
Modeling cytokine signaling pathways for the study
of autoimmune disease 

Inna Pertsovskaya 

Aquesta tesi doctoral està subjecta a la llicència Reconeixement- NoComercial – 
CompartirIgual  3.0. Espanya de Creative Commons.

Esta tesis doctoral está sujeta a la licencia Reconocimiento - NoComercial – CompartirIgual  
3.0. España de Creative Commons.

This doctoral thesis is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 3.0. Spain License.



            
Universidad de Barcelona 

Facultad de Biología 

Programa de Doctorado de Biomedicina 

Línea de Biología molecular i celular de cáncer 

 

Modeling cytokine signaling pathways for the study of 

autoimmune disease 

Memoria presentada por 

Inna Pertsovskaya 

para optar al grado de  Doctora en Biología por la Universidad de 

Barcelona. 

 

Esta tesis doctoral ha sido realizada en el El Programa de 

Neuroinmunología del Centro de Investigación Biomédica August Pi i 

Sunyer (IDIBAPS) bajo la dirección del Dr. Pablo Villoslada 

y la tutoría de la Dra. Marta Cascante 

 

Dr Pablo 

Villoslada Diaz 

Dra  Marta 

Cascante Serratosa 

Inna 

Pertsovskaya 

 

 

 

 

  

Director Tutora Doctoranda 

Barcelona, Abril 2014 

 



 

 ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the cover: “View of a Skull”, Leonardo da Vinci, c. 1489 

 

 

© Inna Pertsovskaya 

2014 



 

 iii 

 
 

 

Modeling cytokine signaling pathways for 

the study of autoimmune disease 
 

Modelos de vías de señalización de citoquinas 

para el estudio de enfermedades autoinmunes 

 

Inna Pertsovskaya 

2014 

 

 

  



 

 iv 

 

 

 

 

 

 

 

 

 

 

I dedicate this thesis to my mother,  

the most inspiring example of an outstanding person 

  

  



 

 v 

Acknowledgements 

I would like to thank my PhD advisor, Dr Pablo Villoslada, 

for constant support during last 5 years. Dr Villoslada is not only 

an excellent researcher but also a helpful and supportive 

supervisor who always finds the way to inspire me to climb the 

career stairs and achieve new levels of understanding of nature.  

I’m grateful to Prof. Marta Cascante for her tutorship of this 

PhD thesis. I would like to thank the committee members, Prof. 

Patrick Aloy, Prof. Carlos Rodrigues and Prof. Blas Echebarria, for 

finding time to review my thesis and attend the defense.  

I would like to thank Prof. Andrey Mironov, my University 

supervisor, with whom I was born as a scientist. 

I also would like to thank my collaborators: Prof Jordi Garcia 

Ojalvo Dr Elena Abad from Universitat Pompeu Fabra, Dr Julio 

Saez Rodriguez and his fellows from European Bioinformatics 

Institute, Prof. Jesper Tegner and Dr Narsis Kiani from Karolinska 

Institutet and others.  

All our supportive lab members contributed to this thesis 

come true. I would like specially to mention Dr Beatriz Moreno 

and Dr Ekaterina Kotelnikova. I would like to thank Gemma Vila 

and Begoña Fernandez for their direct involvement in projects and 

hand-on help with experimental procedures. 

I would like to thank my all-time best friend and supervisor 

Dr Alexander Favorov for recommending me as an UEPHA-MS 

trainee in Dr Villoslada’s lab. Sasha is a friend who gives the 

confidence in the world.  I’m also grateful to many and many of 

my friends who were directly and indirectly involved in my life 

during the last 5 years, especially Encarna Busquet, Evgenia 



 

 vi 

Redkozubova, Vesna Prčkovska, Ekaterina Nevedomskaya, 

Natalia Timakova and many-many others.  

I would like to thank my mother for her lifelong help and 

support; for her love and example; for the great starting push she 

gave to my career and me.  

I would like to especially thank my husband, Alex Virgili, for 

his incredible support during all the time and especially in the last 

hard months of my PhD. Thank you, Alex, for your constant love 

and moral and physical support during this time. Thank you for 

being such a great partner and father (and sometimes mother). I 

would like to thank my daughters, Olesya and Patricia, for 

bringing joy and happiness to my life and giving sense to each and 

every day. 

 

 

Funding 

This work was supported by the EU 7FP – Marie Curie initial 

training network UEPHA*MS (ITN-212877), Fundacion Cellex, by 

the Spanish network of excellence in MS of the Instituto de Salud 

Carlos III, Spain (RD07/0060), by EMBO Short term fellowship 

(EMBO ASTF 308-2012) and by EU 7FP CombiMS network 

(HEALTH-F4-2012-305397). 

  



 

 vii 

Summary 

Systems Biology opens new frontiers in the studies of 

complex diseases such as Multiple Sclerosis (MS). The questions 

that couldn’t be addressed before due to lack of understanding 

and methodological base, such as the molecular mechanism of 

action of many drugs on the signaling pathways, were resolved 

using new Systems Biology vision of nature. Signaling pathways 

have dual biological and mathematical nature. Modern Systems 

Biology developed various methods to model signaling pathways 

and predict their behavior in different conditions.  

This dissertation is focused on some of the key molecular 

mechanisms of signal transduction in MS development and 

progression, which are important in order to explain the 

mechanism of action of the common MS drugs.  

My main hypotheses are based on the assumption that the 

most important art of the biological system are the connections 

between molecules rather than the molecules themselves (e.g. 

edges rather than nodes of the model graph). For example, the 

immune cell subtypes have different response to the external 

stimulus because the molecules regulate different activities of each 

other inside the cell rather than the components of the cells are 

different. Another examples of it are the kinetic changes driven by 

the changes in the translocation activity of the Stat1 protein. 

To prove my hypothesis, I developed two different 

mathematical models of IFNbeta pathway: Boolean and ordinary 

differential equations (ODE). The combination of two modeling 

approaches allowed us to look at the same pathway from two 

perspectives: in connection with other related pathways and as a 
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kinetic system. We identified oscillatory and damped oscillatory 

regimes in the IFNbeta signaling and the key sensitive parameters, 

which determine the switch of the regimes. Both model were 

validated experimentally and leaded to several predictions, which 

could be important for the development of new drugs or drug 

combination. For example, the bifurcation analysis of the kinetic 

model revealed the importance of the features of the nuclear 

translocation of the Stat1 protein for the correct functioning of the 

signaling pathway.  Sgk/Akt-Foxo3a is another pathway 

described, modeled and validated in my dissertation.  The nuclear 

translocation is a known key element of this system, but we 

focused on the on/off circuit mechanisms and the importance of 

the combination of different phosphorylation sites for signal 

transduction.  

The main outcomes of this work are: 

1. New models of IL6, IFNbeta and Akt/Sgk signaling 

pathways 

2. Predicted prevalence of translocation parameters 

over the phosphorylation rates on the IFNbeta pathway 

3. New method of the application of the Boolean model 

workflow to the clinical data 

As a conclusion, the Systems Biology is a powerful tool to 

predict new properties of the biological systems, which can be 

used in clinical practice, such as dynamical biomarkers or 

differential signal transduction. Thus, Systems biology provides a 

new approach to search for new treatments and biomarkers of 

autoimmune diseases.  
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Preface 

“Every object that biology studies is a system of systems”  

Francois Jacob, [1] 

The complexity of life and molecular processes underneath it 

is an exciting topic of research that shows the limitations of human 

brain that struggles to analyze the whole picture. That’s where the 

models and modern computational power come to hand and help 

to reach the higher level of understanding. The traditional 

biological approach of “dissection” of the object of interest and 

analyzing parts doesn’t provide new knowledge due to its obvious 

limitations. During the last several hundred years we learned a lot 

about the parts but still lack the knowledge about their functioning 

as a whole. Another traditional biological method is categorizing. 

The organisms, cells, molecules were categorized in different 

groups and subgroups (based on evolutional, phenotypic, genetic 

or other characteristics) and analyzed based on the differences and 

commonalities. 

Biologists and clinicians face more and more complicated 

challenges trying to answer modern medical questions. One of 

these topics is neuroimmunological disease, such as Multiple 

Sclerosis (MS).  The complex nature of MS combines genetic and 

environmental factors and the cause of the disease remains unclear 

[2]. Classical approaches are not able to capture the complexity of 

the interactions between different species involved in the 

development of the disease. For this reason, scientific community 

intends to develop and put in practice new methods of clinical 

research based on the interdisciplinary approach. For example, 

CombiMS consortium (http://www.combims.eu) aims to develop 
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new combination therapies for MS by combining 

phosphoproteomics studies with Systems Biology approach.  

 Systems Biology approach in molecular biology, although 

has its own limitation, is a new way to capture the sense of 

biological processes and analyze the interaction network in all its 

complexity. This dissertation aims to develop new methods and 

workflows to put together theoretical Systems biology and 

practical drug discovery.  

 This thesis is organized in several parts: general 

introduction, hypothesis, objectives, materials and methods, 

results and general discussion. It also includes references and 

supplementary data sections. The results are organized in several 

chapters representing separated but interconnected parts of my 

work: 

Chapter 1. Theoretical considerations on pathway dynamics in 

individual cells and cell populations 

Chapter 2. The Boolean model of IFNbeta signaling in human cell 

lines and a new approach to analyze clinical experimental data for the 

drug combinational therapy 

Chapter 3. Kinetic model of the IFN-beta signaling pathway in 

macrophages  

Chapter 4. Nuclear translocation as a modulator of the pathway 

kinetics. IFNbeta pathway example  

Chapter 5. AKT/SGK-Foxo pathway model 
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Introduction 

Mathematical modeling approaches in biomedicine  

Cell is a complex system with millions of elements working 

together as a whole. To understand the grade of complexity of the 

living organism, scientists developed a new field, Systems biology.  

The understanding of the idea that the organism is not just a 

sum of its elements is not new. It was known and acknowledged 

from the ancient times with Aristotle’s famous “the whole is 

something over and above its parts and not just the sum of them 

all’’.  Nevertheless, later on in the middle ages the reductionists 

approach was the mainstream paradigm of biological research. 

The prevalence of reductionism was favored by the development 

of physics and ideas of Rene Descartes in the 17th century. The 

prevalence of the reductionism was based on the idea that all 

complex systems can be explained by explaining their parts. The 

mechanistic biology was based on the reductionism theory. Its 

ultimate expression was expressed in the book “The mechanistic 

conception of life: biological essays” by Loeb Jacques (1912) [3].  

He summarized the paradigm of the mechanistic biology stating 

that the biological behavior was predetermined, forced, and 

identical between all individuals of a particular species. He 

concluded that the organisms were merely complex machines. In 

the beginning of the 20th century the holism concept was 

proposed to oppose the reductionism. Whole systems such as cells, 

tissues, organisms, and populations were proposed to have 

emergent properties. It was impossible reassemble the behavior of 

the whole system from the properties of the individual 

components. [4]. Even though the holism and reductionism 
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theories were generated in oppose to each other they can be used 

together. The two approaches answer different questions and can 

complement each other.  

 
Figure 1 A simplified hierarchical structure of a living system. The 

system is composed by the components with increasing complexity. On one 
edge of the pyramid are the physical entities and on the other their functional 
properties.  

The turning point in the history of Systems biology is the 

1950s. At this time the breakthrough book was published by Roger 

Williams [5]. Williams showed huge differences in physiological 

parameters and even organ size of normal healthy humans. Thus, 

it’s the systems balance that creates independent biochemical and 

physiological pattern and adopts and tolerates that variation. The 

tolerance and the resistance to variation is what differ living 

organism from mechanical machines.  The victory of systematic, 

holistic theory promoted various studies, which leaded to the 
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establishment of Systems theory. Systems theory states that two 

basic emerging features of any system are hierarchy and 

interconnectivity. 

The recognition of the hierarchical organizational properties 

of the system represented an important advance in understanding 

of the properties of biological phenomena [6].  A simplified 

example of hierarchy on living system is show on the fig. 1. Each 

level in the hierarchy is an emerging property of the complex 

interactions inside the lower level.  At the same time, each level is 

consisted of several subsystems each representing an emergent 

properties on its own, which can also be arranged in the 

hierarchical organization [7]. One of the main recognized features 

of the biological system is interconnectivity. Interconnectivity is a 

more complicated concept. It includes different connections 

between systems, networks and individual components (fig.2). 

Interconnectivity between different layers of the hierarchy was 

first recognized in the late 60s. Polanyi (1968) first clarified the 

relationship between levels in a hierarchy. He showed that 

adjacent levels mutually constrain but do not determine each other 

and emphasized that the upper level harnesses the constituents of 

the lower level to carry out behaviors that they would not perform 

on their own [8].  

At the same time scientific community identified numerous 

example pointing that the layers of the hierarchy are highly 

connected in a more complex system rather than working as 

independent blocks. This recognition led to the formulation of the 

general systems theory by Von Bertalanffy [9]. 
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Figure 2 The interconnection between different layers of cellular system. This 
figure represents only the connections between different layers of signaling. 
The interconnections create increasing complexity systems of intersections 
and relationships between subsystems in the same layer and between 
different layers of the hierarchical system.  

Bertalanffy argued that all systems shared the similar 

properties and were composed of interconnected components; 

therefore they should share similarities in detailed structure and 

control design. Nowadays the theory received strong evidence 

based on the studies of mathematicians, physicists, biologists, and 

physiologists. It’s believed that hubs and connectors represent a 

common stable structure of a real system. Hubs are the central 

components, which are linked to many other nodes in the system, 

while connectors are connected to a few other nodes (fig. 3) [10].  

In the 20th century Systems biology evolved from molecular 

biology in two parallel historical roots [11].  On one side the most 

acknowledged root is based on the technological breakthroughs in 

the genomics and other “omics” disciplines. 
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Figure 3 Basic graph models representing different combinations of 

both modular and hub characteristics from [12]. Most real Systems are both 
modular and contain hubs (central nodes), e.g. D or F graphs of the figure.  

While new technologies increased exponentially the amount 

of biological information, new methods were needed to 

comprehend and analyze them. This root led to the big networks 

of connections and was more “statistical” in character. These 

networks can explain and describe a system as whole but lack 
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dynamical dimension.  

The other root of the historical development of Systems 

biology is much less known. It consisted of the effort, which was 

constantly focused on the formal analysis of new functional states 

that arise when multiple molecules interact simultaneously. These 

approaches were historically called nonequilibrium dynamics and 

may be seen as an ancestor of the modern Systems biology. The 

main characteristic of this discipline raised from this root was the 

focus on the discovery of general principles rather than 

descriptions. The nonequilibrium dynamics was interested in such 

traditionally physics concepts as oscillators, chaos, noise, steady 

state and symmetry of the systems.  

Until the end of the 20th century the dynamical and theoretical 

biology was highly rejected by the biological community as 

“unuseful” for answering “real” biological questions. The 

beginning of the 21st century marked the phenomena of the 

convergence of the two paths in to one mainstream Systems 

biology approach. The reductionism is now giving its way to the 

holistic tendency in biology under the pressure of growing amount 

of big data. As a result the convergent Systems biology unites the 

dynamical methods and high-throughput statistical models 

creating impressive mathematical constructs to explain 

increasingly complex systems. For example in the work of Karr et 

al. the whole-cell model predicts the behavior of the entire simple 

organism [13].  

The main difference between Systems biology and traditional 

Molecular biology is the focus on the connections rather than on 

the molecules forming them. Systems biology takes the cell as a 
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complex interacting system and analyzes the connections and 

common patterns of this system. What seemed to be the universe 

of different structures and patterns at the end was shown to be the 

combination of several commonly repeated circuits, which lead to 

several classes of behavior responses [14].  Evolutionary chosen 

circuits are sharing similar characteristics: resistance to noise and 

perturbations, stabilizing power together with sensitivity to the 

external factors. These features are critical for the survival of the 

living organism and its functional stability in the complex 

environment. Natural selection selected the best evolutionary 

adapted to the environment circuits, which are both functional and 

stable. These circuits are responsible for all the variety of responses 

and behaviors of the cell, which includes, among others, 

oscillatory and overdamned oscillatory behaviors, exponential and 

sigmoid curves, pulse generators, bi-stable motifs and more 

complex combinations of different patterns and circuits.  

Most common patterns in signaling 

The building blocks of complex networks are called network 

motifs. In other words network motifs are the patterns that appear 

significantly more frequently in real networks than in randomized 

networks [15]. The network motifs are persistent in the regulatory 

networks. It was speculated that this persistence is a result of 

evolution and the motifs are derived from the constant selective 

pressure that means their structures provide advantages in natural 

selection.  Nevertheless, many studies suggest that the the 

common subgraphs within network may be selected by nature a 

posteriori to their appearance and the abundance of motifs is a 
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byproduct of the network construction process [16]. In any case, 

motifs are useful tools to construct biological networks.  

 There are several common network motifs, which are 

also present in the models described in this dissertation:  

1. Single input and regulatory chain  

2. Feed-forward motif 

3. Positive and negative feedback loops 

The graphical representation of different motifs is shown on 

fig. 4.  

 
Figure 4 Most common network motifs. A – regulatory chain (left) and 

single input (right); B – feed-forward motif; C – Feedback loops: positive (left) 
and negative (right). 

Different motifs produce different dynamics of the system. 

For example, negative feedback loop leads to oscillatory behavior 

of the system. Oscillators are very common in signaling systems 

and commonly appear when the product of some transcription 
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factor (TF) activity inhibits the activation of this TF thus producing 

a negative feedback loop (fig. 5). 

 
Figure 5 Multi-component negative-feedback oscillator. A. Negative 

feedback between mRNA and protein, as described by kinetic equations in 
the text. B. Representative solutions (dashed curves) of equations in the text, 
for parameter values: p = 2, Km/Kd = 1, S/Kd = 1, k = k = 0.1 min–1, k = k E /K = 1 

min–1. Notice that every trajectory spirals into the �stable steady state located at 
the grey circle. C. The negative-feedback loop, taking into account transport 
of macromolecules between the nucleus and the cytoplasm. D. Sustained 
oscillations for the four-component loop in panel. From [17] 

 The negative feedback showed on the fig. 5 can be 

represented by the following equations [17]: 
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where X and Y are mRNA and protein concentrations, kdx and k�sy for 

degradation of mRNA and synthesis of proteins, the term 

 
is the rate of the RNA synthesis and the term 

 
is the term for protein degradation.  

So with only 2 (or even one with explicit time delay) 

equations we may reproduce the oscillatory behavior that we see 

so frequently in the biological systems. 

Bistability is a situation in which two possible steady states are 

both stable. In general, these correspond to a "low activity" state 

and a "high activity" state. There are several patterns that may 

produce bistability (fig. 6). Each of them produces bistability only 

in the certain range of parameters, e.g. it’s not mandatory for the 

systems containing mutual activation or mutual inhibition circuits 

to lead to bistability.  

 
Figure 6 The circuits, which may produce bistability: mutual activation (on 
the left) and mutual inhibition (on the right). From [18] 
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In the bistable system the multiple steady states are possible 

and the initial conditions determine which steady state is reached 

[19] The examples of bistable systems include lac operon in E. coli 

[20] and MAPK cascade [21]. In our model of IFNbeta we also 

found bistability and analyzed the bifurcation (see chapter 4 of the 

results section).  

Different methods of modeling in Systems biology 

 
Figure 7 Data sets can dictate the computational approaches used in 

systems biology. (Left) Omics technologies generate extremely large data sets 
that can be analyzed and organized into networks by using statistical 
modeling techniques. This strategy can be considered “top-down” modeling. 
(Right) When high-quality data are available, smaller-scale systems can be 
represented by dynamical models, and simulations with these models can 
generate quantitative predictions of system behavior. This strategy is 
sometimes called “bottom-up” modeling. Both approaches are important in 
systems biology, and a few cutting-edge studies combine the positive aspects 
of both. From [22] 
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There are two basic approaches in Systems Biology, which 

rose from the two historical paths of the scientific field 

development we discussed above.  The first one evolved from 

statistical methods and is called “Top down” and the other one, 

dynamical, is called “Bottom up” (fig. 7) (from Coursera 

“Dynamical modeling methods for Systems biology” course by 

Eric Sobie).  

Models as logic systems 
 “Top down” method commonly involves following steps: 

1) Begin with data set (often very large scale) 

2) Use statistical methods to find patterns in the data. 

3) Generate predictions based on the structure within 

the data 

The amount of data and the size of the networks obligate the 

researchers working in this area of Systems biology to propose the 

simplified approaches to assess large-scale data. One of the 

approaches is to design logic, static or semi-static models, which 

are qualitative or limited in terms of quantifying time-dependent 

changes. One of the common methods is logic modeling which 

treats the connections between molecules as logic variables [23]. 

The logic modeling consists of building a Boolean network where 

nodes are connected with binary edges (the values on the edges 

can be only ON or OFF). The nodes can be AND or OR logic 

functions. There are many deviations and add-ons to make this 

simple models more flexible, include time or stochastic inputs [24].  

In this dissertation we used the software designed by Dr Saez 

group in EBI and called CellNoptR [25]. The R package is available 

in Bioconductor and depends on RBGL and graph packages 

(http://bioconductor.org/packages/2.10/bioc/html/CellNOptR.
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html). CellNoptR package does optimization of Boolean logic 

networks of signaling pathways based on a previous knowledge 

network (PKN) and a set of data upon perturbation of the nodes in 

the network. The detailed information on the usage of the package 

can be found in the package manual and the methods section of 

this dissertation.  

Models as dynamical systems 

 “Bottom up” approach is based on the following sequence 

of steps: 

1) Begin with hypothesis of biological mechanism. 

2) Write down equations describing how components 

interact. 

3) Run simulations to generate predictions. 

The classical method to model dynamical biological system is 

by set of ordinary differential equations (ODE). ODEs describe the 

model as variable changes in time: 

 
where y – is a variable and p – a vector of parameters. 

Depending on the number of variables the system may have 

multiple dimensions. Each new dimension leads to increasing 

number of possible dynamical outcomes of the system.  While one-

dimensional reactions are able to produce only steady state 

dynamics, the three-dimensional systems produce several different 

kind of dynamics, e. g. steady state, limit cycles and chaos [26]. 

Many signaling pathway events are explained by using a 

modified Hill function. Hill function is typically used in 
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biochemistry to describe ligand-binging reactions based on 

Michaelis-Menten dynamics: 

 
Hill function describes many real gene input functions, which 

are usually monotonic S-shaped functions. The Hill function for an 

activator is a S-shape curve that rises from zero and approaches a 

maximum saturated level: 

 
where K is an activation coefficient, β is a maximum 

expression level and n is a Hill coefficient, which corresponds to 

the steepness of the function [14].  

One of the main challenges in ODE modeling approach is the 

number of parameters. The parameters should be assigned or 

fitted to achieve the desired simulation outcome. There are 

different ways to fit the parameters: 

1. Manual fit. This way the parameters are obtained from the 

experimental papers and adopted to the model [27]; 

2. Automatic fit. There are various algorithms and methods to 

automatically fit the parameters to the data [28–31]. Most of 

them are based on the exploration of the multi-dimensional 

parameter space to find the combination of parameters, 

which corresponds to the maximum model fit to the data (fig. 

8); We used manual fitting and literature search to obtain 

parameters for IFNbeta ODE model (see results).  

3. Exploration of the parameter space. The other approach to 

solve the parameter problem in the dynamic systems is the 

exploration of the all possible qualitative outcomes of the big 
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range of parameters. The workflow we use here to explore 

the parameter space of Foxo3a pathway models was 

developed by Gomez-Cabrero et al. [32]. 

 

 
Figure 8 The 2-dimensional parameter space vs model fitness to the data. 
Most of the algorithms search for the combination of parameters to maximize 
model fitness.  

Populations of cells versus single-cell modeling 

Most experimental data are coming from the analysis of cell 

populations (Western blot, RT-PCR, Elisa, Luminex and other 

methods are working with cell lysates).  Population level 

measurements may not only average out the variation in the 

response and mask heterogeneity, but also hide important 

biological phenomena (fig. 9).  

Nowadays the advanced technologies allow several 

techniques to measure the protein concentrations and 

phosphorylation on a single-cell level. These methods include, 

among others, Flow cytometry and derived from it flow imaging 
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ImageStreamX (Amnis co.) system. Flow cytometry measure the 

fluorescence signal from each individual cell on a high-throughput 

manner [33]. The standard analysis of flow cytometry data 

averages the signal from the single-cell measurements, but we can 

use the raw data to verify the behavior of the pStat3 on a single-

cell level.  

 

Figure 9 Examples of single cell behaviors that produce the same average 
population behavior. Individual cells are shown as circles with each cell’s 
signaling activity denoted by its color; black denotes 100% signaling and 
white denotes 0% signaling. The population average for each panel is 50%. In 
panel A, each cell signals at 50%. In panel B, half of the cells are in the 100% 
state and half of the cells are in the 0% state. In panel C, cells are as in panel 
B, but individual cells may switch states in time without affecting the 
population average. The switching may occur stochastically, or result from 
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oscillatory signaling activity whose phase and frequency vary from cell to 
cell. In panel D, cell signaling is distributed between 0 and 100%. In panel E, 
signaling within a cell is spatially heterogeneous such that the average 
signaling within each cell is 50%. From [34] 

Classical ODE modeling is based on assumption that there 

are enough of molecules of the modeled species to justify the 

usage of the concept of concentrations as a smooth function. This 

assumption is often inaccurate for signaling in single cells [34].  

Signaling within individual cells often behaves probabilistically 

and requires stochastic simulations. The formal way to represent a 

stochastic system is commonly used chemical master equation 

which represents the probability that the system contains a certain 

number of molecules evolves over time [35]. 

Signaling pathways involved in Multiple Sclerosis 

Multiple Sclerosis (MS) is an autoimmune disease affecting 

more than 2 million people worldwide. MS is an autoimmune 

inflammatory disease of the central nervous system (CNS). MS is 

chronic and the progression depends significantly on the 

individual, but it nearly always culminates in the increasing 

disability. MS normally begins in the young adulthood and is 

driven by inflammatory attacks against myelin protein, which 

covers the axons of the neurons. The zones of the brain affected by 

demyelination process are visualized on the MRI scans as plaques 

[36]. The symptoms vary depending on the zone of a new immune 

attack.  

There are several different types of the MS: relapsing-

remitting (the most common), primary progressive, secondary 

progressive and progressive-relapsing forms (fig.  10). 
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Figure 10 Different types of MS produce different clinical course.   
All forms of MS are characterized by abnormal immune 

activity both in the blood and in the brain. The T cells are the main 

drivers of the immune attack on the myelin. Normally the immune 

attack occurs during a short period called relapse followed by a 

longer period of remission and partial recovery due to the 

reparation ability of the brain driven mainly by glial cells. The 

neuroinflammatory period of the disease is often followed by 

increasing neurodegenaration. Neurodegenaration is characterized 
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by axonal damage and brain volume reduction and no partial 

recovery (fig. 11).  

 
Figure 11 The inflammatory phase of multiple sclerosis. T cells, B cells 

and antigen-presenting cells (APCs), including macrophages, enter the central 
nervous system (CNS), where they secrete certain chemicals known as 
cytokines that damage the oligodendroglial cells. These cells manufacture the 
myelin that insulates the neuronal axon. The injured myelin cannot conduct 
electrical impulses normally, just as a tear in the insulation of a wire leads to 
a short circuit [37] 

The cause of MS is unknown but it’s believed that both 

genetic and environmental factors are involved. There are more 

than 100 SNPs recognized as associated with MS by recent 

genome-wide association studies [38]. The environmental factors 

include, among others, infections (associated with EBV, HHV6, 
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MSRV), vitamin D and sun exposition, smoking, diet and western 

style of life.  

The treatment options of MS are limited to disease-modifying 

therapies primary targeting the inflammatory part of the disease, 

but not neurodegenaration.  Immunomodulatory drugs currently 

used in the treatment of MS are divided in first line therapy 

(Interferon beta (IFN-beta), glatiramer acetate (GA)) and second 

line therapy (natalizumab, fingolimod or mitoxantrone).��

There are several key signaling pathways, which are crucial 

either in disease progression or treatment efficacy. The list of 

known MS-related pathways include IFNbeta signaling, S1P 

signaling, TLR, different interleukin-modulated pathways, vitamin 

D signaling, PI3K signaling, TrkA and TrkB and others.   

In this dissertation we are focused on the several of these 

pathways: IL6 signaling pathway, IFNbeta signaling pathway and 

PI3K-Foxo pathway.  

IL6 signaling 

IL-6 is a pleiotropic cytokine with important role in immune 

regulation, hematopoiesis, inflammation and oncogenesis. IL-6-

type cytokines exert their action via the signal transducer gp130 

that associates with IL6R in a cooperative manner to form a 

hexameric signal transducing complex, capable of activating the 

down stream mediators of this signaling pathway. This 

mechanism of signal transduction is shared by other members of 

the IL-6 type cytokines like IL-11, leukaemia inhibitory factor, 

oncostatin M, ciliary neurotrophic factor and cardiotrophin-1 that 

use gp130 as a common subunit of the signal transducing complex 

[39]. IL-6 stimulation leads to the activation of Jak/Stat pathway 
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[40] (fig. 12) . Stat3 protein is phosphorylated and is able to form 

homodimers after activation leading to their its localization and 

subsequent regulation of transcription of respective target genes.  

 

Figure 12 The main events of IL6 signaling and pathway self-regulation. 
Schematic representation of the circuit. Cytokines bind their membrane 
receptors, causing a cascade of phosphorylation reactions that triggers Stat 
activation. Active Stats upregulated the transcription of the repressors SOCS, 
which inhibit Stat phosphorylation 

SHP-2 is one of the ubiquitous tyrosine phosphatases and IL-6 

stimulation leads to the SHP2-dependent activation of MAPKs, it 

also links the Grb2–SOS complex and Gab1 to gp130. 

Phosphorylated Gab1 acts as an adapter and is involved in the 

indirect association of SHP-2 and PI-3 kinase. Downstream 

activation of Vav1, Rac-1 and MAP2K4 is necessary for the IL-6-

mediated Stat3 phosphorylation and transactivation to accomplish 

its effects. PTPN11 and SOCS3 exert inhibitory function and thus 

lead to down regulation of the signaling cascade. 
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IFNbeta signaling  

One of the most studied prototypical signaling pathways in 

MS is type I interferon pathway. This is a pathway driven by Jak-

Stat signaling.  It is able to integrate environmental information 

related with infection (virus and bacteria) through the ligation 

with more than 15 different IFNα and one IFNβ. The canonical 

type I interferon (IFN) pathway involves different signaling 

cascades, one of which is the Jak/Stat pathway. This pathway is 

composed by several steps, which include receptor binding, 

transformation of the latent transcription factor (a protein of the 

Stat family) into its active form by phosphorylation, nuclear 

migration of the transcription factor (TF), binding of the TF to 

target promoters, and expression of their corresponding genes 

[41]. Type I IFNs bind to IFNAR1 receptors, phosphorylation of 

Jak1 and TYK2 proteins transmit the signal downstream, 

phosphorylation of Stat1 and Stat2 proteins allows to form the 

ISGF3 complex (pStat1-pStat2-IRF9) which binds to the ISRE 

binding sites in the nucleus. Previous studies have shown that 

phosphorylated Stat1 forms other TF complexes in response to 

type II interferons, the most important of which is a Stat1-Stat1 

homodimer, known as GAF, that binds to IFN Gamma-activated 

sequence (GAS) elements [42]. 

It was shown that at the same time that the ISGF3 complex is 

formed due to the stimulation, there is also formation of other 

transcription factors containing activated Stat1 [43]. The main one 

of them is GAF (Stat1-Stat1 homodimer), the primer complex for 

the type II IFN pathway (fig. 13). There are different activator and 

inhibitor molecules, which regulate the Stat1 tyrosine 
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phosphorylation. One of the most important inhibitors of Stat1 

phosphorylation is Socs1. Its expression is regulated by GAF 

transcription factor (pStat1-pStat1) binding to GAS elements, 

which are presented in Socs1 promoter (fig. 13).  

Dynamical models of IFN induction of the Jak/Stat signaling 

pathway based on nonlinear ordinary differential equations, have 

been previously used to study the effect of IFN pre-treatment on 

the response of the immune system to virus infection [44, 45] and 

the robustness of the pathway to noise and parameter fluctuations 

[46], among other problems. Previous studies suggested that a 

combination of positive and negative feedback loops, together 

with the eventual degradation of the IFN signal in the medium, 

leads to a transient oscillatory response in several components of 

the pathway.  

Type I interferons, such as interferon alfa and beta, are 

cytokines that represent a first-line endogenous defense 

mechanism in response to viruses and bacterial infections, and are 

secreted by many cell types (e.g. lymphocytes, macrophages and 

endothelial cells). Because type I interferons play a key role in both 

innate and adaptive immunity, they are frequently used as a 

therapy in Multiple Sclerosis (MS) treatment. 

Stat1 is a protein of the Signal Transducer and Activator of 

Transcription (Stat) protein family.  Stat1, as other Stats of the 

protein family, is activated by cytokines binging to the appropriate 

receptor, mainly IFNAR1 or IFNGR. The activation is produced 

mainly by tyrosine phosphorylation. The phosphorylation of Stat1 

causes immediate dimerization of the protein in its SH2 domain. 

[47] Stats tend to form both homo- and heterodimers.  In case of 
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Stat1 the main dimers are Stat1-Stat1 and Stat1-Stat2, which are 

produced in different amounts by activation of different receptors. 

The engagement to form homo- and heterodimers are regulated by 

the balance in the concentrations of external inputs (cytokines). On 

the other hand, there are numerous regulators of Stats activity 

both inside and outside the nucleus, including Socs1 and Irf1 [43]. 

 
 
Figure 13 The canonical type I and type II IFN signaling pathways. The 

plot represents the canonical IFN pathways and the cross-talk between them, 
including the different pStat dimers formed after stimulation. [48] 

The target genes of the IFN-beta pathway can be divided into 

three categories according to the type of activating transcription 
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factor: 1) the ISGF3 complex activates genes containing an ISRE 

binding site in their promoter (e.g. ISG15, Mx1, OAS1, IRF7). These 

genes are known to be upregulated in T-cell populations of 

immune cells upon IFN-beta stimulation or virus-induced IFN-

beta production. 2) The GAF complex activates genes containing a 

GAS binding site in their promoter, such as Socs1 and IRF1. Early 

studies found Socs1 and IRF1 to be up-regulated mainly upon 

IFN-gamma induction, but recent work has shown their 

importance in IFN-beta pathway regulation in macrophages [49, 

50]. 3) A third class of Stat protein complexes activates other 

canonical pathways that exhibit crosstalk with the Jak/Stat 

pathway (such as PI3K, NFkB, MAPK) [51]. Recently it was shown 

that different immune cell subtypes respond differently to IFN-

beta induction through activation of these different types of genes 

[52]. 

Different proteins regulate Stat1 phosphorylation. 

Importantly, a negative feedback loop upon Stat1 activation 

coexists with a positive feedback mechanism. First, the 

phosphorylation of Stat1 is inhibited by its inhibitor Socs1 [53]. The 

Socs1 protein then inhibits Stat1 phosphorylation at the kinase 

level. Besides this negative loop based on Socs1, Stat1 is a subject 

to positive regulation via the TF IRF1, whose transcription is 

induced by activated Stat1. IRF1 promotes the expression of the 

Stat1 gene at the transcriptional level. Given the existence of these 

multiple feedback loops, a mathematical modeling of the system 

would help provide an understanding of the response to type I 

IFN-beta.  
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Sgk/Akt-Foxo3a signaling 

Another well-known pathway critical for the trophic factor 

signaling is Pi3K. PI3K-Akt pathway is a key signaling pathway in 

apoptosis that plays an important role in longevity and cancer. It is 

activated by growth factors such as Insulin Growth Factor (IGF1). 

IGF1 binds to the external domain of the Receptors of tyrosine 

kinase (RTK). The phosphorylation of the inner domain of the 

receptor leads to the binding of PI3K. Activated PI3K binds to PIP2 

membrane phospholipid transforming it to the activated PIP3 

form. PIP3 activates Pgk1 signaling kinase, which activates Akt by 

phosphorylation. pAkt triggers many different cellular processes 

promoting cell growth and preventing cell death. The main 

mechanism of PI3K-Akt signaling is an activation of protein 

synthesis and translation by mTOR. The other mechanism is the 

inhibition of Foxo3 apoptotic activity by phosphorylation. 

While the well-studies kinase acting downstream of PI3K is 

Akt, there are other kinases involved in the regulation of 

downstream TFs. One of the families of these kinases is the serum- 

and glucocorticoid-inducible protein kinase (Sgk). Sgk proteins are 

phosphorylated by PI3K-dependent mechanism, but not through 

PIP3 phospholipid. SGKs are serine/threonine kinases that are 

related to Akt. In common with Akt, these proteins are activated by 

the PI3K pathway and translocate to the nucleus in cells stimulated 

with survival factors. SGK1 phosphorylates FoxO3a at the same 

sites as those phosphorylated by Akt, likewise leading to the 

cytoplasmic localization and inhibition of FoxO3a. However, SGK1 
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preferentially phosphorylates serine 319 whereas Akt prefers serine 

256 [54].  

The Foxo (Forkhead Box, type O) family of transcription 

factors (TFs) cause changes in gene expression to implement a 

cellular stress response program, and an increase in their activity 

leads to the genetic interventions that extend lifespan in model 

organisms. Foxo are conserved in all animals from worm to 

human. There are four closely related Foxo proteins in mammals, 

Foxo1 (FKHR), Foxo3 (FKHRL1; Foxo3A), Foxo4 and Foxo6. All 

Foxo proteins are widely expressed in different tissues, but Foxo3 

is especially highly expressed in the brain. Foxo factors contribute 

to the regulation of various processes such as cell cycle 

progression, cell size determination, cell death, cell differentiation, 

resistance to stress, and energetic metabolism. [55] 

Phosphorylation of Foxo proteins in response to growth factors 

such as IGF-I, erythropoietin, epidermal growth factor or nerve 

growth factor causes exclusion from the nucleus [56] For many 

growth factor-activated protein kinases, the specific 

phosphorylation sites are known. These include Akt and serum 

and glucocorticoid inducible kinase (Sgk), which are activated 

mainly through the PI3K pathway [57, 58]. Phosphorylation of 

Foxos in response to oxidative stress involves JNK and results in 

Foxo import in the nucleus. Foxo residues targeted by these 

kinases are different from those targeted by growth factor-

regulated kinases [59–61]. The effect of oxidative stress appears to 

prevail on the effect of growth factors [62]. Probably, a more 

important determinant of Foxo protein expression is its rate of 

degradation [63].  
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Figure 14 Some of Foxo3 inhibition mechanism from [64]. Note the 

alternative IGF1 activator - Sgk 
New implication of Akt-Foxo3 signaling in neuronal and 

behavior response [65, 66] opens a new field of possible drug 

targeting of Foxo TF for autoimmune and neurological diseases.  

The PI3K-Akt pathway is critical for growth factors signaling 

to promote cell survival through phosphorylation of Foxo3. In this 

pathway, nuclear translocation of Foxo3 after phosphorylation is 

the key step for modulating gene expression pattern (fig. 14). This 

pathway can be impaired in patients with neurodegenerative 

diseases leading to neuronal loss. Moreover, neuroprotective 

therapies targeting this pathway are promising therapeutic 

approaches for brain diseases. For this reason, understanding the 

dynamics and bottlenecks of this pathway will be useful for 

monitoring and predicting the response to these drugs. A previous 
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mathematical model on dynamic features of Foxo TF was 

described before [67].  The model is focused on the post-translation 

modifications and their implication in the Foxo fate (fig. 15).  

 
Figure 15 Fundamental reaction types of Foxo translocation (from [67])  

The regulation pattern of Foxo3a is highly conserved 

through all vertebrates. The pathway is regulated by an inhibitor 

loop Pten--|PI3K (fig. 16). This loop may lead to the alternative 

behavior of the system that is important for our kinetic model. 

Foxo3a TF directly regulates Pten gene expression. Therefore, the 

inhibition of Fioxo3a leads to activation of Pten and inhibition of 

PI3K phosphorylation. This work can be helpful in order to 

identify some of the important parameters for Sgk/Akt-Foxo3a 

signaling model. 
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Table 1 The list of Foxo target genes from [68] 
 

 

 

Target
Up- or

downregulation FOXO Pathway References

Cyclin D � FOXO3, FOXO4 Cell cycle 84
Cyclin G2 þ FOXO1, FOXO3, FOXO4 Cell cycle 17, 58
P130 þ FOXO1, FOXO3, FOXO4 Cell cycle 17, 54
P15 þ FOXO1, FOXO3 Cell cycle 47
P19 þ FOXO1, FOXO3 Cell cycle 47
P21 þ FOXO1,FOXO3,FOXO4 Cell cycle 65, 88
P27 þ FOXO1, FOXO3, FOXO4 Cell cycle 24, 61, 92
Plk þ FOXO1 Cell cycle 106
Manganese superoxide dismutase þ FOXO3 Stress resistance 53
catalase þ FOXO3 Stress resistance 66
Peroxiredoxin III þ FOXO3 Stress resistance 18
Sterol carrier protein þ FOXO3 Stress resistance 21
Gadd45 þ FOXO3, FOXO4 DNA repair 30, 100
Bim þ FOXO3 Apoptosis 23, 33
Fasl þ FOXO1, FOXO3 Apoptosis 13, 19
Tumor necrosis factor
receptor-associated death domain

þ FOXO1 Apoptosis 81

Tumor necrosis factor-related
apoptosis inducing ligand

þ FOXO1, FOXO3 Apoptosis 63

p53 upregulated modulator
of apoptosis

þ FOXO3 Apoptosis 105

Bcl 6 þ FOXO3, FOXO4 Apoptosis 28, 98
PTEN-induced kinase 1 þ FOXO3 Apoptosis 62
Glucose-6-phosphatase þ FOXO1, FOXO3 Metabolism 69, 78
Phosphoenolpyruvate carboxykinase þ FOXO1 Metabolism 86
PGC1 þ FOXO1 Metabolism 20
adiponectin þ FOXO1 Metabolism 79
Agouti-related protein þ FOXO1 Metabolism 49, 51
proopiomelanocortin � FOXO1 Metabolism 49, 51
neuropeptide Y þ FOXO1 Metabolism 49
Apoliprotein C-III þ FOXO1 Metabolism 2
Pdx1 � FOXO1 Metabolism 52
B-cell translocation gene 1 þ FOXO3 Differentiation 5
Id1 � FOXO3 Differentiation 10
Atrogin-1 þ FOXO3 Muscle atrophy 83
Bnip3 þ FOXO3 Muscle atrophy 57, 107
LC3 þ FOXO3 Muscle atrophy 57, 107
Garabl12 þ FOXO3 Muscle atrophy 107
Interleukin 7R þ FOXO1 Inflammation 70
C=EBPb þ FOXO1 Inflammation 43
Interleukin 1b þ FOXO1 Inflammation 94
4E binding protein 1 þ FOXO1, FOXO3 Insulin signaling 76
InsR þ FOXO1 Insulin signaling 77
trible 3 � FOXO1 Signaling 59
Caveolin-1 þ FOXO1, FOXO3, FOXO4 Signaling 82, 102
Protein phosphatase 2A � FOXO1 Signaling 67
FOXO1 þ FOXO1, FOXO3 Signaling 27
FOXO3 þ FOXO1, FOXO3 Signaling 27
P110a þ FOXO3 Signaling 42
Collagenase þ FOXO3 Extracellular matrix

degradation
60

Matrix metalloproteinase 9 þ FOXO4 Extracellular matrix
degradation

55

Mxi1 þ FOXO3 Tumor suppression 22
Estrogen receptora þ FOXO3 Tumor suppression 35
Myostatin þ FOXO1 Differentiation 1
Endothelial nitric oxide synthase � FOXO1, FOXO3 Vessel formation 75
Multidrug resistance protein 1 þ FOXO1 Drug resistance 36
CBP=p300 interacting transactivator 2 þ FOXO3 Angiogenesis 6

Listed are transcriptional targets that have been reported to be directly regulated by FOXO1, FOXO3, or FOXO4. FOXO target genes are
grouped by cellular function. The effect of FOXO activation on the expression level: upregulation and downregulation are indicated
by� andþ , respectively.
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Figure 16 Regulation of Foxos is conserved between Caenorhabditis elegans, 
Drosophila melanogaster, and mammals. Activation of the insulin receptor 
(DAF-2) activates PI3K (AGE-1) resulting in the formation of PIP3. These 
phosphorylated lipids form docking sites for PDK1 and PKB (AKT) resulting 
in their activation. PKB phosphorylates and inhibits Foxo transcription 
factors. While C. elegans and D. melanogaster have a single Foxo isoform, in 
mammals three distinct Foxos are regulated by PKB: Foxo1, Foxo3, and Foxo4. 
From [69]) 

Systems biology approaches in the development of new 

biomarkers and drug combinations for autoimmune diseases 

Extracellular molecules, such as cytokines, play a crucial role 

in signal transduction. Cytokines mechanism of action is a 

complicated network of closely connected intracellular signaling 

pathways. In general, binding of cytokines to the cell receptors 

forces the activation of different pathways to provide a systematic 

response. Although significant knowledge has been acquired in 

the last decades regarding the molecular components in the 

signaling pathways, how the cell computes information is not well 

understood. For this reason, the combination of biochemistry, 

molecular biology and systems biology approaches may provide 

new insights about this critical cell process. 
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Systems biology is achieving an outstanding level of 

understanding of complex processes. A hot topic in clinical 

research actively using Systems biology approach is drug 

combinations discovery for complex diseases such as type II 

diabetes [70], breast cancer [71], MS (CombiMS FP7 project) and 

others. There is a number of new methods and tools to identify 

effective drug combinations based on the big data networks (for 

example, [71, 72]). 

Clinical studies call for interdisciplinary efforts to confront 

the challenges of the autoimmune and neurological disorders such 

as MS [73]. With the increasing amount of produced data and little 

progress in the therapy of these diseases the Systems Biology 

approaches are the key to break the wall of misunderstanding of 

the deep mechanisms of the pathogenesis of MS.    
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Hypothesis 

The main players of the biological systems are the 

interactions between the molecules rather than the molecules 

themselves. It’s rather connections then nodes, which determine 

the behavior of the whole cell. From this perspective I’m going to 

determine several hypothesis examining different layers of 

hierarchical living system:  population of cells, entire cell and 

particular signaling pathway.  

Questions that we discuss in this dissertation are: 

1. Should we treat populations as a group of single cells 

or as an interconnected social system? 

The populations are a higher layer of the systems hierarchy 

than single cells and therefore, according to the general systems 

theory, possess the features directly derived from the lower layer 

of single cells. But can we derive all the features of the cell 

populations from a sum of single cells features? The holistic 

philosophy is based on the assumption that the higher hierarchical 

system possesses the properties that derive from the lower layers 

but can’t be directly represented as a sum of them. Our hypothesis 

is that the population dynamically behaves differently from the 

single cells in response to same stimuli and produced a 

coordinated response, which is an emergent property of the 

population. This behavior has evolutionary importance at the 

populational level because provides more robust responses. 

2. How do different cell types respond differently to the 

same signal? 

All cell types share the same genetic background but possess 

different phenotypic feature and are responsible for different 
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functions within the body. There are various mechanisms to 

achieve this variety, including epigenetics and posttranslational 

modifications among others. At the end, the cells obtain different 

transcriptional profile according to their functions. I propose that it 

is mainly through the connections in their molecular networks, 

which make the difference. The signal transduction networks 

operate differently because they are constructed with the same 

nodes but different dynamic parameters (e.g. epigenetic regulation 

of specific kinases). In other words, the signal from certain external 

signals passes through the same molecules but by different 

signaling pathway routes or with different kinetic properties.  

3.  Why does negative feedback loop is such a common 

motif in cytokine signaling and how the oscillatory dynamics is 

regulated? 

Frequently the kinetics of the pathway is dependent on the 

positive and negative feedbacks, which orchestrate oscillatory 

dynamics of the cascade that regulates the translocation of TF and 

modulate gene expression. Oscillatory behavior has evolutionary 

advantages in the noisy environment the cells have to analyze the 

signal. I propose that the kinetic oscillations are the mainstream 

behavior of cytokine signaling in mammals and are insensitive to 

the ODE model parameter variations. 

4.  How do nuclear translocation parameters may 

influence the kinetic behavior of a signaling pathway? 

The nucleus of eukaryotes is separated from the cytoplasm 

by the nuclear membrane. The membrane regulates the import and 

exports to and from the nucleus by creating the gradient and act as 

a mechanical barrier. As part of the iterative cycle of systems 
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biology research (from theory to experiments and back), I realized 

that dynamical features of the nuclear transport of TFs are 

important variables in the signal transduction kinetics.  The 

nuclear transport may be a kinetic buffer for the signal 

transduction events. I hypothesize that these parameters of the 

nuclear transport may determine the dynamics of the systems, 

including oscillatory/damned oscillatory regimes. The dynamic 

analysis of TF translocation is a readout of the activation of the 

pathway and can be used as a biomarker of the activation of the 

pathway and the effects of therapies targeting this pathway. 

 

In this work we examine these hypotheses and provide proof 

of concept studies to validate them. 
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Objectives 

Information transmission through signaling pathways is a 

dynamic process in which signals of activation are transmitted 

through phosphorylation reactions. The general goal of the thesis 

is understand how the information is transmitted through 

prototypic signaling pathways which are relevant for the 

pathogenesis and therapy of MS, namely the IL-6, IFNbeta and 

PI3K (Sgk-Akt-Foxo3a) pathways, with different layers of system 

complexity. A second goal is to make use of these pathway models 

for translational research, in order to understand how drugs target 

these pathways and for identifying biomarkers of the response to 

therapy of MS.  

The specific objectives are: 

1. To model the dynamical features of IL-6 pathway at 

population and single cells level in order to assess the 

emerging properties of cell population signaling. 

2. To assess the differences of cytokine signaling pathway in 

the two main immune cell subtypes T cells and 

macrophages, by building and validating a Boolean 

network of IFNbeta signaling; 

3. To analyze the oscillatory dynamics of IFNbeta signaling by 

developing a kinetic model of Type I IFN signaling which 

can explain the observed dynamics from our experiments 

and determine the properties that are crucial for the 

oscillatory dynamic 

4. To evaluate the role of nuclear translocation of TF (Stat1 for 

IFNbeta pathway and Foxo3a for PI3K pathway) as 

modulators of the pathway kinetics and the possibility to 
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use it as a potential drug target or dynamical biomarker of 

response to therapy. 
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Materials and methods 

Materials and reagents 

Cells were obtained from ATCC library, mouse recombinant 

IFN-beta was purchased from Cell sciences, lipopolysaccharide 

from Escherichia coli and poly(I:C) salt was purchased from Sigma-

Albrich, lipofectamine 2000, Hiperfect transfection agent were 

purchased from QIAGEN, Taqman PCR master mix, VIC-dye 

GAPDH endogenous control, IRF1, Socs1, Stat1, Stat2, MX1, 

OAS1a pre-designed FAM-dye assays were purchased from 

Applied Biosystems, total Stat1 and Stat1(pTyr701) antibodies and 

beads, cell detection kit for xMAp assays were purchased from 

Merck Millipore (Billerica). Alexa Flour 647 Stat1 (pTyr701) and PE 

Stat1 N-terminal anti-Mouse antibodies and all buffers for 

cytometry were purchased from BD biosciences. APC-labeled 

IFNAR1 antibody was purchased from Biolegend.  

Human samples 

The blood samples were obtained from MS patients and 

healthy controls according to the informed consent. These studies 

were performed under the frame of CombiMS project and 

approved by Ethic committee of the Hospital clinic of Barcelona . 

The blood was used to extract PBMCs using standard Ficoll 

gradient protocol. PBMCs were maintained in full medium 

(RPMI+5%SBF+penicillin/streptomycin) for 6-24 hours and 

stimulated with appropriate stimulator for indicated times (see 

results).  

Cell culture and stimulation 

Mouse leukemic monocyte macrophage cell line RAW 264.7 

and mouse fibroblasts 3T3 cell lines were purchased from ATCC 
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and maintained in DMEM medium complemented with 10% fetal 

bovine serum and 1% antibiotics at 37ºC and 5% CO2.  The cells 

were passed every 2-3 days and maintained in 20-80% surface 

coverage. One day before the stimulation the cells were seeded in 

12 well plates in concentration 1 x 106 cells/well. The cells were 

stimulated with 1000 units of recombinant mouse IFN-beta, 15 μg 

of LPS for different times or 15 μg of poly (I:C) solution. At the end 

of stimulation supernatants or cells were collected for further 

analysis. The same amount of PBS was added at the corresponding 

time-points to the control samples.  For the Boolean model we 

used Jurkat and THP-1 human cell lines obtained from ATCC cell 

bank. PBMCs from healthy controls and patients with MS were 

obtained and processed according to standard protocol. �3T3 

fibroblasts were cultured in 24-well tissue culture plates in DMEM 

containing 10% fetal bovine serum (FBS). Prior to stimulation, the 

cells were serum-starved for two hours by replacement of media 

with DMEM alone. At t=0, IL-6 (BD Biosciences) was added to 

wells at 100 ng/ml, 10 ng/ml and 1 ng/ml. To separate 3T3 

cultures, IFN-γ (BD Biosciences) was added at 100 ng/ml and 1 

ng/ml. Control 3T3 fibroblasts were cultured without IL6 or IFNγ. 

To assess intracellular signaling pathways, cells were removed at 

regular intervals during the course of eight hours from the wells 

by the addition of cold 0.25% trypsin (Invitrogen) and fixed at 

room temperature for 10 minutes with a PBS solution containing 

1.6% paraformaldehyde (Electron Microscopy Sciences). Following 

fixation, cell suspensions were washed with PBS and ice-cold 

methanol was directly added to a final concentration of 90% 

methanol.  
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� RT-PCR 

Cell lysates were prepared with QiaShredder columns and 

total RNA was isolated using standard Qiagen Rnaesy Mini kit 

protocol. Equal amount of total RNA was added to each reverse 

transcription reaction tube (High-Capacity cDNA Reverse 

Transcription Kit from Applied Biosystems and cDNA was used 

for a second step of RT-PCR. Results were analyzed using relative 

2CTT method normalized to a GAPDH endogenous control (VIC-

dye primer-limited control from Applied Biosystems) as described 

before [74]. All the qRT-PCR experiments were performed in 

triplicates and repeated three times independently. For 3T3 cell 

line, frozen cells were thawed, disrupted and homogenized using 

QIAshredder spin column and RNA were extracted using 

standard manufacturer spin protocol for animal cells with DNAse 

digestion using RNeasy mini kit (QIAGEN). The amont of total 

extracted RNA was measured by nanodrop and used for reverse 

transcription (High Capacity cDNA Archive kit from Applied 

biosystems 4322171) in concentration 100 ng/mcl. The second step 

of real-time PCR was performed using designed primers and 

probes for Socs1 and Socs3 were ordered from SIGMA. 

Predeveloped VIC-dye TaqMan Endogenous control for mouse 

GAPGH (Applied Biosystems) was used to normalize the 

expression of Socs genes. 50 ng/mcl of cDNA obtained from 

reverse transcription was used for each real-time PCR reaction. 

The standard 2−∆∆Ct method [75] was used to calculate the 

results.  
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Western blot and quantification 

Western blot (WB) was performed using polyclonal rabbit 

anti-mouse pStat1 and Stat1 N-terminal antibodies (Abcam) using 

standard WB protocol. Western blot results were quantified using 

ImageJ software (http://rsb.info.nih.gov/ij/index.html) using the 

method of Luke Miller 

(http://www.lukemiller.org/journal/2007/08/quantifying-

western-blots-without.html) 

 

ELISA and xMAP multiplexing assays 

IFN-beta in culture supernatants and Socs1 protein 

concentration in cell lysates were measured by standard sandwich 

ELISA with anti-mouse Socs1 antibodies  (Abcam). IRF1 protein 

concentration in cell lysates was measured by in-cell ELISA using 

the kit (Thermo Scientific) Stat1 total protein and phosphorylated 

state (Tyr701) concentrations (nuclear and cytoplasmic together) 

were measured using xMAP assays and read in Luminex 201 

platform using standard vacuum separation protocol (Millipore). 

xMAP experiments were repeated twice.  

 

Flow cytometry and ImageStreamX imaging system 

Cells for flow cytometry were stimulated with 1,000 

Units/ml of IFN-beta as stated before and fixed immediately after 

stimulation. IFNAR1 receptor on the surface of the RAW 264.7 

cells was marked using APC-labeled anti-IFNAR antibody. The 

mean fluorescent intensity was calculated using FlowJo software. 

For Stat1 staining cells were fixed immediately after stimulation in 

order to preserve phosphorylation and then permeabilized using 
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Perm III buffer (BD biosciences). Samples were stained 

simultaneously with anti-Stat1 (pTyr701) and anti-Stat1 total (N-

terminus) antibodies. The mean fluorescent intensity, the percent 

of staining-positive cells, the medians and the standard deviation 

were calculated using FlowJo software and the raw single-cell data 

were extracted to plot the histograms and further analysis.  To 

determine the quantity of pStat1 shuttling to the nucleus after 

IFNbeta injection in patients in MS we used ImageStreamX 

imaging system that allows visualizing the co-localization of two 

different molecules using flourchrome-conjugated antibodies (fig. 

17). The nucleus was labeled with DAPI and pStat1 with mouse 

anti-human Alexa Flour 488 pStat1 (Y701) antibody.  

 

Figure 17 ImageStreamX technology. The method allows to quantify the 
nuclear translocation in single cells. 
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Mathematical modeling  

Boolean model  

To build the Boolean network of antiviral and antibacterial 

immune response we used the workflow developed by Dr Saez-

Rodriquez and described in [76]. In brief, we developed a 

Preliminary Knowledge Network (PKN) based on text-mining, 

databases and previous studies. This PKN was represented as a 

topology is Cytoscape using “sif” file (tab-separated file with 1 and 

-1 assigned to each link between connected molecules). The 

experimental results were transformed in the MIDAS files and 

used to refine and fit the PKN using the CellNoptR software. The 

workflow is present on the fig. 18.  

 
Figure 18 The simplified workflow to obtain the specific logic model 

based on the experimental data. See details in the text. 
 

The experiments were designed to fit the requirements of the 

CellNoptR software. The stimuli, inhibited and measured 
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molecules are labeled on fig. 19. The PKN was evenly covered by 

inhibitor perturbations and available for measurements 

phosphoproteins. The experiments were performed for 2 

timepoints (15 and 60 min) and analyzed using two-timepoint 

algotirhm. The experimental data were normalized to endogenous 

control (GAPDH) and to the time 0 measurements according to the 

package manual.  

 

 
Figure 19 The PKN used for the Boolean modeling of immune response 

network in THP1 and Jurkat cell lines. Stimulus marked in green, measured 
phosphoproteins – in purple, inhibited proteins in red rounds, transcription 
factors in yellow, measured total proteins - in light blue. The analytes are 
labeled as following Green – stimulus: IFNbeta, IFNgamma, LPS, polyC, Blue 
– phosphoproteins: p38, Mekk, Stat1, Stat2, mTor, AKT, Jak1, Yellow – 
Lueferase reporter assay targets: GAS, ISRE, IRF-E, Red circles – the proteins 
to inhibitor: Stat1, p38, PKCa, AKT, Jak1, TYK1 
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Figure 20 The example of the experimental data visual representation by 
DataRail. Rows - measured phosphoproteins. Columns: up - stimulus, down - 
inhibitors used during the experiment. The graph inside represents the 
change in the signal over time (from 0 to 15 minutes)  

The following workflow was proposed to fit the models to 

the data (adopted from [77] with modifications):  

1. Build the PKN 

2. Map available stimulus/inhibitors and targets  

3. Design the experiments  

4. Perform first set of trial experiments 

5. Represent the data in MIDAS format 

6. Normalize data to use in Boolean logic models 

7. Perform simulations predesigned PKN against 

experimental data with CNO 

8. Use preliminary data to add new links and refine the 

network 

9. Repeat stage 7 with refined network 

10. Refine the experimental design according to the 
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preliminary results 

11. Perform the all the experiments  

12. Repeat stages 5-9 with each dataset 

We converted our data to MIDAS file format accepted by 

DataRail (fig. 20) and described out PKN in a sif file that can be 

visualized using Cytoscape. We use DataRail software 

(http://code.google.com/p/sbpipeline/) to preprocess the data 

and CNOptR software to fit the model to experimental data. All 

the scripts and functions were written in R. The CellNoptR and 

other packages were downloaded from Bioconductor. Graphviz 

and Cytoscape were used for visualization of the models. The best 

fit was compared manually to each other to determine the 

differences between cell subtypes.  

ODE model 

The ODE model of IFNbeta and IL6 pathways and 

simulations were run in MATLAB using the ODE15s solver 

(Matlab codes are provided in the supplementary data). The 

stability analysis of the dynamical system was performed with 

custom-made Matlab codes.  

To establish the ordinary differential equations (ODE) model, 

which explains the behavior of the model, we need to minimize 

the number of parameters. We used Matlab scripts for model 

stimulation.  

 We used different methods to obtain the parameters for the 

model. Some of the parameters were estimated using experimental 

data from previous knowledge (table 2) [48] while others were 

fitted manually according to the experimental results from RAW 

264.7 cell line.  
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Parameter Value Reference 

bdeph 15 min half-life [78] [79] 
n 3 [80] 
u 1 [81] 
λr 2.82 hour half-life This work 
λf 1.23 hour half-life [82] 
A initial 105 molecules/cell [83] 
S initial 700-900 

receptors/cell 
[84] 

λStat protein 24 hour half-life [85] 
λF 30 min half-life [86] 
f initial 1 molecule/cell [87] 
Table 2 Parameter values obtained from the literature 

 

For IL6 model we used stochastic simulations by Gillespie’s 

algorithm to simulate  heterogeneity in cells by varying randomly 

initial conditions for STAT3 molecules and the number of active 

receptors available/ or stimulated by cytokine. 

Parameter space exploration for Foxo-Akt model 

The model of Sgk/Akt-Foxo3a was simulated in Matlab. 

Additionally we used the workflow explained in the paper by 

Gomez-Cabrero et al. to explore the whole parameter space of the 

system [32]. The workflow was implemented in MATLAB. The 

certain parameters were fixed according to the previous 

knowledge (see sup. table 6), and the others were explored in the 

all positive parameter space. The initial conditions were fixed 

according to sup. table 5. 
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Results 

Chapter 1. Theoretical considerations on pathway dynamics 

in individual cells and cell populations 

The models designed in the other chapters of this thesis are 

examining the behavior of the system in the presence of certain 

stimuli without taking into account the variations of the response 

of single cells. The other side of the coin is the population behavior 

that we actually see in most of the experiments.  

There are three aspects affecting the population behavior as a 

whole: 

1. The kinetics of the behavior of each member of the 

population (each cell) (fig. 21). The cells may be synchronized in 

time or have desynchronized oscillations, which won’t be seen on 

the populational level; 

2. The effects of the members of the population (cells) 

on each other; 

3. The environmental noise affecting the population 

(stochastic inputs). 

 
Figure 21 Population versus single cells oscillations. The second peak may be 
present in single cells, but missing in populational level due to 
desynchronization. 
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Using the dataset from Prof Garcia-Ojalvo group from UPF 

we performed a case study of the dynamics of the population 

versus single cells in IL6 signaling pathway (manuscript in 

preparation). We explored a dynamic feature of the Stat/Socs 

system that has been reported as ultradian oscillations by Yoshiura 

et al [88]. Yoshiura et al. showed that serum stimulation triggers 

oscillations due to the interplay between active Stats and Socs 

alone. That is, oscillations in Socs3 levels required cyclic 

phosphorylation of Stat3 and vice versa, periodic activation of 

Stat3 depended on Socs3 oscillations. 

The dataset we used consists of time-resolved measurements 

of Socs3 RNA by RT-PCR and Tyr-phosphorylated Stat3 (Stat3-P) 

by Flow Cytometry in serum-stimulated fibroblasts for extended 

time intervals (fig. 22). Oscillations showed a period of 

approximately two hours. Oscillations of the repressor, Socs3, 

affected both its mRNA and protein concentrations. In particular, 

approximately in-phase oscillations of Stat3-P and Socs3 mRNA 

were followed by one hour-delayed oscillations in the levels of 

Socs3 protein..  

The fact that oscillations exist at the population level 

indicates that cells acted in a synchronized fashion after serum 

treatment (otherwise, averaging would have rendered oscillations 

unobservable).  
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Figure 22 Median levels of phosphorylated Stat3 (A) in mouse 3T3 

fibroblasts measured by flow cytometry in the absence of stimulation (grey), 
stimulated with IL-6 (1 ng/ml: blue, 10 ng/ml: green, 100 ng/ml: red). Standard 
errors (SE) are smaller than 0.02 in all cases, therefore error bars have been 
omitted. Mean fold change in the expression of Socs3 (B) in response to IL-6 
is also shown, as measured by RT-PCR, with error bars corresponding to the 
SE of two experimental replicates. 

The experiments show that the oscillation period is 

insensitive to cytokine levels (fig.22). The experimentally observed 

oscillations, however, were reported only at the cell population 

level and were not self-sustained: a few hours after stimulation the 

oscillations in the population were seen to disappear.  In order to 

verify that this behavior is consistent with our model, we now 

consider a population of independent cells reacting to identical 

environmental conditions.  

From experimental results of pStat3 after IL6 stimulation, we 

derived a histogram of single cells distribution (fig. 23), which 

shows that not only the mean (black dots over the green plots), but 

also the distribution differs in different timepoints. To better 

understand the nature of the distribution we calculated the 

coefficient of variation (CV) from the single cell flow cytometry 

data (fig. 25). 
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Figure 23 The single-cell distribution histogram for pStat3 after IL6 
stimulation of 3T3 fibroblasts. Based on single-cell flow cytometry results  

We developed an ODE model of the IL6 pathway graphically 

represented on the fig. 24. Our ODE model consists of key 

signaling processes:  

• the activation of IL6 receptors by cytokine 

• the subsequent phosphorylation of Stat3 and its translocation 

to the nucleus 

• the dephosphorylation inside the nucleus and the export to the 

cytosol in the dephosphorylated state, closing the loop for Stat3 

in cytosol.  

• At same time, we have considered the repressor module from 

SOCS3 gene expression as a negative feedback loop, which 

inhibits the phospho cascade from the active receptor. 

• All species of subject of degradation 
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Figure 24 Graphical reppresentation of IL6 signaling pathway model 
Our model displays the following features: i) the model leads 

naturally to a stable limit cycle with period and phase profiles that 

match the values experimentally observed, (ii) the limit cycle exists 

with a markedly robust period for a large range of parameter 

values, such as the amount of cytokine and of total Stat proteins, 

and (iii) stimulation of the pathway by the sudden addition of 

inducer leads to the synchronization of a population of already-

oscillating cells, in a dose-dependent manner. 

The model from fig. 24 can be represented by a system of 

differential equations (ODEs): 
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dAc

dt
= bexp * An + bdeph * Apc − bph * S * (Ac /kA ) /(1+ (Ac /kA ) + power(R /kI ,q)) − λSTAT 3 * Ac

dApc

dt
= bph * S * (Ac /kA ) /(1+ (Ac /kA ) + power(R /kI ,q)) − bimp * Apc − bdeph * Apc − λSTAT 3 * Apc

dApn

dt
= bimp * Apc − bdeph _ nucleus * Apn − λSTAT 3 * Apn

dAn

dt
= bdeph _ nucleus * Apn − bexp * An − λSTAT 3 * An

dr

dt
= br * power(Apn /kr,n) /(1+ power(Apn /kr,n) − λr * r

dR

dt
= bR * r − λR * R

 
We simulated the model dynamics on a populational levels 

(fig. 25 in black).  

CV is calculated as standard deviation divided by the mean 

for each measured timepoint (fig. 25 on the right) CV is a measure 

of the difference in the response of the cells to stimuli at the same 

timepoint. It shows that the desynchronization of the cells occur in 

15 minutes after stimulation. So all cells get activated at the same 

time, but at the different level (amplitude of response).  Then CV 

drops down and goes up again. The second minimum of the CV at 

200 min corresponds to the second peak of the median response. It 

means that the cells get more synchronized at the second peak 

then at the first one. After the second peak the cell desynchronize 

again and get to a steady state of desynchronization. This kinetic 

profile remains the same with different concentrations of IL6. 
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Figure 25 Model simulations versus experimental data for pStat3. Fold 

change of phosphorylation levels (on the left) and coeffecient of variation 
(right). Green lines correspond to experimental data and black – to the 
simulation of the model. 

This observation proofs that all the cell are strongly activated 

shortly after the stimulation (at 15 min), but the amplitude of the 

activation vary a lot from cell to cell (high CV on fig. 25 right). On 

the second peak the response is lower (lower peak at 200 min on 

fig. 25 left), but the CV is also reaches local mínimum (200 min on 

fig. 25 right). The model could reproduce this variability changes 

(fig 25 in black).  

Biologically speaking, the second round of cells activation 

corresponds greatly to the cell synchronization and the population 

acts as an entire system rather than a collection of differently 

responding cells. It may be important for the correct immune 

response.  
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Chapter 2. Differential role of IFNbeta signaling in T cells 

and macrophages modeled with Boolean networks 

Boolean modeling of IFN pathways in Jurkat and THP1 cell lines 
IFNbeta signaling pathway interacts with many antiviral and 

antibacterial response pathways, becoming a part of a bigger 

molecular network. To answer the question on how this network is 

organized in different immune cell subtypes we used the 

workflow developed by Prof Saez-Rodriquez (see introduction and 

methods sections). We developed a simplified topology of the 

interactions between IFNbeta, IFBgamma, TLR3 and TLR4 

pathways based on previous studies and data-mining. This 

topology is called the Preliminary Knowledge Network (PKN) (see 

methods and fig. 19). In this PKN we labeled the stimuli, the 

intermediates and the genes as well as feedback loops and 

crosstalk between different pathways in the network. The aim of 

Boolean modeling approach is to predict the interactions between 

the molecules in the network in the concrete conditions or cell 

types. In short, our objective was to build cell-specific networks of 

type 1 IFNs and inflammation signaling pathways in T cells and 

macrophages. We used the T cells (Jurkat) and macrophage-like 

(THP1) cell lines to obtain the experimental data. The cells were 

challenged with the combinations of different stimuli and 

inhibitors and different phosphoproteins, which were measured 

by XMAP bead assays under these conditions (labeled in fig. 19). 

See methods sections and [89, 90] for more details. 

The data obtained from the cell lines and the goodness of 

fitness of the model is shown in the figures 26 and 27.  
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Figure 26 Experimental results and model fit for Jurkat cell line. Fit of 

model predictions (dashed blue lines) to data. The color of cells represents the 
quality of fit (green - perfect fit, red - the model couldn't explain the data). 
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Figure 27 Experimental results and model fit for THP1 cell line. Fit of 

model predictions (dashed blue lines) to data. The color of cells represents the 
quality of fit (green - perfect fit, red - the model couldn't explain the data). 

After applying the CellNoptR algorithm (see methods) to the 

PKN and experimental data for two different cell lines, we 

obtained the logic models and topologies for each cell line (fig. 28 

and 29). 
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Figure 28 Logic model fitting the data from Jurkat cell line. Confirmed 

links are in green and blue.  

 
Figure 29 Logic model fitting the data from THP1 cell line. Confirmed 

links are in green and blue.  
 

The models can be represented as scaffolds (fig. 30) that 

allow assessing the differences in the signaling between Jurkat and 

THP1 cell lines.  
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Figure 30 Scaffolds obtained from logic models for Jurkat cell line (up) 

and THP1 cell line (down) 
 

As many of the main signaling channels are the same (it can 

be expected due to the close relationship between all immune cell 

subtypes), there are clear differences between the two scaffolds. 

For THP1 the connection IFNbeta-Jak1-Stat2 is direct. In Jurkat cell 

line the Jak1 is not directly triggering Stat2 activation. The 

activation in this case is due to other intermediates. In THP1 we 

see the activation CREB by IFNbeta, while in Jurkat we could not 

detect this effect. IKK is directly activating NFkB in Jurkat cells, 

but not in THP1 cells. There are other differences in signaling 

which may explain some of the difference in the response of 

immune cell subtypes in vivo (see discussion).  
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The pipeline to apply Boolean modeling to the clinical data 
The approach was applied to the stimulated human PBMCs 

from healthy individuals to validate the clinical application of 

logic modeling.  

The difference in type I IFN signaling pathway between 

immune cell subtypes may be crucial for the IFNbeta treatment cell 

response. For this reason we developed a method to apply the 

same approach for clinical data from individual patients. The 

challenge of the clinical data is the diversity between individuals 

in the cohort that produce noisy data.  

For this reason we proposed the following algorithm for the 

analysis of 2 groups of individual clinical readouts of homogenous 

data. We applied the CellNoptR package to the simulated 

experimental results from [91] mimicking patients’ dataset. The 

PKN and the simulated datasets were used to optimize the method 

of averaging and comparing resulting network topologies.  

The method was based on averaging bitstrings 

corresponding to each model generated from each dataset.  The 

bitstring is a vector consisted of 0 and 1 values corresponding to 

not-confirmed and confirmed by the experimental data links 

between different species. After CellNoptR simulation a bitstring 

was assigned to each toy set corresponding to an “individual”. 

The average model bitstring for each cohort was calculated 

using the following formula: 

 

<n>= 1/SUM(MSEi)*SUM(1/MSEi*bsi)  

 

where <n> is the resulting average bitstring vector, N – 

number of models in the dataset, MSE – mean squared error of the 
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best model based on the i-dataset, bs – the best model bitstring for 

the i-dataset. The resulting normalized average bitstring <n> was 

used to build the graphical representations of the models. The 

difference was calculated using the following formula: 

<dif> = abs (<n1>-<n2>) 

where <n1> and <n2> are the bitstrings for average group 

models calculated previously and the <dif> is the resulting 

bitstring, graphically represented on fig. 31 with numbers on the 

edges meaning the “strength” of the differences 

  
Figure 31. Differences between two average networks of simulated 

patients cohorts 
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The graph representing the differences between two dataset 

groups (20 datasets each) is shown on fig. 31. I found that the main 

difference were the links between TNFa and p38 and map3k and 

p38 (solid lines with the weight of 95 on fig. 31).  

The developed approach can be used on the data from a big 

cohort of patients when it’s necessary to see differences in the logic 

model between two groups. We are applying this method to the 

data from over 250 human samples with different MS subtypes to 

recognize the differences in molecular signal transduction and 

propose possible combinational therapies (CombiMS FP7 project 

http://combims.eu). 
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Chapter 3. Kinetic model of the IFN-beta signaling pathway 

in macrophages 

One of the main interests in MS pathway studies is IFNbeta 

pathway due to wide usage of IFNbeta as a first choice drug for 

MS. The response to IFNbeta by MS patients is very limited and 

biomarkers and combinations are necessary to increase 

effectiveness of the treatment.  For improving understanding on 

the IFNbeta pathway we developed a dynamic ODE model, which 

is focused on the implication of different parameters in the 

pathway dynamics.  

In order to identify the critical elements of the signaling 

pathway that are responsible for the transient oscillatory behavior 

observed in our experiments in macrophages upon IFN-beta 

stimulation, we built an ODE model based in biological 

knowledge and experimental data. To minimize its complexity, we 

pursued the minimal system explaining the experimental 

observations, instead of a full descriptive system [92]. The model 

was not used to reproduce sustained endogenous IFN activation 

after viral infection, although it could be applied to that scenario. 

We developed the model of IFN-beta signaling pathway using a 

systems biology approach and finding the key pathway 

bottlenecks, which could be proposed as possible IFN-beta 

treatment response markers [48]. 

In order to analyze the effects of microbial infection in the 

type I IFN pathway, we stimulated the murine macrophage-like 

cell line RAW 264.7 with the lipopolysaccharide (LPS) endotoxin, 

and measured the release of IFN-beta at different time points by 

ELISA. We observed (fig. 32A, blue line) that IFN-beta release 
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increases shortly after LPS stimulation, fluctuating around a 

markedly non-zero level, which is sustained for long times. The 

initial increase in the release of IFN-beta is accompanied by a 

significant increase in the levels of phosphorylated Stat1 (fig. 32B). 

We also simulated the effects of viral infections in the endogenous 

IFN production, stimulating RAW cells with poly (I:C). We 

observed that poly (I:C) induced also an increase in the levels of 

IFN-beta in RAW 264.7 cells, although to a lower level than LPS 

(fig. 32A, red line).  

 Figure 32 IFN-beta induction after microbial or viral trigger in macrophage 
cell line. IFN-beta levels in Raw cell culture supernatants after stimulation 
with LPS (15 μg/ml) (blue) or Poly (I:C) (25μg/ml) (red) versus non-stimulated 
control (black line) in the first 6 h and in some later times from 12 h (A); B) 
Western-blot showing phosphorylated and total Stat1 levels after LPS 
stimulation (15 μg/ml) of Raw cell line analyzed by Western-blot and 



 

 69 

quantified by densitometry. All experiments were performed in triplicates 
and repeated at least two times independently. 

 

We built a dynamic model of the IFN-beta signaling pathway 

using experimental data of protein and mRNA concentration 

measurements in vitro and previous biological knowledge. The 

model is based on ordinary differential equations (ODE) and 

predicts the behavior of the IFN-beta signaling pathway during 

time. The simple model included the main and most important 

parts of the pathway, such as Stat1 phosphorylation, Socs1 

inhibition of Stat1 phosphorylation and others.  The model was 

focused on the self-regulatory events in the pathway. We verified 

the model with the experiments with macrophage-like murine 

RAW cell line. 

 
Figure 33 Mathematical model of type I IFN signaling pathway. 

Graphical representation of the mathematical model of type I IFN signaling 
pathway. 

 



 

 70 

The ordinary differentiation equations for the model showed 

on fig. 33 are: 

 

 
 

We performed time series analysis of the phosphorylation of 

Stat1 and levels of total Stat1 and Socs1 by Luminex assays and 

Elisa (fig. 35) and levels of Stat1, IRF1 and Socs1 mRNA after IFN-

beta stimulation by RT-PCR (fig. 34). We observed that 

phosphorylated Stat1 levels increased rapidly after IFN-beta 

induction (fig. 35A). The increase was significant as soon as 2 min 

after stimulation and reached a maximum at 10–15 min after 

stimulation, followed by a decrease that correlates with a 

substantial increase in the concentration of the SOCS1 protein (fig. 

dS=dt ¼ bs−λsS

dA=dt ¼ b expApn þ bdephApc

þ bAa−
bphSA=kA
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35C). A second, smaller peak was visible at around 180 min, 

followed by a subsequent decrease back to the baseline level after 

around 360 min. The quick decrease of phosphorylated Stat1 levels 

is in agreement with previous studies pointing to the activation of 

the negative feedback loop mediated by SOCS1 protein, which 

suppresses the phosphorylation of Jak1 and TYK2 proteins and 

prevents the formation of Stat-dimers [93]. The total level of Stat1 

protein, on the other hand, is maintained practically constant until 

around 200 min after stimulation, after which it starts to increase 

slowly until the end of the experiments (fig. 35B). Stat1 mRNA 

levels grew quickly and continuously, starting sharply at around 

75 min and leveling off after 200 min (fig. 34A). This increase in the 

mRNA level of Stat1, as soon as 1 hour after the induction of 

response by IFN-beta, agrees with the influence of the positive 

feedback loop IRF1 – Stat1 [94] and confirms the importance of this 

circuit for the pathway dynamics. 
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Figure 34 Gene expression levels of Stat1, IRF1 and Socs1 after IFN-beta 

stimulation and the corresponding simulations from the ODE model. A-C) 
Stat1, IRF1 and Socs1 RNA concentration in cell lysates were measured by 
RT-PCR in the Raw cells stimulated with IFN-beta (1000 units/ml); A) Stat1 
RNA levels in the Raw cells stimulated with IFN-beta; B) IRF1 RNA levels in 
the Raw cells stimulated with IFN-beta; C) Socs1 RNA levels in the Raw cells 
stimulated with IFN-beta. We plot here one out of three independent 
experiments, which were performed in duplicates. D-F) Model simulation 
and sensitivity analysis with ± 20% change for all parameters (shaded areas) 
for Stat1 (D), IRF1 (E), and Socs1 (F) RNA levels. 

To analyze the expression of regulatory genes of the type I 

IFN pathway, we measured the levels of two downstream Stat1 

genes, SOCS1 (responsible of the negative feedback) and IRF1 

(mediator of the positive feedback). We observed an oscillatory 

behavior of SOCS1 mRNA during the first 360 minutes after 

stimulation, with clear peaks at around 90 min and 250 min, before 

returning to baseline levels (fig. 34C). On the other hand, IRF1 

shows different dynamics, with its concentration raising quickly 
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between 30 and 120 min, then reaching a plateau and decreasing 

more slowly after 250 min (fig. 34B). We also quantified the 

expression levels of other downstream effector IFN-induced genes, 

such as MX1 and OAS1b, but did not identify any activation of 

their transcription in the RAW 264.7 cell line after IFN-beta 

stimulation. Our observations show that in the RAW 264.7 cell line 

the main activated genes were the ones controlled by the Stat1-

Stat1 homodimer (IRF1 and SOCS1) and containing GAS elements 

in their promoter region. These genes are mainly responsible for 

the antimicrobial activity of the cells [95].  

Then, we compared experimental results with mathematical 

model simulations in order to assess the agreement of the 

dynamics at the qualitative level. Experiments uncovered several 

important features of Jak/Stat signaling dynamics during the first 

eight hours after treatment with IFN-beta. For example, our results 

showed the transient oscillatory nature of Stat1 activation (pStat1), 

with a fast increase in cytosol concentration early after stimulation 

(within the first hour), followed by a secondary concentration peak 

at around 200 min. A key Stat1 transcription target such as Socs1 

also showed two peaks of expression (correlated in time to the 

pStat peaks) at around 90 min and 250 min after stimulation, 

whereas another important target, namely IRF1, exhibited a more 

bell-shaped plateau signal. 
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Figure 35 Activation of type I IFN pathway by IFN-beta in Raw cell line 

and the corresponding simulations from the ODE model. A-C) pStat1, Stat1 
and Socs1 protein concentration in cell lysates were measured by Luminex, 
Flow cytometry or ELISA after stimulation with IFN-beta (1000 units/ml). The 
data was normalized to the maximum level. A) pStat1 protein concentration in 
the Raw cells stimulated with IFN-beta; (B) Total Stat1 protein concentration 
in the Raw cells stimulated with IFN-beta; C) Socs1 protein concentration in 
the Raw cells stimulated with IFN-beta. We plot here one out of three 
independent experiments, which were performed in duplicates.  D-F) Model 
simulation and sensitivity analysis with ± 20% change for all parameters 
(shaded areas) (D: pStat1; E: Stat1; F: Socs1).  
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Chapter 4. IFNbeta model analysis and nuclear translocation 

as a modulator of the IFNbeta pathway kinetics 

 

We performed computer simulations using different 

conditions and parameters as well as sensitivity and bifurcation 

analysis of the developed IFNbeta ODE model. The bifurcation 

analysis indicated the possible implication of nuclear translocation 

of pStat1 for the correct oscillatory activity of the cells upon the 

IFNbeta stimulation in vitro. This finding led us to the hypothesis 

of alteration of the nuclear translocation process in the response to 

IFNbeta therapy.  

The model allows us to interpret the second peak observed 

experimentally in pStat1 and SOCS1-mRNA levels in terms of an 

underlying damped oscillatory dynamics. We now ask which are 

the mechanisms that lead to oscillations, on the one hand, and to 

damping, on the other hand. A well-known gene circuit 

architecture that leads to oscillatory behavior is a combination of 

positive and negative feedback loops. As mentioned above, our 

model contains a negative feedback loop mediated by SOCS1. We 

can examine in the model the effect of not having this feedback by 

eliminating SOCS1 signaling from the model. The results show 

that this negative feedback is required for the oscillatory behavior 

to arise: its absence leads to a transient plateau of high pStat1 

levels during the first 4–5 h of IFN treatment (fig. 36B), which 

contrasts with the relaxation oscillator behavior obtained for our 

basal parameter values (fig. 36A), which is a closer match to the 

experimental observations (fig.  35-35). The model also contains a 

positive feedback loop mediated by IRF1. This loop, however, does 
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not appear to be crucial for the oscillatory behavior of pStat1 (fig. 

36C), and is only necessary to reproduce the experimentally 

observed increase of Stat1 expression (fig. 34). 

 
Figure 36 Type I IFN pathway model simulations during the first 8 hours after 
IFN-beta stimulation. (A) Model simulations showing oscillations of total 
(nuclear plus cytoplasmic) pStat1 protein, Socs1 mRNA expression (dashed 
line) and Stat1 mRNA expression (dotted line). (B) Corresponding 
simulations where the Socs1-mediated negative feedback is disrupted by 
assuming an infinite value of the repression threshold kI. (C) Corresponding 
simulations not including the IRF1-mediated positive feedback, by assuming 
a zero value of the Stat1 activation threshold kF (which leads to saturation of 
the corresponding Hill function, so that the dependence of an expression on F 
is removed). 

The temporal evolution of the phosphorylation of Stat1 can 

be crucial for understanding the response to IFN-beta therapy, and 

may provide an explanation of the lack of response to this therapy 

in some cases [96]. In particular, transient oscillatory dynamics 

could provide a way for the Stat1 pathway to increase the duration 

of its response to IFN-beta in a physiological manner (i.e. without 

a period of sustained constant activation as in fig. 36B). In order to 
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establish the conditions under which this transient dynamics 

exists, we analyzed the behavior of the system for combinations of 

two-parameter pairs, distinguishing between the parameter values 

for which pStat dynamics is overdamped (and thus non-

oscillatory) and those for which the oscillations are underdamped 

(which corresponds to the experimental situation reported above). 

We focused on the phosphorylation and dephosphorylation rates 

(bph and bdeph) and export and import rates (bexp and bimp). These 

parameters represent crucial steps to regulate the nuclear 

availability of transcription factors such as pStat dimers, and thus 

also the expression of downstream genes. 

 
Figure 37 Influence of activated receptor level on the transient oscillatory 
dynamics. (A). Time evolution of the activation level of type I IFN receptors 
in the model (S) by stimulation with IFN-beta (added at t = 0) for different 
initial levels (in red, S = 500 molecules at t = 0). (B, C) pStat1 (B) and Socs1 
mRNA (C) dynamic responses for varying levels of initial receptor activation 
as in panel A (lower lines in B and C correspond to lower lines in A). 
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In order to identify mathematically the two different 

dynamical regimes mentioned above, we examined the stability 

properties of the steady state of the ODE system for a constant 

activated receptor level (S) equal to its initial value. In that context, 

the underdamped/oscillatory regime is characterized by a steady 

state that takes the form of an unstable focus  (i.e. the stability 

eigenvalue with maximum real part has negative imaginary part), 

whereas the steady state in the overdamped/non-oscillatory 

regime is a node (the stability eigenvalue with maximum real part 

has no imaginary component). In that way, by calculating the 

imaginary part of the stability eigenvalue of the steady state with 

maximum real part, we can identify the parameter regions in 

which the pathway exhibits a transient oscillatory response to IFN-

beta. The result, for the parameter space formed by the 

phosphorylation and dephosphorylation rates bph and bdeph, is shown 

in fig. 37A. This figure shows, on the one hand, the prevalence of 

oscillations for a wide range of these parameters, and on the other 

hand it tells us the conditions for which transient oscillations exist. 

For instance, increasing sufficiently the dephosphorylation rate 

can transform an oscillatory regime into a non-oscillatory one, and 

reversely, by making the phosphorylation rate large enough the 

system can be made to exhibit transient oscillations. Figure 38B 

shows examples of these two dynamical regimes for two specific 
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parameter sets within this phase diagram. 

 
 

Figure 38 Stability analysis of the steady state solution in two 2D 
parameter spaces. (A, C) The color scale represents the absolute value of the 
imaginary part of the stability eigenvalue with maximum real part, 
corresponding to the steady state of the system after IFN stimulation, for 
varying phospho/ dephosphorylation rates (bph and bdeph, panel A), and 
nuclear export/import rates (bexp and bimp, panel B). Two distinct dynamic 
regimes can be identified with this analysis: the damped oscillatory regime 
(shifted to red) and the overdamped/ non-oscillatory regime (blue). (B, D) 
Examples of pStat1 time evolution in both regimes (damped and over-
damped in red/blue lines, respectively) corresponding to parameter position 
of circle markers for the two diagrams shown in panels A and B, respectively. 

 
 We also tested the influence of the import rate of pStat1 

molecules into the nucleus, and of the export rate of Stat1 from the 

nucleus into the cytosol. By tuning both parameters (bexp and bimp) 

simultaneously, we observed again that the transient oscillatory 

regime is prevalent in this system (fig. 38C). We found that the 

oscillatory regime is associated with high nuclear import rates in 
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combination with high export rates. For high export rates but low 

import rates, the pathway exhibits an overdamped (non-

oscillatory) response, showing a sustained plateau in the transient 

level of pStat1 (discontinuous blue line in fig. 38D). Conversely, for 

high import rates and low export rates the response is also 

overdamped, but with a faster decay (continuous blue line in fig. 

38D). We conclude that bifurcation analysis of the Stat1 pathway 

model identifies translocation to the nucleus as a critical step 

To check the hypothesis that nuclear translocation process is 

critical for the response to IFNbeta therapy in Multiple Sclerosis 

patients, we assessed Stat1 nuclear translocation after IFNbeta 

treatment in MS patients using ImageStreamX imaging platform 

(see methods). We adjusted the flow cytometry standard protocol 

using PBMCs from healthy controls (fig. 39).  

 

 

 
Figure 39 Nuclear translocation measured by ISX technology. UP: The 

example of nuclear localization of pStat1 visualized by ImageStreamX. 
DOWN: the quantification of PBMCs from a healthy control in vitro 
stimulated with 1000 un/ml of IFNbeta. Blue – the percent of pStat1+ cells 
from the total population, red – percent of pStat1+ cells with pStat1 localized 
in the nucleus from a total population of pStat1+ cells. 
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We obtained PBMCs from controls (n=2) and patients treated with 

IFNbeta (n=2) at different times after injection (fig. 39-40).  The 

PBMCs from controls were used for in vitro studies (fig. 39) The 

control in vitro stimulations of PBMCs from healthy individuals 

show very quick response with nearly all pStat1 translocating to 

the nucleus at 5 minutes and shuttling back in just 15 minutes after 

stimulation. 

 The PBMCs from MS patients were obtained in different 

time after the injection of IFNbeta (in vivo conditions). 

Figure 40 Nuclear translocation measured by ISX technology. The 
quantification of PBMCs from an MS patients treated with IFNbeta - Extavia 
(A and B) and Avonex (C and D). The time shows the time of blood 
withdrawal after injection. Blue: the percent of pStat1+ cells from the total 
population, Red: percent of pStat1+ cells with pStat1 localized in the nucleus 
from a total population of pStat1+  
The results from MS patients show significant differences in the 

nuclear translocation pattern between individuals. On fig. 40 in 

blue we see the percent of pStat1+ cells from the total number of 

cells at different times after in vivo injection. While for Extavia 
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patient this level stays nearly the same around 5-7%, the Avonex 

patient shows a sharp increase in pStat1+ PBMCs after 1-2 hours 

peaking at 17% and a slow decrease at 3-6 hours. The fig. 40B and 

40D shows the percent of translocated to the nucleus pStat1 in the 

Stat1+ cells in the same patients. While Extavia patient has a high 

level of nuclear Stat1 at a baseline and unexplainable decrease 

after the injection, the Avonex patient shows nearly no nuclear 

Stat1 at a baseline and quick translocation to up to 50% after 1-2 

hours post-injection with a decrease at later timepoints. 

While these results are promising, the sample size is too 

small to determine the translocation of Stat1 to the nucleus after in 

vivo injections of IFNbeta and a study with a bigger cohort of 

responders and non-responders to IFNbeta is needed to determine 

if pStat1 translocation rate can determine the response to therapy 

and serve as a clinical biomarker of the response.  
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Chapter 5. Nuclear translocation dynamics of Foxo3a 

orchestered by Sgk/Akt balance 

In order to model the Akt/Sgk-Foxo3a pathway (Foxo 

pathway), we have developed an ODE model based in previous 

knowledge and experimental data. The core feature of our model 

is the nuclear export and phosphorylation of pFoxo3a by pAkt and 

pSgk after activation of IGF1 pathway. The phosphorylation of 

Foxo3a in the 3 main phosphosites leads to its deactivation and 

arrest in the cytoplasm. Other post-translational modifications 

may lead to its ubiquitination and degradation (fig. 41).  

Our model shows the importance of the mechanism of 

inhibition of Foxo3a for the noise resistance of the system.  

In our model we consider following key points: 

• First mechanism: Activation of Akt (phosphorylation) by 

IGF1 or other growth factor leads to phosphorylation of Foxo3 in 3 

conserved sites. pFoxo3 transfers to the cytoplasm 

• Second mechanism: Sgk is activated either by PI3K pathway 

or by stress sensors and phosphorylates Foxo3a  

• pFoxo3a has three main phosphosites. pSgk and pAkt has 

different affinity to different pFoxo3a phosphosites but both lead 

to the phosphorylation of all three of them 

• Both mechanisms lead to export from the nucleus and 

inhibition of Foxo3a action as a TF 

• Dephosphorylation is induced by PP2A and allows Foxo3 to 

come back to the nucleus and bind specific binding sites restoring 

the pro-apoptosis gene expression pattern (this term should 

influence the kinetics of the system as well) 
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• Ubiquitination of Foxo3a targets it for degradation, which 

has influence in the kinetics of the system  

 
Figure 41 The model of Akt-Foxo3 signaling and Foxo3 nuclear 

shuttling 
The model is represented on the fig. 41 and consists of the 

following events and elements: IGF1 growth factor signal, 

phosphorylation and dephosphorylation of Sgk, phosphorylation 

and dephosphorylation of Akt, phosphorylation of Foxo3a in 3 

phosphosites by pSgk, phosphorylation of Foxo3a in 3 

phosphosites by pAkt, export of Foxo3a to the cytoplasm, 

dephosphorylation and import of pFoxo3a to the nucleus, 

activation of transcription of apoptotic genes by Foxo3a (non-

phosphotylated). We also included degradation of pFoxo3a, Akt 

and Sgk.  

On the top at the moment there are included several 

additional points: the negative regulation of pAkt by Pten (this 

includes inhibition of phosphorylation of pAkt by Pten) and active 

dephosphorylation of Foxo3a by PP2A 
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PTEN should be considered as a constant growing function 

and PP2A is considered to be constant for the moment 

The model can be represented as the following system of 

equations 

 
 where 

S is non-phosphorylated Sgk, Sp – phosphorylated Sgk, A - 

non-phosphorylated Akt, Ap – phosphorylated Akt, F - non-

phosphorylated Foxo3a, Fn_akt – phosphorylated in 3 phosphosites by 
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Akt Foxo3a in the nucleus, Fn_sgk – phosphorylated in 3 phosphosites  

by Sgk Foxo3a in the nucleus, Fc_akt – phosphorylated in 3 

phosphosites by Akt Foxo3a in the cytoplasm, Fn_sgk – 

phosphorylated in 3 phosphosites by Sgk Foxo3a in the nucleus, Fdc 

– nonphosphorylated Foxo3a in cytoplasm,  Fdn – 

nonphosphorylated Foxo3a in the nucleus, g – downstream genes, 

P - active PTEN molecules, D - active PP2A molecules 

The parameters are explained in the supplementary table 6.  

While this work is still in process we have preliminary 

promising results. From experimental perspective, we challenged 

the SH-Sy5 cell line with a new compound. The compound is in 

preclinical development as a potential drug for MS. We observed 

the oscillations in the nuclear translocation of Foxo3a during the 

first 2 hours after in vitro stimulation with the compound. The 

results were obtained by IHC.  

In order to understand this experimental observation we 

performed the analysis of the parameter space of our model and 

identified the set of parameters capable to produce oscillations 

with the same period. We are performing further experiments and 

simulations to validate the hypothesis of oscillatory behavior of 

the nuclear translocation of Foxo3a and its possible implication in 

drug discovery.  
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Discussion 

In this thesis I tried to assess the signal transduction 

molecular system in different levels of detail. Watching from 

hierarchical upper and lower levels I was able to identify different 

questions and examine the answers. As a result we examine 

several hypothesis from hierarchical perspective: 

1. The oscillatory dynamics of IL6 pathway in populations  

2. The connection between pathways in different cell lines 

(T cell and macrophage-like human cell lines) 

3. In-deep understanding of single pathway dynamics  

4. Exploration of a concrete dynamical feature: the 

translocation in two different pathways 

This top down approach brought us from general theoretical 

questions to possible clinical implication of Systems Biology.  In 

the discussion we’ll follow this logic from higher to lower 

hierarchy and compare the approaches and their outcomes. 

During the journey we developed new approaches and methods to 

combine Systems biology and Translational medicine and apply 

standard Systems biology approaches to clinical questions.  

Populations exhibit important dynamical features, which can 

be overwatched in traditional Systems biology dynamical 

approaches 

The behavior of populations and single-cell variability is a 

challenge for Systems biology approach with different methods 

developed to model the real populations  
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Different cell types provide different responses to external 

signals due to their network constructions 

In RAW cell line, Socs1 and IRF1 genes expression change 

during early IFN response, but there are no significant expression 

of some commonly used reference genes (Mx1 and OAS1a). Jak-

Stat pathway activation by IFN-beta activates the phosphorylation 

of Stat1, Stat2 and some other proteins. These activated proteins 

mainly form 2 different complexes: Stat1-Stat1 (AAF complex) and 

Stat1-Stat2-IRF9 (ISGF complex). Both complexes activate many 

genes in the nucleus binding to the specific regulation elements in 

the promoters. AAF complex binds to GAS elements and ISGF 

complex binds to ISRE elements. GAS-containing genes (Incl. 

Socs1 and IRF1) are responsible for the antibacterial response of 

the cells and ISRE-containing genes are activating an antiviral 

response of the cells [95]. Based on this background and our 

results we hypothesized that macrophages form mainly AAF 

complexes which activates the antibacterial route (GAS sequences) 

but in T cells the situation is opposite, activation ISFG3 elements 

and therefore the antiviral response (Figure 16). For example, it 

was recently shown that the response to IFN-beta differs between 

immune cells, and an analysis of non-responders to IFN-beta 

therapy indicates an impairment of the type I IFN pathway 

differentially in the monocytes of those patients [52]. 
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Figure 42 Possible explanation of the difference in RAW macrophages 

cell line IFNbeta signaling and classical Jak-Stat pathway.  
The IFN signaling network affects different complex 

pathways, involving processes such as differentiation, 

proliferation, survival and cell death. Importantly, it is a canonical 

pathway involved in different complex pathways, involving 

processes such as differentiation, proliferation or survival and cell 

death [97, 98] and also as a therapy for autoimmune [99]. IFN-beta 

is the most common treatment for MS [100], exerting a pleiotropic 

immunomodulatory activity not well understood. IFN-beta 

treatment decreases activation, proliferation, cytokine release, and 

migratory properties of activated T cells, diminishing their ability 

to enter and damage the brain tissue. In spite of these properties, 

up to 40% of patients do not respond to IFN-beta therapy, which 

represents a significant health problem [96]. Previous genomic 

studies have identified certain genes belonging to the IFN 

pathway that are associated with a lack of response to IFN-beta, 

suggesting that the genetic background of certain individuals may 
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modulate this pathway, and consequently the response to therapy, 

by specific transcriptional profiles [101].  

This considerations led us to the idea of studying the 

difference in type I and type II IFN signaling in macrophages and 

T cells. We chose the Boolean modeling approach to be able to 

explore more extended networks. We found significant differences 

between 2 networks including differences in IFNbeta-Stat1-Stat2 

connections and IFNgamma-Stat1-Stat2 connections we expected 

from our hypothesis of Stat1-Stat2 and Stat1-Stat2 dimers 

formation theory explained above.  

In-depth understanding of IFNbeta signaling pathway 

dynamics in RAW 264.7 macrophage-like cell line 

We analyzed the type I IFN-beta signaling pathway in 

macrophages, showing that the response of this pathway to IFN-

beta stimulation takes the form of transient oscillations in Stat1 

phosphorylation. We characterized and identified the critical 

elements governing the transient dynamics of IFN activation, and 

examined the influence of this dynamical regime in the response to 

IFN-beta. To that end, we quantified in a time-resolved manner the 

level of certain pathway components after IFN-beta activation, and 

implemented a mathematical model of the Jak/Stat pathway. 

Dynamical models of IFN induction of the Jak/Stat signaling 

pathway based on nonlinear ordinary differential equations, have 

been previously used to study the effect of IFN pre-treatment on 

the response of the immune system to virus infection [44, 45] and 

the robustness of the pathway to noise and parameter fluctuations 

[46], among other problems. Systems biology approaches have also 

been applied to this pathway in order to examine its role in certain 
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pathological mechanisms underlying the behavior of cancer cells 

[102], and its interaction with other key signaling pathways [44, 

103]. Here we combine our theoretical model with experimental 

observations, in order to study the role of the pathway architecture 

on the immediate molecular response of the pathway to IFN-beta 

stimulation. Our results show that a combination of positive and 

negative feedback loops, together with the eventual degradation of 

the IFN signal in the medium, leads to a transient oscillatory 

response in several components of the pathway. This behavior is 

consistent with previous numerical results found in pure modeling 

studies [104], and goes beyond previous observations that indicate 

a simpler transient response [37, 85, 98]. We interpret the transient 

oscillatory response of the pathway in terms of the potential 

effectiveness of IFN-beta treatment in MS patients. 

Jak-Stat signaling pathway regulation appears to be more 

complex than it was thought before. It is tightly regulated and 

highly connected with other pathways [105]. Moreover, type I 

IFNs are commonly used as treatment in several chronic diseases 

such as hepatitis C, leukemia and Multiple Sclerosis (MS). 

Improving our understanding on how this signaling pathway 

works, processes information and participates in the pathogenesis 

of these diseases or in the response to therapy would improve our 

ability to manage such diseases.  

One of the aims of this work was to characterize the 

dynamics of the key components of the type I IFN-beta signaling 

pathway in macrophage RAW 264.7 cells. This system robustly 

translates extracellular chemical signals through cell membrane 

receptors, leading to phosphorylation of the Stat transcription 
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factors, which induce gene expression of multiple targets. Jak/Stat 

signaling directly regulates the immune system response under 

viral or bacterial infection, and is also important in autoimmune 

diseases and cancer treatments. The IFN signaling network affects 

different complex pathways, involving processes such as 

differentiation, proliferation, survival and cell death. Importantly, 

it is a canonical pathway involved in first-line treatments of 

multiple sclerosis as a main target of the IFN system [99] but, also, 

affects different complex pathways, involving processes such as 

differentiation, proliferation or survival and cell death [90, 91].  

Our IFNbeta model simulations exhibit a transient oscillatory 

behavior in pStat1 concentration, and reveal that the oscillations 

require the presence of a negative feedback loop on Stat1, 

mediated by its phosphorylation inhibitor Socs1. Previous 

mathematical models of the type I and type II IFN pathways have 

suggested the possibility that Stat1 pathway has an oscillatory 

behavior [36, 97] and indicated the importance of the Socs1 

negative feedback [85, 100]. Another factor that has been proposed 

to be important in defining the response to IFN is the basal level of 

receptors of the Jak/Stat pathway[106]. In our model this aspect 

was also taken into account, showing clear effects on the dynamics 

of the pathway response. Going beyond previous models, our 

theoretical results show that the physiological regime of the 

pathway’s response to IFN-beta takes the form of damped 

oscillations that can be identified by means of a stability analysis of 

the model’s steady state solution. This analysis shows that 

processes such as the phosphorylation and dephosphorylation of 

pStat1, and the transport of Stat1 between the nuclear and cytosol 
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compartments, can make the pathway switch between 

underdamped and overdamped oscillatory regimes [107]. 

Limitations 

There are several limitations in this research. 

From the experimental point of view we used cell lines in 

most of our studies. Cell lines is a simple and powerful tool to 

explore signaling pathway dynamics but may differ significantly 

from in vivo conditions. For the validation of the translocation of 

Stat1 as a potential biomarker we used PBMCs from MS patients in 

a small cohort. The clinical findings have to be validated on a 

much bigger cohort of patients. The design of the in vivo study 

doesn’t allow the comparison with healthy controls and patients 

due to injection of a prescribed drug.  

For Boolean modeling we used al limited phosphoproteins 

dataset so we couldn’t see some of the possibly presented links 

due to the lack of the clinical data. 

The main limitation of the ODE modeling is the unknown 

parameters in most of the cases. Many parameters con’t be derived 

from the experimental or don’t have direct biological meaning. We 

overcome this limitation by comparing our model to experimental 

data but can’t reject possible biases due to manual parameter fit. 

Sgk/Akt-Foxo3a model lack experimental validation, which 

is the next step planned in this project and should be available 

soon.  
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Implications of the type I IFN and Sgk/Akt-Foxo3a signaling 

dynamics in autoimmune diseases 

IFN-beta is the most common treatment for MS [100], 

exerting a pleiotropic immunomodulatory activity not well 

understood [99]. IFN-beta treatment decreases activation, 

proliferation, cytokine release, and migratory properties of 

activated T cells, diminishing their ability to enter and damage the 

brain tissue. In spite of these properties, up to 40% of patients do 

not respond to IFN-beta therapy, which represents a significant 

health problem [96]. Previous genomic studies have identified 

certain genes belonging to the IFN pathway that are associated 

with a lack of response to IFN-beta, suggesting that the genetic 

background of certain individuals may modulate this pathway, 

and consequently the response to therapy, by specific 

transcriptional profiles [101]. For example, it was recently shown 

that the response to IFN-beta differs between immune cells, and an 

analysis of non-responders to IFN-beta therapy indicates an 

impairment of the type I IFN pathway in the monocytes of those 

patients [52][108]. 

Our study indicates the importance of identifying the 

temporal dynamics of the concentration of certain key components 

of the Jak-Stat pathway, such as the phosphorylated form of the 

Stat1 protein, and of the expression of interferon-stimulated 

transcription genes like Socs1 and IRF1, within the first 8 hours of 

IFN-beta administration. Cataloguing these dynamics could 

provide us with early molecular biomarkers that allow us to 

distinguish the lack of response to IFN-beta therapy of certain MS 

patients. 
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Our models indicate the crucial role of nuclear translocation 

of Stat1 and Foxo3a molecules for the correct dynamics of the 

whole pathway. The alterations in the translocation features of 

Stat1 prevail over the rates of phosphorylation and 

dephosphorylation in determining the oscillatory dynamics of 

IFNbeta signaling pathway. On a small group of MS patients we 

showed that the rate of translocation differs a lot between 

individuals and may determine the response to therapy or disease 

progression. The levels of Stat1 translocation may be potential 

biomarkers of IFNbeta treatment response and require further 

research.  

Another example of the importance of nuclear shuttling 

characteristics in signal transduction is Foxo3a transcription factor. 

Foxo3a can be considered as a master regulator of the PI3K-Akt 

pathway, which determines the survival or apoptotic scenario of 

cell decision [109]. In this case the quality and versatility of the 

network structure (inhibition by phosphorylation in the nucleus 

and further transfer to the cytosol) as well as the numerous 

possible post-transcriptional modifications [56] make Foxo3a an 

example of the key node protein tightly regulated to prevent 

misconducted decisions of the cell. The model of Akt-Foxo3a 

signaling is an interesting tool from both theoretical and practical 

point of view. From the theoretical side, the Akt-Foxo3a signaling 

is an example of a larger group of signal transduction pathways 

involved in cell decisions, which share number of common 

patterns of behavior. The kinetics of Akt-Foxo3a and its regulation 

and crosstalk may be a common trend in the whole class of 

signaling pathways. The reason for the phosphorylation- 
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inhibition-nuclear export structure is the resistance to noise of such 

mechanism of action and easy tuning possibilities and constantly 

changing behavior. 

From the practical point of view, Foxo3a is an emerging 

target in immunology and neurology [65, 110]. The new promising 

neuroprotective drug for MS BN201 targets Sgk, the upstream 

kinase of Foxo3a, and modifies Foxo3a activity. The understanding 

of the Sgk-Akt balance and communication as well as Foxo3a 

behavior in human cells in different conditions let us predict the 

effects of the new emerging treatments of MS. 
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Conclusions 

1. The population of cells has an ability to coordinate 

and synchronize their activity in response to IL-6 stimulation. This 

ability is a necessary attribute of the cell signaling, which allows 

correct response to the external systems and provides a more 

robust response to the environment. 

2. T cells and macrophages respond different to 

IFNbeta, IFNgamma or infectious agents due to the qualitative 

difference in their signaling networks. These differences lead to a 

complex repertoire of behaviors of immune system cells in 

response to different challenges as well as to the response to 

IFNbeta treatment in autoimmune diseases. 

3. The IFN-beta signaling in macrophages takes the 

form of transient oscillatory dynamics of the Jak-Stat pathway, 

whose specific relaxation properties determine the lifetime of the 

cellular response to the cytokine, which has implication for the 

outcome of the immune response. 

4. The nuclear translocation of pStat1 modulates the 

dynamics of Jak-Stat signaling system and leads to the switch 

between damped/overdamped oscillatory regimes. Individuals 

with different clinical response to IFNbeta therapy showed 

differences in the dynamics of nuclear translocation of pStat1, 

becoming a promising biomarker for monitoring the response to 

this therapy.  

5. The inhibition through phosphorylation of pFoxo3a 

is a molecular switch, which allows tighter regulation of the 

Foxo3a transcriptional activity. Nuclear shuttling of Foxo3a is a 

kinetic buffer of Foxo3 activity and keeps the equilibrium between 
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survival and tumor repression mechanism. This Foxo3a switch 

mechanism is controlled by the coordinated activation of Akt and 

Sgk in the PI3K pathway. 
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Supplementary data 

Supplementary Table 1. Parameters for Stat3 ODE model [units/ 
cell]  

Name Sym
bol 

V
alue 

Unit
y 

Active IL6 receptors             
S 

[0
-500] 

# 

Transcription rate for Socs3 br 1
1.3 

min-1 

Translation rate for Socs3 bR 1.
0·102 

min-1 

Phosphorylation Stat3 rate bph [4
0-80] 

min-1 

Dephosphorylation Stat3 
rate 

bdeph 0.
1 

min-1 

Import to the nucleus rate 
(pStat3) 

bimp 0.
03 

min-1 

Export from the nucleus rate 
(Stat3) 

bexp 0.
09 

min-1 

Dephosphorylation Stat3 
rate in nucleus 

bdeph_nucleus 0.
046 

min-1 

Stat3 phosphorylation 
activation  

(Hill’s constant; half 
maximal activation) 

kA 1
7040 

mole
cules 

Dissociation constant for the 
enzyme-inhibitor by Socs3 (Hill’s 
constant; half maximal activation) 

kI 8
2680 

mole
cules 

Socs3 transcription 
activation by nuclear pStat1 (Hill’s 
constant; half maximal activation) 

kr 3
4000 

mole
cules 

Cooperativity of Socs1 
protein over Stat1 dimers 

q 4  

Cooperativity of Stat1 on 
Socs1 gene promoter 

n 4  
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Socs1 RNA degradation rate λr 0.
02 

min-1 

Socs1 protein degradation 
rate 

λR 0.
017 

min-
1 

Stat1 protein degradation 
rate 

λStat  1.
0·10-5 

min-1 
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Supplementary table 2. Initial conditions for Stat3 model 
simulations 

Name Sy
mbol 

          Value 

IL6 active receptors S 600-700 
molecules 

U-phosphorylated cytoplasmic 
Stat3  

Ac 7.5·104 
molecules 

Phosphorylated cytoplasmic 
Stat3  

Ap
c 

1 molecule 

Phosphorylated nuclear Stat3 Ap
n 

1 molecule 

U-Phosphorylated nuclear Stat3  An 2.5·104 
molecules 

Socs3 mRNA r 1 molecule 

Socs3 protein R 1 molecule 
 
Supplementary table 3. Parameters for type I IFN ODE model  

N
am

e 

S
y

m
b

ol
 V

al
u

e 

U
n

it
 

Translation rate for Stat1  bA 65 min-1 

Receptor production 
rate 

bS 0 min-1 

Basal Stat1 RNA BStat1 0.0062 min-1 

Transcription rate for 
Stat1  

ba 0.1 min-1 

Transcription rate for 
Socs1 

br 12.8 min-1 

Transcription rate for 
IRF1 

bf 2.7 min-1 

Translation rate for IRF1 bF 1.0·101 min-1 

Translation rate for 
Socs1 

bR 1.0·102 min-1 
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Phosphorylation Stat1 
rate 

bph 1.3·103 min-1 

Dephosphorylation 
Stat1 rate 

bdeph 0.036 min-1 

Import to the nucleus 
rate (pStat1) 

bimp 0.013 min-1 

Export from the nucleus 
rate (Stat1) 

bexp 0.048 min-1 

Stat1 phosphorylation 
activation  

(Hill’s constant; half 
maximal activation) 

kA 4680 molec
ules 

Dissociation constant for 
the enzyme-inhibitor by Socs1 
(Hill’s constant; half maximal 
activation) 

kI 82680 molec
ules 

Socs1 transcription 
activation by nuclear pStat1 
(Hill’s constant; half maximal 
activation) 

kr 23400 molec
ules 

IRF1 transcriptional 
activation by pStat1  

kf 7366 molec
ules 

Stat1 transcriptional 
activation by IRF1 

kF 1.3·105 molec
ules 

Cooperativity of Socs1 
protein over Stat1 dimers 

q 4  

Cooperativity of Stat1 
on Socs1 gene promoter 

n 3  

Cooperativity of Stat1 
on IRF1 gene promoter 

m 2  

Cooperativity of IRF1 on 
Stat1 gene promoter 

u 1  

Receptor 
internalization/degradation 
rate 

λS 0.0229 min-1 
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Socs1 RNA degradation 
rate 

λr 0.0347 min-1 

Socs1 protein 
degradation rate 

λR 0.0231 min-1 

IRF1 RNA degradation 
rate 

λf 0.0173 min-1 

IRF1 protein 
degradation rate 

λF 0.0116 min-1 

Stat1 RNA degradation 
rate 

λa 0.0058 min-1 

Stat1 protein 
degradation rate 

λStat  0.0007 min-1 

 
 
Supplementary table 4. Initial conditions for type I IFN ODE 

model simulations 

N
a

m
e 

S
y

m
b

ol
 V

a
lu

e 

Non-phosphorylated Stat1 A 1.0·105 
molecules 

IFN activation receptor S 1000 molecules 

Phosphorylated nuclear Stat1  Apn 1 molecule 

Phosphorylated cytoplasmic 
Stat1  

Apc 10 molecules 

Stat1 mRNA a 1 molecule 

IRF1 mRNA f 1 molecule 

Socs1 mRNA r 1 molecule 

IRF1 protein F 1 molecules 

Socs1 protein R 1 molecule 
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Supplementary table 5. Initial conditions for Foxo3a model 
dynamics exploration  

I 1*105-1*106 

P 1*105 
A 1*105 

Fdc 1000 
S 1*105 
Ap 0 
Sp 0 
Fn_akt 0 
Fc_akt 0 
Fn_sgk 0 
Fc_sgk 0 
D 5*106 

 

Supplementary table 6. Parameters for Foxo3a model 
dynamics exploration (adopted from [111])  

Sy
mbol  

Biological and mathematical 
explanation 

fixed parameters 

r1 dephosphorylation rate of Sgk  
ksp phosphorylation rate of Sgk 0,055 
I number of signal molecules  
ks Hill’s coefficient  
r10 dephosphorylation rate of Akt 0,5 
kap phosphorylation rate of Akt  
kA Hill’s coefficient  
kexp Foxo3a export from the nucleus to 

the cytoplasm  
 

kimp Foxo3a import from the cytoplasm to 
the nucleus 

0,182 

r8 Foxo3a degradation rate  0,1 
ka rate of phosphorylation of Foxo3a by 

pAkt 
0,5 

kf Hill’s coefficient  
kdeph dephosphorylation rate of Foxo3a 1 × 10-6 
ks rate of phosphorylation of Foxo3a by 

pSgk 
 

kg target gene transcription rate 0,95 
ke Hill’s coefficient  
r18 target gene degradation rate  
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λS degradation rate of Sgk  
λA degradation rate of Akt  
n Cooperativity of the activation of Sgk  
m Cooperativity of the activation of Akt  
j Cooperativity of the pAkt on the 

Foxo3a phosphosites 
6 

q Cooperativity of the pSgk on the 
Foxo3a phosphosites 

 

t Cooperativity of Foxo3a on the 
promoter of the target gene 
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Resumen en castellano 

Modelos de vías de señalización de citoquinas para el 

estudio de enfermedades autoinmunes 

Resumen 

La biología de sistemas abre nuevas fronteras en el estudio de 

enfermedades complejas como la Esclerosis Múltiple (EM). Las preguntas que 

era imposible contestar antes por falta de entendimiento y de una base 

metodológica adecuada, tales como el mecanismo molecular de acción de 

múltiples fármacos en las vías de señalización, son resueltas ahora mediante el 

uso del punto de vista de la Biología de Sistemas. Dichas vías de señalización 

tienen tanto un componente matemático como un componente biológico. La 

Biología de Sistemas moderna ha desarrollado diversos métodos para modelar 

las vías de señalización y predecir sus comportamientos en diferentes 

condiciones. 

Esta disertación se centra en algunos de los mecanismos moleculares 

clave en la transducción de señales durante el desarrollo y la progresión de la 

EM, elementos clave para lograr explicar el mecanismo de acción de los 

fármacos más usados en la EM. 

Mis principales hipótesis se basan en la presunción de que el principio 

más relevante de los sistemas biológicos son las conexiones entre las moléculas 

en lugar de las moléculas per se (p.e.: los bordes en lugar de los nodos en los 

modelos gráficos). Un ejemplo de esto se encuentra en los subtipos de células 

inmunes, que tienen distintas respuestas a los estímulos externos dado que 

interactúan entre ellas dentro de las células más que por sus componentes sean 

distintos. Otros ejemplos de esto son las cargas cinéticas conducidas por los 

cambios en la actividad tanslocalizadora de la proteína Stat1. 

Para probar mi hipótesis, he desarrollado dos modelos matemáticos 

distintos de la vía de señalización de IFNbeta: Booleano y ODE. La combinación 

de los dos modelos nos permite observar la vía de señalización desde dos 

puntos de vista distintos: en conexión con otras vías de señalización 

relacionadas y como un sistema cinético.  

Hemos detectado regímenes oscilatorios en la señalización de IFNbeta y 

sus parámetros clave, que determinan los cambios en los regímenes. Ambos 
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modeles fueron validados experimentalmente y nos condujeron a diversas 

predicciones que podrían ser clave para el desarrollo de nuevos fármacos o 

combinaciones de fármacos. Por ejemplo, el análisis de bifurcación del modelo 

cinético reveló la importancia de las propiedades de la translocación nuclear de 

la proteína Stat1 para el correcto funcionamiento de la vía de señalización. 

La translocación nuclear es un elemento clave conocido de este sistema 

pero nos focalizamos en los circuitos de conexión y desconexión y la 

importancia de la combinación de diferentes lugares de fosforilación para la 

transducción de señales. 

Los principales resultados de este trabajo son: 

1. Nuevos modelos de vías de señalización de IFNbeta y Akt/Sgk 

2. Predicción de prevalencia de los parámetros de translocación 

sobre las tasas de fosforilación de la vía de señalización IFNbeta 

3. Un nuevo método de aplicación del modelo Booleano a datos 

clínicos 

Concluyendo, la Biología de Sistemas es una herramienta poderosa para 

predecir nuevas propiedades de sistemas biológicos, que pueden ser usados en 

la práctica clínica, como biomarcadores dinámicos o señales de transducción 

diferenciales. 

Introducción 

Las vías de señalización en las enfermedades autoinmunes 

Las moléculas extracelulares, como las citoquinas, juegan un rol crucial en 

la transducción de señales. Una de las vías de señalización prototípicas más 

estudiadas es la del interferón tipo I. Ésta es una vía de señalización conducida 

por señales Jak-Stat. Los interferones tipo I (IFNalfa e IFNbeta) se combinan con 

el mismo receptor, llamado IFNAR y activan la vía de señalización Jak-Stat: Los 

IFNs tipo I se combinan con receptores IFNAR1, la fosforilación de las proteínas 

Jak1 y TYK2 transmiten la señal, la fosforilación de las proteínas Stat1 y Stat2 

permite la formación del compuesto ISGF3 (pStat1-pStat2-IRF9) que se combina 

con los receptores ISRE en el núcleo. Se probó que al mismo tiempo que el 

compuesto ISGF3 se forma, su estimulación también forma otros factores de 

transcripción que contienen Stat1 activado. El principal de ellos es GAF 

(homodimero Stat1-Stat1), el principal compuesto para la vía de señalización 

IFN tipo II (fig. 1). Existen distintas moléculas activadoras e inhibidoras, que 
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regulan la fosforilación de tirosina de Stat1. Su expresión se regula mediante el 

factor de transcripción GAF (pStat1-pStat1) al enlazarse con elementos GAS, que 

son presentados en el promotor Socs1. 

Dado que los interferones tipo I juegan un rol clave en la inmunidad 

innata y adaptativa, son usados frecuentemente como una terapia en el 

tratamiento de la EM. Interpretamos la respuesta transiente oscilatoria de la vía 

de señalización para evaluar la efectividad potencial del tratamiento con IFN-

beta en pacientes con EM. 

Aproximaciones a los modelos en biomedicina 

Los modelos dinámicos de inducción de IFN en la vía de señalización 

Jak/Stat basados en ecuaciones diferenciales ordinarias no lineares han sido 

usados previamente para estudiar el efecto del pre tratamiento con IFN en la 

respuesta del sistema inmune a la infección vírica [1][2] y la robustez de la vía 

de la señalización frente al ruido y las fluctuaciones de parámetros [3] entre 

otros problemas. Las aproximaciones a través de la Biología de Sistemas 

también han sido aplicadas a esta vía de señalización para estudiar su rol en 

ciertos mecanismos patológicos subyacentes en el comportamiento de las células 

cancerígenas [4] y su interacción con otras vías de señalización clave [1][5]. 

Estudios anteriores sugieren una combinación de espirales de feedback 

positivas y negativas, junto con la eventual degradación de la señal de IFN en el 

médium, lo que lleva a una respuesta transitiva oscilatoria en diversos 

componentes de la vía de señalización. Este comportamiento es constante con 

anteriores resultados numéricos encontrados en modelos puros [6], y va más 

allá de observaciones previas que indicaban una respuesta transitiva simple 

[3][7][8]. 

La regulación de la vía de señalización Jak-Stat parece ser más compleja 

de lo que se suponía previamente. Esta íntimamente regulada y conectada a 

través de otras vías de señalización [9]. Los IFNs de tipo 1 son usados 

comúnmente como tratamiento en diversas enfermedades crónicas como la 

hepatitis C, la leucemia y la EM. Mejorar nuestro entendimiento sobre el 

funcionamiento de esta vía de señalización, su procesamiento de información y 

su participación en la patogénesis de estas enfermedades o en sus respuestas a 

las distintas terapias mejoraría nuestra capacidad de gestionar dichas 

enfermedades. 



 

 124 

Otra vía de señalización crítica bien conocida para factores de 

señalización tróficos es PI3K. La vía de señalización PI3K-Akt es clave en la 

apoptosis que juega un papel clave en la longevidad y el cáncer. Es activada 

mediante factores de crecimiento como el Factor de Crecimiento de Insulina 

IGF1. IGF1 se enlaza con el dominio externo de los receptores RTK. La 

fosforilación del dominio interno del receptor conlleva el enlace de PI3K. Una 

vez activado, PI3K se enlaza con el fosfolípido de membrana PIP2, 

transformándolo en su forma activada PIP3. PIP3 activa la vía de señalización 

Akt mediante su fosforilación. pAkt activa muchos procesos celulares distintos 

promoviendo el crecimiento celular y previniendo la muerte celular. El principal 

mecanismo de PI3K-Akt es la activación de la síntesis de proteína mTOR y su 

translación. El otro mecanismo es la inhibición de la actividad apoptótica de 

Foxo3 mediante su fosforilación. 

La vía de señalización PI3K-Akt es crítica para los factores de crecimiento 

que promueven la supervivencia celular a través de la fosforilación de Foxo3. En 

esta vía, la translocación nuclear de Foxo3 después de su fosforilación es un 

paso clave para modular la expresión genética. La familia de factores de 

transcripción (TFs) Foxo (Forkhead Box, type O) causan cambios en la expresión 

génica, implementando un programa de respuesta al estrés celular, y un 

incremento en su actividad lleva a las intervenciones genéticas que extienden la 

longevidad en modelos de organismos. Foxo se conserva en todos los animales, 

desde los gusanos a los humanos. La fosforilación de proteínas Foxo en 

respuesta a los factores de crecimiento como IGF-I, eritropoyetina, factor de 

crecimiento de la epidermis o el factor de crecimiento de nervios causa la 

exclusión del núcleo [10]. Para muchas quinasas proteicas activadas por factores 

de crecimiento, los lugares específicos de fosforilación son conocidos. Éstas 

incluyen Akt y serum y quinasa inducible glucocorticoide (Sgk), que son 

activadas principalmente a través de la vía de señalización PI3K [11][12]. La 

fosforilación de Foxos en respuesta al estrés oxidativo envuelve a JNK y resulta 

en la importación de Foxo en el núcleo. 

Objetivos 

El objetivo general de la tesis es desarrollar un método para modelar vías 

de señalización y mejorar el entendimiento sobre como la información se 

transmite a través de ellas. Un objetivo secundario es usar estas vías para la 
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investigación traslacional, para lograr entender como los fármacos apuntan a 

estas vías e identificar biomarcadores sobre la respuesta a la terapia. Los 

objetivos específicos son: 

 

1. Construir, validar y comparar redes Booleanas de vías de 

señalización de IFN en células T y macrófagos usando líneas celulares humanas 

2. Desarrollar un modelo cinético de la vía de señalización de IFN 

tipo I y validarlo mediante datos experimentales obtenidos con líneas celulares 

de macrófagos de ratones 

3. Evaluar el papel de la traslación nuclear de Stat1 en la cinética 

de las vías de señalización, sus dinámicas y como responden a estímulos 

4. Desarrollar un modelo cinético de la vía de señalización Akt-

Foxo3a y validarla usando datos obtenidos mediante la experimentación 

Materiales y métodos 

Líneas celulares y muestras de sangre: 

Usamos la línea celular RAW 264.7 para obtener datos experimentales 

para la validación del modelo ODE. Para el modelo Booleano usamos líneas 

celulares Jurkat y humanas obtenidas de un banco de células ATCC. Los PBMCs 

de controles sanos fueron obtenidos en el Hospital Clínico de Barcelona. 

ELISA y citometría de flujo: 

Usamos la técnica de ELISA para medir la concentración de IFNbeta en el 

medio. Usamos ELISA intra celular para analizar las concentraciones de 

proteínas SOCS1 durante LPS y la estimulación mediante IFNbeta de células 

RAW en cultivos. 

qRT-PCR: 

Para medir los niveles de SOCS1 en mRNA usamos RT-PCR, y para 

validar los resultados de la citometría de flujo y ELISA usamos la técnica 

western blot estándar. 

ImageStreamX imaging system: Para determinar la cantidad de pStat1 

transportándose hasta el núcleo tras la inyección de IFNbeta en pacientes con 

EM utilizamos el sistema de imagen ImageStreamX que permite la visualización 

de la colocación de dos moléculas distintas usando anticuerpos conjugados con 

fluorocromo. Los núcleos fueron etiquetados con DAPI y Stat1 con anticuerpo 

anti humano de ratón Alexa Flúor 488 pStat1 (Y701). 
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Modelo ODE: 

El modelo y las simulaciones fueron diseñados en MATLAB utilizando el 

solucionador ODE15s (el código de Matlab es proporcionado en el material 

suplementario). El análisis de estabilidad del sistema dinámico fue realizado a 

través de códigos Matlab hechos a medida. 

Modelo Booleano: 

La red de conocimiento previa (PKN) fue construida usando data-mining 

y bases de datos existentes. Convertimos nuestros datos al formato MIDAS 

aceptado por datarail y describimos PKN en un fichero sif que puede ser 

visualizado usando Cytoscape. Utilizamos software CNOptR para encajar el 

modelo con los datos experimentales. Todos los scripts y las funciones fueron 

escritas en R. El paquete CellNoptR y otros fueron descargados de 

Bioconductor. Graphviz y Cytoscape fueron usados para la visualización de los 

modelos. 

Resultados 

Capítulo 1. Consideraciones teoréticas sobre las dinámicas de vías de 

señalización en células individuales y poblaciones de células 

Desarrollamos un modelo ODE de la vía de señalización IL6, que muestra 

las siguientes características: i) el modelo lleva por su propia naturaleza a un 

límite estable de ciclos con perfiles de periodos y fases que encajan con los 

valores observados experimentalmente; (ii) el límite de ciclos cuenta con un 

periodo pronunciadamente robusto para un largo rango de valores de 

parámetros, como la cantidad de citoquinas y el total de proteínas Stat; (iii) la 

estimulación de la vía de señalización mediante la adición súbita de inductor 

lleva a la sincronización de la población de células que ya estaban oscilando de 

manera dosis-dependiente. 

 Para entender mejor la naturaleza de la distribución calculamos el 

coeficiente de variación (CV) de los datos de citometría de un flujo celular único. 

CV se calcula como la desviación estándar dividida por la mediana para cada 

punto de tiempo medido. CV es la medida de la diferencia en la respuesta de las 

células a un estímulo en el mismo punto en el tiempo. Muestra que la 

desincronización de las células ocurre 15 minutos después de la estimulación. 

Todas las células son activadas al mismo tiempo, pero en distintos niveles 

(amplitud de respuesta). Entonces CV decrece para remontar de nuevo. El 
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segundo mínimo de CV en el minuto 200 corresponde al segundo pico de la 

respuesta mediana. Eso implica que las células ganan una mayor sincronía en el 

segundo pico que en el primero. Tras el segundo pico las células se de-

sincronizan de nuevo y vuelven a un estado estable. La cinética permanece igual 

con distintas concentraciones de IL6. 

En términos biológicos, la segunda ronda de activación celular 

corresponde en gran medida a la sincronización celular y a la actividad de la 

población como un sistema completo más que como células diferentes con 

respuestas individuales. Puede ser de importancia para generar la correcta 

respuesta inmune. 

Capítulo 2. Modelo booleano de la vía de señalización IFNbeta en 

humanos 

La vía de señalización IFNbeta interactúa con muchas vías de 

señalización virales y antibacteriales, convirtiéndose en parte de una red mayor. 

Hemos desarrollado una topología simplificada de dichas interacciones llamada 

la Red de Conocimiento Preliminar (PKN) en nuestro estudio. En esta PKN 

hemos etiquetado los estímulos, los mediadores y los genes así como las 

espirales de feedback y la comunicación entre las distintas vías de señalización 

en la red. El propósito del modelo Booleano es predecir nuevas interacciones 

entre las moléculas en la red. Resumiendo, nuestro objetivo ha sido el de 

construir redes celulares específicas de IFNs de tipo I y vías de señalización en 

células T y macrófagos. Usamos las células T y las líneas celulares similares a los 

macrófagos (Jurkat y THP1) para obtener los datos experimentales. Las células 

fueron testadas entonces con combinaciones de distintos estímulos e inhibidores 

y distintas fosfoproteínas, que fueron medidas a través de ensayos XMAP bead 

en estas condiciones. 

Los datos obtenidos de las líneas celulares y la adecuación del modelo son 

mostrados en las figuras suplementarias 1 y 2. Tras aplicar el algoritmo 

CellNoptR a PKN y los datos experimentales de dos líneas celulares distintas, 

obtuvimos los modelos lógicos y topológicos para cada línea celular. Los 

modelos pueden ser representados como scaffolds (fig. 1) que permiten evaluar 

las diferencias de señalización entre las líneas celulares Jurkat y THP1. 
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Figura 1. Scaffolds obtenidos desde modelos lógicos para las líneas 

celulares Jurkat (arriba) y THP1 (abajo) 

Dado que muchas de las principales vías de señalización son las mismas 

(lo cual puede esperarse dada la cercana relación entre todos los subtipos de 

células inmunes), hay claras diferencias entre los dos andamiajes. Mientras que 

en THP1 la conexión IFNbeta-Jak1-Stat2 es directa, en Jurkat Jak1 no está 

directamente activando Stat2. En este caso la activación viene dada por otros 

intermediarios. También, en THP1 vemos que la activación de CREB viene 

promovida por IFNbeta, mient4ras que en Jurkat no se aprecia este efecto. Hay 

otras diferencias en la señalización que podrían explicar algunas de las 

diferencias en la respuesta de los subtipos de células inmunes in vivo (ver la 

discusión). 

La diferencia en la vía de señalización IFN tipo I entre los subtipos de las 

células inmunes puede ser crucial para la respuesta celular al tratamiento con 

IFNbeta. Por esta razón hemos desarrollado un método para aplicar el mismo 

acercamiento hacia los datos clínicos de pacientes individuales. El reto de los 

datos clínicos radica en la diversidad entre individuos en la cohorte, lo que 

produce ruido en los datos. Por este motivo hemos propuesto los siguientes 

algoritmos para el análisis de las lecturas homogéneas de dos grupos de 

individuos. Aplicamos el paquete CellNoptR a los resultados estimulados de los 

experimentos, imitando los datos de los pacientes [13]. PKN y los datos 
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simulados fueron utilizados entonces para la optimización del método de 

promedio y comparación las redes topológicas resultantes. El método fue 

utilizado para promediar cadenas de bits correspondientes a cada modelo 

generado de cada set de datos. 

Capítulo 3. Modelo matemático IFN-beta 

Para identificar los elementos críticos de la vía de señalización 

responsables del comportamiento transitorio oscilatorio observado 

experimentalmente en macrófagos durante la estimulación con IFN-beta, 

construimos un modelo ODE basado en conocimiento biológico y datos 

experimentales (Fig. 2). Para minimizar su complejidad, hemos perseguido el 

sistema mínimo que explique las observaciones experimentales, en lugar de un 

sistema descriptivo completo [7]. 

 

 
Figura 2. Representación gráfica del modelo matemático de la vía de 

señalización IFN tipo I 

Hemos construido un sistema dinámico de la vía de señalización IFN-beta 

usando datos experimentales de proteínas y mediciones de concentraciones de 

mRNA in vitro y conocimiento biológico previo. El modelo esta basado en 

ecuaciones diferenciales ordinarias (ODE) y predice el comportamiento de la vía 

de señalización IFN-beta durante el tiempo. El modelo simple incluye las partes 

principales y más importantes de la vía, como la fosforilación de Stat1, la 
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inhibición la fosforilación de Stat1 y otras. El modelo se centró en los eventos 

auto-regulatorios de la vía. Verificamos los modelos mediante los experimentos 

con líneas celulares murinas RAW similares a macrófagos. 

Las ecuaciones diferenciales ordinarias para el modelo mostrado en fig.2 

son: 

 

 
 

Usamos diversos métodos para obtener los parámetros del modelo. 

Algunos de los parámetros fueron estimados utilizando datos experimentales 

provenientes de conocimiento previo mientras que otros fueron encajados 

manualmente. 

Hemos realizado análisis de tiempos de serie de la fosforilación de Stat1 y 

los niveles totales de Stat1 y Socs1 mediante ensayos de Luminex (Fig. 4) y los 

niveles de Stat1, IRF1 y SOCS1 mRNA tras la estimulación de IFN-beta 

mediante RT-PCR (Fig. 3). Entonces, comparamos los resultados experimentales 

con simulaciones de modelos matemáticos para evaluar la concordancia de las 

dinámicas en un nivel cualitativo 

dS=dt ¼ bs−λsS

dA=dt ¼ b expApn þ bdephApc

þ bAa−
bphSA=kA

1þ A=kA þ R=kIð Þq −λSTATA

dApc=dt ¼ bphSA=kA
1þ A=kA þ R=kIð Þq −bimpApc � bdephApc

−λSTATApc

dApn=dt ¼ bimpApc−b expApn−λSTATApn

dr=dt ¼ br
Apn=kr
� �n

1þ Apn=kr
� �n −λrr

dR=dt ¼ bRr−λRR

df =dt ¼ bf
Apn=kf
� �m

1þ Apn=kf
� �m −λf f

dF=dt ¼ bF f −λFF

da=dt ¼ ba
F=kFð Þu

1þ F=kFð Þu −λaaþ BSTAT
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Figura 3. Expresión génica de los niveles de Stat1, IRF1 y Socs1 tras la 

estimulación con IFN-beta y las correspondientes simulaciones del modelo ODE A-C) 

Las concentraciones de Stat 1, IRF1 y RNA de SOCS1 en lisados celulares fueron medidas 

mediante RT-PCR en las células Raw estimuladas con IFN-Beta (1000 unidades/ml) 

. Los experimentos descubrieron diversas características importantes de 

las dinámicas de señalización de Jak/Stat durante las ocho primeras horas 

después del tratamiento con IFN-beta. Por ejemplo, nuestros resultados 

mostraron la naturaleza oscilatoria de la activación de Stat1 (pStat1), con un 

rápido incremento de la concentración de cytosol pronto tras la estimulación 

(durante la primera hora), seguida por un segundo pico de concentración 

alrededor del minuto 200. Un objetivo crítico de la transcripción de Stat1 como 

Socs1 también mostró dos picos de expresión (correlacionados en el tiempo a los 

picos de pStat) alrededor de tras 90 y 250 mn tras la estimulación, mientras que 

otro objetivo importante, IRF1, exhibió una señal de plató en forma de campana 

de Bell. 
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Figura 4. Activación de la vía de señalización de IFN tipo I mediante IFN-beta 

en líneas celulares Raw y sus correspondientes simulaciones en el modelo ODE A-C) 

La concentración de proteínas pStat1, Stat1 y Socs1 en lisados celulares fue medida 

mediante Luminex, citometría de flujo o ELISA tras la estimulación con IFN-beta (1000 

unidades/ml). 

Capítulo 4. La translocación nuclear modela la cinética de la vía de 

señalización IFNbeta 

Realizamos simulaciones por ordenador usando diferentes condiciones y 

parámetros así como un análisis de sensibilidad y bifurcación del modelo 

desarrollado (fig. 5). El análisis de bifurcación indican la posible implicación de 

la translocación nuclear de pStat1 para la correcta actividad oscilatoria de las 

células una vez estimuladas in vitro con IFNbeta. Este descubrimiento nos llevó 

a la hipótesis de la alteración del proceso de translocación nuclear como 

respuesta a la terapia con IFNbeta. El análisis de bifurcación del modelo de la 

vía de señalización Stat1 identifica que la translocación al núcleo es un paso 

crítico.  

(A, C) La escala cromática representa el valor absoluto de la parte 

imaginaria de la ecuación de auto valores con parte máxima real, 

correspondiente al estado estable del sistema tras estimulación con IFN, para 

valores variantes de fosfo y defosforilación (bph y bdeph en el panel A), y ratios 

de importación/exportación nuclear (bexp y bimp en el panel B). Dos distintos 
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regímenes dinámicos pueden ser identificados con este análisis: el régimen 

oscilatorio amortiguado (en rojo) y el régimen sobre-amortiguado/no oscilatorio 

(en azul). 

 

 
Figura 5. Análisis de estabilidad de la solución en estado estable en espacios 

con parámetros de 2D  

 (B, D) Ejemplos de la evolución en el tiempo de pStat1 en ambos 

regímenes (amortiguado y sobre-amortiguado en las líneas rojas y azules, 

respectivamente), correspondientes a la posición de los parámetros de 

marcadores circulares para los dos diagramas mostrados en los paneles A y B, 

respectivamente. 

Para comprobar la hipótesis de que el proceso de translocación nuclear es 

crítico para la respuesta a la terapia con IFNbeta en pacientes con EM, 

evaluamos la translocación nuclear de Stat1 tras el tratamiento con IFNbeta en 

pacientes con EM usando la plataforma de imagen ImageStreamX. Ajustamos el 

protocolo estándar de la citometría de flujo usando PBMCs de los controles 

sanos. 

Obtuvimos PBMCs de controles y pacientes tratados con IFNbeta (n=4) en 

tiempos diferentes tras la inyección. Los resultados muestran diferencias 

significantes en el patrón de translocación nuclear entre individuos. 
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Capítulo 5. Modelo AKT-Foxo 

Para modelar la vía de señalización AKT/Sgk-Foxo3, hemos desarrollado 

un modelo ODE basado en conocimientos previos y datos experimentales. La 

característica principal de nuestro modelo es la exportación nuclear y la 

fosforilación de pFoxo3a mediante pAkt y pSgk tras la activación de la vía IGF1. 

La fosforilación de Foxo3a en los 3 principales fosfatos nos lleva a su 

desactivación y arresto en el citoplasma. Otras modificaciones post-

translacionales pueden llevar a su ubiquidad y su degradación (fig. 6). Los 

genes principales, regulados por Foxo3a TF, son Foxa2, las cyclinas D1, D2, D3, 

los inhibidores de quinasa dependiente de cyclina 1B y 1A, Bcl-6, Catalasa, el 

ligando Fas y otros. Nuestros modelos muestran la importancia del mecanismo 

de inhibición de Foxo3a para la reducción de ruido en el sistema. 

El gran interés en términos de tratamiento neuroprotectivo es la 

comunicación cruzada entre la vía de señalización PI3K y la activación de 

Foxo3a mediante ROS y su actividad apoptótica en condiciones de estrés 

oxidativo. La transportación nuclear es un parámetro crucial del sistema para 

mantener el equilibrio entre escenarios de supervivencia y apoptosis. 

 
Figura 6. El modelo de señalización Akt-Foxo3 y el transporte nuclear de Foxo3 

Discusión 

En la línea celular RAW, la expresión de los genes Socs1 y IRF1 cambia 

durante la primera respuesta al IFN, pero no existe expresión significante de 

algunos genes usados comúnmente como referencia (Mx1 y OAS1a). La 
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activación de la vía de señalización Jak-Stat mediante IFN-beta activa la 

fosforilación de Stat1, Stat2 y algunas otras proteínas. Estas proteínas activadas 

proceden principalmente de dos compuestos distintos: Stat1-Stat1 (compuesto 

AAF) y Stat1-Stat2-IRF9 (compuesto ISGF). Ambos compuestos activan 

numerosos genes en el núcleo, enlazándose a los elementos de regulación 

específicos en los promotores. El compuesto AAF se enlaza con los elementos 

GAS y el compuesto ISGF se enlaza con los elementos ISRE. Los genes 

contenedores de GAS (incluyendo Socs1 y IRF1) son responsables de la 

respuesta antibacteriana de las células y los genes contenedores de ISRE activan 

la respuesta antiviral de las células [15]. Basado en el background y nuestros 

resultados hemos hipotetizado que los macrófagos forman principalmente 

compuestos AAF que activan la ruta antibacterial (secuencias GAS), mientras 

que en las células T la situación es la opuesta, activando elementos ISFG3 y, por 

lo tanto, la respuesta antiviral. Por ejemplo, recientemente se mostró que la 

respuesta a IFN-beta difiere entre distintas células inmunes, y un análisis de los 

pacientes que no muestran respuesta a la terapia con IFN-beta indican una 

anulación diferencial de la vía de señalización IFN tipo I en los monocitos de 

estos pacientes [16]. 

La red de señalización de IFN afecta diferentes vías de compuestos, 

involucrando procesos como la diferenciación, la proliferación, la supervivencia 

y la muerte celular [17, 18], y además sirve como una terapia autoinmune [19]. 

IFN-beta es el tratamiento más común para la EM [20], y estudios genómicos 

previos han identificado ciertos genes pertenecientes a la vía de señalización 

IFN que están asociados con una falta de respuesta ante IFN-beta, sugiriendo 

que el background genético de ciertos individuos puede modular esta vía y, 

consecuentemente, la respuesta a la terapia, mediante perfiles transcripcionales 

específicos [22]. 

Nuestro estudio realza la importancia de identificar las dinámicas 

temporales de la concentración de ciertos elementos clave de la vía Jak-Stat, 

como la forma fosforilada de la proteína Stat1 y la expresión de los genes de 

transcripción estimulados con interferón como Socs1 y IRF1 durante las 

primeras 8 horas de la administración de IFN-beta. Catalogar estas dinámicas 

puede proveernos con biomarcadores moleculares tempranos que nos permitan 
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distinguir la falta de respuesta a la terapia con IFN-beta en ciertos pacientes con 

EM. 

Nuestro modelo también indica el rol crucial de la translocación nuclear 

de las moléculas de Stat1 para la correcta dinámica de la vía de señalización. Las 

alteraciones en estas características de translocación de Stat1 prevalecen sobre 

las tasas de fosforilación y defosforilación para determinar las dinámicas 

oscilatorias de la vía de señalización IFNbeta. En un pequeño grupo de 

pacientes con EM hemos mostrado que la tasa de translocación difiere 

substancialmente entre distintos individuos y puede determinar la diferencia de 

respuesta a la terapia o la progresión de la enfermedad. Los niveles de 

translocación de Stat1 pueden ser potenciales biomarcadores de la respuesta al 

tratamiento con IFNbeta y requieren más investigación. 

Otro ejemplo de la importancia de las características de transporte nuclear 

en la transducción de señales es el factor de transcripción Foxo3a. Foxo3a puede 

ser considerada como un regulador maestro de la vía PI3K-Akt, que determina 

la supervivencia o un escenario en el que la célula opta por la apoptosis. El 

modelo de señalización de Akt-Foxo3a es una herramienta interesante desde un 

punto de vista teorético y práctico.  

Desde el punto de vista teorético, la señalización de Akt-Foxo3a es un 

ejemplo de un grupo mayor de vías de señalización de transducción que tienen 

que ver con la toma de decisiones a nivel celular y que comparten un amplio 

número de pautas de comportamiento corrientes. La cinética de Akt-Foxo3a y 

su regulación y comunicación puede ser una tendencia común en toda la clase 

de vías de señalización. La razón de la estructura de inhibición y fosforilación 

nuclear es la resistencia al ruido de estos mecanismos de acción y múltiples 

posibilidades de ajuste y un cambio de comportamiento constante. 

Desde el punto de vista práctico, Foxo3a es cada vez más un blanco de 

investigación en la inmunología y la neurología [24, 25]. El nuevo fármaco 

neuroprotectivo prometedor, MS BN201, apunta a Sgk la quinasa de emisión de 

Foxo3a, modificando la actividad de Foxo3a. El entendimiento del 

comportamiento de Foxo3a en las células humanas en diferentes condiciones 

nos llevará a predecir los efectos de los nuevos tratamientos para la EM. 
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Conclusiones 

1. La población de células tiene la habilidad de coordinar y sincronizar su 

actividad en respuesta a la estimulación con IL-6. Esta habilidad es un atributo 

necesario de la señalización celular, que permite una correcta respuesta a los 

sistemas externos y provee una respuesta más robusta al entorno. 

2. Las células T y los macrófagos responden de manera diferente a IFNbeta, 

IFNgamma o a agentes infecciosos por las diferencias cualitativas en sus redes 

de señalización. Estas diferencias llevan a un amplio abanico de 

comportamientos de las células del sistema inmune en respuesta a distintos 

retos y al tratamiento con IFNbeta en enfermedades autoinmunes. 

3. La señalización de IFNbeta en los macrófagos toma la forma de dinámicas 

oscilatorias transitorias en la vía JAK-Stat, cuyas propiedades específicas de 

relajación determinan la longitud de la respuesta celular a la citoquina, lo cual 

tiene una implicación en el resultado de la respuesta inmune. 

4. La translocación nuclear de pStat1 modela las dinámicas del sistema de 

señalización JAK-Stat y lleva al cambio entre sistemas oscilatorios amortiguados 

y sobre-amortiguados. Individuos con distintas respuestas clínicas al 

tratamiento con IFNbeta mostraron diferencias en las dinámicas de traslocación 

nuclear de pStat1, convirtiéndolo en un biomarcador muy prometedor sobre la 

respuesta a esta terapia. 

5. La inhibición mediante fosforilación de pFoxo3a es un interruptor molecular, 

que constriñe la regulación de la actividad transcripcional de Foxo3a. El 

transporte nuclear de Foxo3a es un buffer cinético de la actividad de Foxo3 y 

mantiene el equilibrio entre los mecanismos de supervivencia celular y 

represión de tumor. Este mecanismo de cambio está controlado por la acción 

coordinada de Akt y Sgk en la vía de señalización PI3K. 
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Transient oscillatory dynamics of interferon beta
signaling in macrophages
Inna Pertsovskaya1†, Elena Abad2,3†, Núria Domedel-Puig3, Jordi Garcia-Ojalvo2,3 and Pablo Villoslada1*

Abstract

Background: Interferon-beta (IFN-beta) activates the immune response through the type I IFN signaling pathway.
IFN-beta is important in the response to pathogen infections and is used as a therapy for Multiple Sclerosis. The
mechanisms of self-regulation and control of this pathway allow precise and environment-dependent response of
the cells in different conditions. Here we analyzed type I IFN signaling in response to IFN-beta in the macrophage
cell line RAW 264.7 by RT-PCR, ELISA and xMAP assays. The experimental results were interpreted by means of a
theoretical model of the pathway.

Results: Phosphorylation of the STAT1 protein (pSTAT1) and mRNA levels of the pSTAT1 inhibitor SOCS1 displayed
an attenuated oscillatory behavior after IFN-beta activation. In turn, mRNA levels of the interferon regulatory factor
IRF1 grew rapidly in the first 50–90 minutes after stimulation until a maximum value, and started to decrease slowly
around 200–250 min. The analysis of our kinetic model identified a significant role of the negative feedback from
SOCS1 in driving the observed damped oscillatory dynamics, and of the positive feedback from IRF1 in increasing
STAT1 basal levels. Our study shows that the system works as a biological damped relaxation oscillator based on a
phosphorylation-dephosphorylation network centered on STAT1. Moreover, a bifurcation analysis identified
translocation of pSTAT1 dimers to the nucleus as a critical step for regulating the dynamics of type I IFN pathway in
the first steps, which may be important in defining the response to IFN-beta therapy.

Conclusions: The immunomodulatory effect of IFN-beta signaling in macrophages takes the form of transient
oscillatory dynamics of the JAK-STAT pathway, whose specific relaxation properties determine the lifetime of the
cellular response to the cytokine.

Keywords: Type I interferon pathway, Interferon-beta, Ordinary differential equation, Oscillations, Multiple sclerosis,
Immunotherapy

Background
Type I interferons, such as interferon alfa and beta, are
cytokines that represent a first-line endogenous defense
mechanism in response to viruses and bacterial infec-
tions, are secreted by many cell types (e.g. lymphocytes,
macrophages and endothelial cells) and they are used as
a therapy in Multiple Sclerosis (MS).
The canonical type I interferon (IFN) pathway involves

different signaling cascades, one of which is the JAK/
STAT pathway. This pathway is composed by several
steps, which include receptor binding (IFNR1 and 2),

transformation of the latent transcription factor (a pro-
tein of the STAT family) into its active form by phos-
phorylation, nuclear migration of the transcription factor
(TF), binding of the TF to target promoters, and expres-
sion of their corresponding genes [1] (Figure 1). Previous
studies have shown that phosphorylated STAT1 forms
other TF complexes in response to type II interferons,
the most important of which is a STAT1-STAT1
homodimer, known as GAF, that binds to IFN Gamma-
activated sequence (GAS) elements [2].
The target genes of the IFN-beta pathway can be di-

vided into three categories according to the type of acti-
vating transcription factor: 1) the ISGF3 complex
activates genes containing an ISRE binding site in their
promoter (e.g. ISG15, Mx1, OAS1, IRF7). 2) The GAF
complex activates genes containing a GAS binding site
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in their promoter, such as SOCS1 and IRF1 [3,4]. 3) A
third class of STAT protein complexes activates other
canonical pathways that exhibit crosstalk with the JAK/
STAT pathway (such as PI3K, NFkB, MAPK) [5]. Re-
cently it was shown that different immune cell subtypes
respond differently to IFN-beta induction through acti-
vation of these different types of genes [6].
Different proteins regulate STAT1 phosphorylation.

Importantly, a negative feedback loop upon STAT1 acti-
vation coexists with a positive feedback mechanism.
First, the phosphorylation of STAT1 is inhibited by its
inhibitor SOCS1 [7]. The SOCS1 protein then inhibits
STAT1 phosphorylation at the kinase level. Besides this
negative loop based on SOCS1, STAT1 is a subject to
positive regulation via the TF IRF1, whose transcription
is induced by activated STAT1. IRF1 promotes the ex-
pression of the STAT1 gene at the transcriptional level.
Given the existence of these multiple feedback loops, a
mathematical modeling of the system would help provide
an understanding of the response to type I IFN-beta.
Here we analyzed the type-I IFN-beta signaling pathway

in macrophages, showing that the response of this path-
way to IFN-beta stimulation takes the form of transient
oscillations in STAT1 phosphorylation. We characterized
and identified the critical elements governing the transient

dynamics of IFN activation, and examined the influence of
this dynamical regime in the response to IFN-beta.
Dynamical models of IFN induction of the JAK/STAT

signaling pathway based on nonlinear ordinary differen-
tial equations, have been previously used to study the ef-
fect of IFN pre-treatment on the response of the
immune system to virus infection [8,9] and the robust-
ness of the pathway to noise and parameter fluctuations
[10], among other problems. Systems biology approaches
have also been applied to this pathway in order to exam-
ine its role in certain pathological mechanisms under-
lying the behavior of cancer cells [11], and its interaction
with other key signaling pathways [8,12]. Here we com-
bine our theoretical model with experimental observa-
tions. Our results show that a combination of positive
and negative feedback loops, together with the eventual
degradation of the IFN signal in the medium, leads to a
transient oscillatory response in several components of
the pathway. This behavior is consistent with previous
numerical results found in pure modeling studies [13],
and goes beyond previous observations that indicate a
simpler transient response [10,14,15]. We interpret the
transient oscillatory response of the pathway in terms of
the potential effectiveness of IFN-beta treatment in MS
patients.

Figure 1 The canonical type I and type II IFN signalling pathways. The plot represents the canonical IFN pathways and the cross-talk
between them, including the different pSTAT dimers formed after stimulation.

Pertsovskaya et al. BMC Systems Biology 2013, 7:59 Page 2 of 12
http://www.biomedcentral.com/1752-0509/7/59



 

 146 

 
  

Results
IFN-beta induces a transient oscillatory activation of the
STAT1 pathway
It is well known that microbial and viral infections in-
duce endogenous IFN-beta release by macrophages as
part of the immune cell system response. We could ob-
serve IFN-beta production accompanied with significant
increases in levels of phosphorylated STAT1 in the mur-
ine macrophage-like cell line RAW 264.7 stimulated
with lipopolysaccharide (LPS) endotoxin and also, with
viral fragments (poly(I:C)) (data not shown). In this
study we focused on STAT1 signaling by IFN-beta
stimulation in macrophages by challenging the RAW cell
line with increasing concentrations of mouse IFN-beta.
We observed that phosphorylated STAT1 levels in-

creased rapidly after IFN-beta induction (Figure 2A).
The increase was significant as soon as 2 min after
stimulation and reached a maximum at 10–15 min after
stimulation, followed by a decrease that correlates with a

substantial increase in the concentration of the SOCS1
protein (Figure 2C). A second, smaller peak was visible
at around 180 min, followed by a subsequent decrease
back to the baseline level after around 360 min. The
quick decrease of phosphorylated STAT1 levels is in
agreement with previous studies pointing to the activa-
tion of the negative feedback loop mediated by SOCS1
protein, which suppresses the phosphorylation of JAK1
and TYK2 proteins and prevents the formation of
STAT-dimers [16]. The total level of STAT1 protein, on
the other hand, is maintained practically constant until
around 200 min after stimulation, after which it starts
to increase slowly until the end of the experiments
(Figure 2B). STAT1 mRNA levels grew quickly and
continuously, starting sharply at around 75 min and
leveling off after 200 min (Figure 3A). This increase in
the mRNA level of STAT1, as soon as 1 hour after the
induction of response by IFN-beta, agrees with the in-
fluence of the positive feedback loop IRF1 – STAT1

Figure 2 Activation of type I IFN pathway by IFN-beta in Raw cell line and the corresponding simulations from the ODE model. A-C)
pSTAT1, STAT1 and SOCS1 protein concentration in cell lysates were measured by Luminex, Flow cytometry or ELISA after stimulation with IFN-
beta (1000 units/ml). The data was normalized to the maximum level. A) pSTAT1 protein concentration in the Raw cells stimulated with IFN-beta;
(B) Total STAT1 protein concentration in the Raw cells stimulated with IFN-beta; C) SOCS1 protein concentration in the Raw cells stimulated with
IFN-beta. We plot here one out of three independent experiments, which were performed in duplicates. D-F) Model simulation and sensitivity
analysis with ± 20% change for all parameters (shaded areas) (D: pSTAT1; E: STAT1; F: SOCS1).
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[17] and confirms the importance of this circuit for the
pathway dynamics.
To analyze the expression of regulatory genes of the

type I IFN pathway, we measured the levels of two
downstream STAT1 genes, SOCS1 (responsible of the
negative feedback) and IRF1 (mediator of the positive
feedback). We observed an oscillatory behavior of
SOCS1 mRNA during the first 360 minutes after stimu-
lation, with clear peaks at around 90 min and 250 min,
before returning to baseline levels (Figure 3C). On the
other hand, IRF1 shows different dynamics, with its con-
centration raising quickly between 30 and 120 min, then
reaching a plateau and decreasing more slowly after
250 min (Figure 3B). We also quantified the expression
levels of other downstream effector IFN-induced genes,
such as MX1 and OAS1b, but did not identify any acti-
vation of their transcription in the RAW 264.7 cell line
after IFN-beta stimulation (data not shown). These ob-
servations are in agreement with a differential signal
transduction mechanism in macrophages when com-
pared to canonical JAK-STAT pathway in lymphocytes
[4,18]. Our observations show that in the RAW 264.7

cell line the main activated genes were the ones con-
trolled by the STAT1-STAT1 homodimer (IRF1 and
SOCS1) and containing GAS elements in their promoter
region. These genes are mainly responsible for the anti-
microbial activity of the cells [19].

Modeling the oscillatory signaling of type I IFN pathway
In order to identify the critical elements of the signaling
pathway that are responsible for the transient oscillatory
behavior observed experimentally in macrophages upon
IFN-beta stimulation, we built an ODE model based in
biological knowledge and experimental data (Figure 4).
To minimize its complexity, we pursued the minimal
system explaining the experimental observations, instead
of a full descriptive system [14]. The model was not used
to reproduce sustained endogenous IFN activation after
viral infection, although it could be applied to that
scenario.
The first ingredient of our model is the binding of

IFN-beta to the receptor (with the concentration of acti-
vated receptor being represented by the variable S
below). The activated receptor induces phosphorylation

Figure 3 Gene expression levels of STAT1, IRF1 and SOCS1 after IFN-beta stimulation and the corresponding simulations from the ODE
model. A-C) STAT1, IRF1 and SOCS1 RNA protein concentration in cell lysates were measured by RT-PCR in the Raw cells stimulated with IFN-beta
(1000 units/ml); A) STAT1 RNA levels in the Raw cells stimulated with IFN-beta; B) IRF1 RNA levels in the Raw cells stimulated with IFN-beta; C) SOCS1
RNA levels in the Raw cells stimulated with IFN-beta. We plot here one out of three independent experiments, which were performed in duplicates.
D-F) Model simulation and sensitivity analysis with ± 20% change for all parameters (shaded areas) for STAT1 (D), IRF1 (E), and SOCS1 (F) RNA levels.
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of the STAT1 protein (represented by A). Phosphory-
lated STAT1 translocates from the cytoplasm (Apc) to
the nucleus (Apn) (Figure 4). In the nucleus, pSTAT1
complexes activate the transcription of SOCS1 and IRF1
genes. SOCS1 mRNA (r) is translated into SOCS1 pro-
tein (R), which inhibits further phosphorylation of
STAT1. IRF1 mRNA (f ) is translated to IRF1 protein (F),
which activates the transcription of the STAT1 gene
(with STAT1 mRNA being denoted by a). Each of the
species has a certain linear degradation rate. We also in-
troduced receptor internalization through an effective
degradation (or deactivation) term, consistent with the
literature [20]. With those ingredients, the model reads:

dS=dt ¼ bs−λsS

dA=dt ¼ b expApn þ bdephApc

þ bAa−
bphSA=kA

1þ A=kA þ R=kIð Þq −λSTATA

dApc=dt ¼ bphSA=kA
1þ A=kA þ R=kIð Þq −bimpApc � bdephApc

−λSTATApc

dApn=dt ¼ bimpApc−b expApn−λSTATApn

dr=dt ¼ br
Apn=kr
� �n

1þ Apn=kr
� �n −λrr

dR=dt ¼ bRr−λRR

df =dt ¼ bf
Apn=kf
� �m

1þ Apn=kf
� �m −λf f

dF=dt ¼ bF f −λFF

da=dt ¼ ba
F=kFð Þu

1þ F=kFð Þu −λaaþ BSTAT

The parameters correspond to transcription rates, in-
cluding basal transcription of STAT (ba, br, bf, BSTAT),

translation rates (bA, bR, bF), cooperativity indexes (Hill
coefficients, n, m, q, u), degradation rates (λi), receptor
activation (bS) and deactivation (λS) rates, phosphoryl-
ation and dephosphorylation rates (bph, bdeph), and
nucleo-cytoplasmic transport rates (bimp, bexp). We ad-
justed some of the parameters using published data
sources (Table 1), and the rest were estimated by manual
fit of the model dynamics to the experimental data
(Table 2) [21]. Initial conditions are listed in Table 3.
The model implements the SOCS1-mediated negative
feedback loop on pSTAT1 by means of a competitive in-
hibition term in the expression determining the phos-
phorylation rate of STAT1 in the equation for Apc, with
the parameter kI quantifying the half-maximal inhibition
threshold and the exponent q defining the sharpness of
the inhibition. Similarly, the positive feedback through
IRF1 is described by the transcription activation term of
STAT1 mRNA in the equation for a, with kF representing
the half-maximal activation threshold.
The right panels in Figures 2 and 3 show simulation

results corresponding to the experimental observations
presented in the left panels. For comparative purposes,
both the experimental and model variables were shown
in relative concentrations dividing by their maximum
value along the time series. We also performed a sensi-
tivity analysis by simulating changes of ±20% for every
model parameter, leading to deviations from the basal
curve falling within the shaded areas shown in Figures 2
and 3.
The model simulations reproduce the main features ob-

served experimentally, such as the first and very fast peak
of phosphorylated STAT1 shortly after IFN-beta stimula-
tion, and the second peak of smaller amplitude at around
200 min (Figure 2D). The concentration of total STAT1
protein is almost constant during the first 200 min, after
which the protein level increases slowly (Figure 2E), fol-
lowing the increased expression level of STAT1 mRNA,
which mRNA grows slowly starting at around 50 min after
stimulation (Figure 3D). In turn, SOCS1 mRNA levels

Figure 4 Mathematical model of type I IFN signaling pathway.
Graphical representation of the biological processes modeled.

Table 1 Parameter values obtained from the literature

Parameter Value Reference

bdeph 15 min half-life [36,37]

n 3 [38]

u 1 [39]

λr 2.82 hour half-life This work

λf 1.23 hour half-life [40]

A initial 105 molecules/cell [41]

S initial 700-900 receptors/cell [42]

λSTAT protein 24 hour half-life [43]

λF 30 min half-life [44]

f initial 1 molecule/cell [45]
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increase from the beginning, showing a first peak at
around 90 min and a second smaller peak following the
second peak of phosphorylated STAT1 at around 250 min
(Figure 3F), in agreement with the experiments. Again
similarly to the experiments, IRF1 mRNA levels show a
bell-shaped time course (Figure 3E), with an increase re-
sembling that of SOCS1 mRNA levels (Figure 3F) and
remaining high from around 90 min to 250 min, when
IRF1 mRNA levels decrease to half their maximum value
at around 350 min.

The model allows us to interpret the second peak ob-
served experimentally in pSTAT1 and SOCS1-mRNA
levels in terms of an underlying damped oscillatory dy-
namics. We now ask what are the mechanisms leading
to oscillations, on the one hand, and to damping, on the
other hand. A well-known gene circuit architecture that
leads to oscillatory behavior is a combination of positive
and negative feedback loops [22]. As mentioned above,
our model contains a negative feedback loop mediated
by SOCS1. We can examine in the model the effect of
not having this feedback by eliminating SOCS1 signaling
from the model. The results show that this negative
feedback is required for the oscillatory behavior to arise:
its absence leads to a transient plateau of high pSTAT1
levels during the first 4–5 h of IFN treatment (Figure 5B),
which contrasts with the relaxation oscillator behavior
obtained for our basal parameter values (Figure 5A),
which is a closer match to the experimental observations
(Figures 2–3). The model also contains a positive feed-
back loop mediated by IRF1. This loop, however, does
not appear to be crucial for the oscillatory behavior of
pSTAT1 (Figure 5C), and is only necessary to reproduce
the experimentally observed increase of STAT1 expres-
sion (Figure 3A D).
The combination of negative and positive feedbacks

discussed in the preceding paragraph would naturally
lead to sustained oscillatory behavior. The experimental
observations shown in Figures 2 and 3, however, reveal a
strong damping of the oscillations that lead to their sud-
den disappearance. This behavior is not consistent with
the standard damping undergone by nonlinear oscilla-
tions when they become unstable via a Hopf bifurcation,
in which case the damping is either slow close to the bi-
furcation, or the damped oscillations are too weak to
begin with far away from the bifurcation. A key distinct-
ive characteristic of our model is the fact that the exter-
nal input to which the system is subject (mediated by
the activated receptors represented by S in the model
above) decays monotonously due to receptor inactiva-
tion by internalization or degradation [20,23]. Assuming

Table 2 Parameters for type I IFN ODE model

Name Symbol Value Unity

Translation rate for STAT1 bA 65 min-1

Receptor production rate bS 0 min-1

Basal STAT1 RNA BSTAT1 0.0062 min-1

Transcription rate for STAT1 ba 0.1 min-1

Transcription rate for SOCS1 br 12.8 min-1

Transcription rate for IRF1 bf 2.7 min-1

Translation rate for IRF1 bF 1.0 · 101 min-1

Translation rate for SOCS1 bR 1.0 · 102 min-1

Phosphorylation STAT1 rate bph 1.3 · 103 min-1

Dephosphorylation STAT1 rate bdeph 0.036 min-1

Import to the nucleus rate (pSTAT1) bimp 0.013 min-1

Export from the nucleus rate (STAT1) bexp 0.048 min-1

STAT1 phosphorylation activation (Hill’s
constant; half maximal activation)

kA 4680 molecules

Dissociation constant for the enzyme-
inhibitor by SOCS1 (Hill’s constant; half
maximal activation)

kI 82680 molecules

SOCS1 transcription activation by nuclear
pSTAT1 (Hill’s constant; half maximal
activation)

kr 23400 molecules

IRF1 transcriptional activation by pSTAT1 kf 7366 molecules

STAT1 transcriptional activation by IRF1 kF 1.3 · 105 molecules

Cooperativity of SOCS1 protein over
STAT1 dimers

q 4

Cooperativity of STAT1 on SOCS1 gene
promoter

n 3

Cooperativity of STAT1 on IRF1 gene
promoter

m 2

Cooperativity of IRF1 on STAT1 gene
promoter

u 1

Receptor internalization/degradation rate λS 0.0229 min-1

SOCS1 RNA degradation rate λr 0.0347 min-1

SOCS1 protein degradation rate λR 0.0231 min-1

IRF1 RNA degradation rate λf 0.0173 min-1

IRF1 protein degradation rate λF 0.0116 min-1

STAT1 RNA degradation rate λa 0.0058 min-1

STAT1 protein degradation rate λSTAT 0.0007 min-1

Table 3 Initial conditions for type I IFN model simulations

Name Symbol Value

Non-phosphorylated STAT1 A 1.0 · 105 molecules

IFN activation receptor S 1000 molecules

Phosphorylated nuclear STAT1 Apn 1 molecule

Phosphorylated cytoplasmic STAT1 Apc 10 molecules

STAT1 mRNA a 1 molecule

IRF1 mRNA f 1 molecule

SOCS1 mRNA r 1 molecule

IRF1 protein F 1 molecules

SOCS1 protein R 1 molecule
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a linear decay, the external input decreases exponentially
(Figure 6A), taking the system quickly out of the oscil-
latory regime and thus leading to a strong damping of
the oscillations, as seen experimentally. Exploring sys-
tematically the dependence of the dynamics on the re-
ceptor level, we observed that as the initial levels of
activated receptor decrease (Figure 6A) the second peak of
both pSTAT1 (Figure 6B) and SOCS1 mRNA (Figure 6C)
levels diminish, with the SOCS1 expression peak dis-
appearing earlier than the pSTAT1 concentration peak.

Bifurcation analysis of the STAT1 pathway model
identifies translocation to the nucleus as a critical step
The temporal evolution of the phosphorylation of
STAT1 can be crucial for understanding the response to
IFN-beta therapy, and may provide an explanation of the
lack of response to this therapy in some cases [24]. In
particular, transient oscillatory dynamics could provide a
way for the STAT1 pathway to increase the duration

of its response to IFN-beta in a physiological manner
(i.e. without a period of sustained constant activation
as in Figure 5B). In order to establish the conditions
under which this transient dynamics exists, we ana-
lyzed the behavior of the system for combinations of
two-parameter pairs, distinguishing between the param-
eter values for which pSTAT dynamics is overdamped
(and thus non-oscillatory) and those for which the oscilla-
tions are underdamped (which corresponds to the experi-
mental situation reported above). We focused on the
phosphorylation and dephosphorylation rates (bph and
bdeph) and export and import rates (bexp and bimp). These
parameters represent crucial steps to regulate the nuclear
availability of transcription factors such as pSTAT dimers,
and thus also the expression of downstream genes.
In order to identify mathematically the two different

dynamical regimes mentioned above, we examined the
stability properties of the steady state of the ODE system
for a constant activated receptor level (S) equal to its

Figure 5 Type I IFN pathway model simulations during the first 8 hours after IFN-beta stimulation. (A) Model simulations showing
oscillations of total (nuclear plus cytoplasmic) pSTAT1 protein, SOCS1 mRNA expression (dashed line) and STAT1 mRNA expression (dotted line).
(B) Corresponding simulations where the SOCS1-mediated negative feedback is disrupted by assuming an infinite value of the repression
threshold kI. (C) Corresponding simulations not including the IRF1-mediated positive feedback, by assuming a zero value of the STAT1 activation
threshold kF (which leads to saturation of the corresponding Hill function, so that the dependence of a expression on F is removed).
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initial value. In that context, the underdamped/oscillatory
regime is characterized by a steady state that takes the
form of an unstable focus (i.e. the stability eigenvalue with
maximum real part has negative imaginary part), whereas
the steady state in the overdamped/non-oscillatory regime
is a node (the stability eigenvalue with maximum real part
has no imaginary component). In that way, by calculating
the imaginary part of the stability eigenvalue of the steady
state with maximum real part, we can identify the param-
eter regions in which the pathway exhibits a transient os-
cillatory response to IFN-beta. The result, for the
parameter space formed by the phosphorylation and de-
phosphorylation rates bph and bdeph, is shown in Figure 7A.
This figure shows, on the one hand, the prevalence of os-
cillations for a wide range of these parameters, and on the
other hand it tells us the conditions for which transient
oscillations exist. For instance, increasing sufficiently the
dephosphorylation rate can transform an oscillatory

regime into a non-oscillatory one, and reversely, by mak-
ing the phosphorylation rate large enough the system can
be made to exhibit transient oscillations. Figure 7B shows
examples of these two dynamical regimes for two specific
parameter sets within this phase diagram.
We also tested the influence of the import rate of

pSTAT1 molecules into the nucleus, and of the export
rate of STAT1 from the nucleus into the cytosol. By tun-
ing both parameters (bexp and bimp) simultaneously, we
observed again that the transient oscillatory regime is
prevalent in this system (Figure 7C). We found that the
oscillatory regime is associated with high nuclear import
rates in combination with high export rates. For high ex-
port rates but low import rates, the pathway exhibits an
overdamped (non-oscillatory) response, showing a
sustained plateau in the transient level of pSTAT1 (dis-
continuous blue line in Figure 7D). Conversely, for high
import rates and low export rates the response is also

Figure 6 Influence of activated receptor level on the transient oscillatory dynamics. (A) Time evolution of the activation level of type I IFN
receptors in the model (S) by stimulation with IFN-beta (added at t = 0) for different initial levels (in red, S = 500 molecules at t = 0). (B, C) pSTAT1
(B) and SOCS1 mRNA (C) dynamic responses for varying levels of initial receptor activation as in panel A (lower lines in B and C correspond to
lower lines in A).
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overdamped, but with a faster decay (continuous blue
line in Figure 7D).

Discussion
The aim of this work was to characterize the dynamics
of the key components of the type I IFN-beta signaling
pathway in macrophage RAW 264.7 cells. This system
robustly translates extracellular chemical signals through
cell membrane receptors, leading to phosphorylation of
the STAT transcription factors, which induce gene ex-
pression of multiple targets. JAK/STAT signaling directly
regulates the immune system response under viral or
bacterial infection, and is also important in auto-
immune diseases and cancer treatments. The IFN sig-
naling network affects different complex pathways,
involving processes such as differentiation, proliferation,
survival and cell death. Importantly, it is a canonical

pathway involved in first-line treatments of multiple scler-
osis as a main target of the IFN system [25] but, also, af-
fects different complex pathways, involving processes
such as differentiation, proliferation or survival and
cell death [26,27].
In this paper, we used a combination of experimental

approaches in order to obtain a quantitative picture of the
response of the JAK/STAT signaling pathway to IFN-beta
stimulation, and to identify the most relevant aspects of
its dynamics to be modeled with kinetic equations. Experi-
ments uncovered several important features of JAK/STAT
signaling dynamics during the first eight hours after treat-
ment with IFN-beta. For example, our results showed the
transient oscillatory nature of STAT1 activation (pSTAT1),
with a fast increase in cytosol concentration early after
stimulation (within the first hour), followed by a second-
ary concentration peak at around 200 min. A key STAT1

Figure 7 Stability analysis of the steady state solution in two 2D parameter spaces. (A, C) The color scale represents the absolute value of
the imaginary part of the stability eigenvalue with maximum real part, corresponding to the steady state of the system after IFN stimulation, for
varying phospho/ dephosphorylation rates (bph and bdeph, panel A), and nuclear export/import rates (bexp and bimp, panel B). Two distinct
dynamic regimes can be identified with this analysis: the damped oscillatory regime (shifted to red) and the overdamped/ non-oscillatory regime
(blue). (B, D) Examples of pSTAT1 time evolution in both regimes (damped and over-damped in red/blue lines, respectively) corresponding to
parameter position of circle markers for the two diagrams shown in panels A and B, respectively.
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transcription target such as SOCS1 also showed two peaks
of expression (correlated in time to the pSTAT peaks) at
around 90 min and 250 min after stimulation, whereas an-
other important target, namely IRF1, exhibited a more
bell-shaped plateau signal, respectively (Figures 2 and 3).
Our model simulations also exhibit a transient oscillatory
behavior in pSTAT1 concentration, and reveal that the os-
cillations require the presence of a negative feedback loop
on STAT1, mediated by its phosphorylation inhibitor
SOCS1. Previous mathematical models of the type I and
type II IFN pathways have suggested the possibility that
STAT1 pathway has an oscillatory behavior [9,13] and in-
dicated the importance of the SOCS1 negative feedback
[10,14,28,29]. Another factor that has been proposed to be
important in defining the response to IFN is the basal
level of receptors of the JAK/STAT pathway [30]. In our
model this aspect was also taken into account, showing
clear effects on the dynamics of the pathway response
(Figure 6). Going beyond previous models, our theoretical
results show that the physiological regime of the pathway’s
response to IFN-beta takes the form of damped oscilla-
tions that can be identified by means of a stability analysis
of the model’s steady state solution. This analysis shows
that processes such as the phosphorylation and dephos-
phorylation of pSTAT1, and the transport of STAT1 be-
tween the nuclear and cytosol compartments, can make
the pathway switch between underdamped and
overdamped oscillatory regimes [31].

Implications of the type I IFN signaling dynamics in
autoimmune diseases
IFN-beta is the most common treatment for MS [32],
exerting a pleiotropic immunomodulatory activity not
well understood [25]. IFN-beta treatment decreases acti-
vation, proliferation, cytokine release, and migratory
properties of activated T cells, diminishing their ability
to enter and damage the brain tissue. In spite of these
properties, up to 40% of patients do not respond to IFN-
beta therapy, which represents a significant health prob-
lem [24]. Previous genomic studies have identified certain
genes belonging to the IFN pathway that are associated
with a lack of response to IFN-beta, suggesting that the
genetic background of certain individuals may modulate
this pathway, and consequently the response to therapy,
by specific transcriptional profiles [33]. For example, it
was recently shown that the response to IFN-beta differs
between immune cells, and an analysis of non-responders
to IFN-beta therapy indicates an impairment of the type I
IFN pathway in the monocytes of those patients [6,34].
Our study indicates the importance of identifying the

temporal dynamics of the concentration of certain key
components of the JAK-STAT pathway, such as the
phosphorylated form of the STAT1 protein, and of the
expression of interferon-stimulated transcription genes

like SOCS1 and IRF1, within the first 8 hours of IFN-
beta administration. Cataloguing these dynamics could
provide us with early molecular biomarkers that allow us
to distinguish the lack of response to IFN-beta therapy
of certain MS patients.

Methods
Materials and reagents
Cells were obtained from ATCC library, mouse recom-
binant IFN-beta was purchased from Cell sciences, lipo-
polysaccharide from Escherichia coli and poly(I:C) salt
was purchased from Sigma-Albrich, lipofectamine 2000,
Hiperfect transfection agent were purchased from
QIAGEN, Taqman PCR master mix, VIC-dye GAPDH
endogenous control, IRF1, SOCS1, STAT1, STAT2,
MX1, OAS1a pre-designed FAM-dye assays were pur-
chased from Applied Biosystems, total STAT1 and
STAT1(pTyr701) antibodies and beads, cell detection kit
for xMAp assays were purchased from Merck Millipore
(Billerica). Alexa Flour 647 STAT1 (pTyr701) and PE
STAT1 N-terminal anti-Mouse antibodies and all buffers
for cytometry were purchased from BD biosciences.
APC-labelled IFNAR1 antibody was purchased from
Biolegend.

Cell culture and stimulation
Mouse leukemic monocyte macrophage cell line RAW
264.7 cell line was purchased from ATCC and maintained
in DMEM medium complemented with 10% fetal bovine
serum and 1% antibiotics at 37°C and 5% CO2. The cells
were passed every 2–3 days and maintained in 20-80%
surface coverage. One day before the stimulation the cells
were seeded in 12 well plates in concentration 1 × 106

cells/well. The cells were stimulated with 1000 units of re-
combinant mouse IFN-beta, 15 μg of LPS for different
times or 15 μg of poly (I:C) solution. At the end of stimu-
lation supernatants or cells were collected for further ana-
lysis. The same amount of PBS was added at the
corresponding time-points to the control samples.

RT-PCR
Cell lysates were prepared with QiaShredder columns
and total RNA was isolated using standard Qiagen
Rnaesy Mini kit protocol. Equal amount of total RNA
was added to each reverse transcription reaction tube
(High-Capacity cDNA Reverse Transcription Kit from
Applied Biosystems and cDNA was used for a second
step of RT-PCR. Results were analyzed using relative
2CTT method normalized to a GAPDH endogenous
control (VIC-dye primer-limited control from Applied
Biosystems) as described before [35]. All the qRT-PCR
experiments were performed in triplicates and repeated
three times independently.
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Western blot and quantification
Western blot (WB) was performed using polyclonal
rabbit anti-mouse pSTAT1 and STAT1 N-terminal anti-
bodies (Abcam) using standard WB protocol. Western
blot results were quantified using ImageJ software
(http://rsb.info.nih.gov/ij/index.html) using the method
of Luke Miller (http://www.lukemiller.org/journal/2007/
08/quantifying-western-blots-without.html)

ELISA and xMAP multiplexing assays
IFN-beta in culture supernatants and SOCS1 protein
concentration in cell lysates were measured by standard
sandwich ELISA with anti-mouse SOCS1 antibodies
(Abcam). IRF1 protein concentration in cell lysates was
measured by in-cell ELISA using the kit (Thermo Scien-
tific) STAT1 total protein and phosphorylated state
(Tyr701) concentrations (nuclear and cytoplasmic to-
gether) were measured using xMAP assays and read in
Luminex 201 platform using standard vacuum separ-
ation protocol (Millipore). xMAP experiments were re-
peated twice.

Flow cytometry
Cells for flow cytometry were stimulated with 1,000 μn/ml
of IFN-beta as stated before and fixed immediately after
stimulation. IFNAR1 receptor on the surface of the RAW
264.7 cells was marked using APC-labelled anti-IFNAR anti-
body. The mean fluorescent intensity was calculated using
FlowJo software. For STAT1 staining cells were fixed imme-
diately after stimulation in order to preserve phosphoryl-
ation and then permeabilized using Perm III buffer (BD
biosciences). Samples were stained simultaneously with anti-
STAT1 (pTyr701) and anti-STAT1 total (N-terminus) anti-
bodies. The mean fluorescent intensity, the percent of
staining-positive cells, the medians and the standard devi-
ation were calculated using FlowJo software and the raw
single-cell data were extracted to plot the histograms and
further analysis.

Mathematical modeling
The model and simulations were run in MATLAB using the
ODE15s solver (Matlab codes are provided in the Additional
files 1, 2 and 3). The stability analysis of the dynamical sys-
tem was performed with custom-made Matlab codes.

Availability of supporting data
The model is available as a matlab script in the supporting
materials. The raw experimental data are available from
the authors upon request.

Additional files

Additional file 1: Type I IFN pathway ODE model equations.

Additional file 2: Type I IFN pathway ODE model as Matlab file.

Additional file 3: Integration and solutions of the Type I IFN
pathway ODE model as Matlab file.
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