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Abstract

The aim of this work is to use the information leftrecombination
in our genomes to make inferences on the recenlutwoary

history of human populations. For that, a navathod called
IRIS has been developed that allows detecting Bpegast

recombination events in a set of extant sequentRES is

extensively validated and studied in whole setiffiéent scenarios
in order to assess its performance. Once reconmbmatents are
detected, they can be used as genetic markers utty she

recombinational diversity patterns of human popoiet. We apply
this innovative approach to a whole set of différdruman
populations within the Old World that were spedfig genotyped
for this end and we provide new insights in theertchuman
evolutionary history of our species.

Resum

En aquest treball es pretén utilitzar la informaqide deixa la
recombinacié al nostres genomes per fer inferénedsre la
historia evolutiva recent de les poblacions humaResfer-ho, s’ha
desenvolupat un métode novedos, anomenat IRiS pgureet la
deteccié de recombinacions antigues especifiquaesaonjunt de
sequencies. Hem validat extensivament IRiS i I'heytmes a
diferents escenaris per tal d’avaluar-ne I’ efiaatin cop els events
de recombinacio sén detectats, es poden utilitaar @ marcadors
genetics per estudiar els patrons de diversitatedepoblacions
humanes. Finalment, hem aplicat aquesta innovaaaximacio a
un conjunt de poblacions humanes del Vell Mén, gaen ser
genotipades especificament amb aquesta finalifartant nous
coneixements en la historia evolutiva recent detadms.






Preface

The paradigm on how variation is inherited was adlin the early
twentieth century, when Mendel's rules of inherg@anwere
reconciled with a Darwinian theory of evolution. Wew have an
understanding on which are the forces that shapevtriation
present in our genomes; which are their dynamiod, lrow they
can be modeled.

Although recombination is one of the main sourcethis genetic
diversity, the footprint it leaves is far more dfflt to detect than
the one left by mutation. Therefore, the study afman genetic
variation and the inferences about our evolutionaistory have
been based on the study of markers generated bgtiousuch as
SNPs and STRs whereas recombination has been iget fas its

complexity and lack of informative data.

Nowadays, data is produced at an astonishing mates to fast and
cost-efficient high throughput technologies, and/ memputational
methods are being developed to analyze such dagaefh in which
complete genomes are sequenced in a matter of loaysjust
arrived.

It is in such revolutionary context that our praje@s born: trying
to incorporate recombination in the study of humgenetic
variation was a very challenging project but wasvrfeasible. |
believe that incorporating recombination into tiedy of human
diversity may have a whole set of different applaas that will not
be restricted only to population genetics but asostudy the
mechanisms underlying recombination at the gendenigl.
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1. INTRODUCTION






1.1. Sources of genetic diversity

Two main processes generate diversity in genomesation and
recombination. Mutation is the sole source of néeles whereas
recombination creates new combinations of alletegiféerent loci.

Other processes shape diversity, such as genaetic shlection,

gene conversion and migration.

1.1.1. Mutation

By definition, any change in a DNA molecule prodigcia new
allele is called a mutation. Only those mutatiogsusring on the
germ-line will be heritable and may carry evoluton
consequences. Changes produced by mutation cambbststions,
insertions or deletions (indels) of single basesmall segments,
expansions or contractions of the number of tangerapeated
DNA motifs, insertions of transposable elementsplidations,
deletions and inversions of megabase segments ofA, DN
translocations of chromosomal segments and evemgelain
chromosome number. These mutation events are caysditferent
mechanisms and they may have very different dynsamcl rates.

Base substitutions are generally caused either I t
misincorporation of nucleotides during replicatioar due to
mutagenesis caused by chemical agents or physiosge such as
ultraviolet radiation. By definition, they will ges rise to single
nucleotide polymorphism (SNPs) once the new variaaches a
frequency higher than 1% in the population. In hosathe
estimated substitution rate per generation andeotide has been
estimated to be around i@er nucleotide per generation (Roach et
al. 2010; The 1000 Genomes Project Consortium 20Q@) the
other hand, it has been shown that the substitutada is not
uniform; for example, CpG dinucleotides mutate aate ten times
faster than that of any other dinucleotide. Moregpvke average
mutation rate of mitochondrial DNA is 3.33%i@ubstitutions per
generation (Soares et al. 2009), with a rate aeroofl magnitude
faster in some segments of the mtDNA molecule. Aeotype of



genetic variation are the Variable Number of TandBepeats
(VNTRSs), which are sequences arranged in tandemysrand
depending on the length of their arrays are cl&skifinto
microsatellites, minisatellites and satellites. Btign at the VNTR
involves both changes in the number of repeats iandepeat
composition.

Microsatellites or STRs are tandem arrays of repeétl- 6 bp.
They have been largely used to study human gewati@tion,
basically, because they are highly informativeythee multiallelic
and they have a high mutation rate (around-10* per locus per
generation). The mechanism underlying the mutapoocess is
thought to involve replication slippage.

Mutation rates are different between males and bespaand in
general terms males have higher substitution ratghin the
germline cells, which are thought to be relatedhwite higher
number of cell divisions that sperm undergoes, @egbto oocites.
Further, since in the sperm line the number of d#lisions
increases with age, the number of substitutions imlsreases with
the father’'s age. On average, the male:female isutiwh ratio has
been estimated to be 5:1 (Makova and Li 2002).him ¢ase of
microsatellites, microsatellite mutations occurethrto five times
more often in fathers than in mothers although allempaternal
age effect is observed (Gusméao et al. 2005; Joblirad. 2004).

1.1.2. Recombination

Recombination is defined as the process by whichoéecule of
DNA is broken and then joined to a different onec&nbination
can occur between similar molecules of DNA, as amblogous
recombination, or dissimilar molecules, as in nomblogous end
joining.

The process of homologous recombination starts \&itdouble
strand break (DSB) that will then be repaired usthg sister
chromatid as a template. This process can endassicry over



when flanking markers have exchanged or in a nossing-over
event named gene conversion in which the initiagjizchromatid
acquires a short sequence from its homologous grasirith no
exchange of flanking markers. See Figure 1 for aenuetailed
explanation of the process.

The combination of different alleles within a chrasome is called
a haplotype. Recombination, by creating new alt&lmbinations,
increases haplotype diversity in a population. &irty,
recombination can break up combinations of alleldess they are
very close to each other. In a population samgpie, fon-random
association of alleles at different loci more @sli®ften than would
be expected by chance is called linkage diseqiuhbr(LD). When
a new allele appears in a population, it does s@ iparticular
haplotype, meaning certain alleles will be assedato it. As
generations go by, this new combination of alletesy be broken
depending on the recombination rate between thesenarkers.

There are several measures of LD. One of themeditstatistic,

which is calculated as the observed frequency ef hhaplotype

formed by alleles A and B minus the expected freqyef those

two alleles were statistically independent. Also; Ban be

calculated as the value of D divided by the maxinpossible value
of D given A and B allele frequencies. Then, ifiBequal to one, it
means that evidence of recombination is absenhenpbpulation

sample analyzed. Another measure of LD?jsuhich is the square
of the correlation coefficient between the two lagican be equal
to one if only the two complementary haplotypes. (AB and ab)

are present; then one locus carries complete irg#tom about the
contents of the other locus, as the allelic stétocus A can be
perfectly predicted from locus B, and vice vershisTmeasure of
LD is less inflated by small sample sizes than D’.

The average recombination rate over the genomerdsnd 1
cM/Mb which corresponds to fOrecombinations per locus per
generation. However, recombination rates vary ¢reat the
megabase scale, at the sequence level, and betexes



Closed chromatin

Prdm?, other genes?

%M Open chromatin

DSB initiation by SPOIl @

]

l SPOMN removal and strand resection

l Strand invasion, D-lcop formation and DNA synthesis

Second end capture, synthesls/ \,Stfand displacement
DSBR (mostly COs, 10% frequency) SDSA (mostly NCOs, 90% frequency)
i +
e B —
S s —_—
== Tt T
Holliday-junction Strand annealing,
resolution, ligation synthesis, ligation
I 1 1
co or NCO NCO

Nature Reviews | Genetics

Figure 1. Recombination begins when the productsanis-acting genes, such as
PR domain-containing 9 (Prdm9), locally activaterochatin, permitting the
topoisomerase sporulation-specific 11 (SP0O11) talgse a DNA double-strand
break (DSB) on one of the four chromatids. Thioilowed by resection of the' 5
strand to leave a’' ®verhang, which in turn invades a non-sister clatian The
resulting strand overlaps to form so-called Holigianctions, which then migrate
outwards away from the original site. This intei@ttpromotes pairing of the
non-sister chromatids along their length. The D8Bssubsequently repaired by
the process of homologous recombination, yielditigee crossovers (COs), with
an exchange of flanking markers, or non-crossoM&() gene conversions in
which the initiating chromatid acquires a shortumge from its homologous
partner without the exchange of flanking markerseither case the site of the
original DSB is repaired using the opposite chrathas a template; when SNPs
are available in the middle of the hot spot thist fean be used to determine
which chromatid initiated recombination. Currentidewmce suggests that the
alternative CO and NCO products arise by distiscbombination pathways: DSB
repair (DSBR), which yields predominantly COs, aydthesis-dependent strand
annealing (SDSA), which yields predominantly NCA$e SDSA pathway
predominates, and only about 10% of original DS&sult in COs. Figure taken
from the review Paigen et. al 2010.



Recombination rates have been shown to be muchehititan
average on the telomeres (3 cM/Mb), lower in thetroemeres (0.1
cM/Mb) and, on average, about twice as high on gshwllest
chromosomes compared with the largest ones. In ifaist thought
that one recombination per chromosomal arm per rgéoa is
necessary for the correct separation of the chromes during
meiosis (Figure 2). Moreover, rates are stronglysitpely
correlated with GC content and with other genomiopprties,
notably gene density.

At the sequence level differences are much strorigdact, it has
been shown that only 20% of the sequence under@@®¥s of all

recombinations (Myers et al. 2005). This is duéhwfact that there
are 1-2 kb regions in the genome called hotspott thave
recombination rates that are four orders of mageitbigher than
neighboring regions (called coldspots). See belowaf discussion
of recent findings on recombination mechanisms.
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Figure 2. Relationship between total sex-averagatetic-map length and total
number of chromosomal arms in different species)uekng the small arms of
acrocentric chromosomes. This correlation suggeéktds recombination is
necessary to occur in each chromosome for the aoseparation of homolog
chromatides in the meiotic process. Figure takemfCoop et. al 2007.



Recombination rate is higher in females than mbésg about two
fold higher in females (Kong et al. 2010). The mlmition of
crossover locations also differs between sexeslirigrto be lower
at the telomeres and higher near the centromerdemales
compared to males. At the fine scale, females tenécombine in
location between genes and males between exongréF) and it
has been recently estimated that 15% of the hatspod sex-
specific (Kong et al. 2010). Finally, recombinaticetes are also
different among individuals of the same sex, arese¢hdifferences
are inheritable (Broman et al. 1998; Kong et aD20Kong et al.
2008). In females, the number of crossovers vagiegrmously
among the oocytes for the same women (Lenzi &08l5).
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Figure 3. Schematic picture summarizing generatdseon the
recombination location in males and females fromeatensive
pedigree study of 15,257 parent-offspring pairgs Ihot meant to
reflect the recombination rate pattern around ifpegene. Male
recombination rate, although low at exons, tendseohigh at

intronic regions that ardistant from exons. Male and female recombination
rates both tend to be high at intergenic regionsirgd 40 kb from the first or last

exon of a gene, but it is higher fdemales. Also, for both sexes,
intergenic regions close to’ 3ends tend to have higher
recombination rates than those close terids. Figure taken from
Kong et. al 2010.



1.1.3. Random Genetic drift

Genetic drift is defined as the source of variation allele
frequencies given the sampling process of gametesy fone
generation to the next. Although changes in alfedquencies due
to random genetic drift in any individual populaticannot be
predicted, the average behavior of allele frequengn a large
number of populations can be. The population moastudy these
effects is called the Wright-Fisher Model and wasatibed by
Wright and Fisher independently (Fisher 1930; Wrig®31). This
model has several assumptions:

- Non overlapping generations
- Constant population size
- Random mating (panmixia)

- A random Poisson-distributed number of offspringr pe
individual

Under the Wright-Fisher model, it can be shown thatlower the
population size the stronger the genetic driftfdat, a new allele
arisen in a small population will not only have g probability of
becoming fixed but it will also be fixed more ralyidhan it would
in a larger population (Figure 4). Specifically,c&n be assumed
that T= 4N whereT is time to fixation and\ is the size of the
population.

Moreover, the model implicitly assumes that the ydapon has
persisted over a long period of time such thatai$ heached an
equilibrium state. Under this equilibrium stateg thversity present
in the population will be constant over time sitike same amount
of new variants that appear through mutation amsoked from the
population due to genetic drift. This equilibriuralwe of diversity
is known as the population mutation parameter etatlf)) and it
combines information on the mutation ratg @nd the effective
population sizeNg) of the population:

0 = ANl
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Figure 4. Effect of population size on genetictdwnifth varying population sizes.
Each figure shows ten simulations of random chamglee frequency distribution
of a single hypothetical allele over 50 generatigA3 Population size = 20. (B)
Population size = 200. (C) Population size = 208ahe population of constant
size of 20, alleles can either become fixed or lesty rapidly whereas more
subtle variations are seen in the populations iaither sizes. Figure hyrofessor
Marginalia in
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The same equilibrium will be reached regarding theersity
generated by recombination. Recombination generatesv
haplotypes by breaking up linkage disequilibriuntween alleles
whereas random genetic drift will remove those bigples from the
population. Therefore, the amount of recombinatioat we will
find in the population will be determined by the ppéation
recombination parameter or rho) (vhich combines information on
the effective population siz&l{) and recombination rate)(

0= 4Ngr

Moreover, rho can be directly related with the antoof linkage
disequilibrium measured by? rwithin a population by the
approximation (Hill 1975):

E () ~1/ (2+ p) ~ 1/ (2+4Nr)

The assumptions made for the Wright- Fisher Moldelyever, are
unrealistic and, in most of the cases, the censs and the
effective population size are different. Then, &ory population, its
effective population size represents the size aflaalized Wright-
Fisher population that experiences the same anaflgenetic drift.
Therefore, the effective population size gives at hon the
magnitude of genetic drift that a population mayenandergone. In
general terms, the effective population size is ldmn the census
size. For example, when generations overlap, wisiche case for
humans; it has been shown thatidNroughly N/3.

There are several scenarios in which some of thenastions of the
Wright-Fisher model are not fulfilled. For examplehen the
population size is not usually constant over tirtlege effective
population size has been shown to be equal toahmadnic mean of
the population sizes over time. This means that effective
population size is extremely influenced by the loalues of
previous population sizes.

11



Another case in which the Wright-Fisher assumpti@me not
fulfilled is when the variance in the reproductiseccess is high,
which means that the number of offspring each iddial has is
highly variable. The higher the variance, the lowlee effective
population size is, compared to the census sizeetder, because
differences in the variance on the number of offgprcan be
different between males and females, the effegimaulation sizes
of the two sexes may be different as well.

Individuals of a population do not mate randomlye do several

reasons. Individuals may choose their mates to tee reimilar to

themselves than randomly expected; this phenomesocalled

assortative mating and increases genetic drifbiag &s the features
a mate chooses on are inheritable. For instancenahucouples
show a positive significant correlation for heighthe reverse
phenomenon is called dissortattive mating and d@se® genetic
drift. Choosing mates having an HLA type differéoim one’s own

would be an example.

Census size and effective size can also be differdren the
population is substructured, meaning that what aleacpopulation
is made of partially isolated subpopulations andlivikluals
belonging to one subpopulation will tend to mateoagithem. This
will increase random genetic drift and decrease dfiective
population size. Note, however that whereas randenetic drift
decreases diversity in each of the subpopulatiinsill increase
the genetic differentiation between them.

One of the most common statistics to measure tlhgrede of
substructure between subpopulations is Eg statistic, which
specifically measures the difference in allele frexucies between
the subpopulations. For one loc&sy= var (p) / p (1-p)wherevar
(p) is the variance of allele frequencies in the syiyationsi and
p is the average allele frequency across all subptpaos.

Several demographic events may have an effect erettective
population size. Two of the most relevant are bottks and
founder effects. A bottleneck however, refers t@d@uction on size

12



of a previously large population whereas the founetect is

related to the process of colonization and the tieseparation of a
group of individuals from a source population. Badthply a

reduction of the effective population size andsslof diversity.

Finally, different regions of the genome may havifecent
effective sizes. If we consider a single matingpteutogether they
have four copies of the autosomes, three copiesthef X
chromosome, one copy of a Y chromosome, two capfi@stDNA
from which only one will pass to the next genenatibherefore, the
effective size of the X is % of that of the autogsnand for the Y
and the mtDNA it is Ya.

1.1.4. Migration

Migration can be defined as the movement of indiald from one
population to another and their contribution to ¢feme pool of the
receptor population. The consequence of migratienefore is gene
flow and the higher the gene flow between two papaoihs, the less
differentiated they will be.

There are several models of migration (Figure %) Bimplest is
called the island model in which a meta-populatgplits into
islands of equal sizW which exchange genes at the same maper
generation (Wright 1940). Under this model, the antoof
differentiation between populations (measured WithFst statistic)
depends only on the size of each subpopulationtiaaanigration
rate (which are all the same for all subpopulajons

Fs= 1/(1+4Nm)

The stepping stone model (Kimura and Weiss 1964yiSpally
includes the space element, and therefore, migratian only
happen between neighboring populations. This malsel assumes
equal rates of migration between subpopulations.
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The isolation by distance model (Malecot 1969; Wirid943)

models migration as occurring within a continuowgpydation by
considering that mating choices are limited byatise. Then, on
average, individuals will be related as a functioh their

geographical distance. Some recent studies havevnshibat

worldwide patterns of genetic variation in humaas be explained
under an isolation-by-distance model (Conrad et 2006;

Relethford 2004). For example, Relethford et abO@), looked at
genetic variation between human populations adfressvorld using
data on red blood cell polymorphisms, microsateNA markers,
and craniometric traits and showed how the isafatig-distance
model provided a good fit to the patterns observed.
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Figure 5. Different models of migration. (a) Islamdodel of migration. (b)
Stepping-stone model. (c) Isolation by distance ehod) Metapopulation model
in which populations come and go over time (t) wite founding and extinction
of entire populations being an important componehtpopulation structure.
Figure from Hey and Machado 2003.
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These three models of migration, however, assume rthigration

rates have been constant for a long period of tame that the
system has reached equilibrium. These assumptiagsot be true
in most of the cases. Other models incorporatenpetexs that can
change as a function of time and they do not assqopalations to
have reached equilibrium (Slatkin 1977; Wade andCkldey

1988).

On the other hand, all these models consider Heatrtigrants are a
random sample of the source population althouglastbeen shown
that migrants tend to be sex-biased, age-structaretirelated to
one another (Jobling et al. 2004). For examplehas been
estimated to be 70% of modern societies are paalil@Jobling et
al. 2004). This implies that in marriages betwe#feknt villages,
it will be the females that will migrate to the mewillage to live
with them.

1.1.5. Selection

Natural selection is defined as the differentiaprogluction of

genotypes in succeeding generations. The abilitydétect the

footprint of natural selection in the genetic retdras arisen a
considerable excitement. First, this will allow d&ying the

evolutionary processes that lead to adaptation sexhnd, because
information regarding selection may provide impottéunctional

information that could potentially be related tesigabiology and/or

disease.

Several challenges are faced when trying to detettion, one of
the most important ones being that some demogrgptuicesses
may lead to very similar patterns of diversity. &a types of
selection can be defined depending on the fathefatleles when
acting on them.

Positive selection on a particular allele will leeddan increase of
the probability of a particular new variant to beetl. Therefore,
there may be evidence of a rapid increase in frecyef a derived
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Figure 6. The process of a selective sweep. Thes lindicate individual DNA
sequences or haplotypes, and derived SNP alle¢eslepicted as stars. A new
advantageous mutation (indicated by a red star)eagp initially on one
haplotype. In the absence of recombination, alltnaéuSNP alleles on the
chromosome in which the advantageous mutation dicsurs will also reach a
frequency of 100% as the advantageous mutationnbedixed in the population.
Likewise, SNP alleles that do not occur on thisoamsome will be lost, so that
all variability has been eliminated in the regianwhich the selective sweep
occurred. However, new haplotypes can emerge throecombination, allowing
some of the neutral mutations that are linked ® advantageous mutation to
segregate after a completed selective sweep. Asrdte of recombination
depends on the physical distance among sites,fiibet ef a selective sweep on
variation in the genomic regions around it dimieistwith distance from the site
that is under selection. Chromosomal segmentsateatinked to advantageous
mutations through recombination during the selectweep are coloured yellow.
Data that are sampled during the selective sweeptahe point when the new
mutation has not yet reached a frequency of 100ptesent an incomplete
selective sweep. Figure taken from Nielsen et0al72
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variant together with the linked loci (selective eap) and
consequent accumulation of rare variants in thecsadl haplotype
after a while (Figure 6). A population expansionynmaimic the

effect of selection by creating an increased nunatbeare variants
but, whereas the selective sweep will take pladdiwia specific

locus, the footprint of demographic events shoukl dpread
throughout the genome. Negative or purifying sébectacts by
removing deleterious variants. The main consequeneedecrease
in diversity since new deleterious alleles areaysittically removed
from the population.

Balancing selection is a particular case in whible telective
advantage is conferred to the heterozygous indalgduThe

consequence is an increase of diversity sinceoinptes that both
copies of the alleles are at intermediate frequesncPopulation
substructure will lead to similar diversity valussce one of the
alleles may be at higher frequency in one populasind the other
in the other one producing an average allele frequeof

intermediate values when taking the two populatidogether.
Again, evidence of substructure should be seen alVéne genome
whereas balancing selection should be locatedenifp regions of
the genome.

Several tests can detect the footprint of selectioting in some
populations compared to others. Tests could beledvin those that
consider at population differentiation such as thewontin-
Krakauer (Lewontin and Krakauer 1973) @ Fbased, tests based
on the allele frequency spectra such as Tajima$djima 1989) or
Fu and Li (Fu 1997), and finally test based on dig
disequilibrium and haplotype structure, which taklvantage of the
pattern left by a selective sweep. Most of theedédht tests to detect
selection have been reviewed by Nielsen (2005; 2007
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1.2. Making inferences from diversity

The study of population genetics has traditionddgen divided
between gene-tree based phylogeographic methodsgA¥987)
coined the word phylogeography) and a more trauhiio
mathematical approach that relies on explicit mo@eld summary
statistics. The development of the coalescent thebowever,
presented a coherent statistical framework for yamalof genetic
polymorphism that allowed modeling processes such a
recombination, demography and selection, sometiiagcould not
easily be done before. Finally, with the increabenolecular data,
the number of computational methods and more dkpiodel-
based approaches, mostly based on likelihood, hasedsed
significantly.

1.2.1. Phylogeography: mtDNA and Y chromosome

Phylogeography refers to the study of the geogcabhlistribution
of the clades within a phylogeny. Therefore, thigpraach
necessarily implies the construction of a tree esenting the
phylogenetic relationships among the individualsiorfact, of the
DNA sequences.

Several methods can be used to construct phylageme¢s based
on genetic data (reviewed in Holder and Lewis (3008e simplest
method is the UPGMA, in which a tree is construdbeded on a
distance matrix by putting together the taxa whth lowest distance
in an iterative process. The problem with UPGMA tisat it
considers that the evolution rate is the same Inbednches.
Conversely, the Neighbor-Joining method attemptsotastruct the
tree with the shortest sum of branch lengths batlaws different
branch lengths. On the other hand, the maximumrpargy method
finds the tree with the smallest number of evohdiy changes
whereas the maximum likelihood method chooses, ngiam
evolutionary model, the tree which has the maximikedihood of
producing the data. Maximum parsimony is very aatirwith
phylogenetically close taxa but can not be suitdbledivergent
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taxa. Maximum likelihood is computationally much madntensive
but can be more reliable provided that the evoharg model used
is suitable. Finally, Bayesian approaches have ntgcebeen
introduced to phylogenetics. With these methodg @ptimal
hypothesis is the one that maximizes the posterimpability. They
allow complex models of evolution to be implementdd they
provide measures of support faster than maximurelitikod
bootstrapping.

In some cases, however, the phylogenetic relatipasare best
represented with a network rather than a tree lsecaatworks can
contain information of several trees. For examptejs very
common to build networks when trying to represemylpgenetic
relationships using mtDNA in human populations siby building
up networks, all possible recurrent mutations candpresented as
reticulations and no assertion is made on whickhés true tree.
Choosing which method to use may depend on the dinthta that
we have and the computational power we may haviiahla

In any tree, time is intrinsically representedhe sense that events
occurring in the tips of the tree may represemrlatvents than those
closer to the root. The molecular clock hypothesages that for any
given DNA sequence, the rate of evolution is appnately
constant over all lineages. Taking this into coesation, we
potentially could date all events in the tree otieemolecular clock
has been calibrated using some external informadioech as the
fossil record. However, to date, calibration on atioh rates is not
very accurate.

All those methods, however, intrinsically imply threcombination
is absent, since recombination will put togetheo tdifferent
lineages. Therefore, most of the phylogeographipra@gches to
study the recent human history and migrations lmeen restricted
to mtDNA or the non recombining portion of the Yrosinosome
(Torroni et al. 2006; Underhill and Kivisild 2007).

However, some issues should be taken into accohehwnaking
inferences from these two compartments (see Ball20&9)). First,
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each of them represents a single locus and ther#iey represent a
single realization of the many possible outcomethiwia given
demographic history (Ballard and Whitlock 2004).c&®d, they
both contain genes and therefore, they could besuto selection,
something that would affect the whole tree strueince all genes
are linked and any selective effect in one genelavatfect all the
others. Finally, in the case of mtDNA, the mutatiate is very high
at some loci (Soares et al. 2009) and homoplasyhagnly affect
the inferential process.

g
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Figure 7. If recombination is present each locusy nieave a different

phylogenetic history. The way of representing infation of more than one tree
is by means of a network in which the recombinadugnces will have two
parental nodes representing their two differenigdgnetic histories.
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The rest of the genome (except mtDNA and Y chrommo

however, undergoes recombination. Each locus cpolgntially

have a different history and the way to represkatpghylogenetic
relationships is then a complex network named Amnakes
Recombinational Graph (Figure 7 and Figure 8). Mueg, it has
also been demonstrated that attempts to constrees tignoring
recombination would lead to different types of bmgSchierup and
Hein 2000).

Figure 8. Ancestral recombination graph (ARG) getedt with coalescent
simulations with a human like demography and varymrecombination rates
along the sequences. This ARG represents the gaieall relationship of 210
human sequences belonging to four different pojuulat Africans (black),
African Americans (dark blue), Europeans (greergiaAs (yellow) for a region
spanning 200 kb. The red nodes are the recombimages and the light blue
nodes the coalescent ones. Software used Pajelp://[H#do.fmf.uni-

lj.si/pub/networks/pajeky.
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Recently, some models have been developed th&b tgconstruct
the history of a set of sequences allowing for négimation events
to take place by means of inferring a network gtme consistent
with the data (Gusfield et al. 2007; Parida et28l08; Song and
Hein 2005; Wiuf 2002). Some of these models areevesd in

Huson and Bryant (2006).

However, the problem with inferring the Ancestrad@mbinational
Graph is basically that there are huge numbersostiple ARGs
that could have created the data, especially whtss rof mutation
and recombination are comparable as is the casehdonans
(McVean and Cardin 2005). As a result, and desutee attempts,
trying to infer the complete sequence of recomippmaevents in a
genealogy has been computationally intractabledalistic datasets
(Hellenthal and Stephens 2006).

1.2.2. Summary statistics

Summary statistics capture in one figure the viamapresent in the
data in order to compare the observed value witt #xpected
under a particular population genetics model swltha Wright —
Fisher Model.

The simplest summary statistic to measure the amafuvariation
present in a sample is the number of segregatiieg &) but is
highly dependent on the sample sizes. Nucleotidersiity or pi ¢J
is a measure of the degree of polymorphism withjpopulation.
Specifically, it describes the probability that twopies of the same
nucleotide drawn at random from a set of sequemnids be
different from one another.

=)L) XX P

i=l =i+l
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Where x; and x are the frequencies of haplotypésand ]
respectively, and; is the proportion of differences between them.
Interestingly, under the Wright-Fisher model in @hipopulation
size is constant, populations are panmictic anchaooverlap, a
population reaches an equilibrium in which the nambf novel
variants created by mutation is balanced by thebmumof variants
lost by drift. As stated before, this equilibriuralwe of diversity is
known as the population mutation parameter or tf@tand these
two measures of diversityand rare good statistics to estimate it.

Further, Tajima’s D statistic is based on the eigiéan that under a
non-equilibrium situation, the number of segregatsites and the
nucleotide diversity will differ significantly. Ured neutrality,

Tajima’s D is expected to be zero because Sraatke equivalent.
However, positive values of this statistic indicttat the number of
alleles at intermediate frequencies is higher thexpected,
something that is generally caused by populationdistision or

balancing selection. Conversely, negative valueshef statistic
indicate an excess of rare variants which can beezhby positive
selection or population growth.

Heterozigosity is another measure of diversity @nd calculated
locus by locus and then averaged over the wholaeseg. For a

single locus witm alleles, heterozigosity id4 =1 - Z pi2 . Then
i=1

for the whole sequence withloci: H = iz H,
i=1

Another common way of representing diversity is thesmatch
distribution, which depicts the number of pairwisemparisons
between haplotypes that have a certain numberfigfreinces. This
distribution can provide some information on pasmdgraphic
events of the samples. Note that the mean of thewipa
distribution divided by the sequence length is Hzme as the
nucleotide diversity. Further, the variance of tlpairwise
differences between haplotypes can be interpredeal measure of
LD and it can be used to estimate the populatimomdbination
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parameter (Hudson 1987) since recombination deesedhbis
variance.

Statistics that summarize the amount of variatfomyever, do not
contain all information present on the data andfeckht
evolutionary processes could give rise to similafues of the
chosen statistic, as we have seen for the popnolarowth and
positive selection effects.

1.2.3. Coalescent-based inference

The mathematical theory of the coalescent was dpedl in the
early 1980s by John Kingman (1982) and Richard Hnod4983)

independently and it is nowadays one of the basimist of

population genetics studies. The coalescent thesobased on the
Wright — Fisher neutral model and it simulates leakls in time
the genealogy of only those chromosomes that appelae sample,
up to the ancestor of all lineages (MRCA). Becaiisallows

simulating only the genealogy of the sampled sece®iand not all
the populations and because it models the genealogrocess
independently of the mutational process, it is @xgly efficient

computationally (Figure 9).

The coalescent is a natural extension of the dakgiopulation

genetics models and it is very different from plgdonetic methods.
Phylogenetic methods estimate trees whereas thesceat is used
to estimate parameters of the random genealogroakps that has
given rise to each tree. The tree itself has neraft interest. Thus,
the coalescent provides a coherent statisticaldéveonk to study the
effect of the process that shape the diversity doumthe genomes
such as recombination, migration, selection andrnso

The coalescent has several applications. For exantman provide
useful guidance about how many individuals, poparteat and loci
are needed to be sampled to answer questionseréstt Secondly,
it is a simulation tool for hypothesis testing. this direction,
Shaffner and colleagues (2005) presented a modeddban the
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coalescent that mimicked human data for three ojouis in allele
frequency, linkage disequilibrium and populatiorifedientiation.
This model can then be used to compare empiricasares of
sequence variation, linkage disequilibrium and dela
expectations under a null distribution that alretakes into account
a simplified version of the complex demographiddmg of human
populations.
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Figure 9 The basic coalescent principle: only teegggenealogy of the sampled
chromosomes will be inferred (a)The complete gesggafor a population of ten
haploid individuals is shown (diploid populationk N individuals are typically
studied using a haploid model with 2N individual$he black lines trace the
ancestries of three sampled lineages back to desamgnmon ancestor. (b) The
subgenealogy for the three sampled lineages. In bhsic version of the
coalescent, it is only necessary to keep trackheftimes between coalescence
events (T(3) and T(2)) and the topology — thatnkjch lineages coalesce with
which. N is the number of allelic copies in the plgtion and n the sample size.
Figure taken from Rosenberg and Nordborg 2002.

Finally, the coalescent approach can be used abatis for full-

likelihood inference. Basically, after collectingetdata, all possible
genealogies and their probabilities under modelmteirest should
be considered. For each genealogy, the likelihobthe data is
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calculated and the parameters estimated by findialges that
maximize the likelihood of the data. Finally, th@dels should be
tested by comparing the likelihoods under differéypothesis.
Unfortunately, this process is computationally venyense and
advanced computational techniques such as impartsenmpling or
Markov-chain Montecarlo should be applied (Stephemsd
Donnelly 2000).

Several recent studies have used coalescent siomdab find the
evolutionary model that is most likely to prodube bbserved data
or the observed summary of the data to make inéeion recent
human demographic history. Some examples can bedfou
(DeGiorgio et al. 2009; Liu et al. 2006; 2005). Fexample,
DeGiorgio and colleagues (2009) use a coalescesgtebaerial
founder model to explain patterns of human geneitation and
the process of migration out of Africa.

Other studies do not use coalescent approachesgxXample
Gutenkunst and colleagues (2009) use a diffusigmaageh. In fact,
with the explosive growth of both the amount of emllar data
being generated and the computational power avail@banalyze
it, an increasing variety of computational methads available to
analyze and interpret such data. Most of these mathods are
model-based approaches based on likelihood, whielbacoming
more and more used in the field (see Beaumont (2G0W
Marjoram and Tavaré (2006) for reviews on this eat)j

1.2.4. Bayesian clustering analysis and Principal
Component Analysis

One goal of population genetics analysis is to tiflemhe genetic
structure that exists within a set of genotypedviddals, which
may give some insights into population relationshgmd help to
minimize false-positive results in association magstudies.

One of the most popular methods is the Bayesiarstatimg
algorithm implemented in the software STRUCTUREt@Rard et

27



al. 2000). The method assumes a model in which puladions

exist, each of which is characterized by a sellefeafrequencies at
each locus. Individuals in the sample are assi@pexbabilistically)

to populations, or jointly to two or more populatso if their

genotypes indicate that they are admixed. It canapglied to

microsatellites, SNPs and RFLPs and the model assuthat
markers are either not in linkage disequilibriumvegakly linked

(Falush et al. 2003). STRUCTURE is quite computetity

intensive and other methods have been developeédliba for a

much higher number of genetic markers to be takém account
such adrappeused in Li et al. (2008) with 650,000 markers. nyia
of the most relevant studies of patterns of humamegc variation
using a genome-wide set of genetic markers havkedppayesian
clustering approaches (Conrad et al. 2006; Jakabstal. 2008a;
Li et al. 2008; Rosenberg et al. 2002; Tishkofflet2009). For an
example see Figure 10A.

Another interesting method to study the underlystgucture of

population is Principal Component Analysis (PCAis method

involves a mathematical procedure that transformsumber of

possibly correlated variables into a number of uretated

variables called principal components. This tramaftion is

defined in such a way that the first principal cament has as high
a variance as possible (that is, accounts for ashmaf the

variability in the data as possible), and each sedmg component
in turn has the highest variance possible.

Although it was introduced to population genetigdavalli-Sforza
in the late 1980s, renewed interest in this appgraaas taken with
the implementation the Eigensoft package by Patterst al.
(2006). One of the main reasons was that they abogtatistical
validation of the inferred structure and that ih ckeal with a larger
amount of markers than STUCTURE. Several relevamndiss of
human genetic variation have used PCA to studyutiderlying
structure of human populations (Li et al. 2008;hkff et al. 2009).
See Figure 10B for an example. One of the modtistriresults was
found by Novembre et al. (2008) and Lao et al. 0@ which
their Principal Component Analysis of Europeans edason
genome-wide SNP data, reconstructed the geograptap of
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Europe. The same result could be seen in a retady svith sub-
Saharan African populations (Sikora et al. 2010).

However, interpretation of PCA results is still mi¢ar (Novembre
and Stephens 2008) and is generally a first arsmalggined at
defining the genetic relationships among groupswan better, the
relative overall similarity among them.
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Figure 10. STRUCTURE and PCA analysis of the glotiatia set with 1327
microsatellites genotyped in 3945 worldwide indivéds. Individuals are
clustered by major geographic region (Tishkoffa@t2009). (A) STRUCTURE
analysis. Each vertical line represents an indaidGolors represent the inferred
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ancestry fromK ancestral populations. STRUCTURE results Ko= 12 to 14
(left) are shown with the number of similar rung {&r the primary mode of 25
STRUCTURE runs at eacK value (righj. (B) Principal components analysis
created on the basis of individual genotypes.
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1.3. The recent human evolutionary history

1.3.1. Origin of Anatomically Modern Humans

The oldest fossil remains that show clearly anataity modern
human traits were identified in East Africa andedatround 195-
150 Kya (McDougall et al. 2005; Stringer 2003; Veéhét al. 2003).
Therefore, the basic morphology of anatomically sradhumans
was established in Africa about 200 kya.

Genetic studies have confirmed the origins of anatally modern
humans in Africa based on Y-chromosome, mtDNA and
genomewide (Underhill and Kivisild 2007). First, BNmarkers
typically have shown higher diversity (heterozygysiand
nucleotide diversity) in sub-Saharan Africa popolas. This has
been seen for mtDNA (Cann et al. 1987) nuclear osatellites
(Relethford and Jorde 1999), Alu insertion mark@tkins et al.
2001), and SNPs (Tishkoff et al. (2009) among a&her

Moreover, there is also a clear geographic patiarmregional
diversity. Specifically, genetic diversity outsiédrica tends to be a
subset of the diversity within Africa (Behar et 2008; Tishkoff et
al. 1996; Watkins et al. 2001). For example, mtDNé&quences
outside Africa fall into two clades, M and N, whibbth are rare in
sub-Saharan Africa where the mtDNA sequences betonthe
ancestral clade L. Moreover, distinct M variants @resent in a
frequency of 20% in Ethiopia, which lead to propé&sest Africa as
the source of a migration out of Africa (Quintanaxiel et al.
1999).

Finally, global analysis of microsatellite data hsksown that
diversity decreases with distance from East Af{lReugnolle et al.
2005a; Ramachandran et al. 2005a; Tishkoff et @9 (Figure
11). This observation is best explained by a modekrial founder
effect starting at a single origin in which the nagon of
populations across much of the globe occurred inynsmnall steps
with each migration event involving a sampling @friation from
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the previous population (Conrad et al. 2006; De@met al. 2009;
Ramachandran et al. 2005a).
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Figure 11. Relationship between mean genetic diyes$ 51 human populations
computed over 377 autosomal microsatellite markansl their geographic
distances from East Africa. The percentage of magaexplained by geographic
distance isR?=85% (<10*). The different colours correspond to the différen
ethnic groups. Figure taken from Prugnolle et.Qi1%2

1.3.2. Routes of the Out of Africa migration

The routes followed and the number of the first tamacally
modern humans that left Africa however is stiludjgect of debate.

Traditionally, two main migratory routes Out of Ada (OoA) have
been hypothesized for anatomically modern humanitsally based
with archaeological record (Lahr and Foley 1994hi_and Foley
1998) and later supported by phylogenetic treestcocted from
data on a limited number of protein markers (Ca&flbrza and
Feldman 2003). This model involves a northern ntigravia North
Africa and the Nile Valley into the Levant with sdguent

32



dispersal into both Europe and Asia. Moreover, ghg&ould have
been an earlier southern coastal route that toatepearlier in time
in which anatomically modern humans left Africa @ipssing the
Bab el Mandeb strait in the mouth of the Red Sehthan rapidly
migrated along the South Asia coastline to Australhd Melanesia
(Figure 12).

Recent studies, have shown evidence from both mtCAd4 Y
chromosome that an early rapid migration Oo0A todkce
following the southern coastal route, through Indiad into
Southeast Asia and Australasia taking place ard@®000 years
ago (Forster and Matsumura 2005; Macaulay et @52Mellars
2006; Thangaraj et al. 2005).
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Figure 12. Map of possible dispersal routes of @métally and genetically
modern human populations from Africa to Asia ands#alia according to
Forster and Matsumura (Forster and Matsumura &085).The models assume
an origin in eastern Africa, and dispersal eithir the Nile Valley and Sinai
Peninsula (the “northern” route) or via the mouthtee Red Sea to Arabia and
Australia (the “southern” route). The oldest hunteates outside of Africa and
the Levant are at Lake Mungo in Australia (>46,0@@ars old) and in the Niah
Cave of Borneo (>45,000 years ago). New mtDNA datan Malaysians and
aboriginal Andaman islanders, suggest that humtile sents appeared along the
Indian Ocean coastline 60,000 years ago (Macaulay. 005; Thangaraj et al.
2005),. Figure taken from Forster and Matsumuras200

33



It is not still clear, however, whether there wéweo migratory

routes or a single southern route. Paul Mellarsa iecent review
(2006) provides some plausible explanations to neit® the

archaeological record with a fast and single migratvia the

southern route by anatomically modern humans. Maea study
based on studying six hundred thousand loci in BadtSouth East
samples (The Hugo Pan-Asian SNP Consortium 2008nseto

point out that South East Asian populations were thajor

geographic source of East Asian populations antttiexe was a
single primary wave of entry to the Asian contineflhis means
that later expansions of East Asian populationseweased on
offshoots of this initial main migration.

1.3.3. Tempo and mode of the Out of Africa

Several studies suggest that a strong bottleneckred in the
populations that left Africa around 40,000 and 80,0/ears ago
(Marth et al. 2003; Reich et al. 2001; Voight et2005; Wall and
Przeworski 2000).

All the recent studies that have used genetic tranato infer
human effective population size attribute a higheng-term
effective population size to African populationshi§ again is
explained by African populations having an oldergior and a
higher number of effective individuals, comparedntan-African
populations which underwent a strong bottleneck rwheaving
Africa. Different studies, however, have found ktlg different
estimates. Zhao et al. (2006) used nucleotide sityeestimates to
estimate effective population size in three comtiae human
populations and found it to be around 15,000 foricg&hs and
around 7,500 for non-Africans. Conversely, Tenesale (2007)
used LD patterns seen in the four HapMap Il popartat and they
found lower estimates being 7,500 for the Africamsl 3,100 for
non-Africans. Finally, Cox et al. (2008) used geneliversity at
twenty X chromosome loci to determine the mostlikeffective
population size under an isolation-with-migrationodel. They
found that African population sizes tend to havegda (2,300—
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9,000) effective population sizes than non-Africaopulations
(300-3,300).

Moreover, the size of the ancestral populatiortfa} teft Africa is

estimated to be around 1000 effective founding maled females
based on autosomal microsatellite loci (Liu et 2006) or 1500
effective founding males and females based on mMtDNA
chromosome and X chromosome re-sequencing dataig@aet al.

2007).

Two studies tried to assess differences in thecwie population
size of founding females and males by looking aedity in the X
chromosome compared to the autosomes. Hammer €2Gi3)
studied population substructure biases and fourghehi than
expected levels of diversity in the X chromosomggesting lower
male versus female effective population size. Coselg, Keinan et
al. (2009) who used nucleotide diversity estimatetected lower
diversity in the X chromosome compared to the aurteess
suggesting the opposite results (Bustamante andaB&t@andran
2009). Finally, Emery et al. (2010) showed that tive estimators
detected biases that have occurred in differen¢-8oales and that
these results can be explained by a recent maleehigffective
population size compared to that of females andeartier and
persistent female higher effective population s&elifferent study
showed that lower diversity patterns found in thelfosomosme
can be explained by a model of primarily male ntigraduring the
out of Africa (Keinan and Reich 2010).
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1.4. Recombination in the study of human
population history

The use of recombination in the study of human faimn history
has been very limited, although recombination cggether with
mutation, the main force shaping our genome. Rebgisnost of
what is known about human population history hanhaferred by
looking at non-recombining portions of the genonuehsas the
MtDNA and Y chromosome because the lack of recoatioin
makes the inference of phylogenetic history easier.

One indirect way of using the information provideoy

recombination in the study of human population gesevould be
to take the haplotypes as genetic markers, sinpltyaes, unlike
SNPs, are the consequence of the action of bottationt and
recombinational processes. Although there has bedacrease in
the cost of genotyping arrays and a huge numbestuzfies have
looked at the patterns of human genetic variatiaseld on
thousands of markers, those markers have been ym®kiiPs or
microsatellites but not haplotypes.

Recently, however, a relevant study compared hgméstand SNPs
as genetic markers using 500,000 markers in 52 dwadtke

populations (Jakobsson et al. 2008b). Results sthoweat

haplotypes contained more information regarding utetpon

structure than SNPs. Specifically, the analysis haiplotypes
allowed to detect additional genetic structure fnea. Moreover, a
study still in preparation further confirms this selovation by
studying 2Mb at high SNP density in 33 populatiaisthe Old

world. Further, in this study a method to extracbsinof the
information by defining optimal haplotype lengths provided
(Javed et al. in preparation, see section 3.4.).

Other studies have made use of haplotypes to ntake sferences
on human demographic history. Haplotype sharintepag between
populations have been used to reconstruct the izaltton of the
major landmasses by anatomically modern humandgfitbhl et
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al. 2008) and to estimate parameters of a populait model
(Davison et al. 2009). Moreover, Lohmueller et(@0D09) use the
join distribution of haplotype number and major lodype
frequency in empirical and simulated data to eg@maopulation
size changes.

LD patterns have also been used to study diffeerimstween
populations. For example, Tenesa et al. (2007) patterns of LD
between three human populations to infer human ceve
population size and Plangol et al. (2006) uses asore of LD to
study possible archaic structure in human popuiatio

Finally, the footprint of recombination has sometilmeen used to
study human adaptation trying to detect regionseurmbsitive
selection. Some tests of selection are based omthease of LD
when a selective sweep takes place. For example, genes,
glucose -6-phosphate dehydrognease and CD40L, whieh
associated to malaria resistance, showed thisrpattie extended
haplotype (Sabeti et al. 2002).

All these studies make an indirect use, howevetheffootprint of
recombination, either by looking at haplotypes blLB patterns.
Over fifty years ago, Sir Ronald A. Fisher (1954)nped out that
recombination, when shuffling together sequencem fdifferent

lineages, leaves a signal or junction that will feessed to the
subsequent generations. This observation openeatdbtireto the use
of recombination as a genetic marker although #eessary tools
to carry out such an attempt would not be availallgl decades
later. With the advent of high density SNP data, higher number
of individuals being genotyped and an increase ampmutational
power, now it has been possible to develop a metioted at
detecting and using recombination events to studymdn

population history (Melé et al. 2010 and Melé esabmitted).
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1.5. How to detect recombination

1.5.1. Computational methods to detect the presencé
recombination

Several methods are aimed at detecting the presenalesence of
recombination. The most widely used is the four-gtariest which
is based in the observation that when considervy loci, if the
four possible combinations of alleles are obsertieg, is evidence
of recombination or recurrent mutation (Weir 194%)jgure 13)

Carrying out the four gamete test on all pairsitefss it is possible
to identify intervals in which recombination musavie occurred.
Then, the minimum number of recombination evenist thave

occurred in the history of a sample of chromosoilfig can be

inferred assuming that only one recombination ewentirred in the
overlapping intervals (Hudson and Kaplan 1985). Hsisumption is
very conservative and it may well be the casettiete is more than
one recombination event occurring in those intexval

By comparing the number of haplotypes with the nembf
polymorphic sites it is possible to estimate thembar of
recombination events. M haplotypes are observed in a region with
N segregating sites, then at led4tN recombination events must
have occurred (Myers and Griffiths 2008):N is therefore a local
lower bound and combining these local bounds allothe
construction of the global minimum number of recamakon
events that have occurred in a region.

However, the minimum number of recombination eveants the

real number can be very different. In fact, ongnaall proportion of
recombination events in simulated genealogies @ldiected in
population-genetic data since different conditioegd to be met in
order to detect recombination: divergence betweacestral

sequences, age of the event, sample size, etaéFlGa).
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In the last decades, many different methods haea beveloped to
detect presence of recombination, which can bedann

http://www.bioinf.manchester.ac.uk/recombination/

Some methods not only detect presence or absence of
recombination but either detect the breakpointtiocathe

0 1 1 (7] o 10 11 on H | |

Nature Reviews | Genetics

!
f

Figl3. The effect of recombination on neigboringildn the legend, 0 and 1

denote ancestral and derived alleles, respectiya)yThe genealogy of a single
hypothetical locus is represented by a single bifting tree. A mutation event of
0 to 1 gives rise to a derived allele. (b) The gévgy of a second locus (red) that
is physically close to the locus depicted in paris ashown; its genealogy is

partially correlated with the original (blue) getagy. If mutations occur along

the two lineages (indicated by the solid arrowghtthe recombination event will

be detected in the resulting two-locus gametesalms; as shown here, all four
possible gametes (0,0; 0,1; 1,0; 1,1) are obsenvetie sample. It should be
noted that there are two lineages along the re@ajegy for which a mutation

event can cause the recombination event to be tddt€ped solid and dashed
arrows). (c) In these two genealogies the recontlbima&vent cannot be detected
from the resulting data, no matter on which lineageutations occur. This is

because there is no combination of lineages amumdwo marginal genealogies
along which mutations will give rise to all four gsible two-locus gametes. For
this reason smaller samples are less informatieaitatecombination than larger
samples. Figure from Mc vean et. al 2003.
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recombinant sequences and the ancestral sequemdeg,to infer
the underlying ARG present in the data.

Only two simulation studies have tried to generalaluate some
of these methods (Posada and Crandall 2001; Wiwfl.e2001).
Both studies consistently showed that the powethefevaluated
methods was generally quite low. For example, Vufl.(2001)
stated as one of the main conclusions of the stidly “all of the
investigated methods detected far less recombmatlan is
theoretically possible”.

Different methods cover different needs, some aggres may be
more suitable to treat some problems than othedssarfar there is
no consensus on which method should be used wlyamg tto
detect recombination.

1.5.2. Methods to infer recombination rates

A huge interest has arisen in developing methodssdtimate

recombination rates in an effort to try to underdtéghe nature and
causes of the recombinational process in humans aher

organisms. Traditionally, the estimates of recoratiom rate of the
human genome have come by means of pedigree stibdigs
initially, they only had resolution at the megabasale. Sperm
typing techniques allowed studying specific hotspait the

individual level but they are too costly to be usddhe genome
wide scale. Finally, several computational methd@dse been
developed with the aim of inferring fine—scale matination maps
of the human genome.

1) Recombination Pedigrees

Using large pedigree families has enabled to crgateome-wide
maps of recombination in humans. Some of the adgastof using
pedigree-based maps are that differences betwedes nend
females can be assessed, that it is possible tertasc
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interindividual differences, and that it is possilib evaluate the
heritability of certain recombinational patterns.

The first map at the megabase scale was publisiiedeEODE
Genetics (Kong et al. 2002) who used 5,136 micedigat markers
genotyped in 146 Icelandic families. Recently, achmuiner
pedigree—based recombination map has been extéydéeCODE
(Kong et al. 2010) which has a resolution that gibesn to 10 kb.

2) Recombination detection using sperm typing

Sperm typing consists on amplifying and genotypimg sperm of
one male in order to assess where crossover hkee pdace. It can
be done either from single sperm or pooled speingl&l sperm is
subject to a round of whole genome amplificatiopéomit multiple
loci to be typed from the same molecule and it sty used to
construct genetic maps (typing distant genetic era@)k Pooled
sperm allows examining large number of individyaéren within a
specific region (generally a hotspot) and counting number of
crossing over events versus the non-crossing o@emerally,
samples are diluted so that aliquots mostly contaie sperm
molecule and a quantitative value is estimateddasethe number
of positive samples.

3) LD based methods

It is expected from basic population genetics thetitat the
expected amount of LD between two markers depemdghe
recombination rate between them. It follows thatldoyking at LD
patterns in natural populations, the underlyingoneination rate
can be inferred (Figure 14). Moreover, with thea@epment of the
coalescent theory (Hudson 1983; Kingman 1982), hiuglehe
underlying process in a sample of sequences incatipg
recombination was feasible (Griffiths and Marjord®96; Hudson
and Kaplan 1988).
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Several methods have been devised to estimate batation rates
from population data (see Table 1 in Stumpf andVdan (2003)
for a list of some of them). Basically, they colle divided in two
types: full and approximate likelihood approachAgproximate

likelihood methods try to avoid the computationaiden of the full

likelihood methods by either ignoring low frequenmarkers or
else by considering a small number of markers &tma. Then,

separate likelihoods are calculated for these ssilidehe data and
are combined to obtain the approximate likelihodineator. If

these subsets consist of only two pair of sites,camposite

likelihood” is then obtained by multiplying all paiise likelihoods.

This is the approach implemented in the LDhat safeMMcVean

et al. 2004) that was used to estimate the recaatibm rates
genome-wide using the HapMap phase Il dataset (®gtral.

2005). Conversely, full likelihood methods estimtte probability

of observing a given dataset under an assumed gom#genetics
model using all the information present in the dataHowever, full
likelihood approaches are computationally very nstee and still

cannot be used genome-wide. One of the most recemhples of
this approach is the full likelihood MCMC methodvdoped by
Wang and Ranalla (2008; 2009).

Figure 14. Patterns of LD and the correspondintphical recombination rates in
a 206-kb interval around minisatellite MS32. (a) pfile across MS32 and the
neighboring gen&lID established from 200 SNPs genotyped in a pangd &K
semen donors of north European origin. Maximum liliee®d haplotype
frequencies for each pair of SNPs were used tonasti |D'| levels of LD (lower
right), as well as the associated LR (likelihoodiojaversus free association
(upper left), and are color-coded as indicated. [Bbations of the remaining 175
SNPs are shown below and to the right of the pWdh positions centered on the
middle of MS32 at coordinate 0. LD blocks were iifead visually as regions
where most marker pairs are in strong (|D'| > @@) highly significant (LR >
10% association. Regions of LD breakdown targetedsfmrm crossover analysis
are shown. (b) Historical recombination rates anasitipns of putative
recombination hot spots (marked above plot) estthéitom coalescent analyses
of genotype data. Population recombination ratelefined ag= 4N .r whereN

is the effective population size ands per-generation recombination rate, were
estimated across the region using LDhat (red) a4 SE (blue). These were
converted tor assuming thaN . = 10,000 and used to estimate the local sex-
averaged recombination activity in cM per Mb. Celdrtriangles show putative
recombination hot spots significant Bt < 0.01 for three different hot-spot
detection methods: LDhot (red), Hotspotter (blue)d a~earnhead's method
(green). All coalescent analyses were undertakim gperm typing and without
knowledge of the sperm typing results. Figure takem Jeffreys et al 2005.
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1.6. Recent findings on recombination

Recombination is essential for the correct separatiof
chromosomes during meiosis and it has been shoatntdb little
recombination can result in aneuplody, which is ntyaiethal in
humans (with very few exceptions), or chromosomal
rearrangements, which have been associated tosdig€mop and
Przeworski 2007). Moreover, it is the main mechanibat creates
new allele combinations, something vital to gereethe necessary
diversity that will allow adaptation of individualgdo their
environment. These constraints suggest that thguémcy and
location of recombination events should be a higtégulated
process and the genes that regulate such proc&sselsl be under
strong purifying selection. There is evidence hosvethat despite
the high sequence similarity between humans anchpdmzees
(which differ only in 1% of the sequence), hotsjomiation does not
overlap (Ptak et al. 2005; Winckler et al. 2005).orkbver,
recombination location varies greatly between dgife individuals
(Coop et al. 2008) and sexes (Kong et al. 201@)gesting hotspot
location has a faster mechanism of evolution tlemjuences.

Another question that surrounded recombination wgiat was
defined as the hotspot paradox (Boulton et al. 19@ffreys and
Neumann 2002; Jeffreys and Neumann 2005). During
recombination, it is the initiating chromatid oktlerossing over the
one that acquires the DNA sequence of its oppgsitener. Then, if
the initiating chromatid contains an allele thatomptes the
initialization of recombination in that locatiornis allele is doomed
to extinction. From this observation it follows thhere should be a
mechanism that gives rise to new hotspots sincembmation is
essential for sexual reproduction. Although it heen shown that
some alleles were more prone to initialize recoratddm process
than others (Jeffreys and Neumann 2002) it wasunok the study
by Myers and colleagues (Myers et al. 2005) thamall motif
enriched in some of the human hotspots (10%) wamdo
suggesting signals promoting recombination existedgarticular
locations. Later, a 13 bp motif was identified ® fresent in 41%
of the human hotspots (Myers et al. 2008).
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H3K4-MTase DNA-binding

PROMS = —000000000000
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B
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motif
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YK NN\ YA YA
1) Disappearance of red motif 2) Blue motif already present
(Hotspot Paradox) or goes through burst
3) Need for recombination
selects for PRDM9 mutation
PRDM9
with abundant binding motif ™
NN\ N7\ N7\ N7\

4) Blue motifs start to disappear, cycle begins again
Current Biology

Figure 15 Function and evolution of PRDM9. (A) Ftiocal domains of
PRDM9. The SET domain has H3K4 trimethyltransferastvity. KRAB is a
domain of unknown function found in many zinc-fing@NA-binding proteins.
(B) Alignment of the 13-mer hotspot motif in humaarsd the predicted PRDM9-
binding motif. Bases in red are those aligning viita motif. Degeneracy in the
hotspot motif is shown. (C) Co-evolution of motiésmidd PRDM9. Recurrent
changes in the PRDM9/motif pair imply fast evolatiof hotspot distribution as
well as interspecies differences and possibly inzatibilities. Figure taken from
Hochwagen et. al 2010.
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During 2009, three independent studies identifieel zinc finger
protein PRDM9 (Figure 15a) as a major determindnhatspot
activation in mammals. First, computational anaysiedicted that
PRDM?9 could bind this 13-mer motif (Baudat et £09; Myers et
al. 2009) (Figure 15b). Second, differences insowsr distribution
between laboratory mouse strains identified thdteinces in
hotspot usage could be explained by sequence etikfes in Prdm9
(Baudat et al. 2009; Parvanov et al. 2009) andsémee correlation
between PRDM9 alleles and hotspot usage held trubumans
(Baudat et al. 2009). Finally, Berg et al. (201f¥pvided evidence
that PRDM9 may define hotspot location even withbunding to
the known 13 bp motif. Overall, this provided caming evidence
that this gene is a central regulator of mammal@ossover
distribution.

PRDM9 seems to evolve very fast since the zincefingomain
numbers and sequences vary considerably amongesp@diiver et
al. 2009; Thomas et al. 2009). This could explainywhotspot
location in chimpanzees and humans does not ovetlagr

PRDM9 proteins bind to different motifs. Moreovehis fast
evolvavility of PRDM9 could provide some explanatidor the

hotspot paradox. Once the hotspot-promoting mudits to be very
rare in the genome, selection will favor the appeee of a new
motif by producing a selective advantage to anthefnew PRDM9
variants that bind to different motifs. A small dgg in the PRDM9
gene may trigger the change in hotspot locatiormaut need of
other changes at the sequence level. (Figure 15c)

This places recombination as one of the fasteslvienp systems,
much faster than sequence evolution, and raisesquastions on
which role has recombination played in recent hurasalution.
The number of studies devoted to the study of rdxdoation has
increased in the last decades, and more importahidynumber of
publications devoted to recombination in journdisigh scientific
impact has also increased (Figure 16). Studying femembination
has shaped our genomes is nowadays one of the inteststing
questions in evolutionary biology and thus the nembf studies
related to recombination will likely continue toogv in the future.
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Figure 16. Publications with recombination in ti&t(A) All publications with
recombination in the title in the field of “geneticnormalized by all publications
in the field in the last 100 years. (B) Publicatioim the Science and Nature
journals in the last 20 years. Source is the 1Sb weknowledge for A, Google
scholar for B.
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2. OBJECTIVES
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OBJECTIVES

The main aim of the work is the incorporation afambination into
the study of human population history by using nebmation as a
genetic marker. In order to do so, we had the Walg objectives:

1) Develop an algorithm capable of detecting
recombination given a set of extant sequences. ifgadly, this
algorithm had to be both fast and able to deteet iheakpoint
location and the recombinant sequences.

2) Fine-tune the method as to make it suitable toyaeal
recombination in a set of human sequences.

3) Assess sensitivity and false discovery rate ofntie¢hod

relative to parameters such as age of the reconnmsa

recombination rate of the region, informativity tok two ancestral
haplotypes... by means of using extensive simulations

4) Select optimal regions and SNPs on the X chromosome
for the application of the method.

5) Undertake a novel project of SNP typing in a newofe
populations from the old world that was optimal foe study of
recombination.

6) Characterize the recombinational landscape of these
regions in a wide set of the method.

7 Interpret the results in terms of human populatistory

8) Revisit the question on what information can be
extracted from haplotypes rather than SNPs whedystg the
patterns of human genetic variation.
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3. RESULTS
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3.1. Estimating the ancestral recombinations
graph (ARG) as compatible networks of SNP
patterns

Laxmi Parida, Marta Melé, Francesc Calafell and Jaume
Bertranpetit.

Journal of Computational Biology 15: 1133-1154 (@00

http://www.liebertonline.com/doi/abs/10.1089/cmf3aM065
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3.2. A New Method to Reconstruct
Recombination Events at a Genomic Scale

Marta Melé, Asif Javed, Marc Pybus, Francesc Calafell, Laxmi
Parida, Jaume Bertranpetit and The GenographicdCiuns

PLoS Computational Biology: @1001010.
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ournal.pcbi.1001010
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Supplementary information

Tables

Table S1. Evaluation of IRIS with the optimal paeders for
different SNP ascertainments. SNP selection prasemssplained in
the methods ssction. Mean SNP density values dcelated over
all simulations. SNP sel = SNP selection method; Mfergepats
parameter; MM = minimum MAF, NR = number of runsSBI =
mean SNP density, FDR = false discovery rate, Sssigeity,
90%CI = 90% Confidence Interval.

LS |MSD FDR |S 90%

SNP sel MP MM | NR | (Kb) | (SNP/bp)| (%) (%) |CI

TAG

aggressive inactive 0.1 69| 400 1/2758 5.64 184675
TAG pairwise | inactive] 0.1 | 69| 400 1/2079 5.52 894.8
1SNP/5Kb inactiveg 0.1 | 69| 400 1/5014 7.24 19944
1SNP/2Kb inactivel 0.1 | 10Q 200 1/2106 8.57 22533
1SNP/Kb inactive] 0.1 | 100 200 1/1238 7.5§ 2359383

all SNPs inactivef 0.1 | 100 200 1/512 12.92 24 7.28

TAG pairwise | inactive] 0.1 | 100®00 | 1/1545| 7.2 17.8%5.54
TAG pairwise | active | 0.1 | 100 200 1/1980 5.65 18862
1SNP/2Kb inactive. 0.0 100 200D 1/200( 16.01 21@89
1SNP/Kb inactive] 0.0 100 200 1/1013 20.86 21761
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Table S2. Percentage values on the number of teaeh of the
simulated event is either not detected, detectetl @combination

or as 2 recombinations. The percentage valuesacelated over
1000 in silico simulations.

% not detectefl% detected as (1% detected as
as recombinatioprecombination | recombination
mergepats parameter active inaclieetive| inactive| active | inactivg
gene conversion (1 SNP)| 99.2 97.7 0.8 2.3 0 0
gene conversion (3 SNPs) 96.2 92.6) 3.y 7.3 0.1 0.1
gene conversion (5 SNPs) 90 88 9.4 12 0.2 0
gene conversion (10 SNPEJ6.2 74 23.7| 25.6 0.1 0.4
recurrent mutation 89 78.5 10.8 214 0.2 0.1
phasing errors 57.3 50.9 12.1 14.6 30.4 34.%
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Table S3. Number of recombinations detected in ezcthe 18
regions in the male dataset, female dataset andléedataset when

removing putative phasing errors. Females wereguhasing both

PHASE and fastPHASE without using male phase inébion.

MALE |FEMALE |FEMALE
REGIONS | MALE| FEMALE [ FEMALE |cleaned |cleaned | cleaned
phasing
method PHASE | fastPHASHE PHASE fastPHA
reg 1 442 432 473 364 376 359
reg 2 237 246 290 221 234 248
reg 3 58 77 77 58 75 73
reg 4 57 59 64 55 59 62
reg 5 269 269 319 257 255 293
reg 6 24 31 28 24 31 26
reg 7 149 166 178 139 166 162
reg 8 224 204 232 216 198 228
reg 9 298 312 353 284 300 315
reg 10 99 110 117 97 110 103
reg 11 126 111 133 114 107 123
reg 12 293 285 321 283 279 293
reg 13 75 77 78 73 73 76
reg 14 44 38 44 44 38 42
reg 15 370 324 388 326 308 326
reg 16 262 256 287 236 242 243
reg 17 252 264 293 228 240 257
reg 18 319 322 399 305 306 351
ALL 3598 [ 3583 4074 3324 3397 3580
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Table S4. The main characteristics of 18 X-chromusaegions.
From left to right: start position and end position base pairs
(based on NCBI Build 36 assembly), length of eactlbase pairs,
number of SNPs (N SNPs), number of haplotypes (jWldha
recombination rate calculated by means of Ldhatmbier of
recombinations detected, number of recotypes, geenamber of
recombinations detected by IRIS per Kb.

Rec

Length |N N Rate N N n_rec
region| start (bp) | end (bp) | (bp) snps | haplo | (4Ne/bp)|rec |reco |/Kb
regl | 22505979| 22728622 222643 94 484 1.34 442 36P9 1
reg2 | 23071760| 23213016 141256 97 37§ 1.06 237 2088 1
reg3 | 25715611| 26016381 300710 83 204 0.27 58 59 9 0.1
reg4 | 35038017| 35504132 466115 84  17( 0.23 57 57 201
reg5 | 38875482| 39480082 604607 179 473 0.44 P69 2044
regé | 84704863| 84952842 2479719 8( 81 0.11 24 24 D.1
reg7 | 86338463| 86609425 270962 91 372 0.65 149 1465 D
reg8 | 87288915| 87838907 549992 205 453 0.54 P24 16841
reg9 | 93522874| 94555707 10328383 | 478 0.37 298 223 0.29
regl0| 11218101p112602418421406 | 92 | 241 0.24 99| 98 0.23
regll| 11663141j7116865805234388 | 82 | 324 0.53 12¢ 123 0.54
regl2| 120875730121450338 574608 | 157 | 401 0.46 293 237 0.51
regl3| 12583317p126301999468827 | 91 | 169 0.19 75| 74 0.16
regl4 | 126499106126892013392907 | 84 | 84 0.09 44| 44 0.11
regl5| 140883556141050268 166712 | 99 | 494 1.68 370 327 2.22
regl6 | 14137662p141647366270741 | 89 | 462 0.95 262 226 0.97
regl?7 | 14356346B143896320 332852 | 97 | 414 0.61 252 23% 0.716
regl8| 1447690601452666671497607 | 164 | 480 0.64 319 248 0.64
ALL 7197205| 2052 3598
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Figure legends

Figure S1. Mean values taken from the analysi06f dimulations with different
IRIS settings: grain sizes (5, 10, 15, 20 and #8djerent thresholds, defined as
number of detections to be considered as true @ividy the grain size or the
double of the grain size in the cases in which &hgorithm is run in two
directions. For each setting the algorithm couldrbe only on the forward
direction (F) or in both directions (FR). Figure ASFalse discovery rate (%).
Figure S1B Sensitivity (%). Figure S1C 90% confidernterval of the distance
(measured in number of SNPs) between the inferredkipoint position and the
real location. Figure S1D, median age of the detbotcombinations.

Figure S2. Mean values taken from the analysi06f dimulations with different
IRIS settings that combine different grain sizewligated with different colors),
different thresholds (defined as number of detestito be considered as true
divided by the sum of the different grain size anditiplied by two since the
algorithm is run in the two directions). All setyim included running the
algorithm in the two possible senses. Figure S2lag-discovery rate (%). Figure
S2B Sensitivity (%).Figure S2C. 90th percentiletatise from the breakpoint
location measured in number of SNPs.

Figure S3. Plot showing the relationship betweenféitse discovery rate and the
number of COSI simulations under a scenario in WhRIS is given a different
dataset than the one used to compare it with th8IC€3ults.

Figure S4. Each dot represents mean values of tideevery rate and median
age of the detected recombinations taken from tizdysis of 100 simulations
with different IRIS settings that combine differegitain sizes (indicated with
different colors) and different thresholds. All tg&s included running the
algorithm in the two possible senses.

Figure S5. Plot showing values of the number oftin silico recombination
events were detected by IRIS run with no thresligidending on the breakpoint
location along the sequence. Different colors iathicdifferent ways to produce
the recombinant sequence, from light gray to bldtcindom” indicates that
parental haplotypes were taken at random, “1dif b&p” indicates that parental
sequences had to be different near the breakpagidm (plus minus 10 SNPs), “
2 dif near bkp” indicates that parental sequencas o be different near the
breakpoint regions at both sides of the breakpaimd, “ unique” indicates that the
parental sequences had to be different near thakboit region and the
recombinant sequence had to be unique within takmoint region. Below, the
recombination rate estimated by LDhat is showrp¥ahg the right axis.

Figure S6. MDS 2D plot based on a recombinatiogthdce matrix. The stress

is 0.081 which is below the 0.16 stress obtaindtl W6 probability with random
data sets (Sturrock and Rocha 2000).
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1. Sturrock K, Rocha J (2000) A Multidimensional Sngli Stress
Evaluation Table. Field Methods 12: 49-60.
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Figure S2A
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Figure S6
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Abstract

Effective population size captures in a single puaater the
cumulative effects of drift in a population. Whikstimates are
available for the human species or for broad cential groups, a
detailed survey for single human populations has heen
produced. Here we provide such figures, and ing¢rgiiern in terms
of the demographic history of anatomically modeumhans by
means of a recombination-based analysis. We havetyped a set
of 1250 SNPs in five regions of the X chromosomd 240 males
from 30 Old World populations. We have counted nhenber and
location of recombination events and have detetliedsequences
that carry them by means of a combinatorial algaritmplemented
in the IRiIS program. The number of recombinatioas be used to
estimate effective population size through thwetNg parameter.
We have found, in line with other studies, thati¢dn populations
have effective population sizes that are ~3 tinresitgr than those
of non-African populations. Outside of Africa, SbutAsian
populations had the largest effective sizes. Adddlly,
recombinational diversity correlated with distanoet of Africa
through a southern, but not a northern, route, amdEurasian
populations, recombinational distance correlatetth @istance from
Southern India. These findings suggest a largertirn previously
envisaged for South Asia in the demographic history population
expansions of anatomically modern humans out atAfr

The estimation of effective population size in hungwolution has
been a subject of intense research in the recestt phe seminal
papers by Takahata (reviewed in Kim et al (2018}aldished the
highly cited figure of 10,000 individuals for theagi human
evolutionary history, which has been lately revised 5,000 with a
much larger genetic dataset (Kim et al. 2010). €hegures have
been derived through gene diversity estimates aduhsomal loci.
This led to an estimated average time to the masnt common
ancestor (TMRCA) of 1.24 Myr. The effective popudat size
estimate, thus, captures an extremely long periotinte, much
beyond the existence of our own species. This prably denotes
greatly fluctuating biological phenomena both iragp and time,
which could not be captured by any of the presesthodologies.
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Laval et al. (2010) have formulated a detailed téfigal and

Demographic Model” of recent human evolution. Tisidased on
diversity (or heterozygosity) measures on resequgndata for

noncoding autosomal regions, with interesting dovegtion of

parameters. Their results on effective populatiness estimated for
three main continental populations, offer figurds~81,200 for

Europeans and ~14,500 for Asians after the split tlodése
populations ~22,500 years ago, with a more compieture for

Africa. It is difficult to disentangle the importe@ of the shared
ancestral polymorphisms and the accuracy and robsstof the
many estimated parameters in the estimates basqmbmulation-

specific sequence diversity.

Earlier, Hayes et al. (2003) and Tenesa et al. {ga®nsidering the
importance of the temporal and spatial framework éffective
population size estimates, have proposed an indep¢rmethod
based on Linkage Disequilibrium (LD) data. Theialysis on four
HapMap populations results in much lower estimab@sthe order
of ~7,500 for African Yoruba (YRI) and ~3,100 foaah of the
Eurasian populations. Their lower values are jigstifoy the time
frame of the genetic events analyzed. While gewersity would
reflect average population size for long periodsirag, LD depends
to a greater extent on the population size in nnecent times. The
method relies on computing pn inferred haplotype frequencies,
which may not be accurate. Moreover, although LDindeed
primarily determined by recombination rate, dempgsa and
natural selection can also modify LD and alter nelbmation rate
estimates based on LD.

Finally, Cox et. al (2008) have used an isolatiatiwnigration

model to independently estimate effective populatgizes and
migration rates using resequencing data of nongoigions on the
X chromosome. They found low (albeit somewhat imEe)

values of effective population sizes as well, whieére higher for
Africans (2,300-9,000) than for non-Africans (30(B&D).

We have developed a method called IRIS (Identifying
Recombination in Sequences) to detect specific reastmbination
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events from extant sequences (Melé et al., 201@edaon a
combinatorial algorithm (Parida et al. 2009; Partlal. 2008). The
algorithm vyields which sequences are descendantsanaient

recombination events, which sequences carry thesamat patterns
that were involved in the recombination event, avitere is the
breakpoint located in the genome. Here we proposesé¢ the data
produced in a large SNP survey (Javed et al., @pgmation) to
estimate the historical recombinations producedi aom them

estimate the effective population sizes of the i@epopulations.
Several points in this approach are novel: the diete of

recombinations is not based on LD, the time diatidn of the

reconstructed recombinations is known (Melé ef@l0), and the
recombination rate is available at a very narroalesin the human
genome (Kong et al. 2010).

It is well known that recombination is not evenigtdbuted across
the genome; 80% of the recombination events ta&keepih 20% of
the sequence, in recombination hotspots (Myers |et2@05).
Therefore, newer recombinations may overwrite gaocé past
events and the main consequence of this procabstisallocating
specific recombinations to specific sequences besoharder for
older events. In our previous study (Melé et all®) we showed
that recent recombinations are detected by IRiSh vgteater
sensitivity. Specifically, we inferred that 90%tbE events detected
by IRIS occurred after the Out of Africa migratiomherefore,
recombinations can be used as recent genetic nsaaker they can
potentially help to make inferences on the moseme@vents of
human evolutionary history, such as the estimatibpopulation-
specific effective population size. In fact, moétiee reconstructed
recombinations are population-specific (93.13%).e Ttistorical
recombinations that can be detected are a fraafothe total
recombinations that occurred. This fraction, ttgtthe sensitivity
achieved by IRIS, can be estimated at 7.3% withukitions (see
Supplementary Text for details) and used to obtminindirect
estimate of the total number of recombinations tf@ate taken place
along the genealogy. Sensitivity estimations mayafiected by a
stochastic variation that may compound into theohbs values of
effective population sizes. However, since we cateed detect
actual recombinations in each of the populatiostimation of the
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relative effective population sizes among the 30alyaed
populations will be more robust than more indireethods.

The dataset used consisted of 1250 SNPs in fivierregTable S1)
spanning 2 Mb of presumed gene-free regions of e
chromosome, genotyped in 1240 males from 30 Old I&Vor
populations (Figure 1, Table S2). High, uniform StRerage was
necessary to detect as many recombination eveng®sssble; by
choosing only male samples, we could overcome tieenainty
associated with phasing haplotypes; finally, regidknown to
contain genes were avoided in order to prevent pgbssible
confounding effects of natural selection. Furthestads about
region selection and genotyping can be found inStheplementary
Text.

We used the expressiper 3N (Hartl and Clark 1997) to infer the

effective population size, whepe= whereR is the number

of recombinations inferred for each population, ansl the number
of sequences analyzeR. values were calculated by dividing the
number of recombinations detected by IRIS (Tableb¥) the
corresponding sensitivity.stands for the recombination rate, which
was calculated as the weighted average of the cdteach region
based on the deCODE map (Kong et. al 2010). Finatiyal male
and female effective population sizes were consitlewhich, for
the X chromosome, implies that 3Ner (o= 4Ngr for autosomes).

Estimates of the effective population sizes for heanf the
populations are given in Table 1 (in relative atdaute values)
and plotted in Figure 2. As expected, results ctestly show that
Sub-Saharan Africans have much higher effectiveuladion sizes
than all other populations; values are roughly fimld larger, or, in
absolute terms, of ~4000 for African populationsl af ~1000 for
the rest. This result is in line with the low vadugbtained with LD-
based estimates (Laval et al. 2010; Tenesa et0&l7)2 but, as
mentioned above, the relative population sizes, angbarticular,
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the ratio of the sizes between African and nongsini populations
are more reliable figures, and that was also founbe >2.5 both
from genetic diversity (Laval et al. 2010) and fr (Hayes et al.
2003; Tenesa et al. 2007).

For the first time, we provide specific effectivees for a wide
range of Old World populations in relative and dbto values
(Table 1). Besides the Sub-Saharan African / noo-Saharan
chasm in population sizes, a number of interespagierns are
revealed. The populations with the largest sizdgerothan Sub-
Saharan Africans are North Africans (Moroccans Bgyptians), as
could be expected due to their known Sub-Saharanixaure

(Bosch et al. 2001; Brakez et al. 2001; Kringsleil@99). Outside
of Africa, the largest effective population sizes #ound in South
Asia; only recently, the high internal diversityloflian populations
is being appreciated (Xing et al. 2010). Europearts East Asians
have similar effective population sizes. Tibetansd aBasques
showed the lowest values, a direct measure of gpoalllation size
and isolation.

We further investigated the geographic variatiorboth SNPs and
recombinations to understand the general patterngefetic

variation and population history (Table 1). In arde compare
patterns of diversity across populations, we usedsNucleotide
diversity statistic to calculate the standard geineersity using

either SNP allele frequencies or population fregiesh of each
recombination event using the whole dataset. Whth approach,
we can apply the same, widely used measure ofsitydyoth to the
SNP alleles in a classical fashion, and to our data on detected
recombination events.

We provide a geographic framework to these valbgsplotting

them against the geographic distance of each pogulto Eastern
Africa, the presumed place of origin of modern hom&uintana-
Murci et al. 1999; Tishkoff et al. 2009). As expEttgene diversity
was found to be highly correlated with geographutiatance with
East Africa (Spearman’s = -0.596;p = 0.00050) (Figure 3)
(Prugnolle et al. 2005b; Ramachandran et al. 2Q0Bkgn if
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African samples were removed (Spearmarrs-0.445, p = 0.023).
With recombinational diversity, nonetheless, a nraigcorrelation
is found (Spearman’s r = -0.363; p = 0.048) whiadmpletely
disappears if African samples are removed from #malysis
(Spearman’s r = -0.0352; p = 0.86) (Figure 4). meen differences
between the two plots are that African populatiosasow
significantly higher recombinational diversity thaany other
population (Mann-Whitney test; p = 0.0015), in @apwrtion that
goes to a four- or five-fold higher diversity thdre mean for non
Africans; European populations show similar divigrsralues as
East Asian populations, whereas Indian populati@mmwed
significantly more diversity than Europeans (Manhiifvey test p =
0.0055) and East Asians (Mann Whitney test p =1).01

The present results stress the wide differencesdaet Sub-Saharan
Africans and the rest of the Old World populati@rsl point to a
special role for South Asia in the Out of Africapexsion of
modern humans; this role could have been more feignt than
those of places located on the possible corridbrobfrica, be it
the posited Northern route through the Middle Easthe Southern
route through Arabia. It is debatable whether ihign argument for
India having had a role in a maturation phase gadhe expansion
of modern humans to the whole of Eurasia.

Given the fact that recombinational diversity wat related with
the distance from East Africa and that effectivepydation size was
notably higher in India compared to other Euragiapulations, we
tested whether recombinational diversity was cateel with the
geographical distance of Eurasians from South Asaaticularly
south India (Figure 5). This correlation turned tmbe significant
(Spearman’s = -0.495;p = 0.010). One of the clear outliers of the
regression were the Moroccan, which is somehow aggef they
have a high proportion of sub- Saharan ancestrydissussed
above. If this population is removed the correlaticoefficient
increasesr(=-0.682;p = 0.0002).

Finally, in order to assess whether a southernerout of Africa
could better explain the relationship between rduaational
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diversity and distance from East Africa, we caltedathe distance
from East Africa considering that non-African pagiions left

Africa through the Bab-el-Mandeb Strait and goihgptgh the Red
Sea following the coastline. The correlation becatrenger and
highly significant (Spearmanis= -0.592,p = 0.00057). If African

samples (including the Moroccans) are removed ftieenanalysis,
the result is maintained (Spearmam’'ss - 0.523,p = 0.0073).

Interestingly, the southern route explained better patterns of
recombinational diversity, but not the patternseldasn nucleotide
diversity values (Spearmarrs= - 0.463,p =0.010), which correlate
less with geographical distance through the sountltiean through
the northern route. The difference between nudeotiand

recombinational distance may just be a reflectibthe time frame
of both approximations, with the recombination gsi detecting
events that happened more recently.

We have thus presented a new method of analyzing-i&ised
genetic information that uncovers one of the maitbgit often

neglected) processes generating genetic diversitgmely

recombination. By directly counting recombinationsge have
provided effective relative and absolute populatgire estimates
for a number of interesting populations studieceh&e have also
described geographic patterns of genetic diverdigsed on
recombinations that are less clear if nucleotideermdity is

considered; by focusing on recombination, we seemhave

overcome the effect of SNP ascertainment bias awe flocused
the analysis on the timeframe of recent human tyistince the Out
of Africa expansion. We have thus managed to recthe known

higher effective population size of Sub-Saharanicafrs, but we
also have found high population sizes in North édriand South
Asia. While the former may be the trivial conseqesrof Sub-
Saharan African admixture, the latter may opena¥enue for the
exploration of a larger role than previously engesd for South
Asia in the path that led modern humans from Aftwadhe rest of
the world.
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Tables

Table 1. Diversity calculated as in Nei's gene dsitg formula for
alleles (Nuc Div) and recombination junctions (RBw); mean
number of recombinations detected over 100 runsdatasets
created by randomly selecting 18 chromosomes pegulpton per
region and their standard deviations (Mean n° stanfl dev)).
Effective population size (Ne) and relative popioiatsize (Relative
Ne) which is calculated based on the lowest vatuat ©f Tibetans).

Rec

Nuc Div (x Mean n° rec Relative
Population Div 1000) (standdev) Ne Ne
Yoruba(YRI) 0.29 4.79 112.0(8.0) 4287 7.5
Maasai (MKK) 0.29 4.67 84.1(7.9) 3217 5.6
Luuya (LWK) 0.29 5.72 1135(9.4) 4344 7.6
Chad (CHA) 0.31 5.14 106.4 (7.9) 4072 7.1
Lebanese (LEB) 0.26 1.49 27.5(3.9) 1438 25
Kuwaiti (KUW) 0.28 1.64 32.9 (4.5) 1461 2.5
Iranian (IRA) 0.26 1.16 25.9 (4.0) 1054 1.8
Egyptian (EGY) 0.27 2.03 38.2(5.1) 1260 2.2
Moroccan (MOR) 0.3 2.38 37.6 (3.7) 993 1.7
N.and W. European (CEU) 0.27 1.01 19.9 (3.7) 7613 1.
British (BRI) 0.27 1.05 21.8 (3.5) 832 15
Dutch (DUT) 0.27 1.01 20.2 (3.2) 772 1.3
Basque (BAS) 0.26 0.51 15.5 (3.0) 504 1
Tuscan (TSI) 0.26 0.93 19.7 (3.8) 752 1.3
Romanian (ROM) 0.28 0.65 18.0 (3.3) 689 1.2
Chechen (CHE) 0.27 1.44 23.0(3.6) 881 1.5
Russian (RUS) 0.27 1.11 21.7 (4.4) 831 15
Tatar (TAT) 0.26 0.82 18.0 (3.0) 688 1.2
Altaian (ALT) 0.27 1.32 24.6 (3.8) 940 1.6
Uighur (UIG) 0.27 1.09 22.8 (4.3) 873 1.5
Gujarati (GIH) 0.27 1.75 31.9 (4.2) 1222 21
Nadar (CAN) 0.26 1.95 31.9 (4.4) 1219 21
Parayar (NTN) 0.28 2.35 40.2 (5.0) 1539 2.7
Kalita (KAL) 0.27 1.46 32.5(4.5) 1242 2.2
Adi (ADI) 0.24 11 26.2 (4.2) 1001 1.7
Tibetan (TIB) 0.24 0.52 15.0 (3.5) 573 1
Laotian (LAO) 0.24 1.21 23.8 (4.1) 911 1.6
Ati (ATI) 0.25 1.22 25.6 (2.6) 980 1.7
Chinese (CHB) 0.24 1.26 28.8 (4.6) 1103 1.9
Japanese (JPT) 0.23 0.98 23.0(3.4) 879 1.5
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Figures

Figure 1. Populations of the study and their geglgia region of ancestry.

Abbreviations as in Table 1.

i

Figure 2. Inferred effective population sizes frtike number of recombinations
detected. Standard deviations and population afdiiens as in Table 1.
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Figure 3. Nucleotide diversity and geographic diseafrom East Africa (in Km),
through the northern route. Populations are cotaled by continent as in Figure
2.
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Figure 4. Recombiantional diversity and geograplstance from East Africa (in
Km), through the northern route. Populations arerecoded by continent as in
Figure 2.

LWK

[T}
[} cHA
8
(=}
MKK \G.
2
= <
o o
[ (S
2 o
[a)
e
™
S o
T <
£ ©
3
[
3 o
t) o
r <
[}

T
2000 4000 6000 8000 10000 12000

0.001

Distance from Africa (Km)

122



Figure 5. Recombinational diversity and distan@anfrSouth India. Populations
are color-coded by continent as in Figure 2.
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Supplementary information
Materials and Methods
Genotype selection

Data was obtained from a previous study (Javed.aletin
preparation) in which five gene-free regions of ¥ae¢hromosome
spanning more than 2Mb were genotyped. Genotypires w
performed using the lllumina GoldenGate custom @lignd SNPs
were selected based on the HapMap phase Il reBglaas to obtain
the highest possible density provided they meetesdoechnical
genotyping conditions.

In the mentioned study, quality control processesluded
removing SNPs with more than 15 % of missing datd #hose
having a cluster of heterozygous positions in maémples.
Samples with missing data higher than 10% or mameptes with
more than 3 heterozygous positions were excluded.

For our study, only male genotypes were taken deioto avoid
phasing errordnformed consent was obtainddr all the subjects.
Recently admixed populations (namely, African Aroans,
Mexicans, and Gypsies) were not included in thesqme study.
Details on the origin of samples, and number ofividdals per
population can be found in Table S2.

Recombinational analysis

The IRIS method was run with the optimal parametined in
Melé et. al (2010) with the mergepats parametetooansure the
robustness to any present genotyping errors, reeumutations or
gene conversion events.
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In order to overcome the uncertainty in the numbsr

recombinations detected due to sampling, 100 datasse created
in which 18 different chromosomes per population negion were
selected randomly. IRIS was run on each of thesatdaand the
average number of recombinations detected and atdmdviations
per population was extracted.

One single run of IRIS was performed with all tlaenples together
in order to calculate recombinational diversityhe equivalent way
as gene diversity was calculated over the wholasgt Basically,

using all the recombinations detected on our sesegfuences, a
matrix in which each detected recombination haslanen and the

names of the sequences are in rows. Presence encabof

particular events is marked with ones or zeroegew@sely. Then,

each sequence is defined by a string of zeroesaesli that is called
a recotype in which one indicates presence of acifgpe
recombination event and zero absence. Then we edorm the

equivalent calculation of gene diversity using tbéeotype matrix

Sensitivity estimation

Sensitivity of the method was estimated using tlalescent
simulator COSI (Schaffner et al. 2005) in the samay as
described in Melé et al (2010). COSI has been @k in order to
simulate data that resembles the extant human ldatameans of
simulating a human genealogy modeling variable mdzpation
rate and hotspots.

Since COSI simulates three human populations basea human
demography, we simulated the number of chromosothes
matched our data: 90 for the African, 180 for thedpean and 108
for East Asians considering we took 18 chromosomoeseach
population. The lower effective population size egivthe X
chromosome (3/4 of the Nof the model for autosomes) was also
taken into account. In order to obtain a similarPSHensity, all
datasets were ascertained in order to have anxappte density of

1 SNP every 1600 bp. We run 1000 simulations arithated
sensitivity values for IRiS over 1000 different gatogies.
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The model implemented in COSI named “the best fadet’

generates, in each simulation, a different recoathon rate
distribution including varying hotspots locationhérefore, the
actual number of recombinations in each simulatias a large
stochastic variation. Since the sensitivity of IRsShighly affected
by the recombination rate (Melé et. al 2010), wécudated a
regression line between sensitivity and the recaoation rate based
on the 1000 simulations. The function, which hadaarelation

coefficient of 0.72, was:

Sensitivity= 0.00143 x RecombinationRaté&*"9

Then, based on the deCODE map of recombination(Tatlele S1)
(Kong et. al 2010), we could calculate a weightedrage of the
recombination rate over the five regions and egentize sensitivity
of IRIS in our dataset to be 7.3% according togeation above.

Geographic distance calculations

Geographic distances from Eastern Africa were ¢afed as in
Jackobson et. al and Ramachandran et. al 2005 wtachat Addis
Ababa (9N, 38E) and for all non African populatidressel through
Egypt (30N, 31E). Paths to Europe also passed ghroturkey
(41N, 28E). The alternative southern route for Adrnean
populations was calculated as if crossing the Ba¥lamdeb straits
going directly to Iran (26N, 58E). Distances froouth India were
calculated starting from Villupuram (12N, 80E) wihehe Parayars
had been collected. The Himalaya Mountains wereertakito
account by forcing the path to the Uygur and th&i&hs to pass
through Dushanbe in Tajikistan (39N, 69E) and the akd Lao
through Chengdu (31N, 104E). Other paths to EastarA
populations out of South Asia passed through Dat&angladesh
(24N, 90E) in order to get out of the Indian penlas Distances
were calculated using the great-circle distancelempnted in the
http://williams.best.vwh.net/gccalc.htisite with the default Earth
model (WGS84/NAD83/GRS80) (Table S1).
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All correlation analyses were performed using SPs&ware
(SPSS Inc., Chicago IL). Since recombinational diig values did

not follow a normal distribution, all tests perfagth were non-
parametric.

Supplementary tables

Table S1. Regions of the X chromosome selectedherstudy.
Start and end positions are based on NCBI's bi6ldfhe Human

Genome.

Chromosoma|

Length Number | Rec rate
region Start (bp) End (bp) | (bp) of SNPs| (cM/Mb)
region 1 22509816 22728031 218215 205 4.22
region 2 39100654 39237964 137310 129 1
region 3 93525304 94555531 1030227 382 0.82
region 4 140885581 | 141035312 149731 158 5.77
region 5 144772688 | 145266246 493558 376 2.24
SUM 2029041 | 1250
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Table S2. Information on the origin and number amples per
population and their assignment to a specific camtial region.

Acro | Continental N
Population Name nym | Group Sampling Region males
Yoruba YRI | Africa Ibadan, Nigeria 53
Maasai MKK | Africa Kinyawa, Kenya 46
Luhya LWK | Africa Webuye, Kenya 46
Chadian (Laal and Sara) CHA  Africa Southern Chad 3 4
African American ASW| Africa Southwest USA 45
Middle East and
Moroccan MOR| North Africa Assa-zag, Morocco 20
Middle East and
Egyptian EGY | North Africa Egypt 46
Middle East and
Lebanese LEB | North Africa Lebanon 42
Middle East and
Kuwaitis KUW | North Africa Kuwait 43
Middle East and
Iranian IRA | North Africa Kordestan, Iran 32
N. and W. European (CEPH) CEU Europe Utah, USA 44
British BRI | Europe Great Britain, UK 32
Dutch DUT | Europe Netherlands 29
Basque BAS | Europe Guipuzcoa, Spain 45
La Mina, Sant Adria del
Gypsies GYP| Europe Besos, Spain 24
Toscans TSI Europe Toscana, ltaly 46
Romanian ROM| Europe Romania 33
Chechnya, Ingushetia and
Chechen CHE| Europe Dagestan, Russia 37
Arkhangel, Kostroma angd
North Russian RUS| Europe Pskov regions, Russia 42
Tatar (Kazan and Mishar) TAT| Europe Tatarstan, Russ 46
Altaian (Tubalar, Altai-Kizhi,
Telengit,and Chelkans) ALT| Central Eurasig Gowlitpy, Russia 30
Uigur UIG | Central Eurasia Xinjiam, China 45
Gujarati GIH | Southern Asia Houston, Texas, USA 46
Cape Comorin, Tamil Nadu,
Nadar CAN | Southern Asia | South India 47
Villupuram, Northern Tami
Parayar NTN | Southern Asia | Nadu, South India 32
Kalita KAL | Southern Asia Guwahati, Assam, NE Indjal1
Siang region, Arunachal
Adi ADI |East Asia Pradesh, NE India 31
Tibetan TIB | East Asia Tibetan from Tibet, China 47
Laotian LAO | East Asia Laos 43
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Ati ATl |East Asia Phillipines 18
Han Chinese CHB| East Asia Beijing, China 33
Japanese JPT| EastAsia Tokyo, Japan 33
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Table S3. Information on the geographic coordsdlatitude and
longitude) used to calculate the distance from Eddta either
through Egypt (Northern route=EAN) or Iran (Southesute=EAS
and distance from south India for the non-Africapplations (SI).

Population | Location  for EAN EAS |SI

Name coordinates Lat | Lon |(Km) (Km) | (Km)

Yoruba Ibadan, Nigeria 7.40 3.92| 3758 3758
Loitokitok,

Maasai Kenia -2.91|37.52 | 1318 1318

Luhya Webuye, Kenig 0.62 34.77 994 994
N'Djamena,

Chadian Chad 12.1115.04 | 2536 2536

Moroccan | Rabat, Morocc34.02|-6.83 | 6018 9061| 8945

Egyptian Cairo, Egypt 30.081.25 | 2461 5515/ 5356

Lebanese Beirut, Lebanp3.89| 35.50 | 3041 5212| 5073
Kuwait  City,

Kuwaitis Kuwait 29.37/47.98 | 4079 3871 3789

Iranian Teheran, Iran 35.761.42 | 4445 4123| 3860

N. and W,

European

(CEPH) Paris, France 48.8®.35 | 5877 8247, 8079

British London, UK 51.50-0.13 | 6127 8431| 8261
Amsterdam,

Dutch Netherlands 52.37|4.89 | 5844 8092| 7921

Basque Tolosa, Spain| 43.14€.07 | 6173 8524| 8432

Toscans Florence, Italy] 43.Y11.26 | 5096 7484 7356
Cluj-Napoca,

Romanian | Romania 44.4823.66 | 4098 6332 6211
Makhachkala,

Chechen | Russia 47.1545.67 | 5166 5008| 4759

North Arkhangelsk,

Russian Russia 55.7637.62 | 5471 6531 6054

Tatar Kazan, Russia| 55.Y89.11 | 5931 6239 5522
Gorno-Altaysk,

Altaian Russia 51.9685.97 | 7511 6553| 5134

Uigur Uriimai, Russig 43.8387.62 | 7602 6187| 4814
Ahmedabad,

Gujarati India 23.04 72.57 | 6627 4384| 1431

Nadar Nagercoil, India8.18 | 77.43 | 7837 5660 474
Villupuram,

Parayar India 11.94|79.50 | 7814 5608 O

Kalita Jorhat, India 26.7894.21 | 8563 6408| 2250

Adi Siang Region, 28.2494.07 | 8497 6396| 4276
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Arunachal
Pradesh, India

Tibetan Lhasa, China 29.691.14 | 8178 6094 452

Laotian Vientiane, Lao$17.96| 102.61| 9735 7537 | 3132
Panay,

Ati Phillipines 11.56122.79/ 11985 | 9780| 5400

Han

Chinese Beijing, China| 39.9016.41/10018 | 8366| 4768

Japanese Tokyo, Japan 35(699.69) 12040 | 105136637
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SNPs and haplotypes: a human variation study of the
Old World

Introduction

In the genome, genetic variation is organized gofygpes, which
are, by definition, the combination of allelic gsitat neighboring
polymorphisms. With the exception of mtDNA and then-

recombining portion of the Y chromosome, haploty@es the
expression of the action of both mutation and rdmoation. If

polymorphisms are previously ascertained and suwilesdly

genotyped, as is often the case with SNPs, thehble imposed to
allele frequencies implies that the age of thedgnparphisms will

be biased toward older values. On the contrary, abgon of

recombination will be detectable only after thosdymorphisms
have appeared, and more recent recombination ewglhtiave a
greater impact on genetic variation. Thus, theyambf haplotypes
widens the time window that can be explored frome txtant
genetic variation.

The vast majority of studies of worldwide human egf@variation
have been based on the study of uncorrelated SA&en et al.
2009; Li et al. 2008; Rosenberg et al. 2002; Xihgle 2010). An
exception is found in Conrad et al. (2006), whemvesal
uncorrelated SNPs are used to study the haplotypetsre of
several world wide populations. Lohmueller et £0d9) and
Jakobsson et al. (2008) used haplotypes to malexemées on
demography. Specifically, Jakobsson et al. (2008)jressed the
guestion of whether haplotypes can be used as etigeanarker to
study human genetic variation at a global scale.

In the sequencing era, more and more data wilMadable, with a
density of SNPs high enough to perform such kind of
complementary analysis. One of the difficulties cassted with
using haplotypes as genetic markers, however, tetermine how
many SNPs define a haplotype. The longer the hgpdstthe larger
the diversity but, beyond a certain point, all induals carry
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different haplotypes, and no genetic information ba extracted at
the population level. Different studies have reachdifferent
solutions: either one or more fixed arbitrary ldrggare used (Auton
et al. 2009, Xing et al. 2010, among others) orvidgation at each
SNP is locally summarized by computing a probapdit belonging
to any of a fixed number of haplotype clusters ¢bmson et al.
2008).

In this work, we revisit the question of whethepludypes are more
informative than SNPs and develop a method to defire best
haplotype length for our study. For that, we analylze human
genetic variation in 33 populations of the Old Vdoxollected
within the Genographic project. A total of five gefiee regions of
the X chromosome spanning 2Mb were genotyped. Shé&®

genotyped at high density, and independently of uhderlying

linkage disequilibrium (LD) structure. Samples wenestly from

males in order to minimize the errors introduced haplotype
reconstruction (phasing). The X chromosome conderran

additional advantage: its effective population seehree-quarters
of that of the autosomes and therefore demogrgmoicesses will
leave a slightly deeper record on it.

Our results show first, that haplotypes are indeede informative
than SNPs for the study human genetic variatiorcoSe, we
provide a robust methodology to define haplotypgle in order to
obtain the maximum informativity out of them. Filyal we

anticipate that this method could be extrapolatedther studies
providing a way to extract more information thanepously

envisaged.

Results

Populations, SNPs and haplotypes

A total of 1255 SNP of 5 regions of the X chromosgospanning 2
Mb (Table 1) were analyzed in 1318 individuals fr8® different
human populations (Figure 1, Table 2). In ordesttaly the genetic
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structure of the populations we not only used SNR$ we
incorporated a haplotype-based approach. Haplosmpgth (, in
number of SNPs) was determined as that that maaomézlength-
specific index of informativeness (Figure 2). Timslex balances
the fact that a& increases, the number of different haplotypes that
appear increases as well but the number of segsiethet each
haplotype harbours will decrease. Ideally, for dapon structure
analysis, we would like different haplotypes to fresent in the
dataset but not reaching the extreme in which raividuals are
different from each other. For some analysis, trapldtype
estimation procedure used by Jakobsson et al. J20@8 also
calculated.

Inferring the genetic structure based on SNPs aaqldtypes

In order to assess the fraction of the variatioat thould be
explained within and between populations and cential regions,
we performed an AMOVA analysis. For SNP data, d#fees
among groups were 9.40%, among populations withious,
1.78%, and, finally, within groups, 88.81%. For loaypes,
differences among groups explain 4.52% of the tiana
differences among populations within groups 1.5&84d, finally,
differences within groups explain 93.89%.

We performed two types of analyses: Principal Caonepd
Analysis (PCA) and a Bayesian Clustering Analyaisg assessed
whether SNPs or haplotypes performed better atvezowy the
population structure of our dataset. In the PCAIltss population
areas overlapped less in the haplotype-based ahahan in the
SNP based-analysis (Figures 3a and 3b). In theecing analysis
(Figure 4), we evaluated which method better clessindividuals
into specific clusters, by calculating the avera§bannon's
Diversity index (H) for each individual at each K.grows with the
information needed to classify individuals into cifie populations,
and a method with lower H provides sharper classions. For all
K from 2 to 4, the cluster memberships obtained viiaplotypes
gave lower mean H values (Table 3). The haplotygpEmation
procedure used by Jakobsson et al. (2008) classifidividuals
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better than SNPs but worse than our optimal fierdyth method,
as assessed with H (Table 3).

Genetic structure of human populations

We next describe the results obtained with thedtgpés analysis.
As expected, the first principal component separétigican from
non-African populations, leaving some of the NoAfrican and
Middle Eastern populations leaning towards Afridde second
component separates East Asian from European addldEastern
populations leaving Indian, Mexicans and two of t@entral
Eurasian populations between those two groups.

The populations with the highest areas (and thuth thie highest
internal diversities) are all the African populaso and the
Mexicans (Figure 3a and 3b). In particular, AfricAmericans

show the largest area, something that could beaged by their
admixed origin. Chadian, Luhyan, and Yoruban irdlingls overlap
only with other Sub-Saharan African populationsjlevthe Maasai
are closer to Middle Eastern, North African, andrdpean

populations. Conversely, Egyptians and Moroccaridarth Africa

(as well as Kuwaitis) have lower values of thetfiBC, which

places them closer to Sub-Saharan Africans. InrasftLebanese
and Iranians are indistinguishable in this plotnfrd&zuropeans.
Small, widely overlapping areas mark the Europeapufations,

which can be interpreted as a hugely homogenedus se

East Asians including the Adi, Indians, and Euroyeare clearly
separated among them especially when looking at temtroids.

Interestingly, the Gypsies are the Europeans tteaclosest to the
Indian samples and the Guijarati from NW India apjedween the
rest of the Indian populations and European samplEseover,

Tatars are almost indistinguishable from Europeahgreas the
other Central Eurasian populations (Uygurs and iétis) appear
between the Indians and East Asians. Finally, tlexib&ns have a
very large area that overlaps with Europeans, hgjiaand East
Asians possibly explained by their admixed origin.
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Regarding the clustering analysis (Figure 4), Kigady separates
African and non-African populations. At K=3 threegps separate:
Sub-Saharan Africans, Europeans and populatioms fre Middle
East and North Africa, and East Asians. Indiansxibens and two
of the Central Eurasian populations appear as aibetween
East Asians and Europeans. Egypt and Morocco shaseater
Sub-Saharan African contribution than any othertted Middle
Eastern populations. Finally, At K=4, the Indiarpptations have a
specific cluster and are separated from the restething that did
not happen in the SNP-based analysis. At K=5, #ve component
is restricted to European, Middle Eastern, and INoAfrican
populations with an apparently random distributi(sata not
shown).

Table 4 shows the fraction of ancestry for eachutain at K=4.
The four clusters than can be assigned to fouriremtial regions in
which they are predominant: an African Associatedcéstral
Cluster (AAC) present in 93.5% on average in Suba&mn African
populations, a West Eurasian AAC with 91.3% in Baan
populations on average, an Indian AAC (68.6%) amdast Asian
AAC (89.7%).

The African AAC is present outside Sub-Saharan cAfri
populations in Morocco, Egypt, and Kuwait, and ratsewhere.
The West Eurasian AAC reaches its highest valuthénBasques
(95.5%), and makes an unexpected appearance ibatsteAfrican
Maasai (11.4%). The three Central Eurasian populati had
complementary levels of West Eurasian and EastnA8iaC; the
former was predominant in the Tatar (79.6%), aredl#itter in the
Uighur (62.1%) and Altaian (62.1%). The Indian AA€as more
frequent in the two Southern Indian populationsnely the Parayar
(78%) and Cape Nadar (80.3%), while in the Gujatlati West
Eurasian AAC reached 33.7%, and in the Kalita iswae East
Asian component that was somewhat elevated (23.7B&) Tibeto-
Burman speaking Adi, although sampled in NE Indistered
closely with East Asia (91.6% East Asian AAC). Tlhdian AAC
is present in non-negligible frequencies in the Aftan Lao, and,
more notably, in the Ati, an isolated Philippingopitation, part of a
group of peoples of low stature and dark pigmeomatcalled
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Negritos. Some known cases of mixed ancestry tteatanfirmed
in the cluster analysis. The West Eurasian AACrissent at low
frequencies in African Americans; Spanish Gypsiggear mostly
as West Eurasian (63.2%) but have a significantuarnof Indian
AAC (33.9 %). Finally, Mexicans contain contribut® from the
East Asian (55.5%) and West Eurasian (28.2%) AAQmanents.

Discussion

Haplotypes versus SNPs

The present work provides evidence that haplotymes
significantly more informative than SNPs in the lgss of the
genetic structure of populations. Both in the P@lysis and in
Bayesian clustering population substructure appekfned in
higher resolution when using haplotypes as genatickers than
with SNPs. Interestingly, however, the fraction w@ériance
explained is lower, which may be just a reflectitiat haplotype
frequencies are more constrained in their rangen thdele
frequencies, and rare haplotypes may driyedewn.

The main difference between haplotypes and SNBs/&n by the
fact that haplotypes incorporate information on teombinational
history of the sample. Recombination is one of mha&n forces
shaping the genome but its information is not ugkdn performing
analysis based solely on uncorrelated SNPs. Byngakihe
haplotype information we are able some how to ekirgormation
on both mutation and recombinational history of th@mples
analyzed.

The field of population genetics is now moving frg@notyping to
complete sequencing projects such as the 1000 GerRnoject
(The 1000 Genomes Project Consortium 2010) and tacdethat
can deal with such high SNP density data will beessary in order
to study the genetic variation of human populatiaha finer level.
Our method to find the optimal haplotype lengtmad out to allow
a more informative analysis than the one used kokkson et al.
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(2008). Besides, only when using our SNP lengtind&n, a new
cluster appeared at K=4 in the STRUCTURE analydis. have
provided a method that is able to define haplotyjpesbtain the
maximum information in terms of population struetand we show
that it performs better than previously defined moes. How much
more information will our method provide comparedusing SNPs
as independent markers in different studies remtinie further
studied. However, we believe that this new defmtishould be
taken into account for future approaches.

Population structure

This study has been performed with a large numbg@opulations
within the Old World and it contains one of thegest surveys of
human genetic variation. Although our data set lapsr in

geographic coverage with other sets such as HGDEgntains
particular features such as the representatiomaialas well as
singular populations such as the Gypsies and the At

Our results are, first of all, consistent with tket of Africa

hypothesis since African populations are the motréntiated and
most internally diverse from other populations iothb analyses.
Within Africa, both the Maasai and the African Angan seem to
have some West Eurasian or Middle Eastern compoheAfrican

American this could be explained by their knownergcadmixture,
which may be slightly underestimated by the X chosome: a
male-mediated European admixture would result iix2aratio of
European to African X chromosomes being transmitiéte West
Eurasian component in the Maasai can either beasygd by them
being descendants of populations ancestral to rfanaiis and / or
gene flow from non-Africans into Africa.

In Europe, the most outstanding result is the alisanonstration of
the Indian origin and West Eurasian admixture ops$igs, which
had been shown before using unilinearly transmittextkers (see
Mendizabal et al. (2011) and references therem)the Central
Asian continuum of genetic variation, Tatars showleel smallest
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East Asian contribution, which was higher in thereneasterly
located Uighur and Altai.

In the Bayesian clustering analysis, a componerdt tivas
predominant in Indian populations was revealed amhen our
optimal fixed-length haplotypes were used. Our datacontained
two populations from Southern India, where this poment
reached its higher frequencies. Thus, it is posditét it captures a
predominantly S. Indian dimension of genetic vawiat This would
explain why this component appears somewhat dilutetthie NW
Indian, Indo-European speaking Gujarati, as welliragshe NE
Indian Kalita, with Western and Eastern genetic tigcbuations,
respectively. The fact the the Indian AAC appearthe Lao of SE
Asia and in the Ati Negritos of the Philippines mayply that this
AAC captured some of the contribution of the southeute out of
Africa (Melé et al. submitted). Still, the Ati wedearly linked to
East Asian populations, as was shown also withingal markers
(Delfin et al. 2011; Gunnarsdattir et al. 2011).

The admixed nature of the Mexican general populati@s also
revealed; the lack of Native American reference @am could
explain why the predominant component was East missex-
biased gene flow may have led to an overestimatethds
component. The diversity in individual histories,thw various
degrees of Native American vs. European ancestapmrent both
in the Bayesian cluster results and in the widea arecupied by
Mexicans in the PC graph.

In this manuscript, we have shown that a particidaplotype
approximation can allow extracting a large amouhtgenetic
information from genomic data; while we have anatyzonly a
small part of the genome, we have been able tosrezgoany of the
patterns seen with much larger datasets.

Materials and methods

DNA samples
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DNA samples were selected based on geographidbdistm trying

to sample equally from the different regions of & World

(Figure 1 and Table 1). In order to avoid phasimgprs, the
genotyping was performed on the X chromosome dmdwhenever
possible, we selected male over female samples.

Samples from 23 worldwide populations were colléatgthin the
Genographic Project. Informed consent was obtaired all study
subjects. Individuals from another six populatiomere obtained
from the Coriell Cell Repository. Details on thagom of samples
can be found in Table 1. Overall we sampled 145%viduals,
1283 of which were males.

SNP selection

Five regions on the X chromosome that were at 18@Kb distant
from known genes, copy number variants and segmeumpdication
were selected. These conditions were meant to aseiection,
genotyping errors, and to ensure sufficient preanisto detect
recombination. These 5 regions correspond to sdntleeoregions
studied in Melé et al (2010) in which the X chromoe was
screened to find the optimal regions for a recomtidm based
analysis (Table 2). SNPs were selected based addpMap phase
Il release 24 as to obtain the highest possiblesidenFor the 5
selected regions, all SNPs appearing in the Hapliéapbase were
selected provided they meet some technical genuwyponditions
(Mlumina designability rank higher than 0.5, and nanimum
distance of 60 bp between SNPs). We also downlogededtypes
of four HapMap phase Il samples (www.hapmap.org

SNP genotyping, quality control, phasing and impugiti

Genotyping was performed using the Illumina GoldateGcustom
Oligos array of 1536 SNPs. After the genotypingcpss, SNPs
with more than 15 % of missing data were removedelsas those
having a cluster of heterozygous positions in nedenples (80
SNPs). Those samples with missing data higher % (123
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samples), or male samples with more than 3 hetgoagy/positions
were removed (14 samples) (heterozygous positionsmale

samples with 1 or 2 heterozygous positions wereded as missing
and imputed, see below). Monomorphic SNPs were vechdrom

the analysis (201 SNPs). The final dataset combistel255 SNPs
genotyped in 1318 samples (1269 were males) beigntp 33

worldwide populations (Table 1). None of our 22emmial replicate
samples showed inconsistencies. Missing values waputed

using fastPHASE (Scheet and Stephens 2006) andfetinale

samples were phased using PHASE (Stephens and tS20@%®

Stephens et al. 2001), using the very completetbhgges given by
males. Thus the amount of inferred informationxsemely low.

Haplotype definition

Haplotype length was defined as the length L in bemof SNPs
that gave the highest Informativeness. Informaias was
calculated for lengths 5, 10, 20, 30, 40, 60, &0, ;and 120 SNPs
(Figure 2) with the equation:

DI

i=1

wherencol is the number of columns obtained when dividinghea
sequence into windows d&f SNPs, his the number of different
haplotypes found in each columnand N is the number of
sequences.

For each length L, 5 different informativeness wealuwere
calculated by changing the starting position of finst window
from position 1 and increasing it in L/5 steps. iihedl 5 values
were averaged. The highest average informativenaise laid
between lengths 30 and 40 SNPs and therefore werped the
same calculation for lengths 30, 32, 34, 36, 38 4@daking as
starting positions all even positions. The hapletygngth having
the highest average informativity was 38 SNPs.
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Haplotypes were also defined as in Jakobsson e2@D8) by
considering 20 haplotype clusters at each positma using
fastPHASE (Scheet and Stephens 2006) to assign atth e
individual, at each SNP, a probability of haplotymduster
membership for each of the 20 possible haplotypstets.

PCA analysis

PCA analysis was performed using EIGENSOFT software
(Patterson et al. 2006). In order to control foe thresence of
correlated SNPs, LD correction was turned on. @utiemoval
parameter was turned off. R package was used o ttieaplots and

to calculate the convex hull polygon for each papiah for the first
two principal components (R Development CoreTeab20

Structure analysis

The Bayesian clustering software STRUCTURE (Pritdhet al.

2000) was used to group individuals based on SNPsro
haplotypes. All runs used a burn-in period of 50,derations

followed by 50,000 iterations from which estimavesre obtained.
All runs were based on the admixture model in whigch

individual is assumed to have ancestry in multigeetic clusters
and using the F model of correlation in allele freqcies across
clusters. The software Distruct (Rosenberg 2004y wised to
create the images.

To select uncorrelated SNP for the analysis we udaploview
(Barrett et al. 2005) and took tag SNPs wittf aalue lower than
0.8. We performed five replicas and considered rilre wit the
highest likelihood.

For the haplotype analysis, we took those five igométions of
length 38 SNPs with different starting points thad the highest
informativeness values; ran STRUCTURE on them ai$ viere
multiallelic data and considered the run with tighbst likelihood.
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To perform the population structure analysis agdokobson et al.
(2008), 10 different structure datasets were ccestEesed on the
haplotype cluster membership probabilities for ectividual and
each SNP. We assigned, according to the correspgndi
probabilities, a specific haplotype to each indidd at each
position and this randomized process was perfor@dimes to
create 10 datasets. Each of the datasets was adalyy the
Structure software as if they were multiallelic ks and using the
exact same parameters explained above and we eoedidhe
replica with the highest likelihood.

Shannon's diversity index was calculated for eatvidual and
each K as follows:

H :_ipi In p;

i=1

where pis the probability of that individual (cluster mbership) to
belong to the ith cluster. Note the highest valdeHowill be
achieved if all individuals belonged with equal Ipability to all
populations, which would be a case with no strectwhereas the
highest value would be achieved when all individuaére assigned
to one cluster with probability equal to 1.
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Figures and tables

Table

1.

Information on the genotyped

regions ok tX

chromosome. Positions are calculated based on BfldQuality
control was for Ivel of missing genotype and hetggmus in males.
Final SNPs are the QC-passed SNPs that were pobyncor

Length Initial QC-passed | Final
Start (bp) | End (bp) | (bp) SNPs SNPs SNPs
region 1 | 22509816 22728031 218215 250 234 206
region 2 | 39100654| 39237964 137310 165 150 129
region 3 | 93525304 94555531 1030227 503 468 385
region 4 | 1408855801141035312 149731 197 170 158
region 5 | 144772688145266246 493558 421 434 377
SUM 2029041 | 1536 1456 1255
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Table 2. Information on the samples: name, acrongomtinental
group, population details (ancestry, sampling liocat ethnicity),
number of successfully genotyped males and femélesd, sample

size.

Populatior] Pop Continental N N total

Name Name | group sampling region males | female{ N
Sub-saharan

Yoruba YRI Africa Ibadan, Nigeria 53 0 53
Sub-saharan

Maasai MKK | Africa Kinyawa, Kenya 46 0 46
Sub-saharan

Luhya LWK | Africa Webuye, Kenya 46 0 46

Chadian

(Laal an Sub-saharan

Sara) CHA | Africa Southern Chad 43 0 43

African Sub-saharan

American| ASW | Africa Southwest USA 45 0 45
Middle East ar

Lebanese| LEB | North Africa Lebanon 42 0 42
Middle East ar

Kuwaitis | KUW | North Africa Kuwait 43 0 43
Middle East ar

Iranian IRA North Africa Egypt 32 0 32
Middle East ar

Egyptian | EGY | North Africa Kordestan, Iran 46 0 44
Middle East ar

Moroccan| MOR | North Africa Assa-zag, Morocco 20 0 2

N. and W

European| CEU Europe Utah, USA 44 1 44

British BRI Europe Great Britain, UK 32 13 58

Dutch DUT Europe Netherlands 29 0 29

Basque BAS Europe Guipuzcoa, Spain 45 0 45

Gypsies | GYP Europe La Mina, Sant Adria del Bespsjrs | 24 11 46

Toscans TSI Europe Toscana, Italy 46 0 A6

Romanian| ROM Europe Cluj-Napoca, Romania 33 0 33

Chechnya, Ingushetia and Dage
Chechen | CHE Europe Russia 38 0 38
Arkhangel, Kostoma and Pskov regio

Russian RUS Europe Russia 42 0 42

Tatar TAT Central Eurasia| Tatarstan, Russia 44 0 46

Altaian ALT Central Eurasia| Gorniy Altay,Russia 30|0 30

Uigur UlG Central Eurasia Xinjiam, China 45 0 45

Gujarati GIH Southern Asia Houston, Texas, USA 46| 0 46

Nadar CAN Southern Asia Cape Comorin, Tamil Naddjd 47 0 47

Parayar NTN Southern Asia Villupuram, Northern TialNadu, India| 32 0 32

Kalita KAL Southern Asia Guwahati, Assam, India 41|10 41

Adi ADI Southern Asia Siang region, Arunachal Piiddndia | 32 0 32

Tibetan TIB East Asia Tibetan from Tibet, China 47|10 47
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Laotian LAO East Asia Laos 44 0 a4
Ati ATI East Asia Phillipines 19 0 19
Han

Chinese | CHB East Asia Beijing, China 22 12 46
Japanese| JPT East Asia Tokyo, Japan 28 p a7
Mexican | MEX America Los Angeles, California, USA 64 46

Table 3. Average individual Shannon diversity indeased on
cluster membership for each K. Note that the indexreases if
individuals tend to be assigned to a single cluster

K haplotypes | snps jackobssor
2 0.07 0.42 0.32
3 0.25 0.43 0.43
4 0.35 0.68 0.72
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Table 4. Cluster memberships in populations at Keging
haplotypes as genetic markers for the clusteriradyars.

cluster 1 cluster 2 cluster 3 cluster 5

YRI 98.8 0.5 0.3 0.3
MKK 85.5 11.4 2.4 0.7
LWK 98.2 0.8 0.5 0.5
CHA 97.9 0.9 0.8 0.4
ASW 87.1 7.7 2.7 2.5
LEB 3.3 84.9 7.3 4.4
KUW 12 78.6 6.8 2.6
IRA 1 86.4 8.6 4
EGY 15.9 76.8 3.9 3.4
MOR 27.6 63.8 7.2 1.4
CEU 1.4 90.5 4.1 4
BRI 0.5 93.1 5.3 11
DUT 0.5 95.3 3.4 0.7
BAS 0.6 95.5 2.5 1.4
GYP 0.6 63.2 33.9 2.3
TSI 0.8 93.7 3.6 1.9
ROM 0.7 88.7 7.4 3.2
CHE 0.7 85.1 8.1 6.1
RUS 0.6 88.1 6.2 5.1
TAT 0.5 79.6 6.9 13
ALT 0.5 26.4 10.9 62.1
uIG 1.3 33.6 11.8 53.2
GIH 0.9 33.7 60.3 5.1
CAN 0.9 9.7 80.3 9.1
NTN 1 8.7 78 12.2
KAL 0.8 19.8 55.9 23.4
ADI 0.7 1.7 6.1 91.6
TIB 0.4 2.1 3.9 93.6
LAO 0.7 0.8 115 87.1
ATI 0.7 2.6 16.6 80.1
CHB 1 2.1 4.2 92.7
JPT 0.9 2.1 1.8 95.2
MEX 4.7 28.2 11.6 55.5
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Figure 1. Geographic distribution of the samplegydations

Figure 2 Informativeness versus haplotype lengdh Ififformativeness is defined
as the product between average number of haplotygpesss all windows and
average number of sequences per haplotype acrbswiradlows. Standard
deviations are calculated by changing the stagimgjtion in which haplotypes of

length L start to be defined.
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Figure 4a. haplotype-based STRUCTURE analysis.
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Figure 4c Structure analysis with haplotypes defiag in Jackobson et al. (2008)
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4. DISCUSSION
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4.1. Challenges of the study of recombination

Recombination is a very difficult process to detéatmodel and to
analyze; and this is the reason why recombinaniomsgof the
genome have historically been eschewed in phylogebdac
studies.

First of all, a network structure is needed to espnt the
phylogenetic relationships between sequences. Teisvork or
Ancestral Recombination Graph (ARG) is very difficto infer,
basically, because many possible networks would t ntikely
produce the observed data and no information caexbracted to
discern which one is best.

Secondly, whereas mutation generally leaves a leiddotprint in
the genome, recombination often draws on a palisipgecent
recombination events overwrite past events andetber the
footprints of recombination quickly disappear frotime genetic
record. Therefore, those recombination events ¢hatconfidently
be detected tend to be relatively recent and caresdty, have a
low frequency in the population. Moreover, reconabion rates are
highly variable along the genome, being very higtotspots and
low in the rest of the genome. This implies thathotspots, the
signal of the past recombinations may be erasetérfdahan in
coldspots.

Third, the ancestral recombining sequences neeldetdlifferent
between them in order to leave a footprint; othseyi
recombination will be absolutely invisible. Conseqgtly, a
considerable amount of recombination events arasilile no
matter which method we use to detect them.

Several frequent genetic events such as gene coneland
recurrent mutation, or technical issues such astgpimg errors or
phasing errors, may lead to signals that will dp$eimic those of
recombination. This adds an additional burden te #tudy of
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recombination since we need to tease apart thagealsi and
separate them from the real recombination events.

In this thesis, we have faced all these problemy aore
importantly, we have addressed them all. No doubat t
recombination is a different process than mutatoh we have
shown that it can also be used as a genetic malrkdact, these
differences are the ones worth looking at in ortterextract the
complementary information hidden in our recombinggrtomes.

4.2. Inferring the Ancestral Recombination
Graph?

As mentioned in the previous section, inferring titve ARG from a
set of extant sequences is a very complex probliedigure 17, an
ARG inferred using coalescent theory for three humpapulations
is shown and it may give an idea of the complexitgt those
networks reach.

Our approach in Parida et al. (2008), however, imed at
constructing an ARG (or network) compatible witle thata in order
to detect true recombination events. In Melé et(2010), when
performing the different runs of the algorithm witliferent starting
positions, different window sizes and differentedtions, we do
infer several different plausible ARGs compatiblghwvthe data and
then we extract the recombination events that stersily show up
on them. In this way, we use the ARG as a tool atect
recombinations. Further, we do infer small piecethe true ARG
(the recombinations), although we are not ablaferiall of it.

Interestingly, in each of the ARGs generated bybhsic algorithm,
not only the recombinant sequences are inferredtheusequences
that carry the ancestral patterns are also pinedintherefore, in a
similar way as recombination events are detecteddunting the
number of detections, the corresponding sequer@scarry the
ancestral patterns could be extracted as well. dpens the door to
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inferring some more pieces of this “unreachable&tARG and the
history of its recombinations.

4.3. Sensitivity, false discovery rate, accuracy in
placing the breakpoint

In humans, and in most organisms, the recombinatd® among
adjacent basepairs is on the same order of magniasgl the
mutation rate per basepair, something that makesétection of
recombination events harder. The basic algorithrarid@ et al.
2008) performed extremely well to analyze data imclv mutation
is much faster than recombination (see simulatewtign in Parida
et al. (2008)) but needed to be optimized whenwith simulations
that mimicked human sequences.

To provide robust inferred recombination events, reue the basic
algorithm several times in a sliding window apptoaasing
different window sizes and directions. Our optinti@a parameters
(Melé et al. 2010) were false discovery rate, gaityi and
accuracy in placing the breakpoint, which very ofteehaved in
opposite directions. For example, false discovete rincreased
with window sizes but accuracy in placing the bpeakt increased
as well. Moreover, false discovery rate was givenlde weight
compared to sensitivity and accuracy in placingltteakpoint. This
seemed reasonable at the time of developing thhadedince first,
all the applications we could think of were goimgbie based in the
detected recombinations (and not in our not detecte
recombinations) and, secondly, we could study ptldevhich were
those recombinations that were missed (see thewiwlfy section).
The optimal method used window sizes of 20, 10 &ndnd a
threshold of 60%.

However, other optimization parameters could hasenbused and,
in fact, other combinations of parameters performed well and
could even be more suitable in some circumstarie@sexample, to
capture shared recombinations (recombinations #rat shared
between at least two individuals), it would be éetto turn the
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mergepats parameter on, whereas to have increaseitity,

methods with lower threshold worked better. Theuaacy in

placing the breakpoint is good when the patteressare small but
the false discovery rate increases. In the suppiéane figures of
Melé et al. (2010), it can be seen how each ofitfierent methods
works depending on false discovery rate, sengjtigitd accuracy
with the idea in mind that different users coulddndifferent needs.

4.4. \Which recombinations are detected?

It may seem at first sight that sensitivity estiesator IRiS are low,
in Melé et al. (2010) the average estimate of s$itgi with the
optimal method was around 20% and in Melé etsaibihitted), the
estimated sensitivity for 5 specific chromosome egions was
estimated to be 7.3 %. In figure 17 it can be ghah most of the
recombinations in the genealogy are not detecteslygcompared
to those detected (red dots).

However, in any genealogy, many recombination evemwtl be
undetectable. First, the footprint of old recomhios is
overwritten by newer recombinations and, as timesgby, the
signals are blurred. Secondly, if the ancestraluseges that
recombined were identical, the recombination wolddve no
footprint at all.

The specific task of IRIS is not only to detectgaece or absence
of recombination, but also to trace the whole mstf each event.
First, the two ancestral patterns that recombimethé past need to
be present in the extant dataset for IRiIS to detextecombination
event. This leads to low sensitivity estimates, apédcifically, it
leads to estimates which are biased towards reesombination
events (Figure 17).

When evaluated over recent recombination, IRiSitigity rises to
45% (Figures 5 and 7 in Melé et al. (2010). St could ask
which recombination events are missed. In Melél.e(28010), we
tried to answer this question by showing that forrexent
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recombination event to be detected, the two pareetpuences need
to be different and, in fact, the higher the numtifedifferences, the
higher the probability of being detected (Figuna Melé (2010)).

Figure 17. This picture shows a simulated coaldsoetwork generated wittosi
(Shaffneret al 2005) that represents the history of humankinth wain Out of
Africa event and the emergence of the differenméan groups, Africans,
Europeans and Asians. African individuals appeablire, Asian individuals in
yellow and Europeans in green. The cyan nodes septepast recombination
events whereas the small gray nodes representscealeevents. Red nodes are
those past recombination events that were recovbyetRiS. These kind of
coalescent networks were used to fine-tune andlatali IRiS. Software used
Pajek (http://vlado.fmf.uni-lj.si/pub/networks/pkig. Figure by Marc Pybus.
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Moreover, a strong effect of the recombination e be observed
on sensitivity (Figure 7 in Melé et al. (2010))rg%j we showed that,
within a hotspot, sensitivity clearly decreases] #rat the number
of recombinations present in a dataset is neggtieetrelated with
the sensitivity of the method. In fact, IRIS sategawhen a certain
number of recombinations are present although nastltivat aim at
estimating recombination rates such as LDhat behanelarly
(Melé et al. 2010).

Sensitivity may also depend on the populationsyaeal: the higher
the diversity in a population the higher the sewvisit This effect

may be specifically strong in admixed populatiorecduse the
signal left by recombinations between chromosomfeslifterent

populations may be clearer. In Melé et al. (suladjttexplaining
the observed higher recombinational diversity il &ldian

populations due to admixture remains a possibility.

Finally, sensitivity will depend on the allele frgency and density
of the selected SNPs with higher sensitivity ifeetihg SNPs with
high allele frequency and at high density (TableiisMelé et al

(2010)).

In Melé et al. (submitted), the sensitivity of tmeethod for 5
regions of the X chromosome was inferred accuratéhs allowed
estimating the absolute number of recombinatioasthd occurred
in the whole genealogy of the studied sequencesgetong that
had not been done before.

The differences between the sensitivity estima2@84 vs 7.3%) of
the two studies Melé et al. (2010) and Melé efsalbmitted) can be
reconciled taking into account that the first estienis an average
value over thousands of simulations and the secumsl refers
specifically to the sensitivity of the method whem on 5 regions
of the X chromosome. These regions had higher rbomtion
rates than average, the SNPs selected had alkdgidncies not
always being higher than 0.1, and finally, in tleeand study the
number of chromosomes was the double than in the fi
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4.5. Gene conversion, recurrent mutation,
genotyping errors, and phasing errors

All these processes may, in some circumstances, iontime
footprint left by recombination (Figure 18). Thissue was
specifically addressed in Melé et al. (2010) wheardifying how
often these events were confounded with recomlungiTable S2)
and was discussed there as well.

One of the most interesting findings was the meageparameter,
which had a small effect on sensitivity and falsscavery rate but
showed to be very useful to increase IRIS robustries such
confounding factors. However, the accuracy in plgcithe

breakpoint appears more affected if this paramstemrned on.

These results were specifically useful for the [zgper (Melé et al.
submitted). Since for the kind of analysis we wdrtteperform, the
breakpoint location was not necessary, we decidetlirtnh on the
mergepats parameter to make sure that our reseits mbust to
these confounding factors.

Phasing errors may be the most dangerous since lhibgpve
exactly as recent recombination events; the orfigrdince is that
the complementary recombination event has to appeathe
homologous chromosome. Although IRIS could potdigtidetect
most of them, special care should be taken wherindeavith
unphased data. First, it is highly important to wse accurate
phasing method such as PHASE, rather than fastPHASEe S3
in Melé et al. (2010)) because every gain phastcaurately is a
singinficant improvement in false discovery ratec&ndly, IRiS
may detect 30% of the phasing errors as such posaprocessing
of the output is needed. This implies, first, thabme
recombinations could be removed from the samplen @heugh
they may be true and therefore, sensitivity wiltidase. Therefore,
in our analysis of the 30 OIld World populations, d&ectly
avoided phasing errors by selecting only males the study.
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However, the possible use of IRIS to specificalgtett phasing
errors should be taken into account for possiktigréuapplications.

Gene conversion Genotyping error

Initial Dataset

Genetic factors Technical errors

Recurrent mutation Phasing error
Figure 18. Different processes that may mimic twgrint of recombination.

4.6. Recombination in human population
genetics

In order to introduce recombination in the study ldiman
population genetics it may be necessary to thirdkuakwvhat is new
about using such a genetic marker. Again, we caimnclthat
detected recombinations are recent, and this Wolwaus to restrict
our studies in a very specific window time: rigtitea the Out of
Africa migration (Figure 17 for an example).

In the study by Melé et al. (submitted), the numbefr
recombinations detected in a population is used poxy to infer
the effective population size. The absolute valletsined are low
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but this is justified by the fact that our diveysialues represent the
harmonic mean of the sizes for recent times, whés known that
anatomically modern humans went through a stroritign@ck. LD
based measures of effective population size alwgiys lower
estimates than those based on heterozygosity dgsiause LD
estimates measure more recent times. In the cas¢heofX
chromosome, a sex bias may be present (Emery 20H0; Keinan
and Reich 2010).

Further, the patterns of recombinational diversity80 populations
of the Old World show significant differences amotigem. As

expected, recombinational diversity was found torlueh higher in

African populations, consistent with their highecent long term
effective population size and older origin. In fadiversity values
will be a function of two factors: previous popudet sizes and the
age of the population under study. Recombinatigadierns being
similar for East Asian and European populationsnptowards a
similar time of settlement into their respectiventoental regions,
something that is in agreement with the fossil rdco

The significantly higher recombinational diversity the Indian
populations compared to Europeans and East Asi@msseto
suggest that the Indian subcontinent was settleg early. In fact,
the most recent studies on the peopling of Euragianatomically
modern humans point towards a single migration ewdnch took

them fairly rapidly across southern and southeasAaia with only
a secondary and later dispersal into Europe (Mel&06). One of
the most striking patterns regarding recombinatiaingersity is the
significant correlation found between recombinagiogiversity and
distance from Southern India, which raises the goe®n whether
South Asia could have been a main source of Eurasaiation

although there are other plausible explanationg Jtudy clearly
places Indian populations as having had a moreraentle in

human population history than previously reported.

Moreover, patterns of recombinational diversity se® be less
affected by SNP ascertainment bias than other siiyemeasures
such as nucleotide diversity: recombinational ditgrin African
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populations is much higher than in non-Africans,evdas, when
looking at the patterns of nucleotide diversitytbé exact same
dataset, this pattern is not so clear. The sameredison could be
seen in Melé et al. (2010).

Young variants tend to be in low frequency in ayapon and,
generally, the most informative variants are thatskigh frequency.
Population genetics is generally based on the stofallele
frequencies in a population. However, most of theombinations
detected by IRIS are singletons. From this obsemait follows
that a very high number of sequences and SNPghatdansity will
be needed in order to use recombination as a makeshared
ancestry. We are however at the right time sincekimd of data is
currently being generated with projects such as filapMap and
the 1000 Genomes.

The intrinsic nature of recombination, which conbasly
overwrites previous events, makes tracing specifaid
recombination events nearly impossible, no mattex harge our
sample size will be. However, in order to use thmmpglete
recombinational history, we can always use hapkgyps genetic
markers, since they provide more information th&tPs alone and
carry information on both old and recent recomboraevents.

4.7. IRIS applied to other organisms

The study of recombination is not only restrictechimans, and it
has been the focus of interest for several othecisp. In viruses
for example, much effort has been devoted to sty specific
mechanisms that underlie recombination, because fgtocess is
strongly related with their virulence and diseasassed by viruses.

Bacteria, on the other hand, do not undergo merettombination
and they do not have sexual reproduction. Howetley have
different mechanism to exchange DNA sequencesreitith other
organisms (conjugation) or with the environmenar{gformation)
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and therefore, they can incorporate foreign DNAtheir own
genetic material.

In eukaryotes, strong variation on recombinatiotegahas been
found. Wilfert et al (2007) collected informatiom eecombination
rates of several eukaryotic organisms and found tiwa highest
recombination rates were found in fungi and protozmwhereas
animals and plants had lower recombination rategemeral (Figure
19). However, although yeasts are fungi, they hexteemely low
recombination rates (Zeyl and Otto 2007).

Wilfert et al. (2007) also detected exceptionalighhrecombination
rates in social Hymenoptera compared to other higl&aryotes
and they hypothesize that it is the strong selaghi@ssure in social
insects that causes it. Another interesting obs$envas that insects
with sex-restricted recombination such Bsosophila (in which
only females recombine) show increased recombinatiates
compared to those where both sexes recombine.

Finally, recombination has been a focus of muchyto mammals,
especially in mice and humans. In mammals, the regority of

meiotic recombination events are localized to hats@and recently,
the PRDM9 gene has been described as one of ther negjulator
of the distribution of recombination (Paigen andkBe 2010).

Overall, recombination rates vary strongly in diéiet species and
organisms. Our method, however, has been calibtatde: run in
human samples. In principle, any species that sheimslar
diversity patterns as humans can be analyzed I8 IRi

Humans have some specific characteristic that mégrentiate
them from other organisms. First of all, humans amgch less
diverse than other species. For example, they ane rthan three
times genetically less diverse than chimpanzeesir thlosest
relatives (Jobling et al. 2004). This would imptat, for a region of
the same length and recombination rate, much muf@nhation
would be present in chimpanzee sequences than maru
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sequences. On the other hand, all human populativege

experienced a recent expansion (Jobling et al. 2@®dch affects
the patterns of genetic diversity observed in taeadSpecifically,
an expansion would increase the length of the Ldzkis, which
makes the signal of recombination much clearer.alfin the

mutation and recombination rates in humans argvemnage, of the
same order of magnitude (I@er generation per locus).
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Fig 19. Average recombination densities (cM/Mb) ossr different large

taxonomic groups. The social Hymenoptera stand asnbng the eukaryotes
whereas the protozoa have the highest recordeckwatu all. The number of
species per group (N) is indicated at the bottohe Torizontal line marks the
median value, boxes indicate one quartile and cadrtines indicate the range of
observations. Figure taken from Wilfert et. al 2007

172



It is difficult to predict whether IRIS will be staible for the analysis
of other organisms rather than humans, since rec@tbn occurs
in most organisms and the dynamics and demogrdphktory of
each of them may differ strongly. In general terthe, performance
of any method to detect recombination will be hygtépendent on
how strong the signal of recombination is in thguances. IRIS is a
pattern-based method and therefore, the correcct@nh of the
recombinations in any organism will depend on thesence of
such patterns in the sequences and how strong pegtEns can
show the footprint of recombination.

4.8. IRIS from SNPs to sequences and the
genomic scale

IRIS was fine-tuned to be run in SNP data. BotHdigts in which
IRIS was applied to study the recombinational diitgrof human
populations (Melé et al (2010) and Melé et al. (siited)) spanned
several megabases. In general terms, to analyzedarate number
of sequences and SNPs, IRiS can be perfectly rua desktop
computer and provide results in a short time.

Nowadays, however, more and more complete genomes a
sequenced. SNP ascertainment biases are doomedtrtctien and
the huge amount of data produced by projects sschiha 1000
Genomes Project demands new analysis tools. In ¢igthis, IRIS
will have to be adapted. First, it will need toddde to analyze data
in which low variants dominate and this should ledifficult to do

if using a similar pipeline as that used in Mel&akt2010. Second,

it will need to be scaled up in order to analyzmptete genomes.

The limiting factors for IRIS in terms of speed aRAM are the
number of sequences to be analyzed, the numbeolgmprphic
sites (the length of those sequences) and the explof the
region (the number of recombinations). Two changesuld
improve IRIS speed: first, moving from perl to C{perl is more
generic but a little slower) and two, maintainingormation mostly
in RAM memory. Both are currently being implemented
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Being able to analyze complete genomes opens thietd@a whole
set of possible different applications for IRIS Isuas detecting
positive selection or studying the dynamics of rebmations. In
the following sections, these options will be exptbfurther.

4.9. Recombination and selection

The role that positive selection has had in shapumggenomes has
attracted notable attention. One of the possibtaréuapplications
of IRiIS could be to detect the footprint of positiselection because
LD, recombination, and selection are tightly retatender Wright
Fisher equilibrium, the amount of linkage disedurilim present
between two genetic markers being in the same absome is
proportional to the recombination rate between thérhen a new
variant arises, however, it does so in a speciiplétype and this
variant will initially be completely linked with st neighbors until
recombinations separates them until the equilibrisineached.

Positive selection can change this pattern. Whemew and
favorable variant arises, it will increase much enoapidly in
frequency in the population taking the linked maskaith it (which
are said tdbe hitchhikedbecause recombination will not have time
to break their association). This will be trandiatmto a fast
increase of the frequency of the whole haplotypthepopulation,
and a reduction of the diversity present in thiecsfic area. The
selected haplotype will show an increase in LD éodack of
recombination) whereas the other haplotypes witl sitow such a
signal. Trying to find specific regions of the gem® in which a
specific haplotype has a lower number of recomnataround it
than expected may be an interesting approach tciddte signals
of positive selection.

Specifically, in order to detect putative regionsder positive
selection using IRIS, the following could be doRgst, IRiS should
be run genome wide, and recotypes should be eatrat well as
all the breakpoint positions. Then, recotype andpldigpe
information should be overlapped by analyzing thgadn a sliding
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window approach. Each window (of, for example, 18itte) should
be centered in a combination of a small number MP$ forming
specific haplotypes. Then, the number of recomimnatdetected in
those haplotypes looking at the whole region (diédich by the
window size) should be counted. If the number @bmbinations
present in the sequences carrying the selectedtyppl is much
lower than the number of recombinations detected other
haplotypes, potentially, this particular haplotypmay have
undergone the effect of positive selection.

Tests specifically aimed at detecting this kindgighal have already
been designed but they are based on the study gdtierns. Our
approach is based on specific counts of recomlonatand
therefore, we may be able to detect different dgymd positive
selection than the other methods existing so far.

4.10. Recombinations detected by IRIS,
recombination rates and the evolution of
hotspots

The mechanisms that underlie the evolution of rdwoation are
not fully understood. Recent research seems tot pmwards
recombination being a very fast evolving systemvirich hotspots
appear and disappear at a higher rate than sequmraiation
(Hochwagen and Marais 2010). In light of this, &yrbe interesting
to study the patterns of recombination genomewglegua method
such as IRIS that is biased towards recent evdrbsbased
methods such as LDhat (McVean et al. 2004) or PHAS@AwWford
et al. 2004; Li and Stephens 2003) are able toctiétatspots that
have been active for a while and have broken liekag
disequilibrium. IRIS, on the other hand, althoughdoes detect
ancient hotspots, will specially detect young hotspwvhich show
an accumulation of recent recombinations which Hha¥ea clear
footprint on the data (without necessarily havimgken completely
LD).
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Looking at which features of the genome such ascG@ent, gene
density and others, correlate with recombinaticieséas already
been done, both at the megabase scale and atltdimde scale
(Crawford et al. 2004; Myers et al. 2005; Myers akt 2006).

However, it may be very interesting to study thpaterns by only
looking at the recent recombinational landscapbegenome wide
scale.

Moreover, it has been shown that recombinationsrdietween
populations and individuals within populations alifferent. This
seems to be directly related to the different PRDM®@iants that
those individuals or populations may harbor. Bykiog at specific
recombinational events detected by IRIS in sevatdlerent
population from which the frequency of PRDM9 alkelre known,
we could have a better understanding of the role ¢gene has
played in shaping the recombinational landscapieatpopulation
level.

4.11. Concluding remarks

The aim of this work was to use recombination tadgt
human genetic variation by first developing a mdtho detect
recombination events, and second, use it to stutlg t
recombinational patterns of several human populatioThe
question is therefore whether these objectives baea achieved.

First of all, we have developed a method name® IRt
can extensively detect recombination events in taafeextant
sequences. One of the largest challenges of tloggirwas to
adjust our theoretical approach to the detectiomecbmbinations
on real human sequences. We initially developedakgorithm
aimed at detecting recombination events but latenge effort had
to be devoted to largely evaluate and validateefbie it could be
applied to real sequences. A natural consequenceetdcting
recombination events was that only the very recmms could
accurately be extracted. Although this was expedieel bias that
our detection method had towards recent events higiser than
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expected. This questioned our initial expectati®ecause we
thought that recombinations used as genetic marlcsld
potentially be more informative than SNPs. We hseen now that
our recombinational analysis is not better than besed on SNPs
but it is indeed complementary.

Next, we performed an extensive genotyping of ntben
one thousand SNPs in order to study the recombimatipatterns of
several human populations of the Old World. Mor@amantly, we
were able to make inferences based on the diffietent
recombinational patterns between populations. Eurttne number
of recombinations could be used as a proxy of doent effective
population size of human populations within suchlieaent time
frame that no one had looked at before. Specificalr results
stressed the higher diversity in Indian populaticassing the
qguestion of whether India could have played a magta in the Out
of Africa expansion of the Anatomically Modern Humsa

Finally, we explored further the use of the infation left
by recombination by taking haplotypes as genetickera. This is
an indirect way to incorporate recombination inte tstudy of
human populations because haplotypes include in skreicture all
the visible recombinational history of the sequenaed allow us to
go further in time than using specific events. Wendnstrate the
potential use of incorporating haplotypes into fatwanalysis of
human genetic variation.

In summary, we have provided some insights torjpoate
recombination into the study of population genetarsd even
population genomics by first developing a method detect
recombinations and second, by extracting relevaotmation from
both specific recombination events and haplotypean extended
study of human populations.
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MAIN REFERENCES FOR THE INTRODUCTION

These references have been used as a main guidehéor
introduction:

Campbell, M.C. and S.A. Tishkoff. 2010. The Evabatiof Human
Genetic and Phenotypic Variation in Africdurrent Biology : CB
20: R166-R173.

Coop, G. and M. Przeworski. 2007. An evolutionaigw of human
recombinationNat Rev Gen&}: 23-34.

Garrigan, D. and M.F. Hammer. 2006. Reconstructmgnan
origins in the genomic eralature Reviews Geneti@s 669-680.

Handley, L.J.L., A. Manica, J. Goudet, and F. Bai02007. Going
the distance: human population genetics in a clvald. Trends in
Genetics : TIQ3: 432-439.

Hey, J. and C.A. Machado. 2003. The study of stmect
populations - new hope for a difficult and dividedlence Nat Rev
Genet4: 535-543.

Hochwagen, A. and Gabriel A.B. Marais. 2010. Meogi PRDM9
Guide to the Hotspots of Recombinati@urrent Biology : CB20:
R271-R274.

Jobling, M.A., M.E. Hurles, and C. Tyler-Smith. 2D0Human
Evolutionary GeneticsGarland Science.

Paigen, K. and P. Petkov. 2010. Mammalian recontioimahot
spots: properties, control and evolutidlat Rev Genell: 221-233.
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Pool, J.E., I. Hellmann, J.D. Jensen, and R. Niels2010.
Population genetic inference from genomic sequewvaeation.
Genome Researd@0: 291-300.

Relethford, J.H. 2008. Genetic evidence and the emodiuman
origins debateHeredity100: 555-563.

Rosenberg, N.A. and M. Nordborg. 2002. Genealogitaés,
coalescent theory and the analysis of genetic poighisms.Nat
Rev GeneB: 380-390.

Stumpf, M.P.H. and G.AT. McVean. 2003. Estimating
recombination rates from population-genetic diat Rev Genet:
959-968
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Abstract

Recombination varies greatly among species, astifited by the
poor conservation of the recombination landscaped®En humans
and chimpanzees. Thus, shorter evolutionary timemés are
needed to understand the evolution of recombinatidere, we
analyze its recent evolution in humans. We caledlathe
recombination rates between adjacent pairs of &36&mmon
single-nucleotide polymorphism loci in 28 worldwideuman
populations and analyzed them in relation to gendistances
between populations. We found a strong and higldyicant
correlation between similarity in the recombinatiosates and
genetic differentiation between populations. Thisrrelation is
robustly maintained when considering presence/aeseif
recombination hotspots and after correcting foeaf’e population
size. A simulation analysis showed that the effiechot due to
haplotype sharing. This result indicates a rapicepaf evolution of
recombination, within the time span of differentat of modern
humans.
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Introduction

The recombination rate is neither constant alongralbsomes nor
across species. The rate within genomes has besanveldl to vary
at both the megabase level, with different chromasoregions in
the human genome showing differences in their réxoation rates
(Kong et al. 2002; Myers et al. 2005) and at arfiegel, due to the
existence of recombination hotspots (Myers et @052 Crawford et
al. 2004; McVean GA et al. 2004). A source of haiation could

be to the existence of a 13-bp sequence motif rezed by a
rapidly evolving zinc-finger protein, PRDM9 (Myert al. 2010;

Baudat et al. 2010). Comparisons of the human aaahimpanzee
genomes have revealed poor conservation of recatidm
landscapes, likely due to these changes in PRDMge(Met al.

2010), in contrast to the high level of DNA sequemonservation
observed among these species (Ptak et al. 2005¢ckigmet al.

2005). Recombination rates have also been compenetg human
populations, revealing large-scale conservationréSet al. 2005),
while some differences in hotspot intensities amches population-
specific hotspots have been described at a firsde Crawford et
al. 2004; Bertranpetit et al. 2003; Conrad et 80& Evans et al.
2005; Graffelman et al. 2007). Finally, differetiidies have shown
the existence of individual variation in recombioat (Coop and
Przeworski 2007; Coop et al. 2008); and its hellitgbhas been

investigated, along with its biological consequen¢kong et al.

2004).

Measuring the fine-scale recombination rate is arpentally
challenging and cannot be applied on a genome-vedale;
however good estimates can be obtained by applyomulation-
genetic methods to DNA sequences (Stumpf and Mc\Z&08).
Statistical methods have been developed to infer fthe-scale
structure of recombination rate variation from geeewide scale
data (McVean GA et al. 2004). One of the widelydusgethods is
implemented in the LDhat package, which is based oamposite-
likelihood approach. Simulations have shown the aDproduces
largely unbiased rate estimates of the fine-scaleetic map. More
recently, Khil and Camerini-Otero (2010) have shadat present-
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day genetic crossovers are well predicted by a latipn averaged
hotspot map computed from linkage disequilibriurtada

Differences in recombination rates among human
populations provide an exceptional temporal frantéwto analyze
the evolution of the recombination landscape, asy thre well
known and recent enough to capture fast evolutionhanges. The
basal branches of the genetic diversification ahlo populations
happened some 150,000 years ago, a much shorterttiam the
split between humans and chimpanzees (around 8l&rmyears).
The comparison of the recombination patterns ambuogan
populations provides a means to verify whether memoation
landscapes evolve over time. To address this isseeanalyzed
whether differences in recombination rates amongmdru
populations are correlated with their genetic ddfeees computed
as genetic distances. Whole genome estimationgaafntbination
rates based on SNP data are already availabledpMidp samples
which, however, consist only of four populations itapMap Phase
I and Il (International HapMap Consortium 2005;02Zp and 11
populations for HapMap Phase Ill. Here we computbe
recombination rates using data for 660,918 SNPshenlllumina
HumanHap650K Beadchips genotyped in the full HGCHERE
panel samples (Li et al. 2008; Jakobsson et al.8R@d6r 28
populations belonging to six continental groups respnting
worldwide human diversity (Cann et al. 2002).

Materials and methods

Recombination rate estimation

We considered the H971 subset of the Human Genoiwerdity
Cell Line Panel (HGDP-CEPH) recommended by Rosenber
(Rosenberg 2006). The 51 original HGDP-CEPH popurat
samples (Cann et al. 2002) were re-grouped intg@8ulations
based on geographic and ethnic criteria as in Garelnal. (Gardner
et al. 2006). To avoid small sample sizes, the yaimlwas
performed on genotypes from 28 populations belanpdgion six
continental groups, with sample sizes over 19 ildizls (a list of
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used populations and their number of individualgiliesented in
Table 1). We used data for 660,918 SNPs on themila
HumanHap650K Beadchips successfully genotyped i fill
HGDP-CEPH panel samples (Li et al. 2008; Jakobs$a@h 2008).
SNPs are spaced 4.4 kb apart on average, an ajgpeopength
given that hotspots occur every 200 Kb or lessthed widths are
1-2 Kb (McVean GA et al. 2004; Jeffreys et al. 200Bopulation
recombination rates were calculated between neigidpaSNPs
according to the method implemented in the@map program
(Auton and McVean 2007) within the LDhat packagedifhhead
and Donnelly 2001). LDhat methods have been demaisst to
give highly similar results to alternative approashn human and
chimpanzee datasets (Winckler et al. 2005; Jeffetyd. 2005) and
are computationally practicable for genome widdatem surveys.
For a reliable estimation of the recombination sateci with more
than 10% missing data in at least one populatioreveéscarded
from the analysis (Auton and McVean 2007). Afteisthleaning
procedure, the total number of SNPs included inahalysis was
636,933 (96% of all the SNPs in the HGDP). The nendf SNPs
for each chromosome is reported in Table 3. Foh @apulation, 5
independent runs of thdhomap program were carried out (with
parameters: iterations=10.000.000, sampling=5.000,
burnin=100.000). For each pair of adjacent SNPsob®&ined 5
estimates of the population recombination ratii( /kb) in each
population and the median of these 5 estimates wgasl in the
analysis.

Since population recombination rates) (@re dependent on the
effective population sizep(= 4Ngr), estimates of the population
recombination rate in each population were norredliby 6 =
4Nqu, a scaled population mutation rate obtained frove $ame
individualsand populationswherep is the genome-wide average
microsatellite mutation rate per locus and per ggiEn
(Graffelman et al. 2007). As there is no evidentenatation rates
varying among human groups, this correction produadues that
are not biased by effective population size.

Correlation between genetic distance and recombination
dissmilarity
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We obtained a Spearman rank correlation matrix ftoe
recombination rates among all pairs of populatiorisach
correlation value was obtained by comparing theieslof corrected
p (see above) for all pairs of adjacent typed SNEwvéen a
population pair. In order to simplify the companswith the genetic
distance, the Spearman correlation values wereedurimto a
dissimilarity measure by subtracting them from heTmatrix
obtained is then a measure of the dissimilarityreafombination
rates between each pair of populations.

The differentiation among human populations wasinmeged
through the Er measure (Weir and Cockerham 1984) among each
pair of populations. & values were calculated using a routine
implementedn the PopGen module of BioPerl (Stajich and Hahn
2005) and stored in a 28x28 matrix

The matrix of recombination dissimilarity and thaf genetic
distance (kr matrix), were compared using a standardized Mantel
test (Sokal and Rohlf 1995) by randomly permutir@99 times the
rows and columns of one of the matrices. Statisiocalyses were
implemented using the R statistical software.

Simulation analysis

To further investigate the effect of the sharinghaplotypes and,
hence of linkage disequilibrium patterns (which atehe base of
the recombination rate estimates) on the relatipndietween
genetic distance and recombination landscape, wsgrkd a
simulation study.

The simulations were carried out with the COSI paog (Schaffner
et al. 2005) which provide a simulation of the hunteemography
under a three-population model based on the Hapbéguplations.

This model was specifically designed to generatguseces that
closely resemble empirical data of three human |abiouns

(African, European and Asian) by means of simutairhuman-like
demography and a variable recombination rate albagequences,
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allowing for presence and absence of hotspots. sitmelator is

already calibrated to obtain realistigrFvalues that mimic the
divergence found among the three populations bgimglated. We
performed 1000 simulations using the best-fittingmagraphic
model provided by COSI. We set the length of thenuated

sequences to 1 Mb and adopted a sample size oédifesces for
European and Asian populations and 42 for the Afripopulation
with the aim of having the same amount of individuas in a three
chosen equivalent HGDP populations (Yoruba, Frerahd

Japanese). In each simulation, the recombinatitmisaexactly the
same for the three simulated populations: this detad simulated
genotypes of different populations that share comrhaplotypes
but do not have experienced differences in th&omgination rate.
Finally, in order to have a similar ascertainmemasbin the

simulations as in the observed data, we removedsSNth MAF

lower than 0.1 and performed a selection of tagSNits r* higher

than 0.8 using Haploview software with the pairnoggion (Barrett
et al. 2005). In order to compare simulated data toonsistent
empirical dataset, we randomly chose, along theleviggnome,
1000 non-overlapping 1Mb long windows, and we arnedlythem
across the three populations of Yoruba, FrenchJapdnese.

We then computeddr and recombination rates, following the same
procedure as before, for real and simulated ddtdahd shared
haplotypes were the main source of the high cdroglafound
between recombination and genetic distance, weagxpeobserve
this correlation also in the simulated data.

Results and discussion
Exploratory analysis of recombination rates

Population recombination rates were computed betweR6,933
neighboring SNPs for 28 populations. As the recoration rate
was estimated through several runs for each papolaand to test
for the agreement of estimates between runs of shee
chromosome, 10 runs were performed for chromosoihéoP all
populations. We carried out a repeated measure AN@¥gting
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population and run as the main effects and paiesl@Ecent SNPs as
a covariate. No statistical significance of runsswiaund, but
population and pairs of adjacent SNPs were higiggiicant (data
not shown). This result reflects that the noisethie estimation
procedure is low in relation to differences betwpepulations.

Table 2 shows the mean estimated recombination fi@teall
populations, grouped according to geographical oregResults
indicate considerable variation in recombinatioriesa between
populations, with small values for populations frdfast Asia. A
repeated measure ANOVA show that differences batwee
populations are highly significant (F= 59473%8< 0.00001). A
Friedman ANOVA test shows similar results (ANOWR =
2255369 p < 0.000001). Post hoc analysis using afdBmni
correction for the repeated ANOVA test show differes between
populations remain significant, except for two h@®oous groups
from Central South Asia: Pathan, Burusho and Braland
Mozabite, Balochi and Makrani. Figure 1 shows eated
recombination rate, (scaled by the genome-wide aaeer
microsatellite mutation rate) along chromosome 2& {6
populations (one from each continental region). Tigaere show
similar pattern for all populations, however subst variation
could be detected by close observation. For exgngdeith East
China and Maya present by far less hotspots than dtiner
populations. A hotspot located around 20 Mbp inpalpulations is
absent (or much weaker) in Russian. A hotspotsoreground 32
Mbp is absent (or much weaker) in Brahui, Buruddazara, Han,
maya and Druze, but present in all other populatidiis variation
is consistent with previous reports in other gerworuci and
genome-wide (Graffelman et al. 2007)

Genetic distance and recombination similarity between
populations

Spearman rank correlation between populations rbowation
estimates were obtained by comparing the valuesoofected
recombinationp for all pairs of adjacent typed SNPs between a
population pair. The differentiation among humarydations was
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estimated through theskFmeasure (Weir and Cockerham 1984)
among each pair of populations. The correlationuesl in
recombination between population pair angr Fheasures were
stored as a dissimilarity and distance matricepeaes/ely and
compared using a standardized Mantel test (SolkdhRahlf 1995).
A significant Mantel'sr correlation of 0.894 K < 0.0001) was
observed, indicating that differences in recombamatates among
populations increase with their genetic distandaguife 2). In other
words, genetic differentiation across human popariat explains a
considerable amount of recombination differencesoramthem.
This result also stands when the analysis is inudgatly
performed for each chromosome; then the Mantel destelation
ranges from 0.761 for chromosome 16 to 0.946 foordosome 10
(Table 3).

It can be argued that these results could be exgaaby similar
patterns of the recombination rate in the closegufations, due to
the presence of common or shared haplotypes (de@)hand not
to a lower genetic differentiation among them. Testt this
hypothesis, we repeated the analysis consideringy ame
population per continental group to avoid redungandhe genetic
composition of geographically close populationspérticular, the
analysis was performed with data from Yoruba (Ad}icFrench
(Europe), Bedouin (Middle East / North Africa), Bgho (Central /
South Asia), Han (East Asia) and Maya (America)atons. The
observed correlation remained very high (Mantels 0.863,P =
0.002) and was statistically significant even vilte low number of
pairwise comparisons.

To test for the impact of using the same data geteStimating
recombination and genetic distance, we performeadaatel test
between the Fst matrix calculated for one chrom@sesrsus the
recombination dissimilarity matrix computed on thether
chromosomes. Results are presented in supplemetataley 1 and
show that this relationship remain and are highgyificant in all
casesf§ < 0.00001) even when genetic distance and recatibm
dissimilarity are estimated from different partstbé genome. The
maximum correlation is obtained when both matricesre
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calculated for the same chromosome; however tmstalways the
case and may reflect inaccuracies in rates estmati

Hotspots analysis

Alternatively, comparisons of recombination ratesnoag
populations can be evaluated by attending to thesgmce or
absence of recombination hotspots. We defined apbobtin each
population as a recombination rate that exceedmé&stthe mean
rate, producing a threshold of 49 / 6. 22,413 hotspots have been
detected at least in one population each. The numbéotspots
vary from 2582 for South China to 8042 for Palaatin (no
correlation between the number of hotspots and latipn sample
size was observed, Pearson correlation test -0.08 p > 0.05;
Spearman correlation test= 0.34p > 0.05. The proportion of
shared hotspots between continental regions is rmanri between
EUR and MENA (0.34), EUR and CSASIA (0.31) and bew
MENA and CSASIA (0.29). These values are much lowé&en
considering SSAFR or EASIA (Table 4).

We calculated the Jaccard distance between eacbfgaopulations
to measure the overall difference in presence/aesehhotspots (in
this distance, the absence of a hotspot in a gpasition in two
populations does not contribute to the similarigtvieen them as
would be in the case of a simple matching coeffigieComparing
this distance matrix with thes- matrix, highly significant results
were obtained (Mantel's = 0.866,P < 0.0001), suggesting that
differences in the location of recombination hotspacreases with
genetic differentiation between human populations.

Simulation analysis

With the mantel test analysis using only one padpaafrom each
continent, we have shown that the effect of hapletgharing in
closely related populations does not explain threetation between
genetic differentiation and recombination. Howe\uens possible
that the sharing of haplotypes and, hence of liekdigequilibrium
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patterns, had a considerable effect also on digtaptlations, since
its origin can be traced back to the Out of Afraxggin of modern

humans. To disentangle this point, we performenallation study
designed to recognize the impact of using shar@tbtges on the
estimates of recombination, rather than to repteaeformal null

model.

As the number of simulated populations is only ¢hréne Mantel
test cannot provide a robust comparison. To comptoe
relationship between recombination similarities arggnetic
differentiation in the three populations being siated and in the
three corresponding HGDP populations, we perfora&pearman
correlation of the values of recombination betwadmeighboring
SNPs in the 1Mbp and their FST values, for bothutated and
empirical data. This is a more stringent test thh@ previous
overall comparison betweersfFand recombination patterns, since,
rather than general means, data points correspomd ta 1000
windows of 1 Mb each. The correlation between rewoiation
values and genetic distance for empirical dataCa2é, 0.25 and
0.27 for Yoruba-French, Yoruba-Japanese, and Fr@aphnese
respectively (all significant). Conversely, thesalues were only
0.05, 0.06 and 0.09 for the simulated African-E@am African-
Asian and European-Asian (only the last compariseas
marginally significant). This shows that, within ethsimulated
populations, Erand recombination rate were not correlated despite
sharing common haplotypes, whereas they are cleamyelated
within the three studied populations. The commongior of
haplotype structure, as illustrated in the simolatilata, is unlikely
to have contributed measurably to the correlatietwben genetic
distances and structure of the recombination laaquscThe low
(although significant) correlation values betweenst Fand
recombination dissimilarity in the empirical dathow/ that SNP
variation captures a low amount of the variation tife
recombination events distribution >(r= 0.07 on average).
Presumably, differences in allele frequencies betwpopulations
correlate  with recombination patterns through Iloka
disequilibrium with any motifs or genomic signalsat induce
recombination. That such correlation is small mayply that
recombination patterns evolve faster than the vt stable allele
frequencies.
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Concluding remarks

The results of this work reveal the footprint ok tlevolutionary
history of human populations on the recombinatiate,rimplying

that differentiation in recombination rate estinsagecross human
populations could be explained, in an importantt,pay their

genetic differentiation. The large differences fdunn the

comparison of the recombination landscapes amomgahs and
chimpanzees (Ptak et al. 2005; Winckler et al. 26)®wed that
recombination evolves quickly. Here, we give evickethat, even at
the narrow timescale separating human populatiomshe order of
tens of thousands of years, differences appeae tdetectable and
to be correlated with genetic differentiation amopgpulations.

Recombination rate appears to be a rapidly changergmeter,
indicating that the underlying factors shaping tikelihood of a

recombination event, such as DNA sequences congoll
recombination rate variation, also change. Thigdasistent with

recent data showing that allelic variants of PRDNcZingers are
significantly associated with variability in genorhetspots among
humans (Baudat et al. 2010). The results obtaimethis work

contribute to the growing perception of recombio@atinot as a
genome-wide, cross-species fixed phenomenon, batflastuating

property well in accordance with its basic, molecwhechanism.
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Figure Legends

Figure 1. Recombination rate estimates J1@or successive SNP-pairs for
chromosome 22 and in each of 28 populations, gmbuipé geographical
regions.
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Figure 2. Relationship betweerFvalues and the recombination rate correlation
based on 378 pairwise populations comparisons
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APPENDIX B. Contributions to other articles as a
Genographic Consortium member
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