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Foreword

This has been a long journey. As at the end of many trips, I feel comforted by the
achieved targets, confident for persevering in spite of hurdles, grateful for the opportune
walking sticks, and realized with the accomplishments. Undoubtedly, this has been the
most arduous challenge of my career.

I graduated as a Chemical Engineer in 2006 and as a MSc in Environmental Technology
in 2007 at Universitat Autònoma de Barcelona (UAB). After a short period of experi-
mental research at UAB, I enrolled in 2008 in the Chemical Process Engineering program
at Universitat Politècnica de Catalunya (UPC-BarcelonaTech) to undertake my doctoral
studies. From then on, my PhD work has been developed in the CEPIMA Research Group
under Prof. Antonio Espuña’s supervision and in collaboration with the Process Systems
Engineering (AVT.PT) Research Group at RWTH Aachen University, which I had the
opportunity to visit in three occasions, headed by Prof. Wolfgang Marquardt.

When I first met Prof. emer. Luis Puigjaner –founder of CEPIMA Research Group and
my first contact there– and Prof. Antonio Espuña –the group leader at present and my
thesis advisor– they proposed me to extend my expertise in Chemical and Environmental
Engineering toward a new field of work to me, as it was the complex machinery of Decision
Support Systems for Batch Process Management. From every perspective I found it an
extremely appealing field of work. It was also a challenging opportunity to complement
my previous background and gather experience in Process Systems Engineering (PSE),
one of my professional interests. So began the journey. And I soon shared Prof. Espuña’s
devotion and enthusiasm for the optimization of batch processes and for the integration
of decision levels, which have distinguished this research in many ways.

After intense studying of topics like top-tier modeling and optimization tools in Oper-
ations Research and the formulation of state-of-the-art problems of PSE, I finally defined
the objectives of my work. Eureka, I would focus on batch process optimization with
structural decisions and using dynamic performance models. From my inquiries I had
concluded that this was a very stimulating and rather unexplored problem from a practi-
cal point of view, especially if we considered processes with several stages whose processing
route was not fixed beforehand. The contact with AVT.PT Research Group at RWTH
Aachen University and the inspiring conversations with Prof. Marquardt were priceless
in this regard. Through the collaboration with Kathrin Frankl which I deeply appreciate,
I acquainted with the PhD work by Jan Oldenburg, which has been a huge influence to
my approach combining Dynamic Optimization (DO), discrete-continuous hybrid models,
and Generalized Disjunctive Programming (GDP) in the so-called Mixed-Logic Dynamic
Optimization (MLDO) problems.

This PhD thesis bets for integration assuredly. Numerous degrees of freedom in Batch
Process Development are here optimized simultaneously. The advantages are undeniable:
to avoid suboptimal solutions and to guarantee a better utilization of batch plants system-
atically. However, it became totally understandable to me why many experts prefer the
more manageable divide and conquer strategies, which solve problems like batch process
synthesis, plant allocation, and plant design sequentially or iteratively. The reason is that
the resulting integrated optimization problem may become of scandalous complexity from
a mathematical point of view. In fact, the most difficult part in the realization of this
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work has been to understand, deal with, and bring to fruition the search procedures and
solvers that should optimize the MLDO problems, once formulated. I humbly recognize
that this was an unfamiliar field to me, where I have had to dedicate many hours and
a great effort. In the end, and thanks to the excellent MINLP solvers that are currently
available in the market, the problems posed have come to be solved through the inte-
grative approach here proposed, what has permitted to carry out interesting analyses of
the influence of different decisions in Batch Process Development. In this regard, I feel
appealed by this quote by Picaso: "The chief enemy of creativity is ’good’ sense". Despite
PSE community is rightly directed toward the integration in the decision-making, the
’good’ sense would request smaller steps toward such integration. Nevertheless, and look-
ing backwards, the accomplishments obtained through the eager approach here presented
are extremely encouraging.

The credit of making a success of this journey is definitely of the many opportune
walking sticks and the many traveling companions that I have found. First of all, I would
like to thank Prof. Antonio Espuña for this professional challenge, for the confidence in
my expertise and support in my work, and for his critical observations and comments
that have helped this study to make a qualitative jump forward. I am also grateful to
Prof. Luis Puigjaner and Prof. Moisès Graells for making possible that I joined CEPIMA
Research Group. I want to express my immense gratitude toward Prof. Wolfgang Mar-
quardt, for opening the door for me in his group. The matters discussed with him were
really constructive and have contributed to set the basis for this work. Additionally, I
want to thank the support and inspiration found in my colleagues from Barcelona and
Aachen, where I have met great professionals and lasting friends. I feel privileged for
having participated with them in research projects and life experience. Especially, I want
to mention Kathrin Frankl for our collaboration along these years. I also appreciate the
great labor of the administrative support in the Chemical Engineering Department at
UPC-BarcelonaTech and in the AVT.PT chair at RWTH Aachen University. To my fam-
ilies Moreno, Benito, Libreros, and Rojas, I dedicate this thesis. Them, and my friends,
thanks for the unquestioning support and love these many years. A special recognition
has to be given to Mónica Sorín. Thanks for this parallel journey to learn about myself
and my road companions. Finally, I want to thank Nicolás Rojas, my husband, because
he is my motor, my compass, my water, my map in every journey.

My doctoral studies and the research reported in this thesis have been partially de-
veloped under the activities of the research projects: ToleranT (DPI2006-05673) funded
by the Spanish Ministry of Education and Science, EHMAN (DPI2009-09386) funded by
the Spanish Ministry of Science and Innovation and the European Regional Development
Fund, and SIGERA (DPI2012-37154-C02-01) funded by the Spanish Ministry of Econ-
omy and Competitiveness. Moreover, they have been supported by the Spanish Ministry
of Education and Science through the FPU Research Fellowship (FPU-2006 Program)
and by my own and my husband’s savings.

Marta Moreno

Cerdanyola del Vallés, January 5th 2014
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Resum

La indústria de productes químics especials es basa en la fabricació discontinua, ja que
permet adaptar de forma freqüent els sistemes de producció en funció de les fluctuacions
de mercat. Per ser líder al sector, són necessàries eines de suport a la decisió que ajudin a
l’àgil desenvolupament i implementació de nous processos. A més, aquests han de ser com-
petitius per garantir la seva viabilitat a llarg termini. Altres peces clau per una operació
eficient són l’ús de plantes flexibles així com l’estudi dels fenòmens fisicoquímics. Aquesta
tesis aborda justament el desenvolupament sistemàtic de processos químics discontinus
que siguin eficients, econòmicament competitius i ecològics, per contribuir a la seva rà-
pida introducció en els sistemes de producció, tant en escenaris de plantes existents com
des de les bases. En concret, es planteja la resolució simultània de la síntesi conceptual
d’esquemes de procés i l’assignació d’equips, tenint en compte el disseny de la planta.

Amb aquest objectiu, es proposa una metodologia de solució basada en optimització,
on les alternatives estructurals es representen en una Xarxa d’Estats i Equips (SEN per les
sigles en anglès) que es formula mitjançant un problema d’Optimització Dinàmica Mixta-
Lògica (MLDO per les sigles en anglès) que es resol minimitzant una funció objectiu.
La solidesa de la metodologia proposada rau en la estratègia de modelat del problema
MLDO, que integra els diferents tipus de decisions en un sol model d’optimització. En
concret, es consideren: (i) la combinació d’alternatives de síntesi i assignació d’equips, (ii)
models de procés i trajectòries de control dinàmics, (iii) esdeveniments discrets associats
al canvi de fase i operació, (iv) informació quantitativa i qualitativa, (v) sincronització de
transferències de material en tasques consecutives, i (vi) elements de processat discontinus
i semi-continus.

Existeixen diverses estratègies per resoldre el problema MLDO resultant. En aquesta
tesi es proposa en primer lloc un mètode determinístic directe-simultani, on el model mixt-
lògic es transforma en un mixt-enter. Aquest es discretitza al seu torn de forma completa
per obtenir un problema de Programació No-Lineal Mixta-Entera (MINLP per les sigles
en anglès) el qual es pot resoldre utilitzant algoritmes d’optimització convencionals. A
més, es presenten un Algoritme Genètic Diferencial (DGA per les sigles en anglès) i un
mètode híbrid. Totes dues estratègies esdevenen alternatives de cerca amb l’objectiu de
mantenir la bondat de la solució i millorar l’eficàcia de computació per tractar problemes
de dimensió industrial.

La metodologia de solució proposada s’aplica al desenvolupament de processos dis-
continus en escenaris de plantes existents, tenint en compte les restriccions físiques dels
equips. Un primer exemple aborda la manufactura de productes químics basada en un
sistema de reaccions competitives. Concretament, es desenvolupa i millora el procés de
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Resum

producció implementat en una xarxa de reactors considerant diferents escenaris econò-
mics, criteris de decisió, i modificacions de planta. En un segon exemple, s’optimitza el
procés foto-Fenton per ser executat en una planta pilot per eliminar contaminants emer-
gents.

Buscant integrar el desenvolupament de procés i el disseny de plantes flexibles en
escenaris de base, es presenta una formulació estocàstica en dues etapes per a optimitzar
el benefici esperat d’acord a diversos escenaris de demanda. Per gestionar la complexitat
d’aquest problema es proposa la utilització d’una heurística. Com a exemple, es planteja el
disseny d’una planta de base on implementar l’anterior sistema de reaccions competitives.
Decisions com les trajectòries dinàmiques de control o la configuració d’equips permeten
adaptar la recepta màster en funció de la demanda. Un darrer exemple defineix el procés
de producció de fibra acrílica, il·lustrant decisions com la selecció de tasques, tecnologia,
reactius o reutilització de dissolvents.
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Resumen

La industria productos químicos especiales se basa en la fabricación discontinua, la cual
permite la adaptación frecuente de los sistemas de producción en función de las fluctua-
ciones de mercado. Para ser líder en el sector, son necesarias herramientas de soporte a la
decisión que contribuyan al ágil desarrollo e implementación de nuevos procesos. Además,
éstos deben ser competitivos para garantizar su viabilidad a largo plazo. Otras piezas
clave para una operación eficiente son la utilización de plantas flexibles y el estudio de
los fenómenos fisicoquímicos. Esta tesis aborda justamente el desarrollo sistemático de
procesos químicos discontinuos que sean eficientes, económicamente competitivos y eco-
lógicos, para contribuir a su rápida introducción en los sistemas de producción, ya sea en
escenarios de plantas existentes o desde las bases. En particular, se plantea la resolución
simultánea de la síntesis conceptual de esquemas de proceso y la asignación de equipos,
teniendo en cuenta además el diseño de planta.

Con este fin, se propone una metodología de solución basada en optimización, donde
todas las alternativas estructurales se representan en una Red de Estados y Equipos (SEN
por sus siglas en inglés) que se formula mediante un problema de Optimización Dinámica
Mixta-Lógica (MLDO por sus siglas en inglés) que se resuelve minimizando una función
objetivo. La solidez de la metodología propuesta reside en la estrategia de modelado del
problema MLDO, que integra los diferentes tipos de decisiones en un solo modelo de
optimización. En concreto, se consideran: (i) la combinación de alternativas de síntesis y
asignación de equipos, (ii) modelos de proceso y trayectorias de control dinámicos, (iii)
eventos discretos asociados al cambio de fase y operación, (iv) información cuantitativa
y cualitativa, (v) sincronización de la transferencia de material en tareas consecutivas, y
(vi) elementos de procesado discontinuos y semi-continuos.

Existen diversas estrategias para resolver el problema MLDO resultante. En esta tesis
se propone en primer lugar un método determinístico directo-simultáneo, donde el pro-
blema mixto-lógico se reformula en un mixto-entero. A su vez, éste se discretiza de forma
completa para obtener un problema de Programación No-Lineal Mixta-Entera (MINLP
por sus siglas en inglés) el cual se puede resolver mediante algoritmos de optimización
convencionales. Además, se presentan un Algoritmo Genético Diferencial (DGA por sus
siglas en inglés) y un método híbrido. Ambas estrategias se plantean como alternativas
de búsqueda con objeto de mantener la bondad de la solución y mejorar la eficacia de
computación para tratar problemas de dimensión industrial.

La metodología de solución propuesta se aplica al desarrollo de procesos discontinuos
en escenarios con plantas existentes, teniendo en cuenta las restricciones físicas de los
equipos. Un primer ejemplo aborda la fabricación de productos químicos basada en un
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Resumen

sistema de reacciones competitivas. En concreto, se desarrolla y mejora el proceso de
producción a implementar en una red de reactores considerando diferentes escenarios
económicos, criterios de decisión, y modificaciones de planta. En un segundo ejemplo,
se optimiza el proceso foto-Fenton a ser ejecutado en una planta piloto para eliminar
contaminantes emergentes.

Persiguiendo la integración del desarrollo de proceso con el diseño de plantas flexi-
bles en escenarios base, se presenta asimismo una formulación estocástica en dos etapas
para optimizar el beneficio esperado de acuerdo a varios escenarios de demanda. Para
manejar la complejidad de dicho problema se propone la utilización de una heurística.
Como ejemplo, se plantea el diseño de una planta de base para implementar el anterior
sistema de reacciones competitivas, donde decisiones como las trayectorias dinámicas de
control o la configuración de equipos permiten adaptar la receta máster en función de la
demandas. Por último, se presenta un ejemplo donde se define el proceso de producción de
fibra acrílica, ilustrando decisiones como la selección de tareas, alternativas tecnológicas,
reactivos químicos o la reutilización de disolventes.
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Summary

Specialty chemicals industry relies on batch manufacturing, since it requires the frequent
adaptation of production systems to market fluctuations. To be first in the market, batch
industry requires decision-support systems for the rapid development and implementa-
tion of chemical processes. Moreover, such processes should be competitive to ensure
their long-term viability. The use of general-purpose and flexible plants and the consider-
ation of physicochemical insights to define an efficient operation are also cornerstones for
the success of specialty chemical industries. This thesis tackles precisely the systematic
development of batch processes that are efficient, economically competitive, and environ-
mentally friendly, to assist their agile introduction into production systems in grassroots
and retrofit scenarios. Synthesis of conceptual processing schemes and plant allocation
sub-problems are solved simultaneously, taking into account the plant design.

With this purpose, an optimization-based approach is proposed, where all structural
alternatives are represented in a State-Equipment Network (SEN) superstructure, follow-
ing formulated into a Mixed-Logic Dynamic Optimization (MLDO) problem to be solved
minimizing an objective function. Essentially, the strength of the proposed methodology
lies in the modeling strategy which combines the different kinds of decisions of the in-
tegrated problem in a unique MLDO model. Accordingly, it considers: (i) combination
of synthesis and allocation alternatives, (ii) dynamic process performance models and
dynamic control variable profiles, (iii) discrete events associated to transitions of batch
phases and operations, (iv) quantitative and qualitative information, (v) material trans-
ference synchronization to ensure batch integrity between unit procedures, and (vi) batch
and semi-continuous processing elements.

Different strategies can be used to solve the resulting MLDO problem. In this thesis,
a deterministic direct-simultaneous approach is first proposed. The mixed-logic model
is reformulated into a mixed-integer one, which is fully-discretized to provide a Mixed-
Integer Non-Linear Programming (MINLP) that is optimized using conventional solvers.
Then, a Differential Genetic Algorithm (DGA) and a hybrid approach are presented.
The purpose of these evolutionary strategies is to pose solution alternatives that keep
solution goodness while seek for the improvement of computational efficiency to handle
industrial-size problems.

The optimization-based approach is applied in retrofit scenarios to solve simultaneous
process synthesis and plant allocation taking into account the physical restrictions of
existing plant elements. The production of specialty chemicals based on a competitive
reaction system in an existing reactor network is first defined through process development
and improvement according to different economic scenarios, decision criteria, and plant
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Summary

modifications. Additionally, a photo-Fenton process is optimized to eliminate an emergent
wastewater pollutant in a given pilot plant, pursuing the minimization of processing time
and cost.

Batch process development in grassroots scenarios is also proven to be a problem of
utmost importance to deal with uncertainty in future markets. Seeking for plant flexi-
bility in several demand scenarios, the expected profit is optimized through a two-stage
stochastic formulation that includes simultaneous plant design, process synthesis, and
plant allocation decisions. A heuristic solution algorithm is used to handle the problem
complexity. A grassroots plant design is defined to implement the previous competitive re-
action system, where decisions like the feed-forward trajectories or operating modes allow
the adaptation of master recipes to different demands. A final example defines an acrylic
fiber production process, illustrating decisions like the selection of tasks, technological
alternatives, chemicals, and solvent reuse.
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Acronyms

AI Artificial Intelligence
AIBN azobisisobutyronitrile
AN acrylonitrile
AOP Advanced Oxidation Process
AP Augmented Penalty
B&B Branch-and-Bound
CHR Convex-Hull Relaxation
CNF Conjunctive Normal Form
DAE Differential-Algebraic Equations
DGA Differential Genetic Algorithm
DMF dimethylformamide
DNF Disjunctive Normal Form
DO Dynamic Optimization
DOE design of experiments
DOF degrees of freedom
DP Dynamic Programming
EHS Environment Health and Safety
EPC end-point constraint
GA Genetic Algorithm
GBD Generalized Benders Decomposition
GDP Generalized Disjunctive Programming
GMP Good Manufacturing Practices
HAZOP Hazard and Operability Analysis
HEN heat exchanger network
HS Harmony Search
IFS initial feasible solution
KPI key performance indicator
LCIA Life Cycle Impact Assessment
MIDO Mixed-Integer Dynamic Optimization
MILP Mixed-Integer Linear Programming
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MINLP Mixed-Integer Non-Linear Programming
MLD Mixed-Logic Dynamical
MLDO Mixed-Logic Dynamic Optimization
MO multi-objective
MP Mathematical Programming
mSTN Maximal State-Task Network
NCO necessary conditions of optimality
NLP Non-Linear Programming
OA Outer Approximation
OC Optimal Control
PC path constraint
PCT Paracetamol
PSE Process Systems Engineering
PWC piecewise constant
RFDL Recipe Formal Definition Language
RTN Resource-Task Network
SA Simulated Annealing
SEN State-Equipment Network
SO single-objective
SQP Sequential Quadratic Programming
STN State-Task Network
TOC Total Organic Carbon
TS Tabu Search
VA vinyl acetate

General sets

ID Set of disjunctive terms

General variables

zk(t) Differential process variables in mathematical stage k
yk(t) Algebraic process variables in mathematical stage k

udynk (t) Dynamic control variables in mathematical stage k
ustat Time-invariant or static continuous control variables
uint Integer control variables
uBool Logical or Booleans decisions
ubin Binary decisions
γ Algebraic time-invariant variables
p Process parameters

General functions

A Matrix of the semi-explicit DAE system of differentiation index 1 at most
f DAE system
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g Path constraints
ge End-point constraints
h Algebraic equations evaluated at the final time
l Set of relations that define initial conditions
m Stage-to-stage continuity between consecutive mathematical stages
fd DAE system in disjunctive equations
gd Path constraints in disjunctive equations
gd,e End-point constraints in disjunctive equations
hd Algebraic equations evaluated at the final time in disjunctive equations
ld Set of relations that define initial conditions in disjunctive equations
md Stage-to-stage continuity between consecutive mathematical stages in dis-

junctive equations
Bd Equations system to define bypass stages in disjunctive equations
Ω Logical propositions
Φ Objective function

Problem sets

Λi Set of technological specifications in task i∈PS
Λj⊆Λi Set of technological specification of unit j∈U in task i∈PS, |Λj |=1, ∀j∈U
Ψi Set of configurations in task i∈PS
C Set of chemical compounds involved in the process
Csj ⊆ C Subset of potential reactants, solvents, or catalysts in unit j∈U subject to be

selected
Di,ψ⊆Ui Subset of batch units Ui in task i∈PS whose input flow rate is a control

variable in configuration ψ∈Ψi. It is defined such that |Di,ψ| = DOFi,ψ−|Ui|,
where |Ui| represents DOF removed by output flow rates

Ij⊆Kj Set of input stages for unit j∈U at Level 1
J Set of all existing and potential equipment pieces, J=U ∪ T ∪ Sp ∪Mx

Ji⊆J Set of equipment pieces within potential task i∈PS,
Kj Set of stages for unit j∈U at Level 1
L Set of potential stages at Level 0, L={1,...,Lmax}
La⊆L Set of active stages at Level 0
L0
j⊆L Set of stages at Level 0 where unit j∈U can start its operation,L0

j={1, |Kj′ |-
|Oj′ |+1 | j′ 6= j, j′∈U}

M in
j ⊆Mj Set of input pipelines to unit j∈U at Level 1

Mout
j ⊆Mj Set of output pipelines from unit j∈U at Level 1

Mj Set of pipelines for unit j∈U at Level 1
Mx Set of existing and potential mixers
N Set of pipelines at Level 0
N0
i,ψ⊆N Set of pipelines at Level 0 whose flow rate is restricted to zero in configuration

ψ∈Ψi of task i∈PS
N b
i ⊆ Ni Bypass pipeline for process stage i ∈ PS, |N b

i |=1

Nf
i ⊆N Set of pipelines at Level 0 for task i∈PS whose flow rate is fixed by the

preceding task, |Nf
i |=1 except for process stages preceded by a buffer j∈T
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N r⊆N Set of pipelines at Level 0 for recirculation
N in
i ⊆ Ni Subset of input pipelines to process stage i ∈ PS

N in
j ⊂N Set of input pipelines to equipment j∈J at Level 0

Nout
j ⊂N Set of output pipelines from equipment j∈J at Level 0

Ni ⊆ N Set of pipelines at Level 0 for task i ∈ PS
Oj⊆Kj Set of output stages for unit j∈U at Level 1
P⊂C Subset of desired products
PS Set of potential process stages or tasks
Q Set of ordered positions that can be assumed by unit procedures of j∈U ,

Q={1, ..., |U |}
Sp Set of existing and potential splitters
T Set of existing and potential storage tanks
T rn⊆T Buffer tank for potential recirculation of flow n∈N r, |T rn |=1,∀n∈N r

U Set of existing and potential batch units

Problem parameters

Demp Demand of product p ∈ P
DOFi,ψ Degrees of freedom with regard to the flow rates at Level 0 at process stage

i ∈ PS, according to each configuration ψ ∈ Ψi

l0j,q Starting stage of unit j∈U when the task-unit Boolean Wj,q is true, l0j,q=q-th
element of the ascending sort of L0

j of unit j∈U
Lmax Maximum number of stages at Level 0,
pj,c Values for the set of process parameters pj in unit j ∈ U when potential

chemical alternative c ∈ Csj is selected

Problem variables

Batchp Production size associated to each batch of product p ∈ P

F jm,k Flow rate for every input or output pipeline m ∈ M in
j ∪ M

out
j and stage

k ∈ Kj of unit j ∈ U at Level 1
Fn,l Flow rate for every pipeline n ∈ N and stage l ∈ L at Level 0

intjk Internal control variable for every stage k ∈ Kj of unit j ∈ U at Level 1 and
k ∈ L of unit j ∈ J\U at Level 0

NBp Number of batches of product p ∈ P
Rn Recirculation Boolean to indicate whether intermediate flow in pipeline n ∈

N r is recirculated (Rn=true) or not (Rn=false)
rn Recirculation binary to indicate whether intermediate flow in pipeline n ∈ N r

is recirculated (rn=1) or not (rn=0)
Sjc Chemical compound Boolean to indicate whether reactant, solvent, or cata-

lyst c ∈ Csj is selected in unit j ∈ U (Sjc=true) or not (Sjc=false)

sjc Chemical compound binary to indicate whether reactant, solvent, or catalyst
c ∈ Csj is selected in unit j ∈ U (sjc=1) or not (sjc=0)

Shortfallp Unaccomplished demand of product p ∈ P
Sizej Capacity of unit j ∈ U ∪ T
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T f Total time at Level 0
ts Starting time in at Level 0
tend Final time at Level 0
tj,end Final time of unit j ∈ U at Level 1
T j,f Total time of unit j ∈ U model at Level 1
tj,s Starting time of unit j ∈ U at Level 1
tjk Duration of stage k ∈ Kj of unit j ∈ U at Level 1
tl Duration of stage l ∈ L at Level 0
vjk(t) Volume of material in batch unit j ∈ U at stage k ∈ Kj or in storage tank

j ∈ T at stage k ∈ L
V jλ Technology Boolean to indicate whether technological specification λ ∈ Λj

for processing unit j ∈ U is selected (V jλ=true) or not (V jλ=false)

vjλ Technology binary to indicate whether technological specification λ ∈ Λj for
processing unit j ∈ U is selected (vjλ=1) or not (vjλ=0)

Wj,q Task-unit assignment Boolean to indicate whether unit procedure order q ∈ Q
is assigned to unit j ∈ U (W i

j,q=true) or not (W i
j,q=false)

wj,q Task-unit assignment binary to indicate whether unit procedure order q ∈ Q
is assigned to unit j ∈ U (wij,q=1) or not (wij,q=0)

X i
ψ Configuration Boolean to indicate whether alternative ψ ∈ Ψi of process stage

i ∈ PS is selected (X i
ψ=true) or not (X i

ψ=false)

xiψ Configuration binary to indicate whether alternative ψ ∈ Ψi of process stage
i ∈ PS is selected (xiψ=1) or not (xiψ=0)

xjc,m,k Flow composition of compound c ∈ C for every input or output pipeline
m ∈M in

j ∪M
out
j and stage k ∈ Kj of unit j ∈ U at Level 1

xc,n,l Flow composition of compound c ∈ C for every pipeline n ∈ N and stage
l ∈ L at Level 0

yj Equipment binary to indicate whether processing or storage unit j ∈ U ∪ T
is selected (yj=1) or not (yj=0)

Yj Equipment Boolean to indicate whether processing or storage unit j ∈ U ∪T
is selected (Yj=true) or not (Yj=false)

Zi Process stage Boolean to indicate whether process stage i ∈ PS is selected
(Zi=true) or not (Zi=false)

zi Process stage binary to indicate whether process stage i ∈ PS is selected
(zi=1) or not (zi=0)
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Index of terms

For the sake of consistency, the terms used in this thesis are defined according to the
Standard S88 (ANSI/ISA-88) and complemented by the terminology at the PSE research
community devoted to batch processing.
1 Definition extracted from the Standard S88 (ANSI/ISA-88).

A
adaptability: ability of a system to fit

its behavior according to occurring
changes in its environment or in parts
of the system itself, 2

added value: benefit margin that can
be obtained through the production
of a particular product, 6

allocation of manufacturing
facilities1: a form of coordination
control that assigns a resource to a
batch or unit, 3, 9, 11, 31, 37, 41, 103,
149

B
batch1: (1) The material that is being

produced or that has been produced
by a single execution of a batch pro-
cess. (2) An entity that represents the
production of a material at any point
in the process, 59
∼ integrity: the coherent transfer of

the material composing each batch
along the chain of task, 59, 65

batching: division of the total prod-
uct demand into a number of batches
with a specific production size, 83

batch size: amount of final product pro-
duced at each batch, 3, 56

bypass strategy: method developed by

Oldenburg and Marquardt to deal
with an uncertain number of math-
ematical stages in multistage models
by defining the maximum number of
stages to following dismiss those that
are not necessary for a particular so-
lution, 76, 80

C
campaign: a limited run of prod-

uct through the production process,
which can last from days to months
depending on the products, processes,
and production requirements, 3

control variable: free operational vari-
ables that are an input into the con-
trol system and determine the out-
put, 3, 74

dynamic ∼: control variable that can
change along time, 74, 77, 83

integer ∼: control variable with a
unique discrete value which can not
change along time, 74

logical or Boolean ∼: discrete con-
trol variable characterized by having
a true or false value, 76, 83

time-invariant or static ∼: con-
trol variable with a unique continu-
ous value which can not change along
time, 74

XIX
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Index of terms

∼ trajectory: feed-forward solution
defining the profile of the control vari-
able that should be followed along
time to obtain a particular output,
55, 59, 62, 64

cycle time: characteristic time between
two consecutive batches, 3, 56

D
degrees of freedom (DOF):, 76, 83
discrete event: discontinuity in a dy-

namic model
explicit discontinuity: event that oc-

curs in a particular time, 61
implicit discontinuity: event that

occurs as a function of a change in
process variables, e.g. shift to next
batch phase when a specific conver-
sion is achieved, 61

Dynamic Optimization (DO) opti-
mization problem applied to dynamic
systems, considering the variation of
control variables along time as de-
grees of freedom, 9, 25, 33, 62

E
enterprise1: an organization that coor-

dinates the operation of one or more
sites, 4, 150

equipment configuration, see operat-
ing mode

equipment item, see unit

F
fixed time and size factor model:

process representation where the time
is approximated to a predefined
value, and the capacity requirements
are calculated as a function of the
batch size, 7, 10, 11

flexibility: ability of a system to re-
spond to uncertainty in a manner to
sustain or increase its value delivery,
152

plant∼: ability of a specific design or
operational plan to deal with a set of
uncertain parameters, 6

G
general discrete-continuous hybrid

model: dynamic models that in-
corporate explicit and implicit dis-
continuities through the division of
the time horizon into mathemati-
cal stages and are defined by DAE
systems, initial boundary conditions,
path and end-point constraints for
each stage, stage-to-stage matching
conditions, and transition conditions;
for the sake of simplicity, they are
also referred to as multistage models
in this thesis, 61

Generalized Disjunctive Program-
ming (GDP): Mathematical Pro-
gramming that involves Boolean and
continuous variables that are speci-
fied in algebraic constraints, disjunc-
tions and logical propositions; exten-
sion of the Disjunctive Programming
by Balas, 63

grassroots scenario: particular con-
text for plant allocation problem, as-
suming that a new plant is con-
structed to produce a portfolio of
products according to their corre-
sponding process models, 4

I
integration: the process of bringing

together the component subsystems
into one system and ensuring that
the subsystems function together as
a system, 10, 37

L
lifecycle: sequence of phases spanning

the design, creation, use, and decom-
missioning of an artifact, 4, 6

lost opportunity, see added value

M
Mathematical Programming (MP):

optimization problem that relies on
the use of mathematical models to as-
sist in taking decisions to minimize an
objective function given a set of con-
straints, 19, 23, 114

mathematical stage: subdivision of
the time horizon in multistage and

XX
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general discrete-continuous hybrid
models, 69

active∼: mathematical stage that rep-
resents an actual phase or operation
in the associated equipment item, 80

bypass∼: mathematical stage that
does not represent any actual phase
or operation in the associated equip-
ment item, 76, 81

input∼: mathematical stage that rep-
resents a material input transfer op-
eration to the associated equipment
item, with flow rate and composition
as input variables, 74, 79

output∼: mathematical stage that
represents a material output transfer
operation from the associated equip-
ment item, with flow rate and com-
position as output variables, 74, 79

Mixed-Logic Dynamic Optimiza-
tion (MLDO): combination of Dy-
namic Optimization (DO) and Gen-
eralized Disjunctive Programming
(GDP), 64

multistage model: dynamic models
that incorporate explicit discontinu-
ities through the division of the time
horizon into mathematical stages and
are defined by DAE systems, ini-
tial boundary conditions, path and
end-point constraints for each stage,
and stage-to-stage matching condi-
tions, 61, 76

O
objective function: mathematical for-

mulation of the decision criteria in op-
timization problems, 83

operating mode: equipment topology
to execute a particular process stage,
i.e. single, parallel in-phase or out-of-
phase, 54, 80

operation1: a procedural element defin-
ing an independent processing activ-
ity consisting of the algorithm neces-
sary for the initiation, organization,
and control of phases, 3, 59, 61

material transfer∼1: a processing
activity involving loading and un-

loading activities to transfer totally
or partially a batch from one process-
ing/storage unit to another, 11, 61,
65, 73

process∼1: a major processing activ-
ity that usually results in a chemi-
cal or physical change in the mate-
rial being processed and that is de-
fined without consideration of the ac-
tual target equipment configuration,
18

Optimal Control (OC), see Dynamic
Optimization

P
path, see route
Petri net: graph representation of a

mathematical model that describes
discontinuous systems, where the
nodes represent discrete events or
transitions and directed arcs repre-
sent the previous and posterior con-
ditions of the transitions, 76

phase1: the lowest level of procedu-
ral element in the procedural control
model, 3, 59, 61

plant, see site
multiproduct∼: plant that embrace

the production of several products,
assuming that all products follow the
same production route, 4

multipurpose∼: general-purpose fa-
cility where a variety of products may
be produced through arbitrary equip-
ment sequences and locations, shar-
ing the available equipment and re-
sources, 4

single-product∼: plant that em-
brace the production of an only prod-
uct following a unique production
path, 4

plant design: development of a process-
ing facility for the production of a de-
sired product portfolio, 34

posynomial function: process repre-
sentation through a mathematical
function that relates size factors to
certain operating parameters by us-
ing symbolic rearrangement of the

XXI
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process equations, 10
procedural control model1: definition

of the equipment-oriented actions to
take place in an ordered sequence in
order to carry out a process-oriented
task, 4

procedure1: the strategy for carrying
out a process, 3

batch∼: strategy for carrying out a
process composed by a sequence of
batch operations and phases, 55, 60,
65

operating∼1: strategy for carrying
out a process; detailed sequence of
phases and operations to be executed
safely and optimally, 47, 49

semi-continuous∼: strategy for car-
rying out a process through an inter-
mittent use of continuously operated
plant elements, 55, 60, 65

unit∼1: strategy for carrying out a
contiguous process within a unit. It
consists of contiguous operations and
the algorithm necessary for the ini-
tiation, organization, and control of
those operations, 3, 6, 55

process1: a sequence of chemical, physi-
cal, or biological activities for the con-
version, transport, or storage of ma-
terial or energy

batch∼1: a process that leads to the
production of finite quantities of ma-
terial by subjecting quantities of in-
put materials to an ordered set of pro-
cessing activities over a finite period
of time using one or more pieces of
equipment, 2, 17

process cell1: set of equipment, within
an area, required for the production
of one or more batches, 54

process coordination: process of di-
recting, initiating, and/or modify-
ing the utilization of equipment en-
tities to execute equipment-oriented
actions taking place in an ordered se-
quence to carry out process-oriented
tasks; management of operating pro-
cedures, 49

process development: stage in a pro-

cess lifecycle that involves the defini-
tion of the production steps to bring
a chemical product to manufacturing
and commercialization stages, 2, 17

process model1: definition of the
process-oriented tasks involving a
process, 3

process stage1: a part of a process that
usually operates independently from
other process stages and that usually
results in a planned sequence of chem-
ical or physical changes in the mate-
rial being processed, 3, 55, 56, 61, 80

production line: a collection of one
or more units and associated lower
level equipment groupings that has
the ability to be used to make a batch
of material, 2

R
recipe1: the necessary set of information

that uniquely defines the production
requirements for a specific product, 4

control∼1: a type of recipe which,
through its execution, defines the
manufacture of a single batch of a
specific product, 4, 47

fixed∼: a type of recipe composed of
predefined parameters based on nom-
inal conditions and tests in the labo-
ratory or pilot plant, which can not
be modified, 7

flexible∼: a type of recipe contain-
ing a set of adaptable recipe items
that controls the process output, and
can be modified to face any deviation
from the nominal conditions, 11, 41

general∼1: a type of recipe that ex-
presses equipment and site indepen-
dent processing requirements, 4

master∼1: a type of recipe that ac-
counts for equipment capabilities and
may include process cell-specific in-
formation, 4, 47, 58

site∼1: a type of recipe that is spe-
cific to a site, defining site as a com-
ponent of a batch manufacturing en-
terprise that is identified by physical,
geographical, or logical segmentation
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within the enterprise, 4
reliability: capacity of a system to fea-

sibly operate in an uncertain environ-
ment, 152

retrofit scenario: particular context for
plant allocation problem, assuming
that an existing plant is adapted to
produce a previous or updated port-
folio of products according to their
newly defined process models, 4, 11,
116

route: the order of equipment within
a process cell that is used, or is ex-
pected to be used, in the production
of a specific batch, 59

S
scheduling: process of deciding how to

commit resources between a variety
of possible tasks, 48

screening model: process representa-
tion through algebraic approxima-
tions, obtained through physicochem-
ical insights, that provide rigorous
lower bounds in minimization prob-
lems, 10

single-stage model: dynamic mod-
els defined by DAE systems, initial
boundary conditions, and path and
end-point constraints, excluding dis-
crete events, 61

site: a component of a batch manufac-
turing enterprise that is identified by
physical, geographical, or logical seg-
mentation within the enterprise, 56

solution approach
combined∼: methodologies that

exploit the complementary capa-
bilities of knowledge-based and
optimization-based approaches, 9, 26

conceptual∼, see knowledge-based∼
knowledge-based∼: methodologies

that rely on process engineer’s knowl-
edge and experience to decompose
the problem according to the natural
decision hierarchy and refine sequen-
tially the design specifications, 9, 21

optimization-based∼: methodolo-
gies that lead to a systematic so-

lution strategies through a formal
mathematical representation of the
problem, 9, 23, 32, 58

sequential∼, see knowledge-based∼
state1: the condition of an equipment

entity or of a procedural element at
a given time, 54, 55

transition∼: the condition of a ma-
terial amount being transfered from
one equipment entity to another at a
given time, 6, 11, 61

superstructure: diagram that repre-
sents all topological alternatives in a
synthesis problem, 15, 23, 59, 60

sustainability: capacity to endure by
meeting the needs of the present
without compromising the ability of
future generations to meet their own
needs and reconciling environmental,
social equity, and economic demands,
2, 6

synchronization: overlapping of tasks
in different processing or storage
units during a material transference
operation between subsequent tasks,
11, 60, 64, 65, 78

synthesis of conceptual processing
schemes: selection of the topology
of a process in order to convert a set
of raw materials into a desired set of
products, 3, 9, 11, 18, 37, 103, 149

T
task, see process stage
technological specification: process-

ing alternatives that can be used for a
particular unitary operation, charac-
terized by specific set of physicochem-
ical equations and properties govern-
ing the process and attained by a spe-
cific arrangement of the equipment
design, 3, 56, 77

U
uncertainty: lack of certainty in a mea-

sure entailing potential internal or ex-
ternal changes affecting the existing
state and future outcome of a system,
2, 6
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unit1: a collection of associated control
modules and/or equipment modules
and other process equipment in which
one or more major processing activi-
ties can be conducted, 54, 55, 61, 76

batch∼: equipment unit characterized
by implementing a batch procedure,
76

batch∼: equipment unit characterized
by implementing a semi-continuous
procedure, 81

unitary operation: basic step in a pro-
cess that involves bringing a physical
change, e.g. reaction, separation, heat
exchange, 3, 55, 77

XXIV



i

i

“MMB” — 2014/1/27 — 10:03 — page 1 — #35
i

i

i

i

i

i

Chapter 1

Introduction

"A drug is not just its active component, but a system with three in-
teracting elements; medically active ingredient, formulation additives,
and delivery vehicle. The efficacy of a drug deteriorates precipitously
if the highly active ingredient cannot be delivered to the cells effec-
tively, or its dissolution into the blood stream is hampered by poorly
selected excipients. Furthermore, a drug is a part of a therapeutic pro-
cess, which involves a series of operations with specific time schedules
and quantitative dosages."

Stephanopoulos & Reklaitis (2011, p. 4273)

Since the 1990s, several authors in the area of Process Systems Engineering (PSE)
have underlined the challenges of solving the problem of batch process development (Rip-
pin, 1983b, Reklaitis, 1990, Rippin, 1993, Allgor et al., 1996, Stephanopoulos et al., 1999,
Stephanopoulos & Reklaitis, 2011), and such has been the topic of various relevant doc-
toral dissertations (Allgor, 1997, Ahmad, 1997, Ali, 1999, Cavin, 2003, Papaeconomou,
2005). All of them claimed the importance of developing processes that allow the im-
plementation of competitive and efficient production lines in batch plants. However, the
research in this area found some difficulties, namely a problem complexity that demands
high modeling and optimization efforts, the presence of other alternatives to improve
batch manufacturing like the enhancement of plant design and short-term scheduling
strategies, the mistrust on the expected benefits extent, and the need of modeling and
optimization tools which were not mature yet. For all these reasons, cautious efforts have
been dedicated to this problem in comparison to other areas of study of PSE. Generally,
the whole problem has been addressed through divide and conquer strategies, entailing
the successive solution of independent sub-problems and losing a significant part of the
interaction among the decisions made. So in this sense, there are still many open frontiers
and challenges to pose the batch process development as a promising problem, as it will
be exposed in this chapter.

1
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1. Introduction

1.1 Batch process development for value growth in

chemical plants

1.1.1 Batch industry

Chemical industry is characterized by an increasing complexity due to highly competi-
tive production scenarios, globalization and emerging markets, and a volatile economic
situation. As a result, there is an ubiquitous need for continuous process improvement on
the one hand, in order to preserve firm’s value in the production of commodity chemicals.
On the other, continuous process development is required to propitiate the production
of new specialty chemicals and thus increase the firm’s value (Grossmann, 2004). Par-
ticularly, the economic opportunities of being the first in the market were presented as
very attractive in the 1990s (Puigjaner, 1999) and still are. Thus, the ability to discover
new products and be fast to market becomes something crucial for chemical enterprises
to remain competitive (Bayer et al., 2001, Grossmann & Biegler, 2004). In addition to
requiring fast process development, new production lines should also be sustainable dur-
ing the production period in order to ensure their long-term viability and acceptance;
therefore, it is also necessary to design effective and efficient processes to be economically
profitable, environmentally benign, and safe (Stephanopoulos et al., 1999, Grossmann,
2004, Grossmann & Guillén-Gosálbez, 2010, Kravanja, 2010). Moreover, rapidly changing
market environments involve uncertainty in product demands, cancellations, and returns,
in raw material availability, in prices of chemicals, and in environmental parameters. This
variability hampers strictly accurate forecasts, which should be replaced by plausible fu-
ture scenarios.

In this context, batch plants, whose principal claim is their inherent flexibility and
adaptability, are capable of giving an agile response, satisfying the demand of a variety
of products according to changing and tight market requirements. In particular, batch
systems enhance the distinction between process and plant and the possibility that each
equipment piece can be used to execute different production procedures. This practical
distinction constitutes the key point for versatility of batch plants, usually referred to as
an operations-centered perspective (Stephanopoulos & Reklaitis, 2011) in opposition to
the equipment-centered view of continuous processes. This way, the competence of batch
plants to select, reorder, and adapt equipment units and the procedures they perform
should be highlighted, enabling the processing requirements for each particular product
to be fulfilled.

1.1.2 Batch process development

Once a new product has been discovered and its production opportunity has been recog-
nized, the development of its production process is a planning activity that may be de-
composed into two principal sub-problems: the synthesis of conceptual processing schemes
and the allocation of manufacturing facilities (Rippin, 1983b, Stephanopoulos et al., 1999,
Stephanopoulos & Reklaitis, 2011), typically solved sequentially as shown in Figure 1.1.
This Figure also summarizes the decisions related to each sub-problem.

The process synthesis problem is defined as the selection of the topology of a process
in order to convert a set of raw materials into a desired set of products (Rudd et al., 1973),
with decisions ranging from reaction pathways to the selection of unitary operations. In
batch process development, reaction mechanisms may be assumed, since they are gener-
ally available from previous product development activities. This way, the relevance of

2
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Batch process development for value growth in chemical plants

process synthesis sub-problem is mostly associated to the definition of processing paths
for product manufacturing. Assuming the reaction mechanisms, the synthesis of con-
ceptual processing schemes, as defined by Stephanopoulos et al. (1999), focuses on
the definition of: (i) the unitary operations, e.g. reaction, separation, heat exchange, and
their technological specification, (ii) their sequence and splitting or merging in process
stages, which are typically known as tasks, (iii) the chemical components involved, e.g.
reagent, solvent, catalyst, (iv) the batch operations and phases, and (v) the processing
conditions, defined by reference trajectories of control variables. The outcome is the so-
called task network or process model , according to the Standard S88 (ANSI/ISA-88) for
batch process management. Typically, the selection of waste treatment options is a down-
stream activity solved subsequently, even though unitary operations and technologies for
waste treatment have an impact on global process design targets and should be addressed
in parallel to process synthesis.

The allocation of manufacturing facilities sub-problem defines how to implement
the process into a particular plant, involving decisions on: (i) the type of campaign,
its sequence and coordination, (ii) the equipment pieces selection and interconnection,
(iii) the batch sizes, (iv) the cycle times, and (v) the specification of unit procedures
according to the task definition in the process model, taking into account the physical
plant constraints (Reklaitis, 1990, Rippin, 1983b, 1993, Barbosa-Póvoa, 2007). The goal is
to allocate the tasks and processing conditions defined in the synthesis step to particular
equipment pieces (Stephanopoulos et al., 1999). The resulting strategy for carrying out a
process task at each equipment item is termed procedure and the set of unit procedures
that detail the allocation of the entire process in a physical plant composes the so-called

Synthesis of conceptual

processing schemes

Allocation of

manufacturing facilities

Products and raw materials
specification, reaction pathways

Process model or task network
(general and site recipes)

Procedural control model
(master and control recipes)

• Unitary operations

• Sequence of process stages (tasks)

• Task splitting and/or merging

• Reagents, solvents, and catalysts

• Batch operations and phases

• Processing conditions

• Waste treatment options

• Type of campaign, sequence,

and coordination
• Equipment selection and

configuration

• Production sizes
• Cycle times

• Unit procedure specification

Figure 1.1: Sub-problems in batch process development and decisions made in each case
(adapted from Stephanopoulos et al., 1999). The terminology is defined in con-
sonance to the Standard S88 (ANSI/ISA-88) for batch process management.
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1. Introduction

procedural control model , according to the Standard S88 (ANSI/ISA-88).
In the allocation of manufacturing facilities, the number of products and the degree of

similarity of their process models involve different degree of complexity in the equipment
structures (Barbosa-Póvoa, 2007, Maravelias, 2012). Particularly, single-product plants
address the production of an only product following a unique production path. Multi-
product plants embrace the production of several products, assuming that all products
follow the same production route. Finally, multipurpose plants are general-purpose facili-
ties where a variety of products may be produced through arbitrary equipment sequences
and locations, sharing the available equipment and resources.

Additionally, two possible scenarios exist in the allocation problem: the grassroots
and the retrofit. Figure 1.2 presents the process development sub-problems in relation
to the enterprise, product, and plant activities in both situations using the concept of
lifecycle. This is understood as the sequence of phases spanning the design, creation, use,
and decommissioning of an artifact, referred to the aforesaid enterprise, product, process,
or plant (Marquardt et al., 2000). The grassroots scenario involves that an enterprise
constructs a new plant, after having developed a product and having defined the process
models for a portfolio of products to be produced and commercialized (Figure 1.2a). In the
retrofit case, the same pattern is followed, with the difference that an existing plant is now
adapted to incorporate the newly defined process models (Figure 1.2b). In batch industry
for specialty products manufacturing, the latter scenario is the most common situation,
since the product lifecycle is often much shorter than the plant one; hence, new products
should be introduced repeatedly in existing plants, requiring new or modified process
models each time (Allgor, 1997). Several actions can be taken therein: (i) the modification
of processing conditions, (ii) the adaptation of equipment structure by changing the piping
connections, (iii) the re-sizing of equipment pieces, or (iv) the installation of additional
processing units (Grossmann et al., 1987). In the end, in most cases the viability of a new
production line is vinculated to the fast and efficient incorporation of the corresponding
process into an existing plant, rather than to the design of a new manufacturing facility
(Allgor et al., 1996).

The information regarding the process definition is gathered in recipes, which suffer
a series of modifications along the batch process development and product manufactur-
ing activities. Particularly, the Standard S88 (ANSI/ISA-88) differentiates four different
recipe categories according to their degree of completion: general, site, master, and control
recipes. The general recipe defines product-specific processing information, independently
to the particular equipment items where the process is going to be implemented. The site
recipe additionally has into account the conditions found at a particular manufacturing
location. Being independent to specific equipment items, general and site recipes are re-
lated to the process model, obtained in the synthesis of conceptual processing schemes.
Following, the information of the general or the site recipe information is targeted to a
set of equipment elements in the master recipe, which takes into account the allocation
of manufacturing facilities and is thus associated to the procedural control model. After-
wards, during the product manufacturing activities, the information of the master recipe
is adapted within the control recipe to produce a particular batch of product. All in all,
the integrated solution of batch process development sub-problems, involving the syn-
thesis of processing schemes and the allocation of production plants, is equivalent to the
definition of master recipes to define the implementation of new or modified production
lines in a batch plant.
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Batch process development for value growth in chemical plants
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Figure 1.2: Lifecycles in an enterprise: (a) grassroots scenario and (b) retrofit scenario (adapted
from Marquardt et al., 2000).
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1. Introduction

1.1.3 Challenges in batch process development

Rapid process development. Nowadays batch manufacturing is devoted to specialty
chemicals industry, which requires the frequent adaptation of production facilities to mar-
ket fluctuations and to discoveries of new chemical products. This way, new products
should be introduced frequently in manufacturing systems, requiring the development of
production processes and the specification of master recipes to be used in the production
stage. Hence, a first challenge in batch process development is the use of rational and sys-
tematic approaches and the rapid time-to-market execution of the process lifecycle steps,
until the new product is introduced into the production system. This is a pivotal element
for chemical producers to meet economic leverage and keep competitive in a market-place
with growing globalization (Puigjaner, 1999, Stephanopoulos et al., 1999).

Development of competitive and sustainable processes. The synthesis of process-
ing schemes is a potential area to improve process performance, as well as an increasingly
important field of activity in academia and industry (Kravanja, 2010, Li & Kraslawski,
2004, Rippin, 1993). For example, in the case of continuous industry, savings of 35% in net
present cost and 50% in energy consumption have been reported using systematic process
synthesis methodologies (Douglas, 1988). Moreover, Stephanopoulos & Reklaitis (2011)
noted that rough estimations of the added value or lost opportunity –understood as the
benefit margin that can be obtained through the production of a particular product–
decrease by several orders of magnitude along the chain of activities in a product lifecy-
cle, namely: (i) the product discovery, design and testing, (ii) the process development,
(iii) the engineering design, (iv) the product manufacturing, and (v) the commercializa-
tion. End-of-pipe process retrofit may require huger investments and operating costs than
equivalent process design at early stages. Thus, a second challenge is the development of
competitive and sustainable processing schemes to improve reference production targets
for future manufacturing activities (Stephanopoulos & Reklaitis, 2011, Stephanopoulos
et al., 1999, Allgor et al., 1996, Allgor, 1997).

Plant flexibility. Due to the need of batch plants to be reconfigured and adapted in
front of changing market scenarios along their lifecycle, a third challenge is to account
for external uncertainty during the design of batch plants. General and flexible facilities
that conduct most of the processes in the company’s port folio with small investments are
prized (Allgor, 1997). For that, driving factors in batch plant design should be the maxi-
mization of future flexibility at minimum investment cost, accounting for uncertainty in
product demands, in raw material availability, in prices of chemicals, and in environmen-
tal parameters in the design problem. The objective is to define versatile systems which
can ensure the manageable response to changes in the business environment, the increase
of decisions accuracy, the adaptation of master recipes, and the improvement of process
performance.

Insights into process performance. Finally, significant benefits can be brought by
coordinating batch tasks through plant design, planning, and scheduling, but Rippin
(1993) pointed out that a further determinant of success is the design and operation of
the individual units that carry out each of the batch tasks. The performance of unit proce-
dures is determined by the physicochemical properties of the system. Moreover, the degree
of completion of each process stage has an effect over the state variables of the material be-
ing transferred to the next task, which in turn may require the adaptation of its processing
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conditions depending on the input states. Such interactions between process performance
in upstream and downstream tasks have been identified in many chemical processes and
come out into trade-offs in global objective functions and performance indicators. Barrera
& Evans (1989, p. 49) specified that there are three types of trade-offs related to process
performance: (1) cycle time versus intensity of processing within each individual unit, (2)
the effect of upstream tasks performance over downstream stages, and (3) investment or
total rental costs versus operational costs associated to the processing rate of the system.
Therefore, deciding on operating procedures has a high probability of affecting synthesis
decisions and inversely. This way, the solution of synthesis and allocation sub-problems
in batch process development should be embraced together, seeking for a holistic treat-
ment of process development and recipe optimization. In particular, integrated approaches
that combine structural and processing conditions ensure fully functional and optimally
operated process plants in both nominal regimes and changing frameworks (Shobrys &
Shobrys, 2002). Overall, the integration of process development sub-problems becomes a
further challenge to avoid suboptimal solutions in grassroots designs and to adapt existing
equipment guaranteeing an improved plant utilization in retrofit scenarios.

1.2 Use of fixed and approximated recipes

Despite the challenges in batch process development sub-problems and their integrated
solution, fixed processing recipes are typically employed in batch industries, based on
nominal conditions and tests in the laboratory or pilot plant (Rippin, 1993, Romero,
2003, Srinivasan et al., 2003). Specifically, laboratory recipes used during the product
development activities are scaled-up to provide the first piece of information related to
the process synthesis. Usually, these recipes are not further improved by synthesizing
industrial-scale processing schemes. On the contrary, the allocation sub-problem is ad-
dressed with fixed predefined recipes or very simple approximated models of the tasks
involved (Reklaitis, 1990). For instance, tasks are extensively described by fixed time and
size factor models (Robinson & Loonkar, 1972, Biegler et al., 1997), where the time is a
predefined parameter and the capacity requirements are calculated as a function of the
batch size.

However, decisions made at the batch process development sub-problems –i.e. the task
selection, the definition of reference trajectories for control variables, or the selection of
chemical compounds involved– affect the efficiency of the process for several reasons (All-
gor, 1997). First, actions derived from fixed or approximated recipe parameters reduce the
possibilities of further improvements of processing times, conditions, and tasks sequence.
Second, existing equipment may be forced to operate in extreme or suboptimal conditions,
since procedures that were suitable in the laboratory have to be implemented to the in-
dustrial scale, which may be equipped with different specifications. Moreover, the direct
implementation may not be feasible. Finally, the objectives in bench scale experiments
also differ from those of full-scale manufacture. On the whole, the process information
generated from the original product synthesis during the product discovery, product de-
sign, and product synthesis activities should only serve as the starting point for process
design rather than a completing process definition.

Until now, batch process development and recipe optimization has received limited
academic and industrial attention and is more concerned about the allocation of prede-
fined process tasks to appropriate equipment items and about the sequencing of operations
(Reklaitis, 1990, Stephanopoulos et al., 1999, Rippin, 1993, Allgor, 1997). Published work
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in batch plants design and scheduling of batch plants has grown exponentially –for an
extensive review on process design, the interested reader is referred to Reklaitis (1990)
for the period up to 1990 and Barbosa-Póvoa (2007) for the period from 1990 to 2007. On
the contrary, in the area of synthesis and design of batch processes, only a few researchers
have examined methods to incorporate recipe modifications during the development of a
batch process, as Allgor (1997) and Papaeconomou (2005) underlined. This happens even
though the effort should be more dedicated to the process design for new chemicals pro-
duction to be implemented in existing batch sites, instead of the definition of especially
designed plants for a given portfolio of products (Rippin, 1993, Cavin, 2003). The evolu-
tion experienced by these areas in the last decades is presented in Figure 1.3, according
to the number of publications in a series of review papers (Stephanopoulos et al., 1999,
Allgor, 1997, Barbosa-Póvoa, 2007).
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Figure 1.3: Evolution of the number of publications dedicated to batch process development
(dark line) and particular works that consider modifications of the process model
and the recipe (light line). Dotted lines represent a prediction, according to the
examined review papers. Data sources: Stephanopoulos et al. (1999), Allgor (1997),
and Barbosa-Póvoa (2007).

1.2.1 Complexity of batch process development

The main reason for the use of fixed recipes is the high mathematical and computational
complexity for modeling and solving the process synthesis and allocation sub-problems:
First, the batch nature of the process involves not only a combinatorial assessment to
match equipment and task networks (Allgor, 1997, Gani & Papaeconomou, 2006), but
also an evolution of processing conditions along time in each process stage, requiring
dynamic models to represent process performance instead of steady-state ones and dy-
namic profiles of control variables instead of continuous set-points (Barton et al., 1998,
Srinivasan et al., 2003). Moreover, the operation of batch processes is featured by discrete
events that determine the transitions between batch operations and phases (Barton et al.,
1998). Qualitative information should be also covered in the optimization model, involving
decisions like task selection, sequence, and splitting, equipment assignments, or chemicals
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selections, among others. Finally, batch integrity should be ensured in all processing path
alternatives by synchronizing material transference between batch and semi-continuous
plant elements, as a function of the processing scheme and the task performance.

As a result of the evident problem complexity, there is reluctance on the expected
results, despite being aware of the need and incentives associated to the coordination
and integration of the synthesis of processing schemes and plant allocation sub-problems.
Specifically, there is a sensible concern about the importance of verifying whether the po-
tential benefits will justify and outweigh the effort and time required to generate and solve
such complex models, before embarking on a scheme to establish or maintain an optimal
profile (Rippin, 1993, Allgor, 1997). Overall, the possible variation of task performance is
presented not only as an important problem, but also as a difficult one.

Concurrently, big efforts by PSE community have been required to succeed in the
development of detailed modeling capabilities and optimization techniques, which can be
applied to solve batch plant design and scheduling problems with dynamic profiles and
a high number of discontinuous variables combined into task-unit superstructures. In the
1990s, such tools were immature and further development was still required (Puigjaner,
1999, Allgor, 1997). As a result, the modeling load and computational difficulties to solve
such complex systems limited dramatically the research in the direction of batch synthesis
and operation problems when they were initially posed (Rippin, 1993, Stephanopoulos
et al., 1999, Allgor, 1997, Ahmad, 1997, Ali, 1999).

1.3 Process synthesis and allocation in academy

Due to the abovementioned difficulties to solve batch process development, most academic
studies kept faithful to the natural decomposition into process synthesis and allocation
sequence, seeking for a problem simplification. Nevertheless, integrative attempts have
been also addressed. An overview of the available literature is presented in this section
and extended in Chapter 2.

1.3.1 Decomposed problems

The synthesis of batch processing schemes was first addressed in the mid 1990s. It was
strongly incentivized by changing market requirements, which entailed the frequent adap-
tation of product portfolios in batch plants as well as the development of the correspond-
ing batch processes. At that moment, the synthesis of continuous processes was already
a strengthened area of study, provided with several complementary solution approaches.
Namely knowledge-based, optimization-based, and combined methodologies had been de-
veloped, which served as a base for batch problems. For instance, the synthesis of batch
processing schemes was solved in some contribution by disregarding the subsequent allo-
cation of equipment items (Linninger et al., 1994, 1995, 1996, Ahmad, 1997, Barton et al.,
1999, Ali, 1999, Sharif et al., 2000, Papaeconomou et al., 2002, 2003a,b, Papaeconomou,
2005), whilst other studies used sequential decision-making procedures to include allo-
cation decisions (Iribarren, 1985, Iribarren et al., 1994, Cavin, 2003, Cavin et al., 2004,
2005, Mosat et al., 2007, 2008).

Research in the allocation of manufacturing facilities sub-problem included a thought-
ful study of the optimal operation of individual units. In particular, since the early works
by Denbigh (1958) and Aris (1960) the field of Optimal Control (OC), also referred to as
Dynamic Optimization (DO), was applied to define batch unit performance by optimizing
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dynamic profiles of control variables. In the 1980s and 1990s, several solution approaches
were developed (see the reviews by Binder et al., 2001, Srinivasan et al., 2003, Schlegel,
2004), converting DO for batch unit optimization in a popular area of research in the aca-
demic context due to its applicability and excellent results. As for the decision variables
considered, later works also optimized the batch phase durations (Vassiliadis et al., 1994),
as well as structural decisions like the number of trays in distillation columns (Oldenburg
et al., 2003, Jain et al., 2013). In the latter case, the use of integer or logical variables
was required to formulate the structural decisions, resulting in Mixed-Integer (MIDO) or
Mixed-Logic (MLDO) problems, respectively.

Additionally, the design of single-product, multiproduct, and multipurpose batch plants
became a relevant problem, dealing with the allocation of equipment items to particular
process tasks, among other decisions like the equipment sizing and operational decisions,
e.g. processing mode, batch size, storage tank location, or unit duplication. The solution
of these problems attracted much interest since the mid 1980s, becoming a consolidated
area of research. A detailed framework of this field of study is presented in the reviews
by Reklaitis (1990) and Barbosa-Póvoa (2007). It is frequent in batch plant design that
the use of fixed or approximated recipes hinders the adaptation to global targets of recipe
parameters, e.g. adaptation of set-points, reference trajectories for control variables, pro-
cessing times and volumes, and chemicals involved, among others decisions. For instance,
the most widespread assumption to represent recipe modifications in batch plant design
problems has been the definition of processing times and sizes for each task either as fixed
parameters or as a function of batch sizes (Robinson & Loonkar, 1972, Biegler et al.,
1997), which are still used at present literature (Barbosa-Póvoa, 2007). As a result, pro-
cessing times and overall performance can be only accommodated through operational
decisions.

1.3.2 Integrated problems

The combination of process synthesis and allocation of manufacturing facilities has been
also reported in several works, tackling this formidable problem with different degrees of
integration and from different perspectives. For that purpose, most contributions pose so-
lution strategies that reduce the complexity of the integrated problem, for instance apply-
ing an iterative assessment of structural and performance decisions, replacing Differential-
Algebraic Equations (DAE) systems representing the dynamic process behavior by ap-
proximated algebraic equations, or pre-specifying particular decisions.

The interactions between decisions associated to batch process synthesis and to equip-
ment allocation have been addressed using iterative and simultaneous solution approaches.
Charalambides et al. (1995, 1996) and Sharif et al. (1999) used a simultaneous approach,
applying DO and MIDO formulations in sequenced process stages to optimize the ref-
erence trajectories of control variables. However, it was necessary to assume predefined
process structure and task-unit assignment in order to accomplish their purpose. Another
suggested approach was to approximate the dynamic process behavior in batch tasks
to algebraic models. Such model simplification permitted to consider decisions like the
task-unit assignment and operating procedures –e.g. operating mode in parallel in-phase
or out-of phase– as degrees of freedom. Particularly, Allgor, Barton, et. al (1997, 1999,
1999a) proposed the use of the so-called screening models to provide rigorous lower bounds
in minimization problems. Iribarren et al. (2004) used posynomial functions , which re-
lated size factors to certain operating parameters through a symbolic rearrangement of
process equations. Going a step further, Allgor & Barton (1999b) developed an iterative
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solution approach based on their prior contributions, to additionally include the dynamic
behavior of batch process tasks and define the feed-forward trajectory of control vari-
ables. Besides, Linninger and Chakraborty (1999, 2002, 2003) solved simultaneously the
selection of waste treatment paths for pharmaceutical industry effluents, their task-unit
assignment, and the definition of constant set-points for processing conditions, taking into
account capacity constraints.

Additionally, the synthesis of new processing schemes in retrofit scenarios concerns
inherently the integration of process synthesis and allocation sub-problems, since process
models can not be defined unaware of physical restrictions of the plants where the pro-
cess should be implemented. Several contributions have addressed this problem, paying
a special attention to the introduction of sustainable targets in new process development
(Halim & Srinivasan, 2006, 2008, Simon et al., 2008, Carvalho et al., 2009, Bumann et al.,
2011, Halim et al., 2011, Banimostafa et al., 2011, 2012).

Finally, several studies have been carried out regarding the incorporation of recipe
modifications in batch plant design, allowing the adaptation of recipe parameters according
to global production targets during the allocation of manufacturing facilities, instead of
assuming fixed recipes. This way, several contribution replaced the widespread fixed time
and size factor model (Robinson & Loonkar, 1972, Biegler et al., 1997) by more detailed
recipe representations that allowed further degrees of freedom. In particular, most relevant
proposals were: (i) the determination of residence times in semi-continuous units (Knopf
et al., 1982), (ii) the use of time and size factor models (Espuña & Puigjaner, 1989, Modi
& Karimi, 1989), (iii) the approximation of process behavior to algebraic performance
models (Tricoire, 1992, Salomone & Iribarren, 1992, Montagna et al., 1994, Asenjo et al.,
2000, Pinto et al., 2001), (iv) the iterative use of approximated and detailed models
to solve structural and performance decisions (Barrera & Evans, 1989, Salomone et al.,
1994, 1997), and (v) the use of detailed dynamic performance models in the plant design
problem (Bhatia & Biegler, 1996, Corsano et al., 2004, 2006, 2007).

Considering the effect that every process stage has on downstream tasks, due to their
connection via outflows and inflows, synchronization between consecutive tasks should be
accounted for in the model. However, previous works do not include in their formulations
material transfer operations or the consideration of dynamics in process variables therein,
and the only related constraints are the fulfillment of material and energy balances with
transition states represented in a unique temporal point in each transfer operation. Indeed,
it is only in the context of scheduling and plant design that some studies explicitly address
equipment synchronization (Furman et al., 2007, Ferrer-Nadal et al., 2008a), although
dynamic transferring states are dismissed because dynamic models are not used in the
formulations.

1.4 Industrial application of process synthesis and al-

location
In industrial practice, synthesis of continuous processes using hierarchical decision tools
penetrated with a very positive impact and contributions nothing less than spectacular
around the 1980s (Stephanopoulos & Reklaitis, 2011). The extension of posterior research
on batch process development into production facilities has also taken some steps, relying
principally on hierarchical and decomposition approaches combined with process simu-
lation. For instance, the batch process simulator BATCHES was commercialized by the
software supplier Batch Process Technologies, Inc. in the mid 1980s, followed by the Su-
perPro Designer, developed by Intelligen, Inc. Following, Stephanopoulos and co-workers
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developed a program to address batch process synthesis (Linninger et al., 1994), the Batch-
Design-Kit, acquired by the software supplier Hyprotech Ltd. in 1997. Contemporary, the
firm Aspen Technology, Inc. developed the recipe-based modeling technology Batch Plus,
later upgraded to Aspen Batch Process Developer. Overall, commercial software for batch
process simulation are available to support screening strategies for the evaluation of batch
processing alternatives in industry.

However, the use of general flow-sheeting capabilities for batch processes still requires
further work to be established successfully, especially regarding the use of optimization-
based approaches. This is an essential step for ensuring reasonable development and pay-
back times, while exploiting the full potential of PSE tools (Klatt & Marquardt, 2009). In
general, the difficulties to apply batch process development methodologies in industrial
practice are explained by the following limitations from the practitioner’s point of view
(Klatt & Marquardt, 2009): (i) the lack of robust and user-friendly optimization-based
environments, despite the availability of well-established software for batch process sim-
ulation, (ii) the difficulties to quantify the benefit obtained with proposed methods and
solutions, (iii) the difficulties to model and simulate solids and biotechnological processes,
(iv) the lack of efficient formulations for middle- and large-scale applications, and (v) the
need of reliable model equations and parameters, which are frequently unavailable.

1.5 Thesis overview

This thesis tackles the fast development of batch processes that are efficient, economically
competitive, and environmentally friendly, as well as their agile introduction into produc-
tion systems, by solving simultaneous process synthesis and plant allocation in grassroots
and retrofit scenarios. Thus optimum master recipes are provided.

1.5.1 Motivation

Several elements motivate this complex and demanding problem. First, the challenges
associated to the evaluation of processing trade-offs are more important at early decision-
making in the process lifecycle, when added value of production benefits provides a greater
leverage. Second, recent advances in modeling and optimization tools raise the question
whether it is possible their application to integrated batch process development, extending
their original use solving other problems in PSE. For instance, Mathematical Program-
ming (MP) and DO have been successfully applied to scheduling and design of batch
plants, synthesis of continuous processes, and optimization of individual unit operation.
These advances are complemented by efforts in the characterization of physicochemical
parameters and equations for a variety of processes. Last but not less important, few ex-
amples are available in the literature that provide a quantification of the expected benefit
in solving simultaneous process synthesis and allocation, crucial to determine whether it
is worth the effort and dedication to solve this of problem.

1.5.2 Objectives

For all these reasons, the principal goal of this thesis is to present a systematic and
rigorous modeling strategy that is capable of integrating in a unique optimization model
the different kind of decisions in the synthesis of batch conceptual processing schemes and
allocation of equipment items sub-problems, assuming single-product campaigns, in both
retrofit and grassroots scenarios. The specific objectives are:

• To identify the general problem specification and the degrees of freedom of the two
principal sub-problems in batch process development –i.e. synthesis and allocation–,
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as well as to provide a compromised terminology that reflects the PSE literature
and the Standard S88 (ANSI/ISA-88) concepts for batch processing;

• To develop a modeling strategy to solve the problem of simultaneous synthesis of
processing schemes and allocation of manufacturing facilities using an optimization-
based approach;

• To evaluate whether current available model-based tools and approaches allow this
problem to be solved, concentrating in new developments of logic-based modeling
and MP solvers for mixed-integer and non-linear formulations;

• To apply the modeling strategy to the development of new processes in retrofit
scenarios, taking into account the restrictions of the existing plant;

• To apply the modeling strategy to the design of flexible plants in grassroots scenar-
ios, considering simultaneously process synthesis and allocation degrees of freedom;

• To provide a tool for analyzing processing interactions for multiple scenarios and
performance indicators in the decision-making process, meeting an equilibrium for
trade-offs between: (i) profit and time within each individual unit, (ii) the perfor-
mance of subsequent tasks, and (iii) different weights in global objective functions,
e.g. investment and operational costs;

• To evaluate the interactions between structural decisions of batch process synthe-
sis and dynamic profiles of operating procedures, while considering physical plant
decisions and/or restrictions;

• To study the influence of synchronizing material transfer stages through dynamic
profiles.

1.5.3 Scope

The approach to solve integrated batch process development that is proposed in this thesis
is focused on the modeling aspect, under the premise that the appropriate formulation
of the optimization model is a crucial step in the solution approach. Complementary,
deterministic, stochastic, and hybrid solution procedures are proposed. In this regard, the
goal is to provide suitable solution methodologies to obtain quantitative solutions, paving
the way to further research for the development of robust solution tools and software that
could be offered to industrial practice. The optimization model obtained is large in size
and complex in type of variables and mathematical functions. Thus, a thorough study of
optimization approaches is required to render robust solution strategies to deal with the
mathematical implications of this formidable problem and to avoid case-specific model
analysis and evaluation. This is out of the scope of this work.

In addition, before a direct application in industry could be suggested, two other issues
should be considered. First, in practice reliable physicochemical parameters and correla-
tions required in the optimization model are not always available or with an appropriated
level of detail. Therefore, it will be necessary to deal with internal uncertainties regarding
process parameters, to simplify the process models in order that they become manage-
able, and to validate those models with experimental data from pilot or production plants.
These activities, which are also out of the scope of this contribution, should complement
the process development practice. Second, corporative changes in batch industries are re-
quired in order that integrated solution of process synthesis and allocation is likely to be
applied. Chemical enterprises use to be composed of differentiated departments to carry
out the process synthesis, engineering, and plant operation, which could be even located
at different sites. To integrate batch process synthesis and allocation, a close interconnec-
tion of working divisions is mandatory, as seen in trending organizations of some top-tier

13



i

i

“MMB” — 2014/1/27 — 10:03 — page 14 — #48
i

i

i

i

i

i

1. Introduction

companies.
Regarding the decision-making, process control decisions are partially addressed in

this thesis, since the feed-forward trajectories of control variables are optimized. How-
ever, the assessment and analysis of the indicators of the control system performance,
emphasizing controllability and stability, are not included in objective functions or opti-
mization model restrictions. Therefore, the strict problem of simultaneous process design
and control is not covered. Moreover, the optimization of master recipes is tackled through
process development as a planning activity. Thus, on-line or real-time applications during
the manufacturing stage are considered out of the scope of this work both at the pro-
cess control and at the scheduling decision levels. Finally, internal process disturbances
and model uncertainties are not taken into account in the formulation; on the contrary,
production adaptability is covered by optimizing operation policies according to differ-
ent scenarios, economic contexts, and driving factors, and plant flexibility is uniquely
addressed according to external uncertainty, like demand variation.

1.5.4 Optimization-based approach

An optimization-based approach is proposed to solve the simultaneous synthesis of batch
processing schemes and allocation of manufacturing facilities, accounting for equipment
decisions or restrictions. Some authors have explicitly dissuaded the use of optimization-
based approaches, where all the decisions are integrated in a superstructure. For example,
Klatt & Marquardt (2009) considered that "it is very unlikely that a single integrated
problem formulation can be found which on the one hand covers all possible alternatives
in a superstructure and is still computationally tractable on the other hand." On the
contrary, other kind of approaches have been recommended, as for example the systematic
decomposition of the problem, where a gradual refinement of the design specifications can
be combined with an increasing level of detail in the model (Marquardt et al., 2008).

Despite the attractive of divide and conquer strategies, a significant part of the in-
teraction among the decisions made is lost. In contrast, an integrative model-based ap-
proach that combines all the alternatives for process synthesis and allocation in a unique
formulation should precisely allow a rigorous and quantitative balancing of the process
trade-offs, considering all the degrees of freedom involved in the problem, and is therefore
proposed in this thesis. The core idea is to enhance numerical solution properties by using
advanced modeling strategies, which have provided promising results in other PSE ap-
plications. Specifically, the objective is to prove that the integrated problem is tractable,
even though huge computational efforts may be required. In addition, the obtaining of
quantitative results systematically from a unique model is pursued, in order to compare
optimum solutions in different economic and demand scenarios or for various production
policies.

The modeling strategy proposed relies on the combination of DO and mixed-logic
modeling, and on the synchronization of material transfer stages in equipment and task
sequences. Mixed-logic modeling tools are used to combine the quantitative and qualitative
information in the formulation, and has been previously applied to similar problems in
the context of continuous process synthesis (Raman & Grossmann, 1993, Türkay & Gross-
mann, 1996b, Grossmann & Guillén-Gosálbez, 2010, Khor et al., 2011) and scheduling of
batch processes (Lee & Grossmann, 2000, Castro & Grossmann, 2012). As for DO, it has
been proved to be a powerful tool to handle dynamic models and to optimize dynamic
reference trajectories of control variables (Srinivasan et al., 2003, Biegler & Grossmann,
2004). DO has been used in combination to mixed-integer and mixed-logic formulations to
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incorporate structural decisions, with contributions in the context of simultaneous design
and control (Bansal et al., 2002a,b), scheduling of continuous processes with grade tran-
sitions (Prata et al., 2008), and design of individual batch units with structural decisions
(Oldenburg et al., 2003, Jain et al., 2013). Finally, the synchronization between tasks
is included in the model to incorporate the effect of upstream and downstream process
stages, which are connected via outflows and inflows (Furman et al., 2007, Ferrer-Nadal
et al., 2008a). To the author’s knowledge, the combination of these modeling issues has
not hitherto been applied in the context of batch process development.

Process synthesis decisions subject to be considered in this approach are: (i) the selec-
tion of process stages and splitting into subtasks, (ii) the technological specification of unit
procedures, (iii) the selection of chemicals involved, (iv) the recirculation of intermediate
flows, (v) the reference trajectories of control variables, (vi) the duration of batch phases
composing each task, and (vii) the material transfer synchronization between tasks. The
allocation of equipment items may include: (i) the task-unit assignment, (ii) the equip-
ment configuration –i.e. operating mode in single, series, or parallel operation, and (iii)
the location of storage tanks. Additionally, equipment capacities are related either to free
decision variables in grassroots scenarios, or to model constraints of existing units in the
retrofit case. Finally, the objective function can be composed of economic contributions,
like the amortization of new investments, the equipment occupation expenses, reflecting
cleaning, maintenance, and labor expenses, the various processing and utility costs, the
raw material costs, the waste treatment costs, and the economic impact of product qual-
ity, as well as ecological or environmental decision criteria. Overall, the main contribution
of this thesis is to provide a modeling framework that permits the simultaneous optimiza-
tion of all the abovementioned decision variables which, despite the existing interactions,
are typically addressed separately.

Generally, optimization-based approaches that include synthesis decisions are devel-
oped in three steps: the representation of a superstructure with all processing alternatives,
the formulation of such superstructure to construct the optimization model, and its so-
lution (Grossmann & Guillén-Gosálbez, 2010). The proposed modeling framework and
solution approach are developed accounting for these steps, as following detailed. First,
the equipment diagram of the existing or potential plant serves as a base to the pro-
cess superstructure, in order to facilitate the incorporation of physical plant restrictions
and decisions. Particularly, the State-Equipment Network (SEN) representation (Smith
& Pantelides, 1995) is used. Second, the superstructure is mathematically formulated us-
ing MLDO. In particular, the formulation is composed of disjunctive equations to relate
the structural and allocation decisions and multistage models to represent process per-
formance in each process stage, which may be composed by a series of bath operations
or phases. The combination of logic modeling and multistage models had been previously
addressed by Oldenburg & Marquardt (2008), who referred to this optimization problem
as disjunctive multistage modeling. In their case, the formulation was applied to the de-
sign of individual batch units with structural decisions, which is extended in this thesis
to cover the new requirements of batch process development. Specifically, the following
key features characterize the formulation:

(i) Single-stage and multistage models are combined to represent continuous and batch
processing elements; and

(ii) The superstructure is divided in modeling levels, which allow time overlapping of
operating procedures in batch units, whose processing order is not known before-
hand;
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(iii) Flow rates and compositions are synchronized in material transfer operations and
phases.

Third, the resulting MLDO model is reformulated into a MIDO one and solved using
deterministic, stochastic, or hybrid optimization methods.

1.5.5 Overview of chapters

The rest of this thesis is structured as follows.
Chapter 2 reviews the state-of-the-art of batch process development, focusing on the

following research topics: the synthesis of conceptual processing schemes, the allocation of
manufacturing facilities, their integration at different degrees, and the parallelism between
process development and operational problems –i.e. short-term scheduling and process
coordination.

Chapter 3 presents the general problem statement of the integrated batch process
development tackled in this thesis. Moreover, the modeling requirements to address the
simultaneous consideration of synthesis of processing schemes, plant allocation, and plant
design are exposed. Next, the modeling strategy based on MLDO is developed.

In Chapter 4, the state-of-the-art solution approaches to solve the MLDO problem are
reviewed and three particular strategies are proposed. On the one hand, a deterministic
direct-simultaneous approach is presented, which is used to solve the different examples
along this thesis. It is based on the MLDO reformulation into a MIDO problem, the
full-discretization of process and control variables to obtain a Mixed-Integer Non-Linear
Programming (MINLP) problem, and its solution through commercial solvers. On the
other, two alternative methods are introduced as a first step to pursue the solution of
industrial-size problems: the Differential Genetic Algorithm (DGA) and its combination
with the previous direct-simultaneous approach in a hybrid optimization algorithm.

Then, Chapter 5 tackles the development of new processes to be introduced in exist-
ing plants, whose equipment restrictions are considered in the optimization model. The
production of specialty chemicals based on a competitive reaction system in an existing
reactor network is first defined through process development and improvement according
to different economic scenarios, decision criteria, and plant modifications. Additionally,
the development of a photo-Fenton process to be implemented in an existing pilot plant is
optimized, pursuing the minimization of processing time and cost to eliminate an emer-
gent wastewater pollutant.

Besides, Chapter 6 focuses on the application of the proposed approach to simulta-
neous process development and flexible plant design. In particular, the expected profit
in several demand scenarios is maximized using a two-stage stochastic formulation of the
optimization problem. Moreover, the previous solution strategies to solve the MLDO prob-
lem are combined with a heuristic algorithm to enable the plant design under uncertainty,
while accounting for process synthesis and allocation decisions. A grassroots plant design
is defined to implement the previous competitive reaction system, where decisions like the
feed-forward trajectories or operating modes allow the adaptation of master recipes to dif-
ferent demand scenarios. An industrial-size case study for acrylic fiber production is also
presented, illustrating synthesis decisions like the selection of process stages, technological
alternatives, and chemicals, in a grassroots scenario.

Finally, Chapter 7 summarizes the contributions of this thesis and exposes the further
research directions that can be followed on the basis of the results obtained.
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Chapter 2

State-of-the-art: batch process development

"If I had an hour to save the world, I would spend 59 minutes defining
the problem and one minute finding solutions."

Albert Einstein (1879 – 1955)

In this chapter, the problem of batch process development is defined and contextual-
ized. Academic contributions are reviewed, considering relevant advances for solving the
synthesis of conceptual processing schemes and the allocation of manufacturing facilities,
as well as for addressing their integration at different degrees. Special attention is paid
to optimization-based approaches. The overview also presents the parallelism between
process development and process management activities during the manufacturing stage,
like short-term scheduling and process coordination. Moreover, the use of a heterogeneous
terminology is identified in this area of research. For the sake of clarity, the definitions pre-
sented in Chapter 1 are here used, being consistent to the Standard S88 (ANSI/ISA-88).
Overall, the goal is to provide a complete perspective of the batch process development
problem which allows to state the problem solved in following chapters of this thesis.

2.1 Overview of batch process development

The problem of batch process development is defined as a planning activity that entirely
involves all decisions from the selection of best molecule to the optimal coordination of
operations for the manufacturing of a range of other products (Stephanopoulos et al.,
1999). It may be decomposed in two sub-problems, namely the synthesis of conceptual
processing schemes and waste treatment options, and the allocation of manufacturing
facilities (Rippin, 1983b, Stephanopoulos et al., 1999, Stephanopoulos & Reklaitis, 2011)
as shown in previous chapter (Figure 1.1, p. 3) and they are typically solved sequentially.

Several challenges are associated to the problem of batch process development. First,
the added value has a greater relevance at early process development stages (Stephanopou-
los & Reklaitis, 2011, Allgor et al., 1996). For example, master recipe information, which
is detailed during process development, is the basis for operational decisions made dur-
ing product manufacturing activities. In addition, the rapid process development using
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rational and systematic approaches is fundamental for chemical producers to be agile
introducing the production of new chemicals and keep competitive in the market-place
(Puigjaner, 1999, Stephanopoulos et al., 1999). Moreover, global targets are strongly in-
fluenced by processing conditions that determine task performance within the process
network (Rippin, 1993), establishing several trade-offs that are often reflected in eco-
nomic outcomes (Barrera & Evans, 1989). All these challenges encourage the research on
process development, seeking to avoid the overuse of fixed and approximated recipes ob-
tained from experimental procedures utilized in the preliminary product design (Rippin,
1993, Romero, 2003, Srinivasan et al., 2003).

Additionally, in the particular case of batch processes, an emphasis on the integration
of process synthesis and plant allocation sub-problems should be placed, since process
and plant are defined as independent items therein. New processes should be defined
frequently to refresh the products’ portfolio in batch facilities (Barrera & Evans, 1989).
In these situations, the definition of process task networks with no consideration of the
plant constraints leads to suboptimal solutions. So does the allocation of equipment items
with no adjustment of tasks and processing conditions.

2.2 Synthesis of conceptual processing schemes

According to Rudd et al. (1973), process synthesis deals with the selection of the topology
of a process in order to convert a set of raw material into a desired set of products. Such
problem involves decisions ranging from chemical reaction paths to complete process
flow sheet definition. Assuming th reaction mechanism, batch process synthesis can be
understood as the synthesis of a processing scheme or a general process recipe by selecting
process operations and their interconnections to transform a set of raw materials into
the final product (Stephanopoulos et al., 1999). Overall, the problem statement of the
synthesis problem can be formulated as follows:

Given the specification of raw materials and products and reaction mecha-
nisms, determine: (a) the unitary operations, (b) their splitting or merging
in process stages –or tasks–, (c) their sequence, (d) the chemical components
involved –e.g. reagent, solvents, catalysts–, and (e) the processing conditions,
such that the process model or task network of the process is obtained.

In his doctoral dissertation about the synthesis of batch processes for producing pharma-
ceuticals and specialty chemicals, Ali (1999) refines the definition of the process synthesis
problem by assuming information that is typically available from the chemist’s recipe in
previous laboratory steps (Ali, 1999, p. 46):

Given the chemist’s recipe which includes: (a) chemical reactions, (b) lab-
oratory processing steps, (c) their operating conditions, (d) raw materials,
(e) product specifications including intermediate product specifications, (f)
additional materials used –e.g. solvents, catalysts, and non-reacting quench
materials–, (g) physical property information, and (h) notes on operations,
determine the process model which consists of the optimal set of: (a) process
stages, (b) their relative ordering, and (c) their processing conditions, such
that production costs are minimized.

This author also refers the development of the task network as the core of process syn-
thesis stage of the batch process development, and defines three elements constituting
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this problem, namely the task selection, the task ordering, and the processing conditions
selection (Ali, 1999).

The synthesis of conceptual processing schemes is a potential area to improve process
performance through the development of effective and efficient processes (Rippin, 1993)
and has become an increasingly important field of activity in academia and industry (Li
& Kraslawski, 2004, Kravanja, 2010). For instance, savings of 35% in net present cost and
50% in energy consumption are reported using systematic process synthesis methodolo-
gies (Douglas, 1988). In addition, seeking for a holistic treatment of the process systems
problem, traditional conceptual synthesis, which is focused on deciding processing unit
types and their interconnection, is pursued to embrace other disciplines, like environ-
mental impact assessment, supply chain design, process intensification, or simultaneous
product and process design, among others (Li & Kraslawski, 2004).

2.2.1 Brief overview of process synthesis history

As Stephanopoulos & Reklaitis (2011) trace in their exhaustive overview of PSE, the two
pioneering textbooks of Rudd and collaborators in the late 1960s –i.e. Strategy of Process
Engineering (Rudd & Watson, 1968) and Process Synthesis (Rudd et al., 1973)– marked
the beginnings of a synthesis perspective in chemical process engineering, which was able
to complement and equilibrate the simulation and analysis culture that was present up
to that moment. Both perspectives are presented in Figure 2.1. From then on, academic
research developed systematic process synthesis ideas, which provided process engineers
with methodologies to invent new processing systems, rather than simply analyze existing
ones. Particularly, the rise in energy costs in the 1970s incentivized a great deal this area
of study (Nishida et al., 1981, Liu et al., 2011), whose early pivotal developments were
collected in several reviews (Hendry et al., 1973, Hlavacek, 1978, Stephanopoulos, 1980,
Nishida et al., 1981).

Almost thirty years later, Grossmann & Daichendt (1996) noticed that two differ-
ent approaches to represent process synthesis problem had been developed and estab-
lished, namely Douglas’ hierarchical decomposition (Douglas, 1985, 1988) and Gross-
mann’s Mathematical Programming (MP) (Grossmann, 1990, Grossmann et al., 1999).
Rippin (1990) pointed out that both approaches were concerned with different aspects

! ?

!?

ANALYSIS
(direct problem)

Simulation

Optimization

(inverse problem)

SYNTHESIS Objective

Flow sheet,

equipment, and

operating data

Process performance

indicators (e.g. economical,

environmental impact,

sustainability, product

quality, safety)

Figure 2.1: Analysis and synthesis perspectives in PSE (adapted from Klatt & Marquardt
(2009)).

19



i

i

“MMB” — 2014/1/27 — 10:03 — page 20 — #54
i

i

i

i

i

i

2. State-of-the-art: batch process development

of design and could be regarded as complementary. Historically, they were categorized as
knowledge-based and optimization-based respectively, and numerous investigations and
contributions were developed regarding both methodologies and their combination, em-
phasizing applications to continuous process design. Moreover, most of the research was
concentrated on the study of subsystems (Grossmann & Daichendt, 1996, Stephanopou-
los & Reklaitis, 2011) like: (i) energy management systems, e.g. heat exchanger networks
(HEN) and power system networks, (ii) separation systems, e.g. distillation sequences,
(iii) mass exchange networks, (iv) reactor networks, (v) integrated networks of separation
and energetic systems, and (vi) biochemical processes. The advances in this period were
reflected in various text-books, like the ones by Biegler et al. (1997) and by Seider et al.
(1999). More titles are provided in Stephanopoulos & Reklaitis’ review (2011).

Regarding batch process synthesis, prior tools developed for continuous processes
could not be directly applied. The nature of batch process involved different modeling
assumptions. For example, among other issues, conditions encountered in the batch pro-
cess could vary widely from the beginning of the process stage to the end. Additionally,
optimal trajectories of feed-forward control variables are commonly time-dependent in-
stead of constant set-points. Finally, each task would be composed by several operations
and batch phases, which required the representation of discrete events and the switching
conditions for operation or phase transitions (Rippin, 1983b). In the mid 1990s, several
works directed their attention to this problem, strongly incentivized by changing mar-
ket requirements, which entailed the frequent adaptation of product portfolios in batch
plants and, consequently, the development of new batch processes to be implemented.
However, the modeling requirements described above converted the synthesis of batch
processing schemes in a complex problem, and the necessary computational tools were
still not available. Therefore, the research on batch process development evolved toward
process allocation, namely the optimization of batch individual units and the design of
batch plants where predefined process models were assumed in most cases.

In the last decade, the increasing awareness of the necessary incorporation of sus-
tainability aspects in the decision-making process was captured in the field of process
synthesis (Grossmann & Guillén-Gosálbez, 2010). Particularly, this is posed to be a prob-
lem of paramount importance for sustainable production and consumption (Kravanja,
2010, Grossmann & Guillén-Gosálbez, 2010). The economic impact of environmental,
safety, and social targets evaluation in process and plant design is much lower at early
stages of product and process lifecycles (Stephanopoulos et al., 1999, Diwekar & Shastri,
2011). Additionally, Gwehenberger & Narodoslawsky (2008) pointed out that ecological
process synthesis would become prominent tools for the chemical engineer in the 21st cen-
tury, beyond the optimization of process operation for economic purposes. To that end,
the chemical industry needs to undergo dramatic changes. This way, traditional decision-
making would have to be redirected to consider the synthesis of processing schemes in
early process development steps, with the simultaneous attainment of multiple objectives,
rather than being concentrated on the evaluation of processing alternatives based on eco-
nomic criteria like cost minimization or profitability maximization (Li & Kraslawski, 2004,
Kravanja, 2010, Grossmann & Guillén-Gosálbez, 2010, Diwekar & Shastri, 2011).

As for the industrial impact of process synthesis, the advances in last fifty years cannot
be overestimated (Stephanopoulos & Reklaitis, 2011). Nevertheless, it is worth noting
that industrial practice for batch process synthesis has been dominated by knowledge-
based approaches relying in engineer’s experience and analytical tools like simulation.
Despite the ubiquitous optimization in PSE research in last two decades, algorithmic
and numerical methods for process synthesis have not received sufficient attention in the
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industrial environment, even though optimization-based synthesis methodologies could
lead to considerable economical improvements in process development and manufacturing
activities (Klatt & Marquardt, 2009).

2.2.2 Knowledge-based approaches

Knowledge-based approaches were the basis of the earliest attempts to obtain systematic
procedures to solve process synthesis. They are also referred to as sequential or concep-
tual approaches (Henao & Maravelias, 2011) and rely on process engineer’s knowledge
to decompose the problem according to the natural decision hierarchy. In particular, en-
gineers’ experience is incorporated into the solution strategy establishing heuristic rules
and procedures to generate process flow sheets and to refine sequentially the design spec-
ifications. This way, conceptual design of processing schemes can be created or invented
starting from barren process information (Stephanopoulos & Reklaitis, 2011).

First contributions to knowledge-based approaches

After the pioneer textbooks by Rudd and collaborators (Rudd & Watson, 1968, Rudd
et al., 1973), various complimentary contributions arouse to address the synthesis of con-
tinuous processes. For example, King (1971) discussed the selection of alternative separa-
tion systems and presented a categorization of separation system alternatives and selection
procedures based on priorities and heuristics. Siirola (Siirola, 1970, Siirola & Rudd, 1971)
carried out a research on computer-aided synthesis of chemical process designs using sys-
tematic approaches, which were based on Means-Ends Analysis and were implemented in
the computer program AIDES. Mahalec & Motard (1977) proposed the computer system
BALTAZAR upon the concepts in AIDES and the use of rules to iteratively modify and
improve the design from a base case.

Douglas (1985, 1988) presented the most representative knowledge-based contribu-
tion, the so-called hierarchical approach, where the synthesis problem was divided into
five decision levels: (1) batch versus continuous, (2) input-output structure of the flow
sheet, (3) recycle structure and reactor considerations, (4) separation systems, and (5)
heat exchanger network. The methodology included the use of heuristics, short-cut de-
sign procedures, and physical insights, as well as the evaluation of economic potential at
each decision level, to sentence the convenience of taking a particular solution and justify
further efforts. This approach was implemented in the computer programs PIP and Con-
ceptDesigner by Kirkwood et al. (1988) and Han et al. (1995) respectively. Finally, some
authors proposed heuristic procedures based on thermodynamic insights. One of the first
proposals was the method by Jaksland et al. (1995) to solve separation system networks.
Summarizing, these are some of the initial contributions for continuous processes, which
represented the basis for subsequent works on batch process synthesis.

Knowledge-based approaches for batch process synthesis

The first systematic procedure for batch process synthesis was proposed by Iribarren
(1985) based on Douglas’ hierarchical approach. Essentially, the methodology was com-
posed of three steps: (1) single-product preliminary design, (2) single-product structural
optimization, including plant allocation with decisions on storage tanks and parallel units,
and (3) evaluation of flow sheet alternatives for multi-product requirements. Later, Iribar-
ren et al. (1994) presented a heuristic approach that was focused on batch tasks merging
in processing units whenever it was possible, with the purpose of reducing the annualized
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capital costs by compacting the processing schemes and required facility investments.
The solution procedure pursued a reduction in the number of alternatives that had to
be evaluated to find a good design in order to economize the computational load. An-
other hierarchical approach was proposed by Linninger et al. (1994, 1995, 1996), which
included the selection of treatment options in the synthesis of batch processing schemes.
Particularly, the solution assessment was measured in terms of economic and ecological
impact, through the evaluation of material balances, regulations compliance in all process
streams, and treatment costs associated to the selected technology. This methodology was
implemented in the computer toolkit BatchDesign-Kit (Linninger et al., 1994).

Going a step further, Papaeconomou and coworkers (Papaeconomou et al., 2002,
2003a,b, Papaeconomou, 2005) proposed a heuristic approach to define sequences of batch
reaction and separation tasks for the conversion of raw materials into purified final prod-
ucts. The approach was distinguished by the great level of detail provided in the definition
of the task sequence. Despite, the effect of task processing conditions in the design of
batch plants had been studied earlier (Barrera & Evans, 1989), this work was relevant
because the definition of batch process models included processing conditions and oper-
ation transitions of each task. Moreover, the process was synthesized starting from bare
information. In particular, rule-based solution procedures were used, whose algorithms
were derived from process knowledge and thermodynamic insights –e.g. kinetic models or
phase diagrams–, providing feasible and efficient solutions without requiring significant
computational efforts.

The increasing concern for sustainable production and consumption in the last years
additionally motivated the development of heuristic and decomposition approaches for
batch process synthesis. Several contributions were proposed, pursuing the incorporation
of sustainable targets in newly defined processes or in process already implemented in
existing plants whose development had been carried out without accounting for sustain-
able concerns. For instance, Halim & Srinivasan (2006) proposed a systematic method-
ology for waste minimization in batch processes, which was based on the use of heuris-
tic procedures with cause-and-effect relations and guidewords –e.g. larger pressure or
smaller temperature– to diagnose waste sources and generate waste minimization alter-
natives. Other studies have addressed the retrofit of batch processes for sustainable de-
signs through a general framework based on path flow decomposition of the process flow
sheet and indicator-based identification of retrofit potential (Simon et al., 2008, Carvalho
et al., 2009, Bumann et al., 2011, Banimostafa et al., 2011, 2012), which had been orig-
inally developed for continuous processes (Uerdingen et al., 2003, 2005, Carvalho et al.,
2008). Most of them included modifications in the process recipe. Further details on batch
process development in retrofit scenarios are provided in Chapter 5.

Overall, knowledge-based approaches reduce the problem complexity through its de-
composition and sequential solution and provide good designs (Henao & Maravelias,
2011). Nevertheless, knowledge-based approaches cannot lead to rigorous optimal solu-
tions because the full interaction between decisions made in different solution steps is
disregarded and the improvement of synthesis alternatives relies on heuristics (Gross-
mann & Daichendt, 1996, Yeomans & Grossmann, 1999). This limitation can be partially
mitigated by combining a gradual refinement of design decisions with an increasing level
of modeling detail (Marquardt et al., 2008) or with the combination of these approaches
with optimization-based tools.
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2.2.3 Optimization-based approaches

Optimization-based approaches based on analytical and numerical methods lead to sys-
tematic solution strategies through a formal mathematical representation of the process
synthesis problem. In particular, all processing alternatives are first organized in a super-
structure, which is later formulated into a Mathematical Programming (MP) problem to
be finally optimized according to the decision criteria (Grossmann & Guillén-Gosálbez,
2010). Therein, the superstructure should represent all topological alternatives for the
process, including the combination of process stages and their interconnection.

First contributions to optimization-based approaches

The first algorithmic method to solve process synthesis was based on branch and bound
search (Lee et al., 1970), whereas the selection of the optimal configuration from a given
superstructure was first formulated by Umeda et al. (1972) and by Ichikawa & Fan (1973)
as a Non-Linear Programming (NLP) problem using continuous variables. Later, Papou-
lias & Grossmann (1983c), Grossmann (1985) realized that the use of integer variables
was required to represent the qualitative information associated to structural decisions
in the synthesis problem, and proposed Mixed-Integer Linear Programming (MILP) for-
mulations of the process synthesis problem. This way, integer variables could indicate the
selection or not of a process stage or connection. However, linear equations were unable
to capture fully the nonlinear behaviour of connecting items –i.e. mixers and splitters–
and unitary operations –e.g. reaction, separation, heat exchange– in the processing flow
sheet.

By that time, the Generalized Benders Decomposition (GBD) algorithm (Geoffrion,
1972) was already developed to solve Mixed-Integer Non-Linear Programming (MINLP)
problems; however, its application to process synthesis had not been considered up to
that moment. It was the extension of GBD into the Outer Approximation (OA) algorithm
(Duran & Grossmann, 1986a) what triggered the use of MINLP formulations for process
synthesis. Particularly, the development and refinement of the OA algorithm (Duran &
Grossmann, 1986a,b, Kocis & Grossmann, 1987, 1988, 1989a,b, Viswanathan & Gross-
mann, 1990), as well as its implementation in the MINLP solver DICOPT within the
modeling system GAMS (Brooke et al., 1988), were crucial advances for solving MINLP
for process synthesis (Grossmann & Daichendt, 1996) and other PSE problems –e.g. de-
sign and scheduling of batch plants. Additionally, the computer program PROSYN was
developed (Kravanja & Grossmann, 1990, 1994), where the solution procedure associ-
ated to the OA algorithm was implemented, exploiting the structure of the flow sheet to
improve the solution approach efficiency (Kocis & Grossmann, 1989a).

The review papers by Floudas & Grossmann (1994), Grossmann & Daichendt (1996)
and Grossmann et al. (1999) summarized the early advances that took place in MP ap-
proach to process synthesis and design. There, the combinatorial explosion in solution
procedures and the outcome of local optima were identified as initial limitations, to be
overcome through several approaches: (i) the integration of logics in mixed-integer opti-
mization, using Generalized Disjunctive Programming (GDP) formulation to reduce the
combinatorial search, (ii) the global optimization of NLP models, (iii) the rigorous pre-
liminary screening for MINLP models, and (iv) the formulation of superstructures.

As a result, a number of optimization algorithms emerged to tackle global optimum
solutions (Floudas, 2000), mostly based on Branch-and-Bound (B&B) schemes. In par-
ticular, the MINLP solver BARON (Sahinidis, 1996, Tawarmalani & Sahinidis, 2004)
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implemented in the modeling system GAMS acquired a great acceptance. Other global
solution strategies have been also proposed (Floudas & Gounaris, 2009), such as the algo-
rithm for optimizing bilevel MINLP programs presented by Mitsos (2010). Regarding the
systematic generation of superstructures, procedures had been reported for synthesis of
subsystems –e.g. HEN (Yee & Grossmann, 1990). However, such systematization resulted
more complex for general processes. The first proposal for the synthesis of continuous
processes was the axiomatic approach by Friedler et al. (1993). Later, Yeomans & Gross-
mann (1999) presented a systematic framework based on different superstructure and the
use of logics to formulate the optimization problem as a GDP. The problem of design
under uncertainty was also addressed (Acevedo & Pistikopoulos, 1998).

Numerous contributions applying MP for synthesis of continuous processes were de-
veloped in early optimization-based approaches for process synthesis. Moreover, most of
the reported work had concentrated in developing ad hoc models for specific types of
subsystems, like: reactor network synthesis (Achenie & Biegler, 1988, 1990, Balakrishna
& Biegler, 1992, 1996, Kokossis & Floudas, 1991, 1994, Lakshmanan & Biegler, 1996a,b,
Schweiger & Floudas, 1999a,b), separation network sequences (King, 1971, Papadopoulos
& Linke, 2009), HEN (Linnhoff & Eastwood, 1997, Papoulias & Grossmann, 1983b, Yee &
Grossmann, 1990), utility systems (Papoulias & Grossmann, 1983a), or combinations of
unitary operations (Kocis & Grossmann, 1988, Balakrishna & Biegler, 1993). It should be
noted that many of these contributions developed systematic optimization-based methods
for process synthesis based on thermodynamic insights. For instance, Linnhoff & East-
wood (1997) pioneered pinch technology for the synthesis of HEN. Balakrishna & Biegler
(1993) modeled reaction-separation networks according to a species-dependent residence
time distribution function, which were integrated with an energy targeting formulation.
The reader is referred to Grossmann & Daichendt (1996), Yeomans & Grossmann (1999),
and Grossmann & Guillén-Gosálbez (2010) for a thoughtful overview of ad hoc contribu-
tions.

Optimization-based approaches for batch process synthesis

The first issue to be addressed in order to apply optimization-based approaches to batch
process synthesis is the representation of the different elements that compose the proce-
dural model or recipe in the superstructure, bearing in mind the differentiation between
process and plant associated to batch processing. Researchers solving batch process syn-
thesis, plant design, and scheduling problems developed various representations of the
task network, in consonance to the mathematical modeling strategy used to formulate
the problem. First, Kondili et al. (1993) proposed the State-Task Network (STN) repre-
sentation, which included the process tasks and material states defined in the recipe, with
the limitation of not considering explicitly the equipment units and their interconnection.
The STN representation was extended by Barbosa-Póvoa & Macchietto (1994a) in the
so-called maximal State-Task Network (mSTN), in order to represent simultaneously the
design and operational characteristics of the problem. At the same time, Pantelides (1994)
introduced the Resource-Task Network (RTN), where processing units, storage tanks,
materials, and utilities were treated as resources that were either consumed/occupied or
generated/released at each task. Finally, Smith & Pantelides (1995) proposed the State-
Equipment Network (SEN) representation, where equipment units and states of transfer
material were involved and tasks were not included into the superstructure, unless they
were deduced from pre-specified equipment-task assignments. Currently, these represen-
tations are still used.
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Regarding the problem formulation and solution, Barton et al. (1998) encouraged the
natural extension of Dynamic Optimization (DO) formulation from solving individual
process stages to address the design of processing sequences to define an entire batch
process. DO problems, also known as Optimal Control problems, were based on optimiza-
tion models that included differential equations to represent process dynamics along time.
The authors also noted that the introduction of integer decisions in DO problems was also
required in order to represent the structural alternatives from the process superstructure
and thus include synthesis decisions in the problem. As a result, Mixed-Integer Dynamic
Optimization (MIDO) formulations were obtained. Additionally, Barton et al. (1998) an-
ticipated the need of including discontinuities in DO and MIDO problems in order to
represent discontinuities in physical properties inherent to batch processes, as well as
discrete events inherent to operating procedures, resulting in hybrid discrete/continuous
models.

Accordingly, Charalambides et al. (1995, 1996) defined the task network with STN
representation and captured the dynamic aspects of batch processes by using DO. The
optimization problem was composed of multistage models, where each mathematical stage
corresponded to a process stage as well. The trade-off between processing intensities
was tackled through the optimization of the dynamic profiles of the control variables
at the different tasks. However, being the first attempt to apply Dynamic Optimization
techniques in processes synthesis, the problem was simplified by assuming the process
structure. The considered network was composed of one reaction, one mixing, and one
distillation task with recycle, at their periodic steady state. The reactor cooling water and
the distillation reflux ratio were defined as control variables. The optimization problem
sought to establish the recipe characteristics, the sizing of the equipment items utilized,
and the operating policy of each task to meet the required product specifications, by
maximizing the total net revenue.

Sharif et al. (1999) solved a similar problem which also included integer variables in the
optimization model to account for discrete equipment sizes together with the optimization
of dynamic profiles for the control variables. Therefore, a MIDO problem was obtained.
Nevertheless, integer variables were not included for structural decisions in the process
synthesis problem, since the task sequence and structural decisions were also predefined
in this case.

In contrast, Iribarren et al. (2004) considered more structural decisions associated to
the synthesis problem, but simplifying the representation of the batch process perfor-
mance by using algebraic approximations. In particular time and size factor models were
used to represent the process behavior in tasks as a function of the process synthesis deci-
sions taken. Particularly, the synthesis of multiproduct and multi-host protein production
processes was solved using a MINLP formulation based on a SEN representation that also
included semi-continuous operation. The work was based on the earlier studies by Mon-
tagna et al. (2000), Asenjo et al. (2000), and Pinto et al. (2001) to design multiproduct
batch plants for protein production. These prior contributions were spread by Iribarren
et al. (2004) to include structural decisions associated to process synthesis alternatives,
namely the selection between several possible hosts, the selection of downstream sepa-
ration and purification alternatives, and the operating mode following either a parallel
in-phase configuration or an out-of-phase one. Plant design and scheduling decisions were
also included –i.e. the unit size and the processing order of each product within the prod-
uct portfolio. However, the simplification of the batch process performance with algebraic
equations involves a significant loss of information regarding the feasibility of the actual
process and the improvement potential.
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Finally, optimization-based approaches have been also extended to solve specific batch
process subsystems. This is the case of batch HEN, where several contributions are found
since the early research by Vaselenak et al. (1986). In particular, continuous approaches
had to be adapted to incorporate concepts like the indirect and direct heat transfer to
differentiate heat transference using or not heat storage, respectively. The former case
allows heat exchange between tasks at different times. A contextualization of the batch
HEN is presented by Liu et al. (2011). Besides, optimization-based approaches have been
also proposed to solve mass exchange networks (Foo et al., 2005b), utility systems (Foo
et al., 2004), and water recovery networks (Foo et al., 2005a).

Optimization-based methodologies can be very effective because a large number of
process alternatives are considered simultaneously (Henao & Maravelias, 2011). In par-
ticular, the use of a unique optimization model where the task network and process
behaviour are formulated permits to incorporate the simultaneous solution of different
kinds of synthesis decisions, like the task sequence or the processing conditions (Gross-
mann & Daichendt, 1996, Henao & Maravelias, 2011). This way, process trade-offs and
interactions between capital equipment expenses and processing costs can be evaluated
(Barrera & Evans, 1989). Despite this problem goes in hand with mathematical complex-
ity, the solution of process synthesis has strongly motivated chemical engineers to develop
MINLP algorithms. For instance, solution methods like the OA (Duran & Grossmann,
1986a) and the branch-and-reduce global solver BARON (Sahinidis, 1996, Tawarmalani &
Sahinidis, 2004) have been developed, leading great advances in the field of Mathematical
Programming and Operations Research.

Currently, optimization-based approaches to address simultaneous decision-making
is quite affordable in the case of continuous processes. However, for batch processes it
becomes a much formidable problem to be solved, due to the dynamic behavior and higher
combinatorial complexities to couple process and equipment. In fact, a fragile equilibrium
exists between simple models that allow computationally tractable optimizations and
rigorous models that provide realistic optima. Additionally, the optimality of the solution
can be only guaranteed with respect to the alternatives considered a priori (Grossmann,
1985). Thus, the systematic generation of synthesis alternatives to be included in the
superstructure is an aspect that requires further study in optimization-based approaches.
Due to the problem complexity and the need of an initial task network superstructure,
the application of optimization-based approaches to the synthesis of conceptual batch
processing schemes is subject to the combination of MP and DO techniques with the use
of heuristic and decomposition approaches.

2.2.4 Combined approaches

Giving response to the abovementioned limitations of knowledge- and optimiza- tion-based
approaches for process synthesis, several attempts have been presented in the literature
to exploit their complementary capabilities:

1. Algebraic and numerical methods provide the missing quantification in knowledge-
based approaches, and thus the optimality objective of the resulting processing
schemes (Stephanopoulos & Reklaitis, 2011). For instance, several authors incorpo-
rated the optimization of either specific tasks (Sharif et al., 2000) or specific solutions
of the task sequence (Fonyó & Mizsey, 1990, Mizsey & Fonyó, 1990, Daichendt &
Grossmann, 1997, Kravanja & Grossmann, 1997, Bedenik et al., 2004) in some step
of hierarchical decomposition approaches.
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2. Heuristics can be used to attenuate the mathematical complexity of optimization-
based approaches. In this regard, the most relevant proposal was the use of mixed-
logic modeling, which allowed the incorporation of heuristics and previous knowl-
edge about the process into the optimization problem, formulated through logical
propositions (Raman & Grossmann, 1991, 1992, 1993, 1994, Viswanathan & Gross-
mann, 1994, Floudas & Grossmann, 1994, Türkay & Grossmann, 1996b). This way,
the combinatorial size of the optimization problem is reduced by eliminating regions
of the search space within the MILP or MINLP problems.

3. Two-staged methodologies were posed, where decomposition strategies were
used to systematize the generation of superstructures to be afterwards optimized
using MP methods (Daichendt & Grossmann, 1994a,b, Ali, 1999, Linninger &
Chakraborty, 1999, Chakraborty & Linninger, 2002, 2003, Cavin, 2003).

4. Knowledge-based tools based on thermodynamic insights were also used to define
processing sequences in optimization problems (Ahmad, 1997, Allgor, 1997, Allgor
et al., 1999, Allgor & Barton, 1999a, Barton et al., 1999).

5. Iterative procedures to support the solution of MIDO problems have been devel-
oped too, solving separately the structural decisions in the synthesis problem and
the process performance (Allgor & Barton, 1999b).

First contributions to combined approaches

The possibility to mathematically formulate heuristic rules and available process knowl-
edge was one of the most important advances in algorithmic and numerical strategies
for process synthesis, which stimulated considerably this area of research. In particu-
lar, the introduction of logical relations in the formulation allowed to reduce the size
of the optimization problem. Balas (1985), who pioneered the Disjunctive Programming
methodology to introduce logics in mathematical modeling, cited in his work the syn-
thesis problem between the areas of application. Few later, several contributions (Raman
& Grossmann, 1991, 1993, Floudas & Grossmann, 1994, Grossmann & Daichendt, 1996,
Grossmann et al., 1999) posed logic-base modeling as a challenging alternative for contin-
uous process synthesis, which could limit the combinatorial explosion in MP approaches.
Disjunctive Programming problems, generalized as Generalized Disjunctive Programming
(GDP), allowed to capture both qualitative and quantitative parts of the problem by using
Boolean variables, logical disjunctions, and algebraic equations (Vecchietti & Grossmann,
2000, Grossmann & Westerberg, 2000). This way, available process knowledge, system
restrictions, and heuristics could be formulated through logical propositions (Raman &
Grossmann, 1994, Türkay & Grossmann, 1996a).

First publications (Raman & Grossmann, 1991, 1992, 1993, 1994) relied on linearly
approximated models of process stages. Later, Viswanathan & Grossmann (1994) con-
tributed to the development of symbolic logic and optimization techniques for process
synthesis, and Floudas & Grossmann (1994) worked on the development of logic-based
modeling and global optimization tools. Additionally, Türkay & Grossmann (1996b) pro-
posed a new logic-based OA solution method, which was an adaptation of the OA algo-
rithm by Duran & Grossmann (1986a) where logical reasoning was incorporated in the
search procedure, based on the previous works by Raman & Grossmann (1991, 1992, 1993,
1994).

The combination of hierarchical decomposition and Mathematical Programming tech-
niques was also addressed in several contributions synthesizing of continuous processes
(Fonyó & Mizsey, 1990, Mizsey & Fonyó, 1990, Daichendt & Grossmann, 1997, Kravanja
& Grossmann, 1997, Bedenik et al., 2004). Most of the reported strategies were based
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on the simplification of MINLP problems by postulating the superstructure of the flow
sheet alternatives at different levels of representation. Then, each level was modeled with
a specific level of aggregation or complexity and the entire flow sheet was optimized ac-
cording to the corresponding set of modeling assumptions. Overall, bounding strategies
and the progressive increase in the detail level of process models were common tools in
search strategies. For example, the multilevel search tree defined by Daichendt & Gross-
mann (1997) ranges from a high level of abstraction to a detailed flow sheet definition: (1)
input-output level, (2) reaction level, (3) separation level, and (4) heat-integration level.

Finally, a two-staged methodology to generate superstructures that should be later
optimized was proposed by Daichendt & Grossmann (1994a). This combined method was
based on a preliminary screening to identify challenging solutions throught the use of
aggregated models. Next, reduced MINLP models were formulated, containing only the
best alternatives found in the preliminary screening. The application of the proposed
search strategy was illustrated for a heat-integrated distillation columns network and a
HEN (Daichendt & Grossmann, 1994b).

Combined approaches for batch process synthesis

The formulation of a unique optimization model to find global optimal solutions with
regard to all the elements of the batch process development was a complex activity, es-
pecially with the computational tools that were available when this problem was first
posed (Ali, 1999). This motivated the use of combined approaches to solve such prob-
lem. As a result, superstructure formulations and MP tools were initially combined with
problem decomposition strategies (Sharif et al., 2000, Cavin, 2003), base-case development
(Ali, 1999), automatic generation of superstructures (Ali, 1999, Linninger & Chakraborty,
1999, Chakraborty & Linninger, 2002, 2003, Cavin, 2003), knowledge-based targeting pro-
cedures (Allgor, 1997, Allgor et al., 1999, Allgor & Barton, 1999a), and the use of iterative
solution loops (Ahmad, 1997, Barton et al., 1999, Allgor & Barton, 1999b), as following
detailed.

Ahmad (1997) and Barton et al. (1999) first proposed an iterative approach to synthe-
size batch solvent recovery routes, using a targeting procedure based on thermodynamic
insights. In particular, they developed the notion of solvent recovery targeting for
multi-component systems. This method predicted the correct distillation sequence of pure
components and azeotrope cuts for a given stream composition. To do so, the iterative so-
lution approach was composed of rigorous simulations, targeting of the attainable solvent
recovery that predicts the limiting behavior, and engineer intervention to suggest design
modifications if the maximum recovery obtained is not acceptable. Next, the solvent recov-
ery targeting was involved in NLP formulations to address the synthesis of batch processes
with integrated solvent recovery and recycling in pharmaceutical and specialty chemical
industries. In this case, all feasible distillation sequences were evaluated simultaneously
based on prior thermodynamic considerations. The environmental impact was minimized,
posing the solvent recovery problem as a pollution prevention challenge. Additionally, this
approach was applied to single-product and multiproduct problems where the solvent use
was integrated across parallel processes. Processing conditions, like solvent-reagent ratio
or flow rates, were also considered as degrees of freedom. However, the representation of
transient behavior of batch processes through targeting expressions hinders the definition
of batch operation improvement in compromised solutions.

A similar targeting approach was proposed by Allgor and coworkers. In this case,
the problem was based on STN representation and was formulated as a MIDO problem
that included integer variables for structural decisions in process synthesis. The process
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performance was also represented by algebraic approximations, the so-called screening
models (Allgor, 1997, Allgor et al., 1999, Allgor & Barton, 1999a). These provided rig-
orous global lower bounds in cost minimization problems, thus allowing to screen and
remove unworthy alternatives in the superstructure without eliminating the global solu-
tion. For that, the screening models were derived from domain-specific knowledge, based
on physical insights specific for each unitary operation. The drawback of the method is
that the solution to this problem cannot be implemented directly, but only provides the
screening of structural alternatives to identify best candidates, as well as a reliable tar-
get of the objective function. According to the authors, the obtained structural solutions
should be followed by the detailed design of the actual process, for instance by using DO.
Allgor & Barton (1999b) integrated this further step in the process synthesis problem by
using an iterative approach. Specifically, structural decisions of the processing network
and equipment assignment were complemented with the solution dynamic trajectories of
the control variables, using an iterative targeting procedure. This way, the optimization
problem was decomposed into sub-problems providing rigorous upper and lower bounds on
the objective. Screening models were used for calculating the rigorous global lower bounds
in the master problem, while the primal problem provided upper bounds by solving DO
sub-problems.

A hierarchical approach composed of different levels of abstraction combined with
MP was described by Sharif et al. (2000). This work was similar to the abovementioned
work by Daichendt & Grossmann (1997) in the context of continuous processes. In this
case, the decomposition levels were: (i) abstract process design, (ii) conceptual process
design, (iii) concrete process design and mapping to equipment, and (iv) plant design. The
contribution was focused on solving the abstract level, thus determining the performance
of abstract process stages termed cells using DO. Further process development steps
rendering plant allocation and design problems were not conceived.

At the same time, Ali (1999) suggested a two-staged solution approach system-
atizing the generation and formulation of superstructures which were following optimized.
The outstanding feature of their methods was that it pursued to reduce the optimization
model generated and to limit the search space of alternatives, in order that mathematical
complexity was attenuated. To generate the optimization superstructure, a method based
on Means-Ends Analysis and Non-Monotonic Planning is used, providing a base case de-
sign and the search space of feasible alternatives. The problem was then formulated as
a reduced MINLP that could be solved through conventional MINLP solution strategies.
Processing conditions in process stages were considered as degrees of freedom in that step.
The approach was applied to the problem of batch process synthesis for the production
of pharmaceuticals and specialty chemicals.

A two-staged problem procedure including superstructure generation and opti-
mization was also proposed by Linninger & Chakraborty (1999) to address the synthesis
and optimization of batch waste treatment flow sheets in the pharmaceutical industry. In
the first step, an informed search heuristic method based on linear planning theory was
used to systematically synthesize structural alternatives which were then included in the
superstructure. Following, MP tools were used to formulate the superstructure and select
the optimal flow sheet and its operating parameters. In particular, process availability,
plant capacity, and regional regulatory limits for pollutant disposal were included in the
formulation in order to take into account site-specific constraints in a plant-wide optimum
process design. Path consistency was ensured in the optimization model by using logical
propositions formulated as algebraic equations. The goal was to minimize the cost associ-
ated to the different treatment alternatives while satisfying a set of modeling constraints
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representing environmental concerns. Later, the methodology was further extended to in-
corporate multi-objective optimization to balance economic and ecological targets in the
objective function (Chakraborty & Linninger, 2002) and to address the synthesis of op-
timal plant-wide waste treatment policies under uncertainty (Chakraborty & Linninger,
2003).

Cavin (2003) decomposed the problem of batch process synthesis in two compo-
nents which should be combined eventually: (1) waste treatment path selection and (2)
allocation of existing plants to tasks. Basically, the goal was to select waste treatment
paths that could reduce environmental impact in either new or existing batch plants, also
taking into account widespread economic objectives. For that, structural decisions were
considered. Processing conditions within the process recipe were not optimized; however,
the predefined temperatures and pressures for each stage of the recipe had to satisfy the
physically feasible range in the unit selected during the allocation problem. Regarding
the solution approach, the waste treatment path selection was addressed through an it-
erative method on the one hand (Cavin, 2003). On the other, the allocation problem
solution was solved through a two-staged approach composed of the automatic genera-
tion of superstructures (Cavin, 2003) and its corresponding multi-objective optimization,
which was addressed through a stochastic optimization method, the Tabu Search (TS),
in posterior contributions (Cavin et al., 2004, 2005). In broad terms, the objective of was
focused on the design of the single most efficient batch process to produce a single product
in a multi-purpose facility.

Mosat et al. (2007, 2008) proposed a combined solution approach to introduce new
processes in grassroots and retrofitted multipurpose batch plants assuming pre-defined
process recipes, based on the prior by Cavin et al. (2004, 2005). This time, multi-
objective optimization was used to enhance productivity and robustness, using the
TS solution method. The approach newly incorporated the concept of superequipment,
referred to generalized processing elements that could substitute any unit from the buy
list and that were transformed into real equipment in the end. This strategy was used
to simplify the combinatorial problem. Moreover, heuristics were incorporated into the
optimization problem to represent information like: (i) the suitability of equipment classes
to perform particular process stages, (ii) design specifications, (iii) scale-up rules for each
process stage, or (iv) superequipment rules, among others.

Finally, Halim & Srinivasan (2008) extended their previous knowledge-based approach
(Halim & Srinivasan, 2006) to combine heuristic and optimization tools for system-
atic waste minimization in batch processes, including the generation and evaluation of
design alternatives. Process simulation through material and energy balances was incor-
porated in the methodology, as well as the evaluation of energy utilization, the synthesis
of recycle networks, and the use of multi-objective optimization solved using Simulated
Annealing (SA). Equipment flow sheet was assumed to be given, since the methodology
was mostly developed for the process synthesis in retrofit scenarios.

To sum up, the great advantage of combined approaches was that they render practical
optimization procedures where structural and processing decisions are defined. However,
most of the works still simplify either the representation and definition of the process
performance –e.g. using algebraic model approximations for batch process stages– or the
associated degrees of freedom –e.g. optimizing constant profiles of the control variables
or assuming a predefined value.

Besides, solution strategies that used abovementioned logic-based GDP formulations
to introduce heuristics and process knowledge in optimization models for batch process
synthesis were expected. For example, the works by Linninger and Chakraborty (1999,
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2002, 2003) included logical rules in the superstructure formulation. However, in the case
of batch processes, dynamic behavior should be also represented. Formulations that in-
cluded dynamic equations in mixed-logic models have been applied to other problems of
PSE. For example, one of the first steps in this context was Mixed-Logic Dynamical (MLD)
optimization by (Bemporad & Morari, 1999) to solve model predictive control problems.
Therein, lineal or linearized equations were used to represent the time-dependent inter-
dependence between physical laws, logical rules, and operating constraints, and logical
decisions were represented by integers. Later, mixed-logic modeling with process dynam-
ics were applied to scheduling problems in continuous processes with grade transitions
(Nyström et al., 2005, 2006, Prata et al., 2008), design of individual batch units (Olden-
burg et al., 2002, 2003), and simultaneous design and control (Bansal et al., 2002a,b). In
the contributions by Oldenburg et al. (2003) and by Prata et al. (2008), not only logi-
cal rules but also Booleans and disjunctive equations were used, together with dynamic
non-linear equations. This modeling approach is referred to as Mixed-Logic Dynamic Op-
timization (MLDO) (Oldenburg et al., 2003). However, to the author’s knowledge, there
are no available references yet in the context of batch process synthesis.

2.3 Allocation of manufacturing facilities

The problem of allocating batch manufacturing facilities consists of the assignment of pro-
cess stages, which have been selected for producing a desired product and compose the pro-
cess model, to specific physical equipment items in a new or existing plant (Stephanopou-
los & Reklaitis, 2011). It is the major activity of production scheduling and is usually
addressed in operational decision-making during the manufacturing stage, as it is the
case of the short-term scheduling reviewed by Méndez et al. (2006). However, the allo-
cation problem has to be considered during batch process development as well, in order
to match process model elements to particular equipment pieces (Stephanopoulos et al.,
1999). Moreover, the introduction of modifications in the process recipe in this step eases
the solution of this problem. Answering the following questions posed by Stephanopoulos
et al. (1999, p. S981) has a long-term and deep impact on the process under development:

• Do we have the necessary equipment to realize this process?
• Among several production facilities and their corresponding equipment items, which

are the best for allocating this process?
• Can we identify the main advantages and drawbacks of assigning this process to a

given production facility?
• For a given equipment inventory in a production plant, which is the attainable scale

of production?

In summary, the problem statement for the allocation of manufacturing facilities during
process development reads as follows:

Given: (a) the tasks and their sequence, and (b) the processing conditions
defined in the synthesis step, subject to: (a) the physical plant constraints,
determine: (a) the type of campaign, its sequence, and coordination, (b) the
equipment pieces selection and interconnection, (c) the production sizes, (d)
the cycle times, and (e) the task adaptation to physical plant, such that the
objective function is optimized.

Different challenges arise from this statement according to the size and complexity of the
system considered. In particular, Rippin (1983b) mentions the following systems:
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1. Operation of individual units;
2. Operation of a sequence of equipment items; and
3. Design of a single-product, a multiproduct, or a multipurpose plant.

The allocation of manufacturing facilities is required in grassroots and retrofit scenarios.
In the former case, new equipment items are designed to fulfill the specific processing
requirements. In the latter case, available existing equipment should be adapted and plant
modifications can be done, like the consideration of expanding the capacity of particular
items or installing new connections pipelines, processing units, or storage items. In order to
make possible the use of existing units, the feasibility of each solution should be evaluated
with regard to physical restrictions imposed by operating constraints, capacities, and
available connections.

Following, research contributions to the optimization of individual units and the design
of batch plants problems are reviewed, being two predominant areas in academy due to
the challenges associated to optimize the design and operation of batch systems.

2.3.1 Optimization of individual batch units

The optimization of individual units for batch process operation is a pivotal problem in
batch process development. The degree of completion of each task is determined by the
corresponding processing conditions and times (Rippin, 1993) and at the same time, has
an effect on operating costs, environmental impact, and safety indicators. Moreover, the
process performance of each task affects to the state properties of material transferred to
subsequent process stages. Rippin (1983b) examined the role of individual unit perfor-
mance in the context of batch process development underlining the following features:

• The conditions encountered in the batch process may vary widely from the beginning
of the process stage to the end, unlike the case of continuous processes where the
operation occurs in the neighborhood of steady-state conditions.

• Besides, the equipment units that execute the sequence of process stages have to
process different products, hence the adaptability to accommodate the different
processing conditions and requirements for a variety tasks is mandatory.

• Moreover, optimal trajectories of feed-forward control variables may be time-dependent
instead of constant set-points.

• Finally, each task may be composed by several batch operations and phases which
require the definition of switching conditions that determine operation or phase
transitions.

As a result, the optimization of batch unit operation is more complex than the anal-
ogous continuous problem, and has become a challenging problem regularly addressed in
the literature. Overall, optimizing the operation of individual process stages corresponds
to the well-known open-loop control problem. Therein, the feed-forward control profiles to
meet a processing objective are defined, even though stability and controllability indica-
tors are generally not taken into account. The problem may be stated as follows (Rippin,
1983b):

Given: (a) the kinetics and reactions taking place and (b) upper and lower con-
straints for process and control variables, and assuming that: (a) the reactor
is homogeneous and the control variables –e.g. temperature or feed addition
rate– can be freely chosen at any time, determine: (a) the optimal profiles for
batch reactors, such that the objective function is optimized.
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To solve this problem, the availability of reliable mathematical models representing the
process behavior are crucial. Rippin (1993) also indicated that "the possibility of im-
proving batch reactor performance by time profiles of temperature or feed addition rate is
entirely dependent on the kinetics occurring in the reactor, with a further dependence on
the objective function used". This way, first-principle or point measurements at different
times of the batch should be used to define the required process models. However, the
obtaining of accurate models may encounter some difficulties, especially in the case of com-
plex kinetics or intermediates that cannot be measured (Rippin, 1983b, Moreno-Benito
et al., 2013). In addition, dynamic models are required to fully represent the batch process
behaviour, covering a wide range of processing conditions, which will change along the
time. Finally, to complete the procedural model, discrete events and switching conditions
associated to operation or phase transitions should be also accounted for. A clarifying
survey of hybrid models to represent problems with continuous variables and discrete
events is presented by Cruse et al. (2006). Three problem categories are defined according
to their degree of complexity, namely: (i) single-stage models composed essentially by
DAE systems, (ii) multistage models with explicit discontinuities with predefined phase
transitions, and (iii) general discrete-continuous hybrid models with implicit discontinu-
ities to define stage transitions as a function of process variables. Particularly, the formal
mathematical description of hybrid models had been generalized by Barton & Pantelides
(1994).

Optimization-based approaches

In the early 1960s, Denbigh (1958) and Aris (1960) demonstrated that the optimization of
temperature profiles could improve the operation in tubular reactors. Hence, the interest
for systematic studies on temperature profiles grew, and numerous investigators undertook
the analogous problem of optimizing feed-forward trajectories of control variables along
time in batch reactors. Optimal Control (OC) techniques, which had been developed
in the 1950s for aerospace applications, were adopted to solve this problem (Pollard &
Sargent, 1970, Sargent & Sullivan, 1979). OC consists of the optimization of dynamic
systems according to an objective function by adjusting the profiles of control variables
along time and are also referred to as Dynamic Optimization (DO) problems.

Since then, numerous DO solution strategies have been developed. In the 1980s and
1990s, important advances in analytical and numerical techniques took place. For in-
stance, Dynamic Programming (DP) was developed based on Hamilton-Jacobi-Bellman
formulation that transformed the original problem into a system of partial differential
equations (Bellman, 1957), which was extended to include path constraints on state and
control variables (Luus, 1990). Several works have further dedicated to the application of
DP to batch and semi-batch reactor optimization since then (Rosen & Luus, 1992, Luus,
1994, Bojkov & Luus, 1996, Guntern et al., 1998, Luus & Okongwu, 1999, Luus, 2006,
2009). Alternative solution methods were proposed. In particular, necessary conditions
of optimality derived from Pontryagin’s formulation were the basis for indirect meth-
ods (Bryson & Ho, 1975). Moreover, the conversion of the time-continuous optimization
problem into a finite-dimensional nonlinear programming problem by discretization gave
place to various direct methods, classified as sequential (Sargent & Sullivan, 1978, Kraft,
1985), simultaneous (Neuman & Sen, 1973, Tsang et al., 1975, Biegler, 1984), and hybrid
(Bock & Plitt, 1984, Bock et al., 2000). A comprehensive review of the different solu-
tion approaches is provided by Binder et al. (2001), Srinivasan et al. (2003) and Schlegel
(2004).
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In the last two decades, DO has acquired a great popularity in the academic context. In
general, dynamic models with detailed kinetics and mass and energy balances have been
used to optimize the operation of unitary operations. For example, many contributions
were dedicated to batch or semi-batch reactors (Cuthrell & Biegler, 1989, Garcia et al.,
1995, Lehtonen et al., 1997, Ishikawa et al., 1997, Bonvin, 1998, Luus & Okongwu, 1999,
Ubrich et al., 1999, Abel et al., 2000, Aziz & Mujtaba, 2002, Srinivasan & Bonvin, 2003,
Zhang & Smith, 2004, Sun et al., 2007), batch distillation columns (Hansen & Jørgensen,
1986, Christensen & Jørgensen, 1987, Diwekar et al., 1989, Logsdon et al., 1990, Sundaram
& Evans, 1993, Diwekar, 1995, Mujtaba & Macchietto, 1996, Sharif et al., 1998, Kim,
1999, Oldenburg et al., 2002, 2003, Low & Sørensen, 2005, Cruse et al., 2006, Barakat &
Sørensen, 2008) and reactive distillation columns (Sørensen et al., 1996), among others. In
these works, frequent decision variables are the dynamic profiles for the selected control
variables and the batch phase durations in Multistage Dynamic Optimization problems
(Vassiliadis et al., 1994).

Superstructure formulation based on mixed-integer and mixed-logic modeling were
also applied to account for structural decisions, leading to MIDO or MLDO problems
respectively. This way, design and operation decisions such as the equipment configura-
tion, the number of trays in distillation columns, or the input location were considered
simultaneously to optimal control variable profiles. (Sundaram & Evans, 1993, Diwekar,
1995, Mujtaba & Macchietto, 1996, Sharif et al., 1998, Oldenburg et al., 2002, 2003, Low
& Sørensen, 2005, Cruse et al., 2006, Barakat & Sørensen, 2008). MIDO and MLDO
formulations were also motivated by their application in integrated design and control
problems, as it is the case of Mohideen et al. (1996a,b, 1997) and Bemporad & Morari
(1999). The state-of-the-art of MIDO and MLDO modeling and solution approaches is
further detailed in Chapters 3 and 4. In conclusion, many advances in modeling capabili-
ties and optimization techniques for dynamic processes were driven, which permitted the
widespread application of detailed modeling and optimization-based approaches to define
the operation of individual batch units in the academic context.

Regarding the industrial application, only a few attempts have been done to displace
the use of fixed recipes and apply the abovementioned optimization-based approaches,
even though the potential gains of optimization are significant. Habitually, process is
periodically adjusted using heuristics gained from experience, which may lead to slight
improvements from batch to batch. According to Srinivasan et al. (2003) and Schlegel
(2004), the bottlenecks that limit industrial acceptance of DO are: (i) the lack of re-
liable models and measurements, (ii) the difficulties to interpret the optimal solution
unless the objective function represent a physical variable or parameter, (iii) the need to
link optimization tools with the actual measurement-based information that is commonly
available, and (iv) the lack of robustness and efficiency of the solution techniques.

2.3.2 Design of single-product, multiproduct, and multipurpose

plants

The design of batch plants is a consolidated problem that has attracted much research
interest since the mid 1980s (Rippin, 1993), when an exponential grow of related contri-
butions occurred due to a renewed interest in batch production (Puigjaner, 1999). Batch
plant design consists of the development of a processing facility for the production of a
desired product portfolio (Ali, 1999). In essence, this problem tackles the definition of
operational decisions, the assignment of process stages to appropriated equipment items,
and the equipment sizing (Rippin, 1983b). Moreover, it is required that the scheduling
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is anticipated in the design stage (Birewar & Grossmann, 1989); hence, scheduling con-
straints regarding equipment allocation, as well as batching, timing, and task sequence in
process items, are mostly included in batch plant design formulations. The objective is
to define a system that can assimilate and coordinate the process models for the various
products to be manufactured.

A detailed framework of the batch plant design problem is presented in the reviews
by Reklaitis (1990) and Barbosa-Póvoa (2007). Particularly, the following decisions are
given to compose this problem:

• Definition of the processing network, i.e. process recipe for each product;
• Selection of operating strategy for organizing the manufacturing process, i.e. single-

product, multiproduct, or multipurpose batch plants;
• Allocation of equipment items to tasks and synthesis of equipment configuration,

considering the following operating modes: parallel units in-phase or out-of-phase,
one unit assigned to multiple tasks, serial units assigned to one task, or intermediate
storages; and

• Equipment sizing.

In this context, (Barbosa-Póvoa, 2007) provided a thorough problem statement for the
generic optimal design problem of batch plants, which included plant allocation and as-
sumed given process recipes:

Given: (a) the product recipes describing the production of one or more prod-
ucts over a single or multiple campaign structures, (b) all possible equipment
units to be installed in the plant and their suitability to perform the different
operational tasks, (c) the time horizon, (d) the resource utilisation along the
time horizon, (e) the inventory availability for each material involved, (f) the
product demands and raw material delivers along the time horizon, (g) the
storage policies, and (h) the operating and capital cost data, determine: (a)
the optimal plant configuration –i.e. number, type, and capacity of equipment
items and their connectivity and (b) the process schedule making use of the
selected resources to achieve the required production –i.e. timing, storage poli-
cies, batch sizes, amounts transferred and task-equipment allocation, such that
a plant performance objective is optimized.

First contributions

Early works on batch plant design were focused on the minimization of capital costs
associated to equipment investment in single-product plants, subject to a set of production
requirements and fixed recipes. Ketner (1960) presented the first contribution, where this
problem was addressed by selecting the optimal equipment sizes. The research on that
field was later resumed by Loonkar & Robinson (1970) solving a similar problem. Since
then, subsequent research incorporated progressively more complex decision-making: the
design of multiproduct (Robinson & Loonkar, 1972, Grossmann & Sargent, 1979) and
multipurpose plants (Mauderli & Rippin, 1979, Suhami & Mah, 1982), the evaluation of
uncertainty in the production demands and the solution of flexible design (Reinhart &
Rippin, 1986, Wellons & Reklaitis, 1989, Shah & Pantelides, 1992), the use of parallel
units and discrete equipment sizes (Sparrow et al., 1975), the use of intermediate storage
(Takamatsu et al., 1979, Yeh & Reklaitis, 1987), the retrofit problem (Vaselenak et al.,
1987), and the consideration of processing costs in addition to equipment investment
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(Barbosa-Póvoa & Macchietto, 1994a). For an extended overview of batch plant design
progress in the last sixty years, the reader is referred to the reviews by Reklaitis (1990),
Rippin (1993), Allgor (1997, Appendix D), and Barbosa-Póvoa (2007).

Recipe definition in batch plant design

Ideally, best allocation solutions should be specified according to physical and chemical
phenomena in process stages to match the process model to the master recipe to be
implemented in a particular plant. However, it is frequent in batch plant design that the
use of fixed or approximated recipes hinders the adaptation of recipe parameters like set-
points and reference trajectories for control variables according to the global targets. The
most common modeling assumptions with regard to process recipes in batch plant design
problems are: (i) constant processing time and size, (ii) constant time and size factor
model, where capacity requirements are defined as a function of the batch size (Robinson
& Loonkar, 1972, Biegler et al., 1997, Ravemark & Rippin, 1998), and (iii) time and
size factor model, where time is also a function of the batch size (Espuña & Puigjaner,
1989, Modi & Karimi, 1989). Therefore, processing times and overall performance can
be only accommodated through operational decisions such as the operating mode, batch
size, storage tank location, or unit duplication. Thus, the assumptions defining fixed and
approximated recipes are a huge limitation in the allocation of manufacturing facilities in
batch process development.

Allocation decisions in batch plant design

The outstanding decisions in batch plant design related to the allocation of equipment
items to process stages are essentially: the equipment sizing, the task merging and split-
ting, the use of parallel units, and the use of intermediate storage. These have an impact
on the control recipe and, particularly, on the duration of process stages, cycle times,
and processing rates (Rippin, 1983b, Reklaitis, 1990). For instance, the cycle time, un-
derstood as the interval between the production of successive batches, is limited by the
duration of the various process stages. Disparities in the time scales of different tasks
can be settled through the use of out-of-phase parallel units, where batches can be fed
alternatively from more rapid tasks to debottleneck slow process stages and raise the
global processing rate. In contrast, parallel units working in-phase may be used to in-
crease the batch size and avoid the underuse of equipment items that allocate preceding
and subsequent process stages, what has an effect over the global plant capacity. Another
example is the assignment of one single unit to multiple tasks, in order to reduce the
number of equipment items to be purchased. Finally, intermediate storage tanks allow
the division of the task network into segments with different cycle times. For that, it
is necessary that batch integrity is not mandatory and that intermediates and products
are sufficiently stable to be stored up to the next cycle time before being transferred for
further processing.

Material transference synchronization

Synchronization is understood as the overlapping of tasks in different processing or storage
units during a material transference operation between consecutive tasks. In the context of
scheduling and design of batch plants, several works address material transfer operations
in multiproduct (Kim et al., 1996, Ha et al., 2000, Castro & Grossmann, 2005) and
multipurpose plants (Heo et al., 2003, Ferrer-Nadal et al., 2007, Furman et al., 2007,
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Ferrer-Nadal et al., 2008a, Castro & Novais, 2008). However, their main objective is
eluding physically inconsistent allocation solutions (Ferrer-Nadal et al., 2008a), rather
than a thoughtful evaluation of transfer durations and transfer profiles. Thus, these works
deal with the fulfillment of material and energy balances with a unique material state point
in each transfer operation.

2.4 Integration in the decision-making

Several contributions made an effort to integrate completely or partially the abovemen-
tioned sub-problems. Particularly, the combined batch process synthesis and plant allo-
cation is here highlighted, as well as the modification of process recipes during the batch
plant design. Additionally, the synthesis of new processing schemes to be implemented
in existing plants should evolve inherently the integration of batch process development,
since the synthesis problem should not be defined unaware of physical restrictions of the
existing plant in order to calculate feasible solutions. The research related to this last
problem is reviewed in Chapter 5. Finally, the highest degree of integration is accom-
plished through the simultaneous process and plant optimization. In this case, process
synthesis and plant allocation are accompanied by plant design decisions, such as equip-
ment sizing. That is a formidable problem, whose contributions are detailed in Chapter
6.

Regarding the solution strategy, let us note that works here categorized as integrated
problems are those that define decision variables typically associated to different sub-
problems, either these degrees of freedom are solved simultaneously, iteratively, or se-
quentially. In fact, decomposition and sequential approaches have headed historically the
integrated batch process development. In contrast, the application of optimization-based
strategies has been hindered by the complexity of its modeling and optimization steps,
despite their asset characteristics for the simultaneous evaluation of process development
trade-offs formulated in a unique model. In particular, the batch nature of the process
involves not only a the need of combinatorial evaluation to match equipment and task
networks (Gani & Papaeconomou, 2006, Allgor, 1997), but also the use of dynamic mod-
els instead of steady-state ones (Srinivasan et al., 2003, Allgor, 1997), as well as dynamic
profiles of control variables instead of continuous set-points and the representation of
discrete events associated to operation and phase transitions. As a result, the use of
complementary optimization-based approaches and heuristics or problem decomposition
is prioritized to solve the abovementioned decision-making integration in batch process
development.

2.4.1 Integrated synthesis of batch processing schemes and plant

allocation

Some of the works carrying out batch process synthesis previously reviewed included
task-equipment assignment and other decisions related to the allocation of manufacturing
facilities. These works are detailed in Table 2.1.

Iribarren (1985) and Iribarren et al. (1994) first proposed decomposition approaches
for process development involving process and plant design solved sequentially. First, con-
ceptual processing schemes were synthesized. Next, allocation decisions were addressed,
namely the optimal location of storage tanks and the number of units in parallel in
each stage to satisfy plant scheduling constraints in single-product and multiproduct
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campaigns. Later, the two-staged approaches to generate and optimize superstructures
proposed by Linninger and Chakraborty (1999, 2002, 2003) and by Cavin (2003) also
included degrees of freedom related to both sub-problems, like the selection of the process
or equipment structure, the processing conditions, and the task-unit assignment, among
others. Additionally, the MINLP superstructure studied by Iribarren et al. (2004) set-
tled the optimization of integrated problems. However, the process performance in batch
process stages was simplified in this case through the use of time and size factors that
depended on the synthesis decisions considered.

Regarding the adjustment of processing conditions, even though it was considered in
several contributions as part of the process synthesis, few of them allow tackled the def-
inition of dynamic trajectories. In fact, those works which did so had to assume other
decisions. For instance, Charalambides et al. (1995, 1996) employed DO to optimize simul-
taneously dynamic profiles and equipment sizing through the assumption of predefined
process structures or their solution in an outside loop. Sharif et al. (1999) solved a similar
problem with predefined task sequence and structural decisions, but considering discrete
values for the equipment sizing, thus resulting into a MIDO problem. In the case of All-
gor (1997), Allgor et al. (1999) and Allgor & Barton (1999a), structural decisions were
included into MIDO formulations, which were simplified into MINLP by representing the
process performance with algebraic approximations, namely the screening models. After-
wards, this strategy was incorporated into an iterative procedure where complementary
upper bounds were provided through DO solution (Allgor & Barton, 1999b), hence solv-
ing the complete MIDO. Simon et al. (2008) proposed a hierarchical approach to evaluate
batch plant modifications in three levels –i.e. plant, process, and unit operation. Dynamic
indicators were included in the unit operation level, as well as the definition of dynamic
control profiles.

Finally, various works have proposed strategies to develop new processes in order to
introduce the production of new chemicals in existing plants (Cavin, 2003, Cavin et al.,
2004, 2005, Mosat et al., 2007, 2008) and to improve batch processes through the in-
corporation of sustainable targets in retrofit scenarios (Halim & Srinivasan, 2006, 2008,
Simon et al., 2008, Carvalho et al., 2009, Halim et al., 2011, Bumann et al., 2011, Bani-
mostafa et al., 2011, 2012). These strategies can be also applied in grassroots scenarios,
by improving a base case which should be initially defined.

2.4.2 Recipe modifications in allocation of batch plants

The most widespread problems of batch plant allocation in academy have been: (i) the
optimization of individual batch units where one or various process stages are carried out
and (ii) the design of single-product, multiproduct, and multipurpose plants. However,
the solution of these subsystems in isolation only provides a partial assessment of process
allocation in a manufacturing facility because the performance of each task affects the
state properties of the material transferred to subsequent process stages. Consequently,
tasks’ interactions in the sequence of allocated equipment items is rarely accounted for,
neither in the optimization of individual units, nor in the design of batch plants. In the
former problem, process performance is evaluated in isolated units. In the latter prob-
lem, the use of fixed or approximated recipes hinders the adaptation of recipe parameters
according to global targets. In this section, the efforts devoted to integrate recipe modi-
fications during the solution of batch plant allocation are reviewed, with the outstanding
contributions summarized in Table 2.2.

One of the pioneer works analyzing the interactions of process performance among
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Integration in the decision-making

consecutive tasks was the publication by Barrera & Evans (1989). Three types of trade-
offs were specified therein, namely:

1. Cycle time of the complete process versus processing intensity at individual tasks;
2. Effect of upstream task performance over downstream stages; and
3. Total rental costs or investments versus operational costs corresponding to the pro-

cessing rate of the entire system.

These authors demonstrated that recipe modification was critical to the success of the de-
sign, since the consideration of these interactions allowed to improve process performance
and guaranteed feasibility of the process tasks.

Regarding the various types of decisions to be included in the problem, Barrera &
Evans (1989) elucidated the differentiation within the set of decisions addressed in the
integrated problem according to their nature, which were classified into performance and
structure sub-problems. On the one hand, the performance sub-problem involved the de-
termination of optimal operating policies and processing conditions for a pre-specified
sequence of process tasks. The works by Wilson (1987) and Charalambides et al. (1995,
1996) served as an example. On the other, the structure sub-problem focused on the op-
timization of the equipment configuration during the allocation of equipment items, ex-
cluding decisions on stage procedures and processing conditions. This problem has been
usually addressed in scheduling and plant design problems (Reklaitis, 1990, Rippin, 1993,
Méndez et al., 2006, Barbosa-Póvoa, 2007, Maravelias, 2012). Overall, to deal with the
simultaneous solution of performance and structure sub-problems and to evaluate pro-
cessing trade-offs in the allocation problem, most contributions have concentrated on the
development of mathematical models to represent the process behavior within the prob-
lem formulation. Different degrees of detail have been proposed, like time and size factor
models and algebraic and dynamic performance models, which are following presented.

Up to date, the most popular representation of tasks’ completion in the design and
scheduling of batch plants since the early contributions in this area is the so-called constant
time and size factor model (Robinson & Loonkar, 1972, Biegler et al., 1997, Ravemark
& Rippin, 1998) due to its reduced mathematical complexity. Therein, task processing
times are predefined with a fixed value, while the required equipment volume to shelter
the task is calculated using a size factor Sj , which defines the volume of vessel j required
to produce a particular amount of final product. One of the first works to go a step further
was presented by Knopf et al. (1982), who introduced the calculation of residence times
in semi-continuous units to define their processing duration as a function of unit size and
production rate in batch plant design. Later, the task processing time was also defined as
a function of the batch size by several authors, like Espuña & Puigjaner (1989) and Modi
& Karimi (1989), among others.

Additionally, algebraic performance models were introduced to represent the process
behavior in batch facility allocation. Tricoire (1992) evaluated the effect of modifying
key processing conditions together within design, synthesis, and scheduling problems. He
argued that detailed models could not be used for complex processes, like polymeriza-
tion ones. Hence, he defined correlations to evaluate the effect of the selected processing
variables over size factors and cycle times of the batch tasks. Improvement was obtained
with regard to designs with fixed processing conditions. Contemporary, Salomone & Irib-
arren (1992) approximated batch processing operations into algebraic models that were
following rearranged symbolically. This way, size factors and processing times were rep-
resented as explicit posynomial functions of certain operating parameters. Several works
followed in the application of posynomial functions for batch plant design. Montagna et al.
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(1994) extended the work by Salomone & Iribarren (1992) to cover equipment sizing as
well. They proved that optimal operating conditions differed whether a given product
was produced in a dedicated single-plant facility or in a multiproduct plant. The solution
of discrete decisions regarding plant design was not solved simultaneously therein; thus,
the determination of the number of parallel units, storage tanks allocation, or task-unit
assignments should be undertaken either before the plant and recipe design or in an outer
optimization loop.

The use of posynomial models was also considered by Asenjo et al. (2000) and Pinto
et al. (2001) to solve the design of multiproduct batch plants for the production of recom-
binant proteins using batch and semi-continuous operation. The problem was formulated
as a MINLP which included structural, plant design, and recipe decision variables, as
shown in Table 2.2. Moreover, solution strategies for the simultaneous optimization of the
structure and the process variables were also explored (Asenjo et al., 2000). In particular,
the following approaches were compared: (i) MINLP solution with fixed size and times, (ii)
simultaneous MINLP solution including posynomial models, and (iii) iterative approach
decomposing the problem into the solution of the processing variables with fixed structure
and the solution of the structure with fixed time and size factors. It was found that the
iterative approach was faster and still provided near-optimal solutions in comparison to
the simultaneous optimization.

However, algebraic process performance models had some drawbacks, like the mistrust
on obtained solutions, due to the simplification of complex dynamic behavior of process
stages into algebraic approximations, and the need to rearrange equations symbolically,
which was not always possible. Non-convexities in the mathematical model would difficult
the further introduction of integer decisions. As a result, detailed dynamic models were
also pursued to describe the behavior of individual batch operations and to address recipe
modifications in the allocation of manufacturing facilities. The use of simulation of detailed
DAE systems to represent the behavior of batch tasks was first addressed by Wilson
(1987). In this study, the design of a reactive batch distillation process was determined,
including the optimization of the process performance by using an ad hoc manual search
over the key variables and assuming a given structure. The process was composed of a
reaction and a separation stage which could be conducted in the same unit. Both the
processing conditions and column size were optimized according to the capital cost of the
reactive distillation unit, the processing cost, and the raw material expenses.

Later, Barrera & Evans (1989) proposed a hierarchical solution strategy where the
performance and the structural sub-problems were solved iteratively. Each iteration com-
prised the following steps: (1) definition of the unit size, the number of parallel units, and
the storage policy, (2) the distribution of horizon time among products, (3) the definition
of processing conditions and times, and (4) the system simulation, cost calculation, and
constraints evaluation. To determine the processing conditions and times, the process per-
formance sub-problem was formulated as a NLP for particular structural alternatives and
equipment allocation. Each optimization included the determination of optimal profiles
for the selected control variables and the fulfillment of operating constraints related to
product purity and temperature.

Salomone et al. (1994, 1997) proposed an iterative algorithm where posynomial func-
tions (Salomone & Iribarren, 1992) and DAE models were combined in optimization and
dynamic simulation steps respectively. The complete process was first optimized using the
algebraic expressions and was following simulated for evaluation purposes. The size fac-
tors and posynomial expressions were updated at each iteration. This strategy was proved
to be a robust and reliable methodology for the design of single-product (Salomone et al.,
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1994) and multiproduct plants (Salomone et al., 1997) which included equipment sizing
decisions.

The use of DO formulations was also used in batch plant design to capture the dy-
namic aspects of the batch processes and to optimize the profiles of processing conditions
along the time. In addition to the abovementioned contributions by Charalambides et al.
(1995, 1996), Sharif et al. (1999), and Allgor & Barton (1999b) addressing batch process
synthesis, other works were published in the area of scheduling and plant design. For
instance, Bhatia & Biegler (1996) considered the simultaneous optimization of dynamic
control profiles and equipment sizing in multiproduct batch plant design, scheduling,
and production planning, assuming a predefined sequence of batch process stages. This
problem was formulated as a DO, where integer decisions had been relaxed into con-
tinuous variables. Additionally, Corsano et al. (2004, 2006) proposed to formulate the
simultaneous optimization of synthesis, design, and operation of batch plants as a NLP.
Specifically, dynamic models to represent the batch process behavior in process stages
were defined through DAE systems and these were discretized in finite-difference equa-
tions using a trapezoidal method. Besides, structural, plant design, and process decision
variables were included in the formulation. To avoid the use of integers, particular vari-
ables were enforced to zero when the corresponding alternative was not selected Corsano
et al. (2007) extended this work to optimize several lines in multi-product campaigns. To
do so, a combined approach was used, which consisted of a heuristic procedure and an
optimization-based step in a sequential decision-making.

To conclude, improved solutions were provided in the abovementioned research works
with regard to the use of fixed recipes. The modification of processing conditions and
recipe parameters during equipment allocation favors the holistic consideration of pro-
cessing trade-offs, enunciated by (Barrera & Evans, 1989). The possible variation of task
performance is presented not only as an important problem, but also as a difficult one.
However, a constant progress and increase of complexity is registered in the reviewed
publications, despite the cautious concerns to verify that potential benefits will justify
and outweigh the effort and time required to generate and optimize complex models.

2.5 Related work in batch process management

Similar problems to the synthesis of conceptual processing schemes and the allocation of
manufacturing facilities in batch process design arouse for batch process management.
First, the problem of allocating manufacturing facilities was necessary both in a process
development stage, as well as in a manufacturing stage (Stephanopoulos et al., 1999).
Particularly, short-term scheduling to optimize the operation of batch plants is a well-
established area of research, where significant progress has been done in the last thirty
years to improve production performance in single-product, multiproduct, and multipur-
pose batch plants (Méndez et al., 2006, Maravelias, 2012). A parallelism is also presented
between scheduling problems that include process dynamics and plant design with recipe
modifications. Second, a further area of research to improve the batch plant operation
is the automation of the synthesis of operating procedures or process coordination. Op-
erating procedures are defined as the detailed sequence of operations and phases to be
executed safely and optimally (Viswanathan et al., 1998a) and correspond to the strategy
for carrying out a process (ANSI/ISA-88). Particularly, master recipes should be trans-
formed into control recipes to be executed at a specific time. This activity requires the
derivation of plant- and time-based information according to a scheduling solution. Both
problems are here compared to batch process development problems.
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2.5.1 Short-term scheduling with process dynamics

The scheduling problem is a the process of deciding how to commit resources between
a variety of possible tasks. The general chemical production scheduling problem can be
posed as follows (Maravelias, 2012):

Given: (a) the production facility data, (b) the production recipes, (c) the
equipment unit-task compatibilities, (d) the production costs, (e) the material
availability, (f) the resource availability, and (g) the production targets or or-
ders with due dates, determine: (a) the selection and sizing of tasks and batches
to be carried out –i.e. batching–, (b) the assignment of tasks to processing or
storage units or general resources, (c) the sequence of tasks on processing or
storage units, and (d) the timing of tasks, such that: production targets and
resource constraints are satisfied, and the performance metrics are optimized
–e.g. cost minimization, tardiness or lateness minimization, earliness mini-
mization, or profit or throughput maximization.

Historically, scheduling formulations rely on the use of approximated recipes represented
by fixed times and size factor models, like in batch plant design. Some works proposed the
use of flexible recipes in reactive scheduling approaches to deal with uncertainty through
small modifications of processing conditions around nominal processing conditions (Ferrer-
Nadal et al., 2007, 2008b). This way, most of the works searching optimal schedules are
based on trade-offs strictly related to cycle time and equipment allocation. The solution of
this problem implies that equipment utilization is maximized with the purpose of reducing
the campaign length and the costs associated to resource allocation.

However, production costs related to material use –i.e. raw material, energy and waste
costs– can be only reduced through the manipulation of the operating policies according
to process performance considerations. Additionally, the consideration of dynamics in this
problem is further incentivized by the need to re-accommodate the production assignments
in case that an abnormal events takes place (Muñoz et al., 2011). The modification of
recipe parameters could provide an opportunity to fulfill demands at strict due dates
in those situations, even thought extreme processing conditions and higher costs can
be necessary. Overall, the consideration of process dynamics and recipe modifications
in short-term scheduling allows the evaluation of these trade-offs according to in-time
needs. As a matter of fact, the integration of scheduling problems with other planning
and operational activities has been posed as an issue of paramount importance to tackle
Enterprise-Wide Optimization, as exposed by several authors (Harjunkoski et al., 2009,
Maravelias, 2012, Engell & Harjunkoski, 2012). Specifically, the vertical integration of
scheduling with process optimization and control has been underlined.

Several works have been devoted to the integration of operational scheduling and con-
trol decision-levels to solve both the scheduling of batch processes (Bhatia & Biegler, 1996,
Mishra et al., 2005, Capón-García et al., 2011b, 2013, Nie et al., 2012, Frankl et al., 2012b)
and in the scheduling of transition grades for continuously-operated processes (Gallestey
et al., 2003, Nyström et al., 2005, 2006, Flores-Tlacuahuac & Grossmann, 2006, Busch
et al., 2007, Terrazas-Moreno et al., 2007, 2008, Prata et al., 2008, Flores-Tlacuahuac &
Grossmann, 2010). These problems have been mostly addressed through the introduction
of models that represent the transient process behavior into MILP or MINLP short-term
scheduling formulations. Like in the case of batch plant design, algebraic process perfor-
mance models and detailed DAE systems –which lead to DO and MIDO problems– have
been considered.

48



i

i

“MMB” — 2014/1/27 — 10:03 — page 49 — #83
i

i

i

i

i

i

Related work in batch process management

To conclude, a parallelism between the allocation problem during batch process devel-
opment and the short-term scheduling during process manufacturing is found. However,
both problems have essentially the following differences:

1. The nature of the problem. On the one hand, the integrated process development
is focused on planning decisions in an annual basis in the early stages of the process
lifecycle. On the other, the scheduling problem with recipe flexibility during product
manufacturing deals with operational decisions in a weekly basis in the final stages
of the process lifecycle.

2. The decision variables. Batch process development goes in hand with additional
degrees of freedom with respect to scheduling problems, namely the selection of pro-
cess stages or tasks, their sequence, splitting or merging, the chemical components
involved –e.g. reagent, solvents, catalysts–, which are always assumed in scheduling
problems.

3. The model complexity. The level of detail in the operational problem have to
be limited in order to keep the problem manageable and solvable in shorter compu-
tational times, since it should be solved on-line within a temporal horizon of days
or weeks. Thus, multistage models to represent operations and phases within each
process stage are unlikely to be compatible with short-term scheduling.

2.5.2 Automating the synthesis of operating procedures

In addition to the assignment of equipment items to execute the process and the optimiza-
tion of individual units operation, a further area of study related to process allocation
is the synthesis of operating procedures. This problem was referred to as the recipe to
manufacture by Venkatasubramanian et al. (2001). Viswanathan et al. (1998a) defined
the synthesis of operating procedures problem as follows:

Given: (a) the general recipe coarse-grained information and (b) the plant
specific details; determine: (a) the refined control recipe form, according to the
allocation of equipment and resources to the various operations in the process
(arbitrated by the production planning and scheduling control activity).

Moreover, this problem should be solved through the combined effects of the recipe man-
agement and the production planning and scheduling activities. Particularly, the recipe
management problem should create, modify, and maintain the various types of recipes,
classified as general, site, master, and control recipes in the Standard S88 (ANSI/ISA-88,
2010).

The automation of this problem received a special attention in the literature. A special
emphasis was placed on the improvement of efficiency, reliability, and risk reduction, by
avoiding operating procedures generated by plant engineers, which required considerable
amount of time and efforts (Lakshmanan, 1990). Various frameworks and methodologies
have been proposed. Their major challenge has been the development of systematic mech-
anisms to automatically and structurally build the procedural knowledge and link it to
the corresponding plant structure (Gabbar et al., 2005). The systematic representation of
operating procedures is also provided in most cases.

For instance, Lakshmanan (1990) proposed a framework based on a model-based oper-
ation planning mechanism to synthesize operating procedures for chemical plants. Later,
Viswanathan et al. (1998a) developed a hierarchical planning strategy that used declar-
ative and procedural knowledge to generate inferred knowledge incrementally, leading to
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operating procedures. It was based on the discrete event modeling tool Grafcet. This
framework was implemented by Viswanathan et al. (1998b) in the automated system
iTOPS, an Intelligent Tool for operating procedure synthesis. Besides, Aylett et al. (2001)
applied Artificial Intelligence (AI) planning tools to the synthesis of operating procedures
of a chemical plant. Moreover, the intelligent system iTOPS was merged with the expert
system Batch HAZOPExpert for automated HAZOP analysis of batch processes (Zhao
et al., 2000b,a, Venkatasubramanian et al., 2001, Zhang et al., 2004). At the same time,
Hoshi et al. (2002, 2003) proposed a recursive algorithm based on directed graph repre-
sentations in a sub-graph isomorphism framework. The approach was extended later to
deal with the operation of heat exchange and separation for the synthesis of operating
procedures (Kaneko et al., 2003) and to handle energy-conversion systems along with
material conversion processes (Yamashita et al., 2004). Additionally, Gabbar et al. (2005)
presented and automated solution called AOPS to synthesize master recipe and generate
the corresponding control recipe, using Recipe Formal Definition Language (RFDL) to
represent the operating procedures in batch plants. Recently, Muñoz et al. (2011, 2012)
proposed the use of ontological systems to coordinate the definition of control recipes
from scheduling solutions as well as to integrate the two decision levels. The proposed
framework allowed the information exchange among the different modeling paradigms
and conventions for Enterprise-Wide Optimization based on Standards S88 (ANSI/ISA-
88, 2010) and S95 (ANSI/ISA-95, 2000) for modeling enterprise and control systems.

2.6 Concluding remarks

The problem of batch process development is presented once a new product is identified
–together with the general guidelines for its production in the laboratory– and has the
objective of providing the master recipe for its commercial-scale manufacturing, which
details the processing scheme that should be implemented in a particular production fa-
cility. Basically, such problem entails several decisions compromising process and plant
elements. This chapter has surveyed the different areas of research of PSE which han-
dle part of decision-making from both perspectives, that is using the process and plant
reference.

However, these elements are strongly interrelated. One example of the unavoidable
connection between process and plant is noted in the solution of batch reactors’ operation.
There, the optimization of feed-forward trajectories of control variables and the definition
of phase transition policies can be understood as: (1) the determination of a process stage
during the solution of process synthesis problem or (2) the adjustment of unit procedures
during the solution of plant allocation problem. Other example of this interrelation is that
of plant design problems allowing the modification of processing conditions or the merger
of distinct tasks in a unique processing unit.

Overall, this close connection has made difficult the development of an accurate termi-
nology that denotes unambiguously each degree of freedom or decision variable. Certainly,
huge steps have been taken toward standardization of batch process management in last
twenty years, providing unified guidelines to define several elements and functionalities
of batch processing systems (e.g. ANSI/ISA-95, ANSI/ISA-88). Additionally, established
terminologies and classification of problems have been provided for batch plant design
(Rippin, 1983a, Reklaitis, 1990, Barbosa-Póvoa, 2007) and for batch process scheduling
(Méndez et al., 2006, Maravelias, 2012). Nonetheless, the use of these terminologies has
not fully penetrated the field of batch process development, where concepts related to pro-
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Concluding remarks

cess and plant elements are sometimes used interchangeably in spite of their theoretical
distinction.

Various examples in the literature evidence the vast complexity of the problem and
the lack of an unified and structured notation which clearly distinguishes each element
in the decision-making of process development. For instance, different authors have used
heterogeneous terms to denote each sub-problem. Essentially, all of them refer to similar
schemes of decision, but using different concepts:

(i) Synthesis of processing schemes –including waste treatment options– and allocation
of manufacturing facilities (Rippin, 1983b, Stephanopoulos et al., 1999, Stephanopou-
los & Reklaitis, 2011) –this is the notation adopted in this thesis;

(ii) Process synthesis, process design, and allocation of manufacturing facilities (Allgor,
1997);

(iii) Laboratory-scale synthesis, process scale-up, and process design (Cavin, 2003);
(iv) Process synthesis, operational design, process control, and plant design (Papae-

conomou, 2005).

In this context, this thesis aims to incorporate the common terms and definitions used by
the PSE community dedicated to batch processing as well as the guidelines of Standard
S88 (ANSI/ISA-88).
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Chapter 3

Optimization model for integrated batch process development

"In 1980, optimization on engineering problems beyond linear pro-
gramming was often viewed as a curious novelty without benefit. Now,
optimization applications are essential in all areas of process sys-
tems engineering including design, identification, control, estimation,
scheduling, and planning."

Stephanopoulos & Reklaitis (2011, p. 4282)

This thesis proposes and optimization-based approach to solve the problem of inte-
grated batch process development. For that, all structural alternatives are combined in
a unique superstructure, following formulated into an optimization model which is later
solved to minimize a cost function. In this process, the modeling step is a key issue, where
the optimization model should be defined integrating decisions from the synthesis of batch
processing schemes and the allocation of manufacturing facilities sub-problems and tak-
ing into account the plant design. Specifically, the mathematical formulation is subject
to: (i) the construction of a superstructure that involves all synthesis and allocation al-
ternatives, (ii) the representation of dynamic process performance and dynamic control
variable profiles, (iii) the consideration of discrete events to represent batch phase and
operation transitions, (iv) the combination of quantitative and qualitative information
in the optimization model, (v) the need of synchronizing material transference between
unit procedures to ensure batch integrity, and (vi) the combination of batch and semi-
continuous processing elements.

In this chapter, the degrees of freedom related to each sub-problem are first stated,
subject to the problem definitions provided in Chapter 2. Additionally, previous works ad-
dressing the modeling issues for integrated batch process development are reviewed. Next,
a novel modeling strategy is proposed according to such requirements and the available
solution tools. Finally, each of the process synthesis and plant allocation decisions subject
to be included in the optimization model is represented in a mathematical formulation.
The problem statement and the proposed modeling approach are illustrated through two
motivating examples along the chapter.
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3. Optimization model for integrated batch process development

3.1 Degrees of freedom and problem statement

The problem tackled in this work corresponds to the optimization of master recipes in
grassroots and retrofit scenarios, to introduce a new or modified product to be produced
in single-product campaign. For that, the simultaneous solution of batch process synthesis
and allocation decisions is addressed. In order to embrace a comprehensive description of
the particular degrees of freedom, two motivating examples are provided. The first one
consists of a unique process stage of reduced dimension. The second example presents a
system extension that incorporates additional degrees of freedom. The plant and process
flowsheet presented in both examples serves to identify the problem, clarify the termi-
nology used in this thesis, and understand the problem statement. The specific tasks,
equipment pieces, interconnections, allowed technologies, chemicals, recirculation flows,
buffer tank locations, and allowed alternatives for equipment configuration have to be de-
fined for each particular case. Additionally, existing and potentially installed equipment
and piping should be represented in the superstructure.

3.1.1 Motivating example 1: process synthesis and allocation of

a single process stage

The first example covers a process cell, defined as the set of equipment items required for
the production of one or more batches (ANSI/ISA-88), where a process stage should be
executed. The diagram of the process cell is shown in Figure 3.1, composed by two batch
units U1 and U2 which can be connected through different flow distributions. Additional
equipment pieces are necessary for that purpose, namely mixers Mx1 and Mx2, splitters
Sp1 and Sp2, and connecting pipelines 1 to 9, as well as storage tanks for raw material
Traw and final products Tprod.

1

2

3

4 5

6

7 8

9

U1

U2Mx1

Mx2Sp1

Sp2

Traw Tprod

Figure 3.1: Process cell diagram and SEN superstructure of example 1.

The equipment diagram corresponds to the SEN superstructure of the problem, pro-
posed by Smith & Pantelides (1995), where equipment and material states are intercon-
nected. Particularly, the states are indicated by bullets in the Figure and correspond to
flow rates and properties, which change along time through dynamic profiles. Equipment
items are represented by empty shapes. The operating mode –or equipment configu-
ration– alternatives to be evaluated should be comprised in the superstructure. In the
example, the following cases are considered: operation of U1 and U2 in parallel in-phase
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Degrees of freedom and problem statement

and with equal phase durations, operation in series with U1 followed by U2, or operation
in one single unit, either U1 or U2. Each configuration determines the set of equipment
items from the SEN that are required to drive the process. In addition, the configuration
selection is precisely related to the decision on task splitting, by determining whether
a process stage is divided in several unit procedures.

The superstructure of task alternatives can also be described using the STN represen-
tation proposed by Kondili et al. (1993), as illustrated in Figure 3.2. The circles indicate
the states –i.e. flow rates and properties– and the rectangles indicate the tasks and their
division into subtasks. The STN superstructure is related to the SEN one, since the final
target is the combination of process and plant within a master recipe to be executed,
rather than their modeling and design in isolation. Consequently, it is necessary to pre-
assign tasks and subtasks to batch units and are referred to as unit procedures, which
are characterized by the pre-specified unit U1 or U2 and their occupation order 1 or 2,
as shown in the STN. Moreover, each unit can only execute one unit procedure for each
solution: merging tasks in the same unit and recirculation of intermediate flow during the
processing of the same batch is not considered. Finally, it should be noted that physical
limitations in batch unit connections can exclude tasks alternatives, as reflected in the
STN. For instance, the unit procedure U1 subtask 2 cannot be performed in the pro-
cess cell structure from Figure 3.1 unless a new piping connection from U2 to U1 were
contemplated.

Raw

material

Inter-

mediates

Final

mixture

subtask 1

subtask 1 subtask 2
U1 U2

U2

Figure 3.2: STN superstructure of example 1.

In each equipment unit, a specific unitary operation takes place with its associated
physicochemical phenomena and properties. Either a batch or a semi-continuous proce-
dure can be predefined therein. The former is composed by a fixed number of operations
and phases, whereas the latter is referred to the intermittent use of continuously oper-
ated plant elements. In the example, both units U1 and U2 are assumed to work in batch
mode following three typical phases –i.e. filling, holding, and emptying the reactor–, and
all other plant elements are assumed to follow semi-continuous procedures. Several deci-
sions at control level can be considered in the process design of unit procedures, namely
the batch phase duration and the feed-forward trajectories of flow rates in input
and output pipelines and of internal variables. Internal variables should be defined as
a function of the degrees of freedom of each unit procedure model –e.g. temperature or
reactant dosage profiles in procedures of reactors U1 and U2, or valve aperture in splitters
Sp1 and Sp2.

Additionally to process synthesis and allocation sub-problems, plant design decisions
are included, namely the sizing of processing and storage units to be installed or occupied.
These decisions usually adopt discrete values to facilitate the equipment acquisition. In
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3. Optimization model for integrated batch process development

retrofit scenarios, equipment size of existing units are transformed into constraints.
In order to solve the simultaneous batch process synthesis and allocation problem,

the above decisions have to be included as degrees of freedom in the optimization model,
together with the use of a global objective function which embraces all the design
phases. A commonly used decision criteria is the economic cost function, which can include
entries like equipment investment, occupation costs, labor, processing costs, raw material
costs, waste treatment costs, and economic impact of product quality. Non-economic
objectives are also used to account for ecological concerns, environmental impact, safety
issues, or social driving factors.

3.1.2 Motivating example 2: extension of process synthesis and

allocation decisions

In addition to degrees of freedom presented in previous example to optimize a process
stage, other decisions should be considered to face more general problems. Let us bear in
mind that the final target is to optimize complete productions systems in batch plants,
rather than an isolated process stage. This second example serves to illustrate the incor-
poration of further elements in the superstructure, which is represented in Figure 3.3.

In this example, the first decision is the selection or not of the entire process stage.
This decision relies on splitter Sp3, which determines whether processing or bypassing
the input flow. Second, the possibility to recirculate intermediate flow 11 to be used
in subsequent batches is also considered. It is a very common situation that waste and
side products have the appropriated physicochemical properties to be reused and thus
reduce environmental impact and raw material costs. In the proposed superstructure,
the recirculation of flow 9 is determined by splitter Sp4. Moreover, buffer tank T r11 is
potentially required to store the intermediate material in order that it can be later loaded
in following batches. Buffer tanks for intermediate products are also necessary to allow
different cycle times or batch sizes between successive process stages.

Additionally, in this second example, there are two options A and B regarding the
technological specification of unit procedures in U1. Technologies represent process-
ing alternatives that can be used for a particular unitary operation. Each technology is
characterized by specific set of physicochemical equations and properties governing the
process and is attained by a specific arrangement of the equipment design. For instance, an
evaporator and a distillation column represent two different technological specifications,
even though they are used for the same unitary operation, the Liquid-Vapor separation.
Technological specifications A and B are differentiated in the superstructure by U1,A and
U1,B. Finally, the selection between two different chemicals cs1 and cs2 in the second re-
actor is also considered in this example. Unlike the case of the technological specification,
the selection of chemicals –i.e. reactants, solvents, or catalysts– does not necessarily affect
balance equations in unit procedure models and only requires the adaptation of process
parameters.

3.1.3 Problem statement

The decisions detailed in the two motivating examples are following formalized in the
problem statement for integrated batch process development problem to tackle the simul-
taneous synthesis of batch processing schemes and allocation of manufacturing facilities
sub-problems, taking into account the plant design. The goal is to optimize master recipes
that should be later used in a particular plant to produce a batch of a specific product.
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3. Optimization model for integrated batch process development

According to the need of each case study, a part or the complete set of the following
decisions should be taken as degrees of freedom to be optimized. For instance, the main
difference between grassroots and retrofit problems is that equipment volumes are consid-
ered as a degree of freedom in the former case, whereas they are fixed in the latter case,
thus becoming model constraints. Overall, the problem statement when all the decision
variables are integrated is defined as follows:

Given:

• Planning data: set of final products, intermediates, and raw materials, expected
demand of final products, and maximum time horizon;

• Plant diagram: the SEN superstructure of available and potentially installed
equipment units for each process stage, pipelines and connection nodes like mix-
ers and splitters;

• Task network: potential and mandatory process stages, alternative chemicals in-
volved in each process stage –i.e. reactants, solvents, or catalysts–, allowed tech-
nologies, and possible reuse of intermediates;

• Batch process operation: allowed task-unit assignments, batch operations and
phases within each unit procedure, phase to phase switching conditions, and set of
limiting processing conditions for each unit;

• Process dynamics: DAE systems to represent the process behavior in each unit
procedure, initial conditions, and set of process variables and dynamic or time-
invariant controls;

• Data related to performance evaluation: decision criteria and specific data to
evaluate the objective function –e.g. selling price of final product, direct cost of raw
materials, investment, amortization, operating costs in processing units, environ-
mental impact indicators;

the goal is to determine:

• Synthesis of processing schemes decisions: selection of process stages and split-
ting into subtasks, technological specification, selection of chemicals involved –i.e.
reactants, solvents, or catalysts–, reference trajectories of the feed-forward control
variables, duration of batch phases composing each task, recirculation of intermedi-
ate flows, and material transfer synchronization between tasks –i.e. synchronization
of flow rates, compositions, and starting and final times;

• Allocation of manufacturing facilities decisions: task-unit assignment –i.e.
unit procedure selection–, selection of processing and storage units, operating mode
–i.e. single, series, or parallel operation–, and batch sizes;

• Plant design decisions: equipment sizing;

such that the adopted performance metrics are optimized. For the sake of completeness,
it is worth to emphasize that there are other potential synthesis and allocation deci-
sions which are out of the scope of this study, as is the case of decisions associated to
multiproduct and multipurpose campaigns, e.g. batch order.

3.2 Proposed modeling strategy

An optimization-based approach is proposed to solve the problem of integrated batch pro-
cess development defined above and to provide optimal master recipes with the necessary
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Proposed modeling strategy

information to produce a particular product in a specific plant. Essentially, optimization-
based approaches that include synthesis decisions consist of three steps, namely the repre-
sentation of a superstructure with all processing alternatives, the formulation of such su-
perstructure to construct an optimization model, and its solution (Grossmann & Guillén-
Gosálbez, 2010). This methodology is adopted in this thesis, combining in an integrated
model the degrees of freedom for the process synthesis and plant allocation sub-problems
and taking into account the plant design.

3.2.1 Modeling requirements

In optimization-based approaches, the strategy to represent the problem superstructure
and to develop the corresponding mathematical models is a key issue in the solution
of the optimization problem, which is by far no trivial task (Oldenburg et al., 2003).
The modeling issues that should be considered in the superstructure representation and
model construction for solving integrated batch process synthesis and plant allocation are
following capitulated:

(i) Synthesis and allocation alternatives. First, the superstructure representation
in optimization-based approaches has the purpose of representing all challenging
alternatives in a unique diagram, in order that the alternative paths can be later
formulated in a unique model. In the case of batch processes, the complexity of the
superstructure generation increases because process and plant elements are differ-
entiated, thus requiring a combinatorial assessment to match equipment and task
networks (Allgor, 1997, Gani & Papaeconomou, 2006).

(ii) Dynamic process performance and dynamic control variable profiles. Sec-
ond, to represent accurately the physicochemical behavior of batch processes, the
use of dynamic models that reflect the evolution of processing conditions along
time in each task is mandatory to provide actual feasible solutions (Barton et al.,
1998, Srinivasan et al., 2003). Moreover, the optimization of dynamic reference tra-
jectories of control variables allows to enlarge the attainable region of the process
performance, thus permitting the further improvement of the process efficiency and
driving holistic optimizations of the master recipe.

(iii) Discrete events for phase and operation transitions. In addition, in batch
processing schemes, each task is composed of a chain of operations and phases. This
way, the optimization problem has to include discrete event modeling to represent
the batch phase and operation sequence and transitions (Barton et al., 1998). The
corresponding set of equations complement the above dynamic process performance
balances to define each process task, by accounting for the external actions applied
to the system.

(iv) Quantitative and qualitative information. Moreover, not only quantitative in-
formation but also qualitative one should be represented in the optimization model.
Particularly, the latter involves synthesis and allocation decisions, like the task se-
lection, sequence, and splitting, or the task-unit assignment.

(v) Synchronization of material transference. Batch integrity along the process
stages is a fundamental issue in the synthesis and allocation problem. Each batch
is subject to a series of material transformations from raw material until the final
product is obtained, and batch integrity is understood as the coherent transfer of
the material composing each batch along the chain of tasks. Batch integrity should
be ensured in each processing alternative, independently to the equipment units to
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3. Optimization model for integrated batch process development

whom the process is assigned and to the order in which each equipment operates.
To that end, synchronization of unit procedures is necessary, having into account
that their order is not known beforehand and that each process stage has an effect
on downstream tasks through their connection via outflows and inflows.

(vi) Batch and semi-continuous processing elements. Finally, in addition to batch
processing units, semi-continuous elements should be also contemplated in the su-
perstructure, like connecting items and storage tanks. Unlike the case of batch
unit procedures, which are composed by a number of operations and phases, semi-
continuous elements are continuously operated plant items characterized by an in-
termittent use.

To sum up, the batch nature of the process involves not only the need of matching
equipment and task networks through a combinatorial assessment (Allgor, 1997, Gani
& Papaeconomou, 2006), but also an evolution of processing conditions along time in
each process stage, requiring dynamic models to represent process performance instead of
steady-state ones and dynamic profiles of control variables instead of continuous set-points
(Barton et al., 1998, Srinivasan et al., 2003). Moreover, process operation is featured by
discrete events that determine the batch operation and phase transitions (Barton et al.,
1998). Qualitative information should be also covered in the optimization model, involving
decisions like task selection, sequence, and splitting, equipment assignments, or chemicals
selections, among others. Finally, batch integrity should be ensured in all processing path
alternatives by synchronizing material transference between batch and semi-continuous
plant elements, as a function of the selected processing scheme and the task performance
achieved.

3.2.2 Related work

Following, most relevant contributions that give a partial response to the abovemen-
tioned modeling issues are reviewed. Specifically, SEN representation of superstructures,
DO tools for optimization problems with transient states and dynamic control profiles,
multistage modeling for systems with and discrete events, GDP for mixed-logic modeling
and optimization, and their combination in MLDO problems are surveyed. Most of these
tools and strategies have been developed to solve other problems in PSE and have been
adopted in this thesis to solve the problem of integrated batch process development, due
to the similitude of the modeling issues addressed.

Superstructure representation

The representation of the problem superstructure should be defined in consonance to
the mathematical modeling strategy used to formulate the problem. Researchers solving
batch process synthesis, plant design, and scheduling problems developed various repre-
sentations of the task network, where plant, process, and material states are combined
in different ways. The most widespread proposals are the State-Task Network (STN) by
Kondili et al. (1993), the maximal State-Task Network (mSTN) by Barbosa-Póvoa &
Macchietto (1994a), the Resource-Task Network (RTN) by Pantelides (1994), and the
State-Equipment Network (SEN) by Smith & Pantelides (1995). The use of RNT, STN,
m-STN representations was compared by Pinto et al. (2008) for the design of multipurpose
batch plants. These are the most widespread representations used for batch plant design
and scheduling problems. Moreover, SEN representation has been proposed by other au-
thors to deal with batch processes. For instance, recently Nie et al. (2012) based their
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proposal in the SEN representation to solve the scheduling problem including process
dynamics, formulated as a MLDO problem.

The SEN superstructure entails equipment items and states of transferred material,
facilitating the formulation of equations associated to equipment items required in the
representation of unit procedures. In contrast, process stages are not explicitly included
in the superstructure, and they have to be defined through allocation constraints or pre-
specified task-unit assignments. A relevant feature in SEN representation is that the state
definition is not unique; the properties of the material transferred from each equipment
unit depend on the particular task that the equipment performs (Yeomans & Grossmann,
1999). Specifically, the performance of each unit procedure is subject to: (i) the input
material provided by previous unit procedures and (ii) the decision-making on each unit
procedure, i.e. task-unit assignment, processing conditions, batch operations and phases,
and processing order. The relation between these decision variables and the states of
material transferred from one equipment piece to the next one in the SEN is represented
in the optimization model. Overall, the SEN representation embraces a great flexibility
required by the proposed problem.

Hybrid discrete/continuous models

A survey of dynamic models that represent batch process performance and batch events
is presented by Cruse et al. (2006). These kinds of models are termed discrete/continuous
or hybrid models, due to the combination of continuous and discrete variables employed.
According to the type of model discontinuities represented, discrete/continuous models
render different degrees of complexity that categorizes the models in three classes: single-
stage, multistage, and general discrete/continuous hybrid models. First, single-stage mod-
els are composed solely by DAE systems with corresponding initial boundary conditions,
and path and end-point constraints, excluding discrete events. It is the simplest case and
a single batch phase or operation with a specific duration can be represented therein.
Second, multistage models incorporate explicit discontinuities , understood as the rep-
resentation of operation or phase transitions at explicit events that do not depend on
the process state –i.e. transitions at particular times. Each modeling stage, referred to
the period between discrete events, can represent a batch phase, operation, or process
stage. Finally, general discrete-continuous hybrid models additionally incorporate implicit
discontinuities, by defining stage transitions as a function of process variables –e.g. shift
to next batch phase when a specific conversion is achieved. This case was generalized by
Barton & Pantelides in 1994 and includes DAE systems, initial conditions for the first
modeling stage, path and end-point constraints for each stage, stage-to-stage matching
conditions, and transition conditions. The formulation of a general discrete/continuous
hybrid model involving a set of K ∈ {1, ..., nK} stages reads as:

fk

(

żk(t), zk(t), yk(t), u
dyn
k (t), p

)

= 0, t ∈ [tk−1, tk] , ∀k ∈ K,

l (ż1(t0), z1(t0)) = 0,

gk

(

zk(t), yk(t), u
dyn
k (t), p

)

≤ 0, t ∈ [tk−1, tk] , ∀k ∈ K,

gek

(

zk(tk), yk(tk), u
dyn
k (tk), p

)

≤ 0, ∀k ∈ K,

zk+1(tk)−mk (zk(tk)) = 0, ∀k ∈ {1, ..., nK − 1} ,

γ = h(znK (tnK ), ynK (tnK ), u
dyn
nK (tnK ), p),

(3.1)
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3. Optimization model for integrated batch process development

where tk is the final time of stage k ∈ K, zk(t), yk(t), and udynk (t) are the differential,
algebraic, and control variables along time in stage k, γ are the time-invariant algebraic
variables, and p are the model parameters. Moreover, l are the relations that define initial
conditions, fk, gk, gek, and mk are the DAE system, path constraints (PC), end-point con-
straints (EPC), and stage-to-stage continuity in stage k, and h are the algebraic equations
evaluated at the final time. For the sake of practicality, in this thesis the term multistage
model is used for those systems with both explicit and implicit discontinuities.

The optimization of the process performance using the above discrete-continuous mod-
els and considering the dynamic profiles of the control variables constitutes the OC or
DO problem. In broad terms, the goal is to minimize a cost criterion associated to a unit
procedure or an entire process by adjusting the process variables within some pre-specified
bounds under consideration of operational constraints, and considering the variation of
control variables along time as degrees of freedom (Schlegel, 2004). The general formula-
tion of DO problems, involving a single-stage model, where the stage subindex k has been
eliminated, reads as:

minimize
udyn(t),tend

Φ(z(t), y(t), udyn(t), γ, p),

s.t. f(ż(t), z(t), y(t), udyn(t), p) = 0, t ∈ [ts, tend],

l(ż(ts), z(ts)) = 0,

g(z(t), y(t), udyn(t), p) ≤ 0, t ∈ [ts, tend],

ge(z(tend), y(tend), udyn(tend), p) ≤ 0,

γ = h(z(tend), y(tend), udyn(tend), p),

(3.2)

where ts and tend are initial and final times, z(t), y(t), and udyn(t) are differential, alge-
braic, and control variables along time, γ are the time-invariant algebraic variables, and p
are the model parameters. Moreover, Φ, f , l, g, ge, and h are the objective function, DAE
system, initial conditions, path constraints, end-point constraints, and algebraic equa-
tions evaluated at the final time. To consider several mathematical stages, variables z(t),
y(t), and udyn(t) and equations f , g, and ge would be defined for each stage k ∈ K, and
stage-to-stage continuity m is incorporated for each stage k ∈ {1, ..., nK − 1}, as defined
previously in the hybrid discrete/continuous model (Eq. 3.1).

This formulation was originally applied to aerospace engineering, and extended later
to solve the design and operation of individual batch units (Pollard & Sargent, 1970,
Sargent & Sullivan, 1979). After important advances in the 1980s and 1990s regarding
analytical and numerical methods to solve DO problems (see the reviews by Binder et al.,
2001, Srinivasan et al., 2003, Schlegel, 2004), these tools acquired a great popularity in
the last decades, being applied to a variety of unitary operations, as reviewed in Chapter
2 (p. 33). Dynamic trajectories of control variables within a sequence of unit procedures
has been applied in a more reduced number of contributions to different problems of PSE:

• Batch process synthesis: Charalambides et al. (1995, 1996), Allgor & Barton (1999b),
and Sharif et al. (1999);

• Batch plant design: Barrera & Evans (1989), Bhatia & Biegler (1996), and Corsano
et al. (2004, 2006, 2007); and

• Short-term scheduling: Mishra et al. (2005), Capón-García et al. (2013), Nie et al.
(2012), and Frankl et al. (2012a), among others.

It should be noted that some of these works address the problem through hierarchical
strategies, as reviewed in Chapter 2 (p. 38-39, 42-48).
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Logic-based modeling

To include quantitative and qualitative information in the optimization problem, mod-
eling strategies based on the use of integer or logical variables may be applied. MILP
formulations were first proposed by Papoulias and Grossmann (1983c, 1985) to solve the
synthesis of continuous processes, which were later extended to capture the nonlinear
behavior of connecting items and processing elements in MINLP formulations (Duran &
Grossmann, 1986a).

Contemporary, Balas (1985) proposed the use of Disjunctive Programming, the first
methodology to introduce logics in mathematical modeling, which was later generalized
into the GDP (Raman & Grossmann, 1991, 1993, Floudas & Grossmann, 1994, Grossmann
& Daichendt, 1996, Grossmann et al., 1999). Logic-based modeling strategies allowed a di-
rect incorporation of available process knowledge and heuristic rules in the mathematical
model. These modeling strategies were one of the most important advances in continuous
process synthesis using optimization-based approaches, limiting the combinatorial explo-
sion and making the solution of optimization models manageable. Qualitative decisions
could be introduced in the formulation through Boolean variables, and logical relations
could be formulated using logical propositions like disjunctive equations or using algebraic
equations. The general formulation of GDP problems reads as:

minimize
uBooli

Φ(γ, p),

s.t. h(γ, p) ≤ 0,

⊻
i∈ID

[

uBooli

hdi (γ, p) ≤ 0

]

,

Ω(uBooli ) = true,

(3.3)

where γ are time-invariant algebraic variables, p are model parameters, uBooli ∈ {true, false}
are Boolean variables that control the disjunctive term i ∈ ID in disjunctive equations,
Φ is the objective function, h and hdi are algebraic equations that are hold either globally
or in the particular disjunctive term i ∈ ID in disjunctive equations, and Ω is the set of
logical propositions.

In the case of batch processes, dynamic behavior should be also represented. Formu-
lations that combine dynamic equations with mixed-logic formulations have been applied
to other problems of PSE. One of the first steps was the MLD optimization by Bemporad
& Morari (1999) to solve model predictive control problems with lineal or linearized equa-
tions. Later, mixed-logic modeling with process dynamics were applied to simultaneous
design and control (Bansal et al., 2002a,b), design of individual batch units (Oldenburg et
al., 2002, 2003, 2005, 2008), and scheduling of continuous processes with grade transitions
(Nyström et al., 2005, 2006, Prata et al., 2008).

Overall, in the development of batch processes problem, strategies for mixed-logic dy-
namic formulations have been only partially exploited. On the one hand, Linninger and
Chakraborty (1999, 2002, 2003) addressed batch process synthesis and allocation problem
including logical rules in the superstructure formulation, but omitting dynamic perfor-
mance models to represent the tasks behavior and approximating models instead. On the
other hand, Oldenburg and Marquardt (2003, 2008) used mixed-logic formulations with
dynamic process performance models to address the optimal configuration, sequencing
and operation of batch equipment units, including structural decisions. Precisely, the im-
portance of their work is related to the combination of hybrid discrete/continuous models

63



i

i

“MMB” — 2014/1/27 — 10:03 — page 64 — #98
i

i

i

i

i

i

3. Optimization model for integrated batch process development

with GDP formulations, permitting the simultaneous representation of quantitative infor-
mation regarding the process behavior in individual units –including discrete events and
dynamic profiles of the control variables–, as well as qualitative information regarding the
structural alternatives in the equipment design.

Particularly, the proposed modeling approach by Oldenburg and Marquardt, (2003,
2008) is a MLDO problem, which is based on the nesting of hybrid discrete/continuous
models in disjunctive equations, defining the process performance as a function of qualita-
tive variables and associating each mathematical stage to a batch phase or operation. The
general form of MLDO problems, involving a single-stage model and disjunctive equations
with two terms uBool and ¬uBool, reads as:

minimize
udyn(t),tend,uBool

Φ(zd(t), y(t), udyn(t), γ, p),

s.t. f(ż(t), z(t), y(t), udyn(t), p) = 0, t ∈ [ts, tend],

l(ż(ts), z(ts)) = 0,

g(z(t), y(t), udyn(t), p) ≤ 0, t ∈ [ts, tend],

ge(z(tend), y(tend), udyn(tend), p) ≤ 0,

γ = h(z(tend), y(tend), udyn(tend), p),
















uBool

fd(ż(t), z(t), y(t), udyn(t), p) = 0, t ∈ [ts, tend],
ld(żd(ts), zd(ts)) = 0,

gd(z(t), y(t), udyn(t), p) ≤ 0, t ∈ [ts, tend],
gd,e(z(tend), y(tend), udyn(tend), p) ≤ 0
γ = hd(z(tend), y(tend), udyn(tend), p),

















⊻

[

¬uBool

Bd(ż(t), z(t), y(t), udyn(t), γ, p) = 0, t ∈ [ts, tend]

]

,

Ω(uBool) = true,

(3.4)

where ts and tend are initial and final times, z(t), y(t), and udyn(t) are differential, alge-
braic, and control variables along time, γ are time-invariant algebraic variables, p are the
model parameters, and uBool ∈ {true, false} are Boolean variables that control disjunc-
tive equations. Φ is the objective function, f , l, g, ge, and h are the objective function,
DAE system, initial conditions, path constraints, end-point constraints, and algebraic
equations evaluated at the final time that are hold independently to the Boolean deci-
sions, fd, ld, gd, gd,e, and hd are the analogous functions that are hold in case that variable
uBool is true, Bd defines the system in case that uBool is false, and Ω is the set of logical
propositions.

However, the MLDO formulation proposed by these authors only accounted for indi-
vidual units design, rather than the synthesis of complete processes, with several alterna-
tives for processing routes. Therefore, the synchronization of unit procedures as a function
of task allocation and ordering is not necessary and was not covered. Thus, the modeling
strategy has to be extended to cover multiple unit procedures and their free ordering and
synchronization. To the author’s knowledge, there are no available references yet in the
context of batch process development or batch plant design that address this problem.
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Concurrent single-stage and multistage models for synchronization purposes

To represent batch and semi-continuous procedures in the superstructure, single-stage and
multistage models can be used respectively, which should be combined in the optimization
model. Moreover, to account for batch integrity it is necessary that material transference
is synchronized between subsequent unit procedures according to each processing path
alternative. For that, the single-stage and multistage models should be overlapped in
transfer operations or phases, according to the selected synthesis alternative and unit
procedure sequence. However, from practical point of view, up to now neither a modeling
framework nor a respective software tool is available to handle concurrent multistage and
single-stage models.

The use of both types of models and their synchronization was not required in previ-
ous works of process synthesis with dynamic profiles of control variables (Charalambides
et al., 1995, Charalambides, 1996, Allgor & Barton, 1999b, Sharif et al., 1999) for three
principal reasons. First, a free ordering of batch unit usage was not required in most of
these works because task sequence and allocation were predefined or solved in later steps.
However, these assumptions may limit potential improvement in the solution, especially
in the case of retrofit scenarios where the consideration of all potential equipment items
for each task is crucial to define the best equipment assignment. Second, material transfer
operations and phases in source and sink units were approximated to one unique state
and the models included neither material transfer phases nor process variable dynamics
therein. This way, synchronization of flow rates and properties profiles was not required
and constraints to ensure batch integrity were defined through the fulfillment of material
and energy balances with a unique transition state in a specific time point. The drawback
with this approximation is that dynamic profiles for loading and unloading operations
cannot be studied. For instance, dynamic profiles in reactant loads can render solution
improvement in competitive reaction systems. Third, tasks were not divided into a se-
quence of operations and phases. As a result, a unique multistage model was sufficient
to represent a complete process, by designating one modeling stage to each of the tasks.
In this case, process behavior in unit procedures is approximated, thus overestimating or
underestimating the attainable feasible area.

3.2.3 Overview of the proposed approach

This section presents a novel modeling strategy to solve integrated batch process devel-
opment. The fundamental guidelines for understanding the superstructure representation
and the mathematical formulation are provided. The strategy relies on the combination
of several of the reviewed modeling and optimization contributions, giving a response
to the modeling requirements to address simultaneously the synthesis and the alloca-
tion sub-problems. Particularly, SEN superstructure representation, DO with hybrid dis-
crete/continuous models, GDP, and synchronization of single-stage and multistage models
are combined into a MLDO model as following detailed.

The superstructure of processing alternatives is based on the SEN representation
(Smith & Pantelides, 1995) in order that the plant restrictions and equations associated to
unit procedures can be explicitly represented. Additionally, the SEN superstructure pro-
vides great flexibility in the representation of material transfer states, which are not fixed
to a pre-defined value but are subject to the selected unit procedures and their perfor-
mance for each particular solution. Moreover, process stages that are potentially needed
should be assigned to specific equipment pieces in the SEN, which come in hand to a set
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3. Optimization model for integrated batch process development

of physical restrictions like the maximum volume or the maximum allowed temperature.
For instance, in motivating example 2 with the SEN superstructure from Figure 3.3, re-
action technology A could be assigned to processing unit U1,A according to its equipment
specifications, whereas reaction technology B could be allocated in processing units U1,B

or U2. The composition and internal conditions of the output flow 9′′ are not fixed, but
depend on the technologies and units selected.

To mathematically formulate the superstructure and all the associated decisions, a
modeling strategy based on MLDO with hybrid discrete/continuous models –referred to
as multistage models in this thesis– is used. Particularly, the proposed MLDO form by
Oldenburg & Marquardt (2008) is extended to combine and organize single-stage and
multistage models according to each processing path alternative. Each model represents
the procedure, which may involve a dynamic process performance, associated to each
of the elements in the SEN superstructure. Particularly, single-stage models are used to
represent semi-continuous procedures, whereas multistage models represent batch proce-
dures, each of them being composed by a set of batch operations or phases. Going back
to the motivating example 1, loading, reaction, and unloading operations are defined for
unit procedures in U1 and U2.

The coexisting use of single-stage and multistage models allows the modular represen-
tation of each processing element in order that the time coordinates of batch units can
be moved with respect to the time horizon of the entire recipe. Moreover, the order of
each unit procedure in each alternative solution is defined as a function of the task-unit
assignments. For instance, according to the SEN representation in Figure 3.1, the unit
procedure in U2 of example 1 could operate at first place, after U1, or at the same time
than U1 in parallel, thus requiring a different ordering 1 or 2, a different value for the
starting time tU2,s, and a different material input, from flow 3 or flow 6.

To facilitate their coordination, unit procedures and decision variables are distributed
in two modeling levels, dividing the superstructure in Levels 0 and 1 as shown in Figure
3.4 for the example 1. Every batch unit procedure, like those in U1 and U2, is located
at the first modeling level (Level 1) and is represented by its own multistage model.
In contrast, mass balances in connection nodes like splitters Sp1 and Sp2, mixers Mx1
and Mx2, storage tanks like Traw and Tprod, and possible semi-continuous processing
units, are represented by single-stage models and are associated to the basic level (Level
0). Coexistence of single-stage and multistage models is illustrated in Figure 3.5a. The
synchronization in terms of time of the models at both levels will be defined through dis-
junctive equations and logical propositions in the formulation. This way, time coordinates
of batch units can be moved with respect to the time horizon of the entire recipe.

In addition to the model distribution at Levels 0 and 1, a specific treatment of the equa-
tions –including both internal model equations and synchronization constraints– should
be done, in order that the problem can be handled by ordinary optimization tools. Par-
ticularly, it is necessary to relate the mathematical stages of multistage models associated
to each batch procedure as follows: First, stages that represent material input operation
in destination units should be related to the corresponding material output operation in
source units. Second, all stages in multistage models require a connection to the time
horizon in the entire recipe and the single-stage models of semi-continuous procedures.
Moreover, stage times should be defined as an explicit variable in order that they can be
considered as a degree of freedom. For that, it is necessary to address:

1. Transformation of single-stage models at Level 0 to multistage ones. First,
a correspondence across Levels 0 and 1 is established. For that purpose, single-stage
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1
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Mx1

Mx2Sp1

Sp2

Traw Tprod

Level 0

Level 1

Figure 3.4: Two-level superstructure distribution of example 1.

models at Level 0 are transformed into multistage models that contain all potential
stages from Level 1, as shown in Figure 3.5b. Then, equations of the original model
at Level 0 are replicated for the total number of stages required, and continuity
of process variables from stage-to-stage is provided by adding the corresponding
equations. Moreover, starting and final times of batch unit phases should fit partic-
ular stage transitions at Level 0. Therefore, starting and final times in parallel unit
procedures are assumed to be identical, in order to avoid an exponential growth in
the number of allowed stage transitions at Level 0.

2. Transformation of multistage models at Levels 0 and 1 to single-stage
ones. Secondly, models at Levels 0 and 1 may have a different number of stages.
For instance, Level 0 now contains stages associated to all feasible combinations
of batch units. To unify this number and to combine all equations in a unique
normalized model, all sequenced stages are timed in parallel in a same time axis.
This way, an equivalent single-stage model is constructed as shown in Figure 3.5c,
where all the time intervals have been normalized and initial conditions are treated
as control variables which should ensure continuity from previous stage at every
stage except for the actual first stage, which has fixed initial conditions. For the
normalization of time intervals, differential equations are multiplied by their stage
duration and their integration interval is redefined to be from 0 to 1.

3. Explicit treatment of stage durations. Finally, in order to establish the time
equivalence between synchronized stages across the different models, stage durations
have to be expressed as explicit variables, what is accomplished with the normal-
ization of time intervals realized in the previous step.

All these transformations have been applied to the equations presented in the formulation
in next section (§ 3.3). However, the individuality of each stage is kept in the definition
of the models at both Levels 0 and 1 because it is needed and represents a key issue in
the synchronization of unit procedures, despite solution of all stages is done in parallel as
a single stage.
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Multistage model

Multistage model

Single-stage model

Batch unit U1

Batch unit U2

Semi-continuous units
Traw,Tprod,Sp1,

Sp2,Mx1,Mx2
ts tend

tU1,s tU1,end

tU2,s tU2,end

(a)

Multistage model

Multistage model

Multistage modelBatch unit U1

Batch unit U2

Semi-continuous units
Traw,Tprod,Sp1,

Sp2,Mx1,Mx2

ts tend

tU1,s tU1,end

tU2,s tU2,end

(b)

Single-stage model

Batch unit U1

Batch unit U2

Semi-continuous units
Traw,Tprod,Sp1,

Sp2,Mx1,Mx2

0 1

(c)

Figure 3.5: Multistage and single-stage models of example 1 to represent batch and semi-
continuous plant elements respectively: (a) coexistence of models, (b) transforma-
tion of single-stage models at Level 0 to multistage ones, and (c) transformation of
multistage models at Levels 0 and 1 to single-stage normalized ones.
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3.3 Problem formulation

According to the problem statement, several elements are meant to be combined in the for-
mulation of the simultaneous synthesis of processing schemes and plant allocation problem
as shown in Figure 3.6. Specifically, the optimization model should contain information
regarding: the models of batch and semi-continuous procedures, the technological spec-
ification alternatives for each unitary operation, the candidate chemicals to be selected,
the synchronization of tasks and connecting flows, the alternative configurations of unit
procedures, the selection of process stages, and the possible recirculation of intermediate
materials. In this section, the construction of the optimization model that integrates all
these elements is detailed.

Batch unit
models

Technol-
ogical

specifi-
cation

Chemicals
selection

Synchro-
nization

Configuration
of unit
procedures

Process
stage
selection

Semi-
continuous

unit models

Intermediates
recircu-
lation

Figure 3.6: Elements of the integrated batch process development problem combined in the
formulation.

3.3.1 Notation
The notation and control variables description is first presented, being the support to
connect and interrelate prior information elements that compose the optimization model.
Table 3.1 summarizes the sets of elements required in the formulation, which are illustrated
by means of specific elements of the motivating example 1. The cardinality of any of these
sets S is denoted by |S|. Tables 3.2 and 3.3 gather the modeling parameters and general
variables, including the particular values of example 1 as well. In order to shed light
on the defined sets, parameters, and variables, it is necessary to consider the following
particularities of the modeling strategy.

The correspondence across both modeling levels is established by relating the math-
ematical stages at Level 1 to particular stages at Level 0. Thus, the sets of stages at
both levels, Kj, j ∈ U and L respectively, are defined separately and maintain their indi-
viduality, in order that the synchronization of batch unit procedures can be carried out
according to their processing order. In addition, the set of necessary stages at Level 0 is
subject to the process stages selected i ∈ PS and their configuration ψ ∈ Ψi. For instance,
configuration α of example 1, defined as the single operation of U1 (see Ψi in Table 3.1),
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3. Optimization model for integrated batch process development

Set Definition Elements in example 1

U Set of existing and potential batch units U={U1, U2}

T Set of existing and potential storage tanks T={Traw , Tprod}

Sp Set of existing and potential splitters Sp={Sp1, Sp2}

Mx Set of existing and potential mixers Mx={Mx1,Mx2}

J Set of all existing and potential equipment pieces, J={U1,U2,Traw ,

J=U ∪ T ∪ Sp ∪Mx Tprod,Sp1,Sp2, Mx1,Mx2}

PS Set of potential process stages or tasks PS={1}

Ji⊆J Set of equipment pieces within potential task i∈PS, J1=J

Ψi Set of configurations in task i∈PS Ψ1={α, β, π, σ}, α: single U1, β:
single U2, π: parallel, σ: series
U1-U2

Λi Set of technological specifications in task i∈PS Λ1= {Denbigh}

Λj⊆Λi Set of technological specification of unit j∈U in ΛU1=ΛU2=

task i∈PS, |Λj |=1, ∀j∈U {Denbigh}

L Set of potential stages at Level 0, L={1,...,Lmax} L={1, ..., 5}

La⊆L Set of active stages at Level 0 Lα=Lβ=Lπ= {1,...,3},
Lσ={1,...,5}

Kj Set of stages for unit j∈U at Level 1 KU1=KU2= {1,...,3}

Ij⊆Kj Set of input stages for unit j∈U at Level 1 IU1=IU2={1}

Oj⊆Kj Set of output stages for unit j∈U at Level 1 OU1=OU2={3}

N Set of pipelines at Level 0 N={1, ..., 9}

Ni ⊆ N Set of pipelines at Level 0 for task i ∈ PS N1=N

N in
i ⊆ Ni Subset of input pipelines to process stage i ∈ PS Nin1 ={1}

Nb
i ⊆ Ni Bypass pipeline for process stage i ∈ PS, |Nb

i |=1 Nb1={∅}

N in
j ⊂N Set of input pipelines to equipment j∈J at Level 0 e.g. NinU1

={2},

NinU2
={7}

Nout
j ⊂N Set of output pipelines from equipment j∈J at e.g. NoutU1

={4},

Level 0 NoutU2
={8}

N0
i,ψ⊆N Set of pipelines at Level 0 whose flow rate is re- N0

1,α=N0
1,β=N0

1,π=

stricted to zero in configuration ψ∈Ψi of task i∈PS {6}, N0
1,σ={3, 5}

Nf
i ⊆N Set of pipelines at Level 0 for task i∈PS whose flow Nf1 ={∅}

rate is fixed by the preceding task, |Nf
i |=1 except for

process stages preceded by a buffer j∈T
Nr⊆N Set of pipelines at Level 0 for recirculation Nr={∅}

T rn⊆T Buffer tank for potential recirculation of flow n∈Nr , T rn={∅}

|T rn |=1,∀n∈Nr

Mj Set of pipelines for unit j∈U at Level 1 MU1=MU2={1, 2}

M in
j ⊆Mj Set of input pipelines to unit j∈U at Level 1 Min

U1
=Min

U2
={1}

Mout
j ⊆Mj Set of output pipelines from unit j∈U at Level 1 Mout

U1
=Mout

U2
={2}

Table 3.1: Sets in the proposed formulation to solve integrated batch process development and
elements in example 1.
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Set Definition Elements in
example 1

Q Set of ordered positions that can be assumed by unit Q={1, 2}

procedures of j∈U , Q={1, ..., |U |}
L0
j⊆L Set of stages at Level 0 where unit j∈U can start its L0

U1
=L0

U2
={1, 3}

operation,L0
j={1, |Kj′ |-|Oj′ |+1 | j′ 6= j, j′∈U}

Di,ψ⊆Ui Subset of batch units Ui in task i∈PS whose input D1,α=D1,β=D1,π

flow rate is a control variable in configuration ψ∈Ψi. ={U1, U2},

It is defined such that |Di,ψ | = DOFi,ψ − |Ui|, where D1,σ={U1}

|Ui| represents DOF removed by output flow rates

C Set of chemical compounds involved in the process C={∅}

Csj⊆C Subset of potential reactants, solvents, or catalysts in Csj={∅}

unit j∈U subject to be selected
P⊂C Subset of desired products P={∅}

Table 3.1 (cont.): Sets in the proposed formulation to solve integrated batch process develop-
ment and elements in example 1.

Parameter Definition Values in
example 1

Lmax Maximum number of stages at Level 0, Lmax=5

l0j,q Starting stage of unit j∈U when the task-unit l0U1,1
=l0U2,2

=1,

Boolean Wj,q is true, l0j,q=q-th element of the ascending l0U1,2
=l0U2,2

=3

sort of L0
j of unit j∈U

DOFi,ψ Degrees of freedom with regard to the flow rates at DOF1,α=4,

Level 0 at process stage i ∈ PS, according to each DOF1,β=4,

configuration ψ ∈ Ψi, DOF1,π=4,

DOFi,ψ=No.variables - No.equations - No.fixed variables DOF1,σ=3

=|Ni|-|Spi ∪Mxi|-|N
0
i,ψ |-|N

f
i |,

where |Ni|: number of flow rates in the set of pipelines
Ni, |Spi ∪Mxi|: number of total material balances in
connection nodes, |N0

i,ψ|: number of flow restrictions,

|Nf
i |: number of predefined flow rates

pj,c Values for the set of process parameters pj in unit j ∈ U pj,c={∅}

when potential chemical alternative c ∈ Csj is selected

Demandp Demand of product p ∈ P Demandp={∅}

Table 3.2: Parameters in the proposed formulation to solve integrated batch process develop-
ment and values in example 1.
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3. Optimization model for integrated batch process development

Variable Definition

Zi (*) Process stage Boolean to indicate whether process stage i ∈ PS is selected
(Zi=true) or not (Zi=false)

Yj (*) Equipment Boolean to indicate whether processing or storage unit j ∈ U ∪ T is
selected (Yj=true) or not (Yj=false)

Xi
ψ (*) Configuration Boolean to indicate whether alternative ψ ∈ Ψi of process stage

i ∈ PS is selected (Xi
ψ=true) or not (Xi

ψ=false)
Wj,q (*) Task-unit assignment Boolean to indicate whether unit procedure order q ∈ Q is

assigned to unit j ∈ U (Wj,q=true) or not (Wj,q=false)

V jλ (*) Technology Boolean to indicate whether technological specification λ ∈ Λj of
processing unit j ∈ U is selected (V jλ=true) or not (V jλ=false)

Sjc (*) Chemical compound Boolean to indicate whether reactant, solvent, or catalyst
c ∈ Csj is selected in unit j ∈ U (Sjc=true) or not (Sjc=false)

Rn (*) Recirculation Boolean to indicate whether intermediate flow in pipeline n ∈ Nr is
recirculated (Rn=true) or not (Rn=false)

T f Total time at Level 0
tl (*) Duration of stage l ∈ L at Level 0
ts Starting time in at Level 0
tend Final time at Level 0

T j,f Total time of unit j ∈ U model at Level 1

tjk Duration of stage k ∈ Kj of unit j ∈ U at Level 1
tj,s Starting time of unit j ∈ U at Level 1

tj,end Final time of unit j ∈ U at Level 1

Fn,l(t) Flow rate for every pipeline n ∈ N and stage l ∈ L at Level 0
xc,n,l(t) Flow composition of compound c ∈ C for every pipeline n ∈ N and stage l ∈ L at

Level 0

F jm,k(t)(*) Flow rate for every input or output pipeline m ∈M in
j ∪Mout

j and stage k ∈ Kj of
unit j ∈ U at Level 1

xjc,m,k(t) Flow composition of compound c ∈ C for every input or output pipeline
m ∈M in

j ∪Mout
j and stage k ∈ Kj of unit j ∈ U at Level 1

intjk(t) (*) Internal control variable for every stage k ∈ Kj of unit j ∈ U at Level 1 and k ∈ L
of unit j ∈ J\U at Level 0

NBp (*) Number of batches of product p ∈ P
Batchp Production size associated to each batch of product p ∈ P
Shortfallp Unaccomplished demand of product p ∈ P

Sizej (*) Capacity of unit j ∈ U ∪ T with a discrete value

υjk(t) Volume of material in batch unit j ∈ U at stage k ∈ Kj or in storage tank j ∈ T at
stage k ∈ L

(*) Control variables in the modeling framework

Table 3.3: Variables in the proposed formulation to solve integrated batch process development.
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involves the three stages load, hold, and unload unit U1 as is represented in Figure 3.7a.
In contrast, two additional stages are required in configuration σ, defined as the series
operation of U1 followed by U2 (see Ψi in Table 3.1), to complete the hold and unload
phases in unit U2 as is represented in Figure 3.7d. The maximum number of stages
Lmax concerning all structural solutions may be defined as the over-specified solution
with all batch procedures in series. Figure 3.7 shows the division of the total time T f at
Level 0 into such maximum number of stages Lmax in all structural alternatives. Out
of the resulting set of L = {1, ..., Lmax}, only the subset La composed by the so-called
active stages is effective in each option.

Additionally, models at Levels 0 and 1 are linked by relating stages that represent
material transfer operations to/from units j ∈ U with batch procedures. A stage k ∈ Kj
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(c) π: parallel in-phase U1 & U2
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(d) σ: series U1 followed by U2

Figure 3.7: Synchronization of batch stages and flow rates at Levels 0 and 1 for configurations
α, β, π, and σ of example 1, where |Kj |=3, ∀j ∈ {U1, U2}.
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3. Optimization model for integrated batch process development

that represents an input or output material transfer operation is termed an input or
output stage in the multistage model of unit j ∈ U . The subsets of input and output
stages are denoted by Ij ⊆ Kj and Oj ⊆ Kj respectively. Furthermore, ingoing and
outgoing pipelines in batch units are represented at both modeling levels, entailing that
a relation between both representations have to be set. The variables that characterize
these pipelines are flow rates F jm,k(t) and compositions xjc,m,k(t) in input and output
pipelines m ∈ M in

j ∪M
out
j and are termed input and output variables in the model

of unit j ∈ U . As is illustrated in Figure 3.8, the flow rates in those stages that are not
input Kj\Ij or output Kj\Oj stages should be restricted to zero to represent the absence
of material transfer. The system state inside a unit is defined uniquely by its input and
output variables and by its internal dynamic or approximated model.

F j
min,k

(t)

F j
mout,k

(t)

xj
c,min,k

(t)

xj
c,mout,k

(t)

F j
min,k

(t)=0F j
min,k

(t)=0

F j
mout,k

(t)=0F j
mout,k

(t)=0

xj
c,min,k

(t)xj
c,min,k

(t)

xj
c,mout,k

(t)xj
c,mout,k

(t)

DAE systemDAE systemDAE system

∀k ∈ Ij\Oj ∀k∈Kj\Ij\Oj ∀k ∈ Oj\Ij

Figure 3.8: Input and output variables and stages of batch unit j ∈ U model, where c ∈ C,
min ∈M in

j and mout ∈Mout
j .

Control variables

The decision variables for the optimization problem are identified by an asterisk (*)
in parenthesis in Table 3.3. They are also distributed in the two modeling levels, as
is illustrated in Figure 3.9. Deciding on dynamic flow rate profiles in connecting pipelines
is associated to input and output flow m ∈ M in

j ∪M
out
j of batch units j ∈ U (variables

F jm,k(t)), and thus corresponds to Level 1. Each equipment piece j ∈ U at Level 1 or
j ∈ J\U at Level 0 may have additional internal control variables associated (variables
intjk(t)) –e.g. temperature in reactors or valve aperture in splitters.

Batch phase durations (variable tl) are decided at Level 0, since all potential stages in
the system are contained therein, once single-stage models at Level 0 are transformed to
multistage ones (see Figure 3.5b). Regarding qualitative the decisions, selection of batch
unit j ∈ U to be used is located at Level 1 (Boolean Yj), as well as its corresponding
technological specification λ ∈ Λj (Boolean V jλ ), the selection of chemicals involved c ∈ Csj
(Boolean Sjc ), and the assignment of processing order q ∈ Q (Boolean Wj,q). On the
contrary, the selection of process stage i ∈ PS (Boolean Zi), the operating mode ψ ∈ Ψi
of process stage i ∈ PS (Boolean X i

ψ), the selection of semi-continuous unit or storage
tank j ∈ J\U (Boolean Yj), and the recirculation of intermediate flow n ∈ N r (Boolean
Rn), are associated to Level 0.

For the sake of effectiveness, decision variables are classified in three categories de-
pending on their mathematical nature. Namely, dynamic control variables consist of flow
rates and internal control variables udynk (t) = {F jm,k(t), int

j
k(t)}, static or time-invariant

decision variables consist of stage durations, ustat = {tl}, integer decision variables consist
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3. Optimization model for integrated batch process development

of the number of batches and discrete equipment sizing uint = {NBp, Sizej}, and logical
decision variables or Booleans consist of the task, unit, operating mode, processing order,
technological specification, chemical compounds, and recirculation flow selection uBool =
{Zi, Yj , X

i
ψ, Wj,q, V

j
λ , S

j
c , Rn}.

As a matter of fact, practical degrees of freedom (DOF) are smaller than the sum
of all the control variables here comprehended. The DOF are reduced by decisions pre-
specified in advance and by equations that relate control variables with each other. To
solve the optimization model, it is advisable to analyze the DOF and reduce the allowed
control variables accordingly, in order to avoid over-specified systems and minimize the
number of decision variables to be optimized. Relevant examples are integer decisions and
dynamic profiles in stages representing transfer operations of consecutive unit procedures.
Particularly, the latter decisions require the definition of the subset of batch units Di,ψ ⊆
Ui ⊆ U and of the parameter DOFi,ψ to reduce the number of control variables in each
allowed configuration ψ ∈ Ψi of process stage i ∈ PS. The reduction of the number of
control variables is analyzed in the end of this chapter on the basis of the optimization
model developed.

3.3.2 Batch procedures at Level 1

Models of batch units

Let us consider units j ∈ U with batch procedures, here referred to as batch units, located
at Level 1 of the superstructure in Figures 3.4 and 3.9.

Their process performance and operation behavior are represented by a |Kj |-stage
model. For each unit, a two-term disjunction driven by the Boolean Yj is introduced. If
Yj is true, this unit is selected to allocate one task and its corresponding |Kj|-stage model
is activated inside the disjunctive term associated to Yj . On the contrary, if Yj is false, the
unit is not selected and the so-called bypass strategy (Oldenburg & Marquardt, 2008) is
applied by setting |Kj | equivalent stages where any process takes place. They are termed
bypass stages, and their mathematical purpose is represented in the Petri net of Figure
3.10, where circles typify stages and bars represent stage-to-stage transitions. For every
bypass stage k ∈ Kj, dynamic equations and constraints are removed and stage durations
tjk are set to zero. Specifically, the equations should be active either for every stage in
the set Kj or for none of them. Hence, it is not necessary to control each batch stage by
a different logical variable, as it could be Yj,k, but Yj controls the complete multistage
model of unit j ∈ U . Moreover, such multistage model is a function of time-invariant
control variables ustat, namely the stage durations tjk, and integer variables uint, like the
equipment size Sizej. Overall, a disjunction with respect to unit j ∈ U is defined by the
following form, bearing in mind that the time interval has been normalized as is shown
in Figure 3.5c:

Yj

¬Yj

1 ... |Kj |

bypass bypassbypass

Figure 3.10: Petri net representing active and bypass stages k ∈ Kj in the model of batch unit
j ∈ U at Level 1.
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Problem formulation





























Yj
fdj,k(żj,k(t), zj,k(t), yj,k(t), u

dyn
j,k (t), ustat, uint, pj), t ∈ [0, 1], ∀k ∈ Kj,

ldj (żj,1(0), zj,1(0)),

gdj,k(zj,k(t), yj,k(t), u
dyn
j,k (t), ustat, uint, pj) ≤ 0, t ∈ [0, 1], ∀k ∈ Kj,

gd,ej,k (zj,k(1), yj,k(1), u
dyn
j,k (1), ustat, uint, pj) ≤ 0, ∀k ∈ Kj ,

zj,k+1(0)−m
d
j,k(zj,k(1)) = 0, ∀k ∈ {1, ..., |Kj| − 1},

γj = hdj (zj,|Kj |(1), yj,|Kj |(1), u
dyn
j,|Kj|

(1), ustat, uint, pj),

T j,f =
∑

k∈Kj
tjk, tj,end = tj,s + T j,f





























⊻









¬Yj
Bdj (żj,k(t), zj,k(t), yj,k(t), u

dyn
j,k (t), ustat, uint, γj , pj) = 0, t ∈ [0, 1],

tjk = 0, ∀k ∈ Kj,

T j,f = 0, tj,end = 0, tj,sj = 0









,

∀j ∈ U,

(3.5)

where fdj,k, g
d
j,k, g

d,e
j,k , and md

j,k are the DAE system, path constraints (PC), end-point
constraints (EPC), and stage-to-stage continuity in stage k ∈ Kj of unit j ∈ U . ldj are the
relations that define initial conditions, hdj is the set of equations to calculate time-invariant
variables γj evaluated at the final time (t = 1) of last stage |Kj |, and Bdj are the equations
that define the system in bypass stages. Moreover, time relations contribute to define the
model. Each stage k ∈ Kj contains time dependent differential zj,k(t), algebraic yj,k(t),
and control udynj,k (t) variables. Therein, input and output variables regarding flow rates

F jm,k(t) and compositions xjc,m,k(t), and internal control variables intjk(t) are included.
The multistage model is also characterized by process parameters pj and time-invariant
variables γj , which may contribute to the evaluation of the objective function or other
key performance indicators (KPIs), like the product selectivity or final conversion in a
processing item j ∈ U .

To complete batch unit models at Level 1, input and output variables should be
dismissed according to Figure 3.8 in those stages which are not input or output stages
respectively by restricting their value to zero. To do so, the following equation should be
added to complement the first disjunctive term:







Yj
F jmin,k(t) = 0, ∀min ∈M in

j , ∀k ∈ Kj\Ij ,

F jmout,k(t) = 0, ∀mout ∈Mout
j , ∀k ∈ Kj\Oj






, ∀j ∈ U. (3.6)

Additionally, the volume υjk(t) of material processed at unit j ∈ U can not surpass the
equipment size Sizej in any stage k ∈ Kj, either Sizej is a free decision variable associated
to a newly installed unit or it is a constraint associated to an existing item. This restriction
is formulated as:

υjk(t) ≤ Size
j, t ∈ [0, 1], ∀k ∈ Kj , ∀j ∈ U. (3.7)

Technological specification

The technological specification is used to distinguish between processing alternatives from
the set Λi that can be used for the same unitary operation in process stage i ∈ PS. The
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3. Optimization model for integrated batch process development

equipment arrangement required for each technology has particular features that imply
different physicochemical equations and parameters to describe the unit procedure, as well
as different types of processing costs, investment weights, required chemicals or resources,
and even different sequence of batch phases or operations. Hence, each equipment piece
is associated to a unique and particular technology Λj ⊆ Λi, |Λj| = 1, ∀j ∈ Ui in the
formulation. In order to consider several technologies in the same process stage, at least
one equipment piece should be defined for each alternative, so that the corresponding
DAE systems can be differentiated.

The technology λ ∈ Λj associated to each equipment unit j ∈ U is represented by
Boolean V jλ . This variable is related to the equipment Boolean Yj as follows:

Yj ⇔ V jλ , ∀λ ∈ Λj, j ∈ U. (3.8)

If technological specification λ is selected (V jλ = true), equipment unit j is active (Yj =
true).

Selection of chemicals

The selection of chemicals, such as reactants, solvents, or catalysts, involved in a unit
procedure in unit j ∈ U is a synthesis decision represented by Boolean Sjc . It indicates
whether potential chemical c ∈ Csj is selected (Sjc = true) or not (Sjc = false). Unlike the
case of technological specification, the use of alternative chemicals does not necessarily
affect the balance equations in the entire unit procedure model controlled by Yj . In this
case, the selection of a particular compound affects exclusively the set of parameters pj
in unit j ∈ U . Thus, parameters are specified for each chemical alternative Sjc as follows:

⊻
c∈Csj

[

Sjc
pj = pj,c

]

, ∀j ∈ U, (3.9)

where pj,c are the values for parameters in unit j when chemical alternative c ∈ Csj is
used.

3.3.3 Synchronization

The time axis for the models of batch units j ∈ U that are active (Eqs. 3.5 and 3.6, being
Yj = true) should be moved along the total time at Level 0 according to the selected
configuration, as was illustrated in Figure 3.7. This means that each of these models
should be synchronized with the other elements of the process cell, by relating its set of
stages Kj at Level 1 to specific stages from the set L at Level 0.

In particular, task-unit assignment BooleansWj,q are used to lead the synchronization,
by indicating the processing order q ∈ Q of unit j ∈ U , which determines the task-unit
assignment and the location of the corresponding unit procedure within the total time of
Level 0. If unit j ∈ U is active, then one and only one processing order is assigned to that
unit:

Yj ⇔ ⊻
q∈Q

Wj,q, ∀j ∈ U, (3.10)

and such task is started in stage l0j,q ∈ L
0
j | Wj,q=true. In example 1, where unit U1 can

never operate at order 2, variable WU1,2 is always false and unit U1 can never allocate
reaction sub-task 2.
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Specifically, the synchronization is driven in two steps. First, for each stage at Level 1
k ∈ Kj , its corresponding stage l ∈ L at Level 0 is defined as a function of the processing
order q ∈ Q by l = k+ l0j,q − 1 ∈ L. Secondly, several variables in the model of unit j ∈ U
at Level 1 are related to the analogous variables in the general flow sheet model at Level
0:

• Starting time tj,s of the unit procedure at Level 1 is calculated from the starting
time ts at Level 0 and the duration tl of stages that precede l0j,q at Level 0, by:

⊻
q∈Q

[

Wj,q

tj,s = ts +
∑l0j,q−1

l=1 tl

]

, ∀j ∈ U ; (3.11)

• Stage durations tjk at Level 1 are set to be equal to the duration of corresponding
stages tl at Level 0, by:

⊻
q∈Q







Wj,q

tl = tj
l−l0j,q+1

,

∀l ∈
{

l0j,q, ..., |Kj |+ l0j,q − 1
}






, ∀j ∈ U ; (3.12)

• Input variables (F jmin,k(t) and xjc,min,k(t), ∀c ∈ C) in input pipeline at Level 1 min ∈

M in
j are set to be equal to their analogous variables (Fnin,l(t) and xc,nin,l(t), ∀c ∈ C)

in the corresponding pipeline at Level 0 nin ∈ N in
j . In non-synchronized stages at

Level 0, these variables are fixed to zero, as well as in the case that no task is
assigned to unit j ∈ U (Yj = false). The resulting equation reads as:

⊻
q∈Q



















Wj,q

Fnin,l(t) = F j
min,l−l0j,q+1

(t),

xc,nin,l(t) = xj
c,min,l−l0j,q+1

(t),

t ∈ [0, 1] , ∀l ∈
{

l0j,q, ..., |Kj|+ l0j,q − 1
}

,
Fnin,l(t) = 0, xc,nin,l(t) = 0,

t ∈ [0, 1] , ∀l ∈ L\
{

l0j,q, ..., |Kj |+ l0j,q − 1
}



















⊻













¬Yj
Fnin,l(t) = 0,
xc,nin,l(t) = 0,
t ∈ [0, 1] ,
∀l ∈ L













,

∀j ∈ U ;

(3.13)

• Output variables (F jmout,k(t) and xjc,mout,k(t), ∀c ∈ C) in output pipeline at Level
1 mout ∈ Mout

j are set to be equal to their analogous variables (Fnout,l(t) and
xc,nout,l(t), ∀c ∈ C) in the corresponding pipeline at Level 0 nout ∈ Nout

j . The
definition of output variables follows the same pattern than input variables above:

⊻
q∈Q



















Wj,q

Fnout,l(t) = F j
mout,l−l0j,q+1

(t),

xc,nout,l(t) = xj
c,mout,l−l0j,q+1

(t),

t ∈ [0, 1] , ∀l ∈
{

l0j,q, ..., |Kj |+ l0j,q − 1
}

,
Fnout,l(t) = 0, xc,nout,l(t) = 0,

t ∈ [0, 1] , ∀l ∈ L\
{

l0j,q, ..., |Kj|+ l0j,q − 1
}



















⊻













¬Yj
Fnout,l(t) = 0,
xc,nout,l(t) = 0,
t ∈ [0, 1] ,
∀l ∈ L













,

∀j ∈ U.

(3.14)
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3. Optimization model for integrated batch process development

3.3.4 Process stages

Process stage selection

Selection of process stage i ∈ PS is represented by logical variable Zi. In case that a
process stage is mandatory, Zi is fixed to be true and does not require any additional
element in the superstructure. On the contrary, if the selection of such task is optional, a
splitter controlled by Zi is required in the process superstructure, as is shown in Figure
3.9. Such splitter determines whether the output flow of preceding task is directed to the
process stage i or bypassed to the following task. It is worth to note that both alternatives
have to be exclusive, what is defined as follows:

[

Zi
Fb,l(t) = 0, t ∈ [0, 1] , ∀l ∈ L

]

⊻

[

¬Zi
Fb,l(t) = Fn,l(t), t ∈ [0, 1] , ∀l ∈ L

]

,

∀n ∈ N in
i , ∀b ∈ N

b
i , ∀i ∈ PS.

(3.15)

Operating mode or configuration

Out of the set of allowed configurations Ψi in each process stage i ∈ PS, only one can be
selected. For that, the following proposition is defined:

Zi ⇔ ⊻
ψ∈Ψi

X i
ψ, (3.16)

where X i
ψ, ψ ∈ Ψi is the configuration Boolean that represents the operating mode ψ ∈ Ψi

in process stage i ∈ PS. The principal purpose of configuration Booleans is to control
the selected equipment items through Yj , j ∈ U and their task-unit assignment through
Wj,q, j ∈ U, q ∈ Q by relating such variables to each other. A logical proposition is defined
for each configuration, complemented with Eq. 3.10. For the set Ψi = {α, β, π, σ}, i ∈ {1}
in example 1, the following propositions are defined:

X i
α ⇔ WU1,1 ∧ ¬YU2 , (3.17)

X i
β ⇔ WU2,1 ∧ ¬YU1 , (3.18)

X i
π ⇔ WU1,1 ∧WU2,1, (3.19)

X i
σ ⇔ WU1,1 ∧WU2,2. (3.20)

Additionally, configuration Booleans X i
ψ enforce a specific flow distribution for each con-

figuration ψ ∈ Ψi in the process cell of task i ∈ PS. This is accomplished by restricting
to zero the flow rates of a specific set of pipelines N0

i,ψ for each operating mode:

⊻
ψ∈Ψi

[

X i
ψ

Fn,l(t) = 0, t ∈ [0, 1], ∀n ∈ N0
i,ψ, ∀l ∈ L

]

, ∀i ∈ PS. (3.21)

3.3.5 Plant elements at Level 0

Active stages at Level 0

The bypass strategy (Oldenburg & Marquardt, 2008) is also applied at Level 0 to dismiss
the set of stages L\La that are not necessary for each structural option, out of the Lmax

stages specified at this level. The set of active stages La depend on task Booleans Zi and
configuration Booleans X i

ψ. When a plant item j ∈ J\U with semi-continuous procedure
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is used, the bypass strategy is not applied to the corresponding model in its entirety, but
only to the set of extra stages for each structural solution as represented in Figure 3.11.
Bypass stages are set by removing dynamic equations and constraints associated to j and
enforcing stage durations tl to zero in every extra stage l ∈ L\La as detailed next.

bypassbypassbypassbypass

1 ... Lmin ... |La| ... Lmax

Figure 3.11: Petri net representing active stages l ∈ La = {1, ..., |La|} and bypass stages l ∈
L\La = {|La| + 1, ..., Lmax} for semi-continuous elements at Level 0, where the
set La is a function of the selected process stages i ∈ PS and their corresponding
configuration ψ ∈ Ψi. Grey elements represent feasible paths corresponding to
other locations of stage |La|.

Models of plant elements with semi-continuous procedures

Time relations at Level 0 have the form:

T f =
∑

l∈L tl,
tend = ts + T f ,

(3.22)

where the total time T f starts at initial time ts, ends at final time tend of the process
control model, and is divided in |L| = Lmax intervals with duration tl. Stage duration
should be set to zero in every extra stage l ∈ L\La in order to implement the bypass
strategy represented in Figure 3.11. In contrast, this variable should be comprised between
its lower tL and upper tU bounds in active stages l ∈ La:

tL ≤ tl ≤ t
U , ∀l ∈ {1, ..., |La|} ,

bypass stages: tl = 0, ∀l ∈ {|La|+ 1, ..., Lmax} .
(3.23)

The flow sheet model is also constructed at this level through mass balances in con-
necting nodes, by relating flow rates Fn,l(t) and compositions xc,n,l(t), c ∈ C of pipeline
n ∈ N and stage l ∈ L. Every mixer j ∈ Mx has several input flows |N in

j | > 1 and a
single output flow |Nout

j | = 1 represented by nout and is described by:

∑

n∈Ninj

Fn,l(t) = Fnout,l(t), t ∈ [0, 1], ∀l ∈ L, ∀j ∈Mx, (3.24)

∑

n∈Ninj

Fn,l(t)xc,n,l(t) = Fnout,l(t)xc,nout,l(t), t ∈ [0, 1], ∀c ∈ C, ∀l ∈ L, ∀j ∈Mx, (3.25)

whereas every splitter j ∈ Sp has a single input flow |N in
j | = 1 represented by nin and

several output ones |Nout
j | > 1 and is described by:

Fnin,l(t) =
∑

n∈Noutj

Fn,l(t), t ∈ [0, 1], ∀l ∈ L, ∀j ∈ Sp, (3.26)

xc,nin,l(t) = xc,n,l(t), t ∈ [0, 1], ∀c ∈ C, ∀n ∈ Nout
j , ∀l ∈ L, ∀j ∈ Sp. (3.27)
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3. Optimization model for integrated batch process development

According to Figure 3.4 of example 1:N in
Mx1

={3, 6},Nout
Mx1

={7},N in
Mx2

={5, 8},Nout
Mx2

={9},
N in
Sp1

={1}, Nout
Sp1

={2, 3}, N in
Sp2

={4}, and Nout
Sp2

={5, 6}. It is not necessary to apply any
special treatment to these equations in bypass stages. Flow rates of input and output
pipelines to batch units j ∈ U are enforced to zero in model stages where those units are
not operating (Eq. 3.13 and 3.14), being this the case of bypass stages precisely. Through
the relations in Eqs. 3.24 and 3.26 above, these variables oblige all other flow rates and
compositions at Level 0 to take a zero value.

Additionally, models for storage units j ∈ T are set up at Level 0, being their equations
equally replicated in a |L|-stage model. Thus, such models can be also defined by functions
fdj,l, l

d
j , g

d
j,l, g

d,e
j,l , hdj , andmd

j,l from Eq. 3.5 where j ∈ T and l ∈ L. Since these units operate

continuously, fdj,l=f
d
j,l+1, g

d
j,l=g

d
j,l+1 and gd,ej,l =g

d,e
j,l+1, ∀l ∈ {1, ..., L

max − 1}. Moreover,
the bypass strategy is applied in two situations in their case. First, if storage j ∈ T is
not selected, the equations of the corresponding model are deactivated like in the case
of batch units j ∈ U . Secondly, the bypass method is also applied to differentiate active
La and bypass L\La stages according to Figure 3.11, provided that such storage unit is
selected. Summarizing, the model of each storage tank j ∈ T is defined by:
































Yj
fdj,l(żj,l(t), zj,l(t), yj,l(t), u

dyn
j,l (t), ustat, uint, pj), t ∈ [0, 1], ∀l ∈ {1, ..., |La|} ,

ldj (żj,1(0), zj,1(0)),

gdj,l(zj,l(t), yj,l(t), u
dyn
j,l (t), ustat, uint, pj) ≤ 0, t ∈ [0, 1], ∀l ∈ {1, ..., |La|} ,

gd,ej,l (zj,l(1), yj,l(1), u
dyn
j,l (1), ustat, uint, pj) ≤ 0, ∀l ∈ {1, ..., |La|} ,

zj,l+1(0)−m
d
j,l(zj,l(1)) = 0, ∀l ∈ {1, ..., |La| − 1},

γj = hdj (zj,|La|(1), yj,|La|(1), u
dyn
j,|La|(1), u

stat, uint, pj),

bypass stages: Bdj (żj,l(t), zj,l(t), yj,l(t), u
dyn
j,l (t), ustat, uint, γj , pj) = 0,

t ∈ [0, 1], ∀l ∈ {|La|+ 1, ..., Lmax}

































⊻

[

¬Yj
Bdj (żj,l(t), zj,l(t), yj,l(t), u

dyn
j,l (t), ustat, uint, γj , pj) = 0, t ∈ [0, 1], ∀l ∈ L

]

,

∀j ∈ T,

(3.28)

where zdj,l(t), zj,l(t), and udynj,l (t) are the time dependent differential, algebraic, and control
variables in each stage l ∈ L, ustat are time-invariant control variables, namely the stage
durations tl, uint are the integer decisions such as the storage tank size, pj are process
parameters, and γj are the time-invariant variables which may contribute to the evaluation
of the objective function or KPIs in unit j ∈ T . According to the superstructure of example
1 in Figure 3.4, storage input and output pipelines are Nout

Traw
={1} and N in

Tprod
={9}.

Finally, the maximum volume restriction should be also formulated in the case of storage
tanks, which reads as:

υjl (t) ≤ Size
j, t ∈ [0, 1], ∀l ∈ L, ∀j ∈ T, (3.29)

where υjl (t) is the volume of material stored in unit j ∈ T in stage l ∈ L, which can not
surpass the size Sizej of the storage tank.

Recirculation of intermediate material

The recirculation of an intermediate material flow to be used in the processing of a
subsequent batch is associated to piping n ∈ N r. In particular, this decision is controlled
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Problem formulation

by Boolean variable Rn, which determines whether recirculation is allowed with a flow
rate between the lower FL

n and upper FU
n bounds or not:

[

Rn
FL
n ≤ Fn,l(t) ≤ F

U
n , t ∈ [0, 1] , ∀l ∈ L

]

⊻

[

¬Rn
Fn,l(t) = 0, t ∈ [0, 1] , ∀l ∈ L

]

,

∀n ∈ N r.
(3.30)

In the superstructure, flow recirculation requires buffer tanks j ∈ T rn that first store the
intermediate material that is later supplied in a subsequent batch. The logical proposition
reads as:

Rn ⇔ Yj , ∀j ∈ T
r
n, ∀n ∈ N

r. (3.31)

Mathematically, the temporary sequence of model stages in input and output flows are
related to the stages of interconnected sink and source units, instead of stages l ∈ L in
recirculation tanks T rn .

3.3.6 Batching

The batching problem consists of the division of the total product demand into a number
of batches with a specific production size. Typical approaches to solve scheduling problem
address the batching activity in a first stage, followed by a second one that includes
allocation, timing, and task sequencing sub-problems. In the integrated batch process
development problem here tackled, the batching is incorporated to the optimization model
and solved simultaneously through the following equation:

NBp Batchp + Shortfallp ≥ Demandp, ∀p ∈ P, (3.32)

where Demandp is the total demand, NBp is the number of batches, Batchp is the
production size associated to each batch, and Shortfallp is the unaccomplished demand
of product p ∈ P .

3.3.7 Objective function

The decision criteria is to minimize an objective function Φ that reads as:

minimize
udyn
k

(t),ustat,

uint,uBool

Φ
(

zk(t), yk(t), u
dyn
k (t), ustat, uint, uBool, γj , p

)

(3.33)

according to the control variables udynk (t) = {F jm,k(t), int
j
k(t)}, u

stat = {tl}, uint = {NBp,

Sizej}, and uBool = {Zi, Yj , X i
ψ, Wj,q, V

j
λ , S

j
c , Rn} summarized in Table 3.3 and to the

degrees of freedom following analyzed.

Degrees of freedom in the optimization model

The degrees of freedom (DOF) in the system is defined as the number of decision variables
subtracting the number of equations and predefined decisions. This parameter determines
the number of practical control variables. For instance, the number of Boolean decisions
uBool = {Zi, Yj , X i

ψ, Wj,q, V
j
λ , S

j
c , Rn} is reduced by logical propositions (Eqs. 3.8, 3.10,

3.16, 3.17-3.20, 3.31). Dynamic profiles of input and output stages F jm,k(t) ⊆ u
dyn
k (t)
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3. Optimization model for integrated batch process development

are also related to each other through global balances in mixers and splitters (Eqs. 3.24
and 3.26).

The evaluation of DOF is especially relevant in the case of input and output flow rates
F jm,k(t) to/from consecutive unit procedures. In fact, when the system is over-specified,
the simultaneous consideration of all these flow rates as control variables deteriorates
the performance of the solution procedure. Hence, the number of flow rates F jm,k(t) of
batch units j ∈ U that should be considered as control variables in process stage i ∈ PS
corresponds to the degrees of freedom DOFi,ψ regarding flow rates at Level 0, which
depends on the number of flow rates, the number of equations in splitters and mixers,
and the number of fixed flow rates, as is defined in Table 3.2. Thus, DOFi,ψ varies with
the number of restricted flow rates in pipelines N0

i,ψ in each configuration ψ ∈ Ψi and
with the number of flow rates defined in preceding process stage ii ∈ PS |ii = i − 1,
which corresponds to the cardinality of the set of pipelines Nf

i . This way, both inter- and
intra-process stages relations are taken into account.

At this point, it is established that the outflow of every batch unit is always a control
variable:

F jmout,k(t) ∈ u
dyn
k (t), t ∈ [0, 1], ∀mout ∈Mout

j , ∀k ∈ Oj , ∀j ∈ Ui, ∀i ∈ PS, (3.34)

and the number of free decision variables is limited through the inflows. Thus, only the
input flows of the subset of batch units Di,ψ ⊆ Ui are established as control variables in
configuration ψ ∈ Ψi of process stage i ∈ PS. This subset is defined such that |Di,ψ| =
DOFi,ψ − |Ui|, where |Ui| represents the DOF removed by output flows in Eq. 3.34. The
resulting equation reads as:

⊻
ψ∈Ψi

[

X i
ψ

F jmin,k(t) ∈ u
dyn
k (t), t ∈ [0, 1], ∀min ∈M in

j , ∀k ∈ Ij , ∀j ∈ Di,ψ

]

, ∀i ∈ PS. (3.35)

3.4 Summary and concluding remarks

In this chapter, the problem of integrated batch process development has been formulated
as a MLDO problem which combines the decisions associated to different sub-problems,
namely the synthesis of conceptual schemes, the plant allocation, and the plant design.
As previously presented (§§ 1.1, 1.2, and 2.1), the simultaneous computation of their
degrees of freedom is crucial to avoid suboptimal solutions in grassroots scenarios and to
guarantee an improved plant utilization in retrofit situations.

The proposed modeling strategy relies on a SEN representation (Smith & Pantelides,
1995) of processing alternatives and on the combination of multistage models, GDP, and
DO. Specifically, the SEN superstructure is comprised of the potential equipment items
to allocate particular process stages and operations as well as the states in transfer oper-
ations. The mathematical formulation of the superstructure and the associated decisions
is carried out by considering: (i) the coexistence of single-stage and multistage models to
represent equipment items with semi-continuous and batch procedures respectively, (ii)
the distribution of these models in two modeling levels in the SEN representation, (iii) the
use of logical propositions to control qualitative decisions, and (iv) the synchronization
of material transfer operations as a function of the selected processing route. The general
form of the resulting MLDO model reads as:
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Summary and concluding remarks

minimize
udyn
k

(t),ustat,

uint,uBool

Φ(zk(t), yk(t), u
dyn
k (t), ustat, uint, uBool, γ, p),

s.t. fk(żk(t), zk(t), yk(t), u
dyn
k (t), ustat, uint, p) = 0, t ∈ [0, 1], ∀k ∈ K,

l(ż1(0), z1(0)) = 0,

gk(zk(t), yk(t), u
dyn
k (t), ustat, uint, p) ≤ 0, t ∈ [0, 1], ∀k ∈ K,

gek(zk(1), yk(1), u
dyn
k (1), ustat, uint, p) ≤ 0, ∀k ∈ K,

zk+1(0)−mk(zk(1)) = 0, ∀k ∈ {1, ..., |K| − 1},

γ = h(zj,|K|(1), y|K|(1), u
dyn
|K| (1), u

stat, uint, p),






















uBool

fdk (żk(t), zk(t), yk(t), u
dyn
k (t), ustat, uint, p) = 0, t ∈ [0, 1], ∀k ∈ K,
ld(ż1(0), z1(0)) = 0,

gdk(zk(t), yk(t), u
dyn
k (t), ustat, uint, p) ≤ 0, t ∈ [0, 1], ∀k ∈ K,

gd,ek (zk(1), yk(1), u
dyn
k (1), ustat, uint, p) ≤ 0, ∀k ∈ K,

zk+1(0)−m
d
k(zk(1)) = 0, ∀k ∈ {1, ..., |K| − 1},

γ = hd(z|K|(1), y|K|(1), u
dyn
|K| (1), u

stat, uint, p)























⊻

[

¬uBool

Bd(żk(t), zk(t), yk(t), u
dyn
k (t), ustat, uint, γ, p) = 0, t ∈ [0, 1]

]

,

Ω(uBool) = true,

(3.36)

where zk(t), yk(t), and udynk (t) are the differential, algebraic, and control variables along
time for each stage k ∈ K, where K is the set of mathematical stages defined for each
element in the model, e.g. Kj , ∀j ∈ U at Level 1 or L at Level 0. Let us note that the
time has been normalized in each stage. ustat, uint, and uBool are the static, integer,
and Boolean decision variables, all them detailed in Table 3.4. γ are the static algebraic
variables evaluated at the final time of last stage |Kj| and p are the model parameters.
Φ is the objective function, l defines the initial conditions, h is the set of equations to
calculate time-invariant variables, and fk, gk, gek, and mk are the DAE system, path
constraints, end-point constraints, and stage-to-stage continuity in stage k ∈ K, which
are hold independently to the Boolean decisions uBool. Accordingly, ld, hd, fdk , gdk, g

d,e
k ,

and md
k are the analogous functions that are hold in the case that variable uBool is true in

disjunctive equations and Bd defines the system in case that uBoold is false. Finally, Ω is
the set of logical propositions that infer qualitative knowledge by relating logical variables
uBool to each other.

Overall, the proposed integrative approach based on optimization clearly contrasts
with decomposition strategies which are more typically applied to address batch process
development. Generally, cautious steps have been taken by the scientific community to-
ward the use of optimization-based approaches that address a big number of decisions
simultaneously in a single formulation. The principal reason is that of the sever complex-
ity of the resulting problem and the risk of obtaining mathematically intractable systems.
However, the proposed modeling strategy presents outstanding advantages, like: the great
flexibility of the SEN superstructure, the modularity in the definition of each processing
element through specific single-stage or multistage models, the possibility of evaluating
the interactions between different unit procedures, the consideration of dynamic profiles
optimization, the possibility of incorporating qualitative information and decisions into
the model, and the introduction of synchronization constraints to ensure batch integrity
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3. Optimization model for integrated batch process development

in all processing alternatives. The matter on how to solve the MLDO problem is addressed
in the next chapter.

Dynamic control variables udynk (t)={F jm,k(t), int
j
k(t)}

F jm,k(t) Flow rate for every input and output pipeline m ∈M in
j ∪Mout

j and batch phase
k ∈ Kj of unit j ∈ U

intjk(t) Internal control variable in batch phase k ∈ Kj of unit j ∈ U , e.g. reaction
temperature

Time-invariant or static decision variables ustat={tl}

tl Duration of mathematical stage l ∈ L, which includes all batch operations k ∈ Kj in
all batch units j ∈ U

Integer decision variables uint={NBp, Size
j}

NBp Number of batches of product p ∈ P
Sizej Capacity of unit j ∈ U ∪ T

Boolean or logical decision variables uBool={Zi, Yj , X
i
ψ,Wj,q, V

j
λ , S

j
c , Rn}

Zi Process stage Boolean to indicate whether task i ∈ PS is selected
Yj Equipment Boolean to indicate whether processing or storage unit j ∈ U ∪ T is

selected
Xi
ψ Configuration Boolean to indicate whether alternative ψ ∈ Ψi of process stage

i ∈ PS is selected
Wj,q Task-unit assignment Boolean to indicate whether unit procedure order q ∈ Q is

assigned to unit j ∈ U

V jλ Technology Boolean to indicate whether technological specification λ ∈ Λj of
processing unit j ∈ U is selected

Sjc Chemical compound Boolean to indicate whether reactant, solvent, or catalyst
c ∈ Csj in unit j ∈ U is selected

Rn Recirculation Boolean to indicate whether intermediate flow in pipeline n ∈ Nr is
recirculated

Table 3.4: Decision variables in integrated batch process development.
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Chapter 4

Solution methods for integrated batch process development based

on MLDO

"The effectiveness of the existing computer-aided solution methodolo-
gies varies for different classes of problems and is a strong function
of the problem size, since most of the problems are NP-hard."

Stephanopoulos & Reklaitis (2011, p. 4297)

Different kinds of solution strategies can be used to tackle integrated batch process
development formulated as a Mixed-Logic Dynamic Optimization (MLDO) problem. In
this chapter, deterministic, stochastic, and hybrid solution methods are reviewed and spe-
cific procedures and methodologies are proposed. First, a classical deterministic method
is detailed, namely a direct-simultaneous approach, which consists of the reformulation of
the MLDO model into a Mixed-Integer Dynamic Optimization (MIDO) one to be follow-
ing transformed into a Mixed-Integer Non-Linear Programming (MINLP) problem that
is solved using conventional solution strategies. Next, a stochastic and a hybrid approach
are proposed, representing solution alternatives to the deterministic method. Their goal
is to keep solution goodness while seeking for the improvement of computational require-
ments. Specifically, a Differential Genetic Algorithm (DGA) and its combination with a
deterministic direct-simultaneous approach that converts the problem into a Non-Linear
Programming (NLP) are proposed and tested. The potential of the three strategies is
compared and their suitability for the solution of small and large sized problems is eval-
uated.

4.1 State-of-the-art: MLDO solution methods

The solution of MLDO problems can be addressed using deterministic, stochastic, and
hybrid solution methods. The majority of deterministic methods guarantee that a local
optimum is found and most advanced algorithms are also able to provide global solutions
under fairly general assumptions, e.g. Sahinidis (1996). Generally, deterministic methods
are based on gradient analysis; thus, the solution of the MLDO model for simultaneous
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4. Solution methods for integrated batch process development based on MLDO

process synthesis and plant allocation becomes quite demanding due to its mathematical
features, namely the presence of non-linearities and non-convexities, Boolean variables,
discrete events, and dynamic profiles to define control variables. Consequently, stochas-
tic solution methods are posed as a potential alternative to solve the integrated model,
despite having the disadvantage that only near optimum solutions can be guaranteed, pro-
vided that suitable tuning parameters are found. Finally, hybrid methods combine both
deterministic and stochastic approaches and can represent be a very attractive option to
overcome their corresponding limitations.

4.1.1 Deterministic solution methods to solve MLDO

Several deterministic approaches to solve MLDO problems are available in the literature
and current state-of-the-art –as it is reviewed by Stein et al. (2004) and Oldenburg &
Marquardt (2008)– in order to address the problem of batch process development. These
methodologies have been applied to solve similar problems in the context of continuous
process synthesis (e.g. Raman & Grossmann, 1993, Türkay & Grossmann, 1996b, 1998),
batch process design with structural decisions (e.g. Oldenburg, 2005), or jobshop schedul-
ing (e.g. Lee & Grossmann, 2000). Basically, deterministic approaches are classified into
three categories, which are illustrated in Figure 4.1. In the first place, classical solution
strategies are based on the reformulation of the MLDO model into a MIDO to following
apply mixed-integer solution strategies. A second alternative is continuous reformulation
of Booleans to obtain DO problems that avoid the use of either logical or integer variables.
Finally, logic-based search methods have been also developed, which directly attack the
problem represented by its original logic formulation.

Classical solution strategies. The core idea of classical solution strategies is that
every disjunctive optimization problem can be reformulated into a mixed-integer one
(Balas, 1985, Grossmann & Hooker, 2000, Oldenburg & Marquardt, 2008), transform-
ing the MLDO model into a MIDO. For that, Boolean variables uBool∈{true, false}
are replaced by binaries ubin∈{0, 1}, disjunctive constraints are relaxed to mixed-integer
equations, and logical propositions are expressed as linear constraints. The two main re-
laxation methods are big-M (Raman & Grossmann, 1991) and Convex-Hull Relaxation
(CHR) (Balas, 1985, Türkay & Grossmann, 1998), among others like the binary mul-
tiplication which is detailed in next section (§ 4.2.1). Besides, logical propositions may
lead systematically to linear constraints through their Conjunctive (CNF) (Clocksin &
Mellish, 1981) or Disjunctive Normal Form (DNF) (Quine, 1952).

Next, the obtained MIDO problem can be solved using three different methods,
namely: (i) Dynamic Programming (DP) based on Hamilton-Jacobi-Bellman formulation
to transform the original problem into a system of partial differential equations (Bell-
man, 1957, Luus, 1990), (ii) indirect methods through necessary conditions of optimality
(NCO) derived from Pontryagin’s formulation (Bryson & Ho, 1975), or (iii) direct methods
which convert the time-continuous optimization problem into a finite-dimensional non-
linear programming problem by discretization. These methods have specific advantages
and disadvantages. The interested reader in this topic is addressed to the comparative
overviews by Binder et al. (2001) and Srinivasan et al. (2003). Briefly, Dynamic Program-
ming is very attractive because it is one of the few methods that provide global solutions.
However, its application is restricted to problems with small dimension. As for indirect
methods, they have the drawback of requiring suitable initial guesses for the trajectories
of process variables and the switching structure of the optimal solution. Moreover, they
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4. Solution methods for integrated batch process development based on MLDO

are subject to the existence of necessary conditions of optimality. In contrast, direct meth-
ods do not require an explicit derivation of the necessary conditions of optimality and the
adjoin equations. These techniques rely on the discretization of time-dependent variables
of the original problem to obtain some form of Mathematical Programming (MP) prob-
lems such as Non-Linear Programming (NLP) or Mixed-Integer Non-Linear Programming
(MINLP). The possibility to exploit widespread NLP and MINLP solution strategies and
well established solvers is the principal advantage of classic approaches.

In fact, depending on the way how the variables are discretized, direct methods can be
divided into sequential (originally introduced by Sargent & Sullivan, 1978, Kraft, 1985)
and simultaneous ones (originally introduced by Neuman & Sen, 1973, Tsang et al., 1975,
Biegler, 1984). The former are based on discretizing control variables and solving the
dynamic model numerically with a suitable integration method at each iteration step
(Schlegel, 2004). The latter methods consist of fully discretizing the dynamic model to
approximate both state and control variable profiles at the same time (Biegler, 2007), as
it is later detailed in § 4.2.1. Sequential methods are well-suited for large-scale because
the problem dimension does not increase excessively. In contrast, simultaneous methods
do not require sensitivities, second order derivatives computation, and obligatory variable
continuity to be solved. In order to exploit the advantages of both approaches, sequential
and simultaneous methods are combined in hybrid methodologies, such as direct mul-
tiple shooting (originally introduced by Bock & Plitt, 1984, Bock et al., 2000), where
the dynamic model is numerically integrated independently in subintervals of the time
horizon.

Continuous reformulation of Booleans. Later, a strategy that allowed to transform
Booleans into continuous variables to obtain a purely continuous optimization problem
was posed (Raghunathan & Biegler, 2003, Stein et al., 2004), which is referred to as con-
tinuous reformulation of Booleans. For that, additional complementarity or equilibrium
constraints are necessary to enforce the continuous variables representing discrete events
to take discrete values, although inevitably imply new nonlinear terms into the model.
Originally, Raghunathan & Biegler (2003) used approximated continuous variables to re-
place discrete variables, leading to non-linear degenerate constraints. This is the case of
reformulation by complementarity condition (Raghunathan & Biegler, 2003) and refor-
mulation by circle condition (Stein et al., 2004). Later, Stein et al. (2004) found out that
using exact continuous variables would lead to non-degenerate constraints with better the-
oretical features. For instance, these authors proposed to reformulate the problem through
binary multiplication or tailored big-M constraints. Overall, the principal advantage of
relaxing the MLDO problem by means of continuous variables is that of obtaining purely
continuous NLP problems. Due to the elusion of the combinatorial part of the problem,
NLP solution algorithms are more efficient than mixed-integer ones.

Logic-based solution techniques. Finally, logic-based solution techniques have been
also developed by adapting original mixed-integer solution algorithms to mixed-logic ones,
either based on enumeration (e.g. Beaumont, 1990, Raman & Grossmann, 1993, Lee &
Grossmann, 2000) or on decomposition (e.g. Türkay & Grossmann, 1996b, Oldenburg
et al., 2003). The leverage of logic-based methods is not only to avoid the reformulation
of the original MLDO model, but also to be able to exploit the logical structure of the
problem. For instance, in the case of Branch-and-Bound (B&B), the problem size may be
reduced at each node by using logical knowledge to remove the slack equations of false
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disjunctive terms (Beaumont, 1990). Moreover, the number of nodes to be enumerated
may be reduced by using logical and symbolic inference to decide on the branching of
variables and whether additional variables can be fixed at each node (Raman & Gross-
mann, 1993). This way, Lee & Grossmann (2000) reported a logic-based B&B algorithm
for non-linear problems. In turn, Türkay & Grossmann (1996b) developed logic-based
decomposition algorithms, namely logic-based methods based on Outer Approximation
(OA) and Generalized Benders Decomposition (GBD). Such algorithms lead to disjunc-
tive linear (LP) master problems and non-linear (NLP) primal problems, characterized
by: a smaller number of equations, the elimination of zero flows, and the reduction of
non-convexities in those constraints associated to non-selected disjunctions. Next, the
logic-based OA method was extended to include dynamic equations by Oldenburg et al.
(2003), who proposed a tailored, logic-based solution algorithm.

4.1.2 Stochastic and hybrid solution methods to solve MLDO:

Genetic Algorithms

Stochastic and hybrid approaches are another challenging option to address optimiza-
tion problems due to their simple concept, plain structure, and independence of gradient
information. In fact, these strategies are considered as a practical alternative to determin-
istic algorithms in the area of Operations Research (Reeves & Rowe, 2003). Particularly,
stochastic approaches consist of heuristic procedures that use random searching algo-
rithms to reach near optimum solutions. One of the most extended stochastic optimiza-
tion methods would be the so-called Genetic Algorithm (GA) proposed by Holland
(1975) and Hollstien (1971), an evolutionary algorithm that evokes natural evolution.
Such methods improve the solution through an adaptive search procedure that selects
and combines the better solutions found at each iteration. Regarding hybrid methods,
these consist of stochastic procedures complemented by deterministic methods in order
to provide optimal solutions.

In the context of PSE, stochastic and hybrid approaches have been successfully ap-
plied to different types of optimization problems. Specifically, there are several reported
applications of GAs in optimization problems like scheduling (e.g. Murata et al., 1996,
Gonçalves et al., 2005, Capón-García, 2011, Bai et al., 2012, among others) and supply
chain management (e.g. Altiparmak et al., 2009, Kannan et al., 2010, among others).
Process synthesis problems are also an important area of application of GAs and other
evolutionary algorithms, such as Tabu Search (TS), Simulated Annealing (SA), or Har-
mony Search (HS). For example, the synthesis of different process systems have been
considered in the literature, such as heat exchanger networks (HENs) (e.g. Wang et al.,
1998, Ravagnani et al., 2005, Ponce-Ortega et al., 2007, Gorji-Bandpy et al., 2011, among
others) or the design of distillation sequences (e.g. Fraga & Senos Matias, 1996, Leboreiro
& Acevedo, 2004, García-Herreros et al., 2011, among others).

Most of the aforementioned problems were formulated as Mixed-Integer Linear Pro-
gramming (MILP) and Mixed-Integer Non-Linear Programming (MINLP) problems, where
the discrete and continuous variables were treated either together –i.e. using the so-called
mixed-coded stochastic and hybrid methods– or separately –i.e. using the so-called two-
level optimization strategies where the integer and the non-linear parts of the problem
are solved iteratively by using stochastic-deterministic or stochastic-stochastic strategies.
Moreover, all these contributions were focused on static problems, where the dynamic
behavior of batch operations along time is not represented, thus avoiding the use of DAE
systems and the definition of dynamic trajectories for the control variables.
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Regarding stochastic solution procedures for DO problems, the particular extension
of GAs termed Differential Genetic Algorithms (DGAs) (Michalewicz et al., 1992)
constituted a suitable approach because it allowed that some decision variables were
expressed as vectors of discretized dynamic control trajectories. In fact, DGAs represent
purely stochastic approaches to solve optimal control problems. Many contributions can
be found in this direction (e.g. Lee et al., 1999, Li et al., 2008, Lopez Cruz et al., 2003,
Michalewicz et al., 1992, Upreti, 2004, and many others).

Going a step further, Wongrat et al. (2011) proposed a two-level optimization strategy
combining stochastic-deterministic algorithms. Specifically, the hybrid method was based
on a MIDO formulation and conventional GAs to solve simultaneously the synthesis and
operational design of individual units with transient regimes. This approach attacked the
integrated problem by combining GAs with deterministic direct-sequential methodologies.
Due to the use of conventional GAs, the dynamic profiles were optimized in the determin-
istic step of the procedure while the stochastic part focused only on equipment synthesis
decisions.

To the author’s knowledge, there is no contribution that carries out the explicit solu-
tion of mixed-logic problems by means of evolutionary algorithms that incorporate logical
variables and equations.

4.2 Application of deterministic methods

Classical deterministic methods are the most extended to solve MLDO problems because
they allow to exploit the advantages of mixed-logic modeling –e.g. the incorporation of
previous knowledge and rules to optimization-based approaches– and, through the refor-
mulation of the optimization model, they still permit to use well established MIDO solu-
tion strategies. As seen in previous section (§ 4.1), classical methods comprise two steps:
(1) the reformulation of the mixed-logic (MLDO) model into a mixed-integer (MIDO) one
and (2) the MIDO solution, which in turn can be addressed through different strategies.

Among the different classical methods, direct-simultaneous strategies deal with the
MIDO solution by means of a full discretization of the dynamic model, thus approximating
process and control variable profiles to finite points along the time horizon. As a result,
a MINLP is obtained. The possibility to exploit widespread mixed-integer programming
strategies and established MINLP solvers to solve the problem has motivated the selection
of a direct-simultaneous approach to attack the MLDO problem for integrated batch
process development. Specifically, the proposed strategy includes several tools, namely
binary multiplication, CNF reformulation, orthogonal collocation on finite elements, and
the use of initial feasible solutions (IFS) to initialize the search procedure, as is following
detailed.

4.2.1 Direct-simultaneous method

The proposed direct-simultaneous method is divided in two steps: (1) the reformulation
of the MLDO into a MIDO and (2) the MIDO solution.

Step 1: Relaxation of the MLDO into a MIDO

Classical methods are based on the relaxation of the original MLDO problem into a
MIDO one. For that, three transformations are required. First, Boolean variables uBool ∈
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{true, false} are replaced by binaries ubin ∈ {0, 1}. Thus, the vector of Boolean decision
variables uBool = {Zi, Yj , X

i
ψ,Wj,q, V

j
λ , S

j
c , Rn}, presented in Table 3.4 is transformed

into a vector of binary variables ubin = {zi, yj , x
i
ψ , wj,q, v

j
λ, s

j
c, rn}, whose 0 and 1 values

correspond to prior false and true values respectively.
Following, disjunctive equations are transformed into mixed-integer ones. This trans-

formation is done through binary multiplication, which is a further alternative to big-M
(Raman & Grossmann, 1991) and CHR (Türkay & Grossmann, 1998), as summarized in
Figure 4.1. Specifically, differential and algebraic variables żk(t), zk(t), and yk(t), and
time-invariant variables γ are decomposed into contributions żk,i(t), zk,i(t), yk,i(t), and
γi for each disjunctive term i ∈ ID of disjunctive equations, which are multiplied by their
corresponding binary variable ubini . Thus, the following example function fdk,i:

⊻
i∈ID





uBooli

fdk,i(żk(t), zk(t), yk(t), u
dyn
k (t), ustat, uint, γ, p) = 0,

t ∈ [0, 1], ∀k ∈ K



 (4.1)

is reformulated into the form:

fdk,i(żk,i(t), zk,i(t), yk,i(t), u
dyn
k (t), ustat, uint, γi, p) = 0, t ∈ [0, 1],∀k ∈ K, i ∈ ID,

żk(t) =
∑

i∈ID
żk,i(t)u

bin
i , zk(t) =

∑

i∈ID
zk,i(t)u

bin
i , yk(t) =

∑

i∈ID
yk,i(t)u

bin
i , ∀k ∈ K,

γi =
∑

i∈ID
γi u

bin
i ,

∑

i∈ID
ubini = 1.

(4.2)

Disjunctive equations of the MLDO model of Eq. 3.36 include only two terms which
can be represented by one single binary ubin: term uBool (i = 1 where ubin1 = ubin) and
term ¬uBool (i = 0 where ubin0 =1-ubin). Therefore, disjunctions are transformed into the
following set of equations:

fdk (żk,1(t), zk,1(t), yk,1(t), u
dyn
k (t), ustat, uint, p) = 0, t ∈ [0, 1], ∀k ∈ K,

ld(ż1,1(0), z1,1(0)) = 0,

gdk(zk,1(t), yk,1(t), u
dyn
k (t), ustat, uint, p) ≤ 0, t ∈ [0, 1], ∀k ∈ K,

gd,ek (zk,1(1), yk,1(1), u
dyn
k (1), ustat, uint, p) ≤ 0, ∀k ∈ K,

zk+1,1(0)−m
d
k(zk,1(1)) = 0, ∀k ∈ {1, ..., |K| − 1},

γ1 = hd(z|K|,1(1), y|K|,1(1), u
dyn
|K| (1), u

stat, uint, p)

Bd(żk,0(t), zk,0(t), yk,0(t), u
dyn
k (t), ustat, uint, γ0, p) = 0, t ∈ [0, 1]

żk(t) = żk,1(t) u
bin + żk,0(t) (1− u

bin), t ∈ [0, 1], ∀k ∈ K,

zk(t) = zk,1(t) u
bin + zk,0(t) (1− u

bin), t ∈ [0, 1], ∀k ∈ K,

yk(t) = yk,1(t) u
bin + yk,0(t) (1− u

bin), t ∈ [0, 1], ∀k ∈ K,

γ = γ1 u
bin + γ0 (1− ubin).

(4.3)

Finally, logical propositions are expressed as linear constraints. This transformation
can be done systematically by formulating the CNF of the original logical equations to
obtain an expression like C1 ∧ C2 ∧ ... ∧ CN where Cn are the clauses that must be true
in the problem, which are related by "and" operators (∧). This procedure involves the
application of a series of pure logical operations, which were first formalized by Clocksin
& Mellish (1981) as is reported by Raman & Grossmann (1991). The operations are:

1. To replace the implication by its equivalent disjunction:

uBool1 ⇒ uBool2 ⇔ ¬uBool1 ∨ uBool2 ; (4.4)
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2. To move the negation inward by applying DeMorgan’s Theorem:

¬(uBool1 ∧ uBool2 ) ⇔ ¬uBool1 ∨ ¬uBool2 , (4.5)

¬(uBool1 ∨ uBool2 ) ⇔ ¬uBool1 ∧ ¬uBool2 , (4.6)
3. To recursively distribute the "or" operator (∨) over the "and" operator (∧) by using

the following equivalence:

(uBool1 ∧ uBool2 ) ∨ uBool3 ⇔ (uBool1 ∨ uBool3 ) ∧ (uBool2 ∨ uBool3 ). (4.7)

Once obtained the CNF C1 ∧ C2 ∧ ... ∧ CN , each clause Cn is transformed into an alge-
braic equality or inequality using the relation between logical and algebraic expressions
summarized in Table 4.1. All these transformation should be applied to the set of logical
propositions Ω of Eq. 3.36, which is reformulated into an algebraic equations system:

Ω(ubin) ≤ 0. (4.8)

Logical operator Logical expression Algebraic equation

Conjunction "and" (∧) uBool1 ∧ uBool2 ∧ ... ∧ uBoolN ubin1 ≥ 1, ubin2 ≥ 1, ...ubinN ≥ 1

Disjunction "or" (∨) uBool1 ∨ uBool2 ∨ ... ∨ uBoolN ubin1 + ubin2 + ...+ ubinN ≥ 1

"exclusive or" (⊻) uBool1 ⊻ uBool2 ⊻ ... ⊻ uBoolN ubin1 + ubin2 + ...+ ubinN = 1
Implication (⇒) uBool1 ⇒uBool2 1− ubin1 + ubin2 ≥ 1

or ¬uBool1 ∨ uBool2 or ubin1 − ubin2 ≤ 0

Equivalence (⇔) (uBool1 ⇒uBool2 ) ∧ (uBool2 ⇒uBool1 ) ubin1 −ubin2 ≤0, ubin2 −ubin1 ≤0

or(¬uBool1 ∨uBool2 )∧(¬uBool2 ∨uBool1 ) or ubin1 = ubin2

Table 4.1: Basic logical operators expressed using logical and algebraic equations (Raman &
Grossmann, 1991).

Step 2: MIDO solution

The resulting MIDO problem is solved using a direct-simultaneous approach, based on
the full discretization of the dynamic model by approximating state and control variable
profiles through a set of polynomials on finite times (Neuman & Sen, 1973, Tsang et al.,
1975, Biegler, 1984). In particular, this thesis uses the orthogonal collocation method
originally introduced by Cuthrell & Biegler (1989) to solve optimal control problems which
have discontinuous control profiles, as it is the case of the batch processes with phase
transitions handled herein. Details of the stability, symmetry, and accuracy properties
rendered by this strategy can be found in the paper by Cuthrell & Biegler (1989, §3.1).

The orthogonal collocation method consists of dividing the time axis into a number
of intervals –termed finite elements– and specific time points –termed collocation points–
and approximating the state and control variable profiles, as it is represented in Figure
4.2. The location of the collocation points can be carried out by computing the roots of
orthogonal polynomials, e.g. roots of Hermite polynomials, Laguerre polynomials, Jacobi
polynomials, Chebyshev polynomials, or Legendre polynomials, among others. As for the
approximation of the state and control variables, monomial basis representations can be
used, which are defined through different forms, such as power series, Lagrange form
representation, or Runge-Kutta equations.

In this thesis, the collocation points are calculated using a shifted Legendre polynomial,
say P (τ), of order M = 3, which is defined as:

P (τ) = 20 τ3 − 30 τ2 + 12 τ − 1. (4.9)

94



i

i

“MMB” — 2014/1/27 — 10:03 — page 95 — #129
i

i

i

i

i

i

Application of deterministic methods

udynk (t)

yk(t)

zk(t)

te−1 te tNe

Finite element e Collocation points
m ∈ {1, ...,M}

Boundary points
m ∈ {0,M + 1}

Figure 4.2: Finite elements discretization for differential zk(t), algebraic yk(t), and control
udynk (t) variable profiles, where continuity is only enforced for the fist ones. Di-

amonds represent zk,e,m, yk,e,m, and udynk,e,m and triangles represent żk,e,m approxi-
mations in finite elements e ∈ {1, ..., Ne} and points m ∈ {0, 1, ...,M,M + 1}.

The roots of the above polynomial provide the normalized locations τm = {0.1127, 0.5000,
0.8873} of collocation pointsm ∈ {1, ...,M}, in addition to the boundary points located at
τ0 = 0 and τM+1 = 1, as is illustrated in Figure 4.2. Moreover, Lagrange polynomials are
implemented to approximate the state and control variables. In particular, the polynomials
for the differential zk(t), algebraic yk(t), and control udynk (t) variables and the derivative
żk(t) in finite element e ∈ {1, ..., Ne} have the following form:

zk(t) =

M
∑

m=0

zk,e,m φm(t), żk(t) =

M
∑

m=0

zk,e,m φ̇m(t),

yk(t) =

M
∑

m=1

yk,e,m θm(t), udynk (t) =

M
∑

m=1

udynk,e,m θm(t),

(4.10)

where zk,e,m, yk,e,m, and udynk,e,m represent the approximations of the differential, algebraic,
and control variables in finite element e ∈ {1, ..., Ne} in collocation or boundary points
m ∈ {0, 1, ...,M,M + 1}, M = 3, with normalized locations τm = {0, 0.1127, 0.5000,
0.8873, 1}. φm(t) and θm(t) are the basis functions defined by:

φm(t) =
M
∏

m′=0,

m′ 6=m

(t− te,m′)

(te,m − te,m′)
, θm(t) =

M
∏

m′=1,

m′ 6=m

(t− te,m′)

(te,m − te,m′)
. (4.11)

According to Eqs. 4.10 and 4.11, the polynomials of differential variables zk(t) have been
defined to be one order higher M th than the polynomials of algebraic yk(t) and control
variables udynk (t), with order (M−1)th. The reason is that polynomials with order M th

allow to define the boundary conditions of differential variables zk,e,0 in each finite element
e thanks to the symmetry properties of the method, what is necessary to enforce their
continuity from previous element e−1 in time te. Thus, accurate initial conditions zk,e,0 =
zk(te) = zk,e−1,M+1 can be calculated through the evaluation of the first polynomial in
Eq. 4.10 at the final point τM+1 = 1 of each finite element:

zk,e,0 =

M
∑

m=0

zk,e−1,m φm(τM+1 = 1), ∀e ∈ {2, ..., Ne}. (4.12)

In contrast, continuity across neighboring elements is not necessary for algebraic and
control variables, thus they are defined with a lower order (M−1)th. Specifically, Figure 4.2
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shows that control variables are approximated to a piecewise constant (PWC) function,
by establishing udynk,e,m = udynk,e .

The resulting MINLP problem can be solved through a variety of search algorithms
available in literature. For a thoughtful overview of MINLP solution approaches, the
reader is addressed to the paper by Grossmann (2002). Essentially, the diverse strate-
gies are either based on enumeration, such as Branch-and-Bound (B&B) methods with
NLP subproblems (Nemhauser & Wolsey, 1988, Floudas, 1995, Leyffer, 2001), or on de-
composition, such as Outer Approximation (OA) (Duran & Grossmann, 1986a, Kocis &
Grossmann, 1987, Viswanathan & Grossmann, 1990, Fletcher & Leyffer, 1994) or Gener-
alized Benders Decomposition(GBD) (Geoffrion, 1972).

On the one hand, the advantage of decomposition approaches compared to enu-
meration ones is their higher efficiency, since the problem is iteratively solved through
MILP master problems with linearized equations and NLP primal problems with fixed
integer variables. It should be noted that generally MILP models are handled efficiently
while NLP models can be expensive and difficult to solve. However, this strategy can
experience difficulties if many or all the NLP sub-models are infeasible or if the lineariza-
tions used for the MILP model create ill-conditioned models. Besides, only local optima
can be guaranteed unless the nonlinear objective function and constraints are convex.

On the other hand, enumeration strategies like the B&B non-linear global opti-
mization solver BARON (Sahinidis, 1996) may guarantee global solutions under fairly
general assumptions, e.g. the availability of finite lower and upper bounds on the vari-
ables and their expressions in the NLP or MINLP to be solved. Nevertheless, these kinds
of search strategies have the disadvantage of rendering costlier computational loads, since
they operate through the systematic enumeration of integer combinations and have to
solve a NLP problem for each integer solution.

Many of the MINLP solution algorithms have been implemented in commercial soft-
ware. For example, the modeling systems GAMS (Brooke et al., 1988) or AIMMS (Biss-
chop & Entriken, 1993) provide an interface with solvers like: BARON, just mentioned,
SBB, which combines the standard B&B method used for solving MILP problems with
standard NLP solvers, or DICOPT, which is based on the OA algorithm (Duran & Gross-
mann, 1986a), among others.

In this thesis, DICOPT (Duran & Grossmann, 1986a) is used in most examples, using
CONOPT 3.15D and CPLEX 12.4 to handle the NLP and MILP sup-problems in GAMS
(Brooke et al., 1988) version 23.8.2. Being a decomposition-based strategy, global opti-
mality can not be guaranteed due to the existence of non-convex terms in the model, e.g.
the bilinear functions associated to the mixers. As a result, it is convenient to repeat the
optimization procedure for several initial feasible solutions (IFS), in order to improve the
chances to find a global optimum. Therefore, the problem is first solved with constant
control profiles and fixed configurations chosen randomly to provide several IFS to the
MINLP solver. This small heuristic contributes to the identification of local optima and
to the success of the integrated solution of process development sub-problems.

4.3 Application of stochastic & hybrid methods

Stochastic and hybrid solution approaches are posed as an alternative to deterministic
ones. Particularly, their purpose is to keep solution goodness while improving the solu-
tion performance and facilitating the assessment of larger dimension systems. The final
objective is to find a suitable strategy which allows to handle industrial sized problems,
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which could include complex structural decisions and a large number of process stages
to complete full production systems. In this thesis, due to the characteristics of the inte-
grated batch process development problems to be solved, a Differential Genetic Algorithm
(DGA) is selected because it considers the optimization of dynamic trajectories of con-
trol variables that may change along time. Overall, this method serves as a basis for the
stochastic and the hybrid approaches proposed. The core idea is to combine in the DGA
chromosomes the several decision variables that characterize the problem solution, in or-
der to reduce the combinatorial complexity to be handled by the standard deterministic
solvers. For that, the MIDO model is taken as an starting point, obtained from the original
MLDO model in Eq. 3.36 with disjunctive equations and logic proposition reformulated
into Eqs. 4.3 and 4.8 as explained in step 1 of the direct-simultaneous method (§ 4.2).

4.3.1 Vector of control variables

Genetic Algorithms (GAs) in general require that the several kinds of decision variables
are combined in the so-called vector of control variables. Dynamic udynk (t), time-invariant
ustat, integer uint, and binary ubin variables that replace Booleans uBool from Table 3.4
should be contained therein as degrees of freedom. Thus, the vector of control variables
is here defined in three parts C = {cI , cII , cIII} as follows:

• Dynamic control variables. The profiles of dynamic control variables udynk (t),
including flow rates F jm,k(t) and internal variables intjk(t) like the reaction temper-
ature, are discretized along the time horizon into a number of finite elements Ne by
assuming a specific discretization profile. Particularly, a PWC behavior is selected,
following the same discretization pattern for dynamic control variables than in the
orthogonal collocation on finite elements strategy of the direct-simultaneous method
(Figure 4.2). The PWC profile is represented in Figure 4.3, where the value of udynk (t)

in each finite element e ∈ {1, ..., Ne} is approximated to udynk,e . Then, the first part

of the vector is composed by the concatenated parameters udynk,e characterizing the
discrete function at each time interval e:

cI = {u
dyn
k,e }, udynk,e = {F jm,k,e, int

j
k,e}, e ∈ {1, ...Ne}. (4.13)

udynk (t)

Time horizon

udynk,1 udynk,2
udynk,3

udynk,4

...

udynk,e ... udynk,Ne

1 2 3 4
... e ...

Ne

Figure 4.3: Discretization of dynamic control variables udynk (t) into finite intervals e ∈
{1, ..., Ne} using a PWC approximation.
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4. Solution methods for integrated batch process development based on MLDO

• Time-invariant decision variables. Time-invariant or static decisions ustat cor-
respond to the duration of batch operations tl and constitute the second part of the
vector:

cII = {u
stat}, ustat = {tl}. (4.14)

• Integer and binary decisions. The final part of the vector of control variables
corresponds to integer decisions uint, namely the number of batches NBp and the
equipment size Sizej, including binaries ubin, like the task binary zi, the equipment
binary yj , or the configuration binary xiψ , among others:

cIII = {u
int, ubin},

uint = {NBp, Size
j}, ubin = {zi, yj, x

i
ψ , wj,q, v

j
λ, s

j
c, rn}.

(4.15)

The sets of dynamic udynk (t) and binary ubin control variables, and hence the lengths
of cI and cIII respectively, can be reduced by analyzing the DOF according to the model
equations and predefined variables, as was explained in Chapter 3 (§ 3.3.7). Specifi-
cally, global material balances in mixers Mx and splitters Sp and restricted flow rates
in pipelines N0

i,ψ and Nf
i defined in functions fk, fdk , and Bd from Eqs. 3.36 and 4.3

determine the reduction of DOF regarding udynk (t). Additionally, relations Ω established
in Eq. 4.8 affect the DOF regarding ubin. The analysis of DOF of the problem to reduce
the vector of control variables is useful to avoid over specified systems and thus limit the
complexity of the optimization process.

4.3.2 Stochastic method: DGA

As justified above, the stochastic method used in this thesis is a DGA (Michalewicz et al.,
1992) where the vector of control variables C (Eqs. 4.13 to 4.15) generates a chromosome
of continuous and integer genes. According to the composition of C, the chromosome
comprises three parts, illustrated in Figure 4.4. Particularly, each gene in the first part of
the chromosome (I) represents the set of continuous variables udynk,e from the discretization

of each dynamic control variable udynk (t). The second part of the chromosome (II) also
contains genes of continuous variables, corresponding to the time-invariant controls ustat.
The last part of the chromosome (III) involves genes of integer variables uint and of binary
variables associated to the reduced vector of qualitative decisions ubin.

The final goal is to drive an evolutionary search procedure that finds the better values
for the vector of control variables C such that the objective function Φ is minimized. In
this process, Φ has to be evaluated several times for each definition of the vector C along
the search. To this end, the DAE system in the MIDO model (Eq. 3.36 with disjunctive
equations and logic proposition reformulated into Eqs. 4.3 and 4.8, as explained in § 4.2.1)
should be integrated. Moreover, inequality restrictions should be satisfied. However, since
the method does not consider this type of constraints, they are eliminated from the
MIDO equations system and are transformed into penalizations in the fitness function
that evaluates the challenge of each individual inside a population. Thus, the fitness
function ΦFitness is defined to include the original minimization objective function Φ and
the penalization of model unsupported restrictions fp·P as follows:

ΦFitness = Φ+ fp·P. (4.16)

98



i

i

“MMB” — 2014/1/27 — 10:03 — page 99 — #133
i

i

i

i

i

i

Application of stochastic & hybrid methods

P
a
rt

I
P
a
rt

II
P
a
rt

II
I

u
d
y
n

k
,1

u
d
y
n

k
,N
e

u
s
ta
t

u
in
t

u
b
in

F
j m
,k
,1

F
j m
,k
,
F
j m
,k
,1

F
j m
,k
,
in
tj k
,1

in
tj k
,N
e

N
e

N
e

t l
N
B
p
S
ij
ej

y
j

w
j
,q

v
j λ

sj c
z i

x
i ψ

r n

k
∈
K
j

k
∈
I j

k
∈
O
j

m
∈
M

in j
m
∈
M

o
u
t

j

j∈
U

l∈
L

p
∈
P

q∈
Q

λ
∈
Λ
j
c∈
C
s j

j∈
U
∪
T

ψ
∈
Ψ
i

i∈
P
S

n
∈
N
r

..
.

..
.

..
.

..
.

F
ig

u
re

4
.4

:
R

ep
re

se
n
ta

ti
o
n

o
f
th

e
ch

ro
m

o
so

m
e

o
f
th

e
D

G
A

m
et

h
o
d

to
so

lv
e

in
te

g
ra

te
d

b
a
tc

h
p
ro

ce
ss

d
ev

el
o
p
m

en
t.

99



i

i

“MMB” — 2014/1/27 — 10:03 — page 100 — #134
i

i

i

i

i

i

4. Solution methods for integrated batch process development based on MLDO

Penalization weights fp should be sufficiently small to avoid converting any non-penalized
solution in a super-individual, but large enough to avoid convergence toward penalized
individuals with an underrated objective function.

The solution algorithm includes the following general steps in GA methods (Haupt &
Haupt, 2004) and the particular features to face the problem here proposed:

• Initial population generation. Random normalized values are assigned to each
variable in the chromosome.

• Fitness function evaluation and ranking selection. ΦFitness is evaluated ac-
cording to Eq. 4.16 for each individual of the population. Then, individuals are
ranked from lower (best) to upper (worst) fitness function values.

• Evolution of individuals by crossover and mutation operators. Matchmak-
ing is done using rank weighted random pairing. Besides, crossover is carried out
through cyclic chromosomes with an even number of crossover points. In continuous
genes, the value of the two new offsprings is calculated from parents’ genes by using
heuristic crossover with a random repartition parameter. As for mutation, random
normalized values are assigned, except for the case of genes for input and output
flow rates F jm,k,e, ∀m ∈ M

in
j ∪M

outj , which are provided by a random normally
distributed mutation around the original value. This type of mutation introduces
preservative variations in the flow profiles, thus driving their evolution at a slower
pace, avoiding to fall into sharp search paths.

• Termination. The algorithm is defined to stop when the both following conditions
are meet: (1) the penalization of the best individual satisfies a predefined tolerance
boundary, and (2) there is no more improvement in indicators of the evolution in
two consecutive populations, namely ΦFitness minimum and mean values.

4.3.3 Hybrid method: DGA-NLP

The hybrid approach aims at exploiting the strengths of both stochastic and deterministic
solution tools. Figure 4.5 shows the detailed solution procedure. In step 1, a number of
NIFS initial feasible solutions are calculated through DGAs with fixed structural solutions
–i.e. predefined uint and ubin in part III of the chromosome– and constant profiles for
dynamic variables instead of PWC ones –i.e. udynk,e = udynk,e+1, ∀e ∈ {1, ..., Ne−1}. In step 2,
the resulting approximated solutions are included in a following DGA, now incorporating
dynamic PWC profiles and free integer decisions in part III of the chromosome. In final
step 3, the integer part of the problem is fixed according to the best solution obtained in
step 2 and the problem becomes a DO one. Then, such solution is improved by using a
deterministic solution approach. Particularly, the obtained DO problem is solved through
a direct-simultaneous approach, by discretizing state zk(t) and yk(t) and control variables
udynk (t) using orthogonal collocation on finite elements (Cuthrell & Biegler, 1989) as was
explained previously in step 2 of the proposed deterministic approach (§ 4.2.1). This
way, a NLP problem is obtained and the solver performance is improved with respect to
the MINLP solvers because the combinatorial part of the problem associated to integer
control variables uint and ubin has been dismissed from the optimization problem, solved
in previous steps of the hybrid strategy.
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Concluding remarks

1. Exploratory study (GA)

2. Filtering (DGA)

3. Refinement (NLP)

Integrated batch process
development MIDO model

N
IFS

initial feasible solutions

Intermediate feasible solution,
selected integer solution

Integrated batch process
development optimal solution

• udynk (t) constant profile
• Fixed uint and ubin

• udynk (t) PWC profile
• Free uint and ubin

• udynk (t) PWC profile
• Fixed uint and ubin

Figure 4.5: Proposed hybrid DGA-NLP approach to solve integrated batch process develop-
ment.

4.4 Concluding remarks

In this chapter, three different solution approaches have been proposed, namely a de-
terministic direct-simultaneous approach, a stochastic DGA, and their combination in a
hybrid solution method. For comparative purposes, the three methods have been used
to solve a preliminary example of batch process development in a retrofit scenario. This
example is presented in Appendix D, where promising results are shown.

The general features of the propsed MLDO solution methods are summarized in Table
4.2. On the one hand, despite the direct-simultaneous approach can lead to suboptimal
solutions due to the non-linear non-convex characteristics of the MLDO model, the deter-
ministic solution obtained is not beat by the DGA or the DGA-NLP ones. On the other,
the proposed stochastic and hybrid approaches provide near-optimal solutions compared
to the direct-simultaneous one and, thus, can be considered as a plausible solution al-
ternative. The tested DGA and DGA-NLP methods present a crucial advantage in front
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4. Solution methods for integrated batch process development based on MLDO

Advantages Disadvantages

Deterministic
direct-simultaneous
approach

• Local optimality
• Tuning of search algorithm

parameters not required

• IFS required
• Numerical error due to the

discretization of process variables

Stochastic DGA • Physically feasible solutions
• IFS not required

• Near-optimal solutions
• Tuning of DGA parameters required

Hybrid DGA-NLP • Local optimality
• IFS not required

• Numerical error due to the
discretization of process variables

• Tuning of DGA parameters required

Table 4.2: General features of the proposed MLDO solution methods.

of the deterministic method, that is the possibility to find solutions that are physically
feasible without requiring IFS. Moreover, the DGA search procedure does not require the
discretization of the process variables and the DAE system –only the control variables
have to be discretized–, which eliminates a significant portion of the numerical error. How-
ever, these methods present a drawback, that is the need of carrying out a good tuning
of the DGA parameters in order to ensure their success.

Taking into account these considerations and the results of the example presented in
Appendix D, it is considered that the direct-sequential method with the proposed IFS
strategy leads to solutions that are more reliable than the ones obtained with the DGA
and DGA-NLP with a blind misguided algorithm tuning, even though global optimality
can not be guaranteed in any case. For that reason, the examples solved in Chapters 5
and 6 of this thesis are attacked with the proposed direct-simultaneous approach. With
a previous study of the tuning strategy to be used, the DGA and NLP-DGA methods
could be used as well.
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Chapter 5

Integrated batch process development in retrofit scenarios

"In 2012, the European Medicines Agency (EMA) issued 59 posi-
tive opinions recommending marketing authorization for new human
medicines."

Annual Report 2012, EMA

Batch manufacturing facilities are characterized by a clear differentiation between
the physical plant and the process that is performed therein, since they are meant to
assimilate and execute many different processes along their lifecycle. Specialty chemical
industries, like the pharmaceutical, the crop science, or the high-tech materials ones,
require the fast introduction of new products into the market system to keep competitive.
The investment of time and resources to design, construct, and validate a new plant each
time that a new product is approved for commercialization is not a viable strategy in most
cases. Therefore, batch plants are frequently adapted and reconfigured to embrace the
production of new products, involving none or partial plant modifications. Additionally,
many processes should be later improved, giving a response to further economic or non-
economic incentives.

In this chapter, the integrated development of batch processes in retrofit scenarios is
addressed. Concretely, the process synthesis and plant allocation sub-problems are solved
simultaneously, while tacking into account the physical restrictions of the existing manu-
facturing facilities that allocate the process. Two case studies are presented to illustrate
the solution of this problem by means of the modeling strategy and solution methods
described in Chapters 3 and 4. The first one consists of a competitive reaction system,
the Denbigh reaction mechanism (Denbigh, 1958), to produce a specialty chemical in an
existing reactor network. The equipment configuration is a decision variable that per-
mits to adapt the operating mode according to different objective functions and economic
scenarios, dismissing any modification of the physical plant and considering the capacity
expansion of batch processing units. The second case study is the optimization of a photo-
Fenton process to eliminate an emergent wastewater pollutant in a given pilot plant. The
modification of the physical system by installing new piping or processing equipment is
not considered in this case.
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5. Integrated batch process development in retrofit scenarios

5.1 Batch process development in retrofit scenarios

The organization of plant, product, and process lifecycles in an enterprise presented in
Figure 5.1 is the common situation in most batch industries, where the adaptation of man-
ufacturing facilities to incorporate newly defined or improved processes is a mandatory
activity. On the one hand, each time that a new chemical is introduced into the production
system, its corresponding process has to be defined. On the other, some processes should
be later improved to embrace: (i) changes in the economic scenario and (ii) changes in
production policies and decision criteria, all of them reflected in the optimization func-
tion. That being so, the objective of batch process development in retrofit scenarios is to
develop new or improved master recipes to be implemented in existing plants.

PLANT

Production
Plant

dismantle

Plant
redesign &

engineering

New
equipment

installation

PROCESS

Synthesis of

processing

schemes

Plant

allocation

Process execution
& continuous
improvement

PRODUCT

Product
discovery
& design

Tests
Process
develop-

ment

Engi-
neering

Production &
commercial-

ization

Garbage

collection &
treatment

ENTERPRISE

Market

study

Product

development

Process

development

Production &

commercialization

New
equipment

installation

Time

Figure 5.1: Lifecycles in an enterprise: retrofit scenario (adapted from Marquardt et al., 2000).

5.1.1 Introduction to retrofit problems

According to Barbosa-Póvoa (2007), retrofit design may be defined as the redesign of an
existing facility to improve process economics. Specifically, this can be done by: expanding
the capacity of the existing plant, reducing operating costs, or accommodating a revised
product portfolio (Reklaitis, 1990). In last decades, plant modernization has been also
motivated by driving factors beyond the economic improvement, pursuing the develop-
ment of sustainable process that were also ecological, environmentally friendly and safe
(Grossmann et al., 1987, Simon et al., 2008, Grossmann & Guillén-Gosálbez, 2010). The
most widespread retrofit incentives are summarized in Table 5.1. In broad terms, retrofit
design is a response to several factors, like the uncertainty in prices and in feedstock
and energy availability, patent expiration, new emission regulations, or changes in market
demands (Grossmann et al., 1987, Simon et al., 2008). Additionally, retrofit problems in
batch plants are also related to the opportunities of introducing new specialty products
in the market-place (Cavin, 2003, Reklaitis, 1990).

Several actions can be taken in retrofit problems: (i) the modification of processing
conditions, (ii) the adaptation of equipment diagram by changing the piping connections,
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Economic incentives:

• Production increase
• Reduction of processing costs and energy

requirements
• Improvement of flexibility and controllability
• Increase of the feedstock conversion

• New chemical production
• Introduction of a newly developed process

or technology
• Process debottlenecking
• Change of feedstock

Non-economic incentives:

• Waste volume reduction
• Improvement of product quality
• Improvement of process safety

• Reduction of environmental impact of
existing processes

Table 5.1: Usual retrofit incentives (Grossmann et al., 1987, Barbosa-Póvoa, 2007, Simon et al.,
2008, Banimostafa et al., 2011).

(iii) the re-sizing of equipment pieces, or (iv) the installation of additional processing
and storage units (Grossmann et al., 1987). The resulting investment costs increase from
actions i to iv. This way, the plant design problem deals with different situations in retrofit
scenarios, which vary between two extreme cases. In the first one, no plant modifications
are allowed and thus the plant design problem is not addressed at all. In the other extreme
case, the consideration of installing additional pipelines, processing units, and storage
tanks involves a general plant design problem where the number, size, and location of
new plant elements should be defined. In addition, Reklaitis (1990) cite further decisions
that should be considered when facing a retrofit problem in the batch industry, as is the
case of campaign lengths, sizing levels, operating modes, and changes in processing times
like cycle times.

Overall, the imperative objective of retrofit problems is to take into account the avail-
able physical elements of the plant to make the best use of them according to the new
production targets. However, this goal has important mathematical implications. First,
it is necessary to take into account the features of the existing equipment items to ensure
that the new or modified process can be executed therein. Thus, each equipment piece
should be associated to a set of constraints that determine their connectivity with other
units and the permitted processing conditions. In addition, there is a combinatorial ex-
plosion due to the consideration of several equipment options and constraints (Reklaitis,
1990) in addition to the combinatorial problem of tasks and subtasks selection and se-
quencing associated to batch processes development. Finally, the constraints associated
to the existing equipment items are complemented by the degrees of freedom related to
new plant elements, in case that plant modifications are allowed.

Comparing the process development problem in retrofit scenarios with grassroots ones,
where manufacturing facilities are newly designed in their entirety, several differences
are found regarding the modeling and solution requirements, as outlined in Table 5.2.
Particularly, it should be emphasized that the interaction between the batch process
development sub-problems –i.e. process synthesis, plant allocation, and plant design– is
stronger in retrofit scenarios because the equipment specifications, which are typically
defined at the end, should be fixed in the beginning of the solution procedure according
to the existing plant and thus constrain the whole decision-making. For instance, the
sequential solution in this case does not ensure that feasible solutions are found within
the available equipment. Therefore, iterative or simultaneous solution approaches should
be considered.
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5. Integrated batch process development in retrofit scenarios

Retrofit scenario Grassroots scenario

Typical solution
approach

Simultaneous modification of processing
schemes, plant allocation, and plant design

Sequential: (1) process synthesis,
(2) plant allocation, (3) plant de-
sign

Processing
conditions

Performance of existing units working be-
yond the nominal conditions

Nominal behavior in processing
units

Restrictions Constraints associated to the process and to
the existing plant restrictions, e.g. diagram,
available space, piping, and processing units

Constraints associated to the pro-
cess

Combinatorial
problem

Tasks selection and sequencing, allocation
of tasks to specific equipment pieces from
the set of available ones

Tasks selection and sequencing

Table 5.2: Comparison of modeling features for process development problem in retrofit and
grassroots scenarios.

5.1.2 Related work

Various reviews are available in the literature analyzing academic solutions to improve
chemical batch processes and plants, e.g. Grossmann et al. (1987), Reklaitis (1990), and
Barbosa-Póvoa (2007). To present a general scope of the batch retrofit panorama, these
contributions are here classified according to the problem tackled at each case, namely:
(i) the introduction of new processes in existing batch plants, (ii) the introduction of
sustainable incentives for batch process improvement, and (iii) the retrofit of batch plants.

Regarding the solution approaches, there are several proposals for evaluating the
retrofit potential of a chemical plant according to the abovementioned objectives. Fol-
lowing the classification of solution approaches presented in Chapter 2, the literature
for retrofit problems plays tribute to knowledge-based, optimization-based, or combined
methodologies. Many of the them have been developed to particular applications (Gross-
mann et al., 1987), like the retrofit of HEN or reaction sequences. Moreover, a great
emphasis is placed on developing methods that are systematic, due to the large complex-
ity of the retrofit problems. Note also that many of the proposals for retrofit problems
can be applied to process development in grassroots scenarios as well.

Introduction of new processes in existing batch plants

One of the problems that should be considered most frequently in the batch industry is
the modification of the product portfolio to include the manufacturing of new chemicals.
In these cases, the retrofit problem is related to the adaptation of batch plants to allocate
the new productions lines by re-organizing their available equipment items, introducing
modifications like the expansion of vessel sizes, or installing additional processing and
storage units.

Several contributions addressed this problem in the literature, like the works by Cavin
(2003), Cavin et al. (2004, 2005), and Mosat et al. (2007, 2008) presented in Chapter 2
(p. 37). Particularly, Cavin (2003) solved sequentially the synthesis of waste treatment
paths and the plant allocation sub-problems. The former was addressed through an itera-
tive approach. The latter, using a two-step hybrid method consisting of: (1) a knowledge-
based step for the generation of the problem superstructure, which included the selected
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waste treatment schemes, and (2) a MO optimization step for solving the allocation sub-
problem using TS as search method. The second step (Cavin et al., 2004, 2005, Mosat
et al., 2007, 2008) covered issues like the combination of economic and environmental
decision criteria, uncertainty in the process parameters, and robustness optimization.

Overall, the great contribution of these works was to address the allocation problem in
retrofit scenarios, providing the most efficient path for producing a new product to be im-
plemented in already exiting multi-purpose facilities. The resulting optimization models
often included decisions like new equipment investment. Restrictions to ensure that the
predefined conditions in each task fitted the physically feasible temperature and pressure
ranges of the assigned existing units were also considered. However, processing condi-
tions in each process stage were not considered as degrees of freedom in the optimization
problem, what could lead to a misuse of the existing units.

Sustainable incentives for batch process improvement

Despite the improvement of the economic performance is the most widespread motiva-
tion to enlarge the firm’s value, an increasing concern for sustainable processes can be
noticed in recent publications. This way, several authors have posed a special stress over
the need of retrofitting processes to incorporate energy consumption and environmental
impact reduction –which in many cases was not considered in the initial process design–
complementing the economic optimization (Halim & Srinivasan, 2006, 2008, Halim et al.,
2011, Simon et al., 2008, Carvalho et al., 2009, Bumann et al., 2011, Banimostafa et al.,
2011, 2012). Most of the proposed approaches have been developed by extending well
established knowledge-based and combined methodologies for the retrofit of continuous
processes. Moreover, these methodologies are generally applicable to different stages of
the process design lifecycle, including the improvement of processes already implemented
in a production facility as well as the development of new ones.

For instance, Halim & Srinivasan (2006, 2008) proposed a systematic methodology for
waste minimization in batch processes, implemented in the AI system Batch-ENVOPExpert.
The approach was based on the use of heuristic procedures and guidewords –e.g. larger
pressure or smaller temperature– to diagnose waste sources and generate waste mini-
mization alternatives (Halim & Srinivasan, 2006). It was complemented by quantitative
material and energy balances to evaluate energy utilization and economic contributions
(Halim & Srinivasan, 2008). Eventually, a MO optimization problem was addressed, which
combined environmental and economic targets and was solved through the stochastic
SA search method. Later, Halim et al. (2011) combined the capabilities of the Batch-
ENVOPExpert system with the computer tool SustainPro (Carvalho et al., 2008), which
was based on the evaluation of alternatives through indicators like profit and resource
usage, e.g. energy, water, or raw material. The DOF in these works are defined terms of
structural alternatives and process variable modifications. However, both types of deci-
sions are addressed sequentially, losing an important part of their interaction. This way,
structural variables are decided through a heuristic procedure, whereas processing condi-
tions are optimized in a later step, assuming constant profiles for the feed-forward control
trajectories.

Recently, other studies have addressed the retrofit of batch processes for sustainable
designs through a general framework based on path flow decomposition of the process flow
sheet and indicator-based identification of retrofit potential (Simon et al., 2008, Carvalho
et al., 2009, Bumann et al., 2011, Banimostafa et al., 2011, 2012), originally developed
for continuous processes (Uerdingen et al., 2003, 2005, Carvalho et al., 2008). This way,
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Simon et al. (2008) sought the improvement of process performance through production
capacity expansion, based on a heuristic method covering three decision levels: plant,
process, and unit operations. An extensive set of indicators was used to evaluate the pro-
cessing alternatives, which were associated to the different levels and ranged from global
economic indicators like productivity to path flow indicators like energy and waste costs.
At the same time, Carvalho et al. (2009) combined the indicator-based methodology with
sensitivity analysis using sustainable metrics, safety indices, and waste reduction param-
eters to evaluate the improvement alternatives. Later, Bumann et al. (2011) incorporated
a MO process assessment to find retrofitting actions pursuing economic and ecological
objectives. Finally, Banimostafa et al. (2011, 2012) enhanced both monetary and non-
monetary objectives through the definition of path flow indicators belonging to green
chemistry, namely the EHS and the LCIA indicators. It should be noted that all these
approaches rely on a problem decomposition and heuristic rules, losing part of the inter-
action between process synthesis, plant allocation, and plant re-design decisions. Besides,
processing conditions were considered as time-invariant decision variables in most cases,
also losing the improvement potential that is associated to the optimization of dynamic
feed-forward profiles for the control variables.

Additionally, the retrofit of batch HEN is reviewed by Fernández et al. (2012). Early
studies applied methods previously developed for continuous processes. However, due to
the transient behavior of batch processes, later research has focused on heat by defining
time-dependent heat recovery constraints. There has been also a significant amount of
work devoted to the study of thermal storage to improve heat integration in batch systems.
But again, each phase is approximated using time-invariant information.

Retrofit of batch plants

Despite the abovementioned contributions, most of the work regarding retrofit problems in
batch plants has dealt with the modernization of existing multiproduct and multipurpose
plants, assuming fixed recipes for a given product slot, as was reviewed by Reklaitis (1990)
and Barbosa-Póvoa (2007). The typical incentives to address the retrofit problem were the
enhancement of economic performance, for example involving the modification of product
demands, the incorporation of new products, capacity expansions, the optimization of the
production levels, plant debottlenecking, and increasing the plant flexibility, reliability, or
maintainability.

Regarding the solution procedures, several approaches have been applied in this case:
(i) optimization-based approaches where the problem was represented by MILP and
MINLP models (Vaselenak et al., 1987, Wellons, 1989, Fletcher et al., 1991, Papageor-
gaki et al., 1992, Papageorgaki & Reklaitis, 1993, Barbosa-Póvoa & Macchietto, 1994b,
Subrahmanyam et al., 1994, Georgiadis et al., 1997, Yoo et al., 1999, Lee et al., 2000, Car-
valho & Soletti, 2000, Montagna, 2003, Goel et al., 2004, Pinto et al., 2005, Moreno et al.,
2007), by stochastic optimization models (Petkov & Maranas, 1998, Dedieu et al., 2003,
Dietz et al., 2008), or by disjunctive optimization models (van den Heever & Grossmann,
1999, García-Ayala et al., 2012), (ii) heuristic strategies (Espuña & Puigjaner, 1989), and
(iii) combined approaches that included heuristic rules and optimization techniques (Lee
et al., 1993, 1996). The typical decisions considered in these works are the following:

• Addition of extra equipment to existing facilities;
• Sizing of new equipment;
• Elimination of old inefficient units;
• Operating mode, i.e. parallel in-phase or out-of-phase;
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• Location of intermediate storage units
• Processing time as a function of the batch size; and
• Cleaning policies.

These decisions involve structural alternatives and continuous design variables. However,
the modification of processing conditions is not considered within the pre-established
recipes. All in all, the problem solved in most cases is the plant allocation and design,
instead of the complete process development.

Remarks on the solution approaches

As presented above, knowledge-based approaches have been the most commonly used
approaches to generate and evaluate the development of new processes or the improvement
of existing ones in retrofit scenarios. Particularly, empirical process knowledge helps to
untangle the large complexity of the retrofit problem by stating a series of rules, defined
by the user, to guide the search of design variations, which are evaluated by simulation.
This way, the problem is decomposed and solved sequentially in most cases, using the
existing system as the natural starting point for the search.

For instance, Cavin (2003), Cavin et al. (2004, 2005), and Mosat et al. (2007, 2008)
separated the synthesis of processing and waste treatment schemes from the plant alloca-
tion sub-problem. Besides, the heuristic and guideworkds procedure proposed by Halim
& Srinivasan (2006, 2008) and Halim et al. (2011) –implemented in the computer tools
Batch-ENVOPExpert and SustainPro– addressed first the structural decisions and fol-
lowing the performance ones. The same philosophy was behind the general framework
based on path flow decomposition and indicator-based evaluation employed by Simon
et al. (2008), Carvalho et al. (2009), Bumann et al. (2011) and Banimostafa et al. (2011,
2012).

The heuristic procedures of several of these works have been also combined with the
optimization of particular solutions. To do so, the problem was also addressed sequentially:
heuristic approaches were first used to generate and propose retrofit actions in batch
plants, which were followed by simulation and optimization of the best solutions or specific
subsystems of the flow sheet –e.g. energy use, distillation columns, or reaction units.
Overall, while decomposition and the sequential procedures are efficient and relatively
simple to implement, they require a great deal of trial and error and suboptimal designs
could be met for not evaluating the interaction among sub-problems in the decision-
making process.

In contrast, the retrofit of batch plants has been mostly addressed through optimization-
based approaches. In this case, the complexity of the process synthesis problem is elim-
inated by assuming fixed recipes where the process behavior is approximated in each
process stage. One of the most important advantages of optimization-based approaches is
that all the structural alternatives can be evaluated simultaneously in a the optimization
model and equipment constraints can be included therein as linear constraints. The diffi-
culty in retrofit scenarios is that the combinatorial problem grows exponentially because
the assignment of all the batch tasks should be evaluated for each of the existing plant
elements, in addition to the potential units.

Most of these references represented the retrofit problem through MINLP formula-
tions. Regarding the search procedure, several methods have been used, like deterministic
solvers, stochastic optimization algorithms, metaheuristics, or logic-based searching pro-
cedures. For instance, evolutionary algorithms were proposed by Dedieu et al. (2003) and
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Dietz et al. (2008) to reduce the solution complexity in their MO problem for the design
and retrofit of multi-purpose batch plants. Another alternative is the mathematical for-
mulation of heuristics to be incorporated into the optimization model. However, very few
works, like van den Heever & Grossmann (1999) and García-Ayala et al. (2012), bet for
this alternative, all of them dealing with the retrofit design of batch plants.

Regarding the processing conditions, the physical restrictions of the existing units
were generally taken into account to ensure that the predefined processing conditions at
each task fitted the physically feasible range of the assigned existing units. However, only
some contributions for batch process development and improvement considered processing
conditions as DOF, which were usually optimized in a final step. Moreover, despite batch
processes are characterized by a transient behavior, few of these works defined dynamic
trajectories of the control variables. Finally, the use of fixed recipes in the retrofit design
of batch plants dismiss any potential improvement by modifying processing conditions.

Beyond the solution approach, the following engineering tools listed by Grossmann
et al. (1987) have become important components in many approaches for retrofit of con-
tinuous and batch processes:

• Targets and bounds to provide a measure of potential improvement, e.g. Fisher et al.
(1987), Allgor (1997);

• Physical insights to support the identification of bottlenecks and to suggest favorable
modifications, e.g. Jaksland et al. (1995), Carvalho et al. (2009);

• Performance indicators to assess economics, flexibility, controllability, and safety
targets of the existing design and the potential modifications, e.g. Uerdingen et al.
(2003, 2005), Simon et al. (2008), Carvalho et al. (2009), Bumann et al. (2011),
Banimostafa et al. (2011, 2012);

• Sensitivity analysis to identify dominant variables and the potential improvement
of proposed modifications, e.g. Carvalho et al. (2008, 2009), Halim et al. (2011);

• Short-cut models to propose quickly sizing modifications, e.g. Fisher et al. (1987);
• Rigorous simulation models to verify the feasibility of the proposed retrofits, e.g.

Vidal et al. (2002), Halim & Srinivasan (2005, 2008);
• Optimization techniques to handle discrete and continuous decisions, e.g. Lee et al.

(1993, 1996); and
• Interactive computer environments with graphic displays.

5.2 Application of the MLDO-based strategy

In this context, the modeling strategy and the solution approach proposed in this thesis
contribute to the integrated solution of process synthesis and allocation sub-problems,
in order to tackle the development of new batch processes or the improvement of exist-
ing ones. Particularly, the DOF associated to each sub-problem (see problem statement,
§ 3.1.3, p. 56) are optimized simultaneously, while taking into account the existing plant as
problem constraints. To reduce the computational requirements associated to the combi-
natorial problem, mixed-logic modeling is used to incorporate available process knowledge
into the optimization model. Moreover, dynamic profiles are considered for the optimiza-
tion of the feed-forward trajectories of control variables, enlarging the attainable area of
the objective function.

To sum up, the modeling strategy based on MLDO and the direct-simultaneous solu-
tion method proposed in Chapters 3 and 4 are applied to address this problem. Despite
the proposed approach does not guarantee that the global optimum of the optimization
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problem is met –due to the mathematical features of the MLDO model and the available
optimization tools–, improved solutions are expected with regard to: the sequential solu-
tion of decomposed problems, the use of fixed recipes, and the definition of time-invariant
processing conditions in previous publications.

5.2.1 Optimization model

The optimization model is constructed following the formulation presented in § 3.3 (p. 69),
which is generalized in Eq. 3.36 (§ 3.4, p. 84). In the case of batch process development
in retrofit problems, the following issues should be also taken into account to formulate
the optimization model.

Plant constraints

In retrofit scenarios, plant features like the capacity of installed equipment items or the
boundaries of processing conditions constitute physical restrictions to be considered in the
optimization problem. Additionally, new plant elements may be also installed, which relax
the physical constraints associated to such particular element and involve an investment
cost. In broad terms, the retrofit problem may solved considering the following problem
specifications with an increasing number of DOF associated to the physical plant:

(i) No allowed installation of new processing or storage units or pipelines;
(ii) Allowed installation of new connecting pipelines;
(iii) Re-sizing of processing or storage units;
(iv) Allowed installation of new processing or storage units.

Aside from the decision criteria evaluation, the first is the ideal situation in practice
because it does not require additional time for installing and validating the new system.
Let us bear in mind that procedures like Good Manufacturing Practices (GMP) and
HAZOP analysis are necessary to face any plant modification, in order to verify that
the safety and operational measures are correct. The drawback of not considering the
installation of new plant elements is that the attainable area for the objective function,
and thus the improvement potential, is limited with respect to the other three options.

Single-objective problems

The most widespread decision criteria in chemical industry are economic targets because
they determine the viability of producing a particular chemical. Therefore, several eco-
nomic contributions to the objective function are defined in this chapter to compare pro-
cessing alternatives, which are combined in single-objective (SO) optimization problems
defined by:

minimize
udyn(t),ustat,

uint,uBool

Φ(zk(t), yk(t), u
dyn
k (t), ustat, uint, uBool, γ, p),

(5.1)

subject to the set of equations for simultaneous batch process synthesis and plant alloca-
tion. Generally this minimization problem may represent the profit maximization or cost
minimization problems with the following contributions to the objective function Φ:

• Product revenue: The total revenue of product p is determined by the amount
of product obtained in each batch. It can be calculated as a function of the level
variation in the storage tank as follows:

Revenuep = p̂p

(

η
Tprod
p (tend)− η

Tprod
p (ts)

)

, (5.2)
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in monetary units per batch, where p̂p is the selling price and ηTprodp (ts) and ηTprodp

(tend) are the initial and final amounts of product p in the storage tank Tprod.
• Raw material cost: Accordingly, the cost of raw material c is determined by the

amount of raw material consumed in each batch and can be calculated as a function
of the level variation in the raw material tank as follows:

Costc = p̂c
(

ηTrawc (ts)− ηTrawc (tend)
)

, (5.3)

in monetary units per batch, where p̂c is the unitary cost and ηTrawc (ts) and ηTrawc (tend)
are the initial and final amounts of raw material c in the storage tank T raw.

• Processing cost: The processing cost is associated to the resource consumption in
unit procedures of j ∈ U in each batch, in case that this unit is selected. Typical
processing costs are water, energy, or reactant dosage, among others. The general
form to define the processing cost is:

[

Yj
Costj,p = ĉj Resourcej

]

⊻

[

¬Yj
Costj,p = 0

]

, j ∈ U, (5.4)

in monetary units per batch, where ĉj is the economic weight of the unitary resource
consumption and Resourcej is the total amount required in unit j ∈ U to produce
each batch.

• Occupation cost: The occupation cost of batch unit j ∈ U corresponds to the
economic load of sharing equipment items among different processes. It is repre-
sented mathematically as a rental cost that prices the occupation time of each unit
that is selected. Moreover, other factors like cleaning operations and labor are also
associated to the equipment usage. Overall, the occupation cost is defined as follows:





Yj
Costj,o = c̄j,A + c̄j,B Size

j + c̄j,C
∑

k∈Kj

tjk



 ⊻

[

¬Yj
Costj,o = 0

]

, j ∈ U, (5.5)

in monetary units per batch, where Sizej is the equipment capacity and tjk is the
duration of batch operations associated to mathematical stages k ∈ Kj. The cleaning
cost and labor are related to a fixed and to a size-dependent cost contribution
defined by parameters c̄j,A and c̄j,B respectively. Besides, the rental cost is related
to a time-dependent cost contribution defined by parameter c̄j,C .

• Amortization cost: The investment expenses associated to the installation of new
pieces of equipment are defined assuming an amortization period, e.g. two years.
This parameter depends on planning level decisions. The amortization cost of a new
unit j ∈ U ∪ T , either it is selected in a particular master recipe (Yj) or not (¬Yj),
is defined as follows:

Costj,a =
čj

(

Sizej/Size0
)n
Horizon

NBp
, j ∈ U ∪ T, (5.6)

in monetary units per batch, where Sizej and Size0 are the equipment capacity
and the base equipment capacity and n is the power in the amortization function.
Particularly, Sizej is usually defined as a discrete variable to facilitate the equipment
purchase. Horizon is the maximum processing time to fulfill the total product
demand. Besides, čj is the base amortization cost, calculated as the base equipment
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cost for installing a unit j with capacity Size0 divided by the number of working-
hours considered in the total amortization period. For instance, if a period of 2 years
with 52 weeks and 168 working-hours per week is considered, 17, 472 working-hours
are obtained. This parameter čj should have a zero value in those units that are
already installed and are not subject to any modification. Finally, the amortization
cost is divided by the number of batches NBp to express this cost in a batch basis
and be consistent with previous economic contributions.

• Shortfall penalty: The unaccomplished demand of product p is penalized with an
additional cost, besides the revenue reduction due to unsold product. This cost is
defined as:

Penaltyp = p̂penalty Shortfallp /NBp, (5.7)

in monetary units per batch, where p̂penalty is the economic loss associated to the
unaccomplished part of the demand Shortfallp, which is usually related to the
selling price p̂p of product p. The penalty is divided by the number of batches
NBp to express this cost in a batch basis and be consistent with previous economic
contributions.

Given these definitions in a batch basis, the total profit maximization is formulated by
the equivalent minimization problem:

Φ=−
∑

p
(Revenuep−Costc−

∑

j

(Costj,p+Costj,o + Costj,a)−Penaltyp)NBp, (5.8)

where the economic load is evaluated for the production of all batches NBp.

Multi-objective problems

Decision-making in chemical plants usually involve multiple objectives. When several KPI
have a predominant role in the decision-making, it may be necessary to pose an optimiza-
tion problem with multiple objectives, where the effect of each target is evaluated. Beyond
economical objectives, the product quality, production time, safety, or risk measures are
also common decision criteria in batch process development. Specially, the concern for
sustainable processes that also consider the ecological and social impact of production
systems has gained importance in last decades. In multi-objective optimization problems,
the single-objective function represented in Eq. 5.1 is substituted by:

minimize
udyn(t),ustat,

uint,uBool

Φn(zk(t), yk(t), u
dyn
k (t), ustat, uint, uBool, γ, p), n ≥ 2,

(5.9)

subject to the set of equations for simultaneous batch process synthesis and plant alloca-
tion. Generally, these objectives are conflicting. So, achieving the optimal value according
to one objective involves the compromise on other ones. The solutions where none of the
objective functions can be improved without degrading other objective values is termed
non-dominated or Pareto optimal solution. The set of non-dominated solutions is the
so-called Pareto frontier, whose representation provides a graphical support to elucidate
the trade-off between multiple objectives. For example, Figure 5.2 illustrates a set of
dominated (light) and non-dominated (dark) solution and the Pareto frontier for a bi-
objective minimization problem. The extreme points of the Pareto frontier are termed
anchor points, and are obtained through the optimization considering each decision cri-
teria individually. All the solutions of the Pareto frontier are equally good and require
subjective information in the decision-making process to differentiate among each other.

113



i

i

“MMB” — 2014/1/27 — 10:03 — page 114 — #148
i

i

i

i

i

i

5. Integrated batch process development in retrofit scenarios

Φ
1

Φ2

Figure 5.2: Pareto frontier and dominated solutions for a bi-objective minimization problem:
non-dominated or Pareto optimal solutions (dark) and dominated solutions (light).

5.2.2 Methodology

Figure 5.3 summarizes the principal steps to implement the modeling strategy, formula-
tion, and solution methods proposed Chapters 3 and 4 of this thesis to solve integrated
batch process development. These steps rely on the typical problem solution through
model-based optimization approaches that include synthesis decisions. In particular, once
the problem statement and required information have been defined, all processing alterna-
tives are first represented in a superstructure, which is later formulated into a MP model
to be finally optimized (Grossmann & Guillén-Gosálbez, 2010).

(a) Gathering information

The objective of the integrated batch process development problem to be solved should
be first defined according to the general problem statement in § 3.1.3 and the general
knowledge about the process to be solved. Thus, a process description and particular
problem statement should provided. On this basis, the required data for each process
stage should be also identified and gathered together. For instance, it is necessary infor-
mation like the appropriated technologies, the practical control variables, economic data,
the definition of the mandatory and optional process stages, dynamic or approximated
models and the process parameters to represent the process performance in each stage,
the potential reuse of material by recirculating intermediate flows, or the tasks where the
process can be partitioned to operate using different cycle times, among other information.

(b) SEN superstructure representation

Second, the SEN superstructure is constructed, integrating all the potential synthesis
alternatives. Moreover, equipment items should be distributed in Level 0 and 1 according
to their semi-continuous or batch nature, as it is detailed in § 3.2.3.

(c) Superstructure formulation

Next, the problem is formulated into a mathematical model according to the MLDO-based
formulation presented in § 3.3. To that end, logical variables and disjunctive equations
are used to represent mathematically the qualitative alternatives in the decision-making.
Logical propositions can be also formulated to incorporate the available logical knowledge
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of the process into the model, limiting the dimension of the combinatorial problem. More-
over, multistage models are used to represent each potential process stage. Material input
and output stages should be identified therein to allow the synchronization with other
tasks. Dynamic, steady state, or linearly approximated models can be used according to
the impact of each process stage on the decision criterion and the processing trade-offs.

(d) MLDO solution

The resulting MLDO model should be optimized. In particular, the deterministic direct-
simultaneous method explained in § 4.2.1 (p. 92) is applied in the examples of this thesis.

Recalling, the MLDO model is first normalized and transformed into a MIDO one. To
do so, Booleans are substituted by binaries and the set of logical equations is reformu-
lated into algebraic ones using the binary multiplication strategy and the CNF of logical
propositions.

Next, the MIDO is solved through full discretization of process and control variables
via orthogonal collocation in finite elements with 3 collocation points in shifted Legendre

(a) Gathering information:
Problem description &

problem statement (§ 3.1.3)

(b) SEN superstructure
representation

(c) Superstructure
formulation

(d) MLDO solution

Integrated process development

Data required in the
problem statement

Two-level superstructure

MLDO model

Optimal process and plant

Figure 5.3: Main steps of the optimization-based approach to solve integrated batch process
development.
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roots and using Lagrange polynomials to approximate the state and control variable
profiles. The number of finite elements should be carefully selected. On the one hand,
a high number of discretization intervals should be chosen to ensure the best possible
approximation of the original DAE system within the resulting finite-dimensional problem.
On the other, fewer intervals reduce the size of the discretized model and provide a more
cost-effective problem from a computational point of view, losing accuracy in the solution
in return.

The discretized problem becomes a MINLP which is implemented in GAMS version
23.8.2 and solved through the decomposition-based OA solver DICOPT (Duran & Gross-
mann, 1986a), using CONOPT 3.15D and CPLEX 12.4 to handle the NLP and MILP
subproblems respectively. Constant control profiles and fixed configurations chosen ran-
domly are used to calculate the IFS provided to the MINLP solver.

Specific methods for multi-objective problem management. A large number of
solution methods are suitable to address multi-objective problems, which are basically
classified as: no-preference, a priori, interactive, and a posteriori methods, depending
on the decision-maker intervention in the optimization process. Non-preference methods
identify a neutral compromise solution without preference information. A priori methods
require the initial definition of a priority order for the sequential optimization of objective
functions. In interactive approaches the search is directed on the basis of the information
obtained along the optimization process. A posteriori ones involve the generation of a set of
solutions in the trade-off region with the best compromise solutions. The last approaches
provide the Pareto frontier for the studied range.

In this thesis, an a posteriori method is used in those problems that require the evalu-
ation of another decision criterion apart from the economical one. For that, the graphical
representation of the Pareto optimal solutions –like the one in Figure 5.2– is used to
support the decision-making process. There are several alternatives to generate the non-
dominated solutions that compose the Pareto frontier for multiple objectives, such as the
Normal Boundary Intersection, the Normal Constraint, or the Successive Pareto Opti-
mization method, among others, where the several Pareto optimal solutions are obtained
by defining different scalarizations of the objective functions. Evolutionary algorithms
have been also applied, like the multi-objective Genetic Algorithm (Capón-García et al.,
2011a), which define the population evolutions using Pareto-based ranking schemes. Once
the Pareto frontier has been generated, subjective preferences of the decision-maker are
required to choose the final solution.

5.3 Denbigh case study: process development in a ret-

rofit scenario

This section presents an example tackling the integrated batch process synthesis and al-
location problem of a competitive reaction system in a retrofit scenario. Particularly, a
competitive reaction mechanism, the Denbigh reaction system (Denbigh, 1958), is consid-
ered to introduce the production of a specialty chemical into an existing plant through a
single-product campaign.

Dealing with a retrofit problem, the process is subject to the restrictions of the existing
equipment. Specifically, the plant structure in this example corresponds to the reactor
network of the motivating example 1 presented in § 3.1.1 (Figure 3.1) which comprises
two batch reactors U1 and U2. The construction of new piping and processing and storage
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equipment is not allowed in this example. Moreover, batch unit procedures in each reactor
comprise three batch operations, namely load, hold, and unload, which are defined by the
input and output flow rates and reaction temperature as control variables.

The methodology presented above (§ 5.2.2, Figure 5.3) is applied in the next sections as
follows: (a) gathering information, in §§ 5.3.1, 5.3.2, A.1, and A.2, (b) SEN superstructure
representation, in § 5.3.3, (c) formulation of the MLDO model, in §§ 5.3.4 and A.3, and
(d) MLDO solution, in § 5.3.5.

5.3.1 Process description

The Denbigh case study consists of a competitive reaction system first proposed by Den-
bigh (1958) to study temperature control profiles. The reaction mechanism is defined
by:

A R S

T U.

-1

?

2

-3

?

4 (5.10)

Later, this example was adopted as a benchmark case study and used by several authors
to study process synthesis in continuous, semi-batch, and batch systems. In this thesis, the
problem parameters defined by Schweiger & Floudas (1999a) have been used to calculate
activation energies Ea,r and standard kinetic constants k0,r, assuming that those authors
worked at a nominal temperature Tnom of 80◦C. In addition, reaction enthalpy △hr data
have been defined in order to incorporate energy balances into the problem. To do so, all
reactions are considered endothermic and reference heats of formation and combustion
(Perry & Gree, 1999, Tables 2-220 and 2-221) have been taken into account to provide
consistent orders of magnitude. To sum up, the kinetic data used in the Denbigh case
study are presented in Table 5.3. Like in the work by Schweiger & Floudas (1999a), a
molar density ρ of 6 kmol/m3 is assumed for all the chemical compounds A, R, S, T, and
U, as well as a molecular weight MW of 130 kg/kmol.

Reaction Ea,r k0,r [h−1] or knom,r [h−1] or
cr nr

△hr
r [kcal/kmol] [m3/(kmol h)] [m3/(kmol h)] [kcal/kmol]

1 1000 4.16 1 A 2 42·103

2 2580 23.75 0.6 A 1 38·103

3 1800 7.81 0.6 R 1 40·103

4 1210 0.56 0.1 R 2 44·103

Table 5.3: Kinetic constants in Denbigh case study, adapted from Schweiger & Floudas (1999a)
assuming Tnom=80◦C as nominal temperature: activation energy Ea,r, standard and
nominal kinetic constants k0,r and knom,r, reactant cr, reaction order nr, and reaction
enthalpy △hr .

5.3.2 Problem statement

The objective is to optimize the master recipe to produce 21 tn of product S through
Denbigh reaction system in the given process cell by minimizing the raw material expenses
within a maximum time horizon of 144 hours. Additionally, a penalty is applied to the
unfulfilled demand. Overall, the problem statement for this example is defined as follows:
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Given:

• Planning data: final product, byproducts, intermediates, and raw material, ex-
pected demand of final product, and maximum time horizon;

• Plant diagram: the SEN superstructure of available equipment units for each
process stage, pipelines, and connection nodes like mixers and splitters;

• Task network alternatives: mandatory reaction stage;
• Batch process operation: allowed task-unit assignments, batch operations and

phases within unit procedures of batch units, phase to phase switching conditions,
and set of limiting processing conditions for each unit;

• Process dynamics: DAE systems to represent the process behavior in each unit
procedure, initial conditions, and set of process variables and dynamic controls;

• Data related to performance evaluation: specific data to evaluate the raw
material cost, the shortfall penalty minimization function, and other KPIs i.e. direct
cost of raw materials and of product shortfall, price of the final product, unitary
processing costs, occupation costs, and amortization costs;

the goal is to determine:

• Process synthesis decisions: splitting of reaction stage into subtasks, reference
trajectories of the feed-forward control variables, which include input and output
flow rates and processing temperature at each operation in batch units, duration
of batch operations, and material transfer synchronization between tasks –i.e. syn-
chronization of flow rates, compositions, and starting and final times;

• Allocation of manufacturing facilities decisions: selection of processing units
and task-unit assignment, operating mode in single unit, series, or parallel equip-
ment configuration, and number of batches;

such that the expenses for raw material and unaccomplished demand are minimized. In
this retrofit scenario, the installation of new equipment units is not considered and thus
equipment sizes are not a DOF. Besides, the capacities of existing units are introduced
into the optimization model as restrictions.

5.3.3 SEN superstructure

The SEN superstructure correspond to the process cell where the process should be imple-
mented (Figure 3.1, § 3.1.1). Considering that the installation of new units and pipelines
is not evaluated, the four operating modes of Figure 5.4 can be selected: (a) operation
in one single unit U1, i.e. configuration α, (b) or in one single unit U2, i.e. configuration
β, (c) operation of U1 and U2 in parallel in-phase and with equal phase durations, i.e.
configuration π, and (d) operation in series with U1 followed by U2, i.e. configuration σ.

5.3.4 Optimization model

The objective function in this example is to minimize the raw material cost and shortfall
penalty, formulated by:

minimize
udyn
k

(t),ustat,

uint,uBool

Φ = CostA,total + PenaltyS,total, (5.11)
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5. Integrated batch process development in retrofit scenarios

where udynk (t) are the dynamic control variables, namely the input F j1,k(t) and output

F j2,k(t) flow rates and the reaction temperature θjk(t) in stages k ∈ {1, 2, 3} which corre-
spond to load, hold, and unload operations of batch units j ∈ {U1, U2} in this example,
ustat are the time-invariant continuous decision variables, namely the duration tl of math-
ematical stages l which correspond to batch operations in the selected unit procedures,
uint are the integer decision variables, involving the number of batches NBS of product
S, and uBool comprise equipment Booleans Yj , task-unit assignment Booleans Wj,q , and
configuration Booleans X1

ψ in reaction stage 1. The first term of the objective function Φ
refers to raw material expenses of the complete production campaign:

CostA,total = NBS CostA, (5.12)

where CostA denotes the raw material cost of each batch and is calculated according
to Eq. 5.3 with a price of raw material p̂A of 4.8 ce/kg. As for the second term of Φ, it
represents the economic impact of the unaccomplished demand, where p̂penal is a function
of twice the selling price p̂S of final product S, which has a value of 43.1 ce/kg, according
to Eq. 5.7. Then, the penalty function for the entire production reads as:

PenaltyS,total = 2 p̂S ShortfallS. (5.13)

Besides the objective function, the set of equations that define optimization model is
formulated according to the modeling strategy and formulation proposed in Chapter 3.
The exhaustive MLDO of this problem is provided in Appendix A, accompanied by the
specification of the sets and parameters to solve the integrated batch process development
problem. For instance, it is there detailed how logical propositions from Eqs. 3.10 and
3.17-3.20 remove six degrees of freedom associated to Booleans and therefore permit to
reduce the ten logical decisions uBool={Yj, Wj,q, X1

ψ} of the model to four, namely the
selection of the processing mode X1

ψ. Moreover, the four input and output flow rates of
batch units that behave as control variables at Level 1 are reduced to three in series
configuration σ, since its flow distribution involves that two flow rates –i.e. N0

1,σ={3, 5}–
are constrained to zero instead of one –i.e. N0

1,ψ={6}, ψ={α,β,π}– and thus removes one
extra DOF.

The evaluation of additional KPIs of the solution performance is also defined in Ap-
pendix A. For instance, the product selectivity is a measure of the process efficiency.
Another crucial indicator is the profitability, which not only ensures the economic via-
bility of the solution, but also takes into account the production time to promote fast
deliveries.

Finally, the existing plant of this example is characterized by a reactor capacity of
1 m3 in U1 and U2, by a maximum input and output flow rates of 7.7 m3/h, and by a
maximum permitted temperature of 80◦C in reactor U1 and of 110◦C in reactor U2. Raw
material enters the reaction system with a temperature of 25◦C and a molar composition
of 100% of reactant A.

5.3.5 Problem solution

The MLDO is reformulated into a MINLP using 32 finite elements in this example. Table
5.4 summarizes the features of the resulting MINLP models implemented in GAMS. Four
IFS are first generated using constant profiles for the control variables F j1,k(t), F

j
2,k(t), and

θjk(t) in each mathematical stage k ∈ {1, 2, 3} and unit j ∈ {U1, U2} and fixing the config-
uration Booleans Xψ=true alternatively for each possible configuration ψ ∈ {α, β, π, σ}.
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Denbigh case study: process development in a retrofit scenario

Next, the complete MINLP problem is solved without any IFS and with the four IFS
previously obtained.

Overall, this simple heuristic to carry out the optimization using several IFS solutions
in the search procedure aims at identifying local optima and increase the probability to
find the best solution. However, it is necessary to bear in mind that the global optimum
can not be guaranteed. For instance, four different feasible solutions have been obtained
solving this example. From them, only the solution obtained through the MINLP opti-
mization with IFS 4 provides the best solution. In this case, 5 major and 1,085,864 minor
iterations are required in the search procedure of DICOPT solver. The optimal solution
is obtained at the major iteration 2.

No.
equations

No. No.
discrete
variables

Non-zero
elements

Non-linear
terms

Solution
time

continuous
variables

IFS 1 (fixed α)

103,209 98,339 6 346,759 159,578

490 s.
IFS 2 (fixed β) 648 s.
IFS 3 (fixed π) 663 s.
IFS 4 (fixed σ) 747 s.
MINLP with IFS 4 102,633 98,321 10 345,643 159,586 10,856 s.

Table 5.4: Features of the MINLP models implemented in GAMS in retrofit Denbigh exam-
ple, obtained using 32 finite elements and 3 collocation points in the discretization
step: IFS solutions for each fixed configuration with Xψ=true, ψ ∈ {α, β, π, σ} and
complete MINLP problem initialized with IFS 4.

5.3.6 Results and discussion

For comparative purposes, the optimal solution of problem stated above is contrasted with
a fixed recipe with a predefined production size of 300 kg/batch of product S, requiring a
production of 70 batches and a batch processing time of 2.06 h/batch to fulfill the demand
of 21 tn in its entirety within the time horizon of 144 hours. The operating mode is also
fixed to configuration β, setting Boolean decisions to X1

β, YU2 , and WU2,1 with a true
value. Additionally, unit U2 is defined to operate with maximum input and output flow
rates (7.7 m3/h) in input and output operations and with maximum reaction temperature
(110◦C) to guarantee a feasible production.

Additionally, the optimization problem is solved for three cases with different DOF to
track the effect of the structural and performance decisions:

• Dynamically optimal recipe: optimization of dynamic profiles with fixed config-
uration β;

• Structurally optimal recipe: optimization of structural decisions with constant
profiles for control variables F j1,1(t), F

j
2,3(t), and θjk(t), k ∈ {1, 2, 3}, j ∈ {U1, U2};

and
• Optimal recipe: optimization of dynamic profiles and structural decisions accord-

ing to the problem statement previously defined.

In all cases, the number of batches and the duration of batch operations are free deci-
sion variables. The optimal operating mode for both optimizations that include structural
decisions corresponds is series configuration σ, as is illustrated in Figure 5.5. This con-
figuration activates the multistage models associated to units U1 and U2, which should
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5. Integrated batch process development in retrofit scenarios

be synchronized such that the unload operation of the former unit becomes the input
operation of the latter one.

For the case of the optimal recipe with all the DOF of the problem statement, the
synchronization of batch operations is detailed in Figure 5.6 which illustrates the math-
ematical stages at Levels 1 and 0 for the production of one batch. The time connection
across the three time axes is accomplished through synchronization equations of the for-
mulation proposed in Chapter 3 (p. 79). Additionally, the trajectories of dynamic control
variables F j1,1(t), F

j
2,3(t), and θjk(t), k ∈ {1, 2, 3}, j ∈ {U1, U2} are illustrated in Figure

5.7(b1-c1,b2-c2), where all the profiles range between lower and upper bounds in this
recipe. There, the correspondence between output flow rate from unit U1 F

U1
3,2 and input

flow rate to unit U2 F
U2
1,1 can be observed since they are also synchronized in transfer

operations, unlike the case of temperature which is an internal variable of each unit pro-
cedure. Additionally, Figure 5.7(b3-c3,b4-c4) presents the most relevant process variables,
which are the reaction volume and molar composition, and all of them are compared to
the trajectories of the fixed recipe in batch unit U2 in Figure 5.7(a1-a4).

The incentives to improve the process performance through the proposed modeling
strategy are estimated by comparing the raw material expenses obtained for each recipe
with regard to the fixed one, since the all of them are successful in the fulfillment of the
entire demand –therefore reducing to zero the shortfall penalty in the objective function Φ.
Compared to the fixed recipe, a decrease of the 12% in the total raw material consumption
is achieved by optimizing the dynamic profiles with a predefined configuration β, whereas

1

2 4

6

7 8

9

U1

U2Mx1

Mx2Sp1

Sp2

Traw Tprod

Figure 5.5: Optimal operating mode in all optimizations that include structural decisions in
retrofit Denbigh example: equipment configuration σ.
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Figure 5.6: Synchronization of global and unit stages and optimal transition times in retrofit
Denbigh example.
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Denbigh case study: process development in a retrofit scenario

it is reduced as far as a 24% when qualitative decisions are considered as degrees of freedom
with constant profiles. This improvement becomes a 25% when all decisions are considered
in the optimal recipe. Thus, the total cost of raw material descends from 2, 250e to
1, 989e, 1, 715e, and 1, 687e respectively, as is shown in Table 5.5. In this table, further
KPIs and economic weights, like the product selectivity, the total energy consumption,
the profit, or the processing costs, are summarized to provide a comprehensive assessment
of each recipe.

The reduction of raw material expenses is related to the increase of the product se-
lectivity from 0.448 in the fixed recipe to 0.507 in the dynamically optimal recipe in unit
U2, 0.588 in the structurally optimal recipe with constant control profiles, and 0.597 in
the optimal recipe. The selectivity improvement is related to the molar fractions profiles
presented in Figure 5.7(a4-c4), which show how the final amount of product S achieves a
higher value in the final time of the optimal recipe –in the second unit procedure– com-
pared to the final time of the fixed recipe. At the same time, consumption of intermediate
R rises dramatically in the optimal recipe; the fraction of R becomes almost zero in the
final time in front to the near 0.1 value in the fixed one. Moreover, the generation of
byproducts like T is considerably lower in the optimal recipe.

Essentially, the improvement of product selectivity is due to the optimization of the
dynamic temperature profile and, most important, to the arrangement of the two reac-
tion units in series –configuration σ. First, the temperature starts at the lower bound
50◦C in the first unit procedure in U1 of the optimal recipe, as is shown in Figure

KPI
Fixed Dynamically Structurally Optimal
recipe optimal optimal recipe

Equipment configuration β β σ σ
No. Batches 70 54 48 47
Batch size [kg/batch] 300 389 438 447
Total processing time [h] 144.03 144.03 144.03 144.03
Batch processing time [h/batch] 2.06 2.67 5.88 5.98
Batch cycle time [h/batch] 2.06 2.67 3.00 3.06
Shortfall of product S [kg] 0 0 0 0
Total Profit [e] 4,764 5,332 5,037 5,097

Total revenue 9,046 9,046 9,046 9,046
Raw material cost 2,250 1,989 1,715 1,687
Processing cost in U1 0 0 733 727
Processing cost in U2 967 899 92 95
Occupation cost in U1 0 0 735 720
Occupation cost in U2 1,065 825 735 720
Amortization in U1 0 0 0 0
Amortization in U2 0 0 0 0
Penalty 0 0 0 0

Profit per batch [e/batch] 68 113 107 108
Profitability [e/h] 33 37 35 35
Selectivity of S [kmol S/kmol total] 0.448 0.507 0.588 0.597
Total energy consumption [kWh] 38,692 35,973 32,974 32,879

Table 5.5: KPIs and individual economic weights in retrofit Denbigh example: fixed recipe,
dynamically optimal recipe in U2, structurally optimal recipe with constant profiles
of the control variables, and integrated optimal recipe for all DOF in the problem
statement. Items in bold correspond to the objective function.
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Figure 5.7: Control and process variable profiles in the fixed and the optimal recipes in retrofit
Denbigh example: (a) unit procedure in U2 in the fixed recipe, (b) unit procedure
in U1 in the optimal recipe, and (c) unit procedure in U2 in the optimal recipe.
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5.7b1, thus encouraging the selectivity of R with respect to T by favoring reaction 1
(Ea,1=1000 kcal/kmol) with respect to reaction 2 (Ea,2=2580 kcal/kmol) of the reaction
mechanism. The profile gradually increases to the upper bound 80◦C, favoring reaction 3
(Ea,3=1800 kcal/kmol) with respect to reaction 4 (Ea,4=1210 kcal/kmol), thus promot-
ing the production of the desired product S instead of U. In the second unit procedure in
U2, presented in Figure 5.7c1, the temperature profile rises even more, up to the upper
bound of 110◦C in this unit.

Second, production is restricted in all recipes by the maximum time horizon of 144 h,
as is seen in Table 5.5, and by the available equipment capacities of 1m3 in U1 and U2

which restrict the reaction volume, as is illustrated in Figure 5.7(a3-c3). This way, series
operating mode σ favors the process performance by enlarging the reaction volume. For
the same reason, parallel configuration π, which duplicates the reaction volume in the
same way, also provides a reduction of the raw material costs that is only slightly smaller
than for the optimal σ configuration. The predominance of the last operating mode is
probably due to an upper bound in unit U1 being much lower than the upper bound
in unit U2. This temperature restriction would have certainly a major impact if applied
to the complete unit procedure assigned to this unit than if applied uniquely to a first
reaction stage –favored by lower temperatures as previously discussed– which is followed
by a second reaction stage with a higher temperature range. In contrast, configuration
α characterized by the single operation of unit U1 provides the worst case, with a cost
increase of the 1% with respect to the fixed recipe in U2. This increase is due to the
limitation of the reaction temperature at 80◦ in the complete operation frame, partially
mitigated by the optimization of the batch size, which is increased to almost 340 kg/batch
with respect to the 300 kg/batch in the fixed recipe. Thus, the number of batches is reduced
from NBS=70 to 62, and the batch processing time can be longer, raising from 2.06 to
2.32 h/batch. In summary, the time and space restrictions could be also overcome by the
replacement of existing units U1 and U2 by equipment of larger size. This possibility will
be studied in a forthcoming example.

In contrast, the use of dynamic control variables in transfer operations barely affects
the solution. The feed-forward trajectories of flow rates in the optimal recipe are lead to
their upper bound in most of the trajectory, as is shown in Figure 5.7(b2-c2), obtaining
profiles similar to the ones in the fixed recipe in Figure 5.7a2. Thus, load and unload
operations tend to be as short as the pumping capacity and the charge requirement
permit. Moreover, the dynamic feed-forward profile of reaction temperature is neither
exploited in input and output stages, and is kept constant as it can be observed in Figure
5.7(b1-c1). On the face of it, the optimization of a unique set-point in these stages provides
similar results, as is prove with the structural optimization with constant control profiles.

Further conclusions can be made by taking a look to other KPIs of Table 5.5. The
trade-off between selectivity of product S and heating cost does not affect the definition
of the temperature profile in this example, given that this cost is not included into the
objective function. Nevertheless, processing costs associated to heat consumption also
diminish, principally due to the reduction of the energy consumption associated to side
reactions 2 and 4, which are endothermic, thanks to the limiting of their conversion. In
addition, the increase of product S selectivity goes hand in hand to a reduction of the
reactant A required in each batch and to a reduction in the total reaction mixture in
the system. As a result, the heat to reach the processing temperature is smaller and the
optimal recipe benefits from a collateral 15% reduction of processing costs. Besides, null
amortization costs are obtained in all recipes, since new investments are not considered
in this example. Nevertheless, the improvement in the total profit is only a 6.5% in the
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5. Integrated batch process development in retrofit scenarios

optimal recipe with configuration σ, smaller than the 11.9% achieved in optimal recipe
with configuration β –i.e. the dynamically optimal recipe–, despite the diminution in both
raw material and energy costs. This results from the fact that occupation costs increase
dramatically due to the use of two reactors, what involves the duplication of the associated
labor costs, like cleaning and rental costs, as is further discussed in next example.

5.4 Denbigh case study: process improvement in retro-

fit scenarios

The Denbigh example presented in previous section (§ 5.3) is extended. The objective is
to evaluate the potential of the proposed approach for process improvement according to
different decision criteria and economic situations. The process should be implemented in
the same reactor network (Figure 3.1, p. 54) where the installation of new plant elements
is not considered. To that end, the master recipe is optimized in consonance with the
objective function defined in each retrofit scenario, allowing the four equipment configu-
rations α, β, π, and σ previously presented (Figure 5.4, p. 119). The prior methodology
of section § 5.2.2 is applied, following the steps of Figure 5.3 (p. 115).

5.4.1 Retrofit scenarios

The batch process improvement here addressed corresponds to the problem statement of
previous example (p. 117) with different objective functions. Particularly, the problem is
solved for these cases:

(i) Profit maximization: base case, which pursues the total profit maximization in
the production of 21 tn of product S through Denbigh reaction system in the given
process cell with a maximum time horizon of 144 hours and the economic scenario
1 from Table 5.6;

(ii) Higher raw material price: equivalent problem to case i with a duplication in
the price of raw material p̂A, what corresponds to the economic scenario 2 from
Table 5.6;

(iii) Higher processing costs: equivalent problem to case i with an increase of three
times in the energy cost ĉj , what corresponds to the economic scenario 3 from Table
5.6;

(iv) Profitability maximization: equivalent problem to case i now maximizing the
profitability instead of the total profit in the economic scenario 1 from Table 5.6;

(v) Production of R: equivalent problem to case i now satisfying a demand of 21 tn of
product R instead of product S, what corresponds to the economic scenario 4 from
Table 5.6.

The optimal solutions are compared to the fixed recipe. Like in the previous example,
this is defined to produce batches with a production size of 300 kg/batch, a batch process-
ing time of 2.06 h/batch, and configuration β. Therein, unit U2 is defined to operate with
maximum load and unload flow rates (7.7 m3/h) and maximum reaction temperature
(110◦C) for the production of product S, in order to enable the total demand production
within the given time horizon. The fixed recipe for product R is the same, except for
the reaction temperature, which is defined with the minimum value (50◦C) to favor the
conversion of reaction 1 rather than reaction 3.
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5.4.2 Results and discussion

The results for the retrofit cases i-v are summarized in Table 5.7. Figures 5.8 to 5.12
illustrate the profiles of control and state variables in the fixed and the optimal recipes
of each case.

Case i: Profit maximization

In previous example, where raw material expenses and shortfall penalty were minimized,
the optimal configuration obtained was σ, with units U1 and U2 operating in series. This
configuration provided the higher selectivity of product S with a value of 0.597, which
has a tight relation with the reduction of the feedstock consumption. Now, the objective
function is the profit maximization, which is defined through the equivalent minimization
problem:

minimize
udyn
k

(t),ustat,

uint,uBool

Φ =−Profittotal
=−RevenueS,total − PenaltyS − CostA,total
−
∑

j∈{U1,U2}
(Costj,p,total+Costj,o,total + Costj,a,total) .

(5.14)

As a result, the incorporation of occupation costs into the objective function dampers
structural solution σ. Configuration π, with units U1 and U2 operating in parallel, becomes
the optimal one. The reason is that operating mode σ involves nearly the double equipment
utilization compared to π, understood as the number of times that a unit is started. In
particular, both configuration use two units per batch but σ requires 47 batches in front
of the 23 needed by π. As a result, operation π provides a total occupation cost of
360e/batch in each unit (Table 5.7) in contrast to the 720e/batch in each unit (Table
5.5) provided by σ.

Examining the profiles of control and process variables, presented in Figure 5.8, it is
noted that configuration π maintains similar reaction volume and time than σ (Figure
5.7). Previous unit procedures in units U1 and U2 are now merged in a unique procedure
either in unit U1 or in unit U2 with a higher time span –i.e. 6.26 h in configuration
π compared to 3.06 h in σ. Therefore, each processing unit is occupied a less number
of times with a double duration. Overall, how the occupation costs are defined affects
considerably to the optimal configuration obtained.

Regarding the temperature profiles in Figure 5.8(b1-c1), the unit procedure in U1

reaches the maximum temperature (80◦C). However, a compromise is met in the case of
U2, which operates at 94◦C and not at the upper bound (110◦C). Additionally, both units
are charged with a same amount of raw material A since they reach a same volume at

Scenario
ĉj c̄j,A c̄j,B c̄j,C čj p̂A p̂S p̂R p̂penalty

[ce/kWh] [e/batch] [e/m3batch] [e/h batch] [e/h] [ce/kg] [ce/kg] [ce/kg] [ce/kg]

1 2.5 5 10 0.21 0 4.8 43.1 - 2 p̂p
2 2.5 5 10 0.21 0 9.6 43.1 - 2 p̂p
3 10 5 10 0.21 0 4.8 43.1 - 2 p̂p
4 2.5 5 10 0.21 0 4.8 - 35.8 2 p̂p

Table 5.6: Parameters of economic scenarios 1-4 in retrofit Denbigh example: unitary processing
costs ĉj , unitary occupation costs c̄j,A, c̄j,B , and c̄j,C , and base amortization cost čj
of reactors j ∈ U , price of raw material A p̂A, price of final products p̂p, p ∈ {S,R},
and shortfall penalty p̂penal.
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Denbigh case study: process improvement in retrofit scenarios

the end of the first stage in Figure 5.8(b3-c3). However, due to the different temperature
profiles, the final molar fraction of product S is 0.586 in U1 and slightly higher 0.591 in
U2.

Finally, the obtained KPIs are shown in Table 5.7 (case i). There, an improvement of
the 23% in the total profit is recorded with regard to the use of the fixed recipe, scaling
from 4, 764e to 5, 841e for the total production of 21 tn of product S. This increase
is related to a reduction of 24.6% in total raw material costs (from 2, 250 to 1, 696e),
32.4% in occupation costs (from 1, 065 to 720e), and 18.4% in total processing costs
(from 967 to 789e). In turn, these gains are caused by a higher selectivity, a lower energy
consumption, and a reduction in the number of unit start-ups.

Case ii: Higher raw material price

To evaluate the adaptability potential, the profit maximization problem is solved now
considering a duplication in raw material price p̂A. The optimal solution in this retrofit
case is very similar to the previous one, with the same configuration π, the same number
of batches 23, and very similar profiles in the input and output flow rates. The major
difference is that now the temperature profile in unit U2 tends toward the upper bound,
as is illustrated in Figure 5.9(b1-c1). This way, the molar fraction in U2 is slightly higher
than in case i, with a value of 0.594, while it achieves the same value of 0.586 in U1,
as is shown in in Figure 5.9(b4-c4). Since the raw material cost has a more important
role in the objective function, the selectivity improves as much as possible –i.e. up to a
value of 0.597– by means of the temperature modification. Nevertheless, configuration σ,
which is characterized by a high selectivity, is prevented due to the high occupation costs
associated, as was previously discussed.

Other KPIs are summarized in Table 5.7 (case ii). In this case, the improvement in the
total profit with regard to the fixed recipe is even more convincing, with a percentage of the
65% involving a rise from 2, 515 to 4, 147e. The higher improvement percentage indicates
the higher effect of selectivity rise and raw material savings in the objective function. In
this case, the diminution of raw material expenses, occupation costs, and processing costs
represents a 24.9% (from 4, 499 to 3, 380e), 32.4% (from 1, 065 to 720e), and 17.4%
(from 967 to 798e) respectively.

Case iii: Higher processing costs

An increase in the unitary heating cost ĉj in units U1 and U2 is now considered, changing
from 2.5 ce/kWh to an hypothetic case where energy cost rises to 10 ce/kWh. This
solution involves again parallel equipment configuration π, but with 24 batches instead
of 23. However, principal difference with the optimal solution in case i is referred to the
feed-forward temperature profiles. In this case, the temperature in both reactors U1 and
U2 decreases down to nearly the lower bound, as is shown in Figure 5.10(b1-c1), since
the processing costs depend on the required energy consumed for heating the mixture
and for driving the endothermic reaction system. Then, the goal is to reduce the energy
requirements as much as possible, since the heating cost now has a predominant role in
the objective function.

The KPIs are shown in Table 5.7 (case iii), where it can be observed that the increase
in parameter ĉj implies a dramatic increment of processing costs compared to the retrofit
scenario i, despite working almost at the minimum temperature. Raw material expenses
are also higher. The reason is that the selectivity of product S suffers a slight diminution
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5. Integrated batch process development in retrofit scenarios

down to 0.571. This is reflected in lower molar compositions of product S at final time,
with a value of 0.565 in the both units U1 and U2 that have an identical behavior (Figure
5.10(b4-c4)). Overall, the lower selectivity derives in a raise of raw material consumption.

Finally, the largest improvement in the objective function with regard to the fixed
recipe is obtained in this retrofit case, with a 88% improvement in the total profit with
regard to the fixed recipe, scaling from 1, 862 to 3, 501e. The associated improvement in
raw material, occupation, and processing costs are the 21.5% (from 2, 250 to 1, 767e),
29.6% (from 1, 065 to 750e), and 21.7% (from 3, 869 to 3028e) respectively.

Case iv: Profitability maximization

An alternative situation is screened by considering a different objective function that take
into account the processing time, the profitability. The optimization problem in this case
is defined by:

minimize
udyn
k

(t),ustat,

uint,uBool

Φ =−Profitability
=−Profittotal/T

total,
(5.15)

where Profittotal and T total are the profit and processing time with regard to the total
production of 21 tn of S. This way, processing time is contemplated indirectly in the
objective function and the optimal solution will take into account the compromise between
the economic gain and the possible reduction of the processing time.

The optimal configuration obtained is the use of parallel equipment configuration π.
The KPIs of this retrofit scenario are summarized in Table 5.7 (case iv), whereas Figure
5.11 illustrates the profiles of control and process variables. The process is accelerated by
reducing the batch size to 677 kg/batch in front of the 875-913 kg/batch defined in pre-
vious retrofit scenarios i-iii and increasing the reaction temperature to the upper bound
in each reactor (80◦C in U1 and 110◦C in U2) in most of the operation. As a result, the
optimal solution now exhibits higher processing costs than the previous identified solu-
tions, as shown in Table 5.7 (case iii). Additionally, a worse selectivity and raw material
expenses are also reported, as well occupation costs. In contrast, the total processing time
is extremely reduced to less than a half (i.e. 66.5 hours), providing a huge time margin
in the 144 hours of time horizon.

To sum up, the objective function improves a 121% with respect to its corresponding
fixed recipe, with a profitability value rising from 33 to 73e/h. This is mostly obtained
through the reduction of the total processing time while the total profit is maintained
with a similar value 4, 764 in the fixed recipe and 4, 861e in the optimal one.

It is interesting to note that the feed-forward trajectory of the temperature control in
both reactors follows a dynamic profile, despite the objective of this recipe is to produce
each batch as fast as possible regardless the achieved selectivity of product S. In contrast,
input and output flow rates are set in their upper bounds during the whole time inter-
val. This proves that dynamic profiles can have a beneficial influence for specific control
variables, at least in competitive reaction systems where it is necessary to favor some
particular reactions and hinder others. Nevertheless, it is necessary to select carefully
which control variables are worth to be dynamic, in order to find an equilibrium between
challenging solutions and computational load in the optimization process.

Case v: Production of R

Additionally, the proposed strategy for process synthesis and allocation in retrofit sce-
narios may also applied to give a response to a new demanded product. In this case, the
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Figure 5.8: Control and process variable profiles in the fixed and the optimal recipes in retrofit
Denbigh example (case i): (a) unit procedure in U2 in the fixed recipe, (b) unit
procedure in U1 in the optimal recipe, and (c) unit procedure in U2 in the optimal
recipe.

131



i

i

“MMB” — 2014/1/27 — 10:03 — page 132 — #166
i

i

i

i

i

i

5. Integrated batch process development in retrofit scenarios

Fixed recipe in U2 Optimal recipe in U1 and U2

0 1 2

40

60

80

100

120

Time [h]

T
e
m

p
e
ra

tu
re

in
U

2
[◦

C
]

Molar fractions

0 1 2 3 4 5 6

40

60

80

100

120

Time [h]T
e
m

p
e
ra

tu
re

in
U

1
[◦

C
]

0 1 2 3 4 5 6

40

60

80

100

120

Time [h]T
e
m

p
e
ra

tu
re

in
U

2
[◦

C
]

(a1) (b1) (c1)

0 1 2

2

4

6

8

Time [h]

F
lo

w
ra

te
s

in
U

2
[m

3
/
h
]

0 1 2 3 4 5 6

2

4

6

8

Time [h]

F
lo

w
ra

te
s

in
U

1
[m

3
/
h
]

0 1 2 3 4 5 6

2

4

6

8

Time [h]
F
lo

w
ra

te
s

in
U

2
[m

3
/
h
]

F
U2
1,k F

U2
2,k

F
U1
1,k F

U1
2,k F

U2
1,k F

U2
2,k

(a2) (b2) (c2)

0 1 2

0.2

0.4

0.6

0.8

1

Time [h]

V
o
lu

m
e

in
U

2
[m

3
]

0 1 2 3 4 5 6

0.2

0.4

0.6

0.8

1

Time [h]

V
o
lu

m
e

in
U

1
[m

3
]

0 1 2 3 4 5 6

0.2

0.4

0.6

0.8

1

Time [h]

V
o
lu

m
e

in
U

2
[m

3
]

(a3) (b3) (c3)

0 1 2
0

0.2

0.4

0.6

0.8

1

Time [h]

M
o
la

r
fr

a
c
ti

o
n
s

in
U

2

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Time [h]

M
o
la

r
fr

a
c
ti

o
n
s

in
U

1

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Time [h]

M
o
la

r
fr

a
c
ti

o
n
s

in
U

2

x
U2
A,2,k x

U2
R,2,k

x
U2
S,2,k x

U2
T,2,k

x
U2
U,2,k

x
U1
A,2,k

x
U1
R,2,k

x
U1
S,2,k x

U1
T,2,k

x
U1
U,2,k

x
U2
A,2,k x

U2
R,2,k

x
U2
S,2,k x

U2
T,2,k

x
U2
U,2,k

(a4) (b4) (c4)

Figure 5.9: Control and process variable profiles in the fixed and the optimal recipes in retrofit
Denbigh example (case ii): (a) unit procedure in U2 in the fixed recipe, (b) unit
procedure in U1 in the optimal recipe, and (c) unit procedure in U2 in the optimal
recipe.
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Figure 5.10: Control and process variable profiles in the fixed and the optimal recipes in retrofit
Denbigh example (case iii): (a) unit procedure in U2 in the fixed recipe, (b) unit
procedure in U1 in the optimal recipe, and (c) unit procedure in U2 in the optimal
recipe.
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Figure 5.11: Control and process variable profiles in the fixed and the optimal recipes in retrofit
Denbigh example (case iv): (a) unit procedure in U2 in the fixed recipe, (b) unit
procedure in U1 in the optimal recipe, and (c) unit procedure in U2 in the optimal
recipe.
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Figure 5.12: Control and process variable profiles in the fixed and the optimal recipes in retrofit
Denbigh example (case v): (a) unit procedure in U2 in the fixed recipe, (b) unit
procedure in U1 or U2 in the optimal recipe.
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5. Integrated batch process development in retrofit scenarios

desired product considered is R instead of S, which is produced through reaction 1 (faster)
and consumed through reactions 3 and 4 (slower) from Eq. 5.10. The objective function
reads as:

minimize
udyn
k

(t),ustat,

uint,uBool

Φ =−Profittotal
=−RevenueR,total − PenaltyR − CostA,total
−
∑

j∈{U1,U2}
(Costj,p,total+Costj,o,total + Costj,a,total) .

(5.16)

The optimal configuration obtained in this retrofit scenario is the operation of one
single unit, either U1 with configuration α or U2 with configuration β, with minimum
temperature (50◦C). The profiles of control and process variables are illustrated in Figure
5.12. Compared to the equivalent solution using a fixed recipe model– which was also
defined to operate at the minimum temperature in U2–, the objective function does not
improve more than a 5.8%, with the profit slightly rising from 4, 147 to 4, 389e. The KPIs
associated to this solution are shown in Table 5.7 (case v).

Analyzing these results, it is evident that the optimization of dynamic profiles does not
provide any real advantage, beyond to find the extreme conditions where the reaction of
interest is promoted and the side reactions are mitigated. This is probably related to the
fact that producing R relies on one single reaction of the kinetic scheme and, therefore,
a constant value for the control variables is the optimal along the complete time span.
In any case, it can be concluded that it is necessary to discern in which situations it is
worth to define the feed-forward control variables with dynamic profiles or with constant
variables. Moreover, this process is extremely fast in comparison to the production of S.
Therefore, there are no capacity limitations and the operation in a single unit is equally
advantageous to the production in series or parallel.

Final remarks

To sum up, the proposed methodology to address the problem of integrated batch process
development provides a great flexibility and adaptability to face the different situations
and objectives. Overall, improvements between the 5.8% in the worst case (i.e. case v)
and the 121% in the best case (i.e. case iv) have been obtained by optimizing the four
basic configurations and the dynamic profiles of the control variables. It should be beard in
mind that the five cases solved, as well as the one in previous example (§ 5.3, p. 116), have
to be implemented in a process cell with limited capacity for the production requirements.

In the studied retrofit scenarios, the crucial decision variables that allow such improve-
ments are: (a) the configuration, because it permits to duplicate the reaction volume and
make the best use of each processing unit, and (b) the temperature, because it allows to
untangle the trade-off among the different reaction yields and it determines the compro-
mise in the consumption of the different resources, like energy or feedstock. Regarding the
synchronization of the control variable profiles between unit procedures, it does not have
a crucial role in this case and it is presumable that an equivalent optimization problem
without synchronization Eqs. 3.13 and 3.14 (§ 3.3, p. 79) could provide similar results. In
contrast, the synchronization of transfer operation durations between consecutive proce-
dures has a great influence on the achieved selectivity in each unit procedure, since the
time is a limiting variable in the entire recipe.

To conclude, while it can be observed how the influence of some of the control variables
is minimal –e.g. input and output flow rates–, other DOF are fundamental to adapt the
process to each objective –e.g. temperature profiles, equipment configuration, duration of
batch operations–, obtaining improvements as convincing as a 88% (i.e. case iii) and 121%
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(i.e. case iv) with regard to the fixed recipe. Moreover, once the optimization model has
been constructed, the proposed methodology to solve the integrated problem becomes
an excellent strategy for identifying the critical variables in the process performance,
evaluating the optimal recipe in a variety of scenarios, and comparing processing schemes
easily.

5.5 Denbigh case study: process improvement with

unit capacity expansion

In this example the re-sizing of batch processing units is considered. The Denbigh example
is now solved allowing the expansion of unit capacities. The purpose is to evaluate the
potential of process improvement associated to plant modifications. To do so, the base
case i of previous example (§ 5.4) is now optimized with additional DOF, namely the
capacity Sizej of reactors U1 and U2. Accordingly, the objective is to maximize the total
profit to produce 21 tn of product S through Denbigh reaction system (Denbigh, 1958)
with a maximum time horizon of 144 hours taking into account the economic scenario
1 from Table 5.6. The reactor network with equipment expansions also allows the four
equipment configurations α, β, π, and σ presented in Figure 5.4 (p. 119).

5.5.1 Capacity expansion

The capacity expansion is introduced into the optimization model by considering the
variable Sizej as a degree of freedom. In this example, batch units originally have a
default vessel volume of 1m3 which can be modified with the associated investment costs
as was defined in Eq. 5.6. To facilitate the purchase of the reaction vessel, this variable is
defined to be discrete with increments of 0.25m3 between 1m3 –i.e. the original reactor
capacity– and 10m3 –i.e. a pre-established upper bound. The base amortization cost čj
is defined to be zero when the reactor capacity is not modified and 1.03e/h when it is
extended. This parameter is calculated considering a base equipment cost of 71, 833e
and an amortization period of 8 year with 52 weeks and 168 working-hours per week. The
base equipment capacity Size0 and the power in the amortization function n are set to
3.8m3 and 0.5 respectively. These values have been extracted from Perry & Gree (1999,
p. 9-67 to 9-68) incorporating an economic upgrade.

5.5.2 Results and discussion

The obtained results are provided in Table 5.8. There, it may be observed that the con-
sideration of expanding the capacity of processing units hardly improves the total profit,
rising from a value of 5, 841e without equipment expansion to 5, 948e if the size of
reaction unit U1 is increased to 3.5m3. In this case, the single operation in this unit
–configuration α– is posed as the optimal one, saving the occupation costs in the smaller
unit U2. At first glance, these results may not appear very promising, since a long amorti-
zation period is established in order to consider an small impact of the investment related
to the capacity re-sizing. But this is not reflected in a large improvement in the objec-
tive function. Presumably, the reason is that the original two-reactor plant was provided
already with the necessary capacity to fulfill the requested demand of product S. This
hypothesis is corroborated in an example of next chapter, where the optimal plant for
this demand is characterized by a total processing volume of 2m3, although distributed
in one single reactor instead of two.
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5. Integrated batch process development in retrofit scenarios

KPI
No plant Capacity

modifications expansion in j ∈ U

Modified units U - U1

Size of units U [m3] {1, 1} {3.5 1}

Equipment configuration π α
No. Batches 23 13
Batch size [kg/batch] 913 1,615
Total processing time [h] 144 144
Batch processing time [h/batch] 6.26 11.08
Batch cycle time [h/batch] 6.26 11.08
Shortfall of product S [kg] 0 0
Total Profit [e] 5,841 5,948

Revenue 9,046 9,046
Raw material cost 1,696 1,692
Processing cost in U1 389 729
Processing cost in U2 400 0
Occupation cost in U1 360 535
Occupation cost in U2 360 0
Amortization in U1 0 142
Amortization in U2 0 0
Penalty 0 0

Profit per batch [e/batch] 254 458
Profitability [e/h] 41 41
Selectivity of S [kmol S/kmol total] 0.595 0.596
Total energy consumption [kWh] 31,558 29,159
Temperature range in U1 [◦C] [50, 80] 50
Temperature range in U2 [◦C] [50, 94.0] -

Table 5.8: KPIs and individual economic weights in retrofit Denbigh example with equipment
capacity expansion, compared to the retrofit problem without plant modifications.
Items in bold correspond to the objective function.

The modification of the plant affects to the distribution of the costs in the optimal
recipe. In broad terms, all the costs are reduced except for the amortization load. Raw
material cost reduction can be dismissed, going from 1, 696e to 1, 692e. However, total
occupation cost decreases from 720e to 535e and processing cost is reduced from 789e
to 729e. This improvement is achieved through the increase of the batch processing time,
from 6.26 h/batch in the optimal recipe with no plant modifications to 11.03 h/batch in
the optimal recipe expanding U1 capacity, and through the descent of the temperature
profiles, which are now set in 50◦C, the lower bound.

5.6 Photo-Fenton case study

This example studies an Advanced Oxidation Process (AOP) to reduce paracetamol
(PCT) and Total Organic Carbon (TOC) concentrations from a given effluent in a retrofit
scenario. The objective is to apply the proposed optimization-based approach to optimize
the master recipe that should be executed in an existing AOPs plant. This is composed
of a single photo-reactor with a UV lamp of a fixed intensity. Thus, structural decisions
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associated to equipment configuration are not considered and thus the MLDO problem is
simplified in a great deal, becoming a more common DO problem. In contrast, the effect
of the dosage of hydrogen peroxide (H2O2) is studied by means of a PWC profile, which
is compared with other dosage protocols. Additionally, two objectives are taken into ac-
count in the optimization, namely the batch processing time and the cost minimization.
The results show that cost reductions can be obtained when applying the model-based
optimization techniques proposed, and hint new opportunities for AOPs enhancement.

5.6.1 Process description

Advanced Oxidation Processes (AOPs) are treatment technologies aimed at degrading
and mineralizing recalcitrant organic matter from wastewater through reaction with hy-
droxyl radical (•OH). Recently, these technologies have been proposed as a solution to
treat emerging contaminants, especially pharmaceuticals and personal care products (Pig-
natello et al., 2007). AOPs’ reactions can be further promoted by iron catalysts (Fe2+)
and UV irradiation, giving rise to photo-Fenton systems.

The optimal design, operation, and control of these processes can be driven by chal-
lenging process systems engineering tools that combine AOPs science, photo-Fenton chem-
istry, and leading technologies with model-based optimization strategies. However, the use
of optimization tools requires the availability of reliable models. A significant amount of
work has been devoted to identify intermediate products, model kinetic mechanisms, and
identify key variables in AOPs systems, where interaction of complex reactions occurs (An-
dreozzi et al., 2000). For instance, operational variables such as reagent dosage, pollutant
load, pH, and UV source, have been investigated as variables affecting the accomplishment
of degradation targets.

Most preliminary AOPs studies were based on design of experiments (DOE) techniques
(Pérez-Moya et al., 2008, Arslan-Alaton et al., 2010, Dopar et al., 2011), and they provide
limited information regarding intermediate products and side reactions. That entails the
risk of making wrong design or operational decisions. In contrast, rigorous models have
been reported, describing in detail the degradation mechanism of simple molecules, like
formic acid (Rossetti et al., 2004, Farias et al., 2009). The very recent work by Cabr-
era Reina et al. (2012) addresses the degradation of PCT by introducing a kinetic model
aimed at describing the evolution of the system in terms of lumped observable variables
such as TOC. In all these studies hydrogen peroxide (H2O2) dosage arises as a critical
issue to be managed due to the presence of secondary reactions scavenging this reactant.
However, few studies seeking for the optimal design of AOPs are found in the literature,
like the work by Coenen et al. (2013) where the optimization of single and multi-lamp
photo-reactors for continuous operation is addressed.

Kinetic mechanism

In this example, the model proposed by Cabrera Reina et al. (2012) is adapted to predict
the kinetic behavior of the process variables, namely the concentrations of PCT, H2O2,
Fe2+, Fe3+, dissolved oxygen, •OH radical (R), and TOC, including dummy intermediates.
Hence, the Fenton-like reaction is added to the model (Kusic et al., 2006). In addition, the
TOC consumption is represented by phantom degradation rate that is calculated using
an approximated degradation constant and a first reaction order with regard to the TOC
and •OH radical concentrations. The reaction scheme reads as:
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Photo-Fenton reactions: Fe2+ + H2O2 Fe3+ + R-1

Fe3+ + hv Fe2+ + R-2

Inefficient reactions:

R + H2O2 R+R
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Fenton-like reaction: Fe3+ + H2O2 Fe2+.-10

(5.17)

The kinetic constants and expressions are summarized in Table 5.9. Reaction rates are
calculated assuming that the order of reaction with respect to each reactive corresponds
to the stoichiometric coefficients.

Reaction r Reaction rate rr kr [mM−1h−1]

1 r1=k1 CFe2+ CH2O2 8.81a

2 r2=k2 CFe3+ CI 5.63a

3 r3=k3 CR CH2O2 75.8a

4 r4=k4 C
2
R 42.8a

5 r5=k5 CM CR CO2 9643a

6 r6=k6 CM CR 257a

7 r7=k7 CMX1 CR 2865a

8 r8=k8 CMX1 CR 271a

9 r9=k9 CMX2 CR 107a

10 r10=k10 CFe3+ CH2O2 0.02b

11 r11=k11 CTOC CR 0.7375

Table 5.9: Kinetic constants kr and expressions to calculate the reaction rates rr in the photo-
Fenton case study. Sources: aCabrera Reina et al. (2012), bPignatello (1992).

5.6.2 Problem statement

In this context, this example considers the optimization of the master recipe to be im-
plemented in an existing AOPs plant to remediate a PCT effluent with a volume of 15L
and concentration of 0.52mM of PCT, eliminating the 99.9% of substrate and 90% of
TOC within a maximum time horizon of 10 hours. The objective is to study of the effect
of the H2O2 dosage profile to drive the process at minimum batch processing time and
minimum treatment expenses. Overall, the problem statement for this example is defined
as follows:
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Given:

• Planning data: contaminant, reactants, representation of the lumped intermedi-
ates, expected degradation, and maximum time horizon;

• Plant diagram: features of the installed photo-reactor and UV lamp;
• Task network: photo-Fenton reaction stage, chemicals and resources involved;
• Batch process operation: batch operation and limiting processing conditions of

the photo-reactor;
• Process dynamics: DAE system to represent the process behavior, initial condi-

tions, and set of process variables and dynamic controls;
• Data related to performance evaluation: definition of the optimization objec-

tives, namely batch processing time and processing costs, definition of the environ-
mental constraints, namely the minimum degradation of PCD and TOC, and data to
evaluate them –i.e. prices of reactants (p̂Fe2+=12.62e/mol and p̂H2O2

=3.17e/mol)
and electricity (p̂ǫ=0.1456e/kWh);

the goal is to determine:

• Synthesis of processing schemes decisions: initial concentration of reactants
H2O2 and Fe2+ for the photo-Fenton degradation (C0

Fe2+
and C0

H2O2
), feed-forward

trajectories of the H2O2 dosage along the time horizon (q(t)), and duration of the
batch operation (tend);

such that the processing time and the treatment cost are minimized, while fulfilling a
set of environmental constraints, operational restrictions, and plant physical restrictions.
Particularly, the reactor capacity (Size) is 15L and the available lamp intensity (I) is
36W/m2. The installation or expansion of the existing equipment is not considered. As for
the boundaries of the decision variables, the initial concentration of Fe2+ is set between 0
and 0.179mM –which satisfies the legal iron concentration allowed in effluents (DOGC,
2003)– and the concentration of H2O2 is constrained to a typical concentrations range
between 0 and 45mM during all the process. Besides, since there is one single process
stage and one single reactor, the task-unit assignment is fixed beforehand.

5.6.3 Optimization model

In this example, a bi-objective optimization problem is addressed to minimize the treat-
ment expenses and the processing time. According to Eq. 5.9, this problem reads as:

minimize
udyn(t),ustat

Φ1 = CostFe2+ + CostH2O2
+ Costǫ,

Φ2 = tend,
(5.18)

where udyn(t) are the dynamic control variables, namely the input flow of H2O2 along time
q(t), and ustat are the time-invariant control variables, namely the initial concentrations
of reactants Fe2+ and H2O2 in the reactor C0

Fe2+
and C0

H2O2
and the duration of the

process tend. The treatment cost comprises the cost of reagents Fe2+ and H2O2 and the
cost of electricity consumption in the lamp, which are defined as follows:

CostFe2+ = p̂Fe2+C
0
Fe2+ υ, (5.19)

CostH2O2
= p̂H2O2

(C0
H2O2

υ +

∫ tend

ts
q(t) dt), (5.20)

Costǫ = p̂ǫ I Aw t
end, (5.21)
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5. Integrated batch process development in retrofit scenarios

where p̂Fe2+ , p̂H2O2
, p̂ǫ are the prices of raw materials and electricity, υ is the reaction

volume, which correspond to the 15L treated in each batch, ts is the initial processing
time, I is the lamp intensity, and Aw is the irradiation surface. Since the installation of new
equipment elements is not considered, investment cost contributions are not accounted
for in Φ1.

The optimization model also includes constraints to guarantee the accomplishment of
minimum yields χPCT and χTOC in the final PCT and TOC reduction:

C0
PCT − CPCT(t

end)

C0
PCT

100 ≥ χPCT, (5.22)

C0
TOC − CTOC(t

end)

C0
TOC

100 ≥ χTOC. (5.23)

Finally, the optimization problem is subject to the DAE system that defines the mate-
rial balances for each component along the batch reaction. This is defined according to the
reaction mechanism and kinetics previously detailed in Eq. 5.17 and Table 5.9. Eventu-
ally the problem becomes a DO problem because qualitative decisions are not considered
and thus the mixed-logic part of the modeling strategy can be omitted. The complete
multi-objective model is provided in Appendix B.

5.6.4 Problem solution

The bi-objective optimization problem of this example is solved using an a posteriori
method that consists of the following steps:

1. Generation and graphic representation of the Pareto frontier of the treatment cost
and processing time minimization problem, assuming that the all the H2O2 is
charged at the initial processing time ts and there is no dosage profile, i.e. CO2H2

is optimized and q(t) is fixed to 0 for the whole interval;
2. Intervention of the decision-maker to select the processing time tend from the Pareto

frontier;
3. Dynamic optimization given the processing time tend selected in previous step, using

a direct-simultaneous solution approach and a PWC profile for the feed-forward
trajectory of the input H2O2 q(t); the solution is compared to the use of a stepwise
dosage protocol (Yamal-Turbay et al., 2012) whose parameters are also optimized.

Pareto frontier: treatment cost versus processing time

The importance of the processing time tend becomes apparent in the objective functions
defined in Eq. 5.18 and the resource expenses in Eqs. 5.19-5.21. This variable appears
in the cost function Φ1 related to the electricity contribution Costǫ. Moreover, tend is a
decision variable that implicitly affects the process performance: an increase of tend leads
to a dramatic reduction of reagents consumption and, consequently, a decrease in CostFe2+

and CostH2O2 , whose effect is more evident in function Φ1. As a result, if a single-objective
optimization problem with decision criteria Φ1, the value of the processing time would
tend to the upper bound in the optimal solution. The incorporation of tend as a second
objective Φ2 serves to elucidate the trade-off between the cost and the allowed time.

Thus, the Pareto frontier is generated and graphically represented to show the com-
promise between the two functions. For that, function Φ1 is minimized with different
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Photo-Fenton case study

upper bounds for the processing time: tend,U∈{0.7 h, ..., 10 h}. In this step, only the time-
invariant decision variables are optimized, namely the initial concentrations of reactants
C0

Fe2+
and C0

H2O2
, while the dosage profile q(t) is fixed to zero in the whole time inter-

val. Since this problem does not require the discretization of dynamic control variables,
it can be solved using a direct-sequential approach, where the decision variables are de-
fined at each search iteration, and the DAE system is solved using numerical integrators.
In particular, the fmincon function of the Matlab Optimization Toolbox is used in this
example.

Dosage profile optimization for a given processing time

Once the processing time tend has been selected based on the Pareto frontier and the
subjective information of the decision-maker, the dynamic profile of H2O2 addition rate
q(t) is optimized, together with C0

Fe2+
and C0

H2O2
decisions. In this step, two different

dosage profiles are used to define feed-forward trajectory of variable q(t):

(i) Dosage protocol. The optimization of a dosage protocol proposed by Yamal-
Turbay et al. (2012) is used as a reference solution. The protocol consists of an
initial load of reagent, and a constant addition of the remaining during a specific
time interval, as is illustrated in Figure 5.13. The addition profile is characterized
by the total amount of H2O2 that is charged in the reaction system (NH2O2

), the
initial dosage time (ti), the fraction of total reagent that is completed at time ti

(F i), and the continuous dosage span (△tadd). It is a particularization of a PWC
profile with two single step functions to start and to stop the reagent addition.
It was previously introduced for practical experimentation procedures. From an
mathematical perspective, it allows to characterize a dynamic dosage profile by
means of continuous time-independent control variables (i.e. NH2O2

, F i, ti, and
△tadd), then simplifying the optimization problem.

0

1

F (t)

F i

tits ti+△tadd tend t[h]

m= 1−F i

△tadd

0

q(t)

tits ti+△tadd tend t[h]

NH2O2
m

NH2O2F
i

NH2O2
(1−F i)

(a) (b)

Figure 5.13: Pre-established dosage protocol (Yamal-Turbay et al., 2012) in the photo-Fenton
case study: (a) fraction of the total H2O2 added along time F (t) (b) input H2Od

flow q(t).
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5. Integrated batch process development in retrofit scenarios

(ii) PWC profile. The feed-forward trajectory of variable q(t) is defined through a
PWC profile, as is illustrated in Figure 5.14. In that case, the optimization problem
is solved through the direct-simultaneous approach as explained in § 4.2.1 (p. 92).
Overall, the DO problem is reformulated into a NLP using 16 finite elements in the
discretization step. Next, the NLP model is implemented in GAMS and is solved
using a NLP solver, namely CONOPT.

0

q(t)

ts tend t[h]

q1 q2 q3
q4

...
qe ... qNe

Figure 5.14: PWC dosage profile in the photo-Fenton case study: discretization of the input
H2Od flow q(t) in Ne=16 finite elements.

Handling inequalities in the optimization model

Inequalities with process variables, such as the constraints for the final PCT and TOC
concentrations (Eqs. 5.22 and 5.23), can be transformed into penalization terms in the
objective functions (Eq. 5.18). This strategy is used in the implementations in Matlab,
which otherwise require special tool-packages. For instance, Eq. 5.23 is transformed into
the following quadratic penalty function:

PenalizationTOC = 1000

(

CTOC(t
end)

CTOC(ts)
− 0.1

)2

.

(5.24)

Other penalty-like terms could be used, such as logarithmic or inverse barrier functions.

5.6.5 Results and discussion

The Pareto optimal solutions obtained through the optimization problem with no dosage
are presented in Figure 5.15. The critical trade-off between the cost function (Φ1) and
the processing time (Φ2) is located between 0.7 and 3 hours. On the one hand, the TOC
elimination of 90% is not achieved at lower final times. On the other, upper final times do
not affect to the reactant consumption and the processing cost tends to 6.98 10−2e per
batch. At this point, the advantage of including the processing time as a second objective
in this example is clear. Otherwise, the final time would be driven up to upper bound
defined in the optimization model, regardless the cost reduction obtained could not be
worth the increase in the processing time. This is a subjective criterion that undoubtedly
requires a MO optimization and the intervention of the decision-maker.

A processing time of 2 hours is selected, with a treatment cost of 9.62 ce per batch.
Although the PCT and TOC elimination can be achieved at lower processing times, the
interest was set on reducing the cost at the expense of extending the reactor occupation.
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Figure 5.15: Pareto frontier for cost function (Φ1) versus processing time (Φ2) in the photo-
Fenton case study: optimization with no dosage profile.

Next, the process recipe is further improved using the dosage protocol and the PWC
profile optimization with a maximum processing time of 2 hours. These solutions are also
compared to a base case where typical values of 0.14mM and 132.3mM for the initial
concentration of Fe2+ and H2O2 are used, with no dosage. The obtained KPIs in each case
are summarized in Table 5.10, whereas Figure 5.16 shows the profiles of most relevant
process variables, namely the consumed H2O2 and the normalized concentrations of TOC,
H2O2, and PCT along time.

Overall, the results improve hugely by optimizing the process instead of implementing
a predefined recipe according to typical values. An improvement of the 78.4% is obtained
in the optimal solution with no dosage, with respect to the base case. The solution is
further improved up to the 79.1% and 79.5% of cost reduction by optimizing the dosage
protocol and the PWC profile of the H2O2 addition rate. Particularly, the processing cost
descends from 9.62 ce to 9.30 ce and 9.13 ce per batch, respectively. The dosage profile
along the processing time is shown in Figure 5.16c-d: the black line represents the total
H2O2 added and the red line represents the normalized concentration of H2O2.

As a result, the total improvement with respect to the base case is almost the 80%

KPI Base
case

No
dosage

Dosage
protocol

PWC dosage
profile

Treatment cost [ce] 44.57 9.62 9.30 9.13

Treatment cost reduction [%] - 78.4a 79.1a(3.3b) 79.5a(5.1b)
Fe2+ consumption [mmol] 2.100 2.459 2.425 0.268
H2O2 consumption [mmol] 132.3 20.5 19.6 18.1
Time 99.9% PCT reduction [h] 0.13 0.49 0.64 0.69
Time 90% TOC reduction [h] 0.89 1.99 1.99 2.00
Final PCT elimination [%] 100 100 100 100
Final TOC elimination [%] 99.42 90.1 90.1 90.0
a Reduction regarding the base case
b Reduction regarding the optimal solution without dosage

Table 5.10: KPIs for the base case and for the optimal solutions in the photo-Fenton case study.
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5. Integrated batch process development in retrofit scenarios

when the PWC profile is used. However, the determinant factor for the cost reduction
is the dramatic reduction in H2O2 consumption, which is achieved solely through the
optimization of the initial concentrations of raw materials. In fact, the Fe2+ consumption
is also reduced, which determines the total Fe present in the effluent. This way, the envi-
ronmental impact is also mitigated, being a collateral gain obtained through an economic
objective function. The improvement by using the dosage profile is lower than expected,
representing a 5.1%. It is likely that the solution would further improve by considering
more dosage intervals beyond the 16 used in this example. However, other degrees of
freedom should be considered to fully exploit the optimization approach.

Future studies for process improvement could contemplate further decision variables
for the development of AOPs processes subject to be installed in wastewater treatment
plants. For instance, the potential installation of other lamp intensities could be evaluated,
as well as the potential combination of the photo-Fenton process with other primary or
secondary wastewater treatment operations, the installation of additional equipment, the
use of other operating modes –i.e. in parallel or series–, the potential recirculation of
intermediate flows, or the treatment of several effluents in multiproduct campaigns. Most
of the listed decisions can be formulated using the proposed MLDO-based approach.
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TOC

CH2O2
/C0

H2O2
CPCT/C

0
PCT

NH2O2

Figure 5.16: Process variable profiles in the photo-Fenton case study, including consumed
H2O2 (NH2O2) and normalized concentrations of TOC (CTOC/C

0
TOC), H2O2

(CH2O2/C
0
H2O2

), and PCT (CPCT/C
0
PCT): (a) base case, (b) selected Pareto opti-

mal solution with no dosage, (c) with dosage protocol, and (d) with PWC profile.
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Concluding remarks

5.7 Concluding remarks

The proposed optimization-based approach to solve integrated batch process development
in retrofit scenarios permits to identify and quantify the significant interactions between
batch process synthesis and plant allocation sub-problems. This way, the arduous activity
of evaluating compromising solutions is facilitated. For instance, a greater influence on
structural decisions has been identified in the first case of retrofit Denbigh example,
compared to the effect of optimizing dynamic profiles (Table 5.5). The latter provided an
improvement of 12% by optimizing the dynamic profiles with a predefined configuration,
whereas it went as far as a 24% when qualitative decisions were considered as degrees of
freedom with constant variable profiles.

The promising results obtained in the examples also corroborate the advantages of
carrying out an holistic evaluation of the decision criteria, as opposed to the use of pre-
defined recipes. Particularly, improvements between the 21% and 121% in the objective
function have been obtained in all the retrofit scenarios of Denbigh case study to produce
specialty chemical S compared to the use of fixed recipes. This is accomplished thanks to
a better utilization of plant capabilities, even though the installation of new equipment
is not evaluated in most cases. In the particular example where equipment re-sizing is
considered –with the associated investment–, the objective function shows only a slight
improvement of the 0.85% with regard to the problem solution without plant modifica-
tions. Likewise, the optimization of dynamic profiles in the recipe design for emergent
pollutants through Advanced Oxidation Processes leads to reductions of nearly the 80%
in the treatment cost again compared to typical predefined recipes.

Finally, the resulting optimization model has the capability to easily incorporate
changes affecting the economic scenarios, the decision criteria, or the production policy.
This competence also enables the prompt evaluation of combined synthesis alternatives
and the study of multiple objectives, since a unique optimization model that includes all
the potential alternatives has been defined.
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Chapter 6

Integrated batch process development and flexible plant design

"The big advantage of a multipurpose batch plant, its flexibility, also
poses the problem of making the best use of it."

Mauderli & Rippin (1979)

Batch manufacturing is mostly devoted to specialty chemicals industry and requires
the frequent adaptation of production facilities to market fluctuations, in order to face
internal and external uncertainties. Products manufactured in batch plants near the end
of their lifetime are most probably unknown at the time of their design. As a result,
batch industry encounters the need of general-purpose and flexible plants that are able
to produce an initial product portfolio as well as to be reconfigured to embrace the
incorporation of future product demands.

In this chapter, the proposed modeling strategy is applied to integrated synthesis, allo-
cation, and plant design in grassroots scenarios. Seeking for plant flexibility, a two-stage
stochastic formulation of the optimization problem is used, with the purpose of maxi-
mizing the expected profit considering several demand scenarios. In addition, a heuristic
solution algorithm is proposed, which allows the evaluation of plant design under uncer-
tainty, while accounting for process synthesis and allocation decisions. The Denbigh case
study presented in Chapter 5 is now solved in a grassroots scenario. In this example, an
important role is played by process development decisions in the flexibility of the resulting
plant design. Decisions like the reference trajectories for the feed-forward control or the
selection of the operating mode permit the adaptation of master recipes, in order that the
entire range of uncertain demands can be fulfilled in most of the plant solutions. Addi-
tionally, an industrial-size case study for acrylic fiber production is presented, illustrating
other synthesis and allocation decisions, namely the selection of process stages, techno-
logical alternatives, and chemicals, as well as the potential solvent recovery and reuse.
For the sake of simplicity, a deterministic demand is assumed in this second example.
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6. Integrated batch process development and flexible plant design

6.1 Batch process development in grassroots scenarios

Grassroots scenarios are characterized by the sequential settlement of product, process,
and plant lifecycles in an enterprise, as is presented in Figure 6.1. The use of divide and
conquer strategies where batch process development sub-problems are solved subsequently
makes more sense in grassroots problem, compared to retrofit ones. This is because the
process synthesis and plant allocation are not restricted by physical plant constraints in
this case. Then, equipment features, such as size or operating restrictions, become degrees
of freedom which can be determined as a function of the process requirements, rather than
the other way around. Nevertheless, the simultaneous solution of process synthesis, plant
allocation, and plant design sub-problems permits to account for the interactions between
the DOF associated to each sub-problem and represents a challenge to avoid suboptimal
systems. The resulting problem is defined as the integrated solution of batch process
development and plant design.

Additionally, in the design of batch manufacturing facilities, plant flexibility should be
posed as one of the crucial objectives in the decision-making procedure. That is to say, the
design of batch plants should be governed by the maximization of future performance at
minimum investment cost, by incorporating into the optimization problem the forecasting
of external and internal factors that are susceptible to vary. These factors should be
reflected in uncertain parameters included in the optimization model during the plant
design activity.

The integrated solution of batch process development and plant design is here tackled.
Moreover, uncertainty in the demand of a particular product is considered to reflect
changing market conditions and variations of the plausible customer orders. Uncertainty
in model parameters could be also included in future studies, to reflect process variability
and model inaccuracy. The resulting problem is defined as the optimization of a chemical
plant and the set of master recipes to be used in the probability space of uncertain
parameters to manufacture a particular product. The objective is to find flexible plant
solutions which maximize an expected profit criteria, perform well under all scenarios,
and ensure optimal demand order satisfaction for the demand probability space.
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Figure 6.1: Lifecycles in an enterprise: grassroots scenario (adapted from Marquardt et al.,
2000).
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6.1.1 Integrated batch process development and plant design

The simultaneous process and plant optimization problem corresponds to the highest
degree of integration. This problem was referred to as total process optimization by Ali
(1999, p. 55), where process synthesis and plant allocation are accompanied by plant
design decisions. In particular, batch plant design consists of the development of a pro-
cessing facility for the production of a desired product portfolio. Essentially, this problem
tackles the definition of the equipment –i.e. number, type, capacity, and connectivity of
equipment items–, the assignment of process stages to appropriated equipment items,
and the definition of operational decisions (Rippin, 1983b). Therefore, solving the op-
timal plant design requires the incorporation of scheduling decisions, which determines
the use of the selected resources to achieve the production targets –i.e. timing, storage
policies, batch sizes, amounts transferred and task-equipment allocation. Regarding the
operational decisions, the major concerns considered to optimize the batch plant design
are: the operating mode, the batch size, the storage tank location, and the duplication of
units.

Ideally, the best allocation solutions should be also specified according to physical and
chemical calculations in process stages (Rippin, 1993) to match the process model to the
final recipe to be implemented in a particular plant and to take into account the trade-
offs between structural and performance decisions (Barrera & Evans, 1989). However, it
is frequent in batch plant design that the use of fixed or approximated recipes hinders
the adaptation of recipe parameters –e.g. set-points and reference trajectories for control
variables– according to the global targets.

In the literature, the integrated batch process development and plant design problem
is related to different research topics. On the one hand, several efforts have been devoted
to the definition of recipe modifications in allocation of multiproduct and multipurpose
plants instead of using fixed recipes. Most of the reported contributions have focused
on the definition of models that represent the process performance in each task. These
are characterized by different detail level –most of them being algebraic approximations–
and should be related to the plant design problem either using simultaneous or iterative
decision-making strategies.

On the other hand, some contributions are found in the literature, which introduce
equipment sizing in batch process development. In this case, process synthesis decisions
are further detailed. For instance, the recipe definition may involve chemicals selection
and the use of dynamic models to represent the process performance is more extended.
In this regard, Charalambides et al. (1995, 1996) and Sharif et al. (1999) integrated
equipment sizing decisions with process synthesis and allocation optimization by means
of DO and MIDO problems. However, task sequence and allocation decisions had to be
defined in advance. Later, Iribarren et al. (2004) introduced equipment sizing decisions
in a MINLP model where process synthesis –i.e. the selection of microorganism involved
and the selection of separation and purification alternatives– and allocation decisions –
i.e. definition of the operating mode and processing order for each product– were also
optimized simultaneously. However, the process performance in batch process stages was
simplified in this case through the use of time and size factors that depended on the
synthesis decisions considered.

6.1.2 Flexibility in batch plant design

To address the problem of batch plant design at the early stages of the plant lifecycle,
it is necessary to assume given product slates and processing schemes. However, some
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6. Integrated batch process development and flexible plant design

parameters may not be fully defined or may involve uncertainty, due to internal and
external conditions (Acevedo & Pistikopoulos, 1998, Puigjaner & Laínez, 2008). First,
chemical plants are often characterized by internal plant parameters quite different from
those considered at the design stage –e.g. kinetic constants, heat transfer coefficients,
or machine efficiency and reliability. Second, rapidly changing market environments will
have an effect on the variability of demands, cancellations, and returns of products, of
raw material availability, of prices of chemicals, and of environmental parameters.

Simplifying hypotheses are often used in the solution of plant design to mitigate partly
the effect of possible future variations in internal and external parameters. For instance,
the consideration of extreme or mean values or the application of safety factors, based on
past experience and engineering judgment, are typically employed (Schuëller & Jensen,
2008). However, these simplifications do not ensure the reliability of the designed system
–understood as its capacity to feasibly operate in an uncertain environment– within the
actual uncertainty margin. Pursing the objective of versatile plants which are able to be
adapted in plausible future scenarios and to provide an efficient operation, it is paramount
to account for parameter variability during the design problem. The ability of a specific
design or operational plan to deal with a set of uncertain parameters is defined as plant
flexibility (Sahinidis, 2004). Overall, flexible plant design ensures a manageable response
to changes in the business environment, increases the accuracy of decisions, allows the
adaptation of master recipes, and improves process performance.

Solution approaches: design with uncertainty

Consequently, the incorporation of uncertainty in the batch plant design problem is an
important area of research and several approaches have been proposed in the literature.
The goal is to find a solution that optimizes the expected value of the objective function,
taking into account parameter uncertainty, and that is feasible for all –or almost all– the
uncertain data range.

The three outstanding methodologies to deal with optimization under uncertainty,
according to Sahinidis (2004), are: stochastic programming, fuzzy programming, and
stochastic dynamic programming. Stochastic programming methods address optimiza-
tion problems incorporating uncertain parameters governed through known or estimated
probability functions. These methods are basically the two-stage programming, the robust
stochastic programming, and the probabilistic programming. In the case of fuzzy pro-
gramming, the uncertainty is modeled by considering random parameters as fuzzy num-
bers and constraints as fuzzy sets. There are two types of fuzzy programming, namely the
flexible programming and the possibilistic programming. Finally, stochastic dynamic
programming is the extension of the dynamic programming (DP) approach by Luus
(1990) to solve dynamic systems, now including uncertainty in parameters, which is rep-
resented through probability distribution functions. Besides, a variety of approaches for
robustness assessment have been followed, including minimization of expectation, mini-
mization of deviations from goals, minimization of maximum costs, and optimization over
soft constraints. The interested reader is referred to Sahinidis (2004) for an overview of
these methodologies, as well as their typical areas of application.

This work centers on stochastic programming approaches, since they are the most
extended to address the design of chemical processing systems with uncertainty. For in-
stance, they are preferred to stochastic programming. The reason is that these last ones
are an extension of DP methods (Bellman, 1957, Luus, 1990), which are used to solve
optimal control problems based on the Hamilton-Jacobi-Bellman formulation to trans-
form the original problem into a system of partial differential equations. As a result,
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they are not recommended for the solution of large-scale dynamic optimization prob-
lems (Schlegel, 2004). In stochastic programming, the probability distribution functions
that represent uncertain parameters may be defined by means of continuous functions
or a finite number of scenarios where the probability distribution has been discretized.
According to the mathematical model used to describe each source of uncertainty, Ier-
apetritou & Pistikopoulos (1996) and Acevedo & Pistikopoulos (1998) proposed to split
the vector of uncertain parameters in two subsets: (i) deterministic uncertain parame-
ters (ξsδ | ξ

L ≤ ξsδ ≤ ξ
U, s ∈ {1, ..., NS}), modeled through a series of periods or scenarios

s ∈ {1, ..., NS} with particular values and associated to a probability or weight ws, and (ii)
stochastic uncertain parameters (ξσ | ξσ ∈ J(ξσ)), described by a probabilistic distribution
function J(ξσ).

Two-stage programming. In particular, programming with recourse (Pai & Hughes,
1987, Pistikopoulos & Ierapetritou, 1995) is one of the most widespread stochastic method-
ologies, which is considered to be very effective in the solution of process engineering
problems (Acevedo & Pistikopoulos, 1998). It is also referred to as two-stage program-
ming strategy due to the differentiation between first-stage variables, which remain
fixed once selected and correspond to plant design decisions, and second-stage variables,
which correspond to process decisions. The latter were originally interpreted as corrective
actions or recourses against infeasibilities that could arise due to a particular realization
of the uncertainty. However, the role of second-stage variables may be not only the way
to achieve feasibility but also the chance to improve process performance.

Robust stochastic programming. It is basically an extension of the two-stage pro-
gramming strategy which additionally captures risk assessment in the objective function.
Specifically, risk is represented through a variability measure of the second-stage costs
–e.g. variance– and a risk tolerance. As a result, the search for robust design appears
often as a multiple criteria decision problem, where trade-offs between expected perfor-
mance and dispersion measures are found, rendering a compromise in the resulting robust
optimal solutions (Schuëller & Jensen, 2008).

Probabilistic programming. Finally, probabilistic programming is focused on the
reliability of the system. With this purpose, probabilistic programming strategies incor-
porate a reliability constraint expressed as a minimum requirement on the probability of
satisfying the problem constraints.

Several authors have applied two-stage programming strategies to solve batch plant
design under uncertainty. For instance, Reinhart & Rippin (1986) addressed the design of
flexible batch plants with uncertain demands. Shah & Pantelides (1992) tackled the design
of multipurpose batch plants with uncertain production requirements using a stochas-
tic formulation that considered different scenarios. Ierapetritou & Pistikopoulos (1996)
solved multipurpose plant design with uncertainty, formulated as a MILP model. Cao &
Yuan (2002) optimized the design of batch plants with uncertain demands allowing dif-
ferent operating modes in parallel units for different products. Alonso-Ayuso et al. (2005)
solved the problem of product selection and plant dimensioning under uncertainty in
product price, demand, and production cost, and using a scenario-based representation.
Aguilar-Lasserre et al. (2009) addressed the problem of flexible plant design with uncer-
tain product demands through multi-objective optimization, including three objectives:
investment cost, operation cost, and total production time. Pinto-Varela et al. (2009) ad-
dressed the design and scheduling of multipurpose batch plants under production demand
uncertainty, considering a scenario-based representation and discrete probability functions
and formulating the problem as a MILP. Wang et al. (2010) solved multi-product batch

153



i

i

“MMB” — 2014/1/27 — 10:03 — page 154 — #188
i

i

i

i

i

i

6. Integrated batch process development and flexible plant design

plant design under uncertainty, formulated as a multi-objective stochastic programming
problem where profit and environmental impacts were included in the objective function.
Moreno & Montagna (2012) tackled multi-period production planning and design of batch
plants with uncertainty in product demands, addressed through a scenario approach with
the possibility of plant capacity expansion in particular production periods.

6.2 Application of the MLDO-based strategy

In this chapter, the integrated process development and flexible plant design under un-
certainty is formulated as a two-stage stochastic programming problem (Pai & Hughes,
1987, Pistikopoulos & Ierapetritou, 1995). The following modeling features are considered
therein:

(i) The expected profit maximization is defined as objective function, composed of rev-
enues, raw material expenses, amortization, occupation costs, and processing costs,
defined in previous chapter (§ 5.2.1, p. 111); it is evaluated in the feasible operating
region of the batch plant to obtain a compromise between economic performance
and plant flexibility;

(ii) Demand accomplishment constraints are relaxed through the introduction of the
shortfall penalty associated to the unfulfilled part of demand in the objective func-
tion; this contribution ensures the best utilization of plant resources for the optimal
demand satisfaction, understood as the optimal demand that can be satisfied in
each scenario pursuing the common good in the selection of equipment investments;

(iii) Uncertainty in the product demand is represented through multi-scenario determin-
istic probabilities, where each plausible demand case is associated to a normalized
probability weight;

(iv) First-stage plant design decisions –whose assigned value is the same in all uncertain
scenarios– correspond to new equipment capacities, whereas second-stage decisions
–whose value can vary among different scenarios– are related to process synthesis
and allocation degrees of freedom, permitting different optimal processing schemes
–e.g. equipment occupation, operating modes– in each demand scenario.

6.2.1 Optimization model

In broad terms, the formulation of the integrated problem in grassroots scenarios accord-
ing to the modeling strategy proposed in Chapter 3 (§ 3.3, p. 69) provides and equivalent
model to that in retrofit situations (§ 5.2.1, p. 111), except for two elements. First, the
problem starts from an nonexistent plant. Therefore, equipment restrictions are excluded
and equipment characteristics are only considered as additional DOF. Second, uncertainty
is incorporated through a two-stage model formulation. This form allows to optimize plant
decisions according to the given multi-scenario deterministic probability and to the pro-
cess synthesis and plant allocation decisions in each finite demand scenario.

Problem with uncertainty

In the presence of uncertainty, the two-stage stochastic programming problem can be re-
formulated by defining an expectancy of the objective function, which is divided in two
terms: Φ1 and Φ2. Φ1 is the contribution to the objective function that depends uniquely
on first-stage decisions u1 ∈ U1, whose values are not affected by uncertain parameters.
Φ2 is the contribution to the objective function that depends additionally on second-
stage decisions u2 ∈ U2 and uncertain parameters ξ ∈ Ξ. Q(u1, ξ) is the optimal value of
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the second-stage problem for a given value of first-stage decisions u1 ∈ U1 and uncertain
parameters ξ ∈ Ξ, and E is the expectancy of Φ2, taking into account the complete proba-
bility space Ξ = {ξ | ξ ∈ P (ξ), ξL≤ξ≤ξU}. The general form of these kinds of optimization
problems is given by Sahinidis (2004):

minimize
u1∈U1

Φ1(u1) + Eξ∈Ξ[Q(u1, ξ)], s.t. f1(u1) ≤ 0,

with
Q(u1, ξ) = minimize

u2∈U2

Φ2(u1, u2, ξ), s.t. f2(u1, u2, ξ) ≤ 0,

(6.1)

where f1 and f2 are the problem constraints.
For the integrated batch process development and plant design, the above general form

for two-stage stochastic problems corresponds to a MLDO problem, where plant design
decisions –e.g. size of processing units– involve the first-stage optimization variables while
process synthesis and allocation decisions –e.g. dynamic control variables, batch operation
durations, active equipment selection, task-unit assignments, among others– involve the
second-stage optimization variables. According to the proposed MLDO problem recapit-
ulated in Eq. 3.36 (§ 3.4, p. 85), the general form in Eq. 6.1 becomes:

minimize
u1∈{Sizej}

Φ1(u1, p) + Eξ∈Ξ[Q(u1, ξ)],

with Q(u1, ξ) =
minimize

u2∈{udyn
k

(t),ustat,

uint,uBool}\u1

Φ2(zk(t), yk(t), u1, u2, γ, p, ξ),

s.t. fk(żk(t), zk(t), yk(t), u1, u2, p, ξ) = 0, t ∈ [0, 1], ∀k ∈ K,
l(ż1(0), z1(0)) = 0,
gk(zk(t), yk(t), u1, u2, p, ξ) ≤ 0, t ∈ [0, 1], ∀k ∈ K,
gek(zk(1), yk(1), u1, u2, p, ξ) ≤ 0, ∀k ∈ K,
zk+1(0)−mk(zk(1)) = 0, ∀k ∈ {1, ..., |K| − 1},
γ = h(zj,|K|(1), y|K|(1), u1, u2, p, ξ),





















uBool

fdk (żk(t), zk(t), yk(t), u1, u2, p, ξ) = 0, t ∈ [0, 1], ∀k ∈ K,
ld(ż1(0), z1(0)) = 0,

gdk(zk(t), yk(t), u1, u2, p, ξ) ≤ 0, t ∈ [0, 1], ∀k ∈ K,

gd,ek (zk(1), yk(1), u1, u2, p, ξ) ≤ 0, ∀k ∈ K,
zk+1(0)−m

d
k(zk(1)) = 0, ∀k ∈ {1, ..., |K| − 1},

γ = hd(z|K|(1), y|K|(1), u1, u2, p, ξ)





















⊻

[

¬uBool

Bd(żk(t), zk(t), yk(t), u1, u2, γ, p, ξ) = 0, t ∈ [0, 1]

]

,

Ω(uBool) = true,

(6.2)

where Sizej is the capacity of new equipment unit j ∈ J and corresponds to first-stage de-
cisions u1 ∈ U1, whereas second-stage decisions u2 ∈ U2 comprise the remaining dynamic
udyn(t), time-invariant ustat, integer uint, and Boolean uBool decision variables. z(t) and
y(t) are the differential and algebraic process variables, and p and ξ are the determin-
istic and the stochastic parameters respectively. In particular, the latter are represented
through scenario-based uncertain parameters ξsδ | ξ

L≤ξsδ≤ξ
U, s={1, ..., NS} and through

a weigh or probability ws of each scenario s ∈ {1, ..., NS} that is likely to occur.
The contribution to the objective function in the first stage of the problem Φ1 involves

the calculation of amortization costs associated to the installation of new units in a total
production basis, as defined in Chapter 5 (Eq. 5.6, p. 112). Regarding the contribution
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6. Integrated batch process development and flexible plant design

to the objective function in the second stage of the problem Φ2, it is associated to the
product revenue, to raw material cost, to occupation and processing costs associated to
selected units, and to shortfall penalty in a total production basis, as defined in Chapter
5 (Eqs. 5.2 - 5.5, 5.7, p. 111). The latter depend not only on equipment capacity but also
on process synthesis and allocation decisions. Additionally, they are affected by the final
realization of the uncertain demand.

6.2.2 Methodology

As discussed in previous chapters, the integrated problem proposed in this thesis is char-
acterized by a great complexity due to the simultaneous optimization of decisions which
are typically addressed in independent sub-problems, namely batch process synthesis, al-
location, and design of manufacturing facilities. The resulting MLDO model is non-linear,
non-convex, and subject to a great combinatory. Nevertheless, it has been proved in pre-
vious chapter that MLDO solution methods provide optimal solutions when deterministic
values of the model parameters are used.

To solve the integrated process development and flexible plant design, the complete so-
lution procedure is carried out taking into account the methodology previously explained
in § 5.2.2 (Figure 5.3, p. 114), consisting of the steps: (a) gathering information, (b) SEN
superstructure representation, (c) MLDO formulation with a two-stage objective function
(Eq. 6.2), and (d) MLDO solution. Since the problem has been reformulated as a two-
stage stochastic programming problem with scenario-based uncertainty representation,
the complexity of the optimization problem is further increased. For this reason, a heuris-
tic procedure is here proposed to solve the MLDO problem in last step (d). Particularly,
the proposed heuristic allows the partitioning of the decision-making procedure for the
flexible plant design and the master recipe optimization through an iterative rule-based
procedure. At each iteration, the deterministic MLDO problem of Eq. 3.36 (p. 85) is
solved through the direct-simultaneous approach explained in § 4.2.1 (p. 92) using the
deterministic parameter values associated to each uncertain scenario. This strategy is
further detailed in next section.

Heuristic for flexible plant design

The proposed heuristic is used to solve the MLDO two-stage stochastic programming
problem for integrated process development and flexible plant design with demand un-
certainty as it is presented in Eq. 6.2. Figure 6.2 summarizes the heuristic procedure and
provides the pseudo-code of the algorithm, which comprises four main steps:

1. Definition of the NS demand scenarios s ∈ {1, ..., NS}, characterized by the fore-
casted production target ξsDemandp ordered from lowest to highest demand value
ξsDemandp and by the normalized weight ws, i.e. Σ

s∈S
ws=1;

2. First-stage optimization of the two-stage formulation in Eq. 6.2 (§ 6.2.1, p. 155), in
order to determine the plant design variables –i.e. equipment capacities. With that
purpose, an iterative loop is posed, where each plant Pp, p ∈ {0, ..., NP} is used as
a base solution to be improved for each of the NS demand scenarios. Each iteration
involves the creation and solution of a deterministic MLDO problem minimizing the
function Φ = Φ1(U1, p)+Φ2(zk(t), yk(t), u1, u2, γ, p, ξ

s
Demandp

), what corresponds to
the general MLDO of Eq. 3.36 (§ 3.4, p. 85). The set of plants Pp, p ∈ {0, ..., Np} is
upgraded if solutions with additional processing units j are found. The optimization
of process synthesis and allocation with plant design is also integrated in this step,
in order to take into account the best plant utilization –through the optimization
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     (d) MLDO solution 

3. Evaluation of Pp,p={0,...NP}  

plant solutions: 

MLDO model 

Optimal process and plant 

1. Demand scenarios s in 

ascending order 

2. Search of Pp, p={0,...,NP}  

Plant solutions: 
p={0,...NP} 

s={1,...,NS} 

MLDO problem  

Eq. 3.36 (§ 3.4)  

If new j, NP=NP+1 

s+1 

p+1 

MLDO problem  

Eq. 3.36 (§ 3.4)  

Q(uNp
1, ) 

s+1 

p+1 

ENp=E [Q(uNp
1, )] 

4. Ranking and plant selection 

p={0,...NP} 

s={1,...,NS} 

Algorithm 6.2.1: Flexible plant(ξsDemandp , w
s)

Pp, p = {0, ..., NP}, NP = 0,
s00 = 0,
p = 0,
repeat
for s← s0p + 1 to NS ,

do















Extend Pp,
if New equipment:

then

{

NP = NP + 1,
s0NP = s,

p = p+ 1
until p > Np
for p← 0 to NP ,

do
{

ENP = Eξ∈Ξ[Q(uNP1 , ξ)],
Best flexible plant = fp |
Efp = max

p∈{0,...,NP}
(Eξ∈Ξ[Q(up1, ξ)])

return (Best flexible plant)

Figure 6.2: Heuristic procedure to solve integrated process development and flexible plant de-
sign formulated in Eq. 6.2. The set of decision variables for each plant solution Pp,
p ∈ {1, ..., NP } is represented by up1.

of the master recipe for the demand scenario at each iteration– before posing a new
plant solution, with the computational load involved. A pre-specified termination
criteria should be defined, e.g. no new solutions are found;

3. Evaluation of the expected profit at each plant solution Pp, p ∈ {0, ..., NP} taking
into account the demand ξsDemandp and probability ws associated to each scenario
s ∈ {1, ..., NS}. In this step, the same deterministic MLDO problem is solved, but
equipment sizing is not a degree of freedom. Herein, the second-stage decisions –i.e.
process synthesis and allocation sub-problems– are optimized for a fixed plant Pp,
p ∈ {1, ..., NP} and for each demand scenario s ∈ {1, ..., NS}, in order to calculate
the expected profit for a given plant solution.

4. Selection of the best plant out of the final NP solutions obtained. With that purpose,
the plant solutions are ranked according to the expected profits computed and the
forefront solution is selected.
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6. Integrated batch process development and flexible plant design

Let us note that some rules have been established to simplify the solution algorithm.
For instance, the iterative loop in step 2 only allows finding plants with larger capacity
with respect to the initial plant provided. Thus, it may be assumed that such plant Pp will
have capacity to feasibly and optimally produce lower demands to the demand ξsDemandp
with which it had been calculated. Such demand scenario is represented by variable s0p for
each plant. To sum up, an important feature of this approach is that it avoids screening
all plant alternatives, and only founds the improvements over plant solutions calculated in
previous steps. This way, the combinatorial load is reduced and so does the computational
time. Nevertheless, it is clear that the optimal solution having into account all demand
scenarios may not correspond to the optimal solution of any of the particular demand
scenarios found, so global optimality can not be guaranteed in a general case.

6.3 Denbigh case study

The Denbigh case study presented in Chapter 5 (§§ 5.3, 5.4, and 5.5) for several retrofit
cases is now solved in a grassroots scenario. The objective is to address integrated batch
process development and plant design for the production of specialty chemical S through
the Denbigh reaction system (Denbigh, 1958), seeking for the flexibility of the reactor
network to handle an uncertain demand. In broad terms, the solution provides: (i) a
flexible plant design which maximizes the expected profit and (ii) the optimal master
recipes which define the process synthesis and allocation for each demand scenario within
the flexible plant.

6.3.1 Stochastic problem statement

This example tackles the design of a flexible reactor network which performs well under
all demand scenarios and ensures optimal demand order satisfaction for the demand prob-
ability space. The objective function is defined as the maximization of the expected profit
for the production of specialty chemical S with a maximum time horizon of 144 hours,
given the demand of final product ξsDemandS and probability ws in the forecasted scenar-
ios s ∈ {1, ..., NS}. In particular, uncertainty is modeled through five demand scenarios,
which comprise an estimated demand of 21 tn of product S and variations of ±25% and
±50%, all of them with the same probability of 0.2. Additionally, Table 6.1 summarizes
the economic parameters to be considered. A period of 1 year has been considered to
define the amortization cost.

ĉj c̄j,A c̄j,B c̄j,C čj p̂A p̂S p̂penalty
[ce/kWh] [e/batch] [e/m3batch] [e/h batch] [e/h] [ce/kg] [ce/kg] [ce/kg]

2.5 5 10 0.21 8.22 4.8 43.1 2 p̂S

Table 6.1: Economic parameters in grassroots Denbigh example: unitary processing costs ĉj ,
occupation costs c̄j,A, c̄j,B , and c̄j,C , and base amortization cost čj of j ∈ U , price
of raw material A p̂A and final product S p̂S, and penalty of the product shortfall.

To solve this problem, plant flexibility is faced through the optimization of the process
synthesis and allocation decisions in each demand scenario s. It involves the same DOF
as those included into the problem statement of Denbigh example in retrofit scenarios in
Chapter 5 (p. 117). Additionally, decisions related to flexible plant design are included,
namely the sizing of all the required processing units j ∈ U .
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6.3.2 SEN superstructure

In this example, the superstructure is enlarged as new processing units are incorporated
to the plant solution. The general superstructure is presented in Figure 6.3.

…
 

Figure 6.3: SEN superstructure of the grassroots Denbigh example.

6.3.3 Stochastic optimization model

The problem to maximize the expected profit with uncertainty is defined through an
equivalent two-sage stochastic minimization problem according to prior Eq. 6.2. In the
first stage, the capacities of the units to be acquired constitute the set of decision variables
u1 ∈ U1, which have the same value in the whole demand probability space. The second
stage involves the rest of DOF, namely the process synthesis and plant allocation decisions
u2 ∈ U2.

Regarding the objective function, it is also partitioned into two terms Φ1 and Φ2.
The former includes total amortization costs, which only depend on first-stage decisions
u1 ∈ U1 and is independent to the uncertain demand ξsDemandS and to decisions u2 ∈ U2.
The latter is composed of the total revenue of product S, the raw material expenses,
total occupation and processing costs in batch units j ∈ U , and the penalty associated to
product shortfall. This second term Φ2 is subject to the value of the uncertain demand
ξsDemandS and to the first stage solution regarding u1 ∈ U1. Summarizing, the formulation
of the objective function reads as:

minimize
u1∈{Sizej}

Φ1(u1, p) +
Ns
∑

s=1
wsQ(u1, ξ

s
DemandS

),

with Q(u1, ξ
s
DemandS

) =

minimize
u2∈{udyn

k
(t),ustat,

uint,uBool}\u1

Φ2(zk(t), yk(t), u1, u2, γ, p, ξ
s
DemandS

),

(6.3)

being
Φ1 =

∑

j Costj,a,total,

Φ2 = −RevenueS,total + CostA,total +
∑

j Costj,o,total
+
∑

j Costj,p,total + Penalty.

(6.4)

There, udynk (t) are the dynamic control variables, comprising input and output flow rates
F j1,k(t) and F j2,k(t) and reaction temperature θjk(t) in batch reactors j ∈ U . ustat are the
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time-invariant decision variables, namely the duration of batch operations tl. uint rep-
resent other integer decisions apart from equipment capacities Sizej, particularly the
number of batches NBS. Finally, uBool are the Boolean variables, including the selection
of active batch units Yj out of the installed ones in each plant solution, the task-unit
assignment Wj,q, and the equipment configuration X1

ψ. Additionally, differential and al-
gebraic variables z(t) and y(t) and deterministic problem parameters p are part of the
problem.

The extensive MLDO problem of this case study is provided in Appendix A. It includes
the detailed DAE systems which represent process performance at each unit procedure
as well as the complementary logical propositions to model synthesis and allocation de-
cisions. If a unit is selected to be installed, its capacity Sizej is set to be greater than
zero. In particular, Sizej is defined as a discrete decision variable whose value is defined
using increments of 0.25m3 up to 10m3, in order to facilitate the equipment purchase.
Additionally, if a unit is selected (Yj = true) in the optimal master recipe in a partic-
ular demand scenario, its volume υjk(t) is constrained by the abovementioned capacity
according to:

[

Yj
υjk(t) ≤ Size

j, t ∈ [0, 1], ∀k ∈ Kj

]

, ∀j ∈ U. (6.5)

6.3.4 Problem solution

The heuristic procedure in Algorithm 6.2.1 is applied to design the flexible plant that
gives the best response to the demand scenarios defined in Table 6.2. In this process,
the MLDO problem is optimized to calculate the master recipe that maximizes the profit
at each demand scenario s ∈ {1, ..., NS} in the plant solution Pp, p ∈ {1, ..., NP} under
evaluation.

6.3.5 Results and discussion

Step 1: Demand scenarios

The values for the uncertain demand ξsDemandS and probability ws of each scenario s ∈
{1, ..., NS}, NS = 5 are summarized in Table 6.2, following and ascendent order in the
demand value.

Scenario s 1 2 3 4 5

ξsDemandS [tn] 10.5 15.75 21 26.25 31.5
ws 0.2 0.2 0.2 0.2 0.2

Table 6.2: Uncertain demand value ξsDemandS and probability ws for scenarios s ∈ {1, ..., NS},
NS = 5 in grassroots Denbigh example.

Step 2(a): First iteration

The plant solutions obtained at the first iteration p = 0 of the heuristic Algorithm 6.2.1
are presented in Table 6.3 for each of the demand scenarios s ∈ {1, ..., NS}. The KPIs
associated to each solution are also provided therein. They correspond to the performance
of the optimal master recipe that generates each plant solution for each demand ξsDemandS .
For instance, the total revenue increases progressively from plant P1 to P5 since the
corresponding demand goes up from ξ1DemandS = 10.5 tn to ξ5DemandS = 31.5 tn.

It can be observed that all plant solutions correspond to the installation of a unique
processing unit, with a suitable capacity to fulfill the production targets with a zero
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product shortfall. While the demand value increases, so does the equipment capacity from
an optimal value of SizeU1 = 1m3 in demand scenario 1 to SizeU1 = 3m3 in demand
scenario 5. Eventually, all scenarios meet solutions with the same number of batches
NBS = 23 –except for scenario 2, whose optimal number of batches is 28– and increasing
batch sizes, from BatchS = 457 kg/batch in scenario 1 to 1, 370 kg/batch in scenario 5.

Additionally, the maximum time horizon of 144 hours is reached in all cases, since
larger utilization times allow to reduce: (i) capacity requirements and, as a result, amorti-
zation costs –which are directly related to equipment capacity–, (ii) heating requirements
and, as a result, processing costs, and (iii) selectivity and, as a result, raw material costs.
In contrast, temperature ranges are slightly different for the different scenarios, being clear
its effect on the selectivity. The lower the temperature profile, the better the selectivity
of product S. The optimal highest temperature rises gradually following a monotonically
increasing behavior as long as the batch size goes up –except for the solution of scenario
2 which has a clear different pattern. This may be caused by the higher production re-
quirements or by the reactor scale-up. Numerical errors associated to the discretization
of the MLDO model could also explain this tendency.

Step 2(b): Following iterations

Next, each of the obtained plant solutions Pp, p ∈ {1, ..., NP} enters the iterative loop in
step 3 of the heuristic procedure. There, each plant is used as a base case on which to
evaluate the installation of additional equipment items. The problem is equivalent to a

Scenario s 1 2 3 4 5

Demand [tn] 10.5 15.75 21 26.25 31.5
Installed units U U1 U1 U1 U1 U1

Size of units U [m3] 1 1.25 2 2.5 3
Plant solution P1 P2 P3 P4 P5

Equipment configuration α α α α α
No. Batches 23 28 23 23 23
Batch size [kg/batch] 457 563 913 1,141 1,370
Total processing time [h] 144 144 144 144 144
Batch processing time [h/batch] 6.26 5.14 6.26 6.26 6.26
Batch cycle time [h/batch] 6.26 5.14 6.26 6.26 6.26
Shortfall of product S [kg] 0 0 0 0 0
Total profit [e] 2,313 3,704 5,103 6,520 7,945

Total revenue 4,523 6,785 9,046 11,308 13,569
Raw material cost 848 1,285 1,710 2,142 2,573
Processing cost in U 394 612 783 980 1,179
Occupation cost in U 360 505 590 705 820
Amortization in U 608 679 859 961 1,052
Penalty 0 0 0 0 0

Profit per batch [e/batch] 101 132 222 283 345
Profitability [e/h] 16 26 35 45 55
Selectivity of S [kmol S/kmol total]0.594 0.589 0.590 0.589 0.588
Total energy consumption [kWh] 15,764 24,463 31,331 39,208 47,171
Temperature range in U [◦C] [50, 86.9] [50, 109.6] [50, 88.6] [50, 90.7] [50.0, 93.5]

Table 6.3: Plant solutions obtained at iteration p = 0 in step 2 of the heuristic approach for
each demand scenario s ∈ {1, ..., NS} in grassroots Denbigh example. Items in bold
indicate the objective function.
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retrofit problem where amortization is calculated for new and for default units in the base
plant solution. The number of plants NP is upgraded at each iteration, provided that new
solutions are found.

For illustrative purposes, iterations p = 1 and p = 2 with base plants P1 and P2 are
here presented. The former is composed of one unit U1 with a capacity of 1m3. It has
been obtained at iteration p = 0 with scenario s01 = 1, which has a demand ξ1DemandS
of 10.5 tn of product S, and is now used to root the rest of forecasted scenarios s ∈
{s01+1, ..., NS}={2, ..., 5}. Table 6.4 summarizes the optimal solutions for each scenario
at this iteration. The same plant P1 with no variations is maintained for ξ2DemandS and
ξ3DemandS , adapting the master recipe to drive the optimal process in the aforesaid reaction
unit U1. In contrast, extended systems P6 and P7 are obtained for the two higher demand
values ξ4DemandS and ξ5DemandS , incorporating an additional unit U2 with a capacity of
1m3 and 1.75m3 respectively.

As a result of enforcing the installation of unit U1 with a predefined capacity of 1m3,
the optimal profit is reduced in all the demand scenarios s ∈ {2, ..., 5} at this iteration
p = 1 with regard to previous one p = 0, as it can be observed by comparing Tables 6.3
and 6.4. Let us direct the attention to the demand scenarios 2 and 3 where plant P1

is not modified. Their higher production demands ξ2DemandS and ξ3DemandS , with regard
to ξ1DemandS for which this plant was designed, lead the process optimization to more

Scenario s 2 3 4 5

Demand [tn] 15.75 21 26.25 31.5
Installed units U U1 U1 {U1, U2} {U1, U2}
Size of units U [m3] 1 1 {1, 1} {1, 1.75}
Plant solution P1 P1 P6 P7

Equipment configuration α α π π
No. Batches 36 54 29 25
Batch size [kg/batch] 437 389 905 1,260
Total processing time [h] 144 144 144 144
Batch processing time [h/batch] 4.00 2.67 4.97 5.76
Batch cycle time [h/batch] 4.00 2.67 4.97 5.76
Shortfall of product S [kg] 0.92 0 0 0
Total profit [e] 3,662 4,728 6,018 7,427

Total revenue 6,784 9,046 11,308 13,569
Raw material cost 1,327 1,991 2,138 2,547
Processing cost in U 632 895 {518, 518} {442, 775}
Occupation cost in U 555 825 {450, 450} {390, 578}
Amortization in U 608 608 {608, 608} {608, 804}
Penalty 1 0 0 0

Profit per batch [e/batch] 102 88 208 297
Profitability [e/h] 25 33 42 52
Selectivity of S [kmol S/kmol total] 0.569 0.506 0.590 0.594
Total energy consumption [kWh] 25,267 35,796 41,418 48,670
Temperature range in U [◦C] [50, 110] [50, 110] [50, 110] [50, 108.6]

[50, 110] [50, 109.5]

Table 6.4: Plant solutions obtained at iteration p = 1 in step 3 of the heuristic approach for each
demand scenario s ∈ {s01+1, ..., NS}, s

0
1 = 1 in grassroots Denbigh example. Items in

bold indicate the objective function.
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Denbigh case study

extreme conditions because a larger number of batches should be processed in the same
time horizon within the same processing capacity. For instance, 36 and 54 batches are
required respectively in these scenarios to be able to fulfill the demand, reducing the
available batch processing time from 6.26 h (s = 1) to 4.00 h (s = 2) and 2.67 h (s = 3) per
batch. As a result, reaction temperatures reach the upper bound of 110◦C in both cases,
higher than their optimal solutions at iteration p = 0 (109.6◦C and 88.6◦C respectively).
The processing time reduction and the temperature increase go in hand with a huge
diminution in the selectivity of product S, becoming a 3.4% lower in scenario 2 and a
14.2% lower in scenario 3. Furthermore, this loss of efficiency in the process causes that
the size of the batches processed in the same plant P1 is reduced despite the total demand
increases, obtaining batches of 457, 438, and 389 kg/batch of product S for scenarios 1, 2,
and 3 respectively.

In contrast, in the solution of demand scenarios 4 and 5 , the installation of a second
unit U2 operating in parallel allows to keep a process efficiency similar to the obtained
at iteration p = 0. For example, the selectivity is over the 0.59 in both cases, batch pro-
cessing times are close to 5 h/batch (i.e. 4.97 h and 5.76 h in demand scenarios 4 and 5
respectively), and batch sizes are not reduced so much, less than a 20% in both scenarios.
Nevertheless, analyzing the percentage of profit deterioration with regard to the previous
iteration, similar values are obtained in scenarios 3, 4, and 5 –namely a 7.3%, 7.7%, and
6.5% respectively. The conclusion is that, given a underspecified reactor capacity, similar

Scenario s 3 4 5

Demand [tn] 21 26.25 31.5
Installed units U U1 {U1, U2} {U1, U2}
Size of units U [m3] 1.25 {1.25, 1.25} {1.25, 1.5}
Plant solution P2 P8 P9

Equipment configuration α π π
No. Batches 40 23 25
Batch size [kg/batch] 525 1,141 1,260
Total processing time [h] 144 144 144
Batch processing time [h/batch] 3.60 6.26 5.76
Batch cycle time [h/batch] 3.60 6.26 5.76
Shortfall of product S [kg] 0 0 0
Total profit [e] 4,985 6,005 7,417

Total revenue 9,046 11,308 13,569
Raw material cost 1,822 2,127 2,547
Processing cost in U 845 {491, 491} {552, 663}
Occupation cost in U 715 {418, 418} {453, 515}
Amortization in U 679 {679, 679} {679, 744}
Penalty 0 0 0

Profit per batch [e/batch] 125 261 297
Profitability [e/h] 35 42 51
Selectivity of S [kmol S/kmol total] 0.553 0.593 0.594
Total energy consumption [kWh] 33,784 39,276 48,578
Temperature range in U [◦C] [50, 109.6] [50, 86.7] [50, 107.6]

[50, 86.7] [50, 108.2]

Table 6.5: Plant solutions obtained at iteration p = 2 in step 3 of the heuristic approach for each
demand scenario s ∈ {s02+1, ..., NS}, s

0
2 = 2 in grassroots Denbigh example. Items in

bold indicate the objective function.
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6. Integrated batch process development and flexible plant design

processing conditions can be maintained by increasing the number of processing unit.
However, the economic savings are often countervailed by the higher amortization costs.

Similar result are obtained at iteration p = 2 with plant P2 as base solution, which
is composed of one unit U1 with a capacity of 1.25m3. This solution has been obtained
at iteration p = 0 with the second demand scenario s02 = 2, therefore it is now used to
root the rest of forecasted scenarios s ∈ {s02+1, ..., NS}={3, ..., 5}. In this case, the same
plant solution P2 with no modifications is the optimal one for ξ3DemandS , whereas extended
systems P8 and P9 are obtained for ξ4DemandS and ξ5DemandS , incorporating an additional
unit U2 with a capacity of 1.25m3 and 1.5m3 respectively. The master recipes obtained
for each scenario are summarized in Table 6.5 for this iteration. Pursing an exhaustive
search, the remaining plant solutions Pp, p ∈ {3, ..., NP} would be used as base plant
solutions following the same methodology. Let us note that NP is upgraded at iterations
p = 0, 1, and 2, since new plant elements have been incorporated improving the base
solution for particular scenarios. Then, Np rises from 0 to 5 in iteration p = 0, from 5 to
7 in iteration p = 1, and from 7 to 9 in iteration p = 2.

Up to this point, the solution of each demand scenario s ∈ {1, ..., NS} and rooting on
each base plant Pp, p ∈ {1, ..., NP} is a deterministic optimization problem which provides
an optimal solution according to the MLDO features discussed in previous chapters.
Global optimality can not be guaranteed, but the chances to do so are supported through
the use of IFS solutions.

Step 3: Evaluation of plant alternatives

In order to determine which is the flexible plant solution, the expected profit of each plant
alternative is evaluated, understood as the weighted average of all possible values taking
into account the whole probability space of the uncertain demand. For that purpose,
process synthesis and allocation decisions are optimized in the master recipe for each plant
solution Pp, p ∈ {1, ..., 9} –characterized by the capacity Sizej of installed processing units
j ∈ U– and for each demand scenario s ∈ {1, ..., 5}. Next, the expectancy of plant solution
Pp, is calculated according to:

Epv =

NS
∑

s=1

ws v(Pp, ξ
s
DemandS

), (6.6)

where Epv represents the expected value of v, referred to: total profit (Profittotal), total
costs (Costtotal), product revenue (RevenueS,total), raw material expenses (CostA,total),
total processing, occupation, and amortization costs in batch units (Costp,total, Costo,total,
and Costa,total respectively), and shortfall penalty (Penalty). The standard deviations σpv
of the profit and the individual contributions v are also calculated for each plant solution
Pp. This is an indicator of the risk associated to each solution, and is determined by:

σpv =

√

√

√

√

1

NS

NS
∑

s=1

(v(Pp, ξsDemandS)− E
p
v ) . (6.7)

Figure 6.4 summarizes the obtained expectancies and standard deviations. Two dif-
ferentiated plant behaviors to deal with uncertainty are identified in sub-figures (a) and
(b). On the one hand, the expected profit rises from plants P1 to P5, composed of a single
unit U1, as long as the reactor size increases from 1m3 to 3m3. Such gradual improve-
ment is due to a reduction in the total costs. First, plant P1 is distinguished of the other
solutions by the huge penalty costs associated to product shortfall in the larger demand
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P5 4,079±1,074 9,046±3,198
P6 4,471±1,212 9,046±3,198
P7 4,527±1,134 9,046±3,198
P8 4,517±1,144 9,046±3,198
P9 4,550±1,122 9,046±3,198

(b)

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

4000 

4500 

1 2 3 4 5 6 7 8 9

Plant solution

E
p v
±

σ
p v
[e

]

CostA,total Costp,total Costo,total
Costa,total Penalty

Plant
solution

CostA,
total

Costp,
total

Costo,
total

Costa,
total

Penal-

ty

[e] [e] [e] [e] [e]

P1 2,454 1,007 1,014 608 450
±1,466 ±503 ±597 ±899

P2 2,026±987 896±398 789±371 679 0
P3 1,741±659 800±313 610±224 859 0
P4 1,711±621 777±297 572±201 961 0
P5 1,697±611 769±289 560±175 1,052 0
P6 1,716±640 808±316 731±256 1,215 0±1
P7 1,698±603 773±296 645±237 1,411 0
P8 1,697±614 782±296 679±236 1,359 0
P9 1,697±604 781±285 649±233 1,423 0

(c)

Figure 6.4: Expectancy Epv and standard deviation σpv of variables v of each plant solution Pp
in grassroots Denbigh example. v are referred to: (a) total profit (Profittotal), (b)
total costs (Costtotal) and product revenue (RevenueS,total), and (c) raw material
expenses (CostA,total), total processing, occupation, and amortization costs in batch
units (Costp,total, Costo,total, and Costa,total), and shortfall penalty (Penalty).
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6. Integrated batch process development and flexible plant design

scenario ξ5DemandS in the given time horizon of 144 hours, reflected in a expected penalty
of 450 ± 899e in this solution. In next plant solutions P2 to P5, there is no penalty.
Moreover, raw material, processing, and occupation costs decrease, as is illustrated in
Figure 6.4c. Consequently, the total cost is reduced globally, despite the increase in amor-
tization costs. On the other hand, plants P6 to P9, which comprise two processing units
U1 and U2, provide similar results among them, since the costs compensate each other
in the different solutions. A likely explanation of these results is the fact that the total
volumes (SizeU1+SizeU2) are very close in all these plants, with a value of 2m3 in P6,
of 2.5m3 in P8, and of 2.75m3 in P7 and P8. Thus, they have similar processing volumes
and occupation costs.

Step 4: Best flexible plant

According to the expected profit maximization objective, the best plant solution is plant
P3, with a value of 5, 036e. In contrast, risk minimization could be evaluated by min-
imizing the standard deviation of the total expenses. In this case, the best solution of
those evaluated would be P5, with a value of σpCosttotal = 1, 074e. As it can be observed
in Figure 6.4a, the value of the expected profit in plant solution P3 is very alike to the
value of other solutions like P4 and P5. This fact indicates that a similar performance
can be achieved by different plants for a given structure, provided that the processing
capacity in the solution space fulfills the production levels in all plausible scenarios.

Clearly, a factor of paramount importance to achieve such flexibility in several plant
solutions is the support of plant design by the dynamic optimization of master recipes,
involving process synthesis and plant allocation decisions. Additionally, the fulfillment of
the complete demand is crucial in problems where product shortfall have a huge economic
impact as in this example, where the penalty cost p̂penalty is defined as twice the selling
price p̂S. Let us bear in mind that a huge uncertainty margin is considered, which ranges
from −50% to +50% of the estimated product demand.

The characterization of the master recipes for each demand scenarios s ∈ {1, ..., 5} in
the best flexible plant P3 is summarized in Table 6.6 as an example. It can be observed that
batch cycle times and processing conditions are adapted in order to provide a compromise
between high product selectivity and low occupation costs. This way, reaction temperature
goes up gradually along the different demand scenarios (from a constant profile set in 50◦C
in s = 1 to a dynamic profile with a highest temperature of 110◦C in s = 5). At the same
time, batch processing time is reduced (from 11.12 h/batch in s = 1 to 3.89 h/batch in
s = 5) in order to produce larger number of batches (from 12 for s = 1 to 37 in s = 5)
with a similar batch size (between 851 and 926 kg/batch).

Plant solutions with two processing units U1 and U2 do not improve the global solution,
as is illustrated in Figure 6.4a. This is principally due to their higher investment costs.
For instance, plant solution P6 has a total capacity (SizeU1+SizeU2 = 2m3) equivalent to
plant solution P3 (SizeU1 = 2m3). However, the sum of amortization costs increases from
859e in plant P3 to 1, 215e in plant 6, as is shown in Figure 6.4c. Table 6.7 provides the
optimal master recipes in plant P6 for comparative purposes. In broad terms, it can be
observed that a very similar number of batches and processing conditions are defined in
plants P3 and P6 in each demand scenario. However, taking a close look at Figure 6.4, the
costs are higher in plant P6 compared to plant P3, except for raw material cost –which is
slightly lower due to higher selectivity in various scenarios in P6– and the penalty –which
is equal to zero in both cases. To determine the reasons why occupation and processing
costs increase from a plant with one reactor of 2m3 to a plant with two reactors of 1m3

each one, a closer study of particular contributions in all demand scenarios should be
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Scenario s 1 2 3 4 5

Demand [tn] 10.5 15.75 21 26.25 31.5
Installed units U U1 U1 U1 U1 U1

Size of units U [m3] 2 2 2 2 2
Plant solution P3 P3 P3 P3 P3

Equipment configuration α α α α α
No. Batches 12 17 23 30 37
Batch size [kg/batch] 875 926 913 875 851
Total processing time [h] 133.48 144 144 144 144
Batch processing time [h/batch] 11.12 8.47 6.26 4.80 3.89
Batch cycle time [h/batch] 11.12 8.47 6.26 4.80 3.89
Shortfall of product S [kg] 0 0 0 0 0
Total profit [e] 2,140 3,647 5,103 6,488 7,804

Total revenue 4,523 6,785 9,046 11,308 13,569
Raw material cost 842 1,264 1,710 2,174 2,714
Processing cost in U 368 574 783 1,021 1,252
Occupation cost in U 314 440 590 765 940
Amortization in U 859 859 859 859 859
Penalty 0 0 0 0 0

Profit per batch [e/batch] 178 215 222 216 211
Profitability [e/h] 16 25 35 45 54
Selectivity of S [kmol S/kmol total] 0.599 0.598 0.590 0.580 0.558
Total energy consumption [kWh] 14,719 22,970 31,331 40,837 50,079
Temperature range in U [◦C] 50 [50, 74.4] [50, 88.6] [50, 110] [50, 110]

Table 6.6: KPIs for the optimal master recipes in the best plant solution P3 in each demand
scenario s ∈ {1, ..., 5} in grassroots Denbigh example, including the optimal profit
values achieved. Items in bold indicate the objective function.

addressed. This way, Table 6.7 shows that the optimal processing modes in plant P6 for
all demand s ∈ {1, ..., 5} is parallel configuration π. As a result, occupation costs increase
in P6 with a total value of 731e which is higher than occupation costs of 610e in one
single unit in P3, due to the fixed term in the evaluation of occupation costs.

According to the master recipes in plants P3 and P6, it seems that the optimal op-
erating mode in all the demand scenarios is the same, occupying the maximum number
of available processing units. However, this is not the case in all plant solutions. For ex-
ample, single unit operation is defined in the two-reactor plant P7. In this solution, the
capacity of processing units is asymmetrical with 1m3 and 1.75m3 in reactors U1 and U2

respectively. The KPIs for each demand scenario s ∈ {1, ..., 5} are summarized in Table
6.8 for this plant solution P7. As a result of having processing units with different sizes,
it can be observed that occupation costs are reduced with regard to plant P6, decreasing
to 645e. The reason is that the production level in the two lowest demand scenarios can
be fulfilled within a single reactor operating at low temperatures (50◦C and 69.8◦C in
scenarios 1 and 2 respectively) and high batch processing times (11.04 h and 7.20 h in sce-
narios 1 and 2 respectively). To sum up, the occupation costs are reduced from 386e to
308e in scenario 1 and from 540e to 465e in scenario 2. Nevertheless, amortization costs
have risen with regard to plant P6, from 1, 215e to 1, 411e, more than the occupation
costs savings. It is presumed that solutions with more than one processing units would
be the optimal ones if longer amortization periods where considered, thus reducing the
amortization load. In these case, the installation of several processing units with different
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Scenario s 1 2 3 4 5

Demand [tn] 10.5 15.75 21 26.25 31.5
Installed units U {U1, U2} {U1, U2} {U1, U2} {U1, U2} {U1, U2}
Size of units U [m3] {1, 1} {1, 1} {1, 1} {1, 1} {1, 1}
Plant solution P6 P6 P6 P6 P6

Equipment configuration π π π π π
No. Batches 12 17 23 29 36
Batch size [kg/batch] 875 926 913 905 875
Total processing time [h] 122.23 144 144 144 144
Batch processing time [h/batch] 10.19 8.47 6.26 4.97 4.00
Batch cycle time [h/batch] 10.19 8.47 6.26 4.97 4.00
Shortfall of product S [kg] 0 0 0 0 2
Total profit [e] 1,712 3,193 4,627 6,018 7,323

Total revenue 4,523 6,785 9,046 11,308 13,568
Raw material cost 837 1,254 1,696 2,138 2,655
Processing cost in U {187, 187} {291, 291} {394, 394} {518, 518} {632, 632}
Occupation cost in U {193, 193} {270, 270} {360, 360} {450, 450} {555, 555}
Amortization in U {608, 608} {608, 608} {608, 608} {608, 608} {608, 608}
Penalty 0 0 0 0 2

Profit per batch [e/batch] 143 188 201 208 203
Profitability [e/h] 14 22 32 42 51
Selectivity of S [kmol S/kmol total]0.602 0.604 0.595 0.590 0.570
Total energy consumption [kWh] 14,926 23,289 31,527 41,418 50,538
Temperature range in U [◦C] 50 [50, 75.7] [50, 86.9] [50, 110] [50, 110]

50 [50, 75.7] [50, 86.9] [50, 110] [50, 110]

Table 6.7: KPIs for the optimal master recipes in plant solution P6 in each demand sce-
nario s∈{1, ..., 5} in grassroots Denbigh example, including the optimal profit values
achieved. Items in bold indicate the objective function.

sizes would be affordable, and savings due to the occupation of a less number of units
with a more appropriated size for each demand scenario could be met.

Final remarks

One of the principal features of the obtained results is the similarity in the performance of
most of the plant solutions with a same number of reactors. Besides, the complete demand
fulfillment is accomplished in most of the cases, except for P1 in demand scenario s = 5.
Such high success in the ratio of demand fulfillment solutions is due to the adaptation of
process synthesis and allocation decisions, which permit to operate in optimal conditions
according to the trade-off between economic performance and plant flexibility considered
in the objective function. Even in the case of plant solution P1, which is the one with
smaller capacity –i.e. one reactor U1 with a capacity of 1m3–, the complete demand is
fulfilled for all the demand values but ξ5DemandS = 31.5 tn, with a production level over
the 98% with regard to the design demand ξ1DemandS = 10.5 tn. This way, the integrated
process development approach proposed in this thesis is proved to have an crucial role in
the achievement of plant flexibility through the simultaneous solution of process synthesis
and plant allocation decisions, such as reference trajectories of the feed-forward control
or the selection of the operating mode.

168



i

i

“MMB” — 2014/1/27 — 10:03 — page 169 — #203
i

i

i

i

i

i
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Scenario s 1 2 3 4 5

Demand [tn] 10.5 15.75 21 26.25 31.5
Installed units U {U1, U2} {U1, U2} {U1, U2} {U1, U2} {U1, U2}
Size of units U [m3] {1, 1.75} {1, 1.75} {1, 1.75} {1, 1.75} {1, 1.75}
Plant solution P7 P7 P7 P7 P7

Equipment configuration β β π π π
No. Batches 13 20 17 21 25
Batch size [kg/batch] 808 788 1,235 1,250 1,260
Total processing time [h] 143.54 144 144 144 144
Batch processing time [h/batch] 11.04 7.20 8.47 6.86 5.76
Batch cycle time [h/batch] 11.04 7.20 8.47 6.86 5.76
Shortfall of product S [kg] 0 0 0 0 0
Total profit [e] 1,594 3,058 4,526 5,987 7,427

Total revenue 4,523 6,785 9,046 11,308 13,569
Raw material cost 841 1,279 1,697 2,129 2,547
Processing cost in U {0, 368} {0, 571} {277, 467} {351, 611} {442, 775}
Occupation cost in U {0, 308} {0, 465} {270, 398} {330, 488} {390, 578}
Amortization in U {608, 804} {608, 804} {608, 804} {608, 804} {608, 804}
Penalty 0 0 0 0 0

Profit per batch [e/batch] 123 153 266 285 297
Profitability [e/h] 11 21 31 42 52
Selectivity of S [kmol S/kmol total]0.599 0.592 0.595 0.592 0.594
Total energy consumption [kWh] 14,739 22,850 29,764 38,492 48,670
Temperature range in U [50, 52.9] [50, 74.3] [50, 108.6]
[◦C] 50 [50, 69.8] [50, 53.0] [50, 75.1] [50, 109.5]

Table 6.8: KPIs for the optimal master recipes in plant solution P7 in each demand scenario s ∈
{1, ..., 5} in grassroots Denbigh example, including the optimal profit values achieved.
Items in bold indicate the objective function.

6.4 Acrylic fiber production system

The aim of this example is to direct attention toward industrial-sized polymerization
processes. In particular, the simultaneous batch process development and plant design
in grassroots scenarios is addressed to produce acrylic fiber with a specific composition
and quality. Further synthesis decisions are considered with regard to previous examples,
namely the selection of process stages, equipment technology, and chemicals, as well as
the potential solvent recovery and reuse.

6.4.1 Process description

Polymerization has been historically an area of application where PSE tools have been
widely used through the combination of polymer science, chemistry, and technology, with
process engineering principles (Giudici, 2000). A significant amount of work has been
devoted to the modeling and simulation of polymerization reaction systems, which are
characterized by complex interactions between productivity indicators –e.g. conversion,
batch time, or profit– and polymer properties –e.g. polydispersity or molecular weight
distribution. In particular, polymer quality is strongly related to measures like the chain
length or the mass average number and these should be calculated as a function of interme-
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6. Integrated batch process development and flexible plant design

diate products. However, these are ruled by complex reaction mechanisms and equations
systems that include phenomena like the life and dead polymers moments. Furthermore,
physicochemical phenomena like the auto-acceleration and the Trommsdorf effect may
occur depending on processing conditions such as the viscosity and temperature in the
polymerization reaction. As a result, the design, operation and control of polymerization
reactors constitute challenging problems, where the choice of the trajectories of reactor
temperature and monomer feed rate is crucial to determine the compromise between
productivity and polymer quality (Giudici, 2000, Embiruçu et al., 1996).

Despite most of the research has been focused on the polymerization reaction, down-
stream tasks also contribute to the optimization of overall economic and environmental
production targets. For instance, the effect of cleaning technologies in polymerization
processes was proved by Capón-García et al. (2011a) solving the optimal scheduling of
polymer manufacturing facilities. Gol’dfein & Zyubin (1990) and Bajaj et al. (1996) in-
dicated that the polymer-solvent separation stage could be dismissed if the achieved con-
version was high. Gol’dfein & Zyubin (1990) also detected that the variety of organic and
aqueous solvents that can be used in polymerization processes have a different environ-
mental impact depending ton the molecular composition of the solvent. The interactions
between consecutive process stages and their effect over global targets motivates the study
of the trade-offs in process synthesis, plant allocation, and plant design decisions by us-
ing a unique optimization model to simultaneously evaluate structural and performance
degrees of freedom.

Acrylic fiber production

Acrylic fibers are synthetic fibers composed of at least 85% of acrylonitrile (AN) monomer
and the rest of another comonomer such as vinyl acetate (VA), methyl acrylate (MA),
methyl methacrylate (MMA), vinyl chloride (VC), or vinylidene chloride (VDC). The
production of acrylic fiber comprises a primary stage to produce the copolymer in bulk
format and a secondary stage to transform it into spun format. Specifically, the principal
features of the manufacturing process are defined according to the related state-of-the-art
literature. The gathered information to define the complete production process is following
summarized:

• Polymer production processes are composed of two stages, namely the primary
process for bulk polymer generation and the secondary process for obtaining the
polymer in spun form;

• The principal tasks in acrylic fiber production are polymerization reaction, polymer
separation, washing and filtration, polymer repulping, filtering, spun generation,
second washing, and separation of solvent and washing (Grau et al., 1996, Capón-
García et al., 2011a, EPA, 1995);

• Two methods are used to synthesize acrylic fiber in industry, namely suspension and
solution copolymerization technologies; either batch or continuous operation may
be employed (EPA, 1995);

• There is the possibility of avoiding solvent separation after the solution copoly-
merization reaction, provided that high conversion rates are achieved (Gol’dfein &
Zyubin, 1990, Bajaj et al., 1996);

• The operational information and dynamic models of copolymerization reaction is
provided by Butala et al. (1988) and of separation systems by Haggblom (1991),
Luyben (1992), Oldenburg et al. (2003), Muntean et al. (2011);

• Washing water of final product can be recovered and reused (EPA, 1995).
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Acrylic fiber production system

The general block representation of the process is presented in Figure 6.5, taking into
account prior considerations and the additional recirculation of solvent and suspension
medium.

Polymerization

reaction
(suspension/

solution)

Separation

Wash and

filtration

Repulping Filtration

Spinning

Separation

Washing

Monomer
Initiator

Organic/
aqueous

solvent
Suspension

medium

Solvent/
suspension
medium
recycling

Waste:
solvent/
suspension
medium

Solvent

Solvent
recycling

H2O

Product

H2O
recycling

Waste: H2O

Waste: solvent

Figure 6.5: Process stages in acrylic fiber production system: general processing scheme (solid
lines) and potential processing alternatives (dashed lines).

6.4.2 Problem statement

The target is to produce an acrylic fiber composed of 85% of AN and 15% of VA in
bulk format. Moreover, the desired copolymer properties are associated to a maximum
polydispersity variation of 0.1 and a maximum deviation in the composition of 0.025. For
the sake of completeness, the modeling strategy is detailed for the entire process including
spun production, in case that the problem should be extended for further study. A single-
product campaign is assumed to produce batches of 200 kg of final product. The problem
statement of this problem is defined as follows:

Given:

• Planning data: final product, intermediates, and raw materials, expected demand
of final product, and maximum time horizon;

• Plant diagram: SEN superstructure of potential equipment units to be installed,
pipelines and connection nodes like mixers and splitters;

• Task network alternatives: mandatory and optional tasks, alternative solvents
involved into the process –i.e. organic solvent dimethylformamide (DMF) or aqueous
solvent sodium thiocyanate (NaSCN(aq))–, allowed technologies, and possible reuse
of intermediates;

• Batch process operation: potential task-unit assignments, batch operations and
phases within each unit procedure, phase to phase switching conditions, and set of
limiting processing conditions in particular units;

• Process dynamics: DAE systems to represent the process behavior in each unit
procedure, initial conditions, and set of process and control variables;

• Data related to performance evaluation: decision criteria and data to evaluate
the objective function, namely the direct cost of raw materials and resources (p̂AN,
p̂VA, p̂AIBN, p̂DMF, and p̂NaSCN(aq), p̂H2O), equipment amortization and processing
costs in processing units (čj and ĉj respectively), and costs associated to waste
treatment (p̂waste);
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6. Integrated batch process development and flexible plant design

the goal is to determine:

• Process synthesis decisions: selection of separation stage, technological speci-
fication of copolymerization reaction –i.e. solution or suspension polymerization–,
selection of solvents involved –i.e. DMF or NaSCN(aq)–, reference trajectories of
the feed-forward control variables –i.e. monomer feed rate and temperature in the
reaction stage and heat supplied in the separation stage–, duration of the batch
operations that compose each task, recirculation of intermediate mixtures –i.e. sol-
vent, suspension medium, unreacted monomer, and initiator–, and material transfer
synchronization between tasks –i.e. synchronization of flow rates, compositions, and
starting and final times;

• Allocation of manufacturing facilities decisions: task-equipment assignment
–i.e. unit procedure selection–, selection of processing and storage units, and equip-
ment configuration –i.e. operating mode in single or series operation–;

• Plant design decisions: sizing of processing units;

such that the total cost is minimized and copolymer quality restrictions are fulfilled. In
particular, the total cost considers the equipment amortization, the processing costs, the
raw material expenses, and the costs associated to the waste disposal. For the sake of
simplicity, a deterministic demand is assumed in this example.

6.4.3 Superstructure representation

The following process stages or tasks are subject to be included into the process model
and are thus represented in the superstructure: (1) copolymerization reaction, (2) recovery
of unreacted monomer, solvent, and suspension medium after reaction, (3) washing and
filtration, (4) repulping, (5) filtering, (6) wet spinning, (7) second washing and filtration,
and (8) second recovery of solvent after spinning. For each process stage, several subtasks
and configurations are allowed, which determine the required equipment pieces and their
synchronization.

Nine alternative disjunctions are considered for plant and process synthesis in this
case study. For instance, either solution or suspension copolymerization technologies can
be selected. In solution polymerization, organic or aqueous solvent can be used. After the
polymerization reaction stage, there is the possibility to separate the solvent from the
copolymer or to transfer directly the solved copolymer to the repulping stage. The rest of
disjunctions are summarized in Table 6.9. All in all, each alternative leads to a particular
cost profile in the objective function. For example, the use of organic solvent drastically
increases the waste treatment expenses.

The SEN superstructure of the complete process including primary and secondary
stages is presented in Figure 6.6. It contains all the structural alternatives. In particular,
the superstructure is composed of the following equipment items, which are potentially
required, and the corresponding connections: solution and suspension polymerization re-
actors R11 and R12, evaporator and condenser E2, washing and filtering units F3, F5, F71

and F72, repulping unit R4, spinneret S6, distillation columns C81 and C82, and buffer
tanks T2, T3, T4, T81 and T82.

6.4.4 Optimization model

The problem is formulated as a MLDO according to the proposed modeling strategy.
First, the disjunctive alternatives presented in Table 6.9 are expressed through logical
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6. Integrated batch process development and flexible plant design

Disjunction Associated
Booleans

1 Solution or suspension copolymerization technologies V R11
solu , V R12

susp

2 Organic (DMF) or aqueous (NaSCN(aq)) solvent in solution
polymerization

SR11
DMF,

SR11
NaSCN(aq)

3 Selection of separation stage 2 Z2

4 Recirculation of solvent recovered in separation stage 2 to
copolymerization reaction stage 1

R2,1

5 Selection of washing and filtration stage 3 Z3

6 Recirculation of washing water in washing and filtration stage 3 to
copolymerization reaction stage 1

R3,1

7 Operating mode in process stage 7: single unit F71 or series F71 followed by
F72

X7
α, X7

σ

8 Operating mode in process stage 8: single unit C81 or series C81 followed
by C82

X8
α, X8

σ

9 Recirculation of solvent recovered in separation stage 8 to polymerization
stage 1 or repulping stage 4

R8,1 R8,4

Table 6.9: Process development disjunctions in the acrylic fiber example.

propositions relating logical decisions to each other, namely the selection of process stages
(Zi), technological alternatives (V jλ ), and chemicals (Sjc), the potential solvent recovery
and reuse (Rn), and the operating modes (X i

ψ). These decisions are additionally related
to potential processing and storage units (Yj), and to task-unit assignments (Wj,q), which
determine the processing order of batch unit procedures. Overall, the following equations
are defined:

1. The selection of solution (V R11

solu ) or suspension (V R12
susp) copolymerization technologies

and the corresponding reactors R11 (YR11) or R12 (YR12) is defined by:

V R11

solu ⊻ V R12
susp,

V R11

solu ⇔ YR11 ,
V R12
susp ⇔ YR12 .

(6.8)

2. The selection of organic (SR11

DMF) or aqueous (SR11

NaSCN(aq)) solvent in solution copoly-
merization is determined by:

V R11

solu ⇔ SR11

DMF ⊻ SR11

NaSCN(aq). (6.9)

3. The possibility of dismissing separation stage 2 (¬Z2) is conditioned by the selection
of solution polymerization technology and by the achievement of a conversion in
the solution copolimerization reactor (χR11) greater than the established minimum
input conversion in repulping stage 4 (χL

4 ). This is represented by the following
equations, which include the installation of the separation unit E2 (YE2):

¬Z2 ⇒ V R11

solu ∧
(

χR11 ≥ χ
L
4

)

,
Z2 ⇔ YE2 .

(6.10)
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4. The recirculation of the solvent or the suspension medium recovered in separation
stage 2 toward reaction stage 1 (R2,1) is associated to the installation of buffer tank
T2 (YT2) through the proposition:

R2,1 ⇔ YT2 . (6.11)

5. The selection of washing and filtration stage 3 (Z3) and corresponding equipment
item F3 (YF3) is associated to the definition of previous separation task 2, and is
represented by the following equations:

Z2 ⇔ Z3,
Z3 ⇔ YF3 .

(6.12)

6. The recirculation of the washing water in filtration stage 3 toward reaction stage 1
(R3,1) is associated to the installation of buffer tank T3 (YT3 ) through the proposi-
tion:

R3,1 ⇔ YT3 . (6.13)

7. The operating modes considered in process stage 7 include the use of one single unit
F71 (X7

α) or series configuration where unit F71 is followed by F72 (X7
σ), and are

formulated by:
X7
α ⊻X7

σ,
X7
α ⇔ YF71 ,

X7
σ ⇔ YF71 ∧ YF72 .

(6.14)

8. The operating modes considered in process stage 8 include the use of one single unit
C81 (X8

α) or series configuration where unit C81 is followed by C82 (X8
σ), and are

formulated by:
X8
α ⊻X8

σ,
X8
α ⇔ YC81 ,

X8
σ ⇔ YC81 ∧ YC82 .

(6.15)

9. The recirculation of the solvent recovered in separation stage 8 toward reaction
stage 1 (R8,1) or toward repulping stage 4 (R8,4) is associated to the acquisition of
buffer tanks T81 (YT81) or T84 (YT84) through propositions:

R8,1 ⇔ YT81 ,
R8,4 ⇔ YT84 .

(6.16)

Regarding the process performance, those tasks whose control variables have a critical
impact on the cost function are: (1) the copolymerization reaction, (2) the recovery of
unreacted monomer, solvent, and suspension medium after reaction, and (8) the recov-
ery of solvent after spinning and washing the final spun. A large ratio of solvent to be
separated and reused can partially mitigate its environmental impact and waste disposal
cost. On the contrary, low conversions in the polymerization reaction may result in higher
processing costs in the following separation stage. For that reason, dynamic models are
used to describe the performance of these process stages (1, 2, and 8) and the dynamic
trajectories of their control variables and batch times are optimized. In contrast, pro-
cess stages that are not critically contributing to the objective function and processing
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6. Integrated batch process development and flexible plant design

trade-offs may be represented by steady-state assumptions or other approximations in
order to reduce the problem complexity. Further details regarding the dynamic models of
the copolymerization and separation stages are provided in Appendix C as well as their
synchronization.

Finally, the objective function is defined as follows:

minimize
udyn
k

(t),ustat

uint,uBool

Φ = CostM1
+ CostM2

+ CostI + CostS + Costa + Costp + Costwaste,
(6.17)

where udynk (t) are the profiles of input and output flow rates (F jin1,k(t), F
j
in2,k(t), and

F jout,k(t), ∀k) and the cooling temperature profile (θjcool,k(t), ∀k) in the copolymeriza-
tion reaction stage 1 associated to units j ∈ {R11, R12}, as well as the heat supplied
in separation stage 2 associated to the evaporator j ∈ {E2} (Qjheat,k(t), ∀k). Addition-

ally, ustat refers to the composition of raw materials during the load operation (cjc,in1,k,
c ∈ {M1,M2, I}, k ∈ {1}) and the composition of monomer M1 during the reaction opera-
tion (cjM1,in1,k

, k ∈ {2}) in copolymerization reaction stage 1, and to the duration of batch
operations (tl, ∀l). Finally, uint refers to the size of installed processing units (Sizej), and
uBool comprises qualitative decisions (Zi, V

j
λ , S

j
c , Rn, X

i
ψ, Yj ,Wj,q). The complete MLDO

model is provided in Appendix C.

6.4.5 Problem solution

The MLDO problem is solved through the proposed direct-simultaneous approach. Par-
ticularly, 8 finite elements and 3 collocation points in normalized Legendre roots are used
in the full discretization step. Moreover, a piece-wise constant function is used to define
the profiles of the control variables. The obtained MINLP is solved using the OA solver
DICOPT in GAMS optimization framework. CONOPT and CPLEX are used in the NLP
and MILP subproblems respectively. The resulting optimization model is large in size, as
observed in Table 6.10 where the number of equations, continuous and integer variables,
and non-zero elements in the MINLP model are presented. It is also worth noting the
high rate of non-linear terms. These difficulties are overcome by the providing IFS that
serve as initial point in the optimization algorithms.

No.
equa-
tions

No. continuous
variables

No.
binaries

Non-zero
elements

Non-linear
terms

Solution
time

2 reaction technologies 4,805 3,080 6 21,566 10,357 44 s.
" & 1 separator 7,371 5,831 8 30,941 14,979 206 s.
" & 2 storage tanks 18,466 10,121 8 58,760 18,857 357 s.
" & recirculation1 18,532 10,121 10 58,883 18,889 258 s.

1 Recirculation of un-reacted monomers and solvent or suspension medium.

Table 6.10: MINLP model characterization in the acrylic fiber example for different subsystems
with an increasing degree of complexity.

176



i

i

“MMB” — 2014/1/27 — 10:03 — page 177 — #211
i

i

i

i

i

i

Acrylic fiber production system

6.4.6 Results and discussion

The primary part of the copolymerization process to obtain 200 kg of copolymer with
a composition of 85% of AN and 15% of VA in bulk format is optimized. The following
stages are included in the problem: (1) copolymerization reaction, (2) separation of solvent
or suspension medium, and (3) washing and filtration.

First, six subsystems are addressed to obtain initial feasible solutions that can be
provided to the MINLP. The subsystems refer to the two optional technologies and the
two considered solvents in the solution polymerization, and to the recirculation or not of
the bottoms flow in the separation stage. To solve each subproblem, the Boolean variables
corresponding to prior decisions are fixed, and the logical propositions are solved in a
preliminary step. This way, the remaining logical variables are determined and the MINLP
problem becomes a NLP, thus avoiding the combinatorial part of the problem. The three
subproblems are:

• Solution polymerization technology using organic solvent DMF: V R11

solu= true and
SR11

DMF=true for R2,1=true and for R2,1=false;
• Solution polymerization technology using aqueous solvent NaSCN(aq): V R11

solu= true

and SR11

NaSCN(aq)=true for R2,1=true and for R2,1=false;

• Suspension polymerization technology: V R12
susp=true forR2,1=true and forR2,1=false.

The complete set of Booleans for each case are summarized in Table 6.11.

Subsystem V R11
solu V R12

susp SR11
DMF SR11

NaSCN(aq) Z2 R2,1 YR11 YR12 YE2 YT2

1 T F T F T F T F T F
2 T F T F T T T F T T
3 T F F T T F T F T F
4 T F F T T T T F T T
5 F T F F T F F T T F
6 F T F F T T F T T T

Table 6.11: Boolean variables for the three subsystems of the acrylic fiber example solved in
the preliminary step to calculate IFS. In bold, variables fixed originally. T: true, F:
false.

In Figure 6.7 the objective function values obtained for the six NLP subsystems are
presented for comparative purposes. The results for the MINLP considering the complete
system are also shown for the case where recirculation from separated solvent or suspen-
sion medium in stage 2 to copolymerization reaction stage 1 is not allowedR2,1=false and
when it is allowed R2,1={true, false}. It is fair to note that the optimal solution among
the three alternatives –i.e. solution polymerization with organic solvent, with aqueous sol-
vent, or suspension polymerization– depends on decisions on other process stages, namely
the recirculation. When recirculation it is not considered, the best alternative is sus-
pension polymerization (subsystem 5). In contrast, solution polymerization with aqueous
solvent (solution 4) is selected when the recirculation of solvent and unreacted monomer
are allowed, which are used in a subsequent batch. The proposed modeling approach
integrates all these degrees of freedom and allows the consideration of the alternatives
simultaneously to obtain the optimal solution.
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Figure 6.7: Total cost for the six subsystems and for the complete system with R2,1=false
and without R2,1=true recirculation in the acrylic fiber example. In black, optimal
solution.

The contributions to the cost calculation in the objective function are summarized in
Table 6.12 for the six subsystems, including the optimal solution. Essentially, it can be
noted that the heaviest cost weight is related to raw material, emphasizing the solvent
cost compared to the suspension medium. This way, solutions with recirculation replace
a great part of the raw material costs. For the economic scenario considered, these costs
are much higher than cooling water, and even heat costs in the separation stage. In fact,
this is the reason why solutions with recirculation are much better than solutions without
recirculation in all cases, even for the case of suspension polymerization. These solutions
are consistent, since recirculation is the only mean to promote solvent savings without
detriment of the reaction effectiveness. The solution would presumably be different if sec-

Subsystems Complete
1 2 3 4 5 6 system

Φ Total cost [e] 2026 1035 1928 890 1177 1122 890

R11 or R12 Total cost in R11 or R12 [e] 1958 967 1829 772 1089 1011 835
Amortization [e] 228 225 167 197 238 234 197
Water consumption cost [e] 5 5 4 4 11 11 4
Cost of monomer AN [e] 637 322 689 315 346 377 315
Cost of monomer VA [e] 328 214 373 123 51 56 123
Cost of initator [e] 251 168 101 96 441 333 96
Cost of solvent or suspension [e] 510 33 494 36 1 0 36
medium

E2 Total cost in E2 [e] 67 68 99 119 88 111 119
Amortization [e] 13 10 14 15 23 21 15
Energy cost [e] 33 37 53 71 21 46 71
Cost of waste disposal [e] 21 21 31 33 43 45 33

Table 6.12: Contributions to the cost calculation associated to potential units R11, R12, and
E2, in the acrylic fiber example considering: subsystem alternatives 1 to 6 (NLP
problems) and the complete system (MINLP problem).
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Acrylic fiber production system

ondary stage would be considered in the problem, since the option of avoiding separation
stage and reusing solvent in the repulping task would be more relevant.

The optimal processing scheme is illustrated in Figure 6.8. It is characterized by the
control and processing variable profiles shown in Figure 6.9. The optimal trajectories for
the monomer dosage and the temperature in the polymerization task follow a monotoni-
cally increasing piece-wise constant function, whereas the vapor flow in the evaporation is
set in the upper bound in most of the time. One relevant feature is that the evolution of
the compositions along time show a big excess of monomers. This excessive consumption
is also supported by the recirculation of the distillate after the separation stage, since
all the monomers are light components and are complete recovered. The results obtained
also prove that the optimal time for the polymerization reaction task is much longer than
the duration of the separation stage. Therefore, it would be necessary to consider the use
of more polymerization reactors with a parallel out-of-phase configuration to reduce the
cycle time.

To conclude, the major strength of the proposed methodology is the holistic evalua-
tion of the decision criteria. In particular, trade-offs between the various process stages
within the complete process is considered in the optimization, as well as the interactions
between synthesis and allocation degrees of freedom. Additionally, the optimization model
permits the evaluation and comparison of processing alternatives according to multiple
points of view, like processing, economic, or sustainable production policies. The defined
system, which is a sub-part of the complete process for acrylic fiber production, has been
successfully solved with regard to the isolated solution of particular structures. However,
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Figure 6.8: Optimal structure and corresponding logical variables in the acrylic fiber example.
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6. Integrated batch process development and flexible plant design

to fully exploit the methodology, it would be necessary to consider not only the primary
production stage, but the complete system. Additionally, further degrees of freedom have
been detected, which should be incorporated into the model, as it is the use of several
reactors and their arrangement in parallel out-of-phase configuration, provided that the
reduction of the cycle time can be and additional objective in the production of several
batches with a limited time horizon.
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Figure 6.9: Control and process variable profiles in the optimal solution in the suspension poly-
merization reactor R11 and in the evaporator E2 in the acrylic fiber example: (a1)
AN dosage (black line) and temperature (grey line) in R11, (b1) vapor flow in E2,
and (a2-b2) molar compositions of copolymer xCo, monomers AN xAN and VA xVA,
initiator xAIBN, and aqueous solvent xNaSCN(aq) in R11 and E2 respectively.

6.5 Concluding remarks

This chapter has posed two principal targets. First, flexibility of the batch plant has been
pursued through the incorporation of uncertainty in product demand, in order to reflect
changing market conditions and variations of the plausible customer orders. Second, the
integrated solution of plant design and batch process development has been exploited as
a challenge to avoid suboptimal solutions in grassroots designs and to enhance future
flexibility.

On the one hand, the Denbigh example (§ 6.3) demonstrates that an important role is
played by process development decisions in the flexible plant design. Degrees of freedom
like the reference trajectories of the feed-forward control variables or the selection of the
operating mode permit the adaptation of master recipes, in order that the entire range of
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Concluding remarks

uncertain demand can be fulfilled in every plant solution. Overall, the integrated solution
of plant design and process development allows to fully exploit the degrees of freedom
associated to the different sub-problems, as opposed to the use of predefined recipes. The
results also indicate that physical plant restrictions barely represent a determinant factor
in the plant performance, provided that reasonable demand levels are defined. In partic-
ular, the results of this example are characterized by the similarity in the performance
of most of the plant solutions with a same number of reactors, even considering a wide
demand uncertainty space, between the -50% and the +50% of an estimated value.

On the other hand, the industrial-size example for acrylic fiber production (§ 6.4) deals
with the holistic evaluation of process development with additional degrees of freedom,
namely the selection of process stages, technological alternatives, and chemicals, as well as
the potential solvent recovery and reuse. In fact, this problem has permitted to study the
trade-offs among decisions associated to consecutive process stages. This way, the influence
of recirculating an intermediate flow toward the polymerization reaction is shown: The
decision on incorporating such recycle determines the optimal value of other decisions like
the technological alternative and the solvent selection. Essentially, the huge advantage of
the proposed MLDO-based strategy is illustrated, namely the possibility to consider all
the processing alternatives simultaneously and avoid enumeration methods or heuristics
which could skip the optimal solution.
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Chapter 7

Conclusions

"The chief enemy of creativity is ’good’ sense."

Pablo Picasso (1881 – 1973)

The fast development of sustainable processes and their agile introduction into pro-
duction systems are crucial elements for competitiveness in specialty chemical industry.
Plant flexibility and insights into physicochemical properties of the process are comple-
mentary elements to ensure a feasible and efficient operation in changing frameworks.
To give a response to these challenges, this thesis has proposed an optimization-based
approach to tackle the problem of batch process development. Particularly, synthesis of
conceptual processing schemes and plant allocation sub-problems have been integrated
in a single model in order to address their simultaneous optimization, while taking into
account the physical plant characterization.

The proposed approach relies on the combination of optimization-based tools from
three very well established areas of research in PSE, complementing each other: logic-based
modeling and optimization –extensively applied to synthesis of continuous processes–,
Multistage Dynamic Optimization –predominant tool in the optimal design of individual
batch units–, and Mixed-Integer Programming –historically applied to batch plant design
and scheduling problems.

The complex mathematical implications of an integrated model which cover a wide
range of decisions justify partly the general reluctance to use such integrative approaches,
where the optimization step may become an especially demanding activity. However,
hurdles in solution procedures should not hamper the promising results obtained and the
enormous incentives that motivate further research in modeling and optimization tools for
integrated batch process development. Special emphasis is placed on the plant flexibility
and adaptability gained through the proposed approach.

Overall, this thesis addresses the main challenges associated the application of ad-
vanced model-based optimization tools to this problem is feasible and rewarding, provided
that the detail level in the process performance representation is properly handled. This
chapter summarizes the contributions of this thesis and the further research directions
that can be followed on the basis of the results obtained.
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7. Conclusions

7.1 Thesis contributions

In the academic context, the problem of batch process development has been framed by
three well established research fields: synthesis of conceptual processing schemes, design
of individual processing units with dynamic reference trajectories, and scheduling and
design of multiproduct and multipurpose facilities. Generally, each of these problems is
solved independently through divide and conquer strategies, loosing a significant part of
the interaction among the decisions made. For instance, batch plant design problems often
assume fixed time and cost values, which restrict the allocation problem by dismissing a
number of solutions that could be obtained modifying processing conditions in a sensible
range. Another example is the influence between neighboring units, which is not taken
into account when batch unit procedures are optimized separately.

This thesis contributes to the integration of batch process development sub-problems –
i.e. batch process synthesis, plant allocation, and plant design– with several achievements
in both retrofit and grassroots design scenarios, as is following detailed.

Previous step: homogenization of the terminology

The first challenge in the development of this thesis has been the definition and classifica-
tion of published references in the context of batch process development problem. Doctoral
dissertations by Allgor (1997), Ahmad (1997), Ali (1999), Cavin (2003), Papaeconomou
(2005) and foundations provided by Rippin (1993), Reklaitis (1990), Stephanopoulos et al.
(1999), and Stephanopoulos & Reklaitis (2011) are valued in this regard. In this context:

• This work contributes to highlight the degrees of freedom to be considered in the
development of batch processes and their relation to each of the sub-problems. To
do so, the terminology has been homogenized according to the definitions provided
by Standard S88 (ANSI/ISA-88) and to the widespread terms used by the PSE
research community devoted to batch processing.

Modeling strategy for integrated batch process development

Going a step further, the principal novelty of this study is the proposed modeling strat-
egy, which combines specific modeling approaches typically applied to different problems.
In particular, an emphasis is placed on the following methods: logic-based modeling in
Generalized Disjunctive Programming (GDP) –extensively applied to synthesis of con-
tinuous processes–, multistage Dynamic Optimization (DO) –predominant strategy in
the optimal design of individual batch units–, and mixed-integer modeling –historically
applied to batch plant design and scheduling problems. This way, an integrated model
has been developed, based on: the representation of synthesis and allocation alternatives
in a SEN superstructure, the formulation of the dynamic performance of batch tasks,
the consideration of physical plant decisions and constraints, and the synchronization of
unit procedures as a function of the selected processing scheme. Overall, the problem is
formulated as a Mixed-Logic Dynamic Optimization (MLDO) problem. To the author’s
knowledge, no strategy based on GDP and DO including material transfer profiles has
been reported hitherto in the context of batch process development.

In general, cautious steps have been taken by the scientific community toward the use
of optimization-based approaches which address a big number of decisions simultaneously
in a single formulation. The reasons are the mathematical complexity of the resulting
problem and the risk of obtaining mathematically intractable problems. However, the
proposed modeling strategy presents outstanding advantages:
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• First, the SEN superstructure is characterized by covering a broad spectrum of
processing alternatives, since the characterization of the connection flows are subject
to the equipment configuration and the task-unit assignment. Moreover, it facilitates
the consideration of constraints associated to the physical plant.

• Additionally, each processing element in the SEN is associated to a single-stage or a
multistage model. These allow the representation of dynamic process performance
and the transition between batch operations and phases of the allocated batch and
semi-continuous unit procedures.

• The concurrent models of the different unit procedures are defined by the internal
characterization of each unit, by the DAE system associated to the allocated tasks,
and by the profiles of input variables defined in previous tasks.

• Moreover, the optimization of dynamic profiles through DO techniques allows to
enlarge the attainable region of the process with respect to the use of fixed set-
points, pursuing the improvement of the process efficiency.

• The use of mixed-logic modeling allows to restrict the problem size through the
incorporation of qualitative information and decisions into the mathematical model.

• Finally, the introduction of synchronization constraints ensures batch integrity in
all processing alternatives, controlling the input conditions in each unit procedure.

Technical issues

The practical progress in the aforesaid combination of modeling approaches has been
achieved by fulfilling two main issues concerning modeling techniques:

• At first place, it has been fundamental to formulate the several problem elements
with a strategy that makes possible the use of current optimization tools. For in-
stance, one difficulty is that static and dynamic variables associated to the multi-
stage and single-stage models of the different unit procedures have to be synchro-
nized depending on structural decisions.

• Second, bearing in mind the increased problem complexity, the optimization strategy
has been supported by a consistent mathematical formulation. For that purpose, the
disjunctive multistage modeling approach and the bypass strategy by Oldenburg &
Marquardt (2008) have been extended to cover coexisting multistage and single-
stage models, their interconnection, and synchronization.

Successful solution procedures

Several approaches to solve the integrated MLDO have been proposed and tested. Specif-
ically, a direct-simultaneous approach, a Differential Genetic Algorithm, and their combi-
nation in a hybrid strategy have been proved successful in a preliminary study, providing
optimal and near-optimal solutions. Given the problem complexity, getting reliable solu-
tions is a crucial achievement of this research work, especially taking into account that the
proposed approaches rely on available mathematical platforms and commercial solvers.
In particular, the contributions of the studied approaches are:

• In the direct-simultaneous strategy (§ 4.2.1), the MLDO problem is first transformed
into a MIDO one. Then, the problem is further transformed into a MINLP through
full discretization of the control and process variables. This can be solved using a
number of well-established solvers, like the decomposition algorithm OA (Duran &
Grossmann, 1986a) used in this contribution. Due to the mathematical features of
the problem, global optimality can not be guaranteed. Thus, a strategy to provide
several initial feasible solutions (IFSs) is used to support this approach and increase
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7. Conclusions

the chances of finding the global optimum (§ 4.2.1, p. 94, and § 5.2.2, p. 115).
This solution method is used in the examples of Chapters 5 and 6 which illustrate
the integrated batch process development in retrofit (§§ 5.3, 5.4, 5.5, and 5.6) and
grassroots scenarios (§§ 6.3 and 6.4).

• In contrast, the proposed stochastic and hybrid approaches lead to physically fea-
sible solutions with no need of IFSs, what represents a crucial advantage in front
of the prior deterministic method. Moreover, the DGA strategy (§ 4.3.2) provides
near-optimal solutions compared to the deterministic reference ones. By means of
the hybrid approach (§ 4.3.3), the DGA solutions are further improved up to the
reference by fixing integer decision variables and using a direct-simultaneous method
to solve the dynamic part of the model. To do so, the resulting DO model is trans-
formed into a NLP, avoiding the combinatorial part of the problem. These results
are a promising first step to deal with current limitations in computational per-
formance of standard deterministic solvers and to rise the expectations of future
solution of industrial-size problems.

Interactions among batch process synthesis, plant allocation, and plant design
problems

The promising results obtained in the examples of integrated batch process development
corroborate the advantages of the holistic evaluation of the decision criteria in both retrofit
and grassroots scenarios. In particular, the proposed strategies allow to fully exploit the
degrees of freedom associated to the different sub-problems, as opposed to the use of
predefined recipes:

• The optimization of dynamic profiles in the recipe design for emergent pollutants
through Advanced Oxidation Processes leads to reductions of nearly the 80% in the
treatment cost compared to typical recipes (§ 5.6).

• Again compared to the use of fixed recipes, improvements between the 21% and
121% in the objective function are achieved in all the retrofit scenarios of Denbigh
case study to produce specialty chemical S (§§ 5.3 and 5.4). This is accomplished
thanks to a better use of the plant capabilities, even though the installation of new
equipment is not evaluated in these particular examples.

• Moreover, if equipment re-sizing is contemplated, the objective function further
improves with regard to the problem solution with no plant modifications although
only slightly, a 0.85% in the considered example (§ 5.5).

Additionally, the proposed optimization-based strategy helps to quantify the interactions
between synthesis and allocation sub-problems. Otherwise, the evaluation of compromised
solutions would be an arduous activity. For instance:

• A greater influence on structural decisions has been identified in the retrofit Denbigh
example, compared to the effect of optimizing dynamic profiles (§ 5.3). This last
optimization provided an improvement of 12% by optimizing the dynamic profiles
with a predefined configuration, whereas it went as far as a 24% when qualitative
decisions has been considered as degrees of freedom with constant variable profiles.
Moreover, the simultaneous optimization of the structural decisions and dynamic
control profiles leads to further improved results, with an improvement of the 25%
due to the synergism between both kinds of decisions.

Regarding the integration of batch process development and flexible plant design, the
results indicate that physical plant restrictions barely represent a determinant factor in
the plant performance, provided that reasonable demand levels are defined:
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• The results of the grassroots Denbigh example (§ 6.3) are characterized by the
similarity in the performance of most of the plant solutions with a same number
of reactors, even considering a wide demand uncertainty space, between the −50%
and the +50% of an estimated value. Such flexibility in most of the plants is gained
through the adaptation of process synthesis and allocation decisions, which lead
to an operation in optimal conditions according to each economic scenario. The
exception are those plants of smaller processing capacities, which are unable to
fulfill larger demands and have a huge load in shortfall penalties.

Finally, the trade-offs among decisions associated to consecutive process stages is studied
in the industrial-size acrylic fiber example (§ 6.4). There:

• The influence of recirculating an intermediate flow toward the polymerization reac-
tion is shown. In particular, the decision on incorporating such recycle determines
the optimal value of other decisions, like the technological alternative and the solvent
selection.

• The huge advantage of the proposed MLDO-based strategy in this regard is the
possibility to consider all the processing alternatives simultaneously and avoid enu-
meration methods or heuristics which could skip optimal solutions.

• The extension of the solved primary polymerization stage –to include the secondary
stage– would serve to evaluate further compromises among neighboring tasks.

Modeling detail in dynamic transfer profiles

This work incorporates a further level of detail into the problem of batch process devel-
opment which has not been previously addressed in batch process and plant design or
scheduling problems. Besides equipment configuration and dynamic control profiles opti-
mization, as done in previous contributions from the state of the art, synchronization of
material transfer operations using dynamic flow rate profiles has been also integrated:

• However, most of the examples with the Denbigh case study (ß 5.3, 5.4), as well
as the acrylic fiber example (§ 6.4), show a small influence of dynamic variables
in transference stages . In fact, transfer stages are usually defined to be as fast
as possible, with input and output flow rate profiles ranging between the extreme
values and no temperature variation.

These complementary degrees of freedom in the exploitation of batch plants adaptability
permit a wider improvement margin in the objective function, however it can not con-
cluded that effort is justified. In contrast, the simplification of these batch operations by
optimizing uniquely their duration and constant profiles of the control variables would
likely lead to equally good solutions.

The flexibility resulting from the proposed modeling strategy allows to select the most
appropriated level of detail to be used for each unit procedure and for each material trans-
fer profile. Thus, it is possible to exploit this flexibility through different modeling aspects
from the simpler algebraic model to the more complex partial differential algebraic sys-
tem, from single-stage to multistage models, and from material transfer synchronization
within a dynamic time interval to static conditions in a unique temporal slot.

Tool for comparative purposes

In addition, the resulting optimization model has the potential to easily incorporate
changes affecting the economic scenarios, the decision criteria, or the production policy.
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7. Conclusions

This capability also enables the prompt evaluation of synthesis alternatives combination
or the study of multiple objectives, through a unique and versatile model that includes
all these options. As a mater of fact, this philosophy is the basis of the proposed heuristic
approach for flexible plant design (§ 6.2.2):

• Solutions obtained for different production policies and economic scenarios have
been evaluated in the different examples with the Denbigh case study along this
thesis, illustrating the potential to adapt the optimal master recipe according to
in-time needs.

Integrative approach

A final remark is worth regarding the reluctance to address the problem of batch process
development using integrative models that cover a wide range of decisions:

• Mathematical implications and size of the problem, with a high number of combi-
natorial decisions and non-linear functions, justify the cautious efforts. The solution
of such problem is a tough activity, and tested solution procedures are still far from
being robust. The efforts of this research work can not only but agree that detailed
dynamics and structural decisions should be only combined in the same problem if
potential synergies exist between both types of decisions.

• However, less than discourage new contributions, this thesis aims at motivating
the further study of solution strategies to address this problem, since it has been
demonstrated that PSE tools can be successfully applied to the solution of batch
integrated batch process development problem, which is definitively a bottleneck
for the fast introduction of optimal processing schemes into production systems to
improve a firm’s value.

7.2 Future work

Hence, much work remains to be done in this research field, in order to enhance the benefits
of combining PSE tools and the adaptability potential of batch plants based on MLDO.
Particularly, the incorporation of additional degrees of freedom in the optimization model
and the refinement of solution strategies are highlighted, among other issues:

• At first place, this thesis develops a modeling strategy and the guidelines to represent
the basic elements that constitute the process and recipe design problem. However,
there are still synthesis and operational alternatives which are candidates to be
included in the formulation, like the replication of units working in parallel using
out-of-phase parallel unit procedures, or the consideration of multi-product and
multi-purpose production campaigns. The incorporation of these decisions can be
done according to the proposed modeling strategy, analyzing the corresponding
constraints to be formulated and the practical issues for the implementation.

• Secondly, solution procedures here proposed can be improved by introspecting op-
timization tools which are robust and more efficient according to the mathematical
features of the optimization model. For example, solution strategies like benders
decomposition for mixed-integer problems, or the use of sandwich constraints for
bilinear terms, could improve the computational times and the solution reliability,
and should be explored. Especially, it is highlighted the need of establishing global
search procedures, in order that the modeling effort to pose a holistic formulation
with all decisions evaluated simultaneously is fully exploited and the global optimum
is not hampered by a misbehaving solution strategy.
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• Additionally, once the design problem solution is robust, it can be considered the
on-line implementation to improve the operation. Some works integrating scheduling
and process control functions in batch plants operation are already considering these
issues.

• Furthermore, many experts have underlined the importance of extending process
design problems to be combined with process control –with the goal of obtaining
stable and controllable plants– and with product design problems –with the pur-
pose of developing products whose posterior manufacture is competitive from an
economical and sustainable point of view.

• Besides, the multi-objective evaluation of sustainable, environmental benign, and
economic objectives represents a challenge to exploit the process and recipe design.
This approach was introduced in the Advanced Oxidation Process example (§ 5.6),
but could be further developed.

• Moreover, internal uncertainty could be also considered to mitigate the calculation
error for model inaccuracy.

• Finally, the determination of an appropriated level of complexity in procedural unit
models is a crucial determinant of the success to find a compromise between a
rigorous process representation and computational load. This problem could be also
further explored.
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Appendix A

Model of the Denbigh case study

This appendix details the Denbigh case study used in different examples throughout this
thesis to illustrate integrated batch process development problems. For instance, this
case study has been used to study the solution of retrofit and grassroots scenarios, of
different objective functions, and of diverse economic situations in Chapters 5 and 6. The
process description is here given together with the symbols used to denote physicochemical
parameters and variables. Moreover, the comprehensive MLDO model of this case study
is provided in consonance to the formulation proposed in Chapter 3, including the specific
set elements and parameters of the modeling strategy. Its reformulation into MIDO and
MINLP models should be made afterwards as was explained in Chapter 4.

A.1 Problem description

The Denbigh case study consists of a competitive reaction system first proposed by Den-
bigh (1958) to study temperature control profiles. The reaction mechanism is defined by:

A R S

T U.

-1

?
2

-3

?
4 (A.1)

Later, this example was adopted as a benchmark case study and used by several authors
to study process synthesis in continuous, semi-batch, and batch systems. In this thesis, the
problem parameters defined by Schweiger & Floudas (1999a) have been used to calculate
activation energies Ea,r and standard kinetic constants k0,r, assuming that those authors
worked at a nominal temperature Tnom of 80◦C. In addition, reaction enthalpy △hr data
have been defined in order to incorporate energy balances into the problem. To do so, all
reactions are considered endothermic and reference heats of formation and combustion
(Perry & Gree, 1999, Tables 2-220 and 2-221) have been taken into account to provide
consistent orders of magnitude. To sum up, the kinetic data used in the Denbigh case
study are presented in Table A.1. Like in the work by Schweiger & Floudas (1999a), a
molar density ρ of 6 kmol/m3 is assumed for all the chemical compounds A, R, S, T, and
U, as well as a molecular weight MW of 130 kg/kmol.

191



i

i

“MMB” — 2014/1/27 — 10:03 — page 192 — #226
i

i

i

i

i

i

A. Model of the Denbigh case study

The process is implemented in a SEN superstructure like the one represented in Figure
3.1 (p. 54), which may exist or be newly-constructed depending on each example. The
only difference between both situations is the base amortization cost čj , which is zero in
the case of existing units and non-zero otherwise.

The operation of each batch reactor is defined by three operations, i.e. load, hold,
and unload, and by the input and output flow rates and reaction temperature as control
variables in each stage. To back numerical methods, the initial volume υj,01 in batch
reactors is defined as a 0.1% of the maximum capacity SizeU rather than zero. Likewise,
final volume υj|kj |(1) is constrained in the optimization model such that it is lower than

the initial volume υj,01 with a maximum difference between initial and final volumes of
the 0.075% of the maximum capacity. This way, both values can be approximated to zero
while avoiding indeterminate forms and tight restrictions. The associated mathematical
error by doing so is minimal in comparison to the full-discretization errors. A minimum
occupied volume in batch reactors is also defined in the end of hold operation υL

1 .
Finally, economic decision criteria are evaluated subject to the economic parameters

summarized in Table A.2, which may differ for each particular problem example.

Reaction Ea,r k0,r [h−1] or knom,r [h−1] or
cr nr

△hr
r [kcal/kmol] [m3/(kmol h)] [m3/(kmol h)] [kcal/kmol]

1 1000 4.16 1 A 2 42·103

2 2580 23.75 0.6 A 1 38·103

3 1800 7.81 0.6 R 1 40·103

4 1210 0.56 0.1 R 2 44·103

Table A.1: Kinetic constants, adapted from Schweiger & Floudas (1999a) assuming Tnom=80◦C
as nominal temperature, in the Denbigh case study: activation energy Ea,r, standard
and nominal kinetic constants k0,r and knom,r, reactant cr, reaction order nr, and
reaction enthalpy △hr.

Scenario
ĉj c̄j,A c̄j,B c̄j,C čj p̂A p̂S p̂R p̂penalty

[ce/kWh] [e/batch] [e/m3batch] [e/h batch] [e/h] [ce/kg] [ce/kg] [ce/kg] [ce/kg]

1 2.5 5 10 0.21 0 4.8 43.1 - 2 p̂p
2 2.5 5 10 0.21 0 9.6 43.1 - 2 p̂p
3 10 5 10 0.21 0 4.8 43.1 - 2 p̂p
4 2.5 5 10 0.21 0 4.8 - 35.8 2 p̂p
5 2.5 5 10 0.21 1.03 4.8 43.1 - 2 p̂p
6 2.5 5 10 0.21 8.22 4.8 43.1 - 2 p̂p

Table A.2: Parameters of economic scenarios 1-6 in the Denbigh case study: unitary processing
costs ĉj , unitary occupation costs c̄j,A, c̄j,B , and c̄j,C , and base amortization cost čj
of reactors j ∈ U , price of raw material A p̂A, price of final products p̂p, p ∈ {S,R},
and shortfall penalty p̂penal.

A.2 Notation
The sets and parameters of the Denbigh case study to solve integrated batch process
development problems are defined in Table A.3. Tables A.4, A.5, and A.6 summarize
Boolean uBool, integer uint, time-invariant ustat, and dynamic udynk (t) decision variables,
as well as differential zk(t), algebraic yk(t), and time-invariant γ variables and process
parameters p associated to batch units j ∈ U , to storage tanks j ∈ T , and to the general
process. Parameters involved in PC and EPC constraints are also included therein.
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Notation

Set Elements in Denbigh Set Elements in Denbigh

case study case study

U U={U1, U2} N in
i ⊆Ni Nin1 ={1}

T T={Traw , Tprod} N in
j ⊂N NinU1

={2}, NinU2
={7}, NinTprod

={9},

NinMx1
={3, 6}, NinMx2

={5, 8}, NinSp1={1},

NinSp2={4}

Sp Sp={Sp1, Sp2}

Mx Mx={Mx1,Mx2}

J J={U1, U2, Traw , Tprod, Sp1, Sp2,
Mx1,Mx2}

Nout
j ⊂N NoutU1

={4}, NoutU2
={8}, NoutTraw

={1},

NoutMx1
={7}, NoutMx2

={9}, NoutSp1
={2, 3},

NoutSp2
={5, 6}PS PS={1}

Ji⊆J J1=J N0
i,ψ⊆N N0

1,α=N0
1,β=N0

1,π={6},N0
1,σ={3, 5}

Ψi Ψ1={α,β,π,σ}, α:single U1, β:single U2,

π:parallel, σ:series U1-U2

Mj MU1=MU2={1, 2}

M in
j ⊆Mj Min

U1
=Min

U2
={1}

L L={1, ..., 5} Mout
j ⊆Mj Mout

U1
=Mout

U2
={2}

La⊆L Lα=Lβ=Lπ={1,...,3},Lσ={1,...,5} Q Q={1, 2}

Kj KU1=KU2= {1,...,3} L0
j⊆L L0

U1
=L0

U2
={1, 3}

Ij⊆Kj IU1=IU2={1} Di,ψ⊆Ui D1,α=D1,β=D1,π={U1, U2},

D1,σ={U1}Oj⊆Kj OU1=OU2={3}

N N={1, ..., 9} C C={A,R,S,T,U}

Ni⊆N N1=N P⊂C P={S,R}

Para- Value in Denbigh Para- Value in Denbigh

meter case study meter case study

Lmax
Lmax=5 DOFi,ψ DOF1,α=DOF1,β=DOF1,π=4,

DOF1,σ=3l0j,q l0U1,1
=l0U2,2

=1, l0U1,2
=l0U2,2

=3

Table A.3: Sets and parameters in the Denbigh case study to solve integrated batch process
development problems.
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A. Model of the Denbigh case study

Type Description Variable/ Value/
parameter bounds

uBool Equipment selection Yj - {true,false}

Task-unit assignment Wj,q - {true,false}

uint Capacity of unit j Sizej [m3] [0, 10]

udynk (t) Input flow rate F j1,k(t) [m3/h] [0, 7.7]

Output flow rate F j2,k(t) [m3/h] [0, 7.7]

Reaction temperature θj
k

[◦C] [50, 110]

zk(t) Reactor volume υj
k
(t) [m3] [0, 2.5]

- Initial reactor volume υj,01 [m3] 0.01

Molar amount of compound c ηj
c,k

(t) [kmol] [0, 15]

- Initial molar amount of compound c ηj,0c,1 [kmol] 0.1

yk(t) Molar fraction of compound c in input flow xj
c,1,k

(t) [kmol/kmol] [0, 1]

Molar fraction of compound c in output flow xj
c,2,k(t) [kmol/kmol] [0, 1]

Rate of reaction r RXj
r,k

(t) [kmol/m3h] [0, ∞]

γ Duration of stage k of unit j tj
k

[h] [0, 2.5]

Starting time of unit j tj,s [h] [0, 144]

Final time of unit j tj,end [h] [0, 144]

Total time of unit j T j,f [h] [0, 7.5]

Processing cost in unit j Costj,p [e/batch] [0, ∞]

Occupation cost in unit j Costj,o [e/batch] [0, ∞]

Amortization cost in unit j Costj,a [e/batch] [0, ∞]

Heating energy consumed in unit j Qj
h

[kcal/batch] [0, ∞]

p Molar density ρ [kmol/m3] 6

Stoichiometric coefficient of c in reaction r νr,c [kmol/kmol] (Eq. A.1)

Activation energy of reaction r Ea,r [kcal/kmol]

(Table A.1)

Standard kinetic constant of reaction r k0,r [h−1] or

Reactant in reaction r cr -

Order of reaction r nr [ ]

Enthalpy of reaction r △hr [kcal/kmol]

Ideal gas constant R [kcal/◦K kmol] 1.987

Specific heat in the reaction mixture cp [kcal/◦K/, kg] 1.1

Temperature of input flow θin1 [◦C] 25

Heating cost ĉj [e/kcal]

(Table A.2)

Fixed occupation cost c̄j,A [e/batch]

Size-dependent occupation cost c̄j,B [e/m3 batch]

Time-dependent occupation cost c̄j,C [e/h batch]

Base amortization cost čj [e/h]

Size power in amortization function n [ ] 0.5

Base equipment capacity Size0 [m3] 3.8

PC Lower bound of input/output flow rates FL [m3/h] 1.9

Upper bound of input/output flow rates FU [m3/h] 7.7

EPC Lower bound of final volume in stage 1 υL
1 [m3] 0.25

Upper bound of final volume in last stage υU
|Kj |

[m3] υj,01

Lower bound of final volume in last stage υL
|Kj |

[m3] 0.25υj,01

Table A.4: Variables and process parameters associated to batch units j ∈ U in the Denbigh
case study.
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Type Description Variable/ Value/
parameter bounds

zk(t) Molar amount of compound c ηj
c,l

(t) [kmol] [0 500]

- Initial molar amount of compound c ηTraw,0A,1 [kmol] 500

ηTraw,0c,1 , c 6=A [kmol] 0

η
Tprod,0

c,1 [kmol] 0

γ Cost of raw material A CostA [e/batch] [0, ∞]

Revenue of product S Revenue
Tprod
S [e/batch] [0, ∞]

p Molar fraction of compound c in Traw xA,1 [kmol/kmol] 1

xc,1, c 6=A [kmol/kmol] 0

Molar density ρ [kmol/m3] 6

Molecular weight MW [kg/kmol] 130

Cost of raw material A p̂A [e/kg]
(Table A.2)

Price of final product S p̂S [e/kg]

Table A.5: Variables and process parameters associated to storage tanks j ∈ T in the Denbigh
case study.

Type Description Variable/ Value/
parameter bounds

uBool Operating mode ψ selection X1
ψ - {true,false}

uint Number of batches of product p NBp [batch] [1, 160]

ustat Duration of mathematical stage l tl [h] [0, 2.5]

yl(t) Flow rate of pipeline n ∈ {1, ..., 9} Fn,l(t) [m3/h] [0, 15.4]

Molar fraction of compound c in flow n xc,n,l(t) [kmol/kmol] [0, 1]

γ Starting time of the recipe ts [h] [0, 144]

Final time of the recipe tend [h] [0, 144]

Batch processing time T f [h/batch] [0, 144]

Batch cycle time T cycle [h/batch] [0, 144]

Total processing time T total [h] [0, 144]

Total profit Profit [e] [0, ∞]

Profitability Profitability [e/h] [0, ∞]

Total selectivity of product p ςp
total

[kmol/kmol] [0, 1]

Batch production size BatchS [kg/batch] [0, 31.5]

Unaccomplished demand of product S ShortfallS [tn] [0, 31.5]

p Demand of product S DemandS [tn] {10.5,15.75,
21,26.25,31.5}

Demand of product R DemandR [tn] 21

EPC Lower bound of stage l duration tL [h] 0.05

Upper bound of stage l duration tU [h] 10

Time horizon, maximum processing time Horizon [h] 144

for all NBp batches

Table A.6: General variables and process parameters at Level 0 in the Denbigh case study.
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A. Model of the Denbigh case study

A.3 MLDO model

A.3.1 Batch procedures at Level 1

Models of batch units

The following disjunction defines the multistage models of batch units j ∈ U and corre-
sponds to Eqs. 3.5 and 3.6 of the formulation proposed in Chapter 3. Summarizing, batch
units j ∈ U are batch reactors where the Denbigh reaction system is carried out and are
represented by:





















































































Yj

υ̇jk(t) =
(

F j1,k(t)− F j2,k(t)
)

tjk, t ∈ [0, 1], ∀k ∈ Kj ,

η̇jc,k(t) =

(

F j1,k(t) ρ x
j
c,1,k(t)− F j2,k(t) ρ x

j
c,2,k(t) +

4
∑

r=1

νr,c RX
j
r,k(t) υ

j
k(t)

)

tjk,

t ∈ [0, 1], ∀c ∈ C, k ∈ Kj ,

υj,0k+1 = υjk(1), η
j,0
c,k+1 = ηjc,k(1), ∀c ∈ C, k ∈ {1, ..., |Kj | − 1},

υjk(0) = υj,0k , ηjc,k(0) = ηj,0c,k, ∀c ∈ C, k ∈ Kj ,

RXj
r,k(t) = k0,r exp

−Ea,r/R θ
j
k
(t)(ηjcr,k(t)/υ

j
k(t))

nr ,

t ∈ [0, 1], ∀r ∈ {1, ..., 4}, k ∈ Kj ,

xjc,2,k(t) = ηjc,k(t)/
∑

c∈C

ηjc,k(t), t ∈ [0, 1], ∀c ∈ C, k ∈ Kj ,

Qjh =
∑

k∈Kj

(

∫ 1

0
cp (θ

j
k(t)− θin1 )F j1,k(t) dt t

j
k +

4
∑

r=1

△hr RX
j
r,k(t)

)

,

Costj,p = ĉj Q
j
h,

Costj,o = c̄j,A + c̄j,B Size
j + c̄j,C

∑

k∈Kj

tjk

υjk(t) ≤ Sizej , t ∈ [0, 1],∀k ∈ Kj

FL ≤ F j1,k(t) ≤ FU, t ∈ [0, 1], ∀k ∈ Ij , F
j
1,k(t) = 0, t ∈ [0, 1], ∀k ∈ Kj\Ij ,

FL ≤ F j2,k(t) ≤ FU, t ∈ [0, 1],∀k ∈ Oj , F
j
2,k(t) = 0, t ∈ [0, 1], ∀k ∈ Kj\Oj ,

υL
1 ≤ υj1(1), υ

U
|Kj |

≥ υj|Kj |(1),

T j,f =
∑

k∈Kj

tjk, tj,end = tj,s + T j,f





















































































⊻



























¬Yj
υ̇jk(t) = 0, η̇jc,k(t) = 0, t ∈ [0, 1], ∀c ∈ C, k ∈ Kj ,

υj,0k+1 = υjk(1), η
j,0
c,k+1 = ηjc,k(1), ∀c ∈ C, k ∈ {1, ..., |Kj | − 1},

υjk(t) = υj,0k , ηjc,k(t) = ηj,0c,k, t ∈ [0, 1], ∀c ∈ C, k ∈ Kj ,

F jm,k(t) = 0, xjc,m,k(t) = 0, t ∈ [0, 1], ∀c ∈ C,m ∈ {1, 2}, k ∈ Kj ,

RXj
r,k(t) = 0, t ∈ [0, 1], ∀r ∈ {1, ..., 4}, k ∈ Kj ,

Qj = 0, Costj,p = 0, Costj,o = 0,

T j,f = 0, tj,end = 0, tj,s = 0



























, ∀j ∈ U. (A.2)

The amortization cost is not calculated inside the disjunctive equation, since a processing
unit j∈U can be acquired by defining a capacity Sizej greater to zero, with its corre-
sponding investment cost, but it may not be necessarily selected in a particular master
recipe. Therefore, this cost is independent to Yj according to:

Costj,a =
čj

(

Sizej/Size0
)n
Horizon

NBS
. (A.3)

A.3.2 Synchronization

The synchronization of unit procedures is lead through the definition of task-unit assign-
ment, which are related to unit selection by Eq. 3.10 of the formulation. This equation
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reads as:
Yj ⇔ ⊻

q∈Q
Wj,q, ∀j ∈ U. (A.4)

The task-unit assignment controls the relation between times and input and output vari-
ables across the two modeling Levels 0 and 1 defined in Eqs. 3.11 to 3.14 of the formulation.
In this particular case study, where l0j,1=1 and l0j,2=3, N in

U1
={2}, Nout

U1
={4}, N in

U2
={7},

and Nout
U2

={8}, these equations become:





























WU1,1

tU1,s = ts,

tl = tU1
l , ∀l ∈ {1, ..., |KU1 |},

F2,l(t) = FU1
1,l (t), xc,2,l(t) = xU1

c,1,l(t),

F4,l(t) = FU1
2,l (t), xc,4,l(t) = xU1

c,2,l(t),

t ∈ [0, 1], ∀l ∈ {1, ..., |KU1 |},
F2,l(t) = 0, xc,2,l(t) = 0,
F4,l(t) = 0, xc,4,l(t) = 0,

t ∈ [0, 1], ∀l ∈ L\{1, ..., |KU1 |}





























⊻































WU1,2

tU1,s = ts +
∑2
l=1tl,

tl = tU1
l−2, ∀l ∈ {3, ..., |KU1 |+ 2},

F2,l(t) = FU1
1,l−2(t), xc,2,l(t) = xU1

c,1,l−2(t),

F4,l(t) = FU1
2,l−2(t), xc,4,l(t) = xU1

c,2,l−2(t),

t ∈ [0, 1], ∀l ∈ {3, ..., |KU1 |+ 2},
F2,l(t) = 0, xc,2,l(t) = 0,
F4,l(t) = 0, xc,4,l(t) = 0,

t ∈ [0, 1],∀l ∈ L\{3, ..., |KU1 |+ 2}































⊻









¬YU1

F2,l(t) = 0, xc,2,l(t) = 0,
F4,l(t) = 0, xc,4,l(t) = 0,

t ∈ [0, 1], ∀l ∈ L









(A.5)

and




























WU2,1

tU2,s = ts,

tl = tU2
l , ∀l ∈ {1, ..., |KU2 |},

F7,l(t) = FU2
1,l (t), xc,7,l(t) = xU2

c,1,l(t),

F8,l(t) = FU2
2,l (t), xc,8,l(t) = xU2

c,2,l(t),

t ∈ [0, 1], ∀l ∈ {1, ..., |KU2 |},
F7,l(t) = 0, xc,7,l(t) = 0,
F8,l(t) = 0, xc,8,l(t) = 0,

t ∈ [0, 1], ∀l ∈ L\{1, ..., |KU2 |}





























⊻































WU2,2

tU2,s = ts +
∑2
l=1tl,

tl = tU2
l−2, ∀l ∈ {3, ..., |KU2 |+ 2},

F7,l(t) = FU2
1,l−2(t), xc,7,l(t) = xU2

c,1,l−2(t),

F8,l(t) = FU2
2,l−2(t), xc,8,l(t) = xU2

c,2,l−2(t),

t ∈ [0, 1], ∀l ∈ {3, ..., |KU2 |+ 2},
F7,l(t) = 0, xc,7,l(t) = 0,
F8,l(t) = 0, xc,8,l(t) = 0,

t ∈ [0, 1],∀l ∈ L\{3, ..., |KU2 |+ 2}































⊻









¬YU2

F7,l(t) = 0, xc,7,l(t) = 0,
F8,l(t) = 0, xc,8,l(t) = 0,

t ∈ [0, 1], ∀l ∈ L









.

(A.6)

A.3.3 Process stages

Operating mode or configuration

Equipment selection and task-unit assignment depend on the operating mode or equip-
ment configuration according to Eqs. 3.17 to 3.20. These logical propositions read as:

X1
α ⇔ WU1,1 ∧ ¬YU2 , (A.7)

X1
β ⇔ WU2,1 ∧ ¬YU1 , (A.8)

X1
π ⇔ WU1,1 ∧WU2,1, (A.9)

X1
σ ⇔ WU1,1 ∧WU2,2. (A.10)
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A. Model of the Denbigh case study

The selected configuration also enforces a specific flow distribution, as determined by Eq.
3.21. In this case study, the flow distribution is defined by the following disjunction:

[

X1
α ∨X1

β ∨X1
π

F6,l(t) = 0, t ∈ [0, 1], ∀l ∈ L

]

⊻

[

X1
σ

Fn,l(t) = 0, t ∈ [0, 1], ∀n ∈ {3, 5}, l ∈ L

]

. (A.11)

A.3.4 Plant elements at Level 0

Models of plant elements with semi-continuous procedures

Time relations at Level 0 are defined by Eqs. 3.22 and 3.23, which read as follows:

T f =
∑

l∈L tl, tend = ts + T f ,
tL ≤ tl ≤ tU, ∀l ∈ {1, ..., |La|},

bypass stages: tl = 0, ∀l ∈ {|La|+ 1, ..., |L|}.
(A.12)

Additionally, the flow sheet model involves mass balances in mixers and splitters from
Eqs. 3.24 to 3.27. According to the definitions of the input and output flows N in

j and
Nout
j in connecting units j ∈Mx∪Sp in this case study, global mass balances are defined

by:
F3,l(t) + F6,l(t) = F7,l(t), t ∈ [0, 1], ∀l ∈ L,
F5,l(t) + F8,l(t) = F9,l(t), t ∈ [0, 1], ∀l ∈ L,
F1,l(t) = F2,l(t) + F3,l(t), t ∈ [0, 1], ∀l ∈ L,
F4,l(t) = F5,l(t) + F6,l(t), t ∈ [0, 1], ∀l ∈ L,

(A.13)

and component balances are defined by:

F3,l(t)xc,3,l(t) + F6,l(t)xc,6,l(t) = F7,l(t)xc,7,l(t), t ∈ [0, 1], ∀c ∈ C, l ∈ L,
F5,l(t)xc,5,l(t) + F8,l(t)xc,8,l(t) = F9,l(t)xc,9,l(t), t ∈ [0, 1], ∀c ∈ C, l ∈ L

xc,1,l(t) = xc,n,l(t), t ∈ [0, 1], ∀c ∈ C, n ∈ {2, 3}, l ∈ L,
xc,4,l(t) = xc,n,l(t), t ∈ [0, 1], ∀c ∈ C, n ∈ {5, 6}, l ∈ L.

(A.14)

Finally, the following disjunction defines the multistage models at Level 0 of semi-continuous
storage tanks j ∈ T , which supply raw material and collect the mixture containing final
product, and corresponds to Eq. 3.28 of the formulation in Chapter 3:

η̇Trawc,l (t) = (−F1,l(t) ρ xc,1,l(t)) tl, t ∈ [0, 1], ∀c ∈ C, l ∈ {1, ..., |La|},

η̇
Tprod
c,l (t) = (F9,l(t) ρ xc,9,l(t)) tl, t ∈ [0, 1], ∀c ∈ C, l ∈ {1, ..., |La|},

ηj,0c,l+1 = ηjc,l(1), ∀c ∈ C, l ∈ {1, ..., |L| − 1}, j ∈ T,

ηjc,l(0) = ηj,0c,l , ∀c ∈ C, l ∈∈ {1, ..., |La|}, j ∈ T,

xc,1,l(t) = xc,1, t ∈ [0, 1], ∀c ∈ C, l ∈ {1, ..., |La|},

CostA = p̂A(η
Traw ,0
A,1 − ηTrawA,|L| (1)),

RevenueS = p̂S(η
Tprod
S,|L| (1)− η

Tprod,0

S,1 ),

bypass stages: η̇jc,l(t) = 0, ηjc,l(t) = ηj,0c,l , xc,1,l(t) = 0,

t ∈ [0, 1], ∀c ∈ C, l ∈ {|La|+ 1, ..., |L|}, j ∈ T.

(A.15)

A.3.5 Batching

The number of batches is considered as a degree of freedom in this case study, according
to Eq. 3.32 of the formulation. Particularly, this equation relates the number of batches,
the batch size, and the total amount of product S obtained and reads as:

NBS BatchS ≥ DemandS − ShortfallS. (A.16)

This equation indicates that the accomplishment of the full demand can be relaxed. As is
defined next section (§ A.3.6), the product shortfall will have an associated penalty cost.
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MLDO model

A.3.6 Objective function and key performance indicators

Several objective functions have been defined in the different examples of the Denbigh
case study along the thesis, such as the profit, the profitability, or the total processing
costs. Additionally, other indicators or KPI have been provided to render an extensive
assessment of the process performance, like the product selectivity, the total processing
time, or the batch cycle time. Their calculation is following detailed:

Total processing cost in j∈U : Costj,p,total = NBS Costj,p, (A.17)

Total occupation cost in j∈U : Costj,o,total = NBS Costj,o, (A.18)

Total amortization cost in j∈U : Costj,a,total = NBS Costj,a, (A.19)

Total raw material cost: CostA,total = NBS CostA, (A.20)

Total revenue: RevenueS,total = NBS RevenueS, (A.21)

Shortfall penalty: Penalty = p̂penalShortfallS, (A.22)

Total profit: Profittotal = RevenueS,total − CostA,total

−
∑

j∈U

(Costj,p,total+Costj,o,total +Costj,a,total)

−Penalty, (A.23)

Batch cycle time: T cycle = max
j∈U

NBS T
j,f , (A.24)

Total processing time: T total = NBS T
cycle, (A.25)

Profitability: Profitability = Profittotal/T
total, (A.26)

Selectivity of product S: ςStotal = η
Tprod
S,|L| (1)

/

∑

c∈C

η
Tprod
c,|L| (1). (A.27)

Finally, the maximum processing time is also constrained as follows:

T total ≤ Horizon. (A.28)

Degrees of freedom in the optimization model

The total number of decisions variables is reduced according to the degrees of freedom
of each problem, such that the number of actual control variables in practice is set. This
way, the consistency of the search strategy of the solution method is improved. In this
case study, the flow rates of batch units at Level 1 which behave as control variables are
subject to the following definitions, according to Eqs. 3.34 and 3.35:

F j2,k(t) ∈ u
dyn
k (t), t ∈ [0, 1], ∀k ∈ {3}, ∀j ∈ {U1, U2}, (A.29)

[

X1
α ∨X

1
β ∨X

1
π

F j1,k(t) ∈ u
dyn
k (t), t ∈ [0, 1], ∀k ∈ {1}, ∀j ∈ {U1, U2}

]

⊻

[

X1
σ

F j1,k(t) ∈ u
dyn
k (t), t ∈ [0, 1], ∀k ∈ {1}, ∀j ∈ {U1}

]

.

(A.30)

Moreover, the logical propositions in Eqs. 3.10, and 3.17-3.20 remove six degrees of free-
dom related to logical variables and therefore permit the reduction of the ten Boolean
decisions uBool={Yj, Wj,q, X1

ψ} to four, namely the selection of the processing mode X1
ψ.
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Appendix B

Model of the photo-Fenton case study

This appendix provides further information regarding the photo-Fenton case study. This
was presented in Chapter 5 to illustrate the development of a batch PCT remediation
process to be implemented in a existing AOPs treatment plant, given two objective func-
tions. The process description is here given together with the specific set elements and
parameters of the proposed modeling strategy and the symbols used to denote physico-
chemical parameters and variables. The problem is formulated according to the MLDO
modeling strategy proposed in Chapter 3. However, qualitative decisions have not been
considered in this example, thus the mixed-logic part of the formulation is not required.
As a result, the problem becomes a DO model. Following the direct-simultaneous solution
procedure explained in Chapter 4, the DO should be discretized to obtain a NLP problem
that is optimized using deterministic solvers.

B.1 Problem description

Advanced Oxidation Processes (AOPs) are treatment technologies aimed at degrading
and mineralizing recalcitrant organic matter from wastewater through reaction with hy-
droxyl radical (•OH). Recently, these technologies have been proposed as a solution to
treat emerging contaminants, especially pharmaceuticals and personal care products (Pig-
natello et al., 2007). AOPs’ reactions can be further promoted by iron catalysts (Fe2+)
and UV irradiation, giving rise to photo-Fenton systems. Research on AOPs modeling
and simulation have proved that operational variables such as reagent dosage, pollutant
load, pH, and UV source, determine the accomplishment of degradation targets.

In this case study, the model proposed by Cabrera Reina et al. (2012) is adapted
to predict the kinetic behavior of the process variables, namely the concentrations of
PCT, H2O2, Fe2+, Fe3+, dissolved oxygen, •OH radical (R), and TOC, including dummy
intermediates. Hence, the Fenton-like reaction is added to the model (Kusic et al., 2006).
In addition, the TOC consumption is represented by phantom degradation rate that is
calculated using an approximated degradation constant and a first reaction order with
regard to the TOC and •OH radical concentrations. The reaction scheme reads as:
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B. Model of the photo-Fenton case study

Photo-Fenton reactions: Fe2+ + H2O2 Fe3+ + R-1

Fe3+ + hv Fe2+ + R-2

Inefficient reactions:

R + H2O2 R+R

O2

Q
QQs
3 �

��+
4

Efficient reactions:

R+M R+M+O2

R+MX1 O2

R+MX2

?
6

�
�

��+

5

?
7

-8

�
�
��39

Fenton-like reaction: Fe3+ + H2O2 Fe2+.-10

(B.1)

The kinetic constants and expressions are summarized in Table B.1. Reaction rates are
calculated assuming that the order of reaction with respect to each reactive corresponds
to the stoichiometric coefficients.

The remediation of a PCT effluent with a volume of 15L and concentration of 0.52mM
of PCT is pursued. The objective is to minimize the batch processing time and treatment
expenses, while accomplishing an elimination of the 99.9% of substrate and 90% of TOC
within a maximum time horizon of 10 hours. Moreover, the process should be implemented
in an existing AOPs plant with a reactor capacity of 15L and lamp intensity of 36W/m2.
The installation or expansion of the existing equipment is not considered. As for the
boundaries of the decision variables, the initial concentration of Fe2+ is set between 0
and 0.179mM –which satisfies the legal iron concentration allowed in effluents (DOGC,
2003)– and the concentration of H2O2 is constrained to a typical concentrations range
between 0 and 45mM during all the process.

Further decision variables that can be formulated through the proposed MLDO-based
approach for the development of AOPs processes are: the batch size, the potential instal-
lation of other lamp intensities, the potential combination of the photo-Fenton process
with other primary or secondary wastewater treatment operations, the installation of ad-

Reaction r Reaction rate rr kr [mM−1h−1]

1 r1=k1 CFe2+ CH2O2
8.81a

2 r2=k2 CFe3+ CI 5.63a

3 r3=k3 CR CH2O2
75.8a

4 r4=k4 C
2
R 42.8a

5 r5=k5 CM CR CO2
9643a

6 r6=k6 CM CR 257a

7 r7=k7 CMX1
CR 2865a

8 r8=k8 CMX1
CR 271a

9 r9=k9 CMX2
CR 107a

10 r10=k10 CFe3+ CH2O2
0.02b

11 r11=k11 CTOCCR 0.7375

Table B.1: Kinetic constants kr and expressions to calculate the reaction rates rr in the photo-
Fenton case study. Sources: aCabrera Reina et al. (2012), bPignatello (1992).
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Notation

ditional equipment, the use of other operating modes –i.e. in parallel or series–, or the
potential recirculation of intermediate flows.

B.2 Notation

Table B.2 summarizes the time-invariant ustat and dynamic udynk (t) decision variables,
as well as differential zk(t), algebraic yk(t), and time-invariant γ variables and process
parameters p associated to the photo-Fenton case study. Parameters involved in EPC
constraints are also included therein.

B.3 MLDO model of the photo-Fenton case study

B.3.1 Objective function and constraints

This case study poses a bi-objective optimization problem to minimize the treatment ex-
penses and the processing time. According to the definition of MO problems, the decision
criteria read as:

minimize
udyn(t),ustat

Φ1 = CostFe2+ +CostH2O2 + Costǫ,

Φ2 = tend.
(B.2)

The treatment cost comprises the cost of reagents Fe2+ and H2O2 and the cost of elec-
tricity consumption in the lamp, which are defined as follows:

CostFe2+ = p̂Fe2+C
0
Fe2+ υ, (B.3)

CostH2O2 = p̂H2O2
(C0

H2O2
υ +

∫ tend

ts
q(t) dt), (B.4)

Costǫ = p̂ǫ I Aw t
end. (B.5)

The optimization model also includes constraints to guarantee the accomplishment of
minimum yields χPCT and χTOC in the final PCT and TOC reduction:

C0
PCT − CPCT(t

end)

C0
PCT

100 ≥ χPCT, (B.6)

C0
TOC − CTOC(t

end)

C0
TOC

100 ≥ χTOC. (B.7)

B.3.2 Batch procedure in the photo-reactor

In this case study, equipment selection is not a decision variable due to the availability of
one unique processing unit. Then, the definition of its corresponding batch unit procedure
does not require to be controlled by an equipment Boolean Yj , since it should be selected
in all solutions. Overall, the batch model in the photo-reactor is defined by the mass
balances of the compounds O2, R, M, MX1, MX2, CO2, Fe2+, Fe3+, H2O2, and TOC,
defined by the following set of differential equations:
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B. Model of the photo-Fenton case study

Type Description Variable/ Value/
parameter bounds

udynk (t) H2O2 input rate rate q(t) [mmol/h] [0, 1,000]

ustat Initial concentration of H2O2 C0
H2O2

[mM ] [0, 45]

Initial concentration of Fe2+ C0
Fe2+

[mM ] [0, 0.179]

Final time tend [h] [0, 10]

Total amount of H2O2 introduced NH2O2
[mmol] [0, 661.5]

Initial dosage time ti [h] [0, 10]

Fraction of NH2O2 completed at time ti F i [mmol/mmol] [0, 1]

Continuous dosage span △tadd [h] [0, 10]

zk(t) Concentration of O2, C0
O2

=0.25 CO2
(t) [mM ] [0, 1]

Concentration of R, C0
R=0 CR(t) [mM ] [0, 1]

Concentration of M, C0
M=0.52 CM(t) [mM ] [0, 3.125]

Concentration of MX1, C0
MX1

=0 CMX1
(t) [mM ] [0, 1]

Concentration of MX2, C0
MX2

=0 CMX2
(t) [mM ] [0, 1]

Concentration of CO2, C0
CO2

=0 CCO2
(t) [mM ] [0, 1]

Concentration of Fe2+ CFe+2 (t) [mM ] [0, 0.179]

Concentration of Fe3+, C0
Fe+3=0 CFe+3 (t) [mM ] [0, 0.179]

Concentration of H2O2 CH2O2
(t) [mM ] [0, 45]

Concentration of TOC, C0
TOC=4.16 CTOC(t) [mM ] [0, 25]

yk(t) Rate of reaction r∈{1, ..., 11} rr(t) [mM/h] [0, ∞]

γ Capacity of the photo-reactor Size [L] 15

Lamp intensity I [W/m2] 36

Reaction volume υ [L] 15

Starting time ts [h] 0

Cost of reagent H2O2 CostH2O2
[e/batch] [0, ∞]

Cost of reagent Fe2+ CostFe2+ [e/batch] [0, ∞]

Cost of electricity Costǫ [e/batch] [0, ∞]

p Kinetic constant of reaction r∈{1, ..., 11} kr [mM−1h−1] (Table B.1)

Price of reagent H2O2 p̂Fe2+ [e/mol] 3.17

Price of reagent Fe2 p̂Fe2+ [e/mol] 12.62

Price of electricity p̂ǫ [ce/kWh] 14.56

Stoichiometric coefficients in O2 balance g1 [ ] 0.75a

g2 [ ] 0.47a

c1 [ ] 0.10a

Saturation concentration of O2 CsatO2
[mM ] 0.250

Global coefficient of mass transfer of O2 kla [h−1] 2.7

Irradiation surface Aw [m2] 0.018b

EPC Minimum final yield in PCT elimination χPCT [%] 99.9

Minimum final yield in TOC elimination χTOC [%] 90

Table B.2: Variables and process parameters in the photo-Fenton case study. Sources: aCabr-
era Reina et al. (2012), bYamal-Turbay et al. (2012).
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MLDO model of the photo-Fenton case study

ĊO2 = (g1 r3) + (g2 r4)− (c1 r5) + (kla (C
sat
O2

− CsatO2
)), (B.8)

ĊR = r1 + r2 − r3 − 2 r4 − r5 − r6 − r7 − r8 − r9, (B.9)

ĊM = −r5 − r6, (B.10)

ĊMX1 = r5 + r6 − r7 − r8, (B.11)

ĊMX2 = r7 − r9, (B.12)

ĊCO2 = r8 + r9, (B.13)

ĊFe2+ = −r1 + r2 + r10, (B.14)

ĊFe3+ = r1 − r2 − r10, (B.15)

ĊH2O2 = −r1 − r3 − r10 + q(t)/υ, (B.16)

ĊTOC = −r11. (B.17)

The rates of reactions r ∈ {1, ..., 11} are calculated according to the algebraic expressions
of Table B.1, namely:

r1 = k1 CFe2+ CH2O2 (B.18)

r2 = k2 CFe3+ CI (B.19)

r3 = k3 CR CH2O2 (B.20)

r4 = k4 C
2
R (B.21)

r5 = k5 CM CR CO2 (B.22)

r6 = k6 CM CR (B.23)

r7 = k7 CMX1 CR (B.24)

r8 = k8 CMX1 CR (B.25)

r9 = k9 CMX2 CR (B.26)

r10 = k10 CFe3+ CH2O2 (B.27)

r11 = k11 CTOC CR (B.28)

The predefined dosage protocol proposed by Yamal-Turbay et al. (2012) to define the
addition of H2O2 to the photo-Fenton reaction can be reformulated into the following
piecewise function, where the input rate q(t) of H2O2 is expressed as a function of the
static variables ti, F i, NH2O2

, and △tadd:

q(t) =











0 t ≤ ti

(1−F i) NH2O2

△tadd
ti ≤ t ≤ ti+△tadd

0 ti+△tadd ≤ t.

(B.29)
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Appendix C

Model of the acrylic fiber case study

This appendix provides further information regarding the acrylic fiber production case
study. This was presented in § 6.4 to illustrate the solution of integrated batch process
development in a grassroots scenario. The process description is here given together with
the physicochemical parameters and variables of the process and economic data. Overall,
the problem is formulated according to the MLDO modeling strategy and formulation
proposed in §§ 3.2 and 3.3. The MLDO should be next reformulated as a MIDO and
discretized to obtain a MINLP problem, following the direct-simultaneous solution pro-
cedure explained in § 4.2. The resulting MINLP can be optimized using conventional
deterministic solvers.

C.1 Problem description

Polymerization reaction systems are characterized by complex interactions between pro-
ductivity indicators –e.g. conversion, batch time, or profit– and polymer properties –e.g.
polydispersity or molecular weight distribution. In particular, polymer quality is strongly
related to measures like the chain length or the mass average number and these should be
calculated as a function of intermediate products. However, these are ruled by complex
reaction mechanisms and equations systems that include phenomena like the life and dead
polymers moments. Furthermore, physicochemical phenomena like the auto-acceleration
and the Trommsdorf effect may occur depending on processing conditions such as the
viscosity and temperature in the polymerization reaction. As a result, the choice of the
trajectories of reactor temperature and monomer feed rate in polymerization reactors is
crucial to determine the compromise between productivity and polymer quality (Giudici,
2000, Embiruçu et al., 1996). In addition to polymerization reaction, downstream tasks
also contribute to the optimization of overall economic and environmental production
targets. For instance, the selection of solvents, cleaning technologies, and recirculation
schemes are determinant decisions in the global performance of polymerization systems
(Gol’dfein & Zyubin, 1990, Bajaj et al., 1996, Capón-García et al., 2011a).
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C. Model of the acrylic fiber case study

C.1.1 Acrylic fiber production

Acrylic fibers are synthetic fibers composed of at least 85% of acrylonitrile (AN) monomer
and the rest of another comonomer such as vinyl acetate (VA), methyl acrylate (MA),
methyl methacrylate (MMA), vinyl chloride (VC), or vinylidene chloride (VDC). In par-
ticular, the target in this case study is to produce an acrylic fiber composed of 85% of AN
and 15% of VA in batches of 200 kg of final product. The desired copolymer properties
are associated to a maximum polydispersity variation of 0.1 and a maximum deviation in
the composition of 2.5%.

Essentially, the production of acrylic fiber comprises a primary stage to produce the
copolymer in bulk format and a secondary stage to transform it into spun format. The
general block representation of the process is provided in Figure C.1, taking into account
prior considerations and the additional recirculation of solvent and suspension medium. To
sum up, the following process stages or tasks are subject to be included into the process
model and are thus represented in the superstructure: (1) copolymerization reaction,
(2) recovery of unreacted monomer, solvent, and suspension medium after reaction, (3)
washing and filtration, (4) repulping, (5) filtering, (6) wet spinning, (7) second washing
and filtration, and (8) second recovery of solvent after spinning.

Polymerization

reaction
(suspension/

solution)

Separation

Wash and

filtration

Repulping Filtration

Spinning

Separation

Washing

Monomer
Initiator

Organic/
aqueous

solvent
Suspension

medium

Solvent/
suspension
medium
recycling

Waste:
solvent/
suspension
medium

Solvent

Solvent
recycling

H2O

Product

H2O
recycling

Waste: H2O

Waste: solvent

Figure C.1: Process stages in acrylic fiber production system: general processing scheme (solid
lines) and potential processing alternatives (dashed lines).

This block diagram is used to detail the SEN superstructure of potential processing
schemes in this example, presented in § 6.4 (Figure 6.6). It includes the following equip-
ment items: solution and suspension polymerization reactors R11 and R12, evaporator
and condenser E2, washing and filtering units F3, F5, F71 and F72, repulping unit R4,
spinneret S6, distillation columns C81 and C82, and buffer tanks T2, T3, T4, T81 and T82.

Copolymerization reaction

Two polymerization technologies are used to synthesize acrylic fiber in industry, namely
suspension and solution copolymerization technologies (EPA, 1995). On the one hand,
solution polymerization is can be driven either in an organic solvent –such as dimethyl-
formamide (DMF), here considered– or in an aqueous solvent –such as sodium thiocyanate
(NaSCN(aq)), here studied. On the other, water is the suspension medium in suspension

208



i

i

“MMB” — 2014/1/27 — 10:03 — page 209 — #243
i

i

i

i

i

i

Problem description

polymerization. In this case, the system is composed by two physical phases: an organic
phase (I) composed by the monomers, polymer, and initiator, and the aqueous phase (II)
which only contains soluble monomers, namely AN in this case study.

The reaction mechanism of both technologies can be defined by radical polymerization
and terminal model, with three reaction mechanism steps, namely initiation, propagation,
and termination by combination. The radical initiator considered is azobisisobutyronitrile
(AIBN), often used in polymerization processes. According to Butala et al. (1988), this
reaction system is defined as follows:

Initiation: I 2R,-

R + M1 P10,-kd

R + M2 Q01,-kd

Propagation: Pn,m + M1 Pn+1,m,-
kp11

Pn,m + M2 Qn,m+1,-
kp12

Qn,m + M1 Pn+1,m,-
kp21

Qn,m + M2 Qn,m+1,-
kp22

Termination: Pn,m + Pr,q Mn+r,m+q,-ktc11

Pn,m + Qr,q Mn+r,m+q,-ktc12

Qn,m + Qr,q Mn+r,m+q,-ktc22

(C.1)

where I represents the initiator (AIBN), R represents free radicals, M1 and M2 refer to
monomers AN and VA respectively. Pn,m denotes a growing copolymer chain with n units
of monomer M1 and m units of monomer M2, and monomer M1 on the end. Equally, Qn,m

denotes a growing copolymer chain with monomer M2 on the end. Finally, Mn,m represents
inactive polymer –also known as dead polymer. Moreover, the dynamic control variables
are the M1 (AN) monomer dosage and the reaction temperature in both suspension and
solution technologies. The following assumptions are also considered in the model:

• The polymer properties are tracked through the number and weight average chain
length and the polydispersity, by computing the dead and live polymer moments;

• The chain transfer to monomer or solvent is disregarded;
• The termination is defined by combination of polymer chains;
• The heat of copolymerization of AN and VA is calculated through algebraic inter-

polation of their individual heats of polymerization △hM1
and △hM2

;
• AN equilibrium between the organic and aqueous phases is considered in suspension

polymerization by means of the global partition coefficient ϕ, as is following detailed.
• Gel and glass effects due to the high viscosity in the polymer (organic) phase in

suspension polymerization are dismissed.

The kinetic data associated to the abovementioned reaction mechanism depend on
the used solvent or suspension medium S and have been gathered from literature on
polymerization processes, as summarized in Table C.1. Other process parameters are
presented in Table C.2. Some of them are also subject to the solvent or suspension medium
S, namely the selection of DMF, NaSCN(aq), or water.
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C. Model of the acrylic fiber case study

Solution Solution Suspension
S = DMF S = NaSCN(aq) S = H2O

Reaction r
k0,r,S Ea,r,S k0,r,S Ea,r,S k0,r,S Ea,r,S
[ m3

kmol s
] [ kcal

kmol
] [ m3

kmol s
] [ kcal

kmol
] [ m3

kmol s
] [ kcal

kmol
]

Initiator decomposition d 6.02·1015(a) 31730(a) 6.02·1015(a) 31730(a) 6.02·1015(a) 31730(a)

Chain propagation p11 1.37·106(b) 3869(c) 1.59·107(d) 4108(e) 1.59·107(d) 4108(e)

p12 3.38·105(b,g) 3869(c) 3.92·106(d,g) 4108(e) 3.92·106(d,g) 4108(e)

p21 5.25·108(f,g) 6300(f) 5.25·108(f,g) 6300(f) 5.25·108(f,g) 6300(f)

p22 3.20·107(f ) 6300(f) 3.20·107(f ) 6300(f) 3.20·107(f ) 6300(f)

Termination by
combination

tc11 3.84·1011(b) 3702(c) 2.46·1013(d) 5398(e) 2.46·1013(d) 5398(e)

tc12 8.67·1011(a,b,f)3451(c,f) 6.93·1012(a,d,f)4299(e,f) 6.93·1012(a,d,f)4299(e,f)

tc22 3.70·109(f) 3200(f) 3.70·109(f) 3200(f) 3.70·109(f) 3200(f)

Table C.1: Kinetic constants in the acrylic fiber case study: pre-exponential factor k0,r,S and
activation energy Ea,r,S of reaction r in solvent or suspension medium S. References:
aButala et al. (1988), bBrandrup et al. (1999, page II/81 Ref. 88), cBrandrup et al.
(1999, page II/417 Ref. 32), dBrandrup et al. (1999, page II/81 Ref. 54), eBrandrup
et al. (1999, page II/417 Ref. 25), fMachado et al. (2004), and gMayo et al. (1948).

Parameter pS
Solution Solution Suspension
S = DMF S = NaSCN(aq) S = H2O

Density of S ρS [kg/m3] 948(a) 1000 1000

Specific heat of S cp,S [kcal/kg◦C] 0.478(a) 1.000 1.000
Molecular weight of S MWS [kg/kmol] 73.09 18 18

Parameter p

Ideal gas constant R [kcal/kmol◦C] 1.987
Molecular weight of M1 MWM1

[kg/kmol] 53.06
Molecular weight of M2 MWM2

[kg/kmol] 86.09
Molecular weight of I MWI [kg/kmol] 164.21
Density of M1 ρM1

[kg/m3 ] 810

Density of M2 ρM2
[kg/m3 ] 939(b)

Density of P1 ρP1
[kg/m3 ] 1184

Density of P2 ρP2
[kg/m3 ] 1190

Density of I ρI [kg/m3] 1100

Heat of copolymerization of M1 △hM1
[kcal/kmol] 16800(c)

Heat of copolymerization of M2 △hM2
[kcal/kmol] 22490(c)

Overall heat transfer coefficient hc [kcal/m2s◦C] 6.5(a)

Heat transfer area per reactor volume Ac [m2/m3] 1
Density of cooling water ρcool [kg/m3] 1000
Specific heat of cooling water cp,cool [kcal/kg◦C] 1.000
Reactivity ratio of monomer M1 r1 = kp11/kp12 [ ] 4.05
Reactivity ratio of monomer M2 r2 = kp22/kp21 [ ] 0.061

Table C.2: Process parameters in the copolymerization stage in the acrylic fiber case study: p
independent and pS dependent on the solvent or suspension medium S, where I =
AIBN, M1 = AN, M2 = VA, S ∈ {DMF, NaSCN(aq), H2O}. References: aButala
et al. (1988), bMachado et al. (2004), cMiyama & Fujimoto (1961).
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Problem description

Regarding the global partition coefficient ϕ, this variable is associated to the equilib-
rium of AN between the organic and aqueous phases. It is defined as:

ϕ =
ηM1,II

ηM1,I
, (C.2)

where ηM1,I and ηM1,II are the molar amounts of AN in organic phase (I) and aqueous
phase (II) respectively. The definition of ϕ roots in the correlation proposed by Lu et al.
(2006) for suspension copolymerization of AN and styrene at 50◦C:

(

As
S

)

/

(

Aw
W

)(

0.089 −
Aw
W

)

= 0.35 + 5.2
Aw
W

, (C.3)

where As and Aw are the mass of AN and S and W are the total mass of organic and
aqueous phases respectively. This correlation can be reformulated into the following form:

1/ϕ

(

0.089 −
MWM1

ρH2O

(

ηM1,II

υII

))

υII
υI

= 0.35 + 5.2
MWM1

ρH2O

(

ηM1,II

υII

)

, (C.4)

where MWM1 is the molecular weight of AN, ρH2O is the density of aqueous phase, and
υI and υII are the volumes of organic and aqueous phases respectively. This expression
allows computing the inverse of the global partition coefficient 1/ϕ as a function of the
concentration of AN in the aqueous phase (ηM1,II/υII) and volumes υI and υII . In this
example, such correlation is approximated to an exponential function in the processing
range of (ηM1,II/υII) ∈ [0, 17] kmol/m3 to simplify the mathematical model. Particularly,
the approximation used in the model has the following form:

1/ϕ
υII
υI

= a exp

(

b
( ηM1,II

υII

))

, (C.5)

where parameters a and b have a value of 0.2 and 0.0877 respectively. The influence of
the reaction temperature on the partition coefficient is dismissed.

Separation stage

The separation stage is lead using a energy separation system composed of an evaporator
and a condenser. The dynamic equations system is defined according to Haggblom (1991),
Luyben (1992), Oldenburg et al. (2003), and Muntean et al. (2011).

The vapor pressure (pjv,c,k(t)) is calculated by means of the Antoine equation for the
light components of the separation mixture, namely monomers M1 and M2 as well as the
solvent S. The Antoine coefficients are summarized in Table C.3. Regarding the heavy
components I and Co, their values are defined with a value of 0.81 bar (OECD Screening
Information Dataset, 1999) and 0.10 bar respectively.

Watson correlation to estimate the latent heats of vaporization of light components c ∈
{M1,M2,S}. The data have been extracted from Aspen HYSIS thermodynamics according
to Watson’s correlation defined by:

log(hv,c) = log(Ah,c) + log(1− θ/θcc)Bh,c, (C.6)

where hv is the unit of the heat of vaporization defined in kJ/kmol, θ is the temperature
of the system and θcc is the critical temperature defined in ◦C, and Ah,c and Bh,c are
the coefficients, which are specific for each component c. The coefficients for the light
components are defined in Table C.4.
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C. Model of the acrylic fiber case study

c Ac Bc Cc

M1 = AN 4.06661 1255.939 -41.853
M2 = VA 4.34032 1299.069 -46.183
S = DMF 3.93068 1337.716 -82.648
S = NaSCN(aq)1

5.08354 1663.125 -45.622
S = H2O

1 Approximated to coefficients of H2O

Table C.3: Antoine coefficients to compute the vapor pressure pv,c of light compounds c ∈
{M1,M2,S} in the acrylic fiber case study. Data source: NIST database (URL:
http://webbook.nist.gov/chemistry/name-ser.html, accessed 10/09/2012).

c Ah,c Bh,c θcc [
◦C]

M1 = AN 41550 0.2733 262.9
M2 = VA 47700 0.3765 251.9
S = DMF 59217 0.37996 373.9
S = NaSCN(aq)1

52053 0.3199 374.1
S = H2O

1 Approximated to coefficients of H2O

Table C.4: Watson coefficients to compute the latent heat of vaporization hv,c and critical
temperature θcc of light compounds c ∈ {M1,M2,S} in the acrylic fiber case study.
Data source: Aspen HYSIS thermodynamics.

Economic data

The raw material prices, unitary processing costs, amortization base, and waste disposal
expenses in the copolymerization reaction stage and the separation stage are summarized
in Table C.5.

p̂I p̂M1
p̂M2

p̂S(S=DMF) p̂S(S=NaSCN(aq)) p̂S(S=H2O) ĉj,cool ĉj,heat čj p̂waste
[e/kg] [e/kg] [e/kg] [e/kg] [e/kg] [ce/kg] [ce/kg] [ce/kWh] [ce/s] [e/kg]

8.11 1.76 0.91 0.57 1.22 0.181 0.181 17.4 0.404 0.85

Table C.5: Economic data in the acrylic fiber case study: p̂c price of raw material c ∈ {I, M1,
M2, S} where I = AIBN, M1 = AN, M2 = VA, S ∈ {DMF, NaSCN(aq), H2O},
ĉj,cool processing cost associated to cooling water, ĉj,heat processing cost associated
to heating energy, čj base amortization cost, and p̂waste expenses of waste disposal.

C.2 Notation

Tables C.6, C.8, C.9, and C.7 summarize the Boolean uBool, integer uint, time-invariant
ustat and dynamic udynk (t) decision variables, as well as differential zk(t), algebraic yk(t),
and time-invariant γ variables and process parameters p associated to the acrylic fiber
case study.

Figure C.2 presents the flow indexes in Levels 0 and 1 used in the balances. The
input flows to the polymerization reactors from raw material and from buffer tank T2 are
here separated with regard to the SEN superstructure in Figure 6.6 (§ 6.4.3) in order to
facilitate the optimization of the control trajectories of flow rate and composition of raw
material input.
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Notation

1

1′ 1′′

2
(R11:in1)

3
(R12:in1)

4
(R11:in2)

5
(R12:in2)

6
(R11:out)

7
(R12:out)

8

9
(E2:F )

10
(E2:V )

11
(T2:in)

12

13
(T2:out)

14 15
(E2:L)

16
(T4:in)

R11 R12

E2

R4

T2

T4

Figure C.2: Flow indexes in Levels 0 and 1 in the acrylic fiber case study. In parenthesis the
indexes associated to particular equipment items.

Type Description Variable/ Value/
parameter bounds

uBool Process stage selection Zi - {true,false}

Technological alternative selection V j
λ

- {true,false}

Chemicals selection Sjc - {true,false}

Potential solvent recovery and reuse Rn - {true,false}

Operating mode ψ selection Xiψ - {true,false}

Selection of processing and storage units Yj - {true,false}

Task-unit assignment Wj,q - {true,false}

ustat Duration of mathematical stage l tl [h] [0, 15]

p Batch production size Batch [kg] 200

Base equipment capacity Size0 [m3] 3.8

Size power in amortization funcion n [ ] 0.5

Table C.6: General variables and process parameters at Level 0 in the acrylic fiber case study.

Type Description Variable/ Value/
parameter bounds

zk(t) Total molar amount Hj
l
(t) [kmol] [0, 10]

- Initial total molar amount Hj,01 [kmol] 0

Molar amount of c ∈ {Co,M1,M2, I,S} ηj
c,l

(t) [kmol] [0, 10]

- Initial molar amount of c ∈ {Co,M1,M2, I,S} ηj,0c,1 [kmol] 0

yk(t) Molar flow rate in input flow in F j
in,l

(t) [kmol/h] [0, 72]

Molar flow rate in output flow out F j
out,l

(t) [kmol/h] [0, 72]

Molar fraction in input flow in xj
c,in,l

(t) [ kmol
kmol total

] [0, 1]

Molar fraction in the tank and output flow out xj
c,l

(t) [ kmol
kmol total

] [0, 1]

Table C.7: Variables associated to buffer tanks j ∈ {T2, T4} in the acrylic fiber case study.
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C. Model of the acrylic fiber case study

Type Description Variable/ Value/
parameter bounds

udynk (t) Molar flow rate of input flow in1 (raw material) F j
in1,k(t) [kmol/h] [0, 72]

Molar flow rate of input flow in2 (from buffer tank T2) F j
in2,k(t) [kmol/h] [0, 72]

Molar flow rate of output flow out F j
out,k

(t) [kmol/h] [0, 72]

Cooling temperature θj
cool,k

(t) [◦C] [20, 80]

ustat Molar fraction of compound c ∈ {I,M1,M2} in input
flow in1 (raw material)

xj
c,in1,k [ kmol

kmol total
] [ ]

zk(t) Molar amount of compound c∈{I,M1,M2,S,P,Q} ηj
c,k

(t) [kmol] [0, 10]

- Initial molar amount of I ηj,0I,1 [kmol] 0.0062

- Initial molar amount of M1 ηj,0M1,1
[kmol] 0.05

- Initial molar amount of M2 ηj,0M2,1
[kmol] 0.034

- Initial molar amount of S ηj,0S,1 [kmol] 0.01

- Initial molar amount of P ηj,0P,1 [kmol] 10−8

- Initial molar amount of Q ηj,0Q,1 [kmol] 10−8

Reaction temperature θj
k
(t) [◦C] [25, 100]

- Initial reaction temperature θj,01 [◦C] 40

yk(t) Molar fraction of c ∈ {I,M1,M2,S,P,Q} in the reactor xj
c,k

(t) [ kmol
kmol total

] [ ]

Molar fraction of c ∈ {I,M1,M2,S,P,Q} in input flow
in2 (from buffer tank T2)

xj
c,in2,k(t) [ kmol

kmol total
] [ ]

Volume of the reaction system υj
k
(t) [m3] [0, 10]

Converted monomer c ∈ {M1,M2} χj
c,k

(t) [kmol] [0, 10]

Copolymerization reaction rate RXj
k
(t) [kmol/m3 s] [ ]

Heat of copolymerization △Hj
k
(t) [kcal/kmol] [ ]

Initiator decomposition rate constant kj
d,k

(t) [s−1] [ ]

Propagation rate constants, i,i′=1, 2 kj
pii′,k

(t) [m3/kmol s] [ ]

Termination by combination rate constant, i,i′=1, 2 kj
tcii′ ,k

(t) [m3/kmol s] [ ]

Instantaneous mole fraction of M1 in copolymer F j1,k(t) [
kmolM1
kmol total

] [0, 1]

Flow rate of cooling water F j
cool,k

(t) [m3/h] [ ]

Cooling energy consumption Qj
cool,k

(t) [kcal/s] [ ]

γ Duration of stage k of unit j tj
k

[h] [0.0125, 15]

Density of the reaction mixture ρj [kg/m3 ]

Specific heat in the reaction mixture cjp [kcal/kg◦C]

Pre-exponential factor of reaction r∈{d,pii′,tcii′},i,i′=1, 2 kj0,r [m3/kmol s]

Activation energy of reaction r∈{d,pii′,tcii′}, i,i′=1, 2 Eja,r [kcal/kmol]

Total converted monomer c ∈ {M1,M2} χj
c,total

[kmol]

Total consumption of compound c ∈ {M1,M2, I,S} Consjc [kmol]

p Temperature in input flow in1 (raw material) θj
in1,k [◦C] 25

Temperature in input flow in2 (from buffer tank T2) θj
in2,k [◦C] 25

Initial temperature of cooling water θj
cool,0 [◦C] 18

Set-point of F j1,k(t) FSPM1
[
kmolM1
kmol total

] 0.85

Maximum deviation of F j1,k(t) FσM1
[
kmolM1
kmol total

] 0.025

PC Lower bound of input/output flow rates F j,L [kmol/h] 18

Upper bound of input/output flow rates F j,U [kmol/h] 72

Lower bound of reaction temperature θL [◦C] 40

Upper bound of reaction temperature θU [◦C] 80

Table C.8: Variables and process parameters associated to copolymerization stage 1 in solution
and suspension copolymerization reactors j ∈ {R11, R12} in the acrylic fiber case
study.
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Notation

Type Description Variable/ Value/
parameter bounds

yk(t) Volume of phase I in the reaction system υj
I,k

(t) [m3] [0, 10]

Volume of phase II in the reaction system υj
II,k

(t) [m3] [0, 10]

Molar amount of M1 in phase I ηjM1,I,k
(t) [kmol] [0, 10]

Molar amount of M1 in phase II ηjM1,II,k
(t) [kmol] [0, 10]

Global partition coefficient of M1 ϕj
k
(t) [kmol II/kmol I]

p Parameters to evaluate the global partition
coefficient of M1 according to Eq. C.5

a [ ] 0.2

b [ ] 0.0877

Table C.9: Additional variables and process parameters associated to copolymerization stage 1
in suspension copolymerization reactor j ∈ {R12} in the acrylic fiber case study.

Type Description Variable/ Value/
parameter bounds

udynk (t) Heating energy supplied Qj
heat,k

(t) [kcal/h] [ ]

zk(t) Holdup Hj
k
(t) [kmol] [0,10]

- Initial holdup Hj,01 [kmol] 0

Molar amount of c ∈ {Co,M1,M2, I,S} ηj
c,k

(t) [kmol] [0,10]

- Initial molar amount of c∈{Co,M1,M2, I, S} ηj,0c,1 [kmol] 0

yk(t) Molar flow rate of input flow F F j
F,k

(t) [kmol/h] [0,72]

Molar flow rate of output flow L (bottoms) F j
L,k

(t) [kmol/h] [0,72]

Molar flow rate of output flow V (distillate) F j
V,k

(t) [kmol/h] [0,72]

Molar fraction of c∈{Co,M1,M2, I,S} in input flow F zj
c,F,k

(t) [ kmol
kmol total

] [0,1]

Molar fraction of c∈{Co,M1,M2, I,S} in liquid phase xj
c,k

(t) [ kmol
kmol total

] [0,1]

Molar fraction of c∈{Co,M1,M2, I,S} in vapor phase yj
c,k

(t) [ kmol
kmol total

] [0,1]

Temperature in the separation unit θj
k
(t) [◦K] [ ]

Total pressure in the separation unit P j
total

[bar] [ ]

Vapor pressure of light components c∈{M1,M2,S} pj
v,c,k

(t) [bar] [ ]

Specific heat of vaporization of c ∈ {Co,M1,M2, I, S} hj
v,c,k

(t) [kcal/kmol] [ ]

Heat of vaporization △hj
v,k

(t) [kcal/kmol] [ ]

γ Duration of stage k of unit j tj
k

[h] [0.0125,10]

Amount of waste material Wastej [kmol] [ ]

p Percentage of waste Pwaste [%(kmol)] 2%

Antoine coefficients of c∈{M1,M2, S} Ac, Bc, Cc [ ] (Table C.3)

Vapor pressure of heavy components c∈{Co, I} pv,I [bar] 0.81

pv,Co [bar] 0.10

Watson coefficients of c∈{M1,M2,S} Ah,c, Bh,c [ ]
(Table C.4)

Critical temperature of c∈{M1,M2,S} θcc [◦K]

PC Lower bound of input/output flow rates F j,L [kmol/h] 0.72

Upper bound of input/output flow rates F j,U [kmol/h] 72

Table C.10: Variables and process parameters associated to separation stage 2 in evaporation
unit j ∈ {E2} in the acrylic fiber case study.
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C. Model of the acrylic fiber case study

C.3 MLDO model of the acrylic fiber case study

C.3.1 Objective function and production targets

The objective function considers several economic terms. Particularly, it includes: equip-
ment amortization (Costj,a) and processing costs (Costj,p) of units j ∈ {R11, R12, E2, T2},
raw material expenses (CostM1 , CostM2 , CostI, and CostS), and costs associated to the
waste disposal (Costwaste), becoming:

minimize
u
dyn
k

(t),ustat

uint,uBool

Φ = CostM1 + CostM2 + CostI + CostS +Costa + Costp + Costwaste,
(C.7)

where udynk (t) are the profiles of input and output flow rates (F jin1,k(t), F
j
in2,k(t), and

F jout,k(t), k ∈ {1, 2, 3}) and the cooling temperature profile (θjcool,k(t), k ∈ {1, 2, 3}) in
the copolymerization reaction stage 1 associated to units j ∈ {R11, R12}, as well as the
heat supplied in separation stage 2 associated to the evaporator j ∈ {E2} (Qjheat,k(t), k ∈
{1, 2, 3, 4}). Additionally, ustat refers to the composition of raw materials during the load
operation (cjc,in1,k, c ∈ {M1,M2, I}, k ∈ {1}) and the composition of monomer M1 during

the reaction operation (cjM1,in1,k
, k ∈ {2}) in copolymerization reaction stage 1, and to

the duration of batch operations (tl, ∀l). Finally, uint refers to the size of installed process-
ing units (Sizej), and uBool comprises qualitative decisions (Zi, V

j
λ , S

j
c , Rn, X

i
ψ, Yj ,Wj,q).

Each contribution of the objective function is following detailed:

CostM1 = p̂M1
MWM1

∑

j∈{R11,

R12,T2}

ConsjM1
, CostM2 = p̂M2

MWM2

∑

j∈{R11,

R12,T2}

ConsjM2
,

CostI = p̂I MWI

∑

j∈{R11,

R12}

ConsjI , CostS =
∑

j∈{R11,

R12,T2}

(p̂jS MWS Cons
j
S),

Costa =
∑

j∈{R11,R12,

E2,T2,T4}

Costj,a, Costp =
∑

j∈{R11,

R12,E2}

Costj,p,

Costwaste = p̂waste
∑

j∈{E2}

Wastej.

(C.8)

Additionally, the process is subject to several production targets. First, the prod-
uct demand, which corresponds to the batch size Batch of 200 kg, should be fulfilled in
the selected polymerization reactor R11 or R12. The following restriction guarantees the
accomplishment of the demand:















Yj
Batch ≤ χjM1,total

MWM1 + χjM2,total
MWM2 ,

χjc,total = ηj,0c,1 − ηjc,3(1) +
3
∑

k=1

∫ 1

0

(

F jin1,k(t)x
j
c,in1,k(t)

+F jin2,k(t)x
j
c,in2,k(t)−F

j
out,k(t)x

j
c,k(t)

)

tjkdt, c∈{M1,M2}















⊻







¬Yj
χjc,total = 0,

c ∈ {M1,M2}






,

j ∈ {R11, R12}.

(C.9)

Second, the set-point instantaneous copolymer composition FSPM1
with a value of 85% of

M1 (AN) should be pursued along the chain growth, with a maximum deviation F σM1
in

the composition of 2.5%. This is defined in the selected reaction unit R11 or R12 by:
[

Yj
−F σM1

≤ FSPM1
− F jM1,k

(t) ≤ F σM1
, t ∈ [0, 1], ∀k ∈ Kj

]

, j ∈ {R11, R12}. (C.10)
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MLDO model of the acrylic fiber case study

C.3.2 Batch procedures at Level 1

Copolymerization reaction in batch units

The following disjunctions define the multistage models of batch units j ∈ {R11, R12} and
correspond to Eqs. 3.5 and 3.6 of the formulation proposed in § 3.3. On the one hand,
batch unit R11 is the copolymerization reactor where solution polymerization takes place
and is represented by:


















































































































































Yj

η̇jI,k(t) =
(

F jin1,k(t)x
j
I,in1,k + F jin2,k(t)x

j
I,in2,k(t)− F jout,k(t)x

j
I,k(t)− kjd,k(t) η

j
I,k(t)

)

tjk,

η̇jM1,k
(t) =

(

F jin1,k(t)x
j
M1,in1,k

+ F jin2,k(t) x
j
M1,in2,k

(t)− F jout,k(t)x
j
M1,k

(t)

−(kjp11,k(t) η
j
P,k(t) + kjp21,k(t) η

j
Q,k(t))η

j
M1,k

(t)/υjk(t)
)

tjk,

η̇jM2,k
(t) =

(

F jin1,k(t)x
j
M2,in1,k

+ F jin2,k(t) x
j
M2,in2,k

(t)− F jout,k(t)x
j
M2,k

(t)

−(kjp22,k(t) η
j
Q,k(t) + kjp12,k(t) η

j
P,k(t))η

j
M2,k

(t)/υjk(t)
)

tjk,

η̇jS,k(t) =
(

F jin1,k(t)x
j
S,in1,k + F jin2,k(t) x

j
S,in2,k(t)− F jout,k(t)x

j
S,k(t)

)

tjk,

θ̇jk(t) =

(

F
j
in1,k

(t)

υ
j
k
(t)

(θjin1,k−θ
j
k(t)) +

F
j
in2,k

(t)

υ
j
k
(t)

(θjin2,k−θ
j
k(t))

+
△H

j
k
(t)RX

j
k
(t)

ρjc
j
p

− hcAc

ρjc
j
p

(θjk(t)− θjcool,k(t))

)

tjk,

η̇jP,k(t) =

(

kjd,k(t) η
j
I,k(t) + kjp21,k(t)

η
j
M1,k

(t)η
j
Q,k

(t)

υ
j
k
(t)

− kjp12,k(t)
η
j
M2,k

(t)η
j
P,k

(t)

υ
j
k
(t)

−kjtc11,k(t)
(η
j
P,k

(t))2

υ
j
k
(t)

− kjtc12,k(t)
η
j
P,k

(t)η
j
Q,k

(t)

υ
j
k
(t)

− F jout,k(t) x
j
P,k(t)

)

tjk,

η̇jQ,k(t) =

(

kjd,k(t) η
j
I,k(t) + kjp12,k(t)

η
j
M2,k

(t)η
j
P,k

(t)

υ
j
k
(t)

− kjp21,k(t)
η
j
M1,k

(t)η
j
Q,k

(t)

υ
j
k
(t)

−kjtc22,k(t)
(η
j
Q,k

(t))2

υ
j
k
(t)

− kjtc12,k(t)
η
j
P,k

(t)η
j
Q,k

(t)

υ
j
k
(t)

− F jout,k(t)x
j
P,k(t)

)

tjk,

kjr,k(t) = kj0,rexp
−Eja,r/Rθ

j
k
(t), ∀r ∈ {d, pii′, tcii′}, i, i′ = 1, 2,

xjc,k(t) = ηjc,k(t)/
∑

c′(η
j
c′,k(t)), ∀c ∈ {I,M1,M2, S,P,Q},

χjc,k(t)=η
j,0
c,1−η

j
c,k(t)+

k−1
∑

k′=1

∫ 1

0
(F j
in1,k′

(t)xj
c,in1,k′

(t)+F j
in2,k′

(t)xj
c,in2,k′

(t)−F j
out,k′

(t)xj
c,k′

(t))tj
k′
dt

+
∫ t

0
(F jin1,k(t)c

j
c,in1,k(t)+F

j
in2,k(t)c

j
c,in2,k(t)−F

j
out,k(t)c

j
c,k(t))t

j
kdt, c ∈ {M1,M2},

υjk(t)=η
j
M1,k

(t)
MWM1
ρM1

+ηjM2,k
(t)

MWM2
ρM2

+ηjI,k(t)
MWI
ρI

+χjM1,k
(t)

MWP1
ρP1

+χjM2,k
(t)

MWP2
ρP2

,

△Hj
k(t) = △hM1F

j
M1,k

(t) +△hM2(1− F jM1,k
(t)),

Qjcool,k(t) = hcAc υ
j
k(t)(θ

j
k(t)− θjcool,k(t))

F jcool,k(t) = Qjcool(t)/ρcool cp,cool(θ
j
cool,k(t)− θjcool,0)

RXj
k(t) =

(

kjp11,k(t) η
j
P,k(t) η

j
M1,k

(t) + kjp21,k(t) η
j
Q,k(t) η

j
M1,k

(t)

+kjp22,k(t) η
j
Q,k(t) η

j
M2,k

(t) + kjp12,k(t) η
j
P,k(t) η

j
M2,k

(t)
)

/υjk(t),

F jM1,k
(t) =

r1(η
j
M1,k

(t))2+η
j
M1,k

(t) η
j
M2,k

(t)

r1(η
j
M1,k

(t))2+2 η
j
M1,k

(t) η
j
M2,k

(t)+r2(η
j
M2,k

(t))2
,

t ∈ [0, 1], k ∈ {1, 2, 3}



















































































































































⊻



















¬Yj
η̇jc,k(t) = 0, c ∈ {M1,M2, I,S,P,Q}, θ̇jk(t) = 0,

kjr,k(t) = 0, r ∈ {d, pii′, tcii′}, i, i′ = 1, 2, RXj
k(t) = 0, F jM1,k

(t) = 0,

xjc,k(t) = 0, c ∈ {I,M1,M2, S,P,Q}, χjc,k(t) = 0, c ∈ {M1,M2},

υjk(t) = 0, △Hj
k(t) = 0, Qjcool,k(t) = 0, F jcool,k(t) = 0,

t ∈ [0, 1], k ∈ {1, 2, 3}



















. (C.11)
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C. Model of the acrylic fiber case study

On the other, batch unit R12 is the copolymerization reactor where suspension polymer-
ization takes place and is represented by:




































































































































































Yj

η̇jI,k(t) =
(

F jin1,k(t)x
j
I,in1,k + F jin2,k(t)x

j
I,in2,k(t)− F jout,k(t)x

j
I,k(t)− kjd,k(t) η

j
I,k(t)

)

tjk,

η̇jM1,k
(t) =

(

F jin1,k(t)x
j
M1,in1,k

+ F jin2,k(t) x
j
M1,in2,k

(t)− F jout,k(t)x
j
M1,k

(t)

−(kjp11,k(t) η
j
P,k(t) + kjp21,k(t) η

j
Q,k(t))η

j
M1,I,k

(t)/υjI,k(t)
)

tjk,

η̇jM2,k
(t) =

(

F jin1,k(t)x
j
M2,in1,k

+ F jin2,k(t) x
j
M2,in2,k

(t)− F jout,k(t)x
j
M2,k

(t)

−(kjp22,k(t) η
j
Q,k(t) + kjp12,k(t) η

j
P,k(t))η

j
M2,k

(t)/υjI,k(t)
)

tjk,

η̇jS,k(t) =
(

F jin1,k(t)x
j
S,in1,k + F jin2,k(t)x

j
S,in2,k(t)− F jout,k(t)x

j
S,k(t)

)

tjk,

θ̇jk(t) =

(

F
j
in1,k

(t)

υ
j
I,k

(t)
(θjin1,k−θ

j
k(t)) +

F
j
in2,k

(t)

υ
j
I,k

(t)
(θjin2,k−θ

j
k(t))

+
△H

j
k
(t)RX

j
k
(t)

ρjc
j
p

− hcAc
ρjc

j
p

(θjk(t)− θjcool,k(t))

)

tjk,

η̇jP,k(t) =

(

kjd,k(t) η
j
I,k(t) + kjp21,k(t)

η
j
M1,I,k

(t)η
j
Q,k

(t)

υ
j
I,k

(t)
− kjp12,k(t)

η
j
M2,k

(t)η
j
P,k

(t)

υ
j
I,k

(t)

−kjtc11,k(t)
(η
j
P,k

(t))2

υ
j
I,k

(t)
− kjtc12,k(t)

η
j
P,k

(t)η
j
Q,k

(t)

υ
j
I,k

(t)
− F jout,k(t) x

j
P,k(t)

)

tjk,

η̇jQ,k(t) =

(

kjd,k(t) η
j
I,k(t) + kjp12,k(t)

η
j
M2,k

(t)η
j
P,k

(t)

υ
j
I,k

(t)
− kjp21,k(t)

η
j
M1,I,k

(t)η
j
Q,k

(t)

υ
j
I,k

(t)

−kjtc22,k(t)
(η
j
Q,k

(t))2

υ
j
I,k

(t)
− kjtc12,k(t)

η
j
P,k

(t)η
j
Q,k

(t)

υ
j
I,k

(t)
− F jout,k(t)x

j
P,k(t)

)

tjk,

kjr,k(t) = kj0,rexp
−Eja,r/Rθ

j
k
(t), ∀r ∈ {d, pii′, tcii′}, i, i′ = 1, 2,

xjc,k(t) = ηjc,k(t)/
∑

c′(η
j
c′,k(t)), ∀c ∈ {I,M1,M2,S,P,Q},

χjc,k(t)=η
j,0
c,1−η

j
c,k(t)+

k−1
∑

k′=1

∫ 1

0
(F j
in1,k′

(t)xj
c,in1,k′

(t)+F j
in2,k′

(t)xj
c,in2,k′

(t)−F j
out,k′

(t)xj
c,k′

(t))tj
k′
dt

+
∫ t

0
(F jin1,k(t)c

j
c,in1,k(t)+F

j
in2,k(t)c

j
c,in2,k(t)−F

j
out,k(t)c

j
c,k(t))t

j
kdt, c ∈ {M1,M2},

υjI,k(t)=η
j
M1,I,k

(t)
MWM1
ρM1

+ηjM2,k
(t)

MWM2
ρM2

+ηjI,k(t)
MWI
ρI

+χjM1,k
(t)

MWP1
ρP1

+χjM2,k
(t)

MWP2
ρP2

,

υjII,k(t) = υjk(t)− υjI,k(t),

△Hj
k(t) = △hM1F

j
M1,k

(t) +△hM2(1− F jM1,k
(t)),

Qjcool,k(t) = hcAc υ
j
k(t)(θ

j
k(t)− θjcool,k(t))

F jcool,k(t) = Qjcool(t)/ρcool cp,cool(θ
j
cool,k(t)− θjcool,0)

RXj
k(t) =

(

kjp11,k(t) η
j
P,k(t) η

j
M1,I,k

(t) + kjp21,k(t) η
j
Q,k(t) η

j
M1,I,k

(t)

+kjp22,k(t) η
j
Q,k(t) η

j
M2,k

(t) + kjp12,k(t) η
j
P,k(t) η

j
M2,k

(t)
)

/υjI,k(t),

F jM1,k
(t) =

r1(η
j
M1,I,k

(t))2+η
j
M1,I,k

(t) η
j
M2,k

(t)

r1(η
j
M1,I,k

(t))2+2 η
j
M1,I,k

(t) η
j
M2,k

(t)+r2(η
j
M2,k

(t))2
,

AN equilibrium: 1/ϕjk(t) = a exp
(

b
(

ηjM1,II
(t)/υjII,k(t)

))

υ
j
I,k

(t)

υ
j
II,k

(t)
,

ηjM1,I,k
(t) = ηjM1,k

(t)
1/ϕ

j
k
(t)

1+1/ϕ
j
k
(t)
, ηjM1,II,k

(t) = ηjM1,k
(t)− ηjM1,I,k

(t),

t ∈ [0, 1], k ∈ {1, 2, 3}





































































































































































⊻























¬Yj
η̇jc,k(t) = 0, c ∈ {M1,M2, I,S,P,Q}, θ̇jk(t) = 0,

kjr,k(t) = 0, r ∈ {d, pii′, tcii′}, i, i′ = 1, 2, RXj
k(t) = 0, F jM1,k

(t) = 0,

xjc,k(t) = 0, c ∈ {I,M1,M2, S,P,Q}, χjc,k(t) = 0, c ∈ {M1,M2},

υjI,k(t) = 0, υjII,k(t) = 0, ηjM1,I,k
(t) = 0, ηjM1,II,k

(t) = 0,

△Hj
k(t) = 0, Qjcool,k(t) = 0, F jcool,k(t) = 0,

t ∈ [0, 1], k ∈ {1, 2, 3}























. (C.12)
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MLDO model of the acrylic fiber case study

The total consumption of raw materials and solvent c ∈ {M1,M2, I, S} in copolymerization
reaction stage 1 is calculated from the material inputs in each potential equipment unit
j ∈ {R11, R12} as follows:











Yj

Consjc=η
j,0
c,1+

3
∑

k=1

∫ 1

0

(

F jin1,k(t)x
j
c,in1,k(t)+

F jin2,k(t)x
j
c,in2,k(t)

)

tjk dt,











⊻

[

¬Yj
Consjc=0

]

, c ∈ {M1,M2, I,S}. (C.13)

Apart from the costs of raw material consumption defined in Eq. C.8, copolymeriza-
tion stage also involves: (i) amortization costs Costj,a associated to the purchase of the
polymerization reactors and (ii) processing costs Costj,p associated to the consumption of
cooling water for the energy balance. These costs are defined for each potential equipment
unit j ∈ {R11, R12} as follows:

[

¬Yj
Sizej = 0

]

, (C.14)

Costj,a = čj(Size
j/Size0)n

3
∑

k=1

tjk, (C.15)





Yj

Costj,p = ĉj,cool
3
∑

k=1

∫ 1

0

(

F jcool,k(t) ρcool
)

tjk dt



 ⊻

[

¬Yj
Costj,p = 0

]

. (C.16)

The operation is also subject to the following constraints in reactors j ∈ {R11, R12}:








































Yj
xjc,in1,k = 0, c ∈ {M2, I, }, k ∈ {2, 3}

θL ≤ θjk(t) ≥ θU, t ∈ [0, 1], k ∈ {1, 2, 3},

θjcool,k(t) ≤ θjk(t), t ∈ [0, 1], k ∈ {1, 2, 3},

F j,L ≤ F jin1,k(t) ≤ F j,U, t ∈ [0, 1], k ∈ {1},

F jin1,k(t) = 0, t ∈ [0, 1], k ∈ {3},

F j,L≤F jin1,k(t)≤0.05F j,U, t ∈ [0, 1], k ∈ {2},

F j,L ≤ F jin2,k(t) ≤ F j,U, t ∈ [0, 1], k ∈ {1},

F jin2,k(t) = 0, t ∈ [0, 1], k ∈ {2, 3},

F j,L ≤ F jout,k(t) ≤ F j,U, t ∈ [0, 1], k ∈ {3},

F jout,k(t) = 0, t ∈ [0, 1], k ∈ {1, 2},









































⊻





















¬Yj
xjc,in1,k=0, c∈{M1,M2, I},∀k,

θjk(t) = 0, t ∈ [0, 1], ∀k

F jm,k(t) = 0, t ∈ [0, 1], ∀k

m ∈ {in1, in2, out},

tjk = 0, ∀k





















(C.17)

The definition of the parameters that depend on the technology and solvent selection in
polymerization reactors j ∈ {R11, R12} are controlled through the disjunction:

































V jsolu


























SjDMF

ρj = ρDMF,
cjp = cp,DMF,

MW j
S =MWDMF,

p̂jS = p̂DMF,

kj0,r = k0,r,DMF,

Eja,r = Ea,r,DMF,
r∈{d, pii′, tcii′}, i, i′=1, 2



























⊻





























SjNaSCN(aq)

ρj = ρNaSCN(aq),
cjp = cp,NaSCN(aq),

MW j
S =MWNaSCN(aq),

p̂jS = p̂NaSCN(aq),

kj0,r = k0,r,NaSCN(aq),

Eja,r = Ea,r,NaSCN(aq),
r∈{d, pii′, tcii′}, i, i′=1, 2





























































⊻



























V jsusp

ρj = ρH2O,
cjp = cp,H2O,

MW j
S =MWH2O,

p̂jS = p̂H2O,

kj0,r = k0,r,H2O,

Eja,r = Ea,r,H2O,
r∈{d, pii′, tcii′}, i, i′=1, 2



























.

(C.18)
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C. Model of the acrylic fiber case study

Separation in batch evaporation unit

The following disjunctions define the multistage model of batch evaporator j ∈ {E2} and
correspond to Eqs. 3.5 and 3.6 of the formulation proposed in § 3.3:































































































Yj

Ḣj
k(t) =

(

F jF,k(t)− F jL,k(t)− F jV,k(t)
)

tjk,

η̇jCo,k(t) =
(

F jF,k(t) z
j
Co,F,k(t)− F jL,k(t) x

j
Co,k(t)− F jV,k(t) y

j
Co,k(t)

)

tjk,

η̇jM1,k
(t) =

(

F jF,k(t) z
j
M1,F,k

(t)− F jL,k(t) x
j
M1,k

(t)− F jV,k(t) y
j
M1,k

(t)
)

tjk,

η̇jM2,k
(t) =

(

F jF,k(t) z
j
M2,F,k

(t)− F jL,k(t) x
j
M2,k

(t)− F jV,k(t) y
j
M2,k

(t)
)

tjk,

η̇jS,k(t) =
(

F jF,k(t) z
j
S,F,k(t)− F jL,k(t) x

j
S,k(t)− F jV,k(t) y

j
S,k(t)

)

tjk,

ηjI,k(t) =H
j
k(t)− ηjCo,k(t)− ηjM1,k

(t)− ηjM2,k
(t)− ηjS,k(t),

log10(p
j
v,c,k(t)) = Ac −

Bc
(θ
j
k
(t)+Cc)

, c ∈ {M1,M2},

log10(p
j
v,S,k(t)) = AjS −

B
j
S

(θ
j
k
(t)+C

j
S
)
,

xjc,k(t) = ηjc,k(t)/H
j
k(t), c ∈ {Co,M1,M2, I,S},

yjc,k(t) = xjc,k(t) p
j
v,c,k(t)/P

j
total, c ∈ {M1,M2,S},

yjc,k(t) = xjc,k(t) pv,c/P
j
total, c ∈ {Co, I},

1 =
∑

c∈{Co,M1,M2,I,S} y
j
c,k(t),

log(hjv,c,k(t) 4.1868 kJ/kcal) = log(Ah,c) + log(1−
θ
j
k
(t)−273

θcc−273
)Bh,c, c ∈ {M1,M2},

log(hjv,S,k(t) 4.1868 kJ/kcal) = log(Ajh,S) + log(1−
θ
j
k
(t)−273

θc
j
S
−273

)Bjh,S,

△hjv,k(t) =
∑

c∈{M1,M2,S} h
j
v,c,k(t) y

j
c,k(t),

Qjheat,k(t) = F jV,k(t)△h
j
v,k(t),

t ∈ [0, 1], k ∈ {1, ..., 4},

Wastej = Pwaste/100
4
∑

k=1

∫ 1

0
F jF,k(t)t

j
k dt































































































⊻























¬Yj
Ḣj
k(t) = 0, η̇jc,k(t) = 0, c ∈ {Co,M1,M2, I,S},

pjv,c,k(t) = 0, c ∈ {M1,M2,S}, h
j
v,c,k(t) = 0, c ∈ {M1,M2,S},

xjc,k(t) = 0, c ∈ {Co,M1,M2, I,S}, y
j
c,k(t) = 0, c ∈ {Co,M1,M2, I, S},

△hjv,k(t) = 0, Qjheat,k(t) = 0,

t ∈ [0, 1], k ∈ {1, ..., 4},
Wastej = 0























. (C.19)

The computation of the vapor pressure and heat of vaporization of the solvent or suspension
media is subject to the technology and solvent selected in the copolymerization stage. To accom-
plish this, the value of parameters AjS, BjS, CjS, Ajh,S, B

j
h,S, and θcjS in the evaporator j ∈ {E2}

is defined as a function of Booleans V j
′

λ and Sj
′

c in the reactors j′ ∈ {R11, R12} by means of:




























V j
′

solu






















Sj
′

DMF

AjS = ADMF,

BjS = BDMF,

CjS = CDMF,

Ajh,S = Ah,DMF,

Bjh,S = Bh,DMF,

θcjS = θcDMF























⊻























Sj
′

NaSCN(aq)

AjS = ANaSCN(aq),

BjS = BNaSCN(aq),

CjS = CNaSCN(aq),

Ajh,S = Ah,NaSCN(aq),

Bjh,S = Bh,NaSCN(aq),

θcjS = θcNaSCN(aq)



















































∨























V j
′

susp

AjS = AH2O,

BjS = BH2O,

CjS = CH2O,

Ajh,S = Ah,H2O,

Bjh,S = Bh,H2O,

θcjS = θcH2O























, j′∈{R11, R12}. (C.20)

The separation stage involves the following economic weights: (i) amortization costs
Costj,a associated to the purchase of the evaporator and (ii) processing costs Costj,p
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MLDO model of the acrylic fiber case study

associated to the consumption of heating in the boiler. These costs are defined for the
potential equipment unit j ∈ {E2} as follows:

[

¬Yj
Sizej = 0

]

, (C.21)

Costj,a = čj(Size
j/Size0)n

4
∑

k=1

tjk, (C.22)





Yj

Costj,p = ĉj,heat
4
∑

k=1

∫ 1

0
Qjheat,k(t) t

j
k dt



 ⊻

[

¬Yj
Costj,p = 0

]

. (C.23)

The operation is also subject to the following constraints in the evaporator j ∈ {E2}:


























Yj
QL ≤ Qjheat,k(t) ≤ QU, t ∈ [0, 1],∀{2, 3}

Qjheat, k(t) = 0, t ∈ [0, 1], ∀{1, 4}

F j,L ≤ F jF,k(t) ≤ F j,U, t ∈ [0, 1], k ∈ {1},

F jF,k(t) = 0, t ∈ [0, 1], k ∈ {2, ...4},

F j,L ≤ F jV,k(t) + F jL,k(t) ≤ F j,U, t ∈ [0, 1], k ∈ {2, 3, 4},

F jV,k(t) = 0, t ∈ [0, 1], k ∈ {1, 4},

F jL,k(t) = 0, t ∈ [0, 1], k ∈ {1, 2}



























⊻













¬Yj
Qjheat,k(t) = 0, t ∈ [0, 1], ∀k

F jm,k(t) = 0, t ∈ [0, 1], ∀k,

m ∈ {F, V, L}

tjk = 0, ∀k













.

(C.24)

C.3.3 Plant elements at Level 0

Buffer tanks

The following equations define the multistage models of the semi-continuous storage units
j ∈ {T2, T4}, which correspond to Eq. 3.28 of the formulation proposed in § 3.3.





























Yj

Ḣj
l (t) =

(

F jin,l(t)− F jout,l(t)
)

tl,

η̇jc,l(t) =
(

F jin,l(t) x
j
c,in,l(t)− F jout,l(t) x

j
c,l(t)

)

tl, c∈{Co,M1,M2,S},

ηjI,l(t) = Hj
l (t)−

∑

c∈{Co,M1,M2,S}
ηjc,l(t),

xjc,l(t) = ηjc,l(t)/H
j
l (t), c ∈ {Co,M1,M2,S},

xjI,l(t) = 1−
∑

c∈{Co,M1,M2,S}
xjc,l(t),

t ∈ [0, 1], l ∈ {1, ..., 6}





























⊻









¬Yj
Ḣj
l (t) = 0, η̇jc,l(t) = 0, c∈{Co,M1,M2, I, S},

xjc,l(t) = 0, c ∈ {Co,M1,M2, I,S},

t ∈ [0, 1], l ∈ {1, ..., 6}









,

(C.25)

where YT4 is always true since T4 is a mandatory item whereas YT2 can be true or false,
depending on the selection of recirculating the distillate from the evaporator E2 or not.
In fact, the particular function of tank T2 is reducing the raw material consumption. This
is because this tank, if it is installed, has the function of supplying to reaction stage 1
the unreacted monomers M1 and M2 and recovered solvent or suspension medium S that
comes from separation stage 2. These saving in raw material requirements is quantified
in Eq. C.8 through a negative consumption in this tank. This is calculated for j ∈ {T2}
as follows:





Yj

Consjc=−
6
∑

l=1

∫ 1

0
F jout,l(t) x

j
c,l(t) tl dt



 ⊻

[

¬Yj
Consjc=0

]

, c ∈ {M1,M2, S}. (C.26)
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C. Model of the acrylic fiber case study

In order to facilitate the convergence in the optimization procedure, the following redun-
dant equation is incorporated into the optimization model:





YT2
∑

j′∈{R11, R12}

Consj
′

c ≥ −ConsT2c



 , c ∈ {M1,M2,S}. (C.27)

The acquisition of storage tanks j ∈ {T2, T4} also involve the economic expenses associated
to their amortization Costj,a. This is calculated like the abovementioned amortization
costs for the polymerization reactors and the evaporator:

[

¬Yj
Sizej = 0

]

, (C.28)

Costj,a = čj(Size
j/Size0)n

6
∑

l=1

tjk. (C.29)

Balance in mixers and splitters

The flow sheet model involves mass balances in mixers and splitters. According to the
scheme of Figure C.2, global mass balances in connecting units j ∈Mx ∪ Sp are defined
by:

F6,l(t) + F7,l(t) = F8,l(t), t ∈ [0, 1], l ∈ {1, ..., 6},
F14,l(t) + F15,l(t) = F16,l(t), t ∈ [0, 1], l ∈ {1, ..., 6},
F1,l(t) = F2,l(t) + F3,l(t), t ∈ [0, 1], l ∈ {1, ..., 6},
F13,l(t) = F4,l(t) + F5,l(t), t ∈ [0, 1], l ∈ {1, ..., 6},
F8,l(t) = F9,l(t) + F14,l(t), t ∈ [0, 1], l ∈ {1, ..., 6},

F10,l(t) = F11,l(t) + F12,l(t), t ∈ [0, 1], l ∈ {1, ..., 6},

(C.30)

and component balances are defined by:

F6,l(t)xc,6,l(t) + F7,l(t)xc,7,l(t) = F8,l(t)xc,8,l(t), t∈[0, 1], c∈{M1,M2, I,S,Co}, l∈{1, ..., 6},
F14,l(t)xc,14,l(t) + F15,l(t)xc,15,l(t) = F16,l(t)xc,16,l(t), t∈[0, 1], c∈{M1,M2, I,S,Co}, l∈{1, ..., 6},

xc,1,l(t) = xc,n,l(t), t ∈ [0, 1], c ∈ {M1,M2, I,S,Co}, n ∈ {2, 3}, l ∈ {1, ..., 6},
xc,13,l(t) = xc,n,l(t), t ∈ [0, 1], c ∈ {M1,M2, I,S,Co}, n ∈ {4, 5}, l ∈ {1, ..., 6},
xc,8,l(t) = xc,n,l(t), t ∈ [0, 1], c ∈ {M1,M2, I,S,Co}, n ∈ {9, 14}, l ∈ {1, ..., 6},
xc,10,l(t) = xc,n,l(t), t ∈ [0, 1], c ∈ {M1,M2, I,S,Co}, n ∈ {11, 12}, l ∈ {1, ..., 6}.

(C.31)

C.3.4 Synchronization

In this case study the synchronization is controlled by the unit selection. The reason is that
the process stages included in this formulation are associated exclusively to one single unit
configuration and do not require task-unit assignment Booleans. Therefore, the equations
that detail the synchronization of flow rates, compositions, and batch phase duration of
unit procedures in units j ∈ {R11, R12, E2, T2, T4} read as:



























YR11

tR11
l = tl, l ∈ {1, ..., 3},

FR11
in1,l(t) = F2,l(t), x

R11
c,in1,l(t) = xc,2,l(t),

FR11
in2,l(t) = F4,l(t), x

R11
c,in2,l(t) = xc,4,l(t),

FR11
out,l(t) = F6,l(t), x

R11
c,l (t) = xc,6,l(t),

t ∈ [0, 1], l ∈ {1, ..., 3},
Fn,l(t) = 0, xc,n,l(t) = 0, n ∈ {2, 4, 6},

t ∈ [0, 1], l ∈ {4, ..., 6}



























⊻









¬YR11

Fn,l(t) = 0, xc,n,l(t) = 0,
n ∈ {2, 4, 6},

t ∈ [0, 1], l ∈ {1, ..., 6}









, (C.32)
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YR12

tR12
l = tl, l ∈ {1, ..., 3},

FR12
in1,l(t) = F3,l(t), x

R12
c,in1,l(t) = xc,3,l(t),

FR12
in2,l(t) = F5,l(t), x

R12
c,in2,l(t) = xc,5,l(t),

FR12
out,l(t) = F7,l(t), x

R12
c,l (t) = xc,7,l(t),

t ∈ [0, 1], l ∈ {1, ..., 3},
Fn,l(t) = 0, xc,n,l(t) = 0, n ∈ {3, 5, 7},

t ∈ [0, 1], l ∈ {4, ..., 6}



























⊻









¬YR12

Fn,l(t) = 0, xc,n,l(t) = 0,
n ∈ {3, 5, 7},

t ∈ [0, 1], l ∈ {1, ..., 6}









, (C.33)



























YE2

tE2
l−2 = tl, l ∈ {3, ..., 6},

FE2
F,l−2(t) = F9,l(t), z

E2
c,F,l−2(t) = xc,9,l(t),

FE2
V,l−2(t) = F10,l(t), y

E2
c,V,l−2(t) = xc,10,l(t),

FE2
L,l−2(t) = F15,l(t), x

E2
c,L,l−2(t) = xc,15,l(t),

t ∈ [0, 1], l ∈ {3, ..., 6},
Fn,l(t) = 0, xc,n,l(t) = 0, n ∈ {9, 10, 15},

t ∈ [0, 1], l ∈ {1, 2}



























⊻









¬YE2

Fn,l(t) = 0, xc,n,l(t) = 0,
n ∈ {9, 10, 15},

t ∈ [0, 1], l ∈ {1, ..., 6}









, (C.34)























YT2
tT2l−3 = tl, l ∈ {4, 5},

F T2in,l−3(t)=F11,l(t), x
T2
c,in,l−3(t)=xc,11,l(t), t∈[0, 1], l∈{4, 5},

F11,l(t)=0, xc,11,l(t)=0, t∈[0, 1], l∈{1, ..., 6}\{4, 5},

tT2l+2 = tl, l ∈ {1},

F T2out,l+2(t)=F13,l(t), x
T2
c,l+2(t)=xc,13,l(t), t∈[0, 1], l∈{1},

F13,l(t)=0, xc,13,l(t)=0, t∈[0, 1], l∈{1, ..., 6}\{1}























⊻









¬YT2
Fn,l(t) = 0, xc,n,l(t) = 0,

n ∈ {11, 13},
t ∈ [0, 1], l ∈ {1, ..., 6}









,

(C.35)

























YT4




















YE2

tT4l−4 = tl, l ∈ {5, 6},

F T4in,l−4(t) = F16,l(t),

xT4c,in,l−4(t) = xc,16,l(t),

t ∈ [0, 1], l ∈ {5, 6},
F16,l(t) = 0, xc,16,l(t) = 0,
t ∈ [0, 1], l ∈ {1, ..., 4}





















⊻





















¬YE2

tT4l−2 = tl, l ∈ {3},

F T4in,l−2(t) = F16,l(t),

xT4c,in,l−2(t) = xc,16,l(t),

t ∈ [0, 1], l ∈ {3},
F16,l(t) = 0, xc,16,l(t) = 0,
t ∈ [0, 1], l ∈ {1, ..., 6}\{3}













































⊻





¬YT4
F16,l(t) = 0, xc,16,l(t) = 0,
t ∈ [0, 1], l ∈ {1, ..., 6}



 .

(C.36)

C.3.5 Logical propositions

The logical propositions considered in this case study to define the plant and process
synthesis are:

1. The selection of solution (V R11

solu ) or suspension (V R12
susp) copolymerization technologies

and the corresponding reactors R11 (YR11) or R12 (YR12) is defined by:

V R11
solu ⊻ V R12

susp,

V R11
solu ⇔ YR11 ,
V R12
susp ⇔ YR12 .

(C.37)
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C. Model of the acrylic fiber case study

2. The selection of organic (SR11

DMF) or aqueous (SR11

NaSCN(aq)) solvent in solution copoly-
merization is determined by:

V R11
solu ⇔ SR11

DMF ⊻ SR11
NaSCN(aq). (C.38)

3. The possibility of dismissing separation stage 2 (¬Z2) is conditioned by the selection
of solution polymerization technology and by the achievement of a conversion in
the solution copolimerization reactor (χR11) greater than the established minimum
input conversion in repulping stage 4 (χL

4 ). This is represented by the following
equations, which include the installation of the separation unit E2 (YE2):

¬Z2 ⇒ V R11
solu ∧

(

χR11 ≥ χL
4

)

,
Z2 ⇔ YE2 .

(C.39)

4. The recirculation of the solvent or the suspension medium recovered in separation
stage 2 toward reaction stage 1 (R2,1) is associated to the installation of buffer tank
T2 (YT2) through the proposition:

R2,1 ⇔ YT2 . (C.40)

5. The selection of washing and filtration stage 3 (Z3) and corresponding equipment
item F3 (YF3) is associated to the definition of previous separation task 2, and is
represented by the following equations:

Z2 ⇔ Z3,
Z3 ⇔ YF3 .

(C.41)

6. The recirculation of the washing water in filtration stage 3 toward reaction stage 1
(R3,1) is associated to the installation of buffer tank T3 (YT3 ) through the proposi-
tion:

R3,1 ⇔ YT3 . (C.42)

7. The operating modes considered in process stage 7 include the use of one single unit
F71 (X7

α) or series configuration where unit F71 is followed by F72 (X7
σ), and are

formulated by:
X7
α ⊻X7

σ,
X7
α ⇔ YF71 ,

X7
σ ⇔ YF71 ∧ YF72 .

(C.43)

8. The operating modes considered in process stage 8 include the use of one single unit
C81 (X8

α) or series configuration where unit C81 is followed by C82 (X8
σ), and are

formulated by:
X8
α ⊻X8

σ,
X8
α ⇔ YC81 ,

X8
σ ⇔ YC81 ∧ YC82 .

(C.44)

9. The recirculation of the solvent recovered in separation stage 8 toward reaction
stage 1 (R8,1) or toward repulping stage 4 (R8,4) is associated to the acquisition of
buffer tanks T81 (YT81) or T84 (YT84 ) through propositions:

R8,1 ⇔ YT81 ,
R8,4 ⇔ YT84 .

(C.45)
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Appendix D

Comparison of solution methods: a preliminary study

In this appendix, a study is presented which compares the application of the determin-
istic, stochastic, and hybrid methods proposed in Chapter 4. Specifically, the direct-
simultaneous, the DGA, and the DGA-NLP strategies are used to solve a preliminary
example of the Denbigh reaction system (Denbigh, 1958). The example is a variation
of the Denbigh examples addressed in Chapter 5 (p. 116, 126, and 137) and Chapter 6
(p. 158). It was part of the preliminary studies during the development of this thesis. The
results prove that the proposed stochastic and hybrid approaches can be considered as a
plausible alternative to the deterministic one, provided that a good tuning of the DGA is
performed.

D.1 Denbigh case study: comparison of solution meth-

ods

The proposed strategies are applied to solve the integrated batch process development
in a retrofit scenario. Particularly, a competitive reaction mechanism, the Denbigh re-
action system (Denbigh, 1958), is considered to introduce the production of a specialty
chemical into an existing plant through a single-product campaign. The plant diagram in
corresponds to the reactor network of the motivating example 1 in Chapter 3 (Figure 3.1,
p. 54), composed of two batch reactors U1 and U2. The objective is to produce batches of
900 kg of product S maximizing the profit, which is reads as:

minimize ΦObjective =−Profit
=−(RevenueS−CostA−

∑

j∈{U1,U2}
(Costj,p+Costj,o)).

(D.1)

Each contribution is defined as follows:

• Product revenue:

RevenueS = p̂S

(

η
Tprod
S (tend)− η

Tprod
S (ts)

)

, (D.2)

where p̂S is the selling price of product S with a value of 6.15e/kg, ts and tend are
the initial and final times of the batch, and ηTprodS (ts) and ηTprodS (tend) are the initial
and final amounts of S in storage tank Tprod;
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D. Comparison of solution methods: a preliminary study

• Raw material cost:
CostA = p̂A

(

ηTrawA (ts)− ηTrawA (tend)
)

, (D.3)

where p̂A is the cost of raw material A with a value of 1.54e/kg, and ηTrawA (ts)

and ηTrawA (tend) are the initial and final amounts of raw material A in storage tank
T raw;

• Processing cost, as a function of the processed material:




Yj

Costj,p = ĉj
3
∑

k=1

∫ 1

0
F j2,k(t)dt t

j
k



 ⊻

[

¬Yj
Costj,p = 0

]

, ∀j ∈ {U1, U2}, (D.4)

where ĉj is the unitary processing cost with a value of 0.38e/kg in unit U1 and
0.47e/kg in U2, F

j
2,k(t) is the output flow and tjk is the duration of stage k∈Kj ,

and Yj is the equipment Boolean that indicates whether batch unit j∈{U1, U2} is
selected or not.

• Occupation cost, as a function of the batch processing time:




Yj

Costj,o = c̄j
3
∑

k=1

tjk



 ⊻

[

¬Yj
Costj,o = 0

]

, ∀j ∈ {U1, U2}, (D.5)

where c̄j is the time-dependent occupation cost with a value of 100e/h in unit
U1 and 200e/h in U2, t

j
k is the duration of stage k∈Kj , and Yj is the equipment

Boolean that indicates whether batch unit j∈{U1, U2} is selected or not.

The rest of the MLDO model is detailed in Appendix A, according to the modeling
strategy proposed in Chapter 3. The process synthesis decisions addressed are: (i) the
splitting of reaction stage into subtasks, (ii) the dynamic reference trajectories of the feed-
forward control variables, which include input and output flow rates (F j1,k(t) and F j3,k(t))

and processing temperature (θjk(t)) in each stage k∈{1, 2, 3} in batch units j∈{U1, U2},
(iii) the duration of batch operations (tl) in each potential stage l∈{1, ..., 5} considering all
the batch unit procedures, and (iv) the material transfer synchronization between tasks
–i.e. synchronization of flow rates, compositions, and starting and final times. As for the
equipment allocation problem, the selection of batch processing units (Yj , j∈{U1, U2}) (v)
is solved, together with the optimization of: (vi) task-unit assignment (Wj,q, j∈{U1, U2},
q∈{1, 2}), and (vii) the eventual combination of equipment pieces for reaction stage,
creating series σ, parallel π, or single unit α or β configurations (X1

ψ, ψ∈{α,β,π,σ}).

D.1.1 Direct-simultaneous method

The problem is first solved using the direct-simultaneous approach explained in Chapter
4 (p. 92). To sum up, the MLDO problem is reformulated into a MIDO by replacing
Boolean variables uBool={Yj ,Wj,q, X

1
ψ} by binaries ubin={yj, wj,q, x1ψ} and using binary

multiplication and CNF reformulation (Clocksin & Mellish, 1981, Raman & Grossmann,
1991) to transform the mixed-logic problem into a mixed-integer one. Next, the model
tranformed into a MINLP through full-discretization of the process and control variables,
by means of orthogonal collocation on finite elements (Cuthrell & Biegler, 1989). Three
collocation points and four finite elements are used in this example. Finally, the MINLP
problem is implemented in GAMS and solved using Outer Approximation (OA) method
(Duran & Grossmann, 1986a) by decomposing the problem into MILP and NLP subprob-
lems that are solved iteratively in the optimization algorithm. Multiple IFS are used to
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Denbigh case study: comparison of solution methods

initialize the search procedure. The optimal solution obtained with this approach is taken
as a reference for the stochastic and hybrid approaches.

D.1.2 Stochastic DGA method

In this example, the chromosome presented in Figure 4.4 (p. 99) is used, given the batch
units U={U1, U2}, batch operations Kj={1, 2, 3} at j∈U , with input and output stages
Ij={1} and Oj={3}, input and output flows M in

j ={1} and Mout
j ={2}, model stages

L={1, ..., 5} at Level 0, final product P={S}, procedure orders Q={1, 2}, equipment
configurations Ψ={α, β, π, σ}, and reaction task PS={1}. Moreover,Ne=4 finite elements
are used for in the discretization of batch profiles where PWC control profiles are adopted,
like in the deterministic approach.

The analysis of the DOF associated to qualitative decisions in this example per-
mits to reduce the binary decision variables to the selection of equipment configuration,
x1ψ , ψ ∈ {α, β σ, π}. The interested reader is referred to Appendix A (p. 199) for further
details. Then, binary variables yj for selected processing units j∈U and wj,q for the assign-
ment of unit j∈U to the procedure in order q∈Q depend on the equipment configuration
according to the algebraic equations of Ω in Eq. 4.8 that correspond to the mixed-integer
reformulation of original Eqs. 3.10 and 3.17-3.20. Otherwise, they should be included in
the chromosome. Besides, the number of batches is assumed to be fixed to NBS=47 in
this example.

As a result, the chromosome length is 49, composed of: (i) 40 continuous variables in
Part I, namely udynk,e ={F j1,3,e,F

j
2,1,e,θ

j
k,e}, with j∈U , k∈Kj, and e∈{1, ..., Ne}, (ii) five con-

tinuous variables in Part II, namely ustat={tl}, with l∈L, and (iii) four discrete variables
in Part III, namely ubin={x1ψ}, with ψ∈Ψ. An overview of GA features is shown in Table
D.1.

Parameter Value Parameter Value

No. variables 49 No. crossover points 2
No. population 460 Penalization weight fp 30
Selection 50% Mutation rate 5%

No. elite individuals 2 σ2 in mutation for F j1,3,e and F j2,1,e 0.25

Table D.1: GA parameters in the preliminary Denbigh example.

To evaluate the goodness of each individual inside a population, the fitness function
ΦFitness is defined including the profit objective function ΦObjective and penalization of
model unsupported restrictions as follows:

ΦFitness = ΦObjective + fp·P. (D.6)

In this example, the penalizations fp·P to support the model inequalities are committed
to ensure: the fulfillment of the demand DemS, the minimum input and output flow rates
F j1,3,e and F j2,1,e in active units, the maximum volume υU

|Kj |
that ensures that batch units

j∈U are empty in the final time tj,end, lower and upper bound for stage durations tl at
Level 0, and non-negative volumes in units and storage tanks.
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D. Comparison of solution methods: a preliminary study

D.1.3 Hybrid DGA-NLP method

To apply the hybrid DGA-NLP method, presented in Figure 4.5 (p. 101), the GA features
and tuning parameters presented in Table D.1 are also employed in steps (1) and (2).
However, in the exploratory step (1) the four variables regarding configuration x1ψ are
fixed to 1 alternatively for the four possible configurations ψ∈{α, β, σ, π}. In last step (3),
the NLP solver CONOPT is used.

D.1.4 Results and discussion

Figure D.1 shows the fitness function evolution for the DGA and the hybrid DGA-NLP
strategies, with respect to the reference determined by the direct-simultaneous approach.
The goodness of obtained solutions at the final iteration are also compared in Table D.2,
bearing in mind that stochastic solutions may vary with the GA tuning.

It can be observed that the DGA method provides a solution closer to the reference
optimal one, in comparison to the hybrid strategy without refinement. Indeed, the filtering
DGA step (2) of the hybrid method provides no improvement over the NIFS chromosomes
from step (1), even though dynamic profiles are allowed in this step, providing a margin
for improving the solution. A simple filter to automatically select the best out of the
NIFS solutions available would be likewise appropriate. Besides, the almost negligible
penalizations are common to all cases. Additionally, it is worth to note in Figure D.1
how the DGA strategy converges to a good solution as rapidly as the exploratory GA
in the hybrid method. Thus, apparently it should be equally efficient to solve a unique
DGA with free configuration and dynamic profiles that substitutes steps (1) and (2), to
afterwards refine the solution with the NLP solver in step (3).
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Figure D.1: Evolution of DGA throughout the solution with stochastic and hybrid methods in
the preliminary Denbigh example.
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Denbigh case study: comparison of solution methods

Case ΦFitness ΦObjective fp·P Error in ΦFitness

Direct-simultaneous strategy -2.0303 -2.0303 0 -
DGA strategy -1.8306 -1.9083 0.0777 0.1997
Hybrid: filtering DGA -1.6219 -1.6382 0.0164 0.4084
Hybrid: refining NLP -2.0303 -2.0303 0 0

Table D.2: Comparison of solution goodness of tested solution strategies in the preliminary
Denbigh example.

To conclude, in the tested cases, physically feasible solutions are obtained by the
stochastic and hybrid methods without providing initial feasible solutions, which is a cru-
cial advantage in front of deterministic methods. The solutions obtained with the DGA
strategy are close to the reference and can be further improved up to the reference op-
timum by using a direct-simultaneous method for DO, which can be solved using NLP
solvers with lower combinatorial complexity, as shown in the hybrid approach. These
results are a promising first step to solve industrial size problems, currently limited by
computational requirements of standard solvers. However, the tuning of the DGA param-
eters should be further studied to ensure that blind searches –without a deterministic
reference solution– lead to the optimal.
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Appendix E

Publications

This is a list of the works carried out so far within the scope of this thesis, in reversed
chronological order. The list has been divided in manuscripts to international refereed
journals, conference proceedings, and workshops. It includes works directly related to this
thesis and other related work.
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E.1.1 Manuscripts in progress

Moreno-Benito, M., K. Frankl, A. Espuña, & W. Marquardt. A modelling strategy for
batch process and recipe design using mixed-logic dynamic optimization.

Moreno-Benito, M., A. Espuña, & L. Puigjaner. Flexible Plant Design using Mixed-
Logic Dynamic Optimization.

Moreno-Benito, M., E. Yamal-Turbay, A. Espuña, M. Pérez-Moya, & M. Graells. Op-
timization of H2O2 dosage in photo-Fenton process.

E.1.2 Manuscripts submitted

Moreno-Benito, M. & A. Espuña. Stochastic and hybrid approaches to solve integrated
synthesis and operation of batch processes. Computers & Chemical Engineering.

E.1.3 Manuscripts published
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