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Preface

This work has been organized in three parts. The first two ones contain the main results,
and the last one, which has been divided in several appendices, has complementary results.

The first part of the work (Chapters [1] to [f)) is dedicated to the development and
study of a procedure for the accurate computation of frequencies, as well as the related
Fourier coefficients, of a quasi-periodic function, using as only input input a equally—
spaced sampling of the function to be analyzed over a finite time interval.

The first technique for the accurate determination of frequencies has been introduced
by J. Laskar ([I8], [20], [19]). It is based on the maximization of the formula that gives
the Fourier coefficients of a function with respect to the harmonic index, but taking it as
a real number. This procedure has been applied to the study of the long—term dynamics
of the Solar System ([I§]), as well as to the study of chemistry and particle accelerator
models through the computation of frequency maps ([19]). Some methodology for fre-
quency determination has also been introduced in [12],[I3],[10],[IT]. In these works, the
determination of frequencies has been applied to development of semi—analytical models
for the motion in the Solar System.

Our procedure takes the methodology developed in [12],[13],[10][I1] as a starting point.
It is based in asking for equality between the Discrete Fourier Transform (DFT) of the
analyzed function and its quasi—periodic approximation. Error estimates are obtained
and illustrated with numerical examples. Also, in the line of the previously—mentioned
works, we apply our procedure to the development of simplified models for the motion in
the Solar System.

The second part of the work (Chapters |§] to|7)) is devoted to the study to the dynamics
in the vicinity of the collinear equilibrium points of the three-dimensional Restricted
Three-Body Problem (RTBP) for the Earth-Moon mass parameter.

The first systematic study of this vicinity has been done in [10] and [16], using as a tool
the reduction to the central manifold of the collinear equilibrium points. This is a semi—
analytical technique, which limits the region that can be explored by the convergence of
the expansions computed. The same methodology has also been applied to the study of
the collinear equilibrium points of a model for the Earth-Moon system, called the Quasi—
Bicircular Problem ([3]). In this last study, the convergence constraints are still more
severe.

In this work, we follow the families of periodic orbits and invariant 2D tori of the
center manifolds of the three collinear libration points using purely numerical procedures.
With this approach, we can extend the analysis of the phase space done in [10] and [16] to
a wider range of energy values, that now include several bifurcations, and also to the L3
libration point. The methodology used for the continuation of invariant tori is based in [7],
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with some modifications in order to account for variable excitations and some additional
parameters needed for our exploration. We have followed parallel strategies in order to
cope with the large amount of computations required. They have been carried out on
HIDRA, one of the Beowulf clusters of the Barcelona Dynamical Systems Group.

The third and last part of this report consists in several appendices, which give some
additional results that have been taken apart from the main text in order to improve its
readability.
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Part 1

Numerical Fourier analysis of
quasi—periodic functions






Part I 3

This part is devoted to the development and study of a procedure to compute the
frequencies and the related amplitudes of a quasi—periodic function. In Chapter [1| we in-
troduce some notation and methodology related to the Discrete Fourier Transform (DFT),
which is the main tool in which our procedure is based. In Chapter [2] we describe the
procedure, as well as some aspects of its computer implementation. Chapter |3|is devoted
to the obtention of error estimates, which are collected in Theorem and illustrated
with a numerical example in Chapter [dl In Chapter [5 we apply the methodology to the
development of simplified models for the motion in the Solar System.
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Chapter 1

The Discrete Fourier Transform
(DFT)

This chapter gives the basic notation and definitions needed to develop our Fourier analysis
procedure in Chapter [2] It is started with the introduction of the DFT and some related
notation. After that, we discuss the concept known in the literature as leakage, which
leads to the introduction of filtering through the use of Hanning functions. We end the
Chapter with some comments about how the concept known as aliasing arises in our
setting.

1.1 Preliminaries and notation

Let D be the space of real valued functions defined on a discrete set of N equally spaced
points tg, ...,tx_1 over the interval [0,T], i.e. ¢, = [ - At, with At = T/N. The equality
of the spacing is only a technical requirement, since the DFT could be adapted to a non
equally spaced set of samples. Nevertheless, all what follows has been written assuming
At constant. From now on N is assumed to be even. If f, g € D, we define their discrete
scalar product as

i)=Y fetty).

The set of functions {{goj}jyz/g, {wj}jy:/ffl} C D, being

2myt 2mjt
p(t) = cos(Z5), s (t) = sin(),
form an orthogonal basis of D. Therefore, every function f € D can be written as

ftt)=Prrnt) 1=0,...,N—1,

where

QW%t)>

1 N
Prara(t) = 5 (ernn(0)+errn(5) cos(—

N/2—1 o it -
7r T
+ ; <Cf,T,N(J)Cos( 7;7 )+sf,T,N(j)sin(T‘7)>. (1.1)
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with
crrn(j) = 0; A e) =0 N srrn(j) = ¥5) J=1 E—l
o <¢Ja90j> 2 <%an> 2 ’
with
2, 7=0,
§;=4 1, j=1,.,N/2—1,
2, j=N/2,

Equation defines the Discrete Fourier Transform in sines and cosines (DFT)
of f € D as a function of the discrete set of frequencies j/T, j = 0,...,N/2. The
values crrn(j) and sgrn(j) are the coeflicients related to the j/T' frequency of the
trigonometric interpolating polynomial Pfr y(t) of the function f at the nodes {t;}\ "
All the frequencies of Py n(t) are multiples of 1/7". The DFT coefficients can be explicitly
written as

=

-1

) 2 ; .
crrn(i) = N Z f(t) COS(ZW%Z), j=0,..,N/2,
= j
span(i) = 57 ) f)sin@rtl), j=1,., N/2-1.

=

o

For a general complex—valued function f, using the discrete scalar product (f,g9) =
SVt F(t)g(t:) and the orthogonal basis {77! N,Ol, we can define the DFT as

1 i .
Frrn(j) = N Zf Ye 2™t 5 =0,..,N —1. (1.2)

If f takes real values, Fin_;(f) = F;(f), the Frrn(j), crrn(J), syrn(j) coeficients are
related by

) 1 . . ) . N
Frrn(j) = é(cf,T,N(]) —isyrn(g)) 7=0,..., 2

where we assume s;7n(0) = sprn(N/2) = 0. This allows to compute efficiently the
crrn(jg), syrn(j) coefficients using a standard Fast Fourier Transform (FFT) algorithm
(see, for instance, [6], [5] or [21]).

The complex—valued function

¢f T / f 7127ro¢t dt

will be called Truncated Continuous Fourier Transform (TCFT) of f. Note that ¢s7 (L),
J € Z, are the coeflicients of the Fourier series of f on the interval [0, 7. Note also that
the DF'T can be seen as a Riemann sum of the TCFT, more concretely

¢fT / F(t)e 2irtdt ~ Z Ft)e it bnl —Ff,T,N(k;). (1.3)

Consequently, we can obtain the TCF'T as the hmlt when N — oo of the DF'T. In section
B, Lemma [3.2.4] we will give an explicit bound of the difference between the DFT and
the TCFT of a complex exponential term 7,
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1.2 Leakage effect and filtering

For periodic functions, when the length 7" of the time interval spanned by the samples is
not an integer multiple of the period of the function (or equivalently, when the frequency
of the function is not an integer multiple of the “basic frequency” 1/T associated to the
sample interval [0,77), there appear in the DFT spurious frequencies, that is, the DFT
is different from zero at frequencies not being multiple of the frequency of the function.
This is a phenomenon known as leakage, for which we give a graphical example in figure
Leakage also affects the TCFT.

T T T T T T T T T T T T T T T T T T
1t . 1t -
08 . 08 -
06 . 06 -
0.4 . 0.4 -
02t . 02t o L -

-0.2 1 1 1 1 1 1 1 1 1 -0.2 1 1 1 1 1 1 1 1 1
45 46 47 48 49 50 51 52 53 54 55 45 46 47 48 49 50 51 52 53 54 55

Figure 1.1: Plot of [(c;rn(1))* + (syrn(4))’]"? as a function of j (dashed line) and for

Jj = 45,...,55 (solid vertical lines), with f(t) = cos(2nwt), T' = 64 and N = 256. In (a)
w = 0.75, so 48 - (0.75)"! = 64 = T and there is no leakage. This is not the case for (b),
where w = 0.76.

For the procedures that will be described later, we are interested in reducing leakage
for functions of the form e?™*. The way to do this is to use a filter or window function.

Definition 1.2.1 H(t) is said to be a filter function of degree > 0 for the interval [0, T']
if it is a positive function of class C™™' with HY(0) = HY(T) =0 for j =0,...,r — 1,
such that H™ is continuous except for a finite set of jump discontinuities, and has bounded
variation. We also assume that

%/OT H(t)dt = 1. (1.4)

It is enough to focus on the TCFT, since it is the limit of the DFT when N — oo
(equation (1.3)). The reduction of leakage for the TCFT of H(t)e* ! which depends
directly on the regularity of the filter function, is given by corollary

Proposition 1.2.1 If g is a filter function of degree r for the interval [0, 27|, then

2 , 2B(a™) + V(g™
0

PIGE
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where B(g™) is a bound for ¢ in [0
(

27r] and V(g(") is the variation of ¢ in the same
interval. Moreover, if we assume ¢ (0)

= ¢ (27) = 0, then

(r)
’/ zatdt’ < V(g )

Proof: Let ty,...t,_; be the jump discontinuities of ¢ in (0,27), and let t, = 0,
t,m = 27 (which may be jump discontinuities or not). Successive integrations by parts
yield

21 ) eiat t=271 1 21 )
/ g(t)edt = [g(t)‘ } —— [ d(t)e™at
0

1o Je=0 o Jy

m—1 ts
2 S e
_ “,:<,_ gD () et
Lo j=0 7t
B INE s (r—1) giotqt=t; 1 1T rtin - ot
— _ r— t :| - s t 1 t .
<ia> (Z[Q (>ia t=t; +i0z2/tj g (e )

J=0 J=0

The first sum vanishes because it is a telescopic sum and g1 (0) = g"=1(27) = 0.
Given € > 0, let §; be such that, for ¢*,t** € [t;,t;41], if |¢* — ¢**| < §; then |¢™)(¢*) —
g ()| < e (j =0+m—1). These §; exist because g is uniformly continuous in each
interval [t;,¢;+1]. Reducing 0; if necessary, we can assume t;1 —t; = n;0; for n; € N.
Define M =ng+ ...+ n,,—1 and
Sop = tg, S1 = t() =+ (507 ceey Sno—l = to —+ (’I’LO — 1)507 STLO = t(] + n050 = tl,

Sno+1 = tl + 517 <oy SngtAnmo1—1 = tmfl + (’)”Lm,1 - 1>6m717 SM = tm
Denoting by fj = %(Sj + Sj+1>,

M-1

/Ozﬂg(t)eiatdt — <m> Z /5J+1 Jrg( (¢ t) — g(r)(fj))emtdt

- () (e [T 00 - g ear)

1

O

— (—>T 'i<_g(7")(§0)67;0¢50 + g(r) (gM_l)eioasM
+ > (9"(g) — g(r)(éj))emsj>

+3 [ a0 - g0 peal,

and hence
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Since € > 0 is arbitrary, doing ¢ — 0 we get the first equality of the proposition. The
second bound follows immediately from the above computations. U

For a = j/T, the above Proposition is a standard result about the decaying of the
Fourier coefficients (see, e.g., [5] and references therein). The above proof covers the case

o #j/T.

Corollary 1.2.1 If H is a filter function of degree r for [0, 7], then

Snyermivr r(a/T) = O <;> '

v — a1

Proof: We have

1 g 2mi(v—a)t/T 1 o T i(v—a)s
¢H(t)82”"t/T,T(a/T) A . H(t)e dt = o : H(%S)e ds,

and hence
2B(H™) + V(H™)

27|y — a1

‘(bH(t)eQ”Vt/T,T<a/T)| <

We will use as a filter function the Hanning window function, which is defined as

1
Hr(t) =1— cos <27TT25) :

and has degree 2. To increase the degree of the filter, the Hanning function can be iterated
and we can consider Hanning functions of order nj, € N, defined as

1 e
H7M(t) = g, (1 — cos (QWTt>> :

where the constants g, are computed in order to fulfill (1.4)), so

1 (7 1\\™ 17" )
|2 1— O —t dt| = —"
w=p [ (1mes (o)) ] -t

The advantage of the Hanning function with respect to other well-known window
functions (see [21]) is its degree of differentiability. For instance, H™(t) has degree 2ny,
whereas a general “triangle window function” 7" (t) defined as

has degree just n;. The Parzen window and the Welch window are the particular cases
ny = 1 and n, = 2 of T™(t) respectively. The Hanning function has its simplicity as an

nt—i—l 2
T (t) = <1—’—t—1
(t) o T
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additional advantage. The properties of trigonometric functions allow to obtain relations
like Lemma [[.2.1]

The DFT coefficients with Hanning order ny, of f(t) are defined as the DFT coefficients
of Hy"(t)f(t), and will be denoted by

Fein(G) = Faugrn (i),

C}L,hT,N(j) = cpgmnprn(j),

5??[,1\7(]') = spmrrn(j).
Analogously, for the TCFT we will have

T
¢fTN<) %/0 H™ (t) f(t)e 2™ dLt.

The following lemma relates the coefficients of filtered and non—filtered transforms of
a function f(¢):

Lemma 1.2.1 The following relations hold:

L np . (=D )2 Frrn(d
@ Fpia) =3 30 (2 Vi) = 3 S D)

l=—nyp,

np - l 2n l S —1)!(na!)? vTvNa—'—lT
(b) ¢ (@) = gThZ(—l) <nh+hl>¢f,T,N(Oé+T) :ZZ( )((nhhj)u ;Z;J;(nh(—l)! / )_

l=—ny,

Proof: We only prove (a). Similar calculations are valid for (b). Using that 1 — cosx =
2 sin? 5, we have

1 n ;i
F?%’N(]) = Z th< — COS 27thl)> hf(tl)e—%m?tl

N-1

1
= Z @y, 2" Sin>" (WTtl)f(tl)e*%”%tl
1=0

N-1 67r7,Ttl _ e—ﬂ'i%tl)th

n ( —2mid
— anhQ h (Qi)th f(tl)e 2migty
N-1 q th 2n 2np —1 .1 . g
= 2 o Z( zh)e’”T“<—1>le-“Ttlf(toe-?w
=0
2

qnh - l—nyp, th — 727|'th1
= omr > (1) ] f(t)e T
l
Shifting the index by n; units, and using that

q_< 2n > _ (nal) () (210! O ()2(2ny)!
27 \ny, + l (nh )th (2nh — 1)”(7’Lh + l)'(nh — l) (QTLh) (nh + l) (nh — l)“
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we get (a). O

For ci%. \(j) and s’ (j) relations similar to those of Lemma m(a) hold. For
instance, for n, = 1,2 we get

. 1 . L1 .
Fion(i) = —§Ff,T,N(J—1)+Ff,T,N(J)—5 rrn(i+1),

. 1 , 2 . N 2 . 1 .
Firn() = o Errn( = 2)= 3 Epen (G =D+ Fpan () = 3 Frrn G+ D)+ e Frrn (7+2).

As H™ is a filter function of degree 2ny,, according to Corollary [1.2.1| we have

¢22hﬂvt/T,T<0‘/T) =0 <;> .

(v = al?T
In fact, it can be explicitly calculated that

(=1 (P — 1)

e 0/ T) = g M (15)
being
U, () = [] (x+1D). (1.6)
l=—ny,

1.3 Aliasing effect

Apart from leakage, another common effect when performing DFT is aliasing. It consists
in the fact that any frequency greater than half the frequency associated to the sampling
width, i.e. any frequency greater than w, := %, is aliased in a frequency less than w,.
This is due to the following fact. Denoting p%. v (j) = (¢} 5 (7)) + (sprn)2(5)"?, we
have that

Zsh(27r(w+¥)t,T,N<j) - pgsh(%rwt),T,N(j)’

p:sh(Qﬂ(—w)t),T,N<j) = pﬁs’zmt)(j)a

p

where cs stands for any of the functions cos or sin. If w > % and m € Z is such that
w:=w—mI €[5, X, then the frequencies w and || are undistinguisheable from
a DFT point of view when using the p function. The frequency w, is called the Nyquist
critical frequency in the literature.

Indeed, when all the frequency components are confined to the interval [—w,, w.], the
function is called band-width limited. More concretely, in terms of the continuous Fourier

Transform, this means

/ FOe =0, for  |w| > w.
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In this case, assuming that we have a sampling of infinite size {j - At};ecz, the Shannon
sampling theorem (see [5], [21]) allows to reconstruct the function f(¢) from its samples,
namely

A Z o Sln 27r(:c_(tt—) tj))’

j—foo

where w. = 5 A ;- Note that quasi—periodic functions are not band-width limited.



Chapter 2

Procedures for the refined Fourier
analysis

This chapter is devoted to the description of our Fourier analysis procedure. It starts with
the detailed description of the three steps in which it is carried out, namely: first approx-
imation of frequencies, computation of the related amplitudes and iterative improvement
of both frequencies and amplitudes. After that, we discuss some aspects regarding to its
practical implementation: the algorithm to follow, the use of trigonometric recurrences
and the accurate evaluation of the DFT of sines and cosines.

2.1 Introduction

Given N values, {f(t;)}1,", t; € [0,T] of a certain function f(t), which is assumed to be
quasi—periodic, we want to find a polynomical trigonometric approximation with a fixed
number of frequencies Ny,

Ny
Qslt) = A5+ 3 (A5 cos(T) + a7 sin( T (2.1)

=1

A standard approach to detect the frequencies of a given signal is to look for “peaks”
of the modulus of the DFT, p?nyN(j), which is also known as power spectral density
in the literature. J. Laskar ([Ig], [20], [19]) introduced a refinement of this procedure,
which consists in looking for maxima of W}th ~(7/T)|, assuming that j takes real values.
Additional methodology for frequency determination has been introduced in [I3],[11]. It
is the starting point for the methodology that will be developed here.

Our procedure is based entirely on the DFT for reasons that will be given below. The
basic idea is to ask for the equality between the DFT of the sampled initial function and
the DFT of its quasi—periodic approximation. It has three main steps: to get first approx-
imations of the frequencies (either following the standard approach or using the method
of Laskar), to compute the related approximated amplitudes and, finally, to perform a
simultaneous improvement of frequencies and amplitudes.
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2.2 First approximation of frequencies

If f has only one complex exponential term f(t) = ae?™7t, it follows from (1.5 that the
modulus of its TCFT is

(nh!)2|a||1 . 6i2w(u—a)|
27 |thn,, (v — )

This function has a maximum at a = v (see Fig. [2.1)). So, the problem of finding v can
be reduced to maximize the previous function with respect to a.

|03 (a/T)| =

0.9

0.8
0.7

0.6

0.5

0.4

0.3

0.2

0.1

Figure 2.1: Plot of |¢62Wt/T o(a/T)| as a function of (v — a) for n, = 0,1,2,3.

In a more general case, if f(t) has m different frequencies,

m
E : 27rz

then |¢}":(a/T')| does not have its maxima exactly at vy, ..., vy, but we can write

O30 (00/T) = O e @/ T)| < Z 102 om0/ T)]:
l#y

If o is close to vj, then >, |¢nh izt T 7 (a/T)| (that is, leakage from the other fre-
quencies) will be small, so |¢}" (a/ )| will be close to |gz§”h 2t/ (a/T)|, and therefore

will have a maximum near v;. In this way, looking to the local maxima of the function
|¢ r(a/ T)|?, we get a first procedure for computing an estimate of the frequencies. This
is the method used by Laskar ([I8], [20], [19]). In his procedure, used for the computation
and analysis of frequency maps related to dynamical systems defined by the function f(t),
he looks for the local maxima of the function [¢7%.(o/T)|* using some numerical quadra-
ture formula for the evaluation of the TCFT at a discrete set of values of the argument a.
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Once some values of o near the maxima have been computed, the values of the maxima
are refined by interpolation.

Since leakage is responsible for the maxima of |¢}'-(a/T)| not being the true frequen-
cies, the use of filtering improves this procedure, since it reduces leakage. However, it
is not advisable to take n, too large, since as we increase n; the “peaks” of the TCFT
become wider and may shade nearby frequencies (see Fig. .

In our procedure, we maximize the modulus of the filtered DF'T of the initial function,
|F7 % v (d)] (where j may take real values), instead of approximating the TCFT using a
numerical quadrature formula and maximizing this approximation. The reasons for this
are:

e Although the DFT suffers from aliasing, whereas the TCFT does not, numerical
quadrature formulae suffer aliasing at least as much as the DFT does. For instance,
using a Newton-Cotes formula with all the sampling points as nodes, which is as-
sumed to be written as fOT ft)dt = S P Af(IT/N), we have

np, e} + N) / th 7227r(o¢+N) d
— ) = = t
qzSf,T< T g
L3 g
—i2ma] T

1 n n
- ?ZAZHTh(Z%)f(l%)e P
=0

—127r(a+N) ll
N

Q

)f(U5)e

Zlﬂ
=i

)

NI

e The use of a numerical quadrature formula does not guarantee the accuracy of the
theoretical TCFT, since the error formulas include a power of the integration step,
which in our case is the sampling width, and it does not need to be small. However,
the DFT is close to the TCFT when there is no aliasing, as it will be shown in
Lemma [3.2.4]

We use Newton’s method to maximize |Fy% y(j)|. For that, we need to evaluate

F ”hT ~(7)], and 82 |F7% n(3/T)|. Expressions for these functions can be obtained from
. We take the “peaks of the DFT as initial approximations for Newton’s method.
T hat is, given jo such that pj,_1 < pj, > pj,+1, We use a = jp as initial approximation.

2.3 Computation of the amplitudes assuming known
frequencies

Once we know the frequencies {I/l};ifl in 1' we can compute the related amplitudes

{Af l iy {AS /| by asking the DFT of the current quasi-periodic approximation @ of
f to be equal to the DFT of the sampled data {f(#)}~,". That is,

FS?,T,NU) = F}%,N(j), (2.2)
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for suitable values of j. Since we are interested in real functions, we will use the sines—
cosines form of the DFT instead of the complex one. In order to get a square system for
the 1 4 2N, unknowns, we select values of j in ({2.2) in such a manner that we get

As + Z AElro(0) + ATy (0) ) = cfyn(0),

Nf

A G+ Y (A NG) + A G ) = (), (2.3)
=1
Ny

Yo CABNG) + AEG) ) = P,

=1

where
a(i) = dlhnn(),
() = Coem ) SN0) = i) v () (2.4)
EZ,}}VO) = C;i(Q””)TN(j) g:,}}\/(j) = 8:1};1(27”,)7,]\7(])

and the j; are chosen as the closest integers to v;, that is, such that |j; — ;| < 1/2 for
i =1+ Ny. Note that ¢;"(j) is independent of 7" and N. The fact that ¢’y (j), 5,'x(J),
¢, (7) and 577 (j) do not depend on 7" will be shown in Section [2.5.3|

In this way we get a (1 + 2Nf) x (1 4+ 2Ny) linear system, which, assuming that
Ji > 1+mny, for ¢ =1+ Ny, can be written in compact block form as

P AS C}L’}LT’N(O)
0 Bf ... B}Vf vy wy .
0 B ... By N, wy,
where
-n ~n v jl EZ}"
u = ( Cul}fN«)) CV,TN(O) ) ; B, = ( —nthE 3 an NE % ) ,
v (2.6)

vy = ( Af ) w; = ( cf’TN(jl) )
A7) Sf,TN(Jz)

Since the DFT decreases as |V — j| goes away from zero, this system is near to block—
diagonal and therefore is well conditioned. In theorem we give a bound of the inverse
of its coefficient matrix. Moreover, because of its structure, it is very well suited for a
2 x 2 block Jacobi method, which can be written, if we remove the first equation of ,
as

oY) = ( Z B '™ + wl>, i=1+Ny. (2.7)
Jaﬁ%

Once we have values for { A, Af}l]ifl, we can compute A§ from the first equation of 1} In
corollary [3.4.T| we give a result about the convergence of this Jacobi procedure. In practice,
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the results have shown that the convergence is very fast when starting from the values
given directly by the DFT. Usually 3 or 4 iterates of the block Jacobi method are enough
for Hanning level n;, = 2 and a tolerance of 10° for the maximum difference between two
consecutive iterates (these values correspond to the analysis of a trigonometric polynomial
with three frequencies).

2.4 Simultaneous improvement of frequencies and
amplitudes

Given approximations of frequencies and amplitudes, we can improve them simultaneously
by solving a system of equations similar to the one used in the previous section. With

respect to that system, we need now an additional equation for each frequency, since
frequencies are now unknown. We therefore solve iteratively the system

Ny
A5+ D (A (0)  + AER(0) ) = cfr(0),
=1

Ny
Al G+ D (A + ATEG) ) = (),
N (2.8)
Yoo AENG) + ASING) ) = PG,
l;fl

Ases? () + D ( AjespinGh) + AasiinGh) ) = eshn (i),
=1

for {Vl}l]ifp {Af ;\;fo» {Af}fifl, where j; and j! are defined as

Ji=vl gf =+ 1 v = ] <12,
Ji= v+ 1, 57 =[v] otherwise,

for i =1+ Ny. In the last equation of (2.§)), ¢s denotes either ¢ or s; the criterium to
choose one or the other is given bellow.
If j; > 1+ ny for i = 1+ Ny, the differential of (2.8) with respect to the unknowns

( A(c) 141 Atlz A‘i I/Nf A?Vf A?Vf )7
which is needed in order to apply Newton’s method, can be written as

2 U1 UNf

0 Bf ... levf
M = : : - : J

0 B ... By
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being
uo= (Ajoe,y(0)+ A;0c v (0) @iy (0) Ein(0) ),
A;:aEVl}:N (jl) + A aCl/[,]\f (j'l) _Vl,t (J'l) Cl/l}:N (jl) (29)
Bi,l = Acagzth (]z) + Asagﬁl N(jl) _,CL;? (]z gﬁl’:N (]z )

Acacszth(jz ) + Asﬁcsyl N(jz ) CSVL N(jj_) E:?Z;:N(]j_)

where 0 denotes derivative with respect to v. As in the preceding section, this matrix is
close to block—diagonal and, therefore, the system to be solved at each Newton iteration
is well conditioned.

For each block B;;, the criterium to choose cs from ¢ and s is to set it equal to the
one that minimizes || B;;'||c. This further improves the well-conditioning of the system,
and is theoretically justified in Section [3| (Lemma [3.2.9).

With the exception of rounding errors, the only source of error in this procedure is the
leakage from frequencies that we are skipping, as will be shown in Section [} In particular,
this method is exact for trigonometric polynomials (the combination of the procedures of
Sections 2.2 and [2.3|is not).

As a final remark note that, because of the use of the DFT, both this procedure and
the one of the previous section suffer from the aliasing effect introduced in Section [I.3]

2.5 Implementation details

In this section we give some details for the implementation of the procedures described
in the previous section.

2.5.1 Algorithm for the procedure

Starting from the sampling {f(t;)}1 " of a function which is known to have a quasi-

periodic behavior, we carry out its Fourler analysis by finding initial approximations for
the frequencies using the procedure of Section [2.2] obtaining the related amplitudes using
Section and iteratively refining the approximations of frequencies and amplitudes
through Section [2.4]

In order to prevent some frequencies to “hide” nearby frequencies of lower amplitude,
it is advisable to proceed iteratively, in such a way that at each iteration we only consider
those frequencies whose amplitude is greater than a given tolerance.

Concretely, the algorithm used for the numerical examples of the last section is the
following.

Algorithm 2.5.1 Provided a minimum amplitude b,,;, for the frequencies to be computed,
and a number of iterations n for the procedure, first define

Pmaz = ma)%\[ p?,hT,N(])a db = (bmin/pma:v)l/na
j=

—17?
where Py (7) = (€ n (1)) + (sFn (1))2, and set
Qf(t):()7 b:pmaza ]\'[f:0
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Qf(t) will be the current quasi-periodic approzimation of f, b the minimum amplitude of
the frequencies to be detected in the current iteration, and Ny the number of frequencies
computed. Then, while b > by, proceed as:

1. Setb < b-db. Let kn, 11, - - -, kn;4m be the peaks of the modulus of the DFT of f—Qy
with minimum amplitude b, that is, {kn,41,.. . kn;om} =1{J € Z :np +2 < j <

h

%_”h 2, pf Qr, TN( ) >0, Dy QfTN<J 1) <pf QfTN(J) p}l}le,T,N(j'i_l)}'
For each k;, apply the procedure of Section [2.9 to obtain v.

2. Solve , according to Sectzon to get {ASY ™ and { AT from {w T

3. Solve , according to Section to iteratively refine {l/l}fv , {Af}H Nf+m and

{As Nerm
4. Update the number of frequencies and the current quasi—periodic approximation,

27TVlt

)

N; — Nj+m, <—AC+ZAC )+A5 n(

and go to step[l].
We stop the algorithm if
e Ny reaches a given maximum number of frequencies, or if
o max;—g-n_1|f(t;) — Q(t:)| is under a given tolerance, or if
® max;_q-;/2 p?ﬁQﬁT’N(j) is under a given tolerance, or if

e there appear two frequencies too close. We usually consider v, v, to be too close
if vy — v, <24,

In practice, the DFT approximation is good enough for Newton’s method of Section
to converge. That is, we can skip the preliminary determination of the frequencies of
Section by setting v, = k; in step [T}, and then compute the amplitudes related to these
frequencies following step [2} It may be useful to use the procedure of Section anyway
when Ny is very large and we want to save some Newton iterates in step |3, since we have
to solve a (1 + 3Ny) x (1 + 3Ny) linear system at each Newton iterate.

2.5.2 Use of trigonometric recurrences

Large amounts of computing time can be saved if we avoid the evaluation of the sin and
cos functions when we have to evaluate the DFT using its definition in the procedure of
Section , or when we have to compute {f(t;) — Q(t;)} ;" in step |1 of the algorithm
given above. This can be accomplished through the use of tr1g0nometric recurrences for
the evaluation of cos(lx) and sin(lz) for [ € Nand € R. One has to be careful in choosing



20 Chapter 2. Procedures for the refined Fourier analysis

such recurrences, in order to avoid numerical instability (see [29] for a discussion). The
recurrence we have used is given in [29], p. 24: first set

dey = —2sin? g, t:=2dcy, ds;:=+/—dci(2+dey), so:=0, co:i=1,
and then compute, for m :=1,2,...,

Cm = Cm—1+ dCp, demy1 =1 Cp + dep,

Sm = Sm—1+ dSm, dsmi1 =1 Sy + dsp,.

Just for illustrating purposes, we compare in Fig. the errors produced by the
trigonometric recurrence previously given with the following one: first set

cco=1, cci=cosz, ssg=0, ss1 =sinx,
and then compute, for m := 2,3, ...,

CCmi1 = (2cosz)ee, — cem-1,

$Smi1 = (2c08x)sSy, — SSm—1.

2.5.3 Evaluation of the DFT of sines and cosines

Special care must be taken in the evaluation of the DF'T of sines and cosines, in order
to avoid cancellations and singularities. In this section we describe some of the strategies
followed in our implementation, especially those related to small values of v — j.

The DFT of sines and cosines can be evaluated from the complex DFT of a complex
exponential term through the following formulae:

_ZZV(]) = Re Fenz/g‘rrut/TTN(j) + R’eF'L2ﬂ'( v)t/T TN(])J
g:f}v(]) = _Im F?S“irut/TTN(]) Im F’N;Qﬂ'( V)t/TTN(])?
EZZV(]) = Im FT:;m/t/T TN(j) Im Frigw( v)t/T TN(])’
,‘;Z,}}V(]) = R/eF(Zg‘rruf/TTN(j) FT:g‘ir( v)t)T TN(])

Derivating with respect to v, we get similar relations that allow to obtain 662}7 ~(),

deyte (1), 95, n (), 8?;,’{,,71\]( ) from OF L ) /r TN( ). As before, 9 denotes derivative

with respect to v.
The non-filtered complex DFT of a complex exponential term is a geometric progres-

sion,

1 N-1

Fei27rut/T’T7N(j) = i Z ei2r(=)I/N _
=0

1 — ez’27r(1/—j)
N(]_ _ €i27r(1/—j)/N) ’

and its derivative with respect to v is

%ei%r(l/—j) _ ei271’(l/—j) + %eiQW(N-i-l)(u—j)/N
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Figure 2.2: Illustration of the numerical instability of trigonometric recurrences. For z = 27 x
107% and n = 10°, we have evaluated {cos(mz),sin(mz)}",_, and the values {c,,, sm }™_o
and {ccy,, $Sm }_ using the recurrences detailed in the text. In the left-hand plots we show
the differences cos(mz) — cc,, (top) and cos(maz) — ¢, (bottom). In the right—hand ones,
we show the differences sin(mz) — ss,, (top) and sin(mz) — s,,. These values are machine
and compiler—dependent. The program that has computed these plots has been compiled with
GNU gcc 2.95.2 with the optimization option '-O3’ on an Intel Pentium Il processor.
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Using the relations of Lemma and its derivatives, we can get the filtered complex
DFT of e?™T  as well as its derivatives with respect to v, from the non-filtered values.
The computation of Fizr/r p x(j) is organized as follows:

) 1 fac+bd  bc—ad
FeiQWVi/T,T,N<j) = N<C2 + d2 +ZC2 —|—d2)

being
a = 1—cos(2r(v—73)) = 2sin*(n(v— 7)), b = —sin(2nr(v —j)),
c = 1—cos(2r(v—j)/N) = 2sin®*(x(v —j)/N), d = —sin(2r(v—j)/N).

For a and ¢, we use the second expressions in order to avoid cancellations.
Concerning to OFi2me/r 1 x(j), we compute it as

ad —bc  ac+ bd)

. m
8F127Tut/TTN(j) N<02+d2+zc2+d2

being
o %COS(W)  cos(2n(y — ) + N]\—[ 1 COS(QW(N +]$)(v —j))
_ %Sin(r@—i—]\]f\;(’/—j)) sin(w(v—j)) — 2sin<ﬁ(2N+§[>(V—j)> Sin(%),
. %Sjn<W)  sin(2r(y — 1)) — 2Sin(7r(2N +]\1[)(V - j)) Shl(ﬂ-(yj\; j))
- 2, (“2“2(”_‘7)) snv—3) + 2cos(ZNF DIy i (2200
e = FCOS(W) :2Sin2<¥>a
. (2m(v—7
f = —sm( (N j)>,
c = &—f
= 2ef.

As before, for a, b, and e we use the second form in order to avoid cancellations, although
the second expression of b does not remove cancellations completely.
Since Fimvi/r p n(j) = h(v — j), being

1— €i27ra

N—
Z ez27rozl/N _

N(1 — eizma/NY’
=0

h(a) =

1
N

we can use the Taylor expansion of h to evaluate Flime/r 75 (7) and OF izmve/r 15 (j) for
|v — j| small. Indeed, we could use this Taylor expansion for any |v — jl, because h is an
entire function (it is a finite sum of exponentials), but the convergence of the expansion
is slow for large |v — j|. We have set a threshold 4 in such a way that for |v — j| > § we
use the previous formulation and for |v — j| < § we use the Taylor expansion. The value
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of ¢ is chosen in order to have fast convergence of the Taylor expansion and a small error
due to the cancellation in the second expression of b. We have taken 6 = 0.1, since

—B+7

lim

N—oo

= 0.1563,

being

= 2T i, = () (),

and, in this way, the maximum loss of precision due to the cancellation of the second
expression of b is one order of magnitude. Moreover, since

‘h<’f><o> ¥ < 2

k
k! (k+1ﬂw’

the convergence of the Taylor expansion is fast for [v — j| < 4.
For the evaluation of the Taylor expansion of h, we have used that

h(0) = e > I

—~
.
[\
=

~—

and, for kK > 1,
%ﬁhﬂN_UH{MN_Uk+1kzﬂN_nkuflkB(N—N*+
T k+1 2 2\1/)7? 4\3)"" T

=1

where the sum ends at either N — 1 or (N — 1)?, and B; are the Bernoulli numbers.
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Chapter 3

Error estimates

In this Chapter we develop error estimates for the numerical procedure described in the
previous Chapter. We cover both the case of computation of the amplitudes from known
frequencies and the iterative improvement of frequencies and amplitudes. The Chapter
is ended with Theorem which gives bounds for the error of our Fourier analysis
procedure in terms of the parameters used for the analysis and the properties of the
analyzed function.

3.1 Introduction and notation

In order to derive error bounds, we will assume through this section that the function f
to be analyzed is real analytic and quasi—periodic, that is

ft) = Z ekt — A 4 Z L cos(2mkwt) + Aj sin(2mkwt)) (3.1)

kezm™ kez™
kw>0
where kw = kywi + ... + knwm, Ar = 2Reay, B, = —2Imayg, the frequency vector
w= (wq,...,wn) is assumed to satisfy a Diophantine condition of the form
|kwl = (3.2)
[
with D, 7 > 0, and the Fourier coefficients of f satisfy the Cauchy estimates,
lag| < Ce™™  VE e zZ™ (3.3)

We will also assume that we want to compute the frequencies of f up to order |k| < rg—1
as well as its related amplitudes. That is, we want to approximate f by a trigonometric
polynomial

Ny
21y,

t) = A + Af cos(——t) + Aj's
Pl = 4+ D (AFeos )+ Afsin

21y,

)

being
v, ow = {Thkw 1 k€ Z"1 < |k| <rg — 1, Thkw > 0}. (3.4)
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We will give error bounds for two cases: the case in which we want to compute the
amplitudes from known frequencies (Section and the case in which both frequencies
and amplitudes are unknown (Section [2.4). In order to perform error analysis for the
second case, we split the right—hand side of and rewrite it as

A +Z (Aiey'n(0) + Aie N (0) = ¢l n(0) + ¢ (0)

Nf

Ajei™ (i) ‘1”2 Aje Zth(]z) A?EZZ}fN(ji)) = CZ,hT7N(ji)+C?ip,T,N(ji)
=1
Ny

D (AT G+ AS () = sty () + ST g ()
=1

Afesi™(5;7) + Z (Ajes, 7+ A?ESZZ’?N(J';“)) = CSZ,}EF,N(ji )+ cs pTN(jz )

g(y+Ay) b

Ab
(3.5)
We would get the exact frequencies and amplitudes, which we denote as y for short, if we
solved ¢g(y) = b. But the system to be solved is g(y+ Ay) = b+ Ab, and therefore the error
we have (assuming no rounding errors) can be bounded (in the first order approximation)
by
189l < 11D9() " loe | AV

A similar argument is applied to the case in which the frequencies are known and we
want to compute the amplitudes. In this case, g, y, Ay, b and Ab are defined as

Ap + Z (Aiey v (0) + A7)y (0)) i (0) + €5 7 v (0)

"(Ji "‘Z C_Zth Ji) + Ajc ulN(jZ)) = CZZ“,N(ji)—i_C;}}:p,T,N(ji)

Nf
Z(AZCEZ;?NUZ') + A7s, ) = syl i) + 85 pn (i) -

=1
~ ~ —_——— —
9(y+Ay) b Ab

This section is devoted to the computation of bounds for || Dg(y)!||e and ||Ab|s in
terms of T', N, nj;, and the properties of the analyzed function f. From now on, and unless
otherwise stated, we will use the supremum norm.

3.2 Error bounds for ||Dg(y) |«

In order to simplify the expressions to be manipulated, we will bound the TCFT instead
of the DFT. That is, we will use C}’;. and Sy’ defined by

sbf,T(T) (C"’L (47) — iS5 (9); (3.7)
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(here i = /—1). As in the discrete case (2.4)), we will note

) = G
Cyh(j) = C:;LS(%)’T(].)’ Suh(j) = SZ)’;(?}W),TU%

and the derivatives of C," (j), S,." (j),?l’}h (j) and 8™ (§) with respect to v will be denoted
as 9C." (j), 0S8."(j), dC™(j) and dS™(j), respectively. We give expressions for these
transforms in the following

Lemma 3.2.1 Denote ¢, (x) =[,2_, (z+1). We have

l=—ny,

- U
R e e G e ey ]
sy - (Lo 2”)_9”—“ffff_”f__”j)_”)),
) - Lo
0 = G )
20 = (wﬁfu—jj %5( “=5)
) = S (- S )
oSty = S (G Vu_—jg %(( =)
where

ho(z) = 2mcos(2mz) — 1, (o) sin(2r2),

() = 2msin(2ra)  r, (1)1 = cos(2n2)),

0 = 3

Proof: We have

CH0) = o) D 2Ry £ G/T)
= 2 Re ¢nh.2ﬂ-yt/T+6127r(—u)t/T)/27T (j /T)
= R‘e ¢ i2wvt/T T(]/T) + R‘e ¢:ig7r(fu)t/T7T(j/T>7
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5;”1 (]) = Im ¢6127rut/T T(]/T) - Im¢ 7,27r( v)t/T T(]/T)7
gzlh (]) = - Im ¢8127ﬂ/t/T T( /T) Im ¢6127r(—l/)t/T T(j/T)7
SICLh (]) = R‘e ¢6127rut/T T( /T) - R’e ¢:1}§ﬁ(—u)t/T7T (] /T>

Then, the lemma follows from ([1.5)) and

(—=1)" (np!)? on—i) )y e 1
e UIT) = g S (e =il =) 30 )

l=—np,

O

In order to bound the error due to the approximation of the DFT by the TCFT, we
need the following lemmas.

Lemma 3.2.2 (Discrete Poisson summation formula) If n, > 1, we have
S > . [j+IN
Ff},N(]) = Z ¢f,hT<T>-

(o9}
—np

In particular, €)'\ (j) = > ¢*(j+IN), and analogous identities hold for ' (7), 3,y (7),

l=—00
s,iv(7), and their derivatives with respect to v.

Proof: This is a known result (see, for instance, [5]). We give a proof here for complete-
ness, and also to clarify the need for the hypothesis n, > 1.
We first note that, by definition of the TCFT, the Fourier expansion of Hy"(t)f(t)

with respect to the interval [0, 7] is
> k 2wkt
> Otlpe

The function H7"(t)f(t) coincides with its Fourier expansion for all ¢ € [0,7] because,
since ny, > 1, we have Hz"(0)f(0) = Hy"(T) f(T) = 0.
Then, using the definition ([1.2)) of the complex DFT and the above Fourier expansion,

n . 1 > n k 2wk T _ 275 ;T
Fiwl) = 5 2 ( 3 op(m)e TR e

1 n k 27 (k—3)l
- N Z ¢f7hT(T) e N )

and the lemma follows from the fact that the inner sum above is equal to N if k — j is an
integer multiple of N and zero otherwise. 0
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Lemma 3.2.3 For |z| > ny, + 2 we have
rn (@) < In(|z] +np) — In(lz| = np, = 1),
()], [hi(2)| < 27 + 2(In([z] + np) — In(|2| = np = 1)).

Proof: For the first inequality, we have

= 3 Lo [ (121 + ) — n(fe] = — 1)
()] = —S/ dz = In(lz| + np) — In(|z| — ny, — 1).
h P |,Z‘| —I—l |z|—np z—1
The bounds for |h,.(z)], |hi(x)| follow from this one. O

Lemma 3.2.4 For j >0, N —j— |v| —n, > 0, we have
2(n))*(1 + 3,7)

2np,
RN = = /] = )

. J
|F;gﬂut/T TN(]) - ¢Zi};7rut/T7T’N(T>| S

forjyjv >0, N—j—v—mnu >0,
- —~n 4(np)2(1 + 52)
=Nh /. b h 2n
—-CS < .
|CSV,N(j) v (])|—7T(N_j_y_nh)1+2nhv
and for j,v >0, N —j—v—mn, > 2,
4(np!)%(1 + ﬁ)(ﬂ +In(N—j—v+n,) —In(N—j—v—n,—1))
T(N—j—v—mny) T2 '

~n, ——nn

In the previous expressions, ¢s denotes one of ¢, ¢, 8, s, and CS denotes one of C, C, S,

S.

Proof: For the first inequality, using the Discrete Poisson summation formula (Lemma
3.2.2),

NE

s o) = g G < S (167 ) 167 (C )

l

I
—

> (nh!)2 (nh!)2
= anhuu—j—ww+wnh<ru—j+1N|>>'

=1

Now, if N —j — |v| > np, we have |[v —j £ IN| > |j £ IN|—|v| >IN — j — |v|, and we
can bound the previous series by

> )
— T(IN — 5 — |v| — ny)tH2m
2 N & 1
C o A
N \(N —j = v =np) 2 Jon i o, (y — N)PF2m
T N7 \(N—j—y|=np)tt?n (N —j—|v|—ny)?n
2(na)* (1 + 50

(N —j — [V] — np)+2m°
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Regarding to the other two inequalities, if we take into account that

—_——"h 2(nh')2
sl < s
2np)2(m +In(jv — j| +np) — In(lv — j| — ny — 1))

——Np
0CS, (J) < : :
T, ([ = J1)
we can easily adapt the previous sequence of inequalities to both cases. Note that, for

the second inequality above, we need the hypothesis N —j — v —nj;, > 2 in order to apply
Lemma [3.2.3] 0

In order to bound |[Dg(y)™Y||, we will further simplify C.."(j), C™(j), etc., by elim-
inating the second term in the sums given by Lemma m For this we introduce ¢, <,
, according to the following

Definition 3.2.1 We define

(=1)™ (ny!)? sin (27(v — j))

Ezh@) = o ’ 1/111 (I/— ) ) gﬁh(j) = _Czh(J),

) = g I ) = @),
—1)" (ny!)? v—j

I G G) = —0E()

() — S M) oE ) = oE ().

In the following lemma, we bound the error after this simplification.

Lemma 3.2.5 If [v + j| > ny + 2, we have

) (r+In(| —v—jl+ny) —In(| —v —j] —np — 1))
A= v =il —m) 7

9E (j) — ac (7)) <

Y

and the same bound holds for |9 () —C™ (5)|, |087 (7) — S (§)], |88 () — S (5)].
We also have
(na!)?

—np( ; _—nh . <
|c (]) C (j)|—ﬂ_(|_y_j|_nh)1+2nh’

v v

and the same bound holds for [&(j) — Co» (4)], [8 () — S2" (7). 52 (j) — S (j)].

v

Proof: It is a direct application of Definition and Lemma |3.2.3 0
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3.2.1 Error estimation for known frequencies

If we assume in (3.6 that j; > nj, + 1 for i = 1 + Ny, then ¢{"(j;) = 0 for i = 1+ Ny
and the first equation of system ({3.6) is uncoupled with the other ones. Therefore, we
can write Dg(y) as

2 By ... Bow,
|0 B ... Buy,
0 Bx,i ... B,

where By; = w; are 1 x2 blocks, being v; as defined in (2.6)), and B;;, i, = 1+ Ny, are 2x 2
blocks defined as in (2.6)). Let us split M in its block-diagonal and block—off-diagonal
parts, that is M = Mp + My, being

2 0 0 0 Boi1 ... Bo,Nf

0 B 0 0 0 ... Bin.
Mp = : 11 - : , Mo = 0 : .. 1;Nf

0O 0 BNf7Nf 0 BNfJ 0

From Definition and lemmas [3.2.5/and [3.2.4] under suitable hypothesis, s,y (j) and
éfsff’}\,( j) decrease as v goes away from j, and therefore M is close to its diagonal part.
What we will do is to obtain bounds for ||[Mp'|| and ||Mo| and then use them to bound
|M~1Y|| using the following

Lemma 3.2.6 If M and AM are n X n matrices satisfying that M 1is invertible and
| MY |AM]| < 1, then M + AM s inversible and satisfies

B

(M +AM)™H| <
1 — [[M~L[[|AM]]

Proof: See [29], p. 188. O

To simplify notation, we introduce the following

Definition 3.2.2 We will denote by M, Mp, Mo and B;; the equivalents of M, Mp,
Mo and B;;, respectively, but replacing ey, cp», etc. by E:h, CJn, etc. That is, by replacing

the DFT by the TCFT. We will also denote by M, Mp, Mo and B, the equivalents of

M, Mp, Mo and B, respectively, but replacing ¥, ¢, etc. by T, <, etc. In this

way, for instance,
- () 0D
sljlh (.]Z) §l/lh (]7/)

In the following proposition, we give bounds for |9, and ||90o].
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Proposition 3.2.1 If (Qfg—_DQ)T > %—i—nh, where D, T are given by and rq 18 given by

, then

5) \/iNf(nh!)Z
1M <=, Mol < o
3 W((2T€_D1)T - % - nh)l+2 "

Proof: From the definitions of M p and My, we have

Ny
_ |
o751 < ma_pa, (B ) 190l < pax, B CIBall - (39

For the second bound, we have used the fact that the bounds that will be found for |90, ||
are valid for ||v;]|. So, in order to take into account the first row of ||9p||, we have allowed
the sum to run for [ = i.

Denoting p;; = v; — j; and using the trigonometric identities sin(2¢)/2 = sin(e) cos(¢),
(1 — cos(2¢))/2 = sin®(g), we can write

B, = (=1)™ (np!)?sin(mp) ( cos(mpiy)  sin(mpi;) >

T, (Pit) —sin(7piy)  cos(mpiy)
Therefore
(B,)! = ™, (Pit) < cos(mpiz) = sin(mpiy) )
’ (=1)mn(ny!)?sin(mpsy) \ sin(mpiy)  cos(mpig)
and
1Bl = ‘ (niz;ns:?ffzrl,)o”) ’(] cos(mpi)| + | sin(mpig)l),
18 = [ costmpi)| + sin(rp)) (39)

Let us define

T, (P4i)
(np!)? sin(mp; ;)
Recalling that the j;, i = 1 + Ny, were chosen such that |v; — j;| < 0.5, we only have to

bound (3.9) for —0.5 < p;; < 0.5. From the definition (1.6 of 1, , we can write Fi(p;;)
as

Fy (Pm) = ’

nn 72 2
[ — Pigi
2 7

T Pi

Fi(pii) = | =
1(pis) sin(mp;;)

=1

and it is readily checked that if —0.5 < p;; < 0.5 then Fj(p;;) decreases as n, — co. The
limit is a positive value because of the Weierstrass factorization formula for the sine (see,

for instance, [31]):

2’2

sin(mz) = 72 ﬁ(l — ﬁ) for z € C. (3.10)

n=1
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Therefore, 9B, ; is invertible and we can bound ||(8;;)~!|| for n, € N by the bound for
np = 0, which is

1 <‘ T Pii
8.0 < [T

W | Ut

(| cos(mpis)| + | sin(mpis)]) < for —0.5 < p;; <0.5. (3.11)

For the actual behavior of ||%B; || in terms of p;;, see Fig. .

1.7 T T

16 [

15

14

13

s
/o
12 ¢/

S Lo
i %
11y S
i w

1 i 1 1 1 1
-0.4 -0.2 0 0.2 0.4

Pii

Figure 3.1: Graph of ||%B;; '|so for —0.5 < p;; < 0.5 and ny, = 0,1, 3,5, 15.

Concerning ||8;,]|, for p;; € R and ny, € N, we have

(na!)?

e ey - Y2
IBuall < T ooy el cosma)l + [sin(ra)}) = 27

If we define jo = 0, the previous bound is also valid for ||B,||. For the actual behavior
of |B]| in terms of p;, see Fig. [3.2]

Now from (38), (B-11) and (3.12).

(3.12)

Ny V2 2
) 2(na!)
Mp' I <5/3,  [IMo]| < max

I <58, Mol < may 3 Uy

Since by definition |v; — j;| < 1/2, we have |y, — j;| > vy —vi| — 1/2 = T|(k; — k;)w| — 1/2.
Using the Diophantine condition ([3.2)),

1 D 1 TD 1
T\ — k)| — = > —=2 _ _— > 2~
b=kl =5 2 T = =3 2 Gro—2y 2

Now since by hypothesis % > % + np, we get

V2N (ny,
TD 1
™ Gro—2r — 2

?

[9Mol| <

)1+2nh )



34 Chapter 3. Error estimates

Figure 3.2: Graph of ||%B;,(pi.)

for n, =0,1,2.

and this ends the proposition. 0

From the bounds of |9, and ||9Mo]| and Lemma [3.2.6, we can get a bound for
|M~Y|. For that, we need bounds of | Mp — Mpl|, [|Mp — Mpl|, [|[Mo — M| and
| Mo — Mo||, which are given in the following lemmas.

Lemma 3.2.7 If [Vyin| > np, where Vy, = min{vy, ..., vn, } and [ | denotes integer part,
we have
2(nh!)2 2Nf(nh')2
Mp —Mp| < : Mo —Mo|| <

Proof: We have

[Mp =Mp|| < max. 1Bii — Bl

i=1+-N

- ma%chsw(j) @ ()| + 1CS,, (i) — et (),

where either C§ = C and ¢s = ¢ or C§ = S and ¢s = s. Now, using Lemma [3.2.5| and the
hypothesis, we get the first inequality:
2(7’Lh')2 Z(Hh')2

Nt T, (=i = Ji) = 7 (2[Vmin] — np) 20

|Mp —Mp|| < _max

As for the second inequality,

Mo —Mo|| < maxx Z (188" () — w0 ()l + G, (i) + &2 (i) ),

l;éz
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where we denote jo = 0. Using Lemma |3.2.5( again,

Ny

2(ny!)? 2Ny (na!)?
Mo — Mol < max —~ = '
Mo =Moll = M, 2 2 (i =3 = ([ — na)

We lose the factor 2 in front of [v,:,] with respect to the bound of ||[Mp — 9Mp|| because
we have to consider the first row (i = 0). O

Lemma 3.2.8 Assume that N —T(2rg—2)|wllsc — 5 — 1, > 0, where rq is given by (3.4)).
Then

8(np!)?(1 + %)
|Mp — Mpl| < e
(N —=T2r¢) —2)||w|le — 3

8(np!)2Np(1 4 52-)

2np,

7(N —T(2rg — 2)||w|/ec — % — nh)1+2nh'

)1+2nh ?

Mo — Mol|

Proof: Using Lemma [3.2.4]
8(nn!)*(1+ 5,-)

1+2ny 0

M —M S max B’LZ_B’LZ S max

H b DH i:1+Nf H ’ ’ || ’iil%Nf ﬂ'(N — jz —V; — nh>

and, since by definition |j; — v;| < 1/2 and as v; = Tk;w with |k;| < ry — 1, we have that
Jit+vi <2u;+1/2 < T(2rg — 2)||w||e + 1/2, and the first inequality follows immediately.
A similar argument proves the second inequality. U

The bound for ||[M || that follows from the previous results will be given in Theorem

B.41

3.2.2 General case

As in the case of known frequencies, we assume in (3.5) that j; > ny for i = 1 + Ny so
the first equation of system ((3.5]) is uncoupled with the other ones and M = Dg(y) can
be written as

2 BO,l e BO,Nf
[0 B ... Buy,
0 Bijl ce BnyNf

where By; = v; are 1 x 3 blocks, being v; as defined in (2.9), and B;;, i,l = 1 + Ny, are
3 x 3 blocks defined as in (2.9)). We split M in its block—-diagonal and block—off-diagonal
parts,

1 0 0 0 Box ... Bon

0 B 0 o o0 ... B
My — 1,1 | M= . | ) 1:,Nf

0 0 By, N, 0 Bnj1 ..o O
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As before, we will obtain bounds for ||[M5'|| and || Mp]| and then use them to bound || M]|
through Lemma [3.2.6]
In order to obtain bounds for ||Mp]|, we first state the following

Definition 3.2.3 We will denote by M, Mp, Mo and le the equivalents of M, Mp,
Mo and B;;, respectively, but replacing ", c,*, etc. byC Cl’}h, etc. That is, by replacing
the DF'T by the TCFT. We will also denote by M, Mp, imo and B, the equivalents of M,
Mp, Mo and By, respectively, but replacing ¢t ¢, etc. by ¢ ", <t etc. For instance,

A;0e)! (i) + Aj0! () iy () 6l n (i)
B = A5, (J )+A535y N(J) EZ:N(ji) 5, v (i :

A50es)" (577 + Asoes,! v (5:7) st N () sy (i)
where ¢s denotes either ¢ or s.

In order to invert M p, we only have to invert a block B; ;. The possibility to do that
is established by the following

Lemma 3.2.9 If (A7, AS) # (0,0), B, is invertible either setting ¢s = ¢ or ¢s = s.

Proof: Consider the matrix

oc,r(gi) oGk ) Gk

o | o (i) O5pr (i) sk (Ga) s (i)
e () dar(in) R anh) |7
o5, (5;7) Ospr(57) sr(aT) s()

and denote by le lljllj the submatrix of 2l obtained by selecting the rows 1, 72,73 and the

columns [y, l3,l3. Then, the determinant of a block B, ; is

Lot B Asdet A3 + A det A5 if we set s =,
LD = .
AcdetﬁligijLAsd tﬂégi if we set ¢s = s.

To see that there exists a choice of ¢s that makes det B, ,; # 0 is equivalent to see that the
system

Y

A det A755 + Asdet 355 = 0
Agdet A5y + Asdet 25 = 0

with unknowns A¢, A7, has unique solution. That is, that the determinant

1,2,3 1,2,3

det® =
det 2737 det A5

(3.13)

is different from zero. From Definition , and since v; — j;' = v; — j; — sign(v; — 5;),
this determinant only depends on the difference ¢ = v; — j; which, by definition, ranges
from —1/2 to 1/2. In order to prove the lemma, we only need to see that the previous
determinant is different from zero in this range (see Fig. for the numerical evidence).
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In order to simplify the notation, we denote

aj a2 as a4y
—a2 a1 —a4 as
as Gg az as
—ag as —asg az

and
A=Agy, B=Wy, C=%5 D=%y),
so that det® = det Adet D — det Bdet C.

First note that, using —(e — sign(e)) = —e — sign(—e¢) and the fact that ¢,"(j) and
" (5) are even and odd in € respectively, we can check that det ® is even in € and therefore
we can restrict to [0,1/2] the range of € to be considered.

Let 0 < € < 1/2 and assume det® = 0. We note that det A = det D and det B =
—det C, so that det® = (det A)? + (det B)? and we have det A = det B = 0. Expanding
through the first column, we get

det A = —ay(asar + agag) + as(asas — agay) + as(as + a3)

det B = ay(asar + asag) + ai(azag — asar) — ag(a3 + aj)

The aszas — aqa; term is readily checked to be zero. We denote ¢ = 9, (¢) and ¢, =
U, (€ — 1). We check that aza; + asag has the same numerator as a3 + a3, due to the
1-periodicity in € of the numerators of ay,...,as. The denominators are different: 1),
for aza; + asag and ¢ for a2 + a?. Setting det A = det B = 0 and simplifying numerators,
we get

a1y = asPp, a2y = AP

Now, using the expressions for a; and a; from Definition [3.2.1], as well as a1¢ = a5, we
obtain r,, (¢) = ry, (6 — 1), that is ¢/ /¢ = 9! 1), (here’ denotes derivative), and therefore

d ¢m o @D;n@b _¢m¢/ _

The condition as®) = ag), leads to the same conclusion.

But
wm_g_nh_l_l 2np, +1

v e+ ny e+ny’

and its derivative with respect to ¢ is different from zero for 0 < ¢ < %, which is in

contradiction with ((3.14)).

For e = 0, det ® is checked to be different from zero using the expressions of Definition
(it is necessary to compute the limits when ¢ — 0). O

Now that we know that a block B, ; is invertible, in order to actually invert it we state
the following
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08 -

06 |- T -
[ A

Figure 3.3: Plot of the determinant (3.13)) for —1/2 < v; — j; <1/2 and n, =0, 1,2, 3.

Ny 0 1 2 3
G, | 484|883 | 133|177

Table 3.1: Some values of the GG, constants.

Definition 3.2.4 For nj, € N, we define G, to be an upper bound of

-1

(cos 0)0E,, () + (s O G)  Tivld)  Tin(i)
max - min || (cosO)OR]NG) + (smOTNG) NG NG ||
Sl TN (cos0)0mE () + (sin )0 (1) @G S

lv—jl<3

In table we give some values of the ¢, constants found numerically. Just for
illustration purposes, in figure 3.4 we display the behavior of

(cos )05 () + (smOTGNG) TR G) i
min [ (cosf)OmA () + (mOTAG) SN TG
TN (cost)amEy () + (sim0)oes () G Ev(T)

&

in terms of # and v — J.
In order to relate the bound of the previous definition to the bound of an actual block
B,.;, we will use the following

Lemma 3.2.10 Let A # 0 be a real number and vy, vy, v3 S—dimensional row vectors.

Then
1 1

1

H AU; Uy U3 §max(x,1)H vl Uy Us

Proof: Define wy, ws, w3 according to
-1 T

U1 V2 U3
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e
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10 6:‘\‘\” ;&& i “‘

'P\*‘
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Figure 3.4: Plot of (3.15) for 0 < <27 and —1/2 <wv; —j; < 1/2.

Then,
! 1 wlTT 1 w1T4/\
Avi vy g :det()\vl,vg,vg) izi :det(vl,vg,vg) zir ’
and therefore,
- 1 w1T4)\
H Avp vz s Hoo - |det(v1,vg,vg)|H Zir Hoo

max (w1, [was, ws]1)

|det(vy, vg, v3)]

< max(i, 1>max(|]w1”1, |wall1, lws][1)

|det(vy, va, v3)]
—1

1
= max(x,l)H v vy U3 H

4

Let us denote 4; = ((A%)2 + (A2)2)"2. Using Definition and Lemma [3.2.10| we
have
1(Bi)~ < max(A; ' )Gy,

and therefore,
19051 < max(AL;

where A, = min{A;, ..., Ay, }.
Now we bound the simplified off-diagonal part of M.

)G,
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Lemma 3.2.11 Assume ﬁ > 3+ ny. Then,

np!)? [\/5(251’1 A) (W +In (Gl — 1+ ) —In (G —2 - ”h)) + QNf]

r2n,
(G — L= ma)

1Mol <

Proof: We first note that, from Lemma |3.2.3| and Definition [3.2.1

@OLR DL OO < o
0 () 052 (), o2 () 53 (7)) <

(10?7 + In(( = 5] + ) — In(w = | = — 1)
7T(|l/ _ ]l _ nh)1+2nh :

IN

Therefore, using |Af| 4 |Af| < v/2((A§)? + (A7)? W2 oA,

1Bi,(j)] < max (|A§I|3C~5’Jf(j)l + [Aj]|0cs, (5)] + [es, (F)] + |cs," (j)|)
J=dpdi
5=¢,S

(na)* (V24 (m + In(jvy — j| + na) — (v — j| —np — 1)) + 2).

<
R w(lv = 3] = m) e

=307
Now, for i,/ = 1+ Ny and j = j;,j;7 there exists i; such that j € {[v,], [vi;] + 1}, so
lvi, —j| < 1. As stated at the beginning of this section, we also have that there exists &; ,
with |k;,| < ro — 1, such that v;; = Tk;,w. Then, using the Diophantine condition (3.2)),
we obtain

. . TD
=gl = =il =i = vyl 2 Tk = k)| =1 2 o —
|kl - klj|
TD

= 1,

(27“0 — 2)T
and the lemma follows from

Ny
< .
|20 < max ; 181,

where we denote jo = 0. 0

In order to bound ||M~Y|| from || M| and ||M;'| by applying Lemma|3.2.6, we need
the bounds of |[Mp —Mp||, [|Mp — Mbp||, Mo — Mol and ||Mo — Mo||. We calculate
them in the following lemmas.

Lemma 3.2.12 Denote Vpi, = min{vy, ..., vn; b, Apae = max{ Ao, ..., An, }. If [Viin] >
2 4+ nyp, we have

(na))? (ﬁAm [ 4+ 10(2[Vman] + 718) — I(2[min] — 1 — 1)] + 2)

)1+2nh )

|9Mp — Mp|| <

7T(2[me] — Nnp
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() (V2(S A (7 4+ (i +70) = 10([Vmin] =1 =1)) + 2y

142np, ’

9o — Mol <

W([Vmin] - nh)

Proof: From Definition [3.2.3| and Lemma [3.2.5|
. ((VAIOGE) — OCSL, )| + 1471088 ) — 085 )+
j:JN]j |E?Vllh (j) - CSVZ (])‘ + ‘c‘gljlh (]) - CSV[ (j)’

() (V24 (n(] = w1 = ]+ ) = In(| = v — | = — 1)) +2)

(| = v = jl = np) 2

1B — Bill

IN

Y

where either ¢s = ¢ and CS§ = C or ¢s = s and CS = S. For the second inequality we have
used that

AP+ A7 < V(497 + (A7) = V24,

Now, the first inequality of the lemma follows from

[9Mp — Mp| < max [|B;; — Bl
z:lfo

and the fact that | — v; — 5|, | — vi — 3| > 2[Vpmin] for i =1+ N;. The second inequality

follows from
Ny

D0 — Mol < max 3 81— By
1=U=—INy
=1
I#i
and the fact that | — v, — Jjil, | — s — 3| > [Vimin]) for i = 0+ Ny, = 1+ N; (we denote
Jo=1Jo )-

Lemma 3.2.13 Assume N —T(2ry — 2)||w||co > 3 + np. Then,

[Mp — Mpl|
< 4m@%¢@%mﬁ+mmun+my4mN—Q—L%QHay1+ﬁﬁ
= T(N — Q — )i +2mn ’
Mo — Mol|

Any))? (\/5(% A1+ In(N—Q4ny) — In(N—Q—1—ny)) + 2Nf) (1+52)

S =1

7(N — Q0 — np) 2

being Q =T (2rg — 2)||w||so + 1.
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Proof: For a 3 x 3 block, we apply Lemma and obtain

1B — Bi
< max ((MIOTELG) ~ OGN FIACE ) - 0BTl
=it ICS,, (43) —espr ()| +1CS,, () — espr (G
4(nh!)2<\/§Ai(Tr +In(N—j—y+n,) —In(N—j—vy—np— 1)) + 2) (1+ ﬁ)
<

(N —j — vy —np) T2
where either ¢s = cand CS§ =C or¢s =5 and CS = S. As j € {j;,j;} and v, = Thw
with 1 < |k| <r9—1, we have that j+ v, < Thkw+1+Tkw <T(2r)—2)||w|le+1 =

for some |k;| < 1o — 1. Using this, the lemma follows from

||MD_MDH < maﬁ HBi,i_Bi,iHa
f

i=1=

Ny
|Mo ~ Mol < max >~ [1Biy — Bull

where we denote jy = ji = 0. O

From these lemmas follows a bound for || Dg(y)~!||, as will be stated in theorem [3.4.1]

3.3 Error bounds for ||Ab|

We give first three definitions and one lemma in order to be able to bound finite sums of
the type > 71 j%e~%  with rq either finite or infinite.

Definition 3.3.1 Given z € R, we define
VeeR, [z,=max{z+n:ne€Zz+n<z}=z+[z—2],
where [ | denotes integer part.

Note that, for all m € Z, we have [z], = [2].4m.
In what follows, we will use the incomplete Gamma functions v(«,x) and I'(«, x),
which are defined as (see, for instance, [1)

’Y(OWU)—/ e 'ttt ['(a, ) —/ e 1t
0 X

In order to be able to bound sums by integrals taking into account the intervals of
monotonicity is convenient to introduce the following
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Definition 3.3.2 For ji, js, ;0 > 0 we define the functions

o 1 T ,
Gy(ji, J2 . 0) = WX{ﬁg%—l}(’Y(OH‘1a5mln([5]j1a]2+1>>_’Y(Oé‘i‘ladh))+

(07

Xti<g g -1y ([5]3) e +

X{j1<%+1,jz>%}([%]j1 +1)%e U5l +h 4
5a_1+1X{j2>‘§+1} (7(@ +1,052) — y(a +1, maX([%]jl + 1,51 — 1))>,
and
Gool:0) = pxgassn (e + LIS — 2+ 1,65)) +
X{jr<g }([5]‘ )“el ]“ +

X{j<$ +1}([ I, + 1) 0U8ln+n 4

Na+L6mwﬂ%

In the above formulas, X{condition} equals 1 if condition is true and 0 otherwise.

jatl ]jl + 1,01 = 1))

Lemma 3.3.1 The functions G and G satisfy

J2 0o
Z.jaeitsj S Gf(j17j27a75>7 Zjaeiaj S Goo(jlaau 6)

J=j1 J=j

Proof: To obtain the expressions for Gy, G in Definition we have bounded the
previous sums by integrals. This can be done easily for the subintervals of j of length 1,
starting at jo, for which the function j%e~% is monotone. Some care must be taken for
the intervals around the maximum of the function, which is attained at j = §. This is
the reason for the definition |3.3.1} Both inequalities follow after a careful examination of
all the possibilities for the relative position between [ji, jo] and the maximum §. O

We recall from ({3.5)) that Ab is defined as,

where ¢ ranges from 1 to Ny and cs denotes either ¢ or s. We want to determine the
trigonometric approximation p(t) of f(t) using frequencies up to order ro — 1, that is,

{kw : k| <rg—1}, so
t) _ Z akeiQTrkwt’

|k|=r0
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Therefore, denoting by J the set of indices {0, j;, j; : 4 = 1 + N;}, we have

AL < 2max |[F}" ) 4 (7))
jeJ
< 2max > | Fan 7 ()] (3.16)
|k|>r0
< 2max Z ||| F i oy () 2 ) k-
|k|=r0 |k|=r«+1

We will keep 7, as an unknown quantity for the moment, and bound the first term of
the above sum but replacing the DF'T by the TCFT.

Lemma 3.3.2 The following inequality is fulfilled:

m

2 mym-1
: =t < —77+—= .
keI =} < g (4 5)
Proof: See [17], p. 114. O

Lemma 3.3.3 [f > 1+ ny, we have

T+r 2)7

re—1

Z |ak||¢ez2wkwt T( )|
|k|=ro

2mC (ny!)2edro=1) S (™ (%woﬂ)m*l*le(Qro —1L,re+ro—2,0+7(1+2n),9)
I

E.(m — 1)lx(TD)+2m

where

Proof: Using the Cauchy estimates and ([1.5]),

re—1 re—1

_ (na!)?
|ak||¢ez Thkwt ( )| S C Ol
1;0 o kz mm ([The = 31)
C [ 9 Tx—1 —6|k|
< Gl e (3.17)
T (|ITkw — j| — np)1 T2
C(np!)? = eIkl
< > (3.18)
= TD T+2n
m |k|=ro ((|k|+7‘0—1)7 —1—m) '
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For the last step we have used that, since j € {j;, j;} for some i = 1 = Ny, there exists
k; € Z™ such that |j — Tk;jw| <1, so

TD
Thw — j| > meJMWA—U—T%MZ7Wk—kﬂ4_12,k P
—kj

TD
>
(k] + 70 = 1)7

In order to be able to sum the above series with the aid of the incomplete Gamma
functions, we choose E, such that (z — 1 — ny) T2 > E*x“%h for x € {|k|+T%}T*71

|k|=1
14+2n
This is accomplished setting E, = % with z, = . Therefore,

(7« +’I‘0 2)7

re—1 Tl
@ — Z |ak|‘¢e7,2ﬂ'kwt T( )l S ﬁ Z (( TD )1+2nh

|k|=r0 * \k=ro [kl +ro—1)7
C(ny!)? re—1 e s
N E.n(TD)H2 Z € (|k] +7ro — 1) 2

|k[=r0

Now we apply Lemma |3.3.2

re—1 m
= Ea(TD)Fem 2« (m—11Y "2 !

j=ro

shift the index j,

2mC (ny])? el

. m m—1_—§(j—ro+1) :7(14+2n4)
SO G+ D g 1) o) jrasm),
E.(m — 1)lx(T D)2 j=2ro—1 2

)

and expand by Netwon’s binomial,

@ < QmC(nh')Z "Lz_l - ]- ( + 1 m—1— l’r*—ii 2 l+7— 1+2nh) —6(] rOJ,-l)
— —r
= E.(m— )n(TD)+2m AT J
=0 Jj=2ro—1
2mc<nh!)2€6(r0—1) m—1 1 . lT*Jrro 2 :
— o 1)~ +7(142np) (5
E.(m — 1)lx(T D)2 > (" l (2 ro+1) 2. ‘
1=0 J=2ro—1
Now, to show the lemma, we only have to apply Lemma |3.3.1] U

In the proof of the previous lemma, we bounded the continuous Fourier transform of
a complex exponential term as

(na!)?

TD 1 _ 14+2n,
(g7 — 1~ ")

|¢6127rkmt T(;—,” S

Therefore, an intrinsic way to choose r, is to take it equal to the last value of |k| for
which the previous bound is < 1. In addition to that, and in order to avoid an excessive
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amplification of the bound due to the introduction of the E, constant in the proof of the
previous lemma, we will restrict r, so that z, > 2(1 4 n;) and

1

E. 2 g (3.19)

r*=[< e )))l—ro%—Q}

max(((”h) )1+2”h + 14 np,2(1 +ny

Now that we have chosen r,, we need to bound the error due to the approximation of
the discrete Fourier transform by the continuous one. This is done in the two following
lemmas.

Therefore,

Lemma 3.3.4 If N —T(r. + 19 — 2)||w||oc > 1+ ny, then

re—1 re—1
‘ § a’k eszkwt T N E a’k(be7,27rkwt T ) ‘ _
|k|=ro |k|=ro

21O (g, )2 (1 + ﬁ)e(S%G'f(TO + 2. —14+%,m—1,9)
m(m— 1IN =T (ri +rog—2)|[|w]|oc — 1 — nh)1+2"h

Proof: Using Lemma and the Cauchy estimates ({3.3),

= re—1 .
J
‘ Z apF mTkwt Z app™" jan T (T>‘ <
H=ro k=0
< C Ti o —0lkl 2(nx!)?(1 + ﬁ)
|k|=mr0 (N T('f’* + 719 — 2)”me 1= nh)1+2nh7

since, for |k| = ro+r,—1 and j € {0,j;,j; : i = 1+ N;} there exists k; with |k;| <rg—1
and |Tk;w — j| <1, and therefore

j+ |Tkw| < T)kjw| + 1+ Tlkw| < T(|k;] + |k])|w]loo +1 < T(ro + 74 — 2)||w]|o + 1.
Using Lemmas [3.3.2| and [3.3.1| and shifting the summation index by 7 units, we get

re—1 2m65% r*—l-‘r%
—6k| -m—1_—4j
D€ = (m—1) D, il
|k|=ro J=ro+%
< 2’”65%Gf(r0—|—%,n—l—I—%,m—l,é)
- (m—1)! ’
from which the lemma follows. O

Note that the hypothesis of the previous lemma gives a new constraint for r,, which
is fulfilled if we take

1 TD % N-—-1- np
=i ) rpra] [Yom
max((P22) T2 4 1 4y, 2(1 + 1)) [[w]l o

Now, in order to complete the bound for ||Ab|| we only have to bound the remainder.
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Lemma 3.3.5 The following inequality holds:

2mCes Gog(re + 2, m — 1,6)

Z o] < (m—1)!

Ik|=r.

Proof: It follows from the Cauchy estimates (3.3), Lemma and Definition 3.3.2, [

From lemmas |3.3.3] |3.3.4] and [3.3.5| follows a bound for ||Ab||,, that is stated in The-
orem [3.4.11

A more explicit description of the behavior of Z‘O,f‘:m +1 lax] is given in proposition
3.3l First we need two lemmas.

Lemma 3.3.6 Define P(j) = #{k € Z' : |k| = j}. Then, for j > 1 the following
recurrence is satisfied:

P(j)=2+2) _ Pi(s) + Pa(j), (3:20)
with Py(j) = 2. Moreover, P,(j) is a polynomial in j of degree | — 1.

Proof: It is obvious that P(j) = 2. Assume [ > 2. Then every k € Z!' can be splitted as
k = (ki, ky) with k; € Z=! and ky € Z. In this way

(ke 21k = 33 = (0.0} U (k20 = ) ¢l = 1) U{(ks,0): [l = 5},

and (3.20) follows from the fact that #{(0,+j)} = 2, #{(k1,=(j — s)) : |k1| = s} =
2P_1(s) and #{(k1,0) : [k1| = j} = Pi-1(j).

We see that F(j) has degree [ — 1 in j by induction on I. For [ = 0 it is true by
definition. Assume it true for [ — 1, that is

-2

B—l(j) = Zcrjr'

r=0
Then
=1 1-2 -2 j-1
P(j)=2+2) ) s+ Pa(j) =2+2> Y s+ Pa()),
s=1 r=0 r=0 s=1

and the property follows from the fact that

A 1 < /r+l
ro__ cr—s+1
;S _r—i-lz( s )st

s=0

(Bs are the Bernoulli numbers, see e.g. [22]) is a polynomial in j of degree r + 1. O
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Lemma 3.3.7 (a) Forl,r € N, z € C, |z| <1 we have

Zj 2l = QZE:))ZH, (3.21)

j>r

where Qo(x) = 2" and Q)(x) = (x — 2*)Q]_,(z) + l2Qi_1(x) for 1 > 1.

(b) Qi(x) is a polynomial in x with minimum degree r and mazimum degree r + .
Moreover, every coefficient in x is a polynomial in r with mazimum degree .

Proof: For [ = 0, (3.21]) is the sum of a geometric series. Assume (3.21)) true for [ — 1.

Then
Zjlxj =z Zjlmj_l = x% Zjl_lxj,

jzr jzr jzr

and using the induction hypothesis,

d g1 g d Q)
I%;]l v dm(ll—x)l
(z = 2)Q1,(2) + leQi1 (z)
(1_x)l+1

As for (b), Qo(x) verifies (b) trivially and, assuming that (b) is true for Q;_1(z), it is
readily checked that Q;(z) = (z — 2?)Q,_,(z) + lzQ;_1(x) also verifies (b). 0O

Proposition 3.3.1 We have

Z lax| = O(r™~te™™?) as r — 400.
|k|=r

Proof: Using the Cauchy estimates (3.3) and Lemma m,

Z lap| < C Z —IIk < (JZP )e 7, (3.22)

|k|=r |k|=r

where P,,(j) has degree m — 1 in j. Assume P,,(j) = .7 ¢m.sj® and define 2 = e~0.

Then

00 m—1 00 m—1
AP o Qs(flf)
CY Puli)e™ = C ems) j'a’ = chm,sm
j=r s=0 j=r s=0
m—1 s
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where, following Lemma, m(b), we have expanded Qs(z) as Y., ps.(r)a™, with ps,(r)
of maximum degree s in 7.
To show that this expression is O(r™ 'z") when r — oo, it is enough to see that

m—1

1 Crm,s s e\
TILHQO rm— ler Z_:((l _ l’ s+1 Zpszl(r>‘r ) =
Cm,s L . p&l(r) I
CZ( 1 — z)sH Z(TILHC}O Jm—1 )x)
=0

does not depend on r. This is true, since from Lemma [3.3.7(b) the p,; polynomials are of
degree < s < m — 1 and therefore the limit in the right-hand side of the above equation
does not depend on r. Il

Lemmas [3.3.6] and [3.3.7] also allow to improve the bound of Lemma for concrete
values of m. For instance, if m = 2 we have

re= 4+ (1 —r)e 00+
Z lax| < 4C (1—e9)? :

k| =7
|k|€Z?

3.4 Final results

We end this section by gathering all the previous results in a single theorem that gives the
bound for the error in frequencies and amplitudes. We consider both the case of known
and the case of unknown frequencies in a single theorem.

Theorem 3.4.1 Assume that we perform Fourier analysis of an analytic quasi—periodic

function
Ft)y =" ape™™",
kezm
that satisfies the Cauchy estimates with constants C, > 0,

Jax| < Ce™H,

and whose frequency vector w = (w1, . . . ,wy,) satisfies a Diophantine condition of the form

D
with D, 7 > 0. Assume we sample f in N points equally spaced over the interval [0, T],
and that we want to determine the frequencies Thkw with 1 < |k| < ro — 1, Thw > 0,
and the related amplitudes, from which we have approzimations close enough to the actual
ones. Assume that we carry out the procedure of section with np, > 1 and get an
approzimation of f of the form

Ny
. . 27wlt s . 2wyt
p(t) = Aj + lgl <A cos( T — )+ 4 &n(T)).
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Assume also that N is such that N — T(2rg — 2)||w|lec > 3 + nn, and T is such that

% > 34+ ny and [Vpmin] > 2 + ny. Then, the error in frequencies and amplitudes,

which we denote as Ay, can be bounded, in the first order approzimation, as

[Ay| < [|M ]| Ab], (3.23)
where .
HM—1H < ||MD ||
1= [[Mp [ Mo
and

ﬂ(; A)(m + IH(% —14ny) — 1n(% —2—ny)) + 2Ny

1+2n
((25?2)7 —1—ny)

ﬁ(lzfl A+ 10([Vmsn] + 1) — In([Vman] — 1 — 1)) + 2N

([Vmin] — nh)1+2nh

4(@(% A))(m+In(N —Qo+np) —In(N —Qp— 1—nh))+2Nf) (Hﬁ))

=1
+
(N — Qg — nh)1+2”h
and
HMfl” < ||M1_71|| HM71H < HmBIH Hmill‘ < Gnh
PR M e D= ey P 1= min(1, Ayn)

with G, as in Definition being

4(ny!)? <\/§Amaz(7r +In(N —Qo+np) —In(N —Qy—1—mnyp)) + 2) (1+ Lh)
7(N — Qo — nyp,)+2m ’

(1) (V2 Ao (7 + I0(2A0min] + 18) = (2 [in] = 7 = 1)) +2)

IS =
2 W(Q[szn] . nh)1+2nh )

Qo = T(2r0—2)||wlle + 1,

g1 =

As for ||Ab||,
2mFLC
Ab|| < ———
lan < 2 (
m—1
(nh!)266(r0_1) % (ml—l) (% —ro+l)m_1_le(27"g—1, ro+7«—2, l+7’(1+2nh), (5)
X{r«>ro} E m(TD)+2m
(3.24)
2(ny!)%ed% (1 + ﬁ)Gf(ro+%,r*—1+%,m—1,5)
+ X{r.>ro}

(N — Q — ny)1 2

+e9% Goo(ry + %,m — 1,5)),
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where

Q = T(ri+ro—2)||wle +1

( . TD
T« = InaxX To,m1n<|:< )
(np!)?

max((®22) 2w 41 4y, 2(1 4 ng))

™

Pl ) o2

3=

—T0+2i|,

T|wlloo
2, — 1 —my) T2
E, = ( 1+2n;]j) ’
Zx
TD
2y = —————
(re +1r9—2)7

and the Gy, G functions are those of Definition[3.3.2,

If we assume that the frequencies {Tkw}ig<r,—1 are known and want to compute the
amplitudes using the procedure described in Section formula @ 18 still valid, where
the bounds for ||Ab|| are the same as before and the bounds for |M ™| are given by

_ | M|
M| < Mff %
L —||Mp [[[|Mo]
being
Ny(ny!)? V2 2
HMOH < d TD 1 1+2n, + 14+2ny,
T (o1 — 2 — ") T([Vimin] — rn)
. 8(1+ 5,-) )
(N = T(2rg — 2)||w]oo — 3 — np) 2™
i M5 I
M7 M- 5
MY < ——21—, IMPH| < —— 21—, [Rus =
P 1— M5! ey P 1 — (|95 |e P 3
being
S(Rh')2(1 + ﬁ) Z(Hh')Q
€1 = ) €9 = .
L RN = T(2r0 — 2)|wllee — & — na) T T (2[Vmin] — 1) TR

Remark 3.4.1 The bound for |Ayl|| given by the previous theorem can be improved by
replacing the first term in the bound for ||Ab|| by any of the intermediate inequalities of
the proof of Lemma[3.53.3. In this case, it may be necessary to modify the definition of r..
We will give examples in the following section.

Corollary 3.4.1 The block Jacobi method as stated in , used to obtain the amplitudes
from known frequencies, is convergent provided that

M5 I Moll < 1,

where for ||[Myt|| and ||[Mol|| we use the bounds given in the previous theorem in the case
of known frequencies, but replacing Ny by Ny — 1.
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Proof: The norm of the iteration matrix of the block Jacobi method (2.7)) is

Ny

max ([|B Y I1Bull) < IMpH[[[Mo]-
i=1+Ny =
I#i

The reason for replacing Ny by Ny — 1 in the bounds of the previous theorem is that we
apply the block Jacobi method to system ([2.3) without its first equation. U



Chapter 4

A numerical example

In this Chapter we apply the procedure developed in Chapter |2 to a family of quasi—
periodic functions for which explicit expressions for its frequencies and amplitudes can be
computed. These expressions are used to test the error estimates developed in Chapter

Bl

4.1 The family of functions analyzed

In order to illustrate the procedures described and to test the error bounds obtained, we
have analyzed a family of quasiperiodic functions from which the Fourier coefficients can
be explicitly calculated. The functions are

sin(27wit + ¢1) sin(27mwat + o)

= . , €|0,1).
1 — peos(2mwit + ¢1) 1 — pcos(2mwat + p9) pelon

)

They verify f,(t) = Y,z ai?e™ @R with

e %ﬁ’ﬂ)cg’ﬂei(km) if Ky, ko # 0
K 0 ifkleork:Q:O

being
1—/1—p?
I

The parameter p is directly related to the parameter § in the Cauchy estimates (3.3)),
namely

w=(w,w2), @=1(p1,2) and c=

1
0 = Imarccos — = — log c.

4.2 Numerical results

In this section we will show the results corresponding to apply the algorithm described

in to the f, functions for w = (1,v/2), ¢ = (+/0.2,v/0.3), n; = 2 and several values

of u, T and N. For the chosen value of w, the parameters D and 7 of the Diophantine
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condition are 0.85355 and 1, respectively. We have stopped the procedure when all
the frequencies (with nonzero amplitudes) of order |k| < 5 have been refined. The error
of the Fourier approximation as well as the corresponding bound, as given by theorem
3.4.1], are shown in Fig.

It must be noted that the error in frequencies and amplitudes is much smaller than
the difference between the analyzed function f and its computed quasi—periodic approx-
imation )¢. For instance, in the case of p = 0.9, from the maximum amplitude of
the frequencies not determined is ¢,%/u? = 0.6268, whereas we reach errors as small as
10~ for some values of 7' and N. This is due to the fact that the truncation error of
our procedure is not introduced by the difference f — @)y but by its DFT, as is seen in
Section Bl

We observe that, for every value of T', as N increases the error decreases and becomes
constant after a value of N. We also note that the minimum error for each value of T’
decreases as we increase 1. This behavior of the error in terms of the parameters 1', N,

can be explained in terms of the bound @D

Let r; be such that QC’Z:,C . e dlk |F£§,rkthN(Tkw J)| is small (this might be
different from the order r, of Sectlon ' which is “the order up to which the TCFT
helps”). Then the frequencies of order greater than r; can be considered irrelevant and
we can focus in frequencies of orders from ry to ry — 1. If N is large enough, we can

replace the DFT by the TCFT in (3.16)), that is

r1—1

—dlk
HAbH < max N 20 Z € ‘ “¢612wkwt T(

3€{0,4,57 1,2 |k|=ro

Thw—j
— )l

In order to normalize, we note that [¢"}, .. T(Tk;_j)| < |g"(Tkw — j)| = [§" (Tkw — j)|,

being
N e VSV )
27y, (@) ’ Tithy, ()
The moduli of these functions are plotted in Fig. 4.2 As T increases, the differences
|Tkw — j| become larger and, since |g™ ()| decreases with |«|, this explains why, for
sufficiently large N, the error decreases as T increases.
In order to consider the case in which NNV is not large, we note |F% ..z~ T, Nl =

W3 (Thew = j)| < [A (Thw = j)], being

g (a) =

M) = ) = S a2 Vet

N N(1 — eizma/Ny? TN 2 np+1) " ’
=—np

o (a) = 2 ea) = dm fh: (=1)! 20\ 7o (a+1)

N N(1 — eizma/Ny> TN 2 ny,+1)N '
=—np

The moduli of these functions are plotted in Fig. Now, if N is not large enough, it
may happen that one of the |Tkw — j| approaches N and raises the bound . This
explains the fact that, for a fixed value of T', as we decrease N the error ends up increasing.

The qualitative behaviour of the bound given by theorem is not the same as the
one of the real error. For each value of T, as N increases, the bound given by theorem
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Figure 4.1: Fourier analysis of the f, functions for i = 0.5,0.7,0.9 and several values of T'
and N. Points corresponding to analysis with the same value of T have been joined by lines.
The solid lines represent the error in frequencies and amplitudes of the corresponding Fourier
analysis. This means that we have represented the maximum value between the error in the
frequencies in the error in the amplitudes. The points joined by dashed lines correspond to
the bound given by theorem [3.4.1] The right-hand figures are the (y, z) projection of the
left—hand side ones.
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ny, = 0. Bottom: graph of the functions |h}\ (a)| (dashed line) and |h}} (a)| (solid line) for
np, =0 and N = 16.

decreases up to a minimum value, then increases slightly and becomes constant.
This increasing is due to the introduction of the F, constant in the proof of the Lemma
3.3.3] which can enlarge the bound by a factor 1/FE, (at most 32 for n;, = 2, see (3.19))).
In Fig. [4.3] we evaluate the bound for ||Ay|| replacing the first term in by (3.18),
which is the last bound in the proof of before the introduction of E,. We see how
the increasing of the bound after the minimum of Fig disappears.

The drawback of this approach is that the sum in runs over multiindices |k| =
ro — 7« — 1 instead of their orders j = ro + r, — 1, and its evaluation can be prohibitive
in terms of computing time, especially if the number of basic frequencies m is large. An
alternative could be to lower r, in in order to raise the minimum value of F,. For
instance, if we set r, equal to

TD
r o= maX(To,min<[( —— )1/7 — 7o+ 2]7
max((“45) W 1 s )
N—-1-—ny
— — 7 + 1]))7
{ T|lwllo

then the minimum allowed value of F, is 1/2. But this can lead to a worse global bound
if the Fourier coefficients |ay| decrease slowly, as we illustrate in table 4.1 A different
alternative is to take as value of r, the one that minimizes the bound given by theorem
B.4.1] The results in this case are given in Fig. [£.5] Of course, they are worse that the

ones of Fig.
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max 1/F, | p T N r. | actual 1/FE, bound
32 0.9 | 1024 | 262144 | 61 3.53332 4.53023E-06
32 0.9 | 1024 | 524288 | 121 16.4812 2.08997E-05
32 0.9 | 1024 | 1048576 | 141 31.2714 3.96552E-05
2 0.9 | 1024 | 262144 | 33 1.97207 1.32447E-02
2 0.9 | 1024 | 524288 | 33 1.97207 1.32447E-02
2 0.9 | 1024 | 1048576 | 33 1.97207 1.32447E-02

Table 4.1: Computation of the bound given by theorem using two different maximum
allowed values for 1/E,. We see how, by lowering the maximum value of 1/E,, the bound
can increase drastically.

In Fig. [4.3] the bound is still several orders of magnitude larger than the actual error.
This is due to the Diophantine condition, which give only a lower bound for the difference
between frequencies. This difference reaches the Diophantine condition in very few cases,
as shown in Fig. [4.4] In Fig. [4.6) we evaluate the bound of theorem by replacing the
first term of the bound of ||Ab|| by (3.17). We see that in this case there is a very good
agreement between the error predicted and the actual error.

min|ko|

0.0001 1 1 1 1 1 1 1 1 1
100 200 300 400 500 600 700 800 900  10C

kI

Figure 4.4: Illustration of the non—optimality of the Diophantine condition. The points rep-
resent the values of min|g—const. |kw| for |k| = 1 < 1000. The curve represents the values of
the Diophantine condition 0.85355/|k|. The only points that are approximately on the curve
0.85355/|k| correspond to the values |k|=1, 2, 5, 12, 29, 70, 169, 408, 985.
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Chapter 5

Application to the development of
Solar System models

In this chapter we apply the procedures of Chapter [2| to the development of simplified
models for the motion in the Solar System. They are based on Fourier analysis of the time—
dependent part of the real Solar System equations of motion written as a perturbation
of the RTBP (see Appendix . We develop models for the Earth-Moon and Sun—
Earth4+Moon systems by selecting frequencies from the computed Fourier expansions in a
suitable manner. These models are tested against other well-known models through the
computation of residual accelerations along selected orbits.

5.1 Introduction

Through this chapter, we will denote the bodies of the Solar System as
S:{Pl>-"7p97P107P11} (51)

where Pi,...,P;; denote Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune,
Pluto, the Moon and the Sun, respectively. We will also denote the Earth, the Moon and
the Sun as E, M and S, respectively. The mass of P; € S will be denoted as mp,.

Sometimes we will be interested in considering the Earth and the Moon as a single
body, located at the Earth-Moon barycentre. We will denote this “virtual” body as Pjs.
In this case, we will consider a modified Solar System

8:{Pl,PQ,P4,...,Pg,Pll,Plz}, (52)

which is denoted as before in order to reduce notation.

Let us consider two bodies I,J € S (either the “true” Solar System or the modified
one) with m; > mj, which we will call primaries. We can choose coordinates (z,y,z)"
and time units ¢ such that

e the bodies I, J remain fixed at the positions (ur,7,0,0)" and (ur; — 1,0,0)7, re-

spectively, being
mg

prg = ——"—
mr+my’
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e the body J completes a revolution around / in 27 time units.

Such coordinates will be called adimensional and are introduced in Appendix [A[ (Section
A.4). In these coordinates, the equations of motion of a particle under the Newtonian
attraction of the bodies of the Solar System can be written as

; . . o0

T = C1+ &+ 5y + Crx + CgY + Co2 + C13—,

ox 50
y = ¢y —C5T + C4y + cgz — cgx + cioY + c11z2 + Clga—y, (53)

. . ) o0
Z = C3— CgY + C42 + C9T — Clly‘{‘Cng‘i‘Clg@,
being

0 — L—prg i Hr.g
V@ —p )2 +y?+22 (o — g+ 1) +y? + 22
H1,7,5
+ (5.4)
JZE; Ve =)+ —y)* + (2 — 2)?
J#LJ

where
m;

my+my’

and (x;,y;,2;)" are the adimensional coordinates of the body j € S. In system ,
{¢;}i=1:13 are time-dependent functions which can be computed in terms of the positions,
velocities, accelerations and over—accelerations of the two primaries I,J. The actual
formulae are given in Appendix [Al If we set ¢5 = 2, ¢; = ¢19 = ¢13 = 1 and the remaining
¢; equal to zero, and we skip the sum in , then become the RTBP equations
(A.1) with mass parameter ju; ;. Therefore, we can see as a perturbation of the
RTBP equations. We can get an idea of the order of this perturbation by looking at the
coefficient A; of the Fourier expansions of the ¢; functions in Appendix [A] tables to
[C13land to [C.53l

In order to evaluate the previous system of equations, we need the positions of the
bodies of the Solar System, as well as its derivatives with respect to time up to order three.
They can be computed from any analytical or numerical planetary ephemeris. In the
computations we have used the JPL ephemeris DE406, because of its high precision over
a 6000-year time span. It has the drawback of introducing discontinuities in accelerations
and over—accelerations, which are discussed in Appendix [B] Higher precision can be
obtained by using DE405, but the time span is reduced to 600 years in this case.

In the following sections, we will develop intermediate models between the RTBP
and the “real” Solar System ([5.3). The strategy followed is to “add basic frequencies”
to the RTBP, these frequencies being computed by applying the techniques described in
Chapterto the {c;}i=1-13 and {(x;,y;, 2;) " }jes functions. The models will be developed
for

K105 =

e the Earth—-Moon case, which means to consider I = P3 and J = Py, being § as in
(5.1f), and
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e the Sun—Earth+Moon case, which means to consider I = P;; and J = Pjs, being S
as in (5.2)).

Although we will only cover these two cases, the methodology used can be applied to any
pair of primaries.

5.2 Fourier analysis of the time-dependent part of
the real Solar System in adimensional coordi-
nates

We give in this section the results of the Fourier analysis of the time-dependent part of
system ([5.3)).

5.2.1 Fourier analysis of the ¢; functions

Applying the algorithm described in section 2.5.1] we have performed Fourier analysis
of the {¢;}i=1:13 functions, both for the Earth-Moon case and the Sun-Earth+Moon
case. The parameters used have been: number of total iterates in the Fourier procedure
n = 10, minimum value of the frequency threshold b,,;,, = 1E-10, Hanning level n; = 2
and several values of the length of the time interval 7" and the number of points N whose
choice will be discussed bellow. The frequency threshold b of the algorithm of has
never reached the value b,,;,, because all the analysis have finished due to the detection of
close frequencies. In each analysis, we have computed the maximum difference between
the analyzed ¢; function and its quasi—periodic approximation, that is,

T T
Tyoe = i |ei(15) — Qe (B, (55)
where ¢; is the analyzed function and @), its quasi-periodic approximation. In figures
(Earth-Moon case) and (Sun—Earth+Moon case), we have represented the minimum
of d,,4. with respect to N for each value of T

Since we have no a priori information of the behavior of the ¢; functions, we have
based our choice of the T\, N parameters according to the following criteria:

e We have chosen time intervals starting at Jan 1st 2001 and of length at least 95
years.

e We have followed strategies to avoid aliasing.

e We have considered that a set of frequencies is “better” than another if the value
of d,,.. related to the first set is smaller than the one related to the second one.

Due to our implementation of the Fourier analysis procedures, the N parameter must
range over powers of two. For consistency, the T  parameter has also been chosen to
range over a geometric progression. The time interval of all analysis starts in January
Ist, 2001. The smallest time interval length, T),;,, has been taken of 95 years (34698.75
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Figure 5.1: Error results of the Fourier analysis of the ¢; functions in the Earth-Moon case.
For each value of T" explored, we have represented the minimum value of d,,,, with respect

to V.
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Figure 5.2: Same as Fig. [5.1] but for the Sun—Earth+Moon case.
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Julian days). The greatest time-interval length, 7,,,, has been chosen as the maximum
time interval given by the JPL DE406 ephemerides after Jan 1st 2001, which is 364938
Julian days (999.15 years). Therefore, we have let T range over the set {6" T}, 1.2, where
0 = (Thaa/ Tmin)l/ 19 The time units used for these Fourier analysis are revolutions of the
secondary (J) around the primary (), or equivalently, adimensional time divided by 27.
The reason for this is that, in this way, the frequency 1.0 corresponds to one revolution
of J around I, which has a more intuitive meaning (one lunar month in the Earth-Moon
case, one sidereal year in the Sun—Earth+Moon case). Moreover, in order to evaluate the
trigonometric approximations of the ¢; functions, we only have to multiply the frequencies
found by adimensional time, without the need of an additional 27 factor. For instance,
Thnin 1s equal to 7979.72 in the Earth—Moon case, which means that during this time span
the Moon has given 7979.72 revolutions around the Earth. For the Sun—Earth+Moon
case, Tyim = 596.891 (see Appendix for the details).

The maximum number of samples N,,., has been chosen to be 2°°, in order to allow
for “comfortable” runs on machines with 64MB of memory (or, equivalently, bi-processor
machines with 128MB). For each value of 7', the minimum number of samples has been
chosen such that QLN > 1.5, in order to make the maximum detectable frequency to be at
least 1.5.

In order to control aliasing, two different strategies have been followed. The first one
is based on time—domain, and consists in computing the difference between the initial
function and its quasi-periodic approximation over a refinement of the grid used for the
Fourier analysis. This difference will be denoted as «y. If it increases significantly with
respect to the difference over the Fourier samples, then aliasing is very likely to occur.
We usually take 16 N points equally spaced on [0, T for this test.

The second anti—aliasing strategy is based on frequency—domain. It consists in com-
puting the number of rightmost consecutive harmonics of the residual DFT that have
modulus less than a fraction of the maximum modulus of the residual DFT. Then, we
divide this number by N/2, the total number of harmonics. That is, we compute

max{j : po" ,7nx (1) < Pmas/25 for i = j + N/2}
N/2

220

g —

being ppe, = Max;—g-n/2 pzhfqm ~(7), where pg’iqm ~ () is defined as in Section ci
is the analyzed function and ¢ its quasi—periodic approximation. Then, for instance,
a value of 0.2 for a; means that there are no frequencies greater than 0.8w,,.., being
Winae = %, with amplitude greater than 1/25 times the modulus of the residual DFT,
so we do not expect aliasing in the corresponding Fourier analysis. We are assuming
here that amplitudes decrease as frequencies increase, which is ensured by the Cauchy
estimates for an analytic quasi—periodic function.

As an example of aliasing and how the two previously—described strategies detect it,
we have represented in Fig. 5.3 the residual DFT of some of the Fourier analysis of the ¢;
function in the Earth-Moon case. We give some details about these analysis in Table [5.1]
In the left plot, we see that for N = 16384 there are frequencies of high amplitude near
Winae = % = 2X12%338;24 = 4.02903. As we increase N, the amplitude of the frequencies
near wp,q, decrease and the values of d,,,, and the first anti—aliasing strategy of Table

become closer.
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Figure 5.3: Modulus of the residual DFT some of the Fourier analysis of the ¢; function in the
Earth—-Moon case. From left to right, the values w,,,, of the right—end of the DFT window
are: 4.02903, 8.05806 and 16.1161.

daYO dan T N Pmaz dmaz &3] %)

366 | 55917.4 | 2033.24 | 16384 | 2.66E-05 | 4.90E-04 | 2.29E-03 | 0.0007
366 | 55917.4 | 2033.24 | 32768 | 2.66E-05 | 5.30E-04 | 5.67TE-04 | 0.1633
366 | 55917.4 | 2033.24 | 65536 | 2.66E-05 | 5.63E-04 | 5.67TE-04 | 0.5816

Table 5.1: Parameters associated to the Fourier analysis of Fig.[5.3] From left to right: dayq
and dayy are the starting and ending Julian days of the time interval used for each Fourier
analysis, taking Jan 1st, 2001 as origin, 1" is the length of the Fourier interval, in J—-revolutions,
N is the number of points used, p,... is the maximum modulus of the residual DFT, d,,q.
is the maximum difference between ¢; and its quasi—periodic approximation over the Fourier
analysis samples, and «y, «s are the values of the two anti—aliasing strategies described in the
text.

According to this, for the results displayed in figures and only those analysis
with o > 0.2 have been taken into account.

For the generation of simplified models for the Solar System, among all the analysis

performed we have selected the best ones in terms of minimum p,,,.,. They are given in
tables [5.2] (Earth-Moon) and [5.3] (Sun—Earth+Moon).

5.2.2 Fourier analysis of the positions of the planets

In order to complete the quasi—periodic approximation of all the time-dependent part in
the vector—field (5.3), we give in this section the results of the Fourier analysis of the
positions of the Solar System bodies in adimensional coordinates. For each coordinate
xp, Yp,, 2p,, we have performed Fourier analysis using the same parameters as for the
analysis of the ¢; functions. The minimum value of p,,,, with respect to N for fixed
values of T' is plotted in figures (Earth-Moon) and 5.6/ (Sun—Earth+Moon). The best

analysis are given in tables [5.4] and [5.5]
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function | T' (days) | T' (years) | T (J-rev.) N Drmaz dmas
c1 55551.4 | 152.091 2033.24 65536 | 2.66E-05 | 5.63E-04
Co 55551.4 | 152.091 2033.24 65536 | 2.67E-05 | 5.49E-04
C3 25551.4 | 152.091 2033.24 32768 | 3.30E-06 | 5.58E-05
cy 05551.4 | 152.091 2033.24 65536 | 2.31E-06 | 5.01E-05
Cs 43904.0 | 120.203 1606.94 32768 | 4.85E-06 | 9.16E-05
Cé 70288.7 | 192.440 2572.64 32768 | 3.92E-08 | 1.13E-06
cy 25551.4 | 152.091 2033.24 65536 | 3.51E-06 | 7.81E-05
Ccs 25551.4 | 152.091 2033.24 | 524288 | 1.96E-07 | 5.94E-06
Co 70288.7 | 192.440 2572.64 65536 | 1.97E-08 | 5.69E-07
C10 55551.4 | 152.091 2033.24 65536 | 3.51E-06 | 7.83E-05
c11 70288.7 | 192.440 2572.64 65536 | 1.67E-08 | 5.00E-07
C12 43904.0 | 120.203 1606.94 32768 | 1.58E-06 | 3.29E-05
13 25551.4 | 152.091 2033.24 65536 | 3.51E-06 | 7.99E-05

Table 5.2: Values of the parameters for the best Fourier analyses of the ¢; functions for the

Earth—Moon case.

function | T (days) | T' (J-rev) N Drmaz dmaz
c1 142382.6 | 389.815 | 65536 | 4.95E-08 | 4.40E-07
Co 142382.6 | 389.815 65536 | 4.95E-08 | 4.33E-07
c3 112529.5 | 308.083 | 131072 | 2.28E-09 | 2.68E-08
cy 34698.8 94.998 4096 | 8.34E-06 | 6.74E-05
Cs 34698.8 94.998 4096 | 1.75E-05 | 1.26E-04
Ce 88935.7 | 243.488 | 262144 | 1.76E-08 | 5.71E-07
cr 34698.8 94.998 4096 | 1.36E-05 | 9.17E-05
cs 288422.1 | 789.642 | 524288 | 9.65E-08 | 1.67TE-06
Cy 88935.7 243.488 | 131072 | 9.71E-09 | 3.19E-07
C10 34698.8 94.998 4096 | 1.36E-05 | 9.17E-05
c11 70288.7 192.436 | 524288 | 2.35E-08 | 2.38E-06
C12 34698.8 94.998 4096 | 3.92E-06 | 4.06E-05
C13 34698.8 94.998 4096 | 1.34E-05 | 9.47E-05

Table 5.3: Values of the parameters for the best Fourier analyses of the ¢; functions for the

Sun—Earth4+Moon case. Note that, in this case, J—revolutions are sidereal years.




5.2 Fourier analysis

69

Mercury, x coordinate

Mercury, y coordinate

Mercury, z coordinate

® 14 T T T o) 14 T T T ® 1.6 T T T
é 12 - § 12 g % 14 R
2 10 R % 10 i 2 l'i - i
3 L 4
c 8F 1 < 8f 1 < osl ]
I} S s 08
o 6 - S 6 1 <}
s s s 06 1
L o4r 1 £ 4r 1 £ oaf g
s 2 - S 2 - g 02| 4
w 0 1 w 0 w 0 1 1 1
0 3000 6000 9000 120 0 3000 6000 9000 1201 0 3000 6000 9000 120
lunar revolutions lunar revolutions lunar revolutions
Venus, x coordinate Venus, y coordinate Venus, z coordinate
g 25 T T T 8 ig B T T T ] g 0.3 T T T
5 2f 1 5 12f 1 so=r ]
@ o 2 02| -
BT 15 | 4 h=] 1F 1 kS .
§ § 0.8 |- E § 0.15 |- b
= 1r T = 0.6 - = 01 | a
£ 05} _ < 04 B £
€ o S 0ol i S 005 | 7
w 0 1 1 1 u 0 1 1 1 w 0 1 1 1
0 3000 6000 9000 120 0 3000 6000 9000 1201 0 3000 6000 9000 120
lunar revolutions lunar revolutions lunar revolutions
Mars, x coordinate Mars, y coordinate Mars, z coordinate
8 60 T T T 8 14 T T T 8 7 T T T
- - 12 |+ - 6 - -
g % 8 5
B 40l ] B 10 - 1 25 1
=] k=l =]
S 30| 1 58 1 s i
s s °r 1 3 ]
gl 1 24 1 27 ]
g 10 ] 3 2| E g 1 E
w 0 1 0 u 0 I 1 w 0 1 1 —o—}——29
0 3000 6000 9000 120 0 3000 6000 9000 1201 0 3000 6000 9000 1201
lunar revolutions lunar revolutions lunar revolutions
Jupiter, x coordinate Jupiter, y coordinate Jupiter, z coordinate
o 250 T T T o 900 T T T o 35 T T T
3 500 | B 8 450 E 8 3l |
g 40 1 & 400 [ B g
% 400 A ® 350 [ B @ 25 1
5 350 | -1 T 300 - S
c 300 [ - s >0k ] o 20 | 4
8 250 - S S 15 | -
S 200 |- - S 200 ] s
T - . T~ 150 | — T 10 F -
& 150 < <
€ 100 |- - T 100 | E £ L |
w 58 o - w 58 T w o I |
0 3000 6000 9000 120 0 3000 6000 9000 1201 0 3000 6000 9000 120
lunar revolutions lunar revolutions lunar revolutions
Saturn, x coordinate Saturn, y coordinate Saturn, z coordinate
9 700 T T T g 700 T T T 9 5(2)8 C T T T ]
g 600 - e 600 T S 180 1
% 500 [- B % 500 - g B eor 1
S 400 | 4 T a0l 4 S 1wl b
8 300 |- - 8 300 |- : 8 100 - i
Z 200 | - Z 200 | . : BF ]
£ £ £ BF ]
< 100 - < 100 - 1 s 50l h
w 0 1 1 1 w 0 1 1 1 w 0 1 1
0 3000 6000 9000 1201 0 3000 6000 9000 1201 0 3000 6000 9000 1201
lunar revolutions lunar revolutions lunar revolutions
Uranus, x coordinate Uranus, y coordinate Uranus, z coordinate
2500 T T T 4000 T T T 350 T T T
Q [} Q
£ 2000 | i g 35001 b 2 s00 - i
"; 1500 - 2 2000 | ] 'g 200 + u
3 3 8 150 |- -
s 1000 | . S 1500 - E s
£ 500 | _ £ 1000 - - < 100 .
g & 500 - g g S0 B
0 L e 0 L o | 0 I . .
0 3000 6000 9000 1201 0 3000 6000 9000 1201 0 3000 6000 9000 1201
lunar revolutions lunar revolutions lunar revolutions
Figure 5.4: Error results of the Fourier analysis of the coordinates of the Solar System bodies

(in adimensional coordinates) for the Earth—Moon case. For each value of T" explored, we have
represented the minimum value of d,,,, with respect to N. They are continued in Fig.[5.5]
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Figure 5.5: Continuation of Fig. [5.4]
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Figure 5.6: Same as Fig. but for the Sun—Earth+Moon case (continued in Fig. .



5.2 Fourier analysis

71

astronomical units astronomical units astronomical units astronomical units astronomical units

astronomical units

Mars, x coordinate

0.0022 T T T
0.002 |- E P
0.0018 - - g
0.0016 |- - =
0.0014 - S
0.0012 |- B 15
0.001 - S
0.0008 |- B =
0.0006 - - ©
0.0004 L L L
0 3000 6000 9000 1200
years (sidereal)
Jupiter, x coordinate
0.08 T T T
0.07 |- - o
c
0.06 - B El
0.05 | E 8
0.04 | B 5
=
0.03 |- - S
0.02 |- B @
0.01 1 1 1
0 3000 6000 9000 1201
years (sidereal)
Saturn, x coordinate
14 T T T
1.2 - o
=4
1 - S
0.8 - 8
0.6 T g
c
0.4 - S
0.2 B @
0 1 1
0 3000 6000 9000 1201
years (sidereal)
Uranus, x coordinate
6 T T T
j2]
°T 1 5
4r 7 &
o
3F 1 €
o
2r 1 ¢
L 1 @
0 1 1
0 3000 6000 9000 1201
years (sidereal)
Neptune, x coordinate
25 T T T
2
2 - 1 c
=]
15 [ E ]
E
tr 1 ¢
g
05 [ - @
[
0 1 1 1
0 3000 6000 9000 1201
years (sidereal)
Pluto, x coordinate
55 T T T
50 [ - 2
c
45 E 3
40 E 3
35 | B g
30 | - §
25 - E 2
20 1 1 1
0 3000 6000 9000 120

years (sidereal)

Figure

0.003
0.0025
0.002
0.0015
0.001
0.0005

0.6

Mars, y coordinate

astronomical units

3000 6000 9000
years (sidereal)

1201

Jupiter, y coordinate

05 |-
04
03 |-
02 |
01 |

1
astronomical units

o

14

3000 6000 9000 1201

years (sidereal)

Saturn, y coordinate

08 |-
06
04
0.2 |-

astronomical units

3000 6000 9000 1201

years (sidereal)

Uranus, y coordinate

o = N b
o
T T T T T T T 17T

) N T N N N T |
astronomical units

25

3000 6000 9000 1201

years (sidereal)

Neptune, y coordinate

15

astronomical units

50

3000 6000 9000 1201

years (sidereal)

Pluto, y coordinate

40
35 -
30 -
25 -
20 -
15

astronomical units

5.7:

3000 6000 9000 1201

years (sidereal)

Continuation of Fig.[5.6]

Mars, z coordinate

0.0003 T T T
0.00025 - B
0.0002 -
0.00015 - B
0.0001 - —
5e-05 |- 1
0 1 1 1
0 3000 6000 9000 1200
years (sidereal)
Jupiter, z coordinate
0.0035 T T T
0.003 B
0.0025 |- -
0.002 B
0.0015 - B
0.001 -
0.0005 - B
0 1 1 1
0 3000 6000 9000 120
years (sidereal)
Saturn, z coordinate
0.016 T T T
0.014 -
0.012 -
0.01 | -
0.008 - B
0.006 B
0.004 B
0.002 B
0 1 1 1
0 3000 6000 9000 120
years (sidereal)
Uranus, z coordinate
0.45 T T T
04 |- \ i
0.35 |- i
0.3 B
0.25 - B
02| -
0.15 | -
0.1 B
0.05 -
0 1 1 1
0 3000 6000 9000 120!
years (sidereal)
Neptune, z coordinate
1.6 T T T
1.4 -
1.2 -
l - -
0.8 - -
0.6 - B
04 B
0.2 B
0 1 1 1
0 3000 6000 9000 1200
years (sidereal)
Pluto, z coordinate
20 T T T
19 B
18 B
17 E
16 -
15 B
14 + g
13 B
12 1 1 1
0 3000 6000 9000 120

years (sidereal)



72 Chapter 5. Development of Solar System models
body | coord. | T' (days) | T (years) | T' (J-rev) N Dmaz Aoz
Mercury X 70288.7 | 192.440 2572.64 | 65536 | 1.37E-02 | 3.41E-01
Mercury y 70288.7 | 192.440 2572.64 | 65536 | 1.08E-02 | 2.89E-01
Mercury z 70288.7 | 192.440 2572.64 | 32768 | 3.18E-03 | 9.99E-02
Venus X 55551.4 | 152.091 2033.24 | 65536 | 5.13E-03 | 1.53E-01
Venus y 55551.4 | 152.091 2033.24 | 65536 | 5.60E-03 | 1.65E-01
Venus z 88935.7 | 243.493 3255.14 | 65536 | 1.25E-03 | 4.10E-02
Mars X 55551.4 | 152.091 2033.24 | 65536 | 3.61E-02 | 8.43E-01
Mars y 180155.5 | 493.239 6593.89 | 131072 | 3.21E-02 | 7.53E-01
Mars z 180155.5 | 493.239 6593.89 | 131072 | 3.26E-03 | 1.38E-01
Jupiter X 55551.4 | 152.091 2033.24 | 32768 | 1.40E400 | 1.53E401
Jupiter y 112529.5 | 308.089 4118.71 65536 | 5.39E-01 | 1.31E+01
Jupiter z 70288.7 | 192.440 2572.64 | 32768 | 1.37E-01 | 1.31E4-00
Saturn X 70288.7 | 192.440 2572.64 | 32768 | 6.07TE400 | 6.19E+401
Saturn y 142382.6 | 389.822 5211.36 | 65536 | 2.53E400 | 6.46E+01
Saturn z 180155.5 | 493.239 6593.89 | 65536 | 3.87TE-01 | 1.04E+01
Uranus X 142382.6 | 389.822 5211.36 | 131072 | 2.33E400 | 3.75E+401
Uranus y 142382.6 | 389.822 5211.36 | 131072 | 2.33E4-00 | 3.76E+01
Uranus z 364938.0 | 999.146 | 13357.14 | 131072 | 2.42E-01 | 4.14E+00
Neptune X 288422.1 | 789.657 | 10556.57 | 262144 | 3.12E4+00 | 4.52E+01
Neptune y 364938.0 | 999.146 | 13357.14 | 262144 | 2.37TE+400 | 4.51E+401
Neptune z 364938.0 | 999.146 | 13357.14 | 131072 | 1.80E+400 | 2.72E+01
Pluto X 364938.0 | 999.146 | 13357.14 | 262144 | 4.15E+00 | 1.69E+02
Pluto y 364938.0 | 999.146 | 13357.14 | 262144 | 2.08E+01 | 2.93E+402
Pluto z 364938.0 | 999.146 | 13357.14 | 131072 | 2.42E+400 | 5.16E+01
Sun X 55551.4 | 152.091 2033.24 | 65536 | 4.41E-03 | 9.73E-02
Sun y 55551.4 | 152.091 2033.24 | 65536 | 4.41E-03 | 9.21E-02
Sun z 34698.8 95.000 1270.01 16384 | 8.49E-04 | 8.65E-03

Table 5.4: Best Fourier analysis parameters for the positions of the Solar System bodies in
adimensional coordinates in the Earth—-Moon case.
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body | coord. | T (days) | T' (J-rev) N Dmaz 7
Mercury X 55551.4 152.089 | 16384 | 6.56E-06 | 6.68E—05
Mercury y 55551.4 152.089 | 16384 | 6.56E-06 | 7.24E-05
Mercury Z 34698.8 94.998 8192 | 1.64E-06 | 4.93E-05

Venus X 34698.8 94.998 4096 | 7.61E-06 | 7.57E-05

Venus y 34698.8 94.998 4096 | 7.61E-06 | 9.32E-05

Venus 7 34698.8 94.998 4096 | 1.93E-06 | 1.50E-05

Mars X 70288.7 192.436 | 8192 | 4.87E-05 | 5.80E-04

Mars y 70288.7 192.436 8192 | 4.87TE-05 | 5.11E-04

Mars Z 34698.8 94.998 4096 | 3.00E-06 | 4.48E-05
Jupiter X 70288.7 192.436 8192 | 3.56E-03 | 1.54E-02
Jupiter y 112529.5 | 308.083 | 16384 | 9.35E-04 | 1.41E-02
Jupiter Z 34698.8 94.998 4096 | 7.68E-05 | 3.82E-04

Saturn X 70288.7 192.436 8192 | 1.29E-02 | 4.29E-02

Saturn y 70288.7 192.436 8192 | 1.29E-02 | 4.82E-02

Saturn z 70288.7 192.436 8192 | 5.39E-04 | 1.57E-03
Uranus X 142382.6 | 389.815 16384 | 5.57TE-03 | 4.82E-02
Uranus y 142382.6 | 389.815 16384 | 5.57E-03 | 5.10E-02
Uranus zZ 142382.6 | 389.815 16384 | 2.45E-04 | 1.25E-03
Neptune X 288422.1 | 789.642 | 32768 | 5.40E-03 | 6.15E-02
Neptune y 288422.1 789.642 32768 | 5.41E-03 | 6.71E-02
Neptune Z 227949.2 624.079 | 32768 | 4.10E-03 | 2.10E-02

Pluto X 364938.0 | 999.127 | 65536 | 1.27TE-02 | 2.92E-01

Pluto y 364938.0 | 999.127 | 65536 | 1.41E-02 | 3.72E-01

Pluto Z 364938.0 | 999.127 | 32768 | 6.19E-03 | 7.64E-02

Table 5.5: Best Fourier analysis parameters for the positions of the Solar System bodies in
adimensional coordinates in the Sun—Earth4+Moon case.
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5.3 Generation of simplified Solar System models

In this section we will develop simplified Solar System models based on the Fourier ex-
pansions computed in the previous section. The models obtained will be compared with
other models though the computation of residual accelerations along selected orbits.

5.3.1 Adjustment by linear combinations of basic frequencies

In order to turn the output of our Fourier analysis procedures into the usual form of a
quasi-periodic function (3.1]), we need to adjust frequencies as linear combinations, with
integer coefficients, of basic ones. We will distinguish two cases:

e the case in which we do not know the basic frequencies, which need to be extracted
from the list of frequencies to be adjusted, and

e the case in which the basic frequencies are known.

A simple approach for the first case would be: choose a maximum order of the linear
combinations to be found, and a tolerance for the adjustment of frequencies as linear
combination of the basic ones. Then, for each frequency, try out all the linear combinations
of the current set of basic frequencies up the chosen maximum order. If one of these linear
combinations fulfills the requirements, take it, otherwise add the current frequency to the
set of basic frequencies.

This procedure may add extra basic frequencies (and thus end up with a rationally
dependent set) in some cases, for instance, if the current frequency is an integer divisor
of one of the basic frequencies. In order to avoid this, when the current frequency cannot
be adjusted as a linear combination of the current basis, for each frequency in the current
basis we can try to substitute it by the non—adjusted one and see if all the pre—processed
frequencies adjust to this modified basis. If this is not the case, the new frequency is
added to the basic set.

These considerations lead to the following

Algorithm 5.3.1 Given {fi,..., fn,} the set of frequencies to be adjusted as linear com-
bination of basic ones to be selected in the set, a tolerance tol for the adjustments and
a maximum order maxor for the linear combinations to be found, compute the basis
{wi,...,wy,} and the linear combinations {(k{,... Kk}, )}ic1on, as

wy — fi, k=1, mnp 1
for i =2+ N;
if f; € le({w }, tol, maxor)
(Ky,... K}, ) = adjust(fi, {wi };, tol, maxor)
else

if3je{l,....,n}: f1,..., fi € lc({wl,...,%,...,wa},tol,maxor)
wj — fi
forl=1=1
(Kb, ... kL) = adjust(f;, {wm }m, tol, maxor)
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else
nb<—nb—i—1
(k{,...k%b):(o,...,o,l)
forl=1+7i-1
K=

In this formulation, we have introduced two functions lc and adjust, defined as follows:

o lc({w;}iz12n,, tol, maxor) is defined as the set of real numers f such that there exists

(k1 ..., kn,) with k; integer, |ki|+. ..+ |kn,| < maxor and |f —kiwi—...—kp,wp,| <
tol,

e for f real, adjust(f, {w;}i=1:n,, tol, maxor) returns the first (ky, ..., ky,), in increas-
ing order and increasing lexicographical order within each order, with order < maxor,
such that | f — kywy — ... — kp,wn,| < tol. In the case that there is no (ki, ..., ky,) of
order less than maxor with |f — kywy — ... — kp,wy,| < tol, the one with minimum
|f — kiwy — ... — kpywn, | is Teturned.

Of course, in an actual implementation the role of these functions is accomplished by the
same code.

In the second case, in which the basic frequencies {wy, ..., w,, } are know, we can just
take the best linear combination for each frequency. This can be stated as

Algorithm 5.3.2 Given {fi,..., fn,} the set of frequencies to be adjusted as linear com-
bination of the frequency basis {wi,...,wn,}, a tolerance tol for the adjustments and a
maximum order maxor for the linear combinations to be found, compute the linear com-
binations {(ki, ..., k., ) }im1=n, as

fori=1-+ Ny
(K%, ... k) = adjust(f;, {wi }1, tol, maxor)

? Ny

5.3.2 Simplified models for the Earth—Moon case

In a rather accurate theory for the lunar motion, as the simplified Brown theory given in
[¥], the fundamental parameters can be expressed in terms of five basic frequencies:

e The mean longitude of the Moon, which is equal to 1.0.

e The mean elongation of the Moon from the Sun, 0.925195997455093. This is the
frequency of the time-dependent part in the Bicircular Problem (BCP) and the
Quasi-Bicircular Problem, (QBCP, see Appendix |A)).

e The mean longitude of the lunar perigee, which is equal to 8.45477852931292 x 1073,

e The longitude of the mean ascending node of the lunar orbit on the ecliptic,
4.01883841204748 x 1073,

e the Sun’s mean longitude of perigee, 3.57408131981537 x 1075,
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The units used for these frequencies are cycles per lunar revolution. In what follows, these
frequencies will be denoted {wy,...,ws}.

The value of the last frequency in the above set is close to the lower amplitudes of
our Fourier expansions, which is close to the precision we can expect in the determination
of frequencies, since all Fourier analysis have stopped due to the detection of too close
frequencies. In order to avoid the difficulties due this fact, and in order to have a set of
basic frequencies with astronomical meaning, we have adopted these frequencies as the
basic set, instead of the ones provided by Algorithm [5.3.1}]

For the simplified models to be developed in this section, we will only take into account
the coordinates of the Sun in (5.4). This avoids the introduction of additional basic
frequencies, and is also enough for our purposes, as it will become clear later. In this way,
we will only use the Fourier expansions of ¢y, ..., c3 and xg, ys, 2s.

Starting from the frequency basis {w; }i=1-5, we will look for a new basis {v;};=1-5. In
terms of this new basis, we will generate 5 models SSSM;, « = 1 =+ 5, in such a way that
the equations of motion of SSSM; are

( %

o= o +ead e+ o+ oy + et cly

. N N 5. ;. 3 3 j an

§ o= G-ty dat oy +chzteny

= i e - e 2
being
0 = L~ e + HEM

V@ —pen)?+ 92+ 22 (@ — i+ 1)+ 4% + 22
n HE M,S

Ve =252+ (y —ys)? + (= — 252

Here ¢, j = 1+13 and «¥%, y, 25 stand for their Fourier expansions, computed in the pre-
vious section, but keeping only the frequencies that are expressed as linear combinations
(with integer coefficients) of the frequencies vy, ..., ;.

We have used Algorithm of the previous section with tol = 107% and mazor = 20
to adjust the frequencies found in the analysis of table as linear combinations of the
{w;}i=1-5. The results for the first 15 frequencies detected in each ¢; and zg, yg, zs are
shown in tables to The full expansions are given in Appendix [C]

We will take v; = wy as the first frequency of our new basis. The reason for that is
that it is the main frequency of ¢, ¢o, x5 and yg, and in this way it can be considered
the main “planar frequency”. This is coherent with the fact that wy is also the frequency
of the BCP and QBCP models (see Appendix |Al).

We observe that, except for 3, ¢g, cg, c11 and zg, the main frequencies of the remaining
functions can be expressed as linear combinations of wy and w; — ws. Thus, we will take
vy = wi—ws. Note that, in this way, ¢; fori = 3,6,9, 11 and zg will be poorly approximated
in SSSMs, but this will not give a poor global approximation because ¢; for ¢« = 3,6,9, 11
are smaller than the remaining ¢;, and zg is also smaller than zg, ys.
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freq ampl err ki | ko | ks | ka| ks | order
0.00000000000 | 3.49728E—-04 | 0.00000E4+00 | O | O | O | O | O 0
0.92519578630 | 2.16240E+00 | -2.11120E-07 | O | 1 | O | O | O 1
1.91674083000 | 1.77450E-01 | —-3.88880E-07 | 1 | 1 [-1| 0| O 3
0.85039537680 | 7.53250E-02 | ~1.92240E-07 | -1 | 2 | 0 | 0 | 1 4
0.06634926290 | 7.39730E-02 | 3.88600E-08 | 1 |-1|-1] 0] O 3
1.78404231460 | 3.41170E-02 | -4.56330E-07 | -1 | 3 | 1 | 0 | O 5
2.77558735940 | 2.39690E-02 | -6.33010E-07 | O | 3 | O | O | O 3
2.90828587990 | 1.36950E-02 | -5.60520E07 | 2 | 1 |-2] 0 | O 5
1.84194060340 | 7.31080E-03 | -1.87100E-07 | 0 | 2 | -1 | 0 | 1 4
1.08284144950 | 3.91270E-03 | —2.29900E-07 | 2 | -1 0 | 2 | O 5

Table 5.6: First 10 frequencies of the Fourier analysis of ¢;. The frequencies have been
adjusted as linear combinations of {w;};—1.5. From left to right the columns are: frequency,
in cycles per lunar revolution, amplitude, error (freq — kjw; — ... — ksws), coefficients of the
linear combination that approximates freq, and order of the linear combination (|k|+. .. |ks]).

freq. ampl. errT. ki | ko | ks | ke | ks | order
0.00000000000 | —6.70000E-09 | 0.00000E+00 | O | O | O | O | O 0
0.92519578630 | 2.16960E+400 | —2.11120E-07 | O | 1 | O | 0 | O 1
1.91674083000 | 1.77820E-01 | -3.88890E-07 | 1 [ 1 |-1] 0 | O 3
0.85039537680 | 7.58320E-02 | -1.92220E-07 |-1| 2 | 0 | 0 | 1 4
0.06634926260 | 4.64680E-02 | 3.85950E-08 | 1 |-1|-1] 0 | 0 3
1.78404231460 | 3.41920E-02 | —4.56320E07 | -1 | 3 | 1 | 0 | O 5
2.77558735930 | 2.39940E-02 | —-6.33040E07 | 0 | 3 | O | O | O 3
2.90828587990 | 1.37170E-02 | -5.60520E-07 | 2 | 1 |-2] 0 | O 5
1.84194060340 | 7.33860E-03 | -1.87100E-07 | 0 | 2 |-1| O | 1 4
1.08284144950 | 3.95090E-03 | —2.29860E-07 | 2 |-1] 0 | 2 | O 5
Table 5.7: Same as table but for the ¢, function.
freq. ampl. err. ki | ko | ks | kg | ks | order
0.00000000000 | —1.41400E-07 | 0.00000E+00 { O | O [ O | O | O 0
0.07882283210 | 1.90520E-01 | -8.87040E-09 | 1 |-1| 0| 1] 0 3
0.15362345870 | 6.56920E-03 | 1.89270E07 | 2 | 2| 0 | 1 | -1 6
0.91272221270 | 5.20890E-03 | —1.67780E-07 | O | 1 |-1|-1] O 3
1.07036787670 | 5.21170E-03 | -1.85760E-07 | 2 |-1|—-1| 1 [ O 5
0.78002369690 | 1.09620E-03 | —2.35620E-07 | 2| 3 | 1 |-1| 0O 7
0.93766935940 | 1.08610E-03 | —2.54980E-07 | 0 | 1 [ 1 | 1 | O 3
1.92921440450 | 3.96610E-04 | -4.31370E-07 | 1 | 1 | O | 1 | O 3
1.77156873960 | 3.60950E-04 | —4.14380E07 | -1 | 3 | 0 |-1[ O 5
0.00402218340 | 3.31660E-04 | —2.29130E-07 | O | O | O | 1 | 1 2

Table 5.8: Same as table but for the c3 function.
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freq. ampl. err. ki | ko | k3 | ks | ks | order
0.00000000000 | 0.00000E4-00 | 0.00000E4+00 | O | O | O | 0 | O 0
0.99154505160 | 1.07920E-01 | -1.69890E-07 | 1 | 0 | -1] 0 | O 2
1.85039157300 | 2.94710E-02 | -4.21940E-07 | 0 [ 2 | O | O | O 2
0.85884652970 | 1.68610E-02 | —2.43690E-07 | -1 | 2 | 1 | 0| 0 4
1.98309009370 | 8.82140E-03 | —3.49210E-07 | 2 [ O |[-2| 0 | O 4
2.84193661720 | 3.80000E-03 | -5.99130E-07 | 1 | 2 |-1] 0 | O 4
1.77559111020 | 1.93150E-03 | -4.56240E-07 | -1 | 3 | 0 | 0 | 1 5
2.97463513490 | 6.78820E-04 | -5.29470E-07 | 3 | O | -3] 0 | O 6
2.70923810000 | 7.14080E-04 | -6.68310E07 | -1 | 4 | 1 | 0 | O 6
0.78404586970 | 6.38340E-04 | —4.75270E-07 | 2| 3 | 1 | 0 | 1 7

Table 5.9: Same as table but for the ¢4 function.

freq. ampl. err. ki | ko | ks | kg | ks | order
0.00000000000 | 2.00003E4-00 | 0.00000E+00 | O | O | O | 0 | O 0
0.99154503470 | 2.17650E-01 | -1.86770E-07 | 1 | 0 |-1] 0 | O 2
1.85039156830 | 4.29420E-02 | —4.26650E-07 | 0 [ 2 | O | O | O 2
0.85884653190 | 3.81670E-02 | -2.41550E-07 | -1 | 2 | 1 | 0| O 4
1.98309007300 | 1.48070E-02 | -3.69960E-07 | 2 [ O |-2| 0 | O 4
2.84193660360 | 5.36300E-03 | -6.12800E-07 | 1 | 2 |-1] 0 | O 4
1.77559105180 | 2.84910E-03 | -5.14630E-07 | -1 | 3 | 0 [ O | 1 5
0.78404613980 | 1.55830E-03 | —2.05220E-07 | 2| 3 | 1 | 0 | 1 7
0.91674466300 | 1.30720E-03 | -1.30020E-07 | 0 | 1 |-1] O | 1 3
0.92519587730 | 1.12100E-03 | -1.20200E-07 | 0 | 1 | O | 0 | O 1

Table 5.10: Same as table but for the c5 function.

freq. ampl. err. ki | ko | k3 | ks | ks | order
0.00000000000 | 0.00000E4-00 | 0.00000E4+00 | O [ O | O | O | O 0
0.84637295300 | 1.44550E-03 | —2.03520E-07 | -1 2 | O | -1] O 4
1.00401861550 | 1.44530E-03 | 2.22890E-07 | 1 | O | O | 1 | O 2
0.01247357960 | 1.89340E-04 | -3.72940E-08 | 0 | O | 1 | 1 | O 2
0.14517208260 | 1.88980E-04 | 1.76520E-08 | 2 |2 |-1] 1 | O 6
0.77157269570 | 8.78480E-05 | —-3.23250E-08 | 2| 3 | 0 | -1 | 1 7
0.92921810820 | 3.54680E-05 | -3.01790E-07 | O | 1 | O | 1 | 1 3
1.07881913160 | 3.51310E-05 | -1.35230E-07 | 2 |-1| O | 1 | -1 5
0.92117316420 | 1.72620E-05 | -4.20780E-07 | 0 | 1 | O | 1| -1 3
0.21997272480 | 1.09360E-05 | 2.31350E-07 | 3 |3 |-1| 1 | -1 9

Table 5.11: Same as table but for the ¢4 function.
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freq. ampl. erT. ki | ko | ks | ka | ks | order
0.00000000000 | 1.00478E4-00 | 0.00000E+00 | O | O | O | 0 | O 0
0.99154504270 | 1.65040E-01 | -1.78730E-07 | 1 | O |-1] 0 | O 2
0.85884652970 | 3.24780E-02 | —2.43700E-07 | -1 | 2 | 1 | 0 | O 4
1.85039157280 | 1.84070E-02 | —4.22070E-07 | O | 2 | O | O | O 2
1.98309009370 | 1.35090E-02 | —3.49200E-07 | 2 | O |-2| 0 | O 4
2.84193661730 | 3.29470E-03 | -5.99110E-07 | 1 | 2 |-1| 0 | O 4
0.13269851610 | 1.45030E-03 | 6.80760E-08 | 2 | -2|-2] 0| 0 6
0.78404586980 | 1.39870E-03 | —4.75200E-07 | 2| 3 | 1 | 0 | 1 7
1.77559111010 | 1.25920E-03 | —4.56320E-07 -1 | 3 | 0 | 0 | 1 5
2.97463513460 | 1.08280E-03 | —=5.29830E07 | 3 | 0 | -3 ] 0 | O 6

Table 5.12: Same as table but for the ¢; function.

freq. ampl. err. ki | ko | ks | ky | ks | order
0.00000000000 | —7.00000E-10 | 0.00000E+00 | O | O | O | O | O 0
1.85039159880 | 8.24730E-03 | -3.96070E-07| O | 2 | O | 0 | O 2
2.84193667480 | 9.04550E-04 | -5.41620E-07 | 1 | 2 [-1| 0 | O 4
0.85884652020 | 9.17510E-04 | -2.53210E-07 | -1 | 2 | 1 | 0 | O 4
1.77559103310 | 5.07100E-04 | -5.33340E-07 | -1| 3 | 0 | 0 | 1 5
0.99154507800 | 1.95970E-04 | -1.43510E-07 | 1 | O [-1| 0 | O 2
2.70923811510 | 1.73420E-04 | —6.53300E07 | -1 | 4 [ 1 | 0| O 6
3.70078319630 | 1.14930E-04 | —7.93520E-07 | O | 4 | O | O | O 4
1.92519194710 | 9.57130E-05 | —4.76300E-07 | 1 | 1 | 0 | O | -1 3
3.83348174850 | 8.00900E-05 | 6.89320E-07 | 2 | 2 |20 | O 6

Table 5.13: Same as table but for the cg function.

freq. ampl. err. ki | ko | k3 | k4 | k5 | order
0.00000000000 | —0.00000E+00 | 0.00000E400 | O | O | O | O | O 0
0.84637295300 | 7.24530E-04 | —2.03520E-07 [-1| 2 | O |-1] O 4
1.00401861550 | 7.24450E-04 | —2.22890E-07 | 1 | O | O | 1 | O 2
0.01247357980 | 4.82170E-05 | -3.71330E-08 | O | O | 1 | 1 | O 2
0.14517208260 | 4.80940E-05 | 1.76380E-08 | 2 |2 |-1| 1 | O 6
0.77157269560 | 4.41510E-05 | -3.24260E-08 | 2| 3 | 0 | -1 | 1 7
1.99556365120 | 4.00140E-05 | —4.08710E-07 | 2 | O |-1| 1 | O 4
1.83791798820 | 3.99960E-05 | -3.89770E-07| 0 | 2 | -1|-1] 0 4
0.92921810800 | 1.78950E-05 | -3.01960E-07 | O | 1 | O | 1 | 1 3
1.07881913140 | 1.76710E-05 | -1.35470E-07 | 2 | -1 | 0 | 1 | -1 5

Table 5.14: Same as table but for the cg function.
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freq. ampl. errT. ki | ko | ks | ks | ks | order
0.00000000000 | 1.00478E-+00 | 0.00000E4+00 | O | O | O | O | O 0
0.99154504270 | 1.65030E-01 | -1.78730E-07 | 1 | O |[-1] 0 | O 2
0.85884652970 | 3.24780E-02 | —2.43700E-07 | -1 | 2 | 1 | 0 | O 4
1.85039157280 | 1.84070E-02 | —4.22070E-07 | 0 | 2 [ O | O | O 2
1.98309009370 | 1.35090E-02 | -3.49200E-07| 2 | O [-2| 0 | O 4
2.84193661730 | 3.29470E-03 | -5.99110E-07 | 1 | 2 |-1] 0 | O 4
0.13269851610 | 1.45030E-03 | 6.80760E-08 | 2 | 2|-2] 0 | 0 6
0.78404586980 | 1.39870E-03 | —4.75200E07 | 2| 3 | 1 | 0 | 1 7
1.77559111010 | 1.25920E-03 | -4.56320E-07 | -1 | 3 | 0 | O | 1 5
2.97463513460 | 1.08280E-03 | —5.29830E-07 | 3 | 0 |-3] 0 | O 6

Table 5.15: Same as table but for the ¢ function.

freq. ampl. err. ki | ko | k3 | kg | k5 | order
0.00000000000 | —0.00000E+00 | 0.00000E+00 | O | O | O | O | O 0
1.00401861560 | 7.20820E-04 | -2.22850E-07 | 1 | 0 | O | 1 | O 2
0.84637295300 | 6.06950E-04 | —2.03500E-07 | -1| 2 | O |[-1| 0 4
0.14517208280 | 4.66020E-05 | 1.78760E-08 | 2 |2 |-1| 1 | 0 6
1.99556364910 | 3.64300E-05 | —4.10800E07 | 2 | O |-1| 1 | O 4
1.83791798780 | 3.65390E-05 | —-3.90160E07 | O | 2 |-1|-1] 0 4
0.77157269620 | 3.33090E-05 | -3.18310E-08 | 2| 3 | 0 | -1 1 7
0.01247358100 | 3.15620E-05 | -3.59500E-08 | O | O | 1 | 1 | O 2
2.85441018260 | 2.40050E-05 | -6.50710E-07 | 1 | 2 | O [ 1 | O 4
2.69676451900 | 2.36110E-05 | -6.32380E-07 | -1 | 4 | O |-1| O 6

Table 5.16: Same as table but for the ¢;; function.

freq. ampl. err. ki | ko | ks | kg | k5 | order
0.00000000000 | —1.61183E-03 | 0.00000E+00 | O | O | O | O | O 0
0.99154502640 | 5.38970E-02 | -1.95110E-07 | 1 | O |-1] 0 | O 2
1.85039157030 | 2.69200E-02 | —4.24600E-07 | 0 | 2 | 0 | O | O 2
0.85884654110 | 8.04870E-03 | 2.32340E07 | -1 2 | 1 |0 |0 4
1.98309004860 | 7.32970E-03 | -3.94350E07 | 2 | O |-2| 0 | O 4
2.84193659510 | 4.58070E-03 | -6.21280E-07 | 1 | 2 |-1] 0 | O 4
1.77559129770 | 1.70370E-03 | 2.68790E-07 | -1| 3 | 0 | 0 | 1 5
2.70923811570 | 8.46260E-04 | -6.52680E-07 | -1 | 4 | 1 | 0 | O 6
2.97463506060 | 7.75820E-04 | -6.03790E-07 | 3 | 0 |-3] 0 | O 6
3.70078314150 | 5.70720E-04 | -8.48320E-07| 0 | 4 | O | O | O 4

Table 5.17: Same as table but for the ¢;5 function.
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freq. ampl. err. ki | ko | ks | k4| ks | order
0.00000000000 | 1.00747E~+00 | 0.00000E+00 | O [ O | O | O | O 0
0.99154504270 | 1.64840E-01 | -1.78730E-07 | 1 [ O |[-1] 0 | O 2
0.85884652970 | 3.15620E-02 | —2.43700E-07 | -1 [ 2 | 1 | 0 | O 4
1.85039157290 | 2.66550E-02 | —4.22010E-07 | O | 2 | O | O | O 2
1.98309009370 | 1.34800E-02 | -3.49210E-07 | 2 | 0 |-2| 0 | O 4
2.84193661730 | 4.19930E-03 | -5.99110E-07 | 1 | 2 |-1| 0 | O 4
1.77559111020 | 1.76690E-03 | —4.56280E-07 | -1 | 3 | 0 | 0 | 1 5
0.13269851610 | 1.47040E-03 | 6.80410E-08 | 2 [-2|-2] 0 | 0 6
0.78404586980 | 1.34660E-03 | —4.75200E-07 | 2| 3 | 1 | 0 | 1 7
2.97463513490 | 1.07950E-03 | -5.29490E-07 | 3 | 0 | -3 | 0 | O 6

Table 5.18: Same as table but for the cy3 function.

freq. ampl. err. ki | ko | k3 | kg | k5 | order
0.00000000000 | —6.27023E-02 | 0.00000E400 | O | O | O | O | O 0
0.92519578630 | 3.86480E+02 | —2.11130E-07 | 0 | 1 | O | O | O 1
1.91674083000 | 3.17140E+401 | -3.88890E-07 | 1 | 1 |-1 |10 | O 3
0.06634926280 | 1.32180E+01 | 3.87440E-08 | 1 |-1|-1|[ 0 | O 3
0.99999608230 | 1.03360E+01 | -3.43580E-07 | 1 | O | O | O |1 2
1.78404231420 | 6.09200E+00 | -4.56710E-07 | -1 | 3 | 1 | 0 | O 5
2.77558735980 | 4.27790E+00 | —6.32540E-07 | 0 | 3 [ O | O | O 3
0.85039537680 | 3.79560E+00 | -1.92230E-07 | -1 | 2 | 0 | O | 1 4
2.90828587090 | 2.44750E+00 | -5.69500E-07 | 2 | 1 |2 0 | O 5
1.99154129500 | 1.00420E+00 | —-3.52350E-07 | 2 | O | -1 | O | -1 4

Table 5.19: Same as table but for the x5 function.

freq. ampl. erT. ki | ko | ks | ks | ks | order
0.00000000000 | 1.60785E-05 | 0.00000E+00 | O | O | O | O | O 0
0.92519578630 | 3.87760E+02 | -2.11130E-07| 0 | 1 | O | 0 | O 1
1.91674083000 | 3.17800E+401 | -3.88890E-07 | 1 | 1 | -1 0 | O 3
0.99999608230 | 1.03360E+01 | -3.43590E-07 | 1 | 0 | O | O |1 2
0.06634926280 | 8.30700E+00 | 3.87360E-08 | 1 |-1|-1] 0 | O 3
1.78404231280 | 6.10530E4-00 | —-4.58110E-07 | -1 | 3 | 1 | 0 | O 5
2.77558735590 | 4.28220E+00 | -6.36440E-07 | 0 | 3 | O | O | O 3
0.85039537680 | 3.85420E+00 | -1.92230E07 | -1 | 2 | 0 | O | 1 4
2.90828587990 | 2.45150E+00 | -5.60490E-07 | 2 | 1 |-2] 0 | O 5
1.99154129500 | 1.00460E4-00 | —3.52360E-07 | 2 | 0 |-1]| O | -1 4

Table 5.20: Same as table [5.6] but for the ys function.
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freq. ampl. err. ki | ko | ks | kg | ks | order
0.00000000000 | 4.24394E—-04 | 0.00000E400 | O [ O | O | O | O 0
0.07882283000 | 3.40520E+01 | —1.09480E-08 | 1 [-1| 0 | 1 | O 3
0.91272219540 | 9.30940E-01 | -1.85070E-07 | O | 1 |-1|-1| O 3
0.00402231670 | 9.11850E-01 | -9.57650E-08 | O | 0 | O | 1 | 1 2
1.07036785680 | 9.31450E-01 | —2.05600E-07 | 2 |-1|-1] 1 | O 5
0.15362321080 | 3.22470E-01 | -5.86630E-08 | 2 | 2| 0 | 1 | -1 6
0.93766936950 | 1.93940E-01 | —2.44860E-07 | O | 1 | 1 | 1 | O 3
0.78002371740 | 1.95730E-01 | —2.15110E-07 | 2| 3 | 1 |-1| O 7
1.92921439960 | 7.07670E-02 | -4.36290E-07 | 1 | 1 [ O | 1 | O 3
1.77156873300 | 6.44060E-02 | —4.20950E-07 | -1 | 3 | O | -1 | O 5

Table 5.21: Same as table but for the zg function.

The remaining v; have been taken in order to make the sequence of models SSSM3,
SSSMy, SSSM5 decreasing in error in the residual accelerations test that will be discussed
bellow. After some trials, we have set

® 3 = Wi — Wy + wy, which is the main frequency of cs,

® vy = w; — w5, which is the first frequency of xg which cannot be expressed in terms
of 11,15, and

® s = w5 — wq, Which is the first frequency of ¢3 that cannot be expressed in terms of
V1,V2, V3, Vy.

In this way, we have

" 0O 1 0 0 0 wi
vy 1 0 -1 0 0 wo
w =11 -1 0 1 0 w3
v 1 0 0 0 —1 Wy
vy 0 -1 0 0 1 ws

Since the above matrix is unimodular, {v;},—1.5 is a valid basic set of frequencies.

Using residual accelerations, the SSSM; models, as well as the RTBP, the Bicircular
Problem (BCP) and the Quasi-Bicircular problem (QBCP, see Appendix have been
compared with the real Solar System, as given by and with the ¢; and z;, y;, 2;
functions evaluated from the JPL DE406 ephemeris files. We have proceed as follows.
Given two models to be compared, with differential equations ¥ = f(r,t) and ¥ = g(r, 1),
respectively, and given a trajectory (positions and velocities) v : R — RS which does
not need to be a trajectory of any of the models, we compute the “mean relative residual
acceleration over 7”7 as

sy as, (5.6)

L [ W00 s
L Jo lg(7(s), 1)
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where ¢ is a fixed epoch (in adimensional units) and

L= / I (s)lds

is the length of the trajectory.

It must be noted that, the BCP and the QBCP as stated in appendix [A] assume that,
for t = 0, the vector from the Earth to the Moon and the one from the Earth—Moon
barycenter to the Sun form an angle of 180 degrees. Therefore, we must set the origin
of adimensional time, both in the SSSM; models and the real Solar System, such that
Earth, Moon and Sun are in a configuration close to the one of the BCP and the QBCP
for t = 0. For the test of Table [5.22] we have chosen as t = 0 the first epoch after Jan
1st, 2001 in which the projection of the vector from the Earth-Moon barycenter to the
Sun over the Earth-Moon instantaneous plane of motion forms an angle of 180 degrees
with the vector from the Earth to the Moon. This is the Julian day 2451919.3489 (Jan
9th, 2001).

The results of the residual accelerations test are given in Table From this table,
it becomes clear that the best one—frequency models that we can use, using the residual
acceleration criterium, are the BCP and the QBCP. But, when we allow two or more
frequencies, the models we get fit the JPL one much better. As it has been said, only the
Sun has been taken into account in all the intermediate models. By adding additional
Solar System bodies, the residual accelerations are of the same order of magnitude than
the ones obtained just using the Sun.

5.3.3 Simplified models for the Sun—Earth+Moon case

In this case, we will extract the basic frequencies from the Fourier analysis of Section
using Algorithm for its determination.

From the numerical data obtained (see Appendix [C]), we first observe that the maxi-
mum modulus of the highest Fourier coefficient of ¢y, ¢, ¢3, cg, cs, Co, c11 18 3.521E-05,
whereas the minimum modulus of the highest Fourier coefficient of the remaining c¢; is
1.669E-02. Therefore, in order to detect basic frequencies, we will only take into con-
sideration the ¢y, c¢s5, ¢7, c10, c12 and cq3 functions. In addition to this simplification, we
will not consider any Solar System body in , since, just using the ¢;, we are already
taking the Sun into account.

Applying Algorithm to the cy3 function, setting tol = 1E-5, mazor = 20, we get
the following 4 basic frequencies:

v1 = 0.9999926164, 1, = 0.6255242728, 3 = 0.9147445983, v4 = 1.8313395538.

These 4 basic frequencies allow to adjust the frequencies of the best analysis of the ¢4, s,
c7, ¢10 and c¢1o functions. For that, we have applied the second algorithm of section [5.3.]]
with tol = 1E-5 amd mazor = 20. The results are given in tables to [5.27. With
these frequencies, we construct the SSSMy, ..., SSSM, as we did in the Earth—Moon case.

In Table [5.29] we compare the models RTBP, SSSM; and SSSMy with the real Solar

System using the same residual acceleration test that we used in the Earth—Moon case. We
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z-a. RTBP BCP QBCP SSSM; SSSMa SSSM3 SSSMy SSSM5
0.020 | 0.140126 | 0.146459 | 0.138580 | 0.365299 | 0.095769 | 0.010674 | 0.001374 | 0.000727
0.022 | 0.138397 | 0.144693 | 0.136908 | 0.359442 | 0.094562 | 0.010534 | 0.001360 | 0.000724
0.025 | 0.136603 | 0.142856 | 0.135174 | 0.353302 | 0.093293 | 0.010388 | 0.001346 | 0.000720
0.028 | 0.134760 | 0.140962 | 0.133392 | 0.346913 | 0.091967 | 0.010235 | 0.001331 | 0.000716
0.031 | 0.132882 | 0.139025 | 0.131578 | 0.340305 | 0.090590 | 0.010076 | 0.001315 | 0.000711
0.034 | 0.130985 | 0.137059 | 0.129747 | 0.333509 | 0.089166 | 0.009913 | 0.001299 | 0.000707
0.038 | 0.129087 | 0.135080 | 0.127914 | 0.326550 | 0.087699 | 0.009744 | 0.001282 | 0.000702
0.043 | 0.127204 | 0.133103 | 0.126097 | 0.319452 | 0.086191 | 0.009570 | 0.001265 | 0.000696
0.048 | 0.125352 | 0.131141 | 0.124312 | 0.312235 | 0.084643 | 0.009393 | 0.001247 | 0.000691
0.053 | 0.123549 | 0.129209 | 0.122576 | 0.304915 | 0.083056 | 0.009211 | 0.001229 | 0.000685
0.059 | 0.121813 | 0.127324 | 0.120905 | 0.297505 | 0.081429 | 0.009024 | 0.001210 | 0.000678
0.066 | 0.120162 | 0.125502 | 0.119319 | 0.290018 | 0.079760 | 0.008833 | 0.001191 | 0.000671
0.073 | 0.118614 | 0.123757 | 0.117835 | 0.282462 | 0.078045 | 0.008637 | 0.001171 | 0.000664
0.082 | 0.117189 | 0.122108 | 0.116473 | 0.274845 | 0.076280 | 0.008436 | 0.001150 | 0.000655
0.091 | 0.115905 | 0.120571 | 0.115249 | 0.267173 | 0.074461 | 0.008229 | 0.001128 | 0.000646
0.102 | 0.114778 | 0.119161 | 0.114181 | 0.259453 | 0.072581 | 0.008016 | 0.001105 | 0.000636
0.113 | 0.113823 | 0.117895 | 0.113283 | 0.251690 | 0.070634 | 0.007796 | 0.001081 | 0.000625
0.126 | 0.113052 | 0.116784 | 0.112566 | 0.243889 | 0.068612 | 0.007568 | 0.001056 | 0.000612
0.141 | 0.112471 | 0.115836 | 0.112037 | 0.236056 | 0.066510 | 0.007331 | 0.001030 | 0.000598
0.157 | 0.112080 | 0.115057 | 0.111695 | 0.228199 | 0.064322 | 0.007085 | 0.001002 | 0.000583
0.175 | 0.111872 | 0.114443 | 0.111533 | 0.220325 | 0.062042 | 0.006831 | 0.000973 | 0.000566
0.195 | 0.111829 | 0.113984 | 0.111535 | 0.212440 | 0.059667 | 0.006566 | 0.000942 | 0.000547
0.217 | 0.111928 | 0.113663 | 0.111672 | 0.204551 | 0.057196 | 0.006292 | 0.000910 | 0.000526
0.242 | 0.112133 | 0.113450 | 0.111909 | 0.196665 | 0.054632 | 0.006008 | 0.000875 | 0.000504
0.269 | 0.112400 | 0.113311 | 0.112201 | 0.188782 | 0.051978 | 0.005716 | 0.000840 | 0.000481
0.300 | 0.112678 | 0.113200 | 0.112492 | 0.180899 | 0.049240 | 0.005417 | 0.000802 | 0.000456

Table 5.22: Mean residual accelerations between several models and the real Solar System
over selected halo orbits of the RTBP around Ly in the Earth—Moon case. The first column
displays the z—amplitude of the halo orbit used as test orbit. The remaining columns show the
mean residual acceleration between the corresponding model and the real Solar System over
the test orbit.
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note that the SSSM, model gives worse results than SSSM;. This is not a contradiction.
Examining table to we can see that the maximum amplitude of the frequencies
of ¢4, c5, ¢7, c10 and c¢15 that are not multiple of v; is 6.695E-05. Because of that, adding
frequencies does not improve significantly the approximation of the ¢; functions, and in
this way the structure of the equations [5.3| “takes over” the fact that the ¢; terms of
SSSMy are closer to the ones of the real Solar System than the corresponding terms of
SSSM; .

Therefore, for the Sun—Earth+Moon case, we will give SSSM; as simplified Solar
System model. Note that this is a model with very few frequencies that significantly
improves the RTBP.

freq. ampl. erT. k1 | ko | k3 | k4 | order
0.00000000000 | 1.30000E-09 | 0.00000E+00 | O | O | O | O 0
0.99999261980 | 3.33720E-02 | 3.38800E09 | 1 | 0 | O | O 1
1.99998564390 | 8.35280E-04 | 4.11070E-07 | 2 | 0 | O | O 2
1.25103997640 | 3.93800E-05 | —8.56920E-06 | 0 | 2 | 0 | O 2
1.83134352170 | 3.40050E-05 | 3.96790E-06 | O | O | O | 1 1
0.91473091670 | 2.84920E-05 | —1.36820E-05 | 0 | 0 | 1 | O 1
2.99997409570 | 1.97160E-05 | —=3.75350E-06 | 3 | O | O | O 3
1.87659754110 | 9.29780E-06 | 2.47230E-05 | 0 | 3 | 0 | O 3

Table 5.23: Frequencies of the best analysis of ¢, adjusted as linear combinations of {; };—1-4.
From left to right the columns are: frequency, in cycles per lunar revolution, amplitude, error
(freq. — kyvy — ... kavy), coefficients of the linear combination that approximates freq., and
order of the linear combination (k1| + ... + |k4]).

freq. ampl. err. ki | ko | k3 | kg | order
0.00000000000 | 2.00000E+00 | 0.00000E+00 | O | O | O | O 0
0.99999261700 | 6.67490E-02 | 5.51530E-10 | 1 | O | 0 | O 1
1.99998563790 | 1.39230E-03 | 4.05090E07 | 2 | 0 | O | O 2
1.25103998380 | 6.69550E-05 | —8.56180E-06 | O | 2 | O | O 2
0.91475203530 | 6.12480E-05 | 7.43700E-06 | O | O | 1 | O 1
1.83134663800 | 4.85690E-05 | 7.08420E-06 | O | 0 | O | 1 1
2.99997541480 | 3.01690E-05 | —2.43440E-06 | 3 | O | 0 | O 3
0.62552353770 | 2.92970E-05 | —-7.35060E-07 | 0 | 1 | O | O 1

Table 5.24: Same as Table but for the c5 function.
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freq. ampl. err. ki | ko | k3 | k4 | order
0.00000000000 | 1.00042E+00 | 0.00000E+00 | 0 | 0 | 0 | 0 | 0
0.99999261500 | 5.00800E-02 | ~1.41660E-09 | 1 | 0 | 0 | 0 | 1
1.99998562010 | 1.25350E-03 | 3.87270E-07 | 2 | 0 | 0 | 0 | 2
091475953220 | 4.82370E-05 | 1.49340E-05 | 0 | 0 | 1 | 0 | 1
1.25103999430 | 4.22440E-05 | ~8.55130E-06 | 0 | 2 | 0 | 0 | 2
2.99998010500 | 3.08040E-05 | 2.25580E-06 | 3 | 0 | 0 | 0 | 3
0.62552269280 | 2.71900E-05 | ~1.58000E-06 | 0 | 1 | 0 | 0 | 1
1.83133006690 | 1.76890E-05 | ~9.48690E-06 | 0 | 0 | 0 | 1 | 1

Table 5.25: Same as Table but for the ¢; function.

freq. ampl. err. ki | ko | k3 | k4 | order
0.00000000000 | 1.00042E400 | 0.00000E400 | 0 | O | O | O 0
0.99999261500 | 5.00800E-02 | -1.41650E-09 | 1 | 0 | O | O 1
1.99998562010 | 1.25350E-03 | 3.87270E-07 | 2 | 0 [ O | O 2
0.91475953220 | 4.82370E-05 | 1.49340E-05 | 0 | O | 1 | O 1
1.25103999430 | 4.22440E-05 | —8.55130E-06 | O | 2 | O | O 2
2.99998010500 | 3.08040E-05 | 2.25580E-06 | 3 | 0 | O | O 3
0.62552269280 | 2.71900E-05 | —1.58000E-06 | 0 | 1 | O | O 1
1.83133006690 | 1.76890E-05 | -9.48690E-06 | O | O | O | 1 1

Table 5.26: Same as Table but for the ¢ function.

freq. ampl. erT. ki | ko | k3 | k4 | order
0.00000000000 | —1.39300E-04 | 0.00000E+00 | O | O [ O | O 0
0.99999262330 | 1.66930E-02 | 6.87550E-09 | 1 | 0 [ O | O 1
1.99998564990 | 6.96230E-04 | 4.17110E-07 | 2 | 0 | O | O 2
1.83134558880 | 3.11050E-05 | 6.03500E-06 | 0 | O | O | 1 1
1.25103987210 | 2.46550E-05 | —-8.67350E-06 | O | 2 | O | O 2
2.99997235010 | 2.26070E-05 | —5.49910E-06 | 3 | O | O | O 3
0.91470513360 | 1.30450E-05 | —3.94650E-05 | O | O | 1 | O 1
1.87659675410 | 8.75900E-06 | 2.39360E-05 | 0 | 3 | O | O 3
2.50211836990 | 5.41250E-06 | 2.12790E-05 | 0 | 4 | O | O 4

Table 5.27: Same as Table but for the ¢;5 function.
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freq. ampl. err. ki | ko | k3 | k4 | order
0.00000000000 | 1.00042E+00 | 0.00000E+00 | 0 | O | O | O 0
0.99999261640 | 5.00800E-02 | 5.35290E-12 | 1 | 0 | 0 | O 1
1.99998562580 | 1.25340E-03 | 3.93030E-07 | 2 | 0 | 0 | O 2
1.25104010020 | 4.71180E-05 | —8.44540E-06 | O | 2 | 0 | O 2
0.91474459830 | 4.67440E-05 | —-4.82540E-11 | 0 | O [ 1 | O 1
2.99997729050 | 3.07760E-05 | —5.58700E-07 | 3 | 0 | 0 | O 3
1.83133955380 | 2.81230E-05 | -9.85990E-12 | 0 | O | O | 1 1
0.62552427280 | 1.62760E-05 | 1.35640E-11 | 0 | 1 | 0 | O 1

Table 5.28: Same as Table but for the ¢;3 function.

Z-a.

RTBP

SSSM;

SSSMy

0.020000
0.022288
0.024838
0.027680
0.030846
0.034375
0.038308
0.042691
0.047575
0.053018
0.059084
0.065843
0.073376
0.081771
0.091126
0.101551
0.113169
0.126117
0.140545
0.156624
0.174543
0.194512
0.216766
0.241565
0.269202
0.300000

3.446497E-02
3.429997E-02
3.411184E-02
3.390024E-02
3.366579E-02
3.341007E-02
3.313580E-02
3.284681E-02
3.254789E-02
3.224472FE-02
3.194355E-02
3.165101E-02
3.137381E-02
3.111844E-02
3.089082E-02
3.069597E-02
3.053770E-02
3.041819E-02
3.033772E-02
3.029470E-02
3.028516E-02
3.030323E-02
3.034115E-02
3.038961E-02
3.043825E-02
3.047577E-02

9.901526E-05
9.844882E-05
9.779360E-05
9.701858E-05
9.616913E-05
9.521763E-05
9.416327E-05
9.300703E-05
9.175134E-05
9.039967E-05
8.895610E-05
8.742482E-05
8.582841E-05
8.413352E-05
8.236183E-05
8.051628E-05
7.859979E-05
7.661569E-05
7.450252E-05
7.240496E-05
7.020714E-05
6.801648E-05
6.579492E-05
6.350846E-05
6.123496E-05
5.898080E-05

8.905454E-04
8.842048E-04
8.768670E-04
8.684772E-04
8.589500E-04
8.482675E-04
8.364166E-04
8.234040E-04
8.092527E-04
7.939978E-04
7.776813E-04
7.603471E-04
7.420444E-04
7.227963E-04
7.026421E-04
6.816096E-04
6.597243E-04
6.370130E-04
6.135638E-04
5.893022E-04
5.643885E-04
5.388121E-04
5.127031E-04
4.862056E-04
4.593820E-04
4.323859E-04

Table 5.29: Mean relative residual accelerations between several models and the real Solar

System over selected halo orbits of the RTBP around L, in the Sun—Earth4+Moon case.
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Part 11

The neighborhood of the collinear
equilibrium points in the RTBP



