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Caṕıtol 0

Resum

0.1 Introducció

L’aparició espontània d’estructura i ordre en sistemes amb substrats que no
en tenen ha fascinat i intrigat durant segles cient́ıfics pertanyents a les més
variades disciplines. Aquestes estructures es troben en un gran nombre de
sistemes del camp de la f́ısica, la biologia o la qúımica, i apareixen quan els sis-
temes són apartats de l’equilibri termodinàmic. L’estudi d’aquests fenòmens
ha donat lloc al naixement d’un camp de la f́ısica que du per nom formació
d’estructures fora d’equilibri [CH93, Man90, Wal97, NP77], que s’ocupa no
només de sistemes f́ısics sinó que també s’endinsa en la qúımica i la biologia.
La comprensió de la formació d’estructures ha avançat notablement gràcies
al desenvolupament de les ciències no lineals, on conflueixen disciplines de
caire matemàtic com la teoria de sistemes dinàmics [GH83, Cra91], o les
geometries fractals [Man77] amb la tradició de la mecànica estad́ıstica fora
d’equilibri o la hidrodinàmica.

Un dels camps inclosos dins dels marc general de la formació d’estruc-
tures és la formació d’estructures interficials [Lan80, Lan87, KKa88, Pel88,
BM91], on l’estructura és descrita en termes d’una interf́ıcie entre dues fases
macroscòpiques. En molts casos la dinàmica del problema complet es pot
projectar sobre la interf́ıcie, tot reduint la dimensió i simplificant-lo, si bé la
projecció sobre la interf́ıcie pot introduir no localitats al problema. En els
problemes de dinàmica d’interf́ıcies una de les dificultats des del punt de vista
matemàtic és que aquests defineixen problemes anomenats de contorn lliure,
ja que la solució involucra resoldre equacions diferencials en derivades par-
cials amb condicions de contorn sobre un contorn (la interf́ıcie) que és mòbil,
i el moviment del qual ve determinat precisament per la pròpia solució de les
equacions diferencials en el volum.
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La dinàmica d’interf́ıcies fora d’equilibri planteja qüestions fonamentals
en el context de formació d’estructures i dinàmica no lineal en sistemes ex-
tesos en l’espai, aix́ı com en les matemàtiques dels problemes de contorn
lliure. Malgrat això, el seu estudi ha estat motivat en molts casos per
problemes industrials o aplicats. Una gran varietat de fenòmens estan in-
closos en la dinàmica d’interf́ıcies, com ara en desplaçament de fluids en
medis porosos o digitació viscosa [BKL+86], solidificació [PA92], propagació
de flames [Mar51, PC82], combustió sense flama [ZOM98] o descàrregues
elèctriques en gasos [Rai91]. Més concretament, aquesta tesi es centra en
la digitació viscosa en ce l.les de Hele-Shaw [BKL+86, Tan00] (conegut com
fluxos de Hele-Shaw), amb la intenció d’avançar en la comprensió dels mecan-
ismes universals que governen la dinàmica d’interf́ıcies. L’objectiu és doble:
d’una banda ens hem centrat en el paper de la tensió superficial i el contrast
de viscositats en la dinàmica de les estructures en forma de dit, i de l’altra
hem estudiat l’efecte del desordre en fluxos de Hele-Shaw, sobretot pel que
fa a les propietats estad́ıstiques de les interf́ıcies rugoses que es formen en
presència de desordre.

0.1.1 Fluxos de Hele-Shaw

Aquesta tesi tracta de la dinàmica de la interf́ıcie entre dos fluids confinats en
una ce l.la de Hele-Shaw [Hel98]. Una ce l.la de Hele-Shaw consisteix en dues
plaques planopara l.leles separades per una distància molt petita b, de manera
que a l’interior de la ce l.la hom troba un flux potencial en dues dimensions.
En la geometria clàssica, tal i com la van formular Saffman i Taylor [ST58],
la ce l.la té forma rectangular, amb amplada W i longitud L. D’un dels
extrems s’injecta un fluid i per l’altre extrem s’extreu l’altre. A més de la
geometria rectangular se n’han estudiat d’altres, com ara la radial [Pat81] o
l’angular [TRHC89, Ben91].

El flux ve descrit per les equacions de Navier-Stokes i hom suposa que
els fluids són incompressibles. Les condicions experimentals són tals que el
sistema es troba en el ĺımit d’alta fricció de manera que el terme inercial
i el no lineal de Navier-Stokes són negligibles. El flux es pot considerar
quasiestacionari, i tot junt equival a prendre valors petits del nombre de
Reynolds. Considerant un flux de Poiseuille en la direcció perpendicular a
les plaques s’arriba a que la velocitat u en dos dimensions (resultat de fer la
mitjana a l’espaiat entre plaques) satisfà

u = − b2

12µ
(∇p− Fext) (1)

on µ és la viscositat del fluid, p és la pressió i Fext és una força externa
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que considerarem potencial amb ∇Fext = 0. Aplicant que els fluids són
incompressibles, ∇ ·u = 0, s’obté que la pressió obeeix l’equació de Laplace

∇2p = 0. (2)

L’Eq. (1) és la mateixa que satisfà la velocitat d’un fluid en un medi porós,
si bé amb una constant de proporcionalitat diferent. L’Eq. (1) rep el nom de
llei de Darcy.

A partir d’ara considerem la geometria rectangular clàssica: el fluid 1
és injectat a velocitat constant V∞ per un extrem de la ce l.la, desplaçant el
fluid 2, i estan sotmesos a una gravetat efectiva geff = g cos β dirigida en
la direcció −x̂. Si hom imposa igualtat de velocitats normals a la interf́ıcie
s’obté la condició de contorn següent a la interf́ıcie

U = − b2

12µ1

(∂np1 + ρ1 geff n̂ · x̂) = − b2

12µ2

(∂np2 + ρ2 geff n̂ · x̂) , (3)

on n̂ és el vector unitari normal a la interf́ıcie i ρ1,2 són les densitats del fluid
1 i 2 respectivament. La condició de contorn Eq. (3) es coneix com condició
cinètica. Per determinar completament el problema cal una segona condició
de contorn sobre la interf́ıcie, i aquesta ve donada (en la seva versió més
simple) pel salt de pressions de Young-Laplace

p1 − p2 = σκ, (4)

essent σ la tensió superficial i κ la curvatura. Aix́ı doncs, el problema queda
completament definit per les Eqs. (2, 3, 4), juntament amb la condició de
contorn u = V∞x̂ a |x| → ∞ i les condicions adequades a les parets.

El problema també admet una formulació en termes de la funció cor-
rent Ψ, l’harmònic conjugat de la pressió. Aix́ı, Ψ satisfà l’equació de Pois-
son [TA83]

∆Ψ = −Γ (5)

on Γ és la distribució de vorticitat, singular i localitzada a la interf́ıcie: Γ(r) =
γ(s)δ [r− r(s)] on la vorticitat γ té la forma [TA83]

γ =
∆µ

µ̄
w · ŝ +

(
∆µ

µ̄
V∞ +

∆ρgb2

12µ̄

)
x̂ · ŝ +

σb2

12µ̄

∂κ

∂s
. (6)

En dues dimensions el camp de velocitats degut a un full de vòrtexs com el que
tenim en aquest cas ve donat per la fórmula integral de Birkhoff [Bir54, TA83]

w = w(s, t) =
1

2π
P

∫
ds′

ẑ× [x(s, t)− x(s′, t)]

|x(s, t)− x(s′, t)|2
γ(s′, t) (7)
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on la P indica que la integral s’ha d’avaluar segons la prescripció de part
principal. Cal tenir en compte que l’expressió per w no inclou la contribució
potencial (o irrotacional) upot originada per les condicions de contorn a l’in-
finit, de manera que la velocitat u d’un punt de la interf́ıcie ve donada per
la suma u = w + upot.

Les equacions es poden adimensionalitzar fent servir la quantitat W/2π
per les longituds i la combinació [TA83]

U∗ = cV∞ + geff
b2(ρ2 − ρ1)

12(µ1 + µ2)
(8)

per escalar les velocitats, de manera que en el problema només apareixen dues
quantitats adimensionals, el contrast de viscositats c i la tensió superficial
adimensional B, donades per

B =
π2b2σ

3W 2 (µ1 + µ2)U∗
(9)

c =
µ2 − µ1

µ1 + µ2

. (10)

0.1.2 L’experiment de Saffman i Taylor. Problema de
selecció i dinàmica

Saffman i Taylor [ST58] van estudiar experimentalment el desplaçament d’un
fluid viscós per un de menys viscós en una ce l.la de Hele-Shaw, amb valors
de c propers o molt propers a 1. Van observar que una interf́ıcie inicialment
plana és inestable, de manera que els petits bonys que es formen inicialment
ràpidament creixen en forma de dits d’aire que penetren en el ĺıquid. Els
dits competeixen entre ells i a temps llargs un únic dit d’amplada propera
a la meitat de l’amplada del canal sobreviu. Aquest dit es coneix com a dit
de Saffman-Taylor (ST), i la inestabilitat de la interf́ıcie plana rep el nom
d’inestabilitat de Saffman-Taylor, equivalent a la inestabilitat de Mullins-
Sekerka que apareix en solidificació [MS64]. La seva relació de dispersió en
variables adimensionals és [Cvv59]

ω(k) = |k|(1−Bk2) (11)

i d’aquesta relació es veu que hi ha una banda de modes inestables (aquells
amb |k| < B1/2) l’amplada de la qual està controlada per la tensió superficial
adimensional. D’altra banda, el fet que en la relació de dispersió aparegui el
valor absolut de k és una indicació del caràcter no local del problema.

La inestabilitat inicial dóna lloc a la formació d’una graella de dits que
creixen independentment fins que s’inicia el règim no lineal, en el qual té
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lloc un procés de competició entre dits (per contrast de viscositat alt) que
finalitza amb un únic dit d’amplada propera a 1/2 de l’amplada del canal.
Per contrast de viscositats baix la situació és diferent ja que el procés de
competició està fortament inhibit [Mah85] de manera que el dit de Saffman-
Taylor no és l’atractor universal per a qualsevol valor de c [CJ91, CJ94].

Saffman i Taylor [ST58] van trobar una famı́lia uniparamètrica de solu-
cions estacionàries exactes en forma de dit, en absència de tensió superficial.
En aquestes solucions l’amplada relativa λ del dit és el paràmetre continu
que caracteritza les solucions. Aquestes reprodueixen bastant bé les formes
observades experimentalment si l’amplada λ s’escull d’acord amb l’observada
experimentalment (que depèn del valor de B utilitzat). Ara bé, la teoria de
tensió superficial zero és incapaç de predir el valor observat de λ en funció
de B: aquest és el problema de la selecció, com la introducció d’una B finita
selecciona el valor de λ. Aquest problema no va ser resolt fins a mitjans dels
anys 80 per diversos autors [HL86, Shr86, CDH+86] que van demostrar que
la tensió superficial selecciona un conjunt discret de valors de λ del continu
inicial, de manera que λ = λn(B), amb λn > 1/2. Per B → 0 es troba
λn → 1/2, i només la solució amb n = 0 (la més estreta) és linealment
estable1, tota la resta són inestables [Ben86]. Aquest escenari de selecció
també s’aplica a d’altres problemes de formació d’estructures interficials, i és
conegut com a Solvabilitat Microscòpica.

La Part II d’aquesta tesi està dedicada a la generalització d’aquest esce-
nari a la dinàmica, tot partint de l’existència de solucions exactes sense tensió
superficial i plantejant el paper selectiu de la tensió superficial. Prendrem
com a base el formalisme i els resultats descrits per Siegel i Tanveer [ST96] en-
tre d’altres, referents als efectes singulars de tensió superficial en la dinàmica.

La part III es centra en l’estudi del paper del contrast de viscositat en
la dinàmica, tot comprovant una conjectura de Casademunt i Jasnow [CJ91,
CJ94] i caracteritzant a nivell quantitatiu la sensibilitat de la dinàmica a
aquell paràmetre, tot identificant nous atractors que competeixen amb el de
Saffman-Taylor.

0.1.3 Dinàmica d’interf́ıcies rugoses

La dinàmica d’una interf́ıcie propagant-se en un medi desordenat ha estat
estudiada intensivament en els darrers anys [HHZ95, BS95, Kru97], sobretot
pel que respecta a les seves propietats d’escala. S’ha trobat evidència d’in-
variància d’escala i universalitat en diversos sistemes, incloent fluxos de Hele-

1Però inestable a pertorbacions d’amplitud finita. L’amplitud A de les pertorbacions
que inestabilitzen el dit decreix ràpidament amb B, d’acord amb la relació [Ben86] lnA ∼
−1/
√
B.
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Shaw amb desordre [REDG89, HFV91, HKzW92], creixement de colònies
bacterianes [VCH90, MM92], combustió en absència de flama [ZZAL92], en-
tre d’altres. En el cas que ens interessa, el del flux de Hele-Shaw en una ce l.la
desordenada, l’experiment original [REDG89] consisteix en injectar aigua
per un extrem d’una ce l.la plena de petites boles de vidre compactades. La
presència de les boletes arruga la interf́ıcie, que seria estable en absència
d’aquestes. La magnitud f́ısica rellevant en aquest tipus d’experiments és

l’amplada W de la interf́ıcie, definida com W (t) = 〈[h(x, t)− h]2〉1/2 on
h(x, t) és l’alçada de la interf́ıcie, indica mitjana espacial i 〈 〉 mit-
jana sobre realitzacions. Per una interf́ıcie inicialment plana l’amplada W (t)
creix d’acord amb la llei de potències [FV85] següent W (t) ∼ tβ abans de
saturar. L’amplada un cop el creixement ha saturat, Wsat, també satisfà una
llei de potències amb la mida L del sistema: Wsat(L) ∼ Lα. Els exponents β
i α reben el nom d’exponent de creixement i de rugositat respectivament.

Bona part del treball experimental i teòric dut a terme en el camp de la
dinàmica d’interf́ıcies rugoses des de finals dels anys 80 es basa en l’equació
coneguda com a KPZ [KPZ86], que té la forma

∂h(x, t)

∂t
= ν∇2h(x, t) +

λ

2
[∇h(x, t)]2 + η(x, t) (12)

on λ i ν són constants positives i η(x, t) és un soroll. Aquesta equació su-
posadament descriu de manera universal les propietats d’escala d’interf́ıcies
rugoses en sistemes d’allò més variats, i està caracteritzada pels exponents
α = 1/2 i β = 1/3 en dimensió 1. L’experiment abans descrit [REDG89]
va ser ideat precisament amb la intenció d’observar els exponents de KPZ,
però en canvi l’exponent obtingut va ser α ' 3/4, en clara discrepància
amb l’exponent predit per a KPZ. L’experiment va ser repetit per altres
autors [HFV91, HKzW92] que si bé van obtenir resultats no plenament co-
incidents amb els anteriors śı que van confirmar que l’Eq. (12) no descriu
les propietats d’escala de la interf́ıcie en experiments d’invasió forçada d’una
ce l.la de Hele-Shaw plena de boletes de vidre.

Nombroses modificacions de l’equació KPZ van ser proposades en anys
següents que podrien explicar els resultats experimentals. Aquestes consis-
teixen en utilitzar un soroll η(x, t) que no sigui gaussià i blanc. Aix́ı, diferents
valors dels exponents s’obtenen amb soroll tipus llei de potències [Zha90] i
soroll correlacionat [MHKZ89]. En ambdós casos es poden obtenir variant
els paràmetres que controlen el soroll valors d’α en un ampli rang que inclou
els resultats experimentals, ara bé, no està en absolut clar com connectar
el soroll original dels experiments amb el soroll de l’equació. Una manera
lleugerament diferent d’afrontar el problema consisteix en utilitzar un soroll
congelat η(h, x) enlloc de l’original soroll dinàmic. Aquest tipus de soroll
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és força més semblant al soroll present als experiments, però l’equació KPZ
amb soroll congelat tampoc explica satisfactòriament els resultats experimen-
tals [Les96].

Hom no s’hauria de sorprendre del fet que l’equació KPZ no expliqui sat-
isfactòriament els experiments d’invasió forçada d’una ce l.la de Hele-Shaw
amb desordre, ja que KPZ és una equació completament fenomenològica per
descriure el creixement d’interf́ıcies rugoses on el creixement és essencialment
local (com la mateixa equació), contràriament al que succeeix en una ce l.la
de Hele-Shaw, on els efectes no locals són els dominants. Recentment [GB98]
s’ha proposat una equació no local per estudiar el problema, i usant ar-
guments de tipus Flory s’ha trobat α ' 3/4. Una manera alternativa de
tractar la no-localitat és mitjançant un camp de fase, tal i com s’ha fet a
les Refs. [DRE+99, DRE+00, HMSL+01]. Ara bé, en ambdós casos el soroll
és introdüıt de manera fenomenològica. Des d’un punt de vista experimen-
tal recentment s’han realitzat experiments [HMSL+01, SRR+02, SOHM02b]
amb ce l.les de gap inhomogeni, de manera que el desordre és molt més con-
trolat que en el cas de les boletes de vidre. Aquests experiments mostren
que l’exponent α depèn fortament dels paràmetres experimentals, i en al-
guns casos la interf́ıcie no satisfà la hipòtesi d’escala de Family-Vicsek. La
part IV d’aquesta tesi aporta un marc teòric unificat i general per a l’es-
tudi de la invasió de ce l.les amb gap aleatori, en la ĺınia dels experiments
citats [HMSL+01, SRR+02, SOHM02b].

0.2 Preliminars

0.2.1 Formulació del mapatge conforme. Punt de vista
de sistemes dinàmics

La tècnica anaĺıtica més utilitzada i que ha donat més fruits en el cas c = 1
és la tècnica matemàtica del mapatge conforme [BKL+86], que consisteix
en mapar la regió ocupada pel fluid viscós a l’interior del cercle unitat del
pla complex mitjançant una funció f(ω, t), de manera que la interf́ıcie és
mapada en el contorn del cercle. Aix́ı, un punt z del fluid està relacionat
amb un punt de l’interior del cercle per z = f(ω). Si considerem condicions
periòdiques de contorn en l’eix y i de peŕıode 2π el mapa pren la forma
f(ω, t) = − lnω + h(ω, t), amb h(ω, t) anaĺıtica a l’interior i ∂ωf(ω, t) 6= 0
també a l’interior del cercle unitat. Es pot demostrar que l’evolució del mapa
ha de satisfer [BKL+86, Mag00, CM00]

Re [i∂sf(s, t)∂tf
∗(s, t)] = 1−B∂sH[κ] (13)
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per w = eis, on la curvatura κ s’expressa en funció de f com κ(s) =
−|∂sf |−1Im[∂2

sf/∂sf ] i H[g] és la transformada de Hilbert en el cercle unitat.
L’equació (13) pel mapa f(w, t) és impossible de resoldre expĺıcitament

si B 6= 0, però en canvi en el cas B = 0 es coneixen classes molt gen-
erals de solucions de l’equació. Les dues famı́lies de solucions més estudi-
ades són les polinòmiques i les de tipus pol o logaŕıtmiques. Les transfor-
macions polinòmiques sempre desenvolupen singularitats a temps finit (en
forma de cúspides) [SB84, Sar85]. D’altra banda les solucions de tipus pol o
logaŕıtmiques tenen la forma

f(w, t) = − lnw + d(t) +
N∑
j=1

γj ln [1− αj(t)w] (14)

on les constants complexes del moviment γj han de satisfer
∑N

j=1 γj = 2(1−
λ), on λ és la fracció del canal ocupada pels dits asimptòtics. Les solucions
exactes que estudiarem en aquesta tesi són d’aquesta forma, ja que contenen
evolucions lliures de singularitats per tot temps. A més, amb els paràmetres
apropiats reprodueixen la fenomenologia observada experimentalment i al-
guns autors han cregut que poden descriure tota la fenomenologia present per
B 6= 0 [PMW94, MWD94, MW97]. Això ha estat rebatut tant des d’un punt
de vista teòric [CM98, CM00, Mag00, PMC02] com numèric [KL01, PSC02].
Precisament, un dels principals objectius d’aquesta tesi ha estat precisar el
paper de les solucions de B = 0 en la dinàmica del problema f́ısic amb B 6= 0,
tant des d’un punt de vista teòric com numèric.

La substitució del mapa Eq. (14) a l’equació d’evolució Eq. (13) defineix
un sistema d’equacions diferencials ordinàries de dimensió finita, encastat en
el sistema dinàmic de dimensió infinita del problema general. Això permet
l’ús de les eines i els conceptes de la teoria de sistemes dinàmics, i des d’aquest
punt de vista la utilització de les solucions Eq. (14) permet passar d’un
problema definit en un espai de dimensió infinita (l’espai de configuracions
interficials) a un problema en un espai de dimensió finita [MC98, CM00,
Mag00, PMC02].

0.2.2 El model mı́nim de dos dits

La solució exacta amb B = 0 més simple que conté els punts fixes rellevants
del problema, que són la interf́ıcie plana (PI), el dit de Saffman-Taylor (1ST) i
el doble dit de Saffman-Taylor (2ST) va ser presentada a la referència [MC98]
i estudiada àmpliament a les Refs. [CM00, Mag00]. Té la forma

f(ω, t) = − lnω + d(t) + (1− λ) {ln [1− α(t)ω] + ln [1 + α(t)∗ω]} (15)
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i l’únic paràmetre que conté és l’amplada λ. El mapa Eq. (15) descriu una
interf́ıcie amb un o dos dits d’amplada total λ.

La principal caracteŕıstica del flux de l’espai fàsic d’aquest model és el fet
que la conca d’atracció de 1ST no és tot l’espai de les fases, sinó que existeix
una separatriu que separa la seva conca d’atracció i la resta de l’espai. El flux
que no és atret cap al dit de Saffman-Taylor evoluciona cap a un continu de
punts fixes corresponents a solucions estacionàries de dos dits desiguals que
avancen a la mateixa velocitat. El flux és tal que només apareix competició
reeixida per λ < 1/3, i aquesta és poc significativa (s’eliminen dits molt
petits).

L’interès des del punt de vista de sistemes dinàmics es troba en l’estudi
de propietats globals del flux de l’espai fàsic i no en l’estudi de trajectòries
particulars. Per comparar la dinàmica del problema amb i sense tensió super-
ficial cal definir adequadament els sistemes dinàmics a comparar. Prenent un
conjunt unidimensional de condicions inicials del tipus definit per l’Eq. (15)
podem definir un sistema dinàmic S2(B) evolucionant-les en ambdós sentits
temporals sota una tensió superficial finita B. El sistema dinàmic S2(B)
és de dimensió 2 com el definit pel model mı́nim, que anomenarem L2(1/2)
(prenem λ = 1/2, el valor seleccionat per tensió superficial petita). A la
Ref. [MC98] es va mostrar que els dos sistemes dinàmics, S2(B) i L2(1/2) no
són topològicament equivalents i que de cap manera L2(1/2) pot ser el ĺımit
de S2(B → 0). Aquesta diferència és deguda a que el punt 2ST (el doble dit
de ST) és un punt fix hiperbòlic (sella) en el sistema regularitzat amb tensió
superficial petita i en canvi a L2(1/2) és un punt fix no hiperbòlic. D’altra
banda, el flux del sistema dinàmic L2(1/2) és estructuralment inestable d’a-
cord amb el teorema de Peixoto [GH83] degut a l’existència del continu de
punts fixes, cosa que el fa inacceptable des d’un punt de vista f́ısic.

0.3 Més enllà del model mı́nim

El model mı́nim de la secció anterior presenta caracteŕıstiques que el fan
inacceptable des d’un punt de vista f́ısic, en particular és estructuralment
inestable. És clar que la introducció de la tensió superficial transformaria
el flux en l’espai fàsic de manera que el sistema dinàmic seria estructural-
ment estable i el punt 2ST tindria el comportament sella desitjat, però el
que cerquem és la possibilitat d’obtenir aquesta estructura dins de la classe
de solucions exactes sense tensió superficial. Però com veurem, això no és
possible, de manera que l’única manera d’obtenir la hiperbolicitat desitjada
és mitjançant la inclusió de la tensió superficial. I aquest és el punt clau de
l’escenari de solvabilitat dinàmica que proposarem.
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0.3.1 Extensió en 2 dimensions

Una possible modificació de la solució Eq. (15) estudiada a la secció anterior
és

f(ω, t) = − lnω + d(t) + (1− λ+ iε) ln[1− α(t)ω]

+(1− λ− iε) ln[1 + α(t)∗ω] (16)

on ε és una constant de moviment real i positiva. L’Eq. (16) és solució de
l’equació d’evolució Eq. (13) amb B = 0, i descriu genèricament dos dits
axisimètrics desiguals, amb la particularitat (en comparació amb el model
mı́nim) que els dits poden presentar laterals no para l.lels i estretament a la
base. A més, la solució Eq. (16) presenta singularitats a temps finit per un
conjunt determinat de condicions inicials, aix́ı com situacions en les que la
interf́ıcie es creua sobre ella mateixa, bé un cop (quan un zero de ∂ωf(ω) és
a l’interior del cercle) o bé dos.

El flux en l’espai fàsic d’aquesta solució és força diferent del cas estudiat
anteriorment: el continu de punts fixes existent per ε = 0 desapareix, per
tant aquesta solució śı que presenta competició reeixida per a qualsevol valor
de λ i ε 6= 0. Els únics punts fixes existents són la interf́ıcie plana PI i el
dit de Saffman-Taylor, que està degenerat en dos punts, 1ST(L) i 1ST(R)
que representen les dues maneres d’aproximar-se al dit de Saffman-Taylor
amb interf́ıcies que originàriament tenen dos dits. Ara bé, en desaparèixer
el continu de punts fixes també ha desaparegut el punt fix 2ST. Les conques
d’atracció de 1ST(L) i 1ST(R) no estan separades per una trajectòria sepa-
ratriu que neixi a PI i mori en un punt sella, com seria d’esperar, sinó per la
regió de condicions inicials que desenvolupen singularitats a temps finit.

Per poder comparar la dinàmica de B = 0 amb la de B 6= 0 fem servir
la construcció introdüıda per Magdaleno i Casademunt [MC98], comentada
prèviament. De la mateixa manera constrüım el sistema dinàmic amb tensió
superficial finita S2(B) que podem comparar amb el definit a partir de
l’Eq. (16) amb λ = 1/2, L2(1/2, ε). Ambdós sistemes tenen en comú (en
el ĺımit B → 0) no només els punts fixes PI, 1ST(L) i 1ST(R) sinó també la
trajectòria corresponent al dit de Saffman-Taylor depenent del temps. Però
en canvi a S2(B) ha d’existir necessàriament un punt fix tipus sella connectat
a una trajectòria separatriu fronterera entre les conques d’atracció de 1ST(L)
i 1ST(R), ja sigui 2ST o un punt fix equivalent. Contràriament el sistema
dinàmic de tensió superficial zero L2(1/2, ε) no té aquest punt fix, i per tant
no pot descriure en cap cas la dinàmica correcta (amb B finita) d’una manera
global encara que hi hagi competició reeixida. No obstant això, els nostres
resultats no exclouen l’existència de trajectòries f́ısicament acceptables ben
descrites pel mapa Eq. (16).
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0.3.2 Generalització a dimensions superiors

Fins ara hem demostrat que les solucions exactes Eqs. (15) i (16) no poden
descriure la dinàmica del problema f́ısic amb tensió superficial petita, però
això no implica res sobre la resta de solucions exactes de B = 0. Per tant,
el que s’ha fet és generalitzar els resultats anteriors al conjunt de solucions
exactes de tipus logaŕıtmic, la classe descrita per l’Eq. (14).

Les solucions estudiades fins ara són axisimètriques, i per verificar que
aquesta propietat geomètrica no té cap influència en la dinàmica de com-
petició de dits hem estudiat solucions exactes de dimensió baixa (2 i 3) amb
dits no axisimètrics, obtenint que els diagrames fàsics són qualitativament
iguals als de les solucions anteriors, i per tant les conclusions obtingudes no
depenen de l’axisimetria dels dits.

Hem vist que en introduir una part imaginària (el terme iε) a la constant
que multiplica el logaritme apareixien singularitats a temps finit en forma
de cúspide. L’aparició de cúspides no és una particularitat de l’Eq. (16) sinó
una propietat general de les solucions logaŕıtmiques del tipus

f(w, t) = − lnw + d(t) +
N∑
j=1

γj ln [1− αj(t)w] (17)

presentades anteriorment (Eq. (14)). Hem demostrat que si algun γj té
una part imaginària no nu l.la aleshores a l’evolució de f(w, t) apareixeran
cúspides per un conjunt de condicions inicials de mesura no nu l.la, reproduint
per tant les patologies que fan que la solució Eq. (16) no sigui f́ısicament
acceptable. D’altra banda, si tots els coeficients γj són reals es pot de-
mostrar [MWK99] que existeixen continus de punts fixes de manera que 2ST
no és un punt sella i per tant l’estructura de punts fixes hiperbòlics necessària
per descriure correctament la dinàmica és absent. Per tant, hem demostrat
que les solucions exactes conegudes de tensió superficial zero no poden de-
scriure en cap cas la dinàmica f́ısica d’una manera global, degut a que no
contenen l’estructura de punt sella del doble dit, essencial per donar compte
de la competició de dits.

0.3.3 Les solucions de B = 0 i la solvabilitat dinàmica

Les solucions de tensió superficial zero no són f́ısiques d’una manera global,
com acabem de veure. Aleshores, quin és el seu paper en la descripció dels
fluxos de Hele-Shaw? El fet que els ĺımits B → 0 i B = 0 no coincideixin
és una mostra del caràcter de pertorbació singular de la tensió superficial.
Tanveer [Tan93] va demostrar que el seu efecte es manifesta a la interf́ıcie
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en un temps d’ordre 1 fins i tot per valors de B arbitràriament petits, i que
després l’evolució amb i sense tensió superficial és dramàticament diferent
en general. Però per a temps inferiors la tensió superficial actua com una
pertorbació regular de la dinàmica de B = 0, i per tant per situacions no
molt allunyades de la interf́ıcie plana (si bé dins del règim no lineal) les
solucions de tensió superficial zero són una bona descripció del problema
f́ısic. A més, Siegel i Tanveer [ST96] van mostrar que l’evolució del dit de
Saffman-Taylor depenent del temps convergia regularment a la solució f́ısica,
triant és clar el valor de λ d’acord amb la teoria de selecció. Tot plegat indica
que existeixen trajectòries particulars, o conjunts de trajectòries que estan
ben descrites per les solucions de B = 0, si més no qualitativament, i fins i
tot quantitativament en alguns casos (com per exemple el dit ST depenent
del temps), però aquestes trajectòries correctes no es poden distingir a priori
de les incorrectes, i es fa necessari recórrer al càlcul numèric per saber si una
trajectòria particular convergeix regularment a la dinàmica f́ısica.

Els resultats que hem exposat fins ara ens permeten concloure que el pa-
per de la tensió superficial sobre les solucions exactes de B = 0 és restaurar la
hiperbolicitat del punt fix del doble dit. D’acord amb la teoria de solvabilitat
microscòpica que s’aplica al cas estacionari del dit de ST la tensió superficial
transforma un continu de punts fixes (no hiperbòlics) en un conjunt discret
de punts fixes inestables excepte un punt fix estable, i en solucions de dos dits
estacionaris Magdaleno i Casademunt [MC99] van aplicar la teoria de solv-
abilitat obtenint que el continu de punts fixes es transforma sota l’acció de
la tensió superficial en un conjunt discret de punts fixes inestables, llevat de
2ST que és un punt sella. Aquest darrer efecte és dinàmic en contrast amb la
selecció de l’amplada del dit, i això ens du a proposar un escenari de solvabil-
itat dinàmica en el qual la tensió superficial transforma els continus de punts
fixes corresponents a solucions amb N dits en conjunts discrets de punts fixes
inestables i alguns de tipus sella, transformant radicalment el flux de l’espai
fàsic i restaurant la hiperbolicitat del problema f́ısic. L’anomenem dinàmica
perquè contràriament al que succeeix en la selecció clàssica (estàtica) en
aquest cas la dinàmica es veu fortament inflüıda per la tensió superficial, en
implicar una profunda reestructuració de l’espai fàsic.

0.4 Efectes singulars de la tensió superficial

en la dinàmica de dits

L’efecte de la tensió superficial en les solucions exactes de B = 0 i en par-
ticular en la solució Eq. (3.2) és poc conegut. Des d’un punt de vista teòric
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l’única tècnica disponible per estudiar l’efecte d’una tensió superficial petita
sobre les solucions exactes és la teoria asimptòtica desenvolupada per Tan-
veer [Tan93], que detalla com l’estructura anaĺıtica de les solucions es veu
modificada per la tensió superficial i permet predir de manera quantitativa el
rang de validesa de les solucions exactes, però no l’efecte de B en la interf́ıcie.
Per determinar aquests efectes s’ha de recórrer al càlcul numèric directe de
l’evolució de la interf́ıcie.

La teoria de la selecció del dit estacionari fixa quin ha de ser el valor de
l’amplada del dit, 1/2 per B → 0, de manera que aquelles solucions amb
λ 6= 0 s’haurien de veure afectades notablement per la inclusió de tensió
superficial. Però quin serà l’efecte sobre les solucions amb un valor de λ
compatible amb la selecció?

0.4.1 Teoria asimptòtica

La teoria pertorbativa asimptòtica [Tan93, ST96] és aplicable per 0 < B � 1,
i descriu els efectes de la introducció d’un valor petit de B sobre condicions
inicials f(ω, 0) especificades a tot el pla complex. Aix́ı, la teoria prediu els
efectes sobre les singularitats i els zeros de f , que és el que determina en
última instància la forma de la interf́ıcie.

Aplicada a les solucions exactes de tipus logaŕıtmic, la teoria ens diu que
la tensió superficial provoca l’aparició d’un nou tipus de singularitats, i al
mateix temps deixa bàsicament inalterades les singularitats tipus pol i els
zeros inicials. Aquest nou tipus de singularitats rep el nom de singularitats
filles, i sorprenentment la seva dinàmica ve determinada únicament per la de
la solució de B = 0, i no depèn de la tensió superficial. Quan les singularitats
filles, inicialment formades lluny del cercle unitat (i per tant lluny del domini
f́ısic) s’atansen al cercle unitat el seu efecte sobre la interf́ıcie és gran, de
manera que aquesta diferirà significativament de la solució de B = 0. A més,
com que la dinàmica de les singularitats ve determinada únicament per la
solució de B = 0 i és independent de B l’impacte de la filla sobre el cercle
unitat es produeix en un temps t = O(1) en el cas que l’impacte tingui lloc.

Hem aplicat la teoria pertorbativa asimptòtica a la solució Eq. (16), i un
estudi qualitatiu ens ha permès concloure que per λ < 1/2 la singularitat filla
sempre impacta, i per tant els efectes de la tensió superficial es manifesten
en un temps d’ordre 1. En canvi, per λ ≥ 1/2 un estudi qualitatiu no
és concloent i cal recórrer al càlcul expĺıcit de l’evolució de les filles. El
resultat del càlcul numèric confirma els resultats qualitatius per λ < 1/2 i fa
prediccions concretes per λ ≥ 1/2, on segons els valors de λ, ε i la condició
inicial l’impacte de la filla es produirà en t = O(1) o bé en t = O(− lnB).
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Figura 1: Evolució de condicions inicials amb la forma Eq. (16), amb λ = 1/2
i ε = 0. v1 i v2 són les velocitats de la punta dels dits, les ĺınies cont́ınues
corresponen a B = 0.01 i les discontinues a B = 0. En aquesta representació
el continu de punts fixes ha co l.lapsat en un únic punt (no hiperbòlic), el
punt (2, 2).

0.4.2 Càlcul numèric

La teoria asimptòtica només ens informa de quan es manifestarà l’efecte de
la tensió superficial, però aporta molt poca informació sobre com es veu
modificada la interf́ıcie. Per poder quantificar i precisar l’efecte de l’impacte
de la filla sobre la interf́ıcie cal recórrer al càlcul numèric de les equacions
d’evolució. Hem desenvolupat un codi numèric amb aquesta finalitat, seguint
l’esquema desenvolupat per Hou, Lowengrub i Shelley [HLS94]. El codi inte-
gra les equacions fent ús del formalisme de la funció corrent, és espectralment
acurat i no pateix encarcarament (les severes restriccions en el pas de temps
degudes als termes de derivades espacials altes).

Les interf́ıcies inicials tenen la forma de l’Eq. (16), properes a la interf́ıcie
plana, i amb λ = 1/2, per intentar sostreure l’efecte de la tensió superficial
degut a la selecció de l’amplada i poder estudiar únicament l’efecte en la
dinàmica. Els valors de B que hem estudiat són petits, en el rang 10−2–
10−4. Ens hem concentrat en els dos valors representatius ε = 0 i ε = 0.1, i
hem estudiat tan condicions inicials concretes amb valors decreixents de B
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Figura 2: Evolució d’una condició inicial amb la forma Eq. (16), λ = 1/2 i
ε = 0.1. Les ĺınies cont́ınues corresponen a B = 0.005 i les discontinues a
B = 0. L’interval temporal entre corbes és 0.5. Per apreciar millor l’evolució
del dit lateral s’ha afegit una regió extra, i per tant el canal f́ısic en la direcció
y s’extén des de l’origen fins a la ĺınia de punts.

com conjunts amplis de condicions inicials aplicant un únic valor de B. Per
a ε = 0 hem observat que la introducció d’una tensió superficial petita té
l’efecte d’alentir el dit petit, de manera que aquest és eliminat del procés de
competició i el dit inicialment gran guanya i s’eixampla fins assolir l’amplada
que li pertoca d’acord amb la teoria de selecció. És a dir, en introduir la
tensió superficial el sistema no evoluciona cap als punts del continu de punts
fixes sinó cap al dit de Saffman-Taylor, com es veu a la figura 1, restaurant
la hiperbolicitat del flux en l’espai de les fases i confirmant l’escenari de
solvabilitat dinàmica. A més, hem comprovat que l’efecte en la interf́ıcie
és conseqüència de l’impacte de la singularitat filla verificant prediccions
concretes de la teoria asimptòtica. En el cas de ε = 0.1 (i en general per
ε 6= 0) hem observat dos tipus diferents de comportaments: en un la tensió
superficial no canvia qualitativament la dinàmica, i en canvi en l’altre un
valor de B 6= 0 té efectes dramàtics en l’evolució, ja que és capaç de modificar
la dinàmica fins al punt d’invertir el resultat de la competició de dits, fent
que el dit que guanya amb B = 0 perdi quan B 6= 0, com s’exemplifica a
la figura 2. Això succeeix per un conjunt força significatiu de condicions
inicials en les quals els dos dits tenen longituds comparables, és a dir, per
configuracions interficials on hom espera que els mecanismes de competició
siguin importants. Aquesta regió de condicions inicials on la competició està
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erròniament descrita per la solució està limitada per la separatriu entre les
conques d’atracció de 1ST(L) i 1ST(R) amb B 6= 0, i la posició concreta
de la separatriu depèn de B. Però en fer B → 0 hem observat evidències
de l’existència d’una trajectòria separatriu ĺımit, i la posició d’aquesta està
clarament lluny de la regió separatriu de les solucions de B = 0: les solucions
de B = 0 no convergeixen regularment a B 6= 0 encara que la seva evolució
sigui suau per tot temps i tinguin l’amplada asimptòtica correcta. La raó
d’això és el fet que les solucions de B = 0 no tenen l’estructura de punt sella
del doble dit, essencial en el mecanisme de competició de dits, i per tant de
cap manera poden descriure correctament el fenomen de competició. L’efecte
de l’impacte d’una filla en la interf́ıcie és en general l’alentiment del dit on es
produeix l’impacte, seguit de l’eixamplament del dit més avançat, de manera
que com a recepta general el dit que va guanyant la competició en el moment
de l’impacte és el que acaba vencent, i només quan no queda clar quin dit
guanya (pot ser que un dit estigui més avançat però que tingui una velocitat
menor) la regla pot no ser aplicable.

0.5 Dinàmica de dits viscosos amb contrast

de viscositat arbitrari. Dits i bombolles.

Fins ara hem estudiat fluxos de Hele-Shaw en el ĺımit de contrast de vis-
cositats alt, on la interf́ıcie asimptòtica consisteix en un únic dit, el dit de
Saffman-Taylor, al qual s’arriba després d’un procés de competició en el qual
els altres dits presents inicialment són eliminats. Però aquesta fenomenolo-
gia no es produeix per qualsevol valor de c, com s’ha observat experimental-
ment [Mah85] i numèricament [TA83, CJ94], sinó que per valors del contrast
de viscositat baixos el dit de Saffman-Taylor no és l’atractor universal del
problema. A més, la mida de la conca d’atracció del dit de ST sembla de-
pendre del valor de c. Aquesta fenomenologia és la que ens hem proposat
d’estudiar, fent ús de l’adaptació del codi numèric desenvolupat per c = 1
a qualsevol valor de c, ja que la manca de solucions exactes del problema
impedeix la utilització dels mètodes usats per c = 1.

0.5.1 La conca d’atracció del dit de Saffman-Taylor

El nostre objectiu és caracteritzar la conca d’atracció del dit de ST i els altres
atractors del problema en funció del valor de c. Primer de tot cal triar una
famı́lia de condicions inicials apropiada pel problema que volem estudiar, i
donat que la competició de dits requereix com a mı́nim dos dits hem triat la
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Figura 3: Evolució de condició inicial a1 = 0.05, a2 = 0.07285, amb B = 1/7
i c = 0.0 (gràfic superior), c = 0.8 (gràfic inferior).

següent condició inicial de dos modes:

x(y) = −a1 cos(y) + a2 cos(2y), (18)

on a1 i a2 són reals i positius. La interf́ıcie inicial tindrà dos dits si a1 < 4a2, i
ambdues amplituds es prenen prou petites com per assegurar que la interf́ıcie
es troba en el règim lineal. En calcular l’evolució de la condició inicial Eq. (18)
hem observat dos tipus diferents de comportament, que anomenarem tipus I
i tipus II. En el tipus I el mecanisme de competició actua plenament i un dels
dits ‘guanya’ la competició assolint la forma del dit de ST, i en canvi l’altre
dit, el petit, veu alentit el seu creixement fins a quedar totalment aturat
o fins i tot eliminat. A l’altre tipus de dinàmica la competició no arriba a
dominar la dinàmica de manera que el dit petit no s’atura, encara que la seva
velocitat pot ser menor que la de l’altre. En general, el dit gran desenvolupa
un estretament a prop de la base del dit, i en alguns casos aquest estretament
es fa extraordinàriament prim, fins al punt que la part avançada del dit té
la forma d’una bombolla. Per al dit petit hem observat diferents tipus de
dinàmica: desdoblament del dit, estretament aprop de la base que tendeix a
la formació d’una bombolla, i creixement sense cap altre peculiaritat. Els dos
tipus diferents de comportament estan i l.lustrats a la figura 3. Donada una
condició inicial i un valor de B el sistema exhibirà un o altre comportament
depenent del valor de c.
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Figura 4: cT en funció de d, per a una condició inicial amb la forma de
l’Eq. (18) i B = 1/7.

Per a caracteritzar com canvia la mida de la conca d’atracció del dit
de Saffman-Taylor hem realitzat un estudi sistemàtic del comportament del
sistema a temps llargs per a diferents valors de c i diferents valors de a1 i
a2. Per a reduir el nombre de possibles valors dels paràmetres hem triat
el valor de la tensió superficial de manera que els dos modes de la condició
inicial Eq. (18) creixen exactament a la mateixa velocitat, i aix́ı qualsevol
condició inicial (dins del règim lineal) que tingui el quocient a1/a2 igual serà
equivalent, en el sentit que el sistema pot anar d’una a l’altra simplement
canviant l’origen temporal. D’aquesta manera les condicions inicials passen a
ser un conjunt uniparamètric d’interf́ıcies. Hem explorat el valor del contrast
de viscositats en el qual es produeix la transició d’un tipus de comportament
a l’altre, i els resultats es poden veure a la figura 4, on cT és el valor del
contrast on es produeix el canvi de comportament i d és el paràmetre que
descriu la condició inicial. d és el quocient entre la distància entre les puntes
dels dits i l’amplada de la interf́ıcie, de manera que per d = 0 els dos dits
són iguals i per d = 1 només hi ha un dit. Es pot veure clarament com en
reduir el contrast la mida de la regió de condicions inicials en la qual el dit
de ST és l’atractor es redueix ràpidament, de manera que el comportament
genèric és més aviat el de contrast baix, i la sensibilitat de la dinàmica a c
és precisament en c ' 1. Els resultats exposats concorden qualitativament
amb la teoria dèbilment no lineal [ALCO01], que prediu que per contrast alt
el mode 2 reforça el creixement del mode 1, i en canvi per a contrast baix el
debilita.
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Figura 5: Evolució d’una condició inicial amb d = 0.5, c = 0.8 i B = 1/7. La
corba de més a la dreta correspon a t = 16 i la intermèdia a t = 4.

0.5.2 La bombolla de Taylor-Saffman

S’ha observat que dins del comportament de tipus II en algunes ocasions el
dit avançat per a temps llargs desenvolupa una quasibombolla a la seva part
davantera, connectada a la resta de la interf́ıcie per un coll molt estret, com
es pot veure a la figura 5. Aquesta quasibombolla té una forma molt similar
a la de la solució exacta de B = 0 trobada per Taylor i Saffman [TS59], que
és

x =
2

π

U − 1

U
tanh−1

[
sin2(

π

2
Uλ)− cos2(

π

2
Uλ) tan2(

U

4
y − π

2
U)

] 1
2

(19)

i que té dos paràmetres, la velocitat U de la bombolla i l’amplada λ. La
solució Eq. (19) planteja un problema de selecció anàleg al del dit de Saffman-
Taylor: donat un valor a l’àrea de la bombolla, λ i U no queden determinats,
sinó que existeix un continu de solucions. Tanveer [Tan86, Tan87b] va de-
mostrar que la introducció de la tensió superficial selecciona l’amplada (i per
tant la velocitat) de la bombolla.

Hem comparat la forma de la solució Eq. (19) amb les quasibombolles
observades, escollint λ i U de manera que l’acord entre les dues sigui el
millor possible, i hem obtingut que l’acord és efectivament molt bo, i força
millor que ajustant el dit de ST a la meitat frontal de la bombolla. Aquests
resultats indiquen que la interf́ıcie, o com a mı́nim una part d’ella està essent
atreta per la solució de la bombolla de Taylor-Saffman, encara que de fet la
regió de bombolla està connectada a la resta de la interf́ıcie.

També s’ha estudiat l’evolució del coll de la bombolla, aix́ı com l’àrea
d’aquesta. Ara bé, els resultats respecte a l’evolució del coll no són en absolut
concloents, i no ens permeten dir si la interf́ıcie es trencarà o no, i si ho
farà en un temps finit. D’altra banda, Almgren [Alm96] ha obtingut fortes
evidències de l’existència de trencament en temps finit en fluxos de Hele-
Shaw en configuracions sense injecció, i això ens suggereix que en el nostre
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sistema també es produirà aquest trencament. Hem observat que l’àrea de
la bombolla creix, però aquest creixement s’alenteix notablement quan la
bombolla està ben formada, si bé els temps que duren els càlculs no permeten
discernir si l’àrea acaba saturant a un valor estacionari o continua augmentant
sense saturar.

Els nostres resultats no permeten decidir de manera concloent quin és
l’estat estacionari de la interf́ıcie. Les possibilitats són variades: una con-
figuració de dits estacionaris (similars als dits del continu de punts fixes
descrits a la secció 0.2), un dit estacionari més avançat (el dit central) i una
dinàmica persistent del(s) dit(s) petit(s), una situació estacionària amb una
o dos bombolles co l.locades al davant de dits estacionaris, una situació de
dinàmica persistent en la qual la interf́ıcie emet gotes de manera periòdica o
aperiòdica, etc. Per intentar reduir el nombre d’escenaris possibles segura-
ment serien necessaris més resultats experimentals, ja que els disponibles fins
ara [Mah85] són limitats i utilitzen una relació d’aspecte de la ce l.la massa
petita com per estudiar configuracions a temps molt llargs. En qualsevol cas
queda clar que el domini d’atracció del dit de ST és força redüıt degut a
la competició dels atractors tipus bombolla, malgrat que aquests tenen una
topologia diferent.

0.6 Fluxos de Hele-Shaw amb desordre a l’e-

spaiat. Propietats d’escala.

Els tractaments teòrics per estudiar la dinàmica d’interf́ıcies rugoses s’han
basat en general en l’equació KPZ [KPZ86], que és fenomenològica i local.
En canvi, el problema de la invasió forçada d’un medi porós és fortament
no local, i només recentment han aparegut treballs que tenen en compte
aquesta no localitat del problema [GB98, DRE+99, HMSL+01], però aquests
tracten el desordre des d’un punt de vista totalment fenomenològic. Nos-
altres ens proposem estudiar un medi porós model, la ce l.la de Hele-Shaw
amb desordre en l’espaiat, i derivar-ne ab initio una equació interficial que
contingui la no localitat i tots els efectes del soroll d’una manera controlada
(no fenomenològica), i estudiar-ne les propietats d’escala.

0.6.1 Modelització d’una ce l.la de Hele-Shaw d’espaiat
inhomogeni

Considerem una ce l.la de Hele-Shaw amb espaiat no homogeni b = b(x, y).
Si la variació de b és prou suau, |∇b| � 1, aleshores la llei de Darcy és vàlida
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localment, de manera que

v = −b(x, y)2

12µ
∇p (20)

i imposant incompressibilitat la velocitat (bidimensional) satisfà

∇ · (bv) = 0. (21)

Definim p = p0 + δp, de manera que ∇p0 = 0, o sigui, separem la pressió en
una part laplaciana i una part no laplaciana. Aleshores, la pressió obeeix

∇2p0 = 0 (22a)

∇2δp+
3∇b
b
· ∇p0 = 0. (22b)

on hem negligit un terme d’ordre |∇b|2. El salt de pressions a la interf́ıcie ve
donat per

p2 − p1 = σ(κ‖ + κ⊥) = σ

(
κ‖ +

2 cos θ

b(x, y)

)
(23)

on κ‖ i κ⊥ són respectivament la curvatura para l.lela i perpendicular al pla
de les plaques, i θ és l’angle de contacte entre el menisc i les plaques, de
manera que mullat perfecte implica cos θ = 1. L’altra condició de contorn a
la interf́ıcie imposa que les velocitats normals són iguals, i això implica

µ2∂np1 = µ1∂np2. (24)

Per resoldre l’equació (22) primer resolem l’Eq. (22a) amb la condició de con-
torn completa Eq. (23), i un cop resolta utilitzem p0 per resoldre l’Eq. (22b)
amb la condició de contorn a la interf́ıcie2 δp = 0 mitjançant el teorema de
Green. El fet d’haver triat δp = 0 a la interf́ıcie en facilita considerablement
la resolució. Un cop trobat el camp de pressions total, la velocitat de la
interf́ıcie s’obté mitjançant la llei de Darcy, Eq. (20).

0.6.2 Equació interficial

Un cop modelitzat el nostre sistema, ara considerem el problema de la invasió
forçada de la ce l.la desordenada per un fluid injectat a velocitat constant
V∞. L’espaiat pren la forma b2 = b2

0[1 + ζ(x, y)] on el soroll és de mitjana
nu l.la, 〈ζ(x, y)〉 = 0. En absència de soroll, la interf́ıcie és estable, però la
presència de desordre introdueix rugositat a la interf́ıcie. Considerant que

2Per contrast arbitrari la condició és δp1 − δp2 = 0.
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aquesta no es desvia gaire de la interf́ıcie plana i que el soroll és dèbil es pot
trobar una equació que per l’alçada h(x, t) de la interf́ıcie a partir del model
descrit. Aquesta en espai de Fourier pren la forma per a qualsevol contrast
−1 ≤ c ≤ 0

∂ĥk
∂t

= V∞

{
δ(k) + c|k|ĥk[1 + (`1k)2]− ζ̂(k)/2− `2|k|ζ̂(k)

}
+Ω̂LR(k, t)− V∞c2|k|

∫ ∞
−∞

dq[1− sgn(kq)]ĥk−qĥq|q|[1 + (`1q)
2] (25)

on

Ω̂LR(k, t) =
3V∞

2

1− c
2
|k|
∫ ∞
−∞
dx′
∫ 0

−∞
dyζ(x′, y + V∞t)e

−ikx′ey|k|

+
3V∞

2

1 + c

2
|k|
∫ ∞
−∞
dx′
∫ ∞

0

dyζ(x′, y + V∞t)e
−ikx′e−y|k|, (26)

ĥk i ζ̂(k) són respectivament les transformades de Fourier de h(x) i ζ(x, h)
i δ(k) és la distribució delta de Dirac. Per obtenir l’Eq. (25) s’ha fet servir
la teoria dèbilment no lineal per als fluxos de Hele-Shaw desenvolupada a la
Ref. [ALCO01] i s’han inclòs els termes lineals i quadràtics en h i els lineals
en el soroll ζ.

Les longituds caracteŕıstiques `1 i `2 que apareixen a l’equació estan
definides en termes del nombre de capi l.laritat Ca = 12(µ1 + µ2)V∞/σ com

`1 =
b0√
|c|Ca

i `2 =
b0 cos θ

Ca
. (27)

El soroll original en l’espaiat es manifesta en diferents termes (i efectes f́ısics)
en l’equació interficial (25). Primer, un terme de soroll conservat i no local
`2|k|ζ̂(k) que anomenarem soroll capi l.lar ja que és conseqüència de la variació
en la capi l.laritat deguda a la variació de l’espaiat. El terme de soroll no
conservat local ζ̂(k)/2 en canvi és una combinació dels efectes de l’espaiat
en la permeabilitat i de la conservació de volum de fluid. A més, és fàcil
de verificar que aquest terme assegura la conservació del volum total de
fluid injectat. Finalment, el terme Ω̂LR té en compte l’efecte del soroll en
tota l’àrea ocupada per fluid. Aquest terme es mereix un comentari ja que
introdueix correlacions de llarg abast, com es pot veure de l’expressió

〈Ω̂LR(k, t)Ω̂LR(k′, t′)〉 = ∆

(
3V∞

2

)2

π|k|δ(k + k′)e−V∞|k||t−t
′|. (28)

pel cas en que ζ és un soroll blanc i on per simplicitat hem considerat c = −1.
Per tant, Ω̂LR és de manera efectiva un soroll dinàmic i de llarg abast tant
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en l’espai com en el temps. Aquest tipus de sorolls de llarg abast han estat
proposats [GB98] qualitativament per explicar les propietats d’escala de la
interf́ıcie, però aquesta és la primera derivació microscòpica d’aquest tipus
de soroll.

La presència de les dues longituds `1 i `2 a l’Eq. (25) introdueix diferents
règims d’escala a l’equació. La longitud `1 marca la ben coneguda escala de
longitud per a la qual les forces viscoses dominen sobre les forces capi l.lars, i
la nova escala `2 controla la longitud en la qual el soroll no conservat passa
a dominar sobre el soroll conservat capi l.lar.

0.6.3 Propietats d’escala

La presència de soroll en el sistema provoca que la interf́ıcie s’arrugui, i són
precisament les propietats d’escala d’aquesta interf́ıcie arrugada allò que ens
proposem estudiar.

Les dues longituds `1 i `2 determinen la presència de fins a tres règims
d’escala diferents, assumint és clar que `1 i `2 són molt diferents i que la mida
L del sistema és força més gran que ambdues longituds. Per simplicitat,
considerarem el cas experimentalment més usual en el que un fluid viscós
que mulla totalment en desplaça un de no viscós, de manera que hom té
c = −1 i cos θ = 1. En aquest cas, `1 < `2. Aleshores el primer règim o
règim capi l.lar està definit per `1|k| � 1, i en aquest dominen els termes
capi l.lars, tant el determinista com el de soroll. Hi ha un règim intermedi en
el que dominen el terme determinista proporcional a |k| i el terme de soroll
capi l.lar, i que ve definit per `1|k| � 1� `2|k|. Finalment, existeix un tercer
règim en el qual les forces viscoses dominen, és a dir, en que el comportament
d’escala de l’equació ve donat pel terme determinista proporcional a |k| i el
soroll no conservat. En aquest darrer règim es satisfà `2|k| � 1. En aquesta
discussió no s’ha tingut en compte el terme de soroll de llarg abast Ω̂LR ni
els termes quadràtics, ja que es pot veure que Ω̂LR no afecta habitualment
l’escalat asimptòtic i els termes quadràtics només podrien afectar-lo en el
règim capi l.lar, com mostren arguments de recompte de potències.

En el cas de soroll dinàmic ζ = ζ(x, t) o columnar ζ = ζ(x) l’Eq. (25)
es pot resoldre exactament3. Aix́ı, en el règim capi l.lar s’obté α = 3/2 i
β = 1/2 per soroll columnar i α = β = 0 per soroll dinàmic; en el règim
intermedi la interf́ıcie no és rugosa (els exponents són negatius); i en el règim
dominat per les forces viscoses els exponents són α = 1/2 i β = 1/2 per
soroll columnar i α = β = 0 per dinàmic. Ara bé, cal tenir en compte que
en el règim capi l.lar el terme quadràtic és rellevant i la seva inclusió podria

3Negligint els termes quadràtics i el terme de soroll de llarg abast Ω̂LR.
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i l’altra recta té pendent −4 (α = 3/2).

modificar els exponents que hem donat.

En canvi, per soroll congelat ζ = ζ(x, h) l’Eq. (25) no té solució exacta,
i per intentar determinar el seu comportament d’escala hem recorregut a la
simulació numèrica. Per tant, hem simulat l’Eq. (25) en cadascun dels tres
règims, incloent només els termes (lineals) rellevants.

A la figura 6 es mostra un exemple del factor d’estructura obtingut de la
simulació. El comportament a k gran (longituds petites) α ' 1.5 correspon a
tenir soroll columnar, i a k intermèdies o petites hem obtingut uns exponents
de rugositat en el rang α ' 1.2 − 1.3 escombrant un ampli rang de mides
de sistema i diferents valors de Ca i V∞. Per velocitats grans també hem
observat α ' 0 per k petita, que és el valor que correspon a soroll dinàmic.
Finalment, en algun cas també hem observat per k petita valors α < 1 però
clarament diferents dels comportaments citats, però seria necessari simular
sistemes més grans i temps més llargs per acabar de precisar aquest compor-
tament. També hem estudiat com els termes quadràtics no lineals afecten els
resultats anteriors, i hem observat que la introducció de termes quadràtics no
canvia apreciablement els exponents, almenys en els temps que hem simulat,
si bé aquest estudi no ha estat realitzat de manera sistemàtica.

En el règim intermedi els resultats de la simulació mostren que la interf́ıcie
no és rugosa, cosa previsible vist el comportament pels sorolls dinàmic i
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columnar.

En el règim viscós caracteritzat per `2|k| � 1 hem obtingut que la in-
terf́ıcie és logaŕıtmicament rugosa, encara que per sorolls molt intensos aquest
comportament es pot veure modificat.

Finalment, hem comparat els nostres resultats amb els obtinguts experi-
mentalment per en Soriano i co l.laboradors [HMSL+01, SRR+02, SOHM02b,
SOHM02a]. En aquests experiments s’utilitza una ce l.la de Hele-Shaw on
l’espaiat pot prendre únicament dos valors, de manera que el soroll és di-
cotòmic i presenta pendents grans. Això implica que la llei de Darcy local
no serà vàlida a tot arreu, i en particular en els punts on l’espaiat canvia
bruscament de valor, on es donen fenòmens d’ancoratge. Malgrat tot, com
que aquests són els únics experiments disponibles d’espaiat desordenat (en
alçada) compararem breument els nostres resultats amb els seus. Experi-
mentalment observen tres règims d’escala diferents en funció dels paràmetres
experimentals, que són la velocitat d’injecció i l’espaiat. Per a velocitats
grans o espaiats grans (que correspon a sorolls dèbils) obtenen que per k
petit l’exponent de rugositat és α ' 0 i per k grans α ' 1.3. D’acord amb
els seus paràmetres experimentals el règim on es troben és el capi l.lar, i els
nostres resultats són plenament compatibles amb els seus, per tant el nostre
model descriu la f́ısica del seu experiment en el règim de velocitats altes o
espaiats grans (sorolls dèbils). En canvi per espaiats petits o velocitats pe-
tites els resultats experimentals no coincideixen amb les nostres prediccions.
Tampoc no és satisfactori l’acord entre experiment i teoria en el cas de soroll
columnar, però en aquest cas és clarament atribüıble a l’ancorament de la in-
terf́ıcie a les vores, el qual juga un paper determinant donada la persistència
del soroll.

0.7 Conclusions i perspectives

Els principals objectius d’aquesta tesi han estat d’una banda l’estudi de la in-
fluència de la tensió superficial, i en menor mesura del contrast de viscositats
en la dinàmica de Saffman-Taylor, i de l’altra la formulació de les equacions
de Hele-Shaw en presència de desordre, aix́ı com les seves propietats d’escalat.

Per assolir el primer objectiu hem estudiat exhaustivament, des del punt
de vista de sistemes dinàmics, solucions exactes del problema amb tensió su-
perficial zero i contrast de viscositat unitat que exhibeixen competició reeix-
ida i que contenen els atractors f́ısics del problema amb tensió superficial
finita. La comparació de les propietats del flux a l’espai de les fases d’aque-
stes solucions exactes amb el flux fàsic de les solucions de tensió superficial
arbitràriament petita (però finita) associades, ens ha permès concloure que
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el flux fàsic d’aquelles solucions exactes no és topològicament equivalent al
de les solucions de tensió superficial petita, i que per tant les solucions ex-
actes de tensió superficial zero no són una bona descripció de la dinàmica del
problema regularitzat. Aquestes conclusions s’han estès a la classe de solu-
cions exactes amb trajectòries lliures de singularitats, de manera que s’ha
pogut concloure de manera general que la dinàmica de tensió superficial zero
és essencialment diferent de la dinàmica de tensió superficial finita, degut
a que en la dinàmica de tensió superficial zero no és present cap punt fix
tipus sella, i śı en canvi punts fixes no hiperbòlics o singularitats a temps
finit. Hem proposat un escenari de selecció dinàmica per explicar l’efecte
de la tensió superficial en les solucions exactes. En aquest marc el paper
de la tensió superficial seria el de restaurar la hiperbolicitat dels punts fixes
no hiperbòlics, recuperant l’estructura de punt fix tipus sella present en el
problema regularitzat.

Per entendre els efectes concrets de la tensió superficial en les solucions
exactes estudiades hem aplicat la teoria asimptòtica desenvolupada per Tan-
veer, i hem obtingut que la tensió superficial sempre afecta significativa-
ment en un temps d’ordre 1 aquelles solucions d’amplada asimptòtica menor
que 1/2, i afecta significativament conjunts finits de trajectòries fàsiques de
solucions d’amplada major o igual a 1/2, també en temps d’ordre 1. Per
quantificar aquests efectes hem desenvolupat un codi numèric per calcular
l’evolució de les solucions amb tensió superficial petita. Aquest codi és es-
table, espectralment acurat, no presenta restriccions en l’increment temporal
associades a l’encarcarament de les equacions, permet assolir valors molt pe-
tits de la tensió superficial i controla la influència del soroll numèric. Fent
ús d’aquest codi hem obtingut que la introducció de la tensió superficial
restaura la hiperbolicitat del punt fix corresponent al doble dit de Saffman-
Taylor, regularitza les singularitats a temps finit i canvia el resultat final de
la competició de dits per amplis conjunts de condicions inicials. En conclusió,
la tensió superficial afecta dramàticament la dinàmica de tensió superficial
zero degut al seu caràcter de pertorbació singular, i és per tant essencial per
a descriure la dinàmica dels fluxos de Hele-Shaw.

L’efecte del contrast de viscositats en la dinàmica ha estat menys estudiat,
principalment degut a la pràctica absència de solucions exactes. Hem estudiat
sistemàticament de manera numèrica l’evolució de condicions inicials amb un
i dos dits utilitzant el codi numèric mencionat abans, i hem comprovat que
el dit de Saffman-Taylor no és l’atractor universal del problema, i a més
hem observat que la mida de la seva conca d’atracció disminueix ràpidament
en disminuir el contrast no gaire per sota de la unitat. Hem quantificat la
conca d’atracció del dit de Saffman-Taylor en funció del contrast, utilitzant
una condició inicial triada de manera apropiada. L’atractor alternatiu al de
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Saffman-Taylor és molt complex i no es pot caracteritzar de manera simple,
si bé en alguns casos la dinàmica asimptòtica sembla atreta cap a solucions
de tipus bombolla de Taylor-Saffman.

L’altre objectiu destacat de la tesi ha estat la formulació del flux de Hele-
Shaw amb desordre a l’espaiat entre plaques, que es un sistema model per
al flux a través d’un medi porós. Assumint que aquest desordre és dèbil i
suau s’han pogut obtenir les equacions de Hele-Shaw amb desordre (o soroll)
de manera tancada. Aquestes equacions s’han aplicat a l’estudi de la con-
figuració experimental en la que un fluid viscós desplaça un no viscós i s’ha
obtingut l’equació rellevant per l’alçada de la interf́ıcie. La principal novetat
d’aquesta equació és que inclou tant un soroll conservat com no conservat,
aix́ı com un soroll que inclou la contribució del desordre a tota la regió ocu-
pada pel fluid, i que està correlacionat en el temps i l’espai. Aquesta equació
pot explicar les dificultats per observar el comportament d’escalat en els sis-
temes experimentals, i també les discrepàncies entre diferents experiments.
L’equació permet fer prediccions precises que són experimentalment real-
itzables. S’ha simulat per obtenir el seu comportament d’escalat, obtenint
valors dels exponents de rugositat i creixement compatibles amb alguns dels
resultats experimentals.

Diversos aspectes d’aquest treball han quedat sense resposta, i s’han obert
noves qüestions que han quedat fora de l’abast de la tesi. Les perspectives
futures més generals són les següents:

El model de ce l.la d’espaiat inhomogeni ha estat aplicat al problema de
la invasió forçada d’una ce l.la de Hele-Shaw desordenada, però un altre prob-
lema d’interès igual o superior al que es podria aplicar és el de pressió con-
stant o imbibició, en el qual tampoc es disposa d’una modelització teòrica
apropiada dels efectes del soroll.

L’equació interficial que hem derivat requereix un estudi numèric més
intensiu del que hem pogut realitzar, en particular dels termes quadràtics i
de situacions a prop de les transicions entre règims.

La possible existència de trencament de gotes en el cas de contrast de
viscositat petit és una qüestió de notable interès, i per poder concloure quel-
com caldria utilitzar l’aproximació del lubricant per descriure la zona on es
troba l’estretament, i la solució s’hauria de acoblar a la solució completa per
la resta de la interf́ıcie.

Altres qüestions més espećıfiques que han quedat obertes són:
Hem observat que en alguns casos les solucions exactes presenten tren-

cament de la interf́ıcie (‘pinchoff’) en la configuració estable del problema,
i seria molt interessant estudiar si el trencament sobreviu a la introducció
de la tensió superficial, aplicant la teoria asimptòtica i el càlcul directe de



28 CAPÍTOL 0. RESUM

l’evolució.
Per comprendre millor el comportament asimptòtic de la interf́ıcie seria

bo poder allargar l’extensió dels càlculs numèrics, aix́ı com buscar noves
solucions exactes de B = 0 consistents en una bombolla coexistint amb un o
dos dits situats en eixos de simetria diferents.

En aquesta tesi s’han estudiat numèricament solucions exactes de B = 0
i λ = 1/2, però també seria prou interessant l’estudi de les solucions amb
λ > 1/2 per aclarir el mecanisme que actua per fer que les solucions assoleixin
l’amplada asimptòtica 1/2.

L’estudi de la dinàmica de la interf́ıcie en el cas inestable amb soroll
d’origen f́ısic com el de la Sec. 0.6, sobretot en el cas de B petita és un altre
tema pendent que queda per al futur.
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Chapter 1

Introduction

The spontaneous emergence of macroscopic structure and spatio-temporal
order in spatially extended systems out of uniform, structureless states has
fascinated and puzzled scientists for a long time. These structures are found
in a large number of systems in the fields of physics, chemistry or biology,
and appear when the systems are driven out of thermodynamic equilibrium.
A prototypical example of structure formation out of equilibrium is provided
by the formation of snowflakes (see Fig. 1.1), that from the very begin-
ning of modern science attracted the interest of scientists such as Kepler
(1611) [Kep11]. At the beginning of the twentieth century the landmark
book by D’Arcy Thompson On Growth and Form (1917) [Tho17] set the
stage for a new way of thinking these problems, but it was not until the late
century that both the mathematical tools and the physical thinking were
sufficiently mature to solidify in a well established field. The modern study
of the emergence of structure as a field of physics goes often under the label
of pattern formation out of equilibrium [CH93, Man90, Wal97, NP77], and
its applications extend far beyond traditional physical systems into chemical
or biological ones. Such maturity has been attained in the last few decades
thanks to the confluence of mathematical disciplines such as qualitative anal-
ysis (bifurcation theory) [Cra91] and dynamical systems theory [GH83], the
geometry of fractals [Man77] and the development of nonequilibrium physics
rooted in statistical mechanics and other classical disciplines such as hydro-
dynamics. The rather interdisciplinary character of the field is sometimes
referred to as Nonlinear Science.

One of the subjects included within this general framework is interfacial
pattern formation [Lan80, Lan87, KKa88, Pel88, BM91], where the structure
formed is described in terms of an interface between two or more macroscopic
phases or domains. In many cases the dynamics of the whole problem can
be reduced or projected on the interface, thus reducing the dimensionality
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Figure 1.1: Snow crystal

of the original problem and simplifying its study. But this projection of the
dynamics on the interface may also introduce new aspects that were absent
in the original formulation, typically some degree of nonlocality. From a
mathematical point of view this procedure defines what is known as a free-
boundary problem, in which the object where boundary conditions for PDE’s
are specified is actually moving, and its motion is part of the solution of the
problem.

The motion of interfaces under nonequilibrium conditions poses funda-
mental questions in pattern formation and nonlinear phenomena, as well as
in the mathematics of free-boundary problems. From a historical perspec-
tive, most of them have been motivated by problems encountered in industry
or engineering. Interfacial pattern formation include a variety of systems
and phenomena, such as displacement of fluid interfaces in porous media
or confined geometries (viscous fingering) [BKL+86], solidification of an un-
dercooled melt [CCR92, PA92], electrodeposition [LSSC+97], flame propaga-
tion [Mar51, PC82], or electrical gas discharges (streamers) [Rai91].

Among interfacial pattern formation problems, the case of viscous finger-
ing or Hele-Shaw flows arises as a model system which has become instrumen-
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tal for many years in the search for generic phenomena in related problems.
Due to its relative simplicity, which allows deeper analytical insights but also
a better experimental control, it has become a paradigm of pattern forma-
tion in nonequilibrium interfaces. A Hele-Shaw cell consists of two parallel
plates separated by a very small gap, in such a way that the flow of a viscous
fluid inside the cell can be considered effectively two-dimensional. In a typ-
ical experiment a viscous fluid is displaced by a less viscous one, forming a
nontrivial interfacial pattern. This relatively simple experimental setup gives
rise to a rich variety of nonlinear phenomena and nonequilibrium patterns.
In addition to its experimentally simple conception, it also allows a compact
mathematical formulation, in terms of a field (the pressure) that satisfies the
Laplace equation in the bulk of the fluid, and that must fulfill certain con-
ditions at the boundaries. In particular, the pressure jump at the interface
is proportional to the curvature of the interface1. Once the pressure field is
known, the velocity of the interface is easily computed and the evolution of
the interfacial shape determined. At first sight it does not seem a complicated
problem, but a closer look changes this view: as a prototype free-boundary
problem it faces strong nonlocality due to the laplacian nature of the pressure
field and also strong nonlinearity. In addition, the surface tension acts as a
particularly severe singular perturbation in the problem. In the absence of
surface tension, however, and if the viscosity of one of the fluids is neglected,
the initial value problem can be explicitly solved for some classes of initial
conditions. This surprising fact is one of the most appealing features of Hele-
Shaw flows to the theorist, but also poses a new question: to what extent
do the solutions of the idealized (zero-surface-tension) problem describe the
physical problem with positive surface tension? When one tries to work out
an answer to this question the singular character of surface tension appears
dramatically, challenging theorists to struggle in order to extract the physical
content from the idealized problem. Moreover, in addition to surface tension
there is another important parameter in the problem, the viscosity contrast,
that measures the relative viscosity difference of the fluids. When one of the
two viscosities is not neglected, different and richer dynamics appear, but
at the same time the exact solutions of the idealized problem are no longer
available, making the study of the arbitrary viscosity contrast much more
difficult. Due to the its increased difficulty this case has been neglected for
a long time, and many aspects of its dynamics are still unknown. Another
aspect that has not received sufficient attention is the effect of noise on the

1This is the simpler boundary condition for the pressure jump at the interface. To
complete the formulation of the problem additional conditions at the different boundaries
are necessary, and this will be discussed later on.
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interfacial patterns. Noise of various origins (fluctuations in the distance
between the plates, dust or residual fluids in the plates, deformations of the
plates, inhomogeneous wetting conditions etc.) as well as other determinis-
tic perturbations of the original problem have an important influence in the
stability and the shape of the patterns formed. The inclusion of a significant
amount of noise in the stable configuration of the problem2 gives rise to a set
of phenomena totally different from the ones discussed above, and connects
with the field of kinetic roughening of interfaces and universality of growth.

The subject of this thesis is viscous fingering in Hele-Shaw cells, or Hele-
Shaw flows [BKL+86, Tan00]. We look for insights into the fundamental
mechanisms underlying the physics of interface dynamics, which we hope
will exhibit some degree of universality. The aim is twofold: on the one hand
we focus our attention on the role of surface tension and viscosity contrast
in the dynamics of fingering patterns, using a variety of mathematical tools
and approaches, namely concepts of dynamical systems theory, a perturba-
tive approach and direct numerical computation of the initial value problem.
On the other hand we introduce a modification of the original problem in
the spirit of Ref. [MM95] and study the effects of a inhomogeneous gap be-
tween the plates of a Hele-Shaw cell. We formulate the problem and obtain
an interface equation, that is applied to study the statistical properties of
interfaces roughened due to the presence of quenched disorder.

In the next four sections we motivate the different contributions of this
thesis within a historical perspective. We provide the basic background of
the problem of viscous fingering, including definitions, mathematical formu-
lations and basic facts, and we highlight the key contributions that have
directly motivated the present work.

1.1 Viscous fingering in Hele-Shaw cells

The present work deals with the time evolution of the interface between two
immiscible fluids confined in a Hele-Shaw cell [Hel98]. A Hele-Shaw cell (see
Fig. 1.2) consists in two parallel plates separated a very small distance b
(gap), much smaller than any other length of the system. The configuration
is such that the flow becomes effectively two-dimensional and potential with
boundary conditions set in a moving boundary, the interface. In the classical
configuration the cell has a rectangular shape, with width W and length
L, defining a channel of width W [ST58]. A fluid is injected from one end
of the cell and the other fluid is extracted from the other end. The other

2A planar interface between a viscous fluid that is being displaced by a less viscous one
is unstable, while in the opposite situation the interface is stable.
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Figure 1.2: Hele-Shaw cell, in the rectangular configuration.

much studied geometry is the so called radial configuration [Pat81], where
fluid is injected (extracted) through a small hole in one of the plates, but
there are other experimental setups that have also received some attention,
in particular the wedge geometry [TRHC89, Ben91].

The flow is described by the Navier-Stokes equation, we consider incom-
pressible fluids and the conditions are such that the system is in the high
friction limit, the inertial term of the Navier-Stokes equation is negligible.
Since the flow is assumed to be quasi-stationary this is equivalent to con-
sider small values of the Reynolds number. Taking into account that the
gap spacing b is much smaller than W and L and imposing no-slip boundary
conditions on the plates it is obtained that the velocity profile in the z direc-
tion (perpendicular to the plates) is given by the Poiseuille flow. Averaging
the velocity of the fluid in the z direction the resulting equation for the two
dimensional flow is

u = − b2

12µ
(∇p− Fext) (1.1)

where u = u(r) is the averaged two dimensional velocity, µ is the viscosity of
the fluid, p = p(r) is the pressure and Fext = Fext(r) is an external force. We
will consider potential forces, Fext = ∇Vext with ∇2Vext = 0, and applying
the incompressibility condition ∇ · u = 0 it is obtained that the pressure
satisfies Laplace equation

∇2p = 0. (1.2)

It is important to note that Eq. (1.1) is the same equation that applies to
flow in porous media, known as Darcy law, with a mobility m given by
m = b2/12µ.

We consider the classical channel geometry where the fluid is injected at a
constant rate from one end of the cell with a velocity V∞, under an effective
gravity geff = g cos β directed in the −x̂ direction. Fluid 1 is injected at
x = −∞ and displaces fluid 2. The channel is considered to be of infinite
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length, and the boundary condition at infinity is then

∂p

∂x

∣∣∣∣
|x|→∞

= −12µ1,2

b2
V∞ − ρ1,2 geff (1.3)

where ρ1,2 are the densities of fluid 1 and 2 respectively. Imposing the con-
tinuity of the normal velocities on the interface yields

U = − b2

12µ1

(∂np1 + ρ1 geff n̂ · x̂) = − b2

12µ2

(∂np2 + ρ2 geff n̂ · x̂) (1.4)

where n̂ is the unit vector normal to the interface. Eq. (1.4) relates the
gradients of the pressure on the interface, and an additional condition on
the interface is needed to close the problem. This new boundary condition
is given by the Young-Laplace pressure jump at the interface due to local
equilibrium:

p1 − p2 = σκ. (1.5)

σ stands for the surface tension and κ for the curvature. In Eq. (1.5) κ is the
total curvature of the interface, but the curvature in the plane perpendicular
to the plates is approximately constant and of order b/2, and therefore does
not affect the dynamics. From now on κ refers to the curvature in the plane
parallel to the plates. When a fluid that does not wet the plates displaces a
wetting one the expulsion is not complete and a film of the displaced fluid is
left behind on the plates. To account for this effect Park and Homsy [PH84]
proposed the following modified boundary condition instead of Eq. (1.5):

p1 − p2 =
σ

b/2

[
1 + 3.80

(µvn
σ

) 2
3

]
+
π

4
σκ. (1.6)

However, the kinetic boundary condition Eq. (1.6) is only necessary if a
precise quantitative test of the model is required. In the present work we will
restrict ourselves to the simpler boundary condition Eq. (1.5). The problem
is then defined with Eq. (1.2) in the bulk and boundary conditions given by
Eqs. (1.3, 1.4, 1.5).

The pressure p obeys Laplace equation, Eq. (1.2), and its harmonic con-
jugate, the stream function Ψ satisfies the Poisson equation [TA83]

∆Ψ = −Γ (1.7)

where Γ is the vorticity distribution, singular and localized on the interface:
Γ(r) = γ(s)δ [r− r(s)]. The interface is parameterized with the arclength s,
and the vorticity γ reads [TA83]

γ =
∆µ

µ̄
w · ŝ +

(
∆µ

µ̄
V∞ +

∆ρgeffb
2

12µ̄

)
x̂ · ŝ +

σb2

12µ̄

∂κ

∂s
(1.8)
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with µ̄ = (µ1 + µ2)/2. In two dimensions the velocity w of the interface due
to a vortex sheet is given by Birkhoff integral formula [Bir54, TA83]

w = w(s, t) =
1

2π
P

∫
ds′

ẑ× [r(s, t)− r(s′, t)]

|r(s, t)− r(s′, t)|2
γ(s′, t) (1.9)

where P indicates Cauchy’s principal value. Eq. (1.9) only accounts for the
rotational part of the velocity, w, the velocity induced by the vortex sheet.
In general, the velocity of the interface has also a contribution upot from a
potential velocity field, in our case V∞x̂, so that the velocity of the interface
is u = upot + w.

These equations can be nondimensionalized using W/2π to scale lengths
and the combination

U∗ = cV∞ + geff
b2(ρ2 − ρ1)

12(µ1 + µ2)
(1.10)

to scale velocities [TA83]. After this nondimensionalization the dynamics
is controlled by only two nondimensional parameters: the nondimensional
surface tension B given by

B =
π2b2σ

3W 2 (µ1 + µ2)U∗
(1.11)

and the viscosity contrast or Atwood ratio c:

c =
µ2 − µ1

µ2 + µ1

. (1.12)

The nondimensional vorticity γ reads then

γ = 2cw · ŝ + 2x̂ · ŝ + 2B∂sκ (1.13)

where all quantities are now dimensionless.

1.2 Experimental observations

Saffman and Taylor [ST58] studied experimentally the displacement of a
viscous fluid (glycerine or oil) by a less viscous one3 in a Hele-Shaw cell with
geff = 0 for various values of the control parameter B. They observed that
a initially flat interface is unstable, then the initially small bumps that form
on the interface grow into fingers and after a competition process only one

3In their experiments they displaced glycerine with air and oil, and oil by water.
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Figure 1.3: Linear dispersion relation.

finger survives. This finger has a width of roughly half the channel width
and is centered in the middle of the cell, and is known as the Saffman-Taylor
finger.

The initial linear regime was studied by Chuoke et al. [Cvv59] and it was
found that the linear dispersion relation has in nondimensional variables the
form

ω(k) = |k|(1−Bk2). (1.14)

From the linear dispersion relation Eq. (1.14) it is seen that a band of modes
(those with |k| < B−1/2) is unstable4, and that the nondimensional surface
tension B is the relevant parameter in the initial linear regime. The viscosity
contrast c drops from this initial regime or has a trivial role depending on
whether the experiments is gravity-driven or pressure-driven. The role of B,
instead, is fundamental: it controls the modes that are unstable. Actually,
B is the ratio between the stabilizing forces (the surface tension σ) and the
unstabilizing forces (injection plus gravity). The quantity U∗ determines
the stability of the planar interface: for U∗ > 0 the interface is unstable
(as described above) and for U∗ < 0 it is stable. The instability of the
planar interface is known as the Saffman-Taylor instability, and is analogous
to the so-called Mullins-Sekerka instability [MS64] found in solidification.
The presence of an absolute value of the wave number in Eq. (1.14) is a
manifestation of the nonlocal nature of the problem.

4For positive B, that is, for U∗ > 0.
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Figure 1.4: Time series of fingering patterns for low viscosity contrast
(c = 0.015). Dimensionless time, t′, is indicated for each frame. Taken
from [Mah85].

The instability gives rise to an irregular array of bumps or small fingers on
a scale fixed by B that grow independently until a nonlinear regime sets in. A
systematic weakly nonlinear theory has been recently developed for the early
stages of nonlinear growth [ALCO01]. However, the deeply nonlinear regime
where fingers are well developed, usually with overhangs, and compete, is
far more difficult to understand beyond simple qualitative observation. A
common picture emerged from observations of high viscosity contrast exper-
iments, according to which the leading fingers grow faster than the trailing
ones, producing a coarsening regime [CM89, VnJ92] that ends with a unique
finger of width about 1/2 of the channel width. This regime that connects
the initial linear stage with the stationary finger is called finger competition
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Figure 1.5: Example of Saffman-Taylor finger (high viscosity contrast).

regime. Indeed, experimental results [ST58, TL86] showed that for a range
of experimental conditions a steady state pattern consisting of a single finger
emerges (see Fig. 1.5). This so-called Saffman-Taylor finger has a width that
depends weakly on surface tension and viscosity contrast in the limit of small
B. In this limit the width λ of the finger is around half the channel width.
This steady Saffman-Taylor finger will be discussed next.

The qualitative understanding of the finger competition regime leading
to the asymptotic solution is based on the idea of laplacian screening, where
larger fingers ‘screen out’ the pressure field impeding the growth of smaller
ones, in analogy to the growth of Diffusion Limited Growth branches of ag-
gregates of random walkers [WS81]. This picture has shown to be too naive
even within the high-contrast limit because it neglects surface tension. Part II
of this thesis will be devoted precisely to the study of the subtle but dra-
matic effects of this parameter in the dynamics (see also next section of this
introduction). On the other hand, the viscosity contrast, which is not a sin-
gular perturbation in the sense surface tension is, has been known since early
numerical studies [TA83] and later experimentally confirmation [Mah85] to
play a rather nontrivial role in the dynamics of finger competition, which
appears to strongly depend on this parameter. For low viscosity contrast
the growth of trailing fingers is not suppressed, for instance, and there seems
to be no progress towards the Saffman-Taylor finger. This is illustrated in
Fig. 1.4. Later numerical studies and the development of a more elaborated
qualitative analysis (based on a topological approach) [CJ91, CJ94] gave
support to the possibility that the Saffman-Taylor finger was not the uni-
versal attractor of the problem for low viscosity contrast. The conjecture of
Refs. [CJ91, CJ94] that the basin of attraction of the Saffman-Taylor finger
depended on viscosity contrast, and the consequent question about the al-
ternative attractor competing with the single finger solution remained open
and have been addressed in Part III of this thesis.
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1.3 Surface tension as a singular perturba-

tion in the problem

Surface tension B is a singular perturbation to the B = 0 equations since it
multiplies the higher derivatives of the problem, contained in the curvature
term. Then, if one finds a B = 0 explicit solution and tries to apply a regular
perturbation scheme for small B assuming than the perturbed solution is
‘close’ to the unperturbed one, the attempt will not succeed, as McLean and
Saffman [MS81] painfully learned. The singular character of surface tension
manifests both in the statics and the dynamics, surprisingly even if the term
Bκ is small and bounded everywhere and at any time. In this section we
will then describe the singular effect of surface tension both in the selection
of the steady state finger solution and in the dynamics of the problem.

1.3.1 The selection problem

In their classic paper, Saffman and Taylor [ST58] found a uni-parametric
family of finger-shaped steady-state exact solutions, in the absence of surface
tension and for any value of the viscosity contrast. In their solutions, the
ratio λ of the finger width to the width of the cell is the single (continuous)
parameter. The finger shape is given by

x =
1− λ
π

ln cos
(πy
λ

)
, (1.15)

and it can be seen in Fig. 1.6 for various values of λ. These shapes were
quite similar to those observed experimentally if the value of λ was chosen
according to the experimental observation. In the experiment the width λ
depended on the value of the surface tension B, but the zero surface tension
theory could not account for that. Although Saffman and Taylor guessed
that surface tension was responsible for the selection of the value of λ, they
could not give an explanation for it. The selection problem of the Saffman-
Taylor finger width is equivalent to the selection problem present in free
dendritic solidification, where steady state solutions also exist, known as
Ivantsov parabolas. In this case the product of the tip radius and the velocity
is fixed, but this is not enough to determine the tip velocity.

The question of the finger width selection was again taken up by McLean
and Saffman [MS81], who looked for steady state solutions in the presence
of a small surface tension. They numerically solved an integral equation for
the interface shape, finding for any value of the surface tension parameter B
a unique solution (that is, a unique λ), instead of the continuum of solutions
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present for B = 0. Later, it was found that for any value of B it existed not
a unique solution but a discrete set of solutions [VB83]. However, for all of
these solutions, asB is decreased to zero λ goes to one-half. Most importantly
for a fixed B only the smallest finger width (the fastest propagating finger)
corresponded to a linearly stable (therefore observable) solution.

Finally, it was not until the mid-eighties that the subtle analytical mech-
anism responsible for selection was fully understood as effect ’beyond all
orders’. Several authors [HL86, HL87, Shr86, CDH+86, CHD+88, Tan87a,
DM87] contributed to this understanding through different formulations of
the underlying nonlinear eigenvalue problem leading to a discrete set of so-
lutions. It was found that λ must satisfy the selection criteria λ = λn(B)
where λn(B) is given to leading order by

λn(B) =
1

2

[
1 +

(
1

8
π2Cn

)2/3
]
, n = 0, 1, 2, . . . (1.16)

where the integer n parameterizes the family of solutions. The narrowest
finger corresponds to n = 0 and C0 = 1.47 [CHD+88, Tan87a, DM87]. This
scenario of selection also applies to other interfacial pattern forming systems,
such as in dendritic growth, and is sometimes referred to as Microscopic Solv-
ability (MS) scenario of selection. The MS scenario was studied in depth both
theoretically and experimentally in modified boundary conditions of the Hele-
Shaw problem [TL86, DM87, Tan91, BACC93], including the more accurate

λ=3/4λ=1/2λ=1/4

Figure 1.6: Profile of the Saffman-Taylor steady state solution for three values
of the finger width λ.
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boundary condition Eq. (1.6), until a complete quantitative understanding
of the selection mechanism was achieved.

An important issue concerning the steady Saffman-Taylor (ST) finger is
its stability. It has been experimentally observed that for small values of B
the ST finger becomes unstable, and a secondary transition to complex pat-
terns of tip-splitting has been observed [TZL87, PH85, KH88, Max87]. In the
absence of surface tension the ST finger is unstable, but in the presence of a
finite value of B the finger is linearly stable but nonlinearly unstable [Ben86]:
the ST finger is stable under infinitesimal perturbations but unstable under
perturbations of amplitude greater than a threshold that depends on sur-
face tension. Then, the experimentally observed behavior is due to a finite-
amplitude instability. The noise amplitude Anoi required for destabilization
decreases rapidly with B and is consistent with the expression [Ben86]

lnAnoi ∼ −
1√
B
. (1.17)

The celebrated generic scenario of selection that has emerged from all
these studies has been often highlighted, in particular in the context of den-
dritic growth, as a major achievement in the recent history of pattern for-
mation. As an example we quote Gollub and Langer, who chose it together
with two other examples in their contribution on pattern formation in the
centenary issue of Reviews of Modern Physics in 1999 [GL99]:

It is here that some of the deepest questions in this field —the mathemat-
ical subtlety of the selection problem and the sensitivity to small perturba-
tions— have emerged most clearly in recent research.

J.P. Gollub and J.S. Langer5

1.3.2 Singular effects in the dynamics

The selection problem described in the previous section did receive much
attention both as a mathematical challenge and for its implications in other
more complicated problems in the physics of nonequilibrium interfaces. The
rather counterintuitive fact that the velocity is ‘quantized’ came as a surprise,
but other surprises were waiting in the backstage, which needed for a deeper
analysis of the dynamics of the problem.

5Pattern formation in nonequilibrium physics, Rev. Mod. Phys., 71, 396, Centenary
(1999)
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As a matter of fact, one could object that the term ‘selection problem’
is not strictly appropriate, in the sense that the full problem, without ne-
glecting surface tension, does not have the continuum degeneracy, and it is
only when the problem is simplified (changed) that the problem of degen-
eracy arises. Nevertheless, we would like to emphasize that, through the
process of neglecting and reintroducing surface tension, deep understand-
ing has been gained indeed. The same spirit is what motivates a big part
of this thesis (Part I), which will try to follow a similar scheme but now
for the dynamics. This will be possible because large classes of exact time-
dependent solutions of the problem in the absence of surface tension have
been discovered [Saf59, How86, PMW94]. Some solutions are known to de-
velop finite-time singularities in the form of cusps and are thus not of much
interest in the physics of viscous fingering, since surface tension regulariza-
tion will obviously remove such singularities. Nevertheless, a still remarkably
large class of known solutions is free from singularities and therefore physi-
cally acceptable, in principle. They include interfacial shapes that smoothly
evolve from a quasi-planar interface to the Saffman-Taylor finger, reproduc-
ing shapes quite similar to those observed in experiments and numerics. With
the experience of the selection problem it is thus natural to ask to what ex-
tent will these solutions capture the correct physics, or what would be the
effect of introducing a small surface tension. In a sense we could be asking
whether there is some kind of dynamical selection principle which discrimi-
nates the correct dynamics, leading to some form of a Dynamical Solvability
scenario. An important part of the thesis is devoted to this aim. The basic
question on the dynamical role of introducing surface tension was first raised
by Dai, Kadanoff and Zhou [DKZ91], who showed that in some situations
surface tension acted as a regular perturbation while for other situations the
singular character of surface tension showed up dramatically in the dynam-
ics. The question on the possible formulation of a Dynamical Solvability
theory was first posed in [MC98] and more explicitly in [SL98]. A crucial
first step towards this direction was the finding of Magdaleno and Casade-
munt [MC99] that continua of multifinger stationary solutions existed and,
remarkably, they were subject to a selection mechanism analogous to that of
the single finger problem, but with additional parameters. The PhD thesis
of F.X. Magdaleno [Mag00] thus set the stage for the present work (see also
Ref. [CM00]).

A key result a large part of this thesis stems from is due to Siegel and
Tanveer [ST96], and is quoted by Tanveer [Tan00] as one of the big ‘surprises’
in viscous fingering, now referring to the dynamics. This work was based on
a perturbative approach for small B which is rather involved because of the
ill-posedness of the zero surface tension problem. In fact, the initial value
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problem is known to be ill-posed [How86] for zero surface tension in the
sense that arbitrarily small differences in the initial interface generally lead
to radically different interfaces at later times, even a short time later. The
solution to an ill-posed problem needs not be physically meaningful, since one
does not have exact control over initial conditions in real (or even numerical)
experiments. Therefore, the regularization effect of surface tension has to
be considered to see how deeply the solutions are affected. Tanveer [Tan93]
was able to overcome the obstacle of the ill-posedness by embedding the zero
surface tension problem in a well-posed one. In addition, this well-posed
extension of the B = 0 problem allowed Baker et al. [BST95] to develop
a numerical method to compute the time evolution of zero surface tension
dynamics in a well-posed manner. Once the B = 0 problem is formulated
in a well-posed way the B 6= 0 case can be studied using a perturbative
approach.

The main result of the asymptotic perturbative theory developed by
Tanveer [Tan93] is that the effect of surface tension may be manifest in a
O(1) = O(B0) time: the evolution of the same initial interface for B = 0
and B 6= 0 will in general differ after a time of order one, even if the B = 0
solution is smooth for all time. Siegel et al. [ST96, STD96] have extended the
work of Ref. [Tan93] to later stages of the evolution, and through numerical
computation for very small values of B they showed that smooth B = 0 solu-
tions are indeed significantly affected by the presence of arbitrarily small B
in order-one time, thus confirming the predictions of the perturbative theory.
The zero surface tension solutions studied by Siegel et al. [STD96, ST96] in
the channel geometry were single-finger solutions with an asymptotic width
λ, specifically chosen to be incompatible with selection theory for vanishing
surface tension. They found that the singular effect of surface tension was to
widen the finger in order to reach the selected width. The surprising feature
here is that the effect of surface tension is felt in order-one time, i.e., that
the time lapse for which the regularized solution approaches the unperturbed
one as B → 0 is bounded. The general implication is that the perturbative
scheme breaks down at relatively small times and that nothing can be said
a priori for the later evolution.

1.4 Kinetic roughening of growing interfaces

The dynamics of an interface propagating in a disordered substrate has been
object of intensive study in recent years [HHZ95, BS95, Kru97], specially
regarding the scaling properties of the rough interface. It has been found
evidence of scale invariance and universality in a variety of systems, including
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fluid flow in a Hele-Shaw cell with quenched disorder [REDG89, HFV91,
HKzW92], spontaneous imbibition of water in paper [BBC+92, ABB+95,
HS95], self-affine bacterial colonies [VCH90, MM92], slow electrochemical
deposition [KqZFzW92] or flame-less fire lines [ZZAL92].

Our interest here is focussed on fluid flow through a disordered Hele-Shaw
cell, as a model system of forced fluid invasion (FFI) in porous media. In
the seminal experiment done by Rubio et al. [REDG89] and which triggered
intense research in this field for many years, water was injected from one
end of a Hele-Shaw cell filled with a dense packing of small glass beads.
Since water displaced air, the interface was on a stable configuration, but
the presence of the disorder introduced by the glass beads roughened the
interface. The focus was on the scaling properties of the rough interface,
and these were studied by means of the local width w(l, t) of the interface,
which is defined as the root mean square (rms) value of the deviations of the
interfacial height h(x) with respect the mean value hl over a length scale l.
They found a power law behavior at long times, w(l) ∼ lα with a roughness
exponent α = 0.73 ± 0.03. This result was in clear contradiction with the
value expected from previous theoretical work. Most of the theoretical and
numerical work done on interfacial kinetic roughening in the late eighties was
based in the noise driven Burgers equation [Bur74], or Kardar-Parisi-Zhang
(KPZ) equation [KPZ86]. It reads

∂h(x, t)

∂t
= ν∇2h(x, t) +

λ

2
[∇h(x, t)]2 + η(x, t) (1.18)

where ν and λ are positive constants and η(x, t) is a noise. This nonlinear dif-
ferential equation has been proposed as a paradigm for interfacial growth and
claimed to describe the asymptotic scaling of a large class of problems. From
a theoretical point of view this is argued upon the fact that this equation
contains the only nonlinearity which is relevant within a Renormalization
Group framework. In 1 + 1 dimensions it can be solved exactly and it is
found [KPZ86] that α = 1/2 and β = 1/3. If λ = 0 the resulting equation
is known as Edwards-Wilkinson (EW) equation [EW82]. It belongs to a dif-
ferent universality class, with exponents α = 1/2 and β = 1/4. There is
an enormous body of literature on theoretical aspects of the KPZ equation,
including RG treatments and extensive numerical simulation. Unfortunately,
there is very little experimental evidence of KPZ scaling in real systems. It is
not here the place to review this issue, but let us mention two specific results
which are relevant to questions that will arise in Part IV of this thesis and
that refer to the actual difficulties to observe the asymptotic scaling, namely
the simulations of Beccaria et al. [BC94] of the KPZ equation and more re-
cently the work by Cuerno and Castro [CC01] on the existence of transients
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which hinder the observation of KPZ scaling. The latter shares a big deal of
the spirit that moved us into elucidating these type of questions through a
better understanding based on more microscopic derivations.

When Rubio’s experiment [REDG89] was done, the expected behavior
was that of KPZ, but the result αexp ' 3/4 contradicted the KPZ predic-
tion. The experiment was done again by Horvath et al. [HFV91] and He et
al. [HKzW92]. The former found α = 0.81 and the latter that α varied
over a wide range (0.65–0.91), with capillary number Ca notably spanning
the range 10−5 < Ca < 10−2. The capillary number is the ratio between
viscous forces to the capillary forces, and its particular form will depend
on the system being considered. These experimental results clearly disagree
with the scaling behavior exhibited by KPZ equation. It was believed, before
the results of Refs. [REDG89, HFV91, HKzW92] that Eq. (1.18) provided a
universal description of the growth of rough interfaces, but the discrepancy
between theory and experiments forced theorists to look for alternatives, but
within the framework provided by the almighty KPZ equation. These were
essentially based on changing the nature of the noise η present in the orig-
inal KPZ equation (1.18). If noise is considered to be power-law instead of
Gaussian distributed, a different scaling behavior is obtained [Zha90] from
Eq. (1.18): α seems to be in the range 0.5–1, depending on the exponent of
the power law distribution, implying that with an appropriate choice of this
exponent the values of α obtained experimentally could be reproduced. A
different way to change the scaling exponents of Eq. (1.18) is to use correlated
noise [MHKZ89]. Dynamic RG group analysis showed that the introduction
of both spatial or temporal correlations does change the exponents, allowing
them to reach values well above those obtained with uncorrelated noise.

One of the main differences between the forced fluid invasion experiments
and a description based on the KPZ equation is the nature of the noise term.
The dominant noise in the experiments is quenched, but the noise appearing
in KPZ is annealed (dynamical). Then, Eq. (1.18) has been also studied with
a noise η = η(h, x). In the case relevant to FFI where the interface has a
finite velocity it has been found that KPZ with quenched disorder yields an
interface that is not self-affine [Les96], since it consists of pinned segments
with α ' 0.633 joined by advancing segments with α ' 1. More details on
QKPZ can be found for instance in Ref. [HHZ95].

To sum up, the KPZ equation is capable of presenting a roughness expo-
nent similar to the experimental ones choosing appropriately the properties
of the noise term, but does not provide a satisfactory explanation to the
observed dependence of α with Ca, nor is capable to make a clear prediction
of the exponents of a given experiment. In addition, it is unclear how the
distribution of glass bead sizes could give rise to a power law or correlated
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noise. This failure is not surprising: the KPZ equation is local and fully
phenomenological, and misses ingredients essential to describe fluid flow in
a Hele-Shaw cell, most notably nonlocality. This point has been recently
recognized by several authors. It has been recently addressed by Ganesan
and Brener [GB98], who proposed a nonlocal interface equation to describe
fluid flow in a random Hele-Shaw cell and obtained an exponent α = 3/4 us-
ing Flory type arguments, and by Dubé et al. in Refs. [DRE+99, DRE+00],
where a phase-field model is developed and simulated for the viscous imbibi-
tion problem. However, in these works noise is introduced at a phenomeno-
logical level, and does not include all the physical ingredients present in
experiments, in particular the effects on the viscous flow due to fluctuating
permeability. A first attempt to model permeability fluctuations within a
phase-field scheme was reported by Hernández-Machado et al. [HMSL+01].
From the experimental point of view, new experimental realizations of fluid
flow in a disordered Hele-Shaw cell have been carried out by Ort́ın and co-
workers [HMSL+01, SRR+02, SOHM02b] that could shed some light into
the problem and directly motivate the work done here in this subject. These
experiments introduce disorder in a different and more controlled way than
previous ones [REDG89, HFV91, HKzW92]: a Hele-Shaw cell with a spatially
variable gap is used, in such a way that the statistical properties of the noise
are perfectly known. Their results show a clear dependence of the exponent
α with experimental parameters, as well as the appearance of the so-called
‘anomalous’ roughening (see sections 7.1 and 7.3). The Hele-Shaw cell with
random gap is not only a valuable model system from an experimental point
of view, but it is also very interesting from a theoretical standpoint since it al-
lows a full ‘microscopic’ treatment. This will lead us in Part IV of this thesis
to go one step further the recent nonlocal but phenomenological approaches,
and develop a unified theoretical framework which includes all physical ef-
fects related to the spatial variation of the gap, and with complete generality
concerning viscosity contrast and wetting conditions, hopefully leading to
new insights which are not possible from a phase-field formulation.
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Chapter 2

Methodological preliminaries

In this chapter we summarize the basic methodological aspects which will be
used in Part II, including formulation, conceptual tools, analytical techniques
and numerical methods. The conformal mapping formulation of the problem
for high viscosity contrast is recalled, and its equivalent for low viscosity con-
trast is presented, together with the characterization of finger competition.
The Dynamical Systems approach to the problem is presented and discussed
in detail. The basic results of the perturbative asymptotic theory for Hele-
Shaw flows are recalled, and the Hou-Lowengrub-Shelley (HLS) boundary
integral numerical method for Hele-Shaw flows is described.

2.1 Conformal mapping formulation.

Characterization of finger competition

In this section the conformal mapping formulation used to study Hele-Shaw
flows in channel geometry is recalled. The finger competition phenomenon
is described and the relevant quantities to characterize it are presented.

Here we consider the case with the nonviscous fluid displacing the viscous
one (c = 1), therefore the pressure in the nonviscous fluid is constant, and we
choose it to be zero. We assume periodicity at the sidewalls of the channel.
Except for configurations symmetric with respect to the center axis of the
channel, periodic boundary conditions define different dynamics from the
more physical case of rigid sidewalls (with no-flux through them). Strictly
speaking our case describes an infinite periodic array of unit channels. We
will argue that nothing essential is lost with respect to competition in a
rigid-wall channel, while the analysis is significantly simplified.

We use conformal mapping techniques to formulate the problem, follow-
ing the formulation of Ref. [BKL+86]. We define a function f(ω, t) that
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Figure 2.1: The interior of the unit circle is mapped into the viscous fluid.

conformally maps the unit disk in the complex plane ω into the viscous fluid
in the physical plane z = x + iy, as schematically depicted in Fig. 2.1.
We assume an infinite channel in the x direction. The mapping f(ω, t)
must satisfy ∂ωf(ω, t) 6= 0 inside the unit circle, |ω| ≤ 1, and moreover,
h(ω, t) = f(ω, t) + lnω must be analytic in the interior. The velocity poten-
tial ϕ is defined as ϕ = −(b2/12µ)p, so that the velocity u reads u = ∇ϕ. We
define the complex potential as the analytic function Φ = ϕ+ iψ, where the
harmonic conjugate ψ of ϕ is the stream function. The width of the channel
is W = 2π and the velocity of the fluid at infinity is V∞ = 1, according to
the nondimensionalization introduced in previous Chapter. It can be shown
then that the evolution equation for the mapping f(ω, t) reads [BKL+86]

∂tf(ω, t) = ω∂ωf(ω, t)A

{
Re
[
i∂φΦ(eiφ, t)

]
|∂φf(eiφ, t)|2

}
(2.1)

where A[g] is an integral operator that acts on a real function g(φ) defined
on the unit circle, and yields a complex function analytic in the unit disk,
whose real part on the circle is g(φ). A[g] has the form

A[g](ω) =
1

2π

∫ 2π

0

g(θ)
eiθ + ω

eiθ − ω
dθ, (2.2)

and on the unit circle ω = eiφ it reads

A[g](ω = eiφ) = g(φ) + iHφ[g] (2.3)
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where Hφ[g] is the so-called Hilbert transform of g(φ) defined by

Hφ[g] =
1

2π
P

∫ 2π

0

g(θ) cot

(
φ− θ

2

)
dθ (2.4)

where P stands for the principal value prescription. The complex potential
Φ satisfies

Φ(ω, t) = − lnω +BA[κ] (2.5)

where the curvature κ given in terms of f(eiφ, t) is

κ = − 1

|∂φf |
Im

[
∂2
φf

∂φf

]
. (2.6)

The evolution equation (2.1) written on the unit circle ω = eiφ is

Re [i∂φf(φ, t)∂tf
∗(φ, t)] = 1−B∂φHφ[κ] (2.7)

where f(φ, t) ≡ f(eiφ, t). In the zero surface tension case B = 0 the integro-
differential equation (2.7) reduces to a much simpler equation, and the evo-
lution of f(φ, t) for B = 0 is then given by

Re [i∂φf(φ, t)∂tf
∗(φ, t)] = 1. (2.8)

The direct motivation of the present study is that, despite the fact that
neglecting surface tension is in principle incorrect from a physical standpoint,
theB = 0 case can be solved explicitly in many cases [Saf59, How86, PMW94]
including solutions which, although being unstable, they exhibit a smooth
and physically acceptable (nonsingular) behavior, quite similar to what is
observed in experiments and simulations of the full problem.

The conformal mapping formulation we have just described has revealed
as a powerful tool to study Hele-Shaw flows in the high viscosity contrast
limit. More recently, a conformal mapping formalism for arbitrary viscosity
contrast has been developed [PFC02], but the formalism is rather complicated
since it involves two coupled mapping functions. But we have found that for
the particular case of zero viscosity contrast the general formalism is notably
simplified [PFC02] since only one mapping function is necessary to describe
the evolution of the interface. Then, the evolution equation of the conformal
mapping f , that maps the interior of the unit circle into the displaced fluid
(fluid 2) is

∂tf = − 1

4π
ω∂ωf A

Re
{
∂sf P

∫ 2π

0
ds′γ(s′)cotgh

[
f(s)−f(s′)

2

]}
|ω∂ωf |2

 (2.9)
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with
γ(s) = 2Re(∂sf) + 2B∂sκ(s). (2.10)

The derivation of this equation can be found in the Appendix A.
As opposed to the high viscosity contrast case, where several rather gen-

eral families of solutions of Eq. (2.1) are known, Eq. (2.9) has only two known
explicit solutions: the (steady) ST finger and the unsteady Saffman-Taylor
finger of width 1/2 found by Jacquard and Séguier [JS62] to be solution for
any value of the viscosity contrast.

Before proceeding to the description of the general approach and its ap-
plication to specific solutions, let us first introduce some ideas and definitions
which will be helpful in further discussion. To quantify finger competition
it is useful to define individual growth rates of fingers [MC98]. In simple
situations like those considered here, the growth rate of a finger can be sim-
ply defined (in the reference frame moving with the mean interface position)
as the peak-to-peak difference of the stream function between the maximum
and the minimum which are adjacent to the zero of the stream function lo-
cated at (or near) the finger tip [CJ94] (the definition can be generalized
to more complicated situations). According to this definition, one assigns a
nonzero growth rate to the finger if the tip advances at a velocity which is
larger than the mean interface position. Looking at individual growth rates
one can easily distinguish two different stages of the dynamics in the process
of finger competition. A first stage characterized by the monotonous growth
of all individual finger growth rates and a second one dominated by the re-
distribution of the total growth rate among the fingers. We call these two
stages growth and competition regimes respectively. For a configuration of
two different fingers, which is practically the only one addressed throughout
this part of the thesis, during the growth regime the two fingers develop from
small bumps of the initially flat interface, while the total growth rate ∆ψT (t),
defined as ∆ψT (t) = ∆ψ1(t) + ∆ψ2(t), grows until it reaches a value close to
its asymptotic one ∆ψT (∞). The decrease of the growth rate of one of the
fingers signals the outcome of the competition regime: there is a redistribu-
tion of flux from one finger to the other one. We also define the existence of
successful competition as the ability to completely suppress the growth rate
of one finger. A finger is dynamically suppressed of the competition process
when its growth rate ∆ψ is reduced to zero.

2.2 Dynamical systems approach

The dynamical systems approach to the problem is introduced in this sec-
tion, together with the general formulation in connection with the conformal
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mapping formalism.

2.2.1 Elements of Dynamical Systems Theory

The theory of Dynamical Systems is a mathematical discipline which studies
ordinary differential equations or flows (and difference equations or maps)
with stress on geometrical and topological properties of solutions [GH83].
The approach is sometimes referred to as qualitative theory of differential
equations. The focus is not on the study of individual solutions or trajectories
of the differential equation, but on global properties of families of solutions.
This point of view has become very fruitful in searching for universality in
the context of nonlinear phenomena.

A dynamical systems approach seems thus appropriate to study in a
mathematically precise way, the qualitative properties of the dynamics of
our problem, and the qualitative differences associated to the presence or ab-
sence of surface tension. One of the important concepts in dynamical systems
theory is that of structural stability, which captures the physically reasonable
requirement of robustness of the mathematical description to slight changes
in the equations. Roughly speaking, a system is said to be structurally sta-
ble if slight perturbations of the equations yield a topologically equivalent
phase space flow. Although the structural stability ‘dogma’ must be taken
with some caution [GH83], a structurally unstable description of a physical
problem must be seen in principle as suspect. When a dynamical system
(DS) depends on a set of parameters, the bifurcation set is defined as those
points in parameter space where it is structurally unstable. In this case the
structural instability at an isolated point in parameter space is the property
necessary for the system to change its qualitative behavior. At a bifurcation
point, adding perturbations to the equations to make the system structurally
stable is called an unfolding [GH83]. For dimension higher than two, the
mathematical definition of structural stability is usually too stringent. For
the purposes of the present discussion and most physical applications it is
sufficient to consider the notion of hyperbolicity of fixed points, which in 2
dimensions is directly associated to structural stability through the Peixoto
theorem [GH83]. A fixed point is hyperbolic when the linearized flow has
no marginal directions, that is, all eigenvalues of the linearized dynamics are
nonzero. We will see that the nonhyperbolicity of the double-finger fixed
point (in general the n-equal-finger fixed point) and the nonexistence of an
unfolding of it within the known class of solutions is at the heart of the
unphysical nature of this class of solutions.

In the approach to the Saffman-Taylor problem with concepts of DS the-
ory, there is, however, an important additional difficulty in the fact that our
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problem is infinite-dimensional and unbounded. In similar spatially extended
systems, such as described by PDE’s, it is customary to project the dynam-
ics onto effective low-dimensional dynamical systems based on the so-called
center manifold reduction theorem [GH83]. This is possible near the insta-
bility threshold and, for truly low-dimensional reduction, only for strongly
confined systems, with a discrete set of modes. The ST problem however is
both unbounded and will operate in general far from threshold. On the other
hand, since the growth is never saturated to a finite amplitude, any weakly
nonlinear analysis is necessarily limited to a rather early transient [ALCO01].
All the above techniques are thus of no much use for our purpose of studying
the strongly nonlinear dynamics of competing fingers in their way to the ST
stationary solution.

2.2.2 Dynamical systems and integrability of the ST
problem

The basic point that we will exploit here to gain some analytical insight into
the dynamics of the ST problems as a dynamical system is the fact that
all exact solutions known explicitly for the idealized problem (B = 0) are
defined in terms of ODE’s for a finite number of parameters, and thus define
finite-dimensional DS’s in the phase space defined by those parameters1. The
complete ST problem, for any finite B, defines a DS in an infinite dimensional
phase space. We will refer to this DS as S∞(B). The limit B → 0 defines
a limiting DS which we will refer to as S∞(0+), which, as we will see, is
different from S∞(0).

The conformal mapping f(ω, t) of the reference unit disk in the complex
ω-plane into the physical region occupied by the viscous fluid z = x + iy =
f(ω) has the form

f(ω, t) = − lnω + h(ω, t) (2.11)

where h(ω, t) is an analytic function in the whole unit disk, and therefore
has a Taylor expansion

h(ω, t) = Σ∞k=0ak(t)ω
k (2.12)

which is convergent in the whole unit disk. Inserting Eq. (2.12) into the
equation for the mapping f(ω, t), Eq. (2.1), we find an infinite set of equations

1In principle, the compactness of the resulting dynamical system could be troublesome
for the present analysis due to the unboundedness of the original problem. Unlike what
happens for instance for low viscosity contrast Hele-Shaw flows, where persistent dynamics
of all regions of the interface may occur (see Chapter 5), the dynamics of high viscosity
contrast is sufficiently simple, that is, compatible with low-dimensional dynamical systems
in a compact space, that no such subtleties are relevant to the cases studied in this chapter.
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of the form
ȧk = gk(a0, ..., ak;B). (2.13)

In the co-moving frame of reference the precise form of the infinite set of
equations (2.13) is

ȧ0 = C0 (2.14a)

ȧk = Ck − kC0ak −
k−1∑
j=0

jajCk−j (2.14b)

where

C0 =
1

2π

∫ 2π

0

ν(θ, t)dθ (2.15a)

Ck =
1

π

∫ 2π

0

ν(θ, t)eikθdθ (2.15b)

and

ν(θ, t) =
Re{ω∂ωh(ω, t)]−BRe[ω∂ωA[κ](ω, t)}

|ω∂ωf(ω, t)|2

∣∣∣∣
ω=eiθ

(2.16)

The infinite set of equations (2.13) defines the DS S∞(B). In the special
case of strictly zero surface tension, the DS S∞(0) can be explicitly solved
for some classes of initial conditions. These classes define invariant manifolds
of S∞(0) of finite dimension. In this context, finding explicit solutions im-
plies identifying a specific analytic structure of h(ω), with a finite number of
parameters, which is preserved under the time evolution. If this condition is
fulfilled, then a set of ODE’s for those parameters can be closed, and defines
a certain DS on a finite-dimension space. For instance, for B = 0 the trun-
cation of h(ω) into a polynomial form is preserved by the time evolution, so
Eqs. (2.13) themselves remain a finite set of ODE’s. This simple case, how-
ever, is known to lead to finite-time singularities. The evolution is in general
not defined after some finite time and cannot be considered as sufficiently
well behaved as a DS’s. On the other hand, classes of solutions have been
reported which are smooth (nonsingular) for all the time evolution. The
corresponding conformal mapping takes the general form [How86, PMW94]

h(ω) = d(t) +
N∑
j=1

γj ln[1− αj(t)ω] (2.17)

where γj are constants of motion with the restriction
∑N

j=1 γj = 2(1 − λ)
where λ is the asymptotic filling fraction of the channel occupied by fingers.
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If all γj are real the evolution is free of finite-time singularities, and if any
γj has an imaginary part then finite-time singularities may appear for some
set of initial conditions (see Sec. 3.3.3). Although this form of the mapping
contains all orders of the Taylor expansion of h(ω), it defines finite dimension
invariant manifolds, since the superposition of logarithmic terms of Eq. (2.17)
is preserved under the dynamics. This means that a closed set of ODE’s for
the finite number of parameters αj(t) can be found. In addition, the region
which is physically meaningful is that in which |αj| ≤ 1 (including the equal
sign allows for the limiting case of infinite fingers, and makes the phase space
compact). The DS defined by Eq. (2.17) in the 2N -dimensional hyper-volume
will be denoted as L2N({γj})

For the sake of discussion throughout this work it is important to have
in mind that modifying parameters {γj}, which are constants of motion un-
der the dynamics defined through Eq. (2.8) corresponds to varying initial
conditions in the phase space of S∞(0), while, from the standpoint of the
finite-dimensional DS’s denoted by L2N({γj}) it corresponds to changing the
DS itself, that is, changing the ODE’s obeyed by the dynamical variables. In
this sense, {γj} label a set of DS’s defined on a 2N-hyper-volume |αj| ≤ 1.

Following Ref. [MC98], the key idea is to look for the simplest of the
DS defined above which contains the three physically relevant fixed points,
namely, the planar interface (PI), the single finger ST solution (1ST) and the
double Saffman-Taylor finger solution (2ST). We will call this minimal DS
as L2(λ, 0) or simply L2(λ), since it has only one constant of motion, namely
λ. In Ref. [MC98] it was proposed to compare the global flow properties in
phase space of such DS with those of a corresponding two-dimensional dy-
namical system defined by the regularized problem. The latter was obtained
by restricting S∞(B) to a one-dimensional set of initial conditions properly
chosen in such a way that the invariant manifold of S∞(0) which defines L2(λ)
was tangent to S∞(0+) at the PI fixed point. The resulting DS S2(B) was
then shown to have a topological structure nonequivalent to that of L2(λ).
In particular in the limiting case, S2(0+) intersected L2(1/2) not only at PI
but also at the other fixed points 1ST and 2ST, and furthermore, at the
two full trajectories connecting PI with 1ST and 2ST respectively. The ba-
sic conclusion was then that the regularized and the idealized problem were
intrinsically different.
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2.3 Asymptotic theory

The evolution equation for the mapping f Eq. (2.1) can be explicitly solved
in the absence of surface tension, as explained in previous section, but no
solutions are known for B > 0. This makes the theoretical study of the
B > 0 dynamics extremely difficult beyond the initial linear and weakly
nonlinear [ALCO01] regimes. To close this gap, Tanveer [Tan93] developed
an asymptotic perturbation theory that can be applied for 0 < B � 1. The
initial work was later on enlarged and numerically checked [STD96, ST96].

The conformal mapping formulation used by these authors differs slightly
from the one used in previous sections, so prior to the description of the
asymptotic theory we will briefly introduce their formulation.

2.3.1 Conformal mapping in the semicircle

Consider Hele-Shaw flows in the channel geometry, in which a fluid of neg-
ligible viscosity displaces a viscous liquid. The equations governing the in-
terfacial evolution can be conveniently formulated by first introducing the
conformal map f(ζ, t) which takes the interior of the unit semicircle in the
ζ complex2 plane into the region occupied by the viscous fluid in the com-
plex plane z = x + iy, in such a way that the arc ζ = eis for s ∈ [0, π]
is mapped to the interface and the diameter of the semicircle is mapped
to the channel walls3. Lengths are nondimensionalized using W/2 instead
of W/(2π), as done previously. The mapping function f(ζ, t) has the form
f(ζ, t) = −(2/π) ln ζ + i + f(ζ, t), and inside and on the unit semicircle we
require f(ζ, t) to be analytic and fζ(ζ, t) 6= 0. Here the subscript denotes
derivative. In addition, we require that

Im f = 0 (2.18)

on the real diameter of the semicircle. This latter condition ensures that
f maps the diameter to the channel walls. Under suitable assumptions
(see [Tan93]) the Schwartz reflection principle may be applied to show that
f is analytic and fζ 6= 0 for |ζ| ≤ 1.

The form of the complex potential Φ(z, t) as a function of ζ is

Φ(ζ, t) = −(2/π) ln ζ + i + φ(ζ, t) (2.19)

2We use ζ instead of w to emphasize that the interior of the unit semicircle is being
mapped instead of the interior of the unit circle.

3For interfaces symmetric with respect to the central axis of the channel this formulation
also describes periodic boundary conditions, that is, an infinite array of fingers.
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where φ(ζ, t) is an analytic function inside the unit circle. The condition that
there is no flow through the walls implies that Im φ = 0 must hold on the
real diameter of the unit semicircle. In the absence of surface tension, φ = 0
(see Eq. (2.21)).

The evolution equation for the mapping takes the form

Re

[
ft
ζfζ

]
=

1

|fζ |2
Re [ζΦζ ] , (2.20)

and the potential Φ is obtained from

Re φ = −π
−2B

|fζ |
Re

[
1 + ζ

fζζ
fζ

]
. (2.21)

2.3.2 Dynamics with small B: perturbative theory

The perturbation theory describes the effects of the introduction of a small
amount of surface tension on initial data f(ζ, 0) specified in the extended
complex plane, i.e., in a domain including the ‘unphysical’ region |ζ| > 1
(the extended domain is required to make the B = 0 problem well-posed).
The effect of finite B is most important near isolated zeros and singularities
of fζ(ζ, 0), where a regular perturbation expansion in B breaks down. (Away
from these points the perturbation expansion is regular, at least initially).
For the class of explicit solutions Eq. (2.17) that will be discussed in this
thesis, the isolated singularities of fζ(ζ, 0) are simple poles. The theory
suggests that the introduction of finite surface tension modifies the poles (ζs)
by transforming them into localized clusters of −4/3 singularities4, but these
clusters move at leading order according to the B = 0 dynamics. Thus the
effect of one of these clusters on the interface is approximately equivalent to
that of the unperturbed (B = 0) pole-like singularity that has given birth to
it.

The influence of surface tension on the zeros of fζ(ζ, 0) is more complex.
Each initial zero instantly gives birth to two localized inner regions, i.e.,
regions where the B = 0 and B > 0 solutions differ by O(1). One of the two
inner regions moves, at least initially, according to the B = 0 dynamics of the
original zero ζ0

5. Since the zero surface tension solutions of physical interest
have zeros that are either bounded away from the unit disk for all time or
impact the unit disk only after long times, the inner region around ζ0(t)
has a negligible influence on the interface. The second inner region created

4Branch points with a power −4/3
5This region can move differently from the B = 0 zero once the second inner region

discussed below has impacted the unit disk. We do not consider this possibility here.
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around ζ0(0) moves differently. The theory suggests that this inner region
consists of a cluster of singularities, whose size scales like B1/3. Unlike the
case discussed above this second inner region moves away from the B = 0
zero since, to leading order in B, it moves like a singularity of the zero
surface tension problem and this speed is different form the speed of the zero
ζ0(t) which spawned the cluster. As this singularity cluster approaches the
physical domain it may perturb the flow and the interface shape may differ
significantly from that at B = 0. The location of this singularity cluster
will be denoted by ζd(t), and following [Tan93] we shall call it the daughter
singularity. We emphasize that the dynamics of the daughter singularity
cluster is determined at lowest order solely by the B = 0 solution f 0(ζ, t),
at least until it arrives at the surroundings of the unit circle, and therefore
can be simply computed once the initial locations of the zeros of fζ(ζ, 0) are
determined.

The daughter singularity evolution equation is given by [Tan93]

ζ̇d(t) = −q0
1(ζd(t), t); ζd(0) = ζ0(0) (2.22)

where q0
1 is defined by

q0
1 =

ζ

2πi

∮
|ζ′|=1

dζ ′

ζ ′
ζ + ζ ′

ζ ′ − ζ
Re
[
ζ ′Φ0

ζ(ζ
′, t)
]

|z0
ζ (ζ
′, t)|2

(2.23)

and the superscript 0 denotes that the function evaluations are done using
the corresponding B = 0 solution. The function −q0

1(ζ, t) also gives the
characteristic velocity of a pole or branch point singularity of fζ(ζ, t) located
at position ζ in the region |ζ| > 1. The initial position ζd(0) is a consequence
of the fact that each zero ζ0(0) of the zero surface tension solution will give
birth to a daughter singularity. From Eq. (2.22) it can be shown [Tan93]
that d|ζd|/dt < 0, so that the daughter singularity approaches the unit circle
and it can impact it in a finite time td, the daughter singularity impact time,
satisfying |ζd(td)| = 1. In the limit B → 0, the daughter singularity impact
time td signals the time when the effects of the surface tension are felt on
the physical interface. For times larger than td the B = 0 interface and the
B → 0 one are expected to differ significantly.

2.4 HLS numerical method

In this section the numerical method developed by Hou, Lowengrub and
Shelley (HLS) [HLS94] is described. The method removes the stiffness of the
equations in an efficient manner, is spectrally accurate and controls the effect
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of numerical noise. HLS method has been used to develop the code used in
Chapters 4 and 5.

Tryggvason and Aref [TA83] used the vortex sheet formalism to integrate
the evolution, using a ‘vortex-in-cell’ algorithm. Later on, DeGregoria and
Schwartz [DS85, DS86] applied also the vortex sheet formalism but with a
different numerical algorithm, and observed tip-splitting of well developed
fingers when surface tension was decreased. Dai and Shelley [DS93] showed
that small B numerical computations are extremely sensitive to the preci-
sion used in the computations, and as a consequence numerical noise has
to be controlled with care in order to ensure that the computation is suffi-
ciently accurate. Recently, phase-field methods originally developed in the
solidification context [CL85, Lan86, Kob93] have been applied to Hele-Shaw
flows by Folch et al. [FCHMRP99a, FCHMRP99b]. Although usually less
accurate than boundary integral methods (at least for laplacian problems),
phase-field models can naturally deal with multiply connected fluid domains
and topological changes of the interface.

Numerical integration of Hele-Shaw flows is based on the vortex sheet
formalism [TA83] introduced in Section 1.1. The velocity w due to the vortex
sheet of a point of the interface is given by Birkhoff integral formula [Bir54,
TA83]

w = w(s, t) =
1

2π
P

∫
ds′

ẑ× [r(s, t)− r(s′, t)]

|r(s, t)− r(s′, t)|2
γ(s′, t) (2.24)

where P indicates Cauchy’s principal value and the vorticity γ reads

γ = 2cw · ŝ + 2x̂ · ŝ + 2B∂sκ (2.25)

To obtain the evolution of the interface Eq. (2.25) has to be solved with w
given by Eq. (2.24), yielding an integro-differential equation for the vorticity
γ. Once γ is known, Eq. (2.24) is used again to obtain w, and then its
normal component together with the irrotational component of the velocity
(if present) is used to update the position of the interface.

However, several problems arise in the practical implementation of this
scheme. First, the integral that appears in Eq. (2.24) has a singular kernel
that has to be evaluated carefully. Another important obstacle that rep-
resented a major problem for a decade to the numerical integration of the
equations is its stiffness, that forced painfully slow numerical integrations.
This stiffness is a consequence of the high order spatial derivatives of the cur-
vature term. Finally, the problem is extremely sensitive to numerical noise,
specially at small values of surface tension, and this sensitivity imposes the
main limitation to computations at very small B.
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2.4.1 θ − sα formalism

The evolution of an interface separating two fluids with surface tension is a
complicated motion-by-curvature problem. The numerical treatment of this
type of problems gets simplified by the use of appropriate dynamical variables
instead of the original cartesian x and y variables to describe the interface
position. The new variables are the interface’s tangent angle θ, defined as
the angle between the y axis and the tangent vector, and the derivative of
the arclength sα, where α is the independent variable that parameterizes
the interface. Then, given θ and sα the interface in terms of the cartesian
coordinates (x(α), y(α)) is obtained (up to a translation) from the integration
of (

∂x(α)

∂α
,
∂y(α)

∂α

)
= sα (cos [θ(α)] , sin [θ(α)]) , (2.26)

where r is assumed to be 2π-periodic in α. Note that we use the notation
ba ≡ ∂b/∂a. One important advantage of the use of the θ − sα variables
is that the curvature has the simple expression κ = θs, in comparison to its
expression in terms of x − y, that is

κ =
∂αx∂

2
αy − ∂2

αx∂αy

[(∂αx)2 + (∂αy)2]3/2
. (2.27)

The evolution of the interfacial shape is given solely by the normal com-
ponent of the velocity, U , and the tangential component T gives only a
reparameterization of the interface, changing how the points are distributed
along it. This allows one to introduce an arbitrary tangential component of
the velocity without altering the dynamics of the interface. An appropriate
election of T may indeed simplify the integration of the equations of motion.
The evolution of a point of the interface in terms of the components of the
velocity is

∂r

∂t
= U n̂ + T ŝ (2.28)

and in terms of θ − sα it reads [HLS94]

θt =
1

sα
Uα +

T

sα
θα (2.29a)

sαt = Tα − θαU. (2.29b)

The freedom in the choice of T allows us to choose tangential velocities that
dynamically preserve a specific parameterization. In particular, one of the
parameterizations that considerably simplifies the computation is [HLS94]

sα(α, t) =
1

2π
L(t), (2.30)



64 CHAPTER 2. METHODOLOGICAL PRELIMINARIES

that makes sα homogeneous all along the interface and equal to its mean
value. This is the parameterization we will use, and then the dependent
variables are the interface length L(t) and the angle θ(α, t). The tangen-
tial velocity T (α, t) that keeps the above equal-arclength parameterization is
easily obtained from Eq. (2.29b) and reads

T (α, t) = T (0, t) +

∫ α

0

dα′θα′U −
α

2π

∫ 2π

0

dα′θα′U. (2.31)

The use of this parameterization transforms the partial differential equation
(PDE) for sα, Eq. (2.29b) into a ordinary differential equation (ODE), sim-
plifying its integration and the removal of the stiffness, as will be shown in
next section.

2.4.2 Small scale decomposition

The main obstacle that appears when one integrates the motion equations
Eq. (2.29) is the stiffness that arises from the presence of high order terms in
Eq. (2.29a). It can be shown [BHLS93] that severe stability constraints are
present. For an explicit time integration method the form of the constraint
is

∆t < C
(s̄αh)3

B
, (2.32)

where C is a constant, h is the spatial grid size, s̄α = minα sα and ∆t is
the time step. Hence, to improve spatial resolution (decreasing h) the time
step has to be extraordinarily reduced. In addition, since the constraint
depends on the minimum grid spacing in arclength that in turn is strongly
time dependent (and can be very small if the points are not redistributed
along the interface), the system can get very stiff. The constraint arises from
the influence of high order derivatives at small length scales. To overcome
these difficulties Hou, Lowengrub and Shelley [HLS94] studied the Birkhoff-
Rott operator at small length scales and concluded that at small scales it can
be considerably simplified. The term w · ŝ present in Eq. (2.25) is an operator
on γ that actually smoothes it. It can be assumed that at small length scales
this term of Eq. (2.25) is negligible, and it can be proved [HLS94] that at
small scales

γ(α, t) ∼ 2Bκα (2.33)

where the notation f ∼ g is introduced to mean that the difference between
f and g is smoother than f and g. Now that the behavior expressed in
Eq. (2.33) is known then in the PDE for θ the contribution at small scales



2.4. HLS NUMERICAL METHOD 65

can be explicitely separated from the other contributions in the following
way [HLS94]

θt =
B

sα

(
1

sα
H

[
θα
sα

]
α

)
α

+
1

sα
Uα −

B

sα

(
1

sα
H

[
θα
sα

]
α

)
α

+
1

sα
θαT, (2.34)

so now in the numerical integration of θt an implicit scheme (free of the
severe constraint given in Eq. (2.32)) can be applied to the boxed term of
Eq. (2.34), removing the stiffness present with an explicit scheme. Taking
into account the equal arclength parameterization Eq. (2.30) and applying
the Fourier transform to Eq. (2.34), the evolution equation for the Fourier
transform θ̂ of the angle is

θ̂t(k) = −B
(

2π

L

)3

|k|3θ̂(k) + N̂(k), (2.35)

where N̂(k) is the Fourier transform of the rhs of Eq. (2.34) except the boxed
term. This expression is supplemented with the equation for L

Lt = −
∫ 2π

0

dα′θα′U. (2.36)

2.4.3 Numerical method and discretization

The time integration methods applied to the equations of motion Eqs. (2.35,
2.36) have been chosen to be of second order in time. The ODE describing the
evolution of L has been integrated using the (explicit) second order Adams-
Bashforth method:

Ln+1 = Ln +
∆t

2
(3Mn −Mn−1), (2.37)

where the superscript denotes the time step and M is

M = −
∫ 2π

0

dα′θα′U. (2.38)

The numerical time integration of Eq. (2.35) is more involved. The
method we have used is the linear propagator method, one of the two pro-
posed by Hou et al. [HLS94] and introduced by Rogallo [Rog77]. This method
factor out the dominant linear term prior to discretization, providing stable
methods to integrate diffusive problems. The method is applied as follows.
Rewrite Eq. (2.35) as

∂

∂t
F(k, t) = exp

[
B (2π|k|)3

∫ t

0

dt′L−3(t′)

]
N̂(k, t) (2.39)
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where

F(k, t) = exp

[
B (2π|k|)3

∫ t

0

dt′L−3(t′)

]
θ̂(k, t). (2.40)

Eq. (2.39) is discretized applying again the second order Adams-Bashforth
method, and in terms of the original θ̂ it reads

θ̂n+1(k) = ek(tn, tn+1)θ̂n(k) +

∆t

2

[
3ek(tn, tn+1)N̂n(k)− ek(tn−1, tn+1)N̂n−1(k)

]
(2.41)

where tn = n∆t, and

ek(t1, t2) = exp

[
−B (2π|k|)3

∫ t2

t1

dt′

L3(t′)

]
. (2.42)

Eqs. (2.41) and (2.42) show the use of the linear propagator: at every time
step θ̂ is propagated forward at the exact exponential rate corresponding
to the linear term. If the nonlinear term N̂ was absent, the method would
give the exact solution. One still needs to compute the factor ek(t1, t2), that
contains a continuous time dependence. To compute ek(t1, t2) the integral is
evaluated using the trapezoidal rule approximation, that retains the second
order of the time discretization. Then, at every time step Ln+1 is computed
first using Eq. (2.37), and this Ln+1 is used to compute θ̂n+1, since Ln+1 is
needed to evaluate ek(tn, tn+1).

The interface is initially discretized at points satisfying the equal ar-
clength parameterization, and the election of T given in Eq. (2.31) keeps it
during the evolution. Spectrally accurate spatial discretizations are used,
and any differentiation or partial integration is found at the mesh points
by means of the Fourier transform. In the computation of the velocity at
a point of the interface the singular kernel of the Birkhoff-Rott integral has
to be evaluated. In this case we use the spectrally accurate alternate point
discretization, and the lagrangian velocity (in complex form) is obtained as

uj − ivj =
h

2πi

∑
(j+l) odd

γl cot
zj − zl

2
(2.43)

where zj = xj + iyj is the j-th interfacial (mesh) point and wj = (uj, vj) is
its (rotational) velocity. Note that above we have written the Birkhoff-Rott
integral for an interface 2π-periodic, and for this reason the (singular) kernel
of the integral in Eq. (2.24) is different from that of Eq. (2.43).

The vorticity is obtained from the numerical solution of Eq. (2.25). For-
mally, its discretized version is a system of ordinary linear equations, γi(δ

i
j −
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M i
j) = Aj, and to solve it it would be necessary to invert the matrix δij−M i

j .
However, this is very time consuming, and in practice the method used is the
Generalized Minimal Residual (GMRES) [SS86] method. GMRES solves the
system iteratively, starting from an initial guess, as close as possible to the
solution. The numerical solution of Eq. (2.25) is the part of the numerical
code that consumes most of the time, and to reduce the time devoted to
obtain γ it is important to supply a good initial guess, thus reducing the
number of iterations needed by GMRES to reach convergence. The initial
guess at every time step is obtained from extrapolation6 of γ at previous time
steps. In addition, if the interface is symmetric along the mid-channel axis we
can take advantage of this since only half of the points of γ need to be com-
puted with GMRES, and the rest are obtained from the symmetry condition,
improving significantly the time performance of the total computation.

2.4.4 Noise filtering

The major limitation to the computation of the evolution at low values of
B is the extreme sensitivity of the system to noise. The Saffman-Taylor
finger is linearly stable but unstable to perturbations of finite amplitude, or
in other words, it is nonlinearly unstable [Ben86]. The amplitude Anoi of
the perturbation required to destabilize the finger decreases rapidly as B is
reduced, and is approximately described by [Ben86]

lnAnoi ∼ −
1√
B
. (2.44)

This nonlinear instability of ST finger manifests also for fingers that are
not well formed, but whose shape is close to the ST finger in its foremost
region. Then, at low B numerical noise originated at roundoff can trigger
the instability, and has to be appropriately controlled to prevent the spurious
growth of high order modes. The method we have used to control it is
Krasny filtering: we set to 0 the amplitude of all Fourier modes below a filter
level ε. Krasny filtering is applied every time a derivative of any quantity
is computed, and on θ̂ at every time step. The need of noise filtering is
illustrated in Fig. 2.2, where |θ̂(k)| corresponding to an interface consisting
of a well developed finger very close to the ST finger is plotted. For large k the
effect of noise is clear: the amplitude of the modes decreases as log |θ̂| ∼ −k
for a range of wave numbers, but below a certain amplitude roundoff error
becomes dominant. The application of Krasny filtering to the case depicted
in the plot would set to zero all modes below the dashed line.

6We have typically used fourth-order extrapolation.
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Figure 2.2: |θ̂| for an interface corresponding to a well developed finger, with
a shape close to ST finger. Below k ≈ 120 numerical noise dominates θ̂. The
dashed line represents a possible election of the noise filter ε.

Krasny filtering reduces notably the effect of noise, but for very small
values of B numerical noise still has a dramatic effect on long time dynamics.
In this case the only solution is to increase the arithmetic precision in order
to lower the amplitude where roundoff noise is significant, thus allowing for a
reduction on the value of the filter level ε. Higher precision arithmetic (128-
bit) combined with a lower value of ε notably delay or even suppress the
appearance of noise effects on the interface, but at the cost of an important
increase of CPU time. But even if higher precision is used noise appears
again if B is decreased further.



Chapter 3

Zero-surface tension dynamics.
Towards a Dynamical
Solvability Scenario

Previous work on finger competition is described, in particular the study
of a two-finger exact solution of the problem without surface tension, that
does not present successful finger competition. Some simple examples of
exact solutions of the problem without surface tension that present successful
finger competition are studied in detail in the framework of the Dynamical
Systems approach. A general proof of the existence of finite-time singularities
for broad classes of solutions is given. The main conclusion is that exact zero-
surface tension solutions taken in a global sense are unphysical because the
multifinger fixed points are nonhyperbolic, and an unfolding of them does
not exist within the same class of solutions. Hyperbolicity (saddle-point
structure) of the multifinger fixed points is argued to be essential to the
physically correct qualitative description of finger competition. The restoring
of hyperbolicity by surface tension is discussed as the key point for a generic
Dynamical Solvability Scenario, which is proposed for a general context of
interfacial pattern selection.

3.1 The two-finger minimal model

In this section the minimal class presented in Ref. [MC98] and studied in
detail in [Mag00] is revisited. The comparison of its phase portrait with
the known topology of the physical problem reveals that the minimal class
dynamics is unphysical. The main reason for this unphysical behavior is the
existence of a continuum of fixed points.

69
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3.1.1 The model. Study of the dynamical system

The simplest class of exact time-dependent solutions of Eq. (2.8) containing
the three physically relevant fixed points: the planar interface (PI), the single
Saffman-Taylor (1ST) fixed point and the double Saffman-Taylor (2ST) fixed
point was introduced in Ref. [MC98] and reads

f(ω, t) = − lnω + d(t) + (1− λ) {ln [1− α(t)ω] + ln [1 + α(t)∗ω]} (3.1)

where λ is a real-valued constant in the interval (0, 1), α(t) = α′(t) + iα′′(t)
and d(t) is real. The relevant phase space for a given λ is the first quadrant
of the unit circle in the (α′, α′′) space. The other three quadrants describe
interface configurations that are equal or symmetrical to the interfaces con-
tained in the first quadrant. In this section we will summarize the basic
results discussed in detail in Refs. [MC98, CM00]. The interface described
by this mapping consists generically of two unequal fingers, axisymmetric
and without overhangs. The case α′(t) = 0 gives the time-dependent ST
finger solution, and α′′(t) = 0 corresponds to the double time-dependent ST
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Figure 3.1: Phase portrait of the minimal model with (a) λ = 1
2

and (b)
λ = 1

10
. The one-finger (resp. two-finger) region is above (below) the short-

dashed line. For the region above the long-dashed line the secondary finger
has zero growth rate while for the region below the secondary finger has finite
growth rate. Note that for λ = 1

10
there are trajectories crossing from below

the line separating the zero and finite growth rate regions. The phase space is
parameterized with the variables u = 1−α′′2 and r = (α′2+α′′2−1)/(α′′2−1).
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finger. For |α(t)| � 1 the interface consists of a sinusoidal perturbation of
the planar interface.

The phase portraits of the dynamical systems defined by the solutions
of the form Eq. (3.1) for different λ were studied in detail in Refs. [MC98,
CM00, Mag00]. The most salient feature was that the basin of attraction of
the Saffman-Taylor single finger is not the whole phase space (see Fig. 3.1).
The separatrix between the basin of attraction of the ST finger and the rest of
the flow starts in the planar interface fixed point and ends in a new fixed point
whose location depends on λ. The flow not attracted to the single-finger fixed
point, evolves to a continuum of fixed points, corresponding to stationary
solutions with two unequal fingers advancing with the same velocity. The
basin of attraction of the ST finger was shown to be larger for smaller λ but
never the full phase space. For λ = 1/2 there is no successful competition
in the precise sense defined in Section 2.1. Successful competition is only
possible for λ < 1/3 but, in any case, it is never very significant (only rather
small fingers may be suppressed).

3.1.2 Comparison with the regularized dynamics

In this section we will extend the the analysis of Refs. [MC98, CM00, Mag00]
to generalize and strengthen their conclusions. We are interested in the
comparison between the B = 0 dynamics and the B 6= 0 one. The dynamical
system defined by the mapping Eq. (3.1) is referred to as L2(λ). From now
on we will restrict the analysis to the relevant case for B → 0, namely
λ = 1/2. In order to compare with the B 6= 0 dynamics we first have to
define an appropriate invariant manifold of the full dynamical system S∞(B).
Following Ref. [MC98] we can take a uniparametric set of initial conditions of
the form Eq. (3.1) in a neighborhood of the PI fixed point, say α(θ) = εeiθ and
define a two-dimensional manifold as the set of trajectories generated by the
forward and backward evolution of those initial conditions with the dynamics
of finite B. The resulting DS, which we call S2(B), is thus defined on a two-
dimensional invariant manifold S2(B) of the infinite-dimensional phase space
of S∞(B). That manifold intersects the one where L2(1/2) is defined, denoted
by L2(1/2) at the line of initial conditions parameterized by θ above and at
PI. By taking the limit ε→ 0 then the two manifolds become tangent at PI.
A scheme of these construction is shown in Fig. 3.2. The basic conclusion of
Ref. [MC98] was that the flow defined by the above DS’s L2(1/2) and S2(B)
are not topologically equivalent, in connection to the fact that L2(1/2) is
structurally unstable. Accordingly, a generic perturbation of the equations,
for instance the one provided by the introduction of a small surface tension,
does yield a qualitatively different system. In this sense, the DS’s defined by
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Figure 3.2: Schematic representation of the construction to define S2(B) (see
text). In this scheme the two-dimensional phase space S2(B) is embedded in a
three-dimensional phase space instead of the infinite-dimensional one S∞(B).
The dashed line represents the one dimensional set of initial conditions.

L2(1/2) in no way can be the limit of the regularized system S2(B) as B → 0
since topological inequivalence means that there is no continuous deformation
connecting the two phase portraits. Notice, however, that the manifold S2(B)
where S2(B) is defined is a different subset of the whole infinite-dimensional
phase space for each value of B, all of them tangent at PI. This means that
we are actually comparing interface configurations which are qualitatively
similar but not quite the same. In order to strengthen the result, it is thus
interesting to consider the limit B → 0, as proposed in Ref. [MC98]. By
doing this we will guarantee that the regularized dynamics will converge to
the zero-surface tension dynamics in some parts of phase space, namely the
trajectories connecting the PI fixed point respectively to the 1ST and the
2ST fixed points (selection theory does guarantee that, for λ = 1/2 1ST’ →
1ST and 2ST’ →2ST). Within the framework of the singular perturbative
analysis of Refs. [STD96, ST96] it is now clear that the regularized dynamics
will converge to the idealized one in a finite (nonzero measure) region of
L2(1/2), which includes the three fixed points and a neighborhood of the
trajectories connecting them (the region defined by the zero-surface tension
dynamics until the impact at finite time on the unit circle of the so-called
daughter singularities). The statement of the fundamental difference between
the regularized and the idealized problems takes then a stronger form in that
the two respective manifolds coincide at order one time but depart from each
other for the long-time dynamics which defines finger competition. Knowing
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the regions where the two manifolds coincide does unambiguously define
the part of the dynamics which is correctly captured by the zero surface
tension problem. Only for this part, introducing now a small but finite
surface tension will behave as a regular perturbation. Hence although taking
the limit of vanishing surface tension is not necessary to state the qualitative
differences between the problem with and without surface tension, it clarifies
and strengthens the conclusion on a quantitative basis. A detailed numerical
study of this problem will be presented in Chapter 4. At this point, a word
of caution is required concerning the distinction between intrinsic dynamics
and noise effects when the limit of very small surface tension is considered.
The well-known sensitivity to noise of the ST solution when surface tension is
decreased in the presence of noise [Ben86] may modify in practice the present
scenario making it virtually impossible for the dynamics to actually attain
the fixed points [KL01]. It is important to stress, however, that while this is
true for a fixed amount of local (high wavenumber) noise, either numerical
or experimental, this effect is not contained in the intrinsic dynamics. That
is, careful numerical studies have shown that the small surface tension limit
can be approached to arbitrarily small values, provided that numerically
generated noise is properly controlled [STD96, ST96, HLS01]. Furthermore
it has conclusively been shown that, in the absence of noise, the single-finger
fixed point is the universal attractor of the problem, at least for the classes
of initial conditions here considered.

The flow topology of the regularized problem is thus very simple. PI is an
unstable fixed point, 1ST’ is a stable fixed point and 2ST’ is a saddle point
with a stable manifold connected to PI and an unstable manifold connected
to 1ST’. The model L2(1/2) instead, contains, in addition to PI, 1ST and
2ST, an additional saddle fixed point which separates the basin of attraction
of 1ST and the rest of the flow, which ends up in a continuum of fixed points
corresponding to two unequal fingers. It is precisely the existence of this line
of fixed points which causes the structural instability of the flow of L2(λ)
according to Peixoto’s theorem [GH83]. This is also responsible for the fact
that the double finger 2ST fixed point is nonhyperbolic, that is, it misses the
unstable direction which should connect 2ST to 1ST. From a physical point
of view, it is clear that the saddle-point structure of the 2ST fixed point is
essential to account correctly for finger competition, since it is the instability
of this equal-finger configuration to symmetry-breaking perturbations which
originates the phenomenon of finger competition. In this sense, we can asso-
ciate ‘growth’ to the stable direction of 2ST and ‘competition’ to the unstable
one. This saddle-point structure of the 2ST fixed point is thus expected to
govern the crossover between these two regimes introduced above. In the
following Chapter we will see that the failure of the minimal model L2(1/2)
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to properly account for finger competition is a generic property of the zero
surface tension problem.

3.2 Extension within two dimensions:

searching for an unfolding

In this section a perturbation of the minimal class described in Chapter 2
that removes the continuum of fixed points but keeps the dimensionality of
the phase space unchanged is studied. We show that such perturbed exact
solution presents finite-time singularities for broad sets of initial conditions,
and it also exhibits finite-time interface pinchoff. This solution contains the
main general features of zero surface tension, and it is shown that it does
not describe in general the correct dynamics for finite surface tension. The
main reason is that the dynamical system that it define lacks the saddle-point
structure of the multifinger fixed point, necessary to account for the observed
finite surface tension dynamics.

3.2.1 Modified minimal model

A possible modification of the ansatz (3.1) which is solvable and preserves
the two-dimensionality of the phase space is the following:

f(ω, t) = − lnω + d(t) + (1− λ+ iε) ln[1− α(t)ω]

+(1− λ− iε) ln[1 + α(t)∗ω] (3.2)

where the constant of motion ε is real and positive. If ε is set to zero then
the minimal model Eq. (3.1) is retrieved. Solutions of this type have been
reported before, for instance in Refs. [MWD94, MWK99, FPD01]. This
mapping describes generically two axisymmetric unequal fingers, with the
symmetry axis located in fixed channel positions separated a distance π, half
the channel width. The main morphological difference between the interface
described by the minimal class and the interface obtained from Eq. (3.2) is
that the interface of the modified model may present overhangs. This can
be understood from a geometrical point of view in the following manner:
well developed fingers are separated from each other by fjords of the viscous
phase, and the width and orientation of these fjords is determined by the
constant γ = 1− λ+ iε. If γ is real, i.e. ε = 0, the centerline of the fjords is
parallel to the channel walls and the fingers do not present overhangs, but if
the constant term has an imaginary part (ε 6= 0) then the fjords form a finite
angle with the walls [PMW94]. As a result of the inclination of the fjords
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Figure 3.3: Time evolution of a configuration with λ = 1/2 and ε = 0.1.

the fingers may present overhangs. An example of these solutions is shown
in Fig. 3.3, with a series of snapshots of the corresponding time evolution.
The class of solutions Eq. (3.2) contains also the single finger Saffman-Taylor
solution (α′ = 0) but, remarkably enough, the introduction of a finite ε has
removed the double Saffman-Taylor finger solution. As usual, the constant
λ is the asymptotic width of the advancing finger. The natural phase space
in this case is the unit circle, |α| ≤ 1, but we will restrict the study to α′ ≥ 0
because the flow in the α′ ≤ 0 region can be obtained by a π rotation of
the α′ ≥ 0 region. Physically, this rotation or the replacement α → −α
corresponds to a shift of the interface by an amount π (half the channel
width) in the y direction. Thus, the semi-circle α′ ≤ 0 contains the same
interfacial configurations and dynamics than the α′ ≥ 0 region after a trivial
transformation.

The zeros ω0 of ∂ωf(ω, t) laid outside the unit circle for the minimal
model, but for the modified minimal model Eq. (3.2) the situation is different:
for |α| < 1 a zero of ∂ωf(ω, t) can be inside the unit circle. The position of
the zeros in this case is

ω0 =
−i(λα′′ − εα′)±

√
(2λ− 1)|α|2 − (λα′′ − εα′)2

(2λ− 1)|α|2
(3.3)

for λ 6= 1/2 where α′ = Re α and α′′ = Im α. For the particular value
λ = 1/2 the position of the zero is

ω0 =
1

2i(λα′′ − εα′)
. (3.4)
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Figure 3.4: Interface with one crossing, with one zero inside the unit circle.
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Figure 3.5: Time evolution of a configuration with a double crossing of the
interface, with λ = 1

2
and ε = 1

2
. The the leftmost curve corresponds to t = 0

with α = 0.85 + i0.4 and the rightmost one to t = 3.0. The spacing between
the curves is ∆t = 1.0. (The curves are plotted with its mean x position
shifted arbitrarily for better visualization).
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It can be shown that for any λ and ε 6= 0 the zero ω0 can have a value
such that |ω0| < 1 for some |α| < 1. For instance, with λ = 1/2 the curve
|ω0(α)| = 1 is the line α′′ = −1 + 2εα′, which clearly intersects the unit circle
|α| = 1, enclosing a region where |ω0| < 1. As a consequence of the presence
of a zero inside the unit circle the parameter space |α| ≤ 1 contains unphysical
regions, where the mapping Eq. (3.2) does not describe physically acceptable
situations, with self-intersection of the interface associated to the fact that
the mapping is not a single valued function. One of these regions is defined
by the existence of a zero ω0 of ∂ωf(ω, t) inside the unit circle. In this region
of phase space the interface crosses itself at one point, describing a single loop
(see an example in Fig. 3.4). Most remarkably a second unphysical region
containing interfaces with two intersections cannot be so easily detected since,
in this case, the zeros of ∂ωf(ω, t) lay outside the unit circle. Zero surface
tension solutions displaying this feature were also reported in Ref. [BST95].
Fig. 3.5 shows a configuration with this double crossing.

Substituting the mapping Eq. (3.2) in Eq. (2.8) it can be checked that
this ansatz is a solution and that ε is a constant preserved by the dynamics.
The system of differential equations resulting from the substitution takes the
form

1 + |α|4 + 4 Im[α]2 = |α|2(2λ− 1){ḋ|α|2 + 2 Re[γα∗α̇]}+

ḋ+ 4 Im[α(1− γ)]{ḋ Im[α] + Im[γα̇]} (3.5a)

4(1 + |α|2) Im[α] = 2(2λ− 1)|α|2{ḋ Im[α] + Im[γα̇]}+

2{ḋ Im[α] + Im[γα̇]}+ 2ḋ Im[α(1− γ)] +

2 Im[α(1− γ)]{ḋ|α|2 + Re[γα∗α̇]} (3.5b)

2λḋ|α|2 + 2 Re[γα∗α̇] = 2|α|2 (3.5c)

where the time-dependence of α(t) and d(t) has been dropped for sake of
clarity and γ = 1 − λ + iε. Eqs. (3.5) can be integrated explicitely and the
corresponding solutions for the variables d(t) and α(t) = α′(t) + iα′′(t) take
the form

β = d(t)− lnα(t) + (1− λ− iε) ln[1− |α(t)|2]

+(1− λ+ iε) ln[1 + α(t)2] (3.6a)

t+ C = λd(t) + (1− λ) ln |α(t)| − ε arctan
α′′(t)

α′(t)
(3.6b)

where C is a real-valued constant and β is a complex-valued constant. Notice
that there is no apparent indication of the pathological situations described
above in the form the explicit solutions above. The study of the dynamical
systems defined by Eqs. (3.6) is the object of the next section.
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Figure 3.6: Phase portrait of the minimal model and the modified minimal
model. λ = 1

2
for both plots, the regions to the right of the dotted lines

correspond to two-finger configurations (a) ε = 0; note the continuum of
fixed points (marked with a thick line) on |α| = 1. (b) ε = 0.1; the straight
line in the lower left corner is a line of finite-time singularities and the two
fingers have equal length on the dashed line.

3.2.2 Study of the dynamical system

The addition of an imaginary part iε to the constant (1 − λ) modifies dra-
matically the phase portrait of the minimal model, as can be seen in Fig. 3.6,
where the phase portraits for ε = 0 (in the variables (α′, α′′)) and ε = 0.1
are depicted. The phase portrait of the modified minimal model is qualita-
tively different from the ε = 0 one, as a direct consequence of the structural
instability of the latter case [GH83], which implies that an arbitrary pertur-
bation of the equations yields a flow which is not topologically equivalent
(notice that a perturbation of an initial condition of the infinite-dimensional
space of interface configurations is represented here as a perturbation of the
equations themselves, that is, a displacement in the space of dynamical sys-
tems). One could have expected that the introduction of this ε would have
provided an unfolding of the phase portrait of the minimal model into a
structurally stable one (within the integrable class of mappings), hopefully
with the saddle-point connection between the unstable and the stable fixed
points, as corresponds to the the physical case with B 6= 0. The phase
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portrait of the regularized flow (which is obviously the natural unfolding)
would be similar to that of ε = 0 in Fig. 3.6a, except that all trajectories
other than the line α′′ = 0 would end up symmetrically to the upper ST
fixed point or the lower one. Unfortunately, we must conclude that the re-
sulting phase portrait for the modified minimal model does not provide the
correct unfolding. This is particularly remarkable if one takes into account
that, in two-dimensional systems, structurally stable dynamical systems are
dense [GH83]. On the contrary, the perturbed equations contain finite-time
singularities and, although they remove the continuum of double-finger fixed
points, they also miss the equal-finger fixed point, which is an essential in-
gredient of the regularized flow.

Notice that in this representation, the 1ST fixed point has been split
in two 1ST(R) and 1ST(L), corresponding to whether the right or the left
finger approaches the single finger attractor. These two solutions correspond
to having the ST finger located at two different positions (the symmetry
axes of the fingers), owing to the translational invariance associated to the
periodic boundary conditions. Since a π-shift in the transversal y-direction
must yield an equivalent configuration, the identification of any point in the
semicircle with the diametrically opposed which has reduced the actual phase
space in half, implies also that the 1ST(R) and 1ST(L) must be topologically
identified as the same point. Approaching one or the other thus means
approaching from the left or from the right. With this identification the
contact with the problem with rigid boundaries is clearer, since there, the
attractor is clearly unique but the flow must also be symmetrically split into
two parts, corresponding to whether the left or the right finger wins, owing
to the symmetry of the system under parity (see a more detailed discussion
in Sec. 3.3.4).

In Fig. 3.7 we plot the phase portrait for ε = 0.5 and the different re-
gions of phase space. For any other ε the flow is topologically equivalent
but the shape and size of the different regions varies smoothly. The line of
finite-time singularities collapses towards the lower fixed point 1ST(L) in the
limit ε → 0 as shown in Fig. 3.6b. In the absence of the 2ST fixed point,
the splitting of flow is made possible by the existence of the line of finite-
time singularities. Instead of a separatrix between the respective basins of
attraction of 1ST(R) and 1ST(L), there is an intermediate, nonzero measure
region, connected to the PI fixed point, whose evolution ends up at that
singularity line, defined by the condition |ω0| = 1. Similarly to the finite-
time singularities occurring for polynomial mappings, this line is reached in
a finite time and is associated to the formation of a cusp at the interface.
The evolution is not defined after that time. The flow in the region below
the singularity line (region III of Fig. 3.7b), defined by |ω0| < 1, is actually
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Figure 3.7: (a) Phase portrait of the modified minimal model with λ = 1/2
and ε = 1/2. (b) Plot of different regions of phase space of case (a). The
grey regions correspond to single finger interfaces and the other regions to
two finger interfaces. Regions IIa and IIb differ in which of the two fingers is
larger. Regions III and IV are unphysical regions described in the text. The
straight boundary of region III is a line of cusp singularities.

well defined although it describes evolution of unphysical interfaces which in-
tersect themselves forming a loop, (see Fig. 3.4). Their evolution originates
and ends at different points of the singularity line. The region IV has double
crossings of the interface (see Fig. 3.5) and also originates at the singularity
line but, remarkably enough, it evolves asymptotically towards the ST finger
despite their unphysical double crossing at the tail of the finger. This double-
crossing is removed in a finite time in some subregion of IV and it remains
up to infinite time in another subregion. Incidentally, this clearly illustrates
how dangerous it may be to infer a physically correct dynamics from the
fact that the interface evolves asymptotically towards a single ST finger, and
that zero surface tension solutions must be dealt with extreme care since
smooth and apparently physical interfaces may contain elements that yield
them physically unacceptable when the time evolution is considered either
forward or backward.

The double-crossing removal in some of the above solutions has some
implications in the general study of topological singularities associated to
interface pinchoff in fluid systems (for a recent review see Ref. [Egg97] and,
in the context of Hele-Shaw flows, see for instance Ref. [GPS98]). Consider
the stable Saffman-Taylor problem, in which the viscous fluid displaces the
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Figure 3.8: Time evolution of a configuration with a double crossing of the
interface, showing the dynamical removal of the crossing. In this case, λ = 1

2

and ε = 1
2
. The initial interface with α = 0.865+i0.2 is the solid line, and the

dotted line is the interface at t = 0.5. The mean x position of the interface is
shifted for better visualization. Time reversal of this evolution, corresponding
to stably stratified Hele-Shaw flow, defines a finite-time interface pinchoff.

inviscid one. The planar interface is stable in this case and is the attractor
of the dynamics. The conformal mapping obeys then an equation formally
equivalent to Eq. (2.8), that applies to the unstable Hele-Shaw flow, with
the only difference that time is reversed, t is substituted by −t, in Eq. (2.8).
Therefore, the dynamics of the stable case is obtained from the unstable one
simply by a time reversal. As a consequence, the double-crossing removal we
observed in the original problem encompasses a prediction of a finite-time
interface pinchoff in the stable configuration of the problem, for some class
of initial conditions. A similar pinchoff phenomenon for zero surface tension
dynamics was detected numerically by Baker, Siegel and Tanveer [BST95]
for other types of mapping singularities. Our result provides a very simple
example of exactly solvable finite-time pinchoff. Notice that there is no singu-
larity of the interface shape or velocity at the interface contact, so one could
presume that surface tension may not affect significantly the phenomenon in
this case, although this is an open question yet.

The evolution of a trajectory ending up in the cusp line cannot be con-
tinued beyond the impact time t0 of the zero ω0 with the unit circle |ω| = 1
because the cusp line attracts the flow from both sides, but the flow is indeed
well defined in the interior of region III, where we have ˙|α| < 0 in opposition
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to the physical region where ˙|α| > 0, so, in a sense, the temporal evolu-
tion inside the singularity region is reversed. As a matter of fact, the graph
α′′(α′) can be obtained and is smooth in all regions of phase space. Defining
α = reiθ, its substitution in Eqs. (3.6) yields after some algebra

dθ

dr
=

4r cos θ

1− r2

(1− λ)(1− r2) sin θ + ε(1 + r2) cos θ

1 + (2λ− 1)r4 + 2λr2 cos 2θ + 2εr2 sin 2θ
(3.7)

and from this expression the trajectory can be obtained also in region III.
The fact that the modified minimal model does not yield an unfolding of the
minimal one is more deeply stressed by the fact that the field of directions
defined by the above graph, even removing the singularities through a proper
time reparameterization and time reversal in region III, is still a structurally
unstable flow.

It is well known that the zero-surface tension problem is extremely sen-
sitive to initial conditions: given a zero-surface tension solution at t = 0,
another one can be found which is as close as desired to the interface of the
first solution, and the evolution of the two solutions be completely different
in general. This is a consequence of the ill-posedness of the initial-value prob-
lem [Tan93], which is most clearly manifest in polynomial mappings, which
may arbitrarily approximate any initial condition, possibly one which does
not develop singularities, but themselves always develop cusps. However, it is
illustrative to see several striking examples of sensitivity to initial conditions
within the class of logarithmic mappings which are much less predictive a
priori.

Example 1. Consider two initial conditions (α′1, α
′′
1) and (α′2, α

′′
2) close

to the PI fixed point, with |α1|, |α2| � 1, which differ only in nonlinear
orders of their mode amplitudes1, being equivalent to linear order. One can
easily choose (α′2, α

′′
2) (with α′1α

′
2 < 0, that is, considering not only the semi-

circle α′ > 0 but the whole unit circle) such that the time evolution will
be completely different from the evolution of the original initial condition,
even though the two initial conditions where equivalent to linear order. In
Fig. 3.9 we show an explicit example. While the two initial conditions for the
interface configuration cannot be distinguished in the scale of the plot, the
final outcome is dramatically different. One of the evolutions is an example of
successful competition, where the finger in the initial condition is eventually
approaching the ST solution, with a small secondary finger (not present in
the initial condition) which is generated but screened out by the leading one.
The other evolution is quite surprising since the secondary finger grows to
the point of taking over and winning the competition.

1The amplitudes of the first two modes k = 1, 2 are δ1 = 2(1 − λ)α′′ + εα′ and δ2 =
2εα′α′′ + (1− λ)(α′′2 − α′2).
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Figure 3.9: Evolution of two interfaces initially equal to linear order (see
text), with λ = 1/3 and ε = 0.1. α(0) = 0.04619398 − i0.01913417 for the
solid line and α(0) = −0.04619398− i0.00527598 for the dashed line. Upper
left plot t = 0, upper right plot t = 2.0, lower left plot t = 4.0 and lower
right plot t = 6.0.

Example 2. A similar situation is found if one compares two initial condi-
tions equivalent to linear order up to a parity transformation. Pairs of initial
conditions of this type, with the same values of λ and ε, can easily be found
within the same semicircular phase space, and since the dynamics is indeed
symmetric under mirror reflection, one should not expect, in principle, a
very different behavior, even though such points are not close to each other
in phase space. Fig. 3.10 shows an example in which one of the evolutions is
smooth, with a leading finger and a small one being generated, and the other
generates a cusp in finite time. As in the first example, no signature of the
different fate of the system could apparently be seen in the initial conditions.
In both cases the extremely small differences associated to higher orders in
the mode amplitudes have thus been crucial. The sensitivity to initial con-
ditions of these examples is more striking for decreasing values of ε, since
the time in which the two evolutions stay close to each other increases as
O(− ln ε). For instance, given an initial condition α0 close to PI, the differ-
ence between the ε = 0 interface and the ε→ 0 one will remain of O(ε) for a
time of O(− ln ε). Later on in the evolution the differences between the two
interfaces will be of O(1): the asymptotic shape of the ε = 0 case will be two
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Figure 3.10: Evolution of two interfaces symmetric to linear order (see text),
with λ = 1

2
, ε = 0.1, α(0) = 0.02724 + i0.03104 for the solid line and

α(0) = 0.02724 − i0.04193 for the dashed line. The upper plot corresponds
to t = 0 and the lower to t = 4.19, when a cusp develops.

unequal fingers while the shape of the ε→ 0 will be a single Saffman-Taylor
finger. Similarly, for two initial conditions symmetrical to linear order such
as in Example 2, with ε → 0, the differences between their interfaces will
remain symmetric to O(ε) for a time of O(− ln ε), but later they will lose
symmetry and finally both will end up at the same fixed point, say the right
one, even though one of the two evolutions has been favoring the other one,
say the left one, for a long time (up to well developed fingers).

Example 3. In Fig. 3.11 we illustrate the effect of changing ε in initial
conditions which are equivalent to linear order. Notice that in one case a
cusp is generated at the secondary finger. In others the small finger rapidly
overcomes the large one, while for the smallest ε the initial finger seems to
lead the competition. Remarkably, in this last case the smaller finger will
also take over after a much longer time.

All the above examples have been chosen to emphasize the caution that
is required when trying to use exact solutions to approximate the dynamics
of the problem. A direct comparison of these solutions with numerical in-
tegration for very small surface tension is required in order to make a more
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Figure 3.11: Evolution of four interfaces equal to linear order, with λ = 1
2
.

ε = 0.01 and α(0) = 0.04671 − i0.01291 for the dotted line, the solid line
is ε = 0.1 and α(0) = 0.04619 − i0.01913, the short-dashed line is ε = 0.3
and α(0) = 0.04260 − i0.03137 and the long-dashed is ε = 0.6 and α(0) =
0.03472− i0.04345. (a) t = 0, (b) t = 2.4, (c) t = 3.5, (d) t = 5.0. Note that
at t = 2.4 the ε = 0.6 interface develops a cusp.

quantitative assessment of the issue. This is presented in next Chapter and
in Ref. [PSC02].

In any case, it must also be stated that the class of logarithmic solutions
does provide also qualitatively correct evolutions, not only of single finger
configurations as stated in [MC98], but also with two-finger configurations
showing successful competition. An example of this is plotted in Fig. 3.3:
starting from the planar interface, during the linear regime a bump starts
to grow, followed generically by a second bump as the evolution enters the
nonlinear regime. The two fingers keep on growing for some time, until
later on in the evolution, one of the fingers is dynamically eliminated of the
competition process and the other finger approaches asymptotically the ST
finger solution. This general scenario is illustrated in Fig. 3.12a, where the
individual growth rates of the two fingers ∆ψ1 and ∆ψ2 are plotted versus
time, for two different initial conditions.

For other initial conditions as generic as the previous one, however, the
following phenomenon is observed: the small finger (with initially zero flux)
of a configuration with two significantly unequal fingers increases its flux
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Figure 3.12: Individual growth rates ∆ψ1(t) and ∆ψ2(t) of the two fingers for
the modified minimal model with λ = 1

2
and ε = 0.1, for two different initial

conditions showing successful competition. For the (a) case the finger which
initially has larger growth rate (and larger length too) wins the competition.
For the (b) case the finger which initially has lower growth rate (and lower
length too) wins the competition, in opposition to the evolution with the
regularized dynamics (small surface tension).

while the flux of the large finger decreases, until the flux of the initially small
finger is higher than the flux of the other finger and finally the flux of the
initially large finger reaches zero: it has been suppressed from the competi-
tion. This is opposite to what it would expected a priori from simple physical
considerations. In fact, one would expect that for well developed fingers the
larger one wins the competition, at least if the distance between the two
finger tips is large before the process begins. This anomalous competition
dynamics is illustrated in Fig. 3.12b, where it can be seen that initially only
one finger has a finite ∆ψ1, and it grows until a second finger develops and
begins to grow, as indicated by the appearance of a nonzero ∆ψ2. The sec-
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ond finger grows together with its growth rate and surpasses the first one,
which is eventually suppressed from the competition process. This is indi-
cated by ∆ψ1 going to zero. This example is important as a case where there
is successful competition (finger coalescence) to the Saffman-Taylor asymp-
totic solution but with a completely wrong dynamics. In fact it can be seen
that the zero surface tension evolution departs from the regularized trajec-
tory much before the small finger takes over the competition (through the
impact of a daughter singularity, as will be discussed in next Chapter). The
winning finger with the regularized dynamics is thus the losing finger with
the zero surface tension one.

Again, in the limit ε → 0 these phenomena appear even more dramat-
ically, as a consequence of the structural instability of the minimal model.
In this limit, for a O(− ln ε) time we will observe two unequal fully devel-
oped fingers advancing with a fixed tip distance, but eventually the presence
of finite ε will ‘activate’ the competition process and one of the two fingers
will reduce its growth rate until fully suppressed from the competition. If
α′′(0) > 0 the suppressed finger will be the small one (physically ‘right’ dy-
namics), but if α′′(0) < 0 the dynamically suppressed finger will be the large
one (physically ‘wrong’ dynamics).

3.2.3 Comparison with the regularized dynamics.

In order to compare the B = 0 dynamics with the physical case of B 6= 0,
we use the construction introduced in Sec. 3.1.2. Consider a one dimensional
set of initial conditions (t = 0) of the form Eq. (3.2) surrounding the planar
interface (PI) fixed point α′ = 0, α′′ = 0, for a fixed λ and ε. We choose the
points of this set infinitesimally close to α = 0, and therefore the interface
is in the linear regime. The B 6= 0 time evolution from t = −∞ to t = ∞
of this set spans a compact two dimensional phase space and defines a two-
dimensional dynamical system S2(B) on a surface S2(B), which is tangent,
by construction, to the zero surface tension counterpart L2(1/2, ε) at the PI
fixed point. S2(B) is embedded in the infinite dimensional dynamical system
S∞(B). We can also define the limiting case S2(0+) as the limit of S2(B)
for B → 0. From the results of Ref. [ST96] it follows that L2(1/2, ε) and
S2(0+) intersect not only at the 1ST(R) and 1ST(L) (selection theory) but
have in common the full evolution of the B = 0 time-dependent single-finger
solution (line α′ = 0).

For the set of dynamical systems S2(B) defined for different values of
B the basins of attraction of 1ST(R) and 1ST(L) are two-dimensional and
finite, and therefore there must be at least one separatrix trajectory between
the two basins. This separatrix must end at a saddle fixed point (which
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Figure 3.13: Schematic representation of the construction used to define
S2(B) (see text). In this scheme the two-dimensional phase space S2(B)
is embedded in a three-dimensional phase space instead of the infinite-
dimensional one S∞(B). The dashed semicircle represents the one dimen-
sional set of initial conditions, and the dashed lines represent trajectories on
S2(B).

does not exist in the phase portrait of the B = 0 solution). It is reasonable
to assume that this fixed point is the double ST finger fixed point (2ST).
Thus, the topology of the flow defined by the dynamical system with B = 0,
L2(1/2, ε) is not equivalent to the flow of the dynamical system as B → 0,
S2(0+): the flow for the regularized problem contains a trajectory and a fixed
point that it is not contained in the flow defined by the modified minimal
model, the trajectory starting at the planar interface PI fixed point and
ending up at the 2ST fixed point (see Fig. 3.13). The phase flow of the
modified minimal model with B = 0 is qualitatively different from the phase
flow of the regularized problem, B → 0, and therefore the solution Eq. (3.2)
is unphysical in a global sense, what is to say, when a sufficiently large set
of initial conditions (spanning evolutions towards 1ST(R) and 1ST(L)) is
considered simultaneously. Again it is important to state that the strict
limit B → 0 is not necessary in order to reach our basic conclusion on
the topological inequivalence of the regularized and the idealized systems.
The limit is taken to emphasize that the manifold S2(B) is indeed close
to L2(1/2, ε) and subsets of it do converge to L2(1/2, ε) (see discussion in
Sec. 3.1.2).
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We have shown that the introduction of a finite iε term to the minimal
model Eq. (3.1) fails to provide an unfolding of its nonhyperbolic fixed point
structure. It has dramatically changed the topology of the flow obtained for
ε = 0, but the flow for ε 6= 0 does not have the expected structurally sta-
ble flow of the physical problem (for two-finger configurations): an unstable
fixed point, two (equivalent) stable fixed points and one saddle fixed point.
Moreover, instead of this, the evolution of Eq. (3.2) with ε 6= 0 presents
finite-time singularities for a nonzero measure set of initial conditions. This
can be understood as a consequence of the absence of the 2ST saddle point,
which should control the competition regime. Without this fixed point the
separatrix trajectory between the basins of attraction of ST(L) and ST(R)
is not present and the only possible way to split the flow is through the exis-
tence of finite time singularities. This is not a particularity of the mapping
Eq. (3.2) but a more general feature of B = 0 solutions. Below we will prove
that, within the N-logarithms class, finite ε implies finite-time singularities
in the evolution of a nonzero measure set of initial conditions (see Sec. 3.3.3).
Besides the existence of finite-time singularities we have seen that, unlike the
case ε = 0, solutions exhibiting successful competition are possible with ε 6= 0
for λ = 1/2. However, part of those evolutions are unphysical in the sense
the winning finger may differ from the one with the regularized dynamics.

3.3 Generalization to higher dimensions

This section is devoted to the study of solutions that define a dynamical
system of dimensionality greater than two. We will show that the discussion
of previous sections is not peculiar of dimension 2 but is extendable to higher
dimensions. The relevance of perturbations that change the finger width will
be discussed. A general proof of the existence of finite time singularities
within the N-logarithm class of solutions will be given. The relationship
between rigid wall and periodic boundary, and its relevance to the dynamics
will be discussed in depth.

3.3.1 Non-axisymmetric fingers

The solutions that have been studied so far, Eq. (3.1) and Eq. (3.2), have
two pole-like singularities ω1,2 located at ω1 = 1/α and ω2 = −1/α∗. The
property ω1 = −ω∗2 reduces the dimensionality of the dynamical system to
two and also forces the axisymmetry of the fingers. If the singularities ω1,2

are not related, then the phase space has one additional dimension and the
fingers are not axisymmetric.



90 CHAPTER 3. ZERO-SURFACE TENSION DYNAMICS. . .

We will now recall the results of Magdaleno [Mag00] with respect the
ansatz

f(ω, t) = − lnω + d(t) + (1− λ) ln[1− α1(t)ω]

+(1− λ) ln[1− α2(t)ω] (3.8)

where αj(t) = α′j(t) + iα′′j (t) are two complex quantities satisfying |αj| < 1.
This ansatz is an exact solution of Eq. (2.8) and it can be proved that the
evolution is free of finite time singularities.

From the evolution equations for α1,2 in the case λ = 1/2 it is found that
the dynamics satisfy

α′1α
′
2 − α′′1α′′2

α′1α
′′
2 + α′′1α

′
2

= Const. (3.9)

Writing α in polar coordinates, αj = rje
iθj , this constraint reduces to the

simpler form
θ1 + θ2 = C. (3.10)

The constant C depends on the initial condition, but its value can be fixed
arbitrarily using the property of rotational invariance of the ansatz Eq. (3.8):
the transformation α1 → α1e

iφ and α2 → α2e
iφ is equivalent to a translation

of the interface a distance φ in the y axis direction. For the minimal class
studied previously (Eq. (3.1)) the value of C was C = π. The existence of the
constraint Eq. (3.10) reduces the dimensionality of the problem from four to
three, with variables r1, r2 and θ1 − θ2, implying that the dynamical system
is actually three-dimensional.

In order to study the dynamical system defined by the substitution of the
ansatz Eq. (3.8) into the evolution equation (2.8) we introduce the variables
z = r exp iθ = α1 + α2 and ρ = α1α2. Moreover, we use the arbitrariness
of C to choose the simpler value C = 0. Then, the dynamical system in the
variables (r, θ, ρ) reads

ṙ = 4r
1− r2 + ρ(2 + r2) cos(2θ)− 3ρ2

4− r2

ρ̇ = 4ρ
2(1− ρ2) + r2[ρ cos(2θ)− 1]

4− r2
(3.11)

θ̇ = −2ρ sin(2θ).

With these variables the axisymmetric case studied in previous sections is
contained as a the particular case θ = 0. From the last equation it is im-
mediate to see that θ decreases monotonically with time (since, for C = 0,
ρ > 0), and tends to zero for long times, θ → 0, converging to the axisym-
metric case θ = 0. Therefore, we can conclude that the axisymmetric case is
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attracting the dynamics of the nonaxisymmetric one and, asymptotically, its
dynamics reduces to the axisymmetric one.

Therefore, we have shown that the dynamics of the minimal model is not a
particularity of a zero-measure subset but the general behavior of the nonax-
isymmetric neighborhood of the original axisymmetric class. This neighbor-
hood has a nonzero measure within the three dimensional system. Similarly,
it can be shown that the basin of attraction of the Saffman-Taylor finger for
the ansatz Eq. (3.8) is also relatively small.

It is worth noting that nonaxisymmetric fingers can be obtained also in
2d. A conformal mapping describing nonaxisymmetric fingers is

f(ω, t) = − lnω + d(t) + (1− λ+ p+ iε) ln[1− α(t)ω]

+(1− λ− p− iε) ln[1 + α∗(t)ω] (3.12)

where 0 < p < 1 − λ. However, the lack of axisymmetry caused by the
introduction of p does not change qualitatively the phase portraits obtained
for p = ε = 0, the continuum of fixed points present for ε = 0 is not removed
by the introduction of a finite p and the finite-time singularities that appear
for ε 6= 0 are also present when p 6= 0. Therefore, the results obtained for 2d
in the previous sections are not modified at all if we relax the condition of
finger axisymmetry.

3.3.2 Perturbations which change finger widths

The second type of modification of the ansatz (3.1) we have studied is the
following. Consider

f(ω, t) = − lnω + d(t) + 2(λ− λs) ln[1− δ(t)ω] +

(1− λ){ln[1− α1(t)ω] + ln[1− α2(t)ω]} (3.13)

with initial conditions α1(0) = −α∗2(0) = α(0), 0 < λ, λs < 1 and |δ(0)| � 1.
Note that for δ(0) = 0 this ansatz reduces to the minimal model (3.1). From
substitution of this ansatz into the evolution equation (2.8) it is obtained
that Eq. (3.13) is a solution with λ and λs constants. From the dynamical
equations it can be proved that the asymptotic configuration of this ansatz
consists of one or two fingers, with asymptotic filling fraction equal to λs.
But if |δ(0)| � |α(0)| then the interface will be initially almost identical to
the one obtained within the class (3.1) with the same α(0) and λ, and its
evolution will remain close to the one obtained with the minimal class for
a time that will increase with decreasing |δ(0)|. Therefore, given a small
enough |δ(0)|, starting from the planar interface a configuration with one or
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two fingers (depending on the initial conditions) of total width λ will develop.
Later on, as |δ| grows and approaches 1, the total width will change from λ to
λs for long enough time. The ansatz (3.13) thus describes an interface that
changes the filling fraction of the fingers from λ to λs. The same phenomenon
will appear with any other of the solutions described in this paper (and in
general in pole-like solutions) if a term of the type 2(λ − λs) ln[1 − δ(t)ω]
is added, and in particular it will appear in the single finger configurations
obtained setting α(0) and δ(0) purely imaginary. Note that in this case if
δ(0) = 0 the ansatz describes exactly the time-dependent Saffman-Taylor
finger [Saf59]. This changing-width phenomenon of B = 0 solutions has
been known for long [How86], but it has been recently claimed [MW97] to be
responsible of the known width selection observed with finite surface tension
both experimentally and numerically. The idea was that, although solutions
of arbitrary λ exist in the absence of surface tension, these are unstable under
some perturbations which trigger the evolution towards the λ = 1/2 solution.
Since the present work is basically emphasizing the unphysical dynamics of
the idealized (B = 0) problem, in direct contradiction with Ref. [MW97], we
feel compelled to briefly comment on this respect here. The basic argument of
Ref. [MW97] is as follows, in terms of the parameterization of the interface
used by the author: a term of the form iµφ in the conformal mapping is
always unstable under the substitution iµφ→ µ ln(eiφ−ε). The introduction
of such perturbation then leads to the µ = 0 case, which corresponds to
λ = 1/2. In Refs. [CM98, Alm98] it was pointed out that, with the same
degree of generality, equivalent perturbations exist which lead to any desired
λ, and therefore the conclusion that λ = 1/2 is the only attractor is incorrect.
It is argued[MW98] that the latter class of perturbations is different from the
former since they increase the number of logarithmic terms in the conformal
mapping and therefore modify the dimension of the subspace of solutions.
This objection is somewhat misleading since such partitioning of classes of
solutions in terms of the number of logarithms is arbitrary and not intrinsic.
This can be seen by choosing a different reference region to conformally map
the physical fluid. Instead of mapping it into the semi-infinite strip [MW97],
the mapping into the interior of the unit circle avoids the confusion on the
dimension of the subspace of solutions. Thus, the perturbation proposed in
Ref. [MW97] is equivalent to choosing λs = 1/2 in the ansatz (3.13), but it is
manifest in this formulation that there is nothing special with this particular
choice of λs. Perturbations leading to any finger width λs occur with the
same generic nature. Therefore the instability of the point δ = 0 is not
related to the steady state selection phenomenon.



3.3. GENERALIZATION TO HIGHER DIMENSIONS 93

3.3.3 Finite-time singularities within N-logarithms
solutions

In this section we will prove that any solution of the N-logarithm class
[PMW94] that does not have only real constant parameters presents finite
time singularities, that is, it contains a nonzero measure set of initial condi-
tions which develop singularities at finite time.

Consider a conformal mapping function f(ω, t)

f(ω, t) = − lnω + d(t) + (Λ1 + iε) ln[1− α1(t)ω] (3.14)

+(Λ2 − iε) ln[1− α2(t)ω]

where Λ1 + Λ2 = 2(1 − λ), ε > 0 and α1,2 are complex with |α1,2| < 1. The
mapping f(ω, t) must satisfy ∂ωf(ω, t) 6= 0 for |ω| ≤ 1. If any zero ω0 of
∂ωf(ω, t) hits the unit circle |ω| = 1 then the interface develops a cusp. For
the ansatz (3.14) ∂ωf(ω, t) reads

∂ωf = − 1

ω
− (Λ1 + iε)α1

1− α1ω
− (Λ2 − iε)α2

1− α2ω
. (3.15)

Thus, the position of the zero ω0 of ∂ωf(ω0, t) is

ω0 =
−(Λ1 + iε− 1)α1 − (Λ2 − iε− 1)α2

2α1α2(2λ− 1)

±
√

[(Λ1 + iε− 1)α1 + (Λ2 − iε− 1)α2]2 − 4α1α2(2λ− 1)

2α1α2(2λ− 1)
(3.16)

If, for some value of α1,2, |α1,2| ≤ 1, the zero ω0 is inside the unit circle, then
the ansatz Eq. (3.14) will present finite time singularities for some sets of
initial conditions. Therefore, if |ω0| < 1 the interface will develop a cusp.
Setting α1,2 = αeiθ1,2 and θ2 − θ1 = −2δ with δ � 1 the position of the zero
(keeping up to linear terms in δ) is:

ω0 = e−iθ2
λ± (1− λ)

α(2λ− 1)
+

iδe−iθ2

α(2λ− 1)

[
Λ2 − 1− iε± λ− 1 + λ(Λ2 − iε)

1− λ

]
+ O(δ2) (3.17)

and the modulus of the minus solution (the one with smaller modulus) reads

|ω0| =
1

α

[
1− εδ

1− λ
+ O(δ2)

]
. (3.18)
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In consequence, for α close to 1 we obtain |ω0| < 1, one of the zeros is in-
side the unit circle in a neighborhood of α1 = α2 = eiθ. Thus, the mapping
Eq. (3.14) presents finite time singularities for some initial conditions inde-
pendently of the value of ε and Λ1,2, and the measure of this set is nonzero.

Now we consider a generic mapping with N > 2 logarithmic terms of the
form:

f(ω, t) = − lnω + d(t) +
N∑
j=1

γj ln[1− αj(t)ω] (3.19)

where γj = Λj + iΓj are constants of motion with the restriction
∑N

j=1 γj =
2(1−λ). If we choose αj = α1 for 1 ≤ j ≤ k and αj = α2 for k+1 ≤ j ≤ N we
recover the mapping Eq. (3.14). Therefore, the N-logarithm solution (3.19)
contains initial conditions that develop a cusp with this subset of αj, but
the dimension of this subset is lower than the dimension of the phase space,
implying that the measure of the set is zero compared to the whole phase
space. To prove that the subset that develops a cusp has nonzero measure
we choose now the following values for αj: αj = α1 + ηj for 1 ≤ j ≤ k and
αj = α2 + ηj for k+ 1 ≤ j ≤ N , with |ηj| � 1, where |ω0| < 1 if ηj = 0. The
equation ∂ωf(ω, t) = 0 reads

1

ω
+

k∑
j=1

γj(α1 + ηj)

1− (α1 + ηj)ω
+

N∑
j=k+1

γj(α2 + ηj)

1− (α2 + ηj)ω
= 0. (3.20)

This equation (3.20) reduces to Eq. (3.16) if all ηj = 0 and it has N zeros
if ηj 6= 0. Defining g(ω) = ∂ωf(ω, t) for ηj = 0 and G(ω, ~η) = ∂ωf(ω, t)
for ηj 6= 0 then G(ω, ~η) = g(ω) + δG(ω, ~η) where |δG(ω, ~η)| < K|~η| for
|ω| < R, with K and R constants, and g(ω0) = 0. One zero ω′0 of G(ω, ~η)
can be written ω′0 = ω0 + δω, and assuming |δω| < C|~η| with C constant the
substitution of ω′0 in G(ω, ~η) = 0 yields

g(ω0) +
∂g

∂ω

∣∣∣∣
ω0

δω + δG(ω0, ~η) = 0. (3.21)

The position of the zero is then:

ω′0 = ω0 −
δG(ω0, ~η)

∂g
∂ω

∣∣∣
ω0

(3.22)

where ∂g
∂ω

∣∣
ω0
6= 0. Therefore, the zero ω′0 of Eq. (3.20) is inside a ball of

radius O(|~η|) centered in ω0. If |ω0| < 1, then choosing |~η| small enough the
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zero will satisfy |ω′0| < 1: in a neighborhood of (α1, α2) at least one zero of
∂ωf(ω, t) is inside the unit circle, and the dimension of this neighborhood
will be the same of the phase space. So we can conclude that any mapping
of the form (3.19) presents finite time singularities for some sets of initial
conditions of nonzero measure, provided that at least one pair of γj has a
nonzero imaginary part.

Thus, the requirement that a mapping function of the form Eq. (3.19) is
free of finite time singularities for any initial condition αj(0) is fulfilled if and
only if Im[γj] = 0, j = 1, ..., N . But this restriction implies [MWK99] that for
a wide range of initial conditions the asymptotic configuration is a N-finger
interface with unequal fingers advancing at a constant speed, a situation fully
analogous to the one discussed in Sec. 3.1. Then, if a mapping of the form
Eq. (3.19) with Im[γj] = 0 is chosen, then the dynamical system L2N(γj)
will have nonhyperbolic fixed-points (continua of fixed points) and will lack
the saddle-point structure of the regularized problem. In order to completely
remove the continua of fixed points it is necessary to set Im[γj] 6= 0 [MWK99],
but in this case we will encounter finite-time singularities and the saddle-
point structure will not be present anyway.

To sum up, we have shown that the features of the minimal model and
its extensions that make them unphysical (in a global sense) are not specific
of their low dimensionality. The features that make the solutions studied in
previous sections ineligible as a physical description of low surface tension
dynamics for a sufficiently large class of initial conditions, are also present
within the much more general N-logarithm family of solutions, and the con-
clusions drawn in previous sections can be generalized to that class.

3.3.4 Rigid-wall boundary conditions

It is worth stressing that the use of periodic boundary conditions through-
out this study, as opposed to the physically more natural rigid-wall boundary
conditions, is not essential to the basic discussion. In connection with the dis-
cussion of multifinger steady solutions, this point was raised in Ref. [Vas01a]
and addressed in Ref. [MC01]. Here we will just recall that the choice of peri-
odic boundary conditions is not only the simplest in terms of symmetry and
dimensionality, but it is the relevant one if one is interested in general mech-
anisms of finger competition in finger arrays. In this sense, the study of the
two-finger configurations in this work refers to an alternating mode of two-
finger periodicity in an infinite array of fingers, in the spirit of Ref. [KL86].
For finite size-systems one can also argue that rigid-wall boundary condi-
tions are included as a particular case of periodic boundary conditions in
an enlarged system. That is, a channel with width W with rigid walls in
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mathematically equivalent to a channel of width 2W with periodic boundary
conditions where auxiliary channel of with W is constructed as the mirror
image of the physical one. The competition of two fingers in a channel with
rigid walls at a distance W is in practice equivalent to a four-finger problem
with periodic boundary conditions in a double channel.

The only subtle point which we would like to stress is the apparent degen-
eracy of the single-finger attractor into a left ST finger and a right ST finger,
as already pointed out in Sec. 3.2.2, and the possible relevance of this fact
in connection with the saddle-point structure of the phase space flow. This
degeneracy is inherited from the trivial continuous degeneracy associated to
translation invariance in the transversal direction, when periodic boundary
conditions are assumed. In fact an arbitrary shift in the transversal direc-
tion yields a physically equivalent configuration. When an initial condition is
fixed, such continuous degeneracy is broken into two discrete spatial positions
which are separated a distance W/2. The whole dynamical system is then
invariant under translations of W/2. This is the reason why we only plotted
a half of the disk in the phase portraits of Sec. 3.2. Technically, the resulting
dynamical system must be defined ‘modulo-W/2’, that is, identifying any
configuration with the resulting of a W/2 shift. In the phase space defined
by the variables (α′, α′′) one should identify any point with the resulting of a
π rotation. In this way the two single-finger attractors do correspond to the
same fixed point. With this identification, the ST finger is not degenerate
and the flow becomes topologically equivalent to the corresponding one in a
channel with rigid-wall boundary conditions. The two-finger configurations
have thus the same structure, regardless of the type of sidewall boundary
conditions. The flow starts at the PI fixed point and ends up at the 1ST
fixed point. Between them there is a saddle point corresponding to the 2ST
fixed point. This separates the flow in two equivalent regions, namely ‘from
the left’ and ‘from the right’ of the saddle point. With zero-surface tension,
the case of rigid walls exhibits the same problems, namely the occurrence of
a (nontrivial) continuum degeneracy of multifinger solutions, and the exis-
tence of finite-time singularities. The important point we want to stress is
thus that all the general conclusions drawn in this work are valid if rigid-wall
boundary conditions are considered.
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3.4 Dynamical Solvability.

General discussion

In this section we discuss the precise role of zero surface tension solutions and
their relevance to an understanding of the dynamics of Hele-Shaw flows. A
Dynamical Solvability Scenario is proposed and discussed as a generalization
of MS theory.

3.4.1 The physics of zero-surface tension

The role of the zero surface tension solutions in the description of the dy-
namics of the nonzero but vanishingly small surface tension problem is now
clearer. The B = 0 dynamics is in general incorrect in a global sense, even if
we choose solutions with the asymptotic width λ given by selection theory.
However, they have an important place in the description of the physical
problem. It has been proved in Refs. [Tan93, STD96, ST96] that the so-
lutions with B = 0 converge to the B → 0 during a time O(1), before the
impact with the unit circle of the so-called daughter singularity at time td. In
practice this implies that the B = 0 dynamics is not only correct in the linear
regime (where B acts as regular perturbation) but also quite deep into the
nonlinear regime. After td nothing can be said a priori: as we have shown,
there are regions of the B = 0 phase space corresponding to smooth inter-
faces that are physically wrong, but other regions are a good description of
the evolution with finite (but very small) surface tension. For instance, in the
neighborhood of the time-dependent Saffman-Taylor finger (the line α′ = 0
in the solutions Eqs. (3.1,3.2)) the B = 0 evolution is qualitatively correct
for finite surface tension, and even quantitatively correct in the limit B → 0
(for λ = 1/2). However, a question remains open: given a B = 0 evolution
smooth for all time and consistent with the results of selection theory, is it
the limit of a B → 0 evolution? This question can be explored numerically
and is the subject of the following Chapter.

It has been shown that exact zero-surface tension solutions taken in a
global sense as families of trajectories in phase space are unphysical because
the multifinger fixed points are nonhyperbolic, and an unfolding does not
exist within the same class of solutions. This implies that there are sets of
initial conditions within zero-surface tension solutions whose dynamics do
not converge to the regularized dynamics with B → 0, even if its asymptotic
width is compatible with selection theory. In particular this means for the
two-finger solution Eq. (3.2) that the outcome of the competition, that is,
which one of the two competing fingers will survive at the end, when an
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infinitesimally small surface tension is introduced may be the opposite of
that of the zero surface tension case. This is not an instability of a particular
trajectory, but a generic behavior in a finite (nonzero measure) range of
initial conditions within the integrable class. For that region of phase space,
it is clear that the dynamics of finger competition is completely wrong for
the class of integrable solutions. Nevertheless, our results do not rule out the
existence of a class of initial conditions which have a qualitatively correct
evolution including ‘successful’ finger competition in the sense defined in
sections above. Although strict convergence of the regularized solution to the
idealized one may not occur in these cases, the quantitative differences may
be moderately small. Actual convergence of some type can only be expected
at most when there is only one finger along the complete time evolution. In
summary, according to this scenario there are basically four classes of initial
conditions within the most general integrable solutions, once those a priori
incompatible with selection theory are excluded:

1. finite-time singularities forward or backward (or both) in time;

2. asymptotically correct ST finger with wrong dynamics (the incorrect
finger wins);

3. asymptotically correct ST finger with qualitatively correct evolution
(the correct finger wins although shapes may differ during a transient);

4. (unphysical) evolution towards multifinger fixed points.

It has to be added that, all of the above solutions plus those which are in-
compatible with selection theory are qualitatively and quantitatively correct
in the limit of small surface tension, until a time of order one which is always
in the deeply nonlinear regime.

As a general consideration it is worth remarking that fingers emerging
from the instability of the planar interface when this is subject to noise are
necessarily in the range of dimensionless surface tension of order one. A
simple way to argue this point is that it is precisely surface tension which
selects the size of the emerging fingers, since the fastest growing mode is
that in which both stabilizing and destabilizing forces are of the same order.
In these cases, surface tension is felt necessarily in the linear regime, and
the usefulness of the zero surface tension solutions in the early stages of the
evolution is obviously more limited.

Finally, from a physical point of view it is appropriate to recall that the
presence of noise does modify the general picture of the fingering dynamics
in the limit of small surface tension, as pointed out in Ref. [KL01]. Although
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the ST finger is the universal attractor of the problem, the linear basin of
attraction decreases with dimensionless surface tension. In practice this im-
plies that the interface approaches the ST finger but when it gets too close,
noise triggers its nonlinear instability and the interface makes a long excur-
sion (typically a tip splitting) before approaching again the ST finger. The
considerations made in this work concerning the limit of small surface tension
thus imply that noise must be taken as sufficiently small.

3.4.2 A Dynamical Solvability Scenario

In Ref. [MC98] it was pointed out for the first time the dynamical implications
of the MS analysis when extended to multifinger fixed points. The idea of the
Dynamical Solvability Scenario (DSS) was already latent in that discussion.
In Ref. [MC99, CM00] it was found that, in direct analogy to the single-finger
case, the introduction of surface tension did select a discrete set of multifinger
stationary states, in general with coexisting unequal fingers. Here we would
like to discuss in what sense that analysis does provide a Dynamic Solvability
Scenario.

Before doing that, let us briefly consider an alternative view of a possible
DSS proposed by Sarkissian and Levine [SL98]. In Ref. [SL98], it was explic-
itly discussed with examples that exact solutions of the zero-surface tension
problem did behave differently from numerical integration of the small sur-
face tension problem. At the end, the authors speculated with the possibility
that surface tension could play a selective role in the sense that it could ba-
sically pick up the physically correct evolutions out of the complete set of
solutions without surface tension, in direct analogy with the introduction of
a small surface tension selecting a unique finger width out of the continuum
of stationary solutions. Since the class of nonsingular integrable solutions is
indeed vast and infinite-dimensional, it is not unreasonable to expect that
one could approximate any particular evolution with finite surface tension
with one of those solutions for all time. However, as recently pointed out
in Ref. [KL01], there is no simple way to determine which of those solutions
is selected by any macroscopic construction. Furthermore, even if this were
possible, one should still face the rather uncomfortable fact that the base of
solutions defined by the superposition of logarithmic terms in the mapping,
would itself correspond to unphysical (nonselected) solutions, as we have seen
throughout this work. Indeed, an initial condition defined exactly by a finite
number of logarithms would have to be replaced in general by a solution with
an infinite number of logarithms as the ‘selected’ solution which the (small)
finite surface tension system tracks.

From a more general point of view, a dynamical selection principle un-
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derstood as ‘selection of trajectories’ has an important shortcoming when
considered within the perspective of a broader class of interfacial pattern
forming systems. In fact, the solvability theory of steady state selection
has turned into a general principle because its applicability to a large va-
riety of systems, most remarkably in the context of dendritic solidifica-
tion [Lan87, Pel88, KKa88, BM91, GL99]. However, it is only for Laplacian
growth problems that exact time-dependent solutions are known explicitly,
so there would be no hope to extend the above DSS as a general principle to
those other problems.

The DSS we propose here has a weaker form but it is susceptible of gen-
eralization to other interfacial pattern forming systems. The basic idea can
be best expressed in similar words to those recently used by Gollub and
Langer [GL99] to describe solvability theory in a general context. They have
nicely synthesized the singular role of surface tension in the language of dy-
namical systems as to ‘whether or not there exists a stable fixed point’ [GL99].
In this context, our DSS extends the (static) solvability scenario in the sense
that the singular role of surface tension is precisely to guarantee the exis-
tence of multifinger fixed points with a saddle-point (hyperbolic) structure.
We have seen that the continuum of multifinger fixed points is directly related
to a nonhyperbolic structure of the equal-finger fixed points. They imply di-
rections in phase space were the flow is marginal. While in the traditional
solvability scenario the introduction of surface tension does isolate a stable
fixed point (a continuum of single-finger fixed points turns into a stable one
and a discrete set of unstable ones), now it isolates multifinger saddle points
out of continua of multifinger solutions, as discussed in Ref. [MC99, CM00]
(a continuum of N-finger fixed points turns into a hyperbolic fixed point
with stable and unstable directions, and a discrete set of unstable ones).
Since the saddle fixed points are defined by the degenerate N-equal-finger
solutions, the stable directions of the saddle-point are directly related to the
stable directions of the single-finger fixed point, while the unstable directions
correspond to all perturbations which break the N-periodicity of the equal-
finger solution. The most important stable and unstable directions, however,
are those depicted in the two-dimensional phase portraits discussed in the
above section, namely the ‘growth’ direction connecting the planar interface
and the N-finger fixed point, and the ‘competition’ direction connecting the
N-finger fixed point to the single-finger fixed point2. Notice that arrays of
fingers emerging from the morphological instability of the planar interface

2The observed hierarchical elimination of fingers in stages which reduce them in number
approximately by a factor one half [KL86, CM89] could have here direct implications on
the structure of the connections among the N-equal-finger fixed points.
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are relatively close to N-periodic solutions as long as the noise in the ini-
tial conditions is weak and white, which guarantees that the most unstable
(fastest growing) mode dominates in the early nonlinear regime. In these
conditions, the system feels the attraction to the corresponding N-equal fin-
ger fixed point. This stage is what we called ‘growth’. When the fingers are
relatively large they start to feel the deviations form exact periodicity and
start the ‘competition’ process.

Note that, despite the formal analogy to the single-finger solvability the-
ory, the reference to a the restoring of multifinger hyperbolicity by surface
tension as dynamical solvability scenario is fully justified. Indeed, the local
structure of the multifinger fixed point has a dramatic impact on the global
(topological) structure of the phase space flow, as we have seen in simple
examples. The existence of a small but finite surface tension thus determines
a global flow structure and it is in this sense that it ‘selects’ the dynamics of
the system.

The possibility of extension of this analysis to other interfacial pattern
forming problems relies on the existence of a continuum of unequal multi-
finger stationary solutions with zero surface tension. The fact that in the
ST case the existence of those can be associated to a simple relationship be-
tween screening due to relative tip position and relative finger width (that is,
a slower areal growth rate of the screened finger is compensated by its smaller
width, resulting in an equal tip velocity), one is tempted to conjecture that
similar classes of solutions must exist in other problems, for instance in the
growth of needle crystals in the channel geometry [BM91]. Although this
point should be more carefully addressed, it seems reasonable to expect that
a DSS as presented above could be generalizable, to some extent, to other
physical systems.
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Chapter 4

Singular effects of surface
tension in multifinger dynamics

In this chapter we study the singular effects of vanishingly small surface
tension on the dynamics of finger competition in the Saffman-Taylor problem,
using the asymptotic techniques developed by S. Tanveer and co-workers, as
well as direct numerical computation. We demonstrate the dramatic effects
of small surface tension on the late time evolution of two-finger configurations
with respect to exact (nonsingular) zero-surface tension solutions. The effect
is present even when the relevant zero surface tension solution has asymptotic
behavior consistent with selection theory. Such singular effects therefore
cannot be traced back to steady state selection theory, and imply a drastic
global change in the structure of phase-space flow.

4.1 Applying asymptotic theory to two finger

solutions

Little is known about the effect of finite (but small) surface tension B on
the dynamics of zero surface tension multifinger solutions, and in particular
on the class of exact solutions Eq. (3.2) studied in previous chapter. For
single finger configurations, steady state selection theory predicts that the
finger cannot have an arbitrary width. Indeed, for vanishing surface tension
B → 0 the width λ = 1/2 is selected, asymptotically in time. Thus, it is
clear that surface tension has a critical influence on single finger solutions
with λ 6= 1/2. The nature of this influence in the limit B → 0 has been in-
vestigated by Siegel, Tanveer and Dai [STD96, ST96], who present evidence
that zero surface tension single finger solutions with λ < 1/2 are significantly
perturbed by the inclusion of an arbitrarily small amount of surface tension

103
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in order one time. The effect of surface tension is an increase of the fin-
ger width to reach the width predicted by selection theory. However, the
effect of small surface tension on two-finger B = 0 exact solutions is not
known, in particular on solutions whose asymptotic width λ is compatible
with Microscopic Solvability theory.

We will follow the approach of Refs. [STD96, ST96] to the exact solution
given by Eq. (3.2), and study it by means of the asymptotic perturbation
theory described in Sec. 2.3. The solution, within the formalism used in
Sec. 2.3, reads

f(ζ, t) = − 2

π
ln ζ +

1

π
(1− λ+ iε) ln(1− ζ2

ζs(t)2
)

+
1

π
(1− λ− iε) ln(1− ζ2

ζ̄s(t)2
) + d(t) + i. (4.1)

The singularity locations are given by the complex parameter ζs(t), related to
α used in previous chapters through α(t) = 1/(iζ2

s (t)). Analyticity of f(ζ, t)
in the unit circle implies that |ζs(t)| > 1. We employ the convention that
ζs(t) is a complex number in the first quadrant. For the family of exact B = 0
solutions the mapping function Eq. (4.1) has four pole-like singularities: ±ζs
and ±ζs, and four zeros ±ζ0+ and ±ζ0− of fζ located at

ζ2
0+ =

−(λ+ iε)ζ2
s − (λ− iε)ζ2

s

2(1− 2λ)
+√[

(λ+ iε)ζ2
s + (λ− iε)ζ2

s

]2

+ 4(1− 2λ)|ζs|4

2(1− 2λ)
(4.2a)

ζ2
0− =

−(λ+ iε)ζ2
s − (λ− iε)ζ2

s

2(1− 2λ)
−√[

(λ+ iε)ζ2
s + (λ− iε)ζ2

s

]2

+ 4(1− 2λ)|ζs|4

2(1− 2λ)
. (4.2b)

For the particular case λ = 1/2 this solution presents only one pair of zeros
±ζ0 located at

ζ2
0 =

|ζs|4

2[(λ+ iε)ζ2
s + (λ− iε)ζ2

s]
. (4.3)

In the following it will be useful to define the real quantity β = −(λ+ iε)ζ2
s −

(λ− iε)ζ2

s which appears in Eqs. (4.2) and (4.3).



4.1. APPLYING ASYMPTOTIC THEORY TO. . . 105

Depending on the value of λ the initial data may have zeros on both
the real and imaginary axes, or all the zeros may lie on a single axis. This
difference has significant consequences in the finite surface tension dynamics.
More specifically, when λ < 1/2 the zeros described in Eqs. (4.2a) and (4.2b)
are located on both the real and imaginary axes of |ζ| > 1, namely at ±|ζ0+|
and ±i|ζ0−|. The situation is different for λ > 1/2, which is further divided
into two cases, depending on whether β2 + 4(1− 2λ)|ζs|2 > 0 or < 0. In the
former case all four singularities lie on the real axis (for β > 0) or on the
imaginary axis (for β < 0). In the latter case the four zeros are located off
the axes in conjugate pairs, i.e. at ±ζ0 and ±ζ̄0. Finally, when λ = 1/2 the
solution Eq. (4.1) has only two zeros, located on the real axis at ±|ζs|2/

√
−2β

when β < 0 and on the imaginary axis at ±|ζs|2/
√

2β when β > 0. Note
that for λ = 1/2 the B = 0 solution has two less zeros than for λ 6= 1/2.

The initial zero locations described above have a critical bearing on
whether the daughter singularity will impact the unit disk1. Although all
daughter singularities approach the unit disk, their impact may be shielded
by the presence of an inner region corresponding to a pole singularity. More
precisely, since ζd and ζs obey the same dynamical equation, they will move
together if they get close enough to each other. However, the inner region
around a pole moves to leading order like the B = 0 pole, i.e., it moves ex-
ponentially slowly toward |ζ| = 1 when |ζs| − 1 << 1, and does not impinge
upon the unit disk in finite time [How86]. In this case the O(B1/3) inner re-
gion around the daughter singularity will not affect the dynamics on |ζ| = 1,
at least until t = O(− lnB). Before this time, we expect the interface to
be uninfluenced by the presence of the daughter singularity. This shielding
mechanism is discussed in the context of single fingers in [ST96].

Knowledge of the t → ∞ asymptotic state and the initial locations of
zeros can be used to ascertain whether shielding can occur. The B = 0
asymptotic state corresponds to ζ2

s (t → ∞) → ±1. Thus, for λ < 1/2, only
one pair of daughter singularities may be shielded—never both— so at least
one pair of daughter singularities will impinge on the unit disk. The daughter
singularities will also not be shielded when λ > 1/2 and β2+4(1−2λ)|ζs|2 < 0.
However, for λ > 1/2 and β2 + 4(1 − 2λ)|ζs|2 > 0 it is possible for all the
daughter singularities to be shielded, since they lie on a single axis. The
daughter singularities can also be completely shielded when λ = 1/2. The
different possibilities are schematically depicted in Fig. 4.1.

We have numerically computed the daughter singularity impact time td

1Although the daughter singularity is said to impact the unit disk when |ζd(t)| = 1, the
singularities comprising the cluster do not actually impinge upon the unit disk. However,
at td the singularities are close enough to influence the interface shape, in the sense that
|fζ(ζd, td)− f0

ζ (ζd, td)| = O(1).
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Figure 4.1: (a) Schematic representation of the dynamics of pole (ζs) and
daughter (ζd) singularities for λ < 1/2. (b) Schematic representation of one
of the two possible dynamics of pole (ζs) and daughter (ζd) singularities for
λ > 1/2.
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Figure 4.2: Phase portraits for (a) λ = 1/3 and ε = 0.1, (b) λ = 2/3 and
ε = 0.1, and (c) λ = 1/3 and ε = 1/2. The daughter singularity impact is
indicated by the symbols. The + symbol corresponds to the impact of ζd+,
× to the impact of ζd− and ∗ to the simultaneous impact of ζd+ and ζd−.

for various values of λ and ε, using initial conditions close to the planar
interface, |ζs|2 = 20 and various values of Arg[ζ2

s ]. Figure 4.2 shows the
phase portrait for different values of λ and ε with the daughter singularity
impact indicated. From the plots it is immediately seen that for λ < 1/2 at
least one daughter singularity always hits the unit circle, and for λ ≥ 1/2
some trajectories are free from daughter singularity impact. In addition, it is
observed that for fixed λ a larger value of ε causes the daughter singularities
to hit in shorter times (or less developed fingers) than a smaller value of ε, and
for fixed ε larger λ implies larger impact times. We have also checked that
the daughter singularity impact occurs well before a finite time singularity,
i.e., the impact of a zero of fζ . Thus, the effect of surface tension is significant
well before the curvature in the zero surface tension solution becomes large.

It is noted that the λ dependence of the daughter singularity impact is
consistent with the results of steady state selection theory [Shr86, HL86,
CDH+86, Tan87a]. According to selection theory, for small B the possible
values of λ are discretized: λ must satisfy the relation λ = λn(B), given to
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leading order by

λn(B) =
1

2

{
1 + (

1

8
π2CnB)2/3

}
, n = 0, 1, 2, ... (4.4)

where n parameterizes the branch of solutions. Note that λn > 1/2 for all n.
The steady finger shape is to leading order a Saffman-Taylor finger, with the
above values of λn substituted for the width λ. On the other hand for ε > 0
the asymptotic state of Eq. (4.1) is a Saffman-Taylor finger of width λ. From
Eq. (4.4) it is clear there exists a steady solution with width λn(B) close to
a Saffman-Taylor finger of arbitrary width λ > 1/2. Thus the shielding of
the daughter singularity, which leads to the persistence of a Saffman-Taylor
solution with λ > 1/2 over long times, is consistent with steady state selection
theory2. In contrast for λ < 1/2 there are no nearby steady solutions. Thus,
a Saffman Taylor finger with λ < 1/2 cannot persist over a long time. We see
that the impact of a daughter singularity provides a mechanism for the onset
of finger competition, finger widening, and selection of a width λ > 1/2.

For ε = 0 the scenario is similar, except there is an added class of B > 0
steady state solutions. Magdaleno and Casademunt [MRC00] have shown
that two-finger solutions composed of steadily propagating but unequal fin-
gers do exist for small nonzero B. The introduction of a small nonzero surface
tension selects a discrete set of solutions from the continuum of fixed points
of the B = 0 phase portrait. The solutions are parameterized by the to-
tal width of the fingers λ = λ1 + λ2 and the relative width q = λ1/λ, and
the introduction of finite B discretizes the possible values of the parame-
ters. In particular, they must satisfy a condition of the form λ = λn(B)
and q = qn,m(B) where n and m are integers. The expression for λn(B) at
lowest order is equivalent to Eq. (4.4), but with different coefficients Cn. The
shape of these solutions are given to leading order (in the limit t → ∞) by
Eq. (4.1) with allowed value of λn(B) substituted for the width λ. Again,
λn(B) > 1/2, and the consistency between daughter singularity impacts and
steady state selection theory follows as above.

We conjecture that the outcome of interfacial shape evolution after the
daughter singularity impinges is in general independent of the particular
finger on which the impact first occurs i.e., independent of the point at
which ζd(t) impacts on |ζ| = 1. More specifically, we surmise that impact
on either the shorter (trailing) or larger (leading) finger retards the velocity
of that finger, and is accompanied by the widening of the leading finger, so

2The steady state with λ > 1/2 is unstable to tip splitting modes, although specifying
the initial value problem in the extended complex plane precludes the presence of noise
needed to activate the instability.
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as to maintain a constant fluid flux at infinity. The widened leading finger
then shields the trailing finger, preventing it from further growth. Thus,
the finger which is leading at the time of the daughter singularity impact
‘wins’ the competition, in the sense that it will evolve for t → ∞ to the
ST steady finger. To examine this conjecture and study the dynamics of
finger competition with finite (but small) surface tension we have numerically
computed the evolution of an interface with initial conditions given by the
conformal mapping Eq. (4.1) close to the planar interface (|ζs(0)|−2 � 1).
The results are reported in the next section.

4.2 Numerical Results

Numerical computations have been performed for B > 0, using an initial
interface corresponding to the explicit B = 0 solutions discussed in Secs. 3.1,
3.2 and 4.1. The effect of positive surface tension on this class of solutions
is explored for various values of ε and a variety of initial pole positions.

We employ the numerical method introduced by Hou et al. [HLS94]
and used in other studies of small surface tension effects in Hele-Shaw flow
[STD96, ST96, CHS99, CH00]. The method is described in detail in Sec. 2.4.
It is a spectral boundary integral method in which the interface is param-
eterized at equally spaced points by means of an equal-arclength variable
α. Thus, if s(α, t) measures arclength along the interface then the quan-
tity sα(α, t) is independent of α and depends only on time. The interface is
described using the tangent angle θ(α, t) and the interface length L(t), and
these are the dynamical variables instead of the interface x and y positions.
The evolution equations are written in terms of θ(α, t) and L(t) in such a way
that the high-order terms, which are responsible of the numerical stiffness
of the equations, appear linearly and with constant coefficients. This fact is
exploited in the construction of an efficient numerical method, i.e., one that
has no time step constraint associated with the surface tension term yet is
explicit in Fourier space. We have used a linear propagator method that is
second order in time, combined with a spectrally accurate spatial discretiza-
tion. Results in this section are specified in terms of the nondimensional
variables used in previous chapters, obtained scaling length with W/(2π),
instead of the ones used in previous sections of the present chapter.

The number of discretization points is chosen so that all Fourier modes
of θ(α, t) with amplitude greater than roundoff are well resolved, and as
soon as the amplitude of the highest-wavenumber mode becomes larger than
the filter level the number of modes is increased, with the amplitude of the
additional modes initially set to zero. The time step ∆t is decreased until
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Figure 4.3: Evolution of an initial condition of the form Eq. (4.1) with
λ = 1/2, ε = 0 and ζ2

s (0) = 20 exp(iπ/6). The solid lines correspond to
surface tension B values (a) 0.01, (b) 0.005, (c) 0.001 and (d) 0.0005. The
dashed lines correspond to the zero surface tension evolution. The time differ-
ence between different curves is 0.5. The physical channel in the y direction
extends from the origin to the dotted line, and the region above is plotted
for better visualization of the lateral finger.

an additional decrease does not change the solution to plotting accuracy, nor
lead to any significant differences in any quantities of interest. In a typical
calculation 512 discretization points are initially used, and the initial time
step is ∆t = 5 · 10−4. For small values of surface tension numerical noise
is a major problem, and the spurious growth of short-wavelength modes
induced by roundoff error must be controlled. To help prevent this noise-
induced growth at short wavelengths spectral filtering [Kra86] is applied.
Additionally, we minimize noise effects and also assess the time at which
these effects become prevalent by employing extended precision (128-bit)
calculations, as described in the next section.

Our main interest is to uncover the role of surface tension in the dynamics
of finger competition. To isolate the features of finger competition from those
of width selection, we will concentrate on B = 0 solutions with λ = 1/2, the
value selected by surface tension in the limit B → 0. Since the B = 0
dynamics for ε = 0 and ε 6= 0 is quite different the numerical results for the
two cases will be presented separately.
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4.2.1 Solutions with ε = 0

We first consider parameter values λ = 1/2 and ε = 0. A typical set of
interfacial profiles is shown in Fig. 4.3. The initial data is given by the
mapping function Eq. (4.1), with λ = 1/2, ε = 0, d(0) = 0 and ζ2

s (0) =
20 exp(iπ/6). With this value of ζ2

s (0) the initial interface is well inside the
linear regime. Evolutions are shown for different values of B, and the B = 0
interface evolution is also plotted for comparison. In all these evolutions
the filter level is set to 10−13, although later we shall make comparisons to
profiles computed at higher precision.

For the largest value of surface tension the computed B > 0 and the exact
B = 0 solutions first differ appreciably at the seventh curve, corresponding
to t ≈ 3. At this point the velocity of the small finger (at the channel sides)
begins to decrease and it is clearly left behind when compared with the small
finger evolution in the B = 0 solution. Eventually, the advance of the small
finger is completely suppressed and the larger finger widens to attain a width
close to 1/2 of the channel. For a smaller value of surface tension, for instance
B = 0.001, the evolution displays qualitatively the same behavior. TheB > 0
interface differs appreciably from the B = 0 sightly later than before (i.e.,
at the eighth curve) and the region where the two solutions differ most is
to some extent more localized around the small finger than for larger values
of B. Additionally, for this value of surface tension the effect of numerical
noise is clearly exhibited in the interfacial profiles. Here the tip-splitting and
side-branching activities are a clear effect of numerical noise, as can be easily
checked redoing the computation with a different noise filter level.

In order to suppress or delay the branching induced by numerical noise
that appears for small values of surface tension it is necessary to use higher
precision arithmetic, e.g. quadruple precision (128-bit arithmetic). The filter
level can then be reduced by a large amount and the outcome of spurious
oscillations is substantially delayed. Figure 4.4 shows the effect of reducing
the filter level to 10−27. The B = 0 solution is plotted, as well as the
computation with double precision. For B = 0.001 the branching is totally
suppressed, at least for the times we have computed, but for smaller values
of B the use of quadruple precision is only able to delay the branching and
not totally suppress it. The quadruple precision computation confirms the
results observed with lower precision: the introduction of finite (but small)
surface tension results in the suppression of the small finger. From Fig. 4.4
one can also see that for long times, when the interface is clearly affected by
numerical noise (in the double precision curve), the noise-induced branching
is restricted to the large finger, and the small finger is basically unaffected
by noise. This observation suggests that the small finger shape, as well as
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Figure 4.4: Evolution of an initial condition of the form (4.1) with λ = 1/2,
ε = 0 and ζ2

s (0) = 20 exp(iπ/6). The solid line correspond to B = 0.001 with
a filter level equal to 10−27, the dotted line corresponds to the same B but
with the filter level equal to 10−13 and the dashed line corresponds to the
zero surface tension solution. The time difference between curves is 0.5. As
in Fig. 4.3, the physical channel in the y direction extends from the origin to
the dotted line.

its tip velocity and tip curvature, can be trusted even when the large finger
has developed tip-splittings and side-branchings due to the spurious growth
of roundoff error.

Figure 4.5 shows the tip velocity of both fingers versus t for decreasing
values of surface tension. It can be seen that the velocity of the large finger
is only slightly affected by surface tension, whereas the velocity of the small
finger is substantially reduced by the inclusion of finite B. As B is decreased
the tip velocity of the small finger is more faithful to the B = 0 evolution
before the daughter singularity impact (shown by a cross), and clearly veers
away from the B = 0 velocity later in the evolution, consistent with asymp-
totic theory. Note that at the smallest value of B the tip velocity of the large
finger drastically differs from the B = 0 velocity at late times. This discrep-
ancy is a manifestation of noise effects in the neighborhood of the large finger
tip. However, as previously seen, the small finger is basically unaffected by
noise at the times we have plotted.

In order to further verify that the daughter singularity impact is responsi-
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Figure 4.5: Computed tip velocities for the initial condition of Fig. 4.4 , (a)
corresponds to the central (large) finger and (b) to the lateral (small) finger.
The daughter singularity impact time td is indicated by the + symbol. The
value of B is: 0 (solid line), 0.0002 (dotted line), 0.0005 (dashed line), 0.001
(long dashed line), 0.005 (dot-dashed line) and 0.01 (dot-dot-dashed line).

ble for the observed change in the small finger tip speed we follow the scheme
introduced in [ST96]. Define tp as the time when the computed tip velocity
differs by p from the B = 0 tip velocity. According to asymptotic theory
this tp will be a linear function of B1/3 in the limit B → 0 as long as p is
small enough. Figure 4.6 shows tp versus B1/3 for various values of p, and
it can be seen that tp exhibits the predicted behavior. Moreover, we have
extrapolated the B = 0 value of tp using the two points of lowest B and the
result is very close to td, whose value is represented by a cross. We conclude
that the impact of the daughter singularity is associated with the dramatic
change of the B > 0 solution when compared to the zero surface tension so-
lution, reducing the velocity of the small finger and eventually suppressing it.
In contrast, for the B = 0 dynamics the small finger ‘survives’, propagating
with the same asymptotic speed as the larger finger. Note that the average
interface advances at unit velocity, and a tip velocity below 1 implies that
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Figure 4.6: The time tp (defined in the text) versus B1/3. From top to
bottom, p=0.1, 0.05, 0.02, 0.01, 0.005. The daughter singularity impact
time td is indicated by a × symbol, and the curves are linearly extrapolated
for comparison.

the finger is retreating in the reference frame of the average interface.

In summary then, our numerical results show that the computed interface
for B 6= 0 follows the B = 0 evolution for an O(1) time interval—roughly
corresponding to the daughter singularity impact time—and that at further
times the velocity of the small finger decreases while the large finger widens.
The small finger eventually comes to a halt and the larger (leading) finger
reaches an asymptotic width slightly above 1/2, the width singled out by
selection theory. It is noted that for the initial condition we have studied the
daughter singularity impact takes place on the tip of the small finger. There-
fore, the influence of surface tension on the interface should be significant
first around the impact point, that is, the small finger tip. Our numerical
results show that in fact this is the case; the initial effect of the daughter
singularity impact is to slow and then completely stop the growth of the
small finger. Later on, as the singularity cluster centered in ζd spreads over
the unit circle, the effect of surface tension is felt by the whole interface and
the large finger widens to reach the selected width.

We have also studied the finite surface tension dynamics for a more gen-
eral class of initial conditions. More precisely, we have studied initial con-
ditions of the form ζ2

s (0) = 20 exp(i nπ/12) where n = 0,±1, ...,±6, and
have obtained the same qualitative results as in the case previously studied,
namely that the presence of small surface tension suppresses the growth of
the finger which is trailing at the time of daughter singularity impact. In
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order to compare the B = 0 and the B 6= 0 dynamics in a compact and
global way we have plotted the phase portrait for B = 0 using the the tip
velocities v1, v2 as dynamical variables. In the laboratory frame they read

v1 =
1 + i(ζ2

s − ζ̄2
s ) + ζ2

s ζ̄
2
s

ζ2
s ζ̄

2
s + i(ζ2

s − ζ̄2
s )/2

(4.5a)

v2 =
1− i(ζ2

s − ζ̄2
s ) + ζ2

s ζ̄
2
s

ζ2
s ζ̄

2
s − i(ζ2

s − ζ̄2
s )/2

. (4.5b)

Now a comparison between dynamics for B = 0 and B 6= 0 is straightforward
since the trajectories can be plotted together and compared. In addition, the
tip velocity is a useful variable because it contains geometric information;
specifically the inverse of the tip velocity is equal to the width of the finger
in the asymptotic (t → ∞) regime. It is important to note that (v1, v2)
are dynamical variables for the B = 0 problem, so that the plot of the zero
surface tension trajectories onto the space (v1, v2) is a true phase portrait.
On the other hand (v1, v2) are not state variables of the problem with finite
surface tension, so in this case we simply obtain a projection onto the (v1, v2)
space of the original B 6= 0 trajectory, which is embedded in the infinite-
dimensional phase space of interface configurations.

Figure 4.7 shows the phase portrait for B = 0 together with the tip
velocities obtained from the initial conditions described above for B = 0.01.
From the figure it is evident that the introduction of finite surface tension has
substantially changed the global phase dynamics of the problem. Only one
B = 0.01 trajectory connects the planar interface (1, 1) and the 2ST point
(2, 2), corresponding to the unsteady double Saffman-Taylor finger. Any
other B = 0.01 trajectory ends in one of the two ST finger points, ST(L)
at (2, 0) and ST(R) at (0, 2). In contrast, the (2, 2) point, equivalent to the
continuum of fixed points present with the (α′, α′′) or (Reζs, Imζs) variables,
has a finite basin of attraction for B = 0. The introduction of finite surface
tension has dramatically changed the zero surface tension (v1, v2) trajectories,
to the extent that the B = 0 phase portrait and the B 6= 0 projection are
not topologically equivalent. This result is not a complete surprise, since
it was anticipated from the structural instability of the dynamical system
governing the evolution of Eq. (4.1) for ε = 0 [MC98]. A more dramatic
example of topological inequivalence of phase portraits will be given in the
next subsection, when we consider the case ε 6= 0.

Although the use of the variables (v1, v2) has allowed us to project the
finite surface dynamics onto the zero surface tension phase portrait this pro-
jection has one major limitation: it only considers a local quantity, the tip
velocity. We have also considered a projection that takes more global prop-
erties of the interface into account. Specifically, given a computed B 6= 0
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Figure 4.7: Plot of the evolution of initial conditions of the form (4.1) with
λ = 1/2, ε = 0 and ζ2

s (0) = 20 exp(i nπ/12) and n = 0,±1, ...,±6 in the
(v1, v2) or tip speed space. The solid line corresponds to B = 0.01 and the
dashed line to B = 0.

solution for an initial condition of the form (4.1), one can use a suitable
norm to define a ‘distance’ between the computed interface and the B = 0
interface obtained from the mapping function Eq. (4.1). We choose this ‘dis-
tance’ to be the area enclosed between the two interfaces at a given time.
Additionally, we define a projection of the B 6= 0 interface onto the B = 0
phase space (with phase space variables (Re ζs, Im ζs)) by selecting the value
of ζs that minimizes the ‘distance’ between the two interfaces, with the re-
striction that the position of the two mean interfaces must be the same. The
latter condition ensures that the projection satisfies mass conservation.

Figure 4.8 shows the B = 0 phase portrait and the corresponding pro-
jected evolution for surface tension B = 0.01. Again, the plot clearly shows
that the introduction of finite surface tension modifies the phase portrait of
B = 0. The projected trajectories are initially close to the B = 0 dynam-
ics, but for well developed fingers (corresponding to |α| ∼ 1) the projection
departs from the B = 0 trajectory towards the Saffman-Taylor fixed point,
located at α′ = 0, α′′ = 1. The projected trajectory only remains close to the
corresponding B = 0 trajectory when the latter evolves towards the Saffman-
Taylor fixed point. More precisely, the continuum of fixed points present for
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Figure 4.8: Comparison between the B = 0 trajectories and the projected
evolutions with B = 0.01, for the initial conditions of Fig. 4.7. The solid line
corresponds to B = 0 and the dashed lines to the projection of the B = 0.01
evolutions. The daughter singularity impacts are indicated by a circle.

B = 0 has been removed by surface tension and the Saffman-Taylor fixed
point is the universal attractor of the dynamics for finite surface tension.

In Fig. 4.9 the projection for decreasing values of B is plotted, using
the initial condition ζ2

s (0) = 20 exp(iπ/6). As B is decreased the projected
trajectory gets closer to the B = 0 trajectory, but as it approaches the point
when the daughter singularity impinges the unit circle (this point is signaled
by a cross) the projection departs from the B = 0 trajectory and approaches
the Saffman-Taylor fixed point, consistent with asymptotic theory.

4.2.2 Solutions with ε 6= 0

The continuum of fixed points present for ε = 0 is absent for ε 6= 0, but in
this case finite-time singularities in the form of zeros of fζ impinging on the
unit disk do appear for some initial conditions. Therefore, we can expect
that the effect of finite surface tension will be somewhat different than for
ε = 0. Firstly, the presence of surface tension should eliminate finite-time
singularities, and secondly, finite B could modify the basin of attraction for
the two attractors of the B = 0 dynamical system, namely the side Saffman-
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Figure 4.9: Comparison between the B = 0 trajectories and the projection
of the evolution of the initial condition given by Eq. (4.1) with λ = 1/2,
ε = 0 and ζ2

s (0) = 20 exp(iπ/6), where N corresponds to B = 0.001, � to
B = 0.005, � to B = 0.01 and × to B = 0. The daughter singularity
impacts are indicated by a plus.

Taylor finger and the center Saffman-Taylor finger.
To explore this, we have performed computations with λ = 1/2 and

ε = 0.1 with initial conditions ζ2
s (0) = 20 exp(i nπ/12) and n = 0,±1, ...,±6.

Initially we set B = 0.01 and use a value of the noise filter level equal to
10−13, which suffices due to the relatively large value of B. The easiest way
to compare both dynamics, finite B and B = 0, is to plot their trajectories
in velocity space. Thus, in Fig. 4.10 the tip velocities (v1, v2) of the B = 0.01
computation are plotted together with the tip velocities for B = 0. For
arbitrary ε and λ the tip velocities of the B = 0 solution read

v1 =
1 + i(ζ2

s − ζ̄2
s ) + ζ2

s ζ̄
2
s

ζ2
s ζ̄

2
s − ε(ζ2

s + ζ̄2
s ) + iλ(ζ2

s − ζ̄2
s )− (1− 2λ)

(4.6a)

v2 =
1− i(ζ2

s − ζ̄2
s ) + ζ2

s ζ̄
2
s

ζ2
s ζ̄

2
s + ε(ζ2

s + ζ̄2
s )− iλ(ζ2

s − ζ̄2
s )− (1− 2λ)

. (4.6b)

From the plot one can see that most B = 0.01 velocity trajectories follow
(at least qualitatively) their B = 0 counterparts, in the sense that they
end up in the same fixed point. However, the second, third and fourth
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Figure 4.10: Plot of the evolution of initial conditions of the form (4.1)
with λ = 1/2, ε = 0.1 and ζ2

s (0) = 20 exp(i nπ/12) and n = 0,±1, ...,±6
in the (v1, v2) or tip speed space. The solid line corresponds to B = 0.01
and the dashed line to B = 0. The computed trajectory that most nearly
separates the two basins of attraction is also plotted. Note that the long
time behavior of the third and fourth B = 0.01 curves (counting from the
upper left trajectory in clockwise direction) is dramatically different from the
corresponding B = 0 solutions.

trajectories (counting from the upper left trajectory in clockwise direction)
differ significantly from their B = 0 counterparts. The second B = 0.01
trajectory moves apart from the B = 0 solution simply because the latter
develops a finite-time singularity, which is regularized by the introduction of
finite surface tension. However, the third and fourth trajectories exhibit a
quite surprising behavior: the computed interface with B = 0.01 ends up in
a different fixed point than the exact B = 0 solution, despite the fact that
the B = 0 solution is smooth for all time and has the asymptotic width that
would be selected by vanishing surface tension.

In order to get further insight into this behavior we have computed the
evolution for decreasing values of B using the specific initial pole position
ζ2
s (0) = 20 exp(−iπ/6), with λ = 1/2 and ε = 0.1. Quadruple precision

has been used when it has been necessary. The differences between the two
interfaces for long times are readily apparent. When B = 0 the finger in
the central position stops growing and the side finger wins the competition,
whereas for B > 0 we encounter the opposite situation—namely, the central
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Figure 4.11: Evolution of an initial condition of the form Eq. (4.1) with λ =
1/2, ε = 0.1 and ζ2

s (0) = 20 exp(−iπ/6). The solid lines correspond to surface
tension B values (a) 0.01, (b) 0.005, (c) 0.001 and (d) 0.0005. The dashed
lines correspond to the zero surface tension evolution. The time difference
between different curves is 0.5.The physical channel in the y direction extends
from the origin to the dotted line.

finger surpasses the side finger and wins the competition. For the smaller
values of B the finger on the sides has not quite stopped growing when the
computation is stopped, although its tip speed shows a marked decrease over
that for B = 0 and is less than that of the central finger.The side finger tip
speed is also decreasing at the final stage of the computation. Figure 4.11
shows its evolution for four values of the surface tension parameter, together
with the B = 0 solution. The tip speed trend in the limit B → 0 is further
illustrated in Fig. (4.12). This figure shows the tip speed versus time of each
finger for a sequence of decreasing B. The plot suggests that upon impact
of the daughter singularity the side finger velocity levels off and eventually
decreases, whereas the velocity of the center finger is nearly unaffected and
continues to increase. The trend is indicative of the center finger “winning”
the competition in the B > 0 dynamics, while the opposite occurs for B =
0. Finally, it is noted that the influence of surface tension is first felt by
the smaller finger, which is the recipient of the daughter singularity impact.
Afterwards the leading finger begins to widen, in a manner consistent with
the conjecture in Sec. 4.1. Further remarks on this point are made in Sec. 4.3.

The projection method described in the previous section has been also
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Figure 4.12: Computed tip velocities for the initial condition of Fig. 4.11, (a)
corresponds to the central finger and (b) to the lateral finger. The daughter
singularity impact time td is indicated by the + symbol. The value of B is:
0 (solid line), 0.0002 (dotted line), 0.0005 (dashed line), 0.001 (long dashed
line), 0.005 (dot-dashed line) and 0.01 (dot-dot-dashed line). The deviations
observed at late times for B = 0.0002 and B = 0.0005 in (b) are due to
numerical noise.

applied to this case, and the results are displayed in Fig. 4.13 in the partic-
ular case B = 0.01. It can be seen that for most trajectories the projection
stays close to the B = 0 curves, even for long times. The daughter singu-
larity impact still leads to O(1) differences between the B = 0 and B > 0
solutions, although the impact does not produce changes in the outcome of
finger competition. However, as expected some of the trajectories (namely
the third and fourth as measured clockwise from the bottom) do indicate sig-
nificant qualitative differences in the long time evolution. The plot provides
a simple depiction of the topological inequivalence of the B > 0 and B = 0
dynamics3.

3It is noted that the B > 0 interfacial profile and the projection profile do differ
significantly in small scale features. This is another indication of the difficulties in using
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Figure 4.13: Comparison between the B = 0 trajectories and the projected
evolutions with B = 0.01, for the initial conditions of Fig. 4.11. The solid line
corresponds to B = 0 and the dashed lines to the projection of the B = 0.01
evolutions. The daughter singularity impacts are indicated by a circle. Note
that the fourth B > 0 trajectory (as measured counterclockwise from the
bottom) reverses direction and heads toward the fixed point (-1,0).

It has been shown that the introduction of a finite B has not changed
the attractors of the problem, but it has changed their basins of attraction.
Interestingly, in the B = 0 case there does not exist a single separatrix
trajectory between the two Saffman-Taylor attractors, but rather a finite
region, corresponding to the set of trajectories ending in cusps, that acts as
an effective separatrix. Since for finite surface tension there are no cusps,
it can be assumed that there is a single trajectory that separates the two
basins of attraction. Obviously, this trajectory will depend on the value of
the surface tension parameter. More precisely, the initial condition ζ2

s (0)
corresponding to the separatrix trajectory will be a function of the surface
tension B. To quantitatively characterize this set of initial conditions we
have studied the dependence of the separatrix trajectory in a neighborhood

zero surface tension solutions to describe, even qualitatively, the finite surface tension
dynamics.
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Figure 4.14: Plot of θsep vs. B for initial conditions of the form Eq. (4.1)
with λ = 1/2, ε = 0.1 and ζ2

s (0) = 20 exp(iθ).

of the planar interface fixed point as a function of B, using initial conditions
of the form ζ2

s (0) = 20 exp(iθ). For a given initial condition ζs(0) introduce
the parameter θsep(B), defined as the unique value for which the evolution is
attracted toward the fixed point ST(L) when θ > θsep and to the fixed point
ST(R) when θ < θsep.

Figure 4.14 shows the plot of θsep versus B, and it is observed that
as B decreases, θsep saturates to a fixed value, namely θsep(B → 0) =
−0.4843 ± 0.0009. It is interesting to compare this value to the position of
the separatrix region for B = 0, which is located between θB=0

+ = −0.95758
and θB=0

− = −1.04796. The separatrix for finite B lays outside and far away
from the separatrix region for B = 0, even for vanishing surface tension. Our
evidence therefore suggests that any B = 0 trajectory located between the
trajectories defined by θsep(B → 0) and θB=0

+ will not describe, even qualita-
tively, the regularized dynamics in the limit B → 0, since the finger that will
‘win’ the competition under the B = 0 dynamics will ‘lose’ under the B → 0
dynamics. Thus, there exists a positive measure set of initial conditions of
the form Eq. (4.1) such that the evolution with B → 0 cannot be qualita-
tively described by its evolution under B = 0 dynamics. This is a dramatic
consequence of the singular nature of surface tension on the dynamics of fin-
ger competition which is not related to steady state selection, but confirms
the ideas of Dynamical Solvability Scenario proposed in Chapter 3.
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4.3 Summary and concluding remarks

The asymptotic theory developed in Refs. [Tan93, ST96] predicts the exis-
tence of regions of the complex plane where the zero surface tension solution
and the finite surface tension solution differ by O(1). These regions are the
daughter singularity clusters, and their influence is felt in the physical in-
terface when they are close to the unit circle. Daughter singularities move
towards the unit circle, and when their motion is not impeded by other sin-
gularities they reach the unit circle in O(1) time. When the distance between
the daughter singularity and the unit circle is O(B1/3) the interface can dis-
play O(1) discrepancies with respect the interface of the B = 0 solutions.
However, the asymptotic theory does not predict the nature of the discrep-
ancies caused by daughter singularity impact.

Since the precise effect of the daughter singularity cannot be established
by the asymptotic theory it is necessary to use numerical computation in
order to establish the effects of daughter singularity on the dynamics of the
interface. We have focused our efforts on uncovering the role of surface
tension in the dynamics of two finger configurations, which is the simplest
situation exhibiting nontrivial finger competition. Numerical computations
with small surface tension show that the introduction of a small B in the
ε = 0 solutions removes the continuum of fixed points and triggers the com-
petition process which was absent for B = 0 by restoring the saddle-point
(hyperbolic) structure of the appropriate multifinger fixed point. The other
type (ε 6= 0) of two-finger solution we have studied exhibits finger competi-
tion for B = 0, but the numerical computation with small B has shown that
the long time configuration of the computed interface may be qualitatively
different from the B = 0 solution for a broad set of initial conditions, in the
sense that the finger that ‘wins’ the competition is not the same with and
without surface tension. Thus, the presence of surface tension seemingly can
change the outcome of finger competition even in configurations that are well
behaved and smooth for all time and whose asymptotic width is fully com-
patible with the predictions of selection theory for vanishing surface tension.
This unexpected result shows that surface tension is not only necessary to
select the asymptotic width and to prevent cusp formation, but plays also
an essential role in multifinger dynamics through a drastic reconfiguration of
the phase space flow structure.

Our calculations support the conjecture that impact on either the shorter
or larger finger retards the velocity of that finger, and is accompanied by
the widening of the larger finger. As a consequence, in general the outcome
of finger competition is independent of the particular finger on which the
impact first occurs, and the finger which is leading at the time of the daughter
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singularity impact ‘wins’ the competition. This recipe fails only for interfacial
configurations with very similar fingers, when not only the position of the
finger (which finger is leading) but also the tip velocities (a trailing finger can
have for a certain time a larger velocity than the leading one) at the impact
time may play a role.

The main conclusion of the present chapter is that surface tension is es-
sential to describe multifinger dynamics and finger competition, even when
the corresponding zero surface tension evolution is well behaved and com-
patible with selection theory. That is, we have detected singular effects of
surface tension on the dynamics of finger competition that are not directly
related to steady state selection. These can be properly interpreted in the
context of the Dynamical Solvability Scenario described in Chapter 3 where
the reconfiguration of phase space flow by surface tension can be traced back
to the restoring of hyperbolicity of multifinger fixed points.

The general picture emerging from this Part II of the thesis is thus the
following. The B = 0 problem does coincide with the limiting one B = 0+

only in a finite region of phase space. This includes finite time evolutions
departing from the planar interface fixed point, and the full infinite time
evolution of trajectories ending at fixed points if these are the ones consis-
tent with selection theory (λ = 1/2). The boundary of the region of phase
space where the manifolds of B = 0 and B = 0+ coincide is defined by the
impact of daughter singularities. For later times, the two manifolds span
disjoint regions of the full phase space of possible interface configurations.
Trajectories which overlap in the common region of B = 0 and B = 0+ follow
different paths in phase space for later times. Remarkably, two trajectories
which coincided at early times may go far apart from each other, even if they
eventually evolve to the same asymptotic attractor. In particular, which fin-
ger wins the competition may be different for the two cases, not just for a
single ‘borderline’ trajectory but for an appreciably broad range of initial
conditions. This is a rather subtle effect since the fact that the evolution is
always smooth and to the correct attractor makes it virtually impossible a
priori to anticipate such dramatic differences between B = 0 and B = 0+.
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Chapter 5

Multifinger dynamics with
arbitrary viscosity contrast.
Fingers versus bubbles

Finger competition with arbitrary viscosity contrast is studied by means of
numerical computation. An initial condition appropriate to study the size
of the basin of attraction of the Saffman-Taylor finger is identified, and used
to characterize the dependence of the ST basin of attraction on the viscosity
contrast c, obtaining that its size decreases for decreasing c. An alternative
class of attractors is identified as the set of Taylor-Saffman bubble solutions,
and the implications of this result are discussed in detail.

5.1 Introduction

Tryggvason and Aref in their numerical study of multifinger dynamics [TA83]
observed that the viscosity contrast has a deep influence in the dynamics of
Hele-Shaw flows and in the morphology of the fingering patterns formed.
This numerical evidence was later confirmed by the experimental results ob-
tained by Maher [Mah85] using a experimental setup where the instability
was driven by gravity and the fluid used was the binary-liquid mixture isobu-
tyric acid plus water at critical composition, that allowed to reach very low
values of the viscosity contrast parameter. Simple (two finger) configura-
tions were also studied [TA85] by means of direct numerical integration that
confirmed the dramatic differences between high c and low c dynamics. The
conclusion was very qualitative though, and no systematics was ever used,
to some extent due to the computer limitations of that time. The essen-
tial difference in the dynamics between high and low viscosity contrast is

129
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Figure 5.1: Temporal evolution of an noisy initial condition with c = 1 and
B = 0.01, using rigid wall boundary conditions.

illustrated in Fig. 5.1 and Fig. 5.2. For low viscosity contrast the finger com-
petition process is strongly inhibited, and the coarsening process observed for
high viscosity contrast [CM89, VnJ92] that leads to the formation of a single
finger does not take place (see Figs. 1.4 and 5.2). In an attempt to clarify
the issue on more rigorous grounds Casademunt and Jasnow [CJ91, CJ94]
developed a topological approach to study finger competition that allowed
them to get new insights on the dynamics of low c. They conjectured that
the size of the basin of attraction of the Saffman-Taylor depended on the
value of c. That is, the ST finger might not be the universal attractor of the
dynamics for any viscosity contrast1. But then a new question arises: what
is the long time behavior of the system when not attracted to a single fin-
ger? With the present computer power and the substantial progress made on
the numerical algorithms for this kind of problems, it seem thus appropriate
to reconsider those open questions and try to shed new light into the prob-
lem, both testing the scenario conjectured by Casademunt and Jasnow and
providing a more quantitative characterization of the sensitivity to viscosity
contrast. In addition, there is another fundamental reason to explore this
issue with precise numerics, and is the relevance to the general question on
the occurrence of topological singularities in interfacial problems. For low
viscosity contrast, indeed, one observes both in experiments and simulations

1Note that the ST finger for B = 0 is an exact solution for any value of the viscosity
contrast.
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Figure 5.2: Temporal evolution of an noisy initial condition with c = 0 and
B = 0.01, using rigid wall boundary conditions. The initial condition is the
same of Fig. 5.1 and the curves are plotted in the mean-interface reference
frame.

an enhanced tendency to interface pinchoff. While we will not specifically ad-
dress the question of whether the dynamics leads spontaneously to finite-time
pinchoff, we will push the idea that the tendency to pinchoff can be related
to the fact that attractors with different topology coexist and compete.

Recently, the problem of Hele-Shaw flows with arbitrary viscosity con-
trast, that has been neglected in the literature in comparison to the high
viscosity case, has received some attention also from a mathematical point of
view. Howison [How00] has presented a formal technique for finding explicit
solutions to the two-phase flow in a Hele-Shaw cell, with the confessed inten-
tion to drive the attention of the community to this fundamental problem.

5.2 The basin of attraction of the ST finger

The introduction of a viscosity contrast different from one makes the problem
far more difficult to study both from a theoretical and experimental point
of view. In the mathematical literature this is known as the Muskat prob-
lem [How00]. The wide classes of exact solutions for c = 1 (and B = 0)
described in Chapters 2 and 3 are not available to study the dynamics with
c 6= 1. For c 6= 1 the conformal mapping approach described in Appendix A
only allows to obtain one time dependent exact solution, and the only avail-



132 CHAPTER 5. MULTIFINGER DYNAMICS WITH. . .

able tool left to study the fully nonlinear regime is numerical computation.
The reason for this increased difficulty of the c 6= 1 case in comparison to
c = 1 is that, for arbitrary c, the two fluids are coupled, while for c = 1
the pressure of the fluid of negligible viscosity fluid is constant and the pres-
sure of the viscous fluid is independent from the other one. The problem
is then one-sided, as opposed to the c 6= 1 case, in which the pressure field
in the two sides of the interface is coupled through the boundary conditions
Eqs. (1.4, 1.5) and the problem is formally two-sided.

In opposition to the severe mathematical complications introduced by the
viscosity contrast, an arbitrary c does not introduce any special difficulties
to the numerical computation, and the methods and code used for c = 1 can
be easily generalized to c 6= 1. In this Chapter we will use the extension to
arbitrary c of the code used in Chapter 4 to study multifinger dynamics with
c 6= 1.

The aim of the present section is to gain insights into the long time be-
havior of two finger dynamics with c 6= 1, and in particular it will focus
on a partial, quantitative characterization of the basin of attraction of the
Saffman-Taylor finger and the attractor (or attractors) that compete with
the ST finger. To explore the basin of attraction of the ST finger it is neces-
sary first to accurately choose appropriate initial conditions and the value of
the surface tension parameter. Indeed it would be a hopeless task to aim at
an exhaustive characterization of the phase space, due to its infinite dimen-
sion. It is thus crucial to devise an optimal strategy in selecting the class
of interface configurations which will be most useful to elucidate the generic
questions posed on the dynamics with a minimal numerical effort.

It seems clear that two-finger configurations will be adequate to study fin-
ger competition. We will choose initial conditions with two sinusoidal modes,
with wave numbers k and 2k, with small amplitudes so that their growth is
initially linear. Furthermore, we will choose surface tension in such a way
that the two modes have exactly the same linear growth rate. This is always
possible and has the great advantage that the ratio between the two mode
amplitudes is kept constant as long as the dynamics is linear. Deviations
of this constant ratio will directly signal nonlinear interactions. In addition,
with this condition the linear growth yields a selfsimilar solution and the
actual initial amplitude of the modes is thus irrelevant. The amplitude ratio
is then the only parameter that spans the phase space. This one-dimensional
projection is obviously a dramatic simplification but will provide useful in-
sights. It will be made less restrictive a posteriori to assess the validity of
the general conclusions. In any case, in this chapter we will deal with di-
mensionless surface tension of order unity (B ≈ 1). Note that this range of
values is the relevant one for configurations of fingers arising spontaneously
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Figure 5.3: Evolution of the initial condition with a single mode (a1 = 0.1
and a2 = 0), with B = 1/7 and c = 0.0.

from the linear instability of the planar interface, which occur precisely at
the scale where capillary and viscous forces are of the same order. We will
not discuss the small surface tension limit for general viscosity contrast.

The simplest initial condition to study finger competition is thus a two-
finger (or two-bump) interface, with two Fourier modes of the form

x(y) = −a1 cos(y) + a2 cos(2y), (5.1)

where both a1 and a2 are real and positive. The form Eq. (5.1) describes an
interface with one or two bumps, depending on the ratio a1/a2: if a1 < 4a2

the interface has two bumps, and one otherwise. The values of a1 and a2 are
chosen small enough to guarantee that the initial interface is well inside the
linear regime. The two modes present in Eq. (5.1) have equal growth rates
for a surface tension value B = 1/7.

It is important to stress at this point that the evolution in the case where
any of the two amplitudes is zero leads to the ST finger (single or double),
regardless of viscosity contrast. The basin of attraction of the ST is thus al-
ways finite. The intrinsic differences between high and low viscosity contrast
refer only to the process of finger competition, that is, they are manifest as
long as unequal fingers coexist. In Fig. 5.3 we show the evolution towards
the ST finger in a case with c = 0.

We have numerically computed the evolution of the initial condition
Eq. (5.1) for various values of the viscosity contrast, surface tension and ini-
tial conditions. We have observed that for long times the interface exhibits
two different kinds of configurations, illustrated in Fig. 5.4 and consistently
with the two types of finger dynamics observed in Ref. [CJ91, CJ94] for the
two extreme values of c = 1 and c = 0. The two types of dynamics give rise
to two distinct morphologies as follows. As usually seen for high viscosity
contrast, in what we call type I dynamics the leading finger screens out the
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Figure 5.4: Evolution of the initial condition a1 = 0.05 and a2 = 0.07285,
with B = 1/7 and c = 0.0 (upper plot) and c = 0.8 (lower plot).

trailing one by suppressing its growth rate to the point that the small finger is
completely halted or exhibits a residual evolution driven by surface tension.
The key defining point of type I dynamics is that the leading finger widens
to attain a stationary shape close to the single-finger solution predicted by
selection theory, thus absorbing all the injected flow, while the secondary
finger is either completely suppressed or frozen.

In the second type of behavior (or type II), which is typical of lower
viscosity contrast, the growth of the second finger is not halted, although
its speed may decrease a considerable amount with respect to the speed of
the large finger. At long times the large finger advances approximately at
constant velocity, but with a substantial difference with respect the previous
case: the finger sides bend to give rise to a narrow neck behind the leading
head. This neck can become extremely narrow to the point of approach-
ing a possible topological singularity in the form of interface pinchoff. The
appearance of some sort of a neck is rather usual even for high viscosity con-
trast, since fingers typically develop overhangs. Indeed, at short times both
fingers are substantially narrower than half the channel width, and later in
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the evolution the region of the leading finger that is ahead widens also in
type I competition. The key point here, however, is that the narrow neck in
type II dynamics supports a vanishingly small inner flux, so that the leading
head or bubble increases its area only very slowly. On the other hand, there
is an amount of flux that feeds the secondary finger which then exhibits a
nontrivial dynamics which persists in one way or another for all times. When
a pronounced necking develops, the shape of the quasi-bubble formed is very
close to the zero surface tension bubble shape described in [TS59], as will
be shown in the following section. The second finger exhibits a variety of
behaviors: it may or may not develop necking, and it can also present tip-
splitting, but in any case it will exhibit some sort of ‘persistent’ dynamics.
Note that the whole system is becoming more and more elongated with time
so there is increasing space for the secondary finger to evolve independently
of the leading tip. We have not observed any clear indication of a steady
state behavior of the secondary finger in type II dynamics, although the
tip region of the leading finger often reaches a practically stationary shape
in a reasonably short time. The two morphologies and corresponding dy-
namics just introduced were described and characterized more precisely in
Ref. [CJ91, CJ94] for the extreme values of c. Here we will see that for a
given initial condition, the system will display unambiguously one of the two
behaviors depending on the viscosity contrast. Remarkably the transition
between the two behaviors is quite sharp, with slight changes in the value of
the viscosity contrast driving the system from one kind of behavior to the
other one. This is illustrated in Fig. 5.5.

With the simplest choice of surface tension B described above to assure
the same linear growth of the two modes, according to the linear dispersion
relation Eq. (1.14), we are left, in our first analysis, with a uniparametric
family of selfsimilar initial conditions in the linear regime. These are self-
similar in the sense that rescaling the interface deviation from planarity by
a given factor amounts to a time shift but does not change the dynamics2,
as long as the interface stays in the linear regime. The quantity we will
use to parameterize the two-bump initial condition Eq. (5.1) is the ratio be-
tween the tip difference and the total width of the interface, measured as the
length difference between the maximum and the minimum of the interface
(see Fig. 5.6). This parameter will be called d, and according to its definition
d reads

d =
1

1
2

+ 1
16
a1

a2
+ a2

a1

. (5.2)

2A rescaling of the interface height by a factor F is compensated by shifting the initial
time an amount 7

6 lnF
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Figure 5.5: Evolution of the same two finger initial condition with B = 1/7,
c = 0.98 (dashed line) and c = 0.97 (solid line). The width of the neck is
decreasing for c = 0.97 but increasing for c = 0.98, and the secondary finger
has disappeared for c = 0.98. The initial condition is d = 0.1.
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Figure 5.6: The left plot shows the distances involved in the definition of d:
it is the ratio between the tip difference and the interface width. The right
plot shows how the area of the small finger is defined (filled region).
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Figure 5.7: cT versus d, for an initial condition of the form Eq. (5.1) and
surface tension B = 1/7.

d is a function of the ratio a1/a2, and since the surface tension is chosen
to make the growth rate of both a1 and a2 the same, d remains constant
throughout the linear regime. Then, the value of the viscosity contrast at
which the transition between type I and type II dynamics takes place depends
on the initial condition, or equivalently, is a function of the parameter d.

In order to study quantitatively the transition between the two types of
dynamics and its dependence on the viscosity contrast it is convenient to use
a precise criterion to decide whether an interface displays type I or type II
dynamics. A useful quantity to measure this is the area of the small finger, or
the ratio between the area of the small finger and the total area. To compute
these areas the origin in the x axis is placed at the minimum x position of
the interface, that is, the bottom of the groove (see Fig. 5.6). Then, the
dynamics is of type I if the area of the small finger takes a constant value for
long times, and type II otherwise. We have applied this criterion to study
systematically the dependence of the viscosity contrast transition value cT on
the initial condition. In Fig. 5.7 cT versus d is plotted, for an initial condition
of the form Eq. (5.1) and surface tension B = 1/7. d = 0 corresponds to two
equal bumps, and d = 1 corresponds to a single bump. From the plot it can
be seen that as the lengths of the two initial fingers become close to each
other the viscosity contrast that drives the dynamics into the type I dynamics
tends to c = 1. For c = 1, regardless of how small the initial difference in
finger tip position is, the long time interface configuration consists of a steady
Saffman-Taylor finger (type I). In opposition to this limit, when the length of
the small finger tends to zero the type I dynamics is present for any value of
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Figure 5.8: cT versus d, for an initial condition of the form Eq. (5.1) and
surface tension B = 1/14.

the viscosity contrast. Then, if the initial interface consists in a single bump
the long time interface will be a Saffman-Taylor finger. The convexity of
the curve cT (d) shows that type II dynamics has a larger basin of attraction
than type I dynamics. Furthermore, the very small slope of the boundary
between the two behaviors in Fig. 5.7 when approaching c = 1 is telling us
that the maximal sensitivity to viscosity contrast is precisely at c ≈ 1. The
physical picture of finger competition based upon laplacian screening, which
is the common one for the high viscosity contrast case, happens to be less
generic than the low contrast behavior. Fig. 5.7 describes the variation and
sensitivity of the basin of attraction of the ST finger to viscosity contrast. It
can also be viewed as a reduced, dynamical phase diagram: given a value of
c and d, it tells us whether the dynamics is attracted to the ST finger or not.

The weakly nonlinear approach developed in Ref. [ALCO01] can be ap-
plied to the present problem in order to gain some insight into the dependence
of the dynamics on the viscosity contrast at the early nonlinear stages of the
evolution. According to the weakly nonlinear equations, the amplitudes a1(t)
and a2(t) of the two relevant modes obey the following equations

ȧ1(t)

a1(t)
=

6

7
{1 + 2c a2(t) +

[
4c2 − 1

]
a2

2(t)− 3

4
a2

1(t)} (5.3a)

ȧ2(t)

a2(t)
=

6

7
{1 + 4a2

2(t)}. (5.3b)

From these equations it can be observed that the viscosity contrast reinforces
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the growth of the mode k = 1 through a quadratic3 coupling with the mode
k = 2. On the contrary, for c close to zero this quadratic term is small and
the cubic term is negative, weakening the growth of the mode k = 1 in front
of the mode k = 2. Hence, in the weakly nonlinear regime the reinforced
growth of a1(t) pushes the interface towards the single finger configuration
for c large, and for c small the growth of a1(t) is weakened and the dynamics
tends to the two-finger configuration.

A change in the surface tension value yields qualitatively similar results,
but now the two initial modes have different growth rates and the interface
can suffer significant changes even in the linear regime: a second bump can
develop from a configuration which initially had one bump if B < 1/7, or
a bump of a two-bump configuration can be suppressed if B > 1/7. Then,
from this simple linear regime considerations one can infer that a plot of cT
versus d will have a major difference from the plot depicted in Fig 5.7: for
d = 1 (single bump) cT will be greater than zero if B < 1/7, one will observe
both types of dynamics. In Fig. 5.8 cT versus d is plotted for B = 1/14.
As predicted, cT (d = 1) is larger than zero and for this value of B it is
closer to 1 than to 0. However, one must keep in mind that for B 6= 1/7
the linear growth rates for the two modes are different, and consequently the
initial condition Eq. (5.1) is not described by a single parameter in the linear
regime. Then, if we had computed cT (d) with different values of the ratio
a1/a2 we would have obtained a curve different from the one of Fig. 5.8, but
qualitatively equivalent. On the other hand, if B > 1/7 cT (d) will reach zero
for d < 1.

An examination of Figs. 5.7 and 5.8 shows that type II dynamics occupies
the larger part of the phase diagrams. In particular, for low values of d the
behavior of the system is type II except for viscosity contrasts very close
to one. Taking into account that the fingers arising spontaneously from the
linear instability of the planar interface have similar length, that is, d is close
to zero in real experiments, type II dynamics is the dominant behavior as
long as the viscosity contrast is slightly below one. Thus, in generic situations
with arbitrary viscosity contrast finger competition is absent or weak, and the
ST finger may not be reached. Instead, a more complex situation arises, and
attractors absent for high viscosity contrast appear. This will be discussed
in the section below.

3Note that a quadratic term in the expression for ȧ1,2 is a linear term in the RHS of
Eqs. (5.3).
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Figure 5.9: Evolution of an initial condition with d = 0.5, c = 0.8 and
B = 1/7. The leftmost curve correspond to t = 0, the dotted one to t = 4
and t = 16 is the final time. Note that the secondary finger has undergone a
tip-splitting.

5.3 Taylor-Saffman bubbles: the competing

attractors

We have observed that within type II behavior in certain cases the leading
finger evolves for long times to a configuration consisting of a bubble-shaped
tip connected to the rest of the interface by a long, narrow neck, that can
be extremely thin next to the bubble region. One of these situations can be
seen in Fig. 5.9. This bubble formation process has been observed for a wide
range of values of the viscosity contrast, except for values very close to 1.
Formation of bubbles for low viscosity contrast has been previously reported
by Ref. [TA83] in more complex interfacial configurations. Bubble shaped
(closed) exact solutions do exist for B = 0 [TS59], and similarly to the ST
finger, bubbles are also solutions with finite B via a similar selection mech-
anism. Although the method used to compute the evolution of the interface
is a sharp-interface method that does not allow the formation of a true (dis-
connected) bubble, the dynamics approaching the topological singularity is
well described and it is thus possible that the dynamics be indeed attracted
to such solutions with different topology. In this section we will compare the
interfaces obtained to known bubble shaped solutions.

Taylor and Saffman [TS59] found a two-parametric family of exact solu-
tions of the problem with zero-surface tension consisting of symmetric bub-
bles advancing with constant velocity U . Its functional form is

x =
2

π

U − 1

U
tanh−1

[
sin2

(π
2
Uλ
)
− cos2

(π
2
Uλ
)

tan2

(
U
4
y − π

2
U
)] 1

2

(5.4)
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and contains two parameters, the (nondimensional) bubble velocity4 U and
the maximum width λ of the bubble (measured in channel-width units). The
area S bounded by the interface reads [TS59]

S = 16
U − 1

U2
tanh−1

[
tan2

(π
4
Uλ
)]
. (5.5)

In the limit Uλ → 1 with U fixed, the area S of the bubble diverges and
the steady-state Saffman-Taylor finger solution is recovered. The area of the
bubble does not specify U and λ since Eq. (5.5) only provides one relation
between them, and there exists a continuum of solutions with arbitrary speed
that satisfy the area condition. Then, we encounter a selection problem fully
analogous to the classical finger-width selection problem, where the zero-
surface tension solution for a steadily translating Saffman-Taylor finger has
an arbitrary width. Tanveer [Tan86, Tan87b] showed that the introduction
of a finite surface tension removes the degeneracy in the bubble speed U , and
that families of bubbles that do not contain the symmetries present in the
solution Eq. (5.4) exist.

Since the bubble-shaped region of the interface that forms for some pa-
rameter values resembles the Taylor-Saffman bubble solution, we have com-
pared the bubble region of the computed interface with finite B and the
bubble given by solution Eq. (5.4). For convenience the conformal mapping
version of Eq. (5.4) is used. The bubble shape in terms of the complex
variable z = x+ iy reads [Tan87b]

z(s) = ln

(
eis − α
eis + α

)
+

(
2

U
− 1

)
ln

(
1 + eisα

1− eisα

)
+ iπ (5.6)

where the constant parameter α takes values in the range (0, 1) and the
interface shape is described by 0 < s < 2π. The interface width is 2πλ and
the bubble is centered along the mid-channel axis. The parameter α relates
to λ and U through the relation

λ =
1

π

4

U
tan−1

(
2α

1− α2

)
. (5.7)

In Fig. 5.10 the bubble region of the computed interface with c = 0.8 and
B = 1/14 is plotted together with the interface obtained from Eq. (5.6) with
U = 1.8243 and α = 0.938216. The parameter values U and α have been
chosen by imposing that λ is equal to the computed width of the bubble

4If c 6= 1 the bubble velocity U has to be replaced in Eq. (5.4) by a more complicate
expression, that can be found in Ref. [TS59].
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Figure 5.10: Bubble region of the computed interface with an initial condition
a1 = 0.05, a2 = 0.0788555, c = 0.8 and B = 1/14 at time t = 9.4 together
with the interface obtained from Eq. (5.6) with U = 1.8243 and α = 0.938216.
The dotted curve is the profile of the ST finger with λ = 0.50698 and the
dashed-dotted curve corresponds to λ = 0.517863. This last curve has the
same tip curvature than the original interface.

and then the length of the analytical solution has been adjusted in order to
get a good agreement between the two interfaces. From the plot it can be
seen that the analytical solution Eq. (5.6) describes the computed interface
to a high degree of accuracy, and the only part of the computed bubble that
significantly differs from the solution is the tail that connects the bubble to
the rest of the interface. The agreement between the two curves is remarkable
taking into account that Eq. (5.6) is a zero-surface tension solution. We have
also tried to fit the Saffman-Taylor finger to the right half of the computed
bubble, but the agreement is not as good as the one obtained with the bubble
solution. In Fig. 5.10 two Saffman-Taylor fingers are plotted, using two
different criteria to choose the value of the asymptotic width of the finger.
First, the asymptotic width has been chosen equal to the width of the bubble,
and we have obtained a poor agreement between the two curves. A better
agreement is obtained imposing that the curvature of the finger and the
curvature of the bubble are equal at the tip, but even in this case the solution
Eq. (5.6) is a better fit of the computed interface. However, for larger bubble
areas the fit by a Saffman-Taylor finger improves since Eq. (5.4) tends to the
Saffman-Taylor finger solution for S → ∞. In addition, the region around
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Figure 5.11: Bubble region of the computed interface with initial condition
a1 = 0.038223, a2 = 0.00972855, c = 0.5 and B = 0.01 at time t = 9.9
together with the interface obtained from Eq. (5.6) with U = 1.975 and
α = 0.8969

the tip is usually well fitted by ST fingers, but these do not fit well lateral
walls of the bubble, except for very long ones.

In Fig. 5.11 the bubble region of an evolution with c = 0.5 and B = 0.01 is
plotted together with the analytical bubble with U = 1.975 and α = 0.8969,
and in this case the agreement between the two curves is much better than
in the previous case because the value of the surface tension is smaller in this
case. The excellent agreement between the bubble region of the computed
interface and the Taylor-Saffman bubble indicates that the interface is being
attracted to the Taylor-Saffman bubble fixed point. In addition, this also
suggests that the dynamics of the bubble-shaped region is almost independent
of the rest of the interface. Not, however, that through the neck that connects
the two parts of the interface there is a residual finite flux of fluid that allows
a slight increase of the bubble area. This variation is slow enough to keep it
very close to a stationary solution on the time scale of interface displacement.

The area of the bubble shaped region, for a given B and c depends also
on the particular initial condition. This is illustrated in Fig. 5.12, where
the evolution of two different initial conditions but with same values of B
and c is plotted. The area of the two bubble shaped areas, although not
very well formed, is clearly distinct, showing that the two evolutions are
being attracted, at least during a certain time, to different bubble fixed
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Figure 5.12: Evolution of two different initial conditions with a1 = 0.02,
a2 = 0.08972 (solid line) and a1 = 0.07, a2 = 0.05988 (dashed line). The
viscosity contrast is c = 0.8 and surface tension is B = 1/14. The final times
are t = 9.25 (solid line) and t = 8.0 (dashed line).

points. Apparently, the area of the bubble changes continously with the
initial condition, and the bubble region is being attracted to different points
of the continuum of Taylor-Saffman solutions.

The fate of the bubble region is a critical issue to elucidate the long time
asymptotics of the problem. Two relevant aspects of the bubble dynamics
are its eventual, finite-time pinchoff from the rest of the interface and/or
its asymptotic area (finite or infinite) at long times. If the bubble area
tends to infinity as t → ∞ then the attractor of the system is the Saffman-
Taylor finger, not the Taylor-Saffman bubble, although the system follows a
path in phase space that stays very close to the continuum of fixed points
corresponding to the bubble solutions with varying area. This issue will be
discussed in more detail in Sec. 5.4. The eventual pinchoff of the interface at
finite time would obviously imply that the system will end up in one of the
bubble solutions. However, even if the dynamics does not yield a finite-time
pinchoff, the attractor could in practice be one of the bubble solutions as long
as the enclosed area would be bounded. Interface pinchoff has been a subject
of major interest in fluid dynamics in recent years [Egg97], not only for its
relevance to practical applications but also as a problem where a high degree
of universality is present. There exists strong evidence of the existence of
finite time pinchoff of the interface in Hele-Shaw flows [GPS98, Alm96], but
in setups different from the one studied here. It would be interesting then to
get some insight concerning the possible existence of pinchoff in our system
although a general answer to this question is much beyond the scope of this
thesis.

In Fig. 5.13 it is plotted the evolution of the area of the bubble region for
various values of the viscosity contrast. From the plot it is difficult to draw a
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Figure 5.13: Area of the bubble region vs. time for B = 1/14, for various
values of c. The curves correspond to the following values of viscosity con-
trast, from bottom to top: c = 0.0, c = 0.2, c = 0.4, c = 0.6 and c = 0.8. The
initial condition is the same for the five curves: a1 = 0.07, a2 = 0.0598861.

clean conclusion. The area of the bubble is clearly increasing, and at the same
time its growth rate decreases, but unfortunately the computational cost of
running the code for even longer times makes not possible to elucidate if the
area of the bubble will saturate or will diverge as t→∞. For high c, the area
of the bubble is clearly increasing more slowly than for low c. The reason
is that the bubble at a given time is better formed (the neck is narrower)
for high c, and for low c more time is necessary to form a narrow neck and
the corresponding bubble. Our computations show that, for a given initial
condition, as the viscosity contrast is decreased, the area of the bubble gets
smaller, as can be seen in Fig. 5.13. A possible explanation for this behavior
is the following: according to our results, the bubble gets formed in the region
of the leading finger that is ahead, and its area will depend on the distance
between the tips of the fingers, with larger bubbles forming when the tip
distance is larger. Since for low viscosity contrast the velocity of the trailing
finger is larger than for high viscosity contrast, the tip distance at the time
when the fingers are well developed and the interface is in the fully nonlinear
regime (when the bubble forms) is larger for high viscosity contrast, causing
the formation of a larger bubble. In addition, we have also observed that
large bubbles form sooner than small ones, and this also explains why for
low c the bubbles need more time to form than for large c.

As mentioned above, the occurrence of topological singularities is relevant
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Figure 5.14: Relative neck width versus time, with initial condition d = 0.5,
c = 0.8 and B = 1/7. The relative neck width is the ratio between the neck
width and the channel width

in a much wider context. Unfortunately, the numerical approach we have
used, although well-suited for computing the evolution of the whole interface
in an efficient and accurate manner is not optimal to deal with the pinchoff5

with the desired accuracy, and only can give information about how the
(eventual) pinchoff of the interface is approached. An example of this is
shown in Fig. 5.14, where the width of the neck that connects the bubble-
region to the rest of the interface is plotted as a function of time. Two
distinct regimes are observed. The first one starts as soon as the neck (or
overhang) appears, and during this initial regime the width decreases quite
fast until it reaches a value close to zero: this is the regime where the bubble
gets formed. Next, the width reaches a local minimum and enters the second
regime, characterized by the slow decrease of the neck width. This second
regime corresponds to the situation where the area of the bubble is quasi-
stationary and apparently the neck has no dynamical role. The computation
cannot be continued much further because the numerical cost of increasing
the number of points that describe the interface is too high.

The fate of the neck is unclear from our results and none of the three
possible scenarios, namely, pinchoff at finite time, pinchoff at infinite time
and no pinchoff can be discarded. On the other hand, Almgren [Alm96] has
found strong evidence of the existence of finite time pinchoff in a situation

5If such pinchoff took place.
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without fluid injection—the pinchoff is driven by surface tension. Then, it
may be expected that in our situation pinchoff is probable. In any case, it
is clear that the tendency towards pinchoff from a situation which is clearly
far apart from it, seems indeed to be generic in the problem.

5.4 Discussion and concluding remarks

We have shown that the Saffman-Taylor finger is not the universal attractor
of the problem with arbitrary viscosity contrast, in opposition to the c = 1
case, where the ST finger fixed point is the unique attractor. The size of its
basin of attraction depends on the viscosity contrast, and drops very fast as
one departs from the very neighborhood of c ≈ 1, getting very small for c = 0.
In particular, for fingers of similar length the ST finger is the attractor only
for values of c very close to one. Since in real situations the fingers arising
from the planar interface are of comparable length, the Saffman-Taylor finger
is not attained in generic situations with arbitrary viscosity contrast.

The alternative set of attractors to the Saffman-Taylor finger is a rather
complicate object. First of all, it is not at all clear that the very concept
of an attractor is justified in the problem, due to the fact that the system
is unbounded in space. At most one can state that parts of the system (in
this case the leading fingertips) do appear attracted to certain stationary
solutions, but not the system as a whole. In many cases we have observed
that the system evolves towards an interface configuration with a bubble-
shaped leading ‘finger’ that is extremely similar to the B = 0 exact bubble
solution found by Taylor and Saffman [TS59], but with trailing fingers that
have some dynamics. In other cases the interface does not develop a clear
bubble-shaped region, and apparently does not reach a steady state during
the computation time. However, the latter behavior might not imply the
existence of a different attractor, but only that the system needs a longer
time to reach the Taylor-Saffman bubble attractor. The Taylor-Saffman at-
tractors present also important differences from a conceptual point of view
with respect to the well-known Saffman-Taylor finger: for the ST fixed point,
given a value of B and c the fixed point is unique, only one value of the width
λ is observed. But the situation is different for the Taylor-Saffman bubbles:
given B and c, an additional parameter is needed to determine the width λ
(or equivalently, the velocity) of the bubble. This additional quantity is the
area of the bubble, that in general depends on the initial condition and is a
result of the details of the evolution. In Fig. 5.12 we have shown how two dif-
ferent initial conditions lead to bubble shapes apparently with different areas.
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Therefore, the Taylor-Saffman bubble solutions constitute a continuum6 of
solutions the bubble region is attracted to, with the area of the bubble vary-
ing continously. In the case of two-finger configurations, depending on initial
conditions and parameters the leading finger will generically be attracted to
a bubble solution of a certain size. The existence of topological singularities,
or at least the tendency to develop a narrow neck that approaches pinchoff
can thus be related to the fact that the relevant attractor is a closed bubble,
with a different topology (implying a transition between simple connected
to multiply connected domains). Note that whether the area of the bub-
ble approached saturates to a finite value or this area drifts slowly towards
larger sizes is not particularly relevant to the discussion of the generic types
of dynamics. The distinction between type I and type II dynamics occurs in
a relatively short time scale (corresponding to reasonable observation times
both in simulations and possible real experiments) and only if the pinchoff is
somehow impeded or frustrated, an extremely slow dynamics may eventually
drive the bubble towards the ST finger.

Finally, in the previous discussion we have only considered single-bubble
isolated solutions but N-bubble exact7 solutions do also exist [Vas01b], in-
troducing further complexity to the scenario: an arbitrary initial condition
(with an arbitrary number of fingers) could be attracted to one of these multi-
bubble solutions, or even to solutions with coexisting bubbles and fingers.

6Here the continuum is referred to the uniparametric (with given B) family spawned
by the bubble area. Each value thus corresponds to a different problem, and therefore the
degeneracy is not the analogue of the continua of fixed points discussed in Part II.

7These are exact solutions for B = 0, but they should survive to the introduction of
finite surface tension, probably through a reduction of the dimensionality of the parameter
space of the exact solutions, analogously to what occurs with the Saffman-Taylor finger
or bubble solutions [Tan86, Tan87b]
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Chapter 6

Interface equation for an
inhomogeneous Hele-Shaw cell

A theoretical model of viscous flows in a Hele-Shaw cell with arbitrary space-
dependent gap between plates is developed. The formalism is exact within
the assumption of local Darcy flow. An explicit fully nonlocal interface equa-
tion is derived for small displacements from planarity, which is systematic
in the nonlinearities of a weakly nonlinear expansion of the problem (includ-
ing both local and nonlocal nonlinear terms) and perturbative to first order
in the gap fluctuations (noise). The equation contains both conserved and
nonconserved noise terms. We also derive a contribution of the noise that
exhibits long range correlations both in time and space. All different noise
contributions are explicitly related to the ‘microscopic’ gap variations and
the ‘bare’ parameters.

6.1 Formulation

Consider a Hele-Shaw cell with an inhomogeneous gap spacing b = b(x, y)
which fluctuates around a mean value b0. If the gap b varies slowly enough,
that is, if |∇b| � 1 then we can assume that the usual Darcy’s law for the
flow in a Hele-Shaw cell is locally valid. This assumption of local Darcyan
flow is the starting point of our formulation. This will allow us to derive
explicitly the full interface equation in term of the original ‘bare’ parameters
and the explicit space dependence of the gap, which may be controlled ex-
perimentally at the ‘microscopic’ level. In case of more abrupt variations of
the gap one can presume that the same type of contributions will be present
with the appropriate coarse-grained parameters. It is worth remarking here,
however, that one of the big advantages of our formulation is precisely to
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avoid a coarse-graining procedure, and therefore have a perfect control of the
derivation. This will be useful to elucidate the different types of contributions
that must be considered, and which may completely escape a phenomenolog-
ical approach to the problem. The underlying philosophy of this approach
is similar to the work of Cuerno et al. [CC01] in trying to clarify similar
problems in the context of interface growth. The analysis is also directly mo-
tivated by the experiments made recently on Hele-Shaw cells with random
but controlled gap variations by Soriano et al. [SOHM02b].

The assumption of local Darcy flow reads

v = −b(x, y)2

12µ
∇p. (6.1)

If we now impose the incompressibility of the full 3D flow, which is the
physical requirement in the usual case of incompressible fluids, then the re-
quirement ∇ · v3D = 0 yields, in terms of the two-dimensional (z-averaged)
velocity field the condition

∇ · (bv) = 0. (6.2)

The consideration of the incompressibility of the flow in three dimensions
has important consequences regarding the conservation of the interface dis-
placement from planarity (hereinafter referred to as interface height) in the
problem of fluid invasion, as shown in Sec. 6.2. Fluid conservation as de-
scribed in Eq. (6.2) will imply that the interfacial height is not a conserved
field variable, contrary to what is often assumed in the literature.

The substitution of Darcy’s law into Eq. (6.2) yields the equation satisfied
by the pressure p in the bulk of the fluid

∇2p+
3∇b
b
· ∇p = 0. (6.3)

Eq. (6.3) differs from Laplace equation valid in the usual case of homogeneous
gap, so the pressure is not a harmonic function. The gap can be expressed as
b = b0+δb(x, y), where b0 is the average value of the gap with∇δb(x, y) small,
and the pressure can be expressed as p = p0 + δp with p0 being the value of
the pressure computed with b = b0 (δb = 0). The separation of the pressure
in two contributions, a laplacian part (p0), and the remaining (nonlaplacian)
part of the pressure (δp) will make easier to obtain an approximate solution
to Eq. (6.3). Eq. (6.3) then reads:

∇2(p0 + δp) +
3∇b
b
· ∇(p0 + δp) = 0, (6.4)



6.1. FORMULATION 153

0R=b /2 0 δ b+  b
b0

δ0R=(b+  b)/2

Figure 6.1: Scheme of the curvature variation due to a gap change

and taking into account that∇2p0 = 0 and that the term 3∇b
b
·∇δp is negligible

compared to the other terms since δp is formally of order |∇b|, the bulk
equations read

∇2p0 = 0 (6.5a)

∇2δp+
3∇b
b
· ∇p0 = 0. (6.5b)

The term that has been neglected is of order |∇b|2. This approximation is
fully consistent with the fact that higher order corrections have already been
neglected in the assumption of local Darcy flow.

The usual boundary condition on the interface is given by the Young-
Laplace pressure jump condition, p2−p1 = σκ. Fluid 1 displaces fluid 2, and
the curvature is defined with the criterion that a bubble has negative curva-
ture. Curvature κ contains both the curvature of the interface in the plane of
the cell and in the plane perpendicular to the plates, that is, the curvature of
the meniscus. If the gap is constant the latter term is also constant and can
be absorbed in the definition of the pressure, but with inhomogeneous gap
it has an important contribution. Fig. 6.1 depicts schematically the effect
of the gap variation on the meniscus curvature. Then, the Laplace pressure
drop condition reads

p2 − p1 = σ(κ‖ + κ⊥) = σ

(
κ‖ +

2 cos θ

b0 + δb

)
(6.6)

where θ is the contact angle between the meniscus and the plates, with
cos θ = 1 meaning perfect wetting of the invading fluid. From now on we
will consider the static approximation for θ: the contact angle is considered
to be constant along the interface and throughout its evolution. Boundary
condition Eq. (6.6) is supplemented by the kinetic boundary condition, that
states that the normal velocity on the interface is the same for the two fluids,
and equal to the velocity of the interface

vn = − b2

12µ1

∂np1 = − b2

12µ2

∂np2. (6.7)
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To complete the problem an additional condition is needed, the velocity at
y →∞ if we are considering constant injection rate or the pressure at y = y0

if we are dealing with the constant pressure case.
Eqs. (6.5,6.6, 6.7) together with the boundary conditions at infinity1 com-

pletely specify the free-boundary problem we are interested in. A common
strategy is now to project the full dynamics into the interface degrees of
freedom, writing a nonlocal equation for the interface location.

Eqs. (6.5) are solved using the following scheme: Eq. (6.5a) is solved
applying the boundary condition Eq. (6.6) by any of the standard methods,
since the only difference with the problem with constant gap is that the
boundary condition Eq. (6.6) has an additional term containing the disorder
δb. Once the pressure field p0 is known, the Poisson equation (6.5b) for δp
can be solved, with the boundary condition δp = 0. Note that the simplest
boundary condition δp = 0 can be used because the pressure drop due to
surface tension was taken into account in the solution of p0. Once δp is
known the velocity at the interface is determined using Darcy’s law:

vn = −(b0 + δb)2

12µ
∂np0 −

(b0 + δb)2

12µ
∂nδp. (6.8)

This last equation (6.8), together with Eqs. (6.5) and (6.6), completes our
formulation of the interfacial evolution in a Hele-Shaw cell with inhomoge-
neous gap, where the only approximation considered is the local Darcy flow
condition.

The solution of the Poisson equation (6.5b) can be obtained in terms of
the Green function G(x− x′, y − y′) of the Laplace equation and p0 as∫

dx′dy′G(x− x′, y − y′)3∇b
b
∇p0 =

∫
int

ds′G[x− x(s), y − y(s)]
∂δp

∂n
(6.9)

where it has been used that δp is zero on the boundaries (including the
interface). This will be used in the following section to obtain the explicit
interface equation.

6.2 Forced fluid invasion

We are interested in the particular case of a more viscous fluid displacing
the less viscous one at a constant injection rate V∞ in a cell with a noisy
gap, being δb a quenched disorder2. In this configuration of the problem

1Or at a given height if we are dealing with the constant pressure case.
2The case of fluid imbibition, with injection at constant pressure, will not be discussed

explicitly here but most of our results can be easily adapted to that case
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the planar interface is stable in the absence of disorder, but the presence
of noise roughens the interface through different mechanisms associated to
both capillary and viscous forces. We will restrict ourselves to quasi-planar
interfaces with weak noise. The gap has the form b2 = b2

0[1 + ζ(x, y)] where
the noise3 has zero mean, 〈ζ(x, y)〉 = 0, and correlation 〈ζ(x, y)ζ(x′, y′)〉 =
C(x− x′, y − y′). In addition, |ζ(x, y)| is assumed to be sufficiently small to
keep only linear contributions in the noise. The gap variation δb introduced
in the previous section reads in terms of the noise as δb ' b0ζ/2.

6.2.1 Derivation of the interface equation

The linearized equation for the interface height h(x, t) in the absence of noise
is well known, see for instance Ref. [ALCO01], and reads

dh(x, t)

dt
= cV∞H

[
−∂h(x′, t)

∂x′
+ B̃

∂3h(x′, t)

∂3x′

]
(x) + V∞ (6.10)

where c is the viscosity contrast4, B̃ is a surface tension parameter defined
as B̃ = σb2/[12(µ1 − µ2)V∞], and H[f ](x) is the Hilbert Transform defined
as

H[f ](x) =
1

π
P

∫ ∞
−∞

dx′
f(x′)

x′ − x
(6.11)

where P denotes Cauchy’s principal value. A systematic weakly nonlinear
expansion of the full unperturbed problem has been developed recently in
Ref. [ALCO01]. Since we are mostly focussed in determining the different
noise contributions, we will restrict the deterministic part to the contributions
linear in h for simplicity, and add the nonlinear ones later. To obtain the
linearized equations from the full equations with noise the method described
in Ref. [ALCO01] will be used. A straightforward computation yields the
following expression for ḣ(x, t):

dh(x, t)

dt
= V∞

{
1− cH

[
∂h(x′, t)

∂x′
− B̃ ∂

3h(x′, t)

∂3x′

]
(x)

}
+

V∞

{
B̃ cosα

b0

H

[
∂ζ(x′, h)

∂x′

]
+ ζ(x, h)

}
+ δvζ(x, h), (6.12)

3We will refer to the gap variation as noise, characterized by its statistical properties
just to adapt the language to the problem of fluid invasion of (random) porous media.
However, the derivation is valid for any arbitrary form of ζ(x, y).

4Note that in Eq. (6.10) the viscosity contrast is negative since the more viscous fluid
displaces the less viscous one.
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where only linear terms on h and ζ are considered.
The noise ζ appears in three different places in the above equation for the

temporal evolution of h(x, t). First, a term proportional to H[∂ζ(x
′,t)

∂x′
] that

is the lowest order contribution from the pressure field p0 resulting from the
variation of the perpendicular curvature at the interface, that is, it comes
from Eq. (6.6). This term will be named capillary noise. Its derivation
is straightforward applying the formulation of Ref. [ALCO01]. The second
contribution of the noise is the trivial multiplicative term that has its origin in
the factor δb2

12µ
∇p0 in Eq. (6.8). This contribution will be termed permeability

noise. The third noise term δvζ(x, h(x)) comes from the term∇δp in Eq. (6.8)
and will be called bulk noise, since it contains the effect of the noise in the
fluid region or bulk and not only on the interface. The derivation of this
term will be shown next for c = −1.

First, we define v0 as v0 = − b20
12µ
∇p0 and the bulk noise δvζ as δvζ =

− b20
12µ

∂δp
∂n

. Using these definitions and recalling Eq. (6.9), the bulk noise sat-
isfies:∫

int

ds′G[x−x(s), y−y(s)]δvζ(s) =

∫
dx′dy′G[x−x′, y−y′]3∇b

b
·v0, (6.13)

where the integration region of the rhs integral is the viscous fluid region
and the integration path of the lhs integral is the interface, since we have
δvζ = 0 at at y → −∞. Now, since we are interested in the value of δvζ on

the interface, we have y = h(x) and ds =
√

1 + (∂x′h)2dx′. Moreover,

3∇b
b

v0 '
3

2
∇ζ · v0 '

3

2
∇ζ · V∞ŷ =

3

2

∂ζ

∂y
V∞ (6.14)

where we have considered only the leading order (linear) contribution, ne-
glecting terms of order ∂xh∇ζ. Eq. (6.13) now reads

∫ ∞
−∞

dx′

√
1 +

(
∂h(x′)

∂x′

)2

G[x− x′, h(x)− h(x′)]δvζ(x
′) =

3V∞
2

∫ ∞
−∞

dx′
∫ h(x′)

−∞
dy′G[x− x′, h(x)− y′]3V∞

2

∂ζ

∂y
. (6.15)

We will use the expression of the Laplace Green function in the free space,
that is, considering a channel of infinite width or equivalently assuming that
the walls have a negligible influence on the dynamics. It reads G(x− x′, y −
y′) = −1

4π
ln[(x−x′)2+(y−y′)2]. Now we can integrate by parts the integral on

y of the RHS of Eq. (6.15) and imposing that the noise vanishes at infinity,
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ζ(x, y → −∞) = 0, the integral equation (6.15) reads∫ ∞
−∞
dx′

√
1 +

(
dh(x′)

dx

)2

ln
[
(x− x′)2 + (h(x)− h(x′))2

]
δvζ(x

′) =

3V∞
2

∫ ∞
−∞
dx′ ln

[
(x− x′)2 + (h(x)− h(x′))2

]
ζ(x′, h(x′))

−3V∞
2

∫ ∞
−∞
dx′
∫ h(x′)

−∞
dy′

2(h(x′)− y′)
(x− x′)2 + (h(x)− y′)2

ζ(x′, y′). (6.16)

We keep the lowest order in the interface deviation h − V∞t with respect
to the mean interface, dropping terms of order (h − V∞t)ζ, and apply the
substitution y = y′ − V∞t∫ ∞

−∞
dx′ ln |x− x′|δvζ(s′) = −3

2
V∞

∫ ∞
−∞
dx′ ln |x− x′|ζ(x′, h)

−3

2
V∞

∫ ∞
−∞
dx′
∫ 0

−∞
dy

−y
(x− x′)2 + y2

ζ(x′, y + V∞t). (6.17)

Then, to obtain an explicit expression for δvζ the Fourier transform is applied
to both sides of Eq. (6.17). First, we recall the following results: the Fourier
transform F of ln |x| is [RY90]

F [ln |x|](k) =
−π
|k|
− 2π(γ + ln 2π)δ(k) (6.18)

where γ is Euler’s constant, and the Fourier transform F of the other term
of Eq. (6.17) reads

F
[

−y′

(x− x′)2 + y′2

]
(k) = πe−ikx

′
ey
′|k|, (6.19)

where y′ < 0. Using Eqs. (6.18) and (6.19) we obtain the following expression

for δ̂vζ(k), the Fourier transform of δvζ(x):

δ̂vζ(k) =
3V∞

2

{
−ζ̂(k) + |k|

∫ ∞
−∞
dx′
∫ 0

−∞
dyζ(x′, y + V∞t)e

−ikx′ey|k|
}

(6.20)

where ζ̂(k) is the Fourier transform of ζ(x, h(x)). δ̂vζ(k) has two contribu-

tions, a local nonconserved noise term proportional to ζ̂(k) whose form is
the same of the permeability noise appearing in Eq. (6.12) but with opposite
sign, and a nonlocal, long-ranged noise term Ω̂LR(k, t) defined as

Ω̂LR(k, t) =
3V∞

2
|k|
∫ ∞
−∞
dx′
∫ 0

−∞
dyζ(x′, y + V∞t)e

−ikx′ey|k|. (6.21)
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that contains the contribution of the noise in the fluid region below the
(mean) interface. This means that the evolution of the interface has a con-
tribution from the disorder in the bulk of the fluid and not just from the
disorder at the interface. Note that Ω̂LR(k, t) is effectively an annealed
(time-dependent) noise, and that it does not depend on h but only on its
mean value in the absence of disorder, that is h̄ = V∞t. The validity of this
approximation will be discussed below. The noise Ω̂LR(k, t) can be better
understood by computing the quantity 〈Ω̂LR(k, t)Ω̂LR(k′, t′)〉. It reads

〈Ω̂LR(k, t)Ω̂LR(k′, t′)〉 =

(
3V∞

2

)2

|k′k| ×∫∫ ∞
−∞
dx dx′

∫∫ 0

−∞
dy dy′e|k|y−ikxe|k

′|y′−ik′x′〈ζ(x, y + V∞t)ζ(x′, y′ + V∞t
′)〉. (6.22)

The quenched noise will typically be correlated on a microscopic scale a.
Then, for ka << 1 the noise will be effectively white, that is, with correlations
〈ζ(x, y)ζ(x′, y′)〉 = ∆ δ(x− x′)δ(y − y′) which yields

〈Ω̂LR(k, t)Ω̂LR(k′, t′)〉 = ∆

(
3V∞

2

)2

π|k|δ(k + k′)e−V∞|k||t−t
′|. (6.23)

From the above expression it results that the nonlocal contribution of the bulk
noise scales as |k|1/2 and introduces also memory effects in the form of power-
law time-correlations associated to the continuum of relaxation time scales
(V∞|k|)−1. Ω̂LR(k, t) is thus long-range correlated both in space (in the x-
axis direction) and time. Similar power-law correlations have been postulated
phenomenologically for different interfacial problems. To our knowledge this
is the first one to be explicitly derived from first principles.

The derivation of δ̂vζ above has been done for c = −1, that is, a viscous
fluid displacing an inviscid one, but it can also be done in the general case
of −1 ≤ c ≤ 0. The derivation is somewhat more involved, and can be found
in Appendix B.

Remarkably, replacing δ̂vζ(k) with its value from Eq. (6.20) into Eq. (6.12)

the additive nonconserved noise contribution ζ̂(k) reverses its sign. We thus
obtain that the capillary noise contribution has the same sign that the joint
contribution from permeability and conservation, contrary to naive expecta-
tion which could anticipate that capillarity and permeability of would oppose
each other. We will see that this is true only in the case of persistent noise
in next subsection.

Unlike local terms, the ‘annealed’ approximation5 we have applied above
5By ‘annealed’ approximation we mean the lowest order approximation in h − V∞t

applied to Eq. (6.16) to get Eq. (6.17).
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to derive δ̂vζ is justified as a leading order, because of its integral form. Note
that, while exchanging a quenched noise by a time-dependent one in the lo-
cal noise terms is a bad approximation in situations where the interface is
partially pinned and advances via avalanches, the case of the nonlocal noise
is different. As a matter of fact, the noise acting on a pinned region of the
interface may indeed change with time due to the motion of the interface
elsewhere, because this is coupled through the bulk. Since in the case of
forced fluid invasion the mean interface position is always advancing at con-
stant velocity, one should expect that there is always an effective annealed
noise acting on the interface even if this is partially pinned. Notice also that
if one is not willing to assume the annealed approximation, then an explicit
expression for the bulk noise cannot be found and one must rely on a full
numerical approach from an earlier stage.

Finally we complete the interface equation with the leading nonlinear
contributions obtained from the weakly nonlinear expansion. We include
only the quadratic terms which are the only ones that may be relevant in
the Renormalization Group sense (see discussion in Sec. 6.2.3). Our final
interface equation then reads, in Fourier space,

∂ĥk
∂t

= V∞

{
δ(k) + c|k|ĥk[1 + (`1k)2]− ζ̂(k)/2− `2|k|ζ̂(k)

}
+Ω̂LR(k, t)− V∞c2|k|

∫ ∞
−∞

dq[1− sgn(kq)]ĥk−qĥq|q|[1 + (`1q)
2] (6.24)

with

Ω̂LR(k, t) =
3V∞

2

1− c
2
|k|
∫ ∞
−∞
dx′
∫ 0

−∞
dyζ(x′, y + V∞t)e

−ikx′ey|k|

+
3V∞

2

1 + c

2
|k|
∫ ∞
−∞
dx′
∫ ∞

0

dyζ(x′, y + V∞t)e
−ikx′e−y|k|. (6.25)

The above interface equation is the central result of this part of the thesis
and will be studied in detail in some cases. The lengths `1 and `2 are defined
in terms of the capillary number Ca = 12(µ1 + µ2)V∞/σ as

`1 =
b0√
|c|Ca

and `2 =
b0 cos θ

Ca
. (6.26)

In usual experiments [REDG89, HFV91, HKzW92, SOHM02b] a wetting
fluid displaces air, then the contact angle θ satisfies cos θ ' 1, and viscos-
ity contrast is c = −1. In this case, the lengths `1 and `2 satisfy `2 > `1,
since Ca < 1 to ensure that the Hele-Shaw approximation and the Darcy
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law hold, but in the general case of arbitrary viscosities and wetting con-
ditions the ratio `2/`1 can take any value between zero and infinity. The
length scale `1 has already been discussed in the literature (see for instance
Dubé et al. [DRE+00]) as the one governing the crossover between capillary
and viscous forces. This length scale is already present in the deterministic
equation. On the contrary, the length scale `2 is newly found and entirely
related to fluctuation properties, controlling an additional crossover between
conserved and nonconserved noise.

There is a particular case, that of c = 0 which will become specially rele-
vant in the discussion of universality classes in sections below, and for which
the interface equation takes a remarkably simple form since both nonlinear-
ities and the deterministic viscous term drop out. In terms of a redefined
˜̀
1 = b0/

√
Ca this reads

∂ĥk
∂t

= V∞

[
δ(k)− |k|( ˜̀

1k)2ĥk −
ζ̂(k)

2
− `2|k|ζ̂(k)

]

+
3V∞

4
|k|
∫ ∞
−∞

dx′
∫ ∞
−∞

dyζ(x′, y + V∞t)e
−ikx′e−|yk|. (6.27)

6.2.2 The case of persistent noise

So far we have considered a gap with a disorder described by a general
quenched noise ζ(x, y), and in the derivation of the expression for δ̂vζ we
have implicitly used that ∂yζ(x, y) 6= 0 (see Eq. (6.14)). There is, however,
an important particular case for which the problem is particularly simple
both from theoretical and experimental points of view. We refer the case of
persistent (or columnar) noise, corresponding to the particular case for which
the disorder is translationally invariant in the propagation direction, namely
ζ = ζ(x). This has been studied experimentally by Soriano et al. [SRR+02].
We will see that, in this case, the bulk noise cancels out since ∂yζ(x) = 0

and therefore6 δ̂vζ = 0. However, in real experiments with persistent noise
as those by Soriano et al. [SRR+02] the disorder does not extend all the way
to infinity and important transient effects are expected from the memory
contained in the long-ranged noise derived in the previous section.

We consider a disorder that is nonzero only above a fixed position y =
H0 < 0, with the form

ζ(x, y) =

{
ζ(x) y ≥ H0

0 y < H0
(6.28)

6If we consider the next order in ∂xh then it is found δ̂vζ 6= 0.
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and then ∂yζ(x, y) reads

∂ζ(x, y)

∂y
= δ(y −H0)ζ(x). (6.29)

Using Eq. (6.29), δ̂vζ(x) satisfies (see Eq. (6.15)

∫ ∞
−∞
dx′

√
1 +

(
∂h(x′)

∂x′

)2

ln
{

(x− x′)2 + [h(x)− h(x′)]2
}
δvζ(x

′) =

−3

2
V∞

∫ ∞
−∞
dx′
∫ h(x′)

−∞
dy′ ln

{
(x− x′)2 + [h(x)− h(x′)]2

}
δ(y −H0)ζ(x′) (6.30)

and applying the same approximations of the general case, that is, with the
replacement h = V∞t wherever h appears additively, we get∫ ∞

−∞
dx′ ln(x− x′)2δvζ(x

′) =

−3

2
V∞

∫ ∞
−∞
dx′ ln

[
(x− x′)2 + (V∞t−H0)2

]
ζ(x′) (6.31)

where we have assumed h(x′) > H0. To obtain the Fourier transform of

δ̂vζ(x) we split the logarithm in the rhs of Eq. (6.31) into two terms:∫ ∞
−∞
dx′ ln(x− x′)2δvζ(x

′) =

−3

2
V∞

{∫ ∞
−∞
dx′ ln(x− x′)2ζ(x′) +

∫ ∞
−∞
dx′ ln

[
1 +

(V∞t−H0)2

(x− x′)2

]
ζ(x′)

}
(6.32)

and now it is straightforward to apply the Fourier transform. The transfor-
mation of Eq. (6.32) reads

− δ̂vζ(k)

|k|
+ 2(γ + ln 2π)δ(k)δ̂vζ(0) =

3

2
V∞

{
ζ̂(k)

|k|
+ 2(γ + ln 2π)δ(k)ζ̂(0)− ζ̂(k)

|k|
[
1− e−(V∞t−H0)|k|]} (6.33)

and δ̂vζ(k) is then

δ̂vζ(k) = −3

2
V∞ζ̂(k)e−(V∞t−H0)|k|. (6.34)
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The main difference with the general case of quenched noise ζ(x, y) is that for

long times (and k 6= 0) δ̂vn(k) vanishes and therefore there is no contribution
from the bulk to the interface dynamics for long times, at least to the lowest
order we have computed here. For k = 0 the bulk noise term is δ̂vn(0) =
−3

2
V∞ζ̂(0), the same value obtained in the general case with ζ = ζ(x, y).
Using the result of Eq. (6.34) the interfacial equation (with quadratic

nonlinearities in h) for columnar noise, as defined in Eq. (6.28), reads

dĥk
dt

= V∞δ(k)− V∞c|k|
[
1 + (`1k)2

]
ĥk

−V∞c2|k|
∫ ∞
−∞

dq[1− sgn(kq)]ĥk−qĥq|q|[1 + (`1q)
2]

−V∞ζ̂(k)`2|k| − V∞ζ̂(k)

[
1− 3

4
(1 + c)e−(V∞t−H0)|k|

]
(6.35)

where for k = 0 the rightmost term in brackets has to be replaced with
1/2, and the total nonconserved contribution is then −V∞ζ̂(k)/2. We have
introduced the viscosity contrast and assumed that the noise vanishes at
y → +∞ to obtain the above expressions.

6.2.3 Discussion of nonlinear terms

In the interfacial equations we have derived, Eqs. (6.24) and (6.35), we have
included only quadratic nonlinear contributions for the deterministic part of
the equation and linear contributions on the noise. Multiplicative noise terms
coupling the interface displacement and the noise have also been neglected
except for the strong nonlinearity which is inherent to the quenched noise
through the dependence ζ = ζ(x, h(x)). In this section we will elaborate
more on the justification of our handling of nonlinearities.

Let us first consider the nonlinear terms of the deterministic (zero noise)
part of the problem. The weakly nonlinear formalism of Hele-Shaw flows
developed in Ref. [ALCO01] provides the second and third order on h, but
we will consider the second order only. Then, the second order nonlinear
contribution Nh(x) to the interfacial equation from the deterministic terms
reads in real space

Nh(x) = c2V∞ (H {hx′H[f ]}+ H {hH[fx′′ ]}+ (hf)x) (6.36)

where f(x) = −hx + `2
1hxxx. Note that Nh(x) has both local7 and nonlocal

terms, in comparison to the linear order that has only nonlocal terms. The

7One of the (local) nonlinear terms is the familiar KPZ term [KPZ86].
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exact form of Nh(x), and in particular of the nonlocal terms is not at all
obvious a priori. From dimensional considerations it can be seen that terms
with two derivatives and terms with four derivatives times `2

1 appear, but
combinations of local terms fail to satisfy the required symmetries: a term
such as ∂x(h∂xh) has zero mean, as required by volume conservation, but
is not translation invariant: to satisfy this symmetry nonlocal terms are
necessary. This is easily verified computing the Fourier transform of Nh(x):

Nh(k) = −V∞c2|k|
∫ ∞
−∞

dq[1− sgn(kq)]ĥ(k − q)ĥ(q)|q|(1 + B̃q2). (6.37)

Nh(k) does not contain any coupling between the zero mode ĥ(0) and any
other mode, satisfying the translation invariance requirement, and Nh(0) = 0
as necessary to account for volume conservation. Cubic nonlinearities can
also be obtained but in no case may be relevant in the RG sense so we do
not include them for the purposes of studying scaling and universality of
interface growth.

The nonlinear terms associated to the noise can be separated in two
types. The nonlinear couplings of the noise with itself, and the crossed
couplings with the interface height h (multiplicative noise). In all cases the
nonlinear contributions from the noise can be neglected on the assumption of
sufficiently weak noise. However, some of such contributions can be derived
explicitly. The leading multiplicative noise term, of order ζh comes from the
permeability noise in Eq. (6.8) and reads

−cV∞ζ(x, h(x))H[
∂h(x′, t)

∂x′
− B̃ ∂

3h(x′, t)

∂3x′
](x). (6.38)

The other multiplicative noise term of order ζh comes from the noise in the
capillarity (Eq. (6.6)) and reads

c
`2 cos θ

πb0

H

{
1

π
P

∫ ∞
−∞

dx′
h(x′)− h(x)

(x− x′)2

∂ζ(x′, h)

∂x′
− ∂h

∂x
H

[
∂ζ(x′, h)

∂x′

]}
. (6.39)

Again, this is a nonlocal term, like the linear capillary term.
Nonlinear noise terms of arbitrary order ζn coming from capillary noise

can all be determined exactly from the expansion of the denominator in
Eq. (6.6). However, other nonlinear noise contributions cannot be derived
explicitly, most remarkably those from the bulk noise. The second order
contribution from bulk noise can be expressed in closed form, but in terms
of an integral equation. The complete description of quadratic nonlinearities
containing the noise could in principle be included in the formalism but is
too involved in practice.

The RG relevance of the nonlinear terms will be discussed in detail in the
following chapter.
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6.2.4 Discussion of the physical content

In the derivation of the interface equation we have seen that a unique source of
noise, the spatial gap variations give rise to different types of noise terms, all
of them related to the original noise source and therefore mutually correlated.
These different noise terms are associated to different physical effects of the
gap variation. The derivation of the explicit form these physical effects take in
the interface equation and the knowledge of all parameters may thus provide
useful insights in the physics of the problem and hopefully help clarify the
different regimes that may be partially responsible for the existing confusion
and controversy in the literature.

From a physical point of view, one can foresee at least two types of ef-
fects, namely those related to capillarity and those related to the viscous
flow. The former are the simplest ones to account for, and are the only ones
considered for instance in Dubé et al. [DRE+99, DRE+00] or Ganesan and
Brener [GB98], although they both formulated them from a phenomenologi-
cal perspective. Ref. [DRE+00] does explicitly neglect noise in the permeabil-
ity, which is justified for the case of asymptotically small imbibition. However
they recognized their importance for the general case. A phenomenologi-
cal attempt to model permeability noise was also presented by Hernandez-
Machado et al. [HMSL+01] but did not include all nonlocal effects associated
to the viscous flow. An important point to emphasize in the context of
the above references is the importance of the interplay between permeability
variations and mass conservation. As emphasized above, the consideration of
3d conservation has crucial consequences and rules out for instance the con-
served phase-field formulation such as those of Refs. [DRE+00, HMSL+01].
In addition, phase-field formulations based on conserved order parameter
Ginzburg-Landau equations are only valid for the high viscosity contrast
limit. However, it has been recognized that viscosity contrast and wetting
conditions have an important effect on the resulting scaling and morphologies
of growing interfaces [HHZ95].

Let us focus on the more subtle physics of the interplay between per-
meability and conservation. Consider a capillary tube of radius r at fixed
pressure drop between the two extremes. At constant r the velocity of the
fluid is v, but a variation of the radius implies a change in the velocity of
the same sign, a relative velocity fluctuation scales as δv/v ∼ 2δr/r. This
occurs because permeability is increased (resp. decreased) when the radius is
increased (decreased) since larger radius implies less resistance to flow. Now
consider the same capillary tube at fixed flow injection (constant mass per
unit time of an incompressible fluid): in this case a variation of the radius is
accompanied by a variation of the velocity of opposite sign! More precisely,
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δv/v ∼ −2δr/r, that is, mass conservation slows down (resp. speeds up)
the flow if there is more (less) volume available. In this simple example one
sees that variation of permeability and conservation have opposite effects. Of
course none of the boundary conditions used in the argument will be locally
satisfied in our system. The effective conditions acting at a given region will
require the solution of the full nonlocal problem for the pressure and will
in any case depend on the spatial scale. For low k (long length scales) one
expects that conservation becomes dominant, since we are dealing with the
case of overall constant injection rate, while for large k the detailed consid-
eration of the full nonlocal problem is necessary. In fact, if the fluid enters
a narrow region, the possibility of permeability to overcome the speeding up
due to conservation will depend on the ability of the flow to redirect to the
sides, and to the degree of persistence of the flow entering the region. The
two effects require the knowledge of the flow field in the neighborhood which
in turns depends on the actual spatial dependence of the gap throughout a
large region. The combined effect is what is exactly captured by our explicit
derivation of permeability and bulk noise, which contain both local and non-
local contributions. Direct numerical computation of both terms in the bulk
noise shows that the local part is typically larger, but it is unclear to what
extent neglecting the long range tern may miss important details of local
interface pinning which may eventually affect the scaling. Furthermore, for
kλ ∼ 1 where λ is the noise correlation length, both local and nonlocal parts
of the bulk noise are comparable but then the annealing approximation may
not be justified, and a more careful analysis of bulk noise based in Eq. (6.16)
may be necessary. In Fig. 6.2 we plot |Ω̂LR(k, t0)| and |ζ̂(k)| computed for a
particular realization of noise, for a system of size L = 128 and correlation
length of the noise λ = 0.0625. We observe that ζ̂ overcomes Ω̂LR at small
k but Ω̂LR has a larger amplitude for large k. In addition, |Ω̂(k, t0)| grows
with

√
k, as predicted from Eq. (6.23).

Capillary effects are much simpler. As stated before, if the cell becomes
narrower, the pressure drop at the meniscus will increase pulling the interface
ahead (in the case of a wetting fluid). Similarly, a wider gap will tend to slow
down the interface. The effect is thus naively opposite to that of permeability.
This turns to be the case for instance for persistent noise, when the bulk noise
contributions vanishes. However, in the general case we have seen that the
local term in the bulk noise has opposite sign to that of the permeability noise
and it actually reverses the sign of the total nonconserved noise contribution,
which then has the same sign as capillary (conserved) noise.

All the combined local, nonlocal, conserved and nonconserved noise con-
tributions are properly taken into account in our central result Eq. (6.24).
First, it preserves fluid mass in three dimensions (not in two!): at k = 0
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Figure 6.2: |Ω̂LR(k, t0)| (black line) and |ζ̂(k)| (red line) for a particular
realization of noise, with system size L = 128 and correlation length of the
noise λ = 0.0625. The straight line has a slope 1/2.

the only noise term is −V∞ζ̂(k)/2, with a sign opposite to gap variation,
as discussed above. This term (at k = 0) can be easily obtained inde-
pendently from our derivation using the conservation of the fluid, imposing
ζ(x, y → −∞) = 0 and keeping only linear terms. The capillary noise term
proportional to −|k|ζ̂(k) has, as expected, the same sign than the noncon-
served noise term just discussed. The nontrivial interplay between perme-
ability and conservation is properly quantified by the bulk noise terms. Its
interpretation at small length scales is indeed not so obvious. The integral
term Ω̂LR scales as |k|1/2, and then it is more relevant for large k or small
length scales, as expected for the permeability effects, and also involves the
noise in a neighboring region. However, a word of caution is in order about
this point: Ω̂LR gets relevant at large k, but it is precisely at small length
scales where the annealed approximation used to obtain it may fail. Al-
though we do not expect this to have significant implication for the use of
our equation in the study of scaling, a definitive check of this point can only
be carried out from direct numerical computation of the problem at a stage
prior to the annealed assumption. As a final conclusion, let us remark that
from the consideration above, the long ranged noise will be typically sub-
dominant with respect to the local noises if the original quenched noise is
short-ranged (effectively white). In these cases the nonlocal noise will be
negligible to study the asymptotic low-k scaling. In other cases, such as for
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persistent noise, the local and nonlocal parts of the bulk noise are exactly
of the same order. They cancel out for an infinite system, leaving capillary
and permeability noises to oppose each other, but in general the nonlocal
term generates explicit transients in the equation. In general, even if the
long-ranged noise may not contribute to the asymptotic scaling, it is crucial
in introducing transients and consequently to help interpreting experiments.
In summary, the nonlocal noise must be taken into account as a fundamental
part of the (linear) response of the system to gap perturbations, but a part
that will typically not affect the scaling properties.

In the next chapter we will address the physics of the interface equation
in what respects to scaling and universality classes.
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Chapter 7

Application to kinetic
roughening in porous media

In this chapter we study the scaling properties of the interface equation for
a Hele-Shaw cell with random gap derived in previous chapter. We obtain
analytically the scaling exponents for two types of noise: dynamical and per-
sistent. The interface equation is simulated with quenched noise in different
regimes, and its scaling behavior at different ranges of parameters is obtained.
The results obtained are discussed and compared with experimental results.

7.1 Scaling concepts

A rough interface is described from an statistical point of view in terms of
its scaling properties [BS95]. The relevant magnitude in order to study the
scaling behavior of a rough interface is its width or roughness W (t), which is
defined as the root mean square (rms) value of the deviations of the interfacial
height h(x) with respect the mean value h. More precisely,

W (t) = 〈[h(x, t)− h]2〉1/2 (7.1)

where the overline denotes average over all x in a system of size L and the
brackets denote the average over different realizations. In a typical experi-
ment the interface width grows as

W (t) ∼ tβ (7.2)

at short times, t � t×, but this power-law growth does not continue indef-
initely, but it halts and is followed by a saturation regime where W (t) has
a constant value Wsat known as saturation width. The exponent β is known

169
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as growth exponent. The crossover between the two regimes takes place at a
crossover time t×. The saturation width Wsat increases with the system size
L, and the dependence also follows a power law,

Wsat(L) ∼ Lα (7.3)

for t � t×, where the exponent α is the roughness exponent. In addition,
the crossover time t× increases with L according to t× ∼ Lz, being z the
dynamic exponent.

Family and Vicsek [FV85] observed that the three scaling exponents α,
β and z are not independent, and obtained that the interface width satisfies
the scaling relation

W (L, t) = Lαf

(
t

Lz

)
, (7.4)

where the scaling function f(u) reads

f(u) ∼
{
uβ u� 1
const u� 1.

(7.5)

The growth regime takes place for u � 1, and the saturation regime for
u � 1. To show that the three scaling exponents are not independent note
that the crossover point (t×,W (t×)) obeys W (t×) ∼ tβ× approaching from
small u, and W (t×) ∼ Lα approaching from large u, and together with the
scaling relation t× ∼ Lz implies

z =
α

β
. (7.6)

This scaling law is valid for any growth process that obeys the Family-Vicsek
scaling hypothesis given by the scaling relation Eq. (7.4).

A key concept to describe kinetic roughening of growing interfaces is the
correlation length ξ, the characteristic distance over which the points of the
interface are correlated. The existence of such correlation length means that
the heights are not independent, but ‘know’ of each other. At the beginning
of the growth, the points of the interface are uncorrelated, but during the
growth ξ increases with time until it reaches its maximum possible value, the
system size L. Then, at saturation, the whole interface is correlated. The
correlation length satisfies

ξ ∼
{
t1/z t� t×
L t� t×.

(7.7)
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A useful quantity to determine the scaling exponents of a growing interface
and that provides more information on the scaling is the structure factor
S(k, t), defined as [Kru97]

S(k, t) = 〈hk(t)h−k(t)〉, (7.8)

where hk(t) is the k-th mode of the Fourier transform of h(x, t). S(k, t) is
related to the interface width through the simple relation [Kru97]

W 2(t) =
∑
k 6=0

S(k, t), (7.9)

and the Family-Vicsek scaling hypothesis Eq. (7.4) translates to the structure
factor to yield

S(k, t) = k−1−2αg(t/|k|−z) (7.10)

where the scaling function g(u) satisfies

g(u) ∼
{
u(2α+1)/z u� 1
const u� 1.

(7.11)

The structure factor is useful to determine the value of the roughness expo-
nent α with a fixed system size L.

In addition, one may calculate other quantities related to correlations
over a distance l as the height-height correlation function G(l, t) defined as

G(l, t) = 〈[h(x+ l, t)− h(x, t)]2〉 (7.12)

or the local width w(l, t) of the interface, which is defined as the root mean
square (rms) value of the deviations of the interfacial height h(x) with respect
the mean value hl over a length scale l. More explicitly,

w(l, t) = 〈[h(x, t)− hl]2l〉
1/2 (7.13)

where l stands for averaging over all segments of length l that may be
defined in the x (horizontal) direction, and the brackets denote the average
over different realizations. It obeys a power law behavior at long times,

w(l) ∼ lαloc (7.14)

where αloc is the local roughness exponent, that coincides with the rough-
ness exponent α within the Family-Vicsek scaling hypothesis, but may differ
otherwise, in the so-called anomalous roughening scenarios [RLR00]. The
scaling of both quantities is related through w(l, t) ∼

√
G(l, t).
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7.2 Scaling properties

The presence of the two lengths `1 and `2 in our problem has important
implications regarding the scaling properties of Eq. (6.24). In experiments
one usually finds Ca� 1 and `1 � `2, so we will focus the discussion on this
case, but in general, with arbitrary viscosity contrast and wetting conditions
the opposite situation could also be obtained. From the linear equation
one can argue the existence of different scaling regimes (the consideration
of nonlinearities may further complicate the analysis and will be discussed
later). During the growth regime, depending on the value of the correlation
length ξ(t) the terms of Eq. (6.24) dominant for the scaling of the interface
will be different. For short times such that ξ � `1 the dominant terms of
Eq. (6.24) are the two capillary terms: the deterministic one proportional to
|k|3ĥk and the noisy one proportional to |k|ζ̂(k). In this case the interface is
in the capillary regime, and the exponent β observed for these short times
would be the corresponding to this regime. As ζ(t) increases with time, a
different situation will be encountered where `1 � ξ � `2 and the dominant
terms are the deterministic one proportional to |k|ĥk (viscous term) and the
disorder term |k|ζ̂(k). Finally, for long times `2 � ξ and the dominant terms
are the one proportional to |k|ĥk and the additive noise term ζ̂(k). Thus, the
interface equation (6.24) can exhibit up to three different scaling regimes with
the corresponding crossovers during the growth stage, or in other words, up
to three different values of β could be observed. However, these three regimes
will be actually observed in an experiment or simulation of Eq. (6.24) only
if the spatial scales are clearly separated and well resolved: `1 � `2 � L.
Otherwise only one or two of the regimes might be observed, or a combination
of them. In most existing experiments one usually has `2 � L and `1 ≈ L,
and this implies that only the first capillary regime would be observed. At
saturation the situation is equivalent: the scaling for instance of the structure
factor S(k, t) would show different behaviors at different values of k, although
this is difficult to observe experimentally for the reasons cited above.

The integral term Ω̂LR cannot be easily compared to the other noise terms
because of its integral form. It can be shown that |Ω̂LR| ∼ |λk|1/2, where λ
is the correlation length of the noise, and then it follows that Ω̂LR will be
the dominant one for the scaling for |k| � λ/`2

2 and |k| � λ−1, and these
relations imply λ � `2 for the term Ω̂LR to be felt in the scaling. We recall
that `2 = cos θ b0Ca−1, so in normal experimental situations with cos θ ≈ 1
we find `2 ≈ b0Ca−1. Then, if b0 and λ are of similar magnitude and Ca� 1
(as in usual experiments) we find λ� `2: the long range noise Ω̂LR will not
modify the asymptotic scaling. But, if the two fluids wet equally well, then
`2 ≈ 0 and Ω̂LR will be crucial for small wave numbers satisfying λ|k| � 1.
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7.2.1 Exact results

The scaling of the interface equation Eq. (6.24) can be determined exactly
in the particular cases of persistent and annealed noise, if the quadratic
nonlinearities are neglected (see discussion in next section). For persistent
noise the bulk contribution can be integrated, making the problem far more
simpler, and for annealed noise ζ(x, t) the integral term does not make sense,
so we must omit it. We will study the different regimes separately for sake
of clarity, but the same analysis can be done with the whole equation. The
results of this section will be useful to interpret the results obtained in next
section, devoted the numerical simulation of the interfacial equation with
quenched noise.

Let us first focus on the viscous regime, that satisfies `2|k| � 1. Dropping
the terms of Eq. (6.24) that are subdominant in this regime the equation to
solve for persistent noise is

dĥk
dt

= −V∞
[
|k|ĥk +

1

2
ζ̂(k)

]
, (7.15)

where ζ̂(k) has no implicit dependence on h (noise in real space is ζ = ζ(x)).
Eq. (7.15) can be easily solved, and after some algebra we find

W 2(t) =
∆

8

∫ π/a

2π/L

dk
1− 2e−V∞kt + e−2V∞kt

k2
(7.16)

where a is a microscopic cutoff. The integral can be evaluated to yield

W 2(t) =
∆

8

{
L

2π

[
1− e−

2πV∞t
L

]
− a

π

[
1− e−

πV∞t
a

]
+2V∞t

∫ π/a

2π/L

dk

k
(e−V∞kt − e−2V∞kt)

}
. (7.17)

For very short times, 2πV∞
L
t � 1 and πV∞

a
t � 1, the width of the interface

grows as W 2(t) ∼ t2 and we identify β = 1. This first time regime is
extremely short since its duration is directly related to the cutoff a. A second
time regime is given by 2π

L
t � 1 but π

a
t � 1, for which the width grows as

W 2(t) ∼ t and therefore in this regime β = 1/2. The power spectrum S(k, t)
is

S(k, t) =
∆

4L

(1− e−|k|t)2

k2
(7.18)

and comparing Eq. (7.18) to the general scaling form for the power spectrum,

S(k, t) ∼ |k|−(1+2α)g(|k|zt), (7.19)
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the scaling exponents in the persistent noise case are α = 1/2 and z = 1.
The time dependent term Eq. (6.34) due to the bulk noise can be included

in the analysis, and we have also solved Eq. (7.15) adding the bulk noise term
Eq. (6.34). We have obtained that the introduction of this term does not
alter the scaling properties of the interface, and the exponents are the same
obtained above for Eq. (7.15).

The scaling of Eq. (7.15) with a dynamical noise ζ(x, t) (that translates to
ζ̂(k, t) in Fourier space) can also be computed exactly [KM91]. The scaling
behavior is in this case W 2(t) ∼ ln t and W 2

sat(L) ∼ lnL, so the exponents
are α = 0 and β = 0.

In the capillary regime `1|k| � 1, the interface is described by the equa-
tion

dĥk
dt

= −V∞
[
|k|(`1k)2ĥk + `2|k|ζ̂(k)

]
(7.20)

that can be solved both for annealed and persistent noise. The integration
of Eq. (7.20) is straightforward, and the structure factor S(k, t) is easily
computed to yield

S(k, t) =
(1− e−V∞`21|k|3t)2

`4
1|k|4

∆

L
(7.21)

for quenched noise. Comparing Eq. (7.21) and the general expression for the
scaling of S(k, t) in Eq. (7.10) results in a roughness exponent α = 3/2 and
a growth exponent1 β = 1/2. In the case of annealed white noise we find
α = 0 and β = 0.

In the intermediate regime `1|k| � 1� `2|k| the equation is

dĥk
dt

= −V∞
[
|k|ĥk + `2|k|ζ̂(k)

]
, (7.22)

and the structure factor for quenched noise obtained from its integration is

S(k, t) = `2
2

(
1− eV∞|k|t

)2 ∆

L
. (7.23)

From Eq. (7.23) the exponents are α = −1/2 and β = −1/2, implying that
the interface is not rough.

7.2.2 RG-Relevance and the zero-contrast universality
class

In the section above the quadratic nonlinearities Eq. (6.37) have been ne-
glected, and will be also neglected in the following section devoted to the

1For very short times,
(
π
a

)3
V∞`2t ∼ 1, the width grows as W (t) ∼ t
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scaling properties of the interface equation with quenched noise. The rele-
vance or nonrelevance of nonlinearities in the Renormalization Group (RG)
sense can be naively studied using power counting arguments in the case of
time dependent or persistent noise. Thus, we have studied the relevance of
the quadratic terms to the scaling of the linear equations Eqs. (7.15), (7.20),
and (7.22). Power counting arguments show that quadratic terms are irrele-
vant to the scaling of the interface in both the last (viscous dominated) regime
characterized by `2|k| � 1 and in the intermediate regime characterized by
`1|k| � 1� `2|k|, but are relevant in the capillary regime `1|k| � 1. There-
fore, the exponents obtained in the capillary regime α = 3/2 and β = 1/2
(persistent noise) and α = 0 and β = 0 (annealed noise) could indeed be
modified by the inclusion of nonlinearities.

Power counting arguments cannot be taken too seriously with quenched
noise, but if one naively applies them to the (linear) interface equation in
each of the three regimes, one finds results equivalent to those obtained
for persistent or annealed noise. That is, nonlinearities are irrelevant in
the viscous dominated regime and in the intermediate one, but relevant in
the capillary regime. This result from power counting for quenched noise
is reinforced by the results for persistent and annealed noise, taking into
account that the latter types of noise can be considered limiting cases of
quenched noise.

In next section we numerically study the scaling of the interface equation
with quenched noise keeping only linear terms, in the three regimes. It is
fully justified to neglect quadratic nonlinearities in the viscous and interme-
diate regimes, but to drop nonlinearities in the capillary regime needs to be
justified. We have simulated the equation in the capillary regime with and
without the quadratic terms, and have not observed a significative change in
the scaling exponents. Note that, contrary to what is usual in phenomeno-
logical equations, we know all bare parameters, including those of the non-
linearities so we can really weight the importance of nonlinearities during
realistic simulation times. In addition, the results of Ref. [DRE+00] support
the fact that nonlinearities do not affect the scaling, because Dubé et al.
simulated the full problem (in the capillary regime) and found exponents
compatible with ours, when a comparison is possible. More details will be
given in next section. In any case, the above considerations do not at all rule
out the possibility that the effect of nonlinearities does modify the exponents
if much longer times are computed (as is well established for the KPZ equa-
tion when the coefficient of the nonlinear term is taken not too large [BC94]).
In our case, however, it must be taken into account that the problem will
eventually crossover to a different regime so most likely the corresponding
nonlinear capillary fixed point will not be observed in real experiments. The
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pursue of this nonlinear fixed point remains as a rather academic question.

There is a particular case where the nonlinear terms are strictly absent,
that is, for zero viscosity contrast (c = 0). An examination of the quadratic
term Eq. (6.37) shows that it vanishes for c = 0. Then, to neglect them
is not approximate but exact in this case. In addition, the viscous linear
term proportional to |k| also vanishes, and the only terms that remain in
the equation are both capillary terms (deterministic and random) and the
nonconserved and long range noise terms, that is Eq. (6.27). Thus, from the
three different regimes present for arbitrary c only the capillary regime sur-
vives for c = 0, and a new regime appears where the deterministic capillary
term and the nonconserved (viscous) noise term are dominant. In addition,
the capillary regime extends longer than for c 6= 0 and is exact, in the sense
that both the nonlinearities and the viscous term are exactly zero. We can
talk then of a zero-viscosity-contrast universality class in the problem, and
this is precisely the class that seems to govern the scaling in the capillary
regime because nonlinearities apparently do not modify the scaling. As ar-
gued in the previous chapter, the long-range noise is not expected to affect
the scaling for originally short-range gap variations. Accordingly, we define
the zero-contrast universality class by the scaling of the equation

∂ĥk
∂t

= V∞

[
δ(k)− |k|( ˜̀

1k)2ĥk − `2|k|ζ̂(k)
]

(7.24)

which we define with conserved noise, dominant in the early stages of interface
growth. A real system with c = 0 would eventually undergo a crossover to
permeability (nonconserved) noise not described by the equation above.

Typical experiments usually take place (as will be discussed later) in
the capillary regime, and this makes the zero-contrast universality class the
relevant one also from an experimental point of view. Note that this fixed
point is a saddle point in the RG flow, since any (arbitrarily small) finite c
will flow towards c = 1. We thus find that, in the capillary regime, while
the deterministic viscous term c|k| is negligible, the system is attracted to
the zero-contrast fixed point, and then, as long as c 6= 0, it crosses over to a
different regime.

In the above discussion we have not addressed the possibility that the
inherent nonlinearity that is present through the quenched (multiplicative)
character of the noise may generate, under the renormalization flow, new
terms in the renormalized interface equation. A detailed study of this ques-
tion is deferred to future work. With respect to this point, however, a similar
comment to that made for the neglect of nonlinearities may be invoked, in
the sense that the generation of the asymptotic regime where these terms
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will start playing a role may well be beyond the actual validity of the ana-
lyzed equation, due to the crossover to a different regime of the full problem.
In any case, it is worth remarking that, even if the RG flow is capable to
generate new terms, such as a local one of the usual diffusive type ∂2

xh, and
despite the fact that the KPZ nonlinearity, (∂xh)2 is present in our equation,
we cannot expect the scaling of the Quenched KPZ equation, because of the
presence of the deterministic viscous term c|k| and/or the presence of a con-
served noise. For c = 0 the deterministic viscous term is indeed absent but so
are the quadratic nonlinearities, so the only case in which QKPZ scaling may
be observable is for c = 0 and assuming that both linear and nonlinear local
terms were generated. This would then occur after the crossover from cap-
illary (conserved) noise to permeability (nonconserved) noise. Generically,
however, in our problem one should not expect the scaling of the QKPZ
equation.

7.2.3 Numerical results

Now we would like to obtain the scaling properties of the linearized equation,
Eq. (6.24) with quenched noise ζ(x, h) in the three relevant regimes, by means
of numerical simulation of the equation. To simplify the calculations the
numerical integration of Eq. (6.24) in each regime will be done separately,
that is, including in the computation only the dominant terms, instead of
choosing the parameters of the system to exhibit the three regimes.

Capillary regime

The scaling behavior of the linearized interface Eq. (6.24) in the capillary or
initial regime characterized by `1|k| � 1 has been studied numerically. In this
regime the scaling of the interface is given by the scaling of Eq. (7.20), with
ζ̂(k) = F [ζ(x, h)], that is, the term |k|ĥk, the nonconserved noise term and
the integral noise term originally present in Eq. (6.24) have been neglected
since they do not affect the scaling. Eq. (7.20) has been simulated in a variety
of systems sizes ranging from L = 32 to L = 1024, using a grid spacing in the
x direction ∆x = 32−1 = 0.03125. The noise values are uniformly distributed
between the values −0.5 and 0.5, with an average value ζ0 = 0. The unit cell
of the noise is a square of size twice the grid, (2∆x)× (2∆x). The time step
has been chosen small enough to ensure stability and convergence.

The values of the characteristic lengths have been chosen with the criteria
`1 � `2 and `� ∆x, and various values have been used yielding slightly dif-
ferent behaviors. An example of a roughened interface is depicted in Fig. 7.1.
From the plot it can be seen that the interface does not advance simultane-
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Figure 7.1: Configurations of a rising interface at equal time intervals ∆t =
0.8, with `1 = 50 and `2 = 3000. Dotted and solid lines alternate for better
visualization of the advancing interface.
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Figure 7.2: Width W 2 of the interface as a function of time, for system sizes
L = 32 (lowest line), 64 (next line), 128 (dashed line), 256 (solid line), 512
(dashed line) and 1024 (dotted line). The straight line is a fit with a slope
corresponding to β = 0.68. Note that the L = 512 and L = 1024 have not
reached the saturation regime at the final time shown in the plot.
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Figure 7.3: Structure factor for a system with L = 256. The data are for
times t = 0.5 (lower curve) to t = 12.0, and the time interval is ∆t = 0.5.
The straight line with slope −3.3 (α = 1.2) is a fit, and the other straight
line has slope −4 (α = 3/2).

ously in all its extent, but a large portion of it is pinned a fraction of the
time while other portions advance. Note that the interface as a whole cannot
get pinned because the flow rate is fixed, and in the regime we are studying
the zero mode increases at a constant rate. The interface is quite smooth at
small length scales but rough at large ones. This can be easily interpreted
looking at Eq. (7.20): for small length scales (large values of k) the term |k|3
dominates and smoothes the interface, while for small k or large length scales
is the noisy |k| term the dominant one and the interface gets roughened.

The width W of the interface is plotted versus time in Fig. 7.2 for various
system sizes L, `1 = 50 and `2 = 3000. At very short times a transient
that does not exhibit a power law behavior is observed. Later, a power low
behavior W (t) ' tβ becomes apparent, with an observed value of the growth
exponent β = 0.68± 0.01. In the plot we also observe the saturation of the
width for the three smaller values of the system size, but the growth has not
saturated yet at the final time of the simulation for other values of L. The
structure factor has also been computed at various times, and in Fig. 7.3
S(k, t) for L = 128 is shown for `1 = 50 and `2 = 3000. First of all, it is
seen that, for very small wave numbers, saturation is not reached at the end
of the simulation, and it is approached very slowly. Two slightly different
scaling regimes can be distinguished in the plot, one at large k and another at
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Figure 7.4: Correlation function G(l, t) vs. l, for a system with L = 256. The
data are for times t = 0.5 (lower curve) to t = 12.0, and the time interval is
∆t = 0.5 for the eight first curves and ∆t = 2.0 for the rest. The straight
line has slope −2, corresponding to αloc = 1.

small k. In the small k regime we have fitted a power law S(k, t) ∼ k−3.4±0.1,
corresponding to α = 1.2 ± 0.05. This value is compatible with the value
reported by Dubé et al. [DRE+00], α ' 1.25. The problem they study is
slightly different since they impose constant pressure instead of constant flow
rate, but for long times their linearized equation (Eq. (11) in their paper) is
basically the same than Eq. (7.20). In their work Dubé et al. found α ' 1.25
computing not the linearized equation but a phase-field model that contained
all the nonlinear contributions to the deterministic terms, and therefore this
is a clear indication that the deterministic nonlinearities Eq. (6.37) do not
affect the scaling, at least for the times we have simulated. For short length
scales the observed scaling is very close to α = 3/2, the value obtained for
Eq. (7.20) with persistent noise. This value is not a surprise, since short
segments of the interface span also small heights, thus effectively ‘feeling’
a persistent noise most of the time. The height-height correlations of the
interface have been also studied, and in Fig. 7.4 G(l, t) is plotted for various
times and L = 128. Since the obtained value of the roughness exponent is
α > 1 corresponding to a superrough interface, we expect G(l, t) to obey a
power law G(l, t) ∼ l2αloc for small l, with αloc = 1. This is precisely the
behavior observed in Fig. 7.4, confirming the theoretically predicted scaling.
Dubé et al. [DRE+00] observed a slightly smaller value, αloc ' 0.9, that
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Figure 7.5: Structure factor for a system with L = 128. The data are for
times t = 2 (lower curve) to t = 50, and the time interval is ∆t = 2. The
straight line with slope −3.3 (α = 1.2) is a fit, and the other straight line
has slope −4 (α = 3/2). The characteristic lengths are `1 = 250

√
2/3 and

`2 = 50000/3, with V∞ = 0.18.

they attributed to finite size effects. The value of the growth exponent β we
have found cannot be compared with the value obtained in Ref. [DRE+00]
because their model only reduces to Eq. (7.20) for large time, beyond the
growth regime.

The results presented so far have been obtained using the values `1 = 50,
`2 = 3000 and V∞ = 1, yielding Ca = 3600−1 = 2.78 × 10−4 (and b0 = 5/6).
Experiments are usually done with varying values of Ca and b0, and the
method used to change Ca is a change in the injection velocity V∞ with the
remaining physical magnitudes unchanged [SOHM02b]. Therefore, we have
repeated the simulations presented above with different injection velocities.
In Fig. 7.5 the structure factor is plotted for a system with L = 128 and
V∞ = 0.18. The capillary number is then Ca = 5 × 10−5 with the lengths
`1 and `2 modified accordingly. The scaling behavior observed in Fig. 7.5 is
basically the same found with V∞ = 1 (see Fig. 7.3), with the only difference
being that the region where α = 1.2 holds extends to lower values of k.

Larger injection velocities have also been simulated. Fig. 7.6 shows S(k, t)
obtained with V∞ = 36, resulting in Ca = 10−2, `1 = 25/3 = 8.33 and
`2 = 250/3 = 83.3. In this case the scaling at small wave numbers is very
close to α = 0, while the scaling α ' 1.35 at intermediate wave numbers
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Figure 7.6: Structure factor for a system with L = 128. The data are for
times t = 0.2 (lower curve) to t = 5.0, and the time interval is ∆t = 0.2.
The straight line with slope −3.7 (α = 1.35) is a fit, and the other two lines
have slopes −1 (α = 0) and −4 (α = 3/2). The characteristic lengths are
`1 = 25/3 and `2 = 250/3, with V∞ = 36.

is slightly above the value α ' 1.2 obtained for lower injection velocities.
To interpret the change of scaling behavior that accompanies the change
of the injection velocity we recall the results obtained in Sec. 7.2.1: in the
capillary regime (described by Eq. (7.20)) the roughness exponent obtained
for annealed noise is α = 0, and for persistent noise it is α = 3/2. We have
discussed above the scaling of the interface at large k as a manifestation
of the persistent nature of noise at small length scales, but we have just
observed that a change in the injection velocity implies also a change in the
scaling of large length scales: for large V∞ the scaling of S(k, t) at small
k is the corresponding to annealed noise. Thus, at large length scales the
noise effectively ‘felt’ by the interface is not quenched but annealed. This
seems reasonable from a physical standpoint since at larger velocities the
interface tends to be less (locally) pinned and the advancing segments of
the interface are larger. Larger velocities also imply that the time a noise
‘pixel’ is occupied by the interface is smaller, and the time intervals the
interface spends in each noise ‘pixel’ are more similar. In other words, at
higher velocities the interface pushes harder, and the quenched character of
the noise is weaker.

Eq. (7.20) has also been simulated with parameters `1 and `2 chosen
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Figure 7.7: Structure factor for a system with L = 128. The data are for
times t = 0.4 (lower curve) to t = 14.8, and the time interval is ∆t = 0.4.
The straight line with slope −2.9 (α = 0.95) is a fit, and the other one has
slope −4 (α = 3/2). The characteristic lengths are `1 = 5×105 and `2 = 500,
with V∞ = 1.

to yield a different value of b0 than in the cases described above. More
precisely we have also simulated evolutions with b0 = `2

1/`2 = 1/2. With
these parameters the results we have obtained are similar to the ones obtained
with the previous set of parameters, except that in some cases the behavior
at small wave numbers is different from the ones described above. One case
illustrating this different behavior can be seen in Fig. 7.7, that shows S(k, t)
obtained using `1 = 5 × 105, `2 = 500 and V∞ = 1 (the capillary number
is Ca = 10−6). The exponent at small k is not very clear, in the sense that
it does not exhibit a distinct power law behavior. If we adjust a power law
to the small k area we find α ' 0.95, but this exponent is not very robust.
Simulating with different (smaller) values of the velocity we have found a
different value for α, but clearly below 1. More numerical work is necessary
to uncover this small k behavior, using larger system sizes, larger times and
more realizations.

Viscous regime

The long time or viscous regime is characterized by `2|k| � 1 (the correlation
length satisfies `2 � ξ), and in this case the dominant terms are the noncon-
served noise term and the deterministic |k| term. The equation to study is
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Figure 7.8: Configurations of a rising interface at equal time intervals ∆t = 1.

given by Eq. (7.15), where in this case ζ̂(k) is the Fourier transform of ζ(x, h).
We have numerically integrated Eq. (7.15) for various system sizes ranging
from L = 2 to L = 512, and two different quenched noise types, using two
different values of the grid spacing in the x direction, ∆x = 16−1 = 0.0625
and ∆x = 8−1 = 0.125. The disorder ζ(x, y) is an independently distributed
random variable in unit cells of size 2 × 2 of the grid spacing, with average
ζ0. Two different types of distribution have been used, Gaussian distribution
with standard deviation ∆ζ and uniform distribution in a finite interval of
half width ∆ζ.

A typical evolution of the interface is shown in Fig. 7.8, where qualitative
differences can be clearly seen with respect to the interfaces obtained in the
capillary regime (see Fig. 7.1). The interfaces look less rough at large scales
but much more rough at short length scales. The reasons for that are twofold:
first, the stabilizing effect of the deterministic terms is more important in the
capillary regime than in the viscous one, since in the former the deterministic
term is proportional to |k|3 and in the latter to |k|, making the short length
scales more rough. Second, in the capillary regime the stochastic term has
a larger amplitude than the deterministic term because l2 � l1, making the
interface more rough at large length scales. The intensity of the noise ζ is
similar in both plots, Fig. 7.1 and Fig. 7.8.

Figure 7.9 shows W 2(t) in a case with ζ0 = 0 and ∆ζ = 0.75, using a
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Figure 7.9: Width W 2 of the interface as a function of time, for system sizes
L = 2, 4, 8, 16, 32, 64, 128, 256, and 512, from bottom to top, and ∆ = 0.75.
(a) Log-linear plot, the straight line is a fit of W 2 = A + B ln t. (b) Log-log
plot, the straight line has a slope 2 (β = 1).

Gaussian distribution for the noise, for a wide range of system sizes L. The
observation of Fig. 7.9 shows the existence of two different growth regimes
before saturation. The first, short-time regime obeys a power law charac-
terized by β ' 1, while the second regime exhibits a logarithmic behavior,
W 2(t) ∼ ln t (β = 0). The structure factor S(k, t) for the same parame-
ters with L = 256 is shown in Fig. 7.10. Two different scalings apply for
the structure factor at long and short wave numbers. For small k the ob-
served α is α ' 0, while for large wave numbers α ' 1/2 is found. Finally,
Fig. 7.11 plots W 2

sat versus the system size L. From the figure it is seen that
W 2
sat ∼ lnL, consistent with α ' 0 obtained from the structure factor.

The scaling behavior observed in Figs. 7.9 and 7.10 can be interpreted
recalling the exact results obtained in Sec. 7.2.1 for persistent noise, and the
results of Krug [KM91] for annealed noise. Since in the numerical computa-
tion the quenched noise is realized on a square grid, a segment of the interface
with a vertical extent significantly smaller than the size of the noise box will
effectively ‘feel’ a persistent noise for a certain time. In particular, at t = 0
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Figure 7.10: Structure factor for a system with L = 256 and ∆ = 0.75. The
data are for times t = 2.0 (lower curve) to t = 150.0, and the time interval
is ∆t = 2 for the first 20 curves and ∆t = 10 for the rest. The straight lines
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Figure 7.11: Saturation width W 2
sat as a function of the system size L. The

straight line is a fit of W 2
sat = A + B lnL. The deviation of the last point

with respect the straight line is probably due to the poor statistics available
for that system size.
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the interface is flat and for a short time ∆tp the noise is effectively persistent
not only on short segments of the interface but in all its extent. Thus, the
roughening of the interface is governed by a persistent noise during a time
interval ∆tp that can be evaluated as ∆tp ' V∞d, where d is the lateral
size of the noise boxes, and since d is similar to the microscopic cutoff a the
exponent β observed for t < tp will be β = 1, corresponding to the very
short time regime for persistent noise. This value of β at very short time is
fully consistent with our numerical results, as can be seen in Fig. 7.9. On
the other hand, even at long times any short segment of the interface will be
subject to persistent noise, and we expect that for large wave numbers the
scaling behavior of persistent noise will manifest. This explains the observed
value of α ' 1/2 found for large wave numbers.

From Fig. 7.9 it is seen that the width of the interface grows with time
as W 2(t) ∼ ln t beyond the initial short time regime, and it has been shown
before that α = 0 for large length scales and W 2

sat ∼ lnL. This is precisely
the scaling behavior of annealed noise [KM91], and appears because the
quenched character of the noise is not sufficiently strong to manifest, in the
sense that different points of the interface have velocities not much different
from the average velocity, and the interface ‘feels’ an annealed noise with a
temporal correlation ∆t = O(d/V ) where V is the average velocity of the
interface. The quenched character of the noise can be enhanced increasing
its amplitude, but then the interface can become totally pinned when using
the simplified interface equation (the full problem does not allow complete
pinning because of constant overall injection rate). The possibility of a total
pinning of the interface is not allowed by the original model since we are
dealing with the constant flux rate boundary condition, but it appears in
the simulation of the linear equation because in its derivation the weak noise
condition has been assumed, and the nonlinear contribution that comes from
the bulk noise would account for mass conservation, preventing interface
pinning.

To overcome this problem the following strategy has been adopted: we
have increased the intensity of the noise but using an average value differ-
ent from zero. Pinning can be avoided using a noise with a positive mean,
〈ζ(x, y)〉 = ζ0, allowing the noise to reach values well above one2. Eq. (6.24)
has been numerically integrated with ζ0 = 4.1 and ∆ = 8.0 for various val-
ues of the system size L, and the results for the interface width are shown
in Figure 7.12. From the plot a growth exponent β = 0.36 ± 0.02 can be
derived. However, for the system sizes L used it can not be found a clear
roughness exponent α since it varies depending on the value of L, getting

2In the original model, ζ(x, y) > −1 to prevent negative values of the gap spacing b.
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Figure 7.12: Width W 2 of the interface as a function of time, for system sizes
L = 16, 32, 64, 128, 256, 512 and 1024, from bottom to top, ∆ = 8.0 and
ζ0 = 4.1. The straight line is a fit with a slope corresponding to β = 0.36.

smaller as L is increased, and presumably it would reach the value α = 0
for larger system sizes. Unfortunately, to check this conjecture is beyond our
computing capabilities.

Intermediate regime

The intermediate regime `1|k| � 1� `2|k| has also been numerically studied,
using Eq. (6.24) and neglecting the capillary term |k|3, the nonconserved noise
term and the integral noise term. It has been obtained that W (t) does not
have a power law behavior, and neither does Wsat(L). Thus, the interface
is not self-affine. This result could be anticipated because for both annealed
ζ(x, t) and persistent noise ζ(x) the interface is not rough.

7.3 Summary and comparison with experi-

ments

Our results with respect to the scaling behavior are summarized as follows.
In the capillary regime various scalings coexist: at small length scales (large
wave-numbers) the observed exponent is α ' 1.5, that corresponds to the
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scaling of Eq. (7.20) with columnar noise. At intermediate and large length
scales the observed roughness exponent is in the range α ' 1.2− 1.3 and in
some cases a scaling behavior compatible with α = 0 also appears at large
length scales, in particular at large injection velocities (and large Ca). The
exponent α = 0 corresponds to the scaling of Eq. (7.20) with dynamical
noise. At small Ca (around 10−6 − 10−7) we also observe a different scaling
for small k, but the power law behavior is not very strong. However, power
law fits yield exponents below 1 and clearly above 1/2.

In the viscous regime described by Eq. (7.15) the interface is logarithmi-
cally rough, with α = β = 0. At short length scales the scaling α ' 0.5
corresponding to Eq. (7.15) with columnar noise appears. If the noise inten-
sity is increased to values beyond the intensity where pinning appears, the
scaling behavior changes, and an exponent β ' 0.36 is observed, but in this
case the roughness exponent is not clear. Finally, in the intermediate regime
we have found that the interface is not rough.

The scaling behavior of the interface in forced fluid invasion of a Hele-
Shaw cell with random gap spacing has been experimentally studied by So-
riano and co-workers [SRR+02, SOHM02b, SOHM02a]. In the experimental
setup used by these authors the gap can take two values, and the transition
from one to the other is sharp. Then, the condition |∇b| � 1 necessary to
ensure the local validity of Darcy’s law (that is the basis of our derivation)
is not satisfied. However, it seems reasonable to assume that at large length
scales or after a coarse-graining of the system our model and the interface
equation derived from it can be a good description of the experimental setup.
For quenched noise (SQ disorder in Ref. [SOHM02b]) they distinguish three
different scaling behaviors depending on the parameter values, that are the
injection velocity and the mean gap3. They also observe different roughness
exponents at different length scales. In summary, at small velocities and
small gap (strong disorder) they observe a roughness exponent in the range
α ' 0.6− 0.9, and at large velocities they report α ' 0 at large length scales
and α ' 1.3 otherwise. They also find an intermediate parameter regime
with α ' 0.6 at large length scales and α ' 1 at short ones.

We have computed the length scales `1 and `2 of the experiments of
Ref. [SOHM02b], and obtained that `2 is much larger than the system size
L but `1 is of the order of L, and depending on the particular values of
the injection rate and the gap spacing it falls above or below L. Then,
experiments take place in the capillary regime except at long length scales
(and large times) where the influence of the intermediate regime could be
felt. If the scaling behavior of the capillary regime is compared with the

3The noise intensity is approximately inversely proportional to the mean gap.
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experiments, we see that it reproduces the experimental roughness exponents
of the large velocity regime, except the small length scale exponent α '
1.5, which does not show up in experiments. The agreement between the
experiment and the theory is remarkable given the differences between the
model and the actual experiments. However, at smaller velocities and gap
spacings (weaker noise) the accordance between experiments and theory is
not so good. We do obtain exponents below 1, but do not reproduce the
various regimes and crossovers. This poor agreement is not surprising if the
experimental interfaces are examined: at smaller injection rates the interface
is wider and the derivative ∂xh is clearly much larger, and even points where
the interface is parallel to the channel walls can be distinguished. Since the
linear equation assumes that |∂xh| is small, the discrepancy between theory
and experiments can be explained by this difference. At small values of
the gap our theory and experiments also give different exponents, and this
can be explained considering that our derivation of the interface equation
assumes weak noise4, but the noise present in the experiment at small gap
is strong. Note also that the sharp edges of the regions with different gap
in the experiment introduce additional effects not present in our formalism
through the phenomenon of anchoring of the interface to those edges. The
extent to which this ingredient may affect the scaling is yet to be explored.

Soriano et al. have also conducted experiments using columnar or per-
sistent noise in the direction of advance of the interface, but in this case
the accordance between theory and experiment is weaker because even at
large velocities and large gaps they differ. For persistent noise, our interface
equation predicts α = 3/2 and β = 1/2, but Soriano et al. found (for large
velocities or large gaps) α ' 0 at large length scales and α ' 1.3 otherwise,
and β ' 0.5. The discrepancy might be caused by the difference between the
model and the disorder used in experiments. Another explanation could be
the influence of the intermediate scaling regime (that is not rough) at large
length scales (for the larger velocities used in the experiment `1 < L) that
could modify the scaling at small wave numbers. On the other hand, it is
difficult from experimental spectra to clearly distinguish a 1.5 exponent from
a 1.3, and this could account for the discrepancy. In addition, we note that
experiments found an exponent β ' 0.5 fully compatible with our results.
Finally, it is worth remarking that our model of random Hele-Shaw cell does
not predict the anomalous roughening observed in experiments for columnar
noise by Soriano et al. [SRR+02]. In this case the discrepancy can be clearly

4The weak noise requirement is not necessary to model a random Hele-Shaw cell, but
only to derive a linear interface equation. Strong noise could be easily introduced in the
capillary regime equation, by the substitution of |k|2 ζ̂ by −|k|F

(
1√
1+ζ

)
.



7.3. SUMMARY AND COMPARISON WITH EXPERIMENTS 191

attributed to the interface anchoring at the edges of the tracks. These act
as effective walls (absorbing a finite range of pressure drops) and therefore
introducing nondarcyan effects in relatively long parts of the interface.

One of the main reasons to study kinetic roughening in Hele-Shaw cells
with random gap is to provide an explanation to the experiments with Hele-
Shaw cells filled with glass beads [REDG89, HFV91, HKzW92]. In these
experiments it was found a roughness exponent in the range α = 0.6 − 0.9,
and a dependence of α with Ca. The similarity between these exponents and
the ones found by Soriano et al. in one of the parameter regimes suggests that
a Hele-Shaw cell with random gap contains essentially the same physics than
the model porous medium consisting in a Hele-Shaw cell with glass beads
in the gap. Unfortunately, for strong noise and small velocities our results
are not clear, and although we obtain roughness exponents below one more
numerical work is required to reach a conclusive result.
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Chapter 8

Conclusion

This chapter gives a general overview on the main results and strengths of the
thesis within a historical perspective, lists the main original results obtained
and suggests possible natural continuations of it. At the end of the chapter
there is a list of publications.

8.1 Overview

In this thesis we have studied various dynamical aspects of Hele-Shaw flows,
in particular surface tension effects on zero surface tension solutions for high
viscosity contrast, the influence of the viscosity contrast in the dynamics
of viscous fingering and finally the effect on the interface dynamics of an
inhomogeneous gap. The two first topics do close, to some extent, issues that
are relatively old, while the third topic is the one that more clearly opens new
and promising perspectives. In all cases, part of the originality of the work
is in the effort to develop new approaches, and reformulate old questions in
different ways. The topic related to the effects of surface tension is the one
that can be put in a longer historical perspective, since it is an extension to
the dynamics of the classical selection problem. It originates on the one hand
in the work of Kadanoff and co-workers in the early nineties, who first posed
the question of the selective role of surface tension in the dynamics, and on
the other hand on the later results by Tanveer and co-workers who made the
crucial steps to formalize the problem in the small surface tension limit in
a precise mathematical framework. The pursue of a dynamical solvability
scenario has been after all, that of finding the right way to pose the question,
one that allows a precise and useful answer. On hindsight it appears that,
more than the answer itself, it is the development of a new way of thinking the
problem and the general picture resulting from it what may be most valuable
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of our work. The second topic of the thesis participates also of this spirit of
finding precise formulations of problems for which there was only a qualitative
feeling. In this case it originated directly on a conjecture of Casademunt and
Jasnow which has been put to the test and confirmed at a quantitative level.
Along the way, new concepts have also arisen. Finally, the study of a Hele-
Shaw cell with inhomogeneous gap has also been proposed as a new approach
to the problem of viscous flow in porous media. The idea of studying the
universal properties of interface roughening by means of model systems goes
back to the pioneering work of Rubio and co-workers, which did trigger an
intense research activity for many years in the field. The idea of introducing
controlled modifications to the Hele-Shaw cell to gain understanding of other
more complicated problems was strongly pushed by Maher and co-workers,
who were also the first to study the problem of an inhomogeneous gap. The
recent experimental results by Ort́ın and co-workers in random Hele-Shaw
cells further motivated the interest and potential of this strategy and the
need of an appropriate theoretical modeling. We believe that there is still
a long way to go both theoretically and experimentally along this line, and
we hope the open perspective will contribute to our understanding of many
open issues in the field.

From a general point of view, it may be considered that one of the
strengths of the thesis is methodological in what refers to the development
of a powerful numerical code which has played a crucial role in achieving
clear conclusions in some parts of the thesis. Numerical integration of free-
boundary problems is always a delicate and demanding task, but the limit
of small surface tension in Hele-Shaw flows offers particularly severe difficul-
ties due to strong stiffness and, most importantly, extreme noise sensitivity.
It has been only rather recently that sophisticated numerical strategies have
overcome those numerical difficulties, mostly thanks to the major steps made
by Hou, Lowengrub and Shelley. We hope that this numerical tool will con-
tribute also in the future to clarify some confusions existing in the literature
originated in poor numerical studies.

Before proceeding to list the main original results of the thesis, we would
like to draw some very general conclusions. From the study of small surface
tension there is a clear warning message in the use of well-behaved solutions of
the problem without surface tension. We have shown that those are unphys-
ical when taken in a global sense as families of trajectories. Remarkably, this
applies to trajectories which are not only physically acceptable (no singular-
ities) but even have the correct asymptotics. The order one time breakdown
of the validity of zero surface tension dynamics discovered by Siegel and Tan-
veer for trajectories with the incorrect asymptotics (those inconsistent with
selection theory) is now shown to be more general, implying that sufficiently
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generic trajectories which have the correct asymptotics are not the limit of
vanishingly small surface tension dynamics, and may indeed be radically dif-
ferent (for instance changing which one of the fingers reaches the asymptotic
state). The singular effects of surface tension in the dynamics, which can
be phrased as restoring hyperbolicity to multifinger fixed points (or unfold-
ing the structural instability), are thus responsible of dramatic changes in
the phase space flow structure. At the same time, these results provide the
means to establish criteria to identify the classes of initial conditions and
time regimes in which the zero surface tension dynamics may be accurate
either quantitatively or qualitatively.

The sensitivity of viscous fingering dynamics to viscosity contrast has
been known at a qualitative level for a long time. Our general conclusion
is that the two types of dynamics pointed out for the extreme values c = 1
and c = 0 Ref. [CJ91] are still present for arbitrary c and sharply define a
nontrivial basin of attraction of the Saffman-Taylor finger depending on c,
which we have determined for a representative class of initial conditions. We
have also identified the relevant attractors which compete with the ST finger
as the so-called Taylor-Saffman bubbles. Remarkably, these have a different
topology than the finger, and this fact has been related to the pinching ten-
dency that is characteristic of low viscosity contrast. These has also been
characterized quantitatively but the issue of possible finite-time topological
singularities remains open. We have also shown that the low-contrast behav-
ior is the generic one and that, typically, one must have a c very close to c = 1
to systematically observe the finger competition scenario which is commonly
described in the literature, that in which the ST is the only attractor and
where fingers compete via a mechanism of screening of the laplacian field.
In other words, the sensitivity of the dynamics to c is maximal precisely at
c = 1. For most values of c, indeed, one observes generically that trailing
fingers are not necessarily suppressed (even though the field is still lapla-
cian!), while leading fingers tend to pinch and approach bubble solutions.
The general scenario is more complicated since only parts of the system at-
tain stationary shapes, and these depend on initial conditions (bubbles of all
sizes are available).

Finally, the topic which opens more promising perspectives has been the
study of inhomogeneous Hele-Shaw cells. On the one hand, it is known that
noise has a great influence in finger dynamics at very low values of surface
tension, and as a side-branching mechanism in dendrites when anisotropy is
present. The main source of experimental noise is probably gap and wetting
variations. Only for this reason a formulation of Hele-Shaw flows with inho-
mogeneous gap and wetting conditions is fully justified. But in addition, a
random gap introduces the possibility to study a completely different prob-
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lem: the kinetic roughening of the interface when a viscous fluid displaces a
less viscous one. Thus, we have formulated the problem with inhomogeneous
gap and derived ab initio a nonlocal and nonlinear interface equation con-
taining all noise terms with their microscopic coefficients and without any
unknown parameter. This has been done in full generality of parameters (in-
cluding viscosity contrast) and wetting conditions. We have identified new
crossovers, such as that between capillary dominated noise and permeability
dominated one, and have analyzed in detail the relevance of nonlinearities
and the possible universality classes. We conclude that the early time regime
that is relevant to most experimental studies, is governed by a new univer-
sality class defined by the zero-contrast fixed point defined by the c = 0
dynamics, which differs from the so-called Quenched KPZ universality class.
The predictive power of our basic equations is yet to be fully explored and we
expect it will not only help clarifying the interpretation of existing numerical
and experimental results, but most importantly designing new experiments to
better elucidate the open issues and presumably finding new growth regimes.

8.2 Summary of original results

The results of this thesis can be grouped in three different parts, namely a
part concerning the singular effects of surface tension, a part devoted to the
effects of viscosity contrast, and a part addressing the effects of a random
gap as quenched disorder.

Surface tension

• We have analyzed explicit zero surface tension solutions of the Saffman-
Taylor problem presenting nontrivial finger competition, and from its
phase-space flow it has been concluded that they are generically un-
physical in a global sense, when sufficiently large classes of initial con-
ditions are considered simultaneously, because they lack the correct
topology of the physical phase-space flow. The unphysical behavior of
zero surface tension solutions is a consequence of the nonhyperbolicity
of the multifinger fixed points of the finite-dimensional dynamical sys-
tem that they define, as opposed to the saddle point structure of the
regularized problem, which we argue it captures the essential physics
as a crossover between growth (stable directions) and competition (un-
stable directions). We have proved that the N-logarithms class of so-
lutions presents finite-time singularities if the continua of fixed points
are removed thus confirming the generality of the conclusions reached
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in low-dimensional models, namely, that for B = 0 either the flow is
structurally unstable or it contains finite-time singularities, implying
that no unfolding exists within the integrable class. The global failure
of this class does not completely rule out all specific solutions.

• We propose a Dynamical Solvability Scenario (DSS) relevant in prin-
ciple not only for viscous fingering but also of applicability to other
pattern forming problems. Within this DSS the role of surface tension
as a singular perturbation is to isolate multifinger saddle points out of
the continua of multifinger fixed points. This extends the traditional
solvability theory applied to steady state selection, where surface ten-
sion did also isolate a unique stable hyperbolic fixed point out of a
continuum of nonhyperbolic ones. In the present extension, the intro-
duction of surface tension does isolate a unique N-equal finger (saddle)
fixed point out of each continuum of N-finger fixed points. By restoring
this saddle point local structure the topology of the phase space flow
is modified, so the introduction of surface tension has a deep impact
on the global phase-space structure of the dynamics. It is in this sense
that this scenario can be considered as a dynamical solvability theory.

• The effects of small surface tension on the zero surface tension solutions
previously analyzed have been studied by means of the asymptotic
perturbative theory for 0 < B � 1 developed by Tanveer and co-
workers. The evolution of the so-called daughter singularities has been
studied both theoretically and numerically, and their impact times have
been computed in relevant cases. It has been shown that surface tension
has an effect of order one in an order one time in all cases with λ < 1/2,
and for λ ≥ 1/2 surface tension manifests either at order one or at a
time of order − lnB. In particular, surface tension manifests at order
one when the asymptotic configuration belongs to the continuum of
fixed points or when a clearly trailing finger wins the competition.

• A code to numerically solve the evolution equations of Hele-Shaw flows
with arbitrary B and c has been developed. This code treats efficiently
the numerical stiffness, is spectrally accurate and can deal with very
small values of surface tension. It includes noise filtering to prevent the
spurious growth of high order modes induced by roundoff noise, and
can use quadruple (128-bit arithmetic) precision. The development of
this code has been crucial to explore the small surface tension limit and
in general, to establish the conclusions throughout this thesis on firm
grounds.
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• The above code has been used to study the evolution under small sur-
face tension of the classes of integrable solutions studied previously.
The effect of finite surface tension on exact solutions is dramatic since
it modifies the topology of the phase space flow, including the removal
of the continuum of fixed points (and the consequent restoring of hy-
perbolicity) and the change of the size of the basins of attraction of the
problem (in the case where no continuum is present). At a quantitative
level, surface tension manifests at order one when the asymptotic con-
figuration belongs to the continuum of fixed points or when a clearly
trailing finger wins the competition. Our calculations show that the
impact of daughter singularities on either the shorter or larger finger
retards the velocity of that finger, and is accompanied by the widening
of the larger finger. As a consequence, in general the outcome of finger
competition is independent of the particular finger on which the impact
first occurs, and the finger which is leading at the time of the daughter
singularity impact ‘wins’ the competition. We provide explicit criteria
to establish when the zero-surface tension dynamics is quantitatively
or qualitatively correct, for the studied explicit solutions. In general,
we conclude that the B = 0 problem and the B = 0+ one coincide only
for finite-time evolutions departing from the planar interface and only
up to infinite time for some trajectories going to fixed points consistent
with selection theory (λ = 1/2). Remarkably, sufficiently generic and
smooth configurations evolving with B = 0 to the correct asymptotic
state may follow completely different paths in phase space for B = 0+,
changing for instance which finger wins the competition.

Viscosity contrast

• Finger competition with arbitrary viscosity contrast has been studied
by means of numerical computation, using the code we have developed.
A uniparametric initial condition with two modes has been chosen to-
gether with a value of surface tension in such a way that both modes
grow at the same rate in the linear regime, and this initial condition
has been used to precisely quantify the size of the basin of attraction
of the Saffman-Taylor fixed point as a function of the viscosity con-
trast. The result we have obtained is that the basin of the ST fixed
point decreases rapidly with decreasing values of the viscosity contrast,
being practically very small for zero viscosity contrast. Similarly, the
sensitivity of the dynamics to viscosity contrast is maximal at c ≈ 1.

• We have identified a class of attractors which compete with the ST
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finger as that of closed (Taylor-Saffman) bubbles. We have pointed out
that the different topology of the two types of attractors explains the
phenomenon of pinching, observed generically and which we have char-
acterized quantitatively. The existence of actual finite-time topological
singularities remains an open issue.

• A conformal mapping formulation of Hele-Shaw flows with zero vis-
cosity contrast has been developed. This formalism takes advantage
of the local character of vorticity for zero viscosity contrast. Explicit
solutions for the evolution equation for the mapping have been sought,
but only previously known solutions have been found. We have explic-
itly checked that the families of known solutions in the high viscosity
contrast limit are not solution in the zero viscosity contrast one.

Inhomogeneous gap

• We have formulated the equations for Hele-Shaw flows with inhomoge-
neous gap, upon the assumption that Darcy law is locally valid. This
formulation has been used to derive ab initio an interface equation for
the problem of forced fluid invasion of a Hele-Shaw cell with random
gap. This equation takes into account the nonlocality of the problem,
is linear in the randomness and quadratic in the interfacial height, con-
tains all noise effects and includes a noise term that has long range
correlations both in space and time.

• The scaling properties of the rough interfaces that appear in forced
fluid invasion of a Hele-Shaw cell with random gap have been studied
by means of the interface equation we have derived. Two crossovers
separating the corresponding regimes have been identified, in particular
a new crossover between capillary noise and nonconserved noise has
been found. The scaling of the interface has been studied in each of
the regimes. The interface equation has been analytically solved for
some particular types of noise, and numerically simulated in the case
of quenched noise. From the simulation various roughness exponents at
different length scales and parameter values have been determined. The
obtained scaling properties are in good agreement with experimental
results in one of the experimental regimes.

• A new universality class has been identified which governs the scaling
in early time (capillary) regime, relevant to most experiments. The
corresponding fixed point is that of the zero viscosity contrast prob-
lem, and its scaling properties differ from those of the Quenched KPZ
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equation. We argue that the QKPZ fixed point does not describe any
of the identified regimes of the problem.

8.3 Open questions and perspectives

Some of the results of this thesis have opened lines of research with a wide
scope perspective. Other more specific open questions can also be listed
which deserve further attention in the near future but correspond to tasks
of more limited scope. Among the more general perspectives we quote three
main lines:

• The formulation of Hele-Shaw flows with inhomogeneous gap has been
applied to the forced fluid invasion problem, but there is a similar
problem that we have not explicitly addressed and that is suitable to
be dealt with our formulation, namely, spontaneous imbibition (con-
stant pressure driving). The formulation could be applied to derive
an interface equation with not only all the noise terms but also with
the correct zero mode fluctuations, as a step beyond the existing phe-
nomenological treatments with the aim at the study of pinning and
avalanche phenomena.

• The interface equation for forced fluid invasion presents scaling be-
haviors that we have not completely uncovered, in particular in the
capillary regime. More numerical work is necessary to provide further
insight in this point. The effects of quadratic terms could be studied
systematically in the regime where they might change the scaling prop-
erties, and nonlinear noise terms could also be added to the analysis.
It would also be interesting to design new experiments to look for the
new scaling regimes predicted.

• The existence of finite time pinchoff in the configurations studied in
Chapter 5 needs further investigation, but the numerical scheme used
seems inadequate to give additional information on the existence of
the pinchoff. An alternative approach would be to use the lubrication
approximation to Hele-Shaw equations in the pinching region and the
computation of the full problem in the rest of the interface, matching
the solutions in an appropriate way. This is a major task but the
promise of universality makes the effort justified. The existence of
nonforced, spontaneous pinchoff is also relevant in the more general
context of topological singularities in fluid dynamics.
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Among the more specific open questions that could deserve further study in
the near future we have selected the following:

• The exact solution studied in Chapter 3 exhibits finite time pinchoff
for some initial conditions, in the stable configuration of the problem
where the viscous fluid displaces the nonviscous one. This is an exact
prediction of a topological singularity. It would be of great interest to
study if that pinchoff survives to the introduction of finite surface ten-
sion, using the tools of Chapter 4, namely the asymptotic perturbation
theory and direct numerical computation with finite B.

• The long time behavior of Hele-Shaw flows with low viscosity contrast
needs further investigation in the situation when the dynamics is not
attracted to the Saffman-Taylor finger. Extending the numerical com-
putations to larger times would be useful for a better understanding of
the problem, but probably not conclusive unless the extension of the
computation shows clear evidence of pinching. A different approach
would be to look for exact composite steady-state solutions with zero
surface tension consisting of a bubble and one or two fingers. Solutions
(for c = 1) of a finger plus a bubble do exist, but on the same axis.
If such solutions exist, they could shed new light into the long time
asymptotics of the problem.

• One aspect of the evolution with small surface tension that has not
been studied is the fate of exact solutions with λ > 1/2. In this case
the asymptotic theory is not of much use, but numerical computation
could answer the question. The possible phenomena that could arise
are a tip splitting followed by the formation of a double ST finger,
or simply the narrowing of the finger, by either a side-branching-like
phenomenon or through a direct narrowing of the finger.

• We have observed that the evolution under very small B is very sen-
sitive to noise, but the noise present in the numerical computations
is of numerical origin, caused by roundoff. It would be interesting to
implement the noise contributions obtained in Chapter 6 into the code
and then study the effect of noise of physical origin on the small B
evolution, in a fully controlled way.
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Appendix A

Conformal mapping approach
to zero viscosity contrast

The conformal mapping method used to study Hele-Shaw flows when one of
the two fluids has negligible viscosity (c = 1) is generalized to zero viscosity
contrast (c = 0). We derive an integro-differential equation for c = 0 and
use the formalism to recover in a straightforward way the only time depen-
dent solution known for arbitrary viscosity contrast and zero surface tension.
Moreover, it is shown that any other solution of the c = 1 case is not a
solution of the c = 0 case.

A.1 Derivation

The arbitrary viscosity contrast case has received very little theoretical at-
tention in comparison to the high viscosity contrast limit, mainly due to
the lack of a suitable scheme for its analytical study. In the high viscosity
contrast limit the conformal mapping approach is the tool that has made
possible most of the progress achieved on the understanding of the problem,
and for this reason we have developed a conformal mapping formulation of
the c = 0 case, which takes a relatively compact form. For general c this is
also possible but much more involved.

The evolution equation for the time-dependent conformal mapping f(ω, t)
of the interior of the unit circle in the complex plane ω into the region
occupied by the fluid 2 in the physical plane z = x + iy can be written
as [BKL+86]

∂tf = ω∂ωf A

{
Re[ω∂ωΦ]

|ω∂ωf |2

}
, (A.1)
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and the normal velocity U of the interface reads

U = −Re[ω∂ωΦ]

|ω∂ωf |
(A.2)

where Φ = ϕ + iψ is the complex potential, ϕ is the real velocity potential
and ψ the stream function. A is an integral operator applied to a real-valued
function F (s), 0 ≤ s < 2π defined on the unit circle, giving the complex-
valued analytic function on the unit disk whose real part on the unit circle
is F (s), ω = eis. A can be written as

A {F} (ω) = a0 + 2
∞∑
n=1

anω
n (A.3)

where the an’s are the Fourier coefficients of F (s):

F (s) = a0 +
∞∑
n=0

(
ane

ins + a∗ne
−ins) . (A.4)

We recall the expression of A in terms of its integral representation, given in
Eq. (2.2):

A {F} (ω) =
1

2π

∫ 2π

0

dsF (s)
eis + ω

eis − ω
. (A.5)

The evolution equation Eq. (A.1) can be rewritten as

Re {i ∂tf ∂sf ∗} = Re {ω∂ωΦ} (A.6)

on the unit circle, ω = eis.
To obtain a closed equation for the mapping f we just need to express

the complex potential Φ in terms of f , and replace it in Eqs. (A.1) or (A.6).
In order to find Φ as a function of the mapping we will take advantage of the
formulation of the problem in terms of the interface vorticity. In general, the
vorticity depends on the velocity of the interface and its local geometry, but
since the velocity is related to the vorticity through an integral expression,
it is necessary to solve an integral equation to obtain the vorticity. However,
for zero viscosity contrast the situation is different: for c = 0 the dependence
of γ on the velocity disappears and the vorticity γ is only a function of the
local geometry of the interface, as can be seen setting c = 0 in Eq. (1.13). We
can use this property to obtain an expression for the stream function ψ using
the Green function method. Once ψ is known we can calculate Φ using that
ψ is the imaginary part of the analytic function Φ. For c = 0 fluid injection
only introduces an homogenous advance of the interface without any other
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dynamic consequence on the interface, and from now on it will be considered
the case without injection, V∞ = 0. The stream function ψ can be obtained
using the appropriate Green function G(x− x′, y − y′) as

ψ(x, y) =

∫
dx′ dy′Ω(x′, y′)G(x− x′, y − y′)

=

∫
ds′Ω [x(s′), y(s′)]G [x− x(s′), y − y(s′)] (A.7)

where the interface (and the vortex sheet) is parameterized by (x(s′), y(s′)).
From now on, we will use complex variable techniques and the complex po-
tential Φ will be a function of the complex variable z = x + i y. Moreover,
within the context of the conformal mapping method, z = f(ω) and the
interface is then described by f(ω = eis) with s ∈ [0, 2π).

For the channel geometry the Green function appropriate to the problem
must satisfy periodic boundary conditions along the y axis, the one perpen-
dicular to the channel walls. The Green function of an infinite channel of
width 2π with periodic boundary conditions can be written as

G(z − z′) =
1

2π

{
ln[sign(x− x′)] + ln

[
sinh

(
z − z′

2

)]}
. (A.8)

Therefore, the complex potential Φ is

Φ(s) = −i
∫ 2π

0

ds′γ(s′)G [f(s)− f(s′)] . (A.9)

We replace Eq. (A.8) into the previous equation and then calculate the quan-
tity Re[ω∂ωΦ]|ω=eis = Im[∂sΦ], to obtain

Re [ω∂ωΦ]|ω=ei s =
−1

4π
Re

{
∂sf P

∫ 2π

0

ds′γ(s′)cotgh

[
f(s)− f(s′)

2

]}
.

(A.10)
P stands for Cauchy’s principal value and the vorticity γ(s) can be written
in terms of the mapping f and the nondimensional surface tension B as:

γ(s) = 2Re(∂sf) + 2B∂sκ(s) (A.11)

where κ(s), the local curvature of the interface, is [BKL+86]

κ(s) = −Im
∂2
sf/∂sf

|∂sf |
. (A.12)
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Replacing Eq. (A.10) with γ(s) given in Eq. (A.11) yields an integro-differen-
tial equation for the mapping:

∂tf = − 1

4π
ω∂ωf A

Re
{
∂sf P

∫ 2π

0
ds′γ(s′)cotgh

[
f(s)−f(s′)

2

]}
|ω∂ωf |2

 (A.13)

and using the integral representation for A, Eq. (A.5)

∂tf = − 1

8π2
ω∂ωf

∫ 2π

0

dθ
eiθ + ω

eiθ − ω

Re
{
∂sf P

∫ 2π

0
ds′γ(s′)cotgh

[
f(θ)−f(s′)

2

]}
|ω∂ωf |2

(A.14)
Eq. (A.14) is the evolution equation for the mapping f(ω, t) for zero viscosity
contrast, together with the expression for the vorticity γ given by Eq. (A.11).
Eq. (A.14) is analogous to Eq. (2.7) for c = 1, but more difficult to solve, as
it will be shown in next section.

For arbitrary viscosity contrast a conformal mapping formulation [PFC02]
of the problem is also possible but couples two different mapping functions.
In general, a system of four integro-differential equations has to be solved, so
the formulation is far more complicate than for the limiting cases c = 0 and
c = 1, and does not seem to help analytical insights with respect to other
more standard formulations of the problem.

A.2 Exact solutions

We have checked that Eq. (A.13) reproduces the correct linear dispersion
relation, Eq. (1.14). From now on we will concentrate on the zero-surface
tension case, B = 0, because for B = 0 the expression for γ is simpler, and
in addition all relevant exact solutions found for c = 1 have zero surface
tension.

Large families of Eq. (A.1) are known in the high viscosity contrast
limit (c=1), when one of the fluids has negligible viscosity (see for instance
Refs. [How86, PMW94]), but only two nontrivial explicit solutions are known
for arbitrary viscosity contrast: the stationary Saffman-Taylor finger [ST58]
and the unsteady finger of width 1/2 found by Jacquard and Séguiner [JS62].
In our notation the mapping fST of the Saffman-Taylor finger which moves
with velocity U relative to the walls reads

fST (ω, t) = − lnω + Ut+ 2(1− λ) ln(1 + ω) (A.15)

where the constant λ is the ratio of the finger width to the width of the
channel and takes real values in the interval (0, 1). Replacing fST (ω, t) in
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Eq. (A.13) it is found that λ and U are related through U = 2(1 − λ), the
known result from Ref. [ST58].

From the large families of exact time-dependent solutions known for c = 1
we have tested if the polynomial and logarithmic maps described in Chapter 2
are solutions of Eq. (A.14). The answer is negative in all cases but one. We
have found only one nontrivial solution in the c = 0 case. This solution
describes the temporal evolution of a finite finger of width λ = 1

2
and reads:

f(ω, t) = − lnω + a(t) + ln(b(t) + ω) (A.16)

with a(t) and b(t) real functions of time and b(t) ≥ 1. This is the solution
found by Jacquard and Séguier using a more complex method. Replacing
Eq. (A.16) into Eq. (A.13) it is found that Eq. (A.16) is an exact solution,
and a(t) and b(t) have the following form

a(t) = t+ a(0) and b(t) =
√

1 + (b(0)2 − 1)e−2t. (A.17)

This solution describes the evolution of the finger from an initial condition
in the form of a small perturbation of the planar interface (b � 1) until it
asymptotically approaches the ST finger shape (b→ 1, t→∞).
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Appendix B

Derivation of bulk noise for
arbitrary viscosity contrast

In this Appendix we derive an expression for the bulk noise contribution δvζ
for arbitrary viscosity contrast c 6= −1.

First, we recall that the pressure p = p0 + δp in each fluid satisfies (see
Eq. (6.5))

∇2p0 = 0 (B.1a)

∇2δp+
3∇b
b
· ∇p0 = 0. (B.1b)

On the interface, the pressure jump reads

p2 − p1 = σκ (B.2)

where κ is the total mean curvature. To solve Eq. (B.1) we impose

p0,2 − p0,1 = σκ (B.3a)

δp2 − δp1 = 0. (B.3b)

For c = −1, that is, when the displaced fluid has negligible viscosity, p2 is
constant and can be taken to be zero. Then, in this simpler case δp2 = 0.
But for c 6= −1 the more complicated boundary condition at the interface
δp2 − δp1 = 0 has to be applied, and the method used in Section 6.2.1 to
derive δvζ cannot be used. Then, in this case we will use an alternative
method based on the formulation of Casademunt et al. in Ref. [CJHM92].
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To solve Eq. (B.1b) we apply Green’s theorem

δp1(s) =

∫
int

ds′
{
δp1(s′)

∂G[x(s)− x(s′), y(s)− y(s′)]

∂n′
+

−G[x(s)− x(s′), y(s)− y(s′)]
∂δp1(s′)

∂n′

}
+

∫
1

dx′ dy′
3∇b
b
∇p0,1G[x(s)− x′, y(s)− y′] (B.4a)

δp2(s) = −
∫

int

ds′
{
δp2(s′)

∂G[x(s)− x(s′), y(s)− y(s′)]

∂n′
+

−G[x(s)− x(s′), y(s)− y(s′)]
∂δp2(s′)

∂n′

}
+

∫
2

dx′ dy′
3∇b
b
∇p0,2G[x(s)− x′, y(s)− y′]. (B.4b)

Now, the two equations are added and it is used that δp2(s) − δp1(s) = 0.
Applying the partial derivative with respect to the normal component, ∂

∂n
,

the resulting equation reads

(µ1 + µ2)δvζ(s) =

∫
ds′
{
∂G(2)[x(s)− x(s′), y(s)− y(s′)]

∂n
µ1δvζ(s

′)

−∂G(1)[x(s)− x(s′), y(s)− y(s′)]

∂n
µ2δvζ(s

′)

}
+

∫
1

dx′ dy′
3∇b
b
µ1v0,1

∂G[x(s)− x′, y(s)− y′]
∂n

+

∫
2

dx′ dy′
3∇b
b
µ2v0,2

∂G[x(s)− x′, y(s)− y′]
∂n

, (B.5)

where we have used v0,i = − b20
12µi
∇p0,i and δvζ = − b20

12µi
∇pi. ∂G(2)

∂n
and ∂G(2)

∂n

denote the limit from fluid 1 and 2 respectively, of the first order normal
derivative.

Now we introduce the disorder in the gap: ∇b
b

= 1
2
∇ζ
1+ζ

and consider that

the interface is quasiplanar ds′ =
√

1 + h′2(x′)dx′ ' dx′. We will use the ex-
pression of the Green function in the free space, that is, considering a channel
of infinite width or equivalently assuming that the walls have a negligible in-
fluence on the dynamics. It reads G(x−x′, y−y′) = −1

4π
ln[(x−x′)2+(y−y′)2].

To evaluate the partial derivatives of the Green function we apply the results
of Ref. [CJHM92], and consider x(s) ' x, y(s) = h

∂G(1,2)[x(s)− x(s′), y(s)− y(s′)]

∂n
= ∓1

2
δ(x− x′) +O(h) (B.6)
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and we consider

3∇b
b

v0 '
3

2
∇ζ · v0 '

3

2
∇ζ · V∞ŷ =

3

2

∂ζ

∂y
V∞ (B.7)

where we have kept only the leading order (linear) contribution. Replacing
Eqs. (B.6) and (B.7) into Eq. (B.5) and integrating by parts the bulk integrals
yields

(µ1 + µ2)δvζ(x) = −µ1

∫ ∞
−∞
dx′δ(x− x′)3

2
V∞ζ(x′, y′)

∣∣∣∣h(x′)

−∞

+µ2

∫ ∞
−∞
dx′δ(x− x′)3

2
V∞ζ(x′, y′)

∣∣∣∣∞
h(x′)

+
µ1

π

∫ ∞
−∞
dx′
∫ h(x′)

−∞
dy′

3

2
V∞ζ(x′, y′)

∂

∂y′
h(x)− y′

(x− x′)2 + (h(x)− y′)2

+
µ2

π

∫ ∞
−∞
dx′
∫ ∞
h(x′)

dy′
3

2
V∞ζ(x′, y′)

∂

∂y′
h(x)− y′

(x− x′)2 + (h(x)− y′)2
(B.8)

We keep the lowest order in the interface deviation h − V∞t with respect
to the mean interface, dropping terms of order (h − V∞t)ζ, and apply the
substitution y = y′ − V∞t and consider ζ(x′, y′ → −∞) = 0. Then, in terms
of the viscosity contrast, c = µ2−µ1

µ2+µ1

δvζ(x) = −3

2
V∞

{
ζ(x, h(x))

−1− c
2π

∫ ∞
−∞
dx′
∫ 0

−∞
dy′ζ(x′, y′ + V∞t)

∂

∂y′
−y′

(−y′)2 + (x− x′)2

−1 + c

2π

∫ ∞
−∞
dx′
∫ ∞

0

dy′ζ(x′, y′ + V∞t)
∂

∂y′
−y′

(−y′)2 + (x− x′)2

}
(B.9)

where the kernel has been rewritten in terms of the derivative to ease the
evaluation of the Fourier transform of δvζ(x). The above equation is the
main result of this Appendix, and to facilitate its comparison with the result
for c = −1, Eq. (6.20) we compute its Fourier transform, that reads

δ̂vζ(k) =
3V∞

2

{
−ζ̂(k) +

1− c
2
|k|
∫ ∞
−∞
dx′
∫ 0

−∞
dyζ(x′, y + V∞t)e

−ikx′ey|k|

+
1 + c

2
|k|
∫ ∞
−∞
dx′
∫ ∞

0

dyζ(x′, y + V∞t)e
−ikx′ey|k|

}
,(B.10)

and the result obtained in Sec. 6.2.1 for c = −1 is recovered. To obtain the
full interface equation for arbitrary c it is most convenient to start with the
formulation of Ref. [CJHM92].
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topics. In C. Godrèche, editor, Solids Far from Equilibrium.
Cambridge University Press, Cambridge, 1992.

[Pat81] L. Paterson. Radial fingering in a Hele–Shaw cell. J. Fluid
Mech., 113:513, 1981.
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