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Abstract (English)

Words that belong to a semantic type, like LOCATION, can metonymically behave
as a member of another semantic type, like ORGANIZATION. This phenomenon
is known as regular polysemy.

In Pustejovsky’s (1995) Generative Lexicon, some cases of regular polysemy
are grouped in a complex semantic class called a dot type. For instance, the
sense alternation mentioned above is the LOCATION®ORGANIZATION dot type.
Other dot types are for instance ANIMAL®OMEAT or CONTAINER®CONTENT.

We refer to the usages of dot-type words that are potentially both metonymic
and literal as underspecified. Regular polysemy has received a lot of attention
from the theory of lexical semantics and from computational linguistics. How-
ever, there is no consensus on how to represent the sense of underspecified
examples at the token level, namely when annotating or disambiguating senses
of dot types.

This leads us to the main research question of the dissertation: Does sense
underspecification justify incorporating a third sense into our sense inventories
when dealing with dot types at the token level, thereby treating the underspec-
ified sense as independent from the literal and metonymic?

We have conducted an analysis in English, Danish and Spanish on the pos-
sibility to annotate underspecified senses by humans. If humans cannot consis-
tently annotate the underspecified sense, its applicability to NLP tasks is to be
called into question.

Later on, we have tried to replicate the human judgments by means of unsu-
pervised and semisupervised sense prediction. Achieving an NLP method that
can reproduce the human judgments for the underspecified sense would be suf-
ficient to postulate the inclusion of the underspecified in our sense inventories.

The human annotation task has yielded results that indicate that the kind
of annotator (volunteer vs. crowdsourced from Amazon Mechanical Turk) is
a decisive factor in the recognizability of the underspecified sense. This sense
distinction is too nuanced to be recognized using crowdsourced annotations.

The automatic sense-prediction systems have been unable to find empiric
evidence for the underspecified sense, even though the semisupervised system
recognizes the literal and metonymic senses with good performance.

In this light, we propose an alternative representation for the sense alterna-
tion of dot-type words where literal and metonymic are poles in a continuum,
instead of discrete categories.






Abstract (Danish)

Ord som hgrer til en semantisk klasse som fx STED kan vise en metonymisk
betydning som fx VIRKSOMHED. Dette feenomen kaldes for systematisk polysemi.

I Pustejovskys (1995) Generative Lexicon forefindes sarlige kombinationer
af bogstavelig og metonymisk betydning. De samles i en kompleks seman-
tisk klasse eller dot-type som for eksempel STED®VIRKSOMHED, DYROK@D eller
BEHOLDEROINDHOLD.

Hvis en anvendelse af et dot-type ord er bade bogstavelig og metonymisk,
kaldes den for wuspecificeret. Systematisk polysemi har faet meget opmeerk-
somhed fra teori om leksikal semantik og fra datalingvistik, men der er ikke
konsensus om, hvordan den uspecificerede betydning repraesenteres pa token-
niveau, dvs nar man annoterer individuelle betydninger eller udferer word-sense
disambiguation.

Dette fgrer til vores hovedforskningsspgrgsmal: Skal man behandle den us-
pecificerede betydning som en enestaende betydning, uathsengig af den bogstave-
lige og den metonymiske betydning, nar man arbejder med dot-type ord pa
token-niveau?

Vi har udfgrt et studie med engelske, danske og spanske eksempler for at
forske i den menneskelige evne til at annotere den uspecificerede betydning.
Hvis mennesker ikke kan annotere den pa en konsistent made, bgr dens anven-
delsesmuligheder for datalingvistiske systemer gentaenkes.

Senere har vi prgvet forskellige forsgg for at replikere annotationerne med
superviseret og usuperviseret maskinleering. Finder vi et datalingvistisk system,
som kan forudse de menneskelige betydningsbedgmmelser om uspecificering,
har vi tilstreekkeligt bevis for at inkludere den uspecificerede betydning i vores
betydningsbeholder.

Annotationsopgaven med mennesker har givet et resultat, som papeger, at
den slags annoter (frivillig eller crowsourced fra Amazon Mechanical Turk) er
en afggrende faktor for at kunne genkende de udspecificerede eksempler. Denne
betydningsforskel er alt for nuanceret til at kunne genkendes med crowdsourcede
annoteringer.

Det automatiske system for betydningsforudsigelse kan ikke finde empirisk
bevis for en uspecificeret betydning, selv om systemet praesterer udover det
tilstrackkelige for den bogstavelige og den metonymiske betydning.

Pa denne baggrund foreslar vi en alternativ repraesentation for dot-type ord,
hvor bogstavelighed og metonymi er poler i en gradient af kontinuerlige veerdier,
i stedet for diskrete klasser.
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Abstract (Spanish)

Las palabras de una clase semantica como LUGAR pueden comportarse metoni-
micamente como miembros de otra clase seméntica, como ORGANIZACION. Este
fenémeno se denomina polisemia regular.

En el Generative Lexicon de Pustejovsky (1995), algunos casos de polisemia
regular se encuentran agrupados en una clase semantica compleja llamada dot
type. Por ejemplo, la alternacién de sentidos anterior es el dot type LUGAR®ORGA-
NIZACION. Otros ejemplos de dot type son ANIMALeCARNE or CONTENEDOR®CON-
TENIDO.

Llamamos subespecificados a los usos de palabras pertenecientes a un dot
type que son potentialmente literales y meténimicos. La polisemia regular ha
recibido mucha atencion desde la teoria en seméantica léxica y desde la lingiiistica
computacional. Sin embargo, no existe un consenso sobre cémo representar el
sentido de los ejemplos subespecificados al nivel de token, es decir, cuando se
anotan o disambiguan sentidos de palabras de dot types.

Esto nos lleva a la principal pregunta de esta tesis: ;Justifica la subespeci-
ficacién la incorporacion de un tercer sentido a nuestros inventarios de sentidos
cuando tratamos con dot types a nivel de token, tratando de este modo el el
sentido subespecificado como independiente de los sentidos meténimico y literal?

Hemos realizado un andlisi en inglés, danés y espanol sobre la posibilidad
de anotar sentidos subespecificados usando informantes. Si los humanos no
pueden annotar el sentido subespecificado de forma consistente, la aplicabilidad
del mismo en tareas computacionales ha de ser puesta en tela de juicio.

Posteriormente hemos tratado de replicar los juicios humanos usando apren-
dizaje automatico. Obtener un método computacional que reproduzca los juicios
humanos para el sentido subespecificado seria suficiente para incluirlo en los in-
ventarios de sentidos para las tareas de anotacién.

La anotacion humana ha producido resultados que indican que el tipo de
anotador (voluntario o crowdsourced mediante Amazon Mechanical Turk) es un
factor decisivo a la hora de reconocer el sentido subespecificado. Esta difer-
enciacion de sentidos requiere demasiados matices de interpretacién como para
poder ser anotada usando Mechanical Turk.

Los sistemas de prediccién automatica de sentidos han sido incapaces de
identificar evidencia empirica suficiente para el sentido subespecificado, a pesar
de que la tarea de reconocimiento semisupervisado reconoce los sentidos literal
y metonimico de forma satisfactoria.

Finalmente, propones una representacion alternativa para la representacion
de sentidos de las palabras de dot types en la que literal y meténimico son polos
en un continuo en lugar de categorias discretas.
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Chapter 1

Introduction

The Generative Lexicon (GL) offers itself as an alternative to the traditional,
sense-enumeration based understanding of word senses, by both postulating
underspecified lexical entries and the possibility of underspecified predications.
Some computational lexicons have been developed using the Generative Lexicon
as a theoretical framework and incorporate the dot type within their hierarchy
of semantic classes.

While the analytical usefulness of postulating the dot type has been proven,
there is no larger scale empirical assessment of the statistical significance of
metonymic and underspecified predications of dot-type nouns.

There are few approaches from within statistical machine learning (ML) that
make use of the GL as, for instance, the listing of target classes for classification
experiments in word sense disambiguation. Computational semantics employs
mostly clustering and classification, that is, methods that assign an input doc-
ument a category from a list of mutually exclusive categories. How can we then
develop applications following a theory that transcends the sense-enumeration
paradigm if we are straitjacketed by our computational modus operandi, bound
to provide a discrete output?

While reading the Generative Lexicon (GL), I was intrigued by the parallel
notions of dot type and regular polysemy. Was the dot type an adequate means
to describe regular polysemy at the token-level for natural language processing
(NLP) tasks? In other words, was it useful or even possible to annotate the
underspecified senses in cases of regular polysemy using GL theoretical objects?
And to which extent were the concepts offered in the GL implementable in
current methods within computational semantics?

From these considerations arose the general research question in this disser-
tation. To which extent are underspecified predications of dot-type words an
actual class-wise distributional phenomenon that NLP systems need to account
for, and not an unnecessary theoretical artifact resulting from the attempt to
develop a theoretical framework to encompass both predicate logic and lexical
semantics?

The main goal of this thesis is the empirical assessment of the relevance of the
dot type for token-level sense assignment. The lack of a sense-annotated corpus
aiming at capturing the selectional behavior of dot types—and particularly, of
underspecified predications—called for the elaboration of a corpus with sense
annotations for dot type words.
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The dot type is a theoretical object of the GL, and in order to study the
viability of its usage for sense annotation, we needed to choose specific instances
of dot types. We have chosen to conduct the study on a series of dot types for
Danish, English and Spanish. We have chosen five dot types to study for English,
and picked two of them for a comparative in Danish and Spanish.

We developed a sense-annotated corpus for a series of dot types in Danish,
English and Spanish. This sense-annotated corpus served a dual purpose; first,
it allowed an empirical study on how different kinds of annotators (experts,
turkers, and volunteers) are predisposed to recognizing the underspecified sense;
second, it served as gold standard for the following NLP experiments.

Collection of data is only but one step in the development of a gold stan-
dard. A great deal of the effort documented in this dissertation went to provid-
ing strategies to capture underspecified predications from the (again, discrete
and categorical) judgments of the informants. One of the strategies was a vot-
ing method with a theoretically motivated backoff strategy, and the other an
unsupervised method to automatically weigh annotator judgments. Both sense
assignment methods were compared against the expert annotations to determine
which one yielded more reliable sense assignments.

Once the gold standard data had been assembled, it was available it for ma-
chine learning tasks. The general goal of computational semantics is to automat-
ically emulate the human informants’ meaning judgments, and the experiments
try to capture different sides of the regular polysemy and underspecification
phenomena.

Since a way of proving the existence of a pattern is demonstrating its learn-
ability by automatic means, this thesis experimented with systems that aimed
at the disambiguation of senses within a list of dot types.

A first unsupervised system used word-sense induction to account for the
distributional evidence behind the different senses in a dot type. Its goal is to
assess how much simple distributional information there is to identify the senses
of dot type words, especially whether there is empirical evidence to claim an
underspecified sense.

Second I used a (semi-)supervised approach to classify individual predicates
into literal, metonymic and underspecified. This word sense disambiguation
experiment was aimed to assess the identifiability of underspecified predications.

Two experiments complement this study. The first one tries to represent the
notion of a continuum between the literal and the metonymic as a numeric value
that can be calculated. Its goal is to assess the theory that describes literality
and metonymicity as a continuum and defends the gradability of the metonymy
readings as non-categoric, non-discrete, non-mutually exclusive.

The second one is a similar regression experiment to try to predict the ob-
served agreement of examples. The difficulty of an example in terms of vo-
cabulary or syntactic complexity can also hinder the annotator’s agreement,
thus affecting the distribution of underspecified predications. Low agreement
does not mean useless information, but indicates difficulty and is potentially
correlated to underspecified sense. This experiment can thus account for the
linguistic traits that make an example more or less difficult to annotate.

Chapter 2 defines the concepts and terms that are necessary for this dis-
sertation, namely a definition of regular polysemy, an overview of the perti-
nent theoretical objects of the Generative Lexicon, and redefines the research
question in a more formal manner. Chapter 3 covers the related work in the
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representation of metonymy in lexical knowledge bases, sense-annotation tasks
for figurative meaning, and type- and token-based modeling of regular poly-
semy. Chapter 4 describes the annotation task to obtain human judgments on
regular polysemy; this chapter also compares the biases of expert, turker and
volunteer annotators for the underspecified sense, and it describes the imple-
mentation of two sense assignment methods to obtain a final sense tags from the
set of judgments given by the annotators. Chapter 5 describes the word-sense
induction method that tries to capture the senses of dot types by unsupervised
means. Chapter 6 describes the features we use to characterize the examples
for the (semi-)supervised experiments of the following chapters. Chapter 7 de-
scribes the word-sense disambiguation system that aims to identify the literal,
metonymic and underspecified senses. Chapter 8 describes an experiment to
assess the robustness of a continuous representation of the token-wise sense of
dot-type words. Chapter 9 describes an experiment to predict the agreement of
sense-annotated examples. Finally, Chapter 10 summarizes the conclusions from
the experiment chapters, lists the additional contributions of the dissertation,
and outlines the future work.
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Chapter 2

Theoretical framework

In this chapter we define the key concepts—and the corresponding terms— that
we need in order to conduct the empirical study outlined in the Introduction.
Section 2.1 defines the notion of polysemy, which is expanded in Section 2.2
with the notion of regular polysemy. In Section 2.3 we describe a non-discrete
understanding of the gradation between literal and figurative sense. In Section
2.4 we define the concept of underspecification with regards to regular polysemy.
Section 2.5 provides an overview of the Generative Lexicon. In Section 2.6 we
describe how we choose particular cases of metonymy to conduct our study, and
finally in Section 2.7 we redefine the main research question of this dissertation,
broken down into three hypotheses.

2.1 Polysemy

Words can have more than one meaning. There is not, however, a single cause for
the appearance of multiple meanings. In some cases, a word—and by word we
mean a sequence of letters bound by separators—can present meanings that are
unrelated to each other, like the “sport competition” and the “little flammable
stick” senses of the noun match, the former being of Germanic origin and the
later being of Romance origin:

match noun
1: a person or thing equal or similar to another
2: a pair suitably associated
3: a contest between two or more parties, “a golf match”, “a soccer match”, ”a
shouting match”

match noun
1: a chemically prepared wick or cord formerly used in firing firearms or powder

We refer to words that show unrelated meanings but share surface form as
homonyms, as the common understanding of these phenomenon is that there
are two or more concepts that share surface form, even though they have no

27



28 CHAPTER 2. THEORETICAL FRAMEWORK

morphosyntactic, denotational or etymological relation. In these cases it is
customary to give each meaning its own entry in a dictionary.

Merriam-Webster has indeed two separate entries for the noun match, one
for each of the homonymic meanings—there is also an entry for the verb match,
but we are disregarding it for the sake of the argument. These entries are fur-
ther broken down to define more fine-grained senses. Let us examine the entry
for “match (flammable stick)”:

match noun
1: a chemically prepared wick or cord formerly used in firing firearms or powder
2: a short slender piece of flammable material (as wood) tipped with a com-
bustible mixture that bursts into flame when slightly heated through friction (as
by being scratched against a rough surface)

This entry provides two senses. The second one is the most conventional
nowadays, whereas the first one is the older, original sense. The two senses are
etymologically related and thus, we consider this a case of polysemy, and not
homonymy.

Polysemy is different to homonymy in that the senses of polysemous words
share some kind of relation between them. Intuitively, we can see that the “wick
used in firing firearms” and the “piece of flammable material” senses of match
are closer to each other than to the “sports competition” sense.

This later sense also coexists in a polysemous grouping with other related
senses of match like “an exact counterpart” or “a marriage union”. We see
thus that polysemy and homonymy can and do coexist, which obscures the
application of this distinction, because for the same word we find two clusters
of internally related senses; one for senses that have to do with lighting fire, and
one for senses that have to do with pairings of comparable members.

If the criteria to differentiate between the two clusters are often etymological,
this distinction becomes more of a philological concern than an actual issue
within computational linguistics, where—in its most basic conceptualization—
each word has a list of potential, mutually exclusive, unrelated senses.

Let us compare the senses in the previous entries with the first four senses
in the WordNet entry for match:

match noun

1. noun.artifact: match, lucifer, friction match (lighter consisting of a thin
piece of wood or cardboard tipped with combustible chemical; ignites with
friction)

2. noun.event: match (a formal contest in which two or more persons or
teams compete)

3. noun.artifact: match (a burning piece of wood or cardboard)

4. noun.artifact: match, mate (an exact duplicate)

We see that these senses are provided as a list, even though they could be
further structured by assigning them to the two clusters mentioned previously,
issuing groups {1,3} and {2,4}. Lexical knowledge bases like WordNet have
been criticized by authors like Pustejovsky and Boguraev (1996) or Kilgarriff
(1997) because of their way of portraying and listing senses as an enumeration
of unrelated definitions (cf. Section 2.5.4).
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However, we know that homonymy is arbitrary, whereas the senses of pol-
ysemous words are somehow related. If these senses are related, it is because
they are the result of meaning shifts that modify and nuance the meaning of
words, thereby changing the meaning of words on the fly as required to fit the
needs for expression. Some of these meaning shifts become conventionalized and
added to the fix repertoire of possible expectable senses a word can manifest.

The concern in this dissertation is not to explore the mechanisms by which
new figurative senses are conventionalized, but rather, to explore how words of
certain classes like animals or places show a related, secondary sense that is
consistent throughout the whole class. In this way, all the names of inhabited
places can also be used to refer to their population, and most animal names can
be used to refer to their meat. This particular kind of polysemy is called reqular
polysemy

Apresjan (1974) offers a formalization of the intuition of coherence between
senses we have mentioned above:

The meanings a; and a; of the word A are called similar if there exists
levels of semantic analysis on which their dictionary definitions [...]
or associative features have a non-trivial common part.

Still, he also concedes that the difference between homonymy and polysemy
is not always immediate but suggests a gradation from homonymy to traditional
(“irregular”) polysemy to regular polysemy in terms of how coherent the senses
of the words are:

Polysemy and homonymy are relative concepts [...] On the other
hand, we can speak of different types of polysemy from the point of
view of their relative remoteness from homonymy.

Apresjan conceptualizes the three phenomena of homonymy, irregular and reg-
ular polysemy as being closer or further apart from each other if the senses of
the words are respectively closer or further apart from each other:

Closest to homonymy are some types of metaphorically motivated
polysemy; in some dictionaries such polysemy is typically treated as
homonymy. [...] Metonymically and functionally motivated poly-
semy is, generally speaking, removed a step further from metonymy.

Figure 2.1 represents this statement graphically. Homonymy is the case
where the senses are in general less related to each other, because they are ar-
bitrarily grouped under the same surface form—i.e. the same word. Irregular
polysemy, often based on metaphor (cf. Section 2.3) relates senses in a more
coherent manner than homonymy, and regular polysemy shows the highest in-
ternal coherence of the three because its senses are obtained from metonymic
processes more often than not.
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Homonymy
Irregular polysemy

Regular polysemy

A
Y

- Coherence between senses +

Figure 2.1: Graphic representation of homonymy and the two polysemies along
an idealized axis of semantic coherence between senses

The next sections provide a formalized definition of the two different kinds
of polysemy, focusing on regular polysemy.

2.2 Regular polysemy

Very often a word that belongs to a semantic type, like LOCATION, can be-
have as a member of another semantic type, like ORGANIZATION, as shown by
the following examples from the American National Corpus (Ide and Macleod,
2001):

(2.1) a) Manuel died in exile in 1932 in England.
b) England was being kept busy with other concerns.
¢) England was, after all, an important wine market.

In case a), England refers to the English territory (LOCATION), whereas in b)
it refers to England as a political entity (ORGANIZATION). The third case refers
to both the English territory and the English people. The ability of certain words
to switch between semantic types in a predictable manner is named by different
authors as logical metonymy (Lapata and Lascarides, 2003), sense extension
(Copestake and Briscoe, 1995), transfer of meaning (Nunberg, 1995), logical
or complementary polysemy (Pustejovsky, 1995), systematic polysemy (Blutner,
1998) or regular polysemy.

Along with all these terminological variants comes a plethora of definitions,
each highlighting a particular aspect of this phenomenon of semantic variation.
Let us compare the definition given by Apresjan with Pustejovsky’s. Apresjan
(1974) offers the two parallel definitions. One of them notes that

Polysemy of the word A with the meanings a; and a; is called regular
if, in the given language, there exists at least one other word B
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with the meanings b; and b;, which are semantically distinguished
from each other in the same way as a; and a; and a; and b; are
nonsynonymous.

In the second definition, he adds that

Polysemy is called irregular if the semantic distinction between a;
and a; is not exemplified in any other word of the given language.

In other words, according to Apresjan the polysemy encompassing the “En-
glish territory” (a;) and the “English government” (a;) senses of England is
regular because we can find a similar pattern for Portugal (b; =“the Portuguese
territory”;b; =“the Portuguese government”) and for any other state. In or-
der to operationalize this definition we need to understand it as a collective
phenomenon that happens at the semantic type or class level, and not only to
individual words. Pustejovsky (1995) provides a different wording:

I will define logical polysemy as a complementary ambiguity where
there is no change of lexical category, and the multiple senses of the
word have overlapping, dependent or shared meanings.

Pustejovsky’s definition is word-internal and focuses on the relations between
the senses and the possibility of overlap between them in the cases of regular
polysemy, whereas Apresjan focuses on the consistency of alternation of senses
across all the other members of the same semantic class.

Apresjan acknowledges that polysemy needs to be present in a plural number
of words to be regular, that is, words A and B in the previous example form
a class by virtue of their first sense. Polysemy is thus considered regular if it
is extensive to the semantic type of the polysemous word and not only to the
word itself.

Moreover, Apresjan isolates regular polysemy from the other polysemies by
calling the later irregular. He later adds that “regularity is a distinctive feature
of metonymical transfers, irregular polysemy is more typical of metaphorical
transfers”, in this way defining both how to identify regular polysemy—by reg-
ularity in sense alternations across words—and what processes cause it—mostly
metonymy but also metaphor (cf. Section 2.3).

After these considerations we define regular polysemy as a phenomenon
whereby the word that belongs to a semantic type can predictably act as mem-
bers of another semantic type. Since there is a change of semantic type (and
words can stop meaning what they originally mean), this semantic shift is a
case of figurative language. The definition of regular polysemy we use in this
dissertation rests on the notions of metaphor and especially metonymy; both
are covered in Section 2.3.

2.3 Figurative language

Traditional rhetoric describes phenomena that allow using an expression to mean
something of a distinct kind, licensing figurative uses of language. Nunberg
(1995) calls these phenomena transfers of meaning, because some element of the
meaning of the original expression is transferred to the intended sense. Beyond
expressions based on degree like understatement or hyperbole, there are two
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main methods to extend the meaning of a word beyond its literal sense, namely
metaphor and metonymy.

Metaphor is commonly used as the default form of figurative language, and
there are definitions that incorporate metonymy as a kind of metaphor. Our
definition sees metaphor and metonymy as two different daughter categories to
figurative language that do not subsume each other.

Metaphor is a method to extend the sense of words by exploiting analogy or
similarity between concepts. Metonymy is a method to extend the sense of words
exploiting contiguity. Dirven (2002) places the origin of this differentiation in
Roman Jacobson’s work (Jakobson, 1971). Historically, he claims, linguistic
characterization had focused on metaphor and “metonymy tended to be very
much neglected” until Lakoff and Johnson (1980) published their canonical work
Metaphors We Live By, that in spite of its focus on metaphor, also provides a
definition of metonymy:

In these cases, as in the other cases of metonymy, one entity is being
used to refer to another. Metaphor and metonymy are different
kinds of processes. Metaphor is principally a way of conceiving one
thing in terms of another, and its primary function is understanding.
Metonymy, on the other hand, has primarily a referential function,
that is, it allows us to use one entity to stand for another

Lakoff and Johnson understand metaphor in terms of domain mapping, in
an attempt to quantify the difference between analogy and contiguity. If a
domain is a realm of experience (TEMPERATURE, TIME, SPACE, etc.), we can
define analogy as the ability to transfer certain properties of one domain to
another. For instance, heat is a term of the TEMPERATURE domain which can
be called “high temperature”, high being a concept from the SPACE domain which
is transferred following the notion of MUCH IS HIGH.

Metonymy however is conscribed within one domain—that of the base se-
mantic type of the metonymic word—, which is what determines the contiguity
mentioned above. Metonymic senses refer to something physically adjacent,
like a part of a larger whole, or to something temporally adjacent, like a
consequence or a product. Some well-known examples of metonymic sense al-
ternations are:

(2.2) a) PART FOR WHOLE: Lots of hands were needed to fix the fence.

b) CONTAINER FOR CONTENT: He drank a whole glass.

¢) LOCATION FOR ORGANIZATION: France elects a new president.
)

PROPERTY FOR SUBJECT OF PROPERTY: The authorities arrived
quickly.

d

e) PRODUCER FOR PRODUCT: I drive a Honda.

When reading example a), a part-for-whole metonymy (also known as synec-
doche), we know that “hands” stands for “working people”. In the rest of the
examples in (2.2), the word in italics also stands for something that is not ex-
actly its original sense: glasses are solid and cannot be drunk, France is a place
and has no will of its own, authority is abstract and does not move, etc. Still,
these are examples of very usual metonymies that do not convey a strongly
poetic or non-conventional sense.



2.3. FIGURATIVE LANGUAGE 33

Even though we refer to both metaphor and metonymy as figures of speech,
we support the intuition that there is something in metonymy that feels closer
to literality, that is, closer to conventional meaning (cf. 2.3.2). This intuition
is consistent with the idea of contiguity in metonymy as opposed to analogy in
metaphor, and with the idea that metaphors are mappings across two domains
while metonymy is in-domain.

Gibbs (1984) proposes that the literal and figurative meanings are placed at
the poles of a single continuum where intermediate senses are spread. Dirven
(2002) offers a taxonomy of the degrees of non-literality from literal (left) to
completely figurative (right). Figure 2.2 shows a summary of the schema pro-
vided in Dirven (2002). This understanding is also found in Cruse (Cruse, 1986,
p. 71) as sense spectrum.

linear metonymy  conjunctive metonymy inclusive metonymy metaphor

non-figurative figurative

e v
I o g

syntagmatic paradigmatic

Figure 2.2: The figurative-literal continuum according to Dirven (2002)

Let us focus on Dirven’s gradation of figurativeness of metonymies by looking
at his examples:

(2.3) a) Different parts of the country do not mean the same.
b)
¢) The Crown has not withheld its assent.
d)

Tea was a large meal for the Wicksteeds.

He has a good head on him.

Example a) shows what Dirven calls lineal metonymy, which he considers
non-figurative and non-polysemous (cf. Section 2.4). If there is a chance for
metonymies showing polysemous senses that coexist in a predication, this is
known by Dirven as conjunctive metonymy in b) and d), even though he per-
ceives the second example as non-figurative and the third one as figurative. The
last example is considered inclusive polysemy and is always figurative and pol-
ysemous. Dirven calls polysemous a word that has simultaneously literal and
metonymic usage. We expand on this notion in Section 2.4.

The axis in Figure 2.2 corresponds to the idea of internal consistency of senses
across homonymy and polysemy in Figure 2.1. That is, the more figurative
the figurative sense, the longer the distance from the original meaning will be.
In a conceptually related work, Hanks (2006) expands the right side of this
continuum by postulating that some metaphors are more figurative than others.
For instance, he claims that “a desert” in “a desert of railway tracks” is less
figurative than “I walked in a desert of barren obsession”.
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2.3.1 Differentiating metonymy from metaphor

In the previous section we have given definitions of metaphor and metonymy and
placed them in a literal-figurative continuum. The differences between metaphor
and metonymy indicate how the non-literal senses of each kind are predicated.
Warren (2002) provides a list of differences between metaphor and metonymy,
from which we highlight three that are relevant for us:

1. Metaphor involves seeing something in terms of something else,
whereas metonymy does not. Warren mentions:

That is to say, metaphor is hypothetical in nature. Life is
thought as if it were a journey. Metonymy, on the other hand, is
not hypothetical. There is nothing hypothetical about the kettle
in the kettle is boiling, for instance. It is for this reason that I
make the point that non-literalness in the case of metonymy is
superficial.

This remark is relevant because it supports the postulation of regularity
in Section 2.2, as the normalcy of usage of metonymy aids its regular-
ity. Moreover, this statement is also a support for our understanding of
metonymy as a paraphrase in Section 2.3.3.

2. Metaphors can form themes. Warren gives an example of a text based
around the metaphor MEMBERS OF PARLIAMENT ARE WELL-TRAINED
POODLES, where British politicians are described licking the boots of the
Prime Minister and being rewarded with a biscuit. She also acknowledged
that metonymic patterns can be conventionalized (CONTAINER FOR CON-
TENT), but claims that these metonymic patterns never give rise to themes
like the ones found in her examples. This remark is relevant because it
justifies annotating at the sentence level instead of annotation larger dis-
course segments: if metonymy does not originate themes at the document
level, it is safe to conduct our empirical study at the sentence level (cf.
4.2).

3. Metonymies can coexist in zeugmatic constructions whereas metaphors
cannot. She considers the metonymic example “Caedmon is a poet and
difficult to read” a valid sentence, while she rejects the example “?The
mouse is a favorite food of cats and a cursor controller” because it in-
curs in zeugma, namely failing at coordinating this two concurrent senses.
This remark is relevant because it allows the zeugma test in the expert
annotation scheme described in Section 4.3.

Even though metaphor and metonymy are mechanisms for figurative lan-
guage, they are qualitatively different, because metaphor is a way to view one
entity in terms of another, reasoning by analogy; whereas metonymy is a way
to get an entity to stand for another, reasoning by contiguity.

In this dissertation we deal strictly with cases of regular polysemy that are
triggered by metonymic processes and not by metaphor (cf. Section 2.6 for our
object of study). However, there are cases of very productive metaphors giving
rise to polysemous senses that are pervasive at the semantic class level, thus
ensuing regular polysemy.
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(2.4) a) REPRESENTATION FOR OBJECT: She wore a skirt full of flowers.
b) BODY PART FOR PART OF OBJECT: I hit the foot of the lamp.

¢) ARTIFACT FOR ABSTRACT PROPERTY: Human population is a
timebomb.

In the first example of 2.4, “flowers” stands for “drawings of flowers”. We
consider this example to be a metaphor, unlike Markert and Nissim (2002b)
who consider it a metonymy. But insofar a visual representation of something
is motivated by analogy, it is a metaphor. This polysemy is regular because any
physical object could be represented and drawn or embroidered on the skirt, be
it birds, stars or hot dogs for that matter; but it is still metaphorical because it
is based on analogy and because it cannot be copredicated: “?She wore a skirt
full of flowers and they smelled lovely” incurs in zeugma.

Example b) illustrates that the ability of body-part words to be used to
delimit parts of objects that are not human bodies is also common. This very
usual metaphor has also issued conventionalized metaphoric uses of words like
neck for the open end of a bottle or hand for the dials of a clock.

In example c), timebomb stands for something bad that is going to hap-
pen at some point in the future. This is an example of regular polysemy be-
cause using artifact words to transfer some of the properties of the artifact unto
the described phenomena is very productive, and an obvious example of the
two-domain approach—one domain being POPULATION and the other one be-
ing EXPLOSIVES—described by Lakoff and Johnson (1980). In a corpus study
over Danish texts, Nimb and Pedersen (2000) provide an account on similar
metaphors with words like fan, bridge or springboard.

It is also worth mentioning how the metaphor in ¢) could issue a theme as
explained at the beginning of this section. Another sentence in the same text
could be “the environment is going to suffer from its detonation”, thereby fol-
lowing the explosive theme when talking about the detonation of the metaphoric
population timebomb.

2.3.2 Literal, abstract and concrete meaning

In the previous section we have mentioned literal meaning, largely taking such a
notion for granted. Talking about metaphor assumes there is a literal meaning
that gets partially transferred from one domain to the other when using a word in
a metaphoric manner. Likewise, metonymic senses are extensions of the literal
sense to something that is spatially or temporally contiguous to the physical
referent for the original word.

The notion of literal meaning has however its detractors, like Gibbs (1984),
who claims that the distinctions between literal and figurative meanings have
little psychological validity, or Hanks (2004), who subscribes to an understand-
ing of lexical meaning that denies that words have meaning at all unless they
are put into context.

Still, Hanks (2006) concedes that the expression “literal meaning of a word”
is useful, provided that not too much theoretical weight is put on it. We incor-
porate the notion of literal sense because it allows us to determine that one of
the senses in a metonymic alternation is basic or fundamental—i.e. literal—,
and the other one metonymic.
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We consider the literal meaning the most conventional and prototypical sense
of a word. Literal meaning will be differentiated from figurative meaning in this
dissertation, and in most cases this figurative meanings will be metonymic. The
alternating senses in the cases of regular polysemy displayed in this work will
either be called literal or metonymic.

In order to identify what is the literal sense of a possibly metonymic word,
and thus the directionality of the metonymy, Cruse (Cruse, 1986, p. 69) suggests
a negation test of the “half” that is predicated to test for directionality. He
provides the following examples:

(2.5) a) I'm not interested in the binding, cover, typeface etc.—I'm
interested in the novel

b) ?I'm not interested in the plot, characterisation, etc.—I'm
interested in the novel

Cruse considers that it is not anomalous to say a), whereas b) holds a semantic
dissonance. Cf. Section 2.6 for the complications some metonymic phenomena
pose when determining the literal sense.

While there is a correlation between figurative usage of words and the ab-
stractness of the context in which they appear (Turney et al., 2011), figurative-
ness and abstraction are different notions. It is therefore important to make a
distinction between senses being literal or figurative, and senses being concrete
or abstract separately.

We define concreteness as a trait that all the names for physical objects have
in common, that is, physical denotation. Entities like car, sea or penguin are
concrete. These entities are also called first-order entities by Lyons (1977).

Furthermore, we pool together Lyons’ second-order entities (events like sun-
set and invasion) and third-order entities (mental entities like reason or theo-
rem) into the group of abstract nouns. This issues a coarse grouping, as intu-
itively an invasion (second-order) is more concrete than an idea (third-order).
Hanks (2006) refers very possibly to third-order entities when he claims that ab-
stract nouns are not normally used to make metaphors. But on the other hand,
an invasion is arguably more abstract than a sunset and they are both second-
order entities. We will in general stick to this differentiation between concrete
and abstract and mention second- or third-order entities when we deem it con-
venient. For more on literal meaning, its definition and pragmatics, cf. Recanati
(1995, 2002).

2.3.3 Metonymy and paraphrase

In this section we describe the relation between metonymy and paraphrase. In
a phrasing like the one offered by Lakoff and Johnson (1980):

Metonymy has primarily a referential function, that is, it allows us
to use one entity to stand for another.

Lakoff and Johnson’s remark indicates that metonymy is a pragmatic op-
eration. Since metonymy exploits world knowledge of physical or temporal
contiguity, it deviates from being a strictly semantic operation like metaphor,
where something is explained in terms of something else, in favor of being a
pragmatic operation (Hobbs and Martin, 1987; Hobbs et al., 1993).
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Stallard (1993) holds that the felicitousness of a metonymy depends essen-
tially on the Gricean Maxim of Quantity (Grice, 1975). Also Pustejovsky (1995)
explains the interpretation of regular polysemy through lexical defaults associ-
ated with the noun complement in the metonymic phrase. In essence both ex-
planations entail the same, namely that uttering or writing a metonymy implies
exploiting world (or lexical) knowledge to use fewer words and make conversa-
tion or reading more fluid or expressive.

Paraphrase as such can only be postulated as a relation between two ex-
pressions with the same meaning (Recasens and Vila, 2010), but most of the
interpretations of metonymies in this dissertation will be a paraphrase where
the sense of the metonymic word is expanded to include the information that
we understand was held back (cf. Section 3.3).

The systematicity of regular polysemy, which is a class-wise phenomenon, is
supported by the conventionality of the Gricean maxim of quantity. The maxim
offers a pragmatic motivation for the expectability of statements like “I drank
the glass” over “I drank what the glass contained” (or another less awkward
wording of a non-metonymic paraphrase), where the sender holds information
back that the receiver can resolve.

The pragmatic motivation for using metonymies as paraphrases also justifies
the sense-annotation method described in Section 4.3, where the expert anno-
tator paraphrased the possibly metonymic headword to disambiguate and ex-
amined how felicitous the statement was. Paraphrasing as a method to identify
potentially figurative senses has also been used by Nissim and Markert (2005a).

As a closing terminological remark, and in line with the Gricean Maxim of
Quantity, in this dissertation we will use extensively the term regular polysemy
to mean “metonymy-based regular polysemy”. If a distinction is necessary we
will refer to the other kind as metaphor-based regular polysemy.

2.4 Underspecification

As we have seen in Section 2.3, metonymic senses can be coordinated together
with their fundamental literal sense in the same sentence without incurring in
zeugma

(2.6) a) Lunch was delicious but took forever.

b) Shakespeare has been dead for centuries and people still read him.

In the first example in (2.6), we have “but” coordinating the statements
“lunch was delicious”—in which lunch means food—and “lunch took forever”—
in which lunch means the mealtime, an event. In the second example, Shake-
speare means “the person William Shakespeare” but also the metonymic sense
“the works of William Shakespeare”, even though the second clause has a pro-
noun to stand for Shakespeare.

The possibility to coordinate the two alternating senses is the key linguistic
test to differentiate metaphors from metonymies, but coordinated constructions
are not the only scenarios where the literal and a metonymic sense are predicated
together, or copredicated. Copredication is the phenomenon whereby the literal
and metonymic appear simultaneously. For instance, Asher (2011) describes
copredication in cases of conjunctions, where each argument has a different
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semantic type. Conjunctions are but one of the structures that can lead to both
senses being active at the same time.

(2.7) a) The Allies invaded Sicily in 1945.
b) We had a delicious leisurely lunch.

¢) The case of Russia is similar.

Some verbs take arguments (cf. Section 2.5.2) that require both senses active
at the same time and are known as gating predicates, following the claim by
Rumshisky et al. (2007) that “there also seem to exist gating predicates whose
selectional specification may specify a transition between two simple types”.
Thus, a verb like invade is a geophysically delimited military action, which
requires both the LOCATION and the ORGANIZATION sense. Compare for instance
with “Mongolia declared war against Japan”, where only the ORGANIZATION is
active for both Mongolia and Japan.

Also, there are contexts in which different elements affect the sense of the
predicated noun towards being literal and metonymic at the same type without
being coordinated. In b), the adjective delicious selects for the FOOD sense of
lunch, while leisurely activates the sense of lunch as an EVENT, as only things
that happen can be leisurely.

Example 2.7.b) also shows that metonymic senses can be propagated through
anaphora, as the literal referent of the metonymy is maintained in the compre-
hension of the metonymic predication. For more on the ability of metonymies
to preserve referent, cf. Nunberg (1995), Stallard (1993) or Asher (2011).

The last example has the word Russia placed in a context that does not
indicate a strong preference for either sense. The copula has little pull towards
either sense, and the lexical environment (case, similar) is also very vague.
Without more context the sense of Russia cannot be resolved. It could be
claimed that instead of having the two senses active at the same time like in
a case of copredication, contexts of this kind have both senses inactive at the
same time, achieving the same result, namely an underspecified reading for the
potentially metonymic word.

Whenever a predication of a noun is potentially figurative and literal at
the same time, we will refer to it as underspecified, regardless of the cause of
such underspecification. In this way we group under the same term cases like
copredication, gating predicates, vague contexts and the presence of multiple
selectors, exemplified in 2.6 and 2.7.

The term underspecification has been used within the field of formal seman-
tics to refer to e.g. the different possible analyses of quantifiers under a common
representation (Egg et al., 1998). In this dissertation, the term will strictly be
used for the predications of nouns that potentially manifest both literal and
metonymic senses. The word underspecified can be misleading, however. By
saying that the sense is underspecified, we do not mean that it cannot be re-
solved, but rather, that it can be both the literal and metonymic. Our usage of
this term is borrowed from Cruse (Cruse, 1986, p. 153).

2.5 Generative Lexicon

The Generative Lexicon or GL Pustejovsky (1995) is a theoretical framework
for lexical semantics developed to give account for the compositionality of word
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meaning by improving over the sense-enumeration paradigm when building lex-
icons and thus offer a bridge between lexical semantics, predicate logic, and
NLP.

The GL has been very influential both in theoretical lexical semantics and in
natural language processing (cf. Section 3.2.1 for NPL applications that use the
GL). The GL introduces a series of theoretical objects like qualia structure, event
structure, and dot type to describe lexical entries, and how words described by
these terms are predicated. The notion of dot type is central to this dissertation
and it has its own section in 2.5.1; the other notions are briefly described in this
section.

Pustejovsky offers a breakdown of the semantic traits of a word in four
structures (from Pustejovsky and Jezek (2008)):

1. LExicAL TYPING STRUCTURE: giving an explicit type for a word posi-
tioned within a type system of the language

2. ARGUMENT STRUCTURE: specifying the number and nature of the argu-
ments to a predicate

3. EVENT STRUCTURE: defining the event type of the expression and any
subeventual structure it may have

4. QUALIA STRUCTURE: a structural differentiation of the predicative force
for the lexical item

a) FORMAL: the basic category which distinguishes the meaning of a word
within a larger domain;

b) CONSTITUTIVE: the relation between an object and its constitutive parts

¢) TELIC: the purpose or function of the object, if there is one;

d) AGENTIVE: factors involved in the object’s origin or ’coming into being’.

According to (Pustejovsky, 2006) here are two basic general types of nouns
or simple types, with either two or four available qualia roles:

1. NATURAL TYPES: denoting nouns of natural kinds that have only Formal
and Constitutive qualia roles available, like tiger, river, rock

2. ARTIFACTUAL TYPES: nouns for objects that have a purpose or have come
into being, having thus Telic and Agentive roles, e.g. knife, policeman,
wine

Qualia roles are not explicitly defined in the GL to be concepts or words
and they are portrayed using a notation that resembles predicate notation in
formal semantics (cf. Figures 2.3 and 2.4). Unless we have to interpret another
author’s lexical entry like in Section 2.6.2, we will refer to the values of qualia
roles as being words. Understanding them as words also allows us to call them
by their part of speech. The formal and constitutive quale are nominal, and the
agentive and telic are verbal.

Lexical entries in the GL are normally portrayed as typed feature structures.
In Figure 2.3 we can see the GL lexical entry for the artifactual noun sandwich.
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sandwich(x)

CONST = {bread,...}

FORMAL = physform(x)

TELIC = eat(P,w,x)

AGENTIVE = make_activity(z,x)

Figure 2.3: Example GL lexical entry

A sandwich is an artifact and it is made by someone, thus having a satu-
rated agentive qualia role. Also, it is made with a purpose and its telic role is
eat. Since it is a physical object, its constitutive and formal roles are also sat-
urated. Pustejovsky (2006) offers a more detailed account on how artifactuals
are different from natural types, but for our purposes it is enough to mention
that artifacts have at least one of the verbal qualia roles (agentive or telic) sat-
urated. Simple (natural or artifactual) types can be combined to issue complex
types—or dot types—such as the ones described in Section 2.5.1.

2.5.1 The dot type

In the previous sections we have defined regular polysemy (Section 2.2), metonymy
(Section 2.3) and underspecification (Section 2.4). In Section 2.5 we also define
simple type. These are necessary notions to introduce the notion of dot type.

In the Generative Lexicon (GL), Pustejovsky (1995) proposes the theoretical
object of dot type (or dot object). A simple way to define a dot type is as
a semantic type (or semantic class) made up two types: a simple type that
provides a literal sense, and the most frequent metonymic sense provided by
another simple type. The usual notation for dot types is a bullet (o) joining the
grouped senses.

For instance, given that the most frequent metonymy for CONTAINER is CON-
TENT, we can group them together in a dot type, which is a complex semantic
type where its members are originally of the CONTAINER type but can behave
as members of the type CONTENT. In this manner, a word belonging to the
CONTAINER®CONTENT dot type shown in (2.8) , like glass, can show its literal
sense, its metonymic sense or an underspecified sense that can be result of co-
predication, vagueness, gating predicate, etc. Dot types are sometimes called
complex types to emphasize that they are reifications of a grouping of more
than one simple type.

(2.8) a) Grandma’s glasses are lovely.
b) There is about a glass left in the bottle.
c) He left my glass on the table, and it was too sweet. .
Some works within the GL like Pustejovsky (2001, 2006) offer examples of dot

types. We reproduce the list of dot types from Rumshisky et al. (2007) in Table
2.1.
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Dot type Example words

ACTION®PROPOSITION promise. allegation, lie, charge

STATE®PROPOSITION belief

ATTRIBUTE®VALUE temperature, weight, height, ten-
sion, strength

EVENTOINFO lecture, play, seminar, exam, quiz,
test

EVENTe(INFO®SOUND) concert, sonata, symphony, song

EVENTePHYSOBJ lunch, breakfast, dinner, tea

INFO®PHYSOBJ article, book, cd, dvd, dictionary,
diary, email, essay, letter, novel, pa-
per

ORGANIZATION® (INFO®PHYSOBJ) newspaper, magazine, journal

ORGOLOCATION®HUMANGROUP university, city

EVENTeLOCATION®@HUMANGROUP class

APERTURE®PHYSOBJ door, window

PROCESS®RESULT construction, imitation, portrayal,
reference, decoration

PRODUCER®PRODUCT honda, ibm, bmw

TREE®FRUIT apple, orange, coffee

TREE®WOOD oak, elm pine

ANIMAL®FOOD anchovy, catfish, chicken, eel, her-
ring, lamb, octopus, rabbit, squid,
trout

CONTAINER®CONTENTS bottle, bucket, carton, crate, cup,

flask, keg, pot, spoon

Table 2.1: Dot types from Rumshisky et al (2007)

From the sixteen dot types listed in the table, we have chosen a subset of
five of these dot types to conduct the study of this dissertation. For a list and
a rationale of the chosen dot types, cf. Section 2.6.

2.5.2 Simple and complex type predication

It is commonly postulated that argument-accepting words, called functions or
selectors, have selectional preferences that establish the semantic type of their
argument slots (cf. Méchura (2008) for a survey on selectional preferences). For
instance, the verb eat requires an ANIMAL (including a person) as a subject
and FOOD as an object. Using a noun of a mismatching semantic type into an
argument role, thus forcing the mismatching word to be interpreted as a member
of the desired type of the argument-accepting word is known as coercion.

In a sentence like “I will leave after the sandwich”, sandwich, which belongs
to the FOOD type is coerced into an EVENT by the word after, which places
it in time. The word sandwich acquires duration as its meaning is extended
to become “eating a sandwich”. Pustejovsky (2006) breaks down the possi-
ble (mis)matching of types between functions and arguments in the following
categories:

1. PURE SELECTION (TYPE MATCHING): the type that a function requires
is directly satisfied by the argument
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2. ACCOMMODATION: the type a function requires is inherited by the argu-
ment

3. TypPE COERCION: the type a function requires is imposed on the argument
type. This is accomplished by either

(a) EXPLOITATION: taking a part of the argument’s type to satisfy the
function;

(b) INTRODUCTION: wrapping the argument with the type required by
the function.

Introduction, the case for our sandwich example, is the most conspicuous
case of coercion. Notice however how in this example, the interpretation of
“after the sandwich” requires the activation of the telic role of the sandwich
(eat). Even coercion relies on the activation of the verbal quale, e.g. “begin the
book” exploits the telic read, “start the fire” introduces the agentive ignite.

Type exploitation is a characteristic phenomenon behind the predication of
dot type nominals when only one of the possible senses is predicated and thus
only a part of the arguments type is necessary to satisfy the function. Let us
examine two simple examples for the dot type ARTIFACT®INFORMATION word
book:

(2.9) a) I dropped the book.
b) I enjoyed the book.

These examples are complementary cases of exploitation. In the first ex-
ample, drop only requires the book to be a physical object. In contrast, enjoy
selects for the INFORMATION sense of the dot type. Both examples predicate a
part of the full predicate force of book.

In terms of qualia structure, the verb drop activates the constitutive qualia
role, which is the word that describes that books are physical objects made of
pages and covers. The verb enjoy selects for the telic qualia role of book—that
is, the function of books, which is to be read. This partial predication that
happens with the exploitative type of coercion is what the GL uses as a case
to postulate qualia structure as four separate roles and dot objects as complex
types made up of more than one simple type.

The general picture is however more complicated. When predicating the
INFORMATION sense of book with the verb enjoy, book is also placed in time as
an event, like sandwich in our previous example, because what is meant to be
enjoyed is “reading the book”, which has a certain duration. There is thus a
parallel saturation of the Event Structure described in Section 2.5 that happens
along with the predication of the INFORMATION sense of book.

In addition to this, the coercion of non-event nouns into EVENT is very pro-
ductive, and has spawned a subfield of research in its own right (cf. Section 3.3).
It is for these reasons that we decide to abstract event coercion (both exploita-
tion and introduction) away from our work by not dealing with event coercion
of simple-type words (like sandwich) nor with the predication phenomena of
dot-type nouns that are listed by (Rumshisky et al., 2007) as having EVENT as
their first sense (cf. Section 2.6) .

The only exception to our abstention from dealing with eventive reading is
that we incorporate the PROCESS®RESULT dot type into our study (cf. Section
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2.6) because its PROCESS is not caused by coercion. Moreover, we consider we
cannot disregard the theoretical relevance of this sense alternation, which is also
isolated from event introduction and the other kinds of event exploitation like
“lunch took forever” because the first sense is the eventive one.

In a related approach, Copestake and Briscoe (1995) take an approach to
representing regular polysemy using a featured syntax like HPSG, extended to
support qualia structure. They also argue for the reduction of a lexicon by
saying that “film reel” and “fishing reel” and that the entry for reel is just a
blank container entry and not two senses, because the sense is modulated upon
predication. Some other kinds of polysemy, they argued, are best represented
as lexical rules called sense extensions, like the grinding operation that turns
animal into meat. Their stance is that the unwillingness of sense-extension-
based polysemy to copredicate calls for different senses and is a lexical rule.

2.5.3 Compositionality, meaning and sense

Compositionality of meaning is a key factor in the GL. Compositionality of
meaning implies that the overall meaning of an expression is a function of the
meaning of its parts as they are organized by the syntax of the expression.

If meaning is compositional, it is reasonable to remove as much as possible
from the sense listing and compose meaning when words are fitted into an
expression. But if meaning is the output of a function over the parts of an
expression, where does sense reside?

Research on logical metonymy—i.e. event coercion—describes sense as emerg-
ing from the relation between an argument-accepting word and the argument-
saturating noun, which is customary from the coercion view of regular polysemy.
From the coercion view it is acceptable to say that metonymic senses appear at
the relation between elements, because coercing words are considered to select
for a certain sense.

Complementary to the compositional view, a strictly distributional under-
standing of sense (Hanks, 2004; Kilgarriff, 1997) questions the idea that indi-
vidual parts have individual atomic senses.

Without taking any strong ontological commitment to what actually bears
the metonymic sense in the predication of a dot type, we will refer to the dot-
type noun as having or showing a certain sense. This somehow trivially intu-
itive assumption also allows us to focus solely on a headword during the sense-
annotation and the sense-disambiguation tasks in Chapters 4 and 7 respectively,
instead of annotating word pairs or other more complicated structures.

Moreover, it might seem we have been using meaning and sense as apparent
synonyms, which needs clarification. Meaning is used from now on to indicate
the general property of semanticity, namely that messages bear some informa-
tion, whereas we use sense to define the specific denotation that a word conveys
in a given context. This division becomes useful when discussing the quantifi-
cation of individual senses in 2.5.4.

Note that we are using a coarse sense inventory that corresponds to simple
semantic types like LOCATION or ANIMAL. In the following sections we might
refer to a dot type being made up of two semantic types, or exhibiting two
possible alternating senses as it best fits the topic of the section.
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2.5.4 Against sense enumeration

On his work on predication, Kintsch (2001) notes that

Most words in most languages can be used in several different ways
so that their meaning is subtly or not so subtly modified by their con-
text. Dictionaries, therefore, distinguish multiple senses of a word.

But it is difficult to define what a word sense actually is, and how to find the
boundaries between related senses.

There is a long list of possible definitions that try to describe what word
senses are; from referencialistic conceptions of sense that depend on the notion
of denotation, to cognitive approaches that depend on concepts (cf. Escandell-
Vidal (2004) for a survey on theories of meaning). And of course, if a certain unit
is not easily defined, it is also not easy to quantify. However, our representations
of word meaning are more or less refined lists of senses (cf. (Battaner, 2008) for
a review on the lexicographic approaches to representing polysemy).

Pustejovsky (1995) defines the senses in a lexicon as contrastive or comple-
mentary. Contrastive senses are those only related by homonymy:

(2.10) a) Sweden lost the match three to one.
b) She lit the candle with a match.
Complementary senses are those related by (metonymy-based) regular pol-
ysemy (cf. Section 2.3.3).
(2.11) a) The bottle fell and broke.
b) We shared the bottle.
What Pustejovsky calls a sense enumeration lexicon is a lexicon wherein
contrastive senses are isolated from each other in different subentries (cf. the

different subentries for match in Merriam-Webster we mention in 2.1) and com-
plementary senses are kept together in a set:

1. if sq,..., 8, are contrastive senses, the lexical entries representing these
senses are stored as wgy, ..., Wgp,

2. if s1, ..., §;, are complementary senses, the lexical entries representing these
senses are stored as w1, .. sn}

Pustejovsky acknowledges the convenience of this kind of representation
where semantics is isolated from syntax but he provides three arguments about
the inadequacy of the sense-enumeration paradigm when describing lexical en-
tries:

1. The creative use of words
2. The permeability of word senses
3. The expression of multiple syntactic forms

These three phenomena make traditional sense enumeration sufficient to deal
with contrastive ambiguity—i.e. homonymy—but not with “the real nature of
polysemy”, according to Pustejovsky. The GL offers the notion of a dot type
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(cf. Section 2.5.1) to group together the senses within a word without having
to put them in a sorted list or an unordered set, as long as they are productive
and a result of regular polysemy.

With regards to the creative use of words, words can incorporate a poten-
tially unbound number of nuances to their senses in novel contexts. Pustejovsky
does not propose that there are indeed infinite senses as such—a claim we also
find in Cruse (Cruse, 1986, p. 50)—, but that there are regularities that can be
represented in the lexicon in a way that makes lexical entries more succinct.

(2.12) a) a good book.
b
c
d

e

a good umbrella.
a good teacher.

a good sandwich.

)
)
)
) a good pizza.

In the examples in 2.12 we can say that a good teacher is one that for instance
teaches well, and a good book is pleasant or interesting to read. Goodness in the
case of sandwich and pizza is defined in terms of tastiness, which is something
all the FOOD words have in common. If the only consistency we can identify in
the senses of good is at the semantic-type level, good has at least as many sense
as there are semantic types. This dependence on semantic types is parallel to a
selectional-restriction based understanding of senses.

An alternative to overspecifying lexical entries with very specific senses is
keeping lexical entries purposely vague, so that the sense nuance is resolved
through pragmatics or world knowledge. Vagueness is also a common practice
when building dictionary entries for e.g. relational adjectives like professional,
which Merriam-Webster describes in its first sense as “of, relating to, or char-
acteristic of a profession”. These are three different senses collapsed into one
sense, an attempt to mirror the vagueness of statements like “a professional de-
cision”, where it is unclear whether the decision is taken by a professional—say,
a specialist in something—or about one’s profession or career.

Pustejovsky argues that there is a way to have properly specified lexical
entries for words like good. Briefly, what the representation for good has to
give account for, is that the word selects for the telic qualia role of the noun it
modifies. In this way, good becomes “good to read” (book), “good to hold the
rain” (umbrella), “good to eat” (pizza, sandwich), etc. A supporting argument
for this claim is that “7a good iceberg” or “7a good penguin” cannot normally
be resolved because these nouns are natural kinds without a telic role (however
cf. Section 2.6.1 for further remarks on the introduction of the telic role for
animal nouns).

This argument is very convincing for the case of adjectives like good or fast,
and insofar the literal /metonymic alternation of a noun can be attributed to the
selection of the telic qualia role, it also holds for nouns that have been specified
to be dot types (cf. Section 2.5.1). For instance, in the sentence “I finished the
book”, book has the INFORMATION sense that is selected by the activation of
the telic qualia role (read) by the verb finish.

But other areas of nominal sense variation push the limits of the GL as a
linguistic program. The PART FOR WHOLE metonymy (also called synecdoche)
presents a particular practical problem:
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(2.13) a) After a head count, we saw we had lost Anna.
b) There are four mouths to feed in my home.
¢) Hundreds of fast feet have gathered today to run the Marathon.

In these three examples there are body parts that stand for a whole person.
Parts of a whole are called meronyms, and the whole is referred to as the holonym
(Cruse, 1986, p. 162). For instance, car is the holonym for the meronyms wheel,
seat and motor.

Meronyms are stored in the constitutive qualia role of a lexical entry in the
GL, which poses two problems. First, there is no direct access from the part to
the whole, but only from the whole to the part. When interpreting any of the
examples in (2.13), we have to somehow retrieve that person is the whole for
mouth, but this is not encoded in the qualia structure of mouth, and we would
have to examine all the constitutive structures for all the nouns to find the
whole that mouth is a part of, and then somehow resolve which of the candidate
holonyms is the right one, since many things have mouths beside people.

Keeping an inverse list so parts can be retrieved for wholes—as they now
can be retrieved from the constitutive qualia role—and wholes from parts would
either require an additional structure in the GL, or an additional computational
means of retrieval of this inverse relation.

Moreover, another computational limitation in the GL’s take on synecdoche
is that the amount of meronyms is ideally unbound, because the amount of
parts a thing—an animal with its organs, tissues, bones, etc., or a time span
with its successive subdivisions—can have is formally unbound, which makes the
constitutive qualia role potentially very large. There should be incorporated a
generative means to slim down the size of full constitutive qualia roles, maybe
by more deeply integrating GL entries with the semantic ontology that the GL
explicitly mentions but only defines at its highest levels (cf. Pustejovsky (2001,
2006)), or by establishing a mechanism to only include the meronyms that have
linguistic relevance.

With the two previous remarks in mind we consider the GL method to deal
with synecdoche challenging to implement in actual computational systems,
because it presents information accessibility and cardinality issues.

The verbal qualia roles take the lion’s share of the attention from theorists.
The telic role is the one that has received most of the attention in the work
(Verspoor, 1997; Bouillon et al., 2002; Yamada et al., 2007) that mentions qualia
structure, because this work has often been devoted towards the study of event
coercion (cf. Section 2.5.2) and the eventual reading of a metonymic word
is often triggered by the activation of its telic role. The agentive role, being
another (less) event-triggering relation, has also been studied, whereas it seems
the formal and constitutive roles have been passingly mentioned or overlooked.

It is possible that the nominal roles, namely the constitutive and formal
qualia roles have received less attention because they were considered less chal-
lenging or already-solved research questions. At any rate we believe that the
constitutive role needs further refinement, in particular to how it contributes
to offering an alternative from the sense-alternation paradigm. For further re-
marks on the amount of real-world knowledge to incorporate in the constitutive
role, cf. Jensen and Vikner (2006).

The dot type is indeed designed as theoretical object to tackle productive,
compositional, sense variation. Still, the metonymic senses that are listed are
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sometimes too coarse or ill-defined in terms of ontological type (cf. Sections
2.6.5 and 2.6.3).

With regards to the inconveniences causes by rigid sense representations,
Pustejovsky claims that the fixedness of representation in sense-enumeration
lexicons clashes with the permeability of word senses, in that enumerated
complementary senses overlap in a way that provides no natural level abstraction
for the representation of these two alleged senses of e.g. bake:

(2.14) a) CHANGE OF STATE: John baked the potatoes.
b) CREATION: John baked a cake.

One is a verb of creation and the other is a verb of change of state. These
are certainly complementary senses and not contrastive, and Pustejovsky re-
jects giving them independent sense status, because he claims that the second
example is a special cause of the first one, and it is not possible to guarantee
correct word sense selection on the basis of selectional restrictions alone. How-
ever, Pustejovsky does not mention that cakes are artifactual words that are
made and can license a CREATION reading (i.e. by the agentive role), whereas
potatoes are natural-type words and their sense for bake is strictly a change of
state.

Moreover, if we want to study regular polysemy, the most pertinent critique
to this understanding of polysemous senses being grouped in a set is the lack of
description of the relation between them. It would be possible to give account for
the sense subsumption in Example 2.14 by refining the mechanism of selectional
preference instead of trying to refine the lexicon that Pustejovsky proposes, but
this would not solve the problem of not explicitly representing the precedence
relation—if any—between the ARTIFACT and INFORMATION senses of book.

Furthermore, the permeability of word senses that are otherwise described
as being orthogonal is the major concern of this dissertations. It is indeed the
possibility of metonymic senses coappearing with literal senses what triggers
underspecified readings.

With regards to the common practice of assigning different senses to a word
based on difference in syntactic forms, Pustejovsky considers it is equally
arbitrary, as there is little difference in the core meaning of verbs like debate,
regardless of its syntactic realization:

1. John debated Mary.
2. John debated with Mary.
3. John and Mary debated.

The case for this third point is built entirely around verbs, which is un-
derstandable because they show most variation in syntactic realization. This
argument is complemented with the GL’s classification on arguments, which we
do not incorporate into a discussion, since our work is centered on the sense al-
ternations of nominals. Nouns are indeed argument-accepting (cf. Section 2.6),
but in our study do not require the larger theoretical apparatus that verbs would
demand. Our focus on nouns makes us largely disregard this third argument.

In this section we have covered the three critiques that Pustejovsky offers on
the sense-enumeration lexicon and we have in our turn criticized the alternatives
offered by the GL. We acknowledge the computational comfort provided by
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postulating qualia structure to simplify sense enumerations and give account for
meaning generativity—e.g. the telic activation in the examples with good—, but
we also find the constitutive qualia role to be unwieldy to implement. Regarding
the possibility of overlapping senses, we take on the dot type as a theoretical
object that includes more than one sense without having to necessarily choose
only one of them when predicating, thus yielding an underspecified reading.

The GL has indeed been used a theoretical framework to develop lexical
knowledge bases. In Section 3.1 we describe how the original formulation of the
GL was expanded and modified to implement the aspects we have commented
in this section, in particular the representation of qualia roles—especially the
constitutive role— and the constituting senses of a dot type.

As a closing remark for this topic we also have to mention that the GL
is implicitly geared towards metonymy-based regular polysemy, and it seems
there is no place for metaphoric senses in the complementary-contrastive dis-
tinction mentioned at the beginning of this section. Certainly conventionalized
metonymy is the firmest ground to start addressing the building of lexical entries
for generative compositional meaning, but there are plenty of cases of produc-
tive figurative speech that are cases of metaphor-based regular polysemy (cf.
Section 2.3) that a computational method build using the current incarnation
of the GL would have trouble analyzing.

2.6 Study scope

We have determined the underspecified sense as our object of study. However, in
order to attempt to identify it, we need to choose a series of dot types to conduct
our study. In this section we detail the dot types that we will work with along
the dissertation. First, we suggest a grouping of the dot types from Rumshisky
et al. (2007) in different categories according to the semantic properties of the
literal and metonymic senses that make up the dot type. These groupings are
shown in Table 2.2.

Group A lists three dot types where both the first and the second sense
are abstract. The members of group B have in common that they all share
EVENT as a first sense. Group C has only one dot type, the class for words
like book. Group D has three members, which are all ternary as opposed to
the other binary dot types, and involve an organization or human group within
their senses. E is the group for the words door or window. In G we find four dot
types which have in common that their second metonymic sense is a concrete
physical object which is consequence or result of the entity denoted by the first
sense. PROCESS®RESULT is not included in G because we have no guarantee that
the RESULT sense will be something concrete like a fruit or a motorbike and it
is assigned to a singleton group. Lastly, CONTAINERe,CONTENTS also is placed
alone in a group.

According to Sweetser (1990), original senses tend to be more specific and
concrete. Nevertheless, we see that this tendency is not extensive to all metonymies.
For words of the type TREE®WOOD, the WOOD sense is an extension of the orig-
inal TREE sense. In the case of class, however, it is difficult to establish the
fundamental, literal sense. Some of the dot types are difficult to analyze, no-
tably the ones made up of more than two simple semantic types, such as the
types for newspaper, class and university in group D. These ternary types are
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Group Dot type

ACTION®PROPOSITION
A STATE®PROPOSITION
ATTRIBUTE®VALUE
EVENTeINFO
B EVENTe (INFO®SOUND)
EVENTePHYSOBJ
C INFO®PHYSOBJ
ORGANIZATIONe® (INFO®PHYSOBJ)
D ORGANIZATION®LOCATION®HUMANGROUP
EVENTeLOCATION®eHUMANGROUP
E APERTURE®PHYSOBJ
F PROCESS®RESULT
PRODUCER®PRODUCT
TREE®FRUIT
G TREE®WOOD
ANIMAL®FOOD
H CONTAINER®CONTENTS

Table 2.2: Groupings of dot types

dense metonymies in the Nunbergian terminology, in that there is no clear syn-
chronic directionality of the metonymy.

Nunberg also concedes that the difficulties of analysis for these words are
“in large measure the artifacts of our theoretical approaches—the need to say
which uses of a word are ‘basic’ and which are ‘derived””. We acknowledge this
inconvenience and discard the dot types that are listed as ternary. Cf. Section
2.6.4 for our binary recast of a ternary dot type.

Ostler and Atkins (1992) mention that regular polysemy is sometimes blocked
by “the pre-existing topography of the lexicon”, a phenomenon they call pre-
emption (“Zeat the pig” vs. “eat the pork”). They also postulate one single
sense alternation from container to amount/contents, and we make no distinc-
tion between the contents and a measure of unit (cf. Section 2.6.6 for the
implications for Danish).

When listing dot types, Rumshisky et al. (2007) note that some of them are
“pseudo dots” that behave as such due to very usual coercions, without pointing
at which of the listed types are of such kind. In our work, we want to abstract
away event coercion from the analysis (cf. Sections 2.5.2 and 3.2) because it is
a different kind of sense alternation that the one strictly described by the sense
alternations that give name dot types. Moreover, we decide not to work with
the dot types in group B, that start with an EVENT reading, like the dot types
for lecture, concert and lunch. Notice how none of the dot types in Table 2.1
has the EVENT sense at the right side, where metonymic senses are placed.

Both alternating senses in the dot types in group A are abstract, and that
makes them difficult to apprehend, and good candidates for being discarded
from a first study with human annotators in order to prioritize more immediate
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sense alternations. For similar reasons, we decide not to work with group E, the
APERTUREePHYSOBJ dot type. This alternation, sometimes called figure-ground
alternation (e.g. in (Pustejovsky and Anick, 1988)) has received a good deal of
attention within the theory of metonymy but, even though both the first and
second sense have concrete denotations, we consider this dot type to be overly
difficult for human annotation to provide any conclusive results.

Having discarded A, B, D, and E we have four groups left, namely C, D,
F, G, and H. Three of them are singleton groups, and we automatically in-
corporate their respective dot type to our study. From group G, we choose
ANIMALeFOOD over the other three because it will be easier to obtain corpus
data; TREE®FRUIT and TREEeWOOD overlap in their literal sense, which compli-
cates choosing one over the other during preprocessing and annotation. More-
over, the ANIMAL®FOOD alternation is a staple of the theory of regular polysemy.
We also prefer ANIMALeFOOD over the other three because it has received a lot
of attention in the theory by Copestake (2013) or Copestake and Briscoe (1995),
among others.

In the case of PRODUCER®PRODUCT, we also face a more complicated sce-
nario that the dot type implies, because all of the listed producers are company
names which also experience metonymies like ORGANIZATION FOR HEADQUAR-
TERS, ORGANIZATION FOR STOCK MARKET INDEX and so on.

Now we have chosen ANIMAL®FOOD, CONTAINER®CONTENTS, INFO®PHYSOBJ
and PROCESSeRESULT for our work. But there is no dot type to give account for
the word England in the examples at the beginning of this chapter. The closest
to the metonymy LOCATION FOR PEOPLE or LOCATION FOR ORGANIZATION is
the ORGANIZATION®LOCATION®HUMANGROUP dot type in group D, which we
had discarded as unwieldy. We thus incorporate a last binary dot type for our
study to give account for the names of places. We choose LOCATION as the
fundamental sense and pool together the ORGANIZATION and the HUMANGROUP
metonymic senses in one ORGANIZATION sense which includes both.

The names of dot types also experience terminological variation, which
indicates different conceptualizations of the same phenomena. For instance,
INFO®PHYSOBJ (Rumshisky et al., 2007) is sometimes inverted as PHYSOBJ®INFO
(Pustejovsky, 2006). We decide to call this dot type ARTIFACT®INFORMATION
because ARTIFACT is a more exact semantic type than PHYSICAL OBJECT. In
the case of the dot type ANIMALeFOOD we also prefer ANIMALeMEAT for the sake
of exactitude. Table 2.3 provides the chosen five dot types with our preferred
terminological variant, example words and the abbreviations we will use to refer
to the datasets annotated for a certain dot type in Chapter 4.

Dot type Abbreviation Example words
ANIMALOMEAT ANIMEAT chicken, lamb
ARTIFACT®INFORMATION ARTINFO book, novel
CONTAINER®CONTENT CONTCONT glass, jar
LOCATION®ORGANIZATION LOCORG England, Asia
PROCESSeORESULT PROCRES construction, portrayal

Table 2.3: Chosen dot types, abbreviations and examples

Ostler and Atkins (1992) and Peters and Peters (2000) claim that each
regular-polysemy sense alternation has a single clear base form. This implies
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that, in dot object terms, one of the senses is the original, fundamental or lit-
eral, and the other sense is derived through metonymy. This directionality of
the metonymy might not be as clear for each dot type (cf. Section 2.5.1) but we
have isolated five in which we are able to take a stance on what is the original
sense.

Dot type First Second  Temporal Spatial Mass/Count
ANIMEAT concrete  concrete X X
ARTINFO concrete  abstract (x) (x) (x)
CONTCONT concrete concrete X X
LOCORG concrete abstract X

PROCRES abstract concrete X X

Table 2.4: Summary of features for the chosen dot types

Table 2.4 shows a series traits for the chosen dot types. The “First” and
“Second” columns show whether the first (literal) and second (metonymic) sense
is concrete or abstract. The “Temporal” column indicates whether there is a
temporal or aspectual component in the sense alternation of a dot type, thus
making a dot type exploit the temporal contiguity for its metonymic sense.
Likewise, the “Spatial” column determines if the metonymy in a dot type is
caused by physical contiguity.

The last column “mass/count” indicates whether there is a mass/count dis-
tinction in any direction between the first and second sense of the dot type. For
instance, the metonymic sense MEAT has allegedly the distribution of a mass
noun, whereas the metonymic sense RESULT behaves as a count noun.

2.6.1 The AnimaleMeat dot type

The ANIMALeMEAT dot type, abbreviated as ANIMEAT exhibits a count/mass al-
ternation. Individual animals are subject to a linguistic (and physical) grinding
operation that turns them into a non-individuated mass (Copestake, 2013).

Called “Mass/Count alternation” in the classic GL Pustejovsky (1995), this
sense alternation’s status as a dot type is questioned by Pustejovsky and Jezek
(2008), who call it a “pseudo-dot”. The cause for their cautious phrasing might
be precisely the aspect component of this alleged dot type: if the animal stops
being ANIMAL to be FOOD, its underspecified sense might be unlikely to be
copredicated, thus weakening the reasons to consider it a full-fledged dot type.

Still, it is a pervasive class-wise phenomenon, because any edible ANIMAL has
a FOOD sense in English, unless the FOOD sense is already lexically saturated by
the few but frequent Norman meat names like beef, veal, pork, venison, or es-
cargot. Ostler and Atkins (1992) refer to the phenomenon whereby a metonymy
is inhibited by an already-existing lexical item as preemption.

However, the main reason to contest the status of ANIMALeMEAT as a full-
fledged dot type is that the metonymic sense is obtained by an introduction
coercion (cf. Section 2.5). Animals are natural types and their telic role is
ascribed at best, but it is at any rate not as intrinsic as the telic role hit is to
the artifactual hammer—animals put a great deal of effort in avoiding fulfilling
their ascribed telic role, which is being eaten. This means that the telic role in
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the lexical entry for chicken is not saturated with eat as expected, but rather,
the eat role is introduced when referring to animals as food.

With regards to the aforementioned issue of copredicating the ANIMAL and
MEAT senses, the examples offered in Nunberg (1995) suggest that the literal
and metonymic senses in ANIMAL®MEAT can be more independent that what
the theory in the GL expects from a dot type:

(2.15) a) They serve meat from corn-fed (Arkansas, happy, beheaded)
chickens.

b) They serve corn-fed (Arkansas, happy?, beheaded?) chicken.

In the second example, the FOOD sense of chicken accepts the corn-fed ad-
jective, which refers to the way the ANIMAL was raised and can have an effect of
the properties of the meat, but rejects other adjectives that seem to only apply
to the living chicken in the non-metonymic paraphrase.

Studying the ANIMALeMEAT dot type allows us to focus on the count/mass
distinction and on a metonymic sense alternation that is achieved through the
less usual temporal contiguity. If we determine that ANIMALeMEAT shows too
few underspecified examples, we can claim it is one of the “pseudo dots”.

2.6.2 The ArtifacteInformation dot type

The ARTIFACTeINFORMATION dot type (or ARTINFO is commonly provided as
an example of dot type, and it is often showcased as the prototypical case of
dot type (Pustejovsky, 1995, 2001; Jezek and Lenci, 2007).

Figure 2.5 shows how words like book are portrayed as examples of double
inheritance, because they are at the same time an artifact made of pages and
an amount of information (the Mental category in the ontology of the figure).

If the convention is that the literal, fundamental sense of a dot type is
provided first, there seems to be an understated contradiction in the way the
ARTIFACT®INFORMATION dot type is postulated. In Rumshisky et al. (2007)
and in Pustejovsky and Jezek (2008), the authors list respectively the dot type
with the INFORMATION sense first or second.

Entity

Thing Group  Abstract

Natural m Organi@s I}gical

Artifacts Teams Mental
book

Figure 2.4: Multiple inheritance of ontological types for book

This ordering is certainly subject to interpretation: Is a book a mental en-
tity that gets materialized by being written or printed, or rather, is it a physical
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object that contains information? If the first case holds, the metonymy in
ARTIFACT®INFORMATION is of the aspectual kind, but if the second interpre-
tation is more adequate, then ARTIFACT®INFORMATION is a particular case of
CONTAINER®CONTENT where the content is abstract and not physical. There
might be competing understandings of what a book is that are either individual
or circumstance dependent, making this metonymy one of the aforementioned
dense metonymies. A writer might conceptualize a book using the first sequence
(from thought to matter) and a reader might do the opposite.

Since there are more readers than writers, we choose to place the ARTIFACT
sense first. It is also consistent with the rest of the theory that the activation
of the telic quale (read) triggers the metonymic sense, which in our selected
ordering is INFORMATION.

[ book

_ | ARG1 = y:information
ARGSTR = ARG2 = x:phys obj

FORM - hold(x,y)
TELIC = read(e,w,X.V)
AGENT = write(e’,v,X.Y)

QUALIA

Figure 2.5: GL lexical representation for book

Figure 2.4 shows the lexical entry for book from Jezek and Melloni (2011).
Its two verbal qualia roles, agentive and telic, require an argument of the type
x -y, where x is ARTIFACT sense and y is INFORMATION. In the GL, the verbs
read and write are considered gating predicates because they select for the full
dot type with both senses at the same type. The rationale behind this is that
writing is the process of giving written transcription to an idea, and that reading
is obtaining that idea from its physical support.

Besides the “Spatial” and “Temporal” values for this dot type being marked
as uncertain in Table 2.4, the mass/count distinction is also unclear at first
glance. Authors like Pinkal and Kohlhase (2000) provide examples where the
ARTIFACT is a count noun and the INFORMATION is a mass noun, suggesting
that this is a token/type distinction:

(2.16) a) Mary burned every book in the library.
b) Mary understood every book in the library.

In the second example the active sense is INFORMATION, which is a type (not
token) reading. Asher and Pustejovsky (2005) do not dismiss the validity of the
claim of a parallelism between the mass/count and the type/count distinctions,
but note that such distinction does not explain how copredication works, and
that type and token distinctions can be indeed predicated together:

(2.17)  a) John hid every Beethoven 5th Concerto score in the library.

b) John mastered every Beethoven 5th Concerto score in the library.
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It seems the much-studied ARTIFACT®INFORMATION dot type still offers plenty
of challenges for empirical study to validate the formalisms that try to appre-
hend it.

2.6.3 The ContainereContent dot type

In comparison to the other two previous dot types, CONTAINER®CONTENT comes
across as less interesting or, at least, less challenging. This dot type can however
not be disregarded because it is both the most immediate physical-contiguity
metonymy of the chosen repertoire of dot types, and because this metonymic
sense alternation is a source of prototypical examples of regular polysemy.

It is worth mentioning that CONTENT is not a sense in the way we have
defined it in 2.5.3. Containers are made often with a certain content in mind,
but the wine in a bottle, the bullets in a clip and the sardines in a can only
have in common that they are physical entities. Jezek and Quochi (2010) use
this semantic type more strictly and refer to it as LIQUID, but we are also using
words like boz or can, which refer to objects that can contain solids. Withal,
we will refer to the metonymic reading of containers as the CONTENT sense for
the sake of convenience in the following sections.

Additionally, the CONTENT metonymy can further be extended to the point
that it becomes a measure of unit, which can later be conventionalized. The
Imperial System uses cup as a measure of volume, and we make no distinction
between the what-the-container-has-inside and measure-of-unit sense, because
they are two nuanced manifestations of the same metonymy:.

2.6.4 The LocationeOrganization dot type

As explained above, the interest of the LOCATION®ORGANIZATION dot type,
which we propose as an alternative to the more complex types for words like uni-
versity, is largely practical. The frequency of the metonymies of location names
has impacted the field of Named Entity Recognition or NER, (cf. Johannessen
et al. (2005) for the different ways of addressing location-names metonymy for
NER) and has spawned a line of research on automatic resolution of metonymies
(cf. 3.4).

In considering the metonymic sense as abstract, we are focusing on the OR-
GANIZATION sense. However, for postulating this dot type we have merged
together the ORGANIZATION and HUMAN GROUP senses into one single sense we
have also called ORGANIZATION. It is worth noting that a human group would
be a concrete noun, like a herd or a flock, while the ORGANIZATION sense is
a third-order entity (cf. Section 2.3.2). Nonetheless, we expect the ORGANI-
ZATION meaning to be more frequent than the HUMAN GROUP and take it as
representative for the metonymies for LOCATION.

We choose this dot type because it represents another very usual metonymy,
expected to be fairly easy to annotate—i.e. provide high-agreement datasets—
and is relevant for NLP. This dot type is the only one whose datasets will be
entirely made up of examples that have proper names as headword (cf. Chapter
4). Even though we assume the words city, country or continent have the same
sense alternation, we have chosen only names of cities, countries and continents
for our study to keep them in line with work in NER.
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2.6.5 The ProcesseResult dot type

The sense alternation aggregated in the last chosen dot type, PROCESS®RESULT,
has been a point of interest in lexical semantics since Grimshaw (1991) covered
it in her studies on argument structure. Grimshaw claims a systematicity in the
process/result alternation that is necessary for polysemy to be regular.

Even more so than in the case of CONTAINER®CONTENT (cf. Section 2.6.3),
the metonymic sense RESULT is not a proper sense and it would not be possible to
assign it to a single position in a semantic type ontology, something that is pos-
sible with other of the senses in the chosen dot types, like INFORMATION, FOOD,
or ORGANIZATION. For instance, the resultative senses of the words ezpression,
construction and destruction are even less related to each than the metonymic
senses for bottle, clip and can compared in the section for CONTAINER®CONTENT.
Resultative readings, however, have defined morphosyntactic traits, like being
count nouns.

The work on distinguishing the PROCESS from the RESULT of nominalizations
has been placed along the axes of determining whether a nominalization requires,
accepts or refuses an argument, and what is the semantic difference of that
argument being saturated or not. This is not an easy endeavor, and Grimshaw
notes that:

Nouns can and do take obligatory arguments. This property of nouns
has been obscured by the fact that many nouns are ambiguous be-
tween an interpretation in which they take arguments obligatorily
and other interpretations in which they do not.

Grimshaw’s remark implies that there are arguments that are obligatory for a
certain sense to be licensed but not for the other. In our discussion we will not
differentiate arguments from being obligatory or optative (cf. Section 2.5), but
rather on being present or not (cf. Section 6.1). By the same token we will not
use Grimshaw’s differentiation between complex and simple event nominals.

This dot type is a further oddity in that it the only dot type of this study
whose first, literal sense is abstract and not concrete. In general we expert
dot types with at least one abstract sense (and this dot type also has poten-
tially abstract metonymic senses) to provide less reliable results when obtaining
human-annotated data.

2.6.6 Choosing dot types for Danish and Spanish

Regular polysemy is allegedly a pervasive phenomenon in all languages (Apres-
jan, 1974), and there is no reason to believe that metonymy and metaphor are
endemic of certain cultures, particularly from the experientialistic viewpoint of
Lakoff and Johnson (1980), which considers metaphor and metonymy as fun-
damental strategies of conceptualization each human has available. Empirical
work on NLP also treats metonymy as a cross-lingual phenomenon (Peters,
2003).

However, metonymy can be spotted in morphosyntactic alternations like
count noun versus mass noun, for instance. These grammatical alternations
are bound to be language-dependent, and, like Copestake (2013) mentions,
some words show regular polysemy in one language because they experience
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a metonymy, whereas in another language the same sense alternation is ex-
pressed by different words, and it is not possible to refer to their relation as
polysemy. Apresjan also comments that the mechanisms for word formation are
fairly similar to sense extension, only the former assigns new sense to a new
item, while the later assigns new sense to an existing item.

For instance, the TREE®FRUIT dot type is for instance not to be found in
Spanish. In Spanish there is a lexical rule that relates a fruit and the tree that
bears it, both words sharing the stem but the tree being masculine and the
fruit being feminine, like manzana (femenine, apple) vs. manzano (masculine,
apple tree). Insofar gender is an intrinsic morphological feature of the Spanish
noun (unlike adjectives, which obtain their gender by agreement), manzana and
manzano have different lexical entries, and we cannot talk of polysemy, but of
word formation.

We expand our study of the dot types in 2.6 to Danish and Spanish, in
the somewhat traditional approach of comparing Germanic with Romance lan-
guages. The theoretical objects in the GL have been used in work in more
languages than English, including French (Bouillon et al., 2002), Italian (John-
ston and Busa, 1996), Romanian (Dinu, 2010), Spanish (Castano, 2013), Korean
(Im and Lee, 2013) or Japanese (Ono, 2013).

Collecting human-annotated data is a very cumbersome process, and we
limit the scope of the study in Danish and Spanish to the same two dot types
per language. We choose two of the dot types as candidates for the study across
languages, namely CONTAINER®CONTENT and LOCATION®ORGANIZATION.

The dot type CONTAINER®CONTENT is the most prototypical metonymy of
the chosen five dot types, and we consider it a good candidate for the com-
parative study because it is present in both Danish and Spanish. On the other
hand, LOCATION®ORGANIZATION is the most frequent of the dot types described
in Section 2.6 and its sense alternation is also present in the studied languages.

When prioritizing the dot types for our study in Danish and Spanish, we
downweighted the relevance of ANIMALeMEAT because its status as dot type is
not completely reassured. We also discarded the ARTIFACT®INFORMATION for
the cross-linguistic study. This dot type can be conceptualized in at least two
different manners as we discuss in Section 2.6.2, and it is a candidate for a dense
metonymy, which makes it potentially more difficult to interpret. For similar
reasons we also discard PROCESS®RESULT.

The typological differences can have an impact in how dot type nominals are
predicated and how their underspecified sense can be conveyed. Spanish does
not require explicit pronominal subjects and presents a system of verbal clitics
that can relate to objects, thus making the anaphoric factors of metonymy more
likely.

On the other hand, Danish has the most complex nominal inflection of
the three languages in the study. Danish nouns can be inflected for defi-
nite/indefinite, regular/plural and genitive/unmarked, which means each noun
has potentially eight forms. See Example 2.18 for the possible inflectional forms
of hest (horse).

(2.18) a) hest: indefinite singular unmarked (horse)
b) heste: indefinite plural unmarked (horses)
hesten: definite singular unmarked (the horse)

c)
d) hestene: definite plural unmarked (the horses)
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e) hests: indefinite singular genitive (horse’s)
f) hestes: indefinite plural genitive (horses’)
g) hestens: definite singular genitive (the horse’s)
h) hestenes: definite plural genitive (the horses’)

This difference will only be manifest in CONTAINER®CONTENT, because the
proper names in the LOCATION®ORGANIZATION data for Danish will only present
genitive/unmarked case alternation but won’t have definite or plural marker.
Furthermore, Danish, like other Germanic languages, has a defined syntactic
structure for the metonymic “measure of unit” reading of CONTAINER words,
which is bound to emerge during the annotation. A more detailed study is
provided in Section 9.3.

From all these considerations follows that our human annotation tasks and
the following NLP experiments will be centered on the following nine datasets:

Language Abbreviation Example words
ENG:ANIMEAT chicken, lamb
ENG:ARTINFO book, novel

English ENG:CONTCONT  glass, jar
ENG:LOCORG Germany, Africa
ENG:PROCRES construction, portrayal

. DA:CONTCONT glas, kande

Danish .

DA:LOCORG Tyskland, Afrika
. SPA:CONTCONT  waso, jarra

Spanish S

SPA:LOCORG Alemania, Africa

Table 2.5: Final nine dot types in three languages with study and abbreviated
name for their corresponding dataset

2.7 Dissertation overview

In this chapter we have given an overview on the theoretical framework of this
dissertation. We have defined the key concept of regular polysemy, how it relates
metonymy, and how it allows postulating the dot type.

After providing an introduction to the different linguistic structures postu-
lated in the Generative Lexicon, we have given a definition of the—also a key
concept—dot type and how it is a grouping of a literal sense and its most fre-
quent metonymic sense, enriched by the GL structures of event, argument and
qualia structure.

Once we had a definition of dot type, we have analyzed a canonical list of
dot types and chosen five them for a study in English, and two out of these five
for a contrastive study that also includes Danish and Spanish.

We started the introduction with the question whether the dot type is an
adequate useful means to represent regular polysemy at the token level for NLP
tasks. In this chapter we have defined regular polysemy (cf. Section 2.2), and
the notions of metonymy 2.3.1, but most importantly, we have defined sense
underspecification in dot-type predications (cf. Section 2.4).

Underspecified usages of dot type words are those instances where neither
the strictly literal or metonymic sense fully covers the conveyed sense of that
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instance. With a definition of underspecification available, we specify the ini-
tial question in a more formal manner: Does sense underspecification justify
incorporating a third sense into sense inventories when dealing with individual
dot-type predications?

Proving the formal validity of the underspecified sense is fairly straightfor-
ward; take a copredicated example. Choosing only the literal or metonymic
sense for an example is ”England is rainy and organized” is impossible. How-
ever, this is a synthetic example, a common fixture in the literature of lexical
semantics.

Instead of using synthetic examples, we want to assess the empirical evi-
dence for the inclusion of an underspecified sense in our sense inventories.
We address this question from three different angles:

1. We analyze the human judgments on sense underspecification in Chap-
ter 4. In order to do this, we collect human annotations for corpus exam-
ples of the selected dot types. If human annotators cannot consistently
annotate the underspecified sense, its applicability to NLP tasks is to be
called into question.

2. We analyze the distributional behavior of dot type words using word
sense induction in Chapter 5. Finding a distributional means to capture
the underspecified sense would be sufficient to postulate its inclusion in
our sense inventories.

3. We analyze the performance of a word-sense disambiguation system to
predict the literal, metonymic and underspecified senses in Chapter 7.
Achieving a supervised method that can reproduce the human judg-
ments for the underspecified sense would be sufficient to postulate the
inclusion of the underspecified sense in our sense inventories.

Note that our goal is not to change the way regular polysemy is represented
in lexical knowledge bases, but to study the representation of the sense at the
token level. Lexical knowledge bases that cover regular polysemy can express
the literal and metonymic senses as a sense enumeration, or as a lemma-wise
or class-wise relation between semantic types, but do not have to provide a
representation for the underspecified senses, or for the senses that are somewhat
in between the fully literal and fully metonymic readings.



Chapter 3

State of the art

In Chapter 2 we have provided an account of the concepts necessary to define our
main research question, namely whether there is substantial empirical evidence
to include the underspecified sense in sense inventories for dot-type predications.
We have described regular polysemy, how it is often caused by metonymy, and
how a set of metonymic alternations is grouped under dot types. Furthermore,
we have delimited the dot types that our study will incorporate.

Most of the sources for Chapter 2 are works in linguistic theory of lexical
semantics. In this chapter, we describe empirical approaches that make use of
the concepts of such theory to identify metonymic senses from actual corpus
data—and not from synthetic examples— using human or automatic means to
discover them.

This chapter provides a revision of the previous work related to the general
topic of study of this dissertation, namely the characterization of regular poly-
semy by humans and how to identify it automatically, particularly in the cases
of underspecification. Empirical work on computational semantics has only so
often dealt explicitly with regular polysemy (cf. Boleda et al. (2012a) for similar
remarks). In this light, our take is to include in our literature survey the works
that coincide with the topic of the dissertation by either being similar in object
of study or method.

Each section covers one particular aspect of the empirical study of regu-
lar polysemy. Firstly we revise how lexical knowledge bases have addressed
regular polysemy in their representations in Section 3.1. Section 3.2 describes
annotation schemes that focus on capturing the difference between literal and
figurative senses, particularly figurative senses caused by metonymy. In Section
3.3 we examine the existing attempts to model regular polysemy at the type level
by using distributional semantics to identify the most likely sense of a poten-
tially metonymic word pair or the different semantic types a polysemous word
can belong to. Section 3.4 covers the attempts to model regular polysemy at
the token level by disambiguating individual examples as literal or metonymic.
In Section 3.5 we focus on a particular aspect of the works described in the pre-
vious sections to describe how they interpret disagreement between annotators
as an indicator of polysemy. Lastly, in Section 3.6, we list the relevant design
choices of the reviewed works that we incorporate in our human annotation and
NLP tasks.

99
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3.1 Lexical knowledge bases

The first step in dealing with figurative language is identifying and isolating
the different senses words can manifest. Keeping a slightly artificial division
between linguistic theory and state of the art, we have covered how this has
been addressed from the theory in lexical semantics in Chapter 2. This section
covers the representation of regular polysemy in lexical knowledge bases (LKB).

As Markert and Nissim (2002b) note, print dictionaries only include con-
ventional metonymic senses, but metonymies are productive and potentially
open-ended, and even the coverage of conventional metonymies is not system-
atic. Moreover, the example lists provided in the literature on regular polysemy
are often synthetic, clear-cut examples that seem to oversimplify the distinction
between literal and metonymic. Some LKBs explicit the relation of polysemous
senses by links between words, while others do not include these relations.

A well-known LKB is Princeton Wordnet (Fellbaum, 1998). Wordnet takes
no stance on whether the multiple senses of a word can be caused by regular
polysemy because senses are listed as properties of words and not as properties of
classes. The listing and representation of metonymic senses is not systematically
addressed: not all (edible) animals have a FOOD sense, and the ORGANIZATION
sense of locations can be found for the common nouns city and country, but
not for the country and city (Tanzania, Seoul) names that appear in WordNet,
which are hyponyms of city and country and should in principle inherit their
sense alternation.

A family of LKBs built using the GL as theoretical framework is the SIMPLE
lexicon (Lenci et al., 2000), designed to aid the development of wide-coverage
semantic lexicons for 12 European languages. The SIMPLE lexicon provides
qualia structures for its lexical entries and, more importantly, regular polyse-
mous classes represented by a complex type which establishes a link between
systematically related senses, thus covering the dot types described in Section
2.5.1. The Danish wordnet (Pedersen et al., 2006, 2009), based on the SIMPLE
lexicon, holds regular-polysemy motivated relations between senses. Also, SIM-
PLE represents qualia roles as relations between senses, and not as words or
abstract predicates.

Moreover, SIMPLE implements a PART-OF relationship from meronym to
holonym—i.e. a branch is a part of a tree—to make up for the shortcoming
of the formulation of the constitutive quale we describe in Section 2.5.4. In
the original formulation, meronyms can be retrieved from the lexical entry of
holonyms, but not vice versa; but by providing this additional relation the words
can be retrieved from either side of the holonym-meronym relation.

Another field of work within LKBs is to automatically discover regular pol-
ysemous classes using unsupervised methods that follow the intuition that a
sense alternation needs to be present in a plural number of words for that kind
of polysemy to be regular, following claims like the ones by Dolan (1995) or
Vossen et al. (1999) that conventional figurative senses are often represented in
LKBs but not related to each other.

Peters and Peters (2000) exploit WordNet in hopes to find regular polysemy
by looking at words whose hypernyms share sets of common words, thus finding
class-based groups of polysemous sense alternations. They find pairwise com-
binations of classes that are numerous enough to postulate regular polysemy
and that are mostly metonymic, like MUSIC-DANCE or CONTAINER—QUANTITY.
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They argue for the productivity of the relations found, so that new WordNet
entries for a certain semantic type would automatically have their regular pol-
ysemous senses available. They acknowledge however, that their approach does
not obtain the directionality of a metonymy and cannot automatically determine
which sense is literal and which sense is metonymic. Not knowing the original
sense of a regular-polysemy sense alternation limits the automation of the pro-
ductivity of regular polysemy. This shortcoming is pervasive all the automatic
discovery techniques for regular polysemy described in this section.

Later, Peters (2003) expands on this work by trying to identify regular pol-
ysemy across languages (English, Dutch, Spanish) using the interlingual index
provided by EuroWordNet (Vossen, 1998; Vossen et al., 1999). His results show
that some patterns do indeed have a certain level of generality across languages,
like for instance OCCUPATION—DISCIPLINE, e.g. literature is both something one
can know about, and something one can work in.

Two related approaches to the automatic discovery of regular polysemy in
LKBs are Buitelaar (1998) and Tomuro (1998, 2001b). Buitelaar developed
CoreLex, a lexical resource defined as a layer of abstraction above WordNet
that provides 39 basic types which work as ontological classes. Each class is
linked to one or more WordNet anchor nodes, thus allowing for the multiple
inheritance of properties for the anchor nodes’ hyponyms. Tomuro’s approach
follows a similar motivation when she tries to find cut-off points in the WordNet
ontology after which the senses are too fine-grained or too intertwined in their
polysemous relation. The cut-off points in Tomuro’s results are conceptually
similar to Buitelaar’s anchor nodes.

3.2 Sense annotation

This section describes sense-annotation tasks that have been geared towards
capturing figurative senses, along with the annotation of concepts from the GL.
We finish this section with a survey on the reliability of the results yielded by
the reviewed tasks.

Collecting data for sense annotation allows a first evaluation of the adequacy
of a sense representation. Thus, the empirical assessment of the theoretical ob-
ject of dot-type underspecification does not start when measuring its learnability
by automatic means, but when examining the results of the annotation task,
even though the annotated data can later be used for machine learning.

Nissim and Markert (2005a) have extensively worked on human annotation
for metonymic sense alternations. They summarize the principles and goals
behind the annotation scheme that lead to further experiments (Markert and
Nissim, 2006, 2007) and to the SemEval2007 metonymy resolution data Agirre
et al. (2007). Their scheme is aimed towards the annotation of common nouns
and proper names from the British National Corpus.

When annotating metonymies, the authors also work with the assumption
of one sense being a basic, literal sense and the other senses being derived,
metonymic senses. Each different semantic class—LOCATION, PERSON, ORGA-
NIZATION, obtained in accordance with the MUC-7 Named Entity Recognition
guidelines (Chinchor and Robinson, 1997)—can undergo a series of different
metonymies and thus, each semantic class has its own sub-scheme listing the
possible senses a word can manifest. They assume that the base semantic class
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of the word is already known, that is, that metonymy resolution can be applied
following Named Entity Recognition (NER) in a processing pipeline.

Their sense inventory is rather fine-grained. Instead of just providing one
metonymic sense for geopolitical entities like we do in Section 2.6.4, Markert
and Nissim attempt to annotate finer distinctions between types of metonymy.
They provide for instance an OFFICIAL sense for a geopolitical entity (“America
did try to ban alcohol”) and CAPITAL-GOVERNMENT sense (“Rome decided”),
which we find difficult to distinguish.

Moreover, they consider the metalinguistic usage of a name (“I think ‘Elis-
abeth’ is pretty”) as a metonymy, and we consider it a homonymy, insofar the
relation between a thing and its name is arbitrary, and does not depend on
temporal or spatial contiguity. Also, they list object-for-representation, which
we consider a metaphor in 2.3.1, as a metonymy.

More importantly, Markert and Nissim also incorporate what they call a
“mixed reading”, where “two metonymic patterns or a metonymic pattern and
the literal reading are invoked at the same time”. Our take on the mixed
reading—what we refer to as underspecified sense—is different, because it is
aimed at the simultaneous appearance of literal and metonymic senses.

In Section 2.3.3 we have shown the relation between metonymy and para-
phrase. In accordance with this understanding, Markert and Nissim employ a
replacement—i.e. paraphrase—test to assign the different metonymic senses.
However, if two replacement tests are successful and one of them indicates the
literal reading, they instruct the annotators to give preference to the literal
reading. Also, they consider the possibility of no replacement being successful,
which either issues a mixed reading, another kind of polysemy like metaphor,
or an uncharted kind of metonymy that is not included in the sense inventory.

Their annotation scheme takes a strong position on the contexts that issue
certain senses. The authors make a explicit listing on the syntactic contexts
that can issue a mixed reading: two modifiers, a head and a modifier, the
presence in a list, or being the subject of a verb complemented with a gerund
or infinitive, as in “Sweden claims to be a great power”. While this certainly
improves the agreement if the data is annotated by experts, it makes it both
biased towards a certain set of structures and difficult to implement using non-
expert annotators. Instead of enforcing a certain sense to a certain structure, we
expect these syntactic properties to emerge when correlating linguistic features
to the sense of an example, and do not prescribe them from the start.

In a posterior account, Markert and Nissim (2009) provide an evaluation
of the result of the annotation task that uses the annotation scheme we have
reviewed, that is, the data for the SemEval2007 task on metonymy resolution.
They note that metonymic senses tend to be skewed towards some very frequent
metonymies, and they concede that there are many metonymic senses that are
under-represented, making supervised learning difficult.

In spite of the differences in sense granularity, default sense backoff and the
understanding of the mixed sense, this work is the main reference for the devel-
opment of our annotation scheme. Besides taking in consideration their remarks
on many metonymic sub-senses being under-represented, and thus collapsing
them, we also assume Markert and Nissim’s remark that their classification of
metonymies by humans is hard to apply to real-world texts. The syntactic struc-
ture of sentences in corpora is in general more complex than in the very often
made-up examples of the literature (simple clauses, maybe a coordination).
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Pragglejaz (2007) proposes a metaphor identification procedure that has
been used by Shutova and Teufel (2010) to annotate a corpus with verbal
metaphors. Like Markert and Nissim (2009), they also annotate at the word
level and not word relations.

The scheme by Shutova and Teufel also exploits a notion of basic meaning
akin to our notion of literal sense (cf. Section 2.3.2), and they concede that
basic meaning is not necessarily the most frequent sense of a lexical unit, a
remark that Loenneker-Rodman and Narayanan (2010) also attribute to more
theory-driven works like Nunberg (1995) and Hobbs (2001).

However, working with metaphors makes Shutova and Teufel’s postulation
of a fundamental sense easier than when working with metonymies, given that
some words manifest dense metonymies (cf. Table 2.2), like words that belong
to the LOCORG or the ARTINFO dot types.

3.2.1 Annotation from within the GL

Pustejovsky et al. (2009b) build on Markert and Nissim’s scheme to introduce
an annotation methodology which is based on the GL, and describe the Gener-
ative Lexicon Markup Language (GLML), to cover meaning composition upon
predication. Since the scheme is developed to give account for phenomena like
coercion or qualia activation, the authors recognize it is geared towards fairly
complicated tasks.

Jezek and Quochi (2010) employ the GLML to annotate verb-noun coercions
in Italian, and obtain a x score of 0.87, which is very high score for a semantic
task (and is on par with the results in Markert and Nissim (2007)). Two linguists
(either Masters or PhD students) annotated each item, with one third senior
annotator acting as judge and deciding in case of disagreements. The object
of study of quite complex and they use qualified annotators, which also boosts
their agreement over what it is expectable for a task of such complexity.

The GLML way of dealing with this kind of phenomena presents too much
conceptual complexity to be crowsourced or annotated by volunteers with no
formal training in linguistics. The authors also note that their scheme suffers
from low agreement when the noun in the noun-verb coercion par is a metonymic
noun or a dot type and present this problem as an open question. This makes
us wary of using a coercion method to annotate the possible senses of dot types.

However, the GLML also contemplates the task of sense selection in dot
objects. Pustejovsky et al. consider that, for a dot type that is modified by a
verb or an adjective, either one of the two alternating senses is selected, or both
are. These three options issue three possible senses for a dot type, namely the
literal, metonymic and underspecified senses.

These coercion distinctions are very fine, and for instance, would only model
the relation between the adjective and the noun in constructions like “delicious
lunch” or “slow lunch”. Thus, the only way to obtain an underspecified sense
is when the noun is coerced by a gating predicate (cf. Section 2.3.3).

3.2.2 Reliability of annotation schemes

Human-annotated datasets are documented with agreement values to determine
the reliability of the annotation procedure that generated them as a proxy for an
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estimate of the reliability of the annotations. Cf. Section 4.6.1 for an overview
on agreement measures and their interpretation.

Shutova and Teufel (2010) use three native English speakers as annotators.
They report a k of 0.64 in determining whether a verb is used in a literal or
metaphoric fashion, and a lower value x of 0.57 when trying to determine the
source and target domain of the metaphors. They claim that the lower agree-
ment in target-source domain identification is mainly due to the overlapping
categories in their domain inventories—e.g. there is an IDEAS and a VIEWS
domain, which are not disjoint.

Metonymy annotation is potentially easier that metaphor annotation, be-
cause there is only one domain involved. Markert and Nissim (2007) obtain
very high agreement scores (4g of 0.94 and  of 0.88), which is likely due to
both annotators being not only experts, but also the authors of the annotation
scheme, and because the authors previous fix the reading of certain syntactic
structures. We would expect much lower agreement values if linguistically naive
annotators were employed.

Boleda et al. (2012a) employed four experts to classify the 101 adjectives in
their gold standard in the different semantic classes they wanted to automati-
cally identify. They obtain k scores between 0.54 and 0.64. In a previous work,
Boleda et al. (2008) report a large-scale experiment to gather judgements on
a semantic classification of Catalan adjectives, aimed at the study of the regu-
lar polysemy between adjectival semantic classes, and they allow multiple-class
assignment for polysemy.

They enrol 322 participants in total and obtain rather low & scores (0.20-
0.34) but compare their annotation with an expert annotation and conclude that
polysemous and event-related adjectives are more problematic than other types
of adjectives. They also base their sense-annotation method in paraphrasing.
Given their low agreement, they analyze the causes of disagreement and break it
down in disagreement caused by the theoretical bias of their sense inventory and
by the intrinsic difficulty of some sense distinctions (eventual adjectives seem
the most difficult type).

Arnulphy et al. (2012) presents an annotation scheme for events which im-
plicitly covers metonymic event readings in French and also obtain very high
agreement (0.808 k) when determining which words are events. Their scheme is
followed by annotators who are also the authors of the very detailed guidelines.
For other tasks, Merlo and Stevenson (2001) give x values between 0.53 and 0.66
for expert classifications of verbs into unergative, unaccusative and object-drop.
In a task closer to ours, Zarcone et al. (2012) obtain a & score of 0.60 when
determining which qualia role was selected for a certain metonymy of the style
of “they enjoyed the cigarette” in German. Birke and Sarkar (2006) test their
literal /figurative classification system on test data with a x of 0.77

Variation in agreement coefficient is thus to be expected depending on the
annotation setup, the kind of annotator, the sense inventory, the difficulty of
the question that is asked to the annotator, and the difficulty of the examples in
the corpus to annotate. Passonneau and Carpenter (2013) argue for a model of
the labels of crowdsourced data to identify problematic labels as an alternative
to providing an agreement coefficient.
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3.2.3 Crowdsourcing data

Obtaining expert annotation is cumbersome and slow, and potentially expensive
(in money or persuasion effort). It has become increasingly popular to employ
Amazon Mechanical Turk (AMT) to crowdsource annotations for English for
tasks like evaluation of translation quality, word sense disambiguation, event
annotation, word similarity and text entailment (Snow et al., 2008; Callison-
Burch, 2009; Rumshisky et al., 2009).

Using crowdsourced data comes often at the cost of reliability (Wang et al.,
2013). Nevertheless, Snow et al. (2008) consider AMT able to provide reliable
annotations for word senses provided that at least four annotators label each
item, and they even find an error in the reference gold standard they were
evaluating against by comparing it against the judgements of the annotators.

There has been an effort to obtain more consistent gold standard annotations
by weighting the votes of annotators based on their agreement with a small
expert-generated gold-standard or with the other annotators (Callison-Burch,
2009), or by automatically inferring a final label from all the labels assigned
to an item using Expectation-Maximization (Raykar et al., 2010; Hovy et al.,
2013).

3.3 Modeling of regular polysemy

Modeling regular polysemy has attracted attention because of the promising
possibility of exploiting class-wise sense alternations in an unsupervised man-
ner to build systems, and because it allows the empirical validation of lexical
semantic theory.

Jezek and Lenci (2007), in their data-driven effort to characterize the GL-
compliant semantic types of the possible arguments of the Italian verb leggere
(read), emphasize the relevance of working with corpora to obtain models of
word meaning. This section describes a series of NLP tasks that make use of
distributional evidence to assess the behavior of metonymic words, i.e. that
model regular polysemy at the type level, rather than the token level.

Lapata and Lascarides (2003) provide a statistical modeling of logical metonymy.
Logical metonymy is a specialized variant of regular polysemy that is defined in
terms of predicate-argument relations, that is, in terms of coercion, in particular
event coercion (Godard and Jayez, 1993; Verspoor, 1997). The authors’ concern
is to characterize the syntax/semantics interface to incorporate a probabilistic
element in the theory of composition of meaning. Even though we explicitly
dismiss keeping our analysis to logical metonymy and event coercion in Section
2.5.2, this is a relevant article that sets the methodological groundwork for the
empirical assessment of regular polysemy using distributional semantics.

In this work, Lapata and Lascarides provide the description of a series of
probabilistic model that use distributional information extracted from a large
corpus to interpret logical metonymies automatically without resource to pre-
existing taxonomies or manually annotated data. They evaluate their results by
comparing the system predictions with human judgements and obtain reliable
correlation with human intuitions.

Their system works by comparing a metonymic construction’s frequency
(“enjoyed the book”) with its expanded, literal paraphrase (“enjoyed reading



66 CHAPTER 3. STATE OF THE ART

the book”). Obtaining the interpretation of a metonymic verb-noun pair is thus
to retrieve which verb is implicitly meant in the coerced construction.

Their method consists of the modeling of the joint probability distribution
of the metonymic verb, its object, and the sought-after interpretation. By doing
this, they obtain verbs like see, watch and make as likely paraphrases for the
metonymic verb-noun pair enjoy film. Their first model is centered around
direct objects and does not take subjects in consideration.

They use human judgements to evaluate the quality of the induced para-
phrases. They generate paraphrases with high, medium and low-probability
interpretations (“Jean enjoyed the city” can mean he “enjoyed living in the
city”, “coming to the city”, or “cutting the city”). Annotators were asked to
rate paraphrases numerically according to their perceived plausibility. Their
subjects could not have a background in linguistics. The Pearson correlation
coeflicient between the predicted likelihoods of the model and the human judge-
ments is of 0.64.

They report inter-encoder agreement with leave-one-out resampling. The
intuition is to eliminate one subject from the total m from the annotation data
with m — 1 annotators, calculate the correlation of their judgements, and repeat
m times, each time removing a different annotator. They report an average
human agreement in terms of correlation of 0.74.

Lapata and Lascarides’ is a local model centered on interpreting coercion,
and it does not take in consideration the overall context. Nevertheless, it is
not a WSD method but a system that provides a ranking of the most likely
interpretations of a verb-noun combination overall across all of its instances in
the corpus. For instance, for begin story they obtain the following most-likely
verbs for interpretation: tell, write, read, retell, recount.

Subsequently they incorporate subjects into their joint modeling to refine
the obtainment of the interpretation verb: a cook begins a sandwich by making
it, a client begins a sandwich by biting into it. In another experiment, and
having incorporated both object and subject roles in their modeling, they aim
to provide paraphrases for adjective-noun pairs, where the syntactic role of the
noun (object or subject) in the paraphrase also has to be inferred. For instance,
a “fast horse” is a horse that runs fast (subject), and “fast food” is a kind
of food that is eaten or served quickly (object). This topic is a refinement of
the coercion view and is further removed from our topic of research, but their
agreement scores are much lower for adjectives (0.40 over the 0.74 obtained for
verbs), something the authors attribute to adjectives having a wider range of
interpretations than verbs.

Even though the their work is centered around coercion, it is similar to our
understanding of how to capture metonymy using informants because they also
make use of the paraphrase approach to interpret metonymies, and they claim
that the interpretation of logical polysemies can typically be rendered with a
paraphrase (cf. Sections 2.3.3 and 4.3).

The corpus-based modeling of coercion pairs has also been addressed by Mu-
rata et al. (2000), Shutova (2009); Shutova and Teufel (2010). In a recent work
Utt et al. (2013) tackle the task from a different angle, namely by measuring
the eventhood value of a certain verb, instead of determining the interpretation
of a verb-noun pair.

A GL-compliant interpretation of Lapata and Lascarides’ work is that ob-
taining the implicit verb in a metonymic coercion is qualia extraction of telic
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and agentive roles. For other approaches to qualia role extraction, cf. Bouillon
et al. (2002); Yamada et al. (2007) and a recent, general survey by Claveau
and Sébillot (2013). For general acquisition of semantic types where regular
polysemy is involved, cf. Bel et al. (2010, 2013) and Joanis et al. (2008).

Boleda et al. (2012a,b) describe work on modeling regular polysemy for Cata-
lan adjectives at the type level by identifying sense alternations from corpus,
generalizing above individual words, and predicting the sense alternation of new
words unseen by the model during the fitting phase. In Boleda et al. (2012a)
the authors experiment with two different models to determine the member-
ship of a semantic class to a regular-polysemy alternation; one in terms of hard
clustering where intrinsically polysemous classes are independent clusters (i.e.
there is a cluster for sense A, a cluster for sense B and a cluster for senses
A-B together), and a second one which models regular polysemy in terms of
simultaneous membership to multiple classes.

Their second system fares best, and that leads them to assert that polyse-
mous adjectives are not identified as a separate class. They obtain an accuracy
of 69.1% over their 51% baseline, which they deem satisfactory given that the
upper bound set by the agreement on their data is at 68%.

Boleda et al evaluate the practical and theoretical repercussions of the two
different understandings of the relation of a polysemous adjective to its senses:
the expectation that polysemous adjectives show a particular hybrid behavior
and a “polysemous between A and B” can be postulated and identified as an
atom—an expectation that has not been borne out—or the expectation that
polysemous adjectives will show alternatively the behavior of one sense or the
other. They claim that the treatment of regular polysemy in terms of indepen-
dent classes is not adequate.

3.3.1 Modeling dot-object sense alternation

Rumshisky et al. (2007) offer the first—and to the best of our knowledge, only—
regular polysemy modeling that explicitly addresses the study of dot types, in
this case for English. This work also provides the canonical list of dot types
we analyze and prune in Section 2.6. Rumshisky et al. obtain, in an unsuper-
vised manner, the words (verbs and adjectives called selectors) that determine
whether a dot type manifests one of the two alternating senses, or both.

Much like Lapata and Lascarides (2003), this is also centered around verb-
noun and adjective-noun coercion. According to their results, the PROCESS®RESULT
word building is a physical entity (RESULT) when it appears as the object of
verbs like demolish, enter or leave, and when it is the subject of stand, house
or collapse. The PROCESS sense is selected when building appear as the subject
of commence or the object of allow or undertake. Most importantly, this work
also finds gating predicates, words that select the whole dot type and thus issue
the underspecified meaning, as we have defined in Section 2.3.3, by selecting
simultaneously both alternating senses (PROCESS and RESULT in this example).

The authors obtain the selectors for each lemma in their list using a clustering
method based on a particular kind of distributional similarity, where two words
are similar if a certain argument (object or subject, for verbs) is often saturated
by the same word. For instance, cook and prepare are similar because they
often have lunch as an object. Once words are characterized in terms of their
relation to nouns, they are clustered using agglomerative hierarchical clustering.
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Interpretation of the clusters determines whether the words that appear together
are selectors for the literal or metonymic sense. If they select for both, they are
selectors for the underspecified sense, which Rumshisky et al. note by providing
the full name of the dot type in question. The authors estimate that their
clustering method yields more consistent clusters for verbs than for adjectives,
which is in line with the higher reliability of the study on verbal coercion over
adjective coercion in Lapata and Lascarides (2003).

This work is relevant for our purposes because it models the relation between
selectors and the possible senses of the analyzed dot types, and typifies each
selector as a feature for each of the three possible senses of a dot type in our
sense inventory.

After a type-based modeling task, Boleda et al. (2012a) concludes that there
is a need to move to word-in-context models, that is, token-based word sense
disambiguation. However, using the association of argument slots of verbs to
a certain sense as features a la Rumshisky et al. is a kind of coercion-based,
selectional restriction understanding of metonymy that we are abstaining from.

In previous work, Boleda et al. (2007) treat the issue of polysemy as a multi-
label classification problem. A word that presents regular polysemy will be
tagged as being a member of more than one semantic class. This approach is
used for type-wise modeling but can be extended to the token-level case.

3.4 Figurative sense resolution

The automatic, token-based identification of word senses in contexts is called
word-sense disambiguation (WSD). It is a large discipline that encompasses a
multitude of approaches and has spawned many shared tasks, from the early
SenseEvals (Kilgariff and Palmer, 1998; Preiss and Yarowsky, 2001) to the last
SemEval (Navigli and Vannella, 2013a; Navigli et al., 2013).

WSD has also contributed to the theory of lexical meaning and its relation
with pragmatics, yielding the one-sense-per-discourse approach to word senses
(Gale et al., 1992)—more apt for dealing with homonymy— and the one-sense-
per-collocation approach (Yarowsky, 1993)—more apt for dealing with actual
polysemy.

In this section we cover works in WSD that explicitly try to predict figurative
senses, or the sense alternation of metonymic words. The application of WSD to
metonymy has been called metonymy resolution Markert and Nissim (2002a).

We extend this term to figurative sense resolution for the cases of WSD that
focus on the recognition of figurative senses regardless of their nature, be it
metonymic or metaphoric. In this section we also refer to work that has been
useful in building the feature model described in Section 6.

Figurative sense resolution is not confined to statistical machine learning,
and from the early days of rule-based, symbolic applications to NLP there have
been approaches that try to disambiguate word usages as literal or figurative
(Hobbs and Martin, 1987; Onyshkevych, 1998; Stallard, 1993; Bouaud et al.,
1996).

Authors like Stallard (1993) already argue for the necessity of resolution
of metonymy for nominals, particularly as a preprocessing to make the entity
replaced by the metonymy explicitly available for e.g. machine translation. Most
of the works of the period like Fass (1988, 1991), for metaphor and metonymy,
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and Markert and Hahn (2002) or Harabagiu (1998), centered strictly around
metonymy, attempt to infer whether an expression is figurative by analyzing the
path in a in a hierarchy of semantic types generated to interpret the expression.

In Kintsch (2001, 2000) we find an early attempt to use a distributional
semantic model (Latent Semantic Analysis) to interpret the semantic properties
of a noun user in “A is B”-style copulative metaphors like “ my lawyer is a
shark”. Kintsch follows the two-domain notion to model the properties of noun
B (shark) that get transferred unto noun A (lawyer). Although compelling,
Kintsch’s is system is constrained to synthetic examples of the form “A is B”,
which makes this algorithm difficult to apply to proper corpus examples, even
more so than the coercion models described in Section 3.3, which are also based
on modeling the meaning of word pairs. Moreover, this approach is tailored for
metaphor and would not be immediately transferable to processing metonymy,
where there is no transfer of properties across domains (cf. Section 2.3.1). Still,
this is a seminal work on using distributional semantics for figurative language,
which we also explore in Chapter 5.

Upon the establishment of statistical machine learning as reigning working
paradigm in NLP, metonymy was identified as a source of noise for tasks like
Named Entity Recognition (Leveling and Hartrumpf, 2008; Johannessen et al.,
2005; Poibeau, 2006), which called for its automatic recognition.

Nissim and Markert (2003) understand metonymy as a classification task
and use syntactic features to identify it. In order to generalize over the lemmas
of the syntactic heads, they use an automatically generated thesaurus to cluster
the syntactic head features. In Nissim and Markert (2005b) they mention the
relevance of other features like the presence of determiner and the amount of
syntactic dependencies the headword to disambiguate is involved in, plus they
discourage the use of n-grams for metonymy resolution.

Markert and Nissim (2009) offer a summary of the results of the SemEval2007
shared task on metonymy resolution. They compare the results of the submitted
systems against three baselines, namely MFS, SUBJ and GRAM: the usual
most-frequent sense (MFS) baseline used in WSD, the SUBJ baseline where
all the instances of potentially metonymic words that are subjects are labelled
as metonymic, and the supervised GRAM baseline where each syntactic role
receives its most likely sense as determined from the training data. The last
two baselines are harder than MFS for their data, even though in highly skewed
data MFS is a very hard baseline to beat. We analyze these three baselines in
Appendix D.

Since they use a very fine-grained sense inventory, Markert and Nissim’s eval-
uation was conducted using three levels of representation granularity: COARSE
(literal vs non literal), MEDIUM (literal, metonymic or mixed) or FINE, with all
the subtypes of metonymy included. The authors also identify mixed senses as
potentially problematic for WSD.

In their report, Markert and Nissim analyze which kind of features each sub-
mitted system uses. All three top-scoring systems used head-modifier relations,
although performance is not homogeneous across senses, arguably because syn-
tactic roles also are skewed. Some systems used collocations and co-occurrences
but obtained low results, and in general it seems that shallow features and
n-grams are not desirable for this task. Even though the best systems used
syntactic roles and head relations, none made explicit use of selectional restric-
tions, which means no system was implemented following a strict coercion view,
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and we also decide to abstain from it. For full system descriptions for the
SemEval2007 metonymy resolution shared task submissions, cf. Agirre et al.
(2007)

The GLML, described in Section 3.2.1 has also made possible a shared task at
SemEval2010 (Pustejovsky et al., 2009a), portraying verb-noun coercion in En-
glish and Italian. There was one participant to the task (Roberts and Harabagiu,
2010), which only submitted a run for English, obtaining however very good re-
sults (e.g. a precision of 0.95 for determining whether a verb is exerting a
coercion on an argument, over a baseline of 0.69). This system used induced
hypernyms from WordNet and parse-derived features.

Birke and Sarkar (2006) modify a word sense disambiguation algorithm to
classify usages of verbs into literal and figurative, using just sentential con-
text instead of selectional restriction violations or paths in semantic hierarchies.
Other systems that detect figurative language at the example level are Mason
(2004); Murata et al. (2000); Sporleder and Li (2009); Turney et al. (2011), or
Nastase et al. (2012), who use both local (words in the sentence) and global con-
text (corpus behavior over a series of semantic classes) as features for metonymy
resolution with SemEval2007 data.

Markert and Nissim (2009) describe metonymy resolution as class-based
WSD. Regular polysemy has been a motivation for applying class-based WSD
to account for the literal and metonymic senses of whole semantic classes. This
allows reducing the sense inventory and improving the performance (Vossen
et al., 1999). Similar remarks can be found in other class-based WSD systems
like Izquierdo et al. (2009); Ciaramita and Altun (2006); Curran (2005); Clark
and Weir (2001); Lapata and Brew (2004) or Li and Brew (2010).

3.5 Measuring uncertainty

Some research in NLP treats uncertainty in annotation as a source of informa-
tion, and tries to represent its predicted variables as continuous values instead
of discrete categories to palliate the bias imposed by the discrete representa-
tion. In this section we provide a review on works that either use uncertainty
of annotation as information, or that try to predict semantic characteristics as
continuous instead of discrete values.

Sun et al. (2002, 2003) attempt to implement fuzzy logic systems to avoid
providing hard set assignments to their classifiers, aiming to represent a func-
tionalistic language perspective where linguistic categories are seen as gradients,
and they argue for the need to develop soft computing strategies that do not im-
mediately commit to hard classes, especially when the trained systems feed their
output to another NLP system, because information is lost when discretizing
into mutually exclusive classes.

Current data-driven methods allow the materialization of theoretical state-
ments that claim that two opposing categories in linguistics are in fact poles of a
continuum, like abstract vs. concrete or homonymy vs. polysemy. Utt and Padé
(2011) model the increasing systematicity in sense variation from homonymy to
(regular) polysemy to postulate a continuum between the two: homonymy is
idiosyncratic of a word whereas polysemy is characteristic of a certain class.

Utt and Padé interpret high-frequency ambiguities between semantic classes
as systematic and low-frequency as idiosyncratic, which places homonymy and
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polysemy in a gradient. They also argue that their model is desirable because
phenomena have no separation boundary and words can have both homonymic
and polysemous senses, e.g. the word match in Section 2.1. Utt et al. (2013)
explicitly address the modeling of metonymic behavior as a graded range be-
cause they find unlikely that there are two exclusive classes of verbs, namely
metonymic and literal, and model the verbs degree of metonymicity.

A task related to predicting the literality of an expression as a continuous
value is has been implemented by Bell and Schéfer (2013). Their take is focused
on the compositionality of a compound, following the notion that compositional
compounds are more literal: the meaning of application form is composed from
the meaning of its parts, whereas ivory tower is neither made of ivory not really
a tower but a way of referring to the academic world. They obtain human
ratings of the literarity of a compound and train regression models to predict
this value, taking into account factors like frequency of the parts, or the kind of
semantic relation between head and modifier in the compound. Cf. Johannsen
et al. (2011) for a similar task that predicts the compositionality of a word pair.

Another work that uses a continuous representation of literality is Turney
et al. (2011), which conceptually places examples in a continuum from the ab-
solutely literal to the fully figurative by saying that they degree of abstractness
in a word’s context is correlated with the likelihood that the word is used figu-
ratively. However, the continuous representation is only a factor in their feature
modeling for classification, because their final system employs binary classifica-
tion to divide examples as either literal or figurative.

3.5.1 Exploiting disagreement as information

Disagreement between annotators is commonly seen as some kind of featureless
noise. However, there are authors that take the stance that, when an item
is annotated with low-agreement and the labels it gets assigned are disparate,
there is a case for seeing this particular example as difficult to annotate. One
of the causes for this difficulty can be regular polysemy.

Tomuro (2001a) provides an interpretation on disagreement between sense-
annotated corpora. Her hypothesis is that, when humans disagree on senses
of a word, there is an underlying relation between the senses, that is, most
inter-annotator disagreement is explained by systematic polysemy.

Tomuro compares the sense annotations of two corpora, SemCor and DSO,
and reports an average K between the sense annotations of the two corpora in
their matching sentences of 0.264. She concedes however that a good proportion
of the difference is a result of SemCor being annotated by lexicographers and DS
by novices, but claims that these differences provide insight on sense distinctions
that are easily misjudged. She is also careful to note that the inverse of her
hypothesis does not work, and that systematic polysemy does not cause cause
disagreement per se. Jezek and Quochi (2010) also remark that the nouns
that cause most disagreement in the coercion annotation task are precisely dot
objects.

Recasens et al. (2012), dealing with co-reference annotation, work with an
intuition of near-identity in coreference similar to our understanding of senses
being underspecified. They build an annotation task where the five annotators
had to determine whether an expression was co-referent or not. They also
allow an option for the annotators to inform whether they were unsure about
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a particular item. They obtain perfect agreement for only half of their data.
From their annotations data, they generate a final, aggregate measure s, bound
in the interval (0-1]. High-agreement data provides values of s closer to 1.
Their approach is relevant to our interest because they do not only use the
agreement to quantify the reliability of the annotation, but to merge the discrete
annotations of five annotators into a single, continuous label. They mention on
their future work section the possibility of predicting such disagreement-based
value, a task we take up in Chapter 9.

3.6 Summary

In this chapter we have reviewed the previous work on LBKs abd human anno-
tation for figurative senses, and their modeling in type- or token-based methods.
In this section we summarize the methodological contributions of the state of
the art to the tasks that make up the experiments of this dissertation.

3.6.1 Designing an annotation task

In Chapter 4 we provide the description and the results of the sense-annotation
task for dot types that attemps to identify the underspecified sense, as well
as the literal and metonymic senses. In this section we summarize the design
choices we impose on our sense-annotation task after the literature survey in
Section 3.2.

The annotation scheme is largely based on the annotation scheme by Nissim
and Markert (2005a). There are, however, several differences in our approach.
Instead of enforcing a certain sense to a certain structure, we expect these
syntactic properties to emerge when correlating linguistic features to the sense
of an example, and do not prescribe them from the start.

Markert and Nissim’s scheme is more detailed but also more biased by the
author’s expectations, and using a less detailed scheme that does not incor-
porate any syntactic information we potentially sacrifice agreement in favor of
descriptivism, as opposed to a prescriptivism of sorts, where they a priori enforce
readings on syntactic structures.

The sense inventory in Nissim and Markert (2005a) is very fine-grained,
and the authors found that many low-frequency patterns performed poorly at
WSD. We cannot do away with the underspecified sense, which is the focus of
our study, but reduce our sense inventory to the affordable minimum of three
categories to annotate: literal, metonymic and underspecified.

We annotate with three possible senses. Thus, the granularity of our sense
inventory is similar to their MEDIUM representation, keeping in mind that Mark-
ert and Nissim’s mixed reading is different to our encoding of the underspecified
sense.

Most importantly, our take on the mixed reading—what we refer to as un-
derspecified sense—is different. In Markert and Nissim’s guidelines, a doubly
metonymic sense is also mixed. Our sense inventory only lists one possible
metonymic sense for each dot type.

With regards to the GL-based sense-annotation guidelines in Section 3.2.1,
we abstain from using a coercion approach to sense selection. A method centered
in pairwise word relations is not the desired for an enterprise like ours, were
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we will be dealing with corpus examples of arbitrary complexity, and we have
established we will model the predicated sense of a dot type at the word level
and not at the relation level (cf. Section 2.5.3)

Coercion phenomena are a subset of the possible contexts that provoke
metonymic readings, and we have decided to take a general approach that does
not explicitly focus on coercion. In Section 5.3 we cover, for instance, the rele-
vance of articles and plurals for determining the sense of dot types. Not focusing
on coercion also entails that we will model the predicated sense of a dot type at
the word level and not at the relation level.

Most of the work on figurative sense annotation in Section 3.2 used experts
as annotators. In this dissertation we use Amazon Mechanical Turk to annotate
the English datasets, and volunteers for the Danish and Spanish data.

Markert and Nissim backoff to the literal sense in case of disagreement.
When assigning a final sense tag from all the possible annotations for an ex-
ample, we explicitly avoid automatically backing off to the literal sense in our
annotation scheme. This decision is justified and illustrated in Section 4.7.1.

Jurgens (2013) argues for the multiple tagging per item to boost the agree-
ment of datasets. Nevertheless, we abstain from multi-tagging in our sense
annotation tasks, even though we interpret the underspecified sense tag as a
double tag in the ensemble classification step in Chapter 7.

We have also listed methods to attempt to infer the most likely tags in an
unsupervised manner. In 4.7.2 we detail how we use MACE (Hovy et al., 2013) to
assign sense labels in an unsupervised fashion, and how we compare the output
of MACE with a theory-compliant majority voting sense assignment method.

3.6.2 Extracting Features

The works in type-based (Section 3.3) and token-based (Section 3.4) modeling of
regular polysemy make use of different linguist features as explanatory variables
for their machine learning experiments. In this section we provide a rationale
for the features we incorporate in Chapter 6, and for the features we do not
implement in our system.

Using selectional preferences (Rumshisky et al., 2007) as features corre-
sponds to modeling metonymy as coercion, which we abstain from doing. We
do, however, incorporate syntactic heads and the dependents of the nouns to
disambiguate, for which (Markert and Nissim, 2009) report good performance.

Nissim and Markert (2005b) mention the relevance of other grammatical
features like the presence of determiner and the amount of syntactic dependen-
cies the headword is involved in. We also incorporate these features. Moreover,
they discourage the use of n-grams for metonymy resolution, as these features
damage the precision of the sense resolution. We do not incorporate n-grams in
our feature space.

In order to generalize over the lemmas of the syntactic heads, Markert and
Nissim use an automatically generated thesaurus to cluster the syntactic head
features. We use a similar approach using Brown clustering in Section 6.1.

Coercion-based work also uses features we can adapt for our system. Even
though the task in Roberts and Harabagiu (2010) deals with coercion, the fea-
tures employed by the system are also applicable to the study of dot type senses:
hypernyms from WordNet, besides parse-derived features. We also incorporate
wordnet-based features to our feature space.
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Nastase et al. (2012), who incorporate and global information features for
metonymy resolution. We do so by including topic models and Brown-cluster
features in our feature scheme, to give account for the distributional information
that can be inferred from corpora in an unsupervised manner. Using unsuper-
vised machine learning to generate features renders our method unsupervised.

3.7 Word-sense disambiguation

In Section 3.6.2 we have covered the features from the state of the art that we
incorporate in our feature space. In this section we cover the design choices
for the word-sense disambiguation system to capture the underspecified sense
that do not deal with the feature representation of the examples, but with other
methodological choices.

Using classification to predict the senses of the annotated data using linguis-
tic features is the standard outline of most WSD systems. In this manner, the
WSD system described in Chapter 7 does not deviate from the usual method
for (semi-)supervised WSD. The annotation task is at the sentence level, which
necessarily makes our WSD system a sense-per-collocation (Yarowsky, 1993)
system. However, since literal and metonymic senses can appear together, we
consider this approach more apt than the sense-per-discourse approach, which
is more useful for e.g. the homonymy between match (flammable stick) and
match (sports competition) than for metonymic alternations.

However, we understand the underspecified sense as a group of behaviors
that include both literal and the metonymic sense, which means we vulnerate
the assumption of mutual exclusion of senses which is customary in WSD (cf.
Section 2.5.4).

Besides our treatment of the underspecified sense, the main particularity of
our WSD system is that it is class-based. This means we expect the same sense
alternations for all members for a semantic class—i.e. dot type— and train and
test the data for all words within a dot type together, disregarding the different
lemmas the headwords might have.

Boleda et al. (2007) claim that the treatment of regular polysemy in terms
of independent classes is not adequate, and address type-based modeling of
polysemy as a multi-label classification problem, which we also implement in
our token-based disambiguation task using a classifier ensemble (cf. Section
7.4).

Note that, since the definition of underspecified sense in this dissertation
is different to the mixed reading of Markert and Nissim, we do not use their
data to train or test. In spite of this difference, our approach has a granularity
similar to their MEDIUM representation.

3.8 Representing literality in a continuum

In Section 3.5 we have covered works that represent a semantic phenomenon as a
continuum, instead of discrete categories. In Chapter 8 we propose a continuous
representation for literality that is based on the range of metonymicity of a verb
described in Utt et al. (2013), and on the degree of literality of a compound in
Bell and Schéfer (2013) or a word relation in Johannsen et al. (2011).
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We adapt their representation of figurativeness (or its complement, literality)
as a continuous dependent variable in Chapter 8, using an approach that does
not use a final sense tag, but a merge of the discrete annotations for each example
into a single continuous value, as in Recasens et al. (2012).

3.9 Predicting disagreement

In Chapter 9 we propose a regression method to predict systematic disagree-
ment, namely the variation of agreement in sense-annotated examples that de-
pends on the linguistic features of the headword and its contexts.

This method is a continuation of the further work section of Recasens et al.
(2012), which suggests attempting to predict disagreement-based values.
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Chapter 4

Human judgments on
regular polysemy

In this chapter we describe a sense-annotation task to obtain human judgments
on the literal, metonymic and underspecified senses of dot-type words in English,
Danish and Spanish. This chapter is an expansion on the work presented in
Martinez Alonso et al. (2013).

The goal of this annotation procedure is, first and foremost, to assess the
human judgments on regular polysemy, namely how humans perceive and an-
notate the differences between the literal, metonymic and—most importanly—
underspecified examples.

This annotation task produces data that can be used as gold standard for the
experiments in the following chapters. We need gold standard data to evaluate
any system we want to develop to resolve regular polysemy. A gold standard is
even more necessary for supervised learning, because we also need it for training.
The lack of available sense-annotated gold standards with underspecification is
a limitation for NLP applications that rely on dot types (Rumshisky et al., 2007;
Pustejovsky et al., 2009a). In this chapter we cover the annotation procedure
we have followed to generate such data !.

This annotation scheme is designed with the intention of capturing literal,
metonymic and underspecified senses, and we use an inventory of three possible
sense tags. We call the first sense in the pair of senses that make up the dot type
the literal sense, and the second sense the metonymic sense, e.g. LOCATION is the
literal sense in LOCATION®ORGANIZATION, and ORGANIZATION is its metonymic
sense. When a sense includes aspects of both literal and metonymic, we call it
underspecified.

We annotate data in three languages—Danish, English, and Spanish—using
human subjects. For English we used Amazon Mechanical Turk (AMT) with
five annotators (known as turkers) per item. Using AMT provides annotations
very quickly, possibly at the expense of reliability—we have restricted our task
to turkers with at least 1000 approved annotations—, but it has been proven
suitable for sense-disambiguation task (cf. Section 3.2.2). Given the demo-
graphics of turkers (cf. Ipeirotis (2010)), it is not possible to obtain annotations
for every language using AMT. Thus, for Danish and Spanish, we obtained an-

IThe corpus is freely available at http://metashare.cst.dk/repository/search/?q=regular+polysemy

7
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notations from volunteers, most of them native or very proficient non-natives.
See Table 4.1 for a summary of the annotation setup for each language. In
addition to the data annotated by turkers, we have also obtained annotations
by a single expert for the English data. We use the expert-annotated data to
compare with the turker annotations.

Language Annotators Type

English 1 expert

5 turker
Danish 3-4 volunteer
Spanish 6-7 volunteer

Table 4.1: Amount and type of annotators per instance for each language.

In Section 4.1 we list the criteria we define for our annotation scheme. Sec-
tion 4.2 describes the corpora and words we sample for our study, along with
the preprocessing steps to obtain the final examples to annotate. The next
three sections describe three different annotation environments: in 4.3 we de-
scribe the expert annotation method based on paraphrase, in 4.4 we describe the
annotation method that uses crowdsourcing in Amazon Mechanical Turk (the
turker variant of our annotation) for English, and finally Section 4.5 describes
the scheme followed by wvolunteer annotators for Danish and Spanish.

The expert scheme is only followed by one annotator (namely the author of
this dissertation), but both the volunteer and the turker schemes generate data
where each example receives more than one annotation. We need to determine
one single sense tag from all the annotations an example might have. In 4.7 we
describe the implications of assigning a sense tag from a series of annotations and
propose two methods: VOTE, a majority-voting method with a theory-compliant
backoff strategy and MACE, an unsupervised Expectation-Maximization method
that scores annotators according to their estimated reliability. Finally, we com-
pare these two methods in Section 4.8.

4.1 Design criteria for an annotation guideline

The goal of our annotation task is to collect semantic judgments on the mean-
ing of examples of dot-type nominals. Each example is annotated individually
following a token-based approach, instead of annotating the behavior of the
overall dot type. Following the practices and caveats collected in Section 3.2,
we establish the criteria for our annotation scheme:

1. Our method is class-based, and this requires the annotation scheme for
regular polysemy to be consistent across the whole regular polysemous se-
mantic class, which implies there is one sense inventory per semantic class
(i.e. per dot type) and not per lemma. A class-wise sense inventory miti-
gates some of the complications of an annotation scheme for word senses,
and also complies with regular polysemy being a class-wise phenomenon.

2. The size of the sense inventory has to be kept to a minimum in order to
avoid the problems of an overcomplicated annotation scheme. Problems
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like difficulty in annotation (cf. Section 3.2) or under-representation of
some very fine-grained senses penalize agreement. In our case, we cannot
do away with the literal and metonymic senses, and we also include an
underspecified sense, for a total of three.

3. Our unit extent of annotation is the word level (cf. Section 2.5.3). We
define an example to annotate as one sentence with one single headword
that the annotators have to label as either literal, metonymic or under-
specified.

4.2 Data

This section describes how the examples for all the datasets have been ob-
tained from corpora by querying concordances of the lemmas of the dot types
in Rumshisky et al. (2007).

For each of the nine dot types (five for English, two for Danish, two for
Spanish) listed in Section 2.6, we have randomly obtained a series of corpus
examples, preprocessed them, and selected the first ranked 500 that were not
removed during preprocessing (cf. Section 4.2.1). The value of 500 examples
was experimentally obtained in a previous study (cf. Appendix B).

Each example consists of a sentence with a selected headword belonging to
the corresponding dot type. For English and Danish we used freely available
reference corpora: the ANC for English (Ide and Macleod, 2001), and KorpusDk
for Danish (Andersen et al., 2002). For Spanish we have used IulaCT, a corpus
built from newswire and technical text (Vivaldi, 2009).

Even though we are studying data in three different languages, we have not
used parallel corpora. Using translated texts would allow us to compare the
datasets sentence-wise, but it would also incorporate calques from the source
language which would undermine the validity of these comparisons.

For most of the English datasets we used the lemmas in Rumshisky (Rumshisky
et al., 2007) also listed in Section 2.6, except for ENG:LOCORG. For Danish and
Spanish we translated the lemmas from English and expanded the lists using
each language’s wordnet (Pedersen et al., 2009; Gonzalez-Agirre et al., 2012)
as thesaurus. The Danish and Spanish corpora are smaller than the English
corpus and this expansion of the list of lemmas was necessary to ensure that the
datasets would reach 500 examples after the discarding that takes places during
preprocessing.

For the three version of LOCORG we used high-frequency names of geopoliti-
cal locations—continents, countries and cities—from each of the corpora. Many
of them are corpus-specific (e.g. Madrid is more frequent in the Spanish cor-
pus) but a set of words is shared across datasets: Afghanistan, Africa, America,
China, England, Europe, Germany, and London. The list of words for each
dataset is provided in Appendix A.1.

Every dot type has its particularities that we had to deal with. For instance,
English has lexical alternatives for the meat of several common animals, like
venison or pork instead of deer and pig (cf. Section 2.6.1 for a more detailed
explanation on preemption). Our claim is that this lexical phenomenon does
not impede metonymy for animal names, it just makes it less likely. In order
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to assess this, we have included 20 examples of cow?. The rest of the dataset
consists of animal names that do not participate in this lexical alternation, like
eel, duck, chicken, or sardine.

4.2.1 Preprocessing

After obtaining all the candidate examples for the annotation, we discarded
examples that were shorter than five tokens, showed bad sentence splits (e.g.
sentences interrupted after an unrecognized abbreviation), homonyms (e.g. a
novel called Paris), or other kinds of polysemy like metalinguistic usages or
object-for-representation metaphors (cf. Section 2.3.1). The discard rate can be
very drastic; for instance, for ENG:CONTCONT we discarded about 800 examples
in order to have 500 examples to annotate.

We want to minimize the bias of giving too much presence to a certain lemma
in a dataset. For instance, building the whole dataset for ENG:LOCORG only from
examples with Moscow as a headword would not make it representative of the
overall dot type. To mitigate this bias, we used a sorting method to select which
examples to incorporate into the 500 examples for each dataset.

We provide an illustration on the method chosen to select examples to com-
pensate for the skewedness of word distribuions. Say we have three examples for
Paris, two for London, two for Rome, and one for Berlin; and we want to select
six of them. Firstly, we sort the preprocessed candidate examples randomly and
give them a numeric index. This yields a list C' of lists with sorted candidate
examples. The lists within C' are sorted alphabetically by the name of their
lemma. We use a list called E to store the chosen examples for the dataset.
The data structures have the following content upon initialization:

C = [[Berlini], [London,, Londons], [Parisy, Pariszs, Pariss], [Rome1, Romes]|
E=]

In each iteration 7, we add the i-th example of each sublist to E' and remove
it from C'. In the first iteration, we add all the examples with the index 1 to F
and remove them from C'. After this iteration C' has four examples:

C = [[Londons], [Parisz, Pariss], [Romes]]
E = [Berliny, London,, Paris,, Rome]

In the second iteration there are no more examples left for Berlin, and we
only have to choose two examples more to reach the desired amount of six.
Following the alphabetical order, we choose examples with an index of 2 for
London and Paris

C = [[Pariss), [Romes]]
E = [Berliny, Londony, Parisy, Romey, Londons, Pariss)

At the end of the second iteration, E has reach the desired cardinality of
six examples and there are two examples in C' that are not incorporated into
the dataset. Note that this method compensates for skewness because it maxi-
mizes the entropy of a certain lemma within a dataset, but it does not avoid it
altogether. In this illustration, Berlin is a hapax and only appears once in the

2Indeed, two of the examples for cow were annotated as metonymic by turkers.
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dataset. For some of the datasets that had to be expanded with more lemmas
to make sure that E reached 500 examples, there are also hapaxes, like anchovy
and yak in ENG:ANIMEAT. All hapaxes are included in the first iteration because
they are all the first and only element of their sublist in C.

4.3 Expert annotation scheme

We have devised an expert annotation scheme to be able to compare against
the results obtained by crowdsourcing in the turker scheme. Obtaining expert
annotations also allowed us to get hands-on experience with the data and ac-
quire intuition on what to expect in terms of sense selection and difficulty of
examples. However, annotating 500 examples is cumbersome, and we only do
it for English (for a total of 2500). For Danish and Spanish we are using vol-
unteers as annotators, and we consider that there is no need to build a parallel
annotation to evaluate them.

The annotation scheme for the expert uses a paraphrase test to determine
the sense of each nominal headword h. In Table 4.2 we provide the paraphrases
we established for each sense. For each sentence, the paraphrase scheme is as
applied as follows:

1. If h can be paraphrased using the paraphrase for the literal sense, tag with
a literal sense tag. ANIMAL, ARTIFACT, CONTAINER, LOCATION, PROCESS
are literal.

2. If h can be paraphrased using the paraphrase for the metonymic sense,
tag with a metonymic sense tag. MEAT, INFORMATION, CONTENT, ORGA-
NIZATION, RESULT are metonymic.

3. If both paraphrases can been applied to h, or must be applied for h
to make sense, consider h as underspecified.

Table 4.2 lists the paraphrases for each sense. Literal senses are listed first
for each pair.

Sense Paraphrases

LOCATION “the place called X”, “the territory of X”
ORGANIZATION  “the people or institutions of X”
ARTIFACT “the physical object of X”

INFORMATION “the content of X”,”what X says”
CONTAINER “the X as such”, “the container of X”
CONTENT “the content of X”,”what X contains”
PROCESS “the event of X”, “the process of X”
RESULT “the result of X happening”, “the result of having done X”
ANIMAL “the animal X”

MEAT “the meat of X”

Table 4.2: Paraphrase listing for the different senses

Using paraphrases as a way to identify senses is not devoid of problems.
During the annotation, some of the paraphrases, in particular for PROCRES, felt
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rather ad hoc. Accepting a paraphrase as valid, i.e. as preserving the meaning
of the original statement, becomes more difficult if the phrasing is awkward. We
do not expect non-experts to be comfortable accepting an awkward paraphrase
as semantically valid regardless of pragmatics, and we only use paraphrasing as
a method to assign word senses for the expert scheme.

Using a paraphrase tests implies that we are working with the assumption
that meaning is mostly preserved from a sentence to its expanded paraphrase.
Vila Rigat et al. (2011) notice that the notion of preservation of meaning is con-
troversial. Since our scheme consists in comparing between different paraphrases
and choosing the most felicitous one, we are not bound by a strict adherence to
a notion of absolute preservation of meaning.

Table 4.3 shows the sense distributions from the expert annotation broken
down in literal (L), metonymic (M), and underspecified (U) sense. We compare
the sense distributions of expert, turkers and volunteers in Section 4.6.

Dataset L M U
ENG:ANIMEAT 0.65 0.21 0.15
ENG:ARTINFO 0.12 0.65 0.24

ENG:CONTCONT 0.68 0.15 0.17
ENG:LOCORG 054 0.22 0.24
ENG:PROCRES 0.36 0.43 0.22

Table 4.3: Sense distributions for expert in relative frequency

4.4 Turker annotation scheme

Expert annotation is both slow, costly and, in this particular scenario, biased.
That is, an annotator that has read enough theory on the GL to think in terms of
dot-type sense selection and underspecification will be biased in his understand-
ing, and might be all too eager to over-recognize examples as underspecified.
We therefore want to measure whether the non-expert annotation by several
people converges around the underspecified senses the expert has annotated.

Furthermore, it is a standard practice to employ agreement measures to
assess the validity of annotation schemes. Agreement measures require more
than one annotation per item, and using only one expert is thus not sufficient
to calculate agreement. To obtain more than one annotation from non-experts
for each example, we use Amazon Mechanical Turk (AMT).

But using AMT has its downsides, as complex annotation schemes are more
noise-prone. An annotation scheme for AMT needs to prime simplicity, and a
paraphrase scheme would add an additional layer of complexity to the task for
a non-expert user.

Indeed, instead of providing a sentence with a headword to disambiguate and
the question “what can this headword be paraphrased as?”, the scheme offers
the sentence and the highlighted headword along with the more straightforward
question “what does the headword mean?”. Each annotation task for a given
semantic type has an illustrating example of both the literal and metonymic
senses. We did not provide examples of underspecified examples to avoid prim-
ing the annotators with our intuitions about underspecification.
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What is the selected sense for the next example of the word Spain ?
The weather in Spain is generally very hot in the summer.

~ Location (the place)
_ Organization (institutions, people, etc.)
~ Both Location and Organization

Figure 4.1: Screen capture for a Mechanical Turk annotation instance or HIT

Each dataset, a block of 500 sentences with a headword belonging to a dot
type, is an independent annotation subtask with an isolated description. The
annotator was shown an example and had to determine whether the headword
in the example had the literal, metonymic or the underspecified sense. Figure
4.1 shows an instance of the annotation process.

In Table 4.4 we find the glosses to describe each sense for AMT. Notice how
the definitions are simplified and try to be more intuitive than the paraphrases
in Table 4.2, which were only used by the expert.

Sense Gloss
LOCATION the place
ORGANIZATION institutions, people, etc.
ARTIFACT the physical object
INFORMATION  the information, the content
CONTAINER the object itself
CONTENT what is inside
the act of doing something or
PROCESS something happening, possibly
placed in time
RESULT the result or output of the action
ANIMAL the animal itself
MEAT its meat or flesh

Table 4.4: Sense glosses for turkers

In addition to its 500 corpus examples to annotate, each dataset had 5
synthetic examples that were annotated by 10 turkers. Our intention when
including synthetic examples was to assess the feasibility of the whole system,
because if the performance was low for simple, made-up examples where we had
an expectation of what sense they should receive, it would not be possible to
obtain conclusive data using AMT on actual corpus data. We considered this
pilot study satisfactory and carried through the annotation task proper.

These additional synthetic examples and their annotations are described in
Appendix A.3. These examples were only annotated by turkers for reference
purposes abd were not included in the datasets used for the NLP experiments
in the following chapters.
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Dataset L M U
ENG:ANIMEAT 0.70 0.26 0.04
ENG:ARTINFO 0.51 0.36 0.13

ENG:CONTCONT 0.64 0.28 0.08
ENG:LOCORG 0.59 0.35 0.06
ENG:PROCRES 0.36 0.56 0.08

Table 4.5: Raw sense distributions for turkers in relative frequency

Table 4.5 shows the proportion of annotations for each sense in each datasets
out of all the judgments of all turkers. Before determining the final sense tag for
each element, we can draw some expectations about the final sense distributions.

The underspecified sense is systematically less frequent for turkers than for
the expert (cf. Table 4.3), but the ranking by frequency of the three senses
is the same, with the exception of the ENG:ARTINFO dataset, where the expert
annotated fewer (0.12) literal examples. However, the literal sense takes 0.51
of the turker annotations for this dataset. Notice that this is an estimate of
the overall behavior of turkers before we assign definitive a sense tag to each
sense. Cf. Section 4.7.1 and 4.7.2 for the resulting distributions after applying
a sense-assignment method.

ENG:ANIMEAT is the dataset with fewest underspecified annotations and the
highest preference for the literal sense. On the other hand, ENG:PROCRES is
the dataset with fewest literal annotations, and turkers lean more towards a
metonymic (RESULT) interpretation when analyzing word of this dot type. We
provide a more detailed analysis of the commonalities and differences between
types of annotators in Section 4.9.1

4.5 Volunteer annotation scheme

Using AMT is fast, easy and affordable. Still, it is difficult if not right down
impossible to obtain annotations for languages with fewer speakers, like Dan-
ish. Even though Spanish datasets have been successfully annotated with AMT
(Mellebeek et al., 2010; Irvine and Klementiev, 2010), we have tried to obtain
volunteer annotators for our Danish and Spanish data.

For Danish and Spanish we have chosen to annotate the LOCORG and CON-
TCONT dot types. We split the 500 preprocessed examples of each dataset in
blocks of 50 and distributed them amongst the annotators in spreadsheet files.

The annotators were given instructions like the ones shown in Figure 4.1 to
assign one of the three possible senses to the headword of each example. Like in
the turker annotation setup, we did not provide an example of the underspecified
sense to avoid biasing the annotators.

A total of 46 annotators participated in the Danish task, yielding three or
four annotations per example. For Spanish we obtained more volunteers (65)
and each example was tagged by between six and eight annotators.
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Dataset, L M U
DA:CONTCONT 0.65 0.20 0.15
DA:LOCORG 0.66 0.20 0.14

SPA:CONTCONT 0.44 0.34 0.22
SPA:LOCORG 0.45 0.35 0.20

Table 4.6: Raw sense distributions for volunteers in relative frequency

Table 4.6 shows the proportion of annotations for each sense in each datasets
out of all the judgments of all volunteers. The distributions are similar between
the two Danish and the two Spanish datasets. This indicates that volunteers
have a similar bias.

4.6 Annotation results

In this section we cover the measures used to quantify the agreement of human-
annotated datasets, and examine the agreement scores of our data.

4.6.1 Agreement measures

A measure of agreement is used to assess the reliability of an annotation task.
Since we have no intrinsic way of knowing the validity of the annotated data
unless we have a previous gold standard (or conduct an extrinsic evaluation using
the data as training data), we use agreement metrics to describe the reliability
of the annotation task as a proxy for the validity of the data.

Note that a task where all the annotators said exactly the opposite of what
they should would have perfect agreement, but not would be valid at all. Nev-
ertheless, such adversarial annotators are not expected, and agreement values
are often interpreted as an indicator of the quality of the data.

The simplest agreement coefficient is observed agreement (A,). Observed
agreement gives the proportion of how many pairwise comparisons among the
annotators have the same value.

However, the A, coefficient has no chance correction, that is, there is no ad-
justment on the agreement value to account for how much agreement is expected
by chance. For all non-perfect (4, < 1) agreement values, chance-corrected
agreement will be strictly lower than observed agreement, because some chance
agreement is always to be expected.

Cohen’s k is an agreement coefficient adjusted for chance agreement. Orig-
inally defined for two annotators, Cohen’s k can be generalized to any number
of annotators. Chance agreement is calculated under different assumptions de-
pending on the metric. Cohen’s k assumes a different distribution of categories
for each annotator to reflect annotator bias.

The K coefficient systematically overestimates chance agreement when one
value is more frequent. This results in scores that can be unfairly low, given
that sense distributions are often skewed.

Krippendorf’s a disregards annotator bias and calculates the expected agree-
ment by looking at the overall distribution of judgment regardless of which coder
is responsible for each specific judgment.
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According to Artstein and Poesio (2008), Krippendorf’s « is used in compu-
tational linguistics in order to assess the reliability of an annotation procedure,
as it calculates agreement disregarding annotator bias. But & is calculated tak-
ing individual bias into consideration in the chance agreement, which means
that the x value informs on the wvalidity of a specific annotation task. However,
for large amounts of data, o and x tend to converge.

There is dissent between the acceptability of an annotation task given its
agreement. Artstein and Poesio note that are agreement coefficients above 0.40
are considered good agreement in the medical literature. A value of 0.80 or
higher in a chance-corrected coefficient is considered impeccable for many tasks,
but they admit the difficulty of word-sense related annotation tasks. Following
this thought, Passonneau et al. (2012) interpret values above 0.50 with un-
weighed «a as good agreement in their evaluation of the sense-annotated MASC
corpus. For other sense annotation tasks and their agreement values, cf. Section
3.2.2.

Each example in English is annotated by five annotators from AMT. How-
ever, the annotators vary from semantic class to semantic class, and even the
total number of annotators is different in each annotation task. Therefore we
describe the reliability of the data in terms of Krippendor’s «, as it does not
consider annotator bias in its calculation of chance agreement. Using a as a
reliability measure for meaning-based annotation tasks has become a common
practice (Zarcone and Padé, 2010; Passonneau et al., 2012), which we also ad-
scribe to.

Note that even though the underspecified sense subsumes the two other
senses, we have calculated agreement considering senses as mutually exclusive,
without considering that the underspecified could be a double tag (literal and
metonymic) or any variation on the usual sense independence assumption taken
when calculating agreement for word sense annotations. Even though « can
provide agreement for multiple tags or even ordinal annotations, we calculate
« using sense independence to make the coefficients comparable to the state of
the art (cf. Section 3.2.2).

Kappa Agreement

<0 Less than chance agreement
0.01-0.20  Slight agreement

0.21-0.40 Fair agreement

0.41-0.60 Moderate agreement
0.61-0.80 Substantial agreement
0.81-0.99  Almost perfect agreement

Table 4.7: Strength of agreement

Interpreting agreement scores

Understanding observed agreement is relevant for the experiment in Chapter 9
and to estimate the quality of our annotation procedure. Observed agreement
A, is interpretable as the proportion of matching items between annotations
only if there are two annotators. For any higher amount of annotators, the
value of A, is not the proportion of matching items but the proportion of match-
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ing pairwise comparisons out of the possible ("3‘), where |A| is the number of
annotators and s is the number of possible senses.

In this section we detail the values of A, that five annotators (the amount
of annotators in our AMT setup) can generate when annotating three possi-
ble senses. Given one single annotated item (a sentence with a headword to
disambiguate), five annotators, and three possible senses (A, B, (), a distribu-
tion of categories for that item (D) ensues. The average observed agreement
inter-encoder agreement (A,) for one item has the next possible values in this
scenario: 1.0, 0.6, 0.4, 0.3 and 0.2.

1. An A, value of 1.0 means perfect agreement; all five annotators have
picked the same category:

D =1[A,A A A A

2. An A, value of 0.6 indicates a majority voting of 80%; four out of five
annotators have picked the same category, and only one disagrees:

D =[A,A, A, A, B

3. An A, value of 0.4 indicates a 60% majority; three have chosen category
A and two have chosen category B:

D =[A, A, A,B,B]

4. An A, value of 0.3 also indicates a 60% majority, but with lower agree-
ment; three have chosen category A, and the other two have picked B and
C respectively:

D=[A,A A B,C)

5. An A, value of 0.2 indicates the possible lowest agreement, where the
distribution of categories is as even as possible (and has therefore the
highest entropy):

D =[A, A, B,B,C|

4.6.2 Agreement scores

The purpose of measuring inter-annotation agreement is to assess the reliablity
of the annotation scheme. Coefficients like Krippendorff’s a report the propor-
tion of observed agreement that exceeds the agreement that would be expected
if annotators labelled items at random, given some probability of each label.
As mentioned previously in this section, there is no consensus in the accepted
value of k or « that indicates that an annotation task has issued a result of
enough quality. In a recent annotation evaluation, Passonneau et al. (2012)
consider that an « of 0.50 is good agreement. Still, some words have senses that
are easier to annotate, and while the noun strike and the adjective high yield «
scores over 0.80, the adjective normal and the verb ask give a values of -0.02
and 0.05 respectively. In their analysis, they also note that items instances with
low agreement showed unusual vocabulary or complicated syntactic structures.
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We have mentioned the « coefficient is a measure of reliability of an annota-
tion procedure. But if all the annotation-setup variables are the same, and the
only thing that changes is the input data (the dot type and the particular corpus
examples), we can determine that some dot types are easier to annotate than
others, given that the easier ones will have higher scores, because the method
is more reliable for them.

Our scheme has a sense inventory of the same granularity for each semantic
class, but we have no control over the intrinsic difficulty of the senses in the dot
type—e.g. is ANIMAL easier to grasp than PROCESS?—, nor over the difficulty of
the contexts themselves. We expect variation in « score between all the datasets
in this dissertation, as the sense differences are easier to grasp for some specific
dot types. After the annotation task we obtained the agreement values shown
in Table 4.8.

Dataset A, +o «

ENG:ANIMEAT 0.86 = 0.24 0.69
ENG:ARTINFO 0.48 £ 0.23 0.12
ENG:CONTCONT 0.65 £ 0.28 0.31
ENG:LOCORG 0.72 £ 0.29 0.46
ENG:PROCRES 0.5+0.24 0.10
DA:CONTCONT 0.32 + 0.37 0.39

DA:LOCORG 0.73 £0.37 047
SPA:CONTCONT 0.36 £ 0.3 0.42
SPA:LOCORG 0.52 £0.28 0.53

Table 4.8: Averaged observed agreement and its standard deviation and «

Average observed agreement (A,) is the mean across examples for the pair-
wise proportion of matching senses assigned by the annotators. Krippendorft’s
« is an aggregate measure that takes chance disagreement in consideration and
accounts for the replicability of an annotation scheme. There are large differ-
ences in «a across datasets.

The scheme can only provide reliable Artstein and Poesio (2008) annotations
(o > 0.61) for one dot type and moderate (o > 0.41) for four. This indicates that
not all dot types are equally easy to annotate, regardless of the kind of annotator.
In spite of the number and type of annotators, the LOCATION®ORGANIZATION
dot type gives fairly high agreement values for a semantic task, and this behavior
is consistent across languages.

But also in the low-agreement datasets there are perfect-agreement examples—
56 for ENG:ANIMEAT and 66 for ENG:PROCRES—, which indicates that the dis-
agreement is not homogeneously distributed. We claim that variation in agree-
ment is a result of a difficulty of annotating certain examples. We explore this
clain in Chapter 9.

Again, note the value of « is only a proxy for a measure of the quality of
the data. In Chapters 5, 7, 8, and 9 we train and test our system on all the
datasets, thus evaluating their quality extrinsically, and determining to which
extent the performance of the system is hampered by the variation in « score.
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4.7 Sense assignment methods

In this section we describe to ways to assign a final sense tag from all the
annotations a item has received from either turkers or volunteers. We describe
two sense assignment methods (SAM), namely VOTE and MACE.

In section 4.6 we provide agreement values for the annotation task, but we
have not yet determined which is the sense tag to assign to each example from
the n tags that it has received from either turkers (in English) or volunteers
(in Danish and Spanish). We need to find a method to determine a final sense
tag for each example in each dataset. In each dataset, for each sentence with
a dot-type headword h to disambiguate, there is a set of annotations available,
namely:

1. For English, the judgment by an expert (the author of this dissertation).
These judgments have been obtained with the paraphrase test described
in 4.3.

2. For English, the annotations collected from Amazon Mechanical Turk.
These judgments have been obtained using the annotation scheme de-
scribed in 4.4.

3. For Danish and Spanish, the annotations collected from the volunteers,
following the scheme described in 4.5.

However, there are many ways in which a final sense tag for each example
can be derived from these judgments. We used two different SAMs to obtain
a final sense tag assignment for the data, only using the annotations provided
by either turkers or volunteers, without incorporating the expert annotations in
our gold standard.

One of the reasons not to incorporate the expert annotations in the final gold
standard because they have no agreement score themselves. Even though we
could provide a chance-corrected agreement score like a between the expert and
the turker annotations, this value would not be informative of the reproducibility
of the annotation task in a straightforward fashion, mainly because the way that
the sense judgments have been obtained in each scheme is different.

In this way, even though the expert annotation is likely more internally
consistent—a single annotator with the same bias for five datasets—, we only
used it to compare the turker annotation and not for machine learning exper-
iments. We claim that it is more realistic to use crowdsourced annotations to
generate our gold standard than the annotations of one expert with a theoretical
bias.

Nevertheless, we use the expert annotation as gold standard to compare the
output of the two sense assignment methods in Section 4.8.

4.7.1 Voting method

In this section we describe VOTE, a SAM based on majority voting with a theory-
compliant backoff strategy to resolve ties. Using majority voting to determine
the sense tag is a fairly straightforward method that does not seem to commit
too much to a certain theory of meaning: one determines the final sense tag
from the sense that has received the most annotations for a given example and
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has thus plurality (or simple majority). However, a problem appears when there
are ties between candidate senses and there needs to be chosen one.

If using majority voting, resolving ties by assigning the literal (or most
frequent) sense is not acceptable for every tie. E.g. if five annotators anno-
tate as example twice as literal, twice as literal and once as underspecified
(A=1[U,U, M, M,L]), how can we justify the customary backoff to literal ?

It is commonplace to backoff to the most frequent sense in case of disam-
biguation of homonymy or non-regular polysemy. In the case of regular poly-
semy, Nissim and Markert (2005a) backoff to the literal sense when they find
ties. In their data, their literal sense is also the most frequent one. A glance at
Table 4.3 reveals that, at least for the expert, two of the datasets are skewed
towards the metonymic reading. When describing the ARTIFACT®OINFORMATION
in Section 2.6, we took the stance of considering ARTIFACT as the literal sense,
even though the INFORMATION sense appears in about 65% of the examples in
ENG:ARTINFO.

This skewness towards INFORMATION could be an argument to actually con-
sider the INFORMATION sense the literal one. But in the ENG:PROCRES we also
see that RESULT is more frequent than PROCESS, and we have no doubts about
PROCESS being the literal sense in this dot type. We have also mentioned in
Section 3.2.2 that the literal sense need not be the most frequent one; a corpus
with a lot of recipes would have the metonymic sense MEAT as most frequent
for the ANIMALOMEAT dot type.

For these reasons, we consider that backing off to the literal sense is not justi-
fiable, especially when the tie is between the metonymic and the underspecified
sense. Backing off to the most frequent sense is not better either. Moreover,
we conceptualize the underspecified sense to be placed between the literal and
metonymic, and consider it a more proper candidate to back off to when there
are ties between literal and metonymic senses.

We use a backoff that incorporates our assumption about the relations be-
tween senses, namely that the underspecified sense sits between the literal and
the metonymic senses. In the VOTE SAM, ties are resolved as follows:

1. If there is a tie between the underspecified and literal senses, the sense is
literal.

2. If there is a tie between the underspecified and metonymic sense, the sense
is metonymic.

3. If there is a tie between the literal and metonymic sense or between all
three senses, the sense is underspecified.

This way of resolving ties aims to reproduce the logic followed when using
the expert annotation scheme by placing the underspecified sense between the
literal and the metonymic. We take it as a representation of Dirven’s (cf. Section
2.3) understanding of the literal-to-figurative continuum. This is however a
scale based on an author’s intuition (and our compliance) and has no assessed
psycholinguistic validity.

This SAM’s major advantage is that, instead of depending on the frequency
of senses, it resolves the sense tag locally for each example and can be applied
to any number of annotations and examples, no matter how few.

Table 4.9 provides the relative frequencies for the senses of all datasets after
appling VOTE.



4.7. SENSE ASSIGNMENT METHODS 91

Dot type L M U
ENG:ANIMEAT 0.72 0.27 0.01
ENG:ARTINFO 0.28 0.61 0.11

ENG:CONTCONT 0.71 0.24 0.05
ENG:LOCORG 0.61 0.34 0.04
ENG:PROCRES 0.31 0.60 0.09
DA:CONTCONT 0.65 0.16 0.18

DA:LOCORG 0.64 0.19 0.17
SPA:CONTCONT 0.58 0.28 0.14
SPA:LOCORG 0.63 0.28 0.09

Table 4.9: Literal, Metonymic and Underspecified sense distributions over all
datasets for VOTE

Notice how VOTE gives the metonymic sense the most frequent one for
ENG:ARTINFO, even though the literal sense had 0.51 of the probability mass
of the raw annotations (cf. Table 4.5). The sense distribution with VOTE is
thus more similar to the one provided by the expert. This change in the result-
ing sense distribution is a consequence of the homogenous distribution of the
annotations for the literal sense in this dataset, which get filtered out by the
combination of plurality-based sense assignment and our backoff strategy .

In Table 4.10 we break down the amount of underspecified senses of each
dataset into those obtained by simple majority (i.e. plurality) or backoff. We
give the values in absolute frequency to ease the comparison with the additional
columns. The columns labelled L, M and U provide the sense distributions for
each dot type. We provide the sense distributions in absolute frequencies to
make the comparisons more immediate between this method and the method
described in 4.7.2.

Dataset L M U P B
ENG:ANIMEAT 358 135 7 3 4
ENG:ARTINFO 141 305 54 8 48
ENG:CONTCONT 354 120 25 0 25
ENG:LOCORG 307 171 22 3 19
ENG:PROCRES 153 298 48 3 45
DA:CONTCONT 328 82 91 53 38
DA:LOCORG 322 95 83 44 39
SPA:CONTCONT 291 140 69 54 15
SPA:LOCORG 314 139 47 40 7

Table 4.10: Literal, Metonymic and Underspecified sense distributions over all
datasets, and underspecified senses broken down in Plurality and Backoff

The preference for the underspecified sense varies greatly, from the very in-
frequent for ENG:ANIMEAT to the two Danish datasets where the underspecified
sense evens with the metonymic one. However, the Danish examples have mostly
three annotators, and chance disagreement is the highest for this language in
this setup, i.e., the chance for an underspecified sense in Danish to be assigned



92 CHAPTER 4. HUMAN JUDGMENTS ON REGULAR POLYSEMY

by our backoff strategy is the highest.

Columns P and B show respectively whether the underspecified senses are
a result of plurality in voting (the underspecified sense being the most frequent
for a certain item) or backoff (a tie between the literal and the metonymic).
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Figure 4.2: Underspecified senses with VOTE, with Plurality and Backoff

Figure 4.2 illustrates the P and B columns from 4.10. Each bar shows the
amount of underspecified sense, with the amount of underspecified senses that
fall under P (underspecified senses assigned by plurality) in yellow, and the
underspecified senses assigned by backoff (B) in green. The names of the bars
are abbreviations for the dataset names, in the same order they are displayed in
Table 4.12, starting with ENG:ANIMEAT (eAM) and finishing with SPA:LOCORG
(sLO).

In contrast to volunteers, turkers disprefer the underspecified option, and
most of the English underspecified sense tags are assigned by backoff when
there is a tie between the literal and the metonymic. Note that ties between
two senses when there are five annotators are only possible if the third sense
that is not involved in the tie appears once.

Nevertheless, it cannot be argued that turkers have overused clicking on the
first option (a common spamming behavior) because we can see that two of the
English datasets (ENG:ARTINFO, ENG:PROCRES) show majority of metonymic
senses, which are always second in the scheme (cf. Fig. 4.1). These two datasets
also have majority of metonymic senses in the expert annotation. We expand
the remarks on annotation behavior in Section 4.9.

4.7.2 MACE

The data for each language has been annotated by a different amount of people,
either volunteers or turkers for each different dataset. Both the number and the
kind of annotators has an impact on the result data. More reliable annotators
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are expected to generate more reliable data, and a higher number of them
decreases chance agreement. Besides using majority voting with the backoff
strategy detailed in the previous section, we use MACE (Hovy et al., 2013), an
unsupervised system, to obtain the sense tag for each example.

We use MACE as a SAM because we want to compare our voting sense assign-
ment method with a method that is not informed of our theoretical assumptions
about the underspecified sense as a sense between literal and metonymic, nor
that does not simply backoff to the most frequent sense in case of ties.

MACE (Multi-Annotator Competence Estimator) is an unsupervised system
that uses Expectation-Maximization (EM) to estimate the competence of an-
notators and recover the most likely answer by adjusting the weights of the
annotators. MACE is designed as a Bayesian network that treats the “correct”
labels as latent variables. This EM method can also be understood as a clus-
tering that assigns the value of the closest calculated latent variable (the sense
tag) to each data point (the distribution of annotations).

While removing annotators improves the agreement, using MACE, we can
obtain weights for the different annotators instead of simply removing those
that show less agreement. The method is aimed at identifying spamming be-
haviors like the one shown by annotators that always click on the same value,
or annotators that annotate at random. MACE can be tuned for a confidence
threshold to only resolve labels with a certain confidence. While doing this could
be interesting as an indirect means of identifying underspecified senses (some
of which would have low confidence), we run MACE on its default settings: 50
iterations, 10 random restarts, a smoothing coefficient of 0.01 and no usage of
the confidence threshold option. For a more detailed explanation of MACE, refer
to Hovy et al. (2013).

We have trained MACE individually for each dataset to avoid introducing
noise caused by the difference in sense distributions, which would alter the
likelihood of each sense tag. We claim that datasets that show less variation
between senses calculated using majority voting and using MACE will be more
reliable.

Table 4.11 provides the relative frequencies for the senses of all datasets after
appling MACE.

Dataset L M U
ENG:ANIMEAT 0.68 0.29 0.03
ENG:ARTINFO 0.34 0.36 0.30

ENG:CONTCONT 0.59 0.35 0.06
ENG:LOCORG 0.58 0.39 0.03
ENG:PROCRES 031 042 0.27
DA:CONTCONT 0.45 0.27 0.28

DA:LOCORG 0.50 0.29 0.21
SPA:CONTCONT 0.54 0.31 0.15
SPA:LOCORG 0.60 0.29 0.10

Table 4.11: Sense distributions calculated with MACE

Along the sense distribution in the first three columns, Table 4.12 provides
the proportion of the senses that is different between majority voting and MACE
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(D), and the size of the intersection (I) of the set of underspecified examples by
voting and by MACE, namely the overlap of the U columns of Tables 4.10 and
4.11. Table 4.12 provides the sense distributions in absolute frequency for ease
of comparison with the two right columns.

Dataset L M U D I
ENG:ANIMEAT 340 146 14 5% 3
ENG:ARTINFO 170 180 150 90% 46
ENG:CONTCONT 295 176 28 17% 0
ENG:LOCORG 291 193 16 8% 3
ENG:PROCRES 155 210 134 27% 33
DA:CONTCONT 223 134 143 24% 79
DA:LOCORG 251 144 105 21% 53
SPA:CONTCONT 270 155 75 7% 56
SPA:LOCORG 302 146 52 4% 40

Table 4.12: Sense distributions calculated with MACE, plus Difference and In-
tersection of underspecified senses between methods

Table 4.12 shows a smoother distribution of senses than Table 4.10, as major-
ity classes are downweighted by MACE. It takes very different decisions than ma-
jority voting for the two English datasets with lowest agreement (ENG:ARTINFO,
ENG:PROCRES) and for the Danish datasets, which have the fewest annotators.
For these cases, the diferences oscillate between 20.6% and 29.6%.
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Figure 4.3: Underspecified senses with MACE, with Difference and Intersection

Figure 4.3 illustrates the D and I columns from 4.12. Each bar shows the
amount of underspecified sense, with the amount of underspecified senses that
fall under I (intersection between VOTE and MACE) highlighted in green. The
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names of the bars are abbreviations for the dataset names, in the same order they
are displayed in Table 4.12, starting with ENG:ANIMEAT (eAM) and finishing
with SPA:LOCORG (sLO).

Although MACE increases the number of underspecified senses for all datasets
but one (ENG:LOCORG), the underspecified examples in Table 4.10 are not sub-
sumed by the MACE results. The values in the I column show that none of
the underspecified senses of ENG:CONTCONT receive the underspecified sense by
MACE. All of these examples, however, were resolved by backoff, as well as most
of the other underspecified cases in the other English datasets. In contrast to
VOTE, MACE does not operate with any theoretical assumption about the re-
lation between the three senses and treats them independently when assigning
the most likely sense tag to each distribution of annotations.

Assigning sense tags with MACE has the advantage of not being committed
to a certain understanding of the relation between senses, something that is
ingrained in the backoff strategy for voTE. However, clustering methods also
have biases of their own. Even though MACE runs EM a number of times with
random restarts to overcome the local optima that some clustering algorithms
can be prone to, it does seem to have a bias for evenly-sized clusters, something
that becomes apparent in the schemes with fewer annotators or with lower
agreement.

This tendency for evenness is an expectable shortcoming of a clustering
method, because MACE needs a certain volume of data to converge consistently
and it will update more drastically when applied to data with fewer annotators
or lower agreement. Hovy et al have successfully applied MACE to the WSD
datasets used in Snow et al. (2008), which have also been annotated by turkers.
However, we know that word senses tend towards skewed distributions, which
might complicate the applicability of MACE in our particular scenario.

4.8 Comparison between SAMs

For each of the datasets, we have two alternative SAMs, namely the one ob-
tained by VOTE and the one obtained using MACE. In this section we provide
a comparison between the voting method and MACE by comparing them to the
expert-annotated data for English, and by comparing between themselves for
the three languages.

4.8.1 Expert annotations versus raw AMT data

In Section 4.3 we have described the annotation scheme for experts and pro-
vided the sense distributions we obtained for English. In this section we provide
a qualitative analysis on how the expert annotations map to the turker anno-
tations, giving examples of agreement and disagreement between both kinds of
annotators.

Before examining either SAM, we compare the raw annotations of the turkers
with the expert annotations. Firstly we look at examples where the expert and
the five turkers agreed fully on the literal and metonymic senses.
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Perfect agreement examples

In example 4.1 we provide five examples, one for each English dot type, where
the expert and the five turkers coincide in tagging the headword as literal.

(4.1) a) Atlantic cod in Canadian waters suffered a total population collapse
and are now on Canada’s endangered species.

b) In fact many people use dictionaries to press flowers, hide money or
prop up uneven table legs.

¢) And would a corkscrew and proper glasses be pushing it?

d) Visitors need a visa to enter China, and must disembark at the
border (now called boundary) checkpoint, Lo Wai.

e) Another highlight of the last five genturies of geometry was the
invention of non-Eucledian geometries (1823-1830).

These examples are obtained from the ANC and, even though they have
perfect agreement in their annotations, they are less immediate in their inter-
pretation than the examples we have provided in our theoretical framework
Chapter 2, which were mostly synthetic.

Example 4.1.¢), for instance, is a question that was shown to the annotators
without any other context, and even though the situation is unclear—someone
being at restaurant or being a guest at someone’s, maybe it is even a rhetori-
cal question by someone complaining about bad service—, it was clear to the
annotators that the glasses meant in the example are containers.

The PROCESS®RESULT example, was tagged as literal by the turkers arguably
because it is placed in a context where it is portrayed as something happening
and delimited in time as an event. Example 4.1.b), is a fairly transparent exam-
ple where the sentence suggests a series of alternative telic roles for dictionary
that only take the ARTIFACT sense in consideration, disregarding the INFORMA-
TION sense. These two datasets have low « (0.10 and 0.12), yet some of their
examples also have perfect agreement.

In example 4.2 we provide five examples with the same words as in 4.1 that
show perfect agreement and are unanimously tagged as metonymic.

(4.2) a) Imported dried cod (bacalhao) is the Portuguese national dish;
several varieties are available, usually baked.

b) If meaning appears neutral, as it does in the modern dictionaries, it
is only so following the dictates of objectivity, an ideology in itself,
and the politics of invisibility.

¢) Their vices are few—they enjoy an occasional glass of wine or beer,
and now and then they may overindulge in chokolate-spiked trail
mix.

d) China will prosecute the leaders of Falun Gong.
e) Among the rooms devoted to the history of science and technology,

one gallery is reserved for Leonardo’s inventions, displayed as
models constructed from his notebooks.

Again, we also see the relative complexity of these examples. In these
metonymic examples we find canonical cues for their interpretation. The ex-
ample for glass, (4.2.c), could indeed be analyzed by the coercion view we have
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not enforced in our analysis. In this case, a glass is enjoyed by drinking it, the
telic role that selects for the CONTENT sense. With regards to the mass/count
alternations, in the example for cod, the animal is used as a mass noun and is
referred to as a dish. The metonymic sense RESULT is first and foremost identi-
fiable by the word inventions being in plural and thus being a count noun, but
also being headed by the genitive of the invention’s author’s name.

Expert-mechanical turk mistmaches

Unfortunately, perfect-agreement examples are only 856 out of 2500 (34%) for
English. In the five English datasets there are also 203 examples where the
expert annotation is not present in any of the five annotations by turkers, and
a SAM that applies weights to annotators would not be able to reproduce the
expert judgment. Almost all (96%) of these mismatching examples were tagged
as underspecified by the expert. Example 4.3 shows one example from each
dataset where the expert annotation is not included in the example’s five turker
sense annotations.

(4.3) a) In a region without any noteworthy industry other than cod fishing,
little forestry, and tourism, the people add to their income by
selling their craftwork and farm produce from improvised stands.

b) Both dictionaries list abbreviations and biographical and
geographical entries in separate sections at the back, a practice I
have never liked.

¢) On the other hand, if the Canadian government wants to force
Coca-Cola to print time-lapse photos of a nail dissolving in a glass
of their product, then go for it.

d) Such practices are totally forbidden in China

e) On the contrary, respect for the capacity of the materials always
wins out over daring visual invention, but a staggering technical
imagination has also been summoned.

Most of the 203 examples in this group without overlap between expert
and turker annotations show the highest possible disagreement between turkers
for two possible sense tags (A,=0.4), since there is a third sense that is only
annotated by the expert only example (4.3.d) is an oddity because it has perfect
agreement by turkers, who consider it a literal example. However, it accepted,
according to the expert, both the organization and the location paraphrases. It
seems the preposition in is a strong cue for a LOCATION reading, which turkers
deem sufficient to assign the literal sense.

The rest of the examples were tagged two or three times as literal, and
three or two times as metonymic by turkers. However, these examples were
considered underspecified by the expert. In the example for cod, the expert has
given the underspecified sense because in this sentence fish are both treated as
animals and as the product of fishing. The example for dictionary has both
its INFORMATION (“list abbreviations”) and its ARTIFACT sense (“at the back”)
predicated.
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4.8.2 VOTE and MACE against expert

The SAMs VOTE and MACE provide different sense tags. The following examples
(three from ENG:CONTCONT and four from ENG:LOCORG) show disagreement
between the sense tag assigned by VOTE and by MACE:

(4.4) a) To ship a crate of lettuce across the country, a trucker needed
permission from a federal regulatory agency.

b) Controls were sent a package containing stool collection vials and
instructions for collection and mailing of samples.

¢) In fact, it was the social committee, and our chief responsibilities
were to arrange for bands and kegs of beer.

d) The most unpopular PM in Canada’s modern history, he introduced
the Goods and Services Tax, a VAT-like national sales tax.

e) This is Boston’s commercial and financial heart , but it s far from
being a homogeneous district |...]

f) California has the highest number of people in poverty in the
nation—~6.4 million, including nearly one in five children.

g) Under the Emperor Qianlong (Chien Lung), Kangxi’s grandson,
conflict arose between Europe’s empires and the Middle Kingdom.

All of the previous examples were tagged as underspecified by either VOTE or
MACE, but not by both. Table 4.13 breaks down the five annotations that each
example received by turkers in literal, metonymic and underspecified senses.
The last three columns show the sense tag provided by VOTE or MACE from the
turker annotations, and by the expert.

Example | L M U | VOTE MACE expert
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Table 4.13: Annotation summary and sense tags for the examples in this section

Just by looking at the table it is not immediate which method is preferable to
assign sense tags in examples that are not clear-cut. The case for MACE is strong:
in f), we consider the underspecified sense more adequate than the literal one
obtained by VOTE, just like we are also more prone to prefer the underspecified
meaning in g), which has been assigned by MACE. In the case of h), we consider
that the strictly metonymic sense assigned by MACE does not capture both
the organization- (“commercial and financial”) and location-related (“district”)
aspects of the meaning, and we would prefer the underspecifed reading.

However, MACE can also overgenerate the underspecified sense, as the vials
mentioned in example b) are empty and have no content yet, thereby being
literal containers and not their content.
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Examples a), d) and e) have the same distribution of annotations—namely 2
literal, 2 metonymic and 1 underspecified—but d) has received the literal sense
from MACE, whereas the other two are metonymic. This difference is a result
of having trained MACE independently for each dataset. The three examples
receive the underspecified sense from the voting scheme, since neither the literal
or metonymic sense is more present in the annotations.

Note how example a) has the underspecified sense assigned by backoff in
VOTE. This means that VOTE has chosen the least frequent annotation as sense
label, because this scheme interprets the underspecified sense as sitting between
the literal and metonymic.

On the other hand, b) and f) are skewed towards literality and receive the
literal sense by plurality in VOTE without having to resort to any backoff, but
they are marked as underspecified by MACE.

These examples are useful to illustrate the different shortcomings of both
SAMs, but we need quantitative measures to actually determine which is most
adequate as a reference SAM out of VOTE or MACE. One way of doing it is by
measuring accuracy, considering the sense assignment method as the predicted
value and the expert annotation as the gold standard, or using an agreement
coefficient between a SAM and and the expert.

Note that by comparing the output of the SAMs to the expert annotations,
we are evaluating the SAMs in terms of which one best approximates the expert
judgments, which we decide not to use as gold standard in the rest of our
experiments.

However, we claim that using the expert annotation as gold standard for
SAM comparison is a sound decision because all datasets have been annotated by
the same expert with the same bias, and the judgments will be consistent across
examples and across datasets. By comparing against the expert annotations,
we have determining the consistency of the output of the SAMs.

In Table 4.14 we see that all the accuracies are higher for VOTE with regards
to the expert annotation.

Dataset MACE VOTE
ENG:ANIMEAT 0.84 0.85
ENG:ARTINFO 0.50 0.64
ENG:CONTCONT  0.70 0.80
ENG:LOCORG 0.73 0.75
ENG:PROCRES 0.58 0.60

Table 4.14: Accuracy for VOTE and MACE with expert annotation as a gold
standard

With regards to comparing the SAMs with the expert annotations using
accuracy or an agreement coefficient, accuracy has the same value as measuring
A, for the two-annotator case between the expert and one of the predictions. Its
informativeness is also limited. Since we are comparing one candidate to gold
standard to an approximation, it is more informative se to build contingency
tables in a manner similar to de Melo et al. (2012) and Boleda et al. (2008), and
generate precision, recall and F1 measures for each sense and representation,
instead of just using an aggregate measure where details are blurred.
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Higher accuracies for VOTE mean that this sense assignment method does
indeed fulfil its intention of approximating the expert annotation. But all the
accuracies are higher for VOTE in Table 4.14, and the picture is very different
when we look at the sense-wise F1 measure for each English dataset and sense
assignment.

MACE VOTE
Dataset L M U L M U
ENG:ANIMEAT 094 0.80 0.21 094 033 0.17
ENG:ARTINFO 0.41 0.62 0.32 0.50 0.81 0.21
ENG:CONTCONT 0.85 0.55 0.17 0.90 0.73 0.27
ENG:LOCORG 0.88 0.69 0.15 0.88 0.75 0.21
ENG:PROCRES 0.60 0.67 0.38 0.60 0.71 0.25

Table 4.15: F1 score over expert

Table 4.15 extends the comparative of sense distributions provided in Table
4.12. The vOTE SAM has a strong bias for the most frequent sense in any
dataset, and MACE relaxes this behavior. If we look at the behavior of the
underspecified sense, we see that no method is immediately best for capturing
it in a satisfactory manner, or at least in a manner that resembles the expert’s.

First of all, F-scores for the underspecified sense are fairly low. And even
though the differences can seem drastic (0.32 to 0.21 for ENG:ARTINFO), their
conclusiveness, seen either as differences in F-score or error reduction values,
is dubious. However, VOTE seems to fare best with high-agreement datasets,
which is also understandable because it aims to mimic expert annotation. But
the underspecified in ENG:ANIMEAT are best captured by MACE, and this is a
dataset with agreement on par with ENG:LOCORG.

The key difference between ENG:ANIMEAT and ENG:LOCORG is the sense dis-
tribution. In the expert annotation there are 72 examples in ENG:ANIMEAT
tagged as underspecified. We have seen that MACE marks 14 examples as un-
derspecified, and only three of them are also recognized by VOTE. In general,
rule-based methods like VOTE will have higher precision, whereas statistical
methods are more likely to provide better recall. This difference in performance
seems to hold if we examine the precision, recall and Fl-score values for the
underspecified sense in all five English datasets.

MACE VOTE

Dataset p T F1 p T F1
ENG:ANIMEAT 0.64 0.12 0.21 1.00 0.10 0.17
ENG:ARTINFO 0.29 036 032 033 0.15 0.21
ENG:CcONTCONT 0.36 0.11 0.17 0.60 0.17 0.27
ENG:LOCORG 0.62 0.08 0.15 068 0.12 0.21
ENG:PROCRES 0.34 0.42 038 042 0.18 0.25

Table 4.16: Performace of underspecified sense for MACE and VOTE using expert
annotations as gold standard
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In Table 4.16 we can see that, while VOTE always has higher precision when
assigning the underspecified sense, it can suffer from lower recall, in particular
in the low-agreement datasets ENG:ARTINFO and ENG:PROCRES, where ties are
more frequent and less reliable. The ENG:ANIMEAT is, complementarily, too
rigid and too stable in its annotations for ties to appear, and benefits from
being resolved using MACE. Still, 14 underspecified examples resolved by MACE
are a small subset of the 73 expected in the—maybe biased—expert annotation.

[say something here].we have an evaluation of the two different SAMs and
how they relate to the expert annotation for English. We obtain better accuracy
with VOTE, but if we break it down to sense-wise performance and focus on the
underspecified sense, the difference in behavior becomes less evident.

While VOTE provides higher precision for the three high-agreement datasets,
it does worse for the more difficult ENG:ARTINFO and ENG:PROCRES. A possible
option would be to choose VOTE for high-agreement data to approximate the
expert annotation and MACE for low-agreement data to improve the performance
of the data when used for training or testing. But an agreement threshold should
be then identified, and there is no guarantee that it would hold for the other
two languages for which we have no expert annotation as a reference.

After these considerations, we settle for using VOTE as a reference SAM.
First, the sense distributions yielded by MACE have an even-size bias which is
typical of EM methods, while VOTE keeps the expectable skewness of senses.
Second, VOTE is systematically more consistent with the expert annotation.
Even though the expert annotation might overestimate the presence of the un-
derspecified sense, VOTE is in general better at capturing the expert’s judgments
on the literal and metonymic senses.

4.9 Behavior of annotators

In this section we describe the behavior of turkers and volunteers with regards
to their biases, and their possible dispreference for the underspecified sense. We
complement this section with examples from the Danish and Spanish datasets
to complement the comparisons for English in Section 4.2.

4.9.1 On the behavior of turkers

In Section 4.7 we see that turkers disprefer the underspecified sense. We hy-
pothesize that, since turkers are not always native speakers, might lack nuances
in their interpretation. But on the other hand, in NLP it is accepted that flu-
ent non-natives can annotate data for English, as in Biemann and Giesbrecht
(2011) or Markert and Nissim (2009). We have worked with this assumption
ourselves when carrying out the expert annotation task with a fluent non-native
as annotator.

Example 4.3.d) shows a sentence where the expert had predicted the un-
derspecified example because something being “forbidden in China” issued a
LOCATION and ORGANIZATION reading. However, the five turkers unanimously
assigned the literal sense to this example. This is an indication that turkers
might have a less nuanced understanding of this phenomenon, or that they
focus on very obvious features like the preposition in.
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However, a less-nuanced understanding of the task is not the only possible
explanation for the turker dispreference for the underspecified sense. Turkers
are also wary of their data being rejected for invalidity and might choose options
with lesser perceived risk of rejection. Indeed, two of the turkers contacted us
during the annotation task to inquire about their data being approved using
majority rules, as they were concerned that discarding low-agreement turkers
would be unfair on such a difficult task. It was explained to them that it was
not the case.

It is also a possibility that turkers choose, in case of doubt, the easiest sense.
The easiest sense is not necessarily the most literal one, and we already have seen
that we do not find a general tendency to abuse first-option clicking, which would
have caused a stronger bias for the literal sense. Endriss and Fernandez (2013)
provide a related account on the biases of turkers when annotating structured
data.

We propose that turkers manifest a behavior that makes them choose the
easiest option as a default in hopes of getting paid and not getting their anno-
tations rejected. Whatever the case, turkers behave different than the expert
and show a bias against the underspecified sense that is not as strong in data
annotated by volunteers.

4.9.2 On the behavior of volunteers

The datasets for the dot types LOCATION®ORGANIZATION and CONTAINER®CONTENT
have been annotated by volunteers for Danish and Spanish. For these datasets
we do not have an expert-annotation to compare against, like we do for English.

Still, we can still contrast the general behavior of all annotators for all lan-
guages for these datasets. In Table 4.17 we show the raw distributions of senses
chosen by the annotators before any sense assignment method was applied to
the data. This is the overall proportion of times any annotator has marked an
item as literal, metonymic or underspecified. We provide the LOCORG and CON-
TCONT datasets for all three languages. For English we provide the distribution
from the turker annotation and from the expert annotation. Figure 4.4 reprents
the information graphically.

Dot type L M U

ENG:CONTCONT:EXP 0.68 0.15 0.17
ENG:LOCORG:EXP 054 0.22 0.24
ENG:CONTCONT:TURK 0.64 0.28 0.08
ENG:LOCORG:TURK 0.59 0.35 0.06
DA:CONTCONT 0.65 0.20 0.16
DA:LOCORG 0.65 0.21 0.14
SPA:CONTCONT 0.56 0.26 0.17
SPA:LOCORG 0.58 0.27 0.15

Table 4.17: Expert, turk and volunter sense distributions for the CONTCONT
and LOCORG datasets

We can see that, for these two dot types, the literal sense is the most fre-
quently chosen, regardless of language and type of annotator. For the under-
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specified sense, however, we observe two particularities: the volunteer datasets
have a proportion of underspecified senses that is consistent even across Dan-
ish and Spanish, and is more similar to the English expert datasets. Also, the
ENG:LOCORG:EXP dataset stands out as the dataset where there is the highest
proportion of underspecified sense tags being assigned, four times as often as in
its turker counterpart ENG:LOCORG:TURK.

We are naively comparing proportions to obtain a qualitative assessment
of the behavior of the annotators. When comparing the proportion of sense
tags given by the expert to the proportion of sense tags given by the turkers
or volunteers we are comparing the distribution over 500 sense tags against
a distribution between 1500 and 3200 sense tags. Conducting independence
testing would only make sense between annotations of the same data, and for
Danish and Spanish we have no alternative to the volunteer to compare against.

Nevertheless, we can suggest that the behavior of volunteers sets the stan-
dard for what to consider the output of an annotation task by well-meaning
(i.e. non-spamming), native annotators. Turkers share the same kind of bias
for the most frequent, literal sense, but are less willing to give the underspecified
tag for the reasons we suggested in the previous section, while the expert can
be overzealous in his willingness to interpret a certain usage of a dot type as
underspecified.
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Figure 4.4: Distribution of annotations between the three senses for expert,
turker and volunter for the CONTCONT and LOCORG datasets

Figure 4.4 illustrates the sense distributions in terms of relative frequency
for the CONTCONT and LOCORG datasets. The first letter in the label of each
three-bad group is the initial of the language (English, Danish, Spanish), the two
middle letters stand for the dot type (CC for CONTCONT and LO LOCORG), and
the final letter stands for the origin of the sense tags (expert, turker, volunteer).
Thus, sCCV stands for Spanish-CONTCONT-volunteer. The datasets are pro-
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vided in the same order as in Table 4.17.

Note how the proportion of underspecified sense is more internally consis-
tent for datasets with the same kind of annotators, with the expert having
the strongest bias for adjudicating the underspecified sense, turkers the least
preference for doing so, and volunteers somewhat in the middle, regardless of
language.

4.9.3 Danish and Spanish examples

In this section we provide examples of annotations with perfect agreement for
the literal and metonymic sense for the Danish and Spanis datasets, examples
that receive the underspecified sense by plurality (UNDR-PLURALITY) because
the underspecified sense receives the most votes, and low-agreement examples
that receive the underspecified sense by the backoff in Section 4.7.1 (UNDR-
BACKOFF).

For the volunteer-annotated datasets there is no expert annotation. Instead,
we provide an array of examples as we have done at the beginning of this section
for the tuker- and expert-annotated English data.

We provide English translations within parentheses for the Danish and Span-
ish examples. The translations for the Danish examples show the definite form
of a Danish noun as a hyphenated sequence of article and noun (e.g. posen
becomes the-bag, cf. Section 2.6.6). In the Spanish examples we hyphenate the
elliptic subject with the verb in the English translation (e.g. tomé becomes
I-took).

For DA:CONTCONT, it seems that both examples that receive the underspec-
ified sense have the CONTAINER and CONTENT sense active. In example c), the
contents of the bag (posen) is what make the bag important and worth grab-
bing, and in d), pot (kande) refers to the coffee pot and what it could have
contained, if it had indeed been served.

(4.5) a) LITERAL: Dolly stod ngjagtig hvor han havde forladt hende, hun
holdt skrinet i heenderne og stirrede pa ham.
(Dolly stood exactly where he had left her, she held the-boz in
the-hands and stared at him)

b) METONYMIC:For tiden er det globale forbrug 76,5 millioner tgnder i
dggnet.
(At the present time the global usage is 76.5 million barrels a day.)

¢) UNDR-PLURALITY:Det har egentlig ikke generet os, for vi greb posen
og gik med den, feerdig.
(Actually it hasn’t bothered us, because we grabbed the bag, and
left with it, done.)

d) UNDR-BACKOFF: Kaffen kom, tre kopper—ikke en hel kande—og sa
oplevede de noget.
(The-coffe came, three cups—not a whole pot—and then they
experienced something.)

For DA:LOCORG, we find that c) has a very limited context, and it is difficult
to know what it means. Nevertheless, it has perfect agreement as an under-
specified example. Likewise, if Berlin reminds of an asylum, it is likely that is
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is because some human behavior which is geographically determined, thus the
underspecified reading obtained by backoff.

(4.6)

a)

LITERAL: De norske ejere kgbte hesten pa auktion i England for
cirka 200.000 kr.

(The Norwegian owners bought the-horse in an auction in England
for around 200,000 crowns.)

METONYMIC: Forholdet mellem Indien og Kina er ikke meget bedre.
(The-relation between India and China is not much better)

UNDR-PLURALITY: Og det er Danmark.
(And it is Denmark.)

UNDR-BACKOFF: Hvad indbyggerne angar, minder Berlin forlengst
om en sindssygeanstalt.

(With regards to the residents, Berlin has resembled a mental
asylum for a long time.)

For SPA:CONTCONT, it is the content of the sacks in ¢) what gives them the
double reading as both containers and contents, much like the oil content of the
cans in example d).

(4.7)

a) LITERAL: Las pdginas de Apple Computer, en cambio, ensefian

entre otras cosas a construir una antena detectora de redes
inalambricas a partir de una lata de café.

(The pages of Apple Computer, on the other hand, teach among
other things how to build a wireless network detector antenna from
a coffee can.)

METONYMIC: Me tomé un bote de pastillas de mi madre.
(I-took a bottle of pills of my mother.)

UNDR-PLURALITY: Desde entonces , los sacos de yeso y cemento
descansan sobre el suelo de su lujosa vivienda recién adquirida [...]
(Since then, the sacks of plaster and cement rest on the floor of the
newly purchased, luxurious tenement [...])

UNDR-BACKOFF: [...] ha pedido a los ciudadanos que no compren ni
una lata de aceite en los establecimientos de la firma
anglo-holandesa.

(He-has asked the citizens not to buy a single oil can in any of the
British-Dutch company’s establishments.)

For SPA:LOCORG, example c¢) is underspecified with full agreement, arguably
because the mentioned Spaniard has not been unable to adapt to the English
weather or customs, or both. In example d) the annotators achieved mininum
agreement on whether Germany stands for the political or geographical entity,
and has been marked as underspecified by backoff.

(4.8)

a)

LITERAL: La méas ambiciosa de aquellas expediciones fue un viaje
hasta América y a través del Pacifico |[...]

(The most ambitious of those expeditions was a journey to America
and through the Pacific [...])
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b) METONYMIC: Los lituanos decidieron elegir al noble alemén Wilhem
de Urach como Mindaugas II, pensando que asi Alemania dejaria
mas rapida el pais obteniendo de esta forma la deseada
independencia.

(Lithuanians chose to elect the German as nobleman Wilhem of
Urach as Mindaugas II, thinking that in this way Germany would
leave the country faster, thus obtaining their desired independence.)

¢) UNDR-PLURALITY: Es el espafiol que peor se ha adaptado a
Inglaterra, o que Inglaterra menos ha sabido aprovechar.
(He is the Spaniard that has adapted the worst to England, or that
England has been less able to take advantage of.)

d) LITERAL: Alemania es el pais con mas vacaciones al tener 42 dias
por ano.
(Germany is the country with most holidays having 42 days per

year)

We can interpret the low-agreement examples that get tagged as underspec-
ified by backoff in a manner similar to way we interpret the plurality-marked
underspecified examples. We have not found any qualitative difference in the
examples that are marked as underspecified by plurality or by backoff.

4.10 Summary

We have described the annotation process of a regular-polysemy corpus in En-
glish, Danish and Spanish which deals with five different dot types. After anno-
tating the examples for their literal, metonymic or underspecified reading, we
have determined that this scheme can provide reliable (o over 0.60) annotations
for one dot type and moderate (o > 0.41) for four. Not all the dot types are
equally easy to annotate. The main source of variation in agreement, and thus
annotation reliability, is the difficulty to identify the senses for each particu-
lar dot type. While ENG:ANIMEAT and ENG:LOCORG appear to be the easiest,
ENG:ARTINFO and ENG:PROCRES obtain very low « scores.

Looking at the amount of underspecified senses that have been obtained by
majority voting for Danish and Spanish, we suggest that the level of abstraction
required by this annotation is too high for turkers to perform at a level com-
parable to that of our volunteer annotators. However, to assess the reliability
of these sense distributions, we need to look at the agreement values for each
dataset, which are provided in Table 4.8.

We assign sense tags using two different methods, VOTE and MACE. VOTE
is a rule-based majority voting with a theory-compliant backoff and MACE is an
unsupervised EM method that assigns weights to annotators. After evaluating
the sense assignments they generate, we set VOTE as a reference SAM.

4.11 Conclusions

We have obtained human-annotated data from turkers for English, and from
volunteers for Danish and Spanish. We have compared the sense distribution
between turkers and volunters, and between turkers and a single expert voting.
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Turkers have a dispreference for the underspecified sense tag, and there are
very few (never over 0.01%) of the examples that receive an underspecified sense
tag from simple majority.

In the volunter-annotated datasets, however, there is between 8.80% and
10.80% for the total examples for each dataset that receive an underspecified
example. If a value over 5% is significant, we can determine that volunteer
annotators can identify the underspecified sense.

Comparing the behavior between turkers and volunteers we can determine
that the underspecified sense cannot be explicitly captured by turkers using
the annotation procedure, and it requires using a sense assignment method
(SAM) to estimate which examples are candidates for the underspecified sense.
Volunteers, however, agree on the underspecified sense on 10% of the examples.
This indicates that human annotators without a bias against the underspecified
sense can recognize it, in spite of language differences.

We have compared two SAMs: a voting system (VOTE) with a backoff to
the underspecified sense when there is full disagreement between the literal and
metonymic senses, and an unsupervised EM method that assigns weights to
annotators (MACE). We have chosen the VOTE scheme as SAM to generate the
final sense tags for our data because it provides distributions that are more
similar to the ones obtained from the expert voting.
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Chapter 5

Word sense induction

This chapter is the first of the chapters that describe the NLP experiments we
have conducted on the human-annotated dot-type data described in Chapter
4. In this chapter we describe a Word Sense Induction (WSI) experiment on
dot type words. WSI relies on a Distributional Semantic Model (DSM) over a
large corpus to cluster the contexts of the analyzed words. The centroids of the
resulting clusters are the distributional representation of the induced senses.

We carry out this experiment to determine whether there is enough distri-
butional evidence to identify the literal, metonymic and underspecified senses
of dot types. In particular, the goal of the experiment is to determine whether
there is enough distributional evidence to identify the underspecified sense.

WHSI is the token-based homologue to the type-based modelling of regular
semantics we cover in Section 3.3, to the extent that type-base modelling de-
termines the classes a word belongs to at the type level, and WSI determines
the senses a word belongs to at the token level. For more on WSI, cf. Navigli
(2009); Manandhar et al. (2010); Navigli and Vannella (2013b).

We use WSI to determine whether we can infer the literal, metonymic and
underspecified senses from corpus in an unsupervised fashion. To determine the
validity of the induced senses, we use the data described in Chapter 4 as gold
standard at evaluation time. We expect that the higher-agreement data sets
provide higher homogeneity (cf. Section 5.3) results because their annotations
are more consistent.

This is a class-based approach, and we replace all the words in a dot type for
a placeholder, in order to induce senses for a whole dot type at once. Our claim
in doing so is that all words belonging to a dot type can manifest the same kind
of regular polysemy, and therefore their senses can be modelled together as the
common senses of a semantic class or type.

Our system employs the five-word window contexts of each dot-type place-
holder to induce the different senses. Once the senses are induced, we assign a
sense to each example in the test data, yielding clusters of examples along the
induced senses.

This chapter is an expansion of the work documented in Romeo et al. (2013),
where the authors only implement WSI for the English data. In this chapter
we also use WSI to induce senses for the Danish and Spanish datasets. Other
than that, the method followed in this chapter is the same as the one we use in
in Romeo et al. (2013).

109
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5.1 Preprocessing

WSI makes use of DSMs to induce word senses. DSMs require large corpora to
yield sense vectors we can cluster senses from. For our experiments we used the
UkWac corpus for English (Baroni et al., 2009), KorpusDk for Danish (Andersen
et al., 2002) and TulaCT for Spanish (Vivaldi, 2009) to fit our WSI models.
After lemmatizing, lowercasing and removing all punctuation from the cor-
pora, we trimmed down the corpora to keep only the sentences that were at
least five tokens long. Moreover, since UkWac is very large, we have used a
randomized subset instead of the whole corpus for memory reasons. Table 5.1
shows the number of sentences and tokens for each corpus after preprocessing.

Corpus  Sentences Tokens
Danish  2.7M 44M
English  2.8M 60M
Spanish  1.15M 21M

Table 5.1: Number of sentences and tokens for each corpus for WSI

Grammatical words are important cues for the resolution of metonymies,
and we do not want our system to rely solely on content words. We did not
remove any stop words from the corpora because we expect prepositions and
articles to be important features to distinguish the different senses of dot types.

Regular polysemy is a class-wise phenomenon (cf. Section 2.2), so we expect
that all words in a dot type will predicate their literal, metonymic and under-
specified senses in a similar manner, i.e. in similar contexts. Thus, our intent
is to induce the same senses for all the words of a given semantic class, making
our approach class-based.

To group the occurrences of all words of a given dot type, we replaced their
occurrences with a placeholder lemma that represents for the whole dot type
(animeatdot, artinfodot, contcontdot, locorgdot, procresdot). For instance, the
lemmatized examples a) and b) with the headwords paris and london become
the sentences in the examples ¢) and d). Notice how all the instances of london
become locorgdot:

(5.1) a) whilst i be in paris in august i decide to visit the catacomb

¢) whilst i be in locorgdot in august i decide to visit the catacomb

)
b) you can get to both london station on the london underground
)
d)

you can get to both locorgdot station on the locorgdot
underground

Using placeholder lemmas has two motivations, namely a theoretical and a
technical one. The technical motivation for using placeholders is that they allow
us to represent all the words of a dot type under one symbol, which allows class-
based WSI. The technical motivation is that, in doing so, we also compensate
for sparseness in training and testing data.

Replacing individual lemmas by a placeholder for the overall class yields
results similar to those obtained by building prototype distributional vectors
for a set of words once the DSM has been calculated (cf. (Turney and Pantel,
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2010) for more on prototype vectors of a semantic class). Prototype vectors for a
semantic class in a DSM are constructed by adding the vectors for the members
of the class; e.g. a prototype vector for ARTIFACT®INFORMATION would be built
by summing up the vector for book, novel, dictionary, etc. However, constructing
the prototype vector for a class-based induced sense is not trivial because we
need to know which vectors to add together from the k induced senses for each
member of the semantic class.

To avoid this complication, our take is a preprocessing of the corpus to
assure we induce senses directly for the placeholder lemmas. In this way, we
avoid having to reconstruct overall class-wise senses from the induced senses for
all the individual lemmas. Thus, the placeholders represent the entire dot type
from the beginning of the process, as opposed to prototype vectors, which would
have to be constructed post hoc.

Using placeholder lemmas to stand for the whole class also provides the
added benefit of circumventing some data sparseness, especially for evaluation
purposes. For instance, in our data there are some lemmas (e.g. anchovy, yak,
crayfish in ENG:ANIMEAT) that only appear once in the gold standard. If there is
only one example for yak in the gold standard, we cannot evaluate the quality
of all the induced senses of yak. Using placeholder substitution reduces the
impact of this sparseness on evaluation by considering each individual lemma
as an instance of the dot type the placeholder represents. In other words, we
induce senses for animeatdot and assign them to occurrences of yak, lamb, or
any other word of the ANIMALeMEAT dot type.

This replacement method is not exhaustive because we strictly replace the
words from the test data by their dot-type placeholder and, for instance, plenty
of country and city names are not replaced by locorgdot. Appendix A.1 lists the
words for each dataset.

5.2 Applying WSI

Our WSI models were built using the Random Indexing Word Sense Induction
module in the S-Spaces package for DSMs (Jurgens and Stevens, 2010). Random
Indexing (RI) is a fast method to calculate DSM proven to be as reliable as
other word-to-word DSMs, like COALS (Rohde et al., 2009). In DSMs, words
are represented by numeric vectors calculated from association measures of the
analyzed word and their contexts. The similarity between words is measured
by the cosine of the vectors of the words being compared.

In a WSI scheme, instead of generating one vector for each word, each word
is assigned k vectors, one for each induced sense. These k vectors are obtained
by clustering the contexts of each analyzed word into k senses. In our approach,
the features used to cluster the contexts into senses are the five words to the
left and right of the target word. The output of the system is a DSM where
each vector is one of the k-induced senses for the required words. In our case,
the words that receive the induced senses are the placeholder dot-type lemmas
animeatdot, artinfodot, etc.

We use K-means to cluster the contexts into induced senses. Fitting this
clustering algorithm requires setting a value of k£ clusters. We run the WSI
system using three different values of k. Ideally the system will work best
for k = 3, and each of the induced senses will be the literal, metonymic and
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underspecified sense respectively.

We want to compare this ideal parameter setting with a coarser and a finer-
grained solution, and pick two more values of k, namely 2 and 6. The k = 2
solution will work best if each induced sense represents the literal or metonymic
sense and there is distributional evidence for the underspecified sense. The
k = 6 will work best if there is enough distributional evidence to identify more
senses that the three senses we have obtained in the annotation task in Chapter
4.

5.3 Evaluation

After fitting a WSI model to obtain the induced senses from the input corpus,
we need to evaluate the quality of the induced senses. We do so by assigning
the human-annotated data described in Chapter 4 with the induced senses. The
S-Spaces package permits the calculation of a vector in a DSM for a new, unob-
served example. For each sentence in the test data, we isolated the placeholder
to disambiguate, and calculated the representation of the sentence within the
corresponding WSI model using the specified 5-word context window.

Once the vector for the sentence was obtained, we assigned the sentence to
the induced sense representing the highest cosine similarity out of the k available
for each model. This is an unsupervised task, and we refer each to assignment
of induced senses to examples in the test data as a clustering. Each clustering
was evaluated by comparing the received senses from the WSI with the expected
senses assigned by VOTE.

Clusterings differ in two parameters: the dataset being used as test data, and
the value of k. To measure the quality of the clusterings we use the information-
theoretic measures of homogeneity, completeness and V-measure (Rosenberg
and Hirschberg, 2007), which have been used as metrics for the SemEval sense-
induction shared tasks (Manandhar et al., 2010). These three measures compare
the output of the clustering with the expected classes of the test data, and
provide a score that can be interpreted in a manner similar to precision, recall
and F1, respectively.

Homogeneity determines to which extent each cluster only contains members
of a single class, and completeness determines if all members of a given class are
assigned to the same cluster. Both the homogeneity and completeness scores
are bounded by 0.0 and 1.0, with 1.0 corresponding to the most homogeneous
or complete solution respectively.

V-measure is the harmonic mean of homogeneity and completeness. Values
close to zero indicate that two label assignments (e.g. the clustering and the
gold standard) are largely inconsistent. Much like F1, the V-score indicates
the trade-off between homogeneity and completeness. We cannot know a priori
whether the sense distribution of the test data and the training data are similar,
but we assume they are.

Other WSI tasks (Artiles et al., 2009; Martin-Brualla et al., 2010) make
use of two baselines (ONE-IN-ALL and ALL-IN-ONE) to compare to the results of
their systems. The ONE-IN-ALL baseline gives each example its own cluster and
generates maximum homogeneity and minimum completeness. The ALL-IN-ONE
BASELINE places all the examples in the same cluster and provides minimum
homogeneity and perfect completeness. These baselines are useful when using
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non-parametric clustering, where the systems have to discover an appropriate
value of k. Using these baselines is not straightforward for this method.

In our case, we are using a parametric method and the ONE-IN-ALL baseline
is not implementable because we are using a fixed value of k. It is a baseline
designed to penalize homogeneity and maximize completeness, and, with the
same intention, we use a random baseline instead. We do not provide the values
of the random baseline (RBL) because they are not informative per se.

In this chapter we consider the difference of performance between two sys-
tems to be significant if the proportion between the two performance scores falls
out of a 95% confidence interval. The systems are compared in Appendix C.

5.4 Results

The main goal of this experiment is to capture the sense alternation of dot types
by computational means, in particular to isolate the distributional behavior of
the underspecified sense. To test this we employ a WSI system to induce the
senses and subsequently cluster dot-type nominals into three different solutions
(k=2,3,6).

When evaluating on the data with sense tags obtained using VOTE SAM,
most of the clusterings are significantly better than the random baseline, regard-
less of the value of k. For kK = 2, ENG:LOCORG is significantly worse than the
RBL, and ENG:ANIMEAT is insignificantly worse. For k = 3, only ENG:ANIMEAT
is worse than RBL.

Table 5.2 presents the results in terms of their homogeneity, completeness
and V-measure with a fixed value of k = 3 for each dataset.

Dataset HOM COM V-ME
ENG:ANIMEAT 0.0055 0.0033 0.0041
ENG:ARTINFO 0.0213 0.0190 0.0200
ENG:CONTCONT  0.0290 0.0197 0.0235
ENG:LOCORG 0.1067 0.0785 0.0905
ENG:PROCRES 0.0049 0.0042 0.0046
DA:CONTCONT 0.0080 0.0069 0.0074

DA:LOCORG 0.0386  0.0490 0.0431
SPA:CONTCONT  0.0013 0.0012 0.0013
SPA:LOCORG 0.0105 0.0120 0.0111

Table 5.2: VOTE: Results for the k = 3 clustering for VOTE in terms of homo-
geneity (HOM), completeness (COM) and V-measure (V-ME)

In Figures 5.1 and 5.2 we depict the variation in V-measure for each VOTE
dataset as k increases. The V-measure values are low, with ENG:LOCORG show-
ing the highest performance at 0.11. ENG:LOCORG is the best English dataset
for k = 3, and the only that worsens significantly for k = 6.
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Figure 5.1: V-measure for the English datasets for k = 2,3,6

The improvement of performance in terms of V-measure as k increases is in
general non-monotonic. This improvement is not correlated with the agreement
of the datasets, but rather a consequence of the higher homogeneity obtained
when clustering with a higher value of k.
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Figure 5.2: V-measure for the Danish and Spanish datasets for k =2,3,6

ish improve as k increases.
ent with most of the English datasets.

The datasets for the CONTAINER®CONTENT dot type for Danish and Span-

This tendency towards improvement is congru-

However, the performance for the

LOCATION®ORGANIZATION datasets worsens with the increases in k. Again,
the improvement is not correlated with agreement.
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5.4.1 Feature analysis

The performance scores for the clusterings are low, but improve over RBL. This
indicates that this WSI method captures some distributional information useful
in identifying some of the sense alternations in the datasets.

The underspecified examples tend to be evenly spread across the clusters.
Distributional evidence does not spawn a mostly underspecified cluster. Ta-
ble 5.3 shows the contingency matrices for ENG:ANIMEAT and ENG:LOCORG for
k = 3. In ENG:ANIMEAT, the distribution of literal, metonymic and underspec-
ified senses is similar for each of the three clusters. This indicates that the
induced senses for the placeholder animeatdot fail at capturing the three-fold
sense difference we expect.

The confusion matrix is different for ENG:LOCORG. The clusters labelled 0
and 2 have similar proportions of literal and metonymic examples, but cluster
¢ =1 is mostly (87%) made up of literal examples. This indicates that there is
indeed some linguistic evidence the WSI system learns to discriminate dot-type
senses with.

ENG:ANIMEAT ENG:LOCORG
L M U L M U

c=0 110 51 3 62 69 8
c=1 127 43 1 151 17 5
c=2 121 41 3 94 8 9

Table 5.3: k = 3 solutions for ENG:ANIMEAT and ENG:LOCORG dot types

Table 5.4 lists the ranked ten most frequent words for each cluster for
ENG:ANIMEAT and ENG:LOCORG for £ = 3. Most of the words in each cluster
are prepositions and articles, which we did not remove form the corpora before
running WSI. Notice how the rankings differ, in spite of the low lemma-wise
variety,.

In ENG:ANIMEAT, fish is one of the most frequent words for ¢ = 0, and the
placeholder lemma for the dot type, animeatdot appears in two of the clusters.
This presence of the placeholder lemma is an indication of enumerations like
‘sardine, eel and salmon”, which would be replaced by “animeatdot, animeatdot
and animeatdot”. The word fish was not replaced by its placeholder as it does
not appear in the gold standard data but is one of the few content words in the
top 10 words for each cluster.

For ENG:ANIMEAT the articles the and a were the most frequent words for
each cluster, whereas for ENG:LOCORG, the most frequent words that contribute
to each cluster are prepositions. In particular, the preposition in is the key
feature that makes the cluster ¢ = 1 mostly literal, because it helps cluster all
the examples that contain structures like “in Paris” that are literal more often
than not.

In ¢=2, the most important preposition is to, which indicates directionality
(’I am moving to London”) and seems a priori a good feature for the literal
LOCATION sense. However, this very frequent feature appears in the same slot as
in, and gets pooled together with other features that make ¢=1 and ¢=2 different
during the sense-induction process. This suggests that this method generates
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vectors for the induced senses that are largely orthogonal to our expected senses.

ENG:ANIMEAT ENG:LOCORG
— and, animeatdot, of, a, the, of, and, to, a,
for,with, the, fish, in, to in, that, time, it, for
—1 the, of, and, in, a, to, is, in, the, and, to, a,
that, animeatdot, with of, that, is, it, for
—y © of, to, in, that, or, is,  to, and, from, a, locorgdot,
with, for, from the, that, with, for, is

Table 5.4: Top 10 most frequent context words per ¢ used in k& = 3 for
ENG:ANIMEAT and ENG:LOCORG datasets

The importance of the article as a feature reflects that the mass/count dis-
tinction is a key component in the sense alternation of some instances of reg-
ular polysemy (such as ENG:ANIMEAT). By lemmatizing, we are discarding
potentially relevant morphological information that can help disambiguate the
mass/count readings of nouns. For English and Spanish, plural is an important
cue to determine whether a noun is count or mass, which also corresponds with
the senses of some dot types being either count or mass (cf. Section 2.6). For
Danish this is even more relevant because definiteness is also a nominal inflexion
besides plural, and also plays a role in determining count or mass readings.

Our system makes no difference between words at the left and the right of
the headword. This results in the clustering pooling together nouns headed by
the proposition of with nouns with a modifier headed by of.

The distributional evidence available to the & = 3 solution is again not
strong enough to motivate an individual cluster for each sense. However, under
the assumption that more fine-grained patterns may indicate underspecified
readings; we attempted a k = 6 solution to differentiate between senses with a
larger k.

5.4.2 Inducing a different number of senses

The goal of the k& = 3 solution is to obtain clusterings that map to the three
proposed senses for a dot type (literal, metonymic and underspecified). We have
trained the system for k = 2 and k = 6 to observe the differences in clustering
behavior and how they relate to the annotated senses of the datasets.

Inducing two senses

The k = 2 solution attempts to mirror a literal vs. metonymic partition between
the senses of each dot type.

In this scenario, the underspecified examples are distributed evenly across
the two clusters, and do not lean more towards the literal or the metonymic.
We observed, for instance, that the underspecified senses of ENG:ARTINFO oc-
curred often with the headword preceded by of, and were clustered alongside the
metonymic examples because the preposition of is a feature for the metonymic
sense. Furthermore, the underspecified examples whose headword is the objects
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of a verb like keep or see where clustered with the literal examples. Thus, un-
derspecified examples are subject to the pull of the literal and metonymic when
senses are clustered.

The spread of underspecified examples in two clusters suggest that we can
try to find distributional evidence for more senses and expect them to cluster
in a more homogeneous fashion.

Inducing six senses

In addition to comparing the performance of clustering for kK = 3 with a clus-
tering with only two clusters, we also trained and tested WSI models for k = 6.
The aim of the £ = 6 solution is to identify fine-grained distinctions between
the distributional behavior of the analyzed dot types. In Figures 5.1 and 5.2
we see that most datasets show a higher V-measure for £ = 6 than their £k = 2
and k = 3 counterparts, but this improvement a consequence of the higher
homogeneity expected from an increased k-value.

On one hand, the less homogeneous clusters in k = 3 are prone to be split
into smaller, more homogeneous clusters in k = 6. On the other hand, the more
homogeneous sub-clusters in & = 3 are preserved in k = 6.

(5.2)

1. herb,and,medicine,in,porcelain,..., to,nepalese,trader,offering,exotic
2. and,18,th,century,chinese,porcelain,...,along,wall, hung,with,brussels
3. mammary,cell,grown,on,plastic,...,were,unable,to,differentiate,by
4

. 500,ml,plastic,...,in,styrofoam,cooler,

Example 5.2 shows the 5-word windows for four examples of the ENG:CONTCONT
dataset. In the k = 3 solution, these four examples fall into the same cluster.
However, in the k = 6 the words marked in bold make them different enough
for the WSI system to place them in two different clusters, one for plastic and
one for porcelain.

The k = 6 solution is thus a further refinement of the & = 3 into more fine-
grained distributional behavior, but still largely orthogonal to our expectations
of sense selection for dot types.

5.5 Conclusions

In this chapter, our objective was to use WSI to capture the sense alterna-
tion of dot types. The low V-measure of the induced-sense clustering solutions
demonstrates that our method was not able to isolate the literal, metonymic
and underspecified senses. Our results do not identify an absolute distinction
between the senses of a dot type.

In Section 5.4.1 show we have also been able to identify the contribution to
sense selection for some high-frequency words, but our power to draw conclu-
sions is limited by the performance of the system. If we achieved a WSI system
that recognized the literal and metonymic senses with good performance, but is
unable to identify the underspecified sense, we could argue against the under-
specified sense as a distributional phenomenon.

The system could be improved by using more refined features. Using a
5-word window of lemmas around the headword seems to generate a limited
feature space that does not give account for regular polysemy.
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A way of including lemma, form, and syntactic information would be using
dependency-parsed input for building of DSMs. By doing this, the WSI could
infer senses from more structured and informed input that would incorporate
word order, inflectional morphology and lemmatized information. The S-Spaces
package allows using parsed corpora as input for DSM generation.

In addition to using more linguistically informed input, other clustering al-
gorithms instead of K-means could be used to induce senses. The system could
be extended by using other clustering algorithms like that are non-parametric
and do not require a value of k, but rather estimate an appropriate number of
senses to fit the data.

The test data we use also biases our result in two ways: by constraining the
choice of words we train from, and by influencing our ability to draw conclusions
from data with contested reliability.

If we only replace the lemmas from the test data by the placeholder, we are
making the system less robust as a class-based WSI. We should expand these
lists with more lemmas—e.g. using a thesaurus—, so the distribution of the
semantic class can be less biased by the choice of lemmas.

Finally, our evaluation metrics depend not only on an accurate induction of
the senses in context, but also on the reliability of the test set. However, we
have seen that agreement of the test data does not necessarily correlate with
performance of the WSI. Nevertheless, this method is a possible baseline for
WHSI for regular polysemy, and, to the best of our knowledge, the first attempt
to use class-based WSI.

With regards to the objective of identifying the underspecified sense, we have
been unable to infer an underspecified sense from the distributional behavior of
dot types. In fact, we have not been able to isolate the literal and metonymic
senses either. Thus, we affirm that, using this setup for WSI, we have not found
distributional evidence to postulate an underspecified sense.



Chapter 6

Features

We concluded Chapter 5 with the remark that a five-word context window
generates a very limited feature space for the induction of the senses of dot-
type nominals. In this chapter we describe the features we have extracted
to characterize the linguistic information of our sense-annotated data. These
features attempt to capture more refined linguistic information than the shallow
features yielded by a five-word window around the headword.

Boleda et al. (2012a) mention that feature representation typically used by
machine learning algorithms provides the empirical handle to the linguistic prop-
erties of words. They explicit two preconditions for a lexical modelling task that
describes regular polysemy: a) a classification that establishes the number and
characteristics of the target semantic classes b) a stable relation between ob-
servable features and each semantic class. We cover a) in Section 2.6 and expect
b) to be the features that we employ as explanatory variables in the supervised
experiments in Chapters 7,8 and 9.

The choice of features is a crucial part in the design of any Natural Lan-
guage Processing (NLP) experiment, and can be influenced by the availability of
linguistics resources for the language or task at hand, the technical constraints
of the system and the specific linguistic phenomena that need to be modelled.
The criteria for choosing the following features have been generality, theory
compliance and comparability with the state of the art.

For the sake of generality, there has to be a common feature space for all
the semantic classes within a language. Such common space will enable the
comparison between semantic classes during the evaluation and the realization
of experiments using all the datasets simultaneously. Using a general feature
space will increase the overall amount of features, as some will be sparse when
training for a certain dataset and more populated for another.

We rule out the possibility of tailoring a specific feature set to a certain
semantic class. Our work in Martinez Alonso et al. (2011) uses Sketch Engine
(Kilgarriff et al., 2004) to select the relevant lexical elements that are associated
to a semantic class in order to build a bag of words. Using this approach would
the size of the bag of words, but there would be one bag of words for each
dataset.

In terms of theory compliance, one of the goals of this dissertation is the
empirical evaluation of the theory on dot types. The objective requires the data
to be characterized morphosyntactically, as the work on regular polysemy, both
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in and outside the GL framework, emphasizes the relevance of morphological
factors like definite vs. indefinite or plural vs. singular, as well as syntactic
factors like copredication or argument saturation (Pustejovsky, 1995; Markert
and Nissim, 2009; Grimshaw, 1991) for establishing the different metonymic
readings.

State-of-the art experiments need to be reproduced for the sake of compara-
bility. Some of the features in the following sections have been replicated from
relevant approaches to metonymy resolution (cf. Section 3.4). Moreover, repli-
cating features from these experiments allows us to implement the SemEval2007
baselines we describe in Appendix D.

Our features need to comply with the class-based approach we have taken in
the annotation task—by using one common sense inventory for each dot type—
and in the WSI experiments—Dby using a placeholder lemma for each dot type.
We want the system to generalize over particular lemmas, and this requires we
exclude the identity of the headword from the learning algorithm when training
in order to reduce the bias of the sense distribution for each particular lemma of
a dot type. Instead, we focus on characterizing the grammatical and semantic
properties of the sentence the headword appears in.

Some of the features depend on Brown clustering or topic models, which are
generated in an unsupervised manner. Using unsupervised machine learning to
aid supervised learning makes our approach semisupervised.

By grammatical features we refer to the inflectional characteristics of the
headword, plus the syntactic relation of the headword with regards to the other
words in the sentence. By semantic features we refer to other traits that are not
immediately grammatical like the presence of certain semantic types (verb of
motion, names of plants) in the context of the headword. We can obtain these
features using clustering measures or querying a LKB.

As commented in Section 3.6, we use no selection restriction modelling be-
cause metonymy is too conventional for this to make any sense if the selectional
restrictions are obtained from corpus—and no selectional restriction violation
would be found in very common metonymies like “eating chicken”.

6.1 Grammatical features

This section describes the features that characterize a example in terms of the
morphological and syntactic properties of the headword and its related words.
For each sentence with a nominal headword h belonging to a dot type, we
generate the features detailed in the following sections. Most features are binary
unless otherwise noted.

We obtain the morphological features from the part-of-speech tags of h. For
English and Danish we use the POS tags the corpora (ANC and KorpusDK)
are distributed with. For Spanish, we tokenized and tagged the IulaCT corpus
using Freeling (Padré and Stanilovsky, 2012) to make sure the corpus had the
same format as the treebank.

For the other grammatical features, we use dependency parsing. Dependency
parsing generates a tree structure where each word points to its syntactic head
and the edges between words are labelled with syntactic information like subject
or subordinating conjunction.
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We have using Bohnet’s graph-based parser (Marimon et al., 2012) to gen-
erate the dependency trees for our datasets. We have trained the parser on the
Danish Dependency Treebank (Kromann, 2003), the IULA treebank (Marimon
et al., 2012) for Spanish, and the dependency conversion of the Penn Treebank
in (Nugues and Heiki-Jaan, 2007) for English. In Table 6.1 we show the La-
belled and Unlabelled Attachment Score (LAS and ULA) for each language on
the test data for each treebank.

Language LAS  ULA
Danish 86.82 91.23
English 91.13 92.35
Spanish 94.68 97.21

Table 6.1: Performance for dependency parsers

The parsing results are high, in particular for the Spanish treebank, which
is large and made up of mostly technical text. However, we know that the
dependency conventions of treebanks—what is a head of what—have an impact
on their learnability by parsers, and on the usefulness of the features extracted
from such predicted dependency trees (Schwartz et al., 2012; Elming et al.,
2013).

In particular, for the Danish treebank, articles are the heads of nouns. Thus,
for a phrase like “pa det danske hold” (“in the Danish team”), the dependency
tree is the one shown in Figure 6.1. The arrows represent the dependency
relation between words, where the outgoing node is the head and the incoming
node is the dependent. The labels on the arrows represent the syntactic role
assigned to the dependent!

nobj

{ ROOT ] rnobj} mod

-Root- pa det danske hold

Figure 6.1: Original dependency structure with article as head

However, this structure is not convenient if we want to identify the verbs or
preposition that the nominal headword h depends on, because they are placed
as grandparents and not as parent nodes. For this reason, we have rewritten
the Danish dependencies to make the article (det) the dependent of the noun
(hold). In this way, the noun that becomes the head is now the dependent of
the previous head of the article (the preposition pad), and the adjective (danske)
becomes the dependent of the noun. The resulting structure, shown in Figure
6.2, is the same structure provided by the English and Spanish treebanks.

IThe trees have been plotted using What’s Wrong With My NLP? from
http://code.google.com/p/whatswrong/
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{ ROOT ]

-Root- pa det danske hold

Figure 6.2: Modified dependency structure with noun as head

6.1.1 Inflectional morphology

These features list the inflectional traits of h. We obtain these features from the
part-of-speech tags of the h. For English and Spanish, there is only one feature
to discriminate between plural and singular. For Danish, in additional to plural,
one feature reflects the definite/indefinite alternation, and another feature the
genitive case marking, if present (cf. Section 2.6.6).

We group the inflection-morphology related features in a feature group m.
Table 6.7 shows the different feature groups for each language.

6.1.2 Syntactic roles

We use the dependency labels from the parsed tree for each sentence to deter-
mine the syntactic role of h, its head and dependents. The syntactic role of h
generates two baselines for metonymy resolution (cf. Appendix D). We refer to
the feature group for the possible values of the dependency label of h as pls, to
the features for the dependency label for the head as plh, and to the features
for the dependency label of the dependents of h as plc.

Each treebank has a different amount of dependency labels but all provide
key syntactic traits such as whether a word is subject or object. The list of
total labels shown in table 6.2 is obtained from possible labels in the English
training data. Each of the feature groups use a subset of this list, limited to the
labels found for the set of possible labels h (pls), the head of h (plh), or its
dependents (plc).

ADV AMOD APPO CONJ COORD DEP

DIR  GAP-SUBJ HMOD HYPH IM LGS

LOC LOC-PRD MNR NAME NMOD OBJ
OPRD P PMOD POSTHON PRD PRN

PRP PRT ROOT SBJ SUB SUFFIX
TITLE TMP VC

Table 6.2: List of dependency labels for English

6.1.3 Head and dependents

Syntactic features like grammatical relations have proven useful for general word
sense disambiguation (Martinez et al., 2002) and metonymy resolution (cf. Sec-
tion 3.4). In Rumshisky et al. (2007), verbs and adjectives that are syntactically
related to a dot-type noun are defined as selectors for the different senses of a
dot type.
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Even though we are not using a coercion or selectional-preference approach
to our feature modelling, we acknowledge the importance of noting the syntac-
tically related words to h. We include two sets of feature groups, one depending
on the lemmas and the other depending on the POS-tags of the syntactically
related words.

We include the feature group phw to give account for the lemmas of different
syntactic heads of h, and pcw for the lemmas of the dependents of h. The two
groups that depend on POS-tags are ppc and pph, which list the POS-tags
of the head and dependents of hA. In Section 6.2.2 we describe another feature
group that lists clustered head and dependent lemmas.

6.1.4 Syntactic counts

The feature group pqg is made out of three features that represent counts instead
of binary values. These features aim at framing h in a more general, sentence-
wise way than the other syntactic features:

1. The number of dependents of h

2. The number of siblings of h, i.e. how many other dependents the head of
h has.

3. The distance from h to the root node of the dependency tree, normalized
over the total number of words in the sentence.

6.2 Semantic features

6.2.1 Bag of words

The simplest way of incorporating lexical information, a bag of words (bow) is
a set of features in which each individual feature corresponds to a word in the
vocabulary. We use a bag of words with all content words from the training
corpora.

Even though in 5.4.1 we keep prepositions and determiners, we do so because
we are using a restricted word window, and we expect that most stop words that
appear in that window will be related to the headword. Keeping a bag of words
over an arbitrarily long sentence provides no guarantee that determiners and
prepositions will be indeed related to the headword, and we discard them.

Note how the bow feature group is much is much larger for English than for
the other languages. This is a result of using five datasets for English instead
of two. The size of the bag of words grows almost linearly for each new dataset.

6.2.2 Brown clusters

The Brown algorithm (Brown et al., 1992) takes as input a corpus and produces a
hierarchical clustering of the vocabulary of the corpus. The algorithm initializes
by setting each word in the vocabulary in its own individual cluster, thereby
starting with as many clusters as types. Each iteration merges together the pair
of clusters which minimizes the decrease of likelihood of the corpus if joined.
This likelihood is measured using a bigram model.
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The result of the merge operations can be represented as a binary tree. Any
given word in the vocabulary is thus identified by its path from the root node,
as seen in Figure 6.3.

00 01 10 11
000, 001 010, 011 100 101 110 111

apple pear Apple IBM bought run of in

Figure 6.3: Example of Brown clustering from Koo et al. (2008)

We use the implementation by Liang (2005) to generate Brown clusters from
our corpora for all three languages using the default settings of 1000 clusters?.

This clustering method generates clusters that are semantically coherent but
contain interferences. Table 6.3 shows an example of words clustered in three
different but related clusters. Only the top-frequency words for each cluster
are shown. The first cluster shows linguistic units like noun or wverb, which are
distributionally similar to each other, and also phrase and word. The second
cluster has related words like grammar, dialect and language, and other less
expected words like landscape or universe. Likewise, the third cluster contains
words related to documents of some kind (album, diary, book, poem) and the
word millennium, which the brown algorithm has clustered together by virtue
of its contextual similarity to the other words (possibly being introduced by the
possessive our).

2https://github.com/percyliang/brown-cluster



6.2. SEMANTIC FEATURES 125
Cluster Word
00001011100
00001011100 noun
00001011100 verb
00001011100 phrase
00001011100 word
00001011101 grammar
00001011101 dialect
00001011101 currency
00001011101 landscape
00001011101 universe
00001011101 usage
00001011101 text
00001011101 truth
00001011101 language
00001011111 album
00001011111 diary
00001011111 poem
00001011111 book
00001011111 millennium

Table 6.3: Example clusters from the ANC

All cluster identifiers in this example are eleven bits long. If we drop the last
two tailing bits and keep only the common 000010111, all the words fall within
the same cluster. Different prefix lengths allow different clustering granularities.
Less grainy clusters will be less numerous and contain more words, and thus
more noise: in this example, cluster 000010111 contains book and language,
but also millennium, landscape and truth.

Clustering bag of words

An alternative to using a bag of words as a feature set is using Brown cluster-
ing to reduce the amount of types in the vocabulary of the corpus. This has
the additional benefit of capturing all the words in the corpus, as they are all
assigned to a Brown cluster, something that does not happen if only the top N
words of a corpus are used to build the bag of words.

We generate a Brown-clustered bag of words (the feature group bb) for
each language from the lemmatized content words from the training data. The
clustering algorithm is set to the default configuration of 1000 clusters. Using
Brown clustering collapses the bag of words into a smaller feature group. For
instance, the words landscape, universe and dialect would be assigned to the
feature bb: 00001011101 instead of each having an independent feature.

Clustering heads and dependents

Following the work in Nissim and Markert (2003), we reduce the amount of head
or dependent features by clustering the lexical heads and dependents. Instead
of using a thesaurus, we use Brown clustering from this section to replace each
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lemma by the identifier of its clusters, thus reducing the cardinality of the feature
groups. This generates the feature groups bh, for the clustered syntactic heads
of h, and bc for the dependents of h.

6.2.3 Topic models

Topic models characterize any document as a probabilistic mixture of different
topics. Topic models are generated by fitting a corpus made up of documents
over an arbitrary number of topics, where each word as a probability of being
generated by one of the topics that compose the document. After running the
MALLET topic-model package McCallum (2002) over 100 topics on the ANC,
we obtained topics like the ones shown in Table 6.4.

Index Words

gene protein sequence genome domain group tree bacteria ...
black american white african action race class affirmative ...
make head hand eye back water man dog eat leave foot ...
diet food weight animal fish rat study birth mouse ...

study risk estimate analysis effect health benefit factor...
time book write magazine editor york story read yorker call ...

© 0~ O O

Table 6.4: Example topics calculated from the ANC

The different topics are made up of word lists that become thematically
grouped according to their co-appearance in the training documents. Topics 4
and 9, for instance, show words that relate to the themes of biology and the
publishing world respectively. The other topics are also easy to interpret as
encompassing a family of words that relates to a particular subject, often called
a domain. Some words belong to more than one topic. The word study, for
instance, appears in topics 7 and 8.

The role of domain in metonymy resolution has been argued for by (Croft,
1993). Li et al. (2010) use topic models as features for WSD. We use topic
models to include domain-related information our feature scheme. The feature
group t contains the list of 100 probability values of a sentence belonging to
each of the 100 topic models we calculated with an Latent Dirichlet Allocation
sentence-wise document clustering using MALLET.

6.2.4 Ontological types

In order to incorporate the semantic information available in LKBs, we use the
wordnets for Danish, English and Spanish to characterize the semantic types of
the context words of h. Each of the binary features in the wn group informs on
whether there is a content word in the context of h that belongs to a wordnet
unique beginner (or ontological type, cf. Table 6.5). The semantic class of each
word is obtained from the first synset for that lemma.
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ADJ.ALL ADJ.PERT ADJ.PPL ADV.ALL N.TOPS N.ACT

N.ANIMAL N.ARTIFACT N.ATTRIBUTE N.BODY N.COGNITION N.COMMUNICATION
N.EVENT N.FEELING N.FOOD N.GROUP N.LOCATION N.MOTIVE
N.OBJECT N.PERSON N.PHENOMENON N.PLANT N.POSSESSION N.PROCESS
N.QUANTITY N.RELATION N.SHAPE N.STATE N.SUBSTANCE N.TIME

V.BODY V.CHANGE V.COGNITION V.COMMUNICATION V.COMPETITION V.CONSUMPTION
V.CONTACT V.CREATION V.EMOTION V.MOTION V.PERCEPTION V.POSSESSION
V.SOCIAL V.STATIVE V.WEATHER

Table 6.5: List of ontological types in Princeton WordNet

We have used the MCR30 (Gonzalez-Agirre et al., 2012) distribution for the
English and the Spanish wordnets, which share their list of ontological types.
For Danish we have used DanNet (Pedersen et al., 2006), which provides a
slightly different set of ontological types (cf. Table 6.6). The ontological types
in DanNet no dot explicitly depend on the part of speech, but rather on the
order (first, second or third) of the entity they stand for (cf. Section 2.3.2).
In the English and Spanish wordnets, there is for instance a cognition type for
verbs and another for nouns (v.cognition and n.cognition, respectively).

1STORDERENTITY 2NDORDERENTITY 3RDORDERENTITY AGENTIVE ANIMAL ARTIFACT
ARTWORK BODYPART BOUNDEDEVENT BUILDING CAUSE COLOUR
COMESTIBLE COMMUNICATION CONDITION CONTAINER CREATURE DOMAIN
DYNAMIC EXISTENCE EXPERIENCE FORM FURNITURE GARMENT
GEOPOL. GROUP HUMAN IMAGEREP. INSTITUTION INSTRUMENT
LANGUAGEREP. LIQUID LIVING LOCATION MANNER MENTAL
MONEYREP. NATURAL OBJECT OCCUPATION PART PHENOMENAL
PHYSICAL PLACE PLANT POSSESSION PROPERTY PURPOSE
QUANTITY RELATION SOCIAL STATIC STIMULATING SUBSTANCE
TIME UNBOUNDEDEVENT UNDERSPECIFIED VEHICLE

Table 6.6: List of ontological types in DanNet

The feature group wn determines whether the sentence h is part of contains
words of the ontological types shown in Tables 6.5 or 6.6.

6.3 Feature summary

Table 6.7 shows, for each language, the size of each feature group.
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Feat. group Danish English Spanish Description

bow 4,730 10,332 5,364 lemmatized bag of words

bb 981 976 969 Brown-clustered bag of words
bc 160 473 153  Brown-clustered syntactic dependents
bh 206 416 163  Brown-clustered syntactic heads
m 3 1 1  inflectional morphology og h
pwc 199 679 238 lemmatized syntactic dependents
pwh 280 878 190 lemmatized syntactic heads
plc 17 18 13  syntactic role of dependents
plh 17 18 13 syntactic role of head
pls 13 14 7  syntactic role of h
jojele! 14 29 10 POS tag of dependents
pph 9 18 54  POS tag of head
Pa 3 3 3 # of children, # of siblings, distance to root
t 100 100 100  topic models
wn 39 45 45  ontological types

ALL 2,041 3,668 1,959
ALB 6,771 14,000 7,323

Table 6.7: Size of each feature group for each language

The last two rows show the total size for all the features that depend on
an external resource like parsing, a clustering or a LKB (ALL), and for all the
features including the bag of words feature group (ALB). ALL and ALB are two
of the feature sets listed in Table 6.8.

There are fifteen different feature groups from the grammatical and semantic
features. To evaluate how the supervised systems perform on different features,
we have pooled combinations of feature groups together into feature sets, which
we list in Table 6.8. We compare the performance of the different feature sets
for the supervised experiments in the following chapters.

ALB ALL BOW BRW PBR PBW PLB PLE PPW SEM TOP  WNT
[ ] ]

bow
bb
bc
bh

pwc
pwh
plc
plh
pls
ppc
pph
Pa

wn

Table 6.8: Feature sets
(columns) and the feature groups they are made up from (rows).



Chapter 7

Word sense disambiguation

The most immediate NLP experiment to execute when there are linguistic fea-
tures and sense annotations available is to predict the annotated senses using
the linguistic features as explanatory variables. In this chapter we use the fea-
tures from Chapter 6 to attempt a mapping between the linguistic traits they
characterize and the assigned senses of the dot-type datasets by using supervised
learning.

In Chapter 5, we have determined that an unsupervised method like WSI
with a five-word context window as feature space is not sufficient to capture the
sense alternations of the dot types we describe in Chapter 2 and annotate in
Chapter 4. In Chapter 6 we define the features we use to replace the overly sim-
plistic five-window context of the WSI experiment. These features incorporate
grammatical features that are derived from POS tags or dependency parsing,
and semantic features that use word clusterings or LKBs.

We carry out an experiment using supervised machine learning to automat-
ically reproduce the judgments of the annotators on the dot-type datasets from
Chapter 4. In particular, our goal is to measure the identifiability of the under-
specified sense.

Using supervised learning to assign an item with a category from a discrete
set is called classification. A classification task that assigns word senses as
target variables is an instance of word-sense disambiguation (WSD). The goal
of applying WSD to our sense-annotated data is to establish the learnability
of the literal-metonymic-underspecified sense distinction for each dataset with
regards to the linguistic characterization the extracted features provide.

However, some of the features we use depend on Brown clustering or topic
models (cf. Chapter 6), which are generated in an unsupervised manner. Using
unsupervised machine learning to aid supervised learning makes our approach
semisupervised. Besides incorporating unsupervised results in the feature rep-
resentation, other semisupervised strategies like self-training or co-training can
be addressed. However we limit the scope of the semisupervision in our experi-
ments to feature representation and make no use of self-training or co-training,
because, in spite of the potential benefits, these techniques might lead to over-
fitting, and require an additional effort in parametrization. For more on the
difficulties of dealing with WSD and self-training, cf. Abney (2010); Mihalcea
(2004).

Much like in Chapter 5, our approach is class-based, because regular pol-
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ysemy is a class-wise phenomenon and we expect, for instance, the linguistic
features of the words chicken and salmon to be useful in predicting the senses
of the words lamb and tuna, which also belong to the ANIMALeMEAT dot type.

This chapter is an expansion on two previous class-based WSD experiments
that use part of our annotated data, namely Martinez Alonso et al. (2011) and
Martinez Alonso et al. (2012).

In Martinez Alonso et al. (2011), we aimed at classifying the literal, metonymic
and underspecified senses of the ENG:LOCORG dataset. In an attempt to palliate
the effects of the sense distribution being skewed towards the literal (LOCATION)
sense, we generated additional training data for the metonymic class by using
examples of nouns that were organizations. The F-score for the literal sense
was 0.81, but the performance for the metonymic and underspecified senses was
much lower, at 0.55 and 0.51 respectively.

In Martinez Alonso et al. (2012), we used an ensemble classifier to try to
improve the recognition of the underspecified sense for the ENG:LOCORG and the
ENG:CONTCONT datasets. However, the resulting system had an even stronger
bias for the most frequent sense than any of the individual classifiers separately.

This chapter expands on these two experiments and provides several method-
ological changes. First of all, in both experiments we used expert annotations
because there were no turker or volunteer annotations at the time. Instead, in
the following experiments we use the sense assignments provided by VOTE—
which are aggregated from turker or volunteer annotations—to implement our
WSD systems.

The main reason to disprefer the expert annotations with regards to a WSD
system is that it is more realistic and reproducible to use crowdsourced annota-
tions. Moreover, given the goal of the task—to measure the identifiability of the
underspecified sense—, we consider that annotations obtained from more than
annotator are more adequate to assess the relevance of the underspecified sense.
We give the reasons to prefer the non-expert datasets for our task in Chapter
4.

In addition to having more annotations available, we also have seven datasets
more, for a total of nine. The experiments described in this chapter make use
of the five English, two Danish and two Spanish datasets, thus implementing
WSD for all nine datasets.

Lastly, the features used for WSD in Martinez Alonso et al. (2011) and
Martinez Alonso et al. (2012) were shallow features that did not use parsing to
obtain word relations, or any kind of clustering to obtain semantic features. For
the WSD experiments in this chapter we use the full repertoire of grammatical
and semantic features described in Chapter 6.

In Section 7.1 we describe the parameters that our WSD system has to give
account for. In Section 7.2 we describe the variation in accuracy baseline for each
dataset. In Section 7.3 we describe the evaluation of the WSD system. In Section
7.4 we describe a classifier ensemble aimed at improving the identification of the
underspecified sense. Finally, in Section 7.5 we elaborate on what performance
of the WSD system indicates about the need to include the underspecified sense
in token-wise sense inventories for dot types.
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7.1 Method

Before determining whether we can identify the underspecified sense for the
annotated datasets, we need to develop a reliable WSD system. In this section
we provide an overview of the technical aspects that our WSD has to consider.
The system has several parameters to give account for:

1. There are nine datasets, five for English and two for Danish and Spanish
each (cf. Chapter 4). Each dataset has its own particularities in terms of
baselines for WSD, relevant features, distribution of senses, reliability of
annotation and expected predictability of senses.

2. Each dataset has two annotation variants, one for each SAM. We have
determined in Chapter 4 that we will use VOTE. The system is also eval-
uated on MACE in Appendix E.2 for the sake of reference, but we conduct
our study using the VOTE sense assignments.

3. From all the grammatical and semantic features from Chapter 6, we have
established fourteen different feature sets (cf. Table 6.8) for training
and testing of our classifiers. We need to determine the feature set that
fares best overall.

4. In order to evaluate the performance of WSD, we need to use a learning
algorithm to learn a mapping from the features to the annotated senses.
When using datasets of relatively small size like ours, it is desirable to
use algorithms with few parameters to tune for. For this reason we have
abstained from using using parametrization-heavy learning algorithms like
Support Vector Machines, and instead used the default settings of and used
three classifications algorithms from the SkLearn (Pedregosa et al.,
2011) implementation: Naive Bayes, logistic regression and decision trees.

In Section 7.3 we cover the effect of each parameter in the WSD task. In
Appendix E we provide the tables that list the accuracy for each dataset, feature
set, SAM and learning algorithm.

7.2 Baseline

There are three possible baselines determined by Markert and Nissim (2009) (cf.
3.4), but we only use the most-frequent sense baseline or MFS. In Appendix D
we provide a comparison of the baselines and determine that they are in general
not harder baselines for this task than MFS.
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DATASET Acc-MFS
ENG:ANIMEAT 0.72
ENG:ARTINFO 0.61
ENG:CONTCONT 0.71
ENG:LOCORG 0.54
ENG:PROCRES 0.69
DA:CONTCONT 0.66
DA:LOCORG 0.64
SPA:CONTCONT 0.58
SPA:LOCORG 0.63

Table 7.1: Accuracy for the MFS baseline

Table 7.1 shows the MFS baseline accuracy for each dataset. Not every
dataset has the same sense distribution, and thus, MFS is not as hard a base-
line for each. For instance, ENG:LOCORG has a much lower MFS (0.54) than
ENG:ANIMEAT (0.72).

Moreover, not every lemma in each dataset would have the same MFS base-
line if we implemented lemma-wise WSD instead of class-wise WSD, thus evalu-
ation each lemma independently instead of all the lemmas of a dot type pooled
together.

As an illustration of the irregularity of lemma-wise sense distributions, fig-
ure 7.1 shows the proportion of non-literal (metonymic plus underspecified)
examples for the LOCATION®ORGANIZATION words that are common across the
three languages in the datasets: Afghanistan, Africa, America, China, England,
Europe, Germany, and London.

The values of the histogram are thus the complementary values to the most
frequent sense, which is literal in these datasets. We can see that individual
words show sense skewness and deviate from the overall MFS for DA:LOCORG,
ENG:LOCORG and SPA:LOCORG.
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Figure 7.1: Proportion of non-literality in location names across languages

This skewness is a consequence of the way that each word is used in each
corpus, e.g. America has a high proportion of non-literal senses in the ANC,
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where it usually means “the population or government of the US”. Similarly,
it is literal less than 50% of the times for the other two languages. In contrast,
Afghanistan is most often used in its literal location sense for all three languages,
as it is often referred to as a placed that is acted upon.

7.3 Results

For all the combinations of dataset, annotation variants feature set, and training
algorithm, we have trained and tested the system using ten-fold cross-validation
with ten repetitions with random restarts. This method is commonly noted as
10 x 10 CV.

In this Section we analyze the results of running WSD on the nine datasets.
The first parameter we abstract away from the analysis is classifier choice.
Out of the three classification algorithms we have experimented with (Naive
Bayes, decision trees and logistic regression), logistic regression does best for
most datasets and feature sets in terms of overall accuracy. In this section we
only refer to the performance of logistic regression. Appendix E provides the
performance in terms of accuracy for all three classification algorithms.

Once we have settled for a learning algorithm, we need to settle for a single
feature set to narrow down our analysis to a single system. Having fixed the
learning algorithm to logistic regression also implies that the BOW baseline is
a logistic regression classifier trained on the BOw feature set. Unlike BOW, the
other baselines compared in Appendix D do not require a learning algorithm to
be evaluated against MF'S.

Table 7.2 shows the ranked top three feature sets for each dataset trained
using logistic regression. Cf. Table 6.8 for an expansion of each feature sets into
its constituting feature groups. We have obtained the ranking by sorting the
different systems according to their overall accuracy.

Dataset VOTE
ENG:ANIMEAT alb, all, sem
ENG:ARTINFO plb, all, alb
ENG:CONTCONT pbr, pbw, alb
ENG:LOCORG plb, alb, ple

ENG:PROCRES pbr, pbw, alb
DA:CONTCONT pbr, pbw, wnt

DA:LOCORG all, alb, plb
SPA:CONTCONT alb, all, plb
SPA:LOCORG all, alb, pbw

Table 7.2: Feature set performance ranking

We choose the ALL feature set as the reference feature set for the quantita-
tive analysis because out of the nine datasets, it is most often the best-scoring
dataset. When not the best, ALL is either second or third, with few exceptions.
For ENG:CONTCONT, all is the four dataset out of fourteen, performing at an
overall accuracy of 0.70, whereas alb—the third feature set—yields 0.71.

The ENG:PROCRES dataset is different in that the highest-scoring feature sets
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include PLE, which does not contain any semantic feature groups (cf. Section
6.2). The two feature sets that outperform PLE are PBR and PBW, which instead
of using the lemmas of heads and dependents as features use the Brown-clustered
heads and dependent from the feature group bh and bh.

Other than the ALL feature set, the preference of the datasets annotated with
VOTE leans towards the feature sets PLB and PBR. In PLB we find an extension of
the strictly grammatical features that use the lemmas of heads and dependents
(as in the feature set PLE) with a bag of words. This feature set is not the most
heavily engineered because it does not use any of the clustered semantic features
or an LKB (cf. Table 6.8). The PBR dataset replaces the lemmas of heads and
dependents with their Brown-cluster index, thus projecting the list of lemmas
into a smaller amount of clusters, which improves recall.

Besides ALL and ALB, which only differ in the later also incorporating a bag of
words, the schemes that rely on the Brown-clustered heads and dependents fare
well in general. This indicates that using Brown clusters is a good compromise
between using (possibly too sparse) lexical relations and using (possibly too
coarse) POS tags. The ALB feature set is an extension of ALL with a bag of
words, which makes it better that ALL in some instances but is much larger,
therefore we use ALL as reference feature set.

Table 7.3 lists the accuracy obtained by training and testing the VOTE variant
of each dataset on the all feature set (cf. Table 6.7) using logistic regression.

Moreover, the table also provides the error reduction over the MFS and
BOW baselines. Error reduction (ER) is defined as the difference of error be-
tween systems (sg, s2), over the error of the original system (s1), expressed in
percentage. Error is defined as 1 — Accuracy:

Errory — Errors (1 — Acey) — (1 — Aces)
ER = = 7.1
(s1,52) Errory 1— Acey (7.1)

The cases for the ALL and for BOW that are outperformed by MF'S are marked
with a dagger (}).

Acc-ALL | Ace-MFS ER-MFS | Acc-Bow  ER-BOwW
ENG:ANIMEAT 0.84 0.72 42.86% 0.81 15.80%
ENG:ARTINFO 0.66 0.61 12.82% 0.61 12.82%
ENG:CONTCONT 0.83 0.71 41.38% 0.74 34.62%
ENG:LOCORG 0.73 0.54 41.30% 0.63 27.03%
ENG:PROCRES 0.61 0.60 -29.03% 0.587 4.76%
DA:CONTCONT 0.58t 0.66 -23.53% 0.617} -7.69%
DA:LOCORG 0.68 0.64 11.11% 0.64 11.11%
SPA:CONTCONT 0.73 0.58 35.71% 0.7 10%
SPA:LOCORG 0.75 0.63 32.43% 0.64 30.56%

Table 7.3: Accuracies and error reduction over MFS and BOW for VOTE

All the accuracy scores for statistically significant over their respective MFS
except those marked with a dagger. However, overall accuracy blurs out the
details of the performance over each sense.

Table 7.4 provides the sense-wise F1 scores for VOTE for the reference feature
set (ALL) and learning algorithm (logistic regression).
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Dataset L M U

ENG:ANIMEAT 0.88 0.68 0.00
ENG:ARTINFO 0.54 0.77 0.02
ENG:CONTCONT 0.89 0.60 0.00
ENG:LOCORG 0.79 0.61 0.00
ENG:PROCRES 045 0.71 0.01
DA:CONTCONT 0.73 0.14 0.09

DA:LOCORG 0.82 049 0.14
SPA:CONTCONT 0.81 0.64 0.17
SPA:LOCORG 0.85 0.68 0.02

Table 7.4: Sense-wise performance in terms of F1

Dataset p r F1

ENG:ANIMEAT 0.00 0.00 0.00
ENG:ARTINFO 0.04 0.01 0.02
ENG:CONTCONT 0.00 0.0 0.00
ENG:LOCORG 0.00 0.00 0.00
ENG:PROCRES 0.03 0.00 0.01
DA:CONTCONT 0.14 0.08 0.09

DA:LOCORG 0.2 0.12 0.14
SPA:CONTCONT  0.27 0.15 0.17
SPA:LOCORG 0.05 0.01 0.02

Table 7.5: Performance for underspecified in precision, recall and F1

For this training data, feature set and learning algorithms, the results for
the alternating senses (literal and metonymic) can reach high F1 scores. How-
ever, the classifier does poorly at identifying the underspecified sense. This
lower performance suggests that the mapping between features and sense is less
defined.

The underspecified sense is in general the least frequent sense for most
datasets, which means there is less training data to identify it using the sin-
gle classifier we have described in 7.1.

We have been able to develop a WSD system that captures the literal and
metonymic senses with good F1 scores, but the underspecified sense remains
difficult to identify.

7.4 Classifier ensemble

In Section 7.3 we have seen that the results for a three-way WSD using ALL on
logistic regression yielded good results for the alternating senses and bad results
for the underspecified sense. This indicates the postulation of the underspecified
sense as one third, isolated sense is an unwieldy way of representing regular
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polysemy at the token level. In Boleda et al. (2008), we find a recommendation
to model the intermediate cases of regular polysemy not as separate classes but
as the overlap of their constituting classes. With this remark in mind, we use a
classifier ensemble to try to identify the underspecified sense.

In Sections 2.4 and 2.5.2 we have described the underspecified sense as hav-
ing either the properties of both sense, or of none. We can implement this
understanding by training a binary classifier for the literal and one for the
metonymic sense, and assign the underspecified to the examples that are either
tagged as simultaneously literal and metonymic, or simultaneously non-literal
and non-metonymic.

In Martinez Alonso et al. (2012) we implemented a classifier ensemble using
fewer and simpler features and training on decision trees and K-nearest neighbor
classifiers. Diversity is a key requisite for any classifier ensemble (Marsland,
2011, p. 162), that is, for the aggregation of the criteria of more than one
classifier to be fruitful, each classifier needs to have a different bias. In the
ensemble described in this chapter, we achieve diversity by training on variants
of the datasets, but we keep the feature set and learning algorithm fixed.

7.4.1 Procedure

This section describes the steps we have used to implement the classifier ensem-
ble.

1. For each dataset D with a sense assignment, we generate a dataset D;
where all non-literal examples (metonymic and underspecified) are marked
as members of the negative class, and a D,, dataset where the non-
metonymic examples are marked as negative.

2. We train a logistic regression classifier C; on D; and another classifier C,,
on D,,. These two binary classifiers are strictly trained with the literal
and metonymic as the positive class, while the other two respective senses
are pooled into the negative class. This results in the underspecified sense
never being used as positive class for any classifier.

3. When assigning senses to examples, we combine the output of C; and
C,, in a method similar to the vVOTE SAM. Underspecified senses are
assigned by logical equality (i.e. an XNOR operation): if both classifiers
assign the positive class or both assign the negative class, we assign the
underspecified sense. In this way we assign the underspecified sense when
the example is marked as both literal and metonymic, or when it is marked
as neither.

The system can also be implemented with a complementary change of rep-
resentation by including the underspecified sense as positive examples for both
classes in the training step. The output is insignificantly different, but the pro-
portion of underspecified senses assigned when C; and C,, agree on the positive
or negative class is inverted.

7.4.2 Results

The ensemble system behaves differently than the single-classifier scheme in
several ways. Table 7.6 shows the accuracy scores for C; and C,,. The accuracy
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values are high (> 0.70) for most classifiers, although some datasets do not yield
accuracies above 0.70, with the literal classifier C; for DA:CONTCONT faring the
poorest.

Dataset Ace-C;  Ace-C,,
ENG:ANIMEAT 0.83 0.84
ENG:ARTINFO 0.76 0.68
ENG:CONTCONT 0.83 0.86
ENG:LOCORG 0.75 0.74
ENG:PROCRES 0.70 0.61
DA:CONTCONT 0.58 0.80
DA:LOCORG 0.75 0.84
SPA:CONTCONT 0.74 0.83
SPA:LOCORG 0.80 0.83

Table 7.6: Individual accuracies for C; and C,,

The accuracy values for the individual classifiers are only an indication of
how well the ensemble-internal classifiers work. We examine the sense-wise F1
scores of the resulting ensemble to determine whether the system captures the
sense distinctions we are after. Table 7.7 shows the sense-wise F1 score for each
dataset.

Dataset L M U
ENG:ANIMEAT 0.88 0.64 0.01
ENG:ARTINFO 0.47 0.75 0.15

ENG:CONTCONT 0.88 0.66 0.04
ENG:LOCORG 0.79 0.58 0.07
ENG:PROCRES 0.41 0.67 0.12
DA:CONTCONT 0.69 0.11 0.20

DA:LOCORG 0.81 0.45 0.25
SPA:CONTCONT 0.78 0.62 0.25
SPA:LOCORG 0.85 0.64 0.17

Table 7.7: Sense-wise F1 scores for the ensemble system

The ensemble system we describe in Martinez Alonso et al. (2012) had a
bias for the most frequent sense that was stronger than the bias shown by its
individual classifiers. In this ensemble, the bias for the most frequent sense is
not as pervasive. Figures 7.2 and 7.3 show the difference between single and
ensemble classifiers for the literal and metonymic sense respectively.
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Figure 7.2: F1 for the literal sense in VOTE

The single and ensemble classifiers obtain very similar scores for the literal
sense, although the single classifier is systematically better.
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Figure 7.3: F1 for the metonymic sense in VOTE

The relative behavior of the systems is different for the metonymic sense, in
that the drop in the ensemble system is even larger. The ensemble system is
similar to—but still worse than—the single classifier.

With regards to the literal and metonymic senses, the ensemble does not
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contribute in a favorable way. With regards to the underspecified sense, the
ensemble system improves over the single classifier. However, the F1 scores
are still very low, and neither the precision nor the recall of the system for
the underspecified sense indicate that this approach is useful to capture the
underspecified sense. Table 7.7 shows the sense-wise F1 score for the ensemble.

Dataset p T F1

ENG:ANIMEAT 0.18 0.24 0.01
ENG:ARTINFO 0.24 0.30 0.15
ENG:CONTCONT 0.01 0.02 0.04
ENG:LOCORG 0.12 0.21 0.07
ENG:PROCRES 0.03 0.05 0.12
DA:CONTCONT 0.05 0.15 0.20

DA:LOCORG 0.10 0.20 0.25
SPA:CONTCONT 0.21 0.36 0.25
SPA:LOCORG 0.16 0.22 0.17

Table 7.8: Precision, recall and F1 for underspecified

Underspecified senses are assigned by the ensemble when the predictions of
C; and C, coincide, either being positive or both negative. Table 7.9 lists the
amount of underspecified senses in the test data for each of the ten runs. The
columns describe the amount of expected underspecified examples in the test
data for each fold (E), the amount of predicted underspecified examples by the
ensemble each fold (U/r), and the amount of those predicted examples that
are assigned by exclusion (Ex/f), namely when both C; and C,, consider an
example to be of the negative class.

The system overestimates the amount of underspecified examples, which
damages the precision of the underspecified sense. However, this overestimation
of the underspecified sense does not aid recall. Most of the underspecified senses
are assigned by exclusion. This ratio would is inverted if the system is trained

Dataset E/f U/t Ex/f
ENG:ANIMEAT 0.7 1.85 1.33
ENG:ARTINFO 5.4  9.67 8.79
ENG:CONTCONT 2.5 3.54 3.02
ENG:LOCORG 2.2 5.07 3.96

ENG:PROCRES 4.8 9.42 8.11
DA:CONTCONT 9.1 11.6 10.9

DA:LOCORG 8.3 10.62 10.11
SPA:CONTCONT 6.9 11.51 10.54
SPA:LOCORG 4.7  6.63 5.83

Table 7.9: Run-wise amount of underspecified senses and amount of underspec-
ified assigned by exclusion
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by considering the underspecified senses as positive examples in D; and D,,,
although such change of definition has no significant effect on the F1 scores for
any sense in this setup.

7.5 Conclusions

In Section 7.1 we described the method for a WSD task to predict the annotated
sense for our dot-type datasets. We have established that the system fares
best using logistic regression as learning algorithm, and the ALL feature set to
represent the linguistic information.

The system obtains very low scores for the recognition of the underspecified
sense. In Section 7.4, we have devised a classifier ensemble made of one binary
classifier C; for the literal sense and one for C,, the metonymic sense. The
ensemble assigns the underspecified sense when both classifiers agree in their
prediction.

We have been able to predict the alternating class-wise literal and metonymic
senses with acceptable performance using a single-classifier setup. The F1 scores
are as high as 0.88 for literal and 0.77 for metonymic, but the performance for
the underspecified sense was very low, with F1 scores of at most 0.17.

As an alternative to modelling the underspecified sense as a separate cate-
gory, we have used a 2-classifier ensemble. One classifier was trained to identify
the literal sense, and the other classifier was trained to identify the metonymic
sense.

We have defined the underspecified sense as encompassing the exclusion and
the intersection of literal and metonymic senses. Thus, the predicted under-
specified senses for this ensemble system are those where both classifiers assign
the positive class or the negative class at the same time (the logical equality of
the output of both classifiers).

The classifier ensemble drops in performance for the literal and metonymic,
and it improves for the underspecified. However, the underspecified sense does
not receive an F1 better than 0.25 for any dataset.

Thus, the single-classifier WSD experiments do not justify postulating an
independent, underspecified sense at the token level, and the classifier-ensemble
experiments do not justify representing the underspecified sense as the logical
equality of literal and metonymic.
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Literality prediction

We have used WSI (cf. Chapter 5), and single-classifier and 2-classifier WSD
(cf. Chapter 7) to attempt to identify the underspecified sense as a discrete
category. The results have been thus far negative, in that the systems have not
found empirical evidence to include a third, independent underspecified sense
in our sense inventories for token-wise dot-type representations.

In addition to these three different methods to determine the empirical va-
lidity of the underspecified sense, we analyze the advantages of a representation
of the senses of a dot type in a continuum, where the underspecified sense is only
implicitly represented as an intermediate value in the gradient between literal
and metonymic.

In this chapter, we extend WSD to model the literality of examples in a
continuum. In this way, a completely literal example would have a literality
score of 1, a fully metonymic one would have a 0, and an underspecified example
a value around 0.5. These values are a continuous projection of the literal-
underspecified-underspecified sense gradient without any assumption of sense
discreetness

The goal of this experiment is to test the adequacy of a continuous represen-
tation of the literal, metonymic and underspecified senses in a continuum. This
understanding of the literality of an example as a continuous value leads to a
redefinition of the WSD task into a task where we attempt to predict the liter-
ality score of examples based on their linguistic features. Predicting a numeric
value in a supervised manner is called regression.

Finding a continuous account for the senses of dot types (without a discrete
underspecified sense) that can be modelled with a method similar to our word-
sense disambiguation experiments would provide an alternative representation
for the dot type at the token level.

The interesting of predicting the literality value of an example is mainly for
modelling purposes. Regression models allow the quantification of the explana-
tory power of features with regards to the dependent variable, and are thus
useful for the assessment the learnability of a linguistic phenomenon.

Nevertheless, WSD is an NLP task that is not an application unto itself
either, but is rather a preprocessing to aid other tasks like machine translation,
information retrieval or question answering (Navigli, 2009). Thus, a contin-
uous representation of the dependent variable of a sense-identification task is
potentially more useful as a feature than a discrete value, provided that such

141



142 CHAPTER 8. LITERALITY PREDICTION

continuous value is a suitable representation of the semantic phenomenon at
hand.

In Section 8.1 we describe how we calculate the continuous representation
of literality. In Section 8.2 we describe the metrics used to evaluate regression,
and provide the evaluation for the literality prediction system. In Section 8.3 we
provide an analysis of the features—in particular, the grammatical features—
that receive a larger coefficient and are more important to predict literality.
In Section 8.4 we offer a comparison between the WSD system in Chapter 7
and the literality-prediction system in this chapter. Finally, 8.5 sums up the
conclusions of this chapter.

8.1 Method

In this section we describe how we carry out the regression experiments. We use
the features from the ALL feature set (cf. Table 6.8) as explanatory variables
and we define a literality score LS from the annotations for each example as
dependent variable. Instead of using the senses assigned with VOTE or MACE,
we obtain the LS from the raw counts of the total annotations.

For each dataset D, we generate a dataset Dy g where the sense annotations
are replaced by a literality score LS. We define the literality score of an example
as the proportion of annotations that deem it literal. Each item receives a
literality score LS. If an item has a set of annotation A, for each a; from A:

a) if a; = literal, add 1 to LS
b) if a; = metonymic, add 0 to LS
c) if a; = underspecified, add 0.5 to LS

When all the a; values have been added, we divide LS by |A| (the number of
annotators for an item), thus normalizing LS to a value between 0 and 1.

Notice that, even though the values for literal (1.0) and metonymic (0.0)
are valid by definition because we describe them as the poles of the literality
continuum, the 0.5 for the underspecified sense is based on our understanding
of it as a point between the literal and the metonymic.

Nevertheless, we consider this assumption reasonable. If an example were
annotated by four annotators, twice as literal and twice as metonymic (A =
[L,L, M, M]), the LS for this example would be 0.5 (H+90 — (.5), which is
also the LS for an example annotated with four underspecified senses. That is,
the LS for total disagreement between literal and metonymic is the same LS as
for total agreement on the underspecified sense.

Moreover, if the arguments from Section 2.3 about a continuum between
literality and figurativeness hold, a reasonable position for the underspecified
values is between the two poles of the gradient. Notice that by defining two
poles, we consider regular polysemy to be bound between a maximum and a
minimum value of literality. Note that this idea of “minimum of literality” does
not necessarily hold for all figurative-sense phenomena (cf. Section 2.3).

After generating the datasets Dy g with literality scores with the ALL feature
set, we train and test a regression model using Bayesian Ridge (MacKay, 1992)
as implemented in SkLearn (Pedregosa et al., 2011). Bayesian Ridge regression
is time-consuming but it fits its parameters on the data at hand and requires
no explicit parametrization. Moreover, Bayesian Ridge is more robust towards
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noisy data than other methods like Ordinary Least Squares regression. The
system is trained and tested using 10 x 10 CV.

We have settled for the ALL feature set as reference feature set in Chapter
7, and we do not experiment with other feature group combinations. The only
feature group that is left out of the regression model is the bag of words bow.
However, the features in ALL incorporate Brown-clustered lexical information in
the bb feature group.

Figures 8.1 and 8.2 show the distribution of the literality score LS in the
gold standard for English, Danish and Spanish. The lines are smoother the
more annotators a dataset has.
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Figure 8.1: LS distribution for English
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Figure 8.2: LS distribution for Danish and Spanish

Even though LS is a continuous variable, the number of different values we
can generate is limited by the amount of annotators. Indeed, the unpopulated
values of LS are an artifact of the number of the annotators: the different com-
binations of literal, metonymic and underspecified votes for the five annotators
of the English dataset never provide a value of 0.3 or 0.7. Notice how there
are no values for 0.2, 0.4 or 0.7 for Danish. Danish has fewer annotators, and
therefore fewer possible intermediate values for LS. Spanish, which has the
most annotators, presents smoother curves.

8.2 Evaluation

8.2.1 Evaluation metrics

There are several metrics to evaluate the goodness of fit of a regression model.
We use two of them, the mean squared error (MSE) and the coefficient of de-
termination (R?), to evaluate the performance of our regression experiment.
MSE is a loss function defined as
RO P >
MSE(y,j) = o Z(yz —vi)" (8.1)
i=1
Where y are the expected values of the dependent variable, and § are the
predicted values of the dependent variable. Thus, MSE is the mean of the
square of differences between the predicted and the expected values. Since MSE
measures the difference between expected and predicted values, lower values of
MSE will indicate a closer fit and are more desirable. MSE has a lower bound
at zero, but it has no formal upper bound, i.e. scaling y by two would also scale
the values for MSE accordingly. This lack of an upper bound makes MSE to be
only interpretable with regards to a baseline.
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R? is a metric that, instead of measuring error rate, aims at estimating how
well future examples can be predicted by the model. The definition of R? is:

_ MSE(y,9)

2 ~
R(.9) =1 - Sropos (32)

Where y are the expected values of the dependent variable, § are the pre-
dicted values of the dependent variable, and y are the averaged values of y.
Thus, R? is the ratio of the MSE between the expected and predicted, and the
MSE between the expected and the mean values of the dependent variable. The
quotient is what makes R? a coefficient to measure the capacity of the model to
generalize over the observed data.

The values of R? are normalized, and usually defined between 0 and 1,
although there can be regression algorithms that yield negative values. The
higher the value of R?, the more the explanatory variables (in our case, the
features) are accountable for the value of the dependent variable (in our case,
the literality score LS). R? has a more direct interpretation as the proportion of
the variance of the dependent variable that the regression algorithm can explain
from the explanatory variables.

8.2.2 Results

Table 8.1 shows the results for the literality prediction models. MSE-LS is
the MSE obtained by assigning each example with the average literality score
(LS), MSE-BR is the MSE for the system using Bayesian Ridge regression, and
R? is the coefficient of determination for Bayesian Ridge; the R? from the LS
baseline offers no assessment on the informativeness of the features to predict the
dependent variable LS and we do not provide it. All the nine datasets improve
significantly over the LS baseline on a corrected paired t-test with p < 0.05.

MSE-LS MSE-BR R?

ENG:ANIMEAT 0.16 0.10 0.37
ENG:ARTINFO 0.07 0.06 0.14
ENG:CONTCONT 0.10 0.07 0.33
ENG:LOCORG 0.14 0.01 0.30
ENG:PROCRES 0.07 0.06 0.11
DA:CONTCONT 0.10 0.07 0.28
DA:LOCORG 0.13 0.08 0.33
SPA:CONTCONT 0.12 0.08 0.26
SPA:LOCORG 0.14 0.07 0.49

Table 8.1: Evaluation for literality prediction

In a manner similar to the WSD experiments from Chapter 7, each dataset
poses a different learning difficulty. For the English datasets, literality prediction
for ENG:LOCORG fares much better than for ENG:PROCRES. The later dataset
has very low a and the values of the annotations—and thus of LS—are not very
reliable!, which directly impacts how much of a mapping a learning algorithm

Inote that we qualify the data using the reliability coefficient, because the only different
between different annotation subtasks is the data itself
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can establish between the features and the dependent variable.

In this section’s scatter plots, the black straight line represents the ideal
behavior of the system, where y; = y;. The green dots represent data points
that receive a g; that is within 0.95y; > y; < 1.05y; and represent good ap-
proximations. The points in red are those where |g; — y;| > 0.5, and represent
gross mispredictions of the value of LS. Yellow points represent formally illegal
values of LS, that is, § values above 1.0 or below 0.0, which do not appear in the
training data. The total nine scatter plots, one for each dataset, are provided
in Appendix F.1.

On one hand, the scatter plot for ENG:LOCORG shows more red points that
represent values that are mispredicted, and yellow points that that are outside of
the expected [0,1] interval for literality. Its MSE-BR is the lowest of all datasets,
but the values of MSE are not strictly comparable across datasets. On the other
hand, the predictions for ENG:PROCRES deviate less from the mean. For this
dataset, in spite of the smaller amount of values marked in red and yellow, the
goodness of fit of the model is lower because the predicted values of LS are
closer to each other.

The graphical representation of the predictions shows that the model for
ENG:LOCORG approximates the ideal y; = y; line better than ENG:PROCRES.
Also, the R? value for ENG:LOCORG is about three times larger than for ENG:PROCRES,
which we interpret as a consequence of the linguistic features being three times
more informative as explanatory variables to determine the LS of the former
dataset.

1.4

predicted LS

_0'—40.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

expected LS

Figure 8.3: Literality prediction for ENG:LOCORG
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Figure 8.4: Literality prediction for ENG:PROCRES

There is a difference in granularity of the values of the expected LS across
datasets. This difference is a result of the different amount of annotators for
each language. Each of the (|‘§|) possible combinations of annotations (where
|A| is the number of annotators and 3 is the number of possible senses) yields
a particular value of LS, and even though it is an injective operation (we can
calculate LS from A, but cannot know A from LS because some combinations
obtain the same LS), the bigger the set A, the more fine-grained the literality
score values of LS will be.

Figures 8.5 and 8.6 show this difference in granularity. The values for the
expected LS in DK:LOCORG are more spaced between them than the values for
SPA:LOCORG because most Danish examples are annotated by three volunteers,
whereas most of the Spanish examples are annotated by six.
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Figure 8.5: Literality prediction for DA:LOCORG
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Figure 8.6: Literality prediction for SPA:LOCORG
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The low-agreement datasets ENG:ARTINFO and ENG:PROCRES are the hardest
to fit. This is a result of the sense distinctions being more difficult to annotate,
which makes the dependent variable noisier, and the ability of the regression
method to find reliable coefficients for the linguistic features less likely. This
lower performance is made apparent by the low R? values (0.14 and 0.11) for
these datasets.

A, « R?
ENG:ANIMEAT ENG:ANIMEAT SPA:LOCORG
DA:LOCORG SPA:LOCORG ENG:ANIMEAT
ENG:LOCORG DA:LOCORG ENG:CONTCONT

" ENG:CONTCONT ENG:LOCORG ~ DA:LOCORG
SPA:LOCORG SPA:CONTCONT  ENG:LOCORG
ENG:PROCRES DA:CONTCONT DA:CONTCONT

" ENG:ARTINFO  ENG:CONTCONT SPA:CONTCONT
SPA:CONTCONT  ENG:ARTINFO ENG:ARTINFO

DA:CONTCONT ENG:PROCRES ENG:PROCRES

Table 8.2: Ranking of the nine datasets according to their 4,, o and R2.

Table 8.2 shows a ranking of the nine datasets according to their A,, «
and R2. The determination coefficient R? is much more closely paired with
« than with A,. This indicates that, even though « is strictly a measure of
the replicability of an annotation procedure, it provides a better estimate of
the validity of a dataset than observed agreement alone. However, R? is not
completely correlated with «. Besides exchanging the first and second role
between ENG:ANIMEAT and SPA:LOCORG, the ENG:CONTCONT dataset behaves
better than expected at literality regression.

ENG:CONTCONT does not have very high « (0.31), but we believe that it is
precisely the variance in its annotation that makes this dataset suitable for the
task at hand. In the scatter plot for ENG:CONTCONT (cf. Figure F.5), the area
in the middle of the plot, which corresponds to the middle third of literality
values—those that correspond to the underspecified sense in the vOTE SAM—
is more populated than the area for those similar values in ENG:ANIMEAT (cf.
Figure F.3).

The A, of ENG:ANIMEAT and ENG:CONTCONT is respectively 0.86 and 0.65.
The lack of mid-literality data for ENG:ANIMEAT, which has a very high A,,
penalizes its performance in the middle third of LS, whereas ENG:CONTCONT
has more evenly distributed LS values and the regression model performs better
than what the o ranking suggests.

We have successfully fit a Bayesian Ridge regression model on each dataset,
using the ALL feature set as explanatory variables and the literality score LS as
dependent variable.

8.3 Feature analysis

Fitting a regression models yields a coefficient for each feature. Coefficients
can be negative or positive, thus helping to decrease or increase the value of
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the predicted variable. We can also examine the coefficients for each of the
nine regression models. Appendix F.1 provides the top 20 positive and top 20
negative coefficients for each dataset. We have obtained these coefficients by
fitting the regression algorithm on all the 500 examples for each dataset and not
by 10 x 10 CV, in order to obtain one stable ranking of features calculated at
one for each dataset.

We find that the features from the bb feature group are pervasive among
the most important features for all datasets. This feature group is also the
largest after the bag of words bow, which is not included in the ALL feature
set. Grammatical features that correspond to frequent words or syntactic roles
receive high coefficients. In the following sections we comment the features
that the regression model uses to give low or high LS scores. We focus on the
grammatical features. As in the previous chapters, h stands for the dot-type
headword of each example.

8.3.1 English datasets

In ENG:ANIMEAT, in example a) we find that A being plural is the strongest
indicator of literality. This supports the correspondence between this dot type
and a mass/count alternation where the literal sense is a count noun. However,
participating in a coordination gives low literality for b), but we consider this
a corpus feature and not a general trait of the behavior of this class; in this
corpus, enumerations of kinds of food are more common than enumerations of
fauna.

In example ¢) (ENG:ARTINFO), as in the previous example, plural makes h
more literal, because the ARTIFACT sense corresponds more to a count reading,
and the INFORMATION to a mass reading. If h is headed by a preposition as in
d) it is more likely to be metonymic.

In ENG:CONTCONT, for example e) the high-coefficient features bc: 10001110
and bc:0001110111 stand for A being complemented by a word from the
Brown clusters numbered 0001110111 or 10001110. These clusters contains
words of substances that are used for making vessels, like plastic or glass, or
adjectives like red and wooden, which normally describe objects. These features
that describe how an object is made aid the literal reading, along the feature
for plural.

In ENG:LOCORG, the feature phw: in (h begin a dependent of in) is the most
relevant feature for a literal reading in f), but also the more general pl : pmod,
that is, h being the nominal head of a prepositional phrase. This is symmetric
with the preference of metonymic senses to be placed in the subject position as
in g).

In ENG:PROCRES, the reading is more literal if A is an explicit argument as
the object of the preposition of as in h), and the reading is more metonymic
if h is the object of a verb as in i). In Section 2.6.5 for a remark on argument
satisfaction being a relevant feature to disambiguate between eventive and re-
sultative readings.

(8.3) a) The rabbits were randomly divided into four groups of seven
animals.

b) Grilled in foil or alongside a ham, turkey or chicken, those who
shied away from onions before will delight in their new found
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vegetable.

¢) Holbrooke suffers from a strain of narcissism that impels him to
quote himself, frequently and at length, including from diaries,
articles, TV interviews, faxes, and private letters to the president.

d) Consider, too, that the quality of the paper, printing, and binding
of such dictionaries is far superior to that of most other books
available, creating a cost per copy of about $ 5.

e) Most of the regalia and artifacts on display, including the red
wooden coffin containers in the burial vault, are copies of the
items discovered during excavations in the 1950s .

f) Surrounded by elegant classical mansions and gilded wrought-iron
grilles with ornamental gateways, which frame the marble fountains
of Neptune and Amphitrite, Nancy’s huge Place Stanislas is one of
the most harmonious urban spaces in Furope

g) Last year, Canada ran a $ 21 billion trade surplus with the United
States.

h) Woks and any other gadgets essential for Chinese cookery make
good purchases.

i) Naturally, the lack of ready funds holds one back from vital
purchase of an improved farm implement or even a fishing vessel.

8.3.2 Danish datasets

In DA:CONTCONT, if the headword & is introduced by a quantifier like to (two),
its LS decreases. The feature for h being headed by to (phw:to) indicates
structures like the one highlighted in example a). Cf. Section 6.1 for the par-
ticularities of the Danish treebank. Other features that provide low-LS inter-
pretations are the prepositions med and til (with and to) as heads of h, as well
as h being the head of a conjunction, having thus a subordinate clause.

The lexical head feature with a highest coefficient is phw: i, and it stands
for h being headed by the preposition 4 (in) in b). Other grammatical features
that aid a literal reading are h having a prepositional modifier that for instance
indicates the material the container is made from.

In DA:LOCORG, there are fewer grammatical features with negative coeffi-
cients, but more with high positive coefficients. Again, examples where h is
introduced by i are more often literal. The preposition mod (against) helps
trigger a more metonymic reading when it is the head or the dependent of h as
in example c).

(8.4) a) Heeld to daser flaede tomater i gryden |...]
(Pour two cans of peeled tomatoes into the pot [...])

b) Deltagerne stikker benene i en sk |...]
(The participants put their legs in a sack [...])

¢) Forst to kampe mod Japan, som man troede afggrende |...]
(First two matches against Japan, that were thought to be decisive

)
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8.3.3 Spanish datasets

In SPA:CONTCONT we find few grammatical features with a strong negative con-
tribution to LS. However, the literal reading in a) is facilitated by the preposition
en (in), and by h having an article.

In SPA:LOCORG the syntactic features are also only relevant to increase the
literality of examples. Low-literality examples are identified by semantic fea-
tures like wordnet types (wn) or brown-clustered bag of words (bb) features.
Consistent with the other two languages, the preposition en is the strongest
grammatical indicator for a high LS in ¢), along with h being the modifier of a
noun, the word Francia in b) being the dependent of Pards.

(8.5) a) El primero de estos botes, rotulado con la leyenda ‘veneno para
osos’, fue hallado el dia 30 por un paseante.
(The first one of those jars, with the legend ‘poison for bears’
written on it, was found on the 30th by a stroller.)

b) La NSA escuché las conversaciones telefénicas de la princesa sin la
aprobacion de los servicios secretos britanicos, la noche de su
fallecimiento en Paris (Francia) el 31 de agosto de 1997 [..]

(The NSA tapped the phone conversations of the Princess without
the approval of the British secret services on the night of her demise
in Paris (France) on the 31st of August 1997 [...])

c) Es cierto que no estuve ni en Valencia ni en Castellén |...]
(It is true that I was neither in Valencia nor in Castellén |[...])

8.4 Comparing regression to classification

We have proposed a continuous representation for the senses of dot types as an
alternative to the discrete three-way representation. After attempting to predict
the discrete representation using WSD and the continuous representation with
literality prediction, we want to compare the performance of both systems to
determine which representation is more adequate.

To the best of our knowledge, there is no established metric for the compari-
son of performance between a regression and a classification system. In our case,
we propose translating the error coefficient of our system into a metric with a
value similar to accuracy, and thus, compare this metric with the accuracy for
WSD.

If accuracy is the proportion of right classifier predictions, its complement
(one minus accuracy) is the error rate. We can define regression accuracy (RA)
as one minus the mean average error of the regression. Mean average error
(MAE) differs from MSE in that the difference between expected and predicted
value is expressed in absolute value and not squared. The values of MAE are
larger than the values for MSE when y is defined between 0 and 1. Using
MAE reduces the chance that we overestimate the performance of the regression
system.

1 n
A U :177 Aif il .
RA(y,7) - ;:1 |9i — il (8.6)
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In our case the value of RA is defined between 0 and 1 because the error
rate is also defined between 1 and 0. This allow us to compare the values for
RA and accuracy for each dataset. If the dependent variable LS were defined
for instance between 1 and 5, we would not be immediately able to compare
because the error-rate values would not be normalized.

Note that the error when counting accuracy is quantified discretely (hit or
miss), whereas the error for regression is quantified as a difference between
expected and predicted value and is a continuous value.

Table 8.3 shows the accuracy for the single classifier from Section 7.3 and
the RA obtained from the regression experiments in this section.

Dataset Acc RA
ENG:ANIMEAT 0.84 0.76
ENG:ARTINFO 0.64 0.80
ENG:CONTCONT 0.82 0.79
ENG:LOCORG 0.73 0.75

ENG:PROCRES 0.61 0.80
DA:CONTCONT 0.57 0.79

DA:LOCORG 0.68 0.77
SPA:CONTCONT 0.69 0.76
SPA:LOCORG 0.75 0.79

Table 8.3: Comparison between accuracy and RA

The values of RA are more similar to each other than the accuracies for the
different datasets. This suggests the continuous representations lends itself to
more stable systems where the errors are not centered around an expected value
for the dependent variable (the underspecified sense).

If we compare the difference between accuracy and RA strictly, we can see
that the WSD for two datasets outperforms the literality prediction. These
two datasets, ENG:ANIMEAT and ENG:CONTCONT present particularities with
regards to the annotations for the underspecified sense (cf. Section 4.7.1).

The ENG:ANIMEAT dataset contains the fewest underspecified senses accord-
ing to both the expert and the turkers, and in the ENG:CONTCONT dataset, all
the underspecified senses are assigned by backoff.

The performance drops in these two datasets because there are fewer mid-
literality values (cf. Table 8.1) and the dependent variable has less variance the
system can give account for.

This comparison suggests that a continuous representation is a viable alter-
native for the discrete classification of senses in literal, metonymic and under-
specified, provided that there are mid-literality values.

The absence of mid-literality values is caused by two factors, namely the
turker annotator bias to disprefer the underspecified sense tag (cf. Section
4.9.1), and the absence of contexts that would receive an underspecified sense
tag by volunteer or expert annotations.

The ENG:CONTCONT dataset exemplifies the first factor, because it has no
example annotated as underspecified by plurality, but only by backoff. The
ENG:ANIMEAT dataset exemplifies the second factor, because—in addition to
the turker annotation bias—that words of the ANIMALeMEAT dot type are sel-
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dom copredicated. This dataset is also the one with the fewest underspecified
examples in the expert annotation (cf. Table 4.3).

8.5 Conclusions

In this chapter we have introduced an alternative representation for the senses
in a dot type as a continuous value between 0 (fully metonymic) to 1 (fully
literal).

By examining the R? we determine that literality modelling with the linguis-
tic features from Chapter 6 can give account for about one third of the variance
of the literality score.

A desirable way to assess the appropriateness of this representation would be
comparing the same model fitting against another regression model where the
sense annotations are projected into a continuous value in another way, although
we have not found a comparable representation (say, with the underspecified
sense being less literal than the metonymic) sensible enough as a comparison
scenario.

The system could be improved by setting all g, > 1 to 1, and §; < 0 to 0.
This would be a postprocessing step that would improve MSE but would not
allow us to claim a higher R?. It would be an engineering degree but would
have no impact on the coefficients we are obtaining, as they are calculated on
training time, and would not improve our knowledge on the relation between
explanatory (features) and dependent (LS) variables.

We successfully fit a regression model for each dataset using the literality
score as a dependent variable. In a comparative study with WSD, we deem the
literality score to be a more robust representation, and thus we consider this
literality score LS an adequate candidate for the representation of token-wise
dot-type meaning.



Chapter 9

Agreement prediction

In Chapter 4 we have covered the interpretation of Kripperdorff’s « coefficient
to describe the reliability of an annotation task, and the way that observed
agreement (A,) is calculated for each example. In this chapter we describe a
method to predict the A, of the examples in our datasets.

Krippendorff (2011) defines disagreement as by chance—caused by unavoid-
able inconsistencies in annotator behavior—and systematic—caused by proper-
ties of the data being annotated. We know some of the difficult examples in
our dataset to have lower agreement, which can be a result of the linguistic
characteristics of these examples.

Even though, strictly speaking, the value of a only provides an indication of
the replicability of an annotation task, we suggest that the difficulty of anno-
tating a particular example will influence its local observed agreement. Thus,
easy examples will have a high A,, that will drop as difficulty increases.

We have seen that lower-agreement examples are often marked as under-
specified in the expert annotations, and we expect the result of this task to aid
in the understanding of underspecification. Identifying low-agreement examples
by their linguistic features would help characterize contexts that make dot-type
words difficult to annotated and less likely to be interpreted as fully literal or
metonymic.

The goal of this experiment is to measure how much of the disagreement in
the annotations is caused by linguistic properties of the examples and is thus
systematic.

We will consider the proportion of explained variance of the regression model
described by the coefficient of determination R? to be the amount of disagree-
ment our system can give account for, and is thus systematic.

9.1 Method

Observed agreement A, is a continuous variable, and using supervised learning
to predict it from the linguistic features in Chapter 6 is a regression task, similar
to the regression task to predict literality in Chapter 7

For each dataset D, we generate a dataset Dgq, where the sense annotations
are replaced by the observed agreement A, of each example. Note that the «
coefficient is an aggregate measure that is obtained dataset-wise, and A, is the

155
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only agreement measure available for each individual example.

The method for agreement prediction is the same as in literality prediction
(cf. Section 8.1), with the exception of the dependent variable. We use the ALL
feature set as explanatory variables. It is still a class-based method because we
are not looking at the identity of the headword for training. We train and text
on Bayesian Ridge regression using 10 x 10 CV.

Notice that using A, as dependent variable is different from using LS. The
two variables are ideally orthogonal, that is, the observed agreement for an ex-
ample with perfect agreement for the literal sense is 1, but so is the agreement
for an example where all annotators provide the metonymic sense (9.1). How-
ever, the literality score LS for the fully literal example is 1, whereas the LS
for a fully metonymic example is 0 (9.2).

Ao(IL, L, L, L)) = 1 = A,([M, M, M, M]) (9.1)

LS(IL,L,L,L]) = 1, LS([M, M, M, M]) =0 (9.2)

Figures 9.1 and 9.2 show the distribution of values of A, for all datasets.
The values for English fall in three ranges. The distribution of values is not less
smooth than the values for LS in Chapter 8 (cf. Tables Figures 8.1 and 8.2) as
a result of the way A, is calculated from the pairwise agreements (cf. Section
4.6.1).
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Figure 9.1: A, distribution for English
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The values for Danish, with fewer annotators, are less smooth than for En-
glish, and the Spanish datasets have the smoothest distribution of A, because

they have the most annotators.

9.2 Results

Table 9.1 shows the scores for agreement prediction for all nine datasets. MSE-
LS is the MSE obtained by assigning each example with the average observed

agreement (A4,), MSE-BR is the MSE for the system using Bayesian Ridge
regression, and R? is the coefficient of determination for Bayesian Ridge. Cf.

Section 8.1 for a review of the evaluation metrics for regression.

Dataset MSE-A, MSE-BR R?

ENG:ANIMEAT 0.06 0.06 -0.02
ENG:ARTINFO 0.06 0.05 -0.02
ENG:CONTCONT 0.08 0.08 0.01
ENG:LOCORG 0.08 0.08 0.00
ENG:PROCRES 0.06 0.06 -0.03
DA:CONTCONT 0.13 0.13 0.05
DA:LOCORG 0.13 0.13 0.01
SPA:CONTCONT 0.09 0.09 0.03
SPA:LOCORG 0.08 0.07 0.02

Table 9.1: Evaluation for agreement prediction

Notice there are negative values of R?. This means that the system would
be better approximated by disregarding all features and assigning the average
A, for these three datasets. For positive values of R?, we can claim that there
is at least that much proportion of the disagreement that can be explained by

the features and is thus systematic.
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Significant (corrected paired t-test with p < 0.05) improvements over the A,
baseline are marked in bold. The R? scores are lower for agreement prediction
than for literality prediction (cf. Table 8.1), and the difference between MSE-A,
and MSE-BR can only be observed in the third or fourth decimal place, which
do not appear in the tables.

The datasets that can be fit over baseline, and whose disagreement can be
partially explained by the linguistic features are the datasets for CONTCONT and
LOCORG for all three languages. Datasets with very high or very low agreement
have too little variation for the system to be able to pick on patterns that relate
the features to the dependent variable.

The Danish and Spanish datasets, annotated by volunteers, show more iden-
tifiable systematic disagreement, regardless of their o score. The dataset with
more (5% for an R? of 0.05) identified systematic disagreement is DA:CONTCONT,
which has been the most difficult dataset to automatically resolve with WSD,
even disregarding the underspecified sense (cf. Section 7.3).
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Figure 9.3: Agreement prediction scatter plot for DK:CONTCONT

Table 9.3 shows the scatter plot for DK:CONTCONT. The other plots are
provided in Appendix G. We use the same color convention as in Section 8.2.
Notice that there are no yellow points in the scatter plots for agreement predic-
tion. Yellow points stand for formally invalid values (above 1.0 or below 0.0),
which the system does not generate because there is less variance for the values
of A, than for the values of LS. This lack of variance can be seen in the less
smooth values of A, shown in Figures 9.1 and 9.2, which are grouped in ranges.

The datasets we cannot fit over baseline are ENG:ANIMEAT, ENG:ARTINFO,
and ENG:PROCRES. The last two datasets have fared consistently badly in the
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WSD experiments (cf. Section 5.3), and have low (0.12 and 0.10) « scores,
besides being the two datasets with the highest difference (D) proportion in
Table 4.12.

The high D proportion indicates that the annotations for these two datasets
are not very stable, and the low « indicates that repeating the annotation task
with the same examples would yield very different sense annotations. The im-
possibility to fit the agreement prediction system over the baseline suggests,
along with the previous reasons, that these two datasets have no example-wise
systematic disagreement. The inability of neither finding systematic disagree-
ment or accurately identifying the senses of these datasets by WSD indicate
that the annotations are not reliable.

The ENG:ANIMEAT dataset, which also resists agreement prediction, is dif-
ferent to ENG:ARTINFO and ENG:PROCRES in three aspects. Firstly, it has the
highest « of all nine datasets. Secondly, it has the lowest amount of underspec-
ified senses by either the expert or the turkers. Thirdly, it is the dataset with
highest overall accuracy in WSD (cf. Section 7.3), and the second highest in
literality prediction.

However, it is not possible for the system to identify any systematic dis-
agreement in ENG:ANIMEAT. This is due to the low variance of the dependent
variable, which makes this dataset the complementary to ENG:ARTINFO and
ENG:PROCRES: the sense distinction is arguably too easy for the annotators,
and the system cannot find a mapping between the linguistic features and the
little disagreement.

9.3 Feature analysis

Fitting a regression model yields a coefficient for each feature. Coefficients can
be negative or positive, thus helping to decrease or increase the value of the
predicted variable. We examine the coefficients for the six datasets that fit
over baseline. Appendix G provides the top 20 positive and top 20 negative
coefficients for each dataset. We have obtained these coefficients by fitting the
regression algorithm on all the 500 examples for each dataset and not by 10 x 10
CV, in order to obtain one stable ranking of features calculated at one for each
dataset. As in the previous chapters, h stands for the dot-type headword of
each example.

We observe that the grammatical features have positive coefficients more
often than not. This indicates that explicit syntactic behavior helps the anno-
tators take decisions that are consistent. Nevertheless, some few grammatical
features correlate with a lower agreement, and we interpret them as causes of
systematic disagreement. For the LOCORG datasets, we identify no grammatical
features with high negative coefficients. For the CONTCONT datasets, however,
we identify several grammatical features that help identify systematic disagree-
ment.

When the preposition in is the head of h for an English CONTCONT word,
the agreement decreases. This preposition is normally associated with literal
meaning, but its presence also diminishes the agreement in examples like first
English sentence in (9.3).

For Spanish, h being complemented by a quantifier is a feature that reveals
possible low agreement. This is similar to the example d) in 4.8 for Spanish,
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but also to the Danish example d) in 4.5. In both examples from Chapter 4 the
container word is introduced by a quantifier, and the examples received minimal
agreement.

For Danish, container nouns in definite form have low agreement. Although
noun definiteness is a matter of morphology (cf. Section 2.6.6 ), this is an an
example of systematic disagreement caused by pragmatics: the definite form is
used when there is a referent that has already been mentioned previously, but
the annotation has been carried out sentence-wise. Thus, many referents are
not provided, and that makes the annotator’s task more difficult.

Danish also has a specific syntactic structure to indicate whether a container
is used to mean a measure of unit of some substance, in which the the noun
for the container and for the substance are said consecutively. Thus, “et glas
vand” (glossed as “a glass water”) means “a glass of water”. This structure,
represented in the Danish treebank as the content being a dependent of the
container, is also a cause of systematic disagreement.

(9.3) 1. In a second operation, mixing tools used to make urethane are
soaked or agitated in buckets of dibasic esters (instead of methylene
chloride ) [..]

2. El informe relata que la embarcacién también transportaba medio
saco de carbén [...]
(The report tells the ship also transported half a sack of coal |[...])

3. Han forestiller sig, at @sken har vinger.
(He imagines the-box has wings.)

4. Inden jeg langt om lsenge rejser mig op for at gve mig i at ga med
en stor skal danske jordbaer oven pa hovedet.
(Before I finally stand up to practice walking with a large bow! (of)
Danish strawberries on the-head.)

9.4 Conclusions

In this chapter we have described a system to predict the observed agreement
A, and automatically determine examples that have low agreement. The lower
R? scores for agreement prediction than for for literality prediction determine
that this task is more difficult.

Nevertheless, we have been able to fit six datasets over baseline, namely the
three language variants of the CONTCONT and LOCORG datasets. The datasets
that cannot be fit are the two lowest-agreement datasets, and the highest-
agreement dataset, which has too little variation in A, for the relation between
dependent variable and features to be modelable.

Most syntactic features correlate with high agreement, which implies that
marked syntactic contexts help an univocal interpretation. Most negative fea-
tures for agreement are lexical, which indicates that difficult or unusual words
get on the way of annotator agreement.

Nevertheless, we have found linguistic cues that pinpoint to syntactic behav-
ior of the headword that cause agreement to drop, because annotators interpret
them in different manners.
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There are no features for the headword, because we are using features from
the class-based WSD and the headword is abstracted away. Including the head-
word would improve R? because a great deal of the variation in agreement
between datasets is caused by the headword and the semantic class, regardless
of context.

This system can be used as an automatic review method of for sense-annotation
tasks, because it identifies a proportion of systematic disagreement that can be
attributed to certain linguistic features, which can lead to reviews of annotation
guidelines.
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Chapter 10

Conclusions

This chapter introduces in Section 10.1 the conclusions to the research ques-
tion stated in Section 2.7, plus it lists the contributions of this thesis beyond
answering the question about the adequacy of the token-level representation of
the underspecified sense in Section 10.2. Lastly, Section 10.3 outlines the future
work lines that can be followed to complement the results of this dissertation.

10.1 Main conclusions

In this section we take up the main research question in this dissertation, namely
whether there is enough empirical evidence for the inclusion of an underspecified
sense in our sense inventories dealing with dot-type nominals.

We conclude that a discrete, independent representation for the underspeci-
fied sense is not desirable for the representation of the senses of dot-type words
at the token level. In the rest of this section we break down the argument with
regards to the specific questions defined in Section 2.7.

Human judgments

In Chapter 4 we have analyzed the human judgments on sense underspecifica-
tion. Comparing the behavior between turkers and volunteers it can determined
that the underspecified sense cannot be explicitly captured by turkers using the
annotation procedure, but that there is significant (> 5%) amount of simple-
majority underspecified senses for the volunteer-annotated datasets.

This indicates that the sense inventory is task-setup dependent, and we
cannot identify the underspecified sense explicitly from turkers.

‘Word-sense induction

In Chapter 5 we have analyzed the distributional behavior of dot type words
using word sense induction (WSI). The WSI system has not been able to find
distributional evidence for the underspecified sense in our WSI experiments.
Nevertheless, WSI has neither been able to identify the literal or metonymic
sense, except those few examples that are marked by decisive features like certain
prepositions.
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We could dismiss the underspecified sense as a distributional phenomenon
if the system had properly identified the literal and metonymic senses, thus
knowing our system was adequate for the task. Therefore, we consider our WSI
experiment non-conclusive on whether there is sufficient distributional evidence
to postulate the underspecified sense for token-sense representation.

However, given the results in word-sense disambiguation (see below), we
predict that the underspecified sense would not be identifiable using WSI, re-
gardless of the success at identifying the literal and metonymic senses.

Word-sense disambiguation

In Chapter 7 we have analyzed the performance of a classification system to
predict the literal, metonymic and underspecified senses. This system is an
instance of a figurative-language resolution system, which is a kind of word-
sense disambiguation (WSD).

Our WSD system has been able to predict the alternating literal and metonymic
senses with acceptable performance (F1 scores as high as 0.88 for literal and 0.77
for metonymic), but the performance for the underspecified sense was very low
(F1 scores of at most 0.17). Thus, the WSD experiments do not justify postu-
lating an independent, underspecified sense.

Alternative representation for dot-type sense

We have introduced an alternative representation for the senses in a dot type
as a continuous value between 0 (fully metonymic) to 1 (fully literal).

We successfully fit a regression model for each dataset using the literality
score as a dependent variable. In a comparative study with WSD, we deem the
literality score to be a more robust representation, and thus we consider this
literality score LS an adequate candidate for the representation.

10.2 Contributions

The main contribution of this dissertation is an empirical study on the hu-
man ability to recognize underspecified senses for regular polysemy, and on
the ability of NLP system to reproduce these human judgments. We have
conducted the study for five dot types in English, and chosen two relevant
dot types (CONTAINER®CONTENT and LOCATION®ORGANIZATION) for a cross-
linguistic study that also includes Danish in Spanish.

This dissertation offers an expansion on four articles that relate to the topic
of sense underspecification in regular polysemy. In Chapter 4 we expand on
Martinez Alonso et al. (2013), focusing on the method to obtain human judg-
ments on regular polysemy, describing the SAMs more extensively, providing
examples and settling for a SAM to conduct the other experiments. The data
described in Martinez Alonso et al. (2013) is freely available on MetaShare®.

In Chapter 5 we expand on Romeo et al. (2013) by running WSI on all
datasets, and not only on English. In Chapter 7 we also expand the work in
Martinez Alonso et al. (2011) and Martinez Alonso et al. (2012) by running
WSD on all datasets, as well as improving the feature space.

IThe corpus is available at http://metashare.cst.dk/repository/search/?q=regular+polysemy
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We have proposed the literality score (LS), a continuous representation for
the senses where 0 is fully metonymic and 1 is fully literal, instead of a rep-
resentation where literal, metonymic and underspecified are discrete, disjoint
categories. When used as a continuous dependent variable to replace the sense
tags, LS prediction is a more robust method to characterize the token-wise sense
behavior of dot-type words, provided that these words belong to dot types where
there are enough intermediate readings—unlike, for instance, ANIMALeMEAT.

Postulating that the literality coefficient is a more adequate representation
for the token-wise sense behavior of dot-type words does not necessarily violate
the representation of dot types as lexical entries, even though it offers new
possibilities for the annotation of these words which are not compliant with the
GLML (cf. Section 3.2.1).

We consider that the robustness of the literality coefficient is supporting ar-
gument against the sense-enumeration paradigm, as we have seen that explicitly
representing the underspecified sense does not necessarily aid the performance
of our WSD systems.

In the analysis of human annotations, we have conducted a study on the
biases of the different kinds of available annotators (expert, turkers, volunteers).
We have established that turkers disprefer the underspecified sense, and that
the expert can be overzealous when identifying it.

With regards to the evaluation of our metonymy-resolution WSD system,
we have conducted a critical analysis of the baselines used in the SemEval2007
shared task and determined that they do not lend themselves well to being used
as baselines for any metonymic sense alternation because they are tailored for
the metonymies derived from LOCATION words.

Moreover, this dissertation also has used approaches that are, to the best of
our knowledge, the first attempts at conducting certain tasks. Our WSI method,
which has not yielded very good results, is a first attempt at implementing class-
based WSI for dot-type words.

Likewise, we have presented an experiment to determine the agreement of
our sense-annotated examples, in order to capture which proportion of the
disagreement is systematic—i.e. correlates with the linguistic features of the
example—and can be predicted.

10.3 Further work

The results of this dissertation set new lines of research, as well as suggesting
methodological improvements on some parts of our work. In this section we
outline possibilities for future work that builds on the results of this dissertation.

With regards to the human recognition of the underspecified sense, we
want to obtain volunteer annotations for English. This would allow comparing
the difference in distributions with regards to turkers and experts. Ideally,
the volunteers for English would yield sense distributions that resemble those
obtained from the volunteers for Danish and Spanish.

If the volunteer annotations are indeed the most representative ones, a lin-
guistically informed method could be developed that predicted the volunteer
sense assignments from an input composed of linguistic features and the judg-
ments of turkers.
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We have used a simple, threefold sense inventory for our annotation task for
both turkers and volunteers, even though the expert annotation scheme is closer
to a two-sense annotation scheme where multiple tagging is possible: if the para-
phrases for both literal and metonymic were either possible or necessary, then
the underspecified sense was assigned. Our annotation scheme for turkers and
volunteers could be contrasted with a two-sense scheme with multiple tagging,
although this would come with a revision of our sense-assignment method.

We also consider the possibility of developing a sense-assignment method
that relies both on the theoretical assumption behind VOTE and the latent-
variable approach used by MACE. A first approach would be a method using
Bayesian inference instead of EM—used by MACE—, because Bayesian methods
yield more skewed distributions that are closest to the sense distributions we
expect.

With regards to the WSI experiments, our ability to draw conclusions
was limited by the performance of the system. It is be desirable to repeat the
experiments using a richer feature space that uses parsed corpora as input and
also incorporates inflectional morphology.

Finally, we want to assess the usefulness of the literality score as a
replacement for the three-way representation of dot-type senses. Using extrinsic
evaluation, we can use dot-sense annotated input for an NLP task like machine
translation, question answering or information retrieval, and measure whether
the system fares best with a discrete or continuous representation.

However, as we show in Elming et al. (2013), when conducting extrinsic
evaluation of dependency-tree formalisms, the external NLP tasks also have
biases of their own, and it would be necessary to experiment with several tasks
to get a fair overview of which representation—continuous or discrete—yields
systematically better results.
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Appendix A

Appendices to annotation
scheme

A.1 Words for English

The following words have been either obtained from Rumshisky et al. (2007) or
from using WordNet as a thesaurus to find synonyms for the words in Rumshisky

et al.’s work.

Dataset

words

ENG:ANIMEAT

anchovy, bison, boar, buffalo, bull, calf, camel, carp, catfish, cattle, chicken,
clam, cod, cow, crab, crayfish, deer, dog, donkey, duck, eel, elk, goat, goose,
hare, hen, herring, hog, lamb, lobster, mackerel, mussel, octopus, ostrich,
oyster, pheasant, pig, pigeon, prawn, quail, rabbit, reindeer, rooster, salmon,
sardine, shrimp, snail, snake, squid, swine, trout, tuna, turkey, whale, yak

ENG:ARTINFO

book, CD, diary, dictionary, letter

ENG:CONTCONT

bag, bottle, bucket, container, crate, dish, flask, glass, jar, keg, kettle, pint,
plate, pot, spoon, vessel, vial

ENG:LOCORG

Afghanistan, Africa, America, Boston, California, Canada, China, England,
Europe, Germany, London

ENG:PROCRES

acquisition,approval, classification, construction, damage, discount, illustra-
tion, imitation, instruction, invention, purchase, reference, simulation

A.2 Words for Danish and Spanish

Danish or Spanish words that share an English translation—e.g. both @ske
and skrin translate as boxr— have a subindex in their English translation. The
middle words are marked in bold to ease checkup.
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Dataset words translation
aeske, beholder, container, dase, flaske,  boxj, containerj, containera, can, bot-
fustage, glas, gryde, kande, kar, tle, keg, glass, pot, jug, boxa, cup,

DA:CONTCONT

kasse, kop, krus, kurv, pose, s=xk,
skal, skrin, tgnde, trug

mug, basket, bag, sack, bowl, boxs,
barrel, trug

DA:LOCORG

Afghanistan, Afrika, Amerika, Arhus,
Berlin, Boston, Danmark, England,
Europa, Frankrig, Fyn, Japan,
Jylland, Kina, Kgbenhavn, London,
Paris, Tyskland

Afghanistan, Africa, America,Aarhus,
Berlin, Boston, Denmark, England,
Europe, France, Funen, Japan,
Jutland, China, Copenhagen, Lon-
don, Paris, Germany

SPA:CONTCONT

barrica, barril, bol, bolsa, bote,
botella, botellin, caja, cajetilla,
cesta, cesto, contenedor, cubo,

envase, frasco, lata, olla, paquete,
saco, taza, tazén

wine cask, barrel, bowl, bag, jar, bot-
tle, phial, box, package;, basket,
baskets, container, bucket, tin,
flask, can, pot, packagea, sack, cup,
mug

SPA:LOCORG

Afganistan, Africa, Alemania,
América, Argentina, Barcelona,
California, Cataluna, China,
Colombia, Espana, Europa, Fran-
cia, Inglaterra, Japén, Londres,

Madrid, México, Paris, Valencia

Afghanistan, Africa, Germany, Amer-
ica, Argentina, Barcelona, Califor-
nia, Catalonia, China, Colom-
bia, Spain, Europa, France, Eng-
land, Japan, London, Madrid, Mex-
ico, Paris, Valencia
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A.3 Synthetic examples to assess validity of AMT

This appendix lists the five synthetic examples used as a preliminary study to
assess the adequacy of using Amazon Mechanical Turk to annotate the English
data. This section provides the examples and breaks down the amount of an-

notations for each sense, the resulting A, and the gold standard value in Table
Al

(A.1) a) Ikilled and cooked the kangaroo myself.
b
c
d

e

) Our donkeys were always free to pasture.

) The soup had chunks of turtle floating in the broth.
) The turtle was slow.

) The donkey was delicious.

(A.2) a) I am reading a good book on economics.
b)
¢) They had transferred all the recordings to a different shelf.
d)

He used a large book as a doorstop.

We found a stash of really interesting magazines from the 70s.

(A.3) a) Sarah kept out of sight, then followed at a careful distance,
swinging a basket.

b
¢

d

e

He spilled his cup of coffee.
We had to carry the box once it was full.

The boz was remarkably large.

o T

John ate the whole can.

(A.4) a) The weather in Spain is generally very hot in the summer.
b

) Japan takes a conservative turn to its tax policies.
c) We are several time zones away from Australia .
)

)

d

e

The reform that Italy suggest is unacceptable.

This kind of landscape is typical from Mexico and other dry areas.

(A.5) a) The doctor’s ezamination of the patient was successful.
b
c

d

e

) The exam was long.

) The exam was on the table.

) The development was applauded.
)

The enemy’s destruction of the city was awful to watch.
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Example L M U Ay GS
A.1 ENG:ANIMEAT
a) 0 5 5 045 U
by 10 0 0 1.0 L
c) 0 10 0 10 M
d 10 0 0 1.0 L
fy 10 0 0 1.0 M
A.2 ENG:ARTINFO
a) 3 7 0 054 M
b) 9 1 0 08 L
c) 5 2 3 034 M
d 9 1 0 081 L
f) 3 5 2 034 U
A.3 ENG:CONTCONT
a) 9 0 1 081 L
by 3 4 3 02 M
c) 7 0 3 054 U
d 8 0 2 071 L
f) 0 10 0 1.0 M
A.4 ENG:LOCORG
a) 10 0 0 1.0 L
by 2 8 0 071 M
¢c) 10 0 0 1.0 L
d 0 10 0 10 M
f) 9 1 0 08 L
A.5 ENG:PROCRES
a) 8 1 1 071 L
by 8 0 2 071 L
¢) 5 5 0 045 M
d) 2 5 3 03 M
fy 10 0 0 1.0 L

Table A.1: Evaluation of turker annotation for synthetic examples

A.4 Excerpts from annotated examples

This section provides the first 20 examples for each dataset, with array of an-
notation obtained from either turkers or volunters, and the sense tag assigned
by VOTE or MACE.
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EXCERPTS FROM ANNOTATED EXAMPLES
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Appendix B

Choosing dataset size

This appendix describes the preliminary study to determine the amount of
data to annotate with turkers and volunters, which we set to 500 examples
per dataset. The procedure consisted on evaluating the convergence of the ac-
curacy of classifiers for three datasets annotated with expert annotation, using
the features described in Martinez Alonso et al. (2012).

1. There are 1000 expert-annotated examples for the English datasets ENG: ARTINFO,
ENG:CONTCONT and ENG:LOCORG.

2. We use the following features to characterize h for each dataset. These
are the provisional features used in the first experiments (Martinez Alonso
et al., 2011; Martinez Alonso et al., 2012) and have been replaced by the
features in Chapter 6 for the experiments in this dissertation.

(a) NP-traits (6 features): these features describe the internal struc-
ture of the NP where ¢ appears. The features indicate the presence
of an adjective in the NP, of a common noun before or after ¢, of a
genitive mark after ¢, of a coordinate “X and Y” and the presence of
an article in the NP.

(b) Position of ¢ (2 features): ¢ being the first or last token of the sen-
tence. This is a coarse approximation of the selected subject position
for English (beginning of sentence) or for adjunts (end of sentence),
as no parsing has ben used.

(c) Prepositions before t (57 features): each feature indicates whether
the NP where ¢ is included is introduced by a given preposition.
The list of prepositions has been taken from the Preposition Project
(Litkowski and Hargraves, 2005).

(d) Previous and next token after t’s NP (4 features): each fea-
ture describes whether the previous or next token is either a comma
or a parenthesis.

(e) Verb after of before t (4 features): informs whether there is a
verb immediately before ¢, or whether there is a modal or non-modal
verb thereafter.

(f) Lexical space (3000 features): A bag of words with 3000 most
frequent content words from the ANC.
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198 APPENDIX B. CHOOSING DATASET SIZE

3. Train and test the K-Nearest Neighbors (K=7) and Decision Tree classifiers—
the highest performing for this data and annotation—and trace learning
curves of accuracy for increments of 100 instances using 10x10 CV.

4. Find amount of training data where classifiers converge. We determine
that classifier behaviors stabilize after 400 examples and we set the anno-
tation task for 500 examples per dataset.

5. The blue line in the tables shows the evolution of accuracy as the number
of training examples increases, and the green line shows the variation in
standard deviation for the accuracy in each run.

6. Note that the additional expert annotations for not incorporated into the
study in Chapter 4, we have only used them to calculate classifier conver-
gence.
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Figure B.1: Classifier convergence for ENG:LOCORG
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Appendix C

Full tables for WSI

evaluation

C.1 WSI evaluation for mace

Table C.1 shows the evaluation for WSI on MACE for all datasets values of K.

dataset

description

hom

com

v-me

animeat

mace

0.0012480782

0.0013532291

0.0012985284

dk:contcont

mace

0.0109064933

0.0171545206

0.0133349183

artinfo

mace

0.005385482

0.0086797353

0.0066468306

dk:locorg

mace

0.0441326432

0.0669615362

0.0532015196

contcont

mace

0.0046377988

0.0058903612

0.0051895697

es:locorg

mace

0.0127478643

0.0165405237

0.0143986314

es:contcont

mace

0.0044200592

0.0064545692

0.0052469982

locorg

mace

0.0065615509

0.0076535258

0.0070655966

procres

mace

0.0025525213

0.004009777

0.0031193466

dk:contcont

mace

0.0046388278

0.0048708153

0.0047519919

procres

mace

0.0033344054

0.0034685489

0.0034001546

es:locorg

mace

0.0085109002

0.01004118

0.0092129271

artinfo

mace

0.0169040433

0.0183614978

0.0176026537

contcont

mace

0.0256370309

0.0198008568

0.0223441363

dk:locorg

mace

0.03486176

0.0508972385

0.0413803179

locorg

mace

0.1076258863

0.0781509358

0.090550195

animeat

mace

0.0098950368

0.0065085295

0.0078522119

es:contcont

mace

0.0045793679

0.0043766375

0.0044757081

es:locorg

mace

0.002087219

0.0013488931

0.0016387331

dk:contcont

mace

0.0101028047

0.0081090969

0.0089968224

procres

mace

0.0087756569

0.0053920672

0.0066798212

dk:locorg

mace

0.0166130643

0.0156449417

0.0161144754

artinfo

mace

0.0193493527

0.0130189756

0.0155651381

animeat

mace

0.0304043448

0.0123719509

0.0175873603

contcont

mace

0.0863700788

0.0433121679

0.0576929449

locorg

mace

0.1056682788

0.0513482123

0.0691121955

es:contcont

QDO OO O WO WO WO O O[O W] WIN| NN NN NN NN R

mace

0.0140136906

0.011832614

0.0128311257

Table C.1: MACE: Results of clustering solutions for each class in terms of

homogeneity (HOM), completeness (COM) and V-measure (V-ME)
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C.2 'WSI evaluation for vote

Table C.2 shows the evaluation for WSI on MACE for all datasets values of K.
dataset description k  hom com v-me
eng:animeat vote 2 0.0031256181 0.003063542 0.0030942687
dk:contcont  vote 2 0.0240587467 0.0311458476  0.0271473803
artinfo vote 2 0.0094217442 0.0124454354 0.0107245388
dk:locorg vote 2 0.073702729 0.0972331337 0.0838483767
contcont vote 2 0.0068932903 0.0076767407 0.0072639519
es:locorg vote 2 0.0142930784  0.0179458959  0.015912547
es:contcont vote 2 0.0024624142 0.0034652362 0.002878998
locorg vote 2 0.0014801147 0.0017504825 0.0016039851
procres vote 2 0.0005058806 0.0006583682 0.0005721383
dk:contcont vote 3 0.008016889 0.0069284007 0.0074330067
procres vote 3 0.0049208316 0.0042407036  0.0045555222
es:locorg vote 3 0.0104541333 0.0119350661 0.0111456215
artinfo vote 3 0.0212949183 0.0189579061 0.0200585707
contcont vote 3 0.0290482413 0.0196723565 0.0234581423
dk:locorg vote 3 0.0385886461 0.0489857427 0.043170007
locorg vote 3 0.1066620752 0.0785298566  0.0904592051
animeat vote 3 0.0054957533 0.0032677671  0.0040985451
es:contcont vote 3 0.0013307987 0.0012256881 0.0012760826
es:locorg vote 6 0.0044963834 0.0028119033 0.0034600163
dk:contcont  vote 6 0.0227288786 0.0150155847 0.0180841041
procres vote 6 0.0160742795 0.0081823335 0.010844475
dk:locorg vote 6 0.0211670366 0.017332033 0.0190585269
artinfo vote 6 0.0252433893 0.0139205027 0.0179451352
animeat vote 6 0.0375477966 0.0138116448 0.0201948003
contcont vote 6 0.1003335505 0.0441177214 0.0612869319
locorg vote 6 0.1090561339 0.0537326335 0.0719935825
es:contcont vote 6 0.0092577132 0.007532939 0.0083067397

Table C.2: VOTE: Results of clustering solutions for each class in terms of
homogeneity (HOM), completeness (COM) and V-measure (V-ME)

C.3 WSI evaluation for expert

We have also used the expert annotations as test data to compare the learn-
ability of the expert annotations with the two SAMs. We find that Expert
fares either much better or much worse with regards to MACE and VOTE, the
differences with the two SAMs are always significant. For instance, the expert
annotations do worst for k = 3 in ENG:LOCORG, which is a highly stable dataset
that barely changes sense assignments between MACE and VOTE (cf. Section
4.7.2). The four English datasets for VOTE that outperform MACE for k = 3
are ENG:ARTINFO, ENG:PROCRES, DA:CONTCONT, SPA:LOCORG. Three of them
(excluding ES:LOCORG) are datasets where the difference between the output
of both SAMs is greatest. This indicates that the more drastic updates taken
by MACE are less reliable because the sense assignments correlate less with the
distributional information. Drastic updates can be an artifact of applying EM
to high-variance data (cf. Section 4.7.2).
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dataset k description hom com v-me

locorg 2 expert 0.0028909723  0.0042873501  0.0034533446
artinfo 2 expert 0.0032590015  0.0041925463  0.0036672957
contcont 2  expert 0.0034159931  0.0043836834  0.0038398086
procres 2 expert 0.0031177052  0.0048242296  0.0037876225
animeat 2  expert 0.0079832747  0.010608042 0.0091103728
locorg 3 expert 0.0038501875  0.0035545882  0.0036964877
contcont 3  expert 0.0037162248  0.0029000829  0.003257817
artinfo 3  expert 0.0050497124  0.0043781996  0.0046900414
animeat 3  expert 0.0107908665 0.008698541 0.0096323908
procres 3  expert 0.0117139422 0.0120025788  0.0118565041
contcont 6  expert 0.0121305841 0.0061463954  0.008158828
locorg 6 expert 0.0165642781 0.0102339474 0.012651431
animeat 6 expert 0.0182816204 0.0091167881 0.0121663752
artinfo 6 expert 0.019752388 0.0106081925  0.0138032363
procres 6 expert 0.0190064653 0.0115032111  0.0143321994
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Table C.3: Expert annotations: Results of clustering solutions for each class in
terms of homogeneity (HOM), completeness (COM) and V-measure (V-ME)

C.4 VOTE vs MACE WSI Evaluation

Table C.4 shows the division of the performance of WSI for MACE over WSI for
VOTE. We determine the significance of the difference if it is higher than 1.05
or lower than .95.
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dataset description k  hom com v-me
animeat proportions 2 0.3993060534 0.4417204322 0.419655999
dk:contcont proportions 2 0.4533275767 0.5507803417  0.491204609
artinfo proportions 2 0.5716013807 0.6974231953 0.6197777508
dk:locorg proportions 2 0.5987925245 0.6886699378  0.6344967156
contcont proportions 2 0.6727989996 0.7672997384  0.7144278708
es:locorg proportions 2  0.8918907381 0.9216883768  0.9048602554
es:contcont  proportions 2  1.7950104041 1.8626635363 1.8225084333
locorg proportions 2 4.4331367147 4.3722379659  4.405026403
procres proportions 2 5.0456995038  6.09047799 5.452084465
dk:contcont proportions 3  0.5786319041 0.7030215991 0.6393095094
procres proportions 3 0.6776101431 0.8179182409 0.7463808658
es:locorg proportions 3 0.8141182076 0.8413175035 0.8265960802
artinfo proportions 3  0.7938064424 0.9685403924 0.8775627145
contcont proportions 3 0.8825674047 1.0065320239  0.952510902
dk:locorg proportions 3  0.9034201379 1.0390214718  0.9585432298
locorg proportions 3  1.009036118 0.9951748182  1.0010058661
animeat proportions 3  1.8004878238 1.9917360455 1.9158534801
es:contcont  proportions 3 3.4410672355  3.5707595071  3.5073812447
es:locorg proportions 6 0.4641995262 0.4797082081 0.4736200616
dk:contcont proportions 6 0.4444919982 0.5400453607 0.4974989264
procres proportions 6  0.5459440298  0.658988926 0.6159653839
dk:locorg proportions 6  0.784855466 0.902660509 0.8455257615
artinfo proportions 6 0.7665116778 0.9352374603 0.8673736885
animeat proportions 6  0.8097504394 0.8957623132 0.8708855756
contcont proportions 6 0.8608294871 0.9817408181 0.9413580209
locorg proportions 6 0.9689347585 0.9556243379  0.9599771692
es:contcont  proportions 6 < 1.5137313422 1.5707831935 1.544664468

Table C.4: MACE over VOTE

Table C.5 shows the division of the performance of WSI for expert over WSI
for voTE. We determine the significance of the difference if it is higher than
1.05 or lower than .95.
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dataset

description

hom

com

v-me

artinfo

expertvote

0.3459021384

0.3368742197

0.341953697

contcont

expertvote

0.4955533532

0.5710344475

0.5286115062

locorg

expertvote

1.9532082628

2.4492391234

2.1529779846

animeat

expertvote

2.5541427251

3.4626722879

2.9442733007

procres

expertvote

6.1629273366

7.3275555496

6.6201166141

locorg

expertvote

0.0360970616

0.0452641621

0.0408635876

contcont

expertvote

0.1279328671

0.1474191903

0.1388778777

artinfo

expertvote

0.2371322719

0.2309432067

0.233817328

animeat

expertvote

1.9634917963

2.6619219684

2.3501975859

procres

expertvote

2.3804801769

2.830327177

2.6026662958

contcont

expertvote

0.1209025699

0.1393180609

0.1331250852

locorg

expertvote

0.1518876339

0.1904605579

0.1757299828

animeat

expertvote

0.4868892984

0.6600798242

0.602450881

artinfo

expertvote

0.7824776509

0.7620552718

0.7691909894

procres

expertvote

DD OO W W W W W N NN NN R

1.1824147558

1.4058594776

1.3216130315

Table C.5: Expert over VOTE
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Table C.6 shows the division of the performance of WSI for EXPERT over
WSI for MACE. We determine the significance of the difference if it is higher
than 1.05 or lower than .95.

dataset

description

hom

com

v-me

locorg

expertmace

0.4405928327

0.5601797392

0.4887548422

artinfo

expertmace

0.6051457364

0.4830269799

0.5517359998

contcont

expertmace

0.7365548307

0.7442130095

0.7399088527

procres

expertmace

1.2214217934

1.2031166621

1.2142358866

animeat

expertmace

6.3964538069

7.8390584535

7.0159209152

locorg

expertmace

0.0357738052

0.0454836289

0.0408225256

contcont

expertmace

0.1449553501

0.1464624938

0.1458018773

artinfo

expertmace

0.2987280768

0.2384445796

0.2664394512

animeat

expertmace

1.0905332268

1.3364833028

1.2267105028

procres

expertmace

3.5130527504

3.4604035409

3.4870485233

contcont

expertmace

0.1404489179

0.1419092069

0.1414181239

locorg

expertmace

0.1567573385

0.1993048422

0.1830564188

animeat

expertmace

0.6012831543

0.7368917116

0.6917681241

artinfo

expertmace

1.0208293932

0.8148254365

0.8868046144

procres

expertmace

2.1658168078

2.1333582736

2.145596272

Table C.6: Expert over MACE
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Appendix D

Discussion on WSD
baselines

D.1 Baselines

There are four baselines for this task. Three of them (MFS, SBJ,GRAM) are
canonical baselines taken from the evaluation of the SemEval2007 metonymy
resolution task in (Markert and Nissim, 2009). None of these three features
uses a learning algorithm to make sense predictions. We include a fourth base-
line (BOW) to determine the contribution of the feature sets to the learning
algorithm. In this section we describe the four baselines and evaluate the three
of them that do not require a learning algorithm.

D.1.1 MFS baseline

The most-frequent sense (MFS) baseline is a common baseline for WSD exper-
iments. This baseline consist in assigning all the examples the most frequent
sense, thus yielding perfect recall for the most frequent sense and zero to the
other senses. Even though it is conceptually simple, MF'S can be a hard baseline
because sense distributions are often very skewed (McCarthy et al., 2004).

D.1.2 SBJ baseline

Like MFS, the subject baseline (SBJ) is another baseline that does not require
a learning algorithm to assign senses. It does however require the examples to
be annotated with the syntactic role of the headword. In SBJ, we assign the
metonymic sense to any example where the headword is subject, and literal
otherwise. This baseline has always zero recall for the underspecified sense.

This baseline was designed by Markert and Nissim (2009) for the SemEval
metonymy resolution task. In that task, the metonymies could be often resolved
by determining whether the headword is the subject of the sentence, because
subjects are often agents, which organizations are more likely to be than loca-
tions.

209
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D.1.3 GRAM baseline

The GRAM baseline is a supervised version of the SBJ baseline. Instead of
assigning automatically the metonymic sense to the subject, it assigns the sense
to each headword according to the most frequent sense of the syntactic role of
the headword.

If subjects are indeed mostly metonymic in a dataset, headwords with the
subject role will be tagged as metonymic. Nevertheless, this baseline is more
free of assumptions in that it does not specify the relation between syntactic
roles and senses beforehand. Also, this baseline does not automatically discard
the underspecified sense.

However, this baseline is subject to the skewness of sense distributions, and
the contribution of a more clearly defined role-sense relation (e.g. subject as
often metonymic) can be outweighed by a more frequent, less informative role-
sense association, like noun modifiers having the most frequent sense and taking
up most of the probability mass for this feature.

D.1.4 BOW baseline

The BOW baseline is an additional fourth baseline we include to compare the
contribution of the grammatical features and the more engineered semantic fea-
tures with the contribution of a classifier trained only on a bag-of-words feature
set, the bow feature set (cf. Table 6.8). Along with GRAM, this is another
supervised baseline, but it is the only baseline that requires a classification al-
gorithm.

D.1.5 Baseline comparison

In this section we provide an overview of the three baselines that do not require
a classification algorithm, namely MFS, SBJ, GRAM. The BOW baseline is
strictly speaking a feature set choice and we compare it with the classification
system performance for other feature sets in Section 7.3.

Table D.1 shows the MFS, SBJ and GRAM baselines in terms of accuracy
for the MACE and vOTE SAMs. Each dataset has two annotation variants with
different sense distributions, and that changes the values of the baselines. The
difference in sense distributions results in the lack of a unified baseline for both
SAM.

DATASET MACE VOTE
DATASET MFS SBJ GRAM | MFS SBJ GRAM
ENG:ANIMEAT .68 .60 .68 72 .64 72
ENG:ARTINFO .34 .39 .37 .61 .40 .63
ENG:CONTCONT | .59 .54 .58 .71 .63 .71
ENG:LOCORG .54 .59 .57 .54 .59 .57
ENG:PROCRES 42 41 .52 .69 .36 .59
DA:CONTCONT .45 .42 .44 .66 .60 .65
DA:LOCORG .50 .57 .60 .64 .68 .68
SPA:CONTCONT .54 .54 .52 .58 .57 .58
SPA:LOCORG .60 .68 .68 .63 71 71

Table D.1: Baselines for WSD
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The MFS baseline is systematically lower for the MACE variant, with the ex-
ception of the ENG:LOCORG dataset. This difference in baseline is a consequence
of the different way in which each SAM assigns senses to examples; MACE works
globally and maximizes sense-likelihood given the input annotations, whereas
VOTE operates locally and resolves ties with the backoff method described in
Section 4.7.1. As an effect of the EM implementation of MACE, which has a bias
for evenly-sized clusters, this SAM has a tendency to smooth the distribution
of senses, while the resulting distributions of VOTE are more skewed.

The difference between the value of MFS is proportional to the difference
coefficient D we use to measure the difference between annotation variants for
each dataset, which we list in Table 4.12. Figure D.1 illustrates the difference
in MFS for MACE and VOTE.

1.0 T T T T T T T

o
o
T

MFS accuracy

o
iN
T

o2 - -] ... .. . I B e ... .

0.0

eAM eAl eCC elo ePR dccC dLo sCC sLO

Figure D.1: Comparison of MFS for MACE and VOTE

With regards to the SBJ baseline, it is only systematically harder for all lan-
guages and annotation variants of the LOCATION®ORGANIZATION dot types. It
does not provide a harder baseline for the rest of the datasets except ENG:ANIMEAT
for MACE. This baseline was tailored by Markert and Nissim (2009) to assess the
performance of metonymy resolution systems over the LOCATION®ORGANIZATION,
but it falls short of a better, feature-based baseline for the rest of the datasets.
We discard using SBJ as a reference baseline for the system.

The GRAM baseline offers a more varied behavior with regards to MFS.
It only improves significantly (corrected paired t-test with p < 0.05) over four
datasets for VOTE, while it fares worse in three and same in the other two. Out
of the five datasets for MACE for which GRAM is a harder baseline than MF'S,
the GRAM value is lower than the baseline set by SBJ.

Even though the GRAM baseline aims at improving over SBJ and providing
a more informed baseline that takes all senses and syntactic roles in consider-
ation, it is also more affected by parser performance (subject is amongst the
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easiest syntactic roles to identify, while other roles for nouns are less accurate),
and by the skewness of sense distributions. Due to the unsystematic relation
with MFS, we also discard GRAM as a comparison baseline for our system.
After comparing the behavior of the MFS, SBJ and GRAM baselines, we
determine we will strictly use the MFS baseline to compare our classification
experiments against. The SBJ baseline was specifically developed to evaluate
WSD for the LOCATION®ORGANIZATION dot type, and is not a harder baseline
for the other dot types. The GRAM baseline does not systematically improve
over MFS. For these reasons we discard SBJ and GRAM from our analysis.
In Section 7.3 we evaluate the WSD system against MFS and BOW, which a
particular instance of a classification algorithm trained on the Bow feature set.



Appendix E

Tables for WSD

E.1 Evaluation tables for all datasets and clas-
sifiers for VOTE

The following nine tables provide the WSD evaluation for all datasets. Each
table provides the overall acurracy for the dataset trained and tested on each
combination for feature set and learning algorithm. Cf. Chapter 6.

The names of the columns stand for:

1. MFS: Most Frequent Sense baseline

2. NB: Naive Bayes classifier

3. LR: Logistic Regression classifier. The final system uses this classifier.
4. DT: Decision Tree classifier.

The bullets (o) represent significant improvement over the MFS baseline.
The daggers (f) represent significant degradation over MFS. We calculate sig-
nificance using a corrected paired t-test with p < 0.05.

Table E.1: 'WSD evaluation for ENG:ANIMEAT

Feature group MFS NB LR DT

ALB 0.72 0.72 0.84e 0.77e
SEM 0.72 0.79e¢ 0.80e 0.70 T
PPW 0.72 0.76e 0.78e 0.71
PLE 0.72 0.72 0.73e 0.70 t
PLB 0.72 0.76e (0.8le 0.78e
PBR 072 0.72e¢ 0.75e¢ 0.73
ALL 0.72 0.72e 0.82e¢ 0.72
TOP 0.72 0.72 0.72 0.72
BOW 0.72 0.77e¢ 0.8le 0.78e
PBW 0.72 0.72e¢ 0.80e 0.74 e
BRW 0.72 0.78e 0.77e 0.68 T
WNT 072 0.76e 0.77e 0.71

213
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Table E.2: WSD evaluation for ENG:ARTINFO

Feature group MFS NB LR DT

ALB 0.61 0.61 0.66 ¢ 0.56 t
ALL 0.61 0.62e 066e 0557
BOW 0.61 0.62e 0.61 0.55 1
BRW 0.61 0.61 0.62 0.49 1
PBW 0.61 0.62e 0.65e 0.557%
PBR 0.61 0.65e¢ 0.66e 0.58t
PLB 0.61 0.61 0.67e 0.54t
PLE 0.61 0.61 0.64e 0587
PPW 0.61 0.63e¢ 0.63e 0.527%
SEM 0.61 0.61 0.59 1 0497
TOP 0.61 0.61 0.61 0.61

WNT 0.61 0591 0587 0467

Table E.3: WSD evaluation for ENG:CONTCONT

Feature group MFS NB LR DT

ALB 0.71 0.71 0.83e¢ 0.80e
ALL 0.71 0.73e 0.82e (.74
BOW 0.71 0.72e 0.74e¢ 0.677
BRW 0.71 06971 0.73e 0.60f
PBW 0.71 0.75e¢ 084e 0.76e
PBR 0.71 0.78e 0.84e¢ 0.78 e
PLB 0.71 0.71 0.74e 0.66 T
PLE 0.71 0.71 0.70 1 0.65t
PPW 0.71 0.72e¢ 0.71 0.62 1
SEM 0.71 0.72 0.74e 0.66 1
TOP 0.71 0.71 0.71 0.71

WNT 0.71 0.73e 0.72 0.63 §
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Table E.4: WSD evaluation for ENG:LOCORG

Feature group MFS NB LR DT

ALB 0.61 0.61 0.73e 0.68e
ALL 061 064e 0.72e¢ 0.67e
BOW 0.61 0.64e 0.63e 0.587F
BRW 0.61 0.60t1 0.62 0.53 1
PBW 0.61 0.67e 0.71e 0.63e
PBR 061 0.70e 0.73e¢ 0.74 e
PLB 0.61 0.67e 0.73e¢ 0.70e
PLE 0.61 0.67e 0.72e¢ 0.720
PPW 061 0.70e 0.70e 0.63 e
SEM 0.61 0.62 0.61 0.54 t
TOP 0.61 0.61 0.61 0.61

WNT 0.61 060t 0591 0.497

Table E.5: WSD evaluation for ENG:PROCRES

Feature group MFS NB LR DT

ALB 0.60 0.60 0.60 0.55 t
ALL 0.60 0.61e 0.60 0.52 t
BOW 0.60 0.60 0.58t 0.517
BRW 0.60 056t 0.5671 0477
PBW 0.60 0.61e 0.62e 0.577F
PBR 0.60 0.62e 0.65e 0.61

PLB 0.60 0.60e 0.60 0.55 1
PLE 0.60 0.61e 0.60 0.55 1
PPW 0.60 0.59 0.571 0.51¢%
SEM 0.60 058t 0.551 0.49f7F
TOP 0.60 0.60 0.60 0.60

WNT 0.60 0571 0.55% 0441
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Table E.6: WSD evaluation for DA:CONTCONT

Feature group MFS NB LR DT

ALB 0.66 0.66 0.58F 0.56 T
ALL 0.66 0.651 057t 0.54f%t
BOW 0.66 0651 061t 0557
BRW 0.66 0591 057t 0.52f¢%
PBW 0.66 0651 061t 0547t
PBR 0.66 0651 0641 0.567F
PLB 0.66 0.66 0.60 1 0.557
PLE 0.66 0.66 0.641 0.547
PPW 0.66 0611 060t 0.50fF
SEM 0.66 0621 0551 0.51f¢F
TOP 0.66 0.66 0.66 0.66

WNT 0.66 0641 0641 048+

Table E.7: WSD evaluation for DA:LOCORG

Feature group MFS NB LR DT

ALB 0.64 0.64 0.68e 0.627
ALL 0.64 0.67e 0.68e 0.60 T
BOW 0.64 0.65 0.64 0.57 1
BRW 064 0631 06171 0527
PBW 0.64 0.68e 0.68e 0597
PBR 064 069e 0.68e 0.67e
PLB 0.64 0.67e 0.69e 0.587
PLE 0.64 0.70e 0.68e (.66
PPW 0.64 0.67e 0.67e 0.577F
SEM 064 0631 06271 0537
TOP 0.64 0.64 0.64 0.64

WNT 064 0621 0621 0501
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Table E.8: WSD evaluation for SPA:CONTCONT

Feature group MFS NB LR DT

ALB 0.58 0.60e 0.73e¢ (.64
ALL 0.58 0.69e¢ 0.70e 0.56 T
BOW 0.58 0.69e¢ 0.70e 0.62e
BRW 0.58 0.67e 0.66e 0.53 7
PBW 0.58 0.64e 0.65e¢ 0.547F
PBR 0.58 0.62e 0.64e 0.56 7T
PLB 0.58 0.67e 0.71e 0.64e
PLE 0.58 0.59e¢ 0.60e 0.527
PPW 0.58 0.60e 0.63e 0.527
SEM 0.58 0.66e 0.67e 0.557
TOP 0.58 0.58 0.58 0.58

WNT 0.58 0.59 0.59 0.48 t

Table E.9: WSD evaluation for SPA:LOCORG

Feature group MFS NB LR DT

ALB 0.63 0.64e¢ 0.75e¢ 0.67e
ALL 0.63 0.73e¢ 0.76e 0.67e
BOW 0.63 0.63 0.64 0.56 T
BRW 0.63 0.65e¢ 0.65e 0.58 T
PBW 0.63 0.71e¢ 0.73e¢ 0.61

PBR 0.63 0.70e 0.71e¢ 0.70
PLB 063 0.71e¢ 0.72e 0.64

PLE 063 0.70e 0.71e¢ 0.69e
PPW 0.63 0.72e 0.72e¢ 0.60 T
SEM 0.63 0.65e¢ 0.65e 0.56 T
TOP 0.63 0.63 0.63 0.63

WNT 0.63 0.63 0.63 0.50 t

E.2 Tables for the WSD system evaluated on
MACE

From these differences we can see that each SAM yields a sense distribution
that is best captured by particular feature sets. However, the feature-set rank-
ing consistency across SAMs is not correlated with the difference in sense dis-
tributions. For instance, ENG:ARTINFO:MACE and ENG:ARTINFO:VOTE differ in
about a third of their assigned senses (cf. Table 4.12), yet their rankings are
very similar. The same applies for the heavily-updated dataset ENG:PROCRES,
where the difference coefficient is 0.27 and the first three dataset for each SAM
differ only in one, i.e. the sense tags in the ENG:PROCRES:MACE dataset are
27% different from ENG:PROCRES:VOTE.

The overall accuracy is always higher for VOTE, even though the MFS is
also always highest for this SAM. All the accuracy scores for both SAMs are
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Dataset MACE VOTE
ENG:ANIMEAT alb, all, plb alb, all, sem
ENG:ARTINFO plb, alb, all plb, all, alb

ENG:CONTCONT pb, pbw,alb pbr, pbw, alb
ENG:LOCORG pbr, all, alb plb, alb, ple

ENG:PROCRES | pbr, pbw, ple | pbr, pbw, alb

DA:CONTCONT | all, pbw, alb | pbr, pbw, wnt
DA:LOCORG all, alb, plb all, alb, plb
SPA:CONTCONT all, alb, bow alb, all, plb
SPA:LOCORG | all, alb, pbw all, alb, pbw

Table E.10: Feature set performance ranking

Acc-ALL | Acc-MFS ER-MFS | Acc-BOw  ER-BOW
ENG:ANIMEAT 0.81 0.68 40.62% 0.79 9.52%
ENG:ARTINFO 0.47 0.34 19.70% 0.43 7.02%
ENG:CONTCONT 0.71 0.59 29.27% 0.63 21.62%
ENG:LOCORG 0.72 0.57 34.88% 0.63 24.32%
ENG:PROCRES 0.45 0.42 5.17% 0.371 12.70%
DA:CONTCONT 0.4} 0.45 -9.1% 0.371 4.76%
DA:LOCORG 0.6 0.5 20% 0.59 2.44%
SPA:CONTCONT 0.67 0.54 28.26% 0.67 0%
SPA:LOCORG 0.74 0.6 35% 0.63 29.73%

Table E.11: Accuracies and error reduction over MFS and BOW for MACE

statistically significant over their respective MFS except those marked with a
dagger. However, overall accuracy blurs out the details of the performance over
each sense.

MACE VOTE
Dataset L M U L M U
ENG:ANIMEAT | .86 .68 .0 .88 . 68 .0
ENG:ARTINFO | .52 48 .37 | .54 N .02
ENG:CONTCONT | .77 .61 .02 | .89 .69 .0
ENG:LOCORG | .79 .61 .0 .79 .61 .0
ENG:PROCRES 41 .51 .25 .45 71 .01
DA:CONTCONT | .50 .31 .35 | .73 .14 .09
DA:LOCORG 73 .55 17 | .82 .49 14
SPA:CONTCONT | .78 .65 .22 | .81 .64 A7
SPA:LOCORG | .85 .69 .06 | .85 .68 .02

Table E.12: Sense-wise performance in terms of F1
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MACE VOTE
Dataset | Acc-L  Acc-M | Acc-LL  Ace-M
ENG:ANIMEAT 0.81 0.84 0.83 0.84
ENG:ARTINFO 0.69 0.65 0.76 0.68
ENG:CONTCONT 0.69 0.75 0.83 0.86
ENG:LOCORG 0.75 0.73 0.75 0.74
ENG:PROCRES 0.64 0.58 0.7 0.61
DA:CONTCONT 0.53 0.69 0.58 0.8
DA:LOCORG 0.7 0.78 0.75 0.84
SPA:CONTCONT 0.73 0.79 0.74 0.83
SPA:LOCORG 0.8 0.82 0.8 0.83
Table E.13: Individual accuracies for classifiers
MACE VOTE
Dataset L M U L M U
ENG:ANIMEAT | 0.81 0.84 0.03 | 0.88 0.64 0.01
ENG:ARTINFO | 0.69 0.65 0.43 | 0.47 0.75 0.15
ENG:CONTCONT | 0.69 0.75 0.03 | 0.88 0.66 0.04
ENG:LOCORG | 0.75 0.73 0.02 | 0.79 0.58 0.07
ENG:PROCRES | 0.64 0.58 0.31 | 0.41 0.67 0.12
DA:CONTCONT | 0.53 0.69 0.38 | 0.69 0.11 0.2
DA:LOCORG 0.7 0.78 032 | 0.81 0.45 0.25
SPA:CONTCONT | 0.73 0.79 0.28 | 0.78 0.62 0.25
SPA:LOCORG 0.8 0.82 0.18 | 0.85 0.64 0.17

Table E.14: Sense-wise F'1 scores for the ensemble system
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The ensemble performs unevenly for each SAM. In the case of MACE, it
improves the performance of the metonymic sense but alters the reliability of
the literal sense. In VOTE, the ensemble performs in a similar manner to the
single classifier, but the F1 is consistently lower for the alternating senses.

MACE VOTE

Dataset | gold averagedot/round Excl. | gold averagedot/round averagexclusion
ENG:ANIMEAT 1.4 3.11 2.39 0.7 1.85 1.33
ENG:ARTINFO | 15.0 22.53 21.71 5.4 9.67 8.79
ENG:CONTCONT 2.8 6.06 4.73 2.5 3.54 3.02
ENG:LOCORG 1.6 4.99 3.87 2.2 5.07 3.96
ENG:PROCRES | 13.4 20.02 19.63 4.8 9.42 8.11
DA:CONTCONT | 14.3 24.25 23.38 9.1 11.6 10.9
DA:LOCORG | 10.5 14.39 13.81 8.3 10.62 10.11
SPA:CONTCONT 7.5 12.25 11.25 6.9 11.51 10.54
SPA:LOCORG 5.2 7.38 6.77 4.7 6.63 5.83

Table E.15: Run-wise amount of underspecified senses and amount of under-
specified assigned by exclusion
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MACE VOTE
Dataset P r F1 p r F1
ENG:ANIMEAT .0 .0 .0 .0 .0 .0
ENG:ARTINFO | 41 .36 .37 | .04 .01 .02
ENG:CONTCONT | .04 .01 .02 0 .0 .0
ENG:LOCORG .0 .0 .0 .0 .0 .0

ENG:PROCRES | .30 .23 .25 | .03 .0 .01
DA:CONTCONT | .37 .36 .35 | .14 .08 .09
DA:LOCORG | .24 .15 .17 | .20 .12 .14
SPA:CONTCONT | .30 .18 .22 | .27 .15 .17
SPA:LOCORG | .12 .05 .06 | .05 .01 .02

Table E.16: Performance for underspecified

Error reduction over MFS in %

eAM eAl eCC eLO ePR dcc dLo sCC sLO

Figure E.1: Error reduction over MFS for MACE and VOTE
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Literality prediction

F.1 Scatter plots for all datasets
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Figure F.1: Literality prediction scatter plot for DK:CONTCONT
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Figure F.2: Literality prediction scatter plot for DK:LOCORG
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Figure F.3: Literality prediction scatter plot for ENG:ANIMEAT
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Figure F.4: Literality prediction scatter plot for ENG:ARTINFO
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Figure F.5: Literality prediction scatter plot for ENG:CONTCONT



224 APPENDIX F. LITERALITY PREDICTION

1.4

0.6f

0.41

predicted LS

0.2f

0.0f

-0.2f 1

—0.453 0.0 0.2 0.4 0.6 0.8 1.0 1.2

expected LS

Figure F.6: Literality prediction scatter plot for ENG:LOCORG
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Figure F.7: Literality prediction scatter plot for ENG:PROCRES
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Figure F.8: Literality prediction scatter plot for SPA:CONTCONT
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Figure F.9: Literality prediction scatter plot for SPA:LOCORG
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F.2 High-coefficient features for literality

High positive coefficient

High negative coefficient

ENG:ANIMEAT

bh:1100010, phw:or, w:n:feeling,
bb:100001111111, bb:0000101001, bb:1111110101,
bb:0011000100, bh:0001110000, phw:eat,
bb:000101100,  bb:00001011110,  w:n:animal,
bb:0000100110, bc:1001010111, bb:100111010,
bb:00011101001, bb:111111111111110,
w:v:consumption, bb:1111110100, w:n:location

m:plural, bb:00011100100, bb:011001110,
w:v:contact, w:n:phenomenon, bb:1111111110,
plisbj, bb:0010111100111, bb:10011100,

w:n:motive, bb:0101010110, bb:11110000000,
bb:0001111001, bb:01101010, bb:1111001111000,
bb:111111111110, w:v:motion, w:v:social,
bb:110110010, w:n:possession

ENG:ARTINFO

bb:1111101011000,
bb:1101101110, bb:10001100,
bb:1111101101100, bb:101111010,
bb:00001011100, bb:011011100, bb:0000101001,
bb:011011001, be:11010, bb:0000101000,
bb:1111101100, bb:0111111, plemmod,
bb:00001011101, bb:10011111001, pl:sbj

w:n:event,
w:n:group,

w:v:cognition,

m:plural, bb:110110110, bb:00001011111,
pl:icoord,  w:n:body, phw:and, bh:110000,
bb:1111110101,  plc:adv,  bb:1111000110100,
pl:obj, bb:0010010110, w:v:possession,

bb:001010010110, bb:111111101100,
bb:000010110110, bb:111110111111111,
plh:nmod, bb:1111111011110110, bb:0001111011

ENG:CONTCONT

bb:1111101010010, bb:11111110111001,
£:38, bb:111101110, bb:001001001,
plh:obj,  bb:1111000110100,  bb:1001010111,
bb:0001110001,  bb:1010111000,  bb:11010,
bb:1111110100, bb:11110011011011, bh:11000110,
phw:per,  bb:00011100110,  bb:0101010110,

bb:11101101011, w:n:location, bc:11010

bc:10001110, bb:00100110010, bc:00011101111,
bb:1111111011111110, m:plural,
bb:11111010101110, w:v:change, w:v:creation,
bb:1101101111100, bb:0010111110000,
bb:1111111000001, bc:0001110000,
bb:0010111100100, bb:00110110100,
bb:00011100101, plh:pmod, bb:000001100,
bb:0000111110, bb:1111101111010,
bb:111110111111101

ENG:LOCORG

bb:00001011111, bb:0001101101011,
bb:0010111101010, bb:1111110101,
bb:11111110111110, bb:0001001110111,
ple:nmod, bb:0011001111111, bb:1001001100,
bb:1111011010, bb:0001101111001,
bb:0001110000, bb:01101010, plh:sbj,
w:n:time, bb:101111110, bb:00010100, pl:nmod,

w:v:contact, pl:sbj

phw:in, bh:11011000, pl:pmod, bb:0001111010,
bb:011011110,  bb:1101101110,  bb:01101001,
bb:1111110100, pl:adv, bb:100111101110,
bb:01110001, plh:adv, bb:11110100001111,
bb:10001100, bb:0001101101010,
bb:0001101111101, bb:11011000, bb:11110101110,

plc:p, pcw:p

ENG:PROCRES

bb:11111110011110, w:v:motion,
bb:111100000100, pl:prd, plh:coord, w:v:social,
be:101101, p:nsiblings, bb:11111110101,
bb:1111001101100, w:v:perception, bb:000011000,
bb:01001100, bb:0000101100, bc:101100,
bb:1111101100, bb:0001110000, bb:101011110,
p:nchildren, m:plural

bc:11010, w:n:artifact, bb:110110110, bb:11010,
pl:pmod, w:n:motive, w:n:possession,
bb:010101001, bb:0010111010100, plh:ve,
w:v:cognition, bb:11101101011, w:n:attribute,
bb:1000111111, bb:000110111011,
bb:100111101111, bb:00011100110,
bb:001010100001, bb:0001000110,
bb:00011001010
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High positive coefficient

227

High negative coefficient

DA:CONTCONT

bb:10001111110010, bb:110010100,
bb:1100111111110110, bb:10001111110000,
bb:1000111101010, bb:0111110, bb:100110100,
bb:1010111110, bh:1101010100, plmobj,
bb:1100101110,  bb:1100100,  bh:100110011,
bb:10011101111, bh:11100011110,
bb:1000110010111, be:1000110010100, plh:dobj,
bc:1000110010111, ple:nob;

phw:i, bh:01100, plh:root, bb:1101011110010,
plc:pobj, bb:0000, bc:011101,
bb:1110111100, bb:1110111010010, plc:rel,

bb:1000110001110, w:container, bb:11101110000,
bb:11010101011110, w:animal, bb:1101110101,
w:languagerepresentation, bb:100000111111011,
plc:coord, bb:1110011100

DA:LOCORG

plh:subj, pl:dobj, bb:11101101110, pl:nobj, phw:i, bh:01100, plh:mod,
bb:110101011001111, bb:1101011110110100, plh:nobj, bb:101101000, bb:01111110,
bb:100000111110000, bb:001011110, bb:10001110000, bb:10011110, p:rootdist,
bb:10001111110100, bb:1110111110100, bb:11111110, bb:11011100, plh:lobj,

bb:1110111110111000, bb:1101110100,
phw:med, bh:011101, bb:10000101100,
w:group, bb:10000011100110, bb:1101011111000,
bb:01101110, plh:vobj, pl:subj

bb:11011111, w:institution, bb:100011101110,
bb:1100110, bb:11100110111, bb:1000101111000,
bb:1000111101111

SPA:CONTCONT

bb:110111110111, bc:10010101111101,
bb:1101010, bb:100111001111100, phw:beber,
bb:110111011110, bb:1001011111001,
bb:10011010001, bc:11110, plh:do, w:n:cognition,
bb:10011010000, w:v:consumption, plc:comp,
bb:110001101110010, bh:11000100111110,
bb:10011010100, bb:110001010110100, pcp:z,
bb:100111111111000

bb:1011101111111100, phw:en, bh:1111100,
pcp:d, bb:110001111111101, bb:11000111010,
bb:110001101111100, bb:100111101110110,
bb:10100111101, bb:1100011101111111, bc:0110,
bb:10011111111011, bc:1011101111111100,
bb:101100101100, bb:100110011110111, plh:mod,
pcp:v, bb:10011010110110, bb:1100011011111111,
w:n:tops

SPA:LOCORG

pcp:d, bb:11111011110, bb:10111100010, bh:1111100, phw:en, plimod, php:n,
bb:1011010011110, bb:101100111111110,  bb:1100000101110, bb:1101011110, bb:100001,
bb:101111010, bb:10110001111, bb:010, w:v:motion, bb:101011111110,

bb:1011010011010, w:v:competition, w:n:event,
bb:100110110000, w:n:food, bb:100111101011010,
plh:root, w:n:quantity, w:n:feeling, phw:con,
bh:111111111, pl:isubj, php:v

bh:10101111011,
bb:11000101010110,  bb:10101111011,  pep:f,
bb:1001110010101, bb:10011110010011,
win:animal, bb:1001111000010, bb:1011001001

bb:10101111000,
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Appendix G

Agreement prediction
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Figure G.1: Agreement prediction scatter plot for DK:CONTCONT
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Figure G.2: Agreement prediction scatter plot for DK:LOCORG
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Figure G.3: Agreement prediction scatter plot for ENG:ANIMEAT
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Figure G.4: Agreement prediction scatter plot for ENG:ARTINFO
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Figure G.5: Agreement prediction scatter plot for ENG:CONTCONT
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Figure G.6: Agreement prediction scatter plot for ENG:LOCORG
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Figure G.7: Agreement prediction scatter plot for ENG:PROCRES
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Figure G.8: Agreement prediction scatter plot for SPA:CONTCONT

1.2

1.0

0.6f

0.4f

0.0f

=0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
expected Ao

Figure G.9: Agreement prediction scatter plot for SPA:LOCORG
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G.1

High positive coefficient

APPENDIX G. AGREEMENT PREDICTION

High-coefficient features for agreement

High negative coefficient

ENG:ANIMEAT

bb:111100111101100, bb:0101101101,
bb:0011000100, bb:11011000, bb:000100111010,
bb:11011110, bb:1111000110100, bb:111111110,

bb:11111101110, plh:sbj, bb:10011101110,
w:v:cognition, w:v:consumption, pl:coord,
bb:10001110, w:v:stative, w:v:creation,

bb:0001110000, bb:1111100, w:n:location

bb:0000101100, m:plural, w:v:motion,
w:n:event, p:nchildren, bb:1111111110,
bb:01101010, bb:11011010, bb:10001010, w:n:act,
bb:110110110, bb:0000100100, w:v:perception,
bb:0001110001, plh:root, bb:00011101100,
bb:101100, bb:1001110110, plh:coord, pl:sbj

ENG:ARTINFO

bb:011100111, pl:obj, bb:10011101110,
bb:0001001110110, bb:110110110, bb:1100010,
bb:0111111, bb:11110010111110, bb:10001010,
bb:011110, plc:nmod, be:101100, w:n:feeling,
bb:1111111110, w:n:act, w:v:creation,
bb:00001011100, bb:11011000, w:n:motive,
p:nchildren

bb:1111100, p:nsiblings, bc:101110, w:n:quantity,

bb:111110100, w:n:event, w:n:cognition,
bb:110000, w:n:body, bb:10011100, phw:and,
bh:110000, bb:00001011111, w:v:cognition,
w:n:time, bb:00011001110, bb:1111011010,

bb:100111010, bb:00011100110, bb:00011101011

ENG:CONTCONT

bb:11101111001, bb:01110001, bb:1101101110,

bb:0101101101, bb:101100, bb:110110110,
bc:101110, bb:11101111011, bc:11010,
w:n:shape, bb:1111100, w:n:feeling,
bb:111110111010,  bb:0000100111,  bb:11010,
w:r:all, w:v:communication, plh:adv,

bb:11011000, pl:pmod

w:n:cognition,
w:n:tops,

bb:0001110000, p:nchildren,
w:v:perception, bb:0001110001,
w:n:phenomenon, p:nsiblings, m:plural,
bb:1001010111, bb:100011110, pl:coord,
bb:101110, bb:00011101111, w:v:consumption,
bb:11011111, w:n:plant, bb:11110101110,
bc:10001110, bb:1111110101

ENG:LOCORG

bb:11110100001101, bb:00010010111,
bb:00010111110, bb:11111111110, bb:1001010111,
bb:0001110011110, bb:00010110110,
bb:1111101100, bb:0001110000, bb:10000010,
w:n:plant, w:n:quantity, bb:000100111010,
bh:11010, phw:of, bb:101110, w:n:time, plh:nmod,
plinmod, w:n:motive

w:v:motion, plh:adv, bb:1101101110,
bb:11111101111, bb:1111100, bb:01110001,
w:n:tops, p:nchildren, bb:011011110,
bb:0001111010, bb:1100010, phw:in, bh:11011000,
bb:0011110000, bb:0001101101100, w:n:group,
bb:00010100, bb:10001010, pl:sbj

bb:0,

ENG:PROCRES

bb:11111101111, bb:00011100100,
bb:111100011110, bb:00000101110, w:v:motion,
bb:110000, bb:001010010110, w:v:cognition,
bb:0010111110110, bb:0010111011100,
w:n:attribute, bb:11111011100, pl:pmod, pl:sbj,
w:n:motive, w:n:food, w:n:event, bb:110110110,
w:n:quantity, w:n:artifact

w:n:body, p:nsiblings, p:nchildren,
bb:0001110000, bb:11011000, bb:101101,
w:n:plant, bb:11111110101, pliprd,

w:n:communication, w:r:all, bb:11011110,
bb:1100010, bb:00001010110, bb:11010, plc:p,
pcw:p, bb:11011010, w:n:feeling, w:v:stative
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High positive coefficient High negative coefficient
DA:CONTCONT
bc:1000110010111, w:comestible, bb:1101010100, bh:01100, phw:i, w:group, bb:01100,

bb:1001110110,  p:wnsiblings,  bb:11111110,

bb:1000110001010, bb:0111110, bb:110010101,

plh:vobj, bb:1100101100, bb:1110100110, bb:010, bb:011010, w:static, bb:100011000011,
bh:011101, phw:med, plh:dobj, bb:110010100, bb:110101111010, bb:0000, w:garment,
p:nchildren,  w:possession,  w:3rdorderentity, bb:1110111010010, w:existence, w:substance,
bb:011110, bb:1100101110, bc:100011001100, w:property, plh:coord, bb:11010111001001
plcinobj

DA:LOCORG

bb:11001111101110, plisubj, bb:10111010, bb:1011011101, bb:0111110, bb:11110,
plh:root, bb:11101101101, bb:1100100, bb:01111110, bb:11011111, m:case:unmarked,
bb:100010111110, w:group, w:agentive, plh:mod, w:unboundedevent, bb:1001110100,
bb:10110111111, bb:10000011100110,  w:cause, bb:11000, bb:101110110,

bb:100000111110000, w:social, bb:101110011,
w:geopoliticalplace, m:case:gen, w:mental,
bb:10110111110, p:nsiblings, p:nchildren

bb:10001111100, bb:10001010011,
w:languagerepresentation, bb:10001110000,
bb:1101010100, w:physical, bb:100011111101111,

w:time

SPA:CONTCONT

bb:110010, w:n:feeling, m:pos:ncmp000,
bh:111111110, phw:por, bb:100000, w:n:location,
p:nchildren, w:n:cognition, bb:1100011011101011,
w:n:time, w:n:animal, plc:comp, bb:110110,
bb:101111001110, phw:de, bh:11110, bc:11110,

phw:en, bh:1111100, bb:101100101100, w:n:tops,
w:a:all,  bb:10101110, bb:1011101111111100,
bb:10101111010, bb:1100011101111111,
w:v:consumption, bb:111111110, pcp:a,
bb:100110011110111, bb:11000100111110,

pcp:s, bb:10011010010 w:v:contact, w:n:attribute, pcp:d, bc:010,
w:v:change, bb:1100110

SPA:LOCORG

bb:10011111000, bb:1001110011111110, bb:1111110, bb:0110, bb:1111100, w:n:body,

bb:10010101000, bb:110111001011, w:v:possession, w:v:contact, w:n:object,

bb:100111111111010,  plh:comp,  w:v:stative,
pcp:n, bb:100110011100, w:a:pert, bb:11010010,
bb:101110100, bb:00, bb:10011100000, w:n:event,
w:v:competition, bh:11110, phw:de, bb:110110,
w:azall

bb:1001110010101, bb:11011101000, w:n:artifact,
p:nsiblings, plimod, w:n:phenomenon,
bb:11000110101100, w:n:cognition, bb:111110100,
w:v:motion, bb:1001101011100, bb:1001110110,
bb:1001111000100




