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ABSTRACT

Two quinolone-susceptible Staphylococcus aureus and five quinolone-susceptible Streptococcus pneumoniae
isolates were used to obtain in-vitro quinolone-resistant mutants in a multistep resistance selection
process. The fluoroquinolones used were ciprofloxacin, moxifloxacin, levofloxacin, gemifloxacin,
trovafloxacin and clinafloxacin. The mutagenicity of these quinolones was determined by the Salmonella
and the Escherichia coli retromutation assays. All quinolone-resistant Staph. aureus mutants had at least
one mutation in the grlA gene, while 86.6% of quinolone-resistant Strep. pneumoniae mutants had
mutations in either or both the gyrA and parC genes. Moxifloxacin and levofloxacin selected resistant
mutants later than the other quinolones, but this difference was more obvious in Staph. aureus.
Accumulation of the fluoroquinolones by Staph. aureus did not explain these differences, since
levofloxacin and moxifloxacin accumulated inside bacteria to the same extent as clinafloxacin and
trovafloxacin. The results also showed that moxifloxacin and levofloxacin had less mutagenic potency in
both mutagenicity assays, suggesting a possible relationship between the selection of resistance to
quinolones and the mutagenic potency of the molecule. Furthermore, gemifloxacin selected efflux
mutants more frequently than the other quinolones used. Thus, the risk of developing quinolone
resistance may depend on the inoculum of the microorganism at the infection site and the concentration
of the fluoroquinolone, and also on the mutagenicity of the quinolone used, with moxifloxacin and
levofloxacin being the least mutagenic.
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INTRODUCTION

The use of quinolones has risen steadily since
their introduction. The newer fluoroquinolones,
such as levofloxacin and moxifloxacin, have
enhanced activity against Gram-positive micro-
organisms, such as Staphylococcus aureus and
Streptococcus pneumoniae, and have therefore been
used mainly to treat respiratory tract infections
[1]. Mechanisms of resistance to quinolones in

Gram-positive bacteria have been classified
into two groups: (i) mutations in the quinolone
resistance-determining regions (QRDRs) of the
gyrA and parC genes (grlA in Staph. aureus), which
encode the A subunits of DNA gyrase and
topoisomerase IV, respectively [2–8]; and (ii)
efflux systems that pump the drug out of the cell
[9–12]. Efflux systems can be overexpressed
following mutations in the gene encoding the
protein that regulates the expression of the efflux
system, mutations in the gene encoding the efflux
protein itself, resulting in a greater ability to
extrude quinolones [13], or a mutation in the
promoter region [14]. Overall, resistance can
be associated with either or both of these
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Villarroel 170, 08036 Barcelona, Spain
E-mail: jvila@ub.edu

� 2005 Copyright by the European Society of Clinical Microbiology and Infectious Diseases



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

mechanisms. In-vivo selection of quinolone resist-
ance in bacteria is influenced by: (i) the bacterial
species involved; (ii) the quinolone used; (iii) the
concentration of antibiotic at the site of infection,
and the ratio between this concentration and the
MIC of the antibiotic for the microorganism; and
(iv) the density of bacteria at the site of infection.
Several studies have shown that different fluor-
oquinolones have different potentials to select
resistance [15–18].

The mutagenic effect of nalidixic and oxolinic
acids on bacteria was first demonstrated in the
Salmonella mutagenicity assay [19]. Using this
assay, this observation was further expanded to
enoxacin and ciprofloxacin [20], fleroxacin and
enrofloxacin [21], norfloxacin, temafloxacin,
tosufloxacin and lomefloxacin [22], and other
DNA gyrase and mammalian topoisomerase II
inhibitors [23]. In these studies, reversion of the
hisG428 ochre mutation in strain TA102 was the
genetic endpoint used, since other Salmonella
tester strains failed to detect the mutagenic effect
of these antibacterial compounds [20]. The muta-
genic effect of nalidixic and oxolinic acids has also
been detected in the Escherichia coli WP2 trp+

reversion assay [24,25]. It has been suggested that
mutagenicity of quinolones could be one of the
reasons for the emergence of resistant clinical
strains [22,26]. Moreover, it has been shown that
adaptive mutations produce resistance to ciprofl-
oxacin in E. coli [27]. Therefore, the present study
aimed to investigate the mutagenic potency and
potential of six quinolones to select for resistance
in Staph. aureus and Strep. pneumoniae.

MATERIALS AND METHODS

Microorganisms and susceptibility testing

The study investigated two Staph. aureus and five Strep.
pneumoniae clinical isolates. The MICs for the clinical isolates
and the derivative mutants were determined by the NCCLS
microdilution method [28] in the absence and presence of
reserpine (25 mg ⁄L). Staph. aureus was grown in Mueller–
Hinton cation-adjusted broth, which was supplemented with
lysed horse blood 5% v ⁄v for the growth of Strep. pneumoniae.

Selection of mutants by serial passages

Resistance was selected by serial passages performed with
antibiotic concentrations ranging from three doubling dilu-
tions below to three doubling dilutions above the MIC. Based
on the method described by Browne et al.1 [29], with slight
modifications, strains were subcultured on blood agar without
antibiotic pressure, instead of cation-adjusted Mueller–Hinton

broth supplemented with horse blood, before the next antibi-
otic passage. Daily subculturing was performed until mutants
with MICs that were ‡ 4· the MIC of the selected drug were
obtained. The antimicrobial agents used in this study were
ciprofloxacin and moxifloxacin (Bayer, Leverkusen, Germany),
levofloxacin (Aventis, Madrid, Spain), gemifloxacin (Glaxo-
SmithKline, Harlow, UK), trovafloxacin (Pfizer Ltd, Sandwich,
UK) and clinafloxacin (Parke-Davis, Ann Arbor, MI, USA). The
ability of the fluoroquinolones to select resistant mutants was
defined as the number of passages necessary to increase the
initial MIC four-fold.

Mutations in the target genes

For each of the clinical isolates investigated, the QRDRs of the
gyrA, gyrB, parC and parE genes (grlA and grlB for Staph.
aureus) were amplified by PCR [5,8] and sequenced to ensure
that none of the isolates had a mutation associated with
decreased susceptibility. PCR products were purified with a
QiaQuick PCR purification kit (Qiagen, Hilden, Germany) and
sequenced with a Big Dye terminator sequence kit v. 2.0
(Applied Biosystems, Foster City, CA, USA) according to the
manufacturer’s instructions.

Mutations in the QRDRs of the gyrA and parC genes of the
mutants selected were analysed by PCR–restriction fragment
length polymorphism with HinfI (Ser84 of GyrA and Ser80 of
GrlA of Staph. aureus; Ser81 of GyrA and Ser79 of ParC of Strep.
pneumoniae), except for some resistant mutants of Staph. aureus
with a ciprofloxacin MIC of 32 or 64 mg ⁄L, for which the
QRDRs of the gyrA and grlA genes were sequenced.

Accumulation assay

The kex and kem of each quinolone were determined for the
clinical isolates of Staph. aureus with a modified fluorimetric
method, as described by Mortimer and Piddock [30] and
Martinez-Martinez et al. [31]. Briefly, cells were grown to the
exponential phase (OD600 of 0.6–0.7), pelleted by centrifugation,
washed with phosphate-buffered saline, and then resuspended
in phosphate-buffered saline to anOD520 of 1.5. Aliquots (10 lL)
of a quinolone dilution were added to 490 lL of bacterial
suspension and incubated for 30 min, after which the bacterial
cells were again pelleted and washed twice with phosphate-
buffered saline. The final pellet was resuspended in glycine-
HCl, pH 3.0, and incubated for 2 h at room temperature. Finally,
the cells were pelleted, the supernatantwas transferred to a new
tube, and the amount of fluorescencewasmeasured. Calibration
curves were also constructed for each quinolone.

Mutagenesis assays

Two reversion mutation methods were used. The Salmonella
mutagenicity assay was performed by the plate incorporation
method with the mutant strain TA102, as described previ-
ously, with three plates per concentration [32]. The E. coli WP2
trp+ reversion assay [33] was performed with the mutant strain
WP2 ⁄pKM101 [24] according to recent recommendations [34].
The number of revertants induced was calculated by subtract-
ing the number of spontaneous revertants obtained in the
negative control for each experiment. Linear regression was
calculated from the data of three independent experiments
with non-toxic doses, with the mutagenic potency being the
slope of the line obtained for each compound.
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RESULTS

Multistep selection of resistance

The ability of several fluoroquinolones to select
resistant mutants of Staph. aureus and Strep. pneu-
moniae by serial passages is shown in Tables 1 and
2. Ciprofloxacinwas the first antimicrobial agent to

select resistance (5–8 passages for Staph. aureus;
7–10 passages for Strep. pneumoniae), followed, for
Staph. aureus, by trovafloxacin (6–8 passages) and
gemifloxacin (8 passages). For Strep. pneumoniae,
trovafloxacin and gemifloxacin selected resistance
following 7–11 and 8–10 passages, respectively.
Clinafloxacin selected resistance following 8–11

Table 1. MICs (mg ⁄L) of quinolones in the presence and absence of reserpine for the selected mutants of Staphylococcus
aureus3

Wild-type
strain Mutants gyrA Ser84 grlA Ser80

Original
MICa C C + Rb M M + Rb L L + Rb G G + Rb T T + Rb Clx Clx + Rb

4-108 4-108C5 Wild-type Mutant 0.06 2 1 £ 0.125 < 0.03 0.5 0.25 £ 0.06 0.015 £ 0.125 0.06 ‡ 0.125 0.03
4-108MM16 Wild-typec Mutant 0.03 64 64 1 0.5 8 8 1 0.5 1 1 1 0.25
4-108L13 Wild-typec Mutant 0.125 64 32 0.5 0.5 8 4 1 0.5 1 0.25 0.5 0.25
4-108G8 Wild-type Mutant 0.007 4 4 £ 0.125 0.25 0.5 0.5 £ 0.06 0.125 £ 0.125 0.25 ‡ 0.125 0.125
4-108T6 Wild-type Mutant 0.015 32 2 0.5 0.125 4 0.5 0.5 0.03 0.25 0.125 0.5 0.06
4-108Clx8 Wild-type Mutant 0.015 4 2 0.25 0.25 1 0.5 £ 0.06 0.125 0.25 0.125 0.25 0.125

5-61 5-61C7 Wild-type Mutant 0.06 2 1 £ 0.03 < 0.03 0.25 0.25 £ 0.007 £ 0.007 0.03 0.03 0.007 < 0.015
5-61MM14 Wild-typec Mutant 0.03 64 64 0.5 0.5 8 4 1 0.5 0.5 0.5 0.5 0.25
5-61L15 Wild-typec Mutant 0.125 32 32 0.5 0.5 8 4 1 0.5 0.5 0.5 0.5 0.25
5-61G8 Wild-type Mutant 0.007 8 1 0.125 0.125 0.5 0.5 0.06 0.03 0.125 0.125 0.06 0.06
5-61T8 Wild-type Mutant 0.015 2 2 0.25 0.25 0.5 1 0.06 0.06 0.25 0.25 0.06 0.06
5-61Clx11 Wild-type Mutant 0.015 4 4 0.25 0.25 2 1 0.125 0.06 0.25 0.25 0.125 0.06

Example of strain nomenclature: 4-108, number of strain; C, antibiotic used for selection; 5, number of passages required for selection.
C, ciprofloxacin; M, moxifloxacin; L, levofloxacin; G, gemifloxacin; T, trovafloxacin; Clx, clinafloxacin; R, reserpine.
aThe MIC of the selecting antibiotic for the wild-type clinical isolate.
bMICs obtained in the presence of reserpine 25 mg ⁄L.
cThese strains had an additional mutation at codon Glu-88, changing it to Lys.

Table 2. MICs (mg ⁄L) of quinolones in the presence and absence of reserpine for the selected mutants of Streptococcus
pneumoniae4

Wild-type

strain Mutant gyrA Ser81 parC Ser79

Original

MICa C C + Rb M M + Rb L L + Rb G G + Rb T T + Rb Clx Clx + Rb

5-1 5-1C10 Mutant Mutant 1 32 32 4 2 16 16 0.25 0.25 2 2 1 0.5
5-1MM12 Mutant Mutant 0.125 32 16 2 2 16 16 0.25 0.25 2 2 0.5 0.5
5-1L12 Mutant Mutant 1 64 32 4 2 16 8 0.5 0.25 4 4 1 0.5
5-1G9 Wild-type Mutant 0.015 16 1 1 0.125 4 1 0.25 < 0.015 0.5 0.125 0.5 < 0.06
5-1T12 Mutant Mutant 0.06 16 16 8 4 16 16 0.5 0.25 2 4 1 0.5
5-1Clx14 Mutant Wild-type 0.06 32 8 8 1 16 16 0.5 0.25 2 1 2 0.25

5-4 5-4C7 Mutant Wild-type 0.5 32 8 4 0.5 8 4 1 0.25 1 0.5 1 0.25
5-4MM9 Mutant Mutant 0.25 32 16 8 4 32 16 1 0.25 4 4 1 0.5
5-4L9 Mutant Wild-type 1 16 8 4 0.5 32 16 0.5 0.125 2 1 2 0.5
5-4G8 Wild-type Wild-type 0.015 8 1 0.25 0.25 4 1 0.125 0.03 0.25 0.125 0.25 < 0.06
5-4T7 Wild-type Mutant 0.06 4 2 0.5 0.25 2 2 0.125 0.06 0.5 0.25 0.125 < 0.06
5-4Clx8 Wild-type Wild-type 0.06 16 0.5 0.5 0.125 2 1 0.125 < 0. 015 0.25 0.125 0.5 < 0.06

5-6 5-6C7 Mutant Wild-type 1 32 8 4 1 16 8 1 0.125 2 0.5 1 0.125
5-6MM9 Mutant Mutant 0.125 16 16 4 4 16 16 0.5 0.25 4 4 0.5 0.25
5-6L12 Mutant Wild-type 1 32 8 8 2 16 16 1 0.125 2 2 2 0.5
5-6G8 Wild-type Wild-type 0.015 16 1 1 0.5 4 2 0.25 0.06 0.25 0.125 0.5 < 0.06
5-6T11 Mutant Mutant 0.06 64 8 8 4 64 8 2 0.5 4 2 4 1
5-6Clx9 Wild-type Wild-type 0.06 4 0.5 0.5 0.125 2 1 0.06 < 0.015 0.25 0.125 0.125 < 0.06

5-11 5-11C7 Mutant Wild-type 1 32 4 4 2 16 2 1 0.125 1 0.25 1 0.25
5-11MM9 Mutant Mutant 0.125 64 8 4 2 32 2 0.5 0.25 4 2 1 0.25
5-11L13 Mutant Wild-type 1 16 4 2 1 16 4 0.5 0.125 2 1 2 0.5
5-11G10 Wild-type Mutant 0.015 32 1 0.5 0.25 4 0.25 0.25 < 0.015 0.5 0.25 0.25 < 0.06
5-11T11 Mutant Mutant 0.06 8 8 4 4 8 8 0.25 0.125 2 1 0.5 0.125
5-11Clx12 Wild-type Mutant 0.06 64 2 8 4 32 4 4 0.5 16 4 8 1

5-154 5-154C7 Mutant Wild-type 0.5 64 4 2 1 8 1 1 0.25 1 0.5 1 0.25
5-154MM8 Mutant Mutant 0.06 32 8 4 4 16 4 0.25 0.125 2 2 0.5 0.25
5-154L13 Mutant Wild-type 1 32 4 4 2 16 2 0.5 0.125 2 2 1 1
5-154G10 Wild-type Mutant 0.015 32 0.5 0.5 0.125 4 0.125 0.25 < 0.015 0.5 0.125 0.5 < 0.06
5-154T11 Mutant Mutant 0.06 64 8 8 4 32 8 4 0.5 8 2 8 1
5-154Clx12 Mutant Mutant 0.06 64 8 4 4 32 4 2 0.25 4 4 2 0.25

Example of strain nomenclature: 5-1, number of strain; C, antibiotic used for selection; 10, number of passages required for selection.
C, ciprofloxacin; M, moxifloxacin; L, levofloxacin; G, gemifloxacin; T, trovafloxacin; Clx, clinafloxacin; R, reserpine.
aThe MIC of the selecting antibiotic for the wild-type clinical isolate.
bMICs obtained in the presence of reserpine 25 mg ⁄L.
Previous mutations in wild-type strains: strain 5-1, no mutation; strain 5-4, mutation in ParC, R95-C; strain 5-6, mutation in ParC, K137-N; strain 5-11, mutation in ParE, I368-V;
strain 5-154, mutation in GyrA, E85-K.
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passages in Staph. aureus, and after 8–12 passages in
Strep. pneumoniae. The fluoroquinolones that nee-
ded most passages to select resistant mutants in
Staph. aureus were moxifloxacin and levofloxacin
(14–16 and 12–15 passages, respectively). In Strep.
pneumoniae, moxifloxacin selected resistant
mutants after 8–12 passages, whereas levofloxacin
required 9–13 passages.

Mutations in target genes

No mutations were found in the QRDRs of the
gyrA, gyrB, grlA or grlB genes in the wild-type
strains of Staph. aureus, whereas several different
mutations were found in the wild-type strains of
Strep. pneumoniae. Strain 5-1 did not have any
mutation, strain 5-4 contained an alteration in ParC
(R95-C), strain 5-6 had a different substitution in
ParC (K137-N), strain 5-11 had an amino-acid
change at ParE (I368-V), and strain 5-154 had a
mutation in the amino-acid codon E85-K of the
gyrA gene. All of these strains were susceptible to
ciprofloxacin.

All Staph. aureus mutants had a mutation in the
Ser80 codon of the grlA gene, but no mutation was
detected in the Ser80 codon of the gyrA gene. The
gyrA and grlA genes of four mutants (4-108L13,
4-108M16, 5-61L15 and 5-61M14) with a ciprofl-
oxacin MIC of 32 or 64 mg ⁄L were sequenced,
revealing a mutation in the Glu88 codon of the
gyrA gene, producing a change from Glu to Lys.
In Strep. pneumoniae, 26 of 30 resistant mutants
had mutations in either gyrA or parC, or both.
Twelve (40%) of the Strep. pneumoniae mutants
had a double mutation, with a mutation in the
Ser81 codon of the gyrA gene, plus a mutation in
the Ser79 codon of the parC gene (genotype 1);
nine (30%) had a mutation in the gyrA gene, but
not in the parC gene (genotype 2); five (16.6%)
had a mutation in the parC gene, but not in the
gyrA gene (genotype 3); and four (13.3%) did not
have mutations in either gene at these two codons
(genotype 4). Two of the latter four strains were
selected with clinafloxacin, and the remaining
two with gemifloxacin (Table 1). The distribution
of the mutations selected by each antibiotic
differed; thus, ciprofloxacin and levofloxacin
selected four mutants with genotype 2 and one
with genotype 1; moxifloxacin only selected
genotype 1; gemifloxacin selected two mutants
with genotype 4, and three with genotype 3;
trovafloxacin selected one mutant with genotype

3 and four with genotype 1; and clinafloxacin
selected two mutants with genotype 4, and one
each of the other genotypes.

Susceptibility testing

All of the resistant mutants obtained had an MIC
at least four-fold higher than the MIC of the
fluoroquinolone used for their selection, while the
MICs of the other fluoroquinolones increased by
different degrees. MICs in the presence of reser-
pine were also determined, to find whether an
efflux system inhibited by reserpine was involved
in the resistance exhibited by the mutants
(Tables 1 and 2).

In general, the MICs for Staph. aureus did not
change in the presence of reserpine, but four
mutants showed a decreased MIC: strain 4-108C5
showed a four-fold decrease in the MIC of
moxifloxacin; strain 4-108M16 showed a four-fold
decrease in the MIC of clinafloxacin; strain 5-61G8
showed an eight-fold decrease in the MIC of
ciprofloxacin; and strain 4-108T6 showed at least a
four-fold decrease in the MIC to each quinolone
used, with the exception of trovafloxacin
(Tables 1 and 2).

For Strep. pneumoniae, different efflux profiles
were observed in the presence of reserpine,
depending on the genotype of the mutant
obtained (Table 3). The first group of four strains
with no detectable mutations (genotype 4) com-
prised two strains obtained with gemifloxacin
and two with clinafloxacin. Three of these four
had the same efflux-pump profile, affecting the
same quinolones. In all four strains, the MICs in
the presence of reserpine decreased to the MICs of
the respective wild-type strains, or to a maximum
of twice the wild-type MIC for some quinolones.
In the second group of five strains (genotype 3),
there were four different profiles (Table 3). In
these strains, the MIC in the presence of reserpine
decreased to a mean of 2–4 · the MIC of their
respective wild-type strains. The third group
(genotype 2) contained nine strains with seven
different profiles (Table 3). In this group, the
MICs of the mutants in the presence of reserpine
were 8–16-fold greater than those for the respect-
ive wild-type strains. Finally, the last group
(genotype 1) contained 12 strains with six differ-
ent efflux profiles, with 50% of the strains
showing a profile characterised by a lack of any
effect of reserpine on the MICs of the different
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quinolones tested. This profile was only found in
this genotype group (Table 3). These strains had
the highest MICs in the presence of reserpine,
with MICs that were ‡ 32-fold those of the
respective wild-type strains.

Overall, the effect of reserpine on the MICs of
the different fluoroquinolones was a decrease in
the MIC for 76% of the strains with clinafloxacin,
for 70% with ciprofloxacin, for 66% with gemi-
floxacin, for 46% with levofloxacin, for 30% with
moxifloxacin, and for 23% with trovafloxacin.

Fluoroquinolone accumulation in Staph. aureus

The results of the accumulation assay are
summarised in Table 4. Ciprofloxacin and gemi-
floxacin showed the greatest accumulation, fol-
lowed by moxifloxacin, and finally levofloxacin,

trovafloxacin and clinafloxacin, all of which
showed least accumulation at the same rate.

Mutagenicity

Mutation reversion assays with Salmonella TA102
and E. coli WP2 ⁄pKM101 were performed using a
wide range of concentrations (0.00312–
0.1 lg ⁄plate) of the six quinolones. A dose–
response relationship was observed with both
assays, while quinolone toxicity was observed at
certain doses, through a decrease in the number
of revertants ⁄plate and by examination of the
background lawn of bacteria on the plates. In the
E. coli assay, toxicity was observed with
0.025 lg ⁄plate of moxifloxacin, and with
0.0125 lg ⁄plate of the other quinolones. In con-
trast, Salmonella TA102 appeared to be less sensi-
tive to the bactericidal activity of quinolones, as
the toxic effect was detected with 0.025 lg ⁄plate
of trovafloxacin, gemifloxacin and clinafloxacin,
and with 0.05 lg ⁄plate of the other compounds.
The quinolone-induced reversion at non-toxic
doses is shown in Fig. 1 for both assays, and
indicates that Salmonella was more sensitive than
E. coli in detecting the mutagenic effect of all the
quinolones tested. In order to quantify the mut-
agenic potential of quinolones, the mutagenic
potency, expressed as the number of induced
revertants ⁄ lg quinolone ⁄plate (Table 5), was cal-
culated from the data shown in Fig. 1. In the
E. coli assay, levofloxacin and moxifloxacin were
the least mutagenic compounds, while the rest of
the quinolones were 1.5–2.1-fold more mutagenic
than moxifloxacin. In the Salmonella assay, levo-
floxacin, moxifloxacin and ciprofloxacin were the
least mutagenic compounds, while clinafloxacin,
gemifloxacin and trovafloxacin were c. three-fold
more mutagenic than levofloxacin.

DISCUSSION

In Gram-positive bacteria, mutations at the
QRDRs of both DNA gyrase and topoisomerase
IV are the best-known mechanisms conferring
resistance to quinolones. However, efflux systems

Table 3. Effect of growth in the presence of reserpine on
antibiotic MICs for Streptococcus pneumoniae mutants

Mutant Genotype C M L G T Clx Efflux profile

5-4G8 4 + – + + – + A
5-4Clx8 4 + + – + – + B
5-6G8 4 + + – + – + B
5-6Clx9 4 + + – + – + B
5-1G9 3 + + + + + + A
5-4T7 3 – – – – – + ⁄ – B
5-11G10 3 + – + + – + C
5-11Clx12 3 + – + + + + D
5-154G10 3 + + + + + + A
5-1Clx14 2 + + – – – + A
5-4C7 2 + + – + + + B
5-4L9 2 – + – + – + C
5-6C7 2 + + – + + + D
5-6L12 2 + + – + – + E
5-11C7 2 + – + + + + F
5-11L13 2 + – + + – + G
5-154C7 2 + – + + – + G
5-154L13 2 + – + + – + G
5-1C10 1 – – – – – – A
5-1MM12 1 – – – – – – A
5-1L12 1 – – – – – – A
5-1T12 1 – – – – – – A
5-4MM9 1 – – – + – – B
5-6MM9 1 – – – – – – A
5-6T11 1 + – + + – + C
5-11MM9 1 + – + – – + D
5-11T11 1 – – – – – + ⁄ – A
5-154MM8 1 + – + – – – E
5-154T11 1 + – + + + + F
5-154Clx12 1 + – + + – + C

Example of strain nomenclature: 5-4, number of strain; G, antibiotic used for
selection; 8, number of passages required for selection.
C, ciprofloxacin; M, moxifloxacin; L, levofloxacin; G, gemifloxacin; T, trovafloxacin;
Clx, clinafloxacin.
+, MIC decreased at least four-fold in the presence of reserpine.
–, MIC not affected in the resence of reserpine.

Table 4. Accumulation (ng of anti-
microbial agent ⁄mg dry weight of
bacteria) of six fluoroquinolones by
two wild-type strains of Staphylococ-
cus aureus

Strain C M L G T Clx

4-108 237.96 ± 7.57 71.45 ± 5.91 32.91 ± 3.75 168.82 ± 6.46 48.04 ± 4.65 24.25 ± 3.62
5-61 234.47 ± 5.48 98.32 ± 5.74 46.13 ± 3.88 187.64 ± 9.51 21.06 ± 3.97 37.50 ± 5.55

C, ciprofloxacin; M, moxifloxacin; L, levofloxacin; G, gemifloxacin; T, trovafloxacin; Clx, clinafloxacin.
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that pump quinolones out of the cells also seem to
play an important role in the acquisition of
resistance in Strep. pneumoniae and Staph. aureus.
The mechanism by which each individual quino-
lone selects resistant strains is still uncertain, but
may depend on the bacterial species, the quino-
lone used and the density of the bacteria at the

infection site. The present study is the first to
correlate the acquisition of quinolone resistance
with the mutagenic potency of quinolones.

Several reports have described the low fre-
quency at which levofloxacin and moxifloxacin
select for quinolone-resistant mutants of Strep.
pneumoniae [15–17]. Nagai et al. [35] observed that
ciprofloxacin selected resistant mutants of Strep.
pneumoniae in a small number of steps, and that
clinafloxacin and trovafloxacin behaved in a
similar manner. The present study also found
that more steps were required for levofloxacin
and moxifloxacin to select resistant strains than
were required with ciprofloxacin, gemifloxacin,
trovafloxacin and clinafloxacin. Similar results
were obtained with Staph. aureus, with all the
quinolones selecting at least one mutation in the
Ser80 codon of GrlA. There was a broad range of
MICs for these mutants; for example, the ciprofl-
oxacin MICs were 2–64 mg ⁄L in the absence of
reserpine, and 1–64 mg ⁄L in the presence of
reserpine, suggesting the possibility of other
mutations in the target genes, or the presence of
efflux systems not inhibited by reserpine in the
mutants with higher MICs. A ciprofloxacin MIC
of 32–64 mg ⁄L was associated with mutations in
the gyrA and grlA genes. A mutation in the Glu88
codon of GyrA, changing Glu to Lys, and a
mutation in the Ser80 codon of GrlA, changing Ser
to Phe, were detected.

The effect of the efflux systems inhibited by
reserpine was less evident in Staph. aureus than in
Strep. pneumoniae. Thus, only one mutant,
obtained with trovafloxacin, showed a decreased
MIC of each quinolone in the presence of reser-
pine. These results are in agreement with those of
Boos et al. [15], who selected a resistant mutant
after subculturing Staph. aureus for 10 days in sub-
inhibitory concentrations of quinolones and did
not observe any inhibitory effect of reserpine on
efflux systems.

The fluoroquinolones used in the present study
selected resistant mutants of Strep. pneumoniae at
different frequencies, with different mutations in
target genes. Strains belonging to genotype 4 had
at least a four-fold increase in MIC of the selecting
quinolone, which was reduced to that of the wild-
type strain in the presence of reserpine, suggest-
ing the presence of an efflux system. For genotype
3, the MICs also decreased to those of the wild-
type strains, or remained at only twice the MIC of
the wild-type strains, in the presence of reserpine,
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Fig. 1. Dose-mutation relationship induced by ciprofloxa-
cin (m), clinafloxacin (h), gemifloxacin (d), levofloxacin
(n), moxifloxacin (s) and trovafloxacin ( ) in the (a)
Escherichia coli and (b) Salmonella assays. Standard
deviations calculated from three independent experiments
are shown.

Table 5. Mutagenic potency of each quinolone in E. coli
WP2 ⁄pKM101 and Salmonella TA102

Quinolone

Mutagenic potencya

Escherichia coli Salmonella

Ciprofloxacin 5423 6279
Levofloxacin 3401 5279
Moxifloxacin 3360 7071
Clinafloxacin 7070 16 034
Gemifloxacin 5689 16 884
Trovafloxacin 6060 17 742

aNumber of induced mutants ⁄mg ⁄plate.

6 Clinical Microbiology and Infection

� 2005 Copyright by the European Society of Clinical Microbiology and Infectious Diseases, CMI



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

suggesting that a mutation in Ser79 of ParC only
generates a low level of quinolone resistance
(about twice the MIC) and that the final MIC of
the mutants is partially caused by the mutation in
the parC gene and the overexpression of an efflux
pump. For genotype 2, the MICs in the presence
of reserpine remained at least eight-fold higher
than those of the wild-type strains, suggesting
that the final MIC is modulated by a combination
of a mutation in the gyrA gene and the overex-
pression of a reserpine-inhibited efflux pump.
The high MICs observed for this genotype sug-
gest that a mutation in gyrA allows the bacteria to
achieve higher fluoroquinolone resistance levels
than those resulting from a mutation in parC.

Finally, the MICs of most of the mutants
belonging to genotype 1 were not affected by
reserpine, with only a two-fold decrease in MIC
being observed for the strains in which reserpine
did have an effect. It was interesting to note that
gemifloxacin selected for the overexpression of
efflux systems more frequently than did the other
quinolones, as has been reported previously [15].

Accumulation of the different quinolones was
affected in different ways by the efflux systems.
Thus, clinafloxacin was most affected, followed
by ciprofloxacin, gemifloxacin, levofloxacin, mox-
ifloxacin, and finally trovafloxacin. Based on the
different efflux profiles (Table 3), more than one
efflux system may be implicated in the acquisition
of resistance to quinolones. Novel efflux systems,
other than NorA and PmrA, have been described
in Staph. aureus and Strep. pneumoniae [36,37].
Furthermore, different efflux systems could have
different affinities for each quinolone [36], and the
overexpression of one or more efflux systems
concomitantly may affect various quinolones dif-
ferently, so that the addition of reserpine may
result in the demonstration of different efflux
profiles.

The results obtained in this study clearly
indicate that the mutagenic potency of the
quinolones studied is variable, with moxifloxacin
and levofloxacin having the lowest mutagenic
potency. The data suggest a correlation between
the mutagenic potency of each quinolone and the
ability of the molecule to select for resistant
mutants. Different rates of accumulation of these
compounds inside bacterial cells could explain
the differences found among the different quino-
lones in respect of both effects. However, repor-
ted data on quinolone accumulation in different

species, and also the results obtained in the
present study, do not support this hypothesis.
Piddock and Johnson [38] reported that ciprofl-
oxacin showed the greatest accumulation in
Strep. pneumoniae cells, while levofloxacin, mox-
ifloxacin, clinafloxacin and trovafloxacin had the
same rate of accumulation. Similar results have
been obtained in the present study for Staph.
aureus, with ciprofloxacin and gemifloxacin
clearly showing the highest accumulation, fol-
lowed by moxifloxacin, and finally, levofloxacin,
trovafloxacin and clinafloxacin. These data may
explain why ciprofloxacin selects resistant
mutants more rapidly than do other quinolones.
However, they do not clarify why clinafloxacin
and trovafloxacin select mutants more quickly
than levofloxacin or moxifloxacin. One possibility
is that the ability of each quinolone to select
resistant mutants is related partially to the
mutagenic potency of the quinolone. This poten-
tial depends on both the particular molecule and
the bacteria. In both mutagenicity assays, trovafl-
oxacin, gemifloxacin and clinafloxacin were the
quinolones with the highest mutagenic potency,
while moxifloxacin and levofloxacin were the
least mutagenic, with the mutagenic potency of
ciprofloxacin showing variation between the
assays. Moxifloxacin and levofloxacin contain
an alcoxyl group at position 8, while moxifloxa-
cin and levofloxacin contain a methoxyl and
propoxyl group, respectively. This agrees with
the observation that a C8-methoxyl group in the
quinolone molecule reduces the selection of
resistant mutants in Mycobacterium bovis at low
doses [39]. If a pathogenic strain possesses the
genetic requirements for SOS mutagenesis, expo-
sure to low concentrations of quinolones may
generate mutations that confer antibiotic resist-
ance, and these pre-existing mutations can
emerge subsequently following selection as a
consequence of antibiotic treatment. Thus, the
risk of the development of quinolone resistance
may depend on the mutagenic potency of each
quinolone, with moxifloxacin and levofloxacin
having the least mutagenic effect.
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