
A Network Approach for Strapdown Inertial
Kinematic Gravimetry

M. Assumpció Termens

Programme: Applied Mathematics
Doctoral Supervisor: Dr. Ismael Colomina

Barcelona, 2013





Al meu padrí Estanislau (q.e.p.d.).

Als meus pares, Jordi (q.e.p.d.) i Ramona.





The important thing is not to stop questioning.

Curiosity has its own reason for existing. One cannot help but be in awe when he contemplates

the mysteries of eternity, of life; of the marvelous structure of reality. It is enough if one tries

merely to comprehend a little of this mystery every day. Never lose a holy curiosity.

Albert Einstein
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Abstract
Compared to the conventional ground measurement of gravity, airborne gravimetry is more

efficient and cost-effective. Especially, the combination of GPS and INS is known to show very

good performances recovering the gravity signal in the range of medium frequencies (1–100

km).

The processing of airborne gravity data traditionally consists of various independent steps,

such as filtering, gridding and adjustment of misfits at crossover points. Each of these steps

may introduce errors that accumulate in the course of processing.

Mainly, the extraction of gravity anomalies from airborne strapdown INS gravimetry has been

based on the state-space approach (SSA), which has many advantages but displays a serious

disadvantage, namely, its very limited capacity to handle space correlations (like the rigorous

treatment of crossover points).

This dissertation explores an alternative approach through the well known geodetic network

approach, where the INS differential mechanisation equations are interpreted as observation

equations of a least-squares parameter estimation problem.

In numerical terms, the INS equations are solved by a finite difference method where the

initial/boundary values are substituted with the appropriated observation equations. The

author believes that the above approach has some advantages that are on worth exploring;

mainly, that modelling the Earth gravity field can be more rigorous than with the SSA and that

external information can be better exploited.

It is important to remark that this approach cannot be applied to real-time navigation. Howe-

ver, here we are not trying to solve a navigation problem but a geodetic one.

A discussion of the different ways to handle with the associated system of linear equations will

be described and some practical results from simulated data are presented and discussed.
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Resum
En comparació amb la gravimetria terrestre, la gravimetria aerotransportada és més eficient i

rendible. Especialment, la combinació de INS i GPS és ben coneguda per mostrar molts bons

resultats al recuperar el senyal de la gravetat en el rang de freqüències mitjanes (1–100 km).

L’extracció de les anomàlies de gravetat a partir de gravimetria aerotransportada SINS s’ha

basat principalment en l’aproximació SSA, que té molts avantatges, però que mostra un greu

inconvenient, a saber, la capacitat molt limitada per tractar les correlacions espacials (com el

tractament rigorós dels punts d’encreuament o cross-overs).

Aquesta tesi examina una alternativa a través de la coneguda aproximació en xarxes exten-

sament usada en geodèsia, en el que les equacions diferencials de mecanització del INS

s’interpreten com equacions d’observació d’un problema d’estimació de paràmetres per

mínims-quadrats.

En termes numèrics, les equacions de mecanització INS es resolen per un mètode de dife-

rències finites, on els valors inicials de frontera se substitueixen per equacions d’observació.

L’autora considera que l’enfocament exposat té algunes avantatges que val la pena explorar;

sobretot, la modelització del camp gravitatori terrestre pot ser més rigorós que amb SSA i les

equacions d’observació poden ser explotades millor.

És important assenyalar que aquest enfocament no es pot aplicar a la navegació en temps

real. Tanmateix, en aquest cas no es tracta de resoldre un problema de navegació, sino un de

geodèsic.

En aquesta dissertació es presentaran diferents maneres de tractar aquest sistema d’equacions

lineals i es mostraran alguns resultats pràctics a partir de dades simulades.
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Resumen
En comparación con la gravimetría terrestre, la gravimetría aerotransporta es más eficiente

y rentable. Especialmente, la combinación de INS y GPS es bién conocida por mostrar muy

buenos resultados recuperando la gravedad en el rango de frecuencias medias (1–100 km).

La extracción de las anomalías de gravedad aerotransportada SINS se ha basado fundamen-

talmente en el enfoque SSA, que aunque tiene muchas ventajas muestra un inconveniente

grave, a saber, su capacidad muy limitada de manejar las correlaciones espaciales (como el

tratamiento riguroso de crossovers).

Esta tesis examina una alternativa a través de la conocida aproximación de redes amplia-

mente usada en Geodesia, en el que las ecuaciones de mecanización INS se interpretan como

las ecuaciones de observación de un problema de estimación de paràmetros por mínimos

cuadrados.

En términos numéricos, las ecuaciones INS se resuelven por un método de diferencias finitas,

donde los valores iniciales de frontera se sustituyen por las ecucaciones de observación

apropiadas. La autora considera que el enfoque expuesto tiene algunas ventajas que valen la

pena explorar, sobretodo que la modelización del campo gravitatorio terrestre puede realizarse

de una manera más rigurosa que con SSA y que las ecuaciones de observación externas y/o

auxiliares pueden explotarse mejor.

Es importante mencionar que, actualmente, este enfoque no puede aplicarse a la navegación

en tiempo real. Sin embargo, aquí no se trata de resolver un problema de navegación, sino

uno de geodésico.

En esta disertación se presentan diferentes maneras de tractar el sistema lineal de ecuaciones

asociado y se muestran algunos resultados prácticos a partir de datos simulados.
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1 Introduction

1.1 Background

The determination of the Earth’s gravity field is one of the most important areas in geodesy

for the determination of the geoid and for the prediction of dynamical parameters of low

Earth-orbiting satellites. In addition, gravity information is important for many scientific and

engineering areas such as geophysical exploration and navigation, and in studying geophysical

phenomena of the Earth. Traditionally, the gravity signal is determined by measuring its

magnitude with a gravimeter and the deflections of the vertical, defined by the difference of the

directions between the natural gravity and normal gravity vector, by astronomical observations.

Although this produces highly accurate gravity vector information, it is extremely expensive

and time consuming.

Due to recent satellite technology, it is possible to determine the gravity field using satellite

observations, mostly in the form of satellite altimetry. Now there are available different refined

global gravity models based on terrestrial gravity and satellite data, e.g. EGM2008 ([25]),

EGM96 ([77]) or EIGEN ([26]). Hence the long wavelength gravity signal can be obtained by

using a global model — as it has seen in Jekeli [61] and in Rapp [90]. According to a study by

Jekeli [64], however, the shorter-wavelength signatures of the global model are either poorly

modelled or only moderately well known in the global model.

The purpose of aerial gravimetry is to recover the Earth’s gravity field on the medium-frequency

gravity signal, which then fills the gap between the terrestrial gravity field measurements and

global gravity models in the wavelengths between 1 and 100–200 km ([55]).

Measurements from GRACE ([113]), CHAMP ([91]) and GOCE ([92]) gravity mapping are

expected to provide revolutionary improvement in our knowledge of the Earth’s static gravity

field and its temporal component. Especially, the accuracy of the mean geoid will be about

1 cm at a wavelength of 100 km or longer (primarily by GOCE). The accuracy and resolution

from these missions, however, are still not good enough for geophysical exploration in which

1 mGal over less than 10 km is required ([93]). In addition, there will be polar gaps with radius
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of 700 km due to the sun-synchronised orbits for GOCE. Therefore, even after these missions,

airborne gravimetry will still play an important role in improving the model for the earth’s

gravity field.

As a matter of fact, the Inertial Navigation System (INS) was introduced as a surveying instru-

ment in the late 1960’s, and immediately it was noticed that the potential of INS for precise

positioning was limited by the unknown anomalous gravity field.

Figure 1.1: Principle of airborne gravimetry (Source: TUDelft).

Conversely, this means that the anomalous 3D gravity field could be recovered from the INS

instrument if accurate kinematic positions and/or velocities were known and the system errors

were kept small.

The important issue in gravity recovery using INS is the separation of the gravitational ac-

celeration from kinematic acceleration as well as from instrumental errors. The kinematic

acceleration can be separated from the sensed acceleration of INS by using a different sensor

such as GPS. The separation between the gravitational acceleration and system errors from

INS can be achieved by introducing external information, e.g. ZUPT (Zero Velocity Update

Point, [118]). Although this semi-kinematic method has been successfully used in many cases,

it is still inefficient and expensive for the exploration of large areas.

Obviously, an alternative way of determining the kinematic position and velocity was necessary

to perform mobile, especially airborne, gravity surveys. Moritz proposed in 1967 ([79]) the
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combination of INS and a gravity gradiometer, and simulation studies on such a combination

showed promising results. Because of the high cost of the gradiometers, however, other

combinations such as the combination of INS with a radio navigation system, LORAN-C, were

investigated.

Clearly, the advent of the Global Positioning System (GPS), providing high accuracy posi-

tion and velocity, created revolutionary progress in the area of airborne gravimetry. At that

time, Schwarz ([97]) compared different kinematic methods for airborne gravimetry with

combinations of GPS, INS and gradiometers.

Compared to the other positioning instruments, GPS is inexpensive and the accuracy of the

vehicle acceleration from GPS is generally sufficient for airborne gravimetry.

INS/GPS gravimetry is mainly affected by two error sources: short term GPS-derived accelera-

tion errors and long term INS inertial sensor errors ([104]).

For geoid determination applications, short term errors — i.e., the noise of GPS-derived

accelerations — have been identified as one of the limiting factors of the technique ([3], [9],

[16], [17], [18], [20], [44], [47], [60], [61], [62], [63], [66], [100], [102], [103], [104], [106], [108],

[111]). Fortunately, the situation will likely improve significantly with the GPS modernisation

programme and the advent of the European global navigation satellite system Galileo, because

of its higher signal-to-noise ratio and with the subsequent use of hybrid Galileo/GPS receivers.

The correct measurement of gravity with INS/GPS gravimetry depends on the correct separa-

tion of the INS/GPS errors from the actual variations of the gravity field itself. This separation

is, in principle, feasible because of the different characteristics of the two signals: errors of

the inertial sensors can be reasonably modelled as time functions, whereas the variations of

the gravity field are, strictly, spatial functions1. An improvement of the calibration of inertial

sensors may be seen as an improvement of the long wavelength errors of INS/GPS gravimetry.

By doing so, we are not only achieving an overall improvement of INS/GPS gravimetry but,

in particular, we are extending its spectral window of applicability. This extension might be

instrumental to the integrated use of GOCE gravimetry and INS/GPS gravimetry as the sole

means of gravimetry for geoid determination.

There have been various studies ([61], [76], [103]) on the feasibility of INS/GPS gravimetry in

both time and spectral domains. This research has shown that the gravity disturbance can

be recovered with errors, defined by wavelengths, in the order of (RMS) ± 1–2 mGal using a

high-accuracy INS within a spectral window of 10–200 km.

The main challenge in INS/GPS gravimetry is the low signal to noise ratio of the system.

Typically, the gravity disturbance vector does not exceed 100 mGal in each component over

distances of about 100 km, while the noise level of the system is much higher ([52]). Analysis

1Understandably, so far, most of the research has focused on the INS/GPS short wavelength errors as the
practical use of the technique and its competitiveness with traditional terrestrial gravimetry is bounded by,
moderate to high, precision and resolution thresholds.
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and simulations were conducted by many investigators, mainly applying a low pass filter on

the signal to reduce the system noises and extract the optimal gravity signatures in INS/GPS

airborne gravimetry. In addition, the development as well as the analysis of the INS error

model has been investigated theoretically, and tested throughout simulations. Recently, some

test flights have been also carried out to determine the feasibility and to assess the accuracy

in airborne gravimetry. It has been shown that 1 mGal accuracy in GPS acceleration and 2–3

mGal of accuracy in the vertical gravity component can be achieved ([127]).

1.2 Problem statement and objectives

There are two main techniques in airborne gravimetry based on accelerometer measurements,

namely scalar gravimetry and vector gravimetry. Gravity gradiometry may be considered as

the third type, where the observations are gradients of gravity. Scalar gravimetry determines

either the vertical component or the magnitude of the gravity anomaly vector while vector

gravimetry aims at recovering the full gravity anomaly vector in all three dimensions.

Currently, airborne gravimetry is conducted using either sea/air gravimeters on a Schuler-

tuned stabilised platform for scalar gravimetry, or with an Inertial Navigation System — mainly

strapdown INS and we will refer to it as INS/GPS gravimetry — for scalar or vector gravimetry.

In both cases, the separation of the gravitational and kinematic accelerations from the system

errors is crucial in estimating the gravity field. Results of scalar airborne gravity survey using

gravimeters, modified for the higher dynamics of the aircraft, in Greenland, Antarctica and

Switzerland show that an accuracy of 3–5 mGal and a resolution of 10 km wavelength is

achievable with current technology ([1], [2], [7], [11], [12], [14], [31], [34], [35], [36], [38], [39],

[40], [43], [57], [67], [68], [70], [71], [72], [73], [74], [78],[87], [109], [116], [120],[125], [127]). The

main error source in these cases was insufficient platform stabilisation. Another test using the

ITC-2 inertial platform system ([93]) showed that an accuracy of 1 mGal with resolution of 2–3

km is achievable.

Unlike the stabilised systems, there is no physical stabilising platform in a strapdown system.

Instead, the inertial sensors are physically bolted down to the vehicle so that the measured

data in the IMU instrumental (know as body) frame are transformed to the local level frame

or ECEF frame (e-frame) computationally. The advantage of the strapdown INS is its smaller

size, lower cost and more operational flexibility. It has been shown that the performance of

the INS/GPS systems is comparable to that of the airborne gravimeter ([45], [46]).

The traditional way of analyzing the determination of gravity using the INS/GPS signal is to

integrate the error dynamic equations or the dynamic equations of the INS system, and model

the gravity disturbance and the INS errors as stochastic processes ([33], [49], [61], [62], [76],

[122]). The a priori stochastic information of the INS errors, such as biases and scale factors,

are obtained from the manufacturer’s specifications and from further extensive and tricky

calibration and field testing based modelling.
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Remember that a dynamical system can be considered to be a rule for time evolution on a

state space. The above described method is known as State-space Approach (SSA) and it is

an optimal procedure for real-time applications. But this method cannot use all the existing

observational information contained in a survey because it has a serious disadvantage trying

to deal with space correlations — measurements involving states at different times. A good

example of this limited capacity is the difficulty of a rigorous treatment of crossover points.

The key to overcome such limitations is to look at the system as stochastic differential equa-

tions (SDE) that, through discretisation, leads to a geodetic network widely used in geodesy,

photogrammetry and remote sensing. The discretisation of dynamic observation models to-

gether with static (auxiliary) observation models and further network least-squares adjustment

will be referred to as the Network Approach (NA).

There are two basic objectives in this dissertation:

• to prove the feasibility of the NA for the rigorous determination of the gravity field using

INS/GPS techniques;

• to show that the above use of NA methodology shall provide, within the essential limita-

tions of the technology, a procedure to simultaneously calibrate the INS sensors and

estimate the anomalous gravity field.

There is a central idea in this dissertation: the use of the Network Approach allows the use of

information — observations — that the State-space Approach cannot take, thus facilitating

the achievement of the two above objectives.

1.3 Thesis Outline

One of the main objectives of this research is to investigate algorithms to better calibrate the

systematic errors of the inertial sensors. More specifically, the research of an alternative geode-

tic procedure to the traditional Kalman filtering and smoothing borrowed from navigation.

The advantage of the new procedure is that it can assimilate all the information available in a

gravimetric (aerial) mission; from ground gravity control to the crossover or multiple-flight-

line conditions, among other observational information types. The proposed procedure is

nothing else than geodesy as usual in that we redefine the INS/GPS gravimetry problem as a

network adjustment problem — early studies can be seen at [32] for least-squares methods in

land-based and helicopter-based inertial gravimetry. In a more general perspective, the use of

the NA procedure as a genuine geodetic method for non real-time navigation and positioning

problems has been proposed in [22] and [23].
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This thesis is divided as follows:

• Chapter 2 reviews the concept of airborne gravimetry.

• Chapter 3 covers the concept of the NA method. In this chapter, the dynamic and

static observation models that can be assimilated by the NA for INS/GPS gravimetry are

reviewed. Their implantation in the GeoTeX/ACX program is described. As well, some

implementation issues of NA are discussed: limitations found and future improvements.

• Chapters 4 and 5 present the experimental results of the NA concept. The experiments

use INS simulated data and demonstrate that the proposed NA procedure works.

• Chapter 6 summarises the main contributions of this study and provides suggestions

and recommendations for further research.
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2 Airborne Gravimetry Review

Measuring the Earth’s gravity field is one of the most important activities in geodesy, especially

for the determination of the geoid and the prediction of dynamic orbits of satellites. In

addition, many scientific and engineering disciplines need gravity information for exploration

and navigation and for investigation of geophysical phenomena. Although satellite technology

makes possible to determine the gravity field, the shorter-wavelength signatures have been

poorly modelled or only moderately well known in the high-degree expansions, such as the

globals models EGM96 or EIGEN. Therefore, airborne gravimetry can play a very important

role in recovering the Earth’s gravity field in the range of medium to high frequencies, which

then fills the gap between the terrestrial gravity field measurements and global gravity models

in the wavelengths between 1 and 100–200 km.

2.1 The beginnings

Discussions on the possibility of measuring gravity in airborne mode were taking place in the

geophysical exploration community about 60 years ago. Hammer ([54]) mentioned that he

considered it as an impossible dream at that time. Given the state of airborne gravity today,

the perspective of the dreamers has been the realistic one. In this section, an attempt will be

made to trace the major phases of this development.

To understand the initial skepticism with respect to airborne gravity methods, a brief dis-

cussion of the mathematical model of kinematic gravimetry will be helpful. The formula for

kinematic gravimetry in a local geodetic reference frame ([65]) is of the form

g = v̇ + (2Ωi e +Ωel )v − f (2.1)

where g is the gravity vector, v is the aircraft velocity vector, Ωi e is the Earth rotation rate

in skew-symmetric matrix form,Ωel is the vehicle rate referenced to the ellipsoid and f is a

vector of accelerometer measurements obtained from an orthogonal sensor triad aligned to

the local astronomic system. The dot above a vector indicates time differentiation, i.e. the
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first term on the right-hand side of the Equation (2.1), v̇ , is the airplane acceleration vector.

The second term is the well-known Coriolis effect, which is due to measurements in a rotating

coordinate frame.

When comparing this equation to the model for stationary terrestrial gravimetry, there are

some obvious differences, as well as some that are not so obvious:

• An obvious difference is the presence of the first and second term on the right-hand side

of Equation (2.1). They will disappear when the system is in stationary mode because

both terms are dependent on sensor motion. In stationary mode, i.e. in the case of no

sensor motion, the accelerometer triad only senses gravity as a reaction force. Thus,

the effect of vehicle motion on the accuracy of the gravity measurement is an obvious

difference that has to be taken into account. Because accurate determination of carrier

motion plays such a key role in the implementation of the Equation (2.1), this approach

is sometimes called motion-aided gravimetry.

• A difference that is not as obvious is the requirement of determining the local vertical for

the moving sensor system. Since all quantities in Equation (2.1) are given in the same

reference frame the acceleration measurements f have to be made in that frame or have

to be transformed to it. This means that ways have to be found to align the z-axis of the

measurement frame f to the local vertical while the system is moving. In more general

terms, the orientation of the measurement frame with respect to a well-known ECEF
frame has to be known as a function of time. In stationary mode, this is easily achieved

by using a level bubble. In kinematic mode, it is a difficult problem to solve.

This implementation of kinematic gravimetry must therefore solve two major tasks:

• The separation of gravitational acceleration from non-gravitational acceleration, i.e.

forming the difference v̇ − g .

• The determination of sensor orientation for a moving measurement system.

The first task requires the measurement of vehicle acceleration at the same level of accuracy as

the gravity measurement itself. The second task requires some form of platform stabilisation,

either by mechanical or by computational means. It was mainly the first requirement that

defeated the early attempts at implementing airborne gravimetry at the level of accuracy

required for exploration applications.

To determine gravity with an accuracy of 1 mGal, the first term of the right-hand side of

Equation (2.1) must be zero within an accuracy of 10−5 m s−2 or must be measurable within

that accuracy. In practical terms this means that vehicle velocity must be either kept constant

within rather narrow bounds or measured with extremely high accuracy. Keeping the velocity

constant to this level is quite impossible for airplane trajectories. Realistic values for airplane
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acceleration in a non-turbulent environment are between 0.1–0.3 m s−2, i.e. between 10000–

30000 mGal. Measuring airplane acceleration with an accuracy of a few mGal was simply not

possible in the fifties, even if fairly long filtering periods were allowed.

The impossibility to realise this dream with sufficient accuracy for geophysical applications is

probably the major reason why the geodetic community can claim first experimental results

in this field. Recognising that high-resolution surveys were not possible with the available

technology, attention shifted to applications, which did not require such high resolution.

The determination of mean gravity anomalies for blocks (1◦×1◦), which were needed for a

homogeneous global gravity coverage, seemed to be a suitable application. A first experiment

— with this goal in mind — was conducted in 1958 by the Airforce Cambridge Research Center.

Its results were reported by Thompson [115]. A LaCoste and Romberg sea surface gravimeter

with some minor modifications was used in this test. Although successful in its main goal —

to determine mean gravity anomalies with an accuracy of 10 mGal or better for 1◦×1◦ blocks

— it also showed very clearly that technical problems had to be overcome to make this an

operational procedure:

• dynamic stability of the airplane required to stay within the measurement range of the

gravimeter used1,

• accuracy of the navigation data2,

• filtering of high-frequency airplane accelerations,

• the magnitude of the Eötvös effect3 and its accurate determination with the velocity

information available.

The gravity measurements were averaged over 5’ intervals which corresponded to a half-

wavelength resolution of about 50 km at the given airplane speed of 150–200 m/s. The accuracy

of the filtered gravity estimate at flight level was about 10 mGal. Since this test was performed

as a feasibility study, it included a number of features not ordinarily available under operational

conditions, as for instance the theodolite tracking system. The experiment showed, however,

in which areas improvements were needed to realise the impossible dream.

Tests with a similar objective were carried out by Fairchild Aerial Surveys in May 1959 and

by Fairchild LaCoste Gravity Surveys under contract to the Army Map Service in May 1961.

Results of these tests are reported by Nettleton in [82] and [83], respectively. The LaCoste

and Romberg system was used again, but some improvements had been made based on the

previous test. In addition, the flying altitude was lower in this case — about 3.6 km — as was

1High flying altitudes of 6–9 km were deemed necessary.
2Navigation data was provided by Askania tracking cameras on the ground and a Doppler navigation system on

the airplane.
3The Eötvös correction is due to the ECEF-type of Earth frame rotation and defined in Section 2.2 by the last two

terms on the right-hand side of the Equation (2.2). This correction is affected by uncertainties in the navigation
systems, in terms of course, speed and position errors.
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the flight speed. The averaging period was only 3 min. All of this resulted in a half-wavelength

resolution of about 16 km and in an accuracy of about 10 mGal in the first test and 6–7 mGal

in the second. Compared to the initial test, the navigation equipment used in these tests was

more standard and the comparison with ground truth in the 1961 test was based on a much

larger sample. The considerable improvement in wavelength resolution was obviously due to

the lower flight speed and the shorter averaging interval. These variables played a decisive

role in the further development of airborne gravity techniques.

At the end of this first period, the impossible dream seemed not that impossible any more.

Improvements in the determination of airplane motion, a careful tuning of the gravity fil-

ters applied and the use of carriers that could fly at very low speed seemed to be the main

parameters for a further improvement of accuracy and resolution.

2.2 GPS and the solution of the motion problem

Although the initial tests of motion-aided gravimetry did not offer great promise for explo-

ration, limited testing continued in the early 1970’s to investigate the use of airborne tech-

niques for oil exploration. In this phase and in much of the subsequent work, the modified

LaCoste and Romberg sea surface gravimeter was used. It represents a scalar approach to

airborne gravimetry in which the magnitude of gravity is measured by aligning a high-accuracy

accelerometer to the local vertical. Such a sensor mimics the function of a stationary gravime-

ter. It yields a measurement of specific force fu in the direction of the local vertical. Writing

the third equation of formula (2.1) explicitly

g = fu − v̇u + (
ve (Rn +h)−1 +2ωi e cosφ

)
ve + vn

2 (Rm +h)−1 (2.2)

results in the mathematical model for such a sensor. In this equation, fu is the upward

component of specific force measured along the local vertical; (ve , vn , vu) are the east, north

and upward component of the vehicle velocity v ; Rm and Rn are the meridian and prime

vertical radii of curvature of the geodetic reference ellipsoid; ωi e is the rotation rate of the

Earth, and φ and h are ellipsoidal latitude and height, respectively.

The difference between the first two terms on the right-hand side gives essentially the magni-

tude of gravity, while the other two terms are measurement corrections due to the ECEF-type

of Earth frame rotation. They are usually called the Eötvös correction.

To get g with an accuracy of 1 mGal, each of the terms on the right-hand side has to be

determined with an accuracy of better than 1 mGal. This is clearly impossible for the vertical

acceleration term v̇u and the specific force term fu measured by the stabilised gravimeter if

point measurements are required. Even the computation of the Eötvös correction at this level

of accuracy requires a velocity error smaller than 0.05 m/s in the third term. Considering the

measurement systems available in the 1960’s to determine motion in space, there was ample

reason to call airborne gravimetry an impossible dream for exploration. It is to the credit of
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the early investigators that they did not give up on this dream. They eventually succeeded in

solving most of the problems by combining a careful error model analysis, customised filtering

methods and optimal operational procedures.

The approximate solution of this problem in a damped-platform environment was achieved by

determining the difference v̇u− fu within a certain band-limited region and making the Eötvös

correction with the highest possible accuracy. Band-limitation was achieved by an elaborate

system of filters and feedback loops, which for instance disregarded gravity information in the

high frequency band when separating horizontal carrier acceleration from the acceleration

effects due to platform tilt; Brozena did a good discussion in [10]. The resulting gravity solution

is therefore low-pass filtered and its accuracy is strongly dependent on the accuracy of the

motion data.

Recognising that the accuracy of carrier motion determination was a major problem, a number

of improvements were made to ensure adequate measurement systems and smooth flight

conditions. They included laser or radar altimeter systems for vertical acceleration determi-

nation, local navigation systems using range and range-rate measurements to known master

stations and the use of flight-stabilised helicopters under optimal operational conditions (e.g.

night flights, low speed). An overview of the results of the early experiments was published

by Gumert in [50]. They renewed the interest of the exploration community in the further

development of these methods, as it can be seen in [54]. During the 1980’s Carson and Gumert

looked out a number of patents on airborne gravity surveying, which started the pioneering

work of Carson Geophysics as a company offering world-wide airborne gravity services for ex-

ploration. Over the years, this company has improved their system by paying careful attention

to the operational conditions under which scalar gravimeters work best when used in moving

mode (see for instance [51]).

The arrival of GPS as an operational procedure provided a major impetus to airborne gravi-

metry. This was not only due to the vastly improved positioning accuracy, but also because

work on a world-wide scale without any special installations for obtaining precise trajectory

information was now possible. The potential of using differential GPS — DGPS — measure-

ments for airplane acceleration determination had been recognised early in the development

of GPS applications (see [8], [69] and [98]). By using carrier phase data to obtain the velocity

and position vectors of the airplane trajectory, the acceleration can be determined from ei-

ther one of these vectors by time differentiation. Thus, the three vector variables needed for

motion-aided scalar gravimetry, namely r , v , v̇ can be determined with high accuracy. While

the velocity and position accuracy are fully sufficient to determine the Eötvös correction to

better than 0.5 mGal, the acceleration determination still shows errors of several hundred

mGal for the individual measurement, due to the amplification of measurement noise by

time differentiation. Since gravity changes slowly in horizontal direction, filtering v̇u − fu over

predetermined time periods will reduce the noise in the acceleration measurements to the

desired level and provide a low-pass filtered approximation of the gravity spectrum.

11
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In a number of geophysical and geodetic applications, the determination of the gravity field

rather than the high-accuracy determination of individual points is of primary importance.

What is often needed is the estimation of a specific spectral band of the gravity field. This band

differs from one application to the next. For exploration, the high-frequency spectrum of the

gravity field is of interest, while for geoid determination the low and medium frequency range

is far more important. To obtain an optimal estimate of this band, bandpass filtering methods

are used to extract this information from the measurements by minimising the noise in the

data. The band for which the gravity signal can be reliably determined from airborne gravity

data is often called the spectral window of airborne gravimetry (see [107]). A discussion of

suitable filtering methods can be found in [17] and [52].

Besides providing accurate airplane motion determination for high resolution exploration

surveys, DGPS also opened the door to airborne gravity surveys of continental extent. Pionee-

ring work in this application has been done by the US Naval Research Lab (NRL) under the

leadership of John Brozena. The survey of Greenland, done in cooperation with the Danish

National Survey and Cadastre (KMS), was the first example of a successful gravity survey of

continental extent (see for instance [11]). It showed many features of geophysical interest

unknown at that time. A total of about 200000 line km were flown at a height of about 4 km in

a large and stable military airplane at flight speeds between 370–450 km h−1. Scalar gravity

systems of the damped platform type were used in conjunction with differential GPS. The

low-pass filtering of the data resulted in a RMS accuracy of 3–5 mGal as determined from

crossover points and of 5 mGal as determined from comparison with sparse upward continued

data; for details see [13] and [34]. Work of this type is continuing with smaller aircrafts in the

Arctic and in the Antarctic, resulting in crossover RMS values of about 2 mGal; see for instance

[15] and [37]. Similar geophysical problems were also studied in the European AGMASCO

campaign; see [116].

2.3 Gravity gradiometry and the emergence of kinematic geodesy

It was about a decade after the initial experiments that a new method of airborne gravity

sensing was proposed and investigated. The technology to be developed was a gravity gra-

diometer system that would allow the measurement of the full tensor of gravity gradients in

the airborne environment. When combined with a highly accurate inertial navigation system,

it could provide an autonomous navigation capability over long periods of time. The use

of such a system for gravity determination in airborne mode was the major objective of the

research done at the Ohio State University (OSU). Conceptually, it is quite different from the

previous approach and is commonly called gravity gradiometry.

Instead of determining gravity by forming the difference between specific force measurements

and airplane acceleration, gravity gradients are introduced as a new set of observables. Thus,

aircraft acceleration has not to be modelled with as high an accuracy as before. Instead, gravity

gradients measured by the gradiometer are used to determine a first approximation of the
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gravity vector, which is used to correct the aircraft accelerometer output for the effect of gravity.

Airplane velocity is then obtained by integrating the corrected accelerometer measurements.

Equation (2.1) is therefore re-written as a differential equation for airplane velocity and cou-

pled with the differential equation for gravity vector. Expressing all variables again in the local

frame (l-frame), one obtains two sets of differential equations in the following form

v̇ = f − (2Ωi e +Ωel )v + g

ġ = (G −Ωi eΩi e )v −Ωel g
(2.3)

where the observations or measurements are f , the specific force; and G , the gravity gradient

tensor. The parameters are v , the vehicle velocity; and g , the gravity.

As can be seen from the equations, two systems are coupled, i.e. aircraft velocity v is needed

to solve the differential equations for g and g is needed to determine aircraft velocity. Moritz

([79], [80]) proposed to solve these equations in an iterative scheme. Although appropriate

for the geodetic applications where post-mission processing is possible, it is obviously not

the appropriate method for the general navigation problem. Schwarz ([99]) later proposed

a Kalman filter scheme for the real-time solution of this problem. Moritz ([79]) coined the

term kinematic geodesy for this area of research. After the initial work on the mathematical

models for airborne gravity gradiometry, it took almost 20 years before an actual system could

be tested. The complexity of the system concept and the extreme sensor accuracy and stability

to be achieved were major reasons for the long development time. When the system was

finally operational, GPS had arrived and a much simpler solution could be implemented using

aircraft velocity determined by DGPS together with the gradiometer measurements.

Gravity gradients have high power in the short-wavelength part of the gravity spectrum. They

are therefore well suited for applications where the resolution of the high-frequency gravity

spectrum is the major concern, as for instance in oil and mineral exploration. They are not as

well suited for applications where the complete gravity spectrum is required, as for instance

in geoid determination. In this application, the medium and long wavelength have to be

determined by other means, because biases in the gravity gradiometer sensors will quickly

generate major errors in low frequencies. This, and the high cost of the system, were the major

reasons why airborne gravity gradiometry has not become a geodetic production method.

Results have been reported in [5], [58] and [119] among others. Although airborne gravity

gradiometry did not become an important geodetic tool, it has greatly advanced the theory of

kinematic methods in geodesy and has prepared the way for satellite gravity gradiometry as a

means for the determination of the global gravity field.

2.4 The use of inertial systems in airborne gravimetry

Airborne gravity systems used until the mid-1990’s were all of the type described above, scalar

systems with a damped platform to stabilise the gravity sensor. Most of them were modified
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versions of the LaCoste and Romberg sea surface gravity system. In the mid-1990’s work started

at the University of Calgary to use off-the-shelf inertial systems in combination with DGPS for

airborne gravimetry. There were several reasons why this step was taken. Besides size and cost,

the main conceptual reason for using INS/GPS was the damped platform did not allow the

complete elimination of the effect of horizontal accelerations on gravity. Stabilisation of the

gravity sensor in these systems is therefore always approximate and performance degrades in

turns and in situations where long-periodic dynamics affected the system.

To overcome such problems, either a Schuler-tuned platform had to be employed or a strap-

down inertial system (SINS) could be used. The first solution was pursued in cooperation with

O. Salychev from the Inertial Technology Center (ITC) in Moscow and with Sander Geophysics

of Ottawa. The second solution was developed at the University of Calgary in cooperation

with Intermap Technologies in Calgary. A brief description of the different concepts and their

advantages and drawbacks will be given in the following. For details, the given references

could be consulted.

Both, the Schuler-tuned stable platform system and the SINS are three-dimensional in nature

and are therefore suitable for vector gravimetry, i.e. the determination of the magnitude

and orientation of the gravity vector. All experiments conducted so far have shown that

the accuracy of the deflections of the vertical, which can be determined from the vector

orientation, is almost one order of magnitude poorer than the determination of the magnitude

of gravity. This is largely due to drift effects of the horizontal gyros. To keep this section

consistent with the previous ones, only the scalar case will be discussed. For readers interested

in vector gravimetry, [61], [101] and [124] are recommended.

The difference between the two system concepts is the stabilisation of the gravity sensor. In

a stable platform system the stabilisation is done mechanically, while in a SINS it is done

numerically. Thus, in a stable platform system the local-level system is implemented by the

gimbaled stable element. In a SINS the transformation matrix between the accelerometer

frame and the l-frame is computed at very high speed as a function of time. The advantage of

the Schuler-tuned system is that it automatically eliminates all effects of horizontal accelera-

tions on the gravity measurements and that it has a simple error model when operated in a

l-frame. Disadvantages are the difficulty to obtain orientation parameters from the read-out

and often difficulty to obtain the information needed to accurately model the errors in the

feedback loops. The SINS has the advantage that it is a fully digital system where all numerical

operations are under full control of the operator. This gives enormous flexibility in trying

different solution approaches. Its error model is more complicated because of the significant

rotational dynamics, but its sensors are designed for a wide range of dynamical conditions

and there is no danger of reaching the limits of the sensor range on a typical airborne gravity

mission. The integration with DGPS is straightforward. Other advantages of the SINS are price,

size and power requirements.

The model for the three-axes stable platform system is given by Equation (2.1), thus a full
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vector solution is possible. The first system tested was the Russian ITC-2, which had been

developed by combining a standard Schuler-tuned aircraft platform with a newly designed

high-precision vertical accelerometer as the gravity sensor. Thus, stabilisation was done in

this case by a Schuler-tuned inertial platform, while the magnitude of gravity was sensed by

an especially built accelerometer. The installation and balancing of this additional sensor

required very intricate procedures. The system was tested in 1993 and 1994 in the Calgary

area. Results achieved by using a deterministic filtering method designed by Salychev in [95]

indicate that a half-wavelength resolution of 2–3 km with an accuracy of 1 mGal or better is

achievable. Detailed results are given in [94] and in [95].

The second system tested, named AIRGrav, is a stable platform system that has been specifi-

cally developed for airborne gravimetry by Sander Geophysics in Ottawa. For a description

of the AIRGrav system and first results see [30]. This system has some unique features, as for

instance the design of the gimbals is in such a way that the accelerometers can be tumbled

and a calibration can be easily performed at the beginning and the end of the survey. Note that

no special gravity sensor is used in this case. The vertical accelerometer takes on this function.

First results with the instrument are excellent. It shows essentially no drift over several hours

of flight and achieves a half-wavelength resolution of about 2 km with an accuracy of better

than 1 mGal for a flight speed of 45 m/s. It can be expected that these results will improve with

increasing operational experience.

To get the model for strapdown inertial system, Equation (2.1) has to be modified, because

the accelerometer triad now has an arbitrary orientation and has to be transformed to the

l-frame. Thus the specific force vector f b measured in the body frame is now multiplied by

the transformation matrix R to be rotated in the l-frame. Equation (2.1) therefore takes the

form

g = v̇ + (2Ωi e +Ωel )v −R f b (2.4)

The use SINS for airborne gravimetry was pursued at the University of Calgary from about

1995 onwards. A standard Honeywell LaserRef III system was made available by Intermap

Technologies in Calgary. Tests with this system were done over the Canadian Rocky Mountains,

in Greenland and in a test area close to Ottawa. First results were reported by Wei in [127] for a

very rough area of the Canadian Rocky Mountains, showing a half-wavelength resolution of

about 5 km with an accuracy of 2–3 mGal at a flight speed of about 120 m/s. Since resolution

is dependent on aircraft speed, it can be improved by using a slower airplane. This was

confirmed by test flights in Ottawa area where a half-wavelength of 2 km with an accuracy

of 1–1.5 mGal were achieved for a flight speed of 45 m/s. In contrast to the AIRGrav system,

which uses the same accelerometers, the Honeywell system shows considerable accelerometer

drifts. They are most likely due to temperature effects because the AIRGrav accelerometers are

temperature controlled, while the LaserRef III accelerometers are not.

An interesting modification of the standard SINS approach to airborne gravimetry is the

15



Chapter 2. Airborne Gravimetry Review

so-called RISG approach, see [24], where the acronym stands for Rotation Invariant Scalar

Gravimetry. In this case, the magnitude of gravity is computed by combining the three specific

force outputs with the three aircraft acceleration components without the use of the gyro

measurements. The advantages of such a system are obvious. Instead of a full strapdown

inertial system, only an accelerometer triad is needed. This results in a system of very small

dimensions (5 cm3) that is conceptually simple and low cost. A comparison of such a system

with a standard SINS is given by Wei in [126] where error modelling and results are discussed.

At this point in time, using the same measurements, results from the RISG approach are

typically 15–20 % poorer than from the SINS approach. The reason for this difference was not

clear.

The use of INS for airborne gravimetry has resulted in at least three operational systems. In

side-by-side tests on the same aircraft, their performance compared very well to the LaCoste

and Romberg system. In general, wavelength resolution was better, performance in turns was

more regular and accuracy for the AIRGrav system was higher; for details see [19]. Taking into

account the advantages such systems have in size, power requirements and cost, it can be

expected that their use in airborne gravimetry will increase.

2.5 State of the art

Available airborne gravity systems have been used for gravity survey of continental extent

(tectonics), for geoid determination and for geophysical exploration. To characterise the status

of airborne gravity, a brief discussion of current results in geoid determination and geophysical

exploration and and outlook on possible improvements will conclude the chapter.

Results published in [110] show that airborne gravity data from a 100 km × 100 km area

flown at 10 km profile spacing with an average velocity of about 100 m/s are sufficient to

determine a relative geoid with a standard deviation of 2 cm. The term relative geoid refers

to a band-limited geoid with half-wavelength between 10–100 km. The standard deviation

is computed from the undulation differences with respect to the geoid derived in the same

area from ground gravity data. Taking into account that currently gravity satellite missions —

such as GRACE, CHAMP and GOCE — are designed to improve low and medium wavelength

accuracy to a cumulative geoid error of 1 cm for all wavelength above 100 km, the goal of

achieving the cm-geoid appears to be possible. By combining results from the dedicated

satellite missions with airborne gravity data at 5 km spacing, the band-limited spectrum for

the cm-geoid is covered with sufficient accuracy. Thus, absolute geoid accuracy at the cm-level

can be reached if the gravity satellite missions achieve their goal combined with airborne

gravity data in areas where cm-accuracy is needed.

The use of airborne gravity data for geoid determination has typically been considered as a two

step process. In the first step the gravity disturbances were downward continued from flight

level to the ground by inverting Poisson’s integral and in the second step they were integrated

to obtain geoidal undulations using Hotine’s integral; see for instance [84] or [128]. In these
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papers, an alternative approach is also discussed, where integration at flight level is done first

with subsequent downward continuation of the undulations determined at flight level. In

both cases, downward continuation is considered as the crucial step for geoid accuracy. A

number of papers have therefore been devoted to this topic. This method which essentially

reduces the airborne data problem to a standard boundary value problem may not be the

most accurate, nor the most efficient way to approach this problem.

In 2002, Novak ([85]) proposed an alternative approach, which takes into account the charac-

teristics of the data acquisition process. The two features that are important to formulate are

the nearly constant altitude at which the data are acquired and their band limitation due to

the filtering process. The first is used to formulate a spherical initial-value problem for the

anomalous potential at R (reference sphere) and R +h (flight altitude reference sphere). The

second allows to band-limit the integral kernel of the resulting solution to a range where its

divergence will not affect the accuracy of the numerical solution adversely. The combination

of these two features results in a one-step procedure. Numerical model studies have shown

that this solution has sub-centimeter accuracy for the whole range of operational parameters

that have been used in airborne gravimetry and is superior in accuracy and efficiency when

compared to other solutions of this problem.

It might be possible to extend this methodology to topographic effects and to the treatment of

satellite gravity gradiometry data. This would result in a powerful algorithm to the simulta-

neous treatment of airborne and satellite gravity data and their errors.

The requirements of exploration geophysics are more difficult to meet because they require

both high accuracy and high resolution. Precision is largely a function of the length of the

filtering interval, i.e. as filtering time increases, so does accuracy. Resolution is the product

of vehicle speed and time interval. Since the speed of airborne vehicles has a definite lower

limit, the time interval is also the decisive parameter to achieve high resolution. In this case,

the behavior is opposite: as time increases, resolution decreases. This causes the difficulties

when one attempts to increase accuracy and resolution at the same time. The main obstacle in

reaching the requirements for exploration applications4 is the noise in the DGPS-determined

vehicle acceleration. Typically, it is close to the noise in the estimated gravity data as deter-

mined from independent observations. This indicates that in comparison the INS-noise is

largely negligible. Similarly, DGPS noise and the estimated gravity noise at flight level vary in

an almost linear fashion. Thus, flight conditions for high-accuracy work have to be chosen

in such a way that they are done at times of low DGPS noise, i.e. at times of low ionospheric

activity at night or in the early morning.

At this point, it appears that the main limitation in improving accuracy and resolution of

airborne gravimetry is due to the accuracy of motion determination (or isolation) of the

system sensors. The critical component seems to be the determination of aircraft acceleration

4Usually the requirements for exploration applications is a half-wavelength resolution of about 1 km with a
standard deviation of 0.5–1.0 mGal
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by DGPS. There are a number of ways in which a solution of this problem can be approached:

• The first and obvious one is the reduction of DGPS noise. This could most likely be

achieved by using better clocks inside the GPS receiver and by optimising operational

conditions to avoid high-noise environments (high ionospheric activity, multi-path

environment).

• Supplementing DGPS by a low-noise relative height sensor would be a second approach.

Barometric altimeters have been proposed and used for this purpose. Results at this

point are not convincing and the theoretical problem of combining two very different

height systems has not been solved at the required level of accuracy.

• A third approach would be to better define the signature to be detected, e.g. the signature

of oil-bearing geological features. In that case, filters could be designed that make use of

this information and are capable of finding such signatures in a high-noise environment.

Although such an approach may be possible for certain geological features, it may not

be suitable as a general approach.

• Finally, a system design could be considered that does not require a low-noise accelera-

tion estimate. Gravity gradiometry is a possible candidate and recent results achieved

in mineral exploration show that the required resolution is definitely there. There may

be a problem, however, in detecting anything but shallow subsurface features with such

an instrument. Thus, it may be necessary to combine airborne gravity gradiometry with

airborne gravimetry to observe the required spectrum with sufficient accuracy. This

would make for a very expensive system.

A proposal by Brown ([6]) for a dynamic absolute gravity system has great potential in in-

creasing the measurement accuracy of the gravity sensor, but seems to require trajectory

information of the same accuracy to make the aircraft motion corrections. Thus, the accuracy

of the gravity estimate will be determined by the accuracy of the motion corrections rather

than the accuracy of the gravity sensor.

There is no doubt that airborne gravimetry has become an operational method. When com-

paring the initial results of 10 mGal accuracy at a half-wavelength of 50 km to the results from

the AIGRav system ([19]) of about 0.3 mGal accuracy at a half-wavelengths of 8 km or 1 mGal

accuracy at a half-wavelenghts of 1 km, a great improvement can be observed in each of the

parameters.

2.6 Outlook

It appears that, at the end, the motion determination problem — which plagued the early

implementation of the idea — is the limiting factor for high accuracy and resolution in airborne
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gravimetry. But in the coming years, with many more operational Global Navigation Satellite

System (GNSS) signals, systems and frequencies, this will not be true.

GNSS is the standard generic term for satellite navigation systems that provide autonomous

positioning with global coverage. GNSS allows small electronic receivers to determine their

location to within a few meters using time signals transmitted along a line-of-sight by radio

from satellites.

For the last 20 years, the term GNSS has been synonymous with the GPS. The United States

NAVSTAR Global Positioning System (GPS) is the only fully functional, fully available GNSS. It

consists of up to 32 medium Earth orbit satellites in 6 different orbital planes, with the exact

number of satellites varying as older satellites are retired and replaced. Operational since 1978

and globally available since 1994, GPS is currently the world’s most utilised satellite navigation

system.

Of course, GPS was not the only GNSS available. The formerly Soviet, and now Russian,

GLObal’naya NAvigatsionnaya Sputnikovaya Sistema (GLONASS) was a fully functional navi-

gation constellation — 24 satellites with 21 used for transmitting signals and 3 for on-orbit

spares, deployed in 3 orbital planes — in 1995. But the system rapidly fell into disrepair with

the collapse of the Russian economy, leading to gaps in coverage an only partial availability.

Beginning in 2001, Russia committed to restoring the system, and in recent years has diver-

sified, introducing the Indian government as a partner, and accelerated the program with

a goal of restoring global coverage. Now, the GLONASS system consists of 22 satellites, of

which 17 are operational, 2 are in maintenance, 2 are in commissioning phase and 1 is in

decommissioning phase.5 The system requires 18 satellites for continuous navigation services

covering the entire territory of the Russian Federation and 24 satellites to provide services

worldwide.

China has indicated it will expand its regional navigation system, called Beidou6 into a truly

global satellite navigation system; a program that has been called COMPASS (or Beidou-2).

The COMPASS system will be a constellation of 35 satellites, which include 5 geostationary

orbit (GEO) satellites and 30 medium Earth orbit (MEO) satellites, that will offer complete

coverage of the globe.

The European Union (EU) and the European Space Agency (ESA) agreed on March 2002 to

introduce their own alternative to GPS, called the Galileo positioning system ([42]). Galileo is

an alternative and complementary to GPS and GLONASS. The full constellation will consist

of 30 satellites deployed in 3 orbital planes (9 operational satellites and one active spare per

orbital plane). The system is scheduled to be operational by 2013 and it is intended to provide

more precise measurements than available through GPS 7 or GLONASS including the altitude

5ht t p : //w w w.g l onass − i anc.r sa.r u/pl s/htmldb/ f ?p = 202 : 20 : 14637162736231801312 :: NO
6The Beidou Navigation System is a project by China to develop an independent satellite navigation system. The

current Beidou-1 system — made up to 4 satellites — is experimental and has limited coverage and application.
7Galileo will be accurate down to the meter range.
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above sea level and better positioning services at high altitudes. The political aim is to provide

and independent positioning system upon which European countries can rely even in times

of war or political disagreement, since Russia or EEUU could disable the use of their systems

— through encryption — by others.

The significance and value of the GNSS is recognised by a larger and larger audience. The

existence of different fully operational GNSS systems — see Table 2.1 — will provide substantial

benefits to civilian users worldwide.

Satellite Navigation systems:
Global GPS (EEUU), GLONASS (Russia),

Galileo (EU), COMPASS (China).
Regional QZSS (Japan), IRNSS (India), Beidou (China).

Satellite Based Augmentation Sytems (SBAS):
Global Omnistar, StarFire.
Regional WAAS (EEUU), EGNOS (Europe),

MSAS (Japan), GAGAN (India).

Ground Based Augmentation Systems (GBAS):
Continental GRAS (Australia), US DGPS Service (EEUU).
Regional CORS (EEUU), AUSLIG (Australia)
Local CATNET, ERGPS (Spain), OS Net (Great Britain)

Table 2.1: Classification of GNSS systems with examples of realisations.

This large increase in satellites will benefit not only single-point accuracy but also position

reliability and the ability of GNSS user equipment to resolve integer ambiguities when using

carrier phase tracking techniques. With more independent but compatible GNSS available,

users will be able to exploit this situation by using only one system, by checking one o more

systems for the others and by combining observations. The benefits of more GNSS signals in

space include improved availability, particularly in urban canyons and steep terrain in which

signals can be blocked, as well as greater accuracy (phase-positioning to the 0–5 cm level).

Gains in precision are usually associated with the improved satellite geometry of combined

GNSS constellations, which reduces the dilution of precision (DOP) and the latter factor’s

multiplicative effect on ranging errors. However, the redundant observations possible with

more satellites also enable receivers in carrier-phase tracking mode to average measurement

noise more effectively and, consequently, to make the position solution more precise.

At this point, remember that the determination of the anomalous gravity by inertial techniques

depends on the capacity to separate the errors of the system — INS and GNSS errors — of the

effects of the gravitational field. In this section, it has been shown that the existence of different

GNSS systems improves the accuracy of motion determination. As GNSS errors decrease, the

study of algorithms to better calibrate the systematic INS errors has to be increase. Note that

this study is one of the main objectives of this dissertation.
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usual

Remember that, currently, airborne gravimetry is conducted using either sea-air gravimeters

on a stabilised platform for scalar gravimetry or with an INS for scalar or vector gravimetry. On

the other hand, there are many different designs of INS with different performance characte-

ristics, but they fall generally into two categories: gimbaled or stabilised platform techniques

and strapdown. In all cases the GPS — GNSS, in next future — provides accurate kinematic

acceleration and the separation of the gravitational acceleration from the system errors is cru-

cial. Results from airborne gravity surveys using modified gravimeters and GPS in Greenland,

Antarctica and Switzerland show that an accuracy of 3–5 mGal and a resolution of 10 km is

achievable with current technology ([13], [34]). For a local stabilised system, [93], an ITC-2

inertial platform system was tested and showed that an accuracy of 1 mGal with a resolution of

2–3 km is achievable. Unlike the above two systems, there is no physically stabilised platform

in the strapdown case. Instead, the strapdown inertial sensors are physically bolted to the

vehicle and the measured data in the body frame1 (b-frame) are transformed to the local-level

frame (l-frame) computationally. The advantages of the strapdown system are its smaller

size, lower cost and greater operational flexibility ([61]). In [48] it has been shown that the

performance of the strapdown INS is comparable to that of the stabilised airborne gravimeter.

The traditional way of determining the gravity disturbance components using the INS/GNSS

data is: first, to integrate the navigation equations associated with an INS, and second, to

model the INS errors and gravity disturbances as stochastic processes ([28], [33], [49], [61], [76],

[122]). GNSS positions and/or velocities are used as updates in a Kalman filter estimation of

the errors, including the gravity disturbances and the calculations are done in the navigation

frame (l-frame).

Alternatively, the gravity disturbance vector can be obtained directly by differencing the

GNSS and INS sensed accelerations, [59], which is analogous to conventional airborne scalar

gravimetry using gravimeters, [9].

1In strapdown systems the inertial sensors are mounted rigidly onto the device (ie. body of the host vehicle)
and measure body acceleration. More information in Appendix B.
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In INS/GNSS gravimetry, the separation of the INS/GNSS errors from the variations of the

gravity field is obtained by the use of appropriate models for the IMU sensor systematic errors

and for the gravity field anomalies. Given the INS mechanisation equations, the IMU cali-

bration equations and the gravity field variation equations (sic), the SSA generates “optimal"

estimates for the IMU trajectory (position, velocity and attitude), for the IMU errors and for

the gravity field differences with respect to some reference gravity model.

In INS/GNSS gravimetry, the SSA approach ([123]) is essentially of the form

ṙe = ve

v̇e = Reb

(
f b+wb

f

)
−2

[
ωeie×

]
ve+ ge(re)

Ṙ
e
b = Reb

[(
ωbib+wb

ω

)
×

]
−

[
ωeie×

]
Reb

(3.1)

where

• re and ve are the position and velocity vectors in the ECEF frame (e-frame);

• Reb is the transformation matrix form the body frame (b-frame) to the e-frame;

• ωeie = (0,0,ωe)T where ωe is the rate of Earth rotation;

• ge is the gravity vector as a function of re;

• wb
f and wb

ω are white-noise processes of the specific force f b and angular velocities

ωbib inertial observations respectively.

The numerical solution of this system can take many different forms which may be model-

based or not (see [53]).

One approach could be: the output of the stochastic dynamical system defined by the INS

mechanisation equations is Kalman-filtered and -smoothed with the GPS-derived positions

and/or velocities (see [96], [104], [117], [123]).

Some of the active groups working on these problems employ the following two-step proce-

dure: in a first stage, FIR filtering or something similar to take care of time-dependent errors,

and in a second stage, a crossover adjustment to take care of the spatial structure of the gravity

field.

The problem is, however, that the SSA optimal estimates are not the best estimates because

the SSA cannot use all the observational information contained in an aerial survey. It is an

optimal procedure for real-time applications. But it has a serious disadvantage, namely, its

very-limited to no-capacity of dealing with space correlations — measurements involving

states at different times. An example of this limited capacity is the difficulty of a rigorous

treatment of crossover points.
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The key to overcome the SSA limitations is to look at the system (3.1) as stochastic differential

equations (SDE) that, through discretisation, leads to a time dependent geodetic network as

discussed in [22], [23] and [114], for geodetic, photogrammetric and remote sensing applica-

tions.

3.1 Time dependent networks

A time dependent network ([22], [23]) is a network2 such that some of its parameters are

time dependent; i.e., that some of its parameters are stochastic processes. A time dependent

network can be seen as a classical network that incorporates stochastic processes and dynamic

models. A classical network can be seen as a particular case of a time dependent network.

To solve a time dependent network is to perform an optimal estimation of its parameters which

may include some stochastic processes. Optimality in estimating a stochastic process means

to estimate the best expectation function x̂(t ) in the sense of having minimal E(‖x − x̂‖2).

In the classical network adjustment theory it is well known that the network — its observations,

parameters and their relationships — is completely defined by the set of observation equations

f (l + v, x) = 0 (3.2)

where

• l is usually the outcome of a measurement (or observation),

• v is a normally distributed random variable of null expectation (or residual), and

• x is an unknown random variable (or parameter).

Similarly, the time dependent network is completely defined by the set of its static and dynamic

observation equations. A static observation equation or model is an equation of the type

fs(t , l + v, x(t )) = 0 (3.3)

where

• v is a normally distributed variable of null expectation,

• t is a time value, and

• x(t ) is an unknown stochastic process.

2In geomatics, a network is a set of instruments, observations and parameters that are inter-related through
mathematical models. The mathematical models are the observation equations.
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A dynamic observation equation — equivalently, a dynamic observation model or a stochastic

dynamic model — is an equation of the type

fd (t , l (t )+ω(t ), x(t ), ẋ(t )) = 0 (3.4)

where

• ω(t ) is a white noise process, and

• ẋ(t ) is the time derivative of x(t ).

For the sake of simplicity in notation, the term x(t) stands for time independent parame-

ters (random variables) and for time dependent parameters (stochastic processes). We note,

that Equation (3.4) is a stochastic differential equation (SDE) and that ẋ(t) is not a conven-

tional time derivative but a time derivative of a stochastic process. The theory ([86]) and the

numerical solution ([75]) of SDEs are, today, active fields of research in mathematics.

In more global terms, we will refer to the family of static observation equations as the network

static model and to the family of dynamic observation equations as the network dynamic

model. Needless to say, a classical network is a particular case of a time dependent network.

The actual situation is the increasing availability of time series of measurements and the

increasing use of time dependent information and the usual reaction is to resort from the

classical least-squares network adjustment (the network approach, NA) to Kalman-filtering

and smoothing (KFS), known as the state-space approach (SSA). However, while Kalman

filtering is the tool of choice for real-time applications it cannot take advantage of observation

equations relating parameters at different time epochs. Moreover, extended and non-linear

KFS requires that the dynamic observation equation be of the form

ẋ(t ) = fd (t , l (t )+ω(t ), x(t )) (3.5)

which is restrictive as compared to the formulation of Equation (3.4).

In practice, the solution of a time dependent network over a time interval [0,T ] requires a

time discretisation (ti )i=0,...,n with 0 = t0 < t1 < ·· · < ti < ·· · < tn = T , which in the simplest

equidistant case has a time step size δ (δ= T /n).

Given the time discretisation (ti )i=0,...,n , if we put li = l (ti ), vi = v(ti ), ωi =ω(ti ) and xi = x(ti ),

then the static observation in Equation (3.3) may be writen in the form

fs(li + vi , xi ) = 0,

and the dynamic observation Equation (3.4) in the form

fd (ti , li +ωi , xi , ẋi ) = 0.
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Recall that the discretisation of the dynamic observation models together with the static

observation models and further network least-squares adjustment will be referred to as the

network approach (NA).

The simplest heuristic approach to the solution of the network is based on the numerical

approximation of ẋi by a linear combination of a subset
{

xi−p , . . . , xi , . . . , xi+q
}

of the time

discretisation {x0, . . . , xn} of the stochastic process x(t )

fd (ti , li +ωi , xi ,
i+q∑

j=i−p
α j x j ) = 0.

Numerically speaking, once this is done, we are back to the situation of a static observation

equation and, therefore, to the situation of a classical static network. See Appendix D for more

information about the approach used in this dissertation.

3.2 The NA approach

In general, the Network Approach (NA) has some potential advantages compared to State-

Space Approach (SSA): parameters may be related by observations regardless of time; cova-

riance information can be computed selectively; and variance component estimation can be

performed. In the context of INS/GNSS gravimetry the author believes that some of the NA

potential advantages are significant:

• modelling of the Earth gravity field can be more rigorous than with the SSA;

• external observational information can be better exploited; and

• more information for further geoid determination can be produced.

The main drawback of NA is that it cannot be applied to real-time INS/GNSS navigation but

this is certainly not an issue for a geodetic gravimetric task.

In this section, the dynamic and static observation models that can be assimilated by the NA

for INS/GNSS gravimetry are reviewed. The set of dynamic observation models corresponds

to what is called the system model in stochastic modelling and estimation. Analogously, the

set of static observation models corresponds to what is called the measurement model. In

the context of time dependent networks ([22]) the expressions dynamic observation model

and static observation model are used to highlight the fact that we build our network from

observations that contribute to the estimation of parameters either through dynamic or static

equations.

In INS/GNSS gravimetry there are, essentially, two main models. One model is the system

of the INS mechanisation equations and the other model expresses the continuity of gravity

along the aircraft trajectory.
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The mathematical model associated to SINS navigation is given by the well-known mechanisa-

tion equations (3.1), that are usually extended with the angular rate sensors and accelerometers

calibration states and models.

The accelerometer and gyro sensor errors of a SINS consist of two parts: a deterministic part —

biases and scale factors — which is determined by calibration and then removed from the raw

measurements, and a random part, which is correlated over time and is basically due to the

variations in the SINS sensor bias terms.

Therefore, these random errors are modelled stochastically so that they can be included in

the SINS error model. For most of the SINS systems, a first-order Gauss-Markov model with a

fairly large correlation time is usually used to described these errors. However, by studying

the autocorrelation sequences of the noise components at the outputs of inertial sensors,

Nassar ([81]) determined that a first-order Gauss-Markov is not adequate to model such noise

behavior and offered an alternative method to model the inertial sensor noise as a higher

order autoregressive (AR) process. But now, to fix the ideas and for the sake of simplicity we

restrict intentionally the calibration states to time dependent biases

ṙe = ve

v̇e = Reb

(
f b+ab

)
−2

[
ωeie×

]
ve+ ge(re)

Ṙ
e
b = Reb

[(
ωbib+ob

)
×

]
−

[
ωeie×

]
Reb

ȯb = Fg yr (ob)

ȧb = Facc (ab)

(3.6)

where Fg yr and Facc are the calibration model functions of the angular rate sensors (ob) and

accelerometers biases (ab). (Needless to say, the calibration functions and the calibration

states depend on the type of sensors.)

The system (3.6) can be extended with a new mathematical model — GDT model — that shows

the changes of the gravity disturbance along the trajectory of a moving vehicle with respect to

time.

Traditionally, gravity disturbance is modelled as an stochastic process ([49], [61], [62], [76],

[121], [33], [27]). Usually, the models for the gravity field assume ergodicity and, hence,

stationarity and some isotropic covariance function that depends on two parameters: variance

and the correlation distance. For details or forms of the covariance models see [122], [61], [76],

[33] and [27]. Now, to fix the ideas and for the sake of simplicity, it is possible to consider δge

as a random walk: ˙δge = w .
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Finally, the dynamic observation models formed by the SINS mechanisation equations (3.6)

including also the GDT model are

VEL: ṙe = ve+we
0

FB: v̇e = Reb

(
f b+wb

f +ab
)
−2

[
ωeie×

]
ve+δge+γe(re)

WIB: Ṙ
e
b = Reb

[(
ωbib+wb

ω+ob
)
×

]
−

[
ωeie×

]
Reb

OB: ȯb = Fg yr (ob+wb
o )

AB: ȧb = Facc (ab+wb
a )

GDT: ˙δge = we
g

(3.7)

These models are time dependent equations such as Equation (3.4), where `(t ) = ( f b,ωbib)T

and x(t ) = (re, ve,Reb,δge, ab,ob)T and we
0 , wb

f , wb
ω, wb

o , wb
a , we

g are the process noises.

The static observation models, that usually have been considered, are the coordinate update

point (CUPT), the velocity update point (VUPT), the gravity update point (GUPT) and the

crossover points (XOVER) models. Here, they are defined briefly, and later in section 3.4 they

will be described in detail:

• CUPT model. A coordinate update is a point where the position of the platform is known

from an independent procedure (usually GPS). The CUPT equation is pe
0
+we

p = re.

• VUPT model. If instead of the position the velocity is known, the associated equation is

ve0 +we
v = ve.

A good example of the VUPT model is shown in [29]. Farrell studied an extensive

set of flight-validated methods. One is the improvement of INS/GNSS integration

with placement of tags for velocity and attitude adjustments. Sequential changes in

carrier phase can adjust dynamics only, with velocity history feedforward to the position

estimator for integration into a priori position, adjusted by pseudoranges only.

The zero velocity update (ZUPT) is based on ve = 0 and it is widely used in terrestrial

inertial surveying. But, in a gravimetric flight, it can only be applied at the beginning

and at the end of the survey.

A ZUPT point is as a particular case of a VUPT one where ve0 = 0.

• GUPT model. If gravity is known in some point of the trajectory, the following equation

is obtained: g
0
+w g = ‖δge+γe(re)‖.

27



Chapter 3. INS/GNSS gravimetry: geodesy as usual

• XOVER model. In airborne gravimetry, the data acquisition profiles are usually chosen

to form a network with a sufficient number of crossings, which are known as crossovers.

The difference of the computed gravities at these points gives a quality control of the

survey. These differences are due to the difference of the flight altitudes, as well as other

bias sources. Classically, after the application of low pass filtering, a post-processing

adjustment is applied to make the system gravity disturbance estimates self-consistent;

i.e. measurements taken at the same location at different times give the same value.

The adjustment is based on the use of crossover point differences in gravity disturbance

estimates between flight lines. Each flight line used in the crossover adjustment is

considered to have a separate slope and bias term.

From [56, Equation (4–16)], we have

ge(P ) = ge(Q)− ∂g

∂h

(
hQ −hP

)
,

where ∂g
∂h =−0.0848 mGal/m.

It is important to note that, sometimes, the gravity data will be computed at a lower

frequency than navigation data. All the parameters associated to one crossover have

been related to the same value of gravity. The crossover point has been generalised to

the concept of a crossover area.

On the other hand, in a ZUPT point gravity can be considered as a constant function.

For times tn and tn+1, ge
n

and ge
n+1

are the same. Consequently, it can be considered as

a crossover.

Remember that dynamic observation equations are Stochastic Differential Equations (SDE).

They arise naturally from real-life Ordinary Differential Equations (ODE) whose coefficients

are only approximately known because they are measured by instruments or deduced from

other data subject to random errors. The initial or boundary conditions may be also known

just randomly. In these situations, we would expect that the solution of the problem be a

stochastic process.

Like in ODE theory, certain classes of SDE have solutions that can be found analytically using

various formulas, and other classes — the vast majority of them — have no analytic solution.

There are several numerical techniques to solve SDE; see [75]. All of them are based on their

correct stochastic discretisation which is not a trivial issue.

3.3 The GeoTeX software package

The observation equations of this research has been implemented into the existing GeoTeX
software system of the ICC — which includes the GeoTeX/ACX computer program [21] — that

has been used for all the computations.
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3.3. The GeoTeX software package

3.3.1 General description

GeoTeX/ACX is a general geodetic and photogrammetric point determination system which is

able to deal with any type of geometric functional model. It is suited for research as well as for

production purposes and can be easily extended to incorporate new models. GeoTeX has been

developed by the ICC since 1988 and it is still currently used for research and production.

In GeoTeX/ACX it is relatively easy to add a new functional model. The user is allowed to define

observable and parameter new data types. That addition takes only the formal definition of

the observable and of the new parameters involved (definition of the particular observable and

parameter data type), the codding of the observation equations and their jacobian matrices,

and a subsequent compilation and generation of the new executable. Only a limited knowledge

of the software is needed for the extension of the models.

GeoTeX adopts a simple adjustment oriented point of view: the main data types are observa-

bles, parameters and sensors.

An observable is defined as

〈
p1 . . . pi

〉 〈
s1 . . . s j

〉 〈a1 . . . ak〉 〈o1 . . .ol 〉 〈c1 . . .cm〉

where

• p1 . . . pi are the identifiers of the parameters involved in the observational model,

• s1 . . . s j the identifiers of the instruments used,

• a1 . . . ak auxiliary information (time, meteorological data, etc.),

• o1 . . .ol the actual observed amounts, and

• c1 . . .cm some representation of the covariance matrix.

Analogously, the abstract types parameter and sensor follow the same philosophy.

3.3.2 Functional model implementation

When the user wants to implement a new model, she/he has just to edit some table-files where

she/he can define the abstract types for observations, sensors and parameters. Then, she/he

has to program a FORTRAN subroutine for the observation equations and their derivatives

according to certain calling conventions; this subroutine is added to the GeoTeX/ACX object

module library and a new executable module is generated. So, the user needs to know very

few about the program and just nothing about discrete and I/O modules.
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GeoTeX/ACX supports the following model: l = f (x) or l − f (x) = 0. Then the linearised model

is:

l − f (x0)−D f (x0) ·∆x = 0.

And the error equation is:

v + l − f (x0)−D f (x0) ·∆x = 0.

Therefore, the partial misclosure vector m is computed as m = l − f (x0), and the partial design

matrix J as J =−D f (x0) = D
〈

f , x0
〉

.

Last, the residual vector v has to be computed as v = −m − J · ∆̂x, where, recall, ∆̂x are the

adjusted corrections obtained in the solution of the normal equations.

3.3.3 Software used in this thesis

Since its creation in 1988, GeoTeX/ACX has been improved several times. Now, for this re-

search, it has been moved from FORTRAN77-static to FORTRAN90-dynamic memory 32-bit

implementation.

Static allocation is simple from the compiler’s perspective because all that is needed is to

create a list of variables that need allocation and lay them down in memory one after the other.

A run-time advantage of static allocation is that it is usually easy and fast to access a fixed

address and statically allocated data can be used from anywhere in the program. But static

allocation has disadvantages too. Here the most important one is that you have to recompile

the program every time you need to increase the dimension of the arrays.

Dynamic allocation is the complete opposite of static allocation. The big advantage of dynamic

allocation is that the program can decide at run time how much memory to get, making it

possible that programs can accommodate problems of any size. The user is limited only by

the total amount of virtual memory available to the process: a little less than 2GB in 32-bit

Windows.

To take advantage of previous work, GeoTeX/ACX allocates and deallocates array information

in files. When an array is deallocated, all its structure is stored in a temporal binary file,

and when it has to be used later, all this structure is read faster (allocate). This practice is

provisional and it can increase actual device I/O as well as CPU time. However some years ago,

this device I/O was a big problem. Now, with improvement of hardware systems, the problem

seems to disappear. For the purposes of this research and to be able to compute the entire

network, having plenty of available virtual memory is more important than increasing the

CPU time. But for production purposes of the ICC, both factors — managing big-size networks

rapidly — have the same importance: GeoTeX/ACX has to adjust big networks in few minutes.
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It seems more reasonable to migrate GeoTeX/ACX from 32-bit into 64-bit implementation. The

64-bit operating systems offer greater power, reliability and scalability. First and foremost, a

64-bit machine can address more memory directly without using complex indexing or register-

addressing schemes. Because internal memory is several orders of magnitude faster than

storage, combining a 64-bit processing architecture with more RAM lets a processor pull more

data into memory and operate on it directly, increasing performance manifold. A 64-bit file

system also can improve disk management.

The move to 64 bits will primarily help users who need to access very large data stores. While

some 64-bit machines can process both 64-bit and 32-bit instructions, and translators exist

to convert 32-bit programs to slow but functional 64-bit programs, a 64-bit machine needs a

64-bit operating system and 64-bit applications to deliver optimum results.

Sun gives this analogy to describe the difference between a 32-bit operating environment and

a 64-bit operating environment:

A 32-bit addressing space can keep track of the name and address of every person

who has lived in the United States since 1997, a 64-bit addressing space can keep

track of the name and address of every person who has ever lived in the world, from

the beginning of time.

The capability to accommodate huge quantities of memory, combined with far greater effi-

ciency at managing high-bandwidth I/O, give 64-bit systems scalability advantages that 32-bit

technology can not match.

The next step, if 64-bit environment is to be outdone, would be to move GeoTeX/ACX to super-

computing technologies. The use of computational power of the center’s parallel machines

might be a possibility3.

All the computations done in this dissertation — see Chapter 4 — has been computed with

GeoTeX/ACX (now a 32-bit program) running in a 64-bit platform4.

3.4 Observation equations

In this section, the INS/GNSS differential mechanisation equations are interpreted as obser-

vation equations to be used in a least-squares parameter estimation problem. In numerical

terms, the equations are solved by a finite difference method where the initial/boundary

values are substituted with the appropriate observation equations.

3Since 2005, there is the Barcelona Supercomputing Center (BSC). It is the national supercomputing facility in
Spain and BSC manages Marenostrum, the most powerful supercomputer in Europe. BSC focuses in Computer
Sciences, Life Sciences and Earth Sciences. Following this multidisciplinary approach, BSC brings together
researchers, high performance computing experts and cutting-edge supercomputing technologies.

4Windows Server 2003 Enterprise Edition. Service Pack 1. Intel (R) Xeon (TM) MP. CPU 3 GHz with 8 processors
and Physical Address Extension. 4 GB RAM / 30 GB PF.
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There are several finite difference methods that could be used, but the discussion is limited to

the simplest one: the explicit midpoint method or leap-frog method. This method is described

in the function deriva1 in Appendix D. In this research, it is used to illustrate the use of NA

for INS/GNSS gravimetry and that the previous equations — the dynamic and the static — can

be transformed into a finite set of observation equations.

It is important to consider the rates of the parameters to be estimated. These rates are related

to the frequency of the observations: if an IMU is working at a given frequency, then the

parameters re, ve, q will be estimated at the same frequency, but δge and ab, ob would be

determined at given different rates.

To determine a parameter at time tn with the unknowns referred at a different rate, it is

necessary to interpolate these unknowns at the desired time. There are many interpolation

methods to be applied. Depending on the method, the associated functional model would be

more or less complex.

A simple one may be the linear interpolation method:

y[n] =
(

t [n]− tx [m]

tx [m +1]− tx [m]

)
· x[m +1]+

(
tx [m +1]− t [n]

tx [m +1]− tx [m]

)
· x[m]

where t [n] ∈ [tx [m], tx [m +1][. For each y[n] value, two unknowns parameters — x[m] and

x[m +1] — should be determined.

But, in this work, we consider the following interpolation method that keeps the number of

unknowns to be determined:

y[n] =


x[m] t [n] ∈

[
tx [m], tx [m]+tx [m+1]

2

[
x[m +1] t [n] ∈

[
tx [m]+tx [m+1]

2 , tx [m +1]
]

The equations can be discretised and afterwards written as

`+w = F (x),

where ` are the observations (in our case f b, ωbib), w are the residuals of ` and x are the

parameters to be determined: re, ve, δge, ab, ob, q .

In this section, the stochastic models associated to the inertial sensor errors and the gravity

anomaly are particularly relevant.

As mentioned in Section 3.2, δge is modelled as a random process: ˙δge = w .

The accelerometer — ab — and gyro — ob — sensor errors of a strapdown INS (SINS) con-

sist of two parts: a constant (or deterministic) part and a stochastic (or random) part. The
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deterministic part includes biases and scale factors, which are determined by calibration and

then removed from the raw measurements. The stochastic part is basically due to the random

variations of the SINS sensor errors (biases) over time.

The inertial sensor random errors can be expressed as: white noise, random constant (random

bias), random walk, Gauss-Markov (first and higher orders) or periodic random processes. For

most of the navigation-grade SINS systems (angular rate drift 0.005–0.01 ˚ h−1), a first order

Gauss-Markov model (GM) is used to describe the random errors associated with inertial

sensors. This is also true for low-cost inertial systems (angular rate drift 100–1000 ˚ h−1)

although sometimes a white noise process instead of a first order GM is used.

Here, to fix the ideas and for the sake of simplicity, the inertial sensor models — ob and ab —

are also considered as random walk processes.

In this dissertation, several observational models have been implemented into the GeoTeX/ACX
program and they are described in this section. Table 3.1 describes the related parameters or

unknowns to be determined.

Parameter type aux. x (par.) Dimension Remarks

RE-P t re 3×1 (1)
VE-P t ve 3×1 (2)
Q-P t q 4×1 (3)

OB-P t ob 3×1 (3)

AB-P t ab 3×1 (3)
DG-P t δg 3×1 (4)

G-P t g 3×1 (4)

GRAVITY-P t g g 3×1 (5)

AOFF-P db 3×1 (3)

Table 3.1: INS/GNSS gravimetry parameters implemented in GeoTeX/ACX: (1) Cartesian
coordinates in e -frame referred to IMU. (2) ECEF system (e -frame) referred to IMU. (3) b
-frame. (4) e -frame or l -frame depends on the context. (5) g g = (g ,η,ζ). (5) gg(g g ) =
(g sinζ, g sinη, g cosθ).
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3.4.1 VEL: Velocity vector model

The velocity vector is defined as the time derivative of the position vector: v = ṙ .

If we put ∆t r = tr [n]− tr [n −1], then the equation associated to this model is

ve[n] = D
〈

re[n], t
〉= (∆t r )−1 (

re[n]− re[n −1]
)

(3.8)

Concept # Notation Constants Frame

Observables 1 0
0 3 0[i ] e

Parameter Groups 3 re[n −1],re[n],ve[n]
re[n −1] 3 re[n −1|i ] tr [n −1] e
re[n] 3 re[n|i ] tr [n] e
ve[n] 3 ve[n|i ] tr [n] e

Table 3.2: VEL model.

And the associated observation functional model is

VEL :

R3 ×R3 ×R3 −→ R3

re[n −1],re[n], ve[n] 7−→ 0

0[i ] = re[n|i ]−re[n −1|i ]−∆t r ve[n|i ]

Derivatives

D
〈

0[i ],re[n −1| j ]
〉 = −δi j

D
〈

0[i ],re[n| j ]
〉 = δi j

D
〈

0[i ],ve[n| j ]
〉 = −∆t r δi j

where δi j is the Dirac’s function, defined as:

δi j =
{

1 i = j

0 i 6= j
(3.9)
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3.4.2 WIB: INS angular rate vector model

A strapdown INS is physically bolted to the frame of the vehicle to be navigated. It is conve-

nient for an understanding of the strapdown mechanisation to think of the accelerations and

angular rates as being sensed in the body frame, or b-frame. The orientation must now be

accomplished completely by computations, using gyro data, that transform the accelerometer

output from the sensor frame to the navigation frame. In the strapdown mode, this transforma-

tion is accomplished computationally, where the rates sensed by the gyros are combined with

the computed rates of the arbitrary frame a—that should serve as navigation frame (e-frame

or l-frame)— to yield the transformation Ra
b that converts the sensed accelerations to the

navigation frame.

One procedure to determine the transformation matrix is to solve the differential equation

for the associated Euler angles. The solution to this equation may be performed numerically

using an integrator such as the Runge-Kutta algorithm. This procedure can led to difficulties

when the differential equation becomes singular. In fact, most inertial navigation algorithms

employ quaternions to solve the equation. The use of quaternions offers a very robust method

to compute the transformation matrix under any circumstances.

If the determination of the transformation matrix Reb is formulated, the differential equation

to be solved is given by

Ṙ
e
b = Reb ·Ωbeb,

where the off-diagonal elements ofΩbeb are the components of the angular rates ωbeb.

The equivalent differential equation in terms of quaternions is given by the Equation (G.1):

q̇ = 1

2
·M q ·ωbeb.

Rewritting the equations we have

(∆t r )−1 ·
(
q[n]−q[n −1]

)
= 1

2
·M q[n] ·

(
ωbib[n]+ob[n]−Reb

T
[n]ωeie

)
.

Isolating the INS angular rates, ωbib, the equation becomes

ωbib[n] =−ob[n]+Reb
T

[n] ·ωeie+2(∆t r )−1 ·
(
M q[n]

)T ·
(
q[n]−q[n −1]

)
,

where ∆t r = tr [n]− tr [n −1].
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Concept # Notation Constants Frame

Observables 1 ωbib[n]

ωbib[n] 3 ωbib[n|i ]

Parameter Groups 3 ob[n], q[n −1], q[n]

ob[n] 3 ob[n|i] tc [n] b
q[n −1] 4 q[n−1|i] tr [n −1]

q[n] 4 q[n|i] tr [n]

Table 3.3: WIB model.

Then, the functional model is

WIB :

R3 ×R4 ×R4 −→ R3

ob[n], q[n −1], q[n] 7−→ ωbib[n]

ωbib[n|i ] = −ob[n|i ]+ωe ·rbe[n|3, i ]+

+2(∆t r )−1 ·∑4
s=1 mq[n|s, i ] · (q[n|s]−q[n −1|s]

) (3.10)

and rbe[n] = rbe(q[n]) is defined in Appendix F and mq[n] = mq(q[n]) is defined by Equation

(G.3).

Derivatives

D
〈
ωbib[n|i ],ob[n| j ]

〉
= −δi j

D
〈
ωbib[n|i ],q[n −1|k]

〉
= −2(∆t r )−1 ·mq[n|k, i ]

D
〈
ωbib[n|i ],q[n|k]

〉
= ωe ·Drbe[n|3, i ,k]+2(∆t r )−1 ·mq[n|k, i ]+

+ 2(∆t r )−1 ·∑4
s=1 Dmq[n|s, i ,k] · (q[n|s]−q[n −1|s]

)
where δi j is the Dirac’s function defined by Equation (3.9).
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3.4.3 FB-DGE: INS acceleration vector model

According to Equation (3.7), we have

v̇e[n] = Reb[n] ·
(

f b[n]+ab[n]
)
−2

[
ωeie×

]
ve[n]+δge[n]+γe(re[n])

and considering v̇e[n] as

v̇e[n] = (∆t r )−1 · (re[n]− re[n −1]
)

,

then the equation associated to this model is

(∆t r )−1 · (re[n]− re[n −1]
)=

Reb[n] ·
(

f b[n]+ab[n]
)
−2

[
ωeie×

]
ve[n]+δge[n]+γe(re[n])

where ∆t r = tr [n]− tr [n −1].

Isolating the accelerometer observation f b[n], we obtain

f b[n] = −ab[n]+Reb
T [n] ·{(∆t r )−1

(
re[n]− re[n −1]

)−
− δge[n]−γe(re[n])+2

[
ωeie[n]×

]
ve[n]

}
.

Concept # Notation Constants Frame

Observables 1 f b[n]

f b[n] 3 f b[n|i ] b

Parameter Groups 6 ab[n], q[n], re[n], ve[n −1], ve[n], δge[n]

ab[n] 3 ab[n|i ] tc [n] b
q[n] 4 q[n|i ] tr [n] b
re[n] 3 re[n|i ] tr [n] e
ve[n −1] 3 ve[n −1|i ] tr [n −1] e
ve[n] 3 ve[n|i ] tr [n] e
δge[n] 3 δge[n|i ] tg [n] e

Table 3.4: FB-DGE model.

Then the associated observation functional model is

FB-DGE :

R3 ×R4 ×R3 ×R3 ×R3 ×R3 −→ R3

ab[n], q[n],re[n], ve[n −1], ve[n],δge[n] 7−→ f b[n]
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f b[n|i ] =−ab[n|i ]+
3∑

k=1
rbe[n|k, i ] ·W [k] (3.11)

where gne[n] = gne(re[n]) is computed using formulas described by Equation (C.17), rbe[n] =
rbe(q[n]) by Equation (F.7) and

W [k] = −δge[n|k]−gne[n|k]+

+ (∆t r )−1 · (v[n|k]− v[n −1|k])+2
∑3

s=1 Ω
e
ie[k, s] ·ve[n|s].

Derivatives

D
〈

f b[n|i ],ab[n| j ]
〉

= −δi j

D
〈

f b[n|i ],q[n|k]
〉

= ∑3
s=1 Drbe[n|s, i ,k] ·W [s]

D
〈

f b[n|i ],re[n| j ]
〉

= ∑3
s=1 rbe[n|s, i ] ·D

〈
W [s],re[n| j ]

〉
D

〈
f b[n|i ],ve[n −1| j ]

〉
= ∑3

s=1 rbe[n|s, i ] ·D
〈

W [s],ve[n −1| j ]
〉

D
〈

f b[n|i ],ve[n| j ]
〉

= ∑3
s=1 rbe[n|s, i ] ·D

〈
W [s],ve[n| j ]

〉
D

〈
f b[n|i ],δge[n| j ]

〉
= ∑3

s=1 rbe[n|s, i ] ·D
〈

W [s],δge[n| j ]
〉

where

D
〈

W [i ],re[n| j ]
〉 = −D

〈
gne[n|i ],re[n| j ]

〉=−Dgne[n|i , j ]

D
〈

W [i ],ve[n −1| j ]
〉 = −(∆t r )−1 δi j

D
〈

W [i ],ve[n| j ]
〉 = (∆t r )−1 δi j +2Ωeie[i , j ]

D
〈

W [i ],δge[n| j ]
〉 = −δi j
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Finally, the associated derivatives are

D
〈

f b[n|i ],ab[n| j ]
〉

= −δi j

D
〈

f b[n|i ],q[n|k]
〉

= ∑3
s=1 Drbe[n|s, i ,k] ·W [s]

D
〈

f b[n|i ],re[n| j ]
〉

= −∑3
s=1 rbe[n|s, i ] ·Dgne[n|s, j ]

D
〈

f b[n|i ],ve[n −1| j ]
〉

= −(∆t r )−1 ∑3
s=1 rbe[n|s, i ] δs j

D
〈

f b[n|i ],ve[n| j ]
〉

= ∑3
s=1 rbe[n|s, i ]

{
(∆t r )−1 δs j +2Ωeie[s, j ]

}
D

〈
f b[n|i ],δge[n| j ]

〉
= −∑3

s=1 rbe[n|s, i ] δs j

where δi j is the Dirac’s function, defined by Equation (3.9), Drbe is defined in Appendix F and

Dgne in C.3.2.
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3.4.4 FB-DGN: INS acceleration vector model

This model is a variation of FB-DGE model, which has been described in Section 3.4.3. Here

the gravity disturbance parameter is referred to the l-frame (usually NED-frame), instead of

the e-frame.

Concept # Notation Constants Frame

Observables 1 f b[n]

f b[n] 3 f b[n|i ] b

Parameter Groups 6 ab[n],q[n],re[n], ve[n −1],ve[n],δge[n]

ab[n] 3 ab[n|i ] tc [n] b
q[n] 4 q[n|i ] tr [n]

re[n] 3 re[n|i ] tr [n] e
ve[n −1] 3 ve[n −1|i ] tr [n −1] e
ve[n] 3 ve[n|i ] tr [n] e
δgl[n] 3 δgl[n|i ] tg [n] l

Table 3.5: FB-DGN model.

Now, the associated observation functional model is

FB-DGN :

R3 ×R4 ×R3 ×R3 ×R3 ×R3 −→ R3

ab[n], q[n],re[n], ve[n −1], ve[n],δgl[n] 7−→ f b[n]

f b[n|i ] =−ab[n|i ]+
3∑

k=1
rbe[n|k, i ] W [k] (3.12)

where

W [k] = −∑3
s=1 rle[n|k, s] δgl[n|s]−gne[n|k]+

+ (∆t r )−1 (v[n|k]− v[n −1|k])+2
∑3

s=1Ω
e
ie[k, s] ve[n|s],

gne[n] = gne(re[n]) is computed using Equation (C.17), rle[n] = rle(re[n]) is defined in

Appendix B and rbe[n] = rbe(q[n]) is computed from Equation (F.7).
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Derivatives

D
〈

f b[n|i ],ab[n| j ]
〉

= −δi j

D
〈

f b[n|i ],q[n|k]
〉

= ∑3
s=1 Drbe[n|s, i ,k] W [s]

D
〈

f b[n|i ],re[n| j ]
〉

= ∑3
s=1 rbe[n|s, i ] D

〈
W [s],re[n| j ]

〉
D

〈
f b[n|i ],ve[n −1| j ]

〉
= ∑3

s=1 rbe[n|s, i ] D
〈

W [s],ve[n −1| j ]
〉

D
〈

f b[n|i ],ve[n| j ]
〉

= ∑3
s=1 rbe[n|s, i ] D

〈
W [s],ve[n| j ]

〉
D

〈
f b[n|i ],δgl[n| j ]

〉
= ∑3

s=1 rbe[n|s, i ] D
〈

W [s],δgl[n| j ]
〉

where

D
〈

W [i ],re[n| j ]
〉 = −D

〈
δge[n|i ],re[n| j ]

〉−Dgne[n|i , j ]

D
〈

W [i ],ve[n −1| j ]
〉 = −(∆t r )−1 δi j

D
〈

W [i ],ve[n| j ]
〉 = (∆t r )−1 δi j +2Ωeie[i , j ]

D
〈

W [i ],δgl[n| j ]
〉 = −D

〈
δge[n|i ],δgl[n| j ]

〉
and

D
〈
δge[n|i ],re[n| j ]

〉 = ∑3
s=1 Drle[n|i , s, j ] δgl[n|s]

D
〈
δge[n|i ],δgl[n| j ]

〉 = rle[n|i , j ]

and δi j is the Dirac’s function, defined by Equation (3.9).
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3.4.5 FB-GG: INS acceleration vector model

This model is a variation of the FB models described in Sections 3.4.3 and 3.4.4. Here,

the gravity vector parameter is referred to the l-frame (NED-frame) and expressed as g g =
(g sinζ, g sinη, g cosθ)T , where g is the magnitude of gravity, (η,ζ) are the deflections of the

vertical and θ = (
η2 +ζ2

) 1
2 .

Concept # Notation Constants Frame

Observables 1 f b[n]

f b[n] 3 f b[n|i ] b

Parameter Groups 6 ab[n],q[n],re[n], ve[n −1],ve[n],g g [n]

ab[n] 3 ab[n|i ] tc [n] b
q[n] 4 q[n|i ] tr [n]

re[n] 3 re[n|i ] tr [n] e
ve[n −1] 3 ve[n −1|i ] tr [n −1] e
ve[n] 3 ve[n|i ] tr [n] e
g g [n] 3 g g [n|i ] tg [n]

Table 3.6: FB-GG model.

The associated observation functional model is

FB-GG :

R3 ×R4 ×R3 ×R3 ×R3 ×R3 −→ R3

ab[n], q[n],re[n], ve[n −1], ve[n], g g [n] 7−→ f b[n]

f b[n|i ] =−ab[n|i ]+
3∑

k=1
rbe[n|k, i ] W [k] (3.13)

where

W [k] = −∑3
s=1 rle[n|k, s] gg[n|s]+

+ (∆t r )−1 (v[n|k]− v[n −1|k])+2
∑3

s=1Ω
e
ie[k, s] ve[n|s],

gg[n] = gg(g g [n]) is defined in Section C.20, rle[n] = rle(re[n]) is defined in Appendix B

and rbe[n] = rbe(q[n]) is computed from Equation (F.7).
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Derivatives

D
〈

f b[n|i ],ab[n| j ]
〉

= −δi j

D
〈

f b[n|i ],q[n|k]
〉

= ∑3
s=1 Drbe[n|s, i ,k] W [s]

D
〈

f b[n|i ],re[n| j ]
〉

= ∑3
s=1 rbe[n|s, i ] D

〈
W [s],re[n| j ]

〉
D

〈
f b[n|i ],ve[n −1| j ]

〉
= ∑3

s=1 rbe[n|s, i ] D
〈

W [s],ve[n −1| j ]
〉

D
〈

f b[n|i ],ve[n| j ]
〉

= ∑3
s=1 rbe[n|s, i ] D

〈
W [s],ve[n| j ]

〉
D

〈
f b[n|i ], g g [n| j ]

〉
= ∑3

s=1 rbe[n|s, i ] D
〈

W [s], g g [n| j ]
〉

where

D
〈

W [i ],re[n| j ]
〉 = −D

〈
ge[n|i ],re[n| j ]

〉
D

〈
W [i ],ve[n −1| j ]

〉 = −(∆t r )−1 δi j

D
〈

W [i ],ve[n| j ]
〉 = (∆t r )−1 δi j +2Ωeie[i , j ]

D
〈

W [i ], g g [n| j ]
〉 = −D

〈
ge[n|i ], g g [n| j ]

〉
D

〈
ge[n|i ],re[n| j ]

〉 = ∑3
s=1 Drle[n|i , s, j ] gg[n|s]

D
〈
ge[n|i ], g g [n| j ]

〉 = ∑3
s=1 rle[n|i , s] Dgg[n|s, j ]

and δi j is the Dirac’s function, defined by Equation (3.9).
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3.4.6 Q-NORM: Quaternion dependency model

As it is described in Appendix F, the definition of the quaternion parameters in Equation (F.3)

implies that the four quaternion components (q1, q2, q3, q4) are not independent, because of

the following relationship

q2
1 +q2

2 +q2
3 +q2

4 = 1

Concept # Notation Constants Frame

Observables 1 0

Parameter Groups 1 q[n]

q[n] 4 q[n|i] tr [n]

Table 3.7: Q-NORM model.

Then, the equation associated to the functional model is

Q-NORM :

R4 −→ R

q[n] 7−→ 0

0 = 1−
4∑

k=1
q[n|k]2 (3.14)

Derivatives

D
〈

0,q[n|j]
〉=−2q[n|j]
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3.4.7 OB: Gauss-Markov gyro drift vector model

Usually, through laboratory and field calibrations gyro drifts can be determined by means

of correction parameters for the gyro error models. Thus, the sensor measurements can

be compensated. However, systematic errors do survive the calibration procedures or just

appear during the mission probably due to environmental factors. The variation of the

remaining systematic sensor errors are random. Therefore, the sensor errors can be modelled

by stochastic processes. In the following ob are interpreted as the remaining systematic sensor

errors for the gyro measurement errors and are called gyro drifts.

The gyro drifts ob are usually correlated and can be modelled by first-order Gauss-Markov

processes of the form:

ȯb = κω ob+wb
o

where κω are diagonal matrices containing reciprocals of the time correlation parameters of

the processes and wb
o the vector containing white noise. Gyro drifts equations are given in the

body frame and are thus independent of the computational reference frame.

The equations associated to this functional model, a 1st order Gauss-Markov, are

OB :

R3 ×R3 −→ R3

ob[n −1],ob[n] 7−→ 0

0[i ] = ob[n −1|i ]− (1+κω ∆t c ) ob[n|i ] (3.15)

where ∆t c = tc [n +1]− tc [n −1].

Concept # Notation Constants Frame

Observables 1 0
0 3 0[i ] b

Sensors 1 IMU
IMU 4 (ωb ,κω, ab ,κa)T

Parameter Groups 2 ob[n −1],ob[n]

ob[n −1] 3 ob[n−1|i] tc [n −1] b
ob[n] 3 ob[n|i] tc [n] b

Table 3.8: First order Gauss-Markov OB model.

45



Chapter 3. INS/GNSS gravimetry: geodesy as usual

Derivatives

D
〈

0[i ],ob[n −1| j ]
〉 = δi j

D
〈

0[i ],ob[n| j ]
〉 = − (1+κω ∆t c ) δi j

where δi j is the Dirac’s function, defined by Equation (3.9).
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3.4.8 OB: Random Walk gyro drift vector model

As mentioned before, ob can be expressed as first Gauss-Markov process. But here, for the

sake of simplicity, ob may be considered a random walk process:

ȯb = wb
o

where wb
o is a zero-mean, white noise process with covariance function, qδ(τ).

Considering the definition of derivative of ob, we have

(∆t c )−1 ·
(
ob[n]−ob[n −1]

)
= wb

o .

Concept # Notation Constants Frame

Observables 1 0
0 3 0[i ] b

Parameter Groups 2 ob[n −1],ob[n]

ob[n −1] 3 ob[n−1|i] tc [n −1] b
ob[n] 3 ob[n|i] tc [n] b

Table 3.9: Random Walk OB model.

The equations associated to this simple functional model are

OB :

R3 ×R3 −→ R3

ob[n −1],ob[n] 7−→ 0

0 = 0[i ] = ob[n −1|i ]−ob[n|i ] (3.16)

where ∆t c = tc [n]− tc [n −1].

Derivatives

D
〈

0[i ],ob[n −1| j ]
〉 = δi j

D
〈

0[i ],ob[n| j ]
〉 = −δi j

where δi j is the Dirac’s function, defined by Equation (3.9).
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3.4.9 AB: Gauss-Markov accelerometer bias model

Similar to the random walk INS-OB model, which has been described in Section 3.4.7, accele-

rometer biases ab are usually correlated and can be modelled by first-order Gauss-Markov

processes of the form

ȧb =−κa ab+wb
a

where κa are diagonal matrices containing reciprocals of the time correlation parameters of

the processes and wb
a the vector containing white noise.

The equations associated to this model are

AB :

R3 ×R3 −→ R3

ab[n −1], ab[n] 7−→ 0

0[i ] = ab[n −1|i ]− (1+κa ∆t c ) ab[n|i ] (3.17)

where ∆t c = tc [n +1]− tc [n −1].

Concept # Notation Constants Frame

Observables 1 0
0 3 0[i ] b

Sensors 1 IMU
IMU 4 (ωb ,κω, ab ,κa)T

Parameter Groups 2 ab[n −1],ab[n]

ab[n −1] 3 ab[n−1|i] tc [n −1] b
ab[n] 3 ab[n|i] tc [n] b

Table 3.10: First order Gauss-Markov AB model.

Derivatives

D
〈

0[i ],ab[n −1| j ]
〉 = δi j

D
〈

0[i ],ab[n| j ]
〉 = − (1+κa ∆t c ) δi j

where δi j is the Dirac’s function, defined by Equation (3.9).
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3.4.10 AB: Random Walk accelerometer bias model

Similar to the random walk OB model, which has been described in Section 3.4.8, for the sake

of simplicity, accelerometer biases are modeled as a random walk:

(∆t c )−1 (ab[n]−ab[n −1]) = wb
a

Concept # Notation Constants Frame

Observables 1 0
0 3 0[i ] b

Parameter Groups 2 ab[n −1],ab[n]

ab[n −1] 3 ab[n−1|i] tc [n −1] b
ab[n] 3 ab[n|i] tc [n] b

Table 3.11: Random Walk AB model.

If ∆t c = tc [n]− tc [n −1], the equations associated to the functional model are

AB :

R3 ×R3 −→ R3

ab[n −1], ab[n] 7−→ 0

0[i ] = ab[n −1|i ]−ab[n|i ] (3.18)

Derivatives

D
〈

0[i ],ab[n −1| j ]
〉 = δi j

D
〈

0[i ],ab[n| j ]
〉 = −δi j

where δi j is the Dirac’s function, defined by Equation (3.9).
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3.4.11 GDT-DGN: Stochastic gravity disturbance model

As mentioned in Section 3.2, traditionally, the gravity disturbance is modelled as an stochastic

process. These models assume, usually, ergodicity, stationarity and some isotropic covariance

function that depends on variance and correlation distance. One of the often used models is

the Gauss-Markov process, but here to illustrate the approach with a simple functional model,

we consider that δg is a random walk process (as it has been described in Sections 3.4.8 and

3.4.10):

δ̇g = w g .

Concept # Notation Constants Frame

Observables 1 0
0 3 0[i ] l

Parameter Groups 2 δgl[n −1],δgl[n]

δgl[n −1] 3 δgl[n−1|i] tg [n −1] l
δgl[n] 3 δgl[n|i] tg [n] l

Table 3.12: GDT-DGN model.

The equations associated to the functional model are

GDT-DGN :

R3 ×R3 −→ R3

δgl[n −1],δgl[n] 7−→ 0

0[i ] = δgl[n−1|i]−δgl[n|i] (3.19)

Derivatives

D
〈

0[i ],δgl[n−1|j]
〉 = δi j

D
〈

0[i ],δgl[n|j]
〉 = −δi j

where δi j is the Dirac’s function, defined by Equation (3.9).
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3.4.12 GDT-DGE: Stochastic gravity disturbance model

The model, here, is a variation of GDT-DGN model described in Section 3.4.11, where the

gravity field is referred to the e-frame instead of the l-frame.

GDT-DGE :

R3 ×R3 ×R3 ×R3 −→ R3

re[n −1],re[n],δge[n −1],δge[n] 7−→ 0

0[i ] = δgl[n−1|i]−δgl[n|i] (3.20)

where

δgl[s|i] =
3∑

k=1
rle[s|k,i]δge[s|k],

and rle[s] = rle(re[s]) is defined in Appendix B.

Concept # Notation Constants Frame

Observables 1 0
0 3 0[i ] NED

Parameter Groups 4 re[n −1], re[n], δge[n −1],δge[n]

re[n −1] 3 re[n−1|i] tr [n −1] e
re[n] 3 re[n|i] tr [n] e
δge[n −1] 3 δge[n−1|i] tg [n −1] e
δge[n] 3 δge[n|i] tg [n] e

Table 3.13: GDT-DGE model.

Finally, the equations of the functional model, ∀i = 1÷3, are

0[i ] =
3∑

k=1
rle[n −1|k, i ]δge[n−1|k]−

3∑
k=1

rle[n|k,i]δge[n|k] (3.21)

Derivatives

D
〈

0[i ],re[n−1|j]
〉 = ∑3

k=1 Drle[n −1|k, i , j ]δge[n−1|k]

D
〈

0[i ],re[n|j]
〉 = −∑3

k=1 Drle[n|k, i , j ]δge[n|k]

D
〈

0[i ],δge[n−1|j]
〉 = rle[n −1| j , i ]

D
〈

0[i ],δge[n|j]
〉 = −rle[n| j , i ]
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3.4.13 GDT-GG: Stochastic gravity disturbance model

If the gravity field in l-frame is expressed as g g , the functional model associated to GDT-DGN

model — described in Section 3.4.11 — is defined as

GDT-GG :

R3 ×R3 ×R3 ×R3 −→ R3

re[n −1],re[n], g g [n −1], g g [n] 7−→ 0

0[i ] = gg[n −1|i ]−gnn[n −1|i ]−gg[n|i ]+gnn[n|i ] (3.22)

where gg[n] = gg(g g [n]) is defined in Section C.3.3 and gnn[n] = gnn(re[n]) is computed in

Section C.3.1.

Concept # Notation Constants Frame

Observables 1 0
0 3 0[i ] l

Parameter Groups 4 re[n −1], re[n],g g [n −1],g g [n]
re[n −1] 3 re[n−1|i] tg [n −1] e
re[n] 3 re[n|i] tg [n] e
g g [n −1] 3 g g [n −1|i ] tg [n −1]
g g [n] 3 g g [n|i ] tg [n]

Table 3.14: GDT-GG model.

Derivatives

D
〈

0[i ],re[n−1|j]
〉 = −Dgnn[n −1|i , j ]

D
〈

0[i ],re[n|j]
〉 = Dgnn[n|i , j ]

D
〈

0[i ], g g [n −1| j ]
〉 = Dgg[n −1|i , j ]

D
〈

0[i ], g g [n| j ]
〉 = −Dgg[n|i , j ]
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3.4.14 GDT1-DGN: Stochastic gravity disturbance magnitude model

The magnitude form of GDT-DGN model which is described in Section 3.4.11 is defined by the

following functional model.

GDT1-DGN :

R3 ×R3 −→ R

δgl[n −1],δgl[n] 7−→ 0

0 = ‖δgl[n −1]‖−‖δgl[n]‖ (3.23)

where

‖δgl[s]‖ =
[

3∑
k=1

δgl[s|k]2
] 1

2

Concept # Notation Constants Frame

Observables 1 0

Parameter Groups 2 δgl[n −1],δgl[n]

δgl[n −1] 3 δgl[n−1|i] tg [n −1] l
δgl[n] 3 δgl[n|i] tg [n] l

Table 3.15: GDT1-DGN model.

Derivatives

D
〈

0,δgl[n−1|j]
〉 = δgl[n−1|j] · ‖δgl[n−1]‖−1

D
〈

0,δgl[n|j]
〉 = −δgl[n|j] · ‖δgl[n]‖−1

53



Chapter 3. INS/GNSS gravimetry: geodesy as usual

3.4.15 GDT1-DGE: Stochastic gravity disturbance magnitude model

As a variant of the model DGT1-DGN described in Section 3.4.14 with the gravity disturbance

vector in the e-frame, the following functional model holds

GDT1-DGE :

R3 ×R3 −→ R

δge[n −1],δge[n] 7−→ 0

0 = ‖δge[n −1]‖−‖δge[n]‖ (3.24)

where

‖δge[s]‖ =
[

3∑
k=1

δge[s|k]2
] 1

2

Concept # Notation Constants Frame

Observables 1 0

Parameter Groups 2 δge[n −1],δge[n]

δge[n −1] 3 δge[n−1|i] tg [n −1] e
δge[n] 3 δge[n|i] tg [n] e

Table 3.16: GDT1-DGE model.

Derivatives

D
〈

0,δge[n−1|j]
〉 = δge[n−1|j] · ‖δge[n−1]‖−1

D
〈

0,δge[n|j]
〉 = −δge[n|j] · ‖δge[n]‖−1
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3.4.16 CUPT: Coordinate Update Point model

A Coordinate Update Point (CUPT) is a position which is obtained from independent proce-

dures (i.e. from GNSS techniques).

It is important to note that the GNSS antenna is located at a different place that the IMU

sensor. We call db the antenna offset between the IMU sensor and the GNSS antenna in the

b-frame, which is measured accurately by surveying techniques.

Taking into account the antenna offset and the position of the IMU sensor, in the e-frame, the

CUPT position may be defined as

X̃ = re+Reb ·db (3.25)

Concept # Notation Constants Frame

Observables 1 X̃
X̃ 3 X [i ] e

Parameter Groups 3 q[n], re[n], db

q[n] 4 q[n|i] tr [n]

re[n] 3 re[n|i] tr [n] e
db 3 db[n|i] b

Table 3.17: CUPT model.

And the associated functional model is

CUPT :

R4 ×R3 ×R3 −→ R3

q[n],re[n],db 7−→ X̃

X [i ] = re[n|i]+
3∑

s=1
rbe[n|i,s] ·db[s] (3.26)

Derivatives

D
〈

X [i ],q[n|k]
〉 = ∑3

s=1 Drbe[n|i , s,k] ·db[s]

D
〈

X [i ],re[n|j]
〉 = δi j

D
〈

X [i ],db[n|j]
〉 = rbe[n|i,j]

where δi j is the Dirac’s function, defined by Equation (3.9).
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3.4.17 CUPTX: Coordinate Update Point model

The model is a small variation of the CUPT model described in Section 3.4.16. Here, the

antenna offset db is considered a constant of the model.

The Equation (3.25) is still valid

X̃ = re+Reb ·db (3.27)

Concept # Notation Constants Frame

Observables 1 X̃

X̃ 3 X [i ] db e

Parameter Groups 2 q[n], re[n]

q[n] 4 q[n|i] tr [n]

re[n] 3 re[n|i] tr [n] e

Table 3.18: CUPTX model.

And the equations associated functional model are

CUPTX :

R4 ×R3 −→ R3

q[n],re[n] 7−→ X̃

X [i ] = re[n|i]+
3∑

s=1
rbe[n|i,s] ·db[s] (3.28)

Derivatives

D
〈

X [i ],q[n|k]
〉 = ∑3

s=1 Drbe[n|i , s,k] ·db[s]

D
〈

X [i ],re[n|j]
〉 = δi j

where δi j is the Dirac’s function, defined by Equation (3.9).
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3.4.18 VUPT: Velocity Update model

If, instead of the position, the velocity is known and the Equation (3.25) is differentiated, then

the associated equation is

Ṽ = ˙̃X = ṙe+ Ṙ
e
b ·db

Considering Equations (3.7), (F.7) and (3.10), the above equation can be transformed as follows:

Ṽ = ve+Reb ·Ωbeb ·db = ve+Reb ·
[
ωbeb×

]
db.

If the Equations (G.1) — q̇ = 1
2 M q ω

b
eb — and (G.2) are taken into account, we obtain:

Ṽ = ve+2Reb[(M T
q q̇)×db] (3.29)

The Zero Velocity Update (ZUPT), which is widely used in terrestrial inertial surveying, may

be considered as a particular case of a VUPT model where Ṽ = 0.

Concept # Notation Constants Frame

Observables 1 Ṽ
Ṽ 3 V [i ] e

Parameter Groups 4 q[n −1], q[n], ve[n], db

q[n −1] 4 q[n−1|i] tr [n −1]

q[n] 4 q[n|i] tr [n]

ve[n] 3 ve[n|i] tr [n] e
db 3 db[n|i] b

Table 3.19: VUPT model.

The equations associated to the functional model are

VUPT :

R4 ×R4 ×R3 ×R3 −→ R3

q[n −1], q[n], ve[n],db 7−→ Ṽ

V [i ] = ve[n|i ]+2
3∑

s=1
rbe[n|i,s] ·Z[s] (3.30)
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where

Z [s] = ∑3
m=1 M [s,m] db[m]

M =

 0 −W [3] W [2]

W [3] 0 −W [1]

−W [2] W [1] 0


W [s] = (∆t r )−1 ∑4

m=1 mq[n|m,s] · (q[n|m]−q[n−1|m]
)

.

Derivatives

D
〈

V [i ],q[n−1|k]
〉 = 2

∑3
s=1rbe[n|i,s] ·D〈

Z[s],q[n−1|k]
〉

D
〈

V [i ],q[n|k]
〉 = 2

∑3
s=1 Drbe[n|i , s,k] ·Z [s]+

+ 2
∑3

s=1rbe[n|i,s] ·D〈
Z[s],q[n|k]

〉
D

〈
V [i ],ve[n|j]

〉 = δi j

D
〈

V [i ],db[n|j]
〉 = 2

∑3
s=1rbe[n|i,s] ·D〈

Z[s],db[n|j]
〉

where

D
〈

Z [s],q[n−1|k]
〉 = ∑3

m=1 D
〈

M [s,m],q[n−1|k]
〉
db[m]

D
〈

Z [s],q[n|k]
〉 = ∑3

m=1 D
〈

M [s,m],q[n|k]
〉
db[m]

D
〈

Z [s],db[j]
〉 = M [s, j ]

D
〈

M ,q[r|k]
〉=


0 −D

〈
W [3],q[r|k]

〉
D

〈
W [2],q[r|k]

〉
D

〈
W [3],q[r|k]

〉
0 −D

〈
W [1],q[r|k]

〉
−D

〈
W [2],q[r|k]

〉
D

〈
W [1],q[r|k]

〉
0



D
〈

W [s],q[n−1|k]
〉 = −(∆t r )−1 mq[n|k,s]

D
〈

W [s],q[n|k]
〉 = (∆t r )−1 mq[n|k,s]+

+ (∆t r )−1 ∑4
m=1 Dmq[n|m,s,k]

(
q[n|m]−q[n−1|m]

)
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and δi j is the Dirac’s function, defined by Equation (3.9).
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3.4.19 VUPTX: Velocity Update model

If the antenna offset db is regarded as an auxiliary constant, the associated equation of VUPT

model of Section 3.4.18 is

Ṽ = ve+2Reb · [(M T
q q̇)×db] (3.31)

Concept # Notation Constants Frame

Observables 1 Ṽ

Ṽ 3 V [i ] db e

Parameter Groups 3 q[n −1], q[n], ve[n]

q[n −1] 4 q[n−1|i] tr [n −1]

q[n] 4 q[n|i] tr [n]

ve[n] 3 ve[n|i] tr [n] e

Table 3.20: VUPTX model.

And the associated functional model is

VUPTX :

R4 ×R4 ×R3 −→ R3

q[n −1], q[n], ve[n] 7−→ Ṽ

V [i ] = ve[n|i ]+2
3∑

s=1
rbe[n|i,s] ·Z[s] (3.32)

where

Z [s] = ∑3
m=1 M [s,m] ·db[m],

M =

 0 −W [3] W [2]

W [3] 0 −W [1]

−W [2] W [1] 0


W [s] = (∆t r )−1 ∑4

m=1mq[n|m,s]
(
q[n|m]−q[n−1|m]

)
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Derivatives

D
〈

V [i ],q[n−1|k]
〉 = 2

∑3
s=1rbe[n|i,s] ·D〈

Z[s],q[n−1|k]
〉

D
〈

V [i ],q[n|k]
〉 = 2

∑3
s=1 Drbe[n|i , s,k] ·Z [s]+

+ 2
∑3

s=1rbe[n|i,s] ·D〈
Z[s],q[n|k]

〉
D

〈
V [i ],ve[n|j]

〉 = δi j

where

D
〈

Z [s],q[n−1|k]
〉 = ∑3

m=1 D
〈

M [s,m],q[n−1|k]
〉
db[m]

D
〈

Z [s],q[n|k]
〉 = ∑3

m=1 D
〈

M [s,m],q[n|k]
〉
db[m]

D
〈

M ,q[r|k]
〉=


0 −D

〈
W [3],q[r|k]

〉
D

〈
W [2],q[r|k]

〉
D

〈
W [3],q[r|k]

〉
0 −D

〈
W [1],q[r|k]

〉
−D

〈
W [2],q[r|k]

〉
D

〈
W [1],q[r|k]

〉
0



D
〈

W [s],q[n−1|k]
〉 = −(∆t r )−1mq[n|k,s]

D
〈

W [s],q[n|k]
〉 = (∆t r )−1mq[n|k,s]+

+ (∆t r )−1 ∑4
m=1 Dmq[n|m,s,k]

(
q[n|m]−

− q[n−1|m]
)

and δi j is the Dirac’s function, defined by Equation (3.9).
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3.4.20 DG-OBS: Gravity disturbance magnitude model

Usually, the magnitude of the gravity disturbance (or the gravity anomaly), in the e-frame

(δge[n]) or l-frame (δgl[n]), is known and the gravity vector has to be computed in the

e-frame or l-frame. The associated functional model is

DG-OBS :

R3 −→ R

δg [n] 7−→ δ̃g

δ̃g = dgnorm (3.33)

where

dgnorm=
[

3∑
i=1

δg[n|i ]2

] 1
2

.

Concept # Notation Constants Frame

Observables 1 δ̃g

Parameter Groups 1 δg [n]

δg [n] 3 δg[n|i] tg [n] e or l

Table 3.21: DG-OBS model.

Derivatives

D
〈
δ̃g ,δg[n|j]

〉
= dgnorm−1 ·δg[n|j]
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3.4.21 DG-OBS-GG: Gravity disturbance magnitude model

This is a variation of the DG-OBS model described in Section 3.4.20. Here, the gravity parame-

ters to be computed in the l-frame are expressed as g g = (g ,η,ζ)T . The associated functional

model is

DG-OBS-GG :

R3 ×R3 −→ R

re[n], g g [n] 7−→ δ̃g

δ̃g = δg (3.34)

where

δg = [∑3
i=1δg[n|i]2

] 1
2 ,

δg[n] = gg[n]−gne[n],

gg[n] = gg(g g [n]) is computed using the Equation (C.20) and gne[n] = gne(re[n]) is com-

puted using the Equation (C.19).

Concept # Notation Constants Frame

Observables 1 δ̃g

Parameter Groups 2 re[n],g g [n]
re[n] 3 re[n|i ] tr [n] e
g g [n] 3 g g [n|i ] tg [n]

Table 3.22: DG-OBS-GG model.

Derivatives

D
〈
δ̃g ,re[n|j]

〉
= (δg )−1 ∑3

k=1δg[n|k]D
〈
δg[n|k],re[n|j]

〉
D

〈
δ̃g , g g [n| j ]

〉
= (δg )−1 ∑3

k=1δg[n|k]D
〈
δg[n|k],gg[n|j]

〉

where

D
〈
δg[n|k],re[n|j]

〉 = −Dgne[n|k, j ]

D
〈
δg[n|k],gg[n|j]

〉 = Dgg[n|k, j ]
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3.4.22 G-OBS: Gravity magnitude model

If instead of the gravity anomaly — as it has been defined in DG-OBS model in Section 3.4.20

— the gravity is known and the gravity vector is the parameter to be computed, the associated

functional model is

G-OBS :

R3 −→ R

g [n] 7−→ g̃

g̃ = gnorm (3.35)

where

gnorm=
[

3∑
i=1

g[n|i ]2

] 1
2

.

Concept # Notation Constants Frame

Observables 1 g̃

Parameter Groups 1 g [n]

g [n] 3 g[n|i ] tg [n] e or l

Table 3.23: G-OBS model.

Derivatives

D
〈

g̃ ,g[n| j ]
〉
= gnorm−1 ·g[n| j ]
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3.4.23 GUPT-DGE: Gravity magnitude model

The model is a variation of the G-OBS model described in Section 3.4.22. Here, the associated

parameters are position and gravity disturbance vectors in the e-frame. The associated

functional model is

g
0
= ‖δge+γe(re)‖

Concept # Notation Constants Frame

Observables 1 g0

Parameter Groups 2 re[n], δge[n]

re[n] 3 re[n|i] tr [n] e
δge[n] 3 δge[n|i] tg [n] e

Table 3.24: GUPT-DGE model.

The associated functional model is

GUPT-DGE :

R3 ×R3 −→ R

re[n],δge[n] 7−→ g0

g0 = gnorm (3.36)

with

gnorm=
[

3∑
k=1

Z [k]2

] 1
2

,

and

Z [k] = δge[n|k]+gne[n|k],

where gne[n] = gne(re[n]) is computed using the Equation (C.17).

Derivatives

D
〈

g0,re[n|j]
〉 = D

〈
gnorm,re[n|j]

〉
D

〈
g0,δge[n|j]

〉 = D
〈
gnorm,δge[n|j]

〉
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where

D
〈
gnorm,re[n|j]

〉 = 2 gnorm−1 ·∑3
k=1(Z [k] D

〈
Z [k],re[n|j]

〉
)

D
〈
gnorm,δge[n|j]

〉 = 2 gnorm−1 ·∑3
k=1(Z [k] D

〈
Z [k],δge[n|j]

〉
)

D
〈

Z [k],re[n|j]
〉 = Dgne[n|k,j]

D
〈

Z [k],δge[n|j]
〉 = δk j

and δi j is the Dirac’s function, defined by Equation (3.9).
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3.4.24 GUPT-DGN: Gravity magnitude model

This model is a small variation of the GUPT-DGE model described in Section 3.4.23, where

the gravity disturbance parameters have to be determined in the l-frame. The associated

functional model is

GUPT-DGN :

R3 ×R3 −→ R

re[n],δgl[n] 7−→ g0

g0 = gnorm (3.37)

where

gnorm = [∑3
i=1 W [i ]2

] 1
2 ,

W [i ] = δgl[n|i ]+gnn[n|i ],

and gnn[n] = gnn(re[n]) is defined in Section C.3.1.

Concept # Notation Constants Frame

Observables 1 g0

Parameter Groups 2 re[n], δgl[n]

re[n] 3 re[n|i ] tr [n] e
δgl[n] 3 δgl[n|i ] tg [n] l

Table 3.25: GUPT-DGN model.

Derivatives

D
〈

g0,re[n| j ]
〉 = 2 gnorm−1 ·∑3

k=1 W [k]D
〈

W [k],re[n| j ]
〉

D
〈

g0,δgl[n| j ]
〉 = 2 gnorm−1 ·∑3

k=1 W [k]D
〈

W [k],δgl[n| j ]
〉

where

D
〈

W [k],re[n| j ]
〉 = Dgnn[n|k, j ]

D
〈

W [k],δgl[n| j ]
〉 = δk j

and δi j is the Dirac’s function, defined by Equation (3.9).
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3.4.25 GUPT-GG: Gravity magnitude model

If the gravity parameters to be computed in the l-frame are expressed as g g described in

Section C.3.3, here the model is a variation of the GUPT-DGN model described in Section

3.4.24. The associated functional model is

GUPT-GG :

R3 −→ R

g g [n] 7−→ g0

g0 = gnorm (3.38)

where

gnorm=
[

3∑
k=1

gg[n|k]2

] 1
2

and gg[n] = gg(g g [n]) computed using the Equation (C.20).

Concept # Notation Constants Frame

Observables 1 g0

Parameter Groups 1 g g [n]
g g [n] 3 g g [n|i ] tg [n]

Table 3.26: GUPT-GG model.

Derivatives

D
〈

g0,re[n| j ]
〉= gnorm−1 ·

3∑
k=1

gg[n|k] Dgg[n|k, j ]
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3.4.26 GUPTN-DGE model

The model is a variation of the GUPT-DGE model described in Section 3.4.23. Here, the

magnitude of the gravity vector — the gravity — is considered as the sum of two magnitudes,

the gravity disturbance (or anomaly) and the normal gravity, and the following equation can

be considered

g0 = ‖δge‖+‖γe(re)‖

where the associated parameters, in the e-frame, are the position and the gravity disturbance

vectors.

Concept # Notation Constants Frame

Observables 1 g0

Parameter Groups 2 re[n], δge[n]

re[n] 3 re[n|i] tr [n] e
δge[n] 3 δge[n|i] tg [n] e

Table 3.27: GUPTN-DGE model.

The associated functional model is

GUPTN-DGE :

R3 ×R3 −→ R

re[n],δge[n] 7−→ g0

g0 = gnorm+dgnorm (3.39)

where

dgnorm = [∑3
k=1δge[n|k]2

] 1
2 ,

gnorm = [∑3
k=1gne[n|k]2

] 1
2 ,

and gne[n] = gne(re[n]) is computed using the Equation (C.17).

Derivatives

D
〈

g0,re[n
∣∣j ]

〉 = D
〈
gnorm,re[n

∣∣j ]
〉

D
〈

g0,δge[n|j]
〉 = D

〈
dgnorm,δge[n|j]

〉
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where

D
〈
gnorm,re[n

∣∣j ]
〉 = gnorm−1 ·∑3

k=1gne[n|k] Dgne[n|k,j]

D
〈
dgnorm,δge[n|j]

〉 = dgnorm−1 ·δge[n|j]
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3.4.27 GUPTN-DGN model

Equivalently to the GUPT-DGE and the GUPTN-DGE models, the model here is a variation

of the GUPT-DGN model described in Section 3.4.24. If the gravity is known at some point

— the magnitude is independent of the reference frame — the gravity disturbance vector is

referenced to the l-frame and position vector in the e-frame, the associated functional model

is

GUPTN-DGN :

R3 ×R3 −→ R

re[n],δgl[n] 7−→ g0

g0 = dgnorm+gnnorm (3.40)

where

dgnorm = [∑3
k=1δgl[n|k]2

] 1
2

gnnorm = [∑3
k=1gnn[n|k]2

] 1
2

and gnn[n] = gnn(re[n]) is defined in Section C.3.1.

Concept # Notation Constants Frame

Observables 1 g0

Parameter Groups 2 re[n], δgl[n]

re[n] 3 re[n|i ] tr [n] e
δgl[n] 3 δgl[n|i ] tg [n] l

Table 3.28: GUPTN-DGN model.

Derivatives

D
〈

g0,re[n| j ]
〉 = gnnorm−1 ·∑3

k=1 gnn[n|k] Dgnn[n|k, j ]

D
〈

g0,δgl[n| j ]
〉 = dgnorm−1 ·δgl[n| j ]
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3.4.28 DGUPT-GG: gravity disturbance model

If the gravity disturbance vector is known, in the l-frame, at some point of the trajectory

and gravity parameters to be computed in the l-frame are expressed as g g , the following

functional model is obtained.

DGUPT-GG :

R3 ×R3 −→ R3

re[n], g g [n] 7−→ δ̃gl

δ̃gl[i ] = gg[n|i ]−gnn[n|i ] (3.41)

where gg[n] = gg(g g [n]) is defined in Section C.3.3 and gnn[n] = gnn(re[n]) in Section C.3.1.

Concept # Notation Constants Frame

Observables 1 g̃l

δ̃gl 3 δ̃gl[n|i ] tg [n] l

Parameter Groups 2 re[n], g g [n]
re[n] 3 re[n|i ] tr [n] e
g g [n] 3 g g [n|i ] tg [n]

Table 3.29: DGUPT-GG model.

Derivatives

D
〈
δ̃gl[n|i ],re[n| j ]

〉
= −Dgnn[n|i , j ]

D
〈
δ̃gl[n|i ], g g [n| j ]

〉
= Dgg[n|i , j ]
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3.4.29 XOVER-DGE: gravity’s crossover model

In airborne gravimetry, the data acquisition profiles are usually chosen to form a network with

a sufficient number of crossings, which are known as crossovers. An estimation of the gravity

in airborne crossovers is used to verify the relative accuracy of the gravity data observed in the

same position, but at different epochs, and to identify systematic errors. Crossovers do not

test the measurements independently, but allow to detect possible systematic errors, to check

the inherent accuracy o the sensor system and to give accuracy information, which may be

helpul as input of other methods (i.e. collocation). The idea is to compare observed gravity

data, when the airborne passes the same geographical position.

The airborne trajectory leads to a height difference at the crossovers. After having identified

the crossovers, from [56, Equation (4–16)], we have:

ge(P ) = ge(Q)− ∂g

∂h
(hQ −hP ),

where ∂g
∂h =−0.0848 mGal/m (see footnote5). This simple formula, although far from perfect,

is often applied in practice.

Collecting terms, we obtain:

0 = ge(P − ge(Q)− ∂g

∂h
(hP −hQ ),

The associated functional model is defined by

XOVER-DGE :

R3 ×R3 ×R3 ×R3×
R3 ×R3 ×R3 ×R3 −→ R

re[n −1],re[n],re[m −1],re[m],

δge[n −1],δge[n],δge[m −1],δge[m] 7−→ 0

Let re[P ] ∈ (re[n −1],re[n]) , re[Q] ∈ (re[m −2],re[m]) , re[P ] = re[Q] , δge[P ] ∈ (δge[n −
1],δge[n]) and δge[Q] ∈ (δge[m −1],δge[m]). Then, the equations associated to this model

are

0 = δgP +γP −δgQ −γQ − ∂g

∂h
(hP −hQ ) (3.42)

5 ∂g
∂h = ∂γ

∂h +4πkρ. With a density of ρ = 2.67g /cm3 and k = 66.7×10−9c.g .s., we obtain:
∂g
∂h =−0.3086+0.2238 =

−0.0848g al /km =−0.0848mGal/m
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Concept # Notation Constants Frame

Observables 1 0

Auxiliary data 2 t [P ], t [Q]
t [P ] 1 tP

t [Q] 1 tQ

Parameter Groups 8 re[n −1], re[n], re[m −1], re[m],
δge[n −1], δge[n], δge[m −1], δge[m]

re[n −1] 3 re[n−1|i] tr [n −1] e
re[n] 3 re[n|i] tr [n] e
re[m −1] 3 re[m−1|i] tr [m −1] e
re[m] 3 re[m|i] tr [m] e
δge[n −1] 3 δge[n−1|i] tg [n −1] e
δge[n] 3 δge[n|i] tg [n] e
δge[m −1] 3 δge[m−1|i] tg [m −1] e
δge[m] 3 δge[m|i] tg [m] e

Table 3.30: XOVER-DGE model.

where

γs = [∑3
k=1gne[s|k]2

]1/2
,

δgs = [∑3
k=1δge[s|k]2

]1/2
,

∂g
∂h =−0.0848 mGal

m and gne[s] = gne(re[s]) is computed using Equation (C.17).
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Derivatives

D
〈

0,re[n−1|j]
〉 = D

〈
γP ,re[n−1|j]

〉− ∂g
∂h D

〈
hP ,re[n−1|j]

〉
D

〈
0,re[n|j]

〉 = D
〈
γP ,re[n|j]

〉− ∂g
∂h D

〈
hP ,re[n|j]

〉
D

〈
0,re[m−1|j]

〉 = −D
〈
γQ ,re[m−1|j]

〉+ ∂g
∂h D

〈
hQ ,re[m−1|j]

〉
D

〈
0,re[m|j]

〉 = −D
〈
γQ ,re[m|j]

〉+ ∂g
∂h D

〈
hQ ,re[m|j]

〉
D

〈
0,δge[n−1|j]

〉 = D
〈
δgP ,δge[n−1|j]

〉
D

〈
0,δge[n|j]

〉 = D
〈
δgP ,δge[n|j]

〉
D

〈
0,δge[m−1|j]

〉 = −D
〈
δgQ ,δge[m−1|j]

〉
D

〈
0,δge[m|j]

〉 = −D
〈
δgQ ,δge[m|j]

〉
where

D
〈
γP ,re[n−1|j]

〉 = γP
−1 ·∑3

k=1gne[P |k] D
〈
gne[P |k],re[n−1|j]

〉
D

〈
γP ,re[n|j]

〉 = γP
−1 ·∑3

k=1gne[P |k] D
〈
gne[P |k],re[n|j]

〉
D

〈
γQ ,re[m−1|j]

〉 = γQ
−1 ·∑3

k=1gne[Q|k] D
〈
gne[Q|k],re[m−1|j]

〉
D

〈
γQ ,re[m|j]

〉 = γQ
−1 ·∑3

k=1gne[Q|k] D
〈
gne[Q|k],re[m|j]

〉

D
〈
δgP ,δge[n −1| j ]

〉 = δgP
−1 ·∑3

k=1δge[P|k] D
〈
δge[P|k],δge[n−1|j]

〉
D

〈
δgP ,δge[n| j ]

〉 = δgP
−1 ·∑3

k=1δge[P|k] D
〈
δge[P|k],δge[n|j]

〉
D

〈
δgQ ,δge[m −1| j ]

〉 = δgQ
−1 ·∑3

k=1δge[Q|k] D
〈
δge[Q|k],δge[m−1|j]

〉
D

〈
δgQ ,δge[m| j ]

〉 = δgQ
−1 ·∑3

k=1δge[Q|k] D
〈
δge[Q|k],δge[m|j]

〉

δge[P|i] = cgn−1 δge[n−1|i]+cgn δge[n|i]

D
〈
δge[P|i],δge[n−1|j]

〉 = cgn−1 δi j

D
〈
δge[P|i],δge[n|j]

〉 = cgn δi j
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δge[Q|i] = cgm−1 δge[m−1|i]+cgm δge[m|i]

D
〈
δge[Q|i],δge[m−1|j]

〉 = cgm−1 δi j

D
〈
δge[Q|i],δge[m|j]

〉 = cgm δi j

D
〈
gne[P |k],re[n−1|j]

〉 = ∑3
s=1 Dgne[P |k, s] D

〈
re[P |s],re[n −1| j ]

〉
D

〈
gne[P |k],re[n|j]

〉 = ∑3
s=1 Dgne[P |k, s] D

〈
re[P |s],re[n| j ]

〉
D

〈
gne[Q|k],re[m−1|j]

〉 = ∑3
s=1 Dgne[Q|k, s] D

〈
re[Q|s],re[m −1| j ]

〉
D

〈
gne[Q|k],re[m|j]

〉 = ∑3
s=1 Dgne[Q|k, s] D

〈
re[Q|s],re[m| j ]

〉

re[P ] = cxn−1 re[n −1]+ cxn re[n]

D
〈
re[P |i ],re[n −1| j ]

〉 = cxn−1 δi j

D
〈
re[P |i ],re[n| j ]

〉 = cxn δi j

re[Q] = cxm−1 re[m −1]+ cxm re[m]

D
〈
re[Q|i ],re[m −1| j ]

〉 = cxm−1 δi j

D
〈
re[Q|i ],re[m| j ]

〉 = cxm δi j

D
〈

hP ,re[n −1| j ]
〉 = cxn−1 Dgetogc[P |3, j ]

D
〈

hP ,re[n| j ]
〉 = cxn Dgetogc[P |3, j ]

D
〈

hQ ,re[m −1| j ]
〉 = cxm−1 Dgetogc[Q|3, j ]

D
〈

hQ ,re[m| j ]
〉 = cxm Dgetogc[Q|3, j ]
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cxn−1 = (tr [n]− tP ) · (tr [n]− tr [n −1])−1

cxn = (tP − tr [n −1]) · (tr [n]− tr [n −1])−1

cxm−1 = (tr [m]− tQ ) · (tr [m]− tr [m −1])−1

cxm = (tQ − tr [m −1]) · (tr [m]− tr [m −1])−1

cgn−1 = (tg [n]− tP ) · (tg [n]− tg [n −1])−1

cgn = (tP − tg [n −1]) · (tg [n]− tg [n −1])−1

cgm−1 = (tg [m]− tQ ) · (tg [m]− tg [m −1])−1

cgm = (tQ − tg [m −1]) · (tg [m]− tg [m −1])−1

and where hP , hQ are computed applying getogc to re[P ] and re[Q] respectively and gne[P ],

gne[Q] are computed using Equation (C.17) andδi j is the Dirac’s function, defined by Equation

(3.9).
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3.4.30 XOVER-DGN: gravity’s crossover model

This model is a variation on the XOVER-DGE model described in Section 3.4.29, where the

gravity disturbance parameters are computed in the l-frame.

Concept # Notation Constants Frame

Observables 1 0

Auxiliary Data 2 t [P ], t [Q]
t [P ] 1 tP

t [Q] 1 tQ

Parameter Groups 8 re[n −1], re[n], re[m −1], re[m],

δgl[n −1], δgl[n], δgl[m −1], δgl[m]

re[n −1] 3 re[n−1|i] tr [n −1] e
re[n] 3 re[n|i] tr [n] e
re[m −1] 3 re[m−1|i] tr [m −1] e
re[m] 3 re[m|i] tr [m] e
δgl[n −1] 3 δgl[n−1|i] tg [n −1] l
δgl[n] 3 δgl[n|i] tg [n] l
δgl[m −1] 3 δgl[m−1|i] tg [m −1] l
δgl[m] 3 δgl[m|i] tg [m] l

Table 3.31: XOVER-DGN model.

The associated functional model is defined by

XOVER-DGN :

R3 ×R3 ×R3 ×R3×
R3 ×R3 ×R3 ×R3 −→ R

re[n −1],re[n],re[m −1],re[m],

δgl[n −1],δgl[n],δgl[m −1],δgl[m] 7−→ 0

Let re[P ] ∈ (re[n −1],re[n]), re[Q] ∈ (re[m −2],re[m]), re[P ] = re[Q], δgl[P ] ∈ (δgl[n −
1],δgl[n]) and δgl[Q] ∈ (δgl[m −1],δgl[m]). The equations associated to this model are

0 = δgP +γP −δgQ −γQ − ∂g

∂h
(hP −hQ ) (3.43)

where, for ∗= P,Q,

γs = [∑3
k=1gnn[s|k]2

]1/2
,

δgs = [∑3
k=1δgl[s|k]2

]1/2
,
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∂g
∂h =−0.0848 mGal

m and gnn[s] = gnn(re[s]) is computed using Equation (C.16).

Derivatives

D
〈

0,re[n−1|j]
〉 = D

〈
γP ,re[n−1|j]

〉− ∂g
∂h D

〈
hP ,re[n−1|j]

〉
D

〈
0,re[n|j]

〉 = D
〈
γP ,re[n|j]

〉− ∂g
∂h D

〈
hP ,re[n|j]

〉
D

〈
0,re[m−1|j]

〉 = −D
〈
γQ ,re[m−1|j]

〉+ ∂g
∂h D

〈
hQ ,re[m−1|j]

〉
D

〈
0,re[m|j]

〉 = −D
〈
γQ ,re[m|j]

〉+ ∂g
∂h D

〈
hQ ,re[m|j]

〉
D

〈
0,δgl[n−1|j]

〉 = D
〈
δgP ,δgl[n−1|j]

〉
D

〈
0,δgl[n|j]

〉 = D
〈
δgP ,δgl[n|j]

〉
D

〈
0,δgl[m−1|j]

〉 = −D
〈
δgQ ,δgl[m−1|j]

〉
D

〈
0,δgl[m|j]

〉 = −D
〈
δgQ ,δgl[m|j]

〉

where

D
〈
γP ,re[n−1|j]

〉 = γP
−1 ·∑3

k=1gnn[P |k] D
〈
gnn[P |k],re[n−1|j]

〉
D

〈
γP ,re[n|j]

〉 = γP
−1 ·∑3

k=1gnn[P |k] D
〈
gnn[P |k],re[n|j]

〉
D

〈
γQ ,re[m−1|j]

〉 = γQ
−1 ·∑3

k=1gnn[Q|k] D
〈
gnn[Q|k],re[m−1|j]

〉
D

〈
γQ ,re[m|j]

〉 = γQ
−1 ·∑3

k=1gnn[Q|k] D
〈
gnn[Q|k],re[m|j]

〉

D
〈
δgP ,δgl[n −1| j ]

〉 = δgP
−1 ·∑3

k=1δgl[P|k] D
〈
δgl[P|k],δgl[n−1|j]

〉
D

〈
δgP ,δgl[n| j ]

〉 = δgP
−1 ·∑3

k=1δgl[P|k] D
〈
δgl[P|k],δgl[n|j]

〉
D

〈
δgQ ,δgl[m −1| j ]

〉 = δgQ
−1 ·∑3

k=1δgl[Q|k] D
〈
δgl[Q|k],δgl[m−1|j]

〉
D

〈
δgQ ,δgl[m| j ]

〉 = δgQ
−1 ·∑3

k=1δgl[Q|k] D
〈
δgl[Q|k],δgl[m|j]

〉
79



Chapter 3. INS/GNSS gravimetry: geodesy as usual

δgl[P|i] = cgn−1 δgl[n−1|i]+cgn δgl[n|i]

D
〈
δgl[P|i],δgl[n−1|j]

〉 = cgn−1 δi j

D
〈
δgl[P|i],δgl[n|j]

〉 = cgn δi j

δgl[Q|i] = cgm−1 δgl[m−1|i]+cgm δgl[m|i]

D
〈
δgl[Q|i],δgl[m−1|j]

〉 = cgm−1 δi j

D
〈
δgl[Q|i],δgl[m|j]

〉 = cgm δi j

D
〈
gnn[P |k],re[n−1|j]

〉 = ∑3
s=1 Dgnn[P |k, s] D

〈
re[P |s],re[n −1| j ]

〉
D

〈
gnn[P |k],re[n|j]

〉 = ∑3
s=1 Dgnn[P |k, s] D

〈
re[P |s],re[n| j ]

〉
D

〈
gnn[Q|k],re[m−1|j]

〉 = ∑3
s=1 Dgnn[Q|k, s] D

〈
re[Q|s],re[m −1| j ]

〉
D

〈
gnn[Q|k],re[m|j]

〉 = ∑3
s=1 Dgnn[Q|k, s] D

〈
re[Q|s],re[m| j ]

〉

re[P ] = cxn−1 re[n −1]+ cxn re[n]

D
〈
re[P |i ],re[n −1| j ]

〉 = cxn−1 δi j

D
〈
re[P |i ],re[n| j ]

〉 = cxn δi j

re[Q] = cxm−1 re[m −1]+ cxm re[m]

D
〈
re[Q|i ],re[m −1| j ]

〉 = cxm−1 δi j

D
〈
re[Q|i ],re[m| j ]

〉 = cxm δi j

D
〈

hP ,re[n −1| j ]
〉 = cxn−1 Dgetogc[P |3, j ]

D
〈

hP ,re[n| j ]
〉 = cxn Dgetogc[P |3, j ]

D
〈

hQ ,re[m −1| j ]
〉 = cxm−1 Dgetogc[Q|3, j ]

D
〈

hQ ,re[m| j ]
〉 = cxm Dgetogc[Q|3, j ]

80



3.4. Observation equations

cxn−1 = (tr [n]− tP ) · (tr [n]− tr [n −1])−1

cxn = (tP − tr [n −1]) · (tr [n]− tr [n −1])−1

cxm−1 = (tr [m]− tQ ) · (tr [m]− tr [m −1])−1

cxm = (tQ − tr [m −1]) · (tr [m]− tr [m −1])−1

cgn−1 = (tg [n]− tP ) · (tg [n]− tg [n −1])−1

cgn = (tP − tg [n −1]) · (tg [n]− tg [n −1])−1

cgm−1 = (tg [m]− tQ ) · (tg [m]− tg [m −1])−1

cgm = (tQ − tg [m −1]) · (tg [m]− tg [m −1])−1

where hP , hQ are computed applying getogc to re[P ] and re[Q] respectively and gnn[P ],

gnn[Q] are computed using Equation (C.16) andδi j is the Dirac’s function, defined by Equation

(3.9).
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3.4.31 XOVER-GG: gravity’s crossover model

This model is a variation on the XOVER-DGE and XOVER-DGN models. Here, the gravity

parameters in the l-frame are expressed as g g vector, defined in the Section C.3.3.

Concept # Notation Constants Frame

Observables 1 0

Auxiliary Data 2 t [P ], t [Q]
t [P ] 1 tP

t [Q] 1 tQ

Parameter Groups 8 re[n −1], re[n], re[m −1], re[m],
g g [n −1], g g [n], g g [m −1], g g [m]

re[n −1] 3 re[n−1|i] tr [n −1] e
re[n] 3 re[n|i] tr [n] e
re[m −1] 3 re[m−1|i] tr [m −1] e
re[m] 3 re[m|i] tr [m] e
g g [n −1] 3 g g [n −1|i ] tg [n −1]
g g [n] 3 g g [n|i ] tg [n]
g g [m −1] 3 g g [m −1|i ] tg [m −1]
g g [m] 3 g g [m|i ] tg [m]

Table 3.32: XOVER-GG model.

The associated functional model is defined by

XOVER-GG :

R3 ×R3 ×R3 ×R3×
R3 ×R3 ×R3 ×R3 −→ R

re[n −1],re[n],re[m −1],re[m],

g g [n −1], g g [n], g g [m −1], g g [m] 7−→ 0

Let re[P ] ∈ (re[n − 1],re[n]), re[Q] ∈ (re[m − 2],re[m]), re[P ] = re[Q], g g [P ] ∈ (g g [n −
1], g g [n]) and g g [Q] ∈ (g g [m −1], g g [m]). The equations associated to this model are

0 = gP − gQ − ∂g

∂h
(hP −hQ ) (3.44)

where, for ∗= P,Q,

gs =
[

3∑
k=1

gg[s|k]2

]1/2

,

∂g
∂h =−0.0848 mGal

m and gg[s] = gg(gg[s]) is computed using Equation (C.20).
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Derivatives

D
〈

0,re[n−1|j]
〉 = −∂g

∂h D
〈

hP ,re[n−1|j]
〉

D
〈

0,re[n|j]
〉 = −∂g

∂h D
〈

hP ,re[n|j]
〉

D
〈

0,re[m−1|j]
〉 = ∂g

∂h D
〈

hQ ,re[m−1|j]
〉

D
〈

0,re[m|j]
〉 = ∂g

∂h D
〈

hQ ,re[m|j]
〉

D
〈

0, g g [n −1| j ]
〉 = D

〈
gP , g g [n −1| j ]

〉
D

〈
0, g g [n| j ]

〉 = D
〈

gP , g g [n| j ]
〉

D
〈

0, g g [m −1| j ]
〉 = −D

〈
gQ , g g [m −1| j ]

〉
D

〈
0, g g [m| j ]

〉 = −D
〈

gQ , g g [m| j ]
〉

where

D
〈

gP , g g [n −1| j ]
〉 = gP

−1 ·∑3
k=1gg[P |k] D

〈
gg[P |k], g g [n −1| j ]

〉
D

〈
gP , g g [n| j ]

〉 = gP
−1 ·∑3

k=1gg[P |k] D
〈
gg[P |k], g g [n| j ]

〉
D

〈
gQ , g g [m −1| j ]

〉 = gQ
−1 ·∑3

k=1gg[Q|k] D
〈
gg[Q|k], g g [m −1| j ]

〉
D

〈
gQ , g g [m| j ]

〉 = gQ
−1 ·∑3

k=1gg[Q|k] D
〈
gg[Q|k], g g [m| j ]

〉

g g [P |i ] = cgn−1 g g [n −1|i ]+ cgn g g [n|i ]

D
〈

g g [P |i ], g g [n −1| j ]
〉= cgn−1 δi j

D
〈

g g [P |i ], g g [n| j ]
〉= cgn δi j

g g [Q|i ] = cgm−1 g g [m −1|i ]+ cgm g g [m|i ]

D
〈

g g [Q|i ], g g [m −1| j ]
〉= cgm−1 δi j

D
〈

g g [Q|i ], g g [m| j ]
〉= cgm δi j
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D
〈
gg[P |k], g g [n −1| j ]

〉 = ∑3
s=1 Dgg[P |k, s] D

〈
g g [P |s], g g [n −1| j ]

〉
D

〈
gg[P |k], g g [n| j ]

〉 = ∑3
s=1 Dgg[P |k, s] D

〈
g g [P |s], g g [n| j ]

〉
D

〈
gg[Q|k], g g [m −1| j ]

〉 = ∑3
s=1 Dgg[Q|k, s] D

〈
g g [Q|s], g g [m −1| j ]

〉
D

〈
gg[Q|k], g g [m| j ]

〉 = ∑3
s=1 Dgg[Q|k, s] D

〈
g g [Q|s], g g [m| j ]

〉

re[P ] = cxn−1 re[n −1]+ cxn re[n]

D
〈
re[P |i ],re[n −1| j ]

〉= cxn−1 δi j

D
〈
re[P |i ],re[n| j ]

〉= cxn δi j

re[Q] = cxm−1 re[m −1]+ cxm re[m]

D
〈
re[Q|i ],re[m −1| j ]

〉= cxm−1 δi j

D
〈
re[Q|i ],re[m| j ]

〉= cxm δi j

D
〈

hP ,re[n −1| j ]
〉 = cxn−1 Dgetogc[P |3, j ]

D
〈

hP ,re[n| j ]
〉 = cxn Dgetogc[P |3, j ]

D
〈

hQ ,re[m −1| j ]
〉 = cxm−1 Dgetogc[Q|3, j ]

D
〈

hQ ,re[m| j ]
〉 = cxm Dgetogc[Q|3, j ]

84



3.4. Observation equations

cxn−1 = (tr [n]− tP ) · (tr [n]− tr [n −1])−1

cxn = (tP − tr [n −1]) · (tr [n]− tr [n −1])−1

cxm−1 = (tr [m]− tQ ) · (tr [m]− tr [m −1])−1

cxm = (tQ − tr [m −1]) · (tr [m]− tr [m −1])−1

cgn−1 = (tg [n]− tP ) · (tg [n]− tg [n −1])−1

cgn = (tP − tg [n −1]) · (tg [n]− tg [n −1])−1

cgm−1 = (tg [m]− tQ ) · (tg [m]− tg [m −1])−1

cgm = (tQ − tg [m −1]) · (tg [m]− tg [m −1])−1

where hP , hQ are computed applying getogc to re[P ] and re[Q] respectively and gg[P ], gg[Q]

are computed using Equation (C.20) and δi j is the Dirac’s function, defined by Equation (3.9).
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3.4.32 RE-O: Coordinate Update pseudo-observation model

Table 3.1 describes the parameters to be determined. Particularly, position parameters are

cartesian coordinates in the e -frame referred to IMU. If IMU positions are known, the associa-

ted functional model for this coordinate update point is a pseudo-observation

r̃e = re

Concept # Notation Constants Frame

Observables 1 r̃e

r̃e 3 r̃e[i ] e

Parameter Groups 1 re[n]
re[n] 3 re[n|i] tr [n] e

Table 3.33: RE-O model.

RE-O :

R3 −→ R3

re[n] 7−→ r̃e

r̃e[i ] = re[n|i] (3.45)

Derivatives

D
〈
r̃e[i ],re[n| j ]

〉= δi j

where δi j is the Dirac’s function, defined by Equation (3.9).
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3.4. Observation equations

3.4.33 VE-O: Velocity Update pseudo-observation model

If instead of the position, the speed or velocity — referred to IMU — is also known, the

associated equation model is also a pseudo-observation model.

VE-O :

R3 −→ R3

ve[n] 7−→ ṽe

ṽe[i ] = ve[n|i] (3.46)

Concept # Notation Constants Frame

Observables 1 ṽe

ṽe 3 ṽe[i ] e

Parameter Groups 1 ve[n]
ve[n] 3 ve[n|i] tr [n] e

Table 3.34: VE-O model.

Derivatives

D
〈
ṽe[i ],ve[n|j]

〉= δi j

where δi j is the Dirac’s function, defined by Equation (3.9).
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3.4.34 Q-O model

If quaternions are known, the associated pseudo-observation is defined by

Q-O :

R4 −→ R4

q[n] 7−→ q̃

q̃[i ] = q[n|i] (3.47)

Concept # Notation Constants Frame

Observables 1 q̃

q̃ 4 q̃[i ]

Parameter Groups 1 q[n]

q[n] 4 q[n|i] tr [n]

Table 3.35: Q-O model.

Derivatives

D
〈
q̃[i ],q[n|j]

〉= δi j

where δi j is the Dirac’s function, defined by Equation (3.9).
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3.4.35 OB-O model

If the angular rate sensor (ob) is known from IMU calibration procedures, the associated

functional model is a pseudo-observation model

OB-O :

R3 −→ R3

ob[n] 7−→ õb

õb[i ] = ob[n|i] (3.48)

Concept # Notation Constants Frame

Observables 1 õb

õb 3 õb[i ] b

Parameter Groups 1 ob[n]

ob[n] 3 ob[n|i] tc [n] b

Table 3.36: OB-O model.

Derivatives

D
〈
õb[i ],ob[n|j]

〉= δi j

where δi j is the Dirac’s function, defined by Equation (3.9).
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3.4.36 AB-O model

If the accelerometer biases (ab) of the IMU are known from calibration procedures, the

associated functional model is a pseudo-observation model

AB-O :

R3 −→ R3

ab[n] 7−→ ãb

ãb[i ] = ab[n|i] (3.49)

Concept # Notation Constants Frame

Observables 1 ãb

ãb 3 ãb[i ] b

Parameter Groups 1 ab[n]

ab[n] 3 ab[n|i] tc [n] b

Table 3.37: AB-O model.

Derivatives

D
〈
ãb[i ],ab[n|j]

〉= δi j

where δi j is the Dirac’s function, defined by Equation (3.9).
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3.4.37 AOFF-O model

Usually, the antenna offset between the IMU sensor and the phase center of the GNSS antenna

is measured. Its associated functional model — also a pseudo-observation — is defined as

AOFF-O :

R3 −→ R3

db 7−→ d̃b

d̃b[i ] = db[i ] (3.50)

Concept # Notation Constants Frame

Observables 1 d̃b

d̃b 3 d̃b[i ] b

Parameter Groups 1 db

db[n] 3 db[i ] b

Table 3.38: AOFF-O model.

Derivatives

D
〈
d̃b[i ],db[ j ]

〉= δi j

where δi j is the Dirac’s function, defined by Equation (3.9).
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3.4.38 DG-O model

If the gravity disturbance vector is known, in the e-frame (δge[n]) or the l-frame (δgl[n]),

the associated functional model is

DG-O :

R3 −→ R3

δg [n] 7−→ δ̃g

δ̃g[i ] = δg[n|i] (3.51)

Concept # Notation Constants Frame

Observables 1 δ̃g

δ̃g 3 δ̃g[i ] e or l

Parameter Groups 1 δg [n]

δg [n] 3 δg[n|i ] tg [n] e or l

Table 3.39: DG-O model.

Derivatives

D
〈
δ̃g[i ],δg[n|j]

〉
= δi j

where δi j is the Dirac’s function, defined by Equation (3.9).
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3.4. Observation equations

3.4.39 GRAVITY model

If the gravity magnitude and the deflections of the vertical are known, g g = (g ,η,ζ)T , the

associated functional model is

GRAVITY :

R3 −→ R3

g g [n] 7−→ g̃ g

g̃ g [i ] = g g [n|i ] (3.52)

Concept # Notation Constants Frame

Observables 1 g̃ g
g̃ g 3 g̃ g [i ]

Parameter Groups 1 g g [n]
g g [n] 3 g g [n|i ] tg [n]

Table 3.40: GRAVITY model.

Derivatives

D
〈

g̃ g [i ], g g [n| j ]
〉= δi j

where δi j is the Dirac’s function, defined by Equation (3.9).
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3.4.40 G-O model

If the gravity vector is known, in the e-frame (ge[n]) or the l-frame (gl[n]), the associated

functional model is

G-O :

R3 −→ R3

g [n] 7−→ g̃

g̃[i ] = g[n|i ] (3.53)

Concept # Notation Constants Frame

Observables 1 g̃

g̃ 3 g̃[i ] e or l

Parameter Groups 1 g [n]

g [n] 3 g[n|i ] tg [n] e or l

Table 3.41: G-O model.

Derivatives

D
〈
g̃[i ],g[n| j ]

〉= δi j

where δi j is the Dirac’s function, defined by Equation (3.9).
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3.5. Final INS/GNSS gravimetric network

3.5 Final INS/GNSS gravimetric network

As a result of the preceding list of functional models, our problem can be reduced to the

solution of a system of linear equations formed basically by the dynamic models VEL, FB, WIB,

AB, OB, GDT and the static models CUPT, VUPT, GUPT-GG, GUPT-DGN, GUPT-DGE, GUPTN-

DGN, GUPTN-DGE, XOVER-GG, XOVER-DGN and XOVER-DGE. The above mathematical

models have been implemented in the GeoTeX/ACX software system ([21]). Tables 3.42, 3.43

and 3.44 display the observations — measurements l — and parameters — unknowns x — for

each functional model.

Model l x

VEL 0 re[n −1] re[n] ve[n]

WIB ωbib[n] ob[n] q[n −1] q[n]

Q-NORM 0 q[n]

OB 0 ob[n −1] ob[n]

AB 0 ab[n −1] ab[n]

FB-DGE f b[n] ab[n] q[n] re[n] ve[n −1] ve[n] δge[n]

FB-DGN f b[n] ab[n] q[n] re[n] ve[n −1] ve[n] δgl[n]

FB-GG f b[n] ab[n] q[n] re[n] ve[n −1] ve[n] g g [n]

GDT-DGE 0 re[n −1] re[n] δge[n −1] δge[n]

GDT-DGN 0 δgl[n −1] δgl[n]

GDT-GG 0 re[n −1] re[n] g g [n −1] g g [n]
GDT1-DGE 0 δge[n −1] δge[n]

GDT1-DGN 0 δgl[n −1] δgl[n]

Table 3.42: NA models: SINS mechanisation equations.

Solving the system is to perform an optimal estimation of its parameters in the sense of least-

squares. The method of least-squares is applied to the determination of the best values of

a number of unknowns connected to the observed values by means of linear equations; i.e.

solving the normal equations and estimating the precision of both the original observations

and the calculated values of the unknowns .

In order to illustrate the structure of the normal equations matrix, let LOOP be an example

of an INS/GNSS gravimetric mission. In fact, LOOP is one of the test data sets — CTRA —

described in Chapter 4. Figure 3.1 displays the 700 s trajectory of the LOOP mission.

Let us consider that IMU data are collected at 20 Hz (50 Hz ≤ Hz(IMU) ≤ 400 Hz, typically in

operational missions) and GPS data at 1 Hz (1 Hz ≤ Hz(GPS) ≤ 5 Hz). Navigation paramaters —

re, ve and q — have to be computed at the same frequency as IMU data and sensor calibration
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Model l x

CUPT X̃ q[n] re[n] db

CUPTX X̃ q[n] re[n]

VUPT Ṽ q[n −1] q[n]

ve[n] db

VUPTX Ṽ q[n −1] q[n] ve[n]

RE-O r̃e re[n]

VE-O ṽe ve[n]
Q-O q̃ q[n]

OB-O õb ob[n]

AB-O ãb ab[n]

AOFF-O d̃b db

DG-O δ̃g δg [n]

GRAVITY g̃ g g g [n]
G-O g̃ g [n]

Table 3.43: NA models: static observations.

Model l x

DG-OBS δ̃g δg [n]

DG-OBS-GG δ̃g re[n] g g [n]

G-OBS g̃ g [n]

GUPT-DGE g0 re[n] δge[n]

GUPT-DGN g0 re[n] δgl[n]

GUPT-GG g0 g g [n]
GUPTN-DGE g0 re[n] δge[n]

GUPTN-DGN g0 re[n] δgl[n]

DGUPT-GG g̃l re[n] g g [n]

XOVER-DGE 0 re[n −1] re[n] re[m −1] re[m]
δge[n −1] δge[n] δge[m −1] δge[m]

XOVER-DGN 0 re[n −1] re[n] re[m −1] re[m]

δgl[n −1] δgl[n] δgl[m −1] δgl[m]

XOVER-GG 0 re[n −1] re[n] re[m −1] re[m]
g g [n −1] g g [n] g g [m −1] g g [m]

Table 3.44: NA models: gravimetric observations.
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Figure 3.1: LOOP: Sample of a mission with crossovers.

parameters — ab and ob — and gravity parameters g g have to be determined at 0.1 Hz. The

duration of the mission is 700 s.

Figure 3.2 shows the sparse structure of the normal equations matrix for LOOP sample. The

system includes XOVER equations and GDT-perpendicular observations, where the g g para-

meters belong to different paths of the trajectory. As the XOVER model relates parameters that

are far away, sparse non-zero elements (like points) are painted in the upper-left part of the

matrix.

The normal equations matrix is large, however it is of the band-bordered type — Figure 3.2 —

and we can apply sparse matrix techniques, fill-in reduction techniques and memory-to-disk

paging to solve the system of linear equations. If this is done, the computational load is

comparable to that of SSA. The NA computational load is equivalent to that of the SSA plus an

additional penalty due to the accumulated crossovers in the band-border.

Initially, the expectation of all the parameters and their covariance will be known at the same

frequency as the observed data at the highest frequency (usually IMU data). Consequently,

the network’s size — the size of the design and normal equations matrices — increases con-

siderably. Table 3.45 displays this network size in some operational environments. In the

next chapter, Tables 4.4, 4.15 and 4.40 also show it for the different tests carried out in this

dissertation.
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Figure 3.2: Structure of the LOOP normal equations matrix.

Applanix CASI GeoMobil

IMU model LN200 LTN101 LN200
Hz(IMU) 200 50 200
Hz(GPS) 10 1 5
t (s) 12 000 12 000 14 400

NI MU 45 599 982 11 399 982 54 719 982
NGPS 360 003 36 003 216 003
Naux 720 000 180 000

N∗
eq 45 959 985 11 435 985 54 935 985

Neq 46 679 985 11 615 985 54 935 985
Npar 45 600 000 11 400 000 54 720 000
r∗

b 0.007 83 0.003 15 0.003 93
rb 0.023 14 0.018 59 0.003 93

Table 3.45: Information data of some operational environments at the ICC: Neq = N∗
eq +Naux ;

N∗
eq = NI MU + NGPS ; Naux number of auxiliary observation equations; rb = (Neq − Npar ) ·

(Neq )−1 (average redundancy) and r∗
b = (N∗

eq −Npar ) · (N∗
eq )−1 (average redundancy).
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If it is necessary to reduce the size of the network, it is possible to take into account that some

of the parameters — or unknowns — have a slow variation in time and subsets of them can

be grouped. The number of unknows can be reduced considerably. For instance, it may be

possible to compute ab, ob, δge at the GPS receiver frequency and re, ve and q at the IMU

frequency.

For the operational environments of Table 3.45, N par is reduced to half (19537200 in case 1,

6609600 in case 2, 26568000 in case 3 and 5288868 in case 4 respectively). A similar reduction

has been applied in the LOOP sample and in all the computed tests (version v9 indicates

parameter determination at IMU frequency, whereas version v2 is related to the described

reduction) described in the next chapter and this reduction is displayed in Tables 4.4, 4.15 and

4.40.

The LOOP mission is only a sample. The structure and the size of the normal equations of the

network will depend on every mission and will depend, specifically, on the complexity of the

functional models used, on the frequency of the calibration parameters and on the sorting

algorithm.

Table 3.45 also shows the small average redundancy — rb — of the systems to be solved. The

average redundancy is computed as

rb = (Neq −Npar ) · (Neq )−1, (3.54)

where Neq = NI MU +NGPS +Naux .

It is well-known that in least-squares adjustment, the more the redundancy increases the

higher the accuracy of the network will be. Looking at Tables 3.45, 3.42, 3.43 and 3.44, the

number of IMU data and GNSS (i.e. GPS) data cannot be increased without increasing the

number of parameters to be determined. Taking a redundancy value rb — 3
10 ≤ rb < 1 — as a

desirable value to be obtained, the following relationship has to be considered

10Npar ≤ 7Neq (3.55)

For example, in LOOP sample, if the duration of the mission may be T s, T Hz(IMU) measure-

ments are collected for each IMU data and T Hz(GPS) measurements for GPS data. Whereas,

T Hz(IMU) is the number of parameters that have to be computed for re, ve and q ; T Hz(cal)

for ob, ab and T Hz(g g ) for g g . Therefore, Npar are defined as

Npar = Nre +Nve +Nq +N
ab +N

ob +Ng g +N
db =

= 10T ·Hz(IMU)+6T ·Hz(cal)+3T ·Hz(g g )+3
(3.56)
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where

Nre = Nve = 3T ·Hz(IMU),

Nq = 4T ·Hz(IMU),

N
ab = N

ob = 3T ·Hz(cal),

Ng g = 3T ·Hz(g g )and

N
db = 3.

Neq is defined as

Neq = NV EL +NW I B +NF B−GG +NQNORM +NAB +NOB+
+ NGDT−GG +NOB−O +NAB−O +NCU PT +NAOF F +Naux =
= 10T ·Hz(IMU)+12T ·Hz(cal)+3T ·Hz(g g )+
+ 3T ·Hz(GPS)−15+N aux

eq

where

NV EL = NW I B = NF B−GG = 3(T ·Hz(IMU)−1),

NQNORM = 1T ·Hz(IMU),

NAB = NOB = 3(T ·Hz(cal)−1),

NGDT−GG = 3(T ·Hz(g g )−1),

NOB−O = NAB−O = 3T ·Hz(cal),

NCU PT = 3T ·Hz(GPS),

NAOF F = 3and

Naux = NQ−O +NGU PT−GG +NXOV ER−GG +NGDT−GGp .

And Equation (3.55) becomes

7 Naux ≥ 30T ·Hz(IMU)−24T ·Hz(cal)+9T ·Hz(g g )−
− 21T ·Hz(GPS)+135
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It has been described above, for LOOP example where T = 700 s, that Hz(IMU) = 20 Hz,

Hz(GPS) = 1 Hz, Hz(cal) = 0.1 Hz and Hz(g g ) = 1 Hz. And so, the Equation (3.5), which fulfils

Naux ≥ 57772, points out the need to increase the number of additional observation equations

Naux . Therefore, it would be advisable to use all the feasible information to increase Naux .

As a model of how it should be done, think about some operational procedures, like a short

warm-up period of static measurements for INS alignment. In such a case, the warm-up

period can be considered as ZUPT models. If the warm-up location is also well-known —

position, attitude and gravity are known — Naux is

Naux = NZU PT +NRE−O +NQ−O +NGR AV I T Y .

If the same procedure is repeated at the end of the mission,

Naux = 2(NZU PT +NRE−O +NQ−O +NGR AV I T Y ).

Survey’s planning has to be investigated in detail to obtain more additional observational

models and, by this means, to increase the amount of Naux . Such additional models would be

crossovers (repetition or/and intersection of mission lines), ZUPT intervals at the beginning

and at the end of the survey, upwarded gravity, etc.

Finally, because the system is solved by the least-squares method, the covariance of a limited

number of selected parameters may be determined. It is important to emphasise the possi-

bility to compute the covariance of a limited number of selected parameters — perform a

selective inversion of the normal matrix — and the variance component estimation. Here, the

selected parameters will be the angular rate sensors biases (ob), the accelerometers biases

(ab), the gravity disturbances (δg ) and their covariances for further IMU calibration and geoid

determination.
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4 Computations

The aim of this chapter is to demonstrate that the NA approach works properly. In Chapter

3, the development of an adjustment method in genuinely geodetic post-process has been

introduced. The INS mechanisation equations and other additional observation equations

have been implemented into the ICC’s GeoTeX/ACXprogram. As a result, the problem has been

reduced to the solution of a system of linear equations in the sense of least-squares with large

sparse band-bordered normal equations. Table 3.45 shows how large are such matrices for

some operational environments at the ICC.

Since the current 32-bit version of GeoTeX/ACX cannot run such huge networks successfully, it

is necessary to perform simulations based on real-life environments. Simulations provide well

controlled data:

• to verify that the NA approach works,

• to validate the proposed functional models,

• to investigate the behavior of INS system errors for different types of IMU, from naviga-

tion ones to low-cost ones,

• to allow research works in the definition of a wide range of scenarios, the assessment

of the performance of different sensors, and the configurations that better meet their

mission and budget requirements.

The organisation of this chapter is as follows. First, the IMU simulator, which has been used,

is described. Second, a description of each test configuration is given. Last, the outcome of

the most relevant adjustments are discussed.

Before any discussion, it is interesting to remember that:

• All the basic computations — 〈TEST〉-〈I MU 〉-v
[〈

q
〉]〈H z〉a1, which are similar to Kalman

Filtering — have not been compared with SSA ones.
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• Although the gravity data are computed as g g (gravity and deflections of the vertical), in

this chapter are presented as gravity disturbance vector in NED-frame as it is usual in

most cases. The relationship between these kinds of parameter groups are described in

Section C.3.3.

• All the network adjustments have been computed with 32-bit GeoTeX/ACX running in a

64-bit platforms.

The tables and figures that display the results of the simulations are located at the end of each

test.

4.1 The IG-IMU simulator

The IMU simulator used in this research is a computer program developed at the Institute

of Geomatics (IG) in the frame of the NAVEGA project for testing and validating navigation

algorithms. This tool, which has been described by Parés in [88], emulates the behavior of stan-

dard IMUs with three linear accelerometers and three angular rate sensors in an orthogonal

configuration.

The fundamentals of the IG-IMU simulator are the functional model that characterise the

inertial motion (INS mechanisation equations), the stochastic models that characterise the

IMU errors and the geodetic model that contextualises the previous models.

As any real IMU, the simulator delivers angular velocities and linear accelerations. Given a

trajectory, i.e. a set of times, positions, velocities and attitudes, the system computes the signal

that an IMU would measure if it were following the trajectory. After that, the signal is modified

by adding a variety of errors, such as biases or scale factors. The order in which these errors are

introduced to the IMU data — I MU = (ω, f )T — is scale factor, bias, misalignment, random

noise and quantisation. If I MUi n is the errorless signal (mechanisation equations), the output

signal (also named corrupted signal) of the IG-IMU simulator are computed with the formulas

of Appendix I:

I MUout = bW1c ·quant (4.1)

W1 = quant−1 ·Er r (Wnoi se )+

 1 −yz zy

xz 1 −zx

−xy yx 1

 ·W2

W2 =
[

Bc +Br c +Bg m +Br w +
(

1 Bg s

0 1

)
·W3

]

W3 = (1+Sc +Sr c +Sg m +Sr w ) · I MUi n
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4.2. Tests description

The use of the IG-IMU simulator has been limited to reproduce a simple behavior for a tactical-

grade IMU and for a navigation-grade one. This simple behavior is obtained considering only

the white noise error Wnoi se for both gyros ob and accelerometers ab errors. Table 4.1 shows

the IMU data used in the IG-IMU simulator and in later computations, from a tactical and a

navigation grade IMU respectively: bias repeatibility and white noise error.

From now on, the tactical-grade IMU will be known as LN200 and the navigation-grade as

LTN101.

LN200 LTN101

IMU Grade Tactical Navigation

Gyro Bias Rep. 1.0 0.01 ˚ h−1

PSDnoi se 0.04 0.001 ˚ h− f r ac12

Accel. Bias Rep. 200.0 50.0 µg

PSDnoi se 50.0 10.0 mGal Hz−
1
2

Table 4.1: Tests: LN200 and LTN101 simulator options.

In such a case, the output data of the IMU simulator — I MUout — has been computed using

the errorless signal I MUi n and assigning bias and scale factor constants randomly. Then,

Equation (4.1) described in Appendix I becomes:

I MUout =α ·SE N SORnoi se +Bc + (1+Sc ) · I MUi n

where α is a random number, SE N SORnoi se is a function of the power spectral density of the

random noise, Bc is the constant component of the bias and Sc is the constant component of

the scale factor.

4.2 Tests description

This section presents the simulations which have been used to demonstrate that, using the

preceding functional models defined in Section 3.4, the NA approach works.

The simulated platform consists of an strapdown IMU and two GPS receivers installed in a land

vehicle. The GPS receivers and antennas are symmetrically located and their corresponding

offsets db have to be considered as (1,0,−1)T and (−1,0,−1)T . The GPS data are collected at 1

Hz, while the IMU data are collected at 20 Hz.

Three different scenarios have been considered:

• STATIC: a non-dynamic scenario at 45 degree North latitude, 0 degree longitude and
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0 m ellipsoidal height. The objective of this simple scenario is to validate the errorless

signal and the implemented functional models.

• CIRCLE: the vehicle goes round 3 times a circular trajectory. The repetition of the

trajectory will demonstrate that gravity determination is improved using additional

information: the gravity value at one position is the same for each lap.

• CTRA: a more complex trajectory — similar to the one described in Figure 4.39 — that

starts and ends in a known location.

For each scenario, a 20 Hz trajectory — times, positions, velocities and attitudes — has been

defined and IMU data related to a tactical-grade (as LN200) and a navigation-grade (as LTN101)

— see Table 4.1 — have been simulated. In all the tests, the platform moves at a constant speed

during 15 min (700 s) approximately, and the attitude — α (roll), χ (pitch) and η (heading) —

for each event is also considered constant equal to zero.

The gravity parameters are computed on trajectory level and related to the IMU location.

Moreover, in real-life missions, the known gravity has to be upwarded previously. To avoid

additional processes — upward and the posterior downward continuation of the computed

gravity data — and errors, the simulated vehicle moves on a flatness ellipsoidal surface with

an altitude of 0 m.

Several network configurations have been computed.Adjustments have been coded according

to the following convention:

〈TEST〉-〈I MU 〉-v
[〈

q
〉]〈H z〉〈δgN E

〉〈method〉

where

• 〈TEST〉 is the simulated scenario: STATIC, CIRCLE or CTRA.

• 〈I MU 〉 is the type of IMU sensor. As mentioned, data from a tactical-grade (i.e. LN200)

and a navigation-grade (i.e. LTN101)quality have been investigated.

•
〈

q
〉

— it is optional — indicates if prior knowledge of the vehicle’s attitude exists at the

beginning (t0) and at the end (tN ) of the mission.

• 〈H z〉 may be 2 or 9. If it is 9, all the parameters are computed at the IMU rate. If it is 2,

some subsets of parameters — ob, ab, δg or g g — has been grouped.

•
〈
δgN E

〉
indicates the prior knowledge of the horizontal gravity. Traditionally, the gravity

vector has been related to the l-frame, where only the vertical component is considered.

An a indicates that no prior knowledge is considered and b indicates that, for all t ,

δgN (t ) = δgE (t ) ≈ 0.
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4.2. Tests description

• 〈method〉 indicates which kind of auxiliary information is considered. An 1 indicates a

basic network configuration similar to the Kalman filtering. If GDT-p (changes of the

gravity disturbance of closed positions with respect to time) observations are added

to the basic configuration, 〈method〉 = 2. And if, moreover, XOVER observations are

considered 〈method〉 = 2x.

Figure 4.1 summarises the test convention. Remember that every test corresponds to a

different network system configuration. For example, CIRCLE-LN200-vq9b2x means tactical-

grade IMU simulated circular scenario with αi = χi = ηi = 0, for i = t0, tN and with prior

knowledge of horizontal gravity, GDT-perpendicular and XOVER information where all the

parameters are computed at 20 Hz.

Figure 4.1: Test convention.

Tables 4.2 and 4.3 contain all the input covariance information of the observation models used

in the network adjustments.

With current technology, the precision of GPS positions is better ± 10 cm and that of the

velocity is better than ± 0.01 m/s in the post-processing kinematic mode . In all the tests of

this research, it has been considered an standard deviation of 5 cm for CUPT observation type

(GPS positions) and 0.01 mm for VEL observation1

1Note that the value 0.01 mm for VEL observations must be interpreted as follows: instead of 0 = v − ṙ , defined
in Section 3.4.1 the functional model is 0 = r (t +1)− r (t )−∆t v(t ).
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IMU Observation v2 v9 Scenarios

LN200 FB-GG 2.2 2.2 10−3 m s−2 (s) (t) (c)
WIB 5.2 5.2 10−5 rad s−1 (s) (t) (c)
OB-O (1) 4.9 4.9 10−6 rad s−1 (s) (t) (c)
AB-O (1) 2.0 2.0 10−3 m s−2 (s) (t) (c)
OB (2) 15.0 1.1 10−7 rad s−1 (s) (t) (c)
AB (2) 130.0 8.9 10−4 m s−2 (s) (t) (c)

LTN101 FB-GG 4.4 4.4 10−4 m s−2 (s) (t) (c)
WIB 1.3 1.3 10−6 rad s−1 (s) (t) (c)
OB-O (1) 4.9 4.9 10−8 rad s−1 (s) (t) (c)
AB-O (1) 4.9 4.9 10−4 m s−2 (s) (t) (c)
OB (2) 61.0 4.3 10−12 rad s−1 (s) (t) (c)
AB (2) 95.0 6.7 10−7 m s−2 (s) (t) (c)

Table 4.2: Standard deviations of the IMU observations. Conventions: (1) Used when IMU
calibration values are known. (2) Tests use random walk models described in Sections 3.4.8
and 3.4.10. (s) STATIC, (t) CIRCLE and (c) CTRA scenarios.

Observation σ Scenarios

GDT-GG 6.2 mGal (s) (t) (c) (v2)
0.016 (s) (t) (c) (v9)

GDT-GG-p – mGal (s)
6.2 (t)
6.2 (c) (1 km)

13.0 (c) (4 km)

DGUPT-GG 0.02 mGal (s) (t) (c)
XOVER-GG 0.0003 mGal (s) (t) (c)
AOFF-O 0.001 m (s) (t) (c)
CUPT 0.05 m (s) (t) (c)
VEL (1) 0.00001 m (s) (t) (c)
Q-NORM 0.01 ppm (s) (t) (c)
Q-O 0.01 ppm (s) (t) (c)

Table 4.3: Standard deviations of the geodeticobservations. Conventions: (1) Instead of 0 = ṙ−v ,
0 = r (t +1)− r (t )−∆t v(t ) is used. s STATIC, t for CIRCLE and c CTRA scenarios.
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4.3. Test STATIC

To avoid computation problems and taking into account that some parameters have a slow

variation in time, subsets of them can be grouped as a single one. Now the question is: how

the parameter association has to be done?

Let the observation data be collected at H zobs rate and let (`[nobs])nobs=1,...,N obs be the obser-

vation model at time tobs (where `[nobs] = `(tobs) and tobs = nobs/H zobs) be defined as

`[nobs] = F (x1(tobs), . . . , xN (tobs)),

where xp (tobs) is the parameter to be computed at H zxp rate. Then, each parameter xp (tobs)

can be interpolated from
(
xp [nxp ]

)
, where nxp = 1, . . . , N xp .

There are many interpolation methods that can be applied. Depending on the method, the

associated functional model would be more or less complex. In this dissertation, for the sake

of simplicity, a simple grouping rule has been considered.

Let tpar be the associated time of parameter xp [nxp ], then

tpar =
nxp

H zxp

and xp (tobs) = xp (tpar ), if

tobs ∈
]

tpar − 1

2H zxp
, tpar + 1

2H zxp

]
.

4.3 Test STATIC

In order to validate the errorless signal and the implemented functional models, simulations

begin by an static acquisition at 45 ˚ North latitude , 0 ˚ longitude and 0 m ellipsoidal height.

The output of one of those simulations can be seen in Figure 4.2.

The static data of this simulation that has to be recovered is:

• re = (4517590.879,0.0,4487348.409)T m

• ve = (0.0,0.0,0.0)T m/s

• q = (0.38268343,0.0,0.92387953,0.0)T

The accelerations (FB-GG) and angular velocities (WIB) observations, computed using the

simulator, are shown in Figure 4.2, respectively, where IMU tactical-grade (i.e. LN200) data are

depicted in red and navigation-grade (i.e. LTN101) data in green.
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Because there are no movements, if gravity is known at one event, then it is known for every

time. So, for each event, a DGUPT-GG observation will be taken into account.

Furthermore, it is possible to consider that the attitude parameters — α, χ, η — are known

from the beginning until the end of the mission.

Then, for each IMU sensor’s configuration several network adjustments have been considered:

STATIC-〈I MU 〉-v2a1, -v9a1, -vq2a1, -vq9a1 and -vqt9a1. Table 4.4 displays the dimensions

that have to do with and the redundancy of each system, which obviously do not depend

on the IMU type used. In 〈I MU 〉-v9a1 and -vq9a1 configurations, where all the parameters

are computed at IMU rate, a high redundancy number is obtained. The fact is that the

auxiliary DGUPT-GG observations increase the number of equations, whereas the number of

parameters remains the same.

version Nrow Ncol Neq Npar rb

v2a1 56 176 41 012 141 326 136 637 0.033
vq2a1 56 178 41 012 141 334 136 637 0.033
v9a1 137 368 81 608 384 902 258 425 0.329
vq9a1 137 370 81 608 384 910 258 425 0.329

Table 4.4: Test STATIC: network’s dimensions.
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4.3. Test STATIC

(a) X angular velocity (rad s−1) (b) X acceleration (m s−2)

(c) Y angular velocity (rad s−1) (d) Y acceleration (m s−2)

(e) Z angular velocity (rad s−1) (f) Z acceleration (m s−2)

Figure 4.2: STATIC: IMU simulated data.
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4.3.1 STATIC v2a1

As already discussed in Section 4.2, the codification this computation means:

• 〈H z〉 = 2: some subsets of parameters — ob, ab, δg or g g — has been grouped.

•
〈
δgN E

〉= a: no prior knowledge of the horizontal gravity.

• 〈method〉 = 1: basic network configuration similar to the Kalman filtering.

LN200

Table 4.5 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 2.2 10−3 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 5.2 10−5 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−6 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 2.0 10−3 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 15.0 10−7 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 130.0 10−4 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
DGUPT-GG (3.4.28) 0.1 Hz ∀t (3.41) 0.02 mGal

Table 4.5: Test STATIC-LN200-v2a1: network configuration.

Figure 4.3 proves that the functional models of the NA approach work succesfully:

• Figure 4.3a points out that the position has been recovered, especially heights — in

Figure 4.3c — with a precision better than 0.6 cm. Longitude and latitude have been

recovered with a precision of 0.00036 ".

• The navigation parameters — shown in Figure 4.3e — are recovered with a precision of

0.6 ’ for roll (α) and pitch (χ) and 0.9 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.3b and 4.3d are nearly constants within

the defined tolerances (bias repeatability) of the IMU.

• Figure 4.3f also displays the gravity disturbance vector, that has to be zero, with a

precision of 0.0000015 mGal.
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4.3. Test STATIC

(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.3: STATIC LN200 v2a1: adjusted parameters.
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LTN101

Table 4.6 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 4.4 10−4 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 1.3 10−6 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−8 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 4.9 10−4 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 61.0 10−12 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 95.0 10−7 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
DGUPT-GG (3.4.28) 0.1 Hz ∀t (3.41) 0.02 mGal

Table 4.6: Test STATIC-LTN101-v2a1: network configuration.

Figure 4.4 proves that the functional models of the NA approach work succesfully:

• Figure 4.4a points out that the position has been recovered, especially heights — in

Figure 4.4c — with a precision better than 0.8 cm. Longitude and latitude have been

recovered with a precision of 0.00036 ".

• The navigation parameters — shown in Figure 4.4e — are recovered with a precision of

7.2 " for roll (α) and pitch (χ) and 3.6 " for heading (η).

• The IMU error parameters exhibited in Figures 4.4b and 4.4d are nearly constants within

the defined tolerances (bias repeatability) of the IMU.

• Figure 4.4f also displays the gravity disturbance vector, that has to be zero, with a

precision of 0.00008 mGal.
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(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.4: STATIC LTN101b v2a1: adjusted parameters.

115



Chapter 4. Computations

4.3.2 STATIC vq2a1

As already discussed in Section 4.2, the codification this computation means:

•
〈

q
〉= q , indicates that prior knowledge of the vehicle’s attitude exists at the beginning

(t0) and at the end (tN ) of the mission.

• 〈H z〉 = 2: some subsets of parameters — ob, ab, δg or g g — has been grouped.

•
〈
δgN E

〉= a: no prior knowledge of the horizontal gravity.

• 〈method〉 = 1, indicates a basic network configuration similar to the Kalman filtering.

LN200

Table 4.7 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 2.2 10−3 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 5.2 10−5 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−6 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 2.0 10−3 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 15.0 10−7 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 130.0 10−4 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
DGUPT-GG (3.4.28) 0.1 Hz ∀t (3.41) 0.02 mGal
Q-O (3.4.34) t0, tN (3.47) 0.01 ppm

Table 4.7: Test STATIC-LN200-vq2a1: network configuration.

Figure 4.5 proves that the functional models of the NA approach work succesfully:

• Figure 4.5a points out that the position has been recovered, especially heights — in

Figure 4.5c — with a precision better than 0.5 cm.

• The navigation parameters — shown in Figure 4.5e — are recovered with a precision of

18 " for roll (α) and pitch (χ) and 1.8 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.5b and 4.5d are nearly constants within

the defined tolerances (bias repeatability) of the IMU.

• Figure 4.5f also displays the gravity disturbance vector, that has to be zero, with a

precision of 0.0000015 mGal.
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4.3. Test STATIC

(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.5: STATIC LN200 vq2a1: adjusted parameters.
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LTN101

Table 4.8 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 4.4 10−4 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 1.3 10−6 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−8 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 4.9 10−4 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 61.0 10−12 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 95.0 10−7 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
DGUPT-GG (3.4.28) 0.1 Hz ∀t (3.41) 0.02 mGal
Q-O (3.4.34) t0, tN (3.47) 0.01 ppm

Table 4.8: Test STATIC-LTN101-vq2a1: network configuration.

Figure 4.6 proves that the functional models of the NA approach work succesfully:

• Figure 4.6a points out that the position has been recovered, especially heights — in

Figure 4.6c — with a precision better than 0.8 cm.

• The navigation parameters — shown in Figure 4.6e — are recovered with a precision of

0.72 " for roll (α) and pitch (χ) and 2.16 " for heading (η).

• The IMU error parameters exhibited in Figures 4.6b and 4.6d are nearly constants within

the defined tolerances (bias repeatability) of the IMU.

• Figure 4.6f also displays the gravity disturbance vector, that has to be zero, with a

precision of 0.00006 mGal.
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4.3. Test STATIC

(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.6: STATIC LTN101b vq2a1: adjusted parameters.
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4.3.3 STATIC v9a1

As already discussed in Section 4.2, the codification this computation means:

• 〈H z〉 = 9: all the parameters are computed at the IMU rate.

•
〈
δgN E

〉= a: no prior knowledge of the horizontal gravity.

• 〈method〉 = 1, indicates a basic network configuration similar to the Kalman filtering.

LN200

Table 4.9 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 2.2 10−3 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 5.2 10−5 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 20.0 Hz ∀t (3.48) 4.9 10−6 rad s−1

AB-O (3.4.36) 20.0 Hz ∀t (3.49) 2.0 10−3 m s−2

OB (3.4.8) 20.0 Hz ∀t (3.16) 1.1 10−7 rad s−1

AB (3.4.10) 20.0 Hz ∀t (3.18) 8.9 10−4 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 20.0 Hz ∀t (3.22) 0.016 mGal
DGUPT-GG (3.4.28) 20.0 Hz ∀t (3.41) 0.02 mGal

Table 4.9: Test STATIC-LN200-v9a1: network configuration.

Figure 4.7 proves that the functional models of the NA approach work succesfully:

• Figure 4.7a points out that the position has been recovered, especially heights — in

Figure 4.7c — with a precision better than 1 cm.

• The navigation parameters — shown in Figure 4.7e — are recovered with a precision of

18 " for roll (α) and pitch (χ) and 1.5 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.7b and 4.7d are nearly constants within

the defined tolerances (bias repeatability) of the IMU.

• Figure 4.7f also displays the gravity disturbance vector, that has to be zero, with a

precision of 0.00000015 mGal.
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(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.7: STATIC LN200 v9a1: adjusted parameters.
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LTN101

Table 4.10 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 4.4 10−4 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 1.3 10−6 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 20.0 Hz ∀t (3.48) 4.9 10−8 rad s−1

AB-O (3.4.36) 20.0 Hz ∀t (3.49) 4.9 10−4 m s−2

OB (3.4.8) 20.0 Hz ∀t (3.16) 4.3 10−12 rad s−1

AB (3.4.10) 20.0 Hz ∀t (3.18) 6.7 10−7 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 20.0 Hz ∀t (3.22) 0.016 mGal
DGUPT-GG (3.4.28) 20.0 Hz ∀t (3.41) 0.02 mGal

Table 4.10: Test STATIC-LTN101-v9a1: network configuration.

Figure 4.8 proves that the functional models of the NA approach work succesfully:

• Figure 4.8a points out that the position has been recovered, especially heights — in

Figure 4.8c — with a precision better than 0.8 cm.

• The navigation parameters — shown in Figure 4.8e — are recovered with a precision of

7.2 " for roll (α), pitch (χ) and heading (η).

• The IMU error parameters exhibited in Figures 4.8b and 4.8d are nearly constants within

the defined tolerances (bias repeatability) of the IMU.

• Figure 4.8f also displays the gravity disturbance vector, that has to be zero, with a

precision of 0.0000004 mGal.
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(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.8: STATIC LTN101b v9a1: adjusted parameters.
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4.3.4 STATIC vq9a1

As already discussed in Section 4.2, the codification this computation means:

•
〈

q
〉= q , indicates if prior knowledge of the vehicle’s attitude exists at the beginning (t0)

and at the end (tN ) of the mission.

• 〈H z〉 = 9: all the parameters are computed at the IMU rate.

•
〈
δgN E

〉= a: no prior knowledge of the horizontal gravity.

• 〈method〉 = 1, indicates a basic network configuration similar to the Kalman filtering.

LN200

Table 4.11 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 2.2 10−3 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 5.2 10−5 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 20.0 Hz ∀t (3.48) 4.9 10−6 rad s−1

AB-O (3.4.36) 20.0 Hz ∀t (3.49) 2.0 10−3 m s−2

OB (3.4.8) 20.0 Hz ∀t (3.16) 1.1 10−7 rad s−1

AB (3.4.10) 20.0 Hz ∀t (3.18) 8.9 10−4 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 20.0 Hz ∀t (3.22) 0.016 mGal
DGUPT-GG (3.4.28) 20.0 Hz ∀t (3.41) 0.02 mGal
Q-O (3.4.34) t0, tN (3.47) 0.01 ppm

Table 4.11: Test STATIC-LN200-vq9a1: network configuration.

Figure 4.9 proves that the functional models of the NA approach work succesfully:

• Figure 4.9a points out that the position has been recovered, especially heights — in

Figure 4.9c — with a precision better than 1 cm.

• The navigation parameters — shown in Figure 4.9e — are recovered with a precision of

18 " for roll (α) and pitch (χ) and 1.8 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.9b and 4.9d are nearly constants within

the defined tolerances (bias repeatability) of the IMU.

• Figure 4.9f also displays the gravity disturbance vector, that has to be zero, with a

precision of 0.0000001 mGal.
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(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.9: STATIC LN200 vq9a1: adjusted parameters.
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LTN101

Table 4.12 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 4.4 10−4 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 1.3 10−6 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 20.0 Hz ∀t (3.48) 4.9 10−8 rad s−1

AB-O (3.4.36) 20.0 Hz ∀t (3.49) 4.9 10−4 m s−2

OB (3.4.8) 20.0 Hz ∀t (3.16) 4.3 10−12 rad s−1

AB (3.4.10) 20.0 Hz ∀t (3.18) 6.7 10−7 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 20.0 Hz ∀t (3.22) 0.016 mGal
DGUPT-GG (3.4.28) 20.0 Hz ∀t (3.41) 0.02 mGal
Q-O (3.4.34) t0, tN (3.47) 0.01 ppm

Table 4.12: Test STATIC-LTN101-vq9a1: network configuration.

Figure 4.10 proves that the functional models of the NA approach work succesfully:

• Figure 4.10a points out that the position has been recovered, especially heights — in

Figure 4.10c — with a precision better than 0.8 cm.

• The navigation parameters — shown in Figure 4.10e — are recovered with a precision of

0.72 " for roll (α) and pitch (χ) and 2.88 " for heading (η).

• The IMU error parameters exhibited in Figures 4.10b and 4.10d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.10f also displays the gravity disturbance vector, that has to be zero, with a

precision of 0.0000004 mGal.
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(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.10: STATIC LTN101b vq9a1: adjusted parameters.
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4.3.5 STATIC vqt9a1

As already discussed in Section 4.2, the codification this computation means:

•
〈

q
〉= qt , indicates that prior knowledge of the vehicle’s attitude exists, for all t .

• 〈H z〉 = 9: all the parameters are computed at the IMU rate.

•
〈
δgN E

〉= a: no prior knowledge of the horizontal gravity.

• 〈method〉 = 1, indicates a basic network configuration similar to the Kalman filtering.

LN200

Table 4.13 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 2.2 10−3 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 5.2 10−5 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 20.0 Hz ∀t (3.48) 4.9 10−6 rad s−1

AB-O (3.4.36) 20.0 Hz ∀t (3.49) 2.0 10−3 m s−2

OB (3.4.8) 20.0 Hz ∀t (3.16) 1.1 10−7 rad s−1

AB (3.4.10) 20.0 Hz ∀t (3.18) 8.9 10−4 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 20.0 Hz ∀t (3.22) 0.016 mGal
DGUPT-GG (3.4.28) 20.0 Hz ∀t (3.41) 0.02 mGal
Q-O (3.4.34) 20.0 Hz ∀t (3.47) 0.01 ppm

Table 4.13: Test STATIC-LN200-vqt9a1: network configuration.

Figure 4.11 proves that the functional models of the NA approach work succesfully:

• Figure 4.11a points out that the position has been recovered, especially heights — in

Figure 4.11c — with a precision better than 1 cm.

• The navigation parameters — shown in Figure 4.11e — are recovered with a precision of

0.00036 " for roll (α), pitch (χ) and heading (η).

• The IMU error parameters exhibited in Figures 4.11b and 4.11d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.11f also displays the gravity disturbance vector, that has to be zero.
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4.3. Test STATIC

(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.11: STATIC LN200 vqt9a1: adjusted parameters.
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LTN101

Table 4.14 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 4.4 10−4 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 1.3 10−6 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 20.0 Hz ∀t (3.48) 4.9 10−8 rad s−1

AB-O (3.4.36) 20.0 Hz ∀t (3.49) 4.9 10−4 m s−2

OB (3.4.8) 20.0 Hz ∀t (3.16) 4.3 10−12 rad s−1

AB (3.4.10) 20.0 Hz ∀t (3.18) 6.7 10−7 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 20.0 Hz ∀t (3.22) 0.016 mGal
DGUPT-GG (3.4.28) 20.0 Hz ∀t (3.41) 0.02 mGal
Q-O (3.4.34) 20.0 Hz ∀t (3.47) 0.01 ppm

Table 4.14: Test STATIC-LTN101-vqt9a1: network configuration.

Figure 4.12 proves that the functional models of the NA approach work succesfully:

• Figure 4.12a points out that the position has been recovered, especially heights — in

Figure 4.12c — with a precision better than 0.8 cm.

• The navigation parameters — shown in Figure 4.12e — are recovered with a precision of

0.0072 " for roll (α), pitch (χ) and heading (η).

• The IMU error parameters exhibited in Figures 4.12b and 4.12d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.12f also displays the gravity disturbance vector, that has to be zero.
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4.3. Test STATIC

(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.12: STATIC LTN101b vqt9a1: adjusted parameters.

131



Chapter 4. Computations

4.4 Test CIRCLE

After the static approximation, a new simple trajectory has to be considered. Now, a circular

trajectory such as toy train is taken int account. In this case, it is supposed that the platform

goes round a circuit 3 times.

Figure 4.13: CIRCLE: input trajectory.

Now, the advantages of such as NA approach has to be demonstrated. As the train goes 3 times

for each position, there is a gravity relationship of the type GDT between each pair of laps.

These relationships result in additional GDT-GG observation equations, but in this case the

related parameters have not to be correlative. Therefore the network redundancy number may

increase substantially. In Table 4.15, for a basic configuration — v∗1 — a redundancy of 0.0318

is obtained, whereas a redundancy of 0.0459 for the complex configurations — v∗2x — that

have been described above.

Like STATIC test,

• Figure 4.14 displays the output data of IG-IMU simulator (LN200 in red and LTN101 in

green);

• several computations has been also done for each IMU configuration (v2a1, vq2a1, v2a2,

vq2a2, v2a2x, vq2a2x, etc.), and
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• Table 4.15 shows the associated dimensions for each system.

version Nrow Ncol Neq Npar rb

v2a1 56 111 41 012 141 131 136 637 0.031 8
vq2a1 56 113 41 012 141 139 136 637 0.031 9

v2a2 56 198 41 012 141 392 136 637 0.033 6
vq2a2 56 200 41 012 141 400 136 637 0.033 7

v2a2x 57 818 41 012 143 012 136 637 0.044 6
vq2a2x 57 820 41 012 143 020 136 637 0.044 6

v2b1 56 156 41 012 141 326 136 637 0.033 2
vq2b1 56 178 41 012 141 334 136 637 0.033 2

v2b2 56 263 41 012 141 587 136 637 0.035 0
vq2b2 56 265 41 012 141 595 136 637 0.035 0

v2b2x 57 883 41 012 143 207 136 637 0.045 9
vq2b2x 57 885 41 012 143 215 136 637 0.045 9

Table 4.15: Test CIRCLE: network’s dimensions.
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(a) X angular velocity (rad s−1) (b) X acceleration (m s−2)

(c) Y angular velocity (rad s−1) (d) Y acceleration (m s−2)

(e) Z angular velocity (rad s−1) (f) Z acceleration (m s−2)

Figure 4.14: CIRCLE: simulated IMU data.
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4.4.1 CIRCLE v2a1

As already discussed in Section 4.2, the codification this computation means:

• 〈H z〉 = 2: some subsets of parameters — ob, ab, δg or g g — has been grouped.

•
〈
δgN E

〉= a: no prior knowledge of the horizontal gravity.

• 〈method〉 = 1, indicates a basic network configuration similar to the Kalman filtering.

LN200

Table 4.16 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 2.2 10−3 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 5.2 10−5 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−6 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 2.0 10−3 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 15.0 10−7 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 130.0 10−4 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
DGUPT-GG (3.4.28) t v1

0 = t v2
0 = t v3

0 = tN (3.41) 0.02 mGal

Table 4.16: Test CIRCLE-LN200-v2a1: network configuration.

Figure 4.15 proves that the functional models of the NA approach work succesfully:

• Figure 4.15a points out that the position has been recovered, especially heights — in

Figure 4.15c — with a precision better than 0.6 cm.

• The navigation parameters — shown in Figure 4.15e — are recovered with a precision of

0.6 ’ for roll (α) and pitch (χ) and 1.2 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.15b and 4.15d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.15f also displays the gravity disturbance vector, that has to be zero, with a

precision better than 1 mGal.
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(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.15: CIRCLE LN200 v2a1: adjusted parameters.
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LTN101

Table 4.17 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 4.4 10−4 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 1.3 10−6 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−8 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 4.9 10−4 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 61.0 10−12 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 95.0 10−7 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
DGUPT-GG (3.4.28) t v1

0 = t v2
0 = t v3

0 = tN (3.41) 0.02 mGal

Table 4.17: Test CIRCLE-LTN101-v2a1: network configuration.

Figure 4.16 proves that the functional models of the NA approach work succesfully:

• Figure 4.16a points out that the position has been recovered, especially heights — in

Figure 4.16c — with a precision better than 0.4 cm.

• The navigation parameters — shown in Figure 4.16e — are recovered with a precision of

18 " for roll (α), pitch (χ) and heading (η).

• The IMU error parameters exhibited in Figures 4.16b and 4.16d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.16f also displays the gravity disturbance vector, that has to be zero, with a

precision better than 6 mGal.
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(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.16: CIRCLE LTN101b v2a1: adjusted parameters.

138



4.4. Test CIRCLE

4.4.2 CIRCLE vq2a1

As already discussed in Section 4.2, the codification this computation means:

•
〈

q
〉= q , indicates that prior knowledge of the vehicle’s attitude exists at the beginning

(t0) and at the end (tN ) of the mission.

• 〈H z〉 = 2: some subsets of parameters — ob, ab, δg or g g — has been grouped.

•
〈
δgN E

〉= a: no prior knowledge of the horizontal gravity.

• 〈method〉 = 1, indicates a basic network configuration similar to the Kalman filtering.

LN200

Table 4.18 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 2.2 10−3 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 5.2 10−5 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−6 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 2.0 10−3 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 15.0 10−7 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 130.0 10−4 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
DGUPT-GG (3.4.28) t v1

0 = t v2
0 = t v3

0 = tN (3.41) 0.02 mGal
Q-O (3.4.34) t0, tN (3.47) 0.01 ppm

Table 4.18: Test CIRCLE-LN200-vq2a1: network configuration.

Figure 4.17 proves that the functional models of the NA approach work succesfully:

• Figure 4.17a points out that the position has been recovered, especially heights — in

Figure 4.17c — with a precision better than 0.4 cm.

• The navigation parameters — shown in Figure 4.17e — are recovered with a precision of

36 " for roll (α) and pitch (χ) and with a range of 3 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.17b and 4.17d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.17f also displays the gravity disturbance vector, that has to be zero.
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(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.17: CIRCLE LN200 vq2a1: adjusted parameters.
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LTN101

Table 4.19 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 4.4 10−4 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 1.3 10−6 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−8 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 4.9 10−4 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 61.0 10−12 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 95.0 10−7 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
DGUPT-GG (3.4.28) t v1

0 = t v2
0 = t v3

0 = tN (3.41) 0.02 mGal
Q-O (3.4.34) t0, tN (3.47) 0.01 ppm

Table 4.19: Test CIRCLE-LTN101-vq2a1: network configuration.

Figure 4.18 proves that the functional models of the NA approach work succesfully:

• Figure 4.18a points out that the position has been recovered, especially heights — in

4.18c — with a precision better than 0.4 cm.

• The navigation parameters — shown in Figure 4.18e — are recovered with a precision of

7.2 " for roll (α) and pitch (χ) and with a range of 7 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.18b and 4.18d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.18f also displays the gravity disturbance vector, that has to be zero.
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(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.18: CIRCLE LTN101b vq2a1: adjusted parameters.
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4.4.3 CIRCLE v2a2

As already discussed in Section 4.2, the codification this computation means:

• 〈H z〉 = 2: some subsets of parameters — ob, ab, δg or g g — has been grouped.

•
〈
δgN E

〉= a: no prior knowledge of the horizontal gravity.

• 〈method〉 = 2: GDT-p (changes of the gravity disturbance of closed positions with

respect to time) observations are added to the basic configuration.

LN200

Table 4.20 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 2.2 10−3 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 5.2 10−5 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−6 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 2.0 10−3 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 15.0 10−7 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 130.0 10−4 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
GDT-GG (3.4.13) v1 = v2 = v3 ∀t (3.22) 6.2 mGal
DGUPT-GG (3.4.28) t v1

0 = t v2
0 = t v3

0 = tN (3.41) 0.02 mGal

Table 4.20: Test CIRCLE-LN200-v2a2: network configuration.

Figure 4.19 proves that the functional models of the NA approach work succesfully:

• Figure 4.19a points out that the position has been recovered, especially heights — in

Figure 4.19c — with a precision better than 0.4 cm.

• The navigation parameters — shown in Figure 4.19e — are recovered with a precision

better than 0.6 ’ for roll (α) and pitch (χ) and 0.9 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.19b and 4.19d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.19f also displays the gravity disturbance vector, that has to be zero, with a

precision of 0.5 mGal.
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(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.19: CIRCLE LN200 v2a2: adjusted parameters.
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LTN101

Table 4.21 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 4.4 10−4 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 1.3 10−6 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−8 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 4.9 10−4 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 61.0 10−12 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 95.0 10−7 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
GDT-GG (3.4.13) v1 = v2 = v3 ∀t (3.22) 6.2 mGal
DGUPT-GG (3.4.28) t v1

0 = t v2
0 = t v3

0 = tN (3.41) 0.02 mGal

Table 4.21: Test CIRCLE-LTN101-v2a2: network configuration.

Figure 4.20 proves that the functional models of the NA approach work succesfully:

• Figure 4.20a points out that the position has been recovered, especially heights — in

Figure 4.20c — with a precision better than 0.5 cm.

• The navigation parameters — shown in Figure 4.20e — are recovered with a precision

better than 9 " for roll (α), pitch (χ). For heading (η), a constant value of 2.7 ’, with a

precision better than 9 ", has been recovered .

• The IMU error parameters exhibited in Figures 4.20b and 4.20d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.20f also displays the gravity disturbance vector, that has to be zero, with a

precision of 3 mGal.

145



Chapter 4. Computations

(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.20: CIRCLE LTN101b v2a2: adjusted parameters.
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4.4.4 CIRCLE vq2a2

As already discussed in Section 4.2, the codification this computation means:

•
〈

q
〉

,indicates that prior knowledge of the vehicle’s attitude exists at the beginning (t0)

and at the end (tN ) of the mission.

• 〈H z〉 = 2: some subsets of parameters — ob, ab, δg or g g — has been grouped.

•
〈
δgN E

〉= a: no prior knowledge of the horizontal gravity.

• 〈method〉 = 2: GDT-p (changes of the gravity disturbance of closed positions with

respect to time) observations are added to the basic configuration.

LN200

Table 4.22 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 2.2 10−3 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 5.2 10−5 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−6 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 2.0 10−3 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 15.0 10−7 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 130.0 10−4 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
GDT-GG (3.4.13) v1 = v2 = v3 ∀t (3.22) 6.2 mGal
DGUPT-GG (3.4.28) t v1

0 = t v2
0 = t v3

0 = tN (3.41) 0.02 mGal
Q-O (3.4.34) t0, tN (3.47) 0.01 ppm

Table 4.22: Test CIRCLE-LN200-vq2a2: network configuration.

Figure 4.21 proves that the functional models of the NA approach work succesfully:

• Figures 4.21a and 4.21c point out that the position has been recovered, especially heights

with a precision better than 0.5 cm.

• The navigation parameters — shown in Figure 4.21e — are recovered with a precision of

36 " for roll (α) and pitch (χ) and with a range of 3 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.21b and 4.21d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.
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• Figure 4.21f also displays the gravity disturbance vector, that has to be zero.

LTN101

Table 4.23 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 4.4 10−4 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 1.3 10−6 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−8 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 4.9 10−4 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 61.0 10−12 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 95.0 10−7 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
GDT-GG (3.4.13) v1 = v2 = v3 ∀t (3.22) 6.2 mGal
DGUPT-GG (3.4.28) t v1

0 = t v2
0 = t v3

0 = tN (3.41) 0.02 mGal
Q-O (3.4.34) t0, tN (3.47) 0.01 ppm

Table 4.23: Test CIRCLE-LTN101-vq2a2: network configuration.

Figure 4.22 proves that the functional models of the NA approach work succesfully:

• Figures 4.22a and 4.22c point out that the position has been recovered, especially heights

with a precision better than 1 cm.

• The navigation parameters — shown in Figure 4.22e — are recovered with a precision of

4 " for roll (α) and pitch (χ) and with a range of 0.6 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.22b and 4.22d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.22f also displays the gravity disturbance vector, that has to be zero.
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4.4. Test CIRCLE

(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.21: CIRCLE LN200 vq2a2: adjusted parameters.
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(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.22: CIRCLE LTN101b vq2a2: adjusted parameters.
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4.4.5 CIRCLE v2b1

As already discussed in Section 4.2, the codification this computation means:

• 〈H z〉 = 2: some subsets of parameters — ob, ab, δg or g g — has been grouped.

•
〈
δgN E

〉= b, indicates that, for all t , δgN (t ) = δgE (t ) ≈ 0.

• 〈method〉 = 1, indicates a basic network configuration similar to the Kalman filtering.

LN200

Table 4.24 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 2.2 10−3 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 5.2 10−5 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−6 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 2.0 10−3 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 15.0 10−7 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 130.0 10−4 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
DGUPT-GG (3.4.28) 0.1 Hz ∀t (3.41) 0.02 mGal

Table 4.24: Test CIRCLE-LN200-v2b1: network configuration.

Figure 4.23 proves that the functional models of the NA approach work succesfully:

• Figures 4.23a and 4.23c point out that the position has been recovered, especially heights

with a precision better than 0.4 cm.

• The navigation parameters — shown in Figure 4.23e — are recovered with a precision

better than 0.6 ’ for roll (α) and pitch (χ). For heading (η), moreless a constant value of

2.7 ’, with a precision of 0.6 ’, has been recovered.

• The IMU error parameters exhibited in Figures 4.23b and 4.23d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.23f also displays the gravity disturbance vector, that has to be zero, with a

precision of 1 mGal.
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(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.23: CIRCLE LN200 v2b1: adjusted parameters.
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LTN101

Table 4.25 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 4.4 10−4 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 1.3 10−6 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−8 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 4.9 10−4 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 61.0 10−12 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 95.0 10−7 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
DGUPT-GG (3.4.28) 0.1 Hz ∀t (3.41) 0.02 mGal

Table 4.25: Test CIRCLE-LTN101-v2b1: network configuration.

Figure 4.24 proves that the functional models of the NA approach work succesfully:

• Figures 4.24a and 4.24c point out that the position has been recovered, especially heights

with a precision better than 0.4 cm.

• The navigation parameters — shown in Figure 4.24e — are recovered with a precision of

18 " for roll (α), pitch (χ) and heading (η).

• The IMU error parameters exhibited in Figures 4.24b and 4.24d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.24f also displays the gravity disturbance vector, that has to be zero.

153



Chapter 4. Computations

(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.24: CIRCLE LTN101b v2b1: adjusted parameters.
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4.4.6 CIRCLE vq2b1

As already discussed in Section 4.2, the codification this computation means:

•
〈

q
〉= q , indicates that prior knowledge of the vehicle’s attitude exists at the beginning

(t0) and at the end (tN ) of the mission.

• 〈H z〉 = 2: some subsets of parameters — ob, ab, δg or g g — has been grouped.

•
〈
δgN E

〉= b, indicates that, for all t , δgN (t ) = δgE (t ) ≈ 0.

• 〈method〉 = 1, indicates a basic network configuration similar to the Kalman filtering.

LN200

Table 4.26 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 2.2 10−3 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 5.2 10−5 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−6 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 2.0 10−3 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 15.0 10−7 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 130.0 10−4 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
DGUPT-GG (3.4.28) 0.1 Hz ∀t (3.41) 0.02 mGal
Q-O (3.4.34) t0, tN (3.47) 0.01 ppm

Table 4.26: Test CIRCLE-LN200-vq2b1: network configuration.

Figure 4.25 proves that the functional models of the NA approach work succesfully:

• Figures 4.25a and 4.25c point out that the position has been recovered, especially heights

with a precision better than 0.4 cm.

• The navigation parameters — shown in Figure 4.25e — are recovered with a precision of

36 " for roll (α) and pitch (χ) and with a range of 3 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.25b and 4.25d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.25f also displays the gravity disturbance vector, that has to be zero.

155



Chapter 4. Computations

(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.25: CIRCLE LN200 vq2b1: adjusted parameters.
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Table 4.27 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 4.4 10−4 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 1.3 10−6 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−8 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 4.9 10−4 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 61.0 10−12 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 95.0 10−7 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
DGUPT-GG (3.4.28) 0.1 Hz ∀t (3.41) 0.02 mGal
Q-O (3.4.34) t0, tN (3.47) 0.01 ppm

Table 4.27: Test CIRCLE-LTN101-vq2b1: network configuration.

Figure 4.26 proves that the functional models of the NA approach work succesfully:

• Figures 4.26a and 4.26c point out that the position has been recovered, especially heights

with a precision better than 0.5 cm.

• The navigation parameters — shown in Figure 4.26e — are recovered with a precision of

18 " for roll (α) and pitch (χ) and with a range of 2.4 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.26b and 4.26d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.26f also displays the gravity disturbance vector, that has to be zero.
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(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.26: CIRCLE LTN101b vq2b1: adjusted parameters.
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4.4.7 CIRCLE v2b2

As already discussed in Section 4.2, the codification this computation means:

• 〈H z〉 = 2: some subsets of parameters — ob, ab, δg or g g — has been grouped.

•
〈
δgN E

〉= b,indicates that, for all t , δgN (t ) = δgE (t ) ≈ 0.

• 〈method〉 = 2: GDT-p (changes of the gravity disturbance of closed positions with

respect to time) observations are added to the basic configuration.

LN200

Table 4.28 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 2.2 10−3 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 5.2 10−5 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−6 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 2.0 10−3 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 15.0 10−7 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 130.0 10−4 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
GDT-GG (3.4.13) v1 = v2 = v3 ∀t (3.22) 6.2 mGal
DGUPT-GG (3.4.28) 0.1 Hz ∀t (3.41) 0.02 mGal

Table 4.28: Test CIRCLE-LN200-v2b2: network configuration.

Figure 4.27 proves that the functional models of the NA approach work succesfully:

• Figures 4.27a and 4.27c point out that the position has been recovered, especially heights

with a precision better than 0.4 cm.

• The navigation parameters — shown in Figure 4.27e — are recovered with a precision

better of 36 " for roll (α), pitch (χ) and heading (η).

• The IMU error parameters exhibited in Figures 4.27b and 4.27d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.27f also displays the gravity disturbance vector, that has to be zero.
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(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.27: CIRCLE LN200 v2b2: adjusted parameters.
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LTN101

Table 4.29 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 4.4 10−4 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 1.3 10−6 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−8 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 4.9 10−4 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 61.0 10−12 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 95.0 10−7 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
GDT-GG (3.4.13) v1 = v2 = v3 ∀t (3.22) 6.2 mGal
DGUPT-GG (3.4.28) 0.1 Hz ∀t (3.41) 0.02 mGal

Table 4.29: Test CIRCLE-LTN101-v2b2: network configuration.

Figure 4.28 proves that the functional models of the NA approach work succesfully:

• Figures 4.28a and 4.28c point out that the position has been recovered, especially heights

with a precision better than 1 cm.

• The navigation parameters — shown in Figure 4.28e — are recovered with a precision of

9 " for roll (α), pitch (χ) and heading (η).

• The IMU error parameters exhibited in Figures 4.28b and 4.28d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.28f also displays the gravity disturbance vector, that has to be zero.
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(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.28: CIRCLE LTN101b v2b2: adjusted parameters.
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4.4.8 CIRCLE vq2b2

As already discussed in Section 4.2, the codification this computation means:

•
〈

q
〉= q , indicates that prior knowledge of the vehicle’s attitude exists at the beginning

(t0) and at the end (tN ) of the mission.

• 〈H z〉 = 2: some subsets of parameters — ob, ab, δg or g g — has been grouped.

•
〈
δgN E

〉= b, indicates that, for all t , δgN (t ) = δgE (t ) ≈ 0.

• 〈method〉 = 2: GDT-p (changes of the gravity disturbance of closed positions with

respect to time) observations are added to the basic configuration.

LN200

Table 4.30 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 2.2 10−3 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 5.2 10−5 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−6 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 2.0 10−3 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 15.0 10−7 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 130.0 10−4 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
GDT-GG (3.4.13) v1 = v2 = v3 ∀t (3.22) 6.2 mGal
DGUPT-GG (3.4.28) 0.1 Hz ∀t (3.41) 0.02 mGal
Q-O (3.4.34) t0, tN (3.47) 0.01 ppm

Table 4.30: Test CIRCLE-LN200-vq2b2: network configuration.

Figure 4.29 proves that the functional models of the NA approach work succesfully:

• Figures 4.29a and 4.29c point out that the position has been recovered, especially heights

with a precision better than 0.4 cm.

• The navigation parameters — shown in Figure 4.29e — are recovered with a precision of

36 " for roll (α) and pitch (χ) and with a range of 3 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.29b and 4.29d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.
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• Figure 4.29f also displays the gravity disturbance vector, that has to be zero.

LTN101

Table 4.31 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 4.4 10−4 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 1.3 10−6 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−8 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 4.9 10−4 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 61.0 10−12 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 95.0 10−7 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
GDT-GG (3.4.13) v1 = v2 = v3 ∀t (3.22) 6.2 mGal
DGUPT-GG (3.4.28) 0.1 Hz ∀t (3.41) 0.02 mGal
Q-O (3.4.34) t0, tN (3.47) 0.01 ppm

Table 4.31: Test CIRCLE-LTN101-vq2b2: network configuration.

Figure 4.30 proves that the functional models of the NA approach work succesfully:

• Figures 4.30a and 4.30c point out that the position has been recovered, especially heights

with a precision better than 1 cm.

• The navigation parameters — shown in Figure 4.30e — are recovered with a precision of

18 " for roll (α) and pitch (χ) and with a 2.4 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.30b and 4.30d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.30f also displays the gravity disturbance vector, that has to be zero.
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(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.29: CIRCLE LN200 vq2b2: adjusted parameters.
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(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.30: CIRCLE LTN101b vq2b2: adjusted parameters.
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4.4.9 CIRCLE v9a1

As already discussed in Section 4.2, the codification this computation means:

• 〈H z〉 = 9: all the parameters are computed at the IMU rate.

•
〈
δgN E

〉= a: no prior knowledge of the horizontal gravity.

• 〈method〉 = 1,indicates a basic network configuration similar to the Kalman filtering.

LN200

Table 4.32 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 2.2 10−3 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 5.2 10−5 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 20.0 Hz ∀t (3.48) 4.9 10−6 rad s−1

AB-O (3.4.36) 20.0 Hz ∀t (3.49) 2.0 10−3 m s−2

OB (3.4.8) 20.0 Hz ∀t (3.16) 1.1 10−7 rad s−1

AB (3.4.10) 20.0 Hz ∀t (3.18) 8.9 10−4 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 20.0 Hz ∀t (3.22) 0.016 mGal
DGUPT-GG (3.4.28) t v1

0 = t v2
0 = t v3

0 = tN (3.41) 0.02 mGal

Table 4.32: Test CIRCLE-LN200-v9a1: network configuration.

Figure 4.31 proves that the functional models of the NA approach work succesfully:

• Figures 4.31a and 4.31c point out that the position has been recovered, especially heights

with a precision better than 1 cm.

• The navigation parameters — shown in Figure 4.31e — are recovered with a precision

better than 36 " for roll (α), pitch (χ) and heading (η).

• The IMU error parameters exhibited in Figures 4.31b and 4.31d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.31f also displays the gravity disturbance vector, that has to be zero, with a

precision better than 0.03 mGal.
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(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.31: CIRCLE LN200 v9a1: adjusted parameters.
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Table 4.33 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 4.4 10−4 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 1.3 10−6 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 20.0 Hz ∀t (3.48) 4.9 10−8 rad s−1

AB-O (3.4.36) 20.0 Hz ∀t (3.49) 4.9 10−4 m s−2

OB (3.4.8) 20.0 Hz ∀t (3.16) 4.3 10−12 rad s−1

AB (3.4.10) 20.0 Hz ∀t (3.18) 6.7 10−7 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 20.0 Hz ∀t (3.22) 0.016 mGal
DGUPT-GG (3.4.28) t v1

0 = t v2
0 = t v3

0 = tN (3.41) 0.02 mGal

Table 4.33: Test CIRCLE-LTN101-v9a1: network configuration.

Figure 4.32 proves that the functional models of the NA approach work succesfully:

• Figures 4.32a and 4.32c point out that the position has been recovered, especially heights

with a precision better than 1 cm.

• The navigation parameters — shown in Figure 4.32e — are recovered with a precision of

18 " for roll (α), pitch (χ) and heading (η).

• The IMU error parameters exhibited in Figures 4.32b and 4.32d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.32f also displays the gravity disturbance vector, that has to be zero.
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(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.32: CIRCLE LTN101b v9a1: adjusted parameters.
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4.4.10 CIRCLE vq9a1

As already discussed in Section 4.2, the codification this computation means:

•
〈

q
〉= q : prior knowledge of the vehicle’s attitude exists at the beginning (t0) and at the

end (tN ) of the mission.

• 〈H z〉 = 9: all the parameters are computed at the IMU rate.

•
〈
δgN E

〉= a: no prior knowledge of the horizontal gravity.

• 〈method〉 = 1, indicates a basic network configuration similar to the Kalman filtering.

LN200

Table 4.34 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 2.2 10−3 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 5.2 10−5 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 20.0 Hz ∀t (3.48) 4.9 10−6 rad s−1

AB-O (3.4.36) 20.0 Hz ∀t (3.49) 2.0 10−3 m s−2

OB (3.4.8) 20.0 Hz ∀t (3.16) 1.1 10−7 rad s−1

AB (3.4.10) 20.0 Hz ∀t (3.18) 8.9 10−4 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 20.0 Hz ∀t (3.22) 0.016 mGal
DGUPT-GG (3.4.28) t v1

0 = t v2
0 = t v3

0 = tN (3.41) 0.02 mGal
Q-O (3.4.34) t0, tN (3.47) 0.01 ppm

Table 4.34: Test CIRCLE-LN200-vq9a1: network configuration.

Figure 4.33 proves that the functional models of the NA approach work succesfully:

• Figures 4.33a and 4.33c point out that the position has been recovered, especially heights

with a precision better than 1 cm.

• The navigation parameters — shown in Figure 4.33e — are recovered with a precision of

36 " for roll (α) and pitch (χ) and with a range of 3 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.33b and 4.33d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.33f also displays the gravity disturbance vector, that has to be zero, with a

precision better than 0.04 mGal.

171



Chapter 4. Computations

(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.33: CIRCLE LN200 vq9a1: adjusted parameters.
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Table 4.35 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 4.4 10−4 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 1.3 10−6 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 20.0 Hz ∀t (3.48) 4.9 10−8 rad s−1

AB-O (3.4.36) 20.0 Hz ∀t (3.49) 4.9 10−4 m s−2

OB (3.4.8) 20.0 Hz ∀t (3.16) 4.3 10−12 rad s−1

AB (3.4.10) 20.0 Hz ∀t (3.18) 6.7 10−7 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 20.0 Hz ∀t (3.22) 0.016 mGal
DGUPT-GG (3.4.28) t v1

0 = t v2
0 = t v3

0 = tN (3.41) 0.02 mGal
Q-O (3.4.34) t0, tN (3.47) 0.01 ppm

Table 4.35: Test CIRCLE-LTN101-vq9a1: network configuration.

Figure 4.34 proves that the functional models of the NA approach work succesfully:

• Figures 4.34a and 4.34c point out that the position has been recovered, especially heights

with a precision better than 1 cm.

• The navigation parameters — shown in Figure 4.34e — are recovered with a precision of

18 " for roll (α) and pitch (χ) and with a range of 3 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.34b and 4.34d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.34f also displays the gravity disturbance vector, that has to be zero.
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(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.34: CIRCLE LTN101b vq9a1: adjusted parameters.
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4.4.11 CIRCLE v9b1

As already discussed in Section 4.2, the codification this computation means:

• 〈H z〉 = 9: all the parameters are computed at the IMU rate.

•
〈
δgN E

〉= b, indicates that, for all t , δgN (t ) = δgE (t ) ≈ 0.

• 〈method〉 = 1, indicates a basic network configuration similar to the Kalman filtering.

LN200

Table 4.36 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 2.2 10−3 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 5.2 10−5 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 20.0 Hz ∀t (3.48) 4.9 10−6 rad s−1

AB-O (3.4.36) 20.0 Hz ∀t (3.49) 2.0 10−3 m s−2

OB (3.4.8) 20.0 Hz ∀t (3.16) 1.1 10−7 rad s−1

AB (3.4.10) 20.0 Hz ∀t (3.18) 8.9 10−4 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 20.0 Hz ∀t (3.22) 0.016 mGal
DGUPT-GG (3.4.28) 20.0 Hz ∀t (3.41) 0.02 mGal

Table 4.36: Test CIRCLE-LN200-v9b1: network configuration.

Figure 4.35 proves that the functional models of the NA approach work succesfully:

• Figures 4.35a and 4.35c point out that the position has been recovered, especially heights

with a precision better than 1 cm.

• The navigation parameters — shown in Figure 4.35e — are recovered with a precision of

36 " for roll (α), pitch (χ) and heading (η).

• The IMU error parameters exhibited in Figures 4.35b and 4.35d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.35f also displays the gravity disturbance vector, that has to be zero, with a

precision of 0.03 mGal.
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(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.35: CIRCLE LN200 v9b1: adjusted parameters.
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Table 4.37 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 4.4 10−4 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 1.3 10−6 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 20.0 Hz ∀t (3.48) 4.9 10−8 rad s−1

AB-O (3.4.36) 20.0 Hz ∀t (3.49) 4.9 10−4 m s−2

OB (3.4.8) 20.0 Hz ∀t (3.16) 4.3 10−12 rad s−1

AB (3.4.10) 20.0 Hz ∀t (3.18) 6.7 10−7 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 20.0 Hz ∀t (3.22) 0.016 mGal
DGUPT-GG (3.4.28) 20.0 Hz ∀t (3.41) 0.02 mGal

Table 4.37: Test CIRCLE-LTN101-v9b1: network configuration.

Figure 4.36 proves that the functional models of the NA approach work succesfully:

• Figures 4.36a and 4.36c point out that the position has been recovered, especially heights

with a precision better than 0.8 cm.

• The navigation parameters — shown in Figure 4.36e — are recovered with a precision

better than 9 " for roll (α), pitch (χ) and heading (η).

• The IMU error parameters exhibited in Figures 4.36b and 4.36d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.36f also displays the gravity disturbance vector, that has to be zero.
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(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.36: CIRCLE LTN101b v9b1: adjusted parameters.
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4.4.12 CIRCLE vq9b1

As already discussed in Section 4.2, the codification this computation means:

•
〈

q
〉= q : prior knowledge of the vehicle’s attitude exists at the beginning (t0) and at the

end (tN ) of the mission.

• 〈H z〉 = 9: all the parameters are computed at the IMU rate.

•
〈
δgN E

〉= b, indicates that, for all t , δgN (t ) = δgE (t ) ≈ 0.

• 〈method〉 = 1, indicates a basic network configuration similar to the Kalman filtering.

LN200

Table 4.38 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 2.2 10−3 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 5.2 10−5 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 20.0 Hz ∀t (3.48) 4.9 10−6 rad s−1

AB-O (3.4.36) 20.0 Hz ∀t (3.49) 2.0 10−3 m s−2

OB (3.4.8) 20.0 Hz ∀t (3.16) 1.1 10−7 rad s−1

AB (3.4.10) 20.0 Hz ∀t (3.18) 8.9 10−4 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 20.0 Hz ∀t (3.22) 0.016 mGal
DGUPT-GG (3.4.28) 20.0 Hz ∀t (3.41) 0.02 mGal
Q-O (3.4.34) t0, tN (3.47) 0.01 ppm

Table 4.38: Test CIRCLE-LN200-vq9b1: network configuration.

Figure 4.37 proves that the functional models of the NA approach work succesfully:

• Figure 4.37a points out that the position has been recovered, especially heights —in

Figure 4.37c— with a precision better than 1 cm.

• The navigation parameters —shown in Figure 4.37e— are recovered with a precision of

36 " for roll (α) and pitch (χ) and with a range of 3 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.37b and 4.37d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.37f also displays the gravity disturbance vector, that has to be zero, with a

precision better than 0.04 mGal.
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(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.37: CIRCLE LN200 vq9b1: adjusted parameters.
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Table 4.39 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 4.4 10−4 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 1.3 10−6 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 20.0 Hz ∀t (3.48) 4.9 10−8 rad s−1

AB-O (3.4.36) 20.0 Hz ∀t (3.49) 4.9 10−4 m s−2

OB (3.4.8) 20.0 Hz ∀t (3.16) 4.3 10−12 rad s−1

AB (3.4.10) 20.0 Hz ∀t (3.18) 6.7 10−7 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 20.0 Hz ∀t (3.22) 0.016 mGal
DGUPT-GG (3.4.28) 20.0 Hz ∀t (3.41) 0.02 mGal
Q-O (3.4.34) t0, tN (3.47) 0.01 ppm

Table 4.39: Test CIRCLE-LTN101-vq9b1: network configuration.

Figure 4.38 proves that the functional models of the NA approach work succesfully:

• Figures 4.38a and 4.38c point out that the position has been recovered, especially heights

with a precision better than 1 cm.

• The navigation parameters —shown in Figure 4.38e— are recovered with a precision of

18 " for roll (α) and pitch (χ) and with a range of 3 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.38b and 4.38d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.38f also displays the gravity disturbance vector, that has to be zero, with a

precision better than 1 mGal.
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(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.38: CIRCLE LTN101b vq9b1: adjusted parameters.
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4.5 Test CTRA

Finally, it is important to consider a trajectory as the one described in Figure 4.39. It simulates

a vehicle that moves from a starting place, drives along the described trajectory and ends at

the start point.

Figure 4.39: CTRA: input trajectory.

As it can be seen in such trajectory, there is additional information that has to be considered:

• the gravity disturbance is known at the start-end point;

• there are some crossovers; and

• there are also gravity space-relationship between lines.

As the preceding tests, the output simulator data are shown in Figure 4.40 and several compu-

tations have been also also done for each IMU configuration. Table 4.40 shows the associated

dimensions and redundancy number for each network configuration.

183



Chapter 4. Computations

version Nrow Ncol Neq Npar rb

v2a1 56 059 40 969 140 981 136 505 0.031 8
vq2a1 56 061 40 969 140 989 136 505 0.031 8

v2a2 56 066 40 969 141 002 136 505 0.031 9
vq2a2 56 068 40 969 141 010 136 505 0.032 0

v2a2x 56 206 40 969 141 142 136 505 0.032 9
vq2a2x 56 208 40 969 141 150 136 505 0.032 9

v2b1 56 092 40 969 141 080 136 505 0.032 4
vq2b1 56 094 40 969 141 088 136 505 0.032 5

v2b2 56 099 40 969 141 101 136 505 0.032 6
vq2b2 56 101 40 969 141 109 136 505 0.032 6

v2b2x 56 239 40 969 141 241 136 505 0.033 5
vq2b2x 56 241 40 969 141 249 136 505 0.033 6

v9a1 123 738 81 590 344 018 258 368 0.249 0
vq9a1 123 740 81 590 344 026 258 368 0.249 0

v9b1 137 334 81 590 384 806 258 368 0.328 6
vq9b1 137 336 81 590 384 814 258 368 0.328 6

Table 4.40: Test CTRA: network’s dimensions.
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4.5. Test CTRA

(a) X angular velocity (rad s−1) (b) X acceleration (m s−2)

(c) Y angular velocity (rad s−1) (d) Y acceleration (m s−2)

(e) Z angular velocity (rad s−1) (f) Z acceleration (m s−2)

Figure 4.40: CTRA: simulated IMU data.
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4.5.1 CTRA v2a1

As already discussed in Section 4.2, the codification this computation means:

• 〈H z〉 = 2: some subsets of parameters — ob, ab, δg or g g — has been grouped.

•
〈
δgN E

〉= a: no prior knowledge of the horizontal gravity.

• 〈method〉 = 1: basic network configuration similar to the Kalman filtering.

LN200

Table 4.41 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 2.2 10−3 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 5.2 10−5 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−6 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 2.0 10−3 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 15.0 10−7 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 130.0 10−4 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
DGUPT-GG (3.4.28) t0, tN (3.41) 0.02 mGal

Table 4.41: Test CTRA-LN200-v2a1: network configuration.

Figure 4.41 proves that the functional models of the NA approach work succesfully:

• Figure 4.41a points out that the position has been recovered, especially heights — in

Figure 4.41c — with a precision better than 1 cm.

• The navigation parameters — shown in Figure 4.41e — are recovered with a precision of

1.2 ’ for roll (α) and pitch (χ) and 4.2 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.41b and 4.41d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.41f also displays the gravity disturbance vector, that has to be zero with a

precision better than 2.5 mGal.
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4.5. Test CTRA

(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.41: CTRA LN200 v2a1: adjusted parameters.
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LTN101

Table 4.42 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 4.4 10−4 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 1.3 10−6 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−8 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 4.9 10−4 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 61.0 10−12 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 95.0 10−7 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
DGUPT-GG (3.4.28) t0, tN (3.41) 0.02 mGal

Table 4.42: Test CTRA-LTN101-v2a1: network configuration.

Figure 4.42 proves that the functional models of the NA approach work succesfully:

• Figure 4.42a points out that the position has been recovered, especially heights — in

Figure 4.42c — with a precision better than 1 cm.

• The navigation parameters — shown in Figure 4.42e — are recovered with a precision of

9 " for roll (α) and pitch (χ) and 1.5 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.42b and 4.42d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.42f also displays the gravity disturbance vector, that has to be zero.
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4.5. Test CTRA

(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.42: CTRA LTN101b v2a1: adjusted parameters.
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4.5.2 CTRA vq2a1

As already discussed in Section 4.2, the codification this computation means:

•
〈

q
〉= q , indicates that prior knowledge of the vehicle’s attitude exists at the beginning

(t0) and at the end (tN ) of the mission.

• 〈H z〉 = 2: some subsets of parameters — ob, ab, δg or g g — has been grouped.

•
〈
δgN E

〉= a: no prior knowledge of the horizontal gravity.

• 〈method〉 = 1, indicates a basic network configuration similar to the Kalman filtering.

LN200

Table 4.43 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 2.2 10−3 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 5.2 10−5 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−6 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 2.0 10−3 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 15.0 10−7 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 130.0 10−4 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
DGUPT-GG (3.4.28) t0, tN (3.41) 0.02 mGal
Q-O (3.4.34) t0, tN (3.47) 0.01 ppm

Table 4.43: Test CTRA-LN200-vq2a1: network configuration.

Figure 4.43 proves that the functional models of the NA approach work succesfully:

• Figures 4.43a and 4.43c point out that the position has been recovered, especially heights

with a precision better than 0.5 cm.

• The navigation parameters — shown in Figure 4.43e — are recovered with a precision of

6 ’ for roll (α) and pitch (χ) and with a range of 4.2 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.43b and 4.43d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.43f also displays the gravity disturbance vector, that has to be zero, with a

precision better than 2 mGal.
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4.5. Test CTRA

(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.43: CTRA LN200 vq2a1: adjusted parameters.
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LTN101

Table 4.44 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 4.4 10−4 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 1.3 10−6 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−8 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 4.9 10−4 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 61.0 10−12 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 95.0 10−7 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
DGUPT-GG (3.4.28) t0, tN (3.41) 0.02 mGal
Q-O (3.4.34) t0, tN (3.47) 0.01 ppm

Table 4.44: Test CTRA-LTN101-vq2a1: network configuration.

Figure 4.44 proves that the functional models of the NA approach work succesfully:

• Figures 4.44a and 4.44c point out that the position has been recovered, especially heights

with a precision better than 0.5 cm.

• The navigation parameters — shown in Figure 4.44e — are recovered with a precision of

3.6 " for roll (α) and pitch (χ) and with a range of 0.48 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.44b and 4.44d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.44f also displays the gravity disturbance vector, that has to be zero.
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4.5. Test CTRA

(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.44: CTRA LTN101b vq2a1: adjusted parameters.
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4.5.3 CTRA v2a2

As already discussed in Section 4.2, the codification this computation means:

• 〈H z〉 = 2: some subsets of parameters — ob, ab, δg or g g — has been grouped.

•
〈
δgN E

〉= a: no prior knowledge of the horizontal gravity.

• 〈method〉 = 2: GDT-p (changes of the gravity disturbance of closed positions with

respect to time) observations are added to the basic configuration.

LN200

Table 4.45 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 2.2 10−3 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 5.2 10−5 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−6 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 2.0 10−3 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 15.0 10−7 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 130.0 10−4 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
GDT-GG (3.4.13) ∀xi , x j :

∣∣xi −x j
∣∣= 1km (3.22) 6.2 mGal

GDT-GG (3.4.13) ∀xi , x j :
∣∣xi −x j

∣∣= 4km (3.22) 13.0 mGal
DGUPT-GG (3.4.28) t0, tN (3.41) 0.02 mGal

Table 4.45: Test CTRA-LN200-v2a2: network configuration.

Figure 4.45 proves that the functional models of the NA approach work succesfully:

• Figures 4.45a and 4.45c point out that the position has been recovered, especially heights

with a precision better than 0.5 cm.

• The navigation parameters — shown in Figure 4.45e — are recovered with a precision

better than 1.2 ’ for roll (α) and pitch (χ) and with a range of 8.4 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.45b and 4.45d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.45f also displays the gravity disturbance vector, that has to be zero with a

precision of 1.5 mGal.

194



4.5. Test CTRA

(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.45: CTRA LN200 v2a2: adjusted parameters.
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LTN101

Table 4.46 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 4.4 10−4 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 1.3 10−6 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−8 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 4.9 10−4 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 61.0 10−12 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 95.0 10−7 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
GDT-GG (3.4.13) ∀xi , x j :

∣∣xi −x j
∣∣= 1km (3.22) 6.2 mGal

GDT-GG (3.4.13) ∀xi , x j :
∣∣xi −x j

∣∣= 4km (3.22) 13.0 mGal
DGUPT-GG (3.4.28) t0, tN (3.41) 0.02 mGal

Table 4.46: Test CTRA-LTN101-v2a2: network configuration.

Figure 4.46 proves that the functional models of the NA approach work succesfully:

• Figures 4.46a and 4.46c point out that the position has been recovered, especially heights

with a precision better than 0.5 cm.

• The navigation parameters — shown in Figure 4.46e — are recovered with a precision

better than 9 " for roll (α) and pitch (χ) and with a range of 1.8 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.46b and 4.46d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.46f also displays the gravity disturbance vector, that has to be zero.
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4.5. Test CTRA

(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.46: CTRA LTN101b v2a2: adjusted parameters.
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4.5.4 CTRA vq2a2

As already discussed in Section 4.2, the codification this computation means:

•
〈

q
〉

,indicates that prior knowledge of the vehicle’s attitude exists at the beginning (t0)

and at the end (tN ) of the mission.

• 〈H z〉 = 2: some subsets of parameters — ob, ab, δg or g g — has been grouped.

•
〈
δgN E

〉= a: no prior knowledge of the horizontal gravity.

• 〈method〉 = 2: GDT-p (changes of the gravity disturbance of closed positions with

respect to time) observations are added to the basic configuration.

LN200

Table 4.47 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 2.2 10−3 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 5.2 10−5 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−6 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 2.0 10−3 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 15.0 10−7 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 130.0 10−4 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
GDT-GG (3.4.13) ∀xi , x j :

∣∣xi −x j
∣∣= 1km (3.22) 6.2 mGal

GDT-GG (3.4.13) ∀xi , x j :
∣∣xi −x j

∣∣= 4km (3.22) 13.0 mGal
DGUPT-GG (3.4.28) t0, tN (3.41) 0.02 mGal
Q-O (3.4.34) t0, tN (3.47) 0.01 ppm

Table 4.47: Test CTRA-LN200-vq2a2: network configuration.

Figure 4.47 proves that the functional models of the NA approach work succesfully:

• Figures 4.47a and 4.47c point out that the position has been recovered, especially heights

with a precision better than 0.5 cm.

• The navigation parameters — shown in Figure 4.47e — are recovered with a precision of

0.6 ’ for roll (α) and pitch (χ) and with a range of 4.2 ’ for heading (η).
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• The IMU error parameters exhibited in Figures 4.47b and 4.47d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.47f also displays the gravity disturbance vector, that has to be zero, with a

precision better than 1.5 mGal.

LTN101

Table 4.48 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 4.4 10−4 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 1.3 10−6 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−8 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 4.9 10−4 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 61.0 10−12 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 95.0 10−7 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
GDT-GG (3.4.13) ∀xi , x j :

∣∣xi −x j
∣∣= 1km (3.22) 6.2 mGal

GDT-GG (3.4.13) ∀xi , x j :
∣∣xi −x j

∣∣= 4km (3.22) 13.0 mGal
DGUPT-GG (3.4.28) t0, tN (3.41) 0.02 mGal
Q-O (3.4.34) t0, tN (3.47) 0.01 ppm

Table 4.48: Test CTRA-LTN101-vq2a2: network configuration.

Figure 4.48 proves that the functional models of the NA approach work succesfully:

• Figures 4.48a and 4.48c point out that the position has been recovered, especially heights

with a precision better than 1 cm.

• The navigation parameters — shown in Figure 4.48e — are recovered with a range of

10.8 " for roll (α) and pitch (χ) and 28.8 " for heading (η).

• The IMU error parameters exhibited in Figures 4.48b and 4.48d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.48f also displays the gravity disturbance vector, that has to be zero.
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(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.47: CTRA LN200 vq2a2: adjusted parameters.
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4.5. Test CTRA

(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.48: CTRA LTN101b vq2a2: adjusted parameters.

201



Chapter 4. Computations

4.5.5 CTRA v2a2x

As already discussed in Section 4.2, the codification this computation means:

• 〈H z〉 = 2: some subsets of parameters — ob, ab, δg or g g — has been grouped.

•
〈
δgN E

〉= a: no prior knowledge of the horizontal gravity.

• 〈method〉 = 2x: GDT-p (changes of the gravity disturbance of closed positions with

respect to time) observations are added to the basic configuration and, moreover, XOVER

observations are considered.

LN200

Table 4.49 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 2.2 10−3 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 5.2 10−5 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−6 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 2.0 10−3 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 15.0 10−7 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 130.0 10−4 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
GDT-GG (3.4.13) ∀xi , x j :

∣∣xi −x j
∣∣= 1km (3.22) 6.2 mGal

GDT-GG (3.4.13) ∀xi , x j :
∣∣xi −x j

∣∣= 4km (3.22) 13.0 mGal
DGUPT-GG (3.4.28) t0, tN (3.41) 0.02 mGal
XOVER-GG (3.4.31) (3.44) 0.000 3 mGal

Table 4.49: Test CTRA-LN200-v2a2x: network configuration.

Figure 4.49 proves that the functional models of the NA approach work succesfully:

• Figures 4.49a and 4.49c point out that the position has been recovered, especially heights

with a precision better than 0.5 cm.

• The navigation parameters — shown in Figure 4.49e — are recovered with a precision of

1.2 ’ for roll (α) and pitch (χ) and 3.6 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.49b and 4.49d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.
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4.5. Test CTRA

• Figure 4.49f also displays the gravity disturbance vector, that has to be zero, with a

precision better than 1.5 mGal.

LTN101

Table 4.50 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 4.4 10−4 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 1.3 10−6 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−8 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 4.9 10−4 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 61.0 10−12 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 95.0 10−7 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
GDT-GG (3.4.13) ∀xi , x j :

∣∣xi −x j
∣∣= 1km (3.22) 6.2 mGal

GDT-GG (3.4.13) ∀xi , x j :
∣∣xi −x j

∣∣= 4km (3.22) 13.0 mGal
DGUPT-GG (3.4.28) t0, tN (3.41) 0.02 mGal
XOVER-GG (3.4.31) (3.44) 0.000 3 mGal

Table 4.50: Test CTRA-LTN101-v2a2x: network configuration.

Figure 4.50 proves that the functional models of the NA approach work succesfully:

• Figures 4.50a and 4.50c point out that the position has been recovered, especially heights

with a precision better than 0.2 cm.

• The navigation parameters — shown in Figure 4.50e — are recovered with a precision

better than 9 " for roll (α) and pitch (χ) and 1.8 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.50b and 4.50d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.50f also displays the gravity disturbance vector, that has to be zero.

203



Chapter 4. Computations

(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.49: CTRA LN200 v2a2x: adjusted parameters.
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4.5. Test CTRA

(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.50: CTRA LTN101b v2a2x: adjusted parameters.
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Chapter 4. Computations

4.5.6 CTRA vq2a2x

As already discussed in Section 4.2, the codification this computation means:

•
〈

q
〉= q : prior knowledge of the vehicle’s attitude exists at the beginning (t0) and at the

end (tN ) of the mission.

• 〈H z〉 = 2: some subsets of parameters — ob, ab, δg or g g — has been grouped.

•
〈
δgN E

〉= a: no prior knowledge of the horizontal gravity.

• 〈method〉 = 2x: GDT-p (changes of the gravity disturbance of closed positions with

respect to time) observations are added to the basic configuration and, moreover, XOVER

observations are considered.

LN200

Table 4.51 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 2.2 10−3 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 5.2 10−5 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−6 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 2.0 10−3 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 15.0 10−7 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 130.0 10−4 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
GDT-GG (3.4.13) ∀xi , x j :

∣∣xi −x j
∣∣= 1km (3.22) 6.2 mGal

GDT-GG (3.4.13) ∀xi , x j :
∣∣xi −x j

∣∣= 4km (3.22) 13.0 mGal
DGUPT-GG (3.4.28) t0, tN (3.41) 0.02 mGal
Q-O (3.4.34) t0, tN (3.47) 0.01 ppm
XOVER-GG (3.4.31) (3.44) 0.000 3 mGal

Table 4.51: Test CTRA-LN200-vq2a2x: network configuration.

Figure 4.51 proves that the functional models of the NA approach work succesfully:

• Figures 4.51a and 4.51c point out that the position has been recovered, especially heights

with a precision better than 0.5 cm.

• The navigation parameters — shown in Figure 4.51e — are recovered with a precision of

0.6 ’ for roll (α) and pitch (χ) and with a range of 3.6 ’ for heading (η).
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4.5. Test CTRA

• The IMU error parameters exhibited in Figures 4.51b and 4.51d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.51f also displays the gravity disturbance vector, that has to be zero, with a

precision better of 1.5 mGal.

LTN101

Table 4.52 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 4.4 10−4 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 1.3 10−6 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−8 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 4.9 10−4 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 61.0 10−12 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 95.0 10−7 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
GDT-GG (3.4.13) ∀xi , x j :

∣∣xi −x j
∣∣= 1km (3.22) 6.2 mGal

GDT-GG (3.4.13) ∀xi , x j :
∣∣xi −x j

∣∣= 4km (3.22) 13.0 mGal
DGUPT-GG (3.4.28) t0, tN (3.41) 0.02 mGal
Q-O (3.4.34) t0, tN (3.47) 0.01 ppm
XOVER-GG (3.4.31) (3.44) 0.000 3 mGal

Table 4.52: Test CTRA-LTN101-vq2a2x: network configuration.

Figure 4.52 proves that the functional models of the NA approach work succesfully:

• Figures 4.52a and 4.52c point out that the position has been recovered, especially heights

with a precision better than 1 cm.

• The navigation parameters — shown in Figure 4.52e — are recovered with a precision of

7.2 " for roll (α) and pitch (χ) and with a range of 28.8 " for heading (η).

• The IMU error parameters exhibited in Figures 4.52b and 4.52d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.52f also displays the gravity disturbance vector, that has to be zero.
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Chapter 4. Computations

(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.51: CTRA LN200 vq2a2x: adjusted parameters.
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4.5. Test CTRA

(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.52: CTRA LTN101b vq2a2x: adjusted parameters.
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Chapter 4. Computations

4.5.7 CTRA v2b1

As already discussed in Section 4.2, the codification this computation means:

• 〈H z〉 = 2: some subsets of parameters — ob, ab, δg or g g — has been grouped.

•
〈
δgN E

〉= b, indicates that, for all t , δgN (t ) = δgE (t ) ≈ 0.

• 〈method〉 = 1, indicates a basic network configuration similar to the Kalman filtering.

LN200

Table 4.53 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 2.2 10−3 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 5.2 10−5 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−6 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 2.0 10−3 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 15.0 10−7 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 130.0 10−4 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
DGUPT-GG (3.4.28) 0.1 Hz ∀t (3.41) 0.02 mGal

Table 4.53: Test CTRA-LN200-v2b1: network configuration.

Figure 4.53 proves that the functional models of the NA approach work succesfully:

• Figures 4.53a and 4.53c point out that the position has been recovered, especially heights

with a precision better than 0.2 cm.

• The navigation parameters — shown in Figure 4.53e — are recovered with a precision of

1.2 ’ for roll (α) and pitch (χ) and 3.6 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.53b and 4.53d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.53f also displays the gravity disturbance vector, that has to be zero.
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4.5. Test CTRA

(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.53: CTRA LN200 v2b1: adjusted parameters.
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Chapter 4. Computations

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 4.4 10−4 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 1.3 10−6 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−8 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 4.9 10−4 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 61.0 10−12 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 95.0 10−7 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
DGUPT-GG (3.4.28) 0.1 Hz ∀t (3.41) 0.02 mGal

Table 4.54: Test CTRA-LTN101-v2b1: network configuration.

LTN101

Table 4.54 summarises the network configuration used in this computation.

Figure 4.54 proves that the functional models of the NA approach work succesfully:

• Figures 4.54a and 4.54c point out that the position has been recovered, especially heights

with a precision better than 1 cm.

• The navigation parameters — shown in Figure 4.54e — are recovered with a precision of

0.3 ’ for roll (α) and pitch (χ) and with a range of 2.4 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.54b and 4.54d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.54f also displays the gravity disturbance vector, that has to be zero.

212



4.5. Test CTRA

(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.54: CTRA LTN101b v2b1: adjusted parameters.
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Chapter 4. Computations

4.5.8 CTRA vq2b1

As already discussed in Section 4.2, the codification this computation means:

•
〈

q
〉= q , indicates that prior knowledge of the vehicle’s attitude exists at the beginning

(t0) and at the end (tN ) of the mission.

• 〈H z〉 = 2: some subsets of parameters — ob, ab, δg or g g — has been grouped.

•
〈
δgN E

〉= b, indicates that, for all t , δgN (t ) = δgE (t ) ≈ 0.

• 〈method〉 = 1, indicates a basic network configuration similar to the Kalman filtering.

LN200

Table 4.55 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 2.2 10−3 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 5.2 10−5 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−6 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 2.0 10−3 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 15.0 10−7 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 130.0 10−4 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
DGUPT-GG (3.4.28) 0.1 Hz ∀t (3.41) 0.02 mGal
Q-O (3.4.34) t0, tN (3.47) 0.01 ppm

Table 4.55: Test CTRA-LN200-vq2b1: network configuration.

Figure 4.55 proves that the functional models of the NA approach work succesfully:

• Figures 4.55a and 4.55c point out that the position has been recovered, especially heights

with a precision better than 0.4 cm.

• The navigation parameters — shown in Figure 4.55e — are recovered with a precision of

0.6 ’ for roll (α) and pitch (χ) and with a range of 3.6 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.55b and 4.55d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.55f also displays the gravity disturbance vector, that has to be zero.
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4.5. Test CTRA

(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.55: CTRA LN200 vq2b1: adjusted parameters.
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LTN101

Table 4.56 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 4.4 10−4 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 1.3 10−6 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−8 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 4.9 10−4 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 61.0 10−12 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 95.0 10−7 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
DGUPT-GG (3.4.28) 0.1 Hz ∀t (3.41) 0.02 mGal
Q-O (3.4.34) t0, tN (3.47) 0.01 ppm

Table 4.56: Test CTRA-LTN101-vq2b1: network configuration.

Figure 4.56 proves that the functional models of the NA approach work succesfully:

• Figures 4.56a and 4.56c point out that the position has been recovered, especially heights

with a precision better than 0.5 cm.

• The navigation parameters — shown in Figure 4.56e — are recovered with a precision of

0.12 ’ for roll (α) and pitch (χ) and with a range of 1.08 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.56b and 4.56d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.56f also displays the gravity disturbance vector, that has to be zero.
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4.5. Test CTRA

(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.56: CTRA LTN101b vq2b1: adjusted parameters.
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4.5.9 CTRA v2b2

As already discussed in Section 4.2, the codification this computation means:

• 〈H z〉 = 2: some subsets of parameters — ob, ab, δg or g g — has been grouped.

•
〈
δgN E

〉= b,indicates that, for all t , δgN (t ) = δgE (t ) ≈ 0.

• 〈method〉 = 2: GDT-p (changes of the gravity disturbance of closed positions with

respect to time) observations are added to the basic configuration.

LN200

Table 4.57 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 2.2 10−3 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 5.2 10−5 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−6 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 2.0 10−3 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 15.0 10−7 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 130.0 10−4 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
GDT-GG (3.4.13) ∀xi , x j :

∣∣xi −x j
∣∣= 1km (3.22) 6.2 mGal

GDT-GG (3.4.13) ∀xi , x j :
∣∣xi −x j

∣∣= 4km (3.22) 13.0 mGal
DGUPT-GG (3.4.28) 0.1 Hz ∀t (3.41) 0.02 mGal

Table 4.57: Test CTRA-LN200-v2b2: network configuration.

Figure 4.57 proves that the functional models of the NA approach work succesfully:

• Figures 4.57a and 4.57c point out that the position has been recovered, especially heights

with a precision better than 0.5 cm.

• The navigation parameters — shown in Figure 4.57e — are recovered with a precision of

1.2 ’ for roll (α) and pitch (χ) and 3.6 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.57b and 4.57d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.57f also displays the gravity disturbance vector, that has to be zero.
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4.5. Test CTRA

(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.57: CTRA LN200 v2b2: adjusted parameters.
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LTN101

Table 4.58 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 4.4 10−4 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 1.3 10−6 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−8 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 4.9 10−4 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 61.0 10−12 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 95.0 10−7 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
GDT-GG (3.4.13) ∀xi , x j :

∣∣xi −x j
∣∣= 1km (3.22) 6.2 mGal

GDT-GG (3.4.13) ∀xi , x j :
∣∣xi −x j

∣∣= 4km (3.22) 13.0 mGal
DGUPT-GG (3.4.28) 0.1 Hz ∀t (3.41) 0.02 mGal

Table 4.58: Test CTRA-LTN101-v2b2: network configuration.

Figure 4.58 proves that the functional models of the NA approach work succesfully:

• Figures 4.58a and 4.58c point out that the position has been recovered, especially heights

with a precision better than 1 cm.

• The navigation parameters — shown in Figure 4.58e — are recovered with a precision

better than 0.3 ’ for roll (α) and pitch (χ) and with a range of 2.4 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.58b and 4.58d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.58f also displays the gravity disturbance vector, that has to be zero.
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4.5. Test CTRA

(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.58: CTRA LTN101b v2b2: adjusted parameters.
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4.5.10 CTRA vq2b2

As already discussed in Section 4.2, the codification this computation means:

•
〈

q
〉= q , indicates that prior knowledge of the vehicle’s attitude exists at the beginning

(t0) and at the end (tN ) of the mission.

• 〈H z〉 = 2: some subsets of parameters — ob, ab, δg or g g — has been grouped.

•
〈
δgN E

〉= b, indicates that, for all t , δgN (t ) = δgE (t ) ≈ 0.

• 〈method〉 = 2: GDT-p (changes of the gravity disturbance of closed positions with

respect to time) observations are added to the basic configuration.

LN200

Table 4.59 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 2.2 10−3 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 5.2 10−5 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−6 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 2.0 10−3 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 15.0 10−7 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 130.0 10−4 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
GDT-GG (3.4.13) ∀xi , x j :

∣∣xi −x j
∣∣= 1km (3.22) 6.2 mGal

GDT-GG (3.4.13) ∀xi , x j :
∣∣xi −x j

∣∣= 4km (3.22) 13.0 mGal
DGUPT-GG (3.4.28) 0.1 Hz ∀t (3.41) 0.02 mGal
Q-O (3.4.34) t0, tN (3.47) 0.01 ppm

Table 4.59: Test CTRA-LN200-vq2b2: network configuration.

Figure 4.59 proves that the functional models of the NA approach work succesfully:

• Figures 4.59a and 4.59c point out that the position has been recovered, especially heights

with a precision better than 0.4 cm.

• The navigation parameters — shown in Figure 4.59e — are recovered with a precision of

0.6 ’ for roll (α) and pitch (χ) and with a range of 3.9 ’ for heading (η).
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4.5. Test CTRA

• The IMU error parameters exhibited in Figures 4.59b and 4.59d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.59f also displays the gravity disturbance vector, that has to be zero, with a

precision of 0.65 mGal.

LTN101

Table 4.60 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 4.4 10−4 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 1.3 10−6 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−8 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 4.9 10−4 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 61.0 10−12 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 95.0 10−7 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
GDT-GG (3.4.13) ∀xi , x j :

∣∣xi −x j
∣∣= 1km (3.22) 6.2 mGal

GDT-GG (3.4.13) ∀xi , x j :
∣∣xi −x j

∣∣= 4km (3.22) 13.0 mGal
DGUPT-GG (3.4.28) 0.1 Hz ∀t (3.41) 0.02 mGal
Q-O (3.4.34) t0, tN (3.47) 0.01 ppm

Table 4.60: Test CTRA-LTN101-vq2b2: network configuration.

Figure 4.60 proves that the functional models of the NA approach work succesfully:

• Figures 4.60a and 4.60c point out that the position has been recovered, especially heights

with a precision better than 0.5 cm.

• The navigation parameters — shown in Figure 4.60e — are recovered with a precision of

7.2 " for roll (α) and pitch (χ) and with a range of 1.08 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.60b and 4.60d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.60f also displays the gravity disturbance vector, that has to be zero.
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Chapter 4. Computations

(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.59: CTRA LN200 vq2b2: adjusted parameters.
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4.5. Test CTRA

(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.60: CTRA LTN101b vq2b2: adjusted parameters.
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4.5.11 CTRA v2b2x

As already discussed in Section 4.2, the codification this computation means:

• 〈H z〉 = 2: some subsets of parameters — ob, ab, δg or g g — has been grouped.

•
〈
δgN E

〉= b, indicates that, for all t , δgN (t ) = δgE (t ) ≈ 0.

• 〈method〉 = 2x: GDT-p (changes of the gravity disturbance of closed positions with

respect to time) observations are added to the basic configuration and, moreover, XOVER

observations are considered 〈method〉 = 2x.

LN200

Table 4.61 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 2.2 10−3 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 5.2 10−5 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−6 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 2.0 10−3 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 15.0 10−7 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 130.0 10−4 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
GDT-GG (3.4.13) ∀xi , x j :

∣∣xi −x j
∣∣= 1km (3.22) 6.2 mGal

GDT-GG (3.4.13) ∀xi , x j :
∣∣xi −x j

∣∣= 4km (3.22) 13.0 mGal
DGUPT-GG (3.4.28) 0.1 Hz ∀t (3.41) 0.02 mGal
XOVER-GG (3.4.31) (3.44) 0.000 3 mGal

Table 4.61: Test CTRA-LN200-v2b2x: network configuration.

Figure 4.61 prove that the functional models of the NA approach work succesfully:

• Figures 4.61a and 4.61c point out that the position has been recovered, especially heights

with a precision better than 0.5 cm.

• The navigation parameters — shown in Figure 4.61e — are recovered with a precision of

1.2 ’ for roll (α) and pitch (χ) and 3.6 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.61b and 4.61d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.
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4.5. Test CTRA

• Figure 4.61f also displays the gravity disturbance vector, that has to be zero.

LTN101

Table 4.62 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 4.4 10−4 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 1.3 10−6 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−8 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 4.9 10−4 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 61.0 10−12 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 95.0 10−7 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
GDT-GG (3.4.13) ∀xi , x j :

∣∣xi −x j
∣∣= 1km (3.22) 6.2 mGal

GDT-GG (3.4.13) ∀xi , x j :
∣∣xi −x j

∣∣= 4km (3.22) 13.0 mGal
DGUPT-GG (3.4.28) 0.1 Hz ∀t (3.41) 0.02 mGal
XOVER-GG (3.4.31) (3.44) 0.000 3 mGal

Table 4.62: Test CTRA-LTN101-v2b2x: network configuration.

Figure 4.62 proves that the functional models of the NA approach work succesfully:

• Figures 4.62a and 4.62c point out that the position has been recovered, especially heights

with a precision better than 2 cm.

• The navigation parameters — shown in Figure 4.62e — are recovered with a precision

better than 0.3 ’ for roll (α) and pitch (χ) and with a range of 2.4 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.62b and 4.62d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.62f also displays the gravity disturbance vector, that has to be zero.
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Chapter 4. Computations

(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.61: CTRA LN200 v2b2x: adjusted parameters.
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4.5. Test CTRA

(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.62: CTRA LTN101b v2b2x: adjusted parameters.
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4.5.12 CTRA vq2b2x

As already discussed in Section 4.2, the codification this computation means:

•
〈

q
〉= q : no prior knowledge of the vehicle’s attitude exists at the beginning (t0) and at

the end (tN ) of the mission.

• 〈H z〉 = 2: some subsets of parameters — ob, ab, δg or g g — has been grouped.

•
〈
δgN E

〉= b, indicates that, for all t , δgN (t ) = δgE (t ) ≈ 0.

• 〈method〉 = 2x: GDT-p (changes of the gravity disturbance of closed positions with

respect to time) observations are added to the basic configuration and moreover, XOVER

observations are considered 〈method〉 = 2x.

LN200

Table 4.63 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 2.2 10−3 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 5.2 10−5 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−6 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 2.0 10−3 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 15.0 10−7 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 130.0 10−4 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
GDT-GG (3.4.13) ∀xi , x j :

∣∣xi −x j
∣∣= 1km (3.22) 6.2 mGal

GDT-GG (3.4.13) ∀xi , x j :
∣∣xi −x j

∣∣= 4km (3.22) 13.0 mGal
DGUPT-GG (3.4.28) 0.1 Hz ∀t (3.41) 0.02 mGal
Q-O (3.4.34) t0, tN (3.47) 0.01 ppm
XOVER-GG (3.4.31) (3.44) 0.000 3 mGal

Table 4.63: Test CTRA-LN200-vq2b2x: network configuration.

Figure 4.63 proves that the functional models of the NA approach work succesfully:

• Figures 4.63a and 4.63c point out that the position has been recovered, especially heights

with a precision better than 0.5 cm.

• The navigation parameters — shown in Figure 4.63e — are recovered with a precision of

0.6 ’ for roll (α) and pitch (χ) and with a range of 4.2 ’ for heading (η).
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4.5. Test CTRA

• The IMU error parameters exhibited in Figures 4.63b and 4.63d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.63f also displays the gravity disturbance vector, that has to be zero, with a

precision of 0.35 mGal

LTN101

Table 4.64 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 4.4 10−4 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 1.3 10−6 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 0.1 Hz ∀t (3.48) 4.9 10−8 rad s−1

AB-O (3.4.36) 0.1 Hz ∀t (3.49) 4.9 10−4 m s−2

OB (3.4.8) 0.1 Hz ∀t (3.16) 61.0 10−12 rad s−1

AB (3.4.10) 0.1 Hz ∀t (3.18) 95.0 10−7 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 0.1 Hz ∀t (3.22) 6.2 mGal
GDT-GG (3.4.13) ∀xi , x j :

∣∣xi −x j
∣∣= 1km (3.22) 6.2 mGal

GDT-GG (3.4.13) ∀xi , x j :
∣∣xi −x j

∣∣= 4km (3.22) 13.0 mGal
DGUPT-GG (3.4.28) 0.1 Hz ∀t (3.41) 0.02 mGal
Q-O (3.4.34) t0, tN (3.47) 0.01 ppm
XOVER-GG (3.4.31) (3.44) 0.000 3 mGal

Table 4.64: Test CTRA-LTN101-vq2b2x: network configuration.

Figure 4.64 proves that the functional models of the NA approach work succesfully:

• Figures 4.64a and 4.64c point out that the position has been recovered, especially heights

with a precision better than 0.5 cm.

• The navigation parameters — shown in Figure 4.64e — are recovered with a precision of

7.2 " for roll (α) and pitch (χ) and with a range of 1.08 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.64b and 4.64d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.64f also displays the gravity disturbance vector, that has to be zero, with a

precision of 3 mGal.
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Chapter 4. Computations

(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.63: CTRA LN200 vq2b2x: adjusted parameters.
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4.5. Test CTRA

(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.64: CTRA LTN101b vq2b2x: adjusted parameters.
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Chapter 4. Computations

4.5.13 CTRA v9a1

As already discussed in Section 4.2, the codification this computation means:

• 〈H z〉 = 9: all the parameters are computed at the IMU rate.

•
〈
δgN E

〉= a: no prior knowledge of the horizontal gravity.

• 〈method〉 = 1,indicates a basic network configuration similar to the Kalman filtering.

LN200

Table 4.65 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 2.2 10−3 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 5.2 10−5 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 20.0 Hz ∀t (3.48) 4.9 10−6 rad s−1

AB-O (3.4.36) 20.0 Hz ∀t (3.49) 2.0 10−3 m s−2

OB (3.4.8) 20.0 Hz ∀t (3.16) 1.1 10−7 rad s−1

AB (3.4.10) 20.0 Hz ∀t (3.18) 8.9 10−4 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 20.0 Hz ∀t (3.22) 0.016 mGal
DGUPT-GG (3.4.28) t0, tN (3.41) 0.02 mGal

Table 4.65: Test CTRA-LN200-v9a1: network configuration.

Figure 4.65 proves that the functional models of the NA approach work succesfully:

• Figures 4.65a and 4.65c point out that the position has been recovered, especially heights

with a precision better than 2 cm.

• The navigation parameters — shown in Figure 4.65e — are recovered with a precision of

1.2 ’ for roll (α) and pitch (χ) and 6 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.65b and 4.65d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.65f also displays the gravity disturbance vector, that has to be zero, with a

precision better than 0.5 mGal.
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4.5. Test CTRA

(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.65: CTRA LN200 v9a1: adjusted parameters.
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LTN101

Table 4.66 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 4.4 10−4 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 1.3 10−6 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 20.0 Hz ∀t (3.48) 4.9 10−8 rad s−1

AB-O (3.4.36) 20.0 Hz ∀t (3.49) 4.9 10−4 m s−2

OB (3.4.8) 20.0 Hz ∀t (3.16) 4.3 10−12 rad s−1

AB (3.4.10) 20.0 Hz ∀t (3.18) 6.7 10−7 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 20.0 Hz ∀t (3.22) 0.016 mGal
DGUPT-GG (3.4.28) t0, tN (3.41) 0.02 mGal

Table 4.66: Test CTRA-LTN101-v9a1: network configuration.

Figure 4.66 proves that the functional models of the NA approach work succesfully:

• Figures 4.66a and 4.66c point out that the position has been recovered, especially heights

with a precision better than 3 cm.

• The navigation parameters — shown in Figure 4.66e — are recovered with a precision of

0.3 ’ for roll (α) and pitch (χ) and with a range of 2.4 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.66b and 4.66d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.66f also displays the gravity disturbance vector, that has to be zero.
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4.5. Test CTRA

(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.66: CTRA LTN101b v9a1: adjusted parameters.
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4.5.14 CTRA vq9a1

As already discussed in Section 4.2, the codification this computation means:

•
〈

q
〉= q : prior knowledge of the vehicle’s attitude exists at the beginning (t0) and at the

end (tN ) of the mission.

• 〈H z〉 = 9: all the parameters are computed at the IMU rate.

•
〈
δgN E

〉= a: no prior knowledge of the horizontal gravity.

• 〈method〉 = 1, indicates a basic network configuration similar to the Kalman filtering.

LN200

Table 4.67 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 2.2 10−3 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 5.2 10−5 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 20.0 Hz ∀t (3.48) 4.9 10−6 rad s−1

AB-O (3.4.36) 20.0 Hz ∀t (3.49) 2.0 10−3 m s−2

OB (3.4.8) 20.0 Hz ∀t (3.16) 1.1 10−7 rad s−1

AB (3.4.10) 20.0 Hz ∀t (3.18) 8.9 10−4 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 20.0 Hz ∀t (3.22) 0.016 mGal
DGUPT-GG (3.4.28) t0, tN (3.41) 0.02 mGal
Q-O (3.4.34) t0, tN (3.47) 0.01 ppm

Table 4.67: Test CTRA-LN200-vq9a1: network configuration.

Figure 4.67 proves that the functional models of the NA approach work succesfully:

• Figures 4.67a and 4.67c point out that the position has been recovered, especially heights

with a precision better than 2 cm.

• The navigation parameters — shown in Figure 4.67e — are recovered with a precision of

1.2 ’ for roll (α) and pitch (χ) and 4.2 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.67b and 4.67d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.67f also displays the gravity disturbance vector, that has to be zero, with a

precision better than 1 mGal.
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4.5. Test CTRA

(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.67: CTRA LN200 vq9a1: adjusted parameters.
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LTN101

Table 4.68 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 4.4 10−4 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 1.3 10−6 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 20.0 Hz ∀t (3.48) 4.9 10−8 rad s−1

AB-O (3.4.36) 20.0 Hz ∀t (3.49) 4.9 10−4 m s−2

OB (3.4.8) 20.0 Hz ∀t (3.16) 4.3 10−12 rad s−1

AB (3.4.10) 20.0 Hz ∀t (3.18) 6.7 10−7 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 20.0 Hz ∀t (3.22) 0.016 mGal
DGUPT-GG (3.4.28) t0, tN (3.41) 0.02 mGal
Q-O (3.4.34) t0, tN (3.47) 0.01 ppm

Table 4.68: Test CTRA-LTN101-vq9a1: network configuration.

Figure 4.68 proves that the functional models of the NA approach work succesfully:

• Figures 4.68a and 4.68c point out that the position has been recovered, especially heights

with a precision better than 1.5 cm.

• The navigation parameters — shown in Figure 4.68e — are recovered with a precision of

14.4 " for roll (α) and pitch (χ) and 1.2 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.68b and 4.68d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.68f also displays the gravity disturbance vector, that has to be zero, with a

precision of 1 mGal.
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4.5. Test CTRA

(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.68: CTRA LTN101b vq9a1: adjusted parameters.
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4.5.15 CTRA v9b1

As already discussed in Section 4.2, the codification this computation means:

• 〈H z〉 = 9: all the parameters are computed at the IMU rate.

•
〈
δgN E

〉= b, indicates that, for all t , δgN (t ) = δgE (t ) ≈ 0.

• 〈method〉 = 1, indicates a basic network configuration similar to the Kalman filtering.

LN200

Table 4.69 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 2.2 10−3 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 5.2 10−5 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 20.0 Hz ∀t (3.48) 4.9 10−6 rad s−1

AB-O (3.4.36) 20.0 Hz ∀t (3.49) 2.0 10−3 m s−2

OB (3.4.8) 20.0 Hz ∀t (3.16) 1.1 10−7 rad s−1

AB (3.4.10) 20.0 Hz ∀t (3.18) 8.9 10−4 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 20.0 Hz ∀t (3.22) 0.016 mGal
DGUPT-GG (3.4.28) 20.0 Hz ∀t (3.41) 0.02 mGal

Table 4.69: Test CTRA-LN200-v9b1: network configuration.

Figure 4.69 proves that the functional models of the NA approach work succesfully:

• Figures 4.69a and 4.69c point out that the position has been recovered, especially heights

with a precision better than 2 cm.

• The navigation parameters —shown in Figure 4.69e— are recovered with a precision of

1.2 ’ for roll (α) and pitch (χ) and 6 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.69b and 4.69d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.69f also displays the gravity disturbance vector, that has to be zero, with a

precision of 0.15 mGal.
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4.5. Test CTRA

(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.69: CTRA LN200 v9b1: adjusted parameters.
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LTN101

Table 4.70 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 4.4 10−4 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 1.3 10−6 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 20.0 Hz ∀t (3.48) 4.9 10−8 rad s−1

AB-O (3.4.36) 20.0 Hz ∀t (3.49) 4.9 10−4 m s−2

OB (3.4.8) 20.0 Hz ∀t (3.16) 4.3 10−12 rad s−1

AB (3.4.10) 20.0 Hz ∀t (3.18) 6.7 10−7 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 20.0 Hz ∀t (3.22) 0.016 mGal
DGUPT-GG (3.4.28) 20.0 Hz ∀t (3.41) 0.02 mGal

Table 4.70: Test CTRA-LTN101-v9b1: network configuration.

Figure 4.70 proves that the functional models of the NA approach work succesfully:

• Figures 4.70a and 4.70c point out that the position has been recovered, especially heights

with a precision better than 2.5 cm.

• The navigation parameters —shown in Figure 4.70e— are recovered with a precision of

0.3 ’ for roll (α) and pitch (χ) and with a range of 2.4 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.70b and 4.70d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.70f also displays the gravity disturbance vector, that has to be zero, with a

precision of 0.5 mGal.
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4.5. Test CTRA

(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.70: CTRA LTN101b v9b1: adjusted parameters.
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4.5.16 CTRA vq9b1

As already discussed in Section 4.2, the codification this computation means:

•
〈

q
〉= q : prior knowledge of the vehicle’s attitude exists at the beginning (t0) and at the

end (tN ) of the mission.

• 〈H z〉 = 9: all the parameters are computed at the IMU rate.

•
〈
δgN E

〉= b, indicates that, for all t , δgN (t ) = δgE (t ) ≈ 0.

• 〈method〉 = 1, indicates a basic network configuration similar to the Kalman filtering.

LN200

Table 4.71 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 2.2 10−3 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 5.2 10−5 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 20.0 Hz ∀t (3.48) 4.9 10−6 rad s−1

AB-O (3.4.36) 20.0 Hz ∀t (3.49) 2.0 10−3 m s−2

OB (3.4.8) 20.0 Hz ∀t (3.16) 1.1 10−7 rad s−1

AB (3.4.10) 20.0 Hz ∀t (3.18) 8.9 10−4 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 20.0 Hz ∀t (3.22) 0.016 mGal
DGUPT-GG (3.4.28) 20.0 Hz ∀t (3.41) 0.02 mGal
Q-O (3.4.34) t0, tN (3.47) 0.01 ppm

Table 4.71: Test CTRA-LN200-vq9b1: network configuration.

Figure 4.71 proves that the functional models of the NA approach work succesfully:

• Figures 4.71a and 4.71c point out that the position has been recovered, especially heights

with a precision better than 2 cm.

• The navigation parameters — shown in Figure 4.71e — are recovered with a precision of

1.2 ’ for roll (α) and pitch (χ) and 4.8 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.71b and 4.71d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.71f also displays the gravity disturbance vector, that has to be zero, with a

precision of 0.15 mGal.
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4.5. Test CTRA

(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.71: CTRA LN200 vq9b1: adjusted parameters.

247



Chapter 4. Computations

LTN101

Table 4.72 summarises the network configuration used in this computation.

Model Name Frequency Equation Standard Deviation

FB-GG (3.4.5) 20.0 Hz ∀t (3.13) 4.4 10−4 m s−2

WIB (3.4.2) 20.0 Hz ∀t (3.10) 1.3 10−6 rad s−1

VEL (3.4.1) 20.0 Hz ∀t (3.4.1) 0.000 01 m
Q-NORM (3.4.6) 20.0 Hz ∀t (3.14) 0.01 ppm
OB-O (3.4.35) 20.0 Hz ∀t (3.48) 4.9 10−8 rad s−1

AB-O (3.4.36) 20.0 Hz ∀t (3.49) 4.9 10−4 m s−2

OB (3.4.8) 20.0 Hz ∀t (3.16) 4.3 10−12 rad s−1

AB (3.4.10) 20.0 Hz ∀t (3.18) 6.7 10−7 m s−2

AOFF-O (3.4.37) (3.50) 0.001 m
CUPT (3.4.16) 1.0 Hz ∀t (3.26) 0.05 m
GDT-GG (3.4.13) 20.0 Hz ∀t (3.22) 0.016 mGal
DGUPT-GG (3.4.28) 20.0 Hz ∀t (3.41) 0.02 mGal
Q-O (3.4.34) t0, tN (3.47) 0.01 ppm

Table 4.72: Test CTRA-LTN101-vq9b1: network configuration.

Figure 4.72 proves that the functional models of the NA approach work succesfully:

• Figures 4.72a and 4.72c point out that the position has been recovered, especially heights

with a precision better than 2 cm.

• The navigation parameters — shown in Figure 4.72e — are recovered with a precision of

0.24 ’ for roll (α) and pitch (χ) and 1.2 ’ for heading (η).

• The IMU error parameters exhibited in Figures 4.72b and 4.72d are nearly constants

within the defined tolerances (bias repeatability) of the IMU.

• Figure 4.72f also displays the gravity disturbance vector, that has to be zero, with a

precision better than 0.5 mGal.
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4.5. Test CTRA

(a) Position (˚) (b) Angular drift (˚ h−1)

(c) Height (m) (d) Accelerometer bias (µg)

(e) Roll, Pitch and Heading (˚) (f) Gravity disturbance (mGal)

Figure 4.72: CTRA LTN101b vq9b1: adjusted parameters.

249





5 Results

In the previous chapter, all the computations have been discussed in detail one by one. From

them, mainly, it follows that the NA approach models work succesfully. But it is hard to tell

which type of network configuration is the most appropiate.

In this chapter the outcome of the most relevant adjustments of the chapter before are dis-

cussed together, in order to examine which network configuration is best suited for each

simulation test. The evaluation of different network configurations allows also to study how

they can influence the determination of INS parameters — angular drifts and accelerometer

bias — and the gravity field.

The tables and figures that display the results of these comparisons are located, usually, at the

end of each test.

5.1 Test STATIC

Figures 5.1, 5.2 and 5.3 show the results of tests STATIC-LN200-vq2a1 and STATIC-LN200-

vq9a1, with a tactical-grade IMU. Figures 5.4, 5.5 and 5.6 display the same comparisons but

for the navigation-grade IMU: STATIC-LTN101-vq2a1 and STATIC-LTN101-vq9a1.

The above figures prove that the functional models of the NA approach work succesfully:

• Figure 5.1 points out that the position has been recovered, especially heights with a

precision better than 2 cm.

• The navigation parameters — shown in Figure 5.1 — are recovered with a precision of

35 " for roll (α) and pitch (χ) and 2 ’ for heading (η).

• The IMU error parameters exhibited in Figure 5.2 are nearly constants within the defined

tolerances (bias repeatability) of the IMU.

• Figure 5.3 displays the gravity disturbance vector, that has to be zero.
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The same conclusions of the computations can be deduced from the navigation-grade LTN101

tests (see Figures 5.4, 5.5 and 5.6).

Results seem to confirm that it is always better to compute with highest rate parameters than

grouped ones. But often this can entail computation problems.

Remember that to perform a least-squares adjustment is to know the expectation of the

parameters and their covariance. The position parameters re have been determined with an

standard deviation better than of 6 mm for the LN200 IMU and 3 mm for the LTN101 one. The

adjusted attitude parameters — roll, pitch and heading — have an accuracy better than 36 " in

roll-pitch) and 2.4 ’ in heading for the LN200. For the Litton LTN101, 1.44 " in roll-pitch and

3.6 " in heading.

The IMU error parameters — ob and ab — have been determined with a mean standard

deviation of 0.19 ˚ h−1 and 31 µg respectively for the Litton LN200. For the LTN101, 0.008 ˚ h−1

for ob and 1 µg for ab.

The gravity g have been determined with an accuracy of 0.01 mGal, and 0.002" for the deflec-

tions of the vertical.
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5.1. Test STATIC

(a) Longitude (˚) (b) Roll (˚)

(c) Latitude (˚) (d) Pitch (˚)

(e) Height (m) (f) Heading (˚)

Figure 5.1: STATIC LN200: vq2a1 and vq9a1. Position and Attitude.
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(a) X angular drift (˚ h−1) (b) X accelerometer bias (µg)

(c) Y angular drift (˚ h−1) (d) Y accelerometer bias (µg)

(e) Z angular drift (˚ h−1) (f) Z accelerometer bias (µg)

Figure 5.2: STATIC LN200: vq2a1 and vq9a1. Angular drift and Accelerometer bias.
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5.1. Test STATIC

(a) N component (mGal)

(b) E component (mGal)

(c) D component (mGal)

Figure 5.3: STATIC LN200: vq2a1 and vq9a1. Gravity disturbance.
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(a) Longitude (˚) (b) Roll (˚)

(c) Latitude (˚) (d) Pitch (˚)

(e) Height (m) (f) Heading (˚)

Figure 5.4: STATIC LTN101: vq2a1 and vq9a1. Position and Attitude.
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5.1. Test STATIC

(a) X angular drift (˚ h−1) (b) X accelerometer bias (µg)

(c) Y angular drift (˚ h−1) (d) Y accelerometer bias (µg)

(e) Z angular drift (˚ h−1) (f) Z accelerometer bias (µg)

Figure 5.5: STATIC LTN101: vq2a1 and vq9a1. Angular drift and Accelerometer bias.

257



Chapter 5. Results

(a) N component (mGal)

(b) E component (mGal)

(c) D component (mGal)

Figure 5.6: STATIC LTN101: vq2a1 and vq9a1. Gravity disturbance.
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5.2 Test CIRCLE

Figures 5.7, 5.8 and 5.9 show the results of tests CIRCLE-LN200-v2a1 and CIRCLE-LN200-v2a2.

Figures 5.10, 5.11 and 5.12 show similar computations but for the IMU LTN101: CIRCLE-

LTN101-v2a1 and CIRCLE-LTN101-v2a2.

At that point, it is important to remember that v2a1 cases are the basic configurations (equi-

valent to the SSA approach) and v2a2 cases are a simple example of the NA approach. In

fact, v2a2 cases are made up of the v2a1 case plus only the additional GDT-GG observations

connecting each pair of laps.

The position parameters re have been determined with an standard deviation better than of

1.5 cm. The adjusted attitude parameters have an accuracy better than 36 " in roll-pitch and 3

’ in heading for the LN200. For the LTN101, 3.6 " in roll-pitch and 36 " in heading.

The IMU error parameters — ob and ab — have been determined with a mean standard

deviation of 0.02 ˚ h−1 and 40 µg respectively for the LN200. For the LTN101, 0.008 ˚ h−1 for ob

and 8 µg for ab.

The gravity g has been determined with an accuracy of 12 mGal (maximum of all cases), and

2.5 " maximum for the deflections of the vertical.

Figures 5.7 and 5.10 prove that the navigation parameters haven been recovered and that there

is no difference between SSA and NA approaches.

For the IMU error parameters, the situation is quite different. Figures 5.8 prove that for tactical-

grade IMUs such as the LN200, v2a1 and v2a2 solutions are equivalent, but no constant values

as they were expected. For navigation-grade IMUs as the LTN101, Figures 5.11 show that

expected values have been recovered.

But here, the most important, is the gravity field (i.e. disturbance gravity vector) determination.

Both cases — shown in Figures 5.9 and 5.12 — prove the improvement obtained if some

additional observations are considered. In this case, the additional GDT-GG observations

relate that gravity information in a place is time-invariant. For the SSA approach (v∗1 cases)

only the consecutive time-relations are considered and the gravity disturbance respect the

trajectory is interpreted like a corkscrew.
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(a) Longitude (˚) (b) Roll (˚)

(c) Latitude (˚) (d) Pitch (˚)

(e) Height (m) (f) Heading (˚)

Figure 5.7: CIRCLE LN200: v2a1 and v2a2. Position and Attitude.
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5.2. Test CIRCLE

(a) X angular drift (˚ h−1) (b) X accelerometer bias (µg)

(c) Y angular drift (˚ h−1) (d) Y accelerometer bias (µg)

(e) Z angular drift (˚ h−1) (f) Z accelerometer bias (µg)

Figure 5.8: CIRCLE LN200: v2a1 and v2a2. Angular drift and Accelerometer bias.
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(a) N component (mGal) (b) N component (mGal)

(c) E component (mGal) (d) E component (mGal)

(e) D component (mGal) (f) D component (mGal)

Figure 5.9: CIRCLE LN200: v2a1 and v2a2. Gravity disturbances.
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5.2. Test CIRCLE

(a) Longitude (˚) (b) Roll (˚)

(c) Latitude (˚) (d) Pitch (˚)

(e) Height (m) (f) Heading (˚)

Figure 5.10: CIRCLE LTN101: v2a1 and v2a2. Position and attitude.
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(a) X angular drift (˚ h−1) (b) X accelerometer bias (µg)

(c) Y angular drift (˚ h−1) (d) Y accelerometer bias (µg)

(e) Z angular drift (˚ h−1) (f) Z accelerometer bias (µg)

Figure 5.11: CIRCLE LTN101: v2a1 and v2a2. Angular drift and Accelerometer bias.
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5.2. Test CIRCLE

(a) N component (mGal) (b) N component (mGal)

(c) E component (mGal) (d) E component (mGal)

(e) D component (mGal) (f) D component (mGal)

Figure 5.12: CIRCLE LTN101: v2a1 and v2a2. Gravity disturbance.
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5.3 Test CTRA

Figures 5.13, 5.14 and 5.15 show the differences between CTRA-LN200-v9a1 (computing at

navigation rate) and CTRA-LN200-v2a1 (with grouped parameters).

Because of the software capacity limitations (see Table 4.40) and the adjusted parameters

shown in the above Figures, the study of CTRA configuration — on an equal basis as it has

been done in CIRCLE — is focused only on reduced or grouped cases v2.

The study of CTRA test starts computing CTRA-∗-v2a1, a network configuration similar to

SSA approach. Knowing that gravity disturbance vector in NED-frame is moreless of the

form (0,0,δg )T , a new configuration has to be considered: CTRA-∗-v2b1, where additional

observations of the type DGUPT-GG are considered: the horizontal components are fix to 0

and only the vertical component will be determined.

Figures 5.16, 5.17 and 5.18 show the differences encountered between test CTRA-LN200-

v2a1 and test CTRA-LN200-v2b1. They display that vb case only improves the horizontal

components of the gravity disturbance vector (the equations added). Contrary to this the

horizontal components of the accelerometer biases ab are worse. It corroborates that ab and

δg are completely correlated.

Figures 5.19, 5.20 and 5.21 show similar computations but for the LTN101.

The behavior of the LTN101 results is very similar to the LN200 one. In both configurations, the

v2a1 determination is more stable that v2b1 one, except for the horizontal components of the

gravity disturbance vector. Jekeli ([65]) describes in detail this behavior and these adjustment

results only corroborate it. So, as a result of that, only the v2a cases have to been considered in

the test study.

Now the knowledge of attitude parameters at the beginning and at the end of the campaign

are considered (case vq2a1). Then differences respect v2a1 cases for the LN200 are found in

Figures 5.22, 5.23 and 5.24. The same comparison but for the LTN101 are shown in Figures

5.25, 5.26 and 5.27.

Here, after analysing the plots, only an improvement in the attitude determination is shown.

For the other parameters, the behavior is quite similar. Then, we are ready to include more

additional information into the network system.

If some relations between lines (vq2a2 cases) and crossover information (vq2a2x) are con-

sidered, we obtain the results that are considered, for the LN200, in Figures 5.28, 5.29 and

5.30.

Here, if all three cases are analyzed, it is possible to see that position and attitude parameters

are equally determined. The same for the gyro drifts parameters ob and accelerometer bias ab.

They seem to be normal, because only information about gravity relations has been added.
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Respect to the results of the gravity disturbance vector, a little improvement in cases vq2a2 and

va2a2x has been done, but the known unstable behavior continues. But the great improvement

it has been noticed in the vertical component, as it was expected.

For the LTN101, Figures 5.31, 5.32 and 5.33 show the adjusted parameters for vq2a1, vq2a2

and vq2ax cases.

Here the improvement is not so large and these IMU configurations show that the stochas-

tic error model for gravity has not been chosen suitably. The random error GDT model is

inadequate to model the gravity disturbance parameters.

With regard to the adjusted covariance data it is important to note that position parameters

have been determined with an accuracy better than 3 cm for both IMUs. For the adjusted

attitudes, the accuracy is 1.2 ’ in roll-pitch and 4.8 ’ in heading for the LN200 configurations.

For the LTN101 ones, 18 " in roll-pitch and 1.8 ’ in heading.

The IMU error parameters — ob and ab — have been determined with a mean standard

deviation of 0.10 ˚ h−1 and 20 µg respectively for the LN200. For the LTN101, 0.008 ˚ h−1 for ob

and 15 µg for ab.

The gravity g have been determined with an accuracy of 20 mGal (maximum of all cases), and 5

" maximum for the deflections of the vertical. It has to be noticed that the standard deviations

related to the LN200 are less than the LTN101 ones. All this confirms that the stochastic gravity

models (the random walk GDT-DGE, GDT-DGN or GDT-GG) work properly with tactical-grade

IMUs — such as the LN200 — but they have to be improved for navigation-grade ones as the

LTN101.
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(a) Longitude (˚) (b) Roll (˚)

(c) Latitude (˚) (d) Pitch (˚)

(e) Height (m) (f) Heading (˚)

Figure 5.13: CTRA LN200: v2a1 and v9a1. Position and Attitude.
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5.3. Test CTRA

(a) X angular drift (˚ h−1) (b) X accelerometer bias (µg)

(c) Y angular drift (˚ h−1) (d) Y accelerometer bias (µg)

(e) Z angular drift (˚ h−1) (f) Z accelerometer bias (µg)

Figure 5.14: CTRA LN200: v2a1 and v9a1. Angular drift and Accelerometer bias.
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(a) N component (mGal) (b) N component (mGal)

(c) E component (mGal) (d) E component (mGal)

(e) D component (mGal) (f) D component (mGal)

Figure 5.15: CTRA LN200: v2a1 and v9a1. Gravity disturbances.
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5.3. Test CTRA

(a) Longitude (˚) (b) Roll (˚)

(c) Latitude (˚) (d) Pitch (˚)

(e) Height (m) (f) Heading (˚)

Figure 5.16: CTRA LN200: v2a1 and v2b1. Position and Attitude.
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(a) X angular drift (˚ h−1) (b) X accelerometer bias (µg)

(c) Y angular drift (˚ h−1) (d) Y accelerometer bias (µg)

(e) Z angular drift (˚ h−1) (f) Z accelerometer bias (µg)

Figure 5.17: CTRA LN200: v2a1 and v2b1. Angular drift and Accelerometer bias.
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5.3. Test CTRA

(a) N component (mGal) (b) N component (mGal)

(c) E component (mGal) (d) E component (mGal)

(e) D component (mGal) (f) D component (mGal)

Figure 5.18: CTRA LN200: v2a1 and v2b1. Gravity disturbances.
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(a) Longitude (˚) (b) Roll (˚)

(c) Latitude (˚) (d) Pitch (˚)

(e) Height (m) (f) Heading (˚)

Figure 5.19: CTRA LTN101: v2a1 and v2b1. Position and Attitude.
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5.3. Test CTRA

(a) X angular drift (˚ h−1) (b) X accelerometer bias (µg)

(c) Y angular drift (˚ h−1) (d) Y accelerometer bias (µg)

(e) Z angular drift (˚ h−1) (f) Z accelerometer bias (µg)

Figure 5.20: CTRA LTN101: v2a1 and v2b1. Angular drift and Accelerometer bias.
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(a) N component (mGal) (b) N component (mGal)

(c) E component (mGal) (d) E component (mGal)

(e) D component (mGal) (f) D component (mGal)

Figure 5.21: CTRA LTN101: v2a1 and v2b1. Gravity disturbances.
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5.3. Test CTRA

(a) Longitude (˚) (b) Roll (˚)

(c) Latitude (˚) (d) Pitch (˚)

(e) Height (m) (f) Heading (˚)

Figure 5.22: CTRA LN200: v2a1 and vq2a1. Position and Attitude.
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(a) X angular drift (˚ h−1) (b) X accelerometer bias (µg)

(c) Y angular drift (˚ h−1) (d) Y accelerometer bias (µg)

(e) Z angular drift (˚ h−1) (f) Z accelerometer bias (µg)

Figure 5.23: CTRA LN200: v2a1 and vq2a1. Angular drift and Accelerometer bias.
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5.3. Test CTRA

(a) N component (mGal) (b) N component (mGal)

(c) E component (mGal) (d) E component (mGal)

(e) D component (mGal) (f) D component (mGal)

Figure 5.24: CTRA LN200: v2a1 and vq2a1. Gravity disturbances.
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(a) Longitude (˚) (b) Roll (˚)

(c) Latitude (˚) (d) Pitch (˚)

(e) Height (m) (f) Heading (˚)

Figure 5.25: CTRA LTN101: v2a1 and vq2a1. Position and Attitude.
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5.3. Test CTRA

(a) X angular drift (˚ h−1) (b) X accelerometer bias (µg)

(c) Y angular drift (˚ h−1) (d) Y accelerometer bias (µg)

(e) Z angular drift (˚ h−1) (f) Z accelerometer bias (µg)

Figure 5.26: CTRA LTN101: v2a1 and vq2a1. Angular drift and Accelerometer bias.
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(a) N component (mGal) (b) N component (mGal)

(c) E component (mGal) (d) E component (mGal)

(e) D component (mGal) (f) D component (mGal)

Figure 5.27: CTRA LTN101: v2a1 and vq2a1. Gravity disturbances.
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5.3. Test CTRA

(a) Longitude (˚) (b) Roll (˚)

(c) Latitude (˚) (d) Pitch (˚)

(e) Height (m) (f) Heading (˚)

Figure 5.28: CTRA LN200: vq2a1, vq2a2 and vq2a2x. Position and Attitude.
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(a) X angular drift (˚ h−1) (b) X accelerometer bias (µg)

(c) Y angular drift (˚ h−1) (d) Y accelerometer bias (µg)

(e) Z angular drift (˚ h−1) (f) Z accelerometer bias (µg)

Figure 5.29: CTRA LN200: vq2a1, vq2a2 and vq2a2x. Angular drift and Accelerometer bias.
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5.3. Test CTRA

(a) N component (mGal) (b) N component (mGal)

(c) E component (mGal) (d) E component (mGal)

(e) D component (mGal) (f) D component (mGal)

Figure 5.30: CTRA LN200: vq2a1, vq2a2 and vq2a2x. Gravity disturbances.
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(a) Longitude (˚) (b) Roll (˚)

(c) Latitude (˚) (d) Pitch (˚)

(e) Height (m) (f) Heading (˚)

Figure 5.31: CTRA LTN101: vq2a1, vq2a2 and vq2a2x. Position and Attitude.
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5.3. Test CTRA

(a) X angular drift (˚ h−1) (b) X accelerometer bias (µg)

(c) Y angular drift (˚ h−1) (d) Y accelerometer bias (µg)

(e) Z angular drift (˚ h−1) (f) Z accelerometer bias (µg)

Figure 5.32: CTRA LTN101: vq2a1, vq2a2 and vq2a2x. Angular drift and Accelerometer bias.
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Chapter 5. Results

(a) N component (mGal) (b) N component (mGal)

(c) E component (mGal) (d) E component (mGal)

(e) D component (mGal) (f) D component (mGal)

Figure 5.33: CTRA LTN101: vq2a1, vq2a2 and vq2a2x. Gravity disturbances.
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6 Concluding Remarks

The main objectives of the research described in this dissertation are:

• to prove the feasibility of the NA for the rigorous determination of the gravity field using

INS/GNSS techniques;

• to show that the above use of NA methodology shall provide, within the essential limita-

tions of the technology, a procedure to simultaneously calibrate the INS sensors and

estimate the anomalous gravity field.

Despite of the simple stochastic error models used, both goals have been met.

In the following, more detailed comments are made about the above contributions and

improvements resulting from the research. Important results are highlighted, conclusions are

drawn and recommendations are given.

6.1 Specific contributions

• It has been demonstrated that the NA approach allows the use of information — ob-

servations — that the SSA cannot take and facilitating the achievement of the two

above objectives. The development of an adjustment method in genuinely geodetic

post-process, with the explicit purpose to determine precise gravity anomalies taking

advantage at maximum the space characteristics of the gravitational field, has been

validated with simulated data and configurations.

• It has been also demonstrated that gravity determination is considerably improved

when additional observation models (DGUPT, GDT and XOVER) are taken into account.

These models are related to previous knowledge of the gravity field that SSA approach

can not handle with.

• Several implementations of the same observation equation have been considered de-

pending on the parameters. At this moment, gravity parameters can be computed
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Chapter 6. Concluding Remarks

directly as gravity disturbance vector expressed in ECEF-frame, expressed in NED-frame

or as gravity and deflections of the vertical.

The gravity parameters, that have been computed in all the adjustments described in

Chapter 4 are expressed as

g g = (g ,η,ζ)T ,

where g is the gravity and (η,ζ) are the deflections of the vertical and later transform

into NED-framed gravity vector using Equation (C.20):

gg[1] = g sinζ

gg[2] = g sinη

gg[3] = g cosθ

and

θ = (
η2 +ζ2) 1

2 .

• The INS mechanisation equations and additional observation equations studied in

this research have been implemented into the existing GeoTeX system of the ICC (the

GeoTeX/ACX program), which is used since 1988 for both research and production

projects.

• With GeoTeX/ACX development, different number of IMU and GNSS data can be mana-

ged at the same time. As a consequence, it is possible to validate one sensor from the

knowledge of another one.

• The NA approach used in this dissertation — random walk stochastic error models —

works properly for tactical-grade IMU sensors. It has been proved by the LN200 data.

6.2 Recommendations

• The NA approach works properly for small networks and simulated data. However this

work should continue with the validation using real data. This goal is highly related

with the improvements of computer hardware technology, and with further research of

numerical and geodetic methods to handle large amount of data and also to increase

the redundancy of the resulting network.

• In the future, many modelling and estimation problems in geomatics may benefit from

the concept of time dependent network. All the research that is now being carried on in

this direction promise to obtain better results than the ones presented here.

• In this dissertation, the INS mechanisation equations in e-frame have been considered.

It could be interesting to study the network adjustment if the NED-frame mechanisations
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6.2. Recommendations

are implemented. The same reasoning will be done for the parameters. Now position

is expressed in cartesian coordinates and quaternions are used to express the attitude

parameters. Consequently, the development of the observation equations with geodetic

coordinates and with roll, pitch and heading angles should be studied.

• In spite of the fact that all the gravity data computed in Chapter 4 are expressed as

g g = (g ,η,ζ)T

—where g is the gravity and (η,ζ) are the deflections of the vertical— they have not been

studied in depth. As mentioned before, g is transformed later into NED-framed gravity

vector using Equation (C.20 and used in the results analysis.

With respect to usually applied gravimetric techniques for geoid computation, the

deflections of the vertical (η,ζ) — usually astrogeodetically determined — represent

an independent complementary data set that can be used for validation purposes

and combined computations. So, further research work about vertical deflection data

determination can be done.

• It is recommended to fully exploit the statistical and geometric information that the NA

provides like covariances, correlations, redundancy numbers, etc. In this dissertation, it

has not been studied in depth, but further research work should be done.

• The random walk stochastic error model for gravity data has to be improved. Further

studies using Gauss-Markov models of different order and other stochastic models have

to be carried out to investigate gravity models based on stochastic differential equations

that are symmetric with respect to time as opposed to the Gauss-Markov model. This is

a work for one o more dissertations (or Ph.D. thesis).

• It is recommended to continue the research on IMU error modeling as done since long

by various groups.

• GeoTeX/ACX software is able to handle with different types of IMU and GNSS data jointly.

Thus, it is possible to study and to determine (i.eto calibrate) an IMU error model

through the knowledge of another IMU model. Although this IMU calibration has not

been studied in this dissertation, it is recommended to perform further research work

about it.
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A Notation

Here, mathematical notation and coordinate frames used in the dissertation are introduced:

• Vectors are represented by letters that are lowercase and underlined. The most common

uses of vectors herein are for the representation of position, velocity, angular velocity

and gravity anomaly.

• A superscript is used to indicate the coordinate frame in which the components of a

vector are given. For example, the position of an object with respect to the b-frame is

given by:

rb =

 xb

yb

zb


• Matrices are represented by letters that are uppercase and underlined. The most com-

mon use of matrices herein is to represent the rotation from one coordinate frame to

another, and to represent Jacobian matrices associated to mathematical models.

• Rotation matrices between coordinate systems are defined by a subscript and a su-

perscript denoting the two coordinate systems. For example, the representation of a

coordinate in the e-frame — re — can be computed from its representation in the

b-frame — rb — as follows:

re = Reb · rb

• Angular velocity between two coordinate systems may be expressed either by an angular

velocity vector (e.g. ωbib describes the rotation between the inertial and body frames

expressed in the body frame) or by the corresponding skew-symmetric matrix:

[
ωbib×

]
=Ωbib =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0
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B A note on reference frames

To describe locations of points on or near Earth’s surface, a reference system1 should be

defined. Although one could describe the whereabouts of objects and places using a relational

or synthetic database, it is necessary to assign an algebraic reference system if one wants to

know more than the location information such as the measure of distance, area, volume and

direction. In navigation, it is also necessary to measure the progress and determine the course

and destination of a vehicle based on the selected coordinate system.

It should be noted that the term reference system and reference frame do not have the same

meaning. The reference system includes the description of the physical theories and their

approximations that are used to define the coordinate axes, while frame denotes the accessible

realisation of the system through, usually, a set of points whose coordinates are monumented

or otherwise observable. A coordinate system is a mathematical parametrisation. The most

common coordinate system in use is the Cartesian coordinate system whose axes are mutually

orthogonal. To define a Cartesian coordinate system, three elements such as origin, orientation

and scale factors should be determined.

There are several reference frames in use in the field of geodesy. Those frames can be divided

into global and local frames. While the global Cartesian frames are fixed either to the Earth or

the celestial sphere, the local Cartesian frames are defined by local directions; for example

north, east and down. The curvilinear coordinate system, defined by the geodetic latitude,

longitude and height, is also used for its appropriateness of representing the motion and

position on the sphere or ellipsoid. For an inertial navigation system, one has to deal with

a couple of more coordinate frames related to the navigation instruments, the platform on

which those are installed and the vehicle carrying the platform.

The obvious problem when dealing with several different reference frames is to establish the

mutual relationship of a frame to all other frames so that the measurements in a frame can

1A reference system is a definition. A reference frame is a realisation of the definition. A coordinate system is a
mathematical parametrisation. Derived concepts are reference coordinate system = reference system + coordinate
system; and reference coordinate frame = reference frame + coordinate system.
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Appendix B. A note on reference frames

be transferred to the other frames. This is called reference frame transformations. Before

describing the transformations, each coordinate system will be defined.

B.1 Inertial Frame

The inertial frame — noted as i-frame — is non-rotating and non-accelerating with respect to

a true inertial frame within the accuracy of the sensors used to define it. For the applications

considered in this dissertation, the definition of the i-frame is the following:

• origin: assumed at the center of mass of the Earth,

• x-axis: pointing toward the mean equinoctial colure,

• y-axis: being orthogonal to the two other axes to complete a right-handed frame.

• z-axis: being parallel to the mean spin axis of the Earth,

B.2 Conventional Terrestrial Frame

The Conventional Terrestrial frame is an Earth-centered-Earth-fixed (ECEF) frame, or e-frame,

and it is defined as followings:

• origin: at the center of mass of the Earth,

• x-axis: pointing toward the mean meridian of Greenwich,

• y-axis: completing a right-handed orthogonal frame.

• z-axis: parallel to the mean spin axis of the Earth,

Another set of ECEF coordinates being used in geodesy is the conventional geodetic coordinate

system. It consists of the curvilinear coordinates latitude and longitude — (ϕ,λ) — and the

normal height (h) of and adopted ellipsoid of revolution. The angles ϕ and λ determine the

horizontal positions and h does the vertical position. With a geocentric ellipsoid, the geodetic

coordinate system could be used in place of the Cartesian ECEF coordinate system.

The i-frame and the e-frame differ by a constant angular rotation, equal to the mean rotation

of the Earth ωe, about the common z-axis:

ωeie =

 0

0

ωe

 .
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B.3. Local-level Frame or Navigation Frame

The transformation matrix from i-frame to e-frame is simply a rotation about the 3-axis by

ωet

Rei =

 cosωet sinωet 0

−sinωet cosωet 0

0 0 1

 ,

where t is time.

B.3 Local-level Frame or Navigation Frame

The frame that is commonly used to describe the navigation of a vehicle is a local coordinate

frame (l-frame) or navigation frame (n-frame).

The local system of coordinates may be defined as a set of Cartesian coordinate axes, where

the third axis is aligned with the ellipsoidal normal at a point, in the down direction, the first

axis points due north (parallel to the tangent to the meridian), and the second axis points

east. The north-east-down (NED) frame, adopted here and conventionally implemented in

the field of inertial navigation, is known as the navigation frame or the n-frame. The origin of

the n-frame is local, either on the ellipsoid, or at the location of the navigation system. In this

dissertation , we only refer this local or navigation frame as l-frame.

Note that the 3-axis of the l-frame does not pass through the Earth’s center of mass. This adds

a complication to the transformation of coordinates of points between the l-frame and the

e-frame.

It should be noted that this l-frame is not used to represent a vehicle’s position because the

l-frame itself moves with the vehicle carrying the navigation system. Therefore, only the

third component of the coordinate could be non-zero by definition. The advantage of the

l-frame is that it provides the local direction of the vehicle motion through north, east and

down velocities. Because the inertial sensors are always aligned with the local horizontal and

vertical either mechanically or computationally, this frame is the one to which the platform or

the sensor frame is directly related.

Because the e-frame and the l-frame are not concentric, the transformation is more or less

complicated. The orientation transformation needs two successive rotations; first rotate about

the local east axis by the angle (π/2+φ); then rotate about the new 3-axis by the angle −λ:

Rel =

 −sinϕcosλ −sinλ −cosϕcosλ

−sinϕsinλ cosλ −cosϕsinλ

cosϕ 0 −sinϕ
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B.4 Body Frame

The body frame, or b-frame, generally refers to the vehicle itself. Conventionally, the axes are

defined along the forward, right, and through-the-floor directions (Bfrd).

The transformation between the b-frame and l-frame is also represented by the three suc-

cessive rotations: about 1-axis by the negative roll angle , −α (positive if the right wing of the

airplane is inclined down); about 2-axis by the negative pitch angle, −χ (positive if the aircraft

point upwards); and about 3-axis by the negative yaw angle, −η (clockwise angle respect

North):

Rlb = R3(−η) ·R2(−χ) ·R1(−α).

Rlb =

 cosη −sinη 0

sinη cosη 0

0 0 1

 ·

 cosχ 0 sinχ

0 1 0

−sinχ 0 cosχ

 ·

 1 0 0

0 cosα −sinα

0 sinα cosα



And inversely, the angles α, χ and η can be obtained by

α = arctan(Rlb(3,2)/Rlb(3,3))

χ = arcsin(−Rlb(3,1))

η = arctan(Rlb(2,1)/Rlb(1,1))
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C The Earth and its gravity field

The physical surface of the Earth is the border between the solid or fluid masses and the

atmosphere. The mathematical figure of the Earth is represented by the geoid, which is

defined as a particular level surface of the Earth’s gravity field. Under certain assumptions, the

ocean surface is part of this level surface. The geoid is used as a fundamental reference for

many geodetic measurements. But the geoid has no simple analytical expression due to the

irregular change of the Earth’s gravity field.

For many practical applications, the geometric figure of the Earth is approximated by a

rotational ellipsoid flattened at the poles because of its simple equation. This rotational

ellipsoid is called the reference ellipsoid.

Based on the reference ellipsoid a point on and outside the ellipsoid can be determined by

the geodetic coordinates (λ,ϕ,h)T . The relationship between the geodetic coordinates and

the cartesian coordinates in the e-frame, can be obtained using the following transformation

formulas

Xe = (N +h) cosλ cosϕ

Y e = (N +h) sinλ cosϕ

Ze = ((1−e2)N +h) sinϕ

where e2 = b2/a2 and N is the prime (east–west) radius of curvature of the ellipsoid.

The principal radii of curvature, the meridian radius M and the radius of curvature in the

prime vertical N are given by

M = a (1−e2) (1−e2 sin2ϕ)−3/2

N = a (1−e2 sin2ϕ)−1/2

Equation (C) allows us to compute cartesian coordinates (Xe,Y e, Ze)T from geodetic coordi-

nates (λ,ϕ,h)T .
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Appendix C. The Earth and its gravity field

The inverse procedure for the computation of geodetic coordinates (λ,ϕ,h)T from given

cartesian coordinates (Xe,Y e, Ze)T is more complicated because no direct closed form to

convert (Xe,Y e, Ze)T to (λ,ϕ,h)T can be used. In [56] an iterative algorithm is discussed.

C.1 getogc model

getogc :

R3 −→ R3

l ph 7−→ X Y Z

Xe = (N +h)cosλcosϕ

Y e = (N +h)sinλcosϕ

Ze = ((1−e2)N +h)sinϕ

(C.1)

Concept # Notation Constants

Observables 1 X Y Z a,e2

X Y Z 3 (Xe,Y e, Ze)T

Parameter Groups 1 l ph

l ph 3 (λ,ϕ,h)T

Table C.1: Function getogc.

Derivatives

To compute Dgetogc, first we have to compute Ṅ . As N is only a function of ϕ, then the

derivative is:

Ṅ = e2N sinϕcosϕ(1−e2 sin2ϕ)−1

Then

Dgetogc=


−Y e (

Ṅ cosϕ− (N +h)sinϕ
)

cosλ cosλcosϕ

Xe (
Ṅ cosϕ− (N +h)sinϕ

)
sinλ sinλcosϕ

0 (1−e2)Ṅ sinϕ+ ((1−e2)N +h)cosϕ sinϕ
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C.2 Earth’s gravitational and gravity field

Because the vehicle motion is in the gravitational field of the Earth, an inertial sensor mea-

sures the difference between the inertially referenced accelerations and the gravitational

accelerations. Thus, the Earth’s gravitational field and its effect on the inertial sensor has to be

known.

C.2.1 Earth’s gravitational field

The Earth’s gravitational field is usually described by the gravitational potential V of the body

of the Earth, expressed by the integral formula

V (P ) = k
∫ ∫ ∫

ρ(Q)/l d vQ (C.2)

where P is the point at which the gravitational potential is computed, Q is the point within the

Earth’s body, d vQ is the volume element with the center Q, l is the distance between P and Q,

ρ(Q) is the mass density at Q, and k is the Newtonian gravitational constant.

We can also describe the gravitational field using a vector field, i.e. the field of the gravitational

vector g g . The gravitational vector is defined as the gradient of V of the form

g g = grad V = ∂V

∂r
=

 VX

VY

VZ

 (C.3)

Its components are the partial derivatives of the gravitational potential V with respect to the

coordinates (X ,Y ,Z ) of the reference frame.

The second-order gravitational gradients are defined as second-order partial derivatives of the

gravitational potential V with respect to the position vector r and form a symmetric matrix G

as follows

Ge = ∂2V

∂re∂re
=

 VX X VX Y VX Z

VY X VY Y VY Z

VZ X VZ Y VZ Z

 (C.4)

where the matrix Ge is called the gravitational gradient tensor and elements in the bracket

are the second-order gravitational gradients with respect to the coordinates (X ,Y ,Z ) of the

reference frame.
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Appendix C. The Earth and its gravity field

If the gravitational vector g g is given in an arbitrary frame, say the b-frame, the transformation

of the gravitational vector g g into the e-frame is given by

g ge = Reb g gb (C.5)

Usually, the gravitational gradients are given in the local-level frame (l). The transforma-

tion of the gradient tensor Ḡ from the l-frame to the e-frame makes use of the following

transformation

Ge = Rel Gl Rle (C.6)

C.2.2 Time derivative of the gravitational vector

The change of g ge between two points P and Q is obtained by a Taylor expansion which

involves the gravitational gradient tensor Ge as the linear term in the expansion, i.e.

g ge(P ) = g ge(Q)+Ge ∆re (C.7)

where g ge(P ) is the gravitational vector at point P , g ge(Q) is the gravitational vector at point

Q, and ∆re is the vector of position differences between points P and Q.

The gravitational field discussed above is considered as an invariant field in terms of time.

Then, both the gravitational vector g g and the gravitational gradient tensor G are stationary

in terms of time, but are position dependent. Now consider the changes of the gravitational

vectors g g along the trajectory of a moving vehicle with respect to time.

Since Equation (C.7) gives the change of g ge in terms of the position changes, the time

derivatives of g ge in terms of products of the gravitational gradients and vehicle velocities

can be obtained by

˙g ge = l i m
∆t → 0

P →Q

(
g ge(P )− g ge(Q)

)
(∆t )−1 =Ge ˙re (C.8)

Equation (C.8) indicates that the gravitational vector along a trajectory can be obtained by

integrating the gravitational gradient tensor G along the trajectory.

C.2.3 Earth gravity field

Due to Earth rotation the gravity field is more frequently used. The gravity vector is defined by

g = g g −ΩieΩie r (C.9)
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C.3. Normal gravity formulas

where g g is the gravitational vector,Ωie is skew-symmetric matrix of the angular velocity of

Earth’s rotation ωie, r is the geocentric position vector and the second term represents the

centripetal acceleration vector due to the Earth’s rotation.

Usually, the gravity vector is given in the local-level frame and can be expressed as

gl =

 γη

γζ

−(γ+δgu)

 (C.10)

where η is the prime deflection of the vertical (positive about east), ζ is the meridian deflection

of the vertical (positive about north), γ is normal gravity, and δgu is the vertical component of

the gravity disturbance vector and almost the same as the gravity anomaly ∆g .

C.3 Normal gravity formulas

The gravity model used in standard mechanisations of inertial systems is based on an approxi-

mation of the actual gravity field of the Earth, the so-called normal gravity field.

The normal gravity field is derived from the gravity potential of the rotational level ellipsoid

and can be expressed by simple analytic formulas (see [56] for details).

The normal gravity vector in a reference frame is obtained by differentiating the normal gravity

potential with respect to the respective frame. Since the normal gravity vector on the ellipsoid

coincides with the ellipsoidal normal, only the third component of the normal gravity vector

appears in the l-frame. Normal gravity on the ellipsoid, which is the magnitude of the normal

gravity vector, can be computed using a closed formula, the formula of Somigliana, as follows

γ0 =
(
aγe cos2ϕ+bγp sin2ϕ

) · (a2 cos2ϕ+b2 sin2ϕ
)−1/2

(C.11)

where a and b are the major and minor semi-axes of the ellipsoid; γe and γp are normal gravity

at the equator and the pole, respectively; and ϕ is the geodetic latitude.

This formula is not well suited for high speed computations and it is therefore rewritten as

γ0 = γe
(
1+k sin2ϕ

)(
1−e2 sin2ϕ

)−1/2
(C.12)

where e is the first eccentricity of the ellipsoid and

k = bγp

aγe
−1
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By expanding Equation (C.11) into a power series with respect to e2 and truncating it after the

third term, a formula more convenient for numerical computations is obtained:

γ0 = a1
(
1+a2 sin2ϕ+a3 sin4ϕ

)
(C.13)

The normal gravityγ outside the ellipsoid can also be computed using a Taylor series expansion

with respect to the ellipsoidal height h. The Equation (C.13) can be extended by adding terms

which are linear and quadratic in height, i.e.

γ(ϕ,h) = a1
(
1+a2 sin2ϕ+a3 sin4ϕ

)+ (
a4 +a5 sin2ϕ

)
h +a6h2 (C.14)

where h is the height above the ellipsoid, for details see again [56]. The coefficients in Equation

(C.14) for the GRS80 are

a1 = 9.7803267715 m/s2

a2 = 0.0052790414 m/s2

a3 = 0.0000232718 m/s2

a4 = −0.0000030876910891 /s2

a5 = 0.0000000043977311 /s2

a6 = 0.0000000000007211 /(ms2)

(C.15)

When the earth-fixed Cartesian frame — e-frame — is used as reference frame for the strap-

down inertial mechanisations, the normal gravity vector γ is required to be given in the

e-frame. The derivation of accurate and efficient formulas for normal gravity in the e-frame

is obviously more involved because none of the vector elements will be equal to zero and no

closed expressions can be obtained. After some additional operations, the normal gravity

vector in the e-frame is obtained as

γe = Rel ·γl =

 −sinϕcosλ −sinλ −cosϕcosλ

−sinϕsinλ cosλ −cosϕsinλ

cosϕ 0 −sinϕ

 ·

 γN

0

γD

 (C.16)

where

• Rel is the transformation matrix from the l-frame to the e-frame,

• γN is the (North) horizontal component of normal gravity given approximately by ([56]):

γN (ϕ,h) ≈−8.08×10−9h sin2ϕ [m/s2].

This formula is accurate to better than 1×10−6 m/s2 at an altitude of 20 km and more

accurate at lower altitudes.
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C.3. Normal gravity formulas

• −γD ≈ γ(ϕ,h) is computed from Equation (C.14).

Finally, the normal gravity vector in the e-frame has the following expression

γe =

 −(
γN sinϕ+γD cosϕ

)
cosλ

−(
γN sinϕ+γD cosϕ

)
sinλ(

γN cosϕ−γD sinϕ
)

 (C.17)
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C.3.1 gnl model

gnl :

R3 −→ R3

re 7−→ γl

As it has been defined in Equation (C.16):

γl =

 γN

0

γD

 (C.18)

Concept # Notation Constants Frame

Observables 1 γl

γl 3 gnl[i ] l

Parameter Groups 1 re

re 3 re[i ] e

Table C.2: Function gnl.

Derivatives

Dgnl=


D

〈
γN ,re[1]

〉
D

〈
γN ,re[2]

〉
D

〈
γN ,re[3]

〉
0 0 0

D
〈
γD ,re[1]

〉
D

〈
γD ,re[2]

〉
D

〈
γD ,re[3]

〉



To compute Dgnl, first we compute DγN and DγD . They are only functions of ϕ and h

(computed using the model gctoge), and ∀k = 1,÷3:

D
〈
γN ,re[k]

〉 = −16.16×10−9h cos2ϕD
〈
ϕ,re[k]

〉−
− 8.08×10−9 sin2ϕD 〈h,re[k]〉

D
〈
γD ,re[k]

〉 = −2a1a2sinϕcosϕD
〈
ϕ,re[k]

〉−
− 4a1a3 sin3ϕcosϕD

〈
ϕ,re[k]

〉−2a5sinϕcosϕhD
〈
ϕ,re[k]

〉−
− a4D 〈h,re[k]〉−a5 sin2ϕD 〈h,re[k]〉−2a6hD 〈h,re[k]〉
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C.3. Normal gravity formulas

C.3.2 gne model

gne :

R3 −→ R3

l ph 7−→ γe

gne[1] = −(
γN sinϕ+γD cosϕ

)
cosλ

gne[2] = −(
γN sinϕ+γD cosϕ

)
sinλ

gne[3] = γN cosϕ−γD sinϕ

(C.19)

where

γN ≈ −8.08×10−9h sin2ϕ

γD ≈ −a1
(
1+a2 sin2ϕ+a3 sin4ϕ

)− (
a4 +a5 sin2ϕ

)
h −a6h2

Concept # Notation Constants

Observables 1 γe ai , i = 1÷6

γe 3 gne[i ]

Parameter Groups 1 l ph

l ph 3 (λ,ϕ,h)T

Table C.3: Function gne.

Derivatives

Dgne=


D

〈
gne[1],λ

〉
D

〈
gne[1],ϕ

〉
D

〈
gne[1],h

〉
D

〈
gne[2],λ

〉
D

〈
gne[2],ϕ

〉
D

〈
gne[2],h

〉
D

〈
gne[3],λ

〉
D

〈
gne[3],ϕ

〉
D

〈
gne[3],h

〉


To compute Dgne, first we compute DγN and DγD . They are only functions of ϕ and h:

DγN [1] ≈ 0

DγN [2] ≈ −16.16×10−9h cos2ϕ

DγN [3] ≈ −8.08×10−9 sin2ϕ

DγD [1] ≈ 0

DγD [2] ≈ −a1 sin2ϕ
(
a2 +2a3 sinϕ

)−2a5h sinϕcosϕ

DγD [3] ≈ −(
a4 +a5 sin2ϕ

)−2a6h
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Appendix C. The Earth and its gravity field

Then, finally, we have

D
〈
gne[1],λ

〉 = γN sinϕsinλ+γD cosϕsinλ

D
〈
gne[1],ϕ

〉 = −DγN [2]sinϕcosλ−γN cosϕcosλ−
− DγD [2]cosϕcosλ+γD sinϕcosλ

D
〈
gne[1],h

〉 = −DγN [3]sinϕcosλ−DγD [3]cosϕcosλ

D
〈
gne[2],λ

〉 = −γN sinϕcosλ−γD cosϕcosλ

D
〈
gne[2],ϕ

〉 = −DγN [2]sinϕsinλ−γN cosϕsinλ−
− DγD [2]cosϕsinλ+γD sinϕsinλ

D
〈
gne[2],h

〉 = −DγN [3]sinϕsinλ−DγD [3]cosϕsinλ

D
〈
gne[3],λ

〉 = 0

D
〈
gne[3],ϕ

〉 = DγN [2]cosϕ−γN sinϕ−DγD [2]sinϕ−γD cosϕ

D
〈
gne[3],h

〉 = DγN [3]cosϕ−DγD [3]sinϕ
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C.3.3 gg model

gg :

R3 −→ R3

g g 7−→ gl

gg[1] = g sinζ

gg[2] = g sinη

gg[3] = g cosθ

(C.20)

where θ = (
η2 +ζ2

) 1
2 , g g = (g ,η,ζ)T , g is the gravity and (η,ζ) are the deflections of the vertical.

Concept # Notation Constants

Observables 1 gl

gl 3 (gg[i ])

Parameter Groups 1 g g
g g 3 (g ,η,ζ)T

Table C.4: Function gg.

Derivatives

Dgg =


D

〈
gg[1], g

〉
D

〈
gg[1],η

〉
D

〈
gg[1],ζ

〉
D

〈
gg[2], g

〉
D

〈
gg[2],η

〉
D

〈
gg[2],ζ

〉
D

〈
gg[3], g

〉
D

〈
gg[3],η

〉
D

〈
gg[3],ζ

〉



=

 sinζ 0 g cosζ

sinη g cosη 0

cosθ −gθ−1ηsinθ −gθ−1ζsinθ
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D A note on the differentiation

A discrete-time differentiator operates on a uniformly sample sequence in such a way as to

produce a corresponding output sequence that, after suitable band-limiting, approximates

the actual continuous-time derivative of the input signal.

According to general bibliography, the frequency response of an ideal uniformly-sampled

discrete-time differentiator, H(e jωT ), is given by

H(e jωT ) = jω, (D.1)

for 0 ≤ |ω| < ωs/2, where ω is the frequency of the spectrum of the signal, ωs ≡ 2π/T is the

sampling frequency, and T is the corresponding sampling period. The task of differentiating a

discrete-time signal can therefore be seen as approximating this idealisation and applying it

to some signal of interest.

The differentiator discussed in this appendix is a type of FIR filter. Practically, such a filter is

applied to a discrete data set, x(nT ), using a convolution as follows

ẋ(nT ) =
N−1∑
k=0

h(nT ) x(nT −nk), (D.2)

where in this case, ẋ(nT ) is the derivative of the input sequence x(nT ), and h(nT ) is the

impulse response of the system, having length N .

The relationship between the discrete-time unit impulse response, h(nT ), and the frequency

response of the discrete-time differentiator, H (e jωT ), is given by the Inverse Fourier Transform.

Then, the design of a digital differentiator becomes the problem of designing an impulse

response, h(nT ), that can be applied to a data using Equation (D.2) and that has a frequency

response as close as possible to that in Equation (D.1), within the frequency band of interest.
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Appendix D. A note on the differentiation

Consider the first-order difference approximation to the derivative that is given by

ẋ(nT ) = T −1 (
x(nT )−x(nT −T )

)
(D.3)

so that the derivative of x at time nT is estimated using data at two epochs (times nT and

nT −T ).

Higher order central difference equations are often presented in the literature as an alternative

to this simple first-order approximation (because it is intuitive that using more data on either

side of time nT will provide a better estimate of the derivative). These higher order derivations

are also based on Taylor series.

In the network approach used in all this dissertation, this simple approximation is considered,

in order to simplify the associated mathematical models.

The expression of this basic equation as FIR filter is relatively straightforward and useful; the

impulse response corresponding to the first-order differentiators given above is represented

as a vector as follows

h =
[

1 −1
]T

(D.4)

D.1 deriva1 model

deriva1 :

Rm ×Rm −→ Rm

x[n −1], x[n] 7−→ ẋ[n]

ẋ[n] =∆t
(
−1m 1m

)(
x[n −1]

x[n]

)
(D.5)

where

∆t = t [n]− t [n −1]

Derivatives

Dderiva1= (∆t )−1
(
−1m 1m

)
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D.1. deriva1 model

Concept # Notation Constants

Observables 1 ẋ[n]
ẋ[n] m ẋ[n|i ]

Parameter Groups 2 x[n −1],x[n +1]
x[n −1] m x[n −1|i ] t [n −1]
x[n] m x[n|i ] t [n]

Table D.1: Function deriva1.
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E A note on the interpolation

In this section, the interpolation of data has been considered. Starting with the lineal interpo-

lation, in a general form, let’s be (x[n])N
n=1 and (t [n])N

n=1, for each time T the value of x[T ] has

the following form:

x[T ] = I 1[n] · x[n]+ I 2[n] · x[n +1] (E.1)

where

I 1[n] = (∆t )−1 · (t [n +1]−T ) ,

I 2[n] = (∆t )−1 · (T − t [n])and

∆t = t [n +1]− t [n].

E.1 intp model

intp :

Rm ×Rm −→ Rm

x[n], x[n +1] 7−→ x[T ]

The associated Equation (E.1) is represented by

x[T ] =
(

I 1[n] ·1m I 2[n] ·1m

)
·
(

x[n]

x[n +1]

)
(E.2)

The derivatives matrices respect every parameter group are

Dintp=
(

I 1[n] ·1m I 2[n] ·1m

)
(E.3)
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F Rotation rbe-matrix

The differential equations describing continuous change in the transformation from the body

frame (b-frame) to a computational frame (e-frame) is given in

Ṙ
e
b = RebΩ

b
eb = Reb

[
ωbeb×

]
(F.1)

For the general case, this equation will be written without the superscript and the subscript,

i.e.

Ṙ = R Ω= R
[
ω×]

(F.2)

where R represents the transformation from the body frame to the computational frame and

Ω is the skew-symmetric matrix of angular velocities ω= (ωx ,ωy ,ωz )T of the body frame with

respect to the computational frame.

To obtain the transformation matrix from the angular velocity data the nine differential

equations in (F.2) must be solved.

F.1 Quaternion equation

The most popular method to obtain the coordinate transformation matrix is the quaternion

approach. By Euler’s theorem, rotation of a rigid body, represented by the body frame, with

respect to a reference frame, represented by the computational frame, can be expressed in

terms of the rotation angle θ about a fixed axis and the direction cosine of the rotation axis

to define the rotation direction. Thus, quaternion parameters — q = (q1, q2, q3, q4)T — are

introduced to describe the rotation of the body frame with respect to the computational frame
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Appendix F. Rotation rbe-matrix

as follows

q1 = θ−1 θx sin θ
2

q2 = θ−1 θy sin θ
2

q3 = θ−1 θz sin θ
2

q4 = cos θ2

(F.3)

where θ = (θ2
x + θ2

y + θ2
z )1/2 is the rotation angle and θ−1 θx , θ−1 θy , θ−1 θz are the three

direction cosines of the rotation axis with respect to the computational frame.

The definition of the quaternion parameters in Equation (F.3) implies that the four quaternion

components (q1, q2, q3, q4) are not independent, because the following equation for the

quaternion parameters holds

q2
1 +q2

2 +q2
3 +q2

4 = 1 (F.4)

Equation (F.3) indicates that three independent parameters are sufficient to describe rigid

body rotation.

The quaternion parameters are also functions of time. The associated differential equations

for the quaternion parameters is given by

q̇ = 1

2
Ω(ω) q (F.5)

whereΩ(ω) is a skew-symmetric matrix of the form

Ω(ω) =


0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0

=
(

−Ω ω

−ωT 0

)
(F.6)

and ω= (ωx ,ωy ,ωz ) is the angular velocity of body rotation, Ω is the skew-symmetric form of

ω, the same as in Equation (F.2).

F.2 rbe model

Equivalence of the differential equations for the transformation matrix defined by Equation

(F.2) and the quaternion parameters defined in Equation (F.5) is proved by Friedland in [41].

Thus, the transformation matrix resulting from Equations (F.2) and (F.5) can be expressed by

each other.
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F.2. rbe model

The transformation matrix in Equation (F.2) is expressed in terms of the quaternion parameters

by

rbe :

R4 −→ R9

q 7−→ Reb

Reb = (
rbe

[
i , j

])
(F.7)

rbe [1,1] = q2
1 +q2

2 −q2
3 −q2

4

rbe [1,2] = 2
(
q2 q3 +q1 q4

)
rbe [1,3] = 2

(
q2 q4 −q1 q3

)
rbe [2,1] = 2

(
q2 q3 −q1 q4

)
rbe [2,2] = q2

1 −q2
2 +q2

3 −q2
4

rbe [2,3] = 2
(
q3 q4 +q1 q2

)
rbe [3,1] = 2

(
q2 q4 +q1 q3

)
rbe [3,2] = 2

(
q3 q4 −q1 q2

)
rbe [3,3] = q2

1 −q2
2 −q2

3 +q2
4

Concept # Notation Constants

Observables 1 Reb
Reb 9

(
rbe

[
i , j

])
i , j=1÷3

Parameter Groups 1 q

q 4 qi t

Table F.1: Function rbe.

On the other hand, if the transformation matrix is known, the quaternion parameters can be

obtained from

q1 = 1
2 (1+rbe [1,1]+rbe [2,2]+rbe [3,3])1/2

q2 = (
4q1

)−1
(rbe [2,3]−rbe [3,2])

q3 = (
4q1

)−1
(rbe [1,3]−rbe [3,1])

q4 = (
4q1

)−1
(rbe [1,2]−rbe [2,1])

(F.8)
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Derivatives

The derivatives matrices associated to Equation (F.8) respect every quaternion component are

D
〈

Reb, q1

〉
= 2

 q1 q4 −q3

−q4 q1 q2

q3 −q2 q1



D
〈

Reb, q2

〉
= 2

 q2 q3 q4

q3 −q2 q1

q4 −q1 −q2



D
〈

Reb, q3

〉
= 2

 −q3 q2 −q1

q2 q3 q4

q1 q4 −q3



D
〈

Reb, q4

〉
= 2

 −q4 q1 q2

−q1 −q4 q3

q2 q3 q4



330



G mq-MATRIX

It has been note in Appendix F.1 that quaternion parameters are also functions of time and the

associated differential equations for quaternion is given by

q̇ = 1

2
Ω(ω) q (G.1)

Then

Ω(ω) q =


0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0




q[1]

q[2]

q[3]

q[4]



=


q[4] −q[3] q[2]

q[3] q[4] −q[1]

−q[2] q[1] q[4]

−q[1] −q[2] −q[3]


 ωx

ωy

ωz



= M q ω

where M q matrix satisfies

M T
q M q = 13 (G.2)

G.1 mq model

mq :

R4 −→ R12

q 7−→ M q
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Appendix G. mq-MATRIX

M q = (
mq[i , j ]

)=


q[4] −q[3] q[2]

q[3] q[4] −q[1]

−q[2] q[1] q[4]

−q[1] −q[2] −q[3]

 (G.3)

Concept # Notation Constants

Observables 1 M q

M q 12 (mq[i , j ])i=1÷4, j=1÷3

Parameter Groups 1 q

q 4 q[i ] t

Table G.1: Function mq.

Derivatives

D
〈

M q , q1

〉
=


0 0 0

0 1 −1

0 0 0

−1 0 0



D
〈

M q , q2

〉
=


0 0 1

0 0 0

−1 0 0

0 −1 0



D
〈

M q , q3

〉
=


0 −1 0

1 0 0

0 0 0

0 0 −1



D
〈

M q , q4

〉
=


1 0 0

0 1 0

0 0 1

0 0 0
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H INS/GNSS general formulas

GNSS (now GPS) and INS are integrated primarily for applications in positioning and navi-

gation because of their complementary error characteristics and consequent mutual aiding

abilities. There is another type of integration that has attracted the geodetic and geophysical

communities in their efforts to measure the gravity field. It is based directly on Newton’s

second law of motion

gi = ẍi−ai (H.1)

where ẍi is obtained from GNSS and ai from INS.

Gravitational vector is the difference between the total acceleration (as determined kinema-

tically by differentiating GNSS-derived positions) and the specific force (as measured by an

accelerometer).

In fact, this is not an integration or blending of GNSS and INS, but a collocation of two distinct

sensors whose functional dissimilarity is the essence of the combination that, at the same

time, suffers from their contrasting error characteristics. That is, since neither system aids the

other, their error combine.

We know that INS errors accumulate with time and thus are significant primarily in the long

term. Assuming GNSS position errors are mostly white, the corresponding errors in the derived

acceleration are large at high frequencies, or in the short term. Consequently, there is only a

potentially small window within which the gravitational signal may be discerned. The window

depends also on the speed of the vehicle and moves to the right relative to the gravity signal

with decreasing speed.

The acceleration (specific force) of the platform is taken from the output of the INS. The

kinematic acceleration must be calculated independently by numerical differentiation with

respect to time of positions determined by GNSS. Subsequently, gravitational components are

estimated from the difference of these two types of accelerations.
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Appendix H. INS/GNSS general formulas

One aspect of vector gravimetry is the strong coupling of uncompensated gyro errors into the

horizontal acceleration components, but there is no inherent dependence on a stochastic

interpretation or modelling of the gravity disturbance vector.

In terms of the specific force, f b, in the sensor frame and the kinematic acceleration, ẍi, the

gravitation vector is expressed in the e-frame as follows:

ge = Rei
(
ẍi−Rib f b

)
(H.2)

The gravity disturbance vector is obtained by removing from ge the normal gravity vector

corrected for Earth’s centrifugal acceleration:

δge = ge−γe = ge−ΩeieΩeie xe−γe =

= Rei

(
ẍi−Rib f b

)
−

(
γe+ReiΩ

i
ieΩ

i
ie xi

)

whereΩeie = ReiΩ
i
ie Rie and all quantities of the right side are measured or computed.

We remark that gyro errors here will affect the computation of Rib f b.

If we want to use the l-frame form, it should be noted that the transformation matrix Rli =
Rle Rei is readily calculated from the position of the vehicle using the transformation from

cartesian Earth-fixed to geodetic coordinates. An error in these coordinates represents a

misregistration error of the gravity disturbance vector.

All positioning requirements for registration of computed and estimated quantities are easily

achieved with GPS (or GNSS).

What demands much more precision, however, is the position xi that must be differentiated

to obtain kinematic acceleration ẍi.

It may be desirable or even necessary to estimate the major errors associated with the INS. A

Kalman filter can be formulated very simply in which the kinematic acceleration from GPS

serves as external update. The error states of the system are now limited to the INS error

parameters and the orientation errors, which link to the gyro and accelerometer errors, and

one may include the gravity disturbance in the state vector.

In all the bibliography consulted note that for illustrative purposes, they restrict the sensor

errors to biases and accelerometer scale factors errors; however, in actual situations, a different

set of parameters may be chosen depending on their estimability.

The coordinate errors further fall into two categories: associated with control points coordi-

nates, and without any external control.
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H.1. Detailed equations in the e-frame

It is assumed that the remaining systematic error parameters, though stochastic, do not

behave as stochastic processes, since only a single adjustment will be performed. As such, the

remaining errors are essentially empirical in nature, being represented by simple functions

thought to describe their variation along the traverse.

A typical set of systematic error parameters may be based on gyro drift biases and initial

velocity errors.

The most rigorous and straightforward approach is to estimate the control point coordinates

and system parameter errors for all traverses simultaneously using observations of all control

point coordinates in the network.

GPS INS

meas. principle dist. from time delays inertial accel.
system operation reliance on space segment autonomous
output variables position, time position, orientation
long-wave. errors low high
short-wave. errors high low
data rate low (1 Hz) high (≥ 25 Hz)
instrument cost low high

Table H.1: Characteristics of GPS versus INS.

From the geodetic point of view, we may consider INS as aiding GPS positioning, both as an

interpolator and as a stopgap device. In addition, because of the orientation output from an

INS, the possibility exists to determine the complete rotational motion of the vehicle.

The only drawback is the cost of the INS that ultimately is a function of the required accuracy.

Geodetic applications of the integrated INS/GNSS for enhanced positioning capability have

focused on the mobile mapping system and similar systems that perform remote sensing and

land data acquisition through multispectral imaging.

In geodetic application, we are less concerned with real-time kinematic positioning and usually

are able to integrate systems only off-the-shelf, that is, without significant hardware coupling

between them. Furthermore, most applications are in a dynamically benign environment and

it is enough to concentrate on integrating the data processing algorithms.

H.1 Detailed equations in the e-frame

We start with

xe = re+Reb ab (H.3)
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Appendix H. INS/GNSS general formulas

where xe is the GNSS antenna position in e-frame (earth frame), re is the IMU position in

e-frame and ab is the offset antenna between IMU and GNSS in b-frame (body frame).

We know that

ae = xe− re (H.4)

and if they are combined, the following equation results

ae = Reb ab (H.5)

We know that

Ωbeb =Ωbei+Ωbib =Ωbib−Ωbie =Ωbib−RbeΩ
e
ie Reb (H.6)

whereΩbib is measured,Ωeie is known, and Rbe and Reb are computed.

So, we have

Ω̇
b
eb = Ω̇bib− Ṙ

b
eΩ

e
ie Reb−Rbe Ω̇

e
ie Reb−RbeΩ

e
ie Ṙ

e
b (H.7)

and

Ṙ
e
b = RebΩ

b
eb = RebΩ

b
ib−Ωeie Reb (H.8)

Ṙ
b
e = RbeΩ

e
be =−Ωbeb Rbe (H.9)

Then applying these relationships to

ae = Reb ab (H.10)

we obtain

ȧe = Ṙ
e
b ab+Reb ȧb (H.11)

äe = Reb
(
äb+2Ωbeb ȧb+ Ω̇beb ab+ΩbebΩbeb ab

)
(H.12)

where 2 Ωbeb ȧb is the Coriolis term; Ω̇
b
eb ab is the tangential term and Ωbeb Ω

b
eb ab is the

centripetal part.
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H.1. Detailed equations in the e-frame

We also know from [105, Equation (4–10)] that

ge = r̈e−Reb f b+2Ωeie ṙe (H.13)

and we have

re = xe−ae

ṙe = xe− ȧe

r̈e = ẍe− äe
(H.14)

Then

ge = ẍe− äe−Reb f b+2Ωeie ẋe−2Ωeie ȧe (H.15)

Finally

ge = ẍe−Reb f b+2Ωeie ẋe−Reb äb+2 RebΩ
b
eb ȧb+

+ Reb Ω̇
b
eb ab+RebΩ

b
ebΩ

b
eb ab+2Ωeie Ṙ

e
b ab+

+ 2Ωeie Reb ȧb =

= ẍe−Reb f b+2Ωeie ẋe−Reb äb−2 RebΩ
b
ib ȧb−

− RebΩ
b
ibΩ

b
ib ab+Reb Ω̇

b
ib ab+ΩeieΩeie Reb ab+

+ Ω̇
e
ie Reb ab

It is supposed thatΩeie is constant, so Ω̇
e
ie = 0 and then

ge = ẍe−Reb f b+2Ωeie ẋe−Reb äb−2 RebΩ
b
ib ȧb+

+ ΩeieΩ
e
ie Reb ab−Reb Ω̇

b
ib ab−RebΩ

b
ibΩ

b
ib ab
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By linearisation of this equation and neglecting the second order terms, one can derive an

error model as follows:

d ge = d ẍe−Reb d f b+2Ωeie d ẋe+Reb (ab)∗ dω̇bib+

+
[

2 Reb (ȧb)?+Reb (ab)?Ωbib+2 RebΩ
b
ib (ab)?

]
dωbib−

− Reb d äb−2 RebΩ
b
ib d ȧb+

+
[
ΩeieΩ

e
ie Reb−Reb

(
Ω̇
b
ib+ΩbibΩbib

)]
ȧb+

+
[(

Reb f b
)?+ (

Reb äb
)?+2

(
RebΩ

b
ib ȧb

)?−
− ΩeieΩ

e
ie

(
Rebab

)?+ (
RebΩ

b
ibΩ

b
ib ab

)?+ (
Reb Ω̇

b
ib ab

)?]
εe

Up to this point, it has been assumed that the two measurement system INS and GNSS are per-

fectly sinchronised. In reality this can never be achieved and therefore a small synchronisation

error dT has to be added to the equation. Thus, we obtain

d ge = d ẍe−Reb d f b+2Ωeie d ẋe+Reb (ab)∗ dω̇bib+

+
[

2 Reb (ȧb)?+Reb (ab)?Ωbib+2 RebΩ
b
ib(ab)?

]
dωbib−

− Reb d äb−2 RebΩ
b
ib d ȧb+

+
[
ΩeieΩ

e
ie Reb−Reb

(
Ω̇
b
ib+ΩbibΩbib

)]
d ab+

+
[(

Reb f b
)?+ (

Reb äb
)?+2

(
RebΩ

b
ib ȧb

)?−
− ΩeieΩ

e
ie

(
Reb ab

)?+ (
Reb

˙
ΩbibΩ

b
ib ab

)?
+

+
(
Reb Ω̇

b
ib ab

)?]
εe+

(
Ṙ
e
b f b+Reb ḟ

b)
dT

Usually it is also supposed that ȧb = äb = 0, then

ge = ẍe−Reb f b+2Ωeie ẋe−ΩeieΩeie Reb ab+Reb Ω̇
b
ib ab+

+ RebΩ
b
ibΩ

b
ib ab
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d ge = d ẍe−Reb d f b+2Ωeie d ẋe+Reb (ab)∗ dω̇bib+

+ Reb (ab)?Ωbib dωbib+2 RebΩ
b
ib (ab)? dωbib−

− ΩeieΩ
e
ie Reb d ab+Reb Ω̇

b
ib d ab+

+ RebΩ
b
ibΩ

b
ib d ab+

(
Reb f b

)?
εe−ΩeieΩeie

(
Reb ab

)?
εe+

+
(
RebΩ

b
ibΩ

b
ib ab

)?
εe+

(
Reb Ω̇

b
ib ab

)?
εe+

+ Ṙ
e
b f b dT +Reb ḟ b dT
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I IG-IMU simulator data

As it has been introduced in Chapter 4, IMU simulator used in this research is a computer

program developed at the Institute of Geomatics (IG) in the frame of the Navega system for

testing and validating navigation algorithms. This tool, which has been described by Parés

in [88], emulates the behavior of standard IMUs with three linear accelerometers and three

angular rate sensors in an orthogonal configuration. Also, it has been mainly developed to

validate methods involving inertial technology.

The fundamentals of the IG-IMU simulator are the functional model that characterise the

inertial motion (INS mechanisation equations), the stochastic models that characterise the

IMU errors and the geodetic model that contextualises the previous models.

As any real IMU, the simulator computes angular velocities and linear accelerations for a

trajectory. Given a set of times, positions, velocities and attitudes, the system provides the

signal that an IMU measures as if it were in that situation. After that, the signal is modified by

adding a variety of errors, such as biases or scale factors. The order in which these errors are

introduced to IMU data — I MU = (ω, f )T — is:

• scale factor

I MUout =
(
1+Sc +Sr c +Sg m +Sr w

) · I MUi n

where I MUout is the output data, I MUi n is the original data, Sc is the constant com-

ponent of the scale factor, Sr c is a random constant stochastic process, Sg m is a Gauss-

Markov stochastic process and Sr w is a random walk stochastic process.

• bias

I MUout = Bc +Br c +Bg m +Br w +
(

1 Bg s

0 1

)
· I MUi n

where I MUout is the output data, I MUi n is the original data, Bc is the constant compo-

nent of the bias, Br c is a random constant stochastic process, Bg m is a Gauss-Markov
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Appendix I. IG-IMU simulator data

stochastic process, Br w is a random walk stochastic process and Bg s is a component

depending on linear accelerations.

• misalignment

I MUout =

 1 −yz zy

xz 1 −zx

−xy yx 1

 · I MUi n

where I MUout is the output data, I MUi n is the original data, xy , xz , yx , yz , zx , zy are

the misalignments between axis.

• random noise

I MUout =α ·SE N SOR(PSDnoi se )+ I MUi n

where I MUout is the output data, I MUi n is the original data, α is a random number,

SE N SORN OI SE is the covariance of the data noise, that is a function of PSDnoi se .

• quantisation

I MUout =
⌊

I MUi n

quant

⌋
·quant

where I MUout is the output data, I MUi n is the original data, quant is the number of

quantisation and b·c means the integer part of a real number.

The parameters that define each errors are introduced in a XML file. Later on, the structure of

this file is:

<?xml version="1.0" encoding="UTF-8"?>
<imu_file

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance
xsi:noNamespaceSchemaLocation=’err_file.xsd’>

<lineage>
<id> ... </id>
<author><item> ... </item></author>
<organization> ... </organization>
<department> ... </department>
<date_time> ... </date_time>
<ref_documents><item> doc IMU’s </item></ref_documents>
<project> TE-AT </project>
<task> IMU simulator </task>
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<remarks> ... </remarks>
</lineage>

<imu_info>
<model> ... </model>
<manufacturer> ... </manufacturer>
<country> -- </country>
<ref_frame> XYZ </ref_frame>
<coord_system> geo </coord_system>
<frequency> 50 </frequency>

</imu_info>

<gyros_info>
<bias>

<Constant> B_{c} <\Constant>
<R_constant> B_{rc} <\R_constant>
<G_Markov>

<initial_val> B_{gm} <\initial_val>
<corr_time> t_{c} <\corr_time>
<proc_noise> W_{x} <\proc_noise>

<\G_Markov>
<R_walk> B_{rw} <\R_walk>
<G_dependant> B_{gs} <\G_dependant>

</bias>
<scale_factor><Repeatibility> S_{rc} </Repeatibility></scale_factor>
<misalignment><Angles> 0 0 0 </Angles></misalignment>
<noise> <RW-PSD> W_{noise} </RW-PSD></noise>
<quantization><Step> quant </Step></quantization>

</gyros_info>

<accel_info>
<bias>

<Constant> B_{c} <\Constant>
<R_constant> B_{rc} <\R_constant>
<G_Markov>

<initial_val> B_{gm} <\initial_val>
<corr_time> t_{c} <\corr_time>
<proc_noise> W_{x} <\proc_noise>

<\G_Markov>
<R_walk> B_{rc} <\R_walk>

</bias>
<scale_factor><Repeatibility> S_{rc} </Repeatibility></scale_factor>
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Appendix I. IG-IMU simulator data

<misalignment><Angles> 0 0 0 </Angles></misalignment>
<noise><RW-PSD> PSD_{noise} </RW-PSD></noise>
<quantization><Step> quant </Step></quantization>

</accel_info>

</imu_file>

Now the data used in the computations correspond only to the prior knowledge of LTN101

and LN200 IMUs.
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I.0.1 LTN101 data

<?xml version="1.0" encoding="UTF-8"?>
<imu_file

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=’err_file.xsd’>

<lineage>
<id> 005 </id>
<author><item> ATermens </item></author>
<organization> ICC </organization>
<department> Geodesia </department>
<date_time> 07/10/2006 </date_time>
<ref_documents>

<item> doc IMU’s </item>
</ref_documents>
<project> TE-AT </project>
<task> IMU simulator </task>
<remarks> perturbat </remarks>

</lineage>

<imu_info>
<model> LTN-101 </model>
<manufacturer> Litton </manufacturer>
<country> ??? </country>
<ref_frame> XYZ </ref_frame>
<coord_system> geo </coord_system>
<frequency> 50 </frequency>

</imu_info>

<gyros_info>
<bias>

<Constant> 0.0 0.0 0.0 <\Constant>
<R_constant> 0.0 0.0 0.0 <\R_constant>
<G_Markov>

<initial_val> 0 0 0 <\initial_val>
<corr_time> 0 0 0 <\corr_time>
<proc_noise> 0 0 0 <\proc_noise>

<\G_Markov>
<R_walk> 0 0 0 <\R_walk>
<G_dependant> 0 0 0 <\G_dependant>

</bias>
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Appendix I. IG-IMU simulator data

<scale_factor> <Repeatibility> 0 0 0 </Repeatibility> </scale_factor>
<misalignment> <Angles> 0 0 0 </Angles> </misalignment>
<noise> <RW-PSD> 0.001 0.001 0.001 </RW-PSD> </noise>
<quantization> <Step> 0 0 0 </Step> </quantization>

</gyros_info>

<accel_info>
<bias>

<Constant> 0 0 0 <\Constant>
<R_constant> 0 0 0 <\R_constant>
<G_Markov>

<initial_val> 0 0 0 <\initial_val>
<corr_time> 0 0 0 <\corr_time>
<proc_noise> 0 0 0 <\proc_noise>

<\G_Markov>
<R_walk> 0 0 0 <\R_walk>

</bias>
<scale_factor> <Repeatibility> 0 0 0 </Repeatibility> </scale_factor>
<misalignment> <Angles> 0 0 0 </Angles> </misalignment>
<noise> <RW-PSD> 10.0 10.0 10.0 </RW-PSD> </noise>
<quantization> <Step> 0 0 0 </Step> </quantization>

</accel_info>

</imu_file>
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I.0.2 LN200 data

<?xml version="1.0" encoding="UTF-8"?>
<imu_file

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=’err_file.xsd’>

<lineage>
<id> 005 </id>
<author><item> ATermens </item></author>
<organization> ICC </organization>
<department> Geodesia </department>
<date_time> 07/10/2006 </date_time>
<ref_documents>

<item> doc IMU’s </item>
</ref_documents>
<project> TE-AT </project>
<task> IMU simulator </task>
<remarks> perturbacio LN200A1 segons Skaloud </remarks>

</lineage>

<imu_info>
<model> LN-200 A1 </model>
<manufacturer> Litton </manufacturer>
<country> -- </country>
<ref_frame> XYZ </ref_frame>
<coord_system> geo </coord_system>
<frequency> 50 </frequency>

</imu_info>

<gyros_info>
<bias>

<Constant> 0.0 0.0 0.0 <\Constant>
<R_constant> 0.0 0.0 0.0 <\R_constant>
<G_Markov>

<initial_val> 0 0 0 <\initial_val>
<corr_time> 0 0 0 <\corr_time>
<proc_noise> 0 0 0 <\proc_noise>

<\G_Markov>
<R_walk> 0.0 0.0 0.0 <\R_walk>
<G_dependant> 0 0 0 <\G_dependant>

</bias>
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Appendix I. IG-IMU simulator data

<scale_factor> <Repeatibility> 0 0 0 </Repeatibility> </scale_factor>
<misalignment> <Angles> 0 0 0 </Angles> </misalignment>
<noise> <RW-PSD> 0.04 0.04 0.04 </RW-PSD> </noise>
<quantization> <Step> 0 0 0 </Step> </quantization>

</gyros_info>

<accel_info>
<bias>

<Constant> 0 0 0 <\Constant>
<R_constant> 0 0 0 <\R_constant>
<G_Markov>

<initial_val> 0 0 0 <\initial_val>
<corr_time> 0 0 0 <\corr_time>
<proc_noise> 0 0 0 <\proc_noise>

<\G_Markov>
<R_walk> 0 0 0 <\R_walk>

</bias>
<scale_factor> <Repeatibility> 0 0 0 </Repeatibility> </scale_factor>
<misalignment> <Angles> 0 0 0 </Angles> </misalignment>
<noise> <RW-PSD> 50.0 50.0 50.0 </RW-PSD> </noise>
<quantization> <Step> 0 0 0 </Step> </quantization>

</accel_info>

</imu_file>
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