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Introduction

It is known that for the study of continuous dynamical systems the discret case plays an
important role because, with it we can study the continuous one by using the Poincaré
return map. In the discret case we can distinguish between conservative maps (or area pre-
serving maps, in the case of flows living on a 3-dimensional manifold) and non conservative
maps. Among the last ones, there are the dissipative maps. Two of the main subjects of
the study of dissipative maps are: the existence or not of attracting periodic orbits and
the possible existence of strange attractors -that is, attractors that are neither periodic
orbits nor invariant curves, which are minimal and contain a dense orbit. Moreover, these
attractors can have sensitive dependece on the initial conditions, or have an absolutely
continuous invariant measure. On the other hand there exists a transition between these
two behaviours: the so-called flip or period doubling bifurcation cascade. After the final
of this cascade (in a suitable set of parameters), strange attractors can appear, and also
more attracting periodic orbits. When we restrict our attention to the two dimensional
case, two facts are important: a) The behaviour of a dissipative two dimensional map is
similar (but not in some details) to the behaviour corresponding to the one dimensional
case. b) The creation and destruction of attracting periodic orbits and strange attractors
seems very closely related to the Newhouse phenomenon: given a one parameter family of
dissipative diffeomorphisms {f;}.es having a non degenerate homoclinic tangency of the
invariant manifolds of a saddle fixed point for a = ag, there exist parameters a, close to aq,

for which there is an attracting periodic orbit close to the point of homoclinic tangency.

This work is divided in four chapters:

In the first one we study the dynamics of the so called logistic map, f,(z) = 1 — az?.
More specifically, we study first fold and flip bifurcations of this family, giving analytical
expressions of the parameter values for which they occur. To do this, we use a parametric
representation of the unstable invariant manifolds of the fixed points. Moreover, we com-
pute the parameter values a for which there are homoclinic tangencies (that is f2(0) = z

and fI*(z) = z). Also it is possible to do analytical estimates of the measure of the set



of parameter values for which there is an attarcting periodic orbit. First we compute the
width of the set of parameter values between fold and flip bifurcation. Then we estimate
the measure of the set of parameter values for which there is an attracting periodic orbit
when the parameter is close to 2. Although this estimate is not rigourous, it seems that can
be reliable if we do some restrictions in the number of attracting periodic orbits considered,
as it is precised in the text. It is remarkable that, in some sense, high iterates of the logistic
map behave as f, when a is close to 2. The last part of the chapter give some numeri-
cal estimates: the measure of parameter values for which there is not a strange attractor
consisting of a unique interval, the measure of the parameter values for which there is an
attracting periodic orbit, numerical evidence of the density of the set of parameter values
for which there is an attracting periodic orbit (which it has not been proved yet) and the
behaviour of the parameter set A, for which there is an attracting periodic orbit, when we
consider this set restricted to intervals of the form (2 — ¢,2] with ¢ — 0. Concerning the
last point, it is known that lim._,o A, /€ = 0. We see, numerically, that there exists a limit
of A¢/€?, in a suitable sense, and that it is different from zero. Moreover, we verify that
the analytical estimates of the first part of this chapter are reliable. Finally we compare
our results with other ones of Farmer ([11]) and Ketoja ([12]). A

In the second chapter, we consider the Hénon map f, 3, with strong dissipation. We
study first the invariant manifolds of the fixed points of f,; when b = 0. Then we prove
the differentiable dependence of the invariant manifolds on the parameters a and b, when
b is close to 0. As an application of this, we show the existence and differentiability of
a fan of homoclinic and heteroclinic bifurcation curves (that is, curves in the parameter
plane consisting of parameters for which there are homoclinic or heteroclinic tangencies).
We remark that the the existence of such a fan has been proved before (see [1]), but
using other techniques. Moreover the differentiability of the invariant manifolds, and the
homoclinic and heteroclinic bifurcation curves are not proved in [1]. Also the definition of
the invariant manifolds in the case of non invertible maps has been used before (see for
instance [2]). _

In the third chapter we study the Newhouse phenomenon. To this end we prove a
more complete version of the phenomenon than others proved before, in which we show the
existence of generic saddle-node and flip bifurcations, for parameters‘ close to the parameter
of homoclinic tangency. Then, by using a quadratic model of the n-th iterate of the map,
close to the homoclinic tangency, we compute the first bifurcation ba.rameters related to
this phenomenon, and their behaviour depending on the type of tangency. Moreover, we
classify the possible behaviour of the basin of attraction of the attracting periodic orbits
which appear due to this phenomenon. In particular, we regard the possible intersection of

these basins with the unstable invariant manifold of the fixed point. This is important due

it



to the fact that the closure of this unstable invariant manifold can be a strange attractor,
and, of course, this attractor disappears if it has intersection with the basin of attraction of
an attracting periodic orbit. Then we compute numerically some examples of periodic orbits
related to this phenomenon, and verify the goodness of the analytical results concerning
to the basin of attraction of such orbits. Moreover, for the Hénon map, we compute
numerically the measure of the parameter values for which there are attracting periodic
orbits, in a region of parameters a (fixed ) close to one having a homoclinic tangency. It
seems that the measure is very small.
In chapter four we study the behaviour of the codimension one and two bifurcations in
“one and two dimensional families of maps. To do this, we consider one-parameter families
of diffeomorphisms, to study saddle-node and flip bifurcations, and two-parameter families
of dissipative diffeomorphisms, to study cusps and codimension two flips. By means of the
normal form theory, we compute, for a general family having a fixed point, the conditions
for which there exist such bifurcations, and also:we prove that such conditions give a
behaviour as the one of the one dimensional models of bifurcations. As the study is local,
to see more global properties of codimension two bifurcations we study cubic models of
cusp bifurcation and a quartic model of codimension three cusp. This give us four different
types of interaction between the studied bifurcations, two of them having codimension two
flips. It is remarkable that all these cases can be found in the Hénon map, as we see in the
last section of this chapter, by using the conditions of existence of bifurcations computed
before. Moreover we present a scheme of cusp cascades which seems to appear in all the
cases, as it has been observed before for other maps . We remark that three of these cases
have been studied before in some papers (se references in the text), but one case seems new

in the literature.
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Chapter 1

‘Windows of attraction for the

logistic map

The objective of this chapter is to study the measure of the set of parameters of the logistic
map, f.(z) = 1 — az?, where z € IR and a € IR is the parameter, for which there is an
attracting periodic orbit. To this end we give first some basic properties of f, and we
will do some analytic estimates to determine the location of this parameters. Later on we
will give a numerical estimate of this set. Furthermore we will give numerical evidences
concerning the density of this set in the interval [-1/4,2]. Finally we study the Lebesgue

point corresponding to a = 2.

1.1 Basic properties of the logistic map

Let fo(z) = 1 — az? be the logistic map. We summarize some well known facts about this

map:

“a) For a = 2 the 2" periodic points of period n are real. All of them are repel-

lors. The map has an absolutely continuous invariant measure u such that u(A) =
J4(m/1 = y2)"1dy and f; is conjugated to T»(z) = 1 — 2|Z|.

b) There exist two fixed points z; = (-1 + /1 + 4a)/2a and z_ = (-1 — /1 + 4a)/2a
if a > —1/4. The point z_ is a repellor if a > —1/4 and z. is a repellor if a > 3/4.

c) All the bifurcations of periodic points are of generic saddle-node or codimension one

flip types.



d) Given a parameter of saddle-node bifurcation of period n, that we denote as a,lw-,

where j is the order number of the saddle-node or flip bifurcations starting at the

closest one to a = 2, there are infinitely many values of the parameter at flip bifur-

cations, a? _, where n is the period of the related saddle-node and 2'n is the period

n,j?
of the bifurcated orbit, such that a,z; ; < a?;;‘ , ai: ; a?::- for 1 — oo. Furthermore
a2l' o azi-’jl
M n,l n,J —_ ~
n,Jy n,J

6 being the so called Feigenbaum constant.
e) For any given value of a € IR the map f, has, at most, one attracting periodic orbit.

f) The set J = {a € [~1/4,2] such that there exists an absolutely continuous invariant

measure } satisfies A(J) # 0, where X is the Lebesgue measure for [-1/4,2].

g) The value a = 2 is a Lebesgue or density point for J, that is:
1
lirr(l);)\{[Z -62lnJ}=1.

The proof of a) can be found in [3]. b) is obvious. ¢) is a consequence of [4]. d) appears in
[3], [5] and others in some particular cases. €) is shown in [3] and [6]. Finally the proofs of
f) and g) are given in [7],(8] and [9)].

A very interesting question is the study of invariant manifolds and the related homoclinic
points. In this chapter we will be only interested in the unstable invariant manifolds of

periodic points.

Definition 1.1.1 Let f : U C R — IR, U an open set and f a differentiable function
with a repelling fized point p € U. The set We(p) = {z € IR : I(zn)n = p , Zo =

z, f(Zn+1) = zn} 18 called the unstable invariant manifold of p.

Definition 1.1.2 Let f, : R — IR be the logistic map. We say that f, has a tangencial
homoclinic point if there exists a repelling n-periodic point, p € R, and some m € IN such
that f7*(0) = p.

In chapter 2 we will see the equivalence of this definition with the usual for diffeomorphisms.

The next proposition give us a representation of the invariant manifold:

Proposition 1.1.3 Let p one of the repelling fized points of fo (p = x4 or p=z_). Then

there exists a (non unigue) entire function z(t) with t € Csuch that:
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a) z2(0) = p.
8) We(p) = =(R).
¢) fa(2(t)) = 2(at) where a = f'(p).

The proof of this proposition is postposed to chapter 2, proposition 2.2.2.

From now on we will denote f,(z) as f(z,¢) where ¢ = a — 2. Furthermore we call
z4(t,€) (respectively z_(t,e) ) the parametric representation of W%(zy) (resp. W¥(z-))
given by 1.1.3. We remark that z, = z (¢) (resp. z_ = z_(¢)).

Proposition 1.1.4  a) 2,(t,0) =sin Z(3 +1¢t).
b) z_(t,0) = — cost!/2,

The proof is obtained by direct check.

1.2 Computation of the windows of attraction: Ana-

lytical estimates

The set of values of a for which there is an attracting periodic orbit is made of intervals
going from a saddle-node bifurcation to the end of a bifurcation cascade. These intervals
will be called windows of attraction. To find windows of attraction we will start by looking
for the parameter values for which there is a superstable periodic orbit, that is, ¢ € IR such
that f"(0,€) = O for some n € IN. First we observe that we can know exactly the number of
superstable periodic orbits associated to saddle-node bifurcations. Let my be the number of
period k superstable periodic orbits associated to saddle-node bifurcations for € € (—9/4,0).
For € = 0 there are p;, = 2F - Zﬂk p;. points of minimal period k, and therefore O = pi/k
orbits of period k. Then my = Oy/2 if k is odd, and my = (O — ny2)/2 if k is even,
where ngj; = myj2 + ok and o = 0 if k/2 is odd or ag = ny, if k/2 is even (see for
exemple [10]). The values of rny for k = 1, .., 30 are given in table 1.1. To obtain the values
of € for which there appears a superstable periodic orbit, we will derive first an analytical
approximation. We will also give an approximation of the width of the parameter interval
from a saddle-node bifurcation to the corresponding flip bifurcation. We start with some

properties concerning W*(z_).

Proposition 1.2.1 Let z_(t,€) be the parametrization of W*(z_) given by 1.1.8. Then:

z_(t,€) = —cost /? + p(t*/?)e + O(?)



where

1  sinu w1 1 u u
=3+ ’; [2 <2 6cos(2_ku)> tan ok 6]
Proof:
We look for z_(t,€) = —cost!/Z + P(t)e + O(e?). As 1~ (2+ €)z_(t,€)? = z_(at,€),
where a = —2az_, by derivation with respect to ¢ we obtain:
g ,
~2_(t,€)> = 2(2 + €)Dyz_(t,€)2_(t,€) = -dEtDlz_ (at,€) + Daz_(at,¢). (1.1)
€

-

Putting ¢ = 0 we have:
—cos?t1/% + 4cost}/2Dyz_(t,0) = %tllz sin(2t*/2) + Dyz. (4i,0).
Therefore ¢(t) = .Dgz_ (t,0) satisfies the functional equation:
— cos? t1/2 4 4cost/2y(t) = étl/z sin(2t1/2) + (4t). (1.2)

From 1.2 it follows lim;_,o ¢(t) = 1/3. Then we can express ¢(t) in terms of (t/4) and
trigonometric functions, substitute ¢(¢/4) in terms of ¢(t/16) and new trigonometric func-
tions. By iteration of this procedure, collecting all the trigonometric functions and going

to the limit, we obtain:

1 sint!/? 1 1 t1/z2  41/2
t) = — 2k _-_——_——— —_— e —
vt =3+ ; [ (2 6cos(2—kt1/2)) a1 T g

Furthermore the relation 1.2 assures that if ¢(t) is defined in some neighbourhood of t = 0
then it is defined for all ¢. If

ap = 2F 1 = tan — 2
k= 2 6cos(27*u) 2k+1 6 -

3 4 . -
one checks ax = —gg%m + O(;—‘;) and then the series Ek21 ak is convergent for u = t1/2

small enough. O

Remark 1.2.2 As zt,¢) is not uniquely determined, if Y(t) is a solution of 1.2 then
PY(t) + Kt1/2sint!/2, K being a constant, is also a solution of 1.2.

Proposition 1.2.3 Let (t) = Dzz_(t,0). Then for t large enough there is a constant
¢1 > O such that [(t)| < cit, for t > 0. Furthermore y(4™n%(25 + 1)?) = L — 42 for
m > 0.

i
3

Proof:



Dividing by 4t the formula 1.2 and rearranging we have

2,1/2  gio0l/2
P(4t) _  cos®t sin 2t costl/zlp—(t—) .

4 4t 2481/2
Therefore
v 11 |0 L | et/ 1
o e — o | B <.
g | S0 T " t |~ =% it 24t1/2 t/4 T + 24t1/2 ~
1 Y(t/4*)
k k
_4t(1+4+ 4 45)+ 41/2(1+2+ A+ 2%)+ /e
< 4k+1 4 2k+1 1,[)(t/4k)
12t 24t1/2 t/4
If t > 4 there exists k € IN such that 4% < t < 4**1 Then
v(4t)| v/4h)| .
A
l <3ttt Ct/4k | = <12 + ’

where A = max,¢(1,4) |[¥(r)/r| . Taking c; = {5 + A we have ¢(t) < ¢t if t > 16 .
The second part of this proposition is checked immediately. O

We can also find a bound of Dz2_(t, €) independent of e.

Proposition 1.2.4 Let 9(t,¢) = Daz(t,€). Then for a fizedr > 1 andt large enough there
18 a constant A, such that |(t,€)| < A,t" and A, is independent of € for € small enough.

Proof:
First we show |D;{z-(t,€)| < A for all t and ¢ small enough and a suitable constant A .

From the recurrent relation we obtain

Diz_(t,€) = —Z‘—Dlz_ (a™t,e)z_(a tt,e) =
a

1
—;——Dlz_ (@™t €)z— (o~ t,¢€) .

Therefore
|Dyz-(t,€)| < [Drz-(a"'t,€)|

that is, we can take A = 1/2 by using a determination of z— with D;z_(0,¢) =1/2.
Now we divide by o"t" the formula 1.1 of 1.2.1 and we obtain

Daz_(ot,¢) 2 Daz_(t,¢) 1
a’t’ T att’ tr de 20t 1
If € is small 22 and l‘iT"| are bounded and we can put
Dzz_ (Ott, 6) Bl + 32 Dzz._ (t, 6)
a'tr e Al artr—1 tr




By iteration of the last inequality we have |

(1 +a + o+ @™ )+

al’ tr - rtr

’ Daz_(at,e)

B, DyZ_(a™™t e)

r—1 (r—1 +1
artr—1 (1 +a +...+ o™’ )) + t'/a'" - a't' a(n )r+
By (nt1)(r-1) Dz?—( ~"t,€)
arttr— 1 !tr/anr

1
For fixed values of € and t there is an n € IN|J{0} such that a™ <t < a™*! . Using this
value of n in the last bound, we obtain

Dz z_(u,€)

ur

<A, .0

a u€(l,a),

Proposition 1.2.5 Let f(z,€) = 1 — (2 + €)z2. For a fized value of § € INU {0} there are
parameters €, ; for n large enough, such that f(-,én,,') has a superstable periodic orbit of

period n, and: !

3
€n,j = —-——7r2(2] +1)207 ("2 ¢

42 14
2[512 (27+1)

(1) oz (525 + 1)) 7525 + 1) 20D + 032

where o = 14 /9 + 4¢,, ;. and @ is the function introduced in proposition 1.2.1

Proof: )

To prove 1.2.5 we will use the representation of ,W“( -) given in 1.1.3, recalling the re-
lations f(z_(t,€),€) = z_(at,¢) , 2_(0,¢) = z_ and Dyz_(0,0) = 1/2, because z_(¢,0) =

—cost!/2, and the equation f™(0, e,,,) =0 deﬁnlng €n,;. First we state and prove an

H

auxiliar lemma.

Lemma 1.2.6 Given j > 0 there are functions t; =t;(s) , €; = ¢;(s) defined in a neigh-
bourhood of O such that t;(0) = (£)?(25 + 1), €¢;(0) = 0 and satisfying

2_(tj ;) =0 , z_(stje)=—1—¢; , (1.3)
if 5 is small enough. Furthermore

¢i(s) = ——vrz(za +1)%s+ 5 (25 +1)*~

2 [512

(-1 —2 128 (%(23' + 1)) ©2(25 + 1)3J s% +0(s°).



Proof: .

First of all it is easy to check that if t;o = £;(0) = (£)%(27 + 1)* and €0 = ¢;(0) = 0,
then

z2_(tj0,650) =0, z_(0,¢j0) =—1—¢€50 ,

since z_(t,0) = — cost!/? = 0if and only if t = (£)?(25+ 1)?, and the definition of z_(t, ).
To show the existence of t; = t;(s) , €; = ¢;(s) near s = 0 we apply the Implicit Function
Theorem. If Fi(t,¢,s) = z_(t,€) and Fz(t,¢,s) = 2—(st,e) +1+ €, as suggested by 1.3, we
should check

ot Jde dt Oe )](t,e,s)=(t,‘,o,0,0)

One obtains inmediately at the given point the values

OF: _(_y)i 2+ )" 9F, _ 4 9F _
ot ™ ' ¢ 37 ot
Hence the functions t;(s) and ¢;(s) exist in a neighbourhood of s = 0 . To finish the proof of
1.2.6 we only need d—:i(O) , %E,i(O) . The first one is obtained by derivation of Fy(t,¢,8) =0
with respect to s and substitution of s by 0.
From %(Fg(t,e, 8)) = 0 and substitution of s by O we obtain

d2€j
@ )

(3F1 oF, O0F,0F £0

in terms of known quantities and %(0) . This value is given by computing & (Fi(t,¢,s)) =

0 and insertion of s =0. O

To finish the proof of 1.2.5 we use 1.2.6 with s = (a(¢;))~("~?). From 1.3 we have

z_(t;(s),€5(8)) =0, z_(stj(s),€;(s)) = -1 —¢;(s) .
But :
z_(t,e) = "2 (2_ (= ("Dt €),€) = P 2(£2(0,€),¢) = f*(0,¢) =0,
showing that ¢, ; is the parameter corresponding to the superstable periodic orbit. O

Remark 1.2.7 Notice that the function

(0oL __log(ale(s))
()= 0 log s

exists in a neighbourhood of O (depending on j) and in it, it satisfiesm;(0) = 0, m;(s) > 0.
Furthermore %%i(s) > 0 if s #0, because

51_711_3_(8) _ da(e;(s))/ds  log(a(e;(s)))
ds afe;j(s))logs s(log s)?




and a(0) =4, £o(e;(s))js=0 = —’1'—;(2j+ 1)2. Therefore there exists a differentiable func-
tion defined on (0,€), € > 0, such that s = s;(m,) and there also ezist n = nj(s) and

s = §;(n), in the same interval, such that lim,_ ¢ n;(s) = +o00, lim,_ o 5;(n) = 0.

It is also interesting to give an explicit expression of the values of the parameters for

which there is a superstable periodic orbit.

Proposition 1.2.8 Let €, ; be the parameters for which there is the superstable periodic

orbit of the logistic map given in proposition 1.2.5. Then:

6 én
€n,j = —4—nf— + 1) - 2'55'13(21 +1)* + [24——(23 +1)%-

. T 7
(-1)772¢ (5(2]' + 1)) T(2j + 1)3] 472" 4 O(n?473")

Proof:

From proposition 1.2.5 we know:

€rg = _4% ( ) (27 +1)%s(n - 2) + 5 [332 (-725)4 (25 +1)*-

(Ve (2i+1) (5) @i+ 1)3] sn—22+0(s(n—2)°%),  (14)
where s(n) = a(e(s))™"
It is easy to see that

2
a(e)-—1+\/9+4e=4+—-e—ﬁe +0(®) < 4 ife< 4.

Let
€n; = c1(7)s(n — 2) + c2(5)s(n — 2)% + O(s(n — 2)3).
Then

. 1 -
o(m) = 47 {1+ Fensas — 5 huas +O(Guas) ) =

4—n.{1 +zers(n) + <écz - 5—14«,-1> s(n)? + O(s(n)s)}_n -
1

4~ {1 -n [lcls(n) + (—62 - 5—14c1) s(n)? +0(8(n)3)] +
2

(" + 1) [Ecls(n) (%62 - '5}‘101) s(n)® + O(s(n)3)] 2 " O(n38(")3)} )

4 {1 ~ Zers(n) + 7:cls + ( 216%) ns(n)? + o(s(n)? )}



Therefore

s(n)=4""- Beiam 4 n—2c24_3" + —lc + -l-c2 nd4=3" + 0(47%")
B 6" 24 6~ 216" '

6 /m\2,_ . 9
o=-g(3) @+v”

we have

1 /m\?2
_ —(n-2) 2 . 24-2(n—-2)r,, _ 24—-3n
s(n—2)=4 -{—42 (2) (27 + 1)°4 (n—2)+0(n°47°")

and by substituing in 1.4 we obtain the result. O

Another important question is to have analytical estimates of the parameters ¢ for which
there is a homoclinic tangency, that is, such that f*(0,e) =z4, n >3 (z4 = %‘F@ ).

Proposition 1.2.9 Let f(:,¢) the logistic map. Then, given j > 0 and for n large enough,

there are parameters

3 ,(1 2
E:'ll,j = ——2-7l'2 (—6‘ +J> a_"+3 + O(a_zn),

and

3 5 2
~2 2 . -n+3 -2
= 5T (6“) a™"*® +0(a™"),
n,J

such that f*(0,é* Y=z, fork=1,2.

To prove proposition 1.2.9 we use the expression of W*(z_), z_(t,¢). To say f™(0,¢) =
x4 is equivalent to

z_(a" 3t €)= —z4, 2-(t,e)=-1—c¢,

because
2-(a" 7%, €) = "3 (2_(t,€),€) = f*"1(0,€) = —24,

and then f™(0,¢) = z,. First we need a lemma.

Lemma 1.2.10 There are functions t;? = t;?(s) and E;? = E;?(s), k = 1,2, smooth for s
small enough, such that t} (0) = 4x2(% + )2, t?(O) = 4r?(2 + j5)?, ?;?(O) =0 fork=1,2,
satisfying the system:

z_(t,e) = —z4, 2-(st,e)=-1—c¢ ‘ (1.5)

for t = t5(s), € = &. Furthermore

~1 — 3 2 1 . 2 Io) 2 ~2 _ § 2 § . 2 o) 2)
e]~(s)——57r gti) s+ (s%), e]-(s)—-27rr gtJ) st (s%).



Proof:
Let
Fi(t,e,s) = z_(t,€) + 24, Fat,e,8) =z2_(st,e)+1+e.

Then 1.5 becomes:

Fy(t,e,5) =0, Fy(t,e,s)=0. (1.6)
For s = O we have z_(0,¢) = z_ = —(14++/9 + 4¢)/(4+2¢), and, as F(t,¢€,s) = 0, we should

have z_(0,€) = —1 — e. Then € = 0 or € = —2. We skip this last case. On the other hand,
if € =0, as f1(t,¢,8) = 0 we have cost!/2 = z,(0) = 1/2. Therefore t}/2 = Z+2jm,520
or t1/2 = %’5 + 257, 7 > 0. So we have the solutions of 1.6 with s =0:

2

;}(o) = 4n? (% +j>2, t3(0) = 4n? (% +j> , &(0)=2&(0)=o.

To see the existence of the functions t"(s), & %(s) we apply the implicit function theorem.

One should see:
OF,0F, OF,0F,;

0
dt de de It |t=t‘;.(()),e=z;=.(o),a=0;é

This holds because

ﬂ‘l(tk (0),0,0) = Djz_ (t;‘.’(O),O) + ii_?.:t-.(o)

g&(tk( ),0,0) = Dlz_(t;?(o),o) il(tk(o))—l/zﬁ £0,
3E1 (t(0),0,0) = Dpz_(0,0)1=£=(0)+1=4%#0,

252 (t5(0),0,0) = Dz (O,O,s)|s=0 =0.

Hence t;? (s) and E;? (s) exist in a neighbourhood of s = 0 and they are smooth. Furthermore

dék &k
D;2-(0,0)t5(0) + D22_(0, 0)—= & 2(0) = ; (0).

Then 2 1 2 22
1 4 dé; 5 4 dé;
2({2, 2% ) = 2(2, 2500 =0,
o (6+]) +3ds(0) 0, 2 (6+J> +552(0)=0
ok
From this we obtain %53-(0), k = 1,2 and the lemma follows. O

To prove the proposition let s = a~(*~3) similar to proposition 1.2.5. Then it holds:

z_(tf,é‘f):—xh z_ (o~ 3)tk ~k)——l——é‘;?.

Therefore f”(O,E;‘-) = z, and the expressions of E’f"j = E_’;(a;("—s)) are the ones given
before. O

10



k my

1 1

2 0

3 1

4 1

5 3

6 4

7 9

8 14

9 28

10 48
11 93

12 165
13 315
14 576
15 1091
16 2032
17 3855
18 7252
19 13797
20 26163
21 49929
22 95232
23 | 182361
24 349350
25 | 671088
26 | 1290240
27 | 2485504
28 | 4792905
29 | 9256395
30 | 17894588

Table 1.1: Number of superstable periodic orbits associated to saddle-node bifurcations.
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From the last propositions the next result follows easily because a — 4 if ¢ — 0.

Corollary 1.2.11 Let e,;,J-, E,ll,j, and %?m. be the values of the previous propositions. Then:

o 2 &
lim —/ = lim —!- = lim —=l- =4,
n=0 €n41,5 n—oo €n+1,j n—roo €n+1,j

- Remark 1.2.12 We have seen that the superstable periodic orbits accumulate at € = 0, for
which we have a homoclinic tangency (because f2(0) = z_(0) = —1), with a geometrical
ratio 4 which is the derivative of f(-,0) at z_(0) = —1. This is a general fact: for any

homoclinic tangency associated to a periodic point, there is an accumulation of this type.

The next proposition gives more information on the width of the windows of attraction,
because it gives the asymptotic expression of the difference of values of € between a saddle-

node bifurcation and the corresponding flip.

. Proposition 1.2.13‘ Let f(z,e) = 1 - (2+ e)a:v2 be the logistic map. Then for a fized
:J,e;j i Lo g such that

(= n]’ ny) = an, Dy f*(= nJa ) =1, fn(zn]’ n]) = zn,j’ D, f" (xn!jﬁeg,j) = -

and

32 0 and n large enough there are parameters € and points z

—
: ng i (o
lim ——— = 6mr'2y + 1).

n—oo 4 2

Proof:

We shall proceed as in the preceding propositions, that is, to display a sytem of equations

+ +

for €ni> Tng and to apply the implicit function theorem. We need first several lemmata.

Lemma 1.2.14 If e+ ; ond ¥ ., € . and z_ . satisfy the equations studied in proposition

n j’ n,J7 n .‘I
1.2.13, then there are t+ , € IR such that e p and t . satisfy the system:
n,J n 7 n,J

z_ (th, nJ)—z (™ "t+J,enJ)—0

Dyz_(tf e )—a "Dy(a""tF et ) =0,

n,77 *n,J n,j? n;)

+ ). Also €, and t . satisfy

2J

. e +
cend zg o=z (b, € s

Z_(th, n,y) z_(a_ ,J’ n,g)_o

Dz (t;’j,e;,:’-) +a "Di(a™™ tois ,w) =0,

and :c_r::z (t, .6, ;). Here a = —2(2+ €)z_(€) and z_(€) = (-1 ~ /9 + 4¢)/(2¢ + 4).

n,J; n,3? n,g

12



Proof:
We shall do it only for €n s
Dyz_(a™™tf et ) = :c+ We remark that one can always take a t:’j € IR such that

the other case being analogous. Let t:’j € IR such that

n,j> €n,g
Diz_(«a _"t;tj, n]) # 0. Otherw1se one would have :z:+] = 1 (see theorem 1.1 in chapter
2), and this is not possible because then D; f*(z} r€n ]) =0.

On the other hand, as f™(2—(a™"t,¢€),€) = z_(t,¢), by derivation with respect to t we

have:

Dy f*(z_(a""t,€),€)D1z_(a""t,e)a"" = Dyz_(t,¢€),
and therefore
Dlz_ (t, 6)

len(z_(a—nt’e)’e) = D z_(a‘"'t e)a—»n‘

Applying this to the point (¢} ) and taking into account

n,7’? n_7

len(zn,g’ n,7 len(z_(a ntIJ’ n,_;)’ n,g))

we obtain (
DlZ— t ’
Df*(z_(a" "t ' - ’” =1
f ( ( "._7’ n])’ n!J _nDlz_(a_nt:J’ ;:-,]
Hence
D;yz_ (nJaenJ) - nDlz—( —nt:.‘l’ ""J) =0.

Furthermore we need that :c:, ; be an n-periodic point. Therefore:

(nJ’ )_Z(a nt;t], nJ)-—OD

In the next lemma we use s = a~"™ and the implicit function theorem to show the

existence of e; :

- gt gt - 4= +_ - _ - .
Lemma 1.2.15 There ezist functions t] =17 (s), t; =t;(s), €] = € (s), & = €; (s), in
a neighbourhood of s = 0 such that t;’ (0) = t; (0) = 4(25 + 1), ej (0) =¢;(0) =0, and
they satisfy the equations:

+ ot + ) —
(tJ,J)—zr_(stJ,J =0 (17)
0 X

Dlz-(t] , J)_—le.z (stJ, ) =

(b7, 65) —2z-(st],€;) = g} (1.8)

Diz_(t; ,e;) + sD1z— (st ,€; )

13



Proof:

We show it for ¢

7 and t;. Putting s = 0 in 1.7 we have:

(69 =2 (9,
Dyz_(t,e) =0.

This means ¢ = 0 because if ¢ # 0 and z_(t,¢) = z_(t,€) then D;z_(t,¢€) # O (see theorem
1.1 in chapter 2). On the other hand, if z2_(¢,€) = z_(¢) one should have ¢ < 0 (if ¢ < 0).
We skip this case. Therefore z_(¢,0) = —1 and D;2z_(t,0) = 0. Hence: t(0) = (25'7)? =
4™ (25 4+ 1)%#%, m > 1 and €(0) = 0.

At this point we can take m = 1 because if (¢(s),e(s)) is a solution of 1.7 then
(a™t(s), €(s)), where o = a(e(s)) = 1+ 1/9 + 4e, also is. Indeed:

z_(a™t €) — z_(a™st,€) = f(2_(t,€),€) — fT(z-(st,€),€) = 0.
Furthermore
a™Dyz_(a™t,€) = Dy1z_(t,€)D1 f™(2-(t,€),¢€),
a™Diz_(a™st,€) = Dyz_(st,e)Dy1 f™(2—(st,€),€) = Dyz_(st,e)D1f™(2-(t,¢€),¢),

and the also D;z_(a™t,€) — sD;za™st,¢€) = 0.
In particular, the only solutions which are of interest for us are t;.h (s) and ef (s) such
+ _ ot . +
that ¢, = 7 (0) = 4(25 + 1)*>n? and efo =¢;(0) =0.

To see the existence of tf,e}t we use the implicit function theorem. Let
Fi(t,e,s) = z_(t,€) — z—(st,¢)

and
F; (t,e,8) = Dyz_(t,e) — D1z—(t,€)s,

and also
F}(t,e,s) = D1z_(t,€) + Dyz_(t,€)s.

Then the systems 1.7 and 1.8 can be written as:

Fi(t,e,s) = 0O,
F;(t,e,s) = O } (19)
Fi(t,e,s) = 0,
Prtes - o } (1.10)

To be allowed to apply the implicit function theorem, one should show

OF, 0F; OF 9F,
gt Jde e Ot |(t,e.0)=(t};

0?

#0,

0,0)

14



and the same for F2+ and t;o. We have

a) %’- = 0. Indeed:

oF
6t1 = Dyz_(t,€) — Dyz_(st,e)s = F; (t,¢,5).

Then for € = 0 and ¢ = 4(25 + 1)272 we get F, (4(25 + 1)?72,0,0) = 0.

b) ﬂl(tjo, 0) = —%. Indeed:

6F1 (t €,8) = Daz_(t,€) — Daz_(st,¢).

Putting € = 0 and t = 4(25 + 1)?x2 we obtain

oF. ’ dx_
— e (£76,0,0) = Daz(t5,0) — D22-(0,0) = Da2-(t5,0) - —=(0)-

Taking into account z_(0) = —~1 and 1 — (2 + €)z2 (¢) = z_(¢) we have —(0) L.
In the proposition 1.2.3 we have seen that 4(t) = Dy2_(t,0) satisfies ¢(472(25+1)?) =
—1. Hence:

aFl . (427 +1)°2%,0,0) =

) (4(2] + 1)2 2 0 0) = W Indeed:

AFFE
at

4(25 + 1)?x2,0,0) D1, 2 (4(25 + 1)%x2,0).
As z_(t,0) = — cost!/2, ¢) holds.

This means:

OF, dF; OF 0F; _oFn oF; 1
at de e Ot |(t,e,9)=(t%,0,0) T 8 Bt |(te)= (t% 00) 12(2j+ 1)272

£0
This shows the existence of tf (s) and ef (s) as desired. O

The next step is the computation of the parameters eJ and ¢ €; up to second order with

respect to s.

Lemma 1.2.16 Let e;' and € be as in the previous lemma. Then

€7 (s) — €f (s) = 672(25 + 1)s* + O(s%).

15



Proof:

We know that 1.9 holds for ¢ = e;' and t = t;, and 1.10 for e=¢; and t =1t .

To obtain expressions for €/ (s) and €; (s) we compute derivatives of Fy, F;" and F; :

dF,
—_— = —tDqz_
e 12— (st,€),
F:!:
86: = +Dz_(st,€) £ stDy1z_(st,¢).
When s = 0 we have: aF
1 .
E—(tffo,0,0) = '—2(2] + 1)27\'2,
since D;2_(0,0) = 3. '
Hence " OF
de; £ T\2
7 = 9 _ _ ; 2(Z
L (0) i 6(2j +1)? (3)

This means that:

€ (s) = ~6(2 + 1)? (%)ﬁ +0(s?).

Notice that, assimptotically, this is the same expression obtained for the superstable peri-

odic orbit.

. d?eT N .
The next step is to. compute EE%(O) By derivation of 1.9 and 1.10 with respect to s

we obtain:

oF, dt = OF, de OF,
8t ds ' de ds  Bs '
OFy dt 8Fy de  3F;
at ds de ds s’
OF dt dF de  OF
8t ds ' Be ds  ds’
FF dt  9F, de  OFF
8t ds ' de ds  09s ’
Therefore
dt} (5) = ( dF; dFy de;“) 9F; 17"
ds ds de ds | | dt |
and
%= <_3FJ _oFf df}) (9F 1™
ds Jds de ds | | dt |

(1.11)

(1.12)

(1.13)

(1.14)

When s = 0 the derivatives of F, and F2+ are the same ones, except the derivatives with

respect to s which satisfy:

OF; .+ __
ds (tJ (0)701 0) -

OF;
ds

16
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By derivation of 1.11 and 1.13 with respect to s and after simplification, we obtain in the

two cases: . 2
0%F: (dt 2 3%F, de dt 282F1 dt  0°F (g) .
at? \ ds dtde ds ds otds ds de? \ ds

(PRl OF Pt ORPe IR
deds ds ds ds? de ds? 9s2

First we note that for s = 0 one has —‘zaftl(t;!: (0),0,0) = 0. Now let

4= 22 0,6 0,0 = -2 (5.0, 0),0).

2 0)- S (0) = 24|25

+ 2 - 2 aFt det
iii(o) — dﬁ 0] = 4‘4__.33'__4_1’
ds ds ( ,_9_;1) 2
3t

+ det

Then _
dt} [aF; ] !
b

and therefore

R Pef  amd;  2R4AZE Sl 2mdef A 3R A
de ds? de ds? at? (%?‘)2 dtde ds 2Lz asat%l’

where all the derivatives have been calculated at s = 0.

- aFt .
3t (t €,0) and &2 Btae = —52(t,¢,0), one obtains:

Taking into account %’%‘-(t, 6,0) =

482F1 A dze;' dze;
dsdt 3FF ~ Be \ ds2  ds? |’
at
Now, using
' 1 dF
A=-Dyz_(0,0)= -, — (tJO,O 0) = —t3(0)D12-(0,0),
2 -+
aF(ti(o)oo) 1’ OFf OFy _ 1 ’
dsat 2 at e 12(25 + 1)%x2
we get
dzefo dzf’To 1272(25 + 1)2
dsz()— 2oz (0) = —127°(25 + )%,

and therefore the lemma holds. O

17



To end the proof of the proposition we note that the substitution s = a™" (where

a =14 1/4+ 9¢) gives:
- - . T\2 . m\2
€n,g €n,j = —6(2-7 + 1)2 (5) Sl(n) + 6(2] + 1)2 (E) Sz(ﬂ)-{—

el &Pt
(; ds? J_(0) + 6x%(25 + 1)2) s1(n)? — ; 53 2 (0)sz(n)* + 0473,

where s1(n) = a(e; (s1(n)) ™" and s2(n) = oz(e;-+ (s2(n))—"
Lemma 1.2.17 Let .

ery = —6(25+ 1) (3) s1(n) +o(47™)
and

ey =62 +1)? (3) saln) +o(4™)

be as before. Then:
. s1(n) — s2(n)
nll'n:o 4-2n

=0.

Proof:

To show that the assertion is true we remind

2
ale) =4+ 3¢ %e + O(%)

and
€ =cas+ dis® +0(s°), fj = ¢38 + dzs” + O(s%),

with ¢; = ¢2. Hence

-n
si(n) =47" {1+ —(c181 + d153) — clsl +03}

_ €181 d; 2 , n(n + 1) c2s2
41— |83 (S 0
{ n{6+(6 271>s]+ 2 36 O3>

sz2(n) =47" {l—n[fl—sz+ (2—3 2)s ] +n(n+l)cl.s‘2 +03},

6 27 2 36

os(m) = salm) = 47 Loy — 02) + 2ED (2 )+ Bt - 53)-

d d d
n (gl(sf ~ 83) + (_6_ - f) S%) +03} =
—nd4 "72(25 + 1)2s2(1 + o(1)),

because d; — dz = 67x2(25 + 1)2. Moreover:

. 2
s1(n) = 47" + (25 + 1)? (%) nd=2" 4 O(n247%"),

18



2
sa(n) = 47" + (27 + 1)2 (%) nd=2" + O(n24-%").

Here and in what follows o(1) is understood when n — oo for j fixed.

We conclude from this
s1(n) — s2(n) = —(25 + 1)%2%n473"(1 + o(1))

and the lemma follows. O

To prove the proposition we should only use

- 1d%;) 1d%€ . _
€n s = e:j = (2 s 2’” (0) + 67%(25 + 1) ) s1(n) — 5 dszd (0)s2(n)® + o(4 2"),

and from this it follows

- +

€ .— € .
lim "2 —gx%(25+1)%. O

n— 00 4 2n

Corollary 1.2.18 Let e:’j and €, . be as in proposition 1.2.13. Then

' 9
€n i~ € =6r7(25 +1)%47%" E7r"=(2j +1)*n473"(1 + o(1)).

n,J

Proof:

_ T\2 1d2
g = ety =625 + 117 (3) (51(n) — 02(n) + 322 (0)(s1 — s2)(s1 + 92)+

6225 + 1767 + O(s) = ~6(25 + 1)? (5) (~(25 + 1Pxnd="(1 + o{1)))+
6(25 + 1)*x? (4“2" + 2(25 + 1)? (%)2 nd=3"(1+ o(1))> =
6(27 +1)%x2472" 4 gnw4(2j +1)*4737(1 4+ o(1)). O

In the next proposition we compare the parameter values for which there is a superstable

periodic orbit with the ones giving rise to a saddle-node bifurcation and a flip.

Proposition 1.2.19 Let eI’j and €, ; as in propositions 1.2.13 and 1.2.5, respectively.
Then

n,J

€~ = gr2(2j +1)%2472"(1 + o(1)).

19



Proof:

We note that ¢, ; is a parameter corresponding to a superstable periodic orbit if and
only if it exists ¢, ; such that

(1.15)

Z— (tntj’ Gn’j) - 2- (a_ntn)j7 6"’,-7.) - O’ }
Diz_(tnj,€n,j) 0.

Indeed:

If €n,,; corresponds to a superstable periodic orbit then we take ¢, ; such that
Z- (a—ntnvj’ 6"'-7.7‘) = _1 - en,j'

Then the first equation of 1.15 holds because

" (z__ (O‘_ntn,J" ‘n,j)’ 6n,j) =2 (tn,j, fn.j) =2- (O‘_ntn,j’ en,j).'

Also the second holds because

Dy f™(2- (O‘_ntn;j’ en,j)» fn,J’)a—nDl 2— (a_ntn.ja ‘n,j) = Dyz_ (tn,J': en,j) =0,

where we use Dy f™(z_(a™ "t j,€n,;),€n,;) = 0.
Reciprocally, if 1.15 holds then z_(t, j,€n,;) gives an n-periodic orbit. The second
equation assures that the point £ = 0 belongs to the orbit.

As before, we put s instead of ™™ and we have:

z_(t,€) — 2_(st,e) = 0O,

Dyz_(t,e) = 0.

The system corresponding to a saddle-node bifurcation is
z_(t,e) — z_(st,e) = 0O,
Dyz_(t,e) —sDyz_(st,e) = O.

Now let
Fi(t,e,8) = z_(t,€) — z_(st,€),
Fy (t,e,8) = Dyz_(t,€) — sDyz_(st,¢),
Fy(t,e,8) = D12_(t,¢).

Hence the systems are:

Fi(t,e,s) = 0,
Fz(t,e,s) = 0, } (1.16)
Fl(tyeas) = 0,
Fy (t,e,s) = O } (1.17)
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Notice that the derivatives %I';l, %P;l are respectively equal to %-—, 28563_—, when s = 0.
Furthermore, (from 1.16) for s = 0, we get t;o = t;(0) = 472(25 + 1)2, €;,0 = €;(0) = 0,
and we know that for s = 0 one obtains from 1.17 the values ¢, = t;’ (0) = 4n2(25 +1)?,
‘Io = ef (0) = 0. From the preceeding considerations it can be deduced, as we did for 1.17,
that one can apply the implicit function theorem and therefore there exists functions t;(s)
and ¢;(s) verifying 1.16. Furthermore ¢; and ef are equal up to first order. In an analogous

way to what we did in proposition 1.2.13, we have:

2
Je ds? G ds? ot? ds ds dtde ds \ ds ds

62F1 ‘dﬁ _ ﬂ - _ 3F{ 2 3F2_ -1 +262F1— an— an_ -1
dsdt \ ds  ds ds ot dsdt ds | 9t ’

where all the derivatives have been evaluated at s = 0. To see this one should take into

account

ds de ds

ds 3 | ' ds 8 ds | ot

_ - —q-1 -
dt} B (_aF2 O F; de}“) [an ] dt;  9F, de; [8_1_"2] !

In proposition 1.2.13 we have shown

dF, _ 1 9F; dF _ 1 ?F; 1

ds 2’ 8t de  12x%(25+1)2° 3sdt 2’
the derivatives being evaluated at s = 0. Hence:

d2et e
—2(0) - S (0) = ~3n7(25 + 1%,

and this means
3
€ — e;' = §7r2(2j +1)%s% + O(s®).

It remains to see that if

T\ 2 d26+
ng = =6(25 + 1) () so(n) + (% —2(0) + 57(25 + 1)2) s0(n)? +O(s0(n)*)
and PN
ity = =625 + 17 () sa(n) + 3= (0)s3(n)* + O(s2(n)®),

where so(n) = a(en,;(s0(n))) and sz(n) = a(e;:j(sz(n))), then
3
€ng = €p = §7r2(2j +1)%247%" 4 o(47%").

Indeed:
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Working as before one gets

2
so(n) = 47" + n(27 + 1) (-’25) 472" 4 O(n247%"),

2
oa(m) =144 n(25+ 1P (3) 477+ 00",

and
1
so(n) — s2(n) = —Z7r2(2j +1)Znq—5",

Hence

rN2 d25+
b5 =625+ 1) (£) (so(n) = sa(n)) + 5 =2

(0)(s0 + s2)(s0 — s2)+

€n,j — €

27
6n2(25 + 1)%s2(1 + o(1)) = —8;(2] + 1)*7*na73" (1 + o(1)),
So ending the proof of the proposition. O

Corollary 1.2.20 Let e;t,j, €5 €n,j 8 1n the previous propositions. Then

- +
lim g Cmi g
nTreo e"’sj - en,j

Proof:

It follows immediately from

€ i —en o =6m(25 + 1)%472"(1+ o(1))

n,J n
and 2
€nj— €= §1r2(2j +1)%4727(1 + o(1)).

Remark 1.2.21 If we consider the map g,(z) = a — 22 and compute (a7 —af)/(a1 - af),
where ai" 1s the value of a for which the fized point has a saddle-node bifurcation, and ai
and af are, respectively, the values corresponding to a flip bifurcation and a superstable
periodic orbit, we also obtain 4. Hence, when n — oo the behaviour of f"(:,¢) has some

point tn common with the logistic map.

In the next proposition we look for the values, e,{, ;» of the parameter for which there

is an n-periodic point, :z:f‘, ;» which comes from the saddle-node bifurcation produced for

€ = €' ., such that f» (0 e )= —x,{, i That is, it is the end of the seemingly ” mini”logistic

n,j’ Y,y

map in the sense of the previous remark.
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Proposition 1.2.22 Let f(-,€) be the logistic map.Then, for a fized j > 0 and n large

enough, there are a parameter ef = —-6(2j + 1)? (%)2 a~™ + O(a™?") and an n-periodic
point, :z:f ;» such that f"(O,eﬁj) =— n,j and, furthermore

. fyf; ; ~ €nyg
lim = ——= = 1272(25 + 1)2.

n—oo 4-2n
Proof:

As we did previously, we first set down the system to be satisfied by e and a: pe
Lemma 1.2.23 If en’j and ‘Cn,j satisfy f"(O,eﬁj) = - n j and f"(a: ) = a: ; then there
are t{”, t{, 5 € IR such that, for ef; and t;f”, t'fl ; one has:

z_ (a_"+2tf . 'f”) = -1- G{E.f
Z- (tn;)’ n]) +2_(t 7 i,,)) - 0 (118)
fz(z_(n]’ n,,J)’ {z,])_z (a n+2t1f1.]’ 1{,]) - 0
Proof:
Let e and :vn 7 38 in the statement of the lemma, and ti s t,fl, j such that
—n+2,.f — '
z_(a t J,e;'”)——l—en’j.
Then
fn(oxevfl,j) = fn—2(—1 - G{z,j’ffzj) = Z_( n,s? uJ) =
Let t—'fw- € IR another value for which 2_ (a“"’+2tf’3, 'w) = 2/ .. Then, as z/ n,j 18 an

n-periodic point, we have:

n+2trfw’ n,J) = f"(z-(a” n+2tf,a’ n,J)’ n,J) _fz(z"(t-fm n,J)’ nJ) O

Lemma 1.2.24 A solution of 1.18 give rise to a value of the parameter, cy{,j, such that

= z-(a”

n!J

f,¢ )= xij and sz. is an n-periodic point, or to a value €, ; such that f*(0,¢, ;) =
0.

Proof:

Consider the system

z_ (a2 e) = -1-¢
Z- (t’ 6) +z- (t_’ 6) = 0
f2(z-(f,€),€) — z— (™ "*2t,¢e) = 0

If t = { this system gives as solution a parameter for which a superstable periodic orbit

appears. Otherwise, let 2/ ;= #—(t,€). We have
™0,6) = "3 (=1~¢,6) = " 2 (2_(a "2t €),6) = 2 (t,€) = —2_(t,¢) = “”}f;.j-
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Furthermore
fr(=h i) = P72 (S (2L j ) 6) = T2 (2 (2= (B e), ) =

72— (@™ 2E,e),6) = 2_(f,e) = =] .. O

n,j*

As before we put s = o™ ™*2, Then the system is:

z-(st,e) = -—-1-—g¢,
z_(tye)+2_(t,e) = 0, (1.19)
f3(z-(t,€),€) — —z_(st,e) = 0. |

First we remark that, if s = 0, one can take e = 0, t = (%)2 (25+1)%2 and = (%)2 (27+1)2
as solution. Furthermore, from the first equation of 1.19, it can obtained, as we did before,

that if there exist €(s), t(s), #(s) satisfying 1.19 then
3 2
cls) = ~Stoja + (%),

where to; = 72(27 + 1)°.

Let us put, up to second order,
€=co;s + €587, t=to; +tijs, t=to;+11,8,
where €p; = —%toj. Then, by substituing in 1.19, we have:

1 1
‘ ;-z-[z_ (sto; + 8%t1,,s€05 + s%€15) + 1+ seo; + 8%€15] = EDHL (0,0)t3,+

1
Dizz.. (0,0)tojeoj + §D222— (0,0)63:’- + Dz (O,O)tlj + (DQZ_ (0, 0) + 1)61_7' + O(S) =0.

As
8 1
D122-(0,0) =0, D222-(0,0) = Y& Dy;12-(0,0) = 12’
for s = 0 one obtains
1 4 1, :
'2't11‘(0) + 551;'(0) = -6_t0j- (1.20)

From the second equation of 1.19 we get
1 _
;(z_ (t()J' + sty 4, s€o; + 8261_1') + z_ (t()j + sty4, 8605 + 8261_7')) =

Diz. (tOj,O)(tlj + t—lj) +2Dyz_ (toJ',O)EoJ' + O(S) =0,

and therefore, for s = 0 we obtain

Dz (t()j,O)(tlj + t_lj) +2D5z_ (tOJ',O)EOJ' =0. (121)
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From the third equation of 1.19, by derivation with respect to s and setting
a = (z—(to; + st, s€o; + s%€15), €05 + s%e15),
b= (z_(sto; + s°t15, €05 + s2€15), €05 + 8% €1;),
a1 = (toj + st1j,s€o; + s%e15),
by = (sto; + szt_lj,seoj + szclj),

we obtain
D, fz(a)[Dl z_(a1)t1; + Daz_(a1)(eo; + 2s€1;)]+

D2f2 (a)(foj + 2861]‘) - D]_ Z_ (tOj + 28t1j) - Dzz_ (bl)(é'oj + 2861,') =0.

D2£(0,0) =0, D;f2(0,0) =0, D,f%(0,0) = —1,

and z_(to;,0) = 0, z-(0,0) = —1, the derivative is zero for s = 0. This means that the
third equation of 1.19 has no terms independents of s. To see the terms in s? we derive

again. As
Di1£%(0,0) = 16, D2 £2(0,0) = —1, D12£%(0,0) = 0, D; f2(0,0) = 0, D32£2(0,0) =0,
it remains, when s = 0» and taking into account that the third equation of 1.19 holds:
16[Dy2_(a1)t1; + D2z (a;l)eoj]2 — 263 — D112- (bl)tgj — 2Dyo2_(b1)to €0, —

2D1z_ (bl)flj - ngz_ (bl)égj - 2D22_ (bl)é‘lj - 0,

where €;; = €;,(0), t1; = #1,;(0), a1 and b; are computed for s = 0.
As Dy22_(0,0) =0, D22_(0,0) = %, D12_(0,0) = 1, D232_(0,0) = —, D1;20,0) =
1

—15, we have

2D2 2 (toj , 0) E()J'

e (0) = 0. (1.22)

16[D1 2 (al)t_l_,(O) + Dzz_ ((11)60]']2 - 251](0) -

From equations 1.21 and 1.22 we obtain two possible values for #;,(0) :

a1 o _Daz (to,0)€0;
v Dy z_(to;,0)
and
i? — Dzz.. (tOj;o)ij 1
15 Dlz_ (t()J',O) 8D12... (toj,0)2 )

Comparing with 1.21 we see that in the case £,,;(0) = £}, one has t1;(0) = £,;(0) and
it corresponds to a superstable periodic orbit. The other case corresponds to a value for

which there is an n-periodic orbit and f™(0,¢) falls in this orbit.
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From 1.20 we have
3 3 9 Dzz_(104,0)
(0) = —t3. + —£1;(0) + - =— .
61.7( ) 64 07 + 8 1‘7( )+ 32 D]Z—(tojxo)

Therefore, if we denote by €l ;= eij(s) and ef]- = efj(s), respectively, the solutions corre-

sponding to £,;(0) = &1, and #;,;(0) = 3, one has

3 3
1 2
(0) — €2.(0) = — LA
61]( ) €1]( ) 64Dlz_(t0j,0)2 16t0.7’

because Dy 2_(to;,0)? = itgjl.
As to; = (%)2 (27 + 1)?, it follows
3 sr\2 :
1 2 () — . 2
;0 - &0 = - (3) @i +1”
Hence, if le- = seo; + s%€3; and ¢; = seg; + s%€]; then

el (5) - e5(5) = 135 (%)2 (2 + 1)25% + O(%).

It remains to see that

sy = s1(n) = ale sy (n)) ™2, 50 = so(n) = ae;(so(m))) ™%,

verify s;(n) = so(n) = 0(472"). But this is done as in lemma 1.2.17. Perfoming again the

n+2 we obtain

3 /m\2 . —on
di—eni=15(5) @5+12472"H4(1+0(1),

change s = o~

and hence
. 5{1 —€n,g
lim i —" = 127%(25 + 1)?,

n—oo 4~2n

ending th proof of the proposition. O

Corollary 1.2.25 Using the previous notation one has

' + 27 2 24 1 24-—271 1 1 li e{"'vj ~ 6:’.7'
i ni= 5" (25 +1) (1 + o(1)), ngr;oz;j—_e':—j

The proof follows from the preceding propositions.

9
7

Remark 1.2.26 ) It is seen again that this limit coincides with the quocient corre-

+

sponding to the parameters e{ =0, € = —1/4, € = 3/4 in the case of the fized

point of the logistic map.

b) It is possible to obtain equations as the ones used in the last proposition, to have

values of the parameters for which there 1s a flip bifurcation to period n2™. One can

hope that taking the limits of the quocients between successive flip bifurcations, they

also coincide with the corresponding ones in the case of the logistic map (n = 1).
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Estimates on the width of the windows of attraction

Given a fixed period, n;, we know that the ”first” periodic orbit of this period (that is the
one which appears for ¢ as close as possible to 0) is found for €n,,0 & —27247"1. Let x(n),
for.n > n, be the sum of the widths of the windows of attraction for orbits of period n

and parameters between ¢, o and 0. Then

' 2
x(n1) ~ 672472 672 262 '—8—62
! 3r2)  3x2°°

if € = €p,,0-
Given n = n; + m let us obtain the index j, corresponding to the maximum value of j

in order to the window be located on (¢,0). We have
3 . 3
€~ —Ew2(2jn +1)%4" x —§7r24’"l

Hence
2y em T1& 2™, 2jpam T1< 2m,

and this implies jp,4+m = (2™ - 2)/2 if m > 1.

Therefore:
J.n.1+m . . J.nl-f-m .
x(ni+m)= > 6x°16™™16 ™25+ 1) = x(n1) | Y (25 +1)*| 167" =
J=0 =0
16™™ [1 11
x(n1) 3 [5(23'" ~6-2m+12-2™ - 8) +3(27™ + 4) + ?(2"! —2)+ 3] :
because .
Iny+m ) 1
D (24 1) = 3(452 4m + 1232, + Uiyt +3).
Jj=0
Hence . .
—m .
x(n1 +m) = x(ni)—; (523m = 52"‘> (1.23)

If we add 1.23 for all n > n;, we obtain

>~ x(n) = x(m) .1+ > <%2—m - é2—3m> =

n2>n, m>1
11 64
1+ --—]= 2,
X("l)( *% 42) 21nz¢

However this estimate of the width of the windows of attraction is not correct by two

reasons. First because there are windows counted several times. Second because, due to
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the lack of uniformity in j of the bounds depending on (n, ), the formula 1.23 only holds
for m not too large (and depending on n;).

Taking into account what we have seen in propositions 1.2.1, 1.2.3, 1.2.4 and 1.2.5 one
cannot expect that the approximation of the value of the parameter for which a superstable
periodic orbit occurs (and in the same way a flip, fold, etc.) be reliable if 7> 2%n/5 Bven *

if we assume
€~ A147"ul 4+ AguddT" 4 Azuda 3" + AgulPain 4L,

(where € is the same that before and up = 2j + 1,) as one can see by working at higher
order, then it is reliable if j < 2"/2_ In this case we can rely on the formula 1.23 up to

period at most 2n,.

28



1.3 Numerical results

The objective of this section is to give numerical estimates on the measure of the parameters
of the logistic map, f,(z) = 1—az? or f(z,¢) = 1—(2+¢)z?, for which there is an attracting
periodic orbit, and also numerical evidence on the density of such set of parameters. More

concretely, we shall see:

a) Estimate of the measure of the set of parameters a or € such that there is not a strange

attractor consisting of a unique interval.

b) Estimate of the measure of the set of parameters for which there is an attracting

periodic orbit.

c) Numerical evidence of the density of the set of parameters for which there is an
attracting periodic orbit. Prediction of the largest gap between wintlows of attraction

as a function of the maximal period.

d) Behaviour of the measure of the set of parameters for which there is an attracting
periodic orbit, when we consider this set restricted to intervals of the form [2 — ¢, 2]
with € — 0. If A, is this measure on |2 — ¢, 2], we shall see that —EA—,‘ tends to & in a

suitable sense, and we shall give an estimate of &.

First we give the notation to be used.

1.3.1 Notation

In our study there appear parameters a and € associated to the logistic map f,(z) = 1—az?

or f(x,e) =1 — (2 + €)z®. We have a = 2 + ¢, and we shall use as parameter a or €. The
parameters for the saddle-node bifurcation will be denoted by e,lz, j or €L, where j is the
order number, the first one being 7 = 0, in the set of all fold and flip bifurcations of
period n (strict or not), for decreasing ¢ from ¢ = 0. If it is understood we can skip
7- The flip bifurcations will be denoted by G?zl;j’ where n is the period of the associated
saddle-node and 2'n is the associated period. Here j has the same meaning as before
but for the associated saddle-node. The values of the parameters for which there is a
superstable periodic orbit will be denoted by ¢, ;, where j is the number of order of the
appearance of the superstable periodic orbit ,of period n (non strict) , starting at € = 0
for decreasing €. Furthermore, if it comes from a flip bifurcation of period n2* we shall use
eff;)", 7 being the order number of the associated saddle-node bifurcation which occurs
for € = ¢}, ;. The union of the intervals (also denoted as windows) corresponding to n-

periodic attracting orbits and the associated cascade of period doubling, will be denoted
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by A,. A particular window will be denoted by A,, ;, where j is the order number of the
corresponding saddle-node bifurcation. The window corresponding to the interval between
saddle-node and flip bifurcation will be denoted by Al .. A window between the saddle-
node bifurcation €], ; and the final tangency ef (in the sense of proposition 1.2.22) will
be called A®

2i
between the flip €n. g and the final tangency ¢

and the union for all 5 will be denoted as A% In a similar way the window
( )f

n,j?
, asociated to the flip bifurcation, will
be called A,(f;)‘. A, ; is called window of attractlon and A}, . a sadlle-node-homoclinic
window (or snh window). The final parameter of a cascade of flips is denoted by e?:;
Given a set A C IR, |A| denotes the Lebesgue measure of A. The union of all the windows

A,,; for § € J, where J is the set of j corresponding to windows Af, ; mutually disjoint
and such that Uje 7 A ;= = A!, will be called union of simple attractlon windows, and
denoted by A],. For the values €=¢ék i (k=1,2) it holds f"(0,€ é ) = —z4 (& ), where
z4+(€) = (—1+ V9 + 4e)/(4 + 2¢) (see proposmon 1.2.9). The lntervals A, = (&},0,0) are
called windows of principal tangencies. The windows A¢ = (612"*'1) ! ,el s ) will be called

n-th cascade windows.

1.3.2 Computation of the first cascade of attraction associated

to a saddle-node bifurcation

The saddle-node bifurcation for the fixed point x4 occurs for a} = —1/4. It is not difficult
to compute exactly the first flip bifurcations associated to period 1. However we should
compute the end of the cascade a?” . To obtain this, we shall not use the values of the
parameters for which there is a flip bifurcation, but the values a(z‘)°
superstable periodic orbit of period 2 (that is f2 2! (0) =0, with a = cz(2 )°) Table 1.2 gives

these values (computed in quadruple precision) together with

for which there is a

agzt‘-d)o _ a(lzl'—l)o

2o _ 3

bin =

for the first values of ¢ in the case of the logistic map. Hence § = 4.669201691029... is the
Feigenbaum’s constant, a2~ = 1.4011551890920... and |A;| = 1.6511551890920- - -, where

A, is the window of attraction associated to period 1.

1.3.3 Computation of superstable periodic orbits. Comparison

with analytical results

When the measure of the first window of attraction, corresponding to period 1, is available,

to obtain other windows of attraction we shall obtain first the value of the parameter for
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which it appears the superstable periodic orbit associated to the window under consider-
ation. Given n we know the number of saddle-node bifurcations giving rise to n-periodic
orbits, and therefore, the number of values of the parameter for which there is a super-
stable periodic orbit asociated to a saddle-node bifurcation. Furthermore, to compute
these parameters is equivalent to compute real zeros of a degree 2"~! — 1 polynomial:
Pan-1_1(a) = f2(0), taking into account that we should skip the zeros comming from flip
bifurcation or the ones not giving rise to an orbit of period n strict, in the case of n not

being a prime number. This computation has been carried out in two different ways:

a) Using, for every n, the approximate expression of the values of the parameters for
which there is a superstable periodic orbit and refining the zero by means of the

secant method.

b) If we assume that all the windows of attraction of a period n have been computed,

then the ones of period n + 1 are found in the gaps.

The first method has the advantage that it does not require information on the attracting
periodic orbits of lower period, but it has the problem that the approximate values for
the superstable periodic orbit get worse when we go away from ¢ = 0. The second method
is more reliable but it requires an amount of information that increases by a factor of
2 (roughly) when n goes to n + 1. However this process can be splitted by using the
parameters 6}% ; and &'21’ ; in the following way: It is known (see for example (3]) that for
this parameters of homoclinic tangency ther is not attracting periodic orbits. Then to
compute all the parameters for which there are superstable periodic orbit we can split the
initial interval of parameters on the union of these intervals.

An illustration of the first method is given on table 1.3, where we present the approxi-
mate values of the parameter, ¢, ;, for the superstable periodic orbit of period n (n < 10)

and the first values (the closer ones to € = 0) of j. There

_ 6 A1) \—(n— w\2 .
5511,3 = 420‘(55;,3‘) (n=2) (_2) (25 + 1)2
and

2 = ¢V 30V (24 sy 2 (% . \? (94 3| 4—2(n-2)
en,]._en,1.+[64 (2) (25 +1) (-1) 3230(2(2_7+1)) (2) (25 +1)%| =2 ,

(1.2)

’
n,;

the one obtained numerically. We give also the differences [E&zg — €p,;| and the differences

where @ is the function appearing in proposition 1.2.5. We compare the value of € with

relatives to the size of the window |A,, ;|. The agreement is good only for the initial values

of 5.
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1.3.4 Computation of the windows of attraction. Comparison

with the analytical results

Given a superstable periodic orbit of period n with parameter a, ; or €, , to compute
the associated window of attraction we should compute the value of the parameter for the

saddle-node bifurcation , and the associated cascade of bifurcation.

a) Saddle-node bifurcation. We look for a zero of
f*(z,¢) = 0,
D,f*(z,e)-1 = O.
To do this we consider a quadratic approximation of f*(-,¢) in a neighbourhood of
z2=0,e=¢€p;: '

f*(z,€) = f*(0,¢€n,;) + le"(O,en,j):c + D2f™(0, €n,5)(€ — €n,5)+

1
.EDllfn (0) en,j)zz + D12f(0) €n,.f):';(€ - €"',J')’

Taking into account
fn(o’ 6n,j) = D12fn(0a fn,j) = len(oxen,.‘i) =0,

we can obtain an approximate value for ¢ and z. Then we apply Newton’s method to

1

refine €n ;-

b) Cascades of bifurcations: We shall find the values of € to have superstable periodic

orbit of period 2™ - n, es,,zm)", because this is cheaper than to compute flip orbits. To

this end we take into account the limit relation

(2™ _ [(2™)a
1 n,} n,j — —_—
nll'rr;o e _ (s 6 =4.6692016....
n,J n,J7
(2™)o

for several m and, when the previous relation comes

2<D
n,g"

With this we can compute ¢ S

close to 8, we extrapolate and estimate ¢

Table 1.4 gives an analytical approximation of the windows A,lw- between saddle-node
and the first flip. Moreover AS; = 672%(25 + 1)?472". Columns 2 and 3 give the absolute

and relative errors: )
Al
|An,j An,j |
1 M
n,j

for the first values of 7 and n < 10.
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2",

a(lzn)°

8

16

32

64

128

256

512
1024
2048
4096
8192
16384
32768
65536
131072
262144
524288
1048576
2097152
4194304
8388608

1.310702641336833E+00
1.381547484432061E+00
1.396945359704561E4-00
1.400253081214783E+00
1.400961962944841E4-00
1.401113804939776E+00
1.401146325826946E+00
1.401153290849924E4-00
1.401154782546618E+-00
1.401155102022464E+00
1.401155170444411E4-00
1.401155185098297E4-00
1.401155188236711E+00
1.401155188908863E+-00
1.401155189052817E4-00
1.401155183083648E+-00
1.401155189090251E+-00
1.401155189091665E4-00
1.401155189091968E4-00
1.401155189092033E4-00
1.401155189092047E4-00
1.401155189092050E+00

4.600949276538075E4-00
4.655130495391980E4-00
4.666111947828571E+00
4.668548581446841E+00
4.669060660648268E+00
4.669171555379511E+4-00
4.669195156030017E4-00
4.669200229086856E+-00
4.669201313294204E+-00
4.669201545780907E+00
4.669201595537494E+-00
4.669201606198152E+00
4.669201608480804E+-00
4.669201608969745E+00
4.669201609074453E+-00
4.669201609096879E+-00
4.669201609101682E+-00
4.669201609102710E+-00
4.669201609102931E+-00
4.669201609102985E+00

Table 1.2: Cascade of superstable periodic orbits corresponding to the fixed point.

1.3.5 Windows saddle-node to homoclinic (snh). Cascade of tan-

gencies and associated windows.

In general a parameter ¢ for which there is a homoclinic tangency satisfies f*(0,¢) = —z,
where z is an n-periodic point. First we consider homoclinic tangencies of the following
type: let € such that fz'"(O,e) = —Zgi,, where z,i,, is an n periodic point which comes

7 (2°)4

. . . T
from a saddle-node or flip bifurcation € = €2 ;- We denote such a parameter as €, jore, o,
b 1. £

if it comes from a flip bifurcation. The window A! . = (! .,/ ) or A will be denoted
n,J n,;’ n,J ",y

“saddle-node to homoclinic” window, and the union of all of them for a given period n will

be called A}, = UA}, ;. We remark that the union is not a disjoint union when j ranges
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between O and the number of saddle-node bifurcations of period n. If J(n) is the set of all
possible 5 then we shall denote by J'(n) the subset of J(n) such that A}, = Uje yi(n)A}, ;
is a disjoint union.

A particular case of these parameters are the values associated to the bifurcation cascade
of the fixed point, that is to the parameters 6(1?(;)! . These ones are given in table 1.5 (noticé
that 5{,0 = 0). Those parameters are in an inverse cascade having effg as limit. The
windows A¢ = (efg s ) efg s ) will be denoted “n-th cascade windows”.

Other interesting tangency parameters are the ones satisfying (0, ¢) = —z (¢), where

1

z4 is a fixed point of f(-,€) such that z; > 0. We denote them as €p j OF é

n,j» according
’

to the notation at the begining of the chapter. It holds always: & ; < & . <& . ;. Table
1.6 give some values of &, o toghether with the quotients €, ,/€% ., o which tend to four
as expected. Table 1.7 gives the approximate values %'5:3 and 3512,3 computed in proposition
1.2.9, and compared with the real values.

=k
To compute €; ; one has to solve the system
fn(x,e) =z fm(0,€)= —Z.

As before we cdmpute first an approximate solution using the quadratic approximation of

f™ and then we refine using the Newton method.

1.3.6 Estimates of the measure of the snh windows

The value & o such that f%(0,& ;) = —z4 is & o & —4.563109873 x 1071, Let A3 be the
window (&} 5,0). We have (2,0) = U, >1A% U A;. According to our notation & , = ef())’.
We shall study the measure of the snh windows on each of the sets A¢ and A,. Table 1.8
give the measures of the snh windows for the first periods in A- and the total measure.

We plot in figure 1.1 log;o(A% N Az) against the period. We remark that, adding the
size of the windows by blocks of 4 elements, we obtain (starting at n = 3, n = 4, or n = 6)
a decreasing ratio between 3.7796 and 4.1448 (table 1.9).

Assuming that the limit of the ratio exists and belongs to the given interval, we have
that the remainder, 3777 ¢ |AL N Ag| is in [5.0746 x 10¢,5.7413 x 10~°] and therefore for

the total measure we have

[e o]
5.937831 x 1072 < > |AL N Ay| < 5.937898 x 1072,

7=3

It remains to compute the contribution of the snh windows in the intervals Aﬁ, n>1:

Table 1.10 give the values of the sum of windows of snh type up to the period shown.
Notice that in a AS, window we can only have periods 2"k, k € IN, and the first period is
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always 2"3. Finally in table 1.11 we present the quotients |A%; N Ag|/|At N &f_,,ll for

2itln
i > 1 and |Af N Az|/|Azn, N AS]. It seems that there exist the limit of the quotients when
n — oo, and it is close to § for ¢ large. -

With these data we can estimate the remaining measure in each one of the windows
Ag,i>1:
a) Measure in A§ :

~ Looking at table 1.11, the values of the 6 last quotients vary in the range
(3.8969103993,4.0890273833].

Assuming that the ratio remains in this interval, we have to add to the obtained
measure in A§ the value PIRPON VNN A$| which belongs to [3.8687 x 10~¢,4.2305 x
1079]. -

b) Measure in A$ :

Looking also at table 1.11, the ratio is in [4.8593321111,4.8904005914]. Proceeding as
before, we had to add a value in [1.0526 x 107%,1.1338 x 10~¢]. Therefore the total
measure in this window is in [3.2361769 x 1073,3.2362581 x 1073].

c) Measure in A§ :

The ratio is in [4.6681632188,4.6700494406]. We had to add a value in [3.1987 x
1077,3.3739x 10~7], and the total measure is in [6.9351386 x 10~%,6.9353138 x 10~ 4].

d) Measure in AS.

The ratio is in [4.6750125620,4.6739535273]. We add a value in [1.3299x10~7,1.3674 x
10~7], and the total measure is in [1.4831347 x 107*,1.4831722 x 107%].

e) Measure in A§.

The ratio is close to 4.66968 . The value to add is in [4.3410 x 108, 4.4213 x 1078,
and the total measure is in [3.1760351 x 1075,3.1761154 x 10~%].

From this point on we do not compute the measure of the windows because we had to
add a value small compared with the initial error. Therefore the total measure is the initial

one plus an amount varying in [1.0492 x 107°,1.1623 x 10~5]. That is:
Total measure € [7.9542763 x 10~2,7.9543895 x 1072,

giving 4 correct figures.

Table 1.12 gives the values of the computed snh windows.
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1.3.7 Estimates of the measure of the simple attraction windows

By simple attraction windows we understand the windows A,, ; with 7 € J'(n) in the sense
of section 1.3.6. Table 1.13 gives the quotients between the sum of the snh windows of
a given period and the sum of the measures corresponding to simple attraction windows.
The union of the simple windows for a period n will be denoted by A}, = Uje s/ (n)An.;-
In table 1.14 we give the values of A/, inside the cascade windows A¢ and A,. This allows
us, using the results of the last sections, to make a prediction of the total measure of the
simple attraction windows:

First we note that ;
1
€10 €10 _ |At1,o|

= = = 1.3626824...
f%,o - fi,o |A1,0]

and this is a value very close to the one appearing in table 1.13 when the period is high. This
allows to estimate in each window ng the measure of the simple windows corresponding to
the periods for which we have computed the snh windows. Finally, using the same estimates
done for the snh windows and dividing by 1.3626824, we should add:

In the window 1&2 an amount in [8.24 x 107%,8.73 x 1079); in Ai between 8.00 x 10~
and 8.27 x 107%; in Ag between 4.49 x 107° and 4.55 x 10~%; in A§ between 3.95 x 10~°
and 3.96 x 107%; in A¢, the value 1.81 x 107%; in Ag, the value 2.20 x 107%; in Ag, the
value 1.59 x 107%; in Ag, the value 1.07 x 107; in Ag, the value 2.3 x 10~7; in A the
value 4 x 10~8, etc. Therefore we should add, in total, an amount between 3.166 x 10>
and 3.248 x 1075, So the total amount is in

[5.8802 x 1072, 5.8803 x 102].

1.3.8 Estimate of the total measure of the attraction windows

By definition, we call simple windows as 1-simple windows. Then the simple attraction
windows inside the snf windows, corresponding to the simple windows, are denoted as 2-
simple attraction windows. In an analogous way one can define the n-simple attraction
windows. To obtain the total measure of the set of parameters for which there is an
attracting periodic orbit, it remains to compute the measure of the n-simple windows. To
this end we consider first the largest simple attraction windows (see table 1.15). Then we
shall compute the measure of the 2-simple windows corresponding to those periods, and
we shall extrapolate . We note that given the sum of the 2-simple windows of period kn,
corresponding to a 1l-simple window of period n, it seems that the quotients [A} |/|/|Ak]
tend to a limit, and we can estimate the measure of the 2-simple windows. Here A,“:n
represents the union of the 2-simple windows of period kn corresponding to a simple window

of period n (see table 1.16). Therefore, if the set of parameters corresponding to 2-simple
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windows is denoted by A?* and the one of 1-simple windows by Al?, we have |AZ?|/|AY?| €
(3.492 x 1072,3.506 x 107 2]. Note that the quotient |A1*|/|A; 0| equals 3.5612 x 10~ 2.
Furthermore |A?* € [2.0534 x 1073,2.0614 x 1072]. . Finally, we shall also give an estimate
of the 3-simple windows: To this end we compute the measure inside the largest 2-simple
windows, that is the one of period 9 corresponding to the 1-simple of period 3. In this
case we obtain, by extrapolation, that the measure |A3*| of the 3-simple windows is in
[1.8995 x 1075,1.9138 x 10™°], and therefore, taking into account that the measure of the
n-simple windows for n > 4 can be neglected, compared to the errors that we have, we
obtain:

Total measure of windows of attraction: Between 6.0874 x 102 and 6.0883 x 10~2,
without including the one corresponding to period 1. The ratio between the total measure
of the attraction windows (including the one corresponding to period 1) and the interval
of parameters where the logistic map is defined is, therefore, 7.6090 x 10~!. If we only

consider windows of period larger than one, we obtain — |5, An/€2y = 1.0165 x 1071

1.3.9 Density of the set of parameters for which there is an at-
tracting periodic orbit. Estimate of the largest gap for a
given period.

In table 1.17 we have the largest interval where there is no attracting periodic orbit of period

< n (gap of period n). We shall denote these intervals by I,,. The quotients |I,|/|In+1]

give

| In]/T2n|
4.7435942
4.8932843
4.9804862
5.0979310
4.7275989
4.7275989

© 0o 3 O U &3

QO
162

It seems that the process of creation of the gaps is as follows. Let (e,,, €2

) the last window
(the one closest to e%m) of period n. Then, if we consider the largest gap which remains
when we take all the windows of period n > 4, it holds:

Let n = 2™ 4 aml_12"‘1‘—1 + @m,-22™* "2 + k such that k < 2m1-2 and ap,, —1, Gm,—2
are 0 or 1. Then the following cases can happen:

a) Gm,—1 = Gm,—2 = 0. The largest gap is I,, = (e,ll_k_zml_,,e%m
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b) @m,~1 =0, am, -2 = 1. The largest gap is I,, = (e _,,e37).

¢) @m,—1 =1, am,—2 = 0. The largest gap is I, = (€} _, _,m,-2,€ ?:Dk

d) @ -1 = am,—2 = 1. The largest gap is I, = (e} _,, n-—k gmy-2)-

This is due to the following' Up to period 7 we have the following scheme concerning the

closets windows to €3~ (the scale is not real):

2%® 1 2% 1 2% 1 20 1 2% ] 2°°(2)f_
€] €g € €7 €7 €5 € €3 €3 € € €19 0

Taking into account that, when ¢ tends to e%m, this structure repeats itself with the same

order but for double period, and a scaling close to the one given by Feigenbaum’s constant,

we have the following situation:

2® ] 2® 1 2% 1 o® 1 2® 1 2% (2); ] oo
€ €12 €12 €14 €4 €10 €10 €5 € €g €g €1,0 €71 €7

and in this case odd periods do not imply a decrease of the largest gap. We conjecture that

this behaviour repeats itself, taking at each step a shorter interval (¢2” €7, 0): ), 1>2.If

this conjecture is true, we can know the largest gap for any period (see table 1.18)

1.3.10 Comparison with the papers of Farmer and Ketoja

The papers [12] and [11] try to obtain the measure of the set of parameters for which there
is an attracting periodic orbit. In [5] and for the map f,(z) = r(1 — 2z2), one considers
attracting periodic orbits with a window of size larger than or equal to €. This allows to say
that the measure of the set of parameters for which there is no attracting periodic orbits,
starting at the end of the first bifurcation cascade, divided by the full interval (this ratio is
named fraction of chaotic parameters) equals 0.89795 + 0.00005 . To compare this with our
resﬁlt we note that one should do a non linear change of parameters, r = \/m, where a is
the parameter of the family f,(z) = 1 — az2. This means that this fraction has not to be
equal in both cases, but it should be close to. In fact, in our case this value is ~ 0.89835 .

On the other hand, the paper of Ketoja tries to see the limit value of the fraction
of chaotic parameters (that is the fraction of parameters for which there is no attarcting
periodic orbit) inside the intervals A¢ when n — oco. In his paper this fraction is 0.982... If

we redo the computation with our data, we know that the measure of the simple windows
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inside Ag is 2.3547 x 10~ as computed before. It remains to obtain the measure of the
2-simple, 3-simple, etc. windows. For this we obtain the measure of the 2-simple windows
inside the window corresponding to period 96 (table 1.19). Comparing with the measure
that we have in the case of 1-simple attraction windows, one can deduce that the missing
measure is between 2.46 x 10~ and 2.50 x 1078, Therefore the total measure of 2-simple
windows inside the window of period 96 is between 5.5065x 10~7 and 5.5105 x 10~ 7. Finally,
as |Agg| = 1.6063548 x 10~ %, we have that the quotient between the measure of 2-simple
windows in the window corresponding to period 96, and |Agg| is between 3.42 x 10~2% and
3.43 x 1072, Extrapolating, we can assume that the ratio between n-simple windows and
n+1-simple windows, is between 3.3 x 1072 and 3.5 x 1072, Then the total measure of
the attraction windows will be in [2.4350 x 107%,2.4383 x 10~®]. Therefore the function of
chaotic parameters is in [8.915x 107!, 8.917 x 10~ !]. Taking into account that when passing
from A¢ to A we had to multiply by a number between 4.6696/4.6699 and 4.6693/4.6699
we have that in A§ the function of chaotic parameters is in [8.913 x 107*,8.916 x 107!].
Then the limit seems to be 8.91... x 1071, '

1.3.11 Estimate of the behaviour of the Lebesgue point ¢ = 0.
Comparison with analytical results

In table 1.6 we have the values &,  such that f™(0,& o) = —z4 holds, where z is the fixed

point with £, > 0. One can see &, 4/&, .10 — 4 when n — oo, as predicted analytically.

On the other hand, we can compute the measure of the snh windows inside the windows
A, = (€1 0,0) (table 1.20). It seems that

.
URLALNA,

— 16,

Vg2 A4 N A
for n — oco. Furthermore, if we plot
log,o(measure of the set of parametersin asnh window inside [&14)

against the period, and we consider, up to period 26 (figure 1.2), one can note that those
measures tend to scale with a factor of 2. Assuming this to be true, we can give an estimate
of

URLALN A,
A2
when n — 0. We have:

o
URs AN A,

lim =0.24823 . ...

AP
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Finally, taking into account that to find the measure of the attraction windows one has to
multiply the measure of the snh by a factor D = 7.609 x 10~}, one has
URLA; NA,

lim ~—=— =0.188....
ne AP

Now, we would like to know if the analytical estimates made in the section 1.2 are
good enough. For simplicity reasons we shall consider snh windows instead of attraction
ones. In such a case we have that the measure of the snh windows, for € € (¢,0), where
€= —572'—24""1, is equal to 7%82 (without taking into account the first window of period
n; which has a measure %¢%). This value equals 0.86846...&2. The table 1.21 give the
measure of th snh windows from periods n; + 1 to 2n; divided by €2, shoﬁing a reasonable

agreement with the analytical predictions.

Remark 1.3.1 Some of the results of this chapter have appeared in [13].
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12)
est,j

- (2 _
D, = [ — &, 4

D,/A, ;

-2.448101258E-01

3.122078788E-04

1.047042339E-02

-5.919610575E-02

4.087713588E-06

2.518603656E-03

-1.457568737E-02
-1.391071730E-01
-3.646863112E-01

5.956811979E-08
1.103046986E-04
9.899963669E-03

6.211658436E-04
8.609440053E-02
1.494820036E+-00

-3.623861380E-03

-3.322549286E-02

-9.262176479E-02

9.085508614E-10
1.290741161E-06
9.814414407E-05

1.545325610E-04
2.196548847E-02
5.057559789E-01

-9.043176588E-04
-8.185808863E-03
-2.281910213E-02
-4.623384140E-02
-7:266427156E-02
-1.148256865E-01

-1.667441101E-01

-3.000080080E-01
-1.577086804E-01

1.408606419E-11
1.858700035E-08

- 1.310857934E-06

6.026430861E-05
1.880190680E-04
3.707418658E-04
9.406870699E-04
2.592590044E-02
2.674021797E-01

3.856947216E-05

5.492228215E-03

1.327938021E-01
2.326780867E+-00
4.010592954E+-00
5.127885710E+-00
5.787563524E+00
3.518082761E+-01
2.333204244E+-02

-2.259513060E-04
-2.037084118E-03

-5.667013786E-03

-1.120596401E-02
-1.834151266E-02
-2.779561305E-02
-3.923115493E-02

2.195690838E-13
2.835612308E-10
1.949813814E-08
7.616794678E-07
2.701057601E-06
4.548581063E-06
9.857863869E-06

9.637325901E-06

1.371677569E-03

3.348748333E-02

6.236219568E-01
1.303533022E+00
1.450926361E-+00
2.035171919E+00

-5.647823432E-05
-5.085619792E-04

-1.413410857E-03
| -2.776964030E-03

-4.580926505E-03
-6.869678866E-03
-9.623480501E-03
-1.298342881E-02
-1.619613469E-02
-2.053600456E-02
-2.521043816E-02

3.428326977E-15

4.399983055E-12

3.001289370E-10
1.127307543E-08
4.083270698E-08
6.625441595E-08

1.384423013E-07

1.222367389E-05
6.384690590E-06
6.490577284E-06
8.702937444E-06

2.408945897E-06
3.427461848E-04
8.383740879E-03
1.579232638E-01
3.435012739E-01
3.715427519E-01
5.419823458E-01
2.770328964E+01
1.109339360E+01
1.127366540E+4-01
1.221225874E+01
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10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

-1.411885960E-05
-1.270882336E-04
-3.530822620E-04
-6.924955458E-04
-1.144233387E-03
-1.711091635E-03
-2.391904038E-03
-3.195283070E-03
-4.075922506 E-03
-5.110704525E-03
-6.252008793E-03
-7.520424646E-03
-8.878923519E-03
-1.039899202E-02
-1.205725401E-02

5.355816390E-17
6.861327110E-14
4.668761719E-12
1.735779474E-10
6.312541768E-10
1.014118555E-09
2.098144462E-09
1.641868792E-07
7.443694314E-08
9.612396276E-08
1.269608645E-07
1.931747443E-07
2.003576178E-07
4.210608577E-07
2.171700739E-06

6.022262464E-07
8.567022564E-05
2.096302633E-03
3.958790512E-02
8.691371933E-02
9.334669245E-02
1.373703988E-01
7.617198421E4-00
2.677870918E+00
2.903489990E+-00
3.127592333E+-00
3.838756684E4-00
3.329006494E+-00
5.979955403E+-00
2.468710383E+-01
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(1)
€n,g

(1 -
Dn = IGSI,,]' - En,jl

D, /A,,;

-2.412981229E-01

3.824210804E-03

1.282514279E-01

-5.899164416E-02

2.085493048E-04

1.284955587E-01

-1.456338859E-02
-1.398143647E-01
-4.680405159E-01

1.235834922E-05
5.968869758E-04
9.345424107E-02

1.288706852E-01
4.658788521E-01
1.411088734E+-01

-3.623103931E-03 .

-3.326344103E-02
-2.648135555E-02

7.583576624E-07
3.665742959E-05
3.761446623E-03

1.289866718E-01
6.238263494E-01
1.938347047E+-01

-9.042705542E-04
-8.188072233E-03
-2.302943373E-02
-4.602293749E-02
-7.819816651E-02
-1.212582065E-01
-1.780981079E-01
-2.540944938E-01
-3.612431293E-01

4.711876034E-08
2.244782136E-06
2.090207462E-04
2.711682220E-04
5.345875876E-03
6.061778114E-03
1.041331073E-02
7.183941464E-02
6.386773084E-02

1.290172818E-01
6.633052966E-01
2.117442241E4-01
1.046969666E+-01
1.140316901E+-02
8.384298682E+01
6.406774295E4-01
9.748436965E+01
5.572746671E4-01

-2.259483666E-04
-2.037223554E-03
-5.679635237E-03
-1.119384248E-02
-1.864327753E-02
-2.811738598E-02
-3.973652827E-02

2.939603059E-09
1.391522322E-07
1.260195351E-05
1.288321026E-05
2.990638146E-04
3.172243518E-04
4.955154727E-04

1.290250531E-01

6.731244435E-01
2.164348744E4-01
1.054807584E+-01
1.443284875E+02
1.011896167E4-02
1.022999697E+4-02
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-5.647805069E-05
-5.085706562E-04
-1.414190207E-03
-2.776224427E-03
-4.599053076E-03
-6.888607415E-03
-9.652452314E-03
-1.289989366E-02
-1.664211465E-02
-2.089234555E-02
-2.566607337E-02

1.836266925E-10
8.672629080E-09
7.790500768E-07
7.508757668E-07
1.808573830E-05
1.886229418E-05
2.883337088E-05
9.575881638E-05
4.523646512E-04
3.498504140E-04
4.469322774E-04

1.290270066E-01

6.755731765E-01
2.176182690E+-01
1.051893536E4-01
1.521445577E+02
1.057763258E+02
1.128786349E+-02
2.170242963E+02
7.859831356E+02
6.076649791E4-02
6.271506199E+-02
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10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

-1.411884813E-05
-1.270887752E-04
-3.531307993E-04
-6.924496412E-04
-1.145353336E-03
-1.712254390E-03
-2.393671334E-03
-3.190230692E-03
-4.102669380E-03
-5.131837556E-03
-6.278701951E-03
-7.544349698E-03
-8.929992712E-03
-1.043697264E-02
-1.206676649E-02

1.147488717E-11
5.415563162E-10
4.853267080E-08
4.607813884E-08
1.119317742E-06
1.161741373E-06
1.765198464E-06
5.216564903E-06
2.682131097E-05

2.103690760E-05

2.656619778E-05
2.373187720E-05
5.086883536E-05
3.755955983E-05
7.340771422E-06

1.290275418E-01

6.761848118E-01
2.179146671E+-01
1.050903651E+01
1.541123554E+4-02
1.069349477E+-02
1.155716498E+02
2.420145272E+02
9.648973431E+-02
6.354341717E4-02
6.544397504E+-02
4.715984099E+02
8.452021198E+-02
5.334252489E+-02
8.344721858E+-01

Table 1.3:
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AT

n,}

D, ;= Al — Al

n,J

Dnvj/A}l,J.

1.445742832E-02

4.071724145E-03

2.197469178E-01

9.035892701E-04

8.337502219E-05

8.447622963E-02

5.647432938E-05
5.082689644E-04
1.411858234E-03

1.653905899E-06
2.698538208E-04
2.626903208E-03

2.845271134E-02
3.468010781E-01
6.504229688E-01

3.529645586E-06
3.176681027E-05

3.181458252E-08
3.832160981E-06

8.933016520E-03
1.076480821E-01

8.824113966E-05 2.933118364E-05 2.494735395E-01
2.206028491E-07 5.942140984E-10 2.686356182E-03
1.985425642E-06 6.430414508E-08 3.137201082E-02
5.515071228E-06 4.637553777E-07 7.756628653E-02
1.080953960E-05 4.880342688E-06 3.110503059E-01
1.786883078E-05 1.052309991E-05 3.706369963E-01
2.669294474E-05 1.710545938E-05 3.905498321E-01
3.728188150E-05 6.120104710E-05 6.214381311E-01
4.963564105E-05 3.975629087E-04 8.890075983E-01
6.375422340E-05 6.308550695E-04 9.082157062E-01
1.378767807E-08 1.082713765E-11 7.846601855E-04

1.240891026E-07 -

3.446919517E-07
6.755962255E-07
1.116801923E-06
1.668309046E-06
2.330117594E-06

1.113217566E-09
7.945427569E-09
6.413153947E-08
1.381528628E-07
2.303723946E-07
6.035029083E-07

8.891349330E-03
2.253143890E-02
8.669613675E-02
1.100859284E-01
1.213328310E-01
2.057194882E-01
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8.617298794E-10
7.755568915E-09
2.154324698E-08
4.222476409E-08
6.980012023E-08
1.042693154E-07
1.456323496E-07
1.938892228E-07
2.490399351E-07
3.110844864E-07
3.800228768E-07

1.934267486E-13
1.927739652E-11
1.379608054E-10
1.007695593E-09
2.193363871E-09
3.729678698E-09
9.070160306 E-09
7.334540574E-08
9.952338030E-08
3.759981267E-08
5.157909634E-08

2.244129463E-04
2.479456924E-03

| 6.363151297E-03

2.330877310E-02
3.046614424E-02
3.453438366E-02
5.862969068E-02
2.744607093E-01
2.855245399E-01
1.078333976E-01
1.195061643E-01
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10 0 | 5.385811746E-11 | 3.402078021E-15 | 6.316342446E-05
10 1 | 4.847230572E-10 | 3.315770600E-13 | 6.835870365E-04
10 2 | 1.346452936E-09 | 2.386227868E-12 | 1.769097406E-03
10 3 | 2.639047755E-09 | 1.644106831E-11 | 6.191352854E-03
10 4 | 4.362507514E-09 | 3.623320059E-11 | 8.237175805E-03
10 5 | 6.516832213E-09 | 6.280952553E-11 | 9.546040351E-03
10 6 9.102021852E-09 1.482539282E-10 | 1.602697387TE-02
10 | 7| 1.211807643E-08 | 9.362964196E-10 | 7.172281889E-02
10 8 | 1.556499594E-08 | 1.269922477E-09 | 7.543383613E-02
10 | 9 | 1.944278040E-08 | 6.076554160E-10 | 3.030634453E-02
10 | 10 | 2.375142980E-08 | 8.336814100E-10 | 3.391001174E-02
10 | 11 | 2.849094414E-08 | 1.986078173E-09 | 6.516641138E-02
10 | 12 | 3.366132341E-08 | 2.789173861E-09 | 7.651950095E-02
10 | 13 | 3.926256763E-08 | 3.381594543E-09 | 7.929794772E-02
10 | 14 | 4.529467679E-08 | 7.982689985E-09 | 1.498326675E-01
Table 1.4:
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n % (570 = &I T - )

1 | 0.0060000000000000E+00

2 | -4.563109873079239E-01
4 | -5.696423675486926E-01 4.026342804071622E4-00
8 | -5.925948818352980E-01 4.937645559245185E+00
16 | -5.975078236414357E-01 4.671847376236172E4-00
32 | -5.985585057464117E-01 4.675954584997647E+00
64 | -5.987834956905848E-01 4.669906954453772E+00
128 | -5.988316791606988E-01 4.669442521282707E+00
256 | -5.988419984947881E-01 4.669242191101691E+00
512 | -5.988442085753859E-01 4.669211656573828E+00
1024 | -5.988446819067696E-01 4.669203593609498E+00
2048 | -5.988447832798475E-01 4.669202054798063E+00
4096 | -5.988448049908561E-01 4.669201702001840E400
8192 | -5.988448096406892E-01 4.669201629314997E+00
16384 | -5.988448106365411E-01 4.669201613392723E+4-00
32768 | -5.988448108498220E-01 4.669201610026550E+00
65536 | -5.988448108955003E-01 4.669201609300192E+-00
131072 | -5.988448109052832E-01 4.669201609145299E+00
262144 | -5.988448109073784E-01 4.669201609112043E+00
524288 | -5.988448109078271E-01 4.669201609104930E+-00

Table 1.5:
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6n,O

~1 ~1
fn—l,o/ €n,0

2 | -4.563109873079239E-01 | 0.000000000000000E+00

3 | -1.070890120921806E-01 | 4.261043952064273E+00

4 | -2.606795540508039E-02 4.108071017771880E+00

5 | -6.454913394094307E-03 | 4.038467104598233E+-00

6 | -1.608638467934874E-03 | 4.012656369197080E+00

7 | -4.017629842503633E-04 | 4.003948922612623E4-00

8 | -1.004109674019055E-04 | 4.001186271239320E+00

9 | -2.510056681856938E-05 | 4.000346610803289E+00
10 | -6.274986101706795E-06 | 4.000099189341954E4-00
11 } -1.568735570269421E-06 | 4.000027933725696E+00
12 | -3.921831309758896E-07 | 4.000007767712638E+00
13 | -9.804573033820877E-08 | 4.000002138013086E+00
14 | -2.451142900879048E-08 | 4.000000583525622E+00
15 | -6.127857009937270E-09 { 4.000000158137077E+00
16 | -1.531964236169590E-09 | 4.000000042598195E+-00
17 | -3.829910579493860E-10 | 4.000000011415529E4-00
18 | -9.574776441444951E-11 | 4.000000003045376E+-00
19 | -2.393694109876984E-11 4.0000000008092 16E+4-00
20 | -5.984235274371897E-12 | 4.000000000214271E+4-00
21 | -1.496058818571821E-12 | 4.000000000056558 E+00
22 | -3.740147046415632E-13 | 4.000000000014886E+00
23 | -9.350367616029948E-14 4.000000000003907E+00
24 | -2.337591904006890E-14 | 4.000000000001022E+00
25 | -5.843979760016839E-15 | 4.000000000000264E+-00
26 | -1.460994940004187E-15 | 4.000000000000063E+-00
27 | -3.652487350010460E-16 | 4.000000000000008 E+00
28 | -9.131218375026149E-17 | 4.000000000000000E+-00
29 | -2.282804593756537E-17 | 4.000000000000000E+-00
30 | -5.707011484391343E-18 | 4.000000000000000E+00
31 | -1.426752871097836E-18 | 4.000000000000000E+00
32 | -3.566882177744589E-19 | 4.000000000000000E+00

Table 1.6:
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-,

é'(')

n.

) &l

-4.112335167120566E-01

4.5077470595686650E-02

-1.046555799960426 E-01

2.433432096138039E-03

-2.592631502893058E-02

1.416403761498133E-04

-6.446293605645235E-03
-1.769675115158956E-01
-3.887422345037810E-01

8.619788449017523E-06
5.412354259774303E-03
8.629762774132855E-02

-1.608104539731448E-03
-4.128955069379783E-02
-8.328313146693868E-02

5.339282034258696E-07
2.008621276899167E-04
3.821868232716702E-08

-4.017297081233063E-04
-1.012612032757154E-02
-2.001036219622088E-02
-6.071199451865429E-02
-7.213663062678545E-02
-1.296708120275776 E-01
-1.674862718093427E-01
-2.692827767437570E-01
-3.402441220564680E-01

3.327612705695235E-08
1.1107491306561672E-05
2.159495774785713E-04
1.424853972689181E-03
6.394676712145410E-03
5.432845003646691E-03
1.2265017857565246E-02
8.6398767756768156E-02
5.027670268901714E-02

-1.004088894267888E-04
-2.5616297078468580E-03
-4.943947287040688E-03
-1.229895207705487E-02
-1.726386971977237E-02
-2.990118748354666E-02
-3.764486349830130E-02
-5.621731512105809E-02
-6.716881102607978E-02
-9.280593283041615E-02
-1.077052311817013E-01

2.077976116675192E-09
6.716533046694005E-07
1.308004614738287E-05
6.187947524896626E-056
3.438321558997327E-04
2.860849951279868E-04
5.769280384046214E-04
3.029034979884692E-02
3.191011408059093E-02
1.086406029099092E-01
1.643406269970178E-01
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-2.510043697784171E-05
-6.279524813974406E-04
-1.231654349062288E-03
-3.047888993442175E-03
-4.263016696117401E-03
-7.316082273868321E-03
-9.158502154661080E-03
-1.348890652391262E-02
-1.698351668532116E-02
-2.165116941992472E-02
-2.483336735656422E-02
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1.298407275112491E-10
4.159795173642213E-08
8.097185842806135E-07
3.571155851340706E-06
2.067554470857655E-05
1.702207436016439E-05
3.349879346369007E-05
2.56525671657672123E-04
6.102274733498006E-04
3.422119129222830E-04
4.523349134562297E-04
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-3.192123364413629E-02
-3.5683923294891286E-02
-4.445900439233321E-02
-4.917721217829987E-02
-5.947774647367815E-02
-6.5608202586732556E-02
-7.7262372663095648E-02
-8.386815344064590E-02
-9.819815041169867E-02
-1.0596356329000924E-01
-1.228178714432088E-01
-1.319658862006278E-01
-1.518839385279482E-01
-1.627430588011630E-01
-1.865427964190559E-01
-1.996279181024988E-01

2.932458828388456E-04
9.999567973512030E-04
5.480417505691683E-04
3.064218532366411E-04
1.019396556154158E-02
1.085266686690205E-02
1.411491548251046E-02
1.008952496233917E-02
1.329161773178373E-02
1.307641066244162E-02
3.959639344546205E-02
4.112142457225160E-02
1.668708336449478E-01
1.703461234764050E-01
2.337100141655251E-01
2.296748780852343E-01
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-6.274977987248759E-06
-1.669069607163430E-04
-3.076974854873092E-04
-7.600359136480467E-04
-1.061965347231620E-03
-1.817855817695290E-03
-2.272124115771400E-03
-3.334235090307513E-03
-3.942514434448218E-03
-5.314780427236825E-03
-6.079339920968768E-03
-7.766922597623811E-03
-8.690663911384225E-03
-1.070003428788051E-02
-1.178653854990756E-02
-1.412558333883191E-02
-1.637917104522356E-02
-1.805732726314929E-02
-1.948313358013557E-02
-2.25611556891106656E-02
-2.411562549734639E-02
-2.750739954523549E-02
-2.929679918405455E-02

8.114458034390814E-12
2.593372068896822E-09
5.046378911714420E-08
2.187052679106458E-07
1.278117395180230E-06
1.048413554264789E-06
2.050059748287854E-06
1.234038988214952E-05
3.385592937249817E-05
2.055347082571378E-05
2.693167572279484E-05
1.830647898386397E-05
5.685738668861649E-05
3.237321475605842E-05
2.1562761706781740E-05
3.516635820677338E-03
3.673196414288764E-03
4.066918761176489E-03
4.038971000709897E-03
4.433726941533052E-03
4.557271049744852E-03
1.067648072883212E-02
1.101732767229457E-02

Table 1.7:
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total

4.032749199934570E-02
2.211222072139026E-03
1.083651924439175E-02
3.524725302645279E-04
2.998347708613134E-03
7.047941697216196E-04
8.888947230156415E-04
1.807600946204198E-04
3.774862094579465E-04
1.311040764076555E-04
1.371718655566157E-04
6.500665136970219E-05
4.658519635942487E-05
3.319111422491411E-05
3.023970269448826E-05
1.312578941001657E-05
1.437151524771879E-05
8.408345724910689E-06
5.213785756058523E-06
4.586967125556409E-06
3.918486684957282E-06
2.239383968877338E-06
5.9373241632100E-02

Table 1.8:
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3 ~
EJ’=3 lAii'i-j N A2|

6 A (] A
ZJ'=3 |At4(|'—1)+j N A2|/ Zj=3 IAii-'I-j N A‘2|

0 | 5.372770584614101E-02 .
1| 4.772796695970815E-03 1.125706986251852E+01
2 | 7.108588027919200E-04 6.714127583741677E+00
3| 1.231418026888438E-04 5.772684720136235E4-00
4 | 3.258061385424442E-05 3.779603516365350E+-00
' ?‘:0 |AY 144 D Ay E?:o |A%L; N A2|/Z:?'=o |A% G145 N A,
0 | 1.639856155540844E-02
11| 2.151935196815628E-03 7.620378894157486E+00
2 1 3.799577896933983E-04 5.663616473166932E4-00
3 | 9.092812157713776E-05 4.178660936826522E4-00
4 | 2.212758529148291E-05 4.109265443081887E+00
V| et (A% sy N As| | Tioy ALy N Asl/ T5 s [Adir)4; N Al
0} 1.489213365299104E-02
1 | 1.578245103501663E-03 9.435881422948663E+00
2 | 2.820448275106569E-04 5.5695724330175956 E+00
3 | 6.614535307713433E-05 4.264015753030374E+00
4 ] 1.595862353544956E-05 4.144803148605072E4-00
' 23:2 |A%G+1)45 N A, Z?:z |A%ii; 0 [32|/Z?-=2 |A%G+1)+5 D A,
0 | 4.944509131614923E-03
1 | 8.265222460426376E-04 5.982306169360930E+00
2 | 1.751126646485295k-04 4.719945571621330E4-00
3 | 4.111943613870458E-05 4.258634871787572E400
Table 1.9:
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Table 1.10: Totals of measure of snh windows in the window A, up to the considered

period.

5.937324163210067E-02
1.604219582708864E-02
3.235124313141708E-03
6.931939933174490E-04
1.481804800495428E-04
3.171694100629041E-05
6.788902025180304E-06
1.452954826769992E-06
3.108437826206848E-07
6.591294558106544E-08
7.953227180028445E-02

(UP TO PERIOD 24)
(UP TO PERIOD 42)
(UP TO PERIOD 80)
(UP TO PERIOD 152)
(UP TO PERIOD 272)
(UP TO PERIOD 512)
(UP TO PERIOD 960)
(UP TO PERIOD 1792)
(UP TO PERIOD 3328)
(UP TO PERIOD 5120)
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n At NA, At N AS
3 | 4.032749199934570E-02 1.090425423585436 E-02
4 | 2.211222072139026E-03 9.883231353174611E-04
5 | 1.083651924439175E-02 10 | 2.655937531974641E-03
6 | 3.524725302645279E-04 12 | 1.319145532255458E-04
7 | 2.998347708613134E-03 14 | 7.059316417632419E-04
8 | 7.047941697216196E-04 16 | 1.938188421828452E-04
9 | 8.888947230156415E-04 18 | 2.027902974629083E-04
10 | 1.807600946204198E-04 20 | 5.005085235336782E-05
11 § 3.774862094579465E-04 22 | 9.057126563454615E-05
12 | 1.311040764076555E-04 24 | 3.188540170979963E-05
13 | 1.371718655566157E-04 26 | 3.290268539711320E-05
14 | 6.509665136970219E-05 28 | 1.702386709065356E-05
15 | 4.658519635942487E-05 30 | 1.082717573437303E-05
16 | 3.319111422491411E-05 32 | 8.261385414183356E-06
17 | 3.023970269448826E-05 34 | 7.395329067275081E-06
18 | 1.312578941001657E-05 36 | 3.265386919334568E-06
19 | 1.437151524771879E-05 38 | 3.605151696869051E-06
20 | 8.408345724910689E-06 40 | 2.157695421095906E-06
21 | 5.213785756058523E-06 42 | 1.279392869016790E-06
22 | 4.5869671255564090E-06 || TOTAL | 1.604219582708864E-02
23 | 3.918486684957282E-06
24 | 2.239383968877338E-06
TOTAL | 5.937324163210067E-02
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n At NAg n Al N A
12 | 2.201811116572237E-03 24 | 4.717217774963033E-04
16 | 1.834001928842342E-04 32 | 3.955126105022537E-05
20 | 5.453603490594009E-04 40 | 1.167839513039938E-04
24 | 2.484732652089640E-05 48 | 5.348573596847062E-06
28 | 1.458226129771564E-04 56 | 3.121318021966766E-05
32 | 3.894827967848187E-05 64 | 8.346816618937755E-06
36 | 4.213485264547539E-05 72 | 9.015891635903474E-06
40 | 1.002893056378502E-05 80 | 2.149709155461460E-06
44 | 1.866009257560142E-05 88 | 3.994905586397921E-06
48 | 6.555277211393404E-06 96 | 1.403175541674934E-06
52 | 6.780263099568493E-06 104 | 1.451596173745436E-06
56 | 3.464667536440667E-06 112 | 7.423383992927738E-07
60 | 2.242846281673588E-06 120 | 4.800356998709198E-07
64 | 1.694938366684179E-06 128 | 3.629953465701413E-07
68 | 1.521881793245574E-06 136 | 3.258813022417426E-07
72 | 6.697587630121034E-07 144 | 1.434443819173216E-07
76 | 7.397162492273396E-07 152 | 1.584598083978682E-07
80 | 4.412103631931052E-07 || TOTAL | 6.931939933174489E-04
TOTAL | 3.235124313141707E-03
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At nAg

n Al NAG n
48 | 1.008806418391758E-04 96 | 2.160276011392635E-05
64 | 8.445564133664806E-06 128 | 1.808594716677887E-06
80 | 2.498506536038107E-05 160 | 5.350483541005753E-06
96 | 1.142405915747046E-06 192 | 2.446375351916136E-07
112 | 6.678558585723493E-06 224 | 1.430193948603028E-06
128 | 1.784877132861109E-06 256 | 3.822166594384026E-07
144 | 1.929311105203431E-06 288 | 4.131571996324689E-07
160 | 4.596691029235339E-07 320 | 9.843441958019042E-08
176 | 8.547286555242763E-07 352 | 1.830376270724982E-07
192 | 3.001934970565052E-07 384 | 6.428482471383487E-08
208 | 3.105774818838012E-07 416 | 6.650931755707915E-08
224 | 1.587885357402044E-07 448 | 3.400403181749074E-08
240 | 1.027173682524362E-07 480 | 2.199669989308730E-08
256 | 7.765849791082405E-08 512 | 1.663037118072310E-08
272 | 6.972283749433762E-08 || TOTAL | 3.171694100629041E-05
TOTAL | 1.481804800495427E-04
n At N Ag n At N Ag
192 | 4.6264179908427288E-06 384 | 9.9082916600421990E-07
256 | 3.8731198581310976E-07 512 | 8.2949482758508111E-08
320 | 1.1458671615578771E-06 640 | 2.4540815654080329E-07
384 | 5.2389571898658846E-08 768 | 1.1220120542733931E-08
448 | 3.0629321911129584E-07 896 | 6.5598242336081594E-08
512 | 8.1854835858156943E-08 1024 | 1.7530656089327260E-08
576 | 8.8482854184384502E-08 1152 | 1.8950212759735452E-08
640 | 2.1080513172168475E-08 1280 | 4.5147631138606347E-09
704 | 3.9199652097159730E-08 1408 | 8.3953146035636040E-09
768 | 1.3767306981705843E-08 1536 | 2.948516146881774TE-09
832 | 1.4243752769209700E-08 1664 | 3.0505574607724492E-09
896 | 7.2823146413359194E-09 1792 | 1.5596384135039806E-09
960 | 4.7108662525121524E-09 || TOTAL | 1.4529548267699919E-06
TOTAL | 6.7889020251803036E-06

57

&



n At N A n Al N Ag
768 | 2.1220483107060248E-07 1536 | 4.5447758471903085E-08
1024 | 1.7765181151336782E-08 2048 | 3.8047555834991872E-09
1280 | 5.2558831281820062E-08 2560 | 1.1256488767521822E-08
1536 | 2.4029986629379448E-09 3072 | 5.1464843246545596E-10
1792 | 1.4049114444095710E-08 3584 | 3.0088892276236928E-09
2048 | 3.7545217407334889E-09 4096 | 8.0410325428621003E-10
2304 | 4.0585498689188107E-09 4608 | 8.6921686507974489E-10
2560 | 9.6692191607835606E-10 5120 | 2.0708497868623932E-10
2816 | 1.7980166183293125E-09 || TOTAL | 6.5912945581065438E-08
3072 | 6.3148084208811378E-10
3328 | 6.5333502374376908E-10
TOTAL | 3.1084378262068483E-07

TOTALS OF MEASURE OF SNH WINDOWS IN nth-CASCADE WINDOWS

5.937324163210067E-02
1.604219582708864E-02
3.235124313141708E-03
6.931939933174490E-04
1.481804800495428E-04
3.171694100629041E-05
6.788902025180304E-06
1.452954826769992E-06
3.108437826206848E-07
6.591294558106544E-08
7.953227180028445E-02

(UP TO PERIOD 24)
(UP TO PERIOD 42)
(UP TO PERIOD 80)
(UP TO PERIOD 152)
(UP TO PERIOD 272)
(UP TO PERIOD 512)
(UP TO PERIOD 960)
(UP TO PERIOD 1792)
(UP TO PERIOD 3328)
(UP TO PERIOD 5120)

Table 1.12: Measure of snh windows.
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MEASURE OF n-PERIODIC SIMPLE ATTRACTION WINDOWS IN Af, t=0...6.

Ag

A€
A1

AC
A2

O 00 3 O U b W (B

T T N O G S o S v S S o Sy S R
N = O WO 00~ O oW N~ O

2.981807583499140E-02
1.623007883083403E-03
7.999950221091194E-03
2.586959252353693E-04
2.204242238617134E-03
5.177460700566267E-04
6.526422490675849E-04
1.326797753117149E-04
2.770797510259652E-04
9.622558319577115E-05
1.006688591752759E-04
4.777825028524133E-05
3.418677673032233E-05
2.435811672339753E-05
2.219304016428393E-05
9.632421671678953E-06
1.054678243583049E-05
6.170920884335372E-06
3.826135801865000E-06
3.366227624114151E-06

10
12
14
16
18
20
22
24
26
28
30
32
34
36

8.1079961342530176E-03
7.2629519317035651E-04
1.9630271239646918E-03
9.6829805205339569E-05
5.1905071827619553E-04
1.4241367985792785E-04
1.4889899242873094E-04
3.6740182014077804E-05
6.6484662297333629E-05
2.3402974397762621E-05
2.4147350230749320E-05
1.2495535902545817E-05
7.9455878387313383E-06
6.0629042015203360E-06
5.4276844221462505E-06
2.3963230907086963E-06

12
16
20
24
28
32
36
40
44
48
52
56
60

1.6370189290784847E-03
1.3475709203614183E-04
4.0308603709385271E-04
1.8238602775375034E-05
1.0721996263142463E-04
2.8617896919755358E-05
3.0937565586475201E-05
7.3617696966649104E-06
1.3697508118873380E-05
4.8113867404386834E-06
4.9760368200507665E-06
2.5430510193213962E-06
1.6459253632666870E-06
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|An]

el

€n

oo w8

10
24
20

14

14

16

SUM

2.981807583411301E-02
8.107996134024227E-03
6.622846513950202E-03
1.637018928072165E-03
1.623007881829238E-03
1.515311818918605E-03
1.281206418890707E-03
1.146072746725499E-03
7.369326477080078E-04
7.262951926135934E-04
3.688660056715976E-04
3.507617529658336E-04
3.165683299826694E-04
2.859158382328142E-04
2.340685456913016E-04
2.090100394914890E-04
1.940543425922314E-04
1.810306538455042E-04
1.716254784234067TE-04
1.625359385166031E-04
1.347570919328772E-04
1.290097530846079E-04
5.595296788727617E-02

-2.096725080006543E-01
-5.144003679616797E-01
-3.666412963087239E-01
-5.810874943646800E-01
-5.723798895171137E-02

-5.511761040848819E-01

-1.376689094410995E-01
-4.237261647947689E-01
-3.250434264434559E-01
-4.773057104173951E-01
-4.978377204540769E-01
-5.950470120208444E-01
-5.886800473342604E-01

-2.885747448358570E-01.

-5.633056351482539E-01
-4.040661026928790E-01
-9.248493382874270E-02
-5.421008649125095E-01
-4.445095006926015E-01
-1.674880202384408E-01
-5.735893698769146E-01
-3.437112706052193E-01

-2.201819241658870E-01
-5.171966260635098E-01
-3.689801643186392E-01
-5.816522865531801E-01
-5.782620314202115E-02
-5.517074202293009E-01
-1.381318203966798E-01
-4.241382226100451E-01
-3.253090570981257E-01
-4.775677383600991E-01
-4.979707318543069E-01
-5.951679720453749E-01
-5.887910933996004E-01
-2.886777845588647E-01
-5.633897078588289E-01
-4.041416911389079E-01
-9.255526770868568E-02
-5.421660125940350E-01
-4.445716155334447TE-01
-1.675468982349900E-01
-5.736380129778659E-01
-3.437579835310577E-01

Table 1.15: Windows of attraction greater than 10~*
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n=3 n==6 n=>5
k| AE/10k] k| 18g1/18k] k| 1881/18k]
3 | 1.820870630E-02 3 | 4.778980980E-03 3 | 3.892172023E-03
4 | 2.052968993E-02 4 | 5.148050137E-03 4 | 3.853190250E-03
5 | 1.767763426E-02 5 | 4.696916717E-03 5 | 3.907018395E-03
6 | 1.696852882E-02 6 | 4.592270071E-03 6 | 3.929118993E-03
7 | 1.750130073E-02 7 | 4.667569163E-03 7 | 3.904160336E-03
8 | 1.725750591E-02 8 | 4.626567170E-03 8 | 3.909533397E-03
9 | 1.737300000E-02 9 | 4.646676275E-03 9 | 3.906897850E-03.
10 | 1.703370961E-02 || 10 | 4.605481871E-03 || 10 | 3.931329678E-03
11 | 1.758504153E-02 || 11 .| 4.681163581E-03 || 11 | 3.906722895E-03
12 | 1.712260583E-02 || 12 | 4.626922837E-03
13 | 1.758419225E-02 || 13 | 4.681203200E-03
14 | 1.706153475E-02
n=12 n=4. n =10
ElIaEsd k] Iafad [ k| IATIA
31 9.671215781E-04 3 | 9.910053778E-04 3 | 8.780910408E-04
4 | 1.048431631E-03 4] 1.019113492E-03 4 | 8.513205273E-04
5 | 9.489781166E-04 5 | 9.837984552E-04 5 | 8.866511862E-04
6 | 9.256910320E-04 6 | 9.739437290E-04 6 | 8.997609504E-04
7 | 9.425553491E-04 7 | 9.814532291E-04 7 | 8.891145217E-04
8 | 9.336188802E-04 8 | 9.781776565E-04 8 | 8.925987063E-04
9 | 9.379978915E-04 9 | 9.797648164E-04 || 9 | 8.909055730E-04
10 | 9.285169978E-04 || 10 | 9.747599599E-04 || 10 | 8.993584441E-04
11 | 9.825441741E-04
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n=2>5 n=17 n=7
ARSI DS DS
3 | 7.759035169E-04 3 | 6.848481606E-04 || 3 | 4.436193568E-04
4 | 7.850923786E-04 4 | 6.750438854E-04 || 4 | 4.438301925E-04
5 | 7.736278827E-04 5 | 6.877304347TE-04 || 5 | 4.436826162E-04
6 | 7.706167521E-04 6 | 6.919515075E-04 || 6 | 4.438803881E-04
7 | 7.728516882E-04 7 | 6.886011545E-04 || 7 | 4.436700152E-04
8 | 7.717650114E-04 8 | 6.808267271E-04 || 8 | 4.436534013E-04
9 | 7.723001777E-04 9 | 6.892310110E-04 || 9 | 4.436653168E-04

10 | 7.709293657E-04 || 10 | 6.917392473E-04

n=2=8 n=10 n=24
k| 1AL/ 1Ak ki lAagll/ Ak k| 1ad1/1Ax
3 | 4.400059413E-04 || 3 | 2.231066267E-04 || 3 | 2.070757884E-04
4 4.478239022E—04 4 | 2.262689145E-04 || 4 | 2.243077880E-04
5 | 4.380728554E-04 || 5 | 2.223365238E-04 [ 5 | 2.032354824E-04
6 | 4.355088155E-04 || 6 | 2.213289116E-04 || 6 | 1.983135169E-04
7 | 4.374163305E-04 || 7 | 2.220701759E-04 || 7 | 2.018731188E-04
8 | 4.364983816E-04 || 8 | 2.216975697E-04 || 8 | 1.999772153E-04
9 | 4.369489765E-04 || 9 | 2.218813597E-04 || 9 | 2.009066533E-04

n =20 - n=28 n=14
AN DS Y
3 | 1.836746536E-04 || 3 | 1.711803794E-04 || 3 | 1.394319540E-04
4 | 1.785204691E-04 || 4 | 1.684985668E-04 || 4 | 1.365390140E-04
5| 1.853374075E-04 |} 5 | 1.719463254E-04 || 5 | 1.402693821E-04
6 | 1.878976346E-04 || 6 | 1.730475961E-04 || 6 | 1.414814753E-04
7 | 1.858110670E-04 || 7 | 1.721835632E-04 || 7 | 1.405270857E-04
8 | 1.864809129E-04 || 8 | 1.725175338E-04 || 8 | 1.408902274E-04
9 | 1.861561774E-04 || 9 | 1.723539161E-04 || 9 | 1.407123257E-04
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n=9 n==~6 n=14
k| a5/ k| 1AZ)/1A] k| |Agl/|A
3 | 1.260971209E-04 || 3 | 1.174998457E-04 || 3 | 1.088130060E-04
4 | 1.257109983E-04 || 4 | 1.176587055E-04 || 4 | 1.089071502E-04
5 | 1.262147577E-04 || 5 | 1.174610810E-04 || 5 | 1.088248169E-04
6 | 1.263912777E-04 || 6 | 1.174109025E-04 || 6 | 1.088753232E-04
7 | 1.262485422E-04 || 7 | 1.174472958E-04 || 7 | 1.088181767E-04
8 | 1.262961564E-04 || 8 | 1.174280970E-04 (| 8 | 1.088092733E-04
9 | 1.262729125E-04 || 9 | 1.174371846E-04 || 9 | 1.088146494E-04
n=29 n=717 n=16
k| 1A&1/18] k| 18/ |1Ax| k| 1A/ 1A
3 | 1.034916757TE-04 || 3 | 9.833794327E-05 || 3 | 8.174230201E-05
4 | 1.027753081E-04 || 4 | 9.839800860E-05 || 4 | 8.338407458E-05
5 | 1.036911786E-04 {i 5 | 9.832703003E-05 [ 5 | 8.133279316E-05
6 | 1.039746954E-04 || 6 | 9.831680431E-05 || 6 | 8.078565799E-05
7 | 1.037533907E-04 || 7 | 9.832177656E-05 || 7 | 8.119487681E-05
8 | 1.038408810E-04 || 8 | 9.831455603E-05 || 8 | 8.100214915E-05
9 | 1.037979001E-04 || 9 9.831795929E-05 || 9 | 8.109614616E-05
n=29

k| 1AE1/1A]

3 | 7.800513021E-05 ,

4 | 7.800753488E-05

5 | 7.800987684E-05

6 | 7.802157075E-05

7 | 7.800966516E-05

. 8 | 7.800948920E-05
9 | 7.800937702E-05




(sln;s2n)

(rlns r2n)

o o, w3

12

10

10
24
20

14

14

7
16
9

1.0487176E-03 1.0512265E-03
2.7771006E-04 2.7819361E-04
2.2937585E-04 2.2955286E-04
5.6114357E-05 5:6313126E-05
5.7960445E-05 5.8037573E-05
5.1935126E-05 5.2039091E-05
4.5527139E-05 4.5552503E-05
4.0368786E-05 4.0402866E-05
2.6088921E-05 2.6090721E-05
2.5789760E-05 2.5820760E-05
1.3086122E-05 1.3098376E-05
1.2015678E-05 1.2076079E-05
1.0850525E-05 1.0879636E-05
1.0087786E-05 1.0100658E-05
8.2230933E-06 8.2372213E-06
7.4182345E-06 7.4202622E-06
6.9075703E-06 6.9081834E-06
6.3991731E-06 6.3996284E-06
6.0912033E-06 6.0945329E-06
5.7820620E-06 5.7822232E-06
4.7888518E-06 4.7954463E-06
4.5870552E-06 4.5871686E-06

3.5170534E-02 3.5254673E-02
3.4251381E-02 3.4311019E-02
3.4634028E-02 3.4660756E-02
3.4278380E-02 3.4399801E-02
3.5711746E-02 3.5759267E-02
3.4273557E-02 3.4342166E-02
3.5534585E-02 3.5554382E-02
3.5223581E-02 3.5253317E-02
3.5402043E-02 3.5404485E-02
3.5508647E-02 3.5551330E-02
3.5476628E-02 3.5509850E-02
3.4255953E-02 3.4428153E-02
3.4275462E-02 3.4367418E-02
3.5282363E-02 3.5327381E-02
3.5131133E-02 3.5191492E-02
3.5492240E-02 3.5501941E-02
3.5596061E-02 3.5599221E-02
3.5348561E-02 3.5351076E-02
3.5491253E-02 3.5510653E-02
3.5574052E-02 3.5575044E-02
3.5536918E-02 3.5585854E-02
3.5555879E-02 3.5556758E-02

TS

2.0534087E-03 2.0614883E-03

3.4920730E-02 3.5058133E-02

The total measure of 2-simple windows, A7, is in the interval (s1,,s2,), and
|A}I|/|An, i1 € (F1n,72n). Moreover the total measure of 2-simple windows is in the last
row (corresponding to TS), and also the ratio between 2-simple windows and 1-simple

windows.

Table 1.16: 2-simple windows of attraction: A,':i means the union of 2-simple windows of

period kn, corresponding to a window A, ;.
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n | Maximal interval width - Maximal interval extrema
3 | 3.488448109079493E-01 | -2.500000000000000E-01 -5.988448109079493E-01
4 | 3.488448109079493E-01 | -2.500000000000000E-01 -5.988448109079493E-01
5 | 2.232418000753599E-01 | -3.756030108325894E-01 -5.988448109079493E-01
6 | 1.417467687732761E-01 | -3.756030108325894E-01 -5.173497796058655E-01
7 | 9.206548424909488E-02 | -4.252842953567706E-01 -5.173497796058655E-01
8 | 7.354018871041500E-02 | -5.253046221975343E-01 -5.988448109079493E-01
9 | 7.354018871041500E-02 | -5.253046221975343E-01 -5.988448109079493E-01
10 | 4.562207885972950E-02 | -5.532227320482198E-01 -5.988448109079493E-01
11 | 4.562207885972950F-02 | -5.532227320482198E-01 -5.988448109079493E-01
12 | 2.846042682629192E-02 | -5.532227320482198E-01 -5.816831588745117E—01
13 | 2.846042682629192E-02 | -5.532227320482198E-01 -5.816831588745117E-01 .
14 } 1.805938246999122E-02 | -5.636237764045205E-01 -5.816831588745117E-01
15 | 1.805938246999122F-02 | -5.636237764045205E-01 -5.816831588745117E-01
16 | 1.555550542669680E-02 | -5.832893054812525E-01 -5.988448109079493E-01
17 | 1.555550542669680E-02 | -5.832893054812525E-01 -5.988448109079493E-01
18 | 1.555550542669680E-02 | -5.832893054812525E-01 -5.988448109079493E-01

Table 1.17: Width of largest interval in which there is no periodic orbits of period smaller

than or equal to n.
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| In|

|In—1|/lIn|

16
32
64
128
256
512

3.488448109794998E-01
7.354018878196551E-02
1.555550549824730E-02
3.326077181158884E-03
7.120099674375821E-04
1.524776406734371E-04
3.265543821424322E-05
6.993822323380864E-06

4.743594172891872E-+00
4.727598777825098E-00
4.676832391732831E+00
4.671391319322314E+00
4.669602469535197E-00
4.66928784336237TE-00
4.669183274083712E--00
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Table 1.18: Width of largest hole up to period n




n |An]

288 | 2.827637234774411E-07
384 | 1.667270187045180E-08
480 | 7.445452805876459E-08
576 | 7.598050966885335E-08
672 | 2.037661816798496E-08
768 | 1.139175102275308E-08
864 | 6.003904733941709E-09
960 |{. 1.908920696060860E-08
1056 | 2.569048309446478E-09
TOTAL | 5.260526116937182E-07

Table 1.19: Measure of n-periodic 2-simple windows inside the largest snh window of period
96.
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5.937324163210067E-02
2.948389290601315E-03
1.703340517368363E-04
1.037195112266315E-05
6.429362060578866E-07
4.008325355082139E-08
2.503350651645803E-09
1.564248493831158E-10
9.775785651406443E-12
6.109536079143389E-13
3.818157154535050E-14
2.385988848508091E-15
1.490796036872275E-16
9.311917519291988E-18
5.812940916136393E-19
3.624481792529490E-20
2.254160241311570E-21
1.395878826393845E-22
8.538097179190348E-24
5.162883287798387E-25
2.858925651571642E-26
1.681721318103705E-27

2.013751773599465E+01
1.730945316299136E+01
1.642256598805688E+01
1.613216214133898E+01
1.604002043503556E+01
1.601184137926065E+01
1.600353563719659E+01
1.600125605869959E+01
1.600086409961441E+01
1.600126928218953E+01
1.600240988939434E+01
1.600479736660658E+01
1.600954941647319E+01
1.601928809123560E+01
1.603799177062385E+01
1.607907781400938E-+01
1.614868138042494E+01
1.634882804796342E+01
1.653745921270139E+01
1.805882319800862E+-01
1.699999649641917E+01
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Table 1.20: Measures of snh windows (up to period 24) within principal tangency window




mn /&

€0

O 00 ~1I O v w3

e
NN = O

1.009608917500249E-01
8.824015463667236E-02
8.609790747390427E-02
8.601297328606208E-02
8.628152751356520E-02
8.651761908420589E-02
8.666806453859027E-02
8.675323408371579E-02
8.679878024548109E-02
8.682241388191965E-02

2.096725080006543E-01
5.723798895171137E-02
1.445962151916002E-02
3.616741186812089E-03
9.038753062155362E-04
2.259237096849571E-04
5.647651048596137E-05
1.411875188495575E-05
3.529658258929121E-06
8.824123184064164E-07

m,, is the measure of snh windows for ¢ € (¢,,0), without taking into account the first

window of period n, from period n + 1 to period 2n; €, = _ig_’.»‘;—n_

Table 1.21:
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Chapter 2

On the strongly dissipative

Hénon map

One of the standard forms of the Hénon map is f4 5(z,y) = (1+y— az?,bz), where a and b
are real parameters, and f, ; is a map of the plain into itself. The goal of this chapter is to
analyze the invariant manifolds of the fixed points of f,; when b is close to 0. The results
obtained for the invariant manifolds will be applied to obtain the values of the parameter

for which there are homoclinic or heteroclinic tangencies.

2.1 Basic properties

Proposition 2.1.1 The Hénon map f, satisfies the following properties:
a) det Df,p(z,y) = —b and therefore it is constant when b is fized.

b) If a > —1(1 — b)? then there are two fized points py = (z4,y+) and p_ = (z-,y-)

of fa,p such that
_ ~(1-b)+{I-b)2+4a
T 2
a

T
and
—(1-8)—-+/(1-8)2+4a
T_ = .
2a
¢) p— is a saddle fized point if a > —%(1 - b)? and p; is a saddle fized point if a >
Ty

d) For b=0, f,0 s not a diffeomorphism because all the plane collapses to the z azis:

fa,0(z,y) = (1 + fa(z),0), where fo(z) = 1 — az? is the so called logistic map.
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e) Forb# 0, fop is a diffeomorphism in all R? with inverse map: fa_’g = (b~ ly,z +
ab~2y? - 1). )

f) All the quadratic maps with constant jacobian are conjugated to this map.
Theorem 2.1.2 Let a,b € IR, b # 0 small enough, and p = (zo,yo) one of the fized points
of the Hénon map. Assume that p 1s a saddle fized point . Then there exist open sets U
and V of zo, and analytical functions g : U — IR, h: V — R such that

a) We.(p) = {(z,y) € R® : y=g(z), z € U},

b) Wie(p) = {(z,v) € R® : y = h(z), z €V},
where W (p) and WS (p) are, respectively, the unstable and stable local invariant mani-

folds.

The proof is a consequence of the stable manifold theorem.

Remark 2.1.3 Notice that the functions g and h as well as the neighbouroods U and V

depend on a and b.

2.2 Invariant manifolds for 6 =0

For b = 0 we can give an explicit expression of the invariant manifolds. First we shall
give a general definition of unstable manifold that can be used when the map is not a

diffeomorphism. We will use a generalization of the definition 1.1.1 of chapter 1.

Definition 2.2.1 Let f : IR — IR? be a differentaible map with a saddle fized point. Then

‘Wu.(p) = {(x)y) € 'Rz : 3(:l:n) yn)ne|N - D with (xO)yO) = (Z,y) a'ndf(xn-f-l,yn'f'l) =
(zn,yYn)} 18 called the unstable invariant manifold of p.

The next proposition allows to use a parametrization of the unstable manifold similar

to the one used for diffeomorphisms (see chapter 3, proposition 3.1.2).

Proposition 2.2.2 Let p = (z0,0) be one of the fized points of fa 0, such that p is a saddle.
Then there exists an entire function Z(t) = (z(t),y(t)), t € IR, such that:

a) £(0) = p,
b) W*(p) = £(R),
¢) fao(Z(t)) = Z(at), where a = f.(zo).
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Proof:

Assume, for instance, that p = (z+,0). The equation for Z(t) is:

1-az(t)?+y(t) = z(at), }

0 = y(at)) (21)

because fq0(z,y) = (1 - az? + y,0).
In this case o = fi(z4) = —2azy and z4 = (-1 + v1+ 4a). From 2.1 one has
y(t) =0Vz € IR and
1 - az(t)? = z(at). (2.2)

This equation can be transformed in the equivalent one (when it has sense)

z(a"t) =+ }—l(t)

But as we require z(0) = z4+ > 0, one should have

s(a~1t) = \/1—":—“). (2.3)

Therefore, we have transformed our initial problem in the following one: To find a function
z(t) such that, z(0) = =z, satisfying 2.3. This is equivalent to say that the function
f(z) = \/(_1_—_2:)F, defined in a neighbourhood of z., is conjugated to F(z) = a1z, by
means of an analytical function. This is true by Sternberg theorem ([14]) in dimension 1,
because || # 1. Therefore, it exists locally the function z(t) satisfying 2.2. To extend it to
the real line IR, one uses 2.2. This proves a) and c).

It remains to see W*(p;.) = Z(IR) :

2) We(py) > Z(R) -
Given (z(t),0), let (zn,yn) = (z(a™"t),0). Then (zo,yo) = ((t),0) and
f(Zat1,Yn+1) = (2(7"1),0) = (zn, yn)-
Furthermore
lim (z,,y,) = lirrgo(x(a_"t),O) = (z4+,0),
because |a| > 1. Hence (z(t),0) € W¥(p4).
b) We(ps) C &(R) - |
From the definition , it follows that W*(py) = U, oy f2(U) x {0}, where U C R is

a small enough neighbourhood of z.. Let U = (z(to),z(t1)), for to < 0 < t; and
max(|to], |t1]) small enough. Then Uy f2(U) = Z(IR) = W*(p4). O
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Remark 2.2.3  a) The case p = (z—,0) is shown in an analogous way, but then f(:z:) =
-1 —z)a 1.
b) The function z(t) is not injective and goes an infinite number of times through the

same points. It gives a parametrization close to the one obtained for b # 0.

¢) One can always normalize z(t) taking 2'(0) = 1 and therefore, locally, for t > 0
z(t) is to the right of o, and for t < O z(t) is to the left of xo. Indeed, if z(t) is a
parametrization as in proposition 2.2.2, then Z(t) = z(At), for A € IR, X # 0, also 1s.

From now on, we shall distinguish between the invariant manifolds of p, and p_,
denoting by ¥, and %, respectively, the parametrizations of W*(p+) and W*(p-), and
ay = fi(z+), az = fl(z_). We need two lemmas before describing the invariant mani-
folds.

Lemma 2.2.4 Assume g : [a,b] — [c,d] 1s a continuous non decreasing function such

that [c,d] = g([a,b]) C [a,b] and having one fized point zo € [c,d]. Then
Vz € [a,b] lim ¢"(z) = zo.
n—oo

Proof:

Let z € [a,b], = # zo. There are two possible cases: z < g(z) or z > g(z). In the
first case we have that (g"’(:z:))nelN is a non increasing sequence, and in the second case,
it is non decreasing. In both cases it is bounded. Therefore 3% = lim,_, o g"(z). But
9(Z) = g(limp— 0 9™ (2)) = lim,—, o 9(9"(2)) = Z. By uniqueness o = Z. O
Lemma 2.2.5 Let g : [a,b] — |[c,d] be a differentiable non decreasing function such
that [c,d] = g([a,b]) C [a,b] and having ezactly three fized points zo < z; < zy with
f'(z1) > 1. Then Vz € (z0,2z1) one has lim, o g"(z) = 20 and Vz € (z1,22) one has
limp— o0 9(2) = z2.

Proof: ,

Let £ € (zo,z1). As f'(zo) > 1 and there are no fixed points in (zo,yo), we have

g(z) < z. Therefore (9"(z)),cy is 2 non increasing sequence. As in lemma 2.2.4 this

means lim,,_,, ¢"(z) = zo. The proof is similar for z € (z,z2). O

The main result of this section is the following:
Theorem 2.2.6 Let py and p_ be the two fized points of fo 0. Then:

a) Ifa > 0 we have W*(p_) = (—o0,1] X {0} and there is an interval I = (—oo,t0) such
that :C'Z(t) £0Vtel and x'z(to) =0, Ig(to) =1.
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b) If 3 < a <1 then W¥(py) = (2',2") x {0}, where o' and z" are the two periodic
points of fo. Furthermore, Vt € IR one has 2} (t) # 0.

¢) If1 < a <2 then W¥(p4+) = [1 — a,1] x {0}. Furthermore 3tp, t; € IR such that
to < 0 < ¢y, xi(to) = I'l(tl) = 0, xl(to) =1-—a, 21(t1) =1 and :c'l(t) :,é 0, .
Vt € (to,t1)-

d) If a > 2 then W*(p4+) = (—o00,1] X {0}. Furthermore 31y, t; € IR such that to < 0 <
tl, x&(to) = Z'l(tl) = 0, xl(to) =1- a, zl(tl) =1 and a:’l(t) # 0, Yt e (to,tl).

e) We(py) (resp. W*(p—)) is a set of parabolas: y = az® + zo — 1, where fP(z0) = z+
(resp. f2(zo) = z_) for some n € IN.

This theorem is consequence of propositions 2.2.7 to 2.2.11. In all this propositions we

suppose b= 0.

Proposition 2.2.7 Let a > 0. Then W¥(p_) = (—00,1] X {0} and there ezists an interval
I = (—o00,to) such that z4(t) # 0Vt € I and z4(tp) =0, z2(to) = 1.

Proof:

We can take [a,b] of 2.2.4 as J = [z_(1 + 2a) — a,0], [¢,d] a8 K = [z— — 1,-Va"}]
and g as f~' = —\/(1 - z)a=1. As K c J, and f~! is not decreasing, from 2.2.4 it follows
J x {0} € W¥(p-). As W¥(p-) = U, ¢y f2(J) x {0}, we have W*(p_) = (—o0,1] x {0}.

To show the second part of the proposition we observe that, by derivation of 1~ az5(t)?

one has
- 2az2(t)z5(t) = azzh(cst). (2.4)

Let to = min{t > 0 : z(t) = 1}. This value is well defined because there are t € IR with
z2(t) = 1 due to the fact that (1,0) € W*(p4 ). Furthermore ¢y # 0 because z2(0) = z_ # 1.
Then one has z4(to) = 0 because as 1 — azz(a; t9)2 = z(to) = 1, then z2(a3 o) = 0 and,
by 2.4, we obtain z4(to) = 0.

Let us see now that V¢t € (—oco,tp) z5(t) #0:
Assume that there is 0 < t < t; such that z,(2) = 0. We can choose t in such a way
that Vt € (0,t) z5(t) # 0, because z4(0) = 1. We have:

~ a3 (a7 D)h(o5 1) = cazh(B) = .
Therefore two cases can occur:

a) zz(a; 't) = 0. Then z3(f) = 1 — azy(a;'f)? = 1. This is an absurdity because
zg(f) < 1.
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b) z4(og 'f) = 0. This is again an absurdity because 0 < a; 't < £.

Therefore Vt € [0,to) z5(t) # 0.

Suppose now that 3t such that { < 0, z,(f) = 0 and Vt € [t,0] one has z4(t) # 0.
One reaches also a contradiction because in one case z2(f) = 1 is not possible because
fa((—=00,z_]) = (~00,z-], and in the other z4(a;'f) = 0 and £ < a7 'f < 0, also not
possible. Hence Vt € (—o0,t9) one has z4(t) # 0. O

Proposition 2.2.8 Let 2 < a < 1. Then W¥(p;) = (z',2") x {0}, where z' and z” are
the two 2-periodic points of f,. Furthermore ! (t) # OVt € R.

Proof:

We note first that, for these values of a, the point p; is a saddle and the two 2-periodic
points p; = (z 0) and p = (z",0) are attractors, such that f,(z') = zi'. It is easy to see
that 2’ and z” are attractors for a € [3/4,5/4]. Furthermore 0 < 2’ < z” < 1. Indeed: z!

and z'" satisfy:

1-az? = 2",

1-—az" = <.

l1—a
al?

Hence z' + 2" = 1 and 2’2" =
This means that z' and z" are roots of the polynomial

1 a—1-
P =g2 -~z — .
2(z) == ST

AsO<a<1:1/a>0and (a~-1)/a? > 0. Therefore z' and 2" > 0. Also

, 1-+4a-3 , 1++/4a-3 ~1++1+4a
2a ’

r=—rr=s———-\ ., =
2a ’ 2a » ot

and one can check z' < z, < 2" ifa>3/4, 2’ >1-aforae (3,1)U(l,00) and z” < 1
for a € (2,1) U(1,00). : _

We want to apply 2.2.5 to ¢ = f1 2, [a,b] = [¢,d] = [z',2"]. To this end we should check
that the following holds .

a) f—:lzl’z',z”] is non decreasing: if z,y € [2',2"] and z < ythen1-y < 1-z. Asz < 1and

y < 1 we have \/(1 — y)a=! < /(1 — z)a~!. Furthermore 2’ > z'z" = (1 — a)/a® >

1 — a because 3/4 < a < 1. In particular > 1 —a, y > 1 — a. Hence

V- VI za et = f72(z) < \/(1 —VA=ya a1 = £7%(y).

b) f32(le2") = 1f72(), 322" = [¢/, ")

¢) z4 is a saddle fixed point.
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Then 2.2.5 assures W¥(p4) = (z',z") x {0}.

Let us prove the second part of 2.2.8: Assume that 3¢ € IR such that z}(¢) = 0. Let
t > 0 (if £ < O the proof is similar). We can always take ¢ such that z(t) #0Vt € (0,).
We have:
20z (a7 D2 (o] ) = cugl () = 0.
Then either z; (a7 f) = 0, which is an absurdity because 0 ¢ W*(p..), or ! (a] %) = 0.

In this last case, applying the same reasoning, it follows z’(a;%f) = 0 and 0 < o]t < {,
again an absurdity. Therefore V¢ € IR z(t) # 0.0

Proposition 2.2.9 Letl < a < 2. Then W*(py) = [1—a, 1]x{0}. Furthermore Ito, t; € R
such that tg < 0 < ty, z\(to) = 21(t1) =0, z:1(to) =1—a, z1(t1) =1 and 2} (t) # 0Vt €
(to,t1)-

Proof:

We note that now 1 —a < 2’ < z; < 2" < 1. To see W¥(p;) = [1 — a,1] X {0} we shall
use 2.2.4 for g = f72, [a,b] = [0,1], [c,d] = [\/(1 —Va~1)a~1,va~1]. Let us see that the
hypothesis of 2.2.4 hold:

a) g is non decreasing: Let z,y € [0,1], z < y. As 2 < 1 and y < 1 one has

vl —y)a=! < y/(1-z)a=!. Asa > 1and z > O then z > 1 — a and hence

V(1 = z)a~! < 1. Therefore f7?(z) < f;z(y). So we have g non decreasing and
(0,1)) = [0(0),0(1)) = [y/ (1 - VaDa=, VaT)

b) [\/(1 —+va 1)a"1,va"1] c [0,1] because a > 1 implies 1 — v/a=! > 0 and then
0< \/(1 -Va1l)a"l <Vael <1

c) g has only one fixed point in [0, 1] and it is .. To see this it is only necessary to note

that one of the 2-periodic points, z’, of f, is negative. Then f;!(z") # z'.

Then lemma 2.2.4 assures [0,1] € W¥(p4) and, as f,(1) =1 — a, we have [l — a,1] C
W*(p+). Furthermore f,([1—a,1]) = [1—a,1], because a < 2. From this it follows W*(p4) =
[1 - a,1] x {0}.

To prove the second part of 2.2.9 we proceed as follows: Let t; > O be such that
z1(t1) = 1 and z;(t) # 1Vt € (0,t;). We note that z;(a]'tz) = 0 and hence z)(t;) = 0
because

a2} (t1) = —2az; (o] t;)2) (a7 't1).
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Furthermore z;(cnt;) = 1—a and a; 2} (a;t1) = —2az; (t1)z) (t1) = 0, that is 2 (a1t;) = 0.

Let t = min{t € [0,¢;] : z(t) = 0} # 0. Then
~2azy(ay f)z (o 'T) = a1z (f) = 0.
Two cases can occur:
a) z1(a7't) = 0. Then z;(f) = 1 — az;(a7'%)? = 1 imply £ = ¢,.

b) z!(alf) = 0. Then —2az; (o] 20z, (a]?f) = a1} (a7 *f) = 0. As 0 < o %f < £ we
have z}(a] %f) # 0. This means z;(a t) = 0. This is an absurdity because in such

case z1(¢) =1 — a and hence > t;.

Therefore t = t;. Let us see now that Vt € (a1t;,0) one has z{(t) #0:
If there is t' € (at1,0) such that z}(t') = O then 0 < a7 't < t;, z}(a7't') =0 or
z1(a;'t') = 0. In both cases we reach a contradiction.

Hence, if to = a;t; then 2.2.9 holds for [to,t;1]. O

Proposition 2.2.10 Let a > 2. Then W¥(py) = (—o0, 1] x {0}. Furthermore 3tp, t; € R
such that to <0< t1, 2:'1 (to) = :L‘;(tl) = 0, :El(t()_) =1- a, a:l(tl) =1 and x;(t) ;é oVt e
(to,t1). ‘

Proof: .
Proceeding as in 2.2.9 we have [1 — a,1] € W*(p;). But now we obtain W*(py) =
UneiNfas([1 —a,1]) = (—oo,1] because 1 — a < z_. The second part is as in 2.2.9. O

Proposition 2.2.11 W*(p.) (respectively W*(p~)) is a set of parabolas y = az? + z¢ — 1,
where f7(zo) = x4 (resp. f2(zo) = z—) for some n € IN if p; or p_ are saddles.

Proof:

We do it for p4 (for p_ it is done in the same way). By definition W*(py) = {(z,y) €
R?s.t. limp— oo f2o(z,y) = p+}. Hence all the points (zo,0) such that f7(zo) = z4 are in
W?*(p+). Furthermore, given one of these 2, let y = g(z) = az? + 2o — 1. Then f, o(z,y) =
(z0,0). Hence f:’gl(:c,y) = (z+,0). This implies (z,y) € W*(p+). These ones are the only

points belonging to W*(p4 ) because in the interval there is no other point on the manifold,

due the fact that py is a repellor. O

2.3 Invariant manifolds for b close to O

In this section we shall prove the differentiable dependence of the invariant manifolds with

respect to a and b, and we shall give local expressions for b close to 0.

81



*
Proposition 2.3.1 The map fou(z,y) = (1 + by — az?,z) is conjugated to fup and its
inverse 1s :; (z,9) = (y,b"(z+ay?—1)) ifb#0. If g : U — R, being U a neighbourhood
of x4 or z_, represents the local unstable manifold of p, or p_ under f, then g : U — IR,
given by g(z) = bg(z), represents the local unstable manifold of py = (z4,y4+) or p— =
(z—,y-) under f.

Proof:

By means of the change Z = z, § = by we pass from f,p to f 5. Furthermore, let
g : U — R as in the statement. Assume, for instance, that §(z4+) = z; and g(1 + bg(z) —
az?) = z. If g(z) = bg(z) then g(1 + g(z) — az?) = bz and g(z4) = bz4+ = y4. Concerning

" the inverse map, it is easy to make the check. O

Proposition 2.3.2 Let (zo,y0) be one of the fized points of fop. Translating (zo,yo) to

the origin, and taking as azes the eigendirections at the fized point, we have

~—=1 a 2
a;l 0 ) z+ gmriger(z+y) ’ (25)

0 & Y- gtz +y)?

fa,b(z’by) = (

where a7, a; ' are the eigenvalues associated to the fized point with |a7*| > 1 and |65} <

1. We denote also by f,, the map after the change of coordinates.

Proof:

By translating £ = z + z¢, # = y + o, We have:

_ 0 1 z + ay?
Lz, y) =
fa'b( v) ( b=! 2azeb? ) ( y )

because o + az — 1 = bzo, (Zo,yo) being the fixed point.
The eigenvalues of (0,0) (fixed point after the translation) satisfy &2 + 2azoa — b = 0.
Therefore &;,2 = —azg = \/a?z} + b. The eigenvectors (B2, 1) satisfy:

—2az9— Q12 b P2y (O
1 —&y.0 1 ) \o)’

Hence 81 = &; and Bz = &o. Perfoming the linear change by means of the matrix C, we

have
CloftoC=CroAoCo(I+C of0C),

&1 &g 0 1 ~ 2
C= y A= y I\, Y) = ,0),
( 11 ) (b'l 2a:z:ob'1) Iy} = (ay,0)

and I is the identity. Hence we obtain 2.5. O

where
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Remark 2.3.3 Despite &z = 0 when b= 0, one has &; # &2 if (0,0) is a saddle. Therefore
the nonlinear part of fa"g is well defined even for b =0.

The main theorem of this section gives the (at least) CZ dependence of the invariant

manifolds of the fixed points with respect to a and b, for b close to zero.

Theorem 2.3.4 Let p = (zo,y0) be one of the two fized points of fob. Let a = ag such
that, under fo,,0, p 15 a saddle (that is zq is a repellor under fao,0ly=0). Then there is a
neighbourhood U = I X Iy X I of (zo(ao,0), a0,0), (where Iy, I, I3 are open intervals),
and C? functions g, : U — R and g : U — IR such that

a) 91(zo0,a,b) = g2(z0,a,b) = yo V(a,b) € Iz x I‘_”

b) Vi ={(z,y) € R® : y=gi(z,a,b), z € I} ¢ W¥(p) Y(a,b) € I x I,

¢) Vo= {(z,y) € R? : y=gz(z,a,b),z€ L1} C W*(p) V(a,b) € I x I,
| d) For b =0 the invariant manifolds are the ones given in theorem 2.2.6.
Proof:

We shall do it separately for the unstable and stable manifolds.

Unstable manifold.
As seen before, by means of a change of coordinates f . +(z,y) = Ao (I + ®) where

(7 )
0 a;?!

3(z,9) = (@), o) = (oo 4 9P g e +0)?)

o] —

and

and a; = a@i(a,b), & = a@z(a,b), are the eigenvalues of p with |&;| > 1 and |az| < 1. We
will denote also f; and f3 as fi(q,») and f2(a,d), if we need to use the parameter dependence
of these maps. Let o an upper bound of |&; *(ag,0)| and &z(ao,0) = 0, such that & < 1. We
consider the space K of sequences v, where v(n) € R? and 7(n) — 0 when n — oo, with
the norm [|v]| = sup, .y [[7(n)ll. Let G C K defined by G = {v€ K : 4(n) € BgVn > 0},
where By is the ball centered at (0,0) and with radius # small enough. We can define the
map
F:ByxGxA; XAz xT'1 xT'2 — K,

where By is the ball of radius B centered at 0 € IR, A;, A3, I'; I'; are neighbourhoods,
respectively, of A;(ao,0) = & *(ao,0), A2(ap,0) = @z(ao,0), f1(a0,0)» f2(a0,0), the last
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two with respect to the C? norm (f; : Bs — IR, { = 1,2), given by

F(#7, 21, %3, 1, F2)(m) = 1(m) - ( fat 3T AOE), - A0 fz('f(i))) .

We note that this map is defined even for b = 0 because, despite A, = @& = 0, we always

have A, raised to positive exponents:
n—1 )
F(x, 7 Al)oa fl) fZ)(n) = 7("’) - (’\Z’ltz + Z A;l—'fl (’7(‘))) —f2(7(n))) .
. 1=0

We want to see that F is of class C2. The proof is split in several lemmas.
Lemma 2.3.5 F is well defined.

Proof:

We shall see F(z,v, A1, A2, f1, f2) € K. Let b > 0 such that ||®(z)|| < b for z € Bs. As
0<a<l:Y X o =1—. Weknow that y(n) — 0 and ATz — 0, when n — oo, because
|A1] < a. And also

<

1-a ?1215 IIIZ('Y(’))”)

3% 1)

holds. Therefore given € > 0 we choose n large enough to have || f2(7(:))|| < (1—a)e Vi > n.
This says that the second component of F goes to zero. Let us look for the first one. For

0 < m < n one has:

Jn—1 m—1 n—1
DA = AT Y AT (@) + Do AT A(G)| <
1=0 i=0 t=m

an—m—

b . 1
o P @)

Given € > 0 let us take m large enough to make the second term less than ¢/2. Then
we choose n large enough to make the first one less than €/2. This means that the first

component of F goes to zero and hence F(z,7v, A1, A2, f1,f2) € K. O
Lemma 2.3.6 F s continuous.

Proof:

We rewrite F as

F = (@721, %, f1, f2)(n) = 7(n) - (A?x + MRG0, - Y MR06+ n))) .

i—0
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It is enough to see that Fy, F3, F3, defined by ‘

Fi(z,M)(n) = Alw, .
Fa(, M1, f1)(n) = Z"“*A""fl(v(i))
F3(77A2af2)(n) = Z f2(’7( +n’))

are continuous. ' ;

a) Fy is continuous. |

-4

(Fu(z, A1) = Fi(2,30))(n)] = [0z — A72| < |AF - Azlla] + |7 ||z - 2] <
na"_llAl - /\1|ﬂ + |x - il,

because |z| < B, |A;| < 1. Then Fy is continuous since na™~! — 0 when n — oco.

b) F, is continuous.

.i A Th(0) - 2: XN RGEE)| <
> (18~ 1A = All+ 1 = XA+ R A GE) - AE6) <

n_l i | . -
(@l fr = All + na " THID Al A = Xl + o™ full fly = 4] <
=0 '

1 - 1 . i
T = All+ =z IAallA = Xl + = ID Al v = Al

(1- )

Hence F» is continuous.

c) F3 is continuous.

DX a1l + ) = 30K fa(ili + )| € D0 N a(aGi+ ) = a3+ m)).

For every ¢ we have
Mo f2(v(E +n)) = Xfo (3 + n))| < [X3] 1 f2 = fall +123 - /\EI £+

Xel1f2(v(i+n) = (36 + n)] < &l f2 = Fall + i Az = Xa| || foll + @ Df]l |1y = 3I-

Hence

8

> A f2(v(+n) = D XG0+ )| < Za 1f2 = Fall +ia* Az — /\2| f2ll+

1=0 i= $=0
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1
1~

inE _ - 1 . 1, _
A falllly =4l < 7= lf2 = fall + mlx\z = Xl llfall + 5 1D L2l lly = Al

As a conclusion F3 is continuous. O

Lemma 2.3.7 F s of class C1L.

Proof:

a)

b)

The map z — F(z,v, A1, A2, f1, f2) is affine and continuous, and the derivative is
D F(z,v, A1, A2, f1, f2)(y)(n) = (—A1y,0), also continuous.

We want to see that Vu e K :

Dy F(z,7, A1, Az, f1, f2)(v)(n) = u(n)-

oo (o]

(Z MDA (@) (u(@)), = D A Dfa(v(E +n))(u(i + n))) -
1=0 1=0

To simplify we denote by A the right hand part of this expression. We want to see

that, given § > 0:
IF (2,7 + v)(n) = F(z,7)(r) — All < &lu]

if ||u|| is small enough.

The left hand part of this expression is less than

+

_}:j MTHAGE) +u(@) - (1)) = DY) (u())]

YN0 +0) +uli +n)) = f2(3(i + r) - Dfa(v(E +n))(u(i +n))]|  (2.6)
1=0
Let ®(z) = F(z,2,A1,)2,f1,f2). As D® is continuous in Bs (compact), it is
uniformly continuous in Bg. Hence, given 6’ > 0 there exists p > 0 such that
|D®(z + u) — D®(2)|| < §' for 2 € Bs and u such that, 2+ u € Bg and ||u|| < p.

Applying the mean value theorem to I'(u) = ®(z + u) — ®(2) — D®(z)u, we obtain:

IT(u) ~ T(O)[| = [|®(z + u) — (2) — DB(2)ul| < &'|[u]l.

Hence every term in 2.6 is less than (1 — a)~18'||u||. It is enough to consider §’ such
that 2(1 — &) "6’ < § and we conclude A = Dz F(z,7)(u)(n).

We recall

DQF:BEXGXAl)(AzXI‘lXFz——)K',

where K' is the set of linear continuous maps of K into K. It is easy to see that D F/

is continuous making a reasoning similar to the one of lemma 2.3.6.
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c) Let g(A1) = F(z,v, A1, A2, f1, f2). We want to obtain Dg = D3 F. We have

9(A1)(n) = v(n) - ( i‘r+'iki‘“Rs,Q ) ,

=0

where R, = f1(v(n)) — 0, @, — 0, when n — o0, and are independent of A;. Hence:
Dg(A1) = Dg1(M1) + Dg2 (A1),

where g1(\)(n) = (~2}2,0) and g2 (M)(n) = (- Tizg A7~ R;,0)

First we see D§i(M1)(n)(n) = nA? 'u, n > 0, where §1(A1) = A7. For this we

observe first that it is well defined because nA}~! — 0 when n — oo, since |A;| < 1.

Furthermore

610\ + m)(n) = §1(0a)(n) = nAT 0] = [(Ay + )" = AF — nAHu| =

n n
( )A:rlr.—2+ (n) A¥_3ﬂ+-°-+ ( )A1#n_3+ﬂ»n_2
2 3 n—1

uf? (;‘) (Al + ™2,

<

|ul?

if n > 2 because

n n _l_n!2!(nf2)!_ 2 n-23 _ n—2
P 2 Cpl(n—p)n! plp~1) \p-2)  \p-2

ifn>p>2.

As
: n n—2
dm { ) (P w7 =0,

if |p] is small enough, we have:
131 (A1 + 1) (n) = G2 (A1) (n) — nAT ™l < [uPM,

where M is an upper bound of (:) (JA1] + ||)™ "2 independent of n (n > 2).

For n=0 :
|31 (A1 + #)(0) - §1(A1)(0)] =0 < Muf%.

For n =1,
12 (A1 + p)(1) = §1(A:)(1)] = 0 < Mlul®.
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Hence §, is differentiable and it is easy to see that D§; is continuous.

Let now .
gz2(A1)(n) = Z ATT*R;, R; — Owhen i — oo.
1=0
Then

(Dg2(Nw)(n) = Z(n—«)x‘ IR

To see this we show first that it is well defined, that is Z;—o (n — AP IR; — 0

when n — oo :

n-—1
S(n— AR,
+=0

m—1
ST (n— AP B
1=0

n— i)z\'l'"’ <

n,\n—m Z An_' 1
b

1
n—m . <
e al <)

<
a)2 -

where |R;| < b Vi € IN. This goes to zero when n — oo.

Let us now identify the derivative:

n—1
Z(Al_*_”’)n tR‘ Z/\n ‘Rl Z(n_‘)Anth‘
1=0 1=0
2rl.—l n—1 o
u?d 0 (1A + )" %R <
1=0
|uf? (Z (;) CHE: I#I)‘_l) b< |u’M,
=1

where M is a constant which does not depend on n (if |u| small enough).

The continuity of Dg,();) is done as in lemma 2.3.6.

d) Differentiabilty with respect to Az :
Let

§(A2)(n) = Z'\zfz(’T +n)) =) MRitn
=0 1=0

where R; — 0 when 1 — 0.

We shall see

oo

Dg(2)(W)(n) = D iy Rivnn,

1=1
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which goes to zero when n — oo :

§(d2+ 1) = §(A2) = DN Rign| <
=1
> (;) (IA2] + [#)* Ritn.
1=2 .

Hence, if |u| is small enough, then

> (2) (hal + [u])'~2

t=2

is convergent, and this means that g is differentiable.

e) Differentiability with respect to f;.

Let h(f1)(n) = S0y A77*f1(a;), where a,, — O for n — oo. It is a continuous linear

map because
1
-«

n—1
R(f1)(m) < Y Pl Hlifll < oAl
1=0

Hence it is differentiable.

f) Differentibility with respect to fa. Let A(f2)(n) = Y iop Asf2(ai+n), where a; — 0
for 1+ — oo. It is a continuous linear map:

o0

R(£2)(m)] < D Aallfa(aien)l < D ol [ fall < 1
. 1=0 .

1=0

1
-«

1 f2]l-

Hence it is differentiable .0
Lemma 2.3.8 F 1s of class CZ.

Proof:
We shall proof the existence of the partial derivatives of Dy F, D2 F, D3 F, D4F, DgF,
and DgF :

a) First we note that D3 F = DoF = D14 F = D5 F = D;gF = 0. It remains to obtain
Di3F.

Let g(z,A1)(n) = ATz. Then D;yg(z,A;)(n) = AT and this map is differentiable with

respect to A;. Hence, it follows that D3 F exists and it is continuous.
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b) One has D3y F = 0 easily.

We know that
DZF(z 7,’\1)’\2’f1)f2)("’) = u(n)_

(Z AT TDf1(v() (u(9)), - Z X3 D f2(v(5 + n)uli + n))

=0
We want to see

DoaF(z,7, M, )2, f1, f2)(u,v)(n) =
( Z,\" ‘D2f1(7( ) (u(3),v(4)), Z/\' D? fa((i + n))(u(i + n), v(t+n)))
Indeed: one has to have, if ®(v) = F(x,7,A1,A2, fi, f2),
| D2(y + u) = D2(7) — D*®(7)ul| < |lule,

for € small enough.

The left hand part of the above expression is a linear map, when applied to v € K :

[D®(~ + u)v — D&(7)v — D2®(u, v)](n)| <

S AP + u@) - Y X DAGEE)G)-

i: ATTID? f1(v(3)) (u(), v(3)) | +

Z AL D f2((i + n) + u(i + n))v(i + n)—

1=0
> A Df2(y(i + n))v(i +n) Z/\‘szz('r( +n))(u(i + n),v(i +n))| <
1=0 =0
S AT DA(0) + ul@)) = Y AT DA () - S AT DR Ay (70))u(i)| o]+
1=0 =0 1=0

DX Dfa(v(i +n) +u(i +n)) = Y ADf2(v(i +n))-

1=0 =0

l[v]l-

Z Xy D2 fo(v(i + n))u(i + n)

Hence we have only to show

/\" (D A1) + u(@)) ~ Df(v()) = D2 f(v()) (s

90



_Z{A [Dfa(r(i + 1) + uli +m)) = Da(x(i +m)-

Dfa(v(i + n)) — D2 f2(v(i + n))u(i + n)]}|| < flulle.

The proof is analogous to the one of the existence of D, F, by substituting f; and f>
by Df; and D f,. Furthermore it follows that it is continuous.

c) As Dy F is an affine continuos map with respect to f;, it exists DsF. The map
D, F is also affine and continuous w1th respect to fz and hence Dog F exists and it is

continuous.
' d) DosF and D24 F are obtained in a similar way to D3 F and D, F.

e) To obtain the derivatives of D3 F and D4 F we have only to take into account that F
is linear with respect to f, and f2, and differentiable with respect to all the remaining

~ variables.

f) The derivatives of D5 F and DgF are also obtained as the ones of F.

It follows finally that F(z,~,A1, )z, f1, f2) is of class C? (in fact one can see that it is of
fclass C" if f, and f; are of class C".) O

The next step in the proof of 2.3.4 is to see that F, defined as before, as a function of

z, ¥, a and b is at least C?. This is the objective of the next lemma.

" Lemma 2.3.9 F(z,v,a,b) = F(z,7,Xi(a,bd),Az(a,b), fi(a,b), f2(a,b)) s a C? furiction,

where f1(a,b)(z,y) = 37255 (2 +9)?, f2(a,b)(zy) = 325 (z +9)? M = a;l and
Ao = @g.

" Proof:

First we observe that A; = [—azo £ v/a2zZ + b]~! and A\; = —aze F \/a?zZ + b are C¥

functions with respect to a and b. Also 7 = % o 7, defined by

A, A,

U c IR? R . C?| By
@) — w5t — (h(a2=).k(z%))

where C?[Bg] = {® : Bs — IR?, ®of class C?}, U; small enough neighbourhood of (ao,0)
and £1(@)(z,) = a(z + v)?, f2(a)(z,y) = —a(s + y)?, for a € R and (z,y) € By, is a C

function. Indeed: -

F is C*° because &; — @z # 0, and 7 is a linear continuous function because

1%2(8)(=,9)| < 2la(z + y)| < 88%al.
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As 7 = % 0 #, we have that it is C.

From this it follows that F is also C? because it is composition of C? functions. O

The last step in the proof of 2.3.4 consists of to apply the implicit function theorem to
F, and to see that it give rise to a C? function representing the local unstable invariant

manifold.

Lemma 2.3.10 There ezist a neighbourhood U of (0, a0,0) € BgxU, C IR® and a function
¢ : U — K of class C? such that: ©(0,a0,0) = 0 and F(z, ¢(z,a,b),a,b) =0, V(z,a,b) €
U.

Proof:

First we observe that D5 F(0,0,a,b) = Id because D(fi1(a,b))(0,0) = D(f2(a,b))(0,0) =
0 Va, b. Furthermore F(0,0, ag,0) = 0. Hence we can apply the implicit function theorem:
it exists ¢ : U — K of class C? such that ¢(0,a0,0) = O and F(z,p(z,a,b),a,b) =0
Y(z,a,b) € U. O

Lemma 2.3.11 There ezist a neighbourhood U = I, x I; X Is and a C? function g, : U —>
IR such that §1(0,a,b) = 0, ¥(a,b) € Iz x Is and V1 = {(z,y) € R? : y = gi(z,a,b), z €
L} c W}-‘ b(O, 0), V(a,b) € I x I5. Here f, 5 is the function of proposition 2.3.2.

Proof:
We see that for n = 0, ¢(z,a,b)(0) can be written as

¢(z,a,)(0) = (x, - Z X3 f2(a,b)(p(z, a, b)(O))) :

Then we define g, (z,a,b) as the second component of this expression. Trivially g; is also

C? because ¢ so is. For all n > 0 one has:

o(z,0,b)(n) = < e+ fjA;‘-*fl(a,b)(so(x,a,b)(i)),—ZA;‘"“)fz(a,b)(«:(x,a,b)(z‘))) :

1=0 i=n

because F(z,o(z,a,b))(n) =0 Vn € IN. From this it follows

o(z,0,8)(n + 1) = F(p(z,a,b)())

and, therefore,
o(2,a,8)(n) = [0 (,31(z, a,b)), ¥n > 0.

Hence f;;‘(a:,g‘l(:r,a,b)) — 0 when n — oo, because p(z,a,b) € K. As a consequence
(z,d1(z,a,b)) € W}-‘ b(0,0). This is true if & # 0.
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For b = 0 we have

‘P(z’ a, 0) = (21, _'fZ(a’ 0)(90(3) a, O) (0))

Then g, (z,a,0) satisfies

gl (91, a,O) - '—fg(a,O)(x,gl(x,a,O))

which is the equation corresponding to the unstable manifold because

o) = ( AT AACDICE) ) _ ( : )

a; ' +a; ' f2(a,b)(z,v) g

or,
z + fl(a)b)(x, y) =7,
y+ fz(a,b)(:z:,y) = a2y,
which holds Va, b. Therefore, for b = 0 one has &, = 0 and y = — f2(a,0)(z,y). This means

that the image under f, 0 of any point is on the curve y = — f2(a,0)(z, y) and, in particular,

this applies to the unstable manifold. O

To finish the proof of the theorem for the unstable manifold, we go back through the

change of variables.

Stable manifold.
For the stable manifold we shall use the map f, s(z,y) = (1+y—az?,bz). Then, moving

one of the two fixed points to the origin, we have

_ -2 1
fa.,b(x7y)= < :xo 0 ) < y_xazZ )

- Taking as axes the eigendirections, one obtains

_ _ &1 0 T - &2251 ($+y)2
fa,b(xay)_ ( 0 &g ) ( y— &22&1 (z+y)2 )

This map is analogous to the one used for the unstable manifold, with the adventage that

&; and & are always defined (they are the eigenvalues). We can use the same reasoning

as before to end the theorem. O

As a consequence of this theorem we can give the invariant manifolds to the first order

in b.
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Remark 2.3.12  a) We have only used that fi and fo are C?. Hence the result can be

applied to maps more general than the Hénon map.
b) This theorem generalizes a result of [15] (see also [16]) only true for diffeomorphisms.

¢) Considering f2,(z,91(a,b)) one can eztend the domain of definition of g;. Indeed:
Forb=0, f2,(z,0) = (f2(z),0) and g1(z,a,0) = 0. Furthermore W*(po) C R x {0}
and U, f2 (V) x {0} = W*(po), where V is a neighbourhood of zo in IR. Let n = 1.
Then the local unstable manifold of py is written as (1 — az2,0) Vz€ I,. If0 & I; we
" can extend the domain of definition of g1(z,a,0) to Iy; = fo(I1). This can be done
for successive n € IN. As (0,0) € W¥(po), there is some n such that we cannot apply
the inverse function theorem or, equivalently, one can extend the domain of definition
of 91(+,+,0) in such a way that f,o(z,91(z,a,0)) contains a turning point. On the
other hand the implicit function theorem assure that this can be done for (a,b) close
to (ao,0). Hence we can assume that fa‘b(m,g}l(z,a,b)) has a turning point,
One can see for the stable manifold that, if (a,b) is close to (ao,0), one can eztend

the domain of definition as far as one wants. Now we shall use fa_,; for b#0.

. Proposition 2.3.13 Let a fized such that p(a,0) and p_(a,0) are saddles. Then there is
bo > 0 and there are neighbourhoods Uy, Uz of x4 (a,0) and Vi, Vo of z_(a,0) such that
Vb with |b| < by it holds:

a)
g1(z) = V(1 - z)a=1b+ O(b?), VzeU,

g2(z) = —v/(1 = 2)a"1 b+ O(b?), VzeV,

(z,91(z)) being the local unstable manifold of p+ and (z,92(z)) the one of p_.

5)

z - 29 (14 2azf)™?!
2(1:1:(‘)F

z — 2% (1 + 2az5 )~ !
2azy

where 28 = z.(a,0), z°% = z_(a,0) and (z, h1(z)) (respectively (z, ha(z)) is the local

stable manifold of p1 (resp. p—).

b+ O(b?), Vz €Uy,

hi(z) = az® + 2z -1+

ha(z) = az® +z5 — 1+ b+O(b?), Vz Vs,

Proof:

From the last theorem we know that the stable and unstable manifolds can be written
as (z,9(z,a,d)) and (z,h(z,a,b)) for a fixed point po = (zo,40) (Po = p+ or po = p-).

These curves satisfy the following functional equations:

bz = g(1 + g(z,a,b) - az?,a,b), g(zo0) = vo,
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g’ (z0) = slope of the eigenvector associated to W*(po). (2.7
bz = k(1 + h(z,a,b) — az?, a,b), h(zo) = yo,
g'(zo) = slope of the eigenvector associated to W*(po). (2.8)

By derivation of 2.7 with respect to b we have:
_ %9 b) — b) = b) + g(1+ (2,a,b) — az?, a, b)
=3, 9(z,a, az? a z,a, T g(z, a, az®,a,b).

Forb=0:

dg
= —=(1 -
x(

az?,a,0) a,0) + ‘Z(l-—amz,a,O),

ab("” ’
because g(z,a,0) = 0. Hence %%(1 - az?,a,0)% 52 (z,a,0) = 0. From this it follows

3
= a—Z(l ~ az?,a,0). (2.9)

Setting zop = =4 we have
a
Ty = gl (:z:+,a 0) >0,

putting g; because it corresponds to W“(p.;,). Therefore, for z close to z4 : %ﬂg(z, a,0)>0

We can write 2.9 as

1 2 _ 991 2 2
—az*=1-a E-(l—az,a,ﬂ) ,

and setting y = 1 — az?, we have
g1 2
y=1—a<ab (y)a 0))
or
o9 =4 /1Y
b (y,a,O)—:i: a .
As %%L(:c+,a,0) =+4/(1 —z4)a"! =z then
391 _ 1-xz
5 B0 =\ ——
Therefore
91(z,a,b) =4/ 1 ; xb+0(b2).
If zo = z_ then:
991
- = 5y (z-,a,0) <0

In this case we have

g2(z,a,b) = —y/ 1 ; xb+0(b2).
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For W*(po) we do the same with 2.8:
ok » . Oh dh .
z= a(l + h(z,a,b) — az®,a,b) m (z,a,b) + 3 (1 + h(z,a,db) — az®,a,b).

Forb=0 :
oh

ah oh
T = a(:co,a,O)-é—I;(z,a,O) + "é‘l;(lio,a,O)-

If x = 2o then
oh oh oh
Ty = -é—b—(xo’a,()) (1 + 5(1:0,0.,0)) = -a—b(:co,a,O)(l_ + 20.2:0))

because h(z,a,0) = az? + zo — 1. Therefore

o

dh
%(30:0')0) - 1+ 2ax0)

and
z — zo(1 + 2azp) ™!

2az0

oh
E(Z,G,O) =

So we have

w0 1 2 +;1
hl(x)=a22+z3'—1+z z2 ++az0) b+ 0(b?),
2az,
z— 29 (14 2az5)"?
ha(z) = az® + 25 ~ 1+ ( — o) b+ 0(b?). O
2az,

2.4 Homoclinic and heteroclinic tangencies of the fixed

points

We want to describe the values of the parameters a and b for which there are homoclinic
or heteroclinic tangencies of the invariant manifolds of the fixed points. First we give a

definition of homoclinic tangency that can be applied to all b.

Definition 2.4.1 Let f,, be the Hénon map and let po = (Zo,Yo) and p1 = (Z1,§1) be two
fized points of fop. Let Zo(t) = (zo(t),yo(t)) and £1(t) = (z1(t), y1(t)) be parametrizations
of W¥(po) and W*(p1), respectively, such that f(Z;(t)) = Ti(a;t) ,i =0, 1, where o ts the
eigenvalue associated to W*(po) and o the one associated to W*(p1). Then we say that
W¥(po) and W*(po) have a homoclinic tangency (if po = p1) or heteroclinic tangency (if
po # p1) at p € IR? if:

a) to, t1 € R such that Zo(to) = Z1(t1) = p.

b) £4(to) A 7y (to) = 0.

Remark 2.4.2 When b = 0 we shall take #;(t) = (t,at® + z; — 1).
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Proposition 2.4.3 Let b = 0, and p = (Z,0) @ tangencial “clinic” point. Then there is
n € IN such that f2(0) = z.

Proof:

In this case the condition of tangencial “clinic” point is
a) Zo(to) = Z1(t1) = p = (%,0).
b) Zp(te) A& (t1) = 0.

As Zo(t) = (z0(t),0) and z1(t) = (t,at® + £ — 1) then one should have z}(to) = O or
2at; = 0. But if 2at; = O one obtains t; = 0 and therefore § = (0,Z; — 1) = (0,0) reaching
an absurdity. Hence z{(to) = 0. Let ng = max{n € IN : z{,(a;"t) = 0}. Then

1- azg(a;("°+1)to) = zo(ag "°to).
By derivation with respect to t:
—2azo(a3("°+1)to)x{)(a5("°+l)to) = apzp(ag "°to) = 0.
As zh(a~ ("ot 1)t5) £ 0 we have zo(a™ ("0t 1)) = 0 and frot1(zo(a~(motVty)) = zo(to) =

z. Therefore n=ny + 1. 0

This proposition gives an equivalence between the usual definition of “clinic” tangency

for interval maps and 2.4.1

2.4.1 Computation of homoclinic and heteroclinic tangencies for
a~2 and b= 0.
Theorem 2.4.4 There are four countable sets of C? functions defined in a neighbourhood

of zero: al! = a}1(b) , al? =al?(b) , aZ! =aZ21(d) , a22 =a22%(b) , n€ N, such

n
that

a) farrmyp > far?(n)s have a homoclinic tangency between We(p-) and W*(p-), and
fariyp + fo22(p), have a heteroclinic tangency between W¥(p+) and W*(p-) for b

small enough.

b) apt(0) = ap?(0) = a3 (0) = a2?(0) = 2, a*(0) = a2 (0) # ay?(0) = a22(0), end
aby =g, fori,j€{1,2} and m, n € IN.

Proof:
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The homoclinic and heteroclinic tangencies can be obtained from the system

h(kl(:c a,b),a,b) - kz(m a,b) = 0,

%(I,a,b) (k1($ a,b),a b) (2: a,b) = 0, (2.10)

where (z, h(z,a,b)) is a local unstable invariant manifold, and (k;(z,a,b), k2(z,a,b)) is a
local unstable invariant manifold.

For the heteroclinic tangency we consider, following the notation of 2.3.13:
h(z,a,b) = ha(z,a,b) and (kin(z,a,b),kzn(z,a,b)) = fop(z,91(z,a,b)).
For the homoclinic one
h(z,a,b) = ha(z,a,b) and (kin(z,a,b),k2n(z,a,b)) = f74(z,92(,a,b)).

Then we define

Fin(z,a,b) = ha(kin(z,a,b),a,b) — kop(z,a b)
Fyu(z,0,b) = 2&kan(z,a,b) — 32 (ky,(z,a,b) 222 (z,a,b).

To have a “clinic” tangency at (kin(z,a,b), k2n(z, a,b)), one should have

Fin(z,a,b) = 0,

(2.11)
an (1:, a, b) = 0.

By 2.3.4 the system 2.11 is made of (at Ieast) C! functions. We shall apply the implicit

function theorem to show the existence of a}; 7 = = aj " (b) To this end we need some lemmas.

Lemma 2.4.5 For all n € IN there aré points g™ € R m = 1,...,2"" 1, such that
(z,0) € W¥(py+) and (z7*,0) € W¥(p-) for a = 2 and b = 0, and Fy,(z]",2,0) = 0,
Fyn(z™,2,0)=0.

Proof:

Let ™ be a preimage of 0 under f3~!, that is f3~!(z™) = 0. As f, is conjugated
to the Chebyshev pol&nomial P, and P;o .%. oP; = Psn, there are 2" points z such that
/z(z) =0.

Let fap(z,y) = (£33%(2,¥), f27(z,¥))- Then:

kln(x:a’o) = f;:{)(a:,g;(x,a,O)) = fi"(")(:l:,()) = f:(m)’
kzn(z,a,0) = f2%(z, g:(x,a,0)) = 0.

Hence:
Fin(zy,2,0) = ha(f3 (zn'),2,0) = h2(1,2,0) = 0,
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because f3(z™) = f2(0)=1, hz(z,a,0) = az?+ z_ —1 and z_(2) = —1. Furthermore

dfe

e L2 (2) = 14272 &) - F1la),

Fp (z,a,0) =

and, as f3~!(z) = 0, one obtains "—j,?;n(xg,z,o) =0, and from this

ak2n
dz

Oha
oz

Lemma 2.4.6 For alln > 0 and all m such that 1 < m < 2" 1 one has:

akln.

Fan(z,2,0) = 12 (277, 2,0) =

(z3,2,0) —

n

(120)

8g,n ag, n

T a

3Fq, AFq, # 0.
Jdz da |(“’;;"'2,0)

Proof:
We need the values of the partial derivatives at (z™,2,0) :

a) 2f1a(zm 2,0) = 0.
It is enough to use

JF, Bhg

akln
3z = (kln(a: a,b),a b)

d an

( ,a,b) — (:z: a,b) = —Fa,(z,a,b).

As F,(z™,2,0) = 0 then igin(z,,"w,o) =0.
b) &fin(zm,2,0) = 4/3.
In general for any (z,a,b) :

aFl,,, dhy Ok,

(z,a, )- (kln(x a,b),a b) ( ,a,b)+
ahz 22 (kin(2, 0,1), 1) ~ Okan (4 a,b).
Jda
As kin(z,a,0) = f2(z) and k2, (z,a,0) = 0 then
Okin , af" m
da n )2)0) )|a._2 =0
and ok
ot (2, 2,0) = 0.

The second equality is evident. The first one follows by derivation of f7(z) =1 -

a(f2~1(z))? with respect to a :

n n—1
% z) = —frYz) - 2af"'1(a:) (z).
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If a =2 and z =z} then

a v - m n— m n— .
J2 (0 ams = ~ 137 ) — 457 @) L (e = 0.
With this we already have
oh
aF‘"( 7.2,0) = 22 (kya(a],2,0),2,0) = ah2(1 2,0).

When b = 0 one obtains hz(z,a,0) = az? + z_ — 1. Therefore:

Aho
da

=z% 4.

As 1 — az? = z_, by derivation with respect to a we obtain

2
’ _ T_ (a)
z(a) = 1+ 2az_(a)’
where z_(a) = z_(a,0). Hence z’_ (2) =  because z_(2) = —1.
So we have 3k ‘s 6F
2 In
S52(1,2,0) = 3 = =22 (a7, 2,0).
an"( ™ 2,0) =16 (a (:z:""))
Indeed:
Py, _ 3%k, a%2 akl,, 2
3 (z,a,b) = 3oz (z,a,0) — = (kin(z,a,b),a,d) (:r:,a,b) -
22 (kin (2,0, 1), b) a,b).

First we note that a—zlc-ln-(x a,0) =0, 212 (3™ 2 0) = 0 and 4£2(1,2,0) = 4 because

%(x a,0) = 2az, kzn(z,2,0) =0and fy !(z*) =0.
Therefore

ann Bhg 3% kln 82k1,,

S2(1,2,0)=

(zr'52,0) = —4——=(2",2,0).

(z3,2,0) =

As f;‘(:c) =1~ a()'('l"l(:r))2 by derivation with respect to z :

afm n—1
i (2) = ~2af77 (5) i (a)
and

P8 = (M) - repw T )

dz2
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Hence, forz =z and e =2 :

DI )= -4 (L))

always different from zero because, for a = 2 any preimage of 0 is different from zero.
3%k, 2f 3f ~
i, 2,0) = 208 (o) = -4 (2B )

8F2"( 20)—16< fa~ l(a:n)>2.

Finally with this we have that:

So we have

and

aa 2as oF oF. afr?

8z da — _Zhin 2n m

K2R = -2 (2, 2,0 222 (2, 2,0) = — < ( )) #£0.0
azx da (zm,2,0)

Last two lemmas allow to apply the implicit function theorem. There are C*! functions
ai7, i =1, 2, n € IN in a neighbourhood of b = 0 which satisfy the thesis of the part a) of
the theorem.

To obtain the values of a37(0) one should compute 251z (z1,2,0).

Lemma 2.4.7 If f}72%(z7) = J5 then

aFln( 2)0):2\/_—-;-’
and if
n—2( m) — _i
? V2
then

8F1n.

(e7,2,0) = -2V2 - ,

forn>1 Forn=1:

aFl"( ,2,0) =2\/_—%,

if we consider (0,0) € W¥(p+), and
3F1,,,

1
(€20 = -2VE - L

if we consider (0,0) € W*(p—), where z1 = 0.
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Proof:

aFl"(x a,b) = 8h2(k1n(x a,b),a b)a 1% (z,,b) +

dhy
W(kln(’:; a, b), a, b) -

).
Let us compute the required partial derivatives.
a)
Okin

1
—(z3',2,0) =t—:
b (xn:’) \/5

First we suppose n > 1. Then:

oy = 14200 - a (0 V(@)

(2.12)
n(z,y) = b0 (z,y).

By derivation with respect to b we obtain

3 ;n afZ(n—l) o af;.(n—l)
22 (2,y) = 25— (=) - 2af1( (2, v) = (=,v).

Taking into account fz('l V= bfl(n 2

and putting z = z*, a = 2, b =0, we have

in

b afz(bn—l) 1(n-2) 1
25 & Ol@n=(2.0) = —5r— (20", Ol(ap)=(2,0) = f20  (2n,0) =E—=

V2
As, by definition, ki, (z,a,b) = fl%(z, 9i(z,a,b)), where { = 1 or = 2, according to

the case, one has

akln a in in

a
_ a,b ab .
ab - ay ( ’gt(x a, b)) ( a b) + 8b (zagt(z)aab))'

For z =z, a =2 and b =0 it follows:

3k1n m 3f3% , m 09 afa%
(z7',2,0) = —35—( 03 ( »2,0) + T (27,0))(a,p)=(2,0) =
W(x" ,O)E :z:n ,2,0) :i: —_—=

%

By derivation with respect to y of the first equality in 2.12 we have

asin af2n=1)
5y ——(z,9(z,a,b)) = T(I,g-‘(z,a,b))"

1(n 1)

2af1(n 1)(3: 9i(z,a b))—(x 9i(z,a,b))
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b)

and, from the second equality,

g e
3y L,Yy) = 3y »Y)-

a=2 and b =0 it follows

%, m
dy (zr ’O)l(a‘b)=(2,0) =0.

-— m
For z = z7,

Hence
SHin (411,2,0) = :t%.
Forn=1: N .
ku(z,0,0) = 1+ gi(z,0,0) - az?, 3 =0
Therefore
9%(0,2,0) = i%,

from proposition 2.3.13, depending on whether f =1 or ¢ = 2.

k2n ; m A
3 (z*,2,0)=0:

By definition ky,(z,a,b) = ffz(z,gi(x,a,b)), where 1 = 1, 2. Hence:

9 2n » ) 3 2ﬁ
‘_akz"z = '——a—&(x;gi(x)aab))—a_gl(xaaab) + = (x,g,'(.'l:,a,b)).

db oy ab ab
As: Jne1)
2n af n-
a,b _ a,b
and Hne1)
ofah _  0fay -1
3 = b (=) + 110 (=),

for z =z)', a =2, and b =0 we have

2n 2n
ab ;s m fa,b m
3y (22, 0)|(a,b)=(2,0) = 0, and 3 (27, 0)|(e,b)=(2,0) = O,
and therefore ok
aZ" (z*,2,0) = 0.
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ahz S5 (1,2,0) =

From proposition 2.3.13 it follows

_ -1
ahg(l 2,0) = z—z_(1+2az_)
ab 2az_ (z,a)=(1,2)
d)
ahz(l 2,0)=4.

Indeed:

oh
—5—3(x,a,0) = 2az,
and then 2(1,2,0) = 4.

For all this values one has

Oin (ar,2,0) = 22(1,2,0) 28 (a1, 2,0)+ 22 (1,2,0)- 2222 (a1

Part b) of the theorem follows from the last lemma because

ati(o) = _ OFin/0b

~OF, joa B0 = e

These two values are, approximately, 2.2463204 and -1.9963204. O
Remark 2.4.8

1
:E———+-8'.

1

,2,0) = :t2\/§——%. 0

a) In [1] the theorem 4.1 (page 71) is more general than this theorem but it is proved

using other techniques.

heteroclinic bifurcation curves is not given explicitely.

b) Some of the results of this chapter have appeared in [17].
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Chapter 3

The Newhouse Phenomenon

The purpose of this chapter is to study the behaviour of a two dimensional dissipative
diffeomorphism which is a perturbation of one having a non degenerate homoclinic tangency.
It is known ([18], [19], [20], [21], [22]) that in this case periodic sinks of large period
can appear near the homoclinic tangency if the perturbation is small enough. Also it is
possible to show that such a map can have infinitely many attracting periodic orbits. We
want to study the behaviour of the bifurcation of periodic points when we consider a one-
parameter family of dissipative diffeomorphisms having a parameter agp such that there
exists a homoclinic tangency. Moreover we will see the possible different behaviours of the
basin of attraction of the sink which appear for parameters near to ap. In the second part

of this chapter we give numerical results that concide with the analytical ones.

3.1 Existence of attracting periodic orbits near a ho-
moclinic tangency.

First we give some definitions concerning a two-dimensional diffeomorphism:

Definition 3.1.1 Let f : U € IR? — IR?, where U is an open set, be a C diffeomorphism
having a hyperbolic fized point p. Then we say that this point is dissipative if |det D f(p)| <
1.

In particular any attracting periodic orbit is dissipative. So this definition has only real

sense when p is a saddle point. Obviously there exist saddle points which are not dissipative.

If a map f has a saddle point p it is known that it can be defined its invariant manifolds
(see chapter 2). Let W*(p) denotes the unstable invariant manifold and W*(p) the stable
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one. It is known that W?*(p) and W*(p) are smooth manifolds but are not, in general,
submanifolds of IR® ([16]). If this manifolds have an intersection point p we call this point
a homociinic point. If this intersection is transversal (respectively tangencial) we say that
p has a transversal (resp. tdngencial) homoclinic point of its invariant manifolds.

It is possible to find a parametric representation of the invariant manifolds:

Proposition 3.1.2 Let f : IR? — IR? be a CT diffeomorphism having a fized point py =
(z0,¥0) - Let a1 and ay be the eigenvalues of Df(po) such that |ay| < 1 and || > 1.
Then the invariant manifolds of po are characterized as the tmages of two immersions:
v IR— IR?, i =1,2 such that:

(f o) = vi(ast) , (3.1)

and v; are of class C" .

Proof:

By the stable manifold theorem we know that there exists a function ¢ : U — IR of
class C", defined in a neighbourhood U of z, , such that (z,g(z)) or (¢(y),y) represents
locally the stable invariant manifold of py. Suppose that (z,g(z)) represents the stable
invariant manifold. In the other case we proceed in a similar way:

We look for a function z : V. — IR where V' C U is an open set, such that if f = (f1, f2)
and p(z) = f2(z,g9(z)) then:

o(2(5)) = 2(e10) (32)
It holds if and only if 27! o p 0 z(s) = a;s . Then, by the Sternberg theorem ([14]), there

exists a function z which verifies 3.2 and it is of class C". Thus the function 4; can be
defined as:

m(s) = (2(s),9((s))) -
This function exists for all s € IR because we can use 3.1 for extending +;(s) to the whole

R .

For the unstable invariant manifold we proceed in the same way. O

This type of parametric representation can be used to prove the existence of homoclinic

intersections in the Hénon map ([23]).

Now we want to study the behaviour of a diffeomorphism having homoclinic intersec-
tions. To do this we define first, in general, transversal and tangencial intersections of
submanifolds of a given manifold:

Let M be a two dimensional manifold of class C*:
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Definition 3.1.3 Let Ny and N, be two submanifolds of M of dimension 1. We say that
N; and N3 have a transversal intersection in t € N\N Ny tf TNy + Ty No =T, M .

Definition 3.1.4 Let N1 and Ny be two submanifolds of M of dimension 1. Then N and
N3 have a tangency of order n if and only if:

a) z € N; N Ns.

b) dim(T, Ny + T Nz) = 1.

¢) There exist coordinates (z1,z2) in a neighbourhood of z such that Ny and N3 have

the representation:
N1 = {(231,2:2) . T = O}
Nz = {(z1,22) : 22 =p(z1)},
where @ is a function such that ©(0) = ¢'(0) = ... = p(")(0) = 0 and "+ (0) #0 .
This definitions can be applied to the invariant manifolds. So we can have transversal or

tangencial homoclinic points with a tangency of order n. If n = 1 we say that the tangency

is non-degenerate.

The next theorem establishes when a map having a hyperbolic fixed point is locally C”

conjugate to its linear part ([14]).

Theorem 3.1.5 Let f : U C IR? — IR? be o diffeomorphism, defined on the open set U,
having a hyperbolic fized point p € U. Then for all n > O there ezists N = N(n) such that
if f is CN and the point p has not resonances of order i for 2 < i < N then fiy 18 C"
conjugated to D f(p) in a neighbourhood V of p. In particular N(1) =2 .

The following proposition is a generalization of proposition 1.1.3 in chapter 1:

Proposition 3.1.6 Let f : IR? — IR? be a diffecomorphism having a saddle fized point
p € IR%, and suppose that there is a neighbourhood V' of p such that fiy is C™ conjugated
to Df(p). Then there ezists a C™ map ¥ :V; C IR? — IR? defined in a neighbourhood V,
of the set A= {(t1,t2) : tity = 0} such that:

a) Z(aity,azty) = f(Z(t1,t2))

b) E(O’O) =p

where a; and o are the eigenvalues of D f(p).
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Proof:
By hypothesis we know that there exists a map ¢ : V; ¢ R? — RR? , 1 being a
neighbourhood of (0,0), such that: g7 o f o g = Df(p). As a; # a2 we can conjugate f

to the linear map

with a C™ conjugation. We call this conjugation Z. Then Z : V; C IRZ — IR? verifies a)
and b). To extend this map we use a). Then we can define the map Z in a neighbourhood
V1 =U;eINU1,:Y;en Uz, where Uy 1 = Uzp = Viand Uy = f(Uri-1), Uz = f~*(Uzi-1)
if £ > 2. So T is of class C™ and is defined in a neighbourhood V; of A .O

By applying the theorem 3.1.5 we have:

Corollary 3.1.7 Let f : IR2 — R? be a diffeomorphism such that there ezists a saddle
fized point p € U. Then if f is of class CN (N=N(n) of the theorem 3.1.5) and there are
not resonances of orders 2 <1 < N, there ezists a C™ map Z: V3 Cc RZ — IR? defined on
a neighbourhood V, of the set A= {(t1,t2) : titz =0} such that:

a) £(aity,aztz) = f(Z(t1,t2)) ,
b) £(0,0)=p,
where a; and oy are the eigenvalues of Df(p).
Remark 3.1.8 a) Whent; =0 or tz =0, Z(0,t2) and Z(t1,0) represent the invariant
manifolds of p. This parametrization is the same of the propositioﬁ $.1.2.
b) The map % is not unique. For example we can define §(t1,t2) = Z(At1,At2), with

A # 0. Then § verifies the thesis of the proposition 8.1.6.

By using the results of the proposition 3.1.6 it is possible to prove directly the following

proposition, which is a corollary of the Smale horseshoe theorem ([18],[22]):

Proposition 3.1.9 Let f : IRZ — IR? be a C2? diffecomorphism having a saddle fized point
p, such that its invariant manifolds have a transversal homoclinic point p. Then this point

18 in the clousure of the hyperbolic periodic points of f.

Proof:

We want to find points (z,y) € IR? such that f*(z,y) = (z,y). By corollary 3.1.7,
there exists a C* map # : V ¢ IR? — IR? such that £(0,0) = p and Z(aity,aztz) =
f(Z(t1,t2)) ; o1 , a2 being the eigenvalues of Df(p) such that |oy| < 1 and |a2| > 1.

We can always suppose that a; > 0 and a; > O since if not, we can consider f2 instead

108



of f. Then let s; = of and s; = a;". The equation f"(z,y) = (z,y) is equivalent to

Z(t1, 05 "t3) = Z(alt1,t2) or
Z(t1, sat2) = Z(s1t1,t2) . (3.3)
Observe that, when s; = sz = 0, we have:
Z(t1,0) = Z(0,t2) ,

so t1(0,0) = £; and £(£;,0) = Z(0,{2) = p is the transversal homoclinic point. Moreover, if
E(t1,t2) = (z(t1,22), y(t1,t2)) :

Dla:(t_l,O) _DZx(O) t—2)

i 2140,
Dyy(t1,0) —D2y(0,1;)

since the intersection of the invariant manifolds is transversal. Therefore, we can apply the
implicit function theorem: there exist C! maps t; = t;(s;, s2) and t; = t3(s1, 82) such that
t1(0,0) = 3, t2(0,0) = &5 and, t; and t; verifies the equation 3.3. If we recall that 8; = of
and sy = az_"v, we see that Z(t1(af,a;™),a; "tz(a},a;™)) = pn is an n-periodic point.
Moreover, if n — oo then af — 0 and a;™ — 0. Therefore p, — £(f1,0) = p . Thus we
have proved that the point p is in the clousure of the periodic points of f.

It remains to see that this periodic points are hyperbolic if n is large enough (in fact
they are saddle points).

It is enough to show that |tr Df™(p,)| # |1 + det Df™(p,)|. Otherwise one eigenvalue

is 1 or —1. To compute Df™(p,) we consider the following equality:
f(£(t1, az"t2)) = Z(alts, t2) .

Then if we compute the differential, we obtain:

-n
0 o

. I 1 0
Dfn 5:'(t1,a2 tz))D.’E(tl,az t2) ( ) =

. al 0
Dx(a?tl,tz)( 01 1) , (3.4)

Therefore:

n det Di:'(a{‘tl, tz)
(o33 = —n .
det Dz(tl,az tg)

det Df™(p,) = det Df™(Z(t1, a3 "t2)) = of

We can always suppose that det DZ(t;,a; "t2)) # O because we can take the homoclinic

point p such that it is in a neighbourhood of p, where the map Z is invertible.
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By using 3.4 we obtain:

1
det DZ(t1, a5 "t2)

tr Df™(p,) = tr Df™(&(t1, 05 "t2)) =

(af Diz(afty, t2) Day(ty, oz "t2) — af Diy(t, ey "tz) Daz(alts, t2)—
ol Dy y(ai“tl , tz)sz(tl , a;"tz) + agDzy(a’l‘tl, tg)Dl .'.C(tl , a;"tz)) .

Then we have:
Jim a;"(|tr Df™(pa)| — |1+ det Df"™(pa)|) =
(—sz(O,t_g)Dly(fl,O) + Dzy(O,t_g)Dlx(t_l,O))(det Df(t_l,O))_l ;é 0 ,
since the homoclinic intersection is transversal. So we have seen that the n-periodic points
pn are hyperbolic and p, — p when n — 00 .0
Remark 3.1.10 The points p,, have ei'genvalues A1, Az such that |A\1| < 1 and |Az| > 1.

So p,, are n-periodic saddle points. In fact:

det DZ(0, ;)

A = — — = =
! DZy(O;tZ)Dlx(tI)O) - Dly(tlio)DZz(O) t2)

af + h.o.t.

and

_ D2y(0,%2)D;z(%1,0) — Dy1y(t1,0)D2z(0, )
det Df(f]_,O)

Az az + h.odt. .

The next step is to prove the Newhouse phenomenon. For this, let {fq}aer, where I is an
interval, be a two dimensional smooth one-parameter family of diffeomorphisms, defined
in a open set U of IR?, having a hyperbolic fixed point py, which is a saddle, for a = aq.
In that case, by the implicit function theorem, there exists a map p = p(a), defined on a
neighbourhood I' ofa = ag, of saddle fixed points of f, such that p(ag) = po. Then we

have the following proposition:

Proposition 3.1.11 The family {f.}aer s conjugated to a family {g.}acr, with a smooth
conjugation, such that the fized point of g., corresponding to po, is (0,0), and its stable

invariant manifold is locally the straight line y = 0, in coordinates (z,y).

Proof:
By using a translation we can move the fixed point to the origin. With a linear change
- of coordinates it is possible to have the differential of the map in the fixed point in diagonal

form. So the family {f,}scr is conjugated to the family {gs}aer such that §.(0,0) =

(0,0)Va € I and
_ | ca(a) 0
P00 = ( 0 asa) )
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Suppose that |a;(a)| < 1 and |az(a)| > 1 and consider the following change of coordinates:

ha(z,y) = (z,y - }_z(a:, a)) ,

where y = h(z, a) is the local expression of the stable invariant manifold of (0,0). This map
is a diffeomorphism and it is differentiable with respect to a of the same class that {f,}eer
(see [16]). Then we can extend the diffeomorphism h, to the whole neighbourhood where
fo is defined. Moreover {fq}aer is éonjugated to {ga}acsr Where go = hg0gzoh; ! and the
stable invariant manifold of (0,0) for g, is, locally, y =0 .0

Remark 3.1.12 In the previous proposition we consider the interval I smaller if it s

necessary.

Now we will define a generic unfolding of a homoclinic tangency:

Definition 3.1.13 Let {f,}qecr be a smooth one-parameter family of CT, (r > 2) diffeo-
morphisms in the plane, having a fized point pg for a = ag such that the invariant manifolds
of po have a non-degenerate homoclinic tangency. Let {go}acr be the family of proposition
3.1.11 conjugated to {fa}acr- Suppose that Z(t,a) = (z(t,a), y(t,a)) is a parametrization of
the unstable invariant manifold of (0,0) for g,. Then we say that the homoclinic tangency
 unfolds generically with {fs}acr in a = ag if Day(t1,a0) # 0, where (z(t1,a0),y(t1,a0)) is

a tangencial homoclinic point.

Proposition 3.1.14 Let {fs}aecr be a smooth family of class C™ (r > 2) like the one of
the }Jrevz'ous definition. Let p denote a tangencial homoclinic point and p = p(a) the fized
point of fo such that p(ag) = ao. Then there exists a neighbourhood U of § such that: for
a > ag (or for a < ag), there exist two transversal homoclinic points of p in U, and for

a < ag (respectively for a > ap). there are no homoclinic points of p in U.

Proof:

We consider a family {g,}qcs conjugated to {fs}aer such that the stable invariant man-
ifold of the fixed point (0,0) is y = 0. If we have a non degenerate homoclinic tangency
which unfolds generically with {g,}ses for a = ao, then: y(t1,a0) = 0, Dyy(t1,a0) =
0, Di1y(t1,a0) # 0 and Day(ti,a0) # 0 , where (z(¢,a),y(t,a)) is a parametric rep-
resentation of the invariant manifold W*((0,0)) and (z(t1,a0), y(t1,a0)) is the point of
homoclinic tangency. Then we look for solutions of the equation y(t,a) = 0. By the Im-
plicit Function Theorem there exists a map a = a(t) such that ap = a(t;) and y(t,a(t)) =0
in a neighbourhood of (t;,ap). Moreover

oft) = ao - ;r’%—}(t — )+ of(t - t1)?).
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So a(t) — ap > 0 or a(t) — ap < O for |t — t;] small enough. It means that the homoclinic
points exist only for a > ag if Dy1y(t1,a0)D2y(t1,a0) < O or for a < ag if the product is
negative.

It remains to prove that the points are transversal. This is equivalent to see that
D1 y(t,a(t)) # 0. We have:

Dyy(t,a(t)) = —Day(t,a(t))a(t) = D11y(t1,a0)(t — t1) + h.o.t.,

where h.o.t. means higher order terms. This is different from zero if |t — t;] is small

enough.O

We consider now a smooth (C") one-parameter family of planar diffeomorphisms {f, }sev
such that f, : U c RZ — IRZand V C R is an open neighbourhood of ap € V. Sup-
‘pose that there exists a hyperbolic fixed point po = p(ao) of fa,. Then, by the implicit
function theorem, there exists a hyperbolic fixed point p(a) of f., for |a — ag| small, such
that p(ag) = po and p(a) is a C" map. We can always take the neighbourhood V' such that

there exists a fixed point for all @ € V. We make the following assumption on the family

{fa}aGV:
(A): There exists a map Z: Uy XV C R® — IR? where U, 1s an open neighbourhood of
{(t1,t2) : titz =0}, such that:

a) T(aaty,agte,a) = fo(Z(t1,12,a)), where a; = ay(a) and oy = ax(a) are the eigen-
values of D f.(pa)).

b) £ is of class C*, s > 2.

¢) £ is, in a neighbourhood of p(a), a local C* conjugation of fo with its diagonalized

linear part.

By using the so-called Hartmann-Grobman theorem (see for instance [24]) and the
proposition 3.1.6, it is possible to prove that such a map exists and it is continuos. Also,
if we use the theorem 3.1.5, we see that £ can be chosen of class C* under some generic
assumptions. The differentiability of £ with respect to a is a consequence of the theorem
26 of [25].

Then we will prove the so-called Newhouse phenomenon:
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Theorem 3.1.15 Let {fs}acv be a smooth family of planar diffeomorphisms such that
fa:UC R? — IR? 45 of class C™ , r >3 , foralla €V, and V 1s an open neighbourhood
of ap € V. Suppose that:

a) For a = ag, fq, has a dissipative saddle fized point py with a non-degenerate homo-

clinic tangency of its invariant manifolds, which unfolds generically with {fs}eev -

b) The family {fo}aev verifies the assumption (A).
Then, for n large enough, there ezist parameters a} and a; such that:

1) fot has an n-periodic saddle-node point pt which unfolds generically with {f,}aev -
2) f,- has an n-periodic flip point p; which unfolds generically with {fa}aev.

3) lim,—, o a} =lim, ., a, = ap and

on 70 i ———‘_1_" — % - ay = az(ag) ,

where ai; and &y are the eigenvalues of Df,,(po) such that |ay| < 1 and || > 1.

4) The parameter a = ag 1s in the closure of the set of parameters for which there ezist

attracting periodic orbits.

Proof:

For our proof we need a3 , az > 0. If not, we will consider f2 instead of f,. However
if any of the eigenvalues is negative, the bahaviour of the bifurcation parameters is slightly
different (see remark at the end).

First we observe that, by using the implicit function theorem, there exists a saddle fixed
point p(a) of f,, for |a — ao| small enough, such that p(ap) = po. To prove the theorem we

will consider first a suitable change of coordinates in order to simplify the computations:

Lemma 3.1.16 The family {fo}acs, where J is a suitable open interval containing ao, and
J €V, is conjugated via a change of coordinates and parameter, to the family {gc}eer , I =
(=r,r) ,r >0, such that:

e) € =a-— ap.
b) 9.(0,0) = (0,0) for alle € I.

¢) ge(z,y) = (a17,a2y) in a neighbourhood U of (0,0), where a; = a;(€) and oz = az(¢)

are the eigenvalues of Dg.(0,0) such that |a;| < 1 and |az| > 1 (and therefore also
of Dfa.(p(a)) for a =ao + ¢). .

d) The point of homoclinic tangency is (1,0) for e = 0.
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e) There exists a smooth map %, (t,t2,€) = (z1(t1,t2,€), ¥1(t1,t2,€)) such that
v = Id, go(Z1(t1,t2,€)) = £1(a1t1, aztz,€), 21(0,1,€) =1,
v1(0,1,0) = 0, D3y1(0,1,¢) = 0, D2291(0,1,0) # 0, D3y(0,1,0) #0
foree I.

Proof:
If we move p(a) to the origin and use the local smooth conjugation of the map f,; to its

diagonalized linear part, we can suppose that, for § small, the family {f,}scv verifies
a) £2(0,0) = (0,0) for all a € (ao ~ 6, a0 + 6).
b) fu(z,y) = (@12, 22y) in a neighbourhood U of (0,0) and for all a € (ap — §,a0 + §).
¢) The point of homoclinic tangency is p = (¢1,0).and it is into U.

We note that it is possible to assume c) because the point of homoclinic tangency p can be
taken as close as we want of the fixed point po.

Let € = a — ap and f(z,y,€) = fa,+e(2,y). By the assumption (A) we know that there
exists a map Z = Z(t1,t2,€) = (z(t1,t2,¢€), y(t1,12,€)) of class C?, s > 3, such that:

Z(ay(€)ty, an(€)tz,€) = f(Z(t1,t2,€),€)

and Zjy = Id for all € € (-6, 6).

As the map has a homoclinic tangency for € = 0, (then a = ap), there exists a parameter
t2 € R such that z(0,%;,0) = (£1,0), D2y(0,%;,0) = 0 and D33y(0,%2,0) # O since the
tangency is non-degenerate. Then there exists a map i, = #2(¢), for € small enough, such
that £2(0) = £z and D2y(0,{2(¢),€) = 0. Let

ge({t, y) = (’\;lfl (’\lxa A2y> 6)1 ’\2—1 fZ(Alx) A2y: E))
be a map conjugated to f(z,y,€) = (f1(z,y,¢€), f2(z,y,€)). Then
51 (tl,tz,G) = (Ai_lx(/\ltl,Aztz,E), A;lx()\ltl, Aztg,f))

satisfies g.(Z1(t1,t2,€)) = Z1(ait1, aztz,€) and T3y, = Id, where U is a neighbourhood
of (0,0). Let A; = 2(0,%3(€),¢). Then for g the point of homoclinic tangency is (1,0),
for € = 0, and z,(0,1,¢) = 1, Dpy;(0,1,¢) = 0, D22y(0,1,0) # 0, ¥;(0,1,0) = 0 and
D3y1(0,1,0) # 0. So the lemma is proved.O

Then we will study the maps g instead of fs,+. A possible behaviour of the family
{gc}ccr is in the figure 3.1. We will denote again the map g, as f. and the map Z; as
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¢« <0 €=0 e >0

Figure 3.1: A typical homoclinic tangency unfolding generically.

£ = (z,y). Then we want to find parameters af = ao + €} , a, = ao +¢;;. These

parameters satisfy, respectively, the systems of equations:

Mewd = (my) } (35)

trDf*(z,y) = 1+detDf*(z,y)
M(z,y,6) = (z,9) | (3.6)
tr Df*(z,y) = —1-detDfl(z,y)

where f2(z,y,€) = [({(z,y,€),€) and f*(z,y,€) = f* 7 (f(z,,€),¢).

Lemma 3.1.17 The systems 8.5 and 3.6 are equivalent to the systems:

i‘(a’;,ag:,tl,tz,e) = 01 (3.7)
FS (a?aaz ytl)vt2)€) = 0 ’
and
{‘(a?,az::,tl,tg,e) = 0 | (3.8)
where
ﬁ((\’?,ﬂ;",tl,tz,f) = (tl,a;"tz) - f(a'l'tl,tg,ﬁ)
ond
E‘)?:(CY’JI)(—V;"JI.J'BW-) = Day(afty,tz,€) + afay; " Dyz(aits, tz,e) Fa; "F
oY (Dyx(afty, by, €)Day(ayty, ta,€) — Dyy(aity,ta,€) Daz(afty,tz,€)) =0.
Proof:

As we have seen in proposition 3.1.9, the equation f"(z,y,¢) = (z,y) is equivalent to
.'f(tl, a;"tz, 6) - E(a?tl s tg, E) :.0.

Moreover, in this case Z(t;,a; "t2,€) = (t;1, a3 "t2). So we have obtained F. To compute

tr Df*(z,y) and det Df(z,y) we observe that:

fn(tl’t27€) = fn(f(tlat21€76) = i(a?tl)a;tZ)e)
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if ¢; and ¢, are small enough. Hence:

atDiz(afty, ta,€) af Daz(atty,ts,e)
of Diy(afti,ta,€) of Day(afts, tz,¢€)

Dfe(t1, 5" t2) = (
From this, we obtain that:
Ff = a;"(F1F det Df(t1, 05 ") + tr DfI (t1, 03 "t2)) .00
Then, in the systems 3.7 and 3.8, we put af = s; and a; " = s2. We have:

F1(81,82,t1,t2,€) =
F2(31)32)t1’t2)€) = 0 (39)
F;-(SI)SZ)tl)tZ)e) =

and
Fy(s1,82,t1,t2,€) =
Fy(s1,s2,t1,t2,¢) = O ‘ (3.10)
Fy (s1,82,t1,t2,€) =
where (F, F2) = F and Fy, Fs, th are C* maps with 8§ > 2. When s; = s; = ¢ = 0 one
has:
F(0,0,,,t3,0) = (t1,0) ~ £(0,t2,0) ,

FZ£(0,0,t;,t2,0) = D3y(0,t2,0) .

By hypothesis, fo has a homoclinic point § = (1,0) and it is a tangencial one. This means

that, for t; = 1 and t; = 1 we have:
F(0,0,1,1,0) = (0,0) ,
FE(0,1,1,0)=0 ,
if we take into account the results of the lernma 3.1.16. Then the folowing lemma holds:
Lemma 3.1.18 There exist differentiable maps
tT (s1,82), t7 (s1,82), € (s1,82), t1 (51, 82), t3 (s1,82), € (s1,82)

defined in a neighbourhood of (0,0) such that:

a) t7(0,0) =¢;(0,0) =1, tF(0,0) =t;(0,0) =1, ¢+(0,0) = ¢ (0,0) = 0.

b) Let Fy = (Fy, Fp, F3t) and F_ = (Fy, F3, Fy ). Then:

ﬁ+(sl,sz,tf(sl,sz),t;(sl,sz),e(sl,SZ)) =0,

F_(Sl,Sz,t;(sl,é'z),t;(sl,SQ),6(81,32)) =0,

for (sl,sz)‘ near (0,0) .
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c)
¥ (s1,82) = [Dsy(0,1,0)]"*s2 — D1y(0,1,0)[D3y(0,1,0)] 's; + O(2) ,

d)
€ (31,32) = [D3y(0a 1)0)]—132 - Dly(oa 1’0)[D3y(0)1)0)]—131 + 0(2) .

Proof:
We know that f+(0,0,1,1,0) = f_(0,0,l,l,O) = 0. To show there exist the maps

tf,t7,t3,t;, € and e we use the implicit function theorem. One has:

%TFIL = 1-s81D1z(s1,t1,€)

%} = ——Dza:(sltl,tz,e)

%1—:1 —D3x(81t1,t2,€)

%11 —-81 Dly(sltl,tz,e)

9582 = sy — Day(sita,ta,€)

%1:1 = —Dsy(s1,t1,12,€)
aF; 2 .
3t s1D31y(s1t1,t2,€) + 872 D11z(s1t1,t2,€)—

ad .
81E(Dﬂ(slth'tz,G)Dzy(31t1,t2,5) — Dyy(sity,tz,€)Daz(s1t1,12,¢€)) ,

aF; o
ETS = 51 Da1y(s1t1,t2,€) + sis2 Dy z(s1t1,t2,€)+

2
8151'(D1$(81t1,tz,f)Dzy(Sltbtz,6) — Dyy(sit1,tz,€) Daz(s1ty,t2,¢€)) ,

OF,
3ty Daay(sit, t2,€) + s182D12x(s1t1,t2,€)—
3
sl—at—z(D1$(81t1,t2,G)Dgy(sltl,tz,f) — Dly(sltl,tz,e)Dgx(sltl,tg,e)) s
aF;
31, Dooy(sity,ta,€) + s152D122(s1t1,t2,€)+

d
315};(D11(81t1,tz,f)Dzy(S1t1,t2,€) — Dyy(s1t1,t2,€)Daz(s1ty,t2,€)) .

Then if we take s; = s = € and t; = t; = 1, we obtain:

aF aF
— =1, — = -Dyz(0,1,0
6t1 ) 3t2 221(, y ))
aF; oF,
L — = 0,1 = — =
86 D3$( ) 70) 0 ) Btl 0 )
aF, OF,
—= = —-Dyy(0,1,0) =0, — = —D3y(0,1,0
8t2 Zy( 3y ) ’ Je Sy( y 1y )a
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dF; OF; OF; OF;
= = = = D42y(0,1,0) ,
at, 9t ' Bt,  Ot, 229 )

where all the derivatives are taken for s; =s; =e¢=0and t; =ty =1 . Then:

. AF, 8F, 9FF
det DF4(0,0,1,1,0) = —511—;;3 8tz

= D3y(0,1,0)D22y(0,1,0) # 0,

since the homoclinic tangency is non-degenerate (D22y(0,1,0) # 0) and unfolds gener-
ically (D3y(0,1,0) # 0). Then, by the implicit function theorem, there are functions
t¥(s1,52), t7 (s1,82), €t (s1,52) and t] (s1,52), t; (61,82), € (s1,82) which satisfy a) and
b) in a neighbourhoodof (0,0).

In order to see c) we have to compute D;et and Dye*. We get:
D,Fy + D3F2D1t:1t + D4F2D1t:2t + D5F2D1€i =0

Dy Fy + Dstth:lt + D4F2.D2t:2t + D5F2D2€i = 0
where all the derivatives are computed for s; = s; = € =0, and ¢; = t; = 1. We know that
D3F2 = D4F2 =0 and D1F2 = —Dly(O, 1,0) , D2F2 = 1 . Therefore:

_DiF; _ D4(0,1,0)
DgF; ~  D3y(0,0,1)°
DyFy 1
DgF;  Dsy(0,0,1) °

and this proves the part c) of the lemma.

D;%(0,0) =

D2e%(0,0) =

Lemma 3.1.19 The maps g4 : [0,70] X [—€0,€0] — [—€0, €0}, with ro and €g small enough,
such that g4 (r,n) = ei(ai/'(n),az_l/r(n)), are uniform contractions (that is, there ezists
a0 < K <1 such that |g+(r,m) — 9+ (r,n2)| < K|n1 — n2| Vr € [0,70]) and are continuvous

with respect to r and n .

Proof:

If 5 is small enough then 0 < a;(n) < 1 and 0 < a;'(n) < 1. If |n| < € then
lai(n) — @1] £ Aeo , |az(n)™! — & | < Beo with A and B suitable constants. Therefore
0 < a1(n) € A; < 1and 0 < az(n)”! < B; < 1if € is small enough for suitable
constants A; and B;. Hence 0 < a;(n)Y/" < Ai/' and 0 < az(n)~1/r < BII/'. Therefore,
if 0 < r < ro with ro small enough then |e£ (e (7)Y, a2(n)~1/7)| < € for |n| < € , since

*

€T is a continuous map. This means that the map g4 is well defined.

To see that g4 is a contraction we can apply the mean value theorem:
|92 (r,m1) = g (r,m2)| < M{lez (1) = e (m2) /") |+

|laz(1) 7" = ag(nz) M) <
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1 14 1 1., — -
M[-A] “lea(m) = aa(n2) + 2B “lea(m) Y- a(n2) 7 < Ky —

. . R Ir S —1ph-1
with 0 < K < 1 if r is small enough, since r"*4] ~ — 0 and r~'B;y = — 0 when r goes
to 0.
The continuity of g is due to the continuity of the maps €*, a;()1/" and az(n)~*/7.00

Then let n = 1/r in lemma 3.1.19. The uniform contraction principle (see for instance

[26] page 25) implies that there exist continuous functions n* = n*(n) such that:

n*(n) = € (af (1% (n), a3 " (*(n))) . (3.11)

Let s; = a?(n*(n)) and s; = o3 " (n*(n)). If n is large enough, s; and s are small. So
by lemma 3.1.18:

Fy(af, 05" t5(ef,a5™),t5 (af,05™),e5(af,a;™)) =0

where af = af(nt(n)) and o; " = a7 " (nt(n)).

Taking into account 3.11 we obtain:
ﬁi (a'll’ az—n’ t:lt (a?’ a;n)’ tg: (a?’ a;"’)’ r’i (n)) = 0

where of = af(nt(n)) and ;" = a7 *(nt(n)).
By lemma 3.1.17 it follows that f7 (respectively f™ ) has a saddle-node (flip) bifurcation

point of period n, where €& = n*(n) and the periodic point is p¥ = (tf,,t%,), with

+ _ ,% n -n + __. _—n,t —-n
tin = tin(al,a3") and t3, = oy "5, (af, ") .

To finish the proof of parts a) and b) we have to show that these saddle-node and flip
are generic and unfolds generically. First we will make another change of parameter and

coordinates:

Lemma 3.1.20 There ezists a parameter € = H(€) and an interval J = (—86,8) such that,

if fe(z,y) = fu()(z,y) then the family {f:}zes has a map
Z1(t1,t2,€) = (21(t1, 22, 8), 11 (11,12, €))
satisfying:
a) There ezist a neighboitrhood Uy of (0,0) such that Zyy, = Id.

b) x1(0,1,€) =1 > yl(oyl’o) ::01 DZyl(O)lyg) = Oa D22y1(0’110) ?1:0) yl(O,l,g) =&

¢) H is a local diffeomorphism in a neighbourhood of € =0
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Proof: v

Consider the map Z corresponding to f.. Let € = y(0,1,¢) = H(e). This map is
invertible in a neighbourhood of 0 because D3y(0,1,0) # 0. Moreover H(0) = 0 and
£1(t1,t3,€) = &(t1,t2, H(€)). Then the lemma holds. O

As before, we denote the new family and parameter as {fc}ces. We know that if a
bifurcation unfolds generically with respect to a parameter, also it unfolds generically with
respect to a new parameter, provided that the change of parameters is a diffeomorphism.

To simplify the computations we consider the following transformation z; = £, 2z =
- agnn for the map

f8(&n) = (z(al€,a3n,€),y(al€, afn,€)) .
Then we obtain the following map:
9¢ (21, 22) = (z(af 21, 22, €), 03 y(aT 21, 22, €))
The fixed points of this map corresponding to the n-periodic points p are
g = (tn 05 t2,) = (1 (of, 05 "), 83 (0,05 ™))

Lemma 3.1.21 Let g,(21,22,€) = (97(21,22,¢€),95(21,22,€)) = g*(21,22) be as before.
Then:

a) D19} = of D1z, D1gh = afal D1y, D2g} = D2z, Dagy = afDay .

b) vi = —-Daz, va=0alDiz—1, w; = aiDyy—1, wy = —Daz , where v = (v1,v2)
and w = (wi,wz) are, respectively, right and left eigenvectors of eigenvalue 1 of
Dg?:(g3) -

¢) Di1g} = a3"Dy1z, Diag} = of D12z, Diag} = Diax,

Di1g3 = a7"af D11y, Di2gy = ofaj D12y, Da2gy = of Daoy.
d} wTng:"% (¢5)(v,v) = —a%(D22y(0,1,0)D22(0,1,0) + o(1)) .
e) '

_ida
D3g? = Dyzna¥ l—d—:t;‘F + D3z,

—1da _1da
Dsgy = nog™' =2y +af Diyal ' —=tf +af Dy,

f) wT Dag™ = a(—D2z(0,1,0)D3y(0,1,0) + o(1)) = a(=D2z(0,1,0) + o(1)) .
The derivatives of g7 and g3 are taken in (q,eX), the derivatives of z and y are taken
in (aptE,tf,eX) , in the items a) and c). In the rest of the items the derivatives of g7
and g% are taken in (g}, €}), the derivatives of = and y are taken in (ot} ,t3,el) and the

derivatives of o and ay are taken in € .
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Proof:
The proof of a), b), ¢) and e) is a simple check. To show d) notice that

w’ D?g% (g )(v,v) = wy D11g7v} + 2wy D127 vrvz + wy DaggPug+

w2 D119707 + 2wy D127 v1vz + wy Dagglvs =
—a(Da22(0,1,0)D2z(0,1,0) + o(1))
since af Doy = o(af).
All the derivatives of z and y are taken in (a7t} ,t],f
For f) we have:
w' Dag™ = wy Dagy + wyDagy =

o (~D22(0,1,0)Dg(0,1,0) + o(1)) = aF(~D32(0,1,0) + o(1)) ,

since af Doy = o(ef) .0

By using the previous lemma and taking into account that, by hypothesis, D22y(0,1,0) #
0, D3y(0,1,0) =1 and D,z(0,1,0) # O because Z is a local diffeomorphism, we have finish
the proof of the part 1) of the theorem (see theorem 4.1.22 of chapter 4, which characterizes
the saddle-node bifurcation).

To prove 2) we need the following
Lemma 3.1.22 Let g™(z;1,22,€) as in the previous lemma. Then
a) Di11197 = a3 D111z, Diizgt = a3* D112%, Diz2g} = of D122z,
D229 = Dagoz, Di11g3 = o™ D111y, Di12¢5 = a3™o3 D11ay,

n __ n n —
Di2295 = af a3 D122y, Dazagy = aj Dagay.

b) Let v = (v1,v2) and ¥ = (v1,92) (respectively w = (w1,w2) and w = (wy,wz)) be
right (resp. left) eigenvectors of eigenvalues —1 and X, where X is the other eigenvalue
of Dg™ (¢7). Then: vi = —Daz,v; = afDiz + 1, w; = (afDay + 1)/A, wy =
—(Dng/A, A =afa}DyyDaz — atal DyzDay, 0 = —Daz, U2 = atDiz — A, @ =
(af Doy — A)/B, wa = —(D2z)/B. Here A= —Dayz(af Doy + 1) — Doz(al D1z + 1)
and B = —Daz(ai Dy — A) — Daz(af D1z — A) .

Sy (7 Dl (0007 D252 (0,) + (67 D% ()¢

1 1
—é-wT Dag:.: (v, v, v) = Zag"(Dgzy(O, 1, 0)2 + 0(1)).
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d) Let q, = (21,22) be the fized point of g for € near ¢, such that q,(¢;;) = q; . Then:

dz 1 n
d—: = 50 D3yDaz +o(03) ,
dz 1
d—: = Eangy—i— o(a3) .

e) Let p = p(e) be the eigenvalue of Dg™(g,) such that u(e;) = —1. Then:

d

—Y = __1__._ 2n 2n
% (e,) = 2(1+A)D22y(0,1,0)a2 + o(as™) .

Here, derivatives of z and y are taken in (aft],t5,¢,) and derivatives of g and g3 are

taken in (g, ,€,), if the point is not given ezplicitely.

Proof:

a) and b) are obtained by using the expression
g?(zl’z2) = (m(a?zlﬁz%f)aa;y(a'llzhz%f))-

The eigenvalues are computed from:

ayDiyz(atz;, 2 Doz(at 2z, 2
Doy = EDiEednm)  Dislatnm) )
azafDiy(atz, z2) of Day(afz, 22)
We note that A = —det Dg™(g,.) because the other eigenvalue is —1. So A = O(afa}).
Moreover the eigenvectors satisfy v-w =1and 9-w =1, and A = —Daz + 0(1) due to -1

is an eigenvalue of Dg*(gq, ) . We have:
1+ tr Dg (g, ) +det Dge(g,) =0,

but
det Dg’ (g, ) = afaz D1yDaz + o(aTa}) ,

tr Dg?(q,,) = oy D2y + o(1) .

This means that af Doy = —1+40(1) and, therefore, A = —Dyz+0(1). By the same reason:
vy =0(1), v2=0(1) and w; = O(1) , wz = O(1) .

On the other hand B = —afDayDaz + o(1) = O(1). So v, = O(1), ¥2 = O(atah)
and w; = O(1) , we = O(1) .

It is easy to see that éwTDSg:‘; (v,v,v) = O(a}) and, using the values of the second

derivatives computed in lemma 3.1.21, that:

ST (7 D02 (0, D@7 DT (0,0)) = (O(1) + O(0Fa)O(eF) = ofe3™),
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and .
1(D22yDaz)® 5,
4 Az 2

With these computations the proof of c) is finished.

1 1 on
Z(wTng:‘; (v,v))? = = Za% (D229(0,1,0) + o(1)) .

To prove d) observe that ¢, = (21, 22) verifies:
z(alzy,22,6) = =
azy(ofz,z2,6) = 2z
Then, if we compute the derivative with respect to €, we get':A

dz; ndz1 no1doy dzo
—d:'— =Dz (al x + noy 1?%1 + Dgz—&;— + Djsz

dzo _ n—1 doy n ";dzl n—1 day dzy
Zc = "oz o y+oy | Diy| o] T + naj T z1 ) + Doy I + D3y ) ,

where the derivatives of z and y are computed at the point (afz, 22,¢€) .

So for € = ¢, we have:

d | ' '
DS
_1d d ~1,~
Daz <na; 1—}22!/ + ay (Dly%na;‘ M+ D3y)>}

[(Dyza} — 1)(Dzyoy — 1) — Dz:chya'l‘a;"]_l

and
de

. -(E = [(Dlxa? - 1) <—na'f—1 d

dag n da1 -
—ey - Qy <D1y—d;-t1n + D3y) +

day
Diyat oy <D1zna'1‘_1—-§-€—1~t1n + D31:)>]

[(Dyza} — 1)(Dayol — 1) — DazDiyalal]™? .

+

Since —1 is an eigenvalue of Dg™ (g1

), we have:
1+tr Dy’ (g, ) +det Dg7-(¢,) =0,
and therefore:
(Dizal — 1)(Dzyaz — 1) — DozDyyotay =1 tr Dg7- (g, ) + det Dg7-(q,) =
2(1 4 det Dg- (¢7)) =2+ 0(1) .

We also see that

y(aTt],,a5ts,, €. ) = D1y(0,1,0)atty, + D3y(0,1,0)e, + h.ot. = O(az;") .
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Then:
dz1

= —a2 D3yD2z+ o(ag3)
and p
22
= ‘0‘2 z D3y + o(ay) .

Here all the derivatives of z and y are taken at (aft],,a%t;,,¢€,) -

To see e) let u = p(e) be the elgenvalue of Dg"(gn) such that p(e;) = —1. If A = A(e)
is the other eigenvalue, then:

tr DgZ(gn) = o D1z(0f21,22,€) + oz Day(atz1, 22,6} =p+ A,
det Dg*(¢n) = aag Diz(afz1,22,€) Day(af 21, 22,€)~
atal Daz(alz, 22,€)Diy(alz1,22,€) = Ap .
By derivation, and isolating Z(e;;) , we obtain for € = ¢

du _ tr Dg¢ (qn) + 2 < det Dg? (qn)
den 14+

This is well defined because |A] # 1.
Then we have:

d day  _ dz
-c-l_tr Dg¢ (‘In)|E e =na} 'Diz + o} <D11z [noz1 l—d_ltl" + a?d—:] +

dzo e n— doy ndzl
Dlgzx + Dlsx) + na, 1 (D21y [nal l—ge— + Tl-e—] +

dz 1

Dzzy'"gf + D23y> = EDzzy(O, 1,0)Dsy(0,1,0)a3™ + o(a3™),
d n ) ¢ n d
= det Dgl*(qn) = of oy ?d—e(Dl zDoy — Doz Dyy)+

_ydo? —1d
<noz'1L ! :el ay + nogy 1%“?) (D12D2y — D2zD1y) =

d d d d
atay (Dl:cd Doy + — % DizDoy — Dgwd—Dly - 'd—Dz-’EDw) + O(nafoy) .
It is easy to see that <t D;z = O(ag) and & D;y = O(ag). So:

d n
% det Dg; (q")|€=€Z = O(a'fa%n)

and
d 1

EE“(E’:) = "'2(1—+'/\—)D22y(0’ 1,0)a2" + o(a2™) .00
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Following with the proof of the theorem 3.1.15, if we take into account that
D22y(01 laO)D3y(0> 170) # 0

then:

Ty (7 D% (0, )07 D (o, o))

1 1
Z(wTng:T (v? v))? + EwTDsg:; (v,v,v) #0
and
L u(ez) #0
dep' n )
if n is large enough.

Then, by theorem 4.1.24 of chapter 4, we have that g has a flip fixed point ¢,, which
unfolds generically with ¢. Hence we have proved the part 2) of the theorem.

It remains to prove 3) and 4):

at — Qo . €

lim - T
U0 aA, L 8 TR €,y

[Dsy(0,1,0)]"taz " + o(e3 ")
n— oo [Dgy(o 1 0)] la—(n+1)+ ( —(n+1)

and also _
lim —n—2% _ 5,
n— o0 a,.1 — Q0
Moreover
lim a} = hm (ao + (D:;y(O,l,O))_1 2" +o(ag")) = hm a, =ap .
n—oo

Finally, 4) is evident since a} has a saddle-node which unfolds generically. Then if we move
the parameter slightly, we obtain an attracting periodic orbit. Of course these parameters

tend to ap when n tends to co. This finishes the proof of the theorem. O

Remark 3.1.23  a) There exist several versions of this theorem ([18], [19], [20], [21],
[22],[27]). In [22] it is proved also that the map f© near the homoclinic tangency,
for n large enough, tends (in a suitable sense) to the logistic map. We shall use this
fact later. In our version we use the changes of coordinates and parameter (lemmas
8.1.16 and 3.1.20) of [22]. The ezistence of generic saddle-node and flip bifurcations,

however, 18 not explicitly proved in these versions.

b) The hypothesis (A) can be removed as we can see in [21], at least for the last part of

the theorem. However the techniques used there are different.
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¢) For the case a; < 0 or ag < 0 we have to distinguish n even and odd. For n even
one has the same results that we have seen before. If n is odd there ezist also saddle-
node and flip periodic orbits and the ezpression of the values € is the same that the
previous case. We shall see this _later.

d) This theorem can be generalized to situations in which the homoclinic tangency is of
order n. In this case it should appear codimension n bifurcations. For example, for
cubic tangencieswe should have cusps and codimension two flips. Of course we have

to consider, in general, n-parameter families of diffeomorphisms.

3.2 Possible cases of homoclinic tangencies

To study all possible cases of homoclinic tangencies,we will introduce a quadratic model of
the map f7 for a =~ ap near the homoclinic tangency point. First one observes that the

possible types of homoclinic tangencies depend on:

a) The geometry of the tangency: in which of the two semispaces determined by the

stable invariant manifold of the fixed point, the unstable invariant one stays, locally.

b) In which one of the two possible senses, the orbits follow the unstable invariant

manifold.
¢) The signs of the eigenvalues of D f, (po) .

Therefore, we have 16 possible cases of homoclinic tangencies essentially different. In the

figure 3.2 there is a picture of these possible cases.

Now consider a family of diffeomorphisms {f,}secv which satisfies the hypothesis of
theorem 3.1.15. We have seen (lemmas 3.1.16 and 3.1.20) that we can suppose that the

family verifies, if a = ap + € ,:

a) There exists a smooth map £ = (z,y) such that fo +(Z(t1,%2,€)) = Z(ait1, azta,¢€)
and )y = Id, where U is a neighbourhood of (0,0) and p = (0,0) is the dissipative
saddle fixed point.

b) The point of homoclinic tangency for € = 0 is (1,0), and z(0,1,¢) =1, D2(0,1,¢) =
0, y(0,1,¢) =€, y(0,1,0) =0, Dyy(0,1,¢) = 0.

For this family of diﬁ'eomorphis.ms we have:

ef = a;™ - a?D1(0,1,0) + O(az7 %),

n
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Figure 3.2: Possible cases of homoclinic tangencies
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€, =a;" —atD;1(0,1,0) + O(az;?") ,

P =(1+0(e3"), 05" +0(e3")) ,
pn =(1+0(ez"™), 05" +0(az™"))
where p} (resp. p;) is te saddle-node (flip) bifurcation point for € = €} (e = ¢).

Now we consider the map f7, . for n large enough and ¢ near 0. We know that:

z(aft,,alts,€) )
y(alty, agta,€)

fag+e(titz) = (

if (t1,t2) is near to (1,0). Consider the following rectangle:

R=[1-20;""%14+20;""% x [a7™ - 205 >™/%,05™ + 205 >*/?]

such that (21,t2) € R and ¢ € [-2a;",2a;"]. Then f2 . = (fir.., 2", ) verifies:

In  =2(0,1,¢) + D1z(0,1,€)at; + D2z(0,1,¢)(altz — 1) + O(az™)

ag+t¢

2n = y(o’ 1, 6) + Dly(oa 1: E)a?tl + Dzy(O, 1,6)(a;t2 - 1)+

ag+e
1 _
5 D2ay(0,1,¢) a5tz - 1)2 + O(a; %)

Then, taking into account that z(0,1,¢) = 0, y(0,1,¢) = € and Dpy(0,1,¢) = 0, we
obtain:

n =1+ Dyz(0,1,€)(aft; — 1) + O(az™)

a0+e

1 -
ovve = €+ D12(0,1,)alts + 2 Da2y(0,1,¢) (o512 ~ 1)7 + O(a; /%)

ap+e

If we do not take into account O(a; ") and O(ay 8n/ %), we have a quadratic model of the

map f7 . . near the homoclinic tangency. Moreover, as Z = (z,y) is the identity near (0,0),
we have that:

D,z(0,1,0) D,z(0,1,0)

= —-D»2(0,1,0)D;4(0,1,0) > 0.
Dly(O,l,O) D2y(031:0) ? ( ) ' ( )

This means that there are 4 possible types of maps depending on the signs of the derivatives
D4y(0,1,0) , D2z(0,1,0) and D22y(0,1,0) :

a) D2z(0,1,0) >0, D;y(0,1,0) <0, D3y(0,1,0) >0.

b) D2z(0,1,0) >0, D;y(0,1,0) <0, D22y(0,1,0) <O .

c) D2z(0,1,0) <0, Dyy(0,1,0) >0, Dyyy(0,1,0) >0 .
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d) D,z(0,1,0) <0, D;y(0,1,0) >0, D2y(0,1,0) <O .

These cases have been studied in [28]. Observe that in all the cases the stable invariant

manifold is the straight line t; = 0 (in coordinates (¢1,t2)) and the unstable invariant

manifold is (z(0,12,¢€),y(0, 12, €)), with
z(0,t3,€) = 1+ D2z(0,1,¢)(tz — 1) + O((tz — 1)?) ,
y(0,2,€) = €+ %Dzzy(o, 1,€)(tz — 1) + O((tz — 1)°) .
If we take t; € [1 — 205 "/%,1+ 20;™/%) and € € [-2a5",2a; "] then:
z(0,t3,€) = 1+ Daz(0,1,€)(t2 — 1) + O(az ™) ,

1 —-3n
y(O,tz,e) = €+ EDggy(O,l,G)(tz - 1)2 + O(a23 /2) .

Hence:
2 D22y(0s 110)

[D2z(0,1,0)2 _ © (s

v(0,12,6) = 3(=(0,t2,€) — 1)

—-3"./2)

To study the different cases with easier computations, we will suppose that D,z(0,1,0) =

+1, D2,y(0,1,0) = £+2 and Dly(O, 1,0) = £1 . Then we have the following models:

mre(&n) = (L—a3"n,(1-az™n)® + e+ o} (1+€))

mre6om) = (ag"n—-1,(1-a;"n)? +e-af(1+¢))

mrc6n) = (g"n-1,-(1-a;"n)® +e—af(1+¢))
fare&n) = (1-az™n,—(1-a3™n)® +e+al(1+§))

where £ =t; — 1, n =t are new coordinates with origin in the homoclinic point.

All this maps are considered for

(617’) € R = [_2|a2|——n/2’2|a2i—n/2] X [a;n - 2|a2|—3n/2’a2—n + 2|a21—3n/2]

and € € [-20;", 205 "].

The stable invariant manifold is always 7 = 0, and the unstable one is = £2 + ¢ in

the first two cases and n = —£2 + ¢ in the other ones. We also suppose that a; and ap can

have negative sign.

Let c(&,1) = (£2 (&)= (f1™ . (£,1))? — € . Then we have the following propositions:
ote¢ ag—e

Proposition 3.2.1 For n large enough the map 3.12 verifies:
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¢) If a1, az > 0 or n is even, then f7. (R)N R has two connected components and for
all (§,n) €R : ¢(€,n)>0.
b) Ifa; >0, az <0 and n is odd then f2 (R)N R =0 and ¢(¢,n) > 0.

¢) Ifay <0, az >0 and n is odd then f2 (R) N R has two connected components and
c(§,n) <0.
d) If oy , @z <0 and n is odd then f (R)N R =0 and ¢(£,9) <O.

Proposition 3.2.2 For n large enough the map 3.18 verifies:

a) If ay , az > 0 or n is even, then f2 (R) N R has two connected components and for
all (§,m) €R : c(&,n) <0.
b) Ifay >0, az <0 and n is odd then f2 (R)N R =0 and ¢(£,n) < 0.

¢) Ifay <0, az > 0 and n is odd then f (R) N R has two connected components and
c(&,n) > 0. _
d) Ifay , az <0 and n is odd then f2 (R) N R =0 and c¢(&,n) > 0.

Let c(f, f)) = ( ;:+e(6)’7) + ( 33+c(6)'7))2 —€.

Proposition 3.2.3 For n large enough the map 8.14 verifies:

a) Ifay , az > 0 or n is even, then f2 (R)NR =0 and for all (§,n) € R : ¢(€,n) <O.

b) Ifa; >0, oz <0 and n is odd then f2 (R) N R has two connected components and
c(&,n) <0.

¢) Ifa; <0, az >0 and n is odd then f2 (R)N R =0 and c(£,n) > 0.
d) If @1, az < 0 and n is odd then fZ (R) N R has two connected components and

ce(&,n) > 0.

Proposition 3.2.4 For n large enough the map 3.15 verifies:

a) Ifay , az > 0 orn is even, then f;‘o(R)ﬁRz 0 and for all (€,n) € R : ¢(&,7) > 0.

b) If oy >0, az <0 and n is odd then f2 (R) N R has two connected components and
c(¢,n) > 0.

¢) Ifa; <0, az >0 and n is odd then f2 (R)yNR =0 and c(€,n) < 0.
d) If o1, @z < 0 and n is odd then fI (R) N R has two connected components and

c¢(€,n) <O.

These four propositions are easy to prove (see [28]). Pictures of the rectangles R and their

images, for the four types of tangency, are shown in figures 3.3, 3.4, 3.5 and 3.6.
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Figure 3.3: Case 1 (A’, B’, C’, D’ are the images of A, B, C, D).
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Figure 3.5: Case 3.
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3.3 Periodic points and bifurcations

We analize in this section the fixed points of maps 3.12, 3.13, 3.14 and 3.15, and the

t
'

corresponding bifurcations of this points. ‘
From now on, when we put z,, &~ vy, it means lirfnn_.(,o 5: = 1, where z,, and y,, belong
to IR for all n € IN. The following properties are supposed to hold for n large enough.
We will study the first model (3.12). After we give the results corresponding to the

other models:

Fixed points

The equations of the fixed points of foo+e are:
§=1-azn

n=(1-a3n)’+e+af(1+¢)

Hence:
a2'n? - (205 +ofal+1)n+1+e+2a7 =0

and, therefore, -

14208 + alal + /403 (1 — ofad) + (ofaf + 1)2 — deal”
n= 5oan (3.16)
oz
So, there exist periodic points if

(1+ 205 +alaf)? > 402" (14 € + 2a7) .

Parameter of saddle-node bifurcation

The parameter for which the fixed points appear is:
- n 1, _ -
€n = a;” —af + Z(azn +af) oy
For this parameter the fixed point is:
1, 1 I 1 _ 1, _
(é0,m0) = <"§°‘2 - §a'1‘,a2 "+ 2% "ol + 2%2 2n> ~ (““2‘02 "o ") .

Proposition 3.3.1 Suppose that p, is the original dissipative saddle fized point. Let WH¥
be the subset of W¥(p.) such that it s, locally, the parabola n = €2 + € in a neighbourhood
of (0,0), and let W* be the subset of W*(pe) which is, locally, the straight line n = 0. Then:

a) lim, o €10 =0 .
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b) For n large enough sign ey, = signo; ™.

¢) If a1, a3 > 0 or n is even then €;, > 0 and when the bifurcation occurs one has
wWenws =§.

d) Ifa; > 0, az < 0 and n is odd, then €1, < 0 and when the bifurcation occurs one
has W NW?* # Q.

e) If oy <0, az > 0 and n is odd, then €1, > O and when the bifurcation occurs one
has W NW?* =0.

f) If a1, az < 0 and n is odd, then €1, < O and when the bifurcation occurs one has
WenW? #£0.

9) The fized points of 3 .., for € between O and 2¢y,, are in the rectangle
R = [~2Jasl ™2, 2| /%] x [a™ — 2a|~/2, a5 + 2Jas| /2]

The proof is a simple check.

Parameter of flip bifurcation

The two periodic points born due to a saddle-node bifurcation are transformed into one
saddle and one node. The node is an attracting periodic point. When the parameter ¢ is
suitable changed, this point becomes a saddle periodic point of double period through a
flip (also called period doubling) bifurcation.

The differential of the map f2 . is:

Df;:,ﬂ(e,n):( o B ) .

of 203(agn - 1)

Thus, when the flip bifurcation takes place, the eigenvalues are —1 and —afaf. Therefore
14+ atal = 2a5(1 — afn), where n has the value given in 3.16 with negative sign.

Then the parameter of flip bifurcation is:
3, _ -
€2n = _Z(azn +a7)? +az" —of .
Proposition 3.3.2 For n large enough:

a) limy_ o0 €2, =0 .

b) €1n —€2n = —(a; "+ 0l)? ~ —a;?™ . Then the parameter of flip bifurcation is closer

to the parameter of homoclinic tangency than €1 if af > 0 and further if a <0 .
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Second flip bifurcation

After the flip bifurcation, the attracting periodic orbit which appears, has again a flip !
bifurcation and the same occurs for this new orbit, and so on. This is the so-called cascade '

of period doubling bifurcations.
Let (&+1,7i+1) = f£0+5(£,~,m) . Then:

iv1=1-apn,

Miv1= (1 —afm)? +e+af(l+ &) .

Thus a two-periodic orbit {(£o,70) , (€1,71)} satisfies:

1 = 1-oafz3— afe—atal(l+ 1) (3.17)
zo = 1-oafz? - afe— atal(l+ o)
where z; =1 — afn; = &41 . By substracting the two expressions we get: 7
z, — zo = (ef (21 + o) — afal)(z1 — 2o) .
As the orbit has to be of strict period two, one has z; # z¢ and, therefore,
z1+zo=0a;" +of (3.18)

By adding the two equations in 3.17 we obtain:
2y + 20 = 2 — a((z0 + 1) — 2z021) — 205€ — 2aTa] — afaf(zo + z1) .,
and taking into account 3.18, one has:
zozy = (az "+ af)? +al —a;" + €.
We conclude that zp , z; satisfy the equation in z:
22— (af +a;™)z+ (af +a;™)? +af —a;"+e=0.

The differential of f7 .. at the point (&, 7;) is:
—oloy 2a§"a:.-
D 30.1..5(6;',7’1') = ( n.n n.n 2n ’
—2alopz; —atoay +4a3"zz;

where j =1if 1 =0 and j = 0if + = 1 . Therefore, when ¢ is the parameter corresponding

to flip bifurcation, it satisfies:

2 = n 2 — 2n .2
tr D a:+e(§i)r)i) = —2a'1‘a2 +4a2"3;0;c1 = -1 alnazn ,
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because at flip bifurcation the eigenvalues are —1 and —o?"a" .

Taking into account the value of zox; we obtain the parameter of the second flip bifur-
cation: 1
ean=—(0g" +0a7)’ - 2(az" —a})’ + 03" — o} .
Proposition 3.3.3 If n s large enough:
a) €2p, — €4n & %a;zn .

b) limp—oo(€1n — €20)/(€2n — €4n) = 2.

This means that €4, is closer to the parameter of tangency than €2, if af > 0 and further
if af <0.

Third flip bifurcation

To study the third flip bifurcation we consider first the following change of coordinates and
parameter. '
z=ap - a3y,
y=azt,
e=a;"™ — o} +a; e .
Then the map 3.12 is transformed into:
o2 (z,4) = ( ~ém e mededy )
z

The 4-periodic orbit (%o, Z;, &2, Z3) (Z; = (s, y:)) satisfies:

Ty = —E-— xf — afalzo

r3 = —&-—1z5—olafzy (3.19)
g = —&-1z%—alafz, .

T, = —&—2%—atajrs

Let S =xzp+ 1 + 23 + 23, P = zoz12223 and C = (29 + 22)(z1 + z3) . If in the system
3.19 one substracts the third row from the first one, and the second from the forth one,
one obtains:

z3 — zo = (71 + z3)(23 — 71) + afal(z2 — 7o) ,
z3 — z1 = (2o + z2)(z2 — 20) + ol (z3 — z1) .

'For solutions of strict period four: zo # 2o or z; # z3 . Therefore:
(afay — 1)® + (zo + z2)(z; + 23) =0 .

Then we have:
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Proposition 3.3.4 Ifzo, 1, 22, z3 satisfy the equation 8.19 and x5 # zo or 1 # Z3 ,

then C = —(afal — 1)%.

There exist other relations between S, C and P :

Proposition 3.3.5 Under the conditions of the previous proposition, the following relation

holds:

S% + (3(afal — 1) +48)S — 4(1 + o af)(afal - 1) =0.

Proof:

It is easy to see that:

5% - 3CS = 23 + 23 + 23 + 23 + 322z, + 32225 + 32022 + 32,75 .

From the system 3.19 we obtain:
Zo
ZT3Zg
ToT)
ZoTy

Hence:

(1+ ot a3)C = —&S — (2§ + 2} + 25 + 3)

It also holds:

TpTy = —EX3 — :c%xe, — alayTozs
—_ _ = 2 n_n
T3Tog = —€Tg — TpZp — &1 G T1T0
— _ = 2 n, n
ToTl — —€T] — T3T1 — Q1 0TI
_ - 2 n_n
TiTy = —ETg — T{Tp — Q] O T3 T
Therefore:
2 2 2 2 ~
ziz3 + 2520 + 2521 + 472 = —€S — (1 + afa3)C .

= —&z; — 2} ~ afafzor;
— = 3 n_.n
= =&y — Ty — AT 0L T1 T3
— _z 3 " n.n
= —€I3 — Tz — O Q3 T2ZT3

= —&zo — Tg ~ afaf T3z

(3.20)

(3.21)

(3.22)

(3.23)

Then, taking into account that C = —(afaf — 1)2 and by using 3.21, 3.22, and 3.23, we

obtain 3.20. O

Proposition 3.3.6 Under the hypothesis of the previous propositions, P and S satisfy the

equation:

0 = 4P — 48 — 4ea?"ol™ + Beat oy — 48 — 4o

+4a3"ad" + 4o} af — 4+ 26(1 + afof)S 25>
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Proof:

C? = 4P + z2a? 4+ 2222 + 2222 + 2222 + 22251 23 + 22022 22 + 2T0 2275 + 2217523 . (3.25)

From the system 3.19 we have:

23 = —exZ — 2222 — alafzor?
a:g = —E:zzg - zgzg — oy alea:g
z3 = —ex? — 2222 — alafzoxl
a::;’ = —Ezf - zgz% - a;‘a;xaz%
Hence:
2y +2i+25+23 = “5(3’0 + 2% + 23 + 23) — («725 + 2525 + 2325 + z523)—
- alaj (:coa:2 + 2122 + 2022 + z327) . (3.26)
From the system 3.19 we obtain:
2 2 2 2 _ = n.n
x5+ 23 + 25 + 25 = 48~ (1 + aTaf)S (3.27)

and from 3.22, 3.23, 3.27 and 3.26:
2322 + 2273 + 2222 + 2222 = & + (1 + aTad)?C + 2€(1 + afa})S .

From the system 3.19 we have:

z%zo = —€ToTp — xf:co:t:g — a’l‘a;zg:cg ,
:cg:cl = —&riz3 — mg:rlza - a'l"agx?:cs ,
zgmg = —ExpTo — :cg:cz:zo -~ a'l‘a;x%zo ,
m%xs = —Ex3Ty — 2:8:):3:1:1 - a;"a'z":z:gxl .

Therefore:

(1+ atal)(z3z0 + 232; + 2322 + 2223) =
— 2&(zo72 + z173) — (23zo%2 + TEZy 23 + T3Z0Ty + T2T1Z3). (3.28)

Taking into account 3.27:

Sz = —~4& — (1 + a?aZ)S +2C + 2(:50132 + 5512:3) .
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From this equation and 3.23, we have, by substitution in 3.28,
x?zoxz + x§x1z3 -+ :choxz + :cga:lcc:; =

—&5% — 48% + 2eC + (1 + ofaf)?C .

Finally, taking into account the expression of C? in 3.25 and the value of C, we get 3.24.
0

Proposition 3.3.7 For the parameter of the third flip bifurcation eg, corresponding to
4-periodic points, it is satisfied:

1 1
P= ~alay +

3 2 2 1 3 3 1 4 4
- n_ 2n n . 3n —airgin 3.2
16 4 (3.29)

_al az al
8 4

'The jacobian matrix of the map gin is:

—~2zq —atay

4rsrz — alay 2afajzs 4z 1z — afay 2alanr
n.n
=2z —atol

Dg?"(zo,yo) = (

For €g,, the trace of the jacobian has to be ~1 — aj"a4™ . Therefore:
tr Dg2" (zo,90) = 16P — 40 a3C + 2070 = -1 — af"a3"™ .
If we take into account that C = —(aa} — 1)%, we obtain 3.29. O

Corollary 3.3.8 Under the condition of the previous propositions if S = 2o + 21 + 22+ 23

and € = egna%" - o + a{‘ag", then S and € satisfy:
S3 + (3(afah — 1)2 +48)S — 4(1 + afaf)(atas — 1) =0,
2eS? = 2¢(1 + alaf)S — 48 — 423" 3™ + 8eatal —
= 102 1 oz 102
17 3 17
4€ — - + 3alal + §af”a§" +3a3" 3™ — z—a‘{"’aé" .

This system is derived from the previous propositions.

Proposition 3.3.9 There exists im,,_, o fi‘:___—::f: = 4.23373...
Proof:

Recall that € = a;™ — of + €a; *" . From corollary 3.3.8, if we take afaj =t = 0, we
obtain the system:
5%+ (34+46)S-4=0,

17
~2€Sz+2€5—4€2—4€—1 =0.
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Then € and S satisfy:

_ S3+4+35—-4
€= ——
45 ’

S8 — 285+ 484 -6S°-652+85-16=0.

The polynomial on S has only two real roots, which are: S;o = —1.2965435... and S =
2.0935646... Associated to these values we obtain two values of & &, = —1.9415376... and
€20 = —1.3680989...

Now we want to get solutions &(t) , S(t) of:
Fi(t,€,8) =0 ,F(t,e,S)=0,
where
Fi(t,e,8) = S+ (3(t — 1)2 +48)S — 4(1 + t)(t — 1),
- 202 | oz 22 _ 4542 | @z . 3.2 s_ 174
Fy(t,&,S) = —2&S° + 2e(1 +t)S — 4&° — 4&t” + 8et — 4e — y +3t+ >t +3t° - <!

such that €(0) = & and S(0) = S0, or €0) = &9 and S(0) = Szo . We denote these
solutions as €; = El(t) , S1 = S1(t) and & = gz(t) , Sp = Sg(t) . Let F = (Fl,Fz) . Then:

35?0 + 3 + 4€;0 —45;9 )

De s F(0, &0, S;0) =
g,8 ( 0 0) ( 23'0 — 46{05{0 85{0 + 4 - 251'0 + 25120

where 1 = 1,2. We claim that det D¢ sF(0,&0,Si0) # O for + = 1,2 . Then, by the
implicit function theorem, there exist functions & = ¢;(t) and S; = S;(t) such that &(0) =
&o , Si(0) = S0 , and

Fi(t,&(t),S(@) =0,

Fa(t,&(t),S:(1)) =0,
in a neighbourhood of t = 0. Let us see that the claim holds:
det Dg g F(0, &0, Sio) =
6S% — 652 + 168,05% + 1852 + 32eSZ, — 6S;0 + 40,0 + 12 .
By setting €9 = -5*%{%-"%"—_4 we obtain the polynomial:

6SS, — 353 + 2654 — 1953 + 3082 — 445, + 16 .

This expression is different from zero if { = 1,2 because the roots of this polynomials are

all possitive and less than 2 . Then we have that:

& = &o +O0(aTa}) , Si= Sio+0(afaj) .
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Therefore there exist two possible parameter of bifurcation. But it is known for the logistic
map go(z) = a + 22 that the parameter of the third flip bifurcation is a ~ 1.3680989 (sce
[3]). Then:

€en = 05" ~ o — 1.3680989...a; %" + O(atoz; ") .

Hence:

1.—2n n,—n
. €2n — €4 . —5Q + O(ata )
lim n n 22 ( 1+2

=4.23373...0
n—oo €4n — €gn "m0 —2 + E30)ay " + O(ata; ™)

Other flip and saddle-node bifurcations related to the Newhouse

phenomenon

We have seen that, in the space of parameters, thre exists a family of open intervals I,,, of
lenght going to zero, which tends to the parameter of homoclinic tangency and such that,
for parameters belonging to these intervals, we have an attracting periodic orbit of period
n. These periodic orbits bifurcate to periodic orbits of period 2n , 4n , 8n . It is possible
also to compute the bifurcations of attracting periodic orbits of period 2/n with 5 € IN .
The limit of these bifurcation parameters, if it exists, ez0p = lim,_, o, €25, must be far
from zero because €55, = a; ™ — af + &5 2" + h.0.t. Also the parameters €55, seem to
satisfy, for n large enough:

lim £2in ~ €2i-ln _ o ,
300 €g5+1y, — €2ip

where § = 4.66920... is the Feigenbaum constant (see [3]).

On the other hand, the behaviour of the bifurcation cascades due to the Newhouse
phenomenon is similar to the behaviour of the bifurcations cascades for the logistic map,

2, in the following sense: If a; is the parameter corre-

fa(z) =1—az? or go(z) =a—=z
sponding to bifurcation of periodic points of period 27, which come from the saddle-node

bifurcation of the fixedpoint of g,, then:

. €2ip — €ai~1y Ag;i — Agj~1
lim = .
n—00 €aj+1y — €ajp Q2i+1 — Qg

This seems true since the return map g7 tends to the logistic map when n — oo.

Moreover, there exist other periodic orbits related to the Newhouse phenomenon. We
can findd periodic orbits of period n; + nz + ... + n,, with i < n < 7, such that n; is
assoclated to a horseshoe map in the following sense: Suppose, for simplicity, that m =3 .
Then for all n; we can define a horshoe map by using f;7,., as we see in the figure

3.7 (recall that f77,  is the original quadratic model). It can exist a ¢ € R; such that
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Figure 3.7: Other periodic points related to the Newhouse phenomenon.

fate(g) € Ry, £330 (q) € Rz and fi1}f™*"(g) = ¢ . These periodic points are not
considered in our study of bifurcations. In this case, the width of the parameter values ¢
for which these periodic orbits are attracting, is smaller than the widths corresponding to
periods n; , n, and nj . Also, inside R;, there are periodic orbits of period pn; for all p
because there exists, in a horseshoe map, periodic orbits of any period. We have to note,
too, that if one or two of the eigenvalues a; or a; are negative, there are two different

types of periodic orbits. One of these types corresponds to the case of positive eigenvalues.

Finally, by using a theorem of [18], one can see that there exist a parameter €; near 0,
an open neighbourhood A., of ¢; and an open and dense subset B of A, such that: if

€ € B then f,,+. has an attracting periodic orbit.

. For the maps corresponding to formulae 3.13, 3.14, 3.15, propositions similar to 3.3.1,
3.3.2, 3.3.3 and 3.2.1 hold ([28]). We list the differences:

Assertion cases 3.14 and 3.15
3.3.1 The parabola should be n = —€ + ¢
3.3.1 c) W W £ §
3.3.1d) wenw* =90
3.3.1¢) WeNnWw*#40
3.3.1 1) wenw*=49
3.32b) €2n — €1 RS oz;z"'
3.3.3 a) €on — €4n =2 50:52"
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3.4 Behaviour of the basin of attraction of the attract-
ing periodic orbits

Given an attracting periodic orbit created by the Newhouse phenomenon, we want to see
if a strange attractor may exist. If p is a saddle fixed point and W*(p) is the unstable
invariant manifold of p, then W*(p) can be a strange attractor (see [29] in the case of the
Hénon map). To show that this attractor cannot exist, where there are attracting periodic
orbits, it is enough to prove that the basin of attraction of the periodic attractor has non

empty intersection with W*(p) .

"~ Proposition 3.4.1 Let N be an attracting m-periodic point of a diffeomorphism f over
a two-dimensional manifold. Suppose that A is a closed attracting set such that N & A .
Then, for the basin of attraction of N, W*(N), one has W*(N)NA=0.

Proof: .
If 2z € W/ (N)N A, as A is closed an invariant, then f™"(z) € A for all n and
limp oo f*™(z) = N € A, reaching an absurdity. O

Proposition 3.4.2 Let {f,}acr denotes a one-parameter family of dissipative diffeomor-
phisms in the plane. Let ps a saddle-node fized point which unfolds generically in a =
@ . Then, for a — @ small enough, there exzists a branch Wi (S.) of W*(Sa) such that
lim,— o f2(z) = N, if x € WH(Ss). Sa and N, denote , respectively, the saddle and
node which appear for @ near @ (a > @ or a < @ depending on the region of the parameters

for which there ezist periodic orbits).

Proof:

By the center manifold theorem (see for example [30]) we know that there exists a two
dimensional invariant surface, tangent to the eigenspace of Dg(pa,a) belonging to the part
of spectrum on the unit circle, with respect to g(z,y,a) = f.(z,y) . Then, by a change of
coordinates we can transform the map f, to the map f, such that: f,(z,0) = (fi(z,a),0).
Moreover the map f; has a saddle-node in 0 which unfolds generically. It means that when
a =~ @ we have two fixed points which are in the invariant line y = 0. This straight line is the
unstable manifold of one of the points and the other is an attractor. Then the proposition

is proved. O
Remark 3.4.3 If f, ts C* then the center manifold is C*~1 .

If we want to show that the basin of attraction of an attracting periodic orbit has non
empty intersection with an unstable invariant manifold, it is enough to prove that, the
stable invariant manifold of the saddle born by saddle-node bifurcation intersects the first

unstable invariant manifold.
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Proposition 3.4.4 Let {f.}acr denote a one-parameter family of diffeomorphisms with a
saddle-node periodic point, which unfolds generically ina =a . Let S, and N, be the saddle
and the node which are born near @, and p, a saddle fized point such that W* (S )NW*(ps) #
0. If W*(Ng) is the basin of attraction of N, then W*(Ny) N W¥(ps) # 0 .

Proof:

Let z € W*(S,) N W¥%(p,). Consider y € W¥(p,) such that y is near to z . Let V be
a neighbourhood of S;, where the Hartmann theorem can be applied for the saddle S, .
There exists an no € IN such that f2°(z) € V, and, if y is close enough to z, f3°(y) €V .
By the Hartmann theorem, if f7¢(y) is close enough to the stable invariant manifold of S,,
then there exists n; € IN such that: f2o*"1(y) is close to W*(S,) . As one of the branches
of W*(S,) belongs to the basin of attraction of N,, if we choose a suitable y (in one of the
sides of W*(S,)),then we shall have that f2°*"1(y) is close to the branch of W*(S,) which
belongs to W*(N,) . Therefore, if y is close enough to z then f}ot"1(y) € W*(N,). Then
ye W (N,) .O

To study the basin of attraction of the periodic attractors, first we shall study the map

n

o, +¢ Dear the homoclinic tangency point:

Proposition 3.4.5 Let {foo+c}ao+ee(-1,1) be a C” (r > 3) one-parameter family of dif-
feomorphisms on the plane, having a dissipative saddle fized point py for € = 0 such that,
the eigenvalues a;(0), az(0) of Df,, satisfy: 0 < a1(0) < 1 and a2(0) > 1. Suppose that
the invariant manifolds of py have a non degenerate homoclinic tangency in ¢ which unfolds
generically, and that the family verifies the hypothesis (A). Then there are, for each posi-
tive integer n, reparametrizations € = M, (&) of the ¢ variable and é-dependent coordinate

transformations (%,§) — ¥ (%, ), such that:
a) For each compact set K 1in the € %,§ space, the images of K under the maps
(&2,9) — (Mn(€), ¥ne(2,9))
converge, for n — oo, to (0,q) .
b) The domains of the maps
(€2,5) — (& (¥nz © fao+ Ma(e) © ¥n,2))
can be chosen as a fired compact set.

¢) The previous maps converge, for n — oo , to the map
(E:iag) - (Ea fz(ia y))

with f:(2,9) = (4,9 +¢€) .
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Suppose, moreover, that a;(0)az(0)? > 1. Then there exist other transformations ¢ =

M, (%), (2,§) — ¥n,(Z,§) whick satisfy a) and b), and the maps
(&%,8) — (& (Pt © fagt Ma(e) © ¥n.2))
converge, for n — oo to the map
(€,2,9) — (& fe(2,9))

with fe(z,9) = (0,1+ 2 — &7) .

- Proof:

As before (see begining of section 3.2), we can suppose that (1,0) = ¢ is the tangent
homoclinic point, and that there exists a map Z(t1,t2,¢) = (z(t1,t2,€),y(t1,t2,€)) in a
neighbourhood of B = {(t1,t2,€) : € = 0,t1t; = O} such that Zjy = Id, being U a
neighbourhood of (0,0) . We know also that z(0,1,¢) =1, y(0,1,¢) = € and Doy(0,1,¢) =
0 . As the homoclinic tangency is non degenerate, we have D22y(0,1,0) # 0 . Then we have
seen that the parameters of the saddle-node bifurcation, €}, and the filp bifurcation, ¢,

and their associated periodic points of period n, p} and p;;, verify:
e = a;" —yaf + 0(az ")

€, = oz3" —yof +O0(az?")
Pl =(14+0(ez™),a;™ + O(a3>"))
P, = (1+0(az™),a5™ + Oz "))

where v = D,y(0,1,0) .
Then, following [22], we consider the change of parameters and coordinate transforma-

tion:
€ = ay;e—vyal +az"
t, = 1+a;"h (3.30)
ta = a;"+ a;2nt—2

for the map f7 . .(t1,t2) = (z(alt1, a5z, €),y(att1,aftz,¢)) . By the properties of Z we
have: v
x(tlyt%e) =1+ D]QJ(O, 1)0) + Dz:L‘(O, 1’0)(t2 - 1) + zl(tl’tz’e)

1 ,
y(ti,t2,€) = e+ 4ty + EDzzy(O, 1,0)(tz — 1)® + y1(t1,t2,€) ,

where for e =t; =0and t; =1

T = D]Il = Dz:l:l = D3Z1 =0 3
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y1 = Diy1 = D2y1 = D3y1 = Da2y1 = Dasy1 = Dazy1 =0.
Then, let a = Dg.i(O,l,O) # 0 and B = 3D32y(0,1,0) # O. By using the coordinate

transformation 3.30 we obtain the new map:

atz + D1z(0,1,0)atalt; + afzy
BE; + &+ yafagts + a3y ’

g9¢(t1,82) = (
where
zy = z1(a?(1 + a3 "), 1+ a3 "tz, a5 2" — va + o3 ™)

and

y1 =yi(af(1 4+ o3 "8),1+ a;"t—g,agz"?f— val +a;") .

As the fixed point is dissipative, we have: 0 < a;az < 1 . Moreover:
ofzy = O(aga?) +0(a3") , a3y = O(ad"a2") +0(a3") + O(afa}) .

Then the map g, when n — oo , tends to the map
1 aty
— .
2 B2 + €

€= ,B_IE’ t—l = aﬁ—lm ’ t-2 = ﬂ_ly ’

1 S+

L

By the substitution:

this limiting transformation becomes:

()=(4)

Then the parts a), b) and c) of the proposition are proved. Note that the limiting trans-

formation is essentially the logistic map.

It remains to prove the last part: Consider now (if 12 > 1) the coordinate transfor-

mation:
€ = opE—qat+a;"
t; = 14 agzna;"fl
ta = a3"+a;%"

for the map f2 . (t1,t2). As ajaf > 1, when &, , & , € are bounded, (t1,¢2,€) tends to
(1,0,0). By using this transformation we obtain:

aaalty + D12(0,1,0)a2" a2, + a2 otz

,Bt"% + e+ a%"yl ’

gf(fl,fz) = (

148



where

z1 = z1(af(1 + agz"al_”t_l), 1+ oy "2, a;2"€ —yab +a; ™)

and

y1=yi1(ef(1+ a;%al_”t_l), 1+ a;"t-g,az_z"E —qat +az;").

Then we have:
2n

aztalz; = O(ad"a3) ,
of"y; = O(afaf) . -

Hence the map g tends, when n — oo, to the map:

t 0
- L— - .
i BE + €+ 4ty

-ple, =yt h=wy,

By the substitution:

€

this limiting transformation becomes:

()= ()

With this, the proposition is proved. O

Remark 3.4.6 This proposition in the parts a), b) and c) is proved in [22]. The last
part is necessary to study the bastn of attraction of the periodic points near the homoclinic

tangency, for the case aja2 > 1.

Now we shall study the different types of behaviour of the basin of attraction of the
attarcting periodic point, which exist for parameters close to the parameter of saddle-node
bifurcation. To do this we only need to study the stable invariant manifold of the periodic
saddle point which exists at the same time that the attractor. Then we consider again the
quadratic models of the n-th iterate of the initial map near the homoclinic tangency: 3.12,

3.13, 3.14, 3.15. We shall consider this cases separately:

Case 1

In this case the map is:

12 (6 = (1= a5™n, (1 - a3™n)? + e + a(1 + €)).
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If p. is the initial fixed point of f,+¢, then W¥(p.) is locally the parabola n = £2 + €. The
saddle periodic point is (if it exists) S. = (€o,70), such that:

—afaf —1-vVA 23 +afaf+1+VA
20 7o = 202" ’

§o =

A = 4a3(1 — afad + (1 + afaf)? — 4ead™ .

The first bifurcations, as we have seen before, are:

_ 1, _
eln:az"—ai"+z(a2"+a;‘)2 ,

3, _ -
eZn:—Z(a2"+a'1‘)2-{ja2"—a;'.

The eigenvalue o of DfZ ., (S) such that |a| < 1 verifies:

ag+e
—_ n 2n ¢2
a=—oazo — V a3z €y —atay ,

and it is a root of the polynomial:
o® +2a5&a+alal =0.

If the stable invariant manifold of S is given by (£(t), n(t)), then it satisfies (see proposition
3.1.2):
f(at) = 1-agn(t) }
n(at) = (1-afn(t))” +e+of(1+E&()
or
()’ + a;"€(a®t) +afé(t) +et o —az" =0 (3.31)
We can write £(t) = €o + Y s, cnt™ because € is an analytic function (since foq4¢ is

analytic). If we substitute € in the equation 3.31, we obtain:

k—1
¢k = P Z CiCk—i
=1
for all k > 1, where
B = —ak(2§0ak + azka;"‘ + o:'l")'1

In th case k = 1 we have that ¢; can be arbitrarily fixed because 2épax + ozi;"oz2 +af =0.
We fix ¢; = 1. Also it is easy to see that di = —a; "aFck, where n(t) = no + > 5o, ditk.

Proposition 3.4.7 The series £(t) = €0+ _pey Ckt* has an infinite radius of convergence.
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Proof:
We know that this series has a radius of convergence p # 0 (by the stable manifold

theorem). Suppose that p # co. Then:
£(t) = a7 [~ €(at)? — a;"E(e®t) — € — aF + a3 ™).

If |at| < p and |a®t| < p then &(t) is defined by a convergent series. Hence, if |t| < |a™1p| <
a~2p then £(t) is well defined and its radius of convergence is p > |a~1p| > p. This is an

absurdity. Then p = co.O

Now, to see if there is intersection between W*(p.) and W?*(S,) we will compute n(t) —
€(t) — € : In the foolowing propositions we will always suppose that n is great enough and

¢ is between €1, and €5, :

Proposition 3.4.8 Let t € IR be a parameter. Then the point (£(t),n(t)) verifies:
n(t) - €(t)* — e = o (E(a™ ) +1).

Proof:

The proposition holds because
n(t) = a;™ — a;"€(at), £(t)® = —a; "E(at) — afé(a™'t) —e— al + a3 ".0

Proposition 3.4.9 Let (£o,n0) be the coordinates of the periodic saddle point S¢. Suppose

that € 13 between €1,, and €3,,. Then the following relations hold:
a) Ifa? >0, af >0 thenny — €2 — € > 0.
b) Ifa} >0, a <0 then o — €2 — € > 0.
¢) Ifaf <0, af >0 then no — §§ — € < 0.
d) Ifa? <0, af <0 thenmy ~ €2 — € < 0.
The proof is an easy check ([28]).

Proposition 3.4.10 There ezist two points (£(t1),n(t1)) and (£(t2),n(t2)) of the stable
manifold W*(S.) such that, if n is large enough:

a) ty <0 andtz > 0.
8) (€(t),n()) belongs to

R=[-2|az| ™", 2la2| ™" X [ag™ — 205 2", a5 ™ + 205 2"] Vi € [t1,1t2].

¢) £(t1) = —2[az| ™", £(t2) = 2fea] ™"
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Proof: Consider the following change of coordinates and parameters:

_ -2n - n -n

-n
Qo T

-n —2n
a ta;y

Then the map f7, . is conjugated to the map:

-y
g (z,y) = .
(@) <y2+€+a?a3x)

- When n — oo this map tends to the map:

!

The stable invariant manifold of the repellor point of gz , (z0,y0) , such that yo = -I—t@
and zo = —yp, verifies the equation y = yo. When ¢ is between €;,, and e5,,, € is between
4 and —3. So the point (zo,y0) belongs to [—2,2] x [-2,2] for all € € [-3,1]. Moreover
there exist two points p; , p2 € W*((zo,¥0),9e) such that p; € {-2} x [-2,2]| and p; €
{2} x [~2,2]. Then this is also true if we take n large enough for the map ¢g" and the
corresponding fixed point (zon,Yor ), by the stable manifold theorem (see [16] and chapter

2). Undoing the change of parameter and coordinates the proposition is proved. O

Remark 3.4.11 In fact, we can consider rectangles smaller than the previous one. For
ezample R = [—2|az|™", 2]az|™"] x [a;™ + (yo — 6)a; 2", a5 ™ + (yo + 8)ag 2] with 6 > 0 as
small as we want, if n is large enough. Moreover we can take § = 1/8 and n large enough

such that yo — 6 > € because yo = y2 + € and yo # 0.

Proposition 3.4.12 There ezists to € IRY such that, for all t with |t| < to the point
(&(t),n(t)) belonging to W*(S.), is into the rectangle:

Ry = [~2las] ™/, Jou[ "] x [og™ ~ 2lea| "2, 3™ + 2fag] /2]

Moreover, if Wi (S.) has some intersection with the boundary of Ry and oy > 0, then the

first intersection is in the segment
{~laz|7"?} x [az™ = 2laz| 7"/, a5 ™ + 2Jap| ~*"/2].
Here W2 (S.) denotes the two branches of W*(S.).

Proof:
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We know that the saddle fixed point, Sc = (&o,70), of 3 .. is inside R; (proposition
3.3.1). Therefore there exists to € IRT such that, if |t| < to then (£(t),n(2)) € W*(S).
On the other hand, the images of the segments:

s1= [—2|az| 72, 2]ay | "] x {a; " - 2|az|3"/%}
$p = [_2|02,_n/2,2|a1|_"’] % {a;n +2|a2|_3"/2}.
are vertical segments:
{F2loz| %} x [4]oz| ™" + € + o (1 — 2]az|7"/?), 4|az| ™" + €+ o (1 + 2|0 7/?)],

where the sign plus corresponds to f2 , .(s2) and the sign minus corresponds to f2 . (s1).

These two segments are outside R. The image of the segment
{loa| ™"} x (a5 ™ = 2|iz| 7*"/2, a5 ™ + 2] | 7>"/7].

is the parabola: 7 = £¢? + € + a} + 1 and hence it is outside R;.
Now suppose that Wi (S.) cuts, for the first time, the boundary of R; in (£(%),n(%)).
Then f2 . (€(2),n(?)) is contained in the rectangle R; because W*(S,) is the stable invari-

ant manifold. Therefore
(@), n(D) € {~2/aa|™™? x [0z ™ — 2|az|7>"/%,05™ + 2|az| ~"/?|

since in the other cases

go-f-e(f(t_))n(t_)) ¢ Rla

which is an absurdity. O

Corollary 3.4.13 Let «; > 0. Then the point of the first intersection of both branches
of W*(Se) and W¥(p.), if it exists, is contained in the strip defined by the stright lines:

n=a;™ +2|az|"3? and n = a; " — 2|az|~3"/2.

Proof:

It is a consequence of the fact that the segment {—|az|~"/2} x [az ™ - 2|az|~3*/2,a; " +
2|a2|_3"/2], in the previous proposition, does not intersect the parabola n = £2 + € but the
segment s; does. Then, as the point S, is inside the parabola (see proposition 3.4.9), the

corollary holds. O

Proposition 3.4.14 Suppose that oy > 0. Then there exist t; < 0 and t3 > 0 such that:

a) §(t1) = —2lo|™" , £(t2) = 2[aa|™™.

—"n,—k—n _ —kn—k—n
B) £(a*ty) < —A2a;% a7 @ I | |g(akty)| < BRag P P YR,
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c) f(a—ktz) 5' _C’,%a;Z"nal_(T‘_l)n |£(a—kt2)| < Dz —2%n —(2 —l)n,

for n large enough. Here o is the eigenvalue of Dfg | (Se) such that |a| < 1 and Ax, B, Ck

and Dy, do not depend on n.

Proof:
We know that £(t) satisfies the functional equation:

£(t) = (—eaz ™" ~ £(at)” — 3" E(o®t))e ",

where € = a;™ — af + €a; >". Then, by proposition 3.4.10, there exist two parameters
~ t; and t3, t; < O and t; > 0, such that £(t;) = —2|az|™™, £€(t2) = 2|az|™™. Moreover
£(t) € [-2|az|™™,2|az| "] if t € [t1,t2]. Then we have:

(e ) = (<05 " — £(2)? - oz "E(atr))ar" < —~a; 7",

- _ _ - 25
(o 1t1)| = —5(0 ) = (fa 4 E(t)” + az"E(at))or " < rap®tag
) ‘SQ the 'proposmon is true for t =t; and k = 1. Also for k = 2 we have:
€a™?) = ('Eaz —&(a” ')? ~ az_"f(tl))
(~e57" - Afa;*"a;™ - 2057 " < ~ A0z "ar ™",
for a suitable Az and n large enough.
|€(a™?t1)| = ~¢(a 2t1) = (205" + £(a™ )7 + a3 E(tr))ar " < Bjaz*a;°".
Now suppose that the assertion is true for £ < m — 1. Then:

| e(a-mt_;): (~2a3?" - €0~ ™ 14;)? — a3 ™¢(a""™ ) oy " <

m-2__ _om=32
(—ECX A4 ——2 na;(z 2)n +B,2;_20¢(2_2 l)n,a:(l 2 +1)n)a1—n <

_A2 —2 n —(2 —'1)11.’

€(a™™t)| = ~{(a™ ™) < BRa =27n =27 1)n
The proof for t = t; is analogous. ]

Proposition 3.4.15 Both branche’s'of the stable invariant manifold W*(S.) intersect the
‘unstable tnvariant manifold W¥(p.) if of > 0 and af > 0 or o > 0 and o < 0, for n

large énough.'
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Proof:

The condition of non empty intersection is the following: there exists ty € IR such that
1(to) — €(to)? — € < 0. This is equivalent to the existence of a point #, such that £(fp) < ~1.
Then the parameter to = afy verifies the previous inequality.

Then let ko € IN be such that az_zko al_(zko_l) > 1. It exists since |ajaz| < 1. By the
previous proposition we have that, for n largé enugh there exist 1 < 0 and t2 > 0, such
that

g(aFoty) < —A2ag om0 < g,

and
— k ——
E(a%0ty) < —C’,fo[z'zko"oz1 (Fe-1n < 1.

This prove the proposition. O
Proposition 3.4.16 If |aja2| < 1 then W?(S) N W¥(pe) # O for n large enough.

Proof:
In this case it is easy to see that the parabola n = £2 + € has non empty intersection

with the rectangle of the remark 3.4.11:
o [_ -n -n -n 1 —-2n _-n 1 ~2n
R =[-2|az|™,2|02|™"] x |03 ™ + yo+§ az ez (Y- g ) ,

since the minimum of the parabola n = £?+e = €2+a; " —al +éay 2n is below the straight

line n = a7 ™ + (yo — 2)a5 " and, for example, the points p; = (£205",405%" + 03" -

al + €a;*") € W¥(pe) but py ¢ R. Therefore, by the proposition 3.4.10 and the remark
- 3.4.11, there exist points of intersection of both branches of W*(S,) with W*(p.). O

Proposition 3.4.17 If aja < 1 and a; > O then there exist points (&,n) € W*(S.) such
that n — €2 —e <0 and £ > 0.

Proof:
We observe first that the case a3a; < 1 has been proved in proposition 3.4.16. So we

. will suppose that a3a; > 1 Consider the following change of parameters and coordinates:

. —2n_ -n
= o "t—val + o,
- -2n_—n
= Q5 Q@ T
_ -n ~2n

n = 0y +oTy

Then the map fZ .. is conjugated to the map:
n _a?agy
94z = 2, -
y'+é+z
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When n — oo this map tends to g¢(z,y) = (0,y? + & + ). The stable invariant manifold
of the repellor point of g; corresponding to S, when n goes to infinity, which is (zo,y0) =
(o,(1+ @)), verifies the equation: z = —y%? — &+ yo = —y? + y2. When ¢ is between €;,,
and €z,, € is between ; and —%. So (zo,¥0) € [~4,%] X [~2,2] and the first intersections
of the stable invariant manifold with this rectangle are in the segments {— £} x [-2,2] and
{3} x [-2,2]. Let (zo(n),yo(n)) the saddle fixed point such that (zo(n),yo(n)) — (zo,yo)
when n — oco. By the stable manifold theorem, if n is large enough, the stable invariant
manifold of (zo(n),yo(n)) is close to the parabola £ = —y? + yZ. Undoing the change of

coordinates and parameter, we have that for n large enough the rectangle
R, = [——al—"a;% —-al_"az_z"] x [az™ — 205%™, 03" + 20527

contains, locally, W*(S.). Moreover the first points of intersection of W*(S.) with the
boundary of Ry are in the segments

1
{cha;"a;Z"'} X [az" = 205", 0™ + 20;2"].

On the other hand the parabola n = ¢2 + ¢, which represents W*(p), has its minimum
in (0,05 ™ — af +€a;°"). As ; > a3 2, this minimum is below the rectangle R;. Moreover,

the points

’ 25

belong to W*(p.) and y > a;™ + 2a; 2" since afa? < 1. Then the parabola crosses the

+ Y 1 -2n _-n 1 —d4n _—2n -n n - —2n
(23,97) = (:t—a Qp ,or0y ) tay —ap + €y )

rectangle R;.0O

Proposition 3.4.18 Suppose that oy < 0 and |6Za;| > 1. Then W*(S.) does not intersect,
locally, W¥(p.) for n odd and large enough.

Proof:
We consider again the following change of coordinates and parameters:
€ = a;e—vyat+oy"
¢ = a;*a"z
’7 — az_n + a2—2ny

Then, in the same way of the previous proposition, we can see that if n is large enough the

stable invariant manifold of S, is locally contained in
Ry = [-Ac;®a; ", Aa; "o "] x [a;" — Ba;?",a;™ + Baz ?",

with suitable A > 0, B > 0. But W“(p.) has the local expression n = £2 +¢e¢ = 2+ a; " —
al + Eaz—zn and this parabola does not intersect the rectangle R3 if &; < 0 and n is odd

and large enough, since |a3c;| > 1.0
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Proposition 3.4.19 Suppose that a; > 0, ata] > 1 and |aSai| < 1. Then the first point
of intersection of both branches of W*(S) and W¥(p.) has negative abscisa.

Proof:

For simplicity we consider the case az > 0.

By the corollary 3.4.13, we know that the first intersection of both branches of W*(S.)
with W*(p.), if it exists, is contained in the strip defined by the lines n = a; ™ + 2|az|~3"/3

and n = a; " — 2|az|"%"/2. Now we consider the following set:

Ry = ([-4a;?"a; ", 4a; a7 "] x [a;3" — 323 2",a; " + 305 2"])U

-3n /2 ——3n/2]

[-205 ™%, ~ 405707 "] X 05" — 20 "+ 2a

Observe that a;"‘/z > a;?"a]" since ada? > 11t is easy to see that S, € Ry. Moreover

the points
mo= (- 2a2 ,a2 "4 20 3"/2)
p2 ‘: ( 2 -n/Z az— 2(1;3"/2),
ra = (- 40‘;2" "o + 205 ),
—3n/2
P4 (- 40‘2 ,"2 b= 20, " ),
ps = (-daz”™ a; " 4 305,
P = ( 4a2—2n a; az _ 30—2n)’
pr = (40—211 a; ’ + 3(1_2"),
P = (40‘2 ay "’ o, " — Bay 2n)
(see figure 3.8), have their image outside Ry :
fa.te(Re)
p
P, (——— Y p
p -t P
ps " R,
s Psg
p, |- \,\’///
P,

Figure 3.8:

2 e(p1) ~ (=205, 505™),

' -nf2 p
" ve(p2) ™ (20577, 505 ™),
— 2 —
f:o+e(P3) ~ (“20‘2 "/ , 90, ")o

—n/2 _
(':o+c(p4) &~ (2&2 " ,502 ")’
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wote(ps) 2 (803", 05" + (5 + oz ™),

(this point is outside Ry since € € [——%, i—]),

fayselpo) (3o ™, 05" + (5 + oz ™),

Q,
aote(Ps) & (=305, 05™ + (18 + 8oz ™),
faorelps) ~ (33", 03" + (13 + Eoz ™).
On the other hand, the image of the segment
{407""a1"} x [03™ = 303", 03" + 305 "]

is in the parabola 1 = €2 + ;"™ + (4 + €)a; >" and it is ouside the region Ry if € €
—%, %] Moreover, the images of the segments p3ps and Pgps do not intersect Ry, since the
intersection of the line £ = —4a; ?"a ™ with f2 +<(p3ps) is in the point:

(403%™ al ™, a;™ + 1605 *"a %" + (€ — 4)o; *") ~

-2n_—-n _—n —4n_—2n
(—40z ™0y ", 03" + 1605 "oy ™),

and this point is outside R, since ag 4a1_ 2> ay 32 if and only if a3af < 1. By the same
argument f2 . (pips) is outside R4. Then the first time that the stable manifold W*(S)
touches the boundary of Ry is in a point of the segment p;pz.

Finally, we observe that the unstable invariant manifold W*(p.) is, locally, the parabola
n = €2+ oz ™ — a} + oy ?". This parabola has intersection with the segment pip; in a
point approximately equal to (—a?/z,a;" + 2a2_3n/2), because a?a3 > 1. However it has
no intersection, with positive abscisa, with the region Ry since the intersection of the line
€ = 405 2" ™ with W*(p.) is approximately equal to (4a; *"a; ™, a; ™ — of). This point
is below the line n = a; ™ — 3a; >" since aa? > 1. With this fact we have that the first

intersection between both branches of W*(S,.) and W*(p.) has negative abscisa. O

Proposition 3.4.20 Let [afad| > 1 and oy > 0. Then there ezists to € RT such that:
Vte R, [t| < to the point (£(t),n(t)) belongs to
s 1 _ anje o 1
Rs = [~2laa| ™, Z01"] x [05" — 2lea|*™/2, 05" + 10y™7),

and W*(S.) intersects for the first time the boundary of Rs in the segment

- - - 1
{=2laa|™"/?} x [05™ — 20ae|™*"%, 05" + Z03™7).
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Proof:
First we denote the segments of Ry as:

1
s1.= {=2loa| "™/} x [a5" = 2aa| "%, 05" + 2037,

_ - - 1 3
Sg = {za'f/z} X [az" - 2|az| 3"/2,012" + Za? /2] ,
-n 1 n -n —-3n
83 = [—2'&2' /2,-2-a1/2] X {a2 - 2'&2' 3 /2} ,

84 = [—2|a2|_"/2,-;-a;'/2] X {a;" + ia?n/z} .
In order to prove the proposition we require:
a) Se = (€o,m0) € Rs,
b) f2 ..(s4) does not intersect Rs,

c) f2 +c(s2) is outside the rectangle Rs.

Then, taking into account the proposition 3.4.12, the image of s3 does not intersect Rg and

hence the proposition follows.
We will prove a), b), c):

a) Suppose that az > 0. If a; < 0 the arguments are similar. We know by the proposition
3.4.9 that &(e) is increasing when € € [ezp, €15]- So £o(€) is maximum when € = €;,,

and has the value:

1 n
Cole1n) = zag ™ + a1< a1/2,

2 2

i 2 5.4 .
since aja; > asaj > 1.

Therefore the abscisa of the point S, o, is between the straight lines £ = —2|ap|™"/?

and § = -—a;’/ 2. As & is increasing, o = a; ™ — a; ™ & is decreasing. Therefore 7o (¢)
is maximum when € = ¢3,, and:
Tolean) = 03" + 30" + Safez" < oz + zat2,
since ajad > adat > 1.
Hence the point (£o,70) belongs to Rs.
b) f2 ,.(s4) is the segment
{“}‘a?nlza;} X [ - aztai® +‘a2_ — 20, n/zal, ! ot +a;™ + = ‘1"‘/2 :
4 16 16 2
skipping higher order terms. We have to see that a2 ad" + ;" - 205 n/2 n of >

"4 4 a>™/?_ this is true because aSa? > 1.

159



¢) f2 .(sz2) is contained in the parabola:

n=¢€+etaf(l+ 2a"’2)-

This parabola is outside the rectangle R5 since:
- 1
€+ af <1 + 2an/2> >a;" + Zain’/z.

Ase=a;" — af + O(a;%") and aja} > 1, this is equivalent to say:

1 o3n/2 lasn/z l 3n/2

21 191 41 >0.0

Corollary 3.4.21 Under the hypothesis of the previous proposition the first point of inter-
section of both branches of W*(Sc) and W*(p.) is a point of negative abscisa.

Proof:
We consider only the case a; > 0. We want to see that the boundary of the rectangle

Rs has two intersections with negative abscisa. This is true because sz has no intersection

with W¥(p,). The intersection of the line £ = —a'l‘/2 with the parabola n = £2 + ¢ is the
point (5of n/2 ,a; " —2al) (skipping higher order terms). This point is outside the rectangle

Rs since a3a? > 1. So the corollary is proved. O

By using the previous propositions we have the following:

Theorem 3.4.22 Let {fc}ce(-1,1) @ one parameter family of diffeomorphisms having a
dissipative saddle fized point po for € = 0. Let p. denote the saddle point which ezists for
€ =~ 0. Suppose that, for € =~ 0, the invariant manifolds of the fized point have, locally, the
following ezpression in the coordinates (€,n) : n =0 for W*(p.) and n = £2+¢ for W¥(p.).
Suppose also that the map fI for n large enough and (€,n) near the point of homoclinic
tangency (0,0) is:

fen(fa '7) = (1 - a;nn»(l - a;nn)z +e+ a’ll(l + E)),

where |a1| < 1 end |az| > 1 are the absolute values of the eigenvalues of D fI*(p.. Let
€1, and ez, be, respectively, the saddle-node and flip bifurcation parameters associated to
the n-periodic points of fI' which appear by the Newhouse phenomenon. Let S, denote the
n-periodic saddle which appear by saddle-node bifurcation. If n ts large enough and € is

between €y1,, and €3, then:

a) Both branches of W*(S,) intersect W*(pc) iof o1 > 0.
b) If a; <0, n odd and |a;al| < 1 then W*(§.) N W*(pe) # 0.
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¢) If |adad| < 1 and oy > O then there ezists (€,n) € W*(S) N W¥(pe) such that £ > O.

d) If a; > 0 and |a3a3| > 1 then the first point of intersection of both branches of
W*(S.) with W*(p.) has negative abscisa.

e) If a; <0, n odd and |a;02| > 1 then W*(S,) does not intersect, locally, W*(p.).

f) All the points of intersection of the previous items are in the rectangle:

[~2laz| ™%, 2]az| %] x [a3 ™ - 2oz 75"/2, 05" + 2] T3],

Other cases of homoclinic tangency

All the other cases, corresponding to the maps 3.13, 3.14, 3.15, are anologous to the first

case. We nnly state the following theorems:
Theorem 3.4.23 Let {f.}ce[-1,1] be as in the previous theorem, with the following change:
[ s, for (€,n) near (0,0),
fE&m = (g™ = 1,(1 - az"n)* + € - al(1+§)).
Then if n s large enough and € is between €1, and €2, one has:

a) Both branches of W*(S.) intersect W*(p.) if a1 < 0 and n odd.

b) If a1 > 0, and |a10d| < 1 then W*(S.) N W¥(pe) # 0.

¢) Iflaad| <1, a1 < 0 and n odd then there exists (€,n) € W*(Se) N W¥(pe) such that
§>0.

d) If a; <0, |a3ad| > 1 and n odd then the first point of intersection of both branches
of W*(Se) with W*(p.) has negative abscisa.

e) If ay > 0 and |aya3] > 1 then W*(S.) does not intersect, locally, W*(p.).

f) All the points of intersection of the previous items are in the rectangle:
[‘2|a2|"n/2’2|a2|—n/2] x [ag™ — 2|a2|_3"/2,a2_" + 2|a2|—3n/2].

Theorem 3.4.24 Let {fe}ce[—l,ll be as in the previous theorem, but suppose now that
W(pe) is n = —€ + € and f2 4s, for (€,n) near (0,0),

feEm) = (o™ -1, -1 -a3"n)?+ e~ a(1+¢)).
Then if n is large eriough and € 18 between €, and €3, one has:

a) Both branches of W*(S.) intersect W*(p.) if &3 > 0.
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b) If a1 <0, n odd and |aj02| < 1 then W?(S) N W%(pe) # 0.
¢) If |a3a3| < 1 and o > O then there exists (£,n) € W*(Se) N W¥(p.) such that £ > 0.

d) If oy > 0 and |a5ad| > 1 then the first point of intersection of both branches of
W*(S.) with W*(p.) has negative abscisa.

e) Ifa; <0, n odd and |a102| > 1 then W*(S,.) does not intersect, locally, W¥(pe).

f) All the points of intersection of the previous items are in the rectangle:
[—2|02l_n/2,2|a2|—n/2] X [a;n _ 2|a2|—3n/2’a2—n + 2|a2|_3"/2].

Theorem 3.4.25 Let {fe}ee[—l,ll be as in the previous theorem, but suppose now that
W¥(pe) is n = —€ + € and f is, for (€,7) near (0,0),

o6 =0-az"n~(1-0a"n)’+e+ol(1+§€)
Then if n 1s large enough and € is between €y, and €z, one has:

a) Both branches of W*(S.) intersect W*(p.) if &1 < 0 and n odd.
b) If oy > 0, and | 02| < 1 then W*(S) N W¥(p.) # 0.
c¢) If lajad| < 1, a; < 0 and n odd then there exists (€,n) € W?(S) N W¥(p.) such that
€>0.
d) If a1 <0, |adal| > 1 and n odd then the first point of intersection of both branches
of W*(S.) with W¥(p.) has negative abscisa.
e) If oy >0 and |on03| > 1 then W?(S.) does not intersect, locally, W*(p.).

f) All the points of intersection of the previous items are in the rectangle:
[~2laz[™"/2,2]as| ™% x [a5" ~ 2|az| /2, a5 ™ + 2| 722,

Remark 3.4.26 o) We have seen that in 8 of the 16 possible cases of homoclinic tan-
gency always W*(S) N W¥(p.) # 0. In other cases it depends on the relation between
the eigenvalues of p.. Of course, in the cases in which there is non empty intersection,
W cannot be a strange attractor.

b) It seems possible to extend this theorems to the general case. Recall that, in general,
the map fI' near the homoclinic tangency 1s not a quadratic map, but it s close to
such a map.

¢) All the cases of homoclinic tangency are possible: Let fo p(z,y) the Hénon map, and

suppose that |b| < 1. Then the following is suggested by numerical simulations:
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(a) Ifb > 0 and for suitable values of a and b there are the four types of homoclinic
tangenctes with ay; > 0, az > O, for the fized point p , if we take ff,b. If we take

fa,b, we obtain the four types of homoclinic tangencies with a; > 0, ag < 0.

(b) If b > O there ezist the four types of homoclinic tangencies for p_, corresponding
to az >0 and a; < 0. ’

(c) If b < O then there exist the four types of homoclinic tangencies for py corre-

sponding to a3 < 0 and ap < 0.

3.5 Numerical results

In this section we shall display some examples of the Newhouse phenomenon. For this,
we use the Hénon map (see chapter 2). The standard form of this quadratic mapping is
fap(z,y) = (1+y—az?,bz), where a and b are real parameters. This map has been largely
studied. Hénon found, numerically, a strange attractor for ¢ = 1.4 and b = 0.3 (see [31],
and other numerical examples in [29]). Recently it seems that there is a rigorous proof of
the existence of a strange attractor for a wide set of parameters a if b is small (see [32] ).
We will also show that, numerically, it is posible to see that the measure of the parameters
for which there exists attracting periodic orbits is very small.

First we recall (see chapter 2) that the Hénon map has two fixed points p; and p_ if
a > —%(1 — b)2. Moreover p_ is a saddle point if @ > —%(1 — ) and p; is a saddle point
if a > 2(1 - b)?. The map f, s is globally dissipative if |b] < 1, and it is a diffeomorphism
with quadratic inverse function if b # 0.

Let || < 1. By the Newhouse phenomenon, if there is a non degenerate tangency
for a = ap which unfolds generically, there exist attracting periodic orbits of large period

for a close to ag. These orbits can look like strange attractors when doing a numerical

simulations.

We shall compute, first, some parameters for which there are homoclinic tangencies.

For this, we shall compute the invariant manifolds of the fixed points:

3.5.1 Invariant manifolds of the fixed points and homoclinic tan-

gencies

Supose that y = ®(z) represents one of the invariant manifolds near the fixed point, and

let fo.b = (f1, f2). The map & satisfies the functional equation:

f2(z,®(2)) = ®(f1(z, 2(2)).
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If (zo, yo) is the fixed point, then
=®(z) =yo + Zﬁ;(m — z0)*.
=1

As f,p is analytic then & is also analytic, provided that (zo, o) is a hyperbolic point. The

terms of this series can be sequentially computed. The first terms are:

B1 =axp £ a?zo + b,

_ af
Pr = B +43’
_ 2ﬂ2’71'12
Ps = B+
Ba = _Pa(n3 +2mfs) + 3ﬂs) + 3,53'71’72
B+ ’71

Bs = —(B2(2718s + 27283) + B3 (87173 + 372 85) + 483 %2) (B +13) 71,
= —(B2(27185 + 272B4 + B2) + Bs(377Ba + 6717285 + 13)+
Ba(473Bs + 64373) + 5Bs71v2) (B +73) L.

where 71 = 81 — 2azo and v = B — a.
Then to continue the invariant manifolds, locally approximated by the analytical ex-

pression, we use the map f7, (unstable case) or f, ;' (stable case).

Another way to compute the invariant manifolds is to consider the parametrized form
of the invariant manifolds used in the previous section: (z(t), y(t)) such that f(z(t),y(t)) =
(z(at), y(at)), where o is the eigenvalue of D f, »(z0,y0) associated to this manifold.

A picture of the invariant manifolds of p4 is in figure 3.9 for the parameters a =
0.5734437995 and b = 0.8

To compute the homoclinic tangencies we observe that parameters a and b for which

they exist, verify the following system of equations:

M) -f™@g = 0
2@ -7 = 0 (3.32)
D1 fP(q)D2f3™(3) ~ D1fg(9)D2f/7™(@) = O

where ¢ = (21, ®(21)), § = (z2,%(22)), vy = ®(z) and y = ®(x) are, respectively, the local

stable and unstable invariant manifolds of (zo,40), and f% = (f{*, f3*). More precisely,
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Figure 3.9: Invariant manifolds of p4, for a = 0.5734437995 and b = 0.8
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for all € > 0 there exist n,m € IN and z;,z; € IR such that |z; — zo| < €, |22 — zp| < €.and
Ty, 2, a, b satisfy the system 3.32.

Numerically, we obtain for 6 = 0.8 a value a = 0.5734437995744... A tangent homoclinic
point is (z,y) ~ (—0.981306583, —2.07665027).

We observe finally that the equation 3.32 can be expressed as H(b,a,z1,z2) = 0 where
H :U c IR* — IR%. Then we can compute a = a(b), z; = z;(b), z2 = z2(b) by using a

continuation method (see for example [33]).

3.5.2 Periodic orbits related to the Newhouse phenomenon

We look for attracting periodic points for values of the parameter near a homoclinic tan-
gency. Numerically, one see that, for the parameter of homoclinic tangency of the previous
section, the behaviour of the map f7, near the homoclinic tangency point is similar to the
horeshoe map for n large (see figure 3.10). We can find in this case couples of hyperbolic
periodic points that, in all the cases, are saddle points, as we can see in the table 3.1.
Now we fix the parameter b = 0.8. To obtain the evolution of these periodic points
when we move the parameter a, we use a continuation method. Then we see that the saddle
periodic points with negative eigenvalues are transformed into sink if the parameter a is
suitably decreased. If the parameter is decreased again, one finds a saddle-node bifurcation.
We can find also a cascade of flip bifurcations associated to this saddle-node bifurcation. Let
a1, be the parameter of saddle-node bifurcation and as,, a4y, ...,a+, be the parameters

kn. In table 3.2 we have the values of

of flip bifurcation corresponding to periods 2, ...,2
Ain = {(@1n — a2n)/(a2n — 04s) and Az, = (a2, — @4n)/(@4n — asn) for some periods n

(compare with the analytic results of section 3.2).

Now we want to know the basin of attraction of the attracting periodic points. We are
specially interested in knowing if this basin of attraction contains points of the unstable
invariant manifold of p. The coexistence of the strange attractor W¥(p,.) (if it exists)
and the attracting periodic orbit takes place if the basin of attraction does not intersect
We(p,). We have found numerically, for n = 20 and b = 0.8, the stable invariant manifold
of the n-periodic saddle S which is born by saddle-node bifurcation when the node N
appears. This manifold intersect W*(p+) on two places. If we consider the parameter
value a = 0.5728841 then a; &~ —1.7721 and |aja?| ~ 0.9093 < 1, where a; and a; are the
eigenvalues of D f, ,(p+). This agrees with the analytical results (see figure 3.11).

When b = 0.916 we have a homoclinic tangency of the invariant manifolds of p, at
a =~ 0.71539869 . There is a 20-periodic attracting point for a = 0.6681773996 . In this case
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Wi (p,)

Figure 3.10: Behaviour of f,f'% close to a homoclinic tangency.
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|oSad| ~ 1.542993 > 1 and a; ~ —2.007602. Moreover, the 20 periodic saddle associated
to the attractor intersects only at one place, the unstable invariant manifold (see figure
3.12).

We have studied also the Hénon map for b = 0.3, and from now on this will be the

adopted value of b. By simple iteration we can find attracting periodic orbits which are

| related to homoclinic tangencies. In the figure 3.13 we can see the structure of the unstable
invariant manifold of p; for different values of a and some periodic attractors.

Let a1, be the saddle-node bifurcation parameter and as,, the flip bifurcation parameter

of an n peridic point. In our case the greatest eigenvalue in absolute value of p; is ay =

—1.737365 . Then we have:

-2
_ Q1(n+2) — Q5 Q1n
c = -_ H

1-a, 2

a2y — Q1p —_ a2_4 f~-4 010975 Y
a2(n-2) ~ 21(n-2)

where a, is a parameter of homoclinic tangency related to the periodic point which appears
at a = ai,, n € IN. These formulae are deduce from the estimates of the parameters ay,,
in section 3.2. We have found three families of periodic attractors related to homoclinic

tangencies (see tables 3.3, 3.4, 3.5).

3.5.3 TFrecuency of aperiodic behaviour

We have studied numerically the measure of the set of parameters ¢ € [1.15,1.16] and
b = 0.3, for which there exist attracting periodic orbits. To do this we have consider
increments of the parameter @, Aa = 10~8 and periods less or equal to 100. The resullts
of this computation are in the table 3.6. We see that the total measure of parameters a
for which there exist attracting periodic orbits is § & 1.0018 x 1074, and the ratio of the
attracting periodic orbits in the considered interval is r ~ 1.0018 x 10~2. Then we observe
that the frecuency of aperiodic behaviour is very large. Also one can see that, associated
to a period n, there exist periods nm which appear in the same order (with respect to the
parameter a) that the the corresponding one in the logistic map, if m is not very large. For

example one observe this fact for n = 11.
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Figure 3.11: Basin of attraction of a periodic point related to the Newhouse phenomenon.

Case 1.
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Figure 3.12: Basin of attraction of a periodic point related to the Newhouse phenomenon.
Case 2.
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a) a = 1.161842301 . Attracting periodic orbit of period 17 corresponding to table 3.4.
b) a = 1.170689 . Attracting periodic orbit of period 15 corresponding to 3.4.

Figure 3.13: Invariant manifolds of p, for b = 0.3, and some attracting periodic points
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Yn
| Qin

Q2n

20
—9.732329972 x 1071
—2.071365538
8.171751331 x 10!
1.410862198 x 10—+

20
—9.704099188 x 10~}
—~2.076188468
—1.434178526 x 10~4
—8.038898112 x 10!

Yn
2277

Q2n

22
—9.783872780 x 107!
—2.073775079
1.293906060 x 102
5.702653238 x 10~5

22
—-9.762804181 x 107!
—2.077137292
—5.790743443 x 10~
—1.274222852 x 102

Yn
U1n

Q2p

24
—9.804761360 x 10~!
—~2.075120302
1.948976709 x 107
2.422997904 x 10~°

24
—9.790857076 x 10~
—2.077281023
—2.455142524 x 1075
—1.931032083 x 102

n
Tn
Yn

Cin

QA2pn

26
—-9.811971017 x 10~}
—2.075853208
3.113150874 x 102
9.708217419 x 10~6

26
—9.803517938 x 107!
—2.077152751
—9.762282189 x 106
—3.095908427 x 102

n
In
Yn

(2 5F7

Q2pn

, 28
—9.813774373 x 1071
—2.076235348
5.293268554 x 102
3.654228578 x 10~¢

28
—-9.808858015 x 10~1
-2.076988138
—~3.665816649 x 109
—5.276535896 x 102

Table 3.1: Saddle n-periodic orbits (z,,yn) for a = 0.57344379957443

and as,, are their associated eigenvalues.
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Table 3.3: Family associated to the parameter a, &~ 1.1535702 (ﬁrst homoclinic tangency).

Table 3.4; Family associated to the parameter a, &~ 1.1574228 .

Table 3.5: Family associated to the parameter a, ~ 1.1537336.

n 20 22 24
Ain 0.5728840634 | 0.57316692302 | 0.573328857003
azn 0.5728844173 | 0.57316699183 | 0.573328869423
Qyn 0.5728845902 | 0.57316702573 | 0.573328875575
asn 0.5728846311 | 0.57316703373 | 0.573328877028
A 2.0462359 2.0295525 2.0189025
Azp 4.2376348 4.2359850 4.2350788
Table 3.2:
n Ain a2y

12 | 1.150007353
14 | 1.152384725
15 | 1.154251157
13 | 1.155612217
11 | 1.159704578
9 | 1.172384176

1.150018943
1.152386017
1.154251585
1.155561608
1.159740282
1.172761143

n

A1n

a2y

17 | 1.161842300
15 | 1.170687847

1.161842673
1.170691059

n

Q1in

az2n

21 | 1.155428802
19 | 1.158801236
17 | 1.168860523

1.155423820
1.158801381
1.168861538
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Cin

aA2n

le1n — a2n|

12
24
438
96
72
84
60
36
72
84
60
48
96
20
40
80
60
20
40
80

18
36
72
90
54
90
14
28
56
84
70
42
84
18
36
72
54
15
30
60

1.150007353042388E+00
1.150018943597931E+00
1.150024733513397E+00
1.150026100930045E+00
1.150027335064324E+00
1.1500285056540453E+00
1.150029067903544E+00
1.150030522614228E+00
1.150030737435759E+00
1.150031489064327E+00
1.150031804119162E+00
1.150032730876397E+00
1.150032755191483E+-00
1.1561020170250909E+4-00
1.1561020719536835E+00
1.1561020995076498E+-00
1.1561021270602230E+-00
1.1513183450242 16E+-00
1.151318843536117E+00
1.1561319091984270E+00
1.151319340420900E+-00
1.151493924920060E+-00
1.151497858171663E+00
1.151499823478173E+-00
1.151501294529930E+00
1.151501787943636E+00
1.151502222334296E+-00
1.152384725426882E+00
1.152386004811036E4-00
1.152386650685550E+00
1.152386940926747E+00
1.152387134282972E+00
1.152387296548257E+00
1.152387320494734E+00
1.1562991329676382E+-00
1.152991617608698E+-00
1.152991611582366E4-00
1.152991705555558E+4-00
1.154251157099296E+00
1.164251585909257E+-00
1.154251813001730E+00

1.150018943597931E+-00
1.1560024733513397E+-00
1.150026100930045E+00
1.150026401347071E+-00
1.150027393412677E+00
1.150028513581571E+-00
1.160029114685026E+00
1.150030737435759E+-00
1.160030838214531E4-00
1.150031490206137E+-00
1.1560031813143402E+00
1.160032742346934E+-00
1.150032760869139E+-00
1.1561020719536835E+-00
1.15610209956076497E+-00
1.161021060163799E+00
1.161021280746132E+-00
1.151318843536116E+00
1.1561319091984270E+00
1.151319150669140E+-00
1.161319349684394E+00
1.161497868171663E4-00
1.161499823478173E+-00
1.161500287556142E+00
1.151501310396511E4-00
1.1561501860731222E4-00
1.151602225390751E+-00
1.152386017545705E+00
1.152386650685550E+-00
1.152386803236696E+00
1.152386947437455E+-00
1.152387139500781E+00
1.152387320494734E4-00
1.152387331728641E4-00
1.1562991517608698E+00
1.152991611582366E+-00
1.152991633778744E+00
1.152991709037441E+00
1.154251585909257E4-00
1.154251800346386E+00
1.164251863651396E+00
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1.169055554370351E-05
5.789915465644665E-06
1.367416647985963E-06
3.004170257922537E-07
§.83483527655504 1E-08
8.041118521651515E-09
4.678148130389459E-08
2.148215306960673E-07
1.007787722972990E-07
1.141809412243273E-09
9.024239377070810E-09
1.147053655275386E-08
5.677655548095048E-09
5.492859256140886E-07
2.756396621384657E-07
6.508730132008711E-08
1.014890145996121E-08
4.985119004042119E-07
2.484481539608620E-07
5.867486998653112E-08
9.263493948090197E-09
3.933251503057538E-06
1.965306610147889E-06
4.640779694759333E-07
1.586658095497582E-08
7.278758599959489E-08
3.056455800652128E-09
1.292118822564166E-06
6.458745136988065E-07
1.525511465708724E-07
6.510708251589167E-09
5.217809175610265E-09
2.394647649793597E-08
1.123390764761703E-08
1.8793231618407T46E-07
9.397366776051479E-08
2.219637806149789E-08
3.481883724675679E-09
4.288099606326022E-07
2.144371285385668E-07
5.064966545062989E-08




45
21
13
26
52
78
65
39
78
18
36
72

b4

20
40
80
60
19

76
11
22
44
88
66
88
99
77
55
77
33
66
99
88
55
66
44
38

1.154251909368371E+-00
1.154252014782159E+-00
1.1565423802406139E+-00
1.165612217280488E+4-00
1.155616089442238E+00
1.155618026349523E+-00
1.155618896774811E+00

1.165619963169472E+00
1.155620034861822E+-00
1.156951101668626E+00
1.156952258049464E+00
1.156952836144176E+00
1.156953276844380E+00
1.156953414209211E+00
1.1569536864055651E+00
1.157987554298489E+00
1.157987846663137E4-00
1.167988000767341E+00
1.1567988139056989E+ 00
1.158801233670830E+-00
1.158801381766007E+00
1.158801455820859E+ 00
1.169704578470662E+00
1.1569740282480347E+00
1.1597581565103119E+00
1.1597623757256751E4-00
1.169766185383398E+00
1.159767866083663E-+00
1.159769066601450E+00
1.159769762274772E+4-00
1.1697715637226G679E+-00
1.159773306453470E4-00
1.169776020360530E+ 00
1.159776679949389E+00
1.159777293911626E+00
1.159778169432825E+-00
1.159779961271760E+00
1.159781637322853E+00
1.159782809682642E+00
1.159782844593603E+00

1.155619476756644E+00

1.1564251911530356E+00
1.164252022726285E+00
1.155423820820676E+-00
1.155616089442237E+00
1.1565618026349623E4-00
1.155618483836246E+4-00
1.155618916304646E+00
1.155619492396040E+00
1.155620034861823E+-00
1.165620068498765E+00
1.156952258049464E+00
1.156952836144176E+00
1.166952972684174E+00
1.1566953281513916E4-00
1.166963435634450E+-00
1.156953642972390E+00
1.167987846663137E+00
1.1567987992861049E+00
1.167988035298845E+00
1.1567988144473385E+-00
1.1568801381766007E+-00
1.168801455820859E+-00
1.158801473312449E+00
1.159740282480347E+00
1.159758155103120E+4-00
1.1569762375725751E+00
1.159763303037892E4-00
1.169766365615102E+00
1.159767881888981E+-00
1.1569769070320182E+00
1.169769787099837E+-00
1.159771681352666E+00
1.159773322395701E+00
1.159776679949389E+-00
1.159776989365282E+00
1.159777305924217E4-00
1.159778171245103E+00
1.159779988944504E+00
1.159781641499937E+00
1.159782844593603E+00
1.159782861873854E+00

2.161984710419393E-09
7.944125725480344E-09
1.841443648265529E-08
3.872161749703662E-06
1.936907285460356E-06
4.674867224532602E-07
1.952983611207045E-08
1.563939616195788E-08
7.170235102670370E-08
3.363694275385101E-08
1.166380837904244E-06
5.780947119124497E-07
1.365399979998637E-07
4.669536836019733E-09
2.142523867142601E-08
1.434331612615807E-07
2.923646483224268E-07
1.461979118088584E-07
3.453150438624721E-08
5.416395580819471E-09
1.480951760563027E-07
7.405485255595802E-08
1.749158966702873E-08
3.570400968444009E-05
1.787262277280760E-05
4.220622632346334E-06
9.273121411725837E-07
1.802317037489376E-07
1.56805318266456606E-08
3.718731942787214E-09
2.4826064356450555E-08
1.441259865419478E-07
1.694223078013913E-08
6.695888593343062E-07
3.094158934509610E-07
1.201259120614306E-08
1.812277804189986E-09
2.767274419062929E-08
4.177084075554607E-09
3.491096156822548E-08
1.728025083032503E-08

TOTAL
RATIO

1.001829938000431E-04
1.001829938000431E-02

Table 3.6: Some attracting periodic orbits of the Hénon map
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Chapter 4

Bifurcation curves of periodic
points in one- and
two-parameter families of

dissipative diffeomorphisms

In this chapter we will consider diffeomorphisms f : U C IRZ — IR? which are dissipative
(that is, det Df(p) < 1 Vp € U) and smooth enough. In this case, f has a hyperbolic
n-periodic point p if and only if +1 ¢ Spec Df™(p). In order to study bifurcations, we
consider non hyperbolic points and families of diffeomorphisms depending on one or two
parameters. It is known that the hyperbolicity condition implies that the behaviour of the
considered map, near the hyperbolic point, does not change when the map is perturbed
slightly. But this is not the case of the non hyperbolic points.

Since the maps we consider are dissipative, the non hyperbolicity condition means that
one and only one eigenvalue of Df"(p) is 1 (corresponding to saddle-node -also called
fold- bifurcation) or —1 (corresponding to flip -also called subharmonic or period doubling-
bifurcation). The degenerate cases of this bifurcations are called cusps (eigenvalue equal to
1) and codimension two flips (eigenvalue equal to —1). We will see that these bifurcations
appear, in a natural way, in families of diffeomorphisms depending on two parameters. Also
we will see that the behaviour of this diffeomorphisms can be studied using one dimensional

maps
First we will study the different types of bifurcations, by using normal forms:
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4.1 Normal forms, models and existence conditions of

generic bifurcations
H

In this section we use the theory of normal forms for mappings given in [34]. From now on,
when we apply local theorems (say, the implicit function theorem) we will suppose that,
if it is necessary, the neighbourhoods which appea} are small enough. Also, when we say
differentiable or smooth mapping, it means that it;is differentiable enough. Moreover, all
the indexes which appear are larger or equal to zelio.

First we give the following definition: 1
Definition 4.1.1 Let _ {
By + 32020 Yl bty

f(w,y)=<

be a formal series. Then, the terms a; jz'y’ such that A = Xu?, and the terms b; jz'y’
¥J Y i »J

such that p = \*p?, with ¢ + 5 > 2, are called resonlant terms of the formal map f.

i

. Then we have the following theorem([34]): P

¥

Theorem 4.1.2 Let f : U ¢ R® — IR? be a map, defined on a neighbourhood U of (0,0),
i

of the form:

' Y py + Zie];‘_l b':,J.xiyJ' + 2?,:0 bi,n—-imiyn—‘ + On+1 3
where IP = {(,5) € N : A= Xpi, 2 <i+j5<n}and I} ={(i,5) € Ng : p=
Xp?, 2<i+j7<n}, INg = INU{0} and O,, denotes terms of order equal or larger than
n.Let JP ={ieNy : ({,n—-0)g I} and Iy ={ieMNp : (i,n—1) & IF}.
Then, the map f is conjugated (in a neighbourhood of (0,0)) , via the following polyno-

mzial change of coordinates:

8
I

F . . .
Y+ Z,‘e]; ﬁi.n—iz‘yn—‘

T+ ZiGJI" ai,n—iztyn_‘ }
3

<
il

to the map:
T,y AZ + Z(t:‘)en ai,jf‘ g + On+1
g(I, y) - _ 1 i '
BY+ 2 jery bii BT + Onga

Moreover oy j = ,\,—‘;';J_—X for (1,7) € J} and B; ; = F%;J—_u for (i,7) € J&.
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Let f : U ¢ IR?> — IR? be a dissipative diffeomorphism, having a non hyperbolic fixed
point p = (2o,y0). If A and p are the eigenvalues of Df(p), there are two possibilities:
|Al] <1land p=1,0r [A] <1and p=—1. We will study these cases separately.

Suppose first that 4 = 1. By means of an affine change of coordinates, it is possible to

). Az + azoz? + ay12y + agzy® + O3
y y + ba0z? + by zy + bo2y® + Os .

By the theorem 4.1.2, it is possible, using a polynomial change of coordinates, to remove

write f as:

some terms of increasing degree, until we reach the normal form:

z Az + ajzy + azzy® + -
— 5 . (4.1)
y y +bay® + b3y’ +---
Only the resonant terms, corresponding to resonances A = Ap*, k> 1, and u = u*, k> 2

remain. Then we have the following definitions:

Definition 4.1.3 The map f has a saddle-node point in p = (zo,yo) if, and only if, in the
normal form 4.1, one has by # 0.

Definition 4.1.4 The map f has a cusp point in p = (zo, yo) ¢f, and only if, in the normal
form {.1, one has by = 0 and by # 0.

Cosider now the case 4 = —1. By means of an affine change of coordinates, we can write

< z ) ( Ax+02012+011x'y+‘102y2+03 )
— ¢

the map f as:

U} ~y + baoz? + 112y + bozy® + O3
By using polynomial changes of coordinates, as in the previous case, the non resonant terms

can be removed. Then we have the following map, conjugated to f:

z )\x+a1xy2+a2zy4+---
— 5 . , (4.2)
y —y+bsy® +bsy” +--
since the resonances are, in this case: A = Ap*, k > 2 even, and p = u*, k > 3 odd. Then

we define:

Definition 4.1.5 The map f has a flip point in p = (2o, y0) #f, and only if, in the normal
form 4.2, one has bg # 0.

Definition 4.1.6 The map f has a codimension two flip point in p = (29, yo) #f, and only
if, in the normal form 4.2, one has by =0 and bg # 0.
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Now , in order to study the behavoiur of maps, we will introduce families of diffeomor-
phisms near a map having a bifurcation point.

Consider a one-parameter family of diffeomorphisms on the plane: {fs}ecr, Where I
is an open interval, and suppose that, for a = ag € I, there exists a non hyperbolic fixed
point p = (zo,¥0). If A = A(aop) and u = p(ao) are the eigenvalues of Df,,(p) and |A| # 1,
we can have g =1 or u = —1.

Let p = 1. Then, the family {f.}.er has the general form:
Y z:3l,=0 Zi+j+k=n b’.J.ka" z’ yk + 03

where ¢, 7,k € INp.
By means of an affine change of coordinates, it is possible to conjugate this family to

the following one:
x - diood + Azr + Zi+j+k=2 d,-J-ka‘xfyk + O3
Y biooa +y + 2;+,-+k=2 Eijkaixjyk + O3 ’

where 1,7,k € INg.

Finally, we can make zero one linear term in a, with the following transformation:

j:z._glﬂ.ﬂ.}

A1
= ¥y

<

So, the family {f,}qes is conjugated to the following one:
o & ated yk
S T Az + Et+1+k=2 Gijk G T 3/ .+k03 ’ (4.3)
y b1ooa + Y + 224 j k=g biska’z’y" + O3
where 1,7,k € INg.
It is important to remark that 5100 = 5100, Qgop = @020, ao11 = aoi11, dooz = ooz,
bozo = 5020, Z011 = 5011, gooz = 5002~
Now, we define:

Definition 4.1.7 The family {fo}acs has a saddle-node p = (z0,¥0), in @ = ao, which

unfolds generically with {fq}acr if, and only if, in the normal form 4.3, we have:

a) booz # 0.
b) b100 # O.
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/ .
1 p Pz A 4
45 S > <
/ \ A U P1 A
a0 a=~o ' a>o
 Figure . 4.1: Qualitative behaviour of a saddle-node bifurcation,

ga(z,y) = (Az,y+a+y?), A < L

There is a theorem in 35| which give, under mild conditions, the local conjugation of such

a family, with the family:

ga(z,y) = Az,yta+¢%), [\ # 1L

For this fam.ily, the local behaviour is represented in figure 4.1 That is, for a < O there are
not fixed points, for a = O there is a saddle-node point,p, and for a > O there are two fixed

points, one is a saddle and the other is a node (p; and p, in the figure).
Now assume that, in the family {f,}aer, we have p = —1. In this case, we obtain the
following proposition:

Proposition 4.1.8 Let {f.}aucr be a smooth one-parameter family of diffeomorphisms,
having a fized point p = (Zo,%o) for a = ao. Let M(ag) and p(ao) be the eigenvalues of
Dfao(p), such that |A(ao)| # 1 and p(ao) = —1. Then there ezists, for a near ag, a fized
point p(a) = (zo(a),yo(a)) such that: zo(ao) = Zo and yo(ao) = Go. Moreover, the map
p(a) 1s of the same class of differentiability as f,, with respect to a.

Proof:

We only have to apply the implicit function theorem to the equation:

f(z,y,a) = fo(z,y) = (z,y).

This is possible because det(D f,,(z,y) — Id) # 0.0

By means of the proposition 4.1.8, we see that the family {f:}ser can be conjugated to
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the following one:

0u(m,y) = Aa)z + az0z® + ay 2y + apny? + O;
e p(a)y + booz® + byzy + booy® + 05 |’

where A(a) and ji(a) are the cigenvalues of D f,(p(a)). Then, by using polynomial changes

of coordinates, we can remove the non resonant terms of the map, obtaining:

~ Ma)z + @302® + @212%y + G122y° + Goay® + O4 |
gi(z,y) = ) (4.4)

n(a)y + baoz3 + ba12%y + biazy? + boay® + Oy

. where a;; = ('1;]-((1) and 1—).‘]' = B,-j(a).

Then we define:

Definition 4.1.9 The family {fo}aer has a flip point, p = (zo,y0), whick unfolds generi-
cally with {fo}aes 1f, and only if, in the normal form 4.4, one has:

a) bos(ao) # 0.
b) stn(ao) # 0.

Also in this case, there is a theorem in [35] which give, under mild conditions, the local

conjugétion of a such a family to the following family:
du(z,y) = (Az, (-1 £ a)y £+ ¢°).

The behaviour of this family is represented in figure 4.2 That is: for a < 0 there is a

}; ¥ ri
r(a) r(a) ECCUN By
! L3
- .\,..\.:) — .‘.._«e.__. _»? __.«‘“.. -37\‘5_-..’_.. .
¥ pla)
...\9_-“. - ‘«__
A b}
3 P2
a~o a-o0 a>o
Figure 4.2: Qualitative behaviour of a flip bifurcation.

ga(z,y) = Az, (=1 +a)y +¢°), |A| < 1.

hyperbolic fixed point p(a), for a = 0 there is a flip, and for @ > O there are one hyperbolic
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fixed point p(a), and two hyperbolic periodic points of period two (p; and p3) such that,
ga(p1) = p2. The double (respectively triple) arrows in the figure, denote relatively strong

(resp. very strong) attraction.

Now, in order to study codimension two bifurcations, we introduce two-parameter fam-
ilies of diffeomorphisms on the plane: Let {fs,5}a,bc 4, where A is an open set, be a smooth
family of diffeomorphisms such that, there is a fixed point p = (zo, yo) for (a,d) = (ao, bo).

We will consider two cases:

First, suppose that p is a cusp point. In this case, one has eigenvalues A and u of
D faq.60(p), verifying |A| # 1 and p = 1. Hence, by means of an affine change of coordinates,
the family {fsb}abeca is conjugated to the family:

( T D it ki1 Gigkrat b zFy! )
— . ,
Yy , Zi+j+k+121 bia'kla‘b]xkyl
where agp10 = A, aooo1 = boo1o = 0 and bggo; = 1. Also, by using the change of coordinates:

I = z+aa+pb }
g =y ’

it is possible to eliminate a;0p0 and agjgp, Without changing the value of bygo0 and boio00.-
It is enough to take o = £1242 and B = €8¢, By using normal forms theory, we can prove

the following proposition:

Proposition 4.1.10 The family of diffeomorphisms {fap}apea such that,

fap = (fapr F2s) (4.5)

and
ab(Z,8) = AT+ D Gijooa’t’ + (@1010% + G10019)a+
i+5=2

(@0110% + @01017)b + G0011ZF + Os,

fib(i, 'g) = 510000 + BOIOOb +7+ Z B,'jooaibj + (_610105: + 51001 g)a—i—
i+y=2

(b0110Z + B01019)b + booo2§” + Os,

18 locally conjugated to the famaly:

. ’\z+zi+j+k+l=2 aijkla"b":cky' + O3
fap(z,y) = inik ’
b1000a + bo100d + ¥ + 24 s 4 k12 Hika b Ty + O3

where bijooo = blOOO; bo10o = b()lOO; bo110 = bos 105 bo101 = b0101, boooz = boooz.

182




Proof:
Let F be the following diffeomorphism:

F(Z) = F(i:,g,a,b) = (fa,b(i;g))a,b)'

The linear part of F is:

A0 O 0
0 1 b b
M= 1000 Y0100
0 0 1 0.
00 O 1

So F can be written as: F(Z) = Mz + F(Z), where F is of order two.
~ Then we consider the change of coordinates @ = H(Z) = 7+ h(é') where @ = (z,y,a,b)

and hisa homogeneous quadratic polynomial. Then
Ho F:o H™ (%) = M@ + F(w) + h(Mw) — Mh(&) + Os,

since: H‘l(d)*)zu_)’ — h(W) + O3 (see [34]).

Assume that:

o - a s boo
h(#) = h(z,y) = 52?8 +

Tt Aty vt
~boozo 4. . @co02 5.
SV lx_ezf 7 e

where €}, €2, €3, €4 is the canonical basis of IR*. Then:

h(M@) — Mh(%) = aé; + B,

_ where
o= bioooa0002a” + bgmoao'oozb2 + 2b1000b0100a00022b+
2b1000 aooozay + 2b0100@00020Y + G0020Z% + a0002Y>,
and
p= = x 010000 F 5 :\ ,\bomob” + boo112y + boozoz”.

Then, if we consider for f,; the change of coordinates (%,§) = (z,y) + h(z,y), we obtain
fa,p With the conditions of the proposition. O '

By means of the previous proposition, we see that, any family of diffeomorphisms having

a cusp point, can be written as the family 4.5 with bgg20 = 0, by using a polynomial change ‘

of coordinates. Then we define:
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Definition 4.1.11 The family {fob}abeca has a cusp point, p = (z0,%0), in (a,b) =
(ao,bo), which unfolds generically with {fop}tapca, if and only if, in the normal form 4.5,

one has:

a) boooz = 0 and bogos # 0.
b)

biooo o100

#0.

“b10o1  boio1

A model of this family is the following one:

9ap(z,9) = (Az,y £ y° +ay +b) || #1.

The fixed points of g, 3 verify the equations:

T 0
+y> +ay+b = 0 '
" Therefore, there are one, two or three fixed points, depending on the values of the param-

eters. In order to have two fixed points, the parameters must verify the equations:

+y3+ay+bd = O
+3y2+a = O '

Then, if we remove y, we obtain:
+27b% + 4a® = 0.

For example, if we draw the curve —27b% + 4a® = 0 in the plane of parameters, we get
figure 4.3. In each one of the regions 0.,1.,2.,3.,and 4. there is a different behaviour of the

map fq 5. This can be seen in the same figure.

Now we consider the case in which the fixed point p is a codimension-two flip. In this
case, we have eigenvalues X = A(ao, bo) and fi = p(ao,yo), with |A| <1 and &z = ~1. Asin
the case of the flip we have the following

Proposition 4.1.12 Let {fop}apca @ smooth family of diffeomorphism on the plane, hav-
ing @ fized point p = (Zo, Jo) for (a,b) = (ao, bo). If the eigenvalues, A(ao, bo) and p(ao, bo),
of Dfaq b, (P) satisfy [\| < 1 and u = —1, then there ezists, for (a,b) near (ap,bo), a fized
point p(a) = (zo(a,d),yo(a,d)) such that, p(ao,bo) = p and the map p(a,bd) is of the same
class of differentiabilty that f,p, with respect to a and b.
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Figure 4.3: Cusp Bifurcation: In the region 0. there is a cusp fixed point, in 1. there is
one hyperbolic point, in the curve 2. there are two fixed points: one hyperbolic and one
saddle-node, in 3. there are three hyperbolic fixed points, and in 4. there are two fixed

points: one hyperbolic and one saddle-node.
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The proof is similar to the one of proposition 4.1.8.

By using the previous proposition and a polynomial change of coordinates, we can write

the family as:

2
(z>}_)<z\z+anxy+a12:cy +05)’ (4.6)

y ny + bosy® + Os
where A = A(a,d), u = p(a,b), p(ao,bo) = —1 and a,; = a;;j(a,b), b;; = bij(a,b).

Now, we define:

" Definition 4.1.13 The family {f(a,s) }ap)ca has a codimension two flip p = (%o, o) in
(a,b) = (a0, bo) which unfolds generically with {f(ap)}(a,p)ca #f, and only if, in the normal
form 4.6, one has:

a) b03(ao,bo) = 0

b) bos(ao,bo) # 0.

c)
#0,

g p
da ab
8bpy  8bgy
da ab

where the derivatives of p and bos are taken in (a,d) = (ao,bo)-

A model of this.family is the following one:

9ap(z,y) = Az, —y £ y° + ay® + by), |A|# 1.

In order to find the bifurcation curves on the parameter plane, we have to study flip
bifurcations of period 1 and saddle-node bifurcations of period 2. First, suppose there is a
flip point (z,y) for (a,b). Then:

Az = z
Y+t tay by = y
—1+45y*+3ay?+b = -1

So z = y = b = 0 because the other points are far from the origin. Therefore, b =0is a
flip bifurcation curve.

Now, suppose that there exist a saddle-node point of period two: Let

T(y,a,b) = -y + y° + ay® + by, Tz(y,a,b) =T(T(y,a,b),a,b).
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Then:

T?%(y,a,0) = y (47)
Dsz(y:aab) = 1 - . '

If we compute T2(y, a,b) and D;T?(y, a,b), up to order 5, we obtain:
T%(y,a,b) —y = (=2b+ %)y + [a(b — 1) + a(b - 1)®]y°+

(6~ 1) +3a%(6 - 1)2 + (5 - 1)°]y° + O(y"),
DiT?*(y,a,b) — 1 = —2b+ b + 3[a(b — 1) + a(b — 1)°]y*+
5((b — 1) + 3a%(b - 1)® + (b — 1)°)y* + O(¥°).

We notice that, for the system 4.7, we have also the solution y = 0 and b = 0, found before.

Therefore, we can divide the first equation by y. Then, we obtain the system:

Ay +A207 +Asy*+0(¥®) = 0
A1 438y + 543y +O(y°) =0 ’

where Ay = =2+ b2, Ay =a(b—1)+a(b—1)® and Az = (b— 1) + 3a%(b - 1)% + (b — 1)5.
In order to study the solutions of this system near a = 0, b = 0, y = 0, we consider the
change of variables:
y=-¢, a= ae, b= g
Then, we get:
—2a+B+1)et+0(2) = 0
—2(3a+B+5)e* +0(8) = 0 } '

Dividing by €* and applying the implicit function theorem, we obtain:
ale) = -2+ 0(e*), B=1+0(¢*).

Therefore:

a = -2+ 0(c°)

b = e +0(f) } '
That is, the curve of saddle-node bifurcations consists, at first orders, of a branch of
parabola corresponding to a < 0.

In figure 4.4, we have the behaviour of the family in the plane of parameters. It is easy
to see that, if b < 0 is small, the fixed point (0,0) is an attractor, because |D,7T(0,0,0)| =
|-1+b| < 1.

If b = 0, the equation of 2-periodic points is:

~2ay® + (-2 + 3a®)y* + O(y®) = 0.
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, Figure 4.4: Codimension two flip bifurcation. py denotes a fixed point, p;, p2, ps and py

denote two periodic points.

By setting a = yy?, one obtains:
~2(v+1)y* +O(y°) = 0.
Therefore, a = ~y” +O(y*). Then, if b = 0 and a < 0, one has two periodic points of period
two and, if a > 0, no periodic points of period two. Moreover, these points are attractors
because:
0< D1T(y,0,0) =1 - 4y* +o(y*) < 1.
This means that the flip bifurcation occurs for b > 0, if a < 0, and for b < 0, if a > 0.

Also, it is casy to sce that, on the left of the curve a = «(e)c?, b = B(e)e*, there are not

two-periodic points. Then, the behaviour is as in the figure 4.4

Once we have defined the different types of bifurcation, we want to show that the
behaviour is similar to the models we have studied. First we will prove the auxiliar propo-

sition:

Proposition 4.1.14 Let A be a linear map such that:

p e ( ) O(e) )
o) nule) )
with A(e), p€) continuous in ¢, and A(0) # u(0). Then, the eigenvalues of A, As(€) and
Az(€), verify:
A1 = Ae) + O(2™), Az = u(e) + O(e*").
Proof: Let A = X, — A(¢) and & = Az — p(e). We know that A(0) = 0 and j(0) = O.
1

Moreover, A + ji = 0 and

A= (A A2 = A2 (€) — Aule) + dp =
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221 — Ad — Ajp+ O(2™) = — A — pX + O(€2").

Therefore, if we put A = —f in this equation, we obtain:
—B=(p = NE+O0(e).

Hence i = O(e?"), and therefore A = O(€2"). So A; = A+ O(e?") and A\; = A + O(€°*). O

Now, let {fs}acr, where I is an open interval, be a one-parameter family of diffeomor-

phisms defined on an open set of IR

Theorem 4.1.15 Suppose that the family {fo}ecr has a saddle-node fized point p =
(Zo,P0) tn @ = ao, which unfolds generically with {fo.}aesr. Then, there ezists a curve
' (p(e€),al(e)), for € small enough, such that: p(0) = p, a(0) = ao, p(e) is a hyperbolic fized
point for € # 0 and (p(€), a(€)) has a quadratic tangency with the plane a = ao in the space
(z,y,0).

Proof: We know that, by means of a polynomial change of coordinates and a change of the

parameter a = @ + ap, we can write the family as:
falz,y) = Az + iy jermg %ijka' s’y" + Os
a ) - 3 . y
biooa + y + X4 j k=2 Gijka’ T’ y* + 03

where we denote the new parameter @ as a.

Then, the following system gives the fixed points of f, :

Az + 02 =
bi00a + baooa® + by10az + bioray + ba2oz? + bo11zy + boozy? +0s = 0 |

From the first equation, we obtain z = z(y,a) = Oz. Then, in the second equation, the

terms in z are negligible up to third order. So, we have:
bi00a + boozy® + baooa® + byo1ay + O3 = 0. (4.8)

By hypothesis, we know that b109 # 0 and bgoz # 0. Let y = € and a = o(€)e2. Substituing
in 4.8, we have:
€?(brooc(€) + booz + bio1a(€)e + O(€%)) = O,

and, therefore:

ale) = ooz + O(e).
100

So, the curve of fixed points of the theorem is:

b
z=0(?), y=¢, a= —ﬁez-l-O(ea).
b10o
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This curve has a quadratic tangency with the plane a = 0.

Now, we have to show that p(e) = (O(€?), €) is hyperbolic if € # 0. It is easy to see that:

v A+ 0(e Ofe

Dra(pe) = | 100 9 ]
0(6) 1+ 2b002€ + 0(6 )

Then, by the proposition 4.1.14, we have that, if \; and A, are the eigenvalues of D f,(p(¢)),

A1 = A+ O(e) and Az = 1 + 2bgoz¢ + O(€?). Hence, if € # 0 is small enough then p(e) is a

hyperbolic point. O

Theorem 4.1.16 Suppose that {fo}acr has a flip fized point po = (xo,y0), in a = ao,
which unfolds generically with {fo}aecr. Then there ezist two curves, (pi(€),a1(€)) end
(p2(€),az(€)), in IR*, and for € small enough, such that:

a) p1(0) = p2(0) = fo, a1(0) = a2(0) = ao. _
b) pi(€) is a fized point of f,,(c), and pa(€) is a two periodic point of f,,(c). Moreover,
p1 and py are hyperbolic if ¢ £ 0.

¢) The curve (pi(€),ai(e)) has a transversal intersection with a = ag, and (p2(€), az(¢))

has a quadratic tangency with a = ao.

Proof:
By means of a polynomial change of coordinates and a translation of the parameter, we

can suppose that ap = 0 and the family is (see 4.4):

AMa)z + az0z® + az12%y + a122y% + apsy® + Oy
p(a)y + baoz® + bp12°%y + biazy? + bosy® + O, ’

fa(x;y) = (
where a;; = a;;(a), bi; = bi;(a), and |A(0)] = [A] # 1, p(0) = ~1.

Then the curve (p;(€),a1(¢€)) is equal to (0,0,¢), and, therefore, it has a transversal

intersection with a = 0. Now we want to see that p;(¢) is a hyperbolic fixed point. We have

that: '
Df,(0,0) = ( Me) 0 ) ,

0 ua)
and p(a) = -1+ %(O)a + O(a?), |A(a)| # 1. Then, since pp unfolds generically, we have
that %E(O) # 0 and, therefore, |u(a)| # 1 if a # 0 small enough.

Finally, we want to get the curve (pz(€),az(¢)). It is easy to see that:

f2(z,y) = A2z + caox® + o122y + c12zy? + cozy® + ...
. l‘zy + d30-'133 + d21z2y + d12$y2 -+ d03y3 + ... ’

where czo = azo(A + A%), c21 = az1(A + A%u), c1z = a12(A + Ap?), cos = aos(X + p2),
dso = bso(p + A%), dg1 = bay (1 + A2), diz = biz(u + Ap?), dos = bos (1 + p°).
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Suppose that z = a(¢)e®, y = ¢, and a = B(€)e?. Then, by substituing in the equation
f2(z,y) = (z,y) and taking into account that '

du
2 _ 4 _ 2
pt=1 2_da (0) + O(a®),

we obtain:

_ 003(0)(:\ -1

a(©) =~ 2001 0 = 30 [L00)]

Then: ~
3 aps(0)(A -1

du -1
(p2(e), a2(€)) = ( "‘;{5‘:‘{‘—)53 +0(e*), €, —bos (0) [@(0)] ) ,
and this curve has a quadratic tangency with a = 0.

In order to see that these points are hyperbolic, we must compute the eigenvalues A;
and Ay of Dsz(E) (p2(€)). We have:

X2 + 2a;5(0)e2 & 2
DfZ ((p2(€)) = ( A+ 2012(0)¢" 4 0(e) (<) )

O(€?) 1 — 2bo3(0)€? + O(€?)

Then the eigenvalues satisfy:
/\1 = :\2 + 2012(0)62 + 0(63)

and

Az =1 - 2bo3(0)e” + O(€%).
This means that if € # 0 is small enough then |A;(€)| # 1 and |Az(€)] # 1. So, the point
p2(€) is hyperbolic. O

Remark 4.1.17  a) As we have seen in the proof of the theorem, the two 2-periodic
points appear for a > ag or a < ag. It ts easy to see that this points form a 2-periodic

orbit.

b) The type of the flip bifurcation depends on the sign of bo3(0). Suppose that %-2—:(0) >0

(the other case is similar). Then:

(a) If bo3(0) > O then for a > ao one has one attracting fized point and no 2-periodic
points, and for a < ap one has one saddle fized point and two 2-periodic points

which are attractors.

(b).If bo3(0) < O then for a > ap one has one saddle fized point and no 2-periodic
points, and for a < ay one has one attractling fized point and two 2 periodic

points which are saddles.

These are (respectively) the so-called supercritical and subcritical flip bifurcations,

according to [1].

191




The next theorems correspond to bifurcations of codimension two. Then we consider

two-parameter families of diffeomorphisms on the plane {f(4,5)}(a,8)ev, Where U is an open
set.

Theorem 4.1.18 Suppose that {f(,p)}(a,p)ev has a cusp point po = (2o,y0) in (a,b) =
(a0, bo) which unfolds generically with {f(a,b) }(a,p)cu- Then there ezist a curve in the plane
of parameters (a(e),b(€)) such that, for € small enough:

a) For ¢ # 0, fa(e),b(c) has a saddle-node fized point and a hyperbolic fized point.
5) (a(0},5(0)) = (ao, bo).
¢) (§2(0), £(0)) = (0,0).

d) Let
b
_'(6) —_ de ) de
(52, )l
be the normal vector of the curve. Then:
lim i=— lim A.

e—0+ e—0~

Proof:

As we have seen before, by means of a polynomial change of coordinates and a transla-

tion of the parameter, we can suppose that the family verifies (see 4.5):

fap = (f;,b: ff,b),
where

ep(Ty) = Az + Z a:j00a' ¥ + (a1010% + a1001y)a+
t+3=2

(ao110% + a0101y)d + aoo11zy + Os,

f24(z,y) = bioooa + bo100b + y + Z bij00a'Y + (b1o10% + bioo1y)a+
i+7=2

(bo110Z + bo101¥)d + booozy” + Os.

As o unfolds generically, by definition 4.1.11 we have: bggp2 = 0, bpooa 7 0 and

blOOO b0100

#0.

b1001 bOlOl

Consider now another change of parameters:

(4.9)

o~ S
i

= bioo1a+ bo101d
bioooa + bo100b
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This linear change can be done since its determinant is different from zero. Now, we take:
z = ale)e®, y = ¢, a = B(e)€%, b= vy(e)®.
If we impose the conditions of existence of a fixed point f,»(z,y) = (z,y), we have:

z= ____(11030;'5\ e + 0(64),

and :
(7(€) + booos + B(e) + O(€))e® = 0. A (4.10)

If we impose 1 € Spec Df, p(z,y), and taking into account that

A+ 0,00116-1-0(62) v 0(62)
0(62) 1+ ﬂ€2 + 3b0003€2 + 0(63) ’

Dfyp(ae® €)= (
and using proposition 4.1.14, we have:
1+ ﬂﬁz + 3b0003€2 + 0(63) =1. (411)

Thus, taking into account 4.10 and 4.11 we see that «(0) and ~(0) satisfy the system:

¥(0) + B(0) + bogos = O }
B(0) +3bogos = O |

Then, 8(0) = —3booos and 4 = —2bgoos. Therefore:
a = ~3boooae” + O3, b = —2boo03e” + O4, y = €.

As @ and b verify 4.9, it is easy to see that b), c) and d) hold. Also a) holds due to the way

we have obtained the curve a(¢),b(¢). O

Theorem 4.1.19 Suppose that { f(, ) }(ap)cu has a codimension two flip point o= (o, yo)
in (a,b) =(ao, b) which unfolds generically with {f(qb)}(a,p)ev- Then there exist two curves
(a1(€),b1(€)) and (az(€),b2(c)), in the plane of parameters, for € small enough, such that:

a) For e # O there e:m'.gts a flip fized point for f,, (¢),b1(c) and two two-periodic saddle-node
points for fa,(c) ba(e)-

b) (a1(0),51(0)) = (a2(0), b2(0)) = (o, bo)-

¢) (%2(0), 92(0)) # (0,0) and (%2(0), G2(0)) = (0,0)

) de
d) Let
— b
() = e, dor)
de ? de
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and
(d2, 82)
hong —_ € €
)= fdar, )
de ? de
be the normal vectors of the curves. Then:
lim f-iz = :Ffil.
e—0~
and the tangency of the two curves in € = 0 is quadratic.
e) The geometric curve corresponding to the parametrized curve (az(€), b2(€)), for || < €

(with €0 small enough), is C2 = {(az(€),b2(€)) : 0 < e < €o}.

Proof:
We know that the family { f(a,b)}(a,b)eu can be taken, by means of polynomial change

of coordinates and a translation of the parameters, as (see 4.6):

Az + a112y + a122y% + O )

fa,b(x) y) = (
ny + bosy® + Os

where A = A(a,b), u = pu(a,d), u(ao,bo) = —1 and a,; = a;,(a,b), b;; = b;;(a,b). Moreover,
X = [A(0,0)] # 0 and (0,0) = 1.

Since the codimension two flip unfolds generically, we know that:

bOS(O;O) = 0) b05(0)0) '-Ié O)

and
I du
] ab
81):; g, # 0, (4'12)
da ab

where the derivatives of u and bg3 are taken in (0,0).

To obtain the curve of flip bifurcations, we have to impose:

fa,b(z: y) = (x) y)
-1 € SpecDf,p(z,y)
Then z = y = 0 and p(d,b) = 1. By using 4.12, one see that %5(0,0) # 0 or %% # 0. So we
can write a = a;(€), b = by (€) such that, (a;(0),5:(0)) = (0,0) and (£2(0), 2(0)) # (0,0).
Now, we want to get the curve of saddle-node bifurcations of period two. Such a curve

- must verify:

2yzy) = () } | (4.13)

1 € Spec fo,b(x,y)
Let 2, = (fi%,f23). By the first equation we obtain f;3 = z. So we have £ = {28¢° +

O(y®). In order to find az(¢) and b2(€) we use the following lemma:
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Lemma 4.1.20 Let f(z,y) = (f1(z,y), f2(z,y)) be a differentiable map such that f1(0,0) =
0 and %2(0,0) # 1. Then:

a) There ezists a differentiable map = = z(y) such that

27(0) = 0: fl(x(y):y) =z,
in a neighbourhood of 0.

b} If
afl(z(y) )___ ("’) (3(9)73/) O(yn)

2L (a(y),4) - 3—2 2(4),3) = O(1),

then the eigenvalues Ay and Ay of Df(z(y),y) verify:

/\1 afl +0( 2n)

En
and Bf
Az = 6 +0(y*™)
¢) 3 f2(z(y),9) — A2 = O(y™).

The proof is a simple application of the implicit function theorem and the proposition
- 4.1.14.0

Following with the proof of the theorem, we have that:
A +0(y)  O(y") )
O(y*) #>+0(y?)

By using the lemma 4.1.20, if A; and \; are the eigenvalues of Df(f,b(x(y), y) and |Ay| # 1,
then

Df2u(=(y),y) = ( (4.14)

As = di’y 22 (2(y),y) + O(4®).

Now the system 4.13 can be substituted by:
(zv)y) = }
(12 (z(y),y)) +0(y®) = 1

If we compute these expressions, we obtain, dividing the first equation by y (we can do this

because we are looking for periodic points of period two which are not fixed points):

p2+ 0197+ A2yt +0(y%) = 1-
B2+ 30197 + 50244 +O(¥°) =1 ’
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where Ay = bospt + bosp® and Ag = bosp + 3b3542 + bos u®.
Now, we consider the change of parameters p = —1 + b and bgs = @, which is well
defined because 4.12 holds. Proceeding as in the study of the model of codimension two

flip, we obtain:
y(€) = ¢, @z(€) = —2bps(0,0)€e% + 0(65), bz(€) = bo5(0,0)e4 + 0(65),

where a; and @, are the functions of the theorem corresponding to the new parameters,
and b05 75 0.
0, 22(0) = 0, £2(0) = 0, and (a3(0),52(0)) = (0,0). This finishes the prove of a), b)
. and c), taking into account the change of parameters.
In order to prove d) we observe that, in these new parameters, the curve of flip bifur-
cation is b = 0 or a;(€) = ¢, b;(¢) = 0. Then

(&,d—;?' _ _ da1 dag
a0+ ||(i@1 @1)” - (— )0) - de (O)’ de (0)

de ? de
L) 10= (%10, 209).

€07 H(%‘,#)II

Since bos5(0,0) # O, the tangency of these curve is quadratic.

Finally, to prove e) we only have to take into account that:

a2(€) = 82(f a1 (ay.5,) (@ (¥), ¥)) b2(€) = B2(far(2y .5,y (2(¥), ) (4.15)

where H is the map which transform the new parameters to the old ones, and (z(y),y)
is the two periodic point corresponding to the saddle-node bifurcation. It holds because
1 (22,5,) (2(¥), ) is also a periodic point of period two.

Using this fact, the geometric curve C; corresponding to the parametnzed curve
(az(€),b2(e€)), for €] < o, is Co = {(az(€),b2(€)), 0 < € < 0},

because if € < 0, then fg (5. 5., (z(y(€)),y(e)) = —e+ O(e?). So, 4.15 holds and e) is proved.
a

Remark 4.1.21  a) The type of flip bifurcation in the curve (ai(€),b1(c)) depends on

the sign of €. In one case it is supercritical and in the other ts subcritical.

b) The sign of bos(0,0) gives two different types of codimension two flips. With a suitable

change of parameters we can see this types in figure 4.5.

In the last part of this section we will give conditions, over a general family, of existence

of bifurcation which unfolds generically:
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s b

scf Scf
scf Scf
sn

Figure 4.5: Types of codimension two flip: scf (resp. Scf) means subcritical (resp. super-

critical) flip, and sn means saddle-node.

Theorem 4.1.22 Let {f.}.c1, where I is an open interval, be a one-parameter family of
diffeomorphisms having a fizred point p = (zo,y0) for a = ao € I. Suppose that X and p are
the eigenvalues of Df, (7), and v and w are (respectively) the right and left eigenvectors
of etgenvalue p. If this family verifies:

a) |M#A7V and p=1,

b) wT D2f, (5)(v,v) #0,

¢) Wl D f(p,an) 70,

where f(£,a) = f(x,u,a) = f.(z,y), then {fs}acsr has a saddle-node fized point p for
a = an, which unfolds generically with {fo}aer- '

Proof: _
We write 7= (x,y,a) and 7 = (zo, Yo, a0). Then:

J(5) = 1(5) + DI(&)(F - %) + 5 D*[(20) (F— 20)> + ...

By means of a translation of the fixed point into the origin and taking into account that

f(z0,¥90,a0) = (70,v0), we obtain the following family of diffcomorphisms conjugated to

{f«z}aé! : 1
7:1(2) = g1(z,y,0) = Df(%)7 + Esz(EO)EQ + ..

Let M a matrix such that:

A0
M_lDf(zo(zO)yO)M-: ( 0 1 ) .
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If we consider the transformation Z = Mz and the change of parameters @ = a — ap, we

have another family conjugated to the first one:

92(2,9,8) = M~ Df (5)(M#,0) + 3 M~ D* () (ME,a* + .. =

M~Y(Dzf(2)MZ + aD. f (%)) + %M"I(Dﬁf(z*o)(Mf >+
M™Y(2aDzo f(Z)MZ + &% Daaf (7)) + ... =

Q1008 + Az + Zi+j+k=2 a;,~k&‘x"yk + O3

Then, we have byoo = wT Do f(2) and booz = w” D% fo, (0, y0)(v, v) since
_ o 1 - ~
bioo = & M~ D, f(%), booz = 5%M 1 D? fo, (20, yo) (M&2)?,

where &, and €; is the canonical basis of IR2, and, e}TM ~1 = wT and Mé&, = v.
Since the conditions of the definition 4.1.11 are bigo # 0 and bggz # 0, the theorem is
proved. O

Remark 4.1.23 The condition b) of the theorem is also the condition of ezistence of a

saddle-node fized point for a = ayp.

Theorem 4.1.24 Let {f.}ac, where I is an open interval, be a one-parameter family of
diffeomorphisms having a fized point p = (zo,yo) for a = ag. Suppose that D fo,(p) has two
eigenvalues X, i € IR such that |A| # 1 and g = —1. If this family verifies:

a)
2(1 1_ —;\) (wT D? fo, () (v, v1))(w] D? fo, (5) (v, v))+
27 D2 £ ()0, 9))? + 507 D fog (5)(v,v,0) £ 0,

where v and w are, respectively, right and left eigenvectors of eigenvalue i = —1, and

vy and w, are, respectively, right and left eigenvectors of eigenvalue X.

b) If p(a) ¢s the fized point of f,, obtained using prosition 4.1.8, such that p(ao) = P,
and p(a) is the eigenvalue of Df,(p(a)) such that p(ao) = —1, then % (ao) # 0.

Then {fo}aer has a flip fized point p in a = ap which unfolds generically with {f,}acr.

Proof:
Suppose that £ = (z,y) and Zp(a) = p(a). Then:

fa(f) = fa(EO(a)) + Dfa(EO(a))(f_ 50)+
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1 2 - - - \2 1 3 — — = \3
ED fa(Zo(a)) (£ — Zo) +-6D fa(Zo(a))(Z - Zo)° + ...

If we move the fixed point to the origin, we have the following family conjugated to {fas}qer :
1 1
9a(Z) = Dfa(%0)Z + -2—D2fa(§:’0)5:‘2 + gD"’f(i:‘o):E" +...

Then we can digonalize the linear part, by means of a linear change of coordinates, Z = MZ.

If we call again this new maps as g,, we have:

A 1 1
9.(%) = ( * ) + -2-M‘1D2fa(:'fo)(M5:‘ 2y EM‘IDsfa(:E‘o)(Ma':‘)s +...=
ny
A(a)z + az02? + a112y + a2y + O3
p(a)y + booz® + biazy + booy® + O3 |
To obtain the conditions of definition 4.1.9, we have to transform §, to a normal form,

removing the non resonant terms of second order:

Lemma 4.1.25 Let boz(ao) the term on y> of the second component of the map ga,, which

18 the normal form of ga,(Z). Then:

- bi1{ap)aoz(a

b03(a0) = —1-1—(-—19’)':0/_\2(—0) + bgz(ao) + 603(a0).
Proof:

We want to conjugate the map g,, to the map:

Gun (2,4) = Xz + G302> + 82122y + B1ozy? + doay> + ...
o _ -y + 530333 + 521x2y + Elzxyz + i)ogya + ... '

Consider the change of coordinates:

h(z,y) = T+ azoz? + o112y + apzy?
’ y + B202® + Bi1zy + Pozy?

Then: ’

» 2, -~ .3

ho Fa (O, y) _ o2y +2a03_y -’I; ..
-y + Bo2y® + bosy® + ...

and:

Gag 0 B(0, ) = (Aooz + @02)y? + (a11002 + 2a02P02 + a03)y® + ..

o ’ —y + (—Boz + boz)y? + (b11oz + 2bo2B02 + bos)y® + ..
Therefore:

bos = br1aoz + 2bo2B02 + bos, (4.18)
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and
a2 = Aagz + o2, Poz = —Poz + boz-

Substituing these values in 4.16, we obtain the formula of the lemma. O

To finish the proof of the theorem, we have to take into account that:

b11 = wT D?fa(p(a))(v,v1), boz = %WTsza(P(a))(”’”)»

bos = 5" D*f(p(e)) (v, 0,0),
where wT = &M~ v = Mé&, wl = éfM~1, vy = M& are the eigenvectors of the
theorem, and &, & is the canonical basis of IR?. Hence, we have obtained the first condition,
since in the definition of flip we have bz # 0. The second condition is the same that the

definition of a flip which unfolds generically.OO ¢

Remark 4.1.26 When the condition of the previous theorem 13 computed, one has to take
into account that wTv = &M~ 1Meé, =1 and w'fvl = &M~ IMée, = 1. So the choice of

the eigenvectors i3 not free at all.

Theorem 4.1.27 Let {f(4)}(a,b)ev, where U is an open set of IRZ, be a two parameter
family of diffeomorphisms having a fized point p = (zo0,yo0) for (a,b) = (ao,bo). Suppose
that A and p are the eigenvalues of .Dfao,b0 (P), and v, w are, respectively, right and left
etgenvectors of eigenvalue pu, and vy, wy are (resp.) right and left eigenvectors of eigenvalue

A. Suppose that this family verifies:

o) A #1, p=-1,
b) wTszao,bo (ﬁ)(v’v) =0,
c)

1 .
ST 17 D oo 0 (B) (0, 0)]0T D% a0 (P) (0, 0)]+
%wTD3fao,bo (#)(v,v,v) #0,

d)
wTDa.f(ﬁ) aO,bO) wTDi:’af(ﬁ,ao,bo)'v
w? Dy f (P, a0,b0) w” Dz f(P, a0, bo)v

where f(Z,a,b) = f(z,y,a,0) = fop(z,y), Do (resp. Dp) means partial derivative with

#0,

respect to a (resp. b,) and Dz, (resp. Dgz,) means second partial derivative with respect a
and Z (resp. b and ).

Then the family {f(a,b)}(a,p)cu has a cusp fized point p, for (a,b) = (ao,bo), which
unfolds generically with {fiap)}(a,b)cv-
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Proof:
First, we write 7 = (z,y,4a,b), ¥ = (z,y), @ = a—aog, b = b~bo, and 7y = (z¢, Y0, a0, o),

~ Zo = (2o, o). Then:
f(Z) = fap(z,y) = % + Df(2)(Z - ) + %sz(z*o)(i— 20)*+
%Dsf(io)(i‘— 20)° + ... = Zo + Dz f(Z)(Z — Zo) + aDaf(20) + bDy f(70)+

%[Di’if(zo_)(f — £0)? +2aD2;f (2)(Z — o) + 2bDszf(2)(Z - %o)+
% Daaf(Z0) + 52 Dus f (20) + 2abDas f (20)]+

1 (e =
. gD;ggf(Zo)(x —_ 2:0)3+ v

If we translate the fixed point p to the origin, and diagonalize the linear part with respect
to = and y, by means of a linear change of coordinates of matrix M, we obtain the following

family, conjugated to fgp :
925(8) = M7 D fo, 4o (To)MZ + M~ 1aDy (%) + M~*bDyf (%) +

1 -
E[M-lpﬁ f(Z)(MZ)? + 2aM ' D2, f(Z)MZ + 26M ™! Dyz f (Z0) MZ+
a?M ™1 D,0 f(70) + B2 M ™} Dy f (%) + 2abM ™2 Doy f(20))+

1

o =iTg K,
6M“1D5ﬁf(£‘0)(M§ 34 ... = ( Ei+]’+k+lgsat1kla b zty + Oy ) ’

Ei+j+k+153 b"jkz@"z"zky‘ + Oy
with @010 = A, @0001 = boo10 = 0, booor = 1.

We know, by the proposition 4.1.10 and the definition 4.1.11, that g, ; is conjugated to
Gap = (§1,d2), where:

1= Az + Z 8:j008'b + (810102 + G10019)a+
t+7=2

(@o1107 + Go101y)d + 800112y + O,

g2 = b1000@ + bo100b + y + Z bi;008'6 + (B1010% + bir001y)a+
t+3=2

(bo110% + bo101Y)b + booozy® + Os,
and that there is a cusp which unfolds generically if:
a) [A\|#0, p=1.

b) boooz = 0.
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c) booos # 0.
d)

blOOO b0100

£0.

b1001 b0101

The conditions a), b) and d) can be transformed into the condition a), b) and d) of the
theorem, taking into account the expansion of g, ; and using a similar argument that in
the previous theorem. It is necessary to compute booos in order to obtain the condition c)

of the theorem. Then we suppose @ = 0 and b = 0. We know that: ho oo = go,0 ©h, Where

T + a0z’ + g2y’
Y+ B202° + Purzy

h(z,y) = (

We have:

~ 3 2 3
. G0003Y° + a02(y* + 2boo02y”) + O4
h o §o,0(0,y) = (2 ;s ) ;
¥ + booo2y? + booosy® + O4
40,00 h(0,4) = Aao2y? + ago11@024® + @0002y? + aooosy® + Oy
0,0 y) = . )
. y + boo11 02y + booozy? + booosy® + O4
Then:

T 40002
booos = boo11a02 + booos, oz = 1- X\’

and, therefore,
boo11@0002

b = ————% 4+ booo3.
0003 - + 00003

Taking into account that:
bOOll = wTsza.o,bo (ﬁ)(v) vl);

1
40002 — Ew:f szao'bo (ﬁ)(v’ ”)’

1
booos = EwTDsfao,bo (®)(v,v,v),

we obtain the condition c) of the theorem. O

Theorem 4.1.28 Let {f(a.1)}(ab)ev, where U is an open set, denote a two-parameter fam-
ily of diffeomorphisms having a fized point p = (zo,yo), for (a,b) = (ao,bo). Suppose that
Dfao b, (B) has two eigenvalues, X, ji, such that |A| # 1 and i = —1. Let p(a,b) be the
fized point of fop, obtained by using proposition 4.1.12, such that p(ag,bo) = p. Let A(a,b),
p(a,b) be the eigenvalues of Df,p(p(a,d)) such that, A(ag,bo) = A and p(ag,bo) = —1.
Finally, let v and w denote, respectively, right and left eigenvectors of p, and v, and w,

right and left eigenvectors of A. Suppose, moreover, that the famaly {f(a,b)}(a,b)EU satisfies:
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a) ¢(ag,bo) = 0, where

c(a,8) = 37y (07 D e )0, 02)) W] D*Fep(o) 0, 0))+

207 D fas(p)(0, )% + 507 D° fo(p) (v, 0,0).

5)

20ey13a02 + 120e12 80202 + 60e12a03 + 120€;11 Boz o3+
120e;; 011 o3 + 120€11 o4 + 60e1203, + 120e20 o203+

eos + 20e04 B0z + 60e03 B, + 120e02/811 s + 120e02804 7 O,

where:
1
Qpg = ——— ==
%7 Tag(x-1)

12d20 002 + doa + 12dos3 oz + 12do2 82, + 24211203 — 24011 q03),

(12d12002 + 24d11ﬂ02¢102 + 24d11 (103+

1
Bos = @(12612002 + 24e11 Bo2oz + 24€11 0003+
1263003, + €04 + 12€03 80z + 120282, — 48811 203),

1
a3 6(A+1)( 1102 + doa + 6do202),

1 1
oz = —————dyg, = ~eoz,
02 26-1) 02, Boz 7 602
1 1
1 = e ) =——'——_'d )
B11 oo eu o5

di; = wi(ao, bo) D17 (p)v1 (a0, bo) v(ao, b0 ),

ei; = w(ao, bo) D' (p)v1 (a0, bo) v(ao, bo)’.

g—(c;(ao,bo) g_tc,(G'OabO)

%ﬁ(ao,bo) %%‘(ao,bo)

£0.

Then the family { f(a,5) } (a,p)ev has a codimension two flip point p, in (ag, bo), which unfolds
- generically with {f(a,s)}(ap)ev-

Proof:
We know that a family like {f(4,5)}(a,5)cv can be written, by using a polynomial change

of coordinates, as:

= ~ 2
A z\x+a11xz{+ asmzy + Os ’ (4.17)
y wmy + bozy® + Os

where A = A(a,d), p = p(a,b), u(ao,bo) = —1, A(ao,bo) = A, and &,; = a,;(a,b), b;; =
b; ;(a,b). By the definition of codimension two flip which unfolds generically, we have
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a) Bos(ao, bo) =0.
b) 505(ao,b0) # 0.

c)

p A

da ab
3% 3bga # 0,
da ab

where the derivatives of 4 and bos are taken in (a,8) = (a0, bo).

Using the proof of theorem 4.1.24 we have that:

- 1
b03(a, b) = )

—(T_—,\)(wTsza,b(p)(v, tgl))(w{sz,,,,,(p)(v,.;))Jr

L W7 D e (), )P + 207 D fas(p)(0,0,9) = D)

So the conditions a) and c) of the theorem are the same that the conditions a) and ¢) of
the generic unfolding.

We have to see, to finish the proof, that condition b) of the theorem is the same that
condition b) of generic unfolding. For this, we must compute the term bos(ao,bo) of the
normal form 4.17.

We know that there exist a map f defined by:

7= Az + Ei:z E,-ﬂ-:n a;i; 7'y’ + Og

such that it is conjugated to fq,b,, by means of an affine change of coordinates. Moreover

1 t+7 \ _ N
ai; = (‘+J)‘ ( ; ) wTDfao,bo(p)vle>

and

1 t+7 \ o N
bij - (1 +])' ( i > w Dfao,bo (p)vlv )
where ¥, 01, W, W; are the eigenvectors of the theorem taken in (ao, bo).

Then, let g = g(z,y) denote the following map:

Az + dmzyz + (‘1503:5 + ...
—y+c‘150$5—}—... ’

g(z,y) = (

and:
T+ agoz? + as12’y + a22zy? + arszy® + agsyt )

.f4($, y) =
. ¥+ Baox* + 3123y + Ba22%y? + Biazy® + Bosy?
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T+ azor> + ag12’y + aosy®
Y + Baoz® + P2122y + Piozy®

fa(z,y) = (

T + aozz? + @117y + o2y’
Yy + Bo2z? + Pr1zy + Po2y?

By the theorem 4.1.2, we know that there exist oy;, B17, @ij;, bi;, such that:

f2(x1y) = (

fofrofsofs=faofsofsog.
Since we are interested in the term bgs, we can take z =0 :
fofzofsofu(0,y) = fa0 fao faog(0,y).
From this equation we find the value of bos. O

Remark 4.1.29  a) Also in the previous theorems we have to impose the following con-

ditions to the eigenvectors wTv =1 and wlv; = 1, when we compute the conditions
a), b) and c).

b) It is possible, when we study bifurcations of dissipative families of diffeomorphisms,
to consider only a one dimensional map, by using the center manifold theorem ([36],
[80], [37], [88]). But in that case we do not obtain the general conditions of existence

of generic bifurcations for a general two dimensional family.

4.2 One dimensional models of cusps

In this section we will study the cubic models of cusps and a quartic model of a codimension
three cusp. Our goal is to obtain a semiglobal behaviour of a family of maps having a cusp
point.

First, we will see the following:

Pfoposition 4.2.1 Let f : IR — IR be a cubic map. Then, it is conjugated to one of the
following maps
a1(y) =y+v>+ay+b, g2(y) =y - y° +ay+b,

for suitable @ and b.

Proof:
Let f = ap + a1y + a2y® + asy®. It is enough to consider the following change of

coordinates: § = Ay + ), where o = —3'2- and A = 4/ la3!|. Then f is conjugated to

9(y) = y +sign (as)y® + ay + b,
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where

a=a;+2aa+3a30° -1, b=/ las|(ao + @10 + aza’ + a3a3) - a0
Proposition 4.2.2 Let g1(y) = (1 + a)y + y* + b.. Then:
a) The fold bifurcation curve corresponding to fized points, verifies the equation:
2702 4+ 4a® = 0. (fol),
and it has a cusp at a=b=0.
b) The flip bifurcation curve corresponding to fized points, verifies the equation:
270° + 4(a + 2)(a — 1) =0. (fI1).
The curve (fl1) is smooth and has no codimension two flips.
¢) The flip and fold bifurcation curves, (f10) and (fI1) have no intersections.
d) The fold bifurcation curve corresponding to pen_'od two points, verifies:
4(a+3)°+212 =0 . (fo2),
and this curve has a cusp point at a = —3 and b=0.
e) The flip bifurcation curves corresponding to period two, verify:

16a® + 144a° + 360a* — 160a® — 1440a® — 384a + 1664

+216a%6% + 972a%b? + 2430ab® + 32944° + 7296 =0 . (fI2).

This equation represents two smooth curves which intersect at the point: (a,b) =

(-1 -+/5,0).

f) The curves corresponding to (fI2) have no intersection with (fo2) and two intersec-

tions with (f11) (one on each curve).

Proof:

a) We have to solve the system:

gi1(y) = y,}

aly) = L

By removing y, we get the fold bifurcation curve (fol). As we have seen before, there is a

cusp point in y = 0 for (a,b) = (0,0).
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b) In this case we have to remove y from the system:
91 W = } (4.18)
gily) = -1,

and so we obtain the curve (fl'l). To see that it is a smooth curve, we write a = a(y) and

b = b(y). We have, using the system 4.18:
G.(y) = =-2- 3y2)
bly) = 2y+2y%.

It is a smooth curve because (a’(y), ' (v)) # (0,0)Vy € R.
It is easy to see that the existence condition of codimension two flips is: 2¢}"(y) +
3(¢g¥)? = 0. In this case this equation has no solution. Then, there are not codimension

two flips.

c) To see that (fol) and (fI1) do not intersect each other, we consider the system

27b% + 42 = 0,
276 +4(a+2)(a - 1)> = O.

From this we have: 4a® = 4(a + 2)(a — 1)3. Then a = 1/3, but from the first equation we

obtain a < —2. So there are not intersections between both curves.

d) The conditions for the existence of fold bifurcations are:
(gr001)(¥) = w, }
(91091)'(y) = 1,
We can write
g1(y) — v = (91 (y) — v)a(y) =0,

because the fixed points are also two periodic points. Then, computing the differential of

this expression, we obtain:
(97(¥)) — 1= (g1 — )3+ (91(v) - )7"(¥)-
If we want to avoid the bifurcations of fixed points, we must solve:

iv) = o, }

g = 0,

with

3(y) = a®y” + 2aby + 2ay* + 3ay® + b7 + 2by° + by + 4° + 3y* + 3y° + 2+ a.
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Removing y one obtains:
(2767 + 4(a + 2)(a — 1)?)[4(a + 3)® + 27b%]% = 0.

Then the condition, on the parameters a and b, of existence of a fold bifurcation is (f02),
because 27b2 + 4(a + 2)(a — 1)? = O represents the flip bifurcation curves. It has a cusp
point in (a,b) = (—3,0) because, in this case, g;(y) = —2y + y®. Then:

Jy)=v*-3y*+3y° -1=(y*-1)°=0,

7' (y) = 6y° — 124> + 6y = 6y(y®> — 1) = 0.
Thus y = +1. Finally
91(y) = 4y — 10y° + 12¢° - 6y" +¢°,
and
(92(y))" = —60y + 240y° — 252¢° + 72y7 = 0,

if y = £1. This is a necessary condition of existence of a cusp bifurcation. Also g?(+1)" =
—96 < 0. Then it is a cusp. Observe that in the first cusp we have found: g7'(0) =6 > 0.

So these two cusps are of different type.

e) Proceeding in the same way as before, in order to find the curve of two-periodic flip

bifurcation, we have to solve:

(grog)(y) = y,}

(91 091)'(y) -1,
Since g1 0 g1(y) — ¥y = (91(y) — ¥)3(y), then
(91091)'(y) = 1+ (92(¥) — v)d'(v) + (91 — 1)g(v).

As we are interested in bifurcations of periodic points of strict period two, we can consider
the system of equations:
aly) = 0, }
(1(v) - v)7'(w) = -2,

Then, removing y, we obtain the equation (fI2). ,
To see that this equation represents two smooth curves, consider first b = 0. If (a,0) is
a point that satisfies (fI2) then:

Ps(a) = 16a® + 144a® + 360a* — 160a® — 1440a% — 384a + 1664 = 0.
This equation has two real roots a; = —1 ~ V5 and ax; = -1+ \/5, since

Ps(a) = 8(2a% + 10a + 13)(a? + 2a — 4)?,
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and 2a? + 10a + 13 = 0 has no real roots.
If a = az and b = 0, the 2-periodic point y has to verify the equation:

a?y® + 2ay* +3ay® + 4* +3y* +3y> + 24+ a=0.

But this polynomial in y has no real roots, because all its coefficients are positive.
On the other hand if we put @ = a; + ab, by substitution in (fI2), we obtain:

b2 (-96/5b6%a® — 2406%a* — 648+/5b%a — 1120v/5ba> — 648+/Bba—

96v50” — 2214v/5 + 16b*a’ + 48b%a® + 216b%a> + 108062 a* +
324b%a” + 7297 + 1920ba® + 4374ba + 240002 + 3240) = 0. (4.19)

Then, when b = 0, we have:

(—96v/5 + 2400)c(0)? — 2214v/5 + 3240 = 0,

a(0) = ol = :t‘i%\/ 17V/5 + 22.

Then, due to the implicit function theorem, there exist two functions a4 and a— such that

and therefore:

they satisfy the equation 4.19 and a4 (0) = of.
To show the existence of a real two-periodic orbit on the curve (fI2), we see first that

for a = —1 — /5, b = 0 the corresponding values of y are:

=\ (VB 1), =\ 2 (VB4 1), 1= [ (VE - 1) = —[3(VE - 1),

where (y1,¥2) and (ys,ys) are two-periodic orbits.

To see that y exists on the curve (fI2) it is enough to observe that the system:

aly) = 0,}

(9:(y) —9)g'(y) = -2,

has solutions (al(y),bl (v)) and (az(y), bz(y)) such that (a;(y1),b1(y1)) = (—1-+/5,0) and
(az(ys),b2(ys)) = (=1 - v/5,0). This holds by the implicit function theorem.

f) To see that (f11) and (fI12) do not intersect, we substitute > = —%(a + 2)(a — 1)?
in (f12). Then we obtain:
8(—27a® — 63a? + 21a + 94) = 0.

It is easy to'see that all the real roots of this polynomial are larger than —2. Therefore

there is not intersection because, using the first equation, we obtain a < —2.
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If we intersect (fo2) with (fI2) then we have: 8(6a + 19) = 0. So a = —19/6 and
b = £[27+/2|71, using the equation (fo2). O

The properties of the curves (fol), (fo2), (fi1) and (fI2) can be seen in the figure
4.6.
Proposition 4.2.3 Let gz(y) = (1 + a)y — y® + b. Then:

a) The fold bifurcation curve corresponding to fized points, satisfies the equation:
4a® - 276> =0 , (fol)

and it has a cusp fora=5b=0.
b) The flip bifurcation curve corresponding to fized points satisfy:

4(a+2)(a—-1)2-2702 =0, (fI1)

This curve has two intersections with the fold one and one self-intersection (it forms
a loop).
¢) (fl1) has two codimension two flips.

d) The fold bifurcation curve corresponding to two-periodic point is:
4(a+3)3-272 =0, (fo2)

This curve has also a cusp. However the true bifurcation curves (corresponding to
real periodic orbits) only reach the two tangent points with (fI1), in which there are

the codimension two flips.

e) The flip bifurcation curve corresponding to two-periodic points, satisfies:
16a® + 144a® + 360a* — 160a® — 1440a” — 384a + 1664

~216a%b% — 9724%b% — 2430ab” — 3294b% + T296* =0 . (fI2)

It represents two smooth curves which have e intersection at the point (a,b) = (—1+
V/5,0). It has intersections with the other curves ezcept with (fo2).

Proof:
To obtain the curves (fol), (fi1), (fo2), (fI2) we proceed as in the previous proposi-
tion. '

a) It has been proved before.
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Figure 4.6: Bifurcation curves corresponding to ¢;(y) = (1 + a)y + y* + b.
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b) The curves 4(a + 2)(a — 1)% = 27b% = 0 can have a self intersection if b = 0. Then we
obtain @ = —2 or a = 1. But if (a,b) = (-2,0), by the implicit function theorem, we see
that in a neighbourhood of this point the curve is smooth. On the case a = 1 we have the

_system:
92(y) = 2y-9¢® = y, }
gily) = 2-3° = -1
" Soy=+1. This tell us that, locally, the equation (f/1) represents two smooth curves which

have a intersection in (a,b) = (1,0). To see this, take into account that (a,b) has to verify:

2ly) = }

gé(y) = '—1’..

= 3y% -2,
' Y (4.20)
b = -2y +2y.

or

For y =*+1 : ¥'(y) = —4 and a’(y) = £6. Hence, this curves forms a loop.

c) If there are codimension two flips, they have to verify: 2g4'(y) + 3g5(y)? = 0. Then,
by using 4.20, we obtain a = —5/3-and b = :i:-%%.
d) We obséxjvé first that the points
(a,b,9) = (~5/3,16/27,1/3) and (a,b,y) = (~5/3, ~16/27,~1/3)

belong to the fold bifurcation curve of period 2. Moreover, it is easy to see that, when
(a,b) = (—3,0) (where there is a cusp in the curve (fo2)), we have y = +1. Taking into
account the behaviour of a codimension two flip studied before, we have, necessarily, that

the true curves stop at the intersections with the flip curve,' and do not reach the cusp.
e) This case is analogous to the case e) of the previous proposition. OI.

The properties of the curves (fol), (fI1), (fo2), (f12) can be seen in figure 4.7

Now we will study a three-parameter quartic family of maps, in order to see if there are

other types of interaction of bifurcation curves. Let
f(y) =c+ (1 +a)y+by® +y*.

As in the cubic case, we have:
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0.60L

-0.60L
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-2.60 -1.20 0.20\ 1.60 a

Figure 4.7: Bifurcation curves corresponding to gz(y) = (1 + a)y — y> + b (ctf means
. codimension two flip).
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Proposition 4.2.4 Let g : R — IR be e quartic map. Then this map is conjugate to the
map f(y) for suitable a, b, and c.

Proof:
By means of a translation and a change of scale, it is possible to remove the cubic term

of the map g and to make the coefficient of y* equal to 1. O

The map f is a model of a codimension three cusp because, when @ = b = 0, we have
fly)=y+y*
Proposition 4.2.5 Let f(y) be as before. Then:

a) The surface of fold bifurcation corresponding to fized points, in the parameter space
(a,b,¢), 1s:

— 27a* — 4a%b® + 1440%bc + 16b%c — 128b%¢2 + 256¢° = 0. (4.21)

b) The curve of cusp bifurcations corresponding to fized points verifies:

2702+ 8% = 0
’ (4.22)
12¢+b% = 0,
and there s a unique cusp for a fized a = ao.
¢) The surface of flip bifurcations corresponding to fized points verifies:
—27a* — 4a%b® + 144a®bc + 720 — 64a + 16b*c+
165 — 128b%¢? — 64bc + 256¢° + 16 = 0. (4.23)

d) The curve of codimension two flip bifurcations corresponding to fized points is:

= —8t%4+4t3 -2,

b = —6t* + 2t
2 (4.24)

c = t842t5 22

y = —t2.

If a > —3/2 there are not codimension two flips and if a < —3/2 there are two

codimension two flips.

Proof:

a) The surface of fold bifurcations satisfies:

fly) = y,}
f'lly) = L
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So, removing y we obtain 4.21.

b) The curve of cusp bifurcations verifies:

fly) = v,
ffly) = 1,
f'ly) = o

From this we obtain

a= 8!/3, b= _Gyz) c= _3y4’

and, therefore, the equation 4.22 and that there is a unique cusp for each a.

c)The surface of flip bifurcation 4.23 is obtained by removing y from the system of

equations: ‘
fly) = v }
f'ly) = -L

d) In this case this curve has to verify the system:

flo) = v,
flly) = -1,
2f"(y) +3f"(y)> = 0,
or, by substitution,
c+ay+by?+y* = 0,
(a+2)+2by+4y> = 0O, (4.25)

b% + 4y + 12by% + 36y* =
From the last equation we obtain: b = —6y? & /—y. Now, consider a parameter ¢‘such that
y = —t%. Then b= —6t* + 2t and, using 4.25, we obtain the system 4.24.
The existence of two codimension two flips if a < —3/2 and no one if a > —3/2, follows
from the first equation of 4.24. This equation has two solutions in t if ¢ < —3/2 and no

oneifa > -3/2.0

Now we are interested in the study of the behaviour, in the parameter plane, of a two-
parameter family of diffeomorphisms having two fold bifurcation curves, only one of them
having a cusp. For this, we shall use, as a model of such a family, the map f(y) with a
fixed parameter a.

In order to see how the bifurcation curves are, we have studied numerically the function

f for different values of a and draw the bifurcation curves in the parameters plane (b,¢).

215



To obtain the cusps and codimension two flips we use the conditions of existence of such

-bifurcations. Remarkable facts are:

a)

b)

d)

For all a there are two fold bifurcation curves corresponding to fixed points. They

always look similar. One has a cusp and the other is smooth.

When a > 0 we have a global behaviour like in the first cubic model, for the cusp.
The smooth fold bifurcartion curve and the successive flip bifurcation curves have no
relation with the cusp. This behaviour is called a saddle area by C. Mira ([2]). See
figure 4.8.

When a < —2 we have a cusp like in the second cubic model (spring area by C. Mira).
See figure 4.9. '

If —2 < a < 0 then the fold bifurcation curves corresponding to period one exchange

their flip curves (cross-road area by C. Mira). But we distinguish two different cases:

{(a) When —1.5 < a < 0 there are not codimension two flips. See figure 4.10.

(b) When —2 < a < —1.5 there are two codimension two flips, both in the same

branch of the flip bifurcation curves. See figure 4.11.

It seems that, as it has been noted in [39] and {40] in other cases, cascades of cusps
of doubling periods can exist, and that they are in communication through their flip
bifurcation curves. A scheme of this behaviour is shown in ﬁgure'4.12. This diagram
is not always complete, since it depends on the type of the successive cusps. It seems
complete if —1.5 < a < 0. However, in the other cases the existence of codimension

two flips breaks part of this structure, in the following sense:

When there are two codimension two flips, the fold bifurcation curves of double period
associated to these bifurcations of codimension two, are similar to one fold bifurcation
curve with a cusp. However the periodic points associated to this cusp are not real.
Only in this sense is possible to say that the cusps of doubling period always exist.
For the first case, in which codimension two flips appear (a < —2), we have the
behaviour in figure 4.13. And for the second case (-2 < @ < —1.5) we can see the

behaviour in figure 4.14

The notation used in the pictures is the following:

a)
b)

c)

fon means n-periodic fold bifurcation curve.
fin means n-periodic flip bifurcation curve

cn; means n-periodic cusp point.
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d) ctf means codimension two flip point.

4.3 Bifurcations of codimension two in two-dimen-

sional maps: The Hénon map

The most simple non linear diffeomorphism, the Hénon map, give examples of all the

behaviours found before. Consider:

fap(z,y) = (1+y - az?,ba).

Then we can obtain saddle-node and flip bifurcation curves corresponding to period n. To

do this we must solve the system:
famy) = (3, }
tr Dfzy(z,y) 1+ (-b)",
in the case of saddle-node bifurcation, or
::,b(z’ y) = (:1:, y)’
trDfzy(z,y) = ~1+(=b)", |

in the case of flip bifurcation.

To solve these systems we fix one variable z,y,a or b and obtain the other ones by
means of the Newton method. Then we use a continuation method. We have no problem
on the continuation of the curve because it is smooth in the space (z,y,a,b).

To see that the saddle-node bifurcation curve or the flip one becomes degenerate (that
is, there is a cusp or a codimension two flip), we use the conditions of existence of cusps
and codimension two flips found before.

In the following pictures (4.15, 4.16, 4.17, 4.18) we see the different behaviours. The
notation is the same as the one in the figures corresponding to the quartic map. In figure
4.15 we have a behaviour like b) in the quartic case (saddle area). In figure 4.16 there is a
behaviour like d(a) (cross road-area without codimension two flips. In figure 4.17 we have
a cross-road area with two codimension two flips ( d(b)). Finally, in figure 4.18 we have a
spring area with two codimension two flips ( c)).

The lowest periods for the different cases are the following: behaviour like b) appear
for period 8, c) for period 6, d(a) for period 5 and d(b) for period 6.

Remark 4.3.1  a) Other authors have given ezamples like these in the Hénon map ([2),
[41]). However the case d(b) seems new in the literature.

b) Some of the results of this chapter have appear in [{2].
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Figure 4.8: Bifurcation curves. Case a > 0.
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Figure 4.9: Bifurcation curves. Case a < —2.
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Figure 4.10: Bifurcation curves. Case —1.5 < a < 0.
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Figure 4.11: Bifurcation curves. Case —2 < a — 1.5.
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Figure 4.12: General scheme of cascades of cusps
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Figure 4.13: Cascades of cusps: Case a < —2. The cusps c4; and c4; are, probably, the
initial steps of a cascade as in fig. 4.12.
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Figure 4.14: Cascades of cusps: Case —2 < a < —1.5. c23 and c4 seem the initial steps of

a cascade as in fig. 4.12
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Figure 4.15: Henon map. Case b).
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Figure 4.16: Henon map. Case c).
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Figure 4.17: Henon map. Case d(a).

227




<t

0.2300

0.2250-

0.2200L

0.2150L

Il 1 1 1 I
1.5000 1.5100 1.5200 1.5300 1.5400

Figure 4.18: Henon map. Case d(b).

228



- Bibliography

[1]

[2]
3]

[4]

(5]

(6]

[7]

(8]

[9]

[10]

[11]

[12]

Holmes P., Whitley D.: Bifurcations of one- and two-dimensional maps. Phil. Trans.
R. Soc. Lond. A 311, 43-102 (1984)

Mira C.: Chaotic Dynamics. World Scientific Press (1987)

Collet P., Eckmann J.P.: Iterated maps on the interval as dynamical systems.
Birkhauser (1980)

Douady, A. and Hubbard, J.H.: Etude dynamique des polynomes complexes, 1 & 1II,
Publ. Math. d’Orsay. 1985

Feigenbaum, M.: Quantitative universality for a class of nonlinear transfomations. J.
Stat. Phys. 19, 25-52 (1978), 21 669-706 (1979).

Singer, D.: Stable orbits and bifurcations of maps of the interval. SIAM J. Appl. Math.
35, 260 (1978).

Jakobson, M. V.: Absolutely continous invariant measures for one-parameter families
of one-dimensional maps, Comm. in Math. Phys. 81 39-88 (1981).

Benedicks, M. and Carlesson, L.: On iterations of 1 — az? on (~1,1), Ann. of Math.
(2) 122, 1-25 (1985).

Rychlik, M. R.: Another proof of Jakobson’s Theorem and related results, Ergodic
Th. & Dynam. Syst. 8, 93-110 (1988).

Guckenheimer, J.: The bifurcation of quadratic functions, Ann. N. Y. Acad. Sc. 316
78-85 (1979).

Farmer, J. D.: Sensitive dependence on parameters in nonlinear dynamics, Phys. Rev.
Lett., 55, 351-354 (1985).

Ketoja, J. A.: Period-doubling universality in multidimensional dissipative and con-
servative systems, Helsinki University of Technology, Report TKK-F-B109 (1987).

229



[13] Simé, C., Tatjer, J.C.: Windows of attraction of the logistic map, in European Con-
ference on Iteration Theory (ECIT 89), to appear.

[14] Hartman P.: Ordinary differential equations. Willey. New York (1964)

[15] Irwin, M. C.: On the stable manifold theorem, Bull. London Math. Soc., 2 196-198
(1970).

[18] Palis J., de Melo W.: Geometric theory of dynamical systems. An introduction.
Springer-Verlag. New York (1982)

[17] Tatjer, J.C.: On the strongly dissipative Hénon map, in European Conference on
Iteration Theory (ECIT 87), 331-337, World Scientific Publ.: Singapore (1989).

[18] Newhouse S.: Lectures on dynamical systems in Dynamical Systems. CIME Lectures
Bressanone (Italy). Birkhauser (1980)

[19] Newhouse S.: The creation of non trivial recurrence in the dynamics of diffeomor-
phisms, in Comportement chaotique des systémes déterministes (Les Houches 1981).
G. Iooss, R. Helleman, R. Stora editors. North Holland (1983)

[20] Newhouse S.: The Abundance of wild hyperbolic sets and non-smooth stable sets for
diffeomorphisms. Publ. Math. ITHES 50, 101-151 (1979).

[21] Robinson C.: Bifurcations to infinitely many sinks. Comm. Math. Phys. 90, 433-459
(1983)

[22] Palis J., Takens F.: Homoclinic Bifurcations and hyperbolic dynamics. XVI Coloquio
Brasileiro de Matematicas (1985)

(23] Franceschini V., Russo L.: Stable and unstable manifolds on the Hénon mapping. J.
of Statis. Phys. bf 25 (1981).

[24] Sotomayor J.: Ligoes sobre Equaogies diferenciais ordinarias (1979).

[25] Irwin, M. C.: On the smoothness of the composition map. Quart. J. Math.. Oxford
(2) 23 113-133 (1972)

[26] Chow S.N., Hale J.K.: Methods of bifurcation theory. Springer-Verlag. New York
(1982).

[27] Gavrilov N.K., Sitnikov L.P.: On the three dimensional dynamical systems close to
a system with a structurally unstable homoclinic curve. (I) Math. USSR Sbornik 17
467-485 (1972) (II) Math. USSR Sbornik 19 138-156 (1973).

230



[28]

[29]

[30]
(31]

[32]

[33]
34
(35
36
37

[38]

[391
[40]
[41]

[42]

Tatjer J.C.: Estudi del fenomen de Newhouse per a difeomorfismes disipatius del pla.
Master Thesis. Universitat de Barcelona (1984).

Simé C.: On the Hénon-Pomeau attractor. J. of Stat. Phys. 21 (1979).

Marsden J.E., McCracken M.: The Hopf Bifurcalion and its applications. Springer-
Verlag (1976).

Hénon M.: A two dimensional mapping with a strange attractor. Comm. Math. Phys.
50, 69-78 (1976).

Carlesson L., Benedicks M.: The dynamics of the Hénon map. Preprint. Oct 1989.

Ortega J.M. Rheinboholt W.C.: Iterative solutions of nonlinear equations in several
variables. Academic Press (1970)

Arnold V.1.: Chapitres supplémentaires de la théorie des equations différentieles ordi-
naires. Mir (1980)

Newhouse S., Palis J., Takens F.: Stable families et diffeomorphisms. Publ. Math.
THES 57 (1983)

Guckenheimer J., Holmes P.: Nonlinear oscilations, Dynamical systems and Bifurca-
tions of Vectors fields. Springer-Verlag (1983)

Hirscth.W., Pugh C.C., Shub M.: Invariant Manifolds. Lect. Notes in Math. 583.
Springer-Verlag (1977)

Kelley A.: The stable, center-stable, center, center-unstable, unstable manifolds. An
Appendix in Transversal Mappings and Flows by R.Abraham and J.Robbin. Benjamin
New York (1967)

Schell M. Fraser S., Kapral R.: Subharmonic bifurcations in the sine map: An infinite
hierarchy of cusps bistabilitiies. Phys. Rev. A 28, 373 (1983)

Bélair J., Glass L.: Universality and self-similarity in the bifurcations of circle maps.
Phys 16D, 143 (1985)

Whitley D.: Codimension-two bifurcations and the genealogy of period doubling se-
quences. Preprint (1987)

Bosch M., Tatjer J.C.: On the codimension two bifurcations in families od one- and
two-dimensional maps, in European Conference on Iteration Theory (ECIT 89), to
appear (1989)

231



