
Non-Functional Requirements
as drivers of

Software Architecture Design

David Ameller

Thesis supervised by

Dr. Xavier Franch

A thesis submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy in Computing

Departament de Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya

Abstract

In the last decades, software engineering has become an important area of
research. As researchers, we try to identify a problem, a need, or a hole in
some research topic, once identified we make an effort to produce new tech-
niques, methods, and tools that hopefully will help to improve the detected
issue. In the present thesis the identified issue was the need of supporting
non-functional requirements in the software architecture design where these
requirements are the drivers of the architectural decision-making.

This thesis started with the idea that a relatively new software engi-
neering discipline, model-driven development, was a good place to propose
a solution for the detected issue. We envisioned how non-functional re-
quirements can be integrated in model-driven development and how this
integration will impact in the architectural design activities.

When we started to produce our techniques, methods, and tools for
model-driven development we found out that there was a bigger hole in the
web of knowledge than what we had initially foreseen. Much of the evidence
of how non-functional requirements affect the software architecture design is
hidden. This situation caused a turn in this thesis: we needed to understand
architects, how they think and how they make the architectural decisions,
what is the role of non-functional requirements in the architectural decision-
making process, and to what extent are the non-functional requirements
important in this process. All these questions needed an answer, an answer
that only architects could provide. In consequence we opted to drove several
empirical studies to answer these questions.

I

ABSTRACT

In parallel, we started to work in a way of representing this knowledge,
an ontology for software architecture that integrates non-functional require-
ments. Using this ontology as basis, we designed a method to assist archi-
tects in the architectural decision-making process and a tool that acted as
a proof of concept of both, the ontology and the method.

In summary, this thesis explores how non-functional requirements are
currently integrated in the software architecture design practices, and pro-
poses ways to improve this integration and facilitate the work of architects
by providing means to assist them in the architectural decision-making pro-
cess.

II

Co-authorship statement

Most of the contents in this thesis are based on published papers authored
by the candidate, and in some cases co-authored with other authors. The
contents of the papers included in this thesis may have been adapted, reorga-
nized, and extended with respect to the published version. The contribution
for each chapter is described, including specifically who contributed to the
work and the nature and extent of his/her contribution.

All thesis chapters

Dr. Xavier Franch, as supervisor, has contributed to the research described
in this thesis. Xavier’s has been active and involved in the research being
conducted, discussing, and writing each paper. His guidance and supervision
has been fundamental for the selection of conference and journal targets for
publications and the improvement of English writing skills.

Chapter 3

This chapter is based in [24], which was co-authored with Dr. Jordi Cabot,
associate professor at the École des Mines de Nantes and the leader of the
AtlanMod team. Jordi participated in the discussions of this research giving
his opinion, in particular his expertise in Model-Driven Development was of
great value for this research. He also helped in the writing of the paper.

III

CO-AUTHORSHIP STATEMENT

Chapter 5

This chapter is composed by three empirical studies. While the first one was
performed with Dr. Xavier Franch alone, the other two were in collabora-
tion with other researchers. The second empirical study is based in [11, 12],
which was co-authored with Dr. Claudia Ayala, researcher at the Universi-
tat Politècnica de Catalunya and Dr. Jordi Cabot, previously introduced.
Claudia was the expert in driving empirical studies, and proposed the pro-
tocol to follow, she also participated in the execution of the study and in
the writing of the papers. Jordi participated in most of the discussions of
this research and helped in the writing of the papers. The third empirical
study is based in [25], which was co-authored with Dr. Matthias Galster, re-
searcher at the University of Canterbury, and Dr. Paris Avgeriou, researcher
at the University of Groningen and leader of the SEARCH group. Matthias
produced the first version of the research protocol and helped in the writing
of the paper. Paris participated in most of the discussions of this research
giving his opinion, in particular his expertise in software architecture was of
great value for this research. He also helped in the writing of the paper.

Chapter 7

The Section 7.3 of this chapter is based in the papers [14, 15], which were
co-authored with Oriol Collell. Oriol was the main developer of the Ar-
chiTech tool, and he also helped in the preparation of the tool demo and the
promotional video.

IV

Acknowledgments

This research project would not have been possible without the support of
many people. The author wishes to express his gratitude to his supervi-
sor, who was abundantly helpful and provided extremely useful assistance,
support, and guidance.

Special thanks also to all his research group members and university
colleagues; for their invaluable assistance. Not forgetting his best friends
who always have been there.

The author wishes to express an special gratitude to his mother and
father, and to his relatives; for their support during his studies.

The following is the list of people, in alphabetical order, that helped in
one way or another to the completion of this thesis.

Antonio Vallecillo
Antonio Villegas
Borja Balle
Carles Farré
Carlos Ameller
Charlie Ameller
Claudia P. Ayala
Cristina Gómez
Cristina Palomares
David Aguilera
David Cerdan

David Ruiz
Frank Buschmann
Hugo H. Pibernat
Jaelson Castro
Jordi Cabot
Jordi Marco
Judith Mitchell
Lidia López
Marc Oriol
Matthias Galster
Nadia Ameller

Oriol Collell
Oscar Cabrera
Oscar Hernan
Oscar Pastor
Paris Avgeriou
Paul Grünbacher
Raul Marina
Rebeca Dalmau
Silverio Martínez
Vicente Pelechano
Xavier Franch

V

ACKNOWLEDGMENTS

VI

Contents

Abstract I

Co-authorship Statement III

Acknowledgments V

Contents VII

List of Tables XI

List of Figures XIII

1 Introduction 1
1.1 Context and terminology . 1

1.1.1 Requirements Engineering 1
1.1.2 Software Architecture 4
1.1.3 Model-Driven Development 5

1.2 Research questions . 7
1.3 Methodological approach . 9
1.4 Research contributions . 11

1.4.1 Integration of NFRs into MDD 11
1.4.2 Empirical research in software architecture 12
1.4.3 Architectural knowledge 13

VII

CONTENTS

1.4.4 Other publications . 14
1.4.5 Statistics of the published works 16

1.5 Structure of the dissertation 17

I NFRs in Model-Driven Development 19

2 State of the art 21
2.1 Modeling languages supporting NFRs in MDD 22

2.1.1 Extending modeling languages to represent NFRs . . . 22
2.1.2 MDD with support for RE modeling languages 23
2.1.3 Analysis . 25

2.2 Processes that support NFRs in MDD 25
2.2.1 NFR-driven transformations 26
2.2.2 NFRs as validating mechanism 26
2.2.3 Analysis . 28

3 Introducing NFRs in MDD 29
3.1 State of the practice . 29

3.1.1 NFRs supported with manual adaptation 30
3.1.2 NFRs supported with new transformations 31
3.1.3 How are NFRs supported in MDD practice? 32

3.2 Motivation . 34
3.3 Introducing NFRs in MDD 37

3.3.1 NFR-aware MDD: NFRs in the PIM 38
3.3.2 NFR-aware MDD: NFRs for decision-making 42
3.3.3 Comparison . 44

3.4 Discussion . 47
3.5 Conclusions . 50

II NFRs in Software Architecture 53

4 State of the art 55
4.1 Empirical studies on NFRs 56

4.1.1 Analysis . 58
4.2 Empirical studies on software architecture 58

VIII

CONTENTS

4.2.1 Analysis . 60

5 State of the practice 61
5.1 First empirical study . 62

5.1.1 Design . 62
5.1.2 Results . 66
5.1.3 Discussion . 70

5.2 Second empirical study . 73
5.2.1 Design . 73
5.2.2 Results . 80
5.2.3 Discussion . 97

5.3 Third empirical study . 98
5.3.1 Design . 99
5.3.2 Results . 103
5.3.3 Discussion . 113

5.4 Conclusions . 115

III Arteon, Quark, and ArchiTech 119

6 State of the art 121
6.1 Architectural Knowledge ontologies 122

6.1.1 Analysis . 125
6.2 Software architectural design methods 126

6.2.1 Analysis . 130
6.3 Architectural Knowledge tools 130

6.3.1 Analysis . 131

7 Architectural knowledge 133
7.1 Arteon: Architectural and Technological Ontology 135

7.1.1 Design . 136
7.1.2 Structural elements module (SE-module) 139
7.1.3 Reasoning module (R-module) 143
7.1.4 Discussion . 146

7.2 Quark: Quality in Architectural Knowledge 147
7.2.1 The Quark method . 148
7.2.2 Example . 152

IX

CONTENTS

7.2.3 Discussion . 154
7.3 ArchiTech . 156

7.3.1 ArchiTech-CRUD . 156
7.3.2 ArchiTech-DM . 158
7.3.3 Design . 159

7.4 Conclusions . 165

Conclusions and future work 167
Conclusions . 167
Future work . 169

Appendix A First empirical study 171

Appendix B Second empirical study 191

Appendix C Third empirical study 197

List of Abbreviations 215

Bibliography 217

Index 243

X

List of Tables

1.1 Research questions of this thesis 8
1.2 Shaw’s list of research settings 9
1.3 Shaw’s list of research products 10
1.4 Shaw’s list of validation techniques 10
1.5 Works related to the integration of NFRs into MDD 12
1.6 Works related to empirical research in software architecture . 13
1.7 Works related to the ontology for architectural knowledge . . 15
1.8 Works that are not directly related to this thesis 16
1.9 Number of citations of published works related to this thesis . 18
1.10 Summary of chapters of this dissertation 18

2.1 Comparison of modeling languages that support NFRs in MDD 25
2.2 Comparison of approaches that consider NFRs in MDD . . . 28

3.1 Effects of components on some architectural properties 35
3.2 Concepts needed when integrating NFRs into MDD 39
3.3 Comparison among the different MDD strategies analyzed . . 46

4.1 Summary of empirical studies on NFRs 59
4.2 Summary of empirical studies on software architecture 60

5.1 Summary of performed empirical studies 62
5.2 Research questions of the first empirical study 63

XI

LIST OF TABLES

5.3 Desired interaction levels . 70
5.4 Research questions of the second empirical study 74
5.5 Overview of the organizations 76
5.6 Research questions of the third empirical study 101
5.7 Importance of QAs and their implicit or explicit nature . . . 105
5.8 Importance of QAs and the training of participants 106
5.9 Nature of QAs and the training received by participants . . . 106
5.10 Importance of QAs and the role of participants 107
5.11 Nature of QAs and the role of participants 107
5.12 QAs and their importance . 111
5.13 Nature of QAs and documentation 113
5.14 Importance QAs and documentation 113
5.15 Relevant observations from the three empirical studies 117
5.16 Most important types of NFRs from the three studies 117

6.1 Comparison of AK conceptualizations 125
6.2 Comparison of SADMs . 129
6.3 Comparison of AK tools . 131

7.1 Architecture alternatives comparison 162

XII

List of Figures

1.1 Classifications of software requirements 2
1.2 Models and transformations of MDD 6
1.3 Statistics of published works 17

3.1 Dealing with NFRs in a classical MDD approach 32
3.2 Dealing with NFRs using current MDD technologies 33
3.3 Two different deployment architectures for the Web portal case 36
3.4 Knowledge and models used in the example 42
3.5 Comparison among the different MDD strategies analyzed . . 44

5.1 Population of the first empirical study 66
5.2 Importance of NFRs by types 72
5.3 Importance of NFR types (technical and non-technical) . . . 84
5.4 Classifications of QAs . 105
5.5 Frequency distribution of QA 109
5.6 Frequency distribution of application domains 110
5.7 Classifications of decisions . 112

7.1 Arteon, Quark, and ArchiTech relations 134
7.2 Arteon’s overview . 136
7.3 Arteon’s SE-module . 139
7.4 Example of the representable knowledge in SE-module 140
7.5 Arteon’s R-module . 143

XIII

LIST OF FIGURES

7.6 CFG to formalize constraints 145
7.7 Arteon’s SE and R modules together 147
7.8 Quark overview . 149
7.9 ArchiTech overview . 157
7.10 ArchiTech screenshot . 159
7.11 Three-layer architectural alternatives 161
7.12 Architectural solution used in ArchiTech 165

XIV

Chapter 1

Introduction

1.1 Context and terminology

The present thesis has grown around three software engineering areas: Re-
quirements Engineering (RE), Software Architecture, and Model-Driven En-
gineering (MDE). The three areas are explained in the following subsections
to clarify the context and the terminology used in this thesis.

1.1.1 Requirements Engineering

Requirements engineering is the part of software engineering which covers all
of the activities involved in eliciting, documenting and maintaining require-
ments [180]. This thesis does not deal with the elicitation of requirements
since it is assumed that the requirements are already defined. Some of
the contributions may help the documentation and the maintainability of
requirements. The principal contribution with regard to software require-
ments is to make them present and drivers of the subsequent development
activities.

There are several classifications of requirements, the most habitual one
being the differentiation between functionality and non-functionality. For
example, a functional requirement could be: the system shall produce an
inventory every week ; while a non-functional requirements could be: the
system shall load web pages in less than 2 seconds. A second classifica-
tion, is the differentiation between technical and non-technical requirements.

1

CHAPTER 1. INTRODUCTION

Software Requirements

Functional Non‐Functional

Technical Non‐Technical

Figure 1.1: Classifications of software requirements

Functional requirements are by definition technical, but non-functional re-
quirements could be inherent to the software being produced (technical), or
could be triggered by external factors such as organizational, laws, software
licensing, software providers, in these cases the requirements are classified
as non-technical requirements (e.g., the system shall be developed in a lan-
guage known by the development team). Figure 1.1 illustrates the explained
classification.

Non-Functional Requirements

Non-Functional Requirements (NFRs) are one of the main research targets
in the Requirements Engineering community [98] and their impact has been
documented in seminal papers [48], individual case studies [90] and types
of industrial projects [215]. For the present thesis, NFRs are of special
relevance.

There are many NFR definitions (see [62, 98]), one definition is:

“[NFR is...] a requirement that specifies system properties, such as en-
vironmental and implementation constraints, performance, platform de-
pendencies, maintainability, extensibility, and reliability. [NFR is...] a
requirement that specifies physical constraints on a functional require-
ment”, I. Jacobson et al., “Unified Software Development Process”,
1999 [120].

2

1.1. CONTEXT AND TERMINOLOGY

L. Chung et al. [62, 63] discussed that the lack of integration of NFRs
with functional requirements can result in long time-to-market and more
expensive projects. This fact has been recurrently mentioned in previous
publications such as the book “Software Requirements: Objects, functions
and states”, A. M. Davis [75]. This is the first paragraph of [62]:

“Essentially a system’s utility is determined by both its functionality
and its nonfunctional characteristics, such as usability, flexibility, per-
formance, interoperability and security. Nonetheless, there has been a
lop-sided emphasis in the functionality of the system, even though the
functionality is not useful or usable without the necessary non-functional
characteristics”, L. Chung et al., “On Non-Functional Requirements in
Software Engineering”, 2009 [62].

Software Quality

According to M. Glinz [98], functional and non-functional requirements set
the boundary of an important dimension of the software, its quality. For
example, in the ISO/IEC 25000, also known as SQuaRE1 [116] quality stan-
dard we can find Quality Attributes (QAs) such as: functional suitability,
performance efficiency, compatibility, usability, reliability, security, main-
tainability, and portability. Notice that these quality characteristics are the
same that were mentioned in the previous definition of the term NFR. In
other words, NFRs and software quality are highly related.

“[Software quality is...] the capability of software product to satisfy
stated and implied needs when used under specified conditions”, ISO/IEC
25000, 2005 [116].

The needs mentioned in the previous definition could be any kind of
software requirement: functional, or non-functional. It is important to notice
that using the term quality as defined in the ISO/IEC standard refers to
the grade of satisfaction of both types of requirements: functional and non-
functional. But in some communities is common to refer to NFRs as Quality
Requirements (QRs).

1SQuaRE was published in 2005 as a substitution of the ISO/IEC 9126 [117]

3

CHAPTER 1. INTRODUCTION

1.1.2 Software Architecture

Software architecture is the result of the Architectural Decisions2 (ADs)
made during the architecture design. ADs and their recognition as first-class
elements are one of the most important advances in software architecture
during the last decade. One definition of software architecture is:

“The software architecture of a program or computing system is the
structure or structures of the system, which comprise software elements,
the externally visible properties of those elements, and the relationships
among them.”, L. Bass et al., “Software Architecture in Practice (second
edition)”, 2003 [36].

NFRs have been recognized as one of the main drivers to make ADs. For
example, the selection between several pieces of technology, the decision to
replicate some components, or even the mere existence of some component
as part of the architecture. What criteria is used to choose among several
technologies? Why some component needs to be replicated? The typical
answer to these questions is a NFR. These quotes are in this direction:

“[NFRs...] play a critical role during system development, serving as
selection criteria for choosing among myriads of alternative designs and
ultimate implementations”, L. Chung et al., “Non-Functional Require-
ments in Software Engineering”, 2000 [63].

“The rationale behind each architecture decision is mostly about achiev-
ing certain NFRs”, L. Zhu and I. Gorton, “UML Profiles for Design
Decisions and Non-Functional Requirements”, 2007 [217].

Architectural Knowledge

Architectural decisions are the base of Architectural Knowledge (AK). There
are many definitions of AK (see [77]), the simplest being: “Architectural
Knowledge = Design Decisions + Design” [145].

2Also referred in this thesis as architectural design decision and design decision.

4

1.1. CONTEXT AND TERMINOLOGY

“Architectural knowledge consists of architecture design as well as the
design decisions, assumptions, context, and other factors that together
determine why a particular solution is the way it is.”, P. Kruchten
et al., “Building Up and Reasoning About Architectural Knowledge”,
2006 [145].

This knowledge is not easily accessible, normally it resides in the archi-
tect’s mind, and in few cases it is disseminated in the project documentation,
but even in this case it lacks of explicit reasoning about the alternatives con-
sidered previous to the decision.

“Except for the architecture design part, most of the architectural knowl-
edge usually remains hidden, tacit in the heads of the architects”, P.
Kruchten et al., “Building Up and Reasoning About Architectural
Knowledge”, 2006 [145].

1.1.3 Model-Driven Development

Software engineering researchers have been trying to find ways to systematize
the software development processes. A software development paradigm that
is gaining relevance in the last years is MDD, a development paradigm where
models (and their transformation) play a fundamental role [28, 155]. MDD is
based on the separation of the essential specification of the system and its im-
plementation using a specific platform. In MDD, models are used to specify,
simulate, verify, test and generate the system to be built. The benefits of us-
ing MDD are higher abstraction level and improved platform independence.
A clear example of these benefits could be the adaptation to new technolo-
gies; this problem can be alleviated by using technology-independent models
that can be transformed semi-automatically into technology-specific models
to fulfill the trendy technological needs. MDD is defined as:

“Model-driven development is simply the notion that we can construct
a model of a system that we can then transform into the real thing”, S.
Mellor et al., “Model-Driven Development”, 2003 [155].

5

CHAPTER 1. INTRODUCTION

PIM

PSM

Code

M2M

M2T

CIM

M2M

Figure 1.2: Models and transformations of MDD

In other words, MDD uses models as the primary artifact of the soft-
ware production process, and development steps consist of the application
of transformations over these models. Due to its promised benefits, MDD
is being one of the main issues of organizations such as OMG, and is also
mentioned as a driver in particular types of systems (e.g., for self-adaptive
systems [59]).

Normally, MDD approaches focus on conceptual models, the implement-
ing technologies, and the generation of code. One of the most popular MDD
approach is the Model-Driven Architecture (MDA), an OMG standard [157],
that has been used as the basis for many other later MDD approaches.

MDA distinguishes several types of models and transformations:

Computation Independent Models (CIM) also called domain model,
does not show details of the structure of systems.

Platform Independent Models (PIM) represents the software system
without considering the technology platform used.

Platform Specific Models (PSM) is a refined version of the PIM with
details of the technological platform, i.e., two different implementa-

6

1.2. RESEARCH QUESTIONS

tions of the same system would share the same PIM but have two
different PSMs, each one adapted to the technological capabilities of
each platform.

Model-to-Model (M2M) transformations evolve one of these types of
models to a different type (vertical transformation) or the same type
(horizontal transformation).

Model-to-Text (M2T) transformations are normally used to generate the
code or the documentation of system from the PSM (but in practice
may apply to other ends). These transformations include generating
several code artifacts glued together, e.g., Java business classes, Oracle
DB schemes, etc.

These models and transformations have become the de facto standard in
MDD approaches (see Figure 1.2).

1.2 Research questions

“[Engineering is...] the creative application of scientific principles to de-
sign or develop structures, machines, apparatus, or manufacturing pro-
cesses, or works utilizing them singly or in combination; or to construct
or operate the same with full cognizance of their design; or to forecast
their behavior under specific operating conditions; all as respects an in-
tended function, economics of operation and safety to life and property”,
Encyclopedia Britannica3.

Software architecture, as an artifact, reflects many of the aspects highlighted
in the engineering definition. A software architecture captures the design,
normally as a combination of components, and forecasts its behavior for
particular aspects (specially the non-functional). Considering this, software
architecture should be a fundamental pillar and a central artifact of any
software engineering process.

In the particular case of MDD (see Section 1.1.3), architecture is not a
fundamental part of the engineering process. Still, architecture is always

3http://www.britannica.com/EBchecked/topic/187549/engineering

7

CHAPTER 1. INTRODUCTION

Table 1.1: Research questions of this thesis

Id Research Question

RQ1 How NFRs and architecture can be integrated in the MDD process?
RQ2 How do NFRs impact on architectural design?
RQ3 Which AK is necessary to make architectural decisions?

there, but as something predefined and hard to adapt. Most of the enthusi-
asm around MDD was about providing an automatic software development,
in this situation aspects that require creativity and decision-making such as
NFRs and architecture have been hidden from the process by giving them
default values. In contrast, in Model-Driven Engineering (MDE) the idea of
automatic software development is not so important. MDE opens the door
to handle NFRs in MDD and the introduction of architecture design as part
of the MDD process. Having identified this necessity in MDD to evolve to
an engineering process, the first research question (RQ1) of this thesis is:
How NFRs and architecture can be integrated in the MDD process?

The answer provided to RQ1 is an extension to the MDD process [24]
which is explained in Chapter 3. This extension is presented as a framework
that integrates NFRs in the MDD process and we also explore different
issues such as the need of NFRs formalization, and the need of inclusion
of architectural models in the MDD methodology. As consequence of the
integration of NFRs into MDD, architectural design is proposed to be part
of this development process.

As result of RQ1, the architectural design proposed as part of the MDD
process aims to a computer assisted method to help architects in the archi-
tectural decision-making using NFRs as drivers of this method. As conse-
quence, the second research question (RQ2) is: How do NFRs impact on
architectural design?

At the same time, the decision-making method that will is surfaced from
the result of the RQ1 and RQ2 requires Architectural Knowledge (AK),
which have to be defined, represented, and tested. As consequence, the third
research question (RQ3) is: Which AK is necessary to make architectural
decisions?

The list of research questions is shown in Table 1.1.

8

1.3. METHODOLOGICAL APPROACH

Table 1.2: Shaw’s list of research settings

Research setting Sample question

Feasibility Is there an X, and what is it? Is it possible to accomplish X at
all?

Characterization What are the important characteristics of X? What is X like?
What, exactly, do we mean by X? What are the varieties of X,
and how are they related?

Method/Means How can we accomplish X? What is a better way to accomplish
X? How can I automate doing X?

Generalization Is X always true of Y? Given X, what will Y be?
Selection How do I decide between X and Y?

1.3 Methodological approach

Shaw provides several ways of characterizing software engineering research,
in terms of what she describes as research settings, research products, and
validation techniques [195].

Research settings are the different classes of research problems. Shaw
lists five research settings along with a sample question as example (see
Table 1.2). The settings of this thesis, in terms of Shaw’s characterizations,
are characterization, and method/means. RQ1 tries to find means to include
NFRs and architecture in MDD, RQ2 is about the characterization of the
relationship between NFRs and ADs, and RQ3 is clearly the characterization
of architectural decisions.

Research products are the tangible results of the research project. Shaw
lists five research products along with a short description of how to achieve
it (see Table 1.3). The research products of this thesis include qualitative
or descriptive model, technique, and analytic model. Descriptive models are
the empirical studies carried to understand the practice of software architects
with regard to NFRs and architectural decisions, and the chapters dedicated
to the state of the art. The technique produced is the MDD process extended
to include NFRs and architectural models. The analytic model is an ontology
designed to manage the architectural knowledge.

The last characterization is the research validation. Shaw provides a list
of five validation techniques (see Table 1.4). The validation techniques used
in this thesis are persuasion, implementation, evaluation, and experience.

9

CHAPTER 1. INTRODUCTION

Table 1.3: Shaw’s list of research products

Research product Research approach or method

Qualitative or
descriptive model

Organize and report interesting observations about the world.
Create and defend generalizations from real examples. Structure
a problem area; formulate the right questions. Do a careful
analysis of a system or its development.

Technique Invent new ways to do some tasks, including procedures and
implementation techniques. Develop a technique to choose among
alternatives.

System Embody result in a system, using the system development as
both source of insight and carrier of results.

Empirical
predictive model

Develop predictive models from observed data.

Analytic model Develop structural (quantitative or symbolic) models that permit
formal analysis.

Table 1.4: Shaw’s list of validation techniques

Technique Character of validation

Persuasion A technique, design or example.
Implementation Of a system or technique.
Evaluation With respect to a descriptive model, a qualitative model, an

empirical quantitative model.
Analysis Of an analytic formal model, an empirical predictive model.
Experience Expressed in a qualitative or descriptive model, as decision

criteria or an empirical predictive model.

Persuasion is used all along the thesis using examples that illustrate the be-
havior of the proposed ideas or processes. For the implementation technique,
a tool has been developed to show the feasibility to use the proposed on-
tology and the method to assist architects in architectural decision-making.
The evaluation of the data gathered from the empirical studies, was con-
trasted with the results obtained in similar studies (ours and others’). The
design of the ontology, the method, and the tool were based on the experience
obtained from the interviewed architects.

10

1.4. RESEARCH CONTRIBUTIONS

1.4 Research contributions

Having established the research questions, the published works related to
this thesis can be grouped in three areas: integration of NFRs and architec-
ture into MDD (RQ1), empirical research around software architecture and
NFRs (RQ2), and research around the AK (RQ3).

The most important contributions of this thesis have been published in
recognized venues such as the IEEE Software, and Journal of Software: Prac-
tice and Experience (SPE), IEEE International Requirements Engineering
Conference (RE), European Conference on Software Architecture, and In-
ternational Working Conference on Requirements Engineering: Foundation
for Software Quality. Also, some works have been published in specialized
workshops such as TOPI, a workshop, held in the International Conference
on Software Engineering, for research around tools as plugins (which is the
case of the implemented tool to manage architectural knowledge); IWSSA, a
workshop specialized in software architecture; EASA, which is specialized in
empirical works done around software architecture; and DSDM, a Spanish
MDD workshop. I also mention the bachelor thesis and the master thesis
because they represent important milestones for the research done in this
thesis.

1.4.1 Integration of NFRs into MDD

The origin of this PhD thesis is the bachelor thesis [8], in this work we
had a UML profile for class diagrams used to identify responsibilities (e.g.,
the identifier attribute of a particular class) and then choose a treatment
(e.g., use a primary key in a database schema) to handle this responsibility.
This work evolved to a more complex framework, that was published in the
research in progress track of the 33rd Euromicro Conference on Software
Engineering and Advanced Applications (SEAA) [17] and in the Desarrollo
de Software Dirigido por Modelos (DSDM) [16] workshop. As the frame-
work evolved the complexity became a problem because responsibilities and
treatments were too fine-grained. To solve this situation, responsibilities
and treatments became coarse-grained, turning into NFRs and architectural
decisions respectively. This change coincided with the presentation of the
master thesis [9] where a new version of the framework was released. After
some maturation of the ideas behind this framework, the work was pub-

11

CHAPTER 1. INTRODUCTION

Table 1.5: Works related to the integration of NFRs into MDD

Ref. Pub. Type Venue Year Title

[8] Bachelor
thesis

2007 Assignació de responsabilitats a capes usant
AndroMDAa

[17] Conference
(short paper)

Euromicro 2007 Assigning Treatments to Responsibilities in
Software Architectures

[16] Workshop DSDM 2007 Asignación de Tratamientos a
Responsabilidades en el contexto del Diseño
Arquitectónico Dirigido por Modelosb

[9] Master thesis 2009 Considering Non-Functional Requirements in
Model-Driven Engineering

[24] Conference
(full paper)

RE 2010 Dealing with Non-Functional Requirements in
Model-Driven Development

a English translation: Setting responsibilities into layers using AndroMDA
b English translation: Setting treatments to responsibilities in the MDD context

lished with the collaboration of Jordi Cabot in the 18th International IEEE
Requirements Engineering Conference (RE) [24] as a vision paper on how
to integrate NFRs into MDD. Table 1.5 lists the published works related to
the integration of NFRs into MDD in chronological order.

1.4.2 Empirical research in software architecture

In this thesis we have executed three empirical studies:

• As part of the master thesis [9], there was a protocol to drive an elec-
tronic survey about the industrial practice of software development.
The results of this study were presented, in the 1st Empirical As-
sessment in Software Architecture (EASA) [20] workshop, in this case
focusing on the results related to software architecture, and in the
16th International Working Conference on Requirements Engineering:
Foundation for Software Quality (REFSQ) [21] focusing on the results
related to NFRs.

• After this first experience, it was necessary to go deeper into the de-
tails. In collaboration with Claudia Ayala and Jordi Cabot, we started
a new empirical study based on individual interviews about how archi-
tects deal with NFRs in their projects, this study was published in the
20th IEEE International Requirements Engineering Conference [11].
In response to this study we collaborated with Frank Buschmann in

12

1.4. RESEARCH CONTRIBUTIONS

Table 1.6: Works related to empirical research in software architecture

Ref. Pub. Type Venue Year Title

[9] Master thesis 2009 Considering Non-Functional Requirements in
Model-Driven Engineering

[20] Workshop EASA 2009 Usage of architectural styles and technologies
in IT companies and organizations

[21] Conference
(ext. abstract)

REFSQ 2010 How do Software Architects consider
Non-Functional Requirements: A Survey

[11] Conference
(full paper)

RE 2012 How do Software Architects Consider
Non-Functional Requirements: An Exploratory
Study

[50] Journal
(column)

IEEE Software 2012 Architecture Quality Revisited

[12] Journal IEEE Software 2013 Non-Functional Requirements in Architectural
Decision-Making

[25] Conference
(short paper)

ECSA 2013 The Role of Quality Attributes in Service-based
Systems Architecting: A Survey

writing a column in the IEEE Software magazine [50] highlighting
some of the most relevant outcomes of the study. After these two last
publications we got accepted a research paper to the IEEE Software
magazine but this time focusing on the architectural decisions [12].

• The last empirical study was produced as result of a research stay in
the Groningen university and in collaboration with Matthias Galster
and Paris Avgeriou. In this case the study was focused on a particu-
lar architectural style: Service-Oriented Architecture, and we studied
how quality attributes affect architectural decisions. This study was
published in the European Conference on Software Architecture [25].

Table 1.6 lists the published works related to empirical research in soft-
ware architecture in chronological order.

1.4.3 Architectural knowledge

For this part of the research there are three parallel lines of action:

• The design of an ontology to manage architectural knowledge. The on-
tology, called Arteon, was published in DSDM [19] as an initial version,
and afterwards the two separated modules that compose this ontology

13

CHAPTER 1. INTRODUCTION

were presented in more detail, one centered in the structural part of
the architecture, published in the 9th International Workshop on Sys-
tem/Software Architectures (IWSSA) [22] and the other centered in
the architectural decisions and the reasoning process, published in the
XVI Congreso Iberoamericano en Ingeniería de Software (CIbSE) [23].
In this thesis is presented the current state of the ontology, which is
the aggregation of the last published versions.

• The design of a method to assist architects in the architectural decision
making. The method, called Quark, was presented in the XVI Con-
greso Iberoamericano en Ingeniería de Software (CIbSE) [23]. This
method is based on the architects’ feedback obtained from the empir-
ical studies, and in the Arteon ontology.

• The design of a tool to manage and reuse the architectural knowl-
edge. The tool, called ArchiTech, was published in the 1st Workshop
on Developing Tools as Plug-ins (TOPI) [13], this paper was invited
for an extended version in the Software: Practice and Experience jour-
nal [15]. Both papers (TOPI and SPE) explained the part of the tool
dedicated to the management of architectural knowledge (this part
is based on the Arteon ontology), the part dedicated to reasoning
and making architectural decisions (based in Quark) was presented,
as tool demonstration, in the 20th IEEE International Requirements
Engineering Conference (RE) [14].

Table 1.7 lists the published works related to the ontology for architec-
tural knowledge in chronological order.

1.4.4 Other publications

There have been other published works that are not related to the main
topic of this thesis.

• In 2008, we designed the architecture of a SOA monitoring system
called SALMon. This architecture was published in the 7th IEEE In-
ternational Conference on Composition-Based Software Systems (IC-
CBSS) [18]. The experience gained in Service-Oriented Architecture
(SOA) during the design of SALMon has been used many times as

14

1.4. RESEARCH CONTRIBUTIONS

Table 1.7: Works related to the ontology for architectural knowledge

Ref. Pub. Type Venue Year Title

[19] Workshop DSDM 2009 Definición de una Ontología para el Proceso de
DSDM considerando Requisitos No-Funcionalesa

[13] Workshop TOPI 2011 Reconciling the 3-layer Architectural Style with
the Eclipse Plug-in-based Architecture

[22] Workshop IWSSA 2011 Ontology-based Architectural Knowledge
representation: structural elements module

[15] Journal SPE 2012 The Three-Layer Architectural Pattern Applied
to Plug-in-based Architectures: the Eclipse
Case

[14] Conference
(tool demo)

RE 2012 ArchiTech: Tool Support for NFR-Guided
Architectural Decision-Making

[23] Conference
(full paper)

CIbSE 2013 Quark: a method to assist software architects
in architectural decision-makingb

a English translation: Defining an ontology for the MDD process considering NFRs
b This paper was finalist for the best paper award

examples of architectural decisions or to identify the key concepts of
the Arteon ontology. Later in the same year, Marc Oriol took the
lead of the SALMon project, and we made a joint publication with the
advances of SALMon during 2008 [172].

• In 2011, the research group (GESSI4) started a new research project
about requirements engineering in the context of service oriented sys-
tems. In the first year of this project we collaborated in a vision paper
of the work plan of this project [189].

• in 2012, GESSI started a collaboration between the university (UPC)
and a software consultancy company (everis). In this collaboration
we performed an empirical study about reference architectures. The
design on this study was presented in 2013 in the 10th Experimental
Software Engineering Track Workshop (ESELAW) [150]. In this study
we contributed with the experience obtained driving empirical studies
to software architects (e.g., helping in the design of the questionnaires
and performing the interviews).

4www.essi.upc.edu/~gessi

15

CHAPTER 1. INTRODUCTION

Table 1.8: Works that are not directly related to this thesis

Ref. Pub. Type Venue Year Title

[18] Conference
(short paper)

ICCBSS 2008 Service Level Agreement Monitor (SALMon)

[172] Workshop MONA+ 2008 Monitoring Adaptable SOA-Systems using
SALMon

[189] Conference
(full paper)

JCIS 2011 Ingeniería de requisitos orientada a servicios:
características, retos y un marco metodológicoa

[150] Workshop ESELAW 2013 A Framework for Software Reference
Architecture Analysis and Reviewb

[92] Conference
(position
paper)

ICSOFT 2013 Managing Risk in Open Source Software
Adoption

a English translation: Service Oriented Requirements Engineering: Characteristics, challenges, and
a methodological framework

b This paper got the best paper award

• In 2013, GESSI started an European project, RISCOSS5. This project
had several tasks related to requirements elicitation and architectural
design in which we could use much of the experience obtained during
this thesis. As preliminary result of this project we have published a
paper with the vision and objectives of RISCOSS [92].

Table 1.8 lists the published works not directly related to this thesis in
chronological order.

1.4.5 Statistics of the published works

Excluding the publications not related to this thesis, in Figure 1.3-left we
can see in chronological order, and separated by the three research topics,
the publications related to this thesis. We can observe that MDD research
finished in 2010, and that the empirical works and the ones related to archi-
tectural knowledge were carried in parallel after the MDD research. Also,
we can see that during the time of this thesis there was an average of more
than 2 publications per year.

Counting the publications by types, as shown in Figure 1.3-right, we can
see that the published works are 3 times in journals, 7 times in conferences,
and 5 times in workshops. In most venues, there have been one publication,

5www.riscoss.eu

16

1.5. STRUCTURE OF THE DISSERTATION

0

1

2

3

4

5

6

7

Journal Conference Workshop

P
u
b
lic
at
io
n
s

P
u
b
s.

0

1

2

3

4

5

6

7

20 0 7 2 0 0 8 2 0 0 9 2 0 1 0 2 0 1 1 2 0 1 2 2 0 1 3

MDD Empirical Ontology

0

1

2

3

4

5

6

7

20 0 7 2 0 0 8 2 0 0 9 2 0 1 0 2 0 1 1 2 0 1 2 2 0 1 3

Total

Figure 1.3: Statistics of published works

with the exception of RE conference (three times), IEEE Software journal
(twice), and DSDM workshop (twice).

Table 1.9 shows the number of citations of the published works in jour-
nals, conferences, and workshops related to this thesis. The number of cita-
tions were obtained from the Google Scholar records in the 18th of Novem-
ber, 2013. We also added as remarks, the CORE ranking6 for conferences,
and the impact factor for journals7. It is worth to remark that some pub-
lications are still too recent to have a clear idea of the amount of citations
that they will get.

1.5 Structure of the dissertation

This thesis is presented in three parts, which corresponds to the three re-
search questions exposed in Section 1.2. The first part, “Non-Functional Re-
quirements in Model-Driven Development”, refers to RQ1, the second part,
“Non-Functional Requirements in Software Architecture”, refers to RQ2, and
the third part, “Arteon, Quark, and ArchiTech” refers to RQ3. Each part
begins with a chapter of the state of the art of the related research topics,
followed by the contributions of this thesis (see Table 1.10).

6We used the last available conference ranking, February 2008 (core.edu.au).
7We used the ISI Journal Citation Reports, 2011.

17

CHAPTER 1. INTRODUCTION

Table 1.9: Number of citations of published works related to this thesis

Citations Ref. Topic Venue Year Remarks

31 [24] NFRs into MDD RE 2010 CORE A
10 [11] Empirical research RE 2012 CORE A
8 [21] Empirical research REFSQ 2010 CORE B
4 [22] Architectural Knowledge IWSSA 2011 Workshop
3 [12] Empirical research IEEE Soft. 2013 I.F.: 1.508
3 [16] NFRs into MDD DSDM 2007 Workshop
2 [14] Architectural Knowledge RE 2012 CORE A
2 [17] NFRs into MDD Euromicro 2007 CORE C
2 [13] Architectural Knowledge TOPI 2011 Workshop
1 [15] Architectural Knowledge SPE 2012 I.F.: 0.519
1 [19] Architectural Knowledge DSDM 2009 Workshop
1 [20] Empirical research EASA 2009 Workshop
0 [50] Empirical research IEEE Soft. 2012 I.F.: 1.508
0 [23] Architectural Knowledge CIbSE 2013 Not ranked
0 [25] Empirical research ECSA 2013 CORE A

Table 1.10: Summary of chapters of this dissertation

Part Chapter Type RQ Source of contributions

1 Introduction
I 2 State of the art [9]
I 3 Contribution RQ1 [24]
II 4 State of the art [11, 25]
II 5 Contribution RQ2 [20, 21, 11, 12, 25]
III 6 State of the art [10]
III 7 Contribution RQ3 [22, 23, 15, 14]

8 Conclusions

18

Part I

NFRs in Model-Driven
Development

Chapter 2

State of the art

This state of the art is based on the state of the art presented in the
master thesis [9], and has been updated with relevant works published
after the master thesis.

One side of the research done in MDD is driven by the industry, this part of
the research is oriented to frameworks (e.g., Eclipse1), and standardization
(e.g., Unified Modeling Language, UML). On the other side, the academic
research is oriented to new and experimental development approaches, and
solutions to very particular problems. This state of the art is centered in
the academic side of contributions that bring NFRs support to MDD. Two
topics are included:

• Modeling languages that support NFRs in MDD. There are two strate-
gies to model NFRs in MDD, one is to extend an existing language
with NFRs support (e.g., use a UML profile), and the other one is to
give MDD support to a language thought to represent NFRs (e.g., the
i* framework [214]).

• Processes that support NFRs in MDD. One of the most well-known
approach in industry is MDA [157], but there are many other MDD
processes, normally to solve or alleviate a concrete problem.

1www.eclipse.org

21

CHAPTER 2. STATE OF THE ART

This state of the art is based on searches in research databases (e.g., Web
of Knowledge2). Some techniques mentioned in the guidelines proposed by
Kitchenham [131] were used to improve the quality of this study. Also some
papers were included as suggested by experts of the area (e.g., conversa-
tions with other researchers while attending conferences and workshops and
research stays in other universities).

2.1 Modeling languages supporting NFRs in MDD

As said before, for the representation of NFRs in models, in the MDD con-
text, there are two perspectives. The extension of the current modeling
languages used in MDD to represent NFRs or adapt the MDD process by
adding support to the requirements engineering specific modeling languages.

2.1.1 Extending modeling languages to represent NFRs

In this perspective NFRs are supported by extending the current modeling
languages used in MDD. The most used modeling language in MDD is UML,
which has UML profiles as the standard extension mechanism (in a recent
study, not published yet, we found that the 43.3% of papers with a NFR-
aware MDD approach to develop Service-Oriented Architectures use UML
Profiles). Other MDD approaches use Domain Specific Languages (DSLs),
these modeling languages are lightweight and focused into one particular
domain by providing specific abstractions and notations (e.g., a networking
DSL may have a WiFi abstraction with the typical WiFi logo as notation).
In this study we focus on DSLs that have been extended to support NFRs.

The following are some important NFRs-aware UML profiles:

• The profile named Modeling and Analysis of Real-time and Embedded
systems (MARTE) [169]. This profile, adopted by the OMG organiza-
tion, supports the representation of NFRs with measurement sources,
precision, and time expressions.

• UML profile for Quality of Service and Fault Tolerance (QoS-FT) [170].
This profile, adopted by the OMG organization, uses two types of an-

2www.webofknowledge.com

22

2.1. MODELING LANGUAGES SUPPORTING NFRS IN MDD

notations: instantiation of template classes from the QoS Catalogs and
annotations in UML models with QoS Constraints and QoS Values.

• S. Bernardi et al. [40] present an extension to MARTE to give support
for dependability analysis. Another profile that explores dependability
is DMP [64].

• H. Wada et al. [211] uses a UML profile, named UP-SNFR, to support
the specification of NFRs inside UML models for SOA systems. It is
based on the idea of features.

• L. Zhu and I. Gorton [217] used UML profiles to specify architectural
decision and NFRs, the good thing is that they can be used together.
L. Zhu and Y. Lin [218] continued this work about modeling non-
functional aspects and their impact on design decisions.

• J. Jürjens [124, 125] proposed a UML profile for Security (UMLsec).

The following are DSLs extended with NFR support:

• L. Gönczy et al. [99] presented an approach for performance analysis
in the context of SOA systems. The approach uses its own metamodel
to represent NFRs.

• S. Kugele el al. [146] uses its own metamodel in the context of safety-
critical real-time systems for embedded systems. In this case the
treated NFR is resource usage (e.g., memory, processing time, etc.).

• F. Molina and A. Toval [158] presented an approach to integrate usabil-
ity in MDD in the context of Web information systems. In this case the
metamodel contemplates functional and non-functional requirements.

2.1.2 MDD with support for RE modeling languages

In the second perspective, the MDD process is adapted to support require-
ment engineering models. NFRs are a matter of study of RE, and in conse-
quence they are normally considered in the modeling languages of this field.
Researchers of RE have proposed different notations that handle NFRs, the
most widespread being: the NFR framework [63], the i* framework [214],

23

CHAPTER 2. STATE OF THE ART

KAOS [210], and Problem Frames [119]. Examples for these notations may
be found in [200].

All the papers found that integrate RE modeling languages in MDD
belong to Goal-Oriented Requirements Engineering (GORE). GORE is an
approach that advocates for the identification and analysis of goals as a
prerequisite for writing complete and consistent requirements documents.
J. Cabot and E. Yu [52] have exposed their ideas about the directions to
take, and the open problems to support NFRs with goal modeling in MDD.
These are some works that use GORE in the context of MDD:

• J. Mazón et al. [152] use i* models to model goals and requirements,
and then derive a conceptual multidimensional model to support the
decision making process of designing a data warehouse. There is no
special mention of NFRs, but soft goals are supported in the i* meta-
model used.

• S. Konrad et al. [136] use goal models as defined in thel NFR Frame-
work [63]. NFRs are modeled with information that indicates if the
NFR helps or hurts a particular alternative pattern.

• A. Fatwanto and C. Boughton [88] start from a NFR Framework [63]
model and then use UML diagrams with annotations. The paper ex-
emplifies the use of the approach with a security related scenario.

• F. Alencar et al. [3] integrates GORE and MDD to fill the gap be-
tween requirements specification and the implementation of the soft-
ware product. The approach is focused on functional requirements,
but uses i* models for requirements. The work presented is framed
into the OO-Method [176].

• J. Castro et al. [57, 148] use i* models to model requirements, then pro-
duce an architectural model. In these works there are specific mentions
to the support of NFRs and is based on the product lines principles.
The produced architectural model are described using ACME [94].
More recently this approach has been adapted to produce documented
architectural decisions [81].

Curiously, no relevant paper using Service-Level Agreements (SLAs) to
drive the development of Service-Oriented Architectures (SOA) was found

24

2.2. PROCESSES THAT SUPPORT NFRS IN MDD

Table 2.1: Comparison of modeling languages that support NFRs in MDD

Ref. Types of NFRs Domain Notation type

[169] Measurable constraints Real-time systems UML profile
[170] Quality of Service Any UML profile
[40, 64] Dependability Real-time systems UML profile
[211] Security, Fault Tolerance Service Oriented Architecture UML profile
[217, 218] Any Any UML profile
[124, 125] Security Any UML profile
[99] Performance Service Oriented Architecture DSL
[146] Resource usage Embedded systems DSL
[158] Usability Web Information Systems DSL
[152] Any Data Warehouses GORE
[136] Any Any GORE
[88] Operationalizable NFRs Any GORE
[3] Functional Req. Information Systems GORE
[57, 148] Any Any GORE

in the literature. This is curious because, SLAs are the natural way to
express the desired Quality of Service (QoS), which may be understood as
non-functional requirements.

2.1.3 Analysis

The Table 2.1 summarizes the works about notation of NFRs in models.
We can see in this table that UML profiles and DSL are mostly designed
for specific purposes (concrete type of requirements or a particular domain)
while GORE approaches try to embrace requirements in a more generic way.

In the present thesis NFRs are related to design decisions, as explained
in Section 7.1, this link is also suggested by L. Zhu and Y. Lin [218].

2.2 Processes that support NFRs in MDD

In the introduction we have argued that NFRs have an important effect
in the final form that the software system takes. If we consider MDD,
we may say that an optimal MDD process should be able use the elicited
NFRs to select and apply the most adequate transformations, in order to

25

CHAPTER 2. STATE OF THE ART

generate a software system that satisfies the desired NFRs. In this section
we investigate to what extent this need is currently fulfilled.

NFRs may play two different non-exclusive roles inside MDD. The first is
to use NFRs for driving the transformations and the second is to use NFRs
to validate the results.

2.2.1 NFR-driven transformations

In these works NFRs act as the selector of the behavior of the transformation.
Some of these works are called as Quality-driven transformations, in the
introduction we have seen that quality is composed by functional and non-
functional factors. This is especially true when we look at quality-driven
transformations which in some cases are referring more to the functional
part of the quality. The works found related to this topic are:

• A. Solberg et al. [197] presented an approach that use the most ade-
quate transformations depending on the QoS requirements. The ap-
proach presented in the paper is based on gradually resolving QoS
requirements when a model transformation is performed. These trans-
formations use patterns that improve some aspect of QoS.

• A. Sterritt and V. Cahill [199] presented an approach to make M2M
transformations that take NFRs as parameters. The target model in
this case is an architectural model. Concretely, in this paper they deal
with distribution issues of architectural styles.

• J. I. Panach et al. [175] presented an approach to tackle with usabil-
ity. Only the functional usability features are part process to drive
the transformations. The work presented is framed into the OO-
Method [176].

2.2.2 NFRs as validating mechanism

The approaches that use NFRs to act as validating mechanism use the MDD
techniques to generate models with specific formalism where NFRs can be
analyzed. These are the most representative works in this direction:

• S. Röttger [188] proposed, in the context of Component-Based Soft-
ware Engineering, a method/tool that generates measurable models

26

2.2. PROCESSES THAT SUPPORT NFRS IN MDD

for Quality of Service (QoS). For example, the model is extended with
notations such as “response time value < 500” in a class stereotyped
as “NFR”.

• G. Rodrigues et al. [186] proposed a method to validate the reliability
by using prediction models. They defined a profile for reliability anal-
ysis based on scenario specifications by extending UML. This notation
is transformed into labeled transition system (LTS) for the prediction
analysis.

• V. Cortellessa [72] presented a framework that uses NFRs to validate
the resulting models. This approach proposes a separation of NFRs
into the same levels of abstraction as MDA to perform the validation
in each level of the development process. As depicted in the paper,
there will be a model for each type of NFR, a part from the typical
model to represent the functionality.

• A. Fernandez et al. [89] proposed an approach to include a usability
model as part of the MDD process for Web development. This model
is evaluated using some metrics to produce system usability reports,
the usability model is based in the ISO/IEC 25000 [116]. A similar
method/tool has been done by F. Molina and A. Toval [158], in this
case, they propose a metamodel to represent NFRs related to usability
in the web information systems domain and use the quality model and
metrics proposed in [53].

• D. Ardagna et al. [27] extended V. Cortellessa’s work [71] considering
run-time validation of performance and reliability types of NFRs. D.
Ardagna et al. proposes to use models not only in development, but
also in run-time. This idea brings the possibility measure the NFRs
and adapt the software system as required. This is especially relevant
in service oriented approaches.

• S. Gallotti et al. [93] proposed an approach/tool that checks the QoS in
SOA using probabilistic model checking. The model analyzed is gener-
ated during the MDD process. In this approach they use MARTE [169]
as NFR notation.

27

CHAPTER 2. STATE OF THE ART

Table 2.2: Comparison of approaches that consider NFRs in MDD

Ref. Types of NFRs Domain Instrument Category

[197] Quality of Service Any Patterns NFR-driven transformations
[199] Any Any Patterns NFR-driven transformations
[175] Usability Any OO-Method NFR-driven transformations
[188] Quality of Service Any Measurable

models
Analysis and validation

[186] Reliability Any LTSAa Analysis and validation
[72] Any Any Independent Analysis and validation
[71] Performance and

reliability
Any PRIMAband

COBRAc
Analysis and validation

[158, 89] Usability Web IS Quality
metrics

Analysis and validation

[27] Performance and
reliability

Any Markov
chains

Analysis and validation

[93] Performance and
reliability

SOA Probabilistic
models

Analysis and validation

a Labeled Transition Systems Analyzer.
b PeRformance IncreMental vAlidation.
c COmponent-Based Reliability Assessment.

2.2.3 Analysis

The Table 2.2 summarizes the MDD approaches that consider NFRs. We
can see in this table that the group of works based in NFR-aware trans-
formations, and in particular the approach proposed by A. Sterritt and V.
Cahill [199], are in the same direction as this thesis. More details are ex-
plained in Chapter 3. The quality-driven works found are more oriented to
fulfill functional aspects of the quality than non-functional ones, and the
group of analysis and validation is where there are more works. This last
group of works complement the work presented in this thesis, it could be
possible to integrate both approaches together (NFR-aware transformations
and analysis and validation) with an improvement in the results.

28

Chapter 3

Introducing NFRs in MDD

This chapter is based on the main contributions of [24].

The impact of NFRs over software systems design has been widely docu-
mented (see Chapter 1). Consequently, cost-effective software production
methods shall provide means to integrate this type of requirements into the
development process. The state of practice (explained in Section 3.1) shows
that current MDD approaches do not tackle NFRs satisfactorily and that
limits their success and applicability, and hampers their adoption by the
industry.

In this chapter we analyze this assumption over a particular type of
software production paradigm, MDD, and we outline a general framework
that smoothly integrates NFRs into the core of the MDD process and provide
a detailed comparison among all the MDD approaches considered. In this
integration, software architecture emerges with a predominant position. To
motivate our findings we use an academic exemplar about the development
of a web portal for a travel agency. Finally, we identify some research issues
related to this framework.

3.1 State of the practice

There are a great variety of MDD-based approaches, many of them following
the two-level (PIM and PSM) transformation introduced in the OMG’s MDA

29

CHAPTER 3. INTRODUCING NFRS IN MDD

approach [157]. Among the most popular ones, we find the Executable UML
proposals, with [154] as the most popular representative. Executable UML
uses a reduced subset of UML that it is directly executable, either using UML
interpreters or by providing a direct translation from the models to the final
code. Some action is required in this critical situation in order to make the
MDD approach more effective, even more considering that this Executable
UML method [154] is the basis for the new OMG standard “Semantics of
a Foundational Subset for Executable UML Models” [171] that pretends to
increase the use of UML in a MDD context.

The adoption of MDD techniques is being slow [204], even that some
industrial studies suggest that they increase the productivity [139, 198].
NFRs were not mentioned in the comparison of case studies provided by
Krogmann et al. [139], but Staron [198] mentioned several times that the
quality assurance, and validation of quality in models, are conditions for the
adoption of MDD in industry.

To understand how developers deal with NFRs when using MDD ap-
proaches we consulted experts in MDD to explain their experiences and ob-
servations. NFRs exist independently of being explicit in the process, and at
some point the developer should deal with them. If we consider the general
form of MDD (see Figure 1.2), we may envisage two different, non-exclusive
approaches to make a generated product compliant with NFRs even if they
are not represented as part of the MDD process (as we have seen in the aca-
demic approaches presented in Section 2.2): NFRs supported with manual
adaptation and NFRs supported with new transformations. But if we look
at the real limitations of the tools we can get even a worse scenario, which
is described later in this section.

3.1.1 NFRs supported with manual adaptation

The software developer directly modifies by hand the result of the MDD pro-
cess (see Figure 3.1-a). In its simplest form, the developer directly modifies
the code obtained after the final M2T transformation. In the best case, the
developer will able to work at the PSM level, modifying the model to adapt
it to the NFRs, and then use the M2T transformation (possibly modified
somehow) to generate the code. For example, in an empirical study that
interviewed several companies that use MDE [114] there was a very clear
quote from one of its respondents of this kind of adaptation: “So after gen-

30

3.1. STATE OF THE PRACTICE

erating the code, if you want to do this then you have to delete this line and
that line and also you have to change this parameter like this.”

This manual adaptation of the system collides with the essence of the
MDD paradigm and has several drawbacks:

• Takes longer to produce the software.

• Provokes lower reliability of the final product due to the human-based
post-process.

• Damages traceability and thus comprehension.

• In case of changes due to maintenance, either the post-process has to
be replicated or the maintenance is directly made on the final product.

3.1.2 NFRs supported with new transformations

The MDD engineer modifies the M2M transformation in order to obtain
a PSM that satisfies the NFRs (see Figure 3.1-b). For example, we could
have several transformations for producing PSM compliant with different
strategies that satisfies different sets of NFRs. The drawbacks above are
therefore solved, but others appear in their place:

• The complexity of the MDD framework is greater, because there are
more transformations to maintain.

• It is difficult to anticipate all the possible scenarios, in fact it may be
even impossible (e.g., replication strategies may be applied in many
different ways, and each would require a different transformation).

• The selection of the most appropriate transformation (for the given
set of NFRs) to apply relies on the software architect, becoming a
human-based pre-process, incrementing thus the likelihood of errors in
decision-making.

• When the software architect realizes that the available transformations
are not adequate for the current process it is necessary to build a new
ad-hoc one, making the initial configuration time longer.

31

CHAPTER 3. INTRODUCING NFRS IN MDD

PIM

PSM

Code

M2M

M2T Modifies

Developer

NFR

PIM

PSM

Code

M2M

M2T

Modifies

MDD Engineer

NFR
(A) (B)

Figure 3.1: Dealing with NFRs in a classical MDD approach

3.1.3 How are NFRs supported in MDD practice?

The two approaches presented above represent two extreme cases. Hybrid
solutions may also exist, where some NFRs are addressed by the M2M trans-
formation and others remain under the final responsibility of the developer.
To sum up, we may state that MDD approaches that are not able to deal
with NFRs in the software production process suffer from severe drawbacks
that must be manually fixed by either the developer or the MDD engineer
and that, therefore, may compromise their adoption.

The situation is even worse when considering not the theory but the
real state of practice of MDD, hampered by the limitations of MDD tools
available in the market. For instance, their code-generation capabilities are
limited to particular technologies/languages (which implies that only some
parts of the system can be transformed and generated by the tool), and it
is not always easy to change the predefined M2M and M2T transformations
offered by the tool. Therefore, a scenario more realistic than those depicted
in Figure 3.1 is described below (see Figure 3.2):

1. The MDD engineer specifies a PIM that contains only information
about system functional aspects.

2. The software architect defines the transformations that are applied to
different parts of the PIM, generating each a part of the target PSM.
Each generated PSM part is compliant with a particular technology.

32

3.1. STATE OF THE PRACTICE

Glue Code +

 NFR adaptation

PIM

PSM

Code

M2M

M2T

Combine PSM

MDD Engineer

NFR

Figure 3.2: Dealing with NFRs using current MDD technologies

3. M2T transformations are applied to the PSM for obtaining the final
code.

4. The developer complements the generated code and combines the gen-
erated code excerpts into a coherent architecture.

This process is adding some new drawbacks:

• There is not a single transformation generating a complete PSM, but
a set of partial transformations generating separated pieces that may
yield an incomplete PSM. Even, some tools skip the generation of the
PSM and jump directly to the code.

• The different pieces generated by the transformations need to be man-
ually linked, writing additional glue code.

• With respect to NFRs, each transformation results on PSM parts that
may not satisfy the stated NFRs (in fact, depending on the available
transformations each excerpt can enforce different and maybe contra-
dictory NFRs).

It is worth to mention that, even having such difficulties, it has been
corroborated in a survey that “there are more respondents for whom code

33

CHAPTER 3. INTRODUCING NFRS IN MDD

generation has a positive impact on their productivity than there are those
for whom the integration of generated code is a problem” [115].

3.2 Motivation

In this section we present an academic exemplar that we will use in the rest
of the paper for illustration purposes.

The ACME travel agency offers transportation and accommodation ser-
vices. The management has decided to deploy a web portal in order to offer
some online functionalities to its customers, e.g., user management, payment
facilities and searches (hotels, flights, etc.).

Together with these functionalities, many NFRs appear during the re-
quirements elicitation process. For example, since the portal is providing
e-commerce transactions, security requirements like R1 = “The system shall
detect and report unauthorized data accesses” are a must. The effect of this
NFR can be manifold, for instance in a Web-based environment, firewalls
are an architectural solution that supports this goal.

Other NFRs depend on the specific characteristics of the travel agency
and the planned portal usage. Let’s consider two scenarios:

Scenario 1. ACME is a specialized travel agency that offers luxury vaca-
tion packages to exotic destinations in 5-star hotels. It has a reduced
portfolio of clients that plan their vacations using the system.

Scenario 2. ACME is a world-wide leader travel agency. The company
offers hundreds of packages that are assembled by combining data im-
ported from other transportation and accommodation sites.

These scenarios impose some NFRs that capture their most essential
characteristics. Thus, in Scenario 1, the number of expected visits is not too
high and therefore scalability is not an issue. On the contrary, scalability and
availability are key concerns to ensure the success of the portal in Scenario 2.
Clearly, a good production process should be sensible to these differences and
should result in different systems for each scenario. To make this statement
more evident, let’s consider one particular system dimension, the deployment
architectural view as defined by Kruchten [141].

34

3.2. MOTIVATION

Table 3.1: Effects of components on some architectural properties

SSC DBMS separated DBMS and AS separated Replication

Performance Poor Average Good Improve
Scalability Poor Poor Poor Improve
Availability Poor Poor Poor Improve
Maintenance Good Average Average Damage
Security Poor Good Good Neutral
Complexity Good Average Poor Damage

The deployment architectural view refers to the physical distribution
of the software system components. Since the system we are considering as
exemplar is a Web application, we may identify the following types of compo-
nents [58]: the Web Server (WS), the Application Server (AS) and the Data
Base Management System (DBMS). All these components can be deployed
on the same node (Single Server Configuration, SSC), or using one of the
several possible separations of components (e.g., separation of the DBMS).
Also in the design of the deployment architecture it is possible to consider
any type of component replication. Each deployment strategy affects some
software quality attributes [67]. For instance, component replication (e.g.,
WS and AS) supports scalability, because more simultaneous connections
may be established; replication also may improve efficiency especially if a
load balancing component coordinates the incoming traffic. Table 3.1 sum-
marizes these strategies on some types of NFRs, according to [58].

At this point, the software architect has the duty of choosing the most
adequate deployment strategy for the given set of NFRs, by comparing them
with the effect of each strategy on the quality attributes. For the two sce-
narios described above, examples of convenient options are:

Scenario 1. The DBMS is kept separated from the WS and AS since scal-
ability and availability are not major concerns, whilst security is in-
creased by placing a firewall between the DBMS and the other two
components (see Figure 3.3-a). Replication is not implemented since
its benefits are again concerning criteria that are not important for the
given NFRs, whilst others would be damaged.

35

CHAPTER 3. INTRODUCING NFRS IN MDD

Internet

Client

(B) DBMS separated with replication and world-wide distribution

WS+AS

(Italy)

WS+AS

(Japan)

WS+AS

(Spain)

WS+AS

(USA)

Load

balancer Global DBMS

Local

DBMS

Local

DBMS

Local

DBMS

Local

DBMS

Internet

FW
Client

WS+AS DBMS

(A) DBMS separated

Figure 3.3: Two different deployment architectures for the Web portal case

Scenario 2. Since the agency provides a world-wide service, the WS and
AS are replicated to improve availability and performance in those
sites for which a greater number of clients may be expected. A load
balancing system coordinates the different WS to improve performance
even more. DBMS containing data local to the sites are put together
with the WS and AS, and firewalls are also deployed for protecting
each local DBMS. As a final decision, a centralized DBMS contains
some replicated data that may be of interest for performing some data
mining operations. Figure 3.3-b, provides the whole picture.

Other deployment options are possible. It is not a goal of this section
to discuss them, but just to emphasize the fact that the final form of the

36

3.3. INTRODUCING NFRS IN MDD

software architecture depends on the set of elicited NFRs and to give some
initial idea of the type of knowledge to manage and decisions to be made.

Using the actual MDD methods, for example, Executable UML [154], the
travel agency model consists of use case diagrams, class diagrams, sequence
diagrams and activity diagrams that express the roles, functionalities, data
and behavior of the system. None of these artifacts is able to express any
kind of NFR. Thus, the transformation from PIM to PSM is fixed and it is
not possible to choose the most appropriate strategy for a given set of NFRs:
the PSM will be close to, or far from, the elicited NFRs depending on the
system quality factors implicitly encoded in the predefined transformations.

3.3 Introducing NFRs in MDD

In the Section 3.1 we have shown that MDD approaches that do not consider
NFRs as part of the generation process suffer from serious drawbacks, and
that, unfortunately, this is the predominant type of approach nowadays. In
this section we discuss a general solution to this problem.

As we have seen in Chapter 1, many authors have reported the intimate
relationship among requirements and architectures and also the great impact
that NFR have on architectures [164, 63, 103]. For example, in Section 3.2,
we have shown how new components (e.g., firewalls and load balancers) and
physical component allocation (e.g., replication) can be justified in terms
of the NFRs that must be satisfied. Therefore, we envisage an approach
to MDD in which the PIM is transformed into a complete software archi-
tecture. Transformations have the mission of allocating the responsibilities
coming from the PIM functional part to components that are deployed into
an architecture that satisfies the NFRs.

But NFRs are also important when determining the choice of technolo-
gies needed to implement the architecture. For instance, it may be necessary
not just to know that a relational data base is needed, but also that a partic-
ular brand, or even version and release, is the right choice. Interoperability
requirements (e.g., “The portal shall be compatible with our current data
base in the central management system”) or non-technical requirements [56]
(e.g., “The data base vendor shall provide 24×7 call center assistance”) are
clear examples of NFRs with this effect.

Table 3.2 describes the main elements that constitute the envisioned

37

CHAPTER 3. INTRODUCING NFRS IN MDD

framework proposal. Remarkably, and following the discussion above, we
introduce two kinds of models between the PIM and the code: the model
representing the architecture, and the model representing the technological
solution. Whilst the latter is clearly a PSM, the former lays in between the
two levels of abstraction and therefore we denote it by PIM/PSM. For each
kind of model, we include between parentheses the requirements that are
satisfied by the elements in that model. Finally, as a consequence of having
two different intermediate models among the PIM and the code, we have
two corresponding M2M transformations, M2March and M2Mtech.

3.3.1 NFR-aware MDD: NFRs in the PIM

We argue that the most natural way to integrate NFRs into the MDD process
is by considering NFRs from the very beginning of the development process,
i.e., as part of the PIM. As functional requirements, NFRs become first-order
citizens of the MDD process.

The MDD process then works as follows (see Figure 3.5):

• The analyst specifies a PIM that contains both the functional and
non-functional requirements, PIM(f+nf).

• The MDD decisional engine decides, given the PIM(f+nf) and the
contents of the MDD knowledge base (i.e., information about non-
functionality, architectures and technologies), the final form of the
transformation M2March:

M2March: PIM(f+nf) → PIM/PSM(f+nf0)

This transformation takes PIM(f+nf) as input and produces as out-
put PIM/PSM(f+nf0), a model describing an architecture that imple-
ments all the functionality f in a way that satisfies the elicited subset
of NFRs nf0 whose satisfaction depends on the decisions made at the
architectural level.

• Once the PIM/PSM(f+nf0) has been generated, the MDD decisional
engine applies a second M2M transformation that generates the PSM
for the desired final implementation technology. This PSM follows the
architectural guidelines expressed above (and thus, satisfies nf0) but

38

3.3. INTRODUCING NFRS IN MDD

Table 3.2: Concepts needed when integrating NFRs into MDD

Concept Definition Example

f, nf The elicited functionality and
non-functionality of the
system (not represented as
model)

An IEEE 830-compliant Software
Requirements Document

PIM(f) PIM that specifies some
functionality f of the system

A UML class diagram specifying the
system data

PIM(f+nf) PIM that specifies all the
requirements of the system

An i* model of the system complemented
with UML data and behavioral diagrams

PIM/PSM(f+nf) Model mixing PIM and PSM
levels that specifies some
functionality f satisfying the
NFRs nf

A 3-layer architecture expressed with the
ACME Architectural Description
Language (ADL)

PSM(f+nf) PSM that specifies some
functionality f satisfying the
NFRs nf

A model with a class diagram annotated
with database stereotypes (e.g.,
«PrimaryKey», «Table») that only have
meaning for the Oracle DBMS

Code(f+nf) Executable system that
implements the functionality
f satisfying the NFRs nf

Implementation of the 3-layer
architecture above using Java
components, XML interchange data
formats, Oracle DB schema, etc.

M2M M2M transformation from a
PIM to a PSM

Transformation of a UML specification
into a technological solution including an
Oracle data base and a Pound load
balancer, among others

M2March M2M transformation from a
PIM to a PIM/PSM that
represents the architecture of
the system

A mapping from an Executable UML
model of functionality into a 3-layer
architecture expressed with the ACME
ADL

M2Mtech M2M transformation from a
PIM/PSM into a PSM that
represents the technological
solution of the system

Transformation of the ACME
architectural model into a representation
of technology that, for instance,
annotates a class diagram with
Oracle-compliant database stereotypes

M2T M2T transformation from a
PSM to the executable
system

Transformation of a stereotyped UML
diagram to EJB Java classes

also takes into account all the remaining nf (directly related to tech-
nologies), forcing the adoption of a particular technology or product:

M2Mtech: PIM/PSM(f+nf0) → PSM(f+nf)

39

CHAPTER 3. INTRODUCING NFRS IN MDD

• Last, a simple M2T transformation can be applied to obtain the code
from the technology:

M2T: PSM(f+nf) → Code(f+nf)

In the framework, the transformations are presented as single functions.
In fact, this is a simplified view since a transformation will be in fact a
composition of the application of many transformation rules. Thus, we may
say (being M2M either M2March or M2Mtech) that:

M2M(m): rkm2m(...(r1m2m(m)...)

From a conceptual point of view, the vision of the transformation as
a single function is a convenient simplification that does not hamper the
generality of the approach.

Example: deciding the need of firewall components

In this example we illustrate the kind of information to record, and steps to
apply, in order to derive part of the architectural model for the Web portal
example presented in Section 3.2. We remark that the notations used to
represent the models, and even the concrete steps taken and their order are
just an example of how they may look like, we refer to Section 3.4 for further
discussion.

We distinguish three parts: the knowledge base used by the MDD deci-
sional engine; the creation of the starting PIM; and the application of our
MDD process itself. For the latest, we will restrict to the creation of the
PIM/PSM.

1. Representing the MDD knowledge.

We focus on the concepts directly related to NFRs. First, it is nec-
essary to represent the types of NFRs managed and the consequences
that architectural decisions may have on them. We can represent this
using a tabular structure (like Table 3.1, page 35) or by means of a
notation like the NFR framework [63], used with similar purposes in
several works (e.g., [101, 37]). The model depicted in Figure 3.4 top-
left, shows an excerpt of the information needed, with several softgoals
to represent the NFRs and two particular operationalizations for them
(each with a different positive/negative effect on them).

40

3.3. INTRODUCING NFRS IN MDD

Next, it is necessary to represent the implications of each operational-
ization on the architecture. This is described for the firewall case in the
bottom-left part of Figure 3.4. The firewall solution requires three par-
ticipants: the firewall component itself, and two subsystems that are
connected, the internal (i.e., protected) and the external ones. These
elements are in fact instances of architectural metaelements, e.g., sub-
system, defined according to some architectural description like those
in [141, 76].

2. Creating the PIM(f+nf).

The process starts with the PIM definition. For the functional part
we can still follow any existing proposal, e.g., Executable UML. For
the NFRs, we may decide to use a natural language representation
based on requirement patterns as in [182]. which allows to establish
easily the link between such NFRs and the predefined NFRs types
in the MDD knowledge base (KB). For instance, Figure 3.4 top-right
represents the R1 NFR (see Section 3.2) and the link with the Security
NFR type maintained in the KB.

3. Creating the PIM/PSM.

The MDD decisional engine chooses, using some appropriate analysis
technique (e.g., [63, 112]), the Firewall operationalization to support
R1.

As a consequence of the system being a Web application (which is a
decision coming from the intrinsic nature of a Web portal), a trans-
formational step decomposes the system into three main subsystems:
WS, AS and DBMS. The MDD Knowledge Base knows that the com-
munication between these subsystems is: WS ↔ AS ↔ DBMS.

The assignment of elements from the functional part of PIM(f+nf)
into WS, AS and DBMS, takes place. In particular, the data model
elements are assigned into DBMS.

Since R1 is referring to data protection, and since DBMS is bound to
data, the MDD decisional engine decides that the protected subsys-
tem for the firewall is the DBMS. Since the communication for Web
application is from AS to DBMS, it is also possible to deduce that the
source of the Firewall is the AS.

41

CHAPTER 3. INTRODUCING NFRS IN MDD

src protect

+
+–

+
–

EfficiencyScalabilitySecurity
Admin.

effort

FW

Src.

subsystem

Protected

subsystem

Soft. subsystem
Soft.

Component

instance of

instance ofinstance of

FirewallFirewall Firewall
Load

Balancer

LB

R
e
q
u
ir
e
m
e
n
ts

A
rc
h
it
e
c
tu
re

belongs to R1: The system shall detect and
report unauthorised data

accesses

<<software system>>

<<subsystem>><<subsystem>>

src protect

WS AS
<<component>>

FW

BDMS

Knowledge Model

Figure 3.4: Knowledge and models used in the example

In Scenario 1 (see Section 3.2), since there is no replication, there are
just one AS and one DBMS, and thus just one Firewall is induced (see
Figure 3.4 bottom-right). In Scenario 2, due to replication, there are as
many Firewalls as pairs AS-DBMS. The fact that the WS and the AS
are deployed together completes the information needed to determine
the final form of the architecture.

3.3.2 NFR-aware MDD: NFRs for decision-making

Although the framework presented above is theoretically neat, it is clear
that it has a lot of complexity to manage. Remarkable, it requires:

• To determine the most adequate formalism for representing the non-
functional part of PIM(f+nf). We have used in the example the NFR
framework, that is basically a qualitative-oriented one, but also more
quantitative approaches may be considered, e.g., in QoS-style [187].

• To embody in the MDD decisional engine all the knowledge needed to
make informed architectural decisions, i.e., to determine the concrete
form that the M2M functions take. In other words, the M2M are

42

3.3. INTRODUCING NFRS IN MDD

required to provide a correct output in all possible situations. This
is a very strong condition mainly because of: first, the amount of
knowledge to represent is huge and not always clear; ans second, the
conflicting nature of NFRs, i.e., architectural decisions permanently
require trade-off analysis.

These problems lead to propose a second alternative. Instead of consid-
ering NFRs as part of the PIM and then be an input of the MDD process,
we may consider that the MDD process asks the software architect the NFR-
related information as it is needed. The resulting process becomes:

• The analyst specifies a PIM that contains just the functional require-
ments, PIM(f).

• The transformation function M2March takes PIM(f) as input and pro-
duces PIM/PSM including f and nf0 (nf0 stands again for those NFRs
that concern the architecture). To produce this output, the MDD pro-
cess presents a series of questions Q = {q1, ..., qn} to the software ar-
chitect whose answer is needed in order to decide the transformation
steps to apply. The software architect provides answers A = {a1, ...,
an} according to the NFRs nf0. If we denote by σarch the function
that records the mapping from questions to answers, σarch(qi)=ai,
the transformation function is defined as:

M2March: PIM(f) × σarch → PIM/PSM(f+nf0)

• The subsequent M2M transformation for the technology acts the same,
requiring a similar σtech function to obtain from the MDD engineer
the information needed to make informed decisions:

M2Mtech: PIM/PSM(f+nf0) × σtech → PSM(f+nf)

• The M2T transformation is not affected:

M2T: PSM(f+nf) → Code(f+nf)

Questions that the MDD decisional engine may raise to the architect may
be manifold. For instance, there may be high-level questions like the type
of organization with respect to departments (e.g., to decide which nodes are

43

CHAPTER 3. INTRODUCING NFRS IN MDD

PIM(f)

PSM(f)

Code(f)

M2M

M2T

Code(f+nf)

Modifies

Modifies
NFR

PIM(f)

PSM(f+nf)

M2M

M2T

Code(f+nf)

Selects
/ Adapt

NFR
PIM(f)

PSM(f0+nf0)

Code(f+nf)

Code(f1+nf1)

Modifies

M2M

M2T

M2T Glues

NFR

PIM(f+nf)

PSM(f+nf)

Code(f+nf)

PIM/PSM(f+nf0)

M2March

M2Mtech

M2T

PIM(f)

PSM(f+nf)

Code(f+nf)

PIM/PSM(f+nf0)

M2T

M2March

M2Mtech

Q/A

Q/A

NFR

(a) (b) (c) (d) (e)

Manual
modification
of the code

Manual
configuration of

the transformation

Multiple and
heterogeneous
transformations

Integrating
NFRs into
the PIM

Elicitating
NFR-related
information

Figure 3.5: Comparison among the different MDD strategies analyzed

part of the physical architecture) and lower-level ones like the probability of
execution of a given operation or use case.

The two NFR-aware approaches presented in this section represent two
extreme visions but of course we can think of hybrid solutions, in which the
MDD decisional engine supports decision-making for some types of NFRs,
architectural elements and technologies, whilst the software architect and
developer may provide the information missing under demand.

This second alternative is specially interesting while clearly accepted
technical solutions for the mentioned points in the first alternative are not
provided.

3.3.3 Comparison

In this section we compare the two NFR-aware approaches presented in this
section with the three approaches presented in Section 3.1. Figure 3.5 aligns
the five approaches studied in this chapter; a, b, and c represent the state of
practice, and d and e the approaches proposed in this work (whose details
were explained in sections: 3.1.1, 3.1.2, 3.1.3, 3.3.1, and 3.3.2 respectively).

In Figure 3.5, it holds that nf0 ⊆ nf1 ⊆ nf. When comparing, please
pay attention to: the number and nature of models and transformations;

44

3.3. INTRODUCING NFRS IN MDD

the extent of requirements in the models (enclosed in parenthesis); and the
type of interaction with the human assistant.

Table 3.3 includes a detailed comparison respect to criteria that includes
aspects of the project setup, the production process, and the product man-
agement. As summary, the main benefits of the NFR-aware approaches
presented here are:

• NFR-aware approaches fully integrate NFRs into the MDD process.
Especially in the first NFR-aware framework presented (Figure 3.5-d),
NFRs are considered at the same level than the functional specifica-
tion, being both part of the departing PIM. Knowledge may be in-
crementally stored in the MDD knowledge base (gradually improving
accuracy of results) and may be reused in each new project.

• As a consequence, there is no need for the developer neither to write
glue code (since the different components of the PSMmodel are already
interrelated) nor to adapt the code to satisfy the NFRs (since the NFRs
have been already taken into account when creating the PSM model).

• Instead of obtaining several incomplete PSM, using a single transfor-
mation that targets a specific architecture a single, a comprehensive
and unified representation of the system is derived.

• Two levels of abstraction are recognized, one for representing archi-
tectures, other for representing technologies. This distinction fits with
the levels of abstraction that practitioners use in their daily work.

• The explicit representation of NFRs allows defining model transforma-
tion repositories inside the MDD knowledge base that can be used to
select the proper transformations to apply. Also, when NFRs are con-
sidered at the PIM level, classical analysis techniques from Require-
ments Engineering may be applied in the early stages of the MDD
process.

• Hybrid approaches (between options from Figure 3.5-d and 3.5-e) allow
customizing the NFR-awareness to the preferences of software archi-
tects. An empirical study that we conducted shown that software
architects are reluctant to lose control over the architectural deci-
sions [21, 20] (empirical results are presented in Chapter 5).

45

CHAPTER 3. INTRODUCING NFRS IN MDD

Table 3.3: Comparison among the different MDD strategies analyzed

Project set-up (a) (b) (c) (d) (e)

Modeling time Fair (just

functionality is

modeled)

Fair (just

functionality is

modeled)

High (several

notations used to

build the PIM)

Very high (NFRs

need to be

modeled)

Fair (just

functionality is

modeled)

MDD configuration

time for a particular

project

None

(transformation

applied as is)

Probably high (if a

new transformation

is needed)

None

(transformations

applied as are)

None

(transformations

applied as are)

None

(transformations

applied as are)

Production process (a) (b) (c) (d) (e)

Production time once

configuration finished

High (full post-

process adaptation)

Fair (slight post-pro-

cess adaptation will

probably be

needed)

Very high (post-

process adaptation

and gluing)

None (if

transformations are

complete)

Low (guided

conversation with

human)

Criticality of human

intervention during

production

High (high

responsibility of the

developer at the

end)

Fair (slight post-pro-

cess adaptation will

probably be

needed)

High (high

responsibility of the

developer at the

end)

None (since there

are no human

interactions)

Low (she just needs

to respond to very

concrete questions)

Complexity of the

process

Low (the MDD

infrastructure is

static)

High (several

transformations co-

exist)

Very high (several

heterogeneous

trans-formations

exist)

High (the

transformations

used will be more

complex)

Moderate (human

intervention

simplifies the

process)

Knowledge reuse and

learning ability

Very low (just the

functional-related

knowledge is

reused)

Low (learning ability

comes from the

MDD engineer)

Very low (just the

functional-related

knowledge is

reused)

Very high (NFR-

related knowledge

may be reused and

may grow)

High (some NFR-

related knowledge

may be reused and

may grow)

MDD KB maintenance

cost

Low (since it just

covers functionality)

Fair (updates up to

the MDD engineer)

Fair (updates up to

the MDD engineer)

Very high (all new

knowledge needs

to be modeled)

High (some new

knowledge needs

to be modeled)

Product management (a) (b) (c) (d) (e)

Product Traceability Very low

(generated product

modified)

Fair (depending on

the complexity of

the post-process

adaptation)

Extremely low

(generated product

modified;

information across

models)

Potentially complete

(all decisions can be

traced)

High (answers to

questions may be

recorded)

Maintainability Very low (changes

made are probably

lost if product

generated again)

Fair (depending on

the complexity of

the post-process

adaptation)

Very low (changes

made are probably

lost if product

generated again)

Very high (it is

possible to work

only at PIM level)

High (functionality

at PIM level;

changes on NFRs

require new

questions)

But as Table 3.3 shows, these benefits are not for free. Incorporating
NFRs results in higher modeling effort, both for constructing the PIM and
for building the MDD knowledge base. Also, it requires discipline to keep
this MDD knowledge base up to date. Complexity of the MDD process is
the overall challenge to overcome.

46

3.4. DISCUSSION

3.4 Discussion

Although some NFR-aware development processes have been formulated in
the past, putting a new NFR-aware MDD production process into practice
looks like a great challenge. In this section we outlined the most relevant
issues to investigate with emphasis on requirements-related issues.

Modelling of NFRs at the PIM-level

• Which types of NFRs are most relevant to the MDD process? It
is important to devote efforts to the NFRs that software architects
perceive as the most important. Surveys (e.g., [21, 20]) and interviews
are needed.

• Which notation to use for representing NFRs? As commented, quan-
titative and qualitative approaches are the two (non-exclusive) big
families. This is an old research topic in Requirements Engineering
(already appearing in the 2000’s roadmap [160]) and results obtained
in contexts other than MDD may be transferred here.

• How NFRs may be linked to the functional elements? Some approaches
have been cited [88, 169, 170] at this respect.

Elicitation and representation of architectural knowledge

• Which types of architectural knowledge exist and how are they used
in practice? Again empirical studies are needed to give light to this
question [68].

• Which are the quality attributes corresponding to these styles?

• Which are the matching rules that allow determining the architectural
solution that best fits the required NFRs?

Nature of models

The classification of MDD models into CIM, PIM and PSM as defined in
the MDA approach results in some rigidity in our context. We have already
defined the architectural model as an intermediate PIM/PSM model. The

47

CHAPTER 3. INTRODUCING NFRS IN MDD

situation may even be more confusing if we inject the concept of architectural
view [141] into the core of the MDD process. For instance, we may envisage
that the evolution from the PIM down to the architectural models yields
to a sequence of models in decreasing abstraction level, corresponding to
the different architectural views, from the logical view down to the physical
view. In this case, labeling the models may be artificial. We remark too
that current MDD approaches focus on the architectural logical view, thus
addressing other views is a progress by itself.

M2M transformations

Challenges are:

• Gradually developing and incorporating in the framework transforma-
tions for all popular architectural styles.

• Selecting the best alternative for each non-deterministic transforma-
tion depending on the expected NFRs.

• Defining a transformation composition language for gluing separate
transformations into the MDD models. This last point is highly con-
nected with the vision promoted in [188, 186] where different types
of NFR are handled separately. Being true that the particularities of
each NFR type makes it difficult to treat them uniformly, it is also
clear that we need to be able to reconcile them since the generated
system needs to fulfill all of them together.

• The framework presented here conceives the application of transfor-
mation (and thus generation of models) top-down with respect to ab-
straction level. However, this does not need to be always this way. For
instance, a technological NFR fixing the brand and release of the data
base product will have an implicit consequence on some other more
abstract model, namely to know that a data base of a particular type
(relational, OOR, etc.) has to be integrated into e.g., the development
view of the architecture.

48

3.4. DISCUSSION

The MDD core: decisional engine and knowledge base

The research agenda includes:

• Being able to keep and reuse the knowledge acquired in MDD projects
(e.g., success and failure experiences).

• Exploring the applicability of artificial intelligence techniques for tak-
ing informed decisions (case-based reasoning, Bayesian networks, etc.).

• Exploit the knowledge of software architects to improve the automa-
tion of the process by means of a comprehensive program of interviews
and surveys.

• Define the roles and responsibilities that play a part in the MDD pro-
cess: software architect, MDD engineer, software developer, domain
expert, etc.

Variations from the proposed frameworks

Being the presented frameworks general, variations may be thought to be
formulated. Let’s consider one particular variation, namely the incorpora-
tion into the MDD process of the concept of architectural style. Accord-
ing to [196, 51], an architectural style consists of the description of the
types of architectural components supported, their organization, and how
can they be integrated. In some sense, we may say that different architec-
tural styles use different ontologies, e.g., whilst SOA talks about services,
choreography and MOM, layered architectures introduce layers, persistence
and push communication model. Incorporating this concept into the frame-
work has consequences on its very core. If the M2M translation from PIM to
PIM/PSM renders a software architecture, it follows that each architectural
style requires a different metamodel, thus both PIM/PSM models and M2M
transformations are dependent on the architectural style, becoming families
of models and functions:

(M2March[st]: PIM(f+nf) → PIM/PSM[st] (f+nf0))st ∈ style

Determining the architectural style should be the first decision to be
made in the MDD process. Adopting a pure MDD perspective, it should be
determined from the PIM(f+nf). However, it is true that the decision of

49

CHAPTER 3. INTRODUCING NFRS IN MDD

whether it must be, for example, an SOA or a Web rich client architecture
is often a decision made before the MDD process starts for reasons that are
not always tangible and are only in the architect’s mind.

Correctness and completeness issues

Last but not least, we mention the need of accurately investigating the notion
of correctness of an NFR-aware approach. We may envisage the following
conditions that need to be refined to the chosen formalisms. A couple of
examples of predicates to investigate are:

• The NFRs should be correct both independently (e.g., there are not
contradictory NFRs) and when referred to the functionality f (each
functional element is qualified by meaningful types of NFRs): cor-
rect(nf) ∧ applicable(nf, f)

• The knowledge embedded in the MDD knowledge base should find
feasible alternatives for any given NFRs that fulfil the correctness and
applicability conditions above: correct(nf) ∧ applicable(nf, f) ⇒ re-
ducible(KB, nf)

3.5 Conclusions

In this section we have: explored the state of the art; envisaged some generic
solution to the identified problems; and enumerated new lines of research
and challenges to overcome; of one requirement-related practice, the man-
agement of non-functional requirements (NFR) in the model-driven devel-
opment (MDD) production paradigm.

The main goal has been to agree on a perspective of the current state of
the addressed problem and in the need to keep progressing towards several
directions. Concerning the state of the art:

• We have analyzed how MDD methods not dealing with NFRs behave
to ensure their satisfaction.

• We have run a systematic literature review to learn insights of the
MDD methods that deal with NFRs.

50

3.5. CONCLUSIONS

Concerning the improvement of this state of the art:

• We have outlined an NFR-aware general framework which allows cus-
tomization to different settings with their own peculiarities

• We have discussed variations on this framework.

• We have aligned and thoroughly compared the different alternatives
discovered, trying to make clear not just the benefits but also the
obstacles of this general framework.

All in all, we agree with the observation in [108]: “[...] MDD has a chance
to succeed in the realm of large, distributed, industrial software development,
but it is far from a sure bet”. We hope to contribute to boost the MDD
adoption by practitioners and the design of more powerful MDD methods
and better software production processes, and thus increases the likelihood
of this bet.

51

CHAPTER 3. INTRODUCING NFRS IN MDD

52

Part II

NFRs in Software Architecture

Chapter 4

State of the art

This chapter is based on the related work presented in [11, 25].

As we have seen in the introduction, NFRs express desired qualities of the
system to be developed. They refer both to observable qualities such as sys-
tem performance, availability and dependability, and also to internal char-
acteristics concerning, e.g., maintainability and portability. Other authors
use different names, remarkably quality requirement, as a synonymous of
NFR, being the diversity of terminology and meaning well-known by the
community [98].

Over the years, a common claim made by software engineers is that
it is not feasible to produce a software system that meets stakeholders’
needs without taking NFRs into account. As a result, software develop-
ment projects currently invest a lot into satisfying NFRs [49]. But still it
seems to be a lopsided emphasis in the functionality of the system, even
though the functionality is not useful or usable when NFRs do not hold [62].

The tight relationship among NFRs and software architectures (SAs) is
part of the established body of knowledge in software engineering. As early
as in 1994, Kazman and Bass made the point that asserting that SA is
intimately connected to the achievement of NFRs should not be controver-
sial [127]. This vision has pervaded over the years and explains why software
projects invest a lot into fulfilling NFRs [49]. This influence is mentioned
recurrently in the literature: NFRs often influence the system architecture

55

CHAPTER 4. STATE OF THE ART

more than functional requirements do [179]; “the rationale behind each ar-
chitecture decision is mostly about achieving certain NFRs” [217]; “business
goals and their associated quality attribute requirements strongly influence a
system’s architecture” [173].

This general statement can be made more concrete if we consider the
evolution of the concept of SA from a simple structural representation to a
decision-centric viewpoint [144]. Under this perspective, “[NFRs] play a crit-
ical role during system development, serving as selection criteria for choosing
among myriads of alternative designs and ultimate implementations” [62].
For example, deciding a layered architectural style may be justified in terms
of maintainability or portability, or choosing a particular technology can be
motivated by an efficiency gain.

The previous mentioned works provide little direct evidence from real
case studies to support these statements. Both requirements engineers [43]
and software architects [86, 6] demand field work to sustain or dismiss that
“much of a software architect’s life is spent designing software systems to
meet a set of quality attribute requirements” [100].

4.1 Empirical studies on NFRs

In spite of their acknowledged importance, not so many empirical studies
centered on NFRs are available. A recent systematic literature review con-
ducted by Svensson et al. [43] found no more than 18 empirical research
studies centered on investigating the benefits and limitations on methods
around NFRs for five identified areas: elicitation, dependencies, level of
quantification, cost estimation, and prioritization. The need to increase the
number and quality of studies on NFRs was pointed out as a key finding of
the review.

• Svensson et al. have also conducted several empirical studies on the
topic. In [41, 42], they focused on the analysis of practices on compa-
nies that produce market-driven embedded systems. Svensson et al.
targeted several aspects on NFRs in [41], whilst in [42] they focused on
issues related to requirements prioritization. The findings of this last
paper suggest that there seems to be a lack of knowledge about manag-
ing NFRs in these companies; the authors hypothesize that this could

56

4.1. EMPIRICAL STUDIES ON NFRS

be related to the lower importance given to them with respect to func-
tional requirements (this is a recurrent argument in several studies).
[41] reports a different perception of some NFRs aspects depending on
the role of the interviewee (e.g., project managers ranked performance
as the most important quality aspect, whilst project leaders ranked us-
ability first), which supports the idea of replicating empirical studies
for the different roles that participate in software development.

• Borg et al. studied in depth two case studies in two Swedish com-
panies [46]. They interviewed 7 professionals for each case. They
reported some common findings in both companies (e.g., vagueness of
NFRs and difficulty to test), but also some differences, remarkably in
the provenance of requirements, which was different in both cases due
to contextual factors. The main conclusion of their study is that al-
though both organizations were aware of the importance of NFRs, still
their main focus was on functional requirements. The authors made
the hypothesis that methods and tools supporting NFRs throughout
the entire development process would be the best way to fight against
this situation.

• De la Vara et al. [79], presented an e-survey with 31 valid responses.
It was conducted with the purpose of analyzing the importance of
the different types of NFRs depending on factors like type and size of
project, role of the observer and application domain. Concerning role,
they checked that the same three types were identified by the three
analyzed roles, although the importance of the types could vary.

• Haigh [107] analyzed the importance of 13 types of NFRs with an
e-survey of 318 responses, the participants were recently graduated
students. In the paper Haigh tries to determine if there are differences
between the priorities given to the types of NFRs and the types of par-
ticipant (users, managers, or developers), and of there are differences
between the priorities given to the types of NFRs and the types of
software, which include (enterprise administration, office package, de-
velopment tool, process control, business analysis, scientific and tech-
nical software, and other). As result, some differences were found, for
example usability is more important for users, while accuracy is for
managers, and maintainability is for developers.

57

CHAPTER 4. STATE OF THE ART

• Anh et al. [26], explored several issue related to OSS adoption projects.
One of the research questions was about the degree of satisfaction of
NFRs by selected OSS components. The authors explored different
types of NFRs and showed that performance and reliability are the
two types considered most important by interviewees, and that this
last type is the worst fulfilled by the components.

• Daneva et al. [74] presented an exploratory study about how architects
deal with quality requirements in the context of large and contract-
based software projects. Many of the research questions of this work,
such as how are the requirements elicited, documented, and validated,
have a match with the research questions presented in the second em-
pirical study [11] (see Chapter 5). Some of the answers to these re-
search questions differ between the two studies. The most likely ex-
planation, is that these differences have the origin in the nature of the
studied projects, ours were small and medium scale, while in [74] were
large projects.

4.1.1 Analysis

Table 4.1 shows a summary of the analyzed studies. Compared to these
empirical studies on NFRs, the main value of ours (presented in Chapter 5)
is the focus on the relation between NFRs and the software architect role.
In none of the previous studies this relationship was the real subject of
study and thus available evidence is anecdotal, which makes our own study
appealing, especially considering the claims that the software architect role
is one of the most affected by NFRs. We believe that our studies bring some
new interesting observations to the field.

4.2 Empirical studies on software architecture

As mentioned in the beginning of this chapter, there is a tight relation
between NFRs and software architectures. This relationship is not supported
by empirical studies in the software architecture area.

• Tang et al.’s work on architecture design rationale [201] provides evi-
dence that our subject of research is highly relevant for software archi-

58

4.2. EMPIRICAL STUDIES ON SOFTWARE ARCHITECTURE

Table 4.1: Summary of empirical studies on NFRs

Ref. Subject of research Type of study Companies Population

[41] NFR importance
NFR dependencies
NFR satisfaction

Interviews 5 companies 5 project leaders
5 product managers

[42] NFR prioritization Interviews 11 companies 11 project leaders
11 product managers

[46] NFR elicitation
NFR documentation

Interviews 2 companies 14 (different roles)

[79] NFR importance e-survey 25 companies 6 product managers
14 project leaders
11 programmers

[107] NFR importance e-survey Not specified 162 users
110 managers
46 developers

[26] NFRs in OSS Questionnaire 15 companies 15 (different roles)
[74] NFR elicitation

NFR documentation
NFR importance
NFR prioritization

Interviews 14 companies 20 architects

tects. This paper discusses the role of the architect in comparison to
the dedication to different tasks and the design of NFRs appears third
in the list (of interest for 64.2% of interviewees), right after overall
system design (86.4%) and requirements or tender analysis (81.5%).
However, the paper does not further discuss the relationship of SA and
NFRs.

• Ali Babar et al. [4] reported observations about documentation and
validation of software architectures. Participants declared that hav-
ing a good understanding of the types and levels of required quality
attributes is a vital factor as the types of attributes to be evaluated
usually have significant influence on the choice of methods and prac-
tices.

• Heesch and Avgeriou [208] drove a descriptive survey. From the re-
sults, they propose some best practices, for example: the possibility
that architects get involved in the requirements elicitation for a better
understanding of the requirements and other architectural drivers.

59

CHAPTER 4. STATE OF THE ART

Table 4.2: Summary of empirical studies on software architecture

Ref. Subject of research Type of study Companies Population

[201] Architecture design Questionnaire Not specified 81 software architects
[4] Architecture design,

documentation
and validation

Group discussion 10 companies 10 software architects

[208] Architects reasoning e-survey Not specified 53 software architects
[38] Service-Oriented

Architecture
e-survey Not specified 29 respondents

[181] Architects and NFR e-survey Not specified 39 architects

• Becha and Amyot [38] drove an electronic survey to identify the non-
functional properties relevant to software oriented architectures. Some
of the results are: the need of separation of responsibilities between
service providers, consumers and network providers and the need of a
standardized vocabulary for the non-functional properties.

• Poort et al. [181] presented the analysis and key findings of a sur-
vey about dealing with non-functional requirements (NFRs) among
architects. They find that, as long as the architect is aware of the im-
portance of NFRs, they do not adversely affect project success, with
one exception: highly business critical modifiability tends to be detri-
mental to project success, even when the architect is aware of it.

4.2.1 Analysis

Table 4.2 shows a summary of the analyzed studies related to software archi-
tecture. Since available empirical studies are not many, having new ones that
provide further evidence in topics already explored may also be considered
valuable.

60

Chapter 5

State of the practice

Relation between the contents of this chapter and published papers.

Section 5.1 Main contributions of [20, 21].

Section 5.2 Main contributions of [11, 12].

Section 5.3 Main contributions of [25].

This chapter includes three empirical studies (see Table 5.1):

• First empirical study. This empirical study was designed and executed
in 2008, and the results were published in 2009 with partial results [20]
and in 2010 [21]. The study is based on an electronic survey that
obtained 60 answers.

• Second empirical study. This empirical study was designed in 2009,
executed in 2009-2010, and the results were published in 2012 [11,
50, 12]. The study is based on 13 personal interviews to software
architects.

• Third empirical study. This empirical study was designed in 2011,
executed from May to September of the same year, and the results
were published in 2013 [25]. This study is based in an electronic survey
that obtained 31 answers.

61

CHAPTER 5. STATE OF THE PRACTICE

Table 5.1: Summary of performed empirical studies

Study Subject of research Type of study Companies Population

1st NFRs in practice e-survey Not specified 60 software architects
2nd NFRs in architecture Interviews 12 companies 13 software architects
3rd NFRs in SBSs e-survey Not specified 31 software architects

This studies go from a wide scope to narrow scope. The first was a
general overview of the industrial practice, the second was oriented only to
architects, and the third one, to the particular case of Service-Based Systems
(SBSs). The three studies have in common the focus on the role of NFRs in
architects practice.

5.1 First empirical study

To know about the current industrial practice of software architects and the
role of NFRs we drove an electronic survey addressed to software architects
and we obtained 60 responses that give some light to questions such as:
how do architects consider NFRs, and what are the most influential types
of NFRs in their daily work.

5.1.1 Design

The survey was designed in an iterative way. In each iteration, it has been
revised by IT experts and/or researchers of the area. There have been three
iterations, the first one in plain text and the other two using the final elec-
tronic format. We chose the LimeSurvey1 tool to produce the electronic
version of the questionnaire.

Research Questions

This survey was oriented to obtain answers from the current industrial prac-
tice. The research questions of this study are listed in Table 5.2.

1http://www.limesurvey.org

62

5.1. FIRST EMPIRICAL STUDY

Table 5.2: Research questions of the first empirical study

ID Research Question

RQ1 How important are NFRs to practitioners?
RQ2 Is the NFRs importance dependent on the architectural style used?
RQ3 Are NFRs well integrated in the current development tools?
RQ4 What is the desired level of interaction with semi-automatic tools?
RQ5 What is the current state of adoption of MDD techniques by the industry?

• RQ1: We wanted to determine how are NFRs perceived in the in-
dustry, so the first research question is: How important are NFRs to
practitioners?

• RQ2: We also were interested in knowing if the importance of NFR
is dependent on the architectural style used, so we defined the next
research question: Is the NFRs importance dependent on the architec-
tural style used?

• RQ3: Since we already were thinking in developing a tool to make
architectural decisions from NFRs, we wanted to understand the prac-
titioners’ needs for development tools. The third research question is:
Are NFRs well integrated in the current development tools?

• RQ4: One part particular aspect that concerned us was what practi-
tioners expect from these kind of tools, the research question is: What
is the desired level of interaction with semi-automatic tools?

• RQ5: Finally, since our intention was to develop a tool for decision-
making upon the MDD framework proposed in Chapter 3, we wanted
to know how is MDD perceived by the practitioners. The fifth research
question for this study is: What is the current state of adoption of
MDD techniques by the industry?

Questionnaire

The complete questionnaire is available in Appendix A. It is divided in three
parts:

63

CHAPTER 5. STATE OF THE PRACTICE

• First part. Questions about software development. Concretely, we
asked about the used architectural styles, the type of developed ap-
plications, the platforms and technologies used, and questions about
Non-Functional Requirements (NFRs). In this part we obtained con-
textual information and the answer to the RQ1 and RQ2.

• Second part. This part had two questions about the desirable interac-
tion of a hypothetical development tool. The first question is about
code generation and the second is about design decisions. With this
questions we will find an answer to RQ3 and RQ4.

• Third part. In this part we asked to the participants questions about
their use of MDD techniques to answer RQ5.

Data Collection

For the dissemination of the survey we used two strategies. On the one hand,
personal contact with 10 software architects that we know personally, and
on the second hand, advertisement in IT communities hosted in web sites
such as LinkedIn (e.g., the International Association of Software Architects
group). The survey was available online during 2009, from March to October
(8 months).

Data analysis

To ensure the quality of the data obtained from the questionnaire, we applied
sanity checks to find obvious errors in data. We used descriptive statistics
to analyze the data [132].

Limitations of the study

We have analyzed the construct validity and the internal and external va-
lidity of this study.

Construct validity. This aspect of validity reflects to what extent the op-
erational measures really represent what is investigated according to the
research questions [213]. This study was supported by two main principles:
rigorous planning of the study according to Oates [166], and establishment

64

5.1. FIRST EMPIRICAL STUDY

of protocols for data collection and data analysis. The survey was piloted
both internally and using external participants from the target population.

Internal validity. There might have been confounding variables and other
sources that could bias our results [65, 135]. To control variables, exclusion
or randomization can be applied [208]. Exclusion means that participants
who are not sufficiently experienced were excluded from the study. We en-
sured this by having a question about the participants that use NFRs to
make architectural decisions. Randomization means that we used a sam-
pling technique which leads to random participants. Furthermore, validity
is subject to ambiguous and poorly phrased questions. To mitigate this risk,
we piloted the data collection instrument in multiple iterations until poten-
tial respondents understood our questions and intentions. Also, participants
might not have had the same understanding as we required them (e.g., what
is a NFR, what is a architectural style); we tried to mitigate this risk by
including the definitions of the concepts that were susceptible of being hard
to understand by the target population.

External validity. External validity is concerned with the problem of gener-
alizing the results to the target population. We assume that our results are
applicable to a population that meets the sampling criteria of our survey
(i.e., software developers).

Population

We obtained 60 responses (it is worth to remark that more of than the
50.0% were from Spain). The participants defined themselves majorly as
software developers project managers, and architects, but there were also
some specialists in some software development technology (see Figure 5.1).

One of the questions that raised during this study was: when do we have
enough amount of answers? We did not reach a satisfactory answers to this
question, because we cannot know how big is the population of software
architects in the world, we also cannot know the amount of people that were
invited (because of the second type of dissemination strategy). Finally we
accepted 60 responses as enough because other empirical studies in software
architecture had similar amount of answers.

65

CHAPTER 5. STATE OF THE PRACTICE

Architect
15 (25.0%)

Developer
21 (35.0%)

Project
manager

16 (26.7%)

Specialist
8 (13.3%)

Figure 5.1: Population of the first empirical study

5.1.2 Results

RQ1: How important are NFRs to practitioners?

The first questions where about the role of NFRs in their habitual software
development practices:

• 96.0% of respondents consider NFRs in their development practices.

• 73.0% said that NFRs are at the same level as functional requirements.

• 57.0% said that NFRs are used to make architectural decisions.

Respondents rated (in a Likert scale) nine types of NFRs which comprises
five of the six quality characteristics of the ISO/IEC 9126 [117] (functional-
ity was not included), and the other four were suggested by the testers of
the survey: reusability and three non-technical types (standard compliance,
cost, and organizational). The respondents rated these types of NFRs with
respect to the importance that they have in their projects (see Figure 5.2).
In this figure we can see that reliability is the only type of NFR considered

66

5.1. FIRST EMPIRICAL STUDY

critical by a majority of respondents. While organizational and portability
types of NFRs have a median of medium importance, the rest of NFRs have
a median of important importance. It was a bit surprising for us that the
cost requirements and organizational requirements were of lower importance
(in comparison to others). This situation may be dependent on the partici-
pants role in the software development (e.g., business role vs. technical role),
but if we only consider the participants with project management role the
results indicate that they are more worried about reliability with a median
of critical importance.

Answer: NFRs are clearly important for practitioners, even if only
73.0% of respondents considered them as important as functional re-
quirements, and, more surprisingly, only 57.0% used them to make ar-
chitectural decisions (here is worth to remember that not all the survey
participants were architects). In fact, almost all the types of NFRs an-
alyzed were considered important by the respondents (i.e, its median is
important).

RQ2: Is the NFRs importance dependent on the architectural
style used?

The same analysis was repeated, but in this case limiting the considered
answers (A) to the respondents that used NFRs to make architectural deci-
sions, and these were grouped in the three architectural styles studied2:

• 3-Layers architecture (A = 26 answers). The 3-Layers architecture
shows that all types of NFRs with the exception of portability, have a
median of important importance.

• Service-Oriented Architecture (SOA) (A = 20 answers). In the case
of MVC, the reliability has a median of critical importance, and only
portability has a median lower than important importance.

• Model-View-Controller (MVC) architecture (A = 24 answers). In the
case of MVC, reliability has a median of critical importance.

2Note that some respondents answered to develop using more than one type of archi-
tectural style.

67

CHAPTER 5. STATE OF THE PRACTICE

It is worth to mention that limiting the answers in this way, all the
respondents considered that at least the importance of any requirement is
of marginal importance, having no respondent saying that a requirement is
not important at all. A general observation is that the respondents that use
NFRs to make architectural decisions gave higher rates to all the types of
NFRs, which is an indicator that they are more concerned with NFRs.

Answer: it seems that the importance of NFRs is not hardly condi-
tioned by the use of a particular architectural style, but the respondents
that work with these architectural styles are more concerned with NFRs
in general.

RQ3: Are NFRs well integrated in the current development tools?

In this survey we asked about the use of tools in software development, the
first question was about a tool to help in the analysis of NFRs compliance.
We obtained that 80.0% of respondents declared that the development tools
that they use are not well-suited for analyzing the compliance of the specified
NFRs, whilst 70.0% would like to have them.

Answer: NFRs are not well integrated in the current development
tools, and practitioners would like to have support for them.

RQ4: What is the desired level of interaction with semi-automatic
tools?

We also asked questions about the amount of interaction desired with an hy-
pothetical support tool for implementation and design tasks. We considered
the following tasks:

A. Generation of the skeleton code.

B. Generation of the code for a specific technology.

C. Selection of the architectural style using NFRs.

D. Selection of the technological style using NFRs.

68

5.1. FIRST EMPIRICAL STUDY

Architectural style and technological style were defined in the survey as
follows:

Architectural style We understand architectural style as the collection of
the main elements that compose the software system and the strategy
of communication used between them. Examples of software architec-
tures are: 3-layered architecture, service oriented architecture, client-
server, etc. A software system can be designed as a composition of
many architectural styles depending on its needs.

Technological style A technological style is a set of technologies to con-
struct the elements that compose the software system. A technological
style must consider all necessary technological roles of the implementa-
tion: platform, programming languages, libraries, technological stan-
dards and external services (e.g., database management systems or
authentication services). The technologies that takes part in a tech-
nological style must be able to work jointly.

The respondents had to choose one of the following interaction levels for
each task:

1. I would not use any support tool to perform this task.

2. The support tool should ask me before taking any decision.

3. The support tool should ask me only before taking the relevant deci-
sions.

4. The support tool should take the decisions for me but later I would
check them.

5. The support tool would take the decisions for me without further con-
firmation.

The results obtained in these questions are presented in Table 5.3 (rows
represent analyzed tasks and columns the interaction level).

69

CHAPTER 5. STATE OF THE PRACTICE

Table 5.3: Desired interaction levels

1 2 3 4 5

A. 8.3% 15.0% 23.3% 41.7% 11.7%
B. 8.3% 20.0% 26.7% 41.7% 3.3%
C. 13.8% 13.8% 50.0% 20.7% 1.7%
D. 12.1% 20.7% 39.7% 25.9% 1.7%

Answer: in general practitioners want to have the last word in the
architectural decisions made, this means that a completely automatic
tool won’t suit their needs. It is also evident that practitioners are more
inclined to trust a tool for implementation tasks rather than design
tasks.

RQ5: What is the current state of adoption of MDD techniques
by the industry?

Finally, we asked about the use of MDD tools, a great part of the respondents
(78.3%) said that they do not use MDD in their daily projects, but 51.7% of
them declare to know what is MDD. Eclipse (with a 35.0%) seems to be the
most known platform for MDD, and MDA (with 48.3%) the most known
initiative.

Answer: MDD techniques are far from being adopted by the industry.
Even if the techniques are known, practitioners are still reluctant to use
them.

5.1.3 Discussion

After analyzing the previous results we had some observations.

• One observation is that, surprisingly, only the 57.0% said to use NFRs
to make architectural decisions, this result does not support what is
said in the literature about the importance of NFRs in architecture
(see Section 1.1.2).

70

5.1. FIRST EMPIRICAL STUDY

• Another striking observation is that while 80.0% are not able to check
their NFRs, the 70.0% would like to have such kind of tool. For us
this is a clear indicator that there is an unsatisfied need in software
industry.

• About the use of tools, we found an indicator that architects want to
have the last word in decision-making. This finding has driven some
of the design decisions of the method presented in Section 7.2.

After performing this survey, we decided that it was necessary to obtain
more empirical evidence of the current state of practice, in particular for the
software architecture area.

71

CHAPTER 5. STATE OF THE PRACTICE

0

5

10

15

20

25

30

35

None Marginal Medium Important Critical

Reliability

0

5

10

15

20

25

30

35

None Marginal Medium Important Critical

Maintainability

0

5

10

15

20

25

30

35

None Marginal Medium Important Critical

Efficiency

0

5

10

15

20

25

30

35

None Marginal Medium Important Critical

Usability

0

5

10

15

20

25

30

35

None Marginal Medium Important Critical

Reusability

0

5

10

15

20

25

30

35

None Marginal Medium Important Critical

Standards compliance

0

5

10

15

20

25

30

35

None Marginal Medium Important Critical

Cost

0

5

10

15

20

25

30

35

None Marginal Medium Important Critical

Organizational

0

5

10

15

20

25

30

35

None Marginal Medium Important Critical

Portability

N
u

m
b

e
r

o
f

re
sp

o
n

se
s

N
u

m
b

e
r

o
f

re
sp

o
n

se
s

N
u

m
b

e
r

o
f

re
sp

o
n

se
s

N
u

m
b

e
r

o
f

re
sp

o
n

se
s

N
u

m
b

e
r

o
f

re
sp

o
n

se
s

Figure 5.2: Importance of NFRs by types

72

5.2. SECOND EMPIRICAL STUDY

5.2 Second empirical study

In this section we present an empirical study that uncovers some relevant
software architects’ practices in dealing with NFRs. The study is imple-
mented as an exploratory survey and was conducted over our local network
of software architects. Based on the analysis of the answers, we were able
to draw some observations about the use and impact of NFRs in indus-
trial practice, align them with the results of previous empirical studies, and
discuss possible actions that could eventually help to improve the state of
practice in the field.

5.2.1 Design

We carried out an exploratory study using a qualitative research [156]. Qual-
itative research is especially indicated when the purpose is to explore the
subject of interest with the aim of improving the knowledge available. The
general goal of investigating how software architects deal with NFRs was
decomposed into several research questions shown in Table 5.4. Although
the focus is on NFR-related issues, we added a preliminary research ques-
tion about the responsibilities that software architects have assigned in their
organizations to help understanding and interpreting the results. The other
research questions focused on the perspective of the software architect on
elicitation, documentation, validation and tool support, as well as termi-
nology issues, the importance of NFR types, and the influence of NFRs on
architectural decision-making.

We used semi-structured interviews for gathering information about a
single software development project in which the respondents participated as
software architects. Compared to other qualitative research strategies (e.g.,
structured questionnaires) semi-structured interviews provide more flexibil-
ity and allow investigating in more depth interesting issues that appear dur-
ing the conversation. On the other hand, considering a single project instead
of a general perception of the architects’ rationale allows for better interpre-
tation and assessment of contextual information [70]. The interview guide
was carefully designed following the guidelines stated by Oates [166]. The
interview guide used in the study is available in the Appendix B.

73

CHAPTER 5. STATE OF THE PRACTICE

Table 5.4: Research questions of the second empirical study

ID Research Question

RQ1 What is the role of the software architect?
RQ2 Are there terminological confusions on NFRs?
RQ3 What types of NFRs are relevant to software architects?
RQ4 How architects deal with NFRs?
- RQ4.1 Who elicits the NFRs?
- RQ4.2 How are NFRs elicited?
- RQ4.3 How are NFRs documented?
- RQ4.4 How are NFRs validated?
RQ5 What type of tool support for NFRs is used?
RQ6 How do NFRs influence architectural decisions?
- RQ6.1 What types of decisions are driven by NFRs?
- RQ6.2 How is the architectural decision-making process?
- RQ6.3 How NFRs influence architectural decisions?

Population

The target population of the study (see Table 5.5) were professionals that
covered the role of architect in at least one project in the organization.
Under McBride’s perspective [153], a software architect is the person who
makes design and technological decisions in a software development project.
It is important to remark, though, that we did not provide this or any other
definition to interviewees, on the contrary RQ1 was precisely intended to
find out the view that they had on software architect’s responsibilities.

Participating organizations were chosen from our industrial collabora-
tion network. We sent invitation letters to 21 software-intensive organiza-
tions and asked for their willingness to participate in the study. We finally
recruited 12 organizations covering a varied spectrum of business areas and
application domains. The organizations were of three different types:

• SCC: software consultancy companies that perform software develop-
ment tasks for different clients as its primary business.

74

5.2. SECOND EMPIRICAL STUDY

• ITD: IT departments in public or tertiary organizations that usually
perform or outsource some software development tasks for covering the
internal demands of the organization

• SH: software houses that develop and commercialize specific propri-
etary solutions.

In one of the organizations, we were able to interview two software archi-
tects, bringing the total number of interviews to 13. The respondents held
different positions in the organizations and were in charge of architectural
tasks in at least the project they based their answers on. Most respondents
had an education background related to computer science (with just two
cases of academic background related to telecommunications and industrial
engineering). 11 of the respondents had a bachelor’s degree. The projects
themselves were also diverse in terms of functionality and size. Although
all organizations were from Spain, some of the projects clients were from
abroad.

Execution

The interview guide was sent to the respondents in advance; therefore they
became familiar with the topic and were able to choose the project before-
hand. Interviews were conducted face-to-face in the respondents’ mother
tongue. Each interview took about one hour and was recorded and pre-
pared for analysis through the manual transcription (made by an external
company) of the audio records into text documents. Once transcribed, docu-
ments were validated by the respondents. In a few cases, they were explicitly
requested to clarify some aspect that remained uncertain after all the inter-
views were completed.

Analysis

Data analysis was conducted in a series of steps (based on [156]).

1. The interview transcripts and individual notes taken during the inter-
views were coded independently by two researchers. This codification
consisted in identifying and classifying relevant parts of the text tran-
scribed.

75

CHAPTER 5. STATE OF THE PRACTICE

Table 5.5: Overview of the organizations

ID Area1 Main Domain Project Description Staff Roles played2 Dur.3

A SCC Domain-specific IS
(lottery)

Web application for
managing transactions
over mobile phones

15 Arch, Dev 6

B ITD Domain-specific IS
(University school)

Web application for
activity management

3 Arch, PM 48

C SCC General-purpose IS System for the
management and
logistics of a growing
fast-food chain

5 Arch 120

D SCC Aerospace IS Geographic information
system to manage
aerospace launch bases

≈10 Arch 180

E SCC General-purpose IS Application to manage
the processes and
documents in
public-sector

6 Arch, Dev 30

F SCC Web IS E-commerce system for
selling motorcycle items

5 Arch, Dev,
PM

12

G SCC Geographic IS Web system to support
shipping logistics

1 Arch, Dev,
PM

3

H SCC Web IS Web system for
personal data
management

≈20 Arch, Dev 36

I SCC Document
management IS

System to manage bank
accounting activities

8 Arch, Dev 18

J SH Domain-specific IS
(insurance)

System to support
insurance company
tasks

50 Arch, Dev 30

K ITD Domain-specific IS
(University school)

System to manage staff
research activities

8 Arch, PM 36

L1 ITD Domain-specific IS
(University dpt.)

Web to manage
students activities

5 Arch, Dev,
PM

144

L2 ITD Domain-specific IS
(University dpt.)

Web collaboration
system

8 Arch, Dev,
PM

5

1 SCC: Software Consultancy Company; ITD: IT department; SH: Software house.
2 Arch: Architect; Dev: Developer; PM: Project manager.
3 Project duration expressed in months.

76

5.2. SECOND EMPIRICAL STUDY

2. We used the tabulation technique [156] to analyze the answers of
each question of the interview guide. This made it possible to get
an overview of the responses and ease the process of categories gener-
ation. Depending on the granularity of the questions, some of them
got a higher number of categories. We used the NVivo Software3 to
support this process.

3. Once the answers were processed, we compared the results. Most of the
categories generated by the two researchers were semantically similar,
but some others needed further discussion.

4. All the researchers of this study met for several discussion meetings
to generate categories by grouping sentences or phrases that described
the same idea, action, or property. Whenever we had a disagreement,
we discussed the issues until we reached an agreement. As a result,
some categories were split, modified, discarded or added to ensure that
all answers were well-represented.

5. Finally, for displaying the results shown in this paper, we used the
counting technique [185] to enable the reader to see the findings by
counting frequency of occurrences, or recurrent categories of events.

The results are presented in Section 5.2.2.

Limitations of the study

Like all other empirical studies, this one also faces certain validity threats.
This section discusses them in terms of construct, internal and external
validity as well as reliability, as proposed by Yin [213] and also emphasizes
the mitigation actions used.

Construct validity. This aspect of validity reflects to what extent the op-
erational measures really represent what is investigated according to the
research questions [213]. This study was supported by two main principles:
rigorous planning of the study according to Oates [166], and establishment
of protocols for data collection and data analysis. Our protocol included

3www.qsrinternational.com

77

CHAPTER 5. STATE OF THE PRACTICE

specific mitigation actions for evaluation apprehension by ensuring the con-
fidentiality of the interviews and also by emphasizing the exploratory nature
of the study. In addition, the interview guide used as an instrument to gather
data, was piloted with 2 academic and 2 industrial people in order to im-
prove its understandability. As a result, some changes were done to enhance
the elicitation process (e.g., we added a glossary to homogenize key terms
that could cause some confusion).

Internal validity. It refers to the confidence that we can place in the cause
and effect relationship in a study [213]. We took relevant decisions for ap-
proaching a further understanding of the approached research questions.
One of the main relevant decisions was to focus the questions of the inter-
view guide on a single software development project. Considering a single
project instead of a general perception of the architects’ rationale allows
for better interpretation and assessment of contextual information [185]. It
would otherwise have been very difficult to interpret certain decisions or
influential factors related to the nature of the projects. We are aware that
some possible biases may be related to this strategy, for instance the fact that
some time passed since the project was completed, so it could be difficult for
the respondents to remember some project details. To reduce the possible
side effects of this, we sent the interview guide in advance to the respondents
so they could become familiar with the topic, and asked them to choose the
project beforehand. Thus, when performing the study, we rarely experienced
respondents having difficulty in remembering project details. Another factor
raised was that the projects were selected by the participants. They may
have selected the most successful project to base their answers on, although
we asked them to use the most familiar one. To mitigate this, we explained
that our study was not focused on analyzing best practices but on learning
how things are done. There is always the possibility that the respondent
forgets something or does not explicitly state it when s/he is asked about
it [193]. To reduce this issue, we approached two strategies:

• We discussed some potential topics that might be omitted by the re-
spondents, and paid particular attention to them during the interviews
in order to ask for clarifications if necessary.

• Once the interviews were transcribed, the documents sent back to the
respondents for validation.

78

5.2. SECOND EMPIRICAL STUDY

We tried to be rigorous with respect to the data analysis strategy, and
put forward several mitigation strategies:

• To a better understanding and assessment of the data gathered we
recorded all interviews (and later on transcribed them).

• To reduce the potential researcher bias, two different researchers as-
sessed the data individually and generated their own categories.

• The generated categories were analyzed, discussed and reviewed by all
researchers of the study to ensure their accuracy, understanding and
agreement.

• The categories were checked with respect to the data gathered to con-
firm that none of the categories refuted any of the conclusions.

External validity. It is concerned with to what extent it is possible to gen-
eralize the findings, and to what extent the findings are of interest to other
people outside the investigated case [213]. As our study was exploratory, we
do not attempt to make universal generalizations. Thus our observations
should be interpreted not as a universal view of the field status but as a
starting point for a universal discussion and analysis [190].

Moreover, we did not randomly select the organizations that participated
in the study but got them from our industrial collaboration network. How-
ever, we tried to strengthen the external validity by having no control over
the projects chosen by the respondents. It is important to mention that
most of the participating companies were small or medium-sized, in addi-
tion, most of the studied projects dealt with non-critical domains (except
for aerospace and banking). We are aware that both factors may have an
impact on how NFRs are dealt with, and so we highlight that our findings
should be considered with caution.

Reliability. This aspect is concerned with to what extent the data and the
analysis are dependent on the specific researchers. In order to strengthen this
aspect we considered the validity of the study from the very beginning. So,
as stated in the previous paragraphs, we put forward several strategies. In
addition, we maintained a detailed protocol, the collected data and obtained
results were reviewed by the participants; we have spent sufficient time with
the study, and gave sufficient concern to the analysis of all responses.

79

CHAPTER 5. STATE OF THE PRACTICE

5.2.2 Results

We present next the most relevant observations resulting from the analysis
of the interviewees’ responses. We include quotations from the interviews
stating respondents’ ID in bold and enclosed in parenthesis. For each re-
search question, we start describing the findings, followed by a summary,
then our opinion and relations to results from other studies, and finally a
short answer for the research question.

RQ1: What is the role of the software architect?

The analysis of the interviewees’ responses in our study shows that at their
companies, the role of architect did not exist as a job position as such.
Given this situation, we tried to understand more in depth how architects
were nominated for this role and how the boundaries of this role were set.

How were software architects nominated? The nomination of the re-
spondents as software architects was made according to the nature of the
project. In other words, it was not based on the usual architects’ skills de-
fined in the literature [153], but on technical knowledge (“[The architect] is
whoever knows the technologies used in the development best” (E)) or experi-
ence (“Decisions affecting the whole system are made by the most experienced
people” (H)).

How was their role scoped? Respondents found it difficult to define the
exact nature of their work as an architect since it overlapped with other
activities they performed in the project, primarily, project management (7
respondents) and development (9). Some even played two other roles apart
from architect. Only one respondent said that the only role he played in the
project was that of architect.

Summary of findings

• 13 interviewees performed the tasks assigned to “software architects”
in the project based on their experience or knowledge rather than their
possible skills as architects

• 0 interviewees held a “software architect” position at the company

• 12 interviewees played other roles in the project in addition to the role
of software architect.

80

5.2. SECOND EMPIRICAL STUDY

Opinion: Most software engineering literature concurs that software
companies have a specific position, known as the “software architect,” whose
mission is to design an architectural solution in a software development
project by making architectural decisions that are compliant with the elicited
requirements. Some authors as McBride [153] and Clements [66] support
this statement. However, our results show that the role of architect did not
exist as a job position in the organizations and that their tasks were very
diverse. This also concurs with other studies not specifically reporting on
the software architect role but related to RE, e.g., Sadraei et al. reporting
on project managers to take on RE activities [192].

On the one hand, the respondents were nominated as architects of the
assessed projects mainly based on their technical knowledge. This find-
ing aligns with the stated opinions of other professionals, e.g., “an architect
should only be responsible for a single project/application and not the archi-
tect for all projects within a software company”4.

On the other hand, it was difficult to enumerate the architect’ tasks as
these overlapped other roles’ tasks. This fact aligns with the observation
made by Tang et al. [201] who state that architects work on a variety of
tasks (such as requirements analysis, tender analysis, architecture design
and software design) and management responsibilities.

Answer: software architects did not exist as a differentiated role and
performed other duties in the projects.

RQ2: Are there terminological confusions on NFRs?

In our interviews we encountered certain communication problems concern-
ing the meanings of words, especially with regard to the definition of types
of NFRs. In fact, we found two related problems: the problem of meaning
itself, and the problem of translating English terms into another language,
Spanish in our case5. We had to handle this aspect carefully during the
interviews and later data analysis. Four interviewees (E, F, G, I) required
additional clarifications when being interviewed (e.g., about the meaning

4joncahill.zero41.com/2009/04/role-of-software-architect.html
5We use English terms for the discussion but the problems appeared in their Spanish

use.

81

CHAPTER 5. STATE OF THE PRACTICE

of “availability” and “accuracy”), two (B, E) used an inappropriate term
in a given context (e.g., “ergonomic” meaning “usable”), and one used a
term with an incorrect definition (e.g., “Maintainability is very important,
because when something is working, we can’t make changes” (D). Another
recurrent matter was the indiscriminate use of the terms “Performance” and
“Efficiency” that required further questions from our side. At this respect,
it is worth to mention that the standard ISO/IEC 25000 [116] is propos-
ing the term “Performance efficiency” defined as “performance relative to the
amount of resources used under stated conditions”, which can help to clarify
this confusion.

Summary of findings

• Confusion was reported around the terminology for designating NFR
types

Opinion: The problem of gathering data from interviewees was challeng-
ing due to the terminological discrepancies and misunderstandings about
concepts related to NFRs. It is not the practitioners the (only) ones to
blame, their confusion just reflected the lack of consensus that exist in the
community, e.g., in the use of “performance” and “efficiency”.

This problem has been also highlighted by other researchers. E.g., Anh et
al. [26] reported confusion among maintainability and reliability (“OSS com-
ponents are more reliable because the code is available and then it is easier to
fix the bug”). Also, Svensson et al. reported that the concept of “compliance”
as used by some interviewees was fairly different from the ISO/IEC 25000
standard’s [116], e.g., some respondent said that compliance is important
because “we must be compliant with the requirement document” [41]. Last,
the problem of using English terminology by non-English professionals was
reported also in [46] where the majority of practitioners was native Swedish
speakers and had troubles when documenting the requirements in English.

Answer: architects did not share a common vocabulary for types of
NFRs and showed some misunderstandings.

82

5.2. SECOND EMPIRICAL STUDY

RQ3: What types of NFRs are relevant to software architects?

We asked the respondents what were the NFR types that they took into ac-
count when making architectural decisions. We consolidated their answers,
e.g., to reconcile different names for the same concept (see the terminology
problem above) using the ISO/IEC 25000 standard [116] as unifying frame-
work. Some respondents had problems to directly answer the question. In
those cases, we provided them with a list of 15 terms that was consolidated
when piloting the survey design and clarified their meaning. Figure 5.3
shows the result of this part of the interview.

If we observe the bar chart, we may see a graduation of the mentioned
types. This aligns with the information given by the architects that con-
sidered some types as common sense characteristics, e.g., “I consider Per-
formance and Security as default requirements of any project” (B), “I would
never think on a system that it is not Secure” (I). Apart from these dominant
types, we found other situations:

• NFRs that were considered because they represented an explicit need
of the client, e.g., “one of the contractual requirements was that the
system could interoperate with other systems that were already deployed
in the client’s environment” (D).

• NFRs that were particularly important for the development team, e.g.,
“We were the ones that would maintain the system, so, it was important
for us to ensure its maintainability” (B).

• Four of the respondents mentioned that some NFRs were not impor-
tant to them because they rely on the technologies and the underling
platform, e.g., “We didn’t thought about the security of the documents
because it is done by the management system of SharePoint” (E). The
perception was that the maturity level of many technological solutions
was enough to ensure the satisfaction of NFRs.

Moreover, about 40% of the NFRs considered by respondents in their
projects were non-technical [56], i.e., referring to issues not directly related
to the quality of the product itself but to some contextual information. In
fact, some respondents explicitly mentioned that some types of non-technical
NFRs took precedence over all others (“Money rules and everything has to be

83

CHAPTER 5. STATE OF THE PRACTICE

0 1 2 3 4 5 6 7 8 9 10

Licensing issues

Usability

Reliability

Performance/Efficiency

Maintainability

Technological polices

Security

Client's NT requirements

Compatibility

Costs

External regulations

Functional Suitability

Availability of support

Organizational policies

Portability

Number of interviews

40%
60%

Non‐technical Technical

Figure 5.3: Importance of NFR types (technical and non-technical)

adapted to it” (J)). The types of non-technical NFRs most often mentioned
were (see Figure 5.3):

• Licensing issues, 9 times (e.g., “the client’s organization limited the
type of OSS licenses to be used in the software solution” (J))

• Technological constraints, 7 (e.g., “we prefer to use technologies we
have already mastered” (L1), “we had some limitations from the client,
for example, architecture based on OSS and Java” (H))

• Client’s NT requirements, 5 (e.g., “we needed to adapt our solution to
the organization’s strategic vision” (I))

• Cost, 4 (e.g., “we preferred JBoss to an IBM solution because of cost
constraints” (F))

• External regulations, 4 (e.g., “as we are a public organization, we had to
comply with certain public regulations and make our system accessible
for people with certain disabilities” (L1))

• Availability of support, 2 (e.g., “the choice of technology was influenced
by the support that Oracle offered” (A))

• Organizational policies, 2 (e.g., “we preferred to use our own human
resources instead of subcontracting someone else” (J))

84

5.2. SECOND EMPIRICAL STUDY

Summary of findings

• 49 references were made to technical NFRs (60%)

• 33 references were made to non-technical NFRs (40%)

Opinion: If there is a topic that has been documented in existing em-
pirical studies with respect our research questions, is the perception of the
importance of NFR types. However, since these studies did not focus on the
software architect role (with the exception of the first empirical study pre-
sented in this thesis, Section 5.1), it was a good opportunity to complement
these findings with our observations.

The higher importance of performance and usability was also reported
in two previous studies, [41] and [79], in the last case together with main-
tainability. In [26] performance was important, but usability was not among
the most important quality attributes. It is worth to mention that it is
not easy to align the results of these studies since often they use different
classification for NFRs, therefore we have not tried to make an exhaustive
alignment of the results.

In spite of these similarities, we have observed too that the results are
still dependent on the development team, experience, and domain (e.g.,
aerospace domain (D), gave much importance to safety of people, whilst
this type of NFR was not mentioned by the other participants). These facts
could be a factor influencing the partially divergent results with previous
studies. Similar opinions appear in other empirical works (e.g., “[NFRs] im-
portance can vary depending on stakeholders’ roles, types of project, orders
of magnitude of requirements and application domains” [79]; “NFR types
that are typical for traditional telecommunication systems gain more atten-
tion than others” [46]). Also, in [43] and [79] it is mentioned that the role
of the stakeholders may influence on the perception of importance for the
NFRs, but this difference could not be observed in this study because all our
participants played the architect role. On the contrary, we found one work
stating that there are NFR types that are always important, e.g., “some qual-
ity requirements (security) are always important for everyone” [42]. Similar
statements were made by the architects interviewed in our study (e.g., “I
would never think on a system that it is not Secure” (I)), but it is worth to
mention that security was also mentioned as example of NFR type whose

85

CHAPTER 5. STATE OF THE PRACTICE

satisfaction is delegated onto the technologies used (from the architects per-
spective), and in consequence not considered important.

In our study we found out that non-technical NFRs are considered by
the architects almost as important as technical NFRs. As far as we know,
no other empirical study made this differentiation, even though that some
of the non-technical NFRs are recurrently mentioned (e.g., cost [201]).

Answer: the two most important types of technical NFRs for architects
were performance and usability. And architects considered non-technical
NFRs to be as relevant as technical NFRs.

RQ4.1: Who elicits the NFRs?

Our interviews show that in 10 out of the 13 projects considered, the software
architect (the interviewee) was the main source of the NFRs. Clients either
never mentioned NFRs (“[the client] never mentioned that web pages could
not take more than 2 seconds to load, but he complained about it afterwards”
(E)) or provided only very broad indications, usually in the form of cost
or efficiency constraints (“the client mentioned a basic [NFR], and we added
others based on our experience” (L2)). The main explanation seems to be
that architects consider themselves to be the real experts when it comes to
defining efficiency, reliability, and other similar aspects.

Respondents (D), (H), and (I) were the only three cases with client-
led NFR elicitation process. Interestingly, they were also the only cases in
the study in which the interviewee was working on an outsourced project
(managed by an aerospace company (D), a software company (H), and
a bank (I)). Even in these cases, however, the architects played an active
role in completing the definition of the NFRs (“Our client was an aerospace
system department. Therefore, all the NFRs were very well defined. We also
added other NFRs based on our experience” (D)).

Summary of findings

• In 10 projects, the NFRs were elicited solely by the architect

• In 3 projects, the NFRs were elicited by the client with the participa-
tion of the architect

86

5.2. SECOND EMPIRICAL STUDY

Opinion: Requirements elicitation is the process of obtaining the system
requirements from stakeholders and other sources and to refine them in
greater detail. It is considered by both researchers and practitioners to
be one of the most challenging activities in the requirements engineering
process. Numerous techniques (interviews, role playing, etc.) have been
developed for requirements elicitation in a precise and unambiguous manner.
They usually assume that the client, as the domain expert, is the main source
of requirements. In fact, some respondent acknowledged that when referring
to functional requirements: “[Business analyst] writes a detailed document
reflecting all the [functional] requirements specified by the customer” (A).

However, when it comes to NFRs, our interviews show that this assump-
tion did not hold: in 10 of the 13 projects considered, the software architect
was the main source of the NFRs. This number exceeds the already high
rate (60%) reported by van Heesch and Avgeriou on architects involved ei-
ther completely or a lot, in requirements elicitation [208]. From the kind of
answers they gave, we conjecture that architects consider themselves to be
the real experts (at least, more than customers) when it comes to defining
efficiency, reliability, and other similar aspects (“the same way I do not rec-
ommend my customers how to implementing the accounting procedures, I do
not expect them to tell me how to organize my architecture” (C)). There is
another empirical work covering this aspect, Borg et al. [46] reported from
two studied cases that in one it is said that requirements elicited directly
from end users are very rare, whilst in the other, most of the requirements
are elicited directly from customers and end users.

Answer: NFRs were mainly elicited by the architects themselves.

RQ4.2: How are NFRs elicited?

The elusive nature of NFRs can make them difficult to elicit upfront. Ac-
cording to this general belief, all respondents agreed that deciding NFRs is
a gradual and iterative process throughout the system life-cycle. The reason
is that part of the expected behavior of the system may not be uncovered
until a certain milestone has been achieved “We determined first some rel-
evant NFRs (e.g., compatibility with other systems) and then developed a
prototype and analyzed alternatives” (J).

87

CHAPTER 5. STATE OF THE PRACTICE

Furthermore, the interviewees emphasized that the list of NFRs of the
project could never be considered complete even after the development tasks
had finished, instead, this list is under extension and negotiation during all
development and maintenance phases of the project, e.g., “In relation to
efficiency we had to make changes because the necessary level of service was
not specified at the beginning of the project” (K). There is a clear justification
of this situation. Contrary to functionality, some NFRs such as those related
to security cannot be completely checked until the system is deployed in its
expected environment and some unexpected conditions arise.

Summary of findings

• 13 architects considered elicitation as a gradual process

Opinion: The iterative nature of NFR elicitation has not been explicitly
stated by other studies. Some weakly related statement may be found by
Doerr et al., who argue that the elicitation of NFRs, functional requirements
and the architecture must be intertwined [83], which seems to imply that
NFRs cannot be elicited upfront. Also the finding stated by Svensson et
al. in [41] about NFR dismissal is somehow related: a total average mean
22.5% of NFRs were reported to be dismissed whilst the projects evolved.

Answer: NFRs were mainly elicited following an iterative process.

RQ4.3: How are NFRs documented?

Academics and standards organizations have proposed throughout the years
many notations and templates to write system requirement specifications.
They are supposed to facilitate the requirement documentation activity mak-
ing it more efficient. However, our study shows that 9 out of the 13 intervie-
wees acknowledged that they had not documented the NFRs at all (“[func-
tional requirements] came in UML, using conceptual models and use cases,
but there was no mention of NFRs” (H)). Some interviewees emphasized
that documentation is only necessary if the client or the critical nature of
the domain requires it.

The respondents who explicitly documented their NFRs used different
methods to do so:

88

5.2. SECOND EMPIRICAL STUDY

• Volere templates [184] (B).

• Grouping of the NFRs using the ISO/IEC 9126 quality classifica-
tion [117] (K).

• Domain-Specific Language (“Since we work in the field of aerospace,
our NFRs had to be clearly stated and verifiable. We have special tem-
plates, and we used different techniques from other engineering disci-
plines, such as risk models, failure trees, etc.” (D)).

• Simply wrote a plain text document (J).

Out of these four, two ((J) and (K)) only documented the initial NFRs
(“At first, we wrote down some initial ideas for NFRs in natural language
[...], but afterwards we did not keep track of any of them or of any other
NFRs arising during the design process” (K)).

Summary of findings

• 9 architects did not document the NFRs at all

• 4 architects documented the NFRs:

– 3 used templates (1 only for initial NFRs)

– 1 used plain text (only for initial NFRs)

Opinion: NFRs are often described in non-measurable terms and with
vague wordings [46]. Sabaliauskaite et al. reported that NFRs tend to be
badly structured or vague [191]. Svensson et al. reported different situations
in their case studies [41]. Olsson et al. reported that about half of NFRs
considered in a case study were quantified [168]. This empirical study aligns
with these observations, just 2 out of 13 respondents ((B) and (D)) provid-
ing some quantification level, which is even less than the mentioned above.
(B) and (D) did it this way (“You need to be able to provide arguments
when discussing with the customer” (D)). In fact, these two architects were
also the only ones who maintained the requirement documentation up to
date; (J) and (K) only documented the initial NFRs (“At first, we wrote
down some initial ideas for NFRs in natural language [...], but afterwards we
did not keep track of any of them or of any other NFRs arising during the

89

CHAPTER 5. STATE OF THE PRACTICE

design process” (K)). It seems natural to think that there is a relationship
between measurability and continuous (or at least regular) update of their
documentation but this link needs to be confirmed in further studies.

We observed that NFRs are more tacit or even hidden than documented,
and when documented, their accuracy and timeliness is seriously compro-
mised. This situation can be explained in terms of cost and benefit. One of
them stated it in plain words: “I rarely appropriately document my projects,
basically because it costs money” (C). If practitioners do not perceive a clear
benefit from shaping NFRs into a fully engineered artifact, as is the case of
(D), NFRs will remain elusive.

Answer: NFRs were not often documented, and even when docu-
mented, the documentation was not always precise and usually become
desynchronized.

RQ4.4: How are NFRs validated?

The validation of system behavior against the elicited NFRs is a tough activ-
ity. Since every NFR is different in nature, the methods needed are distinct
too. In spite of this fact, most of the architects of our study (11 out of 13)
claimed that all NFRs had been satisfied by the end of the project, although,
as mentioned by (H), “there is always room for improvement.” However,
when asked how they had validated them, their answers were vague. The
following comment by (D) is illustrative: “compliance with some [not all]
NFRs is only informally discussed with the client, since it is not easy to
test.”

Eight interviewees performed some validation, but each one validated
only one to three NFRs. Few types of NFRs were considered: performance
efficiency (“we ran load and stress tests to evaluate performance” (H)); cor-
rectness (“for each hour of coding we spent one hour testing for bugs” (A));
usability (“we made a prototype just to ensure client satisfaction with the
interface” (K)); and reliability (“we have forced some errors to see what
happens and control loss of data” (J)). Notably, one highly relevant type of
NFR, security, was not mentioned by any of the respondents. One respon-
dent (F) was an extreme case of non-validation, noting: “We wait for the
client to complain. He will notice when something goes wrong”. Although

90

5.2. SECOND EMPIRICAL STUDY

the response is of course unsatisfactory, it shows again (as in the case of doc-
umentation) how budget and time considerations may interfere with ideal
engineering practices.

Summary of findings

• NFRs had been met by the end of the project:

– 11 architects claimed that the NFRs had been met by the end of
the project

– 2 architects did not claim that all NFRs had been met by the end
of the project

• Validated types of NFRs:

– 1 architect validated three types of NFRs (reliability, efficiency,
and accuracy)

– 3 architects validated two types of NFRs (efficiency and accuracy;
efficiency and usability; efficiency and reliability)

– 4 architects validated one type of NFR (efficiency twice; accuracy;
usability)

– 1 architect did not validate any NFRs at all
– 4 architects did not provide details on this point

Opinion: The 85% (11 out of 13) of interviewees that claimed satisfac-
tion of all NFRs is a high percentage, much higher than the 60% reported
in [41]. One could argue that this observation we got in our study contra-
dicts the statement by Borg et al. saying that most NFR types are difficult
to test due to their nature [46] but in fact it is not the case. On the con-
trary, it indicates the need to distinguish between the perception of NFR
satisfactibility (85%) and the real validation (8 out of 13, i.e., 61%, and not
for all types of NFRs).

Three of the four types of NFRs mentioned by interviewees as validated,
belong to what Borg et al. name system characteristic types, which means
NFRs directly related to the characteristics of the systems per se; they
report that in their study, these system characteristics are considered prop-
erly tested most of the cases, whilst others like usability are often poorly
tested [46].

91

CHAPTER 5. STATE OF THE PRACTICE

The architect that behaved differently was interviewee (D), who used
formal techniques based on statistical analysis and simulation to check the
system’s reliability. Of course, this approach to validation is highly related to
the domain of the project, an information system for aerospace, i.e. a critical
domain. This observation aligns with a previous survey by Ali Babar et al.
whose participants suggested that the approach to evaluation depends on
the evaluation goals [4].

One of the findings of our study that may align with previous results
is the link between documentation and validation. Borg et al. that said:
“when expressed in non-measurable terms testing is time-consuming or even
impossible” [46]. Since we had just 2 respondents expressing the NFRs in
a measurable form, this may be one of the reasons behind the low level of
validation performed.

Answer: NFRs were claimed to be mostly satisfied at the end of the
project although just a few types were validated.

RQ5: What type of tool support for NFRs is used?

All the architects declared that no specific tools were used for NFR man-
agement. Taking the chance of the exploratory nature of semi-structured
interviews, we asked the interviewees if they would be willing to accept some
help in the form of a decision support tool to assist them in architectural
decision-making. The main motivation was to explore the real expectations
from practitioners for this kind of tools, and we took note for the develop-
ment of our own method/tool, which are presented in Sections 7.2 and 7.3.

We found a very strong reaction (e.g., “I do not believe in automatic
things” (B), or “I would not trust” (F)) against an automated decision-
making tool from 5 of the respondents. The others were not so reluctant
but expressed several concerns. 4 of them expressed their opinion that such
a decision-making tool is simply too difficult to build (“it is hard for me
to imagine that this can be done” (I)). A way to fight against this effect
mentioned by 2 of the respondents was that the tool suggested alternatives
instead of making final decisions (“the tool could show you possibilities that
you have not envisaged” (C)). Also some worried about the amount of infor-
mation that the architect should provide to such a tool for getting informed

92

5.2. SECOND EMPIRICAL STUDY

decisions (“all the time that I would need for thinking and introducing all
the necessary information, would not pay” (F)). If such a tool would exist,
architects would require a clear justification of decisions (“the critical point
is the accuracy of the tool and the answer that it could give” (C)).

Summary of findings

• Architects did not use any specific tool support for NFR management

Opinion: This was one of the most extreme results of the survey. Even
tool support as reported in [43] about dependency management (one impor-
tant issue when it comes to NFRs), was missing. For sure the answer to this
research question uncovers an important challenge to be addressed jointly
by researchers and practitioners.

Concerning tool support for decision-making, this issue was mentioned
by Ali Babar et al. in relation to some industrial cases that use tool sup-
port for generation of design option by exploiting some architectural knowl-
edge [7]. Our observation about the type of tool practitioners may adopt
aligns with the position reported by Hoorn et al. [111]: architects do not
fancy proactive or automated support; instead, we share the view by Borg
et al. [46] that methods and tools supporting NFRs throughout the entire
development process are needed.

Answer: software architects did not use any specific tool for NFR
management.

RQ6.1: What types of decisions are driven by NFRs?

Analysis of the responses shows different categories of decisions driven by
NFRs:

• Architectural pattern. Given the type of projects addressed, a layered
architecture was the natural option, but it is worth mentioning that
some interviewees explicitly justified the decision (“We used a layered
architecture to support later changes” (J)).

• Implementation strategies. Several types of requirements may require
strategies at a very detailed architectural level, either as a general

93

CHAPTER 5. STATE OF THE PRACTICE

design decision (“We opted by single sign-on to improve integrability of
different subsystems” (L1)) or a detailed decision over some component
(“the tables of a data base were duplicated because the access time was
too high” (A)).

• Cross decisions. Some NFRs imply a decision that cuts across the full
architecture (“we prefer to use technologies we have already mastered”
(L1). One recurrent matter is the use of third-party components and
especially open-source software (OSS) (“We wanted to have access to
code for maintainability reasons, thus we opted by OSS solutions” (D)).

• Technological platforms. NFRs may be satisfied by the selection of
technologies. Similarly as before, they can be system-wide (“We need
high availability and this requirement was ensured only by Oracle”
(K)), or more localized (“One of the queries was implemented directly
in JDBC instead of Hibernate due to efficiency reasons” (H)).

Opinion: We have observed that NFRs drive several types of archi-
tectural decisions. Here we can appreciate again the importance of non-
technical NFRs, especially in cross decisions, and in the selection of particu-
lar implementing technologies. We did not find any empirical work that had
an observation on this topic, but we could mention here that this observation
is aligned with Chung et al. “[NFRs...] play a critical role during system
development, serving as selection criteria for choosing among myriads of al-
ternative designs and ultimate implementations” [63], and Zhu and Gorton
“The rationale behind each architecture decision is mostly about achieving
certain NFRs” [217].

Answer: all the studied types of architectural decisions had, in some
case, the influence of a NFR.

RQ6.2: How is the architectural decision-making process?

When discussing the decision-making process, one particular aspect that
emerged was the intertwining among technological decisions and the others.
We found three different responses. Four of the architects ((C), (J), (K),
(L2)) said that non-technological decisions come first (“The architect should

94

5.2. SECOND EMPIRICAL STUDY

manage which technologies are appropriate to cover the previously designed
logical structure” (C)). On the contrary, other four ((A), (H), (G), (L1))
mentioned that fundamental technological decisions come first in place and
the others should adapt to it (“we had some limitations from the client,
e.g., architecture based on OSS and Java” (H)). The remaining five argued
both types of decisions overlap and feed each other, which in fact could be
considered a local twin-peak model [164] at the level of SA design.

Opinion: Again, what is done in practice does not match with the
academia. In this study we can see that the top-down architecture design
approach supported by the academia (e.g., first the selection of architectural
patterns, then allocate the logical components, and finally the implementa-
tion with some technologies [100]) is only performed by four interviewees
(30%). It is worth to mention that MDD, a development approach where
this top-down development is very explicit, is not having the expected adop-
tion by practitioners (see the first empirical study, Section 5.1). We think
that we should not expect that architects change their way of doing the
decision-making, any approach that comes from the academia should be
flexible enough to handle this variety of decision-making processes. In this
same direction there was a comment made by interviewee (C) “computing
is a tool that should adapt to the organization, not the other way around”.

Answer: the architectural decision-making process is diverse.

RQ6.3: How NFRs influence architectural decisions?

Not all types of NFRs have the same influence in decision-making. We asked
the respondents which were the NFR types that they took into account when
making architectural decisions. We consolidated their answers using the
ISO/IEC 25000 quality standard as unifying framework [116]. Important
observations are:

• Explicitness. Some NFRs are considered even if not explicitly men-
tioned, e.g., “I would never think of a system that it is not secure”
(I). Often, these tacit NFRs have percolated into architects’ mindset
due to the features offered by the technologies used, e.g., “We didn’t
thought about the security of the documents because it is done by the
management system of SharePoint” (E).

95

CHAPTER 5. STATE OF THE PRACTICE

• Source. Some requirements come directly from the development team
or the architect (e.g., “We were the ones that would maintain the sys-
tem, so, it was important for us to ensure its maintainability” (B)).
These NFRs are closer to the decision-making process than those com-
ing from the client, since the technical staff already thinks in terms of
the solution compared to the problem-oriented style of clients.

• Non-technicality. Non-technical NFRs are those that do not refer di-
rectly to the intrinsic quality of software, but to the context of the
system under analysis, e.g., license issues or cost [56]. We observed
that they are considered essential by architects. The estimation from
the responses is that about 40% of the NFRs considered by respon-
dents in their projects were non-technical, that in some cases were
considered of highest priority (“Money rules and everything has to be
adapted to it” (J)).

• Importance. In RQ3, we analyzed architects’ perception of NFRs im-
portance. We cross-checked this information with the decision ex-
amples provided in the interviews and we observed that performance
efficiency and maintainability were the types of NFRs that drove most
of these examples, which partially coincide with the RQ3 results.

Opinion: There are some works in the literature that provide frame-
works to document architectural decisions explicitly [206, 5, 203, 209], but,
as we have seen in this study, in practice architects do not make explicit all
architectural decisions. To improve this situation we have to, first, due to the
pragmatism of architects we should show them the benefits of having explicit
architectural decisions, and then we could provide them tools to facilitate
the documenting task (some tools are already available, see Section 6.3).

As we have seen in RQ4.1, architects are the main source of NFRs.
Since architects are doing both the requirement elicitation and the decision-
making, it may happen that they start thinking in the solution instead
of identifying the real need in first place, which is the kind of situation
where they may skip a good alternative decision. A way to fight against
this practice is the separation of the decision making from the requirements
elicitation, for example having two different roles in the software company,
the requirements engineer and the software architect, but as we have seen

96

5.2. SECOND EMPIRICAL STUDY

in RQ1 this solution seems hard to achieve because there are still many
companies that do not have even a role for architects.

We have shown in RQ3 that non-technical NFRs are important for archi-
tects, and in consequence for the architectural decision-making. We should
probably give more attention to this kind of requirements in future empirical
studies and approaches for architectural decision-making.

As we mentioned, the importance of NFRs detected in RQ3 is somehow
reflected in the architectural decisions provided as example during the in-
terview. We ask them to provide an example of decision that was hard to
achieve, so it may also happen that the important requirements for architects
are also the ones that lead to complex decisions.

Answer: architectural decisions are influenced by several aspects of
NFRs.

5.2.3 Discussion

As shown in this study, semi-structured interviews are a very useful tool for
learning about current practices, not only because they explore the prede-
termined survey questions, but also because unexpected observations arise
that, while not directly integrated in the study’s main results, help to pro-
vide a more complete picture and trigger ideas for further studies. We may
cite as clear example in our study the leading role of software architects
as the main source of NFRs. For this particular issue, a reflection on the
variability and importance of the software architect role depending on the
type of project can be found at [50]. As a beneficial side-effect, after an
hour or more of being interviewed, respondents learn about certain issues
to which they are not usually exposed (e.g., NFR terminology) and some
of them expressed their desire to collaborate again on future studies (as it
has really happened). On the other hand, consolidation of results coming
from qualitative studies is far more difficult than in the case of quantitative
ones, but the knowledge gathered is very rich and a good input for both
researchers and practitioners.

97

CHAPTER 5. STATE OF THE PRACTICE

We tried to consolidate our findings with previous empirical studies.
First, we observed that there are not so many empirical studies centered
on NFRs. A review conducted by Svensson et al. [43] in 2010 reported on
18 empirical studies that have some relationship to our proposal. But in
fact, none of the previous studies included the relationship among NFRs
and architectural decisions in their research questions and thus available
evidence is anecdotal, which makes our own study clearly differentiated.
Whilst these studies were more focused in the NFR part, others explore SA
issues more in depth, and especially van Heesch and Avgeriou [208] mentions
at some moment relationships among NFRs and SAs, as already reported
with respect to requirement elicitation (see RQ1 and RQ4.1).

Still we have made an effort to align our observations with those studies
and we have found: some of our observations match with previous findings
(e.g., software architects performed other duties in the projects; NFR elici-
tation is iterative), some others have not been reported before (e.g., software
architects perceived NFRs as satisfied, independently of the light validation
performed) and a few contradict previous observations (e.g., measurability
of NFRs was poor). Also the analysis of the influence of the different types
of NFRs was analyzed: we were able to find some coincidences (e.g., de
la Vara et al. also referring to efficiency and usability as the most impor-
tant [79]) but it was not easy to proceed with the necessary rigor as to
compare results. On the one hand, the studies use different NFR classifi-
cation schemes. On the other hand, the roles involved are often different
therefore their consideration of NFR types differ too [43].

We concur with different authors (e.g., [43, 86]) about the need of con-
ducting more empirical studies on the role of NFRs in software architecture.
This is why we decided to perform a third empirical study related to this
topic, in this case to a particular architectural style.

5.3 Third empirical study

One type of software system that has become popular in industry is that
of service-based systems (SBSs). Service-orientation is a standard-based,
technology-independent computing paradigm for distributed systems [167].
In this paper, we define service-based architecting as the architecting of sys-
tems that are assembled from individual software services, invoked through

98

5.3. THIRD EMPIRICAL STUDY

standardized communication models [137, 165]. SBSs can address multi-
ple execution environments by separating the service description (interface)
from the implementation of the service. Furthermore, SBSs facilitate the
use of software services aligned with business drivers [69].

Quality attributes (QAs) are characteristics that affect the quality of
software systems. This is because QAs are often not explicitly described by
stakeholders. Furthermore, QAs exhibit trade-offs that need to be negotiated
and resolved between stakeholders.

In SBSs QAs are difficult to achieve [34], because SBSs lack a central
control of the system due to limited end-to-end visibility of services, unpre-
dictable usage patterns of services and dynamic composition of systems [34].
Often, QAs cannot be achieved by tuning a system after the SBS is imple-
mented. Instead, achieving QAs is a continuous activity that should be
emphasized throughout the whole software development cycle [34].

In contrast to conventional software systems, the role of QAs in the
context of SBSs has not yet been studied extensively. However, quality is
a top challenge in SBSs engineering [104, 167]. Even though proposals for
QAs in SBSs exist, there is a lack of empirical studies that investigate QAs
in practice [149].

Using the GQM approach [35], the goal of our study is defined as fol-
lows: to analyze and characterize (purpose) the role of QAs (issue) in SBSs
architecting (object) from the perspective of practitioners and researchers
with practical architecting experience (viewpoint).

5.3.1 Design

We conducted a descriptive survey [133] to study how QAs are treated during
SBSs architecting, rather than why QAs are treated in a certain way. We
used purposive sampling [73] and required participants to have practical
experience in architecting SBSs. A prerequisite to participate in the survey
was to had the architect role in an SBS project.

Surveys collect qualitative and quantitative information to provide a
snapshot of the current status related to a phenomenon [212]. To ensure
rigor, repeatability and to reduce researcher bias, we designed a survey pro-
tocol following the template proposed for evidence-based software engineer-

99

CHAPTER 5. STATE OF THE PRACTICE

ing6. Furthermore, the study itself followed the survey process proposed by
Ciolkowski et al. [65] and included the steps of survey definition, design,
implementation, execution, analysis and packaging. We refined these steps
based on survey activities described by Pfleeger and Kitchenham [178].

Research questions

We defined three questions (see Table 5.6):

• RQ1, How important are QAs compared to functionality when archi-
tecting SBSs?, current literature, such as [36, 208, 207, 32], suggests
that QAs, and NFRs, drive the design of software architectures. We
are interested in finding out if this is also the case for SBSs, or if QAs
are mainly treated as factors that suggest the use of a service-based
solution in the first place but are not considered architecture drivers.
This is because service-orientation claims to achieve qualities, such as
interoperability, flexibility or reusability [84]. Answering this question
helps practitioners understand if QAs require special attention when
architecting SBSs, similarly to conventional systems, or if architecting
SBSs allows architects to focus on functionality because Qa are some-
how achieved by the SBSs (e.g., through its patterns and technologies).

• RQ2, To what extent are QAs specific to application domains of SBSs?,
we aim at identifying information that can provide guidance for soft-
ware architects through the architecting process by focusing on the
QAs that are most important for a certain application domain (e.g.,
healthcare, telecommunication). This question helps decide what QAs
to focus on when architecting of SBSs for particular domains.

• RQ3, What kind of architectural decisions are used to address QAs
in SBSs?, investigates the transition from QAs to architectural deci-
sions by relating QAs to the architecture decision types proposed by
Kruchten [143]. Furthermore, we relate decisions to decision categories
(ad-hoc decisions, pattern, and technology). Answers to RQ3 provide
a first step towards the solution space, i.e., how to accommodate QAs
when architecting SBSs.

6http://www.dur.ac.uk/ebse/resources/templates/SurveyTemplate.pdf

100

5.3. THIRD EMPIRICAL STUDY

Table 5.6: Research questions of the third empirical study

ID Research Question

RQ1 How important are QAs compared to functionality when architecting SBSs?
RQ2 To what extent are QAs specific to application domains of SBSs?
RQ3 What kind of architectural decisions are used to address QAs in SBSs?

Data preparation and collection

All survey questions7 referred to one particular project that participants had
worked on in the past. Some questions were optional and some mandatory.
Structured questions could be answered using Likert-scale or pre-defined an-
swer options [134], unstructured questions allowed numeric answers or free
text. For some questions, more than one answer was possible and partic-
ipants were asked to choose the best-fitting answer. For most questions,
participants were allowed to provide comments to complement their answer.
We included four types of questions:

• Questions about the profile of participants were used to ensure relia-
bility and to support data analysis.

• Questions about the project helped assess if project specifics have an
impact on the way QAs are treated.

• Questions about the QAs helped identify relevant QAs for different
projects. For describing QAs we used a scenario-based approach to
make QAs concrete [36] and to avoid misunderstandings when referring
to QAs.

• Questions to analyze architectural decisions made to accommodate
QAs were used to identify what decisions help achieve QAs during
architecting. Questions to describe decisions were derived from the
template to describe architectural decisions as proposed in [206].

Data were collected from May 2011 to September 2011 through an online
questionnaire. It took about 20 minutes to complete.

7The survey questionnaire is available in the Appendix B.

101

CHAPTER 5. STATE OF THE PRACTICE

Data analysis

To ensure the quality of the data obtained from the questionnaire, we applied
sanity checks to find obvious errors in data. We used descriptive statistics
to analyze the data [132]. Furthermore, we analyzed dependencies between
the answers provided to different questions. Questions which resulted in free
text were coded [156] and underwent content analysis [138].

Limitations of the study

We have analyzed the construct validity and the internal and external va-
lidity of this study.

Construct validity. This aspect of validity reflects to what extent the op-
erational measures really represent what is investigated according to the
research questions [213]. This study was supported by two main principles:
rigorous planning of the study according to Oates [166], and establishment of
protocols for data collection and data analysis. The protocol was reviewed
by external reviewers. The survey was piloted both internally and using
external participants from the target population.

Internal validity. There might have been confounding variables and other
sources that could bias our results [65, 135]. To control variables, exclusion
or randomization can be applied [208]. Exclusion means that participants
who are not sufficiently experienced were excluded from the study. We en-
sured this by having a check question that only allowed participants with
architecting responsibility in a project to proceed with the questionnaire.
Randomization means that we used a sampling technique which leads to
random participants. Furthermore, validity is subject to ambiguous and
poorly phrased questions. To mitigate this risk, we piloted the data col-
lection instrument in multiple iterations until potential respondents under-
stood our questions and intentions. Another limitation is that participants
might not have answered truthfully to the questions [208]. To address this
problem, we made participation voluntary and anonymous. Furthermore,
participants spent personal time on answering the questionnaire. We can
therefore assume that those who volunteered to spend time have no reason
to be dishonest [208]. Also, participants might not have had the same un-
derstanding as we required them (e.g., what is a decision, what is a QA); we

102

5.3. THIRD EMPIRICAL STUDY

tried to mitigate this through sanity checks as well as through piloting the
questionnaire with members of the target population.

External validity. External validity is concerned with the problem of gen-
eralizing the results to the target population. We assume that our results
are applicable to a population that meets the sampling criteria of our survey
(i.e., architects with industrial experience in SBSs). Also, the fact that some
participants had a background as researchers and not only as practitioners
may have influenced the results as they may have a broader view on SBSs
architecting. However, answers are not just influenced by the understand-
ing of participants, but also the characteristics of companies and software
projects in which participants worked. We provided a brief discussion of
how company and project size affected the results. Furthermore, we only
had a limited number of participants (31 responses). However, this is due
to the fact that our survey targeted a very specific population and required
participants with knowledge about QAs, experience with architecting SBSs,
and involvement in a real project. The number of participants in our study
(31 participants) is similar to the number of participants in other empirical
studies on software architecture or software requirements (e.g., 11 software
companies [42], 53 industrial software architects [208], 22 students [207], or
39 architects within one company [181]). Note that none of these studies
were limited to SBSs only. A recent survey on non-functional properties in
SOA included 29 participants [38].

5.3.2 Results

In this section we answer the research questions stated at the beginning of
this paper and provide demographic data to contextualize the information
obtained in this study.

Demographic Data

We obtained 31 valid responses.

• We had participants from Europe (19, 61.3%), North America (7,
22.6%), Asia (2, 6.5%), Australia (2, 6.5%), and South America (1,
3.2%). The countries with most responses were Spain (7, 22.6%) and
Germany (5, 16.1%).

103

CHAPTER 5. STATE OF THE PRACTICE

• Eighteen participants (58%) had experience in both academia and in-
dustry. Ten participants (32%) had only experience in industry, whilst
3 (10%) were participants from academia who had worked on SBSs
projects as part of their research).

• On average, participants with industrial experience had more than 12
years of such experience whilst participants with research experience
had more than 5 years of experience in research related to SBSs.

• Participants played different roles in the selected projects, e.g., de-
signer, consultant. In the results of RQ1 we relate roles to answers
given by participants.

• The educational degrees of participants were uniformly distributed:
PhD (7, 22.6%), MSc (9, 29.0%), BSc (8, 25.8%), and other (7, 22.6%).
The majority of participants had degrees in computer science (24,
77.4%).

• From the total of participants with industrial experience (28 partici-
pants), 20 (71.4%) answered that their company has over 250 employ-
ees, 3 (10.7%) worked in companies with 50 - 250 employees, 4 par-
ticipants (14.3%) in companies with 10 - 50 employees, and just one
participant (3.6%) worked in a company with less than 10 employees.

RQ1: How important are QAs compared to functionality when
architecting SBSs?

Importance and explicitness of QAs. Figure 5.4a shows the response to the
question about how important QAs were when architecting the system of the
project selected by participants, compared to functionality. Functionality
and QAs were considered equally important by most respondents. When
asked whether QAs were considered implicitly or explicitly, most respondents
(71%) answered: explicitly (see Figure 5.4b).

To study whether there is a dependency between the importance of
QAs and their implicit or explicit nature, we created a cross-tabulation
(Table 5.7). We observe that 18 respondents (58%) considered QAs and
functionality equally important and at the same time made QAs explicit.
On the other hand, in 6 cases (20%), QAs were not made explicit and QAs

104

5.3. THIRD EMPIRICAL STUDY

21, 68%

6, 19%

4, 13%

QAs and functionality were equally important

QAs were less important than functionality

QAs were more important than functionality

(a) QAs compared to functionality

9,
29%

22,
71%

QAs were addressed implicitly

QAs were addressed explicitly

(b) Implicit/explicit nature of QAs

Figure 5.4: Classifications of QAs

Table 5.7: Importance of QAs and their implicit or explicit nature

QAs explicit QAs implicit Total

QAs were as important as functionality 18 (58%) 3 (10%) 21 (68%)
QAs were less important than functionality 0 (0%) 6 (20%) 6 (19%)
QAs were more important than functionality 4 (12%) 0 (0%) 4 (13%)
Total 22 (71%) 9 (29%) 31 (100%)

were considered less important than functionality. In all 4 answers (12%)
where QAs were more important than functionality, QAs were made explicit.
There was no case in which QAs were made explicit and at the same time
were considered less important than functionality. Fisher’s exact test led
to p < 0.001 which means that there is a statistically significant relation-
ship between the importance of QAs and their implicit or explicit nature.
Thus, there is a high probability that projects which treat functionality and
QAs equally important also make QAs explicit. On the other hand, there
is a very low probability that QAs would be treated equally important to
functionality when QAs are considered implicitly.

Impact of training on how QAs are perceived. Table 5.8 and Table 5.9 show
participant’s training related to SBSs, and the importance of QAs, and their
implicit or explicit nature.

105

CHAPTER 5. STATE OF THE PRACTICE

Table 5.8: Importance of QAs and the training of participants

Training No training Total

QAs were as important as functionality 15 (72%) 6 (60%) 21 (68%)
QAs were less important than functionality 3 (14%) 3 (30%) 6 (19%)
QAs were more important than functionality 3 (14%) 1 (10%) 4 (13%)
Total 21 (100%) 10 (100%) 31 (100%)

Table 5.9: Nature of QAs and the training received by participants

Training No training Total

QAs explicit 16 (76%) 6 (60%) 22 (71%)
QAs implicit 5 (24%) 4 (40%) 9 (29%)
Total 21 (100%) 10 (100%) 31 (100%)

• Training. The majority of participants who received training treated
QAs and functionality as equally important (15 responses, 72%). This
corresponds to 48% of all participants. Three participants with train-
ing in SBSs considered QAs as less important than functionality (14%,
or 10% over all participants) and 3 participants with training consid-
ered QAs more important than functionality (14%, or 10%). Also, 16
participants (76% or 52% over all participants) with training consid-
ered QAs explicitly, with just 5 participants (24%, or 16% over total)
with training considering QAs implicitly.

• No training. Six participants with no training considered QAs and
functionality as equally important (60%, or 20% of all participants);
three participants without training (30%, or 10% of all participants)
considered QAs as less important compared to functionality, and 1
participant without training (10%, or 3.6% of all participants) con-
sidered QAs as more important than functionality. Furthermore, 6
participants with no training (60%, or 20% of the total number of
participants) considered QAs explicitly, whereas 4 (40%, or 13% of all
participants) considered them implicitly.

However, Fisher’s exact test did not reveal any significant dependency
between training and the importance of QAs (p = 0.622). Similarly, there is

106

5.3. THIRD EMPIRICAL STUDY

Table 5.10: Importance of QAs and the role of participants

Architect Other Total

QAs were as important as functionality 14 (82%) 6 (55%) 20 (71%)
QAs were less important than functionality 2 (12%) 3 (27%) 5 (18%)
QAs were more important than functionality 1 (6%) 2 (18%) 3 (11%)
Total 17 (100%) 11 (100%) 28 (100%)

Table 5.11: Nature of QAs and the role of participants

Architect Other Total

QAs explicit 12 (71%) 8 (73%) 20 (71%)
QAs implicit 5 (29%) 3 (27%) 8 (29%)
Total 17 (100%) 11 (100%) 28 (100%)

no statistically significant dependency between training and the implicit or
explicit nature of QAs (p = 0.417). This means, there might be dependencies
but given the p-value we cannot make any statistically significant claim.

Impact of role on how QAs are perceived. Even though all participants had
architecting responsibilities in the project for which they answered the ques-
tions, they had different roles. Architects were the majority (17 participants
or 55% of all participants). Additional roles included 3 project managers
(10%), 2 developers (7%), and 1 participant of each of the following roles:
consultant, quality engineer, analyst, industrial researcher, unit manager
and standards developer. Cross-tabulations are shown in Table 5.10 and
Table 5.11. Three participants did not provide any role. Thus, the total
number in Table 5.10 and Table 5.11 is 28 instead of 31. Fisher’s exact
test indicated a dependency between the role of participants and how they
judged the importance of QAs (p = 0.078). Given the number of archi-
tects that considered QAs as equally important compared to functionality,
this dependency means that architects and designers tend to treat QAs and
functionality equally important. Furthermore, most architects and designers
treated QAs explicitly (71% of all architects). However, Fisher’s exact test
(p = 0.151) did not reveal any significant dependency between the role of
participants and how they treated QAs.

107

CHAPTER 5. STATE OF THE PRACTICE

Additional observations

• We did not find any indicator that participants with more years of
industrial experience treat QAs as more (or less) important than func-
tionality, or consider QAs implicitly or explicitly. Also, there was no
difference between general software engineering work experience and
work experience related to SBSs architecting when considering the im-
pact of experience on the importance or implicit / explicit nature of
QAs.

• Project size in person-months does not have any significant relation-
ship to the importance of QAs, nor to the implicit or explicit nature
of QAs. On the other hand, the company size has an impact on how
QAs are perceived (Fisher’s exact test led to p = 0.115) and treated
(p = 0.022). The larger the company, the higher the probability that
QAs are treated explicitly rather than implicitly. Similarly, the larger
the company, the higher the probability that QAs and functionality
were treated equally important.

• We have not found any relationship between the type of the project
selected by the participants (single service, a complete SBSs system,
or systems using services as part of conventional systems, i.e., hybrid
systems) and the importance and implicit / explicit nature of QAs.

• When studying the relationship between the importance of QAs and
their implicit / explicit nature, and the reason why SOA was chosen
as design paradigm, we found that there is no statistically significant
relationship. However, we found that 23% of participants treated QAs
explicitly and at the same time indicated that certain QA suggested the
use of service-orientation. Similarly, 26% of the participants treated
QAs and functionality equally important and indicated that certain
QA suggested the use of a service-based solution. This means, when
QAs suggested the use of SOA, QAs tend to be treated explicitly and
equally important as functionality. However, even though QAs were
the driver for choosing service-orientation as design paradigm, during
the architecting phase QAs were not considered more important than
functionality.

108

5.3. THIRD EMPIRICAL STUDY

1

11

2

7

4

2
1

0

2

4

6

8

10

12

Figure 5.5: Frequency distribution of QA

Answer: the majority of software architects perceived QAs at the same
level as functional requirements, and also the majority of architects make
the QAs explicit in their projects. We found no relation of this fact to
the training, role, or experience of the participant, also no relation was
found with the project size and type.

RQ2: To what extent are QAs specific to application domains of
SBSs?

To answer RQ2, we used responses to the question about the most important
QAs that participants had experienced. During analysis we mapped all QAs
stated by participants in terms of scenarios to QAs for SBSs as defined by the
S-Cube quality model [29]. This was done through content analysis where
combinations of three researchers categorized each QA. Figure 5.5 shows the
frequency distribution of QAs. We grouped data-related quality attributes
from the S-Cube quality model (data reliability, completeness, accuracy,
integrity, validity). Dependability and performance are the most frequently
addressed QAs. Note that not all participants provided a complete scenario.
Thus, the total number of types in Figure 5.5 and in Table 5.12 is 28.

109

CHAPTER 5. STATE OF THE PRACTICE

1 1 1
2

3
2

1

3

1

6

4
3

2
1

0

1

2

3

4

5

6

7

Figure 5.6: Frequency distribution of application domains

Figure 5.6 shows the frequency distribution of domains of projects that
participants had worked in. The category Other includes domains such as
aerospace, real estate and social networking. Fisher’s exact test did not
reveal any relationship between QAs and domains (p = 0.456). Also, cross-
tabbing domains and QAs did not show a QA that would be addressed more
than twice in a domain. This means, we could not identify any QA that
would be particularly relevant for a certain domain. In Table 5.12 we show
the cross-tabulation between the QAs and their importance (see RQ1). Ex-
cept for dependability and performance which tend to be considered more
important than functionality, there is no trend for a relationship between
other QAs and their importance (p = 0.983). Also, there is no relation-
ship between the QAs and if QAs has been treated explicitly or implicitly
(p = 0.837). The only trend that we observed is that dependability and
performance tend to be treated explicitly.

Answer: with the gathered data we have not found any relation be-
tween QAs and application domains, but we have found that depend-
ability and performance are important QAs for SBSs.

110

5.3. THIRD EMPIRICAL STUDY

Table 5.12: QAs and their importance

Equal1 Less2 More3 Total

Data-related 1 (5.3%) 0 (0%) 0 (0%) 1 (3.6%)
Dependability 7 (36.8%) 2 (33.3%) 2 (66.7%) 11 (39.3%)
Interoperability 1 (5.3%) 1 (16.7%) 0 (0%) 2 (7.1%)
Performance 5 (26.3%) 1 (16.7%) 1 (33.3%) 7 (25.0%)
Reusability 3 (15.8%) 1 (16.7%) 0 (0%) 4 (14.3%)
Security 1 (5.3%) 1 (16.7%) 0 (0%) 2 (7.1%)
Usability 1 (5.3%) 0 (0%) 0 (0%) 1 (3.6%)
Total 19 (100%) 6 (100%) 3 (100%) 28 (100%)
1 QAs were as important as functionality
2 QAs were less important than functionality
3 QAs were more important than functionality

RQ3: What kind of architectural decisions are used to address
QAs in SBSs?

We used two classifications to differentiate the kinds of decisions. First, we
used Kruchten’s taxonomy of decision types [143]. And second, we classified
decisions based on the following decision categories:

• Ad-hoc: Solution that is specific to a concrete problem of the project
(e.g., the architect decides to create a separate service to store sensitive
information about the users to improve the security of the system).

• Pattern: Reusable and widely-known architectural solution (e.g., the
decision to use of the Model-View-Controller pattern for structuring
the user interaction).

• Technology: A piece of implemented software that fulfills some required
functionality (e.g., the use PostgreSQL instead of other DBMS).

Assigning decisions made to accommodate QAs to types and categories
of decisions was made based on a content analysis involving all authors. As
Figure 5.7a shows, 15 decisions (50.0%) where classified as property deci-
sions, 10 decisions (33.3%) as existence decisions, and 5 decisions (16.7%) as

111

CHAPTER 5. STATE OF THE PRACTICE

15

10

5

0

2

4

6

8

10

12

14

16

Property
decision

Existence
decision

Executive
decision

(a) Decision types

13

11

6

0

2

4

6

8

10

12

14

16

Ad-hoc
solution

Pattern Technology

(b) Decisions categories

Figure 5.7: Classifications of decisions

executive decisions. Furthermore, as Figure 5.7b shows, 13 decisions (43.3%)
were classified as ad-hoc, 11 decisions (36.7%) as pattern, and 6 decisions
(19.4%) as technology. Only 1 decision was not classified because the partic-
ipant did not provide a description for it. We investigated relationships and
found a correlation between decision types and decision categories (Fisher’s
exact test: p = 0.018): 83.3% of technology decisions are existence decisions,
69.2% of the ad-hoc decisions are property decisions, and 54.5% of pattern
decisions are also property decisions.

QAs and decision classification. We tried to find correlations between
the decision classifications and the QA mentioned by the participants. The
results are not significant. We obtained a Fisher’s exact test of p = 0.835
and p = 0.741 for decision types and decision categories, respectively.

QAs treatment and decision documentation. As part of analyzing the
types of decisions made to accommodate QAs, we also studied if these deci-
sions were actually documented or treated implicitly. This is important as
not documenting decisions can lead to problems later during SBSs architect-
ing. There is a correlation between treating QAs explicitly as requirements
and documenting decisions (Fisher’s exact test: p = 0.022). All partici-
pants that treated QAs explicitly also documented the decisions made in
order to accommodate this QA. Also, all participants that did not docu-
ment decisions treated QAs implicitly. The complete relation between the

112

5.3. THIRD EMPIRICAL STUDY

Table 5.13: Nature of QAs and documentation

Not documented Documented Total

QAs explicit 0 (0%) 18 (78.3%) 18 (69.2%)
QAs implicit 3 (100%) 5 (21.7%) 8 (30.8%)
Total 3 (100%) 23 (100%) 26 (100%)

Table 5.14: Importance QAs and documentation

Not doc. Documented Total

QAs were as important as functionality 1 (33.3%) 17 (73.9%) 18 (69.2%)
QAs were less important than functionality 2 (66.7%) 3 (13.0%) 5 (19.2%)
QAs were more important than functionality 0 (0%) 3 (13.0%) 3 (11.5%)
Total 3 (100%) 23 (100%) 26 (100%)

implicit and explicit nature of QAs and their documentation is shown in
Table 5.13. Furthermore, we found a relationship between the importance
of a QA and if decisions related to accommodating this QA have been doc-
umented (p = 0.112). The complete relationships are shown in Table 5.14.
Note that the total number of responses in Table 5.13 and Table 5.14 is 26.
This is because not all participants provided information about the degree
of documentation of their architecture decisions.

Answer: all types and categories of architectural decisions are present
in SBSs. Remarkably the property type of decisions which normally
are related to QAs have predominance, this could be an indicator that
QAs are specially relevant in SBSs. Ad-hoc solution is the predomi-
nant category, which may indicate that the SBSs are is still not mature
enough, since the patterns and technologies do not solve most of the
architectural decisions.

5.3.3 Discussion

Overall, literature argues that QAs are important and are a major challenge
when architecting SBSs [104]. Our study showed that 71% of the partici-
pants indicated that QAs were treated explicitly. This could be an indicator

113

CHAPTER 5. STATE OF THE PRACTICE

that special attention is paid to QAs because they pose a major challenge.
On the other hand, general literature about software architecting and design
claim that QAs drive the architecture [36, 173]. Our study cannot confirm
or reject this claim. We found that QAs were rarely more important than
functionality. However, stating that QAs drive the architecture is different
from stating that QAs are more important than functionality. In fact, both
(QAs and functionality) are important but architecting methods (e.g., [32])
usually start with analyzing QAs as key drivers which then help select archi-
tecture solutions, such as patterns and tactics. Also, our study showed that
in 29% of all projects, certain QA suggested the use of a service-based solu-
tion. This could be an indicator that QAs were treated as global influence
factors or architectural drivers for high-level architectural decisions. It also
indicates that using a service-based solution is not only a technology-driven
decision but has sound rationale based on QAs.

We found that the majority of participants treated QAs and function-
ality as equally important in the context of SBSs. A recent study by van
Heesch and Avgeriou on the reasoning process of professional software ar-
chitects revealed that most architects consider functionality as important
or very important, but QAs as clearly more important than functional re-
quirements [208]. However, van Heesch and Avgeriou also acknowledge that
one of the most important things in architectural decision-making is to treat
both functional requirements and QAs as first-class concerns.

In another study, van Heesch and Avgeriou studied the reasoning process
of naïve architects (e.g., novice or junior architects) [207]. In their study,
more than 80% of participants indicated that NFRs play a prominent role
during architecting. A similar result can be found in our study with prac-
titioners in the context of SBSs as only 19% of our participants indicated
that QAs were less important than functionality. Our results show that only
13% of participants treated QAs as more important than functionality (i.e.,
QAs did not play the most prominent role for 13% of the participants).

In [38] the authors conducted a survey to evaluate a catalog of non-
functional properties for SOA, from the perspective of service consumers.
The design and goal of this survey differed to ours. For example, the survey
required participants to evaluate a catalog with 19 non-functional properties.
These QAs were prescribed, rather than elicited from participants as in our
study. As a result, the study refined definitions of non-functional properties

114

5.4. CONCLUSIONS

of their original catalog and renamed some properties. Furthermore, some
properties were added to or removed from the original catalog. The study
found that security was prioritized as being absolutely essential in a quality
model for SOA. However, our study showed that security only occurred in
two projects. Also, from the seven QAs (Figure 5.5) found in our study, only
three (performance, security, usability) are also included in the list of non-
functional properties for SOA proposed as a result of the survey presented
in [38]. Interoperability, a QA found in our study was considered as rele-
vant for service providers, not for service consumers in [38]. Interestingly,
reusability or dependability, two main features of SBSs were not found to
be relevant non-functional characteristic in SOA in [38].

A study in the embedded systems industry [41] studied how NFRs are
handled in practice. The study involved interviews with five product man-
agers and five project leaders from five companies. Even though the re-
search questions and the domain of this study were different than our re-
search questions, the study found that usability and performance are the
most important quality aspects. In contrast, our study found dependabil-
ity and performance as the most important QA, with usability being the
least important QA. The difference in the importance of usability could be
due to the nature of embedded systems versus SBSs: in embedded systems
user interfaces receive great attention and can determine the acceptance of
a system by end users; in SBSs the composition of a system by third-party
services imposes considerable challenges on the system dependability.

Poort et al. [181] studied NFRs as seen by architects. The study found
that as long as architects are aware of NFRs, they do not adversely af-
fect project success. This is in line with our results that most participants
consider QAs explicitly and at least equally important as functionality. Fur-
thermore, Poort et al. found that modifiability requires special attention if
it is business critical. In contrast, we did not find any indicator that modifia-
bility could threaten project success. This may be due to the fact that SBSs
are considered highly malleable and reconfigurable systems by definition.

5.4 Conclusions

In this chapter we have presented the results of three empirical studies.
The first one has been an instrument to show the software development

115

CHAPTER 5. STATE OF THE PRACTICE

practices, and in particular, we showed the impact of NFRs in the software
development practices. In the second empirical study we have presented the
results about how software architects deal with NFRs in practice. We have
focused our research questions on three activities: elicitation, documentation
and validation; and on three other issues: terminology, ranking of types and
tool support. In the third empirical study we presented the results of a
survey to study the role of QAs in the context of SBSs architecting.

In Table 5.15 we can see a selection of relevant observations made in
the three presented empirical studies in this chapter. We can see that, for
instance, the importance of NFRs is reported in the three studies, in par-
ticular when referring to software architecture, but looking at the results it
seems that this importance is not tied to the particular domain or the par-
ticular architectural style used. Both in the first and in the second studies,
the respondents declared that they are not interested in automatic tools to
handle NFRs, but instead would want to have tools supporting the tasks
related to NFRs. In the second study, we observed that non-technical and
technical NFRs are considered of equal relevance, and in the third study, the
architects said that functional and NFRs are of equal relevance. From both
observations, we can conclude that, all kinds of requirements are considered
relevant by the participating roles and studied domains, i.e., architects will
take into account all kinds of requirements in architectural decision making.

One of the most recurrent question in the three studies, was to rate
the most important types of NFRs. Table 5.16 shows the different results
obtained in the three studies. Disregarding the fact that the studies do
not target the same population, we can see that there are some types of
NFRs that appear in the three studies: reusability/maintainability and effi-
ciency/performance; while there are two types of NFRs that appear in the
first two empirical studies but not in the third: reliability and usability.
There is much variability in these results: respondents were thinking in spe-
cific projects, and they were subjective in their answers (e.g., a respondent
may be very concerned about security and s/he will find means to justify
that security is the most important NFR in most of the projects). This
variability means that we cannot establish a strict order of importance, we
can only indicate a general tendency.

116

5.4. CONCLUSIONS

Table 5.15: Relevant observations from the three empirical studies

Study Observation

First NFRs are important for practitioners, almost all the types of NFRs were
considered important by the respondents

First The importance of NFRs is not hardly conditioned by the use of a particular
architectural style

First Practitioners want to have the last word in the architectural decisions made.
Automatic tool will not suit their needs

First MDD techniques are far from being adopted by practitioners
Second NFRs were mostly elicited by architects
Second Software architects considered non-technical NFRs as relevant as technical

NFRs
Second Software architects performed other duties in the projects, and software

architects did not exist as a differentiated role
Second NFR elicitation is iterative, NFRs were not often documented, and just a few

types of NFRs were validated
Second Software architects did not want automatic NFR-based decision-making tools

but accepted architect-driven tools
Second We had indicators that the methods and techniques coming from the research

community have not been adopted by practitioners
Third QAs are often considered as important as functionality. QAs are often

treated explicitly
Third We could not identify QAs that would occur in particular domains
Third Even though many QAs are treated explicitly, during architecture design

they are often addressed through ad-hoc decisions
Third We did not find a correlation between QAs and the type or category of

decision that was made in order to accommodate a QA

Table 5.16: Most important types of NFRs from the three studies

Study Top type of NFR Second order Third order

First Reliability Maintainability
Efficiency

Usability
Reusability

Second Usability Performance
Reliability
Maintainability

Security

Third Dependability Performance Reusability

117

CHAPTER 5. STATE OF THE PRACTICE

118

Part III

Arteon, Quark, and ArchiTech

Chapter 6

State of the art

This state of the art is based on the state of the art presented in the PhD
thesis proposal [10], and has been updated with relevant works published
after the proposal.

In the last decade, the essential role that Architectural Knowledge (AK) [76]
plays in any software development process has been recognized. More con-
cretely, the concept of Architectural Decisions (ADs, also known as Archi-
tectural Design Decisions, ADDs) has been identified as a key concept of AK
(see quote bellow). The importance of AD concept is mentioned in many
publications (e.g., [121, 143, 206]). This advance in software architecture
has triggered several actions in the research community such as having ded-
icated tracks in software architecture conferences, special issues in journals,
and dedicated events (e.g., the workshop on Sharing and Reusing Architec-
tural Knowledge).

“[ADs...] are defined as those Decisions that are assumed to influence
the Architectural Design and can be enforced upon this Architectural De-
sign, possibly leading to new Concerns that result in a need for taking
subsequent decisions. [...] Note that architectural design decisions need
not necessarily be “invented” by the architect himself; architectural pat-
terns, styles, and tactics are examples of architectural design decisions

121

CHAPTER 6. STATE OF THE ART

(or, more precisely, alternatives) that are readily available from other
sources”, R. de Boer et al., “Architectural Knowledge: Getting to the
Core”, 2007 [76].

Related to AK, there are several topics that are of especial relevance for
this thesis:

• Architectural Knowledge ontologies. Ontologies are the principal way
of representing knowledge, and AK is no exception. These ontologies
are presented is some cases, as models or metamodels, but always as a
way to organize the elements and concepts that are relevant to AK. In
this thesis is presented an ontology for AK, Arteon (see Section 7.1),
which was inspired in some of the works presented in this part of the
state of the art.

• Software Architectural Design Methods. The design of the tool pro-
duced in this thesis, ArchiTech, was supported by a Software Archi-
tectural Design Method (SADM), Quark (see Section 7.2). SADMs
are methods that help the architect to derive the software architecture
from the software requirements [86]. Before defining Quark, we stud-
ied the available SADMs in the field (e.g., Attribute-Driven Design
Method [32]).

• Architectural Knowledge tools. As result of this thesis one tools was
produced to manage AK and assist software architects in architectural
decision making, ArchiTech (see Section 7.3). In this part, the tools
found to manage AK are analyzed.

These topics are studied in the following sections.

6.1 Architectural Knowledge ontologies

Several ontologies have been published to represent AK, each with different
nuances, but most of them making a special emphasis on the notion of ADs.
One particularly relevant work in this direction is the ontology proposed
by P. Kruchten et al. [145] to describe the types of ADs (it was previously
published in 2004 [143]). In this taxonomy ADs are classified into: existence
decisions, property decisions, and the executive decisions:

122

6.1. ARCHITECTURAL KNOWLEDGE ONTOLOGIES

Property decision: “A property decision states an enduring, overarching
trait or quality of the system. Property decisions can be design rules
or guidelines (when expressed positively) or design constraints (when
expressed negatively), as some trait that the system will not exhibit”,
e.g., “all domain-related classes are defined in the Layer.”

Existence decision: “An existence decision states that some element / ar-
tifact will positively show up, i.e., will exist in the systems’ design or
implementation”, e.g., “the logical view is organized in 3 layers.”

Executive decision: “These are the decisions that do not relate directly
to the design elements or their qualities, but are driven more by the
business environment (financial), and affect the development process
(methodological), the people (education and training), the organiza-
tion, and to a large extend the choices of technologies and tools”, e.g.,
“system is developed using J2EE.”

The following are works where a conceptualization of AK was presented.
Being flexible, we may understand these conceptualizations as ontologies
even that they are named as metamodels or other terms by their authors1:

• A. Jansen et al. [121] presented a metamodel that put ADs as the
central concept. The metamodel is divided in three parts: composi-
tion model, architectural model, and design decision model. ADs are
described by means of design fragments. Other relevant concepts that
appear in this metamodel are: connector, interface and port.

• R. de Boer et al. [76] presented a model to represent the “core” of AK.
This work defines ADs as alternatives. Other relevant concepts that
appear in this model are: stakeholders, activities, and artifacts. The
model is represented using a custom made modeling language.

• P. Avgeriou et al. [29] presented a conceptual model to represent an
AD. This work defines decisions as options. In this work decisions are

1Sometimes the terms used to refer to these conceptualizations (model, metamodel,
ontology, taxonomy, etc.) are used by convenience (e.g., the target audience) instead
of their actual meaning. The differences between these terms are described in: http:
//infogrid.org/trac/wiki/Reference/PidcockArticle

123

CHAPTER 6. STATE OF THE ART

related to rationale, issues, and concerns. This model pretend to be
an extension to the ISO/IEC/(IEEE) 42010 [118].

• R. Capilla et al. [54] presented a metamodel for architecting, manag-
ing and evolving architectural design decisions. This work divides the
concepts in three groups: project model, architecture, and decision
model. The project model includes concepts such as stakeholders, it-
erations, requirements, and views of the architecture. The part named
as architecture have concepts such as variation points, patterns and
styles. The decision model includes concepts such as constraints, de-
pendencies, decision-making activity, and assumptions rationale.

• C. López et al. [147] presented an ontology that describes Soft-goal In-
terdependencies Graphs (SIGs) semantics concepts to represent NFR
and design rationale knowledge. This ontology does not include ar-
chitectural concepts, but the concepts related to interdependency, ar-
gumentation, and decomposition. The ontology is described using the
OWL language.

• A. Akerman and J. Tyree [1] presented an ontology that focus on ADs.
The ontology is divided in four parts: architecture assets, architecture
decisions, stakeholder concerns, and architecture roadmap. The archi-
tecture assets concepts offer an accurate description of the structure
of the architecture. Concerns are addressed by ADs, these, in turn,
are implemented in roadmaps. The ontology is represented in UML.

• ArchVoc [31] is an ontology for representing the architectural vocabu-
lary. The terminology is classified in three main categories: architec-
tural description (e.g., frameworks, views, and viewpoints), architec-
tural design (patterns, styles, methodologies, etc.), and architectural
requirements (non-functional requirements, and scenarios).

• Pahl et al. [174] presented an ontology that focused on components and
connectors as a general way to describe architectural styles. This on-
tology uses a precise notation because the final objective is to provide
a modeling language for architectural styles.

• Dermeval et al. [80] presented a metamodel that relates ADs, i* and
ACME [94]. In their metamodel we can observe that decisions are

124

6.1. ARCHITECTURAL KNOWLEDGE ONTOLOGIES

Table 6.1: Comparison of AK conceptualizations

Ref. ADs are... ADs are related with... Modular1 Other aspects covered

[121] Design fragments Composition techniques Yes Architecture structure
[76] Alternatives Concerns No Design process
[29] Options Rationale, issues, concerns No None
[54] Patterns, styles Constraints, dependencies Yes Project, architecture
[147] N/A N/A Yes NFRs
[1] Alternatives Concerns, assumptions Yes Architecture structure
[31] N/A N/A Yes Architecture structure
[174] N/A N/A No Architectural styles
[80] Alternatives Rationale, consequences Yes ACME, i*
Arteon2 Decisions Quality attributes Yes Architecture structure
1 The conceptualization is described in different modules or there is some kind of separation.
2 Our ontology, Arteon, is explained in Section 7.1.

alternatives, and the special relevance of NFRs in their approach. As
outcome of a decision they produce a design fragment, which is repre-
sented using ACME.

6.1.1 Analysis

In Table 6.1 there is a summary of the works to represent AK mentioned
in this section. The concept of alternative appear in three of the studied
works [76, 29, 1], in this same three works also appear the concern concept
related to ADs. These coincidences may be consequence of collaborations
between the authors, it is also worth to mention that they are very near in
time. Most of the works present the concepts separated in different aspects,
this is also a recommended practice when designing ontologies. Five works
considered relevant to include concepts related to the structure of the archi-
tecture as part of the AK (in the case of [29] the intention is not to represent
AK, only the part related to ADs).

None of the studied conceptualizations fulfills the underlying needs of a
computer-aided support system to make architectural decisions: a computer
oriented formalism and enough detail to design an architecture. In this thesis
we try to fulfill these needs, this is the reason why we designed an ontology,
Arteon (see Chapter 7). Arteon is inspired in many of the studied ontologies
and complemented with the required detail and formalism to be used in a
computer-aided support system context.

125

CHAPTER 6. STATE OF THE ART

6.2 Software architectural design methods

In this section are analyzed some of the Software Architecture Design Meth-
ods (SADMs) available in the literature, and more concretely is important
for the contents of this thesis how these methods deal with NFRs.

One of the principal producers of this type of methods is the Software
Engineering Institute (SEI). SEI has created several design and analysis
methods: SAAM [126], ATAM [128], CBAM, QAWs, QUASAR, ADD [32],
ARID. Documentation for all of them can be found in SEI website2. The
most relevant ones, in relation to the contents of this thesis, are ADD and
ATAM.

• Architecture Tradeoff Analysis Method (ATAM, R. Kazman et al.)
[128] is a methodology that evolved from Software Architecture Anal-
ysis Method (SAAM, 1996). It is a method to understand the trade-
offs of the architectures of software-intensive systems. This method
analyzes the architecture for several quality attributes (e.g., security,
performance, etc.). The method guides the design decisions that have
an impact on quality attributes. It is a spiral method, consisting in
four phases: requirements elicitation including constraints, architec-
tural views, modeling and analysis, and identification of tradeoffs.

• Attribute-Driven Design Method (ADD, F. Bachmann and L. Bass)
[32]. A second version of this method was published in 2007 (avail-
able in the SEI website). ADD is a method to design the software
architecture of a system based on quality goals for the system. The
method is extensible for any quality attributes but has been particu-
larly elaborated for the attributes of performance, modifiability, secu-
rity, reliability, availability and usability. The method considers three
architectural views: module view, component and connector view, and
deployment view. The method consist in decomposing the system re-
cursively into subsystems and then into components.

We did several searches in academic databases (e.g., Google Scholar,
ISI Web of Science, etc.), complemented with other methods that we were
already aware of to build a list of SADMs:

2www.sei.cmu.edu/architecture

126

6.2. SOFTWARE ARCHITECTURAL DESIGN METHODS

• Quality Atribute-oriented Software ARchitecture (QASAR, J. Bosch)
[47] is a method performed in three steps. First, the functional re-
quirements are implemented in components, then the architecture is
analyzed to decide whether the NFRs are fulfilled or not, and in the
third step the architecture is adapted to be in conformance with the
NFRs. The second and third steps are repeated till the whole system
is in conformance.

• Quality-driven Architecture Design and Analysis (QADA, M. Matin-
lassi et al.) [151] is a set of methods that include a method for selecting
an appropriate family architecture approach, a method for quality-
driven architecture design, a method for evaluating the maturity and
quality of the family architecture, and a technique for representing
variation points in the family architecture.

• Quality Achievement at the Architectural Level (AQUA, H. Choi et
al.) [60] is a method that provides software architects means for achiev-
ing quality attributes at the architectural level. AQUA involves two
kinds of activities, which are architectural evaluation and transforma-
tion.

• A. Bertolino et al. [44] presented an approach to automate the architec-
ture design and implementation. The method starts from requirements
in Natural Language (NL). The authors say that they want to inte-
grate several existing tools to accomplish the task: QuARS (Quality
Analyzer for Requirements Specifications, tool to obtain requirements
from NL specifications), ModTest (a model-checking tool), and Cow
Suite (a testing tool).

• T. Al-Naeem et al. [2] proposed a method centered on the decision
making process, but not on generating the architecture. The method
uses Analytic Hierarchy Process (AHP) to score each alternative deci-
sion. The author says that other Multiple Attribute Decision Making
(MADM) methods could be used instead of AHP.

• Tang et al. proposed the AREL method [202] to improve the traceabil-
ity of ADs by linking them to the design rationale. They also propose
a conceptual model to manage this rationale, and the concern for soft-

127

CHAPTER 6. STATE OF THE ART

ware quality during the architecture design, but they do not describe
which is the reasoning method used (if any).

• Montero and Navarro proposed ATRIUM method [159], Architecture
Traced from RequIrements applying a Unified Methodology. ATRIUM
is a methodology based in the MDD approach, its intention is to guide
the architects in the definition of the architecture, the method consid-
ers both functional and non-functional requirements.

• L. Chung et al. [61] proposed a framework, Proteus, to develop software
architectures considering NFRs in goal-oriented notation, using NFR
Framework [63].

• Tang et al. proposed the AREL method [202] to improve the trace-
ability of ADs by linking them to the design rationale.

Many other SADMs are improvements or specializations of the previous:

• S. Bode et al. [45] presented a method based on QASAR to design the
system’s security architecture. The authors state that they considered
methods form software engineering and security engineering to deal
with security requirements.

• S. Kim et al. [129] presented a method that is based on architectural
tactics. Architectural tactics are explained in L. Bass et al. book
“Software architecture in practice, second edition” [36], they are ba-
sically reusable pieces of the architecture. This method uses feature
models to generate the architecture automatically. It is very similar
to a product line for architectures.

• D. Perovich et al. [177] presented a method to design software archi-
tectures, ATRIUM, using MDD considering quality aspects (based on
ADD method). In this case they use a “megamodel” (a model com-
posed of models) to represent the software architecture. The method
uses feature models to construct the architecture.

• E. Niemelä and A. Immonen [161] presented the QRF method, this
method extends QADA by providing a systematic method for elicit-
ing and defining NFRs, tracing and mapping these requirements to
architectural models and for enabling quality evaluation.

128

6.2. SOFTWARE ARCHITECTURAL DESIGN METHODS

Table 6.2: Comparison of SADMs

Ref. Name Kind of NFR Computer-aided Based on...

[128] ATAM Quality aspects No SAAM
[32] ADD Quality aspects No None
[47] QASAR Quality aspects No None
[151] QADA Quality aspects Yes, as product lines None
[60] AQUA Quality aspects Somehow, transformations None
[44] No name Requirements Yes, no details None
[2] ArchDesigner Quality aspects Yes, limited to decisions None
[202] AREL Concerns No None
[159] ATRIUM Any NFR Yes, MDD method None
[61] Proteus Any NFRs No NFR Framework
[45] No name Security No QASAR
[129] No name Any NFR Yes, as product lines ArchDesigner
[177] No name Any NFR Yes, MDD method ADD
[161] QRF Quality aspects Yes, as product lines QADA
[33] No name Quality aspects Somehow, decision making ADDv1

Quark1 Quality aspects Yes Empirical evidence
1 Our SADM, Quark, is explained in Section 7.2.

• F. Bachmann et al. [33] proposed an improved reasoning framework
for ADD method (first version). The authors distinguish between ar-
chitectural model and quality attribute model and characterize the
actions that a reasoning framework undertakes as basic architectural
transformations.

Finally, it is worth mentioning one interesting work was published by
Hofmeister et al. in 2007 [110]. Their intention was to produce a general
model of architectural design methods based on empirical observation. Their
main result is a model with three activities:

• Architectural analysis, “serves to define the problems the architecture
must solve”.

• Architectural synthesis, “proposes architecture solutions to a set of ar-
chitectural significant requirements”.

• Architectural evaluation, “ensures that the architectural design deci-
sions made are the right ones”.

129

CHAPTER 6. STATE OF THE ART

6.2.1 Analysis

The Table 6.2 summarizes the studied SADMs. There are many SADMs that
use the ideas behind product lines to design architectures. It is interesting
to see that almost all are capable to deal with quality aspects or NFRs
in general, not limiting to a particular type as it happens in some MDD
approaches. It seems to be more common to speak about quality aspects
than NFRs in this area. SADMs that are based on other SADMs are more
specific and are oriented to facilitate the automation of the method. There
are many SADMs that consider NFRs and some of them are able to generate
an architecture in a semi-automatic way.

6.3 Architectural Knowledge tools

There are, already, many tools to manage AK. This may be the reason why,
as far as we now, there are three papers published to compare tools related
with AK:

• A. Tang et al. [202]: in this work is published a comparative of five
AK tools, with especial emphasis in the name used for architectural
concepts.

• K. Henttonen and M. Matinlassi [109]: this work is focused on Open
Source Software (OSS) based tools for AK.

• M. Shahin et al [194]: this work compares tools to manage architectural
design decision and the ways used to model these decisions.

We selected 10 tools from these papers, the tools are: AEvol, Ontology-
Driven Visualization (ODV), Archium, ADDSS, AREL, Knowledge Archi-
tect, PAKME, Web of Patterns, Stylebase for Eclipse, and Morpheus. We
summarized the observations on these tools in Table 6.3, are we also identi-
fied some interesting facts related with this thesis for some of these tools:

• ODV [78]: this tool uses the ISO/IEC 9126 [117] to classify NFRs.

• AREL [203]: this tool takes in consideration NFRs as one of the ele-
ments of the architecture design. This tool helps in the design of the
architecture using UML models and views.

130

6.3. ARCHITECTURAL KNOWLEDGE TOOLS

Table 6.3: Comparison of AK tools

Ref. Name SADM AK1 Platform MDD NFRs

[95] AEvol No No Eclipse No No
[78] ODV No No Windows desktop No Yes
[121] Archium No Yes Java/Compiler No Somehow
[55] ADDSS No Yes Web No Somehow
[203] AREL AREL Yes Enterprise Architect No Yes
[122] Knowledge Architect No Yes Excel plug-in No No
[4] PAKME No Yes Web/Java No Yes
[82] Web of Patterns No Yes Web/Eclipse No No

Stylebase for Eclipse QADA Yes Eclipse Yes Yes
[159] Morpheus ATRIUM No Windows desktop Yes Yes
[129] RBML-PI RBML No Windows desktop Yes Yes

ArchiTech2 Quark Arteon Eclipse plug-in No Yes
1 This column indicate if the tool is based on some AK conceptualization.
2 Our AK tool, ArchiTech, is explained in Section 7.3.

• PAKME [4]: in this tool NFRs can be specified as keywords of archi-
tectural patterns that then can be reused for other projects. This tool
is limited to textual knowledge.

• Stylebase for Eclipse3: this tool is a plug-in for Eclipse, that is capable
to generate code for some architectural patterns, each pattern have a
model associated (an image not a real model) and the principal NFRs
that are improved (but in a very limited way).

• Morpheus [159]: this tool uses NFRs as constraints over functional
requirements that then conditions the software architecture. It is pre-
sented as a MDD method that starts from requirements using goal
oriented notations.

6.3.1 Analysis

First of all it is worth to remark that most of these tools are discontinued or
created just a proof of concept. Also, one important fact is that all the tools
that appear in this section are the result of an academic research (as far
as we know, there is no software company offering similar products). If we
look to the SADM and AK columns, we can see that most of the tools have

3stylebase.tigris.org

131

CHAPTER 6. STATE OF THE ART

ways to manage the AK but only few have a well-defined method, this is
not strange because most of them are oriented to document ADs but not to
assist in the decision-making process. Finally, it is worth to mention that we
did not find and explicit link between the AK conceptualizations mentioned
in 6.1 and the tools mentioned in this section. The Table 6.3 summarizes
the AK tools mentioned in this section.

132

Chapter 7

Architectural knowledge

Relation between the contents of this chapter and published papers.

Section 7.1 Main contributions of [22, 23].

Section 7.2 Main contributions of [23].

Section 7.3 Main contributions of [14, 15].

In the last decade, software architecture has become one of the most active
research areas in software engineering. As a significant trend in this commu-
nity, many researchers have stated that Architectural Decisions (ADs) are
the core of software architecture [121, 206]. Under this view, software archi-
tecture has evolved from a structural representation to a decision-centered
viewpoint [144]. In this scenario, manage and reuse of the knowledge related
to ADs, the Architectural Knowledge (AK) [145], has gained the attention of
many researchers. Ontologies are a consolidated way of representing knowl-
edge, and have already been proposed for AK representation in the past
(e.g., [1]). Aligning with this trend, we designed and implemented:

• Arteon, an ontology to manage and reuse AK.

• Quark, a method to assist software architects in architectural decision-
making.

133

CHAPTER 7. ARCHITECTURAL KNOWLEDGE

Arteon

ArchiTech

QuarkBased in

Implements Implements

(Architectural knowledge) (Method for decision-making)

(proof of concept tool)

Figure 7.1: Arteon, Quark, and ArchiTech relations

• ArchiTech, a tool that acts as a proof of concept for both the ontology
and the method.

Arteon organizes the AK, and keeps the decisions and their impact to
quality attributes (QAs). Quark is built upon AK using the Arteon ontology
as basis. ArchiTech is the implementation of both ideas in one single tool
(Figure 7.1 depicts these relations). Some of the major highlights of Arteon,
Quark, and ArchiTech are:

• They have been designed using empirical basis, as result of the empir-
ical studies presented in Chapter 5.

• They use a decision-centered perspective, which is aligned with the
actual trend in architectural research.

• They use NFRs to drive the decision-making.

134

7.1. ARTEON: ARCHITECTURAL AND TECHNOLOGICAL ONTOLOGY

7.1 Arteon: Architectural and Technological On-
tology

The most important task of an architect is making Architectural Decisions
(ADs) [121]. As we have seen in Chapter 5, in the current practice, archi-
tects made ADs based on their experience and intuition which may hamper
understandability, traceability, and reuse of ADs, and this practice could be
an important source of design mistakes. Architecture design is one of the
first stages of the software development, where mistakes are translated into
higher development costs, or into the worst scenario, a project failure. In
practice, AK only resides in architects’ minds because architects normally do
not document their decisions, nor the reasoning and alternatives considered
either.

One solution to this situation is to materialize AK, and as result we could
benefit from it by sharing and reusing this knowledge in different software
projects or inside a community of architects. We also want to use this ma-
terialized knowledge to guide and facilitate architects’ the decision-making
process, and, eventually, it could bring more reliability to the process by sur-
facing new alternatives that were not initially considered by the architect.

Among other alternatives we have chosen to use an ontology to materi-
alize the AK. Ontologies have been successfully used for knowledge repre-
sentation in other domains (e.g., software engineering, artificial intelligence,
semantic web, biomedicine, etc.) and they offer other advantages such as
reasoning and learning techniques ready to be applied (e.g., we could add
new ADs using case-based reasoning techniques).

Sharing and reusing AK in different software projects and/or communi-
ties of architects are typical benefits of materializing this knowledge. But
we also propose to use AK to guide and facilitate the architects’ decision-
making and, eventually, bring more reliability to this process by surfacing
new alternatives that were not initially considered by the architect. To ap-
ply the learning and reasoning techniques necessary to walk this step, we
need to be able to formalize this knowledge. In the next sections we provide
some examples of formalizations of this knowledge to show its feasibility.

135

CHAPTER 7. ARCHITECTURAL KNOWLEDGE

Decision

Component

Style

Constraint

Technology

View Framework

Quality

Condition

SE-module

R-moduleAttribute

Figure 7.2: Arteon’s overview

7.1.1 Design

Arteon is composed of two modules. The first one, the R-module, for rea-
soning and decision-making knowledge; and the other one, the SE-module,
for managing structural elements, views and frameworks knowledge (see Fig-
ure 7.2):

Arteon’s modules are interconnected, but we keep them loosely coupled
and cohesive enough to be used or reused separately. The R-module and the
SE-module are related through a specialization of the Decisional Element
concept (explained later in this section) into a full classification of structural
elements. With these two modules we are able to represent most of the
knowledge related to architecture, the AK.

136

7.1. ARTEON: ARCHITECTURAL AND TECHNOLOGICAL ONTOLOGY

As complement to Arteon ontology, there could be another ontology that
formalizes the software requirements knowledge (e.g., [123]). As we will see
in the Section 7.2, we do not need an ontology for requirements because
we assume that architects will transform the software requirements relevant
for the architecture (e.g., requirements from a SRS expressed in natural
language) into the constraints that can be handled by the Arteon ontology.

Arteon was designed following the principles stated by Gruber [102], Noy
and Hafner [163], Guarino [105] and Evernmann [85]:

Clarity. “An ontology should effectively communicate the intended meaning
of defined terms. Definitions should be objective. [...] All definitions
should be documented with natural language” [102]. “Be clear about the
domain. Any formal theory is a theory about a domain. Such a domain
must be clarified in advance” [105]. We had many iterations in the
design of the Arteon ontology, and we have resolved many ambiguities
of the terms selected to represent the concepts that appear in the
ontology.

Coherence. “An ontology should be coherent: that is, it should sanction
inferences that are consistent with the definitions. At the least, the
defining axioms should be logically consistent” [102]. The coherence
and consistency of the ontology has been checked during its design by
instantiating the concepts that appear in the ontology with toy exam-
ples of AK. This practice produced a faster evolution of the ontology
design.

Extendibility. “An ontology should be designed to anticipate the uses of
the shared vocabulary. [...] One should be able to define new terms
for special uses based on the existing vocabulary, in a way that does
not require the revision of the existing definitions” [102]. Whenever
possible, the definitions of Arteon’s concepts are built upon the other
concepts that appear in the ontology.

Reuse. “In order to enable reuse as much as possible, ontologies should
be small modules with high internal coherence and limited amount of
interaction between the modules” [163]. As mentioned before, Arteon is
composed by two modules connected only by inheritance relationship.

137

CHAPTER 7. ARCHITECTURAL KNOWLEDGE

Minimal encoding bias “The conceptualization should be specified at the
knowledge level without depending on a particular symbol-level encod-
ing. An encoding bias results when a representation choices are made
purely for the convenience of notation or implementation” [102]. Ar-
teon has been diagrammed using UML class diagrams to present and
describe Arteon’ concepts. UML has not been a limitation to express
any concept or relationship. We also found in the literature many
authors that use UML to diagram the ontologies (e.g., [106, 39]) and
there is also the possibility to convert the UML representation of the
ontology into OWL [96].

Minimal ontological commitment. “An ontology should require the min-
imal ontological commitment sufficient to support the intended knowl-
edge sharing activities. An ontology should make as few claims as
possible about the world being modeled” [102]. Most of the concepts
that appear in Arteon are adopted from the software architecture lit-
erature. They are defined carefully, and whenever possible we simply
adhere to the most widely-accepted definition.

Identity. “Identity criterion (and especially Lowe’s principle, no individual
can instantiate both of two sorts if they have different criteria of iden-
tity associated with them) can play a crucial role in clarifying ontolog-
ical distinctions” [105]. Since Arteon’s generalizations are all disjoint
we cannot incur in an identity issue.

Basic taxonomy. “All ontologies are centered on a taxonomy, Such a tax-
onomy is the main backbone of the ontology, which can be fleshed
with the addition of attributes and other relations among nodes. Iso-
late a basic taxonomic structure. Form a tree of mutually disjoint
classes” [105]. In Arteon this backbone taxonomy are the decisional
elements, that are specialized in the SE-module.

Cognitive quality. “An ontology, as a formal description of a domain,
must conform to the way in which the domain is perceived and un-
derstood by a human observer” [85]. We have tried to be as near as
possible to the understanding of architects, to this end we used the ex-
perience earned from the interviews performed in the second empirical
study (see Section 5.2).

138

7.1. ARTEON: ARCHITECTURAL AND TECHNOLOGICAL ONTOLOGY

ArchitecturalFrameworkArchitecturalElement

{Vcomplete,VdisjointV}

ArchitecturalView

ImplementationStyleVariation ComponentStyle

<Vapply_to

1..**

implementable_with
**

related_to

*

*

<Vvariation_for

*1

<Vapply_to

1..**

belong_to

1..*
-ViewModel

1..*

belong_to

1*

specializes

0..1
*

incompatible_with

* *

composable_with

**

connectable_with

* *

Figure 7.3: Arteon’s SE-module

7.1.2 Structural elements module (SE-module)

In this section we present the SE-module of Arteon. In Figure 7.3 we show
the concepts of this module and the relationships among them, whilst in
Figure 7.4 we show an example of these concepts in a typical web-based
application scenario. The concepts of the SE-module are enough to represent
the structural representation of an architecture, which are the main elements
that need to be considered during decision-making process carried by the
architects. We describe next the most important concepts in the SE-module.

Architectural view

Representation of the whole system from the perspective of a related set of
concerns [118]. Views are useful in large and complex architectures where
trying to understand the whole architecture in a single representation could
be, at least, a difficult task. In the example (Figure 7.4) there are 4 views:
logical, development, deployment, and platform. Views can be used to show
the static parts of the system, such as the ones in the example, or behavioral
aspects, such as the process view defined in [141]. Our ontology can be used
for both static and behavioral views, but our current work is more oriented
to the static views.

139

CHAPTER 7. ARCHITECTURAL KNOWLEDGE

(a) Logical view (b) Development view

Web
client

Web
server

App.
server

DB

Replicated
DB

Scripts Pages

Domain Controllers

DAO

Forms

x w
**

Debian

Tomcat

Apache MySQL

z

Presentation

Domain

Persistence

PageForm

DAO

(c) Deployment view (d) Platform view

UseCase
Controller

PHP

Figure 7.4: Example of the representable knowledge in SE-module

Architectural framework

Defines a set of views to represent the architecture, this set of views is
also called view model. Examples of architectural frameworks are: RM-
ODP [87] and 4+1 view model [141]. In the example (Figure 7.4) we use a
variation of the 4+1 view model that takes into account the platform view.
Other frameworks such as TOGAF [205] and Zachman [216] are partially
supported because they define the full structure of an enterprise and we are
only interested in the software part.

140

7.1. ARTEON: ARCHITECTURAL AND TECHNOLOGICAL ONTOLOGY

Architectural element

Abstract concept that denotes the kinds of elements that architects may
decide to use in their architectural solutions. We consider four kinds of ele-
ments: styles, style variations, components, and implementations (see next
definitions for particularities). All kinds of elements share some characteris-
tics: they can be specialized (e.g., 3-layer style is a specialization of layered
style). They can establish relationships or dependencies with other elements
from other views. Looking at Figure 7.4 we can see some examples: Tomcat
from the platform view is related to the application server, DAO classes are
related to the DAO package, the scripts package is related to PHP, etc. De-
pendencies are especially useful to ensure the consistency of the architecture
when a change is made.

Style

Architectural styles (or architectural patterns) were widely defined by [196]
and [36]: “An architectural pattern is determined by a set of element types,
a topological layout of the elements indicating their interrelation-ships, a set
of semantic constraints and a set of interaction mechanisms”. Styles should
not be confused with design patterns, styles define the whole structure of an
architecture for a concrete architectural view, while a design pattern could
be applied to one or more parts of the architecture (normally in the same
architectural view). In the example: in the logical view we use a 3-layer style;
in the development view we use a web application style; in the deployment
view we use a specialized client-server style, database and application server
separated [58]; and in the platform view we use a stack solution style.

Style variation

In practice, it is common that architectures that do not follow a pure ar-
chitectural style. Instead, they follow a main style accompanied with some
variations (examples of these variations for the layered style can be seen
in [30]). Normally, the architect applies several variations (some of them
are alternatives, see the incompatible relationship in Figure 7.3) to increase
the satisfaction of the requirements. We can define a style variation as a
minor style modification, e.g., a typical style variation is to apply a pattern
in a concrete part of the architecture. In the example: the 3-layer style is

141

CHAPTER 7. ARCHITECTURAL KNOWLEDGE

modified with DAO and controllers patterns; the web deployment style is
modified with a database replication; and the web platform style is modi-
fied with a FOSS variation. Currently we are not trying to deal with the
complexity of using more than one style in one view, but in most cases one
style accompanied with variations would suit.

Component

A component is a building block of an architectural view, examples could
be: web server for the deployment view, layer for the logic view, or package
for the development view. For each view, the style and the used variations
will describe which components could be used and how the architecture
is built. Components share two extra characteristics apart from the ones
inherited from being architectural elements: first, components are connected
to other components (e.g., presentation layer, that is a specialization of layer,
is connected to the domain layer) and second, components can be composed
by other components (e.g., layers are composed by modules).

Implementation

Implementations are the real pieces that will build the software architec-
ture after its design. This part of the knowledge is becoming important
as nowadays most of the software is built using existing pieces of software
or, in some cases, hardware. In the example, the implementations would
be: the classes implemented in some programming language, the package
distribution provided by the programming language, the physical pieces of
hardware where the system is deployed (e.g., a load balancer that is actu-
ally implemented by a device from Cisco Systems) and the concrete versions
of the platform components. In the last two cases this knowledge could be
reused in different architectures, and could be used to ensure the satisfaction
of requirements or to detect incompatibilities. The non-reusable knowledge
(e.g., implemented classes) would not be part of knowledge of this ontology.

To better understand the importance of this concept, we could think in
Service Oriented Architectures (SOA). These architectures are composed of
services that sometimes are already implemented by third-party companies.
We can use the knowledge of the implemented services to design a SOA.

142

7.1. ARTEON: ARCHITECTURAL AND TECHNOLOGICAL ONTOLOGY

DecisionalElement

ElementAttributeQualityAttribute

AttributeConstraint

Restriction

{ disjoint,
complete }

Condition

{ disjoint,
complete }

Decision

Value

Value

*

*

impose

*

*

impose

*

*

condition

*

*

Action

Action

1..

EffectEffect

*

*

Figure 7.5: Arteon’s R-module

7.1.3 Reasoning module (R-module)

In this section we present the R-module of Arteon. In Figure 7.5 we show the
concepts of this module and the relationships among them. The concepts of
the R-module allow representing architectural decisions, together with the
rationale and the impact in software quality. Following we describe the most
important concepts in the R-module.

Decisional element

A decisional element is an elemental part of the architecture that the archi-
tect can decide upon, i.e., the object of decisions. This concept is specialized
in the previously seen SE-module as Architectural element, so it is left un-
refined in the R-Module. The specializations in the SE-module are not the
unique possible specialization of this concept, being a modular ontology
makes it is easy to design and use a different specialization hierarchy for the
decisional element (see extendibility ontology design principle).

143

CHAPTER 7. ARCHITECTURAL KNOWLEDGE

Decision

According to RUP [140], software architecture is the “selection of the struc-
tural elements and their interfaces by which a system is composed, behavior
as specified in collaborations among those elements, composition of these
structural and behavioral elements into larger subsystem, architectural style
that guides this organization”. This definition is about making ADs, struc-
tural and behavioral (i.e., existence decisions [145]).

In Arteon, the decision concept is very similar to the existence decision
concept. Decisions are actions over decisional elements where the action de-
termines the effect of the decision. Due to the extendibility design principle,
we have not closed the ontology to a predefined set of actions, but possible
actions could be, for example, the ones proposed in [145]: use, the decisional
element will be in the architecture, and ban, the decisional element will be
excluded from the architecture.

Constraint

Constraints can be imposed by software requirements or by decisional ele-
ments (note that the concept of requirement belongs to the Req-module of
Arteon). Constraints coming from requirements are normally described in
natural language (e.g., “the system shall be developed in C++”), sometimes
using templates (e.g., Volere [183]) or a specialized language (e.g., temporal
logic, the NFR Framework [63], etc.). Constraints coming from decisional
elements are formalized as part of the AK (e.g., when the architect uses a
technology that is only available for a particular platform, s/he is restricting
the architecture to this platform).

Independently from the origin, we distinguish two kinds of constraints:

• Restriction. A constraint that directly imposes one or more ADs. For
example, the “operating system” shall be “Debian”.

• Condition. A constraint that specifies the valid values for attributes.
E.g., if we only want to use Open-Source Software (OSS) software,
the condition limit the “license” attribute to OSS licenses (e.g. GPL,
LGPL, BSD).

In order to be able to reason with these constraints they must be for-
malized as evaluable expressions. Again, the ontology does not commit to

144

7.1. ARTEON: ARCHITECTURAL AND TECHNOLOGICAL ONTOLOGY

RestrictionSet → Restriction (LogicOp Restriction)*
Restriction → Action [DecisionalElement]
Action → <use> | <ban>
ConditionSet → Condition (LogicOp Condition)*
Condition → ComparativeCond | ConjuntiveCond
ComparativeCond → [Attribute] CompOp [Value]
ConjunctiveCond → [Attribute] ConjOp [Value]+
LogicOp → <and> | <or>
CompOp → <greater_than> | <lower_than> | <equal_to>
ConjOp → <includes> | <excludes>

Figure 7.6: CFG to formalize constraints

any particular proposal, but we provide an example expressed as a Context
Free Grammar (CFG) [162] (see Figure 7.6). For simplification, we included
extra notation in the CFG: [concept] means one valid instance of the concept
and <symbol> means a terminal symbol. Also, for simplification, we did not
include semantic rules (e.g., “the data type of the value should be the same
of the data type of the attribute”). Depending on the expressiveness of the
formalization, constraints could contain logic, comparative and conjunctive
expressions, but expressiveness impacts negatively on the complexity of the
reasoning system.

Attribute

An Attribute is an “inherent property or characteristic of an entity that
can be distinguished quantitatively or qualitatively by human or automated
means” [116]. In Arteon we differentiate two kinds of attributes:

• Element Attribute. An attribute of a Decisional Element. E.g., the
values of the “license” attribute are the names of the licenses. Only
Decisional Elements for which the license is relevant will have a value
(e.g., technologies).

• Quality Attribute. An attribute that characterizes some aspect of the
software quality. For example, ISO/IEC 25000 [116] defines a hier-
archy of QAs (named “characteristics” in the standard: functionality,
reliability, usability, efficiency, maintainability, and portability).

145

CHAPTER 7. ARCHITECTURAL KNOWLEDGE

In this case, we also followed the extendibility principle by leaving the
attributes customizable. Initially, we thought to propose a set of attributes,
the most generic and independent of domain, but when we tried, we found
out that domain-specific quality models may be more adequate in each sit-
uation (e.g., the S-Cube quality model [97] is specific for SOA) and that the
element attributes are uncountable, and even worse, the same information
can be modeled with different attributes (e.g., for the license information, we
may have a boolean attribute, true when is a OSS license and false otherwise,
or as before have an attribute with a list of licenses). We opted to let the
domain expert decide which attributes are convenient in each case, but we
acknowledge that more research is needed in order to make this knowledge
reusable from one project to another.

7.1.4 Discussion

There are few works that use ontologies as the mechanism to represent the
architectural knowledge. In particular for the structural elements part of
the ontology we found: Akerman and Tyree [1], which has similar concepts
to the structural elements presented in this work, but their ontology lacks of
key concepts such as view and style. ArchVoc [31] had most of the concepts
that appear in structural part of Arteon, but it does not have the conceptu-
alization for architectural decisions. Pahl et al. [174] has the concepts related
to architectural styles but uses the ontology with a different objective, as a
modeling language. For more details see Section 6.1.

For the reasoning module of Arteon, it is worth to mention the Kruchten’s
ontology of ADs [145] proposes three kinds of decisions: existence decisions,
property decisions, and executive decisions. In Arteon, Existence decisions,
as mentioned before, are represented as the Decision concept and its ac-
tions. The two other kinds of decisions are also represented in the ontology,
but not in an evident way. Property decisions are represented in Arteon as
the resulting decisions from conditions over QAs or element attributes, for
example, all the ADs made because of the condition to have OSS license.
Executive decisions are represented in Arteon as the resulting ADs imposed
by restrictions that come from the software requirements, in particular the
requirements unrelated to the software quality, for example, a software re-
quirement says that the DBMS should be Oracle, because the architect’s
company has a deal with Oracle to only use its products.

146

7.2. QUARK: QUALITY IN ARCHITECTURAL KNOWLEDGE

ArchitecturalFrameworkArchitecturalElement

{Vcomplete,VdisjointV}

ArchitecturalView

ImplementationStyleVariation ComponentStyle

<Vapply_to

1..**

implementable_with
**

related_to

*

*

<Vvariation_for

*1

<Vapply_to

1..**

belong_to

1..*
-ViewModel

1..*

belong_to

1*

specializes

0..1
*

incompatible_with

* *

composable_with

**

connectable_with

* *

DecisionalElement

ElementAttributeQualityAttribute

AttributeConstraint

Restriction

{Vdisjoint,
completeV}

Condition

{Vdisjoint,
completeV}

Decision

Value

Value

*

*

impose

*

*

impose

*

*

condition

*

*

Action

Action

1..

EffectEffect

*

*

Figure 7.7: Arteon’s SE and R modules together

In Figure 7.7 we can see the two modules together.

7.2 Quark: Quality in Architectural Knowledge

NFRs are among the principal drivers of the architectural decision-making
process [62]. As mentioned in the introduction, it is not feasible to produce
a software system that meets stakeholders’ needs without taking NFRs into
account.

Architects may have an idea of the impact of one particular Architectural
Decision (AD) to the overall quality (i.e., what Quality Attributes (QAs) are
improved or damaged by this AD), but it is hard to know if the architectural
decisions made are respecting the NFRs. In the usual approach, architects
use their own experience to produce software architectures that comply with
the expected NFRs, but at the end, especially for crucial decisions, the ar-
chitect has to deal with complex trade-offs analysis between QAs. This

147

CHAPTER 7. ARCHITECTURAL KNOWLEDGE

is even more complicated if we also consider the imposed constraints that
include or exclude parts of the architecture (e.g., technologies). The archi-
tect, in addition to the NFRs trade-offs, will have to juggle with possible
incompatibilities raised by the imposed constraints.

To alleviate this situation we present Quark, a method to assist software
architects in architectural decision-making. The objective of Quark is to
facilitate and making more reliable architects’ decisions with regard to the
desired qualities.

7.2.1 The Quark method

The design of Quark has been influenced by the observations gathered from
the empirical studies presented in Chapter 5, the most important are:

(a) Software architects are the main source of NFRs. This is why the method
is centered in the architect role.

(b) Software architects may be receptive to new design methods as far as
they still keep the control on the final ADs. The method should suggest
alternatives instead of making final ADs.

(c) The amount of information provided by the architects should pay itself.
Software architects are pragmatic, a balance between effort and benefit
must be reached in order to make the method suitable for them.

(d) The produced ADs should be justified, because architects also have to
justify them to other stakeholders.

In Quark, the software architect plays the central role. Architects specify
the NFRs and constraints (a). Architects select among the inferred ADs,
and decide when the process has to end (b). In the same direction, Quark
is not intrusive. It notifies about possible incompatibilities and possible
actions to solve them, but the method does not require resolving any incom-
patibility to continue with the design, it is up to the architect (b). Using the
Arteon ontology helps to reuse ADs (c) and also allows to produce detailed
information on how an AD was reached, and why it was motivated (d).

The Quark method delivers an iterative process divided in four activities
(see Figure 7.8): first, specification of the NFRs and the imposed constraints;
second, inference of ADs; third, decision-making; and fourth, architectural

148

7.2. QUARK: QUALITY IN ARCHITECTURAL KNOWLEDGE

Decision
making

· Evaluation
· Incompatibilities

Architectural
specification

· Constraints
· NFRs

Decision
inference

· Guidance
· Prioritization

Architectural
refinement

· Dependencies
· Restrictions

2

1 3

4
Decisions and

quality evaluation
Software

requirements

{decisions}

{decisions}
{Constraints

and NFRs}

{Constraints

and NFRs}

Computer activity

Architect activity

Figure 7.8: Quark overview

refinement (when necessary). Whenever the solution is refined, activities 1-3
are repeated. In the following subsections we give details on each activity.

Architectural Specification

In the first activity, the architect specifies the NFRs and constraints that
are relevant for the architecture design. For example, a NFR could be “per-
formance should be high” (in other words, more a goal than a requirement)
or something more concrete as “loan processing response time should not
be higher than two seconds 95% of the times”. Constraints are typically
referring to technologies, e.g., “the database management system (DBMS)
must be MySQL 5”, but may also refer to architectural principles, patterns
or styles, as in “the architectural style must be Service-Oriented Architec-
ture (SOA)”. These requirements and constraints may come from the project
documentation or from the architect’s experience (as we found out in our
empirical studies, see Chapter 5).

Due to Quark’s iterative nature, and aligning with one observation of our
empirical studies (the architect wants to have full control of the process), the
specification of these NFRs and constraints does not need to be complete.

149

CHAPTER 7. ARCHITECTURAL KNOWLEDGE

The architect has freedom to decide if s/he wants to start from a very short
specification and then make the architecture grow in each refinement or if
s/he wants to provide a more complete specification and see if the quality
evaluation calculated by the method matches the expected NFRs, and then
refine the architecture till it complies with the NFRs.

Decision Inference

In the second activity, the Quark method uses the AK available in the Arteon
ontology (see Section 7.1) to generate a list of ADs. Since the expected
amount of ADs in a real case is large, they should be prioritized using some
criteria (e.g., the ADs that satisfy more constraints and better comply with
the stated NFRs have higher priority).

ADs need to be informative. This means that, beyond their name, ADs
must include information about: why the AD was offered?, what is the im-
pact in the overall architecture quality?, and what other implications involve
making the AD? (there are some works that offers more complete descrip-
tions for ADs, for example, the template proposed in [206] or in [209]). For
example, for the AD of using “data replication” we could answer the above
questions as follows: “the AD of having data replication is offered because
there is a NFR about having high performance”, “by making this AD, the
overall performance will increase but will affect negatively to the mainte-
nance, and can damage the accuracy”, “also, the used DBMS is required to
be able to operate with data replication.”

Decision-Making

In the third activity, the architect decides which ADs wants to make from
the ones obtained in the previous activity. When the architect makes an AD,
two things may happen. First, there could be incompatibilities with previous
ADs (e.g., the architect decides to use “data replication”, but s/he already
selected a DBMS that does not support data replication), and second, there
could be one or more NFRs that are not supported by the ADs made (e.g.,
the ADs made indicate that maintainability will be damaged while there is
a NFR that says that maintainability is very important for this project). In
both cases, the architect will be informed about which ADs are conflictive,
but at the end s/he will decide if the set of ADs is satisfactory or not. In

150

7.2. QUARK: QUALITY IN ARCHITECTURAL KNOWLEDGE

some cases there may be external reasons, not stated as NFRs or constraints,
that have higher priority (e.g., the method recommends to use PostgreSQL
but the development team is more experienced with MySQL, and there is
not a big loss in the overall quality between both DBMS).

After the decision-making, the architect has the opportunity to conclude
the process by accepting the current set of ADs or, alternatively, the architect
may choose to start a new iteration of the full cycle. Here, as mentioned
in [206], we understand the software architecture as a set of ADs.

Architectural Refinement

The Refinement activity is used for detecting issues that may be resolved
in the next iteration. We identified three possible issues: incompatibilities,
dependencies, and suggestions for NFRs.

• Incompatibilities (mentioned in the Decision-Making activity) are con-
verted into new conditions over the attributes of the architectural el-
ements defined in Arteon (e.g., the AD to use “data replication” sets
a condition over an attribute “supports replication” for the “DBMS”
architectural element).

• Dependencies occur when some AD requires other parts in the archi-
tecture (e.g., when the architect decides to use SOA, several related
ADs are needed, service implementation: SOAP, REST, ...; service
granularity: service composition, single service, ...; etc).

• Suggestions, we may infer that some QA is of special relevance due to
the selected ADs (e.g., if many ADs have positive impact on security,
Quark will suggest to the architect to include a NFR about security).
This also helps making NFRs explicit.

The incompatibilities and dependencies are translated into constraints,
while the suggestions imply new NFRs. As before, the architect has the
last word, the architect will decide which of the new constraints and NFRs
generated in the Refinement activity will be included in the Specification
activity. At this point, the architect may also modify the constraints and
NFRs (e.g., the architect may have noticed that one NFR is limiting the
alternatives and decide to soften it).

151

CHAPTER 7. ARCHITECTURAL KNOWLEDGE

7.2.2 Example

The present example focus on one AD, the selection of a DBMS, and one
iteration in the Quark method. This example is mostly about technologies,
but the same idea can be also applied, for example, to the selection of
architectural patterns.

Following the Quark method, first the architect will identify the software
requirements that are relevant to the architecture. For this example, the
requirements are:

(R1) the software system shall keep the information about clients.

(R2) the software system shall be developed using OSS whenever possible.

(R3) the software system shall have backup systems for reliability.

Specification Activity

Once software requirements are identified, the software architect should
translate them into NFRs and constraints. From R1, the architect may
deduce that the project is an information system, so a DBMS will be neces-
sary. R2 sets a constraint on the technologies used to have an OSS license.
R3 sets constraints for backup facilities, and also mentions that reliability is
a desired QA.

Using the formalization presented in Section 7.1, the specification is:

• Use DBMS

• “License” includes {“GPL”, “LGPL”, “BSD”, etc.}

• “Backup facility” equal “yes”

• “Reliability” greater than “average”

Decision Inference Activity

Next, depending on the AK we have in the ontology and a prioritization
criteria, an ordered list of ADs will be generated. For this example, the AK
is based on the information published in the Postgres Online Journal [113]
and the prioritization criteria is to give higher priority to ADs that satisfy

152

7.2. QUARK: QUALITY IN ARCHITECTURAL KNOWLEDGE

more constraints and improve the selected QAs. The resulting list of ADs
(with justifications) is:

1. The AD of using MySQL 5 is offered because it is OSS. There is no
information available about backup facilities in MySQL. MySQL is
preferred because it supports more OSS technologies. Using MySQL
has neutral impact in reliability because ACID compliance depends on
the configuration.

2. The AD of using PostgreSQL 8.3 is offered because it is OSS. There
is no information available about back-up facilities in PostgreSQL.
There are few OSS technologies with support for PostgreSQL. Using
PostgreSQL improves reliability because it is ACID compliant.

3. The AD of using SQL Server 2005 is offered because it satisfies the
backup facility condition. SQL Server is not OSS. There are few OSS
technologies with support for SQL Server. SQL Server will require
a Windows operating system. Using SQL server improves reliability
because it is ACID compliant.

Decision-Making Activity

In the Decision-Making activity, the architect, for example, will decide to
use MySQL 5 (the AD with higher priority) as the implementing technology
for the DBMS component. But as said before in this paper, the architect
may prefer to use PostgreSQL, even it is not the highest-ranked AD. What
is important to notice here is that the architect is able to make informed
ADs, and, eventually, new ADs that were unknown to her/him are taken
into consideration.

Architectural Refinement Activity

After the Decision-Making activity the architectural design will continue
with new iterations, where the AD of using MySQL may have some impact
(e.g., in the selection of other technologies that are compatible with MySQL).
This information will appear during the Refinement activity as dependencies
and incompatibilities.

153

CHAPTER 7. ARCHITECTURAL KNOWLEDGE

7.2.3 Discussion

There are many SADMs published in the literature, (see Section 6.2). Here
we compare some of them with Quark:

• SEI methods, namely ADD for design and ATAM for analysis, are
heavyweight methods that require large-scale projects to achieve a bal-
ance between what the method offers and the effort that supposes for
the architects to use it. This balance is hard to achieve when projects
are low- or medium-scale. In our case, we based Quark method in
suggestions from architects working in low- or medium-scale projects,
therefore we think that our method can be successfully applied to this
kind of projects.

• QASAR [47]. As Quark, QASAR relies on NFRs, but in QASAR first
there is a design based only on functional requirements, and then it
is refined using the NFRs. Instead, Quark uses NFRs from the very
beginning as the main driver of the decision-making.

• QADA [151]. As Quark, QADA is quality-driven and it is built upon
a knowledge base, but it is not centered in ADs.

• AQUA [60]. AQUA uses a decision-centered approach as we do in
Quark, the main differences between both methods are that AQUA
does not have an ontological foundation and their method is not based
on empirical studies. On the first hand, having an ontology to reason
and mange knowledge is known as a good approach in many areas
(e.g., artificial intelligence) but is true that currently it is not wide
used in computer engineering research. On the second hand, having
an empirical study on the main target community (software architects)
helps to reduce the risk of having a solution disconnected from the real
needs of this community.

• A. Bertolino et al. [44]. The main difference with Quark is that
Bertolino’s method does not deal with architectural decisions. Also, it
is not clear what is the interaction with the software architect in the
method presented by Bertolino et al.

• T. Al-Naeem et al. [2]. For the computation method, they rely on
Multiple Attribute Decision Making (MADM), in particular Analytic

154

7.2. QUARK: QUALITY IN ARCHITECTURAL KNOWLEDGE

Hierarchy Process (AHP), to score each alternative decision. Quark
method is based on artificial intelligence algorithms to score each al-
ternative decision. We are not in a position to say which option is
best, but they are clearly different.

• AREL [202]. They propose a conceptual model to manage this ra-
tionale, and the concern for software quality during the architecture
design, but they do not describe which is the reasoning method used
(if any), in this situation it is hard to compare their approach with
Quark.

• ATRIUM [159]. Contrary to Quark, this method does not focus on
decisions but in scenarios and requirements.

• L. Chung et al. [61]. Contrary to Quark, Chung’s framework does
not support to explicitly trade-off analysis between alternate design
decisions.

• S. Bode et al. [45]. This approach is specialized only in security, while
Quark could be used for any type of requirements (it all depends of
the knowledge base provided).

• S. Kim et al. [129]. This method uses feature models to generate the
architecture automatically. It is very similar to a product line for
architectures. Product lines work for known and repetitive problems,
but in Quark we leave the door open to customize the knowledge to
any particular architectural area of interest (e.g., the architect may
want to have many technological alternatives but does not care much
about styles because s/he uses always the same).

• D. Perovich et al. [177]. There are also some differences, Perovich’s
method generates architectural models following the MDA approach,
while Quark is more focused on the architectural decisions itself and
the customization of the architectural knowledge.

• QRF [161]. In Quark the elicitation of requirements is performed pre-
viously, in fact, the architect is expected to only introduce the require-
ments that are architecturally relevant. To this end the QRF method
could help in the identification of requirements relevant for the archi-
tectural design.

155

CHAPTER 7. ARCHITECTURAL KNOWLEDGE

Comparing Quark to the Hofmeister et al. general model of architectural
design methods [110] (also mentioned in Section 6.2) we can see that in
Quark, the architectural analysis is covered by the Specification activity, the
architectural synthesis is covered by the Decision Inference activity, and the
architectural evaluation is covered by the Decision-Making activity, but there
are two differences between Quark and the general approach of architectural
design proposed by Hofmeister.

• The first difference is that Quark has an extra activity, the refinement,
that facilitates the transition between iterations.

• The second difference is that Hofmeister’s general approach deals with
complete architectural solutions, while Quark works at decisional level.
It is worth to remark that in our empirical studies we have detected
that architects will not trust a support system that generates full ar-
chitectural solutions without their intervention.

7.3 ArchiTech

ArchiTech is a tool developed as a proof of concept of the Arteon ontology
and the Quark method1. The ArchiTech tool is capable to manage the AK
as it is defined in the Arteon ontology (ArchiTech-CRUD2), and to assist
architects in architectural decision-making as described in the Quark method
(ArchiTech-DM).

Figure 7.9 shows an overview of the tool. We have defined two roles:
the domain-expert, who will provide the AK using the ArchiTech-CRUD;
and the architect, who will use the ArchiTech-DM to produce a software
architecture with the help of ArchiTech.

7.3.1 ArchiTech-CRUD

This subsystem provides a graphical user interface for the domain expert to
operate with the AK. The CRUD operations are specialized for four different
types of knowledge:

1See the video at www.upc.edu/gessi/architech/ for a running example
2CRUD stands for Create, Read, Update and Delete

156

7.3. ARCHITECH

Projects

Domain
Expert

ARCH. DECISIONS
and QUALITY
EVALUATION

Software
Architect

• I have project management

responsibilities.

• I design the software architecture.

During the architectural design:

• I select the requirements that have an

impact in the software architecture.

• I transform requirements into

constraints and NFRs

• I manage AK for a particular domain.

• I decide which decisions are good or

bad for each type of NFRs.

• I use the decisions made in other

projects to make grow the AK.

• I design the most adequate quality

model for a particular domain.

• I decide the most influencing

properties for a particular domain.

ArchiTech

DMCRUD

SOFTWARE
REQUIREMENTS

SPECIFICATION (SRS)
AK

Repository

Figure 7.9: ArchiTech overview

• Architectural element. The domain expert has to define the elements
(e.g., architectural styles -SOA, layered, etc.-, components -services,
packages, etc.-, technologies -DBMS, RESTful vs. W3C, etc.-) that
are to be used to structure any software architecture. Contrary to
Arteon, in Architect we have a fixed set of architectural views (logical,
deployment, development, and platform) to classify these elements.

• Element attributes. Each architectural element may have values for
one or more properties that are defined by the domain expert (e.g.,
the property License may be used to classify and reason about OSS
technologies).

• Quality attributes. We give freedom to the domain expert to define
(and reuse in multiple projects) the most appropriate quality model
for her interests (e.g., a quality model to design SOA systems [97]).

157

CHAPTER 7. ARCHITECTURAL KNOWLEDGE

• Architectural decisions. The domain expert has to define the decisions
that are more habitual in a particular architectural domain (e.g., web-
based system, service-based system, etc.), and which quality attributes
are affected by each AD of the domain. Decisions can be higher-level
(e.g., which architectural style to apply) or lower-level (e.g., which
DBMS to choose).

In order to provide management facilities, the AK must be persistent
and easy to share among projects. To this end we provide an embedded
database, and we have also added an option to export the stored AK to an
XML file.

7.3.2 ArchiTech-DM

This subsystem uses Quark method to guide software architects in quality-
driven decision-making process. The four activities of the Quark method
are implemented in ArchiTech as follows:

1. Architectural Specification. The architect can specify the NFRs and
constraints in the user interface provided by the tool. The tool check
them for correctness.

2. Decision Inference. The ArchiTech tool uses the AK defined in the
CRUD part to generate a prioritized list of decisions using simulated
annealing [130].

3. Decision Making. The architect decides what decisions are to be ap-
plied from the ones generated in the previous activity by selecting them
from a list. Each decision has a description, and justification generated
from the reasoning process (see the screenshot in Figure 7.10).

4. Architectural Refinement. The ArchiTech tool identifies possible issues
and suggests actions to resolve them.

As it happens in Quark, after the fourth activity, we may end the process
by accepting the resulting set of architectural decisions or use the suggested
actions provided by the tool and start a new iteration. One extra feature,
not mentioned in Quark, is that using this tool the architect can monitor
the overall QAs evaluation while making ADs. This feature gives to the
architect a clear notion of what is happening at any moment.

158

7.3. ARCHITECH

Figure 7.10: ArchiTech screenshot

7.3.3 Design

We started this tool with a throw-away prototype, the experience was satis-
factory since it demonstrated the feasibility of our approach, but for a more
mature proof of concept, we discarded the prototype mainly because of two
reasons: first, we wanted to integrate our tool with other MDD tools, follow-
ing the ideas presented in the Part I of this thesis; and second, the AK was
hard-coded, making it difficult to maintain or customize to different needs
(e.g., different domains or projects).

• Concerning the first reason, we observed that most MDD tools are de-
ployed as Eclipse plug-ins. Eclipse provides an open framework and a
good community support which makes it a good candidate for software
research communities. In order to present our solution to the MDD
community, the use of Eclipse was a must for integration with other
existing tools (e.g., code generators).

159

CHAPTER 7. ARCHITECTURAL KNOWLEDGE

• For the second reason, in order to provide management facilities, the
AK must be persistent. Due to the need of persistence, together with
the need of providing a graphical interface to dialogue with the user
and the existence of a domain logic (the CRUD use cases), we decided
to adopt the classical Three-Layer architectural pattern.

Therefore, we finally end up with the situation of developing a three-layer
architecture using a particular plug-in-based framework, Eclipse.

Development of a Three-layer architecture using plug-ins

To determine the alternatives for developing a three-layer logical architecture
with plug-ins, we have to observe which are all the possible ways of grouping
the logical components into the deployment components and compare those
that make sense and are relevant. Within all the possibilities, a good starting
point is to compare the two extreme alternatives since both make sense and
have relevancy. The most intuitive one is to have a single plug-in that
contains three packages, one for each layer (see Figure 7.11-a, three-layered
plug-in). The second one is to separate each layer in an independent plug-
in (see Figure 7.11-b, one plug-in per layer). The intermediate alternatives
(e.g., the two top layers in one plug-in and the bottom layer in another plug-
in) are not described because the trade-off analysis for these alternatives does
not provide any remarkable (or unexpected) result.

The benefits and drawbacks of the Three-Layer architectural pattern
are well-known and are the consequence of applying the principle described
above. The separation into layers improves the reliability, reusability and
portability of the application, while efficiency is the most damaged quality
attribute because most of the calls have to go through all the layers. We
refer to [51] for more details.

We consider three different perspectives of analysis for plug-in-based de-
velopment coming from three different types of stakeholders that in our
experience had been crucial to make the architectural decisions. The user,
who installs the system in an execution environment and runs it; the de-
veloper, a general term representing software architects, programmers, etc.,
responsible to build and deploy the system; and the community, representing
the set of potential users that are running similar systems or with a logical
relation to the one of interest. The benefits and drawbacks of plug-in-based

160

7.3. ARCHITECH

(a) Three-layered plug-in (b) One plug-in per layer

Presentation

layer

Domain

layer

Persistence

layer

<<plug-in>>

<<plug-in>>

<<plug-in>>

<<plug-in>>

Presentation

layer

Domain layer

Persistence

layer

Figure 7.11: Three-layer architectural alternatives

development are:

• From the user’s perspective, usability is the principal advantage; it
implies that the user does not need to learn to use a brand new envi-
ronment for the system functionality. But compatibility issues among
different plug-ins hamper installability (when first installing the sys-
tem) and reliability (since the system may stop delivering the promised
functionality due to some pernicious interactions with new, incompat-
ible plug-ins).

• From the developer’s perspective, productivity is the main benefit, be-
cause the developer does not need to design a whole new application,
instead s/he can just focus on the added functionality by reusing the
functionality provided by the framework and other plug-ins, reducing
thus the time and cost of the development (the time reduction is es-
pecially significant in the case that the developer is already familiar
with the framework). But the adequacy of the chosen framework is

161

CHAPTER 7. ARCHITECTURAL KNOWLEDGE

Table 7.1: Architecture alternatives comparison

Benefits Drawbacks

Three-layered plug-in Maintainability and portability Reusability and testability
One plug-in per layer Changeability and adaptability Reliability

very important, since plug-in development is restricted to the possibil-
ities offered by that framework and it may be the case that it does not
support adequately all the necessary functionality and/or technologies.

• From the community’s perspective, interoperability between plug-ins is
the main objective to achieve. For example, in many research commu-
nities all tools are developed using the same framework. But trends
or fads can be a drawback, if a community decides to change the
framework totally or partially (which is quite common with emergent
technologies) the plug-in will become obsolete in a short time while a
standalone application would have had a longer lifespan.

Table 7.1 summarizes the benefits and drawbacks of using three-layered
plug-in or using one plug-in per layer.

The benefits of the second option (having one plug-in per layer) lead us
to choose it, whilst being aware of the reliability-related drawback. One of
the reasons for choosing this alternative is because splitting the three layers
into independent plug-ins provides more flexibility. Once the decision was
made, it was necessary to implement the solution. In the next section we
report the differences between the expected theory as explored above and
the real practice.

Dealing with architectural limitations imposed by technologies

The gap between theory and practice became relevant to our design when
we started with the implementation of the plug-in and we began to find
technological limitations.

As previously said, we decided that ArchiTech had to support a persis-
tence mechanism to store AK in order to make it easily customizable by the
user. As a result of this requirement, we decided to use some database for
storing information. Since another requirement to satisfy was to have easy

162

7.3. ARCHITECH

installation, we decided to provide ArchiTech with an embedded DBMS.
The trade-off of this decision is that it limits cooperative work since every
user will work with his or her own data. As a mitigation measure we de-
cided to apply the Data Mapper design pattern [91]. With this decision,
apart from other benefits coming from this pattern, we can exchange the
embedded DBMS just by modifying a configuration file.

After some research we decided to use the following technologies in Ar-
chiTech:

• Eclipse framework as the supporting framework for our plug-in due to
community dominance. www.eclipse.org/pde

• JFace as the technology for the Presentation layer because it is manda-
tory in Eclipse plug-in development. wiki.eclipse.org/JFace

• Hibernate as the technology used to implement the Data Mapper. www.
hibernate.org

• H2 as the embedded DBMS, since it is an easy to use DBMS that is also
well accepted by the Java developers community. www.h2database.
com

At this point, we spent some time developing prototypes to test the fea-
sibility of the architecture. During this activity we discovered two important
technological limitations.

The libraries problem
During the development of the CRUD (Create-Read-Update-Delete) use

cases of ArchiTech, we found that the Hibernate technology had an incom-
patibility issues with the Eclipse plug-in technology. After some research
through some specialized sites we found out that the problem was related
to the way in which the OSGi framework (which specifies how to deal with
plug-ins, www.osgi.org) manages the loading of classes. The problem arises
when a plug-in needs to invoke code from an external library that does not
belong to the Eclipse framework. We solved this problem by embedding the
libraries into a different plug-in.

Coupling between JFace and the Domain layer
JFace, being an integrated part of the Eclipse framework, is not affected

by the previous problem but presents a different one. The adoption of JFace

163

CHAPTER 7. ARCHITECTURAL KNOWLEDGE

in the Presentation layer requires continuous synchronization between the
user interface and the domain classes, which implies that the information
shown in the user interface should be connected to the “real” objects of the
Domain layer. Otherwise, the user interface may show inconsistent informa-
tion. Despite of this fact, when retrieving objects from the database, in each
subsequent call, Hibernate produce different instances of the same object.

To avoid this behavior, we had to implement a class to represent the
current state of the domain objects, that is, references to all the objects that
are being used directly or indirectly by the views, so that when an object
is retrieved from the database, the references can be updated to point to
it. The drawbacks of this solution come from the replication of information:
less maintainability and less efficiency in data management. However, since
ArchiTech does not manage huge amounts of data, efficiency loss is not
significant.

ArchiTech final architecture

As result of these detected technological limitations, the theoretical archi-
tecture initially designed for ArchiTech had to be refactored into another
one that is able to cope with these limitations. The resulting architectural
solution is shown in Figure 7.12.

We had to split the persistence plug-in to solve the libraries problem, and
we took the option to separate the libraries for Hibernate and the libraries
for the H2 support, because making this extra separation facilitates the shift
to another DBMS if decided in the future. Notice that these plug-ins only
contain the libraries provided by Hibernate in one case, and the libraries
needed to work with the DBMS in the other, but they do not contain any
specific functionality.

The second change was to put the Domain layer together with the Per-
sistence layer, the reason being that the way Hibernate works makes hard to
maintain the Domain layer totally independent from the Persistence layer.
Since we do not expect to change this technology in a near future, we opted
for facilitating the development, but, as told before, the coupling between
JFace and the Domain layer has been isolated in a class that maintains the
references to the domain objects.

164

7.4. CONCLUSIONS

Presentation layer

<<plug-in>>

<<plug-in>>

Persistence layer

Domain layer

Data-mapper

libs

<<plug-in>>

DBMS driver

libraries

<<plug-in>>

JFace front-end

as it is required

by Eclipse

Implemented

with Hibernate

Libraries of

Hibernate must

be separated

H2 driver is in

a separate

plug-in to be

easily changed

Domain layer

and Persistence

layer must be

in the same

plug-in due to

Hibernate

requirements

Dependency

Figure 7.12: Architectural solution used in ArchiTech

7.4 Conclusions

One of the most known Kruchten’s statements is “the life of a software
architect is a long (and sometimes painful) succession of suboptimal decisions
made partly in dark” [142]. The lack of knowledge is one of the reasons to
produce suboptimal decisions. For example, the architect may not know all
the effects of using some technology or architectural pattern: it may need of
other components to work correctly (e.g., some of them may be incompatible
with other ADs), it may have unexpected effects in the overall evaluation
of some QAs (e.g., lowers the resource utilization efficiency). Also, the lack
of knowledge may cause a worse situation when some alternative is not
considered because it is unknown to the architect. To improve this situation
we presented Arteon, an ontology to represent AK; Quark, a method to assist
software architects in architectural decision-making; and we have described
the principal parts of ArchiTech, and the design of this proof of concept tool.

We are aware about some of the limitations of the presented work, one
of the major problems we have to deal with is the amount of knowledge
required. Our position is that the best way to acquire and maintain such

165

CHAPTER 7. ARCHITECTURAL KNOWLEDGE

amount of knowledge is making architects active participants of its acquisi-
tion and maintenance. A possible way to achieve this participation is using
networks of knowledge, which have been successful in other areas (e.g., Stack
Overflow for software developers). Other techniques that have been consid-
ered to acquire and maintain this knowledge are knowledge reuse and knowl-
edge learning, but both have drawbacks, for example, reusing knowledge you
may find out that a solution that provides high security in a information
system may not be secure enough for a critical system, and in order to use
learning techniques first is necessary to have a big source of knowledge.

More information about ArchiTech may be found at (www.upc.edu/
gessi/architech/index.html), where the current version is available for
download.

166

Conclusions and future work

In this chapter we present the conclusions of this thesis by answering the
initial research questions, and then we discuss the possible future work from
the current state of the research.

Conclusions

In the introduction of this thesis, we stated three research questions. In this
section we provide answers to these questions.

RQ1: How NFRs and architecture can be integrated in the MDD process?

Answer: the answer to this question has been the design of a theoretical
approach that handles NFRs in the MDD process. We explored different
variants of the proposed approach and we compared it to the current
state of practice. As a consequence of this integration we detected the
need to include architectural design as part of the MDD process. We
drafted a viable path to include NFRs into MDD, but due to more
fundamental questions regarding to the relation between NFRs and ADs,
this part of the work had to stop at the theoretical level.

167

CONCLUSIONS AND FUTURE WORK

RQ2: How do NFRs impact on architectural design?

Answer: our approach to face this research question has been the de-
sign and execution of several empirical studies oriented to understand
the way of thinking of software architects. These studies confirmed some
of the common beliefs about software architecture (e.g., that the role of
NFRs is fundamental in the architecture design) and uncovered some
facts that were not known, or at least not evident (e.g., most archi-
tects play many roles in the software companies; architects are the main
source of NFRs instead of the client). These studies have also been of
much value to understand architect’s needs, which were very useful in
the design of the Arteon ontology and the Quark method.

RQ3: Which AK is necessary to make architectural decisions?

Answer: from the experience obtained both from the architects, in
the empirical studies, and from the academics, in the literature reviews,
we were able to design an ontology that covers a great part of the ar-
chitectural decisions, in particular the ones related to the structure of
the architecture. To prove the feasibility of this ontology we designed a
method to assist software architects in the architectural decision-making
process (again, relaying on the feedback obtained from the architects
themselves) and a tool were we can actually add, modify, and create ar-
chitectural knowledge, and then use it to make architectural decisions.

As a final conclusion, the most valuable outcome of this thesis as a whole
is the exploration of different perspectives of the role of NFRs in the soft-
ware architecture design: in the first part of this thesis, we proposed a way
to integrate NFRs in MDD, which made evident the need to support ar-
chitecture design in MDD; in the second part, we observed how NFRs are
understood by architects, and how NFRs are used in practice; and finally, in
the third part, we designed Arteon and Quark, an ontology and its compan-
ion method, where NFRs are used to drive the architectural decision-making.
On the whole, the thesis has served as a way to improve the understand-
ing and the knowledge related to the role of NFRs in software architecture
design.

168

Future work

We could divide the future work in three parts, corresponding to the three
parts of this thesis:

• For the first part, we are interested in collaborating with other research
groups experienced in MDD to help in integrating NFRs in their MDD
approaches. Now that we have better notion of the role of NFRs in
software architecture design, we want to produce an implementation
of the proposed framework to integrate NFRs in MDD. A possible way
to reach this objective is to strategically propose final career projects
that together will make the whole implementation.

• For the second part, we are interested in contrasting the results ob-
tained in the empirical studies. We have planned collaborations with
other researchers in the field to compare our results. For the third
empirical study we are planing to produce an extended version with
more responses.

• For the third part, we are interested in continuing the research line
about how to better integrate NFRs in architectural decision-making
process in a way that improves the overall quality of the produced
architectures. We currently have a proof of concept tool and we need
to use it in experiments and in real practice to obtain feedback that
could be used to improve both the Arteon ontology and the Quark
method.

Another line of exploration is to apply the experience and knowledge
obtained in this thesis to a particular domain, for example, the Open Source
Software (OSS). We could apply methods for decision-making in this par-
ticular domain and execute empirical studies to understand fundamental
differences between the OSS and closed software with regard to software
architects and software architecture design.

169

CONCLUSIONS AND FUTURE WORK

170

Appendix A

First empirical study

Questionnaire of the first empirical study:

Model-Driven Development in IT companies and or-
ganizations

171

APPENDIX A. FIRST EMPIRICAL STUDY

With this questionnaire we analyze the usage of Model-Driven Software Development in IT companies and organizations. We are mainly
interested to know about experiences on Model-Driven Software Development initiatives, the desirable automation level in the software
development process and the importance of non-functional requirements in this process.
Model-Driven Software Development (MDSD) is based on the construction of a system model that can be transformed, in a systematic and
semiautomatic way, into an implementation deployed on one or more software platform technologies. The system model can be unique or can be
a combination of models (e.g., UML models). The concept of MDSD is also known with other names that are basically similar: MDA: Model-Driven
Architecture; MDD: Model-Driven Development; MDE: Model-Driven Engineering, etc.

This questionnaire is anonymous and it will take you about 15 and 20 minutes.

There are 50 questions in this survey

Personal data

1 [DP1]Name (optional)

Please write your answer here:

2 [DP2]Company or organization (optional)

Please write your answer here:

3 [DP3]E-Mail (if you wish to receive the results)

Please write your answer here:

4 [DP4]Current position in the company or organization *

Please write your answer here:

5 [DP5]Education to date related to software development *

Please write your answer here:

172

MDD IN IT COMPANIES AND ORGANIZATIONS

Generic development of software projects
Note: Answer this group of questions without taking into account whether the projects were made using MDSD or not.

6 [Arch]Choose the architectural styles used in your projects: *

Please choose all that apply:

 Service-Oriented Architecture (SOA)

 3-layered Architecture

 Client-Server Architecture

 Peer-to-peer Architecture

 Database-centric Architecture

 Event-Driven Architecture

 Component-based Architectures (plugins, add-ons, extensions, components)

 Pipe and filter Architecture

 Mainframe Architecture

 Model, View, Controler (MVC)

Other:

Architectural style: We understand architectural style as the collection of the main elements that compose the software system and the
strategy of communication used between them. Examples of software architectures are: 3-layered architecture, service oriented
architecture, client-server, etc. A software system can be designed as a composition of many architectural styles depending on its needs.

7 [Tech]Choose the type of software developed in your projects: *

Please choose all that apply:

 Web services

 Web applications

 Distributed applications based on components

 Desktop applications

 Software for mobile devices

 Software for embedded systems

 Host applications

Other:

173

APPENDIX A. FIRST EMPIRICAL STUDY

8 [Tech-A]Which of the following technological styles are used in your projects? *

Please choose all that apply:

 Technological style based on Stack solution (e.g. LAMP)

 Technological style based on Java technologies

 Technological style based on .Net technologies

Other:

Technological style: A technological style is a set of technologies to construct the elements that compose the software system. A
technological style must consider all necessary technological roles of the implementation: platform, programming languages, libraries,
technological standards and external services (e.g. database management systems or authentication services). The technologies that takes
part in a technological style must be able to work jointly.

9 [Tech-A-A]Choose the Stack solution used in your projects:
Note: If you checked the option "Other", please specify the operating system, the web
server, the data base management system and the programming language used. *

Only answer this question if the following conditions are met:
° Answer was `1`'Technological style based on Stack solution (e.g. LAMP)' at question '8 [Tech-A]' (Which of the following technological
styles are used in your projects?)

Please choose all that apply:

 LAMP (Linux, Apache, MySQL, PHP/Perl/Python)

 WAMP (Windows, Apache, MySQL, PHP/Perl/Python)

 WIMP (Windows, IIS, MySQL, PHP/Perl/Python)

 WISA (Windows, IIS, SQL Server, ASP)

 OpenACS (Linux/Windows, AOLServer, PostgreSQL/Oracle, Tcl)

Other:

174

MDD IN IT COMPANIES AND ORGANIZATIONS

10 [Tech-A-B]Choose the Java technologies used in your projects: *

Only answer this question if the following conditions are met:
° Answer was `2`'Technological style based on Java technologies ' at question '8 [Tech-A]' (Which of the following technological styles are
used in your projects?)

Please choose all that apply:

 Struts

 Spring

 JPA/Hibernate

 SEAM

 EJB 2

 EJB 3

 JAX-WS

 JAX-RPC

 Java Server Faces (JSF)

 Java Server Pages (JSP)

 Java Servlets

Other:

11 [Tech-A-C]Choose the .Net technologies used in your projects: *

Only answer this question if the following conditions are met:
° Answer was `3`'Technological style based on .Net technologies' at question '8 [Tech-A]' (Which of the following technological styles are
used in your projects?)

Please choose all that apply:

 ADO.Net

 ASP.Net

 WCF - Windows Communication Foundation

 WF - Windows Workflow Foundation

 WPF - Windows Presentation Foundation

 Spring.Net

 NHibernate

 Windows Forms

Other:

175

APPENDIX A. FIRST EMPIRICAL STUDY

12 [DBMS]Choose the type of data base used in your projects: *

Please choose all that apply:

 Relational

 Multidimensional

 Object-Relational

 Object-Oriented

 Documental

 Deductive

 XML

Other:

13 [DBMS-A]Choose the Data Base Management System (DBMS) used in your projects: *

Please choose all that apply:

 MySQL

 PostgreSQL

 Oracle

 SQL-Server

 DB2

Other:

14 [DBMS-B]Choose the relevance of the following DBMS capabilities in your projects:

Please choose the appropriate response for each item:

None Marginal Medium Important Critical

Stored procedures

Triggers

Schema validation (e.g. checks)

15 [NFR]Which of the following statements better describes the importance of
non-functional requirements to you? *

Please choose only one of the following:

 I don't consider them, I focus on the functional part

 I consider them but I don't use them to take important decisions

 They have the same importance as functional requirements

Functional requirement: Functional requirements establish the observable behavior that must exhibit the system (calculations,
manipulations, listings, evolution aspects, etc.), as well as the data types specification.

Non-functional requirement: Non-functional requirements establish the criteria or global qualities of the software system and set
restrictions (internal and external) on the software and the development process. Common types of non-functional requirements are:
usability, efficiency and portability.

176

MDD IN IT COMPANIES AND ORGANIZATIONS

16 [NFR-X]Do you use the non-functional requirements to choose between different
architectural styles and/or technological styles? *

Only answer this question if the following conditions are met:
° Answer was `3`'They have the same importance as functional requirements' at question '15 [NFR]' (Which of the following statements
better describes the importance of non-functional requirements to you?)

Please choose only one of the following:

 Yes

 No

17 [NFR-A]Choose the relevance of the following types of non-functional requirements on
the development of your software projects:

Only answer this question if the following conditions are met:
° Answer was `2`'I consider them but I don't use them to take important decisions' or 'They have the same importance as functional
requirements' at question '15 [NFR]' (Which of the following statements better describes the importance of non-functional requirements to
you?)

Please choose the appropriate response for each item:

None Marginal Medium Important Critical

Maintainability

Reusability

Efficiency

Reliability

Usability

Portability

Cost

Standards compliance

Organizational

Organizational requirements refer to aspects of the organization where the software system will be deployed.

18 [NFR-A-A]Do you consider other non-functional requirements during the development of
your software projects?

Only answer this question if the following conditions are met:
° Answer was `2`'I consider them but I don't use them to take important decisions' or 'They have the same importance as functional
requirements' at question '15 [NFR]' (Which of the following statements better describes the importance of non-functional requirements to
you?)

Please write your answer here:

177

APPENDIX A. FIRST EMPIRICAL STUDY

19 [NFR-B]Do the development tools that you use in your software projects allow you to
analyze the compliance with the specified non-functional requirements in different
technological styles? *

Only answer this question if the following conditions are met:
° Answer was `4`'They have the same importance as functional requirements' or 'I consider them but I don't use them to take important
decisions' at question '15 [NFR]' (Which of the following statements better describes the importance of non-functional requirements to you?)

Please choose only one of the following:

 Yes

 No

20 [NFR-B-A]Which tools do you use to analyze the compliance with the specified
non-functional requirements in different technological styles?

Only answer this question if the following conditions are met:
° Answer was `2`'I consider them but I don't use them to take important decisions' or 'They have the same importance as functional
requirements' at question '15 [NFR]' (Which of the following statements better describes the importance of non-functional requirements to
you?) and Answer was `Y`'Yes' at question '19 [NFR-B]' (Do the development tools that you use in your software projects allow you to
analyze the compliance with the specified non-functional requirements in different technological styles?)

Please write your answer here:

21 [NFR-B-B]Would you like to have tools and/or automatic processes that take into account
non-functional requirements? *

Only answer this question if the following conditions are met:
° Answer was `2`'I consider them but I don't use them to take important decisions' or 'They have the same importance as functional
requirements' at question '15 [NFR]' (Which of the following statements better describes the importance of non-functional requirements to
you?) and Answer was `N`'No' at question '19 [NFR-B]' (Do the development tools that you use in your software projects allow you to
analyze the compliance with the specified non-functional requirements in different technological styles?)

Please choose only one of the following:

 Yes

 No

178

MDD IN IT COMPANIES AND ORGANIZATIONS

Interaction level

22 [NI-Impl]For the following tasks of the implementation phase, choose the interaction
level that you consider more adequate assuming that an hypothetic support tool is available.
(1 to 5 as shown)

1: I wouldn't use any supporting tool to perform this task
2: The hypothetic support tool should ask me before taking any decision
3: The hypothetic support tool should ask me only before taking the relevant decisions
4: The hypothetic support tool should take the decisions for me but later I would check them
5: The hypothetic support tool would take the decisions for me without further confirmation
*

Please choose the appropriate response for each item:

1 2 3 4 5

Generation of the skeleton code

Generation of the code for a specific technology

23 [NI-Dsgn]For the following tasks of the design phase indicate the interaction level that
you consider more adequate assuming that an hypothetic support tool is available. (1 to 5 as
shown in the previous question) *

Only answer this question if the following conditions are met:
° Answer was NOT `N`'No' at question '21 [NFR-B-B]' (Would you like to have tools and/or automatic processes that take into account
non-functional requirements?)

Please choose the appropriate response for each item:

1 2 3 4 5

Selection of the architectural style that better conforms to the non-functional requirements of
the software system

Selection of the technological style that better conforms to the non-functional requirements of
the software system

Functional requirement: Functional requirements establish the observable behavior that must exhibit the system (calculations,
manipulations, listings, evolution aspects, etc.), as well as the data types specification.

Non-functional requirement: Non-functional requirements establish the criteria or global qualities of the software system and set
restrictions (internal and external) on the software and the development process. Common types of non-functional requirements are:
usability, efficiency and portability.

Architectural style: We understand architectural style as the collection of the main elements that compose the software system and the
strategy of communication used between them. Examples of software architectures are: 3-layered architecture, service oriented
architecture, client-server, etc. A software system can be designed as a composition of many architectural styles depending on its needs.

Technological style: A technological style is a set of technologies to construct the elements that compose the software system. A
technological style must consider all necessary technological roles of the implementation: platform, programming languages, libraries,
technological standards and external services (e.g. database management systems or authentication services). The technologies that takes
part in a technological style must be able to work jointly.

179

APPENDIX A. FIRST EMPIRICAL STUDY

Model-Driven Software Development (MDSD)

24 [DSDM]According to your knowledge and skills, which of the following categories do you
belong to? *

Please choose only one of the following:

 I don't know what is Model-Driven Software Development

 I know the concept of Model-Driven Software Development but I don't use it in my work

 I have used the Model-Driven Software Development paradigm in my work

25 [DSDM-A1]Choose the initiatives you know: *

Only answer this question if the following conditions are met:
° Answer was `2`'I know the concept of Model-Driven Software Development but I don't use it in my work' at question '24 [DSDM]'
(According to your knowledge and skills, which of the following categories do you belong to?)

Please choose all that apply:

 Model-Driven Architecture (MDA)

 Model-Driven Development (MDD/MDSD)

 Model-Driven Engineering (MDE)

Other:

26 [DSDM-A2]Choose the Model-Driven Development platforms you know: *

Only answer this question if the following conditions are met:
° Answer was `2`'I know the concept of Model-Driven Software Development but I don't use it in my work' at question '24 [DSDM]'
(According to your knowledge and skills, which of the following categories do you belong to?)

Please choose all that apply:

 Eclipse EMP

 AndroMDA

 openArchitectureWare

 I don't know any

Other:

180

MDD IN IT COMPANIES AND ORGANIZATIONS

27 [DSDM-A3]Which Model Driven Software Development CASE tools do you know? (Model
editors, etc.)

Only answer this question if the following conditions are met:
° Answer was `2`'I know the concept of Model-Driven Software Development but I don't use it in my work' at question '24 [DSDM]'
(According to your knowledge and skills, which of the following categories do you belong to?)

Please write your answer here:

28 [DSDM-B1]In how many projects have you applied Model Driven Software Development?
*

Only answer this question if the following conditions are met:
° Answer was `3`'I have used the Model-Driven Software Development paradigm in my work' at question '24 [DSDM]' (According to your
knowledge and skills, which of the following categories do you belong to?)

Please write your answer here:

29 [DSDM-B2]Are the architectural styles used in your MDSD projects different than the ones
used in your other projects? *

Only answer this question if the following conditions are met:
° Answer was `3`'I have used the Model-Driven Software Development paradigm in my work' at question '24 [DSDM]' (According to your
knowledge and skills, which of the following categories do you belong to?)

Please choose only one of the following:

 Yes

 No

181

APPENDIX A. FIRST EMPIRICAL STUDY

30 [DSDM-B2-Arch]Choose the architectural styles used in your MDSD projects: *

Only answer this question if the following conditions are met:
° Answer was `3`'I have used the Model-Driven Software Development paradigm in my work' at question '24 [DSDM]' (According to your
knowledge and skills, which of the following categories do you belong to?) and Answer was `Y`'Yes' at question '29 [DSDM-B2]' (Are the
architectural styles used in your MDSD projects different than the ones used in your other projects?)

Please choose all that apply:

 Service-Oriented Architecture (SOA)

 3-layered Architecture

 Client-Server Architecture

 Peer-to-peer Architecture

 Database-centric Architecture

 Event-Driven Architecture

 Component-based Architectures (plugins, add-ons, extensions, components)

 Pipe and filter Architecture

 Mainframe Architecture

 Model, View, Controler (MVC)

Other:

Architectural style: We understand architectural style as the collection of the main elements that compose the software system and the
strategy of communication used between them. Examples of software architectures are: 3-layered architecture, service oriented
architecture, client-server, etc. A software system can be designed as a composition of many architectural styles depending on its needs.

31 [DSDM-B3]The type of software that you developed using MDSD is different than the type
of software developed in your other projects? *

Only answer this question if the following conditions are met:
° Answer was `3`'I have used the Model-Driven Software Development paradigm in my work' at question '24 [DSDM]' (According to your
knowledge and skills, which of the following categories do you belong to?)

Please choose only one of the following:

 Yes

 No

182

MDD IN IT COMPANIES AND ORGANIZATIONS

32 [DSDM-B3-Tech]Choose the type of software developed in your MDSD projects: *

Only answer this question if the following conditions are met:
° Answer was `3`'I have used the Model-Driven Software Development paradigm in my work' at question '24 [DSDM]' (According to your
knowledge and skills, which of the following categories do you belong to?) and Answer was `Y`'Yes' at question '31 [DSDM-B3]' (The type
of software that you developed using MDSD is different than the type of software developed in your other projects?)

Please choose all that apply:

 Web services

 Web applications

 Distribuidas applications based on components

 Desktop applications

 Software for mobile devices

 Software for embedded systems

 Host applications

Other:

33 [DSDM-B3-Tech-A]Which of the following technological styles are used in your MDSD
projects? *

Only answer this question if the following conditions are met:
° Answer was `3`'I have used the Model-Driven Software Development paradigm in my work' at question '24 [DSDM]' (According to your
knowledge and skills, which of the following categories do you belong to?) and Answer was `Y`'Yes' at question '31 [DSDM-B3]' (The type
of software that you developed using MDSD is different than the type of software developed in your other projects?)

Please choose all that apply:

 Technological style based on Stack solutions (e.g. LAMP)

 Technological style based on Java technologies

 Technological style based on .Net technologies

Other:

Technological style: A technological style is a set of technologies to construct the elements that compose the software system. A
technological style must consider all necessary technological roles of the implementation: platform, programming languages, libraries,
technological standards and external services (e.g. database management systems or authentication services). The technologies that takes
part in a technological style must be able to work jointly.

183

APPENDIX A. FIRST EMPIRICAL STUDY

34 [DSDM-B3-Tech-A-A]Choose the Stack solution used in your projects:
Note: If you checked the option "Other", please specify the operating system, the web
server, the data base management system and the programming language used. *

Only answer this question if the following conditions are met:
° Answer was `3`'I have used the Model-Driven Software Development paradigm in my work' at question '24 [DSDM]' (According to your
knowledge and skills, which of the following categories do you belong to?) and Answer was `Y`'Yes' at question '31 [DSDM-B3]' (The type
of software that you developed using MDSD is different than the type of software developed in your other projects?) and Answer was
`1`'Technological style based on Stack solutions (e.g. LAMP)' at question '33 [DSDM-B3-Tech-A]' (Which of the following technological
styles are used in your MDSD projects?)

Please choose all that apply:

 LAMP (Linux, Apache, MySQL, PHP/Perl/Python)

 WAMP (Windows, Apache, MySQL, PHP/Perl/Python)

 WIMP (Windows, IIS, MySQL, PHP/Perl/Python)

 WISA (Windows, IIS, SQL Server, ASP)

 OpenACS (Linux/Windows, AOLServer, PostgreSQL/Oracle, Tcl)

Other:

35 [DSDM-B3-Tech-A-B]Choose the Java technologies used in your MDSD projects: *

Only answer this question if the following conditions are met:
° Answer was `3`'I have used the Model-Driven Software Development paradigm in my work' at question '24 [DSDM]' (According to your
knowledge and skills, which of the following categories do you belong to?) and Answer was `Y`'Yes' at question '31 [DSDM-B3]' (The type
of software that you developed using MDSD is different than the type of software developed in your other projects?) and Answer was
`2`'Technological style based on Java technologies ' at question '33 [DSDM-B3-Tech-A]' (Which of the following technological styles are
used in your MDSD projects?)

Please choose all that apply:

 Struts

 Spring

 JPA/Hibernate

 SEAM

 EJB 2

 EJB 3

 JAX-WS

 JAX-RPC

 Java Server Faces (JSF)

 Java Server Pages (JSP)

 Java Servlets

Other:

184

MDD IN IT COMPANIES AND ORGANIZATIONS

36 [DSDM-B3-Tech-A-C]Choose the .Net technologies used in your MDSD projects: *

Only answer this question if the following conditions are met:
° Answer was `3`'I have used the Model-Driven Software Development paradigm in my work' at question '24 [DSDM]' (According to your
knowledge and skills, which of the following categories do you belong to?) and Answer was `Y`'Yes' at question '31 [DSDM-B3]' (The type
of software that you developed using MDSD is different than the type of software developed in your other projects?) and Answer was
`3`'Technological style based on .Net technologies' at question '33 [DSDM-B3-Tech-A]' (Which of the following technological styles are used
in your MDSD projects?)

Please choose all that apply:

 ADO.Net

 ASP.Net

 WCF - Windows Communication Foundation

 WF - Windows Workflow Foundation

 WPF - Windows Presentation Foundation

 Spring.Net

 NHibernate

 Windows Forms

Other:

37 [DSDM-B4]Do you use a particular type of DBMS in your MDSD projects? *

Only answer this question if the following conditions are met:
° Answer was `3`'I have used the Model-Driven Software Development paradigm in my work' at question '24 [DSDM]' (According to your
knowledge and skills, which of the following categories do you belong to?)

Please choose only one of the following:

 Yes

 No

38 [DSDM-B4-DBMS]Choose the type of data base used in your MDSD projects: *

Only answer this question if the following conditions are met:
° Answer was `3`'I have used the Model-Driven Software Development paradigm in my work' at question '24 [DSDM]' (According to your
knowledge and skills, which of the following categories do you belong to?) and Answer was `Y`'Yes' at question '37 [DSDM-B4]' (Do you
use a particular type of DBMS in your MDSD projects?)

Please choose all that apply:

 Relational

 Multidimensional

 Object-Relational

 Object-Oriented

 Documental

 Deductive

 XML

Other:

185

APPENDIX A. FIRST EMPIRICAL STUDY

39 [DSDM-B4-DBMS-A]Choose the Data Base Management System (DBMS) used in your
MDSD projects: *

Only answer this question if the following conditions are met:
° Answer was `3`'I have used the Model-Driven Software Development paradigm in my work' at question '24 [DSDM]' (According to your
knowledge and skills, which of the following categories do you belong to?) and Answer was `Y`'Yes' at question '37 [DSDM-B4]' (Do you
use a particular type of DBMS in your MDSD projects?)

Please choose all that apply:

 MySQL

 PostgreSQL

 Oracle

 SQL-Server

 DB2

Other:

40 [DSDM-B4-DBMS-B]Choose the relevance of the following DBMS capabilities in your MDSD
projects:

Only answer this question if the following conditions are met:
° Answer was `3`'I have used the Model-Driven Software Development paradigm in my work' at question '24 [DSDM]' (According to your
knowledge and skills, which of the following categories do you belong to?) and Answer was `Y`'Yes' at question '37 [DSDM-B4]' (Do you
use a particular type of DBMS in your MDSD projects?)

Please choose the appropriate response for each item:

None Marginal Medium Important Critical

Stored procedures

Triggers

Schema validation (e.g. checks)

41 [DSDM-B5]Choose the initiatives used on your MDSD projects: *

Only answer this question if the following conditions are met:
° Answer was `3`'I have used the Model-Driven Software Development paradigm in my work' at question '24 [DSDM]' (According to your
knowledge and skills, which of the following categories do you belong to?)

Please choose all that apply:

 Model-Driven Architecture (MDA)

 Model-Driven Development (MDD/MDSD)

 Model-Driven Engineering (MDE)

Other:

186

MDD IN IT COMPANIES AND ORGANIZATIONS

42 [DSDM-B6]Choose the platforms that you use on your MDSD projects: *

Only answer this question if the following conditions are met:
° Answer was `3`'I have used the Model-Driven Software Development paradigm in my work' at question '24 [DSDM]' (According to your
knowledge and skills, which of the following categories do you belong to?)

Please choose all that apply:

 Eclipse EMP

 AndroMDA

 openArchitectureWare

Other:

43 [DSDM-B7]Which Model-Driven Software Development CASE tools you use on your MDSD
projects? (Model editors, etc.)

Only answer this question if the following conditions are met:
° Answer was `3`'I have used the Model-Driven Software Development paradigm in my work' at question '24 [DSDM]' (According to your
knowledge and skills, which of the following categories do you belong to?)

Please write your answer here:

44 [DSDM-Opinion1]Give us your opinion about the following sentences: *

Only answer this question if the following conditions are met:
° Answer was `2`'I know the concept of Model-Driven Software Development but I don't use it in my work' or 'I have used the Model-Driven
Software Development paradigm in my work' at question '24 [DSDM]' (According to your knowledge and skills, which of the following
categories do you belong to?)

Please choose the appropriate response for each item:

Worsest
case Worse Equal Better

Much
better

The quality of the software architecture obtained by a MDSD process
in comparison with the quality obtained using traditional methods is...

The productivity of using a MDSD process in comparison with
traditional methods is...

187

APPENDIX A. FIRST EMPIRICAL STUDY

45 [DSDM-Opinion2]Which characteristics or functionalities do you think that are currently
missing on the platforms and tools of Model-Driven Software Development?

Only answer this question if the following conditions are met:
° Answer was `2`'I know the concept of Model-Driven Software Development but I don't use it in my work' or 'I have used the Model-Driven
Software Development paradigm in my work' at question '24 [DSDM]' (According to your knowledge and skills, which of the following
categories do you belong to?)

Please write your answer here:

46 [DSDM-Opinion5-A]Why haven't you applied Model-Driven Software Development in your
projects? *

Only answer this question if the following conditions are met:
° Answer was `2`'I know the concept of Model-Driven Software Development but I don't use it in my work' at question '24 [DSDM]'
(According to your knowledge and skills, which of the following categories do you belong to?)

Please choose all that apply:

 I don't belive in models for software development

 I don't trust in MDSD

 MDSD is not mature enough

 MDSD do not fit to the kind of projects I develop

 Company policy

Other:

47 [DSDM-Opinion5-A-A]Why MDSD doesn't fit to the kind of projects that you develop?

Only answer this question if the following conditions are met:
° Answer was `2`'I know the concept of Model-Driven Software Development but I don't use it in my work' at question '24 [DSDM]'
(According to your knowledge and skills, which of the following categories do you belong to?) and Answer was `4`'MDSD do not fit to the
kind of projects I develop' at question '46 [DSDM-Opinion5-A]' (Why haven't you applied Model-Driven Software Development in your
projects?)

Please write your answer here:

188

MDD IN IT COMPANIES AND ORGANIZATIONS

48 [DSDM-Opinion5-B]Why did you apply Model-Driven Software Development on your
projects? *

Only answer this question if the following conditions are met:
° Answer was `3`'I have used the Model-Driven Software Development paradigm in my work' at question '24 [DSDM]' (According to your
knowledge and skills, which of the following categories do you belong to?)

Please choose all that apply:

 Company policy

 At a given moment I started to apply MDSD to all my projects

 I apply MDSD only to some particular kinds of projects

 I used MDSD in the past but I finally gave up

 I'm still experimenting

Other:

49 [DSDM-Opinion5-B-A]In which kinds of projects have you applied MDSD?

Only answer this question if the following conditions are met:
° Answer was `3`'I apply MDSD only to some particular kinds of projects' at question '48 [DSDM-Opinion5-B]' (Why did you apply Model-
Driven Software Development on your projects?) and Answer was `3`'I have used the Model-Driven Software Development paradigm in my
work' at question '24 [DSDM]' (According to your knowledge and skills, which of the following categories do you belong to?)

Please write your answer here:

50 [DSDM-Opinion5-B-B]Why did you give up MDSD?

Only answer this question if the following conditions are met:
° Answer was `4`'I used MDSD in the past but I finally gave up' at question '48 [DSDM-Opinion5-B]' (Why did you apply Model-Driven
Software Development on your projects?) and Answer was `3`'I have used the Model-Driven Software Development paradigm in my work'
at question '24 [DSDM]' (According to your knowledge and skills, which of the following categories do you belong to?)

Please write your answer here:

189

APPENDIX A. FIRST EMPIRICAL STUDY

190

Appendix B

Second empirical study

Questionnaire of the second empirical study:

Architectural Practices in relation to NFRs

191

APPENDIX B. SECOND EMPIRICAL STUDY

STUDY OF

ARCHITECTURAL PRACTICES

IN RELATION TO

NON-FUNCTIONAL REQUIREMENTS

The Software Engineering for Information Systems research Group (GESSI) from the Technical
University of Catalunya and the Software Engineering Research Group from the Universitat Oberta
de Catalunya (UOC), are jointly participating in a research project aimed to investigate the industrial
practice of software architecture design. Our ultimate goal is to contribute to fill in the gap among
academic research and real industrial practices related to software architecture.

As part of this project, we plan to perform several interviews in IT companies in order to know their
practices and needs related to architectural design. Our main interest is to inquiry how architectural
design is performed, which roles are involved, and which information and knowledge are required
for this labour, as well as to investigate which factors influence design decisions and technologies
to be used.

In this context, we are kindly asking for your participation. We need the participation of one or more
professionals in charge of software architecture design tasks in any project from your company. The
interview will last 1 hour approximately. All provided information will be treated strictly confidential.

The interview will be based on a single project. So, before starting the interview
please select any project where you played the role of software architect.

192

ARCHITECTURAL PRACTICES IN RELATION TO NFRS

Section 1- About the Respondent
*** To be answered before the interview (if possible) ***
This section contains questions related to the respondent and the respondent’s company.

All provided information will be treated strictly confidential.

Personal information
Name and surname:
Contact e-mail:

Related Studies

Principal degree:
Related studies:

Professional experience in the company

Position:
Years in this position:
Years in the company:

About the company
Name of the company:
Number of employees:
Principal production:

About the project
Name of the project:
Domain of the project:
Number of participants:
Project duration:
End date:
Economic costs:

193

APPENDIX B. SECOND EMPIRICAL STUDY

Section 2- Questions about the project

 *** Questions to be answered during the interview ***

The projects we want to investigate in this interview are typical completed
software development projects you were involved in as software architect.
If you have experience with several such projects, please select the project
that you are most familiar with, and base your answers on the system
developed in that project.

Introductory Questions

I1 Could you please provide a general description of the company?

I2 Could you please provide a general description of the project you will base your
answers on?

Methodological Aspects
In this subsection we will inquiry about your understanding of the main concepts in relation to
software architecture as well as methodological aspects related to the project.

Q1 What do you understand by “software architecture”?

Q2 Do you consider that the role of “software architect” exists in your company? What are
the responsibilities of this role?

Q3 Could you please describe the methodology followed for the design of the architecture
and the selection of technologies?

Q4 Did you generate documentation related to architectural issues? What kind of
documents? Did you use any formalisms, models or languages?

Q5 Did you document any architectural view? Why?

Q6 Did you have limited freedom to make architectural decisions?

Q7 Which type of decisions were you able to make?

194

ARCHITECTURAL PRACTICES IN RELATION TO NFRS

Architectural design
This subsection is aimed to inquire about the high-level architectural decisions that you made as
well as decisions related to technology. Examples of architectural decisions could be the separation
of the functionalities in modules, the type of communication between them, or the selection of the
architectural style. Examples of technology selection could be the technology chosen for every
component, the communication protocols, the DBMS, or the selection of the technological platform
(e.g. .NET).

Q8 Did you follow any order to make architectural and technology decisions? (e.g., First
architectural decisions and after the selection of technologies, reverse order, at the
same time, in an independent way). Do you consider it as an iterative process?

Q9 Which role played NFR during architectural and technological decision making?

Q10 Which NFRs were considered during architectural and technological decision making?

Q11 Which NFRs had a major influence on your decisions? Why?

Q12 Which NFRs had a minor influence on your decisions? Why?
In particular, do you consider that there was any type of NFR that was not considered
at all? Why?

Q13 Dou you consider that you would made the same decisions if you didn’t consider
NFRs? Why?

Q14 Which other factors do you consider that played an important role architectural or
technological decision making processes? How do they influenced the decisions?

Q15 Do you consider that the NFRs considered in the project were complete?
Did you add some NFRs from your experience?
Did you modify or remove some of the initial NFRs? In any of these cases, did you
make the decision on your own? Did you document any changes in the NFRs?

Q16 Did you consider that architectural and technological decision making processes could
have been improved and/or make it easier with some tool support? (E.g. modeling tool,
simulation tool, etc.)

Q17 Did you consider that the architectural decisions and the selected technologies were
able to fulfill the required NFRs?

195

APPENDIX B. SECOND EMPIRICAL STUDY

196

Appendix C

Third empirical study

Questionnaire of the third empirical study:

The role of quality attributes in service-based sys-
tems design

197

APPENDIX C. THIRD EMPIRICAL STUDY

This survey studies how practitioners treat quality attributes (such as performance, security, availability, and other -ilities) when designing
service-based software systems. Our goal is to understand what decisions practitioners make to accommodate quality attributes and to ensure
that service-based systems meet quality goals. Your participation will help us understand the real needs when handling quality attributes, and
focus our research to improve how quality attributes are treated in real-world systems.
This study is conducted jointly by the Group of Software Engineering for Information Systems (GESSI), Universitat Politècnica de Catalunya
(UPC), Barcelona, Spain, and the Software Engineering and Architecture Group (SEARCH), University of Groningen (RUG), Netherlands. The
investigators are:

- David Ameller GESSI UPC dameller@essi.upc.edu

- Matthias Galster SEARCH RUG m.r.galster@rug.nl

- Paris Avgeriou SEARCH RUG paris@cs.rug.nl

- Xavier Franch GESSI UPC franch@essi.upc.edu

There are 48 questions in this survey

Information about this survey
Please take a minute to read through the information below. It will help you answer the questionnaire.

1 [Note]What will you be asked to do?

This questionnaire consist of 43 questions, some questions are optional and some questions will only appear depending on your answers
to previous questions. The following types of questions will be asked:

Questions about your profile.
Questions about one of your previous projects.
Questions about quality attributes related to architectural design decisions in the selected project.

2 [Note]How long it will take to complete the survey?

The survey should take approximately 20 minutes to complete.

3 [Note]Dissemination of the results.

If you are interested in the results of this survey, we will provide you with the research report after all data have been collected and
analyzed.

After completing the survey, we will let you know how to obtain the report.

4 [Note]Before you start the survey...

...please take a moment to think about a project in which you were involved in the past.

The project should meet the following criteria:

It should have utilized service-oriented computing/architecture.
You took some kind of design/architecture responsibility.

198

THE ROLE OF QA IN SBS DESIGN

Profile of the participant
Questions about your profile.

5 [P1]What country do you reside in? *

Please choose only one of the following:

 [a list of countries, not included for space reasons]

6 [P2]What is your educational background? (highest degree obtained so far)

Please choose only one of the following:

 Bachelor in Computer Science

 Master in Computer Science

 PhD in Computer Science

 Other

7 [P2.1]Have you ever received any training related to service-oriented computing?

Please choose only one of the following:

 Yes

 No

E.g., courses, seminars, workshops.

8 [P3]Do you have experience in academic research? *

Please choose only one of the following:

 Yes

 No

9 [P3.1]How many years have you spent on research related to service-based systems?

Only answer this question if the following conditions are met:
° Answer was `Y`'Yes' at question '8 [P3]' (Do you have experience in academic research?)

Please write your answer here:

10 [P4]Do you have experience in IT industry? *

Please choose only one of the following:

 Yes

 No

199

APPENDIX C. THIRD EMPIRICAL STUDY

11 [P4.1]How many years of experience do you have in IT industry? *

Only answer this question if the following conditions are met:
° Answer was `Y`'Yes' at question '10 [P4]' (Do you have experience in IT industry?)

Please write your answer here:

12 [P4.2]What is / was your main role in your company? *

Only answer this question if the following conditions are met:
° Answer was `Y`'Yes' at question '10 [P4]' (Do you have experience in IT industry?)

Please choose only one of the following:

 Project manager

 Architect/Designer

 Developer

 Other

13 [P4.3]What is / was the size of your company in terms of the number of employees?

Only answer this question if the following conditions are met:
° Answer was `Y`'Yes' at question '10 [P4]' (Do you have experience in IT industry?)

Please choose only one of the following:

 Less than 10 employees

 Between 10 and 50 employees

 Between 50 and 250 employees

 More than 250 employees

200

THE ROLE OF QA IN SBS DESIGN

14 [P4.4]What domain is / was your company in?

Only answer this question if the following conditions are met:
° Answer was `Y`'Yes' at question '10 [P4]' (Do you have experience in IT industry?)

Please choose all that apply:

 Automotive

 Consulting

 Customer relationship management

 E-commerce

 Education

 Finance

 Government

 Healthcare

 Human resources

 Insurance

 Manufacturing

 Power distribution

 Research and development

 Software engineering

 Telecommunication

 Transportation

 Travel

Other:

15 [P4.5]How many years have you spent on doing work related to service-oriented
computing?

Only answer this question if the following conditions are met:
° Answer was `Y`'Yes' at question '10 [P4]' (Do you have experience in IT industry?)

Please write your answer here:

201

APPENDIX C. THIRD EMPIRICAL STUDY

Project-specific questions
In order to understand how you treat quality attributes, we would like you to think about one particular project in which you participated in the past.
All upcoming questions will be related to this project. Therefore, we first ask you to provide us with some characteristics of this project.

The project you choose should have utilized service-oriented computing/architecture. Moreover, it should be a project in which you had some
design/architect responsibility.

16 [CHK]Did you have design responsibility in the project? *

Please choose only one of the following:

 Yes

 No

17 [Note]Please remember that you must think in a project in which you had some design
responsibilities.

Only answer this question if the following conditions are met:
° Answer was `N`'No' at question '16 [CHK]' (Did you have design responsibility in the project?)

Think of another project and select "yes" above.

18 [PS1]Please provide the following metrics related to the size of the project.

Only answer this question if the following conditions are met:
° Answer was `Y`'Yes' at question '16 [CHK]' (Did you have design responsibility in the project?)

Please write your answer(s) here:

Person months

SLOC

Comments

SLOC: Source lines of code

Please use the text boxes next to the metrics to provide details on your numbers or to provide an explanation if you are not sure about the
metrics.

202

THE ROLE OF QA IN SBS DESIGN

19 [PS2]What is the domain of the project that you are thinking about? *

Only answer this question if the following conditions are met:
° Answer was `Y`'Yes' at question '16 [CHK]' (Did you have design responsibility in the project?)

Please choose only one of the following:

 Automotive

 Consulting

 Customer relationship management

 E-commerce

 Education

 Embedded systems

 Enterprise computing

 Finance

 Government

 Healthcare

 Human resources

 Insurance

 Manufacturing

 Power distribution

 Research and development

 Software engineering

 Telecommunication

 Transportation

 Travel

 Other

20 [PS3]Please provide a brief description of the project (1 to 2 sentences).

Only answer this question if the following conditions are met:
° Answer was `Y`'Yes' at question '16 [CHK]' (Did you have design responsibility in the project?)

Please write your answer here:

203

APPENDIX C. THIRD EMPIRICAL STUDY

21 [PS4]What type of software was developed in the project? *

Only answer this question if the following conditions are met:
° Answer was `Y`'Yes' at question '16 [CHK]' (Did you have design responsibility in the project?)

Please choose only one of the following:

 Single service(s)

 Service-based system

 Hybrid system

 Other

Single service(s): One or more single services that could be used by other systems to compose service-based systems. However, the
services are not integrated (in contrast to "Service-based system"; see next option).
Service-based system: A complete system composed of individual services. This could include the development of the individual services.
Hybrid system: Even though the project was not completely service-based, we used some services, or technologies from service-oriented
computing/SOA.

22 [PS5]For the given project, why was service-orientation chosen in the first place?

Only answer this question if the following conditions are met:
° Answer was `Y`'Yes' at question '16 [CHK]' (Did you have design responsibility in the project?)

Please choose only one of the following:

 It was a strategic decision of the company.

 Certain quality attributes suggested the use of a service-based solution.

 Because of other concerns (e.g., experience of developers, integration with other systems).

 I / we wanted to experiment with services.

 I don't know why.

Make a comment on your choice here:

Please use the comment space to describe the strategy, quality attributes, or other concerns.

204

THE ROLE OF QA IN SBS DESIGN

23 [PS6]Select the sentence that describes the use of external services in your project best.

Only answer this question if the following conditions are met:
° Answer was `Y`'Yes' at question '16 [CHK]' (Did you have design responsibility in the project?)

Please choose only one of the following:

 The project did not use external services but only services that were developed in-house.

 The project used external services provided by trusted sources.

 A search for external services was done, not considering any specific source.

 The developed software used a self-adapting mechanism to discover new external services when necessary.

24 [PS7]Compared to functionality, how important were quality attributes when designing
the system of the project you are thinking about?

Only answer this question if the following conditions are met:
° Answer was `Y`'Yes' at question '16 [CHK]' (Did you have design responsibility in the project?)

Please choose only one of the following:

 Quality attributes were not important.

 Quality attributes were less important than functionality.

 Functionality and quality attributes were equally important.

 Quality attributes were more important than functionality.

 Almost all effort was spent to ensure the compliance of quality attributes.

 I don't know.

25 [PS8]Were quality attributes considered implicitly or explicitly?

Only answer this question if the following conditions are met:
° Answer was `Y`'Yes' at question '16 [CHK]' (Did you have design responsibility in the project?)

Please choose only one of the following:

 Implicitly (in your project quality attributes existed but you did not consider them as particular requirements)

 Explicitly (quality attributes were made explicit in the requirements)

205

APPENDIX C. THIRD EMPIRICAL STUDY

Quality impact on architectural design decisions
In this part of the survey we ask you about the most important quality attribute and one decision that you made in order to accommodate this
quality attribute.

26 [QA1.1]What was the most important quality attribute in your project? *

Please write your answer here:

27 [QA1.2]What part of the system was affected most by this quality attribute? (If necessary
provide a brief description of the affected part)

Please write your answer here:

28 [QA1.3]What situations or events had/have to happen to make this quality attribute
evident or visible to end users or other stakeholders?

Please write your answer here:

206

THE ROLE OF QA IN SBS DESIGN

29 [QA1.4]What restrictions or goals were imposed on this quality attribute?

Please write your answer here:

30 [QA1.5]How did you measure or test the satisfaction of this quality attribute (include
quantitative information if applicable)?

Please write your answer here:

31 [ADD1.1]What was the most important design decision that you made in the project that
is related to this quality attribute? *

Please write your answer here:

Please note that "related" could mean that the design decision was taken in order to accommodate this quality attribute, or that this quality
attribute affected or constrained the design decision, or that the quality attribute was significantly affected by this design decision.

32 [ADD1.2]What other alternatives did you consider for this decision?

Please write your answer(s) here:

Alternative 1:

Alternative 2:

Alternative 3:

207

APPENDIX C. THIRD EMPIRICAL STUDY

33 [ADD1.3]What is the reason why you selected this decision? Also, why did you reject the
other alternatives?

Please write your answer here:

34 [ADD1.4]Was this decision related or forced by previous decisions? (please comment)

Please write your answer here:

208

THE ROLE OF QA IN SBS DESIGN

35 [ADD1.5]What other quality attributes were affected (negatively or positively) by this
decision, and how?

Please choose all that apply:

 Security: quality attributes related to accountability, traceability/auditability, encryption, non-repudiation, safety,

authorization, confidentiality, integrity, and authentication.

 Data-related: quality attributes related to data validity, data timeliness, data reliability, data completeness, data policy,

data integrity, and data accuracy.

 Other: quality attributes related to the compliance to some standardization effort.

 Configuration and management: quality attributes related to stability/change cycle, reputation, completeness, and level

of service.

 Performance: quality attributes related to transaction time, throughput, response time, latency, execution time, and queue

delay time.

 Quality of use context: quality attributes related to coverage, up-to-dateness/freshness, trust-worthiness, probability of

correctness, precision, and temporal/spatial resolution.

 Usability: quality attributes related to efficiency of use, content accessibility, learnability, aesthetics and attractiveness,

and effectiveness of the operability and navegability.

 Dependability: quality attributes related to scalability, capacity, reliability, accessibility, availability, failure semantics (e.g.,

exception handling), accuracy, and robustness/flexibility.

 Cost: quality attributes related to variable costs, cost model, and fixed costs.

How quality attributes of the system are affected by this decision can be detailed after selecting a quality attribute.

36 [ADD1.5.1]How positive or negative was this decision for the security quality?

Only answer this question if the following conditions are met:
° Answer was `1`'Security: quality attributes related to accountability, traceability/auditability, encryption, non-repudiation, safety,
authorization, confidentiality, integrity, and authentication.' at question '35 [ADD1.5]' (What other quality attributes were affected (negatively
or positively) by this decision, and how?)

Please choose the appropriate response for each item:

Very
negative Negative No effect Positive

Very
positive

Not
applicable

Accountability

Traceability/auditability

Encryption

Non-repudiation

Safety

Authorization

Confidentiality

Integrity

Authentication

If you have doubts of the meaning of any of these quality attributes place the mouse pointer over its name to get a definition.

209

APPENDIX C. THIRD EMPIRICAL STUDY

37 [ADD1.5.2]How positive or negative was this decision for the data quality?

Only answer this question if the following conditions are met:
° Answer was `2`'Data-related: quality attributes related to data validity, data timeliness, data reliability, data completeness, data policy,
data integrity, and data accuracy.' at question '35 [ADD1.5]' (What other quality attributes were affected (negatively or positively) by this
decision, and how?)

Please choose the appropriate response for each item:

Very
negative Negative No effect Positive

Very
positive

Not
applicable

Data validity

Data timeliness

Data reliability

Data completeness

Data policy

Data integrity

Data accuracy

If you have doubts of the meaning of any of these quality attributes place the mouse pointer over its name to get a definition.

38 [ADD1.5.3]How positive or negative was this decision for the standards compliance
quality?

Only answer this question if the following conditions are met:
° Answer was `3`'Other: quality attributes related to the compliance to some standardization effort.' at question '35 [ADD1.5]' (What other
quality attributes were affected (negatively or positively) by this decision, and how?)

Please choose the appropriate response for each item:

Very
negative Negative No effect Positive

Very
positive

Not
applicable

Standards compliance

If you have doubts of the meaning of any of these quality attributes place the mouse pointer over its name to get a definition.

39 [ADD1.5.4]How positive or negative was this decision for the configuration and
management quality?

Only answer this question if the following conditions are met:
° Answer was `4`'Configuration and management: quality attributes related to stability/change cycle, reputation, completeness, and level
of service.' at question '35 [ADD1.5]' (What other quality attributes were affected (negatively or positively) by this decision, and how?)

Please choose the appropriate response for each item:

Very
negative Negative No effect Positive

Very
positive

Not
applicable

Stability/change cycle

Reputation

Completeness

Level of service

If you have doubts of the meaning of any of these quality attributes place the mouse pointer over its name to get a definition.

210

THE ROLE OF QA IN SBS DESIGN

40 [ADD1.5.5]How positive or negative was this decision for the performance quality?

Only answer this question if the following conditions are met:
° Answer was `5`'Performance: quality attributes related to transaction time, throughput, response time, latency, execution time, and queue
delay time.' at question '35 [ADD1.5]' (What other quality attributes were affected (negatively or positively) by this decision, and how?)

Please choose the appropriate response for each item:

Very
negative Negative No effect Positive

Very
positive

Not
applicable

Transaction time

Throughput

Response time

Latency

If you have doubts of the meaning of any of these quality attributes place the mouse pointer over its name to get a definition.

41 [ADD1.5.6]How positive or negative was this decision for the use context quality?

Only answer this question if the following conditions are met:
° Answer was `6`'Quality of use context: quality attributes related to coverage, up-to-dateness/freshness, trust-worthiness, probability of
correctness, precision, and temporal/spatial resolution.' at question '35 [ADD1.5]' (What other quality attributes were affected (negatively or
positively) by this decision, and how?)

Please choose the appropriate response for each item:

Very
negative Negative No effect Positive

Very
positive

Not
applicable

Coverage

Up-to-dateness/freshness

Trust-worthiness

Probability of correctness

Precision

Temporal/spatial resolution

If you have doubts of the meaning of any of these quality attributes place the mouse pointer over its name to get a definition.

42 [ADD1.5.7]How positive or negative was this decision for the usability quality?

Only answer this question if the following conditions are met:
° Answer was `7`'Usability: quality attributes related to efficiency of use, content accessibility, learnability, aesthetics and attractiveness,
and effectiveness of the operability and navegability.' at question '35 [ADD1.5]' (What other quality attributes were affected (negatively or
positively) by this decision, and how?)

Please choose the appropriate response for each item:

Very
negative Negative No effect Positive

Very
positive

Not
applicable

Efficiency of use

Content accessibility

Learnability

Aesthetics and
attractiveness

Effectiveness of the
operability and
navegability

If you have doubts of the meaning of any of these quality attributes place the mouse pointer over its name to get a definition.

211

APPENDIX C. THIRD EMPIRICAL STUDY

43 [ADD1.5.8]How positive or negative was this decision for the dependability quality?

Only answer this question if the following conditions are met:
° Answer was `8`'Dependability: quality attributes related to scalability, capacity, reliability, accessibility, availability, failure semantics (e.g.,
exception handling), accuracy, and robustness/flexibility.' at question '35 [ADD1.5]' (What other quality attributes were affected (negatively
or positively) by this decision, and how?)

Please choose the appropriate response for each item:

Very
negative Negative No effect Positive

Very
positive

Not
applicable

Scalability

Capacity

Reliability

Accessibility

Continuous availability

Availability

Failure semantics

Accuracy

Robustness/flexibility

If you have doubts of the meaning of any of these quality attributes place the mouse pointer over its name to get a definition.

44 [ADD1.5.9]How positive or negative was this decision for the cost quality?

Only answer this question if the following conditions are met:
° Answer was `9`'Cost: quality attributes related to variable costs, cost model, and fixed costs.' at question '35 [ADD1.5]' (What other
quality attributes were affected (negatively or positively) by this decision, and how?)

Please choose the appropriate response for each item:

Very
negative Negative No effect Positive

Very
positive

Not
applicable

Variable costs

Cost model

Fixed costs

If you have doubts of the meaning of any of these quality attributes place the mouse pointer over its name to get a definition.

45 [ADD1.5.10]You can use this comment space to make any comment on the quality
questions or to mention quality attributes that are not listed.

Please write your answer here:

212

THE ROLE OF QA IN SBS DESIGN

Closing questions
These are the last questions of the survey. They give you an opportunity to provide us with further information that was not covered by the
previous questions.

46 [C1]In your projects, do you usually document information about design decisions? Also,
do you think it is or it would be useful to have this information? (Please comment)

Please write your answer here:

47 [C2]What problems do you think occur when you try to satisfy quality attributes in the
context of service-based systems (if any)?

Please write your answer here:

48 [C3]Upon reflection of answering the questions, is there anything you can add and that
you feel is relevant in the context of this questionnaire?

Please write your answer here:

213

APPENDIX C. THIRD EMPIRICAL STUDY

214

List of Abbreviations

AD Architectural Decision

ADD Architectural Design Decision

ADL Architectural Description Language

AK Architectural Knowledge

AS Application Server

CIM Computation Independent Model

CRUD Create, Read, Update and Delete

DBMS Data Base Management System

GORE Goal-Oriented Requirements Engineering

KB Knowledge Base

M2M Model-to-Model

M2T Model-to-Text

MDA Model-Driven Architecture

MDD Model-Driven Development

215

LIST OF ABBREVIATIONS

MDE Model-Driven Engineering

NFR Non-Functional Requirement

OSS Open Source Software

PIM Platform Independent Model

PSM Platform Specific Model

QA Quality Attribute

QR Quality Requirement

RE Requirements Engineering

RQ Research Question

SADM Software Architectural Design Method

SBS Service-Based System

SEI Software Engineering Institute

SLA Service-Level Agreement

SOA Service-Oriented Architecture

UML Unified Modeling Language

WS Web Server

216

Bibliography

[1] Art Akerman and Jeff Tyree. Using ontology to support development
of software architectures. IBM Systems Journal, 45:813–825, October
2006.

[2] Tariq Al-naeem, Ian Gorton, Muhammed Ali-Babar, Fethi Rabhi,
and Boualem Benatallah. A quality-driven systematic approach for
architecting distributed software applications. In 27th International
Conference on Software Engineering (ICSE), pages 244–253, 2005.

[3] Fernanda Alencar, Beatriz Marín, Giovanni Giachetti, Oscar Pastor,
Jaelson Castro, and João Henrique Pimentel. From i* Requirements
Models to Conceptual Models of a Model Driven Development
Process. In 2nd Working Conference on the Practice of Enterprise
Modeling (PoEM), pages 99–114, 2009.

[4] Muhammad Ali-Babar and Ian Gorton. A Tool for Managing
Software Architecture Knowledge. In 2nd Workshop on SHAring and
Reusing architectural Knowledge Architecture, Rationale, and Design
Intent (SHARK-ADI), page 11, 2007.

[5] Muhammad Ali-Babar, Ian Gorton, and Barbara Kitchenham.
Rationale Management in Software Engineering, chapter A
Framework for Supporting Architecture Knowledge and Rationale
Management, pages 237–254. Springer, 2006.

217

BIBLIOGRAPHY

[6] Muhammad Ali-Babar, Patricia Lago, and Arie Deursen. Empirical
research in software architecture: opportunities, challenges, and
approaches. Empirical Software Engineering, 16:539–543, 2011.

[7] Muhammad Ali-Babar, Andrew Northway, Ian Gorton, Paul Heuer,
and Thong Nguyen. Introducing Tool Support for Managing
Architectural Knowledge: An Experience Report. In 15th Annual
IEEE International Conference and Workshop on the Engineering of
Computer Based Systems (ECBS), pages 105–113, 2008.

[8] David Ameller. BSc thesis: Assignació de responsabilitats usant
AndroMDA. Technical report, Facultat d’Informàtica de Barcelona
(FIB), January 2007.
http://upcommons.upc.edu/pfc/handle/2099.1/5302.

[9] David Ameller. MSc thesis: Considering Non-Functional
Requirements in Model-Driven Engineering. Technical report,
Llenguatges i Sistemes Informátics (LSI), June 2009.
http://upcommons.upc.edu/pfc/handle/2099.1/7192.

[10] David Ameller. PhD thesis proposal: Systematic Architecture
Design, a semi-automatic method. Technical report, Llenguatges i
Sistemes Informátics (LSI), June 2010.
http://www.essi.upc.edu/ dameller/wp-content/papercite-
data/pdf/ameller2010-proposal.pdf.

[11] David Ameller, Claudia Ayala, Jordi Cabot, and Xavier Franch. How
do Software Architects Consider Non-functional Requirements: An
Exploratory Study. In 20th IEEE International Requirements
Engineering Conference (RE), pages 41–50. IEEE, 2012.

[12] David Ameller, Claudia Ayala, Jordi Cabot, and Xavier Franch.
Non-functional Requirements in Architectural Decision Making.
IEEE Software, 30(2):61–67, March 2013. Date of Publication: 13
December 2012.

[13] David Ameller, Oriol Collell, and Xavier Franch. Reconciling the
3-layer Architectural Style with a Plug-in-based Architecture: the
Eclipse Case. In 1st Workshop on Developing Tools as Plug-ins
(TOPI), pages 20–23, 2011.

218

BIBLIOGRAPHY

[14] David Ameller, Oriol Collell, and Xavier Franch. ArchiTech: Tool
Support for NFR-Guided Architectural Decision-Making. In 20th
IEEE International Requirements Engineering Conference (RE),
pages 315–316. IEEE, 2012.

[15] David Ameller, Oriol Collell, and Xavier Franch. The Three-Layer
architectural pattern applied to plug-in-based architectures: the
Eclipse case. Software: Practice and Experience, 43:391–402, 2012.

[16] David Ameller and Xavier Franch. Asignación de Tratamientos a
Responsabilidades en el contexto del Diseño Arquitectónico Dirigido
por Modelos. In Workshop on Desarrollo de Software Dirigido por
Modelos (DSDM), 2007.

[17] David Ameller and Xavier Franch. Assigning Treatments to
Responsibilities in Software Architectures. In EUROMICRO
Conference on Software Engineering and Advanced Applications
(SEAA), Research in progess track, 2007.

[18] David Ameller and Xavier Franch. Service Level Agreement Monitor
(SALMon). In 7th International Conference on Composition-Based
Software Systems (ICCBSS), pages 224–227, 2008.

[19] David Ameller and Xavier Franch. Definición de una Ontología para
el Proceso de DSDM considerando Requisitos No-Funcionales. In
Workshop on Desarrollo de Software Dirigido por Modelos (DSDM),
2009.

[20] David Ameller and Xavier Franch. Usage of architectural styles and
technologies in IT companies and organizations. In Workshop on
Empirical Assessment in Software Architecture (EASA), 2009.

[21] David Ameller and Xavier Franch. How do Software Architects
consider Non-Functional Requirements: A Survey. In 16th
International Working Conference on Requirements Engineering:
Foundation for Software Quality (RefsQ), pages 276–277, 2010.

[22] David Ameller and Xavier Franch. Ontology-based Architectural
Knowledge representation: structural elements module. In 9th

219

BIBLIOGRAPHY

International Workshop on System/Software Architectures (IWSSA),
pages 296–301, 2011.

[23] David Ameller and Xavier Franch. Quark: a method to assist
software architects in architectural decision-making. In XVI
Congreso Iberoamericano en Ingeniería de Software (CIbSE), 2013.

[24] David Ameller, Xavier Franch, and Jordi Cabot. Dealing with
Non-Functional Requirements in Model-Driven Development. In 18th
IEEE International Requirements Engineering Conference (RE),
pages 189–198, 2010.

[25] David Ameller, Matthias Galster, Paris Avgeriou, and Xavier Franch.
The Role of Quality Attributes in Service-based Systems
Architecting: A Survey. In 7th European Conference on Software
Architecture, pages 200–207, 2013.

[26] Nguyen Duc Anh, Daniela S. Cruzes, Reidar Conradi, Martin Höst,
Xavier Franch, and Claudia P. Ayala. Collaborative Resolution of
Requirements Mismatches When Adopting Open Source
Components. In 18th International Working Conference on
Requirements Engineering: Foundation for Software Quality
(REFSQ), pages 77–93, 2012.

[27] Danilo Ardagna, Carlo Ghezzi, and Raffaela Mirandola. Rethinking
the Use of Models in Software Architecture. In S. Becker and
F. Plasil, editors, 4th International Conference on the Quality of
Software Architectures (QoSA), volume LNCS 5281, pages 1–27.
Springer-Verlag Berlin, 2008.

[28] Colin Atkinson and Thomas Kühne. Model-Driven Development: a
metamodeling foundation. IEEE Software, 20(5):36–41, September
2003.

[29] Paris Avgeriou, Philippe Kruchten, Patricia Lago, Paul Grisham, and
Dewayne Perry. Architectural knowledge and rationale: issues,
trends, challenges. ACM SIGSOFT Software Engineering Notes,
32:41–46, July 2007.

220

BIBLIOGRAPHY

[30] Paris Avgeriou and Uwe Zdun. Architectural Patterns Revisited - a
Pattern Language. In 10th European Conference on Pattern
Languages of Programs (EuroPLoP 2005), pages 1–39, Irsee,
Germany, July 2005.

[31] Lenin Babu T., M. Seetha Ramaiah, T. V. Prabhakar, and
D. Rambabu. ArchVoc - Towards an Ontology for Software
Architecture. In 2nd Workshop on SHAring and Reusing
architectural Knowledge Architecture, Rationale, and Design Intent
(SHARK-ADI), SHARK-ADI ’07, page 5, Washington, DC, USA,
2007. IEEE Computer Society.

[32] Felix Bachmann and Len Bass. Introduction to the Attribute Driven
Design method. In 23rd International Conference on Software
Engineering (ICSE), pages 745–746, Washington, DC, USA, 2001.
IEEE Computer Society.

[33] Felix Bachmann, Len Bass, M. Klein, and C. Shelton. Designing
software architectures to achieve quality attribute requirements.
IEEE Software, 152(4):153–165, August 2005. Article.

[34] Sriram Balasubramaniam, Grace A. Lewis, Edwin Morris, Soumya
Simanta, and Dennis B. Smith. Challenges for assuring quality of
service in a service-oriented environment. In Principles of
Engineering Service Oriented Systems (PESOS), pages 103–106,
2009.

[35] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. The
Goal Question Metric Approach. In Encyclopedia of Software
Engineering. John Wiley & Sons, 1994.

[36] Len Bass, Paul Clements, and Rick Kazman. Software Architecture
in Practice, Second Edition. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2003.

[37] Lúcia Bastos and Jaelson Castro. Systematic Integration Between
Requirements and Architecture. In Ricardo Choren, Alessandro
Garcia, Carlos Lucena, and Alexander Romanovsky, editors, Software
Engineering for Multi-Agent Systems III, volume 3390 of Lecture

221

BIBLIOGRAPHY

Notes in Computer Science, pages 85–103. Springer Berlin /
Heidelberg, 2005.

[38] Hanane Becha and Daniel Amyot. Non-Functional Properties in
Service Oriented Architecture - A Consumer’s Perspective. Journal
of Software, 7(3):575–587, March 2012.

[39] Daniela Berardi, Diego Calvanese, and Giuseppe De Giacomo.
Reasoning on UML Class Diagrams. Artificial Intelligence,
168(1-2):70–118, 2005.

[40] Simona Bernardi, José Merseguer, and Dorina C. Petriu. Adding
Dependability Analysis Capabilities to the MARTE Profile. In 11th
International Conference on Model Driven Engineering Languages
and Systems (MoDELS), pages 736–750, 2008.

[41] Richard Berntsson-Svensson, Tony Gorschek, and Björn Regnell.
Quality Requirements in Practice: An Interview Study in
Requirements Engineering for Embedded Systems. In 15th
International Working Conference on Requirements Engineering:
Foundation for Software Quality (REFSQ), pages 218–232, 2009.

[42] Richard Berntsson-Svensson, Tony Gorschek, Björn Regnell, Richard
Torkar, Ali Shahrokni, Robert Feldt, and Aybüke Aurum.
Prioritization of quality requirements: State of practice in eleven
companies. In 19th IEEE International Requirements Engineering
Conference (RE), pages 69–78, 2011.

[43] Richard Berntsson-Svensson, M. Höst, and B. Regnell. Managing
Quality Requirements: A Systematic Review. In 36th EUROMICRO
Conference on Software Engineering and Advanced Applications
(SEAA), pages 261–268, 2010.

[44] Antonia Bertolino, Antonio Bucchiarone, Stefania Gnesi, and Henry
Muccini. An architecture-centric approach for producing quality
systems. In R. Reussner, J. Mayer, JA Stafford, S. Overhage,
S. Becker, and PJ Schroeder, editors, Quality Of Software
Architectures And Software Quality (QoSA), volume 3712, pages
21–37, 2005.

222

BIBLIOGRAPHY

[45] Stephan Bode, Anja Fischer, Winfried Kuehnhauser, and Matthias
Riebisch. Software Architectural Design meets Security Engineering.
In 16th Annual IEEE International Conference and Workshop on the
Engineering of Computer Based Systems, pages 109–118, 2009.

[46] Andreas Borg, Angela Yong, Pär Carlshamre, and Kristian Sandahl.
The Bad Conscience of Requirements Engineering: An Investigation
in Real-world Treatment of Non-Functional Requirements. In 3rd
Conference on Software Engineering Research and Practice in
Sweden (SERPS), pages 1–8, 2003.

[47] Jan Bosch. Design and use of software architectures: adopting and
evolving a product-line approach. ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA, 2000.

[48] Frederick P. Brooks, Jr. No Silver Bullet - Essence and Accidents of
Software Engineering. Computer, 20(4):10–19, April 1987.

[49] Frank Buschmann. Value-Focused System Quality. IEEE Software,
27(6):84–86, 2010.

[50] Frank Buschmann, David Ameller, Claudia P. Ayala, Jordi Cabot,
and Xavier Franch. Architecture Quality Revisited. IEEE Software,
29:22–24, 2012.

[51] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter
Sommerlad, and Michael Stal. Pattern-oriented software architecture:
a system of patterns. John Wiley & Sons, Inc., 1996.

[52] Jordi Cabot and Eric Yu. Improving requirements specifications in
Model-Driven Development processes. In International Workshop on
Challenges in Model-Driven Software Engineering (ChaMDE), 2008.

[53] Coral Calero, Julián Ruiz, and Mario Piattini. Classifying web
metrics using the web quality model. Online Information Review,
29(3):227–248, 2005.

[54] Rafael Capilla, Francisco Nava, and Juan C. Dueñas. Modeling and
Documenting the Evolution of Architectural Design Decisions. In
2nd Workshop on SHAring and Reusing architectural Knowledge

223

BIBLIOGRAPHY

Architecture, Rationale, and Design Intent (SHARK-ADI), page 9,
Washington, DC, USA, 2007. IEEE Computer Society.

[55] Rafael Capilla, Francisco Nava, Sandra Pérez, and Juan C. Dueñas.
A web-based tool for managing architectural design decisions. ACM
SIGSOFT Software Engineering Notes, 31(5):4, 2006.

[56] Juan-Pablo Carvallo, Xavier Franch, and Carme Quer. Managing
non-technical requirements in COTS components selection. In 14th
IEEE International Conference on Requirements Engineering, pages
323–326. IEEE, 2006.

[57] Jaelson Castro, João Pimentel, Márcia Lucena, Emanuel Santos, and
Diego Dermeval. F-STREAM: A Flexible Process for Deriving
Architectures from Requirements Models. In International Workshop
on System/Software Architectures (IWSSA), pages 342–353, 2011.

[58] Stefano Ceri, Piero Fraternali, Aldo Bongio, Marco Brambilla, Sara
Comai, and Maristella Matera. Designing Data-Intensive Web
Applications. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2002.

[59] Betty H. Cheng, Rogério Lemos, Holger Giese, Paola Inverardi, Jeff
Magee, Jesper Andersson, Basil Becker, Nelly Bencomo, Yuriy Brun,
Bojan Cukic, Giovanna Marzo Serugendo, Schahram Dustdar,
Anthony Finkelstein, Cristina Gacek, Kurt Geihs, Vincenzo Grassi,
Gabor Karsai, Holger M. Kienle, Jeff Kramer, Marin Litoiu, Sam
Malek, Raffaela Mirandola, Hausi A. Müller, Sooyong Park, Mary
Shaw, Matthias Tichy, Massimo Tivoli, Danny Weyns, and Jon
Whittle. Software Engineering for Self-Adaptive Systems. In
Betty H. Cheng, Rogério Lemos, Holger Giese, Paola Inverardi, and
Jeff Magee, editors, Software Engineering for Self-Adaptive Systems:
A Research Roadmap, chapter Software Engineering for Self-Adaptive
Systems: A Research Roadmap, pages 1–26. Springer-Verlag, Berlin,
Heidelberg, 2009.

[60] Heeseok Choi, Keunhyuk Yeom, Youhee Choi, and Mikyeong Moon.
An approach to quality achievement at the architectural level:
AQUA. In R. Gorrieri and H. Wehrheim, editors, 8th IFIP

224

BIBLIOGRAPHY

International Conference on Formal Methods for Open Object-Based
Distributed Systems, volume 4037, pages 20–32, 2006.

[61] Lawrence Chung, Kendra Cooper, and Anna Yi. Developing
adaptable software architectures using design patterns: an NFR
approach. Computer Standards & Interfaces, 25(3):253–260, 2003.

[62] Lawrence Chung and Julio Cesar Sampaio do Prado Leite.
Conceptual Modeling: Foundations and Applications, chapter On
Non-Functional Requirements in Software Engineering, pages
363–379. Springer, 2009.

[63] Lawrence Chung, Brian A. Nixon, Eric Yu, and John Mylopoulos.
Non-functional requirements in software engineering. Kluwer
Academic, 2000.

[64] M. Dal Cin. Extending UML towards a useful OO-language for
modeling dependability features. In 9th IEEE International
Workshop on Object-Oriented Real-Time Dependable Systems, pages
325–330, 2003.

[65] Marcus Ciolkowski, Oliver Laitenberger, Sira Vegas, and Stefan Biffl.
Practical Experiences in the Design and Conduct of Surveys in
Empirical Software Engineering. In Reidar Conradi and AlfInge
Wang, editors, Empirical Methods and Studies in Software
Engineering, volume 2765 of Lecture Notes in Computer Science,
pages 104–128. Springer Berlin Heidelberg, 2003.

[66] Paul Clements. Certified Software Architects. IEEE Software,
27(6):6–8, 2010.

[67] Paul Clements, Rick Kazman, and Mark Klein. Evaluating software
architectures: methods and case studies. Addison-Wesley Longman
Publishing Co., Inc, 2002.

[68] Viktor Clerc, Patricia Lago, and Hans van Vliet. The architect’s
mindset. In 3rd International Conference on the Quality of
Software-Architectures (QoSA), QoSA’07, pages 231–249, Berlin,
Heidelberg, 2007.

225

BIBLIOGRAPHY

[69] Sholom Cohen and Robert Krut. Managing Variation in Services in a
Software Product Line Context. Technical report, Carnegie Mellon
University, 2010.

[70] Reiclar Conradi, Jingyue Li, Odd Petter Petter N Slyngstad,
Vigdis By Kampenes, Christian Bunse, Maurizio Morisio, and Marco
Torchiano. Reflections on conducting an international survey of
software engineering. In International Symposium on Empirical
Software Engineering, page 10, 2005.

[71] Vittorio Cortellessa, Antinisca Di Marco, and Paola Inverardi.
Integrating Performance and Reliability Analysis in a
Non-Functional MDA Framework. In Fundamental Approaches to
Software Engineering (FASE), pages 57–71, 2007.

[72] Vittorio Cortellessa, Antinisca Di Marco, and Paola Inverardi.
Non-Functional Modeling and Validation in Model-Driven
Architecture. In 6th Working IEEE/IFIP Conference on Software
Architecture (WICSA), page 25, Washington, DC, USA, 2007.

[73] J. W. Creswell. Research Design: Qualitative, Quantitative, and
Mixed Methods Approaches (3rd Ed.). SAGE Publications, 2008.

[74] Maya Daneva, Luigi Buglione, and Andrea Herrmann. Software
Architects’ Experiences of Quality Requirements: What We Know
and What We Do Not Know? In 19th International Working
Conference on Requirements Engineering: Foundation for Software
Quality (REFSQ), volume 7830 of Lecture Notes in Computer
Science, pages 1–17. Springer Berlin Heidelberg, 2013.

[75] Alan M. Davis. Software requirements: objects, functions, and states.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

[76] Remco De Boer, Rik Farenhorst, Patricia Lago, Hans van Vliet,
Viktor Clerc, and Anton Jansen. Architectural Knowledge: Getting
to the Core. In Sven Overhage, Clemens Szyperski, Ralf Reussner,
and Judith Stafford, editors, Software Architectures, Components,
and Applications, volume 4880 of Lecture Notes in Computer Science,
pages 197–214. Springer Berlin / Heidelberg, 2007.

226

BIBLIOGRAPHY

[77] Remco C. De Boer and Rik Farenhorst. In search of ‘architectural
knowledge’. In 3rd international workshop on Sharing and reusing
architectural knowledge (SHARK), pages 71–78, New York, NY,
USA, 2008.

[78] Remco C. De Boer, Patricia Lago, Alexandru C. Telea, and Hans
Van Vliet. Ontology-driven visualization of architectural design
decisions. In Joint Working IEEE/IFIP Conference on Software
Architecture, European Conference on Software Architecture
(WICSA/ECSA), pages 51–60, sept. 2009.

[79] José Luis de la Vara, Krzysztof Wnuk, Richard Berntsson-Svensson,
Juan Sánchez, and Björn Regnell. An Empirical Study on the
Importance of Quality Requirements in Industry. In 23th
International Conference on Software Engineering and Knowledge
Engineering (SEKE), 2011.

[80] Diego Dermeval, Jaelson Castro, Carla T. L. L. Silva, João Pimentel,
Ig Ibert Bittencourt, Patrick Henrique da S. Brito, Endhe Elias,
Thyago Tenório, and Alan Pedro da Silva. On the use of
metamodeling for relating requirements and architectural design
decisions. In ACM Symposium on Applied Computing (SAC), pages
1278–1283, 2013.

[81] Diego Dermeval, João Pimentel, Carla T. L. L. Silva, Jaelson Castro,
Emanuel Santos, Gabriela Guedes, Márcia Lucena, and Anthony
Finkelstein. STREAM-ADD - Supporting the Documentation of
Architectural Design Decisions in an Architecture Derivation
Process. In 36th Annual IEEE Computer Software and Applications
Conference (COMPSAC), pages 602–611, 2012.

[82] Jens Dietrich and Chris Elgar. Towards a web of patterns. Journal of
Web Semantics, 5(2):108–116, 2007.

[83] Joerg Doerr, Daniel Kerkow, Tom Koenig, Thomas Olsson, and
Takeshi Suzuki. Non-Functional Requirements in Industry - Three
Case Studies Adopting an Experience-based NFR Method. In 13th
IEEE Requirements Engineering Conference (RE), pages 373–382,
2005.

227

BIBLIOGRAPHY

[84] Thomas Erl. Service-oriented architecture: concepts, technology, and
design. Prentice Hall, 2005.

[85] Joerg Evermann and Jennifer Fang. Evaluating ontologies: Towards
a cognitive measure of quality. Information Systems, 35(4):391–403,
2010.

[86] Davide Falessi, Giovanni Cantone, and Philippe Kruchten. Do
Architecture Design Methods Meet Architects’ Needs? In 6th
Working IEEE/IFIP Conference on Software Architecture, page 5,
2007.

[87] Kazi Farooqui, Luigi Logrippo, and Jan de Meer. The ISO Reference
Model for Open Distributed Processing: An Introduction. Computer
Networks and ISDN Systems, 27(8):1215–1229, 1995.

[88] Agung Fatwanto and Clive Boughton. Analysis, Specification and
Modeling of Non-Functional Requirements for Translative
Model-Driven Development. In International Conference on
Computational Intelligence and Security, volume 1 and 2, pages
966–971. IEEE Computer, 2008.

[89] Adrian Fernandez, Emilio Insfran, and Silvia Abrahão. Integrating a
Usability Model into Model-Driven Web Development Processes. In
Web Information Systems Engineering (WISE), pages 497–510, 2009.

[90] Anthony Finkelstein and John Dowell. A comedy of errors: the
London Ambulance Service case study. In 8th International
Workshop on Software Specification and Design, IWSSD ’96, page 2,
Washington, DC, USA, 1996. IEEE Computer Society.

[91] Martin Fowler. Patterns of Enterprise Application Architecture.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2002.

[92] Xavier Franch, Angelo Susi, Maria C. Annosi, Claudia Ayala,
Ruediger Glott, Daniel Gross, Ron Kenett, Fabio Mancinelli, Pop
Ramsamy, Cedric Thomas, David Ameller, Stijn Bannier, Nili
Bergida, Yehuda Blumenfeld, Olivier Bouzereau, Dolors Costal,

228

BIBLIOGRAPHY

Manuel Domínguez, Kirsten Haaland, Lidia López, Mirko Morandini,
and Alberto Siena. Managing Risk in Open Source Software
Adoption. In International Joint Conference on Software
Technologies (ICSOFT), 2013.

[93] Stefano Gallotti, Carlo Ghezzi, Raffaela Mirandola, and Giordano
Tamburrelli. Quality Prediction of Service Compositions through
Probabilistic Model Checking. In S. Becker and F. Plasil, editors, 4th
International Conference on the Quality of Software Architectures
(QoSA), volume LNCS 5281, pages 119–134. Springer-Verlag Berlin,
2008.

[94] David Garlan, Robert Monroe, and David Wile. ACME: an
architecture description interchange language. In Conference of the
Centre for Advanced Studies on Collaborative research (CASCON),
page 7, 1997.

[95] David Garlan and Bradley Schmerl. AEvol: A tool for defining and
planning architecture evolution. In 31st International Conference on
Software Engineering (ICSE), pages 591–594, Washington, DC, USA,
2009.

[96] Dragan Gasevic, Dragan Djuric, Vladan Devedzic, and Violeta
Damjanovi. Converting UML to OWL ontologies. In 13th
international World Wide Web conference on Alternate track papers
& posters, WWW Alt. ’04, pages 488–489, New York, NY, USA,
2004. ACM.

[97] Andreas Gehlert and Andreas Metzger. Quality Reference Model for
SBA (Deliverable CD-JRA-1.3.2). Technical report, S-Cube, 2009.

[98] Martin Glinz. On Non-Functional Requirements. In 15th IEEE
International Requirements Engineering Conference (RE), pages
21–26, 2007.

[99] Laszlo Gonczy, Zsolt Deri, and Daniel Varro. Model Transformations
for Performability Analysis of Service Configurations. In MRV
Chaudron, editor, Models in Software Engineering (MiSE), volume
LNCS 5421, pages 153–166. Springer-Verlag Berlin, 2009.

229

BIBLIOGRAPHY

[100] Ian Gorton. Essential Software Architecture (2nd ed.). Springer,
2011.

[101] Daniel Gross and Eric Yu. From Non-Functional Requirements to
Design Through Patterns. Requirements Engineering Journal,
6(1):18–36, 2001.

[102] Thomas R. Gruber. Toward principles for the design of ontologies
used for knowledge sharing. International Journal of
Human-Computer Studies, 43:907–928, December 1995.

[103] Paul Grünbacher, Alexander Egyed, and Nenad Medvidovic.
Reconciling software requirements and architectures with
intermediate models. Software and Systems Modeling, 3(3):235–253,
2004.

[104] Qing Gu and Hans van Vliet. SOA decision making - what do we
need to know. In Workshop on Sharing and Reusing Architectural
Knowledge (SHARK), SHARK ’09, pages 25–32, Washington, DC,
USA, 2009. IEEE Computer Society.

[105] Nicola Guarino. Some Ontological Principles for Designing Upper
Level Lexical Resources. In 1st International Conference on
Language Resources and Evaluation (LREC), volume
cmp-lg/9809002, pages 527–534, 1998.

[106] Giancarlo Guizzardi, Gerd Wagner, and Heinrich Herre. On the
Foundations of UML as an Ontology Representation Language. In
14th International Conference on Knowledge Engineering and
Knowledge Management (EKAW), pages 47–62. Springer-Verlag,
2004.

[107] Maria Haigh. Software quality, non-functional software requirements
and IT-business alignment. Software Quality Control, 18(3):361–385,
2010.

[108] Brent Hailpern and Peri Tarr. Model-Driven Development: The
good, the bad, and the ugly. IBM Systems Journal, 45(3):451–461,
2006.

230

BIBLIOGRAPHY

[109] Katja Henttonen and Mari Matinlassi. Open source based tools for
sharing and reuse of software architectural knowledge. In 8th
Working IEEE/IFIP Conference on Software Architecture (WICSA)
and the 3rd European Conference on Software Architecture (ECSA),
pages 41–50, 2009.

[110] Christine Hofmeister, Philippe Kruchten, Robert L. Nord, Henk
Obbink, Alexander Ran, and Pierre America. A general model of
software architecture design derived from five industrial approaches.
Journal of Systems and Software, 80(1):106–126, 2007.

[111] Johan F. Hoorn, Rik Farenhorst, Patricia Lago, and Hans van Vliet.
The lonesome architect. Journal of Systems and Software,
84(9):1424–1435, 2011.

[112] Jennifer Horkoff and Eric S. K. Yu. Qualitative, Interactive,
Backward Analysis of i* Models. In 3rd International i* Workshop,
pages 43–46, 2008.

[113] Leo Hsu and Regina Obe. Cross Compare of SQL Server, MySQL,
and PostgreSQL http://www.postgresonline.com/journal/
archives/51-Cross-Compare-of-SQL-Server,-MySQL,
-and-PostgreSQL.html, 2008.

[114] John Hutchinson, Mark Rouncefield, and Jon Whittle. Model-driven
engineering practices in industry. In 33rd International Conference
on Software Engineering, ICSE ’11, pages 633–642, New York, NY,
USA, 2011. ACM.

[115] John Hutchinson, Jon Whittle, Mark Rouncefield, and Steinar
Kristoffersen. Empirical assessment of MDE in industry. In 33rd
International Conference on Software Engineering, ICSE ’11, pages
471–480, New York, NY, USA, 2011. ACM.

[116] ISO/IEC 25000. Software product Quality Requirements and
Evaluation (SQuaRE), 2005.

[117] ISO/IEC 9126. Product quality – Part 1: Quality model, 2001.

231

BIBLIOGRAPHY

[118] ISO/IEC/(IEEE) 42010. 1471-2000: Systems and Software
engineering – Recomended practice for architectural description of
software-intensive systems, 2007.

[119] Michael Jackson. Problem frames: analyzing and structuring software
development problems. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2001.

[120] Ivar Jacobson, Grady Booch, and James E. Rumbaugh. The unified
software development process - the complete guide to the unified
process from the original designers. Addison-Wesley object
technology series. Addison-Wesley Longman Publishing Co., Inc.,
1999.

[121] Anton Jansen and Jan Bosch. Software Architecture as a Set of
Architectural Design Decisions. In 5th Working IEEE/IFIP
Conference on Software Architecture (WICSA), WICSA ’05, pages
109–120, Washington, DC, USA, 2005.

[122] Anton Jansen, Tjaard Vries, Paris Avgeriou, and Martijn Veelen.
Sharing the Architectural Knowledge of Quantitative Analysis. In
4th International Conference on Quality of Software-Architectures
(QoSA), pages 220–234, Berlin, Heidelberg, 2008.

[123] Ivan J Jureta, John Mylopoulos, and Stéphane Faulkner. A core
ontology for requirements. Applied Ontology, 4(3):169–244, 2009.

[124] Jan Jürjens. UMLsec: Extending UML for Secure Systems
Development. In 5th International Conference on The Unified
Modeling Language (UML), pages 412–425, London, UK, 2002.

[125] Jan Jürjens. Secure Systems Development with UML. Springer, 2004.

[126] Rick Kazman, Gregory Abowd, Len Bass, and Paul Clements.
Scenario-Based Analysis of Software Architecture. IEEE Software,
13(6):47–55, 1996.

[127] Rick Kazman and Len Bass. Toward Deriving Software Architectures
from Quality Attributes. Technical Report CMU/SEI-94-TR-10,
Carnegie Mellon University, 1994.

232

BIBLIOGRAPHY

[128] Rick Kazman, Mark Klein, Mario Barbacci, Tom Longstaff, Howard
Lipson, and Jeromy Carriere. The architecture tradeoff analysis
method. In Engineering of Complex Computer Systems (ICECCS),
page 68, 10-14 1998.

[129] Suntae Kim, Dae-Kyoo Kim, Lunjin Lu, and Sooyong Park.
Quality-driven architecture development using architectural tactics.
Journal of Systems and Software, 82(8, Sp. Iss. SI):1211–1231, 2009.

[130] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by
simulated annealing. Science, 220:671–680, 1983.

[131] Barbara Kitchenham. Procedures for Performing Systematic
Reviews. Technical report, Keele University, 2004.

[132] Barbara Kitchenham and Shari Lawrence Pfleeger. Principles of
survey research - part 6: data analysis. ACM SIGSOFT Software
Engineering Notes, 28(2):24–27, March 2003.

[133] Barbara A. Kitchenham and Shari Lawrence Pfleeger. Principles of
survey research - part 2: designing a survey. ACM SIGSOFT
Software Engineering Notes, 27(1):18–20, January 2002.

[134] Barbara A. Kitchenham and Shari Lawrence Pfleeger. Principles of
survey research - part 3: constructing a survey instrument. ACM
SIGSOFT Software Engineering Notes, 27(2):20–24, March 2002.

[135] Barbara A. Kitchenham, Shari Lawrence Pfleeger, Lesley M. Pickard,
Peter W. Jones, David C. Hoaglin, Khaled El Emam, and Jarrett
Rosenberg. Preliminary guidelines for empirical research in software
engineering. IEEE Transactions on Software Engineering,
28(8):721–734, August 2002.

[136] Sascha Konrad, Heather J. Goldsby, and Betty H. C. Cheng. i2MAP:
An Incremental and Iterative Modeling and Analysis Process. In
International Conference on Model Driven Engineering Languages
and Systems (MoDELS), pages 451–466, 2007.

[137] Artemios Kontogogos and Paris Avgeriou. An Overview of Software
Engineering Approaches to Service Oriented Architectures in Various

233

BIBLIOGRAPHY

Fields. In 18th IEEE International Workshops on Enabling
Technologies: Infrastructures for Collaborative Enterprises
(WETICE), pages 254–259, 2009.

[138] Klaus Krippendorff. Content Analysis: An Introduction to Its
Methodology. SAGE Publications, 2004.

[139] Klaus Krogmann and Steffen Becker. A Case Study on Model-Driven
and Conventional Software Development: The Palladio Editor.
Software Engineering, 106:169–176, 2007.

[140] Per Kroll and Philippe Kruchten. The rational unified process made
easy: a practitioner’s guide to the RUP. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2003.

[141] Philippe Kruchten. The 4+1 View Model of Architecture. IEEE
Software, 12(6):42–50, 1995.

[142] Philippe Kruchten. The Software Architect. In 1st Working IFIP
Conference on Software Architecture (WICSA), pages 565–584, 1999.

[143] Philippe Kruchten. An Ontology of Architectural Design Decisions in
Software Intensive Systems. In 2nd Groningen Workshop Software
Variability, pages 54–61, October 2004.

[144] Philippe Kruchten, Rafael Capilla, and Juan Carlos Duenas. The
Decision View’s Role in Software Architecture Practice. IEEE
Software, 26:36–42, 2009.

[145] Philippe Kruchten, Patricia Lago, and Hans van Vliet. Building Up
and Reasoning About Architectural Knowledge. In 2nd International
Conference on Quality of Software Architectures (QoSA), pages
43–58, 2006.

[146] Stefan Kugele, Wolfgang Haberl, Michael Tautschnig, and Martin
Wechs. Optimizing Automatic Deployment Using Non-functional
Requirement Annotations. In T. Margaria and B. Steffen, editors,
Levraging Applications of Formal Methods, Verification and
Validation, volume 17, pages 400–414. Springer-Verlag Berlin, OCT
13-15, 2008 2008.

234

BIBLIOGRAPHY

[147] Claudia Lopez, Luiz Marcio Cysneiros, and Hernan Astudillo. NDR
Ontology: Sharing and Reusing NFR and Design Rationale
Knowledge. In 1st International Workshop On Managing
Requirements Knowledge (MARK), pages 1–10, 2008.

[148] Márcia Lucena, Jaelson Castro, Carla T. L. L. Silva, Fernanda M. R.
Alencar, and Emanuel Santos. STREAM: A Strategy for Transition
between Requirements models and Architectural Models. In ACM
Symposium on Applied Computing (SAC), pages 699–704, 2011.

[149] Sara Mahdavi-Hezavehi, Matthias Galster, and Paris Avgeriou.
Variability in quality attributes of service-based software systems: A
systematic literature review. Information and Software Technology,
55(2):320–343, 2013.

[150] Silverio Martínez-Fernández, Claudia Ayala, Xavier Franch,
Helena Martins Marques, and David Ameller. Framework for
Software Reference Architecture Analysis and Review. In 10th
Experimental Software Engineering Track Workshop (ESELAW),
2013.

[151] Mari Matinlassi, Eila Niemelä, and Liliana Dobrica. Quality-driven
architecture design and analysis method. A revolutionary initiation
approach to a product line architecture. In VTT Technical Research
Centre of Finland, VTT Publications 456, page 128, 2002.

[152] Jose-Norberto Mazón, Jesús Pardillo, and Juan Trujillo. A
Model-Driven Goal-Oriented Requirement Engineering Approach for
Data Warehouses. In 15th IEEE International Requirements
Engineering Conference (RE), pages 255–264, 2007.

[153] Matthew R. McBride. The software architect. ACM
Communications, 50(5):75–81, 2007.

[154] Stephen Mellor and Marc Balcer. Executable UML: A Foundation for
Model-Driven Architecture. Addison-Wesley Longman Publishing
Co., Inc., 2002.

235

BIBLIOGRAPHY

[155] Stephen J. Mellor, Anthony N. Clark, and Takao Futagami. Guest
Editors’ Introduction: Model-Driven Development. IEEE Software,
20:14–18, 2003.

[156] Matthew B. Miles and A. Michael Huberman. Qualitative data
analysis: an expanded sourcebook. Sage Publications, 1994.

[157] Joaquin Miller and Jishnu Mukerji. MDA Guide Version 1.0.1.
Technical report, Object Management Group (OMG), 2003.

[158] Fernando Molina and Ambrosio Toval. Integrating usability
requirements that can be evaluated in design time into Model Driven
Engineering of Web Information Systems. Advances in Engineering
Software, 40(12):1306–1317, 2009.

[159] Francisco Montero and Elena Navarro. ATRIUM: Software
Architecture Driven by Requirements. In 14th IEEE International
Conference on Engineering of Complex Computer Systems, pages
230–239, 2009.

[160] John Mylopoulos, Lawrence Chung, and Brian A. Nixon.
Representing and Using Nonfunctional Requirements: A
Process-Oriented Approach. IEEE Transactions on Software
Engineering, 18(6):483–497, June 1992.

[161] Eila Niemela and Anne Immonen. Capturing quality requirements of
product family architecture. Information and Software Technology,
49(11-12):1107–1120, 2007.

[162] Anton Nijholt. Context-Free Grammars: Covers, Normal Forms, and
Parsing. LNCS. Springer, 1980.

[163] Natalya Fridman Noy and Carole D. Hafner. The state of the art in
ontology design: A survey and comparative review. AI Magazine,
18:53–74, 1997.

[164] Bashar Nuseibeh. Weaving together requirements and architectures.
Computer, 34(3):115–119, 2001.

[165] OASIS. Reference Model for Service-Oriented Architecture 1.0, 2006.

236

BIBLIOGRAPHY

[166] Briony J. Oates. Researching information systems and computing.
Sage Publications, 2006.

[167] Liam O’Brien, Paulo Merson, and Len Bass. Quality Attributes for
Service-Oriented Architectures. In International Workshop on
Systems Development in SOA Environments (SDSOA), page 3, 2007.

[168] Thomas Olsson, Richard Berntsson-Svensson, and Björn Regnell.
Non-functional requirements metrics in practice - an empirical
document analysis. In MeReP, 2007.

[169] OMG. MARTE UML Profile, Beta 2, 2008. http:
//www.omgmarte.org/Documents/Specifications/08-06-09.pdf.

[170] OMG. UML profile for Modeling Quality of Service and Fault
Tolerance Characteristics and Mechanisms, v1.1, 2008.
http://www.omg.org/spec/QFTP/1.1/.

[171] OMG. Semantics of a Foundational Subset for Executable UML
Models (FUML), February 2011.
http://www.omg.org/spec/FUML/1.0/PDF.

[172] Marc Oriol, Jordi Marco, Xavier Franch, and David Ameller.
Monitoring Adaptable SOA-Systems using SALMon. In Workshop on
Service Monitoring, Adaptation and Beyond (Mona+), 2008.

[173] Ipek Ozkaya, Len Bass, Raghvinder S. Sangwan, and Robert L.
Nord. Making Practical Use of Quality Attribute Information. IEEE
Software, 25(2):25–33, 2008.

[174] Claus Pahl, Simon Giesecke, and Wilhelm Hasselbring.
Ontology-based modelling of architectural styles. Information and
Software Technology, 51:1739–1749, December 2009.

[175] Jose Ignacio Panach, Sergio España, Ana M. Moreno, and Oscar
Pastor. Dealing with Usability in Model Transformation
Technologies. In International Conference on Conceptual Modeling
(ER), pages 498–511, 2008.

237

BIBLIOGRAPHY

[176] Oscar Pastor and Juan Carlos Molina. Model-Driven Architecture in
Practice: A Software Production Environment Based on Conceptual
Modeling. Springer, 2007.

[177] Daniel Perovich, Cecilia Bastarrica, and Cristián Rojas.
Model-Driven approach to Software Architecture design. In ICSE
Workshop on Sharing and Reusing Architectural Knowledge
(SHARK), pages 1–8, 2009.

[178] Shari Lawrence Pfleeger and Barbara A. Kitchenham. Principles of
survey research - part 1: turning lemons into lemonade. ACM
SIGSOFT Software Engineering Notes, 26(6):16–18, November 2001.

[179] K. Pohl and C. Rupp. Requirements Engineering Fundamentals.
Rocky Nook, 2011.

[180] Klaus Pohl. Requirements Engineering: Fundamentals, Principles,
and Techniques. Springer, 1st edition, 2010.

[181] Eltjo R. Poort, Nick Martens, Inge van de Weerd, and Hans van
Vliet. How architects see non-functional requirements: beware of
modifiability. In 18th international conference on Requirements
Engineering: foundation for software quality (REFSQ), REFSQ’12,
pages 37–51, Berlin, Heidelberg, 2012. Springer-Verlag.

[182] Samuel Renault, Óscar Méndez Bonilla, Xavier Franch, and Carme
Quer. A Pattern-based Method for building Requirements
Documents in Call-for-tender Processes. International Journal of
Computer Science & Applications, 6(5):175–202, 2009.

[183] James Robertson and Suzanne Robertson. Volere. Requirements
Specification Template. Edition 15. Technical report, Atlantic
Systems Guild, 2010.

[184] Suzanne Robertson and James Robertson. Mastering the
Requirements Process (2nd ed.). Addison-Wesley Longman
Publishing Co., Inc., 2006.

[185] Colin Robson. Real World Research: A Resource for Social Scientists
and Practitioner-Researchers (2nd ed.). Blackwell Pub., 2002.

238

BIBLIOGRAPHY

[186] Genaína N. Rodrigues, David S. Rosenblum, and Sebastian Uchitel.
Reliability prediction in Model-Driven Development. In L. Bri and
C. Williams, editors, 8th International Conference on Model Driven
Engineering Languages and Systems, volume 3713, pages 339–354.
Springer-Verlag Berlin, 2005.

[187] Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Rubén
Lara, Michael Stollberg, Axel Polleres, Cristina Feier, Cristoph
Bussler, and Dieter Fensel. Web Service Modeling Ontology. Applied
Ontology, 1(1):77–106, January 2005.

[188] Simone Röttger and Steffen Zschaler. Model-Driven Development for
Non-functional Properties: Refinement Through Model
Transformation. In International Conference on the Unified Modeling
Language (UML), pages 275–289, 2004.

[189] Marcela Ruiz, David Ameller, Sergio España, Pere Botella, Xavier
Franch, and Oscar Pastor. Ingeniería de requisitos orientada a
servicios: características, retos y un marco metodológico. In
Jornadas de Ciencia e Ingeniería de Servicios (JCIS), 2011.

[190] Per Runeson. A Survey of Unit Testing Practices. IEEE Software,
23(4):22–29, 2006.

[191] Giedre Sabaliauskaite, Annabella Loconsole, Emelie Engström,
Michael Unterkalmsteiner, Björn Regnell, Per Runeson, Tony
Gorschek, and Robert Feldt. Challenges in Aligning Requirements
Engineering and Verification in a Large-Scale Industrial Context. In
16th International Working Conference on Requirements Engineering:
Foundation for Software Quality (REFSQ), pages 128–142, 2010.

[192] Emila Sadraei, Aybüke Aurum, Ghassan Beydoun, and Barbara
Paech. A field study of the requirements engineering practice in
Australian software industry. Requirements Engineering Journal,
12(3):145–162, 2007.

[193] Carolyn B. Seaman. Qualitative Methods in Empirical Studies of
Software Engineering. IEEE Transactions on Software Engineering,
25(4):557–572, 1999.

239

BIBLIOGRAPHY

[194] Mojtaba Shahin, Peng Liang, and Mohammad-Reza Khayyambashi.
Architectural design decision: Existing models and tools. In Joint
Working IEEE/IFIP Conference on Software Architecture &
European Conference on Software Architecture (ECSA/WICSA),
pages 293–296, 2009.

[195] Mary Shaw. The coming-of-age of software architecture research. In
23rd International Conference on Software Engineering (ICSE), ICSE
’01, page 656, Washington, DC, USA, 2001. IEEE Computer Society.

[196] Mary Shaw and David Garlan. Software architecture: perspectives on
an emerging discipline. Prentice-Hall, Inc, Upper Saddle River, NJ,
USA, 1996.

[197] Arnor Solberg, Jon Oldevik, and Jan O. Aagedal. A framework for
QoS-aware model transformation, using a pattern-based approach. In
R. Meersman, editor, On the Move Confederated International
Workshop and Conference, volume 3291, pages 1190–1207.
Springer-Verlag Berlin, 2004.

[198] Miroslaw Staron. Adopting Model Driven Software Development in
Industry - A Case Study at Two Companies. In Oscar Nierstrasz,
Jon Whittle, David Harel, and Gianna Reggio, editors, 9th
International Conference Model Driven Engineering Languages and
Systems (MoDELS), volume 4199 of Lecture Notes in Computer
Science, pages 57–72. Springer, 2006.

[199] Ashley Sterritt and Vinny Cahill. Customisable Model
Transformations based on Non-functional Requirements. In IEEE
Congress on Services (SERVICES), pages 329–336. IEEE Computer
Society, 2008.

[200] Sam Supakkul and Lawrence Chung. The RE-Tools: A
multi-notational requirements modeling toolkit. In 20th IEEE
International Requirements Engineering Conference (RE), pages
333–334, sept. 2012.

[201] Antony Tang, Muhammad Ali-Babar, Ian Gorton, and Jun Han. A
survey of architecture design rationale. Journal of Systems and
Software, 79(12):1792–1804, December 2006.

240

BIBLIOGRAPHY

[202] Antony Tang, Jun Han, and Rajesh Vasa. Software Architecture
Design Reasoning: A Case for Improved Methodology Support.
IEEE Software, 26(2):43–49, 2009.

[203] Antony Tang, Yan Jin, and Jun Han. A rationale-based architecture
model for design traceability and reasoning. Journal of Systems and
Software, 80(6):918–934, 2007.

[204] Susanna Teppola, Päivi Parviainen, and Juha Takalo. Challenges in
Deployment of Model Driven Development. In 4th International
Conference on Software Engineering Advances (ICSEA), pages
15–20, sept. 2009.

[205] TOGAF. The Open Group Architecture Framework Version 9, 2009.

[206] Jeff Tyree and Art Akerman. Architecture decisions: demystifying
architecture. IEEE Software, 22:19–27, 2005.

[207] Uwe van Heesch and Paris Avgeriou. Naive architecting -
understanding the reasoning process of students: a descriptive
survey. In 4th European conference on Software architecture,
ECSA’10, pages 24–37, Berlin, Heidelberg, 2010. Springer-Verlag.

[208] Uwe van Heesch and Paris Avgeriou. Mature Architecting - A Survey
about the Reasoning Process of Professional Architects. In Working
IEEE/IFIP Conference on Software Architecture (WICSA),
volume 0, pages 260–269, Los Alamitos, CA, USA, 2011. IEEE
Computer Society.

[209] Uwe van Heesch, Paris Avgeriou, and Rich Hilliard. A
documentation framework for architecture decisions. Journal of
Systems and Software, 85(4):795–820, April 2012.

[210] Axel van Lamsweerde. Requirements Engineering: From System
Goals to UML Models to Software Specifications. John Wiley & Sons,
2009.

[211] Hiroshi Wada, Junichi Suzuki, and Katsuya Oba. A Model-Driven
Development framework for Non-Functional Aspects in Service

241

BIBLIOGRAPHY

Oriented Architecture. International Journal of Web Services
Reseseach, 5(4):1–31, 2008.

[212] Claes Wohlin, Martin Höst, and Kennet Henningsson. Empirical
Research Methods in Software Engineering. In Reidar Conradi and
AlfInge Wang, editors, Empirical Methods and Studies in Software
Engineering, volume 2765 of Lecture Notes in Computer Science,
pages 7–23. Springer Berlin Heidelberg, 2003.

[213] Robert K. Yin. Case Study Research: Design and Methods (4th ed.).
Sage Publications, 2009.

[214] Eric Yu, Paolo Giorgini, Neil Maiden, and John Mylopoulos. Social
Modeling for Requirements Engineering. MIT Press, 2011.

[215] Norazlin Yusop, Didar Zowghi, and David Lowe. The Impacts of
Non-Functional Requirements in Web System Projects. International
Journal of Value Chain Management, 2(1):18–32, 2008.

[216] John A. Zachman. A framework for information systems
architecture. IBM Systems Journal, 26(3):276–292, 1987.

[217] Liming Zhu and Ian Gorton. UML Profiles for Design Decisions and
Non-Functional Requirements. In ICSE workshop, page 8, 2007.

[218] Liming Zhu and Yan Liu. Model Driven Development with
Non-Functional Aspects. In 15th Workshop on Early Aspects/ICSE
Worshop on Aspect-Oriented Requirements Engineering and
Architecture Design, pages 49–54, 2009.

242

Index

ArchiTech, 115
Arteon, 100
Attribute, 107

Element Attribute, 108
Quality Attribute, 2, 108

Constraint, 107
Condition, 107
Restriction, 107

Decisional element, 106
Architectural element, 104
Component, 105
Style, 105
Architectural Style, 55
Technological Style, 55

Style variation, 105

Engineering, 5
Requirements Engineering, 19
Goal-Oriented Requirements
Engineering, 19

Software engineering, 4

Model

Computation Independent
Model, 4

Platform Independent Model, 4
Platform Specific Model, 4

Model-Driven Development, 4
MDD Approaches, 17

Quark, 110

Requirements engineering, 1

Service-Based System, 74
Software Architecture

Architectural Decision, 3
Software architecture, 3, 5

Architectural Decision, 91, 106
Executive decision, 92
Existence decision, 92
Property decision, 92

Architectural Design Decision,
see Architectural Decision

Architectural framework, 103
Architectural Knowledge, 3, 91
Architectural view, 103

243

INDEX

Software Architectural Design
Method, 91

Software quality, 2
Software requirement

Non-Functional Requirement, 1
Quality Requirement, 3

Transformation
Model-to-Model, 5
Model-to-Text, 5

244

