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Abstract

(i) Mobile devices and social networks are omnipresent

Mobile devices such as smartphones, tablets, or digital cameras together

with social networks enable people to create, share, and consume enormous

amounts of media items like videos or photos both on the road or at home.

Such mobile devices—by pure definition—accompany their owners almost

wherever they may go. In consequence, mobile devices are omnipresent

at all sorts of events to capture noteworthy moments. Exemplary events

can be keynote speeches at conferences, music concerts in stadiums, or even

natural catastrophes like earthquakes that affect whole areas or countries. At

such events—given a stable network connection—part of the event-related

media items are published on social networks both as the event happens or

afterwards, once a stable network connection has been established again.

(ii) Finding representative media items for an event is hard

Common media item search operations, for example, searching for the of-

ficial video clip for a certain hit record on an online video platform can in

the simplest case be achieved based on potentially shallow human-generated

metadata or based on more profound content analysis techniques like optical

character recognition, automatic speech recognition, or acoustic fingerprint-

ing. More advanced scenarios, however, like retrieving all (or just the most

representative) media items that were created at a given event with the ob-

jective of creating event summaries or media item compilations covering the

event in question are hard, if not impossible, to fulfill at large scale. The

central research question of this thesis can be formulated as follows.

(iii) Central research question

“Can user-customizable media galleries that summarize given events be

created solely based on textual and multimedia data from social networks?”



(iv) Core contributions

In the context of this thesis, we have developed and evaluated a novel interac-

tive application and related methods for media item enrichment, leveraging

social networks, utilizing the Web of Data, techniques known from Content-

based Image Retrieval (CBIR) and Content-based Video Retrieval (CBVR),

and fine-grained media item addressing schemes like Media Fragments URIs

to provide a scalable and near realtime solution to realize the abovemen-

tioned scenario of event summarization and media item compilation.

(v) Methodology

For any event with given event title(s), (potentially vague) event location(s),

and (arbitrarily fine-grained) event date(s), our approach can be divided in

the following six steps.

1. Via the textual search APIs (Application Programming Interfaces) of

different social networks, we retrieve a list of potentially event-relevant

microposts that either contain media items directly, or that provide

links to media items on external media item hosting platforms.

2. Using third-party Natural Language Processing (NLP) tools, we rec-

ognize and disambiguate named entities in microposts to predetermine

their relevance.

3. We extract the binary media item data from social networks or media

item hosting platforms and relate it to the originating microposts.

4. Using CBIR and CBVR techniques, we first deduplicate exact-duplicate

and near-duplicate media items and then cluster similar media items.

5. We rank the deduplicated and clustered list of media items and their

related microposts according to well-defined ranking criteria.

6. In order to generate interactive and user-customizable media galleries

that visually and audially summarize the event in question, we compile

the top-n ranked media items and microposts in aesthetically pleasing

and functional ways.
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1

Event Summarization Challenge

1.1 Motivation and Problem Statement

A very open definition of the word event given by WordNet [8, 17] is “something that

happens at a given place and time.” Following this definition, we are indeed surrounded

by events, most of which are of little to no interest for us. A concert somewhere in the

world of a band that we do not even know may be a good example. For some events,

however, we may care more, for example, a concert of a band that we know and like,

even if it takes place at a location far away from us. Finally, for very few events, we

may care a lot, maybe even enough to physically attend the event, like a concert of our

favorite band if it takes place in our city, is not sold out, and not too expensive.

All this motivates the need for event summarization. If there is an event that we

could not attend for any given reason, but that we are interested in, a good event

summarization can help us get a feeling for the event’s atmosphere. Similarly, if there

is an event that we attended, we can revive the event’s most fascinating moments based

on the event summarization.

A media gallery in the context of our event summarization task is a best-of compi-

lation of photos, videos, and microposts retrieved from social networks that are related

to a given event. Event summarization covers textual as well as multimedia content.

We say a media gallery is of high quality, if it fulfills the following properties.

1. Conciseness: it conveys a lot of information clearly and in few media items.

2. Comprehensiveness: it is complete and covers all representative elements or as-

pects of an event.
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3. Authenticity: it is of undisputed origin and genuine.

4. Diversity: it shows a great deal of variety.

5. Interestingness: it catches and holds the attention of the viewer.

1.2 Research Question and Hypothesis

The main research question for this thesis can be formulated as follows.

“Can user-customizable media galleries that summarize given events be created solely

based on textual and multimedia data from social networks?”

The hypothesis that we test in this thesis can be formulated as follows.

We argue that through media galleries that leverage content that was shared on

social networks, a more authentic, more concise, more comprehensive, more diverse, and

also more interesting view on events gets possible than by limiting oneself to officially

produced media content; and that further such media galleries can be generated more

efficiently and in shorter time than manually produced media galleries.

We validate these subjective and objective criteria with experiments for events of

different categories such as sports, politics, culture, leisure, music, conferences, etc.

1.3 Approach

The objective of this thesis is the development of methods for the automated summa-

rization of events based on media items shared on social networks. A schematic overview

of the approach can be seen in Figure 1.1. As an event takes places and shortly there-

after (symbolized by the timeline marked with 2h Event), people share media items

related to the event on multiple social networks (symbolized by the photo and video

pictograms above the event timeline). Via the textual search APIs (Application Pro-

gramming Interfaces) of these different social networks, we retrieve a list of potentially

event-relevant microposts that either contain media items directly, or that provide links

to media items on external media item hosting platforms. Using third-party NLP tools,

we recognize and disambiguate named entities in the microposts to predetermine their

relevance. We extract the binary media item data from social networks or media item

hosting platforms and relate it to the originating microposts (symbolized by the central

cloud). Using CBIR and CBVR techniques, we first deduplicate exact-duplicate and
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near-duplicate media items, and then cluster similar media items (symbolized by the

green, red, and orange markers). We rank the deduplicated and clustered list of media

items and their related microposts according to well-defined ranking criteria. In order

to generate interactive and user-customizable media galleries that visually and audially

summarize the event in question, we compile the top-n ranked media items and micro-

posts in an aesthetic way (symbolized by the timeline marked with 5min Summary).

Figure 1.1: Schematic depiction of event summary generation based on deduplicated,
clustered, and ranked media items for an exemplary event

1.4 Related Work

In this section, we provide a brief non-exhaustive meta overview of related work for the

task of summarizing events based on social network multimedia data, namely videos

and photos. More detailed studies of the particular states-of-the-art for each relevant

subtask can be found in the upcoming chapters.

In recent years, social media has made rapid strides from a smiled-at phenomenon

toward becoming a source of breaking news that is to be taken seriously and that

probably has gone mainstream for the first time with Jānis Krūms’ tweet on the US

Airways Flight 1549 plane crash. At the very moment of the crash, Krūms was a regular

passenger on a ferry and happened to witness the crash and posted a widely shared photo

on the media hosting platform Twitpic, distributed via the social network Twitter that

can be seen in Figure 1.2. As a result of the growing importance of social media,

common news media like TV stations and (online) newspapers, but also news agencies

themselves, use social networks as a regular source of content. Hashtags1 are more
1People use the hashtag symbol # before a relevant keyword or phrase in social network posts to

categorize them and help them show more easily in search
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and more frequently displayed and propagated around events to facilitate gathering

social media. An example around the event of the elections for the German Bundestag

is the hashtag #btw2013, which stands for “Bundestagswahl 2013”. News media then

create and publish hand-curated social media galleries like in the example in Figure 1.3

that feature prominent or widely shared social network contributions. This can help

convey the feeling of the social network community about an event (which sometimes

is interpolated to represent the feeling of the whole population).

Figure 1.2: Tweet by Jānis Krūms (@jkrums, https://twitter.com/jkrums/status/
1121915133): “http://twitpic.com/135xa – There’s a plane in the Hudson. I’m on the ferry
going to pick up the people. Crazy.”

Examples of such manual social media curation tools are FlypSite,1 a tool that fa-

cilitates the creation of embeddable second screen applications or TV social media wid-

gets, Storify [2, 9],2 a social network service that lets users create stories or timelines

using social media, and Storyful,3 a news agency focused on verifying and distributing

user-generated content relating to news events from social networks. More automated

approaches for content identification exist, for example, [14] and [15] by Liu et al. who

combine semantic inference and visual analysis to automatically find media items that

illustrate events. Further, there are [5] and [4] by Becker et al. who focus on identify-

ing media items related to events by learning similarity metrics and identifying search

terms. These approaches do not help with the tasks of ranking [13], deduplicating [58],
1http://www.flyp.tv/
2http://storify.com/
3http://storyful.com/
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Figure 1.3: Social media visualization for the elections to the German Bundestag (http:
//wahlschau.tagesschau.flyp.tv/)

and representing the event-related content aesthetically [18, 20]. Event archiving ser-

vices such as Eventifier1 do a great job at storing all the social media content around

entire events, however, do not rank the information. Closest to our approach is Seen2

an engine that aggregates, organizes, and ranks media and collects information on top-

ics trending in social media. Seen does not create interactive visualizations, whereas

with our approach we create speech-enabled media item compilations. Finally, there is

MediaFinder [45],3 which uses a fork of our media item collector and which specializes

on clustering media items based on named entities.

As we will motivate throughout the thesis, there is definitely a need for tools that

make sense of events, that organize them into clusters, that summarize them, and that

let users quickly grasp what happened.

1http://eventifier.co/
2http://seen.co/
3http://mediafinder.eurecom.fr/
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1.5 Contributions

In this thesis, we report on methods for the automated generation of event summaries.

This particular field of research touches on many related areas of research and research

communities, amongst which social network research, multimedia content analysis, Se-

mantic Web and Natural Language Processing (NLP), human factors in computing

systems, and Web services. Early on in the process of this thesis, we have sought and

incorporated expert feedback based on a Doctoral Consortium paper [22]. We have

broken our contributions down into the following topics.

1.5.1 Social Network Multimedia and Data Analysis

We have worked on methods for the aggregation, extraction, deduplication, clustering,

and compilation of social media contents from multiple social networks [19]. These

methods were applied and evaluated for the enhancement of conference experiences [11,

12] and events in general [16, 21, 26, 29, 39, 40].

1.5.2 Application of Semantic Web and NLP Techniques

In order to make sense out of social network microposts, we have worked on methods to

consolidate and rank the results of multiple named entity recognition and disambigua-

tion APIs and to track their data provenance [37, 38]. We have applied and evaluated

those methods for the consumer-oriented detection of trending microposts on a major

commercial social network [25] and in the cultural heritage domain [10].

1.5.3 Video Content and Metadata Analysis

We have worked on methods for named entity extraction and disambiguation for online

videos based on closed captions and other textual metadata, which make online video

more accessible, searchable, and interconnected [23, 27]. Further, we have combined

those textual methods with video content analysis methods for the on-the-fly detection

of shot boundaries for online videos [36]. We have defined aesthetic principles for the

automated generation of media gallery layouts for visual and audial event summarization

based on social network multimedia data [41].
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1.5.4 Event Detection

We have done research on online new event detection based onWikipedia edit spikes. We

have developed an application called Wikipedia Live Monitor that monitors Wikipedia

article edits on different language versions of Wikipedia—as they happen in realtime [28].

1.5.5 Standardization and Specifications

We have helped to shape a W3C specification on media fragment addressing schemes

for audio and video items [44]. Further, we have worked on the definition of a unified

framework for the description of multimedia content objects [3, 6]. Finally, we have

contributed to a white paper on the Future Media Internet Architecture [1].

1.5.6 Crowdsourcing

The video content analysis methods mentioned before were combined with methods for

the crowdsourced detection of events in online videos [42]. We have further worked on

crowdsourcing methods for the extraction of knowledge items from arbitrary Web pages

at scale [31, 32].

1.5.7 Studies

We have contributed an examination of Linked Data usage and visualization techniques

of a major commercial search engine [34]. In addition to that, we have studied the

usefulness and relevance of social network updates which were added to search engine

results pages (SERP) of a major commercial search engine [43].

1.5.8 Multimodal Search Engines

We have worked on an examination of context-aware querying for multimodal search

engines [7, 33]. Further, we have studied user interface constraints on mobile and

desktop devices for a multimodal search engine and demonstrated that those constraints

can be overcome both effectively and efficiently [30].

1.5.9 Web Service Description

We have worked on methods for the semantic description of Web APIs, their discov-

erability, their automated consumption, their semantic interlinking, and their social
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aspects [46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57]. We have studied the feasibility of

truly RESTful behavior for Web APIs in the sense of Dr. Roy Fielding [24].

1.5.10 Others

We have developed methods for unobtrusively fixing common annoyances and typo-

graphic issues on arbitrary Web pages [35].

1.6 Thesis Structure

Each chapter is closed by a final section called Chapter Notes, which contains references

to the publications that the chapter is based upon and in some cases pointers to related

material for further reading. The remainder of this thesis is structured as follows.

Chapter 2: This chapter introduces the Semantic Web and its technologies. Starting

from the non-semantic Web, we show how structured data can be added to Web pages

and briefly present DBpedia as a knowledge base founded on structured data extracted

from Wikipedia. We then continue with the Resource Description Framework (RDF)

and explain how it represents facts with triples. We provide examples of RDF’s different

serialization formats. Afterwards, we outline the Semantic Web vision of a global giant

database and present the Semantic Web query language SPARQL. We close the chapter

with an introduction of Sir Tim Berners-Lee’s Linked Data principles and show how

data publisher that publish datasets according to those principles are visualized in the

Linking Open Data cloud.

Chapter 3: This chapter provides the necessary definitions and terms that we will use

throughout this thesis. It introduces social networks and media platforms as concepts

per se and then lists the most popular social networks together with their core features

and multimedia data support. We briefly look at decentralized social networks and

explain why we do not consider them in this thesis. Finally, we propose a classification

scheme for social networks that classifies them by their level of media item support.
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Chapter 4: A micropost is defined as a textual status message on a social network.

In this chapter, we describe how microposts can be semantically annotated in order

to make sense of their contents. We show how we have developed two browser exten-

sions to obtain access to real-world micropost data of actual micropost consumers. In

continuation, we show how Natural Language Processing (NLP) Web services, machine

translation, and part-of-speech tagging (POS) are combined by our annotation workflow

and how the results of multiple NLP services are consolidated and reconciled. We show

how provenance information can be automatically added to the generated output, so

that the contribution of each Web service to the combined result is traceable, which is

desirable to acknowledge and credit each service’s work and also for debugging purposes.

Chapter 5: This chapter is about breaking news event detection based on concurrent

Wikipedia edits. We have developed an application that automatically reports breaking

news event candidates by clustering articles from multi-language editing activity streams

and checking if well-defined breaking news conditions are fulfilled. The application

uses social networks for plausibility checks in order to avoid false-positive alerts, i.e.,

a breaking news event has to be reflected on Wikipedia and on social networks. We

evaluate the event detection system with various global and local news events for its

timeliness and accuracy.

Chapter 6: A media item is defined as a photo or video file that is publicly shared

or published on at least one social network. In this chapter, we describe how media

items can be extracted from different social networks. We introduce an alignment

scheme that acts as an abstraction layer to overcome the underlying differences in data

structure of the supported social networks. We evaluate the media item extractors with

nine different events and motivate the need for media item deduplication and ranking.

Chapter 7: In video production and filmmaking, a camera shot is a series of frames

that runs for an uninterrupted period of time. In this chapter, we present an algorithm

and an accompanying application for the task of detecting camera shot boundaries on-

the-fly in streaming Web video, which is a required step for the deduplication of videos

and photos contained in videos. We evaluate the approach with videos from a popular

video hosting platform in form of a browser extension.

9
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Chapter 8: This chapter is about the on-the-fly deduplication and clustering of media

items extracted from social networks. We analyze reasons for the occurrence of exact-

duplicate and near-duplicate media items and introduce an algorithm tailored to this

task, incorporating matching conditions that are based on the findings of the analysis.

We evaluate the algorithm with two events and show its effectiveness. A media fragment

is a part of a media file of the same media content type as its parent resource, i.e., photo

or video, that can be identified using a URI. We show a novel approach to debugging

algorithms by combining media fragments URIs and speech synthesis, so that non-expert

human raters can understand why or why not media items are clustered.

Chapter 9: In this chapter, we focus on ranking media item clusters that contain

visually similar media items. We show how social interactions from different social net-

works can be merged in order to obtain a network-agnostic view on the performance of

the clustered media items. Further, we show an algorithm for the selection of one repre-

sentative media item per cluster that represents all media items contained in the same

cluster. We then propose a ranking formula that is based on both social interactions

and other features. We evaluate our ranking formula by comparing the ranked results

for a given event with event highlight summaries regarding the same event that were

created by different social networks.

Chapter 10: This chapter is about the compilation of ranked media item clusters to

interactive media galleries. We define aesthetic principles that media galleries should

fulfill based on high-level and low-level features. We show different media gallery styles

and analyze their advantages and disadvantages. Examples of media gallery styles are

interactive style, aspect-ratio-preserving style, or order-preserving style, among others.

Further, we present an approach to make media galleries interactive by using a speech

synthesis system combined with media item animations. At the end of the chapter, we

describe the application Social Media Illustrator that is the main software outcome of

this doctoral thesis.

10



1.6 Thesis Structure

Chapter 11: In the final chapter of this thesis, we provide conclusions and give an

outlook on future work. We focus on media item verification and authenticity, the

evaluation of subjective data with multi-armed bandit experiments, further application

domains were our application could find use, and close with a comparison of commercial

and academic event summarization and archiving Web applications.
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2

Semantic Web Technologies

The main contributions of this thesis are methods for the automated generation of

user-customizable media galleries for the visual and audial summarization of events. To

provide context for the proposed approaches in the later parts of the thesis, we start

with two introductory chapters related to Semantic Web technologies and social net-

works. The current Chapter 2 covers the Semantic Web, Linked Data, and the Resource

Description Framework (RDF). The following Chapter 3 will cover social networks by

first providing a definition and classification of social networks, and then introducing

popular social networks and some of their core features.

2.1 The World Wide Web and Semantics

Tim Berners Lee, inventor of the World Wide Web (W3, WWW), or simply, the Web,

writes in [5]: “The World Wide Web was developed to be a pool of human knowledge,

which would allow collaborators in remote sites to share their ideas and all aspects of

a common project.” Since its earliest days at CERN, the European Organization for

Nuclear Research in Geneva, Switzerland, the Web has scaled to a truly global system

of interlinked hypertext documents accessed via the Internet.

Semantics is the study of meaning. It focuses on the relation between words, phrases,

signs, and symbols, and what they stand for, i.e., the actual object referred to by

a linguistic expression. Michel Bréal can be counted as the founder of modern semantics

with his 1897 Essai de sémantique [14]. The Semantic Web brings these two worlds—the

World Wide Web and semantics—together.
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2. SEMANTIC WEB TECHNOLOGIES

2.2 The Semantic Web

The lexical database WordNet [23, 32] by the Cognitive Science Laboratory of Princeton

University defines the term semantic as “of or relating to meaning or the study of

meaning.” The same source defines the term Web, which is a common form for the

complete term World Wide Web as “computer network consisting of a collection of

internet sites that offer text and graphics and sound and animation resources through

the hypertext transfer protocol.” Finally, WordNet defines the term meaning as “the

message that is intended or expressed or signified,” or “the idea that is intended.”

The combined term Semantic Web was coined by Sir Tim Berners-Lee, in a May 2001

article co-published with James Hendler and Ora Lassila in the Scientific American [8].

“The Semantic Web will bring structure to the meaningful content of

Web pages, creating an environment where software agents roaming from

page to page can readily carry out sophisticated tasks for users. [. . . ] The

Semantic Web is not a separate Web but an extension of the current one, in

which information is given well-defined meaning, better enabling computers

and people to work in cooperation. The first steps in weaving the Semantic

Web into the structure of the existing Web are already under way. In the

near future, these developments will usher in significant new functionality as

machines become much better able to process and understand the data that

they merely display at present.”

We are currently experiencing a fundamental shift from the World Wide Web to

the Semantic Web, a shift from moving bits to moving bits with a meaning. This can

have a huge impact, which might not be as drastic as Tim Berners-Lee describes in

his Scientific American article, but which might introduce many improvements, like

more accurate search results, more intelligent price comparison services, etc. Figure 2.1

illustrates this idea.

2.2.1 The Non-Semantic Web

To differentiate the Semantic Web from the non-semantic Web, it helps to step back

one step and see why the non-semantic Web is not semantic. The Web is a system

of interlinked hypertext documents accessed through the Internet. These documents
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2.2 The Semantic Web

(a) Bits without meaning. (b) Bits with a meaning.

Figure 2.1: Fundamental shift from moving bits to moving bits with a meaning

are typically marked up in the Hypertext Markup Language (HTML), a language that

defines a syntax understandable to user agents like Web browsers, however, not one that

provides meaning beyond the level of text layout. This means that an HTML snippet

like the one below

<h1>The Catcher in the Rye</h1>

<h2>J. D. Salinger</h2>

reveals that The Catcher in the Rye is a level one header element and that J. D. Salinger

a level two header element, but to a machine it is not evident that the prior is the title

of a book, and that the latter is (i) a book author, and (ii) the author of The Catcher

in the Rye.

2.2.2 Structured Data on the Web

A very first step towards adding semantics to the Web is using tabular data. Table 2.1

shows an example for such tabular data. For human beings (interested in sports), the

meaning of the columns in Table 2.1 is clear:

P = matches Played
W = Wins
D = Draws
L = Losses
F = Goals For
A = Goals Against
Pts = Points
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Team P W D L F A Pts
Manchester United 6 4 0 2 10 5 12
Celtic 6 3 0 3 8 9 9
Benfica 6 2 1 3 7 8 7
FC Copenhagen 6 2 1 2 5 8 7

Table 2.1: Sample table with structured data for sports results

The problem, however, is for machines to understand the structure of the table. Let

us imagine one wanted to automate the task of retrieving sports results from a Web page

with tabular data. While it is a straightforward job to implement a scraper bot that

searches for column titles like “P”, “W”, “D”, etc., it would require the same work over

and over again for a different language, for example, German, where the terms would

be: “Sp.” (Spiele), “g.” (gewonnen), “u.” (unentschieden), “v.” (verloren), “Tore” (Tore),

“Pkte.” (Punkte). A German-speaking reader might have noticed that the exemplary

German system listed here does not differentiate between goals for and goals against,

but only has a list of Goals. Tiny differences like this make the scraping approach

brittle. If data providers were to use unique column identifiers like Unique Resource

Identifiers (URIs), the problem would be easier. In the concrete example for English and

German, rather than using “D” (Draws) and “u.” (unentschieden), which both mean

that the result was a tie, the machine-readable column name could instead be identified

by a Unique Resource Identifier (URI) like http://dbpedia.org/page/Tie_(draw), or

even a fictive URI like http://example.org/VGllXyhkcmF3KQ==. In the next section,

we therefore introduce the structured knowledge base and interlinking hub in the Web

of Data, DBpedia [2].

2.2.3 The Structured Knowledge Base DBpedia

An often reoccurring pattern in the Semantic Web world is the use of DBpedia [2]

as a hub for identifying concepts by URIs. DBpedia is a Semantic Web knowledge

base with the objective of automatically extracting pre-structured tabular data from

the human-generated info-boxes from the online encyclopedia Wikipedia.1 This pre-

structured information is then made available on the World Wide Web in many for-

mats, for example, in JSON [18] and many RDF [29] serializations. DBpedia al-
1http://en.wikipedia.org/wiki/Main_Page, accessed July 15, 2013
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2.2 The Semantic Web

lows for querying relationships and properties associated with Wikipedia resources,

including links to other related datasets. As outlined before, the concept of a tie

draw in the sense of sports could thus be uniquely identified by the DBpedia URI

http://dbpedia.org/page/Tie_(draw), free of all ambiguity. Similar knowledge bases

are among others Freebase [12, 31], YAGO [42], and CYC [30].

2.2.4 Semantics in HTML Versions 4.01 and 5

As outlined in subsection 2.2.1, HTML versions 4.01 [37] and 5 [3] contain a basic level of

semantics. The main focus, however, is on the separation of the markup of the textual

structure from the actual presentation. For example the <b> and the <strong> tags

both have the same visual effect: they make the node value appear in a bold face like

so. Visually, there is no way to differentiate between the two, however, semantically the

difference exists and is well-defined: <strong> should be used when one wants to give

special emphasis on something. Screen readers will typically read out such text with

a more emphasized voice. In contrast, <b> should be used if only visually one wants to

create a bold face look. In the following, we present a list of semantic HTML tags and

attributes and their meaning.

Semantic HTML 4.01 Tags:

• <abbr> specifies an abbreviation, <acronym> specifies an acronym.

• <h1>–<h6> specify level 1–6 headers, <caption> specifies a caption for a table.

• <blockquote> specifies a block-level quotation (a source in form of a URI may be

specified via the cite attribute), <cite> specifies a citation.

• <dl> specifies a definition list, <dt> specifies a definition term in a definition list,

<dd> specifies the definition of a term in a definition list.

• <em> specifies an emphasis, <strong> specifies a strong emphasis.

• <code> specifies a code snippet, <dfn> specifies an inline definition of a single

term, <address> specifies contact information for the document author, <legend>

specifies a legend for <fieldset> containers for adding structure to forms, <samp>

specifies sample output from a script or program.
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Semantic HTML5 Tags:

• <article> specifies an independent item section of content, <aside> specifies

a section of a page that consists of content that is tangentially related to the

content around the <aside> element, and which could be considered separate

from that content, <header> specifies a group of introductory or navigational

aids, <footer> specifies a footer for its nearest ancestor sectioning content or

sectioning root element, <nav> specifies a section with navigation links.

• <figure> specifies some flow content, <mark> specifies a run of text in one docu-

ment marked or highlighted for reference purposes due to its relevance in another

context, <meter> specifies a scalar measurement within a known range, or a frac-

tional value.

• <audio> specifies a sound or an audio stream, <video> specifies a video or movie.

• <progress> specifies the completion progress of a task, <time> specifies either

a time on a 24 hour clock, or a precise date in the calendar (optionally with

a time and a time-zone offset), <command> provides an abstraction layer between

user interface and commands, so that multiple user interface elements can refer

to the same command.

• <details> specifies a disclosure widget from which the user can obtain additional

information or controls, <datalist> specifies the list that represents predefined

options for input elements.

• <keygen> specifies a key pair generator control, <output> specifies the result of

a calculation, <ruby> allows one or more spans of phrasing content to be marked

with ruby annotations.

HTML5 Input Type Attributes:

• datetime specifies a control for setting the element’s value to a string representing

a global date and time (with timezone information).

• datetime-local specifies a control for setting the element’s value to a string

representing a local date and time (with no timezone information).
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• date specifies a control for setting the element’s value to a string representing

a date, month specifies a control for setting the element’s value to a string repre-

senting a month, week specifies a control for setting the element’s value to a string

representing a week.

• time specifies a control for setting the element’s value to a string representing

a time (with no timezone information).

• number specifies a control for setting the element’s value to a string representing

a number.

• range represents an imprecise control for setting the element’s value to a string

representing a number.

• email specifies a control for editing a list of email addresses given in the element’s

value. A regular expression can be used to validate the email.

• url specifies a control for editing an absolute URL given in the element’s value.

A regular expression can be used to validate the URL.

• search specifies a one-line plain-text edit control for entering one or more textual

search terms.

• color specifies a color-well control for setting the element’s value to a string

representing a simple color.

2.2.5 Structured Data Beyond Pure HTML

In this subsection, we describe how structured data can be included in HTML documents

by either overloading existing HTML attributes or by adding new ones.

Microformats

Microformats [17] are a set of open data mark-up formats developed and defined by

the Microformats community.1 Microformats are not an official standard, but rather

a widely adopted grass-roots-driven movement with origins in the blogging scene. It is

to be noted that Microformats do not require a new language, but reuse building blocks
1http://microformats.org/discuss, accessed July 15, 2013

27

http://microformats.org/discuss
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from widely adopted standards such as the class, rel, and title attributes in HTML.

Their main design goal is to focus first on humans, then on machines. A concrete

example of Microformat mark-up in HTML can be seen in Listing 2.1. There are

currently nine stable Microformats,1 as listed below:

• hCalendar is a distributed calendaring and events format, using a 1:1 representa-

tion of the standard iCalendar format (RFC 2445, [22]).

• hCard is a format for representing people, companies, organizations, and places,

using a 1:1 representation of the standard vCard format (RFC 2426, [21]).

• rel-license is a format for indicating content licenses, which is embeddable in

HTML [37] or XHTML [34], Atom [33], RSS [16], and arbitrary XML [13].

• rel-nofollow is a format for hyperlinks indicating that the destination of that

hyperlink should not be afforded any additional weight or ranking by user agents

such as search engines, which perform link analysis upon Web pages.

• rel-tag is a format for hyperlinks indicating that the destination of that hyperlink

is an author-designated keyword for the current page.

• VoteLinks is a format for adding the idea of agreement, abstention or indifference,

and disagreement to hyperlinks.

• XFN is a format for representing human relationships (XHTML Friends Network)

using hyperlinks, which enables Web authors to indicate their relationships to

other people.

• XMDP is a format for defining metadata profile documents (XHTML Meta Data

Profile), which enables Web authors to well-define custom meta tags.

• XOXO is a format for defining a new XHTML [34] document type for subsetting

and extending XHTML, which serves as the basis for XHTML-friendly outlines

(eXtensible Open XHTML Outlines) for processing by XML engines and for easy

interactive rendering by browsers.

1http://microformats.org/wiki/Main_Page#Specifications, accessed July 15, 2013
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<div class =" vcard">
<a class="fn org url" href="http ://www.commerce.net/">CommerceNet </a>
<div class ="adr">

<span class ="type">Work </span >:
<div class ="street -address ">169 University Avenue </div >
<span class =" locality">Palo Alto </span >,
<abbr class =" region" title =" California">CA </abbr >
<span class ="postal -code ">94301</span >
<div class ="country -name">USA </div >

</div >
<div class ="tel">
<span class="type">Work </span > +1 -650 -289 -4040

</div >
<div class ="tel">

<span class ="type">Fax </span > +1 -650 -289 -4041
</div >
<div >Email:
<span class="email">info@commerce.net </span >

</div >
</div >

Listing 2.1: Sample code snippet with embedded hCard Microformat mark-up (http:
//microformats.org/wiki/hcard)

Microdata

Microdata [28] defines a way to annotate content (or items) with specific machine-

readable labels, for example, to allow scripts to provide services that are customized

to a website. Microdata allows for nested groups of name-value pairs to be added to

documents, in parallel with the existing content. The Microdata specification introduces

a set of new attributes to HTML:

• itemscope creates an item (or thing) and indicates that descendants of this ele-

ment contain information about it. This attribute precedes the itemtype attribute

in the HTML element’s tag.

• itemtype a valid URL of a vocabulary that describes the item in question and its

properties context.

• itemid indicates a unique identifier of the item in the vocabulary.

• itemprop indicates that its containing tag holds the value of the specified item

property. The properties name and value context are described by the items

29

http://microformats.org/wiki/hcard
http://microformats.org/wiki/hcard


2. SEMANTIC WEB TECHNOLOGIES

vocabulary. Properties values usually consist of string values, but can also use

URLs using the <a> tag and its href attribute, the <img> tag and its src attribute,

or other tags that link to or embed external resources.

• itemref properties that are not descendants of the element with the itemscope

attribute can be associated with the item using this attribute. It provides a list of

elements to Web crawlers to find additional property values of the item elsewhere

in the document.

An example of Microdata in HTML can be seen in Listing 2.2.

<div itemscope >
<p>My name is <span itemprop ="name">Neil </span >.</p>
<p>

My band is called
<span itemprop ="band">Four Parts Water </span >.

</p>
<p>I am <span itemprop =" nationality">British </span >.</p>

</div >

Listing 2.2: Sample code snippet with embedded Microdata mark-up (http://www.w3.
org/TR/microdata/)

2.3 Resource Description Framework (RDF)

The Resource Description Framework (RDF, [29]) defines a set of W3C standards for the

formal description of resources that are identified by URIs. RDF is a core component

of the Semantic Web. Initially, it was designed to describe metadata on the World

Wide Web (WWW) such as authors, copyrights, etc. of documents, however, applying

a definition of the term resource beyond the WWW context, RDF is now also used to

describe metadata of any URI-identifiable entity like cities, genes, etc.

2.3.1 Triples as a Data Structure

As outlined before, one of the main purposes of the Semantic Web is to give information

a well-defined meaning. Using an example from Tim Berners-Lee’s article [8], meaning

can be to differentiate between the concepts of a shipping and a billing address, or

the concept of an address in the sense of delivering a formal spoken communication
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to an audience. In order to assure the differences in meaning, things are identified by

a Unique Resource Identifier (URI). The majority of the data processed by machines

can be described by elementary sentences like A cat is a mammal, Thomas Steiner is the

author of this document, or Prince William is married to Kate Middleton. Each of these

sentences has a subject (A cat), a predicate (is a), and an object (mammal). Every

subject, predicate, and object can be identified by a URI. This idea is very powerful,

as it allows to express the same concept represented by a URI (for example, mammal

by http://dbpedia.org/resource/Mammal) with different terms in different languages

(like, for example, Säugetier, mammal, or nisäkkäät). Everyone can extend the set of

concepts simply by creating a URI on the Web, which is exploited by RDF.

2.3.2 Important RDF Serialization Syntaxes

Knowledge or facts represented in the RDF triple data structure need to be serialized

in order to be stored or transmitted over the Internet. Several serialization formats

exist, each of which with its particular advantages and disadvantages, mostly around

readability for human beings and parsability for machines. According to our experience,

most people prefer the Turtle [35] format for its readability, whereas for machines,

oftentimes RDF/XML [20] is the easiest to work with.

RDF Sample Graph

In the following, we will illustrate the various RDF serialization formats with an RDF

sample graph inspired by a default example of the Apache Anything To Triples project

(Any23, http://any23.org/, accessed July 15, 2013). It contains data about a fictive

FOAF (Friend of a friend, [15]) person named John X. Foobar with an email address

with the SHA1 (secure hash algorithm) checksum of cef817456278b70cee8e5a1611539-

ef9d928810e. The actual email address is obscured to avoid spam emails. Figure 2.2

shows the graphical representation of this sample graph.

The RDF/XML Syntax

RDF/XML [20] was introduced by the W3C as the first RDF serialization syntax. In

order to encode an RDF graph in XML, the nodes and predicates have to be represented

in XML terms—element names, attribute names, element contents, and attribute values.
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Figure 2.2: Sample RDF graph visualized

Albeit more human-friendly serialization formats such as Turtle [35] gain more and more

traction, RDF/XML is still very wide-spread. Its media type is application/rdf+xml,

the recommended file extension is .rdf, the encoding is UTF-8. Listing 2.3 shows the

previously introduced sample graph serialized in RDF/XML.

<?xml version ="1.0" encoding ="UTF -8"?>
<rdf:RDF

xmlns:foaf="http :// xmlns.com/foaf /0.1/"
xmlns:rdf="http :// www.w3.org /1999/02/22 -rdf -syntax -ns#">

<rdf:Description rdf:nodeID =" node15urahancx74224">
<rdf:type rdf:resource ="http :// xmlns.com/foaf /0.1/ Person"/>
<foaf:name >John X. Foobar </foaf:name >
<foaf:mbox_sha1sum >

cef817456278b70cee8e5a1611539ef9d928810e
</foaf:mbox_sha1sum >

</rdf:Description >
</rdf:RDF >

Listing 2.3: Sample graph in RDF/XML syntax

The N-Triples Syntax

The N-Triples [25] syntax was primarily developed by Dave Beckett and Art Barstow.

N-Triples is a subset of Turtle (see section 2.3.2), which in turn is a subset of Notation3

(see section 2.3.2). There are very few variations to express a graph in N-Triples,

which makes it an ideal syntax for testing purposes, however, as it is missing some

shortcuts of Turtle, it is quite verbose. Its media type is text/plain, the recommended

file extension is .nt, and the encoding is 7-bit US-ASCII (and explicitly not UTF-8).

Listing 2.4 shows the previously introduced sample graph serialized as N-Triples.
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_:1 <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#type >
<http :// xmlns.com/foaf /0.1/ Person > .

_:1 <http :// xmlns.com/foaf /0.1/ name >
"John X. Foobar" .

_:1 <http :// xmlns.com/foaf /0.1/ mbox_sha1sum >
"cef817456278b70cee8e5a1611539ef9d928810e" .

Listing 2.4: Sample graph in N-Triples syntax

The Turtle Syntax

Turtle [35], or the Terse RDF Triple Language, was defined by Dave Beckett. It is

a superset of N-Triples (see section 2.3.2) and a subset of Notation3 (see section 2.3.2).

It has reached a de facto standard status, with the RDF Working Group publish-

ing the new Turtle specification as a W3C Candidate Recommendation on February

19, 2013. Its media type is text/turtle (the sometimes still observable media type

application/x-turtle is deprecated), the recommended file extension is .ttl, the en-

coding is UTF-8. Listing 2.5 shows the previously introduced sample graph serialized

in Turtle syntax.

@prefix foaf: <http :// xmlns.com/foaf /0.1/> .

_:node15urahancx74223 a foaf:Person ;
foaf:name "John X. Foobar" ;
foaf:mbox_sha1sum "cef817456278b70cee8e5a1611539ef9d928810e" .

Listing 2.5: Sample graph in Turtle syntax, the syntax is equivalent to Listing 2.6

The Notation3 Syntax

Notation3 [6] was introduced by Tim Berners-Lee. Notation3 has some features that go

beyond the pure expressiveness of RDF like rules, support for variables, and quantifi-

cation. Its media type is text/n3, the recommended file extension is .n3, the encoding

is always UTF-8. Listing 2.6 shows the previously introduced sample graph serialized

in Notation3, which, given the present trivial example, is syntactically equal to Turtle.
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@prefix foaf: <http :// xmlns.com/foaf /0.1/> .

_:node15urahancx74223 a foaf:Person ;
foaf:name "John X. Foobar" ;
foaf:mbox_sha1sum "cef817456278b70cee8e5a1611539ef9d928810e" .

Listing 2.6: Sample graph in Notation3 syntax

The RDFa Syntax

RDFa [1] has a special role in that it is a specification for attributes to express struc-

tured data in XHTML [34], but also in HTML4 and HTML5 [39]. It uses the rendered

hypertext content of (X)HTML for the RDFa markup, so that data publishers can

use the same document for human- and machine-readable content. The contained RDF

triples can be extracted with distillers. In consequence, RDFa can be considered another

serialization syntax for RDF, with the same expressive power as RDF/XML [20], Tur-

tle [35], etc. Its media type is application/xhtml+xml, the recommended file extension

is .html. RDFa shares some design goals with Microformats [17] and Microdata [28].

Where Microformats specify both a syntax for embedding structured data into HTML

and a vocabulary of specific terms for each Microformat, RDFa in contrast only specifies

a syntax, since the vocabularies it relies on are externally and independently specified.

The essence of RDFa is a set of attributes that contain metadata about things, and

that can be embedded in mark-up languages, for example in XHTML or HTML. The

concrete attributes are as follows.

• about and src a URI or CURIE (compact URI) [9] that specifies the resource the

metadata is about.

• rel specifies a relationship with another resource.

• href and resource specify the partner resource.

• property specifies a property for the content of an element.

• content optional attribute that overrides the content of the element when using

the property attribute.
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• datatype optional attribute that specifies the datatype of text specified for use

with the property attribute.

• typeof optional attribute that specifies the RDF type(s) of the subject (the re-

source that the metadata is about).

An additional simplified subset of RDFa is RDFa Lite [38], which is aligned with

Microdata. Listing 2.7 shows the previously introduced sample graph in RDFa.

<div about ="_:1" typeof ="http :// xmlns.com/foaf /0.1/ Person">
<span property ="http :// xmlns.com/foaf /0.1/ mbox_sha1sum">

cef817456278b70cee8e5a1611539ef9d928810e
</span >
<span property ="http :// xmlns.com/foaf /0.1/ name">

John X. Foobar
</span >

</div >

Listing 2.7: Sample graph in RDFa syntax

2.4 SPARQL: Semantic Web Query Language

SPARQL is a recursive acronym that stands for SPARQL Protocol and RDF Query

Language. The SPARQL specification [36] defines the syntax and semantics of the

SPARQL query language for RDF. SPARQL can be used to express queries across

diverse data sources, whether the data is stored natively as RDF, or viewed as RDF

via middleware. SPARQL allows for querying required and optional graph patterns

along with their conjunctions and disjunctions. SPARQL also supports extensible value

testing and constraining queries by source RDF graph. The results of SPARQL queries

can be result sets or RDF graphs. SPARQL became an official W3C Recommendation

in 2008. It was standardized by the RDF Data Access Working Group (DAWG).

2.4.1 The Vision of the Web as a Giant Single Database

The Web as we know it today is a network of documents, interconnected by hyperlinks

that everyone can participate in by placing links to existing documents. The vision

of the Semantic Web, however, is a network of facts about entities, interconnected by
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means of graphs of data. Where the Web of today is a graph of documents, the Semantic

Web is envisioned to be a huge global graph, formed by many individual graphs. If one

party publishes facts about an entity and a different party publishes different facts

about the same entity, then the overall knowledge about that entity is represented in

a decentralized way, accessible to all, and open for everyone to enrich. This requires

strong globally unique identifiers, or at least ways to map one identifier to another.

Given the (visionary) huge global graph, a fictive SPARQL query like the one in

Listing 2.8 could be used to get results from the graph, like the email addresses of every

person in the world. SPARQL queries, unlike traditional databases, are not necessarily

guaranteed to return all existing results (completeness).

PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
SELECT ?name ?email
WHERE {

?person a foaf:Person.
?person foaf:name ?name.
?person foaf:mbox ?email.

}

Listing 2.8: Fictive SPARQL query returning the names and email addresses of every
person in the world (http://en.wikipedia.org/wiki/SPARQL#Benefits, accessed July
15, 2013)

This query selects the names and email addresses from all persons who have facts

about them in the global graph. The query starts with a prefix definition, and then

constrains the results to be of type foaf:Person [15], whose name and email address

are the values of the triples with the predicates foaf:name and foaf:mbox respectively.

However, in practice SPARQL endpoints like the DBpedia SPARQL endpoint1 typically

only allow for querying a local graph for performance reasons.

2.4.2 Different SPARQL Query Variations

The SPARQL Query Language currently specifies four different query variants, which

we will list in the following. Each query variant is accompanied by a basic example

query with the particular result.

1http://dbpedia.org/sparql, accessed July 15, 2013

36

http://en.wikipedia.org/wiki/SPARQL#Benefits
http://dbpedia.org/sparql


2.4 SPARQL: Semantic Web Query Language

SELECT

The SELECT query variant is used to extract raw values from a SPARQL endpoint. The

results are returned in a tabular format. A sample query was given in Listing 2.8.

DESCRIBE

The DESCRIBE query variant is used to extract an RDF graph from the SPARQL end-

point, the contents of which is left to the endpoint to decide based on what the main-

tainer deems as useful information. An example query is given below:

DESCRIBE <http://example.org/sparql>

ASK

The ASK query variant is used to provide a simple true or false result for a query on

a SPARQL endpoint. No information is returned about possible solutions, just whether

or not a solution exists. An example query with a sample response is given below:

Given the RDF graph in Figure 2.2 and the following SPARQL ASK query:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

ASK { ?x foaf:name "Alice" }

This query creates a negative response, as there is no person named Alice in the graph:

no

CONSTRUCT

The CONSTRUCT query variant is used to extract information from the SPARQL endpoint

and to transform the results into valid RDF specified by a graph template. The result

is an RDF graph formed by taking each query solution in the solution sequence, substi-

tuting for the variables in the graph template, and combining the resulting triples into
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a single RDF graph by set union. If any such instantiation produces a triple containing

an unbound variable or an illegal RDF construct, then that triple is not included in the

output RDF graph. An example query is given below.

Given the following RDF graph, serialized in Turtle syntax:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Alice" .

_:a foaf:mbox <mailto:alice@example.org> .

Given the following SPARQL CONSTRUCT query:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX vcard: <http://www.w3.org/2001/vcard-rdf/3.0#>

CONSTRUCT { <http://example.org/person#Alice> vcard:FN ?name }

WHERE ?x foaf:name ?name

This query creates the following vcard [21] properties from the FOAF information:

@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .

<http://example.org/person#Alice> vcard:FN "Alice" .

2.5 Linked Data

Linked Data [4] defines a set of agreed-on best practices and principles for intercon-

necting and publishing structured data on the Web. It uses Web technologies like the

Hypertext Transfer Protocol (HTTP , [24]) and Unique Resource Identifiers (URIs [7])

to create typed links between different sources. The portal http://linkeddata.org/

(accessed July 15, 2013) defines Linked Data as being “about using the Web to connect

related data that wasn’t previously linked, or using the Web to lower the barriers to

linking data currently linked using other methods.”
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2.5.1 The Linked Data Principles

Tim Berners-Lee defined the four rules for Linked Data in a W3C Design Issue [4]

published in 2006 as follows:

1. Use URIs as names for things.

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the standards

(RDF, SPARQL).

4. Include links to other URIs, so that they can discover more things.

Linked Data uses RDF [29] to create typed links between things in the world. The

result is oftentimes referred to as the Web of Data. As outlined before, RDF encodes

statements about things in the form of (subject, predicate, object) triples. If

subject and object have URIs from different namespaces, Bizer et al. speak of RDF

links in [27]. An exemplary RDF link adapted from [11] stating that a description of

the movie Pulp Fiction from the Linked Movie Database [26] and a description from

DBpedia [2] are indeed talking about the same movie can be seen in Listing 2.9.

<http :// data.linkedmdb.org/resource/film/77> ↩
<http :// www.w3.org /2002/07/ owl#sameAs > ↩
<http :// dbpedia.org/page/Pulp_Fiction > .

Listing 2.9: Exemplary RDF link stating that a description of the movie Pulp Fiction
from the Linked Movie Database [26] and a description from DBpedia are indeed talking
about the same movie

2.5.2 The Linking Open Data Cloud Diagram

The Linking Open Data (LOD) cloud diagram [19] is a visualization effort that shows

datasets that have been published in Linked Data [4] format by contributors to the

Linking Open Data community project and other individuals and organizations. The

objective is to identify existing datasets with open licenses, convert them to RDF whilst

obeying the Linked Data principles, and finally publish them on the Web. Due to its

open structure, everyone can contribute to the project by publishing a dataset and
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interlinking it to existing datasets. Today, the project includes datasets of major orga-

nizations such as the BBC, Thomson Reuters, or the Library of Congress to name just

a few. The state of the LOD cloud has been examined in [10]. The latest LOD cloud

diagram as of September 2011 can be seen in Figure 2.3.

2.6 Conclusions

In this chapter, we have first introduced the Semantic Web and compared it to the non-

semantic Web. We have shown how structured data in the form of tables is a first step

towards richer semantics. An example of converting structured data from Wikipedia

into machine-readable data is the knowledge base DBpedia. Further, we have looked

at the intrinsic semantics of HTML in versions 4 and 5, and how through additional

attributes even richer semantics can be added by the annotation formats Microdata

and Microformats. We have introduced the Resource Description Format (RDF) and

its different serializations. On top of RDF, we have detailed how the Semantic Web

query language SPARQL can be used to express queries across data sources. Finally,

we have shown how data on the Web can be exposed as so-called Linked Data, an effort

which is visualized in the Linking Open Data cloud. By introducing these Semantic

Web technologies, we have set the foundations for the coming chapters that build upon

those basic pillars.
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Figure 2.3: Linking Open Data cloud diagram as of September 2011, by Richard Cyganiak
and Anja Jentzsch http://lod-cloud.net/ (accessed July 15, 2013)
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Chapter Notes

This chapter is partly based on the following publications.

• Thomas Steiner, Raphaël Troncy, and Michael Hausenblas. “How Google is using

Linked Data Today and Vision For Tomorrow”. In: Proceedings of the Workshop

on Linked Data in the Future Internet at the Future Internet Assembly, Ghent

16–17 Dec 2010. Ed. by Sören Auer, Stefan Decker, and Manfred Hauswirth.

Vol. 700. CEUR Workshop Proceedings ISSN 1613-0073. Dec. 2010. url: http:

//CEUR-WS.org/Vol-700/Paper5.pdf.

• Thomas Steiner. “DC Proposal: Enriching Unstructured Media Content About

Events to Enable Semi-Automated Summaries, Compilations, and Improved Search

by Leveraging Social Networks”. In: Proceedings of the 10th International Con-

ference on The Semantic Web – Volume Part II. ISWC’ 11. Bonn, Germany:

Springer-Verlag, 2011, pp. 365–372. isbn: 978-3-642-25092-7. url: http://

iswc2011.semanticweb.org/fileadmin/iswc/Papers/DC_Proposals/70320369.

pdf.
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3

Social Networks

From the first ever email to video calls on the go, the Internet has always been about

communication. Historically, communities formed around Usenet mailing lists or Bul-

letin Board Systems. Starting from the early eighties, often around all sorts of topics

like fine arts, literature, and philosophy (e.g., humanities.classics or humanities.-

design.misc). Then, starting from the late eighties, Internet Relay Chats (IRC) al-

lowed people to communicate interactively and in realtime, organized in channels (e.g.,

#linux). Starting from the nineties, blogs began to spread, reaching mainstream popu-

larity somewhere in mid-2000. While the early social communities where created entirely

ad hoc whenever someone logged in to a system, the first social networks, among them

http://sixdegrees.com/ in 1997, allowed people to maintain a public profile with

a list of connections (friends) that others could browse. In [1], boyd (sic1) and Ellison

define the term social network site (SNS) as follows.

“We define social network sites as web-based services that allow individu-

als to (1) construct a public or semi-public profile within a bounded system,

(2) articulate a list of other users with whom they share a connection, and

(3) view and traverse their list of connections and those made by others

within the system. The nature and nomenclature of these connections may

vary from site to site.

While we use the term ‘social network site´ to describe this phenomenon,

the term ‘social networking sites´ also appears in public discourse, and the

two terms are often used interchangeably.”
1http://www.danah.org/name.html, accessed July 15, 2013
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3. SOCIAL NETWORKS

Literature on social networks typically uses the term SNS. However, in order to

differentiate ourselves from the therein defined for our purposes overly strict idea of

social network, we decided to avoid the term altogether in favor of a more open definition

of social network, which we detail in the following.

3.1 Definition of Terms Used in this Thesis

In this section, we define the terms that we will use throughout this thesis in order

to avoid any ambiguity. In particular, we highlight that social networks have different

levels of support for media items.

Social Network: A social network is an online service or media platform that focuses

on building and reflecting relationships among people who share common interests

and/or activities.

Media Item: A media item is defined as a photo1 or video file that is publicly shared

or published on at least one social network.

Micropost: A micropost is defined as a textual status message on a social network

that can optionally be accompanied by a media item.

Hashtag The # symbol, called a hashtag, is used to mark keywords or topics in a micro-

post. It was created organically by Twitter users as a way to categorize messages.

People use the hashtag symbol # before a relevant keyword or phrase (no spaces)

in microposts to categorize them and help them show more easily in search.2

The boundary between social networks and media platforms is blurred. Several me-

dia sharing platforms, e.g., YouTube (http://youtube.com/) enable people to upload

content and optionally allow other people to react to this content in the form of com-

ments, likes, or dislikes. On other social networks, e.g., Facebook (http://facebook.

com/) users can update their status, post links to stories, upload media content, and also

give readers the option to react. Finally, there are hybrid clients, e.g., the application

TweetDeck (http://www.tweetdeck.com/) released by Twitter together with the me-

dia hosting platform Twitpic (http://twitpic.com/), where social networks integrate

with media platforms, typically via third-party applications.
1We choose the term photo over the term image as Facebook, Twitter, and Google+ use it.
2Definition adapted from https://support.twitter.com/articles/49309, accessed July 15, 2013
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3.2 Description of Popular Social Networks

In this section, we introduce several social networks and some of their key features that

are relevant for our research. As we treat all networks the same—independent from their

not always publicly known user population—they are listed in alphabetic order. For

active participation, all social networks require users to be logged in. In the description

below, we thus assume a logged in user.

3.2.1 Facebook

Facebook (http://www.facebook.com/) is a social networking service launched in Febru-

ary 2004, operated and owned by the American multinational Internet corporation

Facebook, Inc. At time of writing, Facebook is the most popular social network with

one billion monthly active users1 as of October 2012. Facebook has native photo and

video support, allowing people to upload an unlimited amount of media items. Pho-

tos and videos can also be recorded ad hoc via webcam. People can Like content via

a designated Like button that can also be embedded on other websites. Initially, the

button was called the Awesome button, but eventually2 got rebranded to its current

form. Individual microposts can also be shared. Facebook has a bidirectional relation-

ship model (friend model) with an optional unidirectional relationship model (follow

model), typically for following celebrities, remote friends, etc.

3.2.2 Flickr

Flickr (http://www.flickr.com/) is a photo and video hosting online community cre-

ated by Ludicorp in 2004 and acquired by Yahoo! in 2005. All users can upload up to

one Terabyte of photos or videos to the service. As of May 2013, the former account

types (Free or Pro) are no longer available.3 People can Favorite photos they like via

a designated Favorite button. Flickr has a unidirectional relationship model (follow

model), however, also allows people to mark other users as friends or family without the

other party having to confirm. Following an urgent plea from Flickr users4 that went
1http://newsroom.fb.com/Key-Facts, accessed July 15, 2013
2http://www.quora.com/Facebook-Inc-company/Whats-the-history-of-the-Awesome-Button-

that-eventually-became-the-Like-button-on-Facebook, accessed July 15, 2013
3http://blog.flickr.net/en/2013/05/20/a-better-brighter-flickr/, accessed July 15, 2013
4http://dearmarissamayer.com/, accessed July 15, 2013
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viral under the hashtag #dearmarissamayer where users complained that Yahoo! had

semi-abandoned the service for too long, Flickr has now been revived under the new

Yahoo! CEO Marissa Mayer.1 The urgent plea website has since been updated with

a “thank you” notice.

3.2.3 Google+

Google+ (http://google.com/+), sometimes transcribed as Google Plus and abbrevi-

ated as G+, is Google’s social network. It was opened to the general public on September

20, 2011. Google+ has native photo support. Photos can either be manually uploaded

when authoring a new micropost, or be automatically uploaded via the Google+ mobile

application. External videos, for example, from the also Google-owned online video

platform YouTube, but also from other services, get displayed in an inline view so that

they can be viewed directly on the website. However, the network also allows for videos

to be uploaded directly, or to be recorded ad hoc via webcam. People can +1 (pro-

nounced like a verb “to plus-one”) content they like via a designated +1 button that can

also be embedded on other websites. Individual microposts can also be shared. Google+

has a unidirectional relationship model (follow model).

3.2.4 Img.ly

Img.ly (http://img.ly/) is a photo hosting service operated by 9elements GmbH that

was founded in 2009. It integrates deeply with Twitter, however, can also be used

independently. Img.ly integrates with Twitter’s Tweet button. The service has no own

relationship model, but uses a user’s social graph on Twitter.

3.2.5 Imgur

Imgur (http://imgur.com/) is a photo hosting service founded by Alan Schaaf in Febru-

ary 2009. While the service is deeply integrated with Twitter and Facebook, it can be

used independently as well. Imgur integrates with all major social networks, and also

has designated Like and Dislike buttons. The service has no own relationship model,

but uses a user’s social graph on Facebook.

1http://www.flickr.com/dearinternet, accessed July 15, 2013
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3.2.6 Instagram

Instagram (http://instagram.com/) is a mobile photo and (since June 2013) video

sharing application that was acquired by Facebook in April 2012. The application

allows users to apply filters to photos. These photos can then be shared on external

social networks like Facebook, Twitter, or Google+, and are also visible on Instagram’s

own social network. The service launched in October 2010. Instagram has native photo

and video support, where its level of video support is comparable to Vine’s. People

can Like content via a designated Like button from within the Instagram application.

Instagram has a unidirectional relationship model (follow model).

3.2.7 Lockerz

Lockerz (http://lockerz.com/) is an international social commerce website based in

Seattle, WA. In 2011, Lockerz acquired the photo sharing service Plixi, which was for-

merly known as TweetPhoto. Lockerz keeps Plixi’s service as a media platform running

under the new Lockerz branding. While the service is deeply integrated with Twitter, it

can be used independently as well. People can Love content they like via a designated

Love button, but the service is also integrated with all major social networks. Since

April 2012, the service no longer offers or supports photo-sharing services for developers

and third-party applications.

3.2.8 MobyPicture

MobyPicture (http://www.mobypicture.com/) is a mobile messaging service owned by

entrepreneur Mathys van Abbe. Users of the service can upload an unlimited number of

photos and videos to the service. MobyPicture integrates with a number of third-party

social networks. The service natively supports videos and photos, which can either be

uploaded, or be recorded ad hoc via webcam. People can Favorite content they like

via a designated Favorite button, however, the service also integrates with Google’s

+1 button and Twitter’s Tweet button. MobyPicture has a unidirectional relationship

model (follower model).
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3.2.9 Myspace

Myspace (http://www.myspace.com/), formerly MySpace and My_____ (sic), is

a social networking service owned by Specific Media LLC and pop star Justin Tim-

berlake. The social network launched in August 2003. Once the most visited website in

the United States in June 2006, the network’s importance has steadily declined since.

Instead of as a social networking website, Myspace has attempted to redefine itself as

a social entertainment website, putting more focus on music, movies, celebrities, and

TV. As such, Myspace has native photo, video, and, via special musician profiles, au-

dio support. Videos can either be uploaded, or be recorded ad hoc via webcam. In

January 2012, a rebranding strategy to Myspace TV in collaboration with Panasonic

was unveiled with an exclusive focus on social TV that would allow people to watch

and comment on videos. The latest reinvention of the service was launched on June 12,

2013.1 People can Like certain content via a designated Like link. Myspace has a bidi-

rectional relationship model (friend model) with an optional unidirectional relationship

model (follow model), typically meant for following celebrities.

3.2.10 Photobucket

Photobucket (http://photobucket.com/) is a photo and video hosting service founded

in 2003 by Alex Welch and Darren Crystal. It was acquired by Fox Interactive Media

in 2007. In June 2011, Twitter announced an exclusive partnership with Photobucket

that made the service the default photo sharing platform for Twitter, used for its native

media item support. Since then, in December 2012, Twitter has rolled out its own photo

storage solution.2

3.2.11 Twitpic

Twitpic (http://twitpic.com/) is a service that allows users to upload photos and

videos. It optionally integrates with Twitter. Twitpic was launched in 2008 by Noah

Everett. While Twitpic can be used independently from Twitter, the integration is

1http://www.cbc.ca/news/yourcommunity/2013/06/myspaces-20m-relaunch-deletes-its-
remaining-users-blogs.html, accessed July 15, 2013

2https://blog.twitter.com/2012/blobstore-twitter’s-house-photo-storage-system, ac-
cessed July 15, 2013
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made easy with Twitpic usernames and passwords being the same as the ones on Twit-

ter. Twitpic integrates with Twitter via the Tweet button. The service has no own

relationship model, but uses a user’s social graph on Twitter.

3.2.12 Twitter

Twitter (http://twitter.com/) is an online social networking service and microblog-

ging service that enables its users to send and read microposts of up to 140 characters.

These microposts are referred to as tweets. Twitter was founded in March 2006 by Jack

Dorsey and launched to the public in July 2006. The website is ranked among the

top-10 websites globally by the Web information company Alexa.1 As of August 2011,

Twitter has native photo support, which allows users to upload photos to the service.

However, at time of writing, it is not possible to record photos or videos ad hoc via

webcam. Videos are not supported natively, however, likewise the situation with pho-

tos before (and also in part still today), an ecosystem of media platforms takes care of

hosting media items on behalf of Twitter users. These third-party-hosted media items

can be linked to from within tweets. In October 2012, Twitter acquired Vine, a mobile

app that enables its users to create and post six seconds long video clips. People can

ReTweet content they like either via a designated ReTweet button, or—following the

prior, but still widely popular manual ReTweet convention—by quoting a Twitter user

by prepending “RT @username:” in front of the original tweet. In addition to that,

Twitter offers a Tweet button that can be embedded on other websites. Twitter has

a unidirectional relationship model (follow model).

3.2.13 Yfrog

Yfrog (http://yfrog.com/) is a photo and video hosting service run by ImageShack

that was launched in February 2009. While the service is deeply integrated with Twitter,

it can be used independently as well. Yfrog integrates with Twitter’s Tweet button.

The service has no own relationship model, but uses a user’s social graph on Twitter.

1http://www.alexa.com/topsites, accessed July 15, 2013
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3.2.14 YouTube

YouTube (http://www.youtube.com/) is a video sharing website founded in February

2005. In November 2006, YouTube was acquired by Google and now operates as a sub-

sidiary of the company. It allows people to upload, view, and share an unlimited number

of videos. YouTube has native video support, but does not support photos. Videos can

be uploaded, or be recorded ad hoc via webcam. People can Like or Dislike content via

designated Like or Dislike buttons. YouTube has a unidirectional relationship model

(follow model).

3.3 Decentralized Social Networks

All social networks presented up to now are centralized networks. In contrast, dis-

tributed, or also referred to as decentralized social networks, are social network services

that are decentralized and distributed across different providers, with a special focus

on portability, interoperability, and federation capability, i.e., an agreement upon stan-

dards of operation in a collective fashion. Decentralized, protocol-based systems offer

users a choice of providers, which means that if one provider should terminate their

service, the user is free to take out her data and start where she left off with a different

provider. As a final aspect, governments cannot effectively censor decentralized social

networks, as this would be impracticable due to the distributedness of user data. None

of the decentralized social networks could reach a critical mass of users and/or network

activity as of yet. We will therefore not consider them for this thesis.

In the following, we will list representative efforts in the direction of truly decentral-

ized social networks. This list is not meant to be complete, but covers the efforts that

received the most media attention in the years 2011 to 2013.

StatusNet: A first example of decentralized social network software providers is Sta-

tusNet (http://status.net/), which provides an open-source implementation of the

OStatus1 open standard, most prominently deployed at http://identi.ca/.

1http://gitorious.org/projects/ostatus/, accessed July 15, 2013
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The DIASPORA* Project: A second example is the DIASPORA* project (http:

//diasporaproject.org/), which provides a free and open-source personal Web server

component referred to as pod that allows participants in the project to form nodes that

span the distributed Diaspora social network.

Tent: Third, there is Tent™ (https://tent.io/). Tent is an open-source protocol for

distributed social networking and personal data storage. Anyone can run a Tent server

or write an app or alternative server implementation that uses the Tent protocol. Users

can take their content and relationships with them when they change or move servers.

Tent supports extensible data types, so developers can create new kinds of interactions.

Rather than running an own server, users can also rely on Tent.is (https://tent.is/),

a service which hosts Tent servers and basic applications for users. At time of writing,

the global site feed1, suggests that the service is not very actively used.

3.4 Classification of Social Networks

As motivated in section 3.1, different social networks have varying support for media

items, ranging from native support in media-centric social networks to optional support

in micropost-centric social networks. In order to differentiate social networks by their

media item support level, we introduce a classification of social networks as follows.

• First-order support : The social network is centered around media items and post-

ing requires the inclusion of a media item (e.g., YouTube, Flickr).

• Second-order support : The social network lets users upload media items, but it is

also possible to post purely textual messages (e.g., Facebook).

• Third-order support : The social network has no direct support for media items,

but relies on third-party media platforms to host media items, which are linked to

the status update (e.g., Twitter relying on third-party video hosting via Twitpic).

In this chapter, we consider 11 different social networks that represent all together

most of the market share of the Western world. The criteria for inclusion follow

a study [4] performed by the company Sysomos, specialized in social media monitoring
1https://app.tent.is/global, accessed July 15, 2013
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and analytics. Table 3.1 lists the considered social networks according to the categoriza-

tion defined above. Due to language barriers, we had to omit popular Chinese social net-

works such as Sina Weibo (http://www.weibo.com/) with more than 500 million regis-

tered users,1 Tencent Weibo (http://t.qq.com/), Renren (http://www.renren.com/)

with 31 million active users,2 and Kaixin001 (http://www.kaixin001.com/).

3.5 Conclusions

Alongside the Semantic Web technologies that were introduced in the previous chapter,

social networking sites form the backbone of this thesis. In this chapter, we have

thus first defined the terms of social network, micropost, media platform, and media

item. Subsequently, we have introduced and described in detail the most popular social

networking sites and media platforms. Different social networking sites have a different

level of support for media items. We have therefore classified the social networking site

landscape accordingly. In the upcoming chapters, we will get to the heart of micropost

annotation, breaking news event detection, media item extraction from microposts,

followed by media item deduplication, clustering, and ranking. Finally, we will close

the core part of the thesis with media item compilation.

1http://thenextweb.com/asia/2013/02/21/chinas-sina-weibo-grew-73-in-2012-passing-
500-million-registered-accounts/, accessed July 15, 2013

2http://online.wsj.com/article/SB10001424052748704729304576286903217555660.html#
ixzz1KqsoJPb8, accessed July 15, 2013
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Chapter Notes

This chapter is partly based on the following publications.

• Giuseppe Rizzo, Thomas Steiner, Raphaël Troncy, Ruben Verborgh, José Luis

Redondo García, and Rik Van de Walle. “What Fresh Media Are You Looking

For?: Retrieving Media Items From Multiple Social Networks”. In: Proceedings of

the 2012 International Workshop on Socially-aware Multimedia. SAM ’12. Nara,

Japan: ACM, 2012, pp. 15–20. isbn: 978-1-4503-1586-9. url: http://www.

eurecom.fr/~troncy/Publications/Troncy-saw12.pdf.

• Houda Khrouf, Ghislain Atemezing, Giuseppe Rizzo, Raphaël Troncy, and Thomas

Steiner. “Aggregating Social Media for Enhancing Conference Experience”. In:

Real-Time Analysis And Mining of Social Streams, Papers from the 2012 ICWSM

Workshop. Ed. by Arkaitz Zubiaga, Maarten de Rijke, Markus Strohmaier, and

Mor Naaman. AAAI Technical Report WS-12–02. June 2012. url: http:

//www.aaai.org/ocs/index.php/ICWSM/ICWSM12/paper/download/4779/5086.

• Houda Khrouf, Ghislain Atemezing, Thomas Steiner, Giuseppe Rizzo, and Raphaël

Troncy. Confomaton: A Conference Enhancer with Social Media from the Cloud.

2012. url: http://2012.eswc- conferences.org/sites/default/files/

eswc2012_submission_343.pdf.
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4

Micropost Annotation

4.1 Introduction

Microposts are the textual metadata that accompany media items. Per se, these mi-

croposts are nothing but strings. For the task of making sense out of social network

microposts, our contributions are methods to consolidate and rank the results of multi-

ple named entity recognition and disambiguation Web services that we have unified in

form of a wrapper Web service that (i) takes care of both consolidation and ranking,

and that (ii) transparently tracks the underlying Web services’ data provenance.

The impact of social networks is ever-growing. According to official statistics,

Facebook is the biggest social network with one billion monthly active users1 as of

October 2012. Official user statistics from Twitter2 stemming from March 2012 suggest

that currently more than 140 million active users share 340 million tweets a day. Alto-

gether, the users of social networks produce an incredible amount of public and private

data. In this chapter, we thus report on methods to access and make sense out of public

status updates, or, our preferred term, microposts.

4.1.1 Direct Access to Micropost Raw Data

Social networks in general offer so-called Application Programming Interfaces (APIs)

in order to allow for developers to access part of the networks’ data programmatically.

Similar to the microblogging site Twitter with its search API,3 Facebook offers both
1http://newsroom.fb.com/Key-Facts, accessed July 15, 2013
2http://blog.twitter.com/2012/03/twitter-turns-six.html, accessed July 15, 2013
3https://dev.twitter.com/docs/api/1.1/get/search/tweets, accessed July 15, 2013
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a search function on the website and a search API,1 and so does Google+.2 In order

to perform data mining, a statistically significant amount of microposts is necessary.

Having access to all microposts of a service is referred to as having access to the fire

hose. Typically, developers are only granted access to a smaller random sample of

microposts (colloquially referred to as garden hose access). While Twitter grants all

developers garden hose access to its Streaming APIs,3 for Facebook and Google+ there

are no such documented options.

4.1.2 Browser Extensions to Access Microposts Indirectly

To address this shortage, we have developed browser extensions for the two major social

networks Facebook and Twitter called Facebook Swarm NLP4 and Twitter Swarm NLP5

that can be added to a popular Web browser. These extensions inject JavaScript code

into Facebook and Twitter to perform data analysis on the encountered set of public

microposts by sending extracted data to a central data processing unit. Users need to

be logged in to Facebook or Twitter for the extensions to work and must have given

their explicit agreement during the extension installation process for part of their data

to be shared in an anonymized way. While this is far inferior and not comparable with

direct fire hose access, given a critical amount of participants, it still provides access to

a random sample of microposts from different social networks.

4.1.3 Data Analysis Flow

The extensions first retrieve all status updates from the contacts that are displayed

on the current user’s timeline. Second, the extensions perform named entity extraction

(NEE) and disambiguation via Natural Language Processing (NLP) using a remote NLP

API on each of the microposts in order to add semantic meaning to them. The extracted

named entities are then displayed along each micropost, as illustrated in Figure 4.1. Fi-

nally the extracted named entities are sent to a central Web analytics framework [26] to

compute basic or advanced trends, for example, by ranking the most discussed named

1https://developers.facebook.com/docs/reference/api/, accessed July 15, 2013
2https://developers.google.com/+/api/, accessed July 15, 2013
3https://dev.twitter.com/docs/streaming-apis, accessed July 15, 2013
4http://bit.ly/facebookswarmnlp, accessed July 15, 2013
5http://bit.ly/twitterswarmnlp, accessed July 15, 2013
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entities per day, or by pivoting named entities by Web analytics data, like users’ ge-

ographic locations. We remark that the shared data is completely anonymized and

cannot be traced back to the originating social network users.

Figure 4.1: Facebook Swarm NLP browser extension. Extracted named entities have
a pale yellow background.

4.1.4 A Wrapper API for Named Entity Disambiguation

As mentioned before, in order to perform named entity extraction and disambiguation,

we rely on a wrapper API that calls existing third-party NLP APIs in the background

and that delivers the combined results of these APIs in a consolidated way. It is desirable

(i) to credit back the contribution of each single third-party API to the joint results,

and (ii) to track the provenance of the joint results in order to understand how they

were formed. We will show how these two constraints can be fulfilled in a generalizable

way at the concrete example of the wrapper NLP API used for our browser extensions.

4.2 Related Work

We regard related work from different angles. First, we look at different approaches

for named entity disambiguation, which are relevant for adding meaning to microposts.

Second, we look at efforts to mash-up Web services, which is important for tracking

data provenance when using multiple APIs in combination.
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4.2.1 Named Entity Disambiguation Using Lexical Databases

In [11], Choudhury et al. describe a framework for the semantic enrichment, ranking,

and integration of Web video tags using Semantic Web technologies. This task is more

related to microposts than it seems at first sight: video tags can consist of more than one

word and microposts (especially on Twitter) oftentimes consist of just a few words. In

order to enrich the typically sparse user-generated tag space, metadata like the recording

time and location or the video title and video description are used, but also social

features such as the playlists where a video appears in and related videos. Next, the

tags are ranked by their co-occurrence and in a final step interlinked with DBpedia [1,

30] concepts for greater integration with other datasets. The authors disambiguate the

tags based on WordNet [16, 36] synsets (groups of data elements that are considered

semantically equivalent for the purpose of information retrieval) if possible, i.e., if there

is only one matching synset in WordNet, the corresponding WordNet URI in DBpedia

is selected. If there are more than one matching synsets, the tags’ and their context

tags’ similarity is computed to decide on an already existing tag URI.

4.2.2 Named Entity Disambiguation Using Semantic Coherence and
News Trends

In [17], Fernández et al. examine named entity disambiguation in the context of news

annotation. Their approach consists of three steps: finding the candidate instances

in the NEWS ontology [18] for each entity in a news item, ranking these candidate

instances using a modified version of PageRank [8], and finally retraining the algorithm

with the journalist’s feedback once the process is finished. The approach first takes into

account the number of occurrences of candidate entities in the past in order to find news

trends, and second, the occurrences of candidate entities in past articles in the same

categories in order to find semantic coherences.

4.2.3 Named Entity Disambiguation Using Semantic Disambiguation
Dictionaries

In [37], Nguyen et al. show how semantic disambiguation dictionaries can be used to

disambiguate named entities using Wikipedia disambiguation pages. For a set of named

entity candidates, all disambiguations are ranked using tf-idf (or cosine similarity) [32].
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The approach is a hybrid and incremental process that utilizes previously identified

named entities and related terms that co-occur with ambiguous names in a text for the

purpose of entity disambiguation.

4.2.4 Disambiguation Using Corpuses and Probability

Cucerzan shows in [13] the use of a corpus like Wikipedia for entity disambiguation.

The surrounding words of the to-be-disambiguated terms plus the tags and categories

of the related Wikipedia articles are used to determine semantic coherence and thus

to decide on the most probable entity candidate. This happens through a process of

heuristically maximizing the agreement between contextual information extracted from

Wikipedia and the context of a document.

4.2.5 Disambiguation Using Search Query Logs

In [2], Billerbeck et al. use click graphs and session graphs of users’ search engine sessions

to semantically bridge different queries in order to retrieve entities for a concrete entity

retrieval query. Click graphs are created by using queries and URLs as nodes and

connecting and weighting them by their click frequencies. Session graphs are created

by using only queries as nodes with edges between them if they appear in the same user

sessions, again weighted by co-occurrence frequencies. An exemplary entity retrieval

query is hybrid cars, semantically bridgeable queries are consequently toyota prius, or

honda civic hybrid). These entities are then ranked and returned to the user.

4.2.6 Combining Different Web Services and Provenance

In [20], Groth et al. describe how so-called mash-ups can be created in a dynamic, just-

in-time way, combining data from different data sources through tools and technologies

such as Yahoo! Pipes,1 RSS [9], and APIs. The authors are driven by the motivation to

allow for trust and confidence in mash-ups, and therefore consider it critical to be able

to analyze the origin of combined results. They suggest an approach based on OWL [34]

and XML [6], with a focus on process documentation. However, different from our work,

where the goal is to transparently add provenance data at API invocation time, their

focus is more on overall process documentation in the context of a mash-up application.
1http://pipes.yahoo.com/pipes/, accessed July 15, 2013
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The focus of Carroll et al. in [10] is on the provenance of triples in the Semantic Web

world, namely, for making statements about triples in graphs. Therefore, the authors

introduce the concept of Named Graphs, an extension to RDF [27]. In contrast to our

work, Carroll et al. focus purely on using triples to make statements about triples (i.e.,

stay in the RDF world), whereas our approach uses RDF to make statements about

potentially any API result.

Web service specifications in the context of the first-generation standards represented

by WSDL [12], SOAP [21], and UDDI [40] are occasionally referred to collectively as

WS-*. In the WS-* world, BPEL4WS, described by Curbera et al. in [14] provides

a formal language for the specification of business processes and business interaction

protocols. This allows for the combination of several APIs. However, it does not credit

back concrete outputs of a combined API to the underlying APIs.

4.3 Structuring Unstructured Textual Data

When we speak of adding structure to unstructured textual data, we mean the process

of extracting the main concepts in the form of named entities from a given text and

the process of disambiguating those named entities, i.e., the removal of uncertainty

of meaning from an ambiguous named entity like Barcelona, which can stand for the

football club, or the city of Barcelona. An entity is defined by WordNet [16, 36] as

“that which is perceived or known or inferred to have its own distinct existence (liv-

ing or nonliving).” Typically, named entities from a text can be persons, companies,

organizations, geographies, but also things like quantities, expressions of time, books,

albums, authors, etc. The extraction of named entities is commonly based on Natural

Language Processing (NLP) combined with Machine Learning.

4.3.1 Natural Language Processing Services

WordNet [16, 36] defines Natural Language Processing as “the branch of information

science that deals with natural language information.” From the many NLP toolkits

available, hereafter, we list some NLP Web services that link to datasets in the Linking

Open Data cloud [4, 15] in order to disambiguate named entities.
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OpenCalais

The OpenCalais1 Web service automatically creates rich semantic metadata for textual

documents. Using Natural Language Processing (NLP), machine learning, and other

methods, OpenCalais analyzes documents and finds the entities within, and also returns

the facts and events hidden within them. OpenCalais is the only of the examined

Web services that provides details on occurrences in concrete sections of the submitted

coherent text. This allows for the exact matching of the location in the text where

a certain entity is detected. This is especially useful as OpenCalais is also oftentimes

capable of recognizing references within the text to prior discovered entities (for example,

in the following text, he is mapped back to Obama: “Obama thanked people for their

work in ensuring the victory. He also thanked his family.”). An OpenCalais response

consists of three parts:

• a list of topics that the text is categorized in

• a list of concrete entities that occur in the text

• a list of social concept tags

The problem with the extracted entities is that they are not always uniquely dis-

ambiguated. An example is the named entity represented by the URL http://d.

opencalais.com/pershash-1/cf42394f-4ae9-3e8e-958a-088149c86565.html that

represents the concept of an entity of type person named Barack Hussein Obama.

However, a person-type Barack Obama entity from the same document is also rep-

resented by the URL http://d.opencalais.com/pershash-1/cfcf1aa2-de05-3939-

a7d5-10c9c7b3e87b.html Other services successfully disambiguated both occurrences

and recognized them to stand for the same person, President Obama. A second issue is

that only a tiny fraction of the returned entities link to other data sources in the LOD

cloud [4, 15]. In order to discover links to the LOD cloud, each returned entity URL

has to be retrieved at the expense of an HTTP request and the returned RDF checked

for said links.

1http://www.opencalais.com/documentation/opencalais-documentation, accessed July 15,
2013
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AlchemyAPI

AlchemyAPI1 is capable of identifying people, companies, organizations, cities, geo-

graphic features, and other typed entities within textual documents. The service em-

ploys statistical algorithms and NLP to extract semantic richness embedded within

text. AlchemyAPI differentiates between entity extraction and concept tagging. Alche-

myAPI’s concept tagging API is capable of abstraction, i.e., understanding how con-

cepts relate and tag them accordingly (“Hillary Clinton”, “Michelle Obama”, and “Laura

Bush” are all tagged as “First Ladies of the United States”). In practice, the difference

between named entity extraction and concept tagging is subtle. In consequence, we

treat entities and concepts the same. Overall, AlchemyAPI results are very accurate

and in the majority of cases well interlinked with members of the LOD cloud, among

others with DBpedia [1, 30], OpenCyc [31], and Freebase [5, 33]. AlchemyAPI also

provides links to other data sources, however, sometimes the returned URLs result in

404 Not found. One example that we came across during our tests was the URL

http://umbel.org/umbel/ne/wikipedia/George_W._Bush.rdf, which should repre-

sent the concept of the person George W. Bush. The URL does serve as a Semantic

Web identifier, however, harms the third Linked Data principle, as outlined in subsec-

tion 2.5.1. AlchemyAPI also oftentimes returns thematically closely related, but for

a concrete text not directly relevant entities beyond the abstract concepts from its con-

cept tagging service, for example, in a text about the CEO of a given company, the

name of the CEO of one of its competitors.

Zemanta

Zemanta2 allows developers to query the service for contextual metadata about a given

text. The returned components currently span four categories: articles, keywords, pho-

tos, in-text links, and optional component categories. The service provides high quality

entities that are linked to well-known datasets of the LOD cloud, e.g., DBpedia or Free-

base. Zemanta convinces through very accurate entity disambiguation and thus high

precision, however, at the cost of recall. Where other services return named entities of

lower precision, the design objectives of Zemanta instead seem to prefer not to return

anything over returning returning low-precision results.
1http://www.alchemyapi.com/api/entity/, accessed July 15, 2013
2http://developer.zemanta.com/docs/, accessed July 15, 2013
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DBpedia Spotlight

DBpedia Spotlight [35] is a tool for annotating mentions of DBpedia resources in text,

providing a solution for linking unstructured information sources to the LOD cloud

through DBpedia. DBpedia Spotlight performs named entity extraction, including

entity detection and disambiguation with adjustable precision and recall. DBpedia

Spotlight allows users to customize the annotations to their specific needs through the

DBpedia Ontology1 and quality measures such as prominence, topical pertinence, con-

textual ambiguity, and disambiguation confidence.

4.3.2 Machine Translation

Social networking happens at a global scale. In consequence, many microposts are au-

thored in languages different from English. In order to still make sense out of those

microposts, we apply machine translation to translate non-English microposts to En-

glish. We use the Google Translate API,2 which, if the source language parameter is

left blank, tries to first detect the source language before translating to English.

4.3.3 Part-of-Speech Tagging

Our processing chain supports part-of-speech (POS) tagging based on a Brill POS tag-

ger [7] adapted for JavaScript. Brill taggers work by assigning tags to each word and

then changing them using a set of predefined rules. In an initial run, if a word is known,

the tagger first assigns the most frequent tag, or, if a word is unknown, it naively assigns

the tag “noun” to it. By applying the processing rules over and over again and changing

the incorrect tags, a sufficiently high accuracy is achieved. In the current processing

chain, POS tagging does not yet play an active role, however, we aim for leveraging the

additional data for better micropost analysis in the future.

4.4 Consolidating Named Entity Disambiguation Results

In this section, we motivate the use of multiple named entity disambiguation Web

services in parallel with the objective of obtaining named entity candidates for a textual

document such as a micropost. The task of evaluating and aligning named entity
1http://wiki.dbpedia.org/Ontology, accessed July 15, 2013
2https://developers.google.com/translate/v2/getting_started, accessed July 15, 2013
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extraction and disambiguation APIs and their typed output has been formally addressed

by Rizzo et al. in the context of the NERD framework [38, 39]. We have decided for

a type-agnostic approach, which we motivate in the following.

4.4.1 Identity Links on the Semantic Web

From the considered services, only OpenCalais returns data in its own namespace (http:

//d.opencalais.com/*), which is interlinked with other datasets in the LOD cloud,

however, not in all cases. All other services return results either directly in the DBpedia

namespace (http://dbpedia.org/resource/*), as in the case of DBpedia Spotlight.

Alternatively, AlchemyAPI and Zemanta return results in the DBpedia namespace to-

gether with namespaces like Freebase (http://rdf.freebase.com/rdf/*).

In order to address the problem of different namespaces in results, an approach as

presented by Glaser et al. in [19] based on owl:sameAs links could be used. In practice,

however, while many resources in the Linked Data world are marked as equivalent to

each other, the quality of such equivalence links is not always optimal. An example of

a good equivalence link is shown in Listing 4.1.

<http :// dbpedia.org/resource/Barack_Obama > ↩
<http :// www.w3.org /2002/07/ owl#sameAs > ↩
<http :// rdf.freebase.com/rdf/en.barack_obama > .

Listing 4.1: Example of a good equivalence link

As Halpin et al. show in a study [22], the problem with owl:sameAs is that people tend

to use it in different ways with different intentions. In [22], the authors differentiate

between four separate usage styles, ranging from expressing loose relatedness to strict

equivalence. Despite the different intentions, people tend to incorrectly use owl:sameAs

habitually, according to the study. Inference is thus problematic, if not impossible,

when the intention of the link creator of the particular owl:sameAs link is unknown.

4.4.2 Linked Data Principles Applied

We recall the Linked Data principles, that were outlined in subsection 2.5.1. In order to

represent extracted named entities from social network microposts in an unambiguous

way, we apply the Linked Data principles by representing named entities in microposts
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with HTTP URIs that can be dereferenced for retrieving the corresponding information.

This is taken care of by the third-party NLP APIs that we use for our experiments,

namely OpenCalais, Zemanta, DBpedia Spotlight, and AlchemyAPI. These APIs take

a textual document as an input, perform named entity extraction and disambiguation

on it, and finally link the detected named entities back into the LOD cloud. We use

these APIs in parallel and by combining their results aim for the emergence effect1 in

the sense of Aristotle: “the totality is not, as it were, a mere heap, but the whole is

something besides the parts.”

We recall the wrapper API described in subsection 4.1.4 that calls third-party NLP

Web services in order to return a combined result of consolidated entities. All NLP

Web services return lists of entities with their respective types and/or subtypes, names,

relevance, and URIs that interlink the entity in question with the LOD cloud. The

problem is that each service has implemented its own typing system. Providing map-

pings for all of them is a time-consuming, cumbersome task. While Rizzo et al. have

defined mappings in the context of the NERD framework [38, 39], we decided for a dif-

ferent approach. As all services provide links into the LOD cloud, the desired typing

information can be retrieved from there in a true Linked Data manner if need be.

We illustrate the approach with an example: “Google Inc. is an American multi-

national corporation which provides Internet-related products and services, including

Internet search, cloud computing, software and advertising technologies.” If we use the

just mentioned text as an input for the NLP wrapper API, among others, we expect

to retrieve the named entity for the company Google, represented by, for example, the

URL http://dbpedia.org/resource/Google as an output.

Listing 4.2 shows the output of just Zemanta in isolation, Listing 4.3 shows the

output of just AlchemyAPI in isolation, and finally, Listing 4.4 shows the consolidated

output of the two named entity recognition APIs together. In this example, the entity

names differ (“Google Inc.” vs. “Google”). However, going down the list of URLs

for each entity from the two services, the consolidation algorithm matches via the URL

http://dbpedia.org/resource/Google. Given the different two entity names (“Google

Inc.” vs. “Google”), the consolidated name is then an array of all detected names. Each

service already includes a relevance score ranging from 0 (irrelevant) to 1 (relevant). The

consolidated relevance is calculated via the averaged relevance scores of both services.
1Aristotle, Metaphysics, Book H 1045a 8–10
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While there may be different definitions of relevance applied by each service and given

that these differences are not disclosed, the arithmetic mean is a pragmatic way to deal

with the situation, especially as all services use relevance scores between 0 and 1. We

maintain provenance metadata for each URI on the JSON representation, as can be

seen in Listing 4.4. Finally, we repeat the process for all other services.

[
{

"name": "Google Inc.",
"relevance ": 0.972007 ,
"uris": [

{
"uri": "http ://rdf.freebase.com/ns/en/google",
"source ": "zemanta"

},
{

"uri": "http :// dbpedia.org/resource/Google",
"source ": "zemanta"

}
],
"source ": "zemanta"

}
]

Listing 4.2: Output of Zemanta in isolation

[
{

"name": "Google",
"relevance ": 0.535781 ,
"uris": [

{
"uri": "http :// dbpedia.org/resource/Google",
"source ": "alchemyapi"

},
{

"uri": "http ://rdf.freebase.com/ns/guid .9202 a8c04000641f800000000042acea",
"source ": "alchemyapi"

}
],
"source ": "alchemyapi"

}
]

Listing 4.3: Output of AlchemyAPI in isolation
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[
{

"name": [
"Google",
"Google Inc."

],
"relevance ": 0.753894 ,
"uris": [

{
"uri": "http ://rdf.freebase.com/ns/en/google",
"source ": "zemanta"

},
{

"uri": "http :// dbpedia.org/resource/Google",
"source ": "zemanta"

},
{

"uri": "http ://rdf.freebase.com/ns/guid .9202 a8c04000641f800000000042acea",
"source ": "alchemyapi"

}
],
"source ": "zemanta ,alchemyapi"

}
]

Listing 4.4: Consolidated output of two named entity recognition APIs, namely Zemanta
and AlchemyAPI

4.5 Tracking Provenance With Multiple Sources

As outlined before, we use several APIs in combination in order to add meaning to social

network microposts. Extracted named entities from a micropost can in consequence be

the result of up to four agreeing (or disagreeing) API calls.

4.5.1 The Need for Providing Provenance Metadata

Hartig et al. mention in [24] reasons that justify the need for provenance metadata.

Among these reasons are linked dataset replication and distribution on the Web with

not necessarily identical namespaces: based on the same source data, different publishers

can create diverging copies of a linked dataset with different levels of interconnectedness.

We add to this the automated conversion of unstructured data to Linked Data with

heuristics, where extracted entities—albeit consolidated and backed by different data
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sources—might still be wrong. Especially with our wrapper approach, it is desirable to

be able to track back to the concrete source where a certain piece of information came

from. This enables (i) to correct the error at the root of our API (fighting the cause)

or (ii) to correct the concrete error in an RDF annotation (fighting the symptom), and

(iii) most importantly, to judge the trustworthiness and quality of a dataset.

In order to track the contributions of the various sources, we have opted to use the

Provenance Vocabulary [23] by Hartig and Zhao with the prefix prv, the HTTP Vocab-

ulary in RDF [28] by Koch et al. with prefix http, and a vocabulary for representing

content in RDF [29] by the same authors with prefix cnt. We have chosen the HTTP

Vocabulary in RDF for the fact that it is a W3C Working Draft developed by the Eval-

uation and Repair Tools Working Group (ERT WG), which is part of the World Wide

Web Consortium (W3C) Web Accessibility Initiative (WAI). The Provenance Vocabu-

lary was chosen because of its existing deployment in several projects, such as Pubby,1

Triplify,2 and D2R Server.3

While our wrapper API supports two output formats (application/json and

text/turtle), we have added provenance information exclusively to the text/turtle

variant. In order to represent the extracted named entities in a micropost, we use the

Common Tag vocabulary [43]. A micropost is ctag:tagged with a ctag:Tag, which

consists of a textual ctag:label and a pointer to a resource that specifies what the

label ctag:means. The Common Tag vocabulary is well-established and developed by

both industry and academic partners. In order to make statements about a bundle of

triples, we group them in a named graph. We use the TriG [3] syntax, an example can

be seen in Listing 4.5.

:G = {
<https ://www.facebook.com/Tomayac/posts /10150175940867286 > ctag:tagged [

a~ctag:Tag ;
ctag:label "BibTeX" ;
ctag:means <http :// dbpedia.org/resource/BibTeX >

] .
} .

Listing 4.5: Example named graph in TriG syntax

1http://wifo5-03.informatik.uni-mannheim.de/pubby/, accessed July 15, 2013
2http://triplify.org/Overview, accessed July 15, 2013
3http://wifo5-03.informatik.uni-mannheim.de/bizer/d2r-server/, accessed July 15, 2013
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4.5 Tracking Provenance With Multiple Sources

4.5.2 The Provenance Vocabulary

In this section, we outline the required steps in order to make statements about the

provenance of a group of triples contained in a named graph :G that was generated using

several HTTP GET requests to third-party APIs. We use the Provenance Vocabulary [23]

with prefix prv, the HTTP Vocabulary in RDF [28] with prefix http, the Identity of

Resources on the Web ontology1 (IRW) with the prefix irw, and the Representing

Content in RDF vocabulary [29] with prefix cnt.

As a first step, we state that :G is both a prv:DataItem and an rdfg:Graph.

:G is prv:createdBy the process of a prv:DataCreation. This prv:DataCreation

is prv:performedBy a prv:NonHumanActor, a prvTypes:DataProvidingService to be

precise (simplified as http://tomayac.no.de/entity-extraction/combined in List-

ing 4.6). This service is prv:operatedBy a human, in the concrete case ourselves,

(http://tomayac.com/thomas_steiner.rdf#me). Time is important for provenance,

so the prv:performedAt date of the prv:DataCreation needs to be saved. During the

process of the prv:DataCreation there are prv:usedData, which are prv:retrievedBy

a prv:DataAcess that is prv:performedAt a certain time, and prv:performedBy a non-

human actor (our API) that is prv:operatedBy the same human as before. For the

prv:DataAccess (there is one for each involved API), we prv:accessedService from

a prv:DataProvidingService of which we prv:accessedResource that is available at

a certain irw:WebResource. Therefore, we prvTypes:exchangedHTTPMessage which is

an http:Request using http:httpVersion “1.1” and the http:methodName “GET”.

4.5.3 Provenance RDF Overview

This section provides a shortened overview of the provenance RDF serialized in Turtle

syntax for a micropost that was automatically tagged with the label “BibTeX” and the

assigned meaning http://dbpedia.org/resource/BibTeX. The named graph :G in the

first part of Listing 4.6 contains the absolute data (the fact that the micropost with

the URL https://www.facebook.com/Tomayac/posts/10150177486072286 is tagged

with the label “BibTeX”, which is represented by the HTTP URL http://dbpedia.

org/resource/BibTeX). The second part with metadata about :G says that these facts

were generated via two calls, one using the HTTP method GET, and the other POST. It
1http://www.ontologydesignpatterns.org/ont/web/irw.owl#, accessed July 15, 2013
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is to be noted that statements such as in Listing 4.6 refer to the triple objects as an

identifier for a Web resource (where the Web resource is a representation of the result

of the API call at the time where it was prv:performedAt). As provenance metadata

always refers to the time context in which a certain statement was made, it is essentially

unimportant what representation the resource returns in future.

:G = {
<https ://www.facebook.com/Tomayac/posts /10150177486072286 > ctag:tagged [

a ctag:Tag ;
ctag:label "BibTeX" ;
ctag:means <http :// dbpedia.org/resource/BibTeX > ;

] .
} .

:G
a prv:DataItem ;
a rdfg:Graph ;
prv:createdBy [

a prv:DataCreation ;
prv:performedAt "2011 -05 -20 T15 :06:30Z"^^xsd:dateTime ;
prv:performedBy <http :// tomayac.no.de/entity -extraction/combined > ;
prv:usedData [

prv:retrievedBy [
a prv:DataAcess ;
prv:performedAt "2011 -05 -20 T15 :06:30Z"^^xsd:dateTime ;
prv:performedBy <http :// tomayac.no.de/entity -extraction/combined > ;
prv:accessedService <http :// spotlight.dbpedia.org/rest/annotate > ;
prv:accessedResource

<http :// spotlight.dbpedia.org/rest/annotate?text=Tom %20 has %20... ↩
blues&confidence =0.4& support =20> ;

prvTypes:exchangedHTTPMessage [
a http:Request ;
http:httpVersion "1.1" ;
http:methodName "GET" ;
http:mthd <http ://www.w3.org /2008/ http -methods#GET > ;

] ;
] ;

] ;
prv:usedData [

prv:retrievedBy [
a prv:DataAcess ;
prv:performedAt "2011 -05 -20 T15 :06:41Z"^^xsd:dateTime ;
prv:performedBy <http :// tomayac.no.de/entity -extraction/combined > ;
prv:accessedService <http ://api.zemanta.com/services/rest /0.0/> ;
prv:accessedResource <http ://api.zemanta.com/services/rest /0.0/ > ;
prvTypes:exchangedHTTPMessage [

a http:Request ;
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http:httpVersion "1.1" ;
http:methodName "POST" ;
http:mthd <http ://www.w3.org /2008/ http -methods#POST > ;
http:headers (

[
http:fieldName "Content -Type" ;
http:fieldValue "application/x-www -form -urlencoded" ;

]
)
http:body [

a cnt:ContentAsText ;
cnt:characterEncoding "UTF -8" ;
cnt:chars """ method=zemanta.suggest_markup ↩
&api_key=Your_API_Key ↩
&text=Tom %20 has %20... blues ↩
&format=json ↩
&return_rdf_links =1""" ;

] ;
] ;

] ;
] ;

] .

Listing 4.6: Shortened overview of the provenance RDF in Turtle syntax for an automat-
ically annotated micropost

4.6 Conclusions

In this chapter, we have shown how the Provenance Vocabulary can be used to keep

track of the original third-party Web service calls that led to the consolidated results.

These references to the original calls are to be understood as the identification of Web

resources, i.e., the results of a request. We have shown how a concrete multi-source Web

service can automatically maintain provenance metadata both for entirely machine-

generated content, but also for partly (or completely) human-generated content. Being

able to track back the origin of a triple is of crucial importance, especially given the

network effect which is one of the Linked Data benefits. The generated triples are very

verbose, and in consequence stating even relatively simple facts like that a combined

result is based on two separate sub-results takes up a lot of space. The verbosity

is mainly due to the used vocabularies, namely the Provenance Vocabulary and the

HTTP Vocabulary in RDF, which on the one hand is good as it encourages vocabulary

reuse, but on the other hand comes at the abovementioned expenses.
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Future work will focus on exploring ways to drastically simplify the annotations

in order to obtain less verbose provenance descriptions. While it is always easier to

propose a specialized vocabulary that does one task well, broader reuse and acceptance

can be gained by reusing existing vocabularies. Our ultimate goal is to make provenance

annotations lightweight enough that their undoubted benefits outweigh the additional

data payload overhead.

Chapter Notes

This chapter is partly based on the following publications.

• Thomas Steiner, Ruben Verborgh, Joaquim Gabarró Vallés, and Rik Van de

Walle. “Adding Meaning to Facebook Microposts via a Mash-up API and Track-

ing its Data Provenance”. In: Next Generation Web Services Practices (NWeSP),

2011 7th International Conference on. Oct. 2011, pp. 342–345. url: http:

//research.google.com/pubs/archive/37426.pdf.

• Thomas Steiner, Ruben Verborgh, Joaquim Gabarró Vallés, and Rik Van de

Walle. “Adding Meaning to Social Network Microposts via Multiple Named Entity

Disambiguation APIs and Tracking Their Data Provenance”. In: International

Journal of Computer Information Systems and Industrial Management 5 (2013),

pp. 69–78. url: http://www.mirlabs.org/ijcisim/regular_papers_2013/

Paper82.pdf.

• Seth van Hooland, Max De Wilde, Ruben Verborgh, Thomas Steiner, and Rik Van

de Walle. “Named-Entity Recognition: A Gateway Drug for Cultural Heritage

Collections to the Linked Data Cloud?” In: Literary and Linguistic Computing

(2013). url: http://freeyourmetadata.org/publications/named-entity-
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5

Event Detection Based On
Wikipedia Edit Spikes

5.1 Introduction

We are surrounded by events, most of which we do not care much about. In this chapter,

we will show an approach towards breaking news event detection of relevant global or

local news events that is based on concurrent Wikipedia edit spikes. Yang, Pierce, and

Carbonell define [16] event detection as follows.

“Event detection is essentially a discovery problem, i.e., mining the data

stream for new patterns in document content.”

They differentiate two types of event detection techniques.

“Retrospective event detection is the task of grouping stories in a corpus

where each group uniquely identifies an event. On-line event detection is the

problem of labeling each document as it arrives in sequence with a New or

Old flag, indicating whether or not the current document is the first story

discussing a novel event at that time.”

Allan, Papka, and Lavrenko use the following definitions [1].

“The goal of those tasks [new event detection and event tracking] is to

monitor a stream of broadcast news stories so as to determine the relation-

ships between the stories based on the real-world events that they describe.
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New event detection requires identifying those news stories that discuss an

event that has not already been reported in earlier stories. Event tracking

means starting from a few sample stories and finding all subsequent stories

that discuss the same event.”

In our research, we focus on online new event detection based on Wikipedia edit

spikes. We have developed an application called Wikipedia Live Monitor that moni-

tors article edits on different language versions of Wikipedia—as they happen in re-

altime. Wikipedia articles in different languages are highly interlinked. For example,

the English article en:2013_Russian_meteor_event on the topic of the February 15

meteoroid that exploded over the region of Chelyabinsk Oblast, Russia, is interlinked

with ru:Падение_метеорита_на_Урале_в_2013_году, the Russian article on the same

topic. As we monitor multiple language versions of Wikipedia in parallel, we can ex-

ploit this fact to detect concurrent edit spikes of Wikipedia articles covering the same

topics both in only one and in different languages. We treat such concurrent edit

spikes as signals for potential breaking news events, whose plausibility we then check

with full-text cross-language searches on multiple social networks. Unlike the reverse

approach of monitoring social networks first and potentially checking plausibility on

Wikipedia second, the approach proposed in this chapter has the advantage of being

less prone to false-positive alerts, while being equally sensitive to true-positive events,

however, at only a fraction of the processing cost. A live demo of our application is

available online at the URL http://wikipedia-irc.herokuapp.com/ (accessed July

15, 2013), the source code is available under the terms of the Apache 2.0 license at

https://github.com/tomayac/wikipedia-irc (accessed July 15, 2013).

5.1.1 Motivation

Shortly after the celebrity news website TMZ broke the premature news that the King of

Pop Michael Jackson (MJ) had died,1 the Internet slowed down.2 Initially, Wikipedia’s

website administrators started noting abnormal load spikes [14]. Shortly afterwards,

caching issues caused by a so-called edit war [2] led the site to go down: Wikipedia

editors worldwide made concurrent edits to the Michael Jackson Wikipedia article,
1http://www.tmz.com/2009/06/25/michael-jackson-dies-death-dead-cardiac-arrest/,

accessed July 15, 2013
2http://news.bbc.co.uk/2/hi/technology/8120324.stm, accessed July 15, 2013
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doing and undoing changes regarding the tense of the article, death date, and the

circumstances of the (at the time) officially still unconfirmed fatality. While Wikipedia

engineers have worked hard to ensure that future load spikes do not take the site down

again, there is without dispute a lot of research potential in analyzing editing activity.

5.1.2 Hypotheses and Research Questions

In this chapter, we present an application that monitors article edits of different language

versions of Wikipedia in realtime in order to detect concurrent edit spikes that may be

the source of breaking news events. When a concurrent edit spike has been detected, we

use cross-language full-text searches on social networks as plausibility checks to filter

out false-positive alerts. We are led by the following hypotheses.

(H1) Breaking news events spread over social networks, independent from where the

news broke initially.

(H2) If a breaking news event is important, it will be reflected on at least one language

edition of Wikipedia.

(H3) The time between when the news broke first and the news being reflected on

Wikipedia is considerably short.

These hypotheses lead us to the research questions below.

(Q1) Can concurrent Wikipedia edit spikes combined with social network plausibility

checks capture major breaking news events, and if so, with what delay?

(Q2) Is the approach Wikipedia first, social networks second at least as powerful as the

reverse approach?

In this chapter, we do not answer all research questions yet, however, lay the foun-

dation stone for future research in this area by introducing Wikipedia Live Monitor.

5.2 Related Work

We refer to an event as breaking news, if the event is of significant importance to a con-

siderable amount of the population. Petrović et al. define [8] the goal of new event

detection (or first story detection) as “given a sequence of stories, to identify the first
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story to discuss a particular event.” They define an event as “something that happens at

some specific time and place.” Classic streaming analysis of social network microposts

so far has been mainly focused on Twitter, a microblogging social network that provides

access to a sampled stream of generated microposts by means of its Streaming API.1

Petrović et al. explain [8]: “in the streaming model of computation, items arrive contin-

uously in a chronological order, and have to be processed in bounded space and time.” In

the referenced paper, the authors report on a system for streaming new event detection

applied to Twitter based on locality sensitive hashing. Hu et al. provide an analysis of

how news break and spread on Twitter [5]. The task of linking news events with social

media is covered by Tsagkias et al. in [13]. With our work, we stand on the shoulders2

of Osborne et al. [7], who use Wikipedia page view statistics3 as a means to filter spu-

rious events stemming from event detection over social network streams. Our approach

reverses theirs, however, instead of the only hourly updated page view statistics, we use

realtime change notifications, as will be explained in subsection 5.3.1. Wikipedia Live

Monitor is partly based on an application called Wikistream, developed by Ed Summers

et al., which was described in [11]. In [3], Georgescu et al. conduct an in-depth anal-

ysis of event-related updates in Wikipedia by examining different indicators for events

including language, meta annotations, and update bursts. They then study how these

indicators can be employed for automatically detecting event-related updates. In [12],

ten Thij et al. propose a model for predicting the popularity of promoted content, in-

spired by the analysis of the page-view dynamics on Wikipedia. Mestyán, Yasseri, and

Kertész show in [6] that box office success of movies can be predicted well in advance by

measuring and analyzing the activity level of editors and viewers of corresponding ar-

ticles about the movies in question on Wikipedia by applying a minimalistic predictive

model for the financial success based on collective activity data of online users.

1https://dev.twitter.com/docs/api/1.1/get/statuses/sample, accessed July 15, 2013
2Hence the title of the publication related to this chapter.
3http://dumps.wikimedia.org/other/pagecounts-raw/, accessed July 15, 2013
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Figure 5.1: Screenshot with an article cluster of four concurrently edited articles (ru, en,
pt, ca). All breaking news criteria are fulfilled, the cluster is a breaking news candidate.
Cross-language social network search results for en and pt can be seen.

5.3 Implementation Details

5.3.1 Wikipedia Recent Changes

As described earlier, our application monitors concurrent edit spikes on different lan-

guage versions of Wikipedia. In the current implementation, we monitor all 285 different

Wikipedias, 8 with ≥ 1,000,000 and 38 with ≥ 100,000 articles1 including a long-tail of

smaller Wikipedias. Changes to any single one article are communicated by a chat

bot over Wikipedia’s own Internet Relay Chat (IRC) server (irc.wikimedia.org),2 so

that parties interested in the data can listen to the changes as they happen. For each

language version, there is a specific chat room following the pattern "#" + language +

".wikipedia". For example, changes to Russian Wikipedia articles will be streamed to

the room #ru.wikipedia. A special case is the room #wikidata.wikipedia for Wiki-

data [15], a platform for the collaborative acquisition and maintenance of structured

data to be used by Wikimedia projects like Wikipedia. A sample chat message with the

components separated by the asterisk character ‘*’ announcing a change can be seen in

the following. "[[Juniata River]] http://en.wikipedia.org/w/index.php?diff=-

516269072&oldid=514-659029 * Johanna-Hypatia * (+67) Category:Place names

of Native American origin in Pennsylvania". The message components are (i) ar-

ticle name, (ii) revision URL, (iii) Wikipedia editor handle, and (iv) change size and

change description.

1http://meta.wikimedia.org/wiki/List_of_Wikipedias, accessed July 15, 2013
2http://meta.wikimedia.org/wiki/IRC/Channels#Raw_feeds, accessed July 15, 2013
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5.3.2 Article Clusters

We cluster edits of articles about the same topic, but written in different languages, in

article clusters. The example of the English en:2013_Russian_meteor_event and the

corresponding Russian article ru:Падение_метеорита_на_Урале_в_2013_году that are

both in the same cluster illustrate this. We use the Wikipedia API to retrieve language

links for a given article. The URL pattern for the API is as follows. http://$LANGUAGE.-

wikipedia.org/w/api.php?action=query&prop=langlinks&titles=$ARTICLE&form-

at=json. We work with the JSON representation.

5.3.3 Comparing Article Revisions

The Wikipedia API provides means to retrieve the actual changes that were made dur-

ing an edit including additions, deletions, and modifications in a diff-like manner. The

URL pattern is as follows. http://$LANGUAGE.wikipedia.org/w/api.php?action=co-

mpare&torev=$TO&fromrev=$FROM&format=json. This allows us to classify edits in cat-

egories like, e.g., negligible trivial edits (punctuation correction) and major important

edits (new paragraph for an article), which helps us to disregard seemingly concurrent

edits in order to avoid false-positive alerts.

5.3.4 Breaking News Criteria

Our application Wikipedia Live Monitor puts detected article clusters in a monitoring

loop in which they remain until their time-to-live (240 seconds) is over. In order for an

article cluster in the monitoring loop to be identified as breaking news candidate, the

following breaking news criteria have to be fulfilled.

≥ 5 Occurrences: An article cluster must have occurred in at least 5 edits.

≤ 60 Seconds Between Edits: An article cluster may have at maximum 60 seconds

in between edits.

≥ 2 Concurrent Editors: An article cluster must have been edited by at least 2 con-

current editors.

≤ 240 Seconds Since Last Edit: An article cluster’s last edit may not be longer ago

than 240 seconds.
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The exact parameters of the breaking news criteria above were determined empir-

ically by analyzing Wikipedia edits over several hours and repeatedly adjusting the

settings until major news events happening at the same time were detected. The re-

sulting dataset split into three chunks has been made publicly available.1

5.3.5 Social Network Plausibility Checks

When a breaking news candidate has been identified, we use cross-language full-text so-

cial network searches on the social networks Twitter, Facebook, and Google+ as a plau-

sibility check. As the article titles of all language versions of the particular article’s

cluster are know, we use these very article titles as search queries for cross-language

searches, as can be seen in Figure 5.1. This approach greatly improves the recall of the

social network search, however, requires either machine translation or an at least basic

understanding of the languages being searched in. Currently the plausibility checking

step is not yet fully automated, as the search results are for the time being meant to

be consumed by human evaluators. Driven by (H1), we assume breaking news events

are being discussed on social networks. We will show arguments for this assumption in

section 5.4. For now, we expect social networks to be a short period ahead of Wikipedia.

In consequence, if the human rater can find positive evidence for a connection between

social network activities and Wikipedia edit actions, the breaking news candidate is

confirmed to indeed represent breaking news.

5.3.6 Application Pseudocode

The Wikipedia Live Monitor application has been implemented in Node.js, a server side

JavaScript software system designed for writing scalable Internet applications. Pro-

grams are created using event-driven, asynchronous input/output operations to mini-

mize overhead and maximize scalability. Listing 5.1 shows the pseudocode of the two

main event loops of the Wikipedia Live Monitor application. The actual implementa-

tion is based on Martyn Smith’s Node.js IRC library2 and the WebSockets API and

protocol [4], wrapped by Guillermo Rauch’s library Socket.IO.3

1https://www.dropbox.com/sh/2qsg1zhb8p35fxf/Dghn55y0kh, accessed July 15, 2013
2https://github.com/martynsmith/node-irc, accessed July 15, 2013
3http://socket.io/, accessed July 15, 2013
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Input: irc, listening on Wikipedia recent changes
Output: breakingNewsCandidates, breaking news candidates

monitoringLoop = articleClusters = breakingNewsCandidates = {}

# Event loop 1:
# When a new message arrives
irc.on.message do (article)

langRefs = getLanguageReferences(article)
articleRevs = getArticleRevisions(article)
cluster = clusterArticles(article , langRefs)

# Create new cluster for previously unseen article
if cluster not in monitoringLoop

monitoringLoop.push(cluster)
articleClusters.push(cluster)
updateStatistics(cluster)
emit.newCluster(cluster , articleRevs)

# Update existing cluster, as the article was seen before
else

updateStatistics(cluster)
emit.existingCluster(cluster , articleRevs)
# Check breaking news criteria
if cluster.occurrences >= 5

if cluster.secsBetweenEdits <= 60
if cluster.numEditors >= 2

if cluster.secsSinceLastEdit <= 240
socialNetworks.search(langRefs)
breakingNewsCandidates.push(cluster)
emit.breakingNewsCandidate(cluster)

end if
end if

end if
end if

end if
return breakingNewsCandidates

end do

# Event loop 2:
# Remove too old clusters regularly
timeout.every .240 seconds do

for each cluster in monitoringLoop
if cluster.secsSinceLastEdit >= 240

monitoringLoop.remove(cluster)
articleClusters.remove(cluster)

end if
end for

end do

Listing 5.1: Two main event loops of the application
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5.4 Evaluation

In subsection 5.1.2, we have set up three hypotheses. (H1) has been proven by Hu et al.

in [5] for Twitter. We argue that it can be generalized to other social networks and invite

the reader to have a look at our dataset, where the lively discussions about breaking news

candidates on the considered social networks Twitter, Facebook, and Google+ support

the argument. It is hard to prove (H2), as the concept of important breaking news is

vague and dependent on one’s personal background, however, all evidence suggests that

(H2) indeed holds true, as, to the best of our knowledge and given our background, what

the authors consider important breaking news is represented on at least one language

version of Wikipedia. (H3) has been examined by Osborne et al. in [7]. In the paper,

they suggest that Wikipedia lags about two hours behind Twitter. It has to be noted

that they look at hourly accumulated page (article) view logs, where we look at realtime

article edit log streams. Our experiments suggest that the lag time of two hours proposed

by Osborne et al. may be too conservative. A conservative estimation at this stage is

that the lag time for breaking news is more in the range of 30 minutes, and for global

breaking news like celebrity deaths in the range of five minutes and less, albeit the edits

by our experience will be small and iterative (e.g., “X is a” to “X was a,” or the addition

of a death date), followed by more consistent thorough edits.

The (at time of writing) recent breaking news event of the resignation of Pope

Benedict XVI helps respond to (Q1). The three first edit times of the Pope’s English

Wikipedia article1 after the news broke on February 11, 2013 are as follows (all times in

UTC): 10:58, 10:59, 11:02. The edit times of the French article2 are as follows: 11:00,

11:00, 11:01. This implies that by looking at only two language versions of Wikipedia

(the actual number of monitored versions is 285) of the Pope article, the system would

have reported the news at 11:01. The official Twitter account of Reuters announced3

the news at 10:59. Vatican Radio’s announcement4 was made at 10:57:47.

Not all breaking news events have the same global impact as the Pope’s resignation,

however, the proposed system was shown to work very reliably also for smaller events
1http://en.wikipedia.org/w/index.php?title=Pope_Benedict_XVI&action=history, accessed

July 15, 2013
2http://fr.wikipedia.org/w/index.php?title=Beno%C3%AEt_XVI&action=history, accessed

July 15, 2013
3https://twitter.com/Reuters/status/300922108811284480, accessed July 15, 2013
4http://de.radiovaticana.va/Articolo.asp?c=663810, accessed July 15, 2013
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of more regional impact, for example, when Indian singer Varsha Bhosle committed

suicide1 on October 8, 2012. A systematic evaluation of (Q1) compulsorily can only be

done by random samples, which has turned out positive results so far. Again, we invite

the reader to explore our dataset and to conduct own experiments. A systematic eval-

uation of (Q2) requires a commonly shared dataset, which we have provided, however,

at this point in time, we do not have access to the system of Osborne et al.

Regarding Wikipedia Live Monitor ’s scalability, we already scale the monitoring

system up to currently all 285 Wikipedias on a standard consumer laptop (mid-2010

MacBook Pro, 2.66 GHz Intel Core 2, 8 GB RAM), which proves the efficiency of the

Node.js architecture for this kind of event-driven applications. In practice, the majority

of the smaller Wikipedias being very rarely updated, we note that limiting ourselves to

the Wikipedias with ≥ 100,000 articles results in no remarkable loss of recall.

5.5 Future Work

Future work will mainly address two areas. First, the automated categorization of edits

on Wikipedia needs to be more fine-grained. In the context of breaking news detection,

not all edits are equally useful. An image being added to an article is an example of

an edit that usually will not be important. In contrast, the category “Living people”

being removed from an article is a strong indicator of breaking (sad) news. Second, the

connection between social network search and Wikipedia edits needs to be made clearer.

In an initial step, the concrete changes to an article, as detailed in subsection 5.3.3, can

be compared with social network microposts using a cosine similarity measure. More

advanced steps can exploit the potential knowledge from Wikipedia edits (e.g., category

“Living people” removed implies a fatality).

5.6 Conclusions

In this chapter, we have shown an application called Wikipedia Live Monitor and re-

leased its source code under the Apache 2.0 license. This application monitors article

edits on 285 different language versions of Wikipedia. It detects breaking news can-

didates according to well-defined breaking news criteria, whose exact parameters were
1http://en.wikipedia.org/wiki/Varsha_Bhosle, accessed July 15, 2013
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determined empirically and the corresponding dataset made available publicly. We

have shown how cross-language full-text social network searches are used as plausi-

bility checks to avoid false-positive alerts. Concluding, our approach has revealed very

promising results and actionable next steps in future work for improving the application.

Chapter Notes

This chapter is partly based on the following publications.

• Thomas Steiner, Seth van Hooland, and Ed Summers. “MJ no more: using concur-

rent wikipedia edit spikes with social network plausibility checks for breaking news

detection”. In: Proceedings of the 22nd international conference on World Wide

Web companion. WWW ’13 Companion. Rio de Janeiro, Brazil: International

World Wide Web Conferences Steering Committee, 2013, pp. 791–794. isbn: 978-

1-4503-2038-2. url: http://dl.acm.org/citation.cfm?id=2487788.2488049.

• Thomas Steiner, Ruben Verborgh, and Michael Hausenblas. “Crowdsourcing

Event Detection in YouTube Videos”. In: Proceedings of the Workshop on Detec-

tion, Representation, and Exploitation of Events in the Semantic Web (DeRiVE

2011), Workshop in conjunction with the 10th International Semantic Web Confer-

ence 2011 (ISWC 2011), Bonn, Germany, October 23, 2011. Ed. by Marieke van

Erp, Willem Robert van Hage, Laura Hollink, Anthony Jameson, and Raphaël

Troncy. Vol. 779. CEUR Workshop Proceedings ISSN 1613-0073. Oct. 2011,

pp. 58–67. url: http://ceur-ws.org/Vol-779/derive2011_submission_8.

pdf.

95

http://dl.acm.org/citation.cfm?id=2487788.2488049
http://ceur-ws.org/Vol-779/derive2011_submission_8.pdf
http://ceur-ws.org/Vol-779/derive2011_submission_8.pdf


5. EVENT DETECTION BASED ON WIKIPEDIA EDIT SPIKES

References

[1] James Allan, Ron Papka, and Victor Lavrenko. “On-line new event detection and
tracking”. In: Proceedings of the 21st annual international ACM SIGIR conference
on Research and development in information retrieval. SIGIR ’98. Melbourne,
Australia: ACM, 1998, pp. 37–45. isbn: 1-58113-015-5.

[2] Claudine Beaumont. Michael Jackson’s death sparks Wikipedia editing war. http:
//bit.ly/Michael-Jacksons-death-sparks-Wikipedia-editing-war, ac-
cessed July 15, 2013. June 2009.

[3] Mihai Georgescu, Nattiya Kanhabua, Daniel Krause, Wolfgang Nejdl, and Ste-
fan Siersdorfer. “Extracting Event-related Information from Article Updates in
Wikipedia”. In: Proceedings of the 35th European conference on Advances in In-
formation Retrieval. ECIR’13. Moscow, Russia: Springer-Verlag, 2013, pp. 254–
266. isbn: 978-3-642-36972-8.

[4] Ian Hickson. The WebSocket API. Candidate Recommendation. W3C, Sept. 2012.

[5] Mengdie Hu, Shixia Liu, Furu Wei, Yingcai Wu, John Stasko, and Kwan-Liu Ma.
“Breaking News on Twitter”. In: Proceedings of the 2012 ACM Annual Conference
on Human Factors in Computing Systems. CHI ’12. Austin, Texas, USA: ACM,
2012, pp. 2751–2754. isbn: 978-1-4503-1015-4.

[6] M. Mestyán, T. Yasseri, and J. Kertész. “Early Prediction of Movie Box Office
Success based on Wikipedia Activity Big Data”. In: Computing Research Reposi-
tory abs/1211.0970 (Nov. 2012).

[7] Miles Osborne, Saša Petrović, Richard McCreadie, Craig Macdonald, and Iadh
Ounis. “Bieber no more: First Story Detection using Twitter and Wikipedia”. In:
Proceedings of the SIGIR Workshop on Time-aware Information Access. 2012.

[8] Saša Petrović, Miles Osborne, and Victor Lavrenko. “Streaming First Story De-
tection with Application to Twitter”. In: Human Language Technologies: The 2010
Annual Conference of the North American Chapter of the Association for Com-
putational Linguistics. HLT ’10. Los Angeles, California: Association for Compu-
tational Linguistics, 2010, pp. 181–189. isbn: 1-932432-65-5.

96

http://bit.ly/Michael-Jacksons-death-sparks-Wikipedia-editing-war
http://bit.ly/Michael-Jacksons-death-sparks-Wikipedia-editing-war


REFERENCES

[9] Thomas Steiner, Seth van Hooland, and Ed Summers. “MJ no more: using concur-
rent wikipedia edit spikes with social network plausibility checks for breaking news
detection”. In: Proceedings of the 22nd international conference on World Wide
Web companion. WWW ’13 Companion. Rio de Janeiro, Brazil: International
World Wide Web Conferences Steering Committee, 2013, pp. 791–794. isbn: 978-
1-4503-2038-2. url: http://dl.acm.org/citation.cfm?id=2487788.2488049.

[10] Thomas Steiner, Ruben Verborgh, and Michael Hausenblas. “Crowdsourcing Event
Detection in YouTube Videos”. In: Proceedings of the Workshop on Detection,
Representation, and Exploitation of Events in the Semantic Web (DeRiVE 2011),
Workshop in conjunction with the 10th International Semantic Web Conference
2011 (ISWC 2011), Bonn, Germany, October 23, 2011. Ed. by Marieke van Erp,
Willem Robert van Hage, Laura Hollink, Anthony Jameson, and Raphaël Troncy.
Vol. 779. CEUR Workshop Proceedings ISSN 1613-0073. Oct. 2011, pp. 58–67.
url: http://ceur-ws.org/Vol-779/derive2011_submission_8.pdf.

[11] Ed Summers. An Ode to Node. http://inkdroid.org/journal/2011/11/07/an-
ode-to-node/, accessed July 15, 2013. Nov. 2011.

[12] Marijn ten Thij, Yana Volkovich, David Laniado, and Andreas Kaltenbrunner.
“Modeling and predicting page-view dynamics on Wikipedia”. In: Computing Re-
search Repository abs/1212.5943 (2012).

[13] Manos Tsagkias, Maarten de Rijke, and Wouter Weerkamp. “Linking Online News
and Social Media”. In: Proceedings of the Fourth ACM International Conference
on Web Search and Data Mining. WSDM ’11. Hong Kong, China: ACM, 2011,
pp. 565–574. isbn: 978-1-4503-0493-1.

[14] Brion Vibber. Current events and traffic spikes. http://blog.wikimedia.org/
2009/06/25/current-events/, accessed July 15, 2013. June 2009.

[15] Denny Vrandečić. “Wikidata: A New Platform for Collaborative Data Collection”.
In: Proceedings of the 21st International Conference Companion on World Wide
Web. WWW ’12 Companion. Lyon, France: ACM, 2012, pp. 1063–1064. isbn:
978-1-4503-1230-1.

[16] Yiming Yang, Tom Pierce, and Jaime Carbonell. “A study of retrospective and
on-line event detection”. In: Proceedings of the 21st annual international ACM
SIGIR conference on Research and development in information retrieval. SIGIR
’98. Melbourne, Australia: ACM, 1998, pp. 28–36. isbn: 1-58113-015-5.

97

http://dl.acm.org/citation.cfm?id=2487788.2488049
http://ceur-ws.org/Vol-779/derive2011_submission_8.pdf
http://inkdroid.org/journal/2011/11/07/an-ode-to-node/
http://inkdroid.org/journal/2011/11/07/an-ode-to-node/
http://blog.wikimedia.org/2009/06/25/current-events/
http://blog.wikimedia.org/2009/06/25/current-events/




6

Media Item Extraction

6.1 Introduction

Before the rise of social networks, event coverage was mostly an affair of professional

news agencies. The widespread availability of mobile phones with higher resolution

cameras has transformed citizens into witnesses who are used to comment and share

media illustrating events on social networks. Some examples with global impact in-

clude the shootings in Utøya,1 which first appeared on Twitter, the capture and arrest

of Muammar Gaddafi,2 which first appeared on YouTube, or the emergency ditching

of a plane in the Hudson river,3 which first appeared on Twitpic. Some news commu-

nities4 have even specialized in aggregating and brokering such user-generated content.

Events, such as sports matches or concerts are largely illustrated by social media, albeit

distributed over many social networks.

In this chapter, we tackle the challenge of reconciling social media data that il-

lustrates known events, but that is spread over various social networks, all with the

objective of creating visual event summaries. We propose a social-network-agnostic ap-

proach for the extraction of photos and videos covering events. We want to emphasize

that in this chapter we do not put the focus on event detection (we have done that in

Chapter 5). The events we are dealing with in this chapter were known beforehand and

we use specific human-chosen search terms to find illustrating media.

1http://en.wikipedia.org/wiki/2011_Norway_attacks, accessed July 15, 2013
2http://en.wikipedia.org/wiki/Death_of_Muammar_Gaddafi, accessed July 15, 2013
3http://en.wikipedia.org/wiki/US_Airways_Flight_1549, accessed July 15, 2013
4http://www.citizenside.com/, accessed July 15, 2013
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We first recall the definitions previously made in section 3.1 and add formal defi-

nitions of the terms event, media item extraction, Application Programming Interface,

and Web scraping.

Social Network: A social network is an online service or media platform that focuses

on building and reflecting relationships among people who share common interests

and/or activities.

Media Item: A media item is defined as a photo1 or video file that is publicly shared

or published on at least one social network.

Micropost: A micropost is defined as a textual status message on a social network

that can optionally be accompanied by a media item.

Event: An event is defined as a phenomenon that has happened or that is scheduled

to happen. It is an observable occurrence grouping persons, places, times, and

activities while being often documented by people through different media [11].

Media Item Extraction: The process of leveraging search functionalities of social

networks to find references to media items, which allows for storing those media

items in binary form.

Application Programming Interface (API): An API is a programmatic specifica-

tion intended to be used as an interface by software components on client and

server to communicate with each other.

Web scraping The term Web scraping means the process of automatedly extracting

information from Web pages. Web scraping involves practical solutions based on

existing technologies that are often entirely ad hoc. Examples of such technologies

are regular expressions, Document Object Model (DOM) parsing [10], or CSS

selectors [7]. The difference between Web scraping and the related concept of

screen scraping is that screen scraping relies on the visual layout of a Web page,

while Web scraping relies on the textual and/or hierarchical structure.

1We choose the term photo over the term image as Facebook, Twitter, and Google+ use it.
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6.2 Related Work

Related work covers research that aims to collect, align, and organize media for trends or

events. Liu et al. combine semantic inferencing and visual analysis to automatically find

media to illustrate events [11]. They interlink large datasets of event metadata and me-

dia with the Linking Open Data Cloud [3, 6]. In [12], they show how visual summaries

of past events providing viewers with a more compelling feeling of the event’s atmo-

sphere can be created based on a method to automatically detect and identify events

from social media sharing websites. Approaches to alignment use visual, temporal,

and spacial similarity measures to map multiple photo streams of the same events [20].

Other ways to collect and order media from social networks use media-driven metadata

such as geospatial information [4]. Becker et al. show in [2] how to exploit the rich

context associated with social media content, including user-provided annotations and

automatically generated information. Using this rich context, they define similarity

metrics to enable online clustering of media to events. In [1], the same authors develop

recall-oriented query formulation strategies based on noisy event metadata from event

aggregation platforms.

6.3 Social Networks and Media Items

Most social networks offer a search functionality that allows for content to be retrieved

based on search terms, with or without more advanced search operators such as exclu-

sion, inclusion, phrase search, etc. Each social network has special constraints regarding

the supported search operators or filtering options.

Social networks are often perceived as walled gardens [15] due to the full control

of the network operator over content and media on the social network in question, of-

tentimes accessible exclusively by social network members. This network lock-in effect

was excellently illustrated by David Simonds in a cartoon that first appeared in the

English-language weekly news and international affairs publication The Economist, re-

produced in Figure 6.1. While some social networks (e.g., Twitter) have full read and

write access via specified APIs, other social networks (e.g., Google+) currently only

have read API access. In some cases, however, API access is limited, so that not all

desired pieces of information is exposed (e.g., view counts with Img.ly), which forces

people interested in that data to fall back to Web scraping. It is to be noted that if
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the directives in the robots.txt file are respected, Web scraping per se is not an illegal

practice, as only public information is being accessed, comparable to the level of access

that common Web search engines have. The Robot Exclusion Standard, also referred to

as robots.txt protocol, is a widely respected convention to prevent cooperating Web

crawlers and other Web robots from accessing all or part of a website that is otherwise

publicly viewable.

Figure 6.1: Social networks as walled gardens illustrated by David Simonds

6.4 Media Extractor

In this section, we first introduce a common data format that we have developed as

an abstraction layer on top of the native data formats used by the considered social

networks. We then explain the architecture of different kinds of media item extractors.

Finally, we describe the processing steps that we apply to each extracted media item.

6.4.1 Abstraction Layer Data Format

Each social network uses a different data representation schema. While all social net-

works with API access are JSON-based [5], the differences in both supported social

network features and media item support level, as was outlined in detail in section 3.2
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and section 3.4, are also reflected in the returned JSON data. We therefore propose

a common abstraction layer on top of the native data formats of all considered social

networks. It is in the nature of any abstraction that it can only represent the greatest

common divisor of all social networks. We show the abstraction layer in the following

with the help of a concrete example, stemming from a query to the media extractor that

will be explained in more detail in the upcoming subsection 6.4.2. The media extractor

was used to query for media items that match the search term hamburg. Listing 6.1

shows sample output of the media extractor for a Facebook post, which was processed

with named entity extraction and disambiguation as was detailed in Chapter 4.

mediaUrl Deep link to a media item

posterUrl Deep link to a thumbnail for photos or still frame for videos

micropostUrl Deep link to the micropost on the social network

micropost Container for a micropost

html Text of the micropost, possibly with HTML markup

plainText Text of the micropost with potential HTML markup removed

entities Extracted and disambiguated named entities from the micropost text

userProfileUrl Deep link to the user’s profile on the social network

type Type of the media item, can be photo or video

timestamp Number of milliseconds between 1 January 1970 00:00:00 UTC and the

moment when the micropost was published

publicationDate Date in ISO 8601 format (YYYY-MM-DDTHH:MM:SSZ) when the

micropost was published

socialInteractions Container for social interactions

likes Number of times a micropost was liked, or unknown

shares Number of times a micropost was shared, or unknown

comments Number of comments a micropost received, or unknown

views Number of views a micropost reached, or unknown
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{
"mediaUrl ": "http :// video.ak.fbcdn.net/...",
"posterUrl ": "http :// external.ak.fbcdn.net/...",
"micropostUrl ": "https :// www.facebook.com/permalink.php?story_fbid=

231781590231029& id =1254772464" ,
"micropost ": {

"html": "Videoed between Hamburg and Snyder. Thought I would share.",
"plainText ": "Videoed between Hamburg and Snyder. Thought I would share.",
"entities ": [

[
{

"name": "Hamburg",
"relevance ": 0.82274 ,
"uri": "http :// dbpedia.org/resource/Hamburg"

},
{

"name": "Snyder",
"relevance ": 0.857,
"uri": "http :// dbpedia.org/resource/Snyder ,_Texas"

}
]

]
},
"userProfileUrl ": "https ://www.facebook.com/profile.php?id =1254772464" ,
"type": "video",
"timestamp ": 1326371479000 ,
"publicationDate ": "2012 -01 -12 T12 :31:19Z",
"socialInteractions ": {

"likes": 0,
"shares ": 0,
"comments ": 3,
"views": null

}
}

Listing 6.1: Sample output of the media extractor showing a Facebook post processed
with named entity extraction and disambiguation (slightly shortened for legibility)

6.4.2 Media Item Extractors

We have developed a combined media extractor composed of separate media item ex-

tractors for the seven social networks Google+, Myspace, Facebook, Twitter, Instagram,

YouTube, and Flickr, with additional support for the media sharing platforms Img.ly,

Imgur, Lockerz,1 Yfrog, MobyPicture, and Twitpic. The media extractor takes as input

1Dysfunctional since April 2013 when the service shut down its API access
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a search term that is relevant to a known event, e.g., the term boston celtics for a recent

match of the Basketball team Boston Celtics. This search term gets forwarded to the

search APIs of all social networks in parallel. Each social network has a 30 seconds

timeout window to deliver its results. When the timeout is reached or when all social

networks have responded, the available results are aligned according to the data format

defined in subsection 6.4.1. Media items and the relevant metadata like view count,

comments, etc. are retrieved either directly or via Web scraping. For some social net-

works, e.g., Img.ly, a combination of Web scraping and API access is required since the

API does not return all necessary fields of our data format. While we could default to

Web scraping to obtain all relevant data, it is more robust to use API access wherever

possible and only fall back to the more brittle Web scraping for the parts not covered

by API access.

Special Role of Twitter: Twitter (subsection 3.2.12) plays a special role, as it can be

used as a third-order support social network, as was detailed previously in section 3.4.

This means that the micropost text is located on Twitter, but the referenced media items

are located on third-party media platforms. Due to the length limitation for tweets of

140 characters, short URLs are used on the service. We search for the search term

in question (e.g., following up from the example before, boston celtics), but combine

it with the short URL domain parts of the media platforms. For example, the short

domain URL of the social network Flickr (subsection 3.2.2) is flic.kr, where the long

domain URL is flicker.com. The short domain URL of Instagram (subsection 3.2.6)

is instagr.am, where the long domain URL is instagram.com, etc. We have created

a list of all known short domain URLs for the considered media platforms so that the

complete search query for Twitter is the actual search term, combined with this list of

short domain URLs:

boston celtics AND (flic.kr OR instagr.am OR ...)

The complete data flow is illustrated in the architectural diagram in Figure 6.2. As a side

note, Twitter on its website now has its own media extractor based on Twitter Cards [18]

with support for some of of the media platforms, however, our own media extractor goes

beyond Twitter’s offer, especially since Facebook-owned Instagram’s latest break-up

with Twitter.1

1http://techcrunch.com/2012/12/05/kevin-systrom-on, accessed July 15, 2013

105

flic.kr
flicker.com
instagr.am
instagram.com
http://techcrunch.com/2012/12/05/kevin-systrom-on


6. MEDIA ITEM EXTRACTION

Query Search Collect Combine

The quick brown fox
jumps over the lazy dog.

The quick brown fox
jumps over the lazy dog. Web

scraping

Search
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The quick brown fox
jumps over the lazy dog.

The quick brown fox
jumps over the lazy dog.

The quick brown fox
jumps over the lazy dog.

The quick brow
n fox

jumps over the
 lazy dog.

The quick brown foxjumps over the lazy dog.

Figure 6.2: Overview of the media extractor: hybrid approach to the media item extrac-
tion task using a combination of API access and Web scraping

6.5 Evaluation

We have run experiments in the time period of January 10 to 19, 2012, during which

we have randomly selected nine events that received broad social media coverage. For

these events, we have collected media items and microposts using our media extractor.

In the following, we will provide a short summary of the nine selected events in order

to give the reader the necessary background knowledge.

Assad Speech On January 10, 2012, Syrian President Bashar al-Assad delivered a tele-

vised talk defending his government’s actions and motivations, despite world pres-

sure on his government for its 10-month crackdown on protesters. Activists say

the operation has led to nearly 6,000 or more estimated deaths.1

CES Las Vegas The International Consumer Electronics Show (CES) is a major tech-

nology-related trade show held each January in the Las Vegas Convention Center.

Not open to the public, the Consumer Electronics Association-sponsored show

typically hosts previews of products and new product announcements. CES Las

Vegas took place from January 11 to 13, 2012.2

Cut the Rope Launch: On January 10, 2012 during Steve Ballmer’s final

keynote at the International Consumer Electronics Show, the HTML5 version of

the popular mobile game Cut the Rope was announced. This is a sub-event of

CES Las Vegas.3

1http://www.cnn.com/2012/01/10/world/meast/syria-unrest/, accessed July 15, 2013
2http://www.cesweb.org/, accessed July 15, 2013
3http://ces.cnet.com/8301-33377_1-57356403/, accessed July 15, 2013
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Ubuntu TV Launch: Ubuntu TV by Canonical, based on the user interface

Unity, is a variant of the Ubuntu operating system, designed to be a Linux distri-

bution specially adapted for embedded systems in televisions. It was announced

by Canonical on January 10, 2012, at CES.1

Costa Concordia Disaster The Costa Concordia is an Italian cruise ship that hit

a reef and partially sank on January 13, 2012 off the Italian coast. The vessel ran

aground at Isola del Giglio, Tuscany, resulting in the evacuation of 4,211 people.2

Dixville Notch Dixville Notch is an unincorporated village in Dixville township of

Coos County, New Hampshire, USA, best known in connection with its long-

standing middle-of-the-night vote in the U.S. presidential election. In a tradition

that started in the 1960 election, all the eligible voters in Dixville Notch gather

at midnight in the ballroom of The Balsams. This year, on January 10, 2012, the

voters cast their ballots and the polls officially closed one minute later.3

Free Mobile Launch Free Mobile is a French mobile broadband company, part of the

Iliad group. On January 10, 2012, a long-awaited mobile phone package for 19.99e

with calls included to 40 countries, texts, multimedia messages and Internet was

announced by the Iliad group’s Chief Strategy Officer Xavier Niel.4

Blackout SOPA The Stop Online Piracy Act (SOPA) is a bill of the United States

proposed in 2011 to fight online trafficking in copyrighted intellectual property

and counterfeit goods. On January 18, the English Wikipedia, and several other

Internet companies coordinated a service blackout to protest SOPA and its sister

bill, the Protect IP Act (PIPA). Other companies, including Google, posted links

and photos in an effort to raise awareness.5

Christian Wulff Case Since December 2011, former German President ChristianWulff

faces controversy over discrepancies in statements about a loan while being gov-

ernor of Lower Saxony. It was revealed that he had applied pressure on Springer
1http://www.theverge.com/2012/1/9/2695387/ubuntu-tv-video-hands-on, accessed July 15,

2013
2http://en.wikipedia.org/wiki/Costa_Concordia_disaster, accessed July 15, 2013
3http://www.washingtonpost.com/2012/01/09/gIQANslKnP_story.html, accessed July 15, 2013
4http://www.nytimes.com/2012/01/11/technology/iliad-takes-aim-at-top-mobile-

operators-in-france.html, accessed July 15, 2013
5http://sopablackout.org/learnmore/, accessed July 15, 2013
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Press to delay revelations on the issue until he was back from a visit abroad. When

Wulff found out that a tabloid was going to break the story, he left a message on

their voice mail in which he threatened to take legal action.1

6.5.1 Dataset

Our data set contained 448 photos with an average file size of ∼0.7MB and 143 videos.

Some videos are no longer available due to either account termination or video takedown

by the user (Assad, Dixville). Table 6.1 shows the total numbers of retrieved photos and

videos of the media extractor. Table cell values marked with n+ signify that there were

more results, but that only n results were considered. We have calculated the precisions

for each event for both video and photo separately; the overall photo precision was 0.73,

and the overall video precision was 0.54. We note that these values were calculated before

any pruning step, i.e., before taking into account the additional textual information from

microposts like potential extracted named entities. The dataset is very diverse with

respect to photo quality, photo format, and naturally, content. It ranges from entirely

sharp screenshots in all sorts of formats (e.g., screenshots of the Google homepage for

the Blackout SOPA event to screenshots of a wide banner advertisement), over to blurry

cell phone photos in standard photo formats (e.g., photos of the stage for the Free Mobile

Launch event). Figure 6.3 shows sample photos for some of the considered nine events.

We have observed that more than one search session with different combinations of

search terms [1, 2] is necessary in order to obtain a satisfactory recall. Query strategies

developed by Becker [1] that combine different combinations of event title, event venue,

and event city work consistently well.

6.5.2 The Need for Media Item Deduplication

Given our broad approach to retrieve media items across multiple social networks, we

observed many exact-duplicate or near-duplicate media items. Oftentimes, these dupli-

cates stem from users who cross-post to several social networks. Instead of trying to

filter out cross-posted items, we rather keep them and cluster them. We are especially

interested in social interactions that media items can trigger. For example, if one and

the same photo is cross-posted to separate networks, it can retrieve shares, likes, views,
1http://www.spiegel.de/international/germany/0,1518,804631,00.html, accessed July 15,

2013
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Blackout SOPA

Christian Wulff Case

Free Mobile Launch

Costa Concordia Disaster

CES Las Vegas

Figure 6.3: Sample photos for some of the considered nine events (showing only exact-
or near-duplicate media items)
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or comments independently on each of those networks. By clustering media items,

we get a higher-level view on a media item cluster’s overall performance on different

networks. We also observed media items that were near-duplicates, for example, from

people who attended the same event like a concert and who took photos of the stage

from almost the same angle. Similar to exact-duplicates, by clustering near-duplicate

media items, we can treat them like exact-duplicates to get the same network-agnostic

viewpoint. We will examine reasons for exact-duplicate and near-duplicate media item

content and ways to deal with it in Chapter 8.

6.5.3 The Need for Ranking Media Items

Our ultimate goal is to generate media galleries that visually and audially summarize

events. Especially given high-recall search terms, we need a way to rank and prune

media items. Popular media items can be displayed bigger, longer, or with a special

decoration like a thicker border in comparison to less popular media items. For videos,

the audio part poses a challenge. In our experiments, we observe that intermixing

the audio of all videos of an event often generates a very characteristic noise cloud

that audially conveys the event’s atmosphere very well. A good example is the Assad

Speech event, where a mix of Arabic voices blends nicely with the speech of a US

politician. A different example is the CES Las Vegas event, where the atmosphere of

a big exposition with music, announcements, and technical analysis becomes alive. We

will have a closer look at media item ranking in Chapter 9.

6.6 Conclusions

In this chapter, we have presented a generic media extractor for extracting media items

shared on social networks to illustrate known events. We have proposed a common

abstraction layer on top of the social networks’ native data formats to align search

results. Our approach to extracting media items and associated textual microposts

covers already most of the Western world’s social networks. Context-aware multimedia

analysis will bring a new range of parameters into play since many media items con-

tain a message that is complementary to the text. For example, facial detection [17]

and eventually recognition [19] can signify the presence of specific people in a media

item. Optical Character Recognition (OCR) can generate additional textual signals
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from media items. As visual recognition systems grow more powerful, more objects

will eventually be recognizable by machines [14], which would allow for generating vi-

sual hashtags that describe the content inside of the media item. Extracted features

in all three categories (textual—from the micropost, visual—from the media item, and

social—from the social network in the form of social interactions) can serve as rank-

ing criteria, be it in isolation or in combination by introducing a ranking formula. As

a result, this will also positively influence the diversity of automated summarizations.

Nonetheless, it remains important to view the media and the accompanying micro-

posts as a whole, since the text could convey a sentiment about, or an explanation of

the visual data. Using named entity recognition as outlined in Chapter 4, the impor-

tant semantic elements in the micropost get identified. The content of the message

can subsequently be used to narrow down the search space for visual factors enabling

cross-fertilization between the textual and visual analysis, which results in effective

context-aware analysis possibilities [13, 16]. Finally, by leveraging the LOD cloud, we

can use that knowledge to get a more diverse view on events. At time of writing, the

so-called Operation Pillar of Defense1 by the Israeli armed forces causes ongoing con-

flicts between Palestinians and Israelis. Using the LOD cloud, promising search terms

like, for example, gaza, can be easily looked up in different languages like Hebrew or

Arabic. In practice, these additional search terms return interesting new media items

that a pure monolingual search would not have revealed—oftentimes, and especially in

the concrete case, at the expense of neutrality. We are confident that the additional cov-

erage from more angles helps sharpen one’s own viewpoint of an event, especially with

the option of translating microposts authored in foreign languages, which is supported

by our approach.

1http://en.wikipedia.org/wiki/Operation_Pillar_of_Defense, accessed July 15, 2013
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Chapter Notes

This chapter is partly based on the following publications.
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Redondo García, and Rik Van de Walle. “What Fresh Media Are You Looking

For?: Retrieving Media Items From Multiple Social Networks”. In: Proceedings of

the 2012 International Workshop on Socially-aware Multimedia. SAM ’12. Nara,

Japan: ACM, 2012, pp. 15–20. isbn: 978-1-4503-1586-9. url: http://www.

eurecom.fr/~troncy/Publications/Troncy-saw12.pdf.

• Houda Khrouf, Ghislain Atemezing, Giuseppe Rizzo, Raphaël Troncy, and Thomas

Steiner. “Aggregating Social Media for Enhancing Conference Experience”. In:

Real-Time Analysis And Mining of Social Streams, Papers from the 2012 ICWSM

Workshop. Ed. by Arkaitz Zubiaga, Maarten de Rijke, Markus Strohmaier, and

Mor Naaman. AAAI Technical Report WS-12–02. June 2012. url: http:
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Troncy. Confomaton: A Conference Enhancer with Social Media from the Cloud.
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7

Camera Shot Boundary Detection

7.1 Introduction

In the previous chapter, we have motivated the need for deduplication of exact-duplicate

and near-duplicate media items. This chapter focuses on camera shot boundary detec-

tion, which is a first step towards media item deduplication for videos and photos

contained in videos. In video production and filmmaking, a camera shot is a series of

frames that runs for an uninterrupted period of time. Shots are always filmed with

a single camera and can be of any duration. Shot boundary detection (also called cut

detection, shot transition detection, or simply shot detection) is a field of research of

video processing. Its subject is the automated detection of transitions between shots

with hard or soft cuts as the boundaries in digital video, with the purpose of temporal

segmentation of videos.

In this chapter, we present a browser-based, client-side, and on-the-fly approach to

this challenge based on modern HTML5 [2] Web APIs. Once a video has been split

into shots, shot-based video navigation becomes possible, more fine-grained playing

statistics can be created, and finally, shot-based video comparison is possible. The

algorithm developed in the context of our research has been incorporated in a browser

extension so that it can run transparently on a major online video portal. Figure 7.1

shows detected camera shots for a sample video.
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Figure 7.1: Camera shots for a sample video on a major online video portal, detected
on-the-fly via our shot boundary algorithm incorporated in a browser extension
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7.2 Related Work

As outlined before, video fragments consist of shots, which are sequences of consecutive

frames from a single viewpoint, representing a continuous action in time and space. The

topic of shot boundary detection has already been described extensively in literature.

While some specific issues still remain open (notably detecting gradual transitions and

detected false-positives due to large movement or illumination changes), the problem

is considered resolved for many cases [6, 12]. Below, we present an overview of several

well-known categories of shot boundary detection techniques.

Pixel Comparison Methods: Pixel comparison methods [5, 14] construct a discon-

tinuity metric based on differences in color or intensity values of corresponding pixels

in successive frames. This dependency on spatial location makes this technique very

sensitive to (even global) motion. Various improvements have been suggested, such as

prefiltering frames [15], but pixel-by-pixel comparison methods proved inferior, which

has steered research towards other directions.

Histogram Analysis: A related method to pixel comparison methods is histogram

analysis [9], where changes in frame histograms are used to justify shot boundaries.

Their insensitivity to spatial information within a frame makes histograms less prone

to partial and global movements in a shot.

Hybrid Approaches: As a compromise, a third group of methods consists of a trade-

off between the above two categories [1]. Different histograms of several, non-overlapping

blocks are calculated for each frame, thereby categorizing different regions of the frame

with their own color-based, space-invariant fingerprint. The results are promising, while

computational complexity is kept to a minimum, which is why we have chosen to base

our algorithm on a variation of this approach.

Comparison of Mean and Standard Deviations: Other approaches to shot bound-

ary detection include the comparison of mean and standard deviations of frame intensi-

ties [8]. Detection using other features such as edges [13] and motion [3] have also been

proposed. Edge detection transforms both frames to edge pictures, i.e., it extracts the
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7. CAMERA SHOT BOUNDARY DETECTION

probable outlines of objects. However, Gargi et al. have shown that these more com-

plex methods do not necessarily outperform histogram-based approaches [4]. A detailed

comparison can be found in Yuan et al.[12].

7.3 On-the-fly Shot Boundary Detection Algorithm

As outlined in the previous section, shot boundary detection is mostly considered

a solved problem and many efficient approaches exist. However, to the best of our

knowledge, none of the proposed solutions deals with the specific issue of detecting cam-

era shots in streaming video in the context of a Web browser and on-the-fly. Streaming

(HTML5) video has no notion of frames, but only allows for time-based navigation via

the currentTime attribute. The algorithm we propose in the sequence of this chapter

deals effectively with these limitations and we also show that it works efficiently.

7.3.1 Details of the Algorithm

In this section, we discuss our shot boundary detection algorithm, which falls in the

category of histogram-based algorithms. Since visually dissimilar video frames can have

similar global histograms, we take local histograms into account instead. We therefore

split video frames in freely configurable rows and columns, i.e., lay a grid of tiles over

each frame. The user interface that can be seen in Figure 7.2 currently allows for

anything from a 1 × 1 grid to a 20 × 20 grid. The limits are imposed by the reasonable

processing time on consumer PCs. For each step, we examine a frame f and its direct

predecessor f − 1 and calculate their tile histograms. We recall that HTML5 streaming

video has no notion of frames, so by frame we mean a frame that we have navigated

to via setting the currentTime attribute. Apart from the per-tile average histogram

distance, the frame distance function further considers a freely configurable number of

most different and most similar tiles. This is driven by the observation that different

parts of a video have different intensities of color changes, dependent on the movements

from frame to frame. The idea is thus to boost the influence of movements in the frame

distance function, and to limit the influence of permanence. In the debug view of our

approach that can be seen in Figure 7.2, blue boxes indicate movements, while red

boxes indicate permanence. In the concrete example, Steve Jobs’ head and shoulders

move as he talks, which can be clearly seen thanks to the blue boxes in the particular
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tiles. Additional movements come from a swaying flag on the left, and a plant on

the right. In contrast, the speaker desk, the white background, and the upper part

of his body remain static, resulting in red boxes. We use a grid layout of 20 × 20

tiles (nTiles = 400 ), and a tileLimit = 133 = 20 × 20 ∗ 1 /3 of most different or similar

tiles, i.e., we treat one third of all tiles as most different tiles, one third as normal

tiles, and one third as most similar tiles, and apply boosting and limiting factors to

the most different and most similar tiles respectively. We work with values of 1 .1

for the boostingFactor , which slightly increases the impact of the most different tiles,

and 0 .9 for the limitingFactor , which slightly decreases the impact of the most similar

tiles. These algorithm parameters were empirically determined to deliver solid results

on a large corpus of videos, albeit for each individual video the optimal settings can

be manually tweaked to take into account the particular video’s special characteristics.

The algorithm pseudocode can be seen in Listing 7.1.

We define the average histogram distance between two frames f and f − 1 as avgHistof .

In a first step, we have examined the histogram distance data statistically and observed

that while the overall average frame distance avgDistf , defined as

avgDistf =
1

nTiles

nTiles

∑
t=1

avgHistof ,t

is very intuitive to human beings, far more value lies in the standard deviation stdDevf ,

based on the definition of the overall average frame distance avgDistf

stdDevf =

¿
ÁÁÀ 1

nTiles

nTiles

∑
t=1

(avgHistof ,t − avgDistf )2

We use the standard deviation as a value for the shot splitting threshold [8] to obtain

very accurate shot splitting results. We found the boosting and limiting factors to have

an overall positive quality impact on more lively videos and a negative quality impact

on more monotone videos. Optimal results can be achieved if, after changing either the

boosting or the limiting factors for the most similar or different tiles, the value of the

shot splitting threshold is adapted to the new resulting standard deviation. The user

interface can optionally do this automatically.
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Figure 7.2: Debug view of the shot boundary detection process. Blue boxes highlight
tiles with most differences to the previous frame, red boxes those with most similarities.

for frame in frames
f = frame.index
for tile in tiles of frame

avgHisto[f][tile] = getTilewiseDiff ()

mostDiffTiles = getMostDiffTiles(avgHisto[f])
mostSimTiles = getMostSimTiles(avgHisto[f])

for tile in tiles of frame
factor = 1
if tile in mostDiffTiles

factor = boostingFactor
else if tile in mostSimTiles

factor = limitingFactor
avgHisto[f][tile] = avgHisto[f][tile] * factor

avgDist[f] = avg(avgHisto[f])

Listing 7.1: Pseudocode of the shot boundary detection algorithm
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7.3.2 Implementation Details

The complete video analysis process happens fully on the client side. We use the HTML5

JavaScript APIs of the <video> and <canvas> tags. In order to obtain a video still frame

from the <video> tag at the current video position, we use the drawImage() function

of the 2D context of the <canvas> tag, which accepts a video as its first parameter.

We then analyze the video frame’s pixels per tile and calculate the histograms. In

order to retrieve the tile-wise pixel data from the 2D context of the <canvas>, we use

the getImageData() function. For processing speed reasons, we currently limit our

approach to a resolution of one second, i.e., for each analysis step, seek the video in 1s

steps. We then calculate the frame distances as outlined in section 7.3. For each frame,

we can optionally generate an <img> tag with a base64-encoded data URI representation

of the video frame’s data that can serve for filmstrip representations of the video.

We have implemented the shot boundary detection algorithm as a stand-alone Web

application and as a browser extension for the popular video hosting platform YouTube.

Browser extensions are small software programs that users can install to enrich their

browsing experience with their browser. They are typically written using a combination

of standard Web technologies, such as HTML, JavaScript, and CSS. There are several

types of extensions; for this work we focus on extensions based on so-called content

scripts. Content scripts are JavaScript programs that run in the context of Web pages

via dynamic code injection. By using the standard Document Object Model (DOM) [7],

they can modify details of Web pages.

7.4 Evaluation

On-the-fly shot detection in streaming video comes with its very own challenges that

were briefly outlined before. First, it is a question of streaming speed. Especially with

High Definition (HD) video, this can be very demanding. We do not attach the analysis

<video> and canvas tags to the DOM tree [7] so that the browser does not have to

render them and thus can save some CPU cycles, however, the video playing logic still

has to seek the video position ahead in one-second steps and process the encountered still

frame. Even on a higher-end computer (our experiments ran on a MacBook Pro, Intel

Core 2 Duo 2,66 GHz, 8 GB RAM), the process of in parallel analyzing and displaying

a 1280 × 720 HD video of media type video/mp4; codecs="avc1.64001F, mp4a.40.2"
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caused an average CPU load of about 70%. The HTML5 [2] specification states that

“when the playback rate is not exactly 1.0, hardware, software, or format limitations can

cause video frames to be dropped.” In practice, this causes the analysis environment to

be far from optimal. In our experiments we differentiated between false-positives, i.e.,

shot changes that were detected, but not existent, and misses, i.e., shot changes that

were existent, but not detected. Compared to a set of videos with manually annotated

shot changes, our algorithm detected fewer false-positives than misses. The reasons were

gradual transitions and shots shorter than one second (below our detection resolution)

for misses, and large movements in several tiles for false-positives. Overall, we reached

an accuracy of about 86%, which is not optimal, but given the challenges sufficient for

our use case of detecting near- or exact-duplicate videos.

7.5 Future Work

There is potential for optimization of the analysis speed by dynamically selecting lower

quality analysis video files, given that videos are oftentimes available in several resolu-

tions, like Standard Definition (SD) or High Definition (HD). We have checked in how

far analysis results differ for the various qualities, with the result that SD quality is suffi-

cient. We have made the shot detection application available online at http://tomayac.

com/youpr0n/ (accessed July 15, 2013) and invite the reader to compare the results,

e.g., the SD video http://tomayac.com/youpr0n/videos/vsfashionshow_sd.mp4 (ac-

cessed July 15, 2013) with the HD version http://tomayac.com/youpr0n/videos/

vsfashionshow_hd.mp4 (accessed July 15, 2013).

Second, more advanced heuristics for the various user-definable options in the anal-

ysis process are possible. While there is no optimal configuration for all types of

videos, there are some key indicators that can help categorize videos into classes and

propose predefined known working settings based on the standard deviation stdDevf

and the overall average frame distance avgDistf . Both are dependent on the values

of boostingFactor , limitingFactor , rows, and columns. Interpreting our results, there is

evidence that low complexity settings are sufficient in most cases, i.e., a number of rows

and columns higher than 2 does not necessarily lead to more accurate shot boundary

detection results. The same applies to the number of to-be-considered most different

or similar tiles tileLimit . We had cases where not treating those tiles differently at
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7.6 Conclusions

all, i.e., setting boostingFactor = limitingFactor = 1 , led to better results; for example

with screencast-type videos, typically used to demonstrate and teach the use of soft-

ware features that were not recorded with a real camera, but directly recorded from the

computer’s screen, with “camera shots” then later added with video editing software.

7.6 Conclusions

In this chapter, we have introduced an algorithm for video shot boundary detection that

was implemented as a stand-alone Web application and as a browser extension that adds

shot boundary detection to YouTube videos. While the task of shot boundary detection

is considered resolved for many cases, this is not true for the case of streaming online

Web video. With this research, we have proposed and evaluated an approach that was

shown to deliver consistently good results for all sorts of online videos. The biggest re-

maining challenge is finding the optimal algorithm settings for a given video. Promising

directions for improving the shot boundary detection results are video categorization

(fast-moving, slow-moving, color, black-and-white, etc.) prior to the actual shot detec-

tion process. By publicly sharing our implementation under a permissive open-source

license, we open the door for future researchers to build upon our current results.

Chapter Notes

This chapter is partly based on the following publications.

• Thomas Steiner, Ruben Verborgh, Joaquim Gabarró Vallés, Michael Hausenblas,

Raphaël Troncy, and Rik Van de Walle. Enabling on-the-fly Video Shot Detection

on YouTube. Apr. 2012.
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• Thomas Steiner, Ruben Verborgh, and Michael Hausenblas. “Crowdsourcing

Event Detection in YouTube Videos”. In: Proceedings of the Workshop on Detec-

tion, Representation, and Exploitation of Events in the Semantic Web (DeRiVE

2011), Workshop in conjunction with the 10th International Semantic Web Confer-

ence 2011 (ISWC 2011), Bonn, Germany, October 23, 2011. Ed. by Marieke van

Erp, Willem Robert van Hage, Laura Hollink, Anthony Jameson, and Raphaël

Troncy. Vol. 779. CEUR Workshop Proceedings ISSN 1613-0073. Oct. 2011,

pp. 58–67. url: http://ceur-ws.org/Vol-779/derive2011_submission_8.

pdf.
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8

Media Item Deduplication

8.1 Introduction

In Chapter 6, we have motivated the need for media item deduplication. By clustering

media items, we get a higher-level view on a media item cluster’s overall performance

on different networks. As detailed in section 3.1, media items can be photos or videos.

WordNet [12, 23] defines the term duplicate as “a copy that corresponds to an origi-

nal exactly.” The corresponding verb to duplicate is defined as to “make a duplicate

or duplicates of.” The derived term deduplication in consequence refers to the act of

eliminating duplicate or redundant information.

In this chapter, we will treat video and photo deduplication separately. Our goal

is to deduplicate media items on-the-fly at the very moment they are extracted from

social networks. Due to this limitation, we cannot rely on any preprocessing that state-

of-the-art algorithms rely on. Our approaches to video and photo near-duplicate and

exact-duplicate detection are founded on a tile-wise histogram-based pixel comparison

algorithm that was partly introduced in the previous chapter.

8.1.1 Definitions

We have defined a social media item as either a photo (image) or video that was publicly

shared or published on at least one social network. In the following, we will use the

shorter term media item rather than the full term and define what we mean with

duplicate media items for various cases.
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Exact-duplicates for Photos: We define two media items of type photo as exact-

duplicates if their pixel contents are exactly the same. This implies that by our definition

a scaled or recompressed version of the same photo is not considered an exact-duplicate.

Similarly, a rotated version of a photo is also not considered an exact-duplicate. In

contrast, two photo files with different file names or different Exchangeable image file

format1 (Exif) data are considered exact-duplicate if their pixel contents are exactly

the same. exact-duplicate photos typically occur if users share content from one social

network on another, for example, if one user posts a photo on Instagram that then

someone else (or even the same user) posts on Facebook.

Near-Duplicates for Photos: We define two media items of type photo as near-

duplicates if their pixel contents differ no more than a given threshold after resampling.

Examples of near-duplicate photos are scaled versions of the same photo, photos shot

from a slightly different angle, rotated photos up to a certain degree, etc. Near-duplicate

photos typically occur if event attendants stand close to each other and thus take photos

from a similar standpoint. Another scenario is when a user applies a photo effect to

a photo (like an Instagram filter) and in the following shares both the modified and the

unmodified version.

Duplicates for Videos: We define two media items of type video as exact-duplicates

if their pixel contents are frame by frame exactly the same. In practice, we lower this

condition and instead of every frame only consider frames at shot boundaries. We

make no requirements on the audio, i.e., a video that has been dubbed in two different

languages, but that fulfills the pixel contents equality condition, is considered exact-

duplicate. Typical scenarios where exact-duplicate videos can occur is, for example,

two users sharing the same YouTube video independently from each other.

Near-Duplicates for Videos: We define two media items of type video as near-

duplicates if their pixel contents per frame differ no more than a given threshold. In

practice, we lower this condition and instead of every frame only consider frames at shot

boundaries. Typical scenarios where near-duplicate videos can occur is through logo or

1http://www.cipa.jp/english/hyoujunka/kikaku/pdf/DC-008-2010_E.pdf, accessed July 15,
2013
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subtitle insertion, resizing, re-encoding, or aspect-ration changes. Note that we do not

consider video subsegments near-duplicates, so a shortened version of an existing video

is considered different, as a manual processing step was involved.

Special Case of Photo Contained in a Video: We define the special case of a

photo being contained in a video if the pixel contents of a photo media item differ no more

than a given threshold from the pixel contents of any of the frames of a video media

item. In practice, we lower this condition and instead of every frame only consider

frames at shot boundaries. Typically, this phenomenon occurs if two event attendants

of the same event both cover it from almost the same standpoint, however, if the one

attendant takes a video, while the other attendant takes a photo.

8.2 Related Work

Related work in the field of media item deduplication and clustering can be separated

in different areas, which reflects the grouping of our definitions above. We further show

related work on media fragments, digital storytelling, and Natural Language Generation,

which we combine for a novel algorithm debugging approach.

Image Deduplication and Clustering: Work on ordinal measures that serve as

a general tool for image matching was performed by Bhat et al. in [6]. Chum et al. have

proposed a near-duplicate image detection method using MinHash and term frequency-

inverse document frequency (tf-idf) weighting [10]. They use a visual vocabulary of

vector quantized local feature descriptors based on Scale-Invariant Feature Transform

(SIFT) [22]. Gao et al. [14] have proposed an image clustering method in the context

of Web image clustering, which clusters images based on the consistent fusion of the

information contained in both low-level features and surrounding texts. Also in the

context of Web pages, Cai et al. [8] have proposed a hierarchical clustering method using

visual, textual, and link analysis. Goldberger et al. [15] have combined discrete and

continuous image models based on a mixture of Gaussian densities with a generalized

version of the information bottleneck principle for unsupervised hierarchical image set

clustering. Chen et al. [9] have introduced an image retrieval approach, which tackles

the semantic gap problem by learning similarities of images of the same semantics.
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Video Deduplication and Clustering: Specialized methods for video deduplication

exist, for example [24, 43] by Min et al. who, given the observation that transformations

tend to preserve the semantic information conveyed by the video content, propose an

approach for identifying near-duplicate videos by making use of both low-level visual

features and high-level semantic features detected using trained classifiers. In [26],

Oliveira et al. report on four large-scale online surveys wherein they have confirmed

that humans perceive videos as near-duplicates based on both non-semantic features

like different image or audio quality, but also based on semantic features like different

videos of similar content. A survey of video deduplication methods has been conducted

by Lian et al. in [20]. In [16], Guil et al. have proposed a method for detecting copies of

a query video in a videos database that groups frames with similar visual content while

maintaining their temporal order. In [25], Okamoto et al. have proposed an approach

that is based on fixed length video stream segments. By generating spatio-temporal

images, they employ co-occurrence matrices to express features in the time dimension

explicitly. Yi et al. have proposed motion histograms [45], where the motion content

of a video at pixel level is represented as a Pixel Change Ratio Map (PCRM), which

captures the motion intensity, spatial location, and size of moving objects in a video.

Image and Video Deduplication and Clustering: A method for both images

and videos has been proposed by Yang et al. [44]. The authors describe a system for

detecting duplicate images and videos in a large collection of multimedia data that uses

local difference patterns as the unified feature to describe both images and videos. It

has been demonstrated that the proposed method is robust against common image-

processing tasks used to produce duplicates.

Media Fragments: There are many online video hosting platforms that have some

sort of media fragments support. In the following, we present two representative ones.

The video hosting platform YouTube1 allows for deep-linking into videos via a propri-

etary URL parameter t, whose value has to match the regular expression \d+m\d+s

(for minutes and seconds), as documented in [38]. Dailymotion2 has similar URL pa-

rameters start and end, whose values have to match the regular expression \d+ (for

1http://www.youtube.com/
2http://www.dailymotion.com/
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seconds). The CSS Backgrounds and Borders Module Level 3 specification [7] defines

the background-size property that can be used to crop media items visually and thus

create the illusion of a spatial media fragment when combined with a wrapping element.

Media Fragments URI [39] specifies a syntax for constructing media fragments URIs and

explains how to handle them when used over the HTTP protocol [13]. The syntax is

based on the specification of particular name-value pairs that can be used in URI query

strings and URI fragment identifiers to restrict a media resource to a certain fragment.

The temporal and spatial dimensions are currently supported in the basic version of

Media Fragments URIs. Combinations of dimensions are also possible.

Digital Storytelling: Pizzi and Cavazza report in [28] on the development of an

authoring technology on top of an interactive storytelling system that originated as

a debugging1 tool for a planning system. Alexander and Levine define in [2] the term

Web 2.0 storytelling, where people create microcontent—small chunks of content, with

each chunk conveying a primary idea—that gets combined with social media to form

coherent stories. We use Media Fragments URIs to help human annotators understand

the results of an algorithm by converting dry software debugging data to digital stories.

Natural Language Generation: Natural language generation is the NLP task of

generating natural language from a machine representation system. This field is covered

in great detail by Reiter and Dale in [31]. They divide the task into three stages:

document planning, microplanning, and realization. Document planning determines

the content and structure of a document. Microplanning decides which words, syntactic

structures, etc. are used to communicate the chosen content and structure. Realization

maps the abstract representations used by microplanning into text.

8.3 Photo Deduplication

We determine the popularity of media items shared across social networks. This task

involves the deduplication of extracted media items. In Chapter 7, we have presented

an algorithm for on-the-fly shot boundary detection for video media items. In this

chapter, we will show how components of this algorithm can be used to deduplicate
1Pizzi and Cavazza use the term debugging in the non-IT sense: to check for redundancy, dead-ends,

consistency, etc. in authored stories.
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photos. Our work is situated in the broader context of summarizing events based on

social network data. In order to get an overview of a given event based on a potentially

large set of event-related media items, this set of media items needs to be pruned to

exclusively contain highly relevant media items that are as representative for the event

as possible. Rather than showing the viewer all media items, clusters of similar media

items need to be formed. Within each cluster, the most representative media item has

to be decided on according to well-defined criteria. Undesired exact-duplicate or near-

duplicate content in the context of social networks arises in a number of situations that

we will illustrate in the following.

8.3.1 Exact-Duplicate Content

Duplicate content in the context of social networks arises whenever people either share

exactly the same, or an exact copy of a given media item. An example of the latter can

be one user uploading the same media item to the two different social networks Google+

and Facebook. An example of the prior can be two users sharing the same YouTube

video independently from each other, or re-sharing each other’s content.

8.3.2 Near-Duplicate Content

Near-duplicate content in the context of social networks arises in a number of situa-

tions that we will illustrate in the following. All photos are real examples of media

items shared on social networks that were clustered correctly as near-duplicates by our

clustering algorithm, which we will detail in subsection 8.3.3.

Different Viewing Angle: When two people attend the same event and create media

items at roughly the same time covering the same scene, their media items will be similar

and—the capturing devices’ quality aside—only differ in the viewing angles. Figure 8.1

shows a concrete example.

Logo, Watermark, Lower Third, or Caption Insertion: Oftentimes, organiza-

tions or individuals insert logos, watermarks, lower thirds, or captions into media items

to highlight their origin, to convey related information, or to claim ownership of a media

item. An example of caption, logo, and lower third insertion can be seen in Figure 8.2.
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Cropping: Cropping refers to the removal of the outer parts of a media item to

improve framing, accentuate subject matter, or to (lossily) change the aspect ratio.

Cropping either happens manually via an image editing application or, more often,

by the social networks themselves to obtain a square aspect ratio that better fits the

timeline view of users, as can be seen in the example in Figure 8.3.

Different Keyframes: We have shown an approach to camera shot boundary detec-

tion in Chapter 7 and [34]. Different frames stemming from the same camera shot can

occur on social networks when preview heuristics attempt to auto-select a representa-

tive poster frame from a video with different approaches, typically resulting in varying

frames for different social networks. Figure 8.4 shows an example of this phenomenon.

Aspect Ratio Changes with Squeezing or Stretching: Aspect ratio changes can

either happen combined with cropping (and thus losing parts of the media item) and/or

combined with squeezing or stretching (and thus deforming the media item). Figure 8.5

shows an example where a media item gets stretched.

Photo Filters: With the raising popularity of Instagram with its 90 million monthly

active users,1 photo filters that, e.g., emulate retro Polaroid™ or tilt-shift effects are

a considerable reason for near-duplicate media content on social networks. Figure 8.6

shows a typical example.

8.3.3 Near-Duplicate Photo Clustering Algorithm

In the previous section, we have outlined reasons and sources for exact-duplicate and

near-duplicate content. In this section, we describe an algorithm tailored to dedupli-

cating and clustering exact-duplicate and near-duplicate media items. Design goals for

the algorithm include the capability to detect exact-duplicate and near-duplicate media

items in a timely, entirely ad hoc manner without any pre-calculation. In general—and

especially for big events—event coverage on social networks is very broad, i.e., there

exist more media items than one could consume in a reasonable time. In consequence,

it is tolerable for the algorithm to cluster media items aggressively rather than leaving

too many media items unclustered. The algorithm has a twofold approach to clustering:
1http://instagram.com/press/, accessed July 15, 2013
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(a) Viewing angle 1 (b) Viewing angle 2

Figure 8.1: Slightly different viewing angles of a concert stage

(a) Blank (b) Caption (c) Logo, lower third

Figure 8.2: Caption, logo, and lower third insertion for a speaker

(a) Original (b) Cropped

Figure 8.3: Original and cropped version of a photo (including a slight color variation)

(a) Frame 1 (b) Frame 2

Figure 8.4: Two different frames stemming from the same camera shot, with the left
frame appearing slightly earlier in the video
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(a) Original (b) Stretched

Figure 8.5: Original and stretched version of a photo

(a) Original (b) With photo filter

Figure 8.6: Original and version with an applied photo filter of a photo

low-level analysis by looking at tile-wise pixel data, combined with high-level analysis

by detecting faces in media items. In the following, we describe the face detection

component of our media item clustering algorithm.

8.3.4 Face Detection

Face detection is a computer vision technology that determines the regions of faces

in media items. Rotation-invariant face detection aims to detect faces with arbitrary

rotation angles and is crucial as the first step in automatic face detection for general

applications, as face images on social media are seldom upright and frontal. Face de-

tection is a subclass of the broader class of object detection. The Viola-Jones object

detection framework proposed in 2001 by Paul Viola and Michael Jones [40, 41] provides

competitive object detection rates in realtime and was motivated primarily by the prob-

lem of face detection. We use an algorithm that further improves Viola-Jones, based on

work by Huang et al. [17] and Abramson et al. [1] in a JavaScript implementation made

available by Liu [21]. This algorithm runs in the context of a Web browser and, given
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the relatively small size of social network media items, is fast enough to be applied to

hundreds of media items in well less than a second overall processing time on a standard

laptop (mid-2010 MacBook Pro, 2.66 GHz Intel Core 2, 8 GB RAM).

8.3.5 Algorithm Description

Our near-duplicate media item clustering algorithm belongs to the family of tile-wise

histogram-based clustering algorithms. As an additional semantic feature, the algorithm

considers detected faces as described above. For two media items to be clustered, the

following conditions have to be fulfilled.

1. Out of m tiles of a media item with n tiles (m ≤ n), at most tiles_threshold tiles

may differ not more than similarity_threshold from their counterpart tiles.

2. The numbers f1 and f2 of detected faces in both media items have to be the same.

We note that we do not recognize faces, but only detect them.

Input: mediaItems , a list of media items
Output: clusters , a list of clustered media items

# Algorithm settings
ROWS = 10
COLS = 10
TILES_THRESHOLD = ceil(ROWS * COLS * 2/3)
SIMILARITY_THRESHOLD = 10

init:

# Calculates tile-wise histograms
histograms = {}
faces = {}
for item in mediaItems

faces[item] = getFaces(item)

histograms[item] = {}
for tile in item

histograms[item][tile] = getHistogram(tile)
end for

end for
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# Calculates tile-wise distances
distances = {}
for outerItem in mediaItems

distances[outerItem] = {}
for innerItem in mediaItems

distances[outerItem ][ innerItem] = {}
for tile in histograms[outerItem]

distances[outerItem ][ innerItem ][tile] =
abs(histograms[outerItem ][tile] -

histograms[innerItem ][tile])
end for

end for
end for

# Calculates clusters
clusters = {}
for outerItem in mediaItems

clusters[outerItem] = []
for innerItem in mediaItems

if outerItem == innerItem then continue
similarTiles = 0
distance = distances[outerItem ][ innerItem]
for tile in distance

if distance[tile] <= SIMILARITY_THRESHOLD then
similarTiles ++

end if
end for
# Check condition 1 (tiles)
if similarTiles >= TILES_THRESHOLD then

# Check condition 2 (faces)
if faces[outerItem] == faces[innerItem] then

clusters[outerItem ].push(innerItem)
end if

end if
end for

end for

return clusters

Listing 8.1: Simplified pseudocode of the exact- and near-duplicate media item dedupli-
cation and clustering algorithm

The algorithm pseudocode can be seen in Listing 8.1. In the actual implementation

some speed improvements, for example, looking up already calculated distances1 have

been applied; these were omitted in the listing for legibility reasons. We calculate the

histograms and distances only once initially. The clusters are then recalculated dynami-

1distances[outerItem][innerItem] = distances[innerItem][outerItem]
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cally whenever either tiles_threshold or similarity_threshold change. The given values of

rows = cols = 10 and tiles_threshold = 67 = ⌈rows ⋅cols ⋅2/3⌉ and similarity_threshold = 15

were determined empirically on a large corpus of event-related media items and are

known to deliver solid results. The corpus has been made available publicly, see sub-

section 8.3.7 for the details.

8.3.6 Experiments

We have evaluated the near-duplicate photo clustering on two events from (at time of

writing) recent history with high social network coverage that we will briefly describe

in the following.

Grammy Awards Nominations 2013: The Grammy Award—or short Grammy—

is an award by the National Academy of Recording Arts and Sciences of the United

States to recognize outstanding achievement in the music industry. The annual cere-

mony features performances by prominent artists. Some of the awards are presented in

a widely viewed televised ceremony. On December 5, 2012, the nominees for the 55th

Annual Grammy Awards were announced at an event broadcasted live by the broadcast

network CBS titled Grammy Nominations Concert Live,1 during which Taylor Swift and

LL Cool J revealed the nominees in the so-called Big Four categories Album, Record

and Song of the Year, and Best New Artist. CBS suggested the hashtag #GRAMMYNoms.

Victoria’s Secret Fashion Show 2012: The Victoria’s Secret Fashion Show2 is an

annual event sponsored by Victoria’s Secret, a brand of lingerie and sleepwear. The show

features some of the world’s leading fashion models and is used by the brand to promote

and market its goods in high-profile settings. The show is a lavish event with elaborate

costumed lingerie and varying music by leading entertainers that attracts hundreds of

celebrities and entertainers, with special performers and acts every year. The 2012

edition of the show, which was previously taped on November 7, 2012 was aired on

December 4, 2012 on CBS to an audience of 9.48 million viewers. CBS suggested the

hashtag #VSFashionShow for the event.

1http://en.wikipedia.org/wiki/2013_Grammy_Awards, accessed July 15, 2013
2http://en.wikipedia.org/wiki/Victoria’s_Secret_Fashion_Show, accessed July 15, 2013
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8.3.7 Evaluation

We have collected and made available1 datasets for both events with 379 photos for

the Victoria’s Secret Fashion Show 2012 event and 949 photos for the Grammy Awards

Nominations 2013 event. These photos were collected using the media item extraction

framework described in Chapter 6 using a mix of hashtag searches with the official event

hashtags combined with full-text searches for event titles and variations thereof [4, 5].

Due to the short-lived nature of social networks, the returned results of the media item

extraction process itself are not reproducible. Additionally, our focus in this chapter

is on media item deduplication and clustering, not extraction. The concrete clustering

parameters for the algorithm were set as listed below.

1. rows = cols = 10

2. tiles_threshold = 67

3. similarity_threshold = 15

In the following, we discuss the clustering and deduplication results. Figure 8.7 and

Figure 8.8 show the top clusters for the Victoria’s Secret Fashion Show 2012 and the

Grammy Awards Nominations 2013 events respectively. We then pick some represen-

tative examples from both events and have a closer look at the clustering algorithm’s

strengths and weaknesses.

Figure 8.7: Top clusters for the Victoria’s Secret Fashion Show 2012 event

1https://www.dropbox.com/sh/2llvjaut32juwrx/7eGLodfP_2, accessed July 15, 2013
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Figure 8.8: Top clusters for the Grammy Awards Nominations 2013 event
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Algorithm Strengths: Figure 8.9 has a brunette fashion model in a pink robe and

a heart-shaped pink spotlight as central elements of both photos. Even though the

model is shot from different angles and at different times, the photos are successfully

clustered due to the very identifying colors and the high tile-wise similarity.

Figure 8.9: High tile-wise similarity of a dominating color

Figure 8.10 shows two views of a stage taken at slightly different times. The left

photo covers a detail of the scene, whereas the right photo covers the entire stage. Due

to the tile-wise similarity of the scene detail, the photos are successfully clustered.

Figure 8.10: Cropped view of a stage scene

Figure 8.11 shows two views of a stage under different lighting conditions. Due to

the tile color tolerances and the tile-wise similarity, the photos are successfully clustered.

Figure 8.11: Stage and detail of a stage under different lighting conditions

Figure 8.12 shows two photos of the same fashion model, where the left photo is

a zoomed version of the right photo with added black bars so that the resulting photo

has a square aspect ratio. Despite the differences, the photos are successfully clustered.
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Figure 8.12: Zoomed view of a model with black bars left and right

Figure 8.13 shows two views of the same stage, however, with a different person.

Due to the dominating tile-wise similarity of the stage tiles, the photos are clustered.

Figure 8.13: Two views of the same stage with different person

Algorithm Weaknesses: Figure 8.14 shows five media items with pure white as the

dominating color and a pure black font stemming from screenshots of the Grammy

results from Web pages. The algorithm in its previously described form clusters such

media items. This may or may not be desired.

Figure 8.14: Pure white as dominating color stemming from screenshots (bad quality
caused by down-scaling via the originating social networks)

Likewise, at the other end of the color spectrum, Figure 8.15 shows two media items

of a woman with pure black as the dominating color, one time with and the other time

without added black bars to fit a letterbox aspect ratio. In its previously described

form, the algorithm does not cluster such media items (unless a very small number

tiles_threshold of required similar tiles is selected). In the majority of cases, though,
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clustering such media items is desired. Our response to both issues is to ignore a certain

part of the color spectrum in the algorithm’s similarity measure. In the concrete case,

ignoring pure white and pure black correctly fixed the clustering in our chosen example

events in all but one cases, without negatively impacting previously formed clusters.

Figure 8.15: Black bars added to fit a 16:9 image in a 4:3 letterbox (the white border is
part of the original photo)

Finally, Figure 8.16 shows two entirely different media items that were incorrectly

clustered as the tile histograms were similar enough under the chosen similarity thresh-

old. The explanation for this is twofold. First, the original source media items were

very small thumbnail-like images, which hindered face recognition (there is actually an

unequal number of faces in each image). Second, the way the algorithm works causes

the tiles of very tiny media items like the ones in question to blur.

Figure 8.16: Entirely different photos with similar tile histograms

We have experienced in our experiments that there is no single perfect combination

of algorithm parameters, so the only way to address this issue (besides ignoring too

small media items, which in practice might be the easiest and best solution) is to make

the parameters flexible. In our graphical user interface, we have created sliders that let

the user interactively preview clustering changes. As noted before, a screenshot of the

application is available online at the URL http://twitpic.com/c02qfs/full (accessed

July 15, 2013).
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8.3.8 Algorithm Performance Analysis

As our application is meant to be used interactively on the Web, a high, real-time

performance of the clustering algorithm is crucial. We have thoroughly evaluated its

performance on our public dataset of 379 media items for the Victoria’s Secret Fashion

Show 2012 event and 949 media items for the Grammy Awards Nominations 2013 event.

Processing Speed Considerations

The results for the combined diverse set of 1,328 media items are as follows.

– Face Detection: the task of detecting faces took on average 325 ms per media

item.

– Histogram Calculation: the task of calculating 100 tile histograms (10 rows ⋅
10 columns = 100 tiles) took on average 7 ms per media item.

– Distance Calculation: the task of calculating the distances from each media

item to all others took on average 2 ms per media item.

In consequence, the overall average processing time per media item was roughly

1/3 of a second, resulting in less than 8 minutes processing time for all 1,328 media

items. We have compared our algorithm that is based on the low-level feature of tile

histograms combined with the high-level feature of face detection to the three state-of-

the-art feature detection algorithms SIFT [22], ASIFT [46], and SURF [3]. A concrete

example of all four algorithms applied to the same two near-duplicate media items from

Figure 8.17, which are common, highly representative social media items of type photo

and video from recent history, can be seen in Figure 8.18. We especially highlight the

differences in runtime. Compared to SIFT, our algorithm runs about 15 times faster,

compared to Affine-SIFT, about 23 times faster, and finally compared to SURF, still

about 3 times faster. We also note that our algorithm is implemented as interpreted

JavaScript in the context of a Web browser using the canvas element, whereas SIFT,

Affine-SIFT, and SURF are implemented as compiled, native C and C++ applications.
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(a) Photo (b) Video keyframe

Figure 8.17: Two near-duplicate media items (photo and video)

Algorithm Accuracy Considerations

The focus of SIFT and ASIFT is on local image features, where the feature descriptor

is invariant to uniform scaling, orientation, and partially invariant to affine distortion

and illumination changes. SURF [3], which stands for Speeded Up Robust Features, is

a speed-optimized high-performance scale- and rotation-invariant interest point detec-

tor and descriptor. Considering the number of matching features in Figure 8.18 with

38 matching features for our approach against 5 for SURF, 11 for SIFT, and 200 for

ASIFT, our algorithm performs well compared to the more advanced feature detec-

tion algorithms, especially considering the fast execution time. This also applies in

the general case with other media items and is mainly due to the observed reasons

for duplicate and near-duplicate content on social networks (subsection 8.3.2), where

orientation-invariance does not play a central role. Given our concrete context of social

networks, the trade-off of lost accuracy regarding orientation-invariance against faster

performance is justified by the enormous processing speed gains. The algorithm still

maintains scale-invariance to the necessary extent, which can be seen in Figure 8.12.

SIFT, ASIFT, and SURF operate on a black-and-white representation of the media

item in question, whereas our algorithm, apart from face detection, works with color

histograms. By taking color features into account, our algorithm is invariant to illumi-

nation changes, which is well visible in Figure 8.11. At the same time, maximum visual

diversity is assured, which is as an important aesthetic feature of media galleries [37].

147



8. MEDIA ITEM DEDUPLICATION

(a) Tile histograms with face
detection (334 ms runtime;
38 matches)

(b) Original SIFT (5.03 sec run-
time; 11 matches)

(c) Affine-SIFT (7.83 sec run-
time; 200 matches)

(d) SURF (1.21 sec runtime;
5 matches)

Figure 8.18: Our approach compared to the state-of-the art feature detection algorithms
SIFT, Affine-SIFT, and SURF

8.4 Video Deduplication

In the previous section, we have introduced an algorithm for photo deduplication. In the

upcoming section, we will outline the conceptual framework of how this algorithm can
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be combined with the previously introduced video shot boundary detection algorithm

from Chapter 7. This will allows us to on the one hand directly deduplicate videos on

a shot boundary frame basis or on the other hand to detect whether a given photo is

contained in a video.

8.4.1 Photo-contained-in-Video Workflow

In a first step, for a given video, we detect shot boundaries as described before in

section 7.1. To illustrate this, Figure 8.19 shows an excerpt of detected shot boundaries

for a video related to the Victoria’s Secret Fashion Show 2012 event. The first photo of

each shot boundary film stripe is selected as the particular shot’s representative photo.

To detect whether a given photo stemming from social networks is contained in the

video in question, the set of extracted shot representative photos is compared with all

social network photos, some of which are shown in Figure 8.7. We note, however, that

especially for longer videos (about 4 minutes and longer) this approach does not scale

due to the sheer number of camera shots in common videos shared on social networks,

which causes the process to consume too much time in practice. At the expense of

exactness, (the few) poster still frames that are typically returned by video hosting

platform APIs can be used rather than extracting (all) shot boundaries manually.

8.4.2 Video-contained-in-Video Workflow

To detect whether a given video is contained in another, we follow a similar approach

as outlined in the previous subsection, with the sole difference being that we need to

compare all detected shot boundary representative photos of the source video with the

ones from the other. Naturally, this approach is even less scalable with regard to system

response time. The practicable work-around is, as before, to limit oneself to poster

frames delivered by the video hosting platforms. Our experiments have shown that

this approach works very well for common social network user behavior. For example,

the 3:19 minutes long video of Mark Zuckerberg explaining the design and engineering

challenges behind Facebook’s recently announced Graph Search product was initially

published on Facebook,1 however, people republished the same video multiple times

on YouTube. As the YouTube-generated poster frames were similar enough and even

1https://www.facebook.com/about/graphsearch, accessed July 15, 2013
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Figure 8.19: Excerpt of detected shot boundaries in a Victoria’s Secret Fashion Show
2012 event video

if the other video metadata like title and description were different, we were able to

effectively deduplicate the videos with the described work-around approach. We note

that this approach works reasonably well as online videos are still relatively short, also

given that YouTube per default has an (increasable) limit of 15 minutes per video.1

1https://support.google.com/youtube/answer/71673?hl=en, accessed July 15, 2013

150

https://support.google.com/youtube/answer/71673?hl=en


8.5 Describing Media Item Differences with Media Fragments URI

8.5 Describing Media Item Differences with Media Frag-
ments URI and Speech Synthesis

In this section, we describe how media item differences can be described with media frag-

ments URIs and speech synthesis. We will combine the two techniques for the purpose

of introducing a novel algorithm debugging approach, illustrated with our previously

described media item clustering algorithm.

8.5.1 Algorithm Debug View

In order to illustrate the way the algorithm clusters media items, Figure 8.20 shows

a debug view of the algorithm for two clustered media items related to the Grammy

Awards Nominations 2013 event. The red border around the media item indicates at

least one detected face. Independent from the actual media item’s aspect ratio, the tile-

wise comparison always happens based on a potentially squeezed square aspect ratio

version. The two slightly different media items (caption insertion, lighting change)

were clustered, because out of the 10 ⋅ 10 = 100 tiles, 85 of the minimum required

tiles_threshold of 67 tiles differed not more than the similarity_threshold of 15 per

tile. In both media items, exactly 1 face was detected. A screenshot of the complete

media item clustering application (with a different event) is available online at http:

//twitpic.com/c02qfs/full (accessed July 15, 2013).

8.5.2 Media Fragments Requirements

A media fragment is a part that was separated from its parent media item. In order to

make statements about such media fragments, we need to uniquely identify them. In the

context of our research on media item deduplication and clustering, media fragments

identifiers need to be capable of expressing the following concepts.

1. Given a rectangular media item with the dimensions width×height, express that
in turn rectangular tiles of smaller dimensions are part of the original media item.

2. Given detected faces at the granularity level of bounding rectangles, express that

these bounding rectangles are within the dimensions of the original media item

and that each bounding rectangle contains a face.
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Figure 8.20: Algorithm debug view for two clustered media items related to the Grammy
Awards Nominations 2013 event (the red border around the media items indicates at least
one detected face)

3. Requirements i and ii need to be fulfilled for both types of media items, i.e., photos

and videos. In case of the latter, video subsegments of any length—including video

still frames—need to be supported.

Media Fragments URI [39] as described in the basic version of the specification

supports all three requirements. The temporal dimension is denoted by the parameter

name t and specified as an interval with a begin time and an end time. Either one or

both parameters may be omitted, with the begin time defaulting to 0 seconds and the

end time defaulting to the duration of the source media item. The interval is half-open:

the begin time is considered part of the interval, whereas the end time is considered to

be the first time point that is not part of the interval. If only a single value is present,

it corresponds to the begin time, except for when it is preceded by a comma, which

indicates the end time. The temporal dimension is specified in the Normal Play Time

(NPT, [32]) format.

The spatial dimension selects an area of pixels from media items. In the current

version of the specification, only rectangular selections are supported. Rectangles can

be specified as pixel coordinates or percentages. Rectangle selection is denoted by

the parameter name xywh. The value is either pixel: or percent: (defaulting to
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pixel:) and four comma-separated integers. The integers denote x, y, width, and

height respectively, with x = 0 and y = 0 being the top left corner of the media item.

If percent: is used, x and width are interpreted as a percentage of the width of the

original media item, while y and height are interpreted as a percentage of the original

height. While (at time of writing) the temporal dimension is implemented natively in

common Web browsers, this is not the case for the spatial dimension.

The intent of the Ontology for Media Resources [19] by Lee et al. is to bridge

different description methods of media resources and to provide a core set of descriptive

properties. Combined with Media Fragments URI, this allows for making statements

about media items and fragments thereof. An example in RDF Turtle syntax [30] is

given in Listing 8.2.

@base <http :// example.org/> .
@prefix ma: <http ://www.w3.org/ns/ma-ont > .
@prefix foaf: <http :// xmlns.com/foaf /0.1/> .
@prefix db: <http :// dbpedia.org/resource/> .
@prefix dbo: <http :// dbpedia.org/ontology/> .
@prefix col: <http :// purl.org/colors/rgb/> .

<video > a ma:MediaResource .
<video#t=,10& xywh=0,0,30,40> a ma:MediaFragment ;

foaf:depicts db:Face .
<video#t=,10& xywh=0,0,10,10> a ma:MediaFragment ;

dbo:colour col:f00 .

Listing 8.2: Description of two 10 sec long media fragments: (i) a tile of dimensions
30 × 40 pixels starting at pixel coordinates (0,0) that contains a face; and (ii) a tile of
dimensions 10 × 10 pixels starting at pixel coordinates (0,0) of red color

8.5.3 Algorithm Debug Properties

The deduplication algorithm described in this chapter belongs to the family of tile-wise

histogram-based clustering algorithms. As an additional semantic feature, the algorithm

considers detected faces. It is capable of deduplicating media items of type video and/or

photo. In the case of video, frames at camera shot boundaries are used. To illustrate the

algorithm debugging mechanics, we use a running example of two media items related
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to a music video by the band Backstreet Boys, which can be seen in Figure 8.21. For

media items to be clustered, the following clustering conditions have to be fulfilled.

Cond. 1 Out of m tiles of a media item with n tiles (m ≤ n), the average color of

at most tiles_threshold tiles may differ not more than similarity_threshold from

their counterpart tiles.

Cond. 2 The numbers f1 and f2 of detected faces in both media items have to be the

same. We note that the algorithm does not recognize faces, but only detects them.

Cond. 3 If the average colors of a tile and its counterpart tile are within the black-and-

white tolerance bw_tolerance, these tiles are not considered and tiles_threshold is

decreased accordingly (we will talk about effective_tiles_threshold in section 8.5.3).

The black-and-white tolerance bw_tolerance avoids media items to be clustered when

the particular tiles are too dark (e.g., for the video borders in Figure 8.21) or too

bright (e.g., for screenshots of Web pages or applications, which frequently appear on

social networks). In order to illustrate the way the algorithm deduplicates media items,

Figure 8.22 shows a debug view of the algorithm for the two clustered media items

related to the previous example around the Backstreet Boys music video. Independent

of the actual media items’ aspect ratios, the tile-wise comparison always happens based

on a potentially squeezed square aspect ratio version.

Figure 8.21: Near-duplicate music video Everybody by the Backstreet Boys shared inde-
pendently on Facebook and Google+
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(a) From Facebook user (b) From Google+ user

Figure 8.22: Debug view of the media item deduplication algorithm: since no faces are
detected in Figure 8.21, the clustering is based on tile similarity; pure black tiles are not
considered due to the chosen black-and-white tolerance)

Debugging the Algorithm

In this subsection, we consider the following three debug scenarios that occurred most

frequently during our previous experiments with human raters. They correspond to

situations where, given a set of deduplicated and clustered media items, a human an-

notator wanted to understand the specific details leading to the decisions taken by the

algorithm that they were unsure about or had decided on differently.

Clustering Consent. Two or more media items are clustered by the algorithm and

the human rater also agrees. The human rater wants to understand why they

were clustered.

Clustering Dissent. Two or more media items are clustered by the algorithm, but

the human rater thinks that they should not have been clustered. The human

rater wants to understand why they were incorrectly clustered.

Non-Clustering Dissent. Two or more media items are not clustered by the algo-

rithm, but the human rater thinks that they should have been clustered. The

human rater wants to understand why they were not clustered.

In order to provide answers to these human raters’ information needs, different

levels of the algorithm’s internals have to be debugged. Is the tiles_threshold (i.e., the
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number of tiles that may differ) too high or too low? Complementary to this, is the

similarity_threshold (i.e., the maximum amount two tiles may differ) too high or too

low (Cond. 1)? Are the number of detected faces f1 and f2 the same? Are all faces

correctly detected, or should the face matching condition be temporarily disregarded,

e.g., with too tiny media items, where faces fail to be detected (Cond. 2)? If the media

items to be compared have very dark and/or very bright parts, is the bw_tolerance too

high or too low (Cond. 3)?

Low-Level Debug Output

As a consequence of the previous observations, the low-level debug output must include

the currently selected tiles_threshold and similarity_threshold and how many tiles with

the present algorithm settings currently fulfill Cond. 1. In addition to that, the debug

output has to contain the number of detected faces f1 and f2 in each media item, i.e.,

whether Cond. 2 is fulfilled, as well as the number of not considered tiles (according to

bw_tolerance), which implies fulfillment of Cond. 3 and potentially impactsCond. 1 in

form of the effective_tiles_threshold. For instance, consider the low-level debug output

for the media items from the running example of the Backstreet Boys media items.

- Similarity threshold: 15 (Cond. 1)

- Tiles threshold: 67 (Cond. 1)

- Similar tiles: 52 (Cond. 1)

- Faces left: 0. Faces right: 0 (Cond. 2)

- BW tolerance: 1 (Cond. 3)

- Not considered tiles: 22 (Cond. 3)

- Effective tiles threshold: 45 (Cond. 3)

8.5.4 From Debug Output to Story

While this low-level debug output is sufficient to respond to the polar question (yes/no

question) whether media items are clustered at all or not, it does not help with the non-

polar why question (the linguistic term for this type of questions is wh–question). In

order for human raters to get answers to the question on why media items are clustered,

we need to lift the low-level debug output to a high-level natural language story for the
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previously defined debug scenarios Clustering Consent, Clustering Dissent, and Non-

Clustering Dissent. This results in a natural language generation task, whose three

stages according to Reiter’s and Dale’s architecture [31] will be detailed below.

Generating Natural Language

Document Planning: In our context, the document is a set of low-level debug data

as illustrated in section 8.5.3. The natural language generation task is thus manageable.

We need to convey the currently selected tiles_threshold and similarity_threshold, the

number of detected faces f1 and f2 in each media item, and the number of tiles not

considered given the bw_tolerance parameter.

Microplanning: The microplanning task is driven by the debug scenarios that were

described previously. Initially, we need to decide on a matching condition aspect of the

algorithm that will be first highlighted. Typically, this will be the overall tiles statistics.

Afterwards, we need to elaborate on secondary matching conditions such as detected

faces and black-and-white tolerance. The grammatical number (plural or singular)

needs to be taken into account when statements about tile(s) or face(s) are planned.

Some values, e.g., the percentage of matching tiles, are calculated. The microplanner

needs to decide when exactness (e.g., “99% of all tiles”) and when approximation of

calculated values (e.g., “roughly 50%”) better suits the human evaluators’ information

needs. Neutral non-judgmental statements (e.g., “45 tiles”) and biased judgmental

statements (e.g., “not a single one [tile]”) need to be carefully balanced. Finally, in the

interest of a more naturally sounding phrase composition, the microplanner needs to be

aware of contrasting juxtaposition (e.g., “Both the left and the right media item contain

one detected face.” vs. “The left media item contains no detected faces, while the right

media item contains one detected face.”).

Realization: We show examples of sentences that are actually generated for the three

different debug scenarios (Quotes 1–3). For the sake of completeness, we provide one

additional example (Quote 4) for the debug scenario Non-Clustering Consent. The

running example of the Backstreet Boys media items for the music video Everybody is

represented by Quote 1.
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Clustering Consent (Quote 1). “The two media items are near-duplicates. Out of

overall 100 tiles, 52 from the minimum required 45 tiles were similar enough to be

clustered. However, 22 tiles were not considered, as they are either too bright or

too dark, which is a common source of clustering issues. Neither the left, nor the

right media item contain detected faces.”

Clustering Dissent (Quote 2). “The two media items are near-duplicates. Out of

overall 100 tiles, 41 from the minimum required 41 tiles were similar enough to be

clustered. However, 26 tiles were not considered, as they are either too bright or

too dark, which is a common source of clustering issues. Neither the left, nor the

right media item contain detected faces.”

Non-Clustering Dissent (Quote 3). “The two media items are different. Out of

overall 100 tiles, only 8 from the minimum required 67 tiles were similar enough

to be clustered. This corresponds to 8 percent of all tiles. The left media item

contains 2 detected faces, while the right media item contains 1 detected face.”

(Non-Clustering Consent) (Quote 4). “The two media items are different. Out of

overall 100 tiles, not a single one was similar enough to be clustered. Neither the

left, nor the right media item contain detected faces.”

Technical Implementation

Text-to-Speech: The generated texts are converted to speech using a text-to-speech

system. We use the eSpeak [11] speech synthesizer that was originally developed by

Jonathan Duddington in a JavaScript port called Speak.js, made available by Alon

Zakai [47]. This speech synthesizer uses the formant synthesis method, which allows

for many languages to be provided in a small size. Rather than using human speech

samples at runtime, the synthesized speech output is created using additive synthesis

and an acoustic model, where parameters such as fundamental frequency, voicing, and

noise levels are varied over time to create a waveform of artificial speech. The speech is

clear and can be used at high speeds. However, it is not as natural or smooth as larger

synthesizers that are based on speech recordings.

Visual Media Fragments Highlighting: We treat and address each tile of a media

item as a spatial media fragment. Figure 8.23 shows a grid of similar, different, and not
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considered tiles from the Backstreet Boys media items for the Everybody music video.

While the speech synthesizer reads the generated text, the corresponding tiles (e.g., the

matching tiles or the due to the black-and-white tolerance not considered tiles) are

visually highlighted to support the human evaluators’ understanding, as can be seen in

Figure 8.24 and in a screencast available at http://youtu.be/DWqwEnhqTSc (accessed

July 15, 2013). Spatial Media Fragments URIs are currently not implemented in any

common Web browser [42]. In order to nonetheless support spatial media fragments,

we use a so-called JavaScript polyfill for Media Fragments URI that was developed

in the context of this thesis.1 In Web development, a polyfill is downloadable code

that provides facilities by emulating potential future features or APIs that are not

built-in to a Web browser [33]. Our polyfill—in contrast to an additional earlier spatial

Media Fragments URI polyfill implementation [42] by Fabrice Weinberg—supports more

browsers and both image and video.

Figure 8.23: Similar (upper row) and different (lower row) corresponding tile pairs for the
media items from a Facebook (left column) and a Google+ user (right column); checkered
tiles are not considered due to the black-and-white tolerance

1https://github.com/tomayac/xywh.js accessed July 15, 2013
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Figure 8.24: Due to the black-and-white tolerance not considered checkered tiles, as the
text-to-speech system explains: “However, 22 tiles were not considered, as they are either
too bright or too dark, which is a common source of clustering issues.”

8.5.5 Evaluation

Evaluating Natural Language Generation Systems: For the evaluation of natu-

ral language generating systems, there are three basic techniques. First, the task-based

or extrinsic evaluation, where the generated text is given to a person who evaluates

how well it helps with performing a given task [29]. Second, there are automatic met-

rics such as BLEU [27], where the generated text is compared to texts written by people

based on the same input data. Finally, there are human ratings, where the generated

text is given to a person who is asked to rate the quality and usefulness of the text.

For our evaluation, we have chosen the third approach of human ratings, as we do not

evaluate the natural language generating system in isolation, but in combination with

a visual representation that makes use of spatial Media Fragments URIs (Figure 8.23

and Figure 8.24).

Evaluating Subjective Data: A common subjective evaluation technique is the

Mean Opinion Score (MOS, [18]). Traditionally, MOS is used for conducting subjective

evaluations of telephony network transmission quality, however, more recently, MOS has

also found wider usage in the multimedia community for evaluating inherently subjective

things like perceived quality from the users’ perspective. Therefore, a set of standard

subjective tests are conducted, where a number of users rate the quality of test samples

with scores ranging from 1 (worst) to 5 (best). The actual MOS is then the arithmetic

mean of all individual scores.
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Evaluation Results: In the context of this research, we have conducted MOS test

sessions with five external human raters. We generated artificially modified dedupli-

cated media item sets around media items about the Backstreet Boys that were shared

on social networks during the time of writing. These media item sets were curated

by yet another independent two external persons, assisted by a previously developed

software system that implements the deduplication algorithm described in this chap-

ter. We asked the two persons to provoke dissent and consent clustering situations for

the five human raters, i.e., obviously correct clustering (Clustering Consent), obvi-

ously incorrect clustering (Clustering Dissent), and obviously incorrect non-clustering

(Non-Clustering Dissent). We then asked the five human raters to have the system

automatically explain the algorithm results to them as described in subsection 8.5.4.

The raters gave MOS scores ranging from 2 to 5, with the overall average values as

follows: Clustering Consent: 4.3, Clustering Dissent: 3.3, and Non-Clustering

Dissent: 4.1. The human raters appreciated the parallel explanation approach, where

the visual and the audial parts synchronously described what the algorithm was doing.

They uttered that the not considered tiles (due to the black-and-white tolerance) as

well as erroneously not detected faces were sources of error in the algorithm that they

easily understood thanks to the human language description. They sometimes wished

for more diversification in the generated texts. Without exception, they liked the system

and encouraged future development.

8.6 Conclusions

In this chapter, we have treated the topic of media item deduplication from different

angles. We have first defined the meaning of exact and near-duplicate for both photos

and videos, including the special case of a photo being contained in a video. In a previ-

ous chapter, we have introduced an algorithm and application for video shot boundary

detection whose foundations then served for a more general photo deduplication algo-

rithm with semantic features in the present chapter. We have evaluated the algorithm

for two recent events that had broad social media coverage. Further, we have outlined

how the photo deduplication algorithm can be used for basic video deduplication, albeit

minimum system response time requirements hinder its full applicability in practice. Fi-

nally, we have successfully demonstrated the feasibility of making the task of debugging
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a complex algorithm more human-friendly by means of a combined visual and audial

approach. We have used Media Fragments URI together with a natural language gener-

ation framework realized through a speech synthesizer to visually and audially describe

media item differences. The approach was successfully evaluated for its helpfulness and

utility with the evaluation method Mean Opinion Score (MOS). Our contribution also

includes a polyfill implementation of spatial Media Fragments URIs.

Media item deduplication of both exact- and near-duplicate media items is a funda-

mental step in dealing with huge amounts of social media and media overload in general.

Highly popular media items not only tend to retrieve many social interactions on the

social network they were initially shared on, but also on other social networks. Derivates

of popular media items further add noise to the social media sharing landscape. Based

on our media item deduplication algorithms, we have contributed effective and efficient

tools to deal with social media overload and to identify the few needles in the cross

network haystack.

Chapter Notes

This chapter is partly based on the following publications.

• Thomas Steiner, Ruben Verborgh, Joaquim Gabarró Vallés, and Rik Van de Walle.

“Near-duplicate Photo Deduplication in Event Media Shared on Social Networks”.

In: Proceedings of the International Conference on Advanced IT, Engineering and

Management. Feb. 2013, pp. 187–188.

• Thomas Steiner, Ruben Verborgh, Joaquim Gabarro, Erik Mannens, and Rik Van

de Walle. “Clustering Media Items Stemming from Multiple Social Networks”. In:

The Computer Journal (2013). doi: 10.1093/comjnl/bxt147. eprint: http:

//comjnl.oxfordjournals.org/content/early/2013/12/29/comjnl.bxt147.

full.pdf+html. url: http://comjnl.oxfordjournals.org/content/early/

2013/12/29/comjnl.bxt147.abstract.
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9

Media Item Ranking

9.1 Introduction

In the previous chapter, we have introduced methods to deduplicate exact-duplicate and

near-duplicate media items. In this chapter, we introduce ranking criteria and methods

to put deduplicated media clusters in a well-defined order. The application screenshots

that can be seen in Figure 8.7 and Figure 8.8 show the most intuitive ranking criterion

one can imagine (besides publication time): ranking by occurrence popularity. The

more often a media item (or a near-duplicate) appears in any of the considered social

networks, the higher it should be ranked. However, ranking by occurrence popularity (or

media item cluster size) disregards one of the most valuable features of social networks:

the social aspects. In consequence, in this chapter, we will introduce further media item

ranking criteria that, together with media item cluster size, allows us to propose more

adequate social media item ranking mechanisms.

9.2 Media Item Ranking Criteria

In this section, we describe several criteria that can serve to rank media items retrieved

from social networks. We base these criteria on the information available via the media

item extractors described in Chapter 6 and the deduplication and clustering algorithm

described in Chapter 8. Given event-related search terms, via these approaches, we

extract raw binary media items and associated textual microposts and detected named

entities as described in Chapter 4 from multiple social networks.
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Textual Ranking Criteria: This category regards the microposts that accompany

media items. Typically, microposts provide a description of media items. Using named

entity disambiguation tools, textual content can be linked to LOD cloud concepts [10].

We have described micropost annotation in detail in Chapter 4.

Visual Ranking Criteria: This category regards the contents of photos and videos.

We distinguish low- and high-level visual ranking criteria. High-level criteria include

logo detection, face recognition, and camera shot separation. Low-level criteria include

file size, resolution, duration of a video, geolocation, time, and more. Via Optical

Character Recognition (OCR), contained texts can be treated as textual feature.

Audial Ranking Criteria: This category regards the audio track of videos. High-

level ranking criteria are the presence or absence of silence, music, speech, or a mixture

thereof in videos. Similar to visual features before, audial low-level features are the

average bit rate, volume, possibly distorted areas, etc. Through audio transcription,

speech can be treated as textual feature.

Social Ranking Criteria: This category regards social network effects like shares,

mentions, view counts, expressions of (dis)likes, user diversity, etc. in a network-agnostic

way across multiple social networks. We will detail social aspects later in this chapter.

Aesthetic Ranking Criteria: This category regards the desired outcome after the

ranking, i.e., the media gallery that illustrates a given event and its atmosphere. Studies

exist for the aesthetics of automatic photo book layout [7], photo aesthetics per se [6],

and video and music playlist generation [1, 3]. However, to the best of our knowledge,

no media gallery composition aesthetics studies exist that examine mixing video and

photo media items.

Temporal Ranking Criteria: This category regards the publication date of media

items. If media items are clustered, we can use the youngest media item as cluster

representative. Media items can be ranked by recency, as oftentimes more recent items

are more interesting in the streaming context of social networks.
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9.3 Social Interactions Abstraction Layer

9.3 Social Interactions Abstraction Layer

As we have described in Chapter 3, social networks have different paradigms of social

interactions. In subsection 6.4.1, we have briefly presented the overall abstraction layer

on top of the native data formats of all considered social networks in order to gain

a network-agnostic view on the underlying social networks. In this section, we detail

the part of the abstraction layer that models the network-specific social interaction

patterns. Those interaction patterns ideally are exposed by the social network via

specific API calls in order to be considered, which only is the case for a subset of

the social networks we deal with. Social interaction data is to some extent the holy

grail of social networks, which is the reason why sometimes Web scraping is the last

resort when not all data is accessible via APIs, as we have outlined in more detail in

subsection 6.4.2. In Table 9.1, we have listed how we abstract the social interactions

in question on each social network. In our concrete implementation, we differ unknown

values that are returned as unknown, i.e., where the information is not exposed, from

0 values, where the value is known to be zero. We briefly recall the social interactions

part of the abstraction layer’s data format:

socialInteractions Container for social interactions

likes Number of times a micropost was liked, or unknown

shares Number of times a micropost was shared, or unknown

comments Number of comments a micropost received, or unknown

views Number of views a micropost reached, or unknown

9.4 Merging and Ranking

If a set of media items is sufficiently similar to be clustered under the criteria that

were detailed in Chapter 8, we can treat the whole of the cluster as if it were just one

media item. Therefore, we need to specify a merging strategy for the associated data of

the individual media items in the particular cluster. Listing 9.1 shows the pseudocode

of the merging algorithm. During the merging step, we treat unknown values that

are represented as unknown as 0. The alternative to this solution would be to exclude
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Likes Shares Comments Views
Facebook Like
Google+ +1
Instagram Like
Flickr Favorite
YouTube Like
YouTube Favorite
Twitter Favorite

Facebook Share
Google+ Share
Twitter ReTweet

Facebook Comments
Google+ Comments
Instagram Comments
Twitter manual RT
Twitter @Replies
Twitpic Comments
MobyPicture Comments
Flickr Comments

YouTube Views
Flickr Views
Twitpic Views
MobyPicture Views

Table 9.1: Abstract social network interaction paradigms and their underlying native
social network counterparts

unknown values from the merging step. However, as in practice a considerable amount of

social interaction values are unknwon, we are forced to proceed with the abovementioned

simplification. The algorithm accumulates individual social interactions and assigns the

accumulated values to the cluster.

Input: cluster, cluster of visually similar media items
Output: cluster, cluster with merged social interactions

for mediaItem in cluster
cluster.likes += isUnknown(mediaItem.likes) ? 0 : mediaItem.likes
cluster.shares += isUnknown(mediaItem.shares) ? 0 : mediaItem.shares
cluster.comments += isUnknown(mediaItem.comments) ? 0 : mediaItem.comments
cluster.views += isUnknown(mediaItem.views) ? 0 : mediaItem.views

end for

return cluster

Listing 9.1: Social interactions merging algorithm

9.4.1 Selection of a Cluster’s Visual Representative

As outlined in the previous section, similar enough media items are clustered and treated

as just one media item by applying the merging algorithm for the social interactions

data. Now, we introduce an algorithm for the selection of a cluster’s visual representa-

tive. Naturally, through the way the clustering algorithm works, the contained media
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Input: cluster , cluster of visually similar media items
Output: cluster , cluster with visual representative

maxResolution = 0

for mediaItem in cluster

# Ensure that videos will always be preferred
if mediaItem.type == 'video ' then

mediaItem.width = mediaItem.height = INFINITY
end if

resolution = mediaItem.width * mediaItem.height
if resolution >= maxResolution then

maxResolution = resolution
cluster.representative = mediaItem

end if
end for

return cluster

Listing 9.2: Pseudocode of the cluster visual representative selection algorithm that finds
the highest quality media item of a cluster

items are already visually similar based on high-level features. In consequence, we fall

back to using low-level visual ranking criteria as defined in section 9.2. Listing 9.2

shows the cluster representative selection algorithm, which is based on the low-level

feature photo or video resolution. The algorithm selects the media item with the high-

est megapixel resolution as the cluster representative, which is a solid heuristic for the

optimal photo or video quality.

9.4.2 Ranking Formula

Up to now, we have shown how media item clusters are formed, how each cluster’s

social interactions data is accumulated, and how a cluster’s representative media item

is selected. In this section, we describe a ranking formula to rank a set of media clusters

that match a given query. In the ranking formula, we consider several well-defined

ranking criteria that were detailed in [11], namely visual, audial, textual, temporal,

social, and aesthetic. For a given set of media item clusters, a ranking is calculated as

shown in the following formula. The factors likes, shares, comments, and views stem
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from the individual media items as described in section 9.3 and section 9.4. The factor

clusterSize corresponds to the size of the current cluster. After some experimentation

with different event media items sets, the factor recency was empirically determined to

be calculated as follows. If the youngest media item in the cluster is less than or exactly

one day old, the value of recency is 8, for two days it is 4, for three days it is 2, and for

each day more, the value is 1. The factor quality is a representation of the presence of

faces and a media item’s photo or video quality.

α × likes + β × shares + γ × comments + δ × views+

ε × clusterSize + ζ × recency + η × quality (9.1)

Empirically optimized default values that can be fine-tuned for a concrete media

item set were determined as follows: α = 2, β = 4 , γ = 8, δ = 1, ε = 32, ζ = 2, and η = 8.

These factors follow the usage patterns of the different actions: viewing happens more

often than liking, which in turn happens more often than commenting, etc. We describe

the evaluation of the ranking formula in the upcoming section.

9.5 Evaluation

Evaluating subjective data like the correct ranking for a set of media items, is a chal-

lenging task. For different users, there may be different optimal ranking parameter

settings. A common subjective evaluation technique is the previously introduced Mean

Opinion Score (MOS) [2]. Given a subjective evaluation criterion like the correctness of

a ranking, MOS provides a meaningful way to judge the overall quality of our approach.

9.5.1 Event Analyses by Social Networks

We have evaluated our approach with the (at time of writing) recent event of the Super

Bowl XLVII,1 which was an American football game between the American Football

Conference champion Baltimore Ravens and the National Football Conference champion

San Francisco 49ers to decide the National Football League champion for the 2012

season. The Ravens defeated the 49ers by the score of 34–31. This event received broad

social media coverage and the social networks Twitter, Instagram, and Facebook all
1http://en.wikipedia.org/wiki/Super_Bowl_XLVII, accessed July 15, 2013
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published blog posts with analyses of the event on the respective networks, whereas the

search engine Google published an analysis of trending queries during the match. In

the following, we provide summaries of these different analyses, with the expectation to

encounter relevant media items for each of the mentioned highlights in our final ranked

list of media items stemming from the various social networks.

According to Twitter’s analysis,1 the five moments that generated the most tweets

during the game ordered by decreasing number of tweets per minute were the power

outage, the 108-yard kickoff return for the Ravens touchdown by Jones, the moment

when the clock expired and the Ravens won, Jones catches a 56 yard pass for a Ravens

touchdown, and the Gore touchdown for the 49ers. Overall, 24.1 million tweets about

the game and halftime show were counted, a number that even leaves aside the adver-

tisements, which in recent years have become a highly expected highlight of the Super

Bowl experience. The Twitter article further mentions the performance by superstar

artist Beyoncé and a number of Super Bowl advertisements as highlights of the event.

Instagram’s analysis2 mentions that more than three million photos with Super

Bowl-related terms in their captions were shared and at peak more than 450 photos

about the game were posted every second. During the halftime show, over 200 photos

per second were posted about Beyoncé. The blog post further highlights how a TV

channel pointed to selected photos and explains that brands ran Instagram campaigns.

According to Instagram, people used Instagram both directly at the event venue, but

also while watching from home, either by photographing their TV sets, or by pho-

tographing each other how they watched the event.

Facebook’s analysis3 mentions as top five most-talked-about moments of the Super

Bowl the moment when the Ravens won the Super Bowl, Beyoncé’s halftime perfor-

mance, the power outage in the Superdome, Jacoby Jones’ 108-yard kickoff return for

a Ravens touchdown, and Joe Flacco’s 56-yard pass to Jacoby Jones for a Ravens touch-

down. The Super Bowl was nicknamed the Harbaugh Bowl, as both teams’ head coaches

are named Harbaugh as last name. Facebook also mentions Alicia Keys’ performance

of the National Anthem as special event.

1http://blog.twitter.com/2013/02/the-super-tweets-of-sb47.html, accessed July 15, 2013
2http://blog.instagram.com/post/42254883677/sbroundup, accessed July 15, 2013
3http://newsroom.fb.com/News/570/Super-Bowl-XLVII-on-Facebook, accessed July 15, 2013
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The search engine Google has compiled a list of top trending search terms during the

match, with the top ones being the sponsor M&M’s, Beyoncé, Baltimore Ravens, San

Francisco 49ers, and Colin Kaepernick (quarterback for the San Francisco 49ers). Addi-

tional spiking search terms were power outage and Chrysler (driven by an advertisement

during the game). Further advertisement-related search terms were for advertisements

for M&M’s, Mercedes-Benz, Disney’s Oz Great and Powerful movie, Lincoln, and Audi.

While (at time of writing) no separate statistics are available for the video hosting

platform YouTube, Google’s blog post mentions that searches for Gangnam Style were

trending on YouTube, along with searches for big game performers in form of the artists

Alicia Keys and Beyoncé.

9.5.2 Expected Super Bowl Media Items

Given the differing social networks’ own analyses that we have summarized in the pre-

vious subsection, we expect to see media items on at least the following topics (in no

particular order) in our own ranked media item set.

the power outage
the performances of Beyoncé and Alicia Keys
the advertisements
the match itself from people at the stadium
the Super Bowl watchers around the world

Figure 9.1 and Figure 9.2 show media items for the search bundle 49ers and Balti-

more Ravens arranged in two different media gallery styles, loose order and strict order.

Search bundles are combined separate searches, i.e., we first searched for 49ers and

then for Baltimore Ravens and combined the results as if we had performed just one

search. For details on the automated media gallery generation, we refer the reader to

the upcoming Chapter 10.

9.5.3 Evaluation Approach

We asked three human raters to agree on a rating for the media items that were retrieved

for the two queries 49ers and Baltimore Ravens. We have made the dataset of media

items available.1 We then fine-tuned the weight factors α,β, γ, δ, ε, ζ, and η of the rank-

ing formula that was introduced in subsection 9.4.2 until the highest possible agreement
1https://www.dropbox.com/sh/30qwuvphcv49max/ilsaMbSdf6, accessed July 15, 2013
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Figure 9.1: Ranked Super Bowl XLVII media gallery in Loose Order, Varying
Sizes (LOVS) style
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between the human-generated ranking and the system-generated ranking was reached.

Afterwards, we tested these empirically determined weight factors of the ranking for-

mula with different events and asked the evaluators to what extent on a MOS scale from

1–5 they agreed with each of the top-10 ranked media items. Rating the ranking of all

media items is barely possible, which is why we limit ourselves to rating the top-10

returned results, a technique that is also known as pooling in the Information Retrieval

community [4]. Screenshots of some of the events we tested with and the particular

top-ranked media items can be seen in Figure 9.5, Figure 9.4, and Figure 9.3.

Figure 9.3: Ranked media gallery for the Facebook Graph Search launch event on January
15, 2013

9.5.4 Evaluation Results

In this subsection, we present the human raters’ results in the form of MOS scores

of the events that we tested our ranking formula with. As can be seen in Table 9.2

and as the combined MOS of 3.7 (variance 0.8) suggests, all selected top-10 media

items were overall considered relevant by the human raters. We arranged for post-test
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Figure 9.4: Ranked media gallery for the BlackBerry 10 launch event on January 30,
2013

PPPPPPPPPEvent
Rank

1 2 3 4 5 6 7 8 9 10 avg var

Facebook 3.8 3.3 4.9 4.2 3.9 5.0 3.7 4.8 4.8 3.1 3.6 0.4
BlackBerry 4.9 4.8 5.0 3.2 5.0 4.4 4.1 3.8 4.5 2.7 3.8 0.8
Qualcomm 4.9 4.7 4.9 5.0 2.4 4.1 3.1 5.0 2.1 3.7 3.6 1.0
Super Bowl 5.0 4.1 5.0 3.2 5.0 2.8 4.1 4.6 3.3 4.0 3.9 0.9

Table 9.2: Mean Opinion Scores (MOS) for the top-10 ranked media items of four events
(overall MOS: 3.7, variance: 0.8)

conversations with each human rater in order to understand their motivations for their

ratings. After talking to the human raters it became clear that lower scores were mostly

caused by outliers in the media item set. Further discussions with the human raters

revealed that if at a first glance the context to the event in question was missing, the

raters heavily downgraded the corresponding media items. We note that in order to

test the visual ranking aspect in isolation, raters were exclusively shown media items

without any micropost context. This approach made it hard for them to recognize

connections between remote media items to events on-site. Examples of remote media

items are media items of Super Bowl watchers around the world or photo montages of

online news media (see Facebook Graph Search launch, BlackBerry 10 launch). Another

reason for outliers according to the raters were too small media item previews of videos

that only made sense when seen in motion.
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Figure 9.5: Ranked media items for the Qualcomm CES 2013 keynote event on January 8,
2013 (raw cluster view)
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Figure 9.6: Media item ranking in our application with adjustable weight factors for the
ranking formula

9.6 Conclusions

In this chapter, we have detailed criteria that can be considered for the creation of

a ranking. We have shown how we abstract social interactions on social networks and

introduced an algorithm to merge social interactions when media items are clustered.

Additionally, we have detailed an algorithm for the selection of a media item cluster’s

visual representative. Finally, we have used the previously introduced aspects for the

definition of a ranking formula whose weight factors were empirically determined with

a representative sports event and successfully evaluated in practice with three other

events. For the task of ranking media items, there is no single one correct solution,

but only optimizations under given constraints. Albeit a maximum agreement between

human raters is aimed for, individual users will always have different ranking needs.

With our ranking formula proposition, we want to help such individual users with

a rationally traceable and useful default ranking that can be adapted easily to special
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needs or media item sets. We have implemented this ranking formula in a stand-alone

application,which will be described in more detail in section 10.7. With this application,

users can easily modify the weight factors to see their effects on-the fly. Besides all

possible customization, the application still proposes reasonable default values for each

individual parameter that have been demonstrated to work well for the majority of

cases. Figure 9.6 shows a screenshot of this application that effectively helps users see

the media items needles first and the haystack last.
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Chapter Notes

This chapter is partly based on the following publications.

• Thomas Steiner. “A meteoroid on steroids: ranking media items stemming from

multiple social networks”. In: Proceedings of the 22nd international conference

on World Wide Web companion. WWW ’13 Companion. Rio de Janeiro, Brazil:

International World Wide Web Conferences Steering Committee, 2013, pp. 31–

34. isbn: 978-1-4503-2038-2. url: http://dl.acm.org/citation.cfm?id=

2487788.2487798.

• Vuk Milicic, Giuseppe Rizzo, José Luis Redondo Garcia, Raphaël Troncy, and

Thomas Steiner. “Live topic generation from event streams”. In: Proceedings of

the 22nd international conference on World Wide Web companion. WWW ’13

Companion. Rio de Janeiro, Brazil: International World Wide Web Conferences

Steering Committee, 2013, pp. 285–288. isbn: 978-1-4503-2038-2. url: http:

//dl.acm.org/citation.cfm?id=2487788.2487924.

• Thomas Steiner, Seth van Hooland, Ruben Verborgh, Joseph Tennis, and Rik

Van de Walle. “Identifying VHS Recording Artifacts in the Age of Online Video

Platforms”. In: Proceedings of the 1st international Workshop on Search and

Exploration of X-rated Information. Feb. 2013. url: http://www.lsi.upc.edu/

~tsteiner/papers/2013/identifying-vhs-recording-sexi2013.pdf.
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10

Media Item Compilation

10.1 Introduction

In this chapter, we introduce aesthetic principles for the automated generation of media

galleries based on media items retrieved from social networks that—after a ranking and

pruning step—can serve to authentically summarize events and their atmosphere from

a visual and an audial standpoint. Mobile devices such as smartphones, together with

social networks, enable people to create, share, and consume media items like videos

or photos. These devices accompany their owners almost everywhere and are thus

omnipresent at all sorts of events. At such events—given a stable network connection—

part of the event-related media items are published on social networks both as the

event happens or afterwards, once a stable network connection has been established

again. Ranked media items stemming from multiple social networks can serve to create

authentic media galleries that illustrate events and their atmosphere. A key feature

for this task is the semantic enrichment of media items and associated microposts and

the extraction of visual, audial, textual, and social features. Based on this set of fea-

tures, additional aesthetic features can be defined and exploited to obtain appealing

and harmonic media galleries.

10.2 Related Work

While enormous efforts have been made to extract visual, audial, textual, and social

features from media items and microposts on social networks in isolation, to the best

of our knowledge, remarkably less initiatives concern the extraction and the application

187



10. MEDIA ITEM COMPILATION

of all those features in combination for all types of media items, including microposts.

In [24], Sandhaus et al. consider visual and aesthetic features for the automated creation

of photo books. Obrador et al. use visual and aesthetic features for a category-based ap-

proach to automatically assess the aesthetic appeal of photographs [22]. In [19], Knees

et al. use audial and textual features for the automatic generation of music playlists.

Choudhury et al. show in [11] how social and textual features can be used to achieve

precise detection results of named entities and significant events in sports-related mi-

croposts. In [12], Davidson et al. show how visual, textual, and social features can be

used for personalized video recommendations. A service called Storify [1, 15] lets users

manually combine microposts, photos, videos, and other elements onto one page for the

purpose of storytelling or summarizing an event and share stories permanently on the

Web. Finally, social networks present photos and videos often in grid-like galleries,1

sometimes scaled based on the amount of comments. When unique media items have

been collected, the remaining task is to summarize events by selecting the most relevant

media items or media fragments. Fabro and Böszörményi [13] detail the summarization

and presentation of events from content retrieved from social media. Nowadays, many

domain-specific methods already exhibit good accuracy, for example, in the sports do-

main [20, 21]. However, the challenge is to find content-agnostic methods. Methods

that exploit semantic information (e.g., [10]) will likely provide high-quality results in

the near future, but today’s most relevant summaries are still produced by manual—at

best semi-automated—user interaction [23].

10.3 Media Gallery Aesthetics

Definition: A media gallery is a compilation of photos or videos retrieved from so-

cial networks that are related to a given event. Given a set Mstart = {m1, ...,mn} of

media items related to a certain event, a ranking formula f , and a ranking threshold t,

the resulting subset Mfinal ⊂ Mstart is the result after the application of f to Mstart:

f(Mstart) =Mranked and pruning the ranked setMranked to only include members whose

rank is greater than t, with the resulting set named Mfinal. Each media item mi can

either be an instance of video or photo. For each point tx on a timeline T , the state

of the media gallery at tx is defined for each media item mi as a set Sx of n tuples
1http://twitpic.com/904yka/full, accessed July 15, 2013
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sx,i, where sx,i = ⟨left , top, width, height , alpha, z -index , animation, start , playing ,

volume⟩. The first six properties are defined as in CSS [4], the animation property

allows for the definition of CSS transitions as defined in [18] and CSS transformations

as defined in [16], the start property defines the start time in a video. The property

playing describes whether a video is currently paused or playing. Finally, the property

volume describes the volume level of a video. A schematic media gallery at tx can be

seen in Figure 10.1.

Video 1
3:52

Video 2
1:45

Image 1 Image 2

Image 4Image 3

Figure 10.1: Schematic media gallery with four photos and two videos

Audial aesthetics: Audial aesthetics thus consist of aspects like volume level nor-

malization, avoiding multiple videos playing music in parallel, smooth transitions, etc.

We remark that through selective mixing of audio tracks of event-related videos, “noise

clouds” that are very characteristic for an event’s atmosphere can be observed. We

support this by allowing users to play more than one video at a time.

Visual aesthetics: Visual aesthetics are determined by the composition, i.e., the

relation of the number of photos vs. the number of videos globally, per coherent scene,

and per point in time. In order to avoid cognitive overload of viewers, the number of

visible (moving) media items at a time should be limited. We will treat this topic in

more detail in subsection 10.5.1. Depending on the event, a consistent or a contrast-rich

overall appearance and transitions of items may be desired.
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10.4 Motivation for Automated Media Gallery Generation

Media galleries (see Figure 10.2 and Figure 10.3 for examples) help users consume

significant amounts of media items in an ideally pleasing and aesthetic way. These media

items may—or, more commonly: may not—be ordered, besides an intrinsic chronologic

order. In the context of our work on summarizing events based on microposts and media

items stemming from multiple social networks, we have created methods to first extract

event-related media items from multiple social networks, second, to deduplicate near-

and exact-duplicate media items, third, to cluster them by visual similarity, and finally,

to rank the resulting media item clusters according to well-defined ranking criteria. In

this chapter, we treat the challenge of compiling ranked media item clusters in media

galleries in ways such that the ranking-implied order is at least loosely respected. In

the previous section, we have defined aesthetic principles for automated media gallery

layout [26], which we now apply to media gallery styles. The task of media gallery

compilation is different from the widely researched task of photo book generation, as

media galleries can contain both photos and videos. Different types of media gallery

layouts are possible, two of which we have implemented and evaluated via two different

user studies: one with, and one without detailed user comments.

10.5 Media Gallery Styles

Media galleries—in contrast to free-form digital media collages—necessarily display me-

dia items in a grid-like way. The crucial question is thus whether the media items’ aspect

ratios should be respected, or whether they should be cropped to square, or other as-

pect ratios (e.g., 4:3 or 16:9). Respecting the aspect ratio has the advantage that media

items do not need to be cropped, which may affect important contained information like,

e.g., contained faces or text. However, due to the unpredictable media item formats,

compiling media galleries that do not look frayed is harder. The advantage of cropping

is that media gallery layout is easier, as the media item formats are predictably the

same, at the cost of having to decide where to crop. Different algorithms (e.g., [27])

beyond this chapter’s scope exist to aid this decision. Common cropping heuristics in-

clude maximizing the number of included faces, focusing on the detected center of the

media item, or cropping at detected background areas.
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Terminology: We use the following terminology. A media gallery is called balanced

if its shape is rectangular, hole-free if there are no gaps from missing media items, and

order-respecting if media items appear in insertion order. Optimal media galleries fulfill

all three conditions.

Non-Order-Respecting Styles: An interesting technique for arranging media items

is dividing. Paper sizes that follow the ISO 216 standard1 are the most common every-

day examples of the dividing principle: every media item with an aspect ratio of
√
2 can

be divided into two media items with the same aspect ratio [9]. This works for portrait

and landscape orientations, however, is not necessarily order-respecting. Two other non-

order-respecting techniques are (i) working with pre-defined placeholder patterns (small

and big squares, portrait and landscape rectangles) and then filling the placeholder

shapes with media items [6] or (ii) working with columns of pre-defined widths and

then iteratively inserting in the smallest column [8].

As outlined in section 10.4, we require (at least loosely) order-respecting media

galleries for the ranking step to make sense. In the upcoming two paragraphs, we will

introduce two techniques for the generation of such media galleries.

Strict Order, Equal Size (SOES): A media gallery style that we call Strict Order,

Equal Size (SOES), which strictly respects the ranking-implied order is presented in [5].

Examples can be seen in Figure 10.2a and Figure 10.3a. The algorithm works by resizing

all media items in a row to the same height and adjusting the widths in a way that the

aspect ratios are maintained. A row is filled until a maximum row height is reached,

then a new row (with potentially different height) starts, etc. This media gallery style

is strictly order-respecting, hole-free, and can be balanced by adjusting the number of

media items in +1 steps.

Loose Order, Varying Size (LOVS): Examples of a media gallery style that we

call Loose Order, Varying Size (LOVS) can be seen in Figure 10.2b and Figure 10.3b,

with the details explained in [7]. The algorithm works by cropping all images to a square

aspect ratio, which allows for organizing media items in a way such that one big square

1http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=
36631, accessed July 15, 2013
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(a) SOES, Survey A (b) LOVS, Survey A

Figure 10.2: Survey A: Media galleries visualizing a gathering at Times Square, New
York on February 8, 2013

(a) SOES, Survey B (b) LOVS, Survey B

Figure 10.3: Survey B: Media galleries visualizing a gathering at Times Square, New
York on February 8, 2013

always contains two horizontal blocks, each with two pairs of small squares. The media

gallery is then formed by iteratively filling big or small squares until a square is full

and then adding the square to the smallest column. This media gallery style allows any

media item to become big, while still being loosely order-respecting and always hole-

free. Balancing the gallery is slightly harder, as depending on the shape both small and

big media items may be required.
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10.5.1 Discussion and Evaluation

The main motivation for the Loose Order, Varying Size style is that certain media items

can be featured more prominently by making them big, while still loosely respecting the

ranking-implied order. Examples of to-be-featured media items can be videos, media

items with faces, media items available in High-Density quality, or media items with

interesting details [27]. Users may want to decide what media items to feature, albeit we

aim for an automated solution. Evaluating subjective data like the correct presentation

form for a set of media items is a challenging task. For different users and different media

galleries, there may be different optimal settings. Again, we use the Mean Opinion Score

(MOS, [17]) for our evaluation, as previously motivated.

User Studies: We have conducted two types of surveys. Survey A via multiple social

networks, where we simply asked people to “Like” and/or comment on their favorite

style of media gallery and Survey B that was distributed via email to a company-

internal “miscellaneous” mailing list, where we asked people to rate media galleries via

MOS, with optional comments. Survey A and Survey B used different media items in

the media galleries, as to have some measure in how far content has an impact.

Survey A—Via Social Networks: For Survey A on the social networks Twitter,

Facebook, and Google+, we had overall 16 participants (7 female, 8 male, 1 unknown).

7 users liked SOES more, whereas 9 users liked LOVS more. Interestingly, no user

commented on why they liked SOES more. Users who commented on why they liked

LOVS more mentioned they liked the additional structure and tidiness, the fact that

some media items were bigger, the fact that it was easier to identify individual media

items, and the fact that important media items were highlighted.

Survey B—Via Email: For Survey B via email with MOS ratings, we had 19 partic-

ipants (6 female, 13 male). The majority of users who liked LOVS more mentioned that

the different sizes gave the eye focal points and orientation, whereas one user explicitly

disliked this guidance. Users liked the harmony and the structure. Two users mentioned

that small media items were proportionally too small. Regarding SOES, users reported

they felt overloaded and did not know where to start. Some users said the layout was

boring and that, while they liked the outer framing, they were confused by the irregular
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inner grid. The MOS for SOES was 2.39 (variance 0.68), the MOS for LOVS was 4.17

(variance 0.47). The data of Survey B is available.1 For privacy reasons, we have posted

the media galleries as non-public microposts on social networks, which is why we are

unable to share the data of Survey A.

10.5.2 Maintaining Provenance Information with Downloadable Me-
dia Galleries

Media galleries consist of individual media items, each with its specific pieces of prove-

nance data like creator, originating social network, etc. In the context of the application

that we have developed in the context of this thesis and that will be described in full de-

tail in section 10.7, this provenance data is maintained in the form of HTML hyperlinks

back to the originating social networks. However, when media galleries get downloaded

in form of one static image dump, this is no longer the case. In consequence, we gener-

ate a caption-like image legend that gets added to each downloaded media gallery. An

example of a media gallery with provenance data generated in the context of the 2013

Taksim Gezi Park protests2 can be seen in Figure 10.4.

10.6 Interactive Media Galleries

Traditional slideshows: Up to now, we have presented different algorithms to gen-

erate media galleries of different styles and static media galleries, including a way to

preserve provenance data when media galleries get downloaded as one image. Such me-

dia galleries are useful in the context of static media, such as newspapers or embedded

in (online or offline) news articles. A first step towards more interactive media gal-

leries are so-called slideshows. An exemplary slideshow, courtesy of the BBC’s Online

division, can be seen in Figure 10.5.

Media gallery paradigm slideshows: We have opted to extend the traditional

slideshow model by adhering to the media gallery paradigm of our two preferred styles

Loose Order, Varying Size (LOVS ) and Strict Order, Equal Size (SOES ). Given a media

gallery in either LOVS or SOES style, each media item can be focused, i.e., be put

1http://bit.ly/media-gallery-survey, accessed July 15, 2013
2http://en.wikipedia.org/wiki/2013_Taksim_Gezi_Park_protests, accessed July 15, 2013
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Figure 10.4: Downloadable media gallery with provenance data

prominently in the foreground. When a media item is focused, it smoothly transitions

from its original location in the media gallery to the center, while in parallel it is zoomed

to double its size. All other media items that are currently not focused are faded out in

a black-and-white variant and blurred, in order to put the maximum emphasis to the

currently focused media item. Figure 10.6 shows three steps of the described transitions

and Figure 10.7 shows the final state after the transition. A short screencast of the whole

animation is available online at the URL https://vine.co/v/bT7eiwjE6DQ (accessed

July 15, 2013).
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Figure 10.5: Media gallery in form of a slideshow (Source and copyright: BBC Online
http://www.bbc.co.uk/news/world-europe-22740038, accessed July 15, 2013)

(a) Animation step 1 (b) Animation step 2 (c) Animation step 3

Figure 10.6: Three animation steps of interactive media gallery

Audial media galleries and text-to-speech synthesis: With our media galleries,

we go yet another step further and add an audio component to the interactive slideshow.

As media items of type video typically already have an audio track, it is thus straight-

forward to play the video once it is focused in the slideshow. In contrast, photos do not
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have audible information associated with them. We can, however, use the (potentially

machine-translated, see subsection 4.3.2) textual information of any of the media items

in the particular media item’s media cluster (see section 8.3) and via speech synthesis

create an audial experience. This follows the hypothesis that visually similar media

items also share similar textual descriptions. We use the set of extracted and disam-

biguated named entities (see subsection 4.3.1) combined with the insights gained from

part-of-speech tagging (see subsection 4.3.3) to select the one textual description from

the entire set of textual descriptions in each cluster that (i) maximizes the number

of named entities and that (ii) has the most diverse set of words identified as nouns,

verbs, and adjectives. Following this heuristic, we effectively avoid choosing a textual

description that only consists of a list of tags, as is often the case with, e.g., Instagram

(see subsection 3.2.6). We convert the textual description of a media item to audial

information with the help of a text-to-speech system. We use the eSpeak [14] speech

synthesizer that was described earlier in subsection 8.5.4.

10.7 Social Media Illustrator

Media galleries can be generated following the steps described in the previous chapters,

starting with micropost annotation (Chapter 4), followed by event detection (Chap-

ter 5), continuing with media item extraction (Chapter 6), over to media item dedupli-

cation and clustering (Chapter 7 and Chapter 8), media item ranking (Chapter 9) and

finally media item compilation (Chapter 10). We have developed an application called

Social Media Illustrator for the automated generation of media galleries that visually

and audially summarize events based on media items like videos and photos from mul-

tiple social networks. The application is publicly available at http://social-media-

illustrator.herokuapp.com/ (accessed July 15, 2013). Social Media Illustrator im-

plements all the abovementioned steps and is a start-to-end solution tailored to both

non-expert and expert users. Figure 10.8 shows the start screen of the application. The

application has two tabs: “Media Item Clusters” and “Media Gallery”.

Media Item Extraction: In a first step, the user enters a set of search terms that

are likely to reveal media items related to a given event. These search terms can be

official event hashtags (e.g., #VSFashionShow for the event described in section 8.3.6),
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Figure 10.7: Media gallery in interactive mode, one media item centered and exclusively
focused, all non-focused media items smoothly blurred and transitioned to a black-and-
white version

but more commonly a combination of names of the involved actors, event names, event

locations, or times [2, 3] like, for example, Stanley Cup 2013. Search results for each

search term appear in the results panel in the lower part of the graphical user interface

in form of a so-called search bundle. Search bundles are combined separate searches

that maintain mappings to the individual original search terms, which can be enabled

and disabled at will. Undesired media items can be removed from the result bundle

by clicking a red cross that appears when hovering over the media item in question.
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Figure 10.8: Social Media Illustrator start screen

Figure 10.9 shows Social Media Illustrator with extracted media items stemming from

various social networks for three search terms.

Figure 10.9: Media item extraction with search bundles from three search terms
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Media Item Deduplication: Via the parameter settings on the left side, fine-grained

control over the deduplicating and matching algorithm is possible. The configurable

options are described in subsection 8.5.3. Changes to any of the parameters are reflected

in realtime in the results panel below, which facilitates finding the optimal settings for

a given result set consisting of result bundles. Figure 10.10 shows the deduplication

debug view (see subsection 8.5.3) that is accessible by right-clicking two media items.

Figure 10.10: Media item deduplication debug view

Media Item Ranking: The parameter settings on the right side allow for interac-

tively changing the ranking factors. The user can select the main ranking criterion like

recency or popularity, and modify the weight factors for the different ranking features

in the ranking formula, as detailed in subsection 9.4.2. Again all changes are reflected

in realtime. A slider control allows for selecting the maximum and minimum age of

the considered media items in order to restrict the result set to a given time period.

Figure 10.11 shows the select box where the ranking formula can be selected.
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Figure 10.11: Media item ranking with configurable ranking formula

Micropost Annotation: Once the user is happy with her selection and ranking of

media items, the next step is micropost annotation, which—in contrast to the sequence

suggested by the chapter order—only happens at this stage, based on only the final set

of media items. This is due to the fact that calling the external named entity extraction

and disambiguation services described in subsection 4.3.1 is very expensive and time-

consuming, especially if an intermediate machine translation step is required. This step

happens transparently in the background, while the media gallery is being compiled

and is invisible to the user.

Media Item Compilation: The final step of media item compilation can be initiated

by clicking on the “Media Gallery” tab. A configurable number of media items are

compiled either in Loose Order, Varying Size (LOVS) style, or Strict Order, Equal Size

(SOES), which was detailed in section 10.5. The number of considered media items,

the width of the overall media gallery, and the width of individual media items can be

201



10. MEDIA ITEM COMPILATION

customized, with the changes being reflected on-the-fly. Figure 10.12 shows a media

gallery in the LOVS style. By clicking on one of the media items, the media gallery

enters the interactive mode, as can be seen in Figure 10.13. Navigation from one media

item to the next is possible via the arrow keys.

Figure 10.12: Media gallery generation based on the Loose Order, Varying Sizes style

10.8 Conclusions

In this chapter, we have defined factors that determine and influence media gallery

aesthetics. After an overview of related work and a motivation, we have examined

different algorithms for the automated generation of media galleries. While some of

the described algorithms do not fulfill our requirements with regard to respecting the

ranking-implied order, two of them—namely LOVS and SOES—do fulfill them and

are in consequence considered. We have created an application that auto-generates the

two media gallery styles SOES and LOVS, and evaluated users’ perceived quality with
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Figure 10.13: Media gallery in interactive mode

two separate surveys. The trend is that users prefer LOVS. Future work will be on

evaluating more media gallery styles and advanced heuristics for media item cropping

tailored to social network media items. As outlined earlier, such social media items

do not necessarily share the same properties as common photos and videos. Social

media cropping algorithms need to respect the characteristics of social media that were

described in subsection 8.3.1.

We have learned that eyes need focal points to spot the needles in the media gallery

haystack. Interactivity in form of visual eye candy as well as audial information are

helpful factors to create the impression of a consistent event summarization that makes

forget the fact that it was generated by combining potentially many social network

users’ contributions. Interactive media galleries help users process potentially large

amounts of data in an entertaining way. Nevertheless—and besides all desired media

gallery unity and consistency—we need to ensure that the individual social network

user’s contributions are still traceable in the combined media gallery. This is given for
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all use cases, offline and online. Concluding, with our publicly accessible application

Social Media Illustrator we have contributed a valuable social media tool that allows

non-expert users to create event-summarizing media galleries at ease.

Chapter Notes

This chapter is partly based on the following publication.

• Thomas Steiner and Christopher Chedeau. “To crop, or not to crop: compiling

online media galleries”. In: Proceedings of the 22nd international conference on

World Wide Web companion. WWW ’13 Companion. Rio de Janeiro, Brazil:

International World Wide Web Conferences Steering Committee, 2013, pp. 201–

202. isbn: 978-1-4503-2038-2. url: http://dl.acm.org/citation.cfm?id=

2487788.2487890.
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11

Conclusions and Future Work

11.1 Conclusions

In this thesis, we have tackled the challenge of event summarization from a multimedia

angle by leveraging social networks. In the first part of the thesis, we have presented the

Semantic Web, its technologies, and its applications like Linked Data. In continuation,

we have discussed social networks and their features and have classified them based on

their level of media item support. We have applied semantic methods for limiting am-

biguity that is intrinsic to language and that especially affects short textual microposts,

which oftentimes lack context. As this task required the orchestration of several services

in combination, we have shown how provenance information can be preserved to make

the involved steps traceable. We have shown how Wikipedia edits that we capture in

realtime can be clustered by language for the task of detecting breaking news event can-

didates. An accompanying application called Wikipedia Live Monitor was developed

and publicly released in the same context. We have examined how media items can be

extracted from various social networks and how the different underlying social network

messages and interactions can be aligned by an abstraction layer. Further, we have

introduced an algorithm to detect camera shots in streaming video and annotated them

semantically with media fragments URIs. This task is a required step for video dedupli-

cation, which we have tackled together with photo deduplication. We have determined

social-network-specific reasons for the occurrence of exact-duplicate and near-duplicate

content on social networks. Based on these findings, we have developed and algorithm

that is tailored to detect such occurrences of exact-duplicate and near-duplicate content.
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This algorithm has multiple matching conditions, which makes it hard for a non-expert

user to determine why or why not media items have been matched. Driven by this

observation, we have researched if speech synthesis together with dynamic media frag-

ment creation can help non-expert users understand the algorithm’s output, which in

consequence allowed us to significantly improve it. We have introduced a ranking for-

mula for social media clusters that, based on a social interaction abstraction layer, ranks

clusters by popularity and from each cluster selects the visually most appealing cluster

representative media item. Afterwards, we have discussed and evaluated several me-

dia gallery compilation algorithms that fulfill media gallery aesthetics criteria, which

we have defined. Finally, we have created an interactive, speech-synthesis-supported

visualization format on top of our media gallery compilation algorithms.

Based on a very open event definition from WordNet—“something that happens at

a given place and time”—we have identified the need to visually and audially sum-

marize events of personal or public interest. The increasingly important role of first-

hand eye-witness social media data at recent events like the Boston Marathon bomb-

ings 20131 or the Occupy Gezi movement 2013 in Turkey2 drastically confirm the ob-

servation that there is a strong demand for social-network-based event summariza-

tion. Since the beginning, we have openly shared our progress in form of screen-

shots for the different tasks of the application (http://twitpic.com/tag/TomsPhD,

accessed July 15, 2013) and have also documented our progress in general (http:

//tomayac.com/tweets/search?q=%23TomsPhD, accessed July 15, 2013). This has al-

lowed us to get early feedback on ideas and visualizations already at the design phase.

The way interactive mode works in media galleries that was detailed in section 10.6

is a result of this early-stage feedback loop. An earlier iteration of interactive mode

is documented in the screenshot available at http://twitpic.com/c94j02 (accessed

July 15, 2013), where the background media items were already blurred, but not yet

transformed into black-and-white. Especially with media items of type photo, through

steadily monitoring (at time of writing) current events, we have learned that social

media galleries need to be specifically tailored to handle all sorts of photo formats,

as screenshots in non-standard aspect ratios are more common than expected. Some

examples are documented in a screenshot available at http://twitpic.com/bvjmgc

1http://en.wikipedia.org/wiki/Boston_Marathon_bombings, accessed July 15, 2013
2http://en.wikipedia.org/wiki/2013_Taksim_Gezi_Park_protests, accessed July 15, 2013
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(accessed July 15, 2013). We were also surprised by the diversity of the media items

related to a given event. Where media galleries of traditional sources like news agen-

cies feature strictly event-related media items, media galleries created by our approach

also feature media items of humorous nature like memes,1 photo montages, or parody

images. On the one hand, this can be attributed to the less formal requirements regard-

ing the political correctness of media galleries created through our approach. On the

other hand, it can be traced back to the insouciant naivety of non-professional photog-

raphers and cinematographers that are responsible for the majority of social network

media items on the other. A good example is documented in the screenshot available

at http://twitpic.com/bvwz7x (accessed July 15, 2013).

Our initial research question was the following. “Can user-customizable media gal-

leries that summarize given events be created solely based on textual and multimedia data

from social networks?” Concluding, the answer is clearly yes. Media galleries based on

social network multimedia data are faster to generate, more authentic and concise, more

flexible and customizable, more comprehensive and diverse, and finally oftentimes more

interesting to consume than traditional media galleries. For any serious use case, human

final inspection will always be required, even in the long-term, as we will outline in the

next subsection. With our research and the applications Social Media Illustrator and

Wikipedia Live Monitor, we have contributed valuable tools, methods, design ideas, and

algorithms to facilitate and automate the otherwise tedious task of manually generating

media galleries. This allows users of these applications to focus on tasks where humans

excel, like, e.g., interpreting the effect of events on society, putting events in relation to

each other, or identifying reasons that caused them.

11.2 Future Work

11.2.1 Media Item Verification

An aspect that we have left aside so far is the verification of the credibility and authen-

ticity of both sources and media items themselves that get shared on social networks.

The growing importance and usage of truly first-hand eyewitness social media in tra-

ditional news media—or even social media being the actual news, as to some extent
1An Internet meme is an idea, style, or action that spreads, often as mimicry, from person to person

via the Internet, as with imitating the concept
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it was the case with the Boston Marathon bombings, makes social networks also an

increasingly popular focus of intentionally false information. The distribution of false

information in form of media items can have all sorts of motivations, ranging from

(sometimes fun) hoaxes1 to political propaganda to simple human errors. The list is far

from being complete. Occurrences of false information can include media items stem-

ming from unrelated events being published as event-related, manipulation of photos or

videos to modify, add, or remove persons or objects in media items, or wrong statements

in the accompanying microposts. Manual approaches to recognize false information can

include carefully checking the account publishing history of the originating source (does

the social network user seem legit?), comparison of depicted scenes with independent

media, e.g., satellite imagery or street panoramas (does the depicted scene look the

same elsewhere?), verifying weather conditions (were the known weather conditions at

the time when the event happened the same as the depicted ones?), analyzing media

items for known patterns of pixel manipulation (are traces of, for example, image edit-

ing software usage visible?), or finally, verifying media item metadata (do the data in

the Exif block look valid?). Research on media item verification is ongoing, an example

is [3] by Gupta et al. The first commercial companies are beginning to offer media item

verification as a service, e.g., Storyful (http://storyful.com/). The Managing Editor

of the company, Markham Nolan, has covered the topic of media item verification in

a TED Talk, which is available online.2 A future research direction can be to automate

this entirely manual process, albeit, having a human in the loop will—all potential

automation aside—still be required and desirable for many use cases.

11.2.2 Evaluation of Subjective Data

Examples of Subjective Data: In many of the tasks from the previous chapters

we had to deal with subjective data and how to evaluate it. In contrast to objectivity

(where people see things from a standpoint free from human perception and its influ-

ences, human cultural interventions, past experiences, and expectation of the result),

the contrasting term subjectivity is used to refer to the condition of being a subject,

1A hoax is a deliberately fabricated falsehood made to masquerade as truth
2http://www.ted.com/talks/markham_nolan_how_to_separate_fact_and_fiction_online.

html, accessed July 15, 2013
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under the influence of the subject’s perspective, experiences, feelings, beliefs, and de-

sires [4]. In the following, we list some of the subjective things that were evaluated in

this thesis. As a first example, there are media gallery aesthetics and media gallery use-

fulness (Chapter 10), where the subjective decision is whether or not generated media

galleries are aesthetically pleasing and at the same time useful for getting an under-

standing of the summarized event. Further examples are the subjective decisions on

a media item set’s ranking (Chapter 9), its clustering and deduplication (Chapter 8,

Chapter 7), and the set itself (Chapter 6). In addition to that, there is also event de-

tection, where the subjective decision is whether or not a given detected breaking news

event candidate is indeed newsworthy (Chapter 5) and for whom. Finally, there are

the extracted and disambiguated named entities from the accompanying microposts for

media items (Chapter 4).

Subjective Data Evaluation Strategies: Common strategies for the evaluation

of subjective data were examined by Brabb and Morrison in [1]. In the multimedia

context, the main evaluation strategies are the use of Likert scales [6] and the Mean

Opinion Score [5], which we have chosen for our evaluation purposes, as we were mainly

interested in the perceived quality of our tasks. What all these evaluation strategies

have in common is that they create a potentially artificial test feeling or lab environment

situation, where users tend to not act naturally.

Multi-Armed Bandits Experiments: One-armed bandits are slot machines with

potentially varying expected payout. Multi-armed bandit experiments are hypothetical

experiments where, when faced with several one-armed bandits, the objective is to

determine the most profitable one. The compromise or tension with such experiments

is to greedily decide on bandits that have performed well in the past and taking the

risk of trying new ones. Highly developed mathematical models exist [8] to optimize

this problem. Compared to more classical A/B tests, where two variants are tested

against each other, multi-armed bandit experiments are statistically just as valid and

can oftentimes return results earlier, as already during the experiment more focus is

gradually put on well-performing variants.

In the online retail industry, multi-armed bandit experiments have found broad

adoption as they are easy to set up and efficient in finding actionable results. They
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are used extensively, e.g., for the optimization of conversions for things like online pur-

chases, newsletter sign-ups, or click-throughs. Typical experiment factors are heading

texts, button colors and shapes, as well as page layout variants. Multi-armed bandits

experiments are in consequence standard features of common off-the-shelf Web analytics

software like, for example, Google Analytics (http://google.com/analytics).

Our hypothesis is that multi-armed bandit experiments can be used to evaluate the

sort of subjective data we generate with our application Social Media Illustrator, given

that we properly define our optimization criteria. Unlike with, e.g., online purchases,

where the optimization criterion are conversions,1 with media galleries there is no direct

optimization criterion. However, our assumption is that we can use indirect criteria like

interaction with the media gallery as outlined in section 10.6, the rationale being that

if a media gallery is interesting, the user will interact with it. Common Web analytics

software is capable of tracking mouse and keyboard events that occur when users interact

with Web pages. By exploiting this fact, we can attach event listeners to media galleries

and report these events to the Web analytics software running on a remote server. By

varying media gallery styles and parameters like the width, number of contained items,

item size, etc., we can then over time determine promising candidates. The proposed

evaluation approach is less expensive and more scalable than user studies, albeit user

studies may still outperform the approach with regard to discovering aspects that were

not part of a multi-armed bandit experiment and thus never tested, but that a study

participant may have noted in a free-form question. In the long-term, the proposed

approach can thus be the seed for more targeted user studies.

11.2.3 Application Domains

Embedded Media Galleries: A final future research direction is finding new ap-

plication domains. With our examples so far, we have mainly focused on the (online)

journalist use case. We envision interactive media galleries taking the place of static

photo galleries (Figure 10.5) or embedded videos on online editions of news websites or

also Web portals.

1The amount of people who do not just put items in the virtual shopping cart, but who then
proceed to and successfully complete the checkout process.
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Data Journalism: Data journalism [2] is a form of journalism that reflects the in-

creased role of numerical data in the production and distribution of information in the

digital era. It touches on the fields of design, computer science, and statistics. Interac-

tive media galleries and the cross-network search capabilities enabled by our application

Social Media Illustrator can greatly facilitate the data journalism task of researching

news stories and exploring multimedia data.

Event Pages of Social Networks: Some social networks like Facebook or Google+

offer their users the creation of events where event-related media items can be manually

or automatically uploaded when event attendees check in to an event. Naturally, in-

teractive media galleries embedded on social network sites themselves will only feature

media items from the social network in question and not include foreign ones.

Disaster Response: Disasters like earthquakes, floods, plane crashes, etc. cause great

damage or even loss of lives. Disaster response includes measures to mitigate the effects

of a disastrous event in order to avoid further loss of lives or property. Social networks

and especially social media play an increasing role in disaster response [9, 10]. Our

work has already sparked initial interest [7] in the disaster response community. We

will focus future work primarily on this aspect.

11.2.4 Commercial Activity in Social-Network-Based Event Summa-
rization

The research fields of event summarization and event archiving based on social network

multimedia data have resulted in interesting business creations in recent months. Albeit

similarities to our work exist, there are still many differences in the details.

Mahaya: The company Mahaya has launched a beta-version of a commercial auto-

matic event archiving tool called Seen (http://beta.seen.co/), which, based on man-

ually entered event metadata like event name, location, and dates, uses a necessarily

provided Twitter hashtag to create a complete and permanent archive of all event-related

tweets, media items, and slide decks. Based on term frequency and co-occurrence anal-

yses, the event is split into subevents and each subevent’s hot topics are tried to be

detected. The application’s main data source is Twitter, links to certain media hosting
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platforms are followed. At time of writing, Seen does not yet deduplicate and cluster

similar media items, albeit the tool is being actively worked on. A screenshot of Seen

can be found in Figure 11.1.

Eventifier: Eventifier http://eventifier.co/) is a commercial tool that facilitates

the automated permanent archiving of events in form of event-related photos, videos,

tweets, slide decks, and event contributors. Similar to Mahaya’s product Seen, the

application’s main data source is Twitter. The manually entered official event hashtag

and potentially existing official Twitter account serve to encounter event-related content.

At time of writing, Eventifier does not yet deduplicate and cluster similar media items,

however, this feature is said to be implemented. A screenshot of Eventifier can be seen

in Figure 11.2.

Storify: The commercial tool Storify (http://storify.com/) allows for the manual

compilation of event-related media items, articles, and microposts to generated perma-

nently available stories that—depending on the level of human curation—can efficiently

summarize an event. Storify does not deduplicate and cluster similar media items.

A screenshot of Storify can be seen in Figure 11.3.

Media Finder: Media Finder (http://mediafinder.eurecom.fr/) is an academic

non-commercial tool that has advanced named entity centric clustering capabilities

based on extracted named entities in microposts. Media items can be clustered by

topic, named entity, named entity type, and micropost instance. We have contributed

the application’s media extraction component, in consequence the covered social net-

works are exactly as described in Chapter 6. A screenshot of Media Finder can be seen

in Figure 11.4.

11.2.5 Comparison of Tools

In the previous paragraphs, we have characterized commercial and non-commercial

academic tools for the tasks of event summarization and event archiving. Table 11.1

shows how these tools compare against our own application Social Media Illustrator,

which for reference is depicted again in Figure 11.5. What sets our application apart

are its interactive media galleries that, together with speech synthesis as outlined in
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Figure 11.1: Mahaya’s commercial automatic event archiving tool called Seen (http:
//beta.seen.co/)
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Figure 11.2: Automated Twitter-centered commercial event archiving tool Eventifier
(http://eventifier.co/)
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Figure 11.3: Manually assisted multi-network commercial event archiving tool Storify
(http://storify.com/)
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Figure 11.4: Academic multi-network event summarization tool Media Finder (http:
//mediafinder.eurecom.fr/)
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section 10.6 allow for novel kinds of experiences when it comes to user-customizable

visual and audial event summary consumption in both passive and active user-controlled

ways with full provenance-aware download support.

11.3 Closing Words

In this thesis, we have touched on multiple areas of research. Some of the encountered

problems and challenges, for example, named entity extraction and disambiguation for

short and oftentimes sloppily-authored microposts or also video deduplication, certainly

deserve a thesis of their own. We have opted for a pragmatic approach in such cases

and have not shied back from either using third-party tools or working with approxi-

mations or heuristics, which work well enough for our use case. From the beginning,

we have envisioned an application that would facilitate the tedious work of compiling

media galleries manually. This application, Social Media Illustrator, forms part of the

deliverables of the thesis. We have separated the task of building this application in

several actionable steps and have contributed scientific publications for each of them.

The chapters of this thesis follow these steps loosely. As a reminder, the concrete steps

were the following: (i) micropost annotation, (ii) event detection, (iii) media item ex-

traction, (iv) media item deduplication, (v) media item ranking, and (vi) media item

compilation. At the end of this thesis, we are now in the position to first accurately

detect events and second, to visually and audially summarize them in an optionally

fully-automated or semi-automated manner, so the circle has been closed.

We were ourselves surprised by the broad range of possible future use cases, ranging

from end users reviving the atmosphere of a concert, to data journalists researching

political events of potentially global interest, to finally disaster relief workers coordinat-

ing their efforts based on information derived from our applications. We are excited to

improve, extend, and adapt Social Media Illustrator and Wikipedia Live Monitor in the

future with concrete ongoing research opportunities that were outlined earlier in this

chapter. This thesis marks the end of this doctorate, but it certainly does not mark the

end of this work.

“The Software shall be used for Good, not Evil.”1 —Douglas Crockford

1https://raw.github.com/douglascrockford/JSLint/master/jslint.js, accessed July 15, 2013
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Figure 11.5: Our own academic event summarization tool Social Media Illustrator (http:
//social-media-illustrator.herokuapp.com/)
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