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Decay studies lie at the very frontier of the field of exotic nuclei, since once the existence
of an isotope has been demonstrated, the next elementary information is sought is how it
decays, even an imprecise number on the half live of a new isotope can tell a lot about the
allowed or forbidden character of the decay. At the same time decay spectroscopy provides
often primary information on excited states of nuclei far from stability. The advantage of the
decay experiments is that they can be based on a relatively small number of events.

The study of the decay properties of neutron rich nuclei away from the valley of beta stability
provides the opportunity to extend the information on the structure of atomic nuclei and its
dependence with the N/Z ratio, to obtain information relevant to the understanding of the
rapid neutron capture nucleosynthesis process and to obtain data useful for reactor technology
applications [6]

As these nuclei are involved in supernova explosions the study of delayed neutron emission
in beta decay is of fundamental importance in astrophysics for understanding the r-process.
Beta delayed neutron emission is also important in terms of nuclear technology, since it is
one of the key features for the safe operation of actual nuclear power plants.

Mechanisms for detecting neutrons are based on indirect methods. Neutrons are neutral and
they do not interact directly with the electrons in matter, as gamma ray. The process of
neutron detection begins when neutrons, interacting with various nuclei, initiate the release
of one or more charged particles. The electrical signals produced by the charged particles
can then be processed by the detection system.

The neutron can be scattered by a nucleus, transferring some of its kinetic energy to the
nucleus. If enough energy is transferred the recoiling nucleus ionizes the material surrounding
the point of interaction. This mechanism is only efficient for neutrons interacting with light
nuclei. In fact, only hydrogen and helium nuclei are light enough for practical detectors.
Seems the neutron can cause a nuclear reaction. The products from these reactions, such
as protons, alpha particles, gamma rays, and fission fragments, can initiate the detection
process. Some reactions require minimum neutron energy (threshold), but most take place
at thermal energies.

Gas-filled thermal-neutron detectors use either BF3 or 3He detecting gas. In case of BF3,
the gas is enriched in l0B. Helium-3 is only about 1 ppm of natural helium, so it is usually
obtained by separation from tritium produced in reactors. The nuclear reactions that take
place in these gases are

3He + n → 3H + 1H + 765 keV
10B+ n → 7Li* + 4He + 2310 keV

7Li* → 7Li + 480 keV

These reactions are exothermic and release energetic charged particles into the gas. The
counters are operated in the proportional mode, and the ionization produced by these particles
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initiates the multiplication process that leads to detection. The amount of energy deposited
in the detector is the energy available from the nuclear reaction. In case of 3He, the neutron
causes the breaks up of the nucleus into a tritium nucleus (3H) and a proton (1H). The tritium
and the proton share the 765-keV reaction energy. In case of 10B, the boron nuclei breaks
up into a helium nucleus (alpha particle) and lithium nuclei, with 2310 keV shared between
them. Ninety-four percent of the time the lithium nucleus is left in an excited state from
which it subsequently decays by emitting a 480-keV gamma ray. This gamma ray is usually
lost from the detector, in which case only 2310 keV is deposited. About 6% of the lithium
nuclei is left in the ground state, so that 2790 keV is deposited in the detector. This double
reaction mode yields an additional small full-energy peak in the pulse height spectrum of
BF3 tubes.

The objective of the thesis is to design and construct a 4π neutron detector in order to detect
neutrons at the experiment DESPEC [7] and in JYFL [6]. This neutron detector should
be used to study beta delayed neutron emission. The first important part of the work is
the design of the detector. According to simulation done with MCNPX (see Chapter 3) the
detector is made of a matrix of polyethylene to moderate the neutrons. In the center of
the matrix there is a 10 cm diameter hole to allow the ion beam impact the target located
inside the matrix. Two rings of 3He proportional counters are around the beam hole. The
first ring consists of 8 proportional counters and the second one consists of 12 proportional
counters (see Figure 5.11). Because inside the beam hole of the neutron detector might be
placed many devices as the implantation target, a germanium detector, etc, the matrix of
polyethylene should be dismountable in order to have access to the center of the detector.
This means that it needed to design a procedure to mount and dismount the setup easily. It
is important to have stable efficiency for the working neutron energy range to decrease the
uncertainty in the measurement of the ratio of delayed neutron, emitted per β-decay. The
next important thing to be defined is the proportional counters specifications. There are
various types of detecting gas, length, diameters and cathode material.

The Technical University of Catalonia (UPC) bought one position sensitive proportional
counter and a standard one manufactured by LND Inc (see Table 3.4) to make some tests
of the counters and preamplifiers. These preliminary tests were done during the year 2008
at the laboratory of Nuclear Engineering Section (SEN). According to the tests results the
standard 60 cm length counters by LND Inc were bought for the detector construction.

Another activity part of this work was the choice of electronics for the detector. Different
electronics components will be used for the detector: high voltage power supply, amplifiers,
pre-amplifiers, components of acquisition system (TDC, ADC etc).
In case of high voltage (HV) the most important problems are the noise and ripple of HV
supply. In order to have clear signal from the counters the noise must be as low as possi-
ble. After a process of selection of different High Voltage power supply we chose one which
specifications respond to the problem. The model of power supply is ISEG NHQ203M (see
Figure 4.16). This 2 channel supply has maximum ripple and noise 2 mV and provides output
current 4mA which is enough for all proportional counters of the detector.

According to the simulation and cost study there will be 20 proportional counters with 3He
detection gas. In order to supply all the counters a special distribution box was designed at
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the laboratory of Institute of Energy Technologies (INTE). This box distributes the current
from two input channels to 20 output channels. For acquisition system, Time to Digital
Converter (TDC) CAEN V767 was selected. This TDC has 64 channels which is enough for
the detector. The same TDC was used at NERO [4] experiment in MSU, an experiment with
similar objectives.

There were two options with the preamplifiers. The first one was to buy two standard
MESYTEC pre-amplifiers of 16 channels. The second option was to make the preamplifiers
by ourselves and adapt them to the detector setup. The problem of using standard ones was
the cable length between the counters and preamplifiers. The long cable gives large noise,
but our adapted preamplifiers might be directly connected without any cable to the counters.
These preamplifiers are based on CREMAT CR-110 chip. Some preamplifiers based on this
chip were made and tested at SEN laboratory.
As the weight of the detector will be more than 300 kg, another work to be done is the design
of a special support to make possible to move the detector in the experimental area and also
to adjust the ion beam into the center of the detector.
This work was carried out in collaboration with other research centers and universities. The
Gamma Ray Spectroscopy Group of IFIC (Valencia) led the development of the beta-detection
and acquisition system software. Researchers from CIEMAT (Madrid) helped with the tests
of the counters and electronics. As they have experience in neutron study they help in the
detector construction. The first test of the detector will be made in JYFL (Finland). It will
be a prototype for DESPEC experiment.

The project FAIR (Facility for Antiproton and Ion Research) [8] is an international accelerator
facility of the next generation. It builds on the experience and technological developments
already made at the existing GSI (Germany) facility, and incorporates new technological
concepts. Different experiments with different objectives will be made at this accelerator. One
of these experiments is Decay Spectroscopy (DESPEC) experiment. One of the important
objectives of DESPEC is the study of r-process and the influence of delayed neutron emission.
An unique feature of FAIR will be the access to regions where the waiting points for the r-
process occur. For our understanding of the r-process nucleo-synthesis of heavy elements in
supernova explosions we need to know the beta decay half life, the neutron branching ratios
and the neutron (or two-neutron) separation energy of these nuclei.

At DESPEC it will be possible to measure the first two quantities. If the number of decays is
high enough, detailed spectroscopy will be possible and then questions such as isospin sym-
metry can be tested in mirror nuclei or the long standing Gamow Teller quenching problem
in beta decay can be addressed in combination with charge exchange reactions.

For the most exotic nuclei it is possible to expect some unusual decay modes such as beta-
delayed multi-neutron emission, beta delayed fission, or even direct neutron radioactivity.

Another very important aspect of DESPEC is the possibility to study the decay properties of
isomeric levels in nuclei which survive the flight time from the moment of production until the
time of arrival to our set-up. All of the experiments at DESPEC involve deep implantation
of the ions in an active stopper prior to the decay, as the AIDA device [7]. The detector will
be highly pixellated, which allows us to correlate in time and space the signal of the initial
pulse from implantation of the heavy ion with the signal produced in the same detector in
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the subsequent beta decay. Neutron and high resolution gamma-ray detectors in a compact
arrangement around the active stopper in a highly flexible and modular geometry will be at
the heart of this set-up. Complementary measurements using the Total Absorption Gamma
technique and measurements of nuclear g-factors and quadruple moments as well as level half
lives are also foreseen.

In particular the determination of the beta decay probability distribution over the entire
accessible energy window (Qβ), the determination of the total neutron emission probability
(Pn), and the determination of the energy distribution of the emitted neutrons serves to
all three purposes. In order to obtain this information complementary setups are required:
the use of a Total Absorption Spectrometer (TAS) [6] to measure accurately the beta-decay
intensity distribution (Iβ) below the neutron separation energy (Sn) in the daughter nucleus,
the use of a 4π neutron (4πn) detector to obtain accurate values of Pn and the use of a Time
of Flight neutron detector array (ToF)[6] to measure the beta delayed neutron energies. The
complementary analysis of the ToF and 4π data will be used to control the systematic uncer-
tainties specific to each technique. Hence, both neutron detectors should allow reconstructing
the beta-decay intensity distribution above the neutron separation energy. The use of the
Penning trap as a mass separator of very high resolution will ensure the purity of the sources
required for obtaining high quality data. This collaboration is working on the design of three
detectors for DESPEC-FAIR similar to the ones that will be used in the experiment in this
proposal.

The measurements at JYFL will be complementary to the ones that will be carried out in
FAIR and will allow the beta decay delayed neutron experimental program to start before
the FAIR facility becomes available.
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2.1 Introduction to neutron detection

As neutrons are neutral particles, they do not interact electromagnetically directly with the
electrons in matter. The mechanisms of the detection are based on indirect methods. In
order to detect a neutron it should interact with a nuclei and then initiate a release of one
or more charged particles. The detection system can process the electrical signals produced
by the charged particles. There are two basic types of neutron interactions with matter [9]:

• The neutron can be scattered by a nucleus and transfers some of its kinetic energy to
the nucleus. The recoiling nucleus ionizes the material surrounding the point of inter-
action, if enough energy is transferred. This mechanism is efficient for interacting with
light nuclei. Actually, only hydrogen and helium nuclei are light enough for practical
detectors.

• The neutron can cause a nuclear reaction. The products from these reactions can
initiate the detection process. It can be protons, alpha particles, gamma rays and
fission fragments. Some reactions require a minimum neutron energy (threshold), but
most of them take place at thermal energies. Around the detectors which use thermal
reactions moderating material is used.

Detectors that use either the recoil or reaction mechanism can use solid, liquid or gas-filled
detection media. The detecting media can be quite varied, leading to many options, but the
choice of the reactions is limited. This chapter describes some types of neutron detectors.
They are gas-filled proportional counters, scintillator, fission chambers.

2.1.1 General properties of gas-filled detectors

Gas-filled detectors were among the first detectors. This type of detectors are able to detect
thermal neutrons via nuclear reactions and fast neutrons via recoil interactions. The gas
detector consists of a metal cylinder with an electrical connector at one end or at both
ends in case of position-sensitive detector. Detector walls are made of stainless steel or
aluminium. Sometimes the interior of walls are coated with activated charcoal in order to
absorb electronegative gases which build up during neutron irradiation. The neutron transfer
some or all of its energy to charged particles. The charged particles will then ionize and excite
the atoms along its path until its kinetic energy is exhausted.

3He and BF3 Thermal Neutron Detectors

Gas-filled thermal-neutron detectors use either BF3 or 3He detecting gas. In case of BF3, the
gas is enriched in 10B. The nuclear reactions that take place in these gases are
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3He+ n →3 H +1 H + 765keV ; (2.1)

10B + n →7 Li∗ +4 He+ 2310keV (2.2)

7Li∗ →7 Li+ 480keV (2.3)

These reactions are exothermic and issue energetic charged particles into the gas. The cross-
section for the 3He reaction is 5330 b for thermal neutrons and the cross section for the 10B
reaction is 3840 b. Figure 2.1 illustrates these cross-sections.
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Figure 2.1: Neutron cross-section capture for 3He and BF3. This data was taken from ENDF-
06

In order to increase the probability of the reaction the first thing which should be done is
moderate the neutrons. Moderation is the process of the reduction of the initial high kinetic
energy of the free neutron. Since energy is conserved, this reduction of the neutron kinetic
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energy takes place by transfer of energy to a material known as a moderator. As a moderator
can be used a material consisting of light-nuclei. For one strike neutron lose

2A

(A+ 1)2
(2.4)

of its energy. Some properties of neutron moderators are presented on Table 2.1 where N
is number of strikes, t is moderation time from 1 MeV to 0.1 eV, and L is mean of square
distance of moderation from 1 MeV to 0.1 eV.

Material N t, µs L, cm
Lead 1600 1300 200
Coal 110 70 43
Water 23 30 13

Table 2.1: Characteristics of some neutron moderators

As the counters are operated in the proportional mode the ionization produced by these
particles initiates the multiplication process which leads to detection. The energy available
from the nuclear reaction is deposited in the detector. In case of 3He, the neutron causes the
breaks up of the nucleus into a tritium nucleus (3H) and a proton (1H). This two particles
share the 765 keV of reaction energy. In case of 10B, the boron nuclei breaks up into a helium
nucleus (alpha particle) and lithium nuclei. This two particles share 2310 keV of reaction
energy. Ninety-four percent of the time the lithium nucleus is left in an excited state from
which it subsequently decays by emitting a 480 keV gamma ray. This gamma ray is usually
lost from the detector, in which case only 2310 keV is deposited. About 6% of the lithium
nuclei is left in the ground state, so that 2790 keV is deposited in the detector. This double
reaction mode yields an additional small full-energy peak in the pulse height spectrum of
BF3 tubes.
The cross-section for the 3He reaction is 5330 b for thermal neutrons and the cross section for
the 10B reaction is 3840 b. Figure 2.1 illustrates these cross-sections. Figure 2.2 is a typical
pulse-height spectrum from 3He proportional counter. In this figure the electronic noise can
be observed in channels from 0 to 20. The first wall effect corresponds to channel 25 and the
second wall effect could be observed in channels near to the 80, but it is overlapped with the
main peak of energy deposition. The main peak corresponds to the energy 765 keV and it is
around channel 98. The wall effect arises because the proton and triton daughter products
of the reaction have discrete energies (573 keV and 191 keV respectively) and their ranges
in the detector are usually larger than the dimensions of the detector. When one of the
daughter products collides with the wall of the detector, its energy is dissipated and does not
contribute to the full energy peak, thus creating the discrete steps in the spectrum.
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Figure 2.2: Differential pulse-heigh spectrum for thermal neutrons detected by a 3He-filled
counter. This spectra was obtained at UPC-SEN laboratory.
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4He and CH4 Fast Neutron Detectors

Helium-4 and CH4 fast-neutron detectors are based on the recoil of light nuclei in order to
ionize the gas in the tube. The interaction is the elastic scattering of the neutron by a light
nucleus. If the recoiling nucleus is only a hydrogen nucleus (proton), the maximum possible
energy transfer is the total neutron kinetic energy. For heavier elements the maximum energy
transfer is always less. For a nucleus of atomic weight A, the maximum energy transfer is
the same like equation 2.5:

E(max) =
2AE

(A+ 1)2
(2.5)

Where E(max) is maximum energy transfer and E is neutron energy.

For a single scattering event, the energy transferred to the recoiling nucleus lies between 0
and E(max). It depend on the scattering angle and has equal probability for any value in this
range.
Equation 2.5 shows that the target nucleus must have low atomic weight in order to receive
a significant amount of energy from the neutron. In this case hydrogen is the best choice.
It can be used in a gaseous, liquid form or plastic scintillator. Popular gas detector employs
methane CH4 or 4He.

Fission chambers

Fission chambers are a variation of the gas-filled counters. They detect neutrons which induce
fissions in fissionable material coated on the inner walls of the chamber. As the fissionable
material is usually used uranium highly enriched in 235U. A very thin layer is electroplated
on the inner walls. After a fission event, the two fission fragments travel in nearly opposite
directions. The ionization caused by the fission fragment which entered the gas is sensed
by the detector, the fragment travelling in the opposite direction is absorbed in the detector
walls.
Two fragments share about 160 MeV of energy. Since the coating must be kept thin to
allow the fission fragments to enter the gas, the fission chamber uses only small quantity of
fissionable material and has a low detection efficiency. For thermal neutrons, the intrinsic
efficiency is typically 0.5 to 1. Fast neutrons can also be detected, but with lower efficiency.

2.1.2 Plastic and liquid scintillators

Plastic and liquid scintillators are often used for fast-neutron detection because of their fast
response and low cost. Fast response is particulary beneficial for coincidence counting appli-
cations where the ratio of real to accidental coincidence events can have a significant impact
on the statistical precision of the measurement. Also liquid scintillators have response time
of a few nanoseconds, the coincidence resolving time is usually dictated by the dynamic range
of neutron flight time from the sample to the detector.
The main disadvantages of scintillator is their high gamma-ray sensitivity. Detection prob-
abilities for neutrons and gamma rays are comparable, and the pulse-high spectra resulting



2-6 CHAPTER 2. STATE OF ART

from monoenergy radiation of both types are broad and overlapping.

2.1.3 Example of some actual neutron detectors

This section will describe some 4π neutron detectors which were used for other experiments
with neutron detection.

Neutron detector based NE-213 scintillation counters.

A group from Physikalisch-Technische Bundesanstalt, Braunschweig, Germany and Physikalis-
ches Institut der Universität, Göttingen, Germany designed a neutron detector based on
scintillation counters [1]. This detector was designed for β-delayed neutron detection. The
energy range was from 260 keV till 6 MeV.

The neutron detection system consists of sixteen individual NE 213 detectors with two dif-
ferently shaped scintillator tanks (See Figure 2.3). A ring of eight detectors with the axis in
the beam direction encircles the implantation spot and the second ring of eight detectors sur-
rounds the beam line. The number of sixteen segments was chosen as a compromise between
simplicity of construction and the chance to measure neutron multiplicities.

The calculation of efficiencies for NE 213 neutron counters requires accurate knowledge of the
detection threshold and of the light output function for the secondary charged particles. In
the energy region of β-delayed neutrons (En < 3 MeV), only recoil protons from n-p scattering
have to be considered. A precise way to determine the energy of neutrons is to measure their
time-of-flight. The efficiency as a function of neutron energy can be measured.
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Figure 2.3: Arrangement of NE 213 scintillator for neutron detection in measuring geometry.
Six of sixteen segments mounted in 4Π geometry are visible. This image was taken from
reference [1]

.

Examples of neutron time-of-flight spectra are shown in Figure 2.4. The numbers l-3 cor-
respond to energy thresholds in the pulseheight branch of about 50, 155, and 260 kV. The
γ -line at TOF = 10 ns is due to the imperfect pulse-shape discrimination at low energies
and is only present for the lowest detection threshold. Several corrections need to be applied
in the off-line data evaluation. The corrected TOF spectra were transformed into a linear
energy scale. The resulting neutron energy spectra for the different thresholds are shown
in Figure 2.5 a (curves l- 3). together with the 252Cf reference spectrum. Since significant
deviations of the 252Cf neutron distribution from a Maxwellian shape were observed, a careful
evaluation of the experimental data available were used. The efficiency ε(E) as a function
of neutron energy was then obtained by dividing the measured spectra (curves 1-3 on Fig-
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Figure 2.4: Neutron time-of-flight spectra of 252Cf measured with detector B and 3 m flight
path (recording time 14.9 h, time calibration 0.72 ns/channel). The numbers correspond to
different energy thresholds. This image was taken from reference [1]

ure 2.5) by the calculated reference spectrum. The results are shown in Figure 2.5 b together
with Monte Carlo calculations.
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Figure 2.5: (a) Neutron energy spectra from 252Cf spontaneous fission measured with detector
B and n flight path of 3 m for three different thresholds together with the 252Cf reference
spectrum (see text). (b) Experimental efficiency curves (thin lines) obtained after dividing
the upper curves I to 3 by the reference spectrum. Monte Carlo calculations (thick lines) are
given for comparison. This image was taken from reference [1]
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4Π moderation based neutron detector with 3He-filled proportional counters.

Figure 2.6: Front view of the polycube. This image was taken from reference [2]
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In Radiation Laboratory in California Institute of Technology total cross sections for the
19F(α,n)22Na and 22Ne(p,n)22Na reactions were measured. The neutron detector for this
experiment, called as the ”polycube”, is a 4π detector consisting of 12 3He-filled proportional
counters embedded in a polyethylene moderator (See Figure 2.6). The moderator is in the
form of a cube, 40 cm on a side, with a 11.5 cm x 11.0 cm channel through the center for
insertion of the beam pipe. The channel downstream from the beam pipe end is plugged
with graphite. The 12 proportional counters are placed about the beam pipe channel in an
ellipse whose vertical semimajor axis is 13.2 cm, and horizontal semiminor axis is 11.1 cm.
Each proportional counter is 2.5 cm in diameter and 54 cm long, with an active length of
46 cm. The polycube is mounted on rails that allow it to be positioned such that the target
is at the center of the cube. Surrounding the 40 cm cube of polyethylene is a 4π layer of
cadmium shielding, 0.6 mm thick, which is in turn surrounded by a 4π layer of polyethylene
and borated paraffin, approximately 10 cm thick, and a 3π paraffin wax ”house” 25 − 50 cm
thick. Since the efficiency of the neutron detector depends on the neutron energy, Monte Carlo

calculations were required to model the low-energy behavior of the polycube, and determine
the detection efficiency as a function of neutron energy. The simulation results are presented
on Figure 2.7
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Figure 2.7: The MCNP[3] efficiency vs neutron energy for monoenergetic, isotropic neutrons.
This image was taken from reference [2]

Two radioactive sources, 252Cf and 241Am-Be, and two nuclear reactions, t(d,n)4He and
7Li(p,n) 7Be, were used to test the results from MCNP. The results of the test with these
isotopes are presented on Table 2.2

En Experimental MCNP
252Cf 2.35 0.196(6) 0.1927(15)
AmBe 4.46 0.155(6) 0.1500(14)
t(d,n)4He 14.1 0.0468(14) 0.0481(2)

Table 2.2: Efficiency of 4Π neutron detector consisted of 12 3He-filled proportional counters
embedded in a polyethylene moderator.This table was taken from reference [2]

The production of 22Na involves the interaction of exothermic (p,γ ), (n,p), and (n,α) reac-
tions and β-decay. In this experiment partial reaction rates is determined for the destruction
mechanisms 22Na(n,p0)

22Ne and 22Na(n,α0)
19F, where the subscript means that the products

of nuclei 22Ne and 19F are in their ground states.
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The NERO detector

The Neutron Emission Ratio Observer (NERO), has been constructed for use at the National
Superconducting Cyclotron Laboratory (NSCL) to work in conjunction with the Beta Count-
ing System (BCS) in order to detect β-delayed neutrons. It consists of an axially symmetric
set of proportional gas counters embedded in a moderating matrix. The main feature of the
detector system is a large diameter hole which allow to insert the implantation detector which
stops the nuclei of interest and allows for β - delayed neutron decay to occur in the center of
NERO, thus providing a solid angle of almost 4π.

Figure 2.8: Views of NERO. (a) The tubes are inserted and high voltage cables come out of
the proportional tubes to the preamp boxes. In the beamline hole, a special holder allows
a source to be placed in the middle of NERO. (b) Cross section of NERO. For the purpose
of electronics, NERO was divided into four quadrants, and the proportional counters were
numbered by quadrant. This image was taken from reference [4]

The final design of NERO (Figure 2.8) included a polyethylene moderating matrix 60x60x80
cm3, being longer along the beam axis. The detector contains 60 proportional counters, 16
3He and 44 BF3 tubes, arranged in three concentric rings. The inner ring has a radius of
13.6 cm and contains 16 3He tubes. The middle ring has a radius of 19.2 cm and contains
20 BF3 tubes, and the outer ring has a radius of 24.8 cm with 24 BF3 tubes. The rings are
all concentric around the cylindrical beamline hole of radius 11.2 cm, running the length of
the detector along the beamline direction. Two models of 3He proportional counters were
used in NERO. All of the BF3 counters are 100% BF3 gas enriched in 10B to greater than 96%.
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Figure 2.9: The calculated efficiency curve for NERO. This image was taken from reference [4]

The detection of neutrons with proportional gas counters takes advantage of the fairly large
neutron capture cross section of 3He and 10B at low neutron energy (less then 0.5 eV). The
flat efficiency (see Figure 2.9) is achieved by the placement of rings of proportional counters
at various radii from the center of the detector. Three rings also allow for the possibility
of extracting some average energy of the emitted neutrons which may be desiderable since
the energy information of an individual neutron is lost in moderation. The beamline-hole
requirement was a particular challenge in order to put the target inside. The larger the hole,
the further away the tubes are from the center of the detector and therefore the lower solid
angle that is covered with the same number of tubes.
A boron carbide shield was added around NERO. This shield was used in order to protect
the detector from background neutrons. The boron carbide shield was fabricated by mixing
boron carbide powder in epoxy and pouring the mix into a frame. Inside the sheet, fiberglass
ribbons provide added support.
The NERO final design has a relatively constant calculated detection efficiency of about 45%
from 1keV to 500keV, dropping off to around 26% at 5MeV. Figure 2.9 shows the NERO
efficiency versus the neutron energy as calculated in the code MCNP. The plot includes the
total NERO efficiency, as well as the efficiency of each one of the three rings of proportional
counters.

Test with 252Cf source was performed for calibration of neutron detector. It has a neutron
production rate of 0.116 neutrons/s/Bq. The emitted neutrons cover a broad range of energy
from 0 MeV to 7 MeV. This was compared to the neutron rate measured by NERO with
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the source located at the target position. Their ratio, the average efficiency weighted by the
source neutron energy spectra, was calculated to be 27 ± 4%. The response of the MCNP
code for this quantity is 34.48 ± 0.06% and the nature of this discrepancy is still under
discussion.
This work extended the nuclear physics data to 78Ni and examined the influence of new
measurements on understanding of nuclear structure and the r-process in this mass region.

Neutron detector of cylindrical polyethylene moderator

This detector consists of a cylindrical polyethylene moderator and a matrix of 16 3He-filled
proportional counters. These counters are placed in two concentric rings around the target
chamber, with each ring consisting of 8 counters (See Figure 2.10). The distances from the
axis of the target chamber to the counter rings were 8 cm and 12 cm, respectively. This
configuration of the detector leads to a large efficiency of up to 38%.

Figure 2.10: Cross section of the 4Π neutron detector. This image was taken from reference [5]

The efficiency of the detector in dependence of the neutron energy has been determined
by Monte Carlo simulations using the code MCNP. The resulting curve is shown in Figure
2.11. These calculations have been tested by efficiency measurements with a calibrated 252Cf-
neutron source and some other nuclear reactions. These tests resulted in a good agreement
of better than 3% relative deviation between measurement and simulation. The uncertainty



2-16 CHAPTER 2. STATE OF ART

assigned to the efficiency was less than 5%, depending on the neutron energy.

Figure 2.11: Energy dependence of the efficiency ε of the two counter rings separate and as
sum for neutron energies from 0.5 to 10 MeV. This image was taken from reference [5]

The measurements have been performed at the 4MV DYNAMITRON accelerator of the
Institut für Strahlenphysik at Stuttgart. The reaction 9Be(α,n) 12C has been examined in
the energy range from 366 up to 3552 keV
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3.1 Introduction

The aim of this work is to design a neutron detector for measuring neutron emission ratio per
β-decay. The design of the detector will be based on the design of NERO [4]. This detector
should be re-disigned and optimized for the actual work. The main objective of the design is
flat efficiency curve for wide energy range of neutrons. In this work wide range is considered
as a range between 100 keV and 6 MeV. Other important things for this detector is efficiency
as high as possible.
In order to design the detector with these properties it is important to make some calculation
such as dimensions, detection properties, detection reaction, etc.
It is difficult to make all this calculation without Monte Carlo simulation. Monte Carlo
simulation helps to obtain main characteristics of the detector, such as geometry properties
or the material choice for the construction. Simulation results will provide future properties of
the final setup such as efficiency, trigger time and some other properties. Simulation permits
to obtain response function from the simulated detector as it would be a real one. Next
section will describe some Monte Carlo simulation codes.

3.2 Simulation codes overview

There are a lot of different Monte Carlo simulation codes for the radiation transport. They
are GEANT [10], MCNPX [3], FLUKA [11], PENELOPE [12] and others. Each of them is
used for different particles and energies.
Geant4 (for GEometry ANd Tracking) is a toolkit for simulating the passage of particles
through matter. It includes a complete range of functionality including tracking, geometry,
physics models and hits. The physics processes offered cover a comprehensive range, including
electromagnetic, hadronic and optical processes, a large set of long-lived particles, materials
and elements, over a wide energy range starting, in some cases, from 250 eV and extending in
others to the TeV energy range. It has been designed and constructed to expose the physics
models used, to handle complex geometries, and to enable its easy adaptation for optimal
use in different sets of applications. The toolkit is the result of a worldwide collaboration
of physicists and software engineers. It has been created exploiting software engineering and
object-oriented technology and implemented in the C++ programming language. It has been
used in applications in particle physics, nuclear physics, accelerator design, space engineering
and medical physics.

FLUKA (FLUktuierende KAskade) is a Monte Carlo simulation package developed for the
interaction and transport of particles and nuclei in matter. This simulation code has many
applications in particle physics, high energy experimental physics and engineering, shielding,
detector and telescope design, cosmic ray studies, dosimetry, medical physics and radiobiol-
ogy. FLUKA is developed using the FORTRAN language. Under Linux the g77 compiler is
at present necessary to build and run user programs. The software is sponsored and copy-
righted by INFN and CERN.

The computer code system PENELOPE performs Monte Carlo simulation. This code lets
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simulation of electrons, positrons and photons in energy range from 50 eV till 1 GeV in
arbitrary materials. Initially, this simulation code was developed to simulate the PENetration
and Energy LOss of Positrons and Electrons in matter; photons in this code were introduced
later. The simulation code is based on Fortran77 programming language.

MCNPX (Monte Carlo N-Particle Transport Code) is a software package for simulating par-
ticle interactions involving neutrons, photons, and electrons, and particle interactions of 34
different types of particles at all energies. This code can be used to judge whether or not
nuclear systems are critical and to determine doses from sources, amongst other things. MC-
NPX was chosen to make this simulation due to we have a wide experience in this simulation
code.

The geometry of the problem to be simulated is defined in the input file. This geometry
requires the description of surface, materials and cells. Surfaces can be spheres, cylinders,
planes and their combinations. Materials can be defined as a simple element or as com-
pounds. Cells are built as the intersection of many surfaces. An MCNPX input file contains
descriptions of surfaces, materials and cells.
The input file contains description of tallies of the problem. The user can choose different
types of tallies for the input file.
The input file contains a description of the source of the problem. The particle source can
be defined as a constant source or as a distribution to be sampled from in space, energy and
direction coordinates. Predefined distributions are available through the SP (Source Proba-
bility) card. Information on the geometrical extent of the source can be provided with the
SI (Source Information) card.

An output file of MCNPX contains the the source of input file and different table and results
which was asked in the output file.

3.3 Simulation equipment

The simulations were done on cluster ARGOS [13] at UPC-SEN with MCNPX 2.5.0 simula-
tion code [3].
The cluster consists of three parts. The first one is a Server (server Argos): This is the front
end where users can launch the simulations to the nodes (also called clons). Every user has
his personal folder and useful tools such compilers, editors, etc. The second part called Nodes
(Clons). Every node is always waiting for submitted jobs from the server. Every user has
also his own personal folder (different from the server), but shared with the other nodes. If
a file is modified on any node, all the nodes will have this modified file in real time. Every
node has his own local hard disk where simulation outputs must to be recorded. And the
third part is a monitoring and information server. It shows the live statistics of the cluster
services. It is also used to host the web information service where users can share and publish
his documents. On the Figure 3.1 a schematic view of three parts of cluster is shown.

There are two types of processes running into the cluster:
Parallel processes (PVM and MPI): small processes are sent to aggregated nodes and when
all of them finishes, the server sends new jobs. Nodes that calculate faster, has to wait until
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Figure 3.1: Schematic view of Cluster Argos
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nodes slower finish its processes, so efficiency depends with the slower node.
Processes non-parallelized: every sent process to each node is independent. The finalization
of the simulation will depend with the slower node, but in this case, faster nodes will not
have to wait the others.

3.4 Design and optimization of the neutron detector with
MCNPX

This section will describe simulation steps in order to find optimal characteristics of neutron
detector.
The detector consists on a matrix of polyethylene with a beam hole in the center of the
parallelepiped matrix. In order to deliver the radioactive nuclei inside. The beam hole will
be surrounded by proportional counters. (See Figure 3.2)

Figure 3.2: View of future neutron detector simulated in MCNPX

The first study consisted in calculation of the neutron propagation time and neutron moder-
ation in the matrix of polyethylene. It is important to find moderation distance of neutrons
with different energies at the different periods of moderation time, to define the dimensions
of the detector. It is also important to know which part of neutrons will be moderated at
different period of moderation time. It will help to have some idea about time correlation
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between the β-decay and detection of the neutron from this decay.
After this, next study is the influence of beam hole diameter on neutron propagation distance.
This study is important to know moderation distance in the polyethylene and have some idea
about the dimensions of the detector. The study about the propagation of neutrons with
different moderation time also have influence of the dimensions of the detector.

After defining the dimensions of the matrix of polyethylene is need to do a study of number
of counters, its length, gas pressure in order to obtain maximum detection efficiency. Also a
study of optimal number of rings of proportional counters was performed. After performing
all these previous studies all different combinations of ring radii should be checked in order
to obtain a flat efficiency curve for wide energy range of the source. At this work the neutron
energy range is from 10 keV to 6 MeV. It was important to find a compromise between cost
of the detector and its efficiency.

Other study that was done is the influence of beam hole radii on the neutron propagation
inside the polyethylene matrix. The beam hole is used to deliver radioactive nuclei into the
center of the detector and it can be also used in order to put additional equipment inside of
the detector.
The results obtained let us define the optimal geometry dimensions and structure of the
polyethylene matrix. Next step was the choice of the optimal number of counter rings sur-
rounding the beam hole and number of counters in each ring. In order to simulate all possible
combinations of the counters a program on fortran was written. We have simulated by Monte
Carlo simulation a large number of different combinations of number of counters and their
position in the matrix in order to find the optimal structure of the detector. The main objec-
tive in this study was to have efficiency plot as flat as possible for working range of energies
(from 0.01 MeV to 6 MeV).
Once obtained the geometry a shielding study was done. It was studied the need of a shield-
ing and its composition and dimensions. This shielding is used to protect the detector from
background neutrons. These neutrons can be cosmic neutrons or neutrons from the experi-
ment facility.
Once defined the optimal dimensions, optimal number of counters and counter rings, com-
position and dimension of the shielding, neutron propagation time inside of the detector was
studied in order to have an idea about measure time and time correlation between the β-
decay and neutron detection at the experiment.
In the following section have shown the simulations done, in order to find optimal properties
described above. Firstly, some preliminary tests were done. An ”infinite” matrix of polyethy-
lene was taken for this study. The real dimensions of this matrix was 400x400x400 cm3. The
neutron point source was placed in the center of the matrix.

3.5 Neutron moderation and propagation analysis

The aim of this analysis is to find the distance length where the neutron moderates from
the energy of neutron source to thermal energy (0.025 eV) in the matrix of polyethylene.
Neutrons must be moderated to thermal energies because the cross-section of the reaction
for the neutron detection is higher with lower energy (See Figure 3.3).
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Figure 3.3: Cross-section of the reaction of neutron with 3He and BF3

In this simulation a matrix of polyethylene was studied to find the optimal dimensions of
future neutron detector prototype and moderation distance of neutrons at the different pe-
riod of moderation time. The dimensions of the matrix were 400x400x400 cm3 which was
considered as an ”infinite” matrix for this simulation. The neutron point source was placed
in the center of the polyethylene matrix.

The neutron energies, of the point source were set to 1 eV, 1 keV, 5 MeV, and 10 MeV to
study the moderation time and perform the propagation analysis. The simulation was made
for 10 µs, 50 µs, 100 µs, 150 µs, 200 µs moderation time and for an infinite time. Infinite
time in this simulation is considered the time elapsed between the emission of a neutron from
the source to its capture or lose. This times were taken from reference [4]. The number of
neutrons emitted from the source in each simulation were 105. This value is enough to see
the neutron propagation and could not be increased because the simulation time in this case
increases too much. For the simulations the mesh tally with tally cell of 2 cm was used.
Decreasing the tally cell till 1 cm produced error in executing the simulation because the
resources of simulation equipment did not permit to simulate with small tally. Since cross
section for neutron detection is higher for thermal energies (see Figure 3.3), a condition is
applied in the simulation to observe only neutrons with energy range from 0 till 10−7 MeV.
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The distribution of fluence for neutrons of energy range from 0 to 10−7 MeV for the different
moderation time is shown on Figure 3.4. For a source with neutron energies of 1 eV with 10 µs
and 50 µs moderation time we do not observe thermal neutrons in the polyethylene matrix.
All neutrons are moderated and captured at the distance of propagation of neutrons of less
than 40 cm from the source. The cube of polyethylene is cut through the center like shown
on the figure 3.4 with dotted line. In order to compare the data, the number of neutrons
is normalized. These data are repeated on Figure 3.5. This figure shows the moderation
distance from the neutron source in the matrix of polyethylene. In this figure the moderation
distance is defined as the distance where 90 % of issued neutrons are moderated. On the
Table 3.3 is shown percent of neutrons which have the energy from 0 till 10−7 MeV during the
moderation time. This value has been calculated for all volume of the polyethylene matrix.
To obtain these values next condition in MCNPX is used:

cut:N 1000 1e-7 0 0 0

• 1000 is time cutoff in shakes. 1 shake is 10−8 seconds;

• 1e-7 is minimum energy cutoff in MeV. 10−7 MeV in this case

The output file generates a summary with information about the simulation results. This
data is shown on Table 3.1 for the conditions presented above. In this table in the first column

neutron loss weight
escape 0
energy cutoff 9.69E-01
time cutoff 1.56E-02
capture 1.46E-02
total 1.00E+00

Table 3.1: Problem summary in output file. Source energy 1 eV, time cut off 10 µs.

possible ways of neutron loosing are described. And the second one indicates a probability
of the event. Bellow is presented description of each possible event:

• Escape. When a neutron goes out of the universe volume.

• Energy cutoff. When the energy of a neutron is below a set limit. This line is the
most important to find moderated neutrons at energies lower than 0.025 eV.

• Time cutoff. This is franction of neutrons which have not escaped, have not captured
and have not reached the energy limit during 10−5 seconds.

• Capture. Shows a number of captured neutrons in all the volume of universe.

Table 3.2 shows the distance oat which 90 % of the neutrons emitted from the source are
moderated. These values was calculated analyzing the output files generated by the MCNPX
simulation for the conditions were the source energy and propagation time. We obtained in
total of 25 output files. In order to analyze them a program on fortran was written. The
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Figure 3.4: Neutron fluence in the moderator
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Neutron
source
energy

10 µs 50 µs 100 µs 150 µs 200 µs

1 eV 3 cm 6 cm 7 cm 8 cm 9 cm
1 keV 7 cm 8 cm 9 cm 10 cm 11 cm
1 MeV 13 cm 14 cm 15 cm 15 cm 16 cm
5 MeV 28 cm 28 cm 29 cm 29 cm 29 cm
10 MeV 38 cm 39 cm 39 cm 39 cm 39 cm

Table 3.2: Distance from the center where 90% of all the neutrons are moderated

Figure 3.5: Propagation distance for different neutron energies and 200 µs moderation time

Neutron Source Energy
Max. Moderation time
10 µs 100 µs

1 eV 96.9 % 98.0 %
1 keV 96.2 % 98.2 %
1 MeV 96.2 % 98.3 %
5 MeV 94.9 % 97.0 %
10 MeV 87.1 % 89.0 %

Table 3.3: Value in % of neutrons with energy from 0 till 10−7 MeV.
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program calculated the number of neutrons in total volume of the moderator and number
of neutrons in the sphere around the source. The radius of the sphere increased from 0 cm
to ”infinite”. A condition applied to the sphere was to contain 90 % of all the moderated
neutrons in the volume. This condition is shown on equation 3.1 where Ni is the number of
neutrons inside the sphere and Ntotal is the number of neutrons emitted by the source.

∑
Ni/

∑
Ntotal ≥ 0.9 (3.1)

The radii of these spheres are presented on the table 3.2. As it can be observed the most of
the neutrons in moderator are moderated in a radius less than 40 cm from the source. The
value of 40 cm was taken here as a reference. The 90% of neutrons emitted with an energy
of 10 MeV and propagation time 200µs moderates at this distance. For a source of neutron
energies less than 1 MeV the best place to detect neutrons in moderator is less than 10 cm
from the source. And for a source of energies more than 1 MeV the best place to detect
neutrons in moderator is less than 15 cm from the source. The main part of all neutrons
is moderated during the 10 µs, but the distance from the source is too small and it is not
possible to place proportional counters in order to detect the neutrons. In order to increase
the distance from the source it would be better to detect the neutrons with moderation time
more than 100 µs for energies up to 1 MeV and more than 50 µs for energies large than
1 MeV

3.6 Analysis of beam hole radii

The beam hole radii have an influence on the maximum distance (from the center of detector)
at which neutrons are moderated. Also an increase of the beam hole radii implies an increase
of dimensions and weight of polyethylene matrix. This is the reason to reduce the beam hole
as small as possible, taking in account that inside it, additional equipment will be placed.
In order to evaluate the effect of beam hole radii the simulation was done with two kinds of
neutron source located inside the beam hole at the center of the polyethylene matrix.

The neutron sources were point sources and non-point ones. The non-point neutron source
had dimensions 8x8x4 cm3. The study of the influence of non-point source is important for
future detector because of possible geometry of the target will be a matrix of silicon detectors.

As in the previous section a matrix of polyethylene with dimensions 400x400x400 cm3 was
used and we consider this matrix as an ”infinite” one with a beam hole in the center (see
Figure 3.6). Neutron source was put in the center of the matrix.

A moderation time of 200x10−6 seconds was used for the simulations and the number of
neutrons emitted by the neutrons source were 106. The neutron energy was set set to 1 MeV
For this simulation mesh tally with range from -100 cm to 100 cm for each axis with tally
cell 2 cm was used. Mesh tally divided all the cube into many small cubes with dimensions
2x2x2 cm3 to see the neutron propagation. In order to see influence of non-point neutron
source the simulation was repeated for neutron source with dimensions 4x8x4 cm3. The
results of thermal neutron propagation in the polyethylene matrix for point and non-point
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Figure 3.6: Schematic view of polyethylene matrix and its division in cells in order to study
neutron propagation.

neutron source are presented on Figure 3.7 These values was calculated by analyzing the
output file from simulation with different conditions (beam hole radius and geometry form
of the source). In order to analyze the output files an analyzing program on fortran was
written. The analyzing procedure was

• The program calculated the number of neutrons in total volume of the
moderator

• This number was considered as a 100% of the neutrons.

• The program set a cylinder around the beam hole.

• The program calculated the number of neutrons inside the cylinder.

• The next step was a calculation of percentage of neutrons inside the cylinder
related to the neutrons in total volume.

• If the number of neutrons inside the cylinder was less than 90% the program
increased the cylinder radius and repeated the calculation.

• In case of reaching 90% of the neutrons the program stopped and recorded
the cylinder radius

A conclusion of this study is that the moderation distance increases with the increase of the
beam hole radius. See Figure 3.8. The results are the same for two geometries of neutron
source. The maximum moderation distance for the beam hole diameter of 10 cm is less than
20 cm. Increasing the beam hole diameter till 40 cm the moderation distance increases till
45 cm. The results show that for both neutron sources (point source and extended one)
the neutron moderation is similar for beam hole diameters less than 30 cm. For beam hole
diameters greater than 30 cm the moderation distance for point source is less than extended
source, but the difference is not sufficient. The beam hole diameter will be less than 20 cm.
This diameter will be enough to install additional equipment inside the detector. As the
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Figure 3.7: Maximum of neutron propagation distance to see 90% of neutrons moderated
related to the beam hole diameter
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Figure 3.8: Sphere radii, centered at polyethylene matrix center, which contains 90% of
moderated neutrons
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diameter of beam hole is less than 30 cm we can avoid the influence of non-point (extended)
neutron source. According to this simulation it is possible to use a point neutron source for
future simulation of this detector.

3.7 Optimization of design parameters

This section will describe the simulation in order to obtain optimal number of counters,
number of rings, the length of counters and gas pressure for future detector. These data will
help to obtain the high efficiency and efficiency curve as flat as possible.

3.7.1 Number of counters

Next study was made to define number of counters in order to make the detector with
high detection efficiency and to use each counter of the detector as efficient as possible. For
polyethylene matrix with beam hole diameter 16 cm, neutron point source with energy 1 MeV
and infinite propagation time, we did many simulations with different number of counters
placed around the beam hole. These counters were placed in a position inside the matrix
in order to obtain maximum efficiency. All the counters were placed in one ring around the
beam hole. After this test in order to check other geometries these counters were placed in
two rings around the beam hole (See Figure 3.9). We can see the efficiency of the setup with
two rings of proportional counters increases. The results of this simulation can be observed on
Figure 3.10. These data explain a combination of the counters. Horizontal axis shows a total
number of counters surrounding the beam hole. Example of combinations of the counters in
the rings is shown on table 3.4. The efficiency in this simulation is considered as number of
reactions inside the proportional counters divided by the number of neutrons emitted from
the source and is calculated as:

η =
Ndet

Nsource
(3.2)

Where Ndet is a number of detected neutrons and Nsource is a number of neutrons emitted
by the source. Crosses (see Figure 3.10) are referred to all counters are located in an unique
ring. The efficiency plot begins to be flat with number of counters more than 18. Other cases
were studied in order to distribute the counters to the other rings. There were studied cases
for 8, 12 and 16 proportional counters in the first ring and all the rest counters were placed
in the second ring. The efficiency curve grows if the number of rings are two. If there are 8
or 12 counters in the first ring and total number of counters are 20 the efficiency is the same
and it is higher if put 16 counters in the first ring. This figure confirms that it should be used
two counter rings. The number of counters in the first ring should be 8 and in the second
one 12 counters. The first conclusions of the simulation are:

• Number of counters: 20;

• This counters should form two rings;
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• The first ring (ring A) should contain 8 counters and the second ring (ring
B) should contain 12 counters.

Figure 3.9: Example of the proportional counters distribution around the beam hole inside
the polyethylene matrix. Inner ring is labeled as ”A” and the outer ring is labeled as ”B”
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Figure 3.10: Dependency of detection efficiency as a function of total number of counters
placed in one ring configuration and two rings configurations. This figure was obtained for
source energy = 1 MeV and infinite propagation time.

Ring
A

Ring
B

Total

20 0 20
8 12 20
12 8 20
16 4 20

Table 3.4: Example of counters distribution in the rings. This example is showed for 20
counters
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3.7.2 Length of counters

In order to find optimal length of counters next study was done. Inside the matrix of polyethy-
lene all counters were placed to obtain maximum efficiency. The source energy was set to
1 MeV and infinite neutron propagation time. We simulated 30 cm, 40 cm, 50 cm, 60 cm
and 70 cm of effective length of the proportional counters. The side view of the simulation
setup can be observed on figure 3.11

Figure 3.11: Side view of simulation setup with proportional counters

The efficiency curve as a function length of counters is presented on Figure 3.12

The gain of efficiency between lengths of 50 cm and 60 cm is about 2%, but the gain between
lengths of 60 cm and 70 cm is about 1%. The efficiency curve begins to be flat with length
of 60 cm and each additional 10 cm of length increase the total efficiency on less than 1%.
The compromise between length of counters and contribution in the total efficiency should
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Figure 3.12: Dependency of detection efficiency as a function of length of counters

be found on 60 cm of effective length of counters. The conclusion of the simulation is:

• Effective length of counters is 60 cm.
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3.7.3 Gas pressure

During this simulation a study of gas pressure was done. The counters were placed in the
same position like in previous section and the gas pressure of 15200, 11400, 7600, 3800 torr
(aprox. 20, 15, 10 and 5 bar) was simulated. This values of pressure was taken from technical
characteristics of proportional counters manufactured by LND Inc. The energy of the source
was set to 1 MeV and propagation time was set to infinite. The results can be observed on
table 3.5.

Gas pressure (torr) Efficiency %
3800 torr (5 bar) 23.6 %
7600 torr (10 bar) 27.3 %
11400 torr (15 bar) 28.7 %
15200 torr (20 bar) 29.4 %

Table 3.5: Detection efficiency for different pressure of the detection gas 3He in the propor-
tional counters.

The higher detection efficiency provide the highest pressure of the detecion gas. The propor-
tional counters with highest detection gas pressure were chosen for the following simulation
and detector constraction.

• Detecting gas pressure of 15200 torr (aprox. 20 bar) was chosen.

3.8 Optimal geometry choice

3.8.1 Ring radii

This section describes a way to find an optimal detector geometry. According to the data
obtained in previous simulations the neutron detector is made with 20 proportional counters
shared in two rings around the beam hole. The inner ring contains 8 proportional counters
and the outer ring contains 12 proportional counters. The effective length of this counters is
60 cm and the detection gas pressure 15200 torr (aprox. 20 bar). The matrix of polyethylene
have a centered beam hole of 10 cm in diameter. The dimensions of the beam hole allows to
deliver radioactive nuclei inside the detector and the installation of additional equipment for
the detection of β particles emitted by impacted nuclei. The aim of the simulation was to

find the radii of the counters ring in order to have efficiency curve as flat as possible for wide
neutron energy range.

The flat efficiency related with neutron energy is important to reduce the uncertainty of
neutron emission ratio for the studied nuclei. The information about neutron energy is lost
during the neutron moderation in the polyethylene matrix, a flat neutron detection efficiency
avoids to know this neutron energy due the probability of neutron detection will be the same
for all neutron energies. Taking in account the nuclei we will measure, the neutron detection
efficiency has to be flat for a neutron energy range from 0.01 MeV to 6 MeV.

In order to parameterize the neutron detection efficiency planarity it has been defined the
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”Efficiency factor”, (F). This factor is a relation of maximum and minimum efficiencies for
the neutron source energies in the region of interest (ROI). It is described with equation 3.3
where ηmax is the maximum efficiency and ηmin is the minimum efficiency on the ROI of
neutron energy. The objective is an efficiency factor to be close to the unit (F = 1).

F =
ηmax

ηmin
(3.3)

The mean efficiency η was calculated according to equation 3.4

η =
1

E1 − E0

∫ E1

E0

η(E)dE (3.4)

Where E0 is minimum energy in the ROI, E1 is a maximum energy in the ROI.

The proportional counters simulated were manufactured by LND Inc with 3He as a detection
gas; their main specifications are presented on Table 3.6. The counters are placed in two
rings around the beam hole in the matrix of polyethylene.

Counter Gas Maximum
length
(mm)

Effective
length
(mm)

Maximum
diameter
(mm)

Effective
diam-
eter
(mm)

Gas
pres-
sure
(torr)

Cathode
mate-
rial

2527
LND
inc

3He 686.84 604.8 25.4 24.38 15200 Stainless
Steel

Table 3.6: General specifications of the 3He proportional counter.

In order to generate input files for MCNPX with all possible combinations of counter ring
radii a program on fortran was written. This program generated input files for MCNPX with
different combinations for ring radii and different neutron source energies. The minimum
and maximum radii of the inner ring were set from 8 cm to 15 cm respectively and for the
outer ring the minimum and maximum radii were set from 15 cm to 22 cm respectively. The
increment step of each radius was 1 cm. For these radii combinations and a neutron point
source with energies 0.01 MeV, 0.1 MeV, 1 MeV, 2 MeV, 4 MeV, 6 MeV and 10 MeV was
placed in the center of the beam hole. The were generated 504 input files for the simulation.
The running on the cluster ARGOS of all these files generated 504 output files for all com-
binations of radii and energies.

In order to analyze the output files from MCNPX simulations it was developed a new fortran
code which read the basic information from the output files. The aim of this code was to
calculate the neutron detection efficiency for all of the geometries simulated in order to find
the optimal geometry which has a compromise with the flattest and highest neutron detection
efficiency for the neutron energy range shown above. The example of some neutron detection
efficiency curves simulated can be observed on Figure 3.13 and Figure 3.14. These figures
present neutron detection efficiency curves for some combinations of inner and outer ring
radii. As can be seen in Figure 3.13 an increase of the inner ring radius reduces the efficiency
for energies less than 1 MeV. For neutron energies greater than 1 MeV, the value of the inner
ring radius has low influence to the neutron detection efficiency. That means if we want to
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increase the neutron detection efficiency at low neutron energies the inner ring should be set
as close as possible to the beam hole. On the other hand, as can be seen in Figure 3.14, the
neutron detection efficiency has a maximum for a neutron energy depending on the radius of
the outer ring. The neutron energy where maximum is seen, increases according to the outer
ring radius increment, but the neutron detection detection efficiency reduces. This result
means that to flatten the neutron detection efficiency we have to combine the radii of both
rings.

Analyzing all the combinations of both ring radii, the optimal configuration is inner ring
radius equal to 11 cm because this radius gives high and flat neutron detection efficiency for
the low energy range (See Figure 3.13). To define the optimal outer ring radius has been used
the efficiency factor (F ) defined above. According to the cases of Figure 3.16 the efficiency
factors (See equation 3.3) were calculated for two neutron energy ranges. One range (reduced
range) is from 0.01 MeV to 1 Mev and the other (full range) is from 0.01 MeV to 6 MeV. The
values of the efficiency factors can be observed on table 3.7 and table 3.8 respectively. In case
of full energy range the smallest value of the efficiency factor is F = 1.61 which corresponds
to 20 cm of outer ring radii. In case of reduced energy range the smallest value of efficiency
factor corresponds to R = 18 cm. It was difficult to drill the polyethylene matrix with a
radius of 18 cm because the distance between the proportional counters will be very small
which implies two problems. The first one is polyethylene damage and the second one is an
uncomfortable manage of the counters and its connectors. In order to avoid these problems
the final decision was to set the outer ring radius at R = 20 cm. This radius was chosen as
optimal for the detector construction. According to the Figure 3.17 the value of Efficiency
factor (F) is F = 1.22 which is the minimum value obtained for energy range from 0.01 MeV
to 1 MeV.

In Figure 3.15 is shown the total neutron detection efficiency from 0.01 MeV to 6 MeV neutron
energies together with neutron detection efficiency related with both rings individually.

Outer ring radii (cm) Efficiency Factor

22 cm 1.7

21 cm 1.64

20 cm 1.61

19 cm 1.68

18 cm 1.65

17 cm 1.78

16 cm 1.87

15 cm 1.98

Table 3.7: Efficiency factor for all energy range at inner ring radius r=11 cm
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Figure 3.13: Simulated inner ring neutron detection efficiency for different inner ring radii at
a fixed outer ring radius of 20 cm
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Figure 3.14: Simulated outer ring neutron detection efficiency for different outer ring radii at
a fixed inner ring radius of 11 cm
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Figure 3.15: Simulated inner ring, outer ring and total neutron detection efficiency for inner
ring radius equal to 11 cm and outer ring radius of 20 cm
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Figure 3.16: Example of efficiency curves from the simulation for different outer ring radii,
for inner radius set to 11 cm
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Outer ring radii (cm) Efficiency Factor

22 cm 1.3

21 cm 1.27

20 cm 1.22

19 cm 1.19

18 cm 1.15

17 cm 1.17

16 cm 1.78

15 cm 1.24

Table 3.8: Efficiency factor for energy range from 0.1 Mev to 1 Mev and inner ring radius
r=11 cm.
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Figure 3.17: Logarithmic plot of efficiency as a function of neutron source energy for final
design of the detector. RH=5 cm, RA=11 cm, RB=20 cm
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3.8.2 Background and shielding

In order to evaluate the effect of the neutron background and design the neutron shielding,
the next mcnpx simulation were done. The simulated optimal geometry was surrounded by
a sphere. This sphere simulated background neutron source. It is important to find optimal
protection from the background. Background on the experiment can be of two origins. The
first one is a cosmic background and the second one is background from the experimental
facility such as accelerator. A fraction of cosmic background is attenuated by building struc-
tures because walls and roof are thick and made of concrete. The background contribution
from the accelerator is not well known including neutron flux and neutron energy spectrum.
As the real flux and energies of the background neutrons are unknown, we suppose that it is
the same like flux from the radioactive nuclide to be studied.
In order to make background protection the detector was covered with polyethylene shielding
on four sides. In this simulation the neutron source was a sphere located outside surrounding
the detector. The neutrons of energies 0.01 MeV, 0.1 MeV, 0.5 MeV, 1 MeV, 2 MeV and
5 MeV were emitted inside the sphere (See Figure 3.18). The neutron propagation time for

Figure 3.18: Study of background shielding. Sphere is a neutron source for background study.
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this simulation was set to infinite. The aim of this simulation was to choose the shielding
dimensions and to determine the possibility to use a cadmium layer between matrix of the
detector and shielding. Cadmium is usually employed to capture thermal neutrons. In this
setup the background shielding will moderate the background neutrons and the cadmium
layer will capture them. The neutron can be also captured in the polyethylene. In this case
cadmium layer will not make a large contribution in the shielding.
This simulation was made for shielding of 5 cm, 10 cm, 15 cm, 20 cm and repeated for
the same shielding, but 0.5 mm of Cd between the shielding and matrix of the detector.
The results of the simulation can be observed on Figure 3.19. The background detection
efficiency without shielding ranges from 4.5% to 17% depending of the background neutron
initial energy. This phenomena make a large uncertainty for neutron detection. But with the
polyethylene shielding this ”efficiency” is lower. For example, the shielding of polyethylene
without Cd-layer decrease the background neutron detection from 0.5% to 5% depending of
initial background neutron energy. Adding a layer of cadmium the detection of neutrons from
background decreases from 5% to 4% for neutron energy of 5 MeV. So the contribution of
this layer is not significant. And as the adding the cadmium will increase the price of the
detector this layer will not be added.
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Figure 3.19: Neutron background detection

3.8.3 Neutron propagation time in the detector

It is important to know the neutron propagation time in order to have an idea about the
trigger window of the experiment. One of possible setup of the experiment will be the neutron
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detector with β-detector inside the beam hole. After the β decay of the radioactive nuclide the
β-detector will detect this particle and mark the start time stamp for detecting the neutrons.
The experiment will not use the trigger and the data will be captured continuously in order
to record as much data as possible.
With the optimal configuration the next simulation was done. For neutron point source of
1 MeV the efficiency of the detection was simulated versus neutron propagation time. For
the time range from 0 µs to 250 µs the time bin was set to 10 µs. The results can be observed
on Figure 3.20.

Figure 3.20: Propagation time contribution for detection efficiency. Differential efficiency

According to the simulation the propagation time larger than 200 µs does not contribute much
into the efficiency, but it can contaminate the output signals from detector with neutrons from
the background. It is important to find a compromise between the efficiency and trigger time.
The simulation of efficiency for the optimal configuration of the neutron detector was repeated
for neutron propagation time 200 µs and infinite time. The result of this simulation can be
observed on Figure 3.21
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Figure 3.21: Simulated efficiency of final setup as a function of neutron source energy for
different neutron propagation time
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3.9 Detector construction

3.9.1 Main characteristics and materials

According to the simulation and electronic tests the detector should consists on a of matrix
of polyethylene 50x50x80 cm3 with 20 3He proportional counters inside. This matrix of
polyethylene will be made of some polyethylene layers with 10 cm thin. The length of
proportional counters should be 60 cm. In order to cover this length seven or eight layers
of polyethylene should be used. In order to fix this layers together four additional holes
will be made. It is necessary make a beam hole in the center of the matrix in order to
deliver radioactive nuclei inside the detector. It is necessary to include a shielding around
the detector. This shielding is 20 cm thin and covers the detector on 4 sides. The schematic
view of the detector is presented on Figure 3.22 The weight of all this device is about 700 kg.
This value can be confirmed multiplying the volume of the polyethylene by its density which
is about 0.97 g/cm3.

Figure 3.22: View of polyethylene matrix with 20 holes for the proportional counters and 4
additional holes to fix the polyethylene layers

3.9.2 Platform for the detector

As the weight of the neutron detector will be about 700 kg special platform have to be done.
This platform should provide easy adjustment in order to fix the detector‘s position so as
beam pipe or tape system would be in the center of the beam hole. The platform should
have wheels in order to move the detector in the experimental area. It is also important to
have a possibility to fix its position. The scheme of the platform is presented on Figure 3.23.
There are wheels in order to move the table with the detector in the experimental area. There
are special pads near the wheels. This pads let to fix the table position in order not to move
it. These pads also give an opportunity to correct the inclination of the floor in order to have
the detector‘s position aligned. There is a special tray on the table. This tray let by special
wheel to move the detector in the beam axis. This mechanism lets the target to enter inside
the polyethylene matrix.
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Figure 3.23: View of table support for the neutron detector

3.9.3 Simulation conclusions

This section describes the conclusions based on simulations done in previous sections. The
main characteristics obtained with the simulation are shown on table 3.9.

These data was obtained taking in account physics, economics and engineering problems. The
main physics objective is a flat and high efficiency for wide energy range in order to obtain
correct data. The flat efficiency helps to decrease uncertainty on β - delayed neutron emission
calculation. The background protection is also important task for the neutron detector in
order to decrease the background contamination. It was described in previous section the
origins of background source
The economy objective was to make this detector not very expensive. In order to reduce the
costs of the detector the optimal material and optimal number of 3He counters were chosen.
The engineering problem is related with the dimensions of the detector, and its weight. These
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Total dimensions of the detector 90x90x80 cm3

Material of the detector Polyethylene

Dimensions of matrix 50x50x80 cm3

Shielding 20 cm

Cd layer No

Beam hole radius 5 cm

Total number of counters 20

Number of rings 2

1st ring radius 11 cm

Number of counters in the 1st ring (inner ring) 8

2nd ring radius 20 cm

Number of counters in the 2nd ring (outer ring) 12

Matrix weght 630 kg

Mean efficiency for 0.01 MeV to 1 MeV (26.74 +/- 3.25)%

Mean efficiency for 0.01 MeV to 6 MeV (27.69 +/- 3.00)%

Efficiency factor (F) for 0.01 MeV to 1 MeV 1.22

Efficiency factor (F) for 0.01 MeV to 6 MeV 1.61

Table 3.9: Main characteristics of the neutron detector
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characteristics are important for the detector movement and its installation in experimental
are. Other important things are polyethylene matrix mechanizing, platform design for this
matrix. This platform had to be able to provide fine adjustment on the beam in the experi-
mental area. As the detector will be used in assembly with other equipment it was designed
for it.
According to the simulation the data described above are optimal for these conditions.
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4.1 Introduction

A test of 3He and BF3 counters and electronics has been performed in order to validate
MCNPX as a simulation tool, check the electronics and the proportional counters for the
design of the 4π neutron detector for JYFL laboratory.
In order to validate our simulation, two preliminary tests and simulations were done. These
tests were performed in CIEMAT (Madrid) and in UPC-SEN laboratory (Barcelona). These
simple tests were reproduced with MCNPX in order to compare them.

4.2 The first preliminary test

This test was done to validate the neutron detection efficiency of different proportional coun-
ters to choose the optimal counters to be used in our neutron detector.

4.2.1 Experimental setup

The first preliminary test was done in CIEMAT laboratory. Three different types of counters
have been used during the experiment. They are a position sensitive proportional counter
and standard one filled with BF3 and a position sensitive proportional counter with 3He as
detecting gas. The picture and scheme of the setup used for the experiment can be observed
on Figure 4.1 and Figure 4.2 . The counters were held by two bars at a distance of 60 cm from
the table to reduce its influence on neutron moderation and prevent scattering. The neutron
source (Figure 4.3 and Figure 4.4) was placed inside a polyethylene matrix (Figure 4.5) that
was attached to the center of counter. This geometry has been used to simplify the simulation
on MCNPX

Figure 4.1: Experimental setup. Counter is held by bars. The neutron source is placed inside
the polyethylene matrix which is attached to the center of the counter.
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Figure 4.2: Scheme of experimental setup.

The neutron source used during the experiment was a vial with a 5 ml solution of 252Cf, The
source activity is 10 kBq with 3% spontaneous fission and 3.75 neutrons per fission, which
gives about 1100 neutrons per second. The average neutron energy will be considered to be
2.2 MeV for the simulations.

Figure 4.3: Neutron source used in CIEMAT laboratory.
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Figure 4.4: Neutron source scheme (units in mm).

Detector Characteristics

Three different types of detectors have been used. They have been manufactured by LND inc.
and their characteristics are presented in Table 4.1. The anode of the 3 detectors had SHV
connectors.

Electronics

Standard electronics have been used during the test. The preamplifiers ORTEC 142PC
have been coupled directly to the ends of the counter tubes (Figure 4.2 and Figure 4.6).
These preamplifiers provide the interface between the counter tube and the amplifier or the
acquisition system and they also provide the high voltage through one end of the counter.
In standard detectors the signal is collected through one end. In position sensitive detectors
the signal is collected through both ends. The difference in the amount of charge collected
from both ends provides the information on the position of the neutron.
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Figure 4.5: Block of polyethylene with neutron source inside (units in mm).

Model Gas Length x
diam (cm)

Pressure
Partial/
Total
(torr)

Volume
(cm3)

Wall
thickness
(mm)

Anode
diameter
(µm)

Cathode Voltage
(Volts)

Features

20358 BF3

(96%
10B)

37.5x5.08 550 760.06 0.508 50 Stainless
steel

1800 Standard

202105 BF3

(96%
10B)

48.8x2.54 700 247.3 0.508 11 Stainless
steel

1400 Position
sensi-
tive

252231 3He+Ar 50.0x2.54 3800/
7600

253.35 0.508 11 Aluminium 1200 Position
sensi-
tive

Table 4.1: Summary of the main characteristics of the three proportional counters used

Data Acquisition System

The signals from the three detectors were recorded in commercial data acquisition systems
DSA-2000 manufactured by Canberra. The signal from the amplifier is digitized after some
pre-conditioning and amplification, and then it is sent to the PC for data acquisition and
visualization. For the position sensitive detectors, the position sensitive feature was not
exploited since the signals from the two ends were merged into one and sent to the acquisition
system.
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Figure 4.6: Electronic scheme used at CIEMAT laboratory.

Measurements

Each counter was connected as shown on Figure 4.6 and measurements were taken during
40000 seconds. The obtained data was compared with a simulation in MCNPX.

Response Function

A voltage of 1400 Volts was applied to one end of the position sensitive 3He proportional
counter. The signal from the preamplifier was recorded with the DSA-2000 Canberra module
using as a filter parameters for rise time 2.0 µs and for the flat top 0.8 µs. The gain value of
the internal amplifier was set to 15x1.2. The response obtained is shown on Figure 4.7.

Figure 4.7: Response function for 3He position sensitive detector model 252231.
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Two different BF3 proportional counters have been tested, a position sensitive proportional
counter and a standard one. The detectors were placed in the same conditions as the 3He
proportional counter. The neutron source was placed in the polyethylene matrix. The voltage
was set to 1200 Volts for the position sensitive detector and to 1800 Volts for the standard
one. The signals from the preamplifiers were recorded with the DSA-2000 Canberra module
using as a filter parameters for rise time 2.0 µs and 0.8 µs for flat top. The gain value of the
internal amplifier was set to 15x1.2. The response obtained is shown on Figure 4.8 for the
position sensitive counter and on Figure 4.9 for the standard one.

Figure 4.8: Response function for BF3 position sensitive detector model 202105.

Figure 4.9: Response function for BF3 position sensitive detector model 20538.



4.2. THE FIRST PRELIMINARY TEST 4-7

Background Measurements

In order to study the influence of background the same measurement as before was made
for the three counters but without the neutron source. The detectors have been placed in
the same conditions as in the previous experiment with the neutron source (see Figure 4.6).
The measurements were taken during 216000 seconds. The responses obtained during the
background measurements are shown on Figure 4.10 for 3He counter. The response function
for BF3 is shown on Figure 4.11 for position sensitive counter and on Figure 4.12 for the
standard one.

Figure 4.10: Response function for background measurement with 3He counter model 252231.
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Figure 4.11: Response function for background measurements with BF3 position sensitive
counter model 202105.

Figure 4.12: Response function for background measurements with BF3 standard counter
model 20538.

DATA analysis

In order to analyze the data the next things were done. The number of neutrons detected
from background (Nb) were measured during a time of tb=216000 seconds. The neutron rate

of background is Ṅb = Nb
tb

with uncertainties σṄb
=

√
Ṅb
tb

The measurements with neutron

source were performed during tm=40000 seconds. The neutron rate was Ṅm = Nm
tm

with

uncertainties σṄm
=

√
Ṅm
tm

.
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The efficiency of the detection (η) was calculated according to the equation 4.1, where Ṅs is
the number of neutrons emitted from the 252Cf source per second. In this case it corresponds
to Ṅs = 1100n/s± 15%

η =
(Ṅm − Ṅb)

Ṅs

∗ 100% (4.1)

The uncertainty of the efficiency corresponds to equation 4.2

ση =

√
(

∂η

∂Ṅm

σṄm
)2 + (

∂η

∂Ṅb

σṄb
)2 + (

∂η

∂Ṅs

σṄs
)2 (4.2)

The measured efficiency is presented in table 4.2

MCNPX Simulation

These experimental conditions were simulated in MCNPX. The block of polyethylene with
dimensions of 100x50x50 mm and with a hole inside with diameter of 25.4 mm to put the
neutron source. In order to simplify the influence of the room’s walls around the experimental
setup a concrete sphere around the detector was simulated. As MCNPX does not reproduce
the spectra from the reaction in the gas, it only provides us with the efficiency of the detector
from the ratio of neutrons detected and emitted.
The simulation results together with experimental values are presented in Table 4.2 and there
is good agreement between simulations and experimental data for 3He counter and larger error
between simulation and experimental data for the BF3 counters. After different checks no
errors have been found in the MCNPX simulations that could explain the difference of results
in the case of the BF3 gas. One of possible thing which affected to the measurements was
mechanical and electrical noise. During the measurements in one laboratory there was noise
from the vacuum pump and in other laboratory there was noise from the central heating and
air conditioning. This noise could not be rested absolutely because of irregularity of these
equipment working. The counter with 3He was not such sensible to this influence.

Data BF3 Model 20358 BF3 Model 202105 3He Model 252231

Experimental (0.06 ± 0.01)% (0.028 ± 0.004)% (0.16 ± 0.02)%

MCNPX data (0.046 ± 0.003)% (0.020 ± 0.001)% (0.15 ± 0.02)%

(Exp-MCNPX)/(Exp) (%) 28% 28% 5%

Table 4.2: Detection efficiency of counters.

Conclusions and Future Measurements

One of the difficulties during the measurements was the presence of electronic noise in the
experimental room. Two different experimental rooms were used in CIEMAT in order to
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improve the conditions for the measurement. The first room had a vacuum pump which
produced a very high level of electronic noise therefore the experiment was moved to a second
room. However in this room there was noise from the ventilation system during the morning
so the measurements were only possible during the afternoon and night

Some other measurements was carried out at the UPC after the setup of laboratory.
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4.2.2 The second preliminary test

According to the previous simulation 20 proportional counters with 3He detecting gas, with
2.5 cm in diameter and 60 cm of effective length will be used for the detector construction. In
order to be able to construct the detector 22 proportional counters were bought. This counters
were manufactured by LND Inc. and their characteristics can be observed on table 4.3 The
design of this experiment was made in order to analyze next data:

• To check the functionality of the counters

• Length of signal cable between the counter and pre-amplifier

• To check the influence of the electronics warming

• Spectrum of the neutron detection in these counters

After performing this test the results will be useful to make correct scheme of the experiment.

Experimental setup

During the test 22 proportional counters were tested in SEN-UPC laboratory. They are
filled with 3He as detecting gas. All the 3He counters have been manufactured by LND Inc.
and their characteristics are presented in Table 4.3. The anode of the counters has SHV
connectors. The second preliminary experimental setup is presented on Figure 4.13. The

Counter Gas Maximum
length
(mm)

Effective
length
(mm)

Maximum
diameter
(mm)

Effective
diameter
(mm)

Gas
pressure
(torr)

Cathode
material

2527
LND
Inc

3He 686.84 604.8 25.4 24.38 15200 Stainless
Steel

Table 4.3: Summary of the main characteristics of the proportional counters used at the tests
and for the neutron detector construction

counters one by one were put inside of polyethylene block with dimensions 20x20x20 cm3.
There are 4 holes in the polyethylene block. These holes have distance among each other 10
cm. The neutron source was placed in the bottom left hole and the counters were placed in
the top left hole. So the distance between the counter and neutron source was 10 cm. This
geometry was reproduced in MCNPX simulation.

There were two different electronic schemes during the test because new equipment was or-
dered, but some measurements were made before this new equipment was delivered. The
electronic schemes of the setup used for the experiment can be observed on Figure 4.14 (1st
scheme) and Figure 4.15 (2nd scheme).
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Figure 4.13: Experimental setup for simple test

Here is a list of components used in scheme from Figure 4.14:

• Pre-amplifier Mesytec MPR-16 for 16 channels

• Amplifier Mesytec STM-16+ for 16 channels

• Multiport II by ORTEC is channel analyzer for one channel

• PC with Windows XP operation system and Genie-2000 software

• Power supply by ISEG. Model NHQ2003M for two channels



4.2. THE FIRST PRELIMINARY TEST 4-13

Figure 4.14: Electronic scheme 1

Here is a list of components used in scheme from Figure 4.15:

• Pre-amplifier Mesytec MPR-16 for 16 channels

• Amplifier Mesytec STM-16+ for 16 channels

• ADC Canberra for one channel

• AIM Canberra for 16 channels. Model 556A

• PC with Windows XP operation sistem and Genie-2000 software

• Power supply by ISEG. Model NHQ2003M for two channels

Figure 4.15: Electronic scheme 2

The neutron source used during the experiment was a vial with a 1 ml solution of 252Cf, The
initial source activity (at December 2007) was 9.9 kBq with 3% spontaneous fission and 3.5
neutrons per fission.



4-14 CHAPTER 4. ELECTRONICS AND VALIDATION OF THE SIMULATIONS

Electronics and data acquisition

During the test ISEG NHQ203M module was used to supply the High Voltage (See Fig-
ure 4.16. This module has two output channels and provides tension up to till 3 kV per
channel. It has low ripple (<0.05 V) which is important for this test since the noise of elec-
tronics produces more false counts in low channels. In order to make the test clear the noise
must be as low as possible. The preamplifiers MESYTEC MPR-16 were connected to channel

Figure 4.16: ISEG HV power supply

14th directly to the ends of the counter tubes. This preamplifier has 16 channels. As this
preamplifier provides the high voltage through one end of the counter, the HV module was
also connected to this preamplifier (see Figure 4.14 and Figure 4.15). This preamplifier was
connected to the amplifier MESYTEC STM-16+ which is manufactured by Mesytec and has
16 channels. Since different electronic components were available during the test two different
electronic schemes were used. First the electronic scheme from the Figure 4.14 was used and
then other equipment was bought for new laboratory and this equipment was used for the
second electronic scheme (see Figure 4.15) for the measurements.
Two types of data acquisition systems were used during the measurements. In the first one
the output from the amplifier were connected to Canberra module Multiport II and it sent
the signal to the PC with Genie-2000 software. After buying the new equipment in the second
electronic scheme the signal from the amplifier were digitized in module ADC 8701 manufac-
tured by Canberra and then it was sent to the Canberra AIM 556A module which sent the
data to PC for data acquisition and visualization. The commercial software Genie-2000 was
used for data recording in the PC.
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Measurements

The aim of the measurements was to check the response of all the counters and electronics.
The counters one by one were connected to the channel number 14 of the pre-amplifier. The
measurements were taken during 2000 seconds. In order to make this measurement different
steps were performed.

• The first measurement was to check the electronics with ”hot” and ”cold” start. ”Cold
start” means beginning the data taking after switching on the electronics without wait-
ing any time. ”Hot start” in this work means beginning data taking after warming up
the electronics for 5 hours after switching it on. This measurement was taken during
1000 seconds.

• The influence of cable length between the counter and pre-amplifier was checked. The
cable lengths 5 cm, 50 cm, 75 cm and 100 cm were checked.

• Other measurement was done in order to check the response from each channel of pre-
amplifier and amplifier. For these measurements only one counter was connected to the
all channels one by one. For all these channels the energy spectra were obtained. The
measurements were taken during 4000 seconds.

Response plots

In order to check the influence of warming up the electronics the next tests were done. Firstly
the energy spectrum was obtained after switching on the equipment. This measurement is
called ”cold” start. The data taking after warming up the equipment for 5 hours is called
”hot start” in this work. A voltage of about 2202 ± 2 V was applied to end of the 3He
proportional counters. The electronic scheme was the same as on Figure 4.14. The signals
from them were recorded with Genie-2000 software. The cable length between preamplifier
and amplifier was 5 cm. The measurements were taking during 1000 seconds.

Channel 1-25 26-80 81-150

Cold 1479 3372 12420

Hot 1560 3261 12290

Cold-Hot/hot% -5.2% 1.5% 1%

Table 4.4: Cold and hot start table

The response function for ”cold” and ”hot” start is presented on Figure 4.17. In this figure
can be observed the electronic noise in channels from 0 to 20. The next peak in channel 25
corresponds on first wall effect and the second wall effect could be observed in channels near
80, but it is overlapped with the main peak of energy deposition. The main peak corresponds
to the energy 765 keV and it is around channel 98. The wall effect arises because the proton
and triton daughter products of the reaction have discrete energies (573 keV and 191 keV
respectively) and their ranges in the detector are usually larger than the dimensions of the
detector. When one of the daughter products collides with the wall of the detector, its energy
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Figure 4.17: Response function for ”hot” and ”cold” start

is dissipated and does not contribute to the full energy peak, thus creating the discrete steps
in the spectrum. The total number of counts for channels from 0 to 150 for ”hot” start
corresponds to 17211 and for ”cold” start 17111 which has a relative difference of 0.58%
According to Figure 4.17 there is no significant difference between the ”hot” and ”cold”
start. The table 4.4 shows three parts of the spectrum. The first one is from channels from 1
to 20 which corresponds to noise. Their difference is about 5%. The next region corresponds
to two wall effects. Their difference is about 1.5% and the last region corresponds to main
peak. The difference between hot and cold start is about 1%. So, as the difference gives
about 1% of uncertainty to make the measurement quicker it is possible to take data after
connecting the electronics and it is not necessary to wait for the warming up of the electronics
after each connection.
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Counters spectra

Following measurements were made according the same electronic scheme on Figure 4.14.
These measurements were made during 20000 seconds for each counter. The cable length
between the counter and preamplifier was 5 cm. The counters were connected one by one to
channel 14 of the preamplifier. For the neutron source used was a 252Cf. The typical response
function is present on Figure 4.18.

Figure 4.18: Response function for counter with s/n 300845. Electronic scheme from Fig-
ure 4.14 was used.

After some series of measurements new equipment was bought and delivered and the labora-
tory and electronic scheme was changed. The new electronic scheme was changed according
to the Figure 4.15. Cable length between preamplifier and amplifier was 5 cm. A high voltage
of 2202 ± 2 V was applied. In order to make validation of these different schemes the mea-
surement with the counter with s/n 300845 were made for two different electronic schemes.
The response function can be observed on Figure 4.19.
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Figure 4.19: Response function for counter with s/n 300845. Electronic scheme from Fig-
ure 4.15 was used.

The total number of counts in the new scheme is 301490 counts and in old one is 328273
counts or 295291 counts if the first 25 channels are discriminated. This was done because
using the 1st electronic scheme there is noise in the low energy channels. This noise produces
false counts and influes on the total number of counts. So the difference between these two
schemes is 2%. For this calculation the noise in low channels was excluded

The next measurements were made with electronic scheme from the Figure 4.15. The cable
length and HV were the same as in the 1st scheme. The cable length between preamplifier
and amplifier was 5 cm. The measurements were taking during 20000 seconds. A high voltage
of 2202 ± 2 V was applied.

As it can be observed on Figure 4.20 the counter with s/n 301259 has noise in the low channels.
In order to check if there was any error in the measurement the data taking was repeated
twice with measurement time 10000 seconds. The results can be observed on Figure 4.21.
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Figure 4.20: Response function for counter with s/n 301529. Electronic scheme from Fig-
ure 4.15 was used.

This counter showed noise in the second set of data in the low channels. It was sent to
LND Inc. in order to be repaired. The number of counts in each counter is presented in
Table 4.5. For the counters which were connected using scheme from Figure 4.14 the sum of
counts from channel 25 to 150 were taken in order to remove noise and for the counters which
were connected using scheme from Figure 4.15 the sum from channel 0 to 150 was taken.
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s/n Number of counts Efficiency (%) Type of scheme

300840 296047 2.20 1

300841 304812 2.27 1

300842 316339 2.35 1

300843 308455 2.30 2

300844 292259 2.17 1

300845 295291 2.20 1

300845 301490 2.20 2

300846 294110 2.19 1

300847 305727 2.27 1

300848 297503 2.21 1

300849 308542 2.30 2

300850 305711 2.27 2

300851 306832 2.28 2

301523 305443 2.27 2

301524 302657 2.25 2

301525 302423 2.25 2

301526 305173 2.27 2

301527 302216 2.25 2

301528 303631 2.26 2

301529 748638 5.57 2

301530 301752 2.25 2

301531 304807 2.27 2

301532 301894 2.25 2

Table 4.5: Number of counts in each counter.
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Figure 4.21: Response function for counter with s/n 301529. Electronic scheme from Fig-
ure 4.15 was used.
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Test of influence of cable length

During the following measurements the influence of cable length between the counter and
pre-amplifier was checked. The cable lengths tested were 5 cm, 50 cm, 75 cm and 100 cm.
The number of counts for these lengths can be seen in Table 4.6. This test was made with
counter with s/n 300851. The response function can be seen on Figure 4.22. The amplitude
of the spectrum decreases from channel 111 to 105 for the cable lengths 5 cm and 100 cm.
The number of counts decreases as the cable length increases because of signal loss due to
the impedance and capacity of the cable and as the cable length increases the number of
counts the length of the cable chosen was 75 cm. It is also enough to connect the tubes with
pre-amplifiers and the noise which produces in the cable is less than noise in the cable of
100 cm. Since the cable length that will be used in the neutron detector in JYFL will be
75 cm the next measurements were made with this cable length.

Cable
length

Counts Difference
number of
counts rela-
tive to
cable of 5
cm (%)

Peak chan-
nel

Peak chan-
nel differ-
ence
relative to
cable of 5
cm (%)

5 cm 306832 0 111 0

50 cm 300216 -2.16 110 -0.9

75 cm 308945 0.69 108 -2.70

100 cm 324455 5.74 105 -5.47

Table 4.6: Number of counts for different cable length.

Tests of channels of pre-amplifier and amplifier

These measurements were made in order to check all the channels of the preamplifier and
amplifier. The counter with s/n 300851 was chosen for the measurements and the time of
measurements was set to 4000 seconds. The typical response function can be observed on
figure Figure 4.23. The summary of number of counts in each electronic channel is presented
in Table 4.7.

The mean value of the counts is 61084 with variance 1508 which corresponds to 2.46% of error.
All the channels give similar results inside the error range 2.5%. It seems the electronics works
well.

MCNPX Simulation

The obtained experimental data was compared with results of simulation in MCNPX. The
geometry of the test (see Figure 4.13) was reproduced in the simulation code. The only
simplification was with neutron energy spectrum. The neutron energy was set to 2.2 MeV.
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Figure 4.22: Response function for counter with s/n 300851. Electronic scheme from Fig-
ure 4.15 was used. The cable length between the preamplifier and the counter was 5 cm, 50
cm. 75 cm and 100 cm.

The aim of the simulation was to obtain the efficiency of the setup and compare this data
with experimental ones.

The simulation results are presented in Table 4.8 and there is good agreement between sim-
ulations and experimental data for 3He counters. The mean value of experimental efficiency
of the counters is presented in Table 4.8. Data from counter with s/n 301529 was excluded
from the calculation of mean value of experimental efficiency as it had high noise.

Conclusions after test at SEN laboratory

After this test at SEN laboratory the following conclusions have been drawn:



4-24 CHAPTER 4. ELECTRONICS AND VALIDATION OF THE SIMULATIONS

Figure 4.23: Response function for channel 1 and counter with s/n 300851. Electronic scheme
from Figure 4.15 was used. The cable length between the preamplifier and the counter was
75 cm.

• Most of the counters are accepted to be used at the future experiment. One counter
needs to be changed.

• All the channels of the electronics work well.

• There is no influence of ”hot” or ”cold” start for the electronics equipment.

• The cable length between the preamplifier and amplifier will be 75 cm.

• The experimental and simulation results are in good agreement.

• The electronic modules MESYTEC STM-16+ and MPR-16 will be used for the neutron
detector.

• The High Voltage module NHQ203M will be also used for the detector.
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Channel
#

Number
of
counts.
Chnnls
from 0
to 150

1 60525

2 62593

3 61785

4 60130

5 59817

6 60266

7 60428

8 60016

9 60638

10 59909

11 60156

12 60074

13 59788

14 59576

15 59832

16 59985

Table 4.7: Number of counts in each channel.

Data type Efficiency (%)

Experimental data 2.26 ± 0.09

MCNPX data 2.41 ± 0.07

Table 4.8: Experimental and simulated (MCNPX) detection efficiency of the counters.

Two additional modules of preamplifiers and amplifiers MESYTEC have been bought. The
test of the channels of the equipment was repeated with the second equipment MESYTEC.
The test was made according to the scheme from Figure 4.15
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5.1 Full detector test at UPC

This chapter is about test of the neutron detector in UPC laboratory (Barcelona) and JYFL
laboratory (Finland). The test of the detector is a result of all previous works which were
done to design this detector. The main objective of this chapter is to explain that the neutron
detector works according to the main requirements.

5.1.1 Efficiency test

In order to validate the simulation data and check the electronics to be used in Finland
(JYFL) full test should be done. This test was performed at UPC laboratory in July 2009.
The test was made with our 252Cf neutron source (See chapter 3).
During the test the efficiency of the detector was checked and a neutron moderation time
was measured. This test was performed with collaboration of IFIC(Valencia) and CIEMAT
(Madrid). The IFIC participation involved providing a DAQ system for the test. CIEMAT
provided NaI(Tl) detector to detect γ from the 252Cf fission. The test was performed during
3 days. The were performed the measurements of neutron detection from the source and
background measurements. Other important thing were done is a measure of neutron moder-
ation time. The neutron detector can be observed on figure 5.2. The detector was mounted,
but the polyethylene shielding was not placed around the detector due it’s large weight and
because of the limitation on floor resistance of the building. The acquisition system, which
can be observed on figure 5.3, was provided by colleagues from IFIC (Valencia). The main
module was Struck SIS 3006 and the software of the acquisition system was developed by
the IFIC (Valencia). The SIS3306 board is used for the readout of high resolution detectors,
accelerator controls and other applications.

The neutron source was inserted in a special frame in order to be fixed and have exact position
to repeat the experiment at the same conditions. See figure 5.4

Figure 5.1: DAQ for neutron detector

The experiment was done with 20 proportional counters. These proportional counters were
assembled inside the polyethylene matrix with dimensions 50x50x80cm3 in two rings. The
first ring contained 8 counters and second ring contained 12 counters. This polyethylene
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Figure 5.2: Neutron detector at the test in SEN

Figure 5.3: DAQ system for the test at SEN

matrix has a central hole in order to set the neutron source. This structure was chosen
according to the previous MCNPX simulation in order to have the efficiency curve as flat as
possible for wide range of initial neutron energy. The NaI(Tl) detector was inserted inside
the central hole as close as possible to the neutron source in order to detect the γ from
the fission. This detector will be used to obtain the neutron moderation time inside the
polyethylene. The typical neutron energy spectrum can be observed on figure 5.5. There is
the first wall effect which corresponds to the energy 191 keV and the second wall effect which
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Figure 5.4: Neutron source for test at SEN

corresponds to 574 keV. The second wall effect is closed by the spectrum curve. The main
peak corresponds to full energy deposition and it is 765 keV.

The efficiency (ηd) of the neutron detector obtained by MC simulations (See Chapter 3) can
be observed on figure 5.6 for neutron energies up to 6 MeV. The efficiency measured in this
experiment have a value of (29±4)% which is in accordance with MC simulation. This value
is represented as a red spot in figure 5.6. The efficiency and its uncertainty were calculated
according to the equations 5.1 and 5.2.

ηd =

∑
Ni

Nsource
∗ 100% (5.1)

σ2
ηd

=
∑

(
∂ηd
∂Ni

)2 ∗ σ2
Ni + (

∂ηd
∂A

)2 ∗ σ2
A (5.2)

Where ηd is the efficiency, Ni is the number of counts in each counter and Nsource is the
number of emitted neutrons from 252Cf source.
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Figure 5.5: Neutron energy spectrum

ηd =

∑
(Ṅg)−

∑
(Ṅb)

Ṅsource

(5.3)

NNi = Ngi −Nbi (5.4)

σNi =
√
Ngi (5.5)

σNbi
=

√
Nbi (5.6)

σNi =
√
σ2
Ngi

+ σ2
Nbi

(5.7)

Where Nbi is a background counts in one counter, Ngi is a gross counts in one counter and
NNi is a net counts in one counter.

This efficiency was calculated by analyzing the spectrum files from the experiment. The
number of detected neutrons was calculated by including all events from the spectrum, but
cutting the noise from the fist 80x103 channels of the spectrum (see figure 5.5). The data
obtained at the experiment are presented on table 5.1
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Counter
number

Counts Pulser

1 15299 691341
2 15545 691346
3 16046 691370
4 15270 691414
5 16909 691401
6 15284 691319
7 122222 691542
8 125439 691455
9 124480 691558
10 122429 691528
11 15729 691311
12 15177 691321
13 15030 691315
14 15179 691442
15 15272 691334
16 15450 691315
17 124341 691478
18 121313 691465
19 121367 691492
20 123274 692067

Table 5.1: Experimental data obtained during July experiment at UPC

The pulser was set to 10 MHz, where Ni is the number of neutrons detected in each counter
and Nsource is a number of neutrons emitted from the Cf source. The uncertainty of the
efficiency in this case is very large. The contribution to the uncertainty comes from the count
rate and from the uncertainty of the activity of the 252Cf source. In order to decrease the
uncertainty of the efficiency we need increase the measure time and decrease the uncertainty
of the neutron source. But it is impossible to decrease the uncertainty of the neutron source
in this laboratory. It corresponds to 15 % and it comes from the manufacturer. The efficiency
of the measurement and simulation efficiency can be observed on figure 5.6. Next measure-
ments with this detector will be made in JYFL (Finland). The neutron source will have less
uncertainty and the efficiency can be checked with better resolution.
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Figure 5.6: Efficiency of the neutron detector vs simulation
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5.1.2 Measurement of neutron moderation time

One of the important task consists in distinguish the β-delayed neutrons from background
neutrons in order to measure neutrons only from β-decay and not contaminate the detector
with false signals from the background.
The main idea for this measurements is γ detection from 252Cf decay. In order to make
this measurements a NaI(Tl) detector was used. This detector was put in the center of the
neutron detector close to 252Cf source and detected γ from the decay of 252Cf. The scheme of
β - delay neutron emission and gamma emission can be observed on figure 5.7. The detector
NaI(Tl) detected γ from the emitter after spontaneous fission of 252Cf and the proportional
counters detected neutron from the emitter. The time between the γ detection and neutron
detection is called a moderation time. In order to evaluate the optimal moderation time a
simulation was done where the efficiency of the detector was a function of moderation time.
This function is presented on figure 5.8 and it shows the optimal time should be about 200 µs
because after this time the efficiency does not change so much.
In order to validate simulation data the measurements with NaI(Tl) detector were performed
with a 252Cf source which decays via either alpha emission (96.9%) or spontaneous fission
(3.1%). An average of 3.7 neutrons are emitted in each spontaneous fission. The neutron
emission is accompanied with γ emission. The measurements were performed by finding the
time between the detection a γ and neutron detection. The NaI(Tl) detector was installed
inside the neutron detector near the Cf-source in order to detect the γ. The neutrons were
detected by proportional counters. The time difference between two signals from NaI(Tl)
detector and proportional counters is the neutron moderation time. The experimental

Figure 5.7: Scheme of β delay neutron emission

results of this measurement can be observed on figure 5.9. During the first 10 µs there
are about 950 counts in all the proportional counters. Next 10 µs gives about 530 counts.
It is easy to observe that during this time the number of counts decreases about 50 %. If
experimental and simulation results are compared there is a coincidence (Figure 5.9 Figure 5.8
respectively). During the first 10 µs and the next 10 µs the decreasing is the same for the
simulation and experiment. According to the simulation the neutrons measured during first
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Figure 5.8: Neutron detection vs propagation time. Simulation results

10 µs is twice then the number of neutrons detected after next 10 µs as it can be seen in the
experimental results (Figure 5.9).

Figure 5.9: Neutron detection vs propagation time. Experimental results
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5.2 Experiment at JYFL

The test of the detector was performed at University of Jyväskylä (JYFL). The aim of
this test was to validate the characteristics of the neutron detector such as efficiency and
moderation time. In order to do it we need to measure the β delayed neutron emission from
well-known nuclei to validate the values measured, comparing with referenced data. The
nuclei measured [6] at JYFL were 94Rb, 95Rb, 88Br, 138I, 138Te. This detector is a prototype
of large detector at DESPEC (GSI) experiment. After the experiment at JYFL we should
answer to the next questions:

• Does the experimental efficiency of the detector corresponds to simulation efficiency?

• Does the obtained data with well-known nuclei correspond to the table values?

• Is this detector adequate prototype for the neutron detector for DESPEC experiment?

5.2.1 Facility at JYFL

The measurements were performed the at Ion Guide Isotope Separator On-Line (IGISOL)
facility (See figure 5.10). It based on the ion guide technique which is stopping the primary
ions from nuclear reactions in noble gas, typically in helium. Because of the high ionization
potential of helium, the stopped species are preserved as ions long enough to be evacuated
from the stopping volume still as ions. Another option is to use voltages inside the ion
guide to drift the ions through the gas. At the IGISOL, ions are extracted from helium
using a diKerential pumping system and mass separated using a dipole magnet with a mass
resolving power (MRP) of about 500. This is adequate to select an isobar - species with
the same mass number A - to be sent to subsequent spectroscopy, or to double Penning
trap system for more refined purification. The purification with trap system is sufficient to
separate the diKerent species within the isobar, resulting in truly monoisotopic beams of the
studied species. The MRP of this separation can easily exceed 105. Beta, gamma, and beta
delayed neutron decay studies significantly benefit from such sources and a vivid research
program is established around the decay studies of the purified sources. The tape system
(JYFLTRAP) is an intrinsic part of the IGISOL facility. In addition to beam purification,
it can be used as an instrument to determine very precisely atomic masses. Atomic masses
of over 200 neutron-rich nuclei have been measured with JYFLTRAP with an accuracy of a
few keV. At the IGISOL facility the particle induced fission of natural uranium and thorium
targets used to produce neutron rich species for nuclear spectroscopy studies. The chemical
insensitivity of the ion guide technique makes it also an attractive approach to study the
fission yield distributions. Due to the ion production mechanism of IGISOL only directly
produced ions are detected and hence independent fission product yields are measured.

At IGISOL the beam hits a thin target and products high charged ions. After acceleration to
about 40 kV the beam is separated by a dipole magnet. A good features of this technique are
the fast (sub-millisecond) release, and chemical non-selectivity making it possible to produce
even the most refractory of elements. In relation with nuclear fission, the IGISOL method has
led to the production of neutron-rich nuclei with beam intensities approximately 105 ions/s.
The typical transverse emittance of an extracted ion beam is about 1.2π mm mrad and the
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Figure 5.10: IGISOL layout

energy spread is relatively large, up to 50 eV. In order to reduce these physical parameters
an additional cooling is required. On the figure 5.10 look for point number 8. After each
measurement, a moving tape extracts daughter nuclei from the center of the neutron detector,
in order to eliminate the background from these nuclei. The neutron detector was placed on
the point ”A” of this scheme.

5.2.2 Detector configuration in the experimental area

The experiment setup is based on three detection systems. The first one consists on 20 3He
proportional counters to detect the neutrons, the second one is a HPGe-detector to measure
gamas emitted by nuclei decay and the last one is a Si-detector to measure β particles from
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the decay. The configuration can be seen on Figure 5.11.

The main idea of this detectors assembly is a detection of all particles involved in beta-decay.
The nuclei from the beam was implanted to the center of the neutron detector. After some
time the nuclei were moved away by tape system (see Figure 5.14 and Figure 5.15) which was
used to eliminate the contamination by daughter nuclei. The frequency at which the nuclei
are moved away from the center of the detector (by means of the tape system) depends on
each nuclide and the period is equal to seven times of the half-lifes of each nuclide.

Following a β decay the nuclide emits a γ particle which can be used as a starting time stamp
in the DAQ system. These particles are measured with HPGe-detector that is located at the
center of the polyethylene matrix, close to the Si detector and the tape where nuclei have
been implanted. The Si detector was used to detect β-particles. After detecting these two
particles the delayed neutron was detected by 3He counters. The main configuration of the
experiment setup is shown in Figure 5.11

Figure 5.11: The detectors assembly at the experiment

In Figure 5.12 is shown a picture of the neutron detector with HPGe-detector. The detector
was placed in the experimental area and the beam pipe (Figure 5.13) was placed inside the
beam hole of the detector. The position of the polyethylene matrix was adjusted (by means
of a table designed for this experiment) to set the end of the beam pipe at the center of the
beam hole and the center of the polyethylene matrix in order to maintain the symmetry and
the 4π geometry.
The analysis of data measured with the HPGe and Si-detector will help to find the neutron
moderation time after β-decay.
As this experiment is triggerless we can not use START and STOP triggering signals, in this
case we use labels ”start time stamp” and ”stop time stamp” for data analysis. In order to
determine the neutron moderation time we need to know the start time stamp. This time
stamp is provided by the γ detected by HPGe-detector. The stop time stamp is provided
the signal by the neutron proportional counters. The neutron moderation time is the time
difference between start and stop time stamps. Si-detector worked also as additional detector
for start time stamp in order to substitute the HPGe-detector in same cases. And it is also
a confirmation of β decay event.
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Figure 5.12: Neutron detector on the beam and HPGe-detector

Figure 5.13: Beam tube with Si-detector inside
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Figure 5.14: Beam tube with tape integrated inside

Figure 5.15: The tape system on the experiment
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Figure 5.16: Electronics scheme at JYFL experiment

5.2.3 Electronics at experiment

The scheme of the experiment is presented on Figure 5.16. There are three schemes which
show the connection of three main detectors.

The first detector is the 3He neutron detector for detection the neutrons from the beta decay.
Gammas are detected by HPGe-detector and β-particles are detected by Si-detector. Data
from these three detectors will be analyzed in order to find the efficiency of the detector,
neutron moderation time and β delay emission probability. The analysis process scheme is
presented on Figure 5.17. There are four main time lines for each detector and pulser. The
gama detection gives a start time stamp. The β delay neutron emission is confirmed by the
detection in coincidence of a neutron and a β particle. The pulser gives the time reference
during all the experiment time. As the frequency of pulser is well-known and controlled by us,
the time elapsed between each event can by calculated easily. A neutron detection generates
a signal for stop time stamp. The moderation time is a time difference between gamma and
neutron detection.
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Figure 5.17: Analyzing scheme at JYFL experiment. Valid event
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Figure 5.18: Analyzing scheme at JYFL experiment. Not valid event

The event can not be taken in account if information is lost. For example on the Figure 5.18
There is no information from the Si-detector about β - detection. It can not be sure in Nβ

event so this event will not be taken in account for analyzing.

The main electronics components involved in the scheme are:

• High Voltage. The bias voltage of proportional counters was set to 1800V. There were
two HV with 16 channels each in order to power all the counters. The HV module
manufacturer is ISEG.

• Pre-amplifier. Two pre-amplifiers by Mesytec with 16 channels each one. Twenty
channels were used for proportional counters. One channel was used for Si detector and
one channel for HPGe detector. Other ten channels were not used at the experiment

• Amplifier. The same manufacturer as pre-amplifiers and also with 16 channels each
one.

• Pulser. Is used as a time reference. This component sends the signal with fixed fre-
quency.

• Sis 3302 is 100 MHz 16-bit VME Digitizer by Struck manufacturer is used to collect all
the data from the all components of the scheme.

• Sis 3100 is PCI/cPCI to VME interface card combination was used to send the data
from VME module to PC. And afterwards analyzer the data to meet the requirements
of demanding VME data acquisition systems
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The signals from proportional counters of the neutron detector were sent to the preamplifier.
The signals from the pulser was connected to the same preamplifier. The pulser was used
to have a time reference during for the data analyzing. The signal from the amplifier was
synchronized with the movement of the tape. The transformed signal was sent to the Struck
SIS3302 ADC module. Si-detector sent the signals to the preamplifier and pulser was also
connected to the preamplifier. These two different pulsers were used for independent time
reference peaks. Analyzing the number of counts in the peak from the pulser the measurement
time can be received. HPGe-detector sent the signal directly to the Struck SIS3302 ADC
module. The three signals from three detectors was digitaged in the SIS3302. This board
was chosen because the board is used for the readout of high resolution detectors, accelerator
controls and other applications. After the digitalization the signals were sent to Struck
SIS3100 module. It is a PCI/cPCI to VME interface card. It is optimized for low latency
high speed readout.

5.2.4 Measurements and data analysis

During the measurements the following nuclei were tested: 94Rb, 95Rb, 88Br, 137I, 138Te.
These nuclei are well known and we use them as a reference in order to check the detector’s
properties at the experiment. The data of these nuclei are presented on Table 5.2

Isotope T1/2 Decay Modes
94Rb 2.702 s β−: 100.00% ;β−n: 10.50%
95Rb 377.7 ms β−: 100.00%;β−n: 8.70%
88Br 16.29 s β−: 100.00%;β−n: 6.58%
137I 24.5 s β−: 100.00%;β−n: 7.14%

138Te 1.4 s β−: 100.00%;β−n: 6.3%

Table 5.2: Characteristics of Isotopes at the experiment at JYFL

These nuclei were implanted on the tape and this tape extracted the daughter nuclei from
the center of neutron detector. The movement of the tape was synchronized with the time
of the decay of each nucleo in order to have the decay in the center and not contaminate the
detector with daughter nuclei.

The implantation time of each nuclide is equal three half-lives of the nuclide implanted and
remains in that position during seven half-lives. After this time period the tape is moved
and removes daughter nuclei from that position. In order to obtain the neutron ratio per a
decay the next calculation should be done. Firstly the beta spectrum in the silicon detector
was obtained. This spectrum can be observed on Figure 5.19. This figure shows the number
of electrons for each channel where channels represent deposited energy.

There was a neutron spectrum obtained from the neutron detector. This spectrum can be
observed on Figure 5.20. This figure shows the number of neutrons for each channel where
channels represent deposited energy.

The Figure 5.21 and Figure 5.22 represents a number of events during the time. They were
fitted by Bateman equations The First part of each figure is a time of grow the number of
events. In this case it was a time of implantation and the decay part shows the decay during
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Figure 5.19: Silicon detector beta spectra

Figure 5.20: Neutron detector neutron spectra

the 7 half-life time. The next plot (Figure 5.23) was constructed by coincidence of neutrons
in neutron detector and beta decay in Si-detector with opened time window for 1 ms.
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Figure 5.21: Time silicon detector

Figure 5.22: Time neutron detector

The neutron emission probability was calculated by equation 5.8
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Figure 5.23: Moderation time

PN =
1

εN

NNβ

Nβ
(5.8)

Where NNβ is a number of Nβ registered events. Nβ is a number of β registered events and
εN is neutron detector efficiency. These values can be obtained analyzing the experimental
data.
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5.2.5 Results

The main objective of this work was to test the neutron detector at the experiment and
to verify it working with described electronics. The electronics on the experiment worked
according to its requirements. It gave an opportunity to obtain the neutron spectra after the
decay. It was important to test the measurements with other detector such as Si-detector
and HPGe-detector. During the work at JYFL it was done. This measurement lets to obtain
neutron moderation time in the polyethylene matrix.
Coincidence of all these measurements helps to obtain neutron ratio per a decay for each
nucleo measured.

This detector is based on 3He as a detection gas. This choice was done because 3He has
higher cross-section for the reaction with neutron. This property increases the probability of
neutron detection and increases the efficiency of the detector. There were some tests with
BF3 detector done. This tests were described in previous chapter.

In order to calculate the experimental efficiency of the detector, The Pn values of 88Br and
95Rb were used as references. From these two values the average detection efficiency for the
neutron detector is (27.1 +/- 0.8)/(see Table 5.3). This neutron detector has very small un-
certainty. The error of the ratio is less than 4% This results are better than other experiments
provide. The NERO experiment has uncertainties about 9%

Isotope Pn(%) Nβ Nβ n(%) Efficiency (%)
88Br 6.58 +/- 0.18 867701 14350 27.6 +/- 0.7
95Rb 8.73 +/- 0.20 588116 13301 26.6 +/- 0.8

Table 5.3: Detection efficiency obtained using 88Br and 95Rb as calibration

According to the experimental results [14] for 94Rb and 138I can be observed on table 5.4.
The comparation of the values of Pn for the JYFL experiment and other one gives a good
agreement. It means that the neutron detector designed in this thesis gives the aim described
in the introduction of this

Isotope Nβ Nβ n Pn(%) Works
94Rb 3.005 83.768 10.28 +/- 0.31 This detector
94Rb - - 10.01 +/- 0.31 Rudstam [15]
94Rb - - 9.1 +/- 0.1 Pfeiffer [16]
138I 343,890 4,955 5.32 +/- 0.2 This detector
138I - - 5.46 +/- 0.18 Rudstam [15]
138I - - 5.17+/-0.36 Pfeiffer [16]

Table 5.4: Nuclei at JYFL experiment compared to other authors
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6.1 Conclusions

The detector designed in this work was developed as a prototype for DESPEC experiment
(future FAIR facility at GSI) and tested at JYFL facility in University of Jyväskylä (Finland)
in order to find delayed neutron emission rate per β-decay. In order to design it, firstly was
studied the 4 π neutron detectors state of the art. As the base to design the neutron detector,
the NERO detector experiment was taken in account. The NERO detector is formed by three
rings of proportional counters of different types. The aim of this work is to find the optimal
configuration of a prototype for the detector to be used in the DESPEC experiment where
the neutron detection efficiency should be as flat as possible for a wide neutron energy range.
In this case the energy range is from thermal neutrons to 6 MeV.
The design was performed by means of Monte Carlo simulations using the MCNPX code.
The design and optimization implies the following parameters: the proportional counters de-
tection gas (BF3 or 3He), the length of the proportional counters, the number of the counters
and its distribution inside the moderator. Also MCNPX code let us to choose the moderator
and shielding materials and dimensions in order to protect the detector from the background
neutrons. In the table 6.1 there is a description of the main properties of the final configura-
tion of the detector designed in this work.

Total dimensions of the detector 90x90x80 cm3

Material of the detector Polyethylene

Dimensions of matrix 50x50x80 cm3

Shielding 20 cm

Cd layer No

Beam hole radius 5 cm

Detection gas 3He

Gas pressure 15200 torr (20 bar)

Total number of counters 20

Number of rings 2

1st ring radius 11 cm

Number of counters in the 1st ring (inner ring) 8

2nd ring radius 20 cm

Number of counters in the 2nd ring (outer ring) 12

Matrix weght 630 kg

Mean efficiency for 0.01 MeV to 1 MeV (26.74 +/- 3.25)%

Mean efficiency for 0.01 MeV to 6 MeV (27.69 +/- 3.00)%

Efficiency factor (F) for 0.01 MeV to 1 MeV 1.22

Efficiency factor (F) for 0.01 MeV to 6 MeV 1.61

Table 6.1: Main properties of the neutron designed detector

In order to choose electronics for data acquisition system (DAQ) for the detector, some
preliminary tests were done at CIEMAT and UPC laboratories. These tests were done to
find electronics components and the best HV wiring types and lengths for the detector. The
efficiencies obtained by the tests were validated by MCNPX simulations in order to design
the main detector
After choosing the type of proportional counters, moderator, electronics and shielding the



6-2 CHAPTER 6. CONCLUSIONS

complete test at UPC laboratory was done. This test was done in collaboration of IFIC and
CIEMAT. The aim of this test was to validate the electronics for the future experiment at
JYFL.
The definitive validation, done in this work, was a test at JYFL facility in Finland in order
to measure the β delayed neutron emission rates of known nuclei as 94Rb, 95Rb, 88Br, 138I,
138Te and compare the rates obtained at JYFL with those published by other groups (See
table 6.2).

Isotope Nβ Nβ n Pn(%) Works
94Rb 3.005 83.768 10.28 +/- 0.31 This detector
94Rb - - 10.01 +/- 0.31 Rudstam [15]
94Rb - - 9.1 +/- 0.1 Pfeiffer [16]
138I 343,890 4,955 5.32 +/- 0.2 This detector
138I - - 5.46 +/- 0.18 Rudstam [15]
138I - - 5.17+/-0.36 Pfeiffer [16]

Table 6.2: Nuclei at JYFL experiment compared to other authors

The conclusion of the experiment is that the data obtained are in concordance with other
published data, which validates the design of the neutron detector performed in this work.

Future activity to be done is the neutron detector design for DESPEC experiment, based on
this prototype and results obtained in this work. This implies the change of the dimensions
of the beam hole (to allocate the implantation equipment inside the detector), increase the
number of counters and number of rings in order to increase the detection efficiency and make
it flatter for wider neutron energy range (up to 10 MeV). Also is needed a calibration of the
neutron detector, in a reference laboratory, in order to validate the results.
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