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Abstract 

The aim of this work is to use the information left by recombination 
in our genomes to make inferences on the recent evolutionary 
history of human populations.    For that, a novel method called 
IRiS has been developed that allows detecting specific past 
recombination events in a set of extant sequences. IRiS is 
extensively validated and studied in whole set of different scenarios 
in order to assess its performance. Once recombination events are 
detected, they can be used as genetic markers to study the 
recombinational diversity patterns of human populations. We apply 
this innovative approach to a whole set of different human 
populations within the Old World that were specifically genotyped 
for this end and we provide new insights in the recent human 
evolutionary history of our species. 

 

Resum  

En aquest treball es pretén utilitzar la informació que deixa la 
recombinació al nostres genomes per fer inferències sobre la 
història evolutiva recent de les poblacions humanes. Per fer-ho, s’ha 
desenvolupat un mètode novedós, anomenat IRiS, que permet la 
detecció de recombinacions antigues específiques en un conjunt de 
seqüències. Hem validat  extensivament IRiS i l'hem sotmès a 
diferents escenaris per tal d’avaluar-ne l’ eficàcia. Un cop els events 
de recombinació són detectats, es poden utilitzar com a marcadors 
genètics per estudiar els patrons de diversitat de les poblacions 
humanes. Finalment, hem aplicat aquesta innovadora aproximació a 
un conjunt de poblacions humanes del Vell Món, que varen ser 
genotipades específicament amb aquesta finalitat, aportant nous 
coneixements en la història evolutiva recent dels humans.  
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Preface 

The paradigm on how variation is inherited was solved in the early 
twentieth century, when Mendel’s rules of inheritance were 
reconciled with a Darwinian theory of evolution. We now have an 
understanding on which are the forces that shape the variation 
present in our genomes; which are their dynamics, and how they 
can be modeled.  

Although recombination is one of the main sources of this genetic 
diversity, the footprint it leaves is far more difficult to detect than 
the one left by mutation. Therefore, the study of human genetic 
variation and the inferences about our evolutionary history have 
been based on the study of markers generated by mutation such as 
SNPs and STRs whereas recombination has been put aside for its 
complexity and lack of informative data. 

Nowadays, data is produced at an astonishing rate thanks to fast and 
cost-efficient high throughput technologies, and new computational 
methods are being developed to analyze such data. The era in which 
complete genomes are sequenced in a matter of days has just 
arrived. 

It is in such revolutionary context that our project was born: trying 
to incorporate recombination in the study of human genetic 
variation was a very challenging project but was now feasible. I 
believe that incorporating recombination into the study of human 
diversity may have a whole set of different applications that will not 
be restricted only to population genetics but also to study the 
mechanisms underlying recombination at the genomic level. 

 

.  
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1.1. Sources of genetic diversity  

Two main processes generate diversity in genomes: mutation and 
recombination. Mutation is the sole source of new alleles whereas 
recombination creates new combinations of alleles at different loci. 
Other processes shape diversity, such as genetic drift, selection, 
gene conversion and migration. 

1.1.1. Mutation 

By definition, any change in a DNA molecule producing a new 
allele is called a mutation. Only those mutations occurring on the 
germ-line will be heritable and may carry evolutionary 
consequences. Changes produced by mutation can be substitutions, 
insertions or deletions (indels) of single bases or small segments, 
expansions or contractions of the number of tandemly repeated 
DNA motifs, insertions of transposable elements, duplications, 
deletions and inversions of megabase segments of DNA, 
translocations of chromosomal segments and even changes in 
chromosome number. These mutation events are caused by different 
mechanisms and they may have very different dynamics and rates. 

Base substitutions are generally caused either by the 
misincorporation of nucleotides during replication, or due to 
mutagenesis caused by chemical agents or physical damage such as 
ultraviolet radiation. By definition, they will give rise to single 
nucleotide polymorphism (SNPs) once the new variant reaches a 
frequency higher than 1% in the population. In humans, the 
estimated substitution rate per generation and nucleotide has been 
estimated to be around 10-8 per nucleotide per generation (Roach et 
al. 2010; The 1000 Genomes Project Consortium 2010). On the 
other hand, it has been shown that the substitution rate is not 
uniform; for example, CpG dinucleotides mutate at a rate ten times 
faster than that of any other dinucleotide. Moreover, the average 
mutation rate of mitochondrial DNA is 3.33×10-7 substitutions per 
generation (Soares et al. 2009), with a rate an order of magnitude 
faster in some segments of the mtDNA molecule. Another type of 
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genetic variation are the Variable Number of Tandem Repeats 
(VNTRs), which are sequences arranged in tandem arrays and 
depending on the length of their arrays are classified into 
microsatellites, minisatellites and satellites. Mutation at the VNTR 
involves both changes in the number of repeats and in repeat 
composition.  

Microsatellites or STRs are tandem arrays of repeats of 1- 6 bp. 
They have been largely used to study human genetic variation, 
basically, because they are highly informative: they are multiallelic 
and they have a high mutation rate (around 10-3-10-4 per locus per 
generation). The mechanism underlying the mutation process is 
thought to involve replication slippage.  

Mutation rates are different between males and females; and in 
general terms males have higher substitution rates within the 
germline cells, which are thought to be related with the higher 
number of cell divisions that sperm undergoes, compared to oocites. 
Further, since in the sperm line the number of cell divisions 
increases with age, the number of substitutions also increases with 
the father’s age. On average, the male:female substitution ratio has 
been estimated to be 5:1 (Makova and Li 2002). In the case of 
microsatellites, microsatellite mutations occur three to five times 
more often in fathers than in mothers although a smaller paternal 
age effect is observed (Gusmão et al. 2005; Jobling et al. 2004). 

1.1.2. Recombination 

Recombination is defined as the process by which a molecule of 
DNA is broken and then joined to a different one. Recombination 
can occur between similar molecules of DNA, as in homologous 
recombination, or dissimilar molecules, as in non-homologous end 
joining. 

The process of homologous recombination starts with a double 
strand break (DSB) that will then be repaired using the sister 
chromatid as a template. This process can end in crossing over 
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when flanking markers have exchanged or in a non crossing-over 
event named gene conversion in which the initializing chromatid 
acquires a short sequence from its homologous partner with no 
exchange of flanking markers. See Figure 1 for a more detailed 
explanation of the process. 

The combination of different alleles within a chromosome is called 
a haplotype. Recombination, by creating new allele combinations, 
increases haplotype diversity in a population. Similarly, 
recombination can break up combinations of alleles unless they are 
very close to each other. In a population sample, the non-random 
association of alleles at different loci more or less often than would 
be expected by chance is called linkage disequilibrium (LD). When 
a new allele appears in a population, it does so in a particular 
haplotype, meaning certain alleles will be associated to it. As 
generations go by, this new combination of alleles may be broken 
depending on the recombination rate between these two markers. 

There are several measures of LD. One of them is the D statistic, 
which is calculated as the observed frequency of the haplotype 
formed by alleles A and B minus the expected frequency if those 
two alleles were statistically independent. Also, D’ can be 
calculated as the value of D divided by the maximum possible value 
of D given A and B allele frequencies. Then, if D’ is equal to one, it 
means that evidence of recombination is absent in the population 
sample analyzed. Another measure of LD is r2, which is the square 
of the correlation coefficient between the two loci. r2 can be equal 
to one if only the two complementary haplotypes (i.e. AB and ab) 
are present; then one locus carries complete information about the 
contents of the other locus, as the allelic state of locus A can be 
perfectly predicted from locus B, and vice versa. This measure of 
LD is less inflated by small sample sizes than D’. 

The average recombination rate over the genome is around 1 
cM/Mb which corresponds to 10-8 recombinations per locus per 
generation. However, recombination rates vary greatly at the 
megabase scale, at the sequence level, and between sexes. 
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Figure 1. Recombination begins when the products of trans-acting genes, such as 
PR domain-containing 9 (Prdm9), locally activate chromatin, permitting the 
topoisomerase sporulation-specific 11 (SPO11) to catalyse a DNA double-strand 
break (DSB) on one of the four chromatids. This is followed by resection of the 5′ 
strand to leave a 3′ overhang, which in turn invades a non-sister chromatid. The 
resulting strand overlaps to form so-called Holliday junctions, which then migrate 
outwards away from the original site. This interaction promotes pairing of the 
non-sister chromatids along their length. The DSBs are subsequently repaired by 
the process of homologous recombination, yielding either crossovers (COs), with 
an exchange of flanking markers, or non-crossover (NCO) gene conversions in 
which the initiating chromatid acquires a short sequence from its homologous 
partner without the exchange of flanking markers. In either case the site of the 
original DSB is repaired using the opposite chromatid as a template; when SNPs 
are available in the middle of the hot spot this fact can be used to determine 
which chromatid initiated recombination. Current evidence suggests that the 
alternative CO and NCO products arise by distinct recombination pathways: DSB 
repair (DSBR), which yields predominantly COs, and synthesis-dependent strand 
annealing (SDSA), which yields predominantly NCOs. The SDSA pathway 
predominates, and only about 10% of original DSBs result in COs. Figure taken 
from the review Paigen et. al 2010.  
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Recombination rates have been shown to be much higher than 
average on the telomeres (3 cM/Mb), lower in the centromeres (0.1 
cM/Mb) and, on average, about twice as high on the smallest 
chromosomes compared with the largest ones. In fact, it is thought 
that one recombination per chromosomal arm per generation is 
necessary for the correct separation of the chromosomes during 
meiosis (Figure 2). Moreover, rates are strongly positively 
correlated with GC content and with other genomic properties, 
notably gene density.  

At the sequence level differences are much stronger. In fact, it has 
been shown that only 20% of the sequence undergoes 80% of all 
recombinations (Myers et al. 2005). This is due to the fact that there 
are 1-2 kb regions in the genome called hotspots that have 
recombination rates that are four orders of magnitude higher than 
neighboring regions (called coldspots). See below for a discussion 
of recent findings on recombination mechanisms.  

 

 

Figure 2. Relationship between total sex-averaged genetic-map length and total 
number of chromosomal arms in different species, excluding the small arms of 
acrocentric chromosomes. This correlation suggests that recombination is 
necessary to occur in each chromosome for the correct separation of homolog 
chromatides in the meiotic process. Figure taken from Coop et. al 2007. 
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Recombination rate is higher in females than males being about two 
fold higher in females (Kong et al. 2010). The distribution of 
crossover locations also differs between sexes, tending to be lower 
at the telomeres and higher near the centromere in females 
compared to males. At the fine scale, females tend to recombine in 
location between genes and males between exons (Figure 3) and it 
has been recently estimated that 15% of the hotspots are sex-
specific (Kong et al. 2010). Finally, recombination rates are also 
different among individuals of the same sex, and these differences 
are inheritable (Broman et al. 1998; Kong et al. 2002; Kong et al. 
2008). In females, the number of crossovers varies enormously 
among the oocytes for the same women (Lenzi et al. 2005). 

 

Figure 3. Schematic picture summarizing general trends on the 
recombination location in males and females from an extensive 
pedigree study of 15,257 parent-offspring pairs. It is not meant to 
reflect the recombination rate pattern around a specific gene. Male 
recombination rate, although low at exons, tends to be high at 
intronic regions that are distant from exons. Male and female recombination 
rates both tend to be high at intergenic regions around 40 kb from the first or last 
exon of a gene, but it is higher for females. Also, for both sexes, 
intergenic regions close to 3′ ends tend to have higher 
recombination rates than those close to 5′ ends. Figure taken from 
Kong et. al 2010. 
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1.1.3. Random Genetic drift  

Genetic drift is defined as the source of variation on allele 
frequencies given the sampling process of gametes from one 
generation to the next. Although changes in allele frequencies due 
to random genetic drift in any individual population cannot be 
predicted, the average behavior of allele frequencies in a large 
number of populations can be. The population model to study these 
effects is called the Wright-Fisher Model and was described by 
Wright and Fisher independently (Fisher 1930; Wright 1931). This 
model has several assumptions: 

- Non overlapping generations 

- Constant population size  

- Random mating (panmixia) 

- A random Poisson-distributed number of offspring per 
individual  

Under the Wright-Fisher model, it can be shown that the lower the 
population size the stronger the genetic drift. In fact, a new allele 
arisen in a small population will not only have higher probability of 
becoming fixed but it will also be fixed more rapidly than it would 
in a larger population (Figure 4). Specifically, it can be assumed 
that T= 4N where T is time to fixation and N is the size of the 
population.  

Moreover, the model implicitly assumes that the population has 
persisted over a long period of time such that it has reached an 
equilibrium state. Under this equilibrium state, the diversity present 
in the population will be constant over time since the same amount 
of new variants that appear through mutation are removed from the 
population due to genetic drift. This equilibrium value of diversity 
is known as the population mutation parameter or theta (θ) and it 
combines information on the mutation rate (µ) and the effective 
population size (Ne) of the population: 

 θ = 4Neµ 
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Figure 4. Effect of population size on genetic drift with varying population sizes. 
Each figure shows ten simulations of random change in the frequency distribution 
of a single hypothetical allele over 50 generations. (A) Population size = 20. (B) 
Population size = 200. (C) Population size = 2000. In the population of constant 
size of 20, alleles can either become fixed or lost very rapidly whereas more 
subtle variations are seen in the populations with larger sizes. Figure by professor 
Marginalia in 
http://upload.wikimedia.org/wikipedia/commons/a/a0/Random_genetic_drift_cha
rt.png  
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The same equilibrium will be reached regarding the diversity 
generated by recombination. Recombination generates new 
haplotypes by breaking up linkage disequilibrium between alleles 
whereas random genetic drift will remove those haplotypes from the 
population. Therefore, the amount of recombination that we will 
find in the population will be determined by the population 
recombination parameter or rho (ρ) which combines information on 
the effective population size (Ne) and recombination rate (r). 

 ρ = 4Ner 

Moreover, rho can be directly related with the amount of linkage 
disequilibrium measured by r2 within a population by the 
approximation (Hill 1975): 

 E (r2) ~1/ (2+ ρ) ~ 1/ (2+4Ner) 

The assumptions made for the Wright- Fisher Model, however, are 
unrealistic and, in most of the cases, the census size and the 
effective population size are different. Then, for any population, its 
effective population size represents the size of an idealized Wright-
Fisher population that experiences the same amount of genetic drift. 
Therefore, the effective population size gives a hint on the 
magnitude of genetic drift that a population may have undergone. In 
general terms, the effective population size is less than the census 
size. For example, when generations overlap, which is the case for 
humans; it has been shown that Ne is roughly N/3. 

There are several scenarios in which some of the assumptions of the 
Wright-Fisher model are not fulfilled. For example, when the 
population size is not usually constant over time, the effective 
population size has been shown to be equal to the harmonic mean of 
the population sizes over time. This means that the effective 
population size is extremely influenced by the low values of 
previous population sizes.  
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Another case in which the Wright-Fisher assumptions are not 
fulfilled is when the variance in the reproductive success is high, 
which means that the number of offspring each individual has is 
highly variable. The higher the variance, the lower the effective 
population size is, compared to the census size. Moreover, because 
differences in the variance on the number of offspring can be 
different between males and females, the effective population sizes 
of the two sexes may be different as well. 

Individuals of a population do not mate randomly due to several 
reasons. Individuals may choose their mates to be more similar to 
themselves than randomly expected; this phenomenon is called 
assortative mating and increases genetic drift as long as the features 
a mate chooses on are inheritable. For instance, human couples 
show a positive significant correlation for height. The reverse 
phenomenon is called dissortattive mating and decreases genetic 
drift. Choosing mates having an HLA type different from one’s own 
would be an example.  

Census size and effective size can also be different when the 
population is substructured, meaning that what we call a population 
is made of partially isolated subpopulations and individuals 
belonging to one subpopulation will tend to mate among them. This 
will increase random genetic drift and decrease the effective 
population size. Note, however that whereas random genetic drift 
decreases diversity in each of the subpopulations, it will increase 
the genetic differentiation between them.  

One of the most common statistics to measure the degree of 
substructure between subpopulations is the FST statistic, which 
specifically measures the difference in allele frequencies between 
the subpopulations. For one locus, FST = var (pi) / p (1-p) where var 
(pi) is the variance of allele frequencies in the subpopulations i and 
p is the average allele frequency across all subpopulations.  

Several demographic events may have an effect on the effective 
population size. Two of the most relevant are bottlenecks and 
founder effects. A bottleneck however, refers to a reduction on size 
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of a previously large population whereas the founder effect is 
related to the process of colonization and the genetic separation of a 
group of individuals from a source population. Both imply a 
reduction of the effective population size and a loss of diversity.  

Finally, different regions of the genome may have different 
effective sizes. If we consider a single mating couple, together they 
have four copies of the autosomes, three copies of the X 
chromosome, one copy of a Y chromosome, two copies of mtDNA 
from which only one will pass to the next generation. Therefore, the 
effective size of the X is ¾ of that of the autosomes and for the Y 
and the mtDNA it is ¼. 

1.1.4. Migration  

Migration can be defined as the movement of individuals from one 
population to another and their contribution to the gene pool of the 
receptor population. The consequence of migration therefore is gene 
flow and the higher the gene flow between two populations, the less 
differentiated they will be. 

There are several models of migration (Figure 5). The simplest is 
called the island model in which a meta-population splits into 
islands of equal size N which exchange genes at the same rate m per 
generation (Wright 1940). Under this model, the amount of 
differentiation between populations (measured with the FST statistic) 
depends only on the size of each subpopulation and the migration 
rate (which are all the same for all subpopulations): 

 FST= 1/(1+4Nm) 

The stepping stone model (Kimura and Weiss 1964) specifically 
includes the space element, and therefore, migration can only 
happen between neighboring populations. This model also assumes 
equal rates of migration between subpopulations. 
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The isolation by distance model (Malecot 1969; Wright 1943) 
models migration as occurring within a continuous population by 
considering that mating choices are limited by distance. Then, on 
average, individuals will be related as a function of their 
geographical distance. Some recent studies have shown that 
worldwide patterns of genetic variation in humans can be explained 
under an isolation-by-distance model (Conrad et al. 2006; 
Relethford 2004). For example, Relethford et al. (2004), looked at 
genetic variation between human populations across the world using 
data on red blood cell polymorphisms, microsatellite DNA markers, 
and craniometric traits and showed how the isolation-by-distance 
model provided a good fit to the patterns observed.  

 

Figure 5. Different models of migration. (a) Island model of migration. (b) 
Stepping-stone model. (c) Isolation by distance model. (d) Metapopulation model 
in which populations come and go over time (t) with the founding and extinction 
of entire populations being an important component of population structure. 
Figure from Hey and Machado 2003. 
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These three models of migration, however, assume that migration 
rates have been constant for a long period of time and that the 
system has reached equilibrium. These assumptions may not be true 
in most of the cases. Other models incorporate parameters that can 
change as a function of time and they do not assume populations to 
have reached equilibrium (Slatkin 1977; Wade and McCauley 
1988).  

On the other hand, all these models consider that the migrants are a 
random sample of the source population although it has been shown 
that migrants tend to be sex-biased, age-structured and related to 
one another (Jobling et al. 2004).  For example, it has been 
estimated to be 70% of modern societies are patrilocal (Jobling et 
al. 2004). This implies that in marriages between different villages, 
it will be the females that will migrate to the men’s village to live 
with them. 

1.1.5. Selection 

Natural selection is defined as the differential reproduction of 
genotypes in succeeding generations. The ability to detect the 
footprint of natural selection in the genetic record has arisen a 
considerable excitement. First, this will allow studying the 
evolutionary processes that lead to adaptation and, second, because 
information regarding selection may provide important functional 
information that could potentially be related to basic biology and/or 
disease. 

Several challenges are faced when trying to detect selection, one of 
the most important ones being that some demographic processes 
may lead to very similar patterns of diversity. Several types of 
selection can be defined depending on the fate of the alleles when 
acting on them. 

Positive selection on a particular allele will lead to an increase of 
the probability of a particular new variant to be fixed. Therefore, 
there may be evidence of a rapid increase in frequency of a derived  
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Figure 6. The process of a selective sweep. The lines indicate individual DNA 
sequences or haplotypes, and derived SNP alleles are depicted as stars. A new 
advantageous mutation (indicated by a red star) appears initially on one 
haplotype. In the absence of recombination, all neutral SNP alleles on the 
chromosome in which the advantageous mutation first occurs will also reach a 
frequency of 100% as the advantageous mutation become fixed in the population. 
Likewise, SNP alleles that do not occur on this chromosome will be lost, so that 
all variability has been eliminated in the region in which the selective sweep 
occurred. However, new haplotypes can emerge through recombination, allowing 
some of the neutral mutations that are linked to the advantageous mutation to 
segregate after a completed selective sweep. As the rate of recombination 
depends on the physical distance among sites, the effect of a selective sweep on 
variation in the genomic regions around it diminishes with distance from the site 
that is under selection. Chromosomal segments that are linked to advantageous 
mutations through recombination during the selective sweep are coloured yellow. 
Data that are sampled during the selective sweep at a time point when the new 
mutation has not yet reached a frequency of 100% represent an incomplete 
selective sweep. Figure taken from Nielsen et. al 2007. 
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variant together with the linked loci (selective sweep) and 
consequent accumulation of rare variants in the selected haplotype 
after a while (Figure 6). A population expansion may mimic the 
effect of selection by creating an increased number of rare variants 
but, whereas the selective sweep will take place within a specific 
locus, the footprint of demographic events should be spread 
throughout the genome. Negative or purifying selection acts by 
removing deleterious variants. The main consequence is a decrease 
in diversity since new deleterious alleles are systematically removed 
from the population. 

Balancing selection is a particular case in which the selective 
advantage is conferred to the heterozygous individuals. The 
consequence is an increase of diversity since it promotes that both 
copies of the alleles are at intermediate frequencies. Population 
substructure will lead to similar diversity values since one of the 
alleles may be at higher frequency in one population and the other 
in the other one producing an average allele frequency of 
intermediate values when taking the two populations together. 
Again, evidence of substructure should be seen over all the genome 
whereas balancing selection should be located in specific regions of 
the genome. 

Several tests can detect the footprint of selection acting in some 
populations compared to others. Tests could be divided in those that 
consider at population differentiation such as the Lewontin-
Krakauer (Lewontin and Krakauer 1973) or FST - based, tests based 
on the allele frequency spectra such as Tajima’s D (Tajima 1989) or 
Fu and Li (Fu 1997), and finally test based on linkage 
disequilibrium and haplotype structure, which take advantage of the 
pattern left by a selective sweep. Most of the different tests to detect 
selection have been reviewed by Nielsen (2005; 2007). 
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1.2. Making inferences from diversity  

The study of population genetics has traditionally been divided 
between gene-tree based phylogeographic methods (Avise (1987) 
coined the word phylogeography) and a more traditional 
mathematical approach that relies on explicit models and summary 
statistics. The development of the coalescent theory, however, 
presented a coherent statistical framework for analysis of genetic 
polymorphism that allowed modeling processes such as 
recombination, demography and selection, something that could not 
easily be done before. Finally, with the increase of molecular data, 
the number of computational methods and more explicit model-
based approaches, mostly based on likelihood, has increased 
significantly.  

1.2.1. Phylogeography: mtDNA and Y chromosome 

Phylogeography refers to the study of the geographical distribution 
of the clades within a phylogeny. Therefore, this approach 
necessarily implies the construction of a tree representing the 
phylogenetic relationships among the individuals or, in fact, of the 
DNA sequences.  

Several methods can be used to construct phylogenetic trees based 
on genetic data (reviewed in Holder and Lewis (2003). The simplest 
method is the UPGMA, in which a tree is constructed based on a 
distance matrix by putting together the taxa with the lowest distance 
in an iterative process. The problem with UPGMA is that it 
considers that the evolution rate is the same in all branches. 
Conversely, the Neighbor-Joining method attempts to construct the 
tree with the shortest sum of branch lengths but it allows different 
branch lengths. On the other hand, the maximum parsimony method 
finds the tree with the smallest number of evolutionary changes 
whereas the maximum likelihood method chooses, given an 
evolutionary model, the tree which has the maximum likelihood of 
producing the data. Maximum parsimony is very accurate with 
phylogenetically close taxa but can not be suitable for divergent 
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taxa. Maximum likelihood is computationally much more intensive 
but can be more reliable provided that the evolutionary model used 
is suitable. Finally, Bayesian approaches have recently been 
introduced to phylogenetics. With these methods, the optimal 
hypothesis is the one that maximizes the posterior probability. They 
allow complex models of evolution to be implemented and they 
provide measures of support faster than maximum likelihood 
bootstrapping.  

In some cases, however, the phylogenetic relationships are best 
represented with a network rather than a tree because networks can 
contain information of several trees. For example, it is very 
common to build networks when trying to represent phylogenetic 
relationships using mtDNA in human populations since by building 
up networks, all possible recurrent mutations can be represented as 
reticulations and no assertion is made on which is the true tree. 
Choosing which method to use may depend on the kind of data that 
we have and the computational power we may have available. 

In any tree, time is intrinsically represented in the sense that events 
occurring in the tips of the tree may represent later events than those 
closer to the root. The molecular clock hypothesis states that for any 
given DNA sequence, the rate of evolution is approximately 
constant over all lineages. Taking this into consideration, we 
potentially could date all events in the tree once the molecular clock 
has been calibrated using some external information such as the 
fossil record. However, to date, calibration on mutation rates is not 
very accurate. 

All those methods, however, intrinsically imply that recombination 
is absent, since recombination will put together two different 
lineages. Therefore, most of the phylogeographic approaches to 
study the recent human history and migrations have been restricted 
to mtDNA or the non recombining portion of the Y-chromosome 
(Torroni et al. 2006; Underhill and Kivisild 2007).  

However, some issues should be taken into account when making 
inferences from these two compartments (see Balloux (2009)). First, 
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each of them represents a single locus and therefore they represent a 
single realization of the many possible outcomes within a given 
demographic history (Ballard and Whitlock 2004). Second, they 
both contain genes and therefore, they could be subject to selection, 
something that would affect the whole tree structure since all genes 
are linked and any selective effect in one gene would affect all the 
others. Finally, in the case of mtDNA, the mutation rate is very high 
at some loci (Soares et al. 2009) and homoplasy can highly affect 
the inferential process.  

 

Figure 7. If recombination is present each locus may have a different 
phylogenetic history. The way of representing information of more than one tree 
is by means of a network in which the recombinant sequences will have two 
parental nodes representing their two different phylogenetic histories. 
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The rest of the genome (except mtDNA and Y chromosome), 
however, undergoes recombination. Each locus could potentially 
have a different history and the way to represent the phylogenetic 
relationships is then a complex network named Ancestral 
Recombinational Graph (Figure 7 and Figure 8). Moreover, it has 
also been demonstrated that attempts to construct trees ignoring 
recombination would lead to different types of biases (Schierup and 
Hein 2000). 

 

Figure 8. Ancestral recombination graph (ARG) generated with coalescent 
simulations with a human like demography and varying recombination rates 
along the sequences. This ARG represents the genealogical relationship of 210 
human sequences belonging to four different populations: Africans (black), 
African Americans (dark blue), Europeans (green), Asians (yellow) for a region 
spanning 200 kb. The red nodes are the recombinant nodes and the light blue 
nodes the coalescent ones. Software used Pajek (http://vlado.fmf.uni-
lj.si/pub/networks/pajek/ ). 
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Recently, some models have been developed that try to reconstruct 
the history of a set of sequences allowing for recombination events 
to take place by means of inferring a network structure consistent 
with the data (Gusfield et al. 2007; Parida et al. 2008; Song and 
Hein 2005; Wiuf 2002). Some of these models are reviewed in 
Huson and Bryant (2006). 

However, the problem with inferring the Ancestral Recombinational 
Graph is basically that there are huge numbers of possible ARGs 
that could have created the data, especially when rates of mutation 
and recombination are comparable as is the case for humans 
(McVean and Cardin 2005). As a result, and despite some attempts, 
trying to infer the complete sequence of recombination events in a 
genealogy has been computationally intractable for realistic datasets 
(Hellenthal and Stephens 2006).   

1.2.2. Summary statistics  

Summary statistics capture in one figure the variation present in the 
data in order to compare the observed value with that expected 
under a particular population genetics model such as the Wright –
Fisher Model.  

The simplest summary statistic to measure the amount of variation 
present in a sample is the number of segregating sites (S) but is 
highly dependent on the sample sizes. Nucleotide diversity or pi (π) 
is a measure of the degree of polymorphism within a population. 
Specifically, it describes the probability that two copies of the same 
nucleotide drawn at random from a set of sequences will be 
different from one another.  
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Where xi and xj are the frequencies of haplotypes i and j 
respectively, and xij is the proportion of differences between them. 
Interestingly, under the Wright-Fisher model in which population 
size is constant, populations are panmictic and do not overlap, a 
population reaches an equilibrium in which the number of novel 
variants created by mutation is balanced by the number of variants 
lost by drift. As stated before, this equilibrium value of diversity is 
known as the population mutation parameter or theta (θ) and these 
two measures of diversity S and π are good statistics to estimate it. 

Further, Tajima’s D statistic is based on the expectation that under a 
non-equilibrium situation, the number of segregating sites and the 
nucleotide diversity will differ significantly. Under neutrality, 
Tajima’s D is expected to be zero because S and π are equivalent. 
However, positive values of this statistic indicate that the number of 
alleles at intermediate frequencies is higher than expected, 
something that is generally caused by population subdivision or 
balancing selection. Conversely, negative values of the statistic 
indicate an excess of rare variants which can be caused by positive 
selection or population growth.  

Heterozigosity is another measure of diversity and it is calculated 
locus by locus and then averaged over the whole sequence. For a 

single locus with n alleles, heterozigosity is:  H = 1 -  ∑
=
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Another common way of representing diversity is the mismatch 
distribution, which depicts the number of pairwise comparisons 
between haplotypes that have a certain number of differences. This 
distribution can provide some information on past demographic 
events of the samples. Note that the mean of the pairwise 
distribution divided by the sequence length is the same as the 
nucleotide diversity. Further, the variance of the pairwise 
differences between haplotypes can be interpreted as a measure of 
LD and it can be used to estimate the population recombination 
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parameter (Hudson 1987) since recombination decreases this 
variance. 

Statistics that summarize the amount of variation, however, do not 
contain all information present on the data and different 
evolutionary processes could give rise to similar values of the 
chosen statistic, as we have seen for the population growth and 
positive selection effects.  

1.2.3. Coalescent-based inference 

The mathematical theory of the coalescent was developed in the 
early 1980s by John Kingman (1982) and Richard Hudson (1983) 
independently and it is nowadays one of the basic tools of 
population genetics studies. The coalescent theory is based on the 
Wright – Fisher neutral model and it simulates backwards in time 
the genealogy of only those chromosomes that appear in the sample, 
up to the ancestor of all lineages (MRCA). Because it allows 
simulating only the genealogy of the sampled sequences and not all 
the populations and because it models the genealogical process 
independently of the mutational process, it is extremely efficient 
computationally (Figure 9). 

The coalescent is a natural extension of the classical population 
genetics models and it is very different from phylogenetic methods.  
Phylogenetic methods estimate trees whereas the coalescent is used 
to estimate parameters of the random genealogical process that has 
given rise to each tree. The tree itself has no inherent interest. Thus, 
the coalescent provides a coherent statistical framework to study the 
effect of the process that shape the diversity found in the genomes 
such as recombination, migration, selection and so on.  

The coalescent has several applications. For example, it can provide 
useful guidance about how many individuals, populations and loci 
are needed to be sampled to answer questions of interest. Secondly, 
it is a simulation tool for hypothesis testing. In this direction, 
Shaffner and colleagues (2005) presented a model based on the 
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coalescent that mimicked human data for three populations in allele 
frequency, linkage disequilibrium and population differentiation. 
This model can then be used to compare empirical measures of 
sequence variation, linkage disequilibrium and selection 
expectations under a null distribution that already takes into account 
a simplified version of the complex demographic history of human 
populations.   

 

Figure 9 The basic coalescent principle: only the gene genealogy of the sampled 
chromosomes will be inferred (a)The complete genealogy for a population of ten 
haploid individuals is shown (diploid populations of N individuals are typically 
studied using a haploid model with 2N individuals). The black lines trace the 
ancestries of three sampled lineages back to a single common ancestor. (b) The 
subgenealogy for the three sampled lineages. In the basic version of the 
coalescent, it is only necessary to keep track of the times between coalescence 
events (T(3) and T(2)) and the topology — that is, which lineages coalesce with 
which. N is the number of allelic copies in the population and n the sample size. 
Figure taken from Rosenberg and Nordborg 2002. 

Finally, the coalescent approach can be used as the basis for full-
likelihood inference. Basically, after collecting the data, all possible 
genealogies and their probabilities under models of interest should 
be considered. For each genealogy, the likelihood of the data is 
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calculated and the parameters estimated by finding values that 
maximize the likelihood of the data. Finally, the models should be 
tested by comparing the likelihoods under different hypothesis. 
Unfortunately, this process is computationally very intense and 
advanced computational techniques such as importance sampling or 
Markov-chain Montecarlo should be applied (Stephens and 
Donnelly 2000).  

Several recent studies have used coalescent simulations to find the 
evolutionary model that is most likely to produce the observed data 
or the observed summary of the data to make inferences on recent 
human demographic history. Some examples can be found  
(DeGiorgio et al. 2009; Liu et al. 2006; 2005). For example, 
DeGiorgio and colleagues (2009) use a coalescent-based serial 
founder model to explain patterns of human genetic variation and 
the process of migration out of Africa.  

Other studies do not use coalescent approaches, for example 
Gutenkunst and colleagues (2009) use a diffusion approach. In fact, 
with the explosive growth of both the amount of molecular data 
being generated and the computational power available to analyze 
it, an increasing variety of computational methods are available to 
analyze and interpret such data. Most of these new methods are 
model-based approaches based on likelihood, which are becoming 
more and more used in the field (see Beaumont (2004) and 
Marjoram and Tavaré (2006) for reviews on this subject).   

1.2.4. Bayesian clustering analysis and Principal 
Component Analysis 

One goal of population genetics analysis is to identify the genetic 
structure that exists within a set of genotyped individuals, which 
may give some insights into population relationships and help to 
minimize false-positive results in association mapping studies.  

One of the most popular methods is the Bayesian clustering 
algorithm implemented in the software STRUCTURE (Pritchard et 
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al. 2000). The method assumes a model in which K populations 
exist, each of which is characterized by a set of allele frequencies at 
each locus. Individuals in the sample are assigned (probabilistically) 
to populations, or jointly to two or more populations if their 
genotypes indicate that they are admixed. It can be applied to 
microsatellites, SNPs and RFLPs and the model assumes that 
markers are either not in linkage disequilibrium or weakly linked 
(Falush et al. 2003). STRUCTURE is quite computationally 
intensive and other methods have been developed that allow for a 
much higher number of genetic markers to be taken into account 
such as frappe used in Li et al. (2008) with 650,000 markers.  Many 
of the most relevant studies of patterns of human genetic variation 
using a genome-wide set of genetic markers have applied Bayesian 
clustering approaches (Conrad et al. 2006; Jakobsson et al. 2008a; 
Li et al. 2008; Rosenberg et al. 2002; Tishkoff et al. 2009). For an 
example see Figure 10A. 

Another interesting method to study the underlying structure of 
population is Principal Component Analysis (PCA). This method 
involves a mathematical procedure that transforms a number of 
possibly correlated variables into a number of uncorrelated 
variables called principal components. This transformation is 
defined in such a way that the first principal component has as high 
a variance as possible (that is, accounts for as much of the 
variability in the data as possible), and each succeeding component 
in turn has the highest variance possible.  

Although it was introduced to population genetics by Cavalli-Sforza 
in the late 1980s, renewed interest in this approach was taken with 
the implementation the Eigensoft package by Patterson et al. 
(2006). One of the main reasons was that they allowed statistical 
validation of the inferred structure and that it can deal with a larger 
amount of markers than STUCTURE. Several relevant studies of 
human genetic variation have used PCA to study the underlying 
structure of human populations (Li et al. 2008; Tishkoff et al. 2009). 
See Figure 10B for an example. One of the most striking results was 
found by Novembre et al. (2008) and Lao et al. (2008) in which 
their Principal Component Analysis of Europeans based on 
genome-wide SNP data, reconstructed the geographic map of 
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Europe. The same result could be seen in a recent study with sub-
Saharan African populations (Sikora et al. 2010). 

However, interpretation of PCA results is still not clear (Novembre 
and Stephens 2008) and is generally a first analysis aimed at 
defining the genetic relationships among groups or even better, the 
relative overall similarity among them. 

A

 

B 

 

Figure 10. STRUCTURE and PCA analysis of the global data set with 1327 
microsatellites genotyped in 3945 worldwide individuals. Individuals are 
clustered by major geographic region (Tishkoff et. al 2009). (A) STRUCTURE 
analysis. Each vertical line represents an individual. Colors represent the inferred 
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ancestry from K ancestral populations. STRUCTURE results for K = 12 to 14 
(left) are shown with the number of similar runs (F) for the primary mode of 25 
STRUCTURE runs at each K value (right). (B) Principal components analysis 
created on the basis of individual genotypes.  



 31 

1.3. The recent human evolutionary history 

1.3.1. Origin of Anatomically Modern Humans  

The oldest fossil remains that show clearly anatomically modern 
human traits were identified in East Africa and dated around 195- 
150 Kya (McDougall et al. 2005; Stringer 2003; White et al. 2003). 
Therefore, the basic morphology of anatomically modern humans 
was established in Africa about 200 kya.  

Genetic studies have confirmed the origins of anatomically modern 
humans in Africa based on Y-chromosome, mtDNA and 
genomewide (Underhill and Kivisild 2007). First, DNA markers 
typically have shown higher diversity (heterozygosity and 
nucleotide diversity) in sub-Saharan Africa populations. This has 
been seen for mtDNA (Cann et al. 1987) nuclear microsatellites 
(Relethford and Jorde 1999), Alu insertion markers (Watkins et al. 
2001), and SNPs (Tishkoff et al. (2009) among others). 

Moreover, there is also a clear geographic pattern in regional 
diversity. Specifically, genetic diversity outside Africa tends to be a 
subset of the diversity within Africa (Behar et al. 2008; Tishkoff et 
al. 1996; Watkins et al. 2001). For example, mtDNA sequences 
outside Africa fall into two clades, M and N, which both are rare in 
sub-Saharan Africa where the mtDNA sequences belong to the 
ancestral clade L. Moreover, distinct M variants are present in a 
frequency of 20% in Ethiopia, which lead to propose East Africa as 
the source of a migration out of Africa (Quintana-Murci et al. 
1999). 

Finally, global analysis of microsatellite data has shown that 
diversity decreases with distance from East Africa (Prugnolle et al. 
2005a; Ramachandran et al. 2005a; Tishkoff et al. 2009) (Figure 
11). This observation is best explained by a model of serial founder 
effect starting at a single origin in which the migration of 
populations across much of the globe occurred in many small steps 
with each migration event involving a sampling of variation from 
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the previous population (Conrad et al. 2006; DeGiorgio et al. 2009; 
Ramachandran et al. 2005a). 

 

Figure 11. Relationship between mean genetic diversity of 51 human populations 
computed over 377 autosomal microsatellite markers and their geographic 
distances from East Africa. The percentage of variance explained by geographic 
distance is R2=85% (p<10−4). The different colours correspond to the different 
ethnic groups. Figure taken from Prugnolle et. al 2005. 

1.3.2. Routes of the Out of Africa migration 

The routes followed and the number of the first anatomically 
modern humans that left Africa however is still a subject of debate.  

Traditionally, two main migratory routes Out of Africa (OoA) have 
been hypothesized for anatomically modern humans, initially based 
with archaeological record (Lahr and Foley 1994; Lahr and Foley 
1998) and later supported by phylogenetic trees constructed from 
data on a limited number of protein markers (Cavalli-Sforza and 
Feldman 2003). This model involves a northern migration via North 
Africa and the Nile Valley into the Levant with subsequent 
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dispersal into both Europe and Asia. Moreover, there would have 
been an earlier southern coastal route that took place earlier in time 
in which anatomically modern humans left Africa by crossing the 
Bab el Mandeb strait in the mouth of the Red Sea and then rapidly 
migrated along the South Asia coastline to Australia and Melanesia 
(Figure 12). 

Recent studies, have shown evidence from both mtDNA and Y 
chromosome that an early rapid migration OoA took place 
following the southern coastal route, through India and into 
Southeast Asia and Australasia taking place around 65,000 years 
ago (Forster and Matsumura 2005; Macaulay et al. 2005; Mellars 
2006; Thangaraj et al. 2005).  

 

Figure 12. Map of possible dispersal routes of anatomically and genetically 
modern human populations from Africa to Asia and Australia according to 
Forster and Matsumura (Forster and Matsumura et al. 2005).The models assume 
an origin in eastern Africa, and dispersal either via the Nile Valley and Sinai 
Peninsula (the “northern” route) or via the mouth of the Red Sea to Arabia and 
Australia (the “southern” route). The oldest human traces outside of Africa and 
the Levant are at Lake Mungo in Australia (>46,000 years old) and in the Niah 
Cave of Borneo (>45,000 years ago). New mtDNA data, from Malaysians and 
aboriginal Andaman islanders, suggest that human settlements appeared along the 
Indian Ocean coastline 60,000 years ago (Macaulay et al. 2005; Thangaraj et al. 
2005),. Figure taken from Forster and Matsumura 2005.  
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It is not still clear, however, whether there were two migratory 
routes or a single southern route. Paul Mellars, in a recent review 
(2006) provides some plausible explanations to reconcile the 
archaeological record with a fast and single migration via the 
southern route by anatomically modern humans. Moreover, a study 
based on studying six hundred thousand loci in East and South East 
samples (The Hugo Pan-Asian SNP Consortium 2009) seems to 
point out that South East Asian populations were the major 
geographic source of East Asian populations and that there was a 
single primary wave of entry to the Asian continent. This means 
that later expansions of East Asian populations were based on 
offshoots of this initial main migration. 

1.3.3. Tempo and mode of the Out of Africa 

Several studies suggest that a strong bottleneck occurred in the 
populations that left Africa around 40,000 and 80,000 years ago 
(Marth et al. 2003; Reich et al. 2001; Voight et al. 2005; Wall and 
Przeworski 2000).  

All the recent studies that have used genetic variation to infer 
human effective population size attribute a higher long-term 
effective population size to African populations. This again is 
explained by African populations having an older origin and a 
higher number of effective individuals, compared to non-African 
populations which underwent a strong bottleneck when leaving 
Africa. Different studies, however, have found slightly different 
estimates. Zhao et al. (2006) used nucleotide diversity estimates to 
estimate effective population size in three continental human 
populations and found it to be around 15,000 for Africans and 
around 7,500 for non-Africans. Conversely, Tenesa et al. (2007) 
used LD patterns seen in the four HapMap II populations and they 
found lower estimates being 7,500 for the Africans and 3,100 for 
non-Africans. Finally, Cox et al. (2008) used genetic diversity at 
twenty X chromosome loci to determine the most likely effective 
population size under an isolation-with-migration model. They 
found that African population sizes tend to have larger (2,300–
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9,000) effective population sizes than non-African populations 
(300–3,300).  

Moreover, the size of the ancestral population(s) that left Africa is 
estimated to be around 1000 effective founding males and females 
based on autosomal microsatellite loci (Liu et al. 2006) or 1500 
effective founding males and females based on mtDNA, Y 
chromosome and X chromosome re-sequencing data (Garrigan et al. 
2007). 

Two studies tried to assess differences in the effective population 
size of founding females and males by looking at diversity in the X 
chromosome compared to the autosomes. Hammer et al. (2008) 
studied population substructure biases and found higher than 
expected levels of diversity in the X chromosome, suggesting lower 
male versus female effective population size. Conversely, Keinan et 
al. (2009) who used nucleotide diversity estimates, detected lower 
diversity in the X chromosome compared to the autosomes 
suggesting the opposite results (Bustamante and Ramachandran 
2009). Finally, Emery et al. (2010) showed that the two estimators 
detected biases that have occurred in different time-scales and that 
these results can be explained by a recent male higher effective 
population size compared to that of females and an earlier and 
persistent female higher effective population size. A different study 
showed that lower diversity patterns found in the X chrosomosme 
can be explained by a model of primarily male migration during the 
out of Africa (Keinan and Reich 2010).  
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1.4. Recombination in the study of human 
population history 

The use of recombination in the study of human population history 
has been very limited, although recombination is, together with 
mutation, the main force shaping our genome. Precisely, most of 
what is known about human population history has been inferred by 
looking at non-recombining portions of the genome such as the 
mtDNA and Y chromosome because the lack of recombination 
makes the inference of phylogenetic history easier.  

One indirect way of using the information provided by 
recombination in the study of human population genetics would be 
to take the haplotypes as genetic markers, since haplotypes, unlike 
SNPs, are the consequence of the action of both mutation and 
recombinational processes. Although there has been a decrease in 
the cost of genotyping arrays and a huge number of studies have 
looked at the patterns of human genetic variation based on 
thousands of markers, those markers have been mostly SNPs or 
microsatellites but not haplotypes.  

Recently, however, a relevant study compared haplotypes and SNPs 
as genetic markers using 500,000 markers in 52 worldwide 
populations (Jakobsson et al. 2008b). Results showed that 
haplotypes contained more information regarding population 
structure than SNPs. Specifically, the analysis of haplotypes 
allowed to detect additional genetic structure in Africa. Moreover, a 
study still in preparation further confirms this observation by 
studying 2Mb at high SNP density in 33 populations of the Old 
world. Further, in this study a method to extract most of the 
information by defining optimal haplotype lengths is provided 
(Javed et al. in preparation, see section 3.4.). 

Other studies have made use of haplotypes to make some inferences 
on human demographic history. Haplotype sharing patterns between 
populations have been used to reconstruct the colonization of the 
major landmasses by anatomically modern humans (Hellenthal et 
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al. 2008) and to estimate parameters of a population split model 
(Davison et al. 2009). Moreover, Lohmueller et al. (2009) use the 
join distribution of haplotype number and major haplotype 
frequency in empirical and simulated data to estimate population 
size changes. 

LD patterns have also been used to study differences between 
populations. For example, Tenesa et al. (2007) used patterns of LD 
between three human populations to infer human effective 
population size and Plangol et al. (2006) uses a measure of LD to 
study possible archaic structure in human populations. 

Finally, the footprint of recombination has sometime been used to 
study human adaptation trying to detect regions under positive 
selection. Some tests of selection are based on the increase of LD 
when a selective sweep takes place. For example, two genes, 
glucose -6-phosphate dehydrognease and CD40L, which are 
associated to malaria resistance, showed this pattern of extended 
haplotype (Sabeti et al. 2002). 

All these studies make an indirect use, however, of the footprint of 
recombination, either by looking at haplotypes or at LD patterns. 
Over fifty years ago, Sir Ronald A. Fisher (1954) pointed out that 
recombination, when shuffling together sequences from different 
lineages, leaves a signal or junction that will be passed to the 
subsequent generations. This observation opened the door to the use 
of recombination as a genetic marker although the necessary tools 
to carry out such an attempt would not be available until decades 
later. With the advent of high density SNP data, the higher number 
of individuals being genotyped and an increase in computational 
power, now it has been possible to develop a method aimed at 
detecting and using recombination events to study human 
population history (Melé et al. 2010 and Melé et al. submitted).  
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1.5. How to detect recombination 

1.5.1. Computational methods to detect the presence of 
recombination 

Several methods are aimed at detecting the presence or absence of 
recombination. The most widely used is the four-gamete test which 
is based in the observation that when considering two loci, if the 
four possible combinations of alleles are observed, this is evidence 
of recombination or recurrent mutation (Weir 1979). (Figure 13) 

Carrying out the four gamete test on all pairs of sites, it is possible 
to identify intervals in which recombination must have occurred. 
Then, the minimum number of recombination events that have 
occurred in the history of a sample of chromosomes (Rm) can be 
inferred assuming that only one recombination event occurred in the 
overlapping intervals (Hudson and Kaplan 1985).This assumption is 
very conservative and it may well be the case that there is more than 
one recombination event occurring in those intervals. 

By comparing the number of haplotypes with the number of 
polymorphic sites it is possible to estimate the number of 
recombination events. If M haplotypes are observed in a region with 
N segregating sites, then at least M-N recombination events must 
have occurred (Myers and Griffiths 2003). M-N is therefore a local 
lower bound and combining these local bounds allows the 
construction of the global minimum number of recombination 
events that have occurred in a region.  

However, the minimum number of recombination events and the 
real number can be very different. In fact, only a small proportion of 
recombination events in simulated genealogies can be detected in 
population-genetic data since different conditions need to be met in 
order to detect recombination: divergence between ancestral 
sequences, age of the event, sample size, etc (Figure 13c). 
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In the last decades, many different methods have been developed to 
detect presence of recombination, which can be found in:  

http://www.bioinf.manchester.ac.uk/recombination/ 

Some methods not only detect presence or absence of 
recombination but either detect the breakpoint location, the  

 

Fig13. The effect of recombination on neigboring loci. In the legend, 0 and 1 
denote ancestral and derived alleles, respectively. (a) The genealogy of a single 
hypothetical locus is represented by a single bifurcating tree. A mutation event of 
0 to 1 gives rise to a derived allele. (b) The genealogy of a second locus (red) that 
is physically close to the locus depicted in part a is shown; its genealogy is 
partially correlated with the original (blue) genealogy. If mutations occur along 
the two lineages (indicated by the solid arrows) then the recombination event will 
be detected in the resulting two-locus gametes, because, as shown here, all four 
possible gametes (0,0; 0,1; 1,0; 1,1) are observed in the sample. It should be 
noted that there are two lineages along the red genealogy for which a mutation 
event can cause the recombination event to be detected (red solid and dashed 
arrows). (c) In these two genealogies the recombination event cannot be detected 
from the resulting data, no matter on which lineages mutations occur. This is 
because there is no combination of lineages among the two marginal genealogies 
along which mutations will give rise to all four possible two-locus gametes. For 
this reason smaller samples are less informative about recombination than larger 
samples. Figure from Mc vean et. al 2003. 
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recombinant sequences and the ancestral sequences, or try to infer 
the underlying ARG present in the data.  

Only two simulation studies have tried to generally evaluate some 
of these methods (Posada and Crandall 2001; Wiuf et al. 2001). 
Both studies consistently showed that the power of the evaluated 
methods was generally quite low. For example, Wiuf et al.(2001) 
stated as one of the main conclusions of the study that “all of the 
investigated methods detected far less recombination than is 
theoretically possible”.  

Different methods cover different needs, some approaches may be 
more suitable to treat some problems than others and so far there is 
no consensus on which method should be used when trying to 
detect recombination. 

1.5.2. Methods to infer recombination rates 

A huge interest has arisen in developing methods to estimate 
recombination rates in an effort to try to understand the nature and 
causes of the recombinational process in humans and other 
organisms. Traditionally, the estimates of recombination rate of the 
human genome have come by means of pedigree studies but, 
initially, they only had resolution at the megabase scale. Sperm 
typing techniques allowed studying specific hotspots at the 
individual level but they are too costly to be used at the genome 
wide scale. Finally, several computational methods have been 
developed with the aim of inferring fine–scale recombination maps 
of the human genome. 

1) Recombination Pedigrees 

Using large pedigree families has enabled to create genome-wide 
maps of recombination in humans. Some of the advantages of using 
pedigree-based maps are that differences between males and 
females can be assessed, that it is possible to ascertain 
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interindividual differences, and that it is possible to evaluate the 
heritability of certain recombinational patterns.  

The first map at the megabase scale was published by deCODE 
Genetics (Kong et al. 2002) who used 5,136 microsatellite markers 
genotyped in 146 Icelandic families. Recently, a much finer 
pedigree–based recombination map has been extended by deCODE 
(Kong et al. 2010) which has a resolution that goes down to 10 kb. 

2) Recombination detection using sperm typing 

Sperm typing consists on amplifying and genotyping the sperm of 
one male in order to assess where crossover have taken place. It can 
be done either from single sperm or pooled sperm. Singled sperm is 
subject to a round of whole genome amplification to permit multiple 
loci to be typed from the same molecule and it is mostly used to 
construct genetic maps (typing distant genetic markers). Pooled 
sperm allows examining large number of individual sperm within a 
specific region (generally a hotspot) and counting the number of 
crossing over events versus the non-crossing over. Generally, 
samples are diluted so that aliquots mostly contain one sperm 
molecule and a quantitative value is estimated based on the number 
of positive samples.   

3)  LD based methods  

It is expected from basic population genetics theory that the 
expected amount of LD between two markers depends on the 
recombination rate between them. It follows that by looking at LD 
patterns in natural populations, the underlying recombination rate 
can be inferred (Figure 14). Moreover, with the development of the 
coalescent theory (Hudson 1983; Kingman 1982), modeling the 
underlying process in a sample of sequences incorporating 
recombination was feasible (Griffiths and Marjoram 1996; Hudson 
and Kaplan 1988).  



 43 

Several methods have been devised to estimate recombination rates 
from population data (see Table 1 in Stumpf and Mc.Vean (2003) 
for a list of some of them). Basically, they could be divided in two 
types: full and approximate likelihood approaches. Approximate 
likelihood methods try to avoid the computational burden of the full 
likelihood methods by either ignoring low frequency markers or 
else by considering a small number of markers at a time. Then, 
separate likelihoods are calculated for these subsets of the data and 
are combined to obtain the approximate likelihood estimator. If 
these subsets consist of only two pair of sites, a “composite 
likelihood” is then obtained by multiplying all pairwise likelihoods. 
This is the approach implemented in the LDhat software (McVean 
et al. 2004) that was used to estimate the recombination rates 
genome-wide using the HapMap phase II dataset (Myers et al. 
2005). Conversely, full likelihood methods estimate the probability 
of observing a given dataset under an assumed population-genetics 
model using all the information present in the dataset. However, full 
likelihood approaches are computationally very intensive and still 
cannot be used genome-wide. One of the most recent examples of 
this approach is the full likelihood MCMC method developed by 
Wang and Ranalla (2008; 2009).  

Figure 14. Patterns of LD and the corresponding historical recombination rates in 
a 206-kb interval around minisatellite MS32. (a) LD profile across MS32 and the 
neighboring gene NID established from 200 SNPs genotyped in a panel of 80 UK 
semen donors of north European origin. Maximum likelihood haplotype 
frequencies for each pair of SNPs were used to estimate |D'| levels of LD (lower 
right), as well as the associated LR (likelihood ratio) versus free association 
(upper left), and are color-coded as indicated. The locations of the remaining 175 
SNPs are shown below and to the right of the plot, with positions centered on the 
middle of MS32 at coordinate 0. LD blocks were identified visually as regions 
where most marker pairs are in strong (|D'| > 0.8) and highly significant (LR > 
104) association. Regions of LD breakdown targeted for sperm crossover analysis 
are shown. (b) Historical recombination rates and positions of putative 
recombination hot spots (marked above plot) estimated from coalescent analyses 
of genotype data. Population recombination rates , defined as = 4N e r where N e 
is the effective population size and r is per-generation recombination rate, were 
estimated across the region using LDhat (red) and PHASE (blue). These were 
converted to r assuming that N e = 10,000 and used to estimate the local sex-
averaged recombination activity in cM per Mb. Colored triangles show putative 
recombination hot spots significant at P < 0.01 for three different hot-spot 
detection methods: LDhot (red), Hotspotter (blue) and Fearnhead's method 
(green). All coalescent analyses were undertaken after sperm typing and without 
knowledge of the sperm typing results. Figure taken from Jeffreys et al 2005. 
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1.6. Recent findings on recombination  

Recombination is essential for the correct separation of 
chromosomes during meiosis and it has been shown that too little 
recombination can result in aneuplody, which is mainly lethal in 
humans (with very few exceptions), or chromosomal 
rearrangements, which have been associated to disease (Coop and 
Przeworski 2007). Moreover, it is the main mechanism that creates 
new allele combinations, something vital to generate the necessary 
diversity that will allow adaptation of individuals to their 
environment. These constraints suggest that the frequency and 
location of recombination events should be a highly regulated 
process and the genes that regulate such processes should be under 
strong purifying selection. There is evidence however, that despite 
the high sequence similarity between humans and chimpanzees 
(which differ only in 1% of the sequence), hotspot location does not 
overlap (Ptak et al. 2005; Winckler et al. 2005). Moreover, 
recombination location varies greatly between different individuals 
(Coop et al. 2008) and sexes (Kong et al. 2010), suggesting hotspot 
location has a faster mechanism of evolution than sequences.  

Another question that surrounded recombination evolution was 
defined as the hotspot paradox (Boulton et al. 1997; Jeffreys and 
Neumann 2002; Jeffreys and Neumann 2005). During 
recombination, it is the initiating chromatid of the crossing over the 
one that acquires the DNA sequence of its opposite partner. Then, if 
the initiating chromatid contains an allele that promotes the 
initialization of recombination in that location, this allele is doomed 
to extinction. From this observation it follows that there should be a 
mechanism that gives rise to new hotspots since recombination is 
essential for sexual reproduction. Although it had been shown that 
some alleles were more prone to initialize recombination process 
than others (Jeffreys and Neumann 2002) it was not until the study 
by Myers and colleagues (Myers et al. 2005) that a small motif 
enriched in some of the human hotspots (10%) was found, 
suggesting signals promoting recombination existed at particular 
locations. Later, a 13 bp motif was identified to be present in 41% 
of the human hotspots (Myers et al. 2008). 



 46 

 

Figure 15 Function and evolution of PRDM9. (A) Functional domains of 
PRDM9. The SET domain has H3K4 trimethyltransferase activity. KRAB is a 
domain of unknown function found in many zinc-finger DNA-binding proteins. 
(B) Alignment of the 13-mer hotspot motif in humans and the predicted PRDM9-
binding motif. Bases in red are those aligning with the motif. Degeneracy in the 
hotspot motif is shown. (C) Co-evolution of motifs and PRDM9. Recurrent 
changes in the PRDM9/motif pair imply fast evolution of hotspot distribution as 
well as interspecies differences and possibly incompatibilities. Figure taken from 
Hochwagen et. al 2010. 
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During 2009, three independent studies identified the zinc finger 
protein PRDM9 (Figure 15a) as a major determinant of hotspot 
activation in mammals. First, computational analysis predicted that 
PRDM9 could bind this 13-mer motif (Baudat et al. 2009; Myers et 
al. 2009) (Figure 15b). Second, differences in crossover distribution 
between laboratory mouse strains identified that differences in 
hotspot usage could be explained by sequence differences in Prdm9 
(Baudat et al. 2009; Parvanov et al. 2009) and, the same correlation 
between PRDM9 alleles and hotspot usage held true in humans 
(Baudat et al. 2009). Finally, Berg et al. (2010), provided evidence 
that PRDM9 may define hotspot location even without binding to 
the known 13 bp motif. Overall, this provided convincing evidence 
that this gene is a central regulator of mammalian crossover 
distribution.  

PRDM9 seems to evolve very fast since the zinc-finger domain 
numbers and sequences vary considerably among species (Oliver et 
al. 2009; Thomas et al. 2009). This could explain why hotspot 
location in chimpanzees and humans does not overlap: their 
PRDM9 proteins bind to different motifs. Moreover, this fast 
evolvavility of PRDM9 could provide some explanation for the 
hotspot paradox. Once the hotspot-promoting motif starts to be very 
rare in the genome, selection will favor the appearance of a new 
motif by producing a selective advantage to any of the new PRDM9 
variants that bind to different motifs. A small change in the PRDM9 
gene may trigger the change in hotspot location without need of 
other changes at the sequence level. (Figure 15c) 

This places recombination as one of the fastest evolving systems, 
much faster than sequence evolution, and raises new questions on 
which role has recombination played in recent human evolution. 
The number of studies devoted to the study of recombination has 
increased in the last decades, and more importantly, the number of 
publications devoted to recombination in journals of high scientific 
impact has also increased (Figure 16). Studying how recombination 
has shaped our genomes is nowadays one of the most interesting 
questions in evolutionary biology and thus the number of studies 
related to recombination will likely continue to grow in the future. 
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Figure 16. Publications with recombination in the title (A) All publications with 
recombination in the title in the field of “genetics” normalized by all publications 
in the field in the last 100 years. (B) Publications in the Science and Nature 
journals in the last 20 years. Source is the ISI web of knowledge for A, Google 
scholar for B.  
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2. OBJECTIVES 
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OBJECTIVES 

The main aim of the work is the incorporation of recombination into 
the study of human population history by using recombination as a 
genetic marker. In order to do so, we had the following objectives: 

1) Develop an algorithm capable of detecting 
recombination given a set of extant sequences. Specifically, this 
algorithm had to be both fast and able to detect the breakpoint 
location and the recombinant sequences. 

2) Fine-tune the method as to make it suitable to analyze 
recombination in a set of human sequences. 

3) Assess sensitivity and false discovery rate of the method 
relative to parameters such as age of the recombinations, 
recombination rate of the region, informativity of the two ancestral 
haplotypes… by means of using extensive simulations. 

4) Select optimal regions and SNPs on the X chromosome 
for the application of the method. 

5) Undertake a novel project of SNP typing in a new set of 
populations from the old world that was optimal for the study of 
recombination. 

6) Characterize the recombinational landscape of these 
regions in a wide set of the method. 

7) Interpret the results in terms of human population history 

8) Revisit the question on what information can be 
extracted from haplotypes rather than SNPs when studying the 
patterns of human genetic variation. 
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3. RESULTS 



 54 

 



 55 

3.1. Estimating the ancestral recombinations 
graph (ARG) as compatible networks of SNP 
patterns 

Laxmi Parida, Marta Melé, Francesc Calafell and Jaume 
Bertranpetit.  

Journal of Computational Biology 15: 1133-1154 (2008) 

http://www.liebertonline.com/doi/abs/10.1089/cmb.2008.0065  
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3.2. A New Method to Reconstruct 
Recombination Events at a Genomic Scale 

Marta Melé, Asif Javed, Marc Pybus, Francesc Calafell, Laxmi 
Parida, Jaume Bertranpetit and The Genographic Consortium 

PLoS Computational Biology 6: e1001010. 

http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fj
ournal.pcbi.1001010   
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Supplementary information 
 
Tables 
 
Table S1. Evaluation of IRiS with the optimal parameters for 
different SNP ascertainments. SNP selection process is explained in 
the methods ssction. Mean SNP density values are calculated over 
all simulations. SNP sel = SNP selection method; MP = mergepats 
parameter; MM = minimum MAF, NR = number of runs, MSD = 
mean SNP density, FDR = false discovery rate, S= sensitivity, 
90%CI = 90% Confidence Interval. 
 

SNP sel MP MM NR 
LS 
(Kb) 

MSD 
(SNP/bp) 

FDR 
(%) 

S 
(%) 

90% 
CI 

TAG 
aggressive inactive 0.1 69 400 1/ 2758 5.64 18.61 4.75 
TAG pairwise inactive 0.1 69 400 1 / 2079 5.52 19.18 4.8 
1SNP/5Kb inactive 0.1 69 400 1 / 5014 7.24 19.94 5.14 
1SNP/2Kb inactive 0.1 100 200 1 / 2106 8.57 22.77 5.53 
1SNP/Kb inactive 0.1 100 200 1/ 1233 7.58 23.92 5.83 
all SNPs inactive 0.1 100 200 1 / 512 12.72 24 7.28 
TAG pairwise inactive 0.1 1000 200 1 / 1545 7.2 17.83 5.54 

TAG pairwise active 0.1 100 200 1/1980 5.65 18.67 5.52 
1SNP/2Kb inactive 0.01 100 200 1/2000 16.01 21.04 6.69 
1SNP/Kb inactive 0.01 100 200 1/1013 20.56 21.76 7.51 
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Table S2. Percentage values on the number of times each of the 
simulated event is either not detected, detected as 1 recombination 
or as 2 recombinations. The percentage values are calculated over 
1000 in silico simulations.  
 

  
% not detected 
as recombination 

% detected as 1 
recombination 

% detected as 2 
recombination 

mergepats parameter active inactive active inactive active inactive 

gene conversion (1 SNP) 99.2 97.7 0.8 2.3 0 0 

gene conversion (3 SNPs) 96.2 92.6 3.7 7.3 0.1 0.1 

gene conversion (5 SNPs) 90 88 9.8 12 0.2 0 

gene conversion (10 SNPs) 76.2 74 23.7 25.6 0.1 0.4 

recurrent mutation 89 78.5 10.8 21.4 0.2 0.1 

phasing errors 57.3 50.9 12.1 14.6 30.4 34.5 
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Table S3. Number of recombinations detected in each of the 18 
regions in the male dataset, female dataset and female dataset when 
removing putative phasing errors. Females were phased using both 
PHASE and fastPHASE without using male phase information. 
 

REGIONS MALE FEMALE FEMALE 
MALE 
cleaned 

FEMALE 
cleaned 

FEMALE 
cleaned 

phasing 
method   PHASE fastPHASE   PHASE fastPHASE 

reg 1 442 432 473 364 376 359 

reg 2 237 246 290 221 234 248 

reg 3 58 77 77 58 75 73 

reg 4 57 59 64 55 59 62 

reg 5 269 269 319 257 255 293 

reg 6 24 31 28 24 31 26 

reg 7 149 166 178 139 166 162 

reg 8 224 204 232 216 198 228 

reg 9 298 312 353 284 300 315 

reg 10 99 110 117 97 110 103 

reg 11 126 111 133 114 107 123 

reg 12 293 285 321 283 279 293 

reg 13 75 77 78 73 73 76 

reg 14 44 38 44 44 38 42 

reg 15 370 324 388 326 308 326 

reg 16 262 256 287 236 242 243 

reg 17 252 264 293 228 240 257 

reg 18 319 322 399 305 306 351 

ALL 3598 3583 4074 3324 3397 3580 
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Table S4. The main characteristics of 18 X-chromosome regions. 
From left to right: start position and end position in base pairs 
(based on NCBI Build 36 assembly), length of each in base pairs, 
number of SNPs (N SNPs), number of haplotypes (N haplo), 
recombination rate calculated by means of Ldhat, Number of 
recombinations detected, number of recotypes, average number of 
recombinations detected by IRiS per Kb. 
 

region start (bp) end (bp) 
Length 
(bp) 

N 
snps 

N 
haplo 

Rec 
Rate 
(4Ne/bp) 

N 
rec 

N 
reco 

n_rec 
/Kb 

reg1 22505979 22728622 222643 95 485 1.34 442 367 1.99 
reg2 23071760 23213016 141256 97 375 1.06 237 208 1.68 
reg3 25715611 26016381 300770 83 208 0.27 58 59 0.19 
reg4 35038017 35504132 466115 84 170 0.23 57 57 0.12 
reg5 38875482 39480082 604607 179 473 0.44 269 211 0.44 
reg6 84704863 84952842 247979 80 81 0.11 24 24 0.1 
reg7 86338463 86609425 270962 91 372 0.65 149 146 0.55 
reg8 87288915 87838907 549992 205 453 0.54 224 187 0.41 
reg9 93522874 94555707 1032833 183 478 0.37 298 223 0.29 
reg10 112181012 112602418 421406 92 241 0.24 99 98 0.23 
reg11 116631417 116865805 234388 82 324 0.53 126 123 0.54 
reg12 120875730 121450338 574608 157 401 0.46 293 237 0.51 
reg13 125833172 126301999 468827 91 169 0.19 75 74 0.16 
reg14 126499106 126892013 392907 84 84 0.09 44 44 0.11 
reg15 140883556 141050268 166712 99 494 1.68 370 327 2.22 
reg16 141376625 141647366 270741 89 462 0.95 262 226 0.97 
reg17 143563468 143896320 332852 97 414 0.61 252 235 0.76 
reg18 144769060 145266667 497607 164 480 0.64 319 248 0.64 
ALL   7197205 2052   3598   
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Figure legends 
 
Figure S1. Mean values taken from the analysis of 100 simulations with different 
IRiS settings: grain sizes (5, 10, 15, 20 and 30), different thresholds, defined as 
number of detections to be considered as true divided by the grain size or the 
double of the grain size in the cases in which the algorithm is run in two 
directions. For each setting the algorithm could be run only on the forward 
direction (F) or in both directions (FR). Figure S1A False discovery rate (%). 
Figure S1B Sensitivity (%). Figure S1C 90% confidence interval of the distance 
(measured in number of SNPs) between the inferred breakpoint position and the 
real location. Figure S1D, median age of the detected recombinations.  
 
Figure S2. Mean values taken from the analysis of 100 simulations with different 
IRiS settings that combine different grain sizes (indicated with different colors), 
different thresholds (defined as number of detections to be considered as true 
divided by the sum of the different grain size and multiplied by two since the 
algorithm is run in the two directions). All settings included running the 
algorithm in the two possible senses. Figure S2A False discovery rate (%). Figure 
S2B Sensitivity (%).Figure S2C. 90th percentile distance from the breakpoint 
location measured in number of SNPs. 
 
Figure S3. Plot showing the relationship between the false discovery rate and the 
number of COSI simulations under a scenario in which IRiS is given a different 
dataset than the one used to compare it with the COSI results. 
 
Figure S4. Each dot represents mean values of false discovery rate and median 
age of the detected recombinations taken from the analysis of 100 simulations 
with different IRiS settings that combine different grain sizes (indicated with 
different colors) and different thresholds. All settings included running the 
algorithm in the two possible senses. 
 
Figure S5. Plot showing values of the number of times in silico recombination 
events were detected by IRiS run with no threshold depending on the breakpoint 
location along the sequence. Different colors indicate different ways to produce 
the recombinant sequence, from light gray to black: “random” indicates that 
parental haplotypes were taken at random, “1dif near bkp” indicates that parental 
sequences had to be different near the breakpoint region (plus minus 10 SNPs), “ 
2 dif near bkp” indicates that parental sequences had to be different near the 
breakpoint regions at both sides of the breakpoint, and “ unique” indicates that the 
parental sequences had to be different near the breakpoint region and the 
recombinant sequence had to be unique within the breakpoint region. Below, the 
recombination rate estimated by LDhat is shown, following the right axis. 
 
Figure S6. MDS 2D plot based on a recombinational distance matrix. The stress 
is 0.081 which is below the 0.16 stress obtained with 1% probability with random 
data sets (Sturrock and Rocha 2000). 
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Figure S1C 
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Figure S3. 
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Abstract 

Effective population size captures in a single parameter the 
cumulative effects of drift in a population. While estimates are 
available for the human species or for broad continental groups, a 
detailed survey for single human populations has not been 
produced. Here we provide such figures, and interpret them in terms 
of the demographic history of anatomically modern humans by 
means of a recombination-based analysis. We have genotyped a set 
of 1250 SNPs in five regions of the X chromosome in 1240 males 
from 30 Old World populations. We have counted the number and 
location of recombination events and have detected the sequences 
that carry them by means of a combinatorial algorithm implemented 
in the IRiS program. The number of recombinations can be used to 
estimate effective population size through the ρ=4Ner parameter. 
We have found, in line with other studies, that African populations 
have effective population sizes that are ~3 times greater than those 
of non-African populations. Outside of Africa, South Asian 
populations had the largest effective sizes. Additionally, 
recombinational diversity correlated with distance out of Africa 
through a southern, but not a northern, route, and, in Eurasian 
populations, recombinational distance correlated with distance from 
Southern India. These findings suggest a larger role than previously 
envisaged for South Asia in the demographic history and population 
expansions of anatomically modern humans out of Africa. 

The estimation of effective population size in human evolution has 
been a subject of intense research in the recent past. The seminal 
papers by Takahata (reviewed in Kim et al (2010)) established the 
highly cited figure of 10,000 individuals for the past human 
evolutionary history, which has been lately revised to 15,000 with a 
much larger genetic dataset (Kim et al. 2010). These figures have 
been derived through gene diversity estimates of 31 autosomal loci. 
This led to an estimated average time to the most recent common 
ancestor (TMRCA) of 1.24 Myr. The effective population size 
estimate, thus, captures an extremely long period of time, much 
beyond the existence of our own species. This presumably denotes 
greatly fluctuating biological phenomena both in space and time, 
which could not be captured by any of the present methodologies. 
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Laval et al. (2010) have formulated a detailed “Historical and 
Demographic Model” of recent human evolution. This is based on 
diversity (or heterozygosity) measures on resequencing data for 
noncoding autosomal regions, with interesting co-estimation of 
parameters. Their results on effective population sizes, estimated for 
three main continental populations, offer figures of ~31,200 for 
Europeans and ~14,500 for Asians after the split of these 
populations ~22,500 years ago, with a more complex picture for 
Africa. It is difficult to disentangle the importance of the shared 
ancestral polymorphisms and the accuracy and robustness of the 
many estimated parameters in the estimates based on population-
specific sequence diversity.  

Earlier, Hayes et al. (2003) and Tenesa et al. (2007), considering the 
importance of the temporal and spatial framework for effective 
population size estimates, have proposed an independent method 
based on Linkage Disequilibrium (LD) data. Their analysis on four 
HapMap populations results in much lower estimates, on the order 
of ~7,500 for African Yoruba (YRI) and ~3,100 for each of the 
Eurasian populations. Their lower values are justified by the time 
frame of the genetic events analyzed. While gene diversity would 
reflect average population size for long periods of time, LD depends 
to a greater extent on the population size in more recent times. The 
method relies on computing r2 on inferred haplotype frequencies, 
which may not be accurate. Moreover, although LD is indeed 
primarily determined by recombination rate, demography and 
natural selection can also modify LD and alter recombination rate 
estimates based on LD. 

Finally, Cox et. al (2008) have used an isolation-with-migration 
model to independently estimate effective population sizes and 
migration rates using resequencing data of noncoding regions on the 
X chromosome. They found low (albeit somewhat imprecise) 
values of effective population sizes as well, which were higher for 
Africans (2,300–9,000) than for non-Africans (300–3,300).  

We have developed a method called IRiS (Identifying 
Recombination in Sequences) to detect specific past recombination 
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events from extant sequences (Melé et al., 2010) based on a 
combinatorial algorithm (Parida et al. 2009; Parida et al. 2008). The 
algorithm yields which sequences are descendants of ancient 
recombination events, which sequences carry the ancestral patterns 
that were involved in the recombination event, and where is the 
breakpoint located in the genome. Here we propose to use the data 
produced in a large SNP survey (Javed et al., in preparation) to 
estimate the historical recombinations produced, and from them 
estimate the effective population sizes of the diverse populations. 
Several points in this approach are novel: the detection of 
recombinations is not based on LD, the time distribution of the 
reconstructed recombinations is known (Melé et al. 2010), and the 
recombination rate is available at a very narrow scale in the human 
genome (Kong et al. 2010).  

It is well known that recombination is not evenly distributed across 
the genome; 80% of the recombination events take place in 20% of 
the sequence, in recombination hotspots (Myers et al. 2005). 
Therefore, newer recombinations may overwrite traces of past 
events and the main consequence of this process is that allocating 
specific recombinations to specific sequences becomes harder for 
older events. In our previous study (Melé et al. 2010), we showed 
that recent recombinations are detected by IRiS with greater 
sensitivity. Specifically, we inferred that 90% of the events detected 
by IRiS occurred after the Out of Africa migration. Therefore, 
recombinations can be used as recent genetic markers and they can 
potentially help to make inferences on the most recent events of 
human evolutionary history, such as the estimation of population-
specific effective population size. In fact, most of the reconstructed 
recombinations are population-specific (93.13%). The historical 
recombinations that can be detected are a fraction of the total 
recombinations that occurred. This fraction, that is, the sensitivity 
achieved by IRiS, can be estimated at 7.3% with simulations (see 
Supplementary Text for details) and used to obtain an indirect 
estimate of the total number of recombinations that have taken place 
along the genealogy. Sensitivity estimations may be affected by a 
stochastic variation that may compound into the absolute values of 
effective population sizes. However, since we can indeed detect 
actual recombinations in each of the populations, estimation of the 
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relative effective population sizes among the 30 analyzed 
populations will be more robust than more indirect methods. 

The dataset used consisted of 1250 SNPs in five regions (Table S1) 
spanning 2 Mb of presumed gene-free regions of the X 
chromosome, genotyped in 1240 males from 30 Old World 
populations (Figure 1, Table S2). High, uniform SNP coverage was 
necessary to detect as many recombination events as possible; by 
choosing only male samples, we could overcome the uncertainty 
associated with phasing haplotypes; finally, regions known to 
contain genes were avoided in order to prevent the possible 
confounding effects of natural selection. Further details about 
region selection and genotyping can be found in the Supplementary 
Text. 

We used the expression ρ= 3Ner (Hartl and Clark 1997) to infer the 

effective population size, where ρ = 

∑
−

=

1

1

1n

i i

R
where R is the number 

of recombinations inferred for each population, and n is the number 
of sequences analyzed. R values were calculated by dividing the 
number of recombinations detected by IRiS (Table 1) by the 
corresponding sensitivity. r stands for the recombination rate, which 
was calculated as the weighted average of the rates of each region 
based on the deCODE map (Kong et. al 2010). Finally, equal male 
and female effective population sizes were considered, which, for 
the X chromosome, implies that ρ= 3Ner (ρ= 4Ner for autosomes). 

Estimates of the effective population sizes for each of the 
populations are given in Table 1 (in relative and absolute values) 
and plotted in Figure 2. As expected, results consistently show that 
Sub-Saharan Africans have much higher effective population sizes 
than all other populations; values are roughly four-fold larger, or, in 
absolute terms, of ~4000 for African populations and of ~1000 for 
the rest. This result is in line with the low values obtained with LD-
based estimates (Laval et al. 2010; Tenesa et al. 2007), but, as 
mentioned above, the relative population sizes, and, in particular, 
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the ratio of the sizes between African and non-African populations 
are more reliable figures, and that was also found to be >2.5 both 
from genetic diversity (Laval et al. 2010) and from LD (Hayes et al. 
2003; Tenesa et al. 2007).  

For the first time, we provide specific effective sizes for a wide 
range of Old World populations in relative and absolute values 
(Table 1). Besides the Sub-Saharan African / non sub-Saharan 
chasm in population sizes, a number of interesting patterns are 
revealed. The populations with the largest sizes other than Sub-
Saharan Africans are North Africans (Moroccans and Egyptians), as 
could be expected due to their known Sub-Saharan admixture 
(Bosch et al. 2001; Brakez et al. 2001; Krings et al. 1999). Outside 
of Africa, the largest effective population sizes are found in South 
Asia; only recently, the high internal diversity of Indian populations 
is being appreciated (Xing et al. 2010). Europeans and East Asians 
have similar effective population sizes. Tibetans and Basques 
showed the lowest values, a direct measure of small population size 
and isolation. 

We further investigated the geographic variation of both SNPs and 
recombinations to understand the general pattern of genetic 
variation and population history (Table 1). In order to compare 
patterns of diversity across populations, we used Nei's nucleotide 
diversity statistic to calculate the standard gene diversity using 
either SNP allele frequencies or population frequencies of each 
recombination event using the whole dataset. With this approach, 
we can apply the same, widely used measure of diversity both to the 
SNP alleles in a classical fashion, and to our new data on detected 
recombination events. 

We provide a geographic framework to these values, by plotting 
them against the geographic distance of each population to Eastern 
Africa, the presumed place of origin of modern humans (Quintana-
Murci et al. 1999; Tishkoff et al. 2009). As expected, gene diversity 
was found to be highly correlated with geographical distance with 
East Africa (Spearman’s r = -0.596; p = 0.00050) (Figure 3) 
(Prugnolle et al. 2005b; Ramachandran et al. 2005b); even if 
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African samples were removed (Spearman’s r = -0.445, p = 0.023). 
With recombinational diversity, nonetheless, a marginal correlation 
is found (Spearman’s r = -0.363; p = 0.048) which completely 
disappears if African samples are removed from the analysis 
(Spearman’s r = -0.0352; p = 0.86) (Figure 4). The main differences 
between the two plots are that African populations show 
significantly higher recombinational diversity than any other 
population (Mann-Whitney test; p = 0.0015), in a proportion that 
goes to a four- or five-fold higher diversity than the mean for non 
Africans; European populations show similar diversity values as 
East Asian populations, whereas Indian populations showed 
significantly more diversity than Europeans (Mann Whitney test p = 
0.0055) and East Asians (Mann Whitney test p = 0.011). 

The present results stress the wide differences between Sub-Saharan 
Africans and the rest of the Old World populations and point to a 
special role for South Asia in the Out of Africa expansion of 
modern humans; this role could have been more significant than 
those of places located on the possible corridor out of Africa, be it 
the posited Northern route through the Middle East, or the Southern 
route through Arabia. It is debatable whether this is an argument for 
India having had a role in a maturation phase prior to the expansion 
of modern humans to the whole of Eurasia.  

Given the fact that recombinational diversity was not related with 
the distance from East Africa and that effective population size was 
notably higher in India compared to other Eurasian populations, we 
tested whether recombinational diversity was correlated with the 
geographical distance of Eurasians from South Asia, particularly 
south India (Figure 5). This correlation turned out to be significant 
(Spearman’s r = -0.495; p = 0.010). One of the clear outliers of the 
regression were the Moroccan, which is somehow expected if they 
have a high proportion of sub- Saharan ancestry, as discussed 
above. If this population is removed the correlation coefficient 
increases (r = -0.682; p = 0.0002).  

Finally, in order to assess whether a southern route out of Africa 
could better explain the relationship between recombinational 
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diversity and distance from East Africa, we calculated the distance 
from East Africa considering that non-African populations left 
Africa through the Bab-el-Mandeb Strait and going through the Red 
Sea following the coastline. The correlation became stronger and 
highly significant (Spearman’s r = -0.592, p = 0.00057). If African 
samples (including the Moroccans) are removed from the analysis, 
the result is maintained (Spearman’s r = - 0.523, p = 0.0073).  
Interestingly, the southern route explained better the patterns of 
recombinational diversity, but not the patterns based on nucleotide 
diversity values (Spearman’s r = - 0.463, p =0.010), which correlate 
less with geographical distance through the southern than through 
the northern route. The difference between nucleotide and 
recombinational distance may just be a reflection of the time frame 
of both approximations, with the recombination analysis detecting 
events that happened more recently. 

We have thus presented a new method of analyzing SNP-based 
genetic information that uncovers one of the main (albeit often 
neglected) processes generating genetic diversity, namely 
recombination. By directly counting recombinations, we have 
provided effective relative and absolute population size estimates 
for a number of interesting populations studied here. We have also 
described geographic patterns of genetic diversity based on 
recombinations that are less clear if nucleotide diversity is 
considered; by focusing on recombination, we seem to have 
overcome the effect of SNP ascertainment bias and have focused 
the analysis on the timeframe of recent human history, since the Out 
of Africa expansion. We have thus managed to recover the known 
higher effective population size of Sub-Saharan Africans, but we 
also have found high population sizes in North Africa and South 
Asia. While the former may be the trivial consequence of Sub-
Saharan African admixture, the latter may open the avenue for the 
exploration of a larger role than previously envisaged for South 
Asia in the path that led modern humans from Africa to the rest of 
the world. 
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Tables 

Table 1. Diversity calculated as in Nei’s gene diversity formula for 
alleles (Nuc Div) and recombination junctions (Rec Div); mean 
number of recombinations detected over 100 runs on datasets 
created by randomly selecting 18 chromosomes per population per 
region and their standard deviations (Mean nº rec (stand dev)). 
Effective population size (Ne) and relative population size (Relative 
Ne) which is calculated based on the lowest value (that of Tibetans).  

Population 
Nuc 
Div 

Rec 
Div (x 
1000) 

Mean nº rec 
(stand dev) Ne 

Relative 
Ne 

Yoruba(YRI) 0.29 4.79 112.0 (8.0) 4287 7.5 
Maasai (MKK) 0.29 4.67 84.1 (7.9) 3217 5.6 
Luuya (LWK) 0.29 5.72 113.5 (9.4) 4344 7.6 
Chad (CHA) 0.31 5.14 106.4 (7.9) 4072 7.1 
Lebanese (LEB) 0.26 1.49 27.5 (3.9) 1438 2.5 
Kuwaiti (KUW) 0.28 1.64 32.9 (4.5) 1461 2.5 
Iranian (IRA) 0.26 1.16 25.9 (4.0) 1054 1.8 
Egyptian (EGY) 0.27 2.03 38.2 (5.1) 1260 2.2 
Moroccan (MOR) 0.3 2.38 37.6 (3.7) 993 1.7 
N.and W. European (CEU) 0.27 1.01 19.9 (3.7) 761 1.3 
British (BRI) 0.27 1.05 21.8 (3.5) 832 1.5 
Dutch (DUT) 0.27 1.01 20.2 (3.2) 772 1.3 
Basque (BAS) 0.26 0.51 15.5 (3.0) 594 1 
Tuscan (TSI) 0.26 0.93 19.7 (3.8) 752 1.3 
Romanian (ROM) 0.28 0.65 18.0 (3.3) 689 1.2 
Chechen (CHE) 0.27 1.44 23.0 (3.6) 881 1.5 
Russian (RUS) 0.27 1.11 21.7 (4.4) 831 1.5 
Tatar (TAT) 0.26 0.82 18.0 (3.0) 688 1.2 
Altaian (ALT) 0.27 1.32 24.6 (3.8) 940 1.6 
Uighur (UIG) 0.27 1.09 22.8 (4.3) 873 1.5 
Gujarati (GIH) 0.27 1.75 31.9 (4.2) 1222 2.1 
Nadar (CAN) 0.26 1.95 31.9 (4.4) 1219 2.1 
Parayar (NTN) 0.28 2.35 40.2 (5.0) 1539 2.7 
Kalita (KAL) 0.27 1.46 32.5 (4.5) 1242 2.2 
Adi (ADI) 0.24 1.1 26.2 (4.2) 1001 1.7 
Tibetan (TIB) 0.24 0.52 15.0 (3.5) 573 1 
Laotian (LAO) 0.24 1.21 23.8 (4.1) 911 1.6 
Ati (ATI) 0.25 1.22 25.6 (2.6) 980 1.7 
Chinese (CHB) 0.24 1.26 28.8 (4.6) 1103 1.9 
Japanese (JPT) 0.23 0.98 23.0 (3.4) 879 1.5 
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Figures 

Figure 1. Populations of the study and their geographic region of ancestry. 
Abbreviations as in Table 1. 

 

Figure 2. Inferred effective population sizes from the number of recombinations 
detected. Standard deviations and population abbreviations as in Table 1. 
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Figure 3. Nucleotide diversity and geographic distance from East Africa (in Km), 
through the northern route. Populations are color-coded by continent as in Figure 
2. 
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Figure 4. Recombiantional diversity and geographic distance from East Africa (in 
Km), through the northern route. Populations are color-coded by continent as in 
Figure 2. 
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Figure 5. Recombinational diversity and distance from South India. Populations 
are color-coded by continent as in Figure 2.  
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Supplementary information 

Materials and Methods 

Genotype selection 

Data was obtained from a previous study (Javed. et al. in 
preparation) in which five gene-free regions of the X chromosome 
spanning more than 2Mb were genotyped. Genotyping was 
performed using the Illumina GoldenGate custom Oligos and SNPs 
were selected based on the HapMap phase II release 24 as to obtain 
the highest possible density provided they meet some technical 
genotyping conditions. 

In the mentioned study, quality control processes included 
removing SNPs with more than 15 % of missing data and those 
having a cluster of heterozygous positions in male samples. 
Samples with missing data higher than 10% or male samples with 
more than 3 heterozygous positions were excluded. 

For our study, only male genotypes were taken in order to avoid 
phasing errors Informed consent was obtained for all the subjects. 
Recently admixed populations (namely, African Americans, 
Mexicans, and Gypsies) were not included in the present study. 
Details on the origin of samples, and number of individuals per 
population can be found in Table S2.  

Recombinational analysis 

The IRiS method was run with the optimal parameters defined in 
Melé et. al (2010) with the mergepats parameter on to ensure the 
robustness to any present genotyping errors, recurrent mutations or 
gene conversion events. 
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In order to overcome the uncertainty in the number of 
recombinations detected due to sampling, 100 datasets were created 
in which 18 different chromosomes per population per region were 
selected randomly. IRiS was run on each of the datasets and the 
average number of recombinations detected and standard deviations 
per population was extracted. 

One single run of IRiS was performed with all the samples together 
in order to calculate recombinational diversity in the equivalent way 
as gene diversity was calculated over the whole dataset. Basically, 
using all the recombinations detected on our set of sequences, a 
matrix in which each detected recombination has a column and the 
names of the sequences are in rows. Presence or absence of 
particular events is marked with ones or zeroes respectively. Then, 
each sequence is defined by a string of zeroes and ones that is called 
a recotype in which one indicates presence of a specific 
recombination event and zero absence. Then we can perform the 
equivalent calculation of gene diversity using the recotype matrix 

Sensitivity estimation 

Sensitivity of the method was estimated using the coalescent 
simulator COSI (Schaffner et al. 2005) in the same way as 
described in Melé et al (2010). COSI has been calibrated in order to 
simulate data that resembles the extant human data by means of 
simulating a human genealogy modeling variable recombination 
rate and hotspots. 

Since COSI simulates three human populations based on a human 
demography, we simulated the number of chromosomes that 
matched our data: 90 for the African, 180 for the European and 108 
for East Asians considering we took 18 chromosomes for each 
population. The lower effective population size given the X 
chromosome (3/4 of the Ne of the model for autosomes) was also 
taken into account. In order to obtain a similar SNP density, all 
datasets were ascertained in order to have an approximate density of 
1 SNP every 1600 bp. We run 1000 simulations and estimated 
sensitivity values for IRiS over 1000 different genealogies.  
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The model implemented in COSI named “the best fit model” 
generates, in each simulation, a different recombination rate 
distribution including varying hotspots location. Therefore, the 
actual number of recombinations in each simulation has a large 
stochastic variation. Since the sensitivity of IRiS is highly affected 
by the recombination rate (Melé et. al 2010), we calculated a 
regression line between sensitivity and the recombination rate based 
on the 1000 simulations. The function, which had a correlation 
coefficient of 0.72, was: 

Sensitivity = 0.00143 × (RecombinationRate -0.479) 

Then, based on the deCODE map of recombination rate (Table S1) 
(Kong et. al 2010), we could calculate a weighted average of the 
recombination rate over the five regions and estimate the sensitivity 
of IRiS in our dataset to be 7.3% according to the equation above.  

Geographic distance calculations 

Geographic distances from Eastern Africa were calculated as in 
Jackobson et. al and Ramachandran et. al 2005 which start at Addis 
Ababa (9N, 38E) and for all non African populations travel through 
Egypt (30N, 31E). Paths to Europe also passed through Turkey 
(41N, 28E). The alternative southern route for non-African 
populations was calculated as if crossing the Bab-el-Mandeb straits 
going directly to Iran (26N, 58E). Distances from south India were 
calculated starting from Villupuram (12N, 80E) where the Parayars 
had been collected. The Himalaya Mountains were taken into 
account by forcing the path to the Uygur and the Altaians to pass 
through Dushanbe in Tajikistan (39N, 69E) and the Ati and Lao 
through Chengdu (31N, 104E). Other paths to  East Asian 
populations out of South Asia passed through Dacca in Bangladesh 
(24N, 90E) in order to get out of the Indian peninsula. Distances 
were calculated using the great-circle distance implemented in the 
http://williams.best.vwh.net/gccalc.htm site with the default Earth 
model (WGS84/NAD83/GRS80) (Table S1).  
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All correlation analyses were performed using SPSS software 
(SPSS Inc., Chicago IL). Since recombinational diversity values did 
not follow a normal distribution, all tests performed were non-
parametric. 

Supplementary tables  

Table S1. Regions of the X chromosome selected for the study. 
Start and end positions are based on NCBI’s build 36 of the Human 
Genome. 
 
Chromosomal 
region Start (bp) End (bp) 

Length 
(bp) 

Number 
of SNPs 

Rec rate 
 (cM/Mb) 

region 1 22509816 22728031 218215 205 4.22 
region 2 39100654 39237964 137310 129 1 
region 3 93525304 94555531 1030227 382 0.82 
region 4 140885581 141035312 149731 158 5.77 
region 5 144772688 145266246 493558 376 2.24 
SUM   2029041 1250  
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Table S2. Information on the origin and number of samples per 
population and their assignment to a specific continental region. 
 

Population Name 
Acro
nym 

Continental 
Group Sampling Region 

   N     
males 

Yoruba YRI Africa Ibadan, Nigeria 53 

Maasai  MKK Africa Kinyawa, Kenya 46 

Luhya LWK Africa Webuye, Kenya 46 

Chadian (Laal and Sara)  CHA Africa Southern Chad 43 

African American ASW Africa Southwest USA 45 

Moroccan MOR 
Middle East and 
North Africa Assa-zag, Morocco 20 

Egyptian EGY 
Middle East and 
North Africa Egypt  46 

Lebanese LEB 
Middle East and 
North Africa Lebanon 42 

Kuwaitis KUW 
Middle East and 
North Africa Kuwait 43 

Iranian IRA 
Middle East and 
North Africa Kordestan, Iran 32 

 N. and W. European (CEPH) CEU Europe Utah, USA 44 

British BRI Europe Great Britain, UK 32 

Dutch DUT Europe Netherlands 29 

Basque BAS Europe Guipuzcoa, Spain 45 

Gypsies GYP Europe 
La Mina, Sant Adrià del 
Besòs, Spain 24 

Toscans TSI Europe Toscana, Italy 46 

Romanian ROM Europe Romania 33 

Chechen CHE Europe 
Chechnya, Ingushetia and 
Dagestan, Russia 37 

North Russian RUS Europe 
Arkhangel, Kostroma and 
Pskov regions, Russia 42 

Tatar (Kazan and Mishar) TAT Europe Tatarstan, Russia  46 
Altaian (Tubalar, Altai-Kizhi, 
Telengit,and  Chelkans) ALT Central Eurasia Gorniy Altay, Russia  30 

Uigur UIG Central Eurasia  Xinjiam, China 45 

Gujarati  GIH Southern Asia Houston, Texas, USA 46 

Nadar CAN Southern Asia 
Cape Comorin, Tamil Nadu, 
South India 47 

Parayar NTN Southern Asia 
Villupuram, Northern Tamil 
Nadu, South India 32 

Kalita KAL Southern Asia Guwahati, Assam, NE India 41 

Adi ADI East Asia 
Siang region, Arunachal 
Pradesh, NE India 31 

Tibetan TIB East Asia Tibetan from Tibet, China 47 

Laotian LAO East Asia Laos 43 
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Ati ATI East Asia Phillipines 18 

Han Chinese  CHB East Asia  Beijing, China 33 

Japanese  JPT East Asia Tokyo, Japan 33 
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 Table S3. Information on the geographic coordinates (latitude and 
longitude) used to calculate the distance from East Africa either 
through Egypt (Northern route=EAN) or Iran (Southern route=EAS 
and distance from south India for the non-African populations (SI). 
 

Population 
Name 

Location for 
coordinates Lat Lon 

EAN 
(Km) 

EAS 
(Km) 

SI 
(Km) 

Yoruba  Ibadan, Nigeria 7.40 3.92 3758 3758  

Maasai 
Loitokitok, 
Kenia -2.91 37.52 1318 1318  

Luhya  Webuye, Kenia 0.62 34.77 994 994  

Chadian 
N'Djamena, 
Chad 12.11 15.04 2536 2536  

Moroccan Rabat, Morocco 34.02 -6.83 6018 9061 8945 
Egyptian Cairo, Egypt 30.06 31.25 2461 5515 5356 
Lebanese Beirut, Lebanon 33.89 35.50 3041 5212 5073 

Kuwaitis 
Kuwait City, 
Kuwait 29.37 47.98 4079 3871 3789 

Iranian Teheran, Iran 35.70 51.42 4445 4123 3860 
 N. and W. 
European 
(CEPH) Paris, France 48.86 2.35 5877 8247 8079 
British London, UK 51.50 -0.13 6127 8431 8261 

Dutch 
Amsterdam, 
Netherlands 52.37 4.89 5844 8092 7921 

Basque Tolosa, Spain 43.14 -2.07 6173 8524 8432 
Toscans  Florence, Italy 43.77 11.26 5096 7484 7356 

Romanian 
Cluj-Napoca, 
Romania 44.43 23.66 4098 6332 6211 

Chechen 
Makhachkala, 
Russia 47.15 45.67 5166 5008 4759 

North 
Russian 

Arkhangelsk, 
Russia 55.76 37.62 5471 6531 6054 

Tatar Kazan, Russia 55.70 49.11 5931 6239 5522 

Altaian 
Gorno-Altaysk, 
Russia 51.96 85.97 7511 6553 5134 

Uigur Ürümqi, Russia 43.83 87.62 7602 6187 4814 

Gujarati  
Ahmedabad, 
India 23.04 72.57 6627 4384 1431 

Nadar Nagercoil, India 8.18 77.43 7837 5660 474 

Parayar 
Villupuram, 
India 11.94 79.50 7814 5608 0 

Kalita Jorhat, India 26.76 94.21 8563 6408 2250 
Adi Siang Region, 28.24 94.07 8497 6396 4276 
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Arunachal 
Pradesh, India 

Tibetan Lhasa, China 29.65 91.14 8178 6094 4520 
Laotian Vientiane, Laos 17.96 102.61 9735 7537 3132 

Ati 
Panay, 
Phillipines 11.56 122.79 11985 9780 5400 

Han 
Chinese  Beijing, China 39.90 116.41 10018 8366 4768 
Japanese Tokyo, Japan 35.69 139.69 12040 10513 6637 
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3.4. SNPs, haplotypes and recombination: a 
human variation study of the Old World 
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In preparation 

The following section contains only the part of this work that deals 
with SNPs and haplotypes which was mainly done by Marta Melé. 
The part dealing with recombination is not yet finished since part of 
the work is currently being developed at IBM by Asif Javed and 
Laxmi Parida.  
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SNPs and haplotypes: a human variation study of the 
Old World 

Introduction 

In the genome, genetic variation is organized as haplotypes, which 
are, by definition, the combination of allelic states at neighboring 
polymorphisms. With the exception of mtDNA and the non-
recombining portion of the Y chromosome, haplotypes are the 
expression of the action of both mutation and recombination. If 
polymorphisms are previously ascertained and subsequently 
genotyped, as is often the case with SNPs, the threshold imposed to 
allele frequencies implies that the age of these polymorphisms will 
be biased toward older values. On the contrary, the action of 
recombination will be detectable only after those polymorphisms 
have appeared, and more recent recombination events will have a 
greater impact on genetic variation. Thus, the analysis of haplotypes 
widens the time window that can be explored from the extant 
genetic variation.  

The vast majority of studies of worldwide human genetic variation 
have been based on the study of uncorrelated SNPs (Auton et al. 
2009; Li et al. 2008; Rosenberg et al. 2002; Xing et al. 2010). An 
exception is found in Conrad et al. (2006), where several 
uncorrelated SNPs are used to study the haplotype structure of 
several world wide populations. Lohmueller et al. (2009) and 
Jakobsson et al. (2008) used haplotypes to make inferences on 
demography. Specifically, Jakobsson et al. (2008) addressed the 
question of whether haplotypes can be used as a genetic marker to 
study human genetic variation at a global scale. 

In the sequencing era, more and more data will be available, with a 
density of SNPs high enough to perform such kind of 
complementary analysis. One of the difficulties associated with 
using haplotypes as genetic markers, however, is to determine how 
many SNPs define a haplotype. The longer the haplotypes the larger 
the diversity but, beyond a certain point, all individuals carry 
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different haplotypes, and no genetic information can be extracted at 
the population level. Different studies have reached different 
solutions: either one or more fixed arbitrary lengths are used (Auton 
et al. 2009, Xing et al. 2010, among others) or the variation at each 
SNP is locally summarized by computing a probability of belonging 
to any of a fixed number of haplotype clusters (Jakobsson et al. 
2008). 

In this work, we revisit the question of whether haplotypes are more 
informative than SNPs and develop a method to define the best 
haplotype length for our study. For that, we analyze the human 
genetic variation in 33 populations of the Old World collected 
within the Genographic project. A total of five gene-free regions of 
the X chromosome spanning 2Mb were genotyped. SNPs were 
genotyped at high density, and independently of the underlying 
linkage disequilibrium (LD) structure. Samples were mostly from 
males in order to minimize the errors introduced in haplotype 
reconstruction (phasing). The X chromosome conferred an 
additional advantage: its effective population size is three-quarters 
of that of the autosomes and therefore demographic processes will 
leave a slightly deeper record on it. 

Our results show first, that haplotypes are indeed more informative 
than SNPs for the study human genetic variation. Second, we 
provide a robust methodology to define haplotype length in order to 
obtain the maximum informativity out of them. Finally, we 
anticipate that this method could be extrapolated to other studies 
providing a way to extract more information than previously 
envisaged. 

Results 

Populations, SNPs and haplotypes 

A total of 1255 SNP of 5 regions of the X chromosome spanning 2 
Mb (Table 1) were analyzed in 1318 individuals from 33 different 
human populations (Figure 1, Table 2). In order to study the genetic 
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structure of the populations we not only used SNPs but we 
incorporated a haplotype-based approach. Haplotype length (L, in 
number of SNPs) was determined as that that maximized a length-
specific index of informativeness (Figure 2). This index balances 
the fact that as L increases, the number of different haplotypes that 
appear increases as well but the number of sequences that each 
haplotype harbours will decrease. Ideally, for population structure 
analysis, we would like different haplotypes to be present in the 
dataset but not reaching the extreme in which all individuals are 
different from each other. For some analysis, the haplotype 
estimation procedure used by Jakobsson et al. (2008) was also 
calculated. 

Inferring the genetic structure based on SNPs and haplotypes 

In order to assess the fraction of the variation that could be 
explained within and between populations and continental regions, 
we performed an AMOVA analysis. For SNP data, differences 
among groups were 9.40%, among populations within groups, 
1.78%, and, finally, within groups, 88.81%. For haplotypes, 
differences among groups explain 4.52% of the variation, 
differences among populations within groups 1.58 % and, finally, 
differences within groups explain 93.89%. 

We performed two types of analyses: Principal Component 
Analysis (PCA) and a Bayesian Clustering Analysis, and assessed 
whether SNPs or haplotypes performed better at recovering the 
population structure of our dataset. In the PCA results, population 
areas overlapped less in the haplotype-based analysis than in the 
SNP based-analysis (Figures 3a and 3b). In the clustering analysis 
(Figure 4), we evaluated which method better classified individuals 
into specific clusters, by calculating the average Shannon's 
Diversity index (H) for each individual at each K. H grows with the 
information needed to classify individuals into specific populations, 
and a method with lower H provides sharper classifications. For all 
K from 2 to 4, the cluster memberships obtained with haplotypes 
gave lower mean H values (Table 3). The haplotype estimation 
procedure used by Jakobsson et al. (2008) classified individuals 
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better than SNPs but worse than our optimal fixed-length method, 
as assessed with H (Table 3).  

Genetic structure of human populations 

We next describe the results obtained with the haplotypes analysis. 
As expected, the first principal component separates African from 
non-African populations, leaving some of the North African and 
Middle Eastern populations leaning towards Africa. The second 
component separates East Asian from European and Middle Eastern 
populations leaving Indian, Mexicans and two of the Central 
Eurasian populations between those two groups.  

The populations with the highest areas (and thus, with the highest 
internal diversities) are all the African populations and the 
Mexicans (Figure 3a and 3b). In particular, African Americans 
show the largest area, something that could be explained by their 
admixed origin. Chadian, Luhyan, and Yoruban individuals overlap 
only with other Sub-Saharan African populations, while the Maasai 
are closer to Middle Eastern, North African, and European 
populations. Conversely, Egyptians and Moroccans in North Africa 
(as well as Kuwaitis) have lower values of the first PC, which 
places them closer to Sub-Saharan Africans. In contrast, Lebanese 
and Iranians are indistinguishable in this plot from Europeans. 
Small, widely overlapping areas mark the European populations, 
which can be interpreted as a hugely homogeneous set. 

East Asians including the Adi, Indians, and Europeans are clearly 
separated among them especially when looking at their centroids. 
Interestingly, the Gypsies are the Europeans that are closest to the 
Indian samples and the Gujarati from NW India appear between the 
rest of the Indian populations and European samples. Moreover, 
Tatars are almost indistinguishable from Europeans whereas the 
other Central Eurasian populations (Uygurs and Altaians) appear 
between the Indians and East Asians. Finally, the Mexicans have a 
very large area that overlaps with Europeans, Indians, and East 
Asians possibly explained by their admixed origin.  
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Regarding the clustering analysis (Figure 4), K=2 clearly separates 
African and non-African populations. At K=3 three groups separate: 
Sub-Saharan Africans, Europeans and populations from the Middle 
East and North Africa, and East Asians. Indians, Mexicans and two 
of the Central Eurasian populations appear as admixed between 
East Asians and Europeans. Egypt and Morocco show a greater 
Sub-Saharan African contribution than any other of the Middle 
Eastern populations. Finally, At K=4, the Indian populations have a 
specific cluster and are separated from the rest, something that did 
not happen in the SNP-based analysis. At K=5, the new component 
is restricted to European, Middle Eastern, and North African 
populations with an apparently random distribution (data not 
shown).  

Table 4 shows the fraction of ancestry for each population at K=4. 
The four clusters than can be assigned to four continental regions in 
which they are predominant: an African Associated Ancestral 
Cluster (AAC) present in 93.5% on average in Sub-Saharan African 
populations, a West Eurasian AAC with 91.3% in European 
populations on average, an Indian AAC (68.6%) and an East Asian 
AAC (89.7%).  

The African AAC is present outside Sub-Saharan Africa 
populations in Morocco, Egypt, and Kuwait, and rare elsewhere. 
The West Eurasian AAC reaches its highest value in the Basques 
(95.5%), and makes an unexpected appearance in the East African 
Maasai (11.4%). The three Central Eurasian populations had 
complementary levels of West Eurasian and East Asian AAC; the 
former was predominant in the Tatar (79.6%), and the latter in the 
Uighur (62.1%) and Altaian (62.1%). The Indian AAC was more 
frequent in the two Southern Indian populations, namely the Parayar 
(78%) and Cape Nadar (80.3%), while in the Gujarati the West 
Eurasian AAC reached 33.7%, and in the Kalita it was the East 
Asian component that was somewhat elevated (23.4%). The Tibeto-
Burman speaking Adi, although sampled in NE India, clustered 
closely with East Asia (91.6% East Asian AAC). The Indian AAC 
is present in non-negligible frequencies in the SE Asian Lao, and, 
more notably, in the Ati, an isolated Philippino population, part of a 
group of peoples of low stature and dark pigmentation called 
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Negritos. Some known cases of mixed ancestry that are confirmed 
in the cluster analysis. The West Eurasian AAC is present at low 
frequencies in African Americans; Spanish Gypsies appear mostly 
as West Eurasian (63.2%) but have a significant amount of Indian 
AAC (33.9 %). Finally, Mexicans contain contributions from the 
East Asian (55.5%) and West Eurasian (28.2%) AAC components.  

Discussion 

Haplotypes versus SNPs 

The present work provides evidence that haplotypes are 
significantly more informative than SNPs in the analysis of the 
genetic structure of populations. Both in the PC analysis and in 
Bayesian clustering population substructure appears defined in 
higher resolution when using haplotypes as genetic markers than 
with SNPs. Interestingly, however, the fraction of variance 
explained is lower, which may be just a reflection that haplotype 
frequencies are more constrained in their range than allele 
frequencies, and rare haplotypes may drive FST down. 

The main difference between haplotypes and SNPs is given by the 
fact that haplotypes incorporate information on the recombinational 
history of the sample. Recombination is one of the main forces 
shaping the genome but its information is not used when performing 
analysis based solely on uncorrelated SNPs. By taking the 
haplotype information we are able some how to extract information 
on both mutation and recombinational history of the samples 
analyzed. 

The field of population genetics is now moving from genotyping to 
complete sequencing projects such as the 1000 Genome Project 
(The 1000 Genomes Project Consortium 2010) and a method that 
can deal with such high SNP density data will be necessary in order 
to study the genetic variation of human populations at a finer level. 
Our method to find the optimal haplotype length turned out to allow 
a more informative analysis than the one used in Jakobsson et al. 
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(2008). Besides, only when using our SNP length definition, a new 
cluster appeared at K=4 in the STRUCTURE analysis. We have 
provided a method that is able to define haplotypes to obtain the 
maximum information in terms of population structure and we show 
that it performs better than previously defined methods. How much 
more information will our method provide compared to using SNPs 
as independent markers in different studies remains to be further 
studied. However, we believe that this new definition should be 
taken into account for future approaches. 

Population structure 

This study has been performed with a large number of populations 
within the Old World and it contains one of the largest surveys of 
human genetic variation. Although our data set overlaps in 
geographic coverage with other sets such as HGDP, it contains 
particular features such as the representation of India as well as 
singular populations such as the Gypsies and the Ati. 

Our results are, first of all, consistent with the Out of Africa 
hypothesis since African populations are the most differentiated and 
most internally diverse from other populations in both analyses. 
Within Africa, both the Maasai and the African American seem to 
have some West Eurasian or Middle Eastern component. In African 
American this could be explained by their known recent admixture, 
which may be slightly underestimated by the X chromosome: a 
male-mediated European admixture would result in a 1:2 ratio of 
European to African X chromosomes being transmitted. The West 
Eurasian component in the Maasai can either be explained by them 
being descendants of populations ancestral to non-Africans and / or 
gene flow from non-Africans into Africa. 

In Europe, the most outstanding result is the clear demonstration of 
the Indian origin and West Eurasian admixture of Gypsies, which 
had been shown before using unilinearly transmitted markers (see 
Mendizabal et al. (2011) and references therein). In the Central 
Asian continuum of genetic variation, Tatars showed the smallest 
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East Asian contribution, which was higher in the more easterly 
located Uighur and Altai. 

In the Bayesian clustering analysis, a component that was 
predominant in Indian populations was revealed only when our 
optimal fixed-length haplotypes were used. Our data set contained 
two populations from Southern India, where this component 
reached its higher frequencies. Thus, it is possible that it captures a 
predominantly S. Indian dimension of genetic variation. This would 
explain why this component appears somewhat diluted in the NW 
Indian, Indo-European speaking Gujarati, as well as in the NE 
Indian Kalita, with Western and Eastern genetic contributions, 
respectively. The fact the the Indian AAC appears in the Lao of SE 
Asia and in the Ati Negritos of the Philippines may imply that this 
AAC captured some of the contribution of the southern route out of 
Africa (Melé et al. submitted). Still, the Ati were clearly linked to 
East Asian populations, as was shown also with unilinear markers 
(Delfin et al. 2011; Gunnarsdóttir et al. 2011). 

The admixed nature of the Mexican general population was also 
revealed; the lack of Native American reference samples could 
explain why the predominant component was East Asian; sex-
biased gene flow may have led to an overestimate of this 
component. The diversity in individual histories, with various 
degrees of Native American vs. European ancestry is apparent both 
in the Bayesian cluster results and in the wide area occupied by 
Mexicans in the PC graph. 

In this manuscript, we have shown that a particular haplotype 
approximation can allow extracting a large amount of genetic 
information from genomic data; while we have analyzed only a 
small part of the genome, we have been able to recover many of the 
patterns seen with much larger datasets. 

Materials and methods 

DNA samples 
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DNA samples were selected based on geographic distribution trying 
to sample equally from the different regions of the Old World 
(Figure 1 and Table 1). In order to avoid phasing errors, the 
genotyping was performed on the X chromosome and, the whenever 
possible, we selected male over female samples. 

Samples from 23 worldwide populations were collected within the 
Genographic Project. Informed consent was obtained from all study 
subjects. Individuals from another six populations were obtained 
from the Coriell Cell Repository. Details on the origin of samples 
can be found in Table 1. Overall we sampled 1455 individuals, 
1283 of which were males. 

SNP selection 

Five regions on the X chromosome that were at least 50Kb distant 
from known genes, copy number variants and segmental duplication 
were selected. These conditions were meant to avoid selection, 
genotyping errors, and to ensure sufficient precision to detect 
recombination. These 5 regions correspond to some of the regions 
studied in Melé et al (2010) in which the X chromosome was 
screened to find the optimal regions for a recombination based 
analysis (Table 2). SNPs were selected based on the HapMap phase 
II release 24 as to obtain the highest possible density. For the 5 
selected regions, all SNPs appearing in the HapMap database were 
selected provided they meet some technical genotyping conditions 
(Illumina designability rank higher than 0.5, and a minimum 
distance of 60 bp between SNPs). We also downloaded genotypes 
of four HapMap phase II samples (www.hapmap.org). 

SNP genotyping, quality control, phasing and imputing 

Genotyping was performed using the Illumina GoldenGate custom 
Oligos array of 1536 SNPs. After the genotyping process, SNPs 
with more than 15 % of missing data were removed as well as those 
having a cluster of heterozygous positions in male samples (80 
SNPs). Those samples with missing data higher than 10% (123 
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samples), or male samples with more than 3 heterozygous positions 
were removed (14 samples) (heterozygous positions in male 
samples with 1 or 2 heterozygous positions were recoded as missing 
and imputed, see below). Monomorphic SNPs were removed from 
the analysis (201 SNPs). The final dataset consisted of 1255 SNPs 
genotyped in 1318 samples (1269 were males) belonging to 33 
worldwide populations (Table 1). None of our 22 internal replicate 
samples showed inconsistencies.  Missing values were imputed 
using fastPHASE (Scheet and Stephens 2006) and the female 
samples were phased using PHASE (Stephens and Scheet 2005; 
Stephens et al. 2001), using the very completed haplotypes given by 
males. Thus the amount of inferred information is extremely low.  

Haplotype definition 

Haplotype length was defined as the length L in number of SNPs 
that gave the highest Informativeness.  Informativeness was 
calculated for lengths 5, 10, 20, 30, 40, 60, 80, 100, and 120 SNPs 
(Figure 2) with the equation:  
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where ncol is the number of columns obtained when dividing each 
sequence into windows of L SNPs, hi is the number of different 
haplotypes found in each column i and N is the number of 
sequences.  

For each length L, 5 different informativeness values were 
calculated by changing the starting position of the first window 
from position 1 and increasing it in L/5 steps. Then all 5 values 
were averaged. The highest average informativeness value laid 
between lengths 30 and 40 SNPs and therefore we performed the 
same calculation for lengths 30, 32, 34, 36, 38 and 40 taking as 
starting positions all even positions. The haplotype length having 
the highest average informativity was 38 SNPs. 
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Haplotypes were also defined as in Jakobsson et al. (2008) by 
considering 20 haplotype clusters at each position and using 
fastPHASE (Scheet and Stephens 2006) to assign to each 
individual, at each SNP, a probability of haplotype cluster 
membership for each of the 20 possible haplotype clusters. 

PCA analysis 

PCA analysis was performed using EIGENSOFT software 
(Patterson et al. 2006). In order to control for the presence of 
correlated SNPs, LD correction was turned on. Outlier removal 
parameter was turned off. R package was used to draw the plots and 
to calculate the convex hull polygon for each population for the first 
two principal components (R Development CoreTeam 2009). 

Structure analysis 

The Bayesian clustering software STRUCTURE (Pritchard et al. 
2000) was used to group individuals based on SNPs or on 
haplotypes. All runs used a burn-in period of 50,000 iterations 
followed by 50,000 iterations from which estimates were obtained. 
All runs were based on the admixture model in which each 
individual is assumed to have ancestry in multiple genetic clusters 
and using the F model of correlation in allele frequencies across 
clusters.  The software Distruct (Rosenberg 2004) was used to 
create the images. 

To select uncorrelated SNP for the analysis we used Haploview 
(Barrett et al. 2005) and took tag SNPs with a r2 value lower than 
0.8. We performed five replicas and considered the run wit the 
highest likelihood. 

For the haplotype analysis, we took those five configurations of 
length 38 SNPs with different starting points that had the highest 
informativeness values; ran STRUCTURE on them as if it were 
multiallelic data and considered the run with the highest likelihood. 



 146 

To perform the population structure analysis as in Jackobson et al. 
(2008), 10 different structure datasets were created based on the 
haplotype cluster membership probabilities for each individual and 
each SNP. We assigned, according to the corresponding 
probabilities, a specific haplotype to each individual at each 
position and this randomized process was performed 10 times to 
create 10 datasets. Each of the datasets was analyzed by the 
Structure software as if they were multiallelic markers and using the 
exact same parameters explained above and we considered the 
replica with the highest likelihood.  

Shannon's diversity index was calculated for each individual and 
each K as follows: 

i

K

i
i ppH ln

1
∑

=

−=  

where pi is the probability of that individual (cluster membership) to 
belong to the ith cluster. Note the highest value of H will be 
achieved if all individuals belonged with equal probability to all 
populations, which would be a case with no structure whereas the 
highest value would be achieved when all individuals were assigned 
to one cluster with probability equal to 1. 
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Figures and tables 
 

 Table 1. Information on the genotyped regions of the X 
chromosome. Positions are calculated based on Build 36. Quality 
control was for lvel of missing genotype and heterozygous in males. 
Final SNPs are the QC-passed SNPs that were polymorphic. 

 Start (bp)  End (bp)  
Length 
(bp) 

Initial 
SNPs 

QC-passed 
SNPs 

Final 
SNPs  

region 1 22509816 22728031 218215 250 234 206 

region 2 39100654 39237964 137310 165 150 129 

region 3 93525304 94555531 1030227 503 468 385 

region 4 140885581 141035312 149731 197 170 158 

region 5 144772688 145266246 493558 421 434 377 

SUM   2029041 1536 1456 1255 
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Table 2. Information on the samples: name, acronym, continental 
group, population details (ancestry, sampling location, ethnicity), 
number of successfully genotyped males and females, final sample 
size. 
 
Population 
Name 

Pop 
Name 

Continental 
group sampling region 

N 
males 

N 
females

total 
N 

Yoruba YRI 
Sub-saharan 
Africa Ibadan, Nigeria 53 0 53 

Maasai  MKK 
Sub-saharan 
Africa Kinyawa, Kenya 46 0 46 

Luhya LWK 
Sub-saharan 
Africa Webuye, Kenya 46 0 46 

Chadian 
(Laal and 
Sara) CHA 

Sub-saharan 
Africa Southern Chad 43 0 43 

African 
American ASW 

Sub-saharan 
Africa Southwest USA 45 0 45 

Lebanese LEB 
Middle East and 
North Africa Lebanon 42 0 42 

Kuwaitis KUW 
Middle East and 
North Africa Kuwait 43 0 43 

Iranian IRA 
Middle East and 
North Africa Egypt  32 0 32 

Egyptian EGY 
Middle East and 
North Africa Kordestan, Iran 46 0 46 

Moroccan MOR 
Middle East and 
North Africa Assa-zag, Morocco 20 0 20 

 N. and W. 
European  CEU Europe Utah, USA 44 1 46 

British BRI Europe Great Britain, UK 32 13 58 

Dutch DUT Europe Netherlands 29 0 29 

Basque BAS Europe Guipuzcoa, Spain 45 0 45 

Gypsies GYP Europe La Mina, Sant Adrià del Besòs, Spain 24 11 46 

Toscans TSI Europe Toscana, Italy 46 0 46 

Romanian ROM Europe Cluj-Napoca, Romania 33 0 33 

Chechen CHE Europe 
Chechnya, Ingushetia and Dagestan, 
Russia 38 0 38 

Russian RUS Europe 
Arkhangel, Kostroma and Pskov regions, 
Russia 42 0 42 

Tatar TAT Central Eurasia Tatarstan, Russia 46 0 46 

Altaian ALT Central Eurasia Gorniy Altay,Russia 30 0 30 

Uigur UIG Central Eurasia  Xinjiam, China 45 0 45 

Gujarati  GIH Southern Asia Houston, Texas, USA 46 0 46 

Nadar CAN Southern Asia Cape Comorin, Tamil Nadu, India 47 0 47 

Parayar NTN Southern Asia Villupuram, Northern Tamil Nadu, India 32 0 32 

Kalita KAL Southern Asia Guwahati, Assam, India 41 0 41 

Adi ADI Southern Asia Siang region, Arunachal Pradesh, India 32 0 32 

Tibetan TIB East Asia Tibetan from Tibet, China 47 0 47 
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Laotian LAO East Asia Laos 44 0 44 

Ati ATI East Asia Phillipines 19 0 19 
Han 
Chinese  CHB East Asia  Beijing, China 22 12 46 

Japanese  JPT East Asia Tokyo, Japan 23 12 47 

Mexican  MEX America Los Angeles, California, USA 46 0 46 

 
 
 
 
 
Table 3. Average individual Shannon diversity index based on 
cluster membership for each K. Note that the index decreases if 
individuals tend to be assigned to a single cluster. 
 

K haplotypes snps jackobsson 
2 0.07 0.42 0.32 
3 0.25 0.43 0.43 
4 0.35 0.68 0.72 
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Table 4. Cluster memberships in populations at K=4 using 
haplotypes as genetic markers for the clustering analysis. 

 cluster 1 cluster 2 cluster 3 cluster 5 
YRI 98.8 0.5 0.3 0.3 
MKK 85.5 11.4 2.4 0.7 
LWK 98.2 0.8 0.5 0.5 
CHA 97.9 0.9 0.8 0.4 
ASW 87.1 7.7 2.7 2.5 
LEB 3.3 84.9 7.3 4.4 
KUW 12 78.6 6.8 2.6 
IRA 1 86.4 8.6 4 
EGY 15.9 76.8 3.9 3.4 
MOR 27.6 63.8 7.2 1.4 
CEU 1.4 90.5 4.1 4 
BRI 0.5 93.1 5.3 1.1 
DUT 0.5 95.3 3.4 0.7 
BAS 0.6 95.5 2.5 1.4 
GYP 0.6 63.2 33.9 2.3 
TSI 0.8 93.7 3.6 1.9 
ROM 0.7 88.7 7.4 3.2 
CHE 0.7 85.1 8.1 6.1 
RUS 0.6 88.1 6.2 5.1 
TAT 0.5 79.6 6.9 13 
ALT 0.5 26.4 10.9 62.1 
UIG 1.3 33.6 11.8 53.2 
GIH 0.9 33.7 60.3 5.1 
CAN 0.9 9.7 80.3 9.1 
NTN 1 8.7 78 12.2 
KAL 0.8 19.8 55.9 23.4 
ADI 0.7 1.7 6.1 91.6 
TIB 0.4 2.1 3.9 93.6 
LAO 0.7 0.8 11.5 87.1 
ATI 0.7 2.6 16.6 80.1 
CHB 1 2.1 4.2 92.7 
JPT 0.9 2.1 1.8 95.2 
MEX 4.7 28.2 11.6 55.5 
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 Figure 1. Geographic distribution of the sampled populations 
 

 
 
Figure 2 Informativeness versus haplotype length (L). Informativeness is defined 
as the product between average number of haplotypes across all windows and 
average number of sequences per haplotype across all windows. Standard 
deviations are calculated by changing the starting position in which haplotypes of 
length L start to be defined. 
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Figure 3a. Haplotype-based PCA 
 

 
Figure 3b. SNP-based PCA analysis  
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Figure 4a. haplotype-based STRUCTURE analysis. 

 
 
Figure 4b SNP - based STRUCTURE analysis  
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Figure 4c Structure analysis with haplotypes defined as in Jackobson et al. (2008) 
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4. DISCUSSION 
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4.1. Challenges of the study of recombination 

Recombination is a very difficult process to detect, to model and to 
analyze; and this is the reason why recombinant regions of the 
genome have historically been eschewed in phylogeographic 
studies.  

First of all, a network structure is needed to represent the 
phylogenetic relationships between sequences. This network or 
Ancestral Recombination Graph (ARG) is very difficult to infer, 
basically, because many possible networks would most likely 
produce the observed data and no information can be extracted to 
discern which one is best. 

Secondly, whereas mutation generally leaves a visible footprint in 
the genome, recombination often draws on a palimpsest: recent 
recombination events overwrite past events and therefore the 
footprints of recombination quickly disappear from the genetic 
record. Therefore, those recombination events that can confidently 
be detected tend to be relatively recent and consequently, have a 
low frequency in the population. Moreover, recombination rates are 
highly variable along the genome, being very high in hotspots and 
low in the rest of the genome. This implies that, in hotspots, the 
signal of the past recombinations may be erased faster than in 
coldspots.  

Third, the ancestral recombining sequences need to be different 
between them in order to leave a footprint; otherwise, 
recombination will be absolutely invisible. Consequently, a 
considerable amount of recombination events are invisible no 
matter which method we use to detect them. 

Several frequent genetic events such as gene conversion and 
recurrent mutation, or technical issues such as genotyping errors or 
phasing errors, may lead to signals that will closely mimic those of 
recombination. This adds an additional burden to the study of 
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recombination since we need to tease apart those signals and 
separate them from the real recombination events.  

In this thesis, we have faced all these problems, and more 
importantly, we have addressed them all. No doubt that 
recombination is a different process than mutation but we have 
shown that it can also be used as a genetic marker. In fact, these 
differences are the ones worth looking at in order to extract the 
complementary information hidden in our recombinant genomes. 

4.2. Inferring the Ancestral Recombination 
Graph? 

As mentioned in the previous section, inferring the true ARG from a 
set of extant sequences is a very complex problem. In Figure 17, an 
ARG inferred using coalescent theory for three human populations 
is shown and it may give an idea of the complexity that those 
networks reach. 

Our approach in Parida et al. (2008), however, is aimed at 
constructing an ARG (or network) compatible with the data in order 
to detect true recombination events. In Melé et al. (2010), when 
performing the different runs of the algorithm with different starting 
positions, different window sizes and different directions, we do 
infer several different plausible ARGs compatible with the data and 
then we extract the recombination events that consistently show up 
on them. In this way, we use the ARG as a tool to detect 
recombinations. Further, we do infer small pieces of the true ARG 
(the recombinations), although we are not able to infer all of it.  

Interestingly, in each of the ARGs generated by the basic algorithm, 
not only the recombinant sequences are inferred, but the sequences 
that carry the ancestral patterns are also pinpointed. Therefore, in a 
similar way as recombination events are detected by counting the 
number of detections, the corresponding sequences that carry the 
ancestral patterns could be extracted as well. This opens the door to 
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inferring some more pieces of this “unreachable” true ARG and the 
history of its recombinations. 

4.3. Sensitivity, false discovery rate, accuracy in  
placing the breakpoint 

In humans, and in most organisms, the recombination rate among 
adjacent basepairs is on the same order of magnitude as the 
mutation rate per basepair, something that makes the detection of 
recombination events harder. The basic algorithm (Parida et al. 
2008) performed extremely well to analyze data in which mutation 
is much faster than recombination (see simulation section in Parida 
et al. (2008)) but needed to be optimized when run with simulations 
that mimicked human sequences.  

To provide robust inferred recombination events, we ran the basic 
algorithm several times in a sliding window approach using 
different window sizes and directions. Our optimization parameters 
(Melé et al. 2010) were false discovery rate, sensitivity and 
accuracy in placing the breakpoint, which very often behaved in 
opposite directions. For example, false discovery rate increased 
with window sizes but accuracy in placing the breakpoint increased 
as well. Moreover, false discovery rate was given double weight 
compared to sensitivity and accuracy in placing the breakpoint. This 
seemed reasonable at the time of developing the method since first, 
all the applications we could think of were going to be based in the 
detected recombinations (and not in our not detected 
recombinations) and, secondly, we could study in depth which were 
those recombinations that were missed (see the following section). 
The optimal method used window sizes of 20, 10 and 5 and a 
threshold of 60%.  

However, other optimization parameters could have been used and, 
in fact, other combinations of parameters performed very well and 
could even be more suitable in some circumstances. For example, to 
capture shared recombinations (recombinations that are shared 
between at least two individuals), it would be better to turn the 



 164 

mergepats parameter on, whereas to have increased sensitivity, 
methods with lower threshold worked better. The accuracy in 
placing the breakpoint is good when the pattern sizes are small but 
the false discovery rate increases. In the supplementary figures of 
Melé et al. (2010), it can be seen how each of the different methods 
works depending on false discovery rate, sensitivity and accuracy 
with the idea in mind that different users could have different needs.  

4.4. Which recombinations are detected? 

It may seem at first sight that sensitivity estimates for IRiS are low, 
in Melé et al. (2010) the average estimate of sensitivity with the 
optimal method was around 20%  and in Melé et al. (submitted), the 
estimated sensitivity for 5 specific chromosome X regions was 
estimated to be 7.3 %. In figure 17 it can be seen that most of the 
recombinations in the genealogy are not detected (grey) compared 
to those detected (red dots). 

However, in any genealogy, many recombination events will be 
undetectable. First, the footprint of old recombinations is 
overwritten by newer recombinations and, as time goes by, the 
signals are blurred. Secondly, if the ancestral sequences that 
recombined were identical, the recombination would leave no 
footprint at all.  

The specific task of IRiS is not only to detect presence or absence 
of recombination, but also to trace the whole history of each event. 
First, the two ancestral patterns that recombined in the past need to 
be present in the extant dataset for IRiS to detect the recombination 
event. This leads to low sensitivity estimates, and specifically, it 
leads to estimates which are biased towards recent recombination 
events (Figure 17). 

 When evaluated over recent recombination, IRiS sensitivity rises to  
45% (Figures 5 and 7 in Melé et al. (2010). Still, we could ask 
which recombination events are missed. In Melé et al. (2010), we 
tried to answer this question by showing that for a recent 
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recombination event to be detected, the two parental sequences need 
to be different and, in fact, the higher the number of differences, the 
higher the probability of being detected (Figure 7 in Melé  (2010)).  

 

Figure 17. This picture shows a simulated coalescent network generated with cosi 
(Shaffner et al. 2005) that represents the history of humankind with an Out of 
Africa event and the emergence of  the different human groups, Africans, 
Europeans and Asians. African individuals appear in blue, Asian individuals in 
yellow and Europeans in green. The cyan nodes represent past recombination 
events whereas the small gray nodes represent coalescent events. Red nodes are 
those past recombination events that were recovered by IRiS. These kind of 
coalescent networks were used to fine-tune and validate IRiS. Software used 
Pajek (http://vlado.fmf.uni-lj.si/pub/networks/pajek/ ). Figure by Marc Pybus. 
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Moreover, a strong effect of the recombination rate can be observed 
on sensitivity (Figure 7 in Melé et al. (2010)). First, we showed that, 
within a hotspot, sensitivity clearly decreases, and that the number 
of recombinations present in a dataset is negatively correlated with 
the sensitivity of the method. In fact, IRiS saturates when a certain 
number of recombinations are present although methods that aim at 
estimating recombination rates such as LDhat behave similarly 
(Melé et al. 2010). 

Sensitivity may also depend on the populations analyzed: the higher 
the diversity in a population the higher the sensitivity. This effect 
may be specifically strong in admixed populations because the 
signal left by recombinations between chromosomes of different 
populations may be clearer. In Melé et al. (submitted) explaining 
the observed higher recombinational diversity in all Indian 
populations due to admixture remains a possibility.  

Finally, sensitivity will depend on the allele frequency and density 
of the selected SNPs with higher sensitivity if selecting SNPs with 
high allele frequency and at high density (Table S1 in Melé et al 
(2010)).  

In Melé et al. (submitted), the sensitivity of the method for 5 
regions of the X chromosome was inferred accurately. This allowed 
estimating the absolute number of recombinations that had occurred 
in the whole genealogy of the studied sequences, something that 
had not been done before.  

The differences between the sensitivity estimates (20% vs 7.3%) of 
the two studies Melé et al. (2010) and Melé et al. (submitted) can be 
reconciled taking into account that the first estimate is an average 
value over thousands of simulations and the second one refers 
specifically to the sensitivity of the method when run on 5 regions 
of the X chromosome. These regions had higher recombination 
rates than average, the SNPs selected had allele frequencies not 
always being higher than 0.1, and finally, in the second study the 
number of chromosomes was the double than in the first.  
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4.5. Gene conversion, recurrent mutation, 
genotyping errors, and phasing errors 

All these processes may, in some circumstances, mimic the 
footprint left by recombination (Figure 18). This issue was 
specifically addressed in Melé et al. (2010) when quantifying how 
often these events were confounded with recombination (Table S2) 
and was discussed there as well.  

One of the most interesting findings was the mergepats parameter, 
which had a small effect on sensitivity and false discovery rate but 
showed to be very useful to increase IRiS robustness to such 
confounding factors. However, the accuracy in placing the 
breakpoint appears more affected if this parameter is turned on.  

These results were specifically useful for the last paper (Melé et al. 
submitted). Since for the kind of analysis we wanted to perform, the 
breakpoint location was not necessary, we decided to turn on the 
mergepats parameter to make sure that our results were robust to 
these confounding factors.  

Phasing errors may be the most dangerous since they behave 
exactly as recent recombination events; the only difference is that 
the complementary recombination event has to appear in the 
homologous chromosome. Although IRiS could potentially detect 
most of them, special care should be taken when dealing with 
unphased data. First, it is highly important to use an accurate 
phasing method such as PHASE, rather than fastPHASE (Table S3 
in Melé et al. (2010)) because every gain phasing accurately is a 
singinficant improvement in false discovery rate. Secondly, IRiS 
may detect 30% of the phasing errors as such but a post-processing 
of the output is needed. This implies, first, that some 
recombinations could be removed from the sample even though 
they may be true and therefore, sensitivity will decrease. Therefore, 
in our analysis of the 30 Old World populations, we directly 
avoided phasing errors by selecting only males for the study. 
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However, the possible use of IRiS to specifically detect phasing 
errors should be taken into account for possible future applications.  

 

Figure 18. Different processes that may mimic the footprint of recombination. 

4.6. Recombination in human population 
genetics 

In order to introduce recombination in the study of human 
population genetics it may be necessary to think about what is new 
about using such a genetic marker. Again, we can claim that 
detected recombinations are recent, and this will allow us to restrict 
our studies in a very specific window time: right after the Out of 
Africa migration (Figure 17 for an example).  

In the study by Melé et al. (submitted), the number of 
recombinations detected in a population is used as a proxy to infer 
the effective population size. The absolute values obtained are low 



 169 

but this is justified by the fact that our diversity values represent the 
harmonic mean of the sizes for recent times, when it is known that 
anatomically modern humans went through a strong bottleneck. LD 
based measures of effective population size always give lower 
estimates than those based on heterozygosity again because LD 
estimates measure more recent times. In the case of the X 
chromosome, a sex bias may be present (Emery et al. 2010; Keinan 
and Reich 2010). 

Further, the patterns of recombinational diversity of 30 populations 
of the Old World show significant differences among them. As 
expected, recombinational diversity was found to be much higher in 
African populations, consistent with their higher recent long term 
effective population size and older origin. In fact, diversity values 
will be a function of two factors: previous population sizes and the 
age of the population under study. Recombinational patterns being 
similar for East Asian and European populations point towards a 
similar time of settlement into their respective continental regions, 
something that is in agreement with the fossil record.  

The significantly higher recombinational diversity in the Indian 
populations compared to Europeans and East Asian seems to 
suggest that the Indian subcontinent was settled very early. In fact, 
the most recent studies on the peopling of Eurasia by anatomically 
modern humans point towards a single migration event which took 
them fairly rapidly across southern and southeastern Asia with only 
a secondary and later dispersal into Europe (Mellars 2006). One of 
the most striking patterns regarding recombinational diversity is the 
significant correlation found between recombinational diversity and 
distance from Southern India, which raises the question on whether 
South Asia could have been a main source of Eurasian variation 
although there are other plausible explanations. The study clearly 
places Indian populations as having had a more central role in 
human population history than previously reported.  

Moreover, patterns of recombinational diversity seem to be less 
affected by SNP ascertainment bias than other diversity measures 
such as nucleotide diversity: recombinational diversity in African 
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populations is much higher than in non-Africans, whereas, when 
looking at the patterns of nucleotide diversity of the exact same 
dataset, this pattern is not so clear. The same observation could be 
seen in Melé et al. (2010). 

Young variants tend to be in low frequency in a population and, 
generally, the most informative variants are those at high frequency. 
Population genetics is generally based on the study of allele 
frequencies in a population. However, most of the recombinations 
detected by IRiS are singletons. From this observation, it follows 
that a very high number of sequences and SNPs at high density will 
be needed in order to use recombination as a marker of shared 
ancestry. We are however at the right time since this kind of data is 
currently being generated with projects such as The HapMap and 
the 1000 Genomes.  

The intrinsic nature of recombination, which continuously 
overwrites previous events, makes tracing specific old 
recombination events nearly impossible, no matter how large our 
sample size will be. However, in order to use the complete 
recombinational history, we can always use haplotypes as genetic 
markers, since they provide more information than SNPs alone and 
carry information on both old and recent recombination events. 

4.7. IRiS applied to other organisms  

The study of recombination is not only restricted to humans, and it 
has been the focus of interest for several other species. In viruses 
for example, much effort has been devoted to study the specific 
mechanisms that underlie recombination, because this process is 
strongly related with their virulence and diseases caused by viruses. 

Bacteria, on the other hand, do not undergo meiotic recombination 
and they do not have sexual reproduction. However, they have 
different mechanism to exchange DNA sequences either with other 
organisms (conjugation) or with the environment (transformation) 



 171 

and therefore, they can incorporate foreign DNA to their own 
genetic material. 

In eukaryotes, strong variation on recombination rates has been 
found. Wilfert et al (2007) collected information on recombination 
rates of several eukaryotic organisms and found that the highest 
recombination rates were found in fungi and protozoa whereas 
animals and plants had lower recombination rates in general (Figure 
19). However, although yeasts are fungi, they have extremely low 
recombination rates (Zeyl and Otto 2007).  

Wilfert et al. (2007) also detected exceptionally high recombination 
rates in social Hymenoptera compared to other higher eukaryotes 
and they hypothesize that it is the strong selection pressure in social 
insects that causes it. Another interesting observation is that insects 
with sex-restricted recombination such as Drosophila (in which 
only females recombine) show increased recombination rates 
compared to those where both sexes recombine. 

Finally, recombination has been a focus of much study in mammals, 
especially in mice and humans. In mammals, the vast majority of 
meiotic recombination events are localized to hotspots and recently, 
the PRDM9 gene has been described as one of the major regulator 
of the distribution of recombination (Paigen and Petkov 2010).  

Overall, recombination rates vary strongly in different species and 
organisms. Our method, however, has been calibrated to be run in 
human samples. In principle, any species that shows similar 
diversity patterns as humans can be analyzed by IRiS.  

Humans have some specific characteristic that may differentiate 
them from other organisms. First of all, humans are much less 
diverse than other species. For example, they are more than three 
times genetically less diverse than chimpanzees, their closest 
relatives (Jobling et al. 2004). This would imply that, for a region of 
the same length and recombination rate, much more information 
would be present in chimpanzee sequences than in human 
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sequences. On the other hand, all human populations have 
experienced a recent expansion (Jobling et al. 2004) which affects 
the patterns of genetic diversity observed in the data. Specifically, 
an expansion would increase the length of the LD tracks, which 
makes the signal of recombination much clearer. Finally, the 
mutation and recombination rates in humans are, on average, of the 
same order of magnitude (10-8 per generation per locus).  

 

Fig 19. Average recombination densities (cM/Mb) across different large 
taxonomic groups. The social Hymenoptera stand out among the eukaryotes 
whereas the protozoa have the highest recorded values in all. The number of 
species per group (N) is indicated at the bottom. The horizontal line marks the 
median value, boxes indicate one quartile and vertical lines indicate the range of 
observations. Figure taken from Wilfert et. al 2007. 



 173 

It is difficult to predict whether IRiS will be suitable for the analysis 
of other organisms rather than humans, since recombination occurs 
in most organisms and the dynamics and demographic history of 
each of them may differ strongly. In general terms, the performance 
of any method to detect recombination will be highly dependent on 
how strong the signal of recombination is in the sequences. IRiS is a 
pattern-based method and therefore, the correct detection of the 
recombinations in any organism will depend on the presence of 
such patterns in the sequences and how strong these patterns can 
show the footprint of recombination. 

4.8. IRiS from SNPs to sequences and the 
genomic scale 

IRiS was fine-tuned to be run in SNP data. Both studies in which 
IRiS was applied to study the recombinational diversity of human 
populations (Melé et al (2010) and Melé et al. (submitted)) spanned 
several megabases. In general terms, to analyze a moderate number 
of sequences and SNPs, IRiS can be perfectly run in a desktop 
computer and provide results in a short time.  

Nowadays, however, more and more complete genomes are 
sequenced. SNP ascertainment biases are doomed to extinction and 
the huge amount of data produced by projects such as The 1000 
Genomes Project demands new analysis tools. In light of this, IRiS 
will have to be adapted. First, it will need to be able to analyze data 
in which low variants dominate and this should not be difficult to do 
if using a similar pipeline as that used in Melé et al. 2010. Second, 
it will need to be scaled up in order to analyze complete genomes.  

The limiting factors for IRiS in terms of speed and RAM are the 
number of sequences to be analyzed, the number of polymorphic 
sites (the length of those sequences) and the complexity of the 
region (the number of recombinations). Two changes would 
improve IRiS speed: first, moving from perl to C++ (perl is more 
generic but a little slower) and two, maintaining information mostly 
in RAM memory. Both are currently being implemented. 
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Being able to analyze complete genomes opens the door to a whole 
set of possible different applications for IRiS such as detecting 
positive selection or studying the dynamics of recombinations. In 
the following sections, these options will be explored further. 

4.9. Recombination and selection 

The role that positive selection has had in shaping our genomes has 
attracted notable attention. One of the possible future applications 
of IRiS could be to detect the footprint of positive selection because 
LD, recombination, and selection are tightly related. Under Wright 
Fisher equilibrium, the amount of linkage disequilibrium present 
between two genetic markers being in the same chromosome is 
proportional to the recombination rate between them. When a new 
variant arises, however, it does so in a specific haplotype and this 
variant will initially be completely linked with its neighbors until 
recombinations separates them until the equilibrium is reached. 

Positive selection can change this pattern. When a new and 
favorable variant arises, it will increase much more rapidly in 
frequency in the population taking the linked markers with it (which 
are said to be hitchhiked because recombination will not have time 
to break their association). This will be translated into a fast 
increase of the frequency of the whole haplotype in the population, 
and a reduction of the diversity present in this specific area. The 
selected haplotype will show an increase in LD (or a lack of 
recombination) whereas the other haplotypes will not show such a 
signal. Trying to find specific regions of the genome in which a 
specific haplotype has a lower number of recombinations around it 
than expected may be an interesting approach to detect the signals 
of positive selection.  

Specifically, in order to detect putative regions under positive 
selection using IRiS, the following could be done. First, IRiS should 
be run genome wide, and recotypes should be extracted as well as 
all the breakpoint positions. Then, recotype and haplotype 
information should be overlapped by analyzing the data in a sliding 
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window approach. Each window (of, for example, 1Mb size) should 
be centered in a combination of a small number of SNPs forming 
specific haplotypes. Then, the number of recombinations detected in 
those haplotypes looking at the whole region (delimited by the 
window size) should be counted. If the number of recombinations 
present in the sequences carrying the selected haplotype is much 
lower than the number of recombinations detected in other 
haplotypes, potentially, this particular haplotype may have 
undergone the effect of positive selection. 

Tests specifically aimed at detecting this kind of signal have already 
been designed but they are based on the study of LD patterns. Our 
approach is based on specific counts of recombination and 
therefore, we may be able to detect different signals of positive 
selection than the other methods existing so far. 

4.10. Recombinations detected by IRiS, 
recombination rates and the evolution of 
hotspots 

The mechanisms that underlie the evolution of recombination are 
not fully understood. Recent research seems to point towards 
recombination being a very fast evolving system in which hotspots 
appear and disappear at a higher rate than sequence evolution 
(Hochwagen and Marais 2010). In light of this, it may be interesting 
to study the patterns of recombination genomewide using a method 
such as IRiS that is biased towards recent events. LD-based 
methods such as LDhat (McVean et al. 2004) or PHASE (Crawford 
et al. 2004; Li and Stephens 2003) are able to detect hotspots that 
have been active for a while and have broken linkage 
disequilibrium. IRiS, on the other hand, although it does detect 
ancient hotspots, will specially detect young hotspots which show 
an accumulation of recent recombinations which have left a clear 
footprint on the data (without necessarily having broken completely 
LD). 
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Looking at which features of the genome such as GC content, gene 
density and others, correlate with recombination rates has already 
been done, both at the megabase scale and at the kilobase scale 
(Crawford et al. 2004; Myers et al. 2005; Myers et al. 2006). 
However, it may be very interesting to study these patterns by only 
looking at the recent recombinational landscape at the genome wide 
scale.  

Moreover, it has been shown that recombination rates between 
populations and individuals within populations are different. This 
seems to be directly related to the different PRDM9 variants that 
those individuals or populations may harbor. By looking at specific 
recombinational events detected by IRiS in several different 
population from which the frequency of PRDM9 alleles are known, 
we could have a better understanding of the role this gene has 
played in shaping the recombinational landscape at the population 
level. 

4.11. Concluding remarks 

 The aim of this work was to use recombination to study 
human genetic variation by first developing a method to detect 
recombination events, and second, use it to study the 
recombinational patterns of several human populations. The 
question is therefore whether these objectives have been achieved. 

 First of all, we have developed a method named IRiS that 
can extensively detect recombination events in a set of extant 
sequences. One of the largest challenges of this project was to 
adjust our theoretical approach to the detection of recombinations 
on real human sequences. We initially developed an algorithm 
aimed at detecting recombination events but later a huge effort had 
to be devoted to largely evaluate and validate it before it could be 
applied to real sequences. A natural consequence of detecting 
recombination events was that only the very recent ones could 
accurately be extracted. Although this was expected, the bias that 
our detection method had towards recent events was higher than 
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expected. This questioned our initial expectations because we 
thought that recombinations used as genetic markers could 
potentially be more informative than SNPs. We have seen now that 
our recombinational analysis is not better than that based on SNPs 
but it is indeed complementary.  

 Next, we performed an extensive genotyping of more than 
one thousand SNPs in order to study the recombinational patterns of 
several human populations of the Old World. More importantly, we 
were able to make inferences based on the differential 
recombinational patterns between populations. Further, the number 
of recombinations could be used as a proxy of the recent effective 
population size of human populations within such a recent time 
frame that no one had looked at before. Specifically, our results 
stressed the higher diversity in Indian populations raising the 
question of whether India could have played a major role in the Out 
of Africa expansion of the Anatomically Modern Humans.  

 Finally, we explored further the use of the information left 
by recombination by taking haplotypes as genetic markers. This is 
an indirect way to incorporate recombination into the study of 
human populations because haplotypes include in their structure all 
the visible recombinational history of the sequences and allow us to 
go further in time than using specific events. We demonstrate the 
potential use of incorporating haplotypes into future analysis of 
human genetic variation. 

 In summary, we have provided some insights to incorporate 
recombination into the study of population genetics and even 
population genomics by first developing a method to detect 
recombinations and second, by extracting relevant information from 
both specific recombination events and haplotypes in an extended 
study of human populations.  
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Abstract 

Recombination varies greatly among species, as illustrated by the 
poor conservation of the recombination landscape between humans 
and chimpanzees. Thus, shorter evolutionary time frames are 
needed to understand the evolution of recombination. Here, we 
analyze its recent evolution in humans. We calculated the 
recombination rates between adjacent pairs of 636,933 common 
single-nucleotide polymorphism loci in 28 worldwide human 
populations and analyzed them in relation to genetic distances 
between populations. We found a strong and highly significant 
correlation between similarity in the recombination rates and 
genetic differentiation between populations. This correlation is 
robustly maintained when considering presence/absence of 
recombination hotspots and after correcting for effective population 
size. A simulation analysis showed that the effect is not due to 
haplotype sharing. This result indicates a rapid pace of evolution of 
recombination, within the time span of differentiation of modern 
humans. 
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Introduction 

The recombination rate is neither constant along chromosomes nor 
across species. The rate within genomes has been observed to vary 
at both the megabase level, with different chromosomal regions in 
the human genome showing differences in their recombination rates 
(Kong et al. 2002; Myers et al. 2005) and at a finer level, due to the 
existence of recombination hotspots (Myers et al. 2005; Crawford et 
al. 2004; McVean GA et al. 2004). A source of his variation could 
be to the existence of a 13-bp sequence motif recognized by a 
rapidly evolving zinc-finger protein, PRDM9 (Myers et al. 2010; 
Baudat et al. 2010). Comparisons of the human and the chimpanzee 
genomes have revealed poor conservation of recombination 
landscapes, likely due to these changes in PRDM9 (Myers et al. 
2010), in contrast to the high level of DNA sequence conservation 
observed among these species (Ptak et al. 2005; Winckler et al. 
2005). Recombination rates have also been compared among human 
populations, revealing large-scale conservation (Serre et al. 2005), 
while some differences in hotspot intensities and some population-
specific hotspots have been described at a finer scale (Crawford et 
al. 2004; Bertranpetit et al. 2003; Conrad et al. 2006; Evans et al. 
2005; Graffelman et al. 2007). Finally, different studies have shown 
the existence of individual variation in recombination (Coop and 
Przeworski 2007; Coop et al. 2008); and its heritability has been 
investigated, along with its biological consequences (Kong et al. 
2004).  

Measuring the fine-scale recombination rate is experimentally 
challenging and cannot be applied on a genome-wide scale; 
however good estimates can be obtained by applying population-
genetic methods to DNA sequences (Stumpf and McVean 2003). 
Statistical methods have been developed to infer the fine-scale 
structure of recombination rate variation from genome-wide scale 
data (McVean GA et al. 2004). One of the widely used methods is 
implemented in the LDhat package, which is based on a composite-
likelihood approach. Simulations have shown the LDhat produces 
largely unbiased rate estimates of the fine-scale genetic map. More 
recently, Khil and Camerini-Otero (2010) have shown that present-
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day genetic crossovers are well predicted by a population averaged 
hotspot map computed from linkage disequilibrium data.  

 Differences in recombination rates among human 
populations provide an exceptional temporal framework to analyze 
the evolution of the recombination landscape, as they are well 
known and recent enough to capture fast evolutionary changes. The 
basal branches of the genetic diversification of human populations 
happened some 150,000 years ago, a much shorter time than the 
split between humans and chimpanzees (around 6.5 million years). 
The comparison of the recombination patterns among human 
populations provides a means to verify whether recombination 
landscapes evolve over time. To address this issue, we analyzed 
whether differences in recombination rates among human 
populations are correlated with their genetic differences computed 
as genetic distances. Whole genome estimations of recombination 
rates based on SNP data are already available for HapMap samples 
which, however, consist only of four populations for HapMap Phase 
I and II (International HapMap Consortium  2005; 2007) and 11 
populations for HapMap Phase III. Here we computed the 
recombination rates using data for 660,918 SNPs on the Illumina 
HumanHap650K Beadchips genotyped in the full HGDP-CEPH 
panel samples (Li et al. 2008; Jakobsson et al. 2008) for 28 
populations belonging to six continental groups representing 
worldwide human diversity (Cann et al. 2002).  

Materials and methods 

Recombination rate estimation 

We considered the H971 subset of the Human Genome Diversity 
Cell Line Panel (HGDP-CEPH) recommended by Rosenberg 
(Rosenberg 2006). The 51 original HGDP-CEPH population 
samples (Cann et al. 2002) were re-grouped into 39 populations 
based on geographic and ethnic criteria as in Gardner et al. (Gardner 
et al. 2006). To avoid small sample sizes, the analysis was 
performed on genotypes from 28 populations belonging to six 
continental groups, with sample sizes over 19 individuals (a list of 
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used populations and their number of individuals is presented in 
Table 1). We used data for 660,918 SNPs on the Illumina 
HumanHap650K Beadchips successfully genotyped in the full 
HGDP-CEPH panel samples (Li et al. 2008; Jakobsson et al. 2008). 
SNPs are spaced 4.4 kb apart on average, an appropriate length 
given that hotspots occur every 200 Kb or less and their widths are 
1-2 Kb (McVean GA et al. 2004; Jeffreys et al. 2005). Population 
recombination rates were calculated between neighboring SNPs 
according to the method implemented in the rhomap program 
(Auton and McVean 2007) within the LDhat package (Fearnhead 
and Donnelly 2001). LDhat methods have been demonstrated to 
give highly similar results to alternative approaches in human and 
chimpanzee datasets (Winckler et al. 2005; Jeffreys et al. 2005) and 
are computationally practicable for genome wide variation surveys. 
For a reliable estimation of the recombination rates, loci with more 
than 10% missing data in at least one population were discarded 
from the analysis (Auton and McVean 2007). After this cleaning 
procedure, the total number of SNPs included in the analysis was 
636,933 (96% of all the SNPs in the HGDP). The number of SNPs 
for each chromosome is reported in Table 3. For each population, 5 
independent runs of the rhomap program were carried out (with 
parameters: iterations=10.000.000, sampling=5.000, 
burnin=100.000). For each pair of adjacent SNPs we obtained 5 
estimates of the population recombination rate (4Ner /kb) in each 
population and the median of these 5 estimates was used in the 
analysis.  

Since population recombination rates (ρ) are dependent on the 
effective population size (ρ = 4Ner), estimates of the population 
recombination rate in each population were normalized by θ = 
4Neµ, a scaled population mutation rate obtained from the same 
individuals and populations, where µ is the genome-wide average 
microsatellite mutation rate per locus and per generation 
(Graffelman et al. 2007). As there is no evidence of mutation rates 
varying among human groups, this correction produces values that 
are not biased by effective population size. 

Correlation between genetic distance and recombination 
dissimilarity 
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We obtained a Spearman rank correlation matrix for the 
recombination rates among all pairs of populations. Each 
correlation value was obtained by comparing the values of corrected 
ρ (see above) for all pairs of adjacent typed SNPs between a 
population pair. In order to simplify the comparison with the genetic 
distance, the Spearman correlation values were turned into a 
dissimilarity measure by subtracting them from 1. The matrix 
obtained is then a measure of the dissimilarity of recombination 
rates between each pair of populations.  

The differentiation among human populations was estimated 
through the FST measure (Weir and Cockerham 1984) among each 
pair of populations. FST values were calculated using a routine 
implemented in the PopGen module of BioPerl (Stajich and Hahn 
2005) and stored in a 28×28 matrix 

The matrix of recombination dissimilarity and that of genetic 
distance (FST matrix), were compared using a standardized Mantel 
test (Sokal and Rohlf 1995) by randomly permuting 9,999 times the 
rows and columns of one of the matrices. Statistical analyses were 
implemented using the R statistical software. 

Simulation analysis 

To further investigate the effect of the sharing of haplotypes and, 
hence of linkage disequilibrium patterns (which are at the base of 
the recombination rate estimates) on the relationship between 
genetic distance and recombination landscape, we designed a 
simulation study. 

The simulations were carried out with the COSI program (Schaffner 
et al. 2005) which provide a simulation of the human demography 
under a three-population model based on the HapMap populations. 
This model was specifically designed to generate sequences that 
closely resemble empirical data of three human populations 
(African, European and Asian) by means of simulating a human-like 
demography and a variable recombination rate along the sequences, 
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allowing for presence and absence of hotspots. The simulator is 
already calibrated to obtain realistic FST values that mimic the 
divergence found among the three populations being simulated. We 
performed 1000 simulations using the best-fitting demographic 
model provided by COSI. We set the length of the simulated 
sequences to 1 Mb and adopted a sample size of 56 sequences for 
European and Asian populations and 42 for the African population 
with the aim of having the same amount of individuals as in a three 
chosen equivalent HGDP populations (Yoruba, French and 
Japanese). In each simulation, the recombination rate is exactly the 
same for the three simulated populations: this leads to simulated 
genotypes of different populations that share common haplotypes 
but do not have experienced differences in their recombination rate. 
Finally, in order to have a similar ascertainment bias in the 
simulations as in the observed data, we removed SNPs with MAF 
lower than 0.1 and performed a selection of tagSNPs with r2 higher 
than 0.8 using Haploview software with the pairwise option (Barrett 
et al. 2005). In order to compare simulated data to a consistent 
empirical dataset, we randomly chose, along the whole genome, 
1000 non-overlapping 1Mb long windows, and we analyzed them 
across the three populations of Yoruba, French and Japanese. 

We then computed FST and recombination rates, following the same 
procedure as before, for real and simulated data. If the shared 
haplotypes were the main source of the high correlation found 
between recombination and genetic distance, we expect to observe 
this correlation also in the simulated data. 

Results and discussion 

Exploratory analysis of recombination rates 

Population recombination rates were computed between 636,933 
neighboring SNPs for 28 populations. As the recombination rate 
was estimated through several runs for each population, and to test 
for the agreement of estimates between runs of the same 
chromosome, 10 runs were performed for chromosome 22 for all 
populations. We carried out a repeated measure ANOVA testing 
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population and run as the main effects and pairs of adjacent SNPs as 
a covariate. No statistical significance of runs was found, but 
population and pairs of adjacent SNPs were highly significant (data 
not shown). This result reflects that the noise in the estimation 
procedure is low in relation to differences between populations. 

Table 2 shows the mean estimated recombination rate for all 
populations, grouped according to geographical region. Results 
indicate considerable variation in recombination rates between 
populations, with small values for populations from East Asia. A 
repeated measure ANOVA show that differences between 
populations are highly significant (F= 59479.8 p < 0.00001). A 
Friedman ANOVA test shows similar results (ANOVA χ2 = 
2255369 p < 0.000001). Post hoc analysis using a Bonferroni 
correction for the repeated ANOVA test show differences between 
populations remain significant, except for two homogenous groups 
from Central South Asia: Pathan, Burusho and Brahui; and 
Mozabite, Balochi and Makrani. Figure 1 shows estimated 
recombination rate, (scaled by the genome-wide average 
microsatellite mutation rate) along chromosome 22 for 6 
populations (one from each continental region). The figure show 
similar pattern for all populations, however substantial variation 
could be detected by close observation. For example, South East 
China and Maya present by far less hotspots than the other 
populations. A hotspot located around 20 Mbp in all populations is 
absent (or much weaker) in Russian. A hotspots region around 32 
Mbp is absent (or much weaker) in Brahui, Burusho, Hazara, Han, 
maya and Druze, but present in all other populations. This variation 
is consistent with previous reports in other genomic loci and 
genome-wide (Graffelman et al. 2007) 

Genetic distance and recombination similarity between 
populations 

Spearman rank correlation between populations recombination 
estimates were obtained by comparing the values of corrected 
recombination ρ for all pairs of adjacent typed SNPs between a 
population pair. The differentiation among human populations was 
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estimated through the FST measure (Weir and Cockerham 1984) 
among each pair of populations. The correlation values in 
recombination between population pair and FST measures were 
stored as a dissimilarity and distance matrices respectively and 
compared using a standardized Mantel test (Sokal and Rohlf 1995). 
A significant Mantel's r correlation of 0.894 (P < 0.0001) was 
observed, indicating that differences in recombination rates among 
populations increase with their genetic distance (Figure 2). In other 
words, genetic differentiation across human populations explains a 
considerable amount of recombination differences among them. 
This result also stands when the analysis is independently 
performed for each chromosome; then the Mantel test correlation 
ranges from 0.761 for chromosome 16 to 0.946 for chromosome 10 
(Table 3). 

It can be argued that these results could be explained by similar 
patterns of the recombination rate in the closest populations, due to 
the presence of common or shared haplotypes (see below), and not 
to a lower genetic differentiation among them. To test this 
hypothesis, we repeated the analysis considering only one 
population per continental group to avoid redundancy in the genetic 
composition of geographically close populations. In particular, the 
analysis was performed with data from Yoruba (Africa), French 
(Europe), Bedouin (Middle East / North Africa), Burusho (Central / 
South Asia), Han (East Asia) and Maya (America) populations. The 
observed correlation remained very high (Mantel's r = 0.863, P = 
0.002) and was statistically significant even with the low number of 
pairwise comparisons. 

To test for the impact of using the same data set for estimating 
recombination and genetic distance, we performed a mantel test 
between the Fst matrix calculated for one chromosome versus the 
recombination dissimilarity matrix computed on the other 
chromosomes. Results are presented in supplementary table 1 and 
show that this relationship remain and are highly significant in all 
cases (p < 0.00001) even when genetic distance and recombination 
dissimilarity are estimated from different parts of the genome. The 
maximum correlation is obtained when both matrices were 
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calculated for the same chromosome; however this is not always the 
case and may reflect inaccuracies in rates estimation. 

Hotspots analysis 

Alternatively, comparisons of recombination rates among 
populations can be evaluated by attending to the presence or 
absence of recombination hotspots. We defined a hotspot in each 
population as a recombination rate that exceeds 5 times the mean 
rate, producing a threshold of 10-6 ρ / θ. 22,413 hotspots have been 
detected at least in one population each. The number of hotspots 
vary from 2582 for South China to 8042 for Palestinian (no 
correlation between the number of hotspots and population sample 
size was observed, Pearson correlation test r = -0.08 p > 0.05; 
Spearman correlation test r = 0.34 p > 0.05). The proportion of 
shared hotspots between continental regions is maximum between 
EUR and MENA (0.34), EUR and CSASIA (0.31) and between 
MENA and CSASIA (0.29). These values are much lower when 
considering SSAFR or EASIA (Table 4).  

We calculated the Jaccard distance between each pair of populations 
to measure the overall difference in presence/absence of hotspots (in 
this distance, the absence of a hotspot in a given position in two 
populations does not contribute to the similarity between them as 
would be in the case of a simple matching coefficient). Comparing 
this distance matrix with the FST matrix, highly significant results 
were obtained (Mantel's r = 0.866, P < 0.0001), suggesting that 
differences in the location of recombination hotspots increases with 
genetic differentiation between human populations. 

Simulation analysis 

With the mantel test analysis using only one population from each 
continent, we have shown that the effect of haplotype sharing in 
closely related populations does not explain the correlation between 
genetic differentiation and recombination. However, it is possible 
that the sharing of haplotypes and, hence of linkage disequilibrium 
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patterns, had a considerable effect also on distant populations, since 
its origin can be traced back to the Out of Africa origin of modern 
humans. To disentangle this point, we performed a simulation study 
designed to recognize the impact of using shared haplotypes on the 
estimates of recombination, rather than to represent a formal null 
model. 

As the number of simulated populations is only three, the Mantel 
test cannot provide a robust comparison. To compare the 
relationship between recombination similarities and genetic 
differentiation in the three populations being simulated and in the 
three corresponding HGDP populations, we performed a Spearman 
correlation of the values of recombination between all neighboring 
SNPs in the 1Mbp and their FST values, for both simulated and 
empirical data. This is a more stringent test than the previous 
overall comparison between FST and recombination patterns, since, 
rather than general means, data points correspond now to 1000 
windows of 1 Mb each. The correlation between recombination 
values and genetic distance for empirical data are 0.26, 0.25 and 
0.27 for Yoruba-French, Yoruba-Japanese, and French-Japanese 
respectively (all significant). Conversely, these values were only 
0.05, 0.06 and 0.09 for the simulated African-European, African-
Asian and European-Asian (only the last comparison was 
marginally significant). This shows that, within the simulated 
populations, FST and recombination rate were not correlated despite 
sharing common haplotypes, whereas they are clearly correlated 
within the three studied populations. The common origin of 
haplotype structure, as illustrated in the simulation data, is unlikely 
to have contributed measurably to the correlation between genetic 
distances and structure of the recombination landscape. The low 
(although significant) correlation values between FST and 
recombination dissimilarity in the empirical data show that SNP 
variation captures a low amount of the variation of the 
recombination events distribution (r2 = 0.07 on average). 
Presumably, differences in allele frequencies between populations 
correlate with recombination patterns through linkage 
disequilibrium with any motifs or genomic signals that induce 
recombination. That such correlation is small may imply that 
recombination patterns evolve faster than the relatively stable allele 
frequencies. 
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Concluding remarks  

The results of this work reveal the footprint of the evolutionary 
history of human populations on the recombination rate, implying 
that differentiation in recombination rate estimates across human 
populations could be explained, in an important part, by their 
genetic differentiation. The large differences found in the 
comparison of the recombination landscapes among humans and 
chimpanzees (Ptak et al. 2005; Winckler et al. 2005) showed that 
recombination evolves quickly. Here, we give evidence that, even at 
the narrow timescale separating human populations, on the order of 
tens of thousands of years, differences appear to be detectable and 
to be correlated with genetic differentiation among populations. 
Recombination rate appears to be a rapidly changing parameter, 
indicating that the underlying factors shaping the likelihood of a 
recombination event, such as DNA sequences controlling 
recombination rate variation, also change. This is consistent with 
recent data showing that allelic variants of PRDM zinc fingers are 
significantly associated with variability in genome hotspots among 
humans (Baudat et al. 2010). The results obtained in this work 
contribute to the growing perception of recombination not as a 
genome-wide, cross-species fixed phenomenon, but as a fluctuating 
property well in accordance with its basic, molecular mechanism. 
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Figure Legends 

Figure 1. Recombination rate estimates (10-5) for successive SNP-pairs for 
chromosome 22 and in each of 28 populations, grouped into geographical 
regions. 
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Figure 2. Relationship between FST values and the recombination rate correlation 
based on 378 pairwise populations comparisons. 
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