FACULTAT DE FARMÀCIA
DEPARTAMENT DE FARMACOLOGIA i QUÍMICA TERAPĖUTICA

REACCIONS D'ALQUENILACIÓ INTRAMOLECULAR D'ENOLATS i NUCLEÒFILS RELACIONATS CATALITZADES PER PAL•LADI. APROXIMACIONS SINTÈTIQUES A L'ESTRICNOPIVOTINA i LA CALICIFILINA A

XAVIER URBANEJA i BIOSCA

EXPERIMENTAL DEL CAPÍTOL 4

Strychnopivotine Synthesis Studies.

Preparation of the Bridged Azatricyclic Fragment

Daniel Solé, Xavier Urbaneja i Josep Bonjoch

Strychnopivotine Synthesis Studies.

Preparation of the Bridged Azatricyclic Fragment

Daniel Solé*, Xavier Urbaneja and Josep Bonjoch*
Laboratori de Química Orgànica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIIIs/n, 08028-Barcelona, Spain

Experimental

General. All reactions were carried out under an argon atmosphere with dry, freshly distilled solvents under anhydrous conditions. Analytical TLC was performed on SiO_{2} (silica gel $60 \mathrm{~F}_{254}$, Merck) and the spots were located with iodoplatinate reagent or 1% aqueous KMnO_{4}. Chromatography refers to flash chromatography and was carried out on SiO_{2} (silica gel 60, SDS, 230-240 mesh ASTM). Drying of organic extracts during workup of reactions was performed over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4} .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with a Varian Gemini 200 or 300, or a Varian Mercury 400 instrument. Chemical shifts are reported in ppm downfield (δ) from $\mathrm{Me}_{4} \mathrm{Si}$. All new compounds were determined to be $>95 \%$ pure by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Scheme 1

2-(2-Nitrophenyl)-1,4-cyclohexane dione monoethylene acetal (3). A solution of 1,4cyclohexanedione monoethylene acetal ($5.06 \mathrm{~g}, 31.4 \mathrm{mmol}$) in THF (20 mL) was added to a cooled solution $\left(-78^{\circ} \mathrm{C}\right)$ of LDA ($26 \mathrm{~mL}, 1.5 \mathrm{M}$ in cyclohexane) in THF (80 mL) over 10 min . After stirring for 1 h , TMSCl ($7.2 \mathrm{~mL}, 55.60 \mathrm{mmol}$) was slowly added over 5 min . The solution was allowed to warm-up to room temperature and, after stirring for 1 h , the solvent was evaporated. Dry pentane (100 mL) was added and the LiCl removed by filtration. Concentration of the filtrate gave the corresponding silyl enol ether $1(6.82 \mathrm{~g}, 95 \%)$, which was used without purification in the next step.

To a stirred solution of NPIF, $\mathbf{2},(6.06 \mathrm{~g}, 17.56 \mathrm{mmol})$ in dry DMSO- $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 / 37$ mL) was added the above silyl enol ether $1(4.15 \mathrm{~g}, 18.17 \mathrm{mmol})$ dropwise at $-40^{\circ} \mathrm{C}$. The mixture was stirred for 2 h at this temperature and allowed to warm to room temperature gradually over 2-3 h . The reaction mixture was poured into $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$, and the whole was extracted with ether. The extracts were washed with brine, dried, and concentrated. The residue was purified by chromatography (hexane to hexane/EtOAc 1:1) to give 3 ($4.03 \mathrm{~g}, 83 \%$): IR 1716, 1523, $1339 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $2.12(\mathrm{dm}, J=13.2 \mathrm{~Hz}), 2.22(\mathrm{td}, J=13.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{ddd} . J=13,6,3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.48(\mathrm{t}, J=13 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{ddd}, J=15,4.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{tdd}, J=14.5,7.2$, $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-4.13(\mathrm{~m}, 4 \mathrm{H}), 4.54(\mathrm{dd}, J=10.5,6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz})$, $7.44(\mathrm{td}, J=8,1.5 \mathrm{~Hz}), 7.60(\mathrm{td}, J=8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{dd}, J=8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT) $33.9\left(\mathrm{CH}_{2}\right), 38.1\left(\mathrm{CH}_{2}\right), 40.3\left(\mathrm{CH}_{2}\right), 50.3(\mathrm{CH}), 64.7$ $\left(\mathrm{CH}_{2}\right), 64.8\left(\mathrm{CH}_{2}\right), 107.1(\mathrm{C}), 125.1(\mathrm{CH}), 128.0(\mathrm{CH}), 130.6(\mathrm{CH}), 133.0(\mathrm{C}), 133.3$ $(\mathrm{CH}), 148.9$ (C), 206.3 (CO). Anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{5}:$ C 60.65 , H 5.45, H 5.05. Found C 60.02, H 5.50, N 4.92 .

4-Allyloxy-3-(2-nitrophenyl)-3-cyclohexenone ethylene acetal (4). A mixture of ketone $\mathbf{3}$ ($6.3 \mathrm{~g}, 22.8 \mathrm{mmol}$), allyl bromide ($5.2 \mathrm{ml}, 60.2 \mathrm{mmol}$), and anhydrous $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ $(23.5 \mathrm{~g}, 70.6 \mathrm{mmol})$ in acetone (125 ml) was stirred at reflux temperature for 18 h . The solvent was removed, and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with saturated aqueous NaHCO_{3} and brine. The organic layer was dried and concentrated to give enol ether $4(6.50 \mathrm{~g}, 90 \%)$ as an oil, which was used in the next step without further purification: ${ }^{1} \mathrm{H}$ NMR (200 MHz) $1.95(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~m}, 2 \mathrm{H}), 2.65(\mathrm{~m}, 2 \mathrm{H})$, $2.59(\mathrm{~s}, 2 \mathrm{H}), 4.03(\mathrm{~s}, 2 \mathrm{H}), 4.06(\mathrm{~m}, 4 \mathrm{H}), 5.00(\mathrm{ddt}, J=10.5,2.5$, and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.05$ (ddt, $J=17.2,2.5$, and $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.65 (ddt, $J=17.2,10.5$, and $5.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.35 (ddd, $J=8.2,7.3$, and $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ '), $7.40(\mathrm{dd}, J=7.8$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ '), 7.55
(ddd, $J=7.8,7.3$, and $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}$), 7.85 (dd, $J=8.2$ and $\left.1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT) $24.1\left(\mathrm{CH}_{2}\right), 31.1\left(\mathrm{CH}_{2}\right), 39.0\left(\mathrm{CH}_{2}\right), 64.5\left(\mathrm{OCH}_{2}\right), 68.6$ $\left(\mathrm{CH}_{2}\right), 107.2(\mathrm{C}), 116.5\left(\mathrm{CH}_{2}\right), 123.8(\mathrm{CH}), 127.1(\mathrm{CH}), 128.0(\mathrm{C}), 131.0(\mathrm{CH}), 132.4$ (CH), 133.8 (CH), 148.0 (C).

2-Allyl-2-(2-nitrophenyl)-1,4-cyclohexanedione monoethylene acetal (5). A solution of enol ether $4(6.50 \mathrm{~g}, 20.5 \mathrm{mmol})$ in toluene $(60 \mathrm{~mL})$ was stirred at $180-190{ }^{\circ} \mathrm{C}$ in a sealed tube for 12 h . After the solvent was evaporated, the residue was crystallized (1% EtOAc in hexane) affording $5(6.17 \mathrm{~g}, 95 \%)$ as pale brown crystals. IR ($\left.\mathrm{CDCl}_{3}\right) 1701$, $1519,1359 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $(200 \mathrm{MHz}) 2.03(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.60(\mathrm{~m}, 3 \mathrm{H}), 2.79$ (m, 1H), $2.84(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=16.5,6 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=16.5,7.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.95 and 4.12 (AA'BB' system, 4 H), $4.93(\mathrm{dd}, J=10$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.06$ (dd, $J=17$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.36 (dddd, $J=17,10,7$ and $6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{td}, J=8$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.87(\mathrm{dd}, J=8$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}, DEPT) $32.4\left(\mathrm{CH}_{2}\right), 36.1\left(\mathrm{CH}_{2}\right), 40.3\left(\mathrm{CH}_{2}\right), 47.4\left(\mathrm{CH}_{2}\right), 56.1(\mathrm{C}), 64.1\left(\mathrm{CH}_{2}\right)$, $64.8\left(\mathrm{CH}_{2}\right), 107.1(\mathrm{C}), 117.9\left(\mathrm{CH}_{2}\right), 125.7(\mathrm{CH}), 127.6(\mathrm{CH}), 129.3(\mathrm{CH}), 132.6(\mathrm{C})$, 132.8 (CH), 136.4 (C), 149.0 (C), 206.2 (CO). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{5}$ (317.34): C 64.34, H 6.03, N 4.28. Found: C 64.19, H 6.09, N 4.31 .

2-Methyl-3a-(2-nitrophenyl)octahydroindol-5-one ethylene acetal (6). A stirred solution of ketone $5(520 \mathrm{mg}, 1.64 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was treated with a constant stream of ozone. After 15 min , the solution turned a characteristic pale blue and was purged with oxygen. The solvent was removed without warming, and the residue was dissolved in $\mathrm{MeOH}(15 \mathrm{~mL})$. To this solution were added methylamine hydrochloride ($1.72 \mathrm{~g}, 25.0 \mathrm{mmol}$) and then sodium cyanoborohydride ($74 \mathrm{mg}, 1.12$ mmol). After stirring for 30 min , an additional portion of sodium cyanoborohydride (88 $\mathrm{mg}, 1.33 \mathrm{mmol}$) was added and stirring was continued for 1 h . A third portion of sodium cyanoborohydride ($203 \mathrm{mg}, 3.1 \mathrm{mmol}$) was then added, and stirring was continued overnight. After removal of the methanol, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and the resulting organic solution was washed with saturated aqueous NaHCO_{3} solution, dried and concentrated. The resulting oil was purified by chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give $371 \mathrm{mg}(71 \%)$ of cis-6 and 63 mg (12\%) of trans-6.
Compound cis-6: ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, gCOSY) 1.38 (ddd, $\left.J=12,6,3.2 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{eq}\right)$, 1.89 (td, $J=12,6 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{ax}), 1.97$ (m, H-3), 1.99-2.05 (m, 2H, H-7), 2.02 (d, $J=14.4$

Hz, H-4), 2.10 (dd, $J=14,4,1.6 \mathrm{~Hz}, \mathrm{H}-4), 2.24$ (m, H-2), 2.30 (s, NCH3 $), 2.69$ (br s, H7 a), 3.18 (ddd, $J=10.5,7,7 \mathrm{~Hz}, \mathrm{H}-2$), 3.57 and 3.82 ($2 \mathrm{~m}, 2 \mathrm{H}$ each, OCH_{2}), 7.30 (ddd, J $=7,6.8,2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) 7.42-7.50(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT, gHSQC), see Table 1.
Compound trans-6: ${ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 1.56-1.67 (m, 4H), 1.80-2.05 (m, 3H), 2.27$2.42(\mathrm{~m}, 2 \mathrm{H}), 2.38\left(\mathrm{~s}, \mathrm{NCH}_{3}\right), 2.52(\mathrm{ddd}, J=12.5,8.1,3 \mathrm{~Hz}, 1 \mathrm{H}), 3.16$ (dt, $J=10,8$, $\mathrm{Hz}, \mathrm{H}-2), 3.56(\mathrm{~m}, 1 \mathrm{H}), 3.77\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 7.25(\mathrm{td}, J=8,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.43$ (td, $J=8,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.49(\mathrm{dd}, J=8,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.58(\mathrm{dd}, J=8,1.5 \mathrm{~Hz}, 1 \mathrm{H}$, ArH); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT), see Table 1.
cis-1-[(Z)-2-Iodo-2-butenyl]-3a-(2-nitrophenyl)octahydroindol-5-one ethylene acetal (7). Operating as above, from ketone $5(940 \mathrm{mg}, 2.97 \mathrm{mmol})$ and 2-iodobut-2enamine hydrochloride ($1.18 \mathrm{~g}, 5.04 \mathrm{mmol}$), cis-7 ($744 \mathrm{mg}, 43 \%$) and trans-7 (129 mg, 9%) were obtained after chromatography (hexane to $1: 1$ hexane/EtOAc).
Data for cis-7: ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $1.38(\mathrm{dm}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{dd}, J=$ $\left.6.4,1.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.90-2.29(\mathrm{~m}, 7 \mathrm{H}), 2.90(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~m}, 1 \mathrm{H}), 3.56-3.70$ $(\mathrm{m}, 3 \mathrm{H}), 3.76-3.89(\mathrm{~m}, 4 \mathrm{H}), 5.88(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.48(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT), see Table 1.
Compound trans-7: ${ }^{1} \mathrm{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.95(\mathrm{~m}, 1 \mathrm{H}), 1.58(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{dd}, J=$ $6.5,1.5 \mathrm{~Hz}, \mathrm{CH}_{3}$), $1.88(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{qd}, J=12.6,4.5 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{ax}), 2.17(\mathrm{~m}, 1 \mathrm{H}), 2.28-$ 2.41 (m, 2H), 2.57 (ddd, $J=12.5,8,2.1 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{a}$), 2.71 (dd, $J=13.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}$, NCH_{2}), $3.01(\mathrm{q}, J=8.5 \mathrm{~Hz}, \mathrm{H}-2), 3.05\left(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.58(\mathrm{~m}, 1 \mathrm{H}), 3.77$ $\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.86(\mathrm{q}, ~ J=6.5 \mathrm{~Hz},=\mathrm{CH}), 7.26(\mathrm{td}, J=8,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.47(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{ArH}$), $8.91(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT), see Table 1.
cis-1-[(Z)-2-Iodo-2-butenyl]-3a-(2-nitrophenyl)octahydroindol-5-one (8). To a solution of cis-7 (531 mg, 1.10 mmol) in THF (10 mL) was added 10% aqueous HCl $(15 \mathrm{~mL})$. After being stirred overnight, the mixture was basified with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were dried and concentrated to give ketone 8 (444 mg, 92\%), which was used without purification in the next step. An analytical sample was obtained by chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right):{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.79$ (dd, $J=6.3,1.2 \mathrm{~Hz}, \mathrm{CH}_{3}$), 1.91-2.06 (m, 2H), 2.11-2.31 (m, 4H), 2.79 (d, $J=15 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-4 \mathrm{ax}$), 2.82 (ddd, $J=17,12,6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{ax}), 2.96$ (dd, $J=15,0.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$

4eq), 3.02 (d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}$), $3.11(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{t}, J=3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a}), 3.65$ (dt, $\left.J=13.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 5.85(\mathrm{qd}, J=6.3,1.8 \mathrm{~Hz},=\mathrm{CH}), 7.37(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH})$, 7.49-7.52 (m, 3H, ArH); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}$), see Table 1. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{IN}_{2} \mathrm{O}_{3}$: C 49.10, H 4.81, N 6.36. Found: C 49.19, H 4.79, N 6.32 .

Attempts at cyclization of 8. To a stirred solution of ketone $\mathbf{8}(77 \mathrm{mg}, 0.175 \mathrm{mmol})$ in THF (5 mL) were added t-BuOK (0.180 mL of 1 M solution in tert-butyl alcohol) and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(47 \mathrm{mg}, 0.041 \mathrm{mmol})$. The solution was heated at reflux for 45 min . After being cooled to room temperature, the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed with brine. The organic layer was dried and concentrated to give a residue resulting from decomposition of the starting material.

(95\%)

Scheme 2
cis-1-[(Z)-2-Iodo-2-butenyl]-3a-(2-aminophenyl)octahydroindol-5-one ethylene acetal (9). To a solution of cis-7 ($877 \mathrm{mg}, 1.81 \mathrm{mmol}$) in DMF (20 mL) was added $\mathrm{SnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(4.30 \mathrm{~g}, 18.68 \mathrm{mmol})$. After stirring at room temperature for 24 h , the reaction mixture was basified with 50% aqueous NaOH , extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with brine. The organic layer was dried and concentrated to give 9 (782 mg , 95%), which was used without purification in the next step: ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) 1.46(\mathrm{dm}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 1.80\left(\mathrm{dd}, J=6.3,1.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.95(\mathrm{~m}, 3 \mathrm{H}), 2.07-$
2.27 (m, 4H), 2.72 (dd, $J=13.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.08-3.16(\mathrm{~m}$, $2 \mathrm{H}), 3.57(\mathrm{q}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.90(\mathrm{~m}, 5 \mathrm{H}), 5.88(\mathrm{q}, J=6.6 \mathrm{~Hz},=\mathrm{CH}), 6.64(\mathrm{dd}, J=$ $7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.73(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.02(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), 7.18 (dd, $J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT), see Table 1.

Hydrolysis of acetal 9. To a solution of $9(47 \mathrm{mg}, 0.103 \mathrm{mmol})$ in THF (2 mL) was added 10% aqueous $\mathrm{HCl}(2 \mathrm{~mL})$. After stirring overnight at room temperature, the reaction mixture was basified with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were dried and concentrated to give quantitatively 10a: ${ }^{1} \mathrm{H}$ NMR $(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.80\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 5.87(\mathrm{q}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 6.51(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}$, ArH), $6.65(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.02(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.11(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}$, ArH); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT) $21.6\left(\mathrm{CH}_{3}\right), 21.7\left(\mathrm{CH}_{2}\right), 30.8(\mathrm{CH} 2), 35.1$ $\left(\mathrm{CH}_{2}\right), 40.3\left(\mathrm{CH}_{2}\right), 47.0(\mathrm{C}), 50.3\left(\mathrm{CH}_{2}\right), 65.4\left(\mathrm{CH}_{2}\right), 68.5(\mathrm{CH}), 81.5(\mathrm{C}), 110.9(\mathrm{C})$, $113.4(\mathrm{CH}), 117.1(\mathrm{CH}), 123.9(\mathrm{CH}), 124.6(\mathrm{C}), 127.6(\mathrm{CH}), 130.2(\mathrm{CH}), 144.5(\mathrm{C})$.
Acetylation of aniline $9\left(\mathrm{Ac}_{2} \mathrm{O}\right)$ followed by acid treatment of the resulting amido acetal gave tetracyclic hemiaminal 10b: ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT) $21.7\left(\mathrm{CH}_{3}\right), 23.9$ $\left(\mathrm{CH}_{2}\right), 25.6(\mathrm{NAc}), 30.7\left(\mathrm{CH}_{2}\right), 32.2\left(\mathrm{CH}_{2}\right), 41.4\left(\mathrm{CH}_{2}\right), 46.1(\mathrm{C}), 49.6\left(\mathrm{CH}_{2}\right), 65.3$ $\left(\mathrm{CH}_{2}\right), 66.2(\mathrm{CH}), 89.7(\mathrm{C}), 110.3(\mathrm{C}), 123.6(\mathrm{CH}), 124.1(\mathrm{CH}), 124.3(\mathrm{CH}), 126.3$ $(\mathrm{CH}), 130.4(\mathrm{CH}), 135.1(\mathrm{C}), 138.7(\mathrm{C}), 175.6(\mathrm{C})$.
cis-1-[(Z)-2-Iodo-2-butenyl]-3a-[2-(N, N-dimethylamino)phenyl]octahydroindol-5one ethylene acetal (11). To a stirred solution of $9(782 \mathrm{mg}, 1.72 \mathrm{mmol})$ and 37% aqueous formaldehyde $(1.6 \mathrm{~mL})$ in acetonitrile $(7 \mathrm{~mL})$ was added $\mathrm{NaBH}_{3} \mathrm{CN}(0.41 \mathrm{~g}$, $6.20 \mathrm{mmol})$. Glacial acetic acid $(0.180 \mathrm{~mL})$ was added over 10 min , and the reaction was stirred at room temperature for 2 h . An additional amount of glacial acetic acid $(0.180 \mathrm{~mL})$ was added, and stirring was continued for an additional 30 min . The reaction mixture was poured into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, basified with 1 N NaOH and washed with brine. The organic layer was dried and concentrated, and the residue was purified by chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98: 2\right)$ to give 11 ($613 \mathrm{mg}, 74 \%$): ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $1.44(\mathrm{dm}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{dd}, J=6.3,1.2 \mathrm{~Hz}$, CH_{3}), 1.97-2.27 (m, 4H), 2.56 and $2.58(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{NMe}), 2.77(\mathrm{dd}, J=14,2 \mathrm{~Hz}, 1 \mathrm{H}), 2.94$ (d, $J=14 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{br}, 1 \mathrm{H}), 3.15(\mathrm{ddd}, J=9.2,9.2,6.4,1 \mathrm{H}), 3.50(\mathrm{~m}, 1 \mathrm{H}), 3.60$
$(\mathrm{m}, 1 \mathrm{H}), 3.75-3.90(\mathrm{~m}, 4 \mathrm{H}), 5.88(\mathrm{q}, J=6.2 \mathrm{~Hz},=\mathrm{CH}), 7.07-7.35(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(50$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}\right)$, see Table 1.
cis-1-[(Z)-2-Iodo-2-butenyl]-3a-[2-(N, N-dimethylamino)phenyl]octahydroindol-5one (12). To a solution of $\mathbf{1 1}(1.16 \mathrm{~g}, 2.41 \mathrm{mmol})$ in THF (10 mL) was added 10% aqueous $\mathrm{HCl}(30 \mathrm{~mL})$. After stirring overnight at room temperature, the reaction mixture was basified with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were dried and concentrated to give 12 ($1.00 \mathrm{~g}, 95 \%$), which was used without purification in the next step; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $1.58(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{dd}, J=$ $6.3,1.8 \mathrm{~Hz}, \mathrm{CH}_{3}$), 1.95-2.06 (m, 2H), 2.10-2.19 (m, 2H), 2.28-2.39 (m, 2H), 2.55 and $2.58(2 \mathrm{~s}, 3 \mathrm{H}$ each, NMe$), 2.72-2.82(\mathrm{~m}, 2 \mathrm{H}), 3.02-3.18(\mathrm{~m}, 3 \mathrm{H}), 3.64(\mathrm{~d}, J=13.5 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{NCH}_{2}\right), 5.84(\mathrm{q}, J=6.3 \mathrm{~Hz},=\mathrm{CH}), 7.24(\mathrm{td}, J=8,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.23-7.30(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{ArH}$), 7.39 (dd, $J=8,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT), see Table 1.

13

Attempts of cyclization of 12. a) To a stirred solution of ketone $12(65 \mathrm{mg}, 0.148$ mmols) in THF (5 mL) were added $t-\mathrm{BuOK}$ (0.230 mL of 1 M solution in tert-butyl alcohol) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(35 \mathrm{mg}, 0.030 \mathrm{mmols})$. The solution was heated at reflux for 45 min . After being cooled to room temperature, the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed with brine. The organic layer was dried and concentrated. The residue was purified by chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 92: 8\right)$ to give alkyne $\mathbf{1 3}$ (40 $\mathrm{mg}, 87 \%$): ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 1.71 (s, CH3), 2.0-2.5 (m, 6H), $2.58(\mathrm{~s}, 6 \mathrm{H}$, $\mathrm{NMe})$, 2.65-3.15 (m, 4H), 3.30-3.55 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT), see Table 1.
b) To a stirred solution of ketone $12(300 \mathrm{mg}, 0.685 \mathrm{mmol})$ and phenol $(194 \mathrm{mg}, 2.05$ mmol) in THF (5 mL) were added t-BuOK (1.70 mL of 1 M solution in tert-butyl alcohol) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(81 \mathrm{mg}, 0.069 \mathrm{mmol})$. The solution was heated at reflux for 2 h . After being cooled to room temperature, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with saturated aqueous NaHCO_{3} and 1 N aqueous NaOH . The organic layer
was dried and concentrated. The residue was purified by chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 84: 16$) to give 14 ($41 \mathrm{mg}, 19 \%$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, g \mathrm{COSY}$) $1.68\left(\mathrm{~d}, J=6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.05(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6$ and H-7), $2.10(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3$ and H-7), 2.20 (m, 1H, H-6), 2.30 (m, 1H, H-2), 2.45 (masked, $1 \mathrm{H}, \mathrm{H}-3$), 2.50 (br s, 6H, NMe), 2.82 (d, $J=15 \mathrm{~Hz}, \mathrm{H}-4$), 2.83 (masked, $1 \mathrm{H}, \mathrm{NCH}_{2}$), 2.99 (d, $J=15 \mathrm{~Hz}, \mathrm{H}-4$), 3.15 (br, 1 H , H-7a), 3.20 (m, 1H, H-2), 3.39 (dd, $J=13.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}$), 5.55 (m, =CH), 5.60 (m, =CH), 7.14 (td, $J=8,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.25$ (m, 2H, ArH), 7.38 (dd, $J=8,1.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}$) ${ }^{13} \mathrm{C}^{\mathrm{C}} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, DEPT, gHSQC), see Table 1.

(21\%)

Scheme 3

Treatment of ketone 8 with nitromethane in basic medium. In a round-bottomed flask fitted with a Dean-Stark trap were placed $8(444 \mathrm{mg}, 1.01 \mathrm{mmol})$, nitromethane ($1.0 \mathrm{~mL}, 17.54 \mathrm{mmol}$), N, N-dimethylethylendiamine ($40 \mu \mathrm{~L}, 0.346 \mathrm{mmol}$), and benzene $(10 \mathrm{~mL})$, and the solution was refluxed for 8 h . The benzene solution was cooled, washed with saturated aqueous NaHCO_{3} solution and brine, dried, and concentrated. The residue was purified by chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98: 2\right)$ to give tetracyclic keto nitrone $\mathbf{1 5}^{1}(89 \mathrm{mg}, 21 \%):{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $1.56(\mathrm{tt}, J=$ $14,1,3.5 \mathrm{~Hz} \mathrm{H}-5) 1.81$ (dd, $J=6.3,1.2 \mathrm{~Hz}, \mathrm{CH}_{3}$), 1.82 (masked, 1 H), 2.05 (dm, J = 14.5 Hz, 1H), 2.41 (td, $J=12.3,3.6 \mathrm{~Hz}, \mathrm{H}-4), 2.51(\mathrm{dm}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 2.79$ (ddd, $J=12$, $9.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.11$ (ddd, $J=16,14.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.26$ (dd, $J=9,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.37 (br s, $1 \mathrm{H}, \mathrm{H}-3 \mathrm{a}$), $3.40\left(\mathrm{~d}, J=12,1 \mathrm{H}, \mathrm{NCH}_{2}\right.$), $3.66\left(\mathrm{dt}, J=12,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right.$), 5.95 $(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 7.47-7.59(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.86(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT), $21.8\left(\mathrm{CH}_{3}\right), 27.0\left(\mathrm{CH}_{2}\right), 36.9\left(\mathrm{CH}_{2}\right), 37.0\left(\mathrm{CH}_{2}\right), 51.7$

[^0]$\left(\mathrm{CH}_{2}\right), 55.9(\mathrm{C}), 65.2(\mathrm{CH}), 65.5\left(\mathrm{CH}_{2}\right), 109.0(\mathrm{C}), 116.9(\mathrm{CH}), 122.2(\mathrm{CH}), 128.8(\mathrm{CH})$, 132.1 (CH), 131.6 (CH), 141.6 (C), 142.4 (C), 145.9 (C), 190.3 (C).

Treatment of ketone 11 with nitromethane in basic medium. In a round-bottomed flask fitted with a Dean and Stark trap were placed 11 ($444 \mathrm{mg}, 1.01 \mathrm{mmol}$), nitromethane ($1.3 \mathrm{~mL}, 22.80 \mathrm{mmol}$), N, N-dimethylethylendiamine ($54 \mu \mathrm{~L}, 0.467$ mmol), and benzene (5 mL), and the solution was refluxed for 8 h . The benzene solution was cooled, washed with saturated aqueous NaHCO_{3} solution and brine, dried, and concentrated. The residue was purified by chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give $\mathbf{1 6}^{\mathbf{2}}$ ($180 \mathrm{mg}, 42 \%$): ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $1.37(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~d}, J=$ $\left.6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.85(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}$, NMe), $2.70(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{~m}, 1 \mathrm{H}), 3.17$ and $3.39\left(2 \mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}\right.$ each, $\left.\mathrm{NCH}_{2}\right), 3.23$ (s, H-6a), 4.99 and $5.08\left(2 \mathrm{~s}, 1 \mathrm{H}\right.$ each, $\left.=\mathrm{CH}_{2}\right), 5.82(\mathrm{q}, J=6.6 \mathrm{~Hz},=\mathrm{CH}), 6.49(\mathrm{~d}, J=8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $6.74(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), $7.12(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.24(\mathrm{~d}, J=8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($\left.50 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{DEPT}\right) 21.7\left(\mathrm{CH}_{3}\right), 26.1\left(\mathrm{CH}_{2}\right), 30.3\left(\mathrm{CH}_{3}\right)$, $33.5(\mathrm{CH}), 34.8\left(\mathrm{CH}_{2}\right), 50.4\left(\mathrm{CH}_{2}\right), 54.4(\mathrm{C}), 63.6\left(\mathrm{CH}_{2}\right), 67.3(\mathrm{CH}), 79.1(\mathrm{CH}), 107.5$ $(\mathrm{CH}), 109.9(\mathrm{C}), 114.6(\mathrm{CH} 2), 118.3(\mathrm{CH}), 123.5(\mathrm{CH}), 127.6(\mathrm{CH}), 130.3(\mathrm{CH}), 137.7$ (C), 143.8 (C), 151.7 (C).

Scheme 4

[^1]cis-1-[(Z)-2-Iodo-2-butenyl]octahydroindol-5-one ethylene acetal (18). A stirred solution of 2-allyl-1,4-cyclohexanedione monoethyelene acetal $^{3}(17,1.50 \mathrm{~g}, 7.64 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was charged with a constant stream of ozone. After 25 min , the solution turned a characteristic pale blue and was purged with oxygen. The solvent was evaporated without warning, and the residue was dissolved in MeOH (26 mL). To this solution were added 2-Iodobut-2-enylamine hydrochloride ($3.77 \mathrm{~g}, 16.16$ mmol) and then $\mathrm{NaBH}_{3} \mathrm{CN}$ ($350 \mathrm{mg}, 5.29 \mathrm{mmols}$). After stirring for 30 min , an additional portion of $\mathrm{NaBH}_{3} \mathrm{CN}(370 \mathrm{mg}, 5.59 \mathrm{mmol})$ was added and stirring was continued for 1 h . An additional portion of $\mathrm{NaBH}_{3} \mathrm{CN}(960 \mathrm{mg}, 14.51 \mathrm{mmol})$ was then added. The reaction mixture was stirred overnight, and the MeOH was then evaporated. The crude was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with saturated aqueous NaHCO_{3}. The organic layer was dried and concentrated. The residue was purified by chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give 18 ($862 \mathrm{mg}, 31 \%$); ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 1.32-1.75 (m, 5 H), 1.77 (dd, $\left.J=6.6,1.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.80-2.30(\mathrm{~m}, 5 \mathrm{H}), 2.54(\mathrm{q}, J=3 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{a}), 2.88(\mathrm{~d}, J=$ $14 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}$), 3.12 (td, $J=9.2,6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 3.58 (dt, $J=14,1.8 \mathrm{~Hz}, 1 \mathrm{H}$, NCH_{2}), $3.94(\mathrm{~s}, 4 \mathrm{H}), 5.82(\mathrm{q}, J=7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT), see Table 1.
cis-1-[(Z)-2-Iodo-2-butenyl]octahydroindol-5-one (19). To a solution of $18(0.55 \mathrm{~g}$, $1.51 \mathrm{mmol})$ in THF (60 mL) was added 10% aqueous $\mathrm{HCl}(60 \mathrm{~mL})$. After stirring at room temperature for 17 h , the mixture was basified with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were dried and concentrated to give 19 ($468 \mathrm{mg}, 95 \%$), which was used without purification in the next step: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) 1.40$ $(\mathrm{m}, 1 \mathrm{H}), 1.78\left(\mathrm{dd}, J=6.6,1.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.80-2.0(\mathrm{~m}, 3 \mathrm{H}), 2.1-2.2(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{dd}, J$ $=15,6,6 \mathrm{~Hz}, \mathrm{H}-4), 2.42(\mathrm{dd}, J=15,6,6 \mathrm{~Hz}, \mathrm{H}-4), 2.60(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{~m}, 1 \mathrm{H}), 2.78$ (ddd, $J=8.5,8.1,3.6 \mathrm{~Hz}, \mathrm{H}-2), 3.03(\mathrm{td}, J=8.5,2.1 \mathrm{~Hz}, \mathrm{H}-2), 3.06(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{NCH}_{2}\right), 3.58\left(\mathrm{dt}, J=13.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 5.84(\mathrm{q}, J=6.4 \mathrm{~Hz},=\mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT), see Table 1.
(1RS,7RS,8RS)-2-(E)-ethylidene-4-azatricyclo $\left[5.2 .2 .0^{4,8}\right]$ undecan-10-one (20). To a stirred solution of ketone $19(75 \mathrm{mg}, 0.232 \mathrm{mmol})$ and phenol ($69 \mathrm{mg}, 0.729 \mathrm{mmol}$) in THF (30 mL) were added t-BuOK (0.58 mL of 1 M solution in tert-butyl alcohol) and

[^2]$\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(17 \mathrm{mg}, 0.015 \mathrm{mmol})$. The solution was heated at reflux for 16 h . After being cooled to room temperature, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with saturated aqueous NaHCO_{3} and 1 M aqueous NaOH . The organic layer was dried and concentrated. The residue was purified by chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98: 2\right.$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ DEA $90: 10$) to give ketone $20(23 \mathrm{mg}, 52 \%) ;{ }^{1} \mathrm{H} \mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, gCOSY) 1.63 (d, $J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.65 (m, 2H, H-6), 2.00 (br d, $J=14 \mathrm{~Hz}, \mathrm{H}-9$), 2.14 (m, 1H, H-11), 2.42 (m, 1H, H-9), 2.55 (m, H-7), 2.60 (m, 1H, H-11), 2.79 (td, $J=$ 11.2, $6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 2.95 (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 3.15 (m, 1H, H-5), 3.38 (m, 1H, H1), 3.63 (br s, $1 \mathrm{H}, \mathrm{H}-8$), 3.78 (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 5.49 ($\mathrm{q}, J=7 \mathrm{~Hz} 1 \mathrm{H},=\mathrm{CH}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT, $g H S Q C$) $13.1\left(\mathrm{CH}_{3}\right), 25.9$ (C-9), 32.4 (C-6), 38.8 (C7), 41.4 (C-11), 45.5 (C-1), 51.2 (C-5), 52.6 (C-3), 55.8 (C-8), 125.0(=CH), 211.2 (C10).

Table 1. ${ }^{13} \mathrm{C}$ NMR Data for Octahydroindol-5-ones

	C-2	C-3	C-3a	C-4	C-5	C-6	C-7	C-7a	NCH_{2}	CHI	$=\mathrm{CH}$	C
cis-6 ${ }^{\text {a }}$	54.1	39.2	48.5	40.9	108.2	29.1	21.4	66.5	40.0			
$\text { trans }-6^{b}$	54.1	39.0	48.4	44.3	108.3	35.0	20.4	77.3	41.6			
cis-7 ${ }^{\text {c }}$	50.1	38.6	48.8	39.8	108.3	29.4	21.7	63.1	65.1	110.0	131.0	21.8
trans-7 ${ }^{\text {c }}$	50.9	39.0	48.6	44.2	108.5	35.0	20.7	74.3	66.8	110.0	132.1	21.8
$8^{\text {b }}$	51.2	37.1	51.6	50.2	210.5	34.7	23.1	64.5	64.7	108.3	131.6	21.6
9^{b}	50.4	29.4	48.0	38.1	108.9	37.4	22.1	64.7	64.7	109.4	131.1	21.7
$11^{\text {c }}$	50.1	29.3	48.9	40.7	109.6	38.5	22.4	63.1	65.7	110.7	130.1	21.7
$12^{\text {c }}$	50.6	34.9	50.9	50.4	212.7	37.9	23.1	65.6	65.5	109.6	130.8	21.8
$13^{\text {c }}$	51.1	34.6	50.8	49.7	212.4	38.4	33.8	62.9	40.5	73.9	80.3	3.3
14^{a}	50.6	34-0	51.1	50.9	212.2	38.4	23.1	65.6	55.3	143.9	128.0	17.8
18^{b}	51.1	31.1	37.6	29.1	109.5	28.6	23.6	60.5	65.4	111.1	129.8	21.6
$19^{\text {b }}$	51.7	31.1	36.6	43.4	213.6	35.7	24.6	59.7	65.7	109.9	130.9	21.7

All spectra were recorded in CDCl_{3} (at ${ }^{a} 100 \mathrm{MHz}$, ${ }^{b} 75 \mathrm{MHz}$ or ${ }^{c} 50 \mathrm{MHz}$) and the assignments were aided by HSQC experiments for compounds cis-6 and $\mathbf{1 4}$, and DEPT in all cases.

군

[^0]: ${ }^{1}$ IUPAC name: 3-[(Z)-2-iodo-2-butenyl]-7-oxide-1,2,3,3a,4,5-hexahydropyrrolo[2,3- $\left.d\right]$ carbazol-6-one.

[^1]: ${ }^{2}$ IUPAC name: 3-[(Z)-2-iodo-2-butenyl]-7-methyl-6-methylene-1,2,3,3a,4,5,6a, 7-octahydropyrrolo[2,3$d]$ carbazole.

[^2]: ${ }^{3}$ Solé,D.; Urbaneja, X.; Bonjoch, J. Org. Lett. 2005, 7, 5461-5464 and references therein.

