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“Simplicity is everything. After having exhausted all the 
difficulties, after having (…), and more (…), then simplicity 
emerges with all its charm, like art’s final seal. Whoever wants 
to obtain this immediately will never achieve it: you can’t 
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Abstract 

This work deals with the development and application of the Finite Point 
Method (FPM) to compressible aerodynamics problems. The research focuses 
mainly on investigating the capabilities of the meshless technique to address 
practical problems, one of the most outstanding issues in meshless methods.  

The FPM spatial approximation is studied firstly, with emphasis on aspects of 
the methodology that can be improved to increase its robustness and accuracy. 
Suitable ranges for setting the relevant approximation parameters and the 
performance likely to be attained in practice are determined. An automatic 
procedure to adjust the approximation parameters is also proposed to simplify 
the application of the method, reducing problem- and user-dependence 
without affecting the flexibility of the meshless technique. 

The discretization of the flow equations is carried out following well-
established approaches, but drawing on the meshless character of the 
methodology. In order to meet the requirements of practical applications, the 
procedures are designed and implemented placing emphasis on robustness and 
efficiency (a simplification of the basic FPM technique is proposed to this 
end). The flow solver is based on an upwind spatial discretization of the 
convective fluxes (using the approximate Riemann solver of Roe) and an 
explicit time integration scheme. Two additional artificial diffusion schemes 
are also proposed to suit those cases of study in which computational cost is a 
major concern. The performance of the flow solver is evaluated in order to 
determine the potential of the meshless approach. The accuracy, 
computational cost and parallel scalability of the method are studied in 
comparison with a conventional FEM-based technique.  

Finally, practical applications and extensions of the flow solution scheme are 
presented. The examples provided are intended not only to show the 
capabilities of the FPM, but also to exploit meshless advantages. Automatic h-
adaptive procedures, moving domain and fluid-structure interaction problems, 
as well as a preliminary approach to solve high-Reynolds viscous flows, are a 
sample of the topics explored.  

All in all, the results obtained are satisfactorily accurate and competitive in 
terms of computational cost (if compared with a similar mesh-based 
implementation). This indicates that meshless advantages can be exploited 
with efficiency and constitutes a good starting point towards more challenging 
applications. 
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Resumen 

En este trabajo se aborda el desarrollo del Método de Puntos Finitos (MPF) y 
su aplicación a problemas de aerodinámica de flujos compresibles. El objetivo 
principal es investigar el potencial de la técnica sin malla para la solución de 
problemas prácticos, lo cual constituye una de las limitaciones más 
importantes de los métodos sin malla. 

En primer lugar se estudia la aproximación espacial en el MPF, haciendo 
hincapié en aquéllos aspectos que pueden ser mejorados para incrementar la 
robustez y exactitud de la metodología. Se determinan rangos adecuados para 
el ajuste de los parámetros de la aproximación y su comportamiento en 
situaciones prácticas. Se propone además un procedimiento de ajuste 
automático de estos parámetros a fin de simplificar la aplicación del método y 
reducir la dependencia de factores como el tipo de problema y la intervención 
del usuario, sin afectar la flexibilidad de la técnica sin malla. 

A continuación se aborda el esquema de solución de las ecuaciones del flujo. 
La discretización de las mismas se lleva a cabo siguiendo métodos estándar, 
pero aprovechando las características de la técnica sin malla. Con el objetivo 
de abordar problemas prácticos, se pone énfasis en la robustez y eficiencia de 
la implementación numérica (se propone además una simplificación del 
procedimiento de solución). El comportamiento del esquema se estudia en 
detalle para evaluar su potencial y se analiza su exactitud, coste 
computacional y escalabilidad, todo ello en comparación con un método 
convencional basado en Elementos Finitos. 

Finalmente se presentan distintas aplicaciones y extensiones de la 
metodología desarrollada. Los ejemplos numéricos pretenden demostrar las 
capacidades del método y también aprovechar las ventajas de la metodología 
sin malla en áreas en que la misma puede ser de especial interés. Los 
problemas tratados incluyen, entre otras características, el refinamiento 
automático de la discretización, la presencia de fronteras móviles e 
interacción fluido-estructura, como así también una aplicación preliminar a 
flujos compresibles de alto número de Reynolds. Los resultados obtenidos 
muestran una exactitud satisfactoria. Además, en comparación con una 
técnica similar basada en Elementos Finitos, demuestran ser competitivos en 
términos del coste computacional. Esto indica que las ventajas de la 
metodología sin malla pueden ser explotadas con eficiencia, lo cual constituye 
un buen punto de partida para el desarrollo de ulteriores aplicaciones. 
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1 INTRODUCTION 

The development and applications of meshless methods1 have grown 
substantially over the last decades. As an example, a recent consult to 
Elsevier’s SciVerse2 database shows that from 1995 to 2012 the growth curve 
of peer-reviewed publications in meshless methods per year fits to an 
ascending Gaussian bell, going from a few papers published around 1995 to 
289 papers in 2012. The total number of journal articles and conference 
papers during these years is about 2580, distributed in areas of application 
such as engineering (39%), mathematics (22%), computer sciences (15%), 
physics and astronomy (8.4%) and material sciences (6.2%), among others 
(9.4%). These results are indicative of the interest of researchers in meshless 
techniques and explain the evolution that these methods have experienced in 
many fields of engineering and science. 

The meshless procedures proposed to date have shown satisfactory accuracy 
and capabilities to deal with an ever-expanding field of applications, but there 
are further needs that call for immediate attention. In particular, these methods 
have today been unable to meet the requirements of practical problems, 
mainly due to difficulties inherent to the meshless technique, but also for a 
relative small number of applications. Hence, their capability in real scenarios 
remains vague an uncertain. With this important aspect in mind, the present 
work aims to contribute to the further development of the meshless technique. 

1.1 Motivation and scope 

The present work focuses on a particular meshless technique, the Finite Point 
Method, and aims at exploring its capabilities in the field of compressible 
flow problems. According to the challenges facing meshless techniques today, 

                                                            
1 The term meshless methods will be used in this work exclusively to refer to meshless 
spatial discretization techniques employed for solving PDEs. Requisites for a 
discretization technique to be meshless are discussed in Section 2.2.1. 
2 SciVerse is an online database launched by the publishing company Elsevier B. V in 
2010. This combines ScienceDirect, which provides fulltext journal articles, and 
Scopus, the largest abstract and citation database of peer-reviewed literature. 
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this investigation is carried out with special emphasis on practical 
applications, particularly in areas where meshless procedures can make useful 
contributions. The main guidelines and objectives driving this work are 
described next. 

An important part of the research in meshless methods to date has been aimed 
to establish theoretical and practical criteria in order to isolate the aspects with 
a strongest impact on the accuracy and robustness of the methodology. These 
aspects, mainly concerned with the characteristics of the global and local 
discretization and the selection of proper approximation bases and weighting 
functions, have been studied and a significant progress has been made. 
However, the criteria and procedures adopted to ensure well-posed and 
accurate approximations often impose restrictions to the meshless method, 
which reduce its flexibility and make the technique more complex, expensive 
and not suitable for practical applications. The present work also focuses on 
these essential aspects, but under two main premises: not to impose 
restrictions penalizing meshless advantages, and simplifying the 
approximation settings in general application problems. To this end, the basic 
behavior of the FPM approximation is characterized in practical situations to 
obtain both, suitable ranges for the key parameters of the approximation (in 
view of implementing automatic adjustments) and numerical estimates 
allowing to infer the performance of the meshless method in real scenarios. 

Regarding the discretization of the compressible flow equations, there are in 
the literature robust, reliable and well-established approaches that are difficult 
to improve and, of course, this is not the aim of this work. In this regard, the 
upwind flow solution approach presented in (Löhner, Sacco, Oñate & 
Idelsohn, 2002) is adopted with minor modifications, mainly related to the 
discrete forms of the equations. In addition, some alternative procedures 
(regarding convective stabilization and time integration) are also proposed to 
suit the requirements found in particular applications in a more efficient way. 
Various practical aspects of the basic FPM methodology, particularly 
accuracy and computational cost, are studied in this work in order to provide 
insight into the real capabilities of the meshless technique. All in all, the 
studies performed intend to fill the gap found in the meshless literature 
regarding practical applications, and providing further evidence helping to 
clarify the possibilities and competitiveness of the meshless approach.    

Different three-dimensional applications of the FPM in the context of 
compressible flow problems are investigated in this work. The examples 
provided aim to demonstrate not only the basic capabilities of the meshless 
technique, but also to exploit meshless advantages in areas of research 
presenting opportunities for the development and promotion of meshless 
approaches. Automatic h-adaptive procedures, problems involving moving 
domain and fluid-structure interaction and viscous high-Reynolds number 
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applications are some of the areas in which, from our view, meshless 
approaches can make useful contributions.  

1.2 Organization 

According to the guidelines and objectives given above, this work is divided 
into three main parts. After the literature review (Chapter 2), the first part 
deals with the construction and analysis of the FPM spatial approximation 
(Chapter 3). The second part is devoted to the development and assessment of 
the basic (inviscid) flow solution scheme (Chapters 4 and 5). Finally, practical 
applications and extensions of the basic solution methodology are carried out 
in the last part of this work (Chapter 6 to 9). The content of the chapters 
composing this investigation is summarized below. 

Chapter 2 reviews the evolution of general meshless techniques, with focus on 
applications in the field of computational fluid dynamics. Among the various 
methods discussed, emphasis is given to the Finite Point Method in order to 
provide an adequate framework for the present research.  

Chapter 3 presents the basic aspects of the FPM approximation and discusses 
important issues regarding the global and local problem discretization as well 
as the effects of the weighting functions on the accuracy of the method 
(mainly functional form and support size). Furthermore, an alternative 
procedure is proposed to build the local approximation. The objective is 
twofold. On the one hand, it aims at reducing the dependence on user-defined 
parameters and particular features of the spatial discretization (also providing 
automation of the procedures). On the other hand, it is also intended to 
improve the robustness of the FPM technique. The characteristics of the 
approximation are studied by different examples in order to provide numerical 
estimates that help to characterize the behavior of the FPM in typical 
application problems. Implementation details are also given through the 
different topics discussed. 

Chapter 4 focuses on the basic (inviscid) flow solution approach. There, the 
theoretical bases of the governing equations and the numerical solution 
approach are described, and different aspects of the methodology are 
discussed. These refer to the resulting characteristics of the scheme and 
typical issues that arise in practice, for instance, in relation to the 
computational implementation. The application of boundary conditions in 
inviscid flow problems is also addressed in this chapter. Finally, several 
verification and validation test cases are provided in order to assess the basic 
performance of the numerical scheme (mainly accuracy). 

Chapter 5 deals with a comparative analysis of the basic FPM procedure. This 
aims at completing the results obtained in the previous chapter with a more 
focused study of the accuracy and computational cost of the flow solver in the 
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context of a practical application problem. The studies are performed in 
contrast with an equivalent edge-based FEM implementation, which can be 
assumed to be representative enough of conventional techniques used in 
practice. This will allow evaluating the feasibility and competitiveness of the 
meshless approach. In this regard, a simplification of the basic FPM technique 
is also proposed in this chapter in order to improve its efficiency.  

The remainder of this work is dedicated to investigate particular applications 
of the proposed methodology in some of the areas where meshless solution 
approaches can make interesting contributions. These applications are 
described below. 

Chapter 6 is devoted to the development of a meshless h-adaptive procedure 
designed to improve the spatial resolution and solution accuracy in an 
automatic manner. In order to drive the adaptive procedure two different error 
indicators are proposed: a typical feature-based indicator and a truncation 
error-based indicator. Since the latter has a closer relation with the 
discretization error, it is expected to provide a more effective improvement of 
the numerical solution. The performance of the different indicators and the 
adaptive scheme is studied by means of several numerical applications.  

Chapter 7 presents applications of the FPM methodology to the solution of 
problems involving moving boundaries and fluid-structure interaction. To 
solve these problems, a variant of the basic solution scheme presented in 
Chapter 4 is proposed following Jameson’s dual time steeping approach. The 
resulting scheme is tested on typical application problems involving 
aerodynamic bodies subject to prescribed movements in transonic flows. The 
adaptive technique presented in Chapter 6 is also applied in this context to 
enhance the resolving capability of moving discontinuities and localized flow 
features. In addition, a realistic fluid-structure interaction problem involving a 
wind tunnel model under inviscid transonic flow conditions is presented. The 
computational cost of the method is discussed through the examples provided.  

Chapter 8 covers an application of the FPM to the solution of high-Reynolds 
number flow problems, a topic scarcely studied in the meshless literature. 
With a focus on attached boundary layer problems, the proposed analysis 
methodology aims to achieve both, an automatic meshless discretization of 
viscous layers (to exploit meshless advantages) and the construction of a 
robust numerical approximation in these zones. The study performed focuses 
on two-dimensional compressible flow problems but it is indicative of the 
possibilities to deal with more complex flow situations. A simple algebraic 
turbulence model is also implemented. 

Chapter 9 extends the basic FPM methodology to the solution of two-
dimensional shallow water problems. Due to the characteristic of the 
governing equations involved, this extension is carried out with minor 
modifications of the solution procedure developed in Chapters 4 and 8. The 
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performance of the solution scheme is investigated by means of several 
numerical examples. In addition, a realistic problem involving tsunami 
simulation is also solved to give a better idea of the capabilities of the 
meshless approach in more challenging areas of application. 

Chapter 10 presents the main achievements and conclusions of this 
investigation as well as the lines of research steaming from this work. 

Finally, a list of the main publications arising during the development of this 
investigation is presented in the Appendix. 
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2 LITERATURE REVIEW 

2.1 From scattered data fitting to PDEs 

The first applications of scattered data fitting and interpolation emerged in the 
field of earth sciences with the purpose of handling spot spatial 
measurements. The earliest works date back at least two centuries ago (e.g. 
Gauss and Legendre’s Least-Squares (LSQ)), or even before if other 
methodologies prior to the development of applied mathematics are 
considered. However, the techniques that gave origin to the meshless methods 
in use today for solving partial differential equations (PDEs) are more recent 
in time and were mainly developed over the past fifty years. Next, the most 
important contributions to the evolvement of meshless methods over the last 
half-century are described3. 

The point of departure for the development of meshless methods can be found 
in two techniques that appeared in the late sixties in the context of 
cartography and geostatistics. One of them is the kriging4 method, proposed 
by Matheron to map surfaces using scattered sampled data (Matheron, 1969, 
1970); the other is the interpolation procedure developed by Shepard 
(Shepard, 1968). In the kriging method, a weighted interpolation is used to 
minimize the estimated variance of an unknown point with respect to the 
weighted average of a collection of neighbors samples. Shepard, in turn, 
proposes a global (non-polynomial) interpolation method, but using 
normalized inverse-distance weighting functions to provide certain degree of 
data locality. These functions take unit values at the point of interest and 
approach zero far away from that point. In addition, the normalization applied 
makes the sum of the weights to be unity. This conferred interesting 
properties to the interpolation procedure which were intensively exploited 

                                                            
3 The description provided in this work expands and complete the timeline presented 
in (Fasshauer, 2006). . 
4 The name kriging was given in honor of the mining engineer D. G. Krige, whose 
master thesis (Krige, 1951) inspired the basic concepts underlying the theory 
developed by Matheron.  
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later5. Different modifications were proposed to the basic Shepard’s method. 
For example, Franke and Neilson designed a weighting function with local 
support in order to reduce the influence of data points which are distant from 
the point of interest (Franke & Neilson, 1980). This improved the data locality 
of the original method and made it suitable for the analysis of larger data sets.  

A few years after Shepard’s method, Hardy introduced the concept of 
multiquadrics interpolation (MQs), where the interpolant is constructed as a 
linear combination of a radially symmetric basis function (acting as a 
weighting function) which depends solely on the position of the data points 
(Hardy, 1971). This model has been applied to a wide range of problems 
mainly in the field of geodesy, geophysics, geography and mapping. Later 
works due to Tarwater (Tarwater, 1985), Micchelli (Micchelli, 1986) and 
Madych and Nelson (Madych & Nelson, 1988, 1990) gave to MQs a solid 
mathematical foundation. Among other important advances, they 
demonstrated the invertibility of the resulting MQ system matrix and the 
convergence properties of the method. 

Almost simultaneously with MQs, Harder and Desmarais proposed the 
method of Thin Plate Splines (TPS). This was originally intended to solve 
geometric surface interpolation problems in aircraft design (Harder & 
Desmarais, 1972). The method of TPS assumes that the data points are 
distributed on a thin elastic plate (or spline). As the points constrain the 
spline, the latter is forced to deform and the deformed shape gives the sought 
data fit. The best results are generally obtained by minimizing the bending 
energy of the spline (minimum curvature computing). The theory of TPS was 
mostly developed by Duchon (Duchon, 1976, 1977, 1978) and Meinguet 
(Meinguet, 1979, 1984).  

An important and outstanding line of research was pioneered by Lancaster 
and Salkauskas in the 1980s. With roots in the Shepard’s method and 
extensions due to McLain (Mclain, 1974, 1976), Franke and Nielson (Franke 
& Neilson, 1980) and a previous work by Lancaster (Lancaster, 1979), they 
developed the Moving Least-Squares Method (MLS) (Lancaster & 
Salkauskas, 1981). The MLS uses the classical polynomial LSQ technique, 
but introduces compact support weighting functions (e.g. inverse-distance or 
exponential functions) which are translated to specific points where the 
approximation is to be computed. This local approach has the advantage of 
avoiding the well-known polynomial oscillation problems often seen in 
classical methods (particularly in high-order approximations) and also 
facilitates the treatment of larger datasets. The MLS approximation is 

                                                            
5 This property is recognized as partition of unity. In short, given an approximation 
domain  covered by overlapping subdomains i with associated functions wi, the 
latter constitute a partition of unity if satisfies that at a given point x i wi(x) = 1. 
Functions fulfilling this condition have been widely used in meshless methods.  
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continuous but, in contrast to the techniques previously seen, it is not 
interpolant6 (Kronecker’s delta property is not satisfied). Among other 
interesting features of MLS approximations, it is possible to demonstrate that 
if the approximation basis is complete in the polynomials of order k, 
polynomial functions up to the k-order can be reproduced in an exact manner7. 
In addition, the approximation constitutes a partition of unity (see Footnote 5) 
if the constant term is included in the approximation basis. 

A landmark study published in 1982 by Franke had a large impact on the field 
of interpolation and data fitting (Franke, 1982). The publication presented a 
comparative analysis of the typical interpolation methods at that time, with 
emphasis on aspects such as accuracy, visual quality of the approximation, 
computer requirements (time and storage) and ease of implementation. The 
conclusions reached by Franke after a thorough analysis pointed to the 
methods using global interpolation as the most efficient. The Hardy’s 
multiquadric method was the first one in Franke’s ranking, immediately 
followed by Thin Plate Splines. Naturally, these results led to MQs, which 
were largely unexplored at that time, got under way and were generalized to 
other type of radial basis functions (e.g. TPS, Gaussian and cubic functions), 
giving origin to the development of different RBF-based methods, see for 
instance (Dyn, 1987, 1989). One important advantage of RBFs is that they 
rely only on Euclidean distances, which are trivially extended to arbitrary 
dimensions. This contrasts with piece-wise polynomial-based schemes, which 
usually involve the tensor product of the coordinate dimensions. Also, RBFs 
have a lower number of free parameters, which make the results less sensitive 
to particular problems and user settings. The computation of derivatives is 
simpler in RBFs because the coefficients of the approximation are constant 
and, among other features, the RBF approximation satisfies Kronecker’s delta 
function and partition of unity properties. In relation to MLS, RBFs have the 
disadvantage that the approximation support is infinite; thus the solution of a 
global system of equations (typically ill-conditioned) is needed. In addition, 
consistency requirements are generally not satisfied, but an augmented 
(enhanced) basis can be used to this end. An updated comparison of MLS, 
RBF and kriging techniques can be found in (Krishnamurthy, 2005). 

All these practical and theoretical developments set the foundations for 
linking scattered data fitting to PDEs. Mainly impulsed by the need to 
simplify conventional solution procedures, as well as to relieve problems 

                                                            
6 Some modifications were proposed to enforce interpolation properties in MLS-based 
techniques, see for instance the Interpolating Moving Least-Squares method (IMLS) 
method of (Maisuradze & Thompson, 2003). 
7 As will be seen later, completeness and reproduction ability in the meshless 
literature are typically related to the concept of consistency. The use of this term in 
meshless methods has not a straightforward equivalence to that in differential 
equations (i.e. convergence to the continuous form).  
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related to domain discretization, researchers found in spatial approximation 
techniques working on scattered data sets some attractive alternatives. With a 
strong focus on RBFs and MLS-based techniques8, meshless methods 
underwent a rapid development within an ever-growing field of applications. 
The more important lines of research are discussed next. 

2.2 Meshless methods for PDEs 

Numerous meshless techniques have been developed since 1990s for the 
solution of PDEs and the review articles describing the development, 
characteristics and applications of the different methods that can be found in 
the literature are numerous. For instance, a complete classification and 
description of the most relevant techniques is provided in (Fries & Matthies, 
2004) and (Gu, 2005). There, theoretical, practical and comparative aspects of 
the methods are discussed (the former is more comprehensive). There are also 
some recent books that review the evolution of meshless techniques. In (Liu, 
2003), the author systematically explores and establishes the theories, 
principles, and procedures leading to meshless methods, covering most of the 
existing techniques. Another book which can be seen as complementary to the 
latter is (Liu & Gu, 2005). In this work, more specific theoretical and 
implementation details are provided. 

Taking into account that the evolution of meshless methods has been 
extensively described in the existing literature, we do not attempt here a new 
exhaustive review. Our aim is to present an adequate framework according to 
the motivation and objectives of the present investigation. Next, meshless 
methods are defined and classified, and the most relevant techniques are 
described according to the adopted spatial discretization approach. Then, the 
applications in the field of computational fluid dynamics are discussed 
separately and particular emphasis is given to the Finite Point Method, which 
is the methodology used in this work.  

2.2.1 Initial considerations  

In order to describe, analyze and understand meshless methods, first it is 
necessary to define what a meshless method is, and this leads one to wonder 
about the characteristics that make an approximation technique for PDEs to be 
a meshless technique. The answer to this question is not as trivial as it may 
seem because a multitude of particular situations in the different discretization 
approaches should be often accounted for. In spite of this, fortunately, the 

                                                            
8 Even though widely used in data fitting and interpolation, kriging techniques have 
received a relatively minor attention in the field of PDEs. 
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different criteria adopted in the literature to define meshless methods concur 
on the general aspects which convey the nature of the meshless technique.  

In this work, the criteria given in (Oñate, Idelsohn, Zienkiewicz & Taylor, 
1996a) is adopted. There, three main characteristics of meshless methods are 
given. These can be summarized as follows (Sacco, 2002) 

a. The discrete approximation of the unknown function and their 
derivatives must be defined only by the position of a set of points 
located within the analysis domain. 

b. No volume or surface integration is needed to discretize the governing 
equations, or, if required, it should be independent of the 
approximation procedure chosen. 

These concise criteria define a meshless method and make it possible to 
differentiate between mesh-based (conventional) approaches and meshless 
approaches. In addition to these statements, additional information is given in 
(Oñate, Idelsohn, Zienkiewicz & Taylor, 1996a) to clarify their application in 
particular situations. For instance, statement (a) does not mean that 
connectivity is not required in a meshless method. Actually, although 
typically local and subject to particular conditions, meshless techniques 
require some kind of connectivity between neighboring points9. Therefore, 
this statement only excludes methods that require some kind of spatial 
connectivity between points in which the final approximation depends on how 
these points are connected. Most of the typical conventional mesh-based 
methods (e.g. Finite Elements (FEM)) fall under this category; see other 
examples in (Oñate, Idelsohn, Zienkiewicz & Taylor, 1996a). On the other 
hand, statement (b), related to the discretization of the problem equations, 
does not exclude approaches based on integral formulations. In such cases, the 
quadrature procedure can be performed on background meshes, which are 
easy to generate and independent from the spatial approximation of the 
problem variables; thus preserving the meshless character of the methodology.  

Based on the above criteria (a) and (b), it seems straightforward to classify the 
meshless techniques only taking into account the spatial approximation 
approach. In our view, although the different methods can be also classified 
according to the procedure used to discretize the problem equations (strong or 
integral forms), this characteristic does not seem to be a clear distinctive 
feature in meshless methods. The choice of strong or integral formulations 
seems to be more related to the nature of the problem to be solved and the 
customary approaches in the field of application. 

                                                            
9 Additional considerations about point connectivity can be found in (Idelsohn & 
Oñate, 2006). There, several issues related to the changing nature of the connectivity, 
including updating and generation efficiency, are discussed. These aspects are closely 
related to the topological and quality requirements in a meshless approximation. 
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2.2.2 Overview of meshless methods  

From the point of view of the spatial approximation techniques used in 
meshless methods, Radial Basis Functions, Moving Least-Squares (as well as 
other Weighted Least-Squares approaches)10 and kernel interpolation are 
generally the most typical choices. These methods and some related 
approaches are described in this section. 

2.2.2.1 Radial basis functions 

One of the first meshless methods, which paved the way for the research line 
connecting scattered data fitting to PDEs, was that due to Kansa (Kansa, 
1986, 1990a, 1990b). This method adopted MQ radial basis functions for the 
spatial approximation of the problem variables and a collocation technique to 
discretize the governing equations (in strong form). Despite the fact that MQ 
is a global (infinite support) approximation method, and thus impractical for 
large scale problems, Kansa proposed to divide the analysis domain into 
overlapping subdomains. Hence, instead of a large global matrix, a small local 
problem is solved at each subdomain11. In this way, the local coefficients 
matrices are much better conditioned and the overall processing can be 
significantly accelerated by using parallel computing systems. The Kansa’s 
method was successfully applied to different problems in computational 
mechanics; thus promoting the development of numerous meshless 
approaches. 

Particularly in the context of RBFs, several methods using different basis 
functions have been proposed, e.g. (Fasshauer, 1997) and (Wendland, 1999). 
Among the typical are multi-quadrics (MQ), exponentials (Gaussian) and 
compactly supported RBFs ((Wendland, 1999) and (Wu, 1995)). The latter 
uses local approximation subdomains to reduce the computational cost and 
improve the conditioning of the resultant coefficients matrix. However, the 
accuracy of compactly supported RBF is lower in relation to functions having 
infinite support; moreover, global continuity is generally lost. The satisfaction 
of consistency conditions in RBF present some problems and sometimes the 
basis has to be enhanced with polynomial terms. Comparisons between MLS 
and RBF approximations are given in (Gu, 2005). It should be noticed that 
RBFs can be also employed in conjunction with MLS-based schemes in order 
to achieve interpolation properties or to increase the robustness of the 
procedures, see for example the Local Radial Point Interpolation method 
(LRPIM) (Liu & Gu, 2001b). 

                                                            
10 This category also include methods using generalized finite difference 
approximation as this leads to very similar results, see (Liszka & Orkisz, 1980). 
11 Further developments in this line led to the definition of the popular compactly 
supported radial basis functions (CSRBFs), cf. (Schaback, 1995; Wendland, 1995). 
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2.2.2.2 Moving and other Weighted Least-Squares techniques 

In methods using MLS spatial approximations, one of the first to appear in the 
literature was the Diffuse Element Method (DEM) (Nayroles, Touzot & 
Villon, 1992). This method uses a MLS meshless approximation12, generally 
in conjunction with polynomial bases, into Galerkin form equations (which 
requires defining a background mesh). Although this method offered some 
advantage over traditional FEM approaches, for instance regarding the 
continuity of the approximation functions, some problems mainly related to 
the application of essential boundary conditions, calculation of the derivatives 
and the accuracy of the quadrature procedure were observed. This led to 
improvements which crystallized in the Element Free Galerkin (EFG) method 
(Belytschko T., Gu & Yu, 1994). The latter adopted Lagrange multipliers to 
apply essential conditions13 and proposed a more exact computation of 
derivatives and numerical integrals (using more integration points). The 
method was successfully applied to linear and non-linear elasticity, fracture 
and crack propagation problems, among others. Although the computational 
cost has been a disadvantage of the methodology (particularly when using 
high-order approximants), the EFG have become one of the most popular 
meshless techniques today; see for instance (Gu, 2005). Along the same line, 
another method called the Meshless Local Petrov-Galerkin (MLPG) was 
introduced in (Atluri & Zhu, 1998). In the MLPG, the Galerkin procedure is 
applied in a local manner, leading to weak forms of the equations which are 
solved in a local quadrature domain. Thus, no global background mesh is 
required. Further evolutions of the MLPG led to the Local Point Interpolation 
method (LPIM) (Liu & Gu, 2001a), which improves several of the 
deficiencies found in the MLPG (Gu, 2005).  

Particular cases of the MLS approximation have also been proposed with the 
aim of reducing the computational cost (e.g. regarding the calculation of 
derivatives), but also to achieve particular properties of the approximation. 
These schemes, which are considered generically as Weighted Least-Squares 
(WLSQ), differ from each other mainly in the behavior of the weighting 
function and the manner in which it is applied in the approximation 
procedure. Examples of WLSQ schemes are the Fixed Least-Squares (FLS) 
and the Multiple Fixed-Least Squares (MFLS) methods; see other possibilities 
and its characteristics in (Oñate, Idelsohn, Zienkiewicz, Taylor & Sacco, 
1996b). The employment of such approximations with collocation-based 
schemes is a typical approach in the meshless literature and a variety of 

                                                            
12 Although the MLS approximation is not explicitly mentioned in the paper, the 
procedure described is exactly the same as in the MLS method; see (Duarte, 1995). 
13 In (Tongsuk & Kanok-Nukulchai, 2004), the MLS approximants in the EFG is 
replaced by kriging interpolation with the aim to address the issue of the enforcement 
of essential boundary conditions. 
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methods has been proposed. Among them, it is worth of mention the Finite 
Point Method (FPM) developed by (Oñate, Idelsohn, Zienkiewicz & Taylor, 
1996a) and other similar approaches, e.g. the method due to (Cheng & Liu, 
1999). These techniques retain most of the characteristics of the MLS 
(according to the weighting procedure chosen) and are also efficient and 
simple to implement. However, certain WLSQ approximations can present 
problems to enforce essential boundary conditions due to the lack of 
Kronecker’s delta properties and continuity. Regarding the collocation 
procedure, the computational requirements are lower than those in methods 
requiring numerical integration, which results in a higher efficiency. Despite 
these advantages, ill-conditioning and instability problems (mainly due to the 
collocation procedure) must be addressed in certain applications. The 
approximation bases employed in WLSQ approaches can be polynomials or 
Taylor series expansions, see an overview in (Fries & Matthies, 2004). 

2.2.2.3 Integral kernel methods 

Another group of methods using integral kernel estimates was inspired in the 
theory of wavelets, where a function can be represented by a combination of 
the dilatation and translation of a single wavelet. In these methods the 
approximation function is obtained through integration over the domain, 
where a kernel (or weighting) function (e.g. exponential or Gaussian or n-
order splines) allows providing compact support and locality. The continuous 
form of the approximation needs to be discretized and solved by numerical 
integration14. Typical methods using integral kernel interpolation are the 
Smooth Particle Hydrodynamics (SPH) and the Reproducing Kernel Particle 
Method (RKPM). The SPH is a Lagrangian particle method15 proposed in 
(Lucy, 1977) and (Gingold & Monaghan, 1977) to solve astrophysical 
problems16. The adoption of integral kernel approximations, derived from 
Monte Carlo statistical theory, was originally aimed at improving the 
accuracy of standard finite difference approximations in problems having a 
poor spatial resolution. An analysis of the kernel approximation and 
comparisons with other techniques can be found in (Monaghan, 1982). Some 
deficiencies in the basic SPH technique, mainly related to the dependence of 
the consistency on the features of the kernel function, the satisfaction of 
Kronecker’s delta properties and the boundary treatment, led to the 
                                                            
14 In spite of the integral character of kernel methods, some authors interpret them as a 
sort of particular collocation techniques, see for instance (Gu, 2005). 
15 In the context of methods such as the SPH, a particle is considered as an elemental 
fluid volume which moves in time under a set of forces acting on it. For a discussion 
on particle methods and their characteristics see (Idelsohn & Oñate, 2006). 
16 In these problems, the movement and interaction of objects in the space can be 
assimilated to the movement of particles in the interior of a fluid; thus, the classical 
equations governing the fluid behaviour can be employed. 
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development of the Reproducing Kernel Particle Method (RKPM) by (Liu, 
Jun & Zhang, 1995). In this method, a correction function is introduced into 
the approximation to satisfy consistency requirements and to improve the 
behavior of the approximation near boundaries. Both, SPH and RKPM are 
suitable for problems involving non-continuum media, large domain 
deformation, tracking of free surfaces and moving discontinuities. Further 
developments and applications of SPH and RKPM can be found in (Li & Liu, 
2002), and a recent review on SPH is presented in (Liu & Liu, 2010). It is 
important to note that an equivalence between RKPM and MLS can be 
demonstrated; see (Belytschko, Krongauz, Organ, Fleming & Krysl, 1996). 
This allows to study and analyze these methods in a unified framework. 

2.2.2.4 Related approaches 

Other approximation techniques, not included in the description above, are 
also worth of mention. A good starting point is methods based on partition of 
unity. These methods use functions that have this property as an extrinsic 
(independent) basis to build enriched approximations customized for 
particular purposes. The h-p clouds method (Duarte & Oden, 1996b) is a 
typical example of these techniques. There, basis functions of varying support 
size are used to perform h-adaptivity, and also the approximation basis can be 
enriched to perform p-adaptivity. These ideas were also applied in 
conjunction with conventional mesh-based methods but the resulting 
techniques cannot be regarded as truly meshless methods, at least in their 
original versions, cf. (Fries & Matthies, 2004). Some of these methods are the 
Partition of Unity Finite Element Method (PUFEM) (Babuška & Melenk, 
1996), the  Partition of Unity Method (PUM) (Babuška & Melenk, 1997) and 
the Generalized Finite Element Method (GFEM) (Strouboulis, Babuška & 
Copps, 2000). It is important to note that the paradigm of partition of unity 
provides a unified mathematical framework for the development and analysis 
of meshless techniques. Many of the existing methods (e.g. MLS) can be 
considered to be particular cases of partition of unity. 

Additional approximation methods combining meshless ideas into 
conventional mesh-based schemes can be also found in the literature. For 
instance, the  Particle-in-Cell (PIC) method (Sulsky, Zhou & Schreyer, 1995), 
where a stationary background grid is combined with Lagrangian moving 
particles and MLS approximations are used to transfer information between 
them (the equations are solved on the background grid). Along a similar line 
but from a different point of view, another example is the Free Mesh Method 
(FMM) (Yagawa & Yamada, 1996), which adopts a local problem 
discretization based on local Delaunay triangulation around the point of 
interest. This characteristic gives a higher locality to the computations, which 
makes the method suitable for implementing parallel solution strategies; see 
applications in (Yagawa & Furukawa, 2000).  
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With a focus on solid mechanics problems, we can also found the Natural 
Element Method (NEM) proposed in (Sukumar, Moran & Belytschko, 1998); 
cf. (Cueto, Sukumar, Calvo, Martínez, Cegonino & Doblaré, 2003) for an 
overview. In NEM, the spatial approximation is calculated by natural 
neighbor interpolation, a procedure based on Sibson functions17 (Sibson, 
1980) or simplified forms that reduce the computational cost (non-Sibsonian 
functions). The application of essential boundary conditions is straightforward 
in NEM (the shape functions satisfy the Kronecker’s delta function and have 
partition of unity properties) and the numerical integration can be performed 
by using the surrounding Delaunay neighbors as integration cells; although 
this requires corrections due to the geometrical characteristics of the 
approximation support. To this end, the integration is usually performed by a 
decomposition of the integration cells into pieces that describe exactly the 
support of the shape functions (Atluri, Kim & Cho, 1999) or by nodal 
stabilized quadrature schemes, see (Chen, Wu, Yoon & You, 2001). 

Other noteworthy particle methods exploiting meshless features into 
conventional schemes are the Meshless Finite Element Method (MFEM) 
(Idelsohn, Oñate, Calvo & Del Pin, 2003) and the Particle Finite Element 
Method (PFEM) (Idelsohn, Oñate & Del Pin, 2004). Although since their 
origin these methods have been closely related to the Lagrangian solution of 
fluid flows, applications to solid mechanics problems have been developed 
more recently. The basic aspects of MFEM and PFEM will be discussed in 
connection with flow problems in the next section. 

2.2.3 Applications in computational fluid dynamics 

Like in other areas of engineering and sciences, meshless applications in 
computational fluid dynamics (CFD) have developed mainly to overcome 
problems encountered in conventional mesh-based approaches, mostly related 
to grid generation, but also to simplify the implementation of specific solution 
procedures. Although the development of meshless methods as alternative 
(general) discretization techniques originated from the works of Kansa in the 
1990s, there were previous developments that have played and still play an 
important role; for instance the Vortex Particle Method (VPM) and the 
Smooth Particle Hydrodynamics (SPH). 

The VPM adopts a vorticity formulation of the Navier-Stokes equations which 
is solved by using vortex particles, convected with the flow in a Lagrangian 
manner; see some early applications in (Chorin, 1973) and (Chorin & 
Bernard, 1973). This method, still in use today, is regarded as one of the 

                                                            
17 In Sibsonian approximations, the Voronoi cells surrounding a particle are used to 
define neighbor coordinates (shape functions) based on area (2D) or volume (3D) 
ratios which are used as trial and test functions in the Galerkin procedure. 
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precursors of the well-known panel methods, extensively employed in 
computational aerodynamics. A recent review of the VPM methodology and 
its applications can be found in (Barba, Leonard & Allen, 2005).  

The other pioneer method was the SPH (Gingold & Monaghan, 1977). 
Although originally developed to solve astrophysical problems, it was rapidly 
applied to the solution of fluid flows. In the SPH, the discretization of the 
governing equations is based on discrete particles (elemental fluid volumes) 
and the local properties (density, velocity, etc.) are computed using a 
Lagrange description of the fluid in which the particles interact between them 
according to a given smoothing function. The pressure is obtained from the 
density using an equation of state and the acceleration is obtained from the 
pressure gradient and density; effects of physical viscosity can be also 
accounted for. The basic SPH technique can present problems with the 
definition of the smoothing length (that affects considerably the results) and 
the order of consistency of the approximation, which depends on the 
particular problem setting and simulation parameters. To address these 
deficiencies, a correction to the kernel function is proposed in (Liu, Jun & 
Zhang, 1995), which led to the RKPM. Another more recent solution, which 
includes some of the previous corrective methods, introduces an additional 
approximation basis into the kernel interpolation (Liu & Liu, 2006). In spite 
of these problems, the SPH has undergone a continuous development and 
evolution, and multiple applications can be found in the literature; see (Liu & 
Liu, 2010) for a recent review. The method shows great potential to deal with 
heterogeneous media, large domain deformation, moving or changing 
boundaries, free surfaces and contact problems. However, it should be noted 
that the SPH also presents some lack of conservation (typically mass) which 
leads to accuracy problems in particular applications. As shown in (Niedoba, 
Čermák & Jícha, 2013) significant improvements can be achieved by applying 
particular settings of the simulation parameters and specific treatment of 
boundary conditions, but this causes dependency on the problem and user-
specified parameters.  

As mentioned before, Kansa’s works in the 1990s paved the way for the 
sustained development of general meshless discretization techniques. 
According to the results of Franke’s paper (Franke, 1982), Kansa proposed to 
use multiquadrics (MQ) spatial approximations functions in conjunction with 
a collocation scheme to solve strong form PDEs (Kansa, 1990a, 1990b). The 
methodology was applied with success to many elliptical, convective-
diffusive and inviscid (Euler) flow problems. Since then, different 
applications in different fields were proposed, e.g. for boundary-value 
problems (Hon, Lu, Xue & Zhu, 1997), Burger’s equation (Hon & Mao, 
1998), incompressible viscous flows (Mai-Duy & Tran-Cong, 2001) and (Shu, 
Ding & Yeo, 2003), shallow water equations (Hon, Cheung, Mao & Kansa, 
1999), flow in porous media (Šarler, Perko & Chen, 2004) and phase change 
problems (Kovačević, Poredoš & Šarler, 2003).  
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Although in general the results obtained were quite satisfactory, modifications 
and improvements of the methodology were proposed to fix problems 
regarding the solvability of the coefficients matrix (Fasshauer, 1997), 
instabilities of the collocation procedure (see an analysis in (Larsson & 
Fornberg, 2003)) and dependence of numerical results on the shape parameter 
of the basis functions. In this regard, theoretical attempts to determine optimal 
values did not succeed and, although some general guidelines were 
formulated (Kansa & Carlson, 1992), the proper problem setting remains to be 
determined largely by numerical experiments. Another problem in classical 
RBFs, which seriously penalizes practical applications, is related to the fact 
that a full-matrix, typically ill-conditioned, global system must be solved to 
obtain the approximation coefficients (the RBFs have infinite support). In 
order to avoid this complication, alternative approaches have been proposed 
mainly in the line of domain decomposition techniques (e.g. (Dubal, 1994; 
Kansa, 1990b), (Kansa & Hon, 2000) and (Li & Hon, 2004)) and local RBF 
approximations (e.g. (Lee, Liu & Fan, 2003) and (Shu, Ding & Yeo, 2003)). 
Particularly, the latter approach has been used with considerable success. For 
example, local RBFs have been used to develop an upwind-type flow solver 
(using Roe fluxes) with applications to two-dimensional steady and unsteady 
compressible flows (Shu, Ding, Chen & Wang, 2005). The results were 
compared with numerical computations obtained by a conventional Finite 
Volume method (FVM) and a LSQ-based meshless technique18. The 
conclusion was that the local RBF method is slightly more accurate than the 
FVM (using a comparable flow solver), and also than LSQ, if a regular 
arrangement of points is used. However, the LSQ-based technique showed 
better results in non-regular distribution of points. 

Meshless methods using MLS-based spatial approximation (or other WLSQ 
approaches) in conjunction with the strong conservative form of the equations 
have been the most typical choices for fluid flow computations. These 
methods have their origins in the Generalized Finite Difference (GFDM) 
schemes developed in (Perrone & Kao, 1975) and (Liszka & Orkisz, 1980) 
with the purpose to extend Finite Differences techniques (FDM) to arbitrary 
irregular grids19. These ideas, and the need to relief the dependence on meshes 
for three-dimensional complex applications, led to propose a gridless20 
scheme based on LSQ polynomial approximation using linear basis functions 
(Batina, 1992). The proposed solution approach followed the typical 
compressible FD or FV flow solvers using central-type discretizations plus 
artificial dissipation terms and explicit time integration. The results presented, 

                                                            
18 The method presented in (Sridar & Balakrishnan, 2003) was employed for the 
comparison.  
19 It is possible to demonstrate equivalence between GFDM and MLS-based 
approximations; see for instance (Duarte, 1995). 
20 As named by the author in his original paper. 
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for two-dimensional inviscid and laminar (low-Reynolds) viscous flows, 
showed satisfactory accuracy and also the feasibility of the approach. 

Some years later, also in the line of Batina’s work, an outstanding 
investigation on MLS and general WLSQ-based schemes was conducted in 
(Oñate, Idelsohn & Zienkiewicz, 1995) and (Taylor, Zienkiewicz, Oñate & 
Idelsohn, 1995). This led to the development of the Finite Point Method 
(FPM). Basically, this technique is characterized by WLSQ approximations 
on clouds of points and a discretization procedure based on point 
collocation21. The first applications of the FPM mainly focused on 
compressible flow problems, see for instance (Fischer, Onate & Idelsohn, 
1995; Oñate, Idelsohn & Zienkiewicz, 1995; Oñate, Idelsohn, Zienkiewicz & 
Fisher, 1995). In addition, systematic studies intended to determine the effects 
on the approximation of the selection of points and weighting functions were 
also carried out using linear and quadratic polynomial bases (Fischer, 1996). 
Then, the properties of the approximation were studied in more detail in the 
context of convective-diffusive and incompressible flow problems, which 
gave the FPM a more solid base; cf. (Oñate, Idelsohn, Zienkiewicz & Taylor, 
1996a) and (Oñate, Idelsohn, Zienkiewicz, Taylor & Sacco, 1996b). These 
works, along with (Oñate & Idelsohn, 1998), defined the main aspects of the 
FPM technique in use today. These are discussed in detail in the next section. 

In the context of the gas kinetic theory, Deshpande and Gosh proposed the use 
of LSQ-based approximations, using a Taylor’s series expansion basis, and a 
flux splitting scheme. The approach led to the development of the Least 
Squares Kinetic Upwind Method (LSKUM) (Ghosh & Deshpande, 1995). The 
basic aspects of the methodology and typical applications are presented in 
(Deshpande, Kulkarni & Ghosh, 1998) and (Deshpande, Anandhanarayanan, 
Praveen & Ramesh, 2002). Some practical applications to aircraft store 
separation and aerodynamic optimization can be found in (Harish & 
Pavanakumar, 2006) and (Srinarayana, Gonzalez, Whitney & Srinivas, 2006), 
respectively. In addition, developments intended to improve the efficiency of 
the method are presented in (Anandhanarayanan & Nagarathinam, 2005), 
where a parallel implementation is discussed.  

Another approach in the line of research suggested by Batina was proposed in 
(Sridar & Balakrishnan, 2003). On the basis of a LSQ Taylor-based 
approximation and an upwind FD-type scheme, these authors proposed the 
Least-Squares Upwind Finite Difference Method (LSFD-U). In this work 
successful two-dimensional applications to inviscid flow problems are 
presented; the accuracy and convergence properties of the method are studied 
and conservation is assessed empirically. Applications to viscous flow 

                                                            
21 Other finite point approaches following these lines can be found in the literature, 
see for instance (Liu & Su, 1996). 
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problems are presented in a more recent publication (Munikrishna & 
Balakrishnan, 2011) using Cartesian point distributions.   

Following the technique developed in the LSFD-U method, Praveen and 
Deshpande proposed some modifications to the LSKUM, mainly intended to 
improve its accuracy and robustness. The new method was called Kinetic 
Meshless Method (KMM), see for instance (Praveen & Deshpande, 2003) and 
(Praveen & Deshpande, 2007). The idea was to use a modified LSQ scheme 
in which mid-point fictitious nodes are used to introduce upwind convective 
stabilization, thus avoiding the flux splitting employed before in the LSKUM. 
Further research on the properties of the resulting schemes has been 
conducted in (Praveen, 2004), where certain modifications are proposed to 
satisfy positivity conditions. 

More recently, Katz and Jameson (see for instance (Katz, 2009)) developed a 
so-called volume approach to compute the meshless LSQ approximation 
coefficients using Taylor expansions. This procedure has some advantages 
regarding the reciprocity of points between adjacent approximation supports 
(derived from an edge-based data structure) and the memory storage 
requirements (adjacent nodes share the same metric coefficients). The flow 
solver is based on an upwind-type discretization scheme which can be adapted 
to different meshless discretizations and convective stabilization methods. 
Successful applications involving compressible inviscid and viscous (low-
Reynolds number) flows are presented. Moreover, a convergence acceleration 
technique named multicloud and a meshless methodology for overset grids 
were proposed with the aim to exploit meshless capabilities. In another 
interesting work, the same authors explore the differences between RBFs, 
Taylor-based LSQ and polynomial-based WLSQ discretization approaches, 
using a similar flow solution scheme and comparing the results with an 
established FV method (Katz & Jameson, 2009a),. The numerical tests 
performed showed that the three methodologies have a comparable (and 
satisfactory) accuracy level for smooth flow problems. However, in flows 
involving shock discontinuities, the LSQ-based approaches work considerably 
better and, among them, the polynomial approximation improves over Taylor 
expansions (although the latter is computationally cheaper). The authors also 
noted some lack of accuracy to resolve the shock position with RBFs, 
although the satisfaction of Rankine-Hugoniot conditions was verified (at 
least at the same level than the other methods). This led to a considerable 
error in the aerodynamic forces computed with RBFs.  

It is important to note here that none of the typical meshless schemes can be 
shown to be formally conservative. Except for some simple especial cases, the 
characteristics of the meshless coefficients make the total flux around an 
interior point generally be different from zero and, thus, the schemes do not 
satisfy telescopic flux collapsing. In spite of the fact that the lack of formal 
conservation is an important theoretical drawback in meshless methods, their 
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practical applications do not seem to be negatively affected and the results are 
still accurate enough. In view of the relevance of this matter, further 
investigations are being carried out. For example, an alternative approach to 
enforce conservation by construction of the meshless coefficients was recently 
proposed; see (Chiu, Wang & Jameson, 2011).  

The employment of weak forms equations in computational fluid dynamics 
has been somewhat relegated with respect to strong forms, especially in 
meshless applications, where additional difficulties arise due to the 
characteristics of the spatial support. Methods based on weak forms relay on a 
sound mathematical basis and have advantages regarding the order of 
consistency of the approximation and the stability of the resulting scheme. 
These facts make them very attractive; however, there are also some 
disadvantages mainly related to the need of numerical integration (less 
efficient and more complicated in a meshless context) and the application of 
essential boundary conditions22. In spite of this, methods such as the EFG, and 
particularly the MLPG, have been also successfully employed to solve fluid 
flow problems; see for instance (Lin & Atluri, 2001) and more recently (Wu, 
Tao, Shen & Zhu, 2010). In these works, a MLS-based approximation is used 
with local residual equations, which are integrated on simple local domains, 
thus avoiding the global background grid and giving flexibility to the 
meshless technique. The applications of this method are mainly in the field of 
incompressible viscous flow problems.  

Also in the line of weak formulations, it is worth mentioning other approaches 
in the literature that combine meshless features into conventional mesh-based 
schemes (or viceversa). As mentioned before, within Lagrangian particle 
methods, of particular interest due to its flexibility is the Meshless Finite 
Element Method (MFEM) (Idelsohn, Oñate, Calvo & Del Pin, 2003) and its 
successor, the Particle Finite Element Method (PFEM) (Idelsohn, Oñate & 
Del Pin, 2004). These methods simulate a set of particles (elemental fluid 
volumes) flowing under forces acting on it. Since the problem data structure 
depends on the position of the particles and, therefore, on the problem 
solution, it must be regenerated at each step along a time marching procedure. 
This is done in an efficient manner by using an extended Delaunay 
tessellation (Idelsohn, Calvo & Oñate, 2003) to build a global mesh 
connecting the particles. Using this partition, the spatial approximation in 
MFEM is constructed with non-Sibsonian functions in polygonal or 
polyhedral elements, while standard FEM functions in triangular or 
tetrahedral elements are adopted in PFEM. The boundaries of the analysis 
domain are also efficiently recovered during the simulation by using an alpha-
shape technique (cf. (Akkiraju, Edelsbrunner, Facello, Fu, Mücke & Varela, 

                                                            
22 To overcome this drawback, alternative approaches based on Lagrange multipliers, 
penalty formulations or coupling with finite elements in a boundary strip have been 
proposed, see for instance (Fries & Matthies, 2004). 
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1995)). The problem equations in both, MFEM and PFEM, are discretized and 
solved using a conventional FEM approach. These characteristics provide a 
great flexibility to the methods to deal with moving or changing domain 
problems, while inheriting beneficial characteristics of mesh-based schemes. 
The applications of PFEM mainly focus on incompressible free-surface fluid 
flows, fluid-structure interaction, multiphase problems and also solid 
mechanics, see examples in (Oñate, Idelsohn, Del Pin & Aubry, 2004), 
(Idelsohn, Oñate, Del Pin & Calvo, 2006), (Idelsohn, Marti, Limache & 
Oñate, 2008), (Larese, Rossi, Oñate & Idelsohn, 2008),  (Oñate, Idelsohn, 
Celigueta & Rossi, 2008) and (Idelsohn, Mier-Torrecilla & Oñate, 2009). 

In spite of the fact MFEM and PFEM cannot be regarded as meshless 
methods according to the criteria adopted in Section 2.2.1, additional 
considerations related to the characteristics of the discretization clearly 
differentiate these methodologies from conventional mesh-based approaches. 
For example, the domain partition is not unique, it changes in time during the 
computation and can be generated in bounded time23 (the cost is linear with 
the number of particles). Moreover, there is certain flexibility in the 
construction of the numerical approximation as the method is not restricted to 
a specified element shape.  

2.3 The Finite Point Method 

The basic aspects of the FPM are discussed first in this section. Then, the 
evolution of the method in the field of fluid flow problems is described with 
some detail in order to frame the research conducted in this work. 

2.3.1 Characteristics of the FPM approximation  

It can be said that the basic aspects shaping the present FPM were established 
after some previous works in (Oñate & Idelsohn, 1998). In this paper, the 
authors adopt a particular case of WLSQ approximation named Fixed Least 
Squares (FLS). This approach uses a compact support weighting function 
(Gaussian type), fixed in the local approximation domain (local cloud), which 
reaches its maximum value (unity) at the point where the approximation is 
computed (star point) 24,25. This weighting function does not change in the 
local cloud and the minimization procedure yields constant approximation 

                                                            
23 Note that this is not always possible in conventional mesh generation, since an 
unknown number of iterations and/or manual work may be needed to meet minimal 
quality requirements. 
24 This point always belongs to the local approximation domain. 
25 The nomenclature used follows the concepts introduced in Generalized Finite-
Differences schemes. 
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coefficients, which simplifies considerably the computation of derivatives and 
reduces the computational cost26. As regards the problem discretization, it is 
performed in the FPM by point collocation on the strong form of the 
equations. This procedure, which is the most typical in meshless methods, is 
very efficient and easy to implement. 

The FLS approach used in the FPM has also some disadvantages. On the one 
hand, the approximation is only accurate at the star point of the cloud, where 
the weighting function is located (the error increases with distance). On the 
other hand, the approximation is multivalued since different overlapping 
clouds yield different values for the weighting function at a same point. 
Nevertheless, these disadvantages do not impose any serious restriction on the 
FPM because of the discretization procedure applied. Note that since the 
spatial approximation is only necessary at the star point of the cloud in the 
collocation procedure, these problems are easily resolved (although the lack 
of continuity of the approximation has also some additional consequences 
which will be discussed later in this work).   

2.3.2 Applications in fluid flow problems  

The FPM technique has been successfully applied in numerous fluid flow 
problems, where many capabilities of the method have been discovered, but 
also some limitations and opportunities for further improvements. The most 
relevant works are reviewed next. 

Among the first publications in the FPM, the early lines of research and 
applications are summarized in (Fischer, 1996). In that work, convective-
diffusive problems were studied using LSQ and WLSQ polynomial 
approximations with linear and quadratic bases. The study focused on the 
effects of the number of points and weighting functions on the local 
approximation, which helped to understand the basic behavior of the FPM. 
The accuracy of the approximation was also investigated using one-
dimensional clouds of points. The results showed that the FPM approximation 
leads to discrete derivative forms similar to those obtained with central 
difference approximations, which are second-order accurate. However, the 
accuracy degrades to first-order for non-symmetric clouds, depending on the 
characteristics of the weighting function employed27. Some preliminary 
criteria about the selection of points conforming the local clouds were also 
defined with the aim to improve the ill-conditioning of the minimization 
                                                            
26 The discrete derivatives can be are comparable to those obtained by diffuse 
approximations in MLS (Nayroles, Touzot & Villon, 1992). 
27 As will be discussed further through the present work, the dependence of the spatial 
approximation on these parameters difficulties to perform reliable analysis intended to 
obtain theoretical bounds for the main characteristics of discrete approximation. 
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problem. The flow solver employed in that work was based on a two-step 
Taylor-Galerkin scheme with explicit artificial dissipation. The numerical 
examples involved inviscid subsonic, transonic and supersonic two-
dimensional problems, but a viscous low-Reynolds number test case was also 
provided. In general, the results obtained in this work were satisfactory and 
demonstrated that the introduction of weighting in the LSQ minimization 
leads to superior results (linear basis were used). However, in some problems 
involving transonic flows, a low convergence rate and inaccurate shock 
positions were also observed. This behavior was related to possible effects of 
the spatial distribution of the points and the non-conservative character of the 
method. It should be noticed that in these examples small local cloud of points 
were used and, probably, this was not sufficient to ensure the necessary 
overlap between approximation subdomains to propagate the information 
through the domain correctly.  

In a similar line of research, a residual stabilization technique derived in terms 
of flux balancing in a finite domain, known as Finite Increment Calculus 
(FIC) (Oñate, 1996, 1998), was introduced. The results were satisfactory and 
comparable to the ones obtained previously with explicit artificial dissipation 
terms, but with the advantage that the stabilization in FIC is introduced in a 
consistent manner, see applications in (Oñate, Idelsohn, Zienkiewicz, Taylor 
& Sacco, 1996b) and (Oñate & Idelsohn, 1998). 

Among these developments, the issue of point generation, which is of capital 
importance for meshless methods, was addressed in (Löhner & Oñate, 1998). 
Based on an advancing front technique, these authors showed that point 
discretizations suitable for meshless computations can be generated more 
efficiently by avoiding the usual quality checks needed in conventional mesh 
generation. In this way, highly competitive generation times were achieved in 
comparison with traditional meshers. This showed, for the first time, that 
meshless methods are a feasible alternative to alleviate discretization-related 
problems in conventional solution approaches.  

Incompressible two-dimensional fluid flow problems were first studied in 
(Oñate, Sacco & Idelsohn, 2000). The proposed solution scheme was a semi-
implicit pressure splitting algorithm (known as fractional step) stabilized 
through the FIC technique. A detailed analysis of this solution scheme was 
carried out in (Sacco, 2002). Outstanding achievements from that work have 
given the FPM a more solid base; among them, the definition of local and 
normalized approximation bases, a procedure for constructing local clouds of 
points based on local Delaunay triangulation, and a criterion for evaluating the 
quality of the resultant approximation. The numerical applications presented 
focused mainly on two-dimensional (viscous and inviscid) incompressible 
flows, but a three-dimensional application example was also provided. 

A preliminary application of the FPM in a Lagrangian framework, presented 
in (Idelsohn, Storti & Oñate, 2001), is also worth of mention. Despite the 
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interesting results obtained for incompressible free-surface flows, this line of 
research was not continued under the FPM and later formulations were 
exclusively based on Eulerian flow descriptions.   

The first application of the FPM to the solution of three-dimensional 
compressible flow problems was presented in a pioneer work by (Löhner, 
Sacco, Oñate & Idelsohn, 2002). Here, we can highlight two remarkable 
contributions: a reliable and general procedure for constructing local clouds of 
points (based on a Delaunay technique) and a well-suited scheme for solving 
the flow equations. In this scheme, the discrete flux derivatives are written 
along edges connecting the cloud’s points as a central difference-like 
expression plus an upwind bias term which provides convective stabilization. 
An approximate Riemann solver of Roe and van Leer flux vector splitting are 
used for this purpose. This approach is more accurate (also more expensive) 
than artificial dissipation methods and, additionally, does not require the 
definition of geometrical measures in the local cloud and problem dependent 
parameters. The time integration of the equations is performed through a 
multi-stage explicit scheme in the line of Runge-Kutta methods. The 
numerical applications presented focus on three-dimensional inviscid flow 
problems, one of them a practical computation test case involving a half-span 
F117 aircraft. It is important to note that, contrary to the tendency observed in 
(Fischer, 1996), no accuracy and convergence problems were observed in this 
work. Though not conservative, the proposed methodology allowed capturing 
the flow discontinuities correctly. In this regard, similar results were also 
observed in other works; for example in (Ortega & Sacco, 2003), where 
satisfactory results for steady and unsteady transonic flow problems were 
achieved using a time-marching solution scheme with explicit artificial 
dissipation (comparable to that used by Fischer). These results suggest that the 
problems observed by Fischer may be presumably more related to the 
selection of points conforming the local clouds rather than the non-
conservative character of the discrete meshless scheme. 

Following similar approaches in terms of spatial discretization and solution 
schemes, many other FPM techniques intended to specific purposes can be 
found in the literature. Many of them are discussed later through this work in 
the context of particular applications. 
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3 THE FINITE POINT METHOD 

The Finite Point Method (FPM) is a meshless discretization technique 
intended to solve partial differential equations (PDEs) on scattered 
distributions of points (cf. Section 2.3 for an overview). In brief, the 
approximation process in the FPM can be summarized as follows. For each 
point in the analysis domain  (star point), an approximated solution is 
locally constructed by working on a subset of surrounding supporting points, 
which also belong to the problem domain (local cloud of points). The 
approximation is computed as a linear combination of the cloud unknown 
nodal values (or parameters) and certain metric coefficients. These are 
obtained by solving a Weighted Least-Squares (WLSQ) problem at the cloud 
level, in which the distances between the nodal parameters and the 
approximated solution are minimized in a least-squares sense. Once the 
approximation metric coefficients are known, the problem governing PDEs 
are sampled at each star point by using point collocation. The continuous 
variables (and their derivatives) are replaced in the sampled equations by the 
discrete approximated forms, and the solution of the resulting system allows 
calculating the unknown nodal values. Hence, the approximated solution 
satisfying the governing equations of the problem can be obtained. 

The various aspects of the FPM technique outlined above are discussed in 
detail in this chapter. In Section 3.1 the construction of the local 
approximation and the characteristics of the basis and weighting functions are 
described. The equations discretization procedure is presented in Section 3.2, 
and Section 3.3 analyzes the sensitivity of the FPM approximation to 
adjustable parameters governing the functional shape of the weighting 
functions and features of the local clouds. This analysis aims to determine 
suitable ranges of the parameters and also the capability of the latter to 
improve the local approximation using automatic adjustment procedures. 
Next, the accuracy of the FPM approximation is investigated numerically in 
Section 3.4, in order to obtain accuracy measures attainable in practical test 
cases. In Section 3.5, an automatic procedure to adjust the relevant 
approximation parameters is proposed with the aim to simplify the problem 
settings as well as to increase robustness and accuracy. Several issues arising 
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in practice in relation to the global and local FPM discretization are discussed 
in Section 3.6 and, finally, implementation aspects concerning the 
organization of the FPM data structure used in this work are discussed in 
Section 3.7 to complement and round off the description of the method. 

3.1 Construction of the local approximation 

Let us assume that (x) is an unknown field function defined in an analysis 
domain   1,2,3 which is discretized by a set of n scattered points. Let xi be 
a point of interest in which the function and their derivatives are to be 
evaluated (star point) and xj a collection of surrounding points providing an 
adequate support for the local approximation. Assume further that all these 
points belong to the domain  and conform a local cloud i (Figure 1), in 
such a way that i constitutes a covering of the problem domain. 

 

Figure 1. Global and local approximation domains in the FPM. 

Then, an approximation of (x) in i can be expressed by 

 Tˆ( ) ( ) ( )  x x p x   (1.1) 

where p(x) (m x 1) is an approximation basis vector (typically polynomial) 
and   (m x 1) is a vector of unknown approximation coefficients. Sampling 
(x) at each point within i gives the following system of equations 
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where j = (xj) are the values of the unknown function at each point in i 
(nodal parameters), the tilde ( ·̂ ) indicates approximated values at the same 
points and pj

T = pT(xj). Then, the approximation coefficients can be obtained 
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from Eq. (1.2) by solving =P-1, provided that np=m and matrix P is non-
singular28 (inversion is required because  is not known in advance). 
Replacing the coefficients  into Eq. (1.1), the approximation for the star 
point (and any point x in i) can be obtained by 

 T 1ˆ( ) ( )i i x p x P   (1.3) 

In spite of the fact that Eq. (1.3) interpolates the function (x) at the sampling 
points, and this gives interesting properties to the approximation function, the 
condition np=m significantly penalizes the meshless methodology (the 
number of points in the local clouds cannot be chosen arbitrarily). As matrix P 
is no longer squared if np>m, an alternative solution approach is required. 

In order to overcome this restriction, an approximate solution can be obtained 
by Least-Squares (LSQ) techniques. The idea is to compute a set of 
approximation coefficients  that minimize the sum of the squared 
approximation error to (x) in i. In addition, a weighting function w(x) can 
be introduced in the minimization problem to enforce data locality29 around 
the point of interest were the approximation is sought (Weighted Least-
Squares). Following this procedure, a discrete functional can be defined as 
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in which wi(xj) = w(||xj-xi||) is a compact support weighting function fixed at 
the star point of the cloud. This procedure, known as Fixed Least-Squares30 
(Oñate & Idelsohn, 1998), can be considered as a particular case of the 
Moving Least-Squares method introduced in (Lancaster & Salkauskas, 1981). 
The weighting function used in Eq. (1.4) typically takes the value of unit 
nearby the star point and decreases with distance, vanishing at the cloud 
boundaries. As discussed later in this chapter, the functional form of the 
weighting function can be defined with great flexibility, but it usually has an 
impact on the resultant approximation. 

                                                            
28 The solvability of the inverse matrix does not depend so much on the basis 
functions chosen, but mainly on the characteristics of the distribution of points in the 
local cloud; see for instance (Duarte, 1995).     
29 Standard (unweighted) LSQ-based approximations usually present a considerably 
lack of accuracy when the number of points is large. Comparisons of LSQ and 
WLSQ-based meshless approximations can be found in (Fischer, 1996). 
30 Different WLSQ-based approaches having particular characteristics can be obtained 
according to the manner in which the weighting function is applied in the 
minimization process, see for instance (Oñate, Idelsohn, Zienkiewicz, Taylor & 
Sacco, 1996b) for an overview of the main possibilities. 
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Going back to the WLSQ problem, the cloud approximation coefficients can 
be obtained by minimizing the functional (1.4) with respect to . This leads to 
the following set of equations   
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which are known as normal equations in the LSQ literature. The system (1.5) 
can be rewritten in vector form as 

 T

1 1

( ) ( ) ( ) ( ) ( )
np np

i j j j i j j j
j j

w w 
 

 x p x p x x p x  (1.6) 

and introducing matrices 
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 1 1 2 2( ) ( ), ( ) ( ),..., ( ) ( ) ( x )i i i np npw w w m np   B x p x x p x x p x  (1.8) 

Eqs. (1.6) can be recasted in 

 A B   (1.9) 

from which the approximation coefficients can be calculated 

 1 A B   (1.10) 

The solution of Eq. (1.10) requires matrix A (usually known as moment 
matrix) to be positive-definite and, consequently, non-singular. Similar to 
matrix P in Eq. (1.3), matrix A can become very ill-conditioned and difficult 
to invert with accuracy depending on the basis and weighting functions and 
the geometry of the local cloud (especially in multidimensional problems). 
Hence, these variables in the approximation should be subject to particular 
conditions to keep the approximation error under control31. This will be 
discussed later in Sections 3.3 and 3.6.  

                                                            
31 A discussion on the relations between the point distribution, the conditioning of the 
resultant minimization problem and error estimates in MLS-based approximations can 
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For the time being, supposing that the approximation coefficients can be 
calculated from Eq. (1.10), the numerical approximation at the star point of 
the cloud is obtained by introducing  into Eq. (1.1) and sampling at the same 
point. This leads to  

 T 1
ij jˆ ˆ( ) ( )i i i a    A Bx p x   (1.11) 

where summation over repeated indices is assumed. It is important to note that 
matrices A and B and, consequently, the approximation coefficients , are 
constant in i because of the fixed weighting function chosen. 

Note that according to the LSQ character of the approximation, ˆ( ) x does not 

interpolate the nodal unknown parameters ( ) x , i.e. the FPM approximation 
does not satisfy the Kronecker’s delta property. In this regard, it should be 
noted that ˆ( ) x  is the true approximation for which the governing equations 

and boundary conditions will be enforced and ( ) x  are simply internal nodal 
values employed to construct such numerical approximation.  

The derivatives of the approximation with respect to the spatial coordinates xk 
are simply obtained by differentiating the approximation basis, because 
matrices A and B are constant in i. Hence, the first derivatives results 
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and higher-order derivatives can be obtained similarly, up to the order of 
differentiability of the approximation basis chosen. 

The adoption of a fixed weighting function in the local cloud notably 
simplifies the computation of the derivatives and reduces the computational 
cost. However, the accuracy of the approximation can degrade considerably 
far from the point where the weighting function is located and, therefore, the 
validity of the local approximation is generally restricted to the star point of 
the cloud (note that collocation techniques are appropriate for that purpose). 
Moreover, the fact that the same point can belong to different overlapped 
clouds and, thus, it is affected by different weights, makes the approximation 
coefficients to be multivalued, i.e. aij ≠ aji and bij ≠ bji (continuity of the global 
approximation cannot be achieved). This entails some issues regarding 
implementation aspects (e.g. data structures, storage requirements and 
computational efficiency) and the properties of the resulting discrete schemes 
(typically positivity and conservation). These are discussed further in the 
context of the flow solution scheme (mainly in Chapters 4 and 5). 

                                                                                                                                              
be found in (Zuppa, 2003). The same results can be applied to other WLSQ 
techniques under particular situations.  
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Relevant aspects in the FPM technique, such as the approximation basis, the 
weighting functions and important characteristics of the FPM approximation 
are addressed in the next sections. 

3.1.1 The basis of approximation 

Although any kind of basis functions can be used to construct the numerical 
approximation, the typical choice in the FPM is to adopt complete polynomial 
bases up to a certain order in d. These basis are simple to compute (not 
expensive) and flexible enough to adapt to different problem solutions. As 
mentioned before, it is of crucial importance for the accurate solution of the 
minimization problem that the moment matrix A can be inverted with 
accuracy. In this respect, the approximation basis plays a role. 

The sensitivity of the conditioning of the moment matrix to certain 
characteristics of the approximation basis was analyzed in (Sacco, 2002). 
There, the use of dimensionless local bases is proposed to alleviate the ill-
conditioning of matrix A caused by large and dissimilar entries in the p 
matrices. As shown in (Günther, 1998), this procedure does not affect the 
resulting approximation function and improves the accuracy and robustness of 
the solution. Following a similar line, in this work the following complete 
polynomial bases are employed: 

2nd-order approximation bases (2D and 3D cases) 
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3rd-order approximation base, 3D case (m=20) 
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4th-order approximation base, 3D case (m=35) 
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 (1.15) 

being the local scaled coordinates of a point x = (x1 x2 x3) defined as 
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 (1.16) 

where the tilde denotes the spatial point coordinates32 and di is a characteristic 
distance calculated at each cloud by 

  maxi j i j id      x x x  (1.17) 

Alternatively, the characteristic distance (1.17) can also be defined for each 
spatial coordinate. This normalizes the cloud support and alleviates the ill-
conditioning of the moment matrix if the anisotropy of the cloud is elevated33.   

The introduction of a local scaled basis simplifies the computation of the 
approximation function and their derivatives at the star point xi as it is located 
at the origin of the local system (xi=(0,0,0)). Consequently, the approximation 
basis and its first derivatives evaluated at xi results 
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and a similar procedure can be applied for the derivatives in the other spatial 
directions x2,3. In this way, it is possible to write the approximation metric 
coefficients at the star point as 

 ij 1, j ij ( 1), j

1
, k

k
i

a b
d  C C  (1.19) 

where C = A-1B is a (mxnp) matrix and index j = 1,np. The approximation 
coefficients for higher-order derivatives can be obtained analogously. 

3.1.2 The weighting function 

The introduction of a compact support weighting function into the 
minimization problem allows to focus on the information in the close 
neighborhood of the star point and, consequently, to enhance the local 
character of the approximation. There exist many possibilities for choosing 
the functional form of a weighting function satisfying the conditions given 

                                                            
32 Note that dimensionless coordinates are used to construct the local bases. The non-
dimensionalization procedure is explained later in Section 4.1.2. 
33 This situation is typically found in the discretization of viscous layers in high-
Reynolds number problems. The construction of robust approximations in such clouds 
of points is addressed in Chapter 8. 
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before in Section 3.1. In the FPM, the following normalized Gaussian 
weighting function is typically adopted 
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where dj = ||xj-xi||,  = /w and  =  di (>1.0). This function takes unit value 
at the star point and decreases monotonically with the distance, approaching 
zero at the cloud boundary points. The support of this function is isotropic and 
the parameters w, k and  determine its functional shape. These are free 
parameters that should be properly adjusted because they have a major impact 
on the approximation. This is studied in Section 3.3. 

3.1.3 Consistency of the approximation 

In the context of PDEs, consistency refers to the ability of a discretized form 
to approach the continuous equations of the problem when h→0 and t→0. 
Along with stability, consistency is a requisite for the solution to be 
convergent (Lax-Richtmyer theorem for linear equations); therefore, the 
discrete approximation must satisfy certain consistency requisites. 

In the meshless context, it is generally assumed that the degree of consistency 
of the approximation is the order of the polynomial which can be represented 
in an exact manner. In this respect, consistency is closely related to 
completeness and reproduction conditions34. However, these relations are not 
always observed in practice, where different issues belonging to the 
approximation procedure and particular problem settings can affect the order 
of consistency of the method. Despite this, it is important to show that at least 
the FPM approximation (1.11) can reproduce the functions included in the 
approximation basis, i.e. 

 T 1 Tˆ( ) ( ( ) ( )ija   P A B)P x p x p x  (1.21) 

                                                            
34 Following (Belytschko, Krongauz, Organ, Fleming & Krysl, 1996), completeness 
means that the basis chosen can approximate the function with arbitrary order of 
accuracy. If linear polynomials and their derivatives can be approximated in an exact 
manner, any smooth function can be approximated with arbitrary accuracy as the grid 
is refined; thus, linear completeness is equivalent to linear consistency. On the other 
hand, reproduction conditions are achieved when the approximation can reproduce the 
functions included in the basis chosen with arbitrary accuracy; if p-order polynomials 
can be reproduced, the approximation has p-order consistency. It should be noticed 
that  a difference is made between reproduction conditions and consistency in (Liu & 
Gu, 2005). The former is assumed to involve any class of basis functions while 
consistency is only related to polynomials. 
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with matrix P given by Eq. (1.2).  

Following (Taylor, Zienkiewicz, Oñate & Idelsohn, 1995), matrices P (Eq. 
(1.2)) and B (Eq. (1.8)) can be replaced into Eq. (1.21) yielding  
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where the term between brackets corresponds to the moment matrix A, as 
defined by Eq. (1.7). Hence,  

 T 1 Tˆ ( ) ( ) A Ap x p x  (1.23) 

which corroborates that the FPM approximation can reproduce the functions 
included in the approximation basis.  

The reproduction condition (1.21) entails another important characteristic of 
the discrete approximation. Note that if the zero-order polynomial (m = 1) is 
included in the basis, Eq. (1.23) implies that 

 1ij ij
a    x  (1.24) 

and the approximation functions constitute a partition of unity. Moreover, the 
derivative approximation coefficients satisfy that  

 0ij ij
b    x  (1.25) 

thus conforming a partition of nullities. These properties are of great interest 
for any numerical approximation and provide a framework for the 
development and analysis of approximation methods. Moreover, these 
characteristics can be exploited in the design of numerical solution schemes. 
This will be useful later in Chapter 4.  

3.2 Discretization of the equations 

The discretization of the problem governing equations is performed in the 
FPM by using point collocation on the strong form. This method is efficient 
and easy to implement and also fits the characteristics of the FLS approach.  
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Considering that a differential problem in a domain  with boundary  = t  
 is stated according to 
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the collocation procedure consist on sampling Eqs. (1.26) at each star point in 
 by replacing the continuous variables and their derivatives by the discrete 
counterparts computed at the cloud level. This leads to 
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where the approximate solution ̂  is a function of the unknown nodal 
parameters  and the cloud metric coefficients (see Eqs. (1.11) and (1.12)). 
Then, the discrete system (1.27), which is typically sparse (due to the compact 
support of the FPM approximation) and non-symmetric, can be solved for the 
nodal parameters, from which the approximated values satisfying the problem 
equations can be obtained (Eq. (1.11)).  

Note that the collocation procedure described above facilitates the 
enforcement of essential boundary conditions (recall that the FPM 
approximation has no delta property) and, moreover, spatial numerical 
integration is not required. Thus, the efficiency is higher if compared to weak 
form methods, but there are no advantages concerning the order of 
differentiability of the approximation (it should be at least the order of the 
equations to be solved). In spite of this, the main drawback of collocation 
procedures is related to the ill-conditioning of the resultant equations system. 
This can have a major effect on the robustness and the overall accuracy of the 
meshless technique, see for example (Cheng & Cheng, 2008). 

In order to address robustness and accuracy problems in collocation methods, 
different approaches have been presented in the literature. Many of them work 
on the local properties of the approximation; for example, enforcing certain 
conditions such as positivity by means of the selection of the cloud’s points, 
or through a local manipulation of the weighting function (Jin, Li & Aluru, 
2004). Other approaches obtain good results by introducing stabilization terms 
into the governing equations, particularly for Neumann boundary points; see 
for instance (Oñate & Idelsohn, 1998; Oñate, Idelsohn, Zienkiewicz, Taylor & 
Sacco, 1996b). A similar approach in this line is presented in (Boroomand, 
Tabatabaei & Oñate, 2005), where conditions on the selection of points and 
the approximation basis are additionally discussed. 
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It must be noted that in time dependent problems which are solved explicitly 
in time (like those addressed in this work), the collocation procedure generally 
leads to a well-conditioned (mass-consistent like) system whose global matrix 
is diagonally dominant. Thus, no particular problems related to the collocation 
procedure are found in such cases, and the equations are generally solved by 
Jacobi or Gauss-Seidel iterations with a low computational cost. This is the 
approach followed in this work. 

3.3 Setting free parameters 

As observed in the preceding sections, the FPM approximation involves free 
parameters which need to be properly specified. These parameters are those 
governing the functional form of the weighting function (, w and k) and the 
number of points in the local clouds (np). Moreover, the order of 
approximation of the polynomial basis can be changed according to the PDEs 
to be solved or to improve the solution characteristics. Although these free 
parameters introduce dependency in the problem solution (a feature which is 
not always desirable), the local adjustment of the parameters can also help to 
improve the approximation and address robustness and accuracy issues, thus 
extracting the best of the numerical approach. 

This section presents a numerical investigation aimed at studying the 
sensitivity of the approximation to the free parameters. This will allow 
determining suitable ranges for setting the parameters in typical application 
problems, and also to investigate the capability to improve the local 
approximation by means of automatic adjustments. The test case employed in 
the investigation as well as the sensitivity analyses are presented below. 

3.3.1 Test problem 

The test problem proposed involves the approximation of a smooth test 
function in a cubic analysis domain. The latter is discretized by an 
unstructured homogeneous distribution of 9650 points, which aims to be 
representative of the distribution of points usually obtained away from bodies 
(where the solution is generally smooth) in typical 3D aerodynamic problems. 
The test function employed is a scalar function defined by 

      1 1 2 2 3 3( ) 64 1 1 1x x x x x x    x  (1.28) 

and the approximation error is evaluated by the following error norm 
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where approximated and exact values of the test function are employed. The 
error in the derivatives is measured similarly, but using approximate and exact 
values of the divergence of the test function. Boundary effects are accounted 
for in the error measurements with the aim to make the results closer to those 
expected in practice. A view of the analysis domain and the approximated 
problem solution is presented in Figure 2.  

 
Figure 2. Approximation of a smooth test function in a cubic domain (n = 9650). 

3.3.2 Effects of parameter   

The parameter  of the weighting function (see Eq. (1.20)) is analyzed firstly. 
Assuming that  >1, this parameter gives more weight to the cloud boundary 
points by enlarging the support of the weighting function (see Figure 3). In 
order to investigate the effects of , several test cases involving local clouds 
with different number of points are solved with linear and quadratic 
approximation bases. The parameters w = 3 and k = 2 are assumed to be fixed.   

 
Figure 3. Effects of the parameter  on the functional form of the weighting function 
(w = 3 and k = 2). 

The numerical results presented below in Figure 4 show that the error in the 
test function increases with  as a result of the loss of locality of the 
approximation. Conversely, the error in the derivatives improves slightly 
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because more information of far points is introduced into the minimization 
problem (this can be compared to enlarging the stencil of points). It is also 
observed that the sensitivity of the error to the parameter  increases when np 
≈ m and decreases with the number of points in the local cloud. 

 
Figure 4. Effects of the parameter  on the approximation for different np computed 
with linear (left) and quadratic (right) bases (n = 9650, w = 3 and k = 2). 

The experiments performed suggest that in typical application problems 
(where np>m) the parameter  can be set to a constant value slightly higher 
than unit in the whole problem domain (e.g.  = 1.01). This choice minimizes 
the error in the approximated function without affecting the derivatives. 
However, the performance observed in practice indicates that a further 
increase of the parameter  can be advantageous to improve the accuracy and 
robustness of the approximation when sudden changes in the density of points 
happen in the problem domain (especially in problems governed by 
conservation laws). This causes an enlargement of the overlapping zone 
between clouds which has proven effective where rapid changes in the nodal 
spacing occurs (usually closer to bodies), and does not affect significantly the 
approximation in areas where the discretization is homogeneous. In such 
cases, satisfactory results can be obtained by setting a constant value  in the 
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whole domain in the range of 1.05 <  < 1.2. It should be noticed that the 
sensitivity of the approximation to the parameter  is be very low (its effects 
are mainly localized at the extremes of the cloud) and, therefore, this 
parameter is not well suited for implementing automatic adjustment 
procedures to improve the local approximation. 

The anomalous behavior observed in the derivatives when using quadratic 
bases in clouds with np = 16 (Figure 4, right bottom), may be due to the fact 
that the number of points in the local support is not adequate for setting a 
proper approximation in the range of parameters adopted (mainly due to ill-
conditioning of the moment matrices). Additional test performed indicate that 
this effect becomes more important when the order of the basis increases. 
Thus, the minimum number of points per cloud required in such cases is 
higher. Examples of this will be provided later in this section. 

3.3.3 Effects of parameters w and k 

The next free parameters considered for study in Eq. (1.20) are w and the 
exponent k. These parameters change the distribution of weights (shape) along 
the entire local support as shown in Figure 5. In spite of the fact that their 
effects on the numerical approximation can be assimilable, the parameter w 
has proven more effective in practice to make small adjustments in the 
approximation (particularly in relation to the derivatives). Therefore, the 
sensitivity of the numerical solution is investigated for the parameter w while 
k is assumed constant. This approach, which can be compared to adopt a basic 
functional shape determined by k which can be modified by varying w, 
simplifies the sensitivity analysis and is also preferred to implement automatic 
adjustment procedures. Next, the accuracy of the numerical approximation is 
studied for different values of w using linear and quadratic bases. Local 
clouds with a variable number of points and constant parameters of the 
weighting function k = 2 and  = 1.1 are considered. 

 
Figure 5. Effects of the parameters w and k on the functional form of the weighting 
function. Constant values k = 2 and w = 4 are used, respectively ( = 1.1). 
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As observed in Figure 5 (left), an increase in parameter w reduces the weight 
assigned to the cloud supporting points. As a consequence the numerical 
approximation tends to interpolate the unknown nodal values, i.e aij→0 for j≠i 
while aii→1 (the shape function tends to the Dirac’s delta function). Thus, the 
error in the approximation to the test function decreases with w, but the 
opposite behavior is observed in the derivatives (see results in Figure 6). In 
the latter case, there is less information of the vicinity of the star point in the 
minimization problem and, hence, the computed derivatives lose accuracy. 

 
Figure 6. Effects of the parameter w on the approximation for different np computed 
with linear (left) and quadratic bases (right) (n = 9650, k = 2 and  = 1.1). 

It is worth noting that the improvement of the error in the test function 
provided by the parameter w is limited as the problem becomes more and 
more ill-conditioned while w increases. This makes it difficult to invert the 
moment matrices with accuracy beyond a given threshold and the numerical 
approximation deteriorates quickly. Figure 7 illustrates this effect for an 
isolated cloud centered on the analysis domain (isotropic cloud). Linear and 
quadratic approximation bases are employed.  

Taking into account the numerical experiments performed (and other tests not 
reported here), a suitable maximum value for w is determined for a range of 
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3.0  wmax  4.5. The flexibility of this parameter and its effects on the 
numerical approximation make it appropriate for implementing automatic 
adjustment procedures. This will be addressed later in this chapter. 

 
Figure 7. Effects of w on the approximation error and conditioning of matrix A 
computed for an isolated cloud for linear and quadratic bases (k = 2 and  = 1.1). 

The last free parameters are the number of points in the local clouds and the 
order of the approximation bases; these can be studied to a large extent 
through the examples provided above.  

3.3.4 Effects of the number of points np 

Concerning the number of points in the local clouds, the error in the test 
function increases with np as it is affected by smoothing, but a slight 
improvement is observed for the derivatives (they profit from enlarged 
stencils). Particularly for the latter, the results show that the impact of np is 
low when the number of points is above a given threshold ensuring the proper 
conditioning of the minimization problem (see for instance Figure 6). In this 
regard, if the order of the basis (or parameter w) is raised, the condition 
number of the moment matrices grows and larger supports are needed to 
achieve a satisfactory behavior (the sensitivity to np increases). Likewise, the 
same behavior occurs when irregular point distributions (not accounted for in 
this example) are faced. In practice, more points should be introduced in these 
clouds to counteract ill-conditioning and endow the approximation with 
robustness. Figure 8 shows the relation between np and the condition number 
of matrix A obtained for different basis functions in an isotropic cloud. 
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Figure 8. Effects of parameter np on the conditioning of the matrix A computed for an 
isolated cloud using linear, quadratic and cubic bases (k = 2 and  = 1.1). 

According to these results, np can be used to give stability to the minimization 
problem. Its adjustment will be addressed in conjunction with w, because the 
latter can produce, up to some limit, a similar effect, i.e. enlarging the 
physical cloud support (but with a lower impact on the computational cost).  

3.3.5 Effects of the approximation basis 

Regarding the order of the approximation bases, similar trends are observed 
for the combination of parameters under study. An increase in the order of 
approximation has a positive impact on the function and derivatives errors 
(Figure 4 and Figure 6), while a reduction improves the conditioning of the 
moment matrices considerably (Figure 8). According to these results, two 
main possibilities arise in view of a local adjustment of the approximation 
basis (p-adaptivity). First, enrich the approximation in order to gain 
accuracy35; secondly, smooth the solution to make the problem solvable when 
a lack of robustness is detected (generally at the expense of a local loss of 
accuracy). Given the requirements of robustness and computational efficiency 
in the present work, the first possibility is not attractive, mainly due to the 
computational cost (larger clouds are needed) and a certain lack of robustness 
that is normally observed in higher-order approximations. The second 
possibility, instead, may be useful for addressing problems arising in general 
discretizations. However, in a previous application along this line (cf. (Ortega, 
Oñate & Idelsohn, 2007)), the efficiency of this kind of p-adaptive procedure 
proved to be low compared to the adjustment of the weighting function (or 

                                                            
35 p-adaptivity is a field of research of great interest where meshless procedures have 
demonstrated extensive capabilities and potential; see a review of the most typical 
methodologies in (Nguyen, Rabczuk, Bordas & Duflot, 2008). 
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np). Moreover, a significant loss of accuracy was often observed in the 
affected clouds. According to these previous experiences, such adaptive 
procedure is not considered to be well-suited for the present requirements. 
Hence, the approximation basis is assumed constant. The selection of the 
proper order of the approximation basis is discussed in the next section. 

3.4 Accuracy of the FPM approximation 

The accuracy and convergence of a numerical solution depend to a large 
extent on the discretization error. The typical approaches to determine 
theoretical bounds for the latter are generally based on the assessment of the 
truncation terms arising in the discrete approximations. Due to the complexity 
involved, these studies are often carried out on regular discretizations 
(generally 1D) and additional assumptions must be introduced when there are 
free parameters in the problem.     

Following this line, regular 1D distribution of points and symmetric local 
clouds were used to study the accuracy of the FPM derivatives in (Fischer, 
1996). The results indicate that quadratic (and even linear) approximations 
lead to discrete forms equivalent to those obtained by central differencing 
schemes, which are of second-order accuracy. However, the study also shows 
that for non-symmetric clouds (or irregular distribution of points) the accuracy 
of the method tends to first-order36 and the effective value attained relies 
heavily on the weighting function settings. If the locality of the weighting 
function is increased, the approximation tends to recover second-order 
accuracy. Comparable results are also achieved in other studies, see for 
instance (Cheng & Cheng, 2008), where theoretical estimates are obtained 
using a MLS technique37 in multidimensional FPM approximations. 

These analyses are useful to characterize the basic performance of the 
approximation; however, the limitations adopted in the formal derivation can 
restrict the scope of the results, and thus the extrapolation to realistic 
application cases. In order to obtain accuracy measures applicable to typical 
3D approximation problems, a grid convergence analysis is performed in this 
section. Furthermore, the selection of a proper approximation basis is 
discussed from the viewpoint of attainable accuracy and computational cost.  
                                                            
36 The deterioration of spatial convergence rates in irregular stencils of points is not a 
particular issue in meshless approximations and is also observed in conventional 
mesh-based methods. See for instance a numerical comparison between convergence 
rates obtained with a meshless approach in contrast with other mesh-based techniques 
in regular and irregular distribution of points in (Katz, 2009). 
37 In this work, the authors show that the discretization error (related to the problem 
solution) is also proportional to the condition number of the resulting discrete system 
obtained by collocation. This makes the global solution accuracy attainable in practice 
to be further reduced. 
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3.4.1 Convergence analysis 

The accuracy of the FPM approximation is investigated here through a grid 
convergence study. The test problem adopted is similar to that employed in 
Section 3.3. The analysis domain is initially discretized by an unstructured 
homogeneous distribution of 1527 points with averaged point spacing h = n-1/3 
= 8.68E-2. Then, three successively refined discretizations are generated by 
scaling the grid spacing in a uniform manner. The resultant averaged 
refinement ratio is r = hk+1/hk = (nk+1/nk)

-1/3 = 1.9 (standard deviation = 0.05). 
The parameters of the weighting functions are set to k = 2,  = 1.1 and w = 3.5 
for all the simulation cases, and clouds with 16, 22 and 56 points are used 
with linear, quadratic and cubic approximation basis, respectively. Table 1 
presents the characteristics of the discretizations.  

grid # n h 

4 1527 8.68E-2 

3 9650 4.70E-2 

2 65817 2.48E-2 

1 490528 1.27E-3 

Table 1. Details of the problem discretizations. 

The evolution of the approximation error with the grid refinement is studied 
for the first derivatives (divergence) of the test function (1.28) using the 
quadratic error norm given by Eq. (1.29). The convergence rates observed for 
linear and quadratic bases are quite good, although values slightly lower than 
expected are obtained for the cubic basis (see Figure 9). This result can be 
explained by the fact that the moment matrices become more ill-conditioned 
(and prone to numerical errors) as the order of the basis increases. Moreover, 
larger local supports increase the likelihood of geometrical issues affecting the 
approximation. These effects are more notorious in coarse grids outside the 
asymptotic range of convergence. 

The dependence of the approximation error on the number of points in the 
local cloud is illustrated in Figure 10 for the cubic basis. Although the trends 
obtained are similar to those already seen for linear and quadratic basis (see 
for example Figure 6), the effects of np are more marked in this case. This 
makes it difficult to adjust the optimal free parameters for the clouds, and the 
resulting approximation is usually less robust.     

It is important to take into account that in the solution of PDEs, the error 
reported in Figure 9 is only a part of the total error. Other sources of 
inaccuracies, e.g. due to the discretization scheme adopted and the solution of 
the resulting algebraic system, could increase the final solution error. This 
will be studied in Chapter 5 in the context of particular application problems. 
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Figure 9. Observed order of accuracy for the derivatives of the test function for linear, 
quadratic and cubic approximations in clouds with 16, 22 and 56 points respectively 
(k = 2,  = 1.1 and w = 3.5). 

 
Figure 10. Evolution of the approximation error as a function of the number of points 
in the local clouds computed with grid #2 and a cubic basis (k = 2,  = 1.1, w = 3.5). 

3.4.2 Remarks on the order of the approximation bases 

According to the results presented in the previous section, the number of free 
parameters and other particularities involved in a given solution process (e.g. 
geometrical) make it difficult to determine the suitability of higher-order 
approximations in general applications. For example, the attainable accuracy 
in an approximation can be lower than that expected for a higher-order basis 
due to the conditioning of the moment matrices. Although this behavior can 
be improved by enlarging the local clouds, thus restoring the accuracy to 
some extent, this involves an extra cost in the computations which sometimes 
does not compensate for the accuracy gained. Therefore, a decision should be 
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made in each particular application on the basis of the attainable accuracy-
cost ratio and the problem requirements.  

Regarding the computational cost, numerical experiments performed with the 
finest grid (#4) show that the size of the local cloud, required to achieve a 
(near) optimal solution with a given approximation basis, grows more rapidly 
as the order of the basis increases. As seen in Figure 11, np grows with slope 
m0.57 when going from linear to quadratic bases, but the rate increases to m1.1 
from quadratic to quartic bases. As a consequence, the number of operations 
needed for frequent computations such as gradients (which behave linearly 
with np) increases at the same rate and, therefore, the extra CPU-time required 
can be considerable in large practical problems (especially in explicit time 
marching computations). Note that an enlargement of the local clouds also 
increases the size of the data structure and thus the memory storage 
requirements. This fact can also impose limitations in large-scale problems. 

 
Figure 11. Near optimal clouds computed for grid #4 (n = 490529) using linear, 
quadratic, cubic and quartic approximation bases with m = 4, 10, 20 and 35, 
respectively (k = 2,  = 1.1, w = 3.5). 

Having in mind these considerations, accuracy-cost ratios can be improved 
with some confidence when moving from linear to quadratic basis because the 
enlargement of the support size and the extra computational cost involved are 
low. However, for higher-order approximations, the cloud size and the 
computational cost grow considerably and the accuracy gains are sometimes 
uncertain (high-order bases are more likely to suffer instabilities). This means 
that the attainable accuracy-cost ratios can be not advantageous. In such cases, 
h-refinement seems to be more suitable approach to increase the accuracy. 

In spite of the fact that the performance of higher-order approximations may 
vary depending on the problem38 and the approximation settings chosen, 

                                                            
38 For example, more favorable results supporting the use of higher-order bases are 
obtained for Poisson’s type problems in (Ortega, Oñate & Idelsohn, 2007). In that 
work there are two main differences. First, an automatic procedure for adjustment of 
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according to our experience in the field of applications addressed in this 
investigation, quadratic polynomial bases lead to the best compromise 
between attainable accuracy, robustness and computational cost. This is the 
choice adopted throughout this work. 

3.5 Iterative local adjustment of the parameters 

For a given point discretization, the characteristics of the FPM approximation 
depend significantly on the parameters of the weighting functions and the 
number of points in the local clouds (the approximation basis is considered to 
be fixed). In the previous sections, the effects of these parameters have been 
analyzed to determine suitable ranges for practical applications as well as 
possibilities to improve the local approximation by performing adaptive 
adjustments. In this respect, the results obtained indicated that the parameters 
k and  (related to the basic shape of the weighting function and the extension 
of its local support) may be considered to be constant without detriment to the 
approximation in particular situations. However, the parameter w and the 
number of points in the local clouds have shown a large impact on the 
approximation and also a capacity to improve the characteristics of the latter. 
Although suitable ranges for these parameters were determined in the 
previous analyses, specific values should be defined for each problem under 
consideration. The approach in this work is to define these parameters 
according to some optimal (general) values and then, based on the 
characteristics of the local discretization thus obtained, perform iterative 
adjustments at each cloud to get the best of the numerical approximation. The 
adjustment procedure adopted is described next for the three-dimensional 
general case (this is performed at the same time the local approximation is 
computed). In addition, a more robust methodology for solving the 
minimization problem, which can be used in cases where the usual approach 
fails, is presented. 

3.5.1 Iterative construction of the approximation 

Given a star point xi  and a list of surrounding points sorted in ascendant 
distances, an initial local cloud is set with np ≈ 30 (closest points) and the 

                                                                                                                                              
the local approximation is used, and this guarantees (in some sense) a satisfactory 
robustness and accuracy. Second, and more important, the problem is solved in an 
implicit manner. This implies that most of the issues discussed about the 
computational cost are not relevant as the assembly of the equations is performed only 
once (approximately 70% of the total simulation time reported corresponds to the 
solution of the discrete equations). Therefore, the extra cost involved when using 
higher-order approximations is not really important in such kind of computations and 
the accuracy-cost ratio results more advantageous.   
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parameters of the weighting function (Eq. (1.20)) are chosen according to: k = 
2,  = 1.1 and w = wmax  3.5. Then, the approximation coefficients are 
computed by Eq. (1.10) and the metric coefficients (function and derivatives) 
are obtained according to Eqs. (1.11) and (1.12). The resulting approximation 
is accepted if 

i. cond(A)  max 

and, in addition 

ii. 1.0ijj
a     and k

ijj
b    

iii.  , ,
ˆ ˆmax , k k        (for k = 1,3) 

In the conditions above, k denotes the spatial coordinates directions and max, 
 and  are constants specified to achieve a satisfactory balance between 
accuracy and computational cost. The first requirement (i) imposes an upper 
bound to the condition number of matrix A in order to have a certain 
guarantee of the inversion process. This is necessary because often numerical 
results can be obtained even for matrices very close to singular, but with a 
total lack of accuracy (particularly when working with double-precision 
floating point arithmetic). Thus, a relatively large condition number can be 
chosen, e.g. a value max = 1.0E6 is adopted in this work (based on the infinite 
norm of matrix A). Once the approximations coefficients have been obtained, 
the second requirement (ii) checks partition of unity properties. The 
fulfillment of the second condition is essential for the implementation of the 
flow solver that will be proposed later. To this end, a typical value  = 1.0E-4 
can be adopted. The last requirement (iii) limits the approximation error and 
this can be seen as a proof of consistency. According to the procedure 
suggested in (Löhner, Sacco, Oñate & Idelsohn, 2002), the nodal parameters 
in Eqs. (1.11) and (1.12) are set according to a known spatial function, and the 
deviation of the approximated values from the latter are measured at the star 
point of the cloud xi. In this work a simple linear function 1 2 3( ) x x x   x is 

used with  = 1.0E-4. Note that the local scaled coordinates are dimensionless 
and of order unity at the cloud level, see Eq. (1.16). 

In the case that one of the preceding requirements is not satisfied, the 
approximation is improved iteratively. In each iteration the parameter w is 
decreased setting w = wi = wi-1 (  0.75, w0 = wmax, i: iteration counter) and 
the numerical approximation is calculated again. This procedure continues 
until all the requirements are satisfied or w reaches a minimum admissible 
value wmin  2. A few iterations are usually enough to improve the 
approximation in distorted clouds of points (if wmax is large). Finally, if an 
admissible approximation is not achieved, new points are inserted in the cloud 
(six at a time and in ascendant distances from the star point) and the procedure 
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starts again. A maximum number of points about npmax=50 is specified for 
quadratic approximations in 3D clouds39.  

In spite of the fact that the limitations applied to wmin and npmax can prevent 
some of the requirements (i-iii) from being satisfied in a certain cloud, the 
resultant local approximation is in general improved. This increases the 
accuracy and, in particular, the robustness of the overall solution process, 
enabling the FPM to deal with large (relatively low quality) arbitrary point 
distributions in practical application problems.  

A further enhancement to robustness, though sometimes resulting in a higher 
computational cost when constructing the approximation, is to avoid direct 
inversion of matrix A in Eq. (1.10) using an alternative approach based on QR 
factorization. This procedure, already used with success in (Ortega, Oñate & 
Idelsohn, 2007), allows obtaining suitable results where matrix A inversion 
fails. The idea is to switch to the QR solver the first time that the 
approximation fails to meet any of the requirements (i-iii). Then, the 
adjustment of the parameters follows the same basic steps described above. 
This increments the chances of success and sometimes allows reducing the 
resulting number of points in the local clouds (and the impact on the 
computational cost of the simulations). The QR-based solution procedure is 
described below. 

3.5.2 QR solution of the minimization problem 

QR factorization is a robust and accurate method for solving the minimization 
problem. The aim of using the QR technique is to get an acceptable solution 
in cases where direct inversion of the matrix A fails, without having to modify 
significantly the geometrical structure of the cloud. The QR solution 
procedure can be described as follows. 

If matrix P has rank m and np > m, it can be factored as 

 P Q R  (1.30) 

where matrix Q (np x m) is orthogonal ( QTQ = I ) and matrix R (m x m) is 
upper triangular with positive diagonal elements Rii > 0. A similar procedure, 
based on columns pivoting, can be applied for cases in which matrix P is rank 
deficient or near rank deficient. 

                                                            
39 An enlargement of the local support beyond that limit has not proved to be 
beneficial because of two main reasons. First, as previously discussed, the 
computational cost grows rapidly with the cloud size. Second, the potential 
improvement in accuracy is often small (in part because the added points are 
relatively far from the star point). Moreover, in problems whose solution has 
discontinuities and other high-gradient flow features, excessive smearing can be 
found in large local approximation supports. 
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In order to apply the QR factorization for solving the WLSQ problem (1.9), it 
is necessary to obtain an equivalent unweighted problem. To this end, the next 
factorization is proposed 

 ( ) ( ) such that W W W W W  x x   (1.31) 

where W(x)=diag(wij) and matrix P is modified according to 

 W P P=  (1.32) 

Then, it is possible to write an equivalent minimization problem as 

    T TP P P W      (1.33) 

whose equivalence with Eq. (1.9) is verified by 
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Next, the modified matrix (1.32) is factorized, i.e. P QR = , and replaced in 
the equivalent unweighted problem given by Eq. (1.33). This leads to 
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where T Q Q I  due to the orthogonality property. Multiplying by (RT)-1 

 TR Q W   (1.36) 

and the unknown coefficients  can be finally obtained 

  -1 T R Q W   (1.37) 

Here matrix R is generally well-conditioned and its inverse is easy to obtain 
with accuracy, even for the cases when matrix P is near rank-deficient. 

The described procedure allows getting shape functions of acceptable quality 
in cases where these cannot be obtained via direct inversion of matrix A. 
However, the solution of the minimization problem by QR factorization 
entails an increment in the computational cost, which can be up to twice as 
that in the solution via matrix A inversion if np » m (Demmel, 1997). This 
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extra cost may be not very significant in the overall time when the percentage 
of problematic clouds in the domain is low, but this cannot be ensured in large 
practical problems and, therefore, the application of the QR-based procedure 
should be considered in detail. For example, in a practical test case involving 
a half-span wing-body configuration with approximately 2.8M points (this 
problem will be presented later in Chapter 4), the iterative procedure triggered 
in about 70% of the total clouds (30% of the latter did not fulfill the 
requirements (i-iii)). Then, the increment in the computational cost can be 
considerably if QR factorization is used.   

3.6 Domain and local discretization in the FPM 

The spatial discretization requirements found in meshless methods can be 
relatively low when compared with those in conventional mesh-based 
techniques. However, the spatial distribution of the discrete points composing 
the analysis domain and the local clouds continue playing an important role. 
In spite of the fact that procedures intended to adjust the local approximation 
(such as that presented in the previous section) help to minimize 
discretization-related issues, the quality of the resultant approximation is still 
proportional to the quality of the distribution of points on which it is based. 

The domain and local discretization procedures used in this work are 
described below. Details regarding the computational cost of the methods are 
given in the context of a practical test case in Section 5. 

3.6.1 Domain discretization 

Meshless approximations have advantages regarding the problem 
discretization because conformity, topology and the final quality of the 
partition generally are not a matter of concern. Thus, suitable point 
distributions filling the analysis domain can be generated more quickly and 
efficiently by using dedicated algorithms. As it was first shown in (Löhner & 
Oñate, 1998), suitable point discretizations can be generated at least one order 
of magnitude faster than in mesh-based methods by avoiding many of the 
costly checks required to ensure the validity of the resultant volume partition 
(an advancing-front based technique was adopted in that work). Besides the 
generation time, meshless discretizations may also have advantages regarding 
the preparation of the computational models. As simpler CAD representations 
can be often employed for point generation, the developing time can be 
reduced considerably. Therefore, any discretization technique employed with 
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meshless solvers will profit from these characteristics. In our experience, a 
highly effective technique is that developed by Calvo (Calvo, 2005) 40. 

In this method, the point generation starts from a closed boundary grid 
(internal isolated surfaces are also allowed) and after an initial triangulation 
new points are inserted in the centre of empty spheres filling  through an 
optimization driven point insertion procedure; see (Idelsohn, Calvo N. & 
Oñate, 2003). This incremental quality technique, based on unconstrained 
Delaunay tetrahedralization, allows achieving a quality point discretization 
with approximated cost O(n). The resulting discretization is suitable for FPM 
computations and does not require further optimization (cosmetic) procedures 
(though it can benefit from them). It should be noted that this technique has 
additional advantages regarding model preparation; e.g. the point spacing 
inside the domain does not need to be specified, as it is automatically assigned 
by computing linear variations between input grids. Moreover, a desired grid 
spacing can be locally enforced by introducing internal surface grids (h-
layers) which can be isolated and non-conformal. These elements are 
removed from the final discretization but the nodes are conserved. This gives 
ample ability to the generation technique to cope with the discretization of 
complex geometries, but not at the expense of a higher model complexity. 

3.6.2 Local cloud construction 

Given a global point discretization of the analysis domain, there are different 
criteria in the literature that can be applied to define the size, shape and spatial 
structure of local clouds suitable for FPM approximations. Some of the 
techniques proposed belong to geometrical intuitive considerations related to 
the cloud symmetry, and are mainly intended to have a proper support in the 
different spatial directions (e.g. selection of points by quadrants, variance of 
point distances, etc.). Other techniques introduce mathematical concerns with 
basis on the structure of the matrices involved in the minimization problem, 
focusing for instance on conditioning and invertibility features  (Han & Meng, 
2001; Liu, Li & Belytschko, 1997). Mixed geometrical and mathematical 
considerations are also employed. Among them, criteria based on the overlap 
within approximation subdomains, or related with the stability of the point 
collocation procedure and positivity conditions have been proposed; see for 
instance (Liszka, Duarte & Tworzydlo, 1996), (Xiaozhong, Gang & Aluru, 
2004) and (Boroomand, Tabatabaei & Oñate, 2005). While effective in 

                                                            
40 This method is coded into a software package named MeshSuite (see 
http://www.cimec.org.ar), which can be linked as a library into the computation code 
or can be used as an external program through command line arguments or a 
graphical interface. Recently, this methodology has been incorporated into the GID 
pre-post processing software developed by CIMNE (GID, 2013). 
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particular contexts, most of these procedures often fail to meet other important 
practical requirements. In this regard, the robustness, computational cost and 
the ability of the procedure to deal with general geometries with no need of 
manual input should be also of the major concern.  

A technique striking a good balance between all these requirements was 
proposed in (Löhner, Sacco, Oñate & Idelsohn, 2002), and we follow the main 
lines defined therein. The construction of the local clouds and the numerical 
approximation is this work is described below. 

Given a point discretization bounded by a triangulation with associated 
geometrical data, for each star point xi in : 

a. A set of neighboring points within a given radius is sought by using a 
spatial search algorithm based on bins. These points are employed to 
generate an initial local cloud. 

b. The points in the initial cloud are filtered in order to match boundary 
restrictions (needed to ensure physical compatibility in the local 
cloud). Basically, if a ray from xi to another point xj in the local cloud 
pierces a boundary, the point xj is discarded. If the resultant number 
of admissible points is lower than a given threshold (our experience in 
3D problems has shown 120 points to be enough) the search radius is 
increased and the procedure returns to step (a). 

c. An unconstrained Delaunay grid is generated with the admissible 
points and the layer of nearest neighbors of xi is retained and stored41. 
This guarantees the necessary overlapping of the clouds in order to 
cover the complete analysis domain42. Furthermore, as will be seen 
throughout this work, the information concerning the first layer of 
neighboring points for each star point is very useful to implement 
several computational procedures. 

After generating the first layers of neighboring points, the numerical 
approximation is computed (recall that complete quadratic polynomial bases 
are used). For each star point xi in : 

d. A local cloud is initialized with its layer of nearest neighbors43. If the 
number of points is lower than npmin (about 30 in 3D), further points 
are added from an auxiliary neighbors list. This auxiliary list is 

                                                            
41 When boundary points are involved in the local cloud, a pass of alpha-shape is used 
to clean the resultant cloud connectivity with a very low extra cost. 
42 Non-overlapping clouds of points typically lead to a loss of accuracy and 
robustness, especially in problems involving conservation laws. The partial loss of 
information from the surroundings occurring in disconnected clouds can explain this 
behavior to a large extent. In this case, the normal propagation of variables inside the 
problem domain and the fulfillment of CFL conditions can be at risk. 
43 Note that always npinitial = max(npmin;number of Delaunay nearest neighbors). 
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constructed by adding points according to layers and ordering them 
by increasing distances from xi. 

e. The numerical approximation is solved by applying the automatic 
procedure described in Section 3.5. If additional points must be 
introduced in the local cloud, these are obtained from the auxiliary 
neighbors list generated in step (d). 

The procedure described above has proven reliable in general problems in 
which the data available are the coordinates of the points and a boundary grid 
delimiting the analysis domain. However, the steps involved require some 
operations per node that are computationally intensive (e.g. ray-face 
intersection, local triangulation, sorting and matrix inversion in the 
minimization problem). Although these are totally independent and important 
speed-ups can be achieved by running in parallel, it is customary to simplify 
the procedures whenever possible. For instance, the information about 
connectivity between points known from a previous domain discretization 
stage can be employed to speed-up the computations. This is particularly used 
in fixed domain problems or when moderate movement/deformation is 
involved. In these cases, the graph of nearest neighbors can be obtained from 
the global cloud connectivity44 after applying a filtering stage to enforce 
boundary restrictions (step (b)). In this way, a considerably time saving can be 
achieved by avoiding a local Delaunay gridding at each cloud.  

Regarding the filtering stage (step (b)), in simple domains this can be 
performed with a low computational cost by using only visibility criteria; see 
for instance (Ortega, Oñate & Idelsohn, 2007). In more complex cases 
involving multiple surfaces and corners, this simple procedure may lead to 
indeterminacies for some points and more robust intersection algorithms 
should be employed. The implementation in the present work proceeds as 
follows. Firstly, closest boundary faces (triangles) to xi are sought within the 
radius of the cloud by using bins. These faces are filtered according to a 
visibility criterion and, finally, every ray from xi to another point in the local 
cloud is checked for intersection45 with a face by using a brute force approach. 
As only a few nearby faces are usually involved (if the discretization is not 
very coarse), the computational cost is not high.  

It should be noticed that when information on the global connectivity of 
points is available, only visibility criteria can be applied to keep the 
computational requirements low (the global connectivity ensures to some 
extent the compatibility of the nearest points). If no connectivity information 
is available, for example after performing local adaptive refinement, the ray-
face intersection procedure should be employed. 

                                                            
44 The construction and storing of the required data structures can be performed very 
efficiently from the global cloud connectivity; see for instance (Löhner, 2001). 
45 The intersection algorithm employed follows the lines given in (Sunday, 2001). 
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3.7 FPM data structure 

The data structure used to store the problem information plays an important 
role in the efficiency of the numerical implementation. A suitable definition of 
this structure can help to reduce memory storage requirements and facilitate 
the access to data during execution. In this section some details about the data 
structure used in this work are given in order to complete the description of 
the basic FPM approach. 

The basic information required in typical computations can be organized into 
point-based arrays of dimension (#,npoint) when the data is determined a-
priori (e.g. point coordinates, problem variables, physical properties, etc.) and 
linked lists can be used if the data length is not known in advance or varies 
during the simulation. In the latter case two vectors are employed in this 
work; one is used to store the data (an estimation of the maximum size should 
be given) and the other allows to access the data stored in the latter by using 
the initial and final position of each item. See for instance (Löhner, 2001) for 
a general description of linked lists and efficient algorithms for generating and 
organizing typical data structures. 

Using linked lists, in this work the local cloud connectivity is stored in a 
vector clouds(maxsize). There, the star point and the surrounding neighbors 
for each cloud are ordered consecutively in memory. This vector is initially 
dimensioned as maxsize=npmax*npoint where npmax is a user-specified 
constant (typically 50). However, additional free space can be reserved in 
cases in which the total number of points in the domain can increase, for 
instance when performing h-adaptivity. The vector clouds is accessed by 
means of two vectors, np_clouds(npoint+1) and np_first(npoint). The 
vector np_clouds stores the initial and final position in clouds of the data 
concerning each cloud in the domain. The vector np_first only allows 
retrieving the data in the nearest first layer of a point ipoin (this is frequently 
required during execution). Examples of use are given below. 

!   Local cloud for "ipoin" 
    do j = np_cloud(ipoin)+1,np_cloud(ipoin+1) 

jpoin = clouds(j)  
    end do 
    
!   First layer of "ipoin" including the star point 
    do j = np_cloud(ipoin)+1,np_ first(ipoin) 

jpoin = clouds(j)  
    end do 
 
!   First layer "ipoin" excluding the star point 
    do j = np_cloud(ipoin)+2,np_first(ipoin) 

jpoin = clouds(j)  
    end do 
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The metric information corresponding to each cloud is stored similarly. To 
this end, an array shapes(ns,maxsize) is used for the coefficients aij and bij in 
each cloud. If only the approximation and its first derivatives are stored, then 
ns=4. Another useful information, computed when constructing the clouds and 
used repeatedly during computations, is the distance from the star point to 
each point of the cloud. The inverse distances are stored in a vector  
inv_dist(maxsize) (with exception of the star point). For example,    

!   Metric coefficients and inverse distances for cloud "ipoin" 
    do j = np_cloud(ipoin)+1,np_cloud(ipoin+1)  

aij   = shapes(1,i)    ! shape function 
bij_1 = shapes(2,i)    ! derivatives 
bij_2 = shapes(3,i) 
bij_3 = shapes(4,i) 
inv_dist_ij = inv_dist(j)  ! 1 / ||xj‐xi|| j ≠ ipoin     

    end do  

In spite of the fact that the final length of the vectors does not differ much 
from the estimated one, these can be packed and resized after generation. This 
allows to remove blanks between clouds where np<npmax and reduces the 
required memory storage. However, if it is expected that the data will change 
dynamically during the computations (e.g. as occurs when h-adaptive 
procedures are employed), it may be useful to conserve the free space to 
accommodate new data or modify the existent clouds.  

Using the data structure described above, typical operations such as the 
computation of the gradients are performed as follows 

!   gradient of a scalar variable var(n) at a point "ipoin" 
    gradvar(1:3) = 0.0 
    do j = np_cloud(ipoin)+1,np_cloud(ipoin+1) 
       jpoin = clouds(j) 
       vpoin = var(jpoin) 
       gradvar(1) = gradvar(1) + shapes(2,j)*vpoin 
       gradvar(2) = gradvar(2) + shapes(3,j)*vpoin 
       gradvar(3) = gradvar(3) + shapes(4,j)*vpoin 
    end do  

It is important to point out that a suitable ordering of the points is required 
to achieve a satisfactory performance during execution. The ordering 
required should be in accordance to the manner in which the data will be 
retrieved and, to this end, the information of the local cloud connectivity 
(or global connectivity if available) can be used.  

The procedure adopted here follows the main lines given in (Flores, 
Ortega & Oñate, 2011). Starting with a first point (arbitrary), consecutive 
numbers are assigned to its first layer neighbors. Once all of them have 
been renumbered, the procedure is repeated starting with the nodes just 
renamed and renumbering their neighbors. The cycle is repeated until all 
the nodes in the mesh have been assigned a new numbering. When 
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performing operations on the clouds (which are processed in the same 
order as during the renumbering) the chances of a cache miss are reduced 
because neighboring nodes are stored close to each order in the memory. 
The result of this renumbering procedure may have some dependence on 
the choice of the first node. This can be reduced by running several 
renumber passes taking as first node at each iteration the last one from the 
previous pass (Löhner, 2001). 

3.8 Concluding remarks 

The basic aspects of the FPM methodology have been studied in this chapter 
with attention to the particular characteristics of the method which have an 
impact on the robustness, accuracy and computational cost of practical 
applications. 

Issues regarding the sensitivity of the numerical solution to adjustable 
parameters in the approximation were examined first. These parameters, 
mainly related to those defining the shape of the weighting function, the 
number of points in the local clouds and the order of the polynomial basis, 
have been studied in order to determine their effects on the numerical 
solution, as well as suitable ranges of application and their ability to improve 
the local approximation using automatic adjustments. The analyses performed 
determined suitable ranges for the parameters and indicated those that can be 
adjusted to improve the local approximation. These are the parameter w of the 
weighting function (which affects the weight distribution along the local 
support) and the number of points in the local clouds (np). The proposed 
adjustment procedure assumes that a user-specified initial setting is given 
(with the aim to be optimal in the specified ranges), and modifies the local 
parameters to guarantee satisfactory accuracy and robustness. This procedure, 
which is carried out automatically during the construction of the local clouds, 
has demonstrated to simplify the problem setting while increasing the 
robustness of the resultant FPM approximation.   

A grid convergence analysis was performed in order to investigate the 
accuracy of the FPM approximation. The study showed that the convergence 
rates of the method are within the expected and, in addition, allowed to 
identify issues related to the approximation settings and the geometrical 
characteristics of the clouds that can affect considerably the accuracy of the 
approximation. These results were not only useful to infer the performance 
attainable in practice, but also to decide on the suitability of higher-order 
approximations. In this concern, the numerical tests suggest that quadratic 
bases can achieve the best compromise between accuracy, robustness and 
computational cost. The use of p-adaptive procedures to improve the local 
approximation has been considered less efficient than the adjustment of 



59 
 

parameters w and np. Thus, in this work it was decided to use constant basis 
functions. 

Various aspects of the global point discretization and the construction of local 
clouds have been also discussed in this chapter, as well as numerical 
implementation details. This complements and rounds off the description of 
the basic FPM methodology. 
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4 INVISCID FLOW SOLVER 

A Finite Point methodology for solving the inviscid compressible flow 
equations is presented in this chapter. The flow solver is based on a central-
type differencing scheme, biased by the introduction of an upwind numerical 
flux which provides convective stabilization. Following the ideas in the so-
called Godunov-type methods, the numerical flux is calculated by means of an 
approximate Riemann solver, for which the Roe solution is employed. This 
choice leads to a robust scheme with enhanced wave capture capabilities, but 
only first-order accurate. The spatial accuracy is increased through slope-
limited MUSCL reconstruction (van Leer’s approach). The time integration of 
the resulting semi-discrete equations is performed explicitly by means of a 
multi-stage time marching scheme. Convergence acceleration techniques are 
also employed in order to speed-up the computation of steady flows.  

This flow solver is robust and accurate, and meets well the requirements of 
general application problems. However, there are particular situations, often 
arising in practice, where high-accuracy results are not mandatory, and the 
computational time is of major concern. In such cases, faster, lower-fidelity 
schemes are usually preferred. In order to address this need, two additional 
stabilization schemes are also proposed. These schemes only differ from the 
previous upwind approach in the definition of the numerical flux; thus they 
are implemented with easiness into the solution algorithm described above. 

This chapter is organized as follows. The inviscid flow equations are 
presented first in Section 4.1 and the spatial discretization scheme is described 
in Section 4.2. There, theoretical foundations and practical implementation 
aspects of the low-order scheme and the higher-order extension are discussed. 
Also in the same section, two alternative stabilization schemes, appropriate 
for faster computations, are proposed. The time discretization of the equations 
is described in Section 4.3, and final remarks on accuracy, conservation issues 
and computational implementation of the FPM flow solver are given in 
Section 4.4. In order to complete the description of the basic solution scheme, 
and focusing on inviscid flow problems, the application of boundary 
conditions is addressed in Section 4.5. Finally, numerical examples involving 
typical verification and validation test cases are provided in Section 4.6 to 
illustrate the basic performance (especially accuracy) of the methodology. 



62 
 

4.1 The Euler equations 

Inviscid compressible flows can be modeled by the Euler equations. These are 
a system of first-order hyperbolic equations stating mass, momentum and 
energy conservation, that can be written in several equivalent forms. 
Assuming an Eulerian frame of reference, these equations can be expressed in 
conservative differential form by 
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where U is the state vector (which contains the conserved quantities) and Fk is 
the advective flux vector in the spatial direction xk. These vectors are given by 
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where , p and et denote, respectively, the density, pressure and total energy 
(internal+kinetic) of the fluid; ui is the i-component of the velocity vector, ik 
is the Kronecker delta and indices i and k = 1,3 for 3D cases. The following 
state relation for a perfect gas closes the system of equations 

   11 2t k kp e u u        (4.3) 

in which  = Cp/Cv is the specific heats ratio (typically  = 1.4 for air). The 
solution of Eq. (4.1) in a closed domain  with boundaries  requires 
additional proper initial and boundary conditions. These are discussed later in 
Section 4.5. 

4.1.1 Quasi-linear form of the Euler equations 

Taking advantage of the fact that the flux vectors in Eqs. (4.2) can be written 
only in terms of the conservative variables U, it is possible to rewrite  
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where Ak is the Jacobian matrix of the flux vector Fk (Aij
k = Fi

k/Uj). 
Introducing Eq. (4.4) into Eq. (4.1), the quasi-linear form of the Euler 
equations is obtained 
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where Ak = A(U,xk,t)
46. Due to the fact that the equation system is hyperbolic, 

the jacobian matrices A have real eigenvalues and are diagonalizable, i.e. they 
have a complete set of linearly independent eigenvectors. Hence, it is possible 
to perform the following factorization 

 1A R R  (4.6) 

where R is a matrix whose columns are the right eigenvectors of the matrix A, 
the rows of R-1 are their left eigenvectors and  is a diagonal matrix whose 
entries are the eigenvalues of A. It is important to note that the Jacobian 
matrices Ak cannot be diagonalized simultaneously, but it is possible to do so 
with any linear combination of these matrices. Therefore, given an arbitrary 
vector direction n̂  it is possible to state 

 -1k kn A A R Rn n n n  (4.7) 

in which the matrices of eigenvectors and eigenvalues are calculated for the 
Jacobian matrix in the direction of the arbitrary vector , i.e. An. The 
Jacobian matrices Ak and their associated eigenvectors and eigenvalues 
matrices can be calculated analytically if the fluid constitutive relations are 
specified. Explicit expressions for these matrices can be found in the 
literature; see for instance (Hirsch, 1990). 

The quasi-linear form of the Euler equations (4.5), combined with the 
decomposition (4.7), allows a complete description of the flow problem in 
terms of propagating waves (characteristic approach). This description is 
essential to describe the mathematical properties of the problem and plays an 
essential role in the design of numerical solution schemes, especially in 
schemes based on upwind type discretizations.   

4.1.2 Non-dimensional form of the equations 

Dimensionless forms of the equations are advantageous for two main reasons. 
On one hand, they simplify the computations and use of the results, since only 
the relevant flow and problem parameters are involved. Furthermore, they 

                                                            
46 It is interesting to note that the flux vectors are a homogeneous function of degree 
one (F1(U)= F1(U) being  an arbitrary constant). Thus, they satisfy the identity 
F1(U)=A1U and this allows writing the flux vector (4.4) introducing the Jacobian 
matrix inside the spatial derivatives. In spite of the fact that this procedure results in a 
mathematically equivalent problem, the equivalence of the discrete forms is not 
guaranteed. Some numerical schemes use this alternative form of equations. 

n̂
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allow to homogenize the magnitude of the different terms, which improves the 
numerical behavior.  

In order to obtain the dimensionless equations, each variable in Eq. (4.1) is 
divided by a collection of proper variables or constant terms whose product 
has the same dimension. The dimensionless variables adopted here are 
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where L is a characteristic length of the problem and, T and c = (RT)1/2 
are the undisturbed (upstream) density, temperature and speed of the sound, 
respectively. Note that the dimensionless velocities coincide with the Mach 
number along the different coordinate directions (M1,2,3). 

Replacing the dimensionless variables (4.8) into Eqs. (4.1), these results 
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with the following set of state and flux vectors  
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being  th e p    the total fluid enthalpy. Note that the Eqs. (4.9) are 

similar to Eqs. (4.1), but all the variables are now dimensionless. The 
application of this procedure to the thermodynamic ideal gas relations leads to  
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In this work, dimensionless freestream density and temperature are considered 
to be unity. Thus, the far-field pressure and the reference state vector result 

 1p    (4.12) 
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where the components of the freestream Mach number in the coordinate 
directions xk can be obtained for typical body axes by 
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being  and  the angles of attack and sideslip which define the attitude of the 
body under study. Hereafter, the tilde will be dropped from the non-
dimensional variables for the sake of clarity. Thus, all the variables and 
equations will be in non-dimensional form unless otherwise specified. 

4.2 Spatial discretization 

The semi-discrete problem in the FPM is obtained from the strong form of the 
flow equations (4.9) by replacing the continuous spatial variables by their 
discrete approximations (Eqs. (1.11) and (1.12)). Then, it is possible to write 
for each point xi in  
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where ˆ
i ij jaU U  (sum in j) is the discrete approximation at xi of the 

conservative variables vector, k k

i iF = F (U )  is the k-component of the 

convective flux (see Eqs. (4.10)), and aij and bij are the cloud metric 
coefficients given by Eqs. (1.19). 

Taking advantage of the partition of unity properties of the FPM (cf. Section 
3.1.3), it is possible to express 
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Hence, replacing Eq. (4.16) in Eq. (4.15), the semi-discrete system results 
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where the term involving the derivatives of the convective flux vector can be 
shown to be equivalent to a central approximation at point xi

47. 

4.2.1 The low-order solution scheme 

Being the discrete convective term in Eq. (4.17) equivalent to a central-type 
discretization, this can be affected by spurious instabilities caused by odd-
even decoupling at the grid level. Typical approaches to prevent this behavior 
usually involve upwind discretizations or, alternatively, use some kind of 
numerical diffusion to counter the decoupling mode48. In order to implement 
either approach in an unified manner, a more suitable form of Eq. (4.17) is 
obtained by scaling by a half the stencil of points used for its calculation 
(Praveen, 2004). This leads to 
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where Fk
ij

 is a numerical flux computed at the midpoint of the ray (edge) 
connecting the star point xi to another point xj in i (see Figure 12). The 
numerical flux introduced in Eq. (4.18) provides a means to stabilize the 
central-type discretization employed for the convective terms.  

The basic solution approach adopted in this work is based on an upwind 
definition of the numerical flux. The scheme follows the general lines 
proposed in (Löhner, Sacco, Oñate & Idelsohn, 2002), where the flux is 
computed by solving an approximate Riemann problem along the edge 
connecting the points xi and xj (flux-difference splitting). This allows the flux 

                                                            
47 A total equivalence of this term with a central finite-difference representation can 
be demonstrated in the 1D case, using a regular distribution of points and symmetric 
clouds with 3 points, cf. (Fischer, 1996). 
48 The stability of numerical schemes of the form of Eq. (4.17) can be also studied in 
the more general analysis framework of Local Extremum Diminishing (LED) 
schemes (Jameson, 1993, 1995). According to this theory, the local maxima of the 
flux does not increase and local minima does not decrease if the coefficients bij are all 
non-negative (positivity condition). From this point of view, in the FPM the 
positiveness of the metric coefficients, and thus the non-oscillatory character of the 
resulting scheme, is not guaranteed. The introduction of additional stabilization terms 
(or upwinding) can be seen as a modification of the weight coefficients to satisfy the 
positivity condition. This approach facilitates the analysis and design of non-
oscillatory discrete schemes. 
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function to distinguish the contributions arising from negative and positive 
waves, thus providing the required upwinding direction for each equation. 
Moreover, this choice has the advantage that the approximate Riemann solver 
provides information concerning the exact solution of the problem, giving 
robustness and excellent shock capturing properties to the numerical scheme. 
Among the different possibilities that exist for flux splitting, the approximate 
Riemann solver of Roe is adopted here (Roe, 1981). Relevant aspects about 
approximate Riemann solvers and the solution procedures are given below. 

 

Figure 12. Computation of the numerical flux in a cloud of points. 

4.2.1.1 Approximate Riemann problem 

The Riemann problem is one of the few problems involving the unsteady 1D 
Euler equations which has exact solution. Considering any pair of points xi 
and xj, this problem can be defined by the following initial condition 
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where UL and UR are constant state vectors (Godunov’s approach) and xij is a 
point located midway between xi and xj. For t > t0, the interaction between the 
initial states gives rise to the three basic types of flow discontinuities; a shock 
wave, an expansion fan and a contact discontinuity, whose development can 
be solved analytically. Figure 13 sketches the Godunov’s problem at t = t0. 

 
Figure 13. Piecewise constant initial condition for the Riemann problem at xij. 

The solution of the Riemann problem fully describes (in space and time) the 
ratio of the variables across the discontinuities, their spatial position and speed 
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of propagation. Hence, the interface flux Fij=AU(xij) can be obtained; see for 
instance (Laney, 1988). The latter can be written as  

    ij
1 1

2 2L R R L   F F F A U U  (4.20) 

where |A| is the absolute value of the Jacobian matrix , which can be obtained 
as |A|=R||R-1 (cf. Section 4.1.1). It is important to note that, due to the 
similarity of the solution of the Riemann problem, the numerical flux (4.20) is 
constant along a line x = xij in the (x,t) plane.   

Unfortunately, the solution of the Riemann problem allowing to compute Eq. 
(4.20) in an exact manner requires solving a system of non-linear algebraic 
equations which can be very expensive for applications such as in Eq. (4.18). 
Thus, a more affordable approach is to use approximate Riemann solutions, 
where the non-linear flux function F(U) is locally linearized in the governing 
equations (4.5), i.e. the Jacobian matrix A is considered to be constant.  

In order to perform such linearization, a plane connecting the states UL and UR 
can be used (Laney, 1988). That is,  

  L RL L( ) ( )  F U F U A U U  (4.21) 

where the matrix ARL satisfies 

  R RL R L( ) ( )L  F U F U A U U  (4.22) 

Eq. (4.22) involves (dim+2) equations concerning the components of the flux 
vector F(U) and (dim+2)2 unknowns, which are the components of the 
Jacobian matrix ARL. Thus, there are an infinite number of planes containing 
the states UL and UR. Fortunately, based on a result derived from the mean 
value theorem in the scalar case, it is possible to replace the secant plane by 
averaged tangent planes. Hence, it can be supposed that 

    RL RL L R A A U A U ,U  (4.23) 

in which URL is an intermediate state between UL and UR. Then, introducing 
the averaged Jacobian matrix (4.23) into Eq. (4.22), the unknowns of the 
problem are reduced to the (dim+2) components of the intermediate state URL 
and a well-posed system is obtained. Moreover, the statement (4.23) has 
another important advantage as any expression based on A(U) remains true 
for A(ULR), by replacing U with the intermediate state ULR. This allows to use 
the expressions of the Jacobian matrix, the eigenvectors and eigenvalues 
derived for the general non-linear case to the linearized problem. 
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4.2.1.2 Roe averages 

In order to find an intermediate state vector ULR suitable for calculating the 
averaged Jacobian matrix, Roe proposed the following conditions (Roe, 1981) 

i.    L R L Rfor A U ,U A U U ,U U   

ii.  L R is diagonalizable with real eigenvaluesA U ,U  

iii.   L R R L R L Rfor any( ) ( )LA U ,U U - U = F U F U U ,U  

These requirements, collectively named as property U in the original paper, 
imply (i) consistency of the resulting scheme with the Eqs. (4.5), (ii) 
hyperbolicity of the linear scheme, and the satisfaction of conservation and 
Rankine-Hugoniot conditions (iii); cf. (Hirsch, 1990). These requisites make 
the approximated solution obtained matches the exact Riemann solution when 
the states UL and UR are connected by a single discontinuity (shock or 
contact). However, expansion fans cannot be reproduced as the waves in the 
approximate solution have zero spread. In such cases, the solution will admit 
the appearance of expansion shocks, which violate the entropy conditions. 
Some procedures to overcome this behavior are discussed in Section 4.2.1.2.2. 

The procedure adopted by Roe to compute the intermediate variables and the 
averaged Jacobian matrix focuses on the fulfillment of the requirements (i-iii), 
but also on the efficiency of the solution process. With these aims, he 
proposed a transformation of the original problem, recognizing that the state 
and flux functions are quadratic in a new set of variables given by 

 
T1/2 1, ,u h   w  (4.24) 

which notably simplifies the solution of Eqs. (4.22), cf. (Roe, 1981). The 
matrix A(ULR) thus obtained is similar to the typical Jacobian matrix A, but 
changing the variables by the following density averages 
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 (4.25) 

where h is the specific total enthalpy of the fluid, u denotes the velocity and 
subscripts i and j denote the left (L) and right (R) states, respectively. 
Additionally, the average speed of sound results  
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   11 2ij ij ij ijc h u u    (4.26) 

Note that the Roe variables can be calculated in a computationally more 
efficient way with the help of an auxiliary parameter r = (i/j)

1/2 (Hirsch, 
1990). The latter allows rewriting Eqs. (4.25) as 
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 (4.27) 

In order to obtain the positive Jacobian matrix required for constructing the 
numerical flux in Eq. (4.20), the factorized form of Eq. (4.6) can be employed 
along with the Roe’s averaged variables. An efficient procedure to perform 
this calculation for the multidimensional case is presented below. 

4.2.1.2.1 Calculation of the Roe’s numerical flux 

In the multidimensional case, the upwind numerical flux (4.20) should be 
computed along edges connecting pairs of points xi and xj in the local cloud 
(see Eq. (4.18)). This directional flux can be expressed as 

    ˆ
1 1 ˆ( , )2 2

k k k k
ij j i n i j j i ijn  F = F F A U U U U  (4.28) 

being ˆ
ijn  a unit vector in the direction of the edge lij = xj-xi and | ˆ ( , )

n i j
A U U | 

the absolute value of the Roe matrix calculated in the same direction. 
According to the hyperbolicity properties of the Euler equations (see Section 
4.1.1), Eq. (4.28) can be computed by 

 1
ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , )n i j n i j n i j n i j

A U U R U U U U R U U  (4.29) 

with the diagonal matrix of eigenvalues given by 

  1 2 3 3 3| |,| |,| |,| |,| |diag       (4.30) 

where 
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and the expressions for the remaining right and left eigenvectors can be found 
in the literature, see for instance (Hirsch, 1990). Note that all the variables in 
Eq. (4.29) correspond to the averaged Roe variables calculated for the 
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constant states Ui and Uj. Then, the upwind (diffusive) contribution of the 
numerical flux (4.28) can be obtained by 

 1
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )n ij j i n ij n ij n ij ij

   D A U U U R U U R U U   (4.32) 

in which Uij = (Uj - Ui) is the difference state vector.  

In spite of the fact that explicit expressions are available for the construction 
of the upwind term (4.32), its computation involves matrix-matrix and matrix-
vector multiplications which can demand a considerable computational effort. 
In order to carry out these calculations more efficiently, a closed expression is 
derived in (Turkel, 1988). This can be written as  
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 where 
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with  
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and 

    1 1 2 2 1 2
1 1 1, ,2 2 2

k k
ij ijq u u             (4.36) 

Note that the expressions above can be recast in one and two-dimensional 
forms by cancelling all the variables in the remaining Cartesian components. 
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4.2.1.2.2 Entropy correction 

In the particular case that a transition through a sonic point occurs in a flow 
expansion, the Roe solver will allow the appearance of an expansion shock 
(pressure and density decrease across the shock), a solution which does not 
comply with the second principle of thermodynamics. In order to overcome 
this unphysical behavior, most numerical techniques locate the sonic 
expansion (wave speeds→0) and diffuse the shock into expansion fans. This 
can be achieved by limiting the minimum value of the wave speed, i.e. 
limiting the eigenvalues to a constant value min > 0. In general, the minimum 
wave speed is set to a certain small fraction of the spectral radius of the 
Jacobian matrix (A). This can be implemented by enforcing (Turkel, 1988) 

  
1 1 2

2 2 2

3 3 1

max , ( )

ˆmax , ( ) with

max , ( )

ij iju c

  

  

  

    

       

    

A

A A

A

  (4.37) 

where the arbitrary constants can be set approximately to 1  0.1 and 2  
0.2. It is important to note that, in addition to the possible appearance of 
expansion shocks, vanishing eigenvalues can cause misbehaviors and 
instabilities in other flow situations found in practical computations. For 
instance, the acoustic eigenvalues 1 and 2 vanish at sonic points and the 
eigenvalue 3 goes to zero at stagnation points (or boundary layers 
approaching the surface wall). These situations may require some special 
setting of the arbitrary constants to avoid instabilities and/or excessive 
numerical diffusion (particularly if 1 is large within boundary layers). 

A more accurate correction is proposed in (Harten & Hyman, 1983). There, 
the eigenvalues are limited according to 
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 (4.38) 

where k corresponds to the eigenvalues (4.31) calculated for the Roe 
averaged variables and L

k and R
k are the eigenvalues calculated at the points 

xi and xj, which define the left and right constant states of the Riemann 
problem. Although this method leads to slightly better results, the 
improvement observed in practical problems no always compensates for the 
extra cost. This is the reason why the limiting (4.37) is adopted in this work. 
Other entropy corrections can be found in the literature, see a comparative 
study among the most typical methods in (Kermani & Plett, 2001).    
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4.2.2 Increasing the spatial accuracy 

The upwind scheme proposed in the previous section is non-oscillatory but it 
can only achieve first-order accuracy. Given that this does not meet the 
requirements in practical computations (at least second-order accuracy is 
needed when the flow is smooth), the spatial accuracy of the scheme should 
be increased. As observed by van Leer, the accuracy of Godunov type 
schemes results only from the projection stage, thus it can be improved by 
replacing the zero-order extrapolation (UL=Ui and UR=Uj) used to compute 
the upwind flux at xij with higher-order estimates (Van Leer, 1977, 1979). 
Methods using this approach are known in the literature as MUSCL49 
(Monotone Upstream-centered Schemes for Conservation Laws). 

Following the MUSCL approach, backward and forward-biased higher-order 
estimates at the interface point xij (Ui

+,Uj
-) are constructed by using 

information of neighboring cells. Then, these approximated values are 
introduced in Eq. (4.28) replacing the constant states (Ui,Uj)

50, i.e. 

    ˆ
1 1 ˆ( ) ( ) ( , )2 2

k k k k
ij j i n i j j i ijn       F = F U F U A U U U U  (4.39) 

When the flow is smooth, the introduction of the extrapolated states in Eq. 
(4.39) reduces the jump in the variables through the interface. This makes 
the upwind dissipative contribution to vanish while the scheme recovers its 
central character (second-order accuracy). However, this procedure cannot 
guarantee an oscillation free solution around discontinuities. As stated by 
Godunov’s theorem, monotonicity cannot be achieved if the order of 
approximation of the scheme is higher than linear (Godunov, 1959). 
Therefore, the accuracy should be reduced in such cases.  

In the context of MUSCL extrapolation, the order of the scheme can be 
modified by the introduction of non-linear slope limiters into the 
reconstruction process. Basically, these limiters recognize local extrema of the 
solution and automatically switch the high-order extrapolation to a zero-order 
extrapolation (or an admissible value in between). This mechanism allows 
changing to the low-order scheme around discontinuities while preserving the 
order of accuracy where the flow is smooth. Next, the extrapolation procedure 
is described and two possibilities to calculate the limiters are presented. 
Practical implementation aspects are also discussed. 

                                                            
49 This name was coined after the first code developed by van Leer implementing this 
methodology (Van Leer, 1979). 
50 In practice, the computation of the extrapolated flux vectors at the interface (Fk 
(Ui

+) and Fk(Uj
-)) can be avoided by assuming zero-order extrapolation in this part of 

the upwind flux, i.e. (Fk (Ui) and Fk(Uj). This simplification reduces the 
computational cost and has not demonstrated to have an effect on the solution 
accuracy. 
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4.2.2.1 Higher-order accurate estimates 

Assuming that the function U(x) is smooth enough in the vicinity of xij, it is 
possible to state the following leftward-biased reconstructions (Laney, 1988)   

 Linear centered reconstruction 

  ( ) j i
i ix x - x
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
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U U  (4.40) 

 Linear backward reconstruction 
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 Quadratic backward reconstruction 
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Then, defining x = xj - xi and taking x = xij = xi + x/2, it is possible to 
combine the expressions (4.40), (4.41) and (4.42) into 
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where Ui
+ is the backward approximation to U(xij). The parameter  controls 

the degree of the extrapolation, for instance  = -1 leads to a second-order 
backward approximation for Ui

+ and  = 1 or  = 1/3 lead to second-order 
centered and a third-order approximation, respectively. 

Rightward-biased approximations for Uj
- can be obtained similarly by 

 Linear centered reconstruction 
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 Linear forward reconstruction 
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 Quadratic forward reconstruction 
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which merge at the interface point into  
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being Uj
- a forward approximation to U(xij). Like in the previous case, the 

parameter  allows changing the order of the reconstruction and, thus, the 
accuracy of the resulting scheme. Figure 14 sketches backward 
reconstructions for the left state of the Riemann problem at xij. Forward 
extrapolations perform similarly for the right state. 

 
Figure 14. Leftward-biased extrapolations of the variables at the point xij (Ui

+). From 
left to right: zero-order, linear and quadratic extrapolations. 

As it can be noticed in Eqs. (4.43) and (4.47), higher-order reconstructions 
need information from adjacent points xi-1 and xj+1 located to the left and right 
of the interval in which the approximate Riemann problem is solved. This 
information can be easily obtained in regular structured point distributions, 
but the procedures are not straightforward in unstructured discretizations. In 
such cases, several techniques have been proposed in the literature; see for 
instance (Löhner, 2001; Lyra & Morgan, 2002). Following these ideas, the 
unknown state variables Ui

+ and Uj
- are computed from a centered 

approximation to the U at the points xi and xj, i.e. 
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where the vector lij = xj - xi links the points xi and xj and the solution gradients 
are directly computed from the actual FPM solution using Eq. (1.12). Note 
that it is not necessary that the additional virtual points coincide with another 
point in the discretization, and even can fall outside the analysis domain when 
Eqs. (4.48) are applied near boundaries. Although no special treatment is 



76 
 

required in this case, virtual points falling outside the fluid domain may bring 
about inaccuracies in the extrapolation process. As discussed below, this 
misbehavior can be mitigated in the limiting stage.   

 

Figure 15. Multidimensional reconstruction of the variables along an edge. 

4.2.2.2 Limiting 

The reconstruction given by Eqs. (4.43) and (4.47) does not guarantee a non-
oscillatory solution near discontinuities and, thus, non-linear limiters are 
introduced to control the extrapolation. Taking information from the local 
gradients of the solution (through the difference vectors Uij, Ui

- and Uj
+), 

the limiters check and correct the slopes involved in the reconstruction 
process following several criteria derived from TVD or LED conditions for 
non-oscillatory schemes; see for instance (Hirsch, 1990; Laney, 1988; Lyra & 
Morgan, 2002). Generally, the limiter functions approach unity when the 
differences at each side of the interface are similar (e.g. Ui

- ≈ Uij) and 
vanish when they are very different. These functions can be computed at 
each point by using the primitive, conservative or characteristic variables. The 
latter choice achieves the best results, but it is more expensive as it requires 
variables conversion. In the present work the limiters at each point xi and xj, 
i.e. si and sj, are calculated using the conservative variables (note that these 
are vectors of dimension 5 in 3D).  

Once the limiters are computed, the MUSCL extrapolation procedure given 
by Eqs. (4.43) and (4.47) is modified according to 
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 (4.49) 

where 0  s  1. Note that if the limiters are equal to the unity, Eqs. (4.49) 
lead to a high-order extrapolation of the variables Ui

+ and Uj
- at the interface 

and, thus, a higher-order accurate scheme is obtained. When the limiters are 
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equal to zero, the constant extrapolation is recovered and it leads to a low-
order monotone scheme. 

Two different approaches for computing the limiting functions are proposed 
next: the van Albada limiter (Van Albada, Van Leer & Roberts Jr, 1982), 
which is the standard approach in this work; and the minmod limiter, which is 
more restrictive and leads to a more robust though diffusive solution.  

4.2.2.2.1 Van Albada limiter 

The van Albada limiter at points xi and xj can be expressed by  
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where  is a very small positive constant which avoids possible divisions by 
zero when the surrounding flow field is smooth. In this work  ≈ 1.0E-5 is 
adopted (this value may have small effects on the numerical results).  

4.2.2.2.2 Minmod limiter  

The minmod limiter, based on the minimum modulus difference, allows 
increasing the robustness; however, the solution results more diffusive. This 
can be written as  
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With the objective to speed-up the computations, it is possible to use a 
simplified form of the minmod limiter by a direct replacement in Eq. (4.39) of 
the following limited difference (Flores, Ortega & Oñate, 2011) 
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4.2.2.2.3 Practical remarks 

As mentioned before, the extrapolation procedure given by Eqs. (4.48) can 
introduce information from outside the fluid domain in clouds having a point 
on the solid boundary. This may eventually cause inaccuracies in the 
computation of the limiters (thus, on the extrapolated variables and upwind 
fluxes), which often lead to a more diffusive solution near the boundaries 
(especially in coarse discretizations). In order to overcome this behavior to 
some extent the limiters of the affected nodes can be set to zero. In this way, 
the flux only takes information from the interior node of the edge, where the 
loss of accuracy is much smaller (Flores, Ortega & Oñate, 2011). 

Another problem commonly observed in practice is related to the non-
linearity introduced by the limiters in the solution process, which can penalize 
considerably the convergence of the solution to the steady state. As observed 
in (Lyra & Morgan, 2002), when the solution is very close to the steady state, 
the action of the limiters does not provide a tangible gain in accuracy. Thus, 
these can be frozen to overcome the limitation on the convergence rate. As 
suggested in (Flores, Ortega & Oñate, 2011), the limiters can be frozen when 
the residual has decreased (at least) three orders of magnitude with respect to 
its initial value; or it can be made progressively along the simulation. The 
latter choice allows reducing the computational cost as the problem 
approaches the steady state. 

Finally, it is sometimes found in practical analyses that the computation tends 
to be unstable during the first steps of the simulation. This is often caused by 
geometries having non streamlined features, for which the initial conditions 
are far from the steady solution. In such cases, the robustness can be improved 
by running a certain number of steps with the low-order scheme (i.e. setting 
all the limiters to zero) at the beginning of the simulation. This is usually 
enough to reach conditions closer to the steady state, so that the high order 
scheme converges smoothly. Note that this procedure may not be applicable 
in cases where the transient solution is of interest. 

4.2.3 Two reduced-fidelity models 

The central-type discretization employed for the convective terms in Eq. 
(4.18) can also be stabilized by the introduction of artificial diffusion terms. 
As a matter of fact, if a numerical flux as defined in Eq. (4.20) is introduced 
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into the semi-discrete scheme (4.18), working out the resulting expression it is 
possible to obtain  
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which is equivalent to the direct addition of an explicit diffusion term dij into 
the centered scheme. The diffusion term in Eq. (4.53) may be, for example, 
the upwind flux contribution given by Eq. (4.32) in the Roe-MUSCL 
approach, or any diffusive term helping to counteract the odd-even decoupling 
mode of the central scheme. 

The possibility to use different types of explicit diffusion terms in Eq. (4.53) 
gives flexibility to the numerical approach and allows meeting more 
effectively the especial requirements found in practical problems. For 
example, in many frequent applications of fluid flow solvers, the accuracy of 
the solution can be somewhat relegated in comparison to the computational 
cost, which becomes a variable of major concern. This situation can be found, 
for instance, when fast preliminary data production is required for design and 
analysis. In such cases, the use of simpler diffusion models can save 
considerable computation time and still provide accurately enough solutions.  

With this aim, two additional classic stabilization approaches are proposed. 
The first method combines a scalar dissipation model with MUSCL-limited 
differences. The second approach uses Jameson’s second and fourth order 
dissipation terms and a pressure-based flow detector. The low-fidelity 
stabilization models are described below and comparisons between these 
schemes and the Roe-MUSCL approach are presented in Section 5.4.  

4.2.3.1 Scalar dissipation scheme 

In this scheme the positive Roe matrix in Eq. (4.32) is replaced with an 
averaged spectral radius computed in the direction of the edge. The diffusive 
flux contribution results 

   ˆk + k
ij ij j i ijn  d U U  (4.54) 

where ˆ| |k k
ij ij ij iju n c     is the spectral radius of the Jacobian matrix along 

the unit vector ˆ
ijn  in the direction of the edge lij = xj - xi . The fluid velocity uij 

and speed of sound cij are simple aritmetic edge-averaged values, and the 
extrapolated state variables Ui

+ and Uj
- are computed through Eqs. (4.49). 

When limiters are zero (e.g. around discontinuities), the dissipative operator 
(4.54) is second-order and the accuracy of the resulting scheme is first-order, 
which guarantees monotonicity. If the flow is smooth and the limiters are 
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equal to unity, the dissipative operator is fourth-order (see for instance 
(Löhner, 2001)). This provides background dissipation without affecting the 
order of accuracy of the resulting scheme. 

4.2.3.2 Switched 2nd and 4th-order differences scheme 

The dissipation term in this scheme is composed by a blend of second and 
fourth order differences (Jameson, Schmidt & Turkel, 1981). Accordingly, the 
diffusive flux in Eq. (4.53) is expressed as  

    2 4 ˆk k
ij ij j i j i ijn         d U U  (4.55) 

where ij  and ˆ
ijn  shall be interpreted as defined above, 2 and 4 are non-

linear weights to be determined and  is a difference operator computed by 

  i j ij
  U U  (4.56) 

where the summation includes the cloud nearest (Delaunay) neighbors of xi. 
The weights 2 and 4 can be obtained as 
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being 2 and 4 user-defined dissipation coefficients and  a nodal flow 
detector. The latter can be evaluated in terms of the nodal pressures as 
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 (4.58) 

where index j also extends over the nearest neighbors of xi. 

The flow detector given by Eq. (4.58) is proportional to the curvature of the 
pressure field and allows introducing diffusion in a selective manner. It takes 
values near zero if the flow is smooth, and tends to unity around 
discontinuities in the pressure field. Hence, the non-linear weight 2 vanishes 
if the flow is smooth and only the fourth order contribution remains active. 
This provides some background dissipation (proportional to 4) without 
affecting the order of accuracy of the scheme. Contrary, in the presence of 
discontinuities the flow detector tends to unity. This activates the second-
order diffusion term (controlled by 2) and makes the resultant scheme to be 
first-order. At the same time, the non-linear weight 4 is switched-off to avoid 
counteracting the diffusive effect of the second-order operator. This avoids 
the appearance of further oscillations and instabilities.  
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The action of the non-linear weights 2 and 4 is in some sense similar to that 
produced by the limited differences in Eq. (4.54). However, this scheme 
incorporates user-defined dissipation coefficients 2 and 4, which allow a 
finer control on the amount of dissipation introduced. Furthermore, as nodal 
gradients are not required in Eq. (4.55), the computational cost is lower.  

4.3 Time discretization 

The time discretization of the semi-discrete scheme (4.18) is carried out 
explicitly by means of a multi-stage method. Assuming that the vector of 
conservative variables U is known at time t = tn, the right hand side of Eq. 
(4.18) (Ri(·)) can be calculated for each star point. Then, the solution 
advances in time according to the following s-stage scheme 

  
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 (4.59) 

where ti is an allowable local time increment and m are integration 
coefficients depending on the number of stages employed (s). For two, three 
and four-stages schemes these coefficients can be set as  

 2 stages  1 = 1/2 and 2 = 1.0 

 3 stages  1 = 3/5 , 2 = 3/5 and 3 = 1.0 

 4 stages  1 = 1/4 , 2 = 1/3 , 3 = 1/2 and 4 = 1.0 

and other possibilities can be found in (Jameson, 1993). 

As can be observed in Eqs. (4.59), the residual vector Ri is a function of the 
cloud nodal parameters Uj, which do not coincide with the approximated 

problem solution ( jÛ ) because the FPM does not interpolate nodal data. 

Therefore, a non-symmetrical linear system must be solved at the end of each 
time integration stage to recover the nodal parameters. According to Eq. 
(1.11), this system is 

 ˆ 1,
i

ij j ij
a i n

 
  U U  (4.60) 

where the mass-consistent like matrix resulting from the assembly of the 
approximation coefficients aij is diagonally dominant and typically well-
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conditioned. Hence, its solution can be obtained with little computational cost 
with a few Gauss-Seidel iterations. 

It should be noticed that the dissipation terms in Ri can be frozen at the first 
integration stage, thus reducing the computational cost without affecting the 
accuracy and robustness of the scheme. 

4.3.1 Stability requirements and time step computation 

The time step employed in explicit integration algorithms must be bounded by 
some stability criterion, which can be obtained, for instance, from a linear 
stability analysis (e.g. von Neumann analysis). In the numerical computation 
of conservation laws, such as the Euler equations, the fulfillment of an 
additional condition known as CFL (Courant-Friedrichs-Lewys) is also 
required. In short, this condition states that the numerical domain of 
dependence (the stencil of points involved in Ri) must contain the physical 
domain of dependence (bounded by the waves of the system in the x-t plane). 
This statement simply translates into an inequality restricting the maximum 
distance that any wave can travel in a single time step (Laney, 1988). Thus, 
the inequality which bounds the time step for linear stability and the CFL 
condition can be merged and meet simultaneously.  

In FPM discretizations, a general stability criterion is difficult to derive 
because the distribution of points in a cloud can be highly random, and the 
metric coefficients not only depend on the spatial position of the points, but 
also on other parameters of the approximation (see Section 3.4). Thus, 
approximated stability limits inferred from simpler discretizations should be 
employed (this also happens with most discretization approaches). 

In this work, with basis on well-known results for simple regular one-
dimensional point distributions, the local time increment is computed by 

 t min
ˆ

ji

i ik k
i ij i

j
u n c

 
    
  


l

 (4.61) 

where n̂  is a unit vector in the direction of the edge lij = xj-xi and c is the speed 
of the sound. The Courant number � should be generally restricted to take 
values above the unity, although multi-stage schemes can usually provide an 
enlarged stability margin.  

The adoption of a local time step ti in Eq. (4.59) increases the speed of 
convergence of the solution to the steady state for stationary problems (the 
information is propagated faster throughout the domain). However, if the 
solution of the problem is time dependent, a global time step must be adopted. 
This global time step is defined as 
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  globalt min t i i    x  (4.62) 

4.3.2 Implicit residual averaging 

In order to increase the convergence speed to steady state solutions, the 
maximum permissible time step can be enlarged by using implicit residual 
averaging (Jameson & Baker, 1987). In this method, a Laplacian smoothing is 
performed on the discrete residuals of Eq. (4.59) to extend the support of the 
approximation, thus increasing the allowable Courant number. The smoothed 
residual can be written as  

  i i j ij
  R R R R  (4.63) 

where  is a specified smoothing parameter and the summation is 
performed over the nearest neighboring points of xi. An exact solution of 
the system (4.63) is not generally required for satisfactory convergence 
acceleration. Hence, an approximated solution of Eq. (4.63) can be found 
with a little computational cost by performing a few Jacobi iterations, i.e. 
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where k is the iteration counter. In typical applications, satisfactory results can 
be obtained by performing three passes of the scheme (4.64) with  ≈ 0.1. 
Furthermore, it is not necessary to smooth residual at each time integration 
stage. For example, in the case of the 4th-stage scheme, smoothing just the 
first and third stages is usually enough to double the allowable Courant 
number. It is important to note that residual smoothing does not affect the 
problem steady state solution. 

4.4 Final remarks on the FPM flow solver 

Some important aspects regarding the accuracy and conservation properties of 
the method, as well as the general lines followed in the computational 
implementation are addressed next. The aim is to provide complementary 
information about the characteristics of the methodology and the performance 
expected in practice.    
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4.4.1 Accuracy of the FPM solver 

The accuracy of the FPM solver depends mainly on the accuracy of the spatial 
approximation to the flux derivatives and the accuracy of the numerical flux, 
that also depends on the reconstruction procedure applied. 

Regarding the spatial accuracy of the FPM approximation, it can be shown 
that the FPM yields second-order accurate first derivatives in regular 
distributions of points (see Section 3.4), but degrades for irregular 
distributions. There, the accuracy tends to first-order and the effective value 
attained depends considerably on the weighting function employed; see for 
instance (Fischer, 1996) and (Cheng & Cheng, 2008). Therefore, second-order 
accuracy can be regarded as an upper limit for the flux derivatives.  

The accuracy of the numerical flux (Eq. (4.28)) affects the order of accuracy 
of the scheme because this flux acts as a bias term in the central 
approximation. Thus, depending on the extrapolation employed in the 
reconstruction process and the characteristics of the underlying 
discretization51, the accuracy of the resulting scheme may change. As an 
upper bound of the attainable accuracy, it can be assumed that when the flow 
is smooth and second-order extrapolation (or higher) is adopted, second-order 
accuracy may be achieved. Note that the scheme reverts to the centered 
approximation for a vanishing upwind term (see for instance Eq. (4.53))52. 

According to these results, the spatial accuracy (p) of the FPM solver can be 
considered to be at best second-order in smooth flows. In practice, it is 
expected that 1 < p < 2 depending on the characteristics of the local clouds 
and the weighting function settings. A numerical investigation aimed at 
determining the attainable accuracy in a representative practical application 
problem is presented in Chapter 5. 

4.4.2 Conservation 

Conservation properties of the FPM solver cannot be formally proved for 
general application cases. This theoretical drawback, which affects most 
meshless approaches, is a direct consequence of the lack of symmetry 
properties of the metric coefficients and their dependence on the distribution 

                                                            
51 The irregularity of the stencil of points employed in the reconstruction process and 
the estimates adopted for the virtual points (Eq. (4.48)) can affect the formal order of 
the reconstruction scheme, even in smooth flows. 
52 (Sridar & Balakrishnan, 2003) found accuracy estimates for a quite similar scheme 
(but using Taylor-series-based LSQ approximations) to be O(h(l+1)-p), for p-order flux 
derivatives and l-degree terms retained in the Taylor expansion (assuming k-order 
reconstruction with k  l). This is consistent with the estimation in the present work. 
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of points in the local clouds and weighting function settings. These facts make 
that, for instance, the typical telescopic flux properties cannot be 
demonstrated in such schemes.  

However, despite the lack of proofs guaranteeing the conservation property 
for meshless schemes at the discrete level, the empirical evidence (which is 
extensive in the literature) does not reveal the typical problems which are 
usually attributed to a lack of conservation. This numerical evidence, though 
important, is not sufficient by itself and the implications of lack of 
conservation should be studied further. Following this line there are some 
recent works in which conservation and other desirable properties are 
enforced by the construction of the approximation metric coefficients; see for 
instance (Chiu, Wang & Jameson, 2011). It must be stressed, however, that 
these modified formulations yield solutions which coincide with the non-
conservative schemes. It is therefore open to debate if formal conservation is 
strictly required, and if a lack thereof has a detrimental impact on the accuracy 
of the meshless numerical solution. 

4.4.3 Computational implementation and optimization 

The methodology described in the previous sections is coded in Fortran 77/90 
and parallelized through OpenMP directives. The implementation has been 
tailored for reduced cache misses during execution, satisfactory parallel 
performance in multi-core and multi-CPU computers and minimal storage 
requirements. The reduction of cache-misses is achieved by an efficient 
reordering of nodes (see Section 3.7) intended to maximize, during the 
computations, the use of data located as close as possible in memory. The 
design of the data structures follows this objective and is also aimed to reduce 
memory contention and indirect addressing in loops. In certain cases, this 
leads to the duplication of data causing a memory overhead, but the 
computational efficiency is enhanced noticeably. As regards parallel 
efficiency, especial emphasis was placed on reducing data dependence. 
Efficient parallel implementations are easy in the FPM due to its inherent low 
data dependence. Evidence of this will be given in the studies presented in the 
next chapter, where additional enhancements of the FPM data structure 
intended to improve the performance of the method are also proposed. 

4.5 Boundary conditions 

The solution of the Euler equations (4.1) requires the definition of proper 
initial and boundary conditions in order to complete the description of the 
problem to be solved. 
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The initial conditions initialize the flow variables and enable to start the 
explicit calculation (Eq. (4.59)). Typically, the initial flow values are taken 
from the far-field state (U(x,t0)=U), but particular initial solutions can be 
adopted in specific time dependent problems. 

Regarding boundary conditions, its specification is not trivial and should be 
done observing the mathematical behavior of the equations. In general, 
information (waves) entering the computational domain must be prescribed 
(e.g. according to the far-field state U) and waves leaving the computational 
domain must be able to move freely. The propagation of information or waves 
can be easily analyzed using a characteristic-based approach; therefore studies 
based on this description of the flow are generally used to apply boundary 
conditions, see for instance (Hirsch, 1990; Laney, 1988). Procedures in which 
the mathematical behavior of the flow is not accounted for can lead to the 
appearance of wave reflections and instabilities at the boundaries, thus 
affecting the convergence and accuracy of the solution. 

In this work, the boundary conditions adopted for inviscid problems are far-
field (freestream) conditions on outer boundaries  and slip conditions on 
solid (airtight) boundaries w (=w). In the case of far-field boundaries, 
the flux in the normal direction at each point xi   is prescribed by solving 
an approximate Riemann problem between Ui and the far-field state U. Over 
body boundaries, slip wall conditions are applied by cancelling the flux 
components in the surface normal direction. The procedures followed for 
applying these conditions are described in the succeeding text.  

4.5.1 Far-field conditions 

Freestream conditions are enforced at each point xi   by applying a 
corrected normal flux that accounts for the exchange of information with the 
far-field. This flux is obtained from the solution of a Riemann problem 
between the states Ui and U. Using the Roe solver, this is calculated by 

    ˆ ˆ ˆ ˆ
1 1( ) ( ) (2 2i i i i

*
n n n i n i i     F F U F U A U , U ) U U  (4.65) 

where the matrix |An(U,Ui)| is the positive Roe matrix computed in the 
direction of a unit boundary normal vector 53 (pointing inside the fluid 

domain). The fluxes in the same direction are given by  

 ˆ ˆ( ) ( )
i

k k
n inF U F U  (4.66) 

                                                            
53 The normal vector at a point xi is computed as an arithmetic average of the 
normals of the boundary elements sharing the point. 

ˆ
in
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where U stands for freestream or point valued state conditions. Then, the 
convective fluxes in the different coordinate directions can be modified to 
account for the normal flux (4.65) according to 

  ˆ ˆ ˆ( ) ( ) ( )
i i

k k * k
i i n i n in  F U F U F U F  (4.67) 

where the overbar indicates corrected values. The fluxes (4.67) are applied 
on outer-boundary nodes in the solution process and there is no need to 
enforce any value on the respective state vectors Ui. This kind of boundary 
condition notably reduces the boundary perturbations (particularly if the 
analysis domain is not large enough) and avoids wave reflections. 
Furthermore, this method simplifies the boundary treatment because no 
distinction has to be made between inflow/outflow or subsonic/supersonic 
boundaries when generating the problem input files. 

4.5.2 Slip and symmetry wall conditions 

Slip and symmetry wall conditions are enforced by cancelling the boundary 
normal flux at each point xi  w. This can be achieved by setting 

 ˆ 0k k
i iu n   (4.68) 

where ˆin  and ui are the boundary normal and fluid velocity vectors, 
respectively. The condition (4.68) can be enforced at each time step in the 
conservative variables by setting54 

  1 1 1 for 1,3ˆ ˆk k k k k
i i i i i kn n    U U U  (4.69) 

In problems in which the initial condition is far from the problem solution 
(particularly when high freestream Mach numbers or not streamlined bodies 
are involved), the application of condition (4.68) can lead to some instability 
during the initial time steps of the simulation. This behavior can be improved 
by relaxing the condition (4.68) through the introduction of a parameter   
[0,1] in Eq. (4.69) (Lyra & Morgan, 2002). This leads to 

  1 1 1 for 1,3ˆ ˆk k k k k
i i i i i kn n    U U U  (4.70) 

                                                            
54 At solid boundaries, all the convective flux components through the surface vanish 
and only the pressure contribution remains. Thus, this condition on the fluxes can be 
used to enforce slip boundaries instead of using condition (4.68) on the velocity. Both 
alternatives have been studied in this work but no important differences were found. 
Hence, the application of Eq. (4.69) on the conservative variables was chosen as this 
simplifies the calculations (corrected velocities may also be needed for other uses 
during execution). In addition, the condition on fluxes may not ensure the fulfillment 
of Eq. (4.68) in an exact manner. 
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where the parameter  is varied from zero at the beginning of the computation 
to unity over a certain number of time steps. This allows applying the solid 
boundary condition progressively as the near-body solution tends to match 
smoothly the conditions at the boundary55. 

It is important to note that the application of solid wall conditions can present 
problems on certain geometric features (e.g. sharp corners) where the surface 
normal is not well-defined. There, two cases must be distinguished. If the 
solid surface is concave at the edge, the condition (4.68) can be replaced by 

  1 1ˆ ˆ for 1,3k
i

k k k
i i it t k  U U  (4.71) 

which forces the velocity vector to be parallel to the edge ( ît is the edge 
tangent direction). If the surface is convex (e.g. trailing edges), the direction 
of the velocity is not known a-priori and thus cannot be prescribed. In such 
cases, an alternative procedure is to let the velocity move freely (not subject to 
any particular condition). This approach is discussed further below. 

4.5.3 Treatment of trailing edge points 

The enforcing of wall conditions on points along convex sharp edges (such as 
the trailing edge of airfoils and wings), presents a problematic situation 
because the direction of the velocity is not known along these edges. 
Additionally, another problem must be faced in the FPM regarding the 
construction of proper clouds for these points. Note that in such cases, the 
application of the criteria discussed before in Section 3.6 can lead to distorted 
asymmetrical clouds of points which may violate the CFL condition (it is 
quite possible that the physical domain of dependence is not totally included 
in the cloud of points). As a consequence, the proper propagation of 
information through the domain can be affected, and thus numerical 
instabilities may appear. In order to fix these problems, the following 
approach is proposed. 

In relation to the construction of clouds for trailing edge points, no boundary 
restrictions are applied to the points in these clouds. Thus, the resulting cloud 
structure is generally symmetrical and only depends upon the distribution of 
neighboring points (see Figure 16). Moreover, no condition is prescribed on 
the velocity or fluxes at these points, i.e. the flow variables are allowed to 
move freely. In this way, any point located along a trailing edge is considered 
like a point in the interior fluid domain. Numerical experiments performed 
show that this treatment allows the trailing edge points to automatically adapt 
their behavior according to the local solution field. Moreover, this permits the 

                                                            
55 Note that Eq. (4.70) can be also used to set transpiration boundary conditions. 
There,  may be a constant or a solution dependent parameter. 
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fluid to leave the trailing edge smoothly (in accordance with Kutta conditions) 
avoiding instabilities and non-physical numerical solutions. If the 
discretization is not very coarse, a satisfactory approximation to rear 
stagnation points can be also obtained.  

 
Figure 16. Cloud of points for a star point located at the trailing edge of a wing. 

4.6 Application examples 

Several compressible flow calculations are presented in this section with the 
aim of illustrating the performance of the FPM flow solver. The first 
examples, presented in Sections 4.6.1 and 4.6.2, are typical one and two-
dimensional verification test cases. Next, three-dimensional calculations are 
presented in Section 4.6.3 and the results are compared with available 
experimental data. These examples are intended to demonstrate the 
applicability of the method in more realistic situations. 

4.6.1 Shock tube problem 

The shock tube problem is a one-dimensional Riemann problem proposed by 
Sod in 1978 (Sod, 1978). The fact that this problem has both analytical and 
experimental solution makes it one of the most popular benchmarks for 
numerical schemes. The problem consists of a closed tube divided by a 
diaphragm into two compartments (left and right). Each compartment contains 
a gas at rest with a given pressure and density. The simulation begins when 
the diaphragm is suddenly removed. At this point, the interaction between the 
left and right fluid states instantly generates a shock wave, a contact 
discontinuity and an expansion fan, which propagate within the tube. 

This problem is solved firstly in a one-dimensional closed domain  = (0,1) 
subject to the following initial conditions 
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 (4.72) 

which give a pressure ratio across the diaphragm pL/pR = 10. Accordingly, the 
intensity of the shock is moderate and the flow regime after the expansion is 
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subsonic. The computational domain is discretized by a regular distribution of 
100 points and quadratic approximation bases are used with clouds having 5 
points. Third-order MUSCL extrapolation is adopted in conjunction with the 
Van Albada limiter and the solution is advanced in time by means of a four-
stage integration scheme. The results, computed for a time t = 0.2 seconds 
after the rupture of the diaphragm, are compared with analytical results (see 
for instance (Laney, 1988)) in Figure 17. 

 
Figure 17. Comparison of FPM and exact solutions. One-dimensional shock tube 
problem pL/pR = 10 and t = 0.2 s. (n = 100). 

Next, the shock tube problem is solved for an initial pressure ratio across the 
diaphragm pL/pR = 100. In this case, supersonic flow is obtained after the 
expansion. The initial conditions are given by 
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The analysis domain is discretized by a regular distribution of 200 points and, 
like in the previous test case, quadratic bases in clouds of 5 points are 
employed. Third-order MUSCL extrapolation is also adopted, but using the 
minmod limiter. This helps to smooth some small oscillations that appear with 
the van Albada limiter without affecting the accuracy of the computations. 
Exact and numerical solutions for a time t = 0.15 seconds after the rupture of 
the diaphragm are compared in Figure 18.  
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Figure 18. Comparison of FPM and exact solutions. One-dimensional shock tube 
problem pL/pR = 100 and t = 0.15 s. (n = 200). 

An additional two-dimensional computation is presented next for the initial 
conditions defined in Eq. (4.72). The problem domain  = (0,1)x(0,1) is 
discretized by a structured distribution of 100 points in each spatial direction. 
Quadratic approximation bases are used with clouds having 15 points and 
slip-wall conditions are applied along the boundaries. The time integration is 
performed by a four-stage scheme, and a third-order MUSCL extrapolation 
with the Van Albada limiter is chosen. The numerical results are compared 
with the exact one-dimensional solution in Figure 19. As in the previous 
examples, a satisfactory agreement between the computed FPM and exact 
solutions is achieved. 

4.6.2 Airfoil test cases 

A subsonic flow around a NACA 0012 airfoil set at zero incidence angle ( = 
0º) and freestream Mach number M = 0.2 is solved firstly to investigate the 
accuracy of the numerical scheme. To this end, the convergence of the drag 
coefficient with the grid refinement is investigated. 

In order to carry out the analysis, four model discretizations with 
representative point spacing h1<h2<h3<h4 are generated from a coarse model 
(h4) by scaling the grid sizes in a uniform manner. In this way, discretizations 
ranging from 3364 to 7162 points are obtained with an average refinement 
ratio r = hk+1/hk  (nk+1/nk)

-1/2 = 1.13 (std. deviation 0.02). The boundary 
conditions applied are freestream Riemann conditions on the outer domain 
boundary and slip condition on the airfoil contour. The numerical solutions 
are obtained by using third-order MUSCL extrapolation with van Albada 
limiter and a 4-stages time marching scheme. As regards the FPM 
discretization, quadratic approximation bases are employed in clouds with 15-
21 points. A view of the finest discretization (grid #1) near the airfoil is 
presented in Figure 20. 
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Figure 19. Two-dimensional simulation of the shock tube problem (pL/pR = 10 and t = 
0.2 s.). Density, pressure and Mach number isolines are shown on the right. 
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Figure 20. Spatial discretization in the proximity of the airfoil NACA 0012 (n=7162). 

The evolution of the drag error with the grid refinement is examined first in 
order to assess the observed accuracy of the scheme (mainly discretization 
error). Note that since the drag in a subsonic inviscid flow is zero, the drag 
error in this example is equal to the calculated drag. The results presented in 
Figure 21 indicate a convergence rate p = 1.72, which is not far from the 
theoretical order of accuracy of the scheme. The solution on the coarsest grid 
is dropped because it is outside the asymptotic range of convergence.  

 

Figure 21. Drag convergence. NACA 0012,  = 0º and M = 0.2. 

The convergence of the aerodynamic forces and density residual on the finest 
grid is depicted in Figure 22. There, the calculated aerodynamic forces can be 
seen as actual errors in forces (symmetric airfoil in subsonic inviscid flow). 
The density residual is evaluated by means of a quadratic (L2) norm. Next, 
Figure 23 shows a comparison between the computed coefficient of pressure 
(Cp) along the airfoil with potential flow results (corrected by compressibility 
using the Karman-Tsien rule). The agreement obtained is satisfactory. 
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Figure 22. Iterative convergence for the finest grid solution (grid #1). NACA 0012,  
= 0º and M = 0.2. 

 
Figure 23. Comparison of pressure distribution computed on grid #1 with potential 
flow results. NACA 0012,  = 0º and M = 0.2. 

The flow field around a RAE 2822 airfoil is solved next. The airfoil is set at 
an incidence angle  = 3º and the freestream Mach number is M = 0.75. The 
computational domain is discretized by an unstructured distribution of 7126 
points (see Figure 24) and the boundary conditions and problem settings are 
similar to those employed in the previous airfoil example. 

The pressure distribution computed along the airfoil is compared in Figure 25 
with a reference numerical solution presented in (Rizzi & Viviand, 1981). 
This result was obtained using an unstructured finite volume method with a 
mesh having 5071 points. Despite some small oscillations on the leading edge 
suction side observed in the FPM solution, the general agreement with the 
reference results is satisfactory. The convergence of the aerodynamic forces 
and density residual is presented in Figure 26.  
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Figure 24. Spatial discretization in the near-field of the airfoil RAE 2822 (n=7126). 

 
Figure 25. Comparison of pressure distribution along the airfoil. RAE 2822,  = 3º 
and M = 0.75. 

 
Figure 26. Convergence of the computed lift and drag (wave) forces and the density 
residual. RAE 2822,  = 3º and M = 0.75. 
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4.6.3 Three-dimensional test cases 

The first three-dimensional test case involves transonic flow over the ONERA 
M6 wing. This is a typical benchmark developed by the ONERA 
Aerodynamics Department in 1972 with the objective to provide experimental 
support for numerical studies (see (Schmitt & Charpin, 1979)). The available 
experimental results cover a wide range of subsonic and transonic flows. In 
this example the test case #2308 is chosen. The model is set to an incidence 
angle  = 3.06º, the freestream Mach number is M = 0.84 and the Reynolds 
number is Re = 11.7E6 (an inviscid solution is computed here). The most 
relevant data about this test case can be also found in (NASA, 2013).  

The computational model employed in this example includes a symmetry 
vertical plane along the wing centerline and a hemispherical outer freestream 
boundary, located 10 half-spans away from the wing. An h-layer of points is 
located inside the domain to force a slow variation of the point spacing near 
the wing (see Section 3.6.1). The discrete model generated has 512141 points. 
Quadratic approximation bases are employed for computing the FPM 
approximation in clouds having 30-45 points. The flow solver uses a third-
order MUSCL extrapolation scheme with the van Albada limiter and a three-
stage time integration scheme is employed.  

Calculated Cp and Mach number fields on the wing and the symmetry plane 
are shown in Figure 37. The point discretization on the wing is also displayed. 

 
Figure 27. Pressure and Mach number on the upper surface of the wing and the 
symmetry plane. ONERA M6 wing, M = 0.84 and  = 3.06º. 

A comparison between numerical and experimental Cp distributions at several 
sections along the wing is shown in Figure 28. In accordance with the 
available experimental data (Schmitt & Charpin, 1979), these sections are 
located at the following spanwise stations:  = 0.2, 0.44, 0.65, 0.8, 0.9, 0.95 
and 0.99 being  = 2y/b. The agreement with the experimental data achieved 
(Figure 28) is satisfactory for the flow model adopted in the simulation. As 
expected, the inviscid solution gives a shock wave which is slightly stronger 
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than the real shock and is located close behind the latter. A separated flow 
region behind the shock wave at =0.99 (upper side of the wing) can also be 
observed. There, naturally, experimental and computed results do not match. 
The evolution of the normal force and density residual is shown in Figure 29. 

 
Figure 28. Comparisons between computed and experimental Cp distributions along 
several sections on the wing. ONERA M6 wing, M=0.84 and =3.06º. 

 
Figure 29. Evolution of normal force and density residual. ONERA M6 wing, 
M=0.84 and =3.06º. 
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The next example involves the computation of transonic flow over a NACA 
L51F07 wing-body configuration (Loving & Estabrooks, 1951). The model 
has a sweepback wing, with NACA 65A006 airfoil, and axially symmetric 
fuselage. Its rear part is attached to a sting, which supports the test model in 
the wind tunnel. Taking advantage of geometry and flow symmetry, only a 
half-span body is solved in this example (see Figure 30). 

 

Figure 30. Analysis test model NACA RM L51F07. 

The discretization employed consists of an unstructured distribution of 
512553 points and quadratic approximations are built on clouds with 30-45 
points. The flow solver settings are similar to that employed in the previous 
example. The pressure distribution computed for a freestream Mach number 
M = 0.9 and an angle of attack  = 4º is presented in Figure 31. 

 

Figure 31. Pressure contours on the NACA wing-body (the surface discretization is 
displayed in the upper mirror image). M = 0.90 and  = 4.0º. 

Comparisons with experimental results provided in (Loving & Estabrooks, 
1951) are displayed for two streamwise wing stations located at  = 0.4 and 
0.8 in Figure 32. The longitudinal pressure distribution along the fuselage 
symmetry plane is also compared in Figure 33. Like in the previous test case, 
only minor differences (probably due to the inviscid assumption adopted) can 
be observed between numerical and experimental results. This test case is 
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further studied in the next chapter, where a detailed assessment of the method 
is presented. 

 
Figure 32. Comparison between computed and experimental Cp distribution along 
spanwise stations 2y/b = 0.40 and 0.8. NACA wing body, M = 0.90 and  = 4.0º. 

 
Figure 33. Comparison between computed and experimental Cp distribution along the 
fuselage symmetry plane. NACA wing-body configuration, M = 0.90 and  = 4.0º. 

4.7 Concluding remarks 

A Finite Point method for solving the inviscid compressible flow equations 
has been presented in this chapter and theoretical and implementation aspects 
were discussed. Basically, the flow solver proposed is based on a central-type 
differencing scheme, biased by the introduction of an upwind numerical flux. 
The latter is obtained by the approximated Riemann solver of Roe, and 
limited MUSCL extrapolation is used to increase its spatial accuracy. Two 
additional stabilization schemes, based on added artificial diffusion, were also 
introduced to allow faster computations. The time integration of the resulting 
semi-discrete equations is performed explicitly by means of a multi-stage 
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scheme and a residual smoothing technique is introduced for convergence 
acceleration purposes. 

The computational procedures and code implementation have been developed 
with a focus on efficiency, to ensure that the present solution approach is 
adequate to address practical problems involving arbitrary geometries. The 
overall methodology, which follows standard techniques in computational 
gasdynamics, yielded a robust and accurate core solver, which constitutes a 
satisfactory basis for implementing enhanced solution approaches and flow 
models. 

Several numerical applications involving typical verification and validation 
test cases have also been presented in this chapter in order to illustrate the 
performance of the methodology. The analyses presented have been intended 
primarily to contrast the FPM computations with exact and experimental 
solutions, and a basic accuracy assessment was also performed for the two-
dimensional case. The results obtained in the test cases presented were 
satisfactory but not complete. More specific analyses focused on accuracy and 
computational cost of the basic flow solution scheme, and various extensions 
and improvements of the latter, are developed further in the next chapters. 
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5 ACCURACY AND PERFORMANCE 
ASSESSMENT 

The field of applications of meshless methods has expanded considerably in 
the last years and many advantages over conventional discretization 
approaches have been revealed. However, while efforts have mostly focused 
on new and improved developments, little progress has been done in 
comparative studies with conventional techniques to evaluate accuracy, 
numerical implementation issues, computational efficiency, robustness and 
other aspects of practical interest. As a consequence, further research is 
needed to characterize the behavior of meshless methods in practical 
application scenarios. 

With this in mind, the objective of this chapter is twofold. First, to complete 
the results obtained in the previous chapter with a more focused analysis of 
the accuracy and computational cost of the FPM flow solver (in the context of 
a practical application problem). Second, to carry out the assessment in 
comparison with a conventional technique in order to have a reference to 
evaluate the feasibility and competitiveness of the meshless approach. Note 
that competitiveness is not a minor issue; very often the complexity, low 
efficiency and lack of robustness found in meshless implementations negate 
the specific advantages of the approaches (e.g. simplified model preparation, 
easy implementation of adaptivity and domain deformation, etc.). Therefore, a 
satisfactory performance of the basic technique must be achieved so that 
meshless advantages can be exploited efficiently. With this purpose, a 
simplification of the FPM scheme is also proposed in this chapter to reduce 
the performance gap with respect to conventional grid-based algorithms. 

The conventional technique employed in the comparative assessment is a 
classical Finite Element (FEM) unstructured edge-based solver named PUMI 
(Flores, Ortega & Oñate, 2011). This is chosen because, regardless of the 
intrinsic differences due to the spatial discretization approaches, PUMI and 
the FPM solver follow very similar solution strategies. This allows a more 
direct comparison of the core algorithm properties eliminating the effects 
arising from specific implementation choices. The analysis performed are 
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based on the solution of an inviscid three-dimensional compressible flow 
problem (representative of practical applications) and focuses, primarily, on 
evaluating the accuracy, computational cost and parallel performance of the 
FPM.  

This chapter is organized as follows. First, the solution methodologies 
adopted in the FPM and PUMI solvers are discussed and compared in Section 
5.1, and a modification of the meshless technique, aimed to improve its 
efficiency, is presented in Section 5.2. Second, a comparative assessment is 
carried out in Section 5.3 to evaluate the solution accuracy, computational 
cost and parallel performance of the FPM in relation to the FEM solver. 
Finally, the suitability of the reduced-fidelity stabilization models proposed in 
the previous chapter is examined in comparison with the basic (upwind) flow 
solution approach in Section 5.4. 

5.1 Flow solution approach in FPM and FEM 

The strategies adopted to solve the flow equations in FPM and the FEM code 
PUMI follow similar lines. However, the numerical implementations differ as 
a consequence of specific features of the spatial discretizations. These 
differences bring about advantages and disadvantages of one method with 
respect to the other concerning both, the computational requirements and the 
properties of the discrete schemes. Both solution approaches are compared in 
this section in order to identify meshless implementation issues affecting the 
FPM competitiveness.  

The inviscid flow governing equations and the FPM solution approach have 
been discussed in detail in the previous chapter. Next, the basic aspects of the 
FEM solver are briefly presented in order to introduce the necessary elements 
for the analysis and comparison of the flow solution strategies. 

5.1.1 Basic aspects of the FEM approach 

Starting from the weak Galerkin form of the governing equations (4.1), the 
semi-discrete problem is expressed in PUMI in terms of an edge-based data 
structure as follows 

  d

dt
j k k k k

ij ij ij i ij
e

d c   
U

M F F  (4.74) 

where M is the mass matrix of the system, j denotes nodal values, dk
ij and ck

i 

are metric coefficients, k k k

ij i jF = F F  is a numerical flux function and the 

summation e extends over all the physical edges of the mesh sharing the point 
xi. At each edge xj-xi, the metric coefficients are computed in terms of the 
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standard FE shape functions (linear tetrahedra); cf. (Flores, Ortega & Oñate, 
2011). 

It is important to note that only half of the d coefficients need to be stored 
because these coefficients are antisymmetric (dk

ij=-dk
ji). Hence, the storage 

requirements and the number of operations required to assemble Eq. (4.74) 
are noticeably reduced. Moreover, as a consequence of the symmetry 
properties of the metric coefficients, discrete conservation can be easily 
demonstrated in this kind of schemes through telescopic collapse of the 
fluxes. 

5.1.1.1 Convective stabilization 

The definition of the numerical flux in PUMI also adopts the approximate 
Riemann solver of Roe and slope-limited MUSCL reconstruction of the flow 
variables along the edges. The formulation is similar to that employed for the 
meshless solver (see Sections 4.2.1 and 4.2.2). However, as nodal gradients 
are not available in the present case, a recovery of the nodal derivatives is 
required in Eq. (4.48); cf. (Flores, Ortega & Oñate, 2011). 

5.1.1.2 Time integration 

The time integration in PUMI is performed by means of a multi-stage scheme 
similar to that described by Eq. (4.59). Aimed at avoiding the solution of a 
system of equations at each stage, the consistent mass matrix is replaced by its 
lumped counterpart. Local time stepping and residual smoothing are also 
employed in PUMI to accelerate the convergence to the steady state. The 
diffusion terms in Eq. (4.59) are likewise only updated at the first integration 
stage in order to reduce the computational cost. 

5.1.2 Comparative summary 

The main characteristics as well as the advantages () and disadvantages () of 
the FPM and PUMI solution approaches are summarized in Table 2. 

 

 

 

 

 

 



104 
 

 

 FPM PUMI 

Spatial 
discretization 

 

Set of points obtained from a 
boundary triangulation by using an 
unconstrained Delaunay gridding 
technique. 

 
FE tetrahedral mesh. 
 

 
Point discretizations can be obtained 
efficiently by using dedicated 
algorithms. 

 
Topological and quality mesh 
requirements make domain 
discretization costlier. 

Flow governing 
equations 

Inviscid compressible flow (Euler equations) 

Discrete 
equations 

Obtained from the strong form of the 
balance equations through point 
collocation. 

Obtained from the weak Galerkin form of 
the balance equations. 

Numerical 
approximation 

Weighted Least-Squares on clouds of 
points (complete polynomial bases of 
order 2 are employed). 

Standard FEM linear approximation on 
tetrahedra. 
 

 
Cloud generation increases the 
complexity when constructing the 
approximation coefficients. 

 
The construction of the approximation 
coefficients has a lower computational 
cost. 

Equations 
assembly and 
final discrete 

forms 

 
A higher connectivity per node is 
required.  Lower connectivity per node. 

 

The lack of symmetry properties of 
the metric coefficients implies higher 
storage and number of operations per 
node to compute gradients. 

 
Edge coefficients are antisymmetric. 
Storage requirements and number of 
operations is reduced to half. 

 
Conservation at the discrete level 
cannot be demonstrated due to the 
properties of the metric coefficients. 

 

Conservation at the discrete level is 
corroborated due to the antisymmetric 
properties of the edge coefficients 
(telescopic flux properties). 

Convective 
stabilization 

Upwind fluxes computed using a Roe solver with slope-limited  
MUSCL extrapolation 

 Nodal gradients are available.  
Nodal gradients must be obtained by 
recovery. 

Time 
integration 

Explicit, Runge-Kutta type, time marching scheme. 

 
A consistent-mass like system should 
be solved at the end of each stage 
(see Eq. (4.60)) 

 
The consistent-mass matrix is 
replaced by its diagonal counterpart to 
avoid solving a system. 

Convergence acceleration is achieved by local time stepping and residual smoothing 
techniques. 

Spatial 
accuracy 

The expected order of accuracy is p2 for 
smooth flow solutions (but with an 
additional dependence on the local cloud 
parameters). 

Second-order accuracy (p=2) can be 
expected for smooth flow solutions. 

Time accuracy Dependent on the number of time integration stages employed. 

Coding 

Fortran 77/90 parallelized through OpenMP directives. 

 
Due to low data dependence, loops 
can be easily parallelized with 
efficiency. 

 Higher data dependence. 

 Higher memory storage requirements.  Lower memory storage requirements. 

Table 2. Comparison between FPM and PUMI (FEM) methodologies. 
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5.2 FPM efficiency issues and improvements 

As shown in the previous section, many aspects of the FPM involve a higher 
computational complexity, which may not be compensated for by the benefits 
resulting from the exploitation of meshless features. Hence, it becomes 
necessary to improve the efficiency of the basic meshless solver.  

Taking into account the aspects that increase the computational cost of the 
FPM (see Table 2), it can be seen that the stencil of points involved in the 
assembly of the nodal residual plays an important role56. To illustrate this, the 
basic semi-discrete scheme of Eq. (4.18) is rewritten as a flux central-
difference like term plus an explicit diffusion term given by Eq. (4.32) (as in 
Section 4.2.3). This leads to 

 
 ˆ

ˆd
ˆ( , )

dt
k k k k ki
ij j i ij n i j j i ij

j i j i

i i

b b n   

 

      

 

 U
F F A U U U U

 

 (4.75) 

where the convective and diffusive flux contributions are assembled by 
summing the contributions of the edges connecting xi with each of the points 
in the local cloud. This connectivity typically includes the first layer of 
Delaunay neighbors (physical edges in a FE mesh) plus additional points 
located outside this layer (numerical edges). Due to the fact that only points 
connected by physical edges are used to assemble Eq. (4.74) in FEM57, the 
overhead incurred by the FPM can be large depending on the number of 
numerical edges in each cloud. Although there is limited room to reduce the 
connectivity depending on the approximation bases chosen (some restrictions 
will be discussed later), this approach is not flexible enough. Therefore, a 
more general solution is necessary to reduce the extra cost. This will be 
addressed in the next section. 

Among the other differentiating aspects of the FPM highlighted in Table 2 
which could increase the computational cost, it is worth mentioning that the 
need to solve the system (4.60) when advancing the equations in time does not 
make a substantial difference. In addition, numerical experiments have 
demonstrated that this step could be skipped assuming ˆR(U) R(U)  in Eq. 
(4.59) without causing a negative impact on the problem solution. This 
behavior can be explained by the fact that the FPM approximation yields a 

                                                            
56 The construction of the meshless approximation is not accounted for as it is only 
performed once in typical computations. 
57 From h-refinement arguments it is possible to estimate 14 neighbor points (on 
average) for a tetrahedral mesh. However, the number of points may be higher in 
practice according to the characteristics of the mesh. 
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very good estimate of the nodal parameters, i.e ˆ( ) ( )
i i
U Ux x , for well-

behaved solutions. 

5.2.1 Cloud connectivity issues 

Some features of the FPM approximation can be exploited with the aim of 
reducing the additional cost caused by the cloud connectivity. In particular, as 
the influence of the cloud points in the local approximation decreases 
progressively with the distance from the star point (as a result of weighting, 
see Figure 34), a reduced stencil could be used to compute the derivatives 
without a significant detriment on accuracy. 

 

Figure 34. Variation of the cloud metric coefficients a and b (Eqs. (1.11) and (1.12)) 
with the distance from the star point. Results computed for a typical interior cloud 
with 30 points and quadratic approximation basis.  

This possibility was explored by using a point stencil based on the Delaunay 
nearest neighbors of the star point. The numerical tests performed on typical 
3D clouds indicated that the approximation error in the derivatives computed 
in this way is marginal in most cases but can be up to 20% higher than the 
standard approximation in severely distorted clouds of points (which are only 
a small percentage of the total cloud count). This result supports the 
employment of reduced stencils for computations in which high accuracy is 
not required. For example, explicit artificial diffusion terms like those in Eq. 
(4.75) are suitable candidates for this simplified treatment.  

5.2.1.1 Simplifying the diffusive flux contribution 

If the stencil of points used to compute the derivatives appearing in the 
diffusion terms is restricted to the nearest neighbors, the computations can be 
efficiently carried out by means of a data structure similar to that employed in 
edge-based FEM solvers. Using this data structure (which can be constructed 
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from the cloud connectivity), the diffusive terms can be assembled by 
performing a loop over the edges and scattering contributions to the nodes. At 
each star point, this procedure leads to 

  ˆ ( , )- - +
i ij n i j j ie

d   A U U U U  (4.76) 

where e denotes the edges in the first layer neighbors of xi. As the FPM 
approximation is not symmetric, two weight coefficients, dij and dji, are 
required per edge. These are computed by 

 withˆ ˆ, 1,3k k k k
ij ij ij ji ji ijd b n d b n k     (4.77) 

where the b coefficients are proportionally scaled to recover the partition of 
nullities property in the reduced stencil (see Section 3.1.3). The tests 
performed have shown that the application of Eq. (4.76) does not affect the 
robustness and accuracy of the scheme, while the computational cost is 
drastically reduced due to the lower cloud connectivity and the avoidance of 
redundant operations.  

5.2.1.2 Treatment of the convective terms 

In contrast to the diffusive contribution, accuracy is essential for the 
computation of the convective fluxes in Eq. (4.75). Thus, the reduced stencil 
is no longer applicable and all numerical edges would need to be accounted 
for in the edge data structure. This would have no clear advantage in the 
number of operations involved and may even present some drawbacks with 
respect to the original formulation regarding storage requirements and 
memory accesses during assembly. These reasons justify the fact that the full 
point-based structure is maintained to compute the convective fluxes at the 
expense of some degree of memory overhead. Therefore, after applying the 
partition of nullities property, the convective contribution can be expressed by 

 k k
i ij jj

b  F  (4.78) 

where the summation is performed over all the points in the local cloud.  

5.2.1.3 An application example 

The performance of the improved residual assembly (Eqs. (4.76) and (4.78)) 
is studied in relation to the original formulation (Eq. (4.75)) by comparing the 
CPU-times required to evaluate the residual vector 10 times in discretizations 
having different numbers of points (high-order limited MUSCL extrapolation 
is employed). The computations are performed in a desktop computer with an 
Intel Core2 Quad Processor Q9550 @ 2.83 GHz running on a Windows 32-bit 
operating system. The results show that the runtime is almost halved with the 
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improved formulation (see Figure 35). The parallel scaling is also satisfactory, 
although not as linear as with the original formulation, presumably due to 
memory accesses when scattering edge contributions to the nodes. This 
behavior deserves further study.  

 
Figure 35. Runtime and speed-up comparison between the original and improved 
residual vector assembly. 

It is important to note that the use of different stencils for the convective and 
diffusive fluxes requires a flow solver with explicit artificial diffusion, or 
which can be written in this form (e.g. the Roe-MUSCL approach here 
employed). For solvers where a separate diffusive term is not present (e.g. 
exact Riemann or vector splitting methods like van Leer) the reduced stencil 
could adversely degrade the accuracy of the computed fluxes. Therefore, the 
method here presented is limited to solvers with explicit artificial diffusion 
terms. This is not a serious limitation because this class of solvers 
encompasses a large number of successful implementations currently in use. 

5.2.2 Use of lower order approximation bases 

Given the fact that cloud connectivity is the main factor affecting the FPM 
performance, it can be assumed that the cost can be reduced by lowering the 
approximation base, and thus the required spatial support (recall that complete 
quadratic bases are used in this work). However, numerical experiments show 
that smaller approximation supports tend to give rise to problems due to non-
overlapping clouds of points, particularly when there are sudden changes in 
the grid density through the domain. This behavior, as discussed in previous 
chapters, is avoided by including in each local cloud the nearest Delaunay 
neighbors of the star point. Since this implies that at least 14 points58 are 
required for an interior cloud (this number is generally higher in practice), 
lower-order bases do not permit to reduce the stencil of points significantly. 

                                                            
58 From h-refinement arguments, see Footnote 57. 
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Therefore, the potential time savings may little compensate for accuracy and 
robustness losses. 

5.3 Comparative assessment of the FPM 

The performance of the basic FPM solver is studied in this section in 
comparison with the FEM solver PUMI. Next, the computational test case 
employed in the assessment is described first, and a grid convergence analysis 
is performed to analyze the solution accuracy. Finally, computational cost and 
parallel performance of the methods are investigated on modest multi-core 
(shared-memory) CPUs. 

5.3.1 Model spatial discretization 

The wing-body configuration presented in Section 4.6.3 is selected to carry 
out the comparative analyses. The intended studies require a series of 
comparable model discretizations with point spacing h1<h2< ...<hn for each 
computational code. In order to obtain these models, the same input boundary 
triangulation is employed and several internal surfaces are defined within the 
analysis domain to control the point spacing variation (see Figure 36). 

 
Figure 36. Definition of spacing control surfaces within the analysis domain. 

The volume discretization is generated by an unconstrained Delaunay method 
in the FPM (see Section 3.6.1) and the mesher GiD (GiD, 2013), which is 
based on an advancing-front technique, is used with PUMI. In order to obtain 
successively refined discretizations, the grid sizes assigned over the 
geometrical entities which define the model (boundaries and internal control 
surfaces) are scaled by a constant factor. The refinement ratio was set to 2/3 to 
keep the computational cost low, although further size adjustments were 
needed at specific body locations to get smooth transitions in the boundary 
mesh. The level of similarity achieved between both sets of discretizations 
was satisfactory; some details are given in Table 3. 
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grid # 
# of nodes body surfaces 

FPM PUMI triangles point 

1 2860318 2910146 694482 348073 

2 1664535 1558418 268842 135183 

3 854095 835316 146972 72265 

4 427900 457575 83102 42086 

Table 3. Details of the NACA test model discretizations. 

Once a consistent set of successively refined grids is obtained, a 
representative grid refinement ratio is defined to carry out the grid 
convergence analysis. The following estimate is adopted 

   1/3

1 1k k k kr h h n n


    (4.79) 

where subscripts k and k+1 indicate two successive refinement levels (fine 
and coarse respectively) and n is the number of grid points. In cases when the 
grid refinement is not uniform throughout the domain, Eq. (4.79) should be 
applied with care. In this work, this approximation was found acceptable 
because the grids are refined systematically between the body and the control 
surfaces by scaling the desired point spacing in that area in a consistent 
manner. The refinement ratios computed by applying Eq. (4.79) to both sets 
of grids are r = 1.235 (std. deviation 0.033) for the FPM and r = 1.228 (std. 
deviation 0.005) for PUMI. Figure 37 shows a close view of the surface grids 
near the wing tip.  

 
Figure 37. View of the boundary discretization near the wing tip for grids 1-4. 

5.3.2 Flow and problem settings 

The simulation condition adopted in the analyses assumes an inviscid fluid 
flow with freestream Mach number M = 0.9 and angle of attack  = 4º. The 
boundary conditions employed are flow symmetry on a plane across the 
fuselage centerline, freestream Riemann conditions on the outer hemispherical 
boundary and slip condition on the model surface. 

The computations are performed using third-order MUSCL extrapolation with 
the van Albada limiter. A four-stage time integration scheme with local time-
stepping and implicit residual smoothing (with two Jacobi iterations) is 
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chosen. The Courant number is set to unity and the number of time steps in 
the problem solution is fixed to 10K for all the runs performed. This is an 
arbitrary value because the study is only intended to compare the performance 
of both methods. The coarser grids converge for a lower number of time steps 
while the finest grid could benefit from more iterations. In any case, a residual 
drop of at least four orders of magnitude is achieved for all the grids, which is 
deemed acceptable for a preliminary solution. A density residual L2 norm is 
used to monitor the solution convergence.  

5.3.3 Grid convergence analysis 

Exact solutions are not usually available in practical engineering problems, 
thus reliable estimates are required to evaluate the solution accuracy. A 
typical approach is to obtain these estimates from solutions on grids with 
different levels of refinement by means of Richardson’s extrapolation (see for 
instance (Roy, 2005)). Assuming two discrete problem solutions f1 and f2, 
obtained on grids with point spacing h1 and h2 respectively (h1<h2), a higher-
order estimate of the continuum solution (value at h→0) can be obtained by 

 1 2
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f f
f f
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 (4.80) 

where both f1 and f2 are assumed to lie in the asymptotic range of 
convergence, p is the order of accuracy of the method and r is the grid 
refinement ratio. In the same framework of Richardson’s extrapolation, the 
order of the numerical scheme can also be estimated by using three different 
discrete solutions. Assuming a constant refinement factor, the order of 
accuracy can be calculated by 
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It should be noticed that Eq. (4.81) is sensitive to the way in which the refined 
grids are generated and the estimated refinement ratio, see for instance (Roy, 
2003; Salas, 2006). As this may affect the calculated results, a verification of 
the procedure is also performed in this section. 

Once the accurate solution estimate, the grid refinement factor and the 
observed order of accuracy of the scheme are known, the accuracy of the 
numerical solution can be evaluated. This is usually performed by measuring 
the discretization error. Among other approaches pursuing this end, the 
Roache’s grid convergence index (GCI) (Roache, 1994) has become quite 
popular. This indicator provides an error band for the discrete solution with 
respect to an accurate estimate f0, accounting for the order of accuracy of the 
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scheme and the grid refinement ratio. The GCI is computed for a fine grid 
solution fk, using a solution fk+1 on a coarser grid, by the following expression 

 1
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where Fs is a safety factor normally set to 1.25 when more than 3 grids are 
compared. The GCI also allows verifying if the solutions are in the asymptotic 
range of convergence. In such a case, values computed over three consecutive 
refined grid solutions must satisfy the following relations 

 23
23 12

12

1.0p
p

GCI
GCI r GCI

r GCI
 or  (4.83) 

5.3.3.1 Solution accuracy 

The methodology described above is applied to the numerical solutions 
obtained with FPM and PUMI. The analysis is performed by examining the 
evolution of the body normal force coefficient (CN) with grid refinement. 
Converged solutions computed for grids 1-4 are presented in Table 4 and the 
discrete data points are displayed in Figure 38 as a function of the grid size 
normalized with the point spacing of the finest grid (h1). The higher-order 
solution estimates (computed on the three finest grids), and experimental 
results from (Loving & Estabrooks, 1951) are also displayed in Figure 38. 

grid # 
FPM PUMI 

h (n-1/3) CN h (n-1/3) CN 

1 7.045E-03 0.35864 7.004E-03 0.35737 

2 8.438E-03 0.35653 8.625E-03 0.35185 

3 1.054E-02 0.35369 1.062E-02 0.34399 

4 1.327E-02 0.35202 1.298E-02 0.34110 

Table 4. Normal force coefficients and representative grid sizes computed for FPM 
and PUMI. NACA wing-body, M∞=0.9 and =4º. 

It can be seen in Figure 38 that the extrapolated solutions present a slight 
discrepancy (about 1.5%, 5 lift counts). This can be due to differences in the 
discrete models employed and uncertainties in the estimated grid refinement 
ratio, which in turn affects the estimation of p (see Eq. (4.81)). In addition, the 
level of convergence of the time-marching scheme could have some influence 
on the results obtained (details in this respect are given later). It must be 
stressed, however, that the difference lies mostly on the extrapolated values; 
while the computed force coefficients for the highest refinement level show a 
very good agreement between both solvers. A difference between numerical 
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and experimental force coefficients (about 10%) is also observed in Figure 38. 
Probably, this is mostly due to the inviscid flow assumption adopted in this 
work, with the wind tunnel corrections also playing a role. 

 
Figure 38. Normal force convergence. NACA wing-body, M∞=0.9 and =4º. 

According to the results presented above (see Table 4), the observed order of 
accuracy computed by Richardson’s extrapolation is p = 1.4059 for the FPM 
and p = 1.7281 for PUMI. Although second-order spatial accuracy is 
theoretically possible, lower convergence rates are expected due to the non-
smoothness of the flow, the limiting process, boundary conditions effects and 
the characteristics of the discretizations employed. The additional dependence 
the FPM has on the characteristics of the local approximation can explain the 
lower value achieved in comparison with PUMI.  

A measure of the discretization error in the numerical solutions is computed 
by means of the GCI (Eq. (4.82)) and the results are presented in Table 5. As 
expected, the error bound decreases for the solutions on grids 3 to 1 but this 
behavior is not regular for grids 4 to 2. The checks performed by applying the 
relation (4.83) indicate that the solutions on the three finest grids are in the 
asymptotic range of convergence but the coarser grid, for both PUMI and 
FPM, is not. This could be the reason for the anomalous behavior in the 
coarser solutions. 

 FPM PUMI 

GCI12(%) 1.97 4.58 

GCI23(%) 2.67 6.64 

GCI34(%) 1.58 2.58 

check 1-2-3 1.014 1.016 

check 2-3-4 0.443 0.273 

Table 5. Grid convergence index for discretizations sets 1-4 (Fs=1.25). NACA wing-
body, M∞=0.9 and =4º. 
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An additional verification of the observed order of accuracy of the schemes is 
performed by assuming second-order extrapolation to compute the estimates 
f0. The convergence rates and error levels in Figure 39 are in agreement with 
the results obtained above. 

 
Figure 39. Evolution of the error estimates with the grid refinement level. NACA 
wing-body, M∞=0.9 and =4º. 

5.3.3.2 Iterative convergence 

The iterative convergence of the solutions obtained for the test cases 
presented above is quite similar in both methods, although slightly better in 
PUMI (see Figure 40). It is also observed that the residual level achieved for 
the fixed number of steps chosen (10K) increases with grid refinement. This 
behavior, which can be explained due to the fact that more time steps are 
needed to propagate the information through the solution domain as the grid 
becomes finer, may cause incomplete convergence in the runs with the finest 
grids. In order to verify this, an analysis with 30K time steps is performed 
using the finest grid. Figure 41 shows that the normal force variations (over 
intervals of 100 steps) are within ±1 lift count approximately after step 5000 
and oscillate, with decaying amplitude, around a mean value which does not 
change substantially with respect to the final converged solution. Hence, in 
spite of the fact that more than 10K iterations being required for a fully 
converged solution, the residual level achieved is considered acceptable. 

It should be noted that more effective solution approaches, e.g. multigrid, 
would be required for satisfactory convergence in large-scale problems. In the 
present work neither convergence optimization (e.g. through freezing of 
limiters, Courant number and residual smoothing parameters adjustment, etc.) 
nor multigrid implementations have been considered. The performance is 
studied only in relative terms and, as shown in (Katz & Jameson, 2009b), it is 
expected that both methodologies can benefit equally from improved solution 
techniques like multigrid, thus achieving comparable performance gains.  
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Figure 40. Iterative convergence for the NACA wing-body at M∞=0.9 and =4º. 

 
Figure 41. Convergence history computed for the finest grid. NACA wing-body at 
M∞=0.9 and =4º. 

Finally, pressure distributions along a wing section (40% half-span) are 
compared (Figure 42). A more diffusive solution (smoother shocks) is 
observed in PUMI but this trend disappears as the grids are refined, thus 
achieving a very good agreement for the finest grid. The reduced diffusion in 
the FPM (possibly due to the use of a reduced stencil for the computation of 
the artificial fluxes) implies that a more accurate solution might be achieved 
for a given grid spacing. On the other hand, the reduced amount of artificial 
diffusion may be the cause of a lower convergence speed (cf. Figure 40 and 
Figure 41). Overall, there seems to be a trade-off between reduced diffusivity 
(in FPM) and faster convergence to the steady state (FEM). The net effect is 
that both methods seem roughly comparable in this respect. The agreement 
between numerical and experimental results in Figure 42 is satisfactory. 
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Surface pressure contours computed with PUMI and the FPM are shown in 
Figure 43 for grid sets 1-4. 

 
Figure 42. Pressure distributions computed at a 40% half-span wing section. NACA 
wing-body, M∞=0.9 and =4º. 

 
Figure 43. Surface pressure contours computed for grid sets 1-4. Left: FPM, Right: 
PUMI. NACA wing-body, M∞=0.9 and =4º. 
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5.3.4 Performance assessment 

The computational performance of the basic FPM solver with respect to FEM 
approach (PUMI) is examined in this section. The computational codes are 
compiled with Intel Fortran v10.1 with flags –O3 –ipo –xT –no-prec-div –
funroll-loops and single precision real data. The runs are performed on a 
cluster node having 2 Intel Quad-core Xeon E5410 processors @ 2.33 GHz 
with 2 x 6Mb L2 cache. The system has 32 Gb global ram and runs under 
Linux operating system. No processor scheduling is specified.  

In order to facilitate the performance comparison, the analysis is divided into 
pre-process and flow computation stages. The pre-process stage includes a 
series of operations which are similar in PUMI and the FPM (e.g. reading of 
input files, construction of boundaries and geometrical information and data 
renumbering) as well as other tasks which differ radically. The latter concern 
the computation of the spatial approximation and its related data structures. 
Hence, the difference between the CPU-times measured for the complete pre-
process stage can be considered an approximate measure of the relative cost 
of constructing the meshless and the FEM-based approximations. Note that 
the global cloud connectivity (unconstrained Delaunay) provided by the point 
generator is employed to speed-up the clouds construction in the present 
examples. The flow computation stage concerns the Euler time marching 
solution and the CPU-time measurement is taken over 100 time steps running 
with the high-order MUSCL scheme. The simplified methodology proposed 
in Section 5.2 is employed for the FPM. 

It is important to note that the analysis is conducted using modest hardware 
resources having a limited performance, particularly as regard parallel 
scalability (multi-core CPU in single-socket board). Consequently, the results 
should be considered only as a measure of the relative performance of the 
FPM with respect to a classical FEM technique running in this kind of 
hardware and implementing similar solution strategies (as far as this is 
possible). It is expected that the use of higher-performance hardware (multi-
processors) would yield comparable gains for both codes. 

5.3.4.1 Pre-process stage 

The CPU-times involved in the pre-process stage are compared in Figure 44 
(the data for PUMI corresponds to serial runs as this part of the code is not 
parallelized). The serial runtime in the FPM is higher than in PUMI and the 
differences grow markedly with the problem size. However, important time 
savings are achieved when running in parallel. The speed-ups attained (Figure 
44 (right)) show a fair scalability when running up to 4 CPU-cores, with 
higher speed-ups achieved for finer grids (probably due to the increase in the 
amount of work to be processed, which makes the parallel overhead less 
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important in relative terms). It can be also noted that the parallel performance 
changes noticeably when more than 4 cores are employed. This behavior is 
typical in multi-core single-processor systems as those used in this work. It 
reflects the fact that when several threads are spanned, some processor 
resources must be forcibly shared (specifically, the L2-cache and main 
memory) exacerbating memory contention issues. This fact, coupled with the 
constant main-memory bandwidth (which depends only on the number of 
physical processor sockets and therefore does not scale with thread count) 
makes the performance gains beyond the 4-thread limit very inconsistent. 

 
Figure 44. CPU-time ratio and parallel multi-core performance of the FPM in the pre-
process stage. NACA wing-body problem. 

5.3.4.2 Flow computation stage 

The flow computation stage is evaluated by running 100 high-order Euler 
steps on different numbers of cores. The CPU-time ratios (Figure 45), 
obtained by dividing the FPM runtime by the time measured in PUMI for 
each grid and number of cores, show comparable computational cost in both 
methods. This result corroborates the effectiveness of the modifications 
introduced in Section 5.2. Furthermore, it is observed that the runtime in the 
FPM reduces faster than in PUMI as the number of cores increases (see 
Figure 46). The FEM solver achieves peak performance with 4 cores, 
presumably due to memory bandwidth saturation. Unlike PUMI, the higher 
data locality and totally independent computations in the FPM make it 
possible for the scaling to continue over 4 cores, albeit at a reduced rate. It 
should be noted that the scaling of the FEM solver can be improved by 
implementing some form of domain decomposition, bringing the performance 
to the same level as the FPM solver59. The advantage of the meshless 

                                                            
59 The FEM solver has been parallelized in a very simple way because it was designed 
to run in machines with a small number of cores. 
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approach is that such kind of optimization is not required, given the 
independent nature of the computations. 

 
Figure 45. FPM runtime ratios measured for 100 high-order Euler cycles. NACA 
wing-body, M=0.9 and =4º. 

 
Figure 46. Speed-up comparison of the FPM (left) and PUMI (right) based on 100 
high-order Euler cycles. NACA wing-body, M=0.9 and =4º. 

The evolution of the normal force error computed for the finest grid using 4 
CPU-cores is compared in Figure 47 (the time values are normalized with the 
total time required in the FEM run). The results show that the CPU-time 
required to achieve the same error level is quite similar in both methods. The 
oscillatory behavior seen before (Figure 40) is also evidenced as the solution 
approaches an asymptotic behavior. The attained error levels are also within 
the error bands predicted in the previous section (see Table 5). 
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Figure 47. Evolution of the normal force error for the finest grid resolution. NACA 
wing-body, M=0.9 and =4º. 

5.3.4.3 Memory usage 

Memory storage requirements are compared in Figure 48. The higher memory 
usage in the FPM responds to a higher connectivity per node (which increases 
the storage requirements per cloud) and the need to use two different data 
structures, with redundant information, to enhance computing performance. 
Moreover, the lack of symmetry of the approximation operators in the FPM 
does not allow reducing the storage requirements like in PUMI. Even though 
further optimizations are possible, some distinctive properties of the FPM, 
such as the higher connectivity per node and the lack of symmetry properties 
of the metric coefficients, mean that some degree of memory overhead cannot 
be avoided. The impact of the storage requirements on the applicability of the 
FPM in large-scale problems needs to be studied further. 

 
Figure 48. Memory storage requirements in FPM and PUMI. 
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5.3.4.4 Domain discretization 

The CPU-time involved in the generation of the point discretizations used 
with the FPM is presented in Figure 49. The discretizations are generated 
using a desktop computer with an AMD Opteron 246 processor @ 1.99 GHz 
running on a Windows 64-bit system. The runtimes presented correspond to 
the overall generation time, which includes the initial Delaunay of the input 
boundary grids required to start the interior volume discretization through the 
driven point insertion procedure (see Section 3.6.1).  

 
Figure 49. CPU-times required for the point discretization of the NACA wing-body 
with different refinement levels. 

It should be noted that the CPU-times required for the FEM mesh generation 
using GID are not presented in Figure 49. The fact that the advancing front 
technique is more expensive than the Delaunay method and, in addition, 
cosmetic procedures are required to guarantee a suitable mesh, make the 
generation time in GID to be hardly competitive with the point discretization 
technique used in the FPM. 

5.4 Assessment of FPM reduced-fidelity models 

The performance of the artificial diffusion models presented in Section 4.2.3 
is studied here in comparison with the basic Roe-MUSCL solver. With this 
aim, numerical computations are performed with the finest grid discretization 
(#1) using the same flow conditions and solver settings employed in the 
preceding sections. In the comparisons, third-order MUSCL extrapolation 
with the van Albada limiter is used in both, the Roe-MUSCL scheme and the 
limited-differences scalar model. The dissipation coefficients in the Jameson’s 
model are set to 2 = 0.25 and 4 = 0.05. 

The iterative convergence of the methods is studied first and the results are 
compared in Figure 50. As regards residuals convergence, the three methods 
exhibit a quite similar behavior. The evolution of the normal force is also 
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comparable, although on average, slightly lower values are obtained with the 
artificial diffusion models (about 1.5% with respect to the Roe-MUSCL 
scheme). Note that incomplete solution convergence, causing the same 
oscillatory behavior seen earlier (Figure 40), is also observed for the reduced-
fidelity schemes under testing. 

 
Figure 50. Comparison of iterative convergence between the FPM reduced-fidelity 
models and the Roe-MUSCL solver. NACA wing-body (grid #1), M=0.9 and =4º. 

The pressure distributions computed along a section at 40% of the wing semi-
span have also been compared (Figure 51). It can be observed that the scalar 
solution has a higher level of diffusivity, which causes some spread of the rear 
shock wave. In the case of the Jameson’s solution, the shock position matches 
that in the original MUSCL-Roe scheme and it is sharply captured, although 
with considerable overshoot. This behavior can be improved by fine tuning of 
the dissipation parameter 2 and 4 or by using an enhanced flow detector. 
However, these adjustments are beyond the objectives in the present analysis.  

 
Figure 51. Comparison of FPM pressure distributions for the NACA wing-body at a 
wing station 2y/b=0.4 using grid #1. M=0.9 and =4º.  
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The computational cost of the three schemes is compared in Table 6. The 
CPU-times are taken over 100 Euler steps and the hardware platform is that 
used in Section 5.3.4 (running on 4 CPU-cores). The relative cost of the 
different methods shows that notable speed-ups can be achieved in the 
computations by using the reduced-fidelity models. Particularly in the 
Jameson’s scheme, the computing time is reduced 42% with respect to the 
Roe-MUSCL solver and, as shown in Figure 50 and Figure 51, the solution 
accuracy is not significantly affected. Even though the Jameson’s model has 
the disadvantage that diffusion coefficients must be specified, the ratio 
accuracy/cost achieved makes it a good candidate when fast computations are 
required. Furthermore, the employment of a more precise switch can help 
eliminate the overshoots as well as reduce the solution’s sensitivity to the 
user-defined diffusion coefficients. 

 
CPU-time 

(secs.) 
Relative cost 

(%) 

Roe+MUSCL (original) 523.6 100 

Scalar + MUSCL 462.8 88 

Jameson 2nd & 4th order 302.1 58 

Table 6. CPU-times needed to perform 100 Euler steps with grid #1 using the 
different FPM solution schemes. NACA wing-body, M=0.9 and =4º.  

5.5 Concluding remarks 

The performance of the FPM methodology has been investigated in this 
chapter on the basis of a practical transonic test case. The analysis focused on 
accuracy, computational cost and parallel scalability of the meshless method, 
and was conducted in comparison with an equivalent and widely accepted 
Finite Element-based technique (PUMI code). This provided a standard to 
assess the characteristics of the meshless solver as well as its suitability to 
address practical applications. In this regard, a simplification of the basic 
FPM technique was proposed to improve its efficiency and reduce the 
performance gap with respect to conventional solution approaches. The most 
relevant findings of the comparative assessment are summarized below.   

Regarding the observed accuracy of the FPM scheme, the grid convergence 
studies showed a convergence rate of about 1.4, which is within the expected 
range for the type of problem and characteristics of the solution approach 
employed. In addition, no significant differences were found with respect to 
the FEM scheme. The discretization error estimates in the FPM were lower 
for a similar grid spacing and this fact may point to a less diffusive solution. 
On the other hand, the number of iterations needed to achieve convergence is 
increased. The net effect is that the both methods are comparable with regards 
to the runtime performance.  
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The computational cost has been analyzed from the point of view of the 
construction of the approximation and related data structures, and the flow 
computation stage. Regarding the approximation, the FPM has proved more 
expensive than FEM (as expected due to its higher complexity). Nevertheless, 
the method shows good scaling when running in parallel, making the overall 
cost quite affordable. As far as the FPM flow computation stage is concerned, 
the proposed simplified evaluation of the diffusive fluxes (using a reduced 
stencil of points with an edge-based data structure) has proved effective in 
reducing the computational cost without affecting solution accuracy and 
robustness. Consequently, the measured CPU-times obtained in the FPM were 
comparable to those in FEM for the serial runs and a satisfactory parallel 
behavior was also observed. This gives the possibility to combine meshless 
advantages (e.g. regarding discretization) with a competitive computational 
cost, thus achieving efficient implementations. Moreover, the application of 
reduced-fidelity models has demonstrated that the computational cost can be 
still reduced significantly while preserving accuracy to a large extent. This 
can be of benefit in many rutinary computations performed in practice.  

It cannot be denied that some additional improvements are still required in 
view of practical applications (e.g. more efficient convergence acceleration 
techniques, improved data structures and cloud construction procedures). 
Nonetheless, the performance of the FPM core algorithm has shown to be 
competitive with respect to its FEM counterpart. This is important because 
meshless techniques are often considered impractical due to the poor 
efficiency of the initial implementations. 

In the next chapters, different applications and extensions of the basic FPM 
methodology here studied are presented with the aim to show its capabilities 
in specific areas where meshless procedures can make interesting 
contributions. 
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6 ADAPTIVITY AND ERROR ESTIMATES 

Automatic grid adaptation (h-adaptation) techniques are of great interest in 
most of the fields of numerical computation. These techniques reduce the 
effort needed to obtain a proper discretization for numerical analysis as 
regards man-hours, CPU-time and memory requirements. In addition, 
adaptive procedures make the accurate computation of the smaller scales of 
the flow easier, especially when we do not have a priori information 
concerning the solution, or it changes in time during the simulation (e.g. 
unsteady flows). Another field of study, which is closely related to h-
adaptivity, involves the design of error estimates and flow indicators aimed at 
guiding the automatic adaptative procedures. This topic has received much 
attention in computational mechanics, not only in relation to grid adaptation 
but also in the identification and quantification of numerical error.  

The fact that meshless techniques do not require a conforming grid, subject to 
various topology and quality conditions, reduces the discretization 
requirements significantly. This characteristic provides to the meshless 
approach some advantages over conventional mesh-based techniques, 
especially for addressing problems involving automatic grid adaptivity, 
moving or deforming boundaries and changing domains, among other features 
that can be very demanding in terms of the spatial discretization. In order to 
start exploring the meshless capabilities, procedures for automatic grid 
adaptation and error identification in the context of compressible flow 
problems are developed in this chapter. 

Next, an h-adaptive procedure is proposed in Section 6.1 and several 
numerical applications are presented in Section 6.2 to illustrate the 
performance of the algorithm. In the test cases presented, a simple feature-
based indicator is used to guide the adaptive procedure. Then, focusing on this 
particular aspect of the methodology, error identification and evaluation 
techniques are discussed in Section 6.3 and a truncation-error based estimate 
is proposed with the aim to achieve a more effective improvement of the 
solution (note that this kind of indicator is more closely related to the 
discretization error). The behavior of the truncation-error based indicator is 
studied in relation with reliable solution error estimates, and comparisons with 
the simpler feature-based indicator are also provided.  



126 
 

6.1 The h-adaptive procedure 

The proposed meshless adaptive procedure can be explained in three main 
steps: the identification of areas in which either local refinement or coarsening 
of the discretization is required, the removal and insertion of points, and the 
update of the related data structures. The latter involves the construction of 
the data associated to the new points and the re-construction of the data 
associated to clouds of points affected during the adaptive procedure. These 
basic steps are described below. 

6.1.1 Refinement/coarsening indicator 

Local clouds in the analysis domain where either refinement or coarsening is 
required can be identified according to several criteria. Basically, the local 
indicators can be based on detectors of particular flow features in the solution 
field or on numerical error estimates (these measurements may be related). A 
solution feature-based indicator is presented in this section.  

The feature-based indicator proposed measures in an approximate manner the 
curvature of the solution and is defined at each star point xi by 

  i ij j ie
r     l    (5.1) 

where e indicates the edges in the first layer of nearest neighbors of xi 
(obtained in the local cloud construction stage), lij = xj-xi and  is the density 
of the fluid (note that the solution gradients are nodally available in the FPM). 
Naturally, another flow variable or a combination of flow variables can be 
adopted for calculating the refinement indicator. In this work the density field 
is employed as it is sensitive to all types of basic flow discontinuities. 

The indicator (5.1) is not directly used to guide the adaptive process. To this 
end, the following smoothed dimensionless indicator is employed 

 
1

1 1
log

nein

i j
ji e

r
n


 

 
  

 
  (5.2) 

where ne is the number of edges and the logarithm is taken in order to 
compress the scale of the distribution. Then, the mean (m) and standard 
deviation (s) of the ’s distribution are computed and local clouds in which 
refinement or coarsening is required are determined as follows: 

a. the cloud is tagged for refinement when mi rn s    

b. the point xi is marked to be removed if mi cn s     
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being nr and nc threshold parameters that must be set according to the problem 
under study. The sensitivity of the solution to these values is not high in 
practice and satisfactory results are generally obtained with nr ≈ 1 and nc = 0.  

Notice that the feature-based indicator (5.2) only provides detection of 
relatively high-gradient areas where it is assumed that the solution error will 
decrease as the grid is refined, but the error is not actually measured. 

6.1.2 Removal of points 

The adaptive stage begins with the removal of points tagged for deletion (this 
is essential for treating non-stationary problems). The coarsening of surface 
grids is performed by collapsing edges with marked nodes. Interior volume 
points are simply deleted from the vertices list. After the removal of points the 
data structure is updated. It is important to note that the removal of points is 
restricted only to the existing points that have been inserted in prior 
refinement levels. In other words, the initial set of points (original coarse 
discretization) is conserved through the calculation, although the spatial 
position of these points could change due to smoothing. This criterion avoids 
additional verifications to guarantee a minimum geometrical support for the 
calculation. 

6.1.3 Surface refinement 

The surface grids are refined after the coarsening stage. To this end, surface 
elements having tagged all their nodes are selected and a new point is inserted 
at its centroid (and the element is subdivided) if the distance to any other point 
in the discretization is greater than a minimum cut-off distance hmin. The latter 
determines the allowable level of refinement and is computed for the original 
discretization as an user-defined percentage of the distance between each 
point and the nearest neighbor in its cloud. For new points added during 
refinement stages, hmin is inherited from the original points distribution. Once 
new boundary points are inserted, their positions (originally coincident with 
the centroid of the underlying element) are slightly improved by interpolation; 
see (Karbacher, Seeger & Häusler, 2001). This avoids excessive faceting of 
the surfaces in successive element subdivisions. Finally, edge swapping is 
applied on the affected boundary elements to improve their connectivity, thus 
facilitating the insertion and removal of points in future adaptive passes. 

6.1.4 Volume refinement 

Points in the interior of the fluid tagged for refinement are processed after 
surface refinement is completed. To this end, at the local cloud level, the 
Voronoi vertices surrounding the star point xi are computed by means of its 
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Delaunay grid of nearest neighbors. Next, a new point is added at the location 
of each Voronoi vertex if the distance from the latter to any existing point is 
greater than hmin. In addition, boundary constraints are checked to verify that 
any ray from the star point to the new point does not pierce any surface (see 
Section 3.6.2). A dynamically updated bins structure is employed to perform 
the many spatial search operations required with efficiency. 

6.1.5 Update 

A few steps of a Laplacian smoothing are carried out on the affected area 
when the coarsening/refinement stage finishes. Then, the clouds of points and 
the local approximation are constructed for the new points, and the data 
related to existing clouds affected by deletion, insertion of new points or 
smoothing is re-constructed. Finally, the flow and other problem variables at 
the new points are calculated simply as an average of the variables at their 
previously existing layer of first nearest neighbors.  

6.2 Application examples 

Some numerical examples are presented next to illustrate the basic behavior 
of the proposed adaptive procedure. The applications focus mainly on 
showing detection capabilities and the convergence of the adaptive solutions 
in stationary problems. Additional test cases are presented later in this chapter 
to investigate the accuracy of the methodology in more detail.   

6.2.1 Supersonic flow past a double-wedge airfoil  

A double-wedge airfoil with unit chord c = 1 and wedge angle  = 20º is 
solved here for an upstream Mach number M = 2 and zero incidence. The 
initial coarse discretization is composed by an unstructured distribution of 
1279 points and quadratic approximations are built on clouds with 15-20 
points. Third-order MUSCL extrapolation (with van Albada limiter) and a 4-
stage time marching scheme are adopted. The number of refinement levels is 
set arbitrarily large in this simulation (and hmin small) in order to verify the 
convergence of the numerical solution. The first refinement pass is triggered 
when the density residual (L2 norm) drops below 1.0E-5. Then, consecutive 
refinement levels are carried out every 200 time steps. The final adapted 
discretization consists of 51907 points (70 refinement levels). The initial and 
final adapted discretizations are shown in Figure 52. 
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Figure 52. Original (left) and final adapted (right) discretizations showing Cp isolines. 
Double-wedge airfoil, M=2.0 and =0º. 

A comparison between the analytical solution of the problem (Cp) and the 
numerical solution calculated at some refinement levels is presented in Figure 
53. The results are obtained along an x-cut in the domain, located 0.1c above 
the airfoil chord-line. It is possible to observe the convergence of the 
numerical solution as the grid is refined. Finally, the convergence history of 
the problem is shown in Figure 54. Note that the peaks correspond to each 
refinement level performed during the computation. The lower rate of 
convergence observed after refinement can be caused by the continuous action 
of limiters in the areas of finer discretization.  

 
Figure 53. Comparison of analytical and numerical Cp distributions along an x-cut on 
the domain at different refinement levels. The cut is located at y/c=0.1 and the airfoil 
leading edge coincides with (x,y) = (0,0). Double-wedge airfoil, M=2.0 and =0º. 
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Figure 54. Convergence history (70 refinement levels). Double-wedge airfoil, M=2.0 
and =0.0º. 

6.2.2 The shock tube problem  

The shock tube problem has been already described in the context of 
verification test cases (see Section 4.6). In the present adaptive application it 
is solved in a two-dimensional domain =(1x0.5) for a pressure ratio 10. The 
initial coarse discretization consists of a homogeneous distribution of 968 
points and quadratic approximation bases in clouds having 15-20 points are 
adopted. Third-order MUSCL extrapolation with Van Albada limiter and a 4-
stage time marching scheme are employed in the simulation. The successive 
refinements passes are performed at a fixed number of time steps. The 
simulation time run in this example is t=0.2 seconds. Figure 55 presents some 
snapshots of the point discretization taken at different times from the rupture 
of the diaphragm. The final discretization reaches a total of 2847 points. 

Numerical solutions obtained for density at times t = 0.14 and 0.20 seconds 
are compared with the analytical solution in Figure 56. As it can be observed, 
the results seem to be a bit diffusive and small inaccuracies can be also seen 
in the shock position. This behavior may be caused by geometrical and 
allowable hmin restrictions. These limit the quantity of new points inserted at a 
given refinement level, thus making the discretization unable to adapt 
instantaneously to a fast varying flow solution in a proper manner. 
Furthermore, the simple interpolation procedure adopted and the Laplacian 
smoothing can also play a role. Nevertheless, given the characteristics of the 
problem, the results are deemed satisfactory. A more efficient approach to 
deal with problems involving moving discontinuities will be proposed in the 
next chapter.  
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Figure 55. Adapted discretizations at different times from the rupture of the 
diaphragm (Top: initial discretization; Middle: 0.14s.; Bottom: 0.20s.). Shock-tube 
problem, pL/pR=10. 

 
Figure 56. Numerical and analytical solutions for the density along the centerline of 
the shock tube at two different times from the rupture of the diaphragm (pL/pR=10). 

6.2.3 Transonic flow around a NACA 0012 airfoil  

This example concerns the computation of a transonic inviscid flow around a 
NACA 0012 airfoil. The freestream Mach number is M = 0.8 and the 
incidence angle is  = 1.25º. The initial discretization consists of an 
unstructured distribution of 976 points, and quadratic approximation bases are 
used in clouds with 15-21 points. Third-order MUSCL extrapolation with Van 



132 
 

Albada limiter and a 4-stage time marching scheme are employed in the 
numerical simulation. The initial and final adapted point distributions are 
shown in Figure 57. The finest discretization consists of 4938 points and is 
achieved after 15 refinement levels. It is possible to note that the strong shock 
wave on the upper side of the airfoil, the weaker shock on its lower side, and 
the leading and trailing edge regions are properly captured by the refinement 
procedure. 

 

Figure 57. Original coarse and finest adapted discretization in the proximity of the 
airfoil. NACA 0012, M=0.8 and =1.25º. 

The airfoil Cp distribution calculated on the finest discretization is displayed 
in Figure 58. A satisfactory agreement with the AGARD numerical results 
presented in (Pulliam & Barton, 1985) is achieved. Finally, the time 
convergence history of the problem is presented in Figure 59. 

 
Figure 58. Comparison of computed Cp distribution (final adapted discretization) and 
AGARD numerical reference results. NACA 0012, M=0.80 and =1.25º. 
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Figure 59. Convergence history (15 refinement levels). NACA 0012, M=0.80 and 
=1.25º. 

6.2.4 ONERA M6 wing 

The flow around the ONERA M6 wing is solved in this example for the 
freestream conditions given in Section 4.6.3. The initial coarse discretization 
consists of an unstructured distribution of 66864 points and quadratic 
approximation bases are employed in clouds with 30-45 points. The solution 
scheme uses third-order MUSCL reconstruction with Van Albada limiter and 
a 4-stage time marching scheme. In this simulation, the adapted discretization 
reaches a total of 102592 points after 35 refinement levels. Figure 60 shows a 
view of the original and final discretization of the wing (upper side). The 
original surface model has 14221 points and 28314 triangle elements and the 
final discretization achieves 15537 points and 30942 triangles.  

 
Figure 60. Original coarse and final adapted discretizations (35 refinement levels). 
ONERA M6 wing, M=0.84 and =3.06º. 
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Pressure distributions obtained for the original and finest discretization are 
compared along two wing sections in Figure 61. There, a view of the finest 
point discretization along the same spanwise stations is presented. The 
convergence of the density residual is shown in Figure 62. 

 

Figure 61. Cp distributions along sections =0.44 (top) and =0.95 (bottom) 
calculated with the original and the final discretizations. Cuts x-z of the finest domain 
passing through the same stations are also shown (right). ONERA M6 wing, M=0.84 
and =3.06º. 

 

Figure 62. Convergence history (35 refinement levels). ONERA M6, M=0.84 and 
=3.06º. 
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The computational cost of a single refinement pass in this example has proved 
to be approximately equal to the time required in the update stage. As the 
number of clouds to be processed is generally small compared with the total 
number of clouds in the domain, the CPU-time involved is usually low. Some 
timings will be given later in Section 7.4. 

6.3 Error estimation 

The identification and quantification of numerical errors is a subject which 
has been largely studied in computational mechanics, not only with the aim to 
perform local or global solution improvements (e.g. through grid adaptation), 
but also to determine the accuracy and reliability of the computational code 
and the numerical results. Error taxonomies and analysis methodologies 
developed with these aims in the framework of verification and validation 
(V&V) are becoming standard practices in numerical computation; see for 
instance (Oberkampf & Trucano, 2002; Roache, 1997; Roy, 2005; Thacker, 
Doebling, Hemez, Anderson, Pepin & Rodriguez, 2004) for an overview. 

In the context of meshless methods, error estimation methodologies have 
followed the general lines of the approaches developed for conventional grid-
based methods, but aiming at exploiting meshless advantages regarding 
problem data structures and topological requirements. In this sense, meshless 
approaches have a considerable potential to deal with general unstructured 
discretizations and, for example, this makes it easier to address higher-order 
approximations and reconstruction processes needed in error estimation 
techniques. Among the first meshless applications, error estimates based on 
residuals (Duarte & Oden, 1996a) and wavelets (Liu, Jun, Sihling, Chen & 
Hao, 1997) can be found. More recently, enhanced, recovered or higher-order 
solution fields have been employed to construct error estimates and indicators 
(Angulo, Pérez Pozo & Perazzo, 2009; Gavete, Cuesta & Ruiz, 2002; Lee & 
Zhou, 2004; Li & Lee, 2006; Rabczuk & Belytschko, 2005). Also, error 
functionals steaming from the construction of the meshless approximation 
have been derived, see for instance (Afshar & Lashckarbolok, 2008; Perazzo, 
Löhner & Perez-Pozo, 2007). These methodologies have been successfully 
applied to locally improve the numerical solution (reducing discretization 
errors) through p or h-adaptation.  

In this section, following the ideas adopted in discrete error transport 
equations (DET) methods, an estimate of the numerical solution error is 
developed with basis on the truncation terms of the governing equations. The 
proposed estimate is mainly intended to guide the adaptive procedure (error 
identification) and is expected to be more effective than feature-based 
indicators (such as proposed in Section 6.1) in the reduction of local and 
global solution errors. The basic aspects of DET methods and the 
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methodology proposed to compute the meshless indicator are presented 
below. Examples of application in compressible flows are also provided. 

6.3.1 Discrete error transport equations 

Methods based on discrete error transport equations directly model the 
generation and transport of error in the computational domain, see for instance 
(Hay & Visonneau, 2006; Shih & Qin, 2007; Zhang, Trépanier & Camarero, 
2000). These equations are obtained from the definition of the discretization 
error, using linearized forms of the problem governing equations in which the 
truncation error, i.e. the difference between the original governing equation 
and its discrete approximation, acts as a source term. Due to the fact that 
explicit forms of the truncation error are difficult to obtain in general 
problems, approximated expressions have to be derived. Typical 
approximations have a close connection with differential residuals60, see for 
example (Roy, 2009). It is important to note that the key role truncation terms 
play in DET equations makes them suitable candidates to evaluate 
discretization errors. An application in which a normalized form of the 
truncation error is adopted as an approximate solution of DET equations can 
be found in (Muzaferija & Gosman, 1996). Moreover, the proportionality 
between truncation and local and global discretization errors (and thus 
solution accuracy) is demonstrated in (Blottner & Lopez, 1998) over a 
considerable range of problems and simple discretization schemes. It should 
be noticed that this kind of estimators are also efficient to drive mesh 
adaptation processes because the truncation error terms account for both, 
mesh quality and flow features contributions to the discretization error; some 
applications can be found in (Aftosmis & Berger, 2002; Baker, 1997; Berger 
& Jameson, 1985; Roy, 2009). 

                                                            

60 Methods based on differential residuals were initially developed in the FEM 
framework; see (Babuska & Miller, 1984; Oden, Wu & Ainsworth, 1993). Although 
typically these residuals are obtained by inserting an approximate solution into a 
modified functional form of the problem equations, these can be also computed by 
using an enhanced solution field with the same set of discrete equations. Non-zero 
local (and global) residual values can be related to a lack of enforcement (or balance) 
in the governing equations and this, in turn, to errors in the conserved quantities 
affecting the solution and output functionals (although the relationships are not 
straightforward). Applications using residual imbalances (e.g. in kinetic energy, 
momentum, etc.) have proven to be useful to guide grid adaptation and also to 
perform as surrogate error indicators in output quantities; see for instance (Chang & 
Haworth, 1997; Oden & Prudhomme, 1999) and more recently (Oñate, Arteaga, 
García & Flores, 2006), where power forms of mass and momentum imbalances are 
used to guide mesh adaptivity in incompressible flow problems. 
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6.3.2 A truncation-error meshless estimate 

Following DET ideas, an estimate of the discretization error is developed in 
this section. This error, which usually is the largest affecting the numerical 
solution, depends on the underlying discretization and the characteristics of 
the numerical scheme, and can be defined as 

 h he     (5.3) 

where  is the exact solution of the continuous problem, L()=0, and h is the 
exact solution of its discrete counterpart, Lh(h)=0, computed on a grid with 
characteristic size h (iterative and round-off errors are considered negligible). 
Assuming that the discrete problem operator Lh is linear (or has a linearized 
form) and applying it to Eq. (5.3), the following equation for the discretization 
error can be obtained 

 ( ) ( ) ( ) ( ) 0 ( )h h h h h h hL e L L L L         (5.4) 

which can be solved with the same numerical method employed to obtain the 
discrete solution, but with an extra source term which is responsible for the 
local generation and destruction of error in the problem domain. The 
equivalence between the source term Lh(·) (discrete differential residual) and 
the problem truncation error (h) can be demonstrated by using the following 
relation between the differential operators 

 ( ) ( ) ( )h hL L       (5.5) 

where (·) denotes an arbitrary problem solution (Roy, 2009). Then, 
introducing  in Eq. (5.5) the term L() vanishes, and substituting the result 
into Eq. (5.4) it is possible to obtain 

 ( ) ( )h h hL e     (5.6) 

which is the basis of methods using DET equations. Due to the fact that the 
truncation error and the problem solution are usually unknown in practical 
problems, approximate approaches are employed to solve Eq. (5.6). 

Given that the main focus in this work is on error identification and 
adaptivity, an accurate solution of Eq. (5.6) is not required. Thus, a low-cost 
surrogate measure of eh is proposed. That measure is based on the problem 
truncation error and exploits the fact that the latter acts in Eq. (5.6) as a source 
term which behaves proportionally to the true discretization error (see proofs 
in (Blottner & Lopez, 1998)). Hence, neglecting transport phenomena, it is 
assumed that locally eh  h and a surrogate error measure is obtained from an 
approximate form of h via Eq. (5.5), i.e. 

 ( ) ( ) ( )h h hL R        (5.7) 
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where Rh(·) is the discrete differential residual of the problem and the 
unknown exact solution  is replaced by an accurate estimate. 

In the context of compressible flow problems governed by the discrete 
equations (4.15), the following form of the surrogate error is proposed 

    * *

t
i k ki
h ij j iji

b j


    
 

*U
U F Ue R  (5.8) 

where U* is an accurate estimate of the problem solution, Fk is the k-
component of the convective flux vector, and bij are the metric approximation 
coefficients for the cloud i. In addition, a global measure of the numerical 
error over the whole domain is obtained from the local error vector (5.8) 
according to the following L2 norm 

  
1/ 2

21
i

in 
   
 
e e  (5.9) 

in which n is the total number of points in the computational domain. Note 
that additional dissipation terms coming from the upwind flux discretization 
are not accounted for in Eq. (5.8). This approach reduces the smoothing of the 
error estimate around discontinuities (enhancing detection capabilities) as well 
as the computational cost. 

6.3.2.1 Computing accurate solution estimates  

The accurate estimates of the exact solution needed in Eq. (5.8) are computed 
in this work in terms of the underlying FPM approximation and the discrete 
problem solution. To this end, Eq. (1.11) is recast in a more suitable form by 
exploiting the partition of unity property of the approximation and scaling by 
a half the stencil of points surrounding xi. This leads to the following estimate 
of the unknown exact solution  

  ˆ ˆ2i i i ij ij i
i j

a    



     (5.10) 

where ij are samples of a higher-order reconstructed solution field taken at 
the midpoint of the edges connecting the star point xi with any point xj in the 
local cloud (see Figure 12 in Chapter 4) and ̂  are local values of the discrete 

(actual) FPM solution (Eq. (1.11)). The objective of the sampled values ij is 
to introduce locally improved information into the FPM approximation 
process in order to obtain a more accurate approximation to the exact solution. 
Note that Eq. (5.10) can be seen as a projection operator transferring 
information from an unknown finer grid solution into the actual discretization.  
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The methodology adopted in this work to compute the reconstructed solution 
samples ij is inspired on the slope-limited geometric methods discussed in 
Section 4.2.261. Typically, these techniques reconstruct a solution between 
two points xi and xj by fitting high-order interpolants on an enlarged spatial 
support. In addition, non-linear limiters should be introduced in the 
reconstruction process to avoid numerical oscillations across discontinuities, 
and this step can contaminate the recovered solution field (see for instance 
(Berger & Aftosmis, 2005)). Although slope-limited reconstruction has 
proven effective in the present context, the numerical experiments performed 
have shown an undesirable dependence of the level of accuracy obtained on 
the limiter chosen. Aimed at circumventing this drawback, a more robust 
reconstruction technique is described in the next section. 

6.3.2.1.1 ENO polynomial reconstruction 

Essential non-oscillatory schemes (ENO) (Harten, Engquist, Osher & 
Chakravarthy, 1987) are a family of reconstruction methods in which the 
solution interpolant is chosen between the smoothest of piecewise 
polynomials computed for the same sampling location on different local 
supports (stencils). As the selection procedure adopted avoids interpolating 
across discontinuities, limiting is not necessary. ENO schemes have also 
interesting properties, such as conservation of the mean, and guarantee total 
variations bounded by the truncation error of the reconstruction. 
Improvements to the basic ENO technique have been also proposed to solve 
certain deficiencies concerning the need of large stencils (difficult to obtain in 
unstructured discretizations) and the lack of accuracy in smooth data 
reconstruction problems; see for instance Weighted-ENO (WENO) (Liu, 
Osher & Chen, 1994) and Hermite-WENO (HWENO) (Qiu & Shu, 2003). 

In this work a standard ENO technique is employed to compute the ij  
samples required in Eq. (5.10). Thus, an enhanced solution field is 
                                                            

61 Notice that the estimates i
* could also be obtained by using higher-order accuracy 

schemes. Even though this methodology is less efficient from the computational point 
of view, meshless-based implementations offer some attractive alternatives (Barth, 
1991; Cueto-Felgueroso, Colominas, Nogueira, Navarrina & Casteleiro, 2007; Zhang 
& Naga, 2005). Hence, a preliminary investigation with higher-order FPM 
approximations was performed in this work. The results obtained, though satisfactory, 
evidenced a considerably dependence on the geometrical characteristics of the cloud 
and the problem setting (see comments in Section 3.4.2). In addition, some lack of 
robustness was also detected due to the large spatial support required for constructing 
the approximants (especially in 3D problems). Although these facts make geometric 
extrapolation techniques more attractive in the present context, further investigation 
on the employment of higher-order approximations should be required. 
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reconstructed in the interval Ii=[xi-1/2,xi+1/2] (in the direction of the edge lij = xj-
xi) by one of the following central, left and right-biased quadratic 
interpolation polynomials (Serna & Marquina, 2004), 
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 (5.11) 

where î  is the discrete (actual) problem solution at xi, 0 ≤ x’ ≤ 1 a non-

dimensional length parameter along the edge lij and 

 1/2 1 1/2 1/2 1/2 1/2
ˆ ˆ , , ( ) / 2i i i i i i i i id D d d d d d             (5.12) 

In order to evaluate first and second differences in Eq. (5.12), the discrete 
solution at fictitious points xj+1, xi-1 and xi-2 in the direction of lij is required 
(see Figure 63). These values can be obtained by means of the following 
central and 2nd-order backward finite differences approximations 
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where the nodal gradients are directly computed from the actual FPM solution 
by Eq. (1.12). 

 
Figure 63. Stencil of points employed for cubic ENO reconstruction around xi in the 
direction of the edge lij. 
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The interpolation polynomial employed to reconstruct the enhanced solution 
field in the interval [xi-1/2,xi+1/2] along lij is chosen according to the standard 
ENO selection procedure 
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 (5.14) 

and the edges’ midpoint samples required in Eq. (5.10) are obtained by  

  1 2ij kp x    (5.15) 

being k = i-1, i or i+1 according to the polynomial chosen in (5.14). Note that 
the polynomials (5.11) allow a continuous reconstruction of the unknown 
function in the interval [xi-1/2,xi+1/2] and this fact enables to use a different 
cloud scaling in Eq. (5.10). The tests performed showed no significant 
influence of the sampling location on the resultant accuracy of i

*. 

6.3.2.1.2 Numerical tests 

The accuracy and convergence of the accurate solution estimates (5.10) is 
investigated in this section by studying the behavior of the effectivity index in 
several numerical approximation examples. This parameter is defined as 
(Zienkiewicz & Taylor, 2000) 

 e
e   (5.16) 

where e  = || -̂ || is the error norm of the actual FPM approximation (Eq. 

(1.11)) referenced to the accurate estimate (5.10) and e = || -̂ || is the exact 
error norm. The discrete models employed in the analysis have regular point 
discretizations and the refinement applied is uniform. Moreover, a similar 
setting of the FPM approximation is adopted to minimize the effects of the 
geometrical characteristics of the clouds and the weighting functions settings 
on the convergence of the approximation (see Sections 3.3 and 3.4). 

The first example involves the approximation of a smooth Gaussian function 
defined in a one-dimensional domain [0,1] according to  

 
2 2( ) 2( ) x b cf x ae   (5.17) 
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where a=4/ , b=0.5, c2=2 and =0.005. The problem is initially discretized 
by a regular distribution of points with point spacing h = 0.125. Then, 
successively refined discretizations are generated by halving h with the 
objective to study the convergence of the effectivity index. The errors in Eq. 
(5.16) are computed in L2 norm and complete quadratic polynomial bases are 
employed in clouds with 5 points. Both, the standard FPM approximation 
(original) and the more accurate solution estimate (improved), are displayed 
in Figure 64 along with the evolution of the effectivity index (5.16). The 
sampled solutions show that a noticeably enhanced approximation is obtained 
with the estimate (5.10). A good convergence of the latter to the exact 
solution is also observed through the evolution of the effectivity index. 

 
Figure 64. Approximation of a smooth Gaussian function in a one-dimensional 
domain. 

A similar problem setting is employed in the second example, but this time a 
sign discontinuity is introduced in the Gaussian test function. The results 
obtained show a satisfactory performance of the accurate estimate (see Figure 
65), but no asymptotic convergence of the effectivity index is achieved. This 
behavior can be explained due to the fact that the approximation near the 
discontinuity reverts to about O(h), thus hampering the convergence of the 
global error estimate. 
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Figure 65. Approximation of a one-dimensional Gaussian function with a sign 
discontinuity. 

The last two examples are intended to investigate the performance of the 
proposed accurate solution estimate in three-dimensional approximation 
problems. To this end, the following test function is adopted in a cubic 
analysis domain (0,1)3  

      ( , , ) 64 1 1 1f x y z x x y y z z     (5.18) 

The initial discretization consists of an unstructured distribution of 1527 
points (h0.1) and successive refined discretizations are obtained by halving 
the point spacing. Complete quadratic polynomial bases in clouds with 30 
points are employed. As observed in Figure 66, a satisfactory convergence of 
the accurate estimate is also achieved in this example.  

 



144 
 

 
Figure 66. Behavior of the approximation error for a smooth three-dimensional 
function. 

Finally, using a similar problem setting, a sign discontinuity at x=0.5 is 
introduced in the test function (5.18). The results presented in Figure 67 show 
a satisfactory accuracy of the solution estimate but, like the one-dimensional 
case (Figure 65), the discontinuity affects both, the global approximation error 
and its convergence rate. Overall, the tests performed indicate the suitability 
of the proposed methodology to obtain the exact solution estimates required to 
compute the surrogate local error (5.8). 

 
Figure 67. Behavior of the approximation error for a three-dimensional function with 
a sign discontinuity. 

6.3.3 Applications to adaptive compressible flow problems 

The performance of the truncation-error based indicator is investigated here 
by means of two additional adaptive test cases involving subsonic and 
transonic flows around an airfoil and a wing-body configuration. The focus in 
the numerical examples is on the relation of the truncation-error based 
estimate with the solution error (mainly convergence rate) and its suitability to 
drive efficiently adaptive procedures. Comparisons with the feature-based 
error indicator presented in Section 6.1.1 are also provided.  
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6.3.3.1 Transonic flow around a NACA 0012 airfoil 

The first example involves the flow solution around a NACA 0012 airfoil 
presented in Section 6.2.3. In order to study the performance of the proposed 
error indicator, four discretizations with characteristic point spacings 
h1<h2<h3<h4 are generated from a coarse model (h4) by scaling the grid sizes 
uniformly. In this way, discretizations ranging from 2487 to 5836 nodes are 
obtained with an averaged refinement ratio r = hk+1/hk  (nk+1/nk)

-1/2 = 1.15. 
The simulation conditions adopted involve different freestream Mach 
numbers and angles of attack, namely: M = 0.3 at  = 1.25º and 4º and M = 
0.8 at  = 0º, 1.25º and 4º. For each simulation test case, the observed order of 
accuracy of the scheme is computed by Richardson’s extrapolation using the 
three finest discretizations (see a description of the procedure in Section 
5.3.3). Values ranging between 1.54 and 1.87, with mean p = 1.74, are 
obtained. This averaged convergence rate is assumed to be representative of 
the true discretization error of the problem. 

6.3.3.1.1 Convergence assessment 

The evolution of the density (e1), momentum (e2,3) and energy (e4) 
components of the surrogate error estimate (5.8) with the grid refinement are 
presented in Figure 68. There, convergence rates close to that predicted by 
Richardson’s method are obtained. This verifies both, that the current 
indicator is proportional to the discretization error, and that the truncation 
terms are satisfactorily approximated through the methodology presented in 
Section 6.3.2.   

 

Figure 68. Convergence of the components of the global truncation error-based 
estimate computed for the NACA 0012 airfoil problem (the line p = 1.74 is only 
indicative of the slope). 

The iterative convergence of Eq. (5.9) is displayed in Figure 69 for subsonic 
and transonic test cases. It is observed that the global error estimate does not 
vary significantly during the overall computation and converges after a short 
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initial transitory, typically faster than the flow solution field. This result may 
indicate that the contribution of the underlying discretization (resolution and 
quality) to the truncation error prevails over the contribution of the flow 
solution itself. Thus, it can be advantageous in the sense that surrogate error 
measures based on the current estimate could be obtained quickly, regardless 
of the fact that full solution convergence is achieved or not. However, a 
reduced sensitivity of the estimate to the solution features may also cause a 
lack of correlation with actual solution errors, hindering an extrapolation of 
the results to variables of practical interest.  

 
Figure 69. Iterative convergence of the components of the global truncation error-
based estimate. NACA 0012 airfoil at  = 1.25º; top: M = 0.3, bottom: M = 0.8. 

6.3.3.1.2 Automatic grid adaptation 

The suitability of the local truncation error-based estimate (5.8) to drive grid 
adaptive procedures is investigated next by comparison with the feature-based 
indicator given by Eq. (5.1). As mentioned before, both error indicators are 
based on the flow density field. The adaptive test case involves a transonic 
inviscid flow with M = 0.8 and  = 1.25º. The initial domain discretization 
consists of an unstructured distribution of 2674 points. Four refinement levels 
are performed during the adaptive simulation; the first one is triggered after 
achieving solution convergence on the initial coarse grid and additional 
refinement passes are performed subsequently, ensuring the convergence of 
the intermediate problem solutions (a threshold parameter nr = 0.55 is used). 

A close view of the initial and final distributions of points around the airfoil is 
shown in Figure 70. The truncation error-driven procedure leads to a refined 
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discretization with 6165 points, and 7105 points are obtained by using the 
feature-based indicator. It can be observed that the truncation error-based 
indicator not only concentrates new points around sharper solution features 
but also near the airfoil contour and the wake; two zones which are not 
markedly refined by the curvature-based indicator. 

 
Figure 70. Initial coarse (left) and final adapted (right) discretizations. Curvature-
based adaptivity (top) and truncation error-based adaptivity (bottom). NACA 0012 
airfoil, M=0.8 and =1.25º. 

Figure 71 displays the convergence of the normal force error (CNh) and the 
global estimate (5.9) with the grid refinement. The aerodynamic force error is 
computed in relation to a grid-independent result (CNf) which is obtained from 
a very fine uniform discretization (n=15021). The results show that a lower 
error in the resultant aerodynamic force of the problem is achieved with the 
truncation error-based indicator (see Figure 71 left), although the convergence 
rates observed in both methods are quite similar. As regards the global error 
estimate (see Figure 71 right), its magnitude decreases with the grid size at a 
rate close to the order of accuracy of the scheme, but the convergence speeds 
drop slightly after the second refinement stage. This effect is more notorious 
when the curvature-based indicator is employed (probably as a consequence 
of a more localized refinement). 

Pressure distributions computed for the original coarse and final adapted 
discretizations are compared in Figure 72. It can be seen that truncation error-
driven adaptivity resolves the upper shock better than the feature-based 
procedure (possibly due to a higher and more uniform density of points added 
near the airfoil) but the shock on the lower side of the airfoil is not well 
resolved. As mentioned before, this could reflect a reduced sensitivity of the 



148 
 

proposed indicator to the solution flow features (particularly the weaker). 
Regarding leading and trailing edge airfoil zones, both indicators achieve 
similar results and the computed solutions coincide with that corresponding to 
the reference fine discretization. 

 
Figure 71. Behavior of the normal force error (left) and the numerical error estimate 
(right) with the grid refinement; norm(||e||) denotes the norm of the global error 
vector (5.9). NACA 0012 airfoil, M=0.8 and =1.25º. 

 
Figure 72. Pressure distributions obtained from the adapted flow solutions and the 
fine reference discretization. NACA 0012 airfoil, M=0.8 and =1.25º. 

6.3.3.2 Transonic flow around a NACA wing-body 

The proposed methodology is applied next to the transonic solution of the 
NACA wing-body presented in Section 4.6.3 and the results obtained are 
compared with error estimates based on Richardson’s extrapolation. The 
discretizations employed in the analyses are similar to those in Section 5.3, 
which range from 427900 to 2860318 nodes with 83162 to 694482 boundary 
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triangles respectively. The resultant averaged refinement ratio is r = hk+1/hk = 
(Nk+1/Nk)

-1/3 = 1.23. The adopted simulation conditions involve a freestream 
Mach number M = 0.9 with angles of attack =1 and 4º. Similar to the 
previous example, reference solution errors are computed using higher-order 
estimates of the problem aerodynamic forces. The observed order of accuracy 
of the scheme is also computed and values of p = 1.69 and p = 1.41 are 
obtained for  = 1º and 4º respectively.  

6.3.3.2.1 Convergence assessment 

The convergence rate of the global error estimate (5.9) is examined next 
(Figure 73). It can be observed that the components of the truncation error-
based estimate converge at a rate near the order of accuracy of the scheme 
found by Richardson’s extrapolation. Like in the previous test case, a fast 
convergence of the truncation error-based estimate is also obtained in this 
example (but results are not reported here). 

 
Figure 73. Convergence of the truncation-error based estimate for the NACA wing-
body test case. 

6.3.3.2.2 Automatic grid adaptation 

The error estimate (5.8) is employed to drive h-adaptation and the results are 
compared with those corresponding to the conventional feature-based 
indicator (5.1). The flow freestream Mach number is M = 0.9 and the body 
angle of incidence is =4º. The initial domain discretization consists of an 
unstructured distribution of 606756 points and 174812 boundary triangles. 
Four refinement levels are performed during the adaptive simulation and the 
settings of the adaptive procedure are similar to those used in the previous 
example. The level of refinement achieved with both error indicators results 
very similar. The truncation error-driven procedure achieves 1001624 points 
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and 198822 boundary triangles, while 1041624 points and 205320 triangles 
are obtained with the curvature-based indicator. Next, the evolution of both, 
normal force error (computed with respect to the extrapolated value CNe) and 
the global error estimate (5.9) during the adaptive computation is shown in 
Figure 74. As in the previous test case, the truncation error-based indicator 
leads to a lower aerodynamic force error. The convergence rates and the 
reduction of the surrogate error estimate (5.9) achieved are quite similar for 
both indicators.  

 
Figure 74. Behavior of the normal force error (left) and the numerical error estimate 
(right) with the grid refinement; norm(||e||) denotes the norm of the global error 
vector (5.9). NACA wing-body, M=0.9 and =4º. 

Pressure distributions computed along two wing spanwise stations 2y/b = 0.40 
and 0.8 are presented in Figure 75 along with experimental and reference 
numerical results obtained on the finest grid model. It can be seen that both 
error indicators lead to similar results around the main flow features. A view 
of the final adapted discretizations is shown in Figure 76. As observed in the 
previous test case, feature-based adaptivity shows more effective around 
weaker flow discontinuities (see for example the shock on the fuselage) but 
truncation error adaptivity also refines in areas where the flow is relatively 
smoother (trailing edge and wing tip), probably contributing to a more 
effective reduction of the solution errors (see Figure 74). 
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Figure 75. Comparison of pressure distributions at two spanwise stations 2y/b = 0.4 
(left) and 0.8 (right). NACA wing-body, M=0.9 and =4º. 

 
Figure 76. Final adapted boundary discretizations obtained with the truncation error-
based indicator (left) and the curvature-based indicator (right). NACA wing-body, 
M=0.9 and =4º. 

6.4 Concluding remarks 

Automatic grid adaptation is one of the areas in which meshless approaches 
offer attractive alternatives to conventional mesh-based techniques. With the 
purpose to exploit these possibilities, an h-adaptive meshless procedure has 
been developed in this chapter. The proposed algorithm uses a simple solution 
feature-based indicator and the refinement/coarsening scheme works entirely 
at the local cloud level. Several test cases involving stationary and non-
stationary flows have been presented with the purpose of illustrating the 
performance of the meshless adaptive technique. The procedure has shown a 
satisfactory accuracy and robustness in most of the test situations, although 
the resolving capability, particularly in unsteady flows, could be further 
improved. To address such problems more efficiently, an improved solution 
approach will be proposed in the next chapter. 

With the aim of achieving a more effective reduction of the numerical error in 
adaptive procedures, a more suitable error estimate based on the truncation 
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terms of the problem equations has been also developed. Following standard 
approaches in error analysis, this error estimate is obtained from the residual 
of the differential governing equations. The latter are calculated in a nodal 
manner by reconstructing an improved solution field on a modified stencil of 
points, but employing the same underlying approximation used to compute 
the actual problem solution. The meshless reconstruction technique adopted in 
this work, which is based on ENO schemes, has demonstrated satisfactory 
accuracy and robustness levels as well as a low computational cost. 

The numerical applications have shown that the truncation-error based 
estimate has a good correlation with the problem discretization error, with 
convergence rates closer to the observed accuracy of the scheme. A relatively 
faster convergence of the global error estimate was also obtained and this may 
suggest a higher sensitivity of the indicator to discretization related aspects. 
This can be advantageous because fast surrogate error measures can be 
obtained in this way, but a reduced sensitivity to the flow solution can make it 
difficult to obtain reliable correlations with the error in quantities of practical 
interest. Regarding the local performance, the truncation error-based estimate 
has shown to be an effective indicator to drive grid adaptivity. This was 
reflected not only in reduced aerodynamic force errors but also in the 
convergence of the surrogate error estimate (proportional to the discretization 
error). Moreover, the adapted point distributions seem to be more uniform if 
obtained with the truncation error-based indicator (rather than the feature-
based indicator). 

Overall, the performance of the adaptive procedure and the proposed local 
error indicator were found to be satisfactory. The correlation between the 
truncation error-based indicator and the problem discretization error enables 
further enhancements and extensions of the methodology, for example in the 
line of the methods that use residual imbalances to obtain surrogate measures 
of the error in quantities of practical interest. 
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7 MOVING BOUNDARY PROBLEMS 

Problems involving moving or deforming boundaries play a key role in many 
fields of engineering. Since the beginning of the last century, the study of 
such problems has been extensively addressed through experimental and 
simplified numerical approaches, and numerous techniques involving 
different levels of complexity have been proposed. Nowadays, the design 
requirements frequently go beyond the scope of classical methodologies and 
more complex fluid-structure coupled approaches based Euler or Navier-
Stokes equations must be considered62. This kind of simulations often 
involves difficulties regarding mesh motion and deformation; and adaptative 
techniques can be also needed to achieve enough mesh resolution to capture 
local behavior and/or keep acceptable mesh topology in highly deformed 
zones of the domain. These facts make the problem solution more complex 
and increase the computational cost, making sometimes the numerical 
approach unable to meet the practical needs. In this context, meshless 
approaches can offer some advantages over conventional techniques. 

Meshless procedures for dealing with unsteady problems accounting for body 
motion have been successfully applied in the literature; see for instance some 
approaches using small perturbation boundary conditions and domain 
deformation techniques in (Anandhanarayanan, 2010; Kirshman & Liu, 2004; 
Wang, Chen & Periaux, 2009). In this chapter, a general solution approach is 
proposed with basis on the h-adaptive methodology previously presented in 
Chapter 6. The procedure draws on h-adaptivity to properly resolve evolving 
discontinuities and regenerate highly distorted local zones in the analysis 
domain, thus increasing the robustness and quality of the numerical solution. 

This chapter is organized as follows. Section 7.1 and 7.2 present the 
governing equations and the modifications introduced in the basic flow solver 
presented in Chapter 4 for its solution. The domain deformation technique 
adopted, based on the spring network analogy, is outlined in Section 7.3. 
Aimed at assessing the performance of the meshless approach, several 
numerical applications are presented in Section 7.4. The computational cost 

                                                            
62 An interesting and updated discussion on the challenges and trends in the field of 
airplane aeroelasticity can be found in (Livne, 2003). 
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and multi-core performance of the method is also discussed through the 
examples provided. 

7.1 ALE-form of the fluid equations 

In order to facilitate the treatment of moving/deforming bodies in the 
computational domain, the Euler equations (4.9) are expressed in a more 
suitable form by adopting an arbitrary Lagrangian-Eulerian (ALE) frame of 
reference. There, the equations can be written as 
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being , p and et the fluid density, pressure and total energy, respectively. The 
Cartesian components of the fluid velocity are ui, and wi denotes the 
components of the discrete points (kinematic) velocity. Note that velocities 
relative to the moving boundaries are now considered in the flux vectors and 
an additional source term accounting for grid deformation (S) is included. 
Like in the Eulerian case, the state relations for a perfect gas are adopted. It 
should be noted that all the variables in this chapter are considered 
dimensionless (see Eqs. (4.8)). 

7.2 Flow solution approach 

The solution approach adopted for solving the Eqs. (6.1) follows the general 
lines presented in Chapter 4, albeit with some modifications, particularly with 
regard to time discretization, which are introduced to solve the unsteady 
problem more efficiently. The basic aspects of the solution scheme are 
described in the succeeding text. 

7.2.1 Equations discretization 

Following the developments of Section 4.2, the semi-discrete form of the Eqs. 
(6.1) is written as 
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where all the terms are computed similarly, but accounting for the relative 
velocities in the convective flux vectors. The discretization adopted for the 
source term follows from Eq. (1.12), and wi denotes the kinematic point 
velocity vector. 

7.2.2 Time integration 

Explicit time integration approaches as presented in Section 4.3 are highly 
penalized in problems where the characteristic times involved are far larger 
than that permitted for the stability of the numerical scheme. This is a typical 
situation when dealing with moving/deformable unsteady problems. 
Therefore, it is customary to adopt more efficient solution algorithms; implicit 
schemes are typically preferred in these cases. 

A solution approach which takes both, the advantages of implicit schemes 
regarding allowable time steps and the simplicity of the explicit solution, is 
the Jameson’s dual-time steeping method (Jameson, 1991). This procedure 
allows solving implicitly each physical time increment by means of inner 
explicit iterations in a fictitious time. To this end, a second-order backward 
difference operator is applied to the time derivative in Eqs. (6.3) leading to 

 
+1 -1

+13 4
( )

2 t

n n n
ni i i
i

 
 


U U U

R U  (6.4) 

where all the right-hand side discrete terms are collected in vector R(·). Next, 
for a specified increment in physical time t, a modified (unsteady) residual is 
defined from Eq. (6.4) as 
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verifying that Ui
* approaches Ui

n+1 as Ri
*  0. In order to solve Eq. (6.4) in an 

explicit manner, a temporal derivative with respect to a fictitious time t* is 
introduced. This leads to 
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and this system is driven to the steady state by means of the multi-stage 
scheme defined in Section 4.3. Accordingly, the intermediate solution Ui

* is 
advanced from a fictitious time level m to a level m+1 by  
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being j integration coefficients depending on the number of stages employed 
and ti

* a fictitious local time step (subject to stability requirements). In 
addition to local time steeping, implicit residual smoothing is applied to 
accelerate the convergence of the system (6.7) in fictitious time. A system of 
linear equations must be also solved for recovering the internal nodal values 
from the approximate solution at each integration stage (see Eq. (4.60)). 
Different tests performed with arbitrary grid motions (in the range of the 
problems here addressed) have shown no problems related with geometric 
conservation63 and, therefore, no particular treatment is applied in this regard. 

It should be notice that the explicit treatment of the term (3Ui
*/2t) could lead 

to numerical instabilities if the physical time step is small (Melson, Sanetrik 
& Atkins, 1993). Fortunately, this problem can be easily overcome by treating 
implicitly that term in Eq. (6.7), see (Venkatakrishnan & Mavriplis, 1995). 
This is the procedure adopted in this work.  

7.2.3 Boundary conditions 

The boundary conditions applied in ALE problems follows the same lines 
described in Section 4.5. However, relative velocities should be accounted for 
when the kinematic point velocity is different than zero. In this way, the slip-
wall condition on solid moving boundaries results  

   ˆ 0 i w    u w n x  (6.8) 

where n̂  is the unit boundary normal vector at point xi. Typically, the spatial 
position of the discrete points, their kinematic velocities and the boundary 
normal vectors are obtained from prescribed or computed body movements. 

7.3 Points movement strategy 

Problems involving deforming or moving bodies require the domain 
discretization to conform continuously to the instantaneous body shape. An 
overview of typical solution strategies to deal with domain deformation can 

                                                            
63 Geometric Conservation (Thomas & Lombard, 1979) can be seen as a consistency 
condition which requires the algorithm to reproduce a constant solution on a moving 
grid, independently of the velocity and the level of distortion of the mesh. In spite of 
the fact that this condition can be derived from the governing equations and enforced 
explicitly in the numerical scheme (or satisfied by construction, e.g. (Mavriplis & 
Yang, 2006)), these procedures are often omitted in practice. The effects on the 
numerical solution are usually negligible for moderate time steps and grid velocities. 
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be found in (Löhner R., 2002). Moreover, more recent promising techniques 
based on Delaunay mapping are presented in (Liu, 2006) (see a 2D meshless 
application in (Wang, Chen & Periaux, 2009)). With the purpose of 
maintaining the meshless character of the solution methodology, a classical 
spring network approach is adopted in this work; see (Batina, 1989; Blom, 
2000). Therefore, the displacement of any interior point xi in response to 
instantaneous displacements of body points are obtained by enforcing the 
static equilibrium of the forces exerted by all the points xj connected through 
the xi’s layer of nearest neighbors in the local cloud (outer boundary points 
are considered to be fixed). This leads to a system of equations in terms of 
displacements which is solved by Jacobi iterations as follows 
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being m the iteration counter, i and j displacement vectors of points xi and xj 

respectively and 1|| ||ij j ik  x x  a link stiffness which prevents the clouds 

near the moving boundary from excessive distortion. After some iterations 
(10-50 iterations showed enough to propagate satisfactorily the body 
displacements) the position of the discrete points is updated according to 

new old
i i i x x  and their velocities are simply estimated by / ti i w   

being t the physical time increment employed in the simulation.  

7.4 Application examples 

Four numerical examples are presented in order to assess the performance of 
the methodology. The first three examples involve typical validation and 
verification test cases for unsteady transonic flows. The adaptive solution 
approach is employed in these computations and an analysis is performed 
from the point of view of the accuracy and computational cost. The last 
example, which is a coupled fluid-structure interaction problem involving 
static aeroelasticity, is intended to give an idea of the potential of the meshless 
technique to deal with practical problems.  

7.4.1 NACA wing subject to pitching oscillations 

This example is a typical AGARD benchmark for unsteady flow which 
involves a NACA 0012 airfoil subject to prescribed pitching oscillations 
(Landon, 1982). The problem is solved in 3D using a wing with unit chord, 
and a span which is half of the chord. The analysis domain comprises two 
symmetry lateral planes at the wing tips to force two-dimensional flow, and 
the outer boundary, where Riemann freestream boundary conditions are 
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prescribed, is located 10 chords away from the wing. The discrete model 
consists of an unstructured distribution of 33409 points. The freestream Mach 
number is set to M = 0.755 and the instantaneous angle of attack of the wing 
(in degrees) is varied about the c/4 chord point according to 

 ( ) 0.016 2.51sin( )t t    (6.10) 

with a reduced frequency   = c / 2U = 0.0814. The converged steady 
solution of the problem is employed to initialize the unsteady simulations. At 
each time increment, the unsteady residual is reduced at least 4 orders of 
magnitude (500 iterations were enough in our tests). 

Simulation runs with 4, 8, 12, 16 and 32 physical time steps per oscillation 
period (T) are performed first to assess the accuracy of the time integration 
scheme. The time evolution of the lift presented in Figure 77 shows the 
convergence of the computed solutions as the physical time step is reduced. 
The accuracy is evaluated by defining a temporal error as the magnitude of 
the difference between the lift coefficient computed at time 115t   for a 
given solution, and that obtained at the same instant time with the smaller 
time step computation (t=T/32). A convergence rate close to the design 
order of accuracy of the scheme can be observed. 

 
Figure 77. Time evolution of the lift coefficient for the NACA 0012 wing computed 
with different time step sizes (left) and convergence of the temporal error (right). 

The run having 16 physical time steps per oscillation cycle is repeated, but 
adding 2 h-adaptivity passes per physical time step. On average, no more than 
7000 points are added during the adaptive steps while the number of removed 
points does not exceed 3000, achieving this maximum when the shock wave 
moves from the upper to the lower side of the wing and vice versa. The 
coefficient of pressure calculated along the mid-span of the wing at two 
instant times (phase angles  = 67.8 and 253.8 degrees) are compared in 
Figure 78 with those obtained for the original coarse discretization and with 
experimental results (Landon, 1982). The variation of lift and pitching 
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moment with the instantaneous angle of attack for the adapted solution is also 
compared with experimental results in Figure 79. As the difference found 
between adapted and non-adapted solutions was very small, the latter is not 
included in this figure (possibly the original coarse discretization was fine 
enough to be in the range of converged grid solutions). A good agreement 
between numerical and experimental results can be observed. Figure 80 shows 
refined points distributions in a cut plane along the mid-span of the wing at 
two different instant positions. 

 
Figure 78. Surface pressure distributions along the NACA 0012 wing for two 
different time instants during the oscillation cycle. 

 
Figure 79. Comparison of computed and experimental force and moment variation 
with the instant angle of attack for the NACA 0012 wing (adapted solution, t=T/16). 

 
Figure 80. Refined point distributions along a plane passing through the wing mid-
span. Left =2.34º and =67.8; Right: =-2.41º and  = 253.8º. 
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7.4.2 Wing with oscillating flap 

An adaptive calculation of a wing having an oscillating flap is solved in this 
second example to assess the capability of the meshless method to deal with 
problems involving relative body motion. The section of the wing corresponds 
to the William airfoil (configuration B) (Williams, 1971), and the flow 
conditions are defined as in (Dubuc, Cantariti, Woodgate, Gribben, Badcock 
& Richards, 2000): the freestream Mach number is set to M = 0.58 and the 
instantaneous flap angle (in degrees) is 

 ( ) 7.0 7.0sin( )f t t    (6.11) 

with reduced frequency   = 0.0814. The flap hinge position is located at 
coordinates (x,z) = (0.98, -0.07), which are non-dimensional with the chord of 
the main wing section. The rotation of the flap is measured with respect to its 
original position in the Williams airfoil. 

The analysis domain is similar to the previous example and discretized by an 
unstructured distribution of 20713 points. The numerical simulation employs 
12 physical time steps per flap oscillation cycle and 2 h-adaptive stages are 
performed in each time step. The evolution of the normal force and pitching 
moment with the instantaneous flap angle is compared in Figure 81 with the 
numerical results presented in (Dubuc, Cantariti, Woodgate, Gribben, 
Badcock & Richards, 2000). Finally, Figure 82 shows two plane cuts of the 
adapted discretization taken at different instant times during the simulation. It 
is possible to observe the displacement of the shock wake along the main 
wing and the appearance of a shock on the flap for its maximum incidence 
angle. 

 
Figure 81. Normal force and pitching moment coefficient (wing+flap) of the Williams 
wing as a function of the flap instant rotation (t=T/12). 
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Figure 82. Refined point distributions along a plane passing through the mid-span of 
the Williams wing. Left: f=0º and =270º; Right: f =14.0º and  = 90º. 

7.4.3 Twist deformation of an ONERA M6 wing  

The third example concerns the calculation of an ONERA M6 wing subject to 
twisting deformation about a line passing through the tip quarter chord point, 
see (Yang & Mavriplis, 2005). The freestream Mach number is M = 0.84 and 
the wing incidence is  = 3.06º. The twist deformation is achieved by forcing 
the tip section to pitch with 

 (in degrees)( ) 2.51sin( )tip t t   (6.12) 

while keeping the root section fixed. The instant angle of attack of the 
intermediate sections is varied linearly along the wing semi-span and the 
reduced frequency is   = 0.1628. The analysis domain includes a symmetry 
plane and a hemispherical outer freestream boundary. 

In order to investigate the impact of h-adaptivity from the point of view of 
accuracy and computational cost, two different unstructured domain 
discretizations are constructed: a fine discretization having 258919 points and 
a coarse one with 107847 points (uniform scaling of the grid spacing is 
adopted). In addition, an adapted discretization is obtained from the coarse 
model by performing a single h-adaptive pass per physical time step. A view 
of these discretizations is presented in Figure 83. 

Several twist cycles are simulated with the discretizations defined above 
running 8 physical time steps per cycle. The number of fictitious time 
iterations is fixed to 500 and the resultant unsteady residual is reduced 
approximately 4 orders of magnitude. Figure 84 displays the time evolution of 
the normal force coefficient. Some instantaneous Cp distributions along the 
wing are compared in Figure 85. Even though the number of new points 
added during the h-adaptivity stages represents as much as the 12% of the 
number of original points, it can be seen that the adapted solution improves 
noticeably over the non-adapted coarse simulation. 
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Figure 83.  Top view of the ONERA M6 wing surface grids. Left: coarse; Center: fine 
and Right: adapted-coarse at =0º (the adapted discretization does not change 
substantially during the twist cycle). 

 
Figure 84.  Time evolution of the normal force computed for the twisting ONERA M6 
wing with the coarse, fine and adapted-coarse discretizations (t=T/8). 

The CPU-time required to advance the simulation one physical time step 
(t=T/8 and 500 fictitious time iterations) is compared next for the coarse, 
fine and coarse-adapted discretizations. The simulations are run in a desktop 
computer with Intel Core2 Quad Processor Q9550 @ 2.83 GHz. According to 
Table 7, the cost in the adapted simulation is slightly higher than in the coarse 
discretization, but low if compared with the fine discretization run. At the 
same time, the adapted solution improves considerably over the solution 
obtained with the coarse discretization and matches closely that obtained with 
the finest model. Based on these results, meshless adaptivity shows effective. 

The parallel speed-up observed for the adaptive simulation is depicted in 
Figure 86. The results obtained are satisfactory and in line with those 
previously presented in Section 5. 
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Figure 85.  Comparison of instantaneous Cp distributions along 3 sections of the 
ONERA M6 wing computed for the coarse, fine and adapted discretizations (a view 
of the latter is displayed on the right bottom). 

grid # CPU-time (secs.) Relative Cost 

fine (reference) 318.6 1.00 

coarse-adapted 192.6 0.60 

coarse 170.8 0.54 

Table 7. Comparison of CPU-time needed to advance the solution of the twisting 
ONERA M6 wing a single physical time step (t=T/8 and 500 fictitious time 
iterations) using 4 running cores. 

 
Figure 86. Observed speed-up in the ONERA M6 wing adapted simulation (t=T/8 
and 500 iterations in fictitious time loop). 
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7.4.4 Coupled analysis of the HiReTT wind tunnel model  

Static aeroelastic deformation of a wing-body configuration is solved in this 
last example to assess the meshless technique in a realistic application 
scenario. The geometry of analysis corresponds to one of the cryogenic wind 
tunnel models employed in the European research project HiReTT (High 
Reynolds Number Tools and Techniques for Civil Aircraft Design) to 
investigate scale effects on aircraft performance; see an overview in (Rolston, 
2001). A half-span symmetric version of the N44 test model (Wright, 2000) 
with a clean F7-1 wing configuration (b/2=790mm) is employed.  

7.4.4.1 Computational models 

In order to accomplish the coupled aeroelastic solution of the analysis 
configuration, aerodynamic and structural models are constructed. The 
analysis domain for the aerodynamic problem (CFD-model) includes a 
symmetry vertical plane along the fuselage centerline and a hemispherical 
outer freestream boundary located 15 half-spans away from the body. The 
resultant discrete model has 338886 boundary triangles and a total of 3100159 
points generated with the technique described in Section 3.6.1. A view of the 
model boundary discretization is shown in Figure 87. As large flow separation 
areas are not expected in the range of simulation conditions to be adopted 
here, the flow is considered to be inviscid and the boundary conditions 
applied are similar to those employed in the previous examples.  

 
Figure 87. Boundary grid of the half-span model employed for flow computations 
(approx. 340K triangles). 

The deformation of the model under aerodynamic loading is studied by means 
of a finite-element structural model (FE-model) which has been developed 
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assuming that the fuselage and the support system (single rear-sting) 
flexibility can be neglected. This assumption is intended to reduce the model 
complexity and can be explained by the fact that the expected body 
deformations are negligible if compared to those of the wing. Furthermore, 
the experimental results in (Wright, 2000) already account for the deflection 
of the supporting mechanism. As a further simplification, the internal wing 
cavities needed to install and route measurement instrumentation are also 
neglected in the FE-model and the wing is considered to be solid (the internal 
cavities are designed to have a minimum influence on the model stiffness). 

Regarding the modeling of the wing-fuselage junction, the wing is considered 
to be clamped at the interface. A detailed representation of this junction is 
considered unnecessary in this study because wing deformation is only 
relevant for outboard wing stations. The structural model of the wing 
developed is discretized by means of 19456 20-node hexahedral elements and 
94749 nodes. The material adopted is a high-strength maraging steel with 
Young’s modulus E = 196 GPa and Poisson’s ratio  = 0.30. A view of the 
FE-model is presented in Figure 88. Note that in both, CFD and FE models, 
the wing geometry corresponds to the manufacturing or jig-shape 
experimental test model.     

 
Figure 88. Structural model of the HiReTT N44 F7-1 wing (approx. 19.5K 20-node 
hexahedra). 

7.4.4.2 Coupled solution strategy 

The coupled solution methodology is based on the time-marching procedure 
presented in Section 7.2.2. At each physical time step of the CFD-model, 
aerodynamic pressure loads are transferred to the FE-model, which is solved 
in order to obtain the displacements (the computations are performed using an 
in-house linear elastic solid solver). Next, the computed deformation is 
mapped back onto the CFD-model boundaries, the volume discretization is 
deformed according to the procedure described in Section 7.3 and the flow 
solution is converged in fictitious time. Then, a new interaction cycle is 
started by transferring the resultant aerodynamic pressures to the FE-model. 
The iterations continue until a given displacement tolerance is achieved. Due 
to the fact that only the steady solution is of interest in this example, the 
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problem is solved using large physical time steps, and load under-relaxation is 
also applied to accelerate the convergence of the coupled solution. 

The mapping of variables between the CFD and FE grids is performed as 
follows. For each FE node on the wing surface, the CFD boundary triangle 
where it lays on is identified and the aerodynamic pressure acting on that node 
is interpolated by using the shape functions of the underlying CFD triangle. 
Then, averaged pressures at the FE facets are computed and converted into 
surface tractions which are passed to the structural solver. Once the structure 
is solved, averaged (barycentre) displacements are obtained at each CFD 
triangle by using the displacements of the structural nodes falling on it, and a 
smoothing procedure is accomplished to obtain the nodal values. This 
procedure guarantees a smooth deformation of the CFD boundary grid which 
matches very closely that computed in the FE-model. 

The correspondence between surface FE nodes and the CFD elements needed 
to transfer variables between the models is obtained by using a spatial search 
algorithm based on bins. Given that both, structural and fluid boundary grids 
deform in a similar way, the spatial search and the construction of the data 
structure required to transfer the variables are performed only once at the 
beginning of the computations, and stored to be used later.   

7.4.4.3 Numerical results 

The aeroelastic computations presented next adopt the freestream flow 
conditions defined for the wind tunnel run #204 (Wright, 2000). This test 
involves a freestream Mach number M = 0.85 and a Reynolds number Re = 
32.5M. The analysis here is performed for angles of attack ranging from -2.62 
to 3.69 degrees, and the fluid is considered to be inviscid. The solution 
obtained for the rigid model is used to initialize the coupled simulations. 

Pressure distributions computed for the rigid and elastic models at three wing 
sections and angles of attack  = -2.625º, 0.0613º and 2.234º are presented in 
Figure 89. It is possible to observe that in the case of  = -2.625º a poorly 
loaded wing (model lift is near zero) results only in a small model 
deformation. The results obtained for the rigid and elastic models are very 
similar for the inboard wing sections, but more marked differences are 
observed near the wing tip. There, the rotation of the sections (where stiffness 
is lower) has an evident effect on the shock position, which is well captured 
by the aeroelastic solution. For the runs at positive angles of attack, the 
aeroelastic effects become more relevant and the negative twist modifies 
notoriously the wing suction area and the shock wave position, particularly at 
outboard spanwise sections (the impact of bending is usually small). As 
observed in Figure 90, this effect reduces the resultant model lift in the elastic 
computation. The results presented show that the aeroelastic solution 
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improves considerably over the conventional rigid model analysis. It should 
be noticed that the inviscid flow assumption adopted can introduce some 
discrepancies with measured data for runs at higher angles of attack, where 
flow separation effects become more relevant (the lift curve measured in the 
wind tunnel test loses its linearity at about  = 3º). This effect can be seen in 
the evolution of the difference between computed and experimental lift 
coefficients shown in Figure 90. 

 

Figure 89. Effects of wing deformation on pressure distributions computed at 
different spanwise stations. HiReTT N44 model, M = 0.85  = -2.625º (top),  = 
0.0613º (middle) and  = 2.234º (bottom). 

Twist and bend deformation of a section near the wing tip are depicted in 
Figure 91 for the complete alpha sweep; the trailing edge deflection (zTE) is 
measured from the original (wind-off) position and the twist angle is 
evaluated as tan-1[(zLE-zTE)/(xLE-xTE)]. Figure 92 shows bending and twisting 
effects along the wing span for =2.234º. A view of the original and 
deformed model configuration is displayed in Figure 93.   
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Figure 90. Differences between numerical and experimental lift coefficients computed 
for the rigid and elastic HiReTT N44 model at M = 0.85. 

 
Figure 91. Rotation and vertical displacement of a wing tip section computed for the 
HiReTT N44 model at different angles of attack at M = 0.85 (b/2=790mm). 

 
Figure 92. Spanwise wing deformation of the HiReTT N44 model (b/2=790mm), M 
= 0.85 and  = 2.234º. 
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Figure 93. Original (wind-off) and deformed model configurations (5x magnification 
factor). HiReTT N44, M = 0.85 and  = 2.234º. 

The convergence history of the coupled simulation for  = 2.234º is presented 
in Figure 94. At each physical time step a maximum number of 3000 
iterations in fictitious time or a density residual < 1.0e-6 is set as exit 
condition. A load relaxation factor of 0.5 is adopted. Starting from the rigid 
model solution, a few coupled iterations are required to achieve the static 
deformed shape of the model. 

 
Figure 94. Convergence history. HiReTT N44 model at M = 0.85 and  = 2.234º. 

In spite of the fact that the convergence speed achieved in the present test case 
is deemed satisfactory, it is important to say that more efficient convergence 
acceleration techniques would be required in view of larger application 
problems. Some interesting implicit and meshless multigrid approaches can be 
found in (Katz & Jameson, 2009b; Kennet, Timme, Angulo & Badcock, 2012; 
Singh, Ramesh & Balakrishnan, 2010). 

CPU-times and multi-core performance measurements are presented next to 
give an idea of the computational cost involved in the coupled simulation. 
Like in the analysis presented in Section 5.3.4, the meshless flow solution is 
divided into two parts, a pre-process stage which includes the construction of 
the numerical approximation and its related data structures (clouds of points, 
shape functions and derivatives), and a flow computation stage which refers to 
the inner Euler steps in the pseudo-time integration procedure. The structural 
solution stage is also evaluated. The tasks performed at each structural step 
involve the transfer of loads and displacements between the fluid and 
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structural models, the solution for the displacements (FE), the deformation of 
the interior (CFD) volume points according to the computed model position, 
and the update of the CFD problem data structures, mainly cloud shape 
functions and derivatives (cloud connectivity is assumed fixed along the 
simulation). The runs are performed on a cluster node having 2 Intel Xeon 
E5645 processors @ 2.4 GHz with 12 Mb L2 cache. 

CPU-times for the pre-process, flow solution and structural computation 
stages as well as multi-core performances are displayed in Figure 95. As far as 
pre-process tasks are concerned, the inherent complexity of the operations 
involved in the meshless approximation makes it costlier than in conventional 
mesh-based methods (cf. Section 5.3.4). However, as these tasks are 
performed only once at the beginning of the computations, the cost does not 
have a significant impact on the entire simulation time. Moreover, in cases in 
which the data structures must be updated (for instance due to excessive 
domain deformation or adaptive refinement/coarsening), this is performed in a 
local manner with a low computational cost (see results presented in Section 
7.4.3). On the other hand, as previously shown in Section 5.3.4, the cost 
involved in the flow solution (which takes most of the total simulation time) 
does not differ substantially from what could be expected in a typical mesh-
based technique, making the FPM technique quite competitive. 

Regarding multi-core performance the results observed are in line with those 
in Section 5.3.4. It is possible to see in Figure 95 that the speed-up degrades 
noticeably when more than 4 cores are employed. This effect is more 
accentuated in the pre-process stage (presumably due to the complexity of the 
operations involved) than in the flow computation, where a higher data 
locality and totally independent computations allow for the scaling to 
continue, albeit at a reduced rate. The loss of performance observed when the 
number of running cores is augmented has been previously analyzed (Section 
5.3.4). In this respect, a better scalability should be expected in higher-
performance multi-processors hardware platforms. 

Concerning the structural computation stage, the CPU-time presented in 
Figure 95 corresponds to a serial run because this part of the code is not fully 
parallelized. It should be noticed that most of the computational efforts at this 
stage are devoted to the solution of the linear system involved in the structural 
problem. 
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Figure 95. CPU-times and parallel performance of the coupled simulation (3.1M fluid 
points and 95K structural nodes). HiReTT N44 model at M = 0.85 and  = 2.234º. 

Finally, it is interesting to note that the time involved in the discretization of 
the aerodynamic model (also displayed in Figure 95) shows that the efficiency 
of the point generator could make it possible to regenerate the complete CFD 
model discretization with a low cost, if compared with the total simulation 
time (the CPU-time needed is comparable to that in a single structural step). 
This could be an attractive solution approach when very large body movement 
or deformations must be faced. The point discretization in this example was 
generated using a desktop computer with AMD Opteron 246 processor @ 
1.99 GHz running on a Windows 64-bit system.  

7.5 Concluding remarks 

A modification of the basic FPM solution scheme is introduced in this chapter 
with the objective to solve compressible flow problems involving 
moving/deforming boundaries. The h-adaptive procedure was also employed 
to facilitate the proper solution of evolving discontinuities, thus increasing the 
accuracy and robustness of the solution but keeping the computational cost 
low. The overall methodology was designed following well-established 
numerical techniques, but aiming at the full exploitation of meshless features. 

The results obtained are satisfactory and illustrative of the possibilities of the 
present FPM technique. In spite of the fact that there is room for further 
improvements, the methodology shows considerable robustness and accuracy, 
as well as capabilities to address practical computations. Among other 
achievements, it is worth of mention the results obtained in the case of the 
HiRReT aeroelastic model, where it was observed that a complete 
regeneration of the model discretization could be an affordable solution 
strategy, even in large simulation problems. This result presents new 
possibilities for the meshless analysis of moving/deforming domain problems.  
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8 HIGH-REYNOLDS NUMBER VISCOUS 
FLOWS 

The numerical solution of high-Reynolds viscous flows entails a number of 
difficulties, mainly related to the discretization of the analysis domain. In such 
problems, the development of very thin boundary layers, free shear layers and 
wakes, generate rapid localized changes in the flow (normal to the streamwise 
direction) which need a high spatial grid resolution to be properly resolved. 
Typical solution approaches use highly stretched grids in the flow direction to 
obtain the necessary spatial resolution across the viscous layers in a cost 
effective manner. These anisotropic grids can be generated through structured 
or hybrid approaches, and diverse techniques are being employed with mesh-
based methods; see an overview in (Garimella & Shepard, 2000; Löhner, 
2001). While effective, these procedures often need a certain degree of 
manual input to obtain suitable grids in general problems (e.g. block 
definition for structured grids or cleanup around complex geometric features, 
such as intersections of several surfaces, in the case of hybrid grids). 
Furthermore, as highly-distorted cells can be created during the generation 
process, some inspection of the grid quality may be still required to avoid 
degrading the accuracy of the flow solver. In this context, meshless 
approaches can facilitate both, the generation of the discrete models and the 
construction of a proper numerical approximation and solution scheme. 

The application of meshless methods for solving viscous flows is not new and 
many successful approaches, mostly focused on low-Reynolds number 
problems, can be found in the literature, e.g. (Batina, 1992; Katz, 2009; Oñate 
& Idelsohn, 1998; Oñate, Sacco & Idelsohn, 2000). Regarding high-Reynolds 
flows, the applications are relatively recent in the literature and the procedures 
applied do not seem to exploit the full meshless potential yet. For example, 
the trends followed on domain discretization are in general quite similar to 
those employed in conventional methods, or the meshless technique is often 
used only to simplify the treatment of near-body and overset areas in hybrid 
Cartesian and multi-block structured mesh-based discretizations; see for 
instance (Kennet, Timme, Angulo & Badcock, 2012) and (Jahangirian & 
Hashemi, 2012; Munikrishna & Balakrishnan, 2011). This under-exploitation 
of the meshless potential can be explained to some extent. Despite the fact 
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that there is certain flexibility in the generation of a meshless discretization, 
additional problems arise in relation to the accuracy and robustness of the 
approximation (and flow solution schemes) in highly stretched clouds of 
points. These difficulties impose restrictions on the topological characteristics 
of the discretization that hamper the development of the meshless potential. 
Thus, the construction of more robust numerical approaches in distorted 
distributions of points is essential to exploit meshless capabilities. 

The aim of this chapter is to explore high-Reynolds number problems 
focusing on two main aspects: the easiness and automation of the meshless 
discretization of viscous layers, and the construction of a robust numerical 
approximation in the highly stretched clouds of points resulting in such 
domain areas.  

This chapter is organized as follows. The fluid governing equations are 
presented in Section 8.1 and the basic aspects of the solution approach are 
described in Section 8.2. A methodology for constructing meshless 
discretizations (with a focus on boundary layers) is presented in Section 8.3, 
and a procedure to compute the numerical approximation in stretched cloud of 
points is proposed in Section 8.4. Finally, several numerical examples 
involving attached boundary layer flows are presented in Section 8.5 to 
illustrate the basic performance and suitability of the meshless procedure. 

8.1 Navier-Stokes equations 

The compressible Navier-Stokes equations can be written in non-dimensional 
conservative form as  
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where M and Re are freestream Mach and Reynolds numbers, U is the 
vector of conserved quantities (mass, momentum and energy) and Fk is the 
advective flux vector in the coordinate direction xk (see Eqs. (4.10)). The 
dimensionless viscous fluxes Gk are given by  
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where the fluid viscous shear stress (assuming Stoke’s hypothesis) is 
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and the components of the heat flux vector result 
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being  the specific heat ratio and Pr the fluid Prandtl number. The 
dimensionless viscosity (dim/) is calculated in terms of the fluid 
temperature by the Sutherland’s law 
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where S0 = 110.4 K and T0 = 273.15 K for air64. The Prandtl number can be 
assumed to be constant for gases at moderate temperature (Pr≈0.71 for air up 
to 600 K) and the state equations (4.11) are adopted. Note that dimensionless 
variables shall be assumed in this chapter unless otherwise stated. 

8.2 Flow solution approach 

The discrete solution approach is based on the inviscid scheme presented in 
Chapter 4, but supplemented by a central-type discretization of the viscous 
terms. In addition, a Reynolds-Averaged Navier-Stokes (RANS) approach is 
followed to account for flow turbulence effects using the algebraic model of 
Baldwin and Lomax (Baldwin & Lomax, 1978). The complete flow solution 
procedure and boundary conditions are described next. 

8.2.1 Equations discretization 

Following the standard discretization approach in the FPM, the semi-discrete 
system of equations (6.13) is written at a sampling point xi by 
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where the tilde indicates approximated variables. As in Section 4.2, the 
convective term is recasted as   
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64 Note that the employment of Sutherland’s law requires defining an additional 
reference condition regarding the freestream temperature. 
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where bij are the cloud metric coefficients, Fk
i = Fk(Ui) is the k-component of 

the convective flux vector and Fk
ij is a numerical flux introduced for 

stabilization purposes. This can be computed according to Eq. (4.28) (upwind 
approach) or by means of the artificial diffusion models described in Section 
4.2.3. The viscous terms in Eq. (6.18) are discretized at each point xi by 
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being Gk = Gk(Uj) the k-component of the nodal viscous fluxes. Note that Eq. 
(6.20) is equivalent to a central-type approximation of the diffusive terms65. 

With the aim of simplifying the computation of the viscous fluxes, two 
simplifications are adopted. Firstly, the terms involving spatial derivatives in 
Eq. (6.20) (i.e. the viscous stresses and the heat flux vector) are computed 
previously to assemble the diffusive flux by applying Eq. (1.12). This 
procedure avoids the need to store second-derivative coefficients, and 
although some smoothing is introduced in the calculations, it has not 
demonstrated any negative impact on the numerical solution. The second 
simplification adopted consists on assuming that the approximated and 
internal nodal parameters at a point xi are coincident when computing the 
viscous fluxes, i.e. ˆ    and ˆ q q . In this way, recovery of the nodal 
parameters is avoided and the computational cost reduced. The error 
introduced by this assumption is expected to be low because well-behaved 
FPM approximations tend to interpolate point data. In addition, as it will be 
seen later, this assumption is particularly true for clouds in boundary and 
shear layers due to the discretization procedure adopted in such domain zones. 

                                                            
65 In order to discretize the viscous flux terms, different meshless approaches can be 
found in the literature. For example, when quadratic approximation bases are used, 
the viscous flux derivatives can be expanded into their components (first and second 
derivatives of velocity and temperature) and computed in a direct manner (e.g. 
(Munikrishna & Balakrishnan, 2011; Oñate, Idelsohn, Zienkiewicz, Taylor & Sacco, 
1996b)). This approach is direct but requires a considerable enlargement of the data 
structure for storing the second derivative coefficients, which can be disadvantageous 
in view of practical applications. Other authors propose, for instance, to use 
discretization approaches for the viscous fluxes in the line of Eq. (6.19), but using 
modified gradients for each edge to avoid odd-even instabilities and increase the 
robustness of the discretization, e.g. (Katz, 2009; Kennet, Timme, Angulo & 
Badcock, 2012). In this respect, it should be noted that no stability issues related to 
the discretization of the viscous fluxes were observed in this work. However, it 
presumably can depend on the local cloud discretization, hence the proposal of the 
aforementioned authors. 
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8.2.2 Time integration 

The time integration of the semi-discrete scheme (6.18) is performed 
according to the explicit time-marching procedure described in Section 4.3. 
However, the allowable time step in Eq. (4.61) is modified to account for 
viscous diffusivity. In non-dimensional form, the time step size is computed 
by 
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where n̂  is a unit vector in the direction of lij = xj-xi, c is the speed of the 
sound,  = / is the kinematic viscosity and � is the Courant number. Local 
time-stepping and residual smoothing are applied to accelerate the 
convergence in steady-state problems. 

8.2.3 Turbulence modeling 

Flow turbulence is accounted for through averaged RANS equations using the 
algebraic model of Baldwin and Lomax (B&L) (Baldwin & Lomax, 1978). In 
this way, the turbulent stresses and heat fluxes are made proportional to the 
laminar ones and obtained by adding a turbulent viscosity T and Prandtl 
number PrT to the molecular values, i.e. the terms  and /Pr in Eqs. (6.16) 
are replaced by (+T) and (/Pr+T/PrT), respectively. In general, the 
turbulent Prandtl number can be considered to be constant (0.9 in boundary 
layer flows and 0.5 for shear layers in air) and the turbulent (eddy) viscosity 
is computed as a non-local function of the flow variables. In the B&L model a 
two-layer approach is adopted, i.e.  
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where yc is the smallest wall distance at which Ti = To.  

The inner-layer viscosity is based on the mixing length formulation and can 
be expressed in non-dimensional form by  

 2Re

MiT l 



   (6.23) 

where  is the fluid density,  is the vorticity vector and l is a damped mixing 
length (van Driest approach) obtained by   
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  /1 y Al k y e     (6.24) 

The variable y denotes the normal distance from the wall (or wake centerline) 
and the dimensionless distance parameter y+ is given by 

 
w

y u
y 


   (6.25) 

where u is the friction velocity 
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and w, w and w are dimensional wall shear stress, density and kinematic 
molecular viscosity, respectively. The wall shear stress can be obtained by 
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where ut is the component of the velocity tangent to the wall and y is the 
normal wall distance. Eqs. (6.25) and (6.26) can be recasted in terms of 
dimensionless variables by using the relationships given in Section 4.1.2. 

The outer eddy viscosity is computed by   

 
Re

MOT cp wake KlebC F F 



  (6.28) 

where FKleb (Klebanoff function) accounts for laminar-turbulent intermittency  
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and ymax is the distance from the wall at which the function 

  /( ) 1 y AF y y e      (6.30) 

achieves its maximum (Fmax). This value is computed for y  0 along each 
viscous station. Note that the function F(y) can exhibit different peaks in 
flows with mixed boundary and shear layers; therefore, further verifications 
can be required to avoid wrong peaks affecting the computed length scales. 
Usually, the innermost peak occurring in the boundary layer region tends to 
be used, see (Mavriplis, 1990). The function Fwake is given by 
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being udif the difference between the maximum and minimum magnitude of 
the velocity tangent to the wall (ut) along the viscous station profile. 

The standard model closure coefficients are A+=26, k=0.40, =0.0168, 
Ccp=1.6, CKleb=0.3 and Cwk=0.25, but these can be adjusted according to the 
problem under consideration, cf. (Granville, 1987; Wilcox, 1994). In addition, 
a transition location xtr should be specified, and the turbulent viscosity is set to 
zero for upwind stations x < xtr. 

8.2.3.1 Scope and implementation issues 

The B&L model is robust and simple and gives accurate results in attached 
flow computations. However, the results obtained in boundary layers subject 
to elevated adverse gradients, almost or fully separated, should be used with 
care (the mixing-length model is no longer valid in those situations). Some 
modifications intended to improve separated flow computations can be found 
in the literature; see for instance (Rostand, 1989). Since the applications in 
this work involve only attached flows, these are within the scope of the B&L 
turbulence model and thus, no modification or particular setting of the scheme 
is applied. 

From the point of view of the numerical implementation, the B&L model is 
best suited for structured grid settings, though unstructured extensions are also 
possible, e.g. by using background meshes (Mavriplis, 1990; Rostand, 1989). 
In this work, as it will be seen later, the near-wall discretization has a 
structured distribution which facilitates the definition of the viscous stations; 
hence the computation of the eddy viscosity profiles. The domain points 
outside the near-wall area (which usually belong to an unstructured-type 
isotropic discretization) are associated with a given viscous station according 
to a minimum normal wall distance criterion. These outer points can be 
somewhat misaligned with the viscous station assigned and this can introduce 
some inaccuracies; however, this approach is considered acceptable for the 
analysis of attached boundary layer flows since viscous effects are mostly 
confined in the near-wall area. For more complex flows involving separated 
flow areas, multiple shear layers and/or solid bodies, improved approaches 
can be necessary. It should be noticed though, that the B&L model is not well 
suited for such kinds of computations. 
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8.2.4 Boundary conditions 

The boundary conditions applied in this work for the solution of viscous flows 
are far-field and no-slip solid wall conditions. The former follows the same 
lines described in Section 4.5 and the latter can be expressed by  

 i w  0u x  (6.32) 

and enforced by cancelling the velocity components at the corresponding 
boundary points. Additionally, since the viscous terms account for heat 
transfer effects, a temperature or heat flux condition should be also specified 
on solid walls. A fixed temperature condition can be enforced in the 
conservative variables vector through the total energy by setting 

 Tfix

1

( 1)t w ie T
 

  


x  (6.33) 

where Tw is the specified dimensionless wall temperature and the overbar 
indicates corrected values. On the other hand, heat fluxes can be directly 
specified when computing the viscous fluxes (6.14) by setting 

 
fixi fix i q  q q x  (6.34) 

being qfix a specified heat flux vector. A typical assumption in aerodynamic 
flows is to consider adiabatic walls. In such cases, the heat flux vector across 
the boundaries must be set to zero. This is accomplished by enforcing 

   0
ˆ ˆ

ni i i i i i q     q q q n n x  (6.35) 

where  and qi are the boundary normal and heat flux vectors, respectively. 

8.2.5 Limitations for high-Reynolds number flows 

The discrete scheme described above can be used for solving general 
compressible viscous flows. However, in the case of problems involving high-
Reynolds numbers, the required highly-stretched point discretizations can 
cause problems, mainly related to the ill-conditioning of the cloud matrices 
and the instability of the collocation method66, reducing the robustness and 
accuracy of the solution process. Although numerous alternative procedures 
have been proposed to this end (cf. Section 3.6), fully effective solutions are 
still hardly achieved if the anisotropy of the cloud is elevated (the extra cost 

                                                            
66 Additional problems affecting the performance of the flow solution schemes may 
also arise in highly stretched discretizations; see an analysis in (Xinrong, Satoru & 
Kazuhiro, 2013). 
 

ˆ
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involved can be also considerable). Consequently, more effective approaches 
are necessary to solve high-Reynolds number problems.  

In order to address these issues, a methodology to generate viscous 
discretizations for high-Reynolds number boundary layer flows and a simple 
procedure to build local FPM approximations in the resulting anisotropic 
clouds have been developed in the context of this work. These are presented 
in the next section. 

8.3 Near-wall discretization 

The methodology adopted to construct near-wall viscous discretizations is 
inspired in the advanced layers methods used to generate hybrid conventional 
meshes (Pirzadeh, 1994). Broadly speaking, the procedure proposed involves 
the following three main steps: 

c. Given a user-supplied isotropic discretization (valid for instance for 
inviscid analysis) a set of unit surface normal vectors (marching 
directions) with root at the vertices of the boundary mesh is 
computed. Additionally, a Laplacian smoothing is applied for the 
normal vectors obtained. 

d. At each surface vertex (viscous station), a one-dimensional (1D) 
distribution of points is obtained along the marching direction for a 
given number of points and minimum wall distance. The point 
spacing can follow geometric or exponential variations (cf. 
(Garimella & Shepard, 2000)) calculated according to a specified total 
thickness of the boundary layer, or in terms of the local spacing in the 
original (isotropic) discretization. The latter leads to a smoother size 
transition between the anisotropic and isotropic discretization areas 
and is the main choice used in this work. 

e. Once the positions of the new nodes at each viscous station are 
known, the original isotropic discretization is deformed to 
accommodate these new points by using the spring network technique 
described in Section 7.3 (Batina, 1989). The updated location of the 
original points is obtained by a few Jacobi iterations with a low 
computational cost. It should be noticed that the vertices on the body 
surface are duplicated and one of them is displaced with the original 
discretization (these points are called interface points).  

This approach is robust, cost effective and truly meshless because only 
information from the local cloud is needed. Moreover, the manual input 
required is very low and different problems, requiring different geometrical 
characteristics of the near-body discretization, can be solved in an automatic 
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manner without modification of the base geometry. Figure 96 shows a 
discretization generated in this way for a RAE 2822 airfoil.  

Note that according to the characteristics of the problem to be solved, the 
proposed discretization procedure may require further improvements. For 
instance, geometry features such as sharp edges may need the definition of 
double marching directions at each boundary vertex to obtain a more uniform 
distribution of points near the body. Also, problems involving multiple bodies 
may need additional tests to avoid the overlapping of the viscous stations 
and/or boundary layer growths outside the analysis domain. As shown by the 
extensive work done in the field of hybrid mesh generation, all these issues 
can be handled with minor modifications and computational effort (see 
examples in (Garimella & Shepard, 2000; Ito & Nakahashi, 2002; Löhner, 
2001); and always profiting from the advantages that the topology and the 
characteristics of the final discretization are not major issues for the meshless 
technique. Extensions of these methods can be also implemented to discretize 
wakes, an aspect which is not accounted for in this work.   

 
Figure 96. Discretization of a RAE 2822 airfoil using 20 viscous layers with 
minimum point spacing 1.0e-5 (the airfoil has unit chord and blunt trailing edge).  

8.4 Local approximation in near-wall areas 

The near-wall area in this work is resolved by considering local coordinate 
systems (,) defined at each viscous station with origin at the root boundary 
vertices (the axis  points along the marching (normal) direction and  is 
tangent). The construction of the local cloud of points and the numerical 
approximation at each point in the near-wall area are described below. 
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8.4.1 Local cloud of points 

The local cloud of points in the anisotropic near-wall areas are easily obtained 
due to the structured nature of the discretization. In this work, point stencils 
which are symmetric with respect to the star point are generally employed, 
except at the boundary vertices, where asymmetric point distributions are 
required (see Figure 97). 

In order to construct the clouds corresponding to the interface points 
(originally located on the boundaries of the isotropic discretization), the 
procedure described in Section 3.6 is applied, but without accounting for the 
anisotropic (new) points and using the updated point positions corresponding 
to the final discretization. Once the first neighbors layer is computed for a 
given interface cloud, the nearest new points corresponding to the anisotropic 
discretization (inherited points) are added as shown in Figure 97 (right). This 
provides the necessary overlapping between isotropic and anisotropic domain 
areas. Note that the inherited points for each isotropic cloud are automatically 
identified during the generation process, thus avoiding extra cost. Finally, 
further points are added to the interface clouds (according to increasing 
distances from the star point) to complete the cloud and/or improve the quality 
of the local approximation (cf. Section 3.5).  

 
Figure 97. Examples of local clouds in the anisotropic and interface domain areas. 

8.4.2 Numerical approximation 

The numerical approximation at a point xi in the anisotropic area is obtained 
by applying the methodology described in Section 3.1 along each local 
direction (,). This reduces the ill-conditioning of the cloud matrices and 
eliminates to a large extent robustness and accuracy issues. The 1D quadratic 
approximation bases employed are, for instance in the  direction 

 2( ) 1T      p  (6.36) 

with local scaled coordinates defined by 

 maxˆ( ) /j i     x x  (6.37) 
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being ̂  the unit marching direction vector and max the distance between 
the star point and the furthest point in that direction. The definitions are 
similar for the approximation bases in the  direction. There, the employment 
of projections onto the local direction axis accounts for some misalignment 
that may arise due to the body curvature and slight differences in the height of 
neighbor viscous layers (the number of points at each station is the same). 

Regarding the number of points used to solve the minimization problem, 
three-point local supports are considered along each local direction to keep 
the clouds as compact as possible (this results in clouds with 5 points). This 
choice has additional advantages. Among them, the approximation functions 
interpolate point data, the minimization problem67 can be solved explicitly 
and, in addition, weighting is not required. 

Finally, once the approximations to the derivatives in the local system (,) 
are obtained, these are mapped back to the global coordinates (x,y) by 
applying the chain rule. The observed order of accuracy obtained for the 
gradients in the anisotropic area is second-order for symmetric clouds of 
points but tends to first-order with the asymmetry of the cloud (Fischer, 
1996). It should be noticed that no significant effects of the body curvature on 
the accuracy of the approximation were observed for the range of problems 
addressed in this work. 

8.5 Application examples 

In order to evaluate the performance of the proposed technique (mainly 
accuracy and convergence), several numerical examples are presented in this 
section. The tests cases chosen are typical verification and validation 
benchmarks involving laminar and turbulent flows, ranging from low 
subsonic to supersonic freestream Mach numbers. 

8.5.1 Flat-plate boundary layer flows 

The test cases provided in this section involve subsonic, transonic and 
supersonic boundary layer flows along a flat plate. The original isotropic FPM 
model consist of a unstructured distribution of 3099 points, with 135 
boundary points along the plate which are used to generate the anisotropic 

                                                            

67 The spatial derivatives in such kind of stencils can be also obtained by using 
polynomial finite differences along each direction, see for instance (Hoffmann & 
Chiang, 2000). However, this would place a restriction on the number of supporting 
points which reduces the flexibility of the meshless technique.  
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boundary layer discretization. The number of layers at each viscous station 
varies according to the problem between 15 and 20. Figure 98 shows the 
discrete analysis domain and the boundary conditions employed. A quadratic 
FPM approximation is computed in local clouds with 15-20 points in the 
isotropic domain area and three-point supports are used in each local direction 
in the anisotropic area (5 points per cloud). The flow solver uses 3rd-order 
MUSCL extrapolation with the van Albada limiter. It should be noticed that 
the eigenvalues in the Roe solver are limited to a very low value (1.0e-4 to 
1.0e-3 times the spectral radius) to allow the numerical dissipation scales with 
the Mach number as the surface is approached (see Eqs. (4.37)). This reduces 
the contamination of the physical viscous dissipation near the wall. A density 
residual drop of at least four orders of magnitude is considered to achieve 
solution convergence in the present simulations. 

 
Figure 98. Problem discretization and boundary conditions used for the flat-plate 
boundary layer problems (3099 original isotropic points). 

The first three examples presented below involves laminar flows with a low 
Reynolds number ReL = 5K based on the length of the plate (L=1). At each 
viscous station, 15 points are generated using an exponential variation of the 
normal point spacing with a minimum height 1.0e-3. Figure 99 shows non-
dimensional velocity profiles in the boundary layer computed for a freestream 
Mach number M = 0.1 at a streamwise station x/L = 0.8 (Rex = 4K). The skin 
friction coefficient along the plate is also given. The results exhibit a good 
agreement with the exact Blasius solution.  
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Figure 99. Comparison of velocity profiles (x/L=0.8) and skin friction along the plate. 
M = 0.1 and ReL = 5K. 

In the next example the freestream Mach number is set to M = 0.8. The 
numerical results for a streamwise station x/L = 0.6 (Rex = 3K) are compared 
with the analytical solution presented in (Mavriplis, Jameson & Martinelli, 
1989). There, the plate normal distance is scaled with the local density 
through the boundary layer according to 

 
0

/Y dy 


   (6.38) 

which corresponds to the Howarth-Dorodnitsyn transformation of the 
incompressible Blasius solution; see (Stewartson, 1964). A good correlation 
between numerical and exact solutions can be observed in Figure 100.  

 
Figure 100. Computed and exact velocity profiles (x/L=0.6) and skin friction. M = 
0.8 and ReL = 5K. 

A problem involving shock-boundary layer interaction at M = 4 is presented 
next for ReL = 5K, Pr = 0.75 and  = 1.4. In this example, all the flow 
variables are prescribed at freestream boundaries (see Figure 98) and the flow 
outlet is let free. Both adiabatic and fixed temperature (Tw/T=1) wall 
conditions are adopted for the simulations. The results in Figure 101 
demonstrate a satisfactory agreement with the analytical Crocco-Busemann’s 
solution; see (Van Driest, 1952; White, 1991). 
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Figure 101. Comparison of calculated Mach and temperature profiles (x/L=0.8) with 
the exact solutions. Mach number contours are shown on the right. M = 4.0 and ReL 

= 5K (Pr = 0.75). 

The next example involves a low-subsonic laminar flow with M = 0.1 but at 
a higher Reynolds number ReL = 100K. The minimum distance from the wall 
is set to 5.0e-4 (y+ is of order unity) and 20 points are used along each 
viscous station. The calculated boundary layer profiles (x/L=0.8) and skin 
friction compare satisfactorily with the incompressible Blasius solution (see 
Figure 102). The results are slightly better than those previously obtained, 
presumably due to the finer discretization of the boundary layer. 

 
Figure 102. Comparison of velocity profiles (x/L=0.8) and skin friction along the 
plate. M=0.1 and ReL = 100K. 

Finally, a high-Reynolds turbulent flow is solved for M = 0.1 and ReL = 11M. 
The B&L turbulence model is adopted in the simulation and the transition is 
triggered immediately after the leading edge of the plate. The minimum 
distance from the wall is set to 2.5e-6 (minimum y+ about 1) and 20 points 
are used along each viscous station. The maximum cloud aspect ratio in this 
example is 1:3000. Dimensionless velocity profiles are presented in Figure 
103 for different streamwise stations along the plate. The agreement of these 
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results with the experimental data from Wieghardt and Tillman (Wieghardt & 
Tillman, 1951)68 is satisfactory.  

8.5.2 RAE 2822 airfoil 

High-subsonic and transonic turbulent flows around a RAE 2822 airfoil are 
computed in this section according to the experimental AGARD Test Cases 3 
and 6 presented in (Cook, Mcdonald & Firmin, 1979). The model employed 
has unit chord (c=1) and the unstructured (original) discretization consists of 
4598 points. This is employed to construct an anisotropic boundary layer 
discretization which reaches 11781 points (561 points along the airfoil and 20 
viscous layers at each station). The minimum height from the surface is set to 
1.0e-5 (minimum y+ about 1) and a blunt trailing edge is considered. The 
maximum cloud aspect ratio in this model is about 1:1000. Some views of the 
discrete model have been presented in Figure 96.  

 
Figure 103. Computed and experimental velocity profiles at different streamwise 
stations along the flat plate. M = 0.1 and ReL = 11M. 

                                                            
68 The data points employed in the present comparisons are those tabulated in (Coles 
& Hirst, 1969) and available online at (NASA (2012)). 
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The FPM approximation is set similarly to the previous examples; the clouds 
in the isotropic domain area range between 15-20 points and three-point 
approximation supports are used in each local direction within the boundary 
layer (5 points per cloud). The Baldwin and Lomax turbulence model is used. 
According to the location of the transition trip in the wind tunnel model, the 
transition is triggered at x/c=0.03. The boundary conditions adopted are 
freestream Riemann conditions for outer domain boundaries and no-slip 
adiabatic wall along the airfoil contour. 

The first test case involves a freestream Mach number M=0.6 with Rec=6.3M 
(Case 3) and an angle of attack of  = 2.44º (corrected by wind tunnel wall 
interference). The second example is a transonic test case with M = 0.725, 
Rec = 6.5M and  = 2.31º (Case 6), which is solved using the same discrete 
model and problem setting. In this case the relatively low intensity of the 
shock wave on the upper side of the airfoil allows the flow to remain attached.  

The computed FPM solutions (presented in Figure 104) correlate well with 
the experimental data and particularly good results are obtained for the 
pressure distribution around the airfoil. Note that although the shock position 
in the transonic test case may be quite sensitive to the turbulence model 
employed, it is well captured in the numerical results. Regarding skin friction, 
the numerical solutions seem to overestimate the wall viscous stresses, 
particularly towards the leading edge of the airfoil (a better agreement is 
obtained near the trailing edge). Several experiments performed have not 
revealed significant grid dependence issues in these examples, but only small 
effects due to the parameters of the Roe-MUSCL solver and the turbulence 
model. As regards the discrepancies found in skin friction, it is important to 
note that a similar trend can also be seen for these test cases in other published 
results; for example (Spalart & Allmaras, 1992). To illustrate this, some data 
points taken from the aforementioned reference are included in Figure 104 for 
the transonic test case. These points, indicated as BL(SA), were computed 
with a similar turbulence model to that employed in this work. As can be seen, 
the agreement with the FPM results is fairly good. It should be noticed that 
certain effects due to uncertainties in the experimental conditions and data 
reduction procedures, as well as the suitability of the turbulence model 
adopted, may cause the differences observed with respect to the experimental 
results. This behavior deserves further investigation. 
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Figure 104. Pressure and skin friction distributions for the RAE airfoil. Top: M = 0.6 
and ReL = 6.3M (Case 3). Bottom: M = 0.725 and ReL = 6.5M (Case 6). 

The iterative convergence of the aerodynamic forces is presented in Figure 
105 for Cases 3 and 6. The computed normal force coefficients show a good 
correlation with the experimental measurements (these depend mainly on the 
pressure distribution) but a higher drag coefficient is obtained. The latter 
could be the result of the overestimation of the skin viscous stresses, but the 
poor resolution of the airfoil wake (not accounted for in this work) and the 
known low performance of the B&L model in this area may have some 
impact. As regards the speed of convergence, it should be noticed that the 
small point spacing within the boundary layer imposes significant restrictions 
to the permissible time step sizes, making the solution convergence slow. 
Hence, more specific solution approaches, based on implicit schemes or 
improved convergence acceleration procedures (like multigrid), are to be 
required to solve this kind of problems with efficiency; see interesting 
meshless implementations in (Katz & Jameson, 2009b; Kennet, Timme, 
Angulo & Badcock, 2012).   
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Figure 105. Aerodynamic forces convergence and Mach number contours for the 
RAE airfoil. Top: M = 0.6 and ReL = 6.3M (Case 3). Bottom: M = 0.725 and ReL = 
6.5M (Case 6). 

8.6 Concluding remarks 

A meshless approach for solving high-Reynolds viscous flows has been 
presented in this chapter. The developments focused mainly on exploiting 
meshless capabilities on two main aspects of the methodology: simplicity and 
automation of the viscous discretization, and the construction of a robust and 
computationally efficient numerical approximation in highly-anisotropic 
clouds of points. As far as the flow solution scheme is concerned, the 
approach adopted is quite standard and robust. The solver is based on the one 
proposed for the inviscid Euler equations, but extended to account for viscous 
effects. An algebraic turbulence model has been also implemented. 

Regarding the viscous (boundary layer) discretization, a simple and versatile 
technique based on advancing layers was proposed. The discretization 
requirements are lower in the meshless context and this allows generation 
procedures to be simplified in relation to similar mesh-based implementations. 
Another additional advantage of this approach is that the original problem 
discretization, valid for instance for inviscid analysis, ensures to some extent 
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the validity of the resulting viscous grid. Moreover, once the original 
(inviscid) model is generated for a given problem, this technique allows 
testing different viscous discretizations, adapted to particular flow conditions, 
with minimum turnaround times.  

Concerning the construction of the FPM approximation in highly-anisotropic 
clouds, a simple and essentially one-dimensional procedure was proposed. 
This approach, which builds on the structured-like distribution of points in the 
boundary layer, has proven to be fairly accurate and robust. Furthermore, the 
reduced spatial support required (5 points per cloud) improves the locality of 
the computations (with a minimum smearing of the flow features) and reduces 
the computational cost significantly. The time savings in the viscous layers 
are very important because more than half of the total domain points in 
practical problems are usually located in such areas. 

The numerical applications presented (involving attached boundary layer 
flows) have demonstrated satisfactory accuracy, comparable to that observed 
in conventional analyses, but taking advantage of the meshless procedures. 
This result encourages to extend the proposed FPM methodology in order to 
address three-dimensional problems. 

  

 



193 
 

9 RELATED APPLICATIONS: SHALLOW 
WATER EQUATIONS 

Shallow water equations (SWEs), which are a particular case of the general 
Navier-Stokes equations, model a wide range of geophysical flow problems 
which have very important social, economic and environmental implications. 
As in other fields of numerical computation, there are particular applications 
of the SWEs where meshless approaches could make significant 
contributions. Thus, taking advantage of the similarity between the solution 
procedures typically used for SWEs and that developed in this work, the 
capability of the FPM to address shallow water problems is investigated. 

This chapter is organized as follows. Section 9.1 outlines the problem 
governing equations, and the meshless solution approach is described in 
Section 9.2. Typical validation and verification test cases are presented in 
Section 9.3 to demonstrate the performance of the proposed methodology. In 
addition, with the aim of exploring the possibilities the FPM has for solving 
realistic problems, a numerical simulation of the 2004 Indian Ocean tsunami 
is also presented in this section. The problem is mainly focused on the 
propagation and effects of the tsunami waves on the southern coast of 
Thailand. The adaptive methodology developed in the preceding chapters is 
applied for the exploitation of meshless advantages.  

9.1 The shallow water equations 

Shallow water flows are characterized by the fact that the vertical length scale 
of the problem (depth) is considerably smaller than the characteristic 
wavelength of the disturbances traveling within the analysis domain. Since the 
flow movement in these problems is predominantly horizontal, some 
assumptions can be made in order to simplify the analysis. Thus, assuming 
that the acceleration in the depth direction is negligible and the pressure is 
mostly hydrostatic, the incompressible Navier-Stokes equations are integrated 
in depth. This procedure leads to a set of hyperbolic equations in a horizontal 
plane (two-dimensions) where the flow variables are all considered as depth-
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averages; see for instance (Zienkiewicz, Taylor & Nithiarasu, 2005). These 
equations, known as shallow water equations, can be written in conservative 
(dimensional) differential form as  

 
k k

k kt x x
    
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U F G

Q  (7.1) 

where U is the vector of conservative variables, Fk and Gk are the advective 
and the diffusive fluxes in the spatial direction xk and Q is a source term. The 
vectors U, Fk and Gk are given by 
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where H = h +  is the total fluid depth, defined as the sum of the resting 
depth h and the free-surface height . The k-component of the mean velocity 
vector is uk, g is the gravity acceleration and ik is the Kronecker’s delta. The 
depth-averaged viscous shear stresses ik  are given by 
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in which  is the kinematic viscosity of the fluid. If the effects due to free-
surface stresses (e.g. wind) and variations in the atmospheric pressure are 
omitted, the source term Q can be written as (Wang & Liu, 2005) 
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being Cf the Coriolis parameter and 
kf

S bottom friction terms. The latter can 

be defined as (Glaister, 1993) 
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where n is the Gauckler-Manning coefficient and  is a dimensional constant 
equal to 1.0 for SI units or 1.486 for US customary units. Finally, the bed 
slope terms in Eq. (7.4) can be obtained by 
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and the resting depth profile h(x) (bathymetry) should be specified for each 
particular problem under analysis.  

9.2 Flow solution approach 

Since the SWEs are obtained as a particular case of the general Navier-Stokes 
equations, the numerical solution approaches are generally based on similar 
techniques69. In this work, the basic upwind scheme developed in Section 4 
and Section 8 is adopted. The solution methodology is described below. It 
should be noticed that dimensional forms of the equations are employed. 

9.2.1 Equations discretization 

The semi-discrete system of SWEs can be written at a sampling point xi by 
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where the tilde indicates approximated variables. The convective termi is 

discretized as in Section 4.2, by recasting the derivative as  
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where k

ijF  is the k-component of an unknown numerical flux computed at the 

midpoint of the edge connecting the star point xi to another point xj in the 
local cloud and kk

i iF = F (U ) . The numerical flux, which is introduced for 

stabilization purposes, can be obtained by solving an approximate Riemann 
problem at each edge (upwind approach) or by means of the artificial 
diffusion models described in Section 4.2.3. Here the first procedure is 
adopted. Thus, the numerical flux is defined according to Eq. (4.28) by  

    ˆ
1 1 ˆ( , )2 2

k k k k
ij j i n i j j i ijn  F = F F A U U U U  (7.9) 

                                                            
69 Examples of some typical solution techniques are the Eulerian method due to Ata 
and Soulaïmani (Ata & Soulaïmani, 2005), the Lagrangian scheme presented by Hon 
et al. (Hon, Cheung, Mao & Kansa, 1999) and the mixed FV-meshless application 
proposed by Cueto-Felgueroso et al. with the purpose of achieving higher-order 
discretizations on unstructured grids (Cueto-Felgueroso, Colominas, Fe, Navarrina & 
Casteleiro, 2000). Moreover, upwind-type solution schemes can be found in 
(Ambrosi, 1995; Glaister, 1988; Wang & Liu, 2005). 
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where ˆ
ijn  is a unit vector in the direction of ij j i l x x  and | ˆ ( , )n i jA U U | is 

the positive Roe matrix calculated in the same direction. Details of the 
computation of this matrix for SWEs can be found in (Wang & Liu, 2005).  

The introduction of the upwind flux (7.9) guarantees a non-oscillatory 
solution, but the resulting scheme is only first-order accurate. Like in Section 
4.2, the spatial accuracy is increased by limited MUSCL extrapolation. The 
procedure is the same as the one used with Euler equations, but here the 
conservative variables are referenced to the resting fluid depth in the 
extrapolation procedure. This avoids unwanted effects due to the problem 
bathymetric data. 

The discretization of the diffusive fluxes and source terms in Eq. (7.7) are 
performed using standard FPM approximations, i.e.  
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where kk
j jG = G (U )  and kk

j jQ = Q (U )  and aij and bij are the cloud metric 

coefficients. Note that the approximation obtained for the viscous fluxes is 
equivalent to a central-type difference.  

As in Section 8.2.1, the computation of the viscous fluxes and source terms is 
simplified by assuming that the approximated and nodal parameters of the 
derivatives at a given point are similar (velocity gradients in the depth-
averaged viscous stresses and the h gradient in the bed slope terms). 
Regarding the treatment of the source term, numerical instabilities may arise 
in problems presenting, for example, highly-stepped topography or important 
bed shear stresses. In such cases, improved treatments of the source term may 
be required; see for instance (Garcia-Navarro & Vazquez-Cendon, 2000). In 
the present work, no misbehavior related to the source terms was observed in 
the range of problems addressed.  

9.2.2 Time integration 

The time derivative in the semi-discrete equations (6.19) is approximated 
according to the time marching scheme described in Section 4.3 (the 
procedure developed in Section 7.2.2 can be also applied). The only 
difference is the computation of the allowable time step. This is obtained in 
the case of SWEs by  
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where � denotes the Courant number, 
i i

c gH  is the wave speed, and the 

rest of the variables are interpreted as they have been defined before in 
Section 4.3 and Section 7.2.2. 

9.2.3 Boundary conditions 

The boundary conditions adopted in shallow water problems are similar to 
those previously described in Sections 4.5 and 7.2.3. These are discussed in 
the context of particular applications in the next section. 

9.3 Application examples 

The numerical examples presented in this section involve typical verification 
and validation test cases and are mainly intended to illustrate the basic 
performance of the meshless technique. In addition, the methodology is also 
applied with the adaptive scheme of Chapter 6 to the simulation of the 
tsunami which hit the Indonesian coast on 26th December 2004. This test case 
aims at demonstrating the applicability of the present technique to a more 
realistic shallow water problem. 

9.3.1 Dam-break flood problem 

A straight channel initially divided by a dam is considered in this example. 
The water depth at the left side of the dam (HL) is higher than the depth at the 
right of the dam (HR), the fluid is at rest at both sides and viscous effects are 
neglected. The simulation starts when the dam is suddenly removed. This 
creates a bore wave moving from left to right and a depression wave 
propagating towards the left. The computational domain is set to 1.0 m long 
and 0.5 m width and the dam is located at x = 0.5 m. The problem is 
discretized by a structured distribution of 10030 points and quadratic 
approximations are built in clouds having 12-17 points. The initial conditions 
are HL = 1 m, HR = 0.1 and uL = uR = 0 and the boundaries are modeled as 
solid slip-walls. A three-stage scheme is adopted to perform time integration, 
and 3rd-order MUSCL extrapolation with van Albada limiter is used. 

Water depth and velocity variations along the channel are calculated at times t 
= 0, 0.02, 0.05 and 0.08 seconds from the breaking of the dam. These results 
are compared with the analytical solutions due to Wu et al. (Wu, Huang & 
Zheng, 1999) in Figure 106, where good agreement is observed. Some 
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snapshots of the fluid surface obtained at the same simulation times are 
displayed in Figure 107. 

 
Figure 106. Dam-break problem HL/HR = 10. Comparisons between computed and 
analytical results. 

 
Figure 107. Water surface profiles computed at several times from the breaking of the 
dam (HL/HR = 10). From left to right: 0.0, 0.02, 0.05 and 0.08 secs.  

9.3.2 Tide-driven flow in a long straight channel 

The development of tidal waves along a channel is solved in this example 
with the purpose to investigate the observed accuracy of the scheme. The 
problem domain consists of a constant rectangular section channel having 
8.8x105 m long and a resting water depth h = 10 m. The fluid is assumed to be 
inviscid and the channel walls are modeled as slip boundaries, with exception 
of the upstream entry, where the following tidal function is enforced  
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In order to introduce linear bottom dissipation, the source term given by Eq. 
(7.4) is defined in this example as 

  T1 20, ,H u u Q  (7.13) 

with a friction coefficient  = 5.0E-5 s-1.  

The grid convergence analysis is performed by using four homogeneous 
distributions of 153, 554, 2161 and 8396 points (with approximately 25, 50, 
100, and 200 uniform spaced points along the channel length). The 
approximation and solver settings are similar to those employed in the 
preceding example. The steady-state periodic solution of the problem is 
reached after running a few oscillation cycles. Then, the global solution error 
is estimated by the following L2 error norm 
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where i is the free-surface height obtained for a phase angle of 270º along 
the centerline of the channel, and the subscripts n and e indicate calculated 
and exact reference values. The latter corresponds to the analytical linearized 
solution of the problem obtained in (Lynch & Gray, 1978). 

The convergence of the error as a function of the point spacing is depicted in 
Figure 108. There, the observed order of accuracy of the scheme is about p = 
1.3. Although slightly lower in this case, the accuracy obtained does not differ 
much from that observed for the Euler equations. Figure 109 shows 
comparisons of FPM and exact free-surface levels at different phase angles 
during one-period oscillation (n=2161 points). Again, the results show a good 
agreement with the analytical solution for both, amplitude and wave location. 

 
Figure 108. Tidal-driven flow problem. Left: convergence of the free-surface height. 
Right: surface elevation computed for a phase angle of 270º (n=2161 points). The 
vertical scale is magnified in order to highlight the displacements. 
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Figure 109. Development of tidal waves along a channel. Comparisons between 
numerical and analytical results at different times during one-period oscillation. 

9.3.3 Flow past a channel with a backward step 

This example involves a flow through a channel with a backward step and is 
intended to assess the viscous behavior of the scheme. The step, located at a 
distance of 12 m from the upstream flow entry, has dimension 1 m and the 
downstream flow outlet is located 13 m ahead the step (see Figure 110). The 
computational domain is discretized by a non-structured distribution of 1577 
points and the problem settings are identical to the previous examples. The 
velocity at the inflow boundary and the fluid viscosity are set in such a way 
that the Reynolds number, based on the dimension of the step, is Re = 73 
(u=0.5 m/s and =0.00685 m2/s). A still water level of H = 1 m is prescribed 
at the outflow boundary and no-slip walls are considered along the channel.  

 
Figure 110. Top-view of the channel with a backward step displaying point 
discretization (n=1577 points). 

The flow reattachment after the step is investigated and the results are 
compared which those presented in (Wang & Liu, 2005). Figure 111 shows 
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that the computed reattachment length is approximately 3.97 m and this result 
is very close to the 3.95 m reported by the aforementioned authors. According 
to the applied boundary conditions, a still water level of H = 1 m is obtained 
throughout the channel. 

 
Figure 111. Top-view of the flow past a backward step showing the reattachment 
length. 

9.3.4 Flow in a channel with varying width and bed slope 

An inviscid flow in a channel with a smooth constriction and variable bed 
slope is solved here to assess the behavior of bed slope terms. The channel is 
1.0x104 m long and its width varies according to a cosine function, from 1000 
m at the inflow boundary (left-side) to 500 m at the throat, increasing 
afterwards to 1000 m at the outflow boundary. The bed slope is set to 1:100 
(downward) along the channel excepting for the zone between 4500 ≤ x ≤ 
5500 m where the bed slope is 1:50 (see Figure 112). The computational 
domain is discretized by a homogeneous distribution of 5584 points and the 
problem settings are similar to those used in the previous examples. A 
volumetric flow rate Q = 2000 m3s-1 is prescribed at the channel entry; 
whereas the depth is extrapolated from the fluid side at the outflow boundary. 
Slip conditions are enforced on the walls along the channel. 

 
Figure 112. Top-view of the channel showing point discretization (5584 points) and 
bed slope variation. 

Open channel problems generally lack exact solutions; thus these have been 
extensively studied numerically and several reference results are available in 
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the literature. In the present case, the FPM computation is compared with the 
numerical solution obtained in (Glaister, 1993). This is computed by using a 
one-dimensional finite-differences flux-splitting scheme on a domain having 
300 uniform cells. Comparisons of water depth, Froude number and 
volumetric flow along the centerline of the channel are presented in Figure 
113. A good agreement between the FPM results and the reference Glaister’s 
solution is obtained. 

 
Figure 113. Comparison between FPM and the reference numerical solutions for a 
channel with varying width and slope. 

The FPM water surface profile is shown in Figure 114. There, the hydraulic 
jumps induced by the changes in bed slope at the central part of the channel 
can be observed. 
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Figure 114. Computed FPM water surface profile along the channel (the vertical scale 
is augmented in order to highlight surface elevation) 

9.3.5 Adaptive simulation of the 2004 Indian Ocean tsunami 

The Indian Ocean earthquake, which struck the northern coast of Sumatra on 
26th December 2004, generated an unprecedented tsunami with devastating 
consequences in terms of loss of human lives, infrastructure and 
environmental damage affecting mainly Indonesia, Sri Lanka, India and 
Thailand. Such a natural disaster led many research groups around the world 
to focus on developing improved early alert systems, in which numerical 
models play an essential role (particularly those based on SWEs); see for 
instance (Annunziato & Best, 2005), (Bernard, Mofjeld, Titov, Synolakis & 
González, 2006) and (Annunziato, 2007). Although significant advances have 
been made in forecasting technology in recent years and mature 
methodologies are available, current trends pursue even more accurate models 
with improved capabilities and higher computational efficiency. Following 
these lines, a preliminary exploration of the possibilities of the FPM in this 
field is carried out. 

The numerical application presented in this section focuses on the propagation 
of the Indian Ocean tsunami waves towards the southern coast of Thailand, 
particularly on Phuket Island70. The adaptive methodology developed in 
Section 6 is used in the simulation in order to exploit the advantages of the 
meshless approach. The simulation parameters, computational domain and 
boundary conditions adopted in this example, as well as the numerical results 
obtained, are discussed below. 

9.3.5.1 Problem set-up 

The inviscid SWEs (7.7) are solved taking into account Coriolis and bottom 
stresses in the source terms (7.4). The initial domain discretization consists of 

                                                            
70 The data employed in this example was provided by Prof. Worsak Kanok-
Nukulchai from the Asian Institute of Technology and Dr. Pruettha Nanakorn from 
the Sirindhorn International Institute of Technology. 
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an unstructured distribution of 8240 points and quadratic approximations are 
built in local clouds with 15-25 points. Third-order MUSCL extrapolation is 
employed with the van Albada limiter and a three-stage scheme is used to 
perform time integration. As regards the refinement strategy, the feature-
based indicator of Section 6.1.1 is employed using the free surface height () 
as sensing variable. The total simulation time run is approximately 150 
minutes counting from the tsunami generation event. The refinement passes 
are performed at intervals of approximately 2.5 minutes (real simulation time) 
and a maximum resolution of 2.5 km is set for the adapted discretizations. It is 
important to note that the successive retreat and rise cycles occurring after the 
tsunami hits the coastline are not simulated because the topography employed 
is not reliable enough (resolution) to reproduce this phenomenon with 
accuracy. 

9.3.5.2 Topographical and bathymetric data 

The analysis domain and the bathymetric data in the present simulation are 
those used in (Kanok-Nukulchai & Nanakorn, 2007), where the original data 
extracted from the ETOPO2 database (NGDC, 2006) was mapped into a FEM 
mesh to perform the computations. It should be noted that in that work the 
computational domain was simplified by modeling all the small islands (e.g. 
Andaman Islands), including Phuket, as a part of the ocean with a water depth 
of five meters. Such procedure was justified because no local features around 
the coasts were sought and only the global wave propagation was of interest.  

In the present simulation the same bathymetric data is mapped into the point 
discretization obtained at each refinement level achieving both, bathymetry 
and topography of the computational model to be improved simultaneously 
(up to the resolution of the original data). In order to map bathymetric data for 
each target point in the computational domain, the centroids of the elements in 
the background bathymetry mesh are used for searching the element where 
the target point lies on by using bins. Then, the bathymetric data is 
interpolated to the target point using the standard shape functions of the 
underlying element. This procedure behaves efficiently even under large 
discretizations and a considerable speed-up is achieved by increasing the 
number of bins (notice that the bins data structure must be constructed just 
once, as the background bathymetry mesh is fixed). Figure 115 shows the 
geographical delimitation of the analysis domain and the bathymetric data 
computed for the initial coarse discretization (n=8240).  
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Figure 115. Geographical delimitation of the analysis domain (left) and initial coarse 
discretization showing bathymetric data in meters (right).  

9.3.5.3 Initial and boundary conditions 

The 26th December 2004 tsunami was triggered by an undersea earthquake 
located 160 km west of the north coast of Sumatra which reached a magnitude 
9.0 on the Richter scale. The earthquake was generated by a subsidence fault 
of approximately 20 m width and 1000 km length in the confluence of the 
Eurasian and the Indo-Australian tectonic plates. After the incident, the 
location and extension of the fault as well as the vertical seabed displacements 
have been determined and several fault models have been proposed. In 
accordance with (Kanok-Nukulchai & Nanakorn, 2007), the test case 
presented here adopts the model given in (NORSAR, 2006).  

Following this fault model, a sudden upward movement of the west side of the 
fault of 5 m and a downward movement of the east side of -3.5 m are 
considered. The water above the fault is supposed to move in a similar way 
(no-slip) and these displacements are applied as initial condition for the free-
surface water height . In addition, the initial velocity is considered to be zero 
everywhere in the analysis domain. Figure 116 depicts the initial free-surface 
height used in the simulation. 



206 
 

 
Figure 116. Initial condition for the free-surface height  (in meters). 

As regards boundary modeling, slip-velocity and non-reflective conditions are 
employed. The former are applied on all the coastlines in the computational 
domain (see Figure 115) by cancelling, at each point, the normal component 
of the flux vector. Non-reflective conditions are implemented through 
variables extrapolation from the inside of the domain. These conditions are 
intended to simulate open-sea boundaries avoiding undesirable reflections. 

9.3.5.4 Numerical results 

The numerical results computed at different simulation times from the initial 
excitation triggering the tsunami are shown in Figure 117. There, west and 
east travelling waves, in agreement with the leading north-south orientation of 
the subsidence fault, can be observed. The west moving waves travel faster 
than the eastern ones and exhibit longer wavelength with smaller amplitude as 
the ocean depth is higher on this side of the fault. This fact explains the 
behavior of the adapted point discretizations displayed in Figure 117, for 
which only few new points are added on the west side area when the 
simulation time goes beyond 30 min from the initial excitation. As regards 
east travelling waves, it can be observed in Figure 117 that the tsunami is very 
close to the north-west coast of Sumatra (Indonesia) around 15 min after the 
initial excitation. The timeline elaborated in (Annunziato & Best, 2005) 
according to media reports indicates that the tsunami hit Banda Aceh (located 
in the northern coast of Sumatra) 17 min after the earthquake, while several 
numerical results given in the same reference also estimate around 20 min. 
The tsunami arrival time computed for Banda Aceh in the present example is 
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approximately 19 min, which is consistent with the aforementioned results 
(the tsunami arrival time is considered to occur for a zero free-surface height, 
just before the main wave rises up). Approximately 75 min after the 
earthquake, the east travelling waves approach the southern coast of Thailand. 

Focusing on the tsunami propagation toward Phuket Island, free-surface water 
levels are plotted in Figure 118 along a straight line (a-a) going from the 
excitation area to Phuket, covering a distance of approximately 600 km. As 
can be observed, the main tsunami wave decreases its wavelength and 
increases its amplitude as it approaches Phuket (ocean depth decreases). For a 
simulation time of 90 min, the wave crest is located around 70 km from 
Phuket and the computed free-surface level is around 5 m. All these results 
follow the same trend presented in (Kanok-Nukulchai & Nanakorn, 2007). 

The time history of free-surface water levels computed at Banda Aceh and 
Phuket Island are shown in Figure 119. Regarding Banda Aceh, the results 
show a positive tsunami wave, preceded by an ahead running depression, 
which reaches approximately 11 m height (Figure 119 left). This value is 
within the range of measurements collected by the United States Geological 
Survey (USGS, 2005), which reports wave heights between 5 and 13 m at 
Banda Aceh, increasing up to 30 m at locations along the west coast of the 
island. The evolution of the sea free-surface level computed at Phuket location 
(Figure 119 right) also shows the ahead running depression wave causing the 
water level to recede between 75 and 100 min simulation time. Around 105 
min after the initial excitation, a sudden increase of water level occurs due to 
the arrival of the positive tsunami wave and the water level rises for a period 
of 20 min, reaching its maximum height at around 125 min simulation time.  



208 
 

 
Figure 117. Adapted finite point discretizations computed at different simulation 
times from the tsunami triggering event. 
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Figure 118. Free-surface water level along the path a-a computed at different times 
from the initial excitation. 

 
Figure 119. Free-surface water levels computed at Banda Aceh (left) and Phuket 
Island (right) starting from the initial excitation. 

Figure 119 (right) also includes a few point data computed in (Karim, Roy, 
Ismail & Meah, 2009) for the north-west coast of Phuket. Even though the 
estimated time of events is pretty similar, the attained water levels exhibit 
some discrepancy. This fact could be expected because the local topography 
of Phuket Island is not resolved exactly in the present example. Regarding the 
maximum wave height, a value around 12 m is computed in this work, which 
is higher than that obtained in (Karim, Roy, Ismail & Meah, 2009), but not 
incongruous with the range of values between 1.5 and 12 m the same authors 
found in the island from South to North. As far as the negative wave is 
concerned, a larger discrepancy is observed in Figure 119 (right). This can be 
explained by differences in the initial conditions triggering the tsunami, 
mainly in the downward seabed displacements, although the approximate 
topography used in the present example may have also played a role. 

The tsunami arrival time calculated at Phuket location is compared in Table 8 
with other results published in the literature. In spite of the fact that slight 
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differences are observed, in general the agreement is satisfactory. It should be 
noticed that small differences in the reported values could be attributed to 
methodological factors such as the arrival criteria, the model resolution, the 
initial conditions and the sampled locations adopted in each particular work. 

  Arrival time (min) 

Observed data 
News reports (Annunziato & Best, 2005) 105 

(USGS, 2005) 90-120 

Computed data 

Present FPM 105 

(Annunziato & Best, 2005) 90 

(Karim, Roy, Ismail & Meah, 2009) 90-110 

Table 8. Tsunami arrival times for Phuket Island. 

Finally, concerning the computational performance of the present tsunami 
simulation, adapted discretizations are generated with a very low time cost. 
The number of points in the domain does not surpass 50K at any time step; 
thus, the computational cost is kept low but not at the expense of the model 
resolution. This allows performing complete runs on a desktop computer in a 
few minutes and renders the adaptive finite point technique suitable for fast 
preliminary analyses. Additionally, the proposed methodology can benefit 
further from parallel computing strategies (not accounted for in this example), 
allowing increased resolution with low computational times. 

9.4 Concluding remarks 

An application of the FPM to the solution of shallow water problems has been 
presented in this chapter. The basic methodology developed for solving 
compressible aerodynamics problems has been extended in a simple way to 
deal with the SWEs. According to the results, a satisfactory performance was 
obtained from the point of view of the accuracy and robustness of the 
numerical solutions. Although specific tests relative to the computational cost 
were not performed here, the results obtained in the previous chapters apply 
(the algorithm is essentially the same). Therefore, it is possible to assume that 
competitive accuracy-cost ratios, comparable to those obtained with 
conventional techniques, can be achieved in the present implementation, but 
profiting from meshless advantages. In this regard, the FPM technique can 
make interesting contributions in problems that require a high spatial 
resolution, as well as low simulation and turn-around times. 
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10 CONCLUSIONS AND FUTURE WORK 

The aim of this investigation was to contribute to the development of 
meshless approaches in the field of compressible aerodynamics problems. 
Based on a particular technique, the Finite Point Method (FPM), the work 
focused primarily on determining its potential to address practical 
applications, one of the most outstanding issues in meshless methods. Special 
attention has been given to those areas where meshless procedures can 
contribute to current numerical simulation.  

As mentioned in the introduction, this work is divided into three main parts. 
After the introduction and literature review (Chapters 1 and 2), the first part 
deals with the construction and analysis of the FPM spatial approximation 
(Chapter 3). The second part is devoted to the development and assessment of 
the basic (inviscid) flow solution scheme (Chapters 4 and 5). Finally, practical 
applications and extensions of the basic solution methodology are carried out 
in the last part of this work (Chapter 6 to 9). The main objectives and 
achievements in each of these areas are summarized below. 

The construction of the meshless spatial approximation followed the standard 
approaches in finite point techniques. With focus on three-dimensional 
general approximations, the studies presented aimed at characterizing the 
behavior of the FPM in order to detect the aspects of the methodology that can 
be improved to increase its robustness and accuracy; key aspects in view of 
practical applications. The results obtained allowed to establish ranges for 
setting the relevant approximation parameters as well as to determine the 
performance likely to be attained in practice. In this regard, it was found that 
quadratic polynomial bases lead to a good balance between accuracy and 
computational cost, while the gain expected from higher-order 
approximations was quite problem-dependent. Moreover, it was determined 
that the number of points in the local cloud and the parameter w, affecting the 
shape of the weighting function, are suitable variables to improve the local 
approximation. With this purpose, an automatic procedure including the 
adaptive adjustment of these parameters was proposed for constructing robust 
approximations in general application problems. This procedure simplified the 
application of the method, reducing problem- and user-dependence without 
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affecting the flexibility of the meshless technique. Other aspects related to the 
construction of the local approximation, such as the global and local 
discretization, have also been discussed in this work. The Delaunay point 
generation technique employed (which was not a focus of this research) 
showed that suitable point discretizations can be generated with low 
computational cost and linear complexity. This technique, coupled with the 
robust local discretization procedure adopted (which largely benefits from 
parallel implementations), makes meshless discretizations a good alternative 
to alleviate mesh generation problems in particular applications. 

Regarding the discretization of the compressible flow equations, this has 
followed well-established approaches in the field, but drawing on the 
meshless character of the methodology. In order to suit the requirements of 
practical applications, the procedures were designed and implemented with 
particular emphasis on robustness and efficiency. In this regard, a 
simplification of the basic FPM technique was proposed to make it 
competitive in relation to conventional solution techniques. The performance 
of the resultant flow solver has been studied in detail to evaluate the real 
capabilities of the meshless approach. The analyses focused on accuracy, 
computational cost and parallel scalability, and were conducted in comparison 
with an equivalent Finite Element technique (PUMI) which was taken as a 
standard for evaluating the meshless solver. Based on a typical inviscid 
transonic flow simulation, the results obtained demonstrated that the accuracy 
and computational cost of the basic meshless approach is comparable to those 
of similar mesh-based implementations. This is an important result that 
indicates that the meshless solution approach can be competitive, and allows 
exploiting meshless advantages with efficiency. 

The practical applications in this work have been intended not only to show 
the basic capabilities of the meshless technique, but also to exploit meshless 
advantages in areas of research with good opportunities for such 
developments. Automatic h-adaptive procedures, moving domain and fluid-
structure interaction problems are a sample of the topics explored. In addition, 
a preliminary meshless approach to solve viscous high-Reynolds number 
problems has been presented, as well as an application (closely related to 
compressible flows) that involves shallow water equations. In general, the 
results were satisfactorily accurate and competitive in terms of computational 
cost. Meshless advantages (h-adaptivity and domain deformation) have been 
also exploited with robustness and efficiency in the selected problems. This 
fact constitutes a good starting point towards more challenging applications.   

All in all, the FPM methodology developed in this work has revealed a strong 
potential to deal with practical compressible flow problems. Thus, it offers a 
way forward to exploit meshless procedures further. It is true that some 
aspects of the present technique should still be improved in order to meet the 
objective to develop the FPM into a practical application tool. The 
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implementation of efficient convergence acceleration procedures (e.g. 
multigrid) and the improvement of the cloud construction technique and the 
data structures are examples of the present needs. These advances should also 
be complemented by more extensive testing of the methodology on large-
scale problems, using higher-performance hardware platforms. In addition, 
the solution of viscous three-dimensional high-Reynolds number flows is 
another key challenge to meet current requirements in computational fluid 
dynamics. In this regard, the extension of the viscous approach presented here 
can pave the way for future developments in this field. In brief, the work 
presented opens a door to promising meshless developments, which can be 
also extended to other areas of application in numerical simulation.  
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Appendix: List of publications 

The main publications arising from this research are listed below. Their 
contributions to this work are also indicated. 

Ortega, E., Oñate, E. & Idelsohn, S. (2007). An improved finite point method 
for  tridimensional potential  flows. Computational Mechanics, 40(6), 
949‐963. (Chapter 3). 

Ortega, E., Oñate, E. & Idelsohn, S. (2009). A finite point method for adaptive 
three‐dimensional  compressible  flow  calculations.  International 
Journal  for Numerical Methods  in Fluids, 60(9), 937‐971.  (Chapter 4 
and Chapter 6). 

Ortega, E., Oñate, E.,  Idelsohn, S. & Buachart, C.  (2011). An adaptive  finite 
point method for the shallow water equations. International Journal 
for Numerical Methods in Engineering, 88(2), 180–204. (Chapter 9). 

Ortega, E., Oñate, E., Idelsohn, S. & Flores, R. (2013). A meshless finite point 
method  for  three‐dimensional  analysis  of  compressible  flow 
problems  involving moving boundaries and adaptivity.  International 
Journal  for Numerical Methods  in Fluids, 73(4), 323‐343.  (Chapter 6 
and Chapter 7). 

Ortega, E., Oñate, E.,  Idelsohn, S. & Flores, R. (2014). Comparative accuracy 
and  performance  assessment  of  the  finite  point  method  in 
compressible flow problems. Computers & Fluids, 89, 53‐65. (Chapter 
5). 

Ortega, E., Oñate, E., Idelsohn, S. & Flores, R. (2014). Application of the finite 
point method to high‐Reynolds number compressible flow problems. 
In press,  International Journal for Numerical Methods  in Fluids. DOI: 
10.1002/fld.3871. (Chapter 8). 

Ortega, E., Oñate, E., Idelsohn, S. & Flores, R. An a‐posteriori error estimate 
for  the  finite  point  method  with  applications  to  adaptive 
compressible  flos  problems.  Submitted  to  International  Journal  of 
Computational of Computational Methods (2013). (Chapter 6).  
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