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Abstract

This thesis proposes some solutions to relieve, using Wi-Fi wireless net-

works, the data consumption of cellular networks using cooperation be-

tween nodes, studies how to make a good deployment of access points to

optimize the dissemination of contents, analyzes some mechanisms to reduce

the nodes’ power consumption during data dissemination in opportunistic

networks, as well as explores some of the risks that arise in these networks.

Among the applications that are being discussed for data off-loading from

cellular networks, we can find Information Dissemination in Mobile

Networks.

In particular, for this thesis, the Mobile Networks will consist of Vehicular

Ad-hoc Networks and Pedestrian Ad-Hoc Networks. In both scenarios we

will find applications with the purpose of vehicle-to-vehicle or pedestrian-

to-pedestrian Information dissemination, as well as vehicle-to-infrastructure

or pedestrian-to-infrastructure Information dissemination. We will see how

both scenarios (vehicular and pedestrian) share many characteristics, while

on the other hand some differences make them unique, and therefore re-

quiring of specific solutions. For example, large car batteries relegate power

saving techniques to a second place, while power-saving techniques and its

effects to network performance is a really relevant issue in Pedestrian net-

works.

While Cellular Networks offer geographically full-coverage, in opportunistic

Wi-Fi wireless solutions the short-range non-full-coverage paradigm as well

as the high mobility of the nodes requires different network abstractions like

opportunistic networking, Disruptive/Delay Tolerant Networks

(DTN) and Network Coding to analyze them.



And as a particular application of Dissemination in Mobile Networks, we

will study the malware spread in Mobile Networks. Even though it re-

lies on similar spreading mechanisms, we will see how it entails a different

perspective on Dissemination.
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1

Introduction

Since the beginning of Internet, the network has evolved in many ways. From the initial

research into packet switching, in the early 1960s, until now, many improvements have

moved packet switching communications from linking two Research Labs in 1969, to

link millions of Personal Computers. At first, linking a small network of laboratories

was a challenge hard enough, but after a while, researchers found solutions that allowed

the Network to spread far beyond its limits.

In 1991 the precursor to Wi-Fi was invented and we can find the first 802.11 Wi-Fi

patents from 1996. This was the first step to make Internet available without wires, you

just had to be close to an Access Point to connect to the Internet at high bandwidths.

In 2000, people were used to Internet, and it began the interest in accessing it from

”anywhere” at anytime. For example, in some use cases, people started using it to

check the email from an airport Wi-Fi hotspot, read on-line newspapers at the library,

or write a post for a blog from a coffee shop.

Nowadays their needs and requirements have increased, users want to find directions

or use on-line maps in a city, read the last minute news during a bus trip, find restau-

rants and facilities around their current position, instant messaging, gaming, on-line

radios, and a lot of services still under development.

Internet has moved from bulky machines used to share resources among research

labs, to the pocket of many users around the globe in the form of small but powerful

hand-held devices (”smart-phones”).

And the solutions that make this possible, are based on different technologies and

mechanisms. Among them, it is of particular interest for this thesis the ”final wire-
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less hop” and the new applications it raises. In particular, we are interested in Wi-Fi

solutions, without despising or forgetting Cellular Network solutions, but focusing our

interest in Wi-Fi solutions with their features, assuming its advantages and disadvan-

tages.

The penetration rate of Wi-Fi powered devices in the users pockets and vehicles is

high and increasing, we are not talking about future applications and services anymore,

the interest exists and we can find people using them on the streets.

And there are no reasons to believe this will stop here. New technological advances

encourage new user applications (e.g Smart Cities, Internet of Things, Big Data ... ),

and the new user interests pressure technology to go one step further (e.g Delay Tolerant

Networks (DTN), Pedestrian Networks, Vehicular Ad hoc Networks (VANETS), Sensor

Networks, ... ).

In particular, Mobile Ad hoc Networks, including VANETS, Pedestrian Networks

and DTN is the topic we have chosen for our research. And one of the Mobile scenarios

where we have dedicated most of our efforts are Vehicular Ad-hoc Networks, whereas

many of the proposed ideas are applicable or easily ported to other Mobile scenarios.

Some of the applications we have mentioned have been implemented or could be

implemented by using 3G/4G cellular network, but in our thesis we think it is justi-

fied and even essential the research in Wi-Fi solutions for this scenario, because of the

benefits it can pose. In some cases, wireless technology can be seen as complementary

to the 3G/4G network (to lighten the load on the cellular network, or enhance the

service where cellular coverage is low), while in other cases the Wi-Fi technology char-

acteristics can offer some benefits not provided by other solutions, for its immediacy

(e.g. emergency braking, extended vision on crossroads), geographical interest (e.g.

real time traffic maps, free places to park), bandwidth (audio/video announcements,

passenger-infotainment ), robustness based on the non-centralized approach, etc.

And to conclude this part of the introduction, with some motivation based on recent

data about the Mobile Internet consumption scene, and its growth:

• “Last year’s (2012) Mobile data traffic was nearly twelve times the size of the

entire global Internet in 2000”, “reaching 885 petabytes per month at the end

of 2012” (1).
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• “Average smartphone usage grew 81 percent in 2012. The average amount of

traffic per smart-phone in 2012 was 342 MB per month, up from 189 MB per

month in 2011” (1).

The users have shown an increasing consumption of this type of data, and it relies

on the technology to continue supplying this increased need for resources. Currently,

the reports show that a large portion of the mobile total network data consumption is

downloaded from Wi-Fi networks.

• “Globally, 33 percent of total mobile data traffic was offloaded onto the fixed

network through Wi-Fi” (1).

Thus relieving the burden on the 2G/3G network from Wi-Fi technologies. These facts

support the claim that both technologies are complementary, and must cooperate to

maintain customer QoS requirements at lower costs for the users and the operators.

The same reports claim that Cellular Operators have already encouraged users to

offload the traffic onto Wi-Fi networks:

• “Since first introduced in 2009 and 2010, the majority of mobile users have now

been migrated to tiered plans. Many operators across the globe have eliminated

unlimited data plans” (1).

• “Operators have encouraged the offload of traffic onto Wi-Fi networks, and of-

fload rates continue to be high around the world. Tablet traffic that might have

migrated to mobile networks has largely remained on fixed networks” (1).

The next sections introduce some of the topics presented in this thesis.

1.1 Mobile Ad Hoc Networks

Mobile Ad Hoc Networks (MANETs) are characterized as networks in which nodes,

static or mobile, act as a host and as a router extending the one-hop coverage area of a

single wireless network. These networks are self-organized, and typically, nodes follow

random mobility patterns.

MANETs may be impacted by several factors:

• High speed of the nodes.
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• Environmental factors.

• Determined mobility patterns and street/road/building conditions.

• Intermittent communications (isolated nodes or small clusters due to the frag-

mentation of the network).

• High congestion channels (e.g. due to high density of nodes).

Packets traverse an ad hoc network by being relayed from one node to another until

they reach their destination. Because nodes are moving, the topology of the network

is in constant change, and to find the route and destination could be a hard challenge.

Routing in mobile ad hoc networks is a well-studied topic, several routing protocols

have been proposed, such as OLSR (2), AODV (3), DSR(4), while (5) reviews routing

protocols for mobile ad hoc networks.

These solutions are very useful in some kind of ad hoc networks, but they would

not work under our proposed scenarios because they incorrectly assume the existence

of:

• An end-to-end path between any pair of nodes.

• Small maximum round-trip time between them.

• Small hop-by-hop and end-to-end packet drop probability.

Mobile Ad Hoc Network consider all kind of Mobile nodes, but in our case, we base

our work mainly on vehicles and pedestrians, and we will see these in more depth

next:

1.1.1 Vehicular Ad-hoc Networks

Vehicular Ad-hoc NETworks (VANETs) are a particular case of Ad Hoc networks in

which nodes are vehicles that move following specific patterns (i.e., roads, highways,

streets) and follow vehicle traffic regulations. VANETs are networks characterized by

intermittent connectivity and rapid changes in their topology. In contrast with other

ad-hoc networks, these networks also have very specific mobility patterns due to vehicle

traffic signals. Different from traditional data access system in which users can always

wait for the service from the data server, vehicles are moving and they only stay in the
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Road-Side Units (RSUs) areas for a short period of time. Meanwhile, to make the best

use of the RSUs, they are often set at areas with high traffic. In these areas requests

compete for the same limited bandwidth. As an example consider vehicles traveling on

highways that have sparse RSUs distributed along the route. Due to the high speeds,

vehicles have few seconds to access Internet or other vehicles to which may want to

communicate. Furthermore, the environment presents a high level of packet losses.

For example, measurements of UDP and TCP transmissions of vehicles in a highway

passing in front of an Access Point(AP) moving at different speeds, report losses on

the order of 50-60% depending on the nominal sending rate and vehicle speed, (6).

In ranges of around 250 meters, throughput reaches approximately 4 Mb/s, while at

larger distances (e.g. 400 meters) the throughput drops to around 1 Mb/s.

It should be pointed out that vehicular networks share, and possibly exacerbate,

the typical shortcomings of ad hoc networks. Specifically: fleeting connectivity, rapidly

shifting topologies, highly dynamic traffic patterns, constrained node movements. In

particular, unlike cellular communication networks, vehicular networks do not neces-

sarily need continuous coverage, rather, they can be supported by hot spots in corre-

spondence of roadside infrastructure nodes, which provide intermittent connectivity to

vehicles. The challenges featured by this scenario are therefore more related to the ones

typically found in DTN (see section 1.2.1 Disruption-Tolerant Networks) (7, 8) than in

infrastructure-based wireless networks.

Vehicles traveling within cities and along highways are commonly regarded as most

probable candidates for a complete integration into mobile networks of the next gener-

ation. Vehicle-to-infrastructure (V2I) or Vehicle-to-Road (V2R) and vehicle-

to-vehicle (V2V) communication could indeed foster a number of new applications

of notable interest and critical importance, ranging from danger warning to traffic

congestion avoidance. It is however easy to foresee that the availability of on-board

communication capabilities will also determine a significant increase in the number of

mobile users regularly employing business and infotainment applications during their

displacements. As a matter of fact, equipping vehicles with WiMAX/LTE and/or Wi-

Fi capabilities would represent a clear invitation for passengers on cars or buses to

behave exactly as home-based network users. The phenomenon would thus affect not

only lightweight services such as web browsing or e-mailing, but also resource-intensive

ones such as streaming or file sharing.
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Although this could not represent a problem for relatively lightweight services such

as web browsing or e-mailing, resource-intensive tasks such as video streaming or file

sharing will instead risk to overload the wireless communication infrastructure. This

could result in much worse breakdowns than those already faced today by cellular

networks in front of the growing number of high-end mobile users.

In order to support these demanding operations and thus favor the network scala-

bility, a valuable aid to the traditional user-to-infrastructure communication paradigm

could come from interactions among mobile users. Within such context, the fast move-

ment dynamics that characterize vehicular environments make fully ad-hoc approaches,

that try to build a connected network over moving cars, impractical. Instead, op-

portunistic vehicle-to-vehicle communication appears as a more viable complement to

infrastructure-based connectivity.

1.1.2 Pedestrian Ad-hoc Networks

During the last years, the mobile wireless capabilities of portable devices (e.g smart-

phones, multimedia players) have increased. It is not one but several, the enhancements

that have been introduced before reaching its current massive penetration in the pop-

ulation.

Improvements in wireless communications, batteries and technological advances

made more energy efficient devices, allowing users to have them in their pockets,

switched on and fully operative for more than a full day long.

In the case of smartphones, while their main wireless technology is the Cellular

Network, those devices are also equipped with Wi-Fi technology, and Pedestrian Ad-hoc

Networks study specifically the characteristics, features, mechanisms and applications

that show up on this new framework.

In comparison with the Cellular Networks, the shorter range of Wi-Fi offers higher

spatial reuse for larger amounts of users, resulting in a higher bandwidth per user.

By not depending on the operator’s infrastructure, those networks may not require a

monthly fee, as they can be self supported by the investment of each of its members in

his own device. But this same reason pose an increased complexity for the network ad

hoc organization and management.

Pedestrian Ad-hoc Networks, being a subgroup of the MANETs, inherit most of

the characteristics already presented, while add or make some them more stringent:
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• Scarce battery.

• Scenario and mobility heterogeneity (e.g. street, mall, stadium, park, indoors,...).

• Technology heterogeneity (e.g. Wi-Fi, Bluetooth).

• Non dedicated resources, ISM band.

Until recently, most of the research in MANET and Pedestrian networks, has been

conducted assuming simple and homogeneous Human Mobility (e.g Random Walks,

Random Waypoints), while Human Mobility is a very complex process, and difficult

to reproduce with analytical models. While Random Walks or Random Waypoints

may fit some concrete scenarios, it has been shown that they can also produce very

unrealistic scenarios, that tend to overestimate or underestimate the performance of

some solutions.

1.2 Network Paradigms

A common scenario in opportunistic networking is a geographical area with no Wi-Fi

infrastructure or with sparse Wi-Fi access points (AP). Applications in this scenario

range from peer-to-peer message exchange, publish/subscribe applications or shops that

want to publish marketing products to potential customers.

Users move around the area and obtain targeted information when they cross the

hot spots, or users want to communicate some data to other users. However, when they

leave the coverage area of the transmission, the wireless link is lost and the transmission

is disrupted. If the information is not time-sensitive, connectivity can be recovered when

the user again meets a Wi-Fi access point or when the user finds a new useful contact

opportunity.

This kind of networks are called Delay/Disruptive Tolerant Networks (9), and

posed a new networking paradigm in the area of wireless communications. Another

Network Paradigm which offers great benefits to opportunistic wireless networks with

packet loss is Network Coding (NC). While NC can be used with different purposes

in other scenarios, in our case this paradigm offers an alternative to forward error

correction and ARQ mechanisms.
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1.2.1 Delay/Disruption Tolerant Networks

Delay/Disruption Tolerant Networking (DTNs), (9), are wireless mobile networks that

use intermittently available links to communicate opportunistically, using a store-carry-

and-forward paradigm. DTNs are particularly useful in sparse environments where the

density of nodes is insufficient to support direct end-to-end communication. The main

performance metrics of a DTN are deliverability and delay, which are critically depen-

dent on the node mobility patterns that drive the frequency, duration and sequence of

contact opportunities. Moreover, DTN nodes are usually untethered devices with lim-

ited energy supplies, thus making energy consumption a primary concern, in particular

the energy consumed in searching for other nodes to communicate with.

In a mobile DTN, two nodes communicate with each other during the contacts that

occur when both nodes, either mobile or stationary, are within the radio range of one

another. On the other hand, the wireless interface is one of the largest energy consumers

in mobile devices, whether they are actively communicating or just listening (10), which

means that there is a clear trade-off between saving energy and providing connectivity

through opportunistic encounters.

1.2.2 Network Coding

Network coding allows efficient transmission from a set of sources to a set of destina-

tions, allowing nodes to manipulate the information before forwarding it (11). It has

been originally employed to improve the throughput of multicast transmissions over

reliable links (11). Random linear network coding is a class of network coding, that

operates on data through linear combinations of random codes (12). Although initially

employed for multicast, random linear network coding has found wide application in

networks with packet erasures, where it is used to improve the communication per-

formance in absence of (or with limited resort to) feedback channels. Random linear

network coding has been shown to improve the latency, capacity and energy efficiency of

the communication in loss-prone and intermittently-connected wireless networks, either

ad-hoc (13), delay-tolerant (14), or satellite and underwater (15).
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1.3 Applications: Data Dissemination

One of the most interesting applications in opportunistic networks is the dissemination

of information in which an application (e.g. could be a pub/subs application or a

marketing application) delivers a delay tolerant object to the network with the purpose

of being accessed by as many users as possible.

The concept is very similar to an infection system in which a person who suffers a

viral disease, transmits the infection from individual to individual among the rest of

the population, (16). Papers (17) or (18) apply epidemic SIR (Susceptible-Infectious-

Recovered) modeling to opportunistic networking in which users meet each other and

opportunistically exchange data.

There are many cases where Data Dissemination applications are applied to MANETS,

or specifically to VANETS (19) , (20) , (21) , (22) , (23), , (24).

Data Dissemination applications are designed with the following aims:

• Reduce the overhead of the protocols.

• Optimize the data replication and redundancy to achieve high delivery ratios with

low network resources consumption.

• Fair sharing of the resources among users and broadcasters.

While in Data Dissemination applications the content being broadcast can be any

given data, there are more specific cases, where while the propagation and spreading

follows similar characteristics the purpose of the application is completely different

and not all the previous aims apply, or attempt just the opposite, this is the case of

malware in MANETS.

1.3.1 Malware in MANETS

Pervasive wireless machine-to-machine (M2M) communication is foreseen to be a game

changer for many daily life activities, other than a technology enabling a broad range

of new applications. This motivates the ever-growing availability of a wide variety of

long- and short-range communication-enabled devices, from smart-phones to tablets,

from notebooks to microwaves, from refrigerators to cars. The new generation of smart
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objects shall grant faster, cheaper communication with our friends and co-workers,

easier home management, safer and more efficient mobility.

However, as it is often the case, with great profits comes high risk. If not properly

secured, the network interfaces of smart devices can turn into easily exploitable back-

doors, allowing illegal remote access to the information stored on the device as well as

to the local network it may be connected to. Even worse, M2M communication could be

leveraged by self-propagating malware to reach a large number of devices and damage

them, disrupt their services or steal sensible data. The first mobile malware that spread

itself through Bluetooth wireless connection, the Cabir worm (25), appeared in 2004

and was soon followed by several evolutions (26, 27).

The low penetration of smart devices and the heterogeneity of the operating sys-

tems have prevented major outbreaks of M2M-based worms to date (28). However, as

the diffusion of communication interfaces keeps growing and the OS market becomes

more stable, with two or three major competitors remaining, it is easy to predict that

we may have to face smart-device worm epidemics in the future. It is thus important to

understand today which are the risks we may be facing tomorrow. In fact, the behavior

of potential malware in different sensible M2M communication environments has been

a subject of research ever since Cabir made its first appearance. Simulative and experi-

mental studies have outlined the risks yielded by the diffusion of so-called mobile worms

via direct Bluetooth infection, both within campuses (29) and in urban areas (30), via

metropolitan Wi-Fi hot-spot associations (31), and through text messaging in cellular

networks (32). In all these cases, it was found that, although mobile worms propagate

at speeds that are orders of magnitude lower than their Internet counterparts, they are

less easily detectable and still fast enough to pose a threat.

One of the scenarios where mobile malware could cause the most damage is the

automotive one. Indeed, vehicles feature today a wide range of Electronic Control

Units (ECUs) interconnected by a bus, e.g., the Controller Area Network (CAN), that

directly determine most of the cars’ automatic behaviors. Experimental tests have

proven that not only ECUs are extremely fragile to the injection of non-compliant

random messages over the CAN, but that a knowledgeable adversary can exploit them

to bypass the driver input and take control over key automotive functions, such as

disabling brakes or stopping the car engine (33).
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Lives could be thus put at stake, if a remote attack was run against a moving

vehicle’s ECUs. What is worse is that the above has been proved to be feasible even

remotely, by exploiting the Tire Pressure Monitoring Systems (TPMS) (34) or the CD

player, Bluetooth and cellular interfaces (35).

And, in that sense, the forthcoming IEEE 802.11p-based WAVE interfaces, allowing

direct vehicle-to-vehicle (V2V) communication, risk to significantly widen the range of

attack surfaces available to adversaries.

1.4 Mobility Models and Methodology

While the purpose of this thesis is not to develop new Mobility Models or to improve

current mobility methodology, our goal has always been to use the state of the art

Mobility Models, Mobility Simulators, and the best Mobility traces available we have

been allowed access.

That said, it’s also needed to mention that many times during this thesis, we have

been working closely with other researchers, with extensive experience in Mobility Mod-

eling Methodology, whose main aim in their research was to develop and polish models,

simulators and traces for vehicular or pedestrian simulations.

Some examples of these collaborations with other authors, where we have combined

their efforts in Mobility Modeling with our efforts in Dissemination or Cooperation

algorithms, to learn together about the effects of more realistic Mobility Models in

protocols and applications performance, are publications like:

• Generation and Analysis of a Large-scale Urban Vehicular Mobility

Dataset (36) S. Uppoor, O. Trullols Cruces, J.M. Barceló and M. Fiore,

• VANET Mobility Modeling Challenged by Feedback Loops (37) H. Meyer,

O. Trullols Cruces, A. Hess, J.M. Barceló, K.A. Hummel, C.E. Casetti and G.

Karlsson

• Vehicular Networks on Two Madrid Highways (38) M. Gramaglia, O.

Trullols Cruces, D. Naboulsi, M. Fiore and M. Calderon

Therefore, although the Mobility Models are not the focus of this thesis, it will be

shown how they have, on the simulation results, a major effect that can not be despised.
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Not only that, but also our results have benefited from our involvement in these joint

projects, the advice we have been given from the people we have worked with, the

knowledge they shared and the tools and resources they had already gathered.

Each of the following chapters describes the specific mobility methodology that has

been used for the different scenarios.

1.4.1 Generic Mobility Models

The performance evaluation of any Network Protocol or Application requires as realistic

conditions as possible. Therefore, Mobile Networks performance evaluation, among

other things, require realistic Mobility Models.

As there are many different Mobile Networks scenarios, the best choice for each

may differ. And while the more complex mobility models capture some features and

characteristics from the real scenarios better, many papers in the literature have used a

well known set of synthetic Mobility Models. T. Camp et al. in (39) presents a survey

of Mobility models for ad hoc networks research. It reviews the most used synthetic

Mobility Models:

• Random Walk (RW) This simple mobility model is based on giving mobile

nodes random directions and speeds. Some of the following models can be con-

sidered as refinements of this one, as there are many variations based on when

nodes change direction and speed: after a (i)fixed or (ii)random time, or after

a (iii)fixed or (iv)random distance. Other Random Walk choices are the node’s

behaviour on reaching the boundaries: (i) new random values or (ii) direction

reflexion.

• Random Waypoint (RWP) In this model, the node picks a random destination

and speed and travels there in a straight line. It may include random/fixed pause

times between changes.

• Random Direction (RD) This model forces mobile nodes to travel to the edge

of the simulation area before changing direction and speed.

• A Boundless Simulation Area Random Walk variation that converts a 2D

rectangular simulation area into a torus-shaped simulation area.
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• Gauss-Markov The model uses one tuning parameter to vary the degree of

randomness in the mobility pattern.

• A Probabilistic Random Walk A model that utilizes a set of probabilities to

determine the next position of an MN.

• City Section and Manhattan Mobility Model A simulation area that rep-

resents streets within a city, nodes can only move on the roads/streets, traveling

to the random destination following the shortest path.

1.4.2 Pedestrian Mobility Models

The same Mobility models presented for generic Mobile Networks, have also been widely

used in Pedestrian Networks’ research. And it is to this scenario, where some works like

(40) and (41) introduce more complex pedestrian behaviours, route choice and activity

scheduling in their models. Those works compare their outputs with the previous

Models, and validate proposals with real statistical patterns.

The paper (42) presents and discusses a pedestrian Mobility Model that is part of

the freely available UDel Models (43), a suite of tools for realistic simulation of urban

wireless networks. The model uses an extensive set of surveys from the US Bureau of

Labor Statistics for its calibration and validation.

1.4.3 Vehicular Mobility Models

Similar works have been carried out in Vehicular Mobility Models. A long and detailed

review of Vehicular Mobility Models can be found in (44), where J. Harri et al. present

a survey and a taxonomy of Mobility Models for Vehicular Ad Hoc networks. Another

interesting work on the topic is (45), where the authors analyze the impact of the

Mobility Model on the network connectivity metrics.

Vehicular Mobility Models are often classified as microscopic or macroscopic.

• The microscopic models consider individual driver behavior and dynamics, and

her reactions to the near vehicles. These include fine-grained real world situations,

as overtakings, brakings, speed adaptations, etc.
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• The macroscopic models consider vehicular traffic as a continuous flow with

generic metrics of interest. These include traffic density, traffic flows, average

speeds, etc.

While the first Vehicular Mobility Models focused on micro or macro perspectives,

current Models and simulators target both with a high level of realism (36).

1.5 Rationale

Information Dissemination in Mobile Networks is a novel and very wide topic, with

many open problems (some of them may have not even been raised yet.) Many issues

remain to be defined, discussed and solved. We think that many key points need to be

addressed before new generic applications can be delivered to the end user, there are

many things to improve and problems to solve.

Our work on Information Dissemination in Mobile Networks begun during my Mas-

ter Thesis with the study on cooperation in VANETs . We started working with Julián

Morillo on Cooperative ARQ(Automatic repeat request) algorithms, applying his thesis

(46) results to the Vehicular scenario (47), (48), (49).

In his work, the cooperation resides in the Data Link Layer of the OSI model, while

we were also interested on Cooperation at higher network layers. And specifically on

cooperation in Information Dissemination in Mobile Networks, that gives title

to this thesis.

Figure 1.1: cooperation in Information Dissemination

14



Figure 1.1, from our joint work in (50), shows briefly how this first cooperation

with Julian, mixes both cooperative ARQ and opportunistic contacts to improve the

Data dissemination in a Highway scenario. Line (a) shows the evolution over time of

the delivered Packets to a vehicle along a highway without using cooperation. Line(b)

shows the behaviour expected from cooperative ARQ: after the nodes leave the Access

Point coverage, they cooperate to recover missed packets that some of their neighbors

may have correctly received, while line (c) shows the expected behaviour using both

Cooperative ARQ and opportunistic contacts: nodes keep receiving packets from coop-

erators while they travel between Access Points. Our next step was to move to a more

complex scenario, where one-dimensional highway movements give way to the more

complex urban scenarios presented in (51) and chapter 3 of this Thesis.

While this part of the thesis focuses on Unicast Information Dissemination

(data has a unique destination), in parallel we focused on Broadcast Information

Dissemination (data needs to be delivered to every node), and in this field we faced

several issues: how to improve the deployment of Road side units to optimize the

Information Dissemination (52), (53), (54), (55) (Chapter 5), how the information

spreads in a large urban scenario (56) (Chapter 6)(using as an application the spread

of a Malware), and how Power Saving techniques impacts the Information spread in

Pedestrian Networks (57),(58) (Chapter 7).

Moreover, while we were working on these Information Dissemination scenarios,

we considered to apply Random Linear Network Coding to improve the reliability in

Mobile Networks. And while we were learning how to use it, we found that an upper

bound was being used for the decoding probability, while we thought that the exact

formulation could be found (59) (Chapter 4)

During this thesis we have dedicated our efforts on the points we thought were more

needed to make Information Dissemination in MANETS possible. Figure 1.2 shows a

diagram of the different research areas related with the topic of this thesis. In the

figure, letters A-E show the points where we have focused and how they relate among

themselves. In this section we list the hypothesis and purposes of the thesis for each of

these areas:

• A. VANETS can benefit from vehicular cooperation to improve the per-

formance of the Mobile Ad hoc Network.
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Information Dissemination

 in Delay Tolerant Mobile Networks

Mobile Networks

Figure 1.2: issues addressed in this thesis.

We propose to use simple mechanisms to reuse its underutilized resources, as well

as currently unexploited V2V opportunities.

Our works related with this purpose have been gathered in the Summary of

original work section 2.2 Opportunistic Cooperation.

• B. Using statistical data of the Vehicular Mobility it is possible to

enhance cooperation, as well as improve RSU deployments in city wide

scenarios.

The more informed the algorithms used to plan RSU deployments the better

tuning of the system can be achieved, while just some aggregated information

or statistics about Vehicular Mobility in cities and urban or interurban scenarios

can help to achieve RSU deployments that would disseminate effectively data

contents to most of the vehicles as fast as possible.

We propose to study the possibilities that gathering vehicular mobility data offers,

how can it be used to forecast vehicular cooperations, and how to use it to deploy

a limited number of RSUs under economic budget restrictions.

Our works related with this purpose have been gathered in the Summary of origi-

nal work section 2.3 Roadside Infrastructure Deployment for Information
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Dissemination.

• C. Malware in VANETS can spread rapidly, and pose a real threat,

while malware threats are still not studied in this scenario, we believe it can pose

a real threat that can spread to large parts of cities in a short time. This scenario

is difficult to simulate, as mobility traces are not available for every city and

are costly to obtain. While, on the other hand Transportation authorities and

Governments already have some per-road statistics.

We propose to study this scenario, using the few available large scale vehicular

mobility traces, to study them and obtain an analytical model based on the per-

road statistics gathered by transportation authorities that mimics the vehicular

traces, and can be used to ease the burden studying this kind of scenarios in other

cities as well as under different malware characteristics.

Our works related with this purpose have been gathered in the Summary of

original work section 2.4 Malware in MANETS.

• D. There is a clear trade-off between the power that can be saved using

power saving techniques in MANET nodes and the contact opportu-

nities missed in this kind of networks. Some battery powered devices, use

On/Off duty-cycle techniques to save power. During the Off periods, the devices

may miss contact opportunities that are so important in MANETS.

Our purpose is to study and define the trade-off relation between energy saved

and the missed contact opportunities in MANET scenarios. To allow others to

tune their frameworks to save power while considering the effects on other network

performance metrics.

Our works related with this purpose have been gathered in the Summary of

original work section 2.5 MANET Power Saving Trade-offs.

• E. Some of the currently used decoding probability error bounds used

in Network Coding can be improved. Network Coding is used in many

frameworks and projects, but as this decoding probability error is small when

using NC under large Galois Fields, many works so far, neglect it or use the

approximated upper bound error to build their frameworks.
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We propose to study the decoding error probability, to find the exact formulation

to find this value. To define the number of extra packets that must be sent as a

function of the number of packets and the Galois field used.

Our works related with this purpose have been gathered in the Summary of

original work section 2.6 Analysis of Random Linear Network Coding.

1.6 Outline of the Document

This thesis is organized as follows:

A summary of the original work published in the context of this thesis and my spe-

cific contributions to each of these works is provided in Chapter 2. Chapter 3 addresses

Unicast Information Dissemination or Cooperative Download in Vehicular Environ-

ments, is an adaptation of paper (51). Chapter 4 shows how to calculate the exact

decoding probability under Random Linear Network Coding, is an adaptation of paper

(59). The next three chapters address Multicast Information Dissemination, Chapter 5

focuses on planning roadside infrastructure deployment, is an adaptation of paper (54).

Chapter 6 focuses on the characterization and modeling of the Information Dissemina-

tion spread in a large urban scenario, is an adaptation of paper (56). While Chapter 7

closes the Multicast Information Dissemination part, focusing on the dissemination of

information on Pedestrian Networks under Power Saving Constrains, is an adaptation

of paper (57). Finally, General Conclusions are given in Chapter 8
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2

Summary of Original Work

This chapter starts by listing all the publications derived from the work done during

the period of this thesis.

Some publications have been written by joining efforts with other authors. In

the second part of the chapter, I have tried to delimit my contributions to each of

these works. Although, when working in group sometimes it is not clear or fair to

claim authorship. Specially when working in small groups (with my PhD Advisor

J.M. Barcelo and M. Fiore) everybody has been involved with everything. In other

cases, when collaborating in projects with larger groups, each member of the project

has contributed with part of it and it has been easier to be more accurate with my

contribution’s description.
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2.2 Opportunistic Cooperation
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3

Cooperative Download in

Vehicular Environments

3.1 Introduction

Vehicles traveling within cities and along highways are commonly regarded as most

probable candidates for a complete integration into mobile networks of the next gen-

eration. Vehicle-to-infrastructure and vehicle-to-vehicle communication could indeed

foster a number of new applications of notable interest and critical importance, ranging

from danger warning to traffic congestion avoidance. It is however easy to foresee that

the availability of on-board communication capabilities will also determine a significant

increase in the number of mobile users regularly employing business and infotainment

applications during their displacements. As a matter of fact, equipping vehicles with

WiMAX/LTE and/or Wi-Fi capabilities would represent a clear invitation for passen-

gers on cars or buses to behave exactly as home-based network users. The phenomenon

would thus affect not only lightweight services such as web browsing or e-mailing, but

also resource-intensive ones such as streaming or file sharing.

Although this could not represent a problem for relatively lightweight services such

as web browsing or e-mailing, resource-intensive tasks such as video streaming or file

sharing will instead risk to overload the wireless communication infrastructure. This

could result in much worse breakdowns than those already faced today by cellular

networks in front of the growing number of high-end mobile users.
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Figure 3.1: Vehicle a downloads part of some content from AP A. The idle APB delegates

another portion of the same content to a vehicle b. When b encounters a, vehicle-to-vehicle

communication is employed to transfer to a the data carried by b

In order to support these demanding operations and thus favor the network scala-

bility, a valuable aid to the traditional user-to-infrastructure communication paradigm

could come from interactions among mobile users. Within such context, the fast move-

ment dynamics that characterize vehicular environments make fully ad-hoc approaches,

that try to build a connected network over moving cars, impractical. Instead, op-

portunistic vehicle-to-vehicle communication appears as a more viable complement to

infrastructure-based connectivity.

In this chapter, we focus on one of the latter tasks, namely the download of large-

sized files from the Internet. More precisely, we consider a urban scenario, where

users aboard cars can exploit roadside Access Points (APs) to access the servers that

host the desired contents. We consider that the coverage provided by the roadside

APs is intermittent: this is often the case, since, in presence of large urban, suburban

and rural areas, a pervasive deployment of APs dedicated to vehicular access is often

impractical, for economic and technical reasons. We also assume that not all on-board

users download large files all the time: indeed, one can expect a behavior similar to that

observed in wired networks, where the portion of queries for large contents is small (61).

As a result, only a minor percentage of APs is simultaneously involved in direct data

transfers to downloader cars in their respective coverage area, and the majority of APs

is instead idle.

Within such a context, we study how opportunistic vehicle-to-vehicle communica-

tion can complement the infrastructure-based connectivity, so to speed up the down-
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load process. More precisely, we exploit the APs inactivity periods to transmit, to

cars within range of idle APs, pieces of the data being currently downloaded by other

vehicles. Cars that obtain information chunks this way can then transport the data in

a carry&forward fashion (9), and deliver it to the destination vehicle, exploiting oppor-

tunistic contacts with it. For the sake of clarity, a simple example of this approach is

provided in Fig. 3.1. We remark that the concept of cooperative download in vehic-

ular networks has been already proposed for highway environments: however, unlike

what happens over unidimensional highways, urban/suburban road topologies present

multiple route choices that make it hard to predict if vehicles will meet; moreover,

the presence of traffic lights, stop and yield signs renders cars contact timings very

variable. These key aspects make highway-tailored solutions impracticable in complex

non-linear road scenarios, for which we are, to the best of our knowledge, the first to

identify challenges and propose solutions.

After a discussion of the literature, in Sec. 3.2, we outline the major challenges of

vehicular cooperative download in urban environments and devise original solutions to

them, in Sec. 3.3. In Sec. 3.4 we present the scenarios considered for our performance

evaluation, whose results are then discussed in Sec. 3.5. Conclusions are drawn in

Sec. 3.6.

3.2 Related work

The cooperative download of contents from users aboard vehicles has been first studied

in (62), that introduced SPAWN, a protocol for the retrieval and sharing of contents

vehicular environments. SPAWN is designed for unidirectional traffic over a highway,

and is built on the assumption that all on-road vehicles are active downloaders of a

same content. Instead, we target urban environments where users may be interested

in different contents. Two major aspects distinguish our work from SPAWN. First,

SPAWN is designed for unidirectional traffic over a highway, and thus does not address

any of the challenges that we outline in this chapter and that are characteristic of more

complex road scenarios. Second, SPAWN is inspired by peer-to-peer networking, and

thus is built on the assumption that all on-road vehicles are active downloaders of a

same content; instead, we consider the more general case of users interested in different

files. Similar considerations hold for the works in (63) and (50).
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In (64), the highway scenario is replaced by a circular bus route within a campus,

which however implies again easily predictable vehicular contacts: indeed, the focus of

the work is on the prefetching and multi-hop transfer of data at each individual AP,

while carry&forward communications are not taken into consideration. Conversely,

(65) and (66) examine urban environments. In (65), the authors study the upload of

small-sized contents from vehicles to roadside gateways, rather than the large down-

loads we target. The work in (66) considers instead data transfers to vehicular users

in grid-like road topologies, but the focus is on the problem of optimizing direct com-

munications between cars and infrastructure, without taking into account cooperation

among mobile users. Recently, the performance bounds of vehicular cooperative down-

load in urban scenarios have been studied in (67): there, however, the authors assume

perfect knowledge of the car traffic and outline a centralized optimal solution, rather

than the distributed practical techniques we envisage in this work.

As far as opportunistic data exchanges are concerned, the potential of such a net-

working paradigm in vehicular environments was first shown in (68), further explored

in (8, 69), and exploited in (70, 71) among the others. However, most of these works

focus on routing delay-tolerant information in vehicular networks, while none copes

with the problem of cooperative download. Also, techniques for Medium Access Con-

trol (72) and network coding (73) that have been proposed for cooperative vehicular

download are orthogonal to the problems we address, and could complement the solu-

tions outlined in this chapter.

Finally, since we study the impact of the infrastructure deployment on the coopera-

tive download, our work also relates to the topic of AP placement in vehicular networks.

In (74), the authors studied the impact of random AP deployments on data routing in

urban road topologies: we will prove that such an approach is inefficient when targeting

cooperative download. More complex solutions for the deployment of APs over road

topologies have been proposed in (75), to favor delay-tolerant data exchange among

vehicles, and in (76), for information dissemination purposes. However, the diverse

goals in these works lead to in different approaches and results with respect to ours.

More recently, the problem of AP placement to provide Internet access to vehicles has

been addressed in (77, 78) and (54). In all these works, however, the aim is to maxi-

mize vehicle-to-infrastructure coverage or contacts, and no cooperation among cars is

considered.
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3.3 Cooperative download

Let us first point out which are the major challenges in the realization of a vehicular

cooperative download system within complex urban road environments. With reference

to the transfer model proposed in Sec. 3.1, we identify two main problems:

• the selection of the carrier(s): contacts between cars in urban/suburban environ-

ments are not easily predictable. Idle APs cannot randomly or inaccurately select

vehicles to carry data chunks, or the latter risks to be never delivered to their

destinations. Choosing the right carrier(s) for the right downloader vehicle is a

key issue in the scenarios we target;

• the scheduling of the data chunks: determining which parts of the content should

be assigned to one or multiple carriers, and choosing in particular the level of

redundancy in this assignment, plays a major role in reducing the probability

that destination vehicles never receive portions of their files.

In the following, we first discuss the selection of carriers at the APs, proposing to

leverage historical information on large-scale traffic flows to drive data transfer deci-

sions. Then, we outline several solutions to the chunk scheduling problem, that are

characterized by different levels of redundancy.

3.3.1 Carriers selection

The first problem we address is that of the selection of data chunk carriers at APs that

are idle, i.e., that are currently not transferring data directly to vehicular downloaders.

As previously discussed, these APs can opt to employ their spare airtime to delegate, to

mobile users within range, portions of files being downloaded. Taking such a decision

means to answer to two questions: (i) which, among the vehicles in range of an idle

AP, should be picked as carriers, if any? and (ii) which of the downloaders should these

carriers transport data for? As we already underlined, carriers selection is performed

only if there are no vehicles interested in a direct download in range of the AP, as, in

such case, priority is given to them.

The key to the answers is to know in advance whether (and possibly when) one or

more cars currently within coverage of an AP will meet a specific downloader vehicle, so
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to perform the selection that maximizes the download rate. Also, by choosing carriers

depending on their future contacts, the destination of the data becomes constrained

to the elected carriers, among vehicles currently engrossed in downloading content and

the second question above is inherently solved along with the first one. However, as-

suming that the roadside infrastructure has perfect knowledge of the future route of

each user is unrealistic, other than raising privacy issues. At the same time, the move-

ment of individual vehicles over urban road topologies cannot be easily predicted as

in unidimensional highways. We then adopt a probabilistic approach, by leveraging

the fact that large-scale urban vehicular flows tend to follow common movement pat-

terns (79, 80, 81). More precisely, the solution we propose leverages contacts maps, that

are built by exploiting historical data on contacts between car flows, and then used to

estimate the meeting probability between downloaders and candidate data carriers.

In the following, we first discuss the structure and construction of contacts maps.

Then, we present different carriers selection algorithms, detailing how they exploit such

maps.

Contacts map

We denote as pkAa the k-th production phase of vehicle a with respect to AP A, i.e.,

the k-th of the disjoint time intervals during which vehicle a can steadily download

data from A (6). From a specific AP perspective, we tag production phases as local if

they involve that particular AP: as an example, phBb is a local production phase for AP

B, ∀ b, h. On the other hand, we label as fmab the m-th forward phase of vehicle b with

respect to vehicle a, i.e., the m-th of the disjoint time intervals during which vehicle

b can steadily forward data to vehicle a. Note that production and forward phases do

not necessarily correspond to actual data transfers, but just to contacts which could be

exploited for data transfers. We also use t(·) to indicate the time at which a production

or forward phase starts, and ∆t(·) to tag its duration. For production phases only,

α(·) denotes the general direction of movement1 of the vehicle at the beginning of the

production phase, and v(·) its speed at that same time. The notation is summarized

in Fig. 3.2.

1The general direction is obtained as the angle of movement between the location where the ve-

hicle started its trip, and its current location. This represents a more reliable information than the

instantaneous direction, and it is not harder to obtain from a GPS receiver than the latter.
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Figure 3.2: Notation for contacts map structure and construction

Structure. A contacts map is a data structure that provides an AP with information

on the probability of contact between a vehicle involved in a local production phase

and another vehicle. With reference to the example in Fig. 3.2, the contacts map at

AP B allows B to know the probability of contact between the local vehicle b and the

generic vehicle a. In particular, AP B knows that b started a local production phase

phBb at time t(phBb), while moving with direction α(phBb) and speed v(phBb); also, let us

assume B has been informed that a started a production phase pkAa with AP A at time

t(pkAa), while moving with direction α(pkAa) and speed v(pkAa). Then, the contacts map

at B allows to associate the couple of production phases
(
phBb, p

k
Aa

)
to historical data

on the encounters between vehicles that have previously generated production phases

at the two APs B and A with timings and mobility similar to those of b and a. We

stress that such historical data refers to any two vehicles with movement patterns akin

to those of b and a, and not to b and a only: thus, the data concerns vehicular flows

rather than individual couples of cars.

More formally, a contacts map is a set of one-to-one associations between keys, that

encode the significant characteristics of two production phases, and values, that store

the contacts properties for all couples of production phases that share such character-

istics. The key for two generic production phases phBb and pkAa is a vector k(phBb, p
k
Aa)

of the form
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[
A, b

t(phBb)− t(p
k
Aa)

δt
c, b

α(phBb)

δα
c, b

α(pkAa)

δα
c, b

v(phBb)− v(pkAa)

δv
c
]
,

where δα, δt and δv are the units (in degrees, seconds, and meters/second, respec-

tively) used to discretize angles, times and speeds. A couple of production phases is

thus characterized by the identity of the AP involved in the second production phase,

the time elapsed between the start of the two production phases, the direction of the

two vehicles at the beginning of the respective production phases, and the difference

between their speeds at that same time. We remark that the identity of the other AP

is not necessary: as detailed next, the first production phase is always a local one. A

value is instead a vector of four fields {nopps, ncons, tdel, tdur}:

1. nopps, the number of contact opportunities, i.e., the number of times that the AP

observed a couple of production phases with characteristics as from the associated

key;

2. ncons, the number of actual contacts, i.e., the number of times that vehicles from

the aforementioned couples of production phases actually generated a forward

phase;

3. tdel, the average time elapsed between the start of the last production phase and

the start of the forward phase, if any of the latter has ever occurred;

4. tdur, the average duration of the forward phase, if any has ever occurred.

It is to be noticed that each AP builds its own contacts map, in which it stores only

values associated to keys where the first production phase, as already said, is a local

one. As an example, an AP B will only store values for keys of the type k(phBb, p
k
Aa),

∀h, b, k,A, a. The rationale is that local production phases represent the vehicle-to-

infrastructure contacts that an AP can exploit for carriers selection, and are thus the

only an AP is interested to record data for.

Construction. The steps for the construction of the contacts map at an AP are best

described by means of an example, so we consider once more the situation depicted in

Fig. 3.2. When the production phase pkAa starts, the AP A logs the time t(pkAa), the

relative vehicle identifier a, its general direction α(pkAa), and its current speed v(pkAa).
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This information is shared, via the wired backbone, with other APs in the same area,

and updated, when the production phase ends, with the information on the duration

∆t(pkAa). This way, when the production phase pkAa terminates, AP B has memory of

the event, including all related details. Similarly, at the beginning of phBb, B records

and shares with other APs identical information on the production phase, which is then

updated at the end of phBb.

Regarding the exchange of data among the APs, we emphasize that a generic AP

does not need to be informed about the vehicle-to-infrastructure contacts occurring at

all other APs in the network. Indeed, if two APs are too far apart, they can avoid

sharing production phase data, as the excessive distance makes contacts too hard to

predict and leads to unbounded carry&forward transfer delays. Thus, in order to

limit the traffic on the wired backbone and guarantee system scalability, the reciprocal

exchange of information about production phases can be constrained to APs within

limited geographical distance1.

Proceeding in our example, at the end of phBb, AP B, as every other AP does at

the end of its own local production phases, checks whether phBb can be considered as

an opportunity for cooperative download with respect to other production phases it

is aware of, i.e., if another production phase is compatible with phBb. We will discuss

production phases compatibility later in this section; for the moment, let us assume

that pkAa is compatible with phBb. Then, B looks in its local contacts map for the value

associated to key k(phBb, p
k
Aa). If an entry is not found, it is created; in both cases, the

nopps field in the entry is incremented.

Let us now assume that, later on, vehicle b meets vehicle a, generating the forward

phases fmab and fmba . We focus on the first one, as it is that of interest in our example.

Both vehicles record the forward phase start time t(fmab), as well as the other vehicle

identifier. Upon loss of contact, a and b also log the forward phase duration ∆t(fmab).

These same cars upload these information, together with similar data on all other

forward phases they have experienced, to the next AP they encounter, which will again

share them with the APs in the area.

1A thorough study of the management of control messages over the backbone of the infrastructured

network is out of the scope of this chapter. In our tests we imposed a maximum distance of 10 km among

data-sharing APs, so to bound the delay between production and forward phases at approximately

15 minutes, given an average vehicular speed of 20 km/h in urban areas.
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When AP B is notified of the forward phase fmab , it tries to understand if fmab can

be related to any of the opportunities it has previously recorded. Thus, B scans its

database for local production phases compatible with fmab ; once more, we will discuss

the compatibility between production and forward phases next. Assuming that phBb

satisfies the compatibility constraint, B then looks for production phases of vehicle

a, with any AP, that are compatible with phBb. B finds again pkAa, and thus finally

relates fmab to the couple of production phases (phBb, p
k
Aa). At this point, B retrieves the

value associated to the key k(phBb, p
k
Aa), and updates the ncons, tdel and tdur fields. The

first is incremented by one, to record that the opportunity previously stored actually

generated a forward phase. The second and the third elements are updated using

samples t(fmab) − t(phBb) and ∆t(fmab), respectively. The way these last updates are

performed depends on the desired level of detail on the vehicle-to-vehicle contact: in

our case, we opted for keeping track of the mean of the samples.

Phases compatibility. Phases compatibility rules determine when two production phases

generate an opportunity for cooperative download, as well as when a forward phase can

represent a contact for a local production phase. These rules formally relate phases in

a way that avoids inconsistencies in the resulting contacts maps, an event otherwise

common, especially when considering that phases often overlap in time and/or refer to

a same AP (i.e., it can be that A and B in all previous discussions are indeed the same

AP). We first introduce the set of rules for the compatibility of a local production phase

with respect to a forward phase. A local production phase phBb is said to be compatible

with a forward phase fmab if the following conditions are verified:

1) the forward phase has ended after the end of the local production phase, or

t(fmab) + ∆t(fmab) > t(phBb) + ∆t(phBb),

as b must receive the data from B before it can forward them to a. Note that the

position of the subscripts already implies that, for the phases to be compatible,

the same vehicle b must realize the production phase with B and be the potential

carrier in the forward phase;
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2) the forward phase is the first involving a and b and satisfying rule 1) above to

have terminated after the end of the local production phase, or

@n | t(fnab) + ∆t(fnab) > t(phBb) + ∆t(phBb),

t(fnab) < t(fmab),

which guarantees that at most one forward phase is associated to each production

phase;

3) the local production phase at B is the last, involving b and satisfying rule 1)

above, that started before the forward phase end, or

@n | t(fmab) + ∆t(fmab) > t(pnBb) + ∆t(pnBb),

t(pnBb) > t(phBb),

which guarantees that at most one production phase is associated to each forward

phase.

Then, we introduce the rules that define the compatibility between two production

phases. A production phase pkAa is said to be compatible with a local production phase

phBb if the following conditions are verified:

4) the first production phase has ended before the end of the local production phase,

or

t(phBb) + ∆t(phBb) > t(pkAa) + ∆t(pkAa),

which accounts for the fact that an AP can only destine carry&forward data to

production phases it is aware of;

5) the first production phase has ended at most a time T before the end of the local

production phase, or

t(phBb) + ∆t(phBb)− t(pkAa)−∆t(pkAa) ≤ T,

that avoids considering obsolete production phases;
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Figure 3.3: Example of phases compatibility. Arrows show production phases of car a

that are compatible with local production phases of car b, as well as which of the latter

are compatible with forward phases of b to a

6) the first production phase is the last, involving a and A as well as satisfying rules

1) and 2) above, to have ended before the end of the local production phase

@n | 0 < t(phBb) + ∆t(phBb)− t(pnAa)−∆t(pnAa) ≤ T,

t(pnAa) > t(pkAa),

which guarantees that at most one production phase involving same vehicle/AP

couple is associated to each local production phase.

Fig. 3.3 provides some examples of phases compatibility as from the rules listed

above. There, the first timeline depicts the time intervals during which a vehicle a

experiences production phases with APs A, C and D, while the second timeline reports

the sequence of production phases of car b with APs B and E. Finally, the last timeline

shows when forward phases of b to a occur.

Arrows from the second to the first timeline indicate which production phases of

a are compatible with those of b. As an example, p1
Aa is not compatible with p1

Bb

because it occurred too early in time (i.e., it ended more than a time T before the

end of p1
Bb, see rule 5 above), while p2

Aa is not compatible with p1
Bb because it is not

yet concluded when p1
Bb ends (rule 4). Similarly, p1

Ca is not compatible with p1
Bb since

a more recent production phase between a and C, i.e., p2
Ca, is compatible with p1

Bb

(rule 6). Conversely, p2
Ca and p1

Da satisfy all the compatibility conditions, and are thus

compatible with p1
Bb.
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Forward phase compatibilities are shown as arrows from the third to the second

timeline. We can notice that f2
ab is compatible with p2

Eb but not with p1
Eb, since p1

Eb is

not the last production phase involving b and E to have ended before the end of f2
ab

(rule 3 above), while p2
Eb is. Moreover, f2

ab is not compatible with p1
Bb, because another

forward phase of b to a, i.e., f1
ab, already concluded after the end of p1

Bb (rule 2).

Carriers selection algorithms

Contacts maps can be exploited by APs to select local cars as data carriers in the

cooperative download process, by retrieving their contact probability estimates with

respect to downloader vehicles. Firstly, it is necessary that APs know which cars in their

surroundings are interested in some content. Thus, every time a downloader vehicle

starts a production phase, the fact that it is requesting data, as well as the nature of

the desired content, is attached to the usual information on the production phase that

the local AP shares with other APs. This way, each AP can track downloaders through

their production phases history.

Thanks to such knowledge, an AP that has active local production phases can com-

pute the delivery potential pa resulting from electing one (or some, or all) of the local

vehicles as carrier(s) for data destined to a specific downloader vehicle a. The deliv-

ery potential is obtained as the sum of the individual contact probabilities pb, derived

from assigning data for the downloader a to each elected local carrier b1. The process is

repeated for each known downloader car, and, in the end, the downloader vehicle asso-

ciated with the highest delivery potential p is chosen as the target of a carry&forward

transfer through local carriers that contributed to p. Note that p is a potential and not

a probability: indeed, p can be higher than one to counter uncertainties in probability

estimates.

The framework for carriers selection run at a generic AP B is shown as pseudocode

in Fig. 3.4. There, priority is always given to direct data transfers to downloader cars,

and fairness among them is provided by always picking the vehicle that is the closest

to the AP. The parameter Pmin controls the minimum delivery potential required to

attempt cooperative download through local carriers. The value of such parameter

(line 01 in Fig. 3.4), together with the way the delivery potential pkAa associated to the

1Thanks to the broadcast nature of the wireless channel, a single transmission is sufficient to transfer

the same data to all elected local carriers.
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01 set p equal to Pmin

02 for each downloader vehicle a do

03 if a is in range of B do

04 if a is closer to B than previous direct downloaders do

05 select a as destination for direct transfer

06 select no vehicles as carriers for carry&forward transfer

07 set p equal to ∞
08 done

09 else

10 for each production phase pkAa of a do

11 until all on-going local production phases are not processed do

12 update delivery potential pkAa
13 update carriers list c̄kAa
14 done

15 if pkAa is the highest potential computed for a do

16 set pa equal to pkAa
17 set c̄a equal to c̄kAa
18 done

19 done

20 if pa is strictly higher than p do

21 select a as destination for carry&forward transfer

22 select vehicles in c̄a as carriers for carry&forward transfer

23 set p equal to pa

24 done

25 done

26 done

Figure 3.4: Pseudocode for carriers selection at AP B

downloader production phase pkAa and its relative carriers list c̄kAa are updated (lines

12 and 13 in Fig. 3.4), distinguish the following carriers selection algorithms.

The Blind carriers selection algorithm aims at fully exploiting the airtime available

at APs, by delivering data to all available local carriers whenever possible. This algo-

rithm does not make use of the contacts map, but randomly chooses a downloader car

as the destination of the data: we thus employ it as a benchmark for the other schemes.

The pseudocode for potential and carriers list updating is outlined in Fig. 3.5, while

01 get next on-going local production phase phBb
02 set pb equal to a random value ∈ (0, 1]

03 add pb to delivery potential pkAa
04 add b to carriers list c̄kAa
05 mark local production phase phBb as processed

Figure 3.5: Blind pseudocode for pk
Aa, c̄kAa update
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01 get next on-going local production phase phBb
02 get key k(phBb, p

k
Aa)

03 if a contacts map entry for such key exists do

04 get relative value {nopps, ncons, tdel, tdur}
05 set pb equal to ncons

nopps

06 add pb to delivery potential pkAa
07 add b to carriers list c̄kAa
08 done

09 mark local production phase phBb as processed

Figure 3.6: p-Driven pseudocode for pk
Aa, c̄kAa update

01 get next on-going local production phase phBb
02 get key k(phBb, p

k
Aa)

03 if a contacts map entry for such key exists do

04 get relative value {nopps, ncons, tdel, tdur}
05 set pb equal to ncons

nopps

06 if pb is equal to or greater than Pind do

07 add pb to delivery potential pkAa
08 add b to carriers list c̄kAa
09 done

10 done

11 mark local production phase phBb as processed

Figure 3.7: p-Constrained pseudocode for pk
Aa, c̄kAa update

Pmin is set to 0, so that cooperative download is always attempted when at least one

local carrier is present.

The p-Driven carriers selection algorithm is a probability-driven version of the

Blind algorithm above. It again tries to exploit as much as possible the APs wireless

resources, but this time cooperative download destinations are selected according to

the delivery potential obtained from the contacts map.

As a matter of fact, carry&forward data is consigned by each AP to all available

local vehicles, and destined to the downloader vehicle which maximizes the sum of its

contact probabilities with all the local carriers, as detailed in the pseudocode of Fig. 3.6.

We stress that non-compatible production phases generate keys that are not present

in the contacts map, and are thus not considered for cooperative download. As the

p-Driven algorithm is designed to exploit carry&forward whenever there is a minimal

chance of delivery, Pmin is set to 0: this allows cooperative download even in presence

of very small delivery potentials. Exploiting contacts maps, the p-Driven scheme is

however expected to be more precise than the Blind one in the selection of carriers.
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The p-Constrained carriers selection algorithm builds on top of the p-Driven

scheme, adding constraints on probabilities, as from the pseudocode in Fig. 3.7. In

particular, local vehicles with individual contact probability pb lower than Pind > 0

are not considered for data carrying, and Pmin is set to a value higher than 0, so

that downloader vehicles with delivery potential pa lower than Pmin are discarded.

Thanks to the lower bounds on individual probability and delivery potential, the p-

Constrained algorithm is expected to further increase the delivery precision and reduce

the load at APs with respect to the p-Driven scheme. However, quality could come at

cost of quantity, as the thresholds may hinder potentially successful cooperation among

vehicles.

The (p,t)-Constrained carriers selection algorithm adds time constraints to the

probability bounds of the p-Constrained scheme. It introduces a distributed database

t̄a, maintained for each active downloader vehicle a by APs in a same area, controlling

what portions of a’s airtime are assigned to which specific carriers1. As shown in the

pseudocode in Fig. 3.8, the (p,t)-Constrained algorithm processes local vehicles b in

decreasing order of contact probability with the downloader car a, skipping those with

probability lower than Pind (lines 02 to 16 in Fig. 3.8). Every time the unprocessed local

vehicle with maximum contact probability pmax is processed, the algorithm exploits

information on the average time to contact (tdel) and contact duration (tdur) to predict

the time interval during which the local vehicle will meet the downloader car a. Then,

it discretizes time with step T, and tries to fit the estimated contact probability pmax

in one of the time steps within the aforementioned time interval (lines 20 to 30 in

Fig. 3.8).

The process is terminated when either the required delivery potential Pmax has been

reached (lines 31 to 33 in Fig. 3.8), or no more local vehicles are available (lines 17 to

19 in Fig. 3.8). In the second case, the delivery potential constraint is not fulfilled, as

Pmin is higher than zero, and thus no carriers can be selected for the current production

phase pkAa (see line 20 in Fig. 3.4). The (p,t)-Constrained algorithm therefore employs

information about contact times to improve the delivery precision, reducing the data

carriers involved in the cooperative download.

1We recognize that maintaining such database can pose synchronization and consistency issues,

whose management is out of the scope of this thesis. We however note that we do not require frequent

updates or high accuracy in t̄a, since the update periodicity is in the order of seconds and errors in the

database are overshadowed by inaccuracy in the contact estimation.
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01 set pmax equal to Pind
02 for each on-going local production phase phBb do

03 if phBb is marked as processed do

04 continue

05 done

06 get key k(phBb, p
k
Aa)

07 if a contacts map entry for such key exists do

08 get relative value {nopps, ncons, tdel, tdur}
09 set pb equal to ncons

nopps

10 if pb is equal to or greater than pmax do

11 set p equal to production phase phBb
12 set v equal to production phase phBb vehicle b

13 set pmax equal to pb
14 done

15 done

16 done

17 if pmax is equal to Pind do

18 mark all unmarked local production phases as processed

19 else

20 get key k(p, pkAa)

21 get relative value {nopps, ncons, tdel, tdur}
22 for each time step t ∈

[
b t(p)+tdel

T
c, b t(p)+tdel+tdur

T
c
]

do

23 if pmax is lower than or equal to Pmin − t̄a(t) do

24 add pmax to delivery potential pkAa
25 add v to carriers list c̄kAa
26 set t̄a(t) equal to min {t̄a(t) + pmax,Pmin}
27 continue

28 done

29 done

30 mark local production phase p as processed

31 if pkAa is equal to or greater than Pmin do

32 mark all unmarked local production phases as processed

33 done

34 done

Figure 3.8: (p,t)-Constrained pseudocode for pk
Aa, c̄kAa update
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3.3.2 Chunk scheduling

Upon selection of a destination for the carry&forward transfer, jointly with the asso-

ciated local carriers, an AP must decide on which portion of the data the downloader

is interested in is to be transferred to the carriers. To that end, we assume that each

content is divided into chunks, i.e., small portions of data that can be transferred as a

single block from the AP to the carriers, and then from the latter to the destination.

Since a same chunk can be transferred by one or multiple APs to one or more carriers,

the chunk scheduling problem yields a tradeoff between the reliability (i.e., the proba-

bility that a downloader will receive at least one copy of a chunk) and the redundancy

(i.e., how many copies of a same chunk are carried around the road topology) of the

data transfer. Next, we introduce three chunk scheduling schemes that embody growing

levels of redundancy, and that are thus intended to provide increasing communication

reliability.

The Global chunk scheduling assumes that APs maintain per-vehicle distributed

chunk databases, similar to the time databases t̄a introduced before1. These databases

store information on which chunks have already been scheduled for either direct or

carry&forward delivery to each downloader.

The Global scheme, whose flow diagram is depicted in Fig. 3.9, completely dis-

tributes the chunk scheduling among APs, since it forces an AP to pick a new, un-

scheduled chunk every time it performs a direct or carry&forward transfer. In other

words, each chunk is scheduled for transfer just once in the entire network. We stress

that, even then, multiple carriers can be given the same chunk, as carriers selection al-

gorithms can (and usually do) identify more than one vehicle for a single carry&forward

transfer.

direct

ctransfer
to carrier(s)

ctransfer
to downloader

transfer?
type of

carry&forward

yet scheduled by any AP
get next chunk    notc

Figure 3.9: Flow diagram of the Global chunk scheduling algorithms

1The same observations on database maintenance apply here as well.
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The Hybrid chunk scheduling, in Fig. 3.10, allows overlapping between carry&forward

transfers scheduled by different APs. Indeed, in case of a data transfer to carriers, an

AP picks the first chunk that it has not yet scheduled, ignoring the carry&forward

scheduling at the other APs. Conversely, non-overlapping scheduling is still enforced

for direct chunk transfers: every time it has to deliver some portion of a content to

a downloader, an AP always selects a new chunk, not yet scheduled by any other AP

in the region. The Hybrid scheme is thus implicitly more redundant that the Global

one, as different APs independently delegate carriers for a same data chunk. Also, note

that the Hybrid scheme does not need the aforementioned per-vehicle chunk databases.

As a matter of fact, it commends that overlapping is avoided only for direct transfers,

that however occur during contacts between APs and the downloader vehicle: as a

consequence, the chunk scheduling history can be easily maintained at vehicles, and

communicated to the current AP at the beginning of the local production phase.

direct

transfer?
type of

cget next chunk    not
yet scheduled by any AP

cget next chunk    not
yet scheduled by this AP

ctransfer
to downloader

ctransfer
to carrier(s)

carry&forward

Figure 3.10: Flow diagram of the Hybrid chunk scheduling algorithms

The Local chunk scheduling is similar to the Hybrid scheme, since different APs

can schedule the same chunks when delegating data to carriers. However, as shown in

Fig. 3.11, it also allows overlapping between direct and carry&forward transfers. An

AP can thus directly transfer to a downloader within range chunks that were already

scheduled, but through a carry&forward delivery. Namely, an AP can employ a direct

transfer to a downloader car to fill gaps in its chunk list. The Local scheduling is

thus the most redundant among the schemes we propose, trading some cooperative

download potential for increased reliability in data delivery.

3.4 Evaluation scenarios

In order to evaluate the cooperative download mechanisms outlined in the previous

sections, we consider several large-scale vehicular traffic scenarios, that are representa-
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yet scheduled by this AP

ctransfer
to carrier(s)

ctransfer
to downloader

transfer?
type of

carry&forward

get next chunk    notc

direct

Figure 3.11: Flow diagram of the Local chunk scheduling algorithms

tive of real-world road topologies. We also take into account different deployments of

APs, that, as we will show, have a major impact on the download performance. In the

following, we first present the mobility scenarios and then discuss the APs deployment

strategies employed in our performance analysis.

3.4.1 Vehicular mobility

We selected real-world road topologies from the area of Zurich, Switzerland, to as-

sess the performance of the cooperative download solutions presented in the previous

sections. This choice was mainly driven by the availability of large-scale microscopic-

level traces of the vehicular mobility in the region, from the CS Department of ETH

Zurich (82). The simulation techniques and mobility models employed to generate the

traces allow to reproduce vehicular movements over very large road topologies, yet

with a good degree of precision (83). More precisely, the traces replicate macroscopic

patterns of real-world vehicular traffic flows, made up of thousand of cars, as well as

microscopic behaviors of individual drivers in urban environments, such as pauses at

intersections that depend on roads capacity and congestion. This macro- and micro-

mobility realism is important in our study, since, on the one hand, we exploit large-scale

properties of urban vehicular mobility in designing the cooperative download system,

and, on the other, realistic small-scale mobility is required to reproduce vehicle-to-

vehicle and vehicle-to-AP networking interactions. We stress that the mobility traces

we employed only reproduce important traffic arteries in each scenario, while they do

not consider movements over minor streets. This, however, does not impact our study,

since the traffic over minor roads is too sporadic to deserve the deployment of dedicated

APs, and does not provide significant opportunities for collaboration among vehicles.

We focused on four scenarios, representing urban, suburban, and rural areas within

and nearby the city of Zurich. All the areas considered cover surfaces between 15 and
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Figure 3.12: The road topologies considered in our study, representing urban (b), subur-

ban (a,c), and rural (d) areas in the canton of Zurich, Switzerland

20 km2, and frame several tens of kilometers of major roads, whose layouts are shown

in Fig. 3.12. In particular, the Central Zurich scenario reproduces the downtown of

Zurich, and it is thus characterized by dense traffic uniformly distributed over the road

layout. The West and North Zurich scenarios are representative of suburban areas,

where the traffic congestion is less evident than in the city center, but still present over

a few major freeways that attract most of the vehicular mobility. Finally, the Schlieren

scenario portrays the street topology around a town not far from Zurich, characterized

by a sparse presence of vehicles over most roads in the area.

3.4.2 AP deployment

The placement of APs over the urban road topology has a major influence on the co-

operative download architecture. In order to capture such an effect, we extend our

analysis by considering diverse AP deployments over the different road topologies pre-

sented above. The goal of all the deployment strategies is to position, along a road

topology, a given number N of APs; in our performance evaluation, we will discuss the

impact of the value of N as well.

Under the Random AP positioning scheme, each point of the road topology has the

same probability of being selected for the deployment of an AP. The resulting placement

may be considered representative of a completely unplanned infrastructure (84, 85),

and it is used in our performance evaluation as a baseline for the other deployment

techniques. We emphasize that the results we will present for the Random positioning

scheme were obtained by generating different deployments at each simulation run, so

to avoid biases due to more or less favorable random AP distributions.
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The Density-based AP deployment technique aims at maximizing the probability

of direct data transfers from APs to downloader vehicles. To that end, this techniques

places the APs at those crossroads where the traffic is denser. The rationale behind

such choice is that the volume of direct downloads is proportional to the number of APs

that a downloader vehicle encounters during its movement through the road topology.

Since the identity of downloaders cannot be known in advance, the best option is to

deploy APs at those locations that a generic vehicle will most probably visit along its

route, i.e., the most congested intersections.

The Cross volume-based AP placement is designed to favor carry&forward trans-

fers, by increasing the potential for collaboration among vehicles. This technique ex-

ploits the predictability of large-scale urban vehicular traffic flows, which are known

to follow common mobility patterns over a road topology (79, 80, 81). By studying

such traffic dynamics, it is possible to determine the way vehicular flows spread over

the streets layout and employ this information to guide the AP placement. In the

remainder of this section, we introduce the concept of cross volume and employ it to

determine the relative AP deployment strategy.

1

i

3

3

6 7 4

3

1

1

i

j

4

4j

k

Figure 3.13: Sample vehicular flows over a road topology graph. Flows generated at edge

i are dark grey, while those generated at j are light grey. Assuming a travel time = 1 at

all edges, the partial cross volume hkij is equal to min{6, 4} + min{0, 0} = 4, while the

crossing volume hij is 4 + 3 = 7

Let us imagine that the road topology is represented by a graph where vertices are

mapped to intersections and edges to streets connecting them, as in Fig. 3.13. The

graph is undirected, and an edge exists even if the corresponding road is one-way.
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Focusing on a particular edge i of the graph, we can track all traffic leaving such edge1,

in both directions, and draw a map of how vehicular flows (measured in vehicles/s) from

i unfold over the road topology. We refer to these flows as the vehicular flows generated

at i. As an example, in Fig. 3.13, the dark grey arrows depict flows generated at edge i.

Different flows have different size, in vehicles/s, represented by their associated number

(values in the example are only illustrative).

Let us now consider a generic edge k 6= i, and isolate the flows passing in strict

sequence through i and k. In this case, we distinguish the two directions of movement

over k, and define two traversing flows from i to k:

•
−→
fik, the vehicular flow generated at i and subsequently traversing k in the →
direction;

•
←−
fik, the vehicular flow generated at i and subsequently traversing k in the ←
direction.

We do not impose any rule in defining the two directions at k, which, e.g., could be

based on vertices numbering or geographical coordinates. Our only concern is that,

for each edge, the two directions are unambiguously identified. Also, the direction at

i is not specified, and a traversing flow could have visited its generating edge in any

direction (including both of them, if flows generated at i in opposite directions then

merge at k in the same direction).

Traversing flows at an edge k can be translated to traversing volumes (measured

in vehicles), by evaluating the average time vehicles spend to travel over the entire

road segment corresponding to edge k. Also in this case, we can distinguish the two

directions of movement, and define the two travel times
−→
tk and

←−
tk , in the → and

in the ← directions, respectively. Considering again traversing flows from i, the two

corresponding traversing volumes are

−→vik =
−→
fik ·

−→
tk , ←−vik =

←−
fik ·

←−
tk

and represent the average number of vehicles that, having already visited i during

their trip, travel over k in the → and ← direction, respectively.

1Note that we do not make any assumption on the origin of the traffic, that could thus be constituted

of vehicles that started their trip from an intermediate point of the road, or that had previously arrived

from a different road.
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Let us now introduce a second group of flows, generated at an edge j 6= i, depicted

in light grey in Fig. 3.13. The same consideration we made for flows generated at i are

valid, and, picked an edge k 6= j, we can compute the traversing volumes from j to k,
−→vjk and ←−vjk. By considering both sets of flows at once, we can define the partial cross

volume of i and j at k, as

hkij =

{
min {−→vik,←−vjk}+min {←−vik,−→vjk} , if k 6= i, k 6= j

0, otherwise.

The partial cross volume hkij corresponds to the amount of traffic from i and j

that merges at edge k. We notice that hkij only couples flows that travel on opposite

directions over k, hence the name of partial cross volume. The rationale is the following:

imagine one car that has visited edge i in its trip, and now enters edge k in the →
direction: such a car thus belongs to the

−→
fik flow. Considering vehicles that come from

edge j and now travel over k, our car can generate two types of contacts:

• with the ←−vjk vehicles that travel in the opposite direction. These contacts are

certain, since u-turn are not allowed on road segments connecting two adjacent

intersections;

• with the −→vjk vehicles that travel in the same direction. However, contacts are

not certain in this case: the relative speed is close to zero1 and contacts mostly

depend on the position of the −→vjk vehicles over k, when our car enters the road

segment. Indeed, even if it enters edge k while some of the −→vjk vehicles are nearby,

and thus generates contacts with them, our car will only meet that very small

fraction of the overall −→vjk vehicles.

Since there are −→vik cars such as the one considered above, we couple −→vik with ←−vjk,
as these volumes correspond to certain contacts, while we do not couple −→vik with −→vjk,
as these volumes have an unpredictable (and, in most cases, negligible) contribution

in terms of contacts. Such a coupling is performed by taking the minimum between

the two facing traffic volumes, which is that imposing a more strict constraint on the

number of encounters.

1In the urban, suburban and rural scenarios we consider, the low speed limits and the reduced

number of lanes hinder overtakings. This is proved by the fact that, in the scenarios in Sec. 3.4.1, we

observed, on average, less than one overtaking per vehicle and per trip.
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Finally, the concept of cross volume can be unbound from intermediate edges and

related to couples of roads only. If I is the set of edges in the road topology graph, we

define the cross volume of i and j as

hij =

{∑
k∈I h

k
ij , if i 6= j

0, otherwise,
(3.1)

which implies that hij = hji ≥ 0, ∀i, j ∈ I. The cross volume hij provides a measure

of the potential for contact, and thus cooperation, over the entire road network, among

vehicles leaving edges i and j. We can exploit such a measure to formalize the problem

of the AP deployment. Let us assume that there are |I| > N roads in the topology: the

problem becomes that of picking N out of the |I| edges of the graph for AP deployment.

We associate to each edge i a binary decision variable xi:

xi =

{
1, if an AP is deployed on the road mapped to i

0, otherwise,

and refer to their vector as x =
{
x1, . . . , x|I|

}
. Since opportunities for cooperation

between vehicles are proportional to the crossing volume between each couple of edges,

the APs should be positioned so to maximize the sum of crossing volumes between

each pair of APs over the whole road topology. This leads to the formulation of the

following mixed-integer quadratic programming (MIQP) problem:

max
x

f(x) =
1

2
x′Hx (3.2)

s.t. xi ∈ {0, 1} , ∀i ∈ I (3.3)∑
i∈I

xi ≤ N. (3.4)

xi + xj ≤ 1, ∀j ∈ Ωi, j < i, ∀i ∈ I. (3.5)

Here, that in Eq. 3.2 is the objective function to be maximized, with H = {hij}
being a |I|× |I| matrix in R, filled with the crossing volumes computed for each couple

of edges as in Eq. 3.1. From the definition of crossing volume, hij = hji ≥ 0, ∀i ∈ I,

and hii = 0, ∀i ∈ I, which guarantees that the matrix is symmetric with trace zero,

thus it is semidefinite positive and the quadratic programming problem is convex. Also,

Eq. 3.3 states that xi is a binary variable, ∀i ∈ I, whereas Eq. 3.4 bounds the overall

number of APs to be deployed to N .
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The constraint in Eq. 3.5 avoids that two adjacent edges (i.e., edges with a vertex

in common) both host APs. As a matter of fact, Ωi is the set of indices j labeling edges

that are adjacent to edge i: the inequality thus forces the sum of any two decision

variables xi and xj referring to adjacent edges to be less than or equal to 1. This

prevents that APs are placed too close to each other and form locally dense clusters,

where only direct communication is used and insufficient space is left in between APs

to perform vehicle-to-vehicle transmissions. For the same reason, we only deploy one

AP per road.

By solving the optimization problem, we obtain an AP deployment that, as origi-

nally stated, augments the opportunities for carry&forward transfers in the download

process. We note that this formulation solves the AP deployment problem from a large-

scale viewpoint, i.e., it allows to determine the roads where APs should be positioned.

However, it does not specifies the exact location of each AP over the selected roads.

In Sec. 3.5.2, we will show that such small-scale deployment has a negligible impact on

the performance of the system.

The problem can be easily extended to the case of incremental AP deployment, in

which one or more APs have already been positioned along some roads, and others are

to be added. It is sufficient to introduce constraints that force xi to 1, for all edges i

where an AP is already deployed.

3.5 Performance evaluation

We conducted an extensive simulation campaign aimed at evaluating multiple aspects

of cooperative download in non-highway vehicular networks. The computational com-

plexity of the simulations, that reproduce the movement and network traffic of several

thousands of vehicles at a time, prevented the use of a traditional network simulator,

such as ns-2. Instead, we developed a dedicated simulator (86), which employs the mo-

bility extracted from the Zurich traces, models a random access channel contention, and

implements all the cooperative download techniques previously presented, but replaces

the traditional packet-level simulation with a more scalable chunk-level one, avoiding

the detailed reproduction of the entire network stack at each node.

In all our tests, a “best case” performance reference is provided by an Oracle

carriers selection algorithm. The Oracle scheme assumes that APs have a perfect
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knowledge of the future trajectories of all vehicles, in terms of both routes and timings.

This information is exploited during production phases at APs to foresee contacts

between local and downloader vehicles, and thus to pick carriers that are certain to later

meet their target downloader vehicle. The Oracle scheme exploits a per-downloader

database, identical to that employed in the (p,t)-Constrained algorithm, to avoid that

multiple carry&forward transfers are scheduled at a same time for the same downloader

vehicle. Also, since vehicular contacts are known in advance, any redundancy in the

scheduling of chunks is pointless: thus, only one carrier can be selected for the transfer

of each carry&forward chunk, and we always couple the Oracle algorithm with the non-

redundant Global chunk scheduling. Note that the Oracle carriers selection algorithm is

not optimal in that it does not take into account that multiple carry&forward transfers

can be scheduled at the same time for different downloaders that are within transmission

range of each other. In such situation, since only one of the interfering downloaders

can receive its chunks, part of the data cannot be delivered to the second downloader.

The main metrics we are interested in evaluating are:

• the download rate, i.e., the average file transfer speed experienced by downloader

vehicles traveling through the scenario. Such rate is the aggregate of a direct

rate, due to direct data downloads from APs, and a cooperative rate, due to

carry&forward transfers. According to our simulation settings, listed next, the

maximum download rate achievable by a vehicular user is 5 Mbps, which cor-

responds to the case of a car continuously receiving data during its whole trip

through the simulation scenario;

• the undelivered chunk ratio, i.e., the average ratio of chunks that are not delivered

to a downloader vehicle, computed over all those scheduled for that vehicle.

The system parameters were set for all simulations to δt = 5s, δα = 45◦, δv = 5ms ,

T = 500s, T = 1s, Pmin = 2.5, Pind = 0.5. If not stated otherwise, an average of ten

downloader cars is present at the same time over the road topology, and a simple disc

model is considered for signal propagation, so to fulfill the low complexity constraints

imposed by the size of the simulations. The net application-level data transmission

rate over the wireless channel, during both production and forward phases, is assumed

equal to 5 Mbps for a transmission range of 100 m. The latter values are consistent

with the outcome of real-world experiments on car-to-infrastructure (87) and car-to-car
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data transfers (88). For each simulation we performed one run to train the framework

(i.e., gather the data necessary to deploy the APs and to build the contacts map at

each APs), and ten runs to collect statistics. Each run simulated around three hours

of urban traffic, encompassing various vehicular density conditions. For all results we

measured 99% confidence intervals, reported as error bars in the plots.

3.5.1 Carriers selection and chunk scheduling

We first analyze the different carriers selection algorithms and chunk scheduling tech-

niques, detailed in Sec. 3.3.1 and Sec. 3.3.2. Since we are interested in a comparative

evaluation of the all these schemes, we select a particular AP deployment scenario

(6 APs positioned according to the Cross volume-based strategy), and focus on the

carry&forward download performance (as direct downloads are not influenced by they

way we select carriers or chunks). We will consider different AP deployments, and

study their impact on direct download rates in Sec. 3.5.2.
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Figure 3.14: Average cooperative download rate (top) and undelivery ratio (bottom) for

different carriers selection schemes, in the four road topologies
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The average cooperative download rate, obtained from carry&forward transfers, and

the mean undelivery ratio are depicted in Fig. 3.14. There, we report the results ob-

tained under each road scenario by the different carrier selection scheme, when coupled

with a Global chunk scheduling. We can notice how the Blind, p-Driven, p-Constrained,

and (p,t)-Constrained algorithms yield, in this order and throughout all road scenarios,

decreasing cooperative rates, as well as reduced undelivery ratios. Indeed, increasing

the precision of carry&forward transfers also implies missing opportunities for vehicle-

to-vehicle data exchanges.

The exact balance in the tradeoff between the cooperative download rate and the

delivery precision varies with the road scenario. In suburban areas (West and North

Zurich), a few major freeways attract most of the traffic in the region. On the one

hand, such concentration results in a large number of vehicle-to-vehicle contacts, and

thus in higher cooperative rates with respect to other scenarios. On the other hand,

it favors inaccurate carriers selection algorithms, such as the Blind one, over more

precise schemes, such as the p-Driven and p-Constrained ones: as a matter of fact, even

randomly selected cars have a high probability of traveling on the same road, and thus to

meet each other. In the rural Schlieren scenario, the sparsity of traffic leads to reduced

car-to-car contacts and thus lower cooperative rates. Also, the higher heterogeneity in

the movement of vehicles, due to the absence of traffic-gathering roadways, makes the

Blind scheme extremely imprecise in delivering chunks, with respect to contact map-

based ones. Finally, the urban Central Zurich scenario presents traffic densities that

are similar to those observable in the suburban areas, but dynamics that are closer to

those of the rural case: such scenario thus yield high cooperative rates but undelivery

ratios that significantly vary under the diverse algorithms.

However, we can notice that, no matter the road scenario considered, the (p,t)-

Constrained carriers selection algorithm significantly outperforms all the other solutions

in terms of undelivery ratio. Indeed, the precision achieved by the (p,t)-Constrained

algorithm in the carry&forward chunk delivery is comparable to that of the Oracle

algorithm. Although this latter scheme attains higher cooperative rates, we can state

that the overall performance of the (p,t)-Constrained algorithm is not too far from that

obtained through a perfect knowledge of future contacts among vehicles.

In Fig. 3.15, we also report, for the same combinations of carriers selection algo-

rithms and road scenarios, the average load measured at the APs, i.e., the percentage
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Figure 3.15: Average AP load (top) and number of carriers ferrying a same chunk (bot-

tom) for different carriers selection schemes, in the four road topologies

of airtime used by an AP to transfer data to carriers, and the mean number of carriers

ferrying a same chunk to a target downloader. From the plots it is clear how more pre-

cise algorithms result in a lower AP load and a smaller number of carriers per chunk.

In other words, a higher precision in the carry&forward delivery of chunks yields a

lower charge on the infrastructure and a reduced demand of resources by cooperating

vehicles.

The different chunk scheduling schemes are then compared, in combination with

every carriers selection algorithm, in Fig. 3.16. For the sake of brevity, the results

are aggregated over all four road topologies: indeed, the same behaviors we previously

discussed for the diverse mobility scenarios were observed also in this case. As a gen-

eral comment, the increased redundancy introduced by the Hybrid and Local chunk

scheduling leads, as one could expect, to lower cooperative rates but increased deliv-

ery precision. On a per-carriers selection algorithm basis, however, differences can be

spotted. In particular, the Blind scheme suffers a dramatic 50% reduction in the coop-

erative rate when redundancy is increased in the chunk scheduling: indeed, scheduling

multiple times the same chunks impairs the major strength of the Blind algorithm, i.e.,
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Figure 3.16: Average cooperative download rate (top) and undelivery ratio (bottom) for

different chunk scheduling algorithms, under the diverse carriers selection schemes. Results

are averaged over all road topologies
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Figure 3.17: Cooperative download rate / undelivery ratio working points for different

carriers selection schemes (left, with Global chunk scheduling) and chunk scheduling algo-

rithms (right, with (p,t)-Constrained carriers selection). Results are averaged over all road

topologies

the sheer number of unique chunks sent out for randomly selected downloaders. Con-

versely, when coupled with more redundant chunk schedulings, the algorithms based on

contact maps enjoy a significant reduction in the undelivery ratio (from 35% to 65%,

depending on the algorithm) at some smaller cost (15% to 30%) in terms of cooperative

rate.

To conclude our analysis on carriers selection and chunk scheduling, we summarize

the results in Fig. 3.17, showing the working points of each technique in the download

rate/undelivery ratio space. The results, aggregated over all road topologies, evidence

the tradeoff between the download volume and the reliability of the cooperative process.

In particular, the non-linear distribution of the working points, evidenced by the grey

curves in the plot, seem to indicate the (p,t)-Constrained carriers selection with Global

chunk scheduling as the combination that better adapts to the different scenarios.

3.5.2 Impact of the AP deployment

The way the infrastructure is deployed can have a significant impact on the performance

of the cooperative download framework. Thus, in this section, we evaluate how the

strategy employed for the AP placement and the number of fixed stations influence the
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Figure 3.18: Download rates and undelivered chunks ratios for different road-level place-

ment policies, averaged over all road topologies

rates and undelivery ratios experienced by the downloader vehicles. In the light of the

results in the previous section, we consider in the following a (p,t)-Constrained carriers

selection with Global scheduling as our default configuration.

We initially demonstrate the negligible impact of the small-scale deployment of APs

under the Cross volume-based strategy outlined in Sec. 3.4.2. To that end, we compare

three policies for the placement of APs over the roads resulting from the optimization

problem. The middle policy places an AP equidistant from the intersections that end

the selected road segment, the intersection policy deploys an AP at the most crowded

of such intersections, while the random policy picks a random location over the selected

road segment. Fig. 3.18 shows that the relevance of road-level deployment is minimal, as

the three schemes achieve almost identical download rate and undelivered chunk ratio.

The only notable difference is in that the intersection strategy favors direct downloads

and penalizes cooperative ones: indeed, crossroads are characterized by high densities

of slow vehicles, and placing APs there favors AP-to-vehicle transfers. At the same

time, however, it deprives vehicles of transfer opportunities, since intersections also

represent network clustering points where car-to-car contacts occur frequently (45),

thus reducing the cooperative download rate. We thus consider APs to be deployed at

the intermediate point of road segments, as this appears to bring a slight advantage

over the other policies in terms of aggregate rate.

The different AP deployment strategies discussed in Sec. 3.4.2 are compared in

Fig. 3.19, in presence of 6 APs deployed in each road scenario. It is clear that a Ran-

dom AP deployment results in the worst performance, as both the direct rate, i.e.,
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Figure 3.19: Average download rates (top) and undelivery ratio (bottom) for different AP

deployment strategies, in the four road topologies. Results refer to the (p,t)-Constrained

carriers selection scheme

the portion of the total download rate due to chunks directly retrieved from APs, and

the cooperative rate, resulting instead from carry&forward transfers, are lower than in

the other strategies. The reduced aggregate rate does not even bring an advantage in

terms of undelivery ratio, which is comparable to that obtained under other deploy-

ments. Conversely, the Density-based and the Cross volume-based AP placement lead

to similar aggregate rates: however, in the former the contribution of direct transfers

is significantly larger than in the latter, that instead mainly leverages the cooperation

among vehicles. Such result is consistent with the objectives of the two strategies, that

try to maximize, respectively, vehicle-to-infrastructure and vehicle-to-vehicle contacts.

Interestingly, the Density-based strategy yields slightly higher undelivery ratios with

respect to the other deployments: as already discussed, deploying APs at intersec-

tions renders many opportunistic contacts among vehicles unusable for planned data

exchanges, an effect here exacerbated by the high densities of the junctions selected by
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Figure 3.20: Average download rates (top) and undelivery ratio (bottom) for different

AP deployment strategies, under the diverse carriers selection algorithms. Results are

averaged over all road topologies

the Density-based deployment.

Focusing on the proportion between direct and cooperative rates, we can observe

that, depending on the road topology and deployment scenario, the carry&forward

contribution typically varies between 35% and 60% of the total download rate, implying

a remarkable 50% to 120% speedup in the download. As far as the road topologies are

concerned, the same considerations made in the previous sections hold for the overall

rates and undelivery ratios. Moreover, different scenarios do not appear to induce

significant differences in the relative performance of each deployment, nor in terms of

the proportion between direct and cooperative rates.

One may wonder how different AP placements affect carriers selection algorithms

other than the (p,t)-Constrained one. In Fig. 3.20 we can observe that the strategy

adopted in the deployment of the infrastructure has a very similar influence on all the

algorithms. The cooperative rates achieved by the diverse schemes are consistent with
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Figure 3.21: Average download rates and undelivery ratio for a varying number of APs,

under the diverse deployment strategies. Results refer to the (p,t)-Constrained carriers

selection scheme and are averaged over all road topologies

those presented in the previous section, and thus have an even higher impact on the ag-

gregate rate, with respect to the case of the (p,t)-Constrained algorithm studied above.

Such an improvement comes, however, at a high cost in terms of undelivered chunks,

with the exception of the Oracle scheme, which is clearly favored by its preemptive

knowledge of future contacts.

Not only the position, but also the number of the APs can impact the perfor-

mance of the vehicular cooperative download. In Fig. 3.21, we vary the number of

APs deployed in each scenario, and show the average rates and undelivery ratio at-

tained under the three AP placement strategies. Under a Random deployment, both

direct and cooperative rates significantly increase as the infrastructure becomes more
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pervasive. Additional APs imply a higher number of direct transfer opportunities for

the downloaders, which explains the improved direct rate. Similarly, denser APs are

deployed closer to each other, making forward phases (i.e., contacts among vehicles)

closer in time to production phases (i.e., contacts between vehicles and APs) and thus

easier to predict.

The same behavior can be observed for the Density-based strategy, which, however,

shows a slower rates growth for high numbers of APs. This is explained by the fact that,

while in the Random deployment each new AP has a similar impact on the download

process, in the Density-based case additional APs are located at intersections character-

ized by decreasing vehicular densities. Therefore, the rate gain brought by the presence

of extra APs tends to be lower and lower. In the case of APs positioned according the

Cross volume-based policy, the rates increase is significantly lower than in the other

cases. As a matter of fact, the optimization problem behind this placement strategy

struggles to find new locations that guarantee an increase in the crossing volumes, and

thus picks positions that introduce very small gain in the download process. That is,

the same reasoning made for the Density-based deployment holds, exacerbated, in the

Cross volume-based case.

Finally, it is interesting to note that, under all deployments, as the number of APs

grows the ratio between direct and cooperative rates is either unchanged or slightly

shifted in favor of the latter. Moreover, the undelivery ratio remains constant. Thus,

we can conclude that the positive impact of carry&forward transfers on the download

process persists as the number of APs deployed on the road topology varies.

3.5.3 Scalability in the number of downloaders

We evaluate the scalability of the cooperative download framework by increasing the

number of downloaders concurrently traveling over each scenario, up to 50. This last

value corresponds to a stressed network, where the vehicles actively downloading large-

sized contents from the Internet jointly cover around one third of the whole road surface

with their transmission ranges. Such a condition creates a significative contention for

the channel, since it is very probable for two downloaders to interfere with each other,

and thus impairs both direct and cooperative download.

This notwithstanding, in Fig. 3.22 we can observe that the system scales quite well,

as each of 50 simultaneous users experiences an average aggregate rate that is only
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Figure 3.22: Average download rates and undelivery ratio for a varying number of con-

current downloaders and 10 APs. Results refer to the (p,t)-Constrained carriers selection

scheme and are averaged over all road topologies

one half of the rate enjoyed by a lone downloader. We can also notice that cooper-

ative transfers are affected more significantly than direct ones: since direct transfers

always have a higher priority over carry&forward ones, the increasing presence of direct

downloaders reduces the airtime that APs can dedicate to carriers, thus limiting the

exploitation of the latter paradigm. The undelivery chunk ratio is instead positively

affected by the downloaders’ density: by increasing the spectrum of targets, it is easier

for the APs to find one downloader that will encounter the local carriers with high

probability.

3.5.4 Per-downloader performance analysis

One legitimate question at this point would be if these average figures are representative

of the experience of every downloader. By looking at Fig. 3.23(a), the answer seems

to be no. Indeed, the cumulative distribution of the aggregate download rate shows a

significative unfairness among downloaders: as an example, in presence of a Density-

based AP deployment1 and 10 concurrent downloaders, the least fortunate 30% of

the downloaders gets a goodput of at most 700 Kbps, while the top 30% can retrieve

the desired content at a rate that is at least four times higher. To better capture

such unfairness, in Fig. 3.23(b) we portray the Jain’s fairness index associated to the

1Similar results were obtained under the Cross volume-based deployment.
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Figure 3.23: PDF of the aggregate download rate for a varying number of concurrent

downloaders (left, for the Density-based deployment) and associated fairness (right). Re-

sults refer to the (p,t)-Constrained carriers selection scheme in presence of 10 APs, and

are averaged over all road topologies

distributions of Fig. 3.23(a). We can notice that the index ranges between 0.5 and 0.7,

i.e., low values that confirm the scarce equity with which the overall download rate

is distributed among downloaders. The number of concurrent downloaders appears

instead to have a minor impact on the fairness, as it only induces a slight reduction of

the index.

In order to understand the reason of the diverse download experience of the different

users, we first observe if there is a correlation between the amount of downloaded data

and the duration of the trip of a vehicle, intended as the interval between the instants at

which the car enters and exits the road scenario. The relative scatterplots are depicted

in Fig. 3.24, where we also report the line representing the maximum downloadable

file size per trip length, computed as the 5 Mbps data rate times the trip duration.

Interestingly, we can observe that download sizes close to the maximum are attained

by vehicles with short as well as long trips. Moreover, downloaders engaged in medium-

to-long trips can have very different download experiences, resulting in both very high

and very low download sizes. Our conclusion is that the duration of the trip is not the

cause behind the unfairness observed in the download performance of different users.

We then increase the level of detail of our analysis, and consider not just the duration
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Figure 3.24: Scatterplot of the downloaded size versus the trip duration. Results refer

to the (p,t)-Constrained carriers selection scheme in presence of 10 APs, and are averaged

over all road topologies

of a trip, but its exact trajectory. More precisely, we record all the possible routes (i.e.,

ordered sequences of roads) traveled by downloaders, and measure the average download

rates experienced by users on each route. Fig. 3.25(a) and 3.25(c) show, for two sample

scenarios1, the direct and cooperative rate attained by vehicles traveling along the

different routes, that are ordered over the x axis, by decreasing aggregate download rate.

It appears now clear that the unfairness among downloaders is the result of an unfairness

among trajectories, as some routes allow average rates of 3 Mbps or more, whereas

others yield much poorer (e.g., 500 Kbps or less) performance. It is interesting to note

that, no matter which AP deployment strategy and road scenario are considered, the

routes that guarantee the highest rates are often those where carry&forward transfers

are exploited the most. On the other hand, cooperation is completely absent on those

trajectories that allow very low throughput. Fig. 3.25(b) and 3.25(d) complement the

previous results, showing which routes provide higher download rates: the difference

between lighter, thinner low-rate trajectories and darker, thicker high-rate ones is even

more evident. We can therefore state that there are routes that are more keen to

take advantage from a cooperative download framework, and others that are less so.

1Similar results, omitted for the sake of brevity, were obtained for all others combinations of AP

deployment strategies and road topologies.
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Figure 3.25: Extract of per-route analysis results, referring to the Density-based AP

deployment in North Zurich (top) and to the Cross volume-based AP deployment in Central

Zurich (bottom): in both cases, we report the average direct and cooperative rates over

the possible vehicular trajectories, that are ordered by decreasing aggregate rate (left), and

the download rates over the road topology, where darker and thicker lines represent road

segments with higher aggregate rates. All results refer to the (p,t)-Constrained carriers

selection scheme in presence of 10 APs
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Scenario Density Cross volume

West Zurich 0.74 0.75

Central Zurich 0.57 0.64

North Zurich 0.59 0.63

Schlieren 0.42 0.60

Table 3.1: Correlation between the cooperative rate and vehicular density characterizing

a same road, in different scenarios

Moreover, we also found a moderate positive correlation between the carry&forward

download rate and the vehicular density that characterize a same road segment, as

shown in Tab. 3.1: this suggests that it is over routes where the traffic is denser that

cooperation among vehicles brings the highest advantage, thanks to a wider range of

opportunistic contacts that can be leveraged for data transfers.

Our conclusion is that, if use of the carry&forward paradigm is judiciously limited

to selected trafficked routes, cooperation among vehicles can provide significative and

consistent increments in the download rates experienced by users traveling along such

trajectories. The results in Fig. 3.25 indicate that, in such situations, one could expect

typical gains in the order of 50% to 120% with respect to the case where only direct

transfers from APs are considered.

3.6 Conclusions

We presented a complete study of cooperative download in urban vehicular environ-

ments. We identified and proposed solutions to the problems of carriers selection and

chunk scheduling, and extensively evaluated them. The main contribution of this work

lies in the demonstration that vehicular cooperative download in urban environments

can bring significant download rate improvements to users traveling on trafficked roads

in particular.
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4

Exact Decoding Probability

under Random Linear Network

Coding

4.1 Introduction

Network coding allows efficient transmission from a set of sources to a set of destina-

tions, allowing nodes to manipulate the information before forwarding it (11). It has

been originally employed to improve the throughput of multicast transmissions over

reliable links (11). Random linear network coding is a class of network coding, that

operates on data through linear combinations of random codes (12). Although initially

employed for multicast, random linear network coding has found wide application in

networks with packet erasures, where it is used to improve the communication per-

formance in absence of (or with limited resort to) feedback channels. Random linear

network coding has been shown to improve the latency, capacity and energy efficiency of

the communication in loss-prone and intermittently-connected wireless networks, either

ad-hoc (13), delay-tolerant (14), or satellite and underwater (15).

Within these contexts, when one or more sources want to transmit N packets to

one or more mobile nodes, the channel unreliability and the fluctuation of connec-

tivity force the adoption of reliable communication techniques. However, traditional

retransmission-based mechanisms easily lead to excessive overhead, even in presence of

coordination between the sources. If random linear network coding is employed, the
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reception of a (limited) amount S of excess packets can eliminate the need for a feed-

back channel. Indeed, to be able to decode the original data, a destination node simply

has to acquire N linearly independent packets over the K=N+S it received from the

source(s) and intermediate relay(s).

The probability of having vectors linearly independent does not depend on the

topology of the network, but on the fact of how many vectors the receiver has in order

to obtain a matrix of rank N. Note that the K packets can be encoded by any node as

far as the N original packets are the same.

The effectiveness of random linear network coding thus depends on the the proba-

bility that at least N packets reach their destination, and that they represent linearly

independent encodings of the original data. While the former condition relates to the

error probability on the channel or to the network topology, on which one does not

typically have control, the latter concerns the coding design, that is instead config-

urable. A common approach is to assume the size q of the Galois Field over which the

coding is performed to be very large, so that any received packet is independent from

those previously obtained, with high probability. As an example, using large encoding

coefficients of 20 bits, that correspond to values of q in the order of 220, allows to

exclusively dimension S on the packet loss probability. However, using large field sizes

has a drawback in terms of computational complexity: it would thus be desirable to

determine the exact impact of the field size on the decoding probability, so to properly

dimension q. The only such result to date is the upper bound in (89), stating that

the average number of coded packets K to be received before the original data can be

decoded is, for a field size q, equal to

K = min{N q

q − 1
, N + 1 +

1− q−N+1

q − 1
}. (4.1)

According to (4.1), when q=2, S=2 excess packets are sufficient, on average, for

N+S received packets to be linearly independent, no matter the value of N . There,

the authors derived an upper bound to the average number E of extra packets required

to decode the original information, and showed how small values of q yield minimal

increment in the value of E. More precisely, they show that, when q=2, E=2 excess

packets are needed on average for an overall N+E received packets to be linearly

independent.
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In this thesis, we improve the upper bound in (4.1), by deriving the exact formula-

tion of the probability that N out of N+S received packets are linearly independent,

under random linear network coding, as a function of the field size q. Our formulation

evidences that a value of q equal to four allows a correct decoding with just one excess

packet on average.

4.2 Exact decoding probability

Let GF (q) be a Galois Field of size q and let us assume that a set of uncoordinated

sources transmitK=N+S packets. Each k-th packet is constructed using random linear

network coding; i.e., each new packet is associated with a random encoding vector gk

over GF (q) of dimension N , and it is the result of the linear combination of the N

original packets, (12). Let us call Gq the matrix containing the encoding vectors gk.

The N original packets can be decoded if Gq has rank N , i.e., the receiver node has

obtained N linear independent packets over the K sent packets. We denote as Pns the

probability that matrix Gq has rank N .

In order to derive the exact expression of Pns we employ an urn model. Consider

an urn with all the vectors that can be generated by codes in a Galois Field of size q,

GF (q), over N packets. There are qN possible vectors. For the sake of clarity, we will

first analyze the simple case in which K=N , and then derive the case in which K > N .

Case K = N : consider the extraction of linearly independent vectors from the

urn. In the first extraction any vector that is not the zero vector1 will be a suitable

vector. The probability of extracting a vector which is not the zero vector is equal to

(1 − q0

qN
) = (1 − 1

qN
). After each extraction, we reinsert the extracted vector in the

urn since in the model we are randomly extracting vectors over a Galois Field GF (q).

In the second extraction, there are q vectors that are dependent among them, so the

probability of having two linearly independent vectors is (1− 1
qN

)(1− q
qN

). In the third

extraction there are q2 vectors that are linearly dependent with the previously extracted

ones, and so on. As we perform exactly N extractions, and we need N independent

vectors, we must not fail in any of the extractions. Thus, the probability of having N

1Discarding the zero vector is later treated.

71



linear independent vectors over K=N extractions is given by:

Pns(K,N) =
N−1∏
j=0

(1− qj

qN
) =

N∏
j=1

(1− 1

qj
). (4.2)

Case K > N : Let us first assume K = N+1 extractions from the urn. Again, dur-

ing the first extraction, any vector that is not the zero vector is acceptable. However, in

the second extraction, there is room for exactly one failure. If such failure occurs, with

probability q0

qN
, we will be left with exactly N -1 extractions to obtain N -1 independent

vectors. If the newly extracted vector is instead independent with respect to the first

one, with probability (1 − q
qN

), we will still have N -1 extractions to get N -2 indepen-

dent vectors. In the third extraction, we can fail with probability q
qN

and must not fail

with probability (1 − q2

qN
). Note that if a failure occurs in the k-th extraction, there

must not be any failure in the future extractions, and thus these events are exclusive.

Iterating, we obtain the probability that N linear independent vectors are extracted,

given K=N+1 extractions, as:

Pns(K,N) =
N∏
j=1

(1− 1

qj
)
N∑
i=0

qi

qN
. (4.3)

Following the same reasoning for a generic K>N , we obtain the following formula:

Pns(K,N) =
1

qN(K−N)

N∏
j=1

(1− 1

qj
)

N∑
r1=0

qr1
N∑

r2=r1

qr2 · · ·
N∑

rK−N=r(K−N−1)

qrK−N . (4.4)

Note that there are K-N summatories in the formula. However, this formula can be

reduced considering the q-binomial coefficients, also called Gauss Coefficients. The

q-binomial of two non-negative integers m and n is defined as:[
m
n

]
q

=
(qm − 1)(qm−1 − 1)...(qm−n+1 − 1)

(qn − 1)(qn−1 − 1)...(q − 1)
. (4.5)

Note that, if n = 0, the q-binomial has value 1 by definition, while, if q = 1, the Gauss

Coefficient becomes the well known binomial coefficients. Although Gauss Coefficients

appear as rational functions, they are in fact polynomial, since the denominator is

always a factor of the numerator. It is not surprising that Gauss Coefficients appear

in eq. (4.4), since, among others, a Gauss Coefficient counts the number V {m,n; q} of

different n-dimensional vector subspaces of an m-dimensional vector space over GF (q).
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Using the Gauss Coefficient properties eq. (4.6) and eq. (4.7):

m−1∑
i=0

qi =

[
m
1

]
q

(4.6)

[
m
n

]
q

= qn
[
m− 1
n

]
q

+

[
m− 1
n− 1

]
q

(4.7)

We may show for K-N=2 that[
K

K −N

]
q

=

[
N + 2

2

]
q

=
N∑
r=0

qr
N∑
s=r

qs (4.8)

Now, it can be easily shown using these recursions that the embedded summatories

are equal to

[
K

K −N

]
q

, and grouping terms:

Pns(K,N) =


0 if K < N

N∏
j=1

(1− 1
qj

)

 K

K−N


q

qN(K−N) if K ≥ N,
(4.9)

By applying eq. (4.5), we can reduce eq. (4.9) to:

Pns(K,N) =


0 if K < N
N−1∏
j=0

(1− 1
qK−j

) if K ≥ N.
(4.10)

In eq. (4.10), Pns(K,N) represents the cumulative distribution function of the prob-

ability of receiving N linearly independent packets, given the transmission of K ≥ N

packets under random linear network coding. The probability density function can

then be computed as pns(K,N) = Pns(K,N)−Pns(K−1, N), and the average number

of packets to be sent in order to decode the N original ones is:

E[K] =
∞∑
k=N

k · pns(k,N). (4.11)

As a further point, in a real implementation, the zero vector would be explicitly

excluded from the extraction urn. When accounting for this aspect in the model,

eq. (4.2) becomes:

Pns(K,N) =
N−1∏
j=0

(1− qj − 1

qN − 1
) = (

qN

qN − 1
)N

N∏
j=1

(1− 1

qj
), (4.12)
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whereas eq. (4.4) results in:

Pns(K,N) = qN
2

(qN−1)K

N∏
j=1

(1− 1
qj

)

N∑
r1=0

(qr1 − 1)
N∑

r2=r1

(qr2 − 1) · · ·
N∑

rK−N=r(K−N−1)

(qrK−N − 1).
(4.13)

Expressing eq. (4.13) in terms of q-binomial coefficients, with

P 0
ns =

qN
2

(qN − 1)K

N∏
j=1

(1− 1

qj
) (4.14)

results in:

Pns(K,N) =


0 if K < N

P 0
ns · (

[
K

K−N

]
q

+
K−N∑
n=1

(−1)n
(
K
n

)[ K−n

K−N−n

]
q

) if K ≥ N. (4.15)

As a final remark, we stress that the formulation above only accounts for the decod-

ing probability due to the actual random coding, in terms of excess packets and field

size. Packet losses and network topology also impact on the number of packets required

for a correct transmission, but they are independent of how random vectors are chosen.

For example, eq. (4.16) accounts for the probability of decoding N packets given that

a node receives K coded packets in a channel, where pchannel(n) is the probability that

n packets are correctly received.

pdec =
K∑
j=N

(
K

j

)
pj(1− p)K−j · pns(j,N) (4.16)

4.3 Numerical Results

As discussed above, our analysis concerns the decoding probability as a function of q and

S, and is thus limited to the linear independence of the random vectors employed for the

encoding of received packets. Losses due to channel errors represent an additional issue,

that is not the focus of our study. Therefore, we will thus assume no packet losses in the

following. Figure 4.1 shows Pns(K,N) as a function of the number of excess packets, S,

for N=100 and q ∈ {2, 4, 16, 32}. Our analysis, represented by continuous and dashed

lines, perfectly matches simulation results, portrayed as points, that are obtained via
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Figure 4.1: Pns versus S, for N=100

an actual extraction of random vectors, and are averaged over 105 runs: differences

between analytical and simulative values are in the order of 0.1%.

We can also observe that larger values of the field size q allow to reach higher

decoding probabilities with a same number of excess packets, or, conversely, less excess

packets are required to reach a high decoding probability. However, increasing the

field size only pays out for low values of q, since considering very large field sizes

induces greater computational complexity, but no real advantage in terms of decoding

probability.

On the other hand, the number of packets N has a negligible impact on the results,

as depicted in Figure 4.2. There, the number of packets is N=5, but the results are

virtually identical to those obtained for the case ofN=100. Again, the analysis perfectly

matches simulation.

Figure 4.3 shows the average number of excess packets E[K]−N required to decode

the N original packets. The plot portrays the outcome of our analytical formulation

in eq. (4.15), the upper bound in (89) described in eq. (4.1), as well as the results

obtained from simulation. Once more, our analysis provides a perfect matching with

the simulation results.

Moreover, the exact formulation shows that the average number of excess packets

required for the decoding is noticeably lower than that indicated by the upper bound.
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Figure 4.2: Pns versus S, for N=5

Indeed, the exact solution demonstrates that, if a field size of q equal to 3 or 4 is

considered, just one extra packet is sufficient for having N linearly independent packets.

Such result also holds when considering large blocks of coded packets (i.e., high values

of N), a situation that the upper bound cannot reproduce and that was only discussed

via simulation in (89).

As a final remark, we note that numerical results on the decoding probability in

presence of the zero vector, as in eq. (4.10), returned values similar to those shown for

eq. (4.15), unless very small values of q and N are selected.

4.4 Conclusions

We have computed the exact probability that a receiver obtains N linear independent

packets over K ≥ N received packets under random linear network coding over a

Galois Field of size q. The derivation makes use of an urn model, and employs Gauss

Coefficients to achieve a simple formulation.
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5

Planning Roadside Infrastructure

for Information Dissemination

in Intelligent Transportation

Systems

5.1 Introduction

Wireless communications for intelligent transportation systems (ITS) are intended for

the support of traffic safety and efficiency, as well as of value-added services, such as

infotainment and commercial applications. The main components of the ITS architec-

ture are roadside infrastructures and vehicles, and two main communication paradigms

are foreseen, namely vehicle-to-vehicle (V2V) and vehicles-to-infrastructure (V2I). As

a consequence, most of the research efforts so far have focused on the development of

protocols and applications suitable for an ad hoc network composed of vehicles (the

so-called VANET) and infrastructure nodes.

In this chapter, we deal with information dissemination to passing vehicles, tackling

the specific issue of deploying an intelligent transportation infrastructure that efficiently

achieves the dissemination goal. More specifically, we consider a system that has to

support information dissemination or lookup and retrieval, for such purposes as park-

ing lot availability, transportation timetables, pollution data collection. Then we pose

the following question: assuming that an area, with an arbitrary road topology, must
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be equipped with a limited number k of infrastructured nodes (e.g., IEEE 802.11 ac-

cess points), what is the best deployment strategy to maximize the dissemination of

information?

In principle, an information dissemination system could leverage both V2V and

V2I communications: when only few road-side units can be deployed, V2V commu-

nications enable data sharing thus increasing the throughput perceived by the users

while downloading a content. However, to deploy an infrastructure that optimally pro-

vides its services to the users, while maximizing the benefit coming from V2V data

sharing, would require detailed knowledge of the vehicle mobility patterns and of the

communication opportunities between vehicles. Due to both privacy issues and the

complexity of collecting data, it is unlikely that such information will be available for

generic user vehicles. Thus, in this work we restrict our attention to the problem of

optimally positioning the infrastructure nodes, without tackling V2V communications.

We refer to the infrastructured nodes as Dissemination Points (DPs), and, as a

first step to the solution of our problem, we show that road intersections are preferred

locations to place DPs. Then, we address two different cases. Firstly, we assume

that the information is just a small, self-contained item. A vehicle will receive the

information item if it gets in contact with a DP at least once. Under this assumption,

we are interested in placing the DPs at k of the possible intersections so as to maximize

the number of vehicles that enter a DP coverage area at least once; we therefore model

our problem as a Maximum Coverage Problem (MCP). Secondly, we consider the case

in which vehicle-to-DP contact times have an impact on the dissemination process.

In this case, we give a different formulation for our problem, which aims at favoring

both the number of contacted vehicles as well as the contact times. Both versions

of the problem, however, are NP-hard, thus we propose heuristic algorithms for their

solution. Note that other performance metrics and, thus, optimization objectives could

be also considered (e.g., minimizing the information dissemination time), but, again, it

would require further assumptions on the knowledge that is possible to acquire (e.g.,

on content size, per-vehicle link data rate, etc.).

The performance of our heuristics is evaluated by considering a real-world urban

environment and realistic vehicular traces. More specifically, we use traces of vehicular

mobility in the canton of Zurich that have a duration of one hour and a half (82).

We point out, however, that in presence of very long traces, our models and solutions
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should be applied to rush-hour representations of the vehicular traffic, as typically done

in system planning.

5.2 Related Work

The Set Covering Problem (SCP) is a fundamental problem in complexity theory and

was shown to be NP-Complete in 1972. SCP has been used to model many application

problems such as routing, service planning, manufacturing, scheduling, etc. There are

several surveys, E. Balas (90), Ceria et al (91), listing problems formulated and solved

as SCP. Paschos (92) surveys approximation algorithms for covering and packing prob-

lems, including weighted and unweighted algorithms. Grossman et al (93) compare

nine different algorithms for the SCP, six of which (Gr: Greedy; NoLP: generaliza-

tion of Gavril’s algorithm; Thres: Hochbaum’s algorithm; Alt-Gr: alternating greedy

and SortLP and T-Gr:) are deterministic and three (R-Gr: randomized greedy; RR:

randomized rounding; NN: neural network) are randomized. Other authors such as

Caprara (94) also survey algorithms for the SCP giving exhaustive lists of heuristic

and exact approaches. Finally, Pisinger (95) gives an overview of exact solutions for

Knapsack problems.

Wireless Access Point or Base Station placement is a well known research topic,

however most of the works that have addressed this problem so far consider a continu-

ous infrastructure radio coverage. Wright (96) proposes a variant of the Nelder-Mead

“simplex” method for finding optimal base station placement. Whitaker et al. (97) in-

vestigate macro-cell network planning in cellular networks and analyze the effects of cell

density on the infrastructure cost of the network and the effects of increasing infrastruc-

ture expenditure on service coverage. Other similar works use set covering problems

for network planning: Tutschku (98) introduces the Set Cover Base Station Position-

ing Algorithm that is based on a greedy heuristic for solving the Maximal Coverage

Location Problem in radio networks, while Amaldi et al. (99) study WLAN positioning

taking into account IEEE802.11 access mechanism. None of the former works however

consider wireless networks with intermittent coverage, where base stations are planned

taking into account non-continuous coverage for mobile users. Recently, Lochert et

al. (76) have tackled the problem of sparse Road Side Units placement, formulating

it as an optimization problem solvable with genetic algorithms. However, the goal of
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the deployment is in that case the aggregation of data on vehicular traffic conditions,

and not the dissemination of information: the diverse target leads to a different prob-

lem formulation and, thus, solution. An interesting work is also presented in (100),

where Chaintreau et al. focus on opportunistic communications between nodes that

move between classes; classes may represent locations or states. The authors show

that gossiping through opportunistic contacts (e.g., between taxi cabs) lead to efficient

information update, and exploit their findings for base station deployment.

Our architecture assumes the InfoStation model (101), where small islands of cov-

erage provide low-cost information services for mobile users. In the area of InfoStation

models, the objective of most of the works that have appeared in the literature has

been routing and reliability of information delivery, but not optimal AP placement. As

an example, Sollazzo et al. (102) propose TACO-DTN, a content dissemination system

that uses the InfoStation model, and study the routing governance and management of

the AP resources when the AP disseminates information. Cohen et al. (103) consider

the case where a set of Information Dissemination Devices disseminate information

to passing mobile nodes. The authors use the Knapsack formulation to decide which

messages should be broadcast by every dissemination device.

In the context of sensor networks, several studies (104, 105, 106) have considered

the problem of deploying multiple sinks in presence of stationary nodes. The goal of

these works, however, is to minimize energy consumption, while guaranteeing that sen-

sors can access at least one sink through either single- or multi-hop communications.

In the case of mobile sensors (107), the problem still differs significantly form ours, not

only because of the different objectives, but also because of the different nodes mobil-

ity. Sensors mobility is typically represented by random models or follow pre-defined

trajectories, also it is characterized by a much lower speed than vehicular mobility; it

follows that, unlike our case, the nodes movement can be predicted and exploited for

sink deployment.

Finally, Maeda et al. (108) have proposed a technique to derive the movement of

pedestrians in an urban scenario, starting from the street layout and observations of

density at intersections. A similar technique could be exploited to derive (otherwise

unavailable) information on the exact mobility of cars from measurements of congestion

at crossroads, since we proved how knowledge of the former is much more useful than
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knowledge of the latter in order to achieve an optimal DPs deployment for information

dissemination.

To summarize, our study differs from previous work in that it deals with optimal

deployment of dissemination points when full coverage of the network area is not re-

quired and nodes have intermittent connectivity with the network infrastructure. Also,

it addresses the case of generic user vehicles and, as is conceivable, it assumes that

limited information is available on vehicle mobility as well as on their communication

capabilities.

5.3 System Scenario and Goals

We consider a urban road topology of area size equal to A, including N intersections.

We assume that each DP has a dissemination range equal to R. Such a dissemination

range may map into the DP’s transmission range, or into its service range if dissemi-

nation can be performed through multihop communication. Also, we denote by V the

number of vehicles that transit over the area A during a given time period, hereinafter

called observation period.

Our goal is to deploy k DPs so as to maximize either the number of vehicles, among

the possible V , served (i.e., covered) by the DPs, or to favor both the number of covered

vehicles and the connection time between vehicles and DPs. Note that this significantly

differs from other coverage problems, since

• the DPs deployed in the area do not have to necessarily form a connected network,

or provide a continuous coverage of the road topology; also, energy saving is not

one of our goals. These are major differences with respect to previous work on

maximum graph coverage (109) as well as on cellular and sensor wireless networks

(see e.g., (97, 104, 105, 106));

• vehicles directly access the DPs, in addition their movement obeys to traffic reg-

ulations and is constrained by the road topology; as a consequence, the scenario

differs from the one studied in (110) for the deployment of Internet access points

in static networks, or from mobile sensor networks (107);
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• vehicles may cross several intersections, thus they may be covered (i.e., served) by

more than one DP. When contact time is taken into account, this aspect makes

existing generalizations of the MCP unsuitable to our problem.

In the following, we deal with the problem of planning vehicular networks for in-

formation dissemination, taking into account the above issues and the peculiarities of

these systems.

5.4 Selecting the Location Type

The evaluation of where on a road to deploy the DPs is an important first step in

designing an efficient dissemination system for vehicular environments. Nominally,

the position of a DP over a single road segment can span anywhere between adjacent

intersections: thus, the problem basically lies in deciding whether a DP should be

located midway through the road segment, or closer to the intersections bounding it.

To this end, we simulate a realistic vehicular mobility over a simple road topology,

and measure the potential for information dissemination of an individual DP, deployed

at first in the intermediate point of a road segment, and then at an intersection ending

the same street. The movement of vehicles is simulated with VanetMobiSim (111), em-

ploying the IDM-LC model, which reproduces car-to-car interactions, stopping, braking

and acceleration phenomena in presence of traffic lights at road junctions, and overtak-

ing, as observed in real world (112).

In particular, we considered different vehicular lane densities, ranging between 5

and 20 vehicles/km, which map to low and dense traffic conditions, respectively. The

potential for dissemination is evaluated in terms of number of concurrent vehicle-to-

DP contacts and of time spent by each vehicle within the dissemination range R of the

DP: a higher number of vehicles, as well as longer permanence times, are indicative

of a higher potential for information dissemination, as more users can receive larger

portions of the content provided by the DP.

Fig. 5.1 depicts the Cumulative Density Function (CDF) of such two metrics, when

the DP is positioned along the road or at the intersection, with varying vehicular

densities. It can be observed that the car density has a negligible impact on the time

that vehicles spend within DP’s dissemination range, while it strongly impacts the

number of vehicles in that same area. In both cases, however, deploying the DP at the
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Figure 5.1: CDF of the number of vehicles within range of the DP (left) and of the time

spent by vehicles within range of the DP (right), with R = 50 m and for different vehicle

densities

intersection leads to better results, since more vehicles travel through the dissemination

area, spending there a longer time.

We also analyzed the effect that different DP ranges have on the dissemination

performance. Fig. 5.2 portrays the same metrics studied before, for several values of

R. The dissemination range significantly affects both CDFs, with larger ranges clearly

providing better performance. In any case, deploying the DP at the intersection yields

again more favorable properties than positioning it along the road, for any value of R.

According to these results, intersections prove to be much better locations than road

segments for the deployment of DPs, in terms of information dissemination potential.

Thus, in the reminder of the paper, we will focus on the problem of DPs deployment

at intersections of the road topology.

5.5 Deployment Algorithms

As stated before, we consider two cases, accounting for (i) only the number of vehicles

that get in contact with DPs, and (ii) both the number of served vehicles and the

vehicle-to-DP contact times.
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Figure 5.2: CDF of the number of vehicles within range of the DP (left) and of the

time spent by vehicles within range of the DP (right), with a vehicular lane density of 10

vehicles/km and for different DP dissemination ranges

5.5.1 Maximizing contacts

Our goal is to maximize the number of vehicles covered by k DPs. Based on the above

results, we constrain ourselves to considering only the N intersections located in the

road topology as possible locations for a DP. In particular, by analyzing the vehicular

mobility in the selected area, we define an N × V matrix P whose generic element is

given by

Pij =


1 if vehicle j crosses intersection i

during the observation period
0 otherwise

(5.1)

It is worth pointing out that the use of matrix P requires that the identity of each

vehicle be known so that it can be tracked across all intersections. (In Section 5.5.1,

we will relax this assumption and present an approach where the identity need not be

recorded.)

We model the problem as a Maximum Coverage Problem (MCP), which can be

formulated as follows. We are given a collection of sets S = {S1, S2, . . . , SN}, where

each set Si is a subset of a given ground set X = {x1, . . . , xV }. The goal is to pick k

sets from S to maximize the cardinality of their union.

To better understand the correspondence with our problem, consider that the ele-

ments in X are the vehicles that transit over the considered road topology during the
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observation period. Also, for i = 1, . . . , N we have

Si = {xj ∈ X, j = 1, . . . , V : Pij = 1} (5.2)

i.e., Si includes all vehicles that cross intersection i at least once over the observation

period. Thus, by solving the above problem, we obtain the set of k intersections where

a DP should be placed so as to maximize the number of covered vehicles.

Unfortunately, the MCP problem is NP-hard; however, it is well known that the

greedy heuristic achieves an approximation factor of 1 − (1 − 1
m)m, where m is the

maximum cardinality of the sets in the optimization domain (113). We report the

greedy heuristic below.

The greedy algorithm

The greedy heuristic (hereinafter also called MCP-g) picks at each step a set (i.e., an

intersection) maximizing the weight of the uncovered elements.

Let us introduce an auxiliary set G. Let G ⊆ S be a collection of sets and Wi

(i = 1, . . . , N) be the number of elements covered by Si, but not covered by any set in

G. The steps of the greedy heuristic are reported in Algorithm 1.

Algorithm 1 The MCP-g heuristic

Require: k, P, S

1: G← ∅, C ← 0, U ← S

2: Wi =
∑V

j=1 Pij , i = 1, . . . , N

3: repeat

4: Select Si ∈ U that maximizes Wi

5: G← G ∪ Si
6: C ← C + 1

7: U ← U \ Si
8: Wi =

∑V

j=1

j:xj 6∈G

Pij , i = 1, . . . , N

9: until C = k or U = ∅

Note that, although such algorithm provides a very good approximation of the

optimal solution, it requires:

i) global knowledge of the road topology and network system,
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ii) the identity of the vehicles which have crossed the N intersections during the

observation period.

Below, we propose i) a hierarchical algorithm which reduces the computational com-

plexity by applying the divide et impera approach, and ii) a different problem formu-

lation where the knowledge of the vehicles identity is not needed.

The subzone algorithm

We superimpose an overlay grid with cells of arbitrary, equal size on our road topology.

We name a cell as subzone and denote the number of subzones by B = 2L (with L ∈ N1).

We define a hierarchical structure consisting of L + 1 levels, such that, at the generic

level l (l = 0, . . . , L), the unit area includes 2L−l subzones.

We start by solving the maximum coverage problem in each subzone (i.e., l = 0),

and we find the optimum location of k0 DPs in every overlay grid. Then, at each step

l ≥ 1, we divide the area of the grid into 2L−l subzones, each twice the size of a single

subzone at the previous step, and we select kl intersections among the ones that were

chosen at step l − 1. We repeat the procedure till the subzone area coincides with the

area of the overlay grid (i.e., l = L).

The subzone heuristic, hereinafter also called MCP-sz, is reported in Algorithm 2.

Algorithm 2 The MCP-sz heuristic

Require: k, P, S, 1 < B = 2L

1: S′ ← S

2: for l = 0 to L do

3: Divide the road topology into 2L−l cells of equal size

4: for m = 1 to 2L−l do

5: Solve the MCP in the m-th subzone, by taking S′ as input set and kl as the

number of DPs to deploy

6: Remove from S′ the unselected intersections

7: m← m+ 1

8: end for

9: l← l + 1

10: end for

88



Note that the value of kl can be set so as to limit the number of intersections

selected within each subzone at step l (l = 0, . . . , L). As an example, for k � N ,

we found that the algorithm can be efficiently run by fixing kl = k, ∀l. For larger

values of k, instead, setting kl = d k
2L−l
e+ 2L−l − 1 allows the selection of at least k

2L−l

per subzone, i.e., k intersections in the whole area, plus some extra intersections per

subzone (2L−l − 1). The benefit of such redundancy is twofold: it allows us to better

approximate a centralized solution, and its impact is limited since the number of extra

intersections reduces exponentially at each step of the procedure till it reaches 0 at the

last round (i.e., l = L).

As a last remark, the value of B can be determined so as to limit the number

of candidate intersections that are selected at each round (hierarchical level) of the

procedure. In particular, given k0, the number of intersections selected in the first

round (l = 0) must be less than or equal to the number of existing intersections, i.e.,

Bk0 ≤ N (5.3)

Since B = 2L, from (5.3), it is possible to derive a value for L and, thus, for the number

of levels that avoids useless iterations, i.e., to consider too fine grids which do not yield

any selection of intersections.

Unknown vehicles identity

Unlike the previous case, we now assume that the vehicles identity is not recorded and

the only available information is the number of different vehicles that have crossed each

of the N intersections during the observation period. Thus, our objective becomes the

maximization of the total number of service opportunities provided by k DPs.

To this end, let νi, i = 1, . . . , N , be the total number of vehicles that have crossed

intersection i during the observation period, i.e.,

νi =

V∑
j=1

Pij i = 1, . . . , N (5.4)

We then model the problem as a 0-1 Knapsack Problem (KP), which is defined as

follows (95). We are given a bag and a set of N items I = {I1, . . . , IN}. Each item

Ii ∈ I has a non-negative value and a non-negative weight, and the maximum weight

that we can carry in the bag is equal to k. The objective is to select a subset of items
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I′ ⊆ I whose weight does not exceed k and that maximizes the overall value of the bag.

Each item must only be selected once.

To better understand the correspondence with our problem, consider that the ele-

ments in I are the intersections; each intersection i has a weight equal to 1 and a value

equal to νi (i = 1, . . . , N). Thus, our problem can be formulated as,

max

N∑
i=1

νiyi (5.5)

s.t.

N∑
i=1

yi ≤ k; yi ∈ {0, 1} ∀i (5.6)

The 0-1 KP is an NP-hard problem in general, however in our case, where all intersec-

tions have the same weight, it can be solved in polynomial time by simply sorting the

intersections in decreasing order by their value, and selecting the first k intersections.

We will refer to this algorithm as KP-P.

In Section 5.6.2, we present the deployment and coverage performance obtained by

solving the MCP by brute force and through the greedy algorithm (MCP-g), compared

against the cases where the hierarchical approach is used (MCP-sz) and where vehicles

identity are not available (KP-P).

5.5.2 Maximum coverage and contact times

Here we address our second case, where k DPs have to be deployed at the road in-

tersections so as to favor both the number of covered vehicles, as well as the time for

which they are covered. To this end, let us define an N × V matrix T whose generic

element, Tij represents the total time that vehicle j would spend under the coverage of

a DP if the DP were located at intersection i, i.e., the contact time between a vehicle

j and a DP located at intersection i. Then, we formulate the following problem, which

we name Maximum Coverage with Time Threshold Problem (MCTTP): given k DPs

to be deployed, we aim at serving as many vehicles as possible, for (possibly) at least

τ seconds each, i.e.,

max

V∑
j=1

[
min

(
τ,

N∑
i=1

Tijyi

)]
(5.7)

s.t

N∑
i=1

yi ≤ k; yi ∈ {0, 1} ∀i (5.8)
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Note that in (5.7) we place a DP at an intersection so as to maximize the number of

vehicles that are covered, taking into account a vehicle’s contact time up to a maximum

value equal to τ : DPs that provide coverage for at least τ seconds to a given vehicle

do not further contribute to the overall gain of covering such a vehicle. The constraint

in (5.8) instead limits the number of DPs to k.

It can be easily verified that the MCP is a particular case of the above formulation,

obtained by setting τ = 1 and Tij = Pij . Hence, MCTTP is NP-hard and we propose

the following heuristic for its solution.

A greedy approach

The greedy algorithm we propose to solve the MCTTP problem, denoted by MCTTP-

g, picks an intersection at each step so as to maximize the provided coverage time,

although only the contribution due to vehicles for which the threshold τ has not been

reached is considered.

Let G ⊆ S be a collection of sets and let now Wi (i = 1, . . . , N) be the total contact

time provided by intersection i, considering for each vehicle a contribution such that

the vehicle’s coverage time due to G ∪ Si does not exceed the threshold τ . The greedy

heuristic is reported in Algorithm 3.

Algorithm 3 The MCTTP-g heuristic

Require: k, T, τ , S

1: G← ∅, C ← 0, U ← S

2: tj = 0, j = 1, . . . , V

3: repeat

4: Wi =
∑V

j=1 min(τ − tj ,Tij), i = 1, . . . , N

5: Select Si ∈ U that maximizes Wi

6: G← G ∪ Si
7: C ← C + 1

8: U ← U \ Si
9: tj = min(τ, tj + Tij), j = 1, . . . , V

10: until C = k or U = ∅

Again, we notice that the time-threshold heuristic requires knowledge of the global

road topology and of the vehicles identity. Likewise for the MCP, we present a time-
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subzone algorithm, which adopts the divide et impera approach and a 0-1 KP, for which

knowledge of the vehicles’ identity is not necessary.

The time-subzone algorithm

As done in Section 5.5.1, we divide the road topology in B = 2L cells, called subzones,

and we apply the time-subzone heuristic (MCTTP-sz) whose steps are reported in

Algorithm 4.

Algorithm 4 The MCTTP-sz heuristic

Require: k, T, S, 1 < B = 2L

1: S′ ← S

2: Divide the road topology in B cells of equal size

3: for l = 0 to L do

4: for m = 1 to 2L−l do

5: Solve the MCTTP in the m-th subzone, by taking S′ as input set and kl as the

number of DPs to deploy

6: Remove from S′ the unselected intersections

7: m← m+ 1

8: end for

9: l← l + 1

10: Merge each pair of adjacent subzones so as to obtain 2L−l subzones

11: end for

Unknown vehicles identity

When the vehicles’ identities are not available, the only information we have is the

total time that all vehicles would spend under the coverage of a DP if it were located

at intersection i, i.e.,

Ti =

V∑
j=1

Tij i = 1, . . . , N (5.9)

Thus, in this case we want to maximize the total contact (service) time offered

to the vehicles, when k DPs are deployed. Again, the problem can be formulated

as a 0-1 KP. We are given a set of N intersections (items) I = {I1, . . . , IN}; each

intersection has a value Ti and unitary weight, and the maximum number of selected
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intersections (maximum weight) must be equal to k. The objective is to select a subset

of k intersections that maximizes the overall service time provided to the vehicles, i.e.,

max

N∑
i=1

Tiyi (5.10)

s.t.
N∑
i=1

yi ≤ k; yi ∈ {0, 1} ∀i (5.11)

As already mentioned, the above problem can be solved in polynomial time by using

the simple algorithm reported in Section 5.5.1. We refer to this solution, which requires

the knowledge of the Ti coefficients (i = 1, . . . , N), as KP-T.

The performance of the brute force solution of the MCTTP problem are presented

in Section 5.6.3, together with those of its greedy (MCTTP-g), subzone (MCTTP-sz),

and no-identity (KP-T) heuristics.

5.5.3 Computational complexity of the proposed algorithms

The computational complexity of both MCP and MCTTP isO(V Nk): givenN intersec-

tions, all possible combinations where the k DPs can be placed have to be considered

and the weight of each intersection is computed over V vehicles. The cost of both

greedy heuristics, MCP-g and MCTTP-g, is O(kV N), since, for k times, we have to

select the best choice among the candidate intersections (initially set to N), and again

the selection is based on the weight computed over V elements.

As for the MCP-sz and MCTTP-sz algorithms, we apply MCP and MCTTP, re-

spectively, within each subzone. Being N/B (on average) the number of intersections

within each subzone, the computational complexity of these algorithms results to be

O(B logB × V (NB )k).

Finally, the complexity of the algorithm to solve the 0-1 KP is O(V N + N logN),

since we just have to consider each of the N intersections and sort the values to obtain

the best k choices.

5.6 Performance Evaluation

We applied the algorithms presented in the previous sections to a real-world road

topology, in presence of realistic vehicular mobility. The resulting DP deployments

were then evaluated in terms of information dissemination capabilities.
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Table 5.1: Road topologies parameters

Zurich Winterthur Baden Baar

Intersections 83 43 38 46

Vehicles 70537 13578 11632 9876

Here, we first introduce the evaluation scenario, and then we compare the results

obtained with the different deployment algorithms maximizing contacts, as well as the

results obtained with the different algorithms maximizing coverage and contact times.

5.6.1 Scenario

For our performance evaluation, we selected real-world road topologies from the canton

of Zurich, in Switzerland. Realistic traces of the vehicular mobility in such region are

available from the Simulation and Modeling Group at ETH Zurich (82). These traces

describe the individual movement of cars through a queue-based model calibrated on

real data (83): they thus provide a realistic representation of vehicular mobility at both

microscopic and macroscopic levels.

We considered the four road topologies depicted in Fig. 5.3, representing 100 km2

portions of the urban areas centered at the cities of Zurich, Winterthur, Baden, and

Baar. For each topology, we extracted an hour and a half of vehicular mobility, in

presence of average traffic density conditions. The number of road intersections in each

scenario, and the amount of vehicles traveling within it during the observation time

(after the filtering discussed below) are reported in Tab. 5.1.

In order to remove partial trips (i.e., vehicular movements starting or ending close

to the border of the square area), we filtered the trace, by removing cars that traverse

only three intersections or less, as well as those spending less than one minute in the

considered region. Fig. 5.4 shows where the filtering thresholds fall with respect to the

cumulative distribution functions of visited intersections and trip duration, for each

scenario. The selected thresholds result in a low percentage of cars being removed

from the traces of the scenarios characterized by a higher traffic density (Zurich and

Winterthur), while the filtering is heavier on the traces of the more rural scenarios

(Baden and Baar), where the conditions set above are harder to be met. However,
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(a) Zurich (b) Winterthur

(c) Baden (d) Baar

Figure 5.3: Road topologies layouts

Figure 5.4: CDF of the number of intersections traversed (left) and of the trip duration

(right) for all vehicles in the four traces
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the resulting numbers, in Tab. 5.1, still guarantee the statistical validity of the tests

conducted over all road topologies.

5.6.2 Maximizing contacts

In the scenario described above, we first run the deployment algorithms for contact

maximization presented in Section 5.5.1. The metric we are interested in is the coverage

ratio, i.e., the number of vehicles that experience at least one contact with a DP over

the total number of vehicles in the scenario.

(a) Zurich (b) Winterthur

(c) Baden (d) Baar

Figure 5.5: MCP-sz calibration. In the label of each plot, kl = f(l) stands for kl =

d k
2L−l e+ 2L−l − 1 (see Sec. 5.5.1)

The selected settings for the MCP-sz algorithm were L=4, kl=k. This choice was

the result of calibration tests run for MCP-sz on the different road scenarios, whose
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outcome is shown in Fig. 5.5. There, we can notice how the impact of both the value

of L and of the expression of kl on the coverage ratio is very small, for the values of k

(i.e., number of DPs deployed) that we are interested in. We thus picked L = 4, since it

implies a stronger locality of decision and thus a reduced computational complexity, and

kl = k, as a simpler yet efficient choice with respect to more composite formulations.

Also, in order to provide a lower-bound benchmark to the performance of the

schemes, we tested the performance of a random deployment, that ignores the ve-

hicular mobility information and whose outcomes result from averaging multiple tests

over each road topology.

The coverage ratio achieved by the different contact maximization schemes is shown

in Fig. 5.6, for each street layout. For each deployment algorithm, the ratio is recorded

versus the number of allowed DPs k.

Three different behaviors can be distinguished in all the scenarios considered. The

first is that of the random algorithm, which, lacking all information on the movement

of vehicles, performs poorly: it needs a large number of DPs (typically more than 50%

of intersections) to be deployed in order to provide one contact or more to each vehicle.

The second behavior is that of the KP-P scheme, which has only partial knowledge

of the vehicular mobility, since it accounts for vehicular densities at intersections but

neglects the mobility in between them. The KP-P algorithm performs better than the

random one, although its absolute result still has wide margins for improvement. As

a matter of fact, its CDFs grow faster than the random one, but do not reach again

a coverage ratio equal to one until almost half of intersections are covered by one DP.

Moreover, the progress in terms of covered vehicles is quite irregular as the number k

of deployed DPs grows. This suggests that the KP-P scheme can at times deploy DPs

at new intersections that do not improve the overall coverage.

The third behavior is that shown by the remaining algorithms: the brute force

solution to the MCP, the greedy solution, and the subzone solution. The common

point to these algorithms is that they all exploit full knowledge of the vehicles identity

and mobility over the road topology. It is interesting to notice how both the greedy

and the subzone schemes almost overlap with the optimal solution, and thus provide

an excellent result in terms of information dissemination. Also, we stress that the

difference with respect to the KP-P algorithm is extremely high, since the greedy and
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(a) Zurich (b) Winterthur

(c) Baden (d) Baar

Figure 5.6: Ratio of vehicles experiencing at least one contact with a DP versus the

number k of DPs deployed, for each road topology

subzone schemes cover 90% of vehicles with DPs covering between 5% and 10% of the

available intersections, and 100% of vehicles with DPs at around 15% of intersections.

The variability in the percentages above is due to the different scenarios we consider.

We also note that, although the relative performance of the algorithms stay the same

for the different street layouts, the absolute coverage ratios change (note the different

ranges in the y axes of the plots). More precisely, the higher complexity of the road

topology in the Zurich area results in lower coverage ratios when just a few DPs are

present, whereas a single DP is sufficient to already cover more than 50% of cars in

the other three scenarios. Indeed, in a smaller urban center, most traffic tends to

gather over one or two main roadways, and it is thus easier to cover by placing DPs at
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strategic intersections. In larger metropolitan areas, instead, the vehicular flows split

over a number of major routes, which makes it harder to cover them with a limited

number of DPs.

Finally, we stress that the brute force solution to the MCP problem is computa-

tionally feasible only for low values of k, for which a 100% coverage cannot be usually

reached. On the other hand, heuristics can be run even when DPs are deployed at a

high percentage of the available intersections. This makes the fact that MCP-g and

MCP-sz achieve performance similar to those of MCP an extremely important result,

which allows to determine computationally-feasible quasi-optimal placements of DPs

when a coverage close or equal to 100% is the goal of the deployment.

(a) MCP (b) MCP-g

(c) MCP-sz (d) KP-P

Figure 5.7: Zurich road topology: deployments of DPs obtained with different algorithms

maximizing contacts, for k = 6

Further insight in the different behaviors is provided by Fig. 5.7. The figure shows
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the actual positions of the DPs over the Zurich road topology, when k = 6, for the MCP,

MCP-g, MCP-sz, and KP-P formulations. There, it can be observed how the greedy

algorithm results in a solution that is nearly identical to the optimal one, whereas the

subzone solution is less similar to the optimal, but still close to it. The reason is that

the hierarchical approach trades the reduction in complexity for optimality, and can

take suboptimal decisions during initial iterations. However, the final result is still

very close to that obtained by solving the MCP by brute force. On the contrary, the

deployment achieved by the KP-P algorithm is noticeably different, as DPs tend to

be gathered in a same area, characterized by high vehicular traffic density. Since the

selected intersections are close to each other, a high number of vehicles travels through

several of the deployed DPs, so that most of the DPs have a very small impact on the

coverage.

By summarizing the results, we can conclude that:

1. knowledge of vehicular trajectories is the discriminating factor in achieving an

optimal deployment of DPs;

2. when exploiting such a knowledge, even a computationally feasible, hierarchical

solution, such as the subzone algorithm can lead to near-optimal results in real-

world road topologies of tens of km2;

3. by exploiting these properties, it is possible to inform a high percentage of vehicles

by deploying DPs at a small percentage of intersections.

5.6.3 Maximizing coverage and contact times

Taking into account the time dimension, we increase the complexity of the problem, by

maximizing coverage and contact times between vehicles and DPs. Thus, in this case

we are not only interested in the coverage ratio as a metric, but also in the coverage

time, i.e., the amount of time that each vehicle spends within range of DPs during

its trip in the considered scenario. Once more, a random deployment is employed to

benchmark the performance of the algorithms we introduced in Section 5.5.2.

The coverage ratio achieved by such algorithms, in different road topologies and as

the number of deployed DPs k varies, is depicted in the plots of Fig. 5.8, for a time

threshold value τ = 30 s. Exactly as observed in the previous section, also in this case
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(a) Zurich (b) Winterthur

(c) Baden (d) Baar

Figure 5.8: Coverage ratio versus the number k of DPs deployed, for τ = 30 s

the information on vehicular mobility plays a major role in favoring contacts among

vehicles and DPs. As a matter of fact, the random solution performs poorly, while the

KP-T algorithm provides a better coverage of the vehicles. The MCTTP, MCTTP-g,

and MCTTP-sz solutions, leveraging their knowledge of cars trajectories, guarantee the

highest coverage and tend to perform similarly. Such result is consistent through all

scenarios, although the entity of the difference in the coverage ratio provided by the

diverse deployment algorithms varies with the road topology considered: also in this

case, a more complex road topology, such as that of Zurich, leads to more significant

differences between the schemes that are mobility-aware and those that are not.

Fig. 5.9 reports instead the distribution of the coverage time, for τ = 30 s (as

remarked by the vertical threshold line in the plots), and in the specific case in which
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(a) Zurich (b) Winterthur

(c) Baden (d) Baar

Figure 5.9: Cumulative distribution function of the coverage time, for τ = 30 s and k=6

k = 6 DPs are deployed over each road topology. The goal now is to maximize the time

spent by vehicles under coverage of DPs, up to the threshold τ seconds. The common

result in all road topologies is that random deployments lead to small coverage times,

whereas the other schemes tend to behave similarly, although KP-T is characterized

by a more skewed distribution than those of MCTTP, MCTTP-g, and MCTTP-sz.

As a matter of fact, the deployments determined by KP-T at a time result in more

vehicles with very low coverage times, and more vehicles with very high coverage times.

Conversely, MCTTP, MCTTP-g, and MCTTP-sz lead to more balanced distributions,

where many vehicles experience a coverage time around the threshold τ . Once more,

these observations hold for all the scenarios considered.

When comparing the coverage times in Fig. 5.9 with the coverage ratios in Fig. 5.8,
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we can notice that MCTTP, MCTTP-g, and MCTTP-sz provide very similar perfor-

mance, which is superior to those achieved by the other schemes, for the considered

settings τ = 30 s and k = 6. Indeed, a random deployment of DPs induces both a

lower number of vehicle-to-DP contacts and a shorter coverage time with respect to

the solutions above. The KP-T solution leads to a performance comparable to those of

MCTTP and relative heuristics in terms of coverage time, although with the skewness

discussed before; however, this result is paid at a high coverage ratio cost.

(a) Zurich (b) Winterthur

(c) Baden (d) Baar

Figure 5.10: Coverage ratio versus the number k of DPs deployed, for τ = 60 s

When the value of the time threshold τ is increased, the constraint on the coverage

time becomes stricter. Fig. 5.10 and Fig. 5.11 show, respectively, the coverage ratio

(for varying k) and the CDF of the coverage time (for k = 6), when τ is set to 60 s. In

the plot of Fig. 5.11, the threshold value τ is highlighted by the vertical dashed line.
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(a) Zurich (b) Winterthur

(c) Baden (d) Baar

Figure 5.11: Cumulative distribution function of the coverage time, for τ = 60 s and

k = 6

We can note how such coverage time threshold is very hard to reach with the limited

number of DPs we bind our deployment to: the percentage of vehicles covered for τ

seconds when k = 6 is quite small, forcing the deployment of more DPs, or the increase

of their dissemination range.

In any case, the random and KP-T schemes still perform worse than MCTTP and

its greedy and subzone versions. In turn, the latter algorithms result in similar, but

slightly reduced coverage ratios with respect to the case where smaller values of τ

are considered, in an attempt to cover each vehicle for a longer time and match the

threshold requirement.

The relationship of the τ -dependent schemes from τ is studied in Fig. 5.12, for
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Figure 5.12: Zurich road topology: coverage ratio versus the number k of DPs (left) and

coverage time CDF, for k = 6 (right)

the complex Zurich road topology. There, we focus on MCTTP-g, since the other

algorithms showed similar behaviors, and evaluate it as τ ranges between 5 and 120

seconds. The coverage ratio, in the left plot of Fig. 5.12, shows how the MCTTP-g

solution falls in between those obtained with an algorithm that maximizes vehicle-to-

DP contacts, i.e., MCP-g, and with one that maximizes the overall coverage time, i.e.,

KP-T. In particular, for low values of τ , MCTTP-g tends to MCP-g, since the time

constraint is easily satisfied (a contact with a single DP is often sufficient to reach the

desired coverage time) and the algorithm can thus focus on maximizing the coverage.

Instead, when τ is high, MCTTP-g tends to KP-T, since the desired coverage time is

seldom reached, and thus the same vehicles keep on contributing to the optimization:

the focus of the algorithm then shifts onto coverage times.

This is confirmed by the CDFs of the coverage time, on the right plot of Fig. 5.12,

where the same behavior of the MCTTP-g algorithm is observed, as τ varies. It can

be noted, however, how MCTTP-g with τ = 5 s matches MCP-g in terms of coverage

ratio, but outperforms it in terms of coverage time. Similarly, MCTTP-g with τ = 120 s

matches KP-T as far as the coverage time is concerned, but provides a better coverage

ratio. The combined maximization of contacts and coverage time can thus achieve

better performance than contacts-only or time-only driven solutions even in borderline

conditions.

We can draw the following conclusions:
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• when the goal is to maximize contacts and coverage time, simple, hierarchical

solutions that exploit knowledge of vehicular mobility can lead to quasi-optimal

results over large-scale road topologies;

• the coverage time threshold τ can be used to calibrate the deployment so that it

is preferably driven by vehicle-to-DP contacts or by coverage time.

5.7 Conclusions

We proposed a maximum coverage approach to the problem of information dissemi-

nation in intelligent transportation systems. The formulations and relative heuristics

we presented tackle both the case in which maximizing vehicle-to-DP contacts is the

only goal, as well as the case in which coverage time is also an important aspect to

account for. We evaluated the different solutions in a real world topology, showing that

knowledge of vehicular mobility is the main factor in achieving an optimal deployment

of DPs. Our results also prove that, given such knowledge, simple heuristics can be

successfully employed to plan a deployment capable of informing more than 95% of

vehicles with a few DPs.
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6

Understanding, Modeling and

Taming Mobile Malware

Epidemics in a Large-scale

Vehicular Network

6.1 Introduction

Pervasive wireless machine-to-machine (M2M) communication is foreseen to be a game

changer for many daily life activities, other than a technology enabling a broad range

of new applications. This motivates the ever-growing availability of a wide variety of

long- and short-range communication-enabled devices, from smart-phones to tablets,

from notebooks to microwaves, from refrigerators to cars. The new generation of smart

objects shall grant faster, cheaper communication with our friends and co-workers,

easier home management, safer and more efficient mobility.

However, as it is often the case, with great profits comes high risk. If not properly

secured, the network interfaces of smart devices can turn into easily exploitable back-

doors, allowing illegal remote access to the information stored on the device as well as

to the local network it may be connected to. Even worse, M2M communication could be

leveraged by self-propagating malware to reach a large number of devices and damage

them, disrupt their services or steal sensible data. The first mobile malware that spread

itself through Bluetooth wireless connection, the Cabir worm (25), appeared in 2004
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and was soon followed by several evolutions (26, 27).

The low penetration of smart devices and the heterogeneity of the operating sys-

tems have prevented major outbreaks of M2M-based worms to date (28). However, as

the diffusion of communication interfaces keeps growing and the OS market becomes

more stable, with two or three major competitors remaining, it is easy to predict that

we may have to face smart-device worm epidemics in the future. It is thus important to

understand today which are the risks we may be facing tomorrow. In fact, the behavior

of potential malware in different sensible M2M communication environments has been

a subject of research ever since Cabir made its first appearance. Simulative and experi-

mental studies have outlined the risks yielded by the diffusion of so-called mobile worms

via direct Bluetooth infection, both within campuses (29) and in urban areas (30), via

metropolitan Wi-Fi hot-spot associations (31), and through text messaging in cellular

networks (32). In all these cases, it was found that, although mobile worms propagate

at speeds that are orders of magnitude lower than their Internet counterparts, they are

less easily detectable and still fast enough to pose a threat.

One of the scenarios where mobile malware could cause the most damage is the

automotive one. Indeed, vehicles feature today a wide range of Electronic Control

Units (ECUs) interconnected by a bus, e.g., the Controller Area Network (CAN), that

directly determine most of the cars’ automatic behaviors. Experimental tests have

proven that not only ECUs are extremely fragile to the injection of non-compliant

random messages over the CAN, but that a knowledgeable adversary can exploit them

to bypass the driver input and take control over key automotive functions, such as

disabling brakes or stopping the car engine (33).

Lives could be thus put at stake, if a remote attack was run against a moving

vehicle’s ECUs. What is worse is that the above has been proved to be feasible even

remotely, by exploiting the Tire Pressure Monitoring Systems (TPMS) (34) or the CD

player, Bluetooth and cellular interfaces (35).

And, in that sense, the forthcoming IEEE 802.11p-based WAVE interfaces, allowing

direct vehicle-to-vehicle (V2V) communication, risk to significantly widen the range of

attack surfaces available to adversaries.

Despite the dangerousness of malware diffusion in vehicular environments, and

through V2V communication in particular, only a few works have dealt with the topic

before, mainly considering small-scale highway scenarios.
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In this paper, we extend such works by proposing a more comprehensive study of

the spread dynamics of a mobile worm that exploits WAVE V2V communication to

self-propagate. Namely, we provide the following contributions:

• we consider a vehicular environment encompassing a geographical region of 10.000

km2 and including more than 3.600 km of highway, regional and urban roads.

Such a scenario is orders of magnitude larger than those considered in the current

literature on vehicular worm diffusion, and more heterogeneous in terms of the

road traffic description, comprising congested road arteries, moderately trafficked

routes and underutilized rural streets at once. Deriving results in such a vast and

variegated scenario allows for a better understanding of the actual level of danger

of vehicular malware;

• we characterize the features of a generic vehicular worm, and assess their impact

on the malware spreading and survival in the large-scale scenario above. Our

analysis accounts for different WAVE technology penetration rates, time and

location of the infection origin, as well as for the diverse factors that determine

the worm efficiency in passing from one vehicle to another;

• we provide a model of the worm spreading speed, that builds on statistical road

traffic data commonly available at transportation authorities. Such a data-driven

approach (i) leads to a model that is significantly simpler than traditional math-

ematical descriptions of epidemics in vehicular environments, and (ii) unlike the

latter, does not require unrealistic assumptions on the inter-vehicle arrival and

spacing processes. More importantly, and despite its low complexity, our model

proves very effective in representing the worm propagation process over the com-

plex heterogeneous road network we consider.

• we leverage our model for the smart patching of a vehicular worm outbreak

through the cellular network. Results show that our approach achieves a 100%

healing of infected nodes, with unnecessary patching limited to less than 20% in

the worst case.

The chapter is organized as follows: After a discussion of the related literature, in

Sec. 6.2, we identify the features of a generic vehicular worm in Sec. 6.3. Simulative

results on the worm spreading are presented in Sec. 6.4. Our worm spread model,
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introduced and validated in Sec. 6.5, is leveraged in Sec. 6.7 for the smart containment

of the worm epidemics. Finally, Sec. 6.8 concludes the paper.

6.2 Related Work

Worm epidemics. As first pointed out by Mickens and Noble (114), spreading models

of human viruses from traditional epidemiology cannot be directly adapted to the dif-

fusion of worms in mobile network environments. In fact, the worm spreading process

differs even depending on the mobile network scenario considered, and, when focusing

on vehicular environments, the literature is relatively thin.

The seminal work conducted by Khayam and Radha (115) introduces a first ana-

lytical study of vehicular worm spreading in a highway environment. In order to make

the model tractable, their analysis relies on average values rather than on a complete

description of the network connectivity. That way, however, the model fails to cap-

ture the complexity of the vehicular network topology, and overestimates the infection

rapidity. This is also noted by Nekovee (116), who adopts instead a frozen network ap-

proach, studying individual snapshots of the road traffic. There, the worm epidemics is

simulated as subsequent transfers among static vehicles within communication range.

Although the vehicular density is derived through realistic microscopic mobility mod-

els, the author employs a uniform distribution of vehicles, an assumption which has

been later shown not to hold in the real world (117, 118, 119).

Such a problem is overcome by Chen and Shakya (117), who also adopt frozen-

network approach, but populate the snapshots according to realistic inter-vehicle spac-

ing distributions fitted on real-world data collected by the Berkeley Highway Labora-

tory. The availability of such dual-loop detector data for different daily traffic conditions

allows to explore the impact of daytime on the worm spreading. However, the lack of

temporal correlation between the snapshots does not allow to study the propagation

of worms over time; this, in turn, precludes the possibility of leveraging the model in

systems where car positions change during the spreading process, e.g., in presence of

roads longer than a few kilometers or of worms that take more than a few milliseconds

to self-propagate. For the same reason, this technique cannot capture diffusion through

carry-and-forward, where vehicles physically transport the malware until the latter can

infect other cars during occasional contacts.
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The diffusion-reaction and advection models employed by Hoh and Gruteser (120)

describe the spatio-temporal spreading of a mobile malware. Such an approach nat-

urally describes the system evolution over time, and thus avoids the limitations of

frozen-network analyses. However, given the particular non-random nature of the road

traffic mobility, calculating the diffusion coefficient in presence of realistic vehicular

movements is not always possible, which limits the precision of the model and its ap-

plicability to complex heterogeneous scenarios such as the one we consider.

Our work overcomes the limitations outlined above. First, by describing the worm

propagation speed rather than relying on vehicular network snapshots, the data-driven

model we propose implicitly includes the time dimension. Therefore, our model can

mimic the worm spreading through both multi-hop connected forwarding as well as

carry-and-forwarding over temporarily network disconnections. Second, by leveraging

statistical road traffic data commonly available at transportation authorities, our model

does not require any complex calibration, but its single formulation is shown to closely

reproduce the spreading processes for the whole space of system parameters.

Furthermore, our evaluation is conducted on significant larger scales than those con-

sidered in previous works on vehicular worm spreading. The simulation and modeling

of a scenario with over 3.600 km of heterogeneous roads allows a more comprehensive

analysis of the malware epidemics than those performed on a single 10-km highway

corridor.

Epidemic dissemination. The spreading of generic vehicular worms can be also

assimilated to the epidemic dissemination of information in vehicular networks, making

the literature on the latter topic also relevant to our work. Within such a context, many

analytical models have been proposed, but they all rely on the assumption that the

inter-vehicle spacing is distributed deterministically (24) or exponentially (121, 122).

Although the use of these distributions simplifies the mathematical modeling, real-

world experimental assessments indicate that vehicle inter-distances are typically not

deterministic nor exponential (117, 118, 119). In addition, some works also consider

independent car speed (123, 124), breaking the well-established car-following paradigm

observed in the real world (125). Finally, all of the previous works are limited to single

highway scenarios.

Our simple data-driven model does not rely on the assumption that the vehicle

inter-distance and speed follow mathematically tractable distributions. Also, our study
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extends to a 10.000-km2 region, much larger than those considered in the epidemic

dissemination literature. Finally, as we deal with malware rather than normal content,

we address worm containment, which is not a concern in epidemic dissemination.

Non-epidemic dissemination. A number of works address the problem of defining

practical protocols for the efficient dissemination of information in vehicular networks,

e.g., those by Lochert et al. (21) and Leontiadis and Mascolo (20). These are however

of limited interest in the context of our work. Indeed, the goal of a malware designed

for vehicular environments is to self-propagate as largely and rapidly as possible: this

makes a simple and uncontrolled epidemic diffusion the obvious choice, as it guarantees

minimum delays. The cost, paid in terms of overhead induced by the spreading process,

is a primary concern for non-epidemic dissemination protocols, that thus add protocol

complexity to reduce it. However, the overhead is very minor concern, just a (possibly

even desirable) side-effect for a rapid malware whose objective is to harm the system.

6.3 Worm epidemics in vehicular networks

In this section, we characterize the features of a generic malware designed to self-

propagate in vehicular environments through WAVE V2V communication.

Worms are programs that self-propagate across a communication network through

security flaws common to large groups of network nodes; they are thus different from

computer viruses in that the latter need the intervention of the user to propagate.

Worms can be classified on the basis of several factors (126): the target discovery, i.e.,

the way they discover targets to propagate to; the carrier, i.e., the infection mech-

anism used for the self-propagation; the activation, i.e., the technique by which the

worm’s code starts its activity on the infected host; the payload, i.e., the set of rou-

tines undertaken by the worm, that clearly depend on the nature and objective of the

attacker.

Our interest is on the worm epidemics within the vehicular network. Therefore,

in this paper we focus on the first two aspects above, the type of target discovery

and the kind of carrier employed by the worm, as they mainly drive the malware self-

propagation process. Our study is instead activation- and payload-independent, since

we do not delve into the kind of damage caused by the worm nor the motivation behind
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Figure 6.1: Node degree distributions in the vehicular network.

the attacks – although the discussion in Sec. 6.1 hints at how dangerous the outcome

could be.

Target discovery. The target discovery in a vehicular network is dictated by the

dynamics of road traffic. As a matter of fact, the relatively short range of V2V commu-

nication limits the set of potential worm’s target to cars in geographic proximity of the

one the worm resides in. Thus, it is the physical mobility of cars that allows the worm

to enlarge its target set, by exploiting links established between communication-enabled

vehicles that come into contact during their trips.

Such a mobility-driven geographic target discovery occurs in a way that significantly

differs from that of standard Internet worms, that have to perform global or local scans

for IP addresses to infect. In vehicular networks, the target discovery is implicitly

(and involuntarily) supported by the forthcoming V2V communication standards, that

mandate the period broadcast of beacon messages by all vehicles with sub-second pe-

riodicity: this is the case for, e.g., SAE J2735 heartbeats – part of the WAVE stack –

and ETSI ITS Cooperative Awareness Messages (CAMs). A worm could then simply

leverage the information collected by the vehicle via these messages to determine its

current target set.

Carrier. As far as the carrier is concerned, we envision two possible carrier mech-
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anisms. In the first case, the worm is designed in a way that it can self-propagate

through broadcast messages, thus infecting all of its neighbors at once. We refer to this

mechanism as broadcast carrier. In the second scenario, the worm can only propagate

itself to one neighboring vehicle at a time, and we tag such a paradigm as unicast car-

rier. We argue that, in the case of a unicast carrier, no real decision has to be taken on

which communication neighbor to attack: unlike what happens in the Internet, where

the choice is between hundreds of millions of machines, the number of cars concurrently

in range of a worm is generally low. As an example, in the scenario we will consider

in our analysis, that will be detailed in the next section and whose road topology is

illustrated in Fig. 6.2, the distribution of the number of one-hop neighbors (i.e., the

vehicular network node degree) follows the curves in Fig. 6.1. There, we can observe

how the degree ranges from a few units to a few tens of vehicles at most, and that a

car typically has less than 10 neighbors half of time. Such a small target set size does

not allow for an actual selection of a target node subset, and a rapid malware would

simply infect all of its neighbors. This leads in the end to an epidemic spreading of the

worm even in the unicast carrier case, as we will see in our analysis.

The carrier is also characterized by a second aspect, i.e., the number of transmissions

(either broadcast or unicast) required to complete the infection. This value depends

on the length of the worm code and on the way it is hidden in the messages. We

translate this aspect to a second parameter, referred to as carrier latency and indicated

as τ in the following. The carrier latency is the amount of time a worm needs to

self-propagate to all of its neighbors (in the broadcast case) or to one neighbor (in the

unicast case). We remark that τ accounts for eventual protocol-related delays, due,

e.g., to association or session establishment procedures, wireless channel contention or

lost message retransmissions.

SIR model. Considering the worm epidemics from the viewpoint of the whole net-

work, and borrowing the terminology from epidemiology, in this paper we will adopt

a Susceptible, Infected, Recovered (SIR) model with Immunization. According to this

model, a clean node is susceptible to become infected by the worm, but it is healed if

it receives a dedicated cure, i.e., a patch, that prevents it from contracting the infec-

tion again. The same cure can be delivered even to a susceptible node, which is then

immunized, i.e., it cannot be infected by the worm. We also denote the first infected
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vehicle as patient zero and its location at the time it was first infected as the origin of

the worm infection.

The population affected by the SIR model with Immunization is formed by all the

communication-enabled vehicles circulating in the geographical area of interest that

suffer from the security flaw exploited by the worm to propagate. We thus characterize

the population through a penetration rate parameter, indicated as ρ, that indicates

the fraction of vehicles participating in the vehicular network and susceptible of being

infected from the worm. Thus, ρ accounts for both the WAVE technology popularity

and the security flaw diffusion.

6.4 Simulation results

Figure 6.2: Road topology scenario, scale 1:2.700.000.

We run a comprehensive simulation campaign in order to unveil the major features

of worm epidemics in large-scale vehicular networks, as well as the impact that the

different system parameters have on them.

Our reference scenario encompasses the whole Canton of Zurich, an area of 10.000

km2 in Switzerland. The region, whose 3.683-km road layout is portrayed in Fig. 6.2,
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comprises the urban and suburban neighborhoods of Zurich, several smaller towns

nearby, as well as the highways, freeways and minor regional roadways interconnecting

them. The mobility of vehicles in the area has been synthetically generated by means of

the multi-agent microscopic traffic simulator (MMTS) developed at ETH Zurich. The

MMTS queuing-based mesoscopic modeling approach has been proven to reproduce

real-world large-scale traffic flow dynamics and small-scale car-to-car interactions (127).

That of the Canton of Zurich is in fact an unescapable choice, as it is the only mobility

dataset we can leverage for a large-scale study of vehicular worm epidemics. Indeed,

no other synthetic or real-world mobility dataset that is publicly available covers today

a similarly wide region in a comparably realistic manner.

From a network simulation viewpoint, the scale of the scenario, where up to 36.000

vehicles travel concurrently for a time span of several hours, prevents the use of a

traditional network simulator, such as ns-3 or OMNeT++. Instead, we developed a

dedicated simulator, that avoids the detailed processing of messages through the whole

network stack and adopts a simple R-radius disc modeling of the radio-frequency signal

propagation1. Such a design makes simulations of very large-scale vehicular networks

computationally feasible, providing significant qualitative insights into the system be-

havior in presence of different carrier types, penetration rates, V2V communication

ranges and infection origins. All simulation results are averaged over 20 runs. Finally,

we remark that for the moment our focus is on the understanding of the worm prop-

agation in the vehicular environment. We will address malware patching later on, in

Sec. 6.7. Thus, we do not introduce a cure, i.e., a patch, capable of recover or immu-

nize the network nodes. In epidemiology, this is equivalent to consider a Susceptible,

Infected (SI) model. We will address the patching SIR process in Sec. 6.7.

6.4.1 Worm carrier

We first study the impact of the worm carrier. Let us first assume that patient zero

originates in downtown Zurich, i.e., at the center of the map in Fig. 6.2 approximately,

at 3 pm, when the road traffic intensity is at its peak. In Fig. 6.3, we focus on the carrier

mechanism, setting the carrier latency τ at 1 s and comparing the results achieved by

a broadcast carrier against those obtained by a unicast carrier. The performance is

evaluated in terms of infection ratio, i.e., the fraction of vehicles the worm has infected

1Our simulator is available at http://trullols.site.ac.upc.edu.
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Figure 6.3: Carrier mechanism: Broadcast versus unicast carrier, in terms of infection

ratio and under different WAVE penetration rates, ρ. Error bars represent the standard

deviation.

after four hours from the injection time1. The x axis reports the combined WAVE

technology and security flaw penetration rate ρ, that grows from 0.01 to 1. i.e., from

1% to 100% of the vehicles. Error bars represent the standard deviation.

We observe that a broadcast carrier achieves a higher infection ratio than a unicast

one. This is expected, since the latter mechanism requires the worm to self-propagate

multiple times, each requiring a time τ , to reach all the nodes that a broadcast-carrier

worm can reach with a single infection in a time τ . However, the difference is noticeable

at very low penetration rates only, since the two carrier mechanisms perform basically

the same once 5% or more of the automobiles are susceptible of contracting the worm.

Furthermore, even for ρ ≤ 0.05 the performance gap is marginal.

As far as the impact of ρ is concerned, higher penetration rates clearly lead to a

more connected network of susceptible vehicles, which in turn facilitates the spreading

of the worm. However, it is surprising to note how very high infection ratios are

achieved even in very sparse networks comprising 1 to 5 percent of the cars. In fact,

a ρ = 0.3 is largely sufficient to achieve a complete infection of the network. This

1As we will see, four hours are largely sufficient to our analysis.
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Figure 6.4: Carrier latency,τ : Impact of diverse carrier latencies versus ρ.

phenomenon is imputable to the fact that the high velocity of cars can compensate for

the reduced penetration rate, generating many V2V contacts and facilitating the worm

self-propagation in a carry-and-forward fashion.

In Fig. 6.4, we focus on the broadcast carrier case and study the impact of the car-

rier latency τ , in presence of different penetration rates. More precisely, we consider a τ

ranging from 0 s (which represents an ideal upper bound to the worm spreading perfor-

mance, since the worm infection is instantaneous) to 20 s, and assume ρ to vary between

1% to 100%.: an infected node can contaminate with a single broadcast transmission

its whole 1-hop neighborhood. The plot shows, for each combination of penetration

rates and τ , the ratio of vehicles in the 100×100 km2 region that have been infected

by the worm. In addition, as reported in the legend, different shades identify the time

required for the worm to infect a given portion of the vehicular network: full-saturation

colors thus correspond to a quick worm spreading, taking just a few minutes, while,

as bars tend to white, the spreading time becomes longer. Spreading times of half an

hour or more are in white. We remark that, even in presence of low penetration rates,

a sufficiently fast worm (i.e., one capable of infecting its 1-hop neighborhood in one

second or less) can still successfully infect the vast majority of the vehicles in a very

large region such as the one we considered. In fact, even when τ ≤ 1 s, at least 85% of
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the vehicles are infected under any penetration rate. Longer carrier latencies appear

instead to be more dependent on ρ: when τ ≥ 10 s the worm is unable of infecting the

whole network even when all the vehicles are susceptible of contracting it.

The observations above let us conclude that: (i) unicast-carrier worm are as dan-

gerous as broadcast-carrier ones; (ii) worms do not need a lot of vehicles to successfully

spread through a large area, due to the fast dynamics of road traffic that tend to facili-

tate the malware propagation; (iii) worms do not need to be extremely fast in infecting

neighboring vehicles, as a 1-second carrier delay (a perfectly realistic value, considering

that worms occupy a few tens of KBytes of code and the V2V basic data transfer rate

is in the order of a few Mbps) proves to be largely sufficient to vehiculate the worm to

the whole network in all conditions.

6.4.2 Worm epidemics over time and survivability

The percentage of infected nodes is not the only metric of interest in the analysis of

the worm propagation. The time needed for the worm to reach different regions of the

vehicular network is also an important factor. Another relevant aspect is the worm

survivability, defined as the period of time during which the infection can self-sustain

in the vehicular network. These metrics can be studied by observing the dynamics of

the epidemics over time.

In Fig. 6.5, each plot refers to a specific penetration rate ρ, and portrays the evo-

lution of the infection for different values of the carrier latency τ . When ρ = 0.01,

in Fig. 6.5(a), only rapid malware with carrier latencies τ of 1 s or less can propagate

through most (although not all) of the network. The bell-shaped infection ratio for

τ = 5 s is explained by the aggregated road traffic volume, also depicted in the figure:

the worm is not fast enough to infect the whole network before the traffic peak ends,

at around 4.30pm, i.e., 1 hour 30 minutes after the infection started. As a result, the

infection stays limited to the surroundings of the injection area, and then dies out when

the traffic becomes sparser due to vehicles leaving the area or stopping. Slower worms

do not even start to spread in the system. Increasing ρ to 0.05, in in Fig. 6.5(b), also

allows slightly slower worms, characterized by a τ in the order of a few seconds, to

infect an even larger majority of the vehicles. Namely, worms with τ ≤ 5 s perform

similarly and achieve a 95% infection ratio with a linear growth during the first 45

minutes from the worm injection. This clearly makes such worms extremely dangerous,
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Figure 6.5: Worm epidemics and survivability as a function of the penetration rate, ρ,

using the broadcast carrier mechanism.
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since, in order to be effective, a patch should be provided to network nodes within

the very few minutes after the worm injection. The bell shape now characterizes the

diffusion of malware with a carrier latency of 10 s, for the same reasons discussed above.

Slower worms find it still difficult to spread at such a low ρ.

A larger participation of 10% of the cars in the network, in Fig. 6.5(c), does not affect

the behavior of worms characterized by a τ ≤ 5 s, and only favors slower worms. On the

other hand, as the population of susceptible vehicles grows to 50% of the overall road

traffic, in Fig. 6.5(d), we remark two effects. First, the infection evolutions of the faster

worms start to separate, as highlighted in the inset plot, which details the spreading

process during the first 30 minutes from the worm injection time. Indeed, very fast

worms (i.e., with τ < 1 s) were previously limited by the lack of multi-hop connectivity,

and had to rely on carry-and-forward to find new susceptible vehicles. As a result, their

performance, hitting the bar imposed by the limited network connectivity, was similar

to that of slower worms (e.g., with τ = 5 s). Now, fast malware can take advantage

of the presence of larger connected clusters of vehicles, and spread over 95% of the

network in some 20 minutes. Moreover, the growth is now faster than linear, with 50%

of the nodes being infected in less than 6 minutes. As a second remark, the higher

penetration rate has a largely beneficial effect on the spread dynamics of slower worms,

as now the curves for τ ≥ 10 s depict the infection of very wide portions of the network.

However, we can still notice that the worm does not self-sustain, since its infection rate

tends to drop once the traffic peak ends.

In Fig. 6.5(e) we consider the case where all the vehicles are communication-enabled,

i.e., a maximally connected network. The effects already observed in the previous plot

are here exacerbated, with the faster worms capable of reaching 50% of the network

in less than 2 minutes and spreading over 95% of the network in 10 minutes. Slower

worms also take advantage from the increased network connectivity, although not yet

reaching a complete infection (τ = 5 s) or even self-sustainability (τ ≥ 10 s).

A similar temporal analysis can be done when comparing different carrier mech-

anisms. Fig. 6.6 depicts the infection evolution of broadcast and unicast worms, in

presence of varying penetration rates, when τ = 1 s. The inset plot shows again the

detail of the first thirty minutes of the spreading process. We can note that, unlike

what seen for the final infection ratio in Fig. 6.3, unicast and broadcast carriers differ

in terms of delay. However, such a difference is mostly remarkable at high penetration
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rates. As the penetration rate decreases, the difference in the time needed to infect

the network is reduced, and the two paradigms match when 10% or less of the cars are

involved in the network.
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Figure 6.6: Carrier mechanism: Worm epidemics and survivability versus the carrier

mechanism.

6.4.3 Carrier latency and contact time

The previous results show a striking difference in the spread process of worms char-

acterized by various carrier latencies. In particular, values of τ of 1 s or less seem to

result in high infection rates no matter the number of vehicles involved in the network;

moreover, such values of τ allow the infection to occur much faster as the penetration

rate increases. On the other hand, worms with a τ ≥ 10 s need high penetration rates

to diffuse and take a lot of time to do so. Values of τ in between those seem to result

in intermediate behaviors.

The physical reason behind these performance lies in the vehicle-to-vehicle contact

duration distribution, in Fig. 6.7. Most contacts among moving vehicles are very short:

more than 70% of them last less than 5 seconds, and less than 10% of the contacts are

longer than 10 seconds. However, the distribution is heavy-tailed, with a 5% of the

contacts lasting one minute or more, as from the inset plot. Our conclusion is that fast
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Figure 6.7: V2V contact duration distribution.

worms, capable to spread from one vehicle to another in one second or less, can exploit

any contact occurring in the network. Conversely, a worm characterized by a τ of 5 s

will be only able to leverage 20% of the contacts, and one with τ = 10 s will propagate

through a mere 8% of the actual V2V links. In other words, fast worms enjoy a more

connected network to spread through.

6.4.4 Summary

Summarizing our findings, we can conclude that, no matter the penetration rate and

carrier mechanism considered, a reasonably fast worm can be extremely dangerous.

More precisely, we observed how a worm that fits a few IP packets, and that could

thus be transmitted over the wireless medium in less than one second (accounting

for channel contention and losses), can easily infect a vast majority of the tens of

thousands of vehicles traveling in a very large urban, suburban and rural region. Even

worse, such infection would occur in a time in the order of few tens of minutes at most,

making it hard to counter the infection. The physical reason behind such an impressive

performance of the worm diffusion lies in (i) the high number of short-lived connections

generated by the movement of vehicles, and (ii) the elevate mobility of nodes in the

vehicular network. Both factors contribute to create an ideal environment for a fast

worm to self-propagate. We also conducted tests on the impact of the infection origin,
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in terms of geographical location and injection time. Although we omit1 these results

due to space limitations, we found that the location of patient zero has a dramatic

effect on the epidemics, due to the spatial heterogeneity of road traffic. Conversely, the

injection time only has a minor impact on the worm survivability.

6.5 Modeling the worm epidemics

The simulation results presented in the previous section illustrate the epidemic behavior

of a generic vehicular worm in a large-scale scenario. In this section, we propose a

model capable of faithfully mimicking such a behavior. Our broadcast-carrier worm

propagation model is data-driven, in that it is based on commonly available road traffic

statistics. Although simple in its expression, the model can capture the exact impact of

the wireless communication radius R, the penetration rate ρ and the carrier latency τ

on the large-scale worm propagation delay. In addition, and unlike many of the models

discussed in Sec. 6.2, our model does not require any assumption on the distribution of

vehicle inter-spacing, speed or inter-arrival time (IAT). For the sake of completeness, we

mention that we found the latter to be an exponential/normal mixture in the Canton of

Zurich dataset, as portrayed in Fig. 6.8. This result matches the real-world observations

in (118), and invalidates the typical deterministic and Poisson arrival assumptions

employed in the literature.
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Figure 6.8: IAT distribution in the ETH Canton of Zurich dataset.

The reason is that recent experimental evaluations have shown that the exponential

1For a detailed description, see Technical Report UPC-DAC-RR-2012-19 at

https://www.ac.upc.edu/app/research-reports/html/2012/19/report.pdf
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IAT assumption does not hold in real-world highway settings (118). The IAT has

instead been proved to follow a mixed normal-exponential distribution of the form

fIAT (t) = wN
1√

2πσ2
e−

(t−µ)2

2σ2 + wEλe
−λ(t−ν), (6.1)

where µ, σ, λ and ν are the parameters of the normal and exponential distributions,

while wN and wE are the weights associated to each distribution. Interestingly, we

found this result to apply to the Zurich scenario as well. When computing the per-

road IAT distribution in our mobility dataset, we do not obtain an exponential curve,

rather the mixed distribution suggested in (118), shown in Fig. 6.8 with the associated

fitting curve, for which µ=1.326 s, σ=0.391 s, λ=0.165 s−1, ν=1.424 s, wN=0.2426 and

wE=0.7574.

As a consequence, we cannot rely on previously proposed analytical models for

worm or data propagation along roads. Instead, we provide a novel formulation, that

accounts for the realistic nature the vehicular mobility considered in our study. The

model we propose builds on (i) information about the road topology and (ii) statisti-

cal information about the road traffic. In the first category, we need, for each lane i,

knowledge of its length li and a list of the other roads it intersects with: data that can

be easily extracted from road map services such as, e.g., OpenStreetMap. As for the

second category, the model requires information on the average travel speed vi(t) on a

road lane i at time t and mean inter-arrival time ai(t) at road lane i and time t. In our

case, we extract such information from the vehicular mobility dataset. In real-world

applications, Such road traffic metrics are commonly collected by transportation au-

thorities and automobile service operators through induction loops, infra-red counters,

traffic monitoring cameras, and, more recently, floating car data systems (128). There-

fore, such historical or statistical data is currently available for large portions of the

road topology and its public disclosure is growing, fostered by open data initiatives.

Road traffic information is by its own nature time-varying, i.e., the average speed

and IAT are not the same during the day or on different days of the week, which is why

we consider vi(t) and ai(t) be dependent on time. The aforementioned statistical data

necessarily reflects this aspect, with a finite yet representative time granularity1. Also,

1In our evaluation, we assume that statistical data on the road traffic is aggregated and updated

with a time granularity of 15 minutes, largely sufficient to capture the time variability of the Zurich

road traffic metrics.
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note that although higher order statistics may be available, our model only requires

knowledge of the mean values of vi(t) and ai(t) at each time period. Leveraging the

data above, we next discuss the modeling of the worm propagation speed along a single

road, in Sec. 6.5.1, and then extend the result to a network-wide worm propagation, in

Sec. 6.5.2.

6.5.1 Per-road worm propagation

Our goal is initially to model the worm propagation speed, si(t), along a lane i char-

acterized by average road traffic parameters vi(t), ai(t) at time t, accounting for the

technology-related parameters R, ρ and τ . For the sake of clarity, in the following we

refer to a generic time instant and drop the time notation. We start from the consid-

eration that the worm propagation speed mainly depends on the network connectivity

level. Namely, the malware can propagate wirelessly, and thus at a high speed, in a

well-connected vehicular network where multi-hop communication can take place. Con-

versely, the worm propagation is slowed down when communication opportunities are

scarce. Focusing on the two extreme cases, we can state that: (i) in complete absence

of vehicle-to-vehicle connectivity, the worm propagates at the vehicular speed vi, as it

is physically carried by isolated cars; (ii) in presence of a complete road coverage by a

very dense multi-hop vehicular network, the worm instantaneously1 jumps of a distance

equal to the communication range R at each carrier latency, the latter requiring a time

τ during which the worm still moves at the vehicular speed vi. Therefore, the worm

propagation speed has an expression of the type distribution of the form

si = vi +
R

τ
f(ai, vi, ρ, R, τ) (6.2)

where f(·) is a function of the different system parameters that represents the

vehicular network connectivity level. Such a function assumes values between 0 (absence

of connectivity) and 1 (fully connected network). In order to characterize the exact

expression of f(·), we observe the impact of the different parameters on the network

connectivity. Considering the simplified case of vehicles moving along one single road

direction, the average distance between two subsequent vehicles is given by ai · vi,
1We assume the RF signal propagation delay to be negligible, since it is in the order of nanoseconds,

a value at least three orders of magnitude lower than the duration of the other events involved in the

process.
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i.e., the distance traveled by the first vehicle before the following one enters the same

road. The technology penetration rate can be accounted for by assuming that the first

vehicle is equipped with a communication interface, and ρ can be seen as the probability

that the following vehicle is communication-enabled as well. Then, an average of 1/ρ

vehicles must enter the road before a second car equipped with a radio interface actually

appears on the road. The average distance between to vehicles that are participating in

the network is then aivi
ρ . The connectivity is determined by the relationship between the

distance above and the transmission range R. In particular, it is the ratio between the

two values, aiviρR , that matters: the lower the ratio, the higher the network connectivity,

and vice-versa.

The discussion above refers however to the case of vehicles all moving in a same

direction. The presence of an opposite vehicular flow can be accounted for through a

factor K, that divides R. In other words, if vehicles in the other direction of move-

ment can be leveraged for the worm propagation, a range R that is K times smaller

provides the same connectivity achieved by a range R in a single-direction scenario.

Alternatively, the introduction of K can be interpreted as the fact that one can allow a

distance K times larger between two communication-enabled vehicles and still achieve

the same level of connectivity. As discussed later, we found the value of K to be almost

invariant to the whole range of road traffic and communication settings we evaluated,

and we thus treat it as a constant in the following. Finally, τ has no major impact on

the network connectivity expressed by f(·), since it is an application-level parameter.

The only case where τ can indirectly affect the network connectivity is that of a carrier

latency so large to be comparable to the time required to travel along a whole road

segment between two intersections. However, the latter is at least several tens of sec-

onds, while the values of τ of interest to our study are significantly shorter. Therefore,

we neglect the impact of τ in the following.

Summarizing our discussion above, the worm propagation speed can be expressed

as

si = vi +
R

τ
f

(
ai vi
ρ R/K

)
. (6.3)

We still have to identify a proper expression for the function f(·) and a value for the

parameter K. To that end, we employ the data from our worm propagation simulations.

Interestingly, by fitting the expression in (6.3) to the data, we observe that a single
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function f(x) = exp(−x2) and a single value K = 3 fit the data for any combination

of the road traffic and communication parameters. Therefore, the worm propagation

speed along lane i can be finally expressed as:

si = vi +
R

τ
exp

[
−
(
ai vi
ρ R/3

)2
]
. (6.4)

This single simple expression can thus be employed to describe the average worm

propagation speed along any road in the Zurich scenario, given that its road traffic

statistics, i.e., the average vehicular speed vi and the average inter-arrival time ai, are

known. The equation in (6.4) allows then to evaluate the impact of the propagation

settings R, ρ and τ , since it holds for any combination of the same.

Examples of the correctness of the model are provided in Fig. 6.9. Plots in Fig 6.9(a),

(b) and (c) aggregate the results for roads with similar average vehicular speeds, ranging

between 11 m/s (less than 40 km/h) and 28 m/s (over 100 km/h). Each plot displays

a scatterplot of the worm propagation speed measured at each lane i, versus the road

average inter-arrival time, ai, with baseline parameters R = 100 m, τ = 1 s and ρ = 1.

The red curve represents the average behavior observed over all roads, while the black

curve is the result provided by our model. The plots in Fig 6.9(d), (e) and (f) show

instead the worm propagation speed for different values of R, ρ and τ . There, for the

sake of clarity, the scattered simulation samples are not drawn and only the average

curves are reported. It is however clear that our data-driven model can faithfully mimic

the average behavior of the worm propagation speed, in any road traffic condition. Of

course, the model does not capture the random variability around the mean that is

observed for specific roads. This is due to the fact that we only consider the average

values of vi and ai in our study, and not higher-order moments of their distributions.

This is, however, an intentional choice, that allows us to keep the model very simple,

still obtaining excellent results when considering the network-wide worm propagation

process, as discussed in the next section.

6.5.2 Road network-wide worm propagation

We now leverage the worm propagation speed expression in (6.4) to describe the prop-

agation process over the whole road network. In particular, the propagation is char-

acterized in terms of spread delay, i.e., the time that a worm takes to reach a specific

location after the infection of patient zero.
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Figure 6.9: Per-road worm propagation speed, si, for different combinations of the road

traffic parameters vi, ai and technology parameters R, ρ, τ .

Let us first represent the road layout as a graph G=(V,E), where the set of vertices

V represents the intersections and the set of edges E represents the roads joining such

intersections. Knowing the worm propagation speed si along a road segment i, the

spread delay from one end of the road to the other can be derived as wi=
li
si

. Each edge

in E is then associated to a weight matching its spread delay wi. Note that the resulting

weighted graph is time-varying, since the worm propagation speeds along each road,

and thus the weights derived from them, change over time.

Given the infection time t and the location on the road topology of patient zero,

calculating the spread delay from the origin point to any other point of the region
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reduces to a single-source shortest path problem on the weighted graph associated to

time t. A standard Dijkstra’s algorithm can be used to rapidly solve the problem.

Then, the spread delay to a given location on the road network is given by the cost of

the shortest path to its corresponding vertex or edge on the graph. Indeed, such a cost

maps to the sum of the spread delays along the fastest path from the infection origin

up to the location of interest.

Note that, if the injection point or the point at which the delay is measured are

located along a road, splitting the corresponding edge and inserting a vertex is sufficient

to solve the problem.

An intuitive example of the model accuracy is provided in Fig. 6.10. The plots

represent the geographical propagation of the worm, as occurring in simulation and as

predicted by the model. We can note that the worm propagation is almost identical

in the two cases, as most of the reached points are covered at the same time by the

simulation and the model. The differences, evidenced as the points that are reached

at each time instant by the simulation or by the model only, are minimal and always

limited to the rim of the propagation process.

both
simulation
model

Figure 6.10: Worm propagation, as occurring in simulation and as predicted in our model

with R = 100 m, τ = 1 s, ρ = 1. Snapshots refer to 1, 2, 5, 10, 20 and 40 minutes after

the worm injection.
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(c) ρ = 0.3.
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(d) R = 300 m.

Figure 6.11: Road network-wide spread delay with (a) R = 100 m, τ = 1 s, ρ = 1, and

when (b) τ = 10 s, (c) ρ = 0.3, (d) R = 300 m.

The qualitative evaluation of the model is presented in Fig. 6.11, where each plot

portrays the road network-wide spread delay measured in simulation (dots) and com-

puted by our data-driven model (solid line). Graph vertices (i.e., road intersections) are

ranked along the x axis according to the worm spread delay determined by the model.

Fig.6.11(a) refers to the case of τ = 1 s, ρ = 1 and R = 100 m. Although there are a few

outliers, a vast majority of the delays needed to reach the different road intersections

in simulation is correctly reproduced by the model. We can observe that the quality of

the result is the same when the different systems parameters τ , ρ and R are varied, in

Fig. 6.11(b), Fig. 6.11(c) and Fig. 6.11(d), respectively.

A more complete picture of the model reliability is provided in Fig. 6.12, that shows
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Figure 6.12: Relative Error, η, versus the carrier latency τ (left), penetration rate ρ

(middle) and communication range R (right).

the average relative error η between the simulation results and the model outcome for

the whole parameter space. Notably, the error remains below 0.18 for all values of

τ ∈ [0.2, 10], stays below 0.1 for any value of the penetration rate ρ, and is at most

0.25 for short communication ranges below 50 m. The reason is that with short radio

ranges, the variability of the worm propagation speed is higher for short interarrival

times.

As a summary, we can conclude that in general, the fitting model approximates

quite well the simulated data, even with the high variability of the data considered.

Moreover, the average relative error is kept between the interval η ∈ [0.1, 0.15] for most

of the cases.

6.6 Model exploitation

The fitting model can be exploited to obtain several measures that are hard to obtain

from the complexity point of view via simulation. As stated, knowing a road topology

and simple derived transportation parameters, the per-road worm propagation speed

can be easily derived. So, while acquiring all the mobility data can be very expensive,

and for each parameter we want to check, running the simulations can take hours, using
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Figure 6.13: Spread delay.

the model with Dijkstra algorithm, we obtain an accurate result in seconds.

6.6.1 Impact of the worm propagation parameters.

Let us assume a road topology in which the ai and vi are known for each i = 1, 2, ..., E

and the worm injection place is fixed. Fig. 6.13 shows the spread delay as a function

of the ρ and R for several infection transmission times when the focus of the patient

zero is located in the center of the Zurich downtown. The worm is propagated to a

10km×10km area and a 20km×20km area (transparent bars). Fig. 6.13(a) shows the

spread delay for several τ and R. The figures are consistent with those ones obtained in

section 6.4; low values of τ and high values of R produce fast worm propagations, while,

large values of τ and low values of R slow down the propagation of the worm. Low

penetration ratios produce high spread delays as predicted by eq.(6.4). Low penetration

ratios imply that the average spread speed ri tends to the average vehicle speed vi.

6.6.2 Impact of the location of the patient zero.

The fitting model allows a more exhaustive study of the impact of the patient zero.

Let us assume that an attacker wants to infer where is a good place to initiate a worm

attack. Fig 6.14(a) shows the spread delay taking as origin any one of the vertices of

the graph. They are ranked in increasing order of distance to the downtown center. As

it can be observed, there are some roads that are far away from the center, e.g. ranked

at positions 400 to 600 but that produce similar spread delays as roads that are near

133



the center. On the other hand, it is clear that roads in remote areas and then distant

from the downtown in general produce high spread delays. Then, we can conclude that

in this road topology being near the downtown center in general produces good spread

delays, but this is not so conclusive since many roads not near the center also produce

good spread delays.

An attacker can figure out that those roads with good vehicle densities should be

good candidates for placing the worm. Fig 6.14(b) shows the spread delay sorted by

increasing vehicle density. In general, having a high vehicle density produce low spread

delays. However, there again is a high number of roads with low vehicle densities that

produce low spread delays. The reason is that there are roads with low vehicle densities

possibly connected to high density roads, that will spread the worm fast.

Then, a road even with low vehicle density connected to a high vehicle density

area can produce fast worm propagation. Fig 6.15 shows the spread delay of a worm

propagated at any road ranked taking into account the vehicle density in N-hops far

away from the focus of the infection. Fig 6.15(a) groups 2-hop roads and Fig 6.15(b)

groups 5-hop roads. We can observe that a road that in the 2-hop or 5-hop plots

produces long spread delays is a road in a low vehicle density area and thus is not

eligible to produce a fast worm propagation. On the other hand, the 5-hop plot shows

us how a low vehicle density road belonging to a high vehicle density area can be elected

as a good focus even having a low 1-hop vehicle density. The conclusion is that electing

a patient zero in a road with neighboring roads with high vehicle densities improves

the worm propagation since produces a fast initial expansion that speeds up the worm

propagation.

6.7 Containing the worm epidemics

The results in the previous sections outline the dangerousness of vehicular worms, and

motivate the development of solutions for the rapid containment of their outbreaks.

The typical techniques proposed in the literature are preemptive immunization and in-

teractive patching (115, 116). In the first case, a subset of the vehicles is preemptively

immunized so as to prevent the propagation of the worm. However, preemptive immu-

nization makes sense only in the case of frozen networks, where immunized nodes can

disrupt the network connectivity exploitable by the malware. In presence of a more
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Figure 6.14: Spread delay ranked by distance to the center and by vehicle density.

complete time-evolving analysis, worms can easily overcome the obstacle of preemp-

tively immunized vehicles thanks to the car mobility over time. In the case of inter-

active patching, a patch to the worm is released in the network and diffused through

V2V communication in an epidemic fashion. In other words, the patching follows a

spreading similar to that of the worm itself. However, resorting to V2V communication

to contain the malware epidemics does not seem a sensible choice, as it implies high

delays and a probability of success that cannot be certain.

We consider instead that cellular communication can be leveraged to distribute the

patch in a rapid and reliable manner. Indeed, vehicles already start to be equipped with

3G/4G radios, whose diffusion will anticipate that of WAVE communication interfaces.

135



 500

 1000

 1500

 2000

 2500

 3000

 0  100  200  300  400  500  600  700  800
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

A
v
e

ra
g

e
 s

p
re

a
d

 d
e

la
y
 (

s
)

s
u

rr
o

u
n
d

in
g
 d

e
n

s
it
y

Checkpoint sorted by surrounding density

Average Spread Delay
Surrounding density

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

(a) 2-hops.

 500

 1000

 1500

 2000

 2500

 3000

 0  100  200  300  400  500  600  700  800
 0

 5

 10

 15

 20

 25

A
v
e

ra
g

e
 s

p
re

a
d

 d
e

la
y
 (

s
)

ia
t 

(s
)

Checkpoint sorted by surrounding density

Average Spread Delay
Surrounding density

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

(b) 5-hops.

Figure 6.15: Spread delay ranked by vehicle density in an area N-hops for the location

of the patient zero.

Therefore, that of a complete cellular coverage of WAVE-enabled vehicles seems a

reasonable assumption. The problem then becomes that of determining which vehicles

to patch. Indeed, simply patching all the vehicles through cellular network downloads

can be uselessly expensive. If a rough estimation of the area and time at which the

infection started is available, a smart cellular-based patching can be adopted, limiting

the immunization to vehicles actually interested by the infection.

We thus propose a smart cellular-based patching based on our data-driven model

of the worm epidemics. Namely, the model is exploited to determine the region within

which the worm may have spread within the time elapsed from the estimated infection
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instant. Then, only vehicles within such a region are immunized through the cellular

network.

Fig. 6.16 shows the results of the smart patching in the Canton of Zurich reference

scenario, considering that the epidemics starts in the center of Zurich during the peak

traffic time. This is a worst-case scenario, since it provides the vehicular malware

with maximum network connectivity and thus ideal self-propagation conditions. The

response delay d is the estimated time between the patient zero appearance and the

instant at which the smart patching is run: clearly, longer response delays imply the

infection of larger portions of the road network. For each value of d, along the x axis,

we report the number of vehicles belonging to different mutually exclusive categories:

susceptible nodes were not infected and did not receive the patch, recovered nodes were

infected and later recovered upon receiving the patch through the cellular network,

immunized nodes were not infected yet received the patch, and infected nodes were

infected but did not received the patch. Clearly, the goal of a smart cellular-based

patching is to recover all infected nodes, leaving no infected vehicles and reducing the

number of unnecessarily immunized nodes to a minimum.

The results show that for a response time of 2 minutes, the model correctly pre-

dicts the nodes to be patched, with a negligible number of unnecessarily immunized

vehicles. As the response delay increases, the percentage of vehicles infected by the

malware grows, leading to the necessity of patching a larger portion of the road traffic.

Yet, our model allows to successfully patch all infected vehicles, with a percentage of

unnecessarily immunized nodes that stays below 20% even in the worst case, when d =

16 minutes. More importantly, in all cases the percentage of nodes that remain infected
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after the smart patching is zero, proving once more the quality of our worm spreading

model and its utility towards an efficient containment of malware outbreaks.

6.8 Conclusions

We presented an extensive study of malware spreading in vehicular networks through

WAVE V2V communication. Our simulative analysis outlined the high level of danger

of vehicular worms, that are shown to be able to spread through very large areas,

infecting tens of thousands of vehicles, in a few tens minutes at most. We found that

the high mobility of vehicular nodes and the elevate number of short-lived V2V contacts

they generate are the key reason behind such a result. We then presented a simple yet

very effective data-driven model of the worm propagation process, and leveraged it for

the smart patching of infected vehicles through cellular communication.
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7

Dissemination of Information in

Disruptive/Delay Tolerant

Networks under Power Saving

Constrains.

7.1 Introduction

In this chapter, the energy saving trade-offs in a DTN (e.g., users with smart-phones)

as a function of the searching and sleeping intervals and as a function of the node

contact duration is modeled and discussed. The peer-to-peer node contact probability

between a mobile node and infrastructure and between two mobile nodes are calculated.

These contact probabilities represent, in the first case, the probability that has a node

that crosses opportunistically infrastructure during the contact time with the wireless

card on, and in the second case, the probability that two nodes that meet also have the

wireless interface enabled, and thus can exchange data. We then derive those operating

regions in which the nodes can save energy while keeping maximum contact probability.

We show that in the case of contacts between mobile nodes and infrastructure there are

two possible regions: one with maximum contact probability and other with decreasing

contact probability. Furthermore, we show that in the case of contacts between mobile

nodes, there are five possible regions: one that offers maximum contact probability and

the other four that depending on the on/off intervals and the contact duration will offer
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less and less contact probabilities. It is shown that the most conservative strategy to

save energy while keeping a contact probability equal to one is to have equal on/off

periods lower than the contact interval. Otherwise, the contact probability decreases

in order to increase the energy savings.

Furthermore, the impact of peer-to-peer contact probability in the time taken

to disseminate a Delay Tolerant Object (DTO) is analyzed. We consider two cases:

sparse networks with very few nodes in which Ordinary Differential Equation (ODE)

Susceptible-Infection (SI) modeling allows to calculate i) the dissemination time to de-

liver a DTO to a percentage of users, ii) the mean delivery delay to deliver a DTO

to a specific mobile node when the nodes perform power saving strategies and iii) the

average energy spent to deliver a DTO. The analysis is extended to sparse networks

with higher number of nodes in which spatial correlations dominate. In these cases,

the dissemination of information is modeled using the Fisher-Kolmogorov-Petrovsky-

Piskonoff (FKPP) Partial Differential Equation (PDE). The FKPP reaction-diffusion

equation describes the spatio-temporal evolution of a population in which individuals

diffuse with diffusion coefficient D and grow according to a growth function. Klein et

al, (10), point that the FKPP model better predicts the dissemination of the informa-

tion than the ODE model when the number of mobile nodes increases. In this paper,

we use the FKPP model with power saving to analyze dissemination delays and the

impact of adding sparse infrastructure in the area.

The paper is structured as follows: Section 7.2 reviews the related work. Section 7.3

defines the network model while Section 7.4 derives the peer-to-peer contact probabil-

ities and discuss the trade-offs in power saving in a DTN node. Section 7.5 aims to

validate the mathematical model behind the contact probabilities in disruptive/delay

tolerant environments. Section 7.6 analyses the impact of the peer-to-peer contact

probabilities in the time taken to disseminate delay tolerant data in well-mixed and

non-well-mixed scenarios and discusses power savings versus delivery times. Finally,

Section 7.7 deals with the conclusions.

7.2 Related Work

Peers in a mobile network alternate between two basic operations: neighbor discovery

and the opportunistic transfer of data. In DTNs, the latter operation has received much
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attention as part of routing protocols. However, in a sparse DTN network, searching

for other nodes consumes a large percentage of time in comparison to data transfer.

Consequently, searching for other nodes becomes the dominant drain on the energy of

a battery-powered DTN node. For instance, (129) shows that in some scenarios the use

of a 802.11 radio to search for contacts in a DTN requires more than 90% of the total

energy simply to find other nodes with which to exchange data.

Previous works have addressed mobile system power management by using 802.11

radios for data transfers and low-power, short-range radios (e.g., 802.15.4 (130), Blue-

tooth (131), or CC1000 (132)) for neighbor discovery tasks. This idea of using low-

power short-range radios (e.g., CC1000) for neighbor discovery is analyzed in (133).

The authors conclude that the addition of a further low power radio introduces a neg-

ligible improvement in sparsely mobile DTNs. Via simulation, these authors compare

the use of two radios - a low-power radio for discovering contacts and a high-power

radio for transmitting data - against a Power Saving Management (PSM) with only

a high-power radio. However, the PSM mechanism assumes clock synchronization via

GPS. The reason for this is that beacon windows need to be synchronized to start in

common discrete intervals. While this solution is appropriate for dense mobile net-

works, works other than (133), (134) confirm through analytical results that a second

short-range radio is indeed inefficient for sparsely populated DTNs. This is because

short-range radios miss too many connection opportunities. In this paper we consider

a sparse DTN model, and thus focus on a single-radio system.

The use of stationary battery-powered nodes, called throw-boxes, enhances the

capacity of DTNs. Banerjee et al, (135), show that without efficient power management,

throw-boxes are minimally effective. The authors present a duty-cycled controller for

long range radios that predicts when and for how long the mobile node will be in range

of the contact duration with the throw-box. The model again needs to beacon position,

speed and direction (e.g., using GPS) in order to feed the prediction algorithm. The

proposal is tested in the UMass DieselNet Testbed which consists of vehicular mobile

nodes. These proposals need GPS data in order to predict contact opportunities or to

obtain clock synchronization. In a vehicular network, this assumption does not impose

a restriction. But mobile networks consisting of smart-phone users entering closed areas

will loose GPS coverage. Moreover, the power consumed in obtaining GPS data is not

included in the models.
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Finally, Wang et al, (136), investigate the trade-off between the probability of miss-

ing a contact and the contact probability frequency in Bluetooth devices. This work

shows that in Bluetooth devices the device discovery process consume as much energy

as making a phone call and thus achieves the objective of saving energy using adaptive

probing mechanisms. Therefore, in their scheme, Bluetooth nodes do not switch off the

card and save energy by optimizing discovery frequencies. In our case, we consider Wi-

Fi cards in smart-phones that switch the wireless card on and off to save battery, and

study the trade-off involved in disabling the wireless card with the contact probability.

7.3 Network Model

Let us assume a network with N wireless mobile nodes and a set of throw-boxes sparsely

distributed over a given area. The throw-boxes are back-boned and thus may be con-

sidered as a single node (i.e., a node visiting a specific throw-box has access to any data

accessible via any other throw-boxes); see Figure 7.1.

A Delay Tolerant Object (DTO) is a set of packets that are disseminated over the

area. If nodes u and v meet, u and v get those new DTOs that they do not share. We

assume, without loss of generality, that the contact duration between nodes is much

longer than the time to exchange a DTO.

Figure 7.1: Network architecture: DTOs are disseminated via throw-boxes or oppor-

tunistically at contact between nodes.
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We use the IEEE 802.11 (137) standard in IBSS/Ad-hoc mode as communication

technology. The power consumption of IEEE 802.11 cards have been measured in

several papers (138), giving for an ORINOCO PC Gold wireless card the following

power consumption figures for the different states: {sleeping, idling, receiving, trans-

mission}={60, 805, 950, 1400} mW. Our own measurements on smart-phone devices

give results which are in line with the above.

Instead of using the standard procedure for power saving in IBSS/Ad-Hoc mode,

which is not supported by most of the devices, we define a Power Saving Management

(PSM) mode as follows: Specifically, a node transmitting or receiving a DTO is in the

transmitting or receiving state. When the node finishes any of these actions, it switches

to a PSM mode. The PSM mode consists of switching between two wireless interface

states; see Figure 7.2:

i) sleeping state: a node that is not transmitting or receiving packets, and thus

remains in the sleeping state during an interval of time equal to Tsleep.

ii) search state: a node is in the idle state during an interval of time equal to Tsrch.

While the node is in the idle state, the node switches periodically (i.e, beacon

interval Tbc) to the transmitting state in order to send a beacon and then returns

to the idle state.

We first note that two nodes would need clock synchronization in order to discover

each other if they switched off to the sleeping state after sending their beacons. When a

node discovers another node (i.e., listens to its beacons), it initiates a contact exchange

as explained in epidemic routing, (139). We secondly note that T=Tsleep+Tsrch and

thus the duty-cycle will be of Tsrch
T .

In order to define scenarios for power saving management analysis, we take the

example of Nexus One1 smart-phone with a battery of 1400 mAh and 3.7V that has

approximately 250 hours (3G) of stand-by time if the wireless card is off and around

6 hours and a half of lifetime with the wireless card always on. We do not take into

account other use of the mobile phone (e.g., phone calls, video, gaming, etc). Four

scenarios will be taken as baseline examples:

1 http://www.google.com/phone/static/en US-nexusone tech specs.html

143



Tsleep

Tsrch

TbcNode A

Node B

a) Positive Contact

p
o
s
it
io
n

timeTc

b) Negative Contact

p
o
s
it
io
n

timeTc

Figure 7.2: Contact between two nodes with Power Saving Management based on

Search/Sleep duty cycling. a) Positive Contact : two nodes switch on their Wi-Fi cards

while they are in wireless range. b) Negative Contact : a node has its Wi-Fi card off while

being in wireless range with other node that has its wireless card on (or off).

• Scen-0: The smart-phone has the wireless card on all the time. The smart-phone

lifetime, following brochure specifications, will be approximately 6 hours and a

half.

• Scen-1: The smart-phone switches the wireless card on in such a way that the

duty-cycle Tsrch
T = 1

3 . The smart-phone lifetime will be approximately 18 hours.

• Scen-2: The smart-phone switches the wireless card on in such a way that the

duty-cycle Tsrch
T = 1

6 . The smart-phone lifetime will be approximately 34 hours.

• Scen-3: The smart-phone switches the wireless card on in such a way that the

duty-cycle Tsrch
T = 1

9 . The smart-phone lifetime will be approximately 50 hours.
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7.4 Contact Probability

Two nodes that meet and are in the search state have a positive contact, Figure 7.2.a),

while if they meet and one of them is in the sleep mode, they have a negative contact.

For example, Figure 7.2.b) represents a scenario in which the nodes meet later than in

Figure 7.2.a) as represented by the rectangular areas, where TC is the contact duration

between the two nodes. As it can be observed, in order to have a positive contact, it is

necessary that during the contact time, the two nodes switch their wireless card on and

their search period overlap. However, there will be a negative contact whenever two

nodes meet during a contact period and at least one of them has the wireless card off

or the two of them switch the wireless card on but their search period do not overlap.

Let us formalize these ideas. Let TA and TB be random variables indicating the time

at which mobile nodes A and B switch on from the sleeping state to the search state.

TA and TB are independent and uniformly distributed with probability density function

fTi(t)=1/Ti for 0 ≤ t ≤ Ti (i={A,B}). Let Tctc be a random variable indicating the

time at which a contact would begin if the Wi-Fi cards would always be on and let Tc

be the duration of the contact. In sparse networks in which the contact rates are low,

the inter-contact time is higher than the period Ti. Thus, when a contact occurs, Tctc

is uniformly distributed over the period T and also independent of random variables

TA and TB. Let us define Pc (contact probability) as the probability that two nodes

are in the search state during a contact interval Tc.

Pc =
∫
TA

∫
TB

∫
Tctc

fTA,TB ,Tctc(τA, τB, τctc)dτAdτBdτctc (7.1)

We consider two cases:

i) A mobile node meets opportunistically infrastructure. The mobile node switches

on/off its wireless card, while the infrastructure always has its wireless card on.

ii) Two mobile nodes meet opportunistically. Both mobile nodes independently of

each other switch on/off their wireless card.

For simplicity, we will consider the case in which TA = TB = T (i.e. all nodes has

the same on/off period).
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7.4.1 Contact Probability between a mobile node and the infrastruc-

ture

When the throw-box is not in the transmit/receive state, it will be in the search state

looking for mobile nodes that opportunistically contact the throw-box. The simplest

case is when Tc ≥ Tsleep, in which the mobile node will have a contact with probability

Pc1 = 1. The case in which Tc < Tsleep, the contact probability Pc1 will depend on

whether the mobile node is in the search mode during the contact interval:

Pc1 = Pr{(0 ≤ TA ≤ T ), (TA − Tc ≤ Tctc ≤ TA + Tsrch)}

=
T∫
0

1
T dt

t+Tsrch∫
t−Tc

1
T dτ = Tsrch+Tc

T

(7.2)

Table 7.1 summarizes the contact probability for the different situations between

mobile nodes and throw-boxes.

Table 7.1: Summary of contact probability, Pc1 , between mobile nodes and throw-boxes.

Pc1 = Tsrch+Tc
T Tc < Tsleep

Pc1 = 1 Tc ≥ Tsleep

7.4.2 Contact Probability between two mobile nodes

There will be a set of different possibilities for calculating the contact probability, Pc2 ,

depending on the lengths of the sleeping state, Tsleep, the search state, Tsrch, and the

contact duration, Tc. There are five possible cases, which are summarized in Table 7.2.

In order to calculate the different cases in table 7.2, let us consider the following

situations:

• When Tc ≤ Tsleep the contact probability can be calculated as

Pc2 = 2·Pr{(0 ≤ TA ≤ T ), (TA−Tsrch ≤ TB ≤ TA), (TA−Tc ≤ Tctc ≤ TB+Tsrch)}:

Pc2 = 2
T 3 ·

T∫
0

dt
t∫

t−Tsrch
ds

s+Tsrch∫
t−Tc

dτ

= (Tsrch+Tc)2−T 2
c

T 2

(7.3)

• When Tsleep ≤ Tc ≤ 2Tsleep and Tsleep ≤ Tsrch, the contact probability can be

calculated as Pc2 = Pr{(0 ≤ TA ≤ T ), (TA−Tsrch ≤ TB ≤ TA−Tsleep)}+Pr{(0 ≤
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TA ≤ T ), TA − (Tc − Tsleep) ≤ TB ≤ TA + (Tc − Tsleep)} + 2Pr{(0 ≤ TA ≤
T ), (TA − Tsleep ≤ TB ≤ TA − (Tc − Tsleep), (TA − Tc ≤ Tctc ≤ TB + Tsrch)}:

Pc2 = 1
T 2 ·

T∫
0

dt[
t−Tsleep∫
t−Tsrch

ds+
t+(Tc−Tsleep)∫
t−Tsleep

ds]

+ 2
T 3

T∫
0

dt
t−(Tc−Tsleep)∫
t−Tsleep

ds
s+Tsrch∫
t−Tc

dτ

= 1− (Tc−2Tsleep)2

T 2

(7.4)

• When Tsrch ≤ Tsleep ≤ Tc ≤ T , the contact probability can be calculated as

Pc2 = 2 · [Pr{(0 ≤ TA ≤ T ), (TA − Tsrch ≤ TB ≤ TA − (Tc − Tsleep)), (TA − Tc ≤
Tctc ≤ TB + Tsrch)}+ Pr{(0 ≤ TA ≤ T ), (TA − (Tc − Tsleep) ≤ TB ≤ TA)}]:

Pc2 = 2
T 3 · [

T∫
0

dt
t−(Tc−Tsleep)∫
t−Tsrch

ds
s+Tsrch∫
t−Tc

dτ

+
T∫
0

dt
t∫

t−(Tc−Tsleep)

ds]

=
(Tsrch+Tc)2+(Tc−Tsleep)2−T 2

c

T 2

(7.5)

• When T ≤ Tc and Tsrch ≤ Tsleep, the contact probability can be calculated as

Pc2 = 2 · Pr{(0 ≤ TA ≤ T ), (TA − Tsrch ≤ TB ≤ TA)}:

Pc2 = 2 ·
T∫
0

1
T dt

t+Tsrch∫
t−Tsrch

1
T ds = 2Tsrch

T (7.6)

• Finally, Pc2 = 1 when 2Tsleep ≤ Tc and Tsleep ≤ Tsrch.

Table 7.2: Summary of contact probability, Pc2 , between mobile nodes as a function of

parameters Tsrch, Tsleep and Tc.

Pc2 = (Tsrch+Tc)2−T 2
c

T 2 Tc ≤ Tsleep
Pc2 = 1− (Tc−2Tsleep)2

T 2 Tsleep ≤ Tc ≤ 2Tsleep and Tsleep ≤ Tsrch
Pc2 =

(Tsrch+Tc)2−(Tc−Tsleep)2−T 2
c

T 2 Tsrch ≤ Tsleep ≤ Tc ≤ T
Pc2 = 2Tsrch

T T ≤ Tc and Tsrch ≤ Tsleep
Pc2 = 1 2Tsleep ≤ Tc and Tsleep ≤ Tsrch
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7.4.3 Trade-offs between contact probability and power saving

Let us define the following parameters that describe the aggressiveness of the different

states, one that measures the powersaving gain, while the other measures the relation

between the contact duration and the Tsrch: b1 =
Tsleep
Tsrch

and b2 = Tc
Tsrch

. Note that

T = Tsrch + Tsleep = Tsrch(1 + b1). Thus, the duty-cycle Tsrch
T = 1

1+b1
and parameter

b1 is related to how much battery the node will save. Let us assume that a mobile node

with the wireless interface always on has a lifetime of Lt seconds. A power saving in

which the node performs a duty-cycle of Tsrch
T , the node would increase its lifetime by:

Ldt =
T

Tsrch
Lt = (b1 + 1)Lt (7.7)

As equation (7.7) shows, the lifetime increment ∆Lt is proportional to parameter

b1 (i.e., ∆Lt = Lt−Ldt = b1Lt). Thus, b1 = 0 (i.e. duty-cycle=1) means that the node

always has the wireless interface on, while b1 =∞ (i.e. duty-cycle=0) means that the

node always has the wireless interface off. On the other hand, large values of b2 mean

that the contact interval is larger than the search interval, while values of b2 < 1 mean

that the contact interval is lower than the search interval. Parameters b1 and b2 allow

us to analyze the impact of Tsrch, Tsleep and Tc without specifying absolute values for

these time intervals. Tables 7.3 and 7.4 summarize contact probabilities Pc1 and Pc2 ,

respectively, as a function of b1 and b2. Finally, Figure 7.3 shows the different regions

for contacts between two mobile nodes depending on parameters b1 and b2.

Table 7.3: Summary of contact probability, Pc1 , between mobile nodes and throw-box.

Region Contact Probability Intervals

A1 Pc1 = 1+b2
1+b1

b2 < b1

B1 Pc1 = 1 b2 ≥ b1

Let us begin by representing Pc1 graphically. Figure 7.4 depicts the two regions

identified in Table 7.3 and shows that if b2 ≥ b1 it does not matter what the size of

Tsrch is: in this case, one would choose the minimum possible Tsrch (i.e. the beacon

interval) in order to save as much energy as possible, while keeping the maximum

contact probability, since immediately after switching on the wireless card the node

will detect the throw-box. Note, that the optimal operation points are those on the

straight line that divides the two regions (i.e. b1 = b2), because they correspond to the
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Table 7.4: Summary of contact probability, Pc2 , between mobile nodes.

Region Contact Probability Intervals

A2 Pc2 = 1+2b2
(1+b1)2

b2 ≤ b1
B2 Pc2 = 1− (b2−2b1)2

(1+b1)2
b1 ≤ b2 ≤ 2b1 and b1 ≤ 1

C2 Pc2 =
(1+b2)2−(b2−b1)2−b22

(1+b1)2
1 ≤ b1 ≤ b2 ≤ 1 + b1

D2 Pc2 = 2
(1+b1) 1 + b1 ≤ b2 and 1 ≤ b1

E2 Pc2 = 1 2b1 ≤ b2 and b1 ≤ 1

A2

C2

D2

B2

E2

b2=b1b2=b1+1b1=1b2

b1

b2=1

b2=2b1

Figure 7.3: Contact areas between two mobile nodes.

maximum b1 (maximum energy saving) allowed while keeping Pc1 = 1. This is what

wireless cards actually do for detecting access points: operate with low b1 while keeping

the Tsleep so low, that always b2 ≥ b1. On the other hand, if b2 < b1, the system will

inevitably suffer from lost contacts. This effect can be minimized when b2 approaches

b1. Asymptotically, making Tsrch very large would allow this objective to be reached

because both b1 and b2 would tend to 0. Note, however, that this is not a practical

approach since it would imply a large waste of energy. The system must decrease b1

by decreasing its Tsleep as near as possible to Tc to move to the operating region with

Pc1 = 1. So an inherent trade-off exists between contact probability and energy saving.

Let us now turn our attention to Figure 7.5, which represents Pc2 as defined in
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Figure 7.4: Contact probability, Pc1 , between mobile nodes and throw-boxes.

Table 7.4. The 5 regions of operation can be identified as depicted in Figure 7.3.

Region A2 is the worst in terms of contact probability. In this region, for a target b1,

low values of b2 yield low contact probabilities. For a given duration contact Tc, an

increase of b2 implies a decrease in Tsrch. However, this step would move (increase) b1

to a new point with lower Pc2 . Thus, in order to keep the same Pc2 , Tsleep should be

proportionally decreased. The best contact probability is achieved when b2 approaches

b1, or in other words, when Tsleep approaches Tc. In this case, the contact probability

Pc2 will be that between A2 and B2 and C2 frontiers. In order to increase b1, and

thus save more batteries, Tsrch must decrease or Tsleep must increase at the cost of

decreasing Pc2 . The reason for this behavior is quite evident: Tsleep is larger than Tc

and the larger Tsleep becomes, the larger the probability of missing more contacts.

Two regions that represent higher values of Pc2 are B2 and C2. B2 presents the

problem that b1 ≤ 1 which implies that the sleep period must be shorter than the search

period (thus limiting the achievable energy savings), so it is a region completely without

interest: the same energy savings can be achieved at region E2 but with Pc2 = 1. So
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Figure 7.5: Contact probability, Pc2 , between mobile nodes.

a node operating in this region should increase b2 (i.e. reduce Tsrch) while keeping

b1 (i.e. reducing Tsleep accordingly), in order to move to operating region E2. Note

also that b1 = 1 is the best option in terms of Pc2 : the combination of both strategies

will conduct the system to an operating point with Pc2 = 1, which is the intersection

between regions B2, C2, D2 and E2 and corresponds to b1 = 1 and b2 = 2 (i.e., T = Tc

and Tsrch = Tsleep = Tc/2). At this point, Pc2 = 1, while b1 = 1, which implies a

duty-cycle of 1/2: duplicates the lifetime when compared with a card always on. If a

node wants to increase more its lifetime, he has to decrease its duty-cycle in such a way

that b1 > 1. That means moving its operating point to regions A2, C2 or D2.

Note that (b1 = 1, b2 = 2) is not the only point that allows for Pc2 = 1: the whole

frontier between regions D2 and E2 allows for that, but between all the points in the

frontier, this is the one with lower b2 (i.e. higher Tsrch for a fixed Tc). Increasing b2

would imply decreasing Tsrch; but in order to keep b1 fixed at one, Tsleep = Tsrch. The

result implies switching the wireless card on/off many times. This is important from

a practical point of view, because the process of switching a wireless card on/off is

energy - and time - consuming, so a system with larger T is more desirable. Operating

in other points of region E2 implies that b1 ≤ 1 and thus less battery is saved without
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any gain in Pc2 . Moving out from region E2, region D2 is the more favorable case from

the contact probability point of view for two reasons: it allows for relatively high values

of Pc2 while introducing higher energy savings. Note that for a given b1, Pc2 remains

constant for any b2. This implies that by keeping the ratio
Tsleep
Tsrch

= b1 > 1, Tsrch is

limited by Tc (i.e. 1 + b1 ≤ b2 implies T ≤ Tc and Tsrch ≤ Tc/(1 + b1)).

This section can be summarized with the following conclusions: given that nodes

have a percentage of contacts with duration higher than a certain value Tc, then,

designing an on/off period with values Tsrch = Tsleep = Tc/2 assures a battery saving

of around 50%, since nodes would have these percentage of contacts operating over the

frontier E2-D2. The remaining contacts would occur with a probability according to

the region in which they take place. Higher battery savings may be obtained if T ≤ Tc
and Tsrch ≤ Tsleep (region D2) at the cost of reducing peer-to-peer contact probabilities.

Regions A2 and C2 also allow energy savings, but with worse contact probabilities. We

will come back to this issue in section 7.6.

7.5 Model Validation

We considered using real mobility traces or contact logs as inputs for simulating the

previous analysis. For example (140), (141) are trace based studies freely available for

download and use. However, this choice was discarded because of the large granularity

they used for the traces: the node starts a device discovery at each time step and logs

the nodes under coverage. As it will be shown later, assuming a wireless range of 100m,

20% of the contact durations take less than 30s. So, any log with a higher granularity

may miss some of the contacts. If we change the wireless range to the approximately

10m of Bluetooth, the amount of contacts that may be missed while using such granu-

larity can be really meaningful for our study. Granularity also affects to the observed

contact duration. A contact will last a discrete number of time-steps while these can

be one order of magnitude longer than the real duration. In (140), the Bluetooth an-

tennas of iMotes are used to log contacts with a granularity of 120s, while (141) uses

Bluetooth antennas of mobile phones to log contacts with a granularity of 300s, while

we observed a meaningful amount of contact durations that were shorter than 30s.

Unless power limitations are solved, with low power consumption antennas, or higher

capacity batteries, thus allowing devices always to remain on, real test-beds cannot be
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improved to log accurately all the contacts among nodes with finer granularity. These

facts encouraged us to use a mobility simulator in order to validate the mathematical

model.

In order to evaluate the model, let us consider a urban scenario where pedestrian

nodes equipped with wireless devices switch between the sleeping state and the search

state with the given durations Tsleep, Tsrch. Our aim is to compare the contact ratio ob-

tained in the simulations with the results obtained from the formulas. The pedestrian

mobility traces employed were obtained with the UDel Models (42). The UDel Mobil-

ity Model considers both micro and macro mobility, and is based on (i) real surveys

collecting detailed information about how people spend their time, (ii) a task model

that focuses on the mobility of people inside buildings, and (iii) an agent model that

determines how mobile nodes interact with each other (e.g., each node has a day-long

realistic behavior where they wake-up, go to work, have lunch, etc., while avoiding

collisions and overtaking slower pedestrians, or waiting at traffic lights). The scenario

used is Chicago9Blk, included in the default UDel Models Data Set. It consists of

a city segment of 400x400m, similar to a “Manhattan city model” of 4 by 4 streets,

where 100 pedestrian nodes spend 12 hours, starting at 8.00AM. Any other vehicular,

UAV or static node are not considered. 20 instances of this scenario are obtained using

different initial random seeds with the default Udel Mobility Parameters for the pause

time, speed, lane-changing, distance-speed relationship, etc.

To avoid any kind of synchronization among nodes, the simulator initializes the

nodes, giving a random start over the period T for each node. Then, the mobility traces

are used to obtain the coordinates of each node. The simulator considers the position

and the sleeping/search state of the nodes in order to log the positive contacts. For

the scenario Chicago9Blk, we have obtained a contact rate, β, between mobile nodes

equal to 0.0071 contacts/s. We note that the positive contact rate between mobile

nodes will be equal to β′ = Pc2β. The two first steps consist of obtaining the CDF of

the contact duration and validating the Peer-to-peer Contact probability, Pc2 , shown

in Figure 7.5.

The CDF of the contact duration is shown in Figure 7.6. One may observe how

approximately 70% of the contacts have contact durations lasting less than 500 seconds,

while the other 30% of the contacts have contact durations in excess of 500 seconds.

Figure 7.6 also zooms contact durations of less than 500 seconds. One may observe
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Figure 7.6: CDF of the contact duration

that only 20% last less than 30 seconds, and only 30% of the contacts have contact

durations less than one minute. These values provide us with a hint about the amount

of time nodes could fix b1 and b2 and will be used in the next section.

In order to validate the peer-to-peer contact probability, Pc2 , Figure 7.7 shows

the simulated results against the contact probabilities as obtained in Table 7.4 and

Figure 7.5. For the sake of clarity, instead of comparing the 3D plots, cross sections for

several b1 values are drawn as a function of b2. The simulated values are obtained with

a confidence interval of 99%. As it can be observed, the simulations perfectly match

the analytical values.

Figure 7.8 shows the peer-to-peer contact probability, Pc2 , as a function of Tsleep for

different values of Tsrch = {5, 30, 60, 120} seconds, obtained with the simulator. Two

main points can be observed: the first one is that for a fixed Tsrch, increasing Tsleep

implies a low duty cycle and the peer-to-peer contact probability decreases very fast.

The second fact is that for the same ratio b1 = Tsleep/Tsrch (e.g., see the points marked

with a box and a circle corresponding to b1 = 2 and b1 = 3), having longer Tsrch

periods imply lower peer-to-peer contact probabilities. Finally, the curves show how

the simulation, using a confidence interval of 99% matches the mathematical analysis

quite well.

This is further proved in Figure 7.9, where the contact probability is shown as a

function of T = Tsrch + Tsleep for different values of b1 = {0.5, 1, 2}. For b1 = 0.5 and

1 both simulations and the mathematical model follow the same line, while for b1 = 2
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simulated ones with a confidence interval of 99%.

they conform to the same behavior. However, for small values of T the difference is

bigger. The figure shows a slow decay in the contact probability as a function of the

total period T . These figures confirm those results obtained in the previous section,

where it was shown that in order to have high energy savings the contact probability

rapidly decreases.

7.6 Data Dissemination in Sparse Networks

Let us assume that x% of the contacts has contact durations higher than TC seconds and

let us consider a scenario with a duty-cycle Tsrch
T such that b1 > 1. Then, Tsleep=b1Tsrch

and T = (b1 + 1)Tsrch. Since b1 > 1, the region that have better contact probability is

region D2 with conditions b2 ≥ 1 + b1 (i.e., T ≤ TC) and b1 ≥ 1 (i.e., Tsrch ≤ Tsleep).

Thus, fixing Tsrch = Tc/(1+b1) assures that x% of the contacts have contact probability

Pc2 = 2
(1+b1) . It is important to stress that TC is not controlled, it is to say, those

contacts that have a duration less than the target TC will lie in operating regions C2

and A2, yielding lower contact probabilities. However, a good choice of parameters

Tsrch and Tsleep will produce that many of the contacts will operate in regions E2 or

D2.

For instance, using Figure 7.6, 80% of the contacts have contact durations higher

than 30 seconds. Table 7.5 shows the design parameters for the scenarios defined in
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section 7.3 having contacts with Tc ≥ 30s as target.

Table 7.5: Data parameters for Scen-0 to Scen-3 with Tc ≥ 30s and β = 3.84× 10−4.

Scenario b1 b2 Pc1 Pc2 β · Pc2 Tsrch Tsleep

(×10−4) (s) (s)

Scen-0 0 0 1 1 3.84 ∞ 0

Scen-1 2 3 1 0.66 2.53 10 20

Scen-2 5 6 1 0.33 1.26 5 25

Scen-3 8 9 1 0.22 0.84 3.33 26.6

As an example of use, we will consider the dissemination of a DTO in a closed area

and will use epidemic routing with the aim of characterizing the impact of lower contact

probabilities in the trade off between power saving and dissemination time. We will use

the ODE model defined in (18), subsection 7.6.1, and a simple mobility model such as

random direction mobility model to show these trade-offs. As it is shown by Klein et al

in (142), epidemic analysis using the ODE model of (18) is accurate in the well-mixed

scaling law - i.e., in very sparse scenarios. For denser scenarios a PDE modeling using

diffusion is needed, subsection 7.6.2.

7.6.1 Very sparse networks: the well-mixed case

Let us consider the time origin as the time at which a node creates a DTO, and let s(t)

be the proportion of nodes that have a copy of the DTO at time t. The rate at which
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Figure 7.9: Peer-to-peer contact probability as a function of the period T

the fraction of nodes that have received a copy of the DTO changes, (18), is given by

the ordinary differential equation (ODE):

d
dts(t) = (Pc1α+ Pc2βs(t))(1− s(t))

= −Pc2βs2(t) + (Pc2β − Pc1α)s(t) + Pc1α
(7.8)

where α is the contact rate between a mobile node and the infrastructure, β is

the contact rate between mobile nodes, and Pc1 and Pc2 are the contact probabilities

between a node and a throw-box and between mobile nodes when nodes perform power

saving management. This type of equation corresponds, (18), to the fluid limit of a

Markov model as N increases. Note that eq. (7.8) is a Riccati ordinary differential

equation that can be solved by substituting s(t) = 1
Pc2β

(v
′(t)
v(t) ). Thus, solving eq. (7.8),

the proportion s(t) of nodes that have a copy of the DTO at time t is given by:

s(t) =
Pc1α+ Pc2βs(0)− Pc1α(1− s(0))e−(Pc1α+Pc2β)t

Pc1α+ Pc2βs(0) + Pc2β(1− s(0))e−(Pc1α+Pc2β)t
(7.9)

where s(0)= 1
N is the initial proportion of nodes with a DTO copy. Letting α=0,

eq.(7.9) gives us the proportion of nodes using power saving that receive the DTO

without infrastructure and letting β=0, eq. (7.9) gives us the proportion of nodes that

receive the DTO only contacting infrastructure.

Let us define the dissemination time, TD as the time needed to disseminate a DTO

to a percentage s(TD) of users. Thus, the dissemination time TD can be computed from

eq. (7.9) as:
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TD =
1

(Pc1α+ Pc2β)
ln[

(1− s(0))(Pc1α+ Pc2βs(TD))

(1− s(TD))(Pc1α+ Pc2βs(0))
] (7.10)

with s(TD) ∈ [ 1
N ,

N−1
N ]. Table 7.6 summarizes the dissemination times for the

general case (i.e., α 6= 0, β 6= 0) and for the cases in which there is no infrastructure

(i.e., α = 0, β 6= 0) and there is only infrastructure (i.e., α 6= 0, β = 0).

Table 7.6: Summary of dissemination times,TD, with and without infrastructure.

TD = 1
(Pc1α+Pc2β) ln[

(1−s(0))(Pc1α+Pc2βs(TD))

(1−s(TD))(Pc1α+Pc2βs(0)) ] α 6= 0, β 6= 0

TD = 1
(Pc1α) ln( (1−s(0))

(1−s(TD))) α 6= 0, β = 0

TD = 1
(Pc2β) ln( s(TD)

(1−s(TD))
(1−s(0))
s(0) ) α = 0, β 6= 0

Figure 7.10 shows the dissemination times needed to reach different percentage

s(TD) of users for several values of α (no infrastructure, and average contact rates of

10−3 and 10−4 seconds with the infrastructure) and for each scenario. The area is the

same as that one used by Klein et al in (142) for a well-mixed scaling law: an area of 16

square Km and N=25 users using random direction with reflection. This scenario has

been validated in (142) as representative of a very sparse scenario and is well modeled

via ODE analysis. We have chosen a radio range of 100 meters and users move at 1

m/s. The resulting average contact rate is β = 3.84× 10−4. From the figure it is clear

that it is extremely costly to reach a high percentage s(TD) of nodes when there is no

infrastructure. This cost is worse in scen-3, with a lower contact probability. As an

example, targeting a percentage of users of s(TD)=80%, the dissemination time without

infrastructure is approximately of 15 hours in Scen-3, 10 hours in Scen-2, 5 hours in

Scen-1 and 3 hours 20 minutes in Scen-0. Adding infrastructure assures that most of

the DTOs are obtained when the nodes cross the infrastructure. One may observe

that operating in region D2 implies that b2 ≥ b1 + 1, and thus, nodes crossing throw-

boxes coverage operate in region A (i.e., Pc1 = 1). For example, the dissemination

times decrease to values ranging between 22 to 25 minutes for the four scenarios when

α = 10−3 (i.e., crossing the infrastructure every 16.6 minutes). Furthermore, since

contacts operate in region A with the infrastructure, almost all deliveries are done by

the throw-boxes and not by the peer-to-peer contacts.

Let us calculate how much energy a node spends until a node receives a DTO.

We call this parameter Energy-to-Deliver a DTO. The Mean Delivery Delay, MDD,
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Figure 7.10: Dissemination time, TD, as a function of the percentage of users, s(TD) for

the three scenarios. β = 3.84× 10−4 and N = 25 users.

is the expected delay between the DTO generation at the source and the delivery to

a destination. The MDD can be calculated averaging the TD over the s(TD). Then,

with a duty cycle strategy and knowing that the duty cycle is Ton
T = 1

(1+b1) , the energy

consumed for receiving a DTO will be:

E = MDD[(
1

1 + b1
)Psrch + (

b1
1 + b1

)Psleep] (7.11)

where Psrch and Psleep are the power consumptions in each state. For example, if

α = 0 - without infrastructure - the MDD is given by MDD= ln(N−1)
βPc2

. In this case,

Scenario 0 with a b1 = 0, Pc2 = 1 and a β = 3.84 × 10−4 has a MDD=8.341 × 103

s. For the reference smart-phone - a Nexus one - with a battery of 1400 mAh and

3.7V, the energy consumed during this time is of E = 6.673 × 103 J. Assuming that

for b1 ≤ 1 nodes operate in region E2 and for b1 ≥ 1 nodes operate in region D2, the

energy consumed for receiving a DTO will be:

E =

{
ln(N−1)
β(1+b1) [Psrch + b1Psleep] if b1 ≤ 1 2b1 ≤ b2
ln(N−1)

2β [Psrch + b1Psleep] if b1 ≥ 1 1 + b1 ≤ b2.
(7.12)

Figure 7.11 shows the trade off between the energy needed to receive a DTO and

the duty cycle Ton
T = 1

(1+b1) . From the figure, it can be observed that there are two

zones: the first zone corresponding to b1 ≤ 1 - duty cycles between 1 and 0.5 - is the

result of Pc2 = 1. Since the MDD is constant in this interval, the optimal strategy is
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to have a duty cycle of 0.5 (i.e., b1 = 1) with a minimum average energy consumption

of ln(N−1)
2β [Psrch + Psleep]. The second region corresponds to lower duty cycles (i.e.,

higher b1). However, since Pc2 < 1, MDD will be higher and more on/off periods will

be needed in order to obtain the DTO. Designing very low duty cycle strategies is

impractical since the MDD is too high and the average energy consumption to obtain

a DTO will increase due to the number of on/off periods needed to reach this MDD

time.

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

E
n

e
rg

y
-t

o
-D

e
liv

e
r 

a
 D

T
O

 (
J
o

u
le

s
)

Duty Cycle (Tsrch/T)

 

Figure 7.11: Energy needed to receive a DTO versus the duty cycle.

7.6.2 Sparse networks: the non well-mixed case

In denser regimes, known as non well-mixed scenarios, (142), spatial correlations dom-

inate. Thus, in these cases, the dissemination of information is modeled using the

Fisher-Kolmogoroff-Petrovsky-Piscounoff (FKPP) Partial Differential Equation (PDE):

d
dts(x, t) = D∆s(x, t) + F (s(x, t)) =

= D( d2

dx21
+ d2

dx22
)s(x, t) + F (s(x, t))

(7.13)

The FKPP reaction-diffusion equation describes the spatio-temporal evolution of a

population in which individuals diffuse with diffusion coefficient D and grow according

to a growth function F (s(x, t)). Here s(x, t) is the proportion of nodes that have a copy

of the DTO at time t at position x = (x1, x2). Of course, the growth function in our

case, without considering infrastructure, would be in the form:
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F (s(x, t)) = Pc2βs(x, t))(1− s(x, t)) (7.14)

The solution of this PDE is a waveform of form s(x,t)=Θv(x-vt). Kolmogorov et

al, in 1937, proved that the minimal front speed is vmin = 2
√
DF ′(0). It can be easily

shown that for a node with radio coverage R that initiates the infection in an area of

size A with population N , F ′(0)=Pc2β and β=2RVeN/A = 2RVeλN , where λN = N/A

is the node density in the given area. Then, the wave speed is vmin = 2
√
Pc2βD =

2
√

2Pc2RVeDλN .

We point out that the growth function F (s(x, t)) does not include the contact rate

with infrastructure. This is due to the fact that in the ODE SI (Susceptible-Infected)

model each access point is considered as a node that participates in the infection. Its

location was not taken into account and only the contact rate between mobile users and

access points were considered. However, in the FKPP PDE model, the source location

of the infection plays a key role since it fixes the initial point at which the wave front

initiates its propagation. Having several access points means that there are several

sources or focuses and their locations have to be taken into account. We will come to

this point later.

In order to calculate the wave speed vmin, we need to obtain the diffusion coefficient

D. This parameter is related to the mean square displacement (MSD) defined as an

average square distance traveled by a mobile node over time t. In general MDD ∼ tγ

for some γ > 0. Codling et al, (143), discuss values of γ for several types of random

walks. The standard relation between MSD and the time is γ = 1. However, other

random walks such as Continuous Random Walks (CRW) have values of 1 < γ < 2.

These values of γ produce super-diffusion patterns and can be modeled using Lévy walk

processes - step lengths have infinite variance. Kim et al, (144) analyze several human

GPS mobility traces showing super-diffusive behavior and its impact on contact-based

metrics.

Here, we still keep the Random Direction as mobility model in order to compare the

FKPP PDE model with the previous ODE SI model. A key question is how to calculate

the diffusion coefficient. For that, we have adopted the following approximation, based

on simulation. Let us define an area of size A and N users moving with random

direction in that area. We randomly choose one node to initiate the infection and we

consider that Pc2 = 1 (i.e. nodes do not use power saving). Each time an infected
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node meets another node - this node is in the infected node radio coverage area - it

infects its (i.e., gives her a copy of the DTO with probability 1). We will obtain the

diffusion coefficient D drawing,Figure 7.12, the dissemination time TD as a function of

the proportion of nodes, s(t), that have a copy of the DTO at time t.
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Figure 7.12: Dissemination time versus percentage of infected nodes, N=100.

β=1.58x10−3.

For that purpose, without loss of generality, we consider that the infection begins in

a point of the area A and let us assume that a wave is propagated from this point. After

a time TD, the front of the propagating wave has occupied an area Ax. Let Rc be the

radius of the propagating wave front and Nx the number of nodes inside area Ax. If the

nodes are uniformly distributed in the area, the density λNx of infected nodes in area Ax

is equal to the density λN of nodes in the area A. Then, the proportion of infected nodes

Nx
N is equivalent to the proportion of area infected: Nx

N =Ax
A . Furthermore, NxN ≤ s(TD).

Then, the maximum radius of the propagating wave front Rcmax :

Rcmax = {Rc : Ax = As(TD)} (7.15)

For example, if the area is a square of width a, and the focus is initiated in a corner

of the square: Ax = πR2
c/4 if Rc ≤ a2 and Ax = a2 + (π4 − 1)((a − (R2

c − a2)1/2)2

otherwise. Now, taking an operation pair point (s(TD),TD) from Figure 7.12 we have

to calculate which Rc fulfills equation 7.15. Once we have obtained the radius of the

propagating wave front, Rcmax , we can calculate the wave speed as:
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vmin =
Rcmax |s(TD)

TD|s(TD)
(7.16)

Now, since vmin=
√
βD=

√
2RVeDλN , the diffusion coefficient D can be easily found.

The simulator (Figure 7.12) considers average values in which the infection begins

in any part of the area. Then, we have also considered in the geometric model defined

by equations (7.15) and (7.16) that the infection begins at different points of the area

and we have averaged the value of the wave speed over all the values obtained. From

this average, we have obtained D=29 that is quite approximate to the value D=28

obtained by Klein et al. in (142) using MonteCarlo simulations.

Once the diffusion coefficient D is known, the next step is to introduce the power

saving constraints into this model. To do that, the following consideration enters into

play: as in the ODE model, under the power saving mode of operation, nodes are part

of the time with the wireless card off so the positive contact rate is no longer β but

β′ = Pc2β. So, under the power saving constraints, vmin=
√
β′D. We validate this

assumption through simulation. To validate this model we have performed simulations

with the following conditions:

• Area, A = 4 Km2

• Number of nodes, N = 100

• Period, T = 30 seconds

• Mobility model = Random Direction

Figure 7.13 presents the results for Tsrch ranging from 30 seconds (i.e. nodes have

the wireless card on 100% of the time) to 15 seconds (i.e. nodes have the wireless card

on 50% of the time). As it can be seen, the dissemination time is not affected by Tsrch.

This is because in all cases PC2=1 (the analytical model is also plotted to show this

point), meaning that the system is not affected by this parameter.

Recall from Table 7.2 that in order to have PC2=1 it is needed that Tsleep ≤ Tsrch,

as we have for all cases, but also 2Tsleep ≤ TC . To corroborate that the last condition

holds, Figure 7.14 plots the CDF of the contact duration in the simulations. As it can

be seen, only about 0.05% of the contacts take less than 30 seconds, making this second

condition to be true for almost all the contacts in the four considered scenarios.
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Figure 7.13: Dissemination time versus percentage of infected nodes, N=100. T=30.

Moreover, to really verify the model it is needed to show what happens when PC2 <1.

This can be done by making Tsrch ≤ Tsleep, thus moving the operation point from region

E2 to region D2 in Figure 7.5. In this region D2, PC2 = 2Tsrch/T . Figure 7.15 plots an

example of such a scenario, in this case for Tsrch=12 s. As it can be seen, the FKPP

PDE model also fits the simulation results when considering contact probabilities lower

than 1. This result extends the ones reported in (142) where no power saving constraints

were considered.

It is needed to point out, however, that a further decrease in Tsrch makes the FKPP

PDE model to break down. This is because the model is based in a traveling wave

that needs a minimum node density to propagate (for the area considered, this critical

density is achieved for N > 25, see (142)).So, although the number of nodes (i.e. the

density) is kept, if the power saving policy becomes very aggressive (i.e. nodes are with

the wireless card off most of the time) the model fails to represent the system behaviour

at some point. To identify this point, let us define the concept of effective node density

as λ′N = N
A ·

Tsrch
T (note that the last fraction is the duty cycle). There is a value for

λ′N that marks the frontier between the regions where the network becomes well-mixed

or not (i.e. the application of one or the other model is required).

For the considered scenario, this point is λ′N = 25nodes
4Km2 . In other words, as N=100

is considered, a duty cycle lower than 1
4 will imply that the FKPP PDE model is not

valid and the model for the well-mixed case will apply better.
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Figure 7.16 shows this behavior. Note that Tsrch = 5 implies a duty cycle of 5
30 = 1

6 ,

or, in other words, a number of effective nodes equal to 100
6 w 17 which indicates that

the FKPP PDE model is not applicable. The subplot inside the figure illustrates how

while λ′N is kept above the frontier value, even very close to it, the FKPP PDE model

matches the simulation results (note that the duty cycle is approximately 0.27, just a

bit higher than the 0.25 mentioned before).

7.7 Conclusions

In this chapter, power saving trade-offs in DTNs as a function of the searching and

sleeping intervals and as a function of node contact duration are investigated. Different

operation regions are identified in which a node will have high contact probabilities with

both other nodes and/or the infrastructure while allowing energy savings. Simulation

results from pedestrian mobility traces show that the mathematical model is accurate

and that the contact rates in these kind of networks can be quite low, thereby justifying

the need for the nodes to switch off their wireless cards in accordance with the operation

regions. We think that the modeling gives a hint on designing strategies to save batteries

in this kind of scenarios.
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Figure 7.15: Dissemination time versus percentage of infected nodes, N=100. T=30.

 100

 1000

 10000

 100000

 0  0.2  0.4  0.6  0.8  1

T
D

(s
)

s(TD)

Tsrch=5
FKPP PDE model

ODE model

 100

 1000

 10000

 100000

 0  0.2  0.4  0.6  0.8  1

Tsrch=8
FKPP PDE model

Figure 7.16: Dissemination time versus percentage of infected nodes, N=100. T=30.

166



8

Conclusions and Results

Information Dissemination in Mobile Networks is a novel and wide topic, with many

open problems. Many issues remain to be discussed and solved before generic solutions

can be deployed. This thesis has focused on some of those problems, defining some key

points and ideas to face the Dissemination in Mobile Networks’ open problems.

This is the summary of conclusions and results we have obtained in each of the

topics we have dealt during this Thesis:

• VANETS can benefit from vehicular cooperation to improve the perfor-

mance of the Mobile Ad hoc Network.

Using transportation data and statistics, cooperation between nodes in an urban

or suburban environment can be exploited to maximize the road infrastructure

usage, as well as, to improve the vehicles’ throughput.

We analyzed various options with different degrees of synchronization among the

infrastructure nodes, and different policies for the carrier, destination and data

scheduling to be sent. Showing how each of these, affect Network performance

parameters such as Cooperative Rate, AP load, overhead (data redundancy) or

undelivery ratio. This characterization of the policies can help others to design

their platforms and applications considerng the network performance parameters

they expect from the network.

In summary, the conclusion is that it is feasible to use simple mechanisms to reuse

underutilized Road Infrastructure resources, as well as currently unexploited V2V

opportunities.
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• Planning RSU deployments in city wide scenarios using statistical data

of the Vehicular Mobility . As one would expect, the more informed the

algorithms used to plan RSU deployments the better tuning of the system can

be achieved, while we have also proven how just some aggregated information

or statistics about Vehicular Mobility in cities and urban or interurban scenarios

can help to achieve RSU deployments that would disseminate effectively data

contents to most of the vehicles as fast as possible.

We have shown how this data can be used by algorithms that are NP-Hard to

obtain the optimal deployment to maximize Data dissemination, and how, using

heuristics we can achieve very similar solutions.

In summary, the conclusion is that using Transportation authorities’ informa-

tion about common vehicular trajectories, it is possible to disseminate data to

a high ratio of vehicles with a few dissemination points placed according to our

deployment heuristics.

• Malware in VANETS can spread rapidly, and pose a real threat, while

it’s not possible to predict the propagation features and characteristics of such a

malware, we have proposed a model to simulate or predict its spreading behaviour

for a wide range of parameters.

We have shown that it is possible to obtain a model that uses per road statistics,

already gathered by transportation authorities, to describe the malware spread in

urban/suburban scenarios. Validating it against simulations that make use of de-

tailed vehicular Mobility traces. Concluding that using the model can help others

to analyze the malware spreading in cities with no mobility traces available, and

to do it much faster with the model than running the mobility trace simulations.

• Trade-off between power saving techniques in MANET nodes and the

contact opportunities missed. We have studied the trade-off between the

On/Off duty-cycle techniques (used to save power during the Off periods), and

the missed contact opportunities (that are so important in MANETS).

We have defined the analytical model for the contact probability. Both for the

case where both nodes are using On/Off duty-cycle techniques, and for the case

where one of the nodes is always On.
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In summary, the conclusion is that it is possible to use the model to limit the

missed contact opportunities’ probability that the designer of an application is

willing to accept in compensation for an increased battery life due to the On/Off

duty-cycles.

• Network Coding decoding probability error Network Coding is used in

many frameworks and projects, and there are many issues to consider when de-

signing a solution using it. One of them is the decoding probability error. This

error is small when using NC under large Galois Fields. Many works so far, have

neglected it or used an approximated upper bound error to build their frame-

works, because there were no better (more precise) solution.

We have calculated this decoding error probability, defining the exact formulation

to find this value. This allows to define the number of extra packets that must

be sent to avoid this decoding error, as a function of the number of packets and

the Galois field used. This result has already proven to be useful for other people

using Network Coding.
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