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Introduction

This dissertation is devoted to present some research challenges in the study of stochas-

tic partial differential equations (SPDEs). It is widely recognised that SPDEs provide

suitable models for a great variety of applied problems. For instance, we mention the

study of growth population, the models of some climate phenomenons or in oceanogra-

phy, or some applications to mathematical finance (see, for instance, [DS80], [Imk01],

[AMR96], [Bjö01], respectively). However, in this thesis we focus more on theoretical

mathematical aspects of the SPDEs theory rather than on applied ones.

More precisely, we shall mainly deal with a SPDE of hyperbolic type, namely the

stochastic wave equation, which can be formally represented by

∂2u

∂t2
(t, x) − ∆du(t, x) = b(u(t, x)) + σ(u(t, x))Ḟ (t, x), (1)

where ∆d stands for the Laplacian operator on R
d, σ and b are some real-valued func-

tions and Ḟ (t, x) is some random perturbation. The time and space variables belong

to R+ and R
d, d ≤ 3, respectively, and {u(t, x), (t, x) ∈ R+ × R

d} is a real-valued

stochastic process.

All the results that shall be presented in this manuscript will be developed in the

framework set up in the course given by Walsh in Saint-Flour [Wal86] and in further

generalizations (see [Dal99] and [DM03]). In Walsh’s course, a rigorous formulation

for several classes of SPDEs is given, including the stochastic wave and heat equations.

Indeed, he constructs a stochastic integral for predictable processes with respect to

martingale measures; in Section 1.2.1 we review the main ideas of this theory. With this

stochastic integral, Walsh defines a mild solution of a SPDE by means of an evolution

formulation of the equation and obtains a solution taking values on the real line.

Concerning the random noise, it is known that if we are interested in SPDEs in one

space dimension, we can consider random perturbations given by the so called space-

time white noise. However, for spatial dimension strictly greater than one, if one still

wants to have real-valued solutions of the equation, some spatial correlation on the

noise shall be required. In the recent literature one can find several contributions deal-

ing with solutions to SPDEs in higher dimensions; see, for instance, [AHR96], [DF98],

[Mue97], [OR98], [PZ00], [MSS99], for the wave equation in R
d, with d = 1, 2, and
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2 Introduction

[AHR01], [Nob97], [RO99], [PZ97] for the heat equation in any spatial dimension

d ≥ 1.

The case of the stochastic wave equation with dimension greater than or equal

to three has an added difficulty. Namely, the fundamental solution associated to the

wave operator is not a function but a Schwartz distribution. Thus, Walsh formula-

tion cannot be used. Indeed, the stochastic integral constructed in [Wal86] only al-

lows function-valued integrands. With this problem in mind, Dalang [Dal99] extended

Walsh stochastic integral with respect to martingale measures in order to be able to

integrate some deterministic distribution-valued functions. Then, he found conditions

relating the fundamental solution and the spatial correlation of the noise which ensure

existence and uniqueness of a real-valued solution to Equation (1). For d = 3, prop-

erties of the sample paths of the solution to this equation are given in the very recent

work [DSS]; see also [DSS04] for path properties of a more general class of SPDEs.

The case of space dimension strictly greater than three cannot be analysed with

Dalang’s approach. In fact, the fundamental solution is no more a positive distribu-

tion, and this was one of the requirements of the extension of the stochastic integral.

However, positive answer to this problem has been given by Peszat [Pes02] using a

more abstract approach via stochastic equations in infinite dimensions ([DPZ92]); see

[PZ00] and [KZ01] for related references using also this setting. We refer the reader to

[DM03] for stochastic integration of non necessarily positive distribution-valued pro-

cesses. Let us also mention that the stochastic wave equation (1) when d = 1, 2 was

studied in the papers [CN88] and [MSS99], respectively.

The content of this dissertation may be split up in two parts. In the first one,

we mainly deal with the stochastic wave equation in three space dimension, that is,

Equation (1) with (t, x) ∈ [0, T ]×R
3, for some positive T , and initial conditions given

by

u(0, x) =
∂u

∂t
(0, x) = 0,

x ∈ R
3. More precisely, we want to find sufficient conditions ensuring existence and

regularity of the density of the probability law of the solution u at any point (t, x).
In the second part we consider Equation (1) on (t, x) ∈ [0, T ] × [0, 1], with homoge-

neous boundary conditions of Dirichlet type, some non vanishing initial conditions and

a random perturbation given by the space-time white noise. We study the convergence

of a sequence of approximations to the solution obtained by a finite-difference spatial

discretisation of the equation.

Concerning the first part, we notice that Equation (1) is an example of the more

general class of SPDEs

Lu(t, x) = b(u(t, x)) + σ(u(t, x))Ḟ (t, x), (2)
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with the same vanishing initial conditions as above and where L denotes a second-

order differential operator such that the fundamental solution of Lu = 0 is a non-

negative distribution with rapid decrease. We assume that the coefficients b and σ are

globally Lipschitz functions and Ḟ (t, x) is a Gaussian noise, white in time and with an

homogeneous spatial correlation given by a positive definite tempered measure Γ; the

rigorous description of the noise is given in the next Section 1.2.1.

We follow the extension of Walsh’s approach developed in [Dal99] and give a

rigorous meaning to Equation (2) in the mild form, as follows. Let Λ denote the

fundamental solution to Lu = 0. Assume that Λ is a non-negative measure of the

form Λ(t, dx)dt. We fix a probability space (Ω,F , P ), denote by M = {Mt(A), t ∈
[0, T ], A ∈ Bb(R

d)} the martingale measure associated with F (see Section 1.2.1)

and by Ft the σ-field generated by the random variables Ms(A), s ∈ [0, t], A ∈
Bb(R

d), for any t ∈ [0, T ]. Then a solution to (2) is a real-valued stochastic pro-

cess u = {u(t, x), (t, x) ∈ [0, T ] × R
d}, defined on the filtered probability space

(Ω,F , (Ft)t∈[0,T ], P ), progressively measurable, satisfying

u(t, x) =

∫ t

0

∫

Rd

Λ(t− s, x− y)σ(u(s, y))M(ds, dy)

+

∫ t

0

ds

∫

Rd

Λ(s, dy)b(u(t− s, x− y)). (3)

Dalang [Dal99] proved the existence of a unique solution to Equation (3) in the case

where the measure Γ is absolutely continuous with respect to Lebesgue measure. How-

ever, the proof in the general case follows using the same kind of arguments. In Section

1.2.1 we give an extension of this result by proving existence and uniqueness of solu-

tion for a SPDE in a general Hilbert setting; the result is a quotation of Theorem 7.2

in [SSar]. This framework shall be needed in order to give a rigorous meaning to the

stochastic evolution equations satisfied by the Malliavin derivatives of the solution to

Equation (3). Hence, an extension of Dalang’s stochastic integral to Hilbert-valued in-

tegrands shall also be needed. More precisely, we introduce an extension of Dalang’s

stochastic integral to integrators that are defined by stochastic integration of Hilbert-

valued predictable processes with respect to martingale measures (see either Section

1.2.1 or Section 2 in [QSSS04a]).

We are interested in the existence and regularity of the probability law of the ran-

dom variable u(t, x), for any fixed (t, x) ∈ [0, T ]×R
d; the main results in this direction

are provided by Theorem 3 in [QSSS04a] and [QSSS04c], which use the techniques

provided by the Malliavin differential calculus. For this, we prove the differentiabil-

ity in the Malliavin sense of the random variable u(t, x) and we study its associated

Malliavin matrix. This is done in two steps; first, in [QSSS04a], we prove that the

probability law of u(t, x) has a density and secondly, in [QSSS04c], we check that the

random variable u(t, x) has, indeed, an infinitely differentiable density.
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Malliavin calculus theory, initially created by Malliavin in [Mal78] and further

developed by Bismut, Stroock, Bell, Shigekawa, etc. among others, provides useful

tools in order to study probability laws of functionals of families of Gaussian random

variables. We refer the reader to [Str83], [Nua95], [Mal97] or [Nua98] for complete

manuscripts on this topic. In Section 1.3 we give some preliminaries in a general

form in order to present the main tools of the Malliavin calculus needed along the

dissertation. At the end of Section 1.3 we specify the setting in which these techniques

shall be applied.

If the fundamental solution Λ(t) is a real-valued function, for example in the

stochastic heat equation in any dimension d ≥ 1 or the stochastic wave equation in

dimension d = 1, 2, it is well-known that the solution of (3) at any fixed point (t, x)
belongs to D

N,p for anyN ∈ N and every p ∈ [1,∞) (see for instance [BP98], [CN88],

[MCMS01], [MSS99]); the equation satisfied by the N -th derivative is obtained recur-

sively using the rules of Malliavin calculus, by derivation of each term of the equation

satisfied by the (N − 1)-th derivative. In this case, the formal derivative of Equation

(3) would give the following Hilbert-valued evolution equation:

Du(t, x) =Λ(t− ·, x− ∗)σ(u(·, ∗))

+

∫ t

0

∫

R3

Λ(t− s, x− z)σ′(u(s, z))Du(s, z)M(ds, dz)

+

∫ t

0

ds

∫

R3

Λ(s, dz)b′(u(t− s, x− z))Du(t− s, x− z),

where (·, ∗) stand for the variables of the underlying Hilbert space H in which the

Malliavin derivatives take their values. The first two terms in the right hand-side of the

above equation come from the differentiation of the stochastic integral in (3). If Λ(t) is

a distribution, for example for the wave equation with dimension d = 3, this approach

is not possible, the problem being that the product of Λ(t − ·) times the function σ is

not defined in general.

In spite of this difficulty, we succeed in proving the regularity in the sense of Malli-

avin, as follows. In the article [QSSS04a] we apply Lemma 1.3.1 to obtain that the

solution u(t, x) belongs to the space D
1,p, for all p ∈ [1,∞) while in [QSSS04c] we

make use of Lemma 1.3.2 and we get that u(t, x) ∈ D
∞. To apply these lemmas,

we need to show that a sequence of regularised processes un(t, x), n ≥ 1, obtained

by convolution of the fundamental solution Λ with an approximation of the identity,

converges to u(t, x) in Lp(Ω). To show this convergence, we notice that the differ-

ence of two positive distributions is not necessarily positive; however, positivity is one

of the requirements in the construction of Dalang’s integral and in particular for ob-

taining Lp(Ω)−bounds, a useful tool to prove Lp(Ω)−convergences. We circumvent

this problem by showing that the sequence of processes un(t, x) is uniformly bounded
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in Lp(Ω), for any p ∈ (1,∞), and thus the sequence (|un(t, x)|p)n≥1 is uniformly

integrable. Then we prove convergence in L2(Ω) which can be checked with tech-

niques related to the isometry property of the stochastic integral (see Proposition 1 in

[QSSS04a]). This tool also plays a crucial role along the proof of the main theorem

in [QSSS04a], Theorem 2. Concerning the work [QSSS04c], since the iterated Malli-

avin derivative operatorDN is closed, it suffices to prove that the sequenceDNun(t, x)
converges in the topology of Lp(Ω;H⊗N), for any N ≥ 1, p ∈ [1,∞). This can be

also achieved proving first that the sequence is bounded in any Lp(Ω;H⊗N) and then

proving the convergence of order two, which also follows from the isometry property

of the stochastic integral.

We next consider the stochastic wave equation (1) with d = 3 and we show that,

for any (t, x) ∈ [0, T ] × R
3, the probability law of the random variable u(t, x) has a

density which is a C∞ function. We remark that in this case the fundamental solution

reads

Λ(t) =
1

4πt
σt,

where σt denotes the uniform measure on the 3-dimensional sphere of radius t.
The proof of the existence of density for the random variable u(t, x) is carried out

in [QSSS04a]. For this we apply Bouleau and Hirsch criterion (see Theorem 1.3.7 in

Section 1.3); hence, due to the differentiability results that we have just explained, we

only need to check that the random variable ‖Du(t, x)‖H is non-degenerate, almost

surely. More precisely, we check that

E(‖Du(t, x)‖−p
H ) <∞,

for some p ∈ [0,∞).
On the other hand, to prove the regularity of the density we apply one of the criteria

provided by the Malliavin calculus (see Proposition 1.3.8); it is sufficient to check the

existence of moments of any order of the inverse of the Malliavin variance. For this,

we study the integrability in a neighbourhood of zero of the function

ε −→ ε−(1+p)P{||Du(t, x)||2HT
< ε},

for any p ∈ [0,∞). Hence, the main issue is to obtain the size in ε of the factor

P{||Du(t, x)||2HT
< ε}. The difficulties come from the fact that the fundamental so-

lution of the wave equation is a Schwartz distribution. The natural idea is to smooth

this distribution, as we did to study the differentiability. This time we introduce a

regularisation kernel which depends on ε in a suitable way so that the error in this

approximation is a function of ε as well. This technique is complemented with upper

and lower bounds of integrals involving the Fourier transform of the fundamental so-

lution of the wave equation; they are collected in the Appendix of [QSSS04a]. Notice
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that, though the fundamental solution of the wave equation becomes more irregular as

dimension increases, the Fourier transform has a unified expression for any dimension

d ≥ 1:

FΛ(t)(ξ) =
sin(2πt|ξ|)

2π|ξ| , ξ ∈ R
d.

We mention that if the reader is interested in a non-detailed exposition of the main

results and techniques of the reference [QSSS04a], we refer to the preliminary com-

munication [QSSS03].

In addition to the published works [QSSS04a], [QSSS04c], and the prepublica-

tion [QSSS04b], in Section 2.3 of Chapter 2 we deal with some SPDEs of parabolic

type. More precisely, we consider first Equation (2) on [0, T ] × [0, 1], with homoge-

neous Dirichlet boundary conditions and L a quite general operator of parabolic type.

Under non-global Lipschitz conditions on the drift and diffusion coefficients, we give

sufficient conditions ensuring existence of density for the probability law of the solu-

tion at any fixed point. This extends the work by Pardoux and Zhang [PZ93], where

L = ∂
∂t

− ∆. Secondly, we consider Equation (2) on R
d, d ≥ 1, and also with a

general parabolic operator. Now we extend the results given by Márquez-Carreras et

al. in [MCMS01] concerning existence and smoothness of the density of the process

solution under globally Lipschitz assumptions on σ and b.
The motivation of these problems comes from some discussions with Peter Imkeller

held during one of the visits of the author of this dissertation at Humboltd Universität-

Berlin. Under locally Lipschitz and some dissipativity assumptions on the drift b, we

wanted to prove existence of a C∞ density for the solution to parabolic SPDE. As far

as we know, a positive answer to this question does not exist. However, the author

considers that it is worth completing the known results of existence and regularity of

densities for the solution to stochastic heat equations to more general parabolic SPDEs.

The proofs of the main results of Section 2.3 do not require new techniques but

only putting together known results and some straightforward extensions. Thus, we

only lay particular stress on the main ingredients needed. Namely, for the extension of

the results in [PZ93], we shall make use of an existence and uniqueness of solutions

result and a comparison of solutions theorem (see Theorems 2.3.2 and 2.3.1, respec-

tively). It is worth remarking that comparison results constitute one of the main tools

for the proof of existence of solutions of SPDEs with non-global Lipschitz coefficients;

see, for instance, [BGP94], [GP93a], [GP93b], [MZ99], [DMP93]. On the other hand,

for the extension of the results given in [MCMS01], it suffices to take into account the

isometry property of the stochastic integral and the Gaussian upper and lower bounds

for the fundamental solution associated to the deterministic problem (see Theorem

2.3.4); for similar results concerning a different type of parabolic SPDEs we refer to

[CWM04].
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We jump to the second part of the dissertation, which corresponds to the contents

in Appendix C ([QSSS04b]). We consider the equation

∂2u

∂t2
(t, x) − ∂2u

∂x2
(t, x) = f(t, x, u(t, x)) + σ(t, x, u(t, x))Ḟ (t, x), (4)

on the product space [0, T ] × [0, 1], with some initial conditions and homogeneous

Dirichlet boundary conditions. The random perturbation is given by a space-time

white noise and the initial conditions belong to some subspaces of the so called frac-

tional Sobolev spaces (see Section C.2). Notice that we are now considering more

general coefficients than in (1). Our aim is to discretise the above formal equation with

respect to space using a finite difference method and define a sequence of processes

(un(t, x))n≥1 approximating the solution u(t, x). Then, we study Lp(Ω) and almost

sure convergence of un(t, x) and get bounds for the rate of convergence.

The construction of discretisation schemes for SPDEs has been recently become an

active topic on stochastic analysis. Different methods may be considered, most of them

inspired in the deterministic context. Let us mention for instance, finite differences

([GN97], [GN95], [Gyö98b], [Gyö99], [MM03], [GM04], [GM], [Yoo00]), finite ele-

ments ([GP88], [Walar]), splitting up methods ([BGR92], [BGR90], [IR00], [GK03]),

Garlekin approximations ([GK96]) and time discretization ([Hau03], [Pri01]). Oth-

ers are more genuine stochastic, based on the Wiener chaos decomposition ([LMR97],

[Lot96]) or on truncations of the Fourier expansion of the noise ([Sha03], [Sha99]).

We refer the reader to [Gyö02] for a survey of some of these methods, together with a

more extensive list of references.

Roughly speaking, discretisation methods could be split up in two large families:

explicit and implicit methods –though there are mixtures of both. For the formers,

the value of the discretised solution at some spatial or temporal point is computed

directly from the already known values up to this moment. On the other hand, when

using an implicit method, the discretised solution at some spatial or temporal point

depends non-algebraically on the own solution at instants which are not yet computed.

This means that an implicit equation must be solved. However, it is known that these

methods provide, among other advantages, better rates of convergence than the explicit

one’s, while the latters imply less computing time. We refer the reader to [KP92] for a

complete manuscript on numerics for stochastic equations.

In our case, since the results presented in [QSSS04b] correspond to the first step

in the study of lattice approximations for hyperbolic SPDEs, we consider a spatial

discretisation, ending up with a implicit equation for the discretised solution on some

spatial grid. As we shall comment later on in this Introduction, the next step would

be to discretise the equation both with respect to time and space. Indeed, the reader is

addressed to the reference [MPW03] for discretisation schemes of a stochastic wave

equation having non-random coefficients.
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The techniques used to prove the main result in [QSSS04b] (Theorem C.3.1) are

inspired in [Gyö98b]. More precisely, once we have discretised the formal equation

(4) and defined the approximating process un(t, ∗) on the spatial grid given by xk = k
n

,

k = 1, . . . , n − 1, we extend un to any (t, x) ∈ [0, T ] × [0, 1] by linear interpolation .

This extension satisfies an evolution equation. This shall allow us to prove Lp(Ω) and

almost sure convergence of un to u, as n tends to infinity; for the former, we obtain the

rate of convergence.

In comparison with parabolic examples, the rate of convergence differs substan-

tially from the Hölder continuity order of the sample paths of the solution. Indeed, as-

suming for simplicity that the initial conditions vanish, sample paths are jointly Hölder

continuous in (t, x) of order α < 1
2

(see Proposition C.2.2), while the rate of conver-

gence is of order ρ < 1
3
. In the final appendix from [QSSS04b] (Appendix C.4), we

test this result numerically and we conclude that, using this method, we cannot expect

better results.

Obviously, the natural step to follow would be to study discretisations of Equation

(4) both with respect to time and space. We think that a deep exploration of purely

deterministic methods should be useful. In fact, after some preliminary research, it

seems that Gyöngy’s methods are not the most suitable for hyperbolic equations.

The outline of the dissertation is the following. Chapter 1 is devoted to give some

preliminaries. Namely, in Section 1.2 we present the main tools of the theory of SPDEs

driven by a Gaussian correlated noise, such as Walsh’s and Dalang’s stochastic inte-

gration, the latter being performed in a Hilbert-valued setting, we give the definition

of the so called mild solutions and we prove an existence and uniqueness result in a

Hilbert-valued context. Section 1.3 is devoted to the framework of the stochastic cal-

culus of variations or Malliavin calculus needed to deal with the study of probability

laws of solutions to SPDEs. In Chapter 2, we summarise the contents of the works

[QSSS04a], [QSSS04c] and [QSSS04b] in Sections 2.1, 2.2 and 2.4, respectively. In

Section 2.3 we present some original material concerning existence and smoothness

of densities for some parabolic SPDEs. The above cited references are collected in

Appendices A, B and C, respectively. Between Chapter 2 and the appendices we place

a summary of conclusions. Finally, in Appendix D we give a summary in Catalan of

the whole dissertation.



Chapter 1

Preliminaries

1.1 Introduction

This Chapter is devoted to give the preliminaries needed to develop the results of the

works collected in Appendices A, B and C.

First, in Section 1.2, we give a rigorous meaning to SPDEs of the form

Lu(t, x) = σ(u(t, x))Ḟ (t, x) + b(u(t, x)), (1.1)

with vanishing initial conditions. L is a second order partial differential operator, σ
and b are some real-valued functions defined on the real line and Ḟ (t, x) is the for-

mal notation for a Gaussian random perturbation white in time and with some spatial

correlation. We are interested in real-valued solutions to Equation (1.1). We con-

sider solutions of Equation (1.1) in the so called mild form by means of either Walsh’s

formulation ([Wal86]) or, in case the fundamental solution associated to L is not a

function but a distribution, by means of Walsh’s extended theory given by Dalang in

[Dal99].

A brief review of Walsh’s theory, the rigorous definition of the noise Ḟ , Dalang’s

stochastic integration theory in a Hilbert setting and the definition of a mild solution

to Equation (1.1) are given in Section 1.2.1. In Section 1.2.2, we state a more general

SPDE in a Hilbert-valued context, we define the corresponding mild solution to this

equation and we prove an existence and uniqueness result.

In order to study the existence and smoothness of the density of the law of the

solution to (1.1) at any fixed point, we shall make use of the techniques provided by

the Malliavin differential calculus. In Section 1.3 we review the main definitions and

results from the Malliavin calculus needed along the dissertation in a general context.

In the very last part of this section, we define the particular Malliavin setting for the

study of the law of the solution to Equation (1.1).

9
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1.2 SPDEs driven by spatially correlated noise

1.2.1 Stochastic integration and mild solutions

The purpose of this section is to define the stochastic integration needed to give the

mild formulation of Equation (1.1). We briefly review Walsh’s stochastic integration

theory ([Wal86]). Then we describe the random noise we are going to consider and

finally we extend Dalang’s stochastic integral (see [Dal99]) to a Hilbert-valued setting.

This shall allow us to integrate some deterministic distribution-valued processes and

deal with Malliavin derivatives of solutions to SPDEs.

Martingale measures and Walsh’s stochastic integration

We fix a probability space (Ω,F , P ) and a right-continuous filtration {Ft}t on it.

We denote by B(Rd) the Borel σ−algebra of R
d. First we define the object that is

going to play the role of integrator.

Definition 1.2.1. A stochastic process {Mt(A),Ft, t ≥ 0, A ∈ B(Rd)} is a martingale

measure if

(a) M0(A) = 0 a.s. for each A ∈ B(Rd),

(b) if t > 0, Mt is a σ−finite L2(Ω)−valued measure; that is, Mt defines a function

on Ω × B(Rd) such that E(|Mt(A)|2) < ∞, for A ∈ B(Rd); there exists an

increasing sequence (En)n in B(Rd) whose union is R
d, verifying that for all

n ≥ 1,

sup{E(|Mt(A)|2), A ∈ En} <∞,

where En = B(Rd)|En
, and Mt is countably additive,

(c) {Mt(A),Ft}t is a martingale, for all A ∈ B(Rd).

If M = {Mt(A),Ft, t ≥ 0, A ∈ B(Rd)} is a martingale measure, we define its

covariance measure by

Q((s, t] × A×B) := 〈M(A),M(B)〉t − 〈M(A),M(B)〉s,

for 0 ≤ s < t and A,B ∈ B(Rd). A set of the form (s, t] × A × B will be called a

rectangle.

A signed measureK(ds, dx, dy) on B([0,∞))×B(Rd)×B(Rd) is positive definite

if for each bounded measurable function f for which the integral makes sense, we have

∫ ∞

0

∫

Rd

∫

Rd

f(x, s)f(y, s)K(ds, dx, dy) ≥ 0.
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We are interested in a particular case of martingale measures. The definition is as

follows.

Definition 1.2.2. A martingale measureM is worthy if there exists a random σ−finite

measure K in B([0,∞)) × B(Rd) × B(Rd), such that

(a) K is positive definite and symmetric in x and y,

(b) for fixed A and B in B(Rd), {K((0, t] × A×B), t ≥ 0} is predictable,

(c) for all n, E(K([0, T ] × En × En)) <∞,

(d) for any rectangle R, |Q(R)| ≤ K(R).

We call K the dominating measure of M .

Using this notion, Walsh ([Wal86]) constructed the stochastic integral of a pre-

dictable process g = {g(t, x), (t, x) ∈ [0, T ]×R
d} with respect to a worthy martingale

measure M . Here g belongs to the space P+, which stands for the completion of the

class of finite linear combinations of elementary functions (see (1.4)) with respect to

the norm

‖g‖2
+ = E

(∫ ∞

0

∫

Rd

∫

Rd

|g(s, x)||g(s, y)|K(ds, dx, dy)

)

.

The integral of g with respect to M is denoted either by g ·M or, for t ∈ [0, T ] and

A ∈ B(Rd),

(g ·M)t(A) =

∫ t

0

∫

A

g(s, x)M(ds, dx).

In the final part of this Section we shall recall in more detail Walsh’s construction of

this stochastic integral, but in a Hilbert-valued setting.

For the sake of completeness we state Walsh’s characterisation of the stochastic

integral g ·M (see Theorem 2.5 in [Wal86]), as follows.

Theorem 1.2.3. If g ∈ P+, then g ·M is a worthy martingale measure. Its covariance

and dominating measures are given by

Qg·M(ds, dx, dy) = g(s, x)g(s, y)Q(ds, dx, dy),

Kg·M(ds, dx, dy) = |g(s, x)g(s, y)|K(ds, dx, dy),

respectively. Moreover, if f ∈ P+ and A,B ∈ B(Rd), then

〈(f ·M)(A), (g ·M)(B)〉t =

∫ t

0

∫

A

∫

B

f(s, x)g(s, y)Q(ds, dx, dy),

and

E
(

|(g ·M)t(A)|2
)

≤ ‖g‖2
+.
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Description of the noise and extension to a martingale measure

We are now going to describe which type of random perturbation we consider in

Equation (1.1). We will need to integrate with respect to this noise, therefore the first

step shall be to extend it to a martingale measure.

We are interested in a Gaussian noise, white in time and with some homogeneous

spatial correlation. Let us consider a mean-zero L2(Ω)−valued Gaussian process F =
{F (ϕ), ϕ ∈ D(Rd+1)}, where D(Rd+1) denotes the space of infinitely differentiable

functions with compact support, with covariance functional given by

J(ϕ, ψ) := E(F (ϕ)F (ψ)) =

∫

R+

ds

∫

Rd

Γ(dx)
(

ϕ(s, ·) ∗ ψ̃(s, ·)
)

(x), (1.2)

for ϕ, ψ ∈ D(Rd+1), where ψ̃(s, x) = ψ(s,−x) and Γ is a non-negative and non-

negative definite tempered measure. The integral with respect to the Lebesgue measure

means that the noise is white in time; the spatial correlation is given by Γ. According to

[Sch66] (Chap. VII, Theorem XVII), this implies that Γ is symmetric and there exists

a non-negative tempered measure µ on R
d whose Fourier transform is Γ. Hence

J(ϕ, ψ) =

∫

R+

ds

∫

Rd

µ(dξ)Fϕ(s, ·)(ξ)Fψ(s, ·)(ξ),

for ϕ, ψ ∈ D(Rd+1) Here, the Fourier transform is defined by

Fϕ(ξ) =

∫

Rd

ϕ(x)e−2πi〈x,ξ〉dx,

for ξ ∈ R
d and ϕ ∈ S(Rd), where S(Rd) denotes the Schwartz space of rapidly

decreasing C∞ test functions and 〈·, ·〉 denotes the Euclidean scalar product in R
d. We

will refer to µ as the spectral measure of Γ.

Example 1.2.4. Assume that the measure Γ is absolutely continuous with respect to

the Lebesgue measure on R
d, with density given by a function f : R

d → R+. In this

case, the covariance functional of the noise reads

J(ϕ, ψ) =

∫

R+

ds

∫

Rd

dx

∫

Rd

dyϕ(s, x)f(x− y)ψ(s, y).

An important example is given by the so called Riesz kernels. In this case, the function

f is of the form

f(x) =
1

|x|α ,

for some α ∈ (0, 2∧d). This type of correlation has been considered by several authors

(see, for instance, [DF98], [KZ00], [MSS99], [PZ00], [DSS]).
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As in [DF98], we extend F to a worthy martingale measure M , as follows. Fix a

rectangle R in R
d+1 and let (ϕn, n ≥ 1) ⊂ D(Rd+1) be such that

lim
n→∞

ϕn(z) = 11R(z),

for all z ∈ R
d+1. Then, by bounded convergence it follows that

lim
n,m→∞

E(F (ϕn) − F (ϕm))2 = lim
n,m→∞

E(F (ϕn − ϕm)2) = 0.

Set

F (R) = L2(Ω) − lim
n→∞

F (ϕn).

It is straightforward to check that this limit does not depend on the particular approx-

imating sequence. This extension of F trivially holds for finite unions of rectangles.

Moreover, if R1, R2 are two such elements, using again bounded convergence one

proves that

E(F (R1)F (R2)) =

∫

R+

ds

∫

Rd

Γ(dx)(11R1(s) ∗ 1̃1R2(s))(x).

In addition, if (Rn)n≥0 is a sequence of finite unions of rectangles decreasing to ∅,

then the same kind of arguments yield limn→∞E(F (Rn)2) = 0. Hence the mapping

R → F (R) can be extended to an L2(Ω)−valued measure defined on Bb(R
d+1), the

bounded Borel sets of R
d+1.

For any t ≥ 0 and A ∈ Bb(R
d+1), set Mt(A) = F ([0, t] × A). Let Ft be the

completion of the σ−field generated by the random variables Ms(A), with 0 ≤ s ≤ t,
A ∈ Bb(R

d+1).
The properties of F ensure that the processM = {Mt(A), t ≥ 0, A ∈ Bb(R

d+1)} is

a worthy martingale measure with respect to the filtration (Ft, t ≥ 0). The covariance

measure is determined by

〈M(A),M(B)〉t = t

∫

Rd

Γ(dx)(11A ∗ 1̃1B)(x).

The dominating measure coincides with the covariance measure.

Extension of the stochastic integral

Owing to Theorem 1.2.3, Walsh theory allows to integrate real-valued stochastic

processes {X(t, x), (t, x) ∈ [0, T ] × R
d} satisfying the integrability condition

E

(∫ T

0

ds

∫

Rd

Γ(dx)(|X|(s) ∗ |X̃|(s))(x)
)

<∞.
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In the context of SPDEs this integral is not always appropriate. Consider for instance

the stochastic wave equation in dimension d = 3, which has a distribution-valued

fundamental solution. Therefore in evolution formulations of this equation we shall

meet integrands which include deterministic distribution-valued functions. With this

problem as motivation, Dalang has extended in [Dal99] Walsh’s stochastic integral.

In the remaining of this section, we shall review his ideas in the more general con-

text of Hilbert-valued integrands. This setting is needed in order to state the stochastic

evolution equations satisfied by Malliavin derivatives of solutions to SPDEs. The ex-

tension, together with the main theorem identifying some distribution-valued processes

that can be integrated (Theorem 1.2.5), can be found in [QSSS04a], Section2.

Let A be a separable real Hilbert space with inner-product and norm denoted by

〈·, ·〉A and ‖·‖A, respectively. LetK = {K(s, z), (s, z) ∈ [0, T ]×R
d} be an A−valued

predictable process; we assume the following condition:

Hypothesis B The process K satisfies

sup
(s,z)∈[0,T ]×Rd

E
(

||K(s, z)||2A
)

<∞.

Our first purpose is to define a martingale measure with values in A obtained

by integration of K. Let (ej, j ≥ 0) be a complete orthonormal system of A. Set

Kj(s, z) = 〈K(s, z), ej〉A, (s, z) ∈ [0, T ] × R
d. According to Theorem 1.2.3, for any

j ≥ 0 the process

MKj

t (A) =

∫ t

0

∫

A

Kj(s, z)M(ds, dz), t ∈ [0, T ], A ∈ Bb(R
d),

defines a martingale measure. We define, for any t ∈ [0, T ], A ∈ Bb(R
d),

MK
t (A) =

∑

j≥0

MKj

t (A)ej. (1.3)

The right hand-side of (1.3) defines an element of L2(Ω;A) and the process {MK
t (A),

t ∈ [0, T ], A ∈ Bb(R
d)} defines an A−valued martingale measure; by construction,

we have that 〈MK
t (A), ej〉A = MKj

t (A) (the details are developed in [QSSS04a], p.

5).

Our next aim is to introduce stochastic integration with respect to MK , allowing

the integrand to take values on some subset of the space of Schwartz distributions. First

we briefly recall Walsh’s construction in the Hilbert-valued context.

A stochastic process {g(s, z;ω), (s, z) ∈ [0, T ] × R
d} is called elementary if

g(s, z;ω) = 11(a,b](s)11A(z)X(ω), (1.4)
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for some 0 ≤ a < b ≤ T, A ∈ Bb(R
d) and X a bounded Fa−measurable random

variable. For such g the stochastic integral g ·MK is the A−valued martingale measure

defined by

(g ·MK)t(B)(ω) =
(

MK
t∧b(A ∩B) −MK

t∧a(A ∩B)
)

X(ω),

t ∈ [0, T ], B ∈ Bb(R
d). This definition is extended by linearity to the set Es of all

linear combinations of elementary processes. For g ∈ Es and t ≥ 0, B ∈ Bb(R
d), one

easily checks that

E
(

||(g ·MK)t(B)||2A
)

=
∑

j≥0

E
(

∫ t

0

ds

∫

Rd

Γ(dx)

∫

Rd

dy1B(y)g(s, y)Kj(s, y)1B(y − x)

× g(s, y − x)Kj(s, y − x)
)

≤ ||g||2+,K , (1.5)

where

||g||2+,K :=
∑

j≥0

E

(∫ T

0

ds

∫

Rd

Γ(dx)

∫

Rd

dy|g(s, y)Kj(s, y)g(s, y − x)Kj(s, y − x)|
)

.

Let P+,K be the set of all predictable processes g such that ||g||+,K < ∞. Then,

owning to [Wal86], Exercise 2.5 and Proposition 2.3, P+,K is complete and Es is dense

in this Banach space. Thus, we use the bound (1.5) to define the stochastic integral

g ·MK for g ∈ P+,K .

Next, following [Dal99] we aim to extend the above stochastic integral to include

a larger class of integrands. Consider the inner-product defined by the formula

〈g1, g2〉0,K =
∑

j≥0

E

(∫ T

0

ds

∫

Rd

Γ(dx)

∫

Rd

dyg1(s, y)K
j(s, y)

× g2(s, y − x)Kj(s, y − x)
)

(1.6)

and the norm || · ||0,K derived from it. We notice that this inner-product makes sense

for elements in Es and we have that || · ||20,K =
∑

j≥0 || · ||20,Kj , where in the particular

case of an absolutely continuous measure Γ with density f , the definition of the norm

|| · ||20,Kj is given by

‖g‖2
0,Kj = E

(∫ T

0

ds

∫

Rd

dx

∫

Rd

dyg(s, x)Kj(s, x)f(x− y)g(s, y)Kj(s, y)

)
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(see [Dal99], Equation (22)).

It is worth mentioning that in [QSSS04a] the norm ‖ · ‖+,K and the inner product

〈·, ·〉0,K are defined by means of the norm and scalar product associated to the Hilbert

space H, which in this dissertation is defined in Section 1.3; indeed, the space HT =
L2([0, T ];H) shall be the underlying Hilbert space on which we develop the techniques

of the Malliavin calculus.

By the first equality in (1.5) we have that

E
(

||(g ·MK)T (Rd)||2A
)

= ||g||20,K (1.7)

for any g ∈ Es.

Let P0,K be the completion of the inner-product space (Es, 〈·, ·〉0,K). Since we have

|| · ||0,K ≤ || · ||+,K , the space P0,K will be in general larger than P+,K . So, we can

extend the stochastic integral with respect to MK to elements of P0,K . The extension

is done through the isometry provided by (1.7) between (P0,K , ‖ · ‖0,K) and the space

(M, || · ||M) of A−valued continuous square integrable martingales endowed with the

norm ||X||2M = E(||XT ||2A) (see Section 2 in [QSSS04a]).

The stochastic integral of a process g ∈ P0,K with respect to MK is denoted either

by (g ·MK)t or
∫ t

0

∫

Rd

g(s, z)K(s, z)M(ds, dz).

Let us consider the particular case where the following stationary assumption is

fulfilled.

Hypothesis C For all j ≥ 0, s ∈ [0, T ], x, y ∈ R
d,

E(Kj(s, x)Kj(s, y)) = E(Kj(s, 0)Kj(s, y − x)).

If Hypotheses B and C are satisfied, then for any deterministic function g(s, z) such

that ||g||20,K <∞ and g(s) ∈ S(Rd) we have that

||g||20,K =

∫ T

0

ds

∫

Rd

µK
s (dξ)|Fg(s)(ξ)|2,

where the measure µK
s on R

d is defined as follows.

We consider the non-negative definite function GK
j (s, z) = E (Kj(s, 0)Kj(s, z)).

Owing to [Sch66], Theorem XIX, Chapter VII, the measure ΓK
j,s(dz) = GK

j (s, z) ×
Γ(dz), is a non-negative definite distribution. Thus, by Bochner’s theorem (see for

instance [Sch66], Theorem XVIII, Chapter VII) there exists a non-negative tempered

measure µK
j,s such that ΓK

j,s(dz) = FµK
j,s.

The measure ΓK
s (dz) :=

∑

j≥0 ΓK
j,s(dz) is a well defined non-negative definite

measure on R
d. Consequently, there exists a non-negative tempered measure µK

s such
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that FµK
s = ΓK

s . Furthermore, by the uniqueness and linearity of the Fourier trans-

form, µK
s =

∑

j≥0 µ
K
j,s.

Now we state the main result of the section. It is a quotation of Theorem 1 in

[QSSS04a]. For the sake of completeness, we reproduce the proof in a more detailed

form as it is performed in [QSSS04a]. This result is, indeed, the Hilbert-valued coun-

terpart of Theorems 2 and 5 in [Dal99].

Theorem 1.2.5. Let {K(s, z), (s, z) ∈ [0, T ]×R
d} be an A−valued process for which

Hypothesis B and C are satisfied. Let t 7→ S(t) be a deterministic function with values

in the space of non-negative distributions with rapid decrease, such that
∫ T

0

dt

∫

Rd

µ(dξ)|FS(t)(ξ)|2 <∞.

Then S belongs to P0,K and

E
(

||(S ·MK)t||2A
)

=

∫ t

0

ds

∫

Rd

µK
s (dξ)|FS(s)(ξ)|2. (1.8)

Moreover, for any p ∈ [2,∞),

E
(

||(S ·MK)t||pA
)

≤ Ct

∫ t

0

ds sup
x∈Rd

E(||K(s, x)||pA)

∫

Rd

µ(dξ)|FS(s)(ξ)|2, (1.9)

with Ct = (
∫ t

0
ds
∫

Rd µ(dξ)|FS(s)(ξ)|2) p
2
−1, t ∈ [0, T ].

Proof. Let ψ be a non-negative function in C∞(Rd) with support contained in the

unit ball of R
d and such that

∫

Rd ψ(x)dx = 1. Set ψn(x) = ndψ(nx), n ≥ 1. Define

Sn(t) = ψn ∗ S(t). We have that Sn(t) ∈ S(Rd) for any n ≥ 1, t ∈ [0, T ] and

Sn(t) ≥ 0.

The first step is to prove that Sn ∈ P+,K ⊂ P0,K . The definition of the norm

‖ · ‖+,K , Cauchy-Schwarz’s inequality and the relation between the measures µ and Γ
yield

‖Sn‖2
+,K =

∑

j≥0

E

(∫ T

0

ds

∫

Rd

Γ(dx)

∫

Rd

dySn(s, y)Kj(s, y)

× Sn(s, y − x)Kj(s, y − x)
)

≤E
(∫ T

0

ds

∫

Rd

Γ(dx)

∫

Rd

dySn(s, y)Sn(s, y − x)

× ‖K(s, y)‖A‖K(s, y − x)‖A
)

≤
∫ T

0

ds sup
z∈Rd

E(‖K(s, z)‖2
A)

∫

Rd

µ(dξ)|FSn(s)(ξ)|2. (1.10)
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Notice that supn≥1 |Fψn(ξ)| ≤ 1, which implies that

sup
n≥1

|FSn(s)(ξ)| ≤ |FS(s)(ξ)|. (1.11)

Hence, owing to (1.10) we obtain that

sup
n≥1

‖Sn‖+,K < +∞. (1.12)

Let us now show that

lim
n→∞

‖Sn − S‖0,K = 0. (1.13)

We have

‖Sn − S‖2
0,K =

∫ T

0

dt

∫

Rd

µK
t (dξ)|F(Sn(t) − S(t))(ξ)|2

=

∫ T

0

dt

∫

Rd

µK
t (dξ)|Fψn(ξ) − 1|2|FS(t)(ξ)|2.

The integrand in the last term of the above equality converges pointwise to zero as n
tends to infinity. Then, since |Fψn(ξ) − 1| ≤ 2, to apply bounded convergence, it

suffices to check that

∫ T

0

dt

∫

Rd

µK
t (dξ)|FS(t)(ξ)|2 <∞.

We know that |FSn(t)(ξ)| converges pointwise to |FS(t)(ξ)| and

‖Sn‖2
0,K =

∫ T

0

dt

∫

Rd

µK
t (dξ)|FSn(t)(ξ)|2.

Then, Fatou’s lemma imply

‖S‖2
0,K ≤ lim inf

n→∞
‖Sn‖2

0,K ≤ ‖Sn‖2
+,K <∞,

by (1.12). This finish the proof of (1.13) and therefore S ∈ P0,K .

By the isometry property of the stochastic integral we see that equality (1.8) holds

for any Sn; then the construction of the stochastic integral yields

E(||(S ·MK)t||2A) = lim
n→∞

E(||(Sn ·MK)t||2A)

= lim
n→∞

∫ t

0

ds

∫

Rd

µK
s (dξ)|FSn(s)(ξ)|2. (1.14)
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Here we apply bounded convergence and we get

E(||(S ·MK)t||2A) =

∫ t

0

ds

∫

Rd

µK
s (dξ)|FS(s)(ξ)|2.

This proves (1.8).

We now prove (1.9). From the first equality in (1.14) we obtain that there exists a

partial sequence (nk)k≥1 such that

lim
k→∞

‖(Snk
·MK)t‖A = ‖(S ·MK)t‖A,

almost sure. By Fatou’s lemma

E(‖(S ·MK)t‖p
A) ≤ lim inf

k→∞
E(‖(Snk

·MK)t‖p
A).

For the sake of simplicity, in the sequel we shall write Sn instead of Snk
.

Taking into account that each Sn is smooth, the stochastic integral Sn ·MK is de-

fined following Walsh’s theory (see the first part at the beginning of this section). The

stochastic process {(Sn ·MK)t, t ≥ 0} is a A−valued martingale. Then, Burkholder’s

inequality for Hilbert-valued martingales (see [Mét82]) and Schwarz’s inequality en-

sure

E(‖(Sn ·MK)t‖p
A)

≤ CE

(

∑

j≥0

∫ t

0

ds

∫

Rd

dyΓ(dx)

∫

Rd

Sn(s, y)Sn(s, y − x)Kj(s, y)Kj(s, y − x)

)
p
2

≤ CE

(∫ t

0

ds

∫

Rd

Γ(dx)

∫

Rd

dySn(s, y)Sn(s, y − x)‖K(s, y)‖A‖K(s, y − x)‖A
)

p
2

(1.15)

Notice that, for each n ≥ 1, t ∈ [0, T ], the measure on [0, t] × R
d × R

d given by

Sn(s, y)Sn(s, y − x)dsΓ(dx)dy is finite. Indeed,

sup
n≥1

sup
t∈[0,T ]

∫ t

0

ds

∫

Rd

Γ(dx)

∫

Rd

dySn(s, y)Sn(s, y − x)

≤ sup
n≥1

sup
t∈[0,T ]

∫ t

0

ds

∫

Rd

µ(dξ)|FSn(s)(ξ)|2

≤
∫ T

0

ds

∫

Rd

µ(dξ)|FS(s)(ξ)|2,
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which is finite by hypothesis. Thus, Hölder’s inequality applied to this measure yields

that the last term in (1.15) is bounded by

C

(∫ T

0

ds

∫

Rd

µ(dξ)|FS(s)(ξ)|2
)

p
2
−1

×
∫ t

0

ds

∫

Rd

Γ(dx)

∫

Rd

dySn(s, y)Sn(s, y − x)E(‖K(s, y)‖
p
2
A‖K(s, y − x)‖

p
2
A).

Finally, using Hypothesis B and (1.11) one gets.

E(‖(S ·MK)t‖p
A) ≤C

(∫ T

0

ds

∫

Rd

µ(dξ)|FS(s)(ξ)|2
)

p
2
−1

×
∫ t

0

ds sup
x∈Rd

E(‖K(s, x)‖p
A)

∫

Rd

µ(dξ)|FS(s)(ξ)|2.

Therefore (1.9) is proved.

Remark 1.2.6. From the identity (1.8) it follows that for any S satisfying the assump-

tions of Theorem 1.2.5 we have

||S||20,K =

∫ T

0

ds

∫

Rd

µK
s (dξ)|FS(s)(ξ)|2.

Definition of mild solutions

In this last part of Section 1.2.1, we define what we understand by a solution of

Equation (1.1); this is done by means of the so called mild formulation, as follows.

Definition 1.2.7. A solution to the SPDE (1.1), with vanishing initial conditions, is a

predictable real-valued stochastic process {u(t, x), (t, x) ∈ [0, T ] × R
d} such that

sup
(t,x)∈[0,T ]×Rd

E(|u(t, x)|2) < +∞,

E(u(t, x)u(t, y)) = E(u(t, 0)u(t, x− y))

and the following stochastic evolution equation is fulfilled:

u(t, x) =

∫ t

0

∫

Rd

Λ(t− s, x− y)σ(u(s, y))M(ds, dy)

+

∫ t

0

ds

∫

Rd

Λ(s, dy)b(u(t− s, x− y)). (1.16)
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Recall that Λ denotes the fundamental solution associated to the differential opera-

tor L on R
d.

The stochastic integral in (1.16) is of the type defined in Theorem 1.2.5. More

precisely, here the Hilbert space A is R and K(s, z) := σ(u(s, z)). Notice that, since

σ is Lipschitz, the requirements on the process u ensure the validity of Hypothesis

B. Concerning Hypothesis C, its validity is a consequence of the proof of Dalang’s

existence and uniqueness result (see Theorem 13 and Lemma 18 in [Dal99]); these

arguments shall be made clearer in the next Section 1.2.2, where a more general result

shall be proved (Theorem 1.2.12).

As in Dalang’s Theorem 13 ([Dal99]), in Theorem 1.2.12 we will consider the fol-

lowing assumptions relating the differential operator and the spatial correlation of the

noise:

Hypothesis D The fundamental solution Λ of Lu = 0 is a deterministic function in t
taking values in the space of non-negative distributions with rapid decrease such that

∫ T

0

dt

∫

Rd

µ(dξ)|FΛ(t)(ξ)|2 <∞.

Moreover, Λ is a non-negative measure on R+ × R
d of the form Λ(t, dy)dt such that

sup0≤t≤T Λ(t,Rd) < +∞.

Under these hypotheses and assuming that the coefficients σ and b are Lipschitz

functions, Dalang proved that Equation (1.1) admits a unique solution in the sense of

definition 1.2.7 (see Theorem 13 in [Dal99]).

In the next Section 1.2.2 we present an existence and uniqueness result in a more

general setting, namely for stochastic equations taking values in some Hilbert space; it

is a quotation of Theorem 7.2 in [SSar].

Example 1.2.8. In [Dal99] Equation (1.1) with L = ∂2

∂t2
− ∆d and L = ∂

∂t
− ∆d are

studied. That is, the stochastic wave and heat equations, respectively.

For the stochastic wave equation with d ∈ {1, 2, 3} and the stochastic heat equa-

tion with d ≥ 1, a sufficient condition ensuring existence and uniqueness of solution to

the corresponding equation is

∫

Rd

µ(dξ)

1 + |ξ|2 < +∞.

We end this part by quoting a technical result –a version of Gronwall’s Lemma

proved in [Dal99]– that shall be applied throughout the proof of the main theorem in

the next section and in the results collected in Appendices A and B.
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Lemma 1.2.9 ([Dal99], Lemma 15). Let g : [0, T ] → R+ be a non-negative function

such that
∫ T

0
g(s)ds < +∞. Then there is a sequence (an, n ∈ N) of non-negative real

numbers such that for all p ≥ 1,
∑∞

n=1 a
1
p
n < +∞, and with the following property:

Let (fn, n ∈ N) be a sequence of non-negative functions on [0, T ] and k1, k2 be non-

negative numbers such that for 0 ≤ t ≤ T ,

fn(t) ≤ k1 +

∫ t

0

(k2 + fn−1(s))g(t− s)ds.

If sup0≤s≤T f0(s) = M , then for n ≥ 1,

fn(t) ≤ k1 + (k1 + k2)
n−1
∑

i=1

ai(k2 +M)an.

In particular, supn≥0 sup0≤t≤T fn(t) < +∞, and if k1 = k2 = 0, then
∑

n≥0 fn(t)
1
p

converges uniformly on [0, T ].

1.2.2 A result on existence and uniqueness of solution

This section is devoted to present a SPDE in a general Hilbert-valued context. We

define a mild solution of this equation and we prove an existence and uniqueness result.

The motivation of the above mentioned setting comes from the fact that, when

dealing with the study of the probability law of the solution to (1.1) via Malliavin cal-

culus, we need to consider Malliavin derivatives of any order of the solution and show

that they satisfy stochastic integral equations obtained by differentiation of (1.16). The

equations obtained by this procedure take values in some Hilbert space.

For instance, as it was mentioned in the Introduction, if the coefficients b and σ are

differentiable, a formal differentiation of Equation (1.16) reads

Du(t, x) = Z(t, x) +

∫ t

0

∫

Rd

Λ(t− s, x− z)σ′(u(s, z))Du(s, z)M(ds, dz)

+

∫ t

0

ds

∫

Rd

Λ(s, dz)b′(u(t− s, x− z))Du(t− s, x− z),

where Z(t, x) is some Hilbert-valued stochastic process that is made explicit in Section

2.1 (see also Theorem 2 in [QSSS04a]). Thus a Hilbert-valued framework is needed.

Let K and A be two separable Hilbert spaces. We consider two operators

σ, b : K ×A → A

satisfying the following two conditions:
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(H1) it holds that

sup
x∈K

(‖σ(x, y) − σ(x, z)‖A + ‖b(x, y) − b(x, z)‖A) ≤ C‖y − z‖A,

for all y, z ∈ A and x ∈ K,

(H2) there exists q ∈ [1,∞) such that

‖σ(x, 0)‖A + ‖b(x, 0)‖A ≤ C(1 + ‖x‖q
K),

for all x ∈ K,

for some positive constant C. Notice that (H1) and (H2) clearly imply

(H3) ‖σ(x, y)‖A + ‖b(x, y)‖A ≤ C(1 + ‖x‖q
K + ‖y‖A).

We assume that Hypothesis D from the previous Section 1.2.1 is fulfilled.

Let {U0(t, x), (t, x) ∈ [0, T ] × R
d} and V = {V (t, x), (t, x) ∈ [0, T ] × R

d} be

predictable A−valued and K−valued processes, respectively, such that

sup
(t,x)∈[0,T ]×Rd

E
(

‖V (t, x)‖p
K + ‖U0(t, x)‖p

A

)

< +∞,

for any p ∈ [1,∞).
We consider the following definition, which corresponds to Definition 5.1 in [Dal99]

for our standing setting.

Definition 1.2.10. For z ∈ R
d, let z + B = {z + y, y ∈ B}, B ∈ Bb(R

d+1), and

define the martingale measure {M (z)
s (B), s ∈ R+, B ∈ Bb(R

d+1)} by M
(z)
s (B) =

Ms(z + B). Given a Hilbert-valued process {X(s, x), (s, x) ∈ R+ × R
d}, we also

set X(z)(s, x) = X(s, z + x). We say that the process X has property (S) if for

all z ∈ R
d, the joint distribution of the processes {V (z)(t, x), (t, x) ∈ [0, T ] × R

d},

{X(z)(s, x), (s, x) ∈ R+ × R
d} and {M (z)

s (B), s ∈ R+, B ∈ Bb(R
d+1)} does not

depend on z.

We consider the stochastic integral equation on A

U(t, x) =U0(t, x) +

∫ t

0

∫

Rd

Λ(t− s, x− y)σ(V (s, y), U(s, y))M(ds, dy)

+

∫ t

0

ds

∫

Rd

Λ(s, dy)b(V (t− s, x− y), U(t− s, x− y)) (1.17)

The following definition is the analogue of Definition 1.2.7 in the Hilbert-valued con-

text of Equation (1.17).
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Definition 1.2.11. A solution to Equation (1.17) is an A−valued predictable stochas-

tic process U = {U(t, x), (t, x) ∈ [0, T ] × R
d} such that

(1) sup(t,x)∈[0,T ]×Rd E(‖U(t, x)‖2
A) < +∞,

(2) E(〈U(t, x), U(t, y)〉A) = E(〈U(t, 0), U(t, x− y)〉A),

and satisfies Equation (1.17).

In (1.17), we consider the stochastic integral of the kind given in Theorem 1.2.5.

The next discussion provides a meaning to the pathwise integral.

Let {Y (s, y), (s, y) ∈ [0, T ] × R
d} be an A−valued stochastic process such that

sup
(s,y)∈[0,T ]×Rd

E(‖Y (s, y)‖2
A) < +∞.

Then, for any orthonormal system (ej)j≥1 in A, Cauchy-Schwarz inequality, the bound-

edness of the measure given by Λ(s, dy)dy, on [0, T ]×R
d, and Parseval’s identity yield

∞
∑

j=1

E

(

∣

∣

∣

∣

∫ t

0

ds

∫

Rd

Λ(s, dy)〈Y (s, y), ej〉A
∣

∣

∣

∣

2
)

≤ C

∫ t

0

ds

∫

Rd

Λ(s, dy)E(‖Y (s, y)‖2
A)

≤ C sup
(s,y)∈[0,T ]×Rd

E(‖Y (s, y)‖2
A),

which is finite, by hypothesis. Thus,
(∫ t

0

ds

∫

Rd

Λ(s, dy)〈Y (s, y), ej〉A, j ≥ 1

)

determines a well-defined element of L2(Ω;A), which is denoted by

∫ t

0

ds

∫

Rd

Λ(s, dy)Y (s, y).

Notice that, by definition,
〈∫ t

0

ds

∫

Rd

Λ(s, dy)Y (s, y), ej

〉

A

=

∫ t

0

ds

∫

Rd

Λ(s, dy)〈Y (s, y), ej〉A,

for any j ≥ 1.

Our next purpose is to state and prove a result on existence and uniqueness of so-

lution for Equation (1.17). In particular, we shall obtain the version proved in [Dal99]

for the particular case of Equation (1.16). The result is a quotation of Theorem 7.2 in

[SSar]. The techniques used in the proof are somehow classical, but they incorporate

some arguments that are going to be useful in the proofs of the main results of the

papers collected in the Appendices. For this reason we think it is worthy to reproduce

the details.



1.2. SPDEs driven by spatially correlated noise 25

Theorem 1.2.12. Assume that the coefficients σ and b satisfy conditions (H1) and

(H2) above and that Hypothesis D is satisfied. Assume, moreover, that the process

{U0(t, x), (t, x) ∈ [0, T ] × R
d} satisfies property (S). Then, Equation (1.17) has a

unique solution in the sense given in Definition 1.2.11. In addition, the solution satis-

fies that

sup
(t,x)∈[0,T ]×Rd

E(‖U(t, x)‖p
A) < +∞, (1.18)

for any p ∈ [1,∞).

Proof of Theorem 1.2.12. We define the standard Picard iteration scheme

U0(t, x) =U0(t, x),

Un(t, x) =U0(t, x) +

∫ t

0

∫

Rd

Λ(t− s, x− y)σ(V (s, y), Un−1(s, y))M(ds, dy)

+

∫ t

0

ds

∫

Rd

Λ(s, dy)b(V (t− s, x− y), Un−1(t− s, x− y)), (1.19)

for n ≥ 1. For any p ∈ [1,∞), we prove the following facts:

(i) The sequence of processes Un = {Un(t, x), (t, x) ∈ [0, T ] × R
d}, n ≥ 1, are

well defined predictable processes and satisfy property (S).

(ii) It holds that

sup
n≥0

sup
(t,x)∈[0,T ]×Rd

E(‖Un(t, x)‖p
A) < +∞.

(iii) For n ≥ 0, set

Mn(t) = sup
(s,x)∈[0,t]×Rd

E(‖Un+1(t, x) − Un(t, x)‖p
A).

Then

Mn(t) ≤ C

∫ t

0

dsMn−1(s)(J(t− s) + 1), (1.20)

where the function J is defined by

J(t) =

∫

Rd

µ(dξ)|FΛ(t)(ξ)|2. (1.21)

Proof of (i). We prove by induction on n that Un is predictable, satisfies property

(S) and

sup
(t,x)∈[0,T ]×Rd

E(‖Un(t, x)‖2
A) < +∞. (1.22)



26 Chapter 1. Preliminaries

This is sufficient to give a rigorous meaning to the integrals appearing in (1.19). Indeed,

by assumption this is true for n = 0. Assume that the property is true for any k =
0, 1, . . . , n− 1, n ≥ 2. Consider the stochastic process given by

K(t, x) = σ(V (t, x), Un−1(t, x)). (1.23)

The induction hypothesis and the assumptions on V and σ ensure the validity of Hy-

pothesis B and C. Thus, K(t, x) satisfies the assumptions of Theorem 1.2.5. In partic-

ular (1.9) for p = 2 yields

sup
(t,x)∈[0,T ]×Rd

E

(

∥

∥

∥

∥

∫ t

0

∫

Rd

Λ(t− s, x− y)σ(V (s, y), Un−1(s, y))M(ds, dy)

∥

∥

∥

∥

2

A

)

≤ C sup
(t,x)∈[0,T ]×Rd

E(1 + ‖Un−1(t, x)‖2
A + ‖V (t, x)‖2q

K )

×
∫ T

0

dt

∫

Rd

µ(dξ)|FΛ(t)(ξ)|2.

This last expression is finite, by assumption.

Let us deal with the pathwise integral in (1.19). By the assumptions on b, we have

that

E

(

∥

∥

∥

∥

∫ t

0

ds

∫

Rd

Λ(s, dy)b(V (t− s, x− y), Un−1(t− s, x− y))

∥

∥

∥

∥

2

A

)

≤ C

∫ t

0

ds

∫

Rd

Λ(s, dy)E
(

‖b(V (t− s, x− y), Un−1(t− s, x− y))‖2
A

)

≤ C sup
(t,x)∈[0,T ]×Rd

E(1 + ‖Un−1(t, x)‖2
A + ‖V (t, x)‖2q

K )

∫ T

0

dsΛ(s,Rd),

which is finite. Thus we have proved (1.22). By Lemma 1.2.14 below, Un satisfies

property (S).

Proof of (ii). Fix p ∈ [1,∞). The arguments are very similar to those used in the

proof of (i). Indeed, we have

E(‖Un(t, x)‖p
A) ≤ C(C0(t, x) + An(t, x) +Bn(t, x)), (1.24)

with

C0(t, x) =E(‖U0(t, x)‖p
A)

An(t, x) =E

(∥

∥

∥

∥

∫ t

0

∫

Rd

Λ(t− s, x− y)σ(V (s, y), Un−1(s, y))M(ds, dy)

∥

∥

∥

∥

p

A

)

,

Bn(t, x) =E

(∥

∥

∥

∥

∫ t

0

ds

∫

Rd

Λ(s, dy)b(V (t− s, x− y), Un−1(t− s, x− y))

∥

∥

∥

∥

p

A

)

.
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By assumption

sup
(t,x)∈[0,T ]×Rd

C0(t, x) < +∞. (1.25)

Consider the stochastic process K(t, x) defined in (1.23), which satisfies the assump-

tions of Theorem 1.2.5. In particular (1.9) and assumption (H3) on σ yield

sup
x∈Rd

An(t, x) ≤C
∫ t

0

ds sup
x∈Rd

E(‖σ(V (s, x), Un−1(s, x))‖p
A)

∫

Rd

µ(dξ)|FΛ(t− s)(ξ)|2

≤C
∫ t

0

ds

(

1 + sup
x∈Rd

E(‖Un−1(s, x)‖p
A)

)∫

Rd

µ(dξ)|FΛ(t− s)(ξ)|2.

(1.26)

On the other hand, Hölder’s inequality with respect to the finite measure on [0, T ]×R
d

given by Λ(s, dz)ds and (H3) for b imply

sup
x∈Rd

Bn(t, x) ≤ CE

(∫ t

0

ds

∫

Rd

Λ(s, dy)‖b(V (t− s, x− y), Un−1(t− s, x− y))‖2
A

)

p
2

≤ C

∫ t

0

ds

∫

Rd

Λ(s, dy)E(‖b(V (t− s, x− y), Un−1(t− s, x− y))‖p
A)

≤ C

∫ t

0

ds

(

1 + sup
x∈Rd

E(‖Un−1(s, x)‖p)

)∫

Rd

Λ(t− s, dy)

≤ C

∫ t

0

ds

(

1 + sup
x∈Rd

E(‖Un−1(s, x)‖p)

)

(1.27)

Putting together the estimates (1.25) to (1.27) into (1.24) we obtain that

sup
x∈Rd

E(‖Un(t, x)‖p
A) ≤ C + C

∫ t

0

ds sup
x∈Rd

E(‖Un−1(t, x)‖p
A)(J(t− s) + 1),

for any t ∈ [0, T ] and n ≥ 1.

The conclusion of part (ii) follows applying the version of Gronwall’s lemma given

in Lemma 1.2.9 to the following situation: fn(t) = supx∈Rd E(‖Un(t, x)‖p), k1 = C,

k2 = 0, g(s) = C(J(s) + 1), for some positive constant C.

Proof of (iii). We consider the decomposition

E(‖Un+1(t, x) − Un(t, x)‖p) ≤ C(an(t, x) + bn(t, x)),
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with

an(t, x) =E

(∥

∥

∥

∥

∫ t

0

∫

Rd

Λ(t− s, x− y) (σ(V (s, y), Un(s, y))

− σ(V (s, y), Un−1(s, y))
)

M(ds, dy)
∥

∥

∥

p

A

)

,

bn(t, x) =E

(∥

∥

∥

∥

∫ t

0

ds

∫

Rd

Λ(s, dy) (b(V (t− s, x− y), Un(t− s, x− y))

− b(V (t− s, x− y), Un−1(t− s, x− y))
)

∥

∥

∥

p

A

)

.

Owing to Theorem 1.2.5 and the Lipschitz property of σ, we obtain

an(t, x) ≤ C

∫ t

0

sup
x∈Rd

E
(

‖σ(V (s, x), Un(s, x)) − σ(V (s, x), Un−1(s, x))‖p
A

)

×
∫

Rd

µ(dξ)|FΛ(t− s)(ξ)|2

≤ C

∫ t

0

ds

(

sup
(τ,x)∈[0,s]×Rd

E(‖Un(τ, x) − Un−1(τ, x)‖p
A

)

J(t− s). (1.28)

Using similar arguments as those used in the study of the termBn(t, x), condition (H1)

for b and Hölder’s inequality with respect to the finite measure on [0, T ]×R
d given by

Λ(s, dy)ds, we end up with

bn(t, x) ≤ E

(∫ t

0

ds

∫

Rd

Λ(s, dy)‖Un(t− s, x− y) − Un−1(t− s, x− y)‖2
A

)

p
2

≤ C

∫ t

0

ds

∫

Rd

Λ(s, dy)E(‖Un(t− s, x− y) − Un−1(t− s, x− y)‖p
A)

≤ C

∫ t

0

ds sup
(τ,x)∈[0,s]×Rd

E(‖Un(τ, x) − Un−1(τ, x)‖p
A). (1.29)

Then, (1.20) follows from (1.28) and (1.29).

We finish the proof applying Lemma 1.2.9 in the particular case fn(t) = Mn(t),
k1 = k2 = 0, g(s) = C(J(s) + 1), with C given in (1.20). Notice that the results

proved in part (ii) show that M := sup0≤s≤T f0(s) is finite. Then we conclude that

{Un(t, x), (t, x) ∈ [0, T ] × R
d} converges in Lp(Ω) to a limit U = {U(t, x), (t, x) ∈

[0, T ] × R
d}, uniformly with respect to (t, x) ∈ [0, T ] × R

d.

It only remains to show that the process U satisfies Equation (1.17); notice that

condition (1.18) follows from (ii).



1.2. SPDEs driven by spatially correlated noise 29

By Equation (1.19), it suffices to show that the integrals

∫ t

0

∫

Rd

Λ(t− s, x− y)σ(V (s, y), Un−1(s, y))M(ds, dy)

and
∫ t

0

ds

∫

Rd

Λ(s, dy)b(V (t− s, x− y), Un−1(t− s, x− y))

converge in L2(Ω;A), as n tends to infinity, to the second and third term in the right

hand-side of Equation (1.17), respectively. This can be achieved using the same argu-

ments as for the study of the terms an(t, x) and bn(t, x), respectively, and the conver-

gence

lim
n→∞

(

sup
(t,x)∈[0,T ]×Rd

E(‖Un(t, x) − U(t, x)‖p
A)

)

= 0.

Therefore the theorem is completely proved.

Example 1.2.13. Let A = K = R and σ and b depend only on the second variable

y ∈ R. Then condition (H1) states the Lipschitz continuity, (H2) is trivial and (H3)

follows from (H1). Equation (1.17) is of the same kind of (1.16), except for the non

trivial initial condition. Therefore Theorem 1.2.12 yields the existence of a unique

solution in the sense of Definition 1.2.7. Moreover, the process u satisfies

sup
(t,x)∈[0,T ]×Rd

E(|u(t, x)|p) < +∞.

This is a variant of Theorem 13 in [Dal99].

Next, we state a lemma that has been applied along the proof of the above the-

orem; it is the Hilbert-valued counterpart of Lemma 18 in [Dal99]. For the sake of

completeness, we include a detailed proof.

Lemma 1.2.14. For n ≥ 1, if {Un−1(t, x), (t, x) ∈ [0, T ] × R
d} has property (S),

then the process {Un(t, x), (t, x) ∈ [0, T ] × R
d} defined by Equation (1.19) satisfies

property (S) as well.

Proof. Set u0(t) = U0(t, 0), u
(x)
0 (t) = U0(t, x), for x ∈ R

d. From (1.19), it is

straightforward to check that

Un(t, x) =u
(x)
0 (t) +

∫ t

0

∫

Rd

Λ(t− s,−y)σ(V (x)(s, y), (Un−1)(x)(s, y))M (x)(ds, dy)

+

∫ t

0

ds

∫

Rd

Λ(s, dy)b(V (x)(t− s,−y), (Un−1)(x)(t− s,−y)).
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Therefore, Un(t, x) is an abstract function Ψ of u
(x)
0 , V (x), (Un−1)(x), and M (x); that

is, Un(t, x) = Ψ(u
(x)
0 , V (x), (Un−1)(x),M (x)). Similarly,

(Un)(z)(t, x) = Ψ(u
(x+z)
0 , V (x+z), (Un−1)(z+x),M (z+x)).

Then, for any z ∈ R
d, (s1, . . . , sk), (t1, . . . , tk), (τ1, . . . , τk) and (r1, . . . , rk) in R

k
+,

(y1, . . . , yk) and (z1, . . . , zk) in (Rd)k and for all bounded Borel sets B1, . . . , Bk of R
d,

the joint distribution of

(

u
(z)
0 (si), V

(z)(ti, yi), (U
n)(z)(τi, zi),M

(z)
ri

(Bi), i = 1, . . . , k
)

is a function of the joint distribution of

u
(z)
0 (·), u(z+zi)

0 (·), V (z)(·, ·), V (z+zi)(·, ·), (Un−1)(z+zi)(·, ·),M (z+zi)
· (·),M (z)

ri
(Bi),

i = 1, . . . , k. By property (S) for Un−1, this joint distribution does not depend on z.

Therefore, property (S) holds for Un.

1.3 Preliminaries on Malliavin calculus

This section is devoted to present the basic objects and notations of the Malliavin cal-

culus needed along the chapter. We also state some results concerning differentiability

(in the sense of Malliavin) and existence and smoothness of densities of random vari-

ables. Finally, at the end of the section we give a detailed description of the setting in

which we shall apply the Malliavin calculus in the papers collected in the Appendices

A and B.

The stochastic calculus of variations or Malliavin calculus, set up in the semi-

nal paper [Mal78], provides a useful tool for the analysis of densities of Brownian

functionals, and more generally for functionals of Gaussian families indexed by a real

separable Hilbert space (for general manuscripts on this topic we refer to [Nua95],

[Mal97], [Nua98] and to [SSar] for a more concrete application to SPDEs). Here we

are going to give the main definitions in a general setting. In the next sections we shall

specify the Hilbert space and the Gaussian family on which we will base the Malliavin

calculus.

Let H be a real separable Hilbert space. Denote by ‖ � ‖H and 〈�, �〉H the norm and

the scalar product of H , respectively. Then, there exists a probability space (Ω,F , P )
and a family (W (h), h ∈ H) of Gaussian random variables defined on this space,

such that EW (h) = 0 and E(W (h1)W (h2)) = 〈h1, h2〉H , for h, h1, h2 ∈ H (see, for

instance, [SSar], p. 15).
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We begin with the definition of the Malliavin derivative operator. Let C∞
b (Rn) be

the space of infinitely differentiable functions having bounded partial derivatives of

any order and let S denote the class of random variables of the form

F = f(W (h1), . . . ,W (hn)),

where f belongs to C∞
b (Rn), h1, . . . , hn are in H , and n ≥ 1. These random variables

are called smooth. We define the derivative operator D on S as the H−valued random

variable given by

DF =
n
∑

i=1

∂f

∂xi

(W (h1), . . . ,W (hn))hi.

It can be shown that D is closable as an operator from S ⊂ Lp(Ω) into Lp(Ω;H) (see

[Nua98], p. 128). We keep the notation D for the closed extension operator.

We will denote the domain of D in Lp(Ω) by D
1,p, meaning that D

1,p is the closure

of the class of smooth random variables S with respect to the norm

‖F‖1,p = [E(|F |p) + E(‖DF‖p
H)]

1
p .

For p = 2, the space D
1,2 is a Hilbert space with scalar product

〈F,G〉1,2 = E(FG) + E(〈DF,DG〉H).

We can define the iteration of the operator D in such a way that for a smooth random

variable F , the derivative DNF is a random variable taking values in H⊗N . Then, for

every p ≥ 1 and any natural number N , we introduce a semi-norm on S defined by

‖F‖p
N,p = E(|F |p) +

N
∑

j=1

E(‖DjF‖p

H⊗j).

As in the case N = 1, one can show that the operator DN is closable from S ⊂ Lp(Ω)
into Lp(Ω;H⊗N), p ≥ 1, the extension being also denoted by DN . For any p ≥ 1 and

any natural N ≥ 1, we will denote by D
N,p the completion of the family of smooth

random variables S with respect to the norm ‖ � ‖N,p. Notice that, by definition, D
j,q ⊂

D
k,p for j ≥ k and q ≥ p. We shall use the notation

D
∞ = ∩p≥1 ∩k≥1 D

k,p.

The spaces D
k,p can be extended in the following way. Let V be a Hilbert space and

SV be the set of smooth random vectors taking values in V of the form

F =
n
∑

j=1

Fjvj,
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vj ∈ V , Fj ∈ S, j = 1, . . . , n, n ≥ 1. By definition, the N -th derivative of F is given

by

DNF =
n
∑

j=1

DNFj ⊗ vj.

As before, one can prove that DN is a closable operator from SV ⊂ Lp(Ω;V ) into

Lp(Ω;H⊗N ⊗ V ), p ≥ 1. Then, for any N ∈ N, p ∈ [1,∞), we introduce the

seminorm on SV given by

‖F‖p
N,p,V = E(‖F‖p

V ) +
N
∑

j=1

E(‖DjF‖p

H⊗j⊗V
).

We define D
N,p(V ) as the completion of SV with respect to this norm.

The following lemmas give sufficient conditions to ensure regularity of random

variables in the Malliavin sense. The first one is proved in [LNS89] and the second

one is an immediate consequence of the fact that the operator DN is a closed operator

defined on Lp(Ω) with values in Lp(Ω;H⊗N).

Lemma 1.3.1. Let (Fn)n≥1 be a sequence of random variables belonging to D
1,p, for

some p ∈ [2,∞). Assume that the following two conditions are fulfilled:

1. The sequence (Fn)n≥1 converges in Lp(Ω) to a random variable F ;

2. supn≥1E(‖DFn‖p
H) < +∞.

Then F belongs to D
1,p and there is a subsequence of (DFn)n≥1 converging to DF in

the weak topology of Lp(Ω;H).

Lemma 1.3.2. Let (Fn)n≥1 be a sequence of random variables belonging to D
N,p.

Assume that

(a) there exists a random variable F such that Fn converges to F in Lp(Ω), as n
tends to infinity,

(b) the sequence
(

DNFn

)

n≥1
converges in Lp(Ω;H⊗N).

Then F belongs to D
N,p and DNF = Lp(Ω;H⊗N) − limn→∞DNFn.

Now we state the chain rule for the Malliavin derivative, as follows.

Proposition 1.3.3 ([Nua95], Proposition 1.2.2). Let ϕ : R
m → R be a continuously

differentiable function with bounded partial derivatives. Fix p ≥ 1 and suppose that
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F = (F 1, . . . , Fm) is a random vector whose components belong to the space D
1,p.

Then ϕ(F ) ∈ D
1,p, and

D(ϕ(F )) =
m
∑

i=1

∂ϕ

∂xi

(F )DF i.

Let N ∈ N. For hi ∈ H , i = 1, . . . , N , and F a random variable we will write

DN
(h1,...,hN )F = 〈DNF, h1 ⊗ · · · ⊗ hN〉H⊗N .

Set AN = {(h1, . . . , hN) ∈ H⊗N} and denote by Pm the set of partitions of AN

consisting of m disjoint subsets p1, . . . , pm, m = 1, . . . , N , and by |pi| the cardinal of

pi. We have the following Leibniz’s rule for Malliavin derivatives:

Proposition 1.3.4. Let ϕ : R
m → R be a C∞ function with bounded partial deriva-

tives of any order. Fix p ≥ 1 and suppose that F is a random variable belonging to the

space D
N,p. Then ϕ(F ) ∈ D

N,p, and

DN
(h1,...,hN )(ϕ(F )) =

N
∑

m=1

∑

Pm

ϕ(m)(F )
m
∏

i=1

D|pi|
pi
F.

We can localise the domains of the operators D as follows. We will denote by D
1,p
loc ,

p ≥ 1, the set of random variables F such that there exists a sequence
(

(Ωn, Fn), n ≥
1
)

included in F × D
1,p with the following properties:

(i) Ωn ↗ Ω, a.s. as n tends to infinity.

(ii) F = Fn, a.s. on Ωn, for all n ≥ 1.

We then say that (Ωn, Fn) is a localising sequence of F in D
1,p, and DF is defined

without ambiguity by DF = DFn on Ωn, n ≥ 1. The space D
N,p
loc can be introduced

analogously.

We will denote by δ the adjoint of the operator D as an unbounded operator from

L2(Ω) into L2(Ω;H). That is, the domain of δ, denoted by Dom δ, is the set of

H−valued square integrable random variables u such that

|E(〈DF, u〉H)| ≤ C‖F‖L2(Ω),

for all F ∈ D
1,2, where C is some constant depending on u. If u belongs to Dom δ,

then δ(u) is the element of L2(Ω) characterised by

E(Fδ(u)) = E(〈DF, u〉H)
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for any F ∈ D
1,2.

We will refer to the operator δ as the divergence operator or the Skorohod integral.

In case H is a Hilbert space of the form L2(X,B, µ), where µ is a σ−finite measure

without atoms on a measurable space (X,B), then the Skorohod integral extends the

usual Itô stochastic integral (see [Nua95], Sec. 1.3.2).

We denote by SH the class of smooth elementary elements of the form

u =
n
∑

j=1

Fjhj,

where the Fj are smooth random variables, and the hj are elements of H . It can be

shown (see [Nua98], p. 130) that an element u of this form belong to the domain of δ
and, moreover, it holds that

δ(u) =
n
∑

j=1

FjW (hj) −
n
∑

j=1

〈DFj, hj〉H .

A useful property of the Skorohod integral is the commutativity relationship between

it and the derivative operator. Namely, for smooth elements u we have the following

relation:

Dh(δ(u)) = 〈u, h〉H + δ(Dhu),

where we have used the notation DhF = 〈DF, h〉H . Assuming also that the Hilbert

space H is of the form L2(X,B, µ), as mentioned above, this property can be extended

to random vectors u belonging to D
1,2(H). For this, notice that in this caseL2(Ω;H) ∼=

L2(Ω × X); thus DF is a function of two variables, ω ∈ Ω and t ∈ X . We note

DF (t) = DtF . The result is as follows (see either [Nua98], Section 1.2, or [SSar],

Proposition 4.15):

Proposition 1.3.5. Let u ∈ D
1,2(H). Assume that for almost every t ∈ X , the

process {Dtu(s), s ∈ X} belongs to Domδ and there is a version of the process

{δ(Dtu(s)), t ∈ X} which is in L2(Ω ×X). Then δ(u) belongs to D
1,2 and we have

Dt(δ(u)) = u(t) + δ(Dtu),

t ∈ X .

Along the chapter we shall make use of this property in order to compute Malliavin

derivatives of stochastic integrals.

We conclude this enumeration of results by stating two criteria on existence and

regularity of densities of random variables; the source can be found in [Mal78]. First

we introduce a notion that plays a crucial role.
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Definition 1.3.6. Let F = (F 1, . . . , Fm) be a random vector with components F j ∈
D

1,1
loc , j = 1, . . . ,m. The Malliavin matrix of F is the matrix of size m, denoted by γF ,

whose entries are the random variables 〈DF i, DF j〉H , i, j = 1, . . . ,m.

The next result due to Bouleau and Hirsch (see [BH91]) gives sufficient conditions

for the existence of density.

Theorem 1.3.7. Let F = (F 1, . . . , Fm) be a random vector satisfying the following

conditions:

(a) F i belongs to the space D
1,p
loc , p > 1, for all i = 1, . . . ,m.

(b) The Malliavin matrix γF is invertible, a.s.

Then the law of F has a density with respect to the Lebesgue measure on R
m.

Finally, we shall need the following result on existence and smoothness of densities

of random variables (for a detailed proof see for instance [Nua95], p. 88).

Proposition 1.3.8. Let F = (F 1, . . . , Fm) be a random vector satisfying the assump-

tions

(a) F j ∈ D
∞, for any j = 1, . . . ,m,

(b) the Malliavin matrix γF is invertible, a.s. and

(det γF )−1 ∈ ∩p≥1L
p(Ω).

Then the law of F has an infinitely differentiable density with respect to the Lebesgue

measure on R
m.

Description of the Gaussian context

We set the basic objects needed in the Appendices A and B to apply the techniques

of the Malliavin calculus. Namely, using the notation of this section, we precise the

Hilbert space H and the Gaussian family (W (h), h ∈ H) associated to it.

We shall consider H = HT , the latter being defined as follows. Let E be the inner-

product space consisting of functions ϕ ∈ S(Rd) endowed with the inner-product

〈ϕ, ψ〉E =
∫

Rd Γ(dx)(ϕ ∗ ψ̃)(x), where ψ̃(x) = ψ(−x). Recall that the measure Γ is

the spatial correlation of the noise Ḟ (t, x) in Equation (1.1). Notice that

〈ϕ, ψ〉E =

∫

Rd

µ(dξ)Fϕ(ξ)Fψ(ξ),
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where µ is the positive and positive definite spectral measure associated to Γ. Let H
denote the completion of (E , 〈·, ·〉E). Set HT = L2([0, T ];H). The scalar product in

HT extends that defined in (1.2). Notice that H and HT may contain not only functions

but also distributions. The space HT is a real separable Hilbert space.

The Gaussian family is given by

W (h) =

∫ T

0

∫

Rd

h(s, x)M(ds, dx),

for h ∈ HT , where the stochastic integral can be interpreted in Dalang’s sense as a

stochastic integral of a deterministic integrand with respect to the martingale measure

M . Then (W (h), h ∈ HT ) is a centered Gaussian process such thatE(W (h1)W (h2)) =
〈h1, h2〉HT

, h1, h2 ∈ HT , and we can use the differential Malliavin calculus based on it.

To conclude this section, we introduce some notation related to the above described

setting needed in the results of [QSSS04c] (see Appendix B).

For ri ∈ [0, T ], ϕi ∈ H, i = 1, . . . , N , and X a random variable we set

DN
((r1,ϕ1),...,(rN ,ϕN ))X = 〈DN

(r1,...,rN )X,ϕ1 ⊗ · · · ⊗ ϕN〉H⊗N .

Thus, we have that

‖DNX‖2
H⊗N

T

=

∫

[0,T ]N
dr1 . . . drN

∑

j1,...,jN

|D((r1,ej1
),...,(rN ,ejN

))X|2,

where (ej, j ≥ 0) is a complete orthonormal system of H.

Let N ∈ N, fix a set AN = {αi = (ri, ϕi) ∈ R+ × H, i = 1, . . . , N} and

set
∨

i ri = max(r1, . . . , rN), α = (α1, . . . , αN), α̂i = (α1, . . . , αi−1, αi+1, . . . , αN).
Using the same notation as for the statement of Proposition 1.3.4, we denote by Pm

the set of partitions of AN consisting of m disjoint subsets p1, . . . , pm, m = 1, . . . , N ,

and by |pi| the cardinal of pi. Let X be a random variable belonging to D
N,2, N ≥ 1,

and g be a real CN -function with bounded derivatives up to order N . Leibniz’s rule for

Malliavin’s derivatives (see Proposition 1.3.4) yields

DN
α (g(X)) =

N
∑

m=1

∑

Pm

cmg
(m)(X)

m
∏

i=1

D|pi|
pi
X,

with positive coefficients cm, m = 1, . . . , N , c1 = 1. Let

∆N
α (g,X) := DN

α g(X) − g′(X)DN
α X.

Notice that ∆N
α (g,X) = 0 if N = 1 and it only depends on the Malliavin derivatives

up to the order N − 1 if N > 1. Finally, ∆N(g,X) will denote the H⊗N
T −valued

random variable DNg(X) − g′(X)DNX .
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Summary of the contents

This chapter is devoted to present the contents of the three articles collected in the

Appendices A, B and C. This is carried out, respectively, in Sections 2.1, 2.2 and 2.4.

In Section 2.3 we aim to complete some known results on existence and regularity of

the solution’s density of a stochastic heat equation to more general parabolic SPDEs;

first we deal with a stochastic boundary value problem on (0, 1) and secondly with a

parabolic SPDE on R
d, d ≥ 1.

When summarising the works of the above mentioned Appendices, we shall de-

velop in a more detailed way some of the proofs. For the sake of completeness, we

shall also add some additional results.

Finally, we mention that the citations of results and sections made along the chapter

which do not go accompanied with a particular reference of the Bibliography mean that

they refer to the dissertation. However, in order to make the reading easier, sometimes

we attach to the citations of the dissertation their exact location in the manuscript.

2.1 Absolute continuity of the law of the solution to the

three-dimensional stochastic wave equation

This section is devoted to summarise the contents of the article [QSSS04a] reprinted

in Appendix A.

In this paper, we study the probability law of the real-valued solution to the stochas-

tic wave equation

(

∂2

∂t2
− ∆3

)

u(t, x) = σ(u(t, x))Ḟ (t, x) + b(u(t, x)),

u(0, x) =
∂u

∂t
(0, x) = 0, (2.1)

37
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where (t, x) ∈ (0, T ] × R
3, T > 0, ∆3 denotes the Laplacian operator on R

3 and the

random perturbation Ḟ (t, x) is the Gaussian noise described in Section 1.2.1.

The aim is to give sufficient conditions ensuring that the law of the random variable

u(t, x), for any fixed (t, x) ∈ (0, T ] × R
3, is absolutely continuous with respect to

Lebesgue measure on R.

We recall that results on existence of density for the solution of the stochastic wave

equation with spatial dimension d = 1, 2 can be found in [CN88] and [MSS99], re-

spectively; we also refer the reader to [MCMS01] for an extension of these results that

covers the case of the stochastic heat equation in any dimension d ≥ 1. Indeed, as it

shall be mentioned in the next section, the above mentioned works not also deal with

existence of density but also with its smoothness. Finally, let us mention the papers

[ZN99], [LNP00] and [CW01] for existence of density results for different type of

SPDEs.

Notice that Equation (2.1) is an example of the more general class of SPDEs given

by Equation (1.1), namely,

Lu(t, x) = σ(u(t, x))Ḟ (t, x) + b(u(t, x)), (2.2)

with vanishing initial conditions, σ and b are supposed to be real-valued Lipschitz

functions and L is a second order partial differential operator such that the fundamental

solution associated with Lu = 0 takes values in the space of Schwartz distributions.

We give a rigorous meaning to Equation (2.1) by means of the mild formulation

(see Definition 1.2.7 in Section 1.2.1), as follows. A real-valued predictable stochastic

process {u(t, x), (t, x) ∈ [0, T ] × R
d} is a solution of Equation (2.2) if the following

stochastic evolution equation is satisfied:

u(t, x) =

∫ t

0

∫

Rd

Λ(t− s, x− y)σ(u(s, y))M(ds, dy)

+

∫ t

0

ds

∫

Rd

Λ(s, dy)b(u(t− s, x− y)),

where Λ denotes the fundamental solution associated to the differential operator L.

We assume that Hypothesis D from Section 1.2.1 is fulfilled. That is,

Hypothesis D The fundamental solution Λ of Lu = 0 is a deterministic function in t
taking values in the space of non-negative distributions with rapid decrease such that

∫ T

0

dt

∫

Rd

µ(dξ)|FΛ(t)(ξ)|2 <∞.

Moreover, Λ is a non-negative measure on R+ × R
d of the form Λ(t, dy)dt such that

sup0≤t≤T Λ(t,Rd) < +∞.
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As it is mentioned in the very last part of Section 1.2.1, under this hypothesis

Dalang proved existence and uniqueness of solution to Equation (2.2) (see Theorem

13 from [Dal99]). We denote it by {u(t, x), (t, x) ∈ [0, T ] × R
3}.

We remark that in the definition of Hypothesis D in [QSSS04a], an extra condition

is considered:

lim
h↓0

∫ T

0

dt

∫

Rd

µ(dξ) sup
t<r<t+h

|F(Λ(r) − Λ(t))(ξ)|2 = 0. (2.3)

However, this condition is not needed for the proofs in [QSSS04a]; it was used in

Theorem 13 [Dal99] to prove the L2−continuity of the solution (see Lemma 19 in

[Dal99] and [Dal01]).

In Section 2 from [QSSS04a], we extend Dalang’s results on stochastic integration

to a Hilbert-valued setting. This context is needed when dealing with the stochastic

evolution equations satisfied by the Malliavin derivatives of the solution. In Section

1.2.1 of this dissertation we have recalled this extension and proved the main result in

this direction in a much more detailed way that it appears in [QSSS04a], Theorem 1

(see Theorem 1.3.2 in the dissertation).

In Section 3 in [QSSS04a] we study the Malliavin differentiability of the random

variable u(t, x), for any fixed (t, x) ∈ [0, T ] × R
3. More precisely, we prove that

u(t, x) belongs to the space D
1,p, for any p ∈ [1,∞). Along the paper we make use

of the definitions and notations of the Malliavin calculus presented in Section 1.3. In

particular, we use the techniques of the Malliavin calculus in the framework defined

in the very last part of Section 1.3; the underlying Hilbert space is given by HT =
L2([0, T ];H), where H is a Hilbert space defined there.

The main result is the following.

Theorem 2.1.1. Assume that Λ satisfies Hypothesis D and the coefficients σ and b are

C1 functions with bounded Lipschitz continuous derivatives. Then, for any (t, x) ∈
[0, T ] × R

d, u(t, x) belongs to D
1,p for any p ∈ [1,∞) and there exists an HT -valued

stochastic process {Z(t, x), (t, x) ∈ [0, T ] × R
d} satisfying

sup
(t,x)∈[0,T ]×Rd

||Z(t, x)||Lp(Ω;HT ) < +∞,

such that

Du(t, x) = Z(t, x) +

∫ t

0

∫

Rd

Λ(t− s, x− z)σ′(u(s, z))Du(s, z)M(ds, dz)

+

∫ t

0

ds

∫

Rd

Λ(s, dz)b′(u(t− s, x− z))Du(t− s, x− z). (2.4)
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Moreover, for any (t, x) ∈ [0, T ] × R
d,

E
(∥

∥Z(t, x)
∥

∥

2

HT

)

=
∥

∥Λ(t− ·, x− ∗)
∥

∥

2

0,σ(u)

= E
(

∫ t

0

∫

Rd

Λ(t− s, x− z)σ(u(s, z))M(ds, dz)
)2

.

We recall that the norm ‖ · ‖0,K is defined by means of (1.6).

In order to prove that the Malliavin derivative Du(t, x) satisfies Equation (2.4), we

need to consider the following equation (see Equation (14) in [QSSS04a]):

U(t, x) = Z(t, x) +

∫ t

0

∫

Rd

Λ(t− s, x− z)σ′(u(s, z))U(s, z)M(ds, dz)

+

∫ t

0

ds

∫

Rd

Λ(s, dz)b′(u(t− s, x− z))U(t− s, x− z).

We remark that existence and uniqueness of an HT−valued solution to this equation

follows immediately from Theorem 1.2.12 of this dissertation.

The proof of the Theorem 2.1.1 is based on Lemma 1.3.1. More precisely, we

regularise the distribution Λ using an approximation of the identity (ψn)n≥1, as the

one defined in the proof of Theorem 1.2.5. Then, we obtain a sequence (Λn)n≥1 of

functions belonging to S(Rd) and we take Fn = un(t, x) in Lemma 1.3.1, where

{un(t, x), (t, x) ∈ [0, T ] × R
d} is the unique real-valued process solution to

un(t, x) =

∫ t

0

∫

Rd

Λn(t− s, x− z)σ(un(s, z))M(ds, dz)

+

∫ t

0

ds

∫

Rd

Λ(s, dz)b(un(t− s, x− z)).

Notice that the random variable un(t, x) belongs to D
1,p, for all p ≥ 1, and that the

Malliavin derivative Dun(t, x) satisfies the following equation on HT :

Dun(t, x) = Λn(t− ·, x− ∗)σ(un(·, ∗))

+

∫ t

0

∫

Rd

Λn(t− s, x− z)σ′(un(s, z))Dun(s, z)M(ds, dz)

+

∫ t

0

ds

∫

Rd

Λ(s, dz)b′(un(t− s, x− z))Dun(t− s, x− z).

This follows from an easy adaptation of the proof of Proposition 2.4 in [MCMS01].

In order to apply Lemma 1.3.1, first we prove that, assuming Hypothesis D and that

the coefficients σ and b are Lipschitz,

lim
n→∞

(

sup
(t,x)∈[0,T ]×Rd

E(|un(t, x) − u(t, x)|p
)

= 0, (2.5)
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for all p ∈ [1,∞) (see Proposition 1 in [QSSS04a]). For this, as it was pointed out in

the Introduction of the dissertation, we prove that

sup
n≥1

sup
(t,x)∈[0,T ]×Rd

E
(

|un(t, x)|p
)

<∞

and then we check (2.5) for p = 2.

With this method we avoid dealing with Lp(Ω)−bounds of stochastic integrals of

distribution-valued functions which may not be non-negative.

The next step is to show that, under Hypothesis D and assuming that σ and b are

C1 functions with bounded derivatives,

sup
n≥1

sup
(t,x)∈[0,T ]×Rd

E
(

||Dun(t, x)||pHT

)

<∞, (2.6)

for all p ∈ [0,∞) (see Proposition 2 in [QSSS04a]). This yields the validity of condi-

tion (2) in Lemma 1.3.1.

To conclude the proof of Theorem 2.1.1, we just need to verify that the Malliavin

derivative Du(t, x) satisfies the stochastic evolution equation (2.4). We characterise

the HT−valued element Z(t, x) as the limit on Lp(Ω;HT ) of the sequence Zn(t, x) =
Λn(t − ·, x − ∗)σ(un(·, ∗)), n ≥ 1 (see Proposition 3 in [QSSS04a]). Then, we show

that the sequence of Malliavin derivatives Dun(t, x) converges in Lp(Ω;HT ) to the

unique solution of the equation

U(t, x) = Z(t, x) +

∫ t

0

∫

Rd

Λ(t− s, x− z)σ′(u(s, z))U(s, z)M(ds, dz)

+

∫ t

0

ds

∫

Rd

Λ(s, dz)b′(u(t− s, x− z))U(t− s, x− z).

This is contained in the proof of Theorem 2 in [QSSS04a]. Owing to (2.6), it suffices

to show the convergence of order p = 2.

We remark that the HT−valued random vector

Z(t, x) +

∫ t

0

∫

Rd

Λ(t− s, x− z)σ′(u(s, z))Du(s, z)M(ds, dz)

in Equation (2.4) is the Malliavin derivative of the stochastic integral

∫ t

0

∫

Rd

Λ(t− s, x− z)σ(u(s, z))M(ds, dz)

(see Remark 3 in [QSSS04a]).
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It is also worthy mentioning that the fundamental solution to the wave equation

with dimension d = 1, 2, 3 satisfies Hypothesis D if
∫

Rd

µ(dξ)

1 + |ξ|2 < +∞ (2.7)

(see [Dal99], Example 6). Notice that, also by [Dal99], Example 8, the fundamental

solution of the heat equation in any dimension d ≥ 1 satisfies Hypothesis D if the

above condition (2.7) is fulfilled.

Consider the real-valued solution u(t, x) of Equation (2.1) at a fixed point (t, x) ∈
(0, T ] × R

3. We prove the following theorem:

Theorem 2.1.2. Assume that

(1) the coefficients σ and b are C1 functions with bounded Lipschitz continuous

derivatives;

(2) there exists σ0 > 0 such that inf{|σ(z)|, z ∈ R} ≥ σ0;

(3) there exists η ∈ (0, 1
2
) such that

sup
y∈R3

∫

R3

Γ(dx)F−1

(

1

(1 + |ξ|2)η

)

(x− y) <∞.

Then, the law of the random variable u(t, x), (t, x) ∈ (0, T ] × R
3, is absolutely con-

tinuous with respect to Lebesgue measure on R.

Owing to Bouleau and Hirsch criterion (see Theorem 1.3.7), this theorem is a con-

sequence of Theorem 2.1.1 above and the next one.

Theorem 2.1.3. Assume that the coefficients σ and b are C1 functions with bounded

derivatives of order one and that hypotheses (2) and (3) of the previous Theorem are

satisfied. Then, ‖Du(t, x)‖HT
> 0, a.s.

Along the section of the work that we are summarising, S3 denotes the fundamental

solution associated with the wave equation on R
3.

We define

Gd,η(x) = F−1

(

1

(1 + |ξ|2)η

)

(x),

for d ≥ 1, η ∈ (0, 1), and

Fd,η(y) =

∫

Rd

Γ(dx)Gd,η(x− y),

for y ∈ R
d. We consider the following assumptions:
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(H̄η) supy∈Rd Fd,η(y) <∞,

(Hη)
∫

Rd

µ(dξ)
(1+|ξ|2)η <∞.

In Proposition 4.4.1 [Lév01] it is proved that condition (H̄η) implies (Hη) and

Fd,η(0) =

∫

Rd

Γ(dx)Gd,η(x) ≤
∫

Rd

µ(dξ)

(1 + |ξ|2)η
<∞.

Notice that assumption (3) of Theorem 2.1.2 is equivalent to (H̄η) for some η ∈ (0, 1
2
).

To prove the above Theorem 2.1.2, we show that E(‖Du(t, x)‖−p
HT

) is finite for

some p > 0. The main ingredients are the following.

We follow the same lines of the proof of Theorem 3.1 in [MSS99] with some

modifications; these are due to the fact that the fundamental solution of the three-

dimensional wave equation is a distribution. More precisely, to study the contribution

of the HT−valued term Z(t, x), we introduce a regularisation of the distribution S3(t)
given by

Λε−1 = ψε−1 ∗ S3,

where (ψν , ν ∈ R+) is an approximation of the identity defined as in the proof of

Theorem 1.2.5.

This technique is complemented with upper and lower bounds of integrals of the

Fourier transform of the fundamental solution S3. These bounds are collected in the

Appendix of [QSSS04a] and they are actually valid for the fundamental solution of the

wave equation in any dimension d ≥ 1. This is due to the fact that its Fourier transform

has a unified expression:

FSd(t)(ξ) =
sin(2πt|ξ|)

2π|ξ| , ξ ∈ R
d.

All the results proved in the above cited Appendix need either condition (Hη) or the

stronger one given by (H̄η).
In the very recent reference [SSar], the equivalence between (H̄η) and (Hη) is

proved. For the sake of completeness, we quote and prove this result (see Lemma 9.8

in [SSar]).

Lemma 2.1.4. For any η ∈ (0,∞), the following conditions are equivalent

(1) supy∈Rd Fd,η(y) < +∞,

(2)
∫

Rd

µ(dξ)
(1+|ξ|2)η < +∞.
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In fact, if either (1) or (2) hold, then

sup
y∈Rd

Fd,η(y) =

∫

Rd

µ(dξ)

(1 + |ξ|2)η
.

Proof. Assume that (1) holds true. For any t > 0, set

pt = F−1
(

e−2π2t|ξ|2
)

.

Notice that pt is the density of a probability measure on R
d. Hence,

sup
t>0

∫

Rd

pt(y)Fd,η(y)dy ≤ sup
y∈Rd

Fd,η(y).

On the other hand, the definition of Fd,η, Fubini’s theorem and the fact that Gd,η ∗ pt

belongs to S(Rd) yield

∫

Rd

pt(y)Fd,η(y)dy =

∫

Rd

Γ(dx)(Gd,η ∗ pt)(x)

=

∫

Rd

µ(dξ)

(1 + |ξ|2)η
e−2π2t|ξ|2 .

By monotone convergence we get that

lim
t↘0

∫

Rd

µ(dξ)

(1 + |ξ|2)η
e−2π2t|ξ|2 =

∫

Rd

µ(dξ)

(1 + |ξ|2)η
.

Thus, we deduce
∫

Rd

µ(dξ)

(1 + |ξ|2)η
≤ sup

y∈Rd

Fd,η(y) < +∞,

which proves (2).

Assume now (2). Then, the measure on R
d given by

µ(dξ)

(1 + |ξ|2)η

is finite. This implies that its Fourier transform is a bounded function. On the other

hand, owing to Theorem XV in [Sch66], Chapter VII, we obtain that

F
(

µ

(1 + | · |2)η

)

(x) =
(

Fµ) ∗ (F(1 + | · |2)−η)
)

(x) = (Γ ∗Gd,η)(x) = Fd,η(x).

Hence the proof of (1) is complete.
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2.2 A stochastic wave equation in dimension 3: smooth-

ness of the law

In this section we summarise the contents of the work [QSSS04c], which can be found

in Appendix B.

As in the previous section, we study the probability law of the three-dimensional

stochastic wave equation given in (2.1). We want to find conditions under which the

law of the solution at any fixed point has an infinitely differentiable density. This

means that we are able to go further in comparison to the results in [QSSS04a]. Recall

that the analysis of the smoothness of the density for the stochastic wave equation with

spatial dimension d = 1, 2 is carried out in [CN88] and [MSS99], respectively (see

also [MCMS01]).

We shall make use of one of the criteria provided by the Malliavin calculus, namely

Proposition 1.3.8.

First we consider the more general SPDE given in Equation (1.1) and we denote by

{u(t, x), (t, x) ∈ [0, T ]×R
d} the unique real-valued process solution to this equation.

We prove that the random variable u(t, x) has derivatives in the sense of Malliavin of

any order, that is, u(t, x) belongs to the space D
∞.

The setting in which we apply the techniques of the Malliavin calculus is the same

as the one considered in the previous section, namely, the one described in the last part

of Section 1.3.

In Section 2 from [QSSS04c], we review the main ideas of the extension of Dalang’s

stochastic integral to a Hilbert-valued setting that is performed in the second section of

[QSSS04a] (see also Section 1.2.1 of the present dissertation).

The main result from the article [QSSS04c] concerning differentiability in the sense

of Malliavin is the following.

Theorem 2.2.1 ([QSSS04c], Theorem 1). Assume Hypothesis D and that the coeffi-

cients σ and b are C∞ functions with bounded derivatives of any order greater or equal

than one. Then, for every (t, x) ∈ [0, T ] × R
d, the random variable u(t, x) belongs to

the space D
∞. Moreover, for any p ≥ 1 andN ≥ 1, there exists a Lp(Ω;H⊗N

T )−valued

random process {ZN(t, x), (t, x) ∈ [0, T ] × R
d} such that

DNu(t, x) = ZN(t, x)

+

∫ t

0

∫

Rd

Λ(t− s, x− z)[∆N(σ, u(s, z)) +DNu(s, z)σ′(u(s, z))]M(ds, dz)

+

∫ t

0

ds

∫

Rd

Λ(s, dz)[∆N(b, u(t− s, x− z)) +DNu(t− s, x− z)b′(u(t− s, x− z))],

(2.8)
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and

sup
(s,y)∈[0,T ]×Rd

E(‖DNu(s, y)‖p

H⊗N
T

) < +∞.

Recall that

∆N(σ, u(s, z)) = DNσ(u(s, z)) − σ′(u(s, z))DNu(s, z).

As for the previous section, condition (2.3) in Hypothesis D considered in [QSSS04c]

is not needed all along the paper.

To prove the above Theorem 2.2.1, we apply Lemma 1.3.2, which is a consequence

of the fact that the iterated Malliavin derivative DN is a closed operator from Lp(Ω)
into Lp(Ω;H⊗N

T ) (see Section 1.3).

As in the proof of Theorem 2 in [QSSS04a], we consider the sequence of processes

{un(t, x), (t, x) ∈ [0, T ] × R
d} solving the equation

un(t, x) =

∫ t

0

∫

Rd

Λn(t− s, x− z)σ(un(s, z))M(ds, dz)

+

∫ t

0

ds

∫

Rd

Λ(s, dz)b(un(t− s, x− z)),

where Λn(t) = ψn ∗ Λ, n ≥ 1, (ψn)n≥1 being an approximation of the identity.

Using the standard approach given, for instance, in [MSS99] or [MCMS01], we

show that that the random variables un(t, x) belong to D
∞, for any (t, x) ∈ [0, T ]×R

d

and n ≥ 1. Moreover, the Malliavin derivative DNun(t, x) satisfies the equation

DN
α un(t, x) =

N
∑

i=1

〈Λn(t− ri, x− ∗)DN−1
α̂i

σ(un(ri, ∗)), ϕi〉H

+

∫ t

∨
i ri

∫

Rd

Λn(t− s, x− z)[∆N
α (σ, un(s, z)) +DN

α un(s, z)σ′(un(s, z))]M(ds, dz)

+

∫ t

∨
i ri

ds

∫

Rd

Λ(s, dz)[∆N
α (b, un(t− s, x− z))

+DN
α un(t− s, x− z)b′(un(t− s, x− z))], (2.9)

where α = ((r1, ϕ1), . . . , (rN , ϕN)), with r1, . . . , rN ≥ 0 and ϕ1, . . . , ϕN ∈ H and we

have used the notations presented in the last part of Section 1.3.

Assuming the same hypothesis as in Theorem 2.2.1, we proof the following uni-

form estimation for the Malliavin derivative DNun(t, x):

sup
n≥1

sup
(t,x)∈[0,T ]×Rd

E
(

||DNun(t, x)||p
H⊗N

T

)

< +∞, (2.10)



2.2. A stochastic wave equation in dimension 3: smoothness of the law 47

for any p ∈ [1,∞) and N ≥ 1. A detailed proof of this result can be found in

[QSSS04c], Lemma 2.

In order to identify the H⊗N
T −valued random vector ZN(t, x) given in Theorem

2.2.1, we give the following definition.

For N ≥ 1, n ≥ 1, r = (r1, . . . , rN), α = ((r1, ej1), · · · , (rN , ejN
)) and (t, x) ∈

[0, T ] × R
d we define the H⊗N−valued random variable ZN,n

r (t, x) as follows,

〈ZN,n
r (t, x), ej1 ⊗ · · · ⊗ ejN

〉H⊗N =
N
∑

i=1

〈Λn(t− ri, x− ∗)DN−1
α̂i

σ(un(ri, ∗)), eji
〉H.

Here (ej)j≥1 stands for a complete orthonormal system of H. We prove

sup
n≥1

sup
(t,x)∈[0,T ]×Rd

E(‖ZN,n(t, x)‖p

H⊗N
T

) < +∞, (2.11)

for every p ∈ [1,∞). Notice that ZN,n(t, x) coincides with the first term of the right

hand-side of Equation (2.9) for α = ((r1, ej1), · · · , (rN , ejN
)).

On the other hand, for N ≥ 1 we introduce the assumption

(HN−1) The sequence (Djun(t, x), n ≥ 1) converges in Lp(Ω;H⊗j
T ), for any j =

0, · · · , N − 1,

We write Lp(Ω;H⊗0
T ) = Lp(Ω). Proposition 1 in [QSSS04a] (see also (2.5)) yields

the validity of (H0). Moreover, for N > 1, (HN−1) implies that u(t, x) ∈ D
j,p and

the sequence (Djun(t, x), n ≥ 1) converges in Lp(Ω;H⊗j
T ) to Dju(t, x), for j =

1, · · · , N − 1. This is a consequence of the fact that the iterated Malliavin derivative

Dj is a closed operator from Lp(Ω) into Lp(Ω;H⊗j
T ). In addition, by (2.10),

sup
(s,y)∈[0,T ]×Rd

E(||Dju(s, y)||p
H⊗j

T

) <∞,

for j = 1, · · · , N − 1.

In [QSSS04c], Lemma 3, we show that, under the same hypothesis as in Theorem

2.2.1 and assuming (HN−1), for N ≥ 1, the sequence (ZN,n(t, x))n≥1 converges in

Lp(Ω;H⊗N
T ) to a random variable ZN(t, x).

The proof is based on a induction argument with respect to N . The case N = 1
is proved in [QSSS04a], Proposition 3. For the rest of the proof, we notice that it

suffices to show that (ZN,n(t, x), n ≥ 1) is a Cauchy sequence in L2(Ω;H⊗N
T ). Indeed,

by (2.11), the sequence is uniformly bounded in Lp(Ω;H⊗N
T ), for any p ∈ [1,∞).

Consequently, (|ZN,n(t, x)|p)n≥1 is uniformly integrable for all p ∈ (1,∞).
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Let us give some additional details to the proof of the above-mentioned Lemma 3

in [QSSS04c] concerning the convergence of the term

Zn,m
2 :=

N
∑

i=1

E

∫

[0,T ]N
dr

∑

j1,...,jN

|〈DN−1
α̂i

σ(u(ri, ∗))

× [Λn(t− ri, x− ∗) − Λm(t− ri, x− ∗)], eji
〉H|2,

≤
N
∑

i=1

E

∫

[0,T ]N−1

dr̂i

∑

ĵi

∫ T

0

ds

∫

Rd

µ
DN−1

α̂i
σ(u)

s (dξ)|F(Λn(t− s) − Λm(t− s))(ξ)|2.

(2.12)

We have used the notations

α̂i = (α1, . . . , αi−1, αi+1, . . . , αN),

dr̂i = dr1 . . . dri−1dri+1 . . . drN ,

ĵi = j1, . . . , ji−1, ji+1, . . . , jN .

We want to show that the last term in (2.12) tends to zero as n and m goes to infinity.

Notice that |F(Λn(t − s) − Λm(t − s))(ξ)| converges to zero pointwise, as n,m
tends to infinity. Moreover, it holds that

|F(Λn(t− s) − Λm(t− s))(ξ)| ≤ 2|FΛ(t− s)(ξ)|.

Let us check that

I = E





∫

[0,T ]N−1

dr̂i

∑

j
î

∫ T

0

ds

∫

Rd

µ
DN−1

α̂i
σ(u)

s (dξ)|FΛ(t− s)(ξ)|2




is finite for all i = 1, . . . , N . Indeed, from the proof of Theorem 1.2.5 in the particular

case of S = Λ(t− ·), A = R and K(s, y) = DN−1
α̂i

σ(u(s, y)), we have

‖Λ(t− ·)‖2
0,DN−1

α̂i
σ(u)

≤ lim inf
k→∞

‖Λk(t− ·)‖2
0,DN−1

α̂i
σ(u)

.

Hence, by Remark 1.2.6 and Fatou’s lemma,

I =

∫

[0,T ]N−1

dr̂i

∑

j
î

‖Λ(t−·)‖2
0,DN−1

α̂i
σ(u)

≤ lim inf
k→∞

∫

[0,T ]N−1

dr̂i

∑

ĵi

‖Λk(t−·)‖2
0,DN−1

α̂i
σ(u)

.
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The definition of the norm ‖ · ‖0,DN−1
α̂i

σ(u) and Parseval’s identity yield

∫

[0,T ]N−1

dr̂i

∑

ĵi

‖Λk(t− ·)‖2
0,DN−1

α̂i
σ(u)

= E





∫

[0,T ]N−1

dr̂i

∑

ĵi

∫ T

0

ds

∫

Rd

Γ(dx)

∫

Rd

dyDN−1
α̂i

σ(u(s, y))DN−1
α̂i

σ(u(s, y − x))

× Λk(t− s, y)Λk(t− s, y − x)
)

≤ sup
(t,z)∈[0,T ]×Rd

E





∑

ĵi

∫

[0,T ]N−1

dr̂i

∣

∣DN−1
α̂i

σ(u(t, z))
∣

∣

2





×
∫ T

0

ds

∫

Rd

Γ(dx)

∫

Rd

dyΛk(t− s, y)Λk(t− s, y − x)

= sup
(t,z)∈[0,T ]×Rd

E
(

‖DN−1σ(u(t, z))‖2

H
⊗(N−1)
T

)

∫ T

0

ds

∫

Rd

µ(dξ)|FΛk(t− s)(ξ)|2.

By definition of Λk, Leibniz rule for Malliavin derivatives (see Proposition 1.3.4) and

the hypothesis (HN−1), this last term is finite, uniformly with respect to k. The desired

convergence follows by bounded convergence.

To conclude the proof of Theorem 2.2.1, it remains to show that the sequence

(DNun(t, x))n≥1 converges in the space Lp(Ω;H⊗N
T ), for everyN ≥ 1 and p ∈ [2,∞),

and that the Malliavin derivative satisfies Equation (2.8).

Owing to (2.10), we only need to check the convergence with p = 2. More pre-

cisely, we show that (DNun(t, x))n≥1 converges in L2(Ω;H⊗N
T ) to U(t, x), solution to

the stochastic H⊗N
T −valued evolution equation

U(t, x) = ZN(t, x)

+

∫ t

0

∫

Rd

Λ(t− s, x− z)[∆N(σ, u(s, z)) + U(s, z)σ′(u(s, z))]M(ds, dz)

+

∫ t

0

ds

∫

Rd

Λ(s, dz)[∆N(b, u(t− s, x− z)) + U(t− s, x− z)b′(u(t− s, x− z))],

(2.13)

where

ZN(t, x) = Lp(Ω;H⊗N
T ) − lim

n→∞
ZN,n(t, x).

Notice that Theorem 1.2.12 guarantees a unique solution of the above equation.
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Since in [QSSS04c] this final part of the proof of Theorem 2.2.1 is only sketched,

we develop it here in more detail.

The convergence when N = 1 is checked in the proof of Theorem 2 in [QSSS04a].

We assume that N > 1. Remark that, owing to Equation (2.9) and the definition of

Z(t, x), it suffices to check the convergence to zero of the difference of the stochastic

and pathwise integral terms in Equations (2.9) and (2.13), respectively. These differ-

ences are denoted by In,N
σ (t, x) and In,N

b (t, x), respectively.

We have the following decomposition:

In,N
σ (t, x) = Jn

1 (t, x) + Jn
2 (t, x),

where

Jn
1 (t, x) =

∫ t

0

∫

Rd

Λn(t− s, x− z)∆N(σ, un(s, z))M(ds, dz)

−
∫ t

0

∫

Rd

Λ(t− s, x− z)∆N(σ, u(s, z))M(ds, dz),

Jn
2 (t, x) =

∫ t

0

∫

Rd

Λn(t− s, x− z)σ′(un(s, z))DNun(s, z)M(ds, dz)

−
∫ t

0

∫

Rd

Λ(t− s, x− z)σ′(u(s, z))U(s, z)M(ds, dz).

For the second term we have that

E
(

‖Jn
2 (t, x)‖2

H⊗N
T

)

≤ C(D1,n(t, x) +D2,n(t, x) +D3,n(t, x)),

with

D1,n(t, x) =E

(∥

∥

∥

∥

∫ t

0

∫

Rd

Λn(t− s, x− z)[σ′(un(s, z))

− σ′(u(s, z))]DNun(s, z)M(ds, dz)
∥

∥

∥

2

H⊗N
T

)

,

D2,n(t, x) =E

(∥

∥

∥

∥

∫ t

0

∫

Rd

Λn(t− s, x− z)σ′(u(s, z))[DNun(s, z)

−U(s, z)]M(ds, dz)
∥

∥

∥

2

H⊗N
T

)

,

D3,n(t, x) =E

(∥

∥

∥

∥

∫ t

0

∫

Rd

[Λn(t− s, x− z)

−Λ(t− s, x− z)]σ′(u(s, z))U(s, z)M(ds, dz)
∥

∥

∥

2

H⊗N
T

)

.
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The study of these three terms follows the same idea ideas developed in the proof of

Theorem 2 in [QSSS04a] for real-valued processes and Malliavin derivatives of order

1. We obtain that

E
(

‖Jn
2 (t, x)‖2

H⊗N
T

)

≤ Cn+C

∫ t

0

ds sup
(τ,x)∈[0,s]×Rd

E(||Dun(τ, x)−U(τ, x)||2
H⊗N

T

)J(t−s),

where (Cn)n≥1 is a sequence of positive real numbers decreasing to zero and J is

defined by

J(t) =

∫

Rd

µ(dξ)|FΛ(t)(ξ)|2.

Let us deal with the term Jn
1 (t, x). We have that

E(‖Jn
1 (t, x)‖2

H⊗N
T

≤ C(D̃1,n(t, x) + D̃2,n(t, x)),

where

D̃1,n(t, x) =E

(∥

∥

∥

∥

∫ t

0

∫

Rd

Λn(t− s, x− z)
(

∆N(σ, un(s, z))

− ∆N(σ, u(s, z))
)

M(ds, dz)
∥

∥

∥

2

H⊗N
T

)

,

D̃2,n(t, x) =E

(∥

∥

∥

∥

∫ t

0

∫

Rd

(Λn(t− s, x− z) − Λ(t− s, x− z))

× ∆N(σ, u(s, z))M(ds, dz)
∥

∥

∥

2

H⊗N
T

)

.

Theorem 1.2.5, the definition of Λn and Hypothesis D yield

D̃1,n(t, x) ≤C
∫ t

0

ds sup
y∈Rd

E
(

‖∆N(σ, un(s, z)) − ∆N(σ, u(s, z))‖2
H⊗N

T

)

×
∫

Rd

µ(dξ)|FΛn(t− s)(ξ)|2

≤C sup
(r,y)∈[0,T ]×Rd

E
(

‖∆N(σ, un(r, z)) − ∆N(σ, u(r, z))‖2
H⊗N

T

)

×
∫ T

0

ds

∫

Rd

µ(dξ)|FΛ(s)(ξ)|2

≤C sup
(r,y)∈[0,T ]×Rd

E
(

‖∆N(σ, un(r, z)) − ∆N(σ, u(r, z))‖2
H⊗N

T

)

.

Owing to the definition of ∆N , Leibniz rule for Malliavin derivatives, (2.10), the in-

duction hypothesis (HN−1) and the assumptions on σ, we have that D̃1,n(t, x) tends to

zero as n goes to infinity, uniformly with respect to (t, x) ∈ [0, T ] × R
d.
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To deal with the term D̃2,n(t, x), we use the isometry property of the stochastic

integral given in Theorem 1.2.5 and we obtain

D̃2,n(t, x) = ‖Λn(t− ·, x− ∗) − Λ(t− ·, x− ∗)‖2
0,Ũ
,

where Ũ is the H⊗N
T −valued process given by Ũ(s, z) = ∆N(σ, u(s, z)), (s, z) ∈

[0, T ] × R
d. Notice that the process Ũ satisfies the Hypothesis C and D in Section

1.2.1; this is due to the assumptions on σ and (2.10).

Thus,

D̃2,n(t, x) =

∫ T

0

ds

∫

Rd

µŨ
s (dξ)|FΛn(t− s)(ξ) −FΛ(t− s)(ξ)|2.

Moreover, since
∫ T

0

ds

∫

Rd

µŨ
s (dξ)|FΛ(t− s)(ξ)|2 < +∞,

D̃2,n(t, x) tends to zero as n goes to infinity, by bounded convergence.

The difference of the pathwise integrals terms in Equations (2.9) and (2.13), respec-

tively, can be studied using similar techniques as for the analysis of the term In,N
σ (t, x),

but with quite less effort.

Therefore the proof of Theorem 2.2.1 is complete.

Let us now focus on the three-dimensional stochastic wave equation (2.1). Let

{u(t, x), (t, x) ∈ [0, T ] × R
d} be the unique solution to Equation (2.1).

Under the same hypothesis needed to show the existence of density for the proba-

bility law of u(t, x) (see Theorem 2.1.2), we prove now that the inverse of the Malliavin

matrix has moments of all orders p > 0. Owing to Proposition 1.3.8, this implies that

the random variable u(t, x) has a density which is a C∞ function. The theorems are the

following:

Theorem 2.2.2 ([QSSS04c], Theorem 2). Assume that the coefficients σ and b are C1

functions with bounded Lipschitz continuous derivatives and in addition,

(1) there exists σ0 > 0 such that inf{|σ(z)|, z ∈ R} ≥ σ0;

(2) there exists η ∈ (0, 1
2
) such that

sup
y∈R3

∫

R3

Γ(dx)F−1

(

1

(1 + |ξ|2)η

)

(x− y) <∞.

Then, for any p > 0,

E(‖Du(t, x)‖−p
HT

) <∞.
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Theorem 2.2.3 ([QSSS04c], Theorem 3). Assume that the coefficients σ and b are

C∞ functions with bounded derivatives of any order greater or equal than one, and

that hypothesis (1) and (2) of Theorem 2.2.2 are satisfied. Then, the random variable

u(t, x), (t, x) ∈ (0, T ] × R
3, has a density which is a C∞ function.

We recall that the Malliavin derivative Du(t, x) satisfies the equation

Du(t, x) = Z(t, x) +

∫ t

0

∫

R3

S3(t− s, x− z)σ′(u(s, z))Du(s, z)M(ds, dz)

+

∫ t

0

ds

∫

R3

S3(t− s, dz)b′(u(s, x− z))Du(s, x− z), (2.14)

where {Z(t, x), (t, x) ∈ [0, T ] × R
3} is the HT−valued random process given by

Z(t, x) = Lp(Ω;HT ) − lim
n→∞

Zn(t, x),

p ≥ 1, where Zn(t, x) := S3,n(t − ·, x − ∗)σ(u(·, ∗)) and with S3,n = S3 ∗ ψn (see

either the proof of Theorem 2.2.1 or Theorem 2 in [QSSS04a]).

For the proof of Theorem 2.2.2 we use the following two technical results (see

Lemma 4 and 5 in [QSSS04c], respectively).

Assume that σ is Lipschitz continuous and that condition (2.7) is satisfied. Then,

for any (t, x) ∈ (0, T ] × R
3, v ∈ (0, t] and q ≥ 1,

E(‖Zt−·,∗(t, x)‖2q
Hv

) ≤ C

(∫ v

0

ds

∫

R3

µ(dξ)|FS3(s)(ξ)|2
)q

(2.15)

and

sup
t−v≤s≤t

sup
y∈R3

E(‖Dt−·,∗u(s, y)‖2q
Hv

) ≤ C

(∫ v

0

ds

∫

R3

µ(dξ)|FΛ(s)(ξ)|2
)q

. (2.16)

Since the latter estimation is not explicitly proved in [QSSS04c], to make this disser-

tation more complete, we add the proof, as follows.

Proof of (2.16). Owing to the equation satisfied by the Malliavin derivativeDu(t, x)
(see (2.14)) we have that

E(‖Dt−·,∗u(t, x)‖2q
Hv

) ≤ C(A(v, t, x) +B(v, t, x) + C(v, t, x)),

where

A(v, t, x) =E(‖Zt−·,∗(t, x)‖2q
Hv

),

B(v, t, x) =E

(

∥

∥

∥

∥

∫ t

0

∫

R3

Λ(t− s, x− z)σ′(u(s, z))Dt−·,∗u(s, z)M(ds, dz)

∥

∥

∥

∥

2q

Hv

)

,

C(v, t, x) =E

(

∥

∥

∥

∥

∫ t

0

ds

∫

R3

Λ(t− s, dz)b′(u(s, x− z))Dt−·,∗u(s, x− z)

∥

∥

∥

∥

2q

Hv

)

.
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By the above bound (2.15) we obtain that

A(v, t, x) ≤
(∫ v

0

ds

∫

R3

µ(dξ)|FΛ(s)(ξ)|2
)q

.

To study the term B(v, t, x) we apply Theorem 1.2.5 and the fact that the Hv−norm of

the Malliavin derivative Dt−·,∗u(s, z) vanishes for s < t− v. Thus,

B(v, t, x) ≤ C

∫ t

0

ds sup
y∈R3

E
(

‖Dt−·,∗u(s, y)‖2q
Hv

)

∫

R3

µ(dξ)|FΛ(t− s)(ξ)|2

≤ C

∫ t

0

ds sup
t−v≤τ≤s

sup
y∈R3

E
(

‖Dt−·,∗u(τ, y)‖2q
Hv

)

J(t− s),

where J is defined by (1.21) and C is a positive constant which only depends on q.

Owing to the properties of deterministic Hilbert-valued integrals and Hölder’s in-

equality with respect to the finite measure on [0, T ]×R
3 given by Λ(s, dz)ds, one gets

that

C(v, t, x) ≤ C

∫ t

0

ds sup
t−v≤τ≤s

sup
y∈R3

E
(

‖Dt−·,∗u(τ, y)‖2q
Hv

)

,

with C a positive constant depending only on q. Hence we have obtained that

sup
t−v≤r≤t

sup
y∈R3

E
(

‖Dt−·,∗u(r, y)‖2q
Hv

)

≤
(∫ v

0

ds

∫

R3

µ(dξ)|FΛ(s)(ξ)|2
)q

+C

∫ t

0

ds sup
0≤τ≤s

sup
y∈R3

E
(

‖Dt−·,∗u(τ, y)‖2q
Hv

)

(J(t− s) + 1).

Applying Gronwall’s Lemma 1.2.9 we end the proof.

Concerning the proof of Theorem 2.2.2, we notice that to prove existence of den-

sity (Theorem 2.1.1) it was sufficient to show the existence of the pth moment of the

inverse of the Malliavin matrix, for some p > 0, while to show existence and regularity

existence of moments of any order p > 0 are needed.

The regularisation of the fundamental solution S3(t) needed here is more sophis-

ticated. We consider Sε−ν = ψε−ν ∗ S3, where ψε−ν (x) = ε−3νψ(ε−νx), ν > 0 and ψ
is a non-negative function in C∞(R3) with support contained in the unit ball of R

3 and

such that
∫

R3 ψ(x)dx = 1.

As for the proof of the existence of density, we also need the same upper and

lower bounds of some integrals of the Fourier transform of the fundamental solution

S3. These are collected in [QSSS04c] in an appendix; they are actually quotations of

the results from the Appendix in [QSSS04a].
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2.3 Some results for parabolic SPDEs

The purpose of this section is to complete the study of probability laws of solutions to

SPDEs of parabolic type. Firstly, we shall extend the existence of density result proved

by Pardoux and Zhang in [PZ93] for a stochastic heat equation on (0, 1). Secondly, we

consider a Cauchy problem in R
d, d ≥ 1, given by a non-linear parabolic SPDE with

a general elliptic operator and we obtain necessary conditions to ensure existence and

smoothness of the density of the process solution; this extends the results proved by

Márquez et al. in [MCMS01]. The proofs of the main results of this section do not

require essentially new techniques and barely diverge from the arguments used by the

above mentioned authors. For this reason, they shall not be developed in detail but

only sketched, pointing out the main steps.

2.3.1 Existence of density

In this section we study the existence of density of the law to the real-valued solution

of the following stochastic boundary value problem:

∂u

∂t
(t, x) − A(x)u(t, x) = b(u(t, x)) + σ(u(t, x))Ẇ (t, x), (2.17)

with initial condition

u(0, x) = u0(x), x ∈ (0, 1),

and Dirichlet boundary conditions

u(t, 0) = u(t, 1) = 0, t > 0.

Throughout the section A(x) denotes the differential operator

A(x) = a(x)
∂2

∂x2
+ b(x)

∂

∂x
+ c(x),

where the functions a, b, c : [0, 1] → R are assumed to be Hölder-continuous of order

α ∈ (0, 1); moreover, a(x) is uniformly elliptic and bounded, that is,

0 < a0 < a(x) < a1,

for all x ∈ [0, 1], and some positive constants a0, a1.

Since we are in space dimension one, it is known that we can consider the random

perturbation Ẇ given by a space-time white noise; indeed, the process {W (t, x), (t, x)
∈ R+× [0, 1]} is the Brownian sheet on R+× [0, 1], that is, W is a Gaussian stochastic
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process defined on some probability space (Ω,F , P ) with mean zero and covariance

function

E(W (t, x)W (s, y)) = (s ∧ t)(x ∧ y).
We also denote by Ft the σ−field generated by the random variables W (s, x), (s, x) ∈
[0, t] × [0, 1].

The coefficients σ and b are supposed to be measurable and locally bounded real-

valued functions defined on the whole real line. Moreover, we consider the following

sets of assumptions for σ and b.

(D) σ and b are differentiable, their derivatives are locally bounded and there exists

a constant C such that

zb(z) + |σ(z)|2 ≤ C(1 + |z|2), (2.18)

for every z ∈ R.

(L) There exists a positive constant C such that

|σ(z) − σ(y)| + |b(z) − b(y)| ≤ C|z − y|,

for any z, y ∈ R.

Notice that the above condition (2.18) on the drift coefficient b is of dissipative type;

it is satisfied, for instance, by polynomials of odd degree having a negative dominant

coefficient.

We assume that the initial condition u0 belongs to C([0, 1]) and satisfies u0(0) =
u0(1) = 0.

Equation (2.17) is formulated rigorously as follows:

u(t, x) =

∫ 1

0

G(t, x, y)u0(y)dy

+

∫ t

0

∫ 1

0

G(t− s, x, y)σ(u(s, y))W (ds, dy)

+

∫ t

0

∫ 1

0

G(t− s, x, y)b(u(s, y))dyds, (2.19)

where t ∈ [0, T ], for some T > 0. The stochastic integral in the right hand-side of

the above equality is understood in Walsh’s sense (see Section 1.3) as a stochastic in-

tegral with respect to the martingale measure associated to the space-time white noise

([Wal86]). The functionG = G(t, x, y) denotes the Green function associated with the

operator ∂
∂t
−A(x), (t, x) ∈ R+× (0, 1), with homogeneous Dirichlet boundary condi-

tions. Recall that under the above conditions on the coefficients a, b, c of the operator
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A(x), the function G : [0, T ] × [0, 1] × [0, 1] → R is non-negative, continuous, twice

continuously differentiable in x, once continuously differentiable in t and satisfies the

following estimate:

|∂i
x∂

j
tG(t, x, y)| ≤ C1t

− 1+i+2j
2 exp

(

−C2
(x− y)2

t

)

, (2.20)

where i and j are non-negative integer numbers such that i + 2j ≤ 2 and C1, C2 are

positive constants (see, for instance, [ÈI70] Theorem 1.1 and [Aro68] p. 669). In

particular,

0 ≤ G(t, x, y) ≤ C1t
− 1

2 exp

(

−C2
(x− y)2

t

)

. (2.21)

In order to ensure the existence and uniqueness of a real-valued Ft−measurable stochas-

tic process {u(t, x), (t, x) ∈ [0, T ] × [0, 1]} solution to Equation (2.19), we first focus

on the globally Lipschitz case. Namely, if the coefficients b and σ satisfy condi-

tion (L), then existence and uniqueness of Equation (2.19) follows from a classical

Picard-approximation argument using the Gaussian bound given by (2.21) (see also

[Wal86], Theorem 3.2). Moreover, owing to (2.20) and following similar techniques

as in [SSS02], it can be proved that the process u has Hölder-continuous trajectories

of order 1
2

and 1
4

with respect to the space and time variable, respectively (see also

[Wal86], Corollary 3.4).

Staying at the globally Lipschitz setting, we can also state a comparison-of-solutions

result, which is a consequence of Theorem 3.3.1 in [MZ99]. Notice that in this work

solutions to SPDEs taking values in some infinite-dimensional spaces are considered

and the framework defined in [DPZ92] is used. However, since in the space-time white

noise case this formulation is equivalent to the one constructed by Walsh in [Wal86]

(see Section 4.3.3 in [DPZ92]), the comparison result shall still work for Equation

(2.17). We let u1
0, u2

0 and b1, b2 be real-valued functions, the formers being defined

in [0, 1], and u1 and u2 the unique solution, in case it exists, of Equation (2.19) when

considering the initial condition and the drift coefficient u1
0, b1 and u2

0, b2, respectively.

The comparison theorem is stated as follows.

Theorem 2.3.1. Assume that b1, b2 and σ are globally Lipschitz functions. We suppose

that

b1(z) ≤ b2(z), z ∈ R,

and

u1
0(x) ≤ u2

0(x), x ∈ [0, 1].

Then u1(t, x) ≤ u2(t, x), a.s. for any (t, x) ∈ [0, T ] × [0, 1].

We now state an existence and uniqueness result in the non-Lipschitz setting.
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Theorem 2.3.2. Assume that the coefficient b is a continuous function, σ is locally

Lipschitz and that condition (2.18) is fulfilled. Then, there exists a unique real-valued

continuous stochastic process solution to Equation (2.19).

The proof of this result can be obtained from [GP93c], Theorems 4.2.1 and 4.3.1.

In this work, a stochastic heat equation is considered, that is, the authors deal with

Equation (2.17) in the particular case of a ≡ 1 and b ≡ c ≡ 0. It can be checked that

the above mentioned results of [GP93c] still hold true for Equation (2.17) by using

the existence and uniqueness result in the globally Lipschitz case and the comparison

result given in Theorem 2.3.1. It is worth mentioning that in [GP93c] a set of slightly

weaker assumptions for the coefficients b and σ than the ones assumed in Theorem

2.3.2 are considered.

Clearly, if b and σ satisfy condition (D), then we can apply Theorem 2.3.2 and we

obtain that there exists a unique solution {u(t, x), (t, x) ∈ [0, T ] × [0, 1]} of Equation

(2.19).

The Malliavin calculus framework to be considered in order to deal with the differ-

entiability of the random variable u(t, x) is defined as follows. The underlying Hilbert

space is given by H = L2([0, T ] × [0, 1]) and the Gaussian family (W (h), h ∈ H) is

defined by

W (h) =

∫ T

0

∫ 1

0

h(s, y)W (ds, dy),

for h ∈ H .

Now we are ready to state the main result of the section, which is an extension of

Theorem 1.1 in [PZ93].

Theorem 2.3.3. Assume that b and σ satisfy condition (D). Let (t, x) ∈ (0, T ]× (0, 1).
Then, the law of the random variable u(t, x) is absolutely continuous with respect to

the Lebesgue measure if, and only if, there exists s ∈ [0, t) such that σ(u(s, ·)) is not

identically zero.

Let us briefly sketch the proof of Theorem 2.3.3. It is a consequence of Bouleau and

Hirsch criterion (see Proposition 1.3.7). Thus, first we need to check that the random

variable u(t, x) belongs to D
1,2
loc . For this, for each n ≥ 1 we consider differentiable

functions bn, σn : R → R such that b′n and σ′
n are bounded and bn(z) = b(z) and

σn(z) = σ(z), for all z ∈ [−n, n]; in particular bn and σn are globally Lipschitz

continuous. We denote by un = {un(t, x), (t, x) ∈ [0, T ] × [0, 1]} the unique real-
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valued continuous solution to the stochastic evolution equation

un(t, x) =

∫ 1

0

G(t, x, y)u0(y)dy

+

∫ t

0

∫ 1

0

G(t− s, x, y)σn(un(s, y))W (ds, dy)

+

∫ t

0

∫ 1

0

G(t− s, x, y)bn(un(s, y))dyds. (2.22)

We define the stopping time

τn = inf{t ∈ [0, T ], sup
x∈[0,1]

|u(t, x)| > n},

n ≥ 1. Since the process u has continuous paths, we have that τn converges to infinity

almost surely. This implies that the sequence of sets (Ωn, n ≥ 1) defined by

Ωn = {ω ∈ Ω, τn(ω) > T}

is increasing and its a.s.-limit is Ω. Moreover, notice that the pathwise uniqueness for

Equation (2.22) ensures that u(t, x) = un(t, x) a.s. on Ωn.

Thus, to conclude that u(t, x) ∈ D
1,2
loc , we only need to check that, for any n ≥ 1,

un(t, x) belongs to the space D
1,2. This follows from standard arguments because

the coefficients bn and σn are of class C1 and have bounded derivatives (see, for in-

stance, [MSS99], [MCMS01]). The Malliavin derivative Dun(t, x) satisfies the fol-

lowing equation on L2([0, T ] × [0, 1]):

Dun(t, x) =G(t− ·, x, ∗)σn(un(·, ∗))

+

∫ t

0

∫ 1

0

G(t− s, x, y)σ′
n(un(s, y))Dun(s, y)W (ds, dy)

+

∫ t

0

∫ 1

0

G(t− s, x, y)b′n(un(s, y))Dun(s, y)dyds,

Restricting the above evolution equation to each Ωn, by definition of the space D
1,2
loc ,

we obtain an analogous equation for Du(t, x), as follows.

Du(t, x) =G(t− ·, x, ∗)σ(u(·, ∗))

+

∫ t

0

∫ 1

0

G(t− s, x, y)σ′(u(s, y))Du(s, y)W (ds, dy)

+

∫ t

0

∫ 1

0

G(t− s, x, y)b′(u(s, y))Du(s, y)dyds.
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To deal with the analysis of the Malliavin matrix we proceed as in [PZ93], Sec-

tion 3. For this, a comparison result, namely Theorem 2.3.1, the Gaussian bound for

G(t, x, y) (see (2.21)) and the Hölderianity of the trajectories for the solution to Equa-

tion (2.19) when σ and b are globally Lipschitz are needed.

2.3.2 Smoothness of the density

We consider the following stochastic Cauchy problem:

∂u

∂t
(t, x) = A(t, x)u(t, x) + b(u(t, x)) + σ(u(t, x))Ḟ (t, x), (2.23)

t > 0, x ∈ R
d, with initial condition u(0, x) = 0, x ∈ R

d. The random perturbation Ḟ
is the formal derivative of the Gaussian noise described in Section 1.3. The coefficients

b and σ are globally Lipschitz functions and A(t, x) is an elliptic operator of the form

A(t, x) =
d
∑

i,j=1

∂

∂xj

[ai,j(t, x)
∂

∂xi

+ aj(t, x)] +
d
∑

i=1

bi(t, x)
∂

∂xi

+ c(t, x),

where the functions ai,j, aj, bi, c : [0, T ] × R
d → R are bounded and continuous. We

consider the following assumption for the operator A(t, x).

(E) The functions ai,j, aj, bi, c are of class C∞ on [0, T ]×R
d. Moreover, the operator

A(t, x) is uniformly elliptic, that is, there exists a0 > 0 such that

d
∑

i,j=1

ai,j(t, x)ξiξj ≥ a0|ξ|2,

for all (t, x) ∈ [0, T ] × R
d and ξ = (ξ1, . . . , ξd) ∈ R

d.

Denote by f = f(t, s;x, y), 0 ≤ s < t and x, y ∈ R
d, the fundamental solution

associated with the differential operator ∂
∂t

− A(t, x) on R
d. Owing to Theorem 7 in

[Aro68], under condition (E) we have the following lower and upper bounds for the

function F :

C1(t−s)−
d
2 exp

(

−C2
(x− y)2

t− s

)

≤ f(t, s;x−y) ≤ C3(t−s)−
d
2 exp

(

−C4
(x− y)2

t− s

)

,

(2.24)

where Ck, k = 1, . . . , 4, are positive constants. In particular, f is non-negative.
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A solution to Equation (2.23) is an Ft−adapted (filtration generated by F ) stochas-

tic process {u(t, x), (t, x) ∈ [0, T ] × R
d} such that

u(t, x) =

∫ t

0

∫

Rd

f(t, s;x, y)σ(u(s, y))M(ds, dy)

+

∫ t

0

∫

Rd

f(t, s;x, y)b(u(s, y))dyds, (2.25)

where the stochastic integral is of Walsh’s type and M is the martingale measure asso-

ciated with the process F (see Section 1.3). Making use of a standard Picard iteration

method and of the upper bound in (2.24), it can be shown that a sufficient condition

ensuring existence and uniqueness of process solution to Equation (2.25) is

∫

Rd

µ(dξ)

1 + |ξ|2 < +∞,

where µ is the spectral measure of Γ, the spatial correlation of the noise (for similar

results see [Wal86], Theorem 3.2, [MSS99], Theorem 1.2 or [Dal99], Theorem 13).

Notice that this condition was also sufficient to deal with the existence and uniqueness

of solution of the heat equation in any dimension d ≥ 1 and the wave equation for

d = 1, 2, 3 (see Section 1.4).

The main result of the section is as follows.

Theorem 2.3.4. Assume that the coefficients b and σ are C∞ functions with bounded

derivatives of any order greater than or equal to one and that the following condition

is fulfilled for some η ∈ (0, 1
2
):

∫

Rd

µ(dξ)

(1 + |ξ|2)η
< +∞.

Moreover, suppose that |σ(z)| ≥ σ0 > 0, for some σ0 > 0. Then, for all (t, x) ∈
[0, T ]×R

d, the law of the random variable u(t, x) is absolutely continuous with respect

to the Lebesgue measure and its density is a C∞ function.

The proof can be deduced from Lemma 3.1 and Theorem 3.2 in [MCMS01]. In-

deed, it is sufficient to notice that the isometry property of the stochastic integral gives

E

(

∣

∣

∣

∣

∫ t

0

∫

Rd

f(t, s;x, y)g(s, y)M(ds, dy)

∣

∣

∣

∣

2
)

= E

(∫ t

0

ds

∫

Rd

Γ(dy)

∫

Rd

dzf(t, s;x, z)f(t, s;x, z − y)g(s, z)g(s, z − y)

)

,

(2.26)
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where g = {g(t, x), (t, x) ∈ [0, T ] × R
d} is any predictable process satisfying

sup
(t,x)∈[0,T ]×Rd

E(|g(t, x)|2) < +∞

(see Theorem 1.2.3). Owing to the estimations given in (2.24), the right hand-side of

equality (2.26) taking g ≡ 1 has the same lower and upper bounds, up to multiplication

by a constant, as the integral

∫ t

0

ds

∫

Rd

µ(dξ)|FΛh(s)(ξ)|2, (2.27)

where Λh is the fundamental solution to the heat equation in any dimension d ≥ 1 (see

(i) and (ii) of Lemma 3.1 [MCMS01]). Moreover, again by (2.24) it holds that

sup
x∈Rd

∫ t

0

ds

∫

Rd

dyF (t, s;x, y) ≤ Ct (2.28)

(see (iii) of Lemma 3.1 [MCMS01]).

From (2.27) and (2.28), it is straightforward to check that the same conclusion

as in Theorem 3.2 in [MCMS01] can be obtained; therefore we end the proof of the

Theorem.

2.4 Lattice approximation for a stochastic wave equa-

tion

This section is devoted to present the contents of third article of this dissertation. It can

be found in a prepublication form in Appendix C.

The aim of this paper is to construct an approximation scheme for a one-dimensional

stochastic wave equation on [0, 1], with some Dirichlet boundary conditions, using a

spatial finite-difference method. We study the convergence in Lp(Ω) and a.s. of the

approximations to the solution. For the former we obtain bounds of the rate of conver-

gence and we test them numerically.

Lattice approximation schemes for parabolic SPDEs in one spatial dimension, de-

veloped in [Gyö98b], [Gyö99], have been the starting point of several further investi-

gations. In [MM03], lattice schemes for parabolic SPDEs in any spatial dimension are

considered and the influence of the particular covariance density of the noise given by

Riesz kernels is studied. A class of parabolic evolution equations on Banach spaces

with monotone operators are analysed in [GM04]. In [GM], a finite difference ap-

proximation scheme for an elliptic SPDEs in dimension d = 1, 2, 3 is studied. The

results show how much the behaviour of this kind of approximations depends on the
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differential operator driving the SPDE and are one of the very few attempts of looking

beyond the parabolic case. Let us also mention [DZ02] for some results on numerical

approximations for elliptic equations.

To our best knowledge, the results stated in [QSSS04b] (Appendix C) correspond

to the first step towards the analysis of lattice approximations for hyperbolic SPDEs.

In fact, we are only aware of [MPW03] for some results on numerical approximations

for the stochastic wave equation. The authors consider non-random coefficients b and

σ -therefore the solution is a Gaussian process- and construct algorithms to simulate

the solution numerically on some grid.

Here, we consider the non-linear stochastic wave equation

∂2u

∂t2
(t, x) =

∂2u

∂x2
(t, x) + f(t, x, u(t, x)) + σ(t, x, u(t, x))

∂2W

∂t∂x
(t, x), (2.29)

t > 0, x ∈ (0, 1), with initial conditions

u(0, x) = u0,
∂u

∂t
(0, x) = v0, x ∈ (0, 1),

and boundary conditions of Dirichlet type given by

u(t, 0) = u(t, 1) = 0, t > 0.

The functions u0 and v0 are defined on [0, 1], u0 vanishes at x = 0 and x = 1. W is the

Brownian sheet on R+ × [0, 1]; that is, {W (t, x), (t, x) ∈ R+ × [0, 1]} is a Gaussian

stochastic process defined on some probability space (Ω,F , P ) with mean zero and

covariance function

E(W (t, x)W (s, y)) = (s ∧ t)(x ∧ y).

The real-valued solution {u(t, x), (t, x) ∈ [0, T ]× [0, 1]}, T > 0, to Equation (2.29) is

interpreted in the mild form,

u(t, x) =

∫ 1

0

G(t, x, y)v0(y)dy +
∂

∂t

(∫ 1

0

G(t, x, y)u0(y)dy

)

+

∫ t

0

∫ 1

0

G(t− s, x, y)σ(s, y, u(s, y))W (ds, dy)

+

∫ t

0

∫ 1

0

G(t− s, x, y)f(s, y, u(s, y))dsdy, (2.30)

t ≥ 0, x ∈ (0, 1), where G is the Green function associated with the wave equation

with homogeneous Dirichlet boundary conditions on (0, 1). The third term on the right

hand-side of the above equation corresponds to a stochastic integral with respect to the
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martingale measure associated to the space-time white noise; since the integrand is a

real-valued function, this is a stochastic integral of Walsh’s type (see Section 1.2.1).

We fix a positive constant T and assume that the coefficients f and σ are real-valued

functions defined on [0, T ] × [0, 1] × R, satisfying the following conditions:

(L)

sup
t∈[0,T ]

(

|f(t, x, z)− f(t, y, v)|+ |σ(t, x, z)− σ(t, y, v)|
)

≤ C(|x− y|+ |z− v|),

(LG)

sup
(t,x)∈[0,T ]×[0,1]

(

|f(t, x, z)| + |σ(t, x, z)|
)

≤ C(1 + |z|),

for every x, y ∈ [0, 1] and z, v ∈ R.

Existence and uniqueness of a real-valued process solution to Equation (2.30) fol-

lows from standard techniques based on Picard iterations. For similar results, we refer

the reader to [CN88] and [MSS99]. In these papers the authors deal with stochastic

wave equations in dimension d = 1, 2, respectively.

Throughout the paper we use the following decomposition of the Green function

G:

G(t, x, y) =
∞
∑

j=1

sin(jπt)

jπ
ϕj(x)ϕj(y), (2.31)

where ϕj(x) =
√

2 sin(jπx), j ≥ 1, is a complete orthonormal system of L2([0, 1])
(see, for instance, [Duf03], p. 94).

We remark that, by the classical approach on construction of solutions via expan-

sion into eigenfunctions to the deterministic wave equation on [0, 1] with Dirichlet

boundary conditions , we know that the contribution of the initial condition u0 in Equa-

tion (2.30) is given by

∂

∂t

(∫ 1

0

G(t, x, y)u0(y)dy

)

=
∞
∑

j=1

〈u0, ϕj〉 cos(jπt)ϕj(x),

where 〈·, ·〉 stands for the usual scalar product in L2([0, 1]) (see [Joh82], p. 44).

For a function g : [0, 1] → R and α ∈ R, we define

‖g‖α,2 :=

(

∞
∑

j=1

(1 + j2)α|〈g, ϕj〉|2
) 1

2

and denote by Hα,2([0, 1]) the set of functions g : [0, 1] → R such that ‖g‖α,2 < ∞.

Notice that the above defined norm is finite if and only if the function (1−∆)αg belongs
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to L2([0, 1]), where ∆ stands for the Laplacian operator in dimension one. This implies

that Hα,2([0, 1]) is a subspace of the fractional Sobolev space of fractional differential

order α and integrability order p = 2 (see [Tri92]).

First we study some properties of the solution u(t, x). More precisely, we have

the following result, whose proof can be found in Appendix C, Propositions C.2.1 and

C.2.2.

Proposition 2.4.1. Assume that v0 ∈ Hβ,2([0, 1]), for some β > −1
2
, and u0 ∈

Hα,2([0, 1]), for some α > 1
2
; suppose also that the coefficients σ and f satisfy condi-

tion (L) and (LG). Then, for every p ≥ 1, there exists a positive constant C depending

on α and β, such that

sup
(t,x)∈[0,T ]×[0,1]

E(|u(t, x)|p) < +∞

and

E(|u(s, x) − u(t, y)|2p) ≤ C(|t− s|p(1+2β) + |x− y|p(1+2β)

+ |t− s|p(2α−1) + |x− y|p(2α−1)

+ |t− s|p + |x− y|p),

for every s, t ∈ [0, T ] and x, y ∈ [0, 1]. Consequently, the process u has a.s. Hölder-

continuous sample paths of order δ, for all δ ∈ (0, δ0), where δ0 = (1
2
+β)∧(α− 1

2
)∧ 1

2
.

In order to construct the approximations to the solution u, we fix any n ≥ 1 and

the spatial grid xk = k
n

, k = 1, · · · , n − 1. Then, we consider the system of stochas-

tic differential equations obtained by substituting the Laplacian by its finite-difference

discretisation (see (2.32) and (2.33) below). This provides an implicit finite dimen-

sional scheme. By linear interpolation, we obtain a sequence of evolution equations

which is proved to converge in any Lp(Ω), uniformly in t, x, to the solution of (2.29)

with a given rate of convergence (see Theorem C.3.1).

Let us briefly sketch the construction of the approximations. The detailed proce-

dure can be found in Section C.3.1.

Notice first that Equation (2.29) is equivalent to the following one:

{

∂u
∂t

(t, x) = v(t, x)
∂v
∂t

(t, x) = ∂2u
∂x2 (t, x) + f(t, x, u(t, x)) + σ(t, x, u(t, x))∂2W

∂t∂x
(t, x),

(2.32)

t > 0, x ∈ (0, 1), with initial conditions

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ (0, 1),
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and Dirichlet boundary conditions

u(t, 0) = u(t, 1) = 0, t > 0.

For any integer n ≥ 1, set xk = k
n

, k = 1, . . . , n − 1. We consider the system of

stochastic differential equations















dun(t, xk) = vn(t, xk)dt
dvn(t, xk) = n2(un(t, xk+1) − 2un(t, xk) + un(t, xk−1))dt

+f(t, xk, u
n(t, xk))dt

+nσ(t, xk, u
n(t, xk))d (W (t, xk+1) −W (t, xk)) ,

(2.33)

with initial conditions

un(0, xk) = u0(xk), v
n(0, xk) = v0(xk),

where

u0(xk) =
∞
∑

j=1

〈u0, ϕj〉ϕj(xk), v0(xk) =
∞
∑

j=1

〈v0, ϕj〉ϕj(xk),

k = 1, . . . , n − 1. System (2.33) is the formal spatial discretisation of (2.32) using

finite differences.

The aim is to put together the above system in a suitable way so that we obtain

a stochastic differential equation on R
2(n−1). Then, we apply Itô’s formula and we

obtain a new system of stochastic differential equations for un(t, xk), k = 1, . . . , n−1.

Finally, we extend the process un(t, ·) to the whole interval [0, 1] by linear interpolation

and we show that the resulting process {un(t, x), (t, x) ∈ [0, T ] × [0, 1]} satisfies the

stochastic evolution equation

un(t, x) =

∫ 1

0

Gn(t, x, y)v0(κn(y))dy

+
∂

∂t

(∫ 1

0

Gn(t, x, y)u0(κn(y))dy

)

+

∫ t

0

∫ 1

0

Gn(t− s, x, y)f(s, κn(y), un(s, κn(y)))dsdy

+

∫ t

0

∫ 1

0

Gn(t− s, x, y)σ(s, κn(y), un(s, κn(y)))W (ds, dy),

t ∈ (0, T ] and x ∈ (0, 1), where

Gn(t, x, y) =
n−1
∑

j=1

sin
(

jπt
√

cnj

)

jπ
√

cnj
ϕn

j (x)ϕj(κn(y)),
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with κn(y) = [ny]/n, ϕn
j (x) = ϕj(xl) for x = xl and

ϕn
j (x) = ϕj(xl) + (nx− l) (ϕj(xl+1) − ϕj(xl))

for x ∈ (xl, xl+1). For any n ≥ 1 and j = 1, . . . , n− 1, cnj is given by

cnj =
sin2

(

jπ

2n

)

(

jπ

2n

)2 .

The main result concerning the convergence of the approximations un(t, x) to u(t, x)
is the following (see Theorem C.3.1 in Appendix C).

Theorem 2.4.2. Suppose that u0 ∈ Hα,2([0, 1]), with α > 3
2
, v0 ∈ Hβ,2([0, 1]), with

β > 1
2
. We fix p ≥ 1 and assume that the coefficients σ and f satisfy conditions (LG)

and (L). Then, there exists a positive constant C depending on α, β such that, for any

n ≥ 1,

sup
(t,x)∈[0,T ]×[0,1]

E(|un(t, x) − u(t, x)|2p) ≤ C

n2pρ
,

for all ρ ∈ (0, ρ0), with ρ0 = 1
3
∧ (α − 3

2
) ∧ (β − 1

2
). Moreover, un(t, x) converges to

u(t, x) almost surely, as n tends to infinity, uniformly with respect to (t, x) ∈ [0, T ] ×
[0, 1].

We remark that, for any γ > 1
2
, Hγ,2([0, 1]) is embedded in the space of δ-Hölder

continuous functions on (0, 1), for any δ ∈ (0, γ − 1
2
) (see, for instance, [Shi92],

Theorem E12). Actually, one could state an analogue to Theorem 2.4.2 assuming

Hölder continuity of the initial conditions.

The first result needed for the proof of Theorem 2.4.2 is the following uniform

estimation of the L2([0, 1])−norm of the difference G(t, x, ·) − Gn(t, x, ·). Namely,

for every δ ∈ (0, 2
3
), there exists a positive constant C, depending on δ, such that

sup
(t,x)∈[0,T ]×[0,1]

∫ 1

0

|G(t, x, y) −Gn(t, x, y)|2dy ≤ C

nδ
, (2.34)

for every n ≥ 1. For a detailed proof we refer to Lemma C.3.3.

The above bound determines the rate of convergence in the statement of Theorem

2.4.2. Indeed, following the proof of Lemma C.3.3, it turns out that the bound 1
nδ in

(2.34) comes from the analysis of the term

In
3 (t, x) =

n−1
∑

j=1





sin(jπt)

jπ
−

sin
(

jπt
√

cnj

)

jπ
√

cnj





2

ϕ2
j(x),
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(t, x) ∈ [0, T ] × [0, 1].
In the last section of [QSSS04b] (Appendix C), we attach an appendix in which we

simulate numerically the term In
3 (t, x) in order to test the optimality of the bound 1

nδ

in (2.34). The consequence is that this bound is optimal. Considering the particular

case of vanishing initial conditions, the variation of the rate of convergence in Theorem

2.4.2 is determined by ρ ∈ (0, 1
3
). Unlike for the parabolic case, this factor 1

3
differs

substantially from the order of hölderianity with respect to space for the solution u,

which is 1
2
. The numerical tests show that this phenomenon is something intrinsic to

the method.

For the proof of Theorem 2.4.2 we also need a uniform bound of the Lp(Ω)−norm

of the approximations un(t, x). Indeed, we assume that v0 ∈ L2([0, 1]) and u0 ∈
Hα,2([0, 1]), for some α > 1

2
, and that the coefficients f and σ satisfy condition (LG).

Then we prove that for every p ≥ 1

sup
n≥1

sup
(t,x)∈[0,T ]×[0,1]

E
(

|un(t, x)|2p
)

< +∞

(see Proposition C.3.4).

In order to check the Lp(Ω)−convergence, we set

ν(t, x) =

∫ 1

0

G(t, x, y)v0(y)dy,

νn(t, x) =

∫ 1

0

Gn(t, x, y)v0(κn(y))dy,

µ(t, x) =
∞
∑

j=1

〈u0, ϕj〉 cos(jπt)ϕj(x),

µn(t, x) =
n−1
∑

j=1

〈u0, ϕj〉n cos
(

jπt
√

cnj

)

ϕn
j (x),

w(t, x) = u(t, x) − ν(t, x) − µ(t, x)

wn(t, x) = un(t, x) − νn(t, x) − µn(t, x).

Then, assuming that u0 belongs to Hα,2([0, 1]), with α > 3
2
, v0 ∈ Hβ,2([0, 1]), with

β > 1
2
, and that the coefficients σ and f satisfy conditions (LG) and (L), we prove that,

for any p ≥ 1, there exists a positive constant C, such that

sup
(t,x)∈[0,T ]×[0,1]

|νn(t, x) − ν(t, x)| ≤ C

nε
,

for any ε ∈ (0, ε0), with ε0 = 1
3
∧ (β − 1

2
);

sup
(t,x)∈[0,T ]×[0,1]

|µn(t, x) − µ(t, x)| ≤ C

nτ
,
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for any τ ∈ (0, τ0), with τ0 = (α− 3
2
) ∧ 1;

sup
(t,x)∈[0,T ]×[0,1]

E(|wn(t, x) − w(t, x)|2p) ≤ C

n2pρ
,

for each n ≥ 1 and any ρ ∈ (0, ρ0), with ρ0 = 1
3
∧ (α− 3

2
) ∧ (β − 1

2
).

We refer the reader to Propositions C.3.6, C.3.7 and C.3.8, respectively, for a de-

tailed proof of the above estimations. This bounds yield the convergence in Lp(Ω) of

un(t, x) to u(t, x), as n tends to infinity, and the bound for the rate of convergence

given in the statement of Theorem 2.4.2.

The proofs of the above estimations are mainly based on the expansion of the Green

function given in (2.31) and arguments making use of Cauchy-Schwarz, Hölder and

Burkholder’s inequalities.

The almost sure convergence is a consequence of the first part of Theorem 2.4.2

and the hölderianity of the sample paths of the processes w(t, x) and wn(t, x), (t, x) ∈
[0, T ] × [0, 1]; notice that the former is a consequence of the Hölder property of the

trajectories of u when taking vanishing initial conditions. For the latter see Lemma

C.3.5. The details of the almost surely convergence are given in the proof of Theorem

C.3.1 in Appendix C.





Conclusions

In this dissertation we have mainly studied a stochastic partial differential equation of

hyperbolic type: the stochastic wave equation.

In the first part ([QSSS04a] and [QSSS04c]), we have considered a stochastic wave

equation with spatial dimension three and we have given sufficient condition ensuring

that the law of the solution at any fixed point has an infinitely differentiable density.

In comparison to the one and two-dimensional cases ([CN88], [MSS99], respectively),

the main mathematical motivation in the three-dimensional case is the fact that the

fundamental solution associated to the wave operator is not a function but a distribu-

tion. This requires a more sophisticated stochastic integration theory ([Dal99]) and

new techniques in order to apply the Malliavin calculus to the equation.

In the same spirit, we have added some contributions to parabolic SPDEs. We have

extended some known results for the stochastic heat equation to SPDEs driven by more

general operators than the Laplacian. As has been mentioned in the Introduction of this

dissertation, the main motivation to deal with these problems comes from the study of

the existence and smoothness of the density for a stochastic heat equation with non-

global Lipschitz drift coefficient satisfying some dissipative condition. This problem

remains still open.

The second part of the dissertation ([QSSS04b]) is devoted to study lattice ap-

proximations for a stochastic wave equation in one space dimension, with boundary

conditions of Dirichlet type. We have used a spatial finite-difference method and we

have studied the convergence of the discretisation processes to the original solution.

As it was pointed out in Section 2.4, the bound for the rate of convergence is not as

sharp as we expected. Clearly, discretisations both in time and in space is the next

topic to be investigated.
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