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Abstract

We present new results regarding the existence of density of the real-valued solution to a
3-dimensional stochastic wave equation. The noise is white in time and with a spatially
homogeneous correlation whose spectral measure u satisfies that [ps u(d&)(1 + |& )< o0,
for some ne (O,%). Our approach is based on the mild formulation of the equation given by
means of Dalang’s extended version of Walsh’s stochastic integration; we use the tools of
Malliavin calculus. Let S3 be the fundamental solution to the 3-dimensional wave equation.
The assumption on the noise yields upper and lower bounds for the integral
o ds [u w(dé)| 7 S3(s)(€)]* and upper bounds for o ds [ w(dé)E)| 7 S5(s)(€)F in terms of
powers of z. These estimates are crucial in the analysis of the Malliavin variance, which can be
done by a comparison procedure with respect to smooth approximations of the distribution-
valued function S3(#) obtained by convolution with an approximation of the identity.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

This paper is devoted to study the probability law of the real-valued solution to
the stochastic wave equation

2
(% — A3)u(t, x) = a(u(t,x))F(t,x) + b(u(t, x)),
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u(0, x) :%(O,x) =0, (1)

where (¢,x)e(0,T] x R}, T>0, and 43 denotes the Laplacian operator on R>.
The aim is to establish sufficient conditions ensuring the law of u(z,x) to be
absolutely continuous with respect to Lebesgue measure on R, for any fixed
(t,x)e(0,T] x R®,
Eq. (1) is an example of the more general class of stochastic partial differential
equations (spde’s)

Lu(t,x) = o(u(t, x))F(t, x) + b(u(t, x)),

u(0,x) = % (0,x) =0, (2)

te(0,T],xe R, T>0, where L denotes a second-order differential operator and the
fundamental solution of Lu = 0 is, for any 7€ (0, 7], a non-negative distribution with
rapid decrease. We assume that the coefficients ¢ and b are real Lipschitz functions;
the noise F is a mean-zero L*(Q, %, P)-valued Gaussian process indexed by the

space of test functions Z(R*!) with covariance functional given by J(¢p, ) =
i, ds fa T(dx)(0(s) * ¥ (s))(x), where (s, x) = (s, —x) and I' is a non-negative,
non-negative definite tempered measure. According to [22, Chapter VII, Théoréme
XVII], this implies that I" is symmetric and there exists a non-negative tempered
measure x4 on R? whose Fourier transform is I, that is J(p, )=

Jr, ds Jga 1(dE)F (s)($) F (5) (<)
We follow the extension of Walsh’s approach developed in [5] and give a rigorous
meaning to Eq. (2) in the mild form, as follows. Let A denote the fundamental

solution to Lu = 0. We denote by M = {M,(A),t€(0, T], Ac %B,(R?)} the martingale
measure extension of F (see [6] for the details of this extension) and by %, the o-field
generated by the random variables M,(A4), s€[0,1], AeB,(RY), for any te(0, T].
Then a solution to (2) is a real-valued stochastic process u = {u(t,x), (t,x)€0, T] x
RY}, defined on the filtered probability space (Q,%,(F ticio.r): ), progressively
measurable, satisfying

u(t,x) = /o /IR”’ At —s,x — y)o(u(s,y)) M (ds,dy)

+/[ds ib(u(t—s,x—y))/l(S,dJ’)- (3)
0 R

For L = g—; — A3 we will write S; instead of A; it is well-known that S3(¢7) = #a,,
where g, denotes the uniform measure on the 3-dimensional sphere of radius . We
refer the reader to [19,20] for results related to [5] on the stochastic wave equation.
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Malliavin calculus, set up in the seminal paper [10], provides a useful tool for the
analysis of densities of Brownian functionals, and more generally for functionals of
Gaussian families indexed by a real separable Hilbert space. Applications of this
technique to spde’s extend to the heat equation [1,11,18] and different examples of
hyperbolic spde’s [12,16,17,21], including the stochastic wave equation in dimension
1 [4] and dimension 2 [11,13]. In all these works, the fundamental solution of the
underlying partial differential equation is a real-valued function, while in our case it
is a distribution. This fact involves a new mathematical analysis. In this article, we
will consider the Gaussian family described as follows. Let & be the inner-product
space consisting of functions ¢ €% (RY), the Schwartz space of rapidly decreasing
% test functions, endowed with the inner-product (¢, ) o = [« I'(dx)(¢p * ) (x),

where 1J(x) = y(—x). Notice that
o> = [ udF o7 )

Let # denote the completion of (&, {+,-> ). Set # 7 = L*([0, T]; #); notice that #
and 7 may contain not only functions but also distributions. The space # 7 is a
real Hilbert separable space. For he #'r, set W(h) = [y [ h(s,x) M (ds, dx) where
the stochastic integral can be interpreted in Dalang’s sense. Then { W (h),he # 1} is
a Gaussian process and we can use the differential Malliavin calculus based on it
(see for instance [15]).

In Section 2 of this paper, we extend Dalang’s stochastic integral to integrators
that are defined by stochastic integration of Hilbert-valued predictable processes
with respect to martingale measures. This extension, defined coordinatewise, is
needed to give a rigorous meaning to the equation satisfied by the Malliavin
derivative of u(, x).

Section 3 deals with the class of spde’s studied in [5], that is, with Eq. (3). We prove
in Theorem 2 that the solution of these equations belongs to the stochastic Sobolev
space D!? of differentiable I” random variables with I” derivatives—in the
Malliavin sense; we give the equation on J# 7 satisfied by the Malliavin derivative. If
A(t) is a real function, for example in the stochastic heat equation in any dimension
d and the stochastic wave equation in dimension d = 1,2, it is well-known that the
solution of (3) at any fixed point (¢,x) belongs to DV” for any NeN and every
pell, co) (see for instance [1,4,11,13]); the equation satisfied by the Nth derivative is
obtained recursively using the rules of Malliavin calculus, by derivation of each term
of the equation satisfied by the (N — 1)th derivative. If A(#) is a distribution, for
example in the wave equation in dimension d = 3, this approach is not possible, the
problem being how to differentiate the stochastic integral term. We have been able to
solve this problem at the level N = 1 by an approximation procedure based on the
convolution of A(¢) with an approximation of the identity. We believe that pushing
ahead our arguments should give the differentiability of any order of the solution;
however, there is yet no hope for obtaining an expression of the Nth derivative for
N >=2. The non-negative requirement on A(¢) prevents from estimating [ moments
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of differences of stochastic integrals like those appearing in (3), for arbitrary
pe(2, ). However, for p =2 one can invoke the isometry property of Dalang’s
stochastic integral. For these reasons, L”-convergence of a sequence of approxima-
tions of the solution to (3) is proved by checking L?-convergence and L7-
boundedness for any pe (2, o).

Section 4 is devoted to prove the almost sure non-singularity of the Malliavin
matrix. Owing to Bouleau’s and Hirsch’s criterium (see [3,14]), this property together
with the results in Section 3 provide the existence of density for the law of u(z, x) at
any fixed (¢,x)e (0, T] x R®. We split the Malliavin matrix into a principal and a
secondary term. The former one is obtained by differentiating the martingale
measure M in the stochastic integral of the right-hand side of Eq. (3); it is an # -
valued random vector that we formally write here as Z(z,x) = S3(t— -, x —
x)a(u(-, x)). Part of the proof of Theorem 2 consists in giving a precise meaning to
this random vector. Lower estimates of the # r-norm of Z(¢, x) are achieved using
first a suitable approximation of S;—in order to get rid of the non-linearity
o(u(s,y)); then we reintroduce S3, we give a lower bound of its deterministic J# -
norm and we keep control of the error. We prove an upper bound of this error and of
the secondary term of the Malliavin matrix. In both, upper and lower bounds related
to # r-norms we use the spectral form derived from (4) and auxiliary results proved
in the appendix.

Along the paper we use the notation C for any positive real constant,
independently of its value. We refer the reader to [14] for the notions and notations
on Malliavin calculus and to [22] to those on distributions invoked along this article.

2. Stochastic integrals with respect to Hilbert-valued martingale measures

In this section, we extend Dalang’s results on stochastic integration to a Hilbert-
valued setting.
Let .o be a separable real Hilbert space with inner-product and norm denoted by

(> and || ]|,/ respectively. Let K = {K(s,z),(s,z)€[0,T] x R’} be an .«/-
valued predictable process; we assume the following condition:

Hypothesis B. The process K satisfies sup, .o rjxre E([[K (s, 2)|),) < .
Our first purpose is to define a martingale measure with values in .o/ obtained by
integration of K. Let {¢;,j>0} be a complete orthonormal system of .o/. Set

Ki(s,z) = (K(s,2),¢> 4, (5,2)€[0,T] % R?. According to [23], for any ;=0 the
process

M¥ (4) :/OIAKj(s,z)M(ds,dz), te]0, T], Aegty(RY),
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defines a martingale measure. Indeed, the process K’ is predictable and

sup  E(|K/(s,2)]))<  sup  E(||K(s,2)[[3,) < 0.
(s,2)€[0,T]xR¢ (5,2) €[0,T]xR?

Set, for any 7€[0, T], A€ %,(R?),

ME(A) =" MF (4)e;. (5)

=0

The right-hand side of (5) defines an element of L*(Q;./). Indeed, using the isometry
property of the stochastic integral, Parseval’s identity and Cauchy-Schwarz
inequality we obtain

2)

ST E(MF)P) =Y E(
2 E(AzhA;FM@A;@JAwK%JMA@—XMﬂ&y—XO

j=0 j=0
:/O ds/RdF(dx)/RddylA(y) La(y = X)E(<K(5,5), K (5,7 = %) > )

/OI/R" 14(2)K (s,2) M (ds, dz)

~ O

< s B(K@AIE) [@ [ @) [ oo -

(s,9) [0, T]xR?

<C  sup  E(|K(5,)]3)-
(5) [0, 7]

This shows that E(||MX(A)|%,) = > 50 E(|MX (4)]*) < o0, due to Hypothesis B.
Clearly, the process {MX(A),t€[0,T), Ac%B,(R?)} defines a worthy .o/-valued

martingale measure and by construction we have that { MX(4),e;>,, = M¥ (4). By
the previous computations

E(IMEAIE) =S E( [ aimoxs ->r|if),

j=0

where we have denoted by a dot the s#-variable.

Our next goal is to introduce stochastic integration with respect to MX, allowing
the integrands to take values on some subset of the space of Schwartz distributions.
First, we briefly recall Walsh’s construction in the Hilbert-valued context.

A stochastic process {g(s,z; ), (s,z)€[0, T] x R?} is called elementary if
g(S,Z;CO) - l(a,b](s)lA(Z)X(w>7 (6)

for some 0<a<h<T, Ac%,(R?) and X a bounded Z,measurable random
variable. For such ¢, the stochastic integral g- MX is the .o/-valued martingale
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measure defined by

(9 M®),(B)(@) = (M}, ,(4n B) — M,

tna

(40 B))X (o),

te[0, T], Be B,(R?). This definition is extended by linearity to the set &; of all linear
combinations of elementary processes. For ge &, and 1>0 one easily checks that

E(|(g- M*),(B)II3,)
; E(/Otds/Rd F(dx) /Rd dy lB(y)g<S,y)Kj(S,y)1B(y_x)

<ols.y = K5, )

2
<llgll x> (7)

where

lgI3 x = ZE(/OTds I g(s, ) K (s, )] ||2%)_

Jj=0

Let 2, k be the set of all predictable processes g such that ||g||, x < oo. Then, owing
to [23, Exercise 2.5, Proposition 2.3], 2 g is complete and & is dense in this Banach
space. Thus, we use the bound (7) to define the stochastic integral ¢g- MX for
geZ+ k.

Next, following [5] we aim to extend the above stochastic integral to include a
larger class of integrands. Consider the inner-product defined by the formula

T . .
Cnodox =Y B( [ ds Conls IR, 025 0K 5. o

j=0

and the norm || - ||, x derived from it. We notice that this inner-product makes sense

for elements in & and we have that || - ||S7K =Y soll" ||§7K,-, where in the particular

case of an absolutely continuous measure I', the definition of the norm || - ||S,K/ is
given in [5, Equation (22)].
By the first equality in (7) we have that

E(ll(g- M) (RN, = llglls

for any geé&.
Let 2ok be the completion of the inner-product space (&5, -, x). Since || -

llo.x <I| - || g, the space 2, x will be in general larger than 2, k. So, we can extend

the stochastic integral with respect to MX to elements of 2 k. Let (4, || - || ,) be the
space of .o/-valued continuous square integrable martingales endowed with the
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norm || X[, = E(||XT||2Q/) Then the map g+>g- MX, where g- MX denotes
the martingale ¢+ (g - MX),(R?), is an isometry between the spaces (2, || - lox)
and (4,]| || ,)- Here we still have denoted by || - [|) x the norm derived from the
inner-product of the completion of (&, <-,-)>(k). Classical results on Hilbert

spaces tell us precisely how this norm is constructed (see for instance [2, Chapter V,
Section 2]).

In the sequel, we denote either by (g - MX), or by [; [ra g(s,2)K(s,z) M (ds, dz) the
martingale obtained by stochastic integration of ge 2, x with respect to MX.

Remark 1. The stochastic integral (g - MX),, 1€]0, T], introduced before coincides
with that given by the formula

(9 MK)I - Z (9 MK])zej’
i>0

where (g - M Kj) , 1 the stochastic integral of predictable real-valued processes with

respect to the martingale measure M K defined in [5]. This fact can be easily checked
using that both definitions agree on processes belonging to &.

Let us consider the particular case where the following stationary assumption is
fulfilled.

Hypothesis C. For all j>0, se[0,T], x,yeR’,

E(K/(s,x)K(s,y)) = E(K/(5,0)K’(s,y — X)).

Consider the non-negative definite function G¥ (s, z) = E(K’(s, 0)K’(s, z)). Owing to
[22, Theorem XIX, Chapter VII], the measure I /ﬁ(a’z) = G/K (s,z)I(dz), is a non-
negative definite distribution. Thus, by Bochner’s theorem (see for instance
[22, Theorem XVIII, Chapter VII]) there exists a non-negative tempered measure
,u}; such that I j{(s(dz) =7 ,u};.

Clearly, the measure I'N(dz) =), (I} (dz) is a well-defined non-negative

definite measure on R?, because

S GXs,0< sup E(|K(s2)|) < 0.
Jj=0 (s,2)€[0,T)eR?

Consequently, there exists a non-negative tempered measure pX such that
F X = 'Y Furthermore, by the uniqueness and linearity of the Fourier transform,

K _ K
My = ijo :uj,s'
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Thus, if Hypotheses B and C are satisfied then for any deterministic function ¢(s, z)
such that HgHS’K< o and g(s)e.#(R?) we have that

T
lofs =3 | s [ @) [ avats ety =065 )
= ' K ) xg(s,-))(x
= [ as [ ra@n o) a6 )

T
_ / ds / 1K (d8)|Fg(s) (&) (8)
0 R

We want now to give examples of deterministic distribution-valued functions ¢t — S(?)
belonging to # k. A result in this direction is given in the next theorem, which is the
Hilbert-valued counterpart of [5, Theorems 2, 5].

Theorem 1. Let {K(s,z),(s,z)€[0,T] x R’} be an .o/-valued process for which

Hypotheses B and C are satisfied. Let t+— S(t) be a deterministic function with values in
the space of non-negative distributions with rapid decrease, such that

/0 di / ude|F S < oo

Then S belongs to P, g and

E((S- M) = [ ds [ ol 7 s )

Moreover, for any pe[2, o),

E(I(S- M) IL)<C [ ds sup B(K 1) [ ) ZSOF, (10)

xeR?
with C, = (J1ds [ n(dE)|FS() O, te[0,T).

Proof. Let i be a non-negative function in ¢~ (R?) with support contained in the
unit ball of R? and such that [ (x)dx = 1. Set ¥, (x) = n?y(nx), n>1. Define
S,(t) =, S(1). Clearly, S,(t)e#(RY) for any n>1, te[0,T] and S,(t)>0.
According to the arguments in the proof of [5, Theorem 2] we obtain that
Sh€P Lk <Pyk and

T
lim S, ~ S|G = lim [ ds [ ak@e)# (s, - 0@ =0

for any j>0. Consequently, lim,_, ,||S, — S||o,1< =0, and thus SeZyg. By the
isometry property of the stochastic integral and (8) we see that the equality (9) holds
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for any S,; then the construction of the stochastic integral yields

E(||(S- M¥),[15,) = lim E(||(S, - M5),II%,)

n— oo

= lim /Otds/w 1K (dE)| 7 S,(s)(¢))

- [[a [ wwsizsoier

where the last equality follows from bounded convergence. This proves (9).
For the proof of (10) we refer the reader to that of expression (36) in [5, Theorem
5], with the obvious modifications. Therefore, the theorem is proved. [J

Remark 2. From the identity (9) it follows that for any S satisfying the assumptions
of Theorem 1 we have

T
IS5 = [ as [ ol z s,

3. Malliavin differentiability of the solution of spatially homogeneous spde’s

In this section, we consider the spde (2). We assume that the following set of
assumptions is satisfied:

Hypothesis D. Let A be the fundamental solution of Lu = 0. Then A(¢) is a non-
negative distribution with rapid decrease such that

T
| a [ waeizaw@r<o (1)
0 R

and

T
lim [t [ udd) s |7 (40) - a0)QF =0
nlo- Jo R? t<r<tth

Moreover, A is a non-negative measure on R, x R of the form A(t, dy) dt such that
supg<,<7 A, R)) < Cr< 0.

Under these hypotheses [5, Theorem 13] establishes the existence of a unique
progressively measurable process u = {u(t,x), (t,x) €[0, T] x R’} such that Eq. (3)
holds; in addition u satisfies sup(, (o 7jxg E(Ju(t,x)[’)< + oo, for any pe|l, o)
and has spatial stationary covariance function. The process u is called a solution of (2).

The aim of this section is to prove that for any fixed (¢,x)e[0, T] x RY, u(t, x)

belongs to the space D'” of the Malliavin calculus developed in the framework that
has been made precise in the introduction and defined by means of the Malliavin
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derivative operator D (see [15, Section 1.1]). We recall that for a random variable X
in the domain of D, DX defines an s y-valued random variable. For he # 1 set
DyX = (DX ,h) 4,. Since #1=L*([0,T); #), for rel0,T], DX(r) defines an
element in s, which will be denoted by D,X. Then, for any he #r, DX =
I DX h(r)y 4 dr. We will write D, ,X = (D, X, 4, re[0,T], pe# and we
shall use the convention D°” = L7(Q). Along the section, we will denote by - and *
the time and the # variable, respectively. Here is the main result of this section.

Theorem 2. Assume that A satisfies Hypothesis D and the coefficients o and b are €'
functions with bounded Lipschitz continuous derivatives. Then,

(1) for any (t,x)e[0, T] x R?, u(t,x) belongs to D' for any pe|l, ©);
(2) there exists an Hr-valued stochastic process {Z(t,x),(t,x)€[0,T] x R?}
satisfying sup(, v cio.71xrt [ Z(8 )| 1@ np) < 00 such that

Du(t,x) = Z(1,x) / /R d 5,x — 2)0' (u(s, z)) Du(s, 2) M (ds, dz)

+/ ds/ b (u(t —s,x —z))Du(t — s,x — z)A(s, dz). (12)
0 R
Moreover, for any (t,x)€[0, T] x R?,

E(1Z(t,9)|5,) = [14(t = - x = #)|[§
t 2
:E(/o /IRd At —s,x — z)o(u(s, z)) M (ds, dz)) . (13)

Since {o(u(s,x)),(s,x)€[0,T] x R‘} has a stationary covariance function we
have

46— x = MR = [ @5 [ @iz au - i,
Let ,%’;{ T, pel2, o0), be the class of progressively measurable # r-valued processes

{¢(1,x),(t,x)€[0, T] x R’} with spatially homogeneous covariance function and
satisfying  sup(, ) o.rjxre E(|[#(2, x)|l%y,)<oo. Consider the stochastic integral

equation for processes in 93]{/ T for any fixed p,

U(t,x) =Z(t,x) //Rd (t —s,x —z)o’ (u(s,2))U(s, z) M (ds, dz)
—|—/0 ds/RdA(s,dz)b/(u(l—s,x—Z))U(t—s,x—z). (14)
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Owing to the results of Section 2 applied to the Hilbert space .o/ = # 1 and to the
A r-valued stochastic process K(s,z) = o'(u(s,z))U(s, z), all the terms in Eq. (14)
are well defined; in particular, the existence of the stochastic integral term is ensured
by Theorem 1. Following the same arguments as those in the proof of [5, Theorem
13] based on Picard’s approximations, it can be proved that Eq. (14) possesses a
unique solution.

The proof of Theorem 2 relies on the following lemma quoted from [§].

Lemma 1. Let {F,},., be a sequence of random variables belonging to D', for some
pE2, ). Assume that the following two conditions are fulfilled:

(1) The sequence {F,},~ converges in L7(Q) to a random variable F;
(2) sup, 1 E(|[DF,ll,) < + oo.

Then F belongs to D' and there is a subsequence of {DF,}, converging to DF in the
weak topology of LF(Q; H'T).

Let A,(t) =, * A(t), where {i,},-, is an approximation of the identity as has
been defined in the proof of Theorem 1. Consider the process {u,(z,x),
(t,x)€[0, T] x R’} solution to the integral stochastic equation

u,(t,x) = /OI/W Au(t —s,x — 2)o(uy(s,z)) M(ds, dz)
+/Otds/Rdb(un(z—s,x—z))/l(s,dz). (15)

The existence and uniqueness of such a process can be easily deduced from the
arguments used in the proof of [5, Theorem 13].
We shall apply the previous Lemma 1 to the sequence F, = u,(¢,x), n>1. First,

we notice that u,(z,x) belongs to D'?, for all n>1. Indeed, this follows from an
easy adaptation of the proof of [11, Proposition 2.4], taking into account that

T A,(1)(E)|<|F A(1)(€)|, for each 1>0,éeR?. Moreover, the derivative of u,
satisfies the equation in # 7:

Dty (%) = An(t = -, x = #) (s, %))
+/0 /Rd A(t = s,x — 2)0" (uy(s,z)) Duy, (s, z) M (ds, dz)

+/0 ds/Rd/l(s,dz)b’(un(t—s,x—Z))Dun(t—s,x—z). (16)

The following propositions provide the necessary arguments for the proof of
Theorem 2.
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Proposition 1. Assume that the coefficients ¢ and b are Lipschitz continuous and that
Hypothesis D is satisfied. Then, for any pe[l, «)

= (t,x)€[0,T]x R4

lim ( sup  E(Juu(t, x) —u(t,x)|p> =0. (17)

Proof. We first prove that for any pe(l, ),

sup sup  E(|uu(t,x)]') < o0. (18)
nzl(¢x)el0,T]xR?

Taking into account (15), we have that E(|u,(7,x)|") < C(A14(t,x) + A24(2,x)),

where
p
) ,

Ay ,(t,x) = E( /ot/Rd Ay(t —s,x — 2)o(uy(s, z)) M(ds, dz)

)\

Owing to [5, Theorem 5], the properties of ¢ and the definition of A,, we obtain

Ar (2, x) = E( /Otds /[R{d b(u,(t — s,x — 2))A(s,dz)

(1.0 O™ [ dssup Bllo(u,(s.0)F) [ a7 4,00 = 5)(0)7

zeR?

<c| ds(1+ sup E<|un<s,z>|">> [RCEEZNERETE

zeR?

with v(e) = [o ds [0 u(d&)|F A(s)(€)]*. Consequently, since |7 A,,(2) (&)< |F A(1)(¢)]
we have that

I+ sup E(|Mn(f7y)|p)]J(f—S), (19)

t
A17,1(Z,X)<C/ ds
0 (1,9) €[0,5]x R

where

10 = [ ol F A0 )P (20)
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Holder’s inequality with respect to the finite measure A(s, dz) ds, the properties of b
and Hypothesis D yield

Ara(t, )< C /0 ' ds /R E(b(t — 5.3~ 2)P)A(s,dz)

o
<c/ s+ sup E(ju(e,)P) / At — s, d2)
0 (1,9)e[0,5]xR¢ RY

C/tds 14+  sup  E(Juu(z,»)]")]. (21)
0

(1,y)€[0,5]xR?

Putting together (19) and (21) we obtain

t
sup E(|un(s,x)|p)<C/ ds |1+
0

(s,x) €[0,f]xR?

sup E(Iun(T,X)Ip)](J(l—@+1)-

(1,x) €[0,5] x RY
We then apply a suitable version of Gronwall’s Lemma (see for instance [5, Lemma

15]) to finish the proof of (18).
Next we prove that

lim sup  E(Jun(t,x) —u(t,x)]* | = 0. (22)
"7\ (1,x) €[0,T]xR?
Indeed, according to the integral equations (3) and (15), we have

E(|un(1,x) — u(t,x)|*) S C(L1u (1, X) + L(1, x)),

where
I 4(t,x) = ( d Ay(t—s,x — 2)o(uy(s, z))
R
2
— At —s,x — z)a(u(s, z))|M(ds, dz) ) )
2
b ,(t, x) E(/O uy(t —s,x —z)) — b(u(t — s,x — z))]A(s, dz) )

We have I ,(t, x) < C(I{ (¢, x) + If (£, x)) with

(t—s,x —z)[o(uy(s,2)) — o(u(s,z))|M(ds,dz)

2
R? 7

Ap(t—s,x—2z) — A(t — s, x — 2)|o(u(s, z)) M (ds, dz)

:E(
x>:E(

Rd

)
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Owing to [5, Theorem 2], the assumptions on ¢ and the definition of A,, we obtain

t
I (t,x)<C / ds sup  E(jun(t,y) —u(e, )Pt — 5),
’ 0 (1,p)e0,5]xR?

where J is defined in (20).
Although A,(t —s) — A(t —s) may not be a non-negative distribution, it does
belong to the space 2,4, of deterministic processes integrable with respect to the

martingale measure M°® . Hence, by the isometry property of the stochastic integral
specified in [5, Section 2, p. 9],

2
1127,1([,)(?) = ||An(l X *) - A(l - X >k)“O,a(u)‘

Then, the definition of the norm in the right-hand side of the above equality yields
t
Box) = [ ds [ @017 (A0 5) = Al = )(@)F
t
= [Cas [ @z e ~ P17 A - )P

Hence, by bounded convergence we conclude that C, = sup, (o 71xr 17, (t,x)
tends to zero as n goes to infinity.

Now we study the term 7, ,(#, x). Applying the same techniques as for the term
A, (2, x) before we obtain

t
La(tsx)<C / ds sup E(un(t,y) —u(z,»)P).
0 (1,9)€[0,5]x RY

Consequently,

sup  E([un(s, x) — u(s, x)|’)
(5,x)€[0,]]xR?

t
<Cn + C/ ds sup E(|un(f7‘x) - M(‘C,X)|2)(J([ - S) + 1)7
0 (1,x) €[0,5]xR?

where lim,,_, ., C, = 0. The proof of (22) concludes with an application of the above-
mentioned version of Gronwall’s Lemma. The convergence (17) is now a
consequence of (18) and (22). [

Proposition 2. Assume that Hypothesis D holds and that the coefficients ¢ and b are €'
Sfunctions with bounded derivatives. Then, for all pe|l, «©)

sup sup E(|[Duy(t,x)|ly,) < 0.
nzl (1x)el0,T]xR?
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Proof. Fix pe(2, c0); set Z,(t,x) = A, (t — -, x — *)o(u,(-, %)). We first prove that

sipsup E(IZa(t 0l ) < 0. 23)
nzl (1 x)el0,T]xRY

Indeed, Holder’s inequality with respect to the finite measure A, (¢t — s, x — z) A, (¢t —
§,X —y+z)dsI'(dz) dy, Cauchy—Schwarz inequality and the properties of ¢ imply

E(||An(t = -, x = %) (un (-, %))|5,)

t
:E(/ ds/ F(dz)/ dyA,(t —s,x = y)A,(t —5,x =y + 2)
0 R? R?

< 6 (un(5,3))0 (5, z)))m
<CE/O[ dS/RdF(dZ)/R,; dy Ap(t — s, x = ) A, (t —s,x —y+z)

% E(|0(un(s, )0 (a(s,y — 2))[P?)

<cli+ s E(u ) /d/ (&) F (),
(t,x) € [0, T] xR R"

which is uniformly bounded with respect to n, by Proposition 1 and the definition
of A,.

Consider now the second term of the right-hand side of (16), which we denote by
B ,(t,x). By Theorem 1 and the properties of ¢ it holds that

E(|[Bia(z, ), ) < C/Ot ds sup E(||o"(un(s,2)) Dun(s, 2)|[% ) (1 — 5)

zeR?

t
<c [ das swp  E(IDu(n Ay, ),
0 (1,2) €]0,5] x R?

where J is defined as in (20).

Finally, for the third term on the right-hand side of (16), denoted in the sequel by
B, ,(t,x), we use Holder’s inequality with respect to the finite measure A(s,dz) ds.
Then, the assumptions on b and A yield

t
E(|[Ban(t.2)|1 )< C / ds  sup  E(|Dun(v.2)|[l.).
0 (1,2) €[0,5] xR?
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Therefore,

sup  E([[Dun(s, 2)[,)
(s,2) €[0,]] xRY

<C(1 +/0 ds( ~)sup E(||Duy(t, 2)|[%, ) (J (= 5) + 1))

€[0,s]x RY

Then, by Gronwall’s Lemma we finish the proof. [

Proposition 3. We assume that ¢ is Lipschitz and that Hypothesis D holds. Then,
for any (t,x)€[0,T] x R? the sequence {Z,(t,x) = An(t — -, x — %) (u, (-, %)),n=>1}
converges in the topology of LP(Q; A7), for any pell, c0), to a random variable
denoted by Z(t,x). Moreover, the process {Z(t,x), (t,x)€[0, T] x R?} satisfies

sup  IZ(4, )| p@unry) < 0 (24)
(t,x)e0,T]xRY

and

E(|Z(t;%)|15,) =14t = X = )5 o0

:E</OZ/W Alt = s,x — 2)o(u(s, 2)) M(ds, dz)>2. (25)

Proof. We first prove that {Z,(¢,x),n>1} is a Cauchy sequence in L*(Q; #1).
Indeed, for any n,m>1 we consider the following decomposition:

E(||An(t = - x = )0 (tty(+, %)) = Am(t =+, x = )0 (thn (-, %) 3,
SC(T1u(t,x) + Topm(t, x) + T3 (2, X)),
where
Tia(t,x) = E(||An(t = - x = )0 (- %)) = o (u(-,#)]|13,),
Topm(t,%) = E([[An(t = -, = 5) = Ap(t = -, x = #)|o(u(-,#)I[5,),
Ty (t, %) = E(|[An(t = -, x =)o (u(-, ) = ot (-, 0))][,)-

Since 4, is a positive test function, the Lipschitz property of ¢ and the definition of
A, yield

M€ C s Buen) —ue)f) [ [ waoiFam@F

(t,y)€[0,T]xR?

<C  sup E(lun(t,) —u(t.y)).
(t,y)e[0,T]x R?
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Then, by Proposition 1 we conclude that lim,_ SUD(; ) [0,7] xR T 4(t,x) = 0.
Similarly, lim,,_, o, SUD(; ) e [0, 7] x R! T5,,(t,x) = 0. Owing to the isometry property of
the stochastic integral we have

T pm(t,x) = E(||[An(t =+, X — %) — Ap(t — -, x — *)“é,o(u))

T
- / ds/ AT by = ) OFIZ Al = $)(O
0 R

Then, by bounded convergence we conclude that

lim sup T5m(t,x) =0.

I (1,x) €[0,T]xR?

Therefore,

sup  E(|[An(t =+, = #)0 (un (-, %)) = Au(t =, x = %) (um (-, %))|[5,)

S
, n,m— oo
(t,x)e[0,T]x R

and consequently the sequence {Z,(¢,x),n>1} converges in L*(Q; # 1) to a random
variable denoted by Z(z, x). Actually, the convergence holds in L7(Q; # 1) for any

pell, oo)—due to (23)—and the process {Z(t,x), (t,x)€[0, T] x R’} satisfies (24).
We now prove (25). Since lim,,_, », (Sup(tﬁx)e[()’T]XRd T ,(t,x)) =0, we have

Z(t,x) = L*(Q; #7) — lim (A,(t — -, x —*)a(u(-,*))).

n— oo

Thus, by bounded convergence and the isometry property of the stochastic integral,
t
E(Z()1,) = Jim [ ds [ 69174, (0= s)(@F

t
= [Cas [ 0 F A= 9OP = A== 9l

:E</Ot /R" At —s,x — z)a(u(s,z)) M (ds, dz)) :

Hence, the proof of the Proposition is complete. [
We can now proceed to the proof of Theorem 2.

Proof of Theorem 2. Owing to Propositions 1 and 2, the assumptions of Lemma 1
are satisfied by the sequence F, :=u,(tz,x), n>1, for any pe[2,00) and any
(t,x) €0, T] x R?. Therefore, the assertion (1) of the theorem holds and there exists a
subsequence of {Du,(t,x),n>1} converging in the weak topology of L?(Q; # 1) to
Du(t,x). The next step consists in identifying this limit as the solution to the
evolution Eq. (12).



18 L. Quer-Sardanyons, M. Sanz-Solé | Journal of Functional Analysis 206 (2004) 1-32

We prove that

sup  E(|[Duy(t,x) = U(1,9)|5,,) 0, (26)
(t,x)€[0,T]xR?

as n tends to infinity, where {U(t, x), (¢,x)€[0, T] x R} is the solution of (14). This
implies that the process {Du(t, x), (¢, x) €[0, T] x R?} satisfies Eq. (12). Notice that it
suffices to check (26) for p = 2 due to Proposition 2.

Set

I (t,x) =Z,(t,x) — Z(t,x),

I'(t,x) = /Ot/Rd Au(t — s,x — 2)0" (un(s, 2)) Duy (s, z) M (ds, dz)
— / /d At — s,x —z)o' (u(s,2))U(s,z) M (ds, dz),
0 Jr

I}(t,x) = /0 ds /R" A(s,dz)(b' (un(t — s, x — 2))Duy (t — 5, x — z2)

—b'(u(t —s,x —2))U(t — 5,x — 2)).

By Proposition 3, lim,, o SUP(, 4o 7)xRe E<||I§(l,x)||2jfr> = 0. Consider the

decomposition

E(||1;(t,)|5,) < C(D14(t, %) + Da,u(t,X) + D3 u(t, X)),

Dlnlx (

— 0 (u(s, z))| Duy, (s, z) M (ds, dz)

where

— 85, x — 2)[0" (un(s, 2))

Rd

2

b
Hr

—s5,x —2)0' (u(s, z)) [Duy(s, 2)

2
)
Hr

Rd

Dznlx (

— U(s,z)| M (ds,dz)
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D3n Z, X (
2
f;ffT)'

— At —s,x — 2)]0’ (u(s,2))U(s, z) M (ds, dz)
The inequality (10), Cauchy—Schwarz’s inequality and the properties of ¢ and 4,
yield

a(t—8,x—z2)

Rd

o=

Din(t,x)< C S[;lr;] Rd< (Ja(t,7) = u(t; »)[VE(| Dutn (2, 9)|[5,.))

/ s [ a7 A6,

Owing to Propositions 1 and 2 we conclude that limy—, oo SUp, ) c (0. 7xre D1alt,x) =
0. Similarly,

t
Dz,n(M)SC/ ds  sup  E(|[Duy(t,y) = Uz »)ll5, ) (t=5),  (27)
0 (1.)€[0,5] xR

where J is defined in (20).

Denote by U the # r-valued process {a’(u(s,z))U(s, z), (s,z) [0, T] x R?}.
Then, the isometry property yields

Dy(t,x) = || An(t = x — %) — A(t = x = #)[[o 5

T —
= [ s [ uftaenF @ - 1717 A6 - )P
0 Re

Thus, by bounded convergence lim,,_, SUD(; ) [0,7] xR Ds ,(t,x) = 0.
For the deterministic integral term, we have

E(||1;(t, X)Hyf )< C(b1a(t,x) + baa(t, x)),

with

ds

A(s, dz)[b' (un(t — 5,x — 2)) = b'(u(t — 5,x — 2))]

2
I
Hr

Rd

bln(l X <

X Duy,(t — s,x — z)
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2
Hop

By the properties of the deterministic integral of Hilbert-valued processes, the
assumptions on b and Cauchy—Schwarz’s inequality we obtain

bra(t,x) < /0 ds/RdA(s,dz)E(|b'(u,,(t—s,x—z))—b’(u(t—s,x—z))|2

2
X || Duy(t = 5,x = 2)[[4,)

ban(t,X) :E(‘ /Ot ds /Rd A(s,dz)b' (u(t — s, x — z))

X [Duy(t —s,x —z) = U(t — s,x — z)]

t
< osup (Elun(t,y)—u(t,y)l“EIIDun(Z,y)II.‘LfT)”z/ ds A(s, dz).
(t,y)e[0,T]xR? 0

Thus, limy, o SUP ;4 c (o 71xwe D1,4(1; X) = 0.

Similar arguments yield

t
bon(t,x) < C / ds sup  E(|Dun(t,y) — Uty
0 (1,) €[0,5] x R?

Therefore, we have obtained that

sup  E(|[Duy(s,x) = U(s, ¥)[3,)
(5,x) [0, xR?

t
<GHC [ ds s E(IDu(ex) - U9l )W)+ 1),
0

(r,x)e[0,5] xR?

with lim,_, ,, C, = 0. Thus, applying Gronwall’s Lemma we complete the proof of
(26) and consequently that of assertion (2) of the theorem. [

Remark 3. The /# r-valued random vector
t
Z(t,x)+ / / A(t —s,x — z)0' (u(s, z)) Du(s, z) M (ds, dz)
0 JR?

in Eq.(12) is the Malliavin derivative of the stochastic integral [j [pu A(f—s,
x — z)o(u(s,z))M(ds,dz). Indeed, this can be proved using Lemma 1 applied to the
sequence defined by [j [rr Au(t — 5,x — 2)a(u(s, 2)) M (ds, dz), n>1.

Remark 4. Assume that [, u(dé)(1 + |¢[*)"" < oo; then the fundamental solution of
the wave equation in dimension de{l,2,3} satisfies Hypothesis D, as has been
proved in [5].
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4. The stochastic wave equation in dimension 3. Existence of density
In this section, we consider the stochastic wave equation (1). We consider the
solution u(t,x) at (,x)e (0, T] x R® in the sense given by Eq. (3). The purpose is to

prove the following result.

Theorem 3. Assume that

(1) the coefficients ¢ and b are €' functions with bounded Lipschitz continuous
derivatives;

(2) there exists ag>0 such that inf{|o(z)|;ze R} >0y;

(3) there exists ne(0,3) such that

] L X — o0
s J, o <<1+|¢|2>">< e

Then, the random variable u(t,x), (t,x)e(0,T] x R*, has a density.

By Bouleau’s and Hirsch’s criterium this theorem is a consequence of Theorem 2
in Section 3 and the next one.

Theorem 4. Assume that the coefficients ¢ and b are €' functions with bounded
derivatives of order one and that the hypotheses (2) and (3) of the previous theorem are
satisfied. Then, ||Du(t,x)||,, >0, a.s.

Let Gy, (x) = F ! (W) (x),d>=1, ne(0,1). It is well-known (see for instance
[7]) that

d
Gug() = Cugl" 2Ky (I

where Cy, is some strictly positive constant and K, is the modified Bessel function of

second kind of order p. Set Fy,(y) = [p I'(dx)Gay(x —y), ye R and
(Hy) sup Fyy(y)<oo.
yERd
Hypothesis (H,) is almost equivalent to the next one:
(Hy)

w(dé)
/Rd—u TEEs (28)
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Indeed, as has been enlighted in [9, Proposition 4.4.1] the condition (H,)) implies

u(dé)

Fy(0) = /R () Gy (x) < /R Pt

and on the other hand (H,) implies (H,).
Notice that the assumption (3) of Theorem 3 is equivalent to (H,) for some

ne(0,4).

Proof of Theorem 4. We will check that E(|[Du(z,x)||,/ )< c for some p>0. This
clearly yields the conclusion of the theorem.

Set Y = ||Du(t,x)||,/ . Owing to the classical expression E(Y) = [” P{Y >z}dz,
we easily obtain that

-2
Pl

p [ £, 2
E(Y)<e +75 e 2 P{||Du(t, x)|[5, <&} de,
0

for any ¢y >0. Hence, our purpose is to prove that for #,>0 small enough,
Mo _1_7_1 5
/ e 27 P{||Du(t, x)||5, <e} de< 0.
0
Let ¢,6>0 be such that for any e€(0,¢], ¢ —&°>0. Then we obviously have

t
PUDKC Ry, <0} <P{ [ arl,.ate.0)lF <a}. )
t—ed

Owing to the expression of Du(z,x) given in (12) we consider, as in [13], the
decomposition

1Dy ct(t,%)[[5 = 11Z0a (1, %) |15 + U8, 1, %) (30)

where Z(t,x) is the # r-valued random vector obtained in Proposition 3 as the
limit in L?(Q; #'1) of the sequence S3,(f— -, x —*)a(u(-,*)), with S3,(t) =, *
S3(2), n=1. Then, by (29) and (30) we get

P{||Du(t,x)|[3, <e} <P'(&,0) + P*(e,9),

26},

t
P2, ) :P{/ dr||z,.,*(z,x)||;<2g}.
t—gd

with

t
Pl(e,9) :P{ / CdrU(t,r,x)
t—g?
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The analysis of the term P!(e,d) is done following the same lines as in [13, Theorem
3.1]. On the one hand, there are some obvious simplifications implied by the fact that
in our case u(¢, x) is a random variable instead of a random vector; on the other hand
the integrals in [13] defined by

o = / ds / dx / dy f (1% — y)Sa(s,%)S2(s,),
0 R? R?

86
Ve :/ ds/ dx S (s, x),
0 R

where S, is the fundamental solution of the 2-dimensional wave equation, must be

replaced by
06.0) = [ ds [ wtae)Zs))P,

12(8,5):/ ds/ S (s, dx),
0 R

respectively. Indeed, in [13], the correlation measure is assumed to be absolutely
continuous with respect to Lebesgue measure with a density denoted by f(|x|).

Hence
bo—/ ds/ I(dx)(S2(s) * S5 (s / ds/ CRIEAOIGIE
R? R?

Notice that the inequalities (A.4) and (A.5) imply
bL(e,0)<Ce?, I)(e,8)< CeB720), (31)

respectively.
More explicitly, Chebychev’s inequality yields

t
/ drU(t,r, x)
1—gd

t t
/jcﬁ<aﬁnﬂx/ / $0—&x—wDWM&ﬁ
1—gd —ed JR?

P'(e,0)<e'E

‘E:n, (32)

with

n:E(

x o (u(s,y))M(ds,dy) > »
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t t
T, :E( / dr {Z,.(t, x),/ ds/ D, u(t—s,x—y)
1—e t—ed R

X b'(u(t —s,x —y))S3(s,dy) > » >,

t t
T;=E </ dr / / S3(t = 5,x — y)Drcu(s, y)o' (u(s, y)) M (ds, dy)
t—gd —ed JR?

T4:E(

t
X / ds / D, u(t — s,x — )b (u(t — s, x — »))S5(s, dy)> D,
t—e¢d R3 w

t
T5:E</ dr
t—¢d

The arguments given in the proof of Proposition 3 show that

t &
Ty = E(/ dr||Z, (1, x)||,2yf) = E(/ dr || Z—(t, x)l@z)
t—ed 0

_ g » 3 7 Ss(r 2
_/0 d/ﬂ@u,(dé)lc/’Sa( )OI,

2
’

[ ar{ [ [ 83t s = 0Dt s, ) M. ),

t
2
H

t
| s [ Dt = sox = a5 - 3305, )
t—ed R3

where & denotes the stochastic process {a(u(t —r,x)),(r,x)€0,7] x R*}. By the
stationarity property of the solution to (3) proved in [5], we know that & satisfies
E(3(s,x)3(s,y)) = E(@(s,0)a(s,x — y)), for all x,yeR®. Therefore, the inequality
(28) of [5] together with the uniformly boundedness of the process u in L7(Q)
(see [5, Theorem 13]) yield

85
T”SC/ @ / w(dE)| 7 S5(r) (&) < Ce2C720).
0 R

Proceeding as in [13, Theorem 3.1] and taking into account the preceding remarks we
obtain from (32),(31) that

P'(,8)< Ce ' [I1(e,0)** + I (¢,8) 1 (e, 8)]
< Ce! (83562") - 85“—2")). (33)
Thus, [ 2" P!(¢,8) de< oo if and only if

l%(% 3=2n)A(5- 211)) >%. (34)



L. Quer-Sardanyons, M. Sanz-Solé | Journal of Functional Analysis 206 (2004) 1-32 25

Let us now consider P?(¢,d). The triangle inequality implies P*(e, ) < P?!(e, ) +
P?2(¢,6), with

P (2,8) = P{|| A1 (-, x = #)a(u(t — -, ))I[5, <6e},

P22(87 5) :P{|‘ZZ,.7*(I,X) - As*‘ ('vx - *)O-<u(t ) *))szfg(; 28}7

where A1 (7)) = Y, * S3(1).
Notice that by assumption (2),

e = otato = ro oIy > o [ w7 a0 )
> (5 [ waiFso@F
- [ w@Fs @A -1F). 69
We have

Fim [ WaIZS:0) QP17 () = 1 <dma | W@ Z SO (36

R3

Indeed,

2

Y () 1P =

V) (exp(=2nie(y - &) — 1) dy

< sup |exp(—2mig(y - &)) — 1|2
<1

=2 sup (1 —cos2me(y - &))<4n|é|e, (37)
<1

where (y - ¢) denotes the Euclidean inner-product of the vectors y, ¢ R®. Owing to
(35), the lower bound of (A.3), (36) and (A.8), we obtain

d

(5 = soluts =)l = | A, (xSt — rx)IE

with Cs = 4nC, and C, given in Lemma 4. Assume that

1
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Then, for z—:<(4%5)1/ (1=001+21) {he very last expression of (38) is bounded below by

2 G136 ;
oy 7 ¢°. Consequently, if

35<1, (40)

then, for e<e /\(4%‘5)1/(175(1“'7))/\(CZI—Z‘%)I/(P}‘S) the set

{1401 (ox = =)a(u(t — - )%, <62}

is empty and therefore P?!(e,5) = 0.

We now study the contribution of P*(g,d). Chebychev’s inequality and the
identity (27) in [5] yield

P2(5,6) < 6 E(I1Zo-o(63) — A (55— ot — - DIy )
! [ s [ i@iF 00 - A ()@

Then, using (37) and Lemma 6, we obtain

P2 (e,0)<4n /8 ds/ uf(df)|§||37S3(s)(é)|2<C85(2*2W)'
0 R3

4 . .
Therefore, [ & 27" P?(e,5) de< oo if and only if

—§+5@—2m>0. (41)

Let us summarize the restrictions encountered so far, that means, (34), (39)—(41); we
realize that they are satisfied if one can choose 0,p>0 such that for any ne(O,%),
3<5<75(G603 =21 A(5—=2n))A%(2—2n). This is always possible taking for
instance p <1 — 2, because in this case we have 3<5(3(3 — 21) A (5 — 217)) A2(2 —
217). Hence, the theorem is completely proved. [
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Appendix A

This section is devoted to prove all the auxiliary results on bounds for the Fourier
transform of the stochastic wave equation that have been applied in the proof of
Theorem 4.

Denote by S, the fundamental solution of the wave equation in dimension d > 1. It
is well-known that its Fourier transform is given by

FSalt)(8) = %

The following result is a consequence of [9, Lemmas 5.4.1, 5.4.3].

Lemma 2. For any t=0 it holds that

cl(zAﬁ)ﬁng /Otds|97Sd(s)(é)|2<cz(t+ £) (A.1)

1
1+ (&

with ¢; = (2°7%)7", ¢ =2

The hypothesis (11) relating the noise and the differential operator is in this example

equivalent to
/ “<d5)2< 0. (A.2)
R 1+ |&]

Hence, (A.1) and (A.2) yield

Ci(tAf)< /Otds/Rd wW(dE)|F Sa(s) (&) < Cao(t + 1),

with C; = (247" [ f‘ifg‘)z, C =12 o fﬁf‘l In particular, for 7€ [0, 1) we have

Ci< /0 ds /R WO F Su() (O <20 (A3)

Let de{l1,2,3}; a direct computation based on the expression of S; shows that

t
/ ds / Sy (s, dv) < G2, (A.4)
0 R?

for any 1€0, 7|, where Cs depends on d.

The upper bound provided by Lemma 2 is not sharp enough to fulfil the
requirements of the proof of Theorem 4. We are going to show that the stronger
condition (28) furnishes an improved version.
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Lemma 3. Assume (H,)) for some ne(0,1). Then for any te|0, T},

[ [ wanzsuser <ce (A5)
0 R

1(dé)

. _ w{lg<} g 1 s
with Cy = B2 T2 + s Jye sy 1+

Proof. Itisincluded in the proof of [11, Lemma 3.4], where d is supposed to be either
I or 2. However, the arguments are valid for any dimension d, because the
expression of #S;(s) does not depend on the dimension. For the sake of
completeness we give the main lines of the proof.

Set
sm (2ns|é|)
I, = d
' /S/m} 2r]é))?

sm (27rs]§|)
I d.
2T / S/|;>1} (2n|¢))?

Clearly,

3
n<p{lel< s, (A.6)

As for I, we have,

f (sin(2ms|é]))* )
L < d. d
? /o S/{I5I>1}H( ) 4n2|¢
! [ 2(1-n)
< d ds(2
/{ ) /0 s(2ns])

1 H(dé) 3-2p
S @G- 2n) </{¢>1} (it m%ﬂ)t ' A7

The inequalities (A.6) and (A.7) give (A.5) with the announced value of the
constant C;. [

Lemma 4. Assume that (H,) holds for some ne (0,%). Then for any t€|0, T,

[ [ waoiei#sas@f <c (A8)

u(dé)

_ mlg=<s1y \<1} 142 L kA
wzthC = Al T+"+Wf{|¢\>1}( +|é|2)11'
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Proof. As in the proof of the preceding lemma we decompose the left-hand side of
(A.8) into the sum J; + J,, with

:td d 7S 2
aiéslwumamudw@u

_ts 7S () (E)]?
biAdAbHWMMV&U@M

Obviously
t3
J1<M{|é|<1}§- (A.9)
Let 0<y<1. Then,
2 o ! o
b\/w/ el I < om 2 s [ ety
(1 4m2|ef? o J{g=n
=3
b 171 1 272 2
= (2n)”2—l / u(de) =S o / —(dé) ="
P e eyt T e g gy
Let n = % Then we obtain
Jo<Cr2, (A.10)

with C = . Consequently, (A.9) and (A.10) yield (A.8) with

(2— 211)2”’771”2” f{\§\>1} (1+\g\ )
the value of C, given in the statement. [

Let {Z(1,x),(t,x)€[0,T] x R’} be a predictable L> process with stationary
covariance function and such that sup, . .o 71xpe E(|Z(2, x)[*)< 0. Set I'?(dx) =
g(s,x)I'(dx) with g(s,x) = E(Z(s,y)Z(s,x +7)). The measure I'Z is non-negative,
non-negative definite and tempered. We denote by p the measure & -Ir Z).

Lemma 5. Assume (H,) for some ne(0,1). Then

1 u(dé)
2(dE) ———<C | =L
b, /w’“‘é( SaTEs /R (1+2P)"

for some positive constant C.
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Proof. Set

Fi,(5.0) = [ T2 Gayx ).

se[0,T], yeR?. Hypothesis (H,) implies that

sup FdZn(s,y)< 0.
(sp)el0.TIxR!

Indeed, this follows from the definition of the measure I SZ and the properties of the
process Z. Then, applying [9, Proposition 4.4.1], it follows that for any se€[0, T

1
Zd -
/Rd:us< é)<1+|£|2)n<00

Set p, = F ! (exp"'ﬂz); by bounded convergence we have that

! . exp~<"
ZdEy —— — dé) ——=
/[Rd My ( é) (1 + |é|2)71 IIE‘IOI /R“’ Hs ( é) (1 + |5|2);7

_1; Z
=tim | T do)(Gay e p)()

Fubini’s Theorem yields that
@Gy )0 = [ drpi)EF )
But, the definition of I SZ implies

[ anFzs3) = [ aptv) [ 176G, - )
R R R
= [ ) [ T(@005:0)Gug(x - )
R R

< s E(Z(sx0)P) / dy () / I(dx)Gyy(x — )
(s,x) €0, T]x RY R? RY

= X * X) = —eXp_t‘é‘z
=C [, F@9(Gagp) ) = € [ utae)
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Owing to (H,) and using again bounded convergence, it follows that

1 . exp~"¢
2(dE) ————< C1 dl) ———>
/Rd“s( e 333/@4“( ey
u(dé)
:C DL N
/Rd (14"

Lemma 6. Assume that (H,) holds with n restricted to the interval (0,1). Then for any
te[0, T] there exists a positive constant C such that

[ [ wasiaizsaser<ce (A1)
0 R

Proof. Clearly, by inequality (28) in [5] and Lemma 3,

T = / ds / WZ(dE)|EN|F Suls) (O < CP. (A.12)
o Juasn

Using the same arguments as those in the proof of Lemma 4 to study the term J;, we

obtain that
sin” (2ms|&
n[af o sin’ (2l
{1e1>1} 4n2|¢)?

1-2n
] 2oy (S0C2SIED)
/sﬂmwxma PR

/ﬁfa@“mN b)

Due to Lemma 3, this last term is bounded by Ct*~?", which together with (A.12)
imply (A.11). O

N
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LLU{S QUER-SARDANYONS* and MARTA SANZ-SOLE**

Facultat de Matematiques, Universitat de Barcelona, Gran Via de les Corts Catalanes 585,
08007 Barcelona, Spain. E-mail: *lluisq@man.ub.es; **sanz@mat.ub.es

We prove the existence and regularity of the density of the real-valued solution to a three-dimensional
stochastic wave equation. The noise is white in time and has a spatially homogeneous correlation
whose spectral measure 4 satisfies fR’ w(@dE)(1 + |E[*)™" < oo, for some 7 € (0, 2) QOur approach uses
the mild formulation of the equation given by means of Dalang’s extended version of Walsh’s
stochastic integration. We apply the tools of Malliavin calculus on the appropriate Gaussian space
related to the noise. An extension of Dalang’s stochastic integral to ‘the Hilbert-valued setting is
needed. Let S3 be the fundamental solution to the three-dimensional wave equation. The assumption
on the noise yields upper and lower bounds for the integral fu ds Jro #(AB)|F S3(s)(&)|* and upper

~ bounds for [ ds [ps u(d&)|E||FS3(s)(E)| in terms of powers of ¢. These estimates, together with a

suitable mollifying procedure for S;, are crucial in the analysxs of the inverse of the Malliavin
variance.

v Keywords." Malliavin calculus; 'stochéstic partial diﬁ‘erential' equations; wave equation

1. Intrdductidn

In this paper we study the probablhty law of the real-valued solutlon to the stochastlc wave
equation . R

| (;2 ; As)u(t 0 = ot NFE D) + Bt D), w0, ) =240, =0, )
where (1, x) € (0, T] X R3, T > 0; A3 denotes the Laplacian‘ operator on R® and F is a
Gaussian noise white in time and correlated in space. Clearly, (1) is a particular case of a
class of stochastic partial differential equations (SPDEs) of the form

Lit(t, x) = a(u(t, x))F(t, x) + b(u(t, x)), u(0, x) = %(0, x)=0, 2)

(¢, x) €0, T X R4, T > 0, where L is a second-order partial differential operator and the
fundamental solution of Lu = 0 is a non-negative distribution with rapid decrease A.
Assume that the coefficients ¢ and b are Lipschitz continuous real-valued functions and
F is a mean-zero L[*(Q, F, P)-valued Gaussian process indexed by the space of test
functions D(RY*!) with covariance functional J(¢, ¥) = Jr, 45 Jga T(@x)(e(s) * P(8))(x),

1350-7265 © 2004 ISI/BS
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where I' is a non-negative, non-negative definite tempered measure and P(s, x) = Y(s, —Xx).
Let u = F~IT, where F is the Fourier transform operator. Then

o, ) = j dsj u(dE)fcp(s><§)f‘w' 06

In Dalang (1999) a sultable extensmn of Walsh’s stochastic integral with respect to martingale
measures is developed; with this tool a rigorous meaning is given to equation (2) in a mild form
and a theorem on existence and uniqueness of solution is proved. More precisely, there exists a
real-valued stochastic process u = {u(t, x), (¢, x) € [0, T] X R4 } which satisfies the equation

t

w2 = [ | A= sx = yotuts, yyMs, an+ ] as| bt =% = DA, ),
‘ JoJre : : 0 R4 .
r )

where M denotes the martmgale measure extensmn of the process F- (scc Dalang -and
Frangos 1998)

Fix (¢, x) € (0, T] X [F&3 Our purpose is to ﬁnd sufficient condltlons ensuring that the law
of u(t, x) is absolutely continuous with respect to the Lebesgue measure on R and that the
"density is a C* function. The existence -of the density has been studied 1n the companion

paper by Quer-Sardanyons and Sanz-Solé (2004).

 Malliavin calculus prov1des a suitable tool for the analysis of these problems. The

Gaussm.n family ‘to be considered here is described as follows. Let £ be the inner-product
'space consisting of functions ¢ € S(R?), the Schwartz space of rapidly decreasing C* test

functions, endowed with the inner-product (@, ¥)e := [ps #(dE)F PE)FY(E). Let H denote’
the completion of (&, (-, Y¢) and set Hr = L*([0, T]; H). Notice that H and ‘Hr may

contain distributions. The space Hr is a real Hilbert separable space. For h € Hr we set

W(h) = fo fRd h(s, x)M(ds dx), where the stochastic integral is interpreted in Dalang’s

sense. Then {W(k), h € Hr} is a Gauss1an process and we can apply the Malllavm

~ calculus based on it (see for instance, Nualart 1998). .

In Theorem 1 of Quetr-Sardanyons and Sanz-Solé (2004) we mtroduce an extensmn of
Dalang’s stochastic integral to integrators that are defined by stochastic integration of
- Hilbert-valued predictable processes with respect . to martingale measures. Owing to this
extension we have proved that the solution of (3) at any point (¢, x) is once differentiable in
the Malliavin sense and that the derivative belongs to any L? and satisfies an SPDE.

We prove in Section 3 below that u(z, x) € D*® and give the equation satisfied by
D¥u(t, x). The standard approach to this problem (see, for instance, Millet and Sanz-Solé
1999; Marquez-Carreras et al. 2001) cannot be used here. In fact, the difference of two
positive distributions is not necessarily positive; but positivity is one of the requirements in
the construction of Dalang’s integral and, especially for obtaining L? bounds, a useful tool -
for proving L? convergences. We circumvent this difficulty as follows. We consider a
sequence of regularized processes un(f,x), n=1, obtained by convolution of the
fundamental solution A with an approximation of the identity. The LP-limit of un(t, x)
as n tends to infinity is u(t, x), as is proved in Proposition 1 of Quer-Sardanyons and Sanz-

Solé (2003); in addition, u,(t, x) € D®. Then, since the iterated Malliavin derivative
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operator DV is closed, it suffices to prove that the sequence DV u,(t, x) converges in the
topology of LP(Q2; HEN), for any N = 1, p € [1, oc). This can be achieved by first proving
that the sequence is bounded in any L? and then proving the convergence of order 2, which
can be checked with techniques related to the isometry property of the stochastic integral.

The results of Section 4 concern the particular case of equation (1), the stochastic wave
equation in spatial dimension 3. We prove that the inverse of the Malliavin variance of
u(t, x) belongs to any LP(Q) for all fixed (z, x) € (0, T] X R3. Then, by the results of
Section 3, we conclude that the law of u(z, x) has a smooth density.

The existence of moments of any order of the inverse of the Malliavin variance is assured
by the integrability in a neighbourhood of zero of the function

& — &~U*P P{|| Du, Dl <},

for any p € [0 00). Hence, the main issue is to obtain the size in & of the - factor
P{|| Du(t, x)||HT < ¢}. The difficulties come from the fact that the fundamental solution of
the wave equation is a Schwartz distribution. The natural idea is to smooth that distribution,
as we did to study the differentiability. This time we introduce a regulanzatmn kernel which
depends on ¢ in a suitable way so that the error in this approximation is a function of € as
well. This technique is complemented with upper and lower bounds of integrals involving the
Fourier transform of the fundamental solution of the wave equation, which have also played a
crucial role in the arguments of Quer-Sardanyons and Sanz-Sole (2004); these are presented
in the Appendix.: ;

All positive real constants are denoted by C regardless of their. values In the following
section we give some basic notation for Malliavin calculus used throughout the paper. We
refer the reader to Nualart (1995) for a complete account of notions related to this topic.

2. Preliminaries |

Cons1der the stochastic equation (3) as descnbed in the Introductlon Assume that the_
vfollowmg set of hypotheses is satisfied:

Hypothesis D. Let A be the fundamental solution of Lu = 0. Then A(?) is a non-negative
distribution with rapid decrease such that

T o . :
j dtj WBIFADEP <o @
0o Jre o

and ‘ | |

T
iim| ] ued) s 1FA0) - AOF +0.

hl0 Jo 1<r<t+h

Moreover, A is a non-negative measure on Ry X R? of the form A(t, dy)dt such that
supp<r<7 A(f, RY) < Cr < 0.
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Then Theorem 5 in Dalang (1999) estabhshes the ex1stence of a umque progress1ve1y
‘measurable process {u(t, x), (¢, x) € [0, T]1 X R?} such- that (3) holds; - in addition,

SUP(1x)efo, rixre E(lu(2, x)|7) < oo, for any p €[l, oo), and -this has a spatial’ stanonary ‘

covariance function. This process will be called the solution of (3). -

We denote by D the Malliavin derivative operator defined in the framework of the
Gaussian space described in the Introduction. Fix any positive integer N; then DV denotes
the Nth iteration of D. For any random variable X, the Nth derivative, if it exists, defines a
random vector with values in ’H®N For any p € [1, co) we denote by DM P the. Sobolev—
Watanabe space of random vanables X such that : :

115, = BOXI?) + ZE(HD’X”H@,) < +oo.
2,

Let A be a separable real Hilbert space and K= {K(s 2), (s,2) € [0 T ] X Rd} be an
A-valued predictable process. Set K/(s, z) = (K(s, 2), e;)A, where {e iy J = 0} is a
complete orthonormal system of A. Assume that: o

1. sup(seqo,xreEUIK(s, )2 < 005 ‘
2. for a11]>0 s €[0, T, x, yeR

E(K’ (s x)K’ (S, y)) - E(K/(s, 0)K/(s, Y- x))

~ For any ] = (, set

K ‘. M{O(A) = J J Kf(s z)M(dS dz) tEe [0, T], A € B},(Rd). ,
: : 0

The process M f(4) = oM K/ (A)e ! deﬁnes an A-valued martmgale measure.
Set GK(S, z) = E(Kf(s 0)K/(s, z)). The measure :

RHCOEDY Gj.‘ CENCY

7=0

i nonlznegatlve and tempered Let ,uK be the non—negatlve tempered measure such that _,
FITX = uk.

The next result reproduces Theorem 1 in Quer-Sardanyons and Sanz-Solé (2004). It is an
extension to the Hilbert setting of Theorems 2 and 5 in Dalang (1999)

.Proposmonl Let t — S(f) be a determmzstzc ﬁmctzon with values in the space of non-
negative distributions with rapid decrease satisfying (4). Then the indefinite stochastic

integral of S with respect to the martingale measure M*~, K (S MK, t €0, T], exists as an
A-valued process and satisfies : :

CE(IS - MR = J dsj UE @B FS(s)EP-
0 R4

Moreover, for any p € 2, oo), te [0, T
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B(|(S- MO IR < C jdssupE(HK(s, x)uA)j MAFSHOF  ©)

it Cp = (s [ #(dE)IfS(S)(E)lz)”/Z -1
| We shall use the notation _ _ - _ v
Is15.c = j .d;j UK (@B SO
0

In thls paper we will apply this result to A := H®’ and to H®’ -valued stochasnc processes
mvolvmg Malhavm derivatives up to order j = 1. :

3. Mal]iavin differentiability of spatially vhomogeneou.s SPDEs |

Suppose that the coefficients of equation (3) are C' functions with bounded Lipschitz
continuous derivatives. We have proved in Quer-Sardanyons and Sanz-Solé (2004) that, for
any fixed t=0 and x € Rd u(t, x) belongs to the space. DV?, for all p € [1, 00). The
'purpose of this section is to extend this result to any dlﬂ‘erentlablhty order. That is to say, -
we wish to prove that u(#, x) € D™ = Nyny N pep, OO)D 7, Tt is clear that a strengthemng of '
the regularity of the coefﬁ01ents 1s needed : :

We shall use the notatmn .

Dl o0, (rN,qu))X (D)X 91 ® - ® QI )pgon,

for r; € [0, T], @;i €H, i=1, , N. Thus, we have that
xllDNX l-luw =J Cdry ... dry Z ID((n )i dnr; e,N))X 2o (6)
[, - TN v o "

where {e;} ;=0 is a complete orthonormal system of H. . .

Let NeN, fix a set AN—{a,—(r,,(p)ER+><H i=1,...,N} and set \/,r;=
max(ry, ..., ry), @ = (@1, .., Ax)s O = (A1, - .. , Ai1, Aitl, - .’L , AN). Denote by Pn the
set of partltlons of Ay consisting of m disjoint subsets py, ..., Pm, m=1,..., N, and by
| pi| the cardinal of p;. Let X be a random variable belonging to D¥2, N = 1 and ghbea
real CV-function with bounded derivatives up to order N. Leibniz’s rule for Malliavins
denvatlves yields : '

DY¥(g(x)) = chmgW’(X)HD'P"X o

) m=1 P, i=1
with positive coefficients ¢,,, m=1,..., N, ¢y = 1. Let

AY(g, X):= DY g(X) — g'(X)DY X.

Notice that AY(g, X) =0 if N =1 and it only depends on the Malliavin derivatives up to
the order N — 1 if N > 1. :
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We now state the main result of thisv section.

Theorem 1. Assume Hypothesis D and that the coeﬂiczents o and b are C°° functions with
bounded derivatives of any order greater than or equal to one. Then, for every
(t,x) € [0, T} X RY, the random variable u(t,x) belongs to the space D™, Moreover,
for any p=1 and N =1, there exists an LP(Q; ’H®N )-valued random process
{Z¥(t, x), (1, x) € [0, T] X R4} such that

DYu(t, x) = ZV(¢, x)

+ th A(t—s,x— z)[AN (0, u(s, 2)) + DY n(s, z)o ' (u(s, z))]M(ds, dz)
0JR? - .

+ Jtdsj A(s, dz)[AN(b, u(t—s, x —2)) -
o Jre

+DVu(t— 5, x— b (u(t —5, x=2)] | ®
' and |

sp  B(IDVuts, y)nw) < +oo..
(s, »)€(0, TIXR4

‘We prove thls theorem by applylng the next lemma, Wthh follows from the fact that DN isa .
. closed operator defined on LP(Q) with values in LP(Q HEN). :

“ vLemma 1. Let {F },,;1 be a sequence of random varzables belongmg to IDN L& Assume that:

(a) there exists a random variable F such that F, converges to F in. LP(Q) as n tends to _
o0, .

(b) the sequence {D F, },,;1 converges in LP(Q; H®N ). o
Then F belongs to DY-? and DNF LP(Q HEN) - hm,,_,ooD F,.

As in Quer-Sardanyons and Sanz-Sole (2004), we con81der the sequence of processes ,
{ua(t, x), (¢, x) € [0, T] X R} solvmg the equatwn '

un(t, x) = J;JR An(t — s, x— z)a(u,,(s z))M(ds dz)

; _
+ J dsJ b(un(t — 5, x — z))A(s, dz),
. . 0 '

where A,(f) = 1/),, * A(t) w1th Ya(x) = nfy(nx), n =1, P being a non-negatwe function in

C*(R?) with support contained in the unit ball of R? and such that Jre Y(¥)dx = 1.

Since A, is smooth, a standard proof (see, for instance, Millet and Sanz-Solé 1999;

' Marquez-Carreras et al. 2001) yields that wu,(¢, x) € [D°° for all n= 1. Moreover, the
 derivative DV u,(t, x) satisfies the equation
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N

Dy un(t, x) = Z< ,,<t 7is X — )DN 0 (un(ri, ¥)), @)
. ’ l—‘l ‘ L .,‘,',v‘; ' \

+ ,[;/;fiJRdA"(t -5 x - z)[’Agr('o,':u;(é;ﬁ‘z).)‘ el
+ Dgﬁn(s,’ 20" (tn(s, 2)] Mid 5 dé) | j,;k
» +J;/dsj A dz)[i,\ff(b, u)(t_- s, ,;;;)) S
+ DY un(t - s, x‘—z)b (Un (t—s x-—z))], T B .

Where"a =((7'1, (Pl), ey (rNsFCDN))s WIth Fls .. =0 and 4719 - E ¢N E H

Lemma 2. Assume the same hypotheszs as in Theorem 1 Then for al] p G [1 00) and every
" N=1, , . » : ,

sup sup  E(IDVunt, Dllfgn) <o, (0)

‘Praof We will use an mductmn argument w1th respect to N Wlth p = 2 ﬁxcd_ For N =1,
- the property (10) is proved in Quer-Sardanyons and Sanz-Solé (2003 Proposmon 2) Assume '
that N , N TR B T :

sup sup - (HD" ,,(t x)l]HM) <+oo, o
n=1 (t,x)e[O T]de N »

forany k=1, ..., N—-l Let a -—((rl, e,,), - (rN,'e,'-,,)), frl—_—“(r'l',‘.‘;.;r,v); dr=dr ...
“dFy. Then, by (6), we have. that ‘ S ' A g Lo

.....

where
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=
o
o

dr Z Z( a(t — i X = *) X DN 1c)‘(u,,(ri, *)), ej,) ) S
[O,T]N jls""jN' i=1 . ‘ 5 W . |
rl - ‘ . » 2 p/2
dr Z ,J n(t — 8, X — z) X AN(O u,,(s z))M(ds dz) ) ,
. I_O,T]N Jrseesd N 1Y ;l R4 . o
| 2)P/2 :
| 2\ P12

’ 7 J A"(t—_ Sy X —_ z)bg#"(s’. Z) X a’(u,,(s, Z))M(d&, d;) ) R |
1 Jd ) ‘ : h g i

[0,71¥ . j],...,jN‘ "  :

F
I

‘ot ) ‘ Oy
dr Z 1 sJ A, dz)xAN(b u,,(t-s, x = 2))
O S LAy SR EAV o

Z
I
tm

B
ol
trd

=2

I .
| tm

o

~

. ot o ) L ‘ 2 P/2
dr Z . dsJ_ A(s, d2)DY un(t — 5, x —2) X b'(un(t.— 5, x ~ 2)) ) .
[O’TIN j] ..... Jn v Vii R4 ) ) o : : . ]

Jorr ;55

. DT e S oz
=CZE( ernA,,(t—r,, *)D U(“n("ia*))“‘il) |

(An(t r,.,".x "' *) X D G(M,,(r,, *))s eji)’H

«[OT]”' 7

j r(dz)j dyAnt = 1y % y)
Jomw Jre .

X An(t — r,, x—y+ z) {Z DY 16 (un(riy Y))DY 0 (un(riy y = z))}) ,

Ji

where i = ji, ..., Jicls Jitls -+ JN- Then by the Cauchy-—Schwarz mequahty and
Holder’s inequality the preceding expression is bounded by
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ZE( J dr; J F(dz)f dyAn(t = 11y X — YAt — 11 x = y+2)
d R4 ‘ '

i=1
o
[0,

' N p/2
. ldnHDN 1C'(un(i’z, y))HH@(N n X HDN 1f’(un("u z))“H“‘”‘?“) -
7] v . _

e N
czjodr,j r(dz)J Ay Ant = 1o T = DAL= iy X =y +2)

=

| ‘ | \ P/2
X E( J - ‘dri“Dg_lO(un("b rgecv-n X || DY (un(rs, y — z))||m(,,_,))
[o, : . » Jlla

czj dr,-j‘ r(dz)j YAt = Fiy X — YAn(t = 7oy X — y+2)
R Re. T : v |

=

S - R 73

X supE(J df‘.-IIDQf_IU(un("i,'U))“%@(N-u> o

veR? {0, T]¥-1 : S
<c_sp B(ID" 0w Mg )
(s,z)e[orjxw _ i oS

with dr, dr1 dr,_.ldr,+1 .dry. By (7), the assumptlons on g and the mductlon ',

hypothesw it follows that N, is umformly ‘bounded with respect to n, t and x. :
In the remaining terms we can replace }V ri by 0, because. the Malliavin denvatlvesv

' involved vanish for ¢ <\/; ri. .
? Y\

By» Proposition 1 (see (5)),
CLdssupE(nA @, ,“"(S’ y))llHQN)deg(dg)_lfA(z HOF

M =_E< J ‘ deA;,(r — 5,2 =AY (0, unls, HMs &)
» yeR4

= CJ ds sup E(”AN(O, un(T, y))“f{@,,)_f(t_ s), .
0 (my)eEl0,s]¥Re : T |

with J(£) = [ u(dE)| FA(2)(E)]*. According to the induction hypothesis, this last term is
uniformly bounded with respect to n, ¢ and x.

Using snnllar arguments — this time for deterministic integration of Hllbert-valued
processes — Holders mequahty and the assumptlons on A, we obtain
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N; < CJ dsJ .»A(s, dz)EHAN(b,, Un(t = s, x = z))||,ﬁ'®,v
7)o Jee e

.

C su AN b, u(s,
(SJ’)E[OI;‘]de <” ( n y))”«H@N)

which again, by the induction hypothesis, is umformly bounded in n, t and x.
For Ny we proceed as for Nz, this yields

Ny < CJ ds sup (”DN n(T, J’))HH@N)JU—S)
0 EyeElsXRe
Finally, as for N, ' .
t o . o
Ns < CJ ds  sup DY u,(z, V)| .
| 0 @yElsxRe <“-. | | H?N)

Summarizing the estimates obtained so far, we obtain

sup  E(IDYun(s, W2
(s, »E[0, 1] XR4 (“ o ) ”H?N)
v 0 - (z,y)€l0, s]XRd |

An apphcatlon of a versmn of Gronwalls lemma (Dalang 1999 Lemma 15) concludes the- I"
‘_proof_ x B o R i =}

Br N=1,n=1, r=(r,..., m) a=(r, eh) (s ) and e [o 1%
R4, we deﬁne the H®N-valued random variable Z¥7(1, x) as follows |

(IZ‘N’n(t x)’ ej|'® cee ® ejN)HQN = Z(An(t ko) riv’: x - *),D{V- a(u,,(ri, '*))’ ejt)‘l'b
Applymg Lemma 2 it can eas1ly be seen that ZV-"(t, x). e LP(Q H®N ) and

sup  sup (nz” e, x)HH@N) < oo, | an
. n?l(tx)e[O TIXR? . .
for every p € [1, 00). Notice that zZN ”(t x) comcldes w1th the ﬁrst term of the nght-hand
side of (9) for a = ((r, €;,), - , (rws €jn)): ,
On the other hand, for N =1, we introduce the assumptlon that the sequence
{DJun(t, x), n =1} converges in LP(Q; HY), j=1,..., N — 1, with the convention that
LP(Q; HEY) = LP(Q) We denote this assumption by (H N-1)-
Proposition 1 in Quer-Sardanyons and Sanz-Solé (2004) yields the vahdlty of (Hy).
Moreover, for N >1, (Hy-i) implies that u(t,x)€ D)7 - and the sequences
{DJuy(t, x), n = 1} converge in LP(Q; H®’) to D/u(t, x) In addition, by Lemma 2,



A stochastzc wave equatzon in dzmenszon 3 - STl :175

Sup E(HD’u(S, .V)”Héj)-< 0, - (12) -
‘.(s,y)e[O,T]de i . S S

Lemma 3. Fix N 1. Assume the same hypotheszs as in Theorem 1 and that (H N..l) holds'
Then the sequence {z¥: "(t x)},,;l converges in LP(Q HEN) toa random varigble- VA (t x).

Proof For N =1 the result is proved in Quer—Sardanyons and Sanz~Sole (2004 Proposmon ,
3). Assume N > 1. In view of (11), it sufﬁces to show that {Z" "(t x)},,m is a Cauchy -
sequence in L?(Q; HEY )

For n, m=1, set

Z(A,,(t — iy x— *)va;",l‘q(“i.t\,‘,(‘f,-‘,j ), e,;!)ﬁ; o :

Y‘Z"’v'v":.-—-E
i jw_Jz

floses vV i=1 »
=D (An(t =1, x = DY O(un(re, Myeidn -
i Theh ey
Zmm S C(Z + 27T+ 2D,

. where

Zi=)E o md’ Z I n(t—n,x**)x[D’y,“‘a(un(rf; #)) = DY o u(ri, D), einf’,
=1 T L

r

"= ZE dr Z l DN_ 0'(14(7';, *)) X [A-n(t - ru X — *) Am(t = ru X *)] ejt)Hl
j J[0,T¥ JisesJ N ; ]

zZr=S"E|  dr

i ,,,(t r,,x-—*))([DN la(u(r,, *))—D&;'acum(r,, *))], e )ml
i==1 '[O’T] Jrsesd N

Parseval’s identity and the Cauchy—Schwarz inequality ensure that
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p

N ‘ '
Z;’:Z‘E . dr,ZuA,,(tg x—*)[DN‘ a(un( *)) DN- a(u( *))]nm

=1 Y10, TJ” -1

2

N - . :
<M E[ df-j
2 b+

Jo LJI“(dz)J. dyAn(t— S‘, x—)

XA (t—5,%x— y+Z)IIDN I(G(un(s y) = O'(u(s, y)))lluew—u

X || DY 'I(G(un(s y- 2)) O(u(s y= z)))”'H@(”*‘)

=< sup (| DV- l(o(un(s y)) — o (u(s, J’)))lﬂw D) jds j : ; y(d&){f,\(i‘?-s')@)iz
St AR
<c sup (“ D” f‘(a(un(s, ») — o (u(s, y)))"%sw-n)-
(S,}')E[O Tlde ) . . . e T

Eqﬁatidn o, Lemma 3 and éssurription'(H N_l) yield that the last term 'tem‘i._s to zero as n
goes to infinity. Analogously, Z7' tends to zero as m tends to 1nﬁmty ’
Usmg smnla.r arguments, we obtam

_ Z§M=ZEJ[O ‘T]N 1dh Z HDN 1a(u( *))[A,,(t - X— *) A,,,(t o _ aé)]"%; .
N l o | ’ T: : e N 1
Z J[OII:‘]N ldrl;Jo dS}L{I‘(dz»)JR;‘ D G(”(S }"))

X DY a(u(s y— z))[A,,(i‘ — s, bx - - Am(f'; S, x '-_' y)] o

X[A,,(t—s,x—y+z) A,,,(t—s x—y+z)]
i=1

=§N;Ej | dr§_j J dsj "(“)(dsnf(z\ (r—s) A({_.s))(g)xz
[0,77¥~1 i ~ 6" Rdﬂs n m

ThlS term tends to zero as m and n go to mﬁmty Indeed, arguing as in the proof of Theorem
2 from Dalang (1999), we have that :

HA(t" )“o DY¥-lo(w) = hmmf“Ak(t )l‘g.Dé’i;‘a(u)‘
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Then, by Fatou’s lemma,

| Rl PN A0 RV
EJ{O’ﬂN_ldr,ZJ‘ as| p O epiFAc- el

7 Y0

—_ v . 2
B Jto,nw—ldri ; IAG = ')HO’D«Z'I"(“)

< liminf d A(t~ 2
imin J[OTJN r.ZH k( )||o,Dgi o)

k—o0

This last term is bounded by a finite constant not dependmg on k, as can easily be'seen using
(12). Then we conclude by bounded convergence. _ ‘ } )

Proof of Theorem 1. Fix (2, x) € (0, T] X R4, pe[2 00). We apply Lemma 1 to
Fp:=uu(t, x) and F := u(t, x). We know that assumption (a) of the lemma is satisfied.

, Let us check that the sequence {DVu,(t, X)}n>1 converges in the space LP(Q; HEY), for
every N =1 and p = 2, which implies that the random vanable DN u(t, x) exists, belongs

to LP(Q; HEY) and, by Lemma 2, satisfies
“sup E(IlD”u(s y)nH@N)< +oo.

_ (s ¥)E[0,TIX R _ _
Owing to Lemma 2, 1t sufﬁces to check the assertion for p - 2. We will use an mductlon
3 argument on N. For N =1 the proof is glven in Theorem 2 of Quer-Sardanyons and Sanz-__

Solé (2004). :
Assume the induction hypothes1s (Hy-1). Let B »n be the class of progresswely '
measurable HEV-valued processes {W(z, x), (1, x) € [0, T] X R"} with spatlally homoge-
neous covariance function and satisfying , .

sup  B(NCs, 3l < +oo.
(s, El0, TIXRY ,

We con81der the stochast1c integral equatlon in B PN

u(t, x) = z"(, x) + ”R A(t — s, x — 2)[A(0, u(s, 2)) + U(s, 2)a’(u(s, z))]M('d.‘s",' dz)
: 0JR4 , : _ . A o s

+ J‘tdSJ‘ - A(s, d2)[A(D, u(t —s, x —f‘z)) + U(t—s, x = z2)b'(u(t ~ s, x — 2))],
0 JRe : e : , ,

with Z¥ (i, x) given in Lemma 3. There exists a unique solution to this ‘equat_ion.' Moreover,
following arguments similar to those in the proof of Theorem 2 in Quer-Sardanyons and
- Sanz-Solé (2004), owing to Lemma 3 and (Hy-;) it is easy to-prove that

U(t, x) = LX(Q; HEY) — lim DVu,(t, %),

the limit being uniform in (¢, x). Then by uniqueness of the solution U = DNu, and the
process DN u(¢, x) satisfies equation (8). : _ O
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Study of the inverse of the Malliavin matrix

In thls section we consider the stochastic wave equatron (1). Let S3 be the fundamental
- solution of Lu =0 where L =0?/0¢* — A3. In this case condltlon (4) is equlvalent to

J’ u(dé)
e 1 + 1+ &P

and this implies Hypothesrs D (for detalls see Dalang 1999). .
Let {u(t, x), (¢, x) € [0, T] X R3} be the real-valued process solving (1). The purpose of
this section is to study the LP-integrability of the inverse of the Malliavin variance of

u(t x) for any fixed (¢, x) € (0, T] X R®. More precisely, we prove the followmg result.

13)

Theorem 2. Assume that the coefficients ¢ and b are C! ﬁxnctzons w:th bounded Lipschitz
continuous derivatives and, in addition, that: :

(a) there exists o9 >0 such that inf{|o(2)|, z € R} = 09,
(b) there exists 1 € (0, 1y such that

félﬂgjwr(w ((1 T |§|2>v) (x=y) <oo.

‘Th_en,forbanyp>0,‘ , » ; R
E(uDu(:,, x)ll;f) <oo.

" ThlS result together with Theorem 1 apphed to equatlon ), y1e1ds the mam result of the
paper, as follows.

Theorem 3. Assume that the coefficients o and b are C* ﬁmctzons with bounded derzvatzves
of any order greater than or equal to one, and that hypotheses (a) and (b) of Theorem 2 are -
satisfied. Then the random varzable u(t, x) (t, x) € (0, T] X IR3 has a dens:ty whzch isaC®
function. '

- We notice that assumption (b) in Theorem 2 implies (13) (Leveque 2001, Proposmon 44.1).
‘Recall that the Malhavm derivative Du(t, x) of the solution to (1) satlsﬁes the equation

Du(t, x) = Z(t, x) + JtJ S3(t — s, x — z)o’(u(s, 2))Du(s, z)YM(ds, dz)
_ v . 0JR3- v . o

+ Jtdsj S3(t — s, dz)b' (u(s, x — 2))Du(s, x — z), (14)
0 R ' .

where {Z(t, x), (¢, x) € [0, T] X R®} is the Hp-valued random process given by
Z(t, x) = LP(Q; Hr) — lim Z*(1, %),
) n—o0
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p= 1 where Z*(t, x) := S3 u(t — 5 » x = )0 (u(-, *)) with S3.n = S3 * Py sce either Theotem
1 or Quer-Sardanyons and Sanz-Sole (2004 Theorem 2). : '

~-Lemma 4. Assume that o is szschztz continuous and that candztzon (13) is satzsﬁed Then -
forany(tx)G(O T]1 X R3, v € (0, t]andq>1 . , .

E(1Z-ts x)||?z,)<C(J: J (d§)|fs3<s)(§)lz)

Proof. Holder’s inequality ‘with respect to the non—negatlve » finite measure
S3,1(8, X — Y)S3,4(s, x — y + 2)dsT'(dz)dy yields '

E(uzf_ XG i) = Jim B(I 27, R

= Hm BS540 % — 9ot — - D))

= 1imE<

n=—+0Q

Jv J I‘(dZ)J dysS;, n(:5' x— y)‘o"(u("t‘_v 5, y)) |

X S3(s, X — y+2)o(u(t =5, y — 2)

. v - | i » q—l
n—)?? » 0 - ’
X j ds j " r(dz.)‘j AySsa(s, %= DSsn(s = y+D)
ol e S I | "

X E(jo(u(t ~ s;_y‘))a(u(t —5y- -2

(.s',z)e[o T]XR3 :

) 7 MU . o : "_ q )
 Jim ( [[as]_ @S, Ss,ﬁ(S))(Z)> o
L rmeeNJe IR L
< o] &s|_uasiFsex@py.
‘where in thg last inequality we have used the L7 uniform boundedness of u(t, x)." g

Owing to Lemma 4 and Proposition 1, we obtain the following technical result.

Lemma 5. Under the same hypothesis as in Lemma 4, we have that
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with  U(t, 7, x) = || Draui(t, x)IlH —1Z, (1, x)IIH

Let us first consider the term P~ (e, 6) By Chebyéhevs mequahty, for every q=
~ have that
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. sup supE(”Dt_ *u(s y)“ )< C(j J #(dg)‘fS3(s)(§)|2> :
t—vssstyeﬂs » /.

for all te(0,T) and ¢ = 1.

We remark that both of the preceding lemmas also hold m the more general settmg of
' Sectlon 3. : ,

Proof of Theorem 2. Fix p > 0; it suffices to check_ that, for some beo >0
r e“(lfP)P{llDu(t, x)||'72ﬁ < e}de <o00.

Let €, 6 > O be such that, for. any € G (0 €l t— e" > 0. meg to (14), ._we cons1der the
'decomposmon ' :

 PUIDu DI, < < P O+ P 80+ PR,

where

e ra] =

P~ x = ot = S, <66,

| Pl(e, a) {Ur drU(t r,x)
PG s, v) =

P2,2(5,.6, v) = P{|| Z:-, ,,(t x) se-,( x——*)a(u(t—-—} *))HH@ ?6}

: and‘ Sev = Peor * S, 'Pe—v(x) '
ey ¥x); v >0 and 9 a non-negative function in C®(R?) with: support contained in
the unit ball of R* and such that [p, Y(x)dx = 1.

,l-we"‘

= t q
Pl(e, ) = e“qE(” drU(t, r, x)

) Ce’qZTk, %)

k=1
with
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. : _q)
’ .

H

[ dr< Z,(t, ), J s J S3(t — 5, d2)Dp (s, 'x'—z)‘x b*(ucf;ff‘x5“"”>'f.:-
Jit—¢ t—ed v [ : R

: ‘VTI —E(l N 6dr< >,‘*(t 3:); Jt | J 3Sg(t-— s, X — z)Dr,*u(s z) X a’(u(s, z))M(ds dz)>
=E(

E<l e < a‘ S3(t‘ -5 x— z)»D},*u(S, 2)a’ (u(s, 2))M (dS dZ)’

2

)

J- t I Sa(¢ -,—» S, %X — 2) D, u(s, z) X G_’(u’(s,“ z))M(ds,dz)
R | | e 7l

ot

dr|

t—el t—ed

XJ dsj S3(t—s,”dz)D,,*,u(s, x— z)b’(u(s,'x—z))>7.(', ), e X '
| Ji-e IR - o N o
N =E(“ Y| J J 505 dz)Dr*u(s, F= X Bl x =) ) ERT
. t—¢ R3 - . L B i

r-ed H
Schwarzs mequahty y1e1ds

_ T1 < T’“T}f,, |

: ) | 1;.':*

- ru=g(|[ szl

Tiz = E(

t—ed

| ,drnj j Syt — 5, % — 2Dy (s, 2) X 0" (u(s, 2)M(ds, d2)|,

et T a
-‘ByLemma4and(27), v _ : | _ : . :
T =‘"E(||Z,_».»,*(t, x»)“'i?a)»s" ceo-m )

20\
fH‘J.‘

We haj'/evthat | |
j' ) j Sy(t— 5% — z_)D,;.,*u(s,.»‘z)di"(u(s,!z))M(&s‘,xd;)z
. ds,

- T12=E(

- Here we apply Proposition 1 to A 'Hea, K(s z) D,_.*u(s z)o’(u(s, z)) and S S3
"Thus, Lemma 5 and (27) ensure that o ,

) f réd . v 2q ‘ :
T = C(JO dSJRSﬂ(d§)|fS3(s)(§)|2) < 2906-2n)

Hence, _ ‘ B . N

t—ed
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T <c53qa<3—zm/2 S an

Ty =E
. t-¢l VHé’i ‘."

Holder’s mequahty with respect to the finite measure Sg(l‘ —5, dz)ds on’ [t - e" t] X R3
- yields e
: 7 ot o ‘ 2q—-1 .
Iyp s (J : dSJ S3(t — s, dz)> .
t—ed R3 ,

fXE(f'dﬂ'be—sd@wbeewa_—zw(wsx P )
N\J et R S :

’ '.We now consider the term
J d J S3(t — s, dz)D,_ ,,u(s x—z)b (u(s, —-z))
R?

‘Notice that: ; _
| ‘t' » e .
g j dSJ -S3(t-’s dz) :J j S3(s dz) CGM
-8 JR? : 0

o 'because Si(f)=o0 ,/4nt where 0 denotes the umform rneasu.re on the three—dlmensmnal
sphere of* radlus t. Then,’ smce b’ is bounded, Lemma 5 and @n nnply ' :

C4q6+q6(3 Zr/) Ceqé(7—2r7) i i '{1’8)
Schwarzs 1nequa11ty and the estimates (16), (17), (18) yleld ’ |
o DS <7\ T1/2 < Cests-m)

L = T12 < C6246(3—2n)

Ts = Tzzs,CEqw'Z")- o o (19)

: Therefore (15) (17) and (19) imply

PI(E 6) < CEq( 1+35(3—27])/2)
f Consequently, I5° Pi(e, 6)6‘(1+P)de < oo if

kG -2m)

20
5 rra 20)

We now study the term P2!(e, s, v). Our purpose is to choose some positive 0 and v
such that, for ¢ sufficiently small, {||Se+(-, x —*)o(u(t — *))”H P 6¢} is the empty set

and therefore P%!(g, 6, v) = 0. Assumption (a) in Theorem 2 yields
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IS+, =)ot = r, DI > 03| w@BIFS IO

=g}

G J H(dE)| FSs(NE)* - I B F (Ser ~ S3)(r)(§)|2).
R3 R? :

We havé that
FSer = SYNEP = [Fper(®) ~ 1R FS (O
| < 4n|FSy(@PIEle.
Therefore, the lower bounds (26) and (28) yield |

|Se=+(:, x — *)o (u(t — -, *))”it‘a

: ’d . ¢
a%‘(% J, 4] pepiFs @ — tme [ o

v

0

JRﬂ(dE)IEIIsz(r)(E)I?)

= o2 (%CH 39 _ Cz 61?-4-6(2—21;))’ '

for some positive constants C;, C,. Let v, 6 > 0 be such'that

14;2n‘<%;' @)
then o : .
- 1C 1€ —,Cze”+a(2f2;7) = 10,30 for ail < 6 = ( ~C_'1_ ) 1/ (Vf5(1+2ﬂ))
2 : ! ’ S 4C, /)
Thus,. for jany E< 6, | .
| 16>, 2 — 0o (e —., *).)”'721& ) 3
Mo:eover, the condition o -
| | 30<1 - @
implies ' ‘ :
6c < a%%le”, for € < € = (czlzg) 1/(1—36).

Hence, if v, § > 0 satisfy (21) and (22) then P>!(¢, 8, v) = 0, for any € < ¢ A e3.
Consider now the term P>?(¢, 4, ¥). By Chebyshev’s inequality and (29), we have that
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ﬂ%@avr<e%mz_xtn Sw<x—ﬂmmw;*mm&»

S

.=ﬂ]jmwwwe&mmﬁ
v 0

d .

]mmmmww

L
o< 4E€_1+VJ

< C6—1+v+6(2 277)

for some po’sitive constant C, where T denotes the process {o(u(t - r, X)),
(r, x) € [0, 1] X R3}. o ST
Thus, [;° e (+P P22, 6, v)de < oo if and only if -

—1—p+v+6(2 2)>0. : 1 (23)

We ﬁmsh the proof by analysmg the compatlblhty of the condltlons (20)- (23) We recall,
that 7KS (O, Hand pe [O o0) are fixed. Choose v > 0 such that

Q4

1+ 277
3
'Then (20) (23) are equlvalent to (23) and o )
| ' 34— 2n)
3 < ..__..__...2 25
. 5 “Trra ( )

Let qo 1 be. such that 3< 2q0(3 277)/ (p+ qo) or equlvalently 2p/(1 217) < qo Then'
L et O > O satisfy (25) with ¢ = go. For this &g, choose vg >0 sufﬁc1ent1y large such that -
‘ (23) and (24) hold. The proof of the theorem 1s complete KR s o

| Appendlx

.In th1s appendlx we present some of the techmcal results that have been. used in the proofs
of Section 4. These provide bounds for integrals mvolvmg the Fourier transform of the

- fundamental solution of the wave equation in any spatial dimension d, denoted here by S.

' The proofs of these results are g1ven in Quer-Sardanyons and Sa.nz-Sole (2004 Appendlx)
h We recall that, for every d=1,

fM%)%%@.

For any 17 € (0 1], we 1ntroduce the assumpnon

.yu@
re (1 + Y7
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. which we denote by (Hy). We observe that (H,,) is weaker than assumptlon (b) of Theorem 2
(Lévéque 2001, Proposition 4.4.1). : :

Assume that (H,) holds for # = 1. Then there emst two p051t1ve constants C,, i= 1 2, -

such that, for any ¢ € (0, 1), ‘ _ _
af =] af du(delfsd@)(s)lz <Gt @8

Suppose that (H,) holds for some 7 € (0, 1). Then, there exists a pos1t1ve constant Cs,
such that for any ¢ € [0, T, ' : .

[as]_mapiFsasxer < ce. ', N @n

- Assume that (H,) holds for some 7 € (0, 2) Then there exists a positive constant Cs

such that for any ¢ € [0, T}, ,
Jo J #(dg)lsnfsdu)@)lz c4r2 m, . (28)

Let {Z(2, x), (t; x) € [0, T] X R?} be a predlctable I2-valued process with stationary
covariance function and such that sup, ,epo, rxreE(| Z(2, x)|?) < co. Assume that hypothesis
(b) of Theorem 2 holds. Then, there exists a positive constant Cs such that

o] prepmiFsor < o)
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C.1 Introduction

Nowadays, stochastic partial differential equations are accepted as being a very suitable
framework to understand complex phenomena. An aspect of the development of the
theory consists in seeking methods of finding solutions numerically. Some of them are
inspired on those used in the deterministic context. Let us mention for instance, finite
differences ([GN97], [GN95], [Gyd98b], [Gyd99], [ Yoo00]), finite elements ([GP88]),
splitting up methods ([BGR92], [BGR90], [IR00], [GKO03]), Garlekin approximations
([GK96]) and time discretisation ([HauO03], [PriO1]). Others are more genuine stochas-
tic, based on the Wiener chaos decomposition ([Lot96], [LMR97]) or on truncations of
the Fourier expansion of the noise ([Sha03], [Sha99]). We refer the reader to [Gy$98a]
for a survey of some of these methods, together with a more extensive list of references.

Lattice approximation schemes for parabolic spde’s in one spatial dimension, de-
veloped in [Gyd98b], [Gy699], have been the starting point of several further investi-
gations. In [MMO3], lattice schemes for parabolic spde’s in any spatial dimension are
considered and the influence of the particular covariance density of the noise given by
Riesz kernels is studied. A class of parabolic evolution equations on Banach spaces
with monotone operators are analized in [GMO04]. In [GM], a finite difference approx-
imation scheme for an elliptic spde in dimension d = 1,2, 3 is studied. The results
show how much the behaviour of this kind of approximations depends on the differen-
tial operator driving the spde and are one of the very few attempts of looking beyond
the parabolic case. Let us also mention [DZ02] for some results on numerical approx-
imations for elliptic equations.

In this paper we consider strong approximations for a stochastic wave equation in
spatial dimension one by a sequence obtained substituting the derivatives in space by
finite differences. This is a first step towards the analysis of lattice approximations
for hyperbolic spde’s. In fact, to our best knowledge there are very few results on
numerical approximation for the stochastic wave equation ((MPWO03]).

We consider the non-linear stochastic wave equation

0*u 0*u W
w(tv‘w) = @(t,l’) + f(t,.I',U(t, ‘%')) + U(t,ﬂ,U(t, x))m(tvxh

t >0,z € (0,1), with initial conditions

Ou

T (0,2) = vg, x € (0,1),

u(0, ) = uy,
and Dirichlet boundary conditions

u(t,0) =wu(t,1) =0, t > 0.
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We assume that uy and v, are functions defined on [0, 1], uo vanishes at x = 0 and
x = 1, and that W is the Brownian sheet on R x [0, 1]; thatis, {W (¢, z), (t,z) € Ry X
[0,1]} is a Gaussian stochastic process defined on some probability space (2, F, P)
with mean zero and covariance function

EW(t,x)W(s,y)) = (sAt)(x Ay).

Following a classical approach to spde’s, we attach a rigorous meaning to the formal
problem described above by means of the evolution formulation, as follows:

ult, x) /Gtxy)vo( )dy + — </ G(t,z,y)uoly )dy>
/ / G(t — s,2,9)0(s,y, u(s,y)) W (ds, dy)
+/O /0 G(t — s,2,9)f (5,9, uls, y))dsdy, (C.1)

t >0,z € (0,1), where G is the Green function of the wave equation with homoge-
neous Dirichlet boundary conditions.

For any n > 1, we fix the spatial grid x;, = %, k=1,---,n—1, and consider the
system of stochastic differential equations obtained by substituting the Laplacian by
its discretisation and freezing the evolution equation (C.1) at the points of the grid (see
(C.7)). This provides an implicit finite dimensional scheme. By linear interpolation,
we obtain a sequence of evolution equations which is proved to converge in any L”(€2),
uniformly in ¢, z, to the solution of (C.1) with a given rate of convergence (see Theorem
C.3.1).

In comparison with parabolic examples, the rate of convergence differs substan-
tially from the Holder continuity order of the sample paths of the solution. Indeed,
assuming for simplicity that the initial conditions vanishes, sample paths are jointly
Holder continuous in (¢, z) of order o < %, while the rate of convergence is of or-
der p < % We have checked with a numerical analysis that one cannot expect better
results.

The paper is organized as follows. In the second section, we study the Holder
continuity of the sample paths of equation (C.1). Section three is devoted to prove
the main result on the approximation scheme. Finally, in an appendix we analyze

numerically the optimality of the result proved in section three.

C.2 Some properties of the solution

In this section we prove some properties of the solution of Equation (C.1). In particular,
we analyse sufficient conditions on the initial data ensuring joint Holder continuity, in
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time and in space, of the sample paths of the solution.
We fix a finite time horizon 7" and assume that the coefficients f, o are real-valued
functions defined on [0, 7] x [0, 1] x R, satisfying the following conditions:

@)

t:}é%‘] (|f(t,:zc,z) - f(t,y,v)| + ‘O(twrvz) _a(ta%v)’) < C(“T _y’ + |Z _UD’

(LG)
sup (S (t,z,2)[ +]o(t, 2, 2)]) < C(1+2)),
(t,)€[0,7]x[0,1]
for every z,y € [0,1] and z,v € R.
Along the paper we shall use the expansion of the Green function

Glt.y) =3 g ) ), €2

j=1
where ;(z) = v/2sin(jrz), j > 1, is a complete orthonormal system of L2([0, 1])
(see for instance [Duf03], pag. 94).

Assume that ug, v belong to L?([0, 1]). By the classical approach to the determin-
istic wave equation on [0, 1] with Dirichlet boundary conditions, we know that

% ( / Gt 2, y>“o<y>dy) = S o, ) coslimt) o),

=1

where (-, -) stands for the usual scalar product in L?([0, 1]) (see [Joh82], pag. 44).

Let F;, t € [0,T], be the o-field generated by the random variables W (s, x), s €
[0,t], z € [0,1]. Assume that the process u = {u(t,x), (t,z) € [0,T] x [0,1]} in
(C.1) is F; -adapted and satisfies sup; , cjo g E (Ju(t, z)[*) < oo, then all terms in
the right hand-side of Equation (C.1) are well defined, when choosing as stochastic
integral the extension of [t0’s integral with respect to martingale measures developed
by Walsh in [Wal86].

By the standard technique based on Picard’s iterations scheme, it is not difficult
to prove the existence and uniqueness of a measurable, F;-adapted stochastic process
{u(t,z), (t,z) € [0,T] x [0, 1]} such that

sup  E(Ju(t,z)]?) < oo

(t,z)€[0,T]xR

and satisfying (C.1). Existence only requires the condition (LG), while uniqueness
needs (L). We refer the reader to [CN88] (see also [MSS99]) for a similar result on
different types of equations that can be easily adapted to Equation (C.1).
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For a function ¢ : [0, 1] — R and a € R, we define

19]la2 = <Z(1 +j2)a|<g,%>\2>

j=1

and denote by H**([0, 1]) the set of functions ¢ : [0,1] — R such that ||g|ls2 <
oo. Notice that H*?([0, 1]) is a subspace of the fractional Sobolev space of fractional
differential order o and integrability order p = 2 (see [Tri92]).

The next result gives additional information on the existence and uniqueness of
solution of Equation (C.1).

Proposition C.2.1. Assume that vy € H%*([0,1]) for some 3 > —3 and uy €
H*2([0, 1)) for some o > % suppose also that the coefficients o and f satisfy condition
(LG). Then, for everyp > 1,

sup E(lu(t,z)|") < +oo.
(t,2)€[0,T]x[0,1]

Proof. Consider the decomposition

4

E(|u(t> l.)’p) < CZ Jk(t’ :L‘),

with
a0 =| [ Gt rputi]
Tft,a) - im p—
) =<6 (| [ [ 6= s.aoto..uto.nwias.an) ).
a6 (| [ [ 6= s.onitsvatsnisa ).
Since

/0 G(t,z,y)vo(y)dy = Sin](.‘j:rt) (vo, ;)5 (), (C3)

j=1
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Cauchy-Schwarz inequality and the assumptions on v, yield

sup  Ji(t, @) < <Zj2ﬁ|<voa%>|2>
j=1

(t,2)€[0,77x[0,1]

00 . 9,
sin”(jmt) -
X sup <§ e |oj(2) %] 25)

(t@)el0,7)x[0,1] \ 5=

D
2
D
2

P

00 2
< Cllvol <Zj‘2“+">> <cC.

j=1
Using similar arguments, we obtain that

D
2

sup Jo(t, x) < Cllugll?, o (ij) <C.

(t,x)€[0,T]%[0,1] =1

Owing to the expansion (C.2) and the fact that (¢;,j > 1) is an orthonormal system
of L?([0, 1]), it follows that

! 9 . sin?(jnt) i =1
/0 \G(t,x,y)ld?J:ZﬁT j 2—23
j=1 =1

which therefore implies that

sup / |G(t, 7, y)|]*dy < +oo. (C4)

(t,)€[0,T]x[0,1]

Hence, the measure on [0, 7] x [0, 1] defined by i .(ds, dy) = |G(t — s, z,y)|*dsdy

is finite, uniformly with respect to (¢, x) € [0, 7] x [0, 1].

Applying Burkholder’s inequality and then Holder’s inequality with respect to yi; ,.(ds, dy)
sup J3(t,z) < C sup F (

yield
z€[0,1] z€[0,1] >

<0 s ([ 160 s Elloto. s, )iy

x€[0,1]

gc( / s Eus 7)) )

/ Gt — s,2,9) Plo(s, g u(s, ) Pdsdy
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where we have used the bound (C.4) and condition (LG) on o.
For the term J4(¢, ), we apply Holder’s inequality with respect to ju; . (ds, dy) and
the property (LG) on f. We obtain

sup Jy(t,z) < C<1 +/0t sup E(]u(S,x)|P)ds>.

z€[0,1] z€[0,1]

Bringing together the above estimates, we obtain

sup E(|u(t,z)P) < C’(l—f—/ot sup E(|u(s,m)|”)ds>,

z€[0,1] z€[0,1]

with a constant C' independent of . We conclude applying Gronwall’s lemma. L]

We next study the Holder property of the trajectories of the solution of equation
(C.1).

Proposition C.2.2. We assume that vy € H%*([0,1]), for some 3 > —3, uy €

H*2([0,1]), for some @ > 3, and that the coefficients o and [ satisfy conditions (LG)
and (L). Then, for all p > 1 there exists a positive constant C, depending on o, (3, such
that

E(Ju(s,z) — u(t,y)[*?) < C(|t — s[PI2) 4 |z — y[p1+29)
+ |t o S|'p(2a71) + |$ . y‘p(Qafl)
+ |t = sl + |z —y["), (C.5)

forevery s,t € [0,T] and z,y € [0,1]. Consequently, the process u has a.s. Holder-
continuous sample paths of order 6, for all § € (0, 6y), where & = (3+0)A(a—3)A3.

Proof. Assume that s <t and y < z. We set

H(t,x) / / —s,x,2)0(s, z,u(s, 2))W(ds,dz),
Fit,7) / / 5w 2) (s, 2 uls, ))dsdz.

Thus we have the decomposition

E(|U(S,.CC) - u(t7y)|2p) < CZJk(S,t,JL',y),
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where
1 2p
Jl(S,t,IL’,y> - / (G(S,:E,Z) —G(t,y,z))vo(z)dz )
0
[ee) 2p
ot x,y) = | (uo,05) (cos(jms)p; (@) — cos(jmt)ps(y))|
j=1
Ja(s,t,2,y) = E(|H(s,x) — H(t,y)""),
J4<S,t,£li,y) - E(‘F(S,I) - F<t7y)’2p)
The identity (C.3) and Cauchy-Schwarz inequality yield
© 4. . y 2p
sin(jms) sin(jmt)
Ji(s,t,z,y) = ; <j—7r%'(l’) - T%‘(ZJ) (v ;)
oo . . . . p
sin(jms) sin(jrt) 2 Y
< [lvollf, (; (j—ﬂ%‘(%) - T@j(y) J .

Hence Ji(s,t,z,y) < C(Ai(s,t,z,y) + As(s,t,x,y)), where

Ay(s. b2, y) = (Z (sin(jﬂs) B sin(jﬂt)) |<pj(w)]2j25> |

=B j
(SNt o [GTO a)
As(s,t,z,y) = Z(%(fﬁ) W)= | I .

The mean value theorem yields

o) p
Ai(s,t,z,y) < C <Zj_2(1+m (LA - 5)2)> .

j=1

If 3 > %, we clearly have A;(s,t,z,y) < C(t — s)?, for some positive constant C
depending on .

Assume now that § € (—1, 1]. Obviously,

(ij2(1+ﬁ) (1 /\jz(t o 3)2)>

J=1

N 00 p
<o (<t—s>22j-w+ > j‘g(”")) ,

j=1 j=N+1
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where N = [-] and [] stands for the integer value
Since
N
Zj—Qﬁ < CN—Q,@-FI’ Z j—2(1+,5) < C(N + 1)—1—2ﬂ7
j=1

j=N+1

and 1 + 20 < 2,if 8 € (-1, 3], we obtain

Ai(s, t,z,y) < C(t — )P0,
Analogously, Ay(s,t,x,y) < C(x — y)P1*+2%), Thus

Ji(s,t,2,y) < O((t — )P0 4 (x — y)PU+20))

Let us now deal with the term J,. By Cauchy-Schwarz inequality,

Ja(s,t,2,y) < Clluolle <Z] *(cos(jms)p;(x) — COS(jﬂt)wj(y)f) :

Therefore Jo(s,t, x,y) < C(Bi(s,t,x,y) + Ba(s, t,x,y)), with
p
By (s, t,z,y) (Z] (cos(jms) — cos(jmt)) > ,
P
B S,t,ﬂ? y (Z] 90]( ))2> .

The same arguments used in the analysis of the terms A;(s,t,x,y) and Ay(s,t, z,y)
yield

Jo(s,t,2,y) < O((x — y)PPoV + (¢ — s)Pel).

Let us now study the stochastic integral term by considering the decomposition

Jg(S,t,I,?J) S C(Dl(57t7x> + DQ(th y))
with

D1(37 ta 1')

E(|H(37 1') - H(tv x)|2p)7
Da(t, 2,y) = E(H(tz) — H(t,y)™).

Set h(r,z) = o(r, z,u(r, z)), r € [0,T], z € R. Observe that the assumption (LG)
and Proposition C.2.1 yield

sup E(|h(r, 2)|7) < C, (C.6)
(r,2)€[0,T]x[0,1]
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for any ¢ € [2, 00).
Clearly, Dy (s,t,z) < C(D11(s,t,x) + Dia(s,t, x)), with

DH(S t l’ (

Dlg(S t $ (

—rx,z)—G(s =1,z 2)]h(r,2)W(dr,dz)

el
:

We apply first Burkholder’s inequality and then Holder’s inequality with respect to
the finite measure on [0, 7] x [0, 1] defined by |G(t — r,z,y) — G(s — 7, z,y)|*drdy.
DH(S t l’ < CE <

By virtue of (C.6) we obtain
)
SC(/ / |G(t —r,2,2) — G(s —r,x, 2)|*dzdr
o Jo

x (/O /01 G(t — 1,2, 2) — G(s — r, 2, 2)[2E(|h(r, z)|2p)dzdr>p

s 1 P
< C(/ / |G(t —r,2,2) — G(s — r,z,2)*dzdr | .
0 0

Replace the Green function GG by its expansion given in (C.2). Since the family
(¢j,7 > 1) is orthonormal in L*(]0, 1]), we obtain

Dyy(s,t,x) <C (/ Z —\ sin(jr(t —r)) —sin(jn(s — 1)) dr)

<C<Z-7 (1A 42 t—s)2)>p.

Therefore, sup,¢(o1) D11(s,t,2) < C(t — s)P.
We can obtain an upper bound for Di5(s, ¢, z) by similar arguments, yielding

—r,x,z)h(r,2)W(dr,dz)

/]G —r,z,z) — G(s—r,x,z)\Q\h(r,z)Fdzdr

[e.¢]

sup Dia(s,t,z) < C (/t (Z leSiHQ(jﬂ’(t - r))) dr) < Ot — s)P.

z€[0,1] =1
Thus, sup,.c(o 1) D1(s,t,7) < C(t — s)P. Similarly, one checks that

sup Dg(t,l',y) S C(l‘ - y>P
te[0,7]
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Summarising, we have proved
J3(s,t,x,y) < C((t —s)P+ (x — y)p).
With the same type of arguments, but less effort one can check that
Ji(s,t,x,y) < C((t — )P+ (x— y)p).

We leave the details to the reader. This finishes the proof of the upper bound (C.5).
The last statement of the proposition follows from Kolmogorov’s continuity crite-
rion. 0

C.3 Strong approximations

This section is devoted to the proof of the main result of the paper. We start with
the description of the discretisation of the stochastic wave equation and end up with a
result on the rate of the convergence in L?(£2) of the approximations. As a by-product
we also obtain almost sure convergence.

C.3.1 Discretisation of the one-dimensional stochastic wave equa-
tion

Throughout this section we shall assume that g, vy belong to L?([0, 1]).
One can express the stochastic boundary value problem we are studying in this
paper by means of a system of two first order spde’s, as follows:

{ 9u(t,x) = v(t,x)

L (t,x) = E;d—;u(t,x) + f(t,z,u(t,z)) + a(t,x,u(t,x))%W(t,m),
t >0,z € (0,1), with initial conditions
u(0,2) = up(z), v(0,2) =wve(x), x € (0,1),
and Dirichlet boundary conditions

u(t,0) =wu(t,1) =0, t > 0.

S|

For any integer n > 1, set z =
stochastic differential equations

,k=1,...,n — 1. Consider the system of

du™(t,zy) = o"(t,xg)dt

do(t,zy) = n?(u™(t, vrr) — 2u™(t, op) + u(t, 2p_1))dl
+f(t, Tk, Un(t, .fl?k))dt
+no(t, vg, u™(t, zx))d (W(t, xp1) — Wt zr)) ,

(C.7)
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with initial conditions

u™ (0, z1) = uo(xy), v™(0,2x) = vo(zy),

where

o0 o0
E UOyQOJ 90] xk E UO;SOJ 903 xk
Jj=1 Jj=1

k=1,...,n—1.

Conditions (LG) and (L) on the coefficients ¢ and f guarantee the existence and
uniqueness of solution to the above system of equations.

We would like to write the stochastic system (C.7) in an evolution-like form. Let
us introduce a simplified notation by setting

ug(t) = u"(t, ),
v (t) = v" (£, zk),
Wk ( ) = \/E(W(t> xk—&-l) - W(tv xk)) s

k=1,...,n—1. Notice that W"(t) = (W(t),..., Wr_,(t)) isa (n—1)-dimensional
standard Brownian motion.
Then (C.7) is equivalent to

dp(t) = vt
dop(t) = 2 S dul (8 dt + f(E x, uf(t))dt (C.3)
ot s ()W)
with u}(0) = ug(xg), v (0) = vo(zk), k = 1,...,n — 1, where di, = —2, dy; = 1 if
|k —i] =1and dy; = 0if |k — 4| > 1.
In the sequel we denote by D the square (n — 1)-dimensional matrix whose entries
are d;,.
The system (C.8) can be written as the R2("=1)_yalued stochastic differential equa-
tion
dw" (t) = (A"w"(t) + F(w" (t)))dt + S(w" (£))dW" (¢),
w (0) (g (0),v™(0))*, with the following notations: u" t) = (up(t),k=1,.
1), v"(t) = (vp(t), k= 1,. — 1), w™(t) = (u"(t),v"(t))", where the superscnpt
* means th transpose of the Vector, the drift £ is glven by

F(w"(t)) = (ORO,f(t, 2y, uy (£)), o ft T, vy (1))

and W" = (Z, W™)*, with Z a (n — 1)-dimensional Brownian motion independent of
W™, Finally

= (L ) s =va () g )
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where I,,_; denotes the identity matrix in R"~! and B, is the diagonal matrix of size
n — 1 with diagonal elements o (¢, zg, u}(t)), fork =1,...,n — L.

Next we apply Ito’s formula (see, for instance, [KS91], Theorem 3.6) to the func-
tion f : Ry x R Y — R given by f(t,r) = e 4"z, and the semimartingale
{w"(t),t € [0,T]}. Then,

t t
e ™ (t) = w™(0) + / —Are " w" (s)ds + / e dw"(s)
0 0

Il
[

"(0) + /0 t e A" F(w"(s))ds + /0 t e A AW ().

Therefore we obtain the following stochastic differential equation for the process w:

t ¢
w™(t) =" w™(0) +/ e(t_S)AnF(Q"(s))ds—l-/ DA (W (5))dW " (s).
0 0
(C9)

The aim is to compute the exponential matrix ™" r >0, and then obtain a system of

stochastic differential equations for the first n — 1 components of the vector w(t), that
is, u}(t), k =1,...,n — 1. For this we use the fact that, as mentioned in [Gy598b], p.
4 , the (n — 1)-dimensional vectors

ej:<\/gsin<j§ﬂ'>,k:1,...,n—l>, (C.10)

j =1,...,n — 1 are an orthonormal basis of R"~!. In addition, they are eigenvectors
of n?D with eigenvalues

A= —4n?sin? (2‘7—”77> = —j27r20?,

respectively, where

s ()

7T T 2
(3)

We consider the function g : (0,1) — R, defined by

 sin®(z)

(x) = 2.
T e

It turns out that this function is strictly decreasing on the interval (0, 1). This implies
that we have the following upper and lower bounds for the constant ¢’

4
— < <1,
a2 ==
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forany j=1,...,n—1landn > 1.
With the above ingredients, we compute the matrix e
that, by the definition of the matrix A™, we have that

r4" "as follows. First we notice

" n2ka 0 N 0 anDk
(A™)2F = < 0 2k > L (A ( (k1) Pl 0 ) , k€ NU{0}.

This implies that

€ - Eg( ,n El(t,n
where
— % 2k Mk
Ei(t,n) = Z (2k)'n D¥,
k=0
( ) i t2k+1 ok 1k
E2 t,n) = D
) ' b
— (2k+1)
E o - t2k+1 2k mk+1
s(tn) = kz k+1)"
=0

Then, from Equation (C.9) and the definition of F' and %,

) =)+ [ Bt = s (£, S5 s

*

+ /Ot Es(t — s,n) <dW1”(S), e ,dW:A(S)) :

Using the fact that the vectors given in (C.10) are eigenvectors of n? D with eigenvalues
/\;?, j =1,...,n— 1, we obtain that, for instance, each component of the stochastic
integral in the right hand-side of the above equality read

t n—1n-1

0 % Z Z A;L(t B S)QOj(.CL‘k)(pj(l’l)O'(S, Ly, u?(s))dl/vln(s)v

where

P2k+1 A — sin (t/=A7) B sin (jmf\/c_?>

A?(t):§(2k+l)!(j - x NG
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forany k = 1,...,n — 1. Thus, the processes {u}(t),t € [0,T]}, k= 1,...,n— 1,
satisfy the following system of stochastic differential equations:

n—1ln-1gjn (jwt c’?)

W@j(%)%(wl)%(m

t 1 n=ln=lgin (jm(t —s) cy
[AEE R it

. /t l nz—l nz—l sin (jw(t —3) C?) ©;(xr) (@) (s, 7, ul(s)) AW (s),

Y 73
0o M3 = JTN GG

where o; (1) = /2sin(jrz).
Set

@i (z) = pj() + (nz — 1) (@j(T141) — @5(21))

for x € (xy, x141).
We extend the definition of u} () = u™(t, xy) to any x € [0, 1] by linear interpola-
tion, by setting

u(t,x) = u"(t,x) + (nx — k) (u"(t, xpp1) — u" (L, xx))

ifx € [z, Tpi1)-

The sequence of processes u” = {u™(t,z), (t,x) € [0,T] x (0,1)}, n > 1, is the
approximation scheme of the solution of the stochastic wave equation we are consid-
ering in this paper. Notice that «" satisfies the evolution equation
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/ (¢, 2, 5)o (o (9))dy

+5 / Gt (1)

" / / G (¢~ 5,2,9) (5, Aay), 0" (5, iuy))ddy
—l—/o /0 G"(t — s,z,y)o(s, kn(y),u" (s, kn(y)))W(ds,dy), (C.11)

€ (0,7] and z € (0,1).

C.3.2 The rate of convergence in L’

This section is devoted to the proof of the main result of this paper, as follows.

Theorem C.3.1. Suppose that uq € H*?([0,1]), with a > 3, vy € H?*([0,1]), with
g > % We also assume that the coefficients o and f satisfy conditions (LG) and (L).
There exists a positive constant C depending on «, 3 such that, for any n > 1,

sip B(u(t2) — u(t,)) <

(C.12)
(t,x)€[0,77%[0,1] n2pp

forall p € (0,po), withpo =5 A (= 3) A (B — 3).
Moreover, u"(t,x) converges to u(t,x) almost surely, as n tends to infinity, uni-
formly with respect to (t,x) € [0,T] x [0, 1].

Remark C.3.2. Remember that, for any v > 3, H7*((0, 1]) is imbedded in the space
of 0-Hélder continuous functions on (0,1), for any 6 € (0,7 — 3). Actually, one
could state an analogue to Theorem C.3.1 assuming Hdlder continuity of the initial
conditions.

We prepare the proof of this theorem with some preliminary results.
In the next lemma we will use the inequality

/!h h(kn(y !dy_

valid for every function i in C!([0,1]) and any n > 1. This inequality is proved as
follows. We shall make use of Cauchy-Schwarz inequality and the defintion of the

h(y) ", (C.13)

dy
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function ,,:

/ k() — hsa () Py = / 1 / j(y) ohE)dz
)
= %/01 dz

2
dy

2
dzdy

IN

d
d_yh(z)

2 pkn(z)+1
[

y
n(Y)

d

Hence, (C.13) is proved.

Lemma C.3.3. Forevery ) € (0, %), there exists a positive constant C, depending on
0, such that

1
sup / Gt 2y) — G (¢ )Py <
0 n

(t,z)€[0,T]%[0,1]

Joreveryn > 1.
Proof. Set

Gn(t,z,y) =

We consider the upper bound

1 4
/ Gt 2,y) — G (t, 2, p) Py < C STt ),
0

k=1

where
1
I (ta) = / Glt,2,y) — Gt 2,9) Py,
0

1
I, 2) = / Gt 2,y) — Golt, 2, kn(y)) Py,

2

— . (K, dy,
in NG wj(x)p;i(kn(y))| dy

1|n=1 [ . . sin <j7rt1/c’?>
t
I3t x) = / sin{jrt) d
0

o= [ Mwm (@)l dy.



96 Appendix C. Lattice approximation for a stochastic wave equation

Owing to (C.2) and to the orthonormality of the family (¢;,7 > 1),

I't,x) < C i%g

=1Q

Notice that (¢;,j > 1) defined by 1;(y) = cos(jmy), is an orthogonal system in
L2([0, 1]). Thus, by (C.13),

B <

forall n > 1.
For h, g € L*([0,1]), set (h, g)" fo Fon( kn(y))dy. By its very definition,
forany j,1 > 1,

0
8yG a(tx,y)

n—1
C
@<—ZWMWWKHSE

(0, 000" = (ej,e1)n—1 = 0, (C.14)

where (-, -),,_1 denotes the Euclidean inner product in R*™%, (¢;,j = 1...,n — 1) is
the basis of R"~! defined in (C.10) and §;, is the Kronecker symbol. Consequently,

v (singy s (V)N
It x) = = vj(x)
j=1 J TN/ €
and
n—l fsin (jmf, /c?)
I} (t,x) ——— | (pj(z) — go?(x))2

j=1 ‘]ﬂ—ﬁ

Set I} (t,z) < C(A, + B,), where

n—1 2
1 1
A=) < |(1-——=| sin®(jnt),
j=1 J? ( V Cj)
n—1
B, = e (sm(jwt — sin (jmf,/ ))

1

<.
Il

A Taylor expansion of the function sin z at x = 0 yields

i2
w <l
L—Ja<C, (C.15)
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forany j = 1,...,n—1,and n > 1. Then, since c;? is bounded below by 7%, we obtain

1 2 _C
GG—VE)S—- (C.16)
J n
Lety € (0, %); the mean value theorem and (C.15) yield
B, < C’Z (sm jmt) — sin (jwt,/ ))
1 2y
S CZ m <1 - Cj>
j=1

1 <1 C
S%@E?ﬁﬁmﬁﬁw
Jj=

for some positive constant C' depending on ~y. Thus, for every § € (0, %)

(1

AngC

1

<.
Il

o)

B < —5=. (C.17)
n
Putting together (C.16) and (C.17) we obtain that
forall 6 € (0,2).
Observe that \
n J
lpi(2) = @f (@) < O (C.18)
Hence
— 1 C
I(t,x) <CY ﬁ‘%(x) — (@) < ot
j=1
The proof of the lemma is complete. [

Proposition C.3.4. Assume that vy € L*([0,1]), up € H*2([0, 1)), for some o > 3,
and that the coefficients f and o satisfy condition (LG). Then for every p > 1

sup sup E (Ju™(t,z)|*") < 4oo0.
n>1 (t,z)€[0,7]%[0,1]
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Proof. By virtue of Equation (C.11) we have

E (Ju"(t,z)[*) < CZAk(n,t,x),

k=1
with
1 2p
Ai(n,t,x) = / G"(t, z,y)vo(kn(y))dy|
: 2p
Ay(n,t,x) = <u0,<,0j>"cos (jﬁt\/:;?> ap?(:c) ,

/ G (t — 5,2, 4)0(5, on (), 1™ (5, n()))WV (ds, dy)

1
sup sup / |G™(t, 7, y) > dy < oo. (C.19)
n>1 (t2)el0,7]x[0,1] Jo

As(n,t,x) = <
Ay(n,t,x) = <

We can easily prove that

2p>
)

/ G (t — 5,2, ) (5, Fnl), ™ (5, Kn (1)) )y

Let h € H**([0,1]), with a > 1, then

foreveryn > land j = 1,...,n — 1. Indeed, Fubini’s theorem and (C.14) yield

/OZ s ei(kn(y)) i (ka(y))dy

=1

=walww@mw@m

By Cauchy-Schwarz inequality,

1(n,t, x) (/ |G”tzy2dy> </ |vo(Kn(y 2dy).
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Since sup,, fol |vo(kn(y))|dy is finite, using (C.19) we obtain

sup sup Ai(n,t,x) < C.
n>1 (t,z)€[0,T]x[0,1]

The identity (C.20) and Cauchy-Schwarz inequality yield

As(n, t,) < C (Z (o, goj>\2j2a> (27)

j=1
2
< Clluoll&a-

Applying first Burkholder’s inequality and then Holder’s inequality with respect to
the finite (uniformly with respect to n, ¢ and x) measure |G"(t — s, x,y)|?dsdy on

[0,7] x [0,1] yield

t rl
A; <CE ( / / |G™(t = s,2,)P|o(s, kn(y), u" (s, ku(y))[Pdsdy
0o Jo

<o+ [ [ 16— sma)lE (s o)) sty

t
<C (1 —|—/ sup E (|u”(s,z)|*) ds) :
0 z€]0,1]

Similarly,
t
Az (s [ s B (e np) ).
0 x€[071]
Therefore
t
sup E ([u"(t,z)|*) < C+C sup E ([u"(s,z)|*) ds,
z€[0,1] 0 z€[0,1]

with a constant C' independent of n.
We apply Gronwall’s lemma to conclude the proof. [
With analogous arguments as those used in the study of the terms J3(s, ¢, z, y) and
Ji(s,t,x,y) in the proof of Proposition C.2.2 we obtain the following.

Lemma C.3.5. Ler {h(t,x),(t,x) € [0,T] x [0,1]} be an F,—adapted stochastic
process such that for any p > 1

sup E (|h(t,)]*) < oo.
(t,x)€[0,T]x[0,1]
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The stochastic processes defined by
t pl
H"(t,x) :/ / G"(t — s, z,2)h(s, z2)W(ds,dz),
Ot 01
F*(t,x) :/ / G"(t — s, z,2)h(s, z)dzds,
0o Jo

(t,x) € [0,T] x [0,1], are well defined. Moreover, there exists a positive constant C
such that

E(|H"(s,2) = H"(t,y)|") < C (|t = s’ + |z —yF),
E(|F"(s,z) = F"(t,y)I") < C (|t = s|” + |z — y[),

forall s,t € [0,T), z,y € [0,1], n > 1.
Therefore, almost all the sample paths of both, H" and F™, are jointly Holder
continuous in time and in space, of any order 0 € (0, %)

In order to shorten the notation, we set
1
vta) = [ Glt. o)y,
0
1
V(t ) = / G (t, 2, y)ol () dy.

= S g ) cos(mt)is (o),

0. = S )" cos (41,7 o)
w(t,z) = u(t,x) — v(t,z) — pu(t, x) (C.21)
w(t,x) = u"(t,x) — V" (t,x) — u"(t,x). (C.22)

From the proof of Proposition C.2.2 and the above Lemma C.3.5, we clearly have
sup (E(|wn($7 lE) - wn(t7 y)‘Qp) + E(|1U(S, .Z') - ’U)(t, y)’2p))
<C(t=sP+|z—y|"), (C.23)

foreveryp > 1,s,t € (0,7, z,y € [0, 1].

In particular, these estimates imply that, if the initial conditions vy, 1 vanish, the
trajectories of the stochastic processes u™ and u are a.s. jointly Holder continuous in
time and in space, of any order § € (0, %)
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Proposition C.3.6. Assume that vy belongs to H?2((0,1]), for some 3 > 1. There
exists a positive constant C' depending on 3, such that

C
sup v (t,x) —v(t,x)] < —,
(t,2)€[0,T]x[0,1] ne

foreachn > 1 and every € € (0, €y), with g = % A(B—3)
Proof. Owing to Cauchy-Schwarz inequality and (C.19) we have
V" (t,x) — v(t,x)| < C(Ni(n,t,z) + Na(n)),

where

1 B
Ni(n,t,x) = (/ |G"(t, z,y) — G(t,x,y)\Qdy) ,
0
1

Na(n) = (/O [v0(kn(y)) —vo(y)l2dy>;'

From Lemma C.3.3, it follows that sup(, ,)eo 1)x[0,1) N1(n, ¢, 2) < £ for every vy €

(0, 3)-
Moreover,

1
2

Na(n) = (/0 ’Z(Uo,%ﬂ%’(’%(y)) - %‘(y))\zdy>

1
o] ) 2
< lvolls, (Zj%(l A #)) (C.24)
i=1

Hence, for 3 € (%, %], (C.24) is bounded by ﬁ - If g > %, since the series
n 2
Py 721 is convergent, we can estimate (C.24) by £. Consequently,
C
N2 (n) S T-
nf=z
The proof is complete. [

Proposition C.3.7. Assume that ug € H**([0,1]), with a > 3. There exists a positive
constant C' depending on « such that

n C
sup |:u (t7$) _/’L(t7:1:)| S o)
(t.2)€[0,7]x[0,1] n

foreachn > 1 and every T € (0, 19), with 7o = (v — §) AL
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Proof. By (C.20) we have that

|p(t, x) — p(t,z)| < C(L(t,z,n) + L(t,z,n) + I3(t,z,n)),

with
Li(t,z,n) = i<“0’¢j> cos(jmt)e; ()|,
L(t,z,n) = nz_:l(uo, ©;) (cos(jwt) — cos (jﬂt\/:?)> w;(z)],

n—1

I3(t,z,n) = Z(uo, ©;) COS (jmf\/c?) (pj(x) — @?(x))‘ .

Cauchy-Schwarz inequality yields

I/ oo 3
L(t,z,n) <C (Z\ Uo, P; |212°‘> <Z]"2“>
j=n

C

_1-

2

IN
N

Cauchy-Schwarz inequality and (C.15) yield

1
n—1 9 2
Ly(t, 2,7) < Cllto]las (Zﬂa cos(jmt) — cos (jmt, /<) )

j=1
1
n—1 9 2
<C <Zj2<“1> (1= /) >
j=1
1
1 n—1 2
~ N7 26
<C <n4 23 > . (C.25)
J:

For o < 7, the last term in (C.25) is bounded by ac_%. For o > I, the series

2 9
Z;’o 1 j2(3_“) converges and therefore the last term in (C.25) is bounded by < 5. Hence,
since a > 5 3 foranyn > 1,

C
Ig(t,$7n) S —
nT

for every T € (0,7), with 7 = (v — 2) A 2.
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Similarly, by virtue of (C.18),

QA

I3(t,z,n) <

Thus the proof of the statement is complete. ]

Proposition C.3.8. Suppose that uy belongs to H**([0,1]), with o > 3, vy €

HP2((0,1]), with 3 > 1, and that the coefficients o and [ satisfy conditions (LG)
and (L). There exists a positive constant C, depending on «, 3, such that

N C
sup  B(jw"(t,x) — w(t,2)) < —,
(t,)€[0,T)x[0,1] n’

for eachn > 1 and any p € (0, po), with po = £ A (= 3) A (B — ).
Proof. By definition of w™ and w
E(Jw"(t,z) — w(t, x)]*) < C(A}(t,z) + A3 (t,z)),

with

a0~ £ (|

(/G" — 5,5, 9)0 (5, K1), 0™ (5, on )W (s, dy)

G” = 5,2, Y)f (s, kn(y), u" (s, kn(y)))dsdy
p)
Burkholder’s inequality and Holder’s inequality with respect to the measures on

[0, T]x[0,1] givenby |G"(t — s, x,y) — G(t — s, x,y)|*dsdy and |G(t — s, z, y)|*dsdy,
respectively, yield

//G o) (s, g u(s, )W (ds,dy)|

A5(t, x) (

- /0 /0 G(t —s,2,y)f(s,y,u(s,y))dsdy

Al (t,x) < C(BY(t,z) + By(t,x)),
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where

B (t, ) (//!G” —s,zy) — G- S,x,y)Istdy)pl
x(// G™(t — s, x,y) — G(t — 5,2, y)|?

x E(|o(s, £a(y), u" (s, kn(y) ) dsdy) ,

BI(t, ) //yG —s,2,y))?

X E(lo(s, kn(y), u" (s, 5n(y))) — o(s,y,u(s,y))[*")dsdy.

The assumption (LG), Proposition C.3.4 and Lemma C.3.3 yield, for any n > 1,

e
By (t,x) _(// |G"(t,z,y) — G(t, x,y)|2dyd5) SW’

forall 6 € (0,32).
From the Lipschitz condition (L) on ¢ and (C.4) we have

By (t,z) < C < 1p /0 ( sup E(|u"(s,z) — u(s, 2)|*)

2
n z€[0,1]

+ sup E(|u(s, kn(z)) — u(s,z)]Qp))d5>).

z€[0,1]

Owing to (C.21), (C.22) and the upper bounds provided by Propositions C.2.2, C.3.6
and C.3.7, we obtain

z€[0,1]

¢
By (t,z) < C <n211" +/ sup E(|w™(s, z) — w(s,z)|2p)d5> ,
0

for any p € (0, po), with pg = 3 A (a = 2) A (B = 3).

Taking into account the upper bound obtained for the term B (¢, ), it follows that

sup E(|wn(t>z)_w(t7 Z)|2p) <C (anp +/0 sup E(|w"(5,z) - w(saz)’%)d‘s) )

2€[0,1] 2€[0,1]

forall t € [0, 7], every n > 1 and the same range of p described before.
With Gronwall’s lemma we complete the proof. O
We are now ready to end up with the proof of the main theorem.
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Proof of Theorem C.3.1. The first statement (see (C.12)) is a consequence of the
previous Propositions C.3.6, C.3.7 and C.3.8.

Owing to Propositions C.3.6 and C.3.7, in order to complete the proof, we only
need to check the almost sure convergence w" (¢, ) — w(t, x), uniformly in (¢, x) €
0,77 x [0, 1].

Notice that, for any p € [2, c0),

sup |w"(t,x) —w(t, )| < C(Jy + Jo + J3),
(t,x)€[0,T]%[0,1]

with
n—1 n—1
Jl = Z Z |wn<t2’ ‘Tln) - w( Z? x?)|2p7
k=0 1=0
Jo :=supsup sup sup |w"(t, x]) — w" (¢, 7)|?,
k U t=tR|<1/n |z—2]|<1/n
Js :=supsup  sup sup  |w(ty, xp) — w(t,z)[*",
k U t=t3|<1/n |z—2]}|<1/n

where ¢ := kL, 27 ==L k 1=0,1,...,n— 1. By Proposition C.3.8,

C
E(L) < gy
forall p € (0,pp) and n > 1.
The joint Holder continuity of the sample paths of the processes w™ and w (see (C.23))
yields

<

n2pd )

E(Jy+ J3) <

for every § € (0,3),n > 1.
Consequently,

C
. ( sup jw"(t, x) — w(t7$)|2p) = CnQ(pp—l)’

(t,2)€[0,77%[0,1]

for all p € (0, po).

Hence

1 C
n 2
P <(t’z)€sup (¢, ) = wit, @) > —) S

[0,7]x[0,1] n?

foralln > 1.
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Letp > %, Borel-Cantelli’s Lemma yields, with probability one,

sup |t x) — wit, z)| < (%) "

(t,z)€[0,T]%[0,1]

for n sufficiently large. The proof is now complete. [

C.4 Appendix

This section is devoted to a numerical analysis of the speed of convergence of the se-
quence of approximations u", n > 1, given in Theorem C.3.1. We study the optimality
of the restriction given by the value % in the rate of convergence.

According to the proof of Propositions C.3.8 and C.3.6, the above-mentioned re-
striction comes from the uniform bound of the L?([0, 1]) norm of the difference G™(t,
x,+) — G(t,x,-) stated in Lemma C.3.3 and more precisely, from the upper bound
proved for the term

2

. n—1 sin(jt) sin (]ﬂ./@-‘) 2( )

3\L,T) = § . - . D Soj L),
Jmy/C]

=1\ 7

(t,z) €[0,T] x [0, 1].

With a computer program (written in C language) we compute [ (¢, x) for differ-
ent values of ¢, 2 and n. First, we check that the term ¢?(x) = 2sin’(j7z) has no
significant influence in the behaviour of [ (¢, x), for fixed ¢ € [0, 7| and large n. Thus,
since go? (x) can be uniformly bounded by a constant, we focus our attention on

2
) = Z sin(jmt) - sin (jmf, /c}‘)
A g Jm\/c} '

Jj=1

For a fixed ¢, we compute [} (¢) for many different natural values of n in some range
[ng, n1]. Then, we consider the function f; defined by f(z) = I5(t), = € NN [ng, n4],
and use the least square optimization method to fit f; to a function of the form ¢;(z) =
E—Z, for some a > 0 and b € R. In the following table, the values of a, b and the range
of variation on n for some values of ¢ are displayed.

t range of n a b
1 2 <n<10000  0.662039 —2.54703
1.002 2 <n < 50000  0.665005 —2.10701
V2 2000 < n < 15000 0.659738 —2.00993
8.7 2 <n < 10000 0.65826  —1.40663
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We observe that the values of a in the above table are slightly less than % It is worthy
mentioning that for values of ¢ in the neighbourhood of integer numbers we need to
compute [ (¢) for larger values of n in order to obtain a suitable convergence.

In Figure C.1 we simultaneously plot the functions I (¢) and ¢;(z), for t = 1.002
and t = /2, respectively. The coefficients a, b of the function g; and the range of
variation of n -and therefore of z- are specified in the above table. Notice the almost
perfect matching for t = /2.

0.003 T T T T T T T T T 0.0009

0.0008
0.0025

0.0007 -
0.002
i 0.0006 |-
0.0015
0.0005 -
0001 |

0.0004

0.0005 - 00003 |

0 L L L L L L . ! ! 0.0002 L L L L L L
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 2000 4000 6000 8000 10000 12000 14000 16000

Figure C.1: The doted line corresponds to g; and the continuous one to I%(t).

We conclude that the bound

C
[7L t < .

3 ( » L ) — ’I‘L‘V
J € (0, %), is optimal. Therefore, the restriction in Theorem C.3.1 given by the value
% is intrinsic to the model and it is not due to the method of the proof.
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