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del Departament d’Estructura i Constituents de la Matèria.
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Introducció

El fenòmen Nano ha anat traspassant durant els últims anys les fronteres de la comunitat

cient́ıfica i, avui en dia, és dif́ıcil no haver sentit a parlar alguna vegada de conceptes com

les nanopart́ıcules, els nanoxips, els nanofàrmacs o els nanoaliments, només per donar-ne

alguns exemples. Prova d’aquesta moda és el fet que marques comercials fabricants de

cotxes o reproductors de música digital s’hi han inspirat per donar nom a un dels seus

–molt petits– models. Sens dubte, els ressò dels continus avanços en Nanociència i en la

seva vessant aplicada, la Nanotecnologia, aix́ı com de les seves potencials aplicacions en

un futur pròxim en camps tan diversos com la computació quàntica, el tractament contra

el càncer o múltiples indústries, han contribüıt a aquesta divulgació popular.

La Nanotecnologia és l’estudi, disseny, śıntesi, manipulació i aplicació de materials i

dispositius mitjançant el control de la Matèria a l’escala del nanòmetre (la mil.lionèsima

d’un mil.ĺımetre) o, dit d’una altra manera, dels àtoms i les molècules. Aquesta nova i

emergent ciència aplicada barreja múltiples disciplines cient́ıfico-tècniques com la F́ısica,

la Qúımica, la Bioqúımica, la Biologia Molecular, l’Electrònica o la Informàtica i per als

seus propòsits contempla l’utilització, entre d’altres, de metalls, plàstics, carboni, cadenes

d’ADN o semiconductors. La branca basada en aquests últims i en concret les seves

peces bàsiques, les anomenades nanoestructures semiconductores, són l’objecte d’estudi

d’aquesta tesi.

Essencialment, aquestes estructures es poden definir com a sistemes semiconductors

que generalment contenen un cert nombre d’electrons de conducció (per això sovint se

les anomena nanoestructures electròniques) i on almenys una de les tres dimensions de

l’espai es troba confinada a l’escala nanomètrica. La seva fabricació es basa en el fet que

l’estructura de bandes dels semiconductors varia d’un compost a un altre. Per tant, quan

dues capes semiconductores diferents es posen en contacte a la interf́ıcie hi ha canvis

abruptes en algunes propietats bàsiques. Això s’il.lustra esquemàticament als panells

superior i central de la figura 1, on s’agafen com a exemples el AlGaAs i el GaAs, dos dels

compostos més utilitzats en la fabricació de nanoestructures. En particular, apareix un

gradient de potencial qúımic –energia de Fermi (εF ) en el llenguatge de semiconductors–

que origina un camp elèctric i fa que electrons del material amb εF més gran flueixin

cap a l’altre fins que el sistema uniformitza el seu potencial qúımic. La càrrega positiva

(negativa) resultant al AlGaAs (GaAs) fa pujar (baixar) la banda de conducció (εC)

respecte al nivell de Fermi, tal i com passa quan es dopa un semiconductor amb impureses
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4 Introducció

Figura 1: Imatge esquemàtica de la formació d’un pou quàntic

acceptadores (donadores), i dóna lloc al fet que en una estreta zona (que usualment es

pren al llarg de l’eix z i s’anomena direcció de creixement) dins del GaAs es compleixi la

condició εF < εC, formant-se aix́ı un pou de potencial on electrons de conducció queden

atrapats (panell inferior de la figura 1).

Si es realitza un apil.lament de diverses capes, amb gruix i composició adequadament

seleccionats, es pot controlar la formació d’un pou de només uns nanòmetres de gruix en

una de les capes internes. El fet que aquestes dimensions siguin comparables o inferiors a

la longitud de de Broglie dels electrons en aquests sistemes –uns 50 nm en el cas del GaAs–

fa que els efectes quàntics en la dimensió confinada siguin importants i es parli aix́ı de

la formació d’un pou quàntic (quantum well) o d’un gas d’electrons quasi-bidimensional.

Com que les altres dues dimensions són diversos ordres de magnitud més grans, el pou

quàntic es pot imaginar com un ‘full de paper semiconductor’ sobre el pla del qual electrons

de conducció tenen limitat el seu moviment. La seva realització experimental va ser duta

a terme per primera vegada a principis dels anys 70 per part de grups d’investigació

dels Laboratoris Bell i IBM mitjançant tècniques epitexials de creixement que permeten

anar dipositant capes monoatòmiques de material l’una sobre de l’altra i, entre d’altres

aplicacions, van servir com a base per als d́ıodes làser.

Ben aviat es va pensar en anar més enllà i considerar la possibilitat de crear objectes

de dimensionalitat més redüıda ‘retallant’ sobre aquests ‘fulls’. Des de mitjans dels anys

80, la constant evolució de les tècniques nanolitogràfiques i de nanogravat ha permès
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disposar de les ‘tisores’ adequades per aconseguir aquest objectiu i s’han pogut fabricar

nanoestructures cada vegada més petites i complexes. Aix́ı, confinant els electrons del

pou quàntic inicial en una dimensió addicional es van obtenir els fils quàntics, ‘tires de

paper’ amb una amplada caracteŕıstica de l’ordre del centenar de nanòmetres. Estenent el

confinament a les tres dimensions de l’espai es van crear els punts quàntics, que en el cas

de ser circulars acostumen a tenir un diàmetre de l’ordre dels 10-100 nm. I, més tard, els

‘discs’ formats per aquests últims es van poder ‘perforar’ mitjançant tècniques d’oxidació

utilitzant la punta d’un microscopi de força atòmica, donant lloc aix́ı als anomenats

anells quàntics. Recentment, a més, utilitzant mètodes de creixement autoordenat s’han

pogut obtenir també sistemes d’anells concèntrics i de verticalment acoblats. Bàsicament,

aquesta tècnica consisteix en el creixement de capes successives amb diferent paràmetre de

xarxa. Això pot provocar la inestabilitat de l’estat homogeni inicial del sistema, donant

lloc a una transició de fase que el porta a un estat inhomogeni i forma espontàniament

punts quàntics sobre una de les capes. Si aquesta última es cobreix després amb una de

nova de composició adequada, es pot modificar la topologia dels punts i convertir-los en

anells. Com que es troben confinats en les tres dimensions espaials, els punts i els anells

quàntics es poden pensar com a sistemes tancats i se’ls sol caracteritzar pel nombre N

d’electrons de conducció que contenen. En canvi, els pous i fils quàntics tenen almenys

una dimensió lliure i que a la pràctica es considera infinita; aix́ı, per a aquests sistemes

s’acostuma a prendre el nombre d’electrons també com infinit i a descriure’ls en termes

de la seva densitat, que és finita.

Una propietat important de totes aquestes estructures és que, a causa de les carac-

teŕıstiques del seu procés de fabricació, aix́ı com de la pròpia natura dels materials util-

itzats, presenten asimetries inherents. Aquestes poden donar lloc a la presència de camps

elèctrics que, com a efecte de la Relativitat Especial, es transformen en camps magnètics

en el sistema de referència dels electrons, interaccionant amb els seus spins, acoblant-los

al seu moment i donant oŕıgen a l’anomenada interacció d’spin-òrbita. D’entre les difer-

ents possibles fonts n’hi ha dues que es consideren especialment importants en aquests

sistemes. En primer lloc, la majoria de materials més utilitzats en la fabricació de na-

noestructures, com per exemple el GaAs, són semiconductors amb estructura cristal·lina

Zinc Blenda, que no té centre d’inversió. Aquesta asimetria dóna lloc a l’anomenada

contribució d’spin-òrbita de Dresselhaus. En segon lloc, el pou quàntic que origina el

gas quasi-bidimensional inicial no és en general simètric –com es pot intüır de la figura

1– i produeix el conegut com acoblament de Bychkov-Rashba, que té una propietat molt

interessant: la seva intensitat pot ser controlada externament mitjançant l’aplicació d’un

voltatge extern. Això el fa d’especial potencial aplicació en Spintrònica, una nova tec-

nologia basada en el control, la manipulació i el transport de l’spin electrònic i que té

com a dispositiu més representatiu –encara només a nivell teòric– l’anomenat transistor

d’spin, basat en un fil quàntic amb interacció de Bychkov-Rashba i que generalitza l’usual

transistor d’efecte de camp.

Aquesta tesi és un resum dels treballs publicats llistats al Curriculum Vitae que
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s’adjunta al final de la memòria i es divideix en dos caṕıtols principals. En el primer

s’estudia l’estat fonamental i la resposta dipolar de sistemes formats per anells quàntics

amb un nombre d’electrons variable. En una primera part es considera un sol anell sotmès

simultàniament a un camp elèctric en el pla i a un camp magnètic perpendicular a aquest.

Després es consideren dos sistemes dobles d’anells quàntics; en primer lloc, i en analo-

gia amb una molècula real, un compost per dos anells acoblats verticalment amb una

distància de separació variable. En segon lloc, un altre format per dos anells concèntrics,

considerant dues situacions: primer a camp aplicat nul i variant el radi de l’anell més gran,

i després fixant els dos radis i estudiant el sistema en funció d’un camp magnètic aplicat

perpendicularment al pla dels anells. Per tot això, s’utilitza el formalisme de la teoria del

funcional de la densitat en la seva aproximació local per obtenir els estats fonamentals,

i la seva versió depenent del temps per als càlculs de les respostes dipolars. Una breu

introducció als dos formalismes es fa abans de mostrar els respectius resultats.

El segon caṕıtol s’ocupa de l’estudi dels efectes de la interacció d’spin-òrbita en pous

i fils quàntics sotmesos a camps magnètics externs. Primer, mitjançant un tractament

anaĺıtic aproximat, es calculen les correccions de Rashba i de Dresselhaus a les freqüències

de ciclotró i de Larmor, als nivells de Landau i a les excitacions indüıdes per ones elec-

tromagnètiques externes en pous quàntics. Després es consideren fils quàntics sotmesos a

camps magnètics continguts en el pla del sistema, estudiant-s’hi els efectes d’intercanvi-

correlació per tal de veure si se n’alteren els resultats coneguts sense aquesta interacció.

Com es veurà, l’acoblament d’spin-òrbita fa que en general les nanoestructures continguin

spins no colineals. En aquestes condicions el formalisme utilitzat al primer caṕıtol no és

vàlid i cal utilitzar-ne una generalització aplicable a aquestes situacions, de la qual es fa

una introducció al principi de la pertinent secció.

Un resum i les conclusions extretes del treball realitzat s’exposen al final de la tesi,

aix́ı com les seves possibles continuacions de cara un futur inmediat. Finalment, s’inclou

un apèndix ampliant alguns dels resultats presentats al caṕıtol 2.



Chapter 1

Ground state and dipole response of

quantum ring systems

Because of their particular topology, quantum ring (QR) systems exhibit unique phys-

ical phenomena that make them very interesting from both a purely theoretical and a

technological point of view. In this sense they allow, for example, the observation of

Aharonov-Bohm oscillations [Aha59] and related effects such as the so-called ‘persistent

current’ [But83, Cha94], which is one of the best examples of quantum mechanical phase

coherence. Also, and similarly to quantum dots (QDs), they are good candidates for be-

ing implemented in quantum computation schemes [Fol05]. Understanding the electronic

properties of these nanostructures is essential for their eventual application in practical

devices.

In this chapter we address the ground state (gs) and the dipole response of three

quantum ring systems: a single ring and two quantum ring ‘diatomic molecules’, first

vertically and then concentrically coupled, as a function of different parameters such as

the electron number, the intensity of externally applied electric and magnetic fields and

the inter-ring distance. For this purpose, we employ one of the most successful and

accurate approaches when dealing with electronic nanostructures: the Density Functional

Theory (DFT).

1.1 Density Functional Theory

It is considered that DFT as we know it today was born in 1964 with the famous Physical

Review by Hohemberg and Kohn [Hoh64]. In it, the authors proved in a rigourous math-

ematical way that the full many-particle ground state of an inhomogeneous electron gas,

including the full electron-electron (e-e) interaction, can be described by a unique func-

tional of the density, which in turn obeys a variational principle. That is, for the correct

ρ0(r), E[ρ0(r)] equals the ground state energy E0. These are known as the Hohemberg-

Kohn (HK) theorems, and represented two big steps forward relative to other well-known

approaches, such as the Hartree or the Hartree-Fock ones. On the one hand, the replace-

7



8 Chapter 1: Ground state and dipole response...

ment of the electronic wave function by the electronic density as basic quantity constituted

a high simplification of the problem in the computational sense, since the number of vari-

ables was reduced from 3N –three spatial components for each of the N electrons– to only

the three spatial components of the density, which in addition is a simpler both concep-

tually and practically quantity to deal with. On the other hand, the exchange-correlation

part of the electron-electron interaction, neglected or only partially taken into account

in the above-mentioned approaches, is completely treated in the Kohn-Sham (KS) for-

malism, although in an approximate –yet very precise– way. Indeed, the HK theorems

state the existence of a one-to-one functional correspondence between the density and the

Hamiltonian of the system but do not provide any clue on its exact explicit form, which is

actually unknown and therefore must be approximated. This functional is usually written

as

E[ρ(r)] = T0[ρ(r)] +
1

2

∫

ρ(r)VH(r) dr +
∫

ρ(r)Vconf(r) dr + Exc[ρ(r)] , (1.1)

where T0[ρ(r)] is the kinetic energy of an auxiliary system of noninteracting particles

with the same density ρ(r) of the real system and VH(r) = e2

ǫ

∫

dr′ρ(r′)/|r − r′| and

Vconf(r) are, respectively, the usual Hartree and confining potentials, the shape of the

latter depending of course on the system under study. Thus, all the unknown quantities,

namely the exchange-correlation contribution and the difference between the exact kinetic

energy and that of the auxiliary system are contained in the so-called exchange-correlation

functional Exc. For the noninteracting system the kinetic energy and the density can be

written in terms of independent-particle orbitals ϕi as

T0 =
N
∑

i=1

∫

ϕ∗
i (r)

(

− h̄2

2m
∇2

)

ϕi(r) dr =
h̄2

2m

N
∑

i=1

∫

| ∇ϕi(r) |2 dr (1.2)

and

ρ(r) =
N
∑

i=1

|ϕi(r)|2 , (1.3)

respectively.

One year after the publication of the HK theorems, Kohn and Sham [Koh65] derived,

from the stationary property of E[ρ] subjected to the particle-number conservation, the

selfconsistent equations that provide the single-particle (sp) wave functions and energies

of the ground state, the so-called Kohn-Sham equations:

[

δT0

δϕ∗
i

+ Vconf + VH +
δExc

δρ

]

ϕi = εiϕi , (1.4)

where εi is the energy of the ith sp orbital ϕi. Notice that if the exact form of Exc and

its variation with respect the density were known, the Kohn-Sham formalism would lead
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to the exact energy of the system. Unfortunately, this is not the case and therefore this

part of the functional has to be approximated. Once this is done in a suitable way, by

selfconsistently solving the KS equations one can obtain the ground state density –Eq.

(1.3)– and total energy –Eq. (1.1)– of the real N -electron system. The latter is also given

by the alternative expression [Lun83]

E[ρ(r)] =
N
∑

i=1

εi −
1

2

∫

ρ(r)VH(r) dr + Exc[ρ(r)] −
∫

δExc

δρ
ρ(r) dr . (1.5)

A numerical comparison between Eqs. (1.1) and (1.5) is often taken as a convergence

criterion and as a matter of fact we have used it to check the accuracy of all the DFT

results presented in this thesis.

The quest for ever more accurate and more widely applicable exchange-correlation

functionals is one of the main tasks in DFT. Here we make use of an extremely simple

–though surprisingly accurate– approximation for Exc that constitutes the core of most

modern DFT codes: the Local Spin-Density Approximation.

1.1.1 The Local Spin-Density Approximation

If one considers that both the charge and the spin density vary slowly from one point

of the system to another, it can be assumed that, in the vicinity of a given point r, the

(inhomogeneous) electron gas can be well approximated by an infinite homogeneous one

–for which very accurate expressions of the exchange-correlation functional are known–

with the same density ρ(r) and magnetization m(r) of the actual system. Indeed, it is

well known that the task of determining good approximations for the exchange-correlation

energy is much simpler if the latter enters the game together with the density. This

approach is therefore referred to as the Local Spin-Density Approximation (LSDA) and

allows one to write Exc in the simple form

ELSDA
xc [ρ(r), m(r)] =

∫

ρ(r) Exc [ρ(r), m(r)] dr , (1.6)

where Exc [ρ(r), m(r)] is the exchange-correlation energy per particle of an homogeneous,

partially spin-polarized system with spin-up and spin-down densities n↑, n↓ that define

the electron density ρ = n↑ +n↓ and the spin magnetization m = n↑−n↓. Notice that the

latter should in principle be a vector but one can write it as a scalar since it is assumed that

the electrons have a common and constant spin quantization axis, namely the z-direction.

Exc [ρ(r), m(r)] can be further split into exchange and correlation contributions,

Exc [ρ(r), m(r)] = Ex [ρ(r), m(r)] + Ec [ρ(r), m(r)] , (1.7)

with its functional form depending on the dimensionality of the system under study. For

the exchange contribution one has the local analytical expression based on the Thomas-

Fermi-Dirac model, given by [Lip03]
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Ex [rs, ξ] =







− 2
√

2
3π rs

[

(1 + ξ)3/2 + (1 − ξ)3/2
]

(2D)

− 3
8π rs

(

9π
4

)1/3 [

(1 + ξ)4/3 + (1 − ξ)4/3
]

(3D)







, (1.8)

which interpolates [Bar72] between the fully polarized (ξ ≡ m/ρ=1) and unpolarized

(ξ=0) homogeneous electron gas and where rs is the Wigner-Seitz radius, defined by

rs =







(1/πρ)1/2 (2D)

(3/4πρ)1/3 (3D)







. (1.9)

For the correlation term there exist different proposals. We shall use the parametrization

by Tanatar and Ceperley [Tan89], given by

Ec [rs, ξ] = ai
0

1 + ai
1 x

1 + ai
1 x+ ai

2 x
2 + ai

3 x
3

(1.10)

with x ≡ √
rs when considering 2D systems, and the one by Perdew and Zunger [Per81]

Ec [rs] =







γi/(1 + βi
1

√
rs + βi

2 rs) if rs ≥ 1

Ai ln rs +Bi + Ci rs ln rs +Di rs if rs < 1







, (1.11)

for three-dimensional approaches. The different parameters appearing in both functionals

are taken from the Monte Carlo calculations by Ceperley and coworkers [Cep78] for the

fully polarized (i=P) and unpolarized (i=U) cases. It is worth to point out that a more

accurate expression for Exc has recently become available [Att02]. However, whereas a

very precise description of the exchange-correlation energy is needed for a quantitative

description of the Wigner crystallization at low electron densities, we do not believe that

the use of this new parametrization might have introduced substantial changes in the

results we shall discuss here.

Once the functional form of Exc [ρ(r), m(r)] is obtained, its variations with respect to

the electron density and spin magnetization taken at the ground state,

Vxc =
∂Exc(ρ,m)

∂ρ

∣

∣

∣

gs
; W xc =

∂Exc(ρ,m)

∂m

∣

∣

∣

gs
, (1.12)

define the so-called exchange-correlation potentials.

Taking z = 0 as the plane of symmetry of the system, which we consider to be

submitted to an in-plane electric field E (e.g. along the x-axis) and a perpendicular

magnetic field B, within the effective mass, dielectric constant approximation [Wen99],

the Kohn-Sham equations read

{

− h̄2

2m
P2 +

e

ǫ
Ex+ Vconf(r, z)

+ VH + Vxc +
[

W xc +
1

2
g∗µBB

]

σz

}

ϕα(r) = ǫαϕα(r) , (1.13)

where P = −ih̄∇ + eA/c represents the canonical momentum in terms of the vector

potential A, µB = h̄e/(2mec) is the Bohr magneton and σz is the z-component of the
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H GaAs

m∗ 1 0.067

ε 1 12.4

length scale ∼ 0.05nm a∗0 = ε
m∗a0 ∼ 10nm

(a0 = h̄2

mee2 )

energy scale ∼ 27.2 eV E∗
0 = m∗

ε2 E0 ∼ 12meV

(E0 = e2

a0
)

Table 1.1: Parameters for the Hydrogen atom and for the GaAs.

Pauli spin-vector operator σ. The quantities m ≡ m∗me, g
∗ and ǫ are, respectively, the

effective electron mass, gyromagnetic factor and dielectric constant, and depend on the

actual semiconductor materials containing the nanostructure. For numerical applications,

throughout this thesis we have considered GaAs/Al0.3Ga0.7As systems, whose correspond-

ing values are given in table 1.1, compared to those for the Hydrogen atom. Clearly, the

effective quantities yield big differences in the typical length and energy scales, imply-

ing e.g. that interactions such as the Zeeman one, contrarily as usually done in atomic

systems, can no longer be treated as small perturbations in semiconductor nanostructures.

The presence of an in-plane electric field breaks the cylindrical symmetry of quantum

rings and the resolution of Eq. (1.13) in Cartesian coordinates is unavoidable. How-

ever, if E = 0 the system recovers its symmetry and one can write the KS orbitals as

ϕnlσ(r, z, θ, σ) = unlσ(r, z)e
−ılθχσ, n = 0, 1, 2, . . . being the energy-band index, −l the

projection of the orbital angular momentum on the symmetry axis with l = 0,±1,±2, . . .,

and where σ=↑ (↓) refers to a spin-up (-down) electron. This allows one to write, using

effective atomic units h̄ = e2/ǫ = m = 1 to simplify the expressions, the Kohn-Sham

equations in cylindrical coordinates as [Pi98, Rei02, Wen00] :

[

−1

2

(

∂2

∂r2
+

1

r

∂

∂r
− l2

r2
+

∂2

∂z2

)

− ωc

2
l +

1

8
ω2

cr
2 + Vconf(r, z)

(1.14)

+ VH + Vxc +
(

W xc +
1

2
g∗µBB

)

ησ

]

unlσ(r, z) = εnlσunlσ(r, z) ,

with ησ=+1 (−1) for σ=↑ (↓), ωc = eB/c being the cyclotron frequency and where the

vector potential has been chosen in the symmetric gauge, namely A = B(−y, x, 0)/2.

It is worth to mention that in the presence of an applied magnetic field the exchange-

correlation energy not only depends on n↑,↓, but also on the paramagnetic currents within

the so-called Current Spin-Density Functional Theory (CSDFT) [Vig88], which is better

suited than LSDA for high values ofB. CSDFT has been applied to study two-dimensional

quantum dots and rings [Fer94, Lin01, Pi98, Rei02], and comparisons between the obtained

results and those given by LSDA have been made, showing an overall agreement and
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indicating that the effects caused by the inclusion of such currents are in general small

–see e.g. [Anc03].

1.1.2 Time-Dependent Local Spin-Density Functional Theory

We have seen that by solving the Kohn-Sham equations one is able to find an absolute min-

imum of the total energy corresponding to a certain value of the electronic density ρ0(r).

When selfconsistency is achieved, the mean field is essentially constant within consecutive

numerical iterations and the system remains in this minimum of energy: the ground state.

However, one can go beyond this static approach and study excited states of the system

induced by the interaction of the latter with a time-dependent external perturbation such

as, e.g., an electromagnetic field of a certain frequency ω. If this perturbation is weak,

the density will start slightly oscillating around the value corresponding to the minimum

energy and, since the Kohn-Sham potential depends on the density, it will oscillate as

well inducing in turn variations in the density itself. The smallness of the perturbation

allows one to use the linear response theory, generalizing the formalism of the previous

section within the so-called Time-Dependent LSDA (TDLSDA).

In the general case the perturbation may be spin-dependent, thus affecting in a differ-

ent way the n↑ and n↓ densities. It can then be represented by the operator

F (r, t) =
∑

σσ′

fσσ′(r) |σ〉〈σ′|e−iωt + h.c. (1.15)

and, if one assumes that the external field induces excitations without involving spin-

flip transitions –longitudinal response–, for a constant spin-magnetization direction F is

diagonal in the two-component Pauli space and therefore we can write its non-temporal

dependence as a vector, namely F (r) ≡




f(r)↑

f(r)↓



.

The perturbed spin-σ density is then

nσ(r, t) = n0,σ(r) + δnσ(r, ω)e−iωt + h.c. , (1.16)

n0,σ(r) being the corresponding ground-state value. The consequent perturbation in the

spin-σ KS potential is of the form

δV σ
KS(r, t) = δV σ

KS(r, ω)e−iωt + h.c. , (1.17)

with

δV σ
KS(r, ω) =

∑

σ′

∫

dr′
δV σ′

KS(r)

δnσ(r′)
δnσ′(r′, ω) (1.18)

and, thus, the total contribution of the external perturbation to the spin-σ mean field is

V σ
pert(r, t) = (fσ(r) + δV σ

KS(r, ω))e−iωt + h.c. ≡ V σ
pert(r)e

−iωt + h.c. . (1.19)

The selfconsistent spin-σ-density variation can be easily obtained from ordinary first-

order perturbation theory as [Lun83, Raj78]
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δnσ(r, ω) =
∑

σ′

∫

dr′ χ
(0)
σσ′(r, r′;ω)V σ′

pert(r
′) , (1.20)

where χ
(0)
σσ′(r, r′;ω) is the so-called free-particle spin-density correlation function, repre-

senting the probability amplitude of a change of spin-σ density at r induced by a change

of spin-σ′ density at r′ caused by V σ′

pert(r
′). It is obtained from the knowledge of the KS

orbitals as

χ
(0)
σσ′(r, r′;ω) = −δσσ′

∑

αβ

ϕ∗
α(r)ϕβ(r)

pα − pβ

ǫα − ǫβ + ω + iγ
ϕ∗

β(r′)ϕα(r′) , (1.21)

where the label α (β) refers to a sp level with spin σ (σ′), thermal occupation pα (pβ) and

energy ǫα (ǫβ), and where γ is a small imaginary quantity added in order to simplify the

analysis of the results, transforming the δ-peaks coming from the denominator poles into

Lorentzians. Therefore, one assumes that the electrons respond as free –noninteracting–

particles to the total perturbing field, which consists of the external plus the induced one

arising from the changes produced by the perturbation in the gs mean field. However, one

can also consider interacting electrons responding just to fσ′ –i.e. omitting the residual

interaction δV σ′

KS/δnσ in V σ′

pert. This allows to write Eq. (1.20) as

δnσ(r, ω) =
∑

σ′

∫

dr′ χσσ′(r, r′;ω)fσ′(r′) , (1.22)

where χσσ′(r, r′;ω) is the so-called TDLSDA spin-density correlation function that is

related to the free-particle one through a Dyson-type integral equation:

χσσ′(r, r ′;ω) = χ
(0)
σσ′(r, r ′;ω)

+
∑

σ1σ2

∫

dr1dr2 χ
(0)
σσ1

(r, r1;ω)Kσ1σ2
(r1, r2)χσ2σ′(r2, r

′;ω) . (1.23)

The residual interaction is represented by the kernel Kσσ′(r, r ′), consisting of the direct

Coulomb interaction plus the second-order functional derivative of Exc with respect to the

spin-up and -down electron densities:

Kσσ′(r1, r2) =
1

|r1 − r2|
+
∂2Exc(ρ,m)

∂nσ∂nσ′

∣

∣

∣

∣

∣

gs

δ(r1 − r2) , (1.24)

where

∂2Exc

∂nσ∂nσ′

∣

∣

∣

∣

∣

gs

=
∂2Exc

∂ρ2

∣

∣

∣

∣

∣

gs

+ (ησ + ησ′)
∂2Exc

∂ρ ∂m

∣

∣

∣

∣

∣

gs

+ ησησ′

∂2Exc

∂m2

∣

∣

∣

∣

∣

gs

≡ K(r) + (ησ + ησ′)M(r) + ησησ′ I(r) . (1.25)

In this thesis we consider only the dipole responses. Then F (r) is represented, taking

e.g. the perturbing field along the x-direction, by the charge-density Dn =
∑N

i=1 xi and

spin-density Dm =
∑N

i=1 xiσ
i
z dipole operators, which in vectorial form read
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Dn = x





1

1



 and Dm = x





1

−1



 . (1.26)

Taking advantage of the circular symmetry of quantum rings they can be rewritten as

D(±)
n =

r

2
e∓ıθ





1

1



 and D(±)
m =

r

2
e∓ıθ





1

−1



 , (1.27)

so that Dn = D(+)
n + D(−)

n and analogously for D(±)
m . Here ‘+’ (‘-’) indicates that the

corresponding excitation operator induces a ∆l = +1 (-1) transition.

Equations (1.23) can in principle be solved –see below– as a system of matrix equations

in coordinate space after performing an angular decomposition of χσσ′ and Kσσ′ of the

form

χσσ′(r, r′;ω) =
∑

l

χ
(l)
σσ′(r, r′;ω)eil(θ−θ′)

Kσσ′(r, r′) =
∑

l

K
(l)
σσ′(r, r′)eil(θ−θ′) . (1.28)

By calculating the angular integral in Eq. (1.20) one can readily see that, indeed, only

modes with l = ±1 couple to the external dipole fields D(±)
n and D(±)

m .

Defining the correlation functions χ
(±)
AB(r, r′;ω), with A,B = n,m, as

χ(±)
nn ≡ χ

(±)
↑↑ + χ

(±)
↑↓ + χ

(±)
↓↑ + χ

(±)
↓↓

χ(±)
mm ≡ χ

(±)
↑↑ − χ

(±)
↑↓ − χ

(±)
↓↑ + χ

(±)
↓↓

χ(±)
nm ≡ χ

(±)
↑↑ − χ

(±)
↑↓ + χ

(±)
↓↑ − χ

(±)
↓↓

χ(±)
mn ≡ χ

(±)
↑↑ + χ

(±)
↑↓ − χ

(±)
↓↑ − χ

(±)
↓↓ , (1.29)

the so-called response functions to the dipole fields are given by

αAB(ω) = π2
∫

dr1 dr2 r
2
1 r

2
2 [χ

(+)
AB(r1, r2;ω) + χ

(−)
AB(r1, r2;ω)]

≡ α
(+)
AB(ω) + α

(−)
AB(ω) , (1.30)

and, despite the excitation energies ω being always positive, formally hold the equalities

Re
[

α
(−)
AB(ω)

]

= Re
[

α
(+)
AB(−ω)

]

Im
[

α
(−)
AB(ω)

]

= −Im
[

α
(+)
AB(−ω)

]

. (1.31)

These relations are of great practical interest: in actual calculations they allow to deter-

mine both components (±) of the response function by using only e.g. the (+) one over

a frequency range such as (−ωmin, ωmax).

The excitations induced by short-duration perturbations are usually described by the

so-called strength functions SAB(ω)
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SAB(ω) = SBA(ω) ≡
∑

i

〈0|DB|i〉〈i|DA|0〉δ(ω − ωi0) , (1.32)

where |0〉 is the ground state and the sum –or integral in the case of continuum spectrum–

runs over all the excited states |i〉 of the N -particle Hamiltonian

H = H0 +
N
∑

i<j=1

e2

ǫ|ri − rj|
, (1.33)

H0 being the one-body part. The functions SAB present peaks at the energies of the

excited modes of the system ωi0 and have relative intensity proportional to the strength

carried by each mode. Interestingly, they are related to the imaginary parts of the response

functions by SAB(ω) = 1
π
Im[αAB(ω)]. Besides, some general properties of the system, as

well as a check of the accuracy of the calculations, can be extracted from the so-called

f -sum rules, which are related to the strength functions and finally expressed uniquely in

terms of gs quantities [Lip89]:

m
(nn)
1 =

∫

Snn(ω)ω dω =
1

2
〈0|[Dn, [H,Dn]]|0〉 =

N

2

m
(mm)
1 =

∫

Smm(ω)ω dω =
1

2
〈0|[Dm, [H,Dm]]|0〉 =

N

2
(1.34)

m
(mn)
1 = m

(nm)
1 =

∫

Smn(ω)ω dω +
∫

Snm(ω)ω dω = 〈0|[Dm, [H,Dn]]|0〉 = 2Sz .

Even though the operators Dn =
∑N

i=1 xi and Dm =
∑N

i=1 xiσ
i
z are expected to excite,

respectively, dipole charge-density and spin-density collective modes, it is worth to point

out that the above formalism leaves room for situations in which both operators induce

excitations in both the charge and the spin channels.

At first glance, it might be thought that to obtain the response functions αAB(ω) one

has to explicitly calculate the correlation functions χσσ′(r, r ′;ω). This is a very demanding

numerical task for nonhomogeneous systems, involving several large-dimension complex

matrix inversions for every value of ω. A guide to how to proceed can be found e.g. in

the Appendix B of Ref. [Bar94], which can be straightforwardly generalized to the Dyson

Eq. (1.23). However, if χσσ′(r, r ′;ω) is not needed for any other purpose, there is an

alternative way to determine the response functions circumventing the resolution of the

Dyson equation. We first introduce a noninteracting induced –e.g. by DA– density in

analogy with Eq. (1.20):

δn(0,A)
σ (r, ω) =

∑

σ′

∫

dr ′χ
(0)
σσ′(r, r ′;ω)fA

σ′(r ′) . (1.35)

Substituting the Dyson equation into Eq. (1.20) and introducing a self-explanatory matrix

notation, Eq. (1.20) becomes





δnA
↑

δnA
↓



 =





δn
(0,A)
↑

δn
(0,A)
↓



 +





χ
(0)
↑↑ 0

0 χ
(0)
↓↓



⊗




K↑↑ K↑↓

K↓↑ K↓↓



⊗




δnA
↑

δnA
↓



 , (1.36)
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where the symbol ‘⊗’ indicates an implicit spatial integration over the common r-variable

of the operands. The dynamic polarizability αAB(ω) is then readily written as

αAB(ω) = −
(

fA∗
↑ fA∗

↓

)

⊗




δnB
↑

δnB
↓



 . (1.37)

The problem of determining the dynamic polarizability is thus reduced to solving the

set of 2Np complex linear equations (1.36) instead of the far more complicated task of

inverting Np ×Np complex matrices, Np being the number of points used to solve the KS

equations, which is usually higher than the one employed in the response calculation.

The simplest physical situation to which the TDLSDA can be applied corresponds to

its paramagnetic limit, i.e., when the gs spin magnetization m(r) is identically zero. In

this case one has χ
(0)
↑↑ = χ

(0)
↓↓ , and the function M(r) entering Eq. (1.25) is identically

zero. Writing the induced densities as

δnn ≡ δnn
↑ + δnn

↓ = χnn ⊗ f

δmm ≡ δnm
↑ − δnm

↓ = χmm ⊗ f

δnm ≡ δnm
↑ + δnm

↓ = χnm ⊗ f

δmn ≡ δnn
↑ − δnn

↓ = χmn ⊗ f , (1.38)

where f denotes the r-dependence in Eq. (1.27), it is easy to check that in this limit χmn

and χmn are identically zero, and that χnn and χmm obey the Dyson equations

χnn = χ(0) + χ(0) ⊗Knn ⊗ χnn

χmm = χ(0) + χ(0) ⊗Kmm ⊗ χmm , (1.39)

in which the kernels are given by Knn = 1/r12 + K δ(r12) and Kmm = I δ(r12), where

r12 ≡ r1 − r2, and with the free-particle correlation function χ(0) = χ
(0)
↑↑ + χ

(0)
↓↓ being

the same in both channels since χ
(0)
↑↑ = χ

(0)
↓↓ . Thus, in the paramagnetic limit of the

longitudinal spin response one is left with uncoupled charge and spin channels, in which

the residual interaction consists of the direct Coulomb plus an exchange-correlation term

in one case, and only of the exchange-correlation contribution in the other. When the

system is spin-polarized χ
(0)
↑↑ 6= χ

(0)
↓↓ , M(r) is not identically zero and the two other

independent correlation functions χnm and χmn produce the charge-density response to

Dm, and the spin-density response to Dn, respectively. The general formalism has been

applied to the description of longitudinal modes in quantum dots and rings [Bar00, Emp99,

Ser99, Ser99b].

When considering a single quantum ring under in-plane electric and perpendicular

magnetic fields, we have calculated the charge-density dipole response of the system using

the real-time adiabatic TDLSDA approach described in detail in Ref. [Pi04], which we

have restricted to a simpler two-dimensional QR. The analysis of the modes has been



1.2. Single quantum rings under electric and magnetic fields 17

done following the method proposed in Ref. [Pue99]. Essentially, the procedure consists

in considering the interaction with the dipole field as a small perturbation of the gs |0〉 of

the N -electron ring along a certain direction ê, i.e., |0 ′
ê〉 ≡ eiλê·r|0〉 with λ≪ 1. Up to first

order in λ, this can be written as |0 ′
ê〉 ≈ (1 + iλê · r) |0〉. The ground and excited states

of the Hamiltonian H constitute a basis {|0〉, |j〉} (j 6= 0) in which the time-evolution of

the perturbed state can be expanded: |(t) ′
ê〉 = e−iHt|0 ′

ê〉 ≈ e−iω0t|0〉 +
∑∞

j=1 aj,ê e
−iωjt|j〉.

One can easily check that the quantity 〈(t) ′
ê|ê · r|(t) ′

ê〉 − 〈0|ê · r|0〉 ≡ dê(t) is related to

the dipole strength function by the expression

Sê(ω) =
1

πλ

∫ ∞

0
dê(t) sinωt dt =

∞
∑

j=1

|〈j|ê · r|0〉|2δ (ωj0 − ω) . (1.40)

Finally, to obtain the excitation energies of the system we perform a least-squares mini-

mization of the time-discretized function
∑

t [dê(t) −Dê(t)]
2, with Dê(t) given by

Dê(t) =
M
∑

j=1

[Aj,ê cosωj0t+Bj,ê sinωj0t] , (1.41)

and where the sum extends over M frequencies, its number being large enough to provide

an accurate dê(t) from Dê(t) and assuring the convergence of the calculation. The set

{ωj0} is obtained from Eqs. (1.40) and (1.41) as a discrete set of Dirac delta functions that

in practice are fairly narrow Lorentzians because of the finite-time numerical integration

in Eq. (1.40).

1.2 Single quantum rings under electric and mag-

netic fields

High-quality quantum rings have been fabricated on AlGaAs/GaAs heterostructures con-

taining a quasi-two-dimensional electron gas, both by self-assembly techniques [Lor00]

and by nanolithography using an atomic force microscope [Fuh01]. This has given rise

to many experimental and theoretical results involving, e.g., spin pairing [Ihn03, Lus01],

Zeeman splitting [Dun00, Fol01, Han03, Lin02], spin states due to in-plane or perpendic-

ular magnetic fields [Cio02, Rok01], spin-blockade effects [Cio02, Hut03, Ono02] and, of

particular interest because of its potential relevance to quantum information processing

schemes, spin transitions driven by magnetic fields [Ash93, Bur99, Bur00, Cio01, Cio03,

Hu00, Kou97, Sch95, Tar00] or –even in a more efficient way [Fuh01]– by gate voltages

[Fuh03, Ihn05, Kyr02, Los98]. Indeed, the possibility to externally control and induce

transitions between entangled spin-singlet | ↑↓〉−| ↓↑〉 and non-entangled spin-triplet | ↑↑〉
states is of great importance in the realization of qubits since it provides an efficient way to

manipulate the entanglement of these systems. Coulomb- and spin-blockade spectroscopy

experiments proved the possibility to achieve such spin control in lateral [Cio03, Kyr02]

and vertical [Bur00, Kou97] quantum dots, and similar conclusions have recently been

obtained from experiments with many-electron quantum rings [Fuh03, Ihn05].
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We have considered two- and three-dimensional single QRs with different confining

potentials and addressed their ground state properties and also the density dipole response

for the 2D ones, which have been considered to be submitted to both in-plane electric

and perpendicular magnetic fields. Although no structure is strictly two-dimensional, it

is commonly accepted that the confinement in the perpendicular direction is so strong

that 2D models catch the basic physics of the processes under study while rendering the

numerical effort much more affordable.

1.2.1 Ground state

At zero applied fields, for the ‘thick’ –i.e., axially symmetric 3D– quantum rings we have

taken a parabolic confining potential in the xy-plane with a repulsive core around the

origin, namely

Vconf(r) = V0 Θ(R0 − r) +
1

2
mω2

0 (r − R0)
2 Θ(r − R0) , (1.42)

where r =
√
x2 + y2, with Θ(x) = 1 if x > 0 and zero otherwise, together with a square

well of width w and depth V0 in the z-direction. The convenience of using a hard-

wall confining potential to describe the effect of the inner core in QRs is endorsed by

several works in the literature [Li05]. The strictly two-dimensional rings have firstly

been described by the same in-plane confinement while taking the density along the z-

direction to be a Dirac delta as done in Ref. [Emp01]. For the calculations we have taken

R0 = w = 5 nm, V0= 350 meV, and ω0= 15 meV, a set of parameters that fairly represents

the smallest rings synthesized in Ref. [Lee04], and the potential wells have been slightly

rounded off as in Ref. [Anc03].

Experimentally, the shell structure of quantum rings is usually inferred from their

addition spectrum [Lor00, Tar96], which is theoretically calculated from the expression

∆2(N) ≡ E(N + 1) − 2E(N) + E(N − 1) , (1.43)

E(N) being the total energy of the N -electron quantum ring. In Fig. 1.1 we show the

addition energies for two- and three-dimensional QRs. It can be seen that both models

sensibly yield the same results for this observable, a well-known fact for QDs [Pi01]. For

the 3D rings the value of the calculated total-spin third component, 2Sz, is also indicated

in the figure. It must be pointed out that the N = 3 case of the 2D model is fully

spin-polarized (2Sz = 3) whereas that of the thick ring it is not, due to the fact that the

exchange-correlation energy is overestimated by strictly two-dimensional models [Ron99b].

However, fully polarized N = 3 QR configurations are not an artifact of the LSDA. As

a matter of fact, they have also been found by exact diagonalization methods for some

ring sizes and confining potential choices [Zhu05]. For the rest of configurations displayed

in the figure both models yield the same spin assignments and coincide with those of

Ref. [Emp01], although the height of the peaks in ∆2(N) clearly depends to a large
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Figure 1.1: ∆2(N) (meV) for a 3D (solid dots, solid lines) and a strictly 2D (open dots, dashed

lines) quantum ring. The value of 2Sz obtained for the thick ring is indicated.

extent on the employed confining potential. The intensity of these peaks is proportional

to the relative stability of the electronic shell closures in the ring, which for N > 6 are

substantially different from those of QDs. For quantum rings, they are mainly governed

by the fourfold degeneracy of the noninteracting sp levels with |l| 6= 0 and the twofold

degeneracy of the noninteracting orbitals with |l| = 0 [Emp99]. This yields the marked

shell closures at N = 2, 6, 10, 20 and 28 with Sz = 0, as well as the Sz = 0 gs found for

N = 24. The 2Sz = 2 configurations that regularly appear between the mentioned ones

indicate that Hund’s rule is fulfilled by single QRs.

The complex spin structure around N = 13, missing in other QR calculations em-

ploying a different confining potential [Lin01], can be understood by looking at the cor-

responding sp energies εnlσ, displayed in Fig. 1.2: for N = 12, the second (0 ↑) state is

empty, yielding 2Sz = 2; for N = 13 the exchange interaction favours the filling of this

state yielding 2Sz = 3; for N = 14, one of the (±3 ↓) states is filled –they are degenerate–,

yielding 2Sz = 2 (actually, this many-electron configuration is nearly degenerate with the

one in which the (0 ↓) state is filled instead, which also yields 2Sz = 2). For N = 16, the

(0 ↓) and (±3 ↓) orbitals become populated, producing a fairly strong shell closure.

We have also considered a two-dimensional QR placed in both a magnetic field B

perpendicular to the plane of motion of the electrons and an in-plane electric field E
applied along the x-direction, both fields being static and uniform. In this case, the

confining potential modelling the ring has been chosen of the smooth form

Vconf(r) = V
(1)
0

1

1 + e(r−R0+w)/γ1
+ V

(2)
0

e(r−R0−w)/γ2

1 + e(r−R0−w)/γ2
. (1.44)

We have performed the calculations taking R0 = 2.5, V
(1)
0 = V

(2)
0 = 5, γ1 = γ2 = 0.3,
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Fermi energy.

Figure 1.3: Vconf (r) (upper) and electronic densities (lower) for the second 2D ring with N = 10

at B = 0 and E = 0, 1, 2, and 3 mV/nm (panels (a),(b),(c) and (d), respectively).

and w = 1.25 in effective atomic units, corresponding to a ring of average radius R0 ∼ 25

nm and width (distance between the inner and the outer edge) 2w ∼ 25 nm. A plot of

Vconf(r) is shown at the top of Fig. 1.3. In the lower panels of the same figure we plot

the gs density of the N = 10 ring at B = 0 and E = 0 − 3 mV/nm, showing how it is

progressively deformed along the direction of the electric field as the intensity of the latter

is increased.

In spite of this progressive deformation, all the electronic configurations we have found

are always smooth, without charge-density nor spin-density waves in the azimuthal direc-
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tion. We attribute this to the external ring potential we have used, which is fairly wide in

the radial direction. For more quasi-unidimensional rings and/or electronic systems more

dilute than ours, the LSDA can yield solutions with azimuthally-modulated charge and

spin densities [Rei02].

Figures 1.4-1.6 show the addition energies for quantum rings containing up to N = 12

electrons and for some selected values of the electric and the magnetic field. From the

maxima in ∆2(N) at (E = 0, B = 0) one can identify, as in the previous case, shell closures

at N = 6 and 10. As the electric field starts increasing, the deformation of the ring leads

to a shell structure in which the sequence of magic numbers differs from the circular case.

This can be seen, e.g., for (E = 1 mV/nm, B = 0), where a small peak arises at N = 4.

Increasing further the electric field while switching on the magnetic field, the addition

spectrum displays less structure. The peak at N = 8 is the sole exception, indicating a

very strong shell closure for the chosen Vconf . It can also be seen that, for the displayed

values of N , at B = 0 the spin is unaffected by electric fields up to E = 3 mV/nm. Sz(N)

corresponding to odd-N rings turns out to be very robust even when a magnetic field is

applied, and does not change for any of the values of E and B that we have considered.

The same occurs for the N = 8 case. However, at B 6= 0 interesting features appear for

the rest of even electron numbers, namely N = 2, 4, 6 and 10. Indeed, one can observe

transitions between the 2Sz(N) = 0 and 2Sz(N) = 2 states driven by the electric field

at fixed B. In the experiments [Fuh03, Ihn05], these gate-voltage-induced singlet-triplet

transitions have been related to the competition between the Hartree and the exchange

interactions, which favour, respectively, the formation of singlet and triplet spin states.

The second spin differences, S2(N) ≡ Sz(N + 1) − 2Sz(N) + Sz(N − 1), have also been
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measured from the slopes of the Coulomb-blockade peak spacings [Ihn05]. Our results

at E = B = 0 are shown in Fig. 1.7. It can be seen that S2(N) takes the three integer

values −1, 0 and 1, with one-unit jumps. The experimental N -sequence matches that of

our calculation except in one case, in which it passes directly from 1 to −1. We have

found these two-unit jumps only when B 6= 0.

For the two-electron system we have solved the Schrödinger equation with the Hamil-
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Figure 1.8: Spin-phase diagram for the two-electron ring in the electric-magnetic field plane.

Black (white) indicates a triplet (singlet) ground state.

tonian Eq. (1.33) using the method of Ref. [Pue01], which consists in a uniform dis-

cretization of the xy-plane and in using finite differences to evaluate the Laplacian in the

kinetic energy. Associating an index with the positions of the two electrons, (r1, r2) ≡ I,

the resulting matrix equation reads HIJΨJ = EΨI . The Hamiltonian matrix is very

sparse since only the kinetic term yields non-diagonal contributions to HIJ , the external

(confinement and electric and magnetic) fields as well as the Coulomb interaction being

local in (r1, r2). The eigenvalue matrix equation can be solved by using iterative methods

for boundary value problems [Koo90]. This way one determines E and ΨI by repeated

action of HIJ on an arbitrary initial guess for ΨI . For the singlet (triplet) state, the wave

function Ψ(r1, r2) is symmetric (antisymmetric) with respect to the exchange of r1 and

r2. This result implies that the triplet state vanishes for I = (r, r) whereas the singlet one
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Figure 1.9: Charge-density dipole strength function S(ω) (arbitrary units) as a function of the

excitation energy ω corresponding to N = 6, B = 5 T, and several values of the applied in-plane

electric field E .

has a cusp at these I’s that compensates the divergence in the Coulomb interaction. To

avoid this singularity, we do not solve the Schrödinger equation at these specific values

for I, but directly impose the null value of Ψ for the triplet state, and the cusp behavior

for the singlet one. In order to extract the cusp condition, the smooth character of the

chosen confining potential has allowed us to extrapolate the wave function at the closest

I’s by using the analytically known behavior for parabolic confinements [Zhu96], and we

have systematically checked the stability of the results by using finer grids in the calcu-

lations. A detailed exploration of the E − B plane is presented in Fig. 1.8 with the spin

phase diagram corresponding to the ground state of the ring. The exact calculation shows

the existence of spin islands at relatively low electric and magnetic fields that cause spin

oscillations when, for a fixed E , one increases B. LSDA calculations for the same N = 2

system (not shown here) also predict the possibility to induce singlet-triplet transitions
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by varying the intensity of the electric field at fixed B. However, it must be pointed out

that, as expected, the mean-field approach is unable to reproduce the details of the exact

calculation for this low-density system, missing in particular the existence of spin islands

and the associated spin oscillations.

1.2.2 Density dipole response

Fig. 1.9 shows the charge-density dipole strength function for the the N = 6 ring at

B = 5 T and E = 0 − 3 mV/nm as the sum of the contributions corresponding to the x̂-

and ŷ- directions, i.e. S(ω) ≡ Sx̂(ω) + Sŷ(ω). One can see that the more salient feature

when an electric field is applied to the QR is its robustness. The E = 0 reference spectrum

(bottom panel) shows a two-peak structure around ω = 5 meV due to the splitting caused

by the magnetic field and some high-energy strength around ω = 20 meV; the latter is

discussed in detail in Ref. [Cli05] and constitutes a signature of the QR geometry that

shows up in its far-infrared spectrum. The upper panels show that both structures are

clearly visible as the electric field increases, with the only noticeable change being a higher

fragmentation of the dipole strength, as well as the appearance of a soft mode around

ω = 1 meV that is absent when the system is axially symmetric (i.e. when E = 0).

1.3 Vertically coupled quantum rings

One of the most appealing properties of quantum dots, widely regarded as ‘artificial

atoms’, is their capability of forming molecules. Systems composed of two vertically

coupled QDs have been investigated experimentally and theoretically at B=0 and also

submitted to magnetic fields applied along different directions [Ama01, Asa98, Aus04,

Bou00, Bur97, Hu96, Jac04, Jou00, Mar00, Mat02, May97, Pal95, Par00, Pi01, Pi05,

Ron99, Sol96]. More recently, nanometer-sized complexes consisting of stacked layers of

InGaAs/GaAs quantum rings have also been realized, and their optical and structural

properties characterized by photoluminescence spectroscopy [Gra05].

Here we consider two vertically coupled 3D quantum rings separated by a variable

distance d. The system as a whole can be viewed as a ‘diatomic’ quantum ring molecule

(QRM) with total electron number N , and the variation of d allows one to study differ-

ent ‘interatomic’ regimes. By analogy with real molecules, we consider homonuclear and

heteronuclear QRMs, i.e., those constituted by identical or by different quantum rings.

Indeed, for vertically coupled lithographic double QDs, it has been found unavoidable

[Pi01] that a slight mismatch is unintentionally introduced in the course of their fabrica-

tion from materials with nominally identical constituent quantum wells, and the same is

expected to happen for QRs.

The rings are described using the same in-plane confining potential as in the single

QR case, Eq. (1.42) , but now with two quantum wells separated by a distance d along

the z-direction. For the heteronuclear QRM we consider two situations: one with a small
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mismatch δ ≪ V0 between the depth of the wells and another with the rings having

slightly different radii.

1.3.1 Homonuclear quantum ring molecules

When considering two identical rings, we have calculated their gs structure for d = 2,

4 and 6 nm, and up to N = 32 electrons. It is known [Pi01] that for a given electron

number, the evolution of the gs (‘phase’) of a QRM as a function of d may be thought

of as a dissociation process. Within this scheme, each orbital is represented by four

quantum labels: Sz, l, the parity, and the value of reflection symmetry about the z = 0

plane. Analogously as in natural molecules, symmetric/antisymmetric states |S〉/|AS〉
with respect to this plane are called bonding/antibonding states.

The energy difference between bonding and antibonding pairs of sp orbitals, ∆SAS,

can be properly estimated [Pi01] from the difference in energy of the antisymmetric and

symmetric states of a single-electron QRM, namely ∆SAS ∼ E(2Σ−
u )−E(2Σ+

g ) –see below

for the notation–, and we have found it to vary from 24.9 meV at d = 2 nm (strong

coupling), to 1.49 meV at d = 6 nm (weak coupling). In this range of inter-ring distances,

∆SAS can be fitted as ∆SAS = ∆0 e
−d/d0 , with ∆0 = 82 meV and d0 = 1.68 nm. The

relative value of h̄ω0 and ∆SAS crucially determines the structure of the molecular phases

along the dissociation path.

Figure 1.10 shows the evolution with d of the ground-state energy and molecular phase

of a QRM made of N = 3 − 7 electrons. Each configuration is labeled using an adapted

version of the ordinary spectroscopy notation [Ron99], namely 2S+1L±
g,u, where S and L

are the total |Sz| and |Lz|, respectively. The superscript + (−) refers to even (odd) states

under reflection with respect to the z = 0 plane, and the subscript g (u) to positive

(negative) parity states. To label the molecular sp states we have employed the standard

convention of Molecular Physics, using σ, π, δ, . . . for l = 0,±1,±2, . . ., whereas upper case

Greek letters refer to the total |Lz|. The figure shows that the energy of the molecular

phases increases with d. This is due to the increasing energy of the sp bonding states

as the rings become more separate [Pi01a], which dominates over the decrease in the

Coulomb energy. At larger inter-ring distances (not shown here), the constituent QRs are

so apart that eventually the weakness of the e-e interaction dominates and the tendency

is reversed. The phase sequences are the same as for double quantum dots [Pi01] although

the transition inter-ring distances are different as they obviously depend on the shape and

strength of the confining potential. As happens for double quantum dots, we have found

that the first phase transition of a few-electron QRM is always due to the replacement of

an occupied bonding sp state by an empty antibonding one.

In Fig. 1.11 we show the addition spectra for homonuclear QRMs with up to N = 31

for the three selected inter-ring distances. Also shown is the spectrum of a single QR for

comparison. At small distances (d =2 nm, ∆SAS ≫ h̄ω0) the spectra for the QRM and for

the single ring are rather similar, especially for few-electron systems, with minor changes
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Figure 1.10: Energy (meV) and gs ‘molecular’ phases of the homonuclear QRM as a function

of d for N = 3 − 7. Different phases are represented by different symbols.

arising in the N ∼ 12 and ∼ 24 regions that are commented below. It is thus clear that

in this regime the two QRs are electrostatically and quantum-mechanically coupled and

behave as a single system. At intermediate distances the spectrum pattern becomes more

complex, but at larger distances (e.g. d = 6 nm), when the QRM molecule is about

to dissociate, the physical picture that emerges is rather simple and can be interpreted

using intuitive –yet approximate– arguments: At large distances (∆SAS ≪ h̄ω0), the

QRs are coupled only electrostatically, with most of the (|S〉,|AS〉) pairs of states being

quasidegenerate. Electron localization [Wie03] in each constituent QR can be achieved by

combining these states as (|S〉±|AS〉)/
√

2 and, as a consequence, the strong Sz = 0 peaks

found at N = 12 and 20 are readily interpreted from the peaks appearing in the single-

ring spectrum at N = 6 and 10; the process can be viewed as the symmetric dissociation

of the original QRM leading to very robust closed-shell single-QR configurations. This

is also the origin of the peaks with Sz = 0 at N = 2 and 4: in the former case, the

situation corresponds to one single electron being hosted in each constituent QR coupled

into a singlet state, whereas in the latter case the QRM configuration can be interpreted

by considering two QRs, each one occupied by two electrons filling the 1s shell. At this

distance other dissociations display a more complicated pattern, such as the 16 → 8 + 8
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Figure 1.11: ∆2(N) for homonuclear QRM with d = 2, 4, and 6 nm, and for the single QR.

The energies have been offset for clarity and the value of 2Sz is indicated.

or 8 → 4 + 4 ones, whose final products are QRs that fulfill Hund’s rule whereas the

actual QRM has Sz = 0. These could be interpreted as rather entangled QRMs, ‘harder’

to dissociate, for which an inter-ring distance of d = 6 nm is not large enough to allow for

electron localization. The fact is that not only quasidegeneracy of occupied |S〉 and |AS〉
states at a given d plays a role in this intuitive analysis, but also whether their number

is equal or not, so that they eventually may be combined to favour the localization. An
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example of these two different situations is illustrated in Fig. 1.12, where we show the sp

states of the N = 16, 20 and 23 QRMs at d = 6 nm. In the first and third cases, the filled

bonding states near the Fermi level have not filled antibonding partner to combine with

and are delocalized over the whole volume of the QRM: as in natural molecules, some

orbitals contribute to the molecular bonding, whereas some others do not.

1.3.2 Heteronuclear quantum ring molecules

We have considered two possible values for the mismatch between the quantum wells,

namely 2δ = 2 and 4 meV (recall that V0 = 350 meV). It can be easily checked that in

the weak coupling limit (h̄ω0 ≫ ∆SAS), 2δ is approximately equal to the energy difference

between bonding and antibonding sp states, which would be almost degenerate if δ = 0.

Therefore, this mismatch is expected to have important effects on the electron localization

as the inter-ring coupling becomes weaker.

Fig. 1.13 displays the addition energies for heteronuclear QRMs as a function of d and
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Figure 1.13: Same as Fig. 1.11 for heteronuclear QRMs with 2δ = 2 meV (left panels) and

2δ = 4 meV (right panels). Note that in some cases two different values of Sz have been assigned

to the same peak, meaning that the corresponding configurations are nearly degenerate.

the electron number, as well as for the single quantum ring. It can be seen that in the

strong coupling limit the effect of the mismatch on the addition energies is negligible, as

expected [Pi01]. In this case, as we show below, the electrons are completely delocalized in

the whole volume of the QRM, and the introduced mismatch is unable to localize them in

either of the constituent rings. The situation however changes in the weak coupling limit.

Indeed, for few-electron QRMs, which represent the more interesting physical situation,

we have shown in the previous section that the fingerprint of the homonuclear character

is the appearance of peaks in ∆2(N) corresponding to N = 2 and 4, as well as their

spin assignment Sz = 0. It can be seen from Fig. 1.13 that in the heteronuclear case,

whereas in the intermediate regime (d = 4 nm) the N = 4 peak is still present –although

with 2Sz = 2–, at larger inter-ring distances it eventually disappears, yielding an addition

spectrum that, as we shall see, is characteristic of these kinds of configurations.
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ing molecular configuration is also indicated.

It is useful to display the dissociation of the QRM representing the d-evolution of the

sp molecular wave functions by introducing the z-probability distribution function [Pi01]

P(z) = 2π
∫

dr r [u(r, z)]2 . (1.45)

Examples of these probability functions can be seen in Fig. 1.14, where we show P(z)

for (N = 20, 2δ = 4 meV), and (N = 8, 2δ = 2 meV) (deeper well always in the z < 0

region), each case for the three chosen distances. The probability functions are plotted

ordered from bottom to top according to increasing sp energies. For N = 20, the final

configurations are the closed-shell (N = 10, 2Sz = 0) QRs, whereas for N = 8, the

(N = 4, 2Sz = 2) configurations induced by Hund’s rule emerge.
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Figure 1.15: ∆2(N) for heteronuclear QRM made of QRs with different core radii, namely

R0 = 5 and R0 = 6 nm.

Finally, we discuss the case of two axially-symmetric vertically coupled QRs with

different radii and study the effect this asymmetry has on the addition spectrum (we have

discarded a possible disalignment of the QR symmetry axes, as addressing this situation

would require a much more demanding full 3D calculation [Pi04]). To this end, we have

taken for one ring R0 = 6 nm while for the other one we have kept the same value as

before, namely R0 = 5 nm (the mismatch δ between both wells is set to zero in this case).

Vertically coupled QDs of different radii have been described in Ref. [Bur97] to address

the sensitivity of the exchange coupling to an applied in-plane electric field.

We show in Fig. 1.15 the corresponding addition energy spectra for up to N = 14

electrons and inter-ring distances d = 2, 4, and 6 nm. It can be seen that in the strong

and intermediate coupling regimes they are fairly similar to the previous heteronuclear

case (and to the homonuclear case as well), indicating a fairly robust structure for the

QRM in these limits. As before, the heteronuclear character clearly shows up in the weak

coupling limit, with a peak structure and Sz assignments remarkably similar to those
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discussed in the previous situation with δ 6= 0 and that seems to be a clean fingerprint of

such asymmetric systems.

This quantitative study allows one to associate realistic values to the physical magni-

tudes and to the effects that characterize vertically coupled quantum rings, like the shell

closures as a function of the inter-ring distance, which as said above can be disclosed by

the calculated addition spectra, as well as the ground-state spin assignments. Although

we still lack of experimental results to compare ours with, we believe that the presented

theoretical predictions can be helpful in the analysis of future experiments on these kinds

of systems.

1.4 Concentric quantum rings

Progress in nanofabrication technology has recently allowed to achieve the formation of

‘artificial diatomic molecules’ made of self-assembled, strain-free, concentrically-coupled

GaAs/AlGaAs double quantum rings [Man05]. This has sparked experimental and the-

oretical studies on the ground state and optical properties of these systems. In particu-

lar, photoluminescence spectra of concentric double quantum rings (CDQRs) have been

measured and interpreted as evidence of exciton localization in either the inner or the

outer ring [Kur05, Man05]; the single-electron [Fus04, Pla05] and electron-hole [Pla05]

energy levels considering the application of a magnetic field perpendicular to the plane of

symmetry of the rings were studied theoretically showing that, even for small inter-ring

distances, self-assembled CDQRs can be approximately described as a sum of two decou-

pled rings. Also, the magnetic response of one- to three-electron energy levels in this type

of nanostructures has been investigated [Sza05].

The singular geometry of concentric quantum rings has been found to introduce char-

acteristic features in the addition spectrum compared to that of other coupled nanoscopic

quantum structures. Indeed, unlike lateral quantum dots, CDQRs couple concentrically

and thus preserve their cylindrical symmetry. Moreover, these molecules are heteronu-

clear, with the volume of the outer ring usually exceeding that of the inner ring [Man05],

making the maximum charge density of bonding and antibonding states localize in differ-

ent rings and thus showing distinct energy spacing between consecutive azimuthal levels

[Pla05]. In these systems the electron localization in either ring follows from an intrin-

cate interplay between spatial confinement, centrifugal forces (favouring the occupation

of the inner ring) and Coulomb interaction (which tends to favour the occupation of the

more voluminous ring, as long as it is not heavily charged), with each of these factors

prevailing in a given range of inter-ring distances. Interestingly, this interplay may lead to

spin-dipolar configurations, where the inner-ring charge density is strongly spin-polarized

whereas the outer-ring one it is not.

Analogously as done for single QRs, we have considered two- and three-dimensional

concentric double quantum rings, addressing their ground state and also the dipole re-

sponse in the former case. The three-dimensional system has been taken to have variable
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inter-ring distance by changing the radius of the outer ring whereas for the 2D one we

have considered the application of a variable perpendicular magnetic field while keeping

the size of the rings fixed.

1.4.1 Variable inter-ring distance

The 3D concentric double quantum rings are described here by a confining potential in

the (r, z) plane consisting of two superimposed Gaussian curves with total height given

by

H(r) = hin exp

[

−
(

r −Rin

σin

)2
]

+ hout exp

[

−
(

r − Rout

σout

)2
]

, (1.46)

where Rin and hin (Rout and hout) correspond, respectively, to the radius and maximum

height of the inner (outer) ring, and σin/out give the corresponding half-widths. The

confinement is then defined by

Vconf(r, z) =







0 if 0 ≤ z ≤ H(r)

Vc otherwise,







, (1.47)

with Vc standing for the heterostructure band-offset –misalignment between the bottom of

the AlGaAs and the GaAs conduction bands. It is worth stressing that this confinement

allows one to fit accurately the DQR profile observed by atomic force microscopy in Ref.

[Man05]. To this end, we have fixed the inner-ring radius at Rin = 22.5 nm while the

outer one is varied from Rout = 22.5 to 50 nm. The inner- (outer-)ring half-width is

12.5 (30) nm, and both have height hin/out = 4 nm. For GaAs/Al0.3Ga0.7As systems, the

band-offset is Vc = 262 meV. Eq. (1.47) also renders a detailed description of the vertical

confinement, which is essential because of the sensitivity of the energy spectrum to the

depth of the valley separating the inner and outer ring [Pla05]. Moreover, within this

model the evolution from a single to a double quantum ring as Rout increases implies a

transfer of volume from the inner to the outer ring that realistically mimics the As-flux-

controlled self-assembly [Man05]. On the other hand, the three-dimensional Hamiltonian

–though axially symmetric– is important not to overestimate the role of the Coulomb

interaction [Ron98]. Note also that, since the height of the two Gaussian curves adds up

when they overlap, the area of the DQR cross-section is constant.

One expects that for small inter-ring separations a large number of electrons can

be placed in the inner ring because the electronic repulsion hardly compensates for the

stronger vertical confinement in the outer ring and the centrifugal stabilization. On the

contrary, with increasing separation the relative volume of the outer ring grows and at

some point the electrons should move into it rather swiftly. The situation however becomes

less intuitive at intermediate distances, where the KS orbitals localized in the inner and

outer ring are expected to be close in energy and the Coulomb interaction to become

critical in the determination of the shell filling and the electron localization. Thus, we have
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found it convenient to disentangle this factor investigating independent-particle effects in

the first place.

Fig. 1.16 shows the single-electron orbital energy levels εnl for CDQRs with different

Rout. Only the two lowest eigenvalues (n = 0 and n = 1) for each l are depicted because

n = 2 states are much higher in energy. In all cases, n = 0 and n = 1 levels clearly

show different spacing between consecutive values of l. This reflects the different mean

radii of their charge densities, which allow one to distinguish the states as localizing in

the inner or in the outer ring (represented by solid and open boxes, respectively). Such

classification is justified by the above-mentioned fact that the single-electron orbitals of

self-assembled CDQRs can be approximately described as the sum of states of both rings,

considering each one as an isolated entity [Fus04, Pla05]. One can see that for Rout = 45

nm n = 0 states localize in the inner ring, whereas those with n = 1 localize in the outer

one. As Rout increases the relative volume of the inner ring is reduced, and therefore the

states localizing in it are destabilized. Consequently, with increasing Rout the lowest-lying

levels of the inner ring first become quasidegenerate with those of the outer one and finally

become more excited (i.e. n = 0 states localize in the outer ring).

The radial charge density corresponding to someN−electron ground states of Fig. 1.16

are shown in Fig. 1.17, resulting from an independent-particle filling of the energy levels.

The insets show the corresponding confinement profile for each value of Rout. It is noted

that for Rout = 45 nm, even though the outer ring is clearly formed, almost no leaking of

density from the inner one to it is observed. This means that all n = 0 orbitals are mostly

localized within the inner ring regardless of their angular momentum. A similar situation

occurs for Rout = 50 nm, but in this case the n = 0 orbitals are mostly localized in the

outer ring. Only in the intermediate region, where some n = 1 states are close in energy to

n = 0 ones with l > 0, simultaneous charging of both rings appears. These results indicate

that the tunneling between both rings is strongly suppressed by the Gaussian-like profile

of the confinement cross-section [Man05]: since the vertical confinement is much stronger

than the lateral one, small differences in the height of the inner and outer ring have a

dramatic effect on the corresponding energy levels. For Rout = 45 nm the outer ring is

clearly defined, but its height is lower than that of the inner ring (see insets of Fig. 1.17),

so its energy levels are relatively very excited. On the contrary, for Rout = 50, when the

height of both rings is already comparable, the outer ring has become much wider than

the inner one and therefore its energy levels are more stable. It is worth stressing again

that these effects cannot be found if the employed confining potential does not properly

consider the variations of the vertical confinement for each radial position. Indeed, we have

carried out calculations taking Vconf to be similar to that of previous works for laterally

coupled quantum dots [Wen00] and large CDQRs [Sza05], namely a quantum well in the

growth direction and two overlapping parabolae in the radial direction. The results are

then qualitatively different: for all inter-ring distances the (n = 0, l = 0) ((n = 1, l = 0))

states localize mainly in the inner (outer) ring, whereas the |l| > 0 states do so in the

opposite one. This would suggest that the centrifugal potential and the inter-ring spatial
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Figure 1.16: Lowest-lying orbital energy levels vs. angular momentum in CDQRs with Rin =

22.5 nm and changing Rout. Solid (open) boxes correspond to states localized in the inner (outer)

ring.

confinement have comparable contributions in the Hamiltonian [Sza05]; it does not seem

to be the case for self-assembled CDQRs [Fus04, Pla05].

In Fig. 1.18 we show the independent-particle addition energy spectra. ForRout = 42.5

nm ∆2(N) are essentially those of a single QR, with peaks at the closed-shell configurations

N = 2, 6, 10 and 14. Obviously, no peaks are now observed at half-shell-filling values of

N since we are neglecting the Coulomb interaction. It can be seen that the height of

consecutive maxima increases with N because the larger l is, the larger the energy spacing

∆E(n, l± 1) becomes (see Fig. 1.16). The first irregularity is observed at Rout = 45: the

peak at N = 14 is lower than the one at N = 10. This happens because once the

(n = 0, l = 3) shell is closed by the 14th electron –i.e. that whose filling gives rise to

a CDQR with N = 14–, the next energy level is not (n = 0, l = 4) but (n = 1, l = 0),

which mostly localizes the wave function in the already voluminous external ring. As

Rout keeps increasing, the lowest orbitals with n = 1 start catching up with lower-l states

with n = 0. This is manifested in the spectra as the gradual destruction of the regular
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Figure 1.17: Radial charge-density distribution of N noninteracting electrons in DQRs with

Rin = 22.5 nm and changing Rout. The insets illustrate the DQR cross-section profile.

single-QR pattern, which is replaced by lower peaks at ever smaller values of N . The

reduced height of the incoming peaks is in part due to the smaller energy spacing between

consecutive l’s in the outer ring. However, one should also take into account that the

outer-ring levels intermix with the inner-ring ones, so that consecutive electrons may fill

shells of different rings and, therefore, the height and distribution of the addition energy

peaks is not simply that of the inner ring up to some value of N , plus that of the outer one

for larger N ’s. Instead, we generally observe a regular quantum-ring spectrum up to the

filling of the last-but-one shell prior to the (n = 1, l = 0) state, and afterwards the peaks

become irregular in both height and position. The most complicated spectrum is found

at Rout = 49 nm, when the lowest levels of the inner and outer rings are quasidegenerate.

A further increase in the inter-ring separation from Rout = 49 to 50 nm already retrieves

the regular spectrum of a single QR. This is because the density of states of the outer

ring is much higher than that of the inner one. As a consequence, a slight stabilization of

the outer-ring levels rapidly leads to a situation where many electrons can be hosted by

it before reaching the first inner-ring level (see Fig. 1.16 for Rout = 50 nm).

The next step is to investigate the influence of the electron-electron interaction, which

will be different in each ring since in general they have different volumes (we may say

that the two rings have different ‘electroaffinities’ to draw again a parallel with ordinary

molecules). In general, we expect that the Coulomb repulsion pushes the electrons towards

the larger ring [Sza05], but this trend may be reversed when the latter contains too many
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Figure 1.18: ∆2(N) in noninteracting CDQRs with Rin = 22.5 nm and changing Rout.

particles. Fig. 1.19 depicts the radial charge densities of some N -electron ground states

of CDQRs with increasing Rout, taking the direct Coulomb and the exchange-correlation

contributions into account. We observe that the charging of the outer ring starts at smaller

values of Rout than in the independent-particle case since the Coulomb interaction helps

to compensate for its stronger vertical confinement. Indeed, for Rout = 45 nm, the 7th

to 14th electrons already localize in the outer ring, whereas before this only happened

from the N = 15 electron on. If we inspect the sp energy levels for Rout = 45 nm in

Fig. 1.16 we notice that for the N = 7 electron to fill the lowest n = 1 state it skips

as much as two empty shells of the inner ring ((n = 0, l = 2) and (n = 0, l = 3)). This

conspicuous violation of the Aufbau principle is made possible by the large difference

between the Coulomb interaction strength in each ring as compared to that between the

respective kinetic energies. The latter is smaller in the inner ring due to the weaker vertical

confinement, but in it the electronic repulsion is stronger due to its smaller volume (see

inset in Fig. 1.17). We also observe that the 15th electron localizes back again in the inner

ring because of the accumulated electron charge in the outer one. Likewise, for Rout = 50

nm, despite the larger volume of the outer ring, the Coulomb interaction induces the

localization of high-N states in the inner one. Nonetheless, the most complicated frame is

found at Rout ∼ 47.5 nm, where the Coulomb-energy stabilization provided by the electron

localization in the outer ring is of the same order as the confinement-energy stabilization

ensuing from localization in the inner one. As a result, the charge-density localization is

extremely sensitive to the number of confined electrons. Hence, the N = 1 − 2 electrons
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Figure 1.19: Same as Fig. 1.17 for the interacting CDQRs.

localize in the inner ring, the N = 3−5 do so in the outer ring, the N = 6 electron is inside

again . . . In other words, around this inter-ring distance the Kohn-Sham orbitals localized

in the inner and outer ring are very close in energy, hence yielding a strongly correlated

system where the Coulomb-mediated inter-ring tunneling becomes very efficient. It is

worth stressing that the entanglement in this structure arises from ‘molecular orbitals’

with similar energies but very different spatial distributions. Even though, as it has

been shown in the previous section, a similar situation may appear in vertically coupled

heteronuclear quantum rings, in the latter case it would be difficult to (experimentally)

tune the appropriate barrier thickness for the dimensions of the constituent rings. In

contrast, for CDQRs this situation follows naturally from the As-flux-controlled synthesis

described in Ref. [Man05].

A striking feature of the entangled CDQR systems is the possibility of forming spin-

dipolar ground states. This is illustrated in Fig. 1.20(a), where we show the N = 12 gs

spin-up and spin-down charge densities for the CDQR with Rout = 47.5 nm. Interestingly,

the charge density in the inner ring is completely spin-polarized, whereas in the outer one

it is not. To understand this phenomenon, in Fig. 1.20(b) we show the corresponding

Kohn-Sham sp energies. Solid and open triangles represent spin-orbitals localized in the

inner and outer ring, respectively, with upward (downward)-pointing triangles accounting

for spin-up (-down) states as usual. By comparison with the independent-particle energies

of Fig. 1.16, it is clear that the electron-electron interaction is now playing a major role.

In particular, the energy splitting between spin-up and spin-down levels in the inner ring

is much larger than that in the outer one. Again, this is due to the stronger Coulomb
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Figure 1.20: (a) Radial charge-density distribution and (b) KS orbital energies of the N = 12

ground state in a CDQR with Rin = 22.5 nm and Rout = 47.5 nm. In panel (b), solid (open)

triangles represent orbitals localized in the inner (outer) ring.

interaction in the smaller ring, which gives rise to larger exchange-correlation energies

thus favouring the appearance of locally strongly spin-polarized configurations.

Finally, in Fig. 1.21 we show the addition energy spectra and spin values of CDQRs

with interacting electrons, as well as those of single QRs with radii R = 22.5 and 50

nm (dashed lines). The spectrum of the smallest single ring is regular, with maxima at

closed-shell values of N (6, 10 and 14) and secondary maxima, arising from the exchange

energy, at half-shell filling values (N = 4, 8, 12). One can realize that the peak at N = 2,

corresponding to the filling of the (n = 0, l = 0) shell, is missing. This is because the

(n = 0, l = 0) orbitals lie very close in energy to the (n = 0, l = ±1) ones, due to the

large radius of the ring. The spin sequence is well defined by Hund’s rule. For Rout = 30

nm the confining potential is still that of a single QR, but the effective mean radius is

slightly increased by the exiting outer ring. As a result, irregularities are introduced

around N = 3, where now a local maximum shows up. This is due to the formation of an

exchange-favoured Sz = 3/2 three-electron ground state, characteristic of QRs with large

mean radius [Zhu05]. Since it could be argued that the LSDA provides a less accurate

description of small-N systems, we have carried out calculations using the configuration

interaction (CI) procedure of Ref. [Pla05], which confirm the spin-polarized gs for N = 3.
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Figure 1.21: ∆2(N) versus the number of confined interacting electrons in CDQRs with Rin =

22.5 nm and changing Rout (full lines). Single R = 22.5 and 50 nm quantum ring spectra are

also shown for comparison (dashed lines). The values of 2Sz are also indicated.

Up to Rout = 40 nm, the spectrum remains almost constant, except for the increasing size

of the N = 3 peak as the mean radius of the CDQR becomes larger (this is essentially

a single-ring effect). For Rout = 42.5 and Rout = 45 nm, the flattening of the addition

energy spectrum for decreasing values of N reflects the localization of electronic states in

the outer ring. It can be observed that, once the first level of the outer ring is occupied,

the spectrum no longer displays any regular pattern, which suggests that the system is

then ruled by the Coulomb interaction. For Rout ∼ 47.5 nm, when electronic correlations

play the most important role, the entire spectrum is irregular. Finally, for Rout = 50 nm

the spectrum resembles that of the single quantum ring with R = 50 nm up to N = 9

electrons, which means that the outer-ring low-lying energy levels are already more stable

than the inner-ring ones (notice that the single QR with R = 50 nm has an irregular

spectrum as well since it is dominated by the electron-electron interaction, owing to its

large radius).

It must be pointed out that we have explored CDQRs with different sizes to determine

the range of applicability of the shown results. On the one hand, for smaller CDQRs the

physical behavior is similar, though the stronger kinetic energy reduces the range of inter-

ring distances at which the electron-electron interaction is critical. On the other hand,

for larger CDQRs the system soon enters the low-density regime and the Coulomb term

leads to Wigner crystallization transitions [Ped02] for most inter-ring distances.
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1.4.2 Variable perpendicular magnetic field

Once the effects of a variable inter-ring distance on the ground state of the CDQRs have

been addressed, it is natural to investigate whether and how electron localization shows

up as a function of other parameters of the system such as, e.g., a perpendicularly applied

magnetic field, as well as the corresponding effects on another key observable like the

longitudinal dipole response. The latter has been addressed for single quantum rings

[Emp01], for which a wealth of experimental [Bay03, Fuh01, Fuh03, Ihn05, Lor00, War00]

and theoretical [Aic06, Cha94, Cli03, Emp00, Hal96, Kos01, Lin01, Pro92, Pue01, Wen96,

Zar96, Zhu05] work is available.

We consider now a strictly two-dimensional CDQR system in the interesting few-

electron case, represented by a confining potential composed of two overlapping parabolae

centered at different positions, which slightly generalizes that of Ref. [Sza05]:

Vconf(r) = min
{

1

2
ω2

1 (r − R1)
2 ,

1

2
ω2

2 (r −R2)
2
}

. (1.48)

We have set the radii to the experimental values of Ref. [Kur05], namely R1 = 20 nm

and R2 = 40 nm, whereas for the frequencies we have taken ω1 = 30 meV and ω2 = 40

meV, arbitrary though quite large values in order to mimic the strong confinement felt

by the electrons in CDQRs. The election ω2 > ω1 somewhat compensates the fact that,

since R2 >> R1, the ‘surface’ of the outer ring might have been overestimated if we had

taken both frequencies to be equal.

In Fig. 1.22 we show the squared wave functions |u(r)|2 corresponding to the occu-

pied KS orbitals for different electron numbers and intensities of the magnetic field. For

(N = 6, B = 0) the total spin of the CDQR is zero, and the spin-up and -down states

corresponding to the same (n, |l|) values are degenerate. As a consequence, there are only

two different radial wave functions: one for s (l = 0) and another for p (l = ±1) orbitals. It

can be seen that in this case the electrons are fairly delocalized within the CDQR; for the

chosen confining potential, localized configurations would only appear at larger inter-ring

distances, as we can expect from the results obtained in the previous section. However,

the situation changes when switching on the magnetic field: for, e.g., (N = 6, B = 5

T) and (N = 5, B = 4.5 T), we can see that high- (low-)l orbitals are mostly localized

in the outer (inner) ring, in spite of having solved the KS equations implicitly assuming

a full coherence regime in which the electrons are allowed to occupy the whole CDQR

surface. This can be intuitively understood from the knowledge of parabolical quantum

dots, where, if only nodeless radial states are occupied, the sp orbitals are proportional

to x|l|e−x2/4, where x ≡ r/a with a ≡
√

h̄/(2mΩ) and Ω ≡
√

ω2
0 + ω2

c/4. Of course, this is

so only for a harmonic confining potential with frequency ω0, but some of that structure

is expected to remain for ring confinements. Since these wave functions are peaked at

rmax ∼
√

2|l| a, as B is increased the values of |l| corresponding to occupied levels must

increase as well so that rmax sensibly lies within the range of values of r spanned by the

ring morphology. The same effect has been found for single QRs submitted to perpendic-
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Figure 1.22: Top panel: Squared wave functions (arbitrary units) as a function of r (nm) of

the occupied KS orbitals corresponding to (N = 6, B = 0 T). Solid line, 1s state; dashed line,

1p state. Middle panel: same as top panel for (N = 6, B = 5 T); all orbitals are spin-polarized.

Notice that the l = 3 state is not occupied. Bottom panel: same as middle panel for (N = 5,

B = 4.5 T).

ular magnetic fields, where sp states with small values of l become progressively empty

as B is increased [Emp99].

Fig. 1.23 displays the sp energy levels as a function of l for N = 5 and several values

of the magnetic field. It can be seen that in most cases spin-up and -down orbitals cor-

responding to the same values of (n, l) are not degenerate due to the spin-magnetization-

dependence of the exchange-correlation energy functional –notice that N is odd. Yet,

some orbitals still present this degeneracy and, among them, some are occupied, like the

[(0, 1) ↑, ↓] ones at B = 1 T or the [(0, 2) ↑, ↓] ones at B = 2 T. This can be explained from

the different spatial localization of these orbitals in the CDQR and the spin-magnetization

distribution m(r), which is shown in Fig. 1.24: at B = 2 T, the l = ±2 sp orbitals are

mostly localized in the outer ring, where the local magnetization is fairly small, with the

same happening for the inner ring and the l = ±1 sp orbitals at B = 3 T. Two facts
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Figure 1.23: Sp energies (meV) for N = 5 and several values of B.

are worth to be pointed out when increasing B: on the one hand, the number of spin-up

orbitals eventually becomes so large that the ↑, ↓ degeneracy is fully broken (for B > 3

in the displayed cases). On the other hand, for some configurations one can find empty

KS states having occupied l-neighbours. This is due to the double-well structure of the

employed confining potential, which inhibits the filling of the orbitals whose ‘radius’ is

close to that of the maximum of the inter-ring barrier. In the present case, this happens

for l = 3 and, as we shall see, it is relevant for the understanding of the dipole response

spectra.

From Fig. 1.23 one can also see that at low B’s the delocalization regime yields a

very regular sp energy pattern, with the electrons feeling simultaneously the confining

potential of both rings. However, at higher values of the magnetic field the two lowest

parabolic-like bands tend to cross between l = 2 and 3. Roughly speaking, each band

arises from one of the constituent rings. This crossing is quantum-mechanically prevented

(level repulsion), and also appears for the one-electron CDQR, as shown in Fig. 1.25 for

N = 1 and B = 4 T. In this case, the spin-up and -down orbitals are nearly degenerate
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Figure 1.24: Electron density n(r) (solid line) and spin magnetization m(r) (dashed line) in

cm−2 for N = 5 and B = 2 and 3 T.
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Figure 1.25: Single-electron energies (meV) of the N = 1 CDQR for B = 4 T.

due to the smallness of the Zeeman energy.

Once the gs has been determined, the dipole response can be worked out using the

formalism described in section 1.1.2. It is experimentally known [Dah93, Lor00] that for
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Figure 1.26: Charge-dipole (solid lines) and spin-dipole (dashed lines) strengths (arbitrary

units) for the N = 4 CDQR as a function of the excitation energy (meV) and several values of

B. The (−) or (+) symbol close to the more intense charge-density peaks denotes the character of

the circular polarization. Some structures are superposition of peaks with different polarization,

which is represented by a ‘/’ symbol with the polarization of the more intense peak indicated

to the left of the slash. The intensities are fixed in such a way that, for a given B, the more

intense peaks in both channels roughly have the same height.

a single QR the dipole spectrum as a function of an applied perpendicular magnetic field

consists of several high- and low-frequency branches.

Figs. 1.26–1.28 show the charge- and spin-dipole strength functions for CDQRs with

N = 4−6. In the delocalized regime, i.e. at low B’s, the physical pictures for a single ring

and for a CDQR turn out to be similar: the magneto-excitations can be classified into

bulk (high-energy) and edge (low-energy) modes, with the delocalization yielding only

two effective edges: the inner and outer one of the smaller and larger ring, respectively.

This can be easily understood from, e.g., the B = 1 and 2 T panels in Fig. 1.23. Bulk,

high-energy peaks arise from non-spin-flip electronic excitations mostly involving (∆n =

1,∆l = ±1) transitions (inter-‘Landau level’ excitations), whereas edge low-energy peaks

come from non-spin-flip electronic excitations involving (∆n = 0,∆l = ±1) transitions

(intra-‘Landau level’ excitations). One thus expects that the B-dispersion of the bulk
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Figure 1.27: Same as Fig. 1.26 for N = 5.

and edge modes split into two branches each, one corresponding to ∆l = +1 and another

to ∆l = −1 (recall that the (±) excitations are induced by the dipole operators D
(±)
A ).

The (−) edge modes are intra-‘Landau level’ excitations of the innermost boundary of

the double ring system, whereas the (+) edge modes are intra-‘Landau level’ excitations

of the outermost boundary. This is in contrast with the quantum dot case [Ser99], since

the (−) edge mode is obviously absent for the dot geometry. The high-energy modes are

bulk modes mostly of (−) character, similarly to the cyclotron mode in quantum dots and

wells, and carry much less strength, i.e., the corresponding peaks are less intense. Notice

that at B = 0 the (±) excitations are degenerate and also that some modes present

a fine structure (fragmentation) despite the tendency given by the effective interaction

Kσσ′(r, r ′) to correlate the otherwise free-electron excitations, grouping them coherently

into few excitation peaks. Also, even though the figures only show the low-energy (up

to 12 meV) part of the dipole spectrum, some strength exists also in the form of low-

intensity higher-energy modes arising from ∆n = 2 electronic excitations, which can be

easily identifiable in Fig. 1.23.

As a general rule, charge modes are at higher energies than spin modes because

Kσσ′(r, r ′) is repulsive in the density channel, as it is essentially determined by the direct
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Figure 1.28: Same as Fig. 1.26 for N = 6.

Coulomb interaction, whereas it is attractive in the spin channel, related to the exchange-

correlation contribution. However, one can see that in some situations the spin and the

charge strengths are coupled, i.e., spin (charge) modes can be ‘seen’ in the charge (spin)

channel. As discussed in Ref. [Ser99], the coupling between spin and charge modes may

appear when the gs configuration has a non-zero total spin. Obviously, when the system

is fully polarized both responses coincide and we have plotted only one of them.

Finally, we discuss the interesting localized regime, exemplified here by the configura-

tions (N = 4, B = 4 T), (N = 5, B = 4.5 T) and (N = 6, B = 5 T) (Figs. 1.26, 1.27

and 1.28, respectively). In this case, the response of the CDQRs deviates from that of

single rings. The above-mentioned fact that for these configurations the l = 3 KS orbital

is empty makes it possible to generate additional low-energy modes at the inner and outer

boundaries of both rings. This yields the appearance of a richer dipole response, with two

series of (−) and (+) polarization edge modes instead of just one.



Chapter 2

Spin-orbit effects in quantum

nanostructures

The fabrication process of quantum nanostructures begins with the creation of a quasi-

two-dimensional electron gas (Q2DEG) –or quantum well– originated from the superposi-

tion of semiconductor layers with different bandgaps. A simplified vision of the procedure

consists in thinking of the quantum well as an ‘infinite sheet of paper’ from which quantum

dots, rings or wires are ‘cut out’ by using as ‘scissors’ different kinds of nanolithographic

techniques. Of course, the actual realization of these systems is much more intricate and,

due to the complexity of manipulating Matter at the nanoscale, the unintentional intro-

duction of asymmetries becomes unavoidable. As a matter of fact, the initial quantum

well is not symmetric itself [And82], as can be intuitively inferred from the schematic

picture shown in Fig. 2.1. Moreover, the usually employed semiconductor compounds in

nanostructure fabrication, such as e.g. GaAs, have Zinc Blende structure –shown in Fig.

2.2–, which lacks of inversion symmetry, i.e., it is not invariant under the transformation

r → −r for the position of each atom in the Bravais lattice.

Such asymmetries can give rise to the presence of macroscopic electric fields in the

nanostructures that, as a consequence of Special Relativity, transform in the reference

frame of the confined conduction electrons into effective magnetic fields, coupling to the

electronic spins and giving rise to the so-called spin-orbit (SO) interaction. Two are the

most commonly considered contributions to the SO coupling in confined electron gases:

the one arising from the bulk inversion asymmetry (BIA) of the crystal lattice structure

of the substrate material, which is described by the Hamiltonian [Dre55]

HD =
λD

h̄

N
∑

j=1

[Pxσx − Pyσy ]j (2.1)

and known as the Dresselhaus SO contribution, and the one due to the non-perfectly-

square shape of the initial quantum well confining the Q2DEG and so-called structure

inversion asymmetry (SIA), given by [Byc84]

49
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Figure 2.1: Schematic picture representing the formation of a GaAs quantum well.

Figure 2.2: Zinc blende lattice structure of GaAs.

HR =
λR

h̄

N
∑

j=1

[Pyσx − Pxσy ]j , (2.2)

which is referred to as the Bychkov-Rashba –usually just ‘Rashba’ for short– term. One

could also consider possible asymmetries in the lateral confinements [Mor99] introduced

when creating e.g. a quantum wire, but we do not have taken them into account here.

The parameters λD and λR give the intensity of the respective couplings and can be

experimentally determined [Kna96]. While the one corresponding to the Dresselhaus term

is fixed for a given semiconductor layer –in particular it is inversely proportional to the

width of the latter–, the Rashba parameter has been proven to be externally tunable

by the application of gate voltages [Nit97]. This can be of great potential technological

interest since, as said above, to each source of SO interaction it can be associated an

effective magnetic field, about which the spins will precess. Therefore, tailoring the spin-

orbit coupling might translate into a control over the electron spin. This is the goal

of an emerging field called Spintronics that aims to exploit this intrinsic property of

the electrons for multiple practical applications, such as e.g. quantum information, and

promises remarkable new devices, faster, smaller and more powerful than those currently

existing, which are based on the electron charge.

As a consequence, an intense activity in the study of spin-orbit effects in semiconductor

nanostructures has been prompted [And99, Cal05, Can99, Fol01b, Hal01, Kon05, Mal00,

Mor99, Per04, Rac97, Ric99, Sch03, Ser05, Val02b, Vos01]. In this second chapter we
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address the spin-orbit effects on quantum wells and wires with Rashba and Dresselhaus

couplings and submitted to external magnetic fields.

2.1 Quantum wells submitted to perpendicular mag-

netic fields

The extraction from measurements of the coupling constant of both the Rashba and

Dresselhaus interactions is not a simple matter, since the SO corrections to the electron

energy spectrum in a magnetic field are vanishingly small as they correspond to second-

order effects in perturbation theory. Thus, few physical observables are sensitive enough to

this interaction and allow for a quantitative estimate of the coupling parameters. One such

observable is the splitting of the cyclotron resonance (CR), which has been determined in

far-infrared transmission experiments [Man01] and is due to the coupling between charge-

density and spin-density excitations [Ton04]. A less clear example is the change in the

Larmor frequency –spin splitting–, which has been observed in electron-spin resonance

(ESR) [Dob88, Ste82] and in inelastic light scattering (ILS) experiments [Dav97, Kan00].

Here we consider a two-dimensional GaAs quantum well with both Rashba and Dres-

selhaus SO couplings submitted to a perpendicular magnetic field. By using an approx-

imate –yet very accurate– analytical approach to the problem we are able to study the

SO corrections to the Landau levels in a simple way, as well as the transitions induced by

an external electromagnetic field acting upon the system.

2.1.1 Single-particle states

The quantum well is described by the Hamiltonian H = H0 + e2

ǫ

∑N
i<j=1

1
|ri−rj | , where H0

is the one-body part

H0 ≡
N
∑

j=1

[h0]j =
N
∑

j=1

[

P+P− + P−P+

4m
+

1

2
g∗µBBσz

+
λR

2ih̄
(P+σ− − P−σ+) +

λD

2h̄
(P+σ+ + P−σ−)

]

j

, (2.3)

consisting of the kinetic, Zeeman, Rashba and Dresselhaus contributions, written in terms

of P± ≡ Px±iPy and σ± ≡ σx±iσy. The potential vector has been choosen in the Landau

gauge, namely A = B(0, x, 0) yielding B = ∇×A = Bẑ. Introducing the operators

a± =
1√
2ωc

P± , (2.4)

which satisfy the relation [a−, a+] = 1, the sp Hamiltonian h0 can be rewritten as

h0/ωc =
1

2
(a+a−+a−a+)− 1

2

ωL

ωc
σz −

1

2
iλ̃R(a+σ−−a−σ+)+

1

2
λ̃D(a+σ+ +a−σ−) , (2.5)
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where ωL = |g∗µBB| is the Larmor frequency and λ̃R,D ≡ λR,D

√

2
ωc

. Clearly, from the

hamiltonians Eqs. (2.1) and (2.2) one can see that in the presence of spin-orbit cou-

pling the states of the system are given by two-component spinors |ϕ〉 ≡
(

ϕ1
ϕ2

)

. The

Schrödinger equation h0|ϕ〉 = ε|ϕ〉 thus reads





1
2
(a+a− + a−a+) − ωL/(2ωc) − ε iλ̃Ra

− + λ̃Da
+

−iλ̃Ra
+ + λ̃Da

− 1
2
(a+a− + a−a+) + ωL/(2ωc) − ε









ϕ1

ϕ2



 = 0 ,

(2.6)

where it has been used the label ‘1’ (‘2’) for the top (bottom) component of the spinors.

One can expand ϕ1 and ϕ2 into oscillator states |n〉 as ϕ1 =
∑∞

n=0 an|n〉, ϕ2 =
∑∞

n=0 bn|n〉,
on which a+ and a− act in the usual way, i.e., 1

2
(a+a− + a−a+)|n〉 = (n+ 1

2
)|n〉, a+|n〉 =√

n+ 1|n + 1〉, a−|n〉 =
√
n|n − 1〉, and a−|0〉 = 0. This yields the infinite system of

equations

(n+ α− ε)bn − iλ̃R

√
nan−1 + λ̃D

√
n+ 1an+1 = 0

(n + β − ε)an + iλ̃R

√
n+ 1bn+1 + λ̃D

√
nbn−1 = 0 (2.7)

for n ≥ 0, with a−1 = 0, b−1 = 0, and α ≡ (1 + ωL/ωc)/2, β ≡ (1 − ωL/ωc)/2.

It has already been shown [Das90, Fal93, Ras60, Sch03] that when only either the

Rashba or the Dresselhaus term is considered, Eqs. (2.7) can be exactly solved. Indeed,

in the e.g. λD = 0 case, by combining both equations one obtains

[

(n+ α− ε)(n− 1 + β − ε) − n λ̃2
R

]

bn = 0
[

(n+ α− ε)(n− 1 + β − ε) − n λ̃2
R

]

an−1 = 0 , (2.8)

yielding the energies (in ωc units)

ε±n ≡ n±
√

1

4

(

1 +
ωL

ωc

)2

+
2

ωc

λ2
R n (2.9)

and also the relations

(n− 1 + β − ε±n ) aε±n
n−1 = −iλ̃R

√
n bε

±
n

n , (2.10)

where aε±n
n−1 and bε

±
n

n represent, respectively, the (n− 1)th and nth coefficient of the basis

expansion for the components |ϕ1〉 and |ϕ2〉 of the spinor |ϕ〉 with energy ε±n . Since β ≤ α

and by analogy with the situation without spin-orbit interaction, from Eqs. (2.9) and

(2.10) we can see that the ‘−’ and ‘+’ solutions correspond to ‘up’ and ‘down’ eigenstates

respectively, which we shall therefore denote as |nu〉 and |nd〉. In addition, from Eqs.

(2.8) one can see that only one of the coefficients –ai or bi– appears in the corresponding

series expansion of the spinor components, which read

|nd〉 =





aε+
n

n−1 |n− 1〉
bε

+
n

n |n〉



 ; |nu〉 =





aε−n
n |n〉

bε
−
n

n+1|n+ 1〉



 , (2.11)
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and yield, respectively, the normalization conditions |aε+
n

n−1|2 + |bε+
n

n |2 = 1 and |aε−n
n |2 +

|bε−nn+1|2 = 1 (for n = 0, a
ε+

0

−1 = b
ε−
0

1 = 0, a
ε−
0

0 = b
ε+

0

0 = 1, and ε±0 = 1
2
(1 ± ωL/ωc)).

The λR = 0 case can be worked out similarly. In this case one obtains the secular

equation

(n+ β − ε)(n− 1 + α− ε) − n λ̃2
D = 0 , (2.12)

yielding

ε±n ≡ n±
√

1

4

(

1 − ωL

ωc

)2

+
2

ωc
λ2

D n (2.13)

and the relations

(n− 1 + α− ε±n ) bε
±
n

n−1 = −λ̃D

√
n aε±n

n . (2.14)

One has now

|nd〉 =





aε−n
n+1 |n+ 1〉
bε

−
n

n |n〉



 ; |nu〉 =





aε+
n

n |n〉
bε

+
n

n−1|n− 1〉



 , (2.15)

and the normalization conditions |aε−n
n+1|2 + |bε−nn |2 = 1 and |aε+

n
n |2 + |bε+

n

n−1|2 = 1 (for n = 0,

a
ε−
0

1 = b
ε+

0

−1 = 0, a
ε+

0

0 = b
ε−
0

0 = 1, and ε±0 = 1
2
(1 ∓ ωL/ωc)). The coefficients ai and bi

can be easily exactly calculated. Expressions valid up to order λ2
R,D are obtained below

showing that, in the limit of zero spin-orbit coupling, the spinors |nu〉 and |nd〉 become,

respectively, |n〉
(

0
1

)

and |n〉
(

1
0

)

. Therefore, in the following we shall refer to them as

to the quasi-spin-down (|nd〉) and quasi-spin-up (|nu〉) spinors (qdown and qup for short).

When both SO terms are simultaneously considered, from Eq. (2.7) one can see that

this interaction couples the states of all Landau levels (the series expansions have now an

infinite number of terms) and an exact analytical solution is unknown, and likely does not

exist. Nevertheless, it is possible to find an approximate solution that, as we shall see, in

the λ2
R,D/ωc ≪ 1 limit coincides with the results of second-order perturbation theory –i.e.

it is valid up to order λ̃2
R,D– and that it is quite accurate as compared with numerically

obtained exact results. This limit is justified by the fact that the known values of the SO

parameters λ2
R,D for the GaAs are of the order of 10 µeV whereas ωc is of the order of the

meV even at small B(∼ 1 T). In this general case, the combination of Eqs. (2.7) yields
[

n+ α− ε− λ̃2
R

n

n− 1 + β − ε
− λ̃2

D

n + 1

n + 1 + β − ε

]

bn =

−iλ̃Rλ̃D





√

n(n− 1)

n− 1 + β − ε
bn−2 −

√

(n+ 1)(n+ 2)

n + 1 + β − ε
bn+2



 (2.16)

and
[

n+ β − ε− λ̃2
R

n+ 1

n+ 1 + α− ε
− λ̃2

D

n

n− 1 + α− ε

]

an =

−iλ̃Rλ̃D





√

n(n− 1)

n− 1 + α− ε
an−2 −

√

(n + 1)(n+ 2)

n + 1 + α− ε
an+2



 . (2.17)
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The approximation consists in taking an−2 = an+2 = bn−2 = bn+2 = 0 in the above equa-

tions, implying that each level |n〉 is coupled only to the |n− 1〉 and |n+ 1〉 states. The

solution is therefore obtained by solving the secular, cubic equations

(n+α−ε)(n−1+β−ε)(n+1+β−ε) = λ̃2
Rn(n+1+β−ε)+λ̃2

D(n+1)(n−1+β−ε) (2.18)

and

(n+β−ε)(n−1+α−ε)(n+1+α−ε) = λ̃2
R(n+1)(n−1+α−ε)+λ̃2

Dn(n+1+α−ε) . (2.19)

Together with the relations extracted from Eqs. (2.16) and (2.17),

(n− 1 + β − ε)an−1 = −iλ̃R

√
n bn

(n+ 1 + β − ε)an+1 = −λ̃D

√
n+ 1 bn

|aεd
n

n−1|2 + |aεd
n

n+1|2 + |bεd
n

n |2 = 1 (2.20)

and

(n− 1 + α− ε)bn−1 = −λ̃D

√
n an

(n+ 1 + α− ε)bn+1 = iλ̃R

√
n+ 1 an

|aεu
n

n |2 + |bεu
n

n−1|2 + |bεu
n

n+1|2 = 1 , (2.21)

they determine, respectively, the quasi-spin-down and quasi-spin-up solutions:

|nd〉 =





a
εd
n

n−1 |n− 1〉 + a
εd
n

n+1 |n+ 1〉
bε

d
n

n |n〉



 (2.22)

for the qdown one, with

εd
n = n+ α + 2n

λ2
R

ωc + ωL
− 2(n+ 1)

λ2
D

ωc − ωL
, (2.23)

a
εd
n

n−1 = iλ̃R

√
n

ωc

ωc + ωL

a
εd
n

n+1 = −λ̃D

√
n + 1

ωc

ωc − ωL

bε
d
n

n = 1 − 1

2
λ̃2

Rn
(

ωc

ωc + ωL

)2

− 1

2
λ̃2

D(n+ 1)
(

ωc

ωc − ωL

)2

, (2.24)

and

|nu〉 =





aεu
n

n |n〉
b
εu
n

n−1 |n− 1〉 + b
εu
n

n+1 |n+ 1〉



 (2.25)

for the qup one, with

εu
n = n+ β − 2(n+ 1)

λ2
R

ωc + ωL
+ 2n

λ2
D

ωc − ωL
, (2.26)
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b
εu
n

n−1 = λ̃D

√
n

ωc

ωc − ωL

b
εu
n

n+1 = iλ̃R

√
n+ 1

ωc

ωc + ωL

aεu
n

n = 1 − 1

2
λ̃2

R(n+ 1)
(

ωc

ωc + ωL

)2

− 1

2
λ̃2

Dn
(

ωc

ωc − ωL

)2

. (2.27)

It is easy to check that when either λR or λD is zero Eqs. (2.22) and (2.25) reduce,

respectively, to the exact results (2.11) and (2.15) whereas the corresponding ai and bi

coefficients, valid up to order λ2
R,D, can be extracted from Eqs. (2.24) and (2.27). One

can see that the pairs (an , bn), (an±1 , bn±1) and (an±2 , bn±2) are, respectively, of order

O(1), O(λR,D) and O(λ2
R,D). Therefore, the neglected terms in Eqs. (2.16) and (2.17) are

of order O(λ4
R,D).

From Eqs. (2.23) and (2.26) one obtains, in the λ2
R,D/ωc ≪ 1 limit, the spin-orbit-

corrected Landau levels:

Ed
n = (n+

1

2
)ωc +

ωL

2
+ 2nλ2

R

ωc

ωc + ωL

− 2(n+ 1)λ2
D

ωc

ωc − ωL

Eu
n = (n+

1

2
)ωc −

ωL

2
− 2(n+ 1)λ2

R

ωc

ωc + ωL

+ 2nλ2
D

ωc

ωc − ωL

. (2.28)

It can be checked that they coincide with those derived from second-order perturbation

theory using the standard expression

E(2)
n =

1

4

∑

m6=n

|〈m| − iλ̃R ωc(a
+σ− − a−σ+) + λ̃D ωc(a

+σ+ + a−σ−)|n〉|2
E

(0)
n − E

(0)
m

, (2.29)

where |n〉 = |n, ↑〉, |n, ↓〉 are the spin-up and spin-down eigenstates of the sp Hamiltonian
1
2
(a+a− + a−a+)ωc − 1

2
ωLσz with eigenvalues E(0)

n (↑) = (n + 1
2
)ωc − 1

2
ωL and E(0)

n (↓) =

(n+ 1
2
)ωc + 1

2
ωL, respectively.

The approximate energies Eq. (2.28) are very accurate in the high-B limit (see below),

but they also carry interesting information in the opposite limit of vanishing magnetic

field. In this regime (ωL, ωc ≪ λ2
R,D), Eqs. (2.18) and (2.19) yield the solutions

Ed
n =

√

2ωc[nλ2
R + (n+ 1)λ2

D]

Eu
n =

√

2ωc[(n+ 1)λ2
R + nλ2

D] , (2.30)

showing that, at B ≃ 0 and up to order λ2
R,D, the Landau levels are not split due to the

SO interaction as one might have naively inferred from Eqs. (2.28). Another merit of

the approximate solution is that it displays in a transparent way the interplay between

the three spin-dependent interactions, namely the Zeeman, Rashba and Dresselhaus ones.

Such interplay has also been discussed in relation with the violation of Larmor’s theorem

due to the SO coupling [Mal06] and by using the unitarily transformed Hamiltonian

technique [Val06]. Note also that in GaAs quantum wells, due to the negative sign of

g∗, the lowest energy level is the qup one at energy Eu
0 = 1

2
ωc − 1

2
ωL − 2λ2

R ωc/(ωc + ωL)
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Figure 2.3: Top (bottom) panel: lowest energy levels for a GaAs well as a function of the

Rashba (Dresselhaus) intensity yR = λ2
R/ωc (yD = λ2

D/ωc) for a fixed Dresselhaus (Rashba)

intensity yD (yR)=0.01. Solid lines represent the analytical result, Eq. (2.28), while symbols

correspond to the exact diagonalization, Eq. (2.31).

containing only the Rashba contribution, whereas the following one corresponds to the

qdown state at energy Ed
0 = 1

2
ωc + 1

2
ωL −2λ2

D ωc/(ωc−ωL) involving only the Dresselhaus

term. For all the other levels both SO couplings contribute to the energies.

We have assessed the accuracy of Eqs. (2.28) by comparing them with exact numerical

results for some particular cases. Indeed, the exact solution to Eqs. (2.7) can be obtained

in the truncated space spanned by the lowest N oscillator levels. Mathematically, this is

expressed by the linear eigenvalue problem

M

(

a
b

)

= ε
(

a
b

)

, (2.31)

where M is a 2N × 2N matrix whereas a and b are column vectors made up of the

sets of coefficients {an, n = 0, . . . ,N − 1} and {bn, n = 0, . . . ,N − 1}, respectively. We

have diagonalized M using a large enough N to ensure good convergence in the lowest

eigenvalues. Fig. 2.3 displays the comparison between the analytical and the numerical
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Figure 2.4: Histograms with the amplitudes of an and bn for the rightmost qup state of the

third Landau level of Fig. 2.3. Panels a) and b) are for (yR = 0.05, yD = 0.01), whereas c) and

d) correspond to (yR = 0.01, yD = 0.05). Circles (crosses) represent the numerical (analytical)

results.

energies as a function of one of the SO strengths while the other is kept fixed at a

given value in units of ωc, namely yR ≡ λ2
R/ωc and yD ≡ λ2

D/ωc. The chosen values

for yD and yR are within the expected range for a GaAs quantum well. For instance,

taking λ2
R,D/h̄

2 ∼ 10µeV and B ∼ 1T, one has (mλ2
R,D/h̄

2)/(h̄ωc) ∼ 10−2 (we have set

yR,D=0.01). One can see that there is an excellent agreement between the analytical and

the numerical results, with differences starting to be visible only for strong SO intensities

and high Landau levels. Actually, the largest value of yR,D = λ2
R,D/ωc is 0.05, small

enough to validate the analytical expression. Notice, however, that for larger yR,D values

–not shown in the figure– Eqs. (2.28) no longer reproduce the numerical results. For

GaAs this turns out to happen at B < 0.1 T. It can also be seen that for each Landau

level both panels show a crossing between the |nu〉 state –which is at lower energy for

yR,D ≪ 0.01 because g∗ < 0– and the |nd〉 state, which eventually lies lower in energy.

This crossing is due to the interplay between both spin-orbit couplings.

Fig. 2.4 compares the amplitudes of the qup coefficients an and bn obtained from the

numerical diagonalization with those of the analytical result Eq. (2.27). For this purpose,

we have chosen the rightmost qup states of the third Landau band in both panels of

Fig. 2.3, which are those with the largest SO intensity. Notice that even for these strong

spin-orbit couplings the analytical prediction is still excellent since the numerical and

analytical amplitudes of a2 are very close, with only small numerical corrections to a0 and

a4. For the bn coefficients the comparison is also quite good and there are no relevant

numerical corrections for n’s different from 1 and 3 –corresponding to b0 and b4. Similar

results are found for the qdown states.
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2.1.2 Electromagnetic-wave excitations

The preceding results can be used to study the single-particle transitions induced in the

system by its interaction with a left-circularly polarized electromagnetic wave propagating

along the z-direction, i.e., perpendicular to the plane of motion of the electrons. The

vector potential is given by A(t) = 2A(cos θî + sin θĵ), with θ = ωt − qz, and the sp

interaction Hamiltonian hint = J · A/c+ g∗µB s · (∇× A), with J = ev/
√
ǫ, reads

hint =
e

c
√
ǫ
A
(

v−e
iθ + v+e

−iθ
)

+
1

2
g∗µBqA

(

σ−e
iθ + σ+e

−iθ
)

, (2.32)

where the velocity operator is given by v± = −i[x±iy,H ] = P±±iλRσ±+λDσ∓. Defining

the operators

α+ ≡




a+ iλ̃R

λ̃D a+



 , α− ≡




a− λ̃D

−iλ̃R a−



 , (2.33)

the Hamiltonian can be rewritten as

hint =
e

c
√
ǫ
A
√

2ωc

(

α−eiθ + α+e−iθ
)

+
1

2
g∗µBqA

(

σ−e
iθ + σ+e

−iθ
)

. (2.34)

We consider next, within the dipole approximation (q ≈ 0) and in the absence of Coulomb

interaction, several useful examples of single-particle transition matrix elements involving

the operators α+ (proportional to v+), σ−, and the qup and qdown states represented by

Eqs. (2.22) and (2.25).

For the operator α+ one can write in general

〈ψ|α+|φ〉 = ψ∗
1a

+φ1 + iλ̃Rψ
∗
1φ2 + λ̃Dψ

∗
2φ1 + ψ∗

2a
+φ2 , (2.35)

with the possibility to have qup-qup, qdown-qdown, qup-qdown and qdown-qup transi-

tions. The two first ones are related to the usual cyclotron resonance and, up to order λ2
R,D,

they are dominated by the transition n→ n+ 1 at energies Ed
n+1 −Ed

n and Eu
n+1 −Eu

n

with strengths given by the matrix elements | 〈(n+ 1)u |α+ |nu 〉| = |〈(n+ 1)d|α+|nd〉| =√
n+ 1. Explicitly,

Ed
CR = Ed

n+1 − Ed
n = ωc + 2λ2

R

ωc

ωc + ωL
− 2λ2

D

ωc

ωc − ωL

Eu
CR = Eu

n+1 −Eu
n = ωc − 2λ2

R

ωc

ωc + ωL
+ 2λ2

D

ωc

ωc − ωL
. (2.36)

Thus, provided the level with energy Ed
n is occupied, from these expressions one expects

a cyclotron splitting given by

∆ECR =
∣

∣

∣Ed
CR − Eu

CR

∣

∣

∣ =
∣

∣

∣

∣

4λ2
R

ωc

ωc + ωL

− 4λ2
D

ωc

ωc − ωL

∣

∣

∣

∣

. (2.37)

The spin-flip qdown-qup and qup-qdown transitions are also induced by α+, found at

energies Eu
n−Ed

n and Ed
n−Eu

n respectively, with strengths |〈nu|α+|nd〉| = λ̃R ωL/(ωc+ωL)
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and |〈nd|α+|nu〉| = λ̃D ωL/(ωc −ωL). The latter is of particular interest since when n = 0

it gives the spin-orbit correction to the Larmor resonance [Mal06]:

EL = ωL + 2
(

λ2
R

ωc

ωc + ωL
− λ2

D

ωc

ωc − ωL

)

. (2.38)

It is worth to note that, since the corresponding transition matrix element is linear in λ̃D,

in the presence of Rashba interaction alone the Larmor mode is not excited by α+.

For the operator σ− one gets 〈ψ|σ−|φ〉 = 2ψ∗
2φ1. The dominant transition in this case

is the spin-flip one at energy Ed
n −Eu

n with strength |〈nd|σ−|nu〉| = 2. The qup-qup and

qdown-qdown cyclotron resonances are also excited, with strengths |〈(n + 1)u|σ−|nu〉| =

|〈(n+ 1)d|σ−|nd〉| = 2λ̃D

√
n+ 1ωc/(ωc − ωL).

Other excitations that deserve some attention are those induced by the spin-density

(or spin-dipole)-type operators α+σ± and α+σz, which can be detected in inelastic light

experiments like spin-dipole resonances [Eri99]. The operator α+σz turns out to excite the

same cyclotron states as α+, i.e., those at energies Ed
n+1 −Ed

n and Eu
n+1 −Eu

n , with the

same transition matrix element
√
n+ 1. In contrast, the operators α+σ+ and α+σ− mainly

induce, respectively, the qdown-qup and qup-qdown excitations with energies Eu
n+1 −Ed

n

and Ed
n+1 − Eu

n , and matrix elements |〈(n + 1)u|α+σ+|nd〉| = |〈(n + 1)d|α+σ−|nu〉| =

2
√
n+ 1.

So far, the electron-electron interaction has not been taken into account. Therefore it

is natural to ask for the role played by it in the physical processes in which the spin-orbit

effects can be important and, thus, have a chance to be experimentally detected. Since we

have obtained a spinor basis that includes the SO coupling, namely Eqs. (2.22) and (2.25),

one might use it to diagonalize the e-e interaction. This has been done, for example, in

Ref. [Cal05], where the spinors Eq. (2.11) are used to study the influence of the Rashba

coupling on the incompressible Laughlin state. One could also use this basis to solve

the random-phase-approximation equations [Kal84] or to study spin-orbit effects on the

collective states of quantum wells within the adiabatic time-dependent local spin-current-

density approximation [Mal06, Ser99]. Here we have chosen a different way to incorporate

the Coulomb contribution and investigate whether its combination with the SO coupling

alters the above-discussed results for the Larmor and cyclotron frequencies. It is the so-

called sum-rule approach and, while being more approximate, it is accurate enough and

allows one to obtain simple analytical expressions to study the interplay between both

interactions in some relevant excitation processes.

We firstly recall that, in the absence of spin-orbit coupling, two important theorems

hold involving the full Hamiltonian H = H0 + V , V = V (rij) being the Coulomb term,

and the so-called cyclotron and Larmor operators, given by
∑N

j P
+
j and S− = 1/2

∑N
j σ

j
−,

respectively. On the one hand, Kohn’s theorem

[H,
N
∑

j

P+
j ] = ωc

N
∑

j

P+
j , (2.39)



60 Chapter 2: Spin-orbit effects in quantum nanostructures

which tells us that in photoabsorption experiments on quantum wells a narrow peak must

appear at the cyclotron energy ω = ωc excited by
∑

j P
+
j . This follows from the fact that

the electron-electron interaction is invariant under translations and thus commutes with

the cyclotron operator:




N
∑

i<j

V (rij) ,
N
∑

k

P+
k



 = 0 . (2.40)

On the other hand, Larmor’s theorem

[H,S−] = ωLS− , (2.41)

stating that in ILS experiments at small transferred momentum, or in ESR experiments,

a narrow collective state must be excited by S− at the Larmor frequency ω = ωL.

Nevertheless, things radically change when the spin-orbit effects are taken into account.

Indeed, one then has

[H,
N
∑

j

P+
j ] = ωc

N
∑

j

(

P+ + iλRσ+ + λDσ−
)

j
(2.42)

and

[H,S−] = ωLS− +
N
∑

j

(

2iλRP
−σz + 2λDP

+σz

)

j
. (2.43)

It can be clearly seen that the SO interaction couples the charge-density (
∑

j P
+
j ) and

spin-density (
∑

j P
±
j σ

j
z) modes with the spin (σz,±) ones, thus violating both Kohn’s and

Larmor’s theorems.

We start the approach by introducing the so-called mixed sum rules [Boh79]

m±
k =

1

2

∑

n

ωk
n0

(

〈0|F |φn〉〈φn|G†|0〉 ± 〈0|G†|φn〉〈φn|F |0〉
)

=
1

2

(

〈0|F (H − E0)
kG†|0〉 ± 〈0|G†(H −E0)

kF |0〉
)

, (2.44)

where |0〉 and |φn〉 are the ground and nth excited state of H , respectively, and E0 and

ωn0 the corresponding energies. Of particular interest [Lip03] are m−
0 , m+

1 , m−
2 and m+

3 ,

which can be expressed in terms of commutators between the operators F , G† and the

Hamiltonian as

m−
0 =

1

2
〈0|[F,G†]|0〉

m+
1 =

1

2
〈0|[F, [H,G†]]|0〉

m−
2 =

1

2
〈0|[[F,H ], [H,G†]]|0〉

m+
3 =

1

2
〈0|[[F,H ], [H, [H,G†]]]|0〉 . (2.45)

We first consider the case in which the ground state is fully spin-polarized, i.e. 〈0|∑i σ
i
z|0〉 =

N , and take F = G =
∑

i P
−
i (G† is therefore the cyclotron operator). The evaluation of
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the above commutators then yields, up to order λ2
R,D:

m−
0 = 2Nωc

m+
1 = 2Nω2

c

m−
2 = 2Nω3

c

[

1 − 2

ωc

(λ2
R − λ2

D)
]

m+
3 = 2Nω4

c

[

1 − 4

ωc

(λ2
R − λ2

D) +
2ωL

ω2
c

(λ2
R + λ2

D)

]

, (2.46)

where it has been used Kohn’s theorem Eq. (2.39), as well as the commutation relations

[P−, P+] = 2ωc , [σ+, σ−] = 4σz and [σz, σ±] = ±2σ±. It can be easily checked that the

first right-hand side of Eq. (2.44), recalling that
∑

i P
−
i |0〉 = 0, reads

m±
k =

1

2

∑

n

ωk
n0|〈φn|

N
∑

i

P+
i |0〉|2 ≡ 1

2

∑

n

ωk
n0 πn . (2.47)

Hence, by combining Eqs. 2.46 and 2.47 one can obtain a (nonlinear) system of equations

with four unknowns, namely the first two excitation energies ω10, ω20 and the respective

strengths π1, π2. In the λ2
R,D/ωc ≪ 1 limit, and considering only one of the spin-orbit

contributions, the solution is straightforwardly obtained. Indeed, if e.g. λR = 0, one has

ω10 = ωc +
2ωc

ωc − ωL
λ2

D

ω20 = ωL − 2ωc

ωc − ωL
λ2

D

π1 = 2Nωc

[

1 − 2ωc

(ωc − ωL)2
λ2

D

]

π2 = 2N
2ω2

c

(ωc − ωL)2
λ2

D . (2.48)

Clearly, ω10 and ω20 coincide with Eqs. (2.36) and (2.38), corresponding to the cyclotron

and Larmor modes. The λD = 0 case can be worked out in the same way, yielding

again total coincidence with the results found without considering the e-e interaction.

Alternatively, the above calculations can be carried out using for G† the Larmor operator,

namely F = G =
∑

i σ
i
+, obtaining the same result.

Of course, the more sum rules are known, the better knowledge of the Hamiltonian

spectrum is available. By using also, e.g., m−
4 and m+

5 one might obtain information on

other excited states. We have checked that their consideration yields the same conclusion:

neither the cyclotron nor the Larmor modes are affected, up to order λ2
R,D and provided

that the system is fully spin-polarized, by the Coulomb interaction.

However, when the latter condition is not satisfied, i.e., if the ground-state spin is

such that 〈0|∑i σ
i
z|0〉 6= N , the interplay between the spin-orbit and the electron-electron

interactions can introduce new features in the dipole spectrum. The reason is that in

this case, even in the absence of SO coupling, the spin-density operator
∑

i P
+
i σ

i
z , which

does not commute with the Coulomb term V (rij), excites a mode at energy different
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to ωc. Indeed, an additional peak is expected [Ton04] to be found in experiments at

ω = ωc(1 + K), where K is the correction due to the Coulomb interaction given by

K =
1

2Nω2
c

〈0|
∑

i<j

∇2
rij
V (rij)(σ

i
z − σj

z)
2|0〉 . (2.49)

Including the spin-orbit coupling, one can consider the mixed m+
1 sum rule for the oper-

ators F =
∑

i P
−
i σ

i
z and G =

∑

i P
−
i :

m+
1 =

∑

n

ωn0〈0|
N
∑

i

P−
i σ

i
z|φn〉〈φn|

N
∑

j

P+
j |0〉

=
1

2
〈0|[

N
∑

i

P−
i σ

i
z, [H,

N
∑

j

P+
j ]]|0〉 = ω2

c 〈0|
N
∑

i

σi
z|0〉 . (2.50)

This expression allows one to study the interplay between dipole and spin-dipole modes

by splitting it into a sum over spin-density states |φm〉 and another over charge-density

states |φρ〉, namely

m+
1 =

∑

ρ

ωρ0〈0|
N
∑

i

P−
i σ

i
z|φρ〉〈φρ|

N
∑

j

P+
j |0〉

+
∑

m

ωm0〈0|
N
∑

i

P−
i σ

i
z|φm〉〈φm|

N
∑

j

P+
j |0〉 . (2.51)

As we have seen, due to the SO interaction Kohn’s theorem is violated and the cy-

clotron operator can excite both charge- and spin-density modes. Thus, in general

〈φm|
∑

i P
+
i |0〉 6= 0 and both contributions in m+

1 are different from zero. This fact can be

inferred from photoabsorption experiments in GaAs quantum wells using unpolarized far-

infrared radiation [Man01] where, indeed, a splitting in the cyclotron resonance is found

for some configurations of the system, indicating that two modes at different energies are

excited. In particular, a well-resolved splitting is observed at the odd filling factors ν=3,

5, and 7 –recall that ν = 2πρ/ωc with ν=0 for zero-spin systems and satisfying the relation

2Sz/N = 1/ν otherwise–, whereas it turns out to vanish for ν = 1 and for even values of

this parameter. Such ν-dependence of the splitting is not predicted by Eq. (2.37); a good

explanation for this feature requires the simultaneous consideration of both the Coulomb

and the SO interactions.

Within our sum-rule approach, assuming e.g. that only one charge-density state |φρ〉
and only one spin-density state |φm〉 contribute to the respective sums in Eq. (2.51), one

can define the mixed strengths

π̃1 = 〈0|
∑

i

P−
i σ

i
z|φρ〉〈φρ|

∑

j

P+
j |0〉

π̃2 = 〈0|
∑

i

P−
i σ

i
z|φm〉〈φm|

∑

j

P+
j |0〉 . (2.52)

Evaluating the sum rules m−
0 and m+

1 for the operators G =
∑

i P
−
i and F =

∑

i P
−
i σ

i
z,

one easily obtains in this case

π̃1 = ωc〈0|
∑

i

σi
z|0〉

E2 − ωc

E2 −E1
= ωc〈0|

∑

i

σi
z|0〉

(

1 − O(λ2
R,D)

|ωc K|

)
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π̃2 = ωc〈0|
∑

i

σi
z|0〉

ωc −E1

E2 −E1

= ωc〈0|
∑

i

σi
z|0〉

O(λ2
R,D)

|ωc K| , (2.53)

E1 and E2 being, respectively, the energies of the states |φρ〉 and |φm〉, and O(λ2
R,D)

representing the corresponding SO corrections, proportional to λ2
R,D. From the expression

for π̃2 one concludes that, in the presence of spin-orbit coupling and if the system has

spin 〈0|∑i σ
i
z|0〉 different from zero –i.e. ν is not even (and neither equal to 1 since we are

assuming a non-fully polarized ground state)–, the spin-density state is excited by
∑

i P
+
i .

In this case the predicted splitting for the cyclotron resonance is given by

∆ECR =
∣

∣

∣

∣

2Sz

N
4
(

λ2
R

ωc

ωc + ωL

− λ2
D

ωc

ωc − ωL

)

+ Kωc

∣

∣

∣

∣

. (2.54)

This is in complete agreement with the above-mentioned experiment and seems to be a

clear evidence of crucial spin-orbit effects on a physical observable, as the absence of the

latter interaction would imply the vanishment of the described phenomena.

Nevertheless, despite this example a confrontation between theoretical and experi-

mental results on spin-orbit effects is not in general an easy task due to the smallness of

the SO interaction and one usually has to satisfy himself with semi-quantitative analysis.

To finish this section, we consider a situation that might enhance such effects and that

consists in tilting the applied magnetic field, considering e.g. B = (Bx, 0, Bz). To this

end, we have generalized the Landau level energies Eq. (2.28), with the corresponding

expressions given in the Appendix A.

For the cyclotron resonance one obtains now

∆ECR = 4

[

(CR V + CD Z)
1

1 + |g∗|m∗S/2 − (CR Z + CD V)
1

1 − |g∗|m∗S/2

]

, (2.55)

where CR,D ≡ mλ2
R,D/h̄

2 and with the tilting angle θ entering the quantities V, Z,

and S, defined in the Appendix. Clearly, tilting effects might arise because of the 1 −
|g∗|m∗S/2 denominator in the above equation, but sizeable effects on ∆ECR should only

be expected for materials in which |g∗|m∗/2 has a large value. This is not the case for GaAs

but it is, e.g., for other semiconductors such as InAs and InSb for which, respectively,

|g∗|m∗/2 = 0.169 and 0.355. For the latter case the dependence of ∆ECR on the in-plane

component Bx at fixed Bz is shown in Fig. 2.5. Notice that ∆ECR is sharply increased

when Bx exceeds a given value (1T for the chosen parameters), which proves the strong

enhancement of the SO effects introduced by the in-plane component of the magnetic

field. Also shown in the figure are the exact diagonalization results –see the Appendix.

One can see that the analytical expression is very accurate up to rather large tilting angles

and for different relative weights of the Rashba and the Dresselhaus terms. As a matter

of fact, this analytical result does not depend on Bz although, for the sake of comparison

with the exact diagonalization, we have used Bz = 1 T. The evolution with Bx is not

always monotonous, especially for CR > CD, where we find an initial decrease of ∆ECR

with increasing Bx, vanishing at Bx ∼ 0.8 T, and eventually increasing again.
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Figure 2.5: Splitting of the cyclotron resonance for an InSb quantum well (|g∗|m∗/2 = 0.355)

as a function of the in-plane component Bx at fixed Bz = 1 T. Lines (symbols) represent the

analytical (numerical) results. The shown results are for (CR = 30 µeV, CD = 10 µeV) (solid

line and circles), (CR = 10 µeV, CD = 10 µeV) (long-dashed line and triangles) and (CR = 10

µeV, CD = 30 µeV) (short-dashed line and squares).

2.2 Exchange-correlation effects in quantum wires sub-

mitted to in-plane magnetic fields

Among semiconductor nanostructures, quantum wires (QWs) are especially well-suited

for the potential developement of spintronic devices. On the one hand, their transverse

length can be externally controlled, making the system more or less quasi-one-dimensional

and hence changing the ratio of the SO strength to the confinement. On the other hand,

the electron motion can be rendered almost collisionless because of the high purity of the

starting quasi-two-dimensional electron gas.

The energy subband structure and conductance (G) of quantum wires including spin-

orbit effects have been addressed by several authors, mostly considering only the Rashba

coupling [Gov02, Mir01, Mor99] because of its possibility to be externally tuned. Also, the

effects of applied magnetic fields, either in or perpendicular to the plane containing the

QW have been considered in combination with only the Rashba [Deb05, Kno05, Ser05] or

both [Zha06] SO interactions. Interesting features of the energy subbands andG have been

disclosed, especially for strong spin-orbit couplings and with magnetic fields applied to the

QW. Among them, the presence of anticrossings, asymmetries, local extrema and energy

gaps in the subband spectra, or the so-called ‘anomalous plateaus’ in the conductance

are some of the most interesting. By the latters are meant those plateaus –or steps–
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appearing in the conductance that do not follow the increasing sequence in units of the

fundamental unit G0 ≡ 2e2/h, pertaining to the Landauer formula. The importance of

including the Rashba intersubband coupling term, neglected in some works, has also been

pointed out [Ser05].

Nevertheless, in the above-mentioned works the electron-electron interaction has not

been taken into account. It is thus worth to elucidate to which extend the above-mentioned

results change when it is considered, at least in a workable and sound mean-field approx-

imation. We study here the exchange-correlation effects –omitting the Hartree term as

explained below– on the energy subband structure and on the conductance of quantum

wires submitted to an in-plane magnetic field and with both Rashba and Dresselhaus

couplings. The first step is to introduce a generalization of the Local Spin-Density Ap-

proximation –which as shown below is not valid when the SO interaction is taken into

account– to address the problem.

2.2.1 Noncollinear LSDA

As we have seen when addressing quantum wells, in the presence of spin-orbit coupling

the states of the system are described by two-component spinors

Ψi(r) ≡ |Ψi〉 ≡




ϕi(r, ↑)
ϕi(r, ↓)



 , (2.56)

where i represents the set of quantum labels and ↑,↓ refers to the up and down components.

The spin orientation at a given point can be calculated from the spin magnetization vector,

which is given by

ma(r) =
∑

i

〈Ψi|δ(rj − r)σa|Ψi〉rj
fµ(εi) , (2.57)

with a=x,y and z, and where fµ(εi) = (1 + e(εi−µ)/kBT )−1 is the Fermi-Dirac distribution

function giving the occupation of the ith state at a given temperature T and chemical

potential µ. This yields

mx(r) =
∑

i

2Re [ϕi(r, ↑)∗ϕi(r, ↓)] fµ(εi)

my(r) =
∑

i

2Im [ϕi(r, ↑)∗ϕi(r, ↓)] fµ(εi) (2.58)

mz(r) =
∑

i

[

|ϕi(r, ↑)|2 − |ϕi(r, ↓)|2
]

fµ(εi) .

One thus can see that, in general, the spin orientation is different from one point of

the system to another and depends as well on the quantum numbers representing the

spinors. In this situation, the spins are said to be noncollinear and one is not able to

employ the LSDA relations introduced in section 1.1.1, where it was assumed from the

beginning a uniformly spin-polarized system taking as common magnetization direction
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the z-axis. Fortunately, there exists a generalization of the theory valid for such scenarios:

the so-called Noncollinear Local Spin-Density Approximation.

The underlying idea of this approach is that the LSDA is extended to locally treat the

spin orientation exactly as in the uniformly-magnetized system. In the noncollinear case

one has to deal with the general non-diagonal density matrix

ρηη′(r) =
∑

i

ϕ∗
i (r, η)ϕi(r, η

′) fµ(εi) ⇒




ρ↑↑ ρ↑↓

ρ↓↑ ρ↓↓



 , (2.59)

where η, η′=↑, ↓, and which can be rewritten as




ρ↑↑ ρ↑↓

ρ↓↑ ρ↓↓



 =
1

2





ρ+mz mx + imy

mx − imy ρ−mz



 , (2.60)

ρ being the usual electron density, given by

ρ(r) =
∑

i

〈Ψi|δ(rj − r)|Ψi〉rj
fµ(εi)

=
∑

i

[

|ϕi(r, ↑)|2 + |ϕi(r, ↓)|2
]

fµ(εi) . (2.61)

This gives rise to the non-diagonal exchange-correlation matrix

V ηη′

xc (r) ≡ δExc [ρηη′(r)]

δρηη′(r)
. (2.62)

In this case, this expression cannot be directly evaluated since the explicit form for Exc is

unknown. However, one can define [Hei99], at each point, a diagonal density matrix by

means of a local unitary transformation U

U ρU+ = n ≡




n↑ 0

0 n↓



 , (2.63)

where the local rotation is given by

U =





eiφ(r)/2 cos θ(r)
2

e−iφ(r)/2 sin θ(r)
2

−eiφ(r)/2 sin θ(r)
2

e−iφ(r)/2 cos θ(r)
2



 , (2.64)

and where the angles θ and φ give the spin orientation at the considered point and are

determined from the relations

tanφ(r) = −my(r)

mx(r)

tan θ(r) =

√

m2
x(r) +m2

y(r)

mz(r)
. (2.65)

Omitting the arguments, the diagonal local densities read

n↑ =
1

2
(ρ+mz cos θ) + Re

{

ρ↑↓e
iφ sin θ

}

(2.66)

n↓ =
1

2
(ρ−mz cos θ) − Re

{

ρ↑↓e
iφ sin θ

}

.
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Hence, knowing n↑ and n↓ at a point r, we can use the familiar relations of the LSDA to

compute the exchange-correlation potentials

v(r) ≡




v↑ 0

0 v↓



 ≡




δELSDA
xc [n↑, n↓]/δn↑ 0

0 δELSDA
xc [n↑, n↓]/δn↓



 . (2.67)

Finally, one just needs to undo the rotation and the resulting expression for the exchange-

correlation potential reads

V ηη′

xc (r) ≡




v0 + ∆v cos θ ∆ve−iφ sin θ

∆veiφ sin θ v0 − ∆v cos θ



 , (2.68)

where we have defined v0 ≡ (v↑+v↓)/2 and ∆v ≡ (v↑−v↓)/2. This scheme fully determines

the 2 × 2 potential matrix Vxc in terms of the spinor orbitals and the LSDA energy

functional.

2.2.2 Subband structure

We consider a two-dimensional quantum wire of length L described by a parabolic con-

finement in the y-direction, namely Vconf(y) = 1
2
ω2

0y
2. Since the electrons move freely

along the x-axis, the Kohn-Sham two-component spinors Eq. (2.56) can be written as

Ψnk(r) ≡ |Ψnk〉 ≡
1√
L





ϕnk(y, ↑)
ϕnk(y, ↓)



 eikx , (2.69)

where k is a continuous wave number due to the translational invariance along the longi-

tudinal axis of the wire and the index n = 1, 2, 3, . . . labels the different energy subbands

as usual. Therefore, the quantum numbers are n and k, and the Kohn-Sham equations

read in the spinorial form

hKS[ρ,m]|Ψnk〉 = εnk|Ψnk〉 . (2.70)

We have solved them for each n and k, keeping the lowest nmax eigenvalues and eigen-

vectors {εnk,Ψnk(r)}. To do so, we have introduced a y-discretization from −ymax to

+ymax. This defines Ny points and, since the two spinor components are coupled, the

resulting matrix is 2Ny × 2Ny. For Ny’s of the order of 100, the diagonalization is ex-

tremely fast and, although it is repeated Nk × nmax times per iteration, the calculation

is quite efficient. The KS Hamiltonian has been split into three different pieces, namely

hKS = h0 + hSO + hZ , consisting of the kinetic plus confining plus exchange-correlation

term, the Rashba plus Dresselhaus SO contribution, and the Zeeman one arising from the

in-plane magnetic field

B = B(cosφBux + sinφBuy) , (2.71)

φB being the azimuthal angle. The extension to include a vertical magnetic field can be

easily done but it is not addressed here. Explicitly, one has

h0 =
p2

x + p2
y

2m
+

1

2
mω2

0y
2 + V ηη′

xc (y)
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hSO = hR + hD (2.72)

hZ = Ez(σx cos φB + σy sinφB) .

where EZ = g∗µBB is the Zeeman energy. Note that, since B is in-plane, px and py

are the actual components of the linear momentum of the electron, and not those of the

generalized momentum involving the vector potential. To simplify the calculations, we

have introduced a complex SO coupling parameter, namely γ ≡ λD + iλR, that allows one

to write the SO Hamiltonian as

hR + hD =





0 γk + γ∗ d
dy

γ∗k − γ d
dy

0



 . (2.73)

Notice that in the above expressions the direct Coulomb interaction has been omitted.

In principle one should also include a Hartree term [Gud95, Mal05] but we have considered

it to be exactly cancelled out by some neutralizing background contribution –within the

so-called full-screening approximation [Rei99]. The inclusion of this term would introduce

some uncertainties in the model, as its actual expression would depend on the way the

positive charges are distributed to cancel out the divergence in the Hartree potential. To

be definite, the screened transverse potential has been assumed to be parabolic though

other potentials such as a square well would have yielded a qualitatively similar behavior.

The QW is characterized [Mal05] by the one-dimensional electronic density ρ1D, de-

fined as

ρ1D ≡
∫

dy ρ(y) . (2.74)

As a matter of fact, the translational invariance along the wire implies that not only the

density but all the physical variables of the system depend only on y.

To carry out the k-integrations we have discretized the integrals in a [kmin, kmax] in-

terval, and have computed Ψnk for the chosen states on a k-grid with Nk points, for all the

n’s up to a chosen nmax. Next, we have performed the integrations using a high-precision

method –a Bode rule– in the k-domain [Abr72]. Moreover, to avoid the cumbersome eval-

uation of the band occupations at zero temperature, we have used a finite-T formalism

though it can be viewed just as a numerical trick since we have chosen a temperature

small enough so that ours are in practice T = 0 results. Thermal effects might be intro-

duced increasing the value of T in the relevant expressions, but we have not considered

this possibility here. It must also be pointed out that, contrarily to the noninteracting

situation, in which for a given set of parameters defining the QW its energy subbands are

determined once for all and can be filled with electrons until reaching a prefixed value

for ρ1D or µ, in the present case the subband structure is selfconsistently determined and

therefore it generally changes from a value of the linear density to another.

At given ρ1D, the total energy per unit length

Etotal = Ekin + Econf + ESO + Exc + EZ =
∫

dy
∑

n

L

2π

∫

dk〈Ψnk|hks|Ψnk〉 (2.75)
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is calculated piece by piece. Defining ϕnkη ≡ ϕnk(y, η), for the kinetic and confining terms

one has

Ekin =
1

4π

∫

dy
∑

n

∫

dk
{

|ϕ′
nk↑|2 + |ϕ′

nk↓|2 + k2
(

|ϕnk↑|2 + |ϕnk↓|2
)}

fµ(εnk) (2.76)

Econf =
ω2

0

4π

∫

dy
∑

n

∫

dk y2
(

|ϕnk↑|2 + |ϕnk↓|2
)

fµ(εnk) , (2.77)

with ϕ′
nkη ≡ dϕnkη/dy. For the SO contribution, using Eq. (2.73) one obtains

ESO =
∫

dy
∑

n

1

2π

∫

dk
(

ϕ∗
nk↑ ϕ∗

nk↓

)





0 γk + γ∗ d
dy

γ∗k − γ d
dy

0









ϕnk↑

ϕnk↓



 fµ(εnk) .

(2.78)

Performing the matrix multiplications one gets an expression that is apparently real

ESO =
∫

dy
∑

n

1

2π

∫

dk
{

2kRe
[

γ∗ϕ∗
nk↓ϕnk↑

]

+ Re
[

γ
(

ϕ
′∗
nk↓ϕnk↑ − ϕ∗

nk↓ϕ
′
nk↑
)]}

fµ(εnk) ,

(2.79)

where it has been used that
∫

dy ϕ∗
nk↑ϕ

′
nk↓ =

1

2

∫

dy
(

ϕ∗
nk↑ϕ

′
nk↓ − ϕ

′∗
nk↑ϕnk↓

)

. (2.80)

Finally, one has the Zeeman and exchange-correlation contributions, respectively given

by

EZ = EZ

∫

dy
∑

n

1

2π

∫

dk 2
{

cos φB Re
[

ϕ∗
nk↓ϕnk↑

]

− sin φB Im
[

ϕ∗
nk↓ϕnk↑

]}

fµ(εnk) ,

(2.81)

and

Exc =
∫

dy εxc(y) ρ(y) . (2.82)

The spin-orbit regime is represented by the ratio of the SO to the confining energy,

namely

∆R,D =
mλ2

R,D

2h̄3ω0

, (2.83)

and we have used the values (∆R = 0.0037 ,∆D = 0.015) and (∆R = 0.093 ,∆D = 0.37)

to characterize, respectively, typical weak and strong SO coupling regimes [Zha06]. The

results we discuss in the following have been obtained using these values, except when

others are explicitly given.

The intensity of the magnetic field, when different from zero, has been set to B = 20

T, and only two orientation angles have been considered, namely φB = 0 and π/2. To

present the results, we have used the harmonic oscillator length l0 =
√

h̄/mω0 to express

both the linear density ρ1D and the wave number k in units of l−1
0 . For a typical energy

value h̄ω0 = 4 meV, a unit linear density ρ1D = l−1
0 is about 5.9 × 105 cm−1 and the

interaction-to-confinement ratio e2/(ǫl0h̄ω0) is 1.72 for a GaAs quantum wire.

Fig. 2.6 shows the energy per electron E/N at B = 0 as a function of ρ1D in the

weak and strong SO coupling regimes. Due to the exchange-correlation interaction E/N
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Figure 2.6: Energy per electron (in h̄ω0 units) as a function of ρ1D at B = 0. The regions

separated by vertical lines are characterized by the indicated number of distinct subbands crossed

by the electron chemical potential µ, i.e., partially occupied subbands. The vertical left (right)

scale corresponds to the weak (strong) SO regime.

is not a monotonous function of the linear density [Mal05], and neither is the chemical

potential.

We have studied the effects of Vxc in several situations involving in-plane magnetic

fields and different strengths of the spin-orbit interaction, having found it difficult to be

systematized since it depends on the actual value of the system parameters, namely ρ1D,

the orientation of the applied field B, and also on the intensity of the SO coupling. In

general, though, the exchange-correlation interaction seems to have a tendency to enhance

or modify the effects of the magnetic field, especially at low densities. Indeed, we have

found that, for some low-density configurations, the subband structure at B = 0 when Vxc

is taken into account turns out to be qualitatively the same as when a certain magnetic

field is applied and Vxc is set to zero. The spontaneous symmetry breaking leading to

the appearance of a magnetization is made possible by the exchange-correlation energy,

which in some cases attains its minimal value when the system is spin-polarized even at

B = 0. Therefore, one can physically ascribe this resulting magnetization to an exchange-

correlation-induced magnetic field, ‘BVxc
’. Analogously, when B 6= 0 Vxc may give rise

to an effective field Beffective = B + ‘BVxc
’ with an orientation equal or different from

that of B.

Since in many previous works only the Rashba SO interaction has been taken into

account, it is pertinent to begin with the discussion of the effects of Vxc in the ∆D = 0

situation. Fig. 2.7 shows the results corresponding to a low-density QW for B= 20 T and

φB = 0 in a strong SO regime, namely ∆R = 0.37. One may see that when Vxc = 0 the

first subband presents the characteristic symmetric double-minimum shape of this case
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Figure 2.7: Sp energies (in h̄ω0 units) for ρ1Dl0 = 0.17 and B = 20 T, φB = 0 and ∆R = 0.37,

∆D = 0 (strong SO regime) as a function of kl0. The thin horizontal line represents the chemical

potential.

[Per04, Ser05]. The effect of Vxc at such low density is to induce an asymmetry in the

lowest subbands, transforming this symmetric double-minimum structure into another

one rather similar to that corresponding to the situation in which Vxc = 0 and φB = π/4

[Per04], i.e., the exchange-correlation interaction modifies the direction of the applied

field. It must be pointed out that, for small ∆R values, the double minimum is not found

even when Vxc = 0, whereas in a very strong regime, e.g. ∆R = 0.83, such structure is also

present for odd-n > 1 values. In this case, the changes induced by Vxc are qualitatively

similar to those displayed in the figure.

Likely, the absence of a common spin quantization axis due to the presence of SO

coupling has much to do with the complex effect of Vxc on the subband structure, which

may give rise to the presence of spin textures across the wire [Ser05] that can be calculated

from the relations (2.58). This is illustrated in Fig. 2.8, corresponding to the situation

shown in Fig. 2.7 comparing the situations in which Vxc is and is not taken into account.

In both panels, the z-component displays the previously found [Gov02, Ser05] spin accu-

mulations of different sign on opposite lateral sides of the wire, indicating the robustness

of this effect against Vxc. On the contary, the in-plane spin distributions show remarkable

differences between both situations: at Vxc = 0 it is perfectly aligned along the direction

of the magnetic field (φB = 0) whereas it deviates pointing along the φB ≈ π/4 direction

when Vxc is included. This result nicely illustrates the above-mentioned property of Vxc

that amounts to replace the applied magnetic field by an effective one having different
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Figure 2.8: Spin textures across the wire (y-direction, in l0 units) corresponding to the situation

displayed in Fig. 2.7. The left panel corresponds to the Vxc = 0 case. The vector plot shows the

in-plane spin, and the solid red line corresponds to the z-component. The spin scale is indicated

in panel a).

modulus and direction.

Exchange-correlation effects also appear when both SO contributions are taken into

account. Fig. 2.9 shows the energy subband structure for the strong coupling regime

and magnetic field with φB = π/2. In both panels, conspicuous subband gaps and local

extrema appear near k = 0. The most interesting feature in this case is the weak local

maximum at k > 0 in even subbands when Vxc is not considered (bottom panel). Similar

structures have been found in Ref. [Mor99], where the B = 0 case is addressed considering

only the Rashba SO interaction. One can see that the inclusion of Vxc washes out these

structures. On the other hand, the well-known [Per04, Ser05] local extrema present in the

odd bands remain qualitatively unaffected by the inclusion of the exchange-correlation

interaction. These features have important effects on the conductance, as we shall see in

the next section.

Finally, the sp energies for a situation corresponding to B=0 and a relatively low

density are shown in Fig. 2.10, again in the strong SO regime. It can be seen that Vxc

gives rise to a symmetric subband structure with an energy gap at k=0, characteristic of

the situation represented in the bottom panel of Fig. 2.7 (in which there is an applied

magnetic field). Once more, this exemplifies the B-like behavior of Vxc.

The spin textures corresponding to the results with Vxc 6= 0 of Figs. 2.9 and 2.10

are shown in the left and right panels of Fig. 2.11, respectively. The left-panel results

correspond to a magnetic field along the positive y-axis that is clearly constraining the

in-plane magnetization to essentially point along this direction. However, some straggling

of the arrows around the vertical direction persists. As in Fig. 2.8, the z-component

displays different sign accumulations on opposite edges of the wire that, when combined

with the in-plane distribution, yield a rather complicated spin texturing. The right panel

in Fig. 2.11 corresponds to a case with B = 0. Hence, in this situation there is no a priori
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Figure 2.9: Sp energies (in h̄ω0 units) for ρ1Dl0 = 1.38 and B = 20 T, φB = π/2, in a strong SO

regime characterized by ∆R = 0.093, ∆D = 0.37, as a function of kl0. In both panels, the thin

horizontal line represents the chemical potential for the linear density ρ1Dl0 = 1.38, whereas

the dashed horizontal lines in the bottom panel represent the chemical potential for two smaller

linear densities that will be used in the discussion of the conductance in the next section, where

the meaning of the arrows displayed in the figure is explained.

preferred direction and the fact that the in-plane spin magnetization selects a certain one

is an example of spontaneous symmetry breaking induced by Vxc.

It is worth to mention that exchange-correlation effects are also found in the weak SO

coupling regime, though in this case no local extrema are found. However, we show in the

next section that the effects of Vxc on the conductance are also visible in this situation,

especially marked at low densities and becoming notably weaker or disappearing for n ≥ 2,

in which case only small k-asymmetries are observed in odd subbands at B = 0. When an

in-plane magnetic field already acts on the wire, Vxc seems to slightly enhance the effects

of B without producing qualitative changes in the subband structure.

To finish this section, we point out that a particular situation appears when λD = λR

at zero magnetic field. It has already been addressed at Vxc = 0 [Sch03b] showing that

the subband anticrossings disappear when both SO strengths are equal. We have found

that the inclusion of the exchange-correlation interaction does not alter this property in

any SO regime.
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Figure 2.10: Sp energies (in h̄ω0 units) for ρ1Dl0 = 0.52 and B = 0 in a strong SO regime with

∆R = 0.093, ∆D = 0.37, as a function of kl0.

Figure 2.11: Same as Fig. 2.8 for the situations displayed in Fig. 2.9 (left panel) and Fig. 2.10

(right panel) with Vxc 6= 0.

2.2.3 Conductance

The noncollinear Kohn-Sham calculation discussed in the previous section allows one to

evaluate the free –KS (mean-field)– linear density response χ0(q, ω) to a field parallel to

the wire –i.e. in the x-direction–, which is given by:

χ0(q, ω)

L
=

1

π

∑

n

∫

dk
ǫnk,q |〈Ψn k+q |eiqx|Ψnk〉|2

(ω + iλ)2 − ǫ2nk,q

, (2.84)

where λ is a small real quantity and it is important to notice that the sum runs over all

the possible intrasubband (∆n = 0) excitations with energy ǫnk,q induced in the ground
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state by the density operator
∑

j e
iqxj . The longitudinal conductivity associated to χ0(q,ω)

L

is given by [Lip03, Pin66]
σ(ω)

L
= i

e2ω

q2

χ0(q, ω)

L
, (2.85)

whose real part satisfies the relation

Re

[

σ(ω)

L

]

= −e
2ω

q2
Im

χ0(q, ω)

L
. (2.86)

The conductance G is defined as the q → 0 and ω → 0 limits of the above expression.

When q → 0, the operator
∑

j e
iqxj induces intrasubband excitations between the states

|Ψnk〉 and |Ψn k+q〉 with energy

ǫnk,q = ǫn k+q − ǫnk = q
∂ǫnk

∂k

∣

∣

∣

∣

∣

k=kn

≡ αkn
q , (2.87)

where kn are the intersections of the nth subband with the chemical potential correspond-

ing to positive slopes αkn
. Indeed, it is crucial to realize that for q > 0 only intrasubband

excitations with k+ q > k are allowed. They are gapless and exist due to the confinement

in the QW, which breaks the translational invariance of the system along the y-direction

and bends the single-particle subbands. Notice that for the energy subband patterns gen-

erated in the previous section also intersubband (∆n 6= 0) electron-hole excitations could

be induced. As shown above, though, they do not contribute to the xx DC conductivity

of the wire. The bottom panel of Fig. 2.9 displays examples of both kinds of excitations,

the intrasubband and intersubband excitations being represented, respectively, by curved

and straight arrows.

Since

〈Ψnk+q

∣

∣

∣eiqx
∣

∣

∣Ψnk〉 =
∫

drΨ†
n k+q(r)e

iqxΨnk(r) (2.88)

=
1

L

∑

η

∫ ∫

dx dy ϕ∗
n k+q(y, η) e

−i(k+q)x eiqx ϕnk(y, η) e
ikx = 1 +O(q) ,

in the q → 0 limit the matrix elements of the operator eiqx can be taken equal to the

unity and the phase space for electron-hole excitations is
∫

dk = q [Lip03], yielding

Re

[

σ(q, ω)

L

]

=
πe2

q2

∑

kn

q

2π
αkn

qδ(ω − αkn
q) , (2.89)

where we have denoted with
∑

kn
the sum over all the allowed intrasubband excitations.

This amounts to count the number of cuts of the chemical potential with partially occupied

subbands corresponding to positive values of αkn
. Taking the cosine Fourier transform,

we get

Re

[

σ(y, ω)

L

]

=
e2

2π

∑

kn

cos

(

ω y

αkn

)

. (2.90)
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Figure 2.12: Conductance (in G0 units) as a function of the linear density ρ1D for B = 20 T

in the weak SO regime. The azimuthal angle of the magnetic field is indicated. Top (bottom)

panels show the results when the exchange-correlation interaction is (is not) taken into account.

Thus, in the ω → 0 limit, we finally obtain for the conductance:

G =
e2

h

∑

kn

1 =
G0

2

∑

kn

1 . (2.91)

When Vxc = 0, in the absence of magnetic field and spin-orbit coupling, ǫnk = (n +

1/2)ω0 + k2/2 and the subbands are spin-degenerate. Therefore, only one intrasubband

excitation (one single intersection kn) for each n contributes –by e2/h– to the conductance,

which thus presents the well-known quantization of the Landauer formalism, namely

G = G0

2

∑

n 1. However, different results may arise due to the combined effects of the

magnetic field, spin-orbit coupling and Vxc on the energy spectrum.

Fig. 2.12 shows the conductance in the weak SO regime when a magnetic field is

applied along the φB = 0 and π/2 directions for the situations in which the exchange-

correlation interaction is and is not considered. In both cases one can see the plateaus

at semi-integer multiples of G0 and notice as well the larger effect of Vxc at low densities.

Indeed, the first semi-integer step is clearly wider when the exchange-correlation inter-

action is taken into account, showing how Vxc combines with B giving rise to a larger

effective magnetic field. Note also that these steps are apparently narrower than those

corresponding to integer multiples of G0 since the splitting of the subbands due to the

confinement –coming from the (n+ 1/2)ω0 term– is much larger than the one induced by

‘BVxc
’.

The corresponding strong SO regime is shown in Fig. 2.13. In this case, in addition

to the steps at semi-integer values of G0, new features appear. Indeed, one can see
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Figure 2.13: Same as Fig. 2.12 for the strong SO regime

that the conductance presents G0 drops within narrow intervals of the electron density.

These anomalies have already been found [Per04, Ser05] without considering the exchange-

correlation interaction and are usually referred to as ‘anomalous conductance plateaus’.

They are due to the the interplay between the spin-orbit interaction and the magnetic

field, which in some situations gives rise to the presence of energy gaps at odd-even

subband intersections that may reduce the number of possible intrasubband excitations

–or kn points– by one unit. The effects of Vxc, dramatically depending on ρ1D, can modify

the size of such gaps thus altering the width of these additional plateaus. By comparing

the left-top and the left-bottom panels, the latter corresponding to Vxc = 0 and φB = 0,

one can see that the inclusion of the exchange-correlation interaction does not alter the

main structure of the conductance except for the width of the first semi-integer plateaus

(similarly as in the weak SO case). However, new interesting features are found when

φB = π/2 and Vxc = 0: in this case, in addition to the above-mentioned drops, G presents

also ‘bumps’ that increase its value by G0, again within small –even more in this case–

intervals of ρ1D. Their existence is due to the local maxima at even-n subbands discussed

in the previous section that, contrarily as before, yield additional intrasubband excitations.

It is worth to stress that these structures are not robust in the sense that they are washed

out by the exchange-correlation interaction, as can be seen from the right-top panel of the

figure. We also want to point out that, in the general case at B 6= 0, the same behavior is

found for the subbands –and as a consequence for the conductance– when the angle of the

magnetic field is changed from φB = 0 to π/2 and viceversa, provided at the same time

the interchanges ∆R ↔ ∆D and k ↔ −k are made. This is due to the particular interplay

between the Rashba and Dresselhaus SO terms and the orientation of the magnetic field,
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Figure 2.14: Same as Fig. 2.12 for B = 0 in the strong and weak SO regimes.

which is discussed in the Appendix B.

Finally, we show in Fig. 2.14 the B = 0 case for the weak and strong SO regimes. It

can be seen that when Vxc = 0 the conductance displays the usual plateaus of the spin-

degenerate situation (for each value of ρ1D there are always two possible intrasubband

excitations). Contrarily, when Vxc 6= 0 the induced splitting in the energy subbands (see

fig. 2.10) gives rise to the presence of plateaus at semi-integer values of G0 in the weak

SO regime, and also of G0 drops when the spin-orbit coupling is strong, similarly as what

happens for B 6= 0. This is clearly a genuine exchange-correlation interaction effect,

mimicking an applied magnetic field.
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Quantum wells with spin-orbit

interaction under tilted magnetic

fields

We generalize some of the expressions derived in section 2.1.1 to the case in which B has

an in-plane component, namely e.g., B = (Bx, 0, Bz). The Zeeman term then becomes
1
2
g∗µBB·σ= −1

2
ωz

L(σx tan θ + σz), where we have introduced the zenithal angle θ, with

tan θ = Bx/Bz, and the ‘z-Larmor’ frequency ωz
L = |g∗µBBz|, with ωz

L/ωc = |g∗|m∗/2.

The Schrödinger equation reads now





1
2
(a+a− + a−a+) − ωz

L/(2ωc) − ε iλ̃Ra
− + λ̃Da

+ − [ωz
L/(2ωc)] tan θ

−iλ̃Ra
+ + λ̃Da

− − [ωz
L/(2ωc)] tan θ 1

2
(a+a− + a−a+) + ωz

L/(2ωc) − ε









φ1

φ2



 = 0 .

(A.1)

The calculation is performed as before, Eq. (2.7) becoming

(n+ α− ε) bn − α− β

2
tan θ an − iλ̃R

√
n an−1 + λ̃D

√
n + 1 an+1 = 0

(n+ β − ε) an − α− β

2
tan θ bn + iλ̃R

√
n+ 1 bn+1 + λ̃D

√
n bn−1 = 0 , (A.2)

where α = (1 + ωz
L/ωc)/2 and β = (1 − ωz

L/ωc)/2.

Proceeding as in the perpendicular magnetic field situation, one finds the sp spectrum

that generalizes Eqs. (2.28):

Ed
n =

(

n+
1

2

)

ωc +
ωz

L

2
S + 2n

[

U (λ2
R + λ2

D) + (λ2
R V + λ2

D Z)
ωc

ωc + ωz
L S

]

−2(n+ 1)

[

U (λ2
R + λ2

D) + (λ2
R Z + λ2

D V)
ωc

ωc − ωz
L S

]

Eu
n =

(

n+
1

2

)

ωc −
ωz

L

2
S + 2n

[

U (λ2
R + λ2

D) + (λ2
R Z + λ2

D V)
ωc

ωc − ωz
L S

]

−2(n+ 1)

[

U (λ2
R + λ2

D) + (λ2
R V + λ2

D Z)
ωc

ωc + ωz
L S

]

, (A.3)
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where we have defined S = 1/ cos θ, U = sin2 θ/4, V = (1 + cos θ)2/4, and Z = (1 −
cos θ)2/4. Notice that when θ = 0, U = Z = 0, V = 1, and Eqs. (A.3) reduces to Eqs.

(2.28).
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Analytical second-order perturbation

theory solution for noninteracting

quantum wires

Noninteracting QWs in the presence of an in-plane magnetic field B have been addressed

using second-order perturbation theory, considering only the Rashba term [Ser05]. We

extend here these results taking into account both SO contributions. The Hamiltonian

can be written in dimensionless form as

Hk

h̄ω0
=

(

n̂k +
1

2

)

+
1

2

(

l0
lZ

)2

(cosφBσx + sinφBσy) +
k2l20
2

+
kl20
2

(l̃Dσx − l̃Rσy) +
il0

2
√

2
(âk

† − âk)(l̃Rσx − l̃Dσy) , (B.1)

where l̃R,D ≡ l−1
R,D ≡ 2mλR,D/h̄

2, l0 ≡
√

h̄/mω0, and lZ ≡
√

h̄2/mg∗µBB, whereas âk
†

and âk are the usual creation and annihilation harmonic oscillator operators

âk
†|nkη〉 =

√
n+ 1|(n+ 1)kη〉

âk|nkη〉 =
√
n|(n− 1)kη〉 , (B.2)

with η = ±1. We split the Hamiltonian as Hk = H0
k + HSO

k and consider the SO terms

as a small perturbation. The other piece can be exactly solved yielding the unperturbed

energies –in h̄ω0 units– and eigenvectors

E
(0)
nkη =

(

n +
1

2

)

+
k2l20
2

+
η

2

(

l0
lZ

)2

(B.3)

|nkη〉 =
1√
2
ϕn(y)eikx





1

ηeiφB



 . (B.4)

We have calculated the first- and second-order energy corrections arising from

HSO
k =

kl20
2

(l̃Dσx − l̃Rσy) +
il0

2
√

2
(âk

† − âk)(l̃Rσx − l̃Dσy) ≡ HSO
k,1 +HSO

k,2 . (B.5)
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The first-order correction is given by

E
(1)
nkη ≡ 〈nkη|HSO

k |nkη〉

=
kl20
2

(

1√
2

)2
(

1 ηe−iφB

)





0 l̃D + il̃R

l̃D − il̃R 0









1

ηeiφB





=
kl20
2
η(l̃D cosφB − l̃R sin φB) . (B.6)

As we can see, up to first order only HSO
k,1 contributes, and setting λD = 0 we recover the

result of Ref. [Ser05]. Note also that this correction is zero when the magnetic field is

oriented along the direction corresponding to tanφB = λD/λR.

Interestingly, we see that up to first order the term that combines with the Zeeman

contribution is the Dresselhaus one at φB = 0, whereas it is the Rashba term at φB = π/2,

having opposite signs. This result is not sensibly altered by exchange-correlation effects,

and helps to understand some of the detailed calculations shown in section 2.2.2. In

particular, the conspicuous result that, for the same intensity of the SO interaction, the

effect of the Dresselhaus term when φB = 0 is the same as that of the Rashba term at

φB = π/2, provided that k is changed by −k.
Defining |j〉 ≡ |nkη〉, the second-order correction is given by

E
(2)
j =

∑

i6=j

|〈i|HSO
k |j〉|2

E
(0)
j −E

(0)
i

=
∑

i6=j

|〈i|HSO
k,1 +HSO

k,2 |j〉|
2

E
(0)
j − E

(0)
i

, (B.7)

with |i〉 ≡ |n′kη′〉 since the perturbation is diagonal in k. Now both SO terms contribute.

We distinguish different cases:

a) |i〉 = |nkη′〉, with η′ = −η. In this case, 〈i|HSO
k,2 |j〉 = 0 and we have

E
(0)
j − E

(0)
i = η

(

l0
lZ

)2

(B.8)

and

〈i|HSO
k,1 |j〉 =

(

1√
2

)2
kl20
2

(

1 −ηe−iφB

)





0 l̃D + il̃R

l̃D − il̃R 0









1

ηeiφB





=
kl20
2
ηi
(

l̃D sinφB + l̃R cosφB

)

. (B.9)

This yields

E
(2)
j,a = η

k2l40
4

(

lZ
l0

)2
(

l̃D sinφB + l̃R cosφB

)2
. (B.10)

b) |i〉 = |n′kη〉 with n′ 6= n. Now, 〈i|HSO
k,1 |j〉 = 0, and

E
(0)
j − E

(0)
i = n− n′ , (B.11)
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yielding

E
(2)
j,b =

∑

i6=j

|〈i|HSO
k,2 |j〉|

2

E
(0)
j − E

(0)
i

= −
∣

∣

∣

∣

∣

∣

il0

2
√

2 · 2
(

1 ηe−iφB

)





0 l̃R + il̃D

l̃R − il̃D 0









1

ηeiφB





∣

∣

∣

∣

∣

∣

2

= − l
2
0

8

(

l̃D sin φB − l̃R cosφB

)2
. (B.12)

c) |i〉 = |n′kη′〉 with n′ 6= n and η′ = −η. Again, 〈i|HSO
k,1 |j〉 = 0 and

E
(0)
j − E

(0)
i = n− n′ + η

(

l0
lZ

)2

, (B.13)

yielding

E
(2)
j,c =

∑

i6=j

|〈i|HSO
k,2 |j〉|

2

E
(0)
j −E

(0)
i

=

∣

∣

∣

∣

∣

∣

il0

2
√

2 · 2
(

1 −ηe−iφB

)





0 l̃R + il̃D

l̃R − il̃D 0









1

ηeiφB





∣

∣

∣

∣

∣

∣

2

×
[

n+ 1

−1 + η (l0/lZ)2
+

n

1 + η (l0/lZ)2

]

= − l
2
0

8

(

l̃R sinφB + l̃D cosφB

)2
(

1 + η (l0/lZ)2 (2n+ 1)

1 − (l0/lZ)4

)

. (B.14)

The total second-order correction is therefore

E
(2)
nkη = E

(2)
j,a + E

(2)
j,b + E

(2)
j,c

= η
k2l40
4

(

lZ
l0

)2
(

l̃D sin φB + l̃R cosφB

)2

− l
2
0

8

[

l̃2R + l̃2D +
(

l̃R sin φB + l̃D cosφB

)2 (l0/lZ)4 + η (l0/lZ)2 (2n+ 1)

1 − (l0/lZ)4

]

,(B.15)

showing that both SO terms are entangled and contribute similarly at any angle. Setting

λD = 0 we recover again the result of Ref. [Ser05].
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Resum, conclusions i perspectives

En aquesta tesi hem estudiat l’estat fonamental, l’espectre d’excitació a l’infraroig llunyà

i els efectes de la interacció d’spin-òrbita en nanoestructures quàntiques semiconductores

del tipus AlGaAs/GaAs. Ho hem fet en dos grans blocs diferenciats: un primer, centrant-

nos exclusivament en sistemes d’anells quàntics, calculant l’estat fonamental i les respostes

dipolars, i un segon bloc on hem estudiat els efectes dels acoblaments d’spin-òrbita de

Bychkov-Rashba i de Dresselhaus en pous i fils quàntics sotmesos a camps magnètics

aplicats externament, tant continguts en el pla del sistema com perpendiculars a aquest.

En el primer caṕıtol hem utilitzat el formalisme de la Local Spin-Density Approxi-

mation (LSDA), i l’hem començat estudiant el cas d’un sol anell. Primerament, hem

considerat el sistema com a tridimensional, és a dir amb un cert gruix en la direcció de

creixement del pou quàntic inicial. El pla de l’anell ha estat descrit amb un potencial

confinant mixte compost per una paràbola i una barrera quadrada d’alçada V0 que hem

pres de valor corresponent al band-offset de les heteroestructures considerades. Per altra

banda, per a la direcció perpendicular al pla del sistema hem pres un pou quadrat de

fondària també V0. Aquest sistema s’ha simplificat posteriorment a només dues dimen-

sions prenent el mateix confinament en el pla però imposant que la densitat electrònica

en la direcció vertical és una delta de Dirac.

La comparació de les energies d’addició dels dos sistemes mostra qualitativament els

mateixos resultats: per una banda, els coneguts pics intensos als nombres d’electrons

N = 2, 6, 10, 20, . . ., corresponents a tancaments de capa (amb spin total zero), i per

l’altra els pics a N = 4, 8, 16, . . ., conseqüència de la regla de Hund, que com és ben

sabut es compleix en aquests sistemes i afavoreix una configuració polaritzada en spin per

ompliments de mitja capa. En el cas de tres electrons, però, hem trobat una diferència:

l’anell bidimensional té spin màxim (2Sz = 3) a causa de la sobreestimació de l’energia

d’intercanvi-correlació en dues dimensions. Cal dir, però, que aquest resultat no és un

artifici de la LSDA, sinó que ha estat trobat també per altres autors mitjançant càlculs

de diagonalització exacta.

Hem estudiat un segon anell bidimensional, modelitzat amb un confinament del tipus

Woods-Saxon. En aquest cas hem considerat a més a més l’aplicació simultània d’un

camp elèctric (E) en el pla de l’anell i d’un camp magnètic (B) perpendicular a aquest.

L’estudi d’aquest segon sistema ha fet palesa la gran dependència de l’espectre d’addició

en la forma del potencial confinant, apreciant-se clares diferències respecte al primer anell.
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No obstant això, en absència de camps aplicats hem trobat una gran robustesa dels pics

a N = 6, 8 i 10, amb la resta de l’espectre dibuixant en aquest cas un aspecte més

pla. Hem vist també que früıt de l’aplicació dels camps externs apareixen puntualment

nous pics –per exemple a N = 2 o 4–, al mateix temps que l’estructura general s’aplana

encara més, amb l’única excepció del pic a N = 8 que es mostra essencialment inalterat

a qualssevol dels camps considerats. Hem comprovat també que l’efecte combinat de

camps elèctrics i magnètics pot en alguns casos canviar l’spin total del sistema. Aix́ı, hem

trobat transicions d’estats amb spin zero a d’altres de polaritzats en spin i viceversa fixant

un dels dos camps i variant l’altre, propietat que ha estat observada experimentalment.

Aquesta última l’hem estudiat també pel cas de dos electrons mitjançant la resolució

exacta de l’equació d’Schrödinger. El corresponent diagrama de fases en el pla E-B mostra

clarament l’existència d’‘illes d’spin’ separant regions d’estats singlet i triplet. Finalment,

per a aquest anell hem calculat també la resposta dipolar en el canal de densitat amb el

sistema sotmès a un camp magnètic fixat. Això últim ho hem fet utilitzant l’aproximació

adiabàtica de la LSDA depenent del temps, trobant dues estructures ben definides en

l’espectre infraroig llunyà: una a baixes energies i una altra –caracteŕıstica dels anells

quàntics– corresponent a altes freqüències de la perturbació externa que origina l’excitació

del sistema. En considerar l’aplicació del camp elèctric hem vist que cap de les dues

estructures mostra canvis qualitatius tot i la presència d’una petita fragmentació general

i de l’aparició d’un petit strength a molt baixa energia.

Posteriorment, hem considerat dos anells tridimensionals acoblats verticalment, cadas-

cun dels quals hem representat utilitzant el mateix potencial confinant que en el cas d’un

sol anell, però ara amb dos pous quàntics en la direcció vertical separats per una distància

d. La variació d’aquesta última ens ha permès estudiar, de manera similar a situacions

amb molècules reals, diferents règims d’acoblament ‘intramolecular’. Seguint aquesta

analogia, i tenint en compte que en una possible futura realització experimental de tals

sistemes hi haurà inevitablement introdüıdes asimetries, hem considerat el cas en què els

dos ‘atoms’ són idèntics i el cas en què els pous quàntics o radis de cada anell difereixen

en una certa quantitat.

En el cas ‘homonuclear’, mitjançant el càlcul de les energies d’addició hem trobat que

a distàncies ‘interatòmiques’ petites (d = 2 nm) el sistema té un comportament qualita-

tivament similar al d’un sol anell: els dos ‘àtoms’ es troben electrostàtica i quànticament

lligats i es comporten com un sistema simple, amb pics pronunciats als valors d’N comen-

tats més amunt. Quan augmentem la separació dels anells fins a una distància mitjana

(d = 4 nm) l’espectre presenta una estructura més difusa, conservant alguns pics respecte

al cas anterior i apareixent-ne de nous. La situació més interessant, no obstant això, és la

corresponent a grans separacions (d = 6 nm), on la ‘molècula’ mostra signes ineqúıvocs

de dissociació: apareixen pics als mateixos valors d’N que en el cas d’un anell simple però

multiplicats per dos, és a dir donant lloc, per exemple, a les combinacions 2+2→ 4, 6+6→
12 o 10+10→ 20. Tot i això, la presència d’altres estructures més complexes indica que

la distància més gran considerada no és suficient per donar lloc a una separació completa
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de la molècula. La degeneració dels estats enllaçants i antienllaçants i, especialment, la

possibilitat d’aquests de combinar-se en parelles donant lloc a localització electrònica en

un anell o altre, té molt a veure amb els resultats obtinguts.

En el cas ‘heteronuclear’, hem considerat primer com a asimetria entre els dos pous

una diferència de fondàries δ –mismatch– de l’ordre d’un 1% de V0. L’efecte trobat és

gairebé inapreciable a distàncies petites i mitjanes, però esdevé molt important per a

acoblaments petits, on δ és del mateix ordre que la diferència d’energies entre parelles

d’estats enllaçants i antienllaçants. Això dóna lloc a un espectre d’addició completament

diferent al cas simètric i afavoreix clarament la gairebé total localització dels electrons en

un dels dos anells. Quan hem considerat l’asimetria entre els dos radis, tot i considerar

una diferència de l’ordre d’un 20% del valor del radi més petit, hem trobat efectes i

conclusions similars, amb un espectre d’addició qualitativament igual al cas amb els pous

desiguals i que sembla ser, doncs, caracteŕıstic d’aquests tipus de sistemes asimètrics.

Finalment, l’última part del caṕıtol l’hem dedicat a l’estudi de sistemes dobles d’anells

concèntrics. En un primer lloc, hem considerat els anells constituents representats per un

potencial confinant tridimensional format per la superposició de dues corves Gaussianes

i prenent el radi de l’anell exterior com a variable. Posteriorment, hem considerat un

confinament menys realista bidimensional, format per dues paràboles centrades a punts

diferents, cadascuna de les quals representant un dels dos anells. En aquest darrer cas, la

distància entre tots dos s’ha fixat i hem considerat com a paràmetre del sistema un camp

magnètic variable aplicat en la direcció perpendicular al pla de moviment dels electrons.

En els sistemes concèntrics, a camp magnètic zero, la localització electrònica en un o

altre anell és resultat de la competició entre l’energia cinètica, el confinament i la repulsió

Coulombiana. Aix́ı doncs, en el cas tridimensional hem començat ‘desconnectant’ la

interacció electró-electró per tal d’entendre millor els efectes de cada contribució. A la

distància entre anells més petita considerada, hem trobat que els estats menys energètics

es localitzen a l’anell més petit, desplaçant-se cap al més gran a mida que augmentem

la separació entre tots dos. Pel que fa a les energies d’addició, aquestes mostren, tant

per a petites com per a grans distàncies de separació, una estructura similar a la d’un

sol anell –exceptuant òbviament els pics corresponents a ompliments de mitja capa degut

a l’absència d’interacció de Coulomb i en particular de la part d’intercanvi-correlació.

A distàncies mitjanes, en canvi, l’espectre mostra una nova estructura, amb variacions

relatives entre els pics degudes a la quasi-degeneració dels estats corresponents a n=0 i

n=1 i a les diferents respectives separacions energètiques entre valors de moment angular

consecutius.

En considerar la interacció electró-electró, hem trobat que la transferència electrònica

cap a l’anell de fora comença a separacions més petites que en el cas no-interactuant, com

a conseqüència de la repulsió entre les part́ıcules. Hem vist que, clarament, aquesta última

esdevé molt cŕıtica a l’hora de repartir els electrons entre els dos anells, especialment en

el règim mitjà de separació, on trobem sistemes altament correlacionats. Aquest fet es

reflexa en les energies d’addició, que mostren diferències evidents respecte al cas en què
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no considerem la interacció de Coulomb, amb espectres totalment irregulars a aquestes

distàncies. Una caracteŕıstica destacable que hem trobat per aquest sistema és que el

terme d’intercanvi-correlació pot donar lloc a situacions en les quals l’anell de dins es

troba totalment polaritzat en spin mentre que el de fora té spin zero.

En fixar els radis dels dos anells i considerar l’acció d’un camp magnètic perpendicular

al pla del sistema, per la distància entre anells seleccionada hem trobat que la localització

depèn altament de la intensitat del camp aplicat, i que en absència o per a valors petits

d’aquest els electrons es troben essencialment deslocalitzats. Per altra banda, a mida

que B augmenta –a partir d’uns 2 Tesla– trobem que els orbitals amb moment angular

baix van distribüınt-se a l’anell de dins mentre que els corresponents a l’s grans se’n van

cap al de fora. Similarment al cas tridimensional, els dos anells tenen magnetitzacions

d’spin diferents, donant lloc al fet que algunes parelles d’estats (spin amunt-spin avall)

amb un l donat estiguin degenerades mentre que d’altres no ho estiguin, en funció de

l’anell on es trobin majoritàriament localitzades. A més a més, per a valors grans de B

amb el sistema totalment polaritzat en spin hem trobat una caracteŕıstica destacable: la

presència en alguns casos d’orbitals desocupats amb vëıns –és a dir l’s inmediatament

inferior i superior– ocupats, amb el ‘radi’ de l’estat buit corresponent aproximadament a

la posició del màxim del potencial confinant (punt d’intersecció entre les dues paràboles).

Finalitzant el primer caṕıtol, hem estudiat les respostes dipolars en els canals de

càrrega i d’spin per al sistema bidimensional. En el cas deslocalitzat, és a dir a camps

magnètics petits, l’espectre és bastant similar al conegut per un sol anell: hi ha modes

d’excitació de bulk i d’edge a altes i baixes energies respectivament, amb els segons cor-

responent a les vores interna i externa de l’anell. En canvi, quan augmentem el camp

magnètic, la conseqüent localització dels electrons en un o altre anell dóna lloc a un es-

pectre molt més ric, amb nous modes d’edge de baixa energia associats a la vora externa

de l’anell més petit i a la vora interna del més gran. Com a norma general, hem trobat

que les excitacions en el canal de càrrega es troben a una energia més gran que en el d’spin

a causa dels signes de les respectives interaccions residuals (lligada al terme de Coulomb

directe –positiu– en el primer, i al d’intercanvi-correlació –negatiu– en el segon). Per

alguns valors del camp magnètic, a més a més, trobem que ambdós modes estan acoblats,

és a dir que l’operador dipolar de densitat excita modes en el canal d’spin i viceversa.

En el segon caṕıtol hem començat estudiant els efectes dels acoblaments d’spin-òrbita

de Rashba i de Dresselhaus en un pou quàntic sotmès a un camp magnètic perpendicular

al pla que el conté. Ho hem fet mitjançant una aproximació anaĺıtica que té com a punt

de partida l’expansió de les components dels spinors representant els estats del sistema

en termes d’una base d’oscil.lador.

Quan només es considera una de les dues contribucions d’spin-òrbita, el problema té

solució exacta, però no és aix́ı quan ambdues es tenen en compte. En aquest cas hem fet

l’aproximació que un nivell donat |n〉 del sistema només s’acobla als nivells |n−1〉 i |n+1〉.
D’aquesta manera, hem obtingut una solució anaĺıtica vàlida fins a segon ordre en les

constants de Rashba i de Dresselhaus, l’aplicabilitat de la qual –tant per a grans com per
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a petits camps magnètics– hem comprovat mitjançant la seva comparació amb la solució

numèrica del problema. Aix́ı hem pogut obtenir uns nivells de Landau generalitzats,

incorporant efectes d’spin-òrbita. Representant-los en funció de la intensitat relativa dels

dos acoblaments respecte al terme de Zeeman, hem trobat que presenten creuaments

deguts a la competició de les dues interaccions.

L’obtenció d’aquests nivells de Landau generalitzats ens ha permès també estudiar

transicions de part́ıcula independent indüıdes per una perturbació externa depenent del

temps, representada aqúı per un camp electromagnètic d’una certa freqüència. D’aquesta

manera hem pogut trobar les correccions a les energies de ciclotró i de Larmor degudes

a la interacció d’spin-òrbita, aix́ı com a les excitacions degudes als operadors de densitat

d’spin.

Posteriorment, hem estudiat els efectes d’afegir la interacció electró-electró en aquest

sistema mitjançant una aproximació basada en les regles de suma. La consideració si-

multània de les interaccions de Coulomb i d’spin-òrbita ens ha permès poder explicar,

calculant les regles de suma mixtes amb els operadors de ciclotró i de densitat d’spin,

l’experimentalment observada dependència en el filling factor de l’splitting de la res-

sonància de ciclotró en aquests sistemes. En particular, trobem un splitting als valors

senars ν = 3, 5 i 7 i absència d’aquest per a valors parells de ν (quan l’estat fonamental té

spin total zero). En el cas ν=1, els dos operadors exciten els mateixos modes i els resultats

obtinguts coincideixen amb les freqüències de ciclotró i de Larmor trobades quan no hem

tingut en compte la interacció de Coulomb, donant lloc a un splitting nul.

Per acabar la secció, hem considerat la possibilitat que el camp magnètic aplicat

tingui una component en el pla del sistema. Recalculant per a aquesta situació els nivells

de Landau generalitzats i l’splitting de la ressonància de ciclotró, hem vist que la no-

perpendicularitat del camp pot donar lloc a una amplificació dels efectes d’spin-òrbita en

una mesura que depèn de les magnituds efectives –en particular de la massa i el factor

giromagnètic– dels electrons de conducció del semiconductor considerat. L’efecte no és

massa important en el cas del GaAs però śı ho pot ser, per exemple, per al InSb.

En la segona part del caṕıtol hem estudiat els efectes de la interacció d’intercanvi-

correlació, representada pel potencial Vxc, en fils quàntics sotmesos a un camp magnètic

aplicat sobre el pla del sistema i amb presència d’acoblaments d’spin-òrbita de diferents

intensitats. A causa d’aquests últims els spins del sistema són no-colineals, amb la seva

orientació depenent de la posició espaial dins del fil i dels nombres quàntics dels estats

electrònics. Per tant, en aquestes condicions la LSDA –que suposa d’entrada una direcció

comú per a tots els spins del sistema– no és vàlida i hem hagut de recórrer a la seva versió

generalitzada aplicable a aquestes situacions. Considerant a més a més l’aproximació

d’apantallament total del terme de Coulomb directe, hem calculat les subbandes d’energia

i la conductància del fil.

Hem trobat que les subbandes es veuen afectades per la interacció d’intercanvi-correlació

en una mesura que depèn altament de la densitat del sistema i amb els efectes més grans

a baixes densitats. En aquest règim, l’asimetria de les subbandes respecte al punt k=0,
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aix́ı com els gaps als punts d’intersecció entre subbandes corresponents a transicions d’n

senar a parell, es poden veure amplificats o modificats com a causa de l’efecte de Vxc. En

general, hem trobat que aquest sembla actuar de manera anàloga a un camp magnètic,

amb una intensitat i orientació que varien en funció de la configuració considerada i que

hem trobat dif́ıcil de sistematitzar tot i que, com era d’esperar, té els efectes més grans a

baixes densitats. Aquest ‘camp magnètic’ es manifesta tant en absència de camp aplicat

externament com quan aquest últim és no nul donant lloc a un d’efectiu. Cal destacar

una caracteŕıstica important de les subbandes i que desapareix quan s’inclou l’intercanvi-

correlació: la presència de màxims locals en subbandes amb n parell quan es consideren

valors intensos dels acoblaments d’spin-òrbita en combinació amb el camp magnètic.

Per acabar, hem calculat la conductància G del fil com a resposta lineal del sistema

a l’aplicació en la seva direcció longitudinal d’un camp elèctric constant. Aix́ı, el valor

de G per a un valor de la densitat donat s’infereix de la corresponent estructura de

subbandes: cada possible excitació amb ∆n=0 –dins d’una mateixa subbanda– contribueix

en la unitat fonamental G0. D’aquesta manera, a camp magnètic nul hem trobat, com

a efecte de l’intercanvi-correlació, la presència d’esglaons a múltiples semi-enters de G0

i, per a acoblaments d’spin-òrbita intensos, també de les conegudes caigudes de valor G0

en la conductància que donen lloc als sovint anomenats ‘esglaons anòmals’ per a petits

intervals de la densitat. En considerar un camp magnètic extern trobem, a més a més, la

presència de nous esglaons anòmals deguts a l’existència dels màxims locals comentada

anteriorment. Aquests es manifesten com a ‘bonys’ d’alçada G0, també per a petits valors

de la densitat i novament amb els efectes més grans a baixes densitats. A diferència

dels primers esglaons anòmals, que es mostren essencialment robustos contra l’efecte de

l’intercanvi-correlació, els segons desapareixen quan aquesta última interacció s’inclou en

els càlculs.

Com a continuació del treball exposat en aquesta tesi, hi ha diverses possibilitats.

Per una banda, hem començat ja l’estudi dels anells acoblats verticalment considerant

el sistema sota l’efecte d’un camp magnètic aplicat perpendicularment i que es podria

considerar amb una orientació arbitrària. Això pot donar lloc a la presència de ‘fases

d’isosṕı’ en funció de la intensitat del camp extern i de la distància de separació entre els

dos anells, que podrien ser observades experimentalment.

Per altra banda, els anells concèntrics es poden estudiar amb tècniques de diagonal-

ització exacta fent servir com a base els estats obtinguts amb la LSDA. La idea és veure

els possibles efectes de localització electrònica, tant radial com angular, en funció de la

separació entre els anells o de la intensitat d’un camp magnètic aplicat. Aquesta local-

ització podria donar lloc a configuracions que es podrien manifestar experimentalment en

l’espectre d’excitació del sistema. Aquest últim, a més, es pot calcular utilitzant la versió

depenent del temps de la LSDA, permetent una comparació amb els resultats obtinguts

de la diagonalització. Els efectes de les oscil·lacions d’Aharonov-Bohm, especialment en

el cas dels anells concèntrics feblement acoblats, també poden ser de gran interès. A més

a més, els càlculs presentats aqúı es poden estendre a excitacions de més alta polaritat
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o considerar-ne de provinents d’operadors d’ona plana, no només en el cas considerat

bidimensional, sinó també prenent un confinament més realista en tres dimensions.

Concernint els efectes de l’acoblament d’spin-òrbita, el formalisme utilitzat per estu-

diar els pous quàntics es pot aplicar a punts i fils quàntics sota l’acció d’un camp magnètic

perpendicular. La consideració, a més, d’un camp elèctric aplicat sobre el pla del sistema

ens permetria calcular la magnetoconductivitat longitudinal i transversal, podent-ne es-

tudiar els efectes indüıts per les interaccions de Rashba i/o Dresselhaus. En aquest cas

caldria recórrer al teorema de Kohn generalitzat, vàlid quan el confinament que forma el

punt o el fil quàntic és parabòlic.

Finalment, el formalisme de la LSDA no-colineal es podria aplicar a l’estudi de sis-

temes més complexos, com per exemple un fil atravessant una ‘illa’ amb presència de

les interaccions d’spin-òrbita i/o d’intercanvi-correlació. Això simularia un punt o un

anell quàntic ‘obert’ on el fil faria el paper d’uns contactes elèctrics que en un muntatge

experimental serien necessàriament presents per tal de poder mesurar, per exemple, la

conductivitat del sistema. Aquesta generalització de la LSDA es podria aplicar també

a sistemes d’anells quàntics, estudiant el seu estat fonamental i també el seu espectre

d’excitació.
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[Gov02] M. Governale and U. Zülicke, Phys. Rev. B 66, 073311 (2002).
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