On the other hand, numerical models involve the use of some sort of spacial
and/or temporal discretization techniques to obtain approximate solutions to math-
ematical equations. Numerical modelling is an interesting tool as it allows to observe
the outcome of complex conceptual models in various experimental conditions and
to test their validity and how they enable a better understanding of the involved
processes (Oberkampf and Trucano, 2002).

For several years now, numerical models for CWs have been considered a promis-
ing tool to increase the understanding of the simultaneous physic-chemical and bio-
logical processes involved in the treatment of wastewater with this technology.

This belief has translated in an increase on the number of publications on the
development and utilization of these models over time. In fact, there exist arguably
as many numerical models for CWs as there are types of wetlands, water pollutants
and processes that take place within these systems. Indeed, a general search for the
words constructed wetland model on common databases of scientific papers brings a
limitless number of publications on this topic.
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Among them, a very general distinction can be made: those focusing on the
simulation of the hydraulics (Arias et al., 2014; Dittmer et al., 2005; Fan et al., 2008;
Galvao et al., 2010; Korkusuz et al., 2007; Kotti et al., 2013),the hydrodynamics and
clogging (or any of them individually) (Brovelli et al., 2009b; Giraldi et al., 2009, 2010;
Hua et al., 2013; Knowles et al., 2011; Suliman et al., 2006) and those focusing on
the removal of a specific pollutant or a set of pollutants (which generally also include
hydraulic and hydrodynamic models of diverse complexity). Among the latter, the
most commonly targeted pollutants are organic compounds (Akratos et al., 2008;
Henrichs et al., 2007; Liolios et al., 2012; Toscano et al., 2009), nitrogen (Akratos
et al., 2009; Henrichs et al., 2009; Mayo and Bigambo, 2005; Mcbride and Tanner,
2000; Meyer et al., 2006; Meyer, 2011; Moutsopoulos et al., 2011; Toscano et al., 2009)
sulphur (Lloyd et al., 2004), phosphorous (Hafner and Jewell, 2006), heavy metals
and mine drainage (Goulet, 2001; Lee et al., 2006; Mitsch and Wise, 1998), arsenic
(Llorens et al., 2013) pesticides (Krone-Davis et al., 2013) and emerging pollutants
(Hijosa-Valsero et al., 2011).

At least 7 review papers have been published in recent times to summarize the
state of the art of CWs numerical models (Garcia et al., 2010; Kumar and Zhao, 2011;
Langergraber et al., 2009b; Langergraber, 2010, 2008; Meyer et al., 2014; Rousseau
et al., 2004). These reviews mostly consist of descriptions of the models features and
no critical in-depth comparison is made between them (Samsé et al., 2014b).

In this section only the most recent numerical codes, applied to simulate the
treatment of urban wastewater and those able to provide new insight into the func-
tioning of CWs are reviewed. The 5 models selected for review are: PHWAT (Brov-
elli et al., 2009a,b,c, 2007), FITOVERT (Giraldi et al., 2009, 2010), HYDRUS-2D-
CW2D (Langergraber, 2005), HYDRUS-2D-CWM1 (Langergraber and Simunek,
2012), CWM1-RETRASO (Llorens et al., 2011a,b) and AQUASIM-CWM1 (Mburu
et al., 2012).

From the selected numerical codes, the only one that does not use either the
biokinetics models CW2D or CWM1 is FITOVERT model. Provided the importance
of the biokinetic equations within CWs models, the description of the selected models
will be preceded by a brief description of CW2D and CWMI.

Ccw2D

Constructed Wetlands 2D (CW2D) (Langergraber, 2001) is a biokinetic model, based
on the mathematical formulation of the Activated Sludge Model series (ASM) (Henze
et al., 2000). This model was specifically conceived to simulate the most common
biokinetic processes taking place in VF CWs.

The components defined in CW2D include dissolved oxygen (0O2), three frac-
tions of organic matter (CR, C'S, and CI), four nitrogen compounds (NH4, NO2,
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NO3 and N2N), inorganic phosphorus (I P), and heterotrophic and autotrophic mi-
croorganisms. Organic nitrogen and organic phosphorous are modelled as part of
the COD. Heterotrophic bacteria (X H) are assumed to be responsible for hydrol-
ysis, mineralization of organic matter (aerobic growth) and denitrification (anoxic
growth). On the other hand, autotrophic bacteria (X ANs and X ANb) are assumed
to be responsible for nitrification, which is modelled as a two-step process. Microor-
ganisms are assumed to be immobile. Lysis is considered to be the sum of all decay
and loss processes. The temperature dependence of all process rates and diffusion
coeflicients is described using the Arrhenius equation.

cwM1

The biokinetic model Constructed Wetland Model number 1 (CWM1) (Langergraber
et al., 2009a) is another general model based on the ASM series (Henze et al., 2000)
and the Anaerobic Digestion Model (ADM) (Batstone et al., 2002) for anaerobic
processes, to describe biochemical transformation and degradation of organic matter,
nitrogen and sulphur in SSF CWs. The main objective of CWM1 is to predict efluent
concentrations from either VF or HF CWs without predicting gaseous emissions
(Langergraber et al., 2009a).

This model considers 17 processes and 16 components (8 soluble and 8 partic-
ulate). In terms of notation and structure, CWM1 is described in a way similar to
the ASMs. As in the ASMs concentrations of dissolved components are referred to
as S; and particulate components as X;. Among the dissolved components there are:
dissolved oxygen (Sp), ammonia and nitrate nitrogen (Sypg and Syo), sulphate and
dihydrogensulphide sulphur (Sgo4 and Spag), soluble fermentable COD (Sp), fer-
mentation products as acetate (S4) and soluble inert COD (Sy). Organic nitrogen
is considered as a fraction of organic matter (COD). Among the particulate com-
ponents there are 6 functional bacteria groups, including heterotrophic, nitrifying,
fermenting, methanogenic, sulphate reducing and sulphide oxidising bacteria (X,
X4, Xrp, Xamp, Xasrp and Xgop, respectively) and two particulate fractions of
COD (X and Xg). Such as in the IWA ASMs, the kinetic expressions of CWM1 are
based on switching functions (hyperbolic of saturation terms and Monod equations
(Monod, 1949)).

Figure 1.5 presents a graphical representation of the cycles of carbon, nitrogen
and silphur as described in CWMI1.
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Figure 1.5: Main interactions between bacteria groups (coloured boxes) and substrates (circles) in
the a) carbon, b) nitrogen and c) sulphur cycles. The substrates at the top of the image
enter the wetland with the influent wastewater. Inert particulate COD (X;) and soluble
intert COD (Sy) are not included in the Figure since they are neither degraded nor
transformed. Note, though, that the decay of all bacteria groups and hydrolysis produce
inert particulate COD. The components marked with an asterisk are not considered in

CWML1.

The stoichiometric matrix of CWMI1 is presented in Table 1.1 and the rate of

each individual process is described in Table 1.2.
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Table 1.1: Stoichiometric matrix of CWM1 (Langergraber et al., 2009a).

7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Process  compo- So SF Sa St Svu Sno Sso4 SHas Xs X7 Xy Xa Xrp Xams Xasre XsoB
nent
j  expressed as 02 COD COD COD N N S S cCOb COD CODCODCOD COD COD COD
1 Hydrolysis 1— fHyd, 15,1
fHyd,sT
2 Aerobic growth of 1- i vs,2 1
Xy on Sp ﬁ
3 ?(noxic growth of = vs.3 % 1
H on Sp
4  Aerobic growth of 1— v vs.4 1
XH on SA ﬁ
5 ?{noxic growth of - vs.5 —% 1
H ONn oA
6 Lysis of Xp fBM,SF V5,6 V9 Lysis fBM,XI -1
7  Aerobic growth of - 4'5;;’7\ vs.7 1
X4 on Sy
8 Lysis of X4 fBM,sF V5,8 V9 Lysis fBM,XI -1
9  Growth of Xrp Y;‘IB % vs.0 1
10 Lysis of Xrp fBM,SF V5,10 V9, Lysis fBM,XT -1
11 Growth of XanB ﬁ v5,11 1
12 Lysis of Xamp fBM,SF V5,12 V9, Lysis JBM,XI -1
13 S‘:{rowth of N TYITS v5.13 _12}?% %\% 1
ASRB
14 Lysis of XxasrB fBM,SF V5,14 V9 Lysis fBM,XI -1
15 )A(erobic grgwth of 772};’2?33 v5.15 70;:,5’50033 T 1
soB on SH2s
16 ?{noxic grf)gwth of vs,16 paTS2l yoho Vi 1
soB on Sgas
17 Lysis of Xson fBM,SF V5,17 V9 Lysis fBM,X1I -1

V9, Lysis=1—
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Table 1.2: Processes rates in mg -1~ 1d™? (Langergraber et al., 2009a).

j  Process Process rate p;
X
1 Hydrolysis ki | —HIEFE (X g+np Xpp)
KX(XH+XFB)
i Sp Sp So SNH KSH2SH
2 Aerobic grOWth of Xr on Sp uH(KSFH+SF)(SF+SA)(KSOH+SO) KSNHH+SNH)(KSH2SH+SH25)XH
Anoxic growth of Xg on . Sk Sk Kson SNo SNH KSH2SH x
3 oxic growth o Hon Sp Mg ”H(KSFH+SF)(SF+SA)(KSOH+SO)(KSN()H+SN())(KSNHH+5NH)(KSH2SH+SH2S) H
4 Aerobic growth of Xz on SA Sa So SnH KsHaSH
erobic growth o 1 on Sa HH(KSAH+SA)(SF+SA)(KSOH+SO)(KSNHH+SNH>(KSH2SH+SH2S) H
i Sa S KsoH SNO SNH KsHosH
o Anoxic growth of Xy on Sa 7’gHH(KSAH+SA)(SF+SA)(KSOH+S())(KSNOH+SNO)(KSNHH+SNH)(KSHZSH+SHQS) H
6 Lysis of Xg bxXu
Aerobic growth of X4 on SNH So KsH254 X
7 & A Snu uA(KSNHA+SNH)(KSOA+SO)(KSHQSA+SH2S) 4
8  Lysis of X4 baXa
9 Growth of X SE KSH2SFB KsorB KSNOFB SNH X
B KFB ( KSFFBTSF ) (KstsFB+5st ) ( KsoFB+50 ) (KSNOFB+5NO ) (KSNHFB+SNH ) rB
10 LySiS of Xrp brBXFB
11  Growth of X Sa KsHosAMB KsoAMB KSsNOAMB SNH X
AMB ”AMB(KSAMBJrSA ) ( KSH2SAMB+SH2S )(KSOAMBJrSo )(KSNOAA43+SNO )(KSNHAMB+5NH ) AMB
12 Lysis of Xams bamMBXAMB
HASRB( SA )( Ssoa )( KSH2SASRB )( KSOASRB ) KSNOASRB )
KsaasrB+t54/\KsoaasrB+5so04/\KsHu2sAasrB+5H2s /\KsoasrB+t50 /\KsNoAasSrRBTS5NO
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SNH X
. (KSNHASRB+5NH) ASREB
14 Lysis of XxasrB bASRBXASRB
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The stoichiometric parameters for ammonia (see Table 1.1) are obtained from
mass balances over each process as follows:

vs1 = inxs — (1 — fayp,s1) - in,sF — fHYD,SI - iN,ST (1.1)
INSF .
Us2 = Us3 = —IN,BM (1.2)
Yy
Us4 = U555 = U511 = U513 = U515 = U516 = —IN,BM (1.3)
V5,6 = Us.8 = U510 = U512 = U514 = U517 = IN,BM — fBM,SF " iN,SF— (1.4)
—(1 = fBm,sF — fBM,XT) N xS — [BM, XTI IN,XT
1
V57 = —1 - — 1.5
5,7 N.BM ~ (1.5)
INSF .
Us9 = —iN,BM (1.6)
Yrp

Using Tables 1.1 and 1.2, the reaction rate for each component (r;) is obtained
with Equation 1.7:

R
ri= ) vij-p (1.7)
j=1

where ¢ = 1,..., N and N being the number of components, and j =1,..., R
and R is the number of processes. v;; is the stoichiometric factor for component i

and process j from Table 1.1 and p; is the reaction rate of process j as described in
Table 1.2.

For a list and a description of the parameters in Tables 1.1 and 1.2, the reader
is referred to the original source (Langergraber et al., 2009a).

1.3.1 Numerical models for Constructed Wetlands
FITOVERT

FITOVERT (Giraldi et al., 2009, 2010) is a 1D code developed in MATLAB® and
expressly designed to simulate subsurface VF CWs. This software is able to describe
the water flow through unsaturated porous media as well as evapotranspiration and
surface ponding. It is also able to simulate transport of dissolved and particulate
components and clogging produced by bacterial growth and solids filtration.

The vertical water flow through porous media in unsaturated conditions is de-
scribed using the volumetric water content form of the Richards equation. The
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constitutive relationships between pressure head, hydraulic conductivity, and water
content are handled using van Genuchten-Mualem functions, the parameters of which
were obtained from a previous experimental study (Giraldi et al., 2009).

To describe the root water uptake a sink term was added to the Richards equa-
tion. The model is also able to automatically handle the ponding on the surface of
the vertical bed by changing the hydraulic boundary conditions.

The biochemical module, based on the ASM1 (Henze et al., 2000), describes the
degradation of both organic matter and transformation of nitrogen. Thirteen com-
ponents are taken into account, seven of which are dissolved and six are particulate.
Neither the features of the biochemical module nor the components and processes
considered are described in the original paper.

The advection-dispersion transport in the liquid phase for dissolved components
is described according to Bresler’s equation (Bresler, 1973). Neither the uptake
of nutrients and metals by the plants nor adsorption is considered in the existing
version of FITOVERT. On the other hand, the transport and filtration of particulate
components is described with a scheme based on the work of Iwasaki (1937) for the
numerical analysis of the sand filtration process in saturated conditions.

FITOVERT is also able to handle the porosity reduction due to bacteria growth
and filtration of particulate components. The effect of pore size reduction on the
hydraulic conductivity is considered using a modified version of the Carman-Kozeny’s
equation (Boller and Kavanaugh, 1995).

The oxygen transport is modelled using the same equations as for the rest of
the dissolved components, and the diffusive exchange of oxygen with the gas phase
is included in the reaction term and described using Fick’s law. Oxygen transfer by
plants from the atmosphere to their roots is not implemented.

The hydraulic model was calibrated by comparing model outputs for inert com-
ponents with experimental breakthrough curves of a pilot plant. Unfortunately, the
biochemical and transport modules were not calibrated (Giraldi et al., 2009).

HYDRUS-2D-CW2D

The multi-component reactive transport module CW2D (Constructed Wetlands 2D),
(Langergraber, 2001, 2005, 2008; Langergraber and Simunek, 2012), was developed
as an extension of the HYDRUS-2D variably-saturated flow and solute transport
program (Simunek et al., 1999). The variable saturated flow is described using the
Richards equation. The constitutive relationships between pressure head, hydraulic
conductivity, and water content are handled using van Genuchten-Mualem functions.
Two additional boundary conditions are implemented to represent surface ponding
in the vertical bed during wastewater loadings that exceed the infiltration capacity.
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The transport of solutes is described using the advection-dispersion-diffusion
equation which includes several sources and sinks to simulate adsorption/desorption
and nutrients uptake by plant roots. The exchange of O from the gas phase into
the aqueous phase is described using the equation of Gujer and Boller (1990).

The effect of plants uptake on the removal of organic matter and nutrients
in subsurface flow constructed wetlands was tested in Langergraber (2005). The
model for plant uptake implemented describes nutrient uptake coupled to water
uptake, which is an intrinsic capability of HYDRUS-2D. Literature values were used
to calculate potential water and nutrient uptake rates.

Nowadays HYDRUS-2D-CW2D only considers dissolved wastewater compounds
and therefore is currently unsuitable for investigating clogging phenomena (Garcia
et al., 2010).

PHWAT

PHWAT (Brovelli et al., 2009a,b,c, 2007; Mao et al., 2006) is a 3D macro-scale code
that uses MODFLOW (McDonald and Harbaugh, 1988) to solve saturated/variably
saturated water flow, MT3DMS (Zheng and Wang, 1998) to simulate transport pro-
cesses, and PHREEQC-2 (Parkhurst and Appelo, 1999) to describe biochemical reac-
tions. Aerobic processes are based on CW2D, while anaerobic processes are based on
the model formulation by Maurer and Rittmann (2004). Aside from the biokinetic re-
actions, full water chemistry and sediment-water interactions can be modelled using
PHREEQC. PHWAT is also able to simulate bioclogging, bacteria attachment and
flow-induced biofilm detachment. This model includes a growth-limiting expression
to account for the reduction of porosity caused by bacterial-growth.

HYDRUS-2D-CWM1

In Langergraber and Simunek (2012), a new version of the wetland module for
HYDRUS-2D was presented. This new version adds the possibility to choose between
the already implemented CW2D and the newly implemented CWM1 biokinetic mod-
els. The only change of HYDRUS-2D-CWM1 with respect to HYDRUS-2D-CW2D
is thus the biokinetic model.

In Langergraber and Simunek (2012) simulations were run to make a numerical
verification of the implementation of the two biokinetic models in HYDRUS. The
authors compared results with simplified versions of the two biokinetic models in
a 20 by 20 c¢m vertical domain. The results demonstrated that the two biokinetic
models were implemented correctly in HYDRUS-2D. HYDRUS-2D-CWM1 was also
used to recreate the simulations performed by Llorens et al. (2011a,b), obtaining
different results.
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AQUASIM-CWM1

Mburu et al. (2012) implemented the biokinetic model CWM1 into AQUASIM soft-
ware (Reichert, 1998) to simulate the fate of organic matter, nitrogen and sulphur
within 16 batch-operated subsurface-flow wetland mesocosms planted with three dif-
ferent plant species (for a detailed description of the mesocosms the reader is referred
to Allen et al. (2002) and Stein et al. (2006)). The mixed reactor compartment con-
figuration in AQUASIM was used and the mesocosms were described as constantly
stirred tank reactors (CSTR). In addition to the biokinetic reactions of CWM1, this
model considers physical reaeration, adsorption and desorption of COD and ammo-
nium as well as a complex description of plant related processes. Indeed, the plant
model includes 5 processes, namely growth, decay/senescence, physical degradation,
oxygen leaching and nutrients uptake. The growth rate of microorganisms and plants
are made temperature dependent by means of Arrhenius relationships. In this model,
the growth of bacterial communities is only limited by substrates.

The model was calibrated and validated with different sets of experimental data
from the mesocosms and sensitivity analysis, parameter estimation and uncertainty
analysis were carried out.

CWM1-RETRASO

The CWMI1-RETRASO model (Llorens et al., 2011a,b) is a 2D simulation model
obtained from the implementation of CWM1 (Langergraber et al., 2009a) in Re-
trasoCodeBright (RCB) code (Saaltink et al., 2004) to simulate the hydraulics and
hydrodynamics as well as the main biodegradation and transformation processes in
horizontal SSF CWs.

RCB enables the simulation of the reactive transport of inorganic dissolved and
gaseous species in non-isothermal saturated and unsaturated problems by finite el-
ements. The transport of solutes in water is modelled by means of advection, dis-
persion and diffusion, together with chemical reactions. This model considers the
wetland as a saturated porous media, and thus, the advective flux and dispersive
and diffusive fluxes are computed by means of Darcys and Ficks laws, respectively.

The implementation of the biochemical processes within RCB code consisted
on adding the rates relevant to CWMI1 to the reaction term of the RCB transport
equations. The reactive transport model of the present study basically consists of 19
reactions or processes instead of the 17 described by CWMI.

Physical oxygen transfer from the atmosphere to the water was included in the
model. Oxygen leaking from macrophytes, plant uptake, biofilm development and
processes linked to clogging were not considered.
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A multiplicative exponential function similar to that used by Ojeda et al. (2008)
for the hydrolysis process, was added to avoid total COD overestimations. In the
paper by Llorens et al. (2011b), some changes to CWM1 formulation and to its
parameters were proposed and both the hydraulic and biochemical models were cal-
ibrated and validated comparing it experimental data.

In CWM1-RETRASO bacterial concentrations are defined as inflow concentra-
tions and travel through the wetland just as dissolved components do. Therefore,
with this model, only stationary simulations can be performed, as the growth of
bacterial populations cannot be simulated.
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CHAPTER 2

Objectives and outline of the Thesis

From the bibliographical review carried out, four major issues stood out:

e Constructed Wetlands (CWs) functioning is still not well understood. More-
over, the enormous diversity of wetland typologies and operation strategies,
and the fact that they operate at the mercy of the environmental conditions,
makes each wetland unique on its kind, and so experimental studies are most
of the time representative of only the studied system. Therefore it is extremely
complicated to distinguish the most basic functioning patterns that apply to
all horizontal subsurface flow CWs from experimental studies.

e Mathematical models can be of great help to improve the understanding of
CWs internal processes since, with them, each individual factor affecting the
functioning of this water treatment technology can be studied individually and
at reasonable time and economic costs.

e Despite their great potential, before starting the current work, most available
models for CWs had been used to match efluent pollutant concentrations mea-
sured in field experiments and, in general, less attention had been dedicated
to understanding their internal functioning. Moreover the available results
were presented for short simulation periods which masked the fact that the
dynamics of bacteria were not properly described using the available biokinetic
models. Finally, the impact of accumulated solids on the dynamics of bacterial
communities was not studied in any of the cases.
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e At the time of starting this research, there were virtually no models able to
simulate clogging in CWs. Thus, the effects of this phenomenon on the hy-
draulics, hydrodynamics and on the dynamics of bacterial communities within
CWs could not be numerically evaluated.

2.1 Objectives

Following these main issues of the state of the art of Constructed Wetlands science,
the main objectives of the current PhD work were:

1. To develop a mathematical model able to describe the main processes taking
place within horizontal subsurface flow CWs and in the long-term.

2. To improve the understanding of the dynamics of bacterial communities within
CWs from simulating results.

3. To build a theory, based on modelling results, to describe the most basic func-
tioning patterns of horizontal subsurface flow CWs, paying special attention to
bacterial communities and their interaction with accumulated solids.

4. To present a mathematical formulation to simulate bioclogging in CWs. This
formulation should also be able to describe the effect of bioclogging in the
hydraulics and hydrodynamics of these systems.

2.2 OQutline of the thesis

This document is structured in 10 chapters, each focusing on a specific topic. Note
that the order of the chapters does not correspond to the chronological order of the
works performed but to a more logical and easy to follow structure. Moreover, the
following chapters do not cover a separate objective each, since the objectives of this
work are very wide, and thus they are covered through several chapters.

In Chapter 3, the pilot system from where all the experimental data used in this
work was gathered is described, and the available data is also detailed.

The equations of the proposed model and the required changes to the original
formulation of the biokinetic model CWMI1 are detailed in Chapter 4. As outlined
in all chapters of this thesis, the most significant change applied to CWM1 is the
inclusion of two logistic functions to the growth rate expressions of all bacteria groups
which include two empirical parameters (Mpio_mqz and Meqp). Finally, Chapter 4 also
includes the calibration of the model using experimental data from the pilot system,
both in terms of the hydrodynamics and effluent pollutant concentrations.
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Parameters Mpy;o_max and Mcqp, which are introduced to the original formulation
of CWMI1 in Chapter 4, come with an underlying degree of uncertainty. For this
reason, in Chapter 5 a local sensitivity analysis of these two parameters is carried
out. Moreover, in this chapter a mesh optimization procedure is also carried out to
reduce computational cost of further simulations.

Chapters 6 and 7 are dedicated to the second objective of the current work,
which is to improve the understanding of the internal functioning of CWs based on
the results obtained with the model. Chapter 6 is a case study, in which we focus our
attention on evaluating the distribution of each bacterial group within the wetland
individually and determine the time it takes for bacterial communities to get a stable
population. This is done using 3 indicators: effluent pollutant concentrations, total
bacterial biomass and Shannon’s diversity index. On the other hand, Chapter 7 aims
at developing a high-end theory, that we call The Cartridge Theory. This theory aims
at explaining the internal functioning of horizontal flow Constructed Wetlands based
on the interaction between accumulated solids and bacterial communities.

In chapter 8, a mathematical formulation is presented to simulate bioclogging
in horizontal subsurface flow CWs. Equations are also presented to describe vari-
ably saturated subsurface flow and overland flow of wastewater resulting from severe
bioclogging of the granular media. Moreover, results of a numerical experiment, in
which several model outputs are compared for the same model running with and
without considering bioclogging, are presented.

Chapter 9 consists of a general discussion that summarizes and extends all the
knowledge generated over the whole study. Finally, in Chapter 10 the main conclu-
sions that can be extracted from this work are presented.
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CHAPTER 3

Pilot plant and experimental data

3.1 The pilot plant

The experimental data used in this work comes from previous studies in a CW pilot
plant located in Les Franqueses del Valles (Catalonia), that was set up in March
2001 and consisted on 8 horizontal SSF CWs planted with common reed (Phragmites
australis) (Figure 3.1).

Figure 3.1: Image of the pilot plant at the Can Suquet housing scheme, Les Franqueses del Valles,
Barcelona, Catalonia.
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Fach bed was designed with different features in order to evaluate the effects of
the aspect ratio, depth, type of granular media and HLR on the efficiency of CWs.
All 8 beds were fed with urban wastewater previously treated in an Imhoff tank
(Figure 3.2).
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Figure 3.2: Schematic diagram of the pilot plant at the Can Suquet housing scheme, Les Franqueses
del Valles, Barcelona, Catalonia (Garcia et al., 2004b).

The experimental data used in this work comes only from bed C2 in Figure
3.2. This particular bed was designed with an aspect ratio of 2 : 1 (with a length
and width of approximately 10.3 m and 5.3 m, respectively) and fine granitic gravel
as a granular medium (Dgy = 3.5 mm, C, = 1.7, initial porosity = 40%). The
first 0.3 m of the bed were composed of coarser gravel, the properties of which were
not specified. During the experiments carried out in this bed, the water level was
adjusted at 0.05 m below the surface, giving as a result an average water depth of
approximately 0.5 m (Garcia et al., 2004b).

3.2 Experimental data used in this work

Although the construction of the pilot plant ended in March 2001, it was not until
May of the same year that it started operating normally. Monitoring was carried out
until December 2003.

In this work, only data of the first year of operation of the pilot CW is used.
During that period, the system was operated with HLR of approximately 20, 27, 36
and 45 mm -d~! (Llorens et al., 2011b; Garcia et al., 2004a,b).
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Available experimental data come from grab samples of the influent and efluent,
taken two to four times per month. These samples were analysed for COD and
NH,*. The flow rate at the inlet and the water temperature were also measured.
This way, the available experimental data during the first year of operation consists
of: 39 values of flow rate, 32 values of water temperature, 31 values of inflow COD
and 33 values of inflow NVH, — N. Influent concentrations of other components which
were measured much less frequently were obtained from Garcia et al. (2005).

Moreover, a tracer test experiment was carried out in the experimental treatment
plant by Garcia et al. (2004a) between June and July 2001. Tracer tests are usually
employed to determine the hydraulic and hydrodynamic properties of CWs, such as
the hydraulic retention time and the dispersion coefficients. In this experiment, the
flow was set to 2 m? - d~! and a single-shot injection of 1.5 L of a dissolution of
200 gKBr - L~ was made into the inlet tubes. Tracer solution was added in 10
minutes mixed with wastewater in order to reduce sinking effects related to density
differences. Effluent grab samples of the bed were taken every 12 hours during the
first 10 days and every 24 hours from that point and until a total sampling period of
approximately 330 hours, and analysed for bromide. The mass tracer recovery was
of 105% (Garcia et al., 2004a).

The resulting tracer curves for all beds are shown in Figure 3.3:

Figure 3.3: Tracer test curves obtained by Garcia et al. (2004a).

The treatment plant in Les Franqueses del Valles was dismantled in 2007. For a
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more detailed description of the pilot, the reader is referred to Aguirre et al. (2005),
Garcia et al. (2007, 2004a,b) and Huang et al. (2005).
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CHAPTER 4

Formulation and calibration of the BIO_PORE model

This chapter is based on the article:

e Samso, R., Garcia, J., 2013a. BIO_PORE, a mathematical model to simulate
biofilm growth and water quality improvement in porous media: application
and calibration for constructed wetlands. Ecological Engineering 54, 116127.
doi:10.1016/j.ecoleng.2013. 01.021

4.1 Introduction

The potential of microbial biofilms growing in subsurface environments to remove pol-
lutants from water has long been exploited in many forms. Horizontal subsurface-flow
(HSSF) constructed wetlands (CWs) are one of such type of engineered bioremedia-
tion techniques aimed at treating wastewater.

Despite CWs are now ubiquitous in practice, their performance is still difficult
to predict due to the diversity and simultaneousness of the physical, chemical, and
biological processes involved, of which some are yet to be understood. Provided that
good engineering design and operation of CWs demands a detailed insight of the
processes taking place (Fan et al., 2008), fundamental and applied research must
be encouraged so as to improve the comprehension of their functioning. It is only
this way that CWs shall become more efficient, reliable, and easier to control and
operate in the long-term. This in turn will increase their acceptance as an alternative
to conventional wastewater treatment techniques.
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During the last decade several mathematical models aiming at describing the
functioning of CWs have proliferated (Llorens et al., 2011a). Nowadays, most efforts
in this specific field are being put on the development of mechanistic or process-
based models, which not only predict efluent pollutant concentrations but can also
shed light on the treatment processes involved. For this reason, mechanistic models
are gaining relevance over simple black box or first-order decay models (Kadlec and
Wallace, 2008; Rousseau et al., 2004).

One notable limitation of the mechanistic models developed so far resides in
their static or quasi-static nature. Hence, these models are only able to provide
pictures of the state of a wetland at specific points in time or during very short time-
scales. However, CWs are known to be complex systems, the behaviour of which
depends on both external (e.g. flow-rate, wastewater composition and temperature)
and internal (e.g. bacteria growth and development) factors (Garcia et al., 2010). To
understand the effect of all these factors on the functioning of CWs and to capture
their evolution through time, long-term simulations are required.

The aim of the present work is to present and calibrate a new 2D mechanistic
model that includes a wide range of physical and biological processes to reproduce the
general functioning of CWs during long-term scenarios. This model implements fluid
flow and transport equations together with the biokinetic model Constructed Wet-
land Model number 1 (CWM1) (Langergraber et al., 2009a; Llorens et al., 2011a,b)
into COMSOL Multiphysics™, which solves the problem equations using the finite
elements method (FEM). CWMI is mostly based on ASM and ADM formulations
(Batstone et al., 2002; Henze et al., 2000), and is seen as the most advanced bioki-
netic model developed for CWs. As such, it has been implemented by several au-
thors in similar modelling attempts (Langergraber and Simunek, 2012; Llorens et al.,
2011a,b; Mburu et al., 2012). In the present work, modifications have been made to
its original formulation to include attachment and detachment of influent particulate
components.

The most relevant innovation of the presented model, from which the name
BIO_PORE was inspired, is the biofilm sub-model. This sub-model prevents unlim-
ited and unrealistic growth of BIOmass in areas with high substrate concentrations
and also accounts for the effects of PORE volume reduction resulting from inert
solids accumulation. In this chapter we show and discuss why the inclusion of these
functions represent a very significant advance with respect to previous implementa-
tions of CWMI1. Finally, the complete model is calibrated using experimental data of
a period of 1 year obtained from the pilot SSF CW (Chapter 3). The most relevant
outputs of the model, which provide some clues on the general functioning of CWs,
are also discussed.
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4.2 Methods

4.2.1 Model domain

The model domain represents the wetted depth of a 2D longitudinal section of the
pilot CW (Figure 4.1).

o

¥

’

Figure 4.1: Schematic representation of the model domain. Numbers 1 to 6 identify the domain
boundaries which are described in text.

Wastewater enters the domain through boundary 3 (a length of 0.3 m in the z**
direction representing the mixing zone) and the effluent leaves through boundary 5
(a length of 0.1 m in the 3" direction), where a constant hydraulic head of 0.45 m is
defined. Boundary 4 represents the water table level within the bed, through which
oxygen is transported from the atmosphere to the water body. Boundaries 1, 2 and
6 correspond to impervious walls.

4.2.2 Model equations

Hydraulic, reactive-transport, biofilm and plants sub-models compose the basic struc-
ture of the BIO_.PORE model (Figure 4.2).
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Figure 4.2: Schematic representation of the data flux (in the arrows) between the 4 sub-models
(represented in boxes). Input and output data are also shown.

Hydraulic sub-model

The saturated flow through a multidimensional heterogeneous and anisotropic porous
media is described using Darcy’s equation as follows:

P

T 9y (4.1)

Where, ¢; is the specific discharge [LT~1], K;j is the saturated hydraulic con-
ductivity tensor [LT 1], and 5’7}; the hydraulic gradient vector (unitless).

In this model, using the Deformed Geometry node found in COMSOL Multiphysics™

the domain deforms dynamically to adjust boundary 4 to the calculated water ta-
ble level at every time step. Changes in the water table level within the system
obey exclusively to variations of the inflow-rate, as neither evapotranspiration nor
precipitation is considered in the current version of the model and the hydraulic
conductivity remains constant through time.

Reactive-transport sub-model

This sub-model describes the fate and transport of the components of CWM1 listed
in Table 4.1. Dissolved species are only present in the aqueous phase. On the other
hand, particulate species (Xg and X; in CWM1) are defined both in the aqueous
and solid phases. This strategy was adopted to be able to simulate attachment
and detachment processes of particulate components, and required an important
modification of CWM1’s formulation (which considers Xg and X as single-phase
components).
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Table 4.1: Components adapted from CWM1 (Langergraber et al., 2009a). S; are dissolved compo-
nents (all in the aqueous phase) and X; are particulate components (either in aqueous or
solid phase).

Componenet | Description Unit Phase
So Dissolved oxygen mgCOD - L™ | Aqueous
Sk Soluble fermentable COD mgCOD - L~1 | Aqueous
Sa Fermentation products as acetate as COD mgCOD - L= | Aqueous
S Inert soluble COD mgCOD - L1 Aqueous
Xsm Aqueous slowly biodegradable particulate COD | mgCOD - L~! | Aqueous
Xsy Solid slowly biodegradable particulate COD mgCOD - L™T | Solid
Xim Aqueous inert particulate COD mgCOD - L™1 | Aqueous
Xry Solid inert particulate COD mgCOD - L™" | Solid
Sno Nitrite and nitrate nitrogen mgN - L7 ! Aqueous
SnH Anmonium and ammonia nitrogen mgN - LT Aqueous
Ss04 Sulphate sulphur mgS - LT Aqueous
SHas Dihydrogensulphide sulphur mgS - L1 Aqueous

The fate and transport of the aqueous (mobile) phase components in a mul-
tidimensional saturated porous media is described with Eq. 4.2 (Clement et al.,
1998):

0k _ 0 (5 0\ _ 0
8t_8xi

zJ(TQCJ - 87331'(%019) +TCy, = Tatt + Tdet T S, (4.2)

Where £k =1,2...m

Where, m is the total number of aqueous phase components (dissolved and
particulate, see Table 4.1), Cy [ML73] is the aqueous phase concentration of the
k" component, D;; [L>T~1] is the hydrodynamic dispersion tensor and ¢; [LT~!]
is the specific discharge. ¢; acts as the coupling variable between the hydraulic and
reactive-transport sub-models. r¢, [ML™2T~1] is the reaction rate of the k™" species
on the aqueous phase. 74y [ML 73T~ and rge; [ML73T~1] are attachment and
detachment rates, respectively; the former describes the rate of exchange from the
aqueous to the solid phase and the latter accounts for the opposite process. sc,
[ML=3T~1] is the source/sink term, which represents external sources or sinks of
component Cg. This last term is only used to simulate oxygen release through plant
roots (see Section 4.2.2).

On the other hand, Eq. 4.3 (Clement et al., 1998) describes the fate of the solid
phase (immobile) components (Table 4.1):

dc,

W = TCvl + Tatt — Tdet (43)

Wherel =1,2,..n
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Where, n is the total number of solid phase components (particulate only),
Cy[ML™?] is the concentration of the [ component and e, (M L=3T~1] is the reac-

lth

tion rate of the [ component on the solid phase.

Attachment rates of Xg,, and Xy, are described using Eq. 4.4, while detach-
ment rates of Xgr and X;s are defined using Eq. 4.6 (adapted from Bradford et al.
(2004)):

MAattCr  for (Mr < M,
Tatt = uCy for (My 2 (4.4)
0 for (MT = Mcap)
Tdet = AdetCl (4.5)

Where Ay [T7!] and Ager [T7!] are first-order attachment and detachment
coeflicients, respectively, obtained during the calibration step. The new reaction rates
of particulate components resulting from their division into aqueous and solid phases
and the inclusion of attachment and detachment processes, represent a significant
modification from CWMI1, and are shown in Table 4.2.

Table 4.2: Reaction rates of the components present both in the aqueous and solid phases (Xsm,
Xsf7 X]m and X[f).

Xsm | —kp——HIZFB ST’f(XH + 1 XFB) — Aatt Xsm + Adet Xsf
Kot %yt %55 <
Sf
—k’hK)(HﬂL—f(gf(XH +nXrp)+
o | Xsf P 7T 9

49, Lysis (b Xg +baXa +breXrp +bamveXams +basreXasre+
+bsoBXsoB) + Aatt Xsm — Adet Xsf

Xim | —XattX1m + Adet X1¢

fev,x; (baXp +baXa+breXrB +bavsXams +basreXasre+
+bsoBXs0B) + Aatt X1m — Adet X1

Xis

“K, is the hydrolysis rate constant [d'], Kx is the saturation/inhibition coefficient for hydrol-
gCODg . . . . . gCODx

m, gg ;s the correction factor for hydrolysis by fermenting bacteria [-]. vg,Lysis m
and fBa,x; :(10713;(,\14 are respectively the fractions of Xs; and X generated in biomass lysis. by,
ba, bre, bamB, basre, bsop are rate constants for lysis of Xy, Xa, Xrp, Xamp, Xasrp and

Xson [d_l]. See Chapter 1 for details on the formulation of CWMI1.

ysis

In Eq. 4.4, the rate of attachment becomes zero when the mass of accumulated
solids (Mr) equals the maximum capacity of the representative volume (Mcqp). The
value of M.,y is obtained by multiplying the pore volume by the density of accu-
mulated solids (Ppiomat). Accumulated solids are a mixture of biomass (mostly in
the form of biofilms) and inert particulate solids. Therefore its average density is
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difficult to predict, as it depends on the proportion of each fraction. In the current
model, ppiomar Was found to be 15 kgV'S-m ™3 during the calibration step (see Section
4.4.1). This value is an average value between biofilm density and accumulated solids
densities, and thus it is lower than the reported values for biofilm denisities.

The description of the fate and transport of dissolved oxygen (Sp in Table
4.1) differs from that of the other aqueous components in the fact that external
sources of oxygen (transfer from the atmosphere and release from plant roots) had
to be considered as well. Oxygen transfer from the atmosphere to the water body
is simulated as a flux condition through boundary 4 of the domain (Figure 4.1) as
proposed by Tyroller et al. (2010):

Vv
OTR = Kr4,5,(50..; — SO)Z (4.6)

Where, OTR [ML™2T~] is the oxygen transfer rate and K, g, [T7!] is the
oxygen mass transfer coefficient. The latter was set to 0.132 h~!, which corresponds
to the maximum value of those measured by Tyroller et al. (2010) in experimental
HSSF CWs. So.,, [M L73] is the dissolved oxygen concentration at saturation (which
is temperature dependent), So [M L~3] is the dissolved oxygen concentration at time

t, V is the volume of pore water in the wetland [L3] and A is the surface area of the
wetland [L?].

Biofilm sub-model

The macroscopic biofilm sub-model uses the expressions defined in CWM1 to simulate
the growth and development of the bacteria groups presented in Table 4.3.

Table 4.3: Bacterial groups considered in CWM1 (Langergraber et al., 2009a).

Componenet | Description Unit Phase
Xu Heterotrophic bacteria mgCOD - L~ | Solid
Xa Autotrophic nitrifying bacteria mgCOD - L™ | Solid
XrB Fermenting bacteria mgCOD - L~ [ Solid
XavB Acetotrophic methanogenic bacteria mgCOD - L~ | Solid
XasrB Acetotrophic sulphate reducing bacteria | mgCOD - L~ | Solid
Xsonr Sulphide oxidising bacteria mgCOD - L~ [ Solid

Functions 4.7 and 4.8 were added to the original formulation of CWMI1 to pre-
vent unlimited and unrealistic growth of bacteria groups as well as to avoid the
complexity of a dedicated micro-scale biofilm model. Function 4.7 takes into ac-
count biofilms self-exerted growth limitation due to diffusion-controlled transport of
substrates through its exterior boundary (Wanner et al., 2006).
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Mbio
1—-— 4.
< Mbio,mam > ( 7)

Where, Myio(= Mx,, +Mx, +Mx,p+Mx 5+ Mx spp + Mxgop) [M] is the
sum of the total microbial biomass present in a representative volume of granular
material and Mp;o_maz [M] is an empirical parameter representing the maximum mass
of microbial active biomass that can be maintained in the same volume. Function 4.8
represents the growth limitation exerted by the reduction of porosity as a consequence
of inert solids (X;¢) accumulation through time.

Where, Mx,, [M] is the actual mass of immobile X;. Biodegradable particulated
organic matter (Xg) is considered not to hinder the growth of microorganisms, as
bacteria can feed on it and replace the occupied volume with new cells. Despite the
accumulation of inert solids hinders the growth of new bacterial cells, their effect on
the hydraulic and hydrodynamic parameters of the granular media is not currently
considered.

The values of kinetic parameters of CWMI1 are interpolated to account for water
temperature variations with the expression recommended by Henze et al. (2000):

kery = kpcye @200 (4.9)
k(T1)
0 — M (4.10)
E P} '

Where k(T') is the value of the kinetic parameter at a certain temperature 7T,
k@o-c) is the value of the kinetic parameter at 20 °C and 77 and T, are the two
temperatures (in °C) at which k) is known.

Plants sub-model

Provided the knowledge gap still present in CWs plant science, this sub-model is
purposely the simplest of all of them. In the current model, plants roots are defined
to be homogeneously distributed only in the 30 cm top layer of the granular media
(Parr, 1990; Reed et al., 1995; Rousseau et al., 2005), and after the mixing zone. Two
different values (one for the cold season and one for the warm season) for oxygen
release and nutrients uptake rates by plant roots are included in the source/sink
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term (sc,) of Eq. 4.2 for Sp (dissolved Oxygen), Syp (ammonium and ammonia
nitrogen) and Syo (nitrite and nitrate nitrogen). The exact values of these rates
are detailed in Section 4.3.2. It is assumed that Sygy and Syo are taken up by
plants with the same preference. Note that the model does not explicitly consider
the growth of plants.

4.2.3 Calibration procedure

The hydraulic and hydrodynamic properties of CWs remain only constant for rela-
tively short periods of time (due to progressive pore volume reduction), and hence
the model was calibrated using only data of the first year of operation (May 2001
to May 2002). Note that at the present stage of model development, the hydraulic
and hydrodynamic properties of the domain are kept constant through time. In the
considered period 39 values for flow-rate, 32 values for water temperature, 31 values
for influent COD (28 for effluent COD) and 33 values for influent NHy — N (34 for
effluent NHy — N) were available, and were used as input data for the model.

The fractioning of the influent COD was made using recommended values for
primary effluents in ASMs (Henze et al., 2000). Accordingly, the proportion of each
fraction was defined to be: 15% Sr, 50% Xgm (0% Xg¢), 20% Sa, 5% S; and
10% Xrm (0% Xif). In order to reduce the impact of imposed initial conditions
on bacteria distribution and to recreate the startup situation, initial concentrations
of all bacterial groups and substrates were set to values very close to zero (0.001

mgCOD - L71).

Influent concentrations of the rest of components considered in CWM1 (except
for Sp) (Table 4.1), which were measured much less frequently in the field, were ex-
tracted from an experimental study carried out in the same pilot wetland by Garcia
et al. (2005). These concentrations correspond to mean values measured in all sam-
ples and are 0 mg- L™ for Syo and Sgag, and 72 mg-L™! for Sgos. Influent oxygen
concentration was set to zero, provided that DO concentration in primary treated
wastewater is usually very small (Tyroller et al., 2010). Influent concentrations of
bacteria groups are generally very small in comparison to the amount present within
the granular media and were consequently neglected.

The hydraulic and hydrodynamic parameters included in the hydraulic and
reactive-transport sub-models were calibrated by comparing simulated and experi-
mental tracer curves. These parameters are the hydraulic conductivity (K) (m-d~1)
and the longitudinal and transverse dispersivity coefficients (v, and o respectively)
(m) of the media. To reasonably match the tracer test response curve, the domain
was divided at a depth of 0.3 m in two areas with different hydraulic conductivities
and dispersivity values. The top layer of the domain was assumed to have lower
hydraulic conductivity and higher dispersivity than the bottom layer. This approach
is in agreement with studies that have observed preferential flow along the bottom

59



Chapter 4. Formulation and calibration of the BIO_PORE model

of wetlands, which are essentially a result of the higher density of belo-wground
plant biomass on the top layer of the granular media (Parr, 1990; Reed et al., 1995;
Rousseau et al., 2005; Knowles et al., 2011). Note that this approach was neces-
sary because by considering homogeneous domain properties, dispersion parameters
would have been overestimated (Mena et al., 2011). In fact, the trials performed
considering homogeneous domain properties did not render acceptable results.

The reactive-transport, biofilm and plants sub-models were calibrated together,
by comparing experimental and simulated efluent COD and N H;" concentrations
and using the hydraulic and hydrodynamic parameters obtained in the previous step.
As the premise of calibration was to simulate the behaviour of the pilot wetland since
the beginning of operation, the values of oy, ap and K of the deeper gravel layer,
which may resemble those of the clean gravel, were applied for the entire bed.

The empirical parameter of the reactive-transport sub-model targeted during
calibration was Agt. Adger Was set to zero, as for shear detachment to occur, flow-rates
must be high (Rittmann, 1982) and the pilot wetland was operated with hydraulic
loadings resulting in relatively low flow velocities.

Given that only a few studies on microbial distribution in CWs exist, microbial
activity in these systems is still largely based on assumption and circumstantial
evidence (Krasnits et al., 2009; Mburu et al., 2012; Ojeda et al., 2008). Therefore
the distribution of microbial biomass obtained with the model cannot be directly
calibrated and must be considered as an output of the model. Despite that, the
empirical parameters used by this sub-model (Ppiomat; Mpio.mar and the biokinetic
parameters affecting the growth rates of different bacteria) directly affect its output
concentrations, and therefore their values were also targeted during calibration.

Similarly, in the case of the plants sub-model, homogeneous below-ground plant
roots distribution was imposed, as experimental data on this aspect was not available;
hence calibration for this sub-model focused only on matching effluent concentrations
of COD and NHy — N by fine tuning nutrients uptake and oxygen leaching rates.

4.3 Results

4.3.1 Hydraulic and hydrodynamic calibration

Figure 4.3 shows how the model was able to match the experimental tracer curve
with an acceptable degree of accuracy. Note that so as to reproduce the dual-shape
of the experimental curve it was absolutely necessary to divide the domain in the
two layers with different hydraulic properties. Calibrated values of the hydraulic and
hydrodynamic parameters of the two layers are shown in Table 4.4.
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Figure 4.3: Experimental (dots) and simulated (continuous line) tracer curves.

Table 4.4: Values of the hydraulic and hydrodynamic parameters of the upper and bottom material
layers after calibration.

Parameter | Description Unit Upper layer | Bottom layer
ar Longitudinal dispersivity | m 0.25 0.05

o %l Transverse dispersivity m 0.022 0.005

K Hydraulic conductivity m-d 1| 22 50

4.3.2 Reactive-transport, biofilm and plants sub-models calibration

In order to fit the experimental effluent COD and NHy — N concentrations, some
biokinetic parameters at different temperatures missing in CWM1 (Langergraber
et al., 2009a) had to be included, and some of the available parameters had to be
adjusted (see Table 4.5).
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Table 4.5: List of modified parameters from those given in original CWM1 (Langergraber et al.,

2009a.).
. . Value Current
Parameter Description in CWM1 value Source
bre (10°C) Rate constant for lysis of Xpp at | - 0.07 Calibration
10°C [d™1]
pnamp (10°C) | Maximum growth rate for Xanp at | - 0.04 Batstone et al. (2002)
10°C [d™1] and  Langergraber
et al. (2009a)
bams (10°C) Rate constant for lysis of Xanp at | - 0.004 Batstone et al. (2002)
10°C [d™1] and  Langergraber
et al. (2009a)
pasgrs (10°C) | Maximum growth rate for Xasrp | - 0.009 Calibration
at 10°C [d™ 1]
basrs (10°C) | Rate constant for lysis of Xasrp at | - 0.006 Calibration
10°C [d™1]
usos (10°C) Maximum growth rate for Xsop at | - 2.64 Calibration
10°C [d 1)
bsos (10°C) Rate constant for lysis of Xsop at | - 0.075 Calibration
10°C [d7]
KsoasrB Saturation/inhibition coefficient of | 0.0002 0.002 Calibration
Xasrs for So at 20°C [mgCOD -
L™
KsoamB Saturation/inhibition coefficient of | 0.0002 0.002 Calibration
Xamp for So at 20°C' [mgCOD -
LY
Ksors Saturation/inhibition coefficient of | 0.2 0.002 Calibration
Xpg for So at 20°C [mgCOD-L™ 1)
Ksoa Saturation/inhibition coefficient of | 1/- 0.4/0.4 Henze et al. (2000)
X4 for So at 20/10°C [mgCOD -
LY
Ksnua Saturation/inhibition coefficient of | 0.5/5 1/1 Henze et al. (2000)
X 4 for Sy at 20/10°C [mgN-L™ 1)

The values of the maximum growth and lysis rates of methanogenic bacteria
(anvp and baprp) at 10°C were calculated by introducing the values of these pa-
rameters at 55°C and 35°C given by Batstone et al. (2002) in Eq. 4.10 and later
interpolating from the value given in CWMI1 at 20°C using Eq. 4.9. The other
missing values at 10°C' were brp, pasrB, bASrRB, itsop and bgop and were obtained
during calibration.

Saturation/inhibition coefficients of X asrp, Xanp and Xpp for So (KsoasrB,
Ksoams, KSOFB) at 20°C' were modified from CWMI1. Kgoasrp and KsoamB
were increased from 0.0002 mgCOD - L™ to 0.002 mgCOD - L™, as simulations
showed that almost negligible concentrations of dissolved oxygen (in the order of
10~ mgCOD - L_l) were hindering the growth of Xasrp and Xaj/5. On the other
hand, Korp was decreased from 0.2 mgCOD - L= to 0.002 mgCOD - L', as by
using the original value, fermenting bacteria (Xrp) grew even in the presence of
high oxygen concentrations. The values of the saturation/inhibition coefficients of
X4 for Sp and Sy (Ksoa and Kgnma) at 10 and 20°C were adjusted to the values
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given by Henze et al. (2000), which allowed a better fitting of experimental effluent
NH,; — N concentrations.

Figures 4.4 and 4.5 show that, despite the great variability of water tempera-
tures, flow-rates and influent pollutant concentrations during the first year of op-
eration of the pilot wetland, simulated efluent COD and N Hy — N concentrations
reasonably match the general trends of field measurements. The values of the cali-
brated parameters that led to these results are shown in Table 4.6.
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Figure 4.4: Experimental influent and effluent concentrations (triangles and dots) and simulated
concentrations with plant effects and variable water temperatures (black line), without
plant effects (green line) and at constant water temperature (20°C') (purple line) for a)
COD (mgCOD-L™ ') and b) NHy— N (mgNH,;—N-L™'). Note that the simulation at
a constant temperature of 20°C' did not reach the end of computation due to convergence
issues.
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Figure 4.5: Water temperatures (°C') and hydraulic loading rates (HLR) (mm -d~") during the first
year of operation of the pilot wetland.

Table 4.6: Values of the parameters targeted during calibration.

Parameter | Value | Unit

Myiomaax 0.093 | KgVS-m 3 of gravel
Pbiomat 15 KgVS . m73

Aatt 1.8 At

The systematic differences observed between simulated and measured effluent
COD and NH4 — N concentrations from May to July 2001 (Figure 4.4) are a con-
sequence of the low initial concentrations of bacteria and accumulated solids (Xgy
and X;s) imposed (0.001 mgCOD - L™, see Section 4.2.3) and also to the fact that
influent bacteria concentrations were neglected. As a matter of fact, until July 2001
small amounts of slowly biodegradable solids (Xgy, represented with a red line in
Figure 4.6) had accumulated in the bed, and thus the internal production of COD
from hydrolysis was proportionally small. With such small internal sources of COD
during this period, existing bacteria communities were able to degrade most incoming
COD (from wastewater) and the modelled wetland seemed to overperform the real
system (Figure 4.4a). Similarly, simulated concentrations of NHy — N fitted better
the experimental data from July 2001 (Figure 4.4b). It has to be noted though,
that if higher initial concentrations of bacteria and substrates had been given, the
internal equilibrium of bacteria distribution (and effluent pollutant concentrations)
would have taken shorter to reach.
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Figure 4.6: Simulated averaged concentration of accumulated Xg; in the whole domain (mgCOD -
L™') (red line) and simulated concentration of the COD (mgCOD - L") produced
strictly from hydrolysis and measured at the effluent (green line). Note that this is not
the real effluent of the system, but the concentration of an intermediate product that
would be present in the effluent if no further degradation occurred. Experimental (dots)
and simulated total efluent COD concentrations (black line) (mgCOD - L™!) are also
shown for comparison.

The model also indicates that the amount of particulate biodegradable COD
accumulated within the wetland (Xgy) clearly depends on water temperatures (see
Figures 4.5 and 4.6), and increases during cold months, when hydrolysis rates are
smaller than accumulation rates. This behaviour was already suggested by Huang
et al. (2005) in the same pilot wetland, who related the decrease of the system
efficiency during warm months to the internal production of acetic acid from the
accumulated organic particulate matter during the cold season.

The effect of water temperature on biokinetic reactions was equally important to
match effluent concentrations. When a constant water temperature of 20°C was con-
sidered (purple lines in Figure 4.4), simulated effluent concentrations deviated more
from experimental data and especially when the difference with the real temperature
was higher. When simulating at the real temperatures (black lines in Figsures 4.4a
and 4.4b), a significant decrease of bacteria growth rates occurred following the wa-
ter temperature drop from October 2001. Thus, from that month bacterial growth
rates at 20°C were much higher than with the real temperatures. This fact explains
why simulated effluent COD concentrations at 20°C' were clearly lower (Figure 4.4a).
The opposite occurs for efluent NH4 — N concentrations, in which case the removal
efficiency of this component at 20 °C decreases, thus resulting in an increase of its
effluent concentration from November 2001. This is a consequence of the competition
of nitrifying and heterotrophic bacteria (X4 and Xjy) for the available oxygen (So).
At low temperatures the difference between the maximum growth rates of these two
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bacteria groups is smaller than at higher temperatures. Therefore, when simulating
at 20°C X grows much faster than X 4 and consumes most of the available oxygen.
This effect progressively reduces the concentration of X 4 within the system, which
causes the observable increase in the efluent NH4 — N concentration.

Several simulations with different rates of nitrogen uptake and oxygen release
by plants roots were carried out until the best fitting between experimental and
simulated effluent COD and N H4— N concentrations was achieved. Figure 4.4 shows
that only slight improvements on the fitting of the two curves were obtained when
considering plant effects. The obtained oxygen release rate was 3 gO2-m~2d ™!, which
falls between the values reported by Mburu et al. (2012) (0.45—1.9 gO2-m~2d~!) and
those of Langergraber and Simunek (2012) (5 gO2-m~2d~!). Ammonium and nitrate
nitrogen (Syg and Sno respectively) uptake rates were found to be 0.2 gNo -m 241
for each component. This value is again higher than that reported by Mcbride and
Tanner (2000) (0.005gNom~2d~1) and in the range of those reported by Tanner
(2001) (0.20.3 gNo - m~2d~1). To better fit the experimental data, both the oxygen
release and nitrogen uptake rates were intentionally decreased by 40% when water
temperatures fell below 15°C' (from October 2001 to March 2002). This way, during
this period the oxygen release and nutrient uptake rates were 1.2 gOy - m™2d~!
and 0.08 gNy - m™2d~!, respectively, which still fall among the values reported in
literature. This approach is in agreement with the common understanding that plant
metabolism varies through the annual growth/senescence cycle (USEPA, 2000).

Figure 4.7 shows simulated effluent concentrations of the different fractions of
COD. Neither Xy, nor Xg,, was seen in the effluent as they were filtered and retained
within the system. It can be observed that most of the efluent COD (around 80%)
were fermentation products as acetate (S4), while soluble fermentable COD (Sr)
was only detected during the maturation period of the system. The rest of the
effluent COD was composed by Sy, which remained at the same concentration as in
the inflow.

In an experimental study in the same wetland, Huang et al. (2005) measured
effluent concentrations of volatile fatty acids (VFA) and concluded that acetic acid
was the major effluent intermediate component making up a third of the total effluent
BOD. Thus, despite in CWM1 S}, is not only acetate, but a sum of all fermentation
products, our model overestimates the effluent concentrations of this component.
This discrepancy may have its origin on the uncertainty on the fractioning of the
influent COD. However, it was not possible to calibrate the efluent concentrations of
the different fractions of COD, as only the organic matter degradation intermediates
were measured in the field.
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Figure 4.7: Simulated effluent concentrations of the different fractions of COD: soluble fermentable
COD (SF), fermentation products as acetate (Sa) and inert soluble COD (S;) (all
expressed in mgCOD - L™h)

Figure 4.8 shows the distribution and concentrations (in mgCOD - L™!) of the
different bacteria groups after 1 year of operation. The bacteria concentrations at
this time are in the lower range of those reported by Llorens et al. (2011b), Mburu
et al. (2012) and Langergraber and Simunek (2012) at different times. This Figure
also shows that X, Xrp and X g49rp were the dominant bacteria groups within the
system, while X4, Xapp and Xgop were found in lower concentrations.
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Figure 4.8: Longitudinal cross sections of the wetland (as in Figure 4.1) were the distribution of
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a) Heterotrophic (Xg), b) Autotrophic nitrifying (X4), ¢) Fermenting (Xrg), d) Ace-
totrophic methanogenic (Xamp), €) Acetotrophic sulphate reducing (Xasrp), and f)
Sulphide oxidising (Xsop) bacteria are shown after 1 year of operation. The key at the
right of each image indicate the concentration in mgCOD - L™'of each bacteria group,
and the values besides the black triangles represent the maximum concentration shown
in each image. Note that the images have been deformed to fit a reasonable size. The
x-axis of each image represents the longitudinal direction of the bed (from 0 to 10.3 m)
and the y-axis the depth of the bed (from 0 to 0.7 m). Also note that the coloured areas
of each image correspond to wetted areas, while the white areas correspond to areas
without water. Note that water level decreases from inlet to outlet.
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4.4 Discussion

4.4.1 Innovative features of the model

In the following lines the main innovative features of the model and their contribution
to modelling bacteria-induced water quality improvement in porous media, and more
specifically in CWs, are outlined.

Growth-limiting functions for biofilm

Based on the accepted idea that the treatment efficiency of CWs (and other ground-
water remediation techniques) is vastly dependant on bacterial communities (Kras-
nits et al., 2009), in the present model special attention was put into properly sim-
ulating reactive-transport and biofilm sub-models. Moreover, long-term simulations
were pursued to be able to observe the effect of changes in bacteria concentrations
within the wetland through time on the efluent pollutant concentrations.

During the initial implementations of CWM1 into COMSOL Multiphysics™ at
the beginning of this research, we observed that unrealistically high bacteria concen-
trations were reached near the inlet section for very short simulation times. This
behaviour resulted from the fact that near the inlet section, all wastewater con-
stituents are at their maximum concentrations at all times; under such favourable
conditions bacteria thrive and their growth-rate rapidly becomes exponential. In
this situation, all influent COD is consumed close to the inlet section and no effluent
COD is detected.

This, in fact, is a mathematical artifact that does not occur in real wetlands
(as several growth-limitations apply). Despite this issue is inherent of CWMI1’s
formulation, none of the published works based on this model (Langergraber and
Simunek, 2012; Llorens et al., 2011a,b; Mburu et al., 2012) referred to it in their
respective discussions.

In the model by Llorens et al. (2011a,b) bacteria growth was not considered
and their simulations were of quasi-static nature, which explains why they did not
encounter this issue. On the other hand, the experimental data used by Mburu et al.
(2012) to calibrate their model came from 16 batch-operated mesocosms with an in-
cubation period of 20 days after each loading. Their results show that the substrates
were rapidly consumed at the beginning of each incubation period, and thus the
scarcity of substrates became the limiting factor for bacterial growth from approxi-
mately half of the incubation time on. Moreover, their model was zero-dimensional,
which prevented the development of any bacteria gradients within the domain (inlet
to outlet). Therefore, due to the intrinsic characteristics of their experimental set-up,
the model could safely be applied without having to deal with unrealistic bacteria
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growth. Finally, in the case of Langergraber and Simunek (2012) their experimental
system was the same as the one used in the current work. However in their simula-
tions they considered short time-frames (maximum simulation time of 50 days) and
low organic matter influent concentrations (Xg = 115 mgCOD - L1, and 0 mg- L~!
for the other influent organic components considered in CWM1). Although under
these particular conditions the unrealistic growth of bacteria was apparently avoided,
they did report that in just 50 days all biodegradable COD was degraded in half of
the flow distance. Only in a last simulation they did consider real influent concen-
trations (scenario 5 in Llorens et al. (2011b)), but unfortunately no reference was
made to the simulation time used to obtain the discussed results.

To overcome the inability of CWMI1 to provide realistic bacteria concentrations
when substrate concentrations are high, a theoretic reformulation of the model and
its corresponding mathematical description were needed. In this new formulation one
can imagine every pore of the granular media of a SSF CWs as a micro-reactor in
which bacterial growth is limited by both substrate and space availability. Moreover,
in the pores, bacteria form biofilms, which have their own specific growth limitations
in addition to those of direct availability (Zysset et al., 1994). To mathematically
describe these growth limitations, two functions were utilized: one for the self-exerted
growth limitation of biofilm (Eq. 4.7) and another for the space limitation (Eq. 4.8).
These functions, not only prevent unrealistic growth of microorganisms, but also
enable to account for the effects of the accumulation of inert solids in the porosity
on bacteria distribution.

Eq. 4.7 represents the self-exerted growth limitation of biofilm. It is generally
assumed that when the concentration of microbial biomass (Mjy;,) reaches a certain
value (Mpio_maz), the availability of substrates is thereafter limited by the diffusivity
of the biofilm exterior boundary (Chen-Charpentier, 1999; Wanner et al., 2006).
Indeed, bacteria near the surface of the granular media particles get less substrate
than the bacteria near the film-water interface, and hence, the former grow slower
than the latter (Tiwari et al., 2001).

The mathematical representation of this limitation, which has been used in the
present model, was firstly proposed by Zysset et al. (1994) and later used by other
authors (Brovelli et al., 2009b; Kildsgaard and Engesgaard, 2001; Stewart and Kim,
2004). These same authors also discuss that the value of Mpy;y_ maqs is generally smaller
than porosity’s capacity. This fact suggests that Eq. 4.7 does not consider growth
limitations from decreasing pore volume, and for this reason we included a specific
function for pore volume reduction (Eq. 4.8).

In the current model pore volume reduction is exclusively due to inert solids
(X7) accumulation. Inorganic solids contained in wastewater and those produced
from disintegration of the granular media are not taken into account at the present
stage of development.
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The value of the empirical parameter Mp;, inae in Eq. 4.7 may vary for different
wetlands as it depends on the biofilm characteristics (e.g. density, thickness), which
in turn depend on granular media properties, wastewater composition and water
flow, among others. Eq. 4.8 includes the parameter Mc,,, the value of which is
found by multiplying the pore volume (¢) by the density of biomat (Ppiomar). In the
present work, the value of ppjomar Was obtained during calibration and was found to be
15 kgV'S - m™3. With this density, the value of Mcap = Pviomat @ = 6 kg of biomass
for every cubic meter of granular material was obtained. Ppiomar iS an empirical
parameter defined in this study and thus no other values are available in literature
for comparison. The impact of the value of biomat density in the results is limited
at the current stage of development of the model, as it only affects the maximum
concentration of accumulated Xg; and thus the maximum rate of hydrolysis. Lower
values of biomat density will result in slower rates of hydrolysis, whereas higher
values for this parameter will result (if enough hydrolysing bacteria are present) in
higher concentrations of soluble COD internally produced from this process.

Egs. 4.7 and 4.8 are multiplied by the maximum growth-rate of each bacteria
group instead of being summed up, since the accumulation of X not only reduces
porosity but also hinders the transport of substrates through the media. Therefore
their combined effect must be stronger than when acting separately.

Unfortunately, no comparison was possible between simulation results obtained
with and without Eqs. 4.7 and 4.8 since, for the second case, the high bacteria
concentration gradients reached within the domain caused convergence issues after
short simulation times. Therefore, the combined effect of Eqs. 4.7 and 4.8 was the
key to obtain long-term results.

Other innovations

Apart from the two growth-limiting functions described in the previous section, the
current model also includes innovative features in the hydraulic and in the transport
sub-models. The first one is used to prevent overestimations of the extent of bacte-
ria distribution within the domain when the unsaturated areas present within SSF
CWs are omitted. Within these systems the water table level varies through time
as a consequence of changes in flow rate, precipitation and evapotranspiration. The
growth of bacteria in CWs requires the presence of water and if no distinction is
made between wetted and dry areas, simulated bacteria colonization can be overesti-
mated. From the available models implementing CWM1, three approaches are used
to describe the hydraulics of wetlands. Langergraber and Simunek (2012) consider
unsaturated flow conditions by means of the Richards equation, whereas Mburu et al.
(2012) use the continuously stirred-tank reactors approach. On the other hand, the
hydraulic description used by Llorens et al. (2011a,b) is similar to the one used in
the current work as both consider saturated flow conditions by means of the Darcy
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equation. However, the current model adds a new functionality that continuously
calculates the location of the water table within the wetland, based on the applied
flow-rates, and adjusts the top boundary of the domain (boundary 4 in Figure 4.1)
to the wetted/dry interface at every time-step. This way, when running the model,
bacteria growth is conditioned by the presence/absence of water in a similar way
as if unsaturated flow equations had been used (as in Langergraber and Simunek
(2012)).

The other innovative feature allows a simple description of attachment and de-
tachment of particulate COD, although future refinement will be needed in prospec-
tive versions. So far none of the models implementing CWM1 are able to simulate
these two processes. Both in Langergraber and Simunek (2012) and in Llorens et al.
(2011a,b), particulate matter compounds are considered only in the aqueous phase.
On the other hand, in Mburu et al. (2012) the simplistic hydraulic description pre-
vents simulating attachment and detachment. The implementation of these two
processes in the current model firstly required changes in CWM1s formulation de-
tailed in Table 4.2 in order to divide Xg and X into mobile and immobile fractions
each.

Analytical expressions for the attachment coefficient exist, which depend on
the flow velocity, the porous media grain diameter, porosity and collector efficiency
(Hornberger et al., 1992; Tien et al., 1979), and consequently are different for each
wetland. For the sake of simplicity, in the current model A,y (Eq. (4.4)) was obtained
during calibration by imposing that all influent particulate matter had to be retained
within the bed and would not be present in the outlet. In addition, the effective rate
of attachment was defined to become zero once the pore space is fully occupied. De-
spite this strategy may appear contradictory and may not be able to reproduce the
solids accumulation pattern as described by Knowles et al. (2011), it was adopted
because, at present stage, changes in hydraulic conductivity caused by solids accu-
mulation are not currently being computed. Therefore wastewater circulates through
the same paths continuously and as a result, the inlet section is responsible for fil-
tration throughout the whole simulation time. Unless this limit had been included,
accumulated solids would reach unrealistically high concentrations and exceed pore
capacity. Once the changes of the hydraulic and hydrodynamic properties of the
media caused by the accumulation of solids can be computed, this workaround will
not be required anymore.

On the other hand, shear detachment of accumulated solids is only a dominant
process when high pore velocities exist. The experimental wetland operated with
low flow-rates (20, 36 and 45 mm - d~!) and although the equation for describing
detachment is included (Eq. 4.6), A\jer was set to zero during calibration.
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4.4.2 Current limitations of the model and future developments

Despite the advances proposed in the current model, some issues are still to be
addressed in upcoming versions.

Given that plants science and their relation to bacteria in CWs is still vaguely
understood, the plants sub-model was kept deliberately simple. Consequently neither
plant growth nor transpiration is considered and only oxygen release and nutrients
uptake through their roots are taken into account.

Similarly, the effects of plant roots development, bacteria growth and solids
accumulation on the hydrodynamics of wetlands are currently not considered in the
model. This simplification may cause some disagreements between the model output
and field observations, as these three processes have been reported to significantly
change the hydraulic and hydrodynamic properties of the granular media (Knowles
et al., 2011; Pedescoll et al., 2011; Sharp et al., 1999). However, omitting these
effects at the current stage of development does not represent an oversimplification,
as great changes in these factors develop slowly with a time-scale of several years.
Future versions of the model will include these effects with the inclusion of a clogging
sub-model (see Chapter 8).

It is also worth mentioning that neither attachment nor detachment processes
affecting biomass are simulated. These two processes, as well as the transport of
detached biomass may become important for simulating the total amount of biomass
and its spatial distribution (Thullner, 2009). Biomass detachment has been subjected
to some debate in literature. Peyton and Characklis (1993) suggested that the large
number of existing methods indicates a failure of any one method to model the
detachment rate over a broad range of conditions (Cooke et al., 2005). Similarly,
Clement et al. (1997) attribute the difficulty to compute detachment rates to the
lack of simple analytical expressions to model the underlying phenomena causing
detachment. According to Rittmann (1982) detachment is controlled by fluid shear
stress acting on the biomass surface. Accordingly, biofilm fragments become detached
if they are exposed to shear stress higher than a critical value (Kapellos et al.,
2007). Hence, the rate of biofilm shear increases as the flow rate increases and/or
as porosity decreases. However, Rittmann (1982) also states that the shearing stress
is not a significant detachment mechanism in a porous medium whose particles are
of the size of gravel, as in the case of CWs. Moreover, using the expression from
Rittmann (1982), Thullner et al. (2004) found that biomass detachment rate in their
experiment was several orders of magnitude smaller than the assumed biomass decay
rate, and thus detachment was neglected. Following these observations, and due
to the impossibility to measure detachment rates in the pilot wetland (which was
decommissioned in 2006), detachment processes were neglected in the current work.

On the other hand, influent bacteria concentrations were assumed to be negli-
gible (see Section 4.2.3), and as detachment is not considered, attachment processes
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affecting biomass will not occur and have not been included.

Neither evapotranspiration nor rainfall is currently considered in the model. Al-
though in this work these two processes did not seem to substantially affect the
results, this simplification may have a significant impact on the effluent pollutant
concentrations, as they play an important role on the water balance of CWs (Chaz-
arenc, 2003). However, these processes can be easily included in further versions of
the model.

For a complete determination of the main removal mechanisms in CWs and for
a more accurate calibration of the model, more continuous and specific experimental
data on influent and effluent concentrations of the different components considered
in CWMI1 are required. Also, extensive experimental data from other systems will
be needed to validate the present model. Finally, we acknowledge that the great
amount of parameters used by CWMI1, together with the new parameters included
in its current implementation, makes the use of uncertainty and sensitivity analysis
techniques a necessity. Although these type of studies can be easily performed using
COMSOL Multiphysics™, the great computational power required has rendered this
study impossible with the available hardware.

4.5 Conclusions

In this chapter we have presented a new model to describe the fate and transport of
water pollutants in porous media. To this end, fluid flow and transport equations
together with the biokinetic model Constructed Wetlands Model number 1 have
been implemented in COMSOL Multiphysics™. The model has been calibrated
comparing simulated and experimental effluent COD and NHy — N concentrations
for a period of 1 year.

Results indicate that the model was able to accurately reproduce the hydraulic
and hydrodynamic behaviour of the pilot wetland. Simulated efluent COD and
NH,; — N concentrations showed also a reasonably good fit to the measured con-
centrations during the first year of operation. Simulation results also show that
by considering measured water temperatures, the experimental data can be better
matched. On the other hand, the inclusion of plant roots oxygen release and nutrients
uptake did not cause significant differences in the results.

The most notable advantage of BIO_PORE over similar models is that it can be
used to predict the functioning of constructed wetlands in long-term scenarios. This
was achieved by including two bacterial growth-limiting functions in the biofilm sub-
model. The first function prevents unrealistic growth of biomass in areas with high
substrate concentrations, while the second one accounts for the effects on bacteria
growth of porosity reduction due to the accumulation of inert solids. These two func-
tions facilitate convergence of the model by preventing high bacteria concentration
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gradients within the domain, which in turn allows extending simulations for longer
time-scales.

Although in the present work the BIO_PORE model was calibrated for con-
structed wetlands, with few modifications it can be applied to simulate any kind of
subsurface environment with microbial biofilm.

We also envisage that to accelerate the development of these powerful models
the use of sophisticated computational methods (e.g. cluster computing), available
in COMSOL Multiphysics™, could be of invaluable help.
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CHAPTER b

Effect of Mc,p and Myio_max On simulation outputs

This chapter is based on the article:

e Samsé, R., Blazquez, J., Agullé, N., Grau, J., Torres, R., Garcia, J., 2014.
Effect of bacteria density and accumulated inert solids on the effluent pollu-
tant concentrations predicted by a Constructed Wetlands model. Ecological
Engineering (submitted)

5.1 Introduction

Constructed Wetlands (CWs) are wastewater treatment systems usually applied for
communities of less than 2000PE. This technology provides comparable treatment
efficiencies with significantly lower energy and maintenance requirements than con-
ventional technologies (Garcia et al., 2010; Puigagut et al., 2007).

However, and due to the diversity and complexity of the physic-chemical and bi-
ological processes occurring within CWs, their functioning is far less well understood
than that of activated sludge systems. To bridge this knowledge gap, several math-
ematical models have been developed in recent years to simulate CWs functioning
(Meyer et al., 2014; Samsé et al., 2014b).

The BIO_PORE model is one of such models and was developed in COM-
SOL Multiphysics™, a commercial finite elements (FE) simulation platform (Meyer
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et al., 2014; Samsé and Garcia, 2014a; Samsé et al., 2014b; Samsé and Garcia,
2013a,b).

In BIO_PORE two logistic functions were added to the original formulation of
CWMI1, which involve two new empirical parameters Mpio maz and Meqp (Samséd
and Garcia, 2013a). These two parameters represent, respectively, the maximum
microbial biomass (carrying capacity) and the maximum amount of particulate solids
that can be maintained in a representative volume of granular material. The function
involving Mp;o mar has already been used in several bioclogging studies (Brovelli
et al., 2009b) and adds a negative feedback term to the growth of all bacteria groups
to prevent their unlimited growth in areas where substrates concentrations are high.
On the other hand, the expression involving parameter M.y, also adds a negative
feedback term to the growth equations, but in this case it decreases the growth rate
of bacteria due to the progressive accumulation of inert solids in the pore space of
the granular media (Samsé and Garcia, 2014a). Our previous studies proved the
importance of these two functions in order to obtain realistic bacteria concentrations
within the granular media (Samsé and Garcia, 2014a; Samsé and Garcia, 2013a).
As bacterial communities play a major role on the treatment of wastewater in CWs,
these two functions also improved the model predictions regarding efluent pollutant
concentrations.

However, in these previous studies a sensitivity analysis of parameters Mp;o_maz
and M., was not carried out and so their effect on the model output could not be
evaluated. A parameter with high sensitivity is one for which small changes in its
value produce large variation in a certain output of the model. On the contrary, low
sensitivity parameters are those which do not affect model outputs even for large
changes on their value. In this context, the main objective of the current chapter
was to evaluate the sensitivity of My;, maz and Mq, on the effluent pollutant concen-
trations of COD and ammonia and ammonium nitrogen predicted by the model. To
that end, the BIO_PORE model was used with the same domain, parameter values
and initial and boundary conditions than in Chapter 4 in which the model was cali-
brated (Samsé and Garcia, 2013a). Due to the large computational cost associated
with solving the model for a simulated period of an entire year of operation of a wet-
land (up to 16 hours for dense finite elements (FE) meshes with a current desktop
computer), and due to the large number of simulations needed for the current and
for further studies, a previous mesh optimization procedure was carried out. The
objective of this part of the study was to find the FE mesh which would provide the
best compromise between numerical solutions accuracy and computational cost.

The two empirical parameters discussed in this chapter are essential to obtain
realistic bacteria concentrations when simulating CWs and this study shows how
they affect the effluent pollutant concentrations predicted by the BIO_PORE model.
In this chapter we also exploited the batch and parallel computation functionalities
of COMSOL Multiphysics™ on a high-end multi-processor computer which is easily
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justified by the large number of simulations performed.

5.2 Methods

The local parameter sensitivity analysis and the mesh optimization procedure were
performed using the exact same domain, parameter values and boundary and initial
conditions as in Chapter 4.

All simulations performed in this study were run for the entire first year of
operation of a pilot wetland.

5.2.1 Mesh Optimization

After a previous detailed study with simplified versions of the model (progressively
increasing the number of functional bacterial groups)(results not shown), 5 triangular
meshes of different elements densities (Table 5.1) were chosen to perform the mesh
optimization of the complete model (with all bacteria groups of CWM1). Among
those meshes, My 1 was the coarsest, Mg 925 the most dense and Mpro_porr was the
one used in Chapter 4. Mpro_pore was the only mesh with a predefined numbers of
elements at boundaries 3 (20 elements), 4 (550 elements) and 5 (7 elements), which
were reckoned as the most critical ones numerically (large concentration gradients).

Table 5.1: Meshes used in the mesh optimization procedure.

Mesh Maximum element size (m) | Number of elements
Mo .1 0.1 1860
Mo.o04 0.04 11446
Mpro-rorE 0.05 * 19851
Mo.o3 0.03 20064
Mpo.025 0.025 28884

“Note that Mpro— pore was built with a maximum element size of 0.05 m but fixing the number
of elements at boundaries 3 (20 elements), 4 (550 elements) and 5 (7 elements), and its total number
of elements is very similar to that of My, o3.

Simulated effluent concentrations of COD (sum of Sg, Sa, S, Xsm and Xi,)
and Syg, as well as the simulation time were recorded for all different meshes. Al-
though the simulated effluent concentrations of the rest of model components could
have also been studied, only COD and Syp were used for the sake of brevity and
because these are the two most widely used water quality indicators. The Sum of
Squared Errors (SSE) for the effluent COD and Sy g curves for all different meshes
were calculated using the coarser mesh (M) 1) as a reference, to showcase the progres-
sive accuracy gains with increasing mesh densities. The optimal mesh corresponds to
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that after which any further increments on the number of elements does not produce
notable improvements on the numerical accuracy of the solution (SSE remains fairly
constant). Moreover, for evident practical reasons, the optimal mesh is also that
with the shortest computational cost/time.

5.2.2 Parameter sensitivity
The sensitivity of My maez and M., was studied by giving three different values to

each of the two parameters (Table 5.2) and running a different simulation for each
different pair (9 simulations in total) (Table 5.3).

Table 5.2: Values for Mcqp and Myio_maz-

Value Meap(kgV'S -m™3) | Myio_maz(kgV'S -m™3)
Minimum 5 0.1
Intermediate 10 0.3
Maximum 15 0.5

Table 5.3: Combinations of Mcqp and Mpio_mae values for the different simulations carried out for
the local sensitivity analysis.

Parameter | Mo, (kgV S -m™>) | Myiomaz(kgVS-m™>)
S1 15 0.5
So 15 0.3
S3 15 0.1
Sy 10 0.5
Ss 10 0.3
Se 10 0.1
S7 5 0.5
Ss 5 0.3
So 5 0.1

The reason for selection the values of Table 5.2 are discussed later in the text.
Notice that the range of variability of M., was smaller than that of My, ;.- In the
first case, the highest value of M4, was 3 times the smallest, whereas for My;, maz
the highest was 5 times the smallest.

The sensitivity of the two parameters was determined qualitatively by comparing
the efluent concentrations of COD among them with the 9 different parameter pairs.
The same is done for the simulated effluent concentrations of Syg. A qualitative
comparison was made between the effluent concentrations of COD and Sy g obtained
with each parameter pair.

The mesh used to execute all these processes was the optimum mesh obtained
in the previous step (Section 5.2.1).
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5.2.3 Launching simulations and hardware specifications

In this chapter two different computers were used. For the mesh optimization pro-
cedure, a desktop PC was used. This computer features an Intel® Xenon® E5-1620
processor with 4 cores (8 threads) running at a frequency of 3600GHz and 16 GB of
RAM memory. The Linux kernel and COMSOL Multiphysics™ versions installed
on this computer were 3.2.0-56 and v4.3b, respectively.

On the other hand, for the sensitivity analysis the cluster functionalities of
COMSOL Multiphysics™ were used to run several simulations in parallel on a high-
end multi-processor computer. This computer consisted of 4 CPUs AMD OpteronTM
6140 with 8 cores each (2.6 GHz), a total of 64 GB of RAM memory and run
Linux Kernel 2.6.38. The COMSOL Multiphysics™ version installed in this machine
was v4.2a. Since this machine was shared with other researchers, only 3 parallel
simulations (using 4 CPU cores each) were launched at a time (see Figure 5.1).
Therefore only 12 cores, out of the 32 available, were utilized. A bash script was
used to automatically launch each different batch of 3 parallel simulations without
any intervention.

A . e
Batch 3 | S7.mph S8.mph - S9.mph
Batch 2 | S4.mph S5.mph S6.mph
Batch 1 | S1.mph S2.mph S3.mph
CPU 1 CPU 2

Figure 5.1: CPU and processor utilisation in the high-end multi-processor computer during the sen-
sitivity analysis. Model files built in COMSOL Multiphysics™ have mph extension.
Three batches of 3 parallel simulations, each with a different Mcap — Mpio_mae Dair (see
Table 5.3), were launched. Each simulation took up only 4 processor cores. All cores of
CPU1 were used, while CPU2 was only loaded to a 50%.
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5.3 Results and discussion

5.3.1 Mesh optimization

In the current study the focus was not on how well or bad simulated efluent con-
centrations fit experimental data, since that discussion was already made in Chapter
4, but rather on the comparison of the simulation results obtained with different
meshes. However, note that the poor fitting of the simulated efluent COD and
Snym with experimental data at the beginning of all simulations (Figures 5.2 and
5.3), was due to the fact that initial bacteria and accumulated solids concentrations
were underestimated. However, after around 70 days of simulated time, the fitting
improved.

Figures 5.2 and 5.3 show that the effluent pollutant concentrations of COD and
Snu obtained with the different meshes (Table 5.1) are visually different in some
cases.

My, — My —
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My poRE — Measured data 4
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Figure 5.2: Simulated effluent COD concentrations obtained from the mesh optimization procedure
with the meshes of Table 5.1.

Finer FE meshes provide more accurate numerical results. Thus in our study,
mesh My go5, with a maximum element size of 2,5 ¢m and a total of 28884 elements
is the one giving more accurate results. Despite even better results could have been
obtained by further refining the mesh, the total simulation time of My 25 (16 hours
and 18 minutes) was already seen as too large for practical reasons. Moreover, refining
the mesh to such an extent would only make sense if field data, which is given as
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model input and later used to compare with simulated effluent concentrations, had
been gathered in higher frequency.

My, — My —
Moo — Mypps ——
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Figure 5.3: Simulated efluent Sy u concentrations obtained from the mesh optimization procedure
with the meshes of Table 5.1.

Figure 5.3 clearly shows that almost identical results were obtained for simulated
effluent Sy g concentrations with meshes Mg;o_pore and My g3 which account for
c.a. 30% less elements than My gos. That is also confirmed with the tendency of
the SSE for Syg (Figure 5.5), which shows clear signs of stabilization already with
meshes Mpro_porr and Mygs. Therefore, further mesh refinements would not
improve the description of the efluent Syp concentrations. In the case of COD
(Figure 5.2), although the differences between the curves obtained with different
meshes were higher than for Sy g, and the SSE still did not show signs of stabilization
(Figure 5.4), the maximum difference of effluent COD concentrations obtained with
meshes Mpro—pore and My g5 was lower than 15 mgCOD - L™!, which was only
around 8% the maximum effluent COD concentration simulated with mesh Mg g25.
Moreover, note that the reference mesh My ; was already fine (1860 elements) and
thus reaching SSE stability is more difficult than if a coarser mesh had been used as
a reference to calculate SSE.
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SSE

Figure 5.4:
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Sum of Squared Errors (SSE) (left y-axes) and simulation time (right y-axes) for the
simulated effluent COD concentrations obtained with meshes of different elements density
(see Table 5.2). The blue line shows the positive linear relationship (R* = 0.97) between
the number of triangular elements of the mesh and the simulation time. The dotted red
line was drawn to show that the SSE does not tend to a constant value with increasing
number of elements. Notice that this line was drawn neglecting the SSE of Mpro—prorE
since this mesh was built with a pre-set number of elements in specific domain boundaries.
Mesh My 1 was also neglected, since it was the reference mesh, from which all SSE plotted
in this figure were calculated.
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SSE

Figure 5.5:
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Sum of Squared Errors (SSE) (left y-axes) and simulation time (right y-axes) for the
simulated effluent Sn g concentrations obtained with meshes of different elements density
(see Table 5.2). The R? of the linear regression of the Simulation time is the same as in
Figure 5.4, since all data shown in both figures was obtained from the same simulations
(each focusing on different model outputs). The dotted red line was drawn to show that
for Sy the SSE tends to a constant value with increasing number of elements. As in
the previous figure, the SSE of meshes Mpro—prore and My.1 were neglected to draw

this line.

Table 5.4 shows that, in general, the simulation time increased with increas-
ing mesh densities. Mpro_pore was the exception, and although it had 213 less
elements than My 3 the former took 25 minutes more than the later to reach the
final solution. The most likely reason for that is that the mesh element quality of
Mpro_pore was lower than that of My o3 and thus the solver algorithm required a
few more iterations at every time step to reach a solution. In fact, Mpro_porgp was
the one with the second largest maximum element size (0.05 c¢m), only after My,
but in contrast it was the mesh with the highest elements densities in boundaries
3, 4 and 5, which were the ones accounting for the highest concentration gradients.
The relation between number of elements and simulated time can also be observed in
Figures 5.4 and 5.5, and shows that a linear relationship (R? = 0.97) exists between

the two.
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Table 5.4: Number of elements and simulation time for each of the meshes used for mesh optimiza-

tion.
Mesh Number of triangular elements | Simulation time (hours)
Mo 1860 1.04
Mo.o04 11446 5.41
Mpro-prore 19851 9.96 *
Mo.03 20064 9.53
Mo.025 28884 16.30

“Notice that although Mpro—_prorr had fewer elements than My o3 its simulation time was
slightly higher. Notice as well that Mpro—prore was the only one of the selected meshes with
higher elements density in boundaries 3, 4 and 5 (see Figure 4.1).

According to these results, the mesh with a better compromise between nu-
merical accuracy and simulation time was My 3. The results obtained with mesh
Mpro-porr were almost as good as those obtained with My g3 (see Figures 5.2,
5.3, 5.4 and 5.5), and since mesh Mpro—pore had already been used successfully in
Chapter 4, it was chosen as the one to be used for the sensitivity analysis.

5.3.2 Parameter sensitivity

Despite BIO_PORE includes more than 50 parameters, only the sensitivity of Mpy;o maz
and M., was analysed because they are two new additions to the formulation of
CWMI1. Moreover, the sensitivity of the different parameters of CWM1 has already
been studied in other works (Mburu et al., 2012). Note that the type of analysis car-
ried out in this chapter is a local sensitivity analysis, which only addresses sensitivity
relative to the point estimates chosen and not for the entire parameter distribution.

The function involving Mp;s mas (function 4.7 in Chapter 4) limits the maximum
concentration of bacteria that each pore of the granular media can hold (carrying
capacity) by stopping the growth of bacteria once My, reaches the value of My;o maz-
The second function (4.8) works in the same way, but Mg, corresponds to the max-
imum amount of particulate solids (Xgy and Xjs) porosity can hold, and bacterial
growth stops once MX]f = Mcap.

The values given to parameters Mp;, maz Were chosen based on our previous
experiences with the BIO_PORE model, since no literature values for these param-
eters exist for CWs. In fact the intermediate value of this parameter used in the
current chapter was that obtained from the calibration of the model in Chapter 4,
and the other two were chosen to be at a sound distance from the first. On the other
hand, the amount of accumulated solids in horizontal subsurface flow CWs presents a
great variability depending on the COD and TSS loading rates and on the turn-over
rates. Measurements carried out by Caselles-Osorio et al. (2007) in 6 full-scale hor-
izontal subsurface flow CWs showed that accumulated solids ranged from as low as
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2.3 kgV.S-m~2 up to 57.3 kgV'.S-m~2 (between around 6 and 162 kgCOD-m ™3, con-
sidering an average wetland depth of 0.5 m and that 1 gV'S = 1.42 gCOD (Samsé and
Garcia, 2014a)). In this study we selected the values of M4, to be in the lower part

of that range, since the gravel size of the pilot system was quite fine (Dgy = 3.5 mm
and C,, = 1.7).

Results indicate that My, mas and M., are both very sensitive parameters
since they had a large impact on the simulated concentrations of COD (Figure 5.6)
and Syp (Figure 5.7). At the beginning of all simulations, effluent concentrations
obtained with the different pairs of My;p maz and M.q, were very similar, and it
was not until around simulated day 60 that they started diverging. Figures 5.6
and 5.7 show that both for COD and Syp the most sensitive parameter was My,
and the higher its value, and thus the higher the capacity of porosity to retain
particulate solids (X;¢ and Xgy), the lower the efluent concentrations of the two
pollutants. A possible reasoning for this behaviour is that for high values of M,
the amount of slowly biodegradable particulate COD (Xgy) that can be reached in
the granular media is much higher than that the maximum bacteria biomass present
in the same location (which is limited by the value of Mp;o_maz) can biodegrade, and
so they accumulate. Therefore this accumulated organic matter, which also contains
a fraction of organic nitrogen, is retained within the system and does not add to the
concentrations of COD and Sypy measured at the outlet.
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Figure 5.6: Effluent COD concentrations obtained with the combinations of Mpio_maz and Meap
shown in Table 5.3.
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Figure 5.7: Effluent Syu concentrations obtained with the combinations of Mpiomaez and Meap
shown in Table 5.3.

On the other hand, although perturbations of the Mp;, maz value produced ob-
servable changes in the efluent COD and Sy g concentrations, these changes were
smaller than those produced by changing the value of M.,,. Regarding the efflu-
ent COD concentrations (Figure 5.6), for M, = 15 kgV'§ - m~3 and Meop =
10 kgVS - m™3, the higher the value of Mpip mae the higher the effluent concen-
trations of COD. This can be explained by the fact that the higher the maximum
concentrations of biomass in a specific point of the granular media, the larger pro-
portion of the accumulated Xg; can be hydrolysed and thus released through the
outlet (in the form of Sg, S, Sy and Syp) increasing the effluent concentrations of
COD and Sypg. On the contrary, for Me, = 5 kgV'S-m ™3, the tendency is different
and the effluent concentrations are higher for Mo maz = 0.3 kgV'S - m™3, interme-
diate for Mpyio mae = 0.1 Kg-m™3 and the lowest for Mp;p mez = 0.5 KgV S -m™3.
Therefore no clear pattern can be extracted for My, mae When the values of M.,
are relatively small.

Regarding Sy (Figure 5.7), for Me, = 15 kgV'S - m™3, the effluent concen-
trations of this component are almost the same regardless of the value of Mp;o_maz-
For the intermediate value of M., (10 kgV'S - m™3), Myiomaz = 0.5 kgV'S - m™3
gives the highest effluent concentration, while for My, maz = 0.3 kgV'S - m™3 and
Myio maz = 0.1 kgV'S - m™3 the effluent concentrations are almost identical. For the
lowest value of Meq, (5 kgV'S - m™3) there are also differences between the curves,
but in this case Mpip maz = 0.1 kgV'S - m™3 gives the lowest effluent concentrations
of Sy g while Myip maz = 0.5 kgV'S-m ™2 and Mpip maz = 0.3 kgV'.S-m ™3 give almost
the same results.

Therefore, contrarily to what happened for M4, for My;o maz although some
patterns can be detected for the effluent COD concentrations, there is not a clear
distinguishable tendency regarding the effluent concentrations of Sy g obtained with
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the different values of this parameter. However, the higher the value of My, the
larger the difference between the effluent concentrations obtained with the different
values of My, maz-

5.4 Conclusions

In this chapter we performed a mesh optimization procedure in order to reduce
the simulation time (while maintaining similar numerical accuracy) for subsequent
simulations, and we also performed a local sensitivity analysis of parameters M.y,
and Mbio,ma:v-

Results of the mesh optimization procedure indicated that for homogeneous
meshes, a positive linear relationship existed between the number of elements and
simulated time. The best compromise between numerical accuracy and computa-
tional cost was obtained with meshes My o3 and Mpro—pore. MpBro—porg was
selected as the optimal mesh to carry out the sensitivity analysis.

Despite the range of values given to M4, was smaller than that given to Mo maaz»
the former parameter proved to be the most sensitive one, and the higher its value the
lower the simulated effluent concentrations of COD and Sypg of the wetland. This
was due to the fact that for larger values of M,,, more slowly biodegradable solids
can accumulate in a specific point, and if there is not enough bacteria to hydrolyse
them, they are not released and thus the effluent concentrations of COD and Sy
does not increase.

On the other hand, from the values given to Mp;o mar 1O clear recognisable
pattern on the effluent concentrations of COD and Sy g could be observed.
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CHAPTER O

CWs functioning based on simulation results: a case study

This chapter is based on the article:

e Samsd, R., Garcia, J., 2013b. Bacteria distribution and dynamics in con-
structed wetlands based on modelling results. Science of The Total Environ-
ment 461-462, 430440. doi:10.1016/j.scitotenv.2013.04.073

6.1 Introduction

Subsurface flow constructed wetlands (SSF CWs) are nowadays one of the most
common types of eco-technologies for wastewater treatment used throughout the
world. In SSF CWs three relevant elements contribute to wastewater treatment:
granular medium, plants and bacterial communities. However, from these three,
it is widely accepted that the activity of diverse bacterial communities growing in
the form of biofilms is the most important element in pollutant transformation and
removal (Ahn et al., 2007; Faulwetter et al., 2009; Garcia et al., 2010; Iasur-Kruh
et al., 2010; Krasnits et al., 2009; Ramond et al., 2012; Truu et al., 2009).

The idea that in SSF CWs coexist diverse bacterial communities with completely
different metabolic requirements and functional roles (i.e. from strictly aerobes to
anaerobes, from autotrophs to heterotrophs) has been progressively built through
intense fundamental research on this technology. The role of bacterial communities
was put into evidence when the activity of bacterial groups was inferred by measur-
ing concentration changes of different electron acceptors (i.e. oxygen, nitrate and
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sulphate) and donors (i.e. ammonia and dihydrogensulphide) in pilot wetland sys-
tems (Aguirre et al., 2005; Garcia et al., 2004b; Huang et al., 2005). The detection
of gaseous or volatile intermediate and end-products such as methane, nitrous ox-
ide and dimethylsulfide was also an indication of the metabolic activity of different
bacterial groups (Garcia et al., 2005; Huang et al., 2005; Mander et al., 2003; Teiter
and Mander, 2005). More recently, characterization of bacterial communities in SSF
CWs has proliferated with the advent of molecular microbiology methods such as
fluorescence in-situ hybridization and PCR-based techniques, and other advanced
methods such as community-level physiological profiling (Criado and Bécares, 2005;
Krasnits et al., 2009; Ramond et al., 2012; Weber and Legge, 2011). Results obtained
with such studies revealed that SSF CWs account for a diversity of bacterial strains
comparable to that found in natural ecosystems (Calheiros et al., 2010; Criado and
Bécares, 2005; Hadwin et al., 2006; Hallberg and Johnson, 2005; Hench et al., 2004;
Sims et al., 2012; Sleytr et al., 2009). However, most of these studies consist in
point-in-time observations and only a few investigated temporal dynamics of bacte-
rial communities in SSF CW (Ramond et al., 2012; Truu et al., 2009; Weber and
Legge, 2011). This is probably due to the fact that such experimental studies in-
volve complex methodologies which are generally very time and resource-consuming.
Therefore, complementary techniques could help to give a wider image of the tempo-
ral evolution of microbial communities in SSF CWs. Mathematical models are one
such complementary technique, with which bacteria dynamics and interrelations can
be studied under different scenarios and at much lower costs.

The BIO_PORE model is a mathematical code built in the COMSOL Multiphysics™
platform that was specifically designed to simulate the behaviour of SSF CWs and
incorporates the biokinetic reactions described in the Constructed Wetland Model
Number 1 (CWM1)(Langergraber et al., 2009a). CWMI1 has also been implemented
in other simulation platforms (Langergraber and Simunek, 2012; Llorens et al.,
2011a,b; Mburu et al., 2012) and the resulting codes have been used to match exper-
imentally measured effluent pollutant concentrations, while giving little attention to
the results on bacteria abundance, distribution and interrelations. Moreover, to study
the temporal dynamics of bacterial groups from modelling results, long-term simula-
tions are required and BIO_PORE is, to our knowledge, the only model able to run
long-term simulations of continuously fed SSF CWs. Besides, one of the most useful
features of BIO_PORE is that it allows for exploratory research, as each inhibito-
ry/limiting term affecting the growth of the different bacteria groups can be studied
individually and its relative impact on bacteria dynamics can be pinpointed.

The presence of a well-developed and stable microbial community is generally
considered to be a critical factor for a good functioning of SSF CWs in terms of pol-
lutant removal (Ramond et al., 2012; Torsvik and Ovreas, 2002; Weber and Legge,
2011; Wohl et al., 2004). Experimental studies in mesocosms suggested that bacteria
community stabilization in SSF CWs is reached between 75 and 100 days (Ramond
et al., 2012; Truu et al., 2009; Weber and Legge, 2011). In the present study we
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demonstrate based on simulations in a pilot system with BIO_PORE model that
bacteria communities reach stability, but that it is a slower process than what has
generally been reported. We also study the sequence of processes that lead to bacte-
rial stability and analyse the abundance of the different bacteria groups at different
times within a 3 years period. We also analyse the distribution of bacteria commu-
nities when stability is reached.

To our knowledge, this is the first time that bacterial communities distribution
and dynamics in SSF CWs are studied from modelling results. It is important to
note, though, that by being this the first work of its kind on this topic we con-
sidered a simplified scenario (constant influent concentrations, flow-rates and water
temperatures) which will gain in complexity once the basis are set.

6.2 Methods

6.2.1 Simulation strategy

A simulation was conducted for the pilot wetland described in Cahpter 3. Values of
the hydraulic and hydrodynamic parameters utilized for the simulation are shown in
Table 6.1.

Table 6.1: Values of the hydraulic and hydrodynamic parameters utilised in our simulation. These
values were obtained during calibration by Samsé and Garcfa (2013a).

Parameter | Description Value | Unit
ar, Longitudinal dispersivity | 0.05 m

ar Transverse dispersivity 0.005 m

K Hydraulic conductivity 50 m-d !

Although BIO_PORE can handle variable input data, in the present study con-
stant values for hydraulic loading rate (HLR) (36.6 mm - d~'), water temperature
(20 °C') and influent pollutant concentrations were used. This is of course a theoret-
ical simplified scenario, but it was adopted to facilitate interpretation of the results.
Constant values of influent concentration of the components considered in CWM1
were extracted from data averages of an experimental study carried out in the pilot
wetland by Garcia et al. (2005) (Table 6.2).

Note that in this system, the influent sulphur concentrations were higher than in
average urban wastewater, since potable water in the metropolitan area of Barcelona
is partially obtained from a river that drains a chalk basin. The fractioning of the
influent COD was made using recommended values for primary efluents in ASMs
(Henze et al., 2000). Note, however, that the recommended values for primary ef-
fluents may differ slightly from the Imhoff effluents, but they were assumed in a
pragmatic approach to avoid a detailed characterisation of the influent wastewater.
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Table 6.2: Constant inflow concentrations used for simulations. These values were obtained from
averages of an experimental study conducted in the pilot wetland (Garcia et al., 2005).

Componenet | Description Inflow concen- | Unit
tration
So Dissolved oxygen 0 mgCOD - L1
Sr Soluble fermentable COD 39 mgCOD - L1
Sa Fermentation products as ac- | 52 mgCOD - L1
etate as COD
St Inert soluble COD 13 mgCOD - LT
Xsm Aqueous slowly biodegradable | 130 mgCOD - L1
particulate COD
Xsy Solid slowly biodegradable par- | 0 mgCOD - L1
ticulate COD
Xim Aqueous inert particulate COD | 26 mgCOD - L1
X1y Solid inert particulate COD 0 mgCOD - LT
Sno ¢ Nitrite and nitrate nitrogen 0 mgN - LT
SN Anmonium and ammonia nitro- | 57 mgN - L1
gen
Ss04 Sulphate sulphur 72 mgS - LT
SHas Dihydrogensulphide sulphur 0 mgS - LT

“Note that SNO is assumed to include all nitrite and nitrate nitrogen, since nitrite is not included
as a separate model component.

Influent concentrations of bacteria were neglected because they generally are
small in comparison with the concentrations found within the wetland itself Truu
et al. (2009). As in Chapter 4, initial concentrations of bacteria, particulate solids
and dissolved components within the wetland were all set to 0.001 mg-L~! to simulate
start-up conditions.

Constant oxygen release and nitrogen uptake rates by plant roots were taken
from Samsé and Garcia (2013a) (3 gO2-m~2d~! and 0.2 gN - m~2d~!, respectively)
and apply to the top 30 ¢m layer of the granular media. Passive diffusion of atmo-
spheric oxygen into the water body is also considered in BIO_PORE (see Chapter
4).

A simulation was run to reproduce bacterial dynamics between start-up and
until the 3"¢ year of continuous operation of the wetland, which according to current
knowledge should be more than sufficient time for bacteria communities to stabilize
(Ramond et al., 2012; Truu et al., 2009; Weber and Legge, 2011).

6.2.2 Study of bacteria dynamics and pollutants removal efficiencies
To study the abundance of each bacterial group within the whole wetland we esti-

mated the total concentration of their biomass. The actual biomass was obtained by
integrating their concentration within the simulated longitudinal section (obtaining
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kgCOD - m~1) and multiplying it by the width of the wetland (5.3 m) (obtaining
kgCOD). Biomass was later normalised to a cubic meter of granular material by
dividing it by the volume of the entire wetland.

During simulations, the different wastewater constituents were monitored inside
the wetland and in the effluent to determine pollutant removal efficiencies and also
inhibition effects on different bacteria groups. Specific substrates known to cause
competition between different bacteria groups were also studied in detail. To deter-
mine the removal efficiencies of N, the total influent nitrogen was considered to be
the sum of ammonia, nitrite and nitrate and organic nitrogen (that contained in SF,
SI, XS and XTI). The N contents of each COD fraction are listed in Table 6.3:

Table 6.3: Nitrogen content of the different fractions of COD.

Parameter name | Description Value | Source

iN, Sr Nitrogen content of Sp (gN- | 0.03 Langergraber et al. (2009a)
gCODgFl)

iN, St Nitrogen content of S; (¢N - | 0.01 Langergraber et al. (2009a)
gC ODgll)

iN, Xg Nitrogen content of Xg (gN- | 0.04 Langergraber et al. (2009a)
9COD%,)

N, X1 Nitrogen content of X7 (¢N- | 0.03 Langergraber et al. (2009a)
4CODZY)

Therefore, with the concentrations listed in Table 6.2, the total influent N in the
system can be calculated as:

Total N=Sy g+Sno+Sp-iN,Sp+S1%iN,S1+(Xs 4+ X 5m)iN,Xs+(X1 f4+X 1m)-iN, X =5T+0+39-0.03+

13-0.01+(0+130)-0.04+(0+26)-0.03=64.28 ™4

Note, however, that not all organic nitrogen becomes available for bacterial
growth or nitrification-denitrification processes, since it has to be previously released
through the degradation of the organic compound in which it is contained.

Three different indicators were utilized to determine bacterial stabilization. The
first indicator considered was the stabilisation of the total amount of biomass within
the wetland. The second indicator considers that bacteria stability is reached when
no more major changes are observed in the effluent pollutant concentrations. Finally,
the third indicator considered the stabilisation of Shannon diversity index (Shannon,
1948) (Equation 6.1).

=37 (s ton(55)) (6.1)
Where n is the total number of functional bacteria groups, X; is the biomass

of functional bacteria group i and X, is the sum of the biomass of all groups. The
distribution of bacteria was studied after bacterial stabilisation, since before that, it
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was seen to change very rapidly. Bacterial distribution was studied by representing
the concentration of the different bacteria groups on the 2D domain.

6.3 Results

Sections 6.3.1 and 6.3.2 present the results for the entire 3 years of operation, while
Section 6.3.3 focuses only on the results obtained after bacteria stabilised. In Section
6.3.1 we present the evolution of the total biomass of the different bacteria groups.
Only partial attention was given to bacterial distribution in this section. In Section
6.3.2 the pollutant removal efficiencies obtained with the model are presented. The
first part of Section 6.3.3 presents the results obtained with the three indicators of
bacterial stabilisation. In the second part we present bacterial distribution when
stability is achieved.

6.3.1 Overall bacteria dynamics

At the very beginning of operation (first 15 days) the presence and concentration
of dissolved oxygen (Sp) was the main factor affecting bacterial dynamics within
the wetland. Figure 6.1 represents Sp concentrations within the wetland at days

3, 10 and 15, while in Figure 6.2, the value of (%) in Equation 6.2 is

represented in the same days. Equation 6.2 describes the growth rate of fermenting
bacteria (Xpg) (mgCOD - L=1d~1) and (M> describes the inhibiting effect

Ksors+So

of dissolved oxygen (Sp) on such rate. Note that for the sake of brevity the inhibition
of oxygen is only shown for Xgp, since its effects on the other anaerobic bacteria
groups are almost identical.

dx s K K K s
FB_ ( F ) ( H2SFB ) ( SOFB ) ( NOFB ) ( NH )X —bX
dt MFB\ Rgprp+5r ) \Ku2sre+5ms /) \Ksorp+50 ) \Enors+Svo ) \Enare+SnE F(BG 2) FB

Values close to zero for (ﬁ) indicate complete inhibition of X g growth

(d)fi% =—bXp B) resulting from high oxygen concentrations, while values close to
1 indicate insignificant inhibition effects.
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Figure 6.1:

Figure 6.2:

a) b) C

Oxygen concentration within the wetland (mgQOs - L™!) after a) 3, b) 10 and c) 15 days
of operation. The key at the right indicates So concentration. Note that the images are
longitudinal cross sections of the wetland which have been deformed to fit a reasonable
size. The x-axis of each image represents the longitudinal direction of the wetland (from
0 to 10.3 m) and the y-axis the depth of the wetland (from 0 to 0.7 m). Also note
that the coloured areas of each image correspond to wetted areas, while the white areas
correspond to areas without water. Note that water level decreases from inlet to outlet.
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Representation of the values of the inhibition term of fermenting bacteria (Xrp) due to
the presence of dissolved oxygen (So) after a) 3, b) 10 and c) 15 days of operation. This
is a representation of the highlighted term in Equation 6.2. Values close to 1 indicate that
So is not inhibiting the growth of this bacteria group, while values close to 0 indicate
100% inhibition. The key at the right indicates So concentration in mgQOs - L™*. Note
that the images are longitudinal cross sections of the wetland which have been deformed
to fit a reasonable size. The x-axis of each image represents the longitudinal direction
of the wetland (from 0 to 10.3 m) and the y-axis the depth of the wetland (from 0 to
0.7 m). Also note that the coloured areas of each image correspond to wetted areas,
while the white areas correspond to areas without water.

At day 3, dissolved oxygen (Sp) was very widespread within the wetland (Figure
6.1a), favouring the growth of heterotrophic bacteria (X ), which became the most
abundant and widely distributed group at that time (Figures 6.3 and 6.4). The lack
of oxygen in the influent wastewater allowed fermenting bacteria (Xpp) reach high
concentrations near the inlet section (Figure 6.3b), although their distribution was
much narrower due to the presence of high Sp in further sections. After day 3, both
the So concentration and its inhibition on anaerobic bacteria near the bottom of the
wetland progressively decreased as a result of the combined effect of the consumption
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by aerobic bacteria (mainly heterotrophic bacteria (Xyr)) and the washout with the
water flow (Figures 6.3 and 6.4).

a) b) )

Figure 6.3: Distribution of a) Heterotrophic (Xg), b) Fermenting (Xrp) and c) all bacteria groups
together (Xu, Xa, XrB, Xamn, Xasrs and Xsop) are shown after 10 days of opera-
tion. The key at the right indicates bacteria concentration in mgCOD - L™!. Note that
the images are longitudinal cross sections of the wetland which have been deformed to fit
a reasonable size. The x-axis of each image represents the longitudinal direction of the
wetland (from 0 to 10.3 m) and the y-axis the depth of the wetland (from 0 to 0.7 m).
Also note that the coloured areas of each image correspond to wetted areas, while the

white areas correspond to areas without water. Note that water level decreases from
inlet to outlet.

0

After this initial stage nitrifying bacteria (X 4) reached their maximum biomass
around day 20 (Figure 6.4a). Subsequently, around the 80" day of operation fer-
menting bacteria (Xrp) biomass exceeded that of heterotrophic bacteria (X ) for
the first time. This fact was followed by a progressive decrease of Xy biomass, and af-
ter day 110 the biomass of sulphate reducing bacteria (X 4srp) was already higher.
At this stage Xasrp produced sufficient dihydrogensulphide (Sg2g) to allow the
growth of sulphide oxidising bacteria (Xsop), but also to inhibit the growth of other
bacteria groups such as methanogenic bacteria (X sp/5). Sulphate reducing bacteria
(Xasrp) overcome fermenting bacteria (Xpp) as the dominant group at c.a. day
280, and remained so until the end of the 3 years. Methanogenic bacteria (X anp)
were the slowest group to develop and only reached their maximum concentrations
after around 2 years of operation.
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Figure 6.4: Changes in the average concentration of a) heterotrophic (X ), nitrifiying (X4) and
sulfide oxidising (Xsos) bacteria and b) fermenting (X rg), sulphate reducing (Xasrs)
and methanogenic (Xanmp) bacteria (kgCOD - m_3) within the entire wetland through
3 years of operation. Total biomass (Xg + X4 + Xrp + Xamp + Xasrs + Xson) is
also represented in image b). The separation of bacteria groups in two graphs is made
to facilitate visualisation of the results. Note that y-axis scales of the two captions are
different.

According to these results, the wetland was dominated by anaerobic bacteria
(XrB, Xamp and Xasrp) (56 — 95%) for the majority of the time (from c.a. day

80), while aerobic groups (X7, X4 and Xgop) were found at much lower proportions
(5 — 44%).

6.3.2 Pollutant removal efficiencies

The system achieved its maximum COD removal efficiency (94%) after c.a. 400 days,
and remained higher than 90% until the end of the three years period (Figure 6.5a).
From around day 80, all nitrified ammonium nitrogen was completely denitrified
(Figure 6.5b), and the average removal of total nitrogen from then and until the
end of the three years was 20 — 30%. Bacterial assimilation was responsible for
4 — 10% of the removed total N and nitrification-denitrification processes accounted
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for 20 — 30% (Figure 6.6). The rest of the total N removed from inlet to outlet
corresponds to accumulated organic nitrogen (manly in the form of Xjs) (results
not shown). Note that most of the effluent nitrogen was in the form of ammonium
and ammonia (Syg). Sulphur was not removed within the system. However, a
significant amount of the influent sulphate (Ssp4) was reduced to sulphide (Sg2s),
and the opposite process also took place. From c.a. day 110 and until the end of the
simulated period, the effluent concentrations of Sgog exceeded that of Sso4 (Figure
6.5¢), indicating intense sulphate reducing activity.
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Figure 6.5: Changes in effluent concentrations of a) total COD (mgCOD-L™"), b) total, ammonium
and ammonia (Syg) and nitrite and nitrate (Syo) nitrogen (mgN-L ™) and c) sulphate
(Ssoa) and dihydrogensulphide (Sz2s) sulphur (mgS - L™!). Influent concentrations of
total COD, total N and S are also represented for comparison. Note that total N includes
Snu, Svo and organic nitrogen.

100



6.3. Results

] Assimilation ——
70 4 Nitrification-denitrification

% of Total N removed

10 4, +——,
0 100 200 300 400 500 600 700 800 900 1000

Time (days)

Figure 6.6: Percentage of the total N removed by bacterial assimilation and by nitrification-
denitrification processes through the 3 years period. Note that the percentage was
referred to the amount of total nitrogen removed and not to the influent total nitro-
gen.

6.3.3 Bacterial stability
Indicators of bacterial stability

Bacterial stabilisation was studied using three different indicators. The first indicator
was the total bacterial biomass, which stabilised after c.a. 400 days (Figure 6.4).
At that time, progressive increase in methanogenic bacteria (X ap/p) biomass was
compensated with an equivalent decrease of sulphate reducing bacteria (Xasrp)
biomass, while the total biomass remained almost constant.

The second indicator of stability was the stabilisation of the effluent pollutant
concentrations. In the case of total COD, its concentration reached almost constant
values after c.a. 400 days (Figure 6.5a). After that the accumulated variation of the
effluent COD until the end of the 3 years period was smaller than 8 mgCOD-L~!. On
the other hand, total nitrogen effluent concentrations reached a steady-state from day
c.a. 250. After that time effluent concentrations of this component increased slightly
until the end of the 3 years period (accumulated change of 2 mgN - L~!) (Figure
6.5b). Finally, effluent concentrations of sulphate (Ssp4) and dihydrogensulphide
(SH2s) did not stabilise at all, although the accumulated changes in their respective
effluent concentrations were lower than 15 mgS - L™! after c.a. day 240 (Figure
6.5¢).

Shannon diversity index was the third indicator of stability. Figure 6.7 shows
that the diversity at day 0 was the highest, as all bacteria groups were in the same
proportions (0.001 mgCOD - L~!). From then, the value of the diversity index
decreased, reaching its minimum after c.a. 10 days, coinciding with the explosive
growth of heterotrophic bacteria (Xpg) and fermenting bacteria (Xpp), while the
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biomass of the other groups remained negligible. After that, the diversity increased
and it was only after c.a. 700 days that it reached its higher and stable values.
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Figure 6.7: Changes in Shannon diversity index (H’).

Bacterial distribution after stabilisation

In this section we present the results of bacteria distribution after 580 days (Figure
6.8), which falls in the period when bacterial stability is reached according to the re-
sults of the different indicators shown above (between 400 and 700 days). This results
show a clear separation between the areas occupied by aerobic bacteria (Xg, X4 and
Xsop) and those occupied by anaerobic bacteria (Xpp, Xayp and Xasrp). The
absence of bacteria in the inlet section observed after 580 days was due to the high
concentration of accumulated inert solids, which occupied the porosity in this area
and prevented further bacteria growth (Figure 6.9). Fermenting bacteria (Xrpg) were
located the closest to the inlet and occupied the entire depth of the wetland. In the
aerobic layer, heterotrophic bacteria (X ) achieved its highest concentrations also
close to the inlet but further to the outlet than fermenting bacteria (Xrp). Nitrifying
bacteria (X 4) grew just behind heterotrophic bacteria (X7), in the areas where there
was not enough COD to sustain Xp growth and hence with dissolved oxygen (So)
availability. Due to the strong competence for oxygen with heterotrophic (Xz) and
nitrifying (X 4) bacteria, to the low concentration of Sgog in the aerobic layer (Figure
6.11), sulphide oxidising bacteria (Xgsop) grew mainly in anoxic conditions (Figure
6.10), benefiting from the nitrate (Syo) produced by nitrifying bacteria (X 4), and
for that reason grew mostly after the main location of X4 (Figures 6.8¢ and 6.10).
In the anaerobic zone and from inlet to outlet, sulphate reducing bacteria (Xssrp)
grew just after fermenting bacteria (Xrp) and followed by methanogenic bacteria
(XamB). Xasrp and X gpp also showed both vertical and longitudinal gradients,
with decreasing bacteria concentrations from inlet to outlet and from the bottom to
the surface of the wetland. Although the active bacteria zone in our system was very
narrow, especially in the anaerobic region, note that bacteria biomass was detected
in the whole wetland (results not shown).
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Figure 6.8: Distribution of a) heterotrophic (X ), b) nitrifiying (X ), ¢) sulphide oxidizing (Xsos),
d) fermenting (Xrg), €) sulphate reducing (Xasrg) and f) methanogenic (Xanp) bac-
teria after 580 days of operation. The key at the right indicates bacteria concentration in
mgCOD-L™*. Note that the images are longitudinal cross sections of the wetland which
have been deformed to fit a reasonable size. The x-axis of each image represents the
longitudinal direction of the wetland (from 0 to 10.3 m) and the y-axis the depth of the
wetland (from 0 to 0.7 m). Also note that the coloured areas of each image correspond
to wetted areas, while the white areas correspond to areas without water. Note that
water level decreases from inlet to outlet.

Despite the three indicators of stability and the total biomass of each bacteria
group remained almost constant after bacteria stability, Figure 6.9 shows that the
location of the active bacteria zone kept varying. This resulted from the negative
effect of accumulated inert solids on the growth of bacteria. Indeed, although the
biomass and distribution of all bacteria groups remained constant, the progressive
advance of accumulated inert solids from inlet to outlet pushed the active bacteria
in the same direction with time.
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Figure 6.9: Active bacteria zone and accumulated solids concentrations after 2 and 3 years.
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6.4 Discussion

6.4.1 Overall bacteria dynamics

The high energy yields of aerobic bacteria (Faulwetter et al., 2009; Mitsch and Gos-
selink, 2000) combined with the high availability of dissolved oxygen (Sp) at the
very beginning of operation made heterotrophic bacteria (Xp) the most abundant
and widely distributed bacteria group at that time (Figures 6.3 and 6.4). Fermenting
bacteria (Xpp) were also present near the inlet section, since the concentration of
So in the influent wastewater is usually very small (Tyroller et al., 2010) and in our
simulation it was set to zero. This result, together with the intense oxygen inhibition
on the initial development of anaerobic bacteria (Figure 6.2) had not been previously
reported.

Heterotrophic, nitrifying and sulphide oxidising bacteria (X, X4 and Xgop)
compete for available oxygen in SSF CWs (Faulwetter et al., 2009; Nogueira et al.,
2002; Okabe et al., 1996; Schramm et al., 1996; Wu et al., 2013). As the specific
growth rate of heterotrophic bacteria (X ) is higher than that of nitrifying bacteria
(X4), the latter group was only able to grow once COD concentrations near the
wetlands surface were already low (low Xy biomass and high So concentrations).
Moreover, the low biomass of X4 obtained in our simulation (between 1 and 2% of
the total biomass from day 400) is in agreement with the results by Krasnits et al.
(2009), who found nitrifying bacteria to account for 1 — 3% of the total biomass.
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Kalin and Caetano Chaves (2003) and Wiessner et al. (2005) attributed less
effective and more variable sulphate removal rates in new SSF CWs to either insuf-
ficient time for sulphate reducing bacteria establishment or acclimatization. In the
present study this delay was related to the low acetate (S4) concentrations in the
influent wastewater, which only increased after enough fermenting bacteria (Xpp)
biomass was present (after around 50 days). Sulphate reducing bacteria (Xasrp)
and methanogenic bacteria (X sp/p) are known to compete for available carbon (5S4
in BIO_PORE) at similar redox levels (Faulwetter et al., 2009; Huang et al., 2005).
Previous studies suggest that when these two bacteria groups grow together and the
COD /sulphate ratio (expressed as COD:S) is lower than 1.5, sulphate reducing bac-
teria are able to outcompete methanogenic bacteria. When the ratio is greater than
6, Xanmp predominate over X aspp (Stein et al., 2007). In the scenario assumed
in the present study this ratio was 3.6 (between 1.5 and 6) and the two bacteria
groups coexisted, although X asrp grew significantly faster and accounted for higher
biomass than X ayrp (46% of the total microbial count after 580 days). However, it
has to be noted that sulphate and dihydrogensulphide sulphur concentrations within
the wetland may be slightly higher than in reality since the main sulphur removal
mechanisms (precipitation, adsorption, volatilisation and plant uptake (Wu et al.,
2013)) were not considered. Therefore sulphate reducing and sulphide oxidising
bacteria biomasses may have been slightly overestimated. Such intense sulphate re-
ducing activity produced high dihydrogensulphide (Sp2s) concentrations within the
system that allowed a sustained growth of sulphide reducing bacteria (Xgop) from
c.a. day 50. However at that time nitrifying bacteria (X 4) had already reached their
maximum concentration and were consuming most of the available dissolved oxygen
(So). Therefore the growth of Xgop was slower, as it took place mainly using nitrate
(Sno) as electron acceptor (anoxic growth) (Figure 6.10).
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Figure 6.10: Denitrification rate (mgSno - L™ 'd™!) by a) heterotrophic (Xg), b) sulphide oxidising
(XsoB) and ¢) Xu and Xgop together.

Another consequence of the high dihydrogensulphide (Sg2g) concentrations ob-
served within the system was their toxicity to some bacteria groups, especially those
growing in the anaerobic layer (Figure 6.11). Indeed, high concentrations of Sg2g are
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known to cause severe deterioration and pose a serious threat to wetlands ecosystems
and their microbial communities (Wu et al., 2013). This effect combined with the
competence for COD (Sy4) with sulphate reducing bacteria (X 4s5rp) may have also
contributed to the delay observed in the growth of methanogenic bacteria (Xanp)
(Figure 6.3b).
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Figure 6.11: Representation of the inhibition term of hydrogen sulphide (Sm25) on all bacteria groups
at a) 50, b) 240 and c) 580 days after starting operation. Unitless. This is a repre-
sentation of the term Kgm2s/(Ksm2s + Sh2s) which multiplies the maximum growth
rate of each bacteria group. Values close to 1 indicate that sulphide is not inhibiting
the growth of bacteria group X, while values close to zero indicate 100% inhibition.
Note that the images are longitudinal cross sections of the wetland which have been
deformed to fit a reasonable size. The x-axis of each image represents the longitudinal
direction of the wetland (from 0 to 10.3 m) and the y-axis the depth of the wetland
(from 0 to 0.7 m). Also note that the coloured areas of each image correspond to wetted
areas, while the white areas correspond to areas without water. Note that water level
decreases from inlet to outlet.

6.4.2 Pollutant removal efficiencies

The low effluent COD concentrations observed in the present study (Figure 6.5a)
are attributed to the high water temperature used in our simulation (20 °C'), which
boosted microbial activity (Truu et al., 2009), and to the intense sulphate reduction
observed. It is well known that sulphate reduction can contribute significantly to
the removal of organic matter in SSF CWs (Aguirre et al., 2005; Garcia et al.,
2005, 2004b; Wu et al., 2013). In fact, Garcia et al. (2004b) estimated the removal
of organic matter by sulphate reduction to be between 47% and 79% in the same
pilot wetland assumed in the present study. In another work, Baptista et al. (2003)
attributed 25% of the carbon removal to the activity of sulphate reducing bacteria
(Xasrp). However, in our simulations both sulphate reducing bacteria (Xasrg)
and sulphide oxidising bacteria (Xgop) might have been slightly overestimated by
not considering all processes related to the sulphur cycle. This can also be observed
with the high percentage of sulphate reduced within the wetland (between 51 and
72% of the total influent Sgp4 from day c.a. 220). In comparison, Krasnits et al.
(2009) measured a 40% removal of sulphate, although in their case the proportion
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of sulphate reducing bacteria was also smaller (21 — 30% against 46% in the current
work).

In our simulation accumulation was the main removal mechanism for N, followed
by nitrification and bacterial assimilation. The fact that all nitrified nitrogen (Syo)
was used as electron acceptor and hence removed (Figure 6.5b) is also in agreement
with the large decrease in nitrate observed in most horizontal SSF CWs, indicating
that denitrification is an important process in these systems (Faulwetter et al., 2009;
Kadlec, 2005; Vymazal, 2007). Another relevant result from this study was that
sulphide oxidising bacteria (Xsop) was the group that most significantly contributed
to denitrification (Figure 6.10), and therefore autotrophic denitrification was more
important than heterotrophic denitrification.

6.4.3 Bacterial stability
Indicators of bacterial stability

Experimental evidences indicate that extended periods of time are required for mi-
crobial communities in SSF CWs to stabilise, although the basis used to indicate
community stability is not always consistent (Ramond et al., 2012; Truu et al., 2009;
Weber and Legge, 2011). In the available studies it is considered that bacterial sta-
bility is reached when the number of strains stops changing. However, if only the
number of strains is taken into account, we can think that the system has reached
bacterial stability, while the relative biomass of every bacterial strain may still be
changing. For this reason, in the present study bacterial stability was not only studied
by observing the behaviour of the total biomass and the effluent pollutant concentra-
tions, but also taking into account the changes on the proportions of each bacterial
group through time. To that end, Shannon diversity index was used, which is a
function commonly used in population ecology and incorporates both the abundance
and evenness of the species present in a unified parameter.

Combining the information provided by the three indicators, it is apparent that
bacteria stabilisation in our wetland occurred between c.a. 400 and 700 days after
starting operation. This was, despite the biomass of all bacteria groups, the effluent
pollutant concentrations and Shannon index were not perfectly stable at that time.
These results differ from the available experimental studies, according to which bac-
teria stability is reached between 75 and 100 days (Ramond et al., 2012; Truu et al.,
2009; Weber and Legge, 2011). These differences can be mainly explained by the
different criterion utilised to define bacterial stability. Another plausible explanation
is related to the composition of the influent wastewater. Indeed, 50% of the COD in
our wastewater was particulate, and thus required a previous hydrolysis to become
available to all bacterial groups, hence delaying the overall bacteria development.
This fact combined with the low percentage of acetate (S, 20%) in the influent
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and the high toxicity resulting from intense sulphate reduction (high dihydrogen
sulphide (Sp2g) concentrations) (Figure 6.11), delayed the growth of methanogenic
bacteria (X ap/p) and sulphate reducing bacteria (X 4srp), and therefore the global
stability.

Bacterial distribution after stabilisation

In our simulation aerobic bacteria groups (Xg, X4 and Xgop) were dominant near
the surface of the wetland (Figures 6.8a, b and c) while anaerobic bacteria grew in
deeper sections (Figures 6.8d, e and f). This is consistent with the generally accepted
idea that Sp concentrations tend to increase towards the outlet and decrease towards
the bottom of the wetland (Allen et al., 2002; Garcia et al., 2003; Headley et al., 2005;
Wang et al., 2012); thus the potential of microbial processes depending on oxygen
tend to be more pronounced in the upper strata and near the outlet of the wetland,
while low oxygen conditions favour anaerobic processes (Kern, 2003; Nurk et al.,
2005; Truu et al., 2009).

In the aerobic layer, heterotrophic bacteria (Xz) were dominant close to the
inlet owing to the high COD availability. The highest concentrations of nitrifying
bacteria (X 4) were measured from the centre to the outlet of the wetland. Similarly,
Nurk et al. (2005) observed higher nitrifying bacteria biomass near the outlet of a
wetland. The fact that in our simulations sulphate reducing bacteria (Xgop) were
seen to grow near the outlet, and essentially under anoxic conditions (Figures 6.8¢
and 6.10b) is of particular importance since only a few studies address the activity
of this bacteria group in treatment wetlands (Faulwetter et al., 2009).

Regarding anaerobic bacteria, the lack of Sp in the influent wastewater made
fermenting bacteria (Xpp) the dominant bacteria group close to the inlet and at
all depths (Figure 6.8d). Sulphate reducing (Xasrp) and methanogenic (Xanp)
bacteria grew in the anaerobic zone and just after Xpp (Figures 6.8e and 6.8f), as
they degrade a product of fermentation (acetate, Sy).

The narrow bacteria distribution obtained in our simulations can be attributed
to the presence of accumulated inert solids (Figure 6.9) and to the toxicity effects of
Sp2s (Figure 6.11), which hindered bacteria growth near the inlet section and after
the location of X sgrp respectively.

Figure 6.9 illustrates that the driving force behind the displacement of the active
zone after bacterial stabilisation was the accumulation of inert solids. Nguyen (2000)
found that more than 90% of the OM accumulated in a SSF CWs receiving farm dairy
wastewater over a 5-year period was composed of inert OM fractions. These solids
not only limit substrates availability but also reduce the available space for bacteria
to grow (Samsé6 and Garcia, 2013a). Our simulation results show that accumulated
solids from the influent wastewater were higher near the inlet as a combined effect
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of physical filtration and bacteria decay (Figure 6.9). This phenomenon is already
well documented in literature (Caselles-Osorio et al., 2007; Nguyen, 2000). The
displacement of the active zone resulting from solids accumulation has not been
documented in any previous studies, and should therefore be studied in more detail
in further experimental works.

6.5 Conclusions

In this chapter, simulation results for a period of 3 years with BIO_LPORE model
(Samsé and Garcia, 2013a) were presented to study bacteria dynamics and distribu-
tion in the pilot CW.

At the start-up period heterotrophic bacteria (Xp) were the first group to de-
velop and colonize the system. After day 80 and until the end of the 3 years anaerobic
bacteria groups dominated the system, being sulphate reducing bacteria (Xasrp)
the most abundant group in terms of overall biomass (47 — 79%) for most of the
time. The high sulphate reducing activity within the wetland caused toxicity by di-
hydrogensulphide (Sp2s) and delayed the growth of methanogenic bacteria (X sp/p).
Nitrifying bacteria (X 4) accounted for 1—2% of the total biomass while sulphide oxi-
dising bacteria (Xgsop) grew mainly under anoxic conditions and were responsible for
the complete denitrification observed in the wetland (autotrophic denitrification).

Bacterial stability was achieved between 400 and 700 days after starting oper-
ation. This time to stability is longer than the 75 — 100 days reported by previous
experimental works, although the criteria for bacterial stabilisation is different from
the ones used in this work. After bacteria stability Xy and X4 occupied the first
few centimetres near the wetlands surface, where oxygen concentrations were higher
while Xpp, Xayp and X osrp grew on the rest of the wetland and thus had a much
wider vertical distribution. Xgop grew in a very restricted area near the outlet of
the bed in which high Spog and Syo concentrations coexisted.

The driving force behind the displacement of bacteria after stability was the
progressive advance of accumulated inert particulate solids (X;y) towards the outlet
of the wetland, which pushed the active bacteria zone in the same direction.

The results of this study coupled with previous field results will give new insights
and perspectives on wetland functioning. This chapter is just a stepping stone to-
wards the end goal of establishing a general conceptual framework of the functioning
of constructed wetlands based on modelling results.
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CHAPTER [

The cartridge theory

This chapter is based on the article:

e Samsd, R., Garcia, J., 2014a. The Cartridge Theory: a description of the
functioning of horizontal subsurface flow constructed wetlands for wastewater

treatment, based on modelling results. Science of The Total Environment 473-
474, 651658. doi:10.1016/j.scitotenv.2013.12.070.

7.1 Introduction

Subsurface flow constructed wetlands (SSF CWs) are complex reactors in which
different physical, chemical and biochemical reactions take place simultaneously.
Nowadays the available knowledge on this technology is mostly empirical and very
case-specific and for this reason it is very difficult to elucidate which are the most
fundamental functioning patterns of these systems. In fact, there is still not a clear
overall understanding of the interrelations of all processes taking place within these
systems (Kumar and Zhao, 2011; Langergraber, 2007). In our opinion, understand-
ing the basics of the internal functioning of wetlands is a crucial step towards making
this technology more efficient, predictable and reliable in the forthcoming years. It
will also help us clearly identify and define what we can expect from this technology
and decide whether it is the best option in every specific case.
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Since the application of numerical models to SSF CWs, they have been seen
as a potential tool to brighten the ”black box” to which these systems have usu-
ally been assimilated. Although most of the available models include equations to
simulate a large proportion of the processes that take place within SSF CWs (Langer-
graber and Simunek, 2012; Llorens et al., 2011a,b; Mburu et al., 2012; Ojeda et al.,
2008; Rousseau et al., 2005), so far most efforts have been put on matching mea-
sured eflluent pollutant concentrations and, in general, less attention has been given
to describing the internal dynamics of the wetlands. Acknowledging this fact, the
BIO_PORE model was developed with the main aim of improving the understanding
of SSF CWs’ internal functioning, and more specifically on the interrelations between
bacterial communities and accumulated solids in the long-term.

In this chapter we introduce what we named The Cartridge Theory for hori-
zontal subsurface flow constructed wetlands (HSSF CWs), which is a description of
their functioning based on the interaction between accumulated solids (leading to
clogging) and bacterial populations. This theory intends to be as generic as possible,
and for this reason it presents a simplified and thus ideal perspective of how wet-
lands function. Generally speaking, this theory assimilates the progressive clogging
of HSSF CWs granular media to the consumption of a generic cartridge and was de-
veloped from a combination of our practical knowledge on CWs, and from the deep
understanding of the main treatment processes gained during the development and
application of the BIO_PORE model (Samsé and Garcia, 2013a,b).

Since the presented theory is mostly based on simulation results obtained with
BIO_PORE model, in this chapter we first justify the changes applied to the original
formulation of CWM1 so that the resulting growth of bacterial communities is con-
sistent with an existing and widely accepted population dynamics model (Verhulst,
1838). We do that by individually studying the evolution of the biomass of a single
functional bacterial group (fermenting bacteria) in a specific point near the inlet sec-
tion of a HSSF CW. This study brings up a discussion of how bacterial communities
interact with each other and how they depend on the environmental conditions (e.g.
accumulated solids, available space and substrates), which leads us to the final theory
for horizontal subsurface-flow constructed wetlands functioning, detailed at the end
of the chapter.

We expect that the current work will not only contribute to improve the way the
dynamics of bacterial communities are described with current mathematical models
for CWs, but will also provide a tool (the Cartridge Theory) to explain the most
basic functioning patterns of HSSF CWs.
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7.2 Methods

7.2.1 Pilot system used for simulations

Simulations were run for the pilot wetland presented in Chapter 3. Average measured
inflow pollutant concentrations, which were used to feed the model, are given later
in the text (See Table 7.1). Notice that although measured effluent pollutant con-
centrations are available for this system, they are not utilized in the current chapter,
since the comparison of measured data and simulation results was already carried
out in Chapter 4.

7.2.2 Simulation strategy

Three individual simulations (51, S2 and S3) were run using incremental versions of
the same equation to represent the period comprised between the start-up and the
third year of operation of the pilot system. Despite a 3 year period was simulated,
the time-scale of the figures presented in the results section was cropped to empha-
size only the relevant data. Initial concentrations of all functional bacteria groups
within the wetland were set to very low values (0.001 mgCOD - L~!) for all three
simulations to represent start-up conditions. Constant values for hydraulic loading
rate (36.6 mm - d~!), water temperature (20°C") and influent pollutant concentra-
tions were used to facilitate interpretation of the model output. Influent pollutant
concentrations were extracted from data averages of an experimental study carried
out in the pilot wetland by Garcia et al. (2005). The fractioning of the influent COD
was made using recommended values for primary effluents in ASMs (Henze et al.,
2000) (Table 7.1), which is a common practice for all models based on its formula-
tion, since otherwise a very detailed characterisation of the influent wastewater is
required. Note that in this system, the influent sulphur concentrations were higher
than in average urban wastewaters, since potable water in the metropolitan area of
Barcelona is partially obtained from a river that drains a chalk basin (Samsé and
Garcia, 2013b).

Plant oxygen release (3 gO2-m~2d~!) and Sy g and Syo uptake (0.2 gN-m~2d~*
each) were considered to take place only on the top 30 cm of the granular media
after the mixing zone. Plant effects on the hydrodynamics of the wetland were not
considered in the current version of the model (Samsé and Garcia, 2013a). Likewise,
all sorts of stochastic processes known to take place in wetlands (e.g. preferential
flow-paths, granular media and plant distribution heterogeneities, bacteria and solids
washout) were not considered.

113



Chapter 7. The cartridge theory

Table 7.1: Influent concentrations of the different wastewater components considered in CWM1 in
the pilot wetland used for simulations.

Componenet | Description Influent concentration Unit
So Dissolved oxygen 0 mgCOD - L1
SF Soluble fermentable COD 39 mgCOD - L™ "
Sa Fermentation products as ac- 52 mgCOD - L1
etate as COD
ST Inert soluble COD 13 mgCOD - L7
Xsm Aqueous slowly biodegradable 130 mgCOD - LT
particulate COD
Xsy Solid slowly biodegradable par- 0 mgCOD - L1
ticulate COD
Xim Aqueous inert particulate COD 26 mgCOD - L1
Xy Solid inert particulate COD 0 mgCOD - L1
Sno Nitrite and nitrate nitrogen 0 mgN - LT
SNH Anmonium and ammonia nitro- 57 mgN - L7t
gen
Ss04 Sulphate sulphur 72 mgS - LT
SHas Sihydrogensulphide sulphur 0 mgS - LT

7.3 Results and discussion

7.3.1 Modelling bacterial growth in constructed wetlands

In this section we demonstrate that the bacteria growth obtained using the original
formulation of CWMI1 does not satisfy the main principles of population ecology. In
addition, we include two simple modifications to the original formulation which makes
the BIO_PORE model comply with the stated principles. For the sake of brevity,
only the growth equation of one functional bacteria group (Equations 7.1 to 7.4) is
analysed. Fermenting bacteria was selected for that matter, since in a previous work
this functional bacteria group was seen to exhibit the highest growth-rate close to the
inlet section (Samsé and Garcia, 2013b), and thus very short simulation times are
required to exemplify the limitations of CWM1. All results in this section correspond
to a point located near the inlet and near the water surface of the pilot wetland
(x =0m, y = 0.6 m) (Figure 7.1), where most of the substrate concentrations are
persistently very high.
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Figure 7.1: Longitudinal section of the pilot wetland. The blue arrows indicate the influent and
effluent of the wetland. Note that the hydraulic head decreases towards the outlet.
The red dot indicates the point where the parameters shown in Figures 7.2 to 7.7 were
measured.

The concentration of fermenting bacteria (Xpp, in mgCOD - L~') through time
at the point near the inlet indicated in Figure 7.1 using CWM1s original formulation
is obtained by solving Equation 7.1:

aXFB:HFB Sk ( KHosrpB )( Korp )( KNoFB )( SNH )
ot KspptSF J\KH2srB+5H25 /\KOoFB+50 )\ ENOFBTSNO J\ENHFB+5NH (7 1)

—bpBXFB
The definition of the parameters, their values and units is given in Table 7.2.

Table 7.2: Values of the constant parameters of the equations describing the growth of fermenting
bacteria (Equations 7.1 to 7.4). For a complete list of all parameters of CWM1 the reader
is referred to Langergraber et al. (2009a) and Samsé and Garcia (2013a,b).

Parameter | Description Value Unit
UFB Specific growth-rate 3 d-1
brp Rate constant for lysis 0.02 d-!
XrB, Initial concentration 0.001 | mgCOD- L~
Ksrr Saturation coefficient for Sg 28 mgCOD - L
Krosrp Inhibition coefficient for Syag 140 mgS - L1
Kors Inhibition coefficient for So 0.2 mgQOs - L7t
KnoFB Inhibition coefficient for Syo 0.5 mgN - L1
Knurs Saturation coefficient for Sy g 0.01 mgN - L1

Equation 7.1 is a first-order linear ordinary differential equation, the analytical
solution of which is:

Xpp)=
. Sp ( KH2SrB )( Kornp )( KNOFB )( SNH )*bFBt
Xpp. e KspptSF J\Ku2srB+5u2s )\ KorB+50 )\ ENOFBTSNO J\ENHFB+5NH
0

(7.2)
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Therefore, with CWM1s original formulation the growth of bacteria follows an
exponential tendency (Equation 7.2), which in the population ecology discipline is
known as Malthusian or exponential growth. In a situation where substrates con-
centrations are not limiting, such as in the inlet section of continuously fed CWs,
Equation 7.2 predicts very high bacterial densities after very short time-frames. How-
ever, Malthusian growth is only realistic when the density of organisms is relatively
low, since for high bacterial densities the competition for space and resources hinders
the production of new bacterial cells (Stanescu and Chen-Charpentier, 2009).

Simulation S1: Bacterial growth with CWM1s original formulation

A first run of the BIO_PORE model (simulation S1) with the original formulation
of CWM1 (as in Equation 7.1) confirms that after around 25 days of operation
fermenting bacteria concentrations near the inlet (point indicated in Figure 7.1) are
already very high and unrealistic (in the order of magnitude of hundreds of grams
of COD per litre) (Figure 7.2). These bacterial hot spots develop even with average
values of the product of the Monod switching functions (around 0.6). Notice that this
product can range from 0 (substrates scarcity and/or high concentration of inhibitors)
to 1 (high substrates availability and/or low concentration of inhibitors).
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Figure 7.2: Fermenting bacteria concentrations (Xpg) (in gCOD - L™') over time obtained from
simulation S1 at the point indicated in Figure 7.1. Note that S1 was run considering
start-up conditions and for this reason the concentration of bacteria was very low at the
beginning. Note that simulation S1 was stopped before day 30 since the big gradients
of bacteria concentration generated before that time prevented convergence of numerical
solutions.

Simulation S2: Effect of increasing bacterial densities on bacterial growth

To prevent limitless bacterial growth and the formation of bacteria hot spots near
the inlet section, we included a linear function of the total bacterial density (Mp;,)
on the growth rate expression of each bacteria group. This function, which was
proposed by Pierre Franois Verhulst back in the XIX** century (Verhulst, 1838) and
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has later been used in several bioclogging studies (Brovelli et al., 2009b), adds a
negative feed-back on the growth rate since its value decreases with increasing total
bacterial density. Equation 7.3 represents the growth rate expression of fermenting
bacteria (as in Equation 7.1) with the inclusion of the negative feed-back term.

9Xpp _

ot

uFB<1, Mpio ) Sp ( KHoSFRB )( Korp )( KNoFB )( SNH )
Mpyiomaz KspptSF J\KH25FB+t5H25 J\ KOoFB+50 J\ENOFBTSNO /\ENHFB+SNH
—bFrBXFB

Where, My;, (kgV'S-m~=3 of granular material) is the sum of to the biomass con-
centration of all bacterial groups (heterotrophic, nitrifying, fermenting, acetotrophic
methanogenic, acetotrophic sulphate reducing and sulphyde oxidyising bacteria).
Mpyiomaz (kgV'S - m™3 of granular material) is the carrying capacity of the envi-
ronment, whichis a constant value that corresponds to the maximum concentration
of bacteria that can be attained in a specific volume of granular material. In fact,
this is an empirical value, which is usually smaller than porositys capacity (Brovelli
et al., 2009b), and needs to be found for every specific wetland.

Figure 7.3 was obtained from a new simulation (52) following the same procedure
as for S'1 but with the inclusion of the negative feed-back term to the growth expres-
sion (as in Equation 7.3). This simulation was carried out considering Mp;, maz =
0.093 kgV'S - m~3 of granular material (300mgCOD - L~! of water, considering a
porosity of 0.4 and assuming 1 gV'S = 1.42 g suspended COD (Wanner et al., 2006)).
The value of Mp;o maer Was obtained during calibration of BIO_LPORE model, which
was conducted for the same pilot wetland (Samsé and Garcia, 2013a). With the
inclusion of the negative feed-back term fermenting bacteria growth follows a lo-
gistic curve (Stanescu and Chen-Charpentier, 2009) (Figure 7.3). The exponential
phase is stopped after around 15 days, when total bacterial biomass in the stud-
ied point reaches the carrying capacity of the system (Mpio = Mpio_maz) and thus

(1 — MM¢> turns 0 (Figure 7.4). Figure 7.3 also shows that fermenting bacteria

bio-m

concentrations become constant after the total bacterial biomass reaches the carrying
capacity of the system.
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Figure 7.3: Fermenting bacteria concentrations (Xpp) over time obtained from simulation S2 (in-
teria groups) at the point indicated in Figure 7.1. Note that S2 was run considering
start-up conditions and for this reason the concentration of bacteria was very low at
the beginning. Also note that fermenting bacteria was the most abundant functional
bacterial group near the inlet section (Mpio >~ Mx ).

cluding the negative feed-back term (1 — ) to the growth expression of all bac-
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Figure 7.4: Value of the negative feed-back term (1 - ) over time obtained in S2 at the

point indicated in Figure 7.1. Note that this value can range from 0 to 1.

Simulation S3: Effect of inert organic solids accumulation on bacterial growth

Both wastewater and dead bacteria cells contain an inert fraction which is refractory
(not biodegradable or very slowly biodegradable) and accumulates in the granular
media, causing its progressive clogging (Garcia et al., 2010; Hua et al., 2013; Knowles
et al., 2011; Nguyen, 2000). In CWM]1, the soluble and particulate inert fractions
of wastewater are represented with the variables S; and X respectively (both in

mgCOD-L™1). Likewise, CWMT1 defines that all bacteria cells contain a 10% of inert

. . COD .
solids in the form of X (see parameter fpa,x, = 0.19570,% in Langergraber

et al. (2009a)).

Notice, as well, that inorganic solids coming with the influent wastewater or
arising from reactions with the filter media are not considered in BIO_PORE. Also,
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7.3. Results and discussion

although particulate biodegradable solids (Xg in CWMI1) can occupy pore space
and contribute to clogging, in this work they are considered not to cause any effect
on bacterial communities since the volume occupied by this type of solids can be
replaced by new bacteria cells (Samsé and Garcia, 2013a).

The porosity reduction caused by the progressive accumulation of inert solids,
which results in decreasing available space and substrates, must translate into de-
creasing bacteria concentrations with time. Figure 7.3 shows that this behaviour
cannot be reproduced with Equation 7.3. Therefore, to account for the impact that
accumulated inert solids have on the development of bacterial communities a second
negative feed-back function was added to Equation 7.3:

9Xpp _

FB -
M, M s K K

HFB(1_ bio )1_ If F (%)(;@) (7.4)
Mbyiomaz Mecap KspgtSF J\Ku2srB+5u2s /\ KorB+50 :
KNOFB )( SNH )
—bppX
(KNOFBJFSNO KNHFBTSNH FBAFB

Where, Mx,, (kgV's - m~3 of granular material) and Meq, (kgV'S - m™3 of
granular material) are, respectively, the actual mass of inert solids and the maximum
mass of solids that fit a cubic meter of granular media. Note that biodegradable
solids are not included in this new logistic function as they can be degraded and
the released space can be subsequently occupied by new bacterial cells (Samsé and
Garcia, 2013a).

Figure 7.5 shows fermenting bacteria concentrations over time obtained from
simulation S3, in which the growth of all bacteria groups is described using Equation
7.4. Simulations were run considering Mpip maz = 0.093 kgV'S - m™3 of granular
media (= 300 mgCOD - L™ of water) and M, = 6 kgV'S - m™3 of granular media
(= 19.35 gCOD - L~! of water, considering a porosity of 0.4 and 1 gVS = 1.42 g
suspended COD (Wanner et al., 2006). Note that all these values were obtained by
Sams6 and Garcia (2013a) during calibration.

119



Chapter 7. The cartridge theory

350
300 1
250 A
200 A
150 A
100
50 A

0 T T T T T T
0 100 200 300 400 500 600 700

XFB (mgCOD L-1)

Time (days)

Figure 7.5: Fermenting bacteria concentrations (Xrp) over time obtained from simulation S3 (in-
M
cluding the negative feed-back terms (1 - MA%) and (1 - X”) to the growth

bio_max ]Mcap

expression of all bacteria groups) at the point indicated in Figure 7.1. Note that S3 was
run considering start-up conditions and for this reason the concentration of bacteria was
very low at the beginning. Also note that fermenting bacteria was the most abundant
functional bacterial group near the inlet section (Mpio ~ Mx ). The time-frame rep-
resented in this figure is longer than in the previous ones to depict the entire bacteria
cycle.

In simulation S3, the initial stages of the growth of fermenting bacteria (Figure
7.5) coincide with those of simulation S2 (Figure 7.3): the rapid bacterial growth near

the inlet section of the wetland turns the negative feed-back term (1 — MM¢> to

bio_mazx

almost zero before day 15 (line with circles in Figure 7.6) and no net bacteria growth is
observed after then. However, in this case fermenting bacteria concentrations start
decreasing shortly after reaching the systems carrying capacity (Mpio_maz) due to
the increasing concentrations of accumulated inert solids (Mx,,) (Figure 7.7), which

M
progressively diminish the value of the negative feed-back term (1 — %) (line with

squares in Figure 7.6). After around 450 days, inert accumulated solids reach the
value of M4, and subsequently, the concentration of fermenting bacteria decreases
more rapidly until it becomes negligible (around day 700), since dead bacterial cells
are not anymore replaced with new ones. That is even when the value of the negative

feed-back term (1 — ]\/[,f\/[¢) increases again resulting from decreasing bacterial
ro-max

concentrations (My;,) (Figure 7.6).
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Figure 7.6: Values of the negative feed-back terms (1 - M) and (1 - M}:GI;{) and their prod-
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uct over time obtained from simulation S3 at the point indicated in Figure 7.1. Note
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Figure 7.7: Concentration of inert solids (X7, kgCOD - m™ of water) over time obtained for sim-
ulation S3 in the point indicated in Figure 7.1.

7.3.2 Simulation results on bacteria distribution and solids accumulation
pattern in HSSF CWs

In this section bacterial communities and inert solids concentrations obtained from
simulation S3 are shown for the whole longitudinal section of the wetland. Figure 7.8
shows that bacteria communities after 1, 2 and 3 years of operation are distributed
in a rather narrow strip in the direction of the flow, occupying approximately a third
of the beds length. This is an intrinsic feature of HSSF CWs, which behave as as
non-ideal plug-flow reactors in which both substrates and bacterial concentrations are
much higher near the inlet section and progressively lower towards the outlet (Garcia
et al., 2010; Vacca et al., 2005). In our model, the extent of the active bacteria zone,
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which is the area of the wetland where most pollutants are transformed/removed
(warmer colours in Figure 7.8, depends on the value of My, mae; the higher the
value of this parameter, the narrower the resulting bacteria distribution.

300
[i]

Figure 7.8: Distribution of bacteria (sum of the 6 functional groups considered in CWMI1 after 1
(top), 2 (center) and 3 (bottom) years of operation of the pilot wetland obtained from
simulation S3. The key at the right indicates bacteria concentration in mgCOD - L™1.
The x-axis of each image represents the longitudinal direction of the bed (from 0 to
10.3 m) and the y-axis the depth of the bed (from 0 to 0.7 m). Also note that the
coloured areas of each image correspond to wetted areas, while the white areas correspond
to areas without water. Despite it is not noticeable with this colour legend, bacteria
concentrations were present on the whole longitudinal section.

On the other hand, Figure 7.9 shows that inert solids coming from the influ-
ent wastewater and from dead bacteria cells initially accumulate near the inlet and
progress towards the outlet with time. This accumulation pattern is responsible
for the progressive displacement of the active bacteria zone observed in Figure 7.8
and is a direct consequence of the inclusion of the second negative feed-back term

M
1-— M:g ), which dictates that no further bacteria growth can take place when

porosity is already full with inert solids. As with My;o mae, the value of My, does
have a direct impact on the rate at which accumulated inert solids progress towards
the outlet and hence on the bacteria displacement rate and on the predicted life-span
of the wetland.
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7.4. The Cartridge Theory

Figure 7.9: Distribution of accumulated inert solids after 1 (top), 2 (center) and 3 (bottom) years
of operation of the pilot wetland obtained from simulation S3. The key at the right
indicates inert solids concentration in kgCOD - m ™2 of granular material. The x-axis of
each image represents the longitudinal direction of the bed (from 0 to 10.3 m) and the
y-axis the depth of the bed (from 0 to 0.7 m). Also note that the coloured areas of each

image correspond to wetted areas, while the white areas correspond to areas without
water.
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7.4 The Cartridge Theory

The Cartridge Theory is a description of the functioning of HSSF CWs based on
the interactions between bacterial communities and accumulated inert solids. This
theory derives from simulation results obtained with BIO_PORE model in the current
(simulation S3) and in Chapter 6.

The Theory states that a close interrelation exists between bacterial communities
and accumulated inert solids produced from bacteria dye-off and those contained in
the influent wastewater, which defines the most basic functioning patterns of all
HSSF CWs. The progressive accumulation of inert solids from inlet to outlet with
time causes the displacement of the active bacteria zone (area of the wetland where
most pollutants transformations and degradation take place) in the same direction
(Figure 7.10). This implies that wetlands have a limited life-span which corresponds
to the time when bacterial communities are pushed as much towards the outlet (due
to the presence of inert solids) that their biomass is not anymore sufficient to remove
the desirable proportion of the influent pollutants. Note, however, that in this work
the BIO_LPORE model has been used to propose a reasonable theory in accordance
to the current state of the art of constructed wetlands and not to make accurate
predictions of the life-span of the pilot wetland. Moreover, the simulation results
presented in this work correspond to a particular case, since depending on factors
such as the type of municipal wastewater (primary or secondary effluents), hydraulic
loading rate and method of influent distribution the rate at which clogging develops
may vary (Knowles et al., 2011).

However, the functioning of our pilot wetland as described by the BIO_.PORE
model is in agreement with observations in field scale systems, in which although a
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portion of the wetland was clogged, the systems still produced effluents of acceptable
quality (Knowles et al., 2011)

Figure 7.10: Graphical explanation of The Cartridge Theory. The images show the progressive ac-
cumulation of inert solids (represented in brown) and the subsequent displacement of
the active bacteria zone (represented in red) from the beginning of operation and until
the hypothetical complete failure of the wetland (from left to right and from top to
bottom). Note that stochastic processes such as surface-flow have not been considered.

Moreover, the solids accumulation pattern described by The Cartridge Theory
is also in agreement with reports of many authors who describe the existence of a
horizontal gradient in solids accumulation from inlet to outlet (Caselles-Osorio et al.,
2007; Garcia et al., 2005; Kadlec and Watson, 1993; Nivala et al., 2012; Pedescoll
et al., 2013; Tanner et al., 1998; Tanner and Sukias, 1995). Likewise, Nguyen (2000)
found that up to 90% of the particulate organic matter accumulated in a pilot system
treating dairy wastewater was composed of recalcitrant fractions, confirming that the
accumulated solids that result in clogging of the granular media are mostly of inert
nature. The narrow bacterial distribution obtained with the model is also consistent
with reports of greater biofilm development at the inlet region of wetlands (Garcia
et al., 2007; Ragusa et al., 2004; Tietz et al., 2007), which the authors relate to the
higher concentration of organic matter in the wastewater in this area. However the
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displacement of the active bacteria zone in the direction of the flow predicted by the
model has not been previously reported and should therefore be subject of further
investigations.

7.5 Limitations of The Cartridge Theory

Since The Cartridge Theory is based on simulation results with BIO_LPORE model,
its limitations are inherited from the own model limitations. This model was cali-
brated in a previous study for effluent pollutant concentrations (Samsé and Garcia,
2013a) but the results obtained in the current work are not validated due to the
scarcity of published experimental or simulated data on bacterial distribution and
solids accumulation (and their interaction) in HSSF CWs. We hope that the pro-
gressive advance of the microbiological techniques applied in CWs will soon allow
verifying the results obtained with the model.

The first limitation of the theory results from the fact that CWM1 is a determin-
istic model, whereas HSSF CWs are known to account for a great deal of randomness;
hence this theory provides an ideal description of the functioning of HSSF CWs. How-
ever, it is worth noting that in the current study all sorts of stochastic processes were
deliberately ignored to provide the most general and case-insensitive theory possible.
For instance, the washout of bacteria and solids is a known process that occurs in
porous media for peak flow-rates (Rittmann, 1982). This phenomenon can be simu-
lated with BIO_PORE model (Samsé and Garcia, 2013a) but in the current study all
simulations were run considering normal flow conditions to avoid any interferences
of this phenomenon on the results. Moreover, BIO_PORE is a macroscopic model,
and thus heterogeneities on the biofilm structure cannot be simulated.

Possibly the most important limitation of the theory rises from the fact that
the changes in the hydrodynamic properties of the granular media caused by bacte-
rial growth (Weber et al., 2011), belowground plant biomass (Knowles et al., 2011;
Rousseau et al., 2005; Samsé and Garcia, 2013a) and solids accumulation (Pedescoll
et al., 2013) cannot be simulated with the current version of the model. Therefore,
heterogeneous distributions of bacteria and solids caused by preferential flow-paths
and from the development of overland flow (Nivala et al., 2012) are not described
with The Cartridge Theory.

Another limitation of the model is that the widespread of bacterial communities
within the granular media and the velocity at which accumulated solids progress
towards the outlet depend on the values given to Mo mae and Mceqp. The value
of these two parameters must be obtained for every wetland, since they will take
different values depending on, for instance, the granular media properties. In this
study the values of My ez and M.,y where taken from calibration results in the
same pilot wetland (Samsé and Garcia, 2013a).
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Moreover, a future improvement to the model formulation could correspond to
making the value of the carrying capacity of the system (Mpio_maz) dependent on the
concentration of inert solids, rather than using two separate logistic functions (as in
the current work). However the results obtained with this new formulation would
certainly be very similar to those obtained with the current one, since the value of
M_qp is much greater than that of My, mae, and thus the effect of inert solids on
bacterial communities is only apparent once the total biomass has already reached
the value of My;o maz-

Finally, in this work water temperature was considered constant. Although
temperature does have an effect on bacterial communities, it is only noticeable on
the rate of the processes and on the performance of pollutants removal, which are
not subjects of discussion of the current work. However, by considering variable
temperatures, the rate of clogging by inert solids obtained with the model would not
change significantly, since inert solids are not degraded, and the amount of solids
produced by bacterial processes in comparison to those entering the system through
the inflow is very small. Moreover, in real cases it is likely that the changes of
temperature on a particular CW produce intra-annual variations, which are less
evident in the long term.

7.6 Conclusions

In this chapter we presented a theory on the general functioning of HSSF CWs based
on the interaction between bacterial communities and accumulated solids (clogging)
which was derived from simulation results with BIO_PORE model.

The theory assimilates the granular media of HSSF CWs to a generic cartridge
which is consumed (clogged) with inert solids from inlet to outlet with time. The
reduction of porosity caused by the accumulation of solids causes the displacement of
bacterial communities, which are progressively pushed towards the outlet. According
to this, the failure of a CW occurs when the active bacteria zone is located as close
to the outlet section that its total biomass is not sufficient to degrade an acceptable
proportion of the influent pollutants.

Although The Cartridge Theory may be considered as an oversimplification of
the real complexity of HSSF CWs, this is the first time an integrated description
of the functioning these systems is made based on modelling results and represents
an important step towards the complete understanding of the functioning of these
systems. This is also the first time the effect of accumulated inert solids on the
development of bacterial communities is described.
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CHAPTER 8

Modelling bioclogging and overland flow in CWs

This chapter is based on the article:

e Samsd, R., Forquet, N., Molle, P., Garcia, J., 2014. Modeling bioclogging
effects on the hydrodynamics of Constructed Wetlands and the subsequent
overland-flow (in preparation).

8.1 Introduction

Constructed Wetlands (CWs) are a wastewater treatment technology designed to
mimic and intensify the pollutants removal potential of natural wetlands. Like most
subsurface environments, the granular material of these systems is prone to clogging
(Knowles et al., 2011). This phenomena is responsible for severe changes in the
hydrodynamic properties of the granular media i.e. the reduction of both porosity
and hydraulic conductivity lead in many cases the proliferation of overland flow
(Knowles et al., 2010; Nivala et al., 2012; Pedescoll et al., 2009; Soleimani et al.,
2009). Mechanisms responsible of clogging in CWs include biofilm growth, chemical
precipitation, filtration and plant roots development (Knowles et al., 2011; Suliman
et al., 2006). After several years of clogging development, this phenomena can cause
the complete failure of CWs. Accordingly, clogging is generally referred to as the
main operational problem of CWs (Knowles et al., 2011; Pedescoll et al., 2011).

Experimental study of clogging is made difficult by the number of involved pa-
rameters and their non-linear cross-influence, the ability to observe non-destructively
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and by the typical duration of the processes (it may take many years for a filter to
be completely clogged). Numerical modelling may then be an interesting tool as it
allows to observe the outcome of complex conceptual models in various experimental
conditions (Oberkampf and Trucano, 2002) and to test their validity and how they
enable a better understanding of the involved processes.

So far, modelling of biological clogging (bioclogging) has been the target of many
studies in different disciplines, e.g. soil remediation (Seki et al., 2006), groundwa-
ter recharge (Greskowiak et al., 2005) and Aquifer Thermal Energy Storage (Bonte
et al., 2013). Modelling of bioclogging requires to couple the flow and transport
processes to biofilm growth and subsequent modification of the hydraulic properties.
Biofilm growth can be modelled at different scales (Soleimani et al., 2009): micro-
colony models, biofilm models and macroscopic models. The biofilm models are the
most commonly used. Similarly, hydraulic properties changes can be modelled using
Thullner (2010): empirical laws derived from column experiments, conceptual mod-
els, and pore network models at the macroscopic scale. Furthermore, most attempts
to simulate bioclogging have been made in saturated conditions, while only a few
have focused on unsaturated conditions (Mostafa and Van Geel, 2007).

In the field of CWs, few attempts have also been made to simulate bioclog-
ging (Hua et al., 2013; Knowles et al., 2011; Rousseau et al., 2005) using complex
biokinetic models. Brovelli et al. (2009b) compared the performances of three bio-
clogging models derived from the three different approaches mentioned above to
experimental data under saturated conditions and concluded that models were un-
able to reproduce long-term clogging evolution. Giraldi et al. (2009, 2010) developed
a model (FITOVERT) for VF CWs that includes a bioclogging model. The latter
uses an empirical law to modify the saturated hydraulic conductivity according to
the biomass concentration but does not modify the unsaturated flow properties.

However there is still little experience on this field and none of them have been
able to predict clogging development in the long-term operation of CWs (Nivala et al.,
2012). Furthermore, in horizontal subsurface flow Constructed Wetlands (HSSF
CWs) both saturated and unsaturated sites exist, and when severe clogging occurs,
surface flow also develops. Therefore, to simulate bioclogging and its effects on the
hydraulic and hydrodynamic functioning of CWs using numerical models, flow under
these three conditions must be considered. Therefore, more research is needed to be
able to simulate clogging in CWs.

In this study we compared simulation results obtained with two numerical mod-
els based on the BIO_PORE model: one accounting for the changes on the hydro-
dynamic properties of the granular media (by including a conceptual bioclogging
model) and the other one neglecting them. Special attention was dedicated to study
how the bioclogging model influences the flow distribution, the biomass development
and the treatment performances.
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The BIO_PORE model was built in the COMSOL Multiphysics™ simulation
environment and was conceived as a tool to simulate the widest possible range of
physical and biochemical processes involved in the treatment of wastewater in CWs,
as well as the flux of water (Sams6 and Garcia, 2013a,b; Samsé and Garcia, 2014a;
Samsoé et al., 2014b; Meyer et al., 2014). However, and despite bacterial growth and
filtration processes were included, the BIO_LPORE model was not suited to simulate
the effects of clogging on the hydraulics and hydrodynamics of CWs.

In this work we aim to present a standalone model to simulate saturated and
unsaturated subsurface flow, bioclogging produced by a single bacterial group using
the conceptual model of Rosenzweig et al. (2009) and the subsequent surface flow.

At the end of the paper a discussion is made about the limitations of the current
model and on research needs and possible model improvements.

8.2 Methods

8.2.1 Governing equations

The equations used to describe the hydrodynamics, solute transport, bacterial growth
and bioclogging are detailed in the following sections.

Hydrodynamics

The Richards equation (Richards, 1931) is used to described variably saturated
porous media flow, assuming that air remains at atmospheric pressure and that

flow velocity can be estimated using the Darcy-Buckingham equation (no creeping
flow) (Eq. 8.1):

dmg?—vuqmvm:ss (8.1)

Where h [L] is the hydraulic head, t [T] is time, o(h) [L™1] is the specific volu-
metric storability, K (k) [LT~!] is the hydraulic conductivity and s [LT~!] represents
the contribution of sources and sinks.

The initial (biofilm-free) soil water retention curve is obtained from Eq. 8.2 (van

Genuchten, 1980):

0(h) = 0, + Se(h)(05 — 6,) (8.2)
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Where 6(h) is the volumetric water content. 6, (-) and 6, (-) represent, respec-
tively, the saturated and residual liquid volume fractions and

1

= T anyT

(8.3)

is the effective water saturation. o, n and [ =1 — % are van Genuchten fitting
parameters.

In this work the Richards equation was chosen to describe both subsurface and
overland flow. This choice was primarily driven by the will to keep the same governing
equation over the entire flow domain. By doing so, we implicitly assumed that there is
no local nor convective acceleration of the overland flow and that the viscosity effects
can be estimated by a Darcy-like expression. The implications of these assumptions
will be discussed later in the chapter (Section 8.4).

The van Genuchten parameters of the Richards equation for the overland flow
lack any physical meaning and were selected with the sole purpose of assimilating
flow in porous media to overland flow. The same occurs for its saturated hydraulic
conductivity (Ksqtp, ), which was set to very high values to reduce flow resistance,
and for 6, and 0, which were defined as 1 and 0, respectively, so that all pore volume
is considered as water only.

Solute Transport

The fate and transport of solutes is described with Eq. 8.4:

0

&(QC]C) + V- [-0DVCy +uCy| = s, 1oy (8.4)
k=1,....n

Where n is the total number of transported species Cj, [M LY , 0 (-) is the
liquid volume fraction, D [L?T~!] is the hydrodynamic dispersion tensor, u is the
specific discharge [LT ], s¢, [ML™3T 1] represents the source/sink term of C}, per
unit time and r¢, [ML73T~!] denotes the reaction rate of Ci.
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Bacterial Growth

For the sake of simplicity, only one bacterial group (X) was considered in the current
work. The growth of this hypothetical bacteria only requires the availability of
one substrate (C') and is described using the following Monod equation (Monod,
1949)(Eq. 8.5).

0X X C
— = 1— X —kxvX 8.5
ot “X< ox <es—er>> <Kx7o+0> x (8:5)

Where, X and C have units of mgCOD - L™!, ux and kx (both in d=!) are
the maximum growth rate and decay rate of X, respectively. px is the density of X
(kg -m™3) and 0, (-) and 6, (-) represent the saturated and residual liquid volume
fractions of the porous material, respectively. Finally, Kx ¢ (mg - L~1) represents
the half saturation coefficient of C' for X.

The logistic term (1 — m> was added to Eq.8.5 to prevent unlimited
growth of X in areas with persistently high C' concentrations (inlet section) (Samsé
and Garcia, 2013a,b).

X growth occurs at the expenses of substrate C' consumption at a rate defined
by the following expression:

oC 1 X C
—_— = —— 1-— X 8.6
ot YX,CHX < px (0s — 9r)> (KX,C + C> (8.6)

Where Yy ¢ (mgCODx - mgCODc™1) is the yield coefficient for bacteria X.
Eq. 8.6 corresponds to the reaction term r¢ in Eq. 8.4.

Bioclogging

Based on the capillary model (Mualem, 1976), which is a simplistic conceptual repre-
sentation of soil capabilities to retain and conduct water, we estimate the equivalent
pore size distribution of the bacteria-free WB using Eqgs. 8.7 and 8.8 (Rosenzweig
et al., 2009).

20 cos
A6
vai = 7.”,,2 (88)
f7i
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Where r; is the effective radius of the largest water-filled capillary for every
pressure head value, and Ny; (Eq. 8.8) is the density number of the capillaries of
radius r¢; (Rosenzweig et al., 2009). Following the notation utilized by Rosenzweig
et al. (2009), sub-index f indicates biofilm-free conditions. o is the water surface
tension (0.072N - m~! for distilled water at 20 °C), v is water’s specific weight and
B (—) is the water contact angle within the tube walls, which is usually set to
0 (Rosenzweig et al., 2009). @ is the initial (biofilm-free) water content for every
pressure head value, obtained with van Genuchten model (Eq. 8.2) and A are
increments of the water content between two consecutive pore radii.

Rosenzweig et al. (2009) suggests that the biofilm can be modelled as a con-
tinuous layer covering the pore walls, thus decreasing the radii of pores. The new
pore radii distribution in the presence of biofilm can be calculated with Eqgs. 8.9 and
8.10:

Thi = Tfi 1-— Sem(h) (89)
Noi = Ny (8.10)
Where Se,,(h) = 991“97. is the specific saturation of bacteria. 6,, = Vm (-) is

the volume fraction of the soil occupied by bacteria (Mostafa and Van Geel 2007;
Weill et al., 2009) and Viyq; and Vi, (both in [L3]) are, respectively, a representative
volume of granular material and the actual volume of biomass in that representative
volume. V;, is obtained by multiplying bacteria concentrations (X (mgCOD - L™1))
by the density of biomass.

The updated water content in the presence of biofilm is obtained with Eq. 8.11
(Rosenzweig et al., 2009):

J
Owj =0r +m Z Nb,z‘ﬁii (8.11)
i=1

The value of 0,, ; ranges from 6, to 0, — 0,,. In Eq. 8.11, j =1 : M corresponds
to the index of the capillary groups.

The water content (6,, ;) is then used to calculate the new effective water satu-

ration (Se,, ;) as follows:

(8.12)
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Finally, the relative unsaturated hydraulic conductivity (with respect to the
initial one) in the presence of biofilm (k) is calculated using the following expression
(Rosenzweig et al., 2009):

Nbﬂrl%,i

ke (Ow,j) = lei
Zl Nyt
1=

J

(8.13)

and thus the updated value of K(h) in Eq. 8.1 in areas where bioclogging occurs
is obtained with:

K(h) = kb(h)Ksat (8.14)

whereas in areas where bioclogging does not take place, the hydraulic conduc-
tivity remains the same as in the initial conditions and is obtained with:

K(h) - kr<h)Ksat (8'15)
Where,

1
7

ke (h) = Se(R)'[1 = (1 — Se(R)T)']? (8.16)

is the biofilm-free relative hydraulic conductivity and Sc(h) is obtained from Eq.
8.3.

8.2.2 Hardware and Software

All simulations were run on a computer cluster running Linux kernel 2.6.18-238 and
the Portable Batch System (PBS) job scheduler. The cluster had a total of 14 nodes,
10 of Typel and 4 of Type2. The main features of Typel and Type2 nodes are
detailed in Table 8.1.

Table 8.1: Features of Typel and Type2 cluster nodes.

Typel nodes | Type2 nodes
Number of nodes of this type | 10 4
Number of processor cores 2%4 2%6
Frequency of processors 2.66 GHz 2.66 GHz
RAM memory 32 GB 48 GB
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The COMSOL Multiphysics™ and MATLAB® versions installed in the cluster
were v4.3b and R2013a, respectively.

8.2.3 Model Implementation

All model equations were implemented using the COMSOL Multiphysics™ interface,
except for the equations used to calculate the volumetric water content (6, ;) and
the relative hydraulic conductivity in the presence of biofilm (k) (Egs. 8.11 and
8.13), that were implemented in MATLAB®. The exchange of data between COM-
SOL Multiphysics™ and MATLAB® is made at each numerical iteration using the
Livelink for MATLAB® COMSOL Multiphysics™ module (Figure 8.1).

Figure 8.1: Parameter exchange between COMSOL Multiphysics™ and MATLAB®.

In the following lines, the MATLAB® code used to calculate k;, and Ow,j is
presented:

1

2 function k_b = relcond(alpha,thetam,thetas,thetar, sigma,gamma,m,n,p)

3

4 Sfunction k_b calculates the relative hydraulic conductivity in the
presence of biofilm. It imports the following 2D matrices from
COMSOL Multiphysics:

5

6 %alpha, n, m =van Genuchten parameters

7 %thetas and thetar = saturated and residual water volume fraction

8 %sigma and gamma = water surface tension and specific weight

9 S%Sthetam = volume fraction of soil occupied by bacteria

o\

10
11

p = pressure head

12 %defining the vector of capillary head values

13 pr=—logspace (4,—4,100)"';

14

15 %create 3D matrices for all data imported from COMSOL with
dimensions (size(p,1l),size(p,2),size(pr,1)).
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16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31
32
33

34
35
36
37
38
39

40
41
42
43

44
45
46
47
48
49
50

51
52
53
54
55
56
57
58

59
60
61
62

%$3D matrix for the capillary head pressure
pr-3D (1,1, :)=pr;
pr_3D=repmat (pr_-3D, [size(p,l) size(p,2) 11);
p-3D=repmat (p, [l 1 size(pr,1)]);

%$3D matrices for van Genuchten parameters and soil properties
imported from COMSOL

alpha_3D=repmat (alpha, [1 1 size(pr,1)]1);

n_3D=repmat (n, [1 1 size(pr,1)1]1);

m_3D=repmat (m, [l 1 size(pr,1)]);

thetar_3D=repmat (thetar, [1 1 size(pr,1)]);
thetas_3D=repmat (thetas, [1 1 size(pr,1)1]1);
thetam_3D=repmat (thetam, [1 1 size(pr,1)]);
gamma_3D=repmat (gamma, [1 1 size(pr,1)]1);

sigma_3D=repmat (sigma, [1 1 size(pr,1)]);

%Calculating the distribution of the Specific saturation without
biofilm for each pressure (3D matrix)
Se = ones(size(p,1),size(p,2),size(pr,1))./...
(ones (size(p,1),size(p,2),size(pr,1))+...

(abs (alpha_3D.*pr_3D./gamma_3D)) . " n_3D) . m_3D;

$Calculating the distribution of the water content without biofilm
of every pore for each pressure (3D matrix)

W_cont = thetar_3D+Se.x (thetas_3D—thetar_3D);

%$Calculating the pore radii distribution at every node for each
pressure (3D matrix)

rf = —2xsigma_3D./pr_3D;
Nf=zeros (size(p,1l),size(p,2),size(pr,1));

for k=l:size(pr,1)-1
Nf(:,:,k+1) =
(W_cont (:,:,k+1)—W_cont (:, :,k)) ./ (pi*xrf(:,:,k+1).72);
end
%$Calculating the specific saturation of bacteria
Sem=thetam_3D./ (thetas_3D—thetar_3D);
$Updating the pore radii distribution in the presence of biofilm
using model R3 of \citep{Rosenzweig2009}
Nb=Nf;

rb=rf.xsqrt (ones(size(p,1l),size(p,2),size(pr,1l))—Sem);

$diff matrix calculates the difference between the real pressure
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and that of the capillary model (3D matrix)

63

64 diff=abs (pr_-3D—p-3D);

65

66 S%Spreallocation

67

68 k_b=zeros(size(p,1l),size(p,2));

69

70

71 %with the following loop the z indices of the minimum value of each
column of the diff matrix are obtained and then the sum of
Nbxrb"2 up to the value of the index is calculated.

72

73 for i=l:size(p,1)

74 for j=l:size(p,2)

75

76 locn=find(diff (i, j, :)==(min(diff(i,J,:))));
77 kb (i, j)=sum(Nb (i, j,1l:locn).+rb(i,Jj,1l:locn)."4)./...
78 sum (Nf (i, j,l:end).xrf(i,j,l:end)."4);

79

80 end

81 end

82

83 end

1 function W_contb =
watcont (alpha,thetam, thetas, thetar, sigma, gamma, m, n, p)

3 %function W_contb calculates the water content in the presence of
biofilm. It imports the following 2D matrices from COMSOL

$thetam = volume fraction of soil occupied by bacteria
p = pressure head

Multiphysics:
4
5 %alpha, n, m =van Genuchten parameters
6 %thetas and thetar = saturated and residual water volume fraction
7 %sigma and gamma = water surface tension and specific weight
8
9

o° o

10

11 %defining the vector of capillary head values

12 pr=—logspace (4,—4,100)';

13

14 %create 3D matrices for all data imported from COMSOL with
dimensions (size(p,1l),size(p,2),size(pr,1)).

15

16 %3D matrix for the capillary head pressure

17 pr_-3D (1,1, :)=pr;

18 pr-3D=repmat (pr-3D, [size(p,1l) size(p,2) 11]1);
19 p-3D=repmat (p, [1 1 size(pr,1)]);

20

21 %3D matrices for van Genuchten parameters and soil properties
imported from COMSOL
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alpha_3D=repmat (alpha, [l 1 size(pr,1)]);
n_3D=repmat (n, [1 1 size(pr,1)]);
m_3D=repmat (m, [1 1 size(pr,1)]);
thetar_3D=repmat (thetar, [1 1 size(pr,1)1]1);
thetas_3D=repmat (thetas, [1 1 size(pr,1)]);
thetam_3D=repmat (thetam, [1 1 size(pr,1)]);
gamma_3D=repmat (gamma, [l 1 size(pr,1)]);
sigma_3D=repmat (sigma, [1 1 size(pr,1)]);

$Calculating the distribution of the Specific saturation without
biofilm for each pressure (3D matrix)
Se = ones(size(p,1l),size(p,2),size(pr,1))./...
(ones (size(p,1),size(p,2),size(pr,1))+...

(abs (alpha_3D.*pr_3D./gamma_3D)) . " n_3D) . " m_3D;

%$Calculating the distribution of the water content without biofilm
of every pore for each pressure (3D matrix)

W_cont = thetar_3D+Se.x (thetas_3D—thetar_3D);

$Calculating the pore radii distribution at every node for each
pressure (3D matrix)

rf = —2xsigma_3D./pr_3D;
Nf=zeros(size(p,1l),size(p,2),size(pr,1));

for k=l:size(pr,1)-1
Nf(:,:,k+1) =
(W_cont (:, :,k+1)—W_cont (:, :,k)) ./ (pi*rf(:,:,k+1)."2);
end
%$Calculating the specific saturation of bacteria
Sem=thetam_3D./ (thetas_3D—thetar_3D);
$Updating the pore radii distribution in the presence of biofilm
using model R3 of \citep{Rosenzweig2009}
Nb=Nf;

rb=rf.xsqgrt (ones(size(p,1l),size(p,2),size(pr,1l))—Sem);

$diff matrix calculates the difference between the real pressure
and that of the capillary model (3D matrix)

diff=abs (pr_-3D—p_3D) ;
$preallocation

M=zeros (size(p,1),size(p,2));
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69 %with the following loop the z indices of the minimum value of each ...
column of the diff matrix are obtained and then the sum of ...
Nbxrb~2 up to the value of the index is calculated.

70

71 for i=l:size(p,1)

72 for j=l:size(p,2)

73 locn=find(diff (i, j, :)==(min(diff(i,3,:))));

74 M(i,j)=sum(Nb (i, j,1l:1locn).xrb(i,j,1l:1locn)."2);
75 end

76 end

77
78 %$The water content in the presence of biofilm is then calculated as:
79

80 W_contb=thetar+pix*M;

81

82 end

8.2.4 Geometrical description

Three 2D sub-domains were defined for the current model, representing a longitudinal
section of a generic CW: two belowground sub-domains, representing the mixing zone
(M Z) and the body of the wetland (W B), respectively, and a runoff (RL) layer on
top of the previous two (Figure 8.2).

RL B2)
-—"BAG ! A T — . = i I(). 05m
e (B7) 4= ;
gl 7 1
> Bl B8 0.6m Sn ‘
=] MZ 3
= L Y A A B (02m
yT - B5) =L
X 0).3m m

Figure 8.2: Schematic representation of the model domain, including the mixing zone (MZ), the body
of the wetland (WB) and the runoff layer (RL). Notice that the y-axes is exaggerated so
that the image fits a reasonable size.

8.2.5 Meshing

A triangular mesh was built automatically with COMSOL Multiphysics™ using the
advancing front algorithm and by setting the specific parameter values for each sub-
domain. The resulting mesh, consisting of a total of 31457 elements, has higher
elements density in the RL and lower density in the belowground sub-domains (M Z
and WB). Note that a predefined number of 350 triangular elements was set in
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boundary B4 so that the mass of water would be preserved from inlet to outlet. In
Table 8.2 all mesh parameters are described in detail.

Table 8.2: Mesh characteristics.

Mixing zone and ,
Wetlind body Runoff layer
Maximum element size 0.07 m 0.012m
Minimum element size 0.0014 m 9.75-10° m
Maximum element growth rate 1.25 1.08
Resolution of curvature 0.3 0.25
Resolution in narrow regions 1 4
’Fotal Number of 31457
triangular elements

?A predefined number of 350 triangular elements was set at boundary B4 of the domain (see
Figure 8.2) to avoid water mass losses from inlet to outlet.

8.2.6 Model features and Input parameters

Biokinetic parameters used in Eqgs. 8.5 and 8.6 are shown in Table 8.3.

Table 8.3: Values of the biokinetic parameters of Eqs.8.3 and 8.4

Parameter | Value Unit Description

15 3 d’! Maximum growth rate of X
kx 0.1 d T Decay rate of bacteria X
Kx.c 0.025 Kg- m=> Saturation coefficient of X for C
PX 1 Kg-m™3 Density of bacteria X
Yx.c 0.1 KgX - KgC’*1 Yield coefficient for bacteria X

Bacterial growth is assumed to take place only in the belowground sub-domains
(M Z and W B), and the changes in the hydrodynamics of the granular media caused
by bacterial growth are only considered in the W B sub-domain. That is because the
granular media of the M Z is generally coarser than that of the W B, and thus the
impact of bacterial growth on the hydrodynamic properties of the former is much
smaller than that on the latter. Therefore the water retention curves of all sub-
domains are calculated using the van Genuchten parameters shown in Table 8.4,
but only in the W B it is updated over time using the capillary model (Egs. 8.9 to
8.16).
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Table 8.4: Values of the hydrodynamic parameters of the wetland body (W B), the mixing zone
(M Z) and the runoff layer (RL).

Values

Parameter | WB | MZ RL Unit
a 14.5 14 150 m- T
n 26 | 25 2.6 -

m 1— % 1 _

05 043 [ 0.4 1 N

0, 0.01 0 0 -
Kot 100 | 300 2000 m-d T
ar, 0.01 0 m
ar 0.001 0 m
D 1-107° 1-107% | m?.d7 1

8.2.7 Boundary and Initial Conditions

For the Richards equation (Eq. 8.1), a flow-rate of 1 m-s~! (Neumann) was imposed
in boundary B1 and a pressure head of 0.5 m (Dirichlet) at boundary B4. We set the
initial pressure heads to be at hydrostatic equilibrium. For any node of elevation y,
the initial pressure head equals (0.5 — y) m, and the origin of coordinates is located
at the top left corner of the domain.

For the transport equation (Eq. 8.2) a flux of 450 mgC - L~! was imposed at
boundary B1 (Cauchy) and an outflow boundary condition was applied at boundary
B4 (Neumann). The initial concentration of C' was set to 10 mg - L™! for the
belowground sub-domains and 0 mg - L~! on the RL.

The rest of boundaries were defined as no-flow boundaries. Also note that both
the flow-rate and the flux of C' imposed at boundary B1 were limited to nodes below
y = 0.5 m to avoid unwanted diffusion of C in the RL.

The initial concentrations of bacteria X were set to 1 mg-L~! in the belowground
sub-domains to recreate start-up conditions, and 0 mg - L~" on the RL.

8.2.8 Numerical experiment

To showcase the importance of including bioclogging in CWs models two separate
simulations were run, one considering bioclogging effects on the hydrodynamics of
the granular media of the W B and another one neglecting them. Notice that it was
assumed that the gravel in the M Z is sufficiently coarse so that bioclogging effects
can be safely neglected.

A visual comparison of the bacteria distribution obtained with the two simula-
tions is made by plotting the bacteria concentrations within the 2D domain. This
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qualitative comparison is complemented with a quantitative comparison of four dif-
ferent outputs of the two simulations: (i) the center of mass of bacteria, (ii) the
percentage of pore volume occupied within the W B, (iii) the effluent concentration
of C and (iv) the proportion of flow circulating on the RL and through the W B.

The coordinates of the center of mass of bacteria (zoar, yonr) in the W B over
time are obtained with Eqgs. 8.17 and 8.18 (French et al., 2001):

_ [ X (t)x dzdy
JI X () dxdy
_ JJ X @)y dzdy
JfX(t) dedy

rom(t) (8.17)

yom (t) (8.18)

Where x and y are the Cartesian coordinates of the W B.

The percentage of pore space occupied by bacteria is obtained with Eq. 8.19:

. ffX dxdy-Ww B
P 1 T ox
ore Volume occupied 100 — X .100

Total Pore Volume (0s—0,) - Lwp - Wwp - Dwp
(8.19)

Where Ly g, Wywp and Dy g (all in m) are the length, width and depth of the
wetland body, respectively.

% occupied =

The effluent concentrations of C' over time are obtained by averaging its value
on boundary B4 of the domain.

Finally, the proportion of flow passing through the RL is obtained by integrating
the vertical component of the flow velocity vector (vy) over boundary B6, while the
flow passing through the W B is calculated by integrating the horizontal component
of the flow velocity vector (v,) over boundary BS.

8.3 Results

8.3.1 Qualitative comparison

Overall, very different bacterial distributions and flow patterns were obtained by in-
cluding bioclogging effects on the hydrodynamics of the granular media as compared
to the case where bioclogging effects were neglected (Figures 8.3 and 8.4). In fact,
until day 5 bacteria grew mainly in the mixing zone (M Z) and close to the inlet sec-
tion for the two cases (Figure 8.3a), and only after that moment bacteria dynamics
started to diverge.
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Figure 8.3: Concentration of bacteria X (in kgCOD -m™?) within the domain with and without the
effects of bioclogging after a)5, b)6.5, ¢)15 and d)30 days. Note that in comparison to
the gravel of the W B, that of the M Z is usually coarser, and for that reason in this work
bioclogging effects on the hydrodynamics of the M Z were neglected.
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Figure 8.4: Specific saturation of water (Se) (-) within the domain with and without the effects of
bioclogging after a )5, b) 6.5, ¢) 15 and d) 30 days. The arrows indicate the direction
of the velocity vector at every loacation within the domain. Notice that for images b,
c and d for the Bioclogging case, the value of S. in the RL, just above the area where
bacteria grows is equal to 1, indicating the existence of overland flow.

The elongated bacteria distribution near the surface of the wetland when bio-
clogging effects were considered (images on the left in Figure 8.3) resulted from the
succession of the following facts: around day 5 the biomass in the mixing zone (M 2)
reached the carrying capacity of the granular media (X - p;(l = 05 — 0,) and its net
growth stopped (results not shown), even though there was still substrate (C') left
to biodegrade. This remaining C' was transported towards the W B by advection
and resulted in the growth of bacteria in that region (Figure 8.3b), which decreased
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its hydraulic conductivity and the flow velocity over time. As a result, the water
level within the M Z progressively increased until around day 6, when water started
to circulate on the runnof layer RL (Figures 8.4b,c and d). When the runoff water
reached the surface of the W B (domain boundary B7) it infiltrated again, resulting
in new bacteria growth in that region. Subsequently, the hydraulic conductivity near
the surface of the W B decreased and instead of infiltrating, overland water continued
to circulate on the runoff layer (RL) until the conductivity underneath was sufficient
to infiltrate again.

On the other hand, in the numerical experiment neglecting clogging effects, water
circulated continually through the same pathways within the subsurface domains
and no overland flow developed (right images in Figures 8.3 and 8.4). In this case,
bacterial concentrations progressed from inlet to outlet, occupying the entire depth
of the bed.

8.3.2 Quantitative comparison
Proportion of overland and subsurface flow

Until the 6! day all flow circulated through the subsurface domains (M Z and W B)
(Figure 8.5). After that moment, and as seen in previous figures, an increasing
proportion of flow started to circulate on the RL (Figure 8.2). Despite the existence
of a bacteria barrier in the W B close to boundary with the M Z (Figure 8.3b, ¢ and
d), the continuous death and regrowth of bacteria allowed a 20% of the total inflow
to continue to circulate within the subsurface domains.
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0 5 10 15 20 25 30

Overland flow —&—
Subsurface flow —e—

% of total flow

Time (days)

Figure 8.5: Proportion of overland and subsurface flow obtained with bioclogging (Eq. 8.19). Notice
that without bioclogging, all the flow circulates in the subsurface domains.

143



Chapter 8. Modelling bioclogging and overland flow in CWs

Center of masses of bacteria

The same initial concentration of bacteria X was set for the MZ and the W B.
Accordingly, at the beginning of the two simulations the center of mass of bacteria
was located at the geometrical center of the two subsurface domains (zops = 3.65 m,
ycm = 0.3 m) (Figure 8.6). Shortly after, and for the two experimental cases the
value of xcjs started to decrease following the progressive accumulation of bacteria
biomass near the inlet, where C' concentrations were the highest. On the other hand
yom's slight initial decrease was due to the fact that inflow concentrations of C'
entered the system through boundary B1 but only for y < 0.5 m.
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Figure 8.6: Evolution of coordinate = (a) and y (b) of the center of mass of bacteria X in the W B
with and without bioclogging (Egs. 8.17 and 8.18).

From day 5, and when no bioclogging effects were considered, zcyr and yonr
remained almost constant until the end of the simulated period. On the contrary,
for the bioclogging case, both yoar and xojs increased since bacteria grew closer to
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the surface and towards the outlet section following the infiltration of the overland
flow.

Porosity occupation

Very similar percentages of bacteria porosity occupation were obtained for the two
cases. In both of them, pore spaces progressively filled up with time, reaching a 10%
occupation after 30 days (Figure 8.7).
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Figure 8.7: Proportion of the W B occupied by bacteria over time with and without bioclogging (Eq.
8.19).

Effluent C concentration

Finally, Figure 8.8 shows that the effluent concentrations obtained with and without
bioclogging effects followed the exact same trend; there was a peak concentration at
around day 4, corresponding to the first flush of C entering the system, and after
the peak, all inflow C was already degraded by X. The peak concentration was due
to the fact that bacterial biomass at the beginning of the simulation was still small,
and thus it could not yet biodegrade all inflow C.
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Figure 8.8: Effluent concentrations of C' over time obtained with and without bioclogging effects on
the granular media.

8.4 Discussion

8.4.1 Model equations

The mathematical modelling of the hydraulics of HSSF CWs requires equations to
describe variably saturated subsurface flow and overland flow. In hydrology, the
interaction between surface and subsurface flow is usually simulated by coupling
any form of the Richards equation for the subsurface variably saturated flow with
the Saint-Venant equations (or any of its approximations i.e. the shallow water
equations) for the surface flow (Furman, 2008). The coupling of these two different
types of equations has been subject of intensive research since the late 60’s and
several models have been developed over the years for that purpose (Panday and
Huyakorn, 2004; Kollet and Maxwell, 2006).

Weill et al. (2009) indicates that in the inertia approximation of Saint-Venant
equations, runoff flow-rate is proportional to the runoff hydraulic gradient, which
implies that runoff can be simulated as a flow in a porous medium with particular
properties. Therefore, with a few assumptions, and accepting a certain degree of error
in the flow and transport balances, the Richards equation was used in the current
chapter to simulate both subsurface flow and overland flow. These assumptions
were in essence the same than those used for the shallow water equations: low flow-
rates and shallow water depths. In contrast, although in vertical low CWs ponding
also occurs, the surface water remains mostly in hydrostatic conditions and thus a
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changing hydraulic head boundary condition is sufficient to simulate this phenomena
(Forquet et al., 2009; Giraldi et al., 2010).

Regarding bacterial growth, according to literature, there are three alternative
approaches to simulate it: the continuous biofilm, the discrete microcolonies and the
macroscopic approaches. The first two approaches consider either continuous biofilms
or patchy colonies, and in reality bacteria in porous media is found as a combination
of the two (Clement et al., 1996). In this chapter we used a macroscopic model, which
considers only spatially averaged biomass concentrations and thus is more realistic
than other alternatives and makes no assumptions about the microscopic biomass
distribution (Kildsgaard and Engesgaard, 2001). Moreover, this approach is the
most commonly reported in literature and it is also appropriate for practical reasons,
since in experimental studies data for microbes is reported as average concentrations
(Clement et al., 1996).

In this chapter we used one of the 3 models of Rosenzweig et al. (2009) to
translate biomass growth into hydraulic conductivity reduction of the porous me-
dia. These models are based on those proposed by Mostafa and Van Geel (2007)
and expand by considering the change in biofilm pore-size distribution and its effect
on the entire hydraulic conductivity function. In this chapter we used model R3 of
Rosenzweig et al. (2009), which involves that all pores are filled by bacteria in the
same proportion, regardless of their size. Model R3 was selected for its simplicity,
although it is not clear that it may be the best choice, since there is evidence that
under unsaturated conditions the small pores clog first, reducing the relative per-
meability and causing the water flow to shift to the larger pores (Soleimani et al.,
2009). Despite some extra work would be required, models R1 and R2 could also be
implemented in the presented model.

In a very similar study, Soleimani et al. (2009) used the conceptual model by
Mostafa and Van Geel (2007) to relate the relative permeability term for unsaturated
flow to the microbial growth in biofilters (septic beds). The aims of that study were,
on one hand, to evaluate the properties of the granular media that produce faster
clogging, and on the other hand to observe the effects of progressive clogging on a
septic bed. In their study, microbial growth was dependent only on one substrate
and it was also described with a single Monod equation, although it did not include
the carrying capacity function to limit the growth. The accuracy of their biological
clogging model was tested by comparing its results with the one-dimensional reactive
transport experiment presented in Taylor and Jaffé (1990a) and Taylor et al. (1990Db)
and the one-dimensional unsaturated clogging experiment by Spychala and Blaze-
jewski (2004). Their results showed good agreement with the experimental data and
model simulation presented in Taylor and Jaffé (1990a) and Taylor et al. (1990Db),
but on the contrary, the model was not able to reproduce the reduction of efluent
flow rate obtained by Spychala and Blazejewski (2004). However, the main difference
with our study was that in their case they considered a vertical flow biofilter, and so
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they did not require the inclusion of overland flow and transport equations.

8.4.2 Assumptions and limitations

The model used in this chapter is an oversimplification of all processes occurring
in real CWs since it only considers one bacterial group (X) and one substrate (C).
Likewise, clogging in CWs is attributed to several factors e.g. plant roots, solids
accumulation, bacterial growth (Knowles et al., 2011), and in this chapter only the
clogging caused by bacteria was simulated. Moreover dead cells coming from bacteria
decay, which are known to accumulate in the granular media over time (Samsé and
Garcia, 2014a; Weintraub et al., 2002), were not considered in the model and do not
cause any clogging effects. Temperature effects on bacteria growth were not included
either, and according to Samsé and Garcia (2013a) the inclusion of temperature in the
bacterial growth expressions was essential to match efluent pollutant concentrations
of a pilot HSSF CW in the long-term with the BIO_PORE model.

Another assumption made in this chapter consisted in neglecting bioclogging
effects on the hydrodynamics of the M Z. This approach was necessary, since in our
numerical experimental setup the inflow water entered the system through a lateral
wall of the M Z and so if bacteria were to fill the whole porous media in that region,
pore velocities would become very high, which would certainly result in numerical
issues. A similar approach was adopted by Soleimani et al. (2009) who neglected
clogging effects on the top row of elements of their 2D domain to avoid reaching high
water depths on the surface of the domain.

In this chapter we also assumed that neither bacterial growth nor substrates
degradation take place in the RL. In CWs operated under average conditions, al-
though bioclogging might occur in several regions, overland flow infiltrates rapidly
once the clogged area is surpassed and the changes in bacteria concentrations dur-
ing their transport in contact with the atmosphere are most certainly negligible in
comparison to those occurring in the interstitial pore space.

Finally, as a result of the assumptions required to use the Richards equation
for overland flow, mentioned in the previous section, the presented model can only
be used for low flow-rates and surface water depths. Moreover, the inlet section
(boundary B1) had to be set only in the nodes below y = 0.5 because the RL
domain was defined as a fully saturated porous media (S, = 1) and thus diffusion
in that sub-domain may take place even when there is no advective flow of water on
it.
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8.4.3 Model results

Results of the numerical experiment carried out in this chapter clearly demonstrate
the importance of considering bioclogging effects in the hydrodynamics of the porous
media when simulating the general functioning of HSSF CWs. They also show that
for a complete and sound description of the functioning of these systems, overland
flow needs to be simulated.

The rapid bacterial growth and porosity occupation observed in this chapter
were due to the fact that all model parameters were chosen so that the simulation
time required to obtain relevant results would be shortened. Thus, high values of
inflow C' concentration, Yield coefficient (Y') and maximum specific growth rate (ux)
and low values for decay rate (kx ), saturation coefficient (K x ¢) and initial saturated
hydraulic conductivity (Ksq) were selected. On the other hand, a conservative value
for the inflow rate was used so that the hypothesis of slow flow velocities and shallow
water depth for the overland flow are fulfilled.

The extent of the spatial distribution reached by bacteria within the domain in
the two cases depends mostly on the flow-rate, the inflow concentration of C, the
value of the carrying capacity of the granular media (65 — 6,) and the density of
bacteria. The higher the inflow concentration of C' and the flow-rate, the wider the
bacteria distribution. On the contrary, the larger the value of 6 — 6,., the narrower
the bacterial distribution. Moreover, the widespread of bacterial communities when
considering bioclogging also depends on the relative proportion of overland and sub-
surface flows. In contrast, most of the other parameters considered in this model
only affected the velocity at which clogging developed.

Although the difference between the bacterial distribution and the flow pattern
obtained from the two simulations increased over time, the effluent concentrations
and the percentage of porosity occupied was the same for the two cases. Based on
these results, one could argue that bioclogging does not have an effect neither on the
treatment performance of CWs nor on its lifespan. However, it has to be noted that,
for practical reasons, very short time frames were simulated in the current chapter.
Thus, if longer time-scales were simulated the predicted lifespan of the wetland would
certainly be compromised. As a matter of fact, everything seems to indicate that
following the trend observed in Figure 8.3 if bacteria were to reach to outlet section,
the wetland would start to work with vertical flow. It has to be noted as well that
when all the components and processes described by the BIO_PORE are combined
with the formulation presented in this chapter, the results will certainly differ.

Despite the differences in the numerical experiment setup, the bacteria dynamics
obtained in this chapter when considering bioclogging effects on the granular media
(Figure 8.3) were very similar to those obtained by Soleimani et al. (2009). In their
work, and among other things, they used their model in a 2D domain, representing
a vertical flow biofilter (septic bed), to evaluate its progressive clogging. Indeed,
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the first areas to clog where those near the inlet pipe, and then water was forced
to move horizontally within the domain in order to find sufficiently high hydraulic
conductivities underneath to infiltrate.

8.4.4 Further research needs and model improvements

Although the objective of the current chapter was not to obtain accurate predic-
tions of bioclogging in CWs, validation of the model should be provided. Moreover,
a sensitivity analysis would help to identify the sensitivity of the model output to
prescribed perturbations on the values of the in input parameters. Among the pa-
rameters used in the current model, those affecting bacterial growth rates (Table 8.3)
as well as the saturated hydraulic conductivity of the W B (Ks4:) would be of great
interest.

As mentioned in previous sections, future works could also be dedicated on one
hand, to improve the mathematical description of overland flow and transport, and
on the other hand to implement models R1 and R2 from Rosenzweig et al. (2009)
since, as detailed in previous sections, they are supposed to provide more accurate
results than model R3.

Additionally, the formulation for bioclogging presented in this chapter could
be added to the BIO_PORE model (Sams6 and Garcia, 2013a), and the resulting
model would certainly become the most capable one developed so far for HSSF
CWs. Moreover the results obtained with that hypothetical work could be used to
update, if necessary, the description of the most basic functioning patterns of HSSF
CWs made by the Cartridge Theory (Samsé and Garcia, 2014a).

8.5 Conclusions

In this chapter we presented a standalone model built on COMSOL Multiphysics™ to
simulate bioclogging and surface/subsurface flow interactions in horizontal subsur-
face flow Constructed Wetlands (CWs). A numerical experiment was also carried
out to showcase the importance of including a bioclogging model in order to obtain
a sound description of the functioning of these systems. The numerical experiment
consisted in comparing several model outputs for two different simulations: one con-
sidering clogging effects on the hydrodynamics of the granular media and the other
one neglecting them.

Very different bacteria distributions and flow patterns were obtained from the
two simulations. When considering bioclogging, overland flow started to take place
after 5 days of simulated time. The existence of overland flow also resulted in an
elongated shape of bacterial communities near the surface of the bed. This elongated
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shape was also the responsible of the observed drift of the center of masses of bacteria
towards the top of the central section of the subsurface subdomains. On the other
hand, both the percentage of porosity occupied by bacteria and the effluent pollutant
concentrations obtained for the two simulations were almost identical. This fact was
attributed to the short simulated time considered in this chapter.

Also, the few processes considered in the current chapter do not allow to describe
the intrinsic complexity of real CWs. In order to approximate the simulated results to
the real functioning of wetlands, the formulation presented in this chapter should be
combined with more robust models for CWs already available such as the BIO_PORE
model.

Further research on this model should include a parametric sensitivity analysis
in order to stablish the relative impact of each model parameter on the different
model outputs.
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CHAPTER 9

Discussion

In this chapter we aim to link and extend all the knowledge generated during the
development of this work and to share some of the lessons learned and the experience
gained.

Section 9.1 is dedicated to explain which are the main difficulties that need
to be overcome when simulating CWs. This discussion is made by comparing CWs
technology and models with activated sludge systems and the well known ASM model
series (Henze et al., 2000).

Section 9.2 is dedicated to putting together the different equations that have
been presented all along this work and that make up the complete and final formu-
lation of the BIO_PORE model. CWM1’s Petersen matrices are also updated with
the innovations introduced in this work. This section also helps as a reference for
further versions of BIO_PORE as well as to set a starting point for the development
of CWs models in other simulation platforms or codes.

Later, in Section 9.3 we make a three-way comparison of the BIO_.PORE model
with the most capable models for CWs available to date (those presented in Section
1.3.1). This is done so that any researcher aiming to take up an existing model
for CWs to further develop it or simply build a new model from scratch, can easily
pinpoint the main advantages and disadvantages of each of the available models or
simulation platforms.

In Section 9.4 we list all the essential processes that models developed at current
state of the art should include.
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To close the discussion, in section 9.5 a global overview of the past and present
of CWs models is made. This overview leads to a suggestion of what we should
aim at with the models developed from now onwards. This section does not aim at
giving specific details or to forecast the future, but rather on providing certain hints
of what the author of this thesis believes the discipline of CW models is likely to
move towards in coming years.

The different sections of the current chapter also intend to highlight that the
BIO_PORE model is far from being the final solution to simulate CWs, and that
there is still a lot of work to be done to make it more capable and reliable.

9.1 The complexity of modelling CWs

Since the inception of CWs, their functioning and performance have usually been
compared to those of other biological wastewater treatment technologies, and most
commonly to activated sludge systems. Such is the case that the biokinetic models
used to describe bacterial growth and pollutants removal in CWs are based on the
formulation of the activated sludge model series (ASMs).

In fact, it is very true that similar biological processes take place within both ac-
tivated sludge systems and CWs, but it is as much true that their general functioning
is markedly different. In the following lines, a comparison of these two technologies
is made in several aspects, to see how the models used for activated sludge and
CWs differ from each other, and why simulating CWs presents, in our opinion, more
challenges than simulating activated sludge systems.

Activated sludge systems are, in many cases, completely stirred tank reactors
(CSTR) and, as such, one can consider them to have complete mixing of the liquor.
Therefore, the concentrations of all components are homogeneous within the reactor
and if the structure of the flocks is neglected, the simulation of these systems becomes
relatively simple, since most of the reactions can be simulated with ordinary differen-
tial equations (ODE). This fact also reduces considerably the simulation time, since
a 0D domain is sufficient to simulate their general behaviour. In contrast, in CWs
there is flux of water, which is similar to that of a plug flow reactor (PFR), in which
pollutants, accumulated solids and bacterial concentrations decrease from inlet to
outlet (Garcia et al., 2010; Truu et al., 2009). Moreover, reactive-transport equa-
tions are required to simulate the transport and attachment and detachment of both
particulate and dissolved components through the porous media. This inevitably
requires the use of 1D domains and also the use of partial differential equations
(PDEs) instead of ODEs. However, and mainly due to the dissolved oxygen distri-
bution within the media (Allen et al., 2002; Garcia et al., 2003; Headley et al., 2005;
Wang et al., 2012), there also exist gradients of bacteria, solids and substrates in
the vertical direction, which makes the use of 2D domains a necessity. Moreover,
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CWs are very stochastic, meaning that there exist a number of random phenomena
that can modify the functioning of these systems (e.g. clogging, preferential flow-
paths, below ground plant roots distribution, granular media heterogeneities, plant
litter deposition, evapotranspiration...). For this reason, for a complete description
of their functioning 3D domains should be considered.

Another significant difference that set the modelling of these two technologies
apart is the characteristics of the biomass. In activated sludge systems the biomass
is generally found in suspended cultures, while in CWs biomass is found also in
suspension but predominantly in the form of biofilms. Moreover, and as detailed in
previous chapters, the growth of bacteria within the porous media of CWs is not
only limited by the availability of substrates but also by space.

In this Thesis we have demonstrated that the use of Monod expressions in CWs
leads to exponential bacterial growth (Chapter 7). This does not occur when simu-
lating activated sludge systems for two main reasons:

e in activated sludge systems the mixing of the inflow immediately dilutes pol-
lutants,thus lowering their concentrations within the reactor.

e in activated sludge systems the excess of biomass and inert solids is controlled
by purging; when simulating activated sludge systems the continuous purging
keeps bacterial concentrations within a desired range.

On the contrary, in continuously fed CWs the pollutant concentrations near the
inlet section are permanently the highest. Therefore, when using Monod expressions
as described in the ASMs, the growth of bacteria rapidly becomes exponential in
these regions. This is worsened by the fact that in in CWs no external physical
control is exerted on bacterial populations and thus their growth is conditioned only
by their environmental conditions. Therefore if growth limitations are not applied,
bacterial concentrations become unrealistically high, preventing the convergence of
numerical solutions and rendering misleading results (Samsé and Garcia, 2014a).

Another difficulty of simulating CWs as compared to activated sludge systems
is the fact that the later are operated under relatively controlled conditions (e.g.
biomass concentration, oxygen concentration), while the former operate at the mercy
of the environment. Therefore, identifying the impact of each parameter on the
performance of CWs is a very difficult task. The same applies for the calibration of
CWs models.

Clogging due to accumulated solids and bacterial biomass is another process
associated to the transport in porous media that does not occur in activated sludge
systems. In general, simulating clogging requires the use of sophisticated mathemat-
ical expressions which are very non-linear.

Finally, activated sludge systems are mostly aerobic (except in the inner layers
of the flocks) and thus only aerobic/anoxic processes have to be simulated. On the
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contrary, in CWs aerobic, anoxic and anaerobic microsites exist, and for a complete
description of their functioning the processes occurring under these three conditions
must be simulated. This adds to the complexity of the model by increasing the
number of dependent variables.

9.2 Complete formulation of the BIO_PORE model

In Chapter 4 the mathematical model BIO_PORE was presented, and in the succes-
sive chapters only the boundary and initial conditions were modified according to
the specific needs, while maintaining its original formulation. However, in Chapter
8 a new model was presented to simulate the effects of bioclogging in CWs, which
also updates the hydrodynamic description used by the BIO_PORE model. There-
fore, the main aim of the current section is to present the formulation resulting
from including the equations of Chapter 8 in the BIO_PORE model. Once the for-
mulation presented in this section is implemented in COMSOL Multiphysics™ and
MATLAB®, the BIO_PORE model, a part from its current capabilities, will also be
able to simulate clogging due to accumulated solids and bacteria biomass (biomat)
as well as overland flow and transport.

9.2.1 Hydrodynamics

As seen in previous chapters, the flow of water in CWs occurs in three different
conditions: saturated and unsaturated subsurface flow and overland flow. In the
final formulation, and according to the assumptions made in Chapter 8, the Richards
equation (Equation 9.1) is used to describe both variably saturated subsurface flow
and overland flow:

a(h)% — V.(K(h)Vh) = s (9.1)

where h [L] is the hydraulic head, ¢ [T)] is time, o(h) [L~!] is the specific volumet-
ric storability, K (h) [LT!] is the hydraulic conductivity and ss [LT~!] represents
the contribution of sources and sinks.

The soil water retention curve in the absence of biomat for both surface and
subsurface environments is obtained with Equation 9.2 (van Genuchten, 1980):

Q(h) =0, + Se(h) (‘95 - 97‘) (92)

Where 6(h) is the volumetric water content. 65 (-) and 6, (-) represent, respec-
tively, the saturated and residual liquid volume fractions and
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1

S = T (anyT

(9.3)

is the effective water saturation. o, n and [ =1 — % are van Genuchten fitting
parameters.

Note that, the van Genuchten parameters of the Richards equation for the over-
land flow lack any physical meaning and were selected with the sole purpose of assim-
ilating flow in porous media to overland flow (see Chapter 8 for details). The same
occurs for its saturated hydraulic conductivity and for the saturated and residual
liquid volume fractions.

9.2.2 Transport of aqueous and solid phase components

The fate and transport of aqueous phase components is described with Equation
9.4:

5,
57 (0Ck) + V- [-0DVCy, + qCh] = 70 = Tane + Taer + 50, (9.4)

k=1,....n

Where n is the total number of aqueous phase components (dissolved and par-
ticulate) and Cy [ML~3] is the aqueous phase concentration of the k' species. 6
(-) represents the liquid volume fraction, D [L2T~!] is the hydrodynamic dispersion
tensor and ¢ corresponds to the specific discharge [LT™]. reo, [ML73T71] is the
reaction rate of the k*" species in the aqueous phase and 74y [ML73T~' and rge
[ML73T~] are attachment and detachment rates, respectively. sc, [ML73T71] is
the source/sink term, which represents external sources or sinks of species Cj.

Note that in the surface environment, dispersion (ay, and a7), attachment (744)
and detachment (r4¢;) are neglected since those processes only occur within the
porous media. It is also assumed that water spends short periods of time in the
surface environment and thus the reaction rate (r¢, ) can be neglected.

On the other hand, the fate and transport of the solid phase (immobile) compo-
nents in the subsurface environment is described using Equation 9.5 (Clement et al.,
1998):

dc,

W = Tél + Tatt — Tdet (95)
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Where [ = 1,2, ..n and n is the total number of solid phase species (particulate
only), C; [ML™3] is the concentration of the [ species and e, (M L7377 is the

lth

reaction rate of the [** species on the solid phase.

The rate of attachment of particulate components in the aqueous phase is de-
scribed with Equation 9.6:

Tatt = NattCk (9-6)

while the rate of detachment of particulate components in the solid phase is
obtained from Equation 9.7:
Tdett = AdettCl (9.7)

Where Mgy [T71] and Agey [T71] are first-order attachment and detachment
coefficients, respectively.

9.2.3 Bacterial growth

CWM1 formulation considers the most common functional bacterial groups found
in CWs for wastewater treatment: heterotrophic (X ), nitrifying (X4), fermenting
(XFB), acetotrophic methanogenic (X 4ap), acetotrophic sulphate reducing (X asrp)
and sulphyde oxidising (Xsop) bacteria.

In CWMT1 all process rates are defined with a Monod expression, and the growth
rate of each bacteria group is only limited or inhibited by the presence or absence
of the different substrates (see Table 1.2). As detailed in Chapter 7 this formulation
leads to unlimited bacteria growth. The addition of the logistic functions of Equation
9.8 to the original formulation of CWMI1 helps preventing unlimited and unrealistic

growth of bacteria.
Mbio ) ( MXIf )
=(1-— 1—-— 9.8
fGL ( Mbio,mam Mcap ( )

In Equation 9.8, the parenthesis on the left represents biofilm’s self-exerted
growth limitation due to diffusion-controlled transport of substrates through its exte-
rior boundary (Wanner et al., 2006), while the parenthesis on the right represents the
growth limitation exerted by the reduction of porosity as a consequence of inert solids
(X[f) accumulation. My, (: MXH —I-MXA +MXFB —I-MXAMB +MXASRB +MXSOB)
[M] is the sum of the total microbial biomass present in a representative volume of
granular material and Mp;o_mar [M] is an empirical parameter representing the max-
imum mass of active microbial biomass that can be maintained in the same volume
(carrying capacity). Mx,, [M] is the actual mass of immobile X; and M,y is the
maximum concentration of particulate solids that can fit a representative volume of
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granular material. Biodegradable particulate organic matter (Xg) is considered not
to hinder the growth of bacteria, as they can feed on it and replace the occupied
volume with new cells.

The rates of all processes of CWMI (p;) after including parameter fgr, (Equation
9.8) are shown in Table 9.1.
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Table 9.1: Processes rates in mg -1~ 'd™" (adapted from Langergraber et al. (2009a)).

Process

Process rate p;

10

11

12

13

14

15

16

17

Hydrolysis Xs¢

Aerobic growth of Xy on Sp
Anoxic growth of Xy on Sp
Aerobic growth of Xz on Sa
Anoxic growth of Xz on Sa
Lysis of Xy

Aerobic growth of X4 on Syg
Lysis of X4

Growth of Xrp

Lysis of Xrp

Growth of XamB

LySiS of XA]MB

Growth of Xasrp
Lysis of XxasrB
Aerobic growth of Xsop on Suas
Anoxic growth of Xsop on SHas

Lysis of Xson

Xs
XgTX
kn Hing) (Xag+mXFB)

Kx (XH+XFB

. Sk ( Sp )( So )( SNH ) KposH )X
”HfGL<KsF+SF> SFp+54 ) \Kou+50 J\ENaa+5Nu /\Ku2sa+5u2s )" H

ng-mm-for Sp ( Sk )( Kon )( SNo )( SNH )( KH25H )XH
g Ksp+SF J\SFr+Sa/\Kou+So /\KNou+SNO/\KENHH+SNH /\KH25H +SH2S

. SA ( Sa )( 50 )( SNH )( KposH )X
KH fGL(KsA+SA> Sp+5a)\Kou+50 J\KENuu+5Nu /\Kuasa+SHa2s /" H

- S5A ( Sa )( Kon )( SNo )( SNH )( Kposy )X
n-"“HfGL<KsA+SA) Sp+5a)\Kou+50 )\Enou+5n0 /\ENuu+5~nu /\KHasu+5m2s )" H

bx Xu

SNH )( So ) Kprosa )
. X
ra fGL(KNHA+SNH Koa+50 /\Krasa+t5mas /)4

baXa
SF ( KHosrB )( Korp )( KNOFB )( SNH )
. X
KWFB fGL(KsFB+5F) Kpasrpt+SH2s /\KorB+So0 /\KNOFB+SNO/\KNHFB+S5NH FB
brpXrB
SA )( KH2SAMB )( KoamB )( KNoAMB )( SNH )

. X
HAMB fGL(KSAA4B+5A Kp2saMB+5H25 ) \KoamMB+50 /\ENoaMmB+5N0 /\ENHAMBFSNEH )" AMB
bamMBXAMB
#ASRB.ch( SA )( Sso4 )( KH2SASRB )( KoASRB )( KNOASRB )
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9.2.4 Substrates degradation/transformation rates

The rate at which the different substrates are degraded /transformed (r;) is obtained
with equation 9.9.

R
r; = Z’UZ‘J‘ . pj (99)
i=1

where ¢ = 1,..., N and N is the number of components. j =1,..., R and R is
the number of processes. v; ; is the stoichiometric factor for component ¢ and process
J from Table 9.1 and p; is the reaction rate of process j as described in Table 9.2.

Note that r; corresponds to r¢, in Equation 9.4 for aqueous phase components
and to 7, in Equation 9.5 for solid phase components. Also note that the original
stoichiometric matrix of CWMI1 (Table 1.1) has been updated to consider the division
of Xg (in Xg¢ and Xgp,) and X7 (in X;¢ and Xpp,) required to simulate attachment
and detachment of these components (see Section 9.2.2). The new stoichiometric
matrix is presented in Tables 9.2 and 9.3. Note that the stoichiometric matrix has
been divided in two to fit the page size.
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Table 9.2: Stoichiometric matrix of CWM1 (adapted from Langergraber et al. (2009a)).

7 1 2 3 4 5 6 7 8 9 10 11 12
Process component So Sr Sa  Sr SN Sno Ssoa Swuas Xsy X1y Xsm  Xim
j  expressed as O2 COD COD COD N N S S COD COD COD COD
1 Hydrolysis 1— fHyd, ST V5,1
fHyd,sT
2 Aerobic growth of Xz on Sp 1—ﬁ % vs,2
3 Anoxic growth of Xz on Sp vir v5,3 %
4 Aerobic growth of Xg on Sa - -7 V5,4
5  Anoxic growth of Xz on Sa - vs5 —%
6  Lysis of Xu fBM,SF v5,6 v9,Lysis fBM,X1I
7  Aerobic growth of X4 on Syu 74'5;;“ vs,7
8 Lysis of X4 fBM,SF V5,8 V9, Lysis fBM,XI
9  Growth of Xpp o e vs.0
10 Lysis of Xrp fBM,SF V5,10 V9, Lysis JBM,X1I
11 Growth of Xanp YAj\llB v5,11
12 Lysis of Xaus fBM,sF vs5,12 V9, Lysis fBM,XI
14 Lysis of XxasrB fBM,SF v5,14 Vo, Lysis JBM,XT
15 Aerobic growth of Xsop on Skas 231598 vs.15 T eQB o L
. —1-Y —
16 Anoxic growth of Xsop on Sgeos V5,16 5 sTSm Ty YSIOB YS(;B
17 Lysis of Xson fBM,SF V5,17 V9, Lysis fBM,X1I

Vo,Lysis = 1 — fBMm,sF — [BM,XT

uorssnosy -6 1erdey)
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7
Process component

13 14 15
Xy Xa XrB

Table 9.3: Stoichiometric matrix of CWM1 (adapted from Langergraber et al. (2009a)).

16 17 18
XauB XasrB Xson

j  expressed as coOb COD COD ¢CcODb COD COD
1 Hydrolysis

2 Aerobic growth of Xg on Sg 1

3 Anoxic growth of Xy on Sp 1

4 Aerobic growth of Xy on Sa 1

5  Anoxic growth of Xz on Sa 1

6 Lysis of Xy —1

7  Aerobic growth of X4 on Snu 1

8 Lysis of X4 -1

9  Growth of Xgp 1

10 Lysis of Xpp -1

11 Growth of XaymB 1

12 Lysis of XauB -1

13 Growth of XasrB 1

14 Lysis of XxasrB —1

15 Aerobic growth of Xsop on SHas 1
16 Anoxic growth of Xsop on Suas 1
17 Lysis of Xson -1

V9,Lysis = 1 — fBM,sF — [BM, XTI

9.2.5 Clogging

Based on the capillary model (Mualem, 1976), the pore size distribution of the areas
free of bacteria and particulate solids (biomat) is estimated using Equations 9.10 and
9.11 (Rosenzweig et al., 2009).

20 cos
vh

(9.10)

(9.11)
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Where r; is the effective radius of the largest water-filled capillary for every
pressure head value, and Ny ; is the density number of the capillaries of radius r¢;
(Rosenzweig et al., 2009). Following the notation utilized by Rosenzweig et al. (2009),
sub-index f indicates biomat-free conditions. o is the water surface tension (0.072N -
m~! for distilled water at 20 °C),  is water’s specific weight and 3 (—) is the water
contact angle within the tube walls, which is usually set to 0 (Rosenzweig et al.,
2009). 6 is the initial (biomat-free) water content for every pressure head value,
obtained with van Genuchten model (Equation 9.2) and A# are increments of the
water content between two consecutive pore radii.

The new pore size distribution in the presence of biomat is calculated with
Equations 9.12 and 9.13:

Thi = Tfi 1- Sem(h) (912)
Nyi= Ny, (9.13)
Where Se,,,(h) = 99’"9 is the specific saturation of biomat. 6, = Vm (-) is

the volume fraction of the soil occupied by bacteria (Mostafa and Van Geel 2007;
Weill et al., 2009) and Ve and Vy, (both in [L3]) are, respectively, a representative
volume of granular material and the actual volume of biomat in that representative
volume. V,, is obtained by summing the concentration of each functional bacterial
group (XH + XA+ Xpr+Xayu+ Xasrs + XsoB (all in mgCOD - L_l)) and the
concentration of accumulated particulate solids (Xgf and X;f (in mgCOD - L™1))
and multiplying it by the density of the biomat (ppiomat)-

The updated water content in the presence of biomat is obtained with Eq. 9.14
(Rosenzweig et al., 2009):

J
Owj =0r +m Z Nb,z’ﬁii (9.14)
=1

The value of 0, ; ranges from 6, to 0, — 0,,. In Equation 9.14, j = 1 : M
corresponds to the index of the capillary groups.

The water content (6,, ;) is then used to calculate the new effective water satu-
ration (Se,, ;) as follows:

(9.15)
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Finally, the relative unsaturated hydraulic conductivity (with respect to the
initial one) in the presence of biomat (kj) is calculated using the following expression
(Rosenzweig et al., 2009):

, Nbﬂrl%,i

ke (Ow,j) = lei
Zl Nyt
1=

J

(9.16)

and thus the updated value of K(h) in Eq. 9.1 in areas where clogging occurs
is obtained with:

K(h) = kb(h)Ksat (9.17)

whereas in areas where clogging does not take place, the hydraulic conductivity
remains the same as in the initial conditions and is obtained with:

K(h) - kr<h)Ksat (9'18)
Where,

1
7

kr(h) = Se(R)'[1 — (1 = Se(R)T)"]? (9.19)
is the biomat-free relative hydraulic conductivity and Sc(h) is obtained from
Equation 9.3.

9.3 Comparison of available CWs models

In the first part of the present section we contextualise what was achieved with the
current work by comparing BIO_LPORE’s main features with those of the other models
presented in Chapter 1. Those models are FITOVERT, HYDRUS-2D-CW2D/CWM1,
AQUASIM-CWM1, CWM1-RETRASO and PHWAT. Then all these models are also
compared to find advantages and disadvantages of each one of them in terms of the
licensing and the expected evolution of the codes in the future.
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9.3.1 Richness of features

The most relevant aspect of FITOVERT (Giraldi et al., 2009, 2010) is that it is able
to simulate the effects of bacterial growth and solids accumulation on the hydraulic
properties of the granular media. It is also able to handle bed surface ponding by
adapting the hydraulic boundary conditions. This model was specifically designed to
simulate VF CWs only, and it includes a dedicated graphical user interface (GUI).
It is the only of the reviewed models using neither CW2D nor CWM]1, although
its biokinetic model is also based on the ASM formulation. This model was only
calibrated for the hydraulics and hydrodynamics, while the biokinetic model lacks
calibration. To our knowledge, only the two publications cited above are available
on the application of FITOVERT.

As for FITOVERT, the main advantage of HYDRUS-2D-CW2D/CWM1 mod-
els (Langergraber, 2005; Langergraber and Simunek, 2012), is that they include a
dedicated GUI to simulate CWs. This fact has ended in a good adoption of these
models among the scientific community which has given place to several scientific
publications (Korkusuz et al., 2007; Langergraber, 2007, 2005). Another advantage
is that HYDRUS-2D can use different biokinetic models depending on whether a VF
(CW2D) or a HF (CWM1) CW is to be simulated. However, the model has only been
applied and calibrated for short simulation time-frames, since bacterial growth is not
limited and hence the high bacterial concentrations reached after a short simulation
time prevents model convergence (Samsé and Garcia, 2013a). Another unresolved is-
sue of this model is its inability to simulate the transport and retention of particulate
components and thus clogging (Langergraber and Simunek, 2012).

On the other hand, the main advantage of PHWAT (Brovelli et al., 2009a,b,c,
2007) is that it includes a large number of physical-chemical and biological processes.
Its modularity is also a positive point, since it facilitates the task of adding or re-
moving features. It is also one of the few available models for CWs able to simulate
bioclogging together with biomass attachment-detachment processes, and also con-
siders growth limitations for biomass. Although bacteria distribution obtained with
PHWAT was qualitatively compared with results obtained with other models for
the same experimental setup, this model could only match measured permeability
decrease for the initial 28 days out of a 283 days long experiment (Brovelli et al.,
2009a). Another weak point of PHWAT for CWs is that little information about
model equations is given in the few publications available and so the work is difficult
to reproduce.

The most relevant feature of AQUASIM-CWM1 (Mburu et al., 2012) is the
inclusion of a sophisticated model for plant-related processes. On the other hand,
the main drawback of this model resides in the fact that it uses the mixed reactor
compartment hydraulics description. For this reason the model cannot be used to
simulate full-scale systems. Also, this model does not consider clogging nor bacterial
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growth limitations and thus it can neither be used to simulate continuously fed
CWs.

CWMI1-RETRASO (Llorens et al., 2011a,b) is a powerful model in terms of bio-
geochemical reactions. Nevertheless its main disadvantage resides in the fact that
bacterial communities are not static, but travel with the flow. The same happens
with particulate solids.

Finally, the most notable feature of the BIO_PORE model is that it considers
growth limitations for bacterial communities. These growth limitations were key to
obtain realistic bacterial growth rates and distributions and also to avoid numerical
problems (non converging solutions). The modifications to the CWM1 formulation
presented in sections 9.2.3 and 9.2.4 also allowed the simulation of the transport
and attachment and detachment of particulate solids. The previous two factors
were essential to simulate the behaviour of CWs for mid to long-term scenarios
(Samsé and Garcia, 2013a,b). Moreover, this model was satisfactorily calibrated
with experimentally measured effluent concentrations of COD and ammonium and
ammonia nitrogen for a period of 1 year. BIO_PORE includes a bioclogging model
(presented in Chapter 8), which was combined with the original formulation of the
BIO_PORE model (Chapter 4) in Section 9.2 of the current chapter. The complete
model adds to the original capabilities of the BIO_.PORE model the possibility to
simulate the reduction of the hydraulic conductivity caused by the accumulation
of particulate solids and bacterial biomass. It also makes it possible to simulate
overland flow caused by severe clogging conditions. However, the final version of the
BIO_PORE model has not yet been implemented in COMSOL Multiphysics™.

9.3.2 Licensing

Among the platforms used to build the models that are being compared, HYDRUS is
the only one offering a compiled package/module specific for CWs simulations which
can be acquired at a price. The rest of the models reviewed are implementations of
different sets of mathematical expressions describing biokinetic reactions and other
physical-chemical processes into multi-purpose simulation platforms.

Despite having a GUI is a clear benefit for potential users, not having access to
the code may represent a limitation for a model that is currently under development
and that is meant to be used for academic purposes. That is the case of HYDRUS-
CW2D/CWM]1, which is a closed-source piece of software, and thus any modifications
to the code can only be applied by their developers.

One of the advantages of the implementation of AQUASIM-CWDM1 is that the
AQUASIM platform itself can be downloaded free of charge (although it is not open
source), and so the distribution of the implementation of the CWM1 made by Mburu
et al. (2012) only depends on the author’s willingness to share it. Likewise, the
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equations describing the different physical-chemical and biological processes are easily
customizable.

On the other hand, BIO_PORE model is built combining COMSOL Multiphysics™
and MATLAB® code. This simulation environment is very versatile and it is widely
used around the world in many disciplines, although it is expensive and closed-source.
Despite the latter inconveniences, the implementation of CWM1 and other equations
on this platform can be shared and modified in a way similar as for AQUASIM-
CWM]1, as long as COMSOL Multiphysics™ and MATLAB® licenses are avail-
able. The same applies for FITOVERT, but in this case, the user only requires a
MATLAB® license.

RetrasoCodebright (RCB) (Saaltink et al., 2004) can be downloaded free of
charge, although its source code is not available. So the model of Llorens et al.
(2011a,b) was built on top using the available functionalities of the software, much
in the way of BIO_PORE, AQUASIM-CWM1 and FITOVERT. However RCB lacks
a graphical user interface, and the biokinetic model and other equations need to be
implemented using text files, which makes it significantly less versatile and intuitive
to the user.

PHWAT is a modular piece of software developed in FORTRAN 90 and C
programming languages and the author makes it available for free for non-commercial
use. Brovelli et al. (2007, 2009a,b,c) developed specific modules to simulate CWs,
although no reference is made about their availability.

9.3.3 Code evolution

HYDRUS-CWM1/CW2D is by far the platform with the most adopters, and the
one that has produced more publications, and thus it should be the one with the
most chances of evolving the fastest. However, in our opinion, the fact that only the
authors can modify the code is delaying its evolution.

To our knowledge, the last publication using FITOVERT is that of Giraldi
et al. (2010), which seems to indicate that its development has been discontinued.
The same happens for publications on CWs modelling using PHWAT platform.

Provided AQUASIM can be acquired free of charge, everything indicates that
AQUASIM-CWM1 could increase adoption if a more sophisticated description of
wetland hydraulics and hydrodynamics were used.

On the other hand, a recent paper by Mburu et al. (2013) has continued the
use of CWMI1-RETRASO, although the code has not evolved since Llorens et al.
(2011a,b) and so fixed biomass cannot be simulated yet. However, Llorens et al.
(2013) introduced new reactions related to arsenic retention in CWs (precipitation,
adsorption, uptake and accumulation in plants) in RCB’s code.
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Finally, BIO_PORFE model is receiving increasing attention, since it is the only
one able to simulate the functioning of continuously fed CWs in the long-term. More-
over, the fact that it will soon be able to simulate clogging may also raise interest
in academic circles. Also, we expect that the ease of use and potential of combin-
ing COMSOL Multiphysics™ and MATLAB® may result in a fast evolution of the
code.

9.4 Must-have processes in CW models

From this work it should be clear that for a complete and sound description of CWs
functioning, at least the following essential phenomena and processes need to be
included in the future generations of the scientific mechanistic models:

e A complete hydraulic description (variably saturated subsurface flow and sur-
face flow and ponding).

e Transport of dissolved, particulate and gaseous components.

e Filtration, sedimentation, precipitation, volatilization, dissolution, adsorption
and desorption and physical re-aeration.

e Bacterial processes
— Growth and decay (suspended and in the form of biofilms).

Attachment and detachment.

— Influence of substrates concentration, available space, diffusion limita-
tions, temperature, pH and redox potential on bacterial growth.

— Hydrolysis of both slowly biodegradable and inert organic fractions.
e Plant processes

— Above and belowground growth.

Decay /senescence.

Nutrients uptake oxygen release through the rhizosphere.
— Carbon exudates.
— Evapotranspiration.

e Clogging by accumulate solids, biomass and extracellular polymeric substances
(EPS), precipitates, plant roots and plant litter and its effects on the hydraulics
and hydrodynamics of the granular media.
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The ability to perform long-term simulations, though not being a process nor a
phenomenon, is already reckoned as an essential feature of the next generations of
CWs models.

9.5 Past, present and future of CWs modelling

At first (nineties) the idea was to develop simple models that could be used to im-
prove design, based on first order decay expressions and neglecting the real processes
leading to pollutants removal (Kadlec, 2000). However, wetlands are very complex
systems that interact with the environment and the experience using these models
demonstrated that they were not sufficient to reproduce the enormous variability
observed in their performance in different environments and for different wastewater
compositions (Kadlec, 2000).

Therefore, these initial ideas and models were later substituted with the use
of more sophisticated models, which intend to describe the widest possible range of
the internal processes taking place within wetlands with deterministic mathematical
expressions.

However, the expectations around these models has progressively decreased due
to their complexity (for the untrained users) and their inability to generate consistent
results for long-term scenarios, which hinders their use by designers, operators and
the scientific community (Samsé and Garcia, 2013a). In fact, so far these models
have only been used to match effluent pollutant concentrations for short periods of
time, while paying little or no attention to the internal processes (Samsé6 and Garcia,
2014a).

A new trend has been growing in recent times, which accepts the embrionary
stage of these models to be used for design, and rather it recognizes their great
potential in terms of improving the understanding of CWs functioning. The current
tendency is thus to increase even more the complexity and the number of processes
that these models consider and to try to produce long-term simulations and to focus
not only on matching effluent pollutant concentrations but also on understanding
the internal processes (scientific purposes).

In parallel to the development of these complex models, a separate branch has
started developing models of lower complexity, which aim to provide an easy-to-use
tool that can be used by designers and operators without requiring much under-
standing of the internal processes of CWs (Meyer, 2011).

Figure 9.1 shows the evolution of the complexity of numerical models for CWs
since the early nineties until today. A prediction of the future of CWs models is also
presented.
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Figure 9.1: Evolution of the complexity of the scientific models and those used to support the design
of CWs models over the years. The likely evolution of these models in the near future is
represented with dotted lines.

In the following lines, a brief description of the different stages shown in Figure
9.1 is made.

9.5.1 1°* generation models

After around 20 years of CWs models development, the current (1% generation)
scientific models are able to confidently simulate saturated or variably saturated
subsurface flow (horizontal or vertical), transport of dissolved and particulate pollu-
tants and the temperature and substrates dependent growth and decay of different
bacterial groups at the macro-scale. Most models are also able to describe other rel-
evant processes such as sorption, evapotranspiration and plant nutrients uptake and
oxygen release. At the current stage, these models can be used to direct research,
to explain experimental results and to increase the understanding of the internal
functioning of CWs.

On the other hand, the 15¢ generation of models for design purposes are still
under heavy development. The first stage of their development consisted on cutting
down the number of processes so as to only consider those with the biggest impact
on the functioning and application of CWs. A good example of that is the model
RSF_Sim, developed to simulate the treatment of combined sewer overflows with
CWs (Meyer, 2011; Meyer et al., 2014).
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9.5.2 2"4 generation models

Possibly the most easily achievable and most significant evolution of the current sci-
entific models for CWs will come from the development of sophisticated clogging
models, which will include the pore space and subsequent hydraulic conductivity re-
duction caused by the accumulation of solids (organic and inorganic) and by bacterial
growth. To that end, the first step will be to improve the description of the transport
of particulate components (attachment and detachment). Furthermore, to make a
comprehensive description of the whole clogging processes, the subsurface-flow equa-
tions (Darcy/Richards equations) will need to be coupled to surface-flow equations
(e.g. shallow water equations or Saint-Venant equations) to represent surface-flow
and ponding. To this regard, the model developed in the current work is steadily
progressing in that direction. These clogging models will need to be calibrated and
validated first with experimental data coming from lab-scale experiments (due to the
lack of experimental data in real cases) and later for full-scale systems.

It is already well accepted that bacterial communities play a major role in the
functioning of CWs (Faulwetter et al., 2009; Samsé and Garcia, 2013a,b) and thus
better models for CWs will necessary come from more advanced biokinetic models.
CWM1 and CW2D are both based on the initial versions of ASM models, which
have received continuous upgrades over the years. On the contrary, neither CWM1
nor CW2D has received any modifications since their inception. Moreover, having
two different biokinetic models for CWs only makes sense in terms of saving compu-
tational power (fewer dependent variables), since the biokinetic processes are mostly
the same (in different proportions) in all subsurface-flow CWs. However, with the
ever increasing computational power, having fewer dependent variables is ever less of
an advantage. In fact a unified biokinetic model would reduce model divergence and
by joining all efforts on a unique and common platform, faster development could be
achieved.

We also envisage that future models will incorporate chemical equilibrium equa-
tions for several key components as well as the inclusion of pH and redox potential
(Rolle et al., 2008) as controlling factors of the growth of the different functional
bacterial groups.

Regarding the second generation of CWs models for design purposes, they will
result from a progressive reduction of the number of considered processes, and from
extensive validation with experimental data. The main idea can be found in a shift
away from a process description towards a treatment effect description. The biggest
challenge will be the definition of limits for the extrapolation of performance as-
sumptions. This will only be achieved by creating a freely available database of
experimental data from a wide range of systems, especially from those showing mal-
functioning. In this way a strong link between researchers and industrial partners is
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essential, because the stakeholders of interest in design support models are also the
stakeholders of the required database (Samso et al., 2014b).

9.5.3 3" generation models

The third generation of mechanistic models will come from a better description of
biofilm structure and processes through micro-scale models and possibly with the
inclusion of more sophisticated above and belowground plant models. However, it is
expected that the stochastic nature of plant roots distribution will delay the inclusion
of this phenomenon on the clogging description.

The evolution of mathematical models has to go side by side with progresses
through experimental studies and fundamental research (empirical evidence). The
scientific community can keep increasing the complexity of the models in a parallel
to the increasing knowledge. The limit of complexity that these models can achieve
will likely come from our difficulties to understand and justify their outputs.

On the other hand, a third generation of design support models will have al-
ready been validated in many different scenarios. These models could incorporate
optimization modules that should give the optimum wetland configuration and di-
mensioning for specific cases based only on small sets of monitoring data from the
corresponding locations. An easy-to-use GUI should be available for engineers in
daily practice. Risks can be seen in inadequate applications, since a model can only
support, but not replace engineering (Samsé et al., 2014b).
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cHAPTER 10

Conclusions

In this PhD, a mathematical model was developed to simulate the main physic-
chemical and biological processes taking place within Horizontal Subsurface Flow
Constructed Wetlands (HSSF CWs). This model includes two empirical parame-
ters that improve the description of biomass growth defined by the biokinetic model
Constructed Wetlands Model number 1 (CWM1). The model was calibrated with
experimental data from an entire year of operation of a pilot HSSF CW and a sensi-
tivity analysis was performed to evaluate the effects of the newly introduced empirical
parameters on the outputs of the model. A mesh optimization study was also carried
out to limit computational cost. The model was later utilized on a case study to in-
crease the understanding of the internal functioning of these systems, paying special
attention to the dynamics of bacterial communities and their interaction with inert
accumulated solids. A theoretical background to describe the most basic functioning
patterns of HSSF CWs was derived from simulation results. Finally, a mathematical
formulation was proposed to describe the effects of bioclogging in the hydrodynamics
of these systems.

The conclusions have been separated in the 4 main blocks in which this Thesis
is divided to facilitate the identification of each conclusion with the starting objec-
tives.
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The BIO_PORE model
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The BIO_PORE is a mathematical model for HSSF CWs built in COMSOL
Multiphysics™, which uses the finite elements method to obtain approximate
solutions to the model equations. It includes equations to describe satu-
rated /unsaturated flow and transport of aqueous and solid phase pollutants
through porous media. The pollutants and bacteria considered are those in-
cluded in the biokinetic model Constructed Wetlands Model number 1, which
also describes the rates of all processes involved. All model parameters are
made temperature dependent and the uptake of nutrients and oxygen release
by plant roots are also included. The BIO_PORE model is also able to simulate
filtration and retention of solid phase (particulate) components.

The BIO_PORE was able to reproduce the hydraulic and hydrodynamic be-
haviour of a pilot constructed wetland. Moreover, a reasonable good fit was
achieved between the effluent COD and ammonia and ammonium nitrogen
(Snp) predicted by the model and those measured in the experimental plant
during its entire first year of operation. Simulation results also showed that by
considering measured water temperatures, experimental data could be better
matched. On the other hand, the inclusion of plant roots oxygen release and
nutrients uptake did not cause significant differences in the results.

Parameter M., [M] corresponds to the mass of accumulated slowly biodegrad-
able (Xgf) and inert (X;s) solids that can be reached in a representative vol-
ume of granular material. Mpy;o mar [M] is the carrying capacity of the system,
which is the maximum amount of biomass that can be sustained within the rep-
resentative volume before competition for substrates and space start to affect
bacterial growth.

Parameter My;o_maz is essential to prevent simulated unlimited bacterial growth
in the areas of wetlands where substrates concentrations are persistently high.
That is the case of the inlet section of continuously fed constructed wetlands.
By preventing the unlimited growth of bacteria, simulated time can be set as
desired and it is not limited by convergence issues resulting from large bac-
terial gradients. Parameter M., takes into account the necessary effect of
accumulated solids on bacterial communities.

Parameter M., dictates the rate of displacement of bacterial communities to-
wards the outlet section over time predicted by the model. On the other hand
Mpio_mae influences the extent of the spatial distribution of bacterial commu-
nities within the wetland.

Small perturbations on the values of My, and My maee produce important
changes in the effluent pollutant concentrations predicted by the model. The



higher the value of M., the lower the simulated efluent pollutant concentra-
tions. On the other hand, and although very different results are obtained
for different values of Mpy;o maz, N0 clear recognisable pattern on the efluent
pollutant concentrations can be observed.

Case study of a HSSF CW

e Aerobic bacteria dominated the wetland during the beginning of operation
due to their faster specific growth rate and to the highly oxygenated initial
conditions. Shortly after the initial period (around 80 days) anaerobic bacteria
groups became dominant. Sulphate reducing bacteria (X4srp) became the
most abundant group (47 — 79% of total biomass).

e Toxicity caused by dihydrogen sulphide (Spg2s) was an important parameter
affecting the general functioning of the wetland, since it delayed the growth of
methanogenic bacteria (X 4p7p) and hence the overall bacterial stability.

e Bacterial stability as predicted by our model was achieved between 400 and
700 days after start-up of the wetland. This time to stability is longer than
the 75 — 100 days reported by previous experimental works. This fact was
attributed to the high toxicity by Sgag within the simulated wetland.

e The active bacteria zone was located in a narrow strip of the constructed wet-
land (approximately a third of its length), which progressed towards the outlet
over time. Aerobic bacteria occupied the first few centimetres near the wet-
land’s surface while anaerobic bacteria grew just underneath, thus having a
much wider vertical distribution. Sulphide oxidising bacteria grew mainly un-
der anoxic conditions in a very restricted area near the outlet and was respon-
sible for practically all Syo removed within the wetland.

The Cartridge Theory

e The Cartridge Theory describes the general functioning of HSSF CWs based
on the interaction between bacterial communities and accumulated solids (clog-
ging) and was derived from simulation results with BIO_.PORE model.

e The theory assimilates the granular media of HSSF CWs to a generic cartridge
which is consumed (clogged) with inert solids from inlet to outlet with time.

e The failure of a wetland as described by The Cartridge Theory occurs when
the active bacteria zone is located as close to the outlet section that its total
biomass is not sufficient to degrade an acceptable proportion of the inflow
pollutants.
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e Although The Cartridge Theory may be considered as an oversimplification

of the real complexity of HSSF CWs, this is the first time that an integrated
description of the functioning of these systems is made based on modelling
results and represents an important step towards the complete understanding
of the functioning of these systems.

Integrated simulation of bioclogging in HSSF CWS
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In this part of the work we presented a standalone model built on COM-
SOL Multiphysics™ to simulate bioclogging and surface/subsurface flow in-
teractions in HSSF CWs.

A numerical experiment was carried out, which consisted on comparing differ-
ent model outputs from two separate simulations: one considering the effects
of bioclogging in the hydrodynamics of the granular media and the other one
neglecting them.

Very different bacteria distributions and flow patterns were obtained from the
two simulations. On the contrary, the efluent concentrations and the percent-
age of total porosity occupation were almost identical for the two cases.

The formulation presented in this work needs to be merged to that of the the
BIO_PORE model in order to have a complete description of the functioning
of HSSF CWs.

Further research on this model should include a parametric sensitivity analysis
in order to stablish the relative impact of each model parameter on the different
model outputs.
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