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Summary

An important specificity of wireless communication channels are the rapid fluctuations of propa-
gation coefficients. This effect is called fading and is caused by the motion of obstacles, scatterers
and reflectors standing along the different paths of electromagnetic wave propagation between
the transmitting and the receiving terminal. These changes in the geometry of the wireless
channel prompt the attenuation coefficients and the relative phase shifts between the multiple
propagation paths to vary. This suggests to model the channel coefficients (the transfer matrix)
as random variables.

The present thesis studies information rates for reliable transmission of information over fad-
ing channels under the realistic assumption that the receiver has only imperfect knowledge of the
random fading state. While the over-idealized assumption of perfect channel-state information
at the receiver (CSIR) gives rise to many simple expressions and is fairly well understood, the
settings with imperfect CSIR or downright absence of CSIR are significantly more complex to
treat, and less is known about theoretical limits of communication in these circumstances.

Of particular interest are analytical expressions of achievable transmission rates under imper-
fect and no CSI, that is, lower bounds on the mutual information and on the Shannon capacity.
A well-known mutual information lower bound for Gaussian codebooks is based on the notion
that the Gaussian distribution is the “worst-case” additive noise distribution in that it mini-
mizes the input-output mutual information. By conflating the additive noise (induced by thermal
noise in amplifiers at the receiver) with the multiplicative noise term due to the imperfections
of the CSIR into a single effective noise term, one can exploit the extremal property of the
Gaussian noise distribution to construct a “worse” channel by assuming that the effective noise
is Gaussian. This worst-case-noise approach allows to derive a strikingly simple lower bound
on the mutual information of the channel. This lower bound is well-known in literature and is
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frequently used to provide simple expressions of achievable rates.

A first part of this thesis proposes a simple way to improve this worst-case-noise bound by
means of a rate-splitting approach: by expressing the Gaussian channel input as a sum of several
independent Gaussian inputs, and by assuming that the receiver performs successive decoding
of the corresponding information streams (as if multiple virtual users were transmitting over the
same physical link in a multiple-access fashion), we show how to derive a larger lower bound
on the channel’s mutual information. On channels with a single transmit antenna, the optimal
allocation of transmit power across the different inputs is found to be approached as the number
of inputs (so-called layers) tends to infinity, and the power assigned to each layer tends to zero
(i.e., becomes infinitesimally small). This infinite-layering limit gives rise to a mutual information
bound expressible as an integral. On channels with multiple transmit antennas, an analogous
result is derived. However, since multiple transmit antennas open up more possibilities for spatial
multiplexing, this leads to a higher-dimensional allocation problem, thus giving rise to a whole
family of infinite-layering mutual information bounds.

This family of bounds is closely studied for independent and identically zero-mean Gaussian
distributed fading coefficients (so-called i.i.d. Rayleigh fading). Several properties of the family
of bounds are derived. Most notably, it is shown that for asymptotically perfect CSIR, any
member of the family of bounds is asymptotically tight at high signal-to-noise ratios (SNR).
Specifically, this means that the difference between the mutual information and its lower bound
tends to zero as the SNR tends to infinity, provided that the CSIR tends to be exact as the SNR
tends to infinity.

A second part of this thesis proposes a framework for the optimization of a class of utility
functions in block-Rayleigh fading multiple-antenna channels with transmit-side antenna corre-
lation, and no CSI at the receiver. A fraction of each fading block is reserved for transmitting
a sequence of training symbols, while the remaining time instants are used for transmission of
data. The receiver estimates the channel matrix based on the noisy training observation and
then decodes the data signal using this channel estimate. The class of utility functions under
study consists of symmetric functions of the eigenvalues of the matrix-valued effective SNR.
Most notably, a simple achievable rate expression based on the worst-case-noise bound belongs
to this class.

The problems consisting in optimizing the pilot sequence and the linear precoder are cast
into convex (or quasi-convex) problems for concave (or quasi-concave) utility functions. We also
study an important subproblem of the joint optimization, which consists in computing jointly
Pareto-optimal pilot sequences and precoders. By wrapping these optimization procedures into a
cyclic iteration, we obtain an algorithm which converges to a local joint optimum for any utility.



Resum

Una de les caracteŕıstiques espećıfiques importants dels canals de comunicació sense fils és la
ràpida fluctuació dels coeficients de propagació. Aquest efecte, anomenat esväıment, està causat
pel moviment d’obstacles, dispersors i reflectors situats en els diferents camins de propagació
de les ones electromagnètiques entre el terminal transmissor i receptor. Aquests canvis en la
geometria del canal sense fil produeixen una variació dels coeficients d’atenuació i dels retards
relatius de fase entre els diferents camins. Aquest efecte suggereix modelar els coeficients del
canal (matriu de transferència) com a variables aleatòries.

Aquesta tesi estudia les taxes d’informació per la transmissió fiable d’informació en canals
amb esväıments sota la hipòtesi realista de que el receptor té un coneixement tan sols imper-
fecte de l’esväıment aleatori. Mentre la suposició ideal de coneixement perfecte de l’estat del
canal en el receptor proporciona expressions simples i és bastant ben conegut, les configuracions
amb coneixement imperfecte o sense cap coneixement del mateix són significativament més com-
plexes de tractar i es coneix molt menys sobre els ĺımits teòrics de la comunicació en aquestes
circumstàncies.

De particular interès són les expressions anaĺıtiques de les taxes de transmissió assolibles amb
coneixement imperfecte i sense coneixement de l’estat del canal, és a dir, cotes inferiors de la
informació mútua i de la capacitat de Shannon. Una cota inferior de la informació mútua per
a codis gaussians ben coneguda es basa en la noció de que la distribució gaussiana és la pitjor
distribució possible de soroll additiu en el sentit que minimitza la informació mútua entre entrada
i sortida. Combinant el soroll additiu (indüıt pel soroll tèrmic dels amplificadors del receptor)
amb el terme de soroll multiplicatiu causat per les imperfeccions del coneixement de l’estat del
canal en un únic soroll efectiu, es pot explotar la propietat de la distribució gaussiana de definir el
pitjor canal suposant que el soroll efectiu és efectivament gaussià. Aquesta aproximació del pitjor
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soroll permet obtenir una expressió de la informació mútua del canal sorprenentment simple.
Aquesta expressió és ben coneguda en la literatura i s’utilitza sovint per obtenir expressions
simples de les taxes d’informació assolibles.

Una primera part d’aquesta tesi proposa un procediment senzill per a millorar aquesta cota
associada al pitjor cas mitjançant una estratègia de repartiment de taxa: expressant l’entrada
gaussiana del canal com a la suma de diverses entrades gaussianes independents i suposant
que el receptor realitza una descodificació seqüencial dels fluxos d’informació (com si diversos
usuaris virtuals transmetessin sobre el mateix enllaç f́ısic en un canal de múltiple accés), es
mostra com obtenir una major cota inferior de la informació mútua del canal. En canals amb
una única antena en transmissió, la distribució òptima de potència als diferents fluxos s’obté
quan el seu nombre (capes) tendeix a infinit, i la potència associada a cada capa tendeix a zero
(és infinitesimalment petita). El ĺımit associat a un nombre infinit de capes dóna lloc a una
expressió integral de la cota de la informació mútua. En canals amb múltiples antenes s’obté un
resultat similar. No obstant això, atès que la utilització de múltiples antenes proporciona més
possibilitats de multiplexat espacial, el problema augmenta la seva dimensionalitat i dóna lloc a
tota una famı́lia de cotes inferiors de la informació mútua associades a una combinació de capes
infinita.

S’estudia en detall aquesta famı́lia de cotes per al cas de coeficients d’esväıments gaussians de
mitjana zero, independents i idènticament distribüıts (conegut com esväıment i.i.d. Rayleigh).
S’obtenen diverses propietats de la famı́lia de cotes. És important destacar que per a coneix-
ement asimptòtic perfecte del canal en recepció, qualsevol membre de la famı́lia de cotes és
asimptòticament ajustat per alta relació senyal a soroll (SNR). En concret, la diferència entre
la informació mútua i la seva cota inferior tendeix a zero quan la SNR tendeix a infinit sempre
que el coneixement del canal tendeixi a ser exacte a mesura que la SNR tendeix a infinit.

Una segona part d’aquesta tesi proposa un marc per a l’optimització d’una classe de funcions
d’utilitat en canals amb múltiples antenes i esväıments Rayleigh per blocs amb correlació en
transmissió i sense informació sobre el canal a recepció. Una fracció temporal de cada bloc
d’esväıment es reserva per transmetre una seqüència de śımbols d’entrenament mentre que la
resta de mostres temporals s’utilitzen per transmetre informació. El receptor estima la matriu
del canal partint de la seva observació sorollosa i descodifica la informació mitjançant la seva
estimació del canal. La classe de funcions d’utilitat considerades són funcions simètriques dels
autovalors de la SNR matricial efectiva. De fet, una simple expressió de la taxa d’informació
assolible basada en el pitjor soroll possible pertany a aquesta classe.

Els problemes consistent en optimitzar la seqüència pilot i el precodificador lineal es trans-
forman en problemes convexos (o quasi-convexos) per a funcions d’utilitat còncaves (o quasi-
còncaves). També s’estudia un subproblema important de l’optimització conjunta, que consisteix
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en el càlcul de les seqüències d’entrenament i dels precodificadors conjuntament Pareto-òptims.
Integrant aquests procediments d’optimització en una iteració ćıclica, s’obté un algoritme que
convergeix a un òptim local conjunt per a qualsevol utilitat quasi-còncava.





Resumen

Una de las caracteŕısticas espećıficas importantes de los canales de comunicación inalámbricos
es la fluctuación rápida de los coeficientes de propagación. Este efecto, denominado desvanec-
imiento, está causado por el movimiento de obstáculos, dispersores y reflectores situados en los
diferentes caminos de propagación de las ondas electromagnéticas entre el terminal transmisor y
receptor. Estos cambios en la geometŕıa del canal inalámbrico producen una variación de los coe-
ficientes de atenuación y en los retardos relativos de fase entre los diferentes caminos. Este efecto
sugiere modelar los coeficientes del canal (matriz de transferencia) como variables aleatorias.

Esta tesis estudia las tasas de información para transmisión fiable de información en canales
con desvanecimientos bajo la hipótesis realista que el receptor tiene un conocimiento tan sólo
imperfecto del desvanecimiento aleatorio. Mientras la suposición ideal de conocimiento perfecto
del estado del canal en el receptor proporciona expresiones simples y es bastante bien conocido,
las configuraciones con conocimiento imperfecto o sin ningún conocimiento del mismo son sig-
nificativamente más complejas de tratar y se conoce mucho menos sobre los ĺımites teóricos de
la comunicación en estas circunstancias.

De particular interés son las expresiones anaĺıticas de las tasas de transmisión alcanzables
bajo conocimiento imperfecto y sin conocimiento del estado del canal, es decir, cotas inferiores
de la información mutua y de la capacidad de Shannon. Una cota inferior de la información
mutua para códigos gaussianos bien conocida se basa en la noción de la distribución gaussiana
es la peor distribución posible de ruido aditivo en el sentido de que minimiza la información
mutua entre entrada y salida. Combinando el ruido aditivo (inducido por el ruido térmico de
los amplificadores del receptor) con el término de ruido multiplicativo causado por las imper-
fecciones del conocimiento del estado del canal en un único ruido efectivo, se puede explotar la
propiedad de la distribución gaussiana de definir el peor canal suponiendo que el ruido efectivo
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es efectivamente gaussiano. Esta aproximación del peor ruido permite obtener una sorprenden-
temente simple expresión de la información mutua del canal. Esta expresión es bien conocida en
la literatura y se utiliza a menudo para obtener expresiones simples de las tasas de información
alcanzables.

Una primera parte de esta tesis propone un procedimiento sencillo de mejorar esta cota asoci-
ada al peor caso mediante una estrategia de repartición de tasa: expresando la entrada gaussiana
del canal como la suma de varias entradas gaussianas independientes y suponiendo que el re-
ceptor realiza una decodificación secuencial de los flujos de información (como si varios usuarios
virtuales transmitieran sobre el mismo enlace f́ısico en un canal de múltiple acceso), se muestra
como obtener una mayor cota inferior de la información mutua del canal. En canales con una
única antena en transmisión, la distribución de potencia óptima a los diferentes flujos se obtiene
cuando su número (capas) tiende a infinito, y la potencia asociada a cada capa tiende a cero (es
infinitesimamente pequeña). El ĺımite asociado a un número infinito de capas da lugar a una ex-
presión integral de la cota de la información mutua. En canales con múltiples antenas se obtiene
un resultado similar. Sin embargo, dado que la utilización de múltiples antenas proporciona más
posibilidades de multiplexado espacial, el problema aumenta su dimensionalidad y da lugar a
toda una familia de cotas inferiores de la información mutua asociadas a una combinación de
capas infinita.

Se estudia en detalle esta familia de cotas para el caso de coeficientes de desvanecimientos
gaussianos de media cero, independientes e idénticamente distribuidos, (conocido como desvanec-
imiento i.i.d. Rayleigh). Se obtienen diversas propiedades de la familia de cotas. Es importante
destacar que para conocimiento asintótico perfecto del canal en recepción, cualquier miembro
de la familia de cotas es asintóticamente ajustado para alta relación señal a ruido (SNR). En
concreto, la diferencia entre la información mutua y su cota inferior tiende a cero cuando la SNR
tiende a infinito siempre que el conocimiento del canal tienda a ser exacto a medida que la SNR
tienda a infinito.

Una segunda parte de esta tesis propone un marco para la optimización de una clase de fun-
ciones de utilidad en canales con múltiples antenas y con desvanecimientos Rayleigh por bloques
con correlación en transmisión y sin información sobre el canal en recepción. Una fracción tem-
poral de cada bloque de desvanecimiento se reserva para transmitir una secuencia de śımbolos
de entrenamiento mientras que el resto de muestras temporales se utilizan para transmitir in-
formación. El receptor estima la matriz del canal a partir de su observación ruidosa y decodifica
la información mediante su estimación del canal. La clase funciones de utilidad bajo estudio
son funciones simétricas de los autovalores de la SNR matricial efectiva. De hecho, una simple
expresión de la tasas de información alcanzable basada en el peor ruido posible pertenece a esta
clase.
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Los problemas consistentes en optimizar la secuencia piloto y el precodificador lineal se
transforman en problemas convexos (o casi-convexos) para funciones de utilidad cóncavas (o
casi-cóncavas). También se estudia un subproblema importante de la optimización conjunta,
que consiste en calcular las secuencias de entrenamiento y los precodificadores conjuntamente
Pareto-óptimos. Integrando estos procedimientos de optimización en una iteración ćıclica, se
obtiene un algoritmo que converge a un óptimo local conjunto para cualquier utilidad cuasi-
cóncava.
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Notation

Vectors and Matrices

a a vector (bold lowercase)
A a matrix (bold uppercase)
AT transpose of the matrix A
A∗ complex conjugate of the matrix A
A† conjugate transpose (Hermitian adjoint) of the matrix A
A

1
2 Hermitian square root of the Hermitian matrix A, uniquely defined via

A
1
2 A

1
2 = A

In n× n identity matrix. The subscript ‘n’ may be omitted at times, espe-
cially if the dimension is clear from context.

1n vector of dimension n × 1 whose entries are all equal to 1 (so-called
all-ones vector)

0 zero matrix or zero vector (the dimension is always clear from context)
a ≤ b a =

[
a1 . . . an

]T ∈ Rn+ is not larger than b =
[
b1 . . . bn

]T ∈ Rn+, in the
sense that ai ≤ bi for all i = 1, . . . , n

A � B B −A is positive semidefinite, the matrices A and B being Hermitian
and of equal size (alternative notation: B � A)

vec(A) vector resulting from stacking the columns of the matrix A =
[
a1 a2 . . .

]
on top of each other, i.e., vec(A) = [aT

1 aT
2 . . . ]T

rank(A) rank of the square matrix A
range(A) range of the matrix A, defined as the linear space spanned by the

columns of A
tr(A) trace of the square matrix A, defined as the sum of its diagonal entries

xxvii
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det(A) determinant of the square matrix A, defined as the product its eigen-
values

UA the reduced left singular basis of a matrix A. For positive semidefinite
A ∈ Cn×n+ , this coincides with the reduced eigenbasis, of size n×rank(A).

VA the reduced right singular basis of a matrix A

Sets

N the set of positive integers (excluding 0)
Z the set of integers
R the set of real numbers
C the set of complex numbers
Um×n the set of (sub-)unitary matrices of the Cm×n, defined such that for

U ∈ Um×n, we have UU† = Im if m ≤ n and U†U = In if m ≥ n
Pn the symmetric group of permutation matrices, defined as Pn = Un×n ∩

{0, 1}n×n

Cn×n+ the cone of positive semidefinite matrices from Cn×n, defined as

Cn×n+ =
{
A ∈ Cn×n

∣∣ ∀x ∈ Cn : x†Ax ≥ 0
}

Cn×n++ the cone of positive definite matrices from Cn×n, defined as

Cn×n++ =
{
A ∈ Cn×n

∣∣ ∀x ∈ Cn : x†Ax > 0
}

{A1, . . . , An} the (unordered) set containing elements A1, . . . , An

(A1, . . . , An) the ordered collection (also called tuple) containing elements A1, . . . , An

An shorthand for the ordered collection (A1, . . . , An). By convention, A0

denotes the empty collection.
int(A) the set of inner points of A ⊂ Rn (with respect to the Euclidian distance)
∂A the boundary of A, defined as A \ int(A)
∂+A the so-called Pareto border of A. For A ⊂ Cn×n+ , it is defined as

∂+A =
{
A ∈ A

∣∣ @A′ ∈ A : A′ � A and A′ 6= A
}
.

For B ⊂ Rn+, it is defined as

∂+B =
{
b ∈ B

∣∣ @b′ ∈ B : b′ ≥ b and b 6= b′}
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A(B) a concise notation for a feasible set: if A(B) denotes a function of B ∈ B,
then A(B) = ∪B∈BA(B).

D(a) Subset of the non-negative orthant, whose elements sum up to a value
not larger than a, defined as

D(a) =
{
x ∈ Rn+

∣∣ 1Tx ≤ a
}

The dimension of D(a) (n in the above case) will be clear from the
context.

col(A) the set of columns of the matrix A

Functions and Operations

Ei(·) exponential integral function, defined as Ei(x) = −
∫∞
−x

e−t
t dx

Γ(·) gamma function, defined as Γ(x) =
∫∞

0 tx−1e−t dt
Γ(·, ·) incomplete gamma function, defined as Γ(x, y) =

∫∞
y tx−1e−t dt

 imaginary unit, defined via 2 = −1
<{·} real part of a complex-valued matrix, vector or scalar
={·} imaginary part of a complex-valued matrix, vector or scalar
lim limit superior
lim limit inferior
n! factorial of n, defined as n! =

∏n
k=1 k = Γ(n+ 1)

I{·} indicator function (it is 1 if the statement in the curly brackets is true
and is 0 otherwise)

δ(x) Dirac delta-function, defined such that f(0) =
∫
A f(x)δ(x) dx

(A)+ or [A]+ non-negative part of A, i.e., (A)+ = max(0, A)

Probability

Pr{A} probability of the event A
Pr{A|B} probability of the event A conditioned on event B
Pr{A,B} probability of the event “A and B”, defined as Pr{A,B} =

Pr{A}Pr{B|A}
E[A] expectation of the random variable A
E[A|B] expectation of the random variable A conditioned on B = B
cov(a|B) covariance of the random vector a conditioned on B = B, defined as

cov(a|B) = E[aa†|B]− E[a|B] E[a†|B]
A realization of the random scalar A (sans-serif typesetting convention)
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a realization of the random vector a (sans-serif typesetting convention)
A realization of the random matrix A (sans-serif typesetting convention)
E[A|B] random variable defined as the expectation of the random variable A

conditioned on the random variable B
x ∼ NC(µ,C) x is a complex circularly-symmetric Gaussian random vector with mean

µ and covariance C

Mathematical constants

e Euler’s number, defined as e =
∑∞
n=0

1
n! ≈ 2.718 . . .

π the number pi, approximately equal to π ≈ 3.14159 . . .
γ the Euler-Mascheroni constant, defined as γ =

lim
n→∞

{
− log(n) +

n∑
k=1

1
k

}
≈ 0.577 . . .

Acronyms and Abbreviations

AWGN Additive White Gaussian Noise
CSI Channel-State Information
CSIR Channel-State Information at the Receiver
CSIT Channel-State Information at the Transmitter
MIMO Multiple-Input Multiple-Output
MISO Multiple-Input Single-Output
MMSE Minimum Mean-Square Error
MSE Mean-Square Error
SIMO Single-Input Multiple-Output
SISO Single-Input Single-Output
SNR Signal-to-Noise Ratio
e.g. for example (from Latin exempli gratia)
i.e. that is (from Latin id est)
i.i.d. independent and identically distributed
vs. versus



Introduction

Seminal work from the end of the nineties [Fos98] [Tel99] sparked a strong interest in multiple-
input multiple-output (MIMO) systems for modern communication systems, by showing that
the use of multiple antennas at both link ends can strongly potentiate spectral efficiency. These
results, much like many earlier results on achievable rates and capacity expressions, rely on
the assumption that the channel is static (constant in time). When extending these results to
the wireless setting (in which the channel coefficients are random variables), and under the
critical assumption that the decoder is cognizant of the exact values of the channel coefficients,
capacity results can be derived in some relevant cases of interest by simple averaging (over the
fading distribution) of the capacity expression from the static-channel setup. In fact, a code
with long codewords allows the receiver to exploit the diversity created by the alternation of
strong channel states (constructive interference) and deep fades (destructive interference) in
order to partly compensate for the occasionally poor channel quality in deep fades, so long as
he is informed of the sequence of channel states.

Such situation is commonly referred to as coherent transmission. The coherent assumption
is legitimate in circumstances where the channel parameters change slowly over time (compared
to the duration of a symbol), since one can then assume that the receiver has enough resources
to accurately and timely sense the current channel state. In practical situations such as cellular
radio, however, this assumption does not hold. Therefore, modifications of the channel model
and of capacity results are required.

With the inception of research on MIMO systems, it soon became important to extend
their study to the noncoherent setting, in which the receiver has no a priori knowledge of the
random channel state: structural properties of the noncoherent capacity-achieving distribution
in block-fading channels were established in [Mar99], the diversity techniques of space-time codes

1
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[Ala98] [Tar98] [Tar99] [Hoc00] were adapted to the case of imperfect channel knowledge [Vis01]
with blind differential space-time detection [Dig02] [Swi02]. The capacity pre-log of block-fading
noncoherent channels was found in [Zhe02], while the noncoherent capacity of memoryless fading
channels was shown to have a double-logarithmic growth in the signal-to-noise ratio [Lap03].

The realistic assumption that the receiver has no a priori knowledge of the channel state
entails significant changes to the capacity behavior, the optimal transmit schemes, the coupling
of estimation and detection problems, and resource allocation strategies. Roughly speaking,
detection and decoding schemes can be divided into two categories: those that prescind from
computing an estimate of the channel state (or do so implicitly) as an intermediate step, and
those that explicitly compute an estimate of the channel state prior to detection. In the former
case, the symbol or codeword detection is said to be done blindly, while in the latter case, it is
done coherently. A simple and popular method for acquiring channel-state information at the
receiver (CSIR) is by inserting so-called pilot or training symbols, which are not information-
bearing and are known to the receiver. Depending on the channel properties, the insertion can
be done in reserved time slots (time-duplexed training) or in reserved frequency slots (frequency-
duplexed training). A good survey of general principles is found in [Ton04]. In practical systems
such as cellular systems, the training pattern is generally a mixed time-frequency pattern.

time

channel state (amplitude)

pilot symbol data symbol

Figure 1 Time-duplexed training

The present thesis is grounded on the idea of explicit training schemes, and more specifically,
on time-duplexed training (esp. Chapter 4). Nonetheless, many findings that hold for time-
duplexed training can be easily transferred to frequency-duplexed training by swapping the
roles of time and frequency.

A communication system that employs an explicit training scheme (e.g., time-duplexed train-
ing) must be designed in such way that the overhead due to the training time slots is well cali-
brated. In fact, if training symbols are too far apart, then the channel knowledge gets outdated
before the next training symbol is sent, so that the average quality of channel knowledge gained
from interpolation is poor. On the other hand, if the training symbols are too frequent, then
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an excessive fraction of time is being spent on training instead of transmitting data. It is thus
clear that, under a maximum distortion constraint (e.g., maximum bit error rate), an optimal
balance must be stricken in order to maximize the net data throughput. The authors of [Has03]
proposed an elegant analysis of this trade-off for a capacity lower bound on block-fading MIMO
channels (i.e., in the asymptotic regime of infinite blocklength). The present thesis continues
along a similar line of research.

It should be noted that this trade-off problem only emerges because the channel estimation
error is non-negligible. In the training-based system under consideration, the receiver first ex-
ploits the training observation to generate an estimate of the fading gains, and then uses this
channel estimate to decode the transmitted message coherently (i.e., using the channel estimate
as if it were the true channel). In terms of achievable rates, this two-stage approach is subopti-
mal compared to full-blown maximum-likelihood decoding, but it drastically reduces decoding
complexity while maintaining near-optimal performance results. Hence, the receiver needs to
decode the data signal under genuinely imperfect CSIR conditions. This is the essential link
between the noncoherent and imperfect CSIR settings: though the transmission of data under
imperfect CSIR will be treated as a problem in its own right in Chapters 2 and 3, we actually
regard this as a subproblem related to the noncoherent setting, which is treated in Chapter 4.

In Chapter 2, we consider capacity lower bounds for imperfect CSIR. The starting point
is a well-known capacity lower bound for imperfect CSIR, due to [M0́0] and [Bal01]. Hassibi
and Hochwald point out in [Has03] that this bound corresponds to a worst-case-noise scenario,
in the sense that said bound is equal to the capacity of a “worst-case” channel in which the
effective noise distribution is made to be Gaussian and independent of the channel input. In
numerous variations and different settings, the bounding technique proposed in [M0́0, Has03]
has been extensively used in subsequent work on transmission with imperfect channel-state
information (e.g. in [Yoo04, Mus05, Yoo06, Loz08, Soy10, Din10, Aub13], to cite only a few) as
a performance metric for system design. We show that this bound can be improved by simple
means via a rate-splitting approach. The improved bound is first derived for the SISO setup,
and then extended to the MIMO setup. As a consequence of the large number of possible rate-
splitting allocations in MIMO systems (due to the spatial degrees of freedom for beamforming),
the MIMO generalization requires to consider an entire family of improved bounds, parametrized
by so-called layering functions.

In Chapter 3, the MIMO rate-splitting bounds from Chapter 2 are studied in closer detail for
the special case of i.i.d. Rayleigh fading. In this highly symmetric correlation model, the general
results from Chapter 2 take a simpler form and several additional properties of the family of
bounds can be formulated which offer additional insight.

In Chapter 4, we will consider a frequency-flat block-fading MIMO channel with time-
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duplexed training in which we seek to optimize the linear precoder and the training sequence
under an overall average power constraint. The assumption is, of course, that neither termi-
nal has a priori knowledge of the channel-state. A frequent yet generally suboptimal choice
for the pilot sequence is that of orthonormal pilot symbols. Furthermore, some publications
such as [Soy10, Aub10, Aub13] focus on minimizing distortion measures like the mean-square
error when designing the pilot sequence (as in [Ton04], [Big06]), while focusing on other mea-
sures such as bit-error rate or mutual information when designing the precoder. For instance
in [Aub10,Aub13], the authors propose two alternative figures of merit for optimizing the train-
ing sequence: the variance of the channel estimation error norm, and the average volume in which
said error vector is concentrated. In contrast to these works, we propose to examine how the
pilot sequence and the precoder can be jointly designed with respect to the same performance
metric.

A first successful attempt in this direction was made in [Has03], where the problem was
considered of finding the optimal time share between training and transmission, as well as of
optimally balancing the power levels of pilot and data symbols. Assuming i.i.d. coefficients for
the channel estimate and for the channel estimation error, the authors of [Yoo04] proved that
the optimal transmit covariance is diagonal, and that its eigenvalues are solutions to a convex
optimization problem. However, in both [Has03] and [Yoo04], all results were derived exclusively
for i.i.d. fading. Instead, when facing spatially correlated fading, the question of joint optimality
of pilot sequence and precoder is significantly more involved.

Below, we shall give a brief overview of all novel results presented in this thesis, with forward
references to the relevant lemmata, theorems and corollaries.

Summary of Main Contributions

Chapter 2

(1) We demonstrate how the worst-case-noise bound can be improved by a rate-splitting
approach: a Gaussian input signal is split into two independent Gaussian input signals,
and using the chain rule, we derive a modified capacity lower bound for imperfect
CSIR, which we observe by a simple convexity argument improves over the worst-
case-noise bound.

(2) We argue that the rate-splitting approach is extensible to any arbitrary number of
layers, and prove that the bound increases monotonically (i.e., becomes sharper) as
we introduce additional splits [Lemma 2.2, Theorem 2.1]

(3) The supremum over all rate-splitting bounds with respect to the per-layer power
allocation is shown to be approached in the limit as the number of layers tends to
infinity while the power of each layer tends to zero. An integral expression for this
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infinite-layering bound is computed [Theorem 2.2].
(4) Assuming that the variance of the channel estimation error tends to zero as the SNR

tends to infinity (so-called asymptotically perfect CSI), we prove that under mild
conditions, the difference between the infinite-layering bound and the exact mutual
information is asymptotically upper-bounded by a constant gap which only depends on
the limit of the ratio between the entropy power of the channel estimation error, and
the channel estimation error variance [Theorem 2.3]. In particular, if the conditional
channel estimation error (conditioned on the channel estimate) is Gaussian, then the
infinite-layering bound is asymptotically tight [Corollary 2.1]. For the proof of these
two results, we make use of a mutual information upper bound for Gaussian i.i.d.
codebooks, which is a generalization of a conventional upper bound well known in the
literature, and whose derivation is given in Appendix 1.1.

(5) The rate-splitting approach is extended to MIMO channels. Results analogous to
the above-mentioned are derived for the MIMO setting: from the observation that
splitting yields an improved bound, it follows that the best of all rate-splitting bounds
is approached for an infinite number of layers [Theorem 2.5]. The layering structure is
specified by a combination of so-called layering functions and indexings [Definitions 2.1
and 2.2]. Layering functions allow to parametrize a family of MIMO infinite-layering
bounds expressible in terms of a Riemann-Stieltjes integral [Theorem 2.6].

Chapter 3

This Chapter particularizes the MIMO infinite-layering bounds to the case where there is an i.i.d.
Rayleigh-distributed channel estimate and an i.i.d. Rayleigh-fading channel estimation error,
these two being mutually independent. Additional properties of this family of rate-splitting
bounds are derived especially for this setup.

(1) The asymptotic tightness of MIMO infinite-layering bounds under asymptotically per-
fect CSI is established [Theorem 3.2]. It appears that this tightness holds irrespective
of the layering function and of the speed at which the CSI tends to perfect CSI.

(2) For SNR-independent CSI, the difference between any infinite-layering bound and the
worst-case-noise bound is shown to vanish as the number of transmit antennas tends to
infinity [Theorem 3.3]. In contrast, this bound difference tends to a positive constant
is the number of receive antennas is taken to infinity [Theorem 3.4].

(3) Again for SNR-independent CSI, a large random-matrix limit of an infinite-layering
bound is derived, for which both the number of transmit and receive antennas are
taken to infinity (at a constant ratio) [Theorem 3.6]. This asymptotic limit is shown
in simulations to be a highly accurate approximation for systems with a finite number
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of antennas.

Chapter 4

(1) Regarding the two separate problems that consist in optimizing the precoder for a
prescribed pilot sequence, and the pilot sequence for a prescribed precoder, it is shown
that for the former problem, the precoded streams should not outnumber the pilot
symbols [Theorem 4.1 and Equation (4.21)], while for the latter problem, the pilot
symbols should not outnumber the precoded streams [Theorem 4.3]. Furthermore, it
is shown that both problems can be cast into quasi-convex problems, provided that the
utility is quasi-concave [Theorem 4.2 and Section 4.4]. The main utilities of interest
exhibit this quasi-concavity [Table D.1 in Appendix D.1].

(2) Regarding the joint optimization problem, we prove that for optimality, a necessary
condition is that the number of streams should equal the number of pilot symbols
[Section 4.5.2] and that the eigenbasis of the transmit covariance and the eigenbasis
of the Gram form1 of the pilot sequence should both be equal to the eigenbasis of
the channel’s transmit correlation matrix [Theorem 4.4]. Loosely speaking, the pilot
symbols and the transmit beamforming vectors should all be aligned in direction of
the channel eigenmodes. This alignment significantly reduces the dimensionality of
the residual problem of eigenvalue optimization.

(3) To further reduce the remaining optimization of the eigenvalues of the transmit covari-
ance and pilot Gram, a method is proposed in Section 4.5 for computing eigenvalue
vectors that are jointly Pareto optimal (in a sense to be explained in detail in Subsec-
tion 4.5.1). This amounts to a further reduction of dimensionality of the optimization
problem.

(4) All the above procedures for solving subproblems of the full-fledged optimization prob-
lem are combined constructively to yield an iterative procedure which converges to-
wards a local optimum of the joint optimization problem.

1 The Gram form of a matrix A shall be defined as AA†.
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Communication Model

1.1 The Discrete-Time Channel

In wireless communications, it is generally assumed that the channel is linear, in the sense that
the channel’s output is a linear function of the channel’s input. In addition, the propagation en-
vironment fulfills the superposition principle, in that the waveform resulting from superimposing
waveforms generated by different sources is the sum of the individual waveforms generated by
each source. These properties are consistently verified in practice, and are a consequence of the
fact that air as a propagation medium fufills the superposition principle, and that sinusoidal
waves reflected or scattered by static obstacles maintain their sinusoidal shape. A more exhaus-
tive discussion based on first principles (far-field approximation, radiation patterns, ray tracing)
can be found, e.g., in [Tse05].

All signals shall be represented in the baseband. The input signal is assumed to occupy a
frequency band of half-bandwidth B/2, centered around the zero frequency. This means that the
support of the input signal’s Fourier transform (for an energy-limited signal) or power spectral
density (for a power-limited signal) belongs to the interval

[
−B

2 ; B2
]
.

Consider a power-limited, continuous-time, complex-valued narrowband input signal of the
form

x(t) =
∑
i

aie2πfit (1.1)

where the i-th sinusoid component has complex amplitude ai ∈ C and frequency fi ∈
[
−B

2 ; B2
]
.

To be power-limited, the sum of squared amplitudes
∑
i |ai|2 must be finite. An actual physical

quantity such as the voltage or current feeding the transmit antenna, or the electric field or
magnetic field measured in the vicinity of the transmit antenna, is represented by the real part

7
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(the in-phase component) or the imaginary part (the quadrature component) of the complex
baseband representation of the transmit signal up-converted to the carrier frequency fc, i.e.,

xI(t) = <
{
x(t)e2πfct

}
xQ(t) = =

{
x(t)e2πfct

}
. (1.2)

Since the signal processing at the terminals is performed at baseband frequencies, and since the
up-converted signals xI(t) or xQ(t) carry the same information as the baseband signal x(t), we
will limit our analysis to the baseband model.

Assuming that the channel’s response (passband-filtered and down-converted to the base-
band) is linear and independent of the frequency fi, the output signal will be of the form

y(t) =
∑
j

hjx(t− τj)

=
∑
i,j

hjaie2πfi·(t−τj) (1.3)

where τj ∈ R and hj ∈ R respectively denote the propagation delay and the attenuation factor
on the j-th propagation path.

The above assumption that the channel response to sinusoids is independent of the frequency
fi is justified as long as we assume that the bandwidth B is small compared to the channel’s
coherence bandwidth, or equivalently, that the reciprocal 1/B is large compared to the standard
deviation of the delays τj (or any similar measure of the delay spread). This allows to approximate
the channel’s frequency response as being constant over the communication bandwidth, so that
we circumvent the complications of a frequency-selective channel behavior. We say, in our case,
that the channel is frequency-flat.

The above relationship (1.3) linking the input with the ouput of the channel can be repre-
sented as a convolution operation. In fact, if we denote the Dirac delta-function as δ(x) and
define the so-called channel impulse response as

h(τ) =
∑
j

hjδ(τ − τj) (1.4)

then the ouput y(t) is simply the convolution of the input with the impulse response:

y(t) =
∫ +∞

−∞
h(τ)x(t− τ) dτ. (1.5)

This is, in fact, the general system equation governing any linear time-invariant system.

In wireless communications, the system equation (1.5) needs to be extended so as to capture
the temporal variations of the channel geometry (moving terminals, reflectors, scatterers and
shadowers). These motions should occur at speeds slow enough to not cause too important
Doppler shifts, so that the convolution operation will not broaden the communication band
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too significantly. As a countermeasure, the sampling frequency can be stepped up. However, in
practice this effect can be neglected since the typical velocities of moving objects are too low to
cause shifts of more than a few hundred Hertz.

As a consequence of the channel variations—and this, in turn, cannot be neglected—the
impulse response becomes itself a function of time. That is, the positive path delays τi(t) and
the complex-valued attenuation factors hj(t) become functions of time. Accordingly, the channel
response at time instant t to an impulse sent at time instant t − τ is denoted as h(τ ; t) and is
expressed as

h(τ ; t) =
∑
j

hj(t)δ(τ − τj(t)). (1.6)

The system equation (1.5) now becomes

y(t) =
∫ +∞

−∞
h(τ ; t)x(t− τ) dτ. (1.7)

Let us define the sampled input signal X[k], obtained from sampling x(t) at multiples of the
sampling period 1/B, as

X[k] = x

(
k

B

)
, k ∈ Z. (1.8)

By virtue of the Whittaker-Shannon interpolation formula, the continuous-time input signal x(t)
can be reconstructed from the sequence of samples X[k] via

x(t) =
+∞∑

k=−∞
X[k]φk(t) (1.9)

where the functions {φk(t)}k∈Z are shifted cardinal sine functions, defined as

φk(t) =
sin
(
π(Bt− k)

)
π(Bt− k) . (1.10)

These functions constitute an orthogonal basis, since

∫ ∞
−∞

φi(t)φj(t) dt =


1
B if i = j

0 if i 6= j.
(1.11)

Equation (1.9) thus represents an expansion of the input signal x(t) on the orthogonal basis
{φk(t)}k∈Z. Upon inserting this expansion (1.9) into the system equation (1.7), we get

y(t) =
+∞∑

k=−∞
X[k]

∫ ∞
−∞

h(τ ; t)φk(t− τ) dτ

=
+∞∑
`=−∞

X[k − `]
∫ ∞
−∞

h(τ ; t)φk−`(t− τ) dτ (1.12)

where in the last line we have made a substitution of indices. By sampling the output signal at



10 Communication Model

the same rate as the input signal, we obtain a time-discrete output Y [k] which reads as

Y [k] =
+∞∑
`=−∞

X[k − `]
∫ ∞
−∞

h

(
τ ; k
B

)
φk−`

(
k

B
− τ

)
dτ

,
+∞∑
`=−∞

X[k − `]H[`; k]. (1.13)

where we have introduced the time-varying discrete-time channel impulse response H[`; k].
By plugging (1.6) into its definition, this new discretized impulse response is related to its
continuous-time counterpart via

H[`; k] =
∑
j

hj

(
k

B

)
φk−`

(
k

B
− τj

(
k

B

))
. (1.14)

To summarize, we have thus converted a time-varying channel model (1.7) from a continuous-
time setting to an entirely discrete-time setting (1.13). The values of H[0; k], H[1; k], . . . are
commonly called taps or tap gains at time k.

1.2 Rayleigh and Rician Fading

Consider the radio signal up-converted to the carrier frequency fc as in (1.2). In typical macro-
scopic wireless communication systems (e.g., cellular radio), the distance travelled by a wave
along a propagation path between transmitter and receiver is of the order of several meters or
tens of meters at least, which is larger than the typical carrier wavelength (for cellular radio,
in the sub-meter domain). Consequently, at any given point in time t, the phases of the taps
hj(t), j = 1, 2, . . . , i.e., the phase delays

ϕj(t) = (2πfcτj(t) mod 2π) , j = 1, 2, . . . (1.15)

can be modeled as a collection of mutually independent and uniformly distributed random
variables on the interval [0; 2π). In contrast, the tap gains |hj(t)|, j = 1, 2, . . . can too be modeled
as random samples, albeit from some distribution which is more difficult to determine, as it may
depend to a larger extent on the channel geometry. However, in a richly scattering environment,
it is reasonable to assume a large number of tap gains hj(t) which, to a large degree, are
statistically independent of each other, and also independent of the uniformly distributed phase
delays ϕj(t). In the discrete-time impulse response (1.14), let us write out the tap gains hj(k/B)
in polar representation:

H[`; k] =
∑
j

∣∣∣∣hj ( kB
)∣∣∣∣ eϕj(k/B)φk−`

(
k

B
− τj

(
k

B

))
. (1.16)
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We see that, due to the circular symmetry of the complex exponential factor, the real and
imaginary parts of H[`; k] are sums of a large number of independent random contributions,
and are therefore approximately Gaussian as a consequence of the central-limit theorem. The
decay of the cardinal sine functions has been neglected in this reasoning, since we expect a large
number of taps within the first dominant lobes of φk−`. As a result, the channel gain H[`; k] can
be modeled as a Gaussian random variable.

This fading distribution is generally called Rayleigh fading in reference to the fact that the
amplitude of the channel gains follow a Rayleigh distribution.

In environments where, in addition to a large number of scatterers and reflectors, there is a
single dominant path due to a line-of-sight connection between the transmitter and the receiver,
the same reasoning as above leads to a Gaussian fading distribution with a non-zero mean. We
refer to this situation as Rician fading.

1.3 Additive Noise

Thus far, we have only applied sampling and convolution operations to the input signal, both
of which are invertible. Indeed, by observing that a convolution translates to a multiplication
in the frequency domain, the inverse of a convolution translates to a division in the frequency
domain. As to the sampling operation, it can be inverted by the interpolation formula (1.9) as
mentioned earlier.

Since the continuous-time transmit signal x(t) can be losslessly recovered from the sampled
output sequence Y [k], the transition from a continuous-time to a discrete-time model incurs
no loss of information, so long as the sampling rate is at least B, and the function h(τ ; t) is
precisely known for the task of reconstruction. This precise knowledge of the channel is one
of the assumptions that are not always legitimate, and the present thesis is concerned with a
back-off from this over-idealization.

But most important still, the amplifier at the receiving terminal is affected by thermal and
shot noise, which are a main source of impairment when it comes to reconstructing the trans-
mitted messages or symbols intended for the receiver. These physical effects are best modeled
by a continuous-time additive white Gaussian noise (AWGN) denoted as z(t):

• The white color refers to frequency-flatness over the communication band (in analogy
to the white light spectrum), meaning that the power spectral density of the noise
process is equal to a constant value N0. Hence the noise power is BN0.
• The Gaussian distribution is a consequence of the fact that it is generated by a large

number of statistically independent noise sources, which by the central-limit theorem
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add up to an approximately Gaussian variable.

To incorporate the AWGN into our model, we redefine the channel output signal y(t) as
the signal after down-conversion and amplification and prior to sampling and processing. This
is done by simply adding z(t) to the right-hand side of the continuous-time baseband system
equation (1.12). Upon including the sampling operation, we obtain a full discrete-time system
equation [cf. (1.13)]

Y [k] =
+∞∑
`=−∞

X[k − `]H[`; k] + Z[k]. (1.17)

where Z[k] = z(k/B). Obviously, the noise has exogenous causes and therefore, the AWGN
sequence is known by neither of the communication parties. We do assume, though, that the
transmitter and receiver know the noise statistics. In the case of AWGN, this amounts to knowing
the value of N0.

1.4 Frequency-Flat Fading

Finally, let us recall that we initially assumed that the communication band was narrow enough
to justify a frequency-flat channel response. A further consequence is that the energy of the
impulse response is concentrated at a single tap H[`0; k]. In other words, the taps H[`; k] are
approximately zero for ` > `0, and the system equation (1.17) further simplifies to

Y [k] = X[k − `0]H[`0; k] + Z[k]. (1.18)

This situation is sometimes referred to as frequency-flat fading. Upon redefining the output signal
by an appropriate shift, and removing `0 from the notation of the fading sequence, we obtain

Y [k] = H[k]X[k] + Z[k]. (1.19)

This discrete-time system equation describing a narrowband fading channel will be the starting
point for this thesis.

1.5 Channel Dynamics

As a consequence of the above derivation of the fading channel model, the fading sequence
{H[k]}k∈Z from (1.19) is a stationary random sequence. When this sequence exhibits a temporal
correlation, we say that the channel is time-selective.

To add some accuracy to this notion, we consider the autocorrelation function of the sta-
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tionary process {H[k]}k∈Z, which is defined as

rH [k] = lim
M→∞

1
2M + 1

M∑
m=−M

H[m+ k]H[m]∗

= E
[
H[m+ k]H[m]∗

]
. (1.20)

at any time instant m. The last equality reflects the stationarity of the process.

A channel is memoryless if the autocorrelation function rH reduces to a centered Dirac
delta-function. Otherwise, we say that the channel has memory, in reference to the fact that the
present channel gain is correlated with some channel gains from the past. The slower the values
of rH [k] decay with increasing k, the lower the time-selectivity.

A quantitative measure for the amount of time-selectivity is the Doppler spread. It is a
measure of how fast the channel impulse response varies over time, and may be defined as the
standard deviation of the Doppler shifts 2πfc

dτj(t)
dt (or any similar measure). The coherence time

(in discrete time units) is the smallest duration over which the fading H[k] makes a significant
change, and can be defined as the reciprocal of the Doppler spread.

The concept of time-selectivity should not be confused with the concept of slow fading vs. fast
fading often invoked in the literature of wireless communications. A channel is generally said to
be slow fading if the coherence time spans multiple codeword lengths, that is, if every codeword
sees only a single fading realization. In this acception, all channels considered in this thesis are
fast fading, because we will only be concerned with the asymptotic regime of information theory,
where codeword lengths are infinite.

To summarize, a channel is time-selective if its autocorrelation is wider than one symbol
duration (discrete time unit). In contrast, a channel is said to be slow-fading if its autocorrelation
is wider than one codeword.

1.6 Imperfect Channel-State Information

We consider a fading channel governed by the system equation (1.19). For simplicity, we will
assume that the fading is memoryless [cf. (1.5)]. This means that the channel gains H[k] are
independent and identically distributed (i.i.d.).

To reflect the fact that the receiver relies only on imperfect channel-state information (CSI),
we use an additive noise model:

H[k] = Ĥ[k] + H̃[k]. (1.21)

The term Ĥ[k] can be thought of as a channel estimate, and H̃[k] can be thought of as the
channel estimation error. We assume that the receiver is cognizant of the sequence of estimates
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{Ĥ[k]}k∈Z, but not of the exact values {H[k]}k∈Z. The transmitter knows none.

However, we do assume that both the transmitter and receiver are fully aware of the statistics.
That is, they are informed of the joint distribution of Ĥ[k], H̃[k], X[k] and Z[k].

By combining the discrete-time system equation (1.19) with the representation (1.21), the
system equation thus reads as

Y [k] =
(
Ĥ[k] + H̃[k]

)
X[k] + Z[k], k ∈ Z (1.22)

Note that Ĥ[k] and H̃[k] need not be mutually independent, though we do assume that the
pair (Ĥ[k], H̃[k]), the noise Z[k] and the input X[k], are mutually independent. The fading pair
(Ĥ[k], H̃[k]) is an arbitrary sequence of i.i.d. complex-valued random variables whose means and
variances shall satisfy the following conditions:

• the random variable Ĥ[k] has mean µ and variance V̂ ;
• the random variable H̃[k] has, conditioned on any realization Ĥ[k] = Ĥ, mean zero

and variance Ṽ (Ĥ), i.e.,

E
[
H̃[k]

∣∣ Ĥ[k] = Ĥ
]

= 0 (1.23a)

E
[
|H̃[k]|2

∣∣ Ĥ[k] = Ĥ
]
, Ṽ (Ĥ). (1.23b)

The condition (1.23a) is, for example, satisfied when Ĥ[k] is the minimum mean-square error
(MMSE) estimate of H[k] from some receiver side information that is independent of the input
X[k].

1.7 Reliable Transmission of Information

For the receiver, the communication task consists in an attempt to recover the information that
the transmitter seeks to convey across the channel. Figure 1.7 depicts the basic communication
problem: The channel input is the transmit signal X[k], and the channel output is the pair
(Ĥ[k], Y [k]). The receiver then seeks to reconstruct the sequence {X[k]}k∈Z from the observation
of the sequence {(Ĥ[k], Y [k])}k∈Z.

X[k] Ĥ[k]

H̃[k]X[k] + Z[k]

Y [k]

Ĥ[k]

Figure 1.1 Sketch of a communication systems with imperfect CSI

To forearm against transmission errors, we use random coding, which is known to achieve
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the classical Shannon capacity. A block code of rate R (measured in nats per channel use) and
blocklength nb is a collection of

⌊
enbR

⌋
codewords, where a codeword is an input sequence of

length nb. In random coding, rather than being constructed by a deterministic algorithm, the
code is drawn from a random ensemble. We will restrict the analysis to i.i.d. ensembles for
simplicity, that is, each codeword is sampled as an i.i.d. sequence from some distribution PX ,
and the codewords are i.i.d. among them.

We say that a communication rate R is achievable when there exists a sequence of block
codes of rate R and of increasing blocklength nb such that the sequence of decoding block-error
probabilities (associated to each code in the sequence) tends to zero as the blocklength nb tends
to infinity.

In this context, the mutual information plays a central role. For a pair (U, V ) of random
variables with a continuous probability distribution, the mutual information between U and V

is
I(U ;V ) = h(U)− h(U |V ) = h(V )− h(V |U) (1.24)

where h(·) denotes differential entropy.

By the channel coding theorem, if the codewords are drawn i.i.d. from a distribution PX ,
then the mutual information between input and output I(X;Y, Ĥ) is an achievable rate. Using
the chain rule for mutual information and the fact that X and Ĥ are independent (hence
I(X; Ĥ) = 0), this mutual information is equal to

I(X;Y, Ĥ) = I(X;Y |Ĥ) + I(X; Ĥ)

= I(X;Y |Ĥ) (1.25)

which is the conditional mutual information between X and Y conditioned on Ĥ. This mutual
information is the key figure of interest in this thesis.

Subject to the average-power constraint

lim
M→∞

1
2M + 1

M∑
m=−M

∣∣X[m]
∣∣2 = E

[∣∣X[k]
∣∣2] ≤ P (1.26)

the Shannon capacity of the channel (1.22) is given by [Big98]

C(P ) = sup
PX

I(X;Y |Ĥ) (1.27)

where the supremum is over all distributions of X satisfying E
[
|X|2

]
≤ P . The discrete time

indices have been omitted because they are immaterial due to the i.i.d. assumption for all random
sequences involved in the system equation (1.22).
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1.8 Bounds on the Mutual Information and Capacity

Since (1.25) and (1.27) are difficult to evaluate, even if Ĥ and H̃ are Gaussian, it is common
to assess C(P ) using upper and lower bounds. A widely-used lower bound on C(P ) is due to
Médard [M0́0]:

C(P ) ≥ E
[
log

(
1 + |Ĥ|2P

Ṽ (Ĥ)P +N0

)]
, R(P ). (1.28)

The lower bound (1.28) follows from (1.27) by choosing the input XG to be zero-mean, variance-
P , circularly-symmetric, complex Gaussian1 and by upper-bounding the differential entropy of
XG conditioned on Y and Ĥ as

h(XG|Y, Ĥ) = h(XG − αY |Y, Ĥ)

≤ h(XG − αY |Ĥ)

≤ E
[
log

(
πeE

[
|XG − αY |2

∣∣ Ĥ])] (1.29)

for any α ∈ C. Here the first inequality follows because conditioning cannot increase entropy, and
the subsequent inequality follows because the Gaussian distribution maximizes differential en-
tropy for a given second moment [Cov91, Theorem 9.6.5]. By expressing the mutual information
I(XG;Y |Ĥ) as

I(XG;Y |Ĥ) = h(XG)− h(XG|Y, Ĥ) (1.30)

and by choosing α in (1.29) so that αY is the linear MMSE estimate of XG, the lower bound
(1.28) follows. We shall refer to this bound as the worst-case-noise bound, following the nomen-
clature from [Has03].

When the receiver has perfect CSI so that E[Ṽ (Ĥ)] = 0, the worst-case-noise bound R(P ) is
equal to the channel capacity

Ccoh(P ) = E
[
log

(
1 + |H|

2P

N0

)]
≥ I(XG;Y |Ĥ). (1.31)

Consequently, for perfect CSI the worst-case-noise bound (1.28) is tight. In contrast, when the
receiver has imperfect CSI and the distributions of Ṽ (Ĥ) and Ĥ do not depend on P , the worst-
case-noise bound (1.28) is loose. In fact, in this case R(P ) is bounded in P , whereas the capacity
C(P ) is known to be unbounded. For instance, if the conditional entropy of H̃ given Ĥ is finite,
then the capacity has a double-logarithmic growth in P [Lap03].2

1 The subscript ‘G’ in XG indicates a Gaussian distribution.
2 This result can be generalized to show that if E[log |Ĥ + H̃|2] > −∞ holds, then the capacity grows at least double-

logarithmically with P .
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This boundedness of R(P ) is not due to the inequalities in (1.29) being loose, but is a
consequence of choosing a Gaussian channel input. Indeed, if h(H̃|Ĥ) is finite, then a Gaussian
input XG achieves [Lap02, Proposition 6.3.1 and Lemma 6.2.1] (see also [Lap03, Lemma 4.5])

lim
P→∞

I(XG;Y |Ĥ) ≤ γ + log
(
πeE

[
|Ĥ + H̃|2

])
− h(H̃|Ĥ) (1.32)

where γ ≈ 0.577 denotes Euler’s constant and where lim denotes the limit superior. Nevertheless,
even if we restrict ourselves to Gaussian inputs, the worst-case-noise bound

I(XG;Y |Ĥ) ≥ R(P ) (1.33)

is not tight.

As we shall see in the next chapter, by using a rate-splitting and successive-decoding ap-
proach, the worst-case-noise bound (1.33) can be sharpened.

Besides the worst-case-noise lower bound (1.28), an upper bound on the Gaussian-input
mutual information is given by Lemma 1.1 below.

Lemma 1.1. We have the mutual information upper bound

I(XG;Y |Ĥ) ≤ R(P ) + E
[
log

(
Ṽ (Ĥ)P +N0

Φ̃(Ĥ)PW +N0

)]
, Iupper(P ) (1.34)

where W is independent of Ĥ and is exponentially distributed with mean 1, and where Φ̃(Ĥ)
denotes the conditional entropy power of H̃, conditioned on Ĥ = Ĥ:3

Φ̃(Ĥ) ,


1
πeeh(H̃|Ĥ=Ĥ), if h(H̃|Ĥ = Ĥ) > −∞

0, otherwise.
(1.35)

Proof: See Appendix A.1.

The upper bound (1.34) was previously used, e.g., in [Bal01, Equation 42] and [Yoo06,
Lemma 2] for the special case of a Gaussian H̃ and mutually independent Ĥ and H̃, in which
case the entropy power equals the variance, i.e., Ṽ = Φ̃.

3 We define h(H̃|Ĥ = Ĥ) = −∞ if the conditional distribution of H̃, conditioned on Ĥ = Ĥ, is not absolutely continuous
with respect to the Lebesgue measure.
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The Rate-Splitting Approach

2.1 Single-Input Single-Output (SISO) Channels

We adopt the discrete-time memoryless channel model (1.22) derived in the previous chapter.
Following the argument in Section 1.7, we restrain the analysis to i.i.d. codebooks, so we will
drop the time indices throughout, since they are immaterial. The channel equation (without
time indices) is thus given by

Y =
(
Ĥ + H̃

)
X + Z. (2.1)

In the following, the channel’s mutual information (1.25) is the quantity of interest.

2.1.1 Worst-Case-Noise Lower Bound

For future reference, we state Médard’s worst-case-noise lower bound (1.28) in a slightly more
general form in the following Lemma.

Lemma 2.1. Let S be a zero-mean, circularly-symmetric, complex Gaussian random variable of
variance P . Let A and B be complex-valued random variables of finite second moments, and let C
be an arbitrary random variable. Assume that S is independent of (A,C), and that, conditioned
on (A,C), the variables S and B are uncorrelated. Then

I(S;AS +B|A,C) ≥ E
[
log

(
1 + |A|2P

VB(A,C)

)]
(2.2)

where VB(a, c) denotes the conditional variance of B conditioned on (A,C) = (a, c).

Proof: See Appendix B.1.
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2.1.2 How Rate Splitting Improves the Worst-Case-Noise Lower Bound

Using Lemma 2.1, we show that, for imperfect CSI and E[|Ĥ|2] > 0, rate splitting with two
layers strictly improves the lower bound (1.33). Indeed, let X1 and X2 be independent, zero-
mean, circularly-symmetric, complex Gaussian random variables with respective variances P1

and P2 (satisfying P1 + P2 = P ) such that XG = X1 + X2. By the chain rule for mutual
information, we obtain

I(XG;Y |Ĥ) = I(X1, X2;Y |Ĥ)

= I(X1;Y |Ĥ) + I(X2;Y |Ĥ,X1). (2.3)

By replacing the random variables A, B, C, and S in Lemma 2.1 with

A← Ĥ, B ← ĤX2 + H̃X + Z, C ← 0, S ← X1

and by noting that these random variables satisfy the lemma’s conditions, it follows that the
first term on the right-hand side of (2.3) is lower-bounded as

I(X1;Y |Ĥ) ≥ E
[
log

(
1 + |Ĥ|2P1

Ṽ (Ĥ)P1 +
(
|Ĥ|2 + Ṽ (Ĥ)

)
P2 +N0

)]
, R1(P1, P2). (2.4)

Similarly, by replacing A, B, C, and S in Lemma 2.1 with

A← Ĥ, B ← ĤX1 + H̃X + Z, C ← X1, S ← X2

and by noting that these random variables satisfy the lemma’s condition, we obtain for the
second term on the right-hand side of (2.3)

I(X2;Y |Ĥ,X1) ≥ E
[
log

(
1 + |Ĥ|2P2

Ṽ (Ĥ)(|X1|2 + P2) +N0

)]
, R2(P1, P2). (2.5)

Since for every α > 0, the function x 7→ log(1 + α/x) is strictly convex in x > 0, it follows from
Jensen’s inequality that the right-hand side of (2.5) is lower-bounded as

E
[
log

(
1 + |Ĥ|2P2

Ṽ (Ĥ)(|X1|2 + P2) +N0

)]
≥ E

[
log

(
1 + |Ĥ|2P2

Ṽ (Ĥ)(P1 + P2) +N0

)]
(2.6)

with the inequality being strict except in the trivial cases where P1 = 0, P2 = 0, or if, with
probability one, at least one of |Ĥ| and Ṽ (Ĥ) is zero.1 Thus, combining (2.3)–(2.6), we obtain

R1(P1, P2) +R2(P1, P2) ≥ E
[
log

(
1 + |Ĥ|2P

Ṽ (Ĥ)P +N0

)]
(2.7)

1 We shall write this as Pr
{
Ĥ · Ṽ (Ĥ) = 0

}
= 1. For example, this occurs when the receiver has perfect CSI, in which case

Ṽ (Ĥ) = 0 almost surely.
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demonstrating that, when the receiver has imperfect CSI, rate splitting with two layers strictly
improves the lower bound (1.28) (except in trivial cases).
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Figure 2.1 Comparison of the two-layer lower bound R1(P1, P − P1) + R2(P1, P − P1) (continuous line) with Médard’s
lower bound R(P ) (dashed line) as a function of the power fraction P1/P assigned to the first layer.

Figure 2.1 compares the two-layer bound R1(P1, P2)+R2(P1, P2) with R(P ) (dashed line) as
a function of P1/P , for Ĥ and H̃ being mutually independent and circularly-symmetric Gaussian
with parameters µ = 0, V̂ = 1

2 , Ṽ (Ĥ) = 1
2 for Ĥ ∈ C, P = 10, and N0 = 1. The figure confirms

that, when the receiver has imperfect CSI and P1 > 0 and P2 > 0, rate splitting with two layers
outperforms R(P ) (1.28). In this example, the optimal power allocation is approximately at
P1 ≈ 0.78P and P2 ≈ 0.22P . In general, the optimal power allocation is difficult to compute
analytically.

2.1.3 Rate Splitting with an Arbitrary Finite Number of Layers

One might wonder whether extending our approach to more than two layers can further improve
the lower bound. As we shall see in the following section, it does. In fact, for every positive power
P > 0 we show that, once that the power is optimally allocated across layers, the rate-splitting
lower bound is strictly increasing in the number of layers.

Let X1, . . . , XL be independent, zero-mean, circularly-symmetric, complex Gaussian random
variables with respective variances P1, . . . , PL satisfying

P =
L∑
`=1

P` (2.8)

and

XG =
L∑
`=1

X`. (2.9)
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Let the cumulative power Qk be given by

Qk ,
k∑
`=1

P`. (2.10)

We denote the collection of cumulative powers as

Q ,
{
Q1, . . . , QL

}
(2.11)

and refer to it as an L-layering.

It follows from the chain rule for mutual information that

I
(
XL;Y |Ĥ

)
=

L∑
`=1

I
(
X`;Y |X`−1, Ĥ

)
(2.12)

where we use the shorthand AN to denote the sequence A1, . . . , AN , and A0 denotes the empty
sequence. Applying Lemma 2.1 by replacing the respective A, B, C, and S with

A← Ĥ, B ← Ĥ
∑
`′ 6=`

X`′ + H̃X + Z, C ← X`−1, S ← X`

and by noting that these random variables satisfy the lemma’s conditions, we can lower-bound
the `-th summand on the right-hand side of (2.12) as

I
(
X`;Y |X`−1, Ĥ

)
≥ E

[
log
(
1 + Γ`,Q(X`−1, Ĥ)

)]
, R`[Q] (2.13)

where

Γ`,Q(X`−1, Ĥ) , |Ĥ|2P`
Ṽ (Ĥ)

∣∣∑
i<`

Xi

∣∣2 + Ṽ (Ĥ)P` +
(
|Ĥ|2 + Ṽ (Ĥ)

) ∑
i>`

Pi +N0
(2.14)

and where the last line in (2.13) should be viewed as the definition of R`[Q]. Defining

R[Q] , R1[Q] + . . .+RL[Q] (2.15)

we obtain from (2.12) and (2.13) the lower bound

I(XG;Y |Ĥ) = I
(
XL;Y |Ĥ

)
≥ R[Q]. (2.16)

Note that Q`−1 = Q` implies P` = 0, which in turn implies R`[Q] = 0. Without loss of
optimality, we can therefore restrict ourselves to L-layerings satisfying

0 < Q1 < . . . < QL = P. (2.17)
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We shall denote the set of all L-layerings satisfying (2.17) by Q(P,L). Note that this definition
of layerings precludes P = 0, and we shall from now on assume that P > 0.

2.1.4 Rate Splitting with an Infinite Number of Layers

Let R?(P,L) denote the lower bound R[Q] optimized over all Q ∈ Q(P,L), i.e.,

R?(P,L) , sup
Q∈Q(P,L)

R[Q]. (2.18)

In the following, we show that R?(P,L) is monotonically increasing in L. To this end, we need
the following lemma.

Lemma 2.2. Let L′ > L, and let the L-layering Q ∈ Q(P,L) and the L′-layering Q′ ∈ Q(P,L′)
satisfy {

Q1, . . . , QL
}
⊂
{
Q′1, . . . , Q

′
L′
}
. (2.19)

Then
R[Q] ≤ R[Q′] (2.20)

with equality if, and only if, Pr
{
Ĥ · Ṽ (Ĥ) = 0

}
= 1.

Proof: See Appendix B.2.

Theorem 2.1. The rate R?(P,L) is monotonically non-decreasing in L. Moreover, if Pr
{
Ĥ ·

Ṽ (Ĥ) = 0
}

= 1, then R?(P,L) = R(P ) for every L ∈ N

Proof: See Appendix B.3.

It follows from Theorem 2.1 that the best lower bound, optimized over all layerings of fixed
sum-power P , namely

R?(P ) , sup
L∈N

sup
Q∈Q(P,L)

R[Q] = sup
L∈N

R?(P,L) (2.21)

is approached by letting the number of layers L tend to infinity. An explicit expression for R?(P )
is provided by the following theorem.

Theorem 2.2. For a given input power P , the supremum of all rate-splitting lower bounds R[Q]
over Q ∈ Q(P,L) and L ∈ N is given by the limit

R?(P ) = lim
L→∞

R?(P,L) (2.22)
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and has an analytical expression which reads as

R?(P ) =
∫ 1

0
E
[

|Ĥ|2(
Ṽ (Ĥ)(W − 1)− |Ĥ|2

)
ι+ |Ĥ|2 + Ṽ (Ĥ) + N0

P

]
dι (2.23)

where W is independent of Ĥ and exponentially distributed with mean 1.

Proof: See Appendix B.4.

Remark 2.1. The expression (2.23) features multiple integrations: an integration over ι ∈ [0; 1],
an expectation over W , and an expectation over Ĥ. By Fubini’s Theorem, these three operations
can be performed in any order.

Remark 2.2. By solving the integral corresponding to the expectation over W , the expres-
sion (2.23) reduces from a triple to a double integral

R?(P ) =
∫ 1

0
E
[
|Ĥ|2

Ṽ ι
ς

((
|Ĥ|2 + Ṽ (Ĥ)

)
(1− ι) + N0

P

Ṽ ι

)]
dι (2.24)

where the function ς(·) is defined as

ς(x) , −ex Ei(−x) (2.25)

and where Ei(x) = −
∫∞
−x

e−t

t dt denotes the exponential integral function. In contrast, if we solve
the integral over ι ∈ [0; 1], we obtain the alternative representation

R?(P ) = E
[

|Ĥ|2

|Ĥ|2 + Ṽ (Ĥ) + N0
P

Θ
(
Ṽ (Ĥ)(W − 1)− |Ĥ|2

|Ĥ|2 + Ṽ (Ĥ) + N0
P

)]
(2.26)

where the function Θ(·) is defined as

Θ(x) ,


log(1 + x)

x
, if −1 < x < 0 or x > 0

1, if x = 0.
(2.27)

Remark 2.3. It is easy to see in (2.23) that the expression inside the expectation operator is
convex in W for any fixed Ĥ and ι. Therefore, by Jensen’s inequality, one can lower-bound R?(P )
by moving the expectation over W into the denominator. By doing so, we recover Médard’s bound
R(P ). The same applies to (2.26), since the function Θ can be shown to be convex on (−1,∞).

Remark 2.4. The proof of Theorem 2.2 hinges on the observation that the supremum R?(P ) is
approached by an equi-power layering

U(P,L) ,
{
P

L
, 2P
L
, . . . , (L− 1)P

L
, P

}
(2.28)
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when the number of layers L is taken to infinity. While this layering was chosen for mathematical
convenience, any other layering would also do, provided that some regularity conditions are met.
For example, one can show that for any Lipschitz-continuous monotonic bijection F : [0, P ] →
[0, P ], we have

lim
L→∞

R
[
F
(
U(P,L)

)]
= lim

L→∞
R
[
U(P,L)

]
= R?(P ) (2.29)

where F
(
U(P,L)

)
=
{
F (P/L), F (2P/L), . . . , F (P )

}
.

2.1.5 High-SNR Limit

The high-SNR limit of R?(P ) can be computed in closed form. Let

L{f(x)}(s) =
∫ ∞

0
f(t)e−st dt (2.30)

denote the Laplace transform of the function f(x). We have the high-SNR limit

lim
P→∞

R?(P ) = E
[
L
{ log(x)
x− 1

}
(U)

]
= E

[
e−U

(
π2

6 +
∞∑
n=1

Hn

(n+ 1)!U
n +G 3,1

2,3

(
U
∣∣∣ 0,1

0,0,0

))]
. (2.31)

where Hn =
∑n
k=1 k

−1 denotes the harmonic sequence, where

U = 1 + |Ĥ|2

Ṽ (Ĥ)
(2.32)

and where G 3,1
2,3

(
x
∣∣∣ 0,1

0,0,0

)
is a Meijer G-function (cf. [Gra07, Definition 9.301]).

This statement is given without proof. Nonetheless, it is worth mentioning because as a
by-product, by specializing it to the case where Ĥ is equal to some Ĥ with probability 1 (i.e.,
Ĥ is a deterministic constant that can be assimilated to the channel mean), we obtain a novel
closed-form lower bound on the mutual information of channels with a Gaussian input XG and
pure multiplicative noise Ĥ + H̃ with a non-zero mean Ĥ. Namely,

I
(
XG; (Ĥ + H̃)XG

)
≥ e−U

(
π2

6 +
∞∑
n=1

Hn

(n+ 1)!U
n +G 3,1

2,3

(
U
∣∣∣ 0,1

0,0,0

))
(2.33)

where
U = 1 + |Ĥ|

2

Ṽ
. (2.34)
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Figure 2.2 Comparison of capacity and Gaussian-input mutual information bounds for fixed CSI.

2.1.6 Numerical Example

In Figure 2.2(a), several bounds on the Gaussian-input mutual information I(XG;Y |Ĥ) are plot-
ted against the SNR on a range from −10 dB to 30 dB. From top to bottom, we have the coher-
ent capacity (1.31); the upper bound (1.34); the supremum R?(P ) over all rate-splitting bounds
(Theorem 2.2); the two-layer rate-splitting bound with optimized power allocation R?(P, 2); and
Médard’s lower bound R(P ). The grey-shaded area indicates the region in which the curve of the
exact Gaussian-input mutual information I(XG;Y |Ĥ) is located. For this simulation, we have
chosen Ĥ and H̃ to be independent and complex circularly-symmetric Gaussian with parameters
µ = 0, V̂ = 1

2 , and Ṽ (Ĥ) = 1
2 , Ĥ ∈ C. Observe that the proposed rate-splitting approach sharpens

the bound mostly at high SNR. In this simulation, the increase R?(P )−R(P ) is approximately
0.28 bits per channel use as P tends to infinity.

Figure 2.2(b) shows the same bounds as Figure 2.2(a), but this time with the rate plotted
against the energy per information bit Eb/N0. Observe that the minimum energy per bit of all
bounds (except that of the coherent capacity Ccoh) is equal to 1.41dB, thus demonstrating that
the rate-splitting approach sharpens the bound only marginally at low SNR.

2.1.7 Asymptotically Perfect CSI

The numerical example considered in the previous section (see Figure 2.2(a)) assumes that Ṽ (Ĥ)
and Ĥ do not depend on the SNR P/N0. However, in practical communication systems, the
channel estimation error—as measured by the mean error variance E[Ṽ (Ĥ)]—typically decreases
as the SNR increases. In this section, we investigate the high-SNR behavior of the derived bounds
when E[Ṽ (Ĥ)] vanishes as the SNR tends to infinity. When this condition is satisfied, we shall
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say that we have asymptotically perfect CSI.

2.1.7.1 Asymptotic Tightness

We will consider a family of joint distributions of (Ĥ, H̃) parametrized by ρ = P/N0. To make
this dependence on ρ explicit, we shall write in this section the two channel components as Ĥρ

and H̃ρ, and the respective variances as V̂ρ and Ṽρ(Ĥρ). Similarly, we shall write the entropy
power, defined in (1.35), as Φ̃ρ(Ĥρ). We further adapt the notation to express Médard’s lower
bound, the rate-splitting lower bounds (2.18) and (2.21), and the upper bounds (1.31) and (1.34)
as functions of ρ, namely, R(ρ), R?(ρ, L), R?(ρ), Ccoh(ρ), and Iupper(ρ).

We assume that H = Ĥρ + H̃ρ does not depend on ρ and is normalized:

E
[
|Ĥρ|2

]
+ E

[
Ṽρ(Ĥρ)

]
= 1. (2.35)

We further assume that the variance of the estimation error H̃ρ is not larger than the variance
of H, i.e., Ṽρ(Ĥρ) ≤ 1 for every Ĥρ ∈ C.

Theorem 2.3. Let Ĥρ, Ṽρ(Ĥρ), and Φ̃ρ(Ĥρ) satisfy

lim
ρ→∞

E
[
Ṽρ(Ĥρ)

]
= 0 (2.36a)

lim
ρ→∞

{
sup
ξ∈C

Ṽρ(ξ)
Φ̃ρ(ξ)

}
≤M (2.36b)

for some finite constant M , where we define 0/0 , 1 and a/0 , ∞ for every a > 0. Then, we
have

lim
ρ→∞

{
I(XG;Y |Ĥρ)−R?(ρ)

}
≤ log(M) Pr{|H| > 0}. (2.37)

Proof: See Appendix B.6.

Remark 2.5. The proof of Theorem 2.3 reveals that if Pr{|H| > 0} = 1, then one can strengthen
(2.37) by replacing I(XG;Y |Ĥρ) by its upper bound Iupper(ρ).

If conditioned on (almost) every Ĥρ = Ĥρ, the estimation error H̃ρ is Gaussian, then we have
Ṽρ(Ĥρ) = Φ̃ρ(Ĥρ) for every Ĥρ ∈ C and (2.36b) is satisfied for M = 1. Thus, for a conditionally
Gaussian H̃ρ, the lower bound R?(ρ) is asymptotically tight.

Corollary 2.1. Conditioned on every Ĥρ = Ĥρ, let H̃ρ be Gaussian, and let (2.36a) and (2.36b)
hold. lim

ρ→∞
E
[
Ṽρ(Ĥρ)

]
= 0 Then, we have

lim
ρ→∞

{
Iupper(ρ)−R?(ρ)

}
= 0. (2.38)
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Proof: The Gaussian distribution of H̃ρ implies that the cumulative distribution function
of |H| = |Ĥρ + H̃ρ| is continuous, so Pr{H = 0} = 0. The result follows then from (B.77) and
(B.81) in the proof of Theorem 2.3 (Appendix B.6) upon noting that, for a Gaussian distribution,
(2.36b) is satisfied for M = 1.

Corollary 2.1 demonstrates that, for conditionally Gaussian H̃ρ and asymptotically perfect
CSI, both bounds Iupper(ρ) and R?(ρ) are asymptotically tight in the sense that their difference
to the Gaussian-input mutual information vanishes as ρ tends to infinity. In [Lap02], it was
argued that the difference between R(ρ) and Ccoh(ρ) vanishes as ρ tends to infinity if Ṽρ(Ĥρ)
decays faster than the reciprocal of ρ, in which case Médard’s lower bound is asymptotically
tight, too. Note however that, if H̃ρ is conditionally Gaussian, then the upper bound (1.34)
becomes

Iupper(ρ) = R(ρ) + E
[
log

(
1 + ρṼρ(Ĥρ)

1 + ρWṼρ(Ĥρ)

)]
(2.39)

from which follows that

lim
ρ→∞

{
Iupper(ρ)−R(ρ)

}
= 0 ⇐⇒ lim

ρ→∞
ρE
[
Ṽρ(Ĥρ)] = 0. (2.40)

Thus, for conditionally Gaussian H̃ρ and asymptotically perfect CSI, Médard’s lower bound is
asymptotically tight if, and only if, E

[
Ṽρ(Ĥρ)

]
decays faster than the reciprocal of ρ, whereas

R?(ρ) is asymptotically tight irrespective of the rate of decay.

It follows directly from (B.77)–(B.80) and Lemma B.2 used within the proof of Theorem 2.3
(Appendix B.6) that for any fading distribution satisfying (2.36b),

lim
ρ→∞

{
Iupper(ρ)−R(ρ)

}
≤ γ + log(M) (2.41)

where γ ≈ 0.577 denotes Euler’s constant. Consequently, at high SNR, the bounds Iupper(ρ),
R?(ρ), and R(ρ) all have the same logarithmic slope.

2.1.7.2 Prediction- and Interpolation-Based Channel Estimation

We evaluate the lower bounds R(ρ), R?(ρ, 2), and R?(ρ) together with the upper bound Iupper(ρ)
for two specific channel estimation errors satisfying (2.36a). We assume that Ĥρ and H̃ρ are zero-
mean, circularly-symmetric, complex Gaussian random variables that are independent of each
other2 and satisfy the normalization (2.35). The former has variance V̂ρ and the latter has
variance Ṽρ. We consider variances Ṽρ of the forms

Ṽρ =
( 1

2B + 1
ρ

)2B
ρ2B−1 − 1

ρ
(2.42a)

2 Consequently, Ṽρ does not depend on Ĥρ either.
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and

Ṽρ = 2BT
ρ+ 2BT (2.42b)

for some 0 < B < 1
2 , where T = b1/(2B)c is the largest integer not greater than 1/(2B).

As we shall argue next, (2.42a) corresponds to prediction-based channel estimation, whereas
(2.42b) corresponds to interpolation-based channel estimation. Indeed, suppose for a moment
that the fading process {H[k]}k∈Z is not i.i.d. but is a zero-mean, unit-variance, stationary,
circularly-symmetric, complex Gaussian process with power spectral density

fH(λ) =


1

2B , |λ| < B

0, B ≤ |λ| ≤ 1
2

(2.43)

for some 0 < B < 1
2 . The fading’s autocovariance function is determined by fH(·) through the

expression

E
[
H[k +m]H[k]∗

]
=
∫ 1/2

−1/2
e2πmλfH(λ) dλ (2.44)

We obtain (2.42a) if we let Ĥ[k] be the minimum mean-square error (MMSE) predictor in
predicting H[k] from a noisy observation of its past

H[k − 1]
√
P + Z[k − 1], H[k − 2]

√
P + Z[k − 2], . . . (2.45)

Indeed, in this case Ĥ[k] and H̃[k] = H[k]− Ĥ[k] are zero-mean, circularly-symmetric, complex
Gaussian random variables that are independent of each other, the latter with mean zero and
variance [Gre84, Section 10.8, p. 181–184], [Lap05, Equation (11)]

Ṽρ = exp
{∫ 1/2

−1/2
log

(
fH(λ) + 1

ρ

)
dλ
}
− 1
ρ
. (2.46)

For the power spectral density (2.43) this gives (2.42a). Note that, even though the lower bounds
R(ρ), R?(ρ, L), and R?(ρ) were derived for i.i.d. fading {Ĥρ[k], H̃ρ[k]}k∈Z, by evaluating them
for H̃ρ[k] having variance (2.42a), they can be used to derive lower bounds on the capacity of
noncoherent fading channels with stationary fading having power spectral density fH(·); see,
e.g., [Lap05].

The variance (2.42b) corresponds to a channel-estimation scheme where the transmitter emits
every T time instants (say at k = nT , n ∈ Z) a pilot symbol

√
P and where the receiver estimates

the fading coefficients at the remaining time instants k (i.e., where k is not an integer multiple
of T ) from the noisy observations

H[nT ]
√
P + Z[nT ], n ∈ Z (2.47)
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using an MMSE interpolator; see, e.g., [Don04, Loz08, Asy11, Asy13]. When the power spectral
density fH(·) is bandlimited to B and when T ≤ 1/(2B), it can be shown that the variance of
the estimation error is given by [Ohn02]

Ṽρ = 1−
∫ B

−B

ρf2
H(λ)

ρfH(λ) + T
dλ. (2.48)

For the power spectral density (2.43) this gives (2.42b). Again, even though the lower bounds
R(ρ), R?(ρ, L), and R?(ρ) were derived for i.i.d. fading {Ĥρ[k], H̃ρ[k]}k∈Z, by evaluating them
for H̃ρ[k] having variance (2.42b), they can be directly used to derive lower bounds on the
capacity of noncoherent fading channels with stationary fading having power spectral density
fH(·), provided that we account for the rate loss due to the transmission of pilots. In fact, it was
shown that, when 1/(2B) is an integer, the above interpolation-based channel estimation scheme
together with Médard’s lower bound R(ρ) achieves the capacity pre-log [Loz08,Asy11,Asy13].3

2.1.7.3 Numerical Examples

For Figures 2.3–2.5 below, we assume that Ĥρ and H̃ρ are independent, zero-mean, circularly-
symmetric, complex Gaussian random variables.

Figure 2.3(a) shows the lower bounds R(ρ), R?(ρ, 2), and R?(ρ) together with the upper
bounds Iupper(ρ) and Ccoh(ρ) as a function of ρ for H̃ρ having variance (2.42a), with B = 1/4.
Figure 2.3(b) shows the same bounds, but as a function of the energy per information bit. The
curve of the exact Gaussian-input mutual information I(XG;Y |Ĥ) is located within the shaded
area. Observe that, in contrast to the curves in Figure 2.2(a), all curves are unbounded in the
SNR, which is a consequence of the fact that Ṽρ vanishes as ρ tends to infinity. Further observe
that the shaded area narrows down as ρ grows. This is consistent with Corollary 2.1, which states
that for (conditionally) Gaussian H̃ρ and asymptotically perfect CSI, the bounds Iupper(ρ) and
R?(ρ) are asymptotically tight. Note that, as demonstrated by (2.41), the upper bound Iupper(ρ)
and all lower bounds have the same logarithmic slope at high SNR.

Figure 2.4(a) shows the lower bounds R(ρ), R?(ρ, 2), and R?(ρ) together with the upper
bounds Iupper(ρ) and Ccoh(ρ) as a function of ρ for H̃ρ having variance (2.42b), with BT = 1/2.
Again, observe that all curves are unbounded in the SNR and that the lower bound R?(ρ) is
asymptotically tight as ρ tends to infinity. What is more, R?(ρ) is close to Iupper(ρ) for a large
range of SNR. Further observe that, at high SNR, the upper bound Iupper(ρ) and all lower
bounds have the same logarithmic slope as Ccoh(ρ). This fact was used in [Loz08,Asy11,Asy13]
to derive tight lower bounds on the capacity pre-log of noncoherent fading channels.

3 The capacity pre-log is defined as the limiting ratio of the capacity to log(ρ) as ρ tends to infinity. In multiple-input
multiple-output (MIMO) systems, it is sometimes also referred to as the number of degrees of freedom or the multiplexing
gain.
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(b) Bounds vs. energy per information bit.

Figure 2.3 Prediction-based channel estimation.
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Figure 2.4 Interpolation-based channel estimation.

Figure 2.5 shows the same plots as Figure 2.4(a), except that all values have been divided
by R(ρ) so as to visualize the relative improvement of the rate-splitting bounds over Médard’s
bound. We observe that, at low SNR, these improvements are negligible. This indicates that the
rate-splitting bounds may be more interesting at moderate and high SNR than at low SNR.

2.2 Multiple-Input Multiple-Output (MIMO) Channels

We now extend the SISO model from the previous section to a MIMO model. For this purpose,
we consider a multiple-antenna memoryless fading channel having nT transmit antennas and nR
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Figure 2.5 Bounds from Figure 2.4(a), divided by R(P ).

receive antennas. At time instant k ∈ Z, the channel output y[k] ∈ CnR which corresponds to
the channel input x[k] = x ∈ CnT , is given by

y[k] = √ρ
(
Ĥ[k] + H̃[k]

)
x + n[k]. (2.49)

For simplicity, we assume that each of the three sequences {x[k]}k∈Z, {n[k]}k∈Z and
{(Ĥ[k], H̃[k])}k∈Z is ergodic and has independent and identically distributed (i.i.d.) elements.
The noise n[k] and the input signal x[k] are assumed to have mean zero, and covariances
InR = E

[
n[k]n[k]†

]
and Q = E

[
x[k]x[k]†

]
, respectively, where Q fulfills the normalization

tr(Q) = 1. Consequently, the scalar ρ stands for the SNR. The fading channel Ĥ[k] + H̃[k]
is the sum of two components: the channel estimate Ĥ[k] ∈ CnR×nT and the channel estima-
tion error H̃[k] ∈ CnR×nT , with respective means E[Ĥ[k]] = M and E[H̃[k]] = 0. The receiver
is cognizant of the joint distribution of (Ĥ[k], H̃[k]) and of the sequence of channel estimates
{Ĥ[k]}k∈Z, but ignores the estimation errors {H̃[k]}k∈Z.

We assume that, conditioned on (almost) every Ĥ[k] = Ĥ, the channel estimate is unbiased,
i.e.,4

E
[
H̃[k]

∣∣ Ĥ
]

= 0. (2.50)

Also, we assume that x[k], n[k], and (Ĥ[k], H̃[k]) are mutually independent for every k ∈ Z
(though Ĥ[k] and H̃[k] may be mutually dependent). Without loss of generality, we shall assume
that on average (over the nRnT antennas) the channel coefficients have an expected second

4 In systems where Ĥ is a function of some channel side information Ω independent of the input x (e.g., a training observation
in training-based channel estimation), (2.50) is tantamount to assuming Ĥ = E[H|Ω], i.e., Ĥ is the minimum mean-square
error estimator of H from Ω.
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moment of one, that is,

E
[
‖H‖2F

]
= E

[
‖Ĥ[k]‖2F

]
+ E

[
‖H̃[k]‖2F

]
= nRnT (2.51)

where ‖A‖F =
√

tr(A†A) denotes the Frobenius norm of A.

The capacity of the MIMO system (2.49) is [Big98]

C = sup
x
I(x; y|Ĥ) = h(x)− h(x|y, Ĥ)

= h(y|Ĥ)− h(y|x, Ĥ) (2.52)

where the supremum is over the distribution of x subject to certain constraints. Due to the
assumption that all sequences {x[k]}k∈Z, {n[k]}k∈Z and {(Ĥ[k], H̃[k])}k∈Z are i.i.d. ergodic, we
can again omit the time indices in (2.52) and throughout, since they are immaterial.

In the following, we will consider the covariance-constrained capacity, meaning that x is
constrained to having a fixed covariance Q = E[xx†]. As for the SISO case, the capacity is only
known in the coherent setting (i.e., when H̃ = 0 almost surely) [Tel99]

Ccoh , sup
x
I(x; y|H) = E

[
log det

(
InT + ρH†HQ

)]
. (2.53)

In contrast, in the case of imperfect CSI treated here, in which the receiver knows Ĥ but not
H, the capacity (2.52) is notoriously difficult to compute. Médard bound for the single-antenna
case [M0́0] was extended to the MIMO case by Baltersee, Fock and Meyr [Bal01], as well as
by Hassibi and Hochwald [Has03], who coined the term worst-case noise bound which we have
adopted throughout this thesis.

By restraining the input to a Gaussian distribution (xG shall refer to a Gaussian input), and
then deriving the worst-case noise lower bound on the Gaussian-input mutual information as
in [M0́0], [Has03, Theorem 1], we get

C ≥ I
(
xG; y|Ĥ

)
≥ E

[
log det

(
InT + Ĥ†Γ−1ĤQ

)]
, R (2.54)

where ρΓ denotes the covariance of the effective noise √ρH̃x + n conditioned on Ĥ, i.e.,

Γ = E
[
H̃QH̃†

∣∣ Ĥ
]

+ ρ−1InR . (2.55)

To complement this lower bound, we also state a corresponding mutual information upper
bound for Gaussian inputs, which holds under the assumption that H̃ is Gaussian conditioned
on (almost) every Ĥ = Ĥ. It can be derived in a straightforward way along the same lines as
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(1.34):
I(xG; y|Ĥ) ≤ R+ ∆ (2.56)

where

∆ = E

log

 det
(
E
[
H̃QH̃†

∣∣ Ĥ
]

+ ρ−1Ir
)

det
(
E
[
H̃Q

1
2 ξξ†Q

1
2 H̃†

∣∣ ξ, Ĥ]+ ρ−1Ir
)
 . (2.57)

where ξ ∼ NC
(
0, InT

)
.

Thanks to its simplicity, the lower bound R has become widely popular as a means to derive
achievable rate expressions for the noncoherent MIMO setting (by inclusion of a training scheme
as in [Has03]), or for the partially coherent setting, in which an erroneous channel estimate is
assumed to be available to the receiver (e.g., [Yoo06]). This bound has been used subsequently
in a large body of work on multiple-antenna systems (e.g. in [Yoo04, Mus05, Soy10, Din10], to
cite only a few). In the following, we show how the lower bound (2.54) can be sharpened using
rate splitting, in full analogy to the SISO case treated in the previous section.

2.2.1 The Rate-Splitting Approach

Upon decomposing the Gaussian transmit signal into a sum xG =
∑L
`=1 x` of mutually indepen-

dent Gaussian subsignals x`, the mutual information chain rule yields

I
(
xG; y|Ĥ

)
=

L∑
`=1

I
(
x`; y|x`−1, Ĥ

)
(2.58)

where x`−1 denotes the collection (x1, . . . ,x`−1) and x0 is the empty collection. By lower-
bounding each summand on the right-hand side of (2.58) using the worst-case-noise lower-
bounding technique, one ends up with a lower bound that is sharper than the conventional
single-layer bound (L = 1).

In analogy to the SISO case, we show that the optimal rate-splitting approach (in terms
of improving the mutual information bound) consists in letting the number of layers tend to
infinity, in such a way that the powers and rates associated to each layer become infinitesimally
small. An analytic expression for this infinite-layering limit is proposed which constitutes an
improved capacity lower bound of MIMO channels with imperfect receiver CSI.

However, in contrast to the SISO case, in the case of multiple transmit antennas there is
an infinitely large family of such infinite-layering approaches, in that there are infinitely many
possibilities of spatially decomposing a Gaussian transmit signal of given covariance into a sum
of independent Gaussian subsignals (each associated to a layer). Therefore, the rate-splitting
approach gives rise to a whole family of improved capacity bounds, out of which the best bound is
not easy to determine. Nonetheless, any arbitrary layering yields an improved capacity bound and
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we will derive analytical bound expressions for two simple exemplary layerings in the following
chapter.

Consider the transmit covariance Q to be fixed throughout. In a system which performs rate
splitting and successive decoding with L layers, we write the Gaussian transmit signal xG as a
sum of mutually independent x` ∼ NC(0,Q`) with ` = 1, . . . , L, satisfying

xG =
L∑
`=1

x` Q =
L∑
`=1

Q` (2.59)

We further assume that all x` are independent of (Ĥ, H̃). The sequence of transmit covariances
(Q`)`=1,...,L is thus denoted as QL. Since y depends on xL only via the sum xG of its elements,
y has the same distribution whether it is conditioned on xG or on xL, so

I
(
xG; y

∣∣Ĥ) = I
(
xL; y

∣∣Ĥ) =
L∑
`=1

I
(
x`; y

∣∣x`−1, Ĥ
)
. (2.60)

The second equality follows from the chain rule for mutual information.

To lower-bound the mutual information terms appearing in the sum on the right-hand side
of (2.60), we state a well-known result by Hassibi and Hochwald [Has03, Theorem 1] in a version
that is tailored for our needs. Its proof, provided in Appendix B.11, is largely similar to that
found in the original paper [Has03], and its proof goes along the same lines as that of Lemma 2.1.

Theorem 2.4. We have the following lower bound on the `-th term in the sum (2.60):

I
(
x`; y

∣∣x`−1, Ĥ
)
≥ E

[
log det

(
InT + Ĥ†Γ−1

` ĤQ`

)]
(2.61)

Here, the random matrix Γ` is given by

Γ` , E
[
H̃Q

1
2
` ξξ

†Q
1
2
` H̃†

∣∣ ξ, Ĥ]+ E
[
H̃Q`H̃†

∣∣ Ĥ
]

+ ĤQ`Ĥ† + E
[
H̃Q`H̃†

∣∣ Ĥ
]

+ ρ−1InR (2.62)

where ξ ∼ NC(0, InT) is independent of Ĥ, and we have used abbreviations Q
`

=
∑`−1
i=1 Qi and

Q` =
∑L
i=`+1 Qi.

Proof: See Appendix B.11.

The covariance (2.62) contains four terms, each of which has a physical interpretation. When
decoding the `-th layer, the decoder treats the following terms as noise:

(1) E
[
H̃Q

1
2
` ξξ

†Q
1
2
` H̃†

∣∣ ξ, Ĥ] is due to residual interference from previously decoded layers
1, . . . , `− 1, which could not be cancelled due to the imperfect CSI;

(2) E
[
H̃Q`H̃†

∣∣ Ĥ
]

accounts for the imperfection of CSI impairing the decoding of the
`-th layer;
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(3) ĤQ`Ĥ† + E
[
H̃Q`H̃†

∣∣ Ĥ
]

can be assimilated to the interference caused by yet unde-
coded layers `+ 1, . . . , L;

(4) ρ−1InR reflects the independent additive white noise.

2.2.2 Layering Functions and Indexings

A rate-splitting allocation is specified by a decomposition of the transmit covariance Q into a
sum of Q` ∈ CnT×nT

+ , each associated to (2.59). In order to facilitate the systematic treatment
of such rate-splitting schemes, let us introduce so-called layering functions and indexings.

Definition 2.1 (Layering function). A function L : [0; 1]→ CnT×nT
+ , ι 7→ L(ι) which fulfills

(1) L(0) = 0 and L(1) = Q (border values);

(2) L(ι) for all ι ∈ [0; 1] (positive semidefiniteness);

(3) ι1 < ι2 → L(ι1) � L(ι2) (monotonicity);

(4) tr(L(ι)) = ι (normalization)

is called a layering function. The set of all layering functions is denoted as L.

A further property of layering functions which follows directly from the properties listed in
Definition 2.1 is Lipschitz-continuity: the entries Li,j(ι) of a layering function L(ι) are Lipschitz-
continuous with modulus 1. This means that for any (ι1, ι2) ∈ [0; 1]2, we have

∣∣Li,j(ι1)− Li,j(ι2)
∣∣ ≤ |ι1 − ι2|. (2.63)

A proof is provided in Appendix B.13. This Lipschitz-continuity will be useful later.

Definition 2.2. A collection of L + 1 distinct real numbers I = {ι0, ι1, . . . , ιL} ∈ [0; 1]L+1

containing at least the two elements 0 and 1, is referred to as an L-indexing. The elements of
an L-indexing are labelled in ascending order, i.e., 0 = ι0 < ι1 < . . . < ιL = 1. If an indexing
I is contained in another indexing I ′ such that I 6= I ′, we shall say that I ′ is a refinement
of I . The set of all L-indexings is denoted as I(L), while the set of all indexings

⋃
L∈N I(L) is

denoted as I.

For any such layering, we further define the following notations:

LI
` , L(ι`), ` = 0, . . . , L (2.64)

∆LI
` , L(ι`)− L(ι`−1), ` = 1, . . . , L. (2.65)
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Note that as a consequence of the properties of layering functions [cf. Definition 2.1], the terms
∆LI

` are non-zero and positive semidefinite, and they sum up to Q.

Therefore, to characterize a rate-splitting scheme, instead of specifying a collection
(Q1, . . . ,QL), we will find it more convenient to specify a layering function and an indexing,
and relate both descriptions via

Q` = ∆LI
` . (2.66)

Hence, from now on, a layering shall be a pair (L,I ) ∈ L× I.

Upon making appropriate replacements, we can express the rate-splitting bound (2.61) as a
function of the layering (L,I ), namely

I
(
xG; y

∣∣Ĥ) ≥ L∑
`=1

E log det
(
InT + Ĥ†

(
ΓI
`

)−1Ĥ ∆LI
`

)
, R(L,I ) (2.67)

where

ΓI
` , E

[
H̃
(
LI
`−1
) 1

2 ξξ†
(
LI
`−1
) 1

2 H̃†
∣∣ ξ, Ĥ]+ E

[
H̃∆LI

` H̃†
∣∣ Ĥ

]
+

+ ĤL̄I
` Ĥ† + E

[
H̃L̄I

` H̃†
∣∣ Ĥ

]
+ ρ−1InR (2.68)

where L̄I
` , Q− LI

` and where ξ ∼ NC(0, InT) is independent of Ĥ.

Note that for a single layer, i.e., for I = {0, 1}, the rate-splitting bound R(L, {0, 1}) coincides
with the conventional worst-case-noise bound R.

2.2.3 Rate Splitting with an Arbitrary Finite Number of Layers

It can be readily verified that any rate-splitting bound R(L,I ) is not smaller than the conven-
tional bound (2.54), i.e.,

R ≤ R(L,I ) ≤ I(xG; y|Ĥ). (2.69)

In fact, by averaging ΓI
` over ξ, we observe that [cf. (2.55), (2.68)]

E
[
ΓI
`

∣∣ Ĥ
]

= Γ + ĤL`Ĥ† (2.70)
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and upon noting that the function X 7→ log det(I + AX−1) for A � 0 is convex over the set of
positive definite X � 0, we can apply Jensen’s inequality to get

R(L,I ) ≥
L∑
`=1

E log det
(
InT + Ĥ† E

[
ΓI
` |Ĥ

]−1Ĥ ∆L`
)

=
L∑
`=1

E
[
log det

(
Γ + ĤLI

` Ĥ† + Ĥ∆L`Ĥ†
)
− log det

(
Γ + ĤLI

` Ĥ†
)]

=
L∑
`=1

E
[
log det

(
Γ + ĤLI

`−1Ĥ†
)
− log det

(
Γ + ĤLI

` Ĥ†
)]

= E
[
log det

(
Γ + ĤLI

0 Ĥ†
)
− log det(Γ)

]
= R (2.71)

with equality in the single-layer case, in which I = {0, 1}. The last equality follows because
LI

0 = Q and from comparison with (2.54) and (2.55).

The following Theorem generalizes the above finding to arbitrary indexing refinements.

Theorem 2.5. For any fixed layering function L, if the indexing I ′ is a refinement of I , then
I ′ yields a rate not smaller than I . Stated formally,

I ( I ′ → R(L,I ) ≤ R(L,I ′). (2.72)

Proof: See Appendix B.12.

The left-hand side of (2.69) then follows by noting that R = R(L, {0, 1}) and that {0, 1} ⊆ I

for any indexing I ∈ I. This Theorem is proved in a similar way as in the derivation above,
using Jensen’s inequality.

2.2.4 Rate Splitting with an Infinite Number of Layers

We are interested in finding the best among all rate-splitting bounds. That is, we seek to optimize
the indexings and layering functions so as to approach the following supremum:

R?? , sup
(L,I )∈L×I

R(L,I ). (2.73)

Let us also define the supremum over the indexings alone:

R?(L) , sup
I∈I

R(L,I ). (2.74)

Clearly, for any layering (L,I ) ∈ L× I we have

R ≤ R(L,I ) ≤ R?(L) ≤ R?? ≤ I(xG; y|Ĥ) (2.75)
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where R?? represents the best rate-splitting bound. Unfortunately, the computation of R?? seems
elusive. However, given any layering function L ∈ L, we can derive an analytic expression for
R?(L), which is given by Theorem 2.6 below.

For this purpose, observe that from Theorem 2.5 we can infer that for a fixed layering function
L,

L 7→ sup
I∈I(L)

R(L,I ) (2.76)

is a non-decreasing function. Therefore, R?(L) equals the limit of (2.76) as the number of layers
tends to infinity:

R?(L) = lim
L→∞

{
sup

I∈I(L)
R(L,I )

}
. (2.77)

Theorem 2.6 below provides an analytic expression for this limit.

Definition 2.3 (Riemann-Stieltjes integral). Consider a function f : [a; b] ⊆ [−∞; +∞] → R
and a function g : R → R. For any set X = {x0, . . . , xN} ∈ [a; b]N+1 of distinct elements with
a = x0 < . . . < xN = b, let the lower and upper sum be respectively defined as

S(f, g,X ) =
N∑
n=1

inf
x∈[xn;xn−1]

f(x)
(
g(xn+1)− g(xn)

)
(2.78)

S(f, g,X ) =
N∑
n=1

sup
x∈[xn;xn−1]

f(x)
(
g(xn+1)− g(xn)

)
. (2.79)

If, over all partitions X , the infimum of the upper sum and the supremum of the lower sum
coincide, then the common value is denoted as∫ b

a
f(x) dg(x) = sup

X
S(f, g,X ) = inf

X
S(f, g,X ) (2.80)

and is called the Riemann-Stieltjes integral of the integrand function f over [a; b] with integrator
function g. The notation

∫ 1
0 tr

[
F(ι) dG(ι)

]
with a matrix-valued integrand F(ι) = [Fi,j(ι)]i,j and a

matrix-valued integrator G(ι) = [Gi,j(ι)]i,j shall be a compact notation for the Riemann-Stieltjes
integral

∫ 1
0
∑
i,j Fi,j(ι) dGj,i(ι).

Theorem 2.6. For any prescribed layering function L, the best rate-splitting bound is given by

R?(L) =
∫ 1

0
E tr

[
Ĥ†Γ

(
L(ι)

)−1Ĥ dL(ι)
]

(2.81)

where the function Γ : CnT×nT
+ → CnR×nR is given by

Γ(X) = E
[
H̃X

1
2 ξξ†X

1
2 H̃†

∣∣ ξ, Ĥ]+ Ĥ(Q−X)Ĥ† + E
[
H̃(Q−X)H̃†

∣∣ Ĥ
]

+ ρ−1InR (2.82)

with ξ ∼ NC(0, InT) independent of Ĥ.
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Proof: See Appendix B.14.

Numerical simulations of this new class of mutual information bounds are postponed to
Section 3.2 in the next chapter. Meanwhile, a couple of remarks are due concerning Theorem 2.6.

Remark 2.6. The integral notation involving the infinitesimal dL inside the trace opera-
tor should be understood as a compact matrix notation for a linear combination of scalar
Riemann-Stieltjes integrals. Specifically, the notation

∫ 1
0 tr

[
A(ι) dB(ι)

]
with matrix-valued func-

tions A(ι) = [Ai,j(ι)]i,j and B(ι) = [Bi,j(ι)]i,j stands for the sum of Riemann-Stieltjes integrals∑
i,j

∫ 1
0 Ai,j(ι) dBj,i(ι).

Remark 2.7. If the layering function L is (entrywise) continuously differentiable and its deriva-
tive with respect to ι is denoted as L̇(ι), then (2.81) can be written as a Riemann integral

R?(L) =
∫ 1

0
E tr

[
Ĥ†Γ

(
L(ι)

)−1ĤL̇(ι)
]

dι (2.83)

Remark 2.8. Assuming an entrywise continuously differentiable layering function L, when one
writes R?(L) as a Riemann integral as in (2.83), then the single-layer bound R can be promptly
recovered by means of Jensen’s inequality. Indeed, since L̇ is positive semidefinite, the mapping
X 7→ tr

(
Ĥ†X−1ĤL̇

)
is convex on the cone of positive definite matrices, so we infer that by

moving the expectation over ξ from outside the trace operator onto the inverted matrix Γ(L(ι)),
one obtains a lower bound on R?(L), which after solving the integral over ι turns out to be R.

Remark 2.9. Notice that, using the identity

d
dα log det

(
A + ĤB(α)Ĥ†

)
= tr

(
Ĥ†

(
A + ĤB(α)Ĥ†

)−1
ĤḂ(α)

)
(2.84)

one can easily verify that, if Ĥ and H̃ are mutually independent, then (2.83) can be rewritten as

R?(L) = −E
[∫ 1

0
Kι

(
E
[
H̃
(
L(ι)

1
2 ξξ†L(ι)

1
2 − L(ι)

)
H̃†

∣∣∣ ξ]) dι
]

(2.85)

where
Kι(∆) = d

dι E
[
log det

(
∆ + E

[
H̃QH̃†

]
+ ρ−1InR + Ĥ

(
Q− L(ι)

)
Ĥ†
)]

(2.86)

This alternative representation will be useful to prove Theorem 3.1 in Chapter 3.

2.2.5 Further Properties of Layering Functions

We provide three lemmata which shed more light on the function R?(L) and on the set of layering
functions.

Lemma 2.3 (Continuity in the layering function). If E
[
‖Ĥ‖4F

]
< ∞, then the function R?(L)
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is uniformly continuous in L. This means that, for any ε > 0 there exists δ > 0 such that

‖L1 − L2‖∞ ≤ δ ⇒
∣∣R?(L1)−R?(L2)

∣∣ ≤ ε. (2.87)

Proof: See Appendix B.15.

The condition that the fourth moment of Ĥ must be finite may not be necessary for the
continuity to hold, but the proposed proof given in Appendix B.15 relies on this assumption.
The next two lemmata below also require this finiteness because they rely on Lemma 2.3.

Let LD denote the set of (entrywise) continuously differentiable layering functions.

Lemma 2.4 (Differentiable layering functions). If E
[
‖Ĥ‖4F

]
< ∞, the set LD is dense in L in

the sense that for every L ∈ L and ε > 0, there exists a L̃ ∈ LD such that ‖L− L̃‖∞ < ε.

Proof: See Appendix B.17.

Corollary 2.2. The best rate-splitting bound R?? is the supremum of R?(L) over LD, i.e.,

R?? = sup
L∈L

R?(L) = sup
L∈LD

R?(L). (2.88)

Corollary 2.2 allows to restrict the analysis to continuously differentiable layering functions,
and therefore to expressions of R?(L) involving a simple Riemann integral (2.83) instead of a
Riemann-Stieltjes integral.

Lemma 2.5 (Optimal layering). If E
[
‖Ĥ‖4F

]
<∞, there exists an optimal layering function

L? = argmax
L∈L

R?(L). (2.89)

Proof: See Appendix C.1.

In other words, the supremum (2.73) can as well be written as a maximum, which is achieved
by L? such that R?? = R?(L?). For more than a single transmit antenna, there are many possible
choices for the layering function. Determining the best layering function L? constitutes a difficult
variational problem, and seems beyond reach. As a remedy, one can simply choose L(ι) = ιQ,
although this choice is not generally optimal. To acquire some understanding on how the layering
function affects the rate-splitting bound, in the next Section we particularize the fading model
and define two special layering functions, to be compared in simulations. Note, however, that
the optimal layering function L? need not belong to L ∈ LD.
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Rate-Splitting Bounds for the MIMO IID Rayleigh Fading Channel

To gain additional insights, we dedicate this section to the study of the special case of spatially
uncorrelated and mutually independent vec(Ĥ) ∼ NC(0, V̂ InRnT) and vec(H̃) ∼ NC(0, Ṽ InRnT),
with V̂ + Ṽ = 1. Accordingly, we will write the random matrices Ĥ and H̃ as

Ĥ =
√
V̂ Ŵ H̃ =

√
Ṽ W̃ (3.1)

where Ŵ ∼ NC(0, InRnT) and W̃ ∼ NC(0, InRnT) are mutually independent1. In the remainder
of this chapter, we shall refer to this situation as the i.i.d. Rayleigh fading assumption.

Under these assumptions, the worst-case-noise bound reads as [cf. (2.54)]

R = E
[
log det

(
InT + V̂

Ṽ + ρ−1 Ŵ†ŴQ
)]

(3.2)

whereas the infinite-layering bound reads as [cf. (2.81)]

R?(L) = V̂

∫ 1

0
E tr

[
Ŵ†Γ(L(ι))−1Ŵ dL(ι)

]
(3.3)

where [cf. (2.82)]

Γ(L(ι)) = Ṽ ξ†L(ι)ξ · InR + V̂ ŴL̄(ι)Ŵ† + (1− ι)Ṽ InR + ρ−1InR (3.4)

where L̄(ι) , Q− L(ι), and where ξ ∼ NC(0, InT) is independent of Ŵ.

For simplicity, we will only consider continuously differentiable layering functions L ∈ LD.
The loss of optimality as a consequence of this restriction can be made arbitrarily small, accord-

1 The letter ‘W’ is chosen in reference to the fact that such matrices are sometimes called white.

43
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ing to Lemma 2.4.

Furthermore, we will usually set the transmit covariance to Q = 1
nT

InT , except for Theo-
rem 3.4, which holds for any transmit covariance matrix.

3.1 Diagonal Layering Functions

Theorem 3.1. Under i.i.d. Rayleigh fading assumptions (3.1), for a transmit covariance Q =
1
nT

InT and for continuously differentiable L ∈ LD, the rate-splitting bound R?(L) does not depend
on the eigenbasis of L. Specifically, one can construct (entrywise) continuously differentiable
functions

UL : [0; 1]→ UnT×nT (3.5a)

ΛL : [0; 1]→ RnT×nT
+ (3.5b)

where ΛL is diagonal, such that

L(ι) = UL(ι)ΛL(ι)UL(ι)† (3.6)

is the eigendecomposition of L(ι), and such that ΛL ∈ L is a layering function2 satisfying

R?(L) = R?(ΛL). (3.7)

Proof: See Appendix C.3.

As a consequence of Theorem 3.1, we can restrict L(ι) to be diagonal for all ι ∈ [0; 1] without
loss of generality or optimality. Of course, this is also true for the optimal layering function L?.
Note, however, that the proof of this property depends critically on the assumptions of i.i.d.
Rayleigh fading and of a scaled-identity transmit covariance.

3.2 Two Exemplary Layering Functions

For the transmit covariance Q = 1
nT

InT , we define two exemplary layering functions, the so-called
staggered layering and levelled layering, denoted respectively as Lstag and Llev.

3.2.1 Levelled Layering

Definition 3.1 (Levelled layering function). The layering function Llev(ι) = 1
nT

InTι is called
the levelled layering function.

2 In fact, if we do note require its diagonal entries to be ordered, ΛL can even be made a continuously differentiable layering
function.
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For levelled layering, the infinite-layering bound (3.3) specializes to

R?(Llev) = V̂

nT

∫ 1

0
E tr

[
Ŵ†Γ(Llev(ι))−1Ŵ

]
dι (3.8)

where [cf. (3.4)]

Γ(Llev(ι)) = ΞnT

nT
Ṽ InRι+

(
V̂

nT
ŴŴ† + Ṽ InR

)
(1− ι) + ρ−1InR . (3.9)

with ΞnT being a gamma-distributed random variable with shape nT and scale 1 whose proba-
bility density function is given as

fΞnT
(ξ) =


0 for ξ < 0
ξnT−1

(nT − 1)!e
−ξ for ξ ≥ 0.

(3.10)

3.2.2 Staggered Layering

Definition 3.2 (Staggered layering function). The layering function

Lstag(ι) = 1
nT


κ(ιnT) 0

κ(ιnT − 1)
. . .

0 κ(ιnT − nT + 1)

 (3.11)

where κ(x) is defined as

κ(x) =


0 for x ≤ 0

x for 0 ≤ x ≤ 1

1 for x ≥ 1

(3.12)

is called the staggered layering function.

0 1
nT

2
nT

0

1
nT

[
Lstag(ι)

]
1,1[

Lstag(ι)
]
2,2[

Lstag(ι)
]
3,3

nT−2
nT

nT−1
nT

1
0

1
nT

[
Lstag(ι)

]
nT−2,nT−2[

Lstag(ι)
]
nT−1,nT−1[

Lstag(ι)
]
nT,nT

Figure 3.1 Diagonal entries
[
Lstag(ι)

]
i,i

of the staggered layering function

For staggered layering, we derive in Section C.2 that the infinite-layering bound (3.3) spe-
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Figure 3.2 Capacity and mutual information bounds for nR = nT = 2 and V̂ = Ṽ = 1
2

cializes to

R?(Lstag) = V̂ E
[
nT∑
i=1

∫ 1

0

ŵ†iAi(ν)−1ŵi

1 + V̂ (1− ν)ŵ†iAi(ν)−1ŵi

dν
]

(3.13)

with

Ai(ν) =
(
Ṽ
(
Ξi−1 + νΞ̃1 + 1− ν + nT − i

)
+ nTρ

−1
)

InR + V̂ Ŵ(i+1):nTŴ†
(i+1):nT

(3.14)

where Ξi−1 and Ξ̃1 are mutually independent, gamma-distributed with scale 1 and respective
shapes i− 1 and 1 [cf. (3.10)], and where Ŵi:j stands for the matrix composed of the columns
i through j of the matrix Ŵ.

Alongside the capacity and mutual information lower bounds, Figure 3.2 also shows the
mutual information upper bound (2.56), which specializes to

Iupper(ρ) = R(ρ) + nR E

log Ṽ + ρ−1

Ṽ
ΞnT
nT

+ ρ−1

 (3.15)

and is stated in general form in (2.56).

The levelled and staggered layering are chosen for illustrative purposes, since they appear as
the two most natural choices of diagonal layering functions. However, we stress that nothing
is known as to whether they are optimal in any sense, not even in the highly symmetric i.i.d.
Rayleigh fading scenario. In general, they produce different bounds R?(Llev) and R?(Lstag), as
can be seen by the slight difference between their corresponding curves in Figure 3.2. It should
not be inferred from Figure 3.2 that levelled layering generally outperforms staggered layering. In
fact, further numerical comparisons suggest that neither of these two contenders is a candidate
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for optimality, since the superiority of one over the other depends on the specific values of
system parameters. Clearly, the computation of the best layering L? is a difficult problem even
in a comparatively simple and symmetric scenario such as i.i.d. Rayleigh fading.

3.3 Asymptotically Perfect CSI

In the numerical example considered in the previous section (cf. Figure 3.2), it is assumed that
the joint distribution of (Ĥ, H̃) does not depend on the SNR ρ, in that V̂ and Ṽ are constant.
However, in practical communication systems, the channel estimation error—as measured by
Ṽ—typically decreases as the SNR increases. This is because, with increasing SNR, transmit
power becomes increasingly affordable not only for data transmission, but as well for channel
estimation. In this section, we investigate the high-SNR behavior of rate-splitting bounds in
circumstances where the channel estimation error vanishes as the SNR tends to infinity. When
this condition is satisfied, we shall say that we have asymptotically perfect CSI. Note that, unlike
Subsection 2.1.7 in which the SISO case was treated, here Ṽ is not a function of the channel
estimate, since we assumed (for reasons of tractability of the MIMO case) that H and H̃ are
mutually independent.

We will consider that Ṽρ and V̂ρ = 1− Ṽρ are functions of ρ such that

lim
ρ→∞

Ṽρ = 0. (3.16)

We also adapt the notation of the capacity and mutual information bounds to reflect the fact
that they are functions of ρ. Therefore, we will write Rρ, R?ρ(L), and Iupper,ρ.

Theorem 3.2. The bound R?ρ(L) is asymptotically tight for any layering function L, in the
sense that

lim
ρ→∞

{
Iupper(xG; y|Ĥ)−R?ρ(L)

}
= 0 (3.17)

and consequently,
lim
ρ→∞

{
I(xG; y|Ĥ)−R?ρ(L)

}
= 0. (3.18)

Proof: See Appendix C.4.

Figure 3.3 shows the capacity and mutual information bounds corresponding to Figure 3.2,
but for asymptotically perfect CSI. The estimation error variance is chosen to be Ṽρ = 1

ρ+1 , as
for interpolation-based channel estimation [cf. (2.42b)].
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Figure 3.3 Capacity and mutual information bounds for asymptotially perfect CSI

3.4 Large MIMO Systems

3.4.1 Large Transmit Antenna Arrays

Consider a sequence of channels with increasing number of transmit antennas. To make the
parameter nT explicit in notation, we write (3.1) as

ĤnT =
√
V̂ ŴnT H̃nT =

√
Ṽ W̃nT (3.19)

where vec(ŴnT) ∼ NC(0, InRnT) and vec(W̃nT) ∼ NC(0, InRnT). On the nT-th channel, let the
transmit covariance be 1

nT
InT and the layering function be LnT . The sequence {LnT}nT∈N of

layering functions LnT ∈ LD
( 1
nT

InT

)
may be arbitrary. For the nT-th channel, the worst-case-

noise bound RnT and the rate-splitting bound R?nT(LnT) are given respectively by [cf. (3.2),
(3.3)]

RnT , E log det
(

InR + V̂

Ṽ + ρ−1
ŴnTŴ†

nT

nT

)
(3.20)

and
R?nT(LnT) , V̂

∫ 1

0
E tr

[
Ŵ†

nTΓnT(LnT(ι))−1ŴnTL̇nT(ι)
]

dι (3.21)

respectively, where [cf. (3.4)]

ΓnT(LnT(ι)) ,
(
Ṽ ξ†LnT(ι)ξ + Ṽ (1− ι) + ρ−1

)
InR + V̂ ŴnT

( 1
nT

InT − LnT(ι)
)
Ŵ†

nT . (3.22)

Theorem 3.3. The difference between the rate-splitting bound and the worst-case-noise lower
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bound vanishes in the limit as the number of transmit antennas grows to infinity. Formally,

lim
nT→∞

{
R?nT(LnT)−RnT

}
= 0 (3.23)

Proof: See Appendix C.5.
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Figure 3.4 Bound difference R?nT (Llev)−RnT
for a MISO channel (nR = 1) as a function of the number of transmit antennas

nT. The chosen parameters are ρ = 10dB, V̂ = Ṽ = 1
2 .

3.4.2 Large Receive Antenna Arrays

Similarly to the previous subsection, we now consider a sequence of channels with increasing
number of receive antennas nR. To make the parameter nR explicit in notation, we write (3.1)
as

ĤnR =
√
V̂ ŴnR H̃nR =

√
Ṽ W̃nR (3.24)

where vec(ŴnR) ∼ NC(0, InRnT) and vec(W̃nR) ∼ NC(0, InRnT). The transmit covariance Q and
the layering function L ∈ LD shall be arbitrary and do not depend on the number of receive
antennas. For the nR-th channel, the worst-case-noise bound RnR and the rate-splitting bound
R?nR(L) are given respectively by [cf. (3.2), (3.3)]

RnR , E log det
(

InT + V̂

Ṽ + ρ−1 Ŵ†
nRŴnRQ

)
(3.25)

and
R?nR(L) , V̂

∫ 1

0
E tr

[
Ŵ†

nRΓnR(L(ι))−1ŴnRL̇(ι)
]

dι (3.26)

respectively, where [cf. (3.4)]

ΓnR(L(ι)) ,
(
Ṽ ξ†L(ι)ξ + Ṽ (1− ι) + ρ−1

)
InR + V̂ ŴnRL̄(ι)Ŵ†

nR (3.27)

and where L̄(ι) , Q− L(ι).
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Theorem 3.4. The difference between the rate-splitting bound and the worst-case-noise lower
bound tends to a positive limit as the number of receive antennas grows to infinity. Formally,

lim
nR→∞

{
R?nR(L)−RnR

}
= nT E

[
log

(
Ṽ + ρ−1

Ṽ ξ†Qξ + ρ−1

)]
(3.28)

Proof: See Appendix C.6.
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Figure 3.5 Bound difference R?nR (Llev)−RnR
for a SIMO channel (nT = 1) as a function of the number of receive antennas

nR. The chosen parameters are ρ = 10dB, V̂ = Ṽ = 1
2 .

To make sense of the value of the large-system limit from Theorem 3.4, observe that, since
the distribution of ξ ∼ NC

(
0, InT

)
is rotationally invariant, the quantity E

[
log

(
Ṽ ξ†Qξ + ρ−1

)]
is a concave and symmetric function of the eigenvalues of Q. Over the set of unit-trace positive
semidefinite matrices Q, it is minimized by a rank-one matrix (i.e., Q has a single non-zero
eigenvalue, which is equal to one) and maximized by the scaled identity matrix 1

nT
InT . We thus

obtain the following upper and lower bounds:

nT E

log

 Ṽ + ρ−1

Ṽ
ΞnT
nT

+ ρ−1

 ≤ nT E
[
log

(
Ṽ + ρ−1

Ṽ ξ†Qξ + ρ−1

)]
≤ nT E

[
log

(
Ṽ + ρ−1

Ṽ |ξ1|2 + ρ−1

)]
.

(3.29)
Here ΞnT stands for a gamma-distributed variable with shape nT and scale 1. The upper and
lower bound on either side of this inequality can both be evaluated in closed form using [Gra07,
(4.337), p. 568], resulting in expressions that involve the exponential integral function (or the
incomplete gamma function).

Note that the upper bound in the above inequality is monotonically increasing in ρ (much
like the other two quantities for that matter). Taking the limit as ρ→∞ on the right-hand side
expression, we notice that a looser and simpler upper bound is given by

lim
ρ→∞

{
nT E

[
log

(
Ṽ + ρ−1

Ṽ |ξ1|2 + ρ−1

)]}
= nT E

[
log(|ξ1|2)

]
= nTγ (3.30)
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where γ ≈ 0.577 is the Euler-Mascheroni constant. That is,

lim
nR→∞

{
R?nR(L)−RnR

}
≤ nTγ. (3.31)

Another noteworthy observation is that, if the number of receive antennas tends to infinity
while the number of precoded streams (i.e., the rank of Q) remains bounded, then the asymptotic
bound difference diverges to infinity in nT:

lim
nT→∞

lim
nR→∞

{
R?nR(L)−RnR

}
= +∞ (for rank-limited Q) (3.32)

For example, in case of a rank-one transmit covariance matrix (single-beam precoding), we would
have

lim
nR→∞

{
R?nR(L)−RnR

}
= nT E

[
log

(
Ṽ + ρ−1

Ṽ |ξ1|+ ρ−1

)]
(3.33)

which is directly proportional to nT. Instead, for a full-multiplexing transmit covariance Q =
1
nT

InT , we have

lim
nT→∞

lim
nR→∞

{
R?nR(L)−RnR

}
= 1

2 (for Q = 1
nT

InT) (3.34)

This follows from [Yoo06, Lemma 3, Appendix III].

All this being said, the significance of these asymptotic results should not be overstated. In
fact, the speed of convergence to these limits has not been studied. Besides, their explanatory
power might be very limited due to the fact that we are analyzing nested limits. Additionally,
one should bear in mind that both large-system limits given respectively by Theorem 3.3 (large
transmit array) and Theorem 3.4 (large receive array) assume that the values of V̂ and Ṽ do
not vary with the number of antennas. However, this might not reflect the realistic scaling
behavior of the CSI quality in practical large systems. For example, if forward training is used
in a system whose number of transmit antennas nT is increased, the channel estimation error
per channel coefficient is expected to decrease with nT. Therefore, one should be very cautious
when interpreting the above results.

Nonetheless, the comparison between the rather pessimistic result from Theorem 3.3 and
the rather optimistic result from Theorem 3.4 might at least indicate, as a rule of thumb, that
the superiority of the infinite-layering bound over the worst-case-noise bound is particularly
pronounced when the number of receive antennas (rather than that of the transmit antennas)
is large. For example, the analysis of achievable rates in a cellular uplink with a large number
of base station antennas might benefit from choosing infinite-layering bounds.
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3.4.3 Large Transmit and Receive Arrays

In contrast to the previous subsection, we now consider the number of transmit and receive
antennas to grow large. That is, we consider the large-system limit nT, nR →∞ such that

0 < lim
(
nR
nT

)
≤ lim

(
nR
nT

)
< +∞ (3.35)

which will be denoted as nT → ∞ throughout this subsection (where it is assumed that nR

grows as a function of nT). This will allow us to derive tight and easily computable approxima-
tions of the levelled layering bound (3.8). We first recall the following result which provides an
asymptotically exact approximation of the coherent capacity.

Theorem 3.5. Let Q = 1
nT

InT and w = vec(W) ∼ NC(0, InRnT) where W ∈ CnR×nT. The
coherent capacity Ccoh as defined in (2.53) satisfies [Hac08, Theorem 8]

Ccoh = E
[
log det

(
InT + ρ

nT
W†W

)]
= C̄ +O

(
nT
−1) (3.36)

as nT →∞, where

C̄ =
∫ ∞

1
ρ

(
nR
t
− nTζ(t)

)
dt

= nT log
(
1 + ζ(ρ−1)

)
+ nR log

(
1 + 1

ρ
(
1 + ζ(ρ−1)

))− nTζ(ρ−1)
1 + ζ(ρ−1) (3.37)

and the function ζ is given by

ζ(t) =
nR
nT
− 1

2t − 1
2 +

√(
1− nR

nT
+ t
)2

+ 4nR
nT
t

2t . (3.38)

Note that Theorem 3.5 is a stronger result than the well-known convergence of the per-
antenna mutual information to its asymptotic limit (see, e.g., [Ver99]) which holds for channel
matrices composed of arbitrary i.i.d. entries with finite second-order moment. As a direct con-
sequence of Theorem 3.5, we obtain the following approximation of the lower bound in (2.54):

R = R̄+O
(
nT
−1) (3.39)

where
R̄ = C̄

(
V̂

Ṽ + ρ−1

)
(3.40)

Since one can show (cf. [Hac08]) that the O(nT
−1)-term in Theorem 3.5 is integrable over any

closed interval [0, ρ], we can approximate the L-layer rate-splitting bound in (3.8) in a similar
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fashion via
R(Llev, I) = R̄(Llev, I) +O

(
nT
−1) (3.41)

where

R̄(Llev, I) =
L∑
`=1

∫ ∞
0

[
C̄

(
1− ι`−1
σ2
` (x)

)
− C̄

(
1− ι`
σ2
` (x)

)]
fΞnT

(x) dx (3.42)

with fΞnT
(x) as given in (3.10) and

σ2
` (x) =

Ṽ ι`−1
x
nT

+ Ṽ (1− ι`−1) + ρ−1

V̂
, l = 1, . . . , L. (3.43)

We can also derive an approximation of the levelled layering bound with an infinite number of
layers R?(Llev). This approximation is given in the next Theorem.

Theorem 3.6. Let

R̄?
(
Llev

)
= E

[∫ ∞
σ2
(
ΞnT

) nR − nTg
(
ΞnT , t

)
ζ(g(ΞnT , t))

t
dt
]

=
∫ ∞

0

∫ ∞
σ2(x)

nR − nTg(x, t)ζ(g(x, t))
t

fΞnT
(x) dt dx (3.44)

where ζ(x) was defined earlier in (3.38), where ΞnT is a gamma-distributed variable with shape nT

and scale 1, whose probability density function fΞnT
is given in (3.10), and where the functions

σ2 and g are given by

σ2(x) =
x
nT
Ṽ + ρ−1

V̂
(3.45a)

g(x, t) =
(

1− x

nT

)
Ṽ

V̂
+ t. (3.45b)

Then, as nT →∞,
R?(Llev) = R̄?(Llev) +O

(
nT
−1). (3.46)

Proof: The proof is provided in Appendix C.9.

Notice that, by comparison with (3.37), the inner integral in (3.44) evaluated for x = nT =
E
[
ΞnT

]
corresponds exactly to C̄ evaluated at σ−2(nT) = V̂ /(Ṽ + ρ−1), which is the lower

bound R̄. In fact, this is consistent with the observation that the worst-case-noise bound R

can be recovered by lower-bounding R?(Llev) via Jensen’s inequality [cf. Remark 2.8 under
Theorem 2.6].

Although the computation of R̄?(Llev) requires the numerical evaluation of a double integral,
it can be computed very efficiently and, most importantly, much faster than R?(Llev).
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Figure 3.6 Coherent capacity, bounds, and asymptotic approximations vs. SNR for (nR, nT) = (6, 4), V̂ = Ṽ = 1
2 . The

finite-layering bounds are evaluated for an indexing I = {0, 1
2 , 1}, i.e., for equi-power layering with two layers.

3.5 Semi-Closed-Form Expressions

Computing the exact values of levelled and staggered layering bounds with infinite number of
layers involves several nested integrations: an expectation with respect to the distribution of
the random matrix Ĥ of size nR × nT, an expectation over the random vector ξ of size nT × 1
(which simplifies to a double integration for staggered layering, and a single scalar integration
for levelled layering), and an integration over the layering index ι ∈ [0; 1].

The large random-matrix approximation from the previous section already offered a way
to decrease this complexity via an approximation. Though simulations suggest that this ap-
proximation is highly accurate even for a relatively low number of antennas, no bound on the
approximation error is known. Besides this, the approximation method is not extensible to stag-
gered layering.

To reduce computation time for the exact value of the levelled and staggered layering bounds,
we will derive closed-form expressions of the expectation over Ĥ, since in multiple-antenna
channels the latter accounts for the highest computational burden, given that the number of
integration steps scales with the number of antennas.
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3.5.1 Levelled layering

A semi-closed-form expression of the levelled layering bound (3.8) is given by

R?(Llev) =
∫ ∞

0

∫ 1

0

1
1− ι E

[
Ωlev

(
ΞnT Ṽ ι+ Ṽ nT(1− ι) + ρ−1nT

V̂ (1− ι)

)]
dι dξ. (3.47)

where ΞnT is gamma-distributed with shape nT and scale 1, and where the function Ωlev is given
in closed form in Appendix (C.10) by Equation (C.136), and whose evaluation also requires
(C.132). The full derivation of (3.47) is detailed in Appendix C.10.

3.5.2 Staggered layering

A semi-closed-form expression of the staggered layering bound (3.13) for tall channel matrices
(nR ≥ nT) is given by

R?(Lstag) = V̂
nT∑
i=1

∫ 1

0
E
[

1
αi(ν)Ωstag,i

(
αi(ν)
V̂

,
αi(ν)

V̂ (1− ν)

)]
dν (3.48)

where the αi(ν) are random functions given by

αi(ν) = Ṽ

(Ξi−1
nT

+ ν

nT
Ξ̃1 + 1− ν + nT − i

)
+ ρ−1. (3.49)

where Ξi denotes a gamma-distributed variable of shape i and scale 1, and where Ξ̃1 is indepen-
dent and exponentially distributed. A derivation of this formula is provided in Appendix C.11,
and the functions Ωstag,i are given therein under Equation (C.154) for tall or square channel
matrices (i.e., for nT ≤ nR) and under Equation (C.170) for broad channel matrices (i.e., for
nT > nR).





4

Pilot-Assisted Communication

We consider a MIMO link and assume a highly scattering environment at the receiver—as is
the case in many downlink scenarios—so that the fading is correlated only at the transmitter
side. This encompasses the important special case of an arbitrarily correlated MISO link. In
this setting with antenna correlations, we propose to revisit the problem treated in [Has03] and
extend it to spatially correlated fading. In [Has03], the concept of effective SNR was introduced
to designate an SNR that accounts for the imperfection of CSI at the receiver and serves as the
utility to be maximized. Due to the presence of antenna correlation, the effective SNR needs
to be extended from a scalar to a matrix-valued quantity, and the entire spatial structures of
the pilot sequence and the linear precoder need to be jointly optimized. Thus, we are facing
a high-dimensional optimization problem which entails a non-trivial extension of the approach
from [Has03].

Most performance measures of pilot-assisted MIMO systems are functions that depend on
both the linear precoder and the pilot sequence. A framework for the optimization of these two
parameters is proposed, based on a matrix-valued generalization of the concept of effective SNR
from [Has03]. Our framework aims to extend their results by allowing for transmit-side fading
correlations, and by considering a class of utility functions of said effective SNR matrix, most
notably including the well-known worst-case-noise capacity lower bound also used in [Has03]. We
tackle the joint optimization problem by recasting the optimization of the precoder (resp. pilot
sequence) subject to a fixed pilot sequence (resp. precoder) into a convex problem. Furthermore,
we prove that joint optimality requires that the eigenbases of the precoder and pilot sequence
be both aligned along the eigenbasis of the channel correlation matrix. We finally describe how
to wrap all studied subproblems into an iteration that converges to a local optimum of the joint
optimization.

57
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4.1 System Model

Our discrete-time system consists of a standard single-user MIMO link with an nR×nT random
channel matrix H expressible as

H = WR
1
2 , (4.1)

where the entries of W ∈ CnR×nT are independent and identically distributed (i.i.d.) zero-mean
circularly-symmetric unit-variance complex Gaussian, i.e., vec(W) ∼ NC(0, I). The determin-
istic matrix R = 1

nR
E[H†H] characterizes the transmit-side correlation, and is assumed to be

full-rank, since we shall ignore keyhole effects. Equivalently, we can write the distribution of H
as

h = vec(H) ∼ NC(0,RT ⊗ I). (4.2)

This correlation model is valid in setups where numerous scatterers are located in the vicinity of
the receiver, and notably subsumes the case of arbitrarily correlated multiple-input single-output
(MISO) channels, which are especially relevant in wireless downlinks.

The channel H remains constant for a duration T called the channel coherence time, after
which it changes to a new realization that is independent of all previous ones (block-fading).
Within every such fading block, we reserve Tp time slots to transmit a sequence of pilot symbols
known at the receiver, while the data is transmitted during the remaining Td = T − Tp time
slots. For example (and without loss of generality), we can accommodate the pilot symbols into
the first Tp time slots of each fading block. The resulting training observation is

Yp = HXp + Zp, (4.3)

where Xp ∈ CnT×Tp is a matrix whose columns are the pilot symbols, and the noise matrix
Zp ∈ CnR×Tp is distributed as vec(Zp) ∼ NC(0, I) and independent of H. During the data
transmission phase of one fading block, the received signal is

Yd = HFXd + Zd (4.4)

where Xd ∈ Cr×Td (with r ≤ nT) and Zd ∈ CnR×Tp are respectively the data symbol matrix
and the additive noise matrix, with respective distributions vec(Xd) ∼ NC(0, I) and vec(Zd) ∼
NC(0, I), whereas F ∈ CnT×r is the linear precoder, and is assumed to have full column rank.
The number r of rows of Xd (and of columns of F) represents the number of streams into which
the channel input is multiplexed.

It can be shown that the minimum mean-square error (MMSE) channel estimate Ĥ =
E[H|Yp] is obtained from the training observation Yp by right-multiplying it with the estimator
matrix G = (X†pRXp + I)−1X†pR as

Ĥ = YpG. (4.5)
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As a consequence of the distributions and correlation models for H and Zp, the respective
marginal distributions of the estimate Ĥ and of the estimation error H̃ = H− Ĥ turn out to be

ĥ = vec(Ĥ) ∼ NC(0, R̂T ⊗ I) h̃ = vec(H̃) ∼ NC(0, R̃T ⊗ I) (4.6)

with transmit-side covariances

R̂ = 1
nR

E[Ĥ†Ĥ] = R − R̃ (4.7a)

R̃ = 1
nR

E[H̃†H̃] = (R−1 + XdX†d)−1. (4.7b)

We further define the two nT × nT Gram matrices

Q = FF† P = XpX†p (4.8)

which are called the transmit covariance1 and the pilot Gram, respectively. These two matrices
will be subject to optimization.

4.2 Problem Statement

A capacity lower bound (in bits per channel use) of the communication system is given by
1
T I(Xd; Yd|Yp), where I(Xd; Yd|Yp) stands for the mutual information between the block of
input symbols Xd and their corresponding outputs Yd, conditioned on the side information Yp

(training observation). Using a well-known lower bound on this mutual information, we get the
achievable rate expression

Td
T

E
[
log det

(
I + ĤQĤ†

1 + tr(R̃Q)

)]
≤ 1
T
I(Xd; Yd|Yp), (4.9)

where Ĥ is given in (4.5). This bound is based on a worst-case noise approach [Has03] and has
been widely used and studied in the literature, e.g., [M0́0], [Has03], [Yoo06], [Aub13] and many
more. In [Soy10], the bound (4.9) is used in the exact same system setup as here. Using (4.6),
we can write Ĥ = ŴR̂

1
2 with vec(Ŵ) ∼ NC(0, I) so that the expectation in (4.9) reads simply

I(S) , E
[
log det

(
I + ŴSŴ†

)]
. (4.10)

The latter is a function of the matrix argument

S = S(P,Q) = R̂
1
2 QR̂

1
2

1 + tr(R̃Q)
, (4.11)

1 in reference to the fact that FF† is the covariance of the transmitted data signal
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which constitutes a matrix-valued effective SNR generalization of the scalar effective SNR intro-
duced by Hassibi and Hochwald in [Has03]. We write S(P,Q) instead of S whenever we wish to
emphasize the dependency on (P,Q). Let s denote the (eigenvalue) profile of S, i.e., the vector
of non-increasingly ordered eigenvalues of S. Since Ŵ and ŴU have the same marginal distri-
bution for any unitary U, the function I(S) is in fact a function of the unordered eigenvalues of
S, i.e., a symmetric function of s. We denote the latter as Ĭ(s). We thus have

Ĭ(s) , E log det
(
I + Ŵ diag(s)Ŵ†) (4.12)

with I(S) = Ĭ(s). We will prefer one notation over the other depending on the situation.

To keep derivations as general as possible, we consider a general class F of utility functions
sharing similar properties with I (resp. Ĭ). The class F (resp. F̄) shall be the set of functions
which, like I (resp. Ĭ), are unitarily invariant and matrix-monotonic (resp. symmetric and vector-
monotonic). That is, for f ∈ F (resp. f̄ ∈ F̄) we have

• f(S) = f(USU†) for any unitary matrix U
• 0 � S � S̆⇒ f(S) ≤ f(S̆)

and

• f̄(Πs) = f̄(s) for any permutation Π
• 0 ≤ s ≤ s′ ⇒ f̄(s) ≤ f̄(s′)

We define the trace-constrained sets

P(µP) =
{
P ∈ CnT×nT

+ : tr(P) ≤ µP
}

(4.13a)

Q(µQ) =
{
Q ∈ CnT×nT

+ : tr(Q) ≤ µQ
}

(4.13b)

where µP and µQ stand for the maximum overall pilot symbol energy, and the average data
symbol power (energy per time unit), respectively.

The pilot-assisted system shall be constrained by a maximum average energy consumption
per time unit, denoted as µ. Consequently, the set of admissible values of the pilot-precoder pair
(P,Q) is

PQ(Tp) ,
⋃

µP ,µQ≥0
µP+(T−Tp)µQ=Tµ

P(µP)×Q(µQ). (4.14)

For future reference, we define five different pilot/precoder optimization problems (of increasing
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number of variables to be optimized) for some given utility F ∈ F : 2

(P.1.a) max
Q∈Q(µQ)

F (S(P,Q)) (4.15a)

(P.1.b) max
P∈P(µP )

F (S(P,Q)) (4.15b)

(P.2) max
(P,Q)∈P(µP )×Q(µQ)

F (S(P,Q)) (4.15c)

(P.3) max
(P,Q)∈PQ(Tp)

F (S(P,Q)) (4.15d)

(P.4) max
Tp∈{1,...,T−1}

max
(P,Q)∈PQ(Tp)

F (S(P,Q)) (4.15e)

Problems (P.1.a) and (P.1.b) are the partial problems that consist in optimizing one among
the two variables P ∈ P(µP) and Q ∈ Q(µQ), while the other variable has a fixed value.
The parameters µP and µQ can be considered as arbitrary constants. Problem (P.2) is the
simplest joint optimization problem, having two independent trace constraints on P and Q.
Adding on (P.2) an outer optimization over pairs (µP , µQ) fulfilling the weighted-sum constraint
µP + (T − Tp)µQ = Tµ, we obtain Problem (P.3). This balancing of pilot symbol and data
symbol energies is what we call energy boost3. Adding yet another optimization over the training
duration Tp, and incorporating an overhead factor (T − Tp)/T which accounts for the loss of
spectral efficiency due to the pilot symbols, we obtain the full-fledged Problem (P.4). Step by
step, the present Section builds up a procedure for tackling (P.4).

The optimization of Tp in (P.4) is over a finite set and is solved by an exhaustive search,
thus we will leave it aside until Section 4.6. Notice that in [Has03] the authors posit for the
same (though uncorrelated) channel model (and utility f = I) that the receiver should have
a representative estimate of the complete channel state, described by nTnR fading coefficients.
Therefore, they assume that the training duration Tp should be at least the number of transmit
antennas nT, so as to generate at least as many observables as there are coefficients to estimate.
However, in the case where only a limited number of data streams are to be precoded, it might be
more economic to only estimate a properly chosen subspace of the channel covariance spanned
by the stronger eigenmodes. In fact, since Tp is defined as the number of columns of the pilot
matrix Xp, and given that the utility function and power constraint [cf. (4.14)–(4.15e)] depend
on Xp only via its Gram matrix P = XpX†p, we can assume that Xp has full column rank and set
the training duration equal to the rank of P, i.e., Tp = rank(P) ≤ nT, and accordingly reduce
the search interval in (4.15e) from {1, . . . , T − 1} down to {1, . . . ,min(T − 1, nT)}.

We will start by studying Problems (P.1.a) and (P.1.b) in the next two sections. These

2 Obviously, these problems could be equivalently stated in terms of f̄ ∈ F̄ .
3 In the literature, the balancing between pilot/data symbol powers under an overall average power constraint and for fixed

time fractions assigned to training and data transmission, is sometimes referred to as power boost (e.g., [Loz08]). Since in
our setup, µP represents a pilot energy budget, and given that the training duration Tp is not fixed (but subject to an
outer optimization), we prefer the term energy boost.
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individual optimizations will form two building blocks of an algorithmic approach that aims
to solve (P.3), and eventually (P.4). However, they may also be considered as two stand-alone
problems in their own right.

4.3 Precoder Design for Prescribed Pilots

In this section, we consider the optimization of the transmit covariance Q alone, while the pilot
Gram P has a fixed value [Problem (P.1.a)]. The optimal transmit covariance is

Q?(P) = argmax
Q∈Q(µQ)

F (S(P,Q)). (4.16)

4.3.1 Number of Streams and Pilot Symbols

Recall that the ranks of P and Q represent the number of pilot symbols and precoded streams,
respectively. To establish a relation between them, we first need to uncover an important property
of the range space of Q?(P).

Theorem 4.1. For any utility F ∈ F and a prescribed pilot Gram P, the range space of the
optimal transmit covariance Q?(P) must be contained in the range space of the channel estimate
covariance R̂:

range(Q?(P)) ⊆ range(R̂). (4.17)

Proof: See Appendix D.2.

Complementing Theorem 4.1, notice that the rank equality

rank(R̂) = rank(P) (4.18)

always holds. This is easily seen by application of the matrix inversion lemma:

R̂ = R − (R−1 + XpX†p)−1

= RXp(I + X†pRXp)−1X†pR. (4.19)

Since Xp has full column rank by assumption [cf. Section 4.2], it becomes manifest that the rank
of R̂ equals the number of columns of Xp, which is equal to Tp = rank(P), hence (4.18).

Combining (4.18) with Theorem 4.1 directly implies the rank inequality

rank(Q?(P)) ≤ rank(R̂) = rank(P), (4.20)

or in words,
number of streams ≤ number of pilot symbols (4.21)
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The idea behind the proof of Theorem 4.1 is that, if Q?(P) had eigenvectors (transmit direc-
tions) lying outside the range space of the estimate covariance R̂, then the transmitter would
be radiating some of its transmit power into channel directions of which the receiver has no
estimate (and thus cannot detect coherently), thus incurring a waste of power. As a particu-
lar consequence, (4.20) tells us that the number of precoded streams should never exceed the
number of training symbols.

4.3.2 Feasible Effective SNR Matrices

It is convenient to reformulate Problem (P.1.a) as

S?(P) = argmax
S∈S(P,Q(µQ))

F (S) (4.22)

in terms of effective SNR matrices, which belong to a feasible set

S(P,Q(µQ)) =
{
S(P,Q)

∣∣ Q ∈ Q(µQ)
}
. (4.23)

We will show that S(P,Q(µQ)) is a convex set. For this purpose, observe that in the expression
of the function

Q 7→ S(P,Q) = R̂
1
2 QR̂

1
2

1 + tr(QR̃)
, (4.24)

the argument Q appears in the matrix-valued numerator, and inside a trace operator in the
denominator. This function Q 7→ S(P,Q) is thus reminiscent of fractions of monomials such as
q 7→ aq

1+bq , except that it is defined for matrices. In fact, the function Q 7→ S(P,Q) pertains
to what can be defined in the following Definition 4.1 as a generalization of linear fractional
functions. The latter are commonly defined for the scalar case (e.g., [Boy04, Sec. 2.3.3]).

Definition 4.1. Let X ⊂ Cn×n denote a set of Hermitian matrices of size n×n whose elements
X ∈ X satisfy tr(BX) 6= −1 with some given Hermitian matrix B ∈ Cn×n. A function X 7→
φ(X; A,B) that is defined as

X → Cm×m, X 7→ φ(X; A,B) = AXA†

1 + tr(BX) (4.25)

shall be called a linear fractional function with parameters A ∈ Cm×n and B ∈ Cn×n.

Note that the Hermitianity of B and of the argument X ensures the Hermitianity of the
image φ(X; A,B). Linear fractional functions may or may not be injective functions, depending
on the properties of the parameter A. Let A] = (A†A)−1A† denote the left pseudoinverse of A,
and A[ = A†(AA†)−1 denote the right pseudoinverse of A.

Lemma 4.1. The linear fractional function X 7→ φ(X; A,B) from Definition 4.1 is injective
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(one-to-one) if one at least of the following two conditions apply:

(1) The parameter A has full column rank

(2) The parameter A has full row rank and the domain X is such that ∀X ∈ X : range(X) =
range(A†).4

In these two respective cases, its inverse function φ−1 : φ(X ; A,B)→ X ,Y 7→ φ−1(Y; A,B) is

(1) linear fractional with parameters A] and −A]†BA], i.e., φ−1(•; A,B) = φ(•; A],−A]†BA]).

(2) linear fractional with parameters A[ and −A[†BA[, i.e., φ−1(•; A,B) = φ(•; A[,−A[†BA[).

Proof: See Appendix D.3.

In the following we will optimize S(P,Q) rather than Q, and consider that Lemma 4.1 can
be used to recover the optimal transmit covariance Q?(P) from the optimal S, by means of the
appropriate inverse linear fractional function.

Prescribing the pilot Gram P means that the matrices R̃ = (R−1 + P)−1 and R̂ = R − R̃
are prescribed. Therefore, the function Q 7→ S(P,Q) as given in (4.24) is linear fractional with
parameters A = R̂

1
2 and B = R̃, i.e.,

S(P,Q) = φ(Q; R̂
1
2 , R̃). (4.26)

The key property of linear fractional functions that we need for understanding Problem (P.1.a)
is that they preserve the linearity of segments.

Lemma 4.2. An injective linear fractional function ϕ(•) = φ(•; A,B) with some given param-
eters A and B uniquely maps linear segments onto linear segments in a one-to-one manner,
i.e.,

∀(X1,X2, α) ∈ X 2 × [0; 1], ∃β ∈ [0; 1] : ϕ(αX1 + (1− α)X2) = βϕ(X1) + (1− β)ϕ(X2). (4.27)

Proof: This is readily verified by inserting the explicit value

β = α(1 + tr(BX1))
1 + α tr(BX1) + (1− α) tr(BX2) (4.28)

into the equality (4.27).

Figure 4.1 symbolically depicts the behavior of linear fractional functions: a convex com-
bination of two points is mapped onto a convex combination of the respective images of said

4 In case A has neither full column nor full row rank, one can bring the problem back to one of the two considered cases by
an appropriate rank reduction.



4.3. Precoder Design for Prescribed Pilots 65

points, thus preserving segments. They are not linear functions though, because α and β can be
different.

X1

X2

ϕ(X1)

ϕ(X2)

αX1 + (1−α)X2

βϕ(X1) + (1−β)ϕ(X2)

ϕ

Figure 4.1 Linear fractional functions preserve segments

Corollary 4.1. Linear fractional mappings preserve set convexity.

Proof: Take a pair (X1,X2) ∈ X 2 with a convex X . According to Lemma 4.2, any convex
combination of X1 and X2 is mapped onto a convex combination of ϕ(X1) and ϕ(X2). Therefore,
the codomain ϕ(X ) is convex.

As a consequence, S(P,Q(µQ)) is a convex set because Q(µQ) is convex [cf. (4.13b)]. So if a
utility F is concave in S, then Problem (P.1.a) in its formulation (4.22) is convex. The optimal
transmit covariance Q?(P) is then computed from S?(P) by means of the appropriate inverse
linear fractional function (cf. Lemma 4.1). More generally speaking, if F is quasi-concave in S,
then the problem (4.16) can be recast into a convex problem by an appropriate transformation.
Even if F is only unimodal on S(P,Q(µQ))—that is, it has a single local maximum on the convex
compact S(P,Q(µQ))—one can still optimize it efficiently via bisection. The mutual information
I is one example of a concave utility. Other examples of concave or log-concave (quasi-concave)
utilities are given in Table D.1 in Appendix D.1.

4.3.3 Feasible Effective SNR Eigenvalues

It is convenient to rewrite Problem (P.1.a) as

s?(P) = argmax
s∈s(P,Q(µQ))

f̄(s), (4.29)

in terms of effective SNR eigenvalue profiles, which are to be searched in a feasible set

s(P,Q(µQ)) =
{
s(P,Q)

∣∣ Q ∈ Q(µQ)
}
. (4.30)

In the previous subsection, we have shown that the set S(P,Q(µQ)) is convex. Note that this con-
vexity, however, does not generally imply (nor is implied by) the convexity of the set s(P,Q(µQ)),
hence establishing the convexity of s(P,Q(µQ)) requires a separate proof. Indeed, we show in
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the following that s(P,Q(µQ)) is also convex and has a simplex shape, whose vertices are char-
acterized by Theorem 4.2 below.

Let ωi denote the non-increasingly ordered eigenvalues of the generalized eigenvalue problem

R̂vi = ωi
(
µ−1
Q I + R̃

)
vi. (4.31)

Due to rank(R̂) = rank(P) [cf. (4.18)], only the first rP = rank(P) eigenvalues ωi are different
from zero. Let λ(A) denote the vector of non-increasingly ordered eigenvalues of a Hermitian
matrix A.

Theorem 4.2. The set [cf. (4.13b), (4.24)]

s(P,Q(µQ)) =
{
λ

(
R̂

1
2 QR̂

1
2

1 + tr(QR̃)

) ∣∣∣∣∣ Q ∈ Q(µQ)
}

(4.32)

is a simplex given by the convex hull of the origin σ(0) , 0 and of the rP linearly independent
points

σ(n) = H(ω1, . . . , ωn)
n∑
j=1

ej , n ∈ {1, . . . , rP} (4.33)

where [e1, . . . , enT ] = I is the canonical basis, and H(x1, . . . , xn) = (
∑n
i=1 x

−1
i )−1 with n argu-

ments x1, . . . , xn denotes the harmonic mean thereof, divided by n.

Proof: See Appendix D.4.

s(P ,Q(µQ))

∂+s(P ,Q(µQ))

σ(0)

σ(1)

σ(2)

s1

s2

H(ω1)

ω2

H(ω1, ω2)

1

1

Figure 4.2 Sketch of a simplex set s(P,Q(µQ)) (shaded region). The so-called Pareto border ∂+s(P,Q(µQ)) contains those
points from s(P,Q(µQ)) that are not dominated by any other point from s(P,Q(µQ)), and is the convex hull of σ(n) for
n ∈ {1, . . . , rP} (excluding the origin).

As a byproduct, the proof of Theorem 4.2 reveals that if the set of eigenvectors of R̂ is
contained in the set of eigenvectors of R̃, i.e., col(UR̂) ⊆ col(UR̃), then it is optimal with
respect to any utility F ∈ F that the eigenbasis UQ?(P) of the optimal matrix Q?(P) be chosen
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such that as

col(UQ) ⊆ col(UR̂). (4.34)

Note that this requirement is stronger than the range space inclusion property of Theorem 4.1
[cf. (4.17)]. This particular situation of eigenbasis alignment col(UR̂) ⊆ col(UR̃) occurs, for
example, when

• using nT unitary pilots (i.e., P = tr(P)
nT

InT is a scaled identity matrix)
• the channel gains are independently and identically distributed (R = I)
• the channel estimation error vanishes (R̃ = 0, R̂ = R)
• the pilots are aligned with the channel covariance, i.e., col(UP) ⊆ col(UR).

As we shall see later in Section 4.5, the latter condition col(UP) ⊆ col(UR) is in fact necessary
for joint optimality of P and Q.

4.4 Pilot Design for a Prescribed Precoder

To complement the previous Section 4.3, we will now swap the roles of P and Q so as to consider
the optimization of the pilot Gram P under a trace constraint, while the transmit covariance Q
has a fixed value [Problem (P.1.b)]. The optimal pilot sequence reads as

P?(Q) = argmax
P∈P(µP )

F (S(P,Q)). (4.35)

4.4.1 Number of Streams and Pilot Symbols

In analogy to the inequality (4.20) relating the ranks of P and Q?(P), we have a similar rank
inequality for Problem (P.1.b) too.

Theorem 4.3. For any utility f ∈ F and a prescribed transmit covariance Q, the rank of the
optimal pilot Gram P?(Q) under a trace constraint is not larger than the rank of Q:

rank(P?(Q)) ≤ rank(Q). (4.36)

Proof: See Appendix D.5.

In words, we can state this as [compare with (4.21)]

number of pilot symbols ≤ number of streams (4.37)

The interpretation behind this rank inequality is that, if there were more orthogonal training
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directions than there are data streams precoded, we would necessarily be wasting some pilot
energy into directions that are not used for transmission anyway.

4.4.2 Feasible Set of Effective SNR Matrices

Let us rewrite Problem (P.1.b) as

S?(Q) = argmax
S∈S(P(µP ),Q)

F (S) (4.38)

in terms of effective SNR matrices, which belong to a feasible set

S(P(µP),Q) =
{
S(P,Q)

∣∣ P ∈ P(µP)
}
. (4.39)

We will show that this set is convex. To this end, we write out R̃ as R− R̂, then S(P,Q) reads
as [cf. (4.11)]

S(P,Q) = R̂
1
2 QR̂

1
2

1 + tr(QR)− tr(QR̂)
, (4.40)

which is unitarily equivalent to

S̆(P,Q) = Q
1
2 R̂Q

1
2

1 + tr(QR)− tr(QR̂)

= Q
1
2 R̂Q

1
2

τ − tr(QR̂)
, (4.41)

where τ = 1 + tr(QR). The unitary equivalence is due the Hermitian matrices R̂
1
2 QR̂

1
2 and

Q
1
2 R̂Q

1
2 having the same eigenvalues because of the identity λ(AB) = λ(BA). As a conse-

quence, F (S(P,Q)) = F (S̆(P,Q)) for any F ∈ F , so S(P,Q) and S̆(P,Q) can be used inter-
changeably. By comparing Expression (4.41) with the definition of linear fractional functions
(cf. Definition 4.1), we identify R̂ 7→ S̆(P,Q) as a linear fractional function with parameters
A = 1√

τ
Q

1
2 and B = − 1

τQ, i.e.,

S̆(P,Q) = φ
(
R̂; 1√

τ
Q

1
2 ,− 1

τQ
)
. (4.42)

In Appendix D.6, we show that the set of feasible R̂, namely

{
R − (R−1 + P)−1 ∣∣ P ∈ P(µP)

}
, (4.43)

is convex, from which follows immediately with Corollary 4.1 that S̆(P(µP),Q) is a convex
set. For solving Problem (P.1.b), it now suffices to replace S(P(µP),Q) with S̆(P(µP),Q) in
formulation (4.38) of Problem (P.1.b). Granted that the utility F is concave, quasi-concave or
unimodal, Problem (P.1.b) can be solved efficiently.
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4.5 Jointly Pareto Optimal Pilot-Precoder Pairs

4.5.1 Problem Statement

We move on to study a subproblem of (P.3). For this purpose, we restate Problem (P.3) in the
vector domain of feasible profiles s so that it reads

max
s∈s(PQ(Tp))

f̄(s), (4.44)

where the search set is

s(PQ(Tp)) =
{
s(P,Q)

∣∣∣ (P,Q) ∈ PQ(Tp)
}

(4.45)

and PQ(Tp) was defined in (4.14). Exploiting the monotonicity of utilities f̄ ∈ F̄ , we can restrict
the search set s(PQ(Tp)) to its Pareto border ∂+s(PQ(Tp)). To be precise, the Pareto border of
a set A ⊂ RN is the subset

∂+A =
{
a ∈ A

∣∣∣ @a′ ∈ A : a′ ≥ a with a′ 6= a
}
. (4.46)

A
∂A

∂+A

Figure 4.3 Pareto border ∂+A of a compact set A ⊂ R2

Regardless of which utility function f̄ ∈ F̄ we are considering, there exists an important
subproblem of (P.3) that is common to all utility functions: the characterization of the search
set ∂+s(PQ(Tp)). The following subsections will build up this characterization in several steps.

4.5.2 Number of Streams and Pilot Symbols

Recall that (P.3) can be expressed in terms of (P.2) by adding an outer optimization of the
energy boost [cf. (4.15)]:

max
µP ,µQ≥0

µP+(T−Tp)µQ=Tµ

{
max

(P,Q)∈P(µP )×Q(µQ)
F (S(P,Q))

}
. (4.47)
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Inside the curly braces is Problem (P.2), which can be equivalently written as

max
P∈P(µP )

F
(
S(P,Q?(P))

)
= max

Q∈Q(µQ)
F
(
S(P?(Q),Q)

)
(4.48)

with Q?(P) and P?(Q) defined in (4.16) and (4.35), respectively. We infer that the jointly
optimal pilot-precoder pair for Problem (P.2) must simultaneously fulfill the rank inequalities
(4.20) and (4.36). This means that the pilot Gram and transmit covariance have equal ranks.
Since this rank equality holds regardless of the value of (µP , µQ), it also holds for Problem (P.3).
Since it also holds regardless of the value of Tp, it also holds for Problem (P.4). Hence, we can
state generally that, for Problems (P.2), (P.3), (P.4),

r? , number of streams = number of pilot symbols (4.49)

is a necessary condition for a pilot-precoder pair (P,Q) to be jointly optimal. Note that, in
addition, Theorem 4.1 requires the optimal transmit covariance to lie in the range space of R̂
and as a consequence, the rank of S(P,Q), which is the number of non-zero entries in s(P,Q),
is equal to r? as well.

4.5.3 Jointly Optimal Transmit and Training Directions

A fortunate circumstance when treating the joint problems (P.2), (P.3), (P.4), is that the jointly
optimal transmit and training directions have a very simple and intuitive characterization, enun-
ciated in Theorem 4.4 below. As in the previous Section, we set our focus on Problem (P.2),
since the property will extend immediately to Problems (P.3) and (P.4).

Let the channel covariance R, the pilot Gram P and the transmit covariance Q have the
following (reduced) eigendecompositions:

R = URΛRU†R, P = UPΛPU†P, Q = UQΛQU†Q.

Without loss of generality, we assume that the eigenvalues of R are arranged in non-increasing
order on the diagonal positions of ΛR, whereas the eigenvalues of ΛP and ΛQ are not sorted in
any specific order. Let the set of columns of a matrix A be denoted as col(A).

Theorem 4.4. For any utility f̄ ∈ F̄ , in the joint optimization problem (P.2), there is no loss
of optimality in restricting the eigenvectors of the pilot Gram P (i.e., the left singular vectors of
the pilot sequence Xp) and the eigenvectors of the transmit covariance Q (i.e., the left singular
vectors of the precoder F) to be a common subset of the eigenvectors of the channel covariance
R corresponding to the largest eigenvalues of R. Formally, this is to say that the (reduced)
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eigenbases UP and UQ should satisfy

col(UP) = col(UQ) = {uR,1, . . . ,uR,r?} ⊆ col(UR), (4.50)

where UR , [uR,1, . . . ,uR,nT ], and r? = rank(P?) = rank(Q?) denotes the pilot/precoder rank
at the joint optimum (P?,Q?) of Problem (P.2). 5

Proof: See Appendix D.7.

Since Theorem 4.4 holds irrespective of the values of (µP , µQ) and of Tp, we infer that it also
holds for Problems (P.3) and (P.4).

This Theorem echoes similar results from previous publications. For example, in [Soy10],
the authors find that the optimal pilot symbols are, as in the present case, scaled eigenvectors
of the channel’s transmit correlation matrix. However, they optimize the pilot sequence with
respect to the Frobenius norm of the channel estimation’s mean-square error matrix instead of
the achievable rate. Similarly, in [Aub13] it is proven for a multiple-access setup that, under
the assumption that the channel estimate follows an UIU model (in the terminology of [Tul06])
slightly more general than ours, the transmit covariances are aligned with the channel correla-
tion as well. As to the pilot sequence, it is optimized with respect to different objectives: the
trace and the determinant of the mean-square error matrix of the channel estimation. The corre-
sponding optimal eigenbases for the pilot sequences are similarly aligned. The main contribution
of Theorem 4.4 is that of establishing the jointly optimal eigenbases of pilot Gram and transmit
covariance with respect to a common utility function.

4.5.4 Pareto Optimal Allocation

Consequently, and without loss of optimality, we will align the eigenbases of P and Q in con-
formity with (4.50). The scalars [r]i = ri, [p]i = pi, and [q]i = qi shall denote the eigenvalues of
R, P, and Q, respectively. Under such assumptions, all matrices involved in the expression of
the effective SNR (4.11), namely R̂ and R̃ [cf. (4.7)], as well as Q, acquire the same eigenbasis
UR. We can readily see from Expression (4.11) that S then inherits the (common) eigenvectors
of P and Q, i.e., col(US) = col(UP) = col(UQ) ⊆ col(UR), so that the profile s is given by
[cf. (4.11)]

s = r̂� q
1 + qTr̃ (4.51)

5 Obviously, the rank r? is not known a priori before solving the problem. The notation in (4.50) is merely to indicate that
col(UP) and col(UQ) should contain eigenvectors of R corresponding to the largest eigenvalues of R.
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and ‘�’ denotes the componentwise product. Here, the eigenvalue vectors r̃ = r̃(p) and r̂ =
r̂(p) = r− r̃(p) are functions of p and respectively have entries

r̃i(pi) = ri
1 + ripi

, r̂i(pi) = r2
i pi

1 + ripi
. (4.52)

Hereinforth, we will write s(p,q) instead of s(P,Q) whenever we implicitly assume that
the eigenbases are optimally aligned according to (4.50). We do not impose any ordering of the
eigenvalues pi, qi, and ri. Instead we assume, without loss of generality, that they are arranged
in such way that the si are non-increasingly ordered.

Upon optimally aligning the eigenbases as according to Theorem 4.4, we now consider the
remaining problem that consists in jointly optimizing the allocation vector pair (p,q), which
belongs to a set that constrains the average power radiated by the transmitter array:

Γ =
{

(p,q) ∈ R2nT
+

∣∣∣1Tp + (T − Tp)1Tq ≤ Tµ
}
. (4.53)

s(Γ )

∂+s(Γ )

s1

s2

1

1

Figure 4.4 Sketch of the typical shape of a set s(Γ) and its Pareto border ∂+s(Γ) for nT = 2.

By virtue of Theorem 4.4, we have s(PQ(Tp)) = s(Γ). In the following, we will devise a
procedure for computing the set of all allocations (p,q) that yield points located on the Pareto
border ∂+s(PQ(Tp)) = ∂+s(Γ). Given the monotonicity of the entries of s(p,q) in pi and qi,
we are certain that any Pareto optimal allocation (p,q) will expend the full power budget, and
thus belong to

∂+Γ =
{

(p,q) ∈ Γ
∣∣∣1Tp + (T − Tp)1Tq = Tµ

}
. (4.54)

Hence, ∂+s(Γ) = ∂+s(∂+Γ). Now note that the search set ∂+s(∂+Γ) is not equal to the set
s(∂+Γ), meaning that it is not sufficient to simply choose some full-power allocation (p,q) ∈ ∂+Γ
in order to obtain a Pareto optimal allocation. Instead, we have the proper inclusion

∂+s(Γ) = ∂+s(∂+Γ) ( s(∂+Γ). (4.55)

In fact, any Pareto optimal allocation is a full-power allocation, but the converse is not true. This
becomes clear when counting dimensions: the vector s has nT real entries, so any parametriza-
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tion of the feasible set s(Γ) with minimal number of parameters will require at most nT real
parameters. A parametrization of the Pareto border ∂+s(Γ) will require nT−1 parameters. How-
ever, the entries of the vector pair (p,q) represent 2nT parameters. Thus, to obtain a minimal
parametrization of ∂+s(Γ) there are at least nT−1 excess parameters to be eliminated. A direct
elimination by working off the explicit expression of s(p,q) in (4.51) does not seem possible.
Even replacing Γ with ∂+Γ only saves one parameter.

The idea for reducing the parameter set so as to efficiently compute Pareto optimal allocations
(p,q) will be as follows: we choose some vector norm ‖·‖, then fix a non-negative direction vector
e ≥ 0 that is normalized as ‖e‖ = 1. This normalized vector points into the positive orthant
of the s domain and defines a half-line departing from the origin. We then maximize the norm
‖s(p,q)‖ with respect to the allocation (p,q) under the constraint that s(p,q) points into the
direction of e. In other terms, we determine the point from the set s(Γ) which lies farthest away
from the origin, and is located on the line running along e.

s1

s2

e

∂+s(Γ )

Figure 4.5 Symbolic sketch of the procedure for computing Pareto border points from ∂+s(Γ). Said points are parametrized
by a unit-norm direction vector e

Formally, the problem at hand can be stated as:

max
(p,q)∈Γ

ν s.t. s(p,q) = νe (4.56)

where ν = ‖s(p,q)‖ stands for the norm of s, while the function s(p,q) is given by (4.51) as

s(p,q) = r̂� q
1 + r̃Tq = r̂� q

1 + rTq − r̂Tq (4.57)

and e is some normalized direction vector pointing into the positive orthant, i.e., e ≥ 0 and
‖e‖ = 1. As usual, the search set Γ can be reduced to ∂+Γ.

When we vary e, the set of all points νmaxe that are determined by this maximization
procedure constitute what we shall call a front border.

The front border of a compact set A ⊆ Rn+ shall be denoted as ∂fA and be formally defined
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∂fA

A

Figure 4.6 Front border ∂fA of a closed set A ⊂ R2

as

∂fA =
⋃
e≥0
‖e‖=1

argmax
a∈A
a=νe

ν. (4.58)

Note that certain directions e may yield empty sets {a ∈ A|a = νe} = ∅, so only non-trivial
contributions (non-empty sets) should be retained when taking the union (4.58). As we easily
intuit from comparing Figures 4.3 and 4.6, the Pareto border and front border of a compact set
are not generally identical. However, according to the next Lemma, identity holds for the set
s(Γ).

Lemma 4.3. The Pareto border and the front border of the set s(Γ) coincide.

Proof: See Appendix D.8.

As a consequence, we can compute the Pareto border by the above-mentioned technique. Let
us choose the norm ‖·‖ to be the 1-norm ‖s‖1 =

∑
i si, as this will turn out to be a convenient

choice. The quantity ν that is maximized in (4.56) is the 1-norm of the vector s(p,q), constrained
to being colinear with e, i.e.,

s(p,q) = νe ‖s(p,q)‖1 = η

1 + rTq − η = ν (4.59)

where η stands for [cf. (4.57)]

η = ‖r̂� q‖1 = r̂Tq. (4.60)

Note that the colinearity constraint s(p,q) = νe implies the colinearity r̂�q = ηe. Componen-
twise, the latter reads as [cf. (4.52)]

r2
i piqi

1 + ripi
= ηei (4.61)

Consider e to be fixed. Then we see from (4.61) that, once η is given, pi and qi are entirely
determined from one another: given any value of qi ≥ 0, the corresponding value of pi ≥ 0 is
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uniquely determined (as long as ηei
qi
< ri), and conversely, given any value of pi ≥ 0, the value of

qi ≥ 0 is uniquely determined. This allows us to effectuate a (one-to-one) change of parameters:
we drop the qi and replace them by ei, thus effectively replacing the parameter pair (p,q) ∈ Γ
by the new pair (p, e) ∈ D(Tµ)×D(1), where D(·) is defined as

D(α) =
{
d ∈ RnT

+
∣∣ 1Td ≤ α

}
. (4.62)

From (4.61), the qi can now be expressed in terms of pi and ei as

qi(pi, ei) = ηei
1 + ripi
r2
i pi

. (4.63)

By summing (4.63) up over i, and taking into account the energy conservation
∑
i pi + (T −

Tp)
∑
i qi = Tµ, we obtain expressions of η and of qi which are functions of (p, e):

η(p, e) = Tµ− 1Tp
T − Tp

(
nT∑
i=1

ei
1 + ripi
r2
i pi

)−1

(4.64)

qi(p, e) = Tµ− 1Tp
T − Tp

ei
1+ripi
r2
i pi∑

j ej
1+rjpj
r2
j pj

. (4.65)

Consequently, ν can itself be expressed as a function of (p, e) too [cf. (4.56)]:

ν(p, e) = η(p, e)
1 + rTq(p, e)− η(p, e) . (4.66)

We can now dismiss the initial problem formulation (4.56) in favor of the equivalent formulation

p?(e) = argmax
p∈D(Tµ)

ν(p, e) (4.67)

with ν(p, e) as given in (4.66). Once the maximizer p?(e) is determined, we compute the corre-
sponding q?(e) via (4.65) as

q?(e) =


q1(p?(e), e)

...
qnT(p?(e), e)

 . (4.68)

The Pareto border ∂+s(PQ(Tp)) = ∂+s(Γ) is described in its entirety by the union (see Fig-
ure 4.5)

∂+s(Γ) =
⋃
e≥0
‖e‖1=1

s(p?(e),q?(e)). (4.69)

Definition 4.2. A function f : X 7→ R is quasi-concave (resp. quasi-convex) on a convex and
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compact set X ⊂ Rn if it can be represented as a concatenation

f(x) = (g ◦ h)(x) (4.70)

of a concave (resp. convex) function h : X → R and a non-decreasing function g : R→ R.

Lemma 4.4. The function ν(p, e) is quasi-concave in p.

Proof: See Appendix D.9.

This lemma renders (4.67) a quasi-convex problem, which can be solved efficiently.
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Figure 4.7 Three-dimensional representation and corresponding contour plot of a function ν(p, e)

Figures 4.7(a) and 4.7(b) illustrate an example of a function ν(p, e) for nT = 2 transmit
antennas, channel coherence T = 10 and SNR µ = 1, r =

[
2/3 1/3

]T and e =
[
1/2 1/2

]T. The
quasi-concavity (but non-concavity) can be well appreciated in said plot, since ν(p, e) appears
to be convex in p near the borders of its triangular domain D(Tµ), while it is concave in an
inner region. Notwithstanding this change of curvature, the function is globally quasi-concave
in p, since all upper contour sets, as illustrated in Figure 4.7(b), are convex.

4.6 Assembling It All: Iterative Joint Design

Having studied Problems (P.1.a) and (P.1.b) as well as a subproblem (Pareto optimal allocations)
of Problem (P.3), we now propose an iterative approach to solving Problems (P.3) and (P.4).

Using Theorem 4.4, we align the eigenbases as col(UP) = col(UQ) ⊆ col(UR). Since we
know from Sections 4.3 and 4.4 how to efficiently solve Problems (P.1.a) and (P.1.b) for (quasi-
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)concave utilities F , a natural way of tackling the joint problem (P.2) is by alternating between
the two problems in the fashion of a block gradient ascent: pn+1 = p?(qn)

qn+1 = q?(pn+1)
or

 qn+1 = q?(pn)
pn+1 = p?(qn+1)

(4.71)

This procedure converges monotonically towards a fixed-point of the iteration (pn+1,qn+1) =
(p?(qn),q?(pn)), which is a local optimum for Problem (P.2). However, it yields no local opti-
mum of Problem (P.3), the reason being that no step in the above iteration ever changes the
balance between pilot energy 1Tp and transmit power 1Tq (energy boost). To accomodate the
energy boost, an additional step needs to be inserted in the above iteration in order to readjust
the allocation (p,q) so as to remain Pareto optimal. This step can be performed with the meth-
ods for computing the Pareto border, developed in Subsection 4.5.4. Therefore, the proposed
algorithm for solving (P.3) should cycle through the following three steps:

(1) Optimize p for a prescribed q
(2) Optimize q for a prescribed p
(3) Adjust (p,q) to be Pareto optimal

Algorithm 1 Iteration for solving (P.3)
1: p0 ← Tpµ

nT
1nT

2: q0 ← (T−Tp)µ
nT

1nT

3: n← 0
4: repeat
5: p′ ← argmaxp∈D(1Tpn) f(s(p,q))
6: q′ ← argmaxq∈D(1Tqn) f(s(p,q))
7: en+1 ← s(p′,q′)

‖s(p′,q′)‖1
8: pn+1 ← argmaxp∈D(Tµ) ν(p, en+1)
9: qn+1 ← q(pn+1, en+1)

10: sn+1 ← en+1ν(pn+1, en+1)
11: n← n+ 1
12: until f(sn)− f(sn−1) ≤ ε

In pseudocode, the algorithm is written out in Algorithm 1. For (quasi-)concave utilities
f̄ ∈ F̄ , Steps 5 and 6 were shown to be (quasi-)convex optimizations in Sections 4.3 and 4.4,
respectively. The computation of Steps 7 through 10 has been explained in detail in Subsec-
tion 4.5.4, wherein Step 8 was shown to be a quasi-convex optimization.

We already mentioned in Section 4.2 that the problem of optimally tuning the training
duration length Tp could be tackled by an exhaustive search over the set {1, . . . ,min(T −1, nT)}.
We thus simply need to wrap Algorithm 1 into an outer loop. Note that the function ν(·, ·)
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is dependent on the parameter Tp (though this is not reflected in notation), and should be
updated accordingly with the loop count. The algorithm for (P.4) in pseudocode is written out
in Algorithm 2 below:

Algorithm 2 Iteration for solving (P.4)
1: Tp ← 1
2: repeat
3: . . . Algorithm 1 . . .
4: (p?(Tp),q?(Tp))← (pn,qn)
5: Tp ← Tp + 1
6: until Tp = min(T − 1, nT)
7: (p?,q?) = maxi f(s(p?(i),q?(i)))

The proposed algorithm may still suffer from efficiency issues due, for instance, to the pre-
cision parameter ε [Step 12 in Algorithm 1] being left as an arbitrary choice. A fast single-loop
iteration in the spirit of Algorithm 1 in [Tul06] would be preferable, but such a reformulation
of our algorithm following the ideas of [Tul06] does not seem straightforward. For one thing,
because the constraints on the feasible values of the effective SNR eigenvalues s are far more
intricate as is the simple trace constraint on the transmit covariance in [Tul06].

4.7 Numerical Simulations
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Figure 4.8 Convergence of Algorithm 1 at an SNR of 10dB (µ = 10) for an exemplary 2 × 2 MIMO channel, both in the
s-domain [Fig. 4.8(a)] and in terms of the utility value I(s) [Fig. 4.8(b)]

Figure 4.8 shows how Algorithm 1 (for fixed Tp = 2) converges to the jointly optimal solution
for the utility function f(s) = I(s). The parameters chosen in this simulation are T = 10, µ = 10
(i.e., 10dB), (nT, nR) = (2, 2), and (r1, r2) = (2

3 ,
1
3).
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(b) achievable mean-square error as a function of the SNR

Figure 4.9 Two different utility functions against the SNR parameter µ for an examplary 2×2 MIMO system. For both util-
ities, the performance of full-fledged optimization is compared to a partial optimization (precoder only) and no optimization
at all.

Figures 4.9(a) and 4.9(b) respectively show the quantities

f̄(s) = T − Tp
T

I(s) −f̄(s) = tr E
[
(I + ŴSŴ†)−1] (4.72)

optimized using Algorithm 2 and plotted against the SNR µ (in decibels) for the same 2×2 system
as for Figure 4.8, i.e., (r1, r2) = (2

3 ,
1
3) and T = 10. The former utility represents an achievable

rate [including an overhead factor as in (4.9)]. The latter utility is the negative of the per-symbol
mean-square error achieved by a linear minimum mean-square error symbol estimator [see also
Utility 9 in Table D.1]. In each of the two figures, three curves are plotted for comparison: the
utility achieved with full-fledged joint optimization (P.4) using Algorithm 2; the utility achieved
for precoder optimization (P.1.a) alone; the utility achieved when no optimization is performed,
i.e., P0 = Tpµ

nT
InT and Q0 = (T−Tp)µ

nT
InT . The relative gains in mutual information are well

noticeable especially for low and moderate SNR values. For higher SNR instead, these gains are
far less significant.





Conclusion

The present thesis has developed new results on achievable communication rates over fading
channels under imperfect CSI. The results run along two lines of research.

In the first part (Chapter 2 and 3), we have demonstrated that a rate-splitting approach
improves the well-known worst-case-noise capacity lower bound, and we have developed the
rate-splitting bounds to cover the general MIMO case.

By computing the supremum of these bounds over all possible rate-splitting strategies, we
have established a novel capacity lower bound for the SISO case which is larger than the worst-
case noise bound, and a family of novel capacity lower bounds for the MIMO case, which are
parametrized by so-called layering functions.

We have further studied the high-SNR behavior of the novel bound under the assumption
that the variance of the channel estimation error tends to zero with the SNR. We have shown
that, for a Gaussian estimation error, all rate-splitting bounds (both SISO and MIMO) are
asymptotically tight in the sense that their difference to the Gaussian-input mutual information
vanishes as the SNR tends to infinity. This is in contrast to the worst-case-noise lower bound,
which is asymptotically tight only if the variance of the estimation error decays faster than the
reciprocal of the SNR. The rate-splitting bounds are asymptotically tight irrespective of the rate
at which this variance decays.

While rate-splitting bounds outperform the worst-case-noise bound, one may argue that they
are less practical due to the successive-decoding strategy, which is more susceptible to error prop-
agation. Nevertheless, rate-splitting bounds are of theoretical importance, since their discovery
and better understanding may be a useful step in the quest for a more accurate characterization
of the capacity of noncoherent fading channels. For example, the rate-splitting bound converges
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to the Gaussian-input mutual information as the SNR tends to infinity. Consequently, at high
SNR, any gap to capacity is merely due to the (potentially suboptimal) Gaussian input distri-
bution and not due to the bounding techniques used to evaluate mutual information. In order to
find the high-SNR capacity of this channel, it thus remains to assess the optimality of Gaussian
inputs. While such inputs are highly suboptimal for imperfect CSI, they may in fact be optimal
when the CSI is asymptotically perfect.

In a second part (Chapter 4), we have studied a joint pilot-precoder optimization problem
which involves achievable rate expressions under imperfect CSI. We have presented an in-depth
study of a joint pilot-precoder optimization for a general class of utility functions of the effective
SNR matrix.

Upon analyzing the two separate problems of pilot and precoder optimization, both of which
can be cast into (quasi-)convex problems in the effective SNR domain provided that the utility
is itself (quasi-)concave, we have shown that joint optimization requires the eigenbases of both
the pilot Gram and the transmit covariance to be aligned with the channel’s transmit corre-
lation matrix. This allows to simplify the joint problem significantly. Furthermore, by deriving
a method for computing energy allocations which are Pareto optimal in terms of the effective
SNR eigenvalues, we managed to further reduce the dimensionality of the problem. By combin-
ing these approaches into a single iteration, we have proposed an algorithm for computing local
optima of the joint optimization problem.

It should be noted that the main contributions of this chapter consist in offering insights
and theorems that allow us to reduce a high-dimensional optimization problem so as to render
it tractable using common optimization tools. As pointed out in Section 4.6, the focus has
not been on an efficient and practical implementation, though there may be room for further
improvement. Future work may thus look at possible refinements of the iterative algorithm, or
extensions of the system model, for instance to include more general fading models.
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A

Appendix to Chapter 1

A.1 Proof of Lemma 1.1

We first upper-bound the mutual information as

I(XG;Y |Ĥ) = h(Y |Ĥ)− h(Y |XG, Ĥ)

≤ E
[
log
(
πe
(
|Ĥ|2P + Ṽ P +N0

))]
− h(Y |XG, Ĥ). (A.1)

The inequality follows because the Gaussian distribution is entropy-maximizing under a fixed-
variance constraint. Next, we lower-bound the remaining entropy term. Denote as PXG and PĤ
the probability measures of XG and Ĥ, respectively. By means of the entropy-power inequality,
we have

h(Y |XG, Ĥ) = h
(
H̃XG + Z

∣∣ XG, Ĥ
)

=
∫∫

h
(
H̃X + Z

∣∣ Ĥ = Ĥ
)

dPXG(X) dPĤ(Ĥ)

≥
∫∫

h
(
H̃ ′X + Z

∣∣ Ĥ = Ĥ
)

dPXG(X) dPĤ(Ĥ), (A.2)

where H̃ ′, conditioned on Ĥ = Ĥ, is a zero-mean Gaussian variable independent of Z, having
variance Φ̃(Ĥ) and an entropy equal to the entropy of H̃ conditioned on Ĥ = Ĥ, i.e.,

Φ̃(Ĥ) = 1
πe
eh(H̃|Ĥ=Ĥ). (A.3)

We have by the entropy-power inequality

Φ̃(Ĥ) ≤ Ṽ (Ĥ), Ĥ ∈ C. (A.4)
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Hence

h(Y |XG, Ĥ) ≥ E
[
log
(
πe
(
Φ̃(Ĥ)WP +N0

))]
(A.5)

with W an independent unit-mean exponential variable. By inserting (A.5) into (A.1), we finally
obtain

I(XG;Y |Ĥ) ≤ E
[
log

(
1 + |Ĥ|2P

Ṽ (|Ĥ|2)P +N0

)]
+ E

[
log

(
Ṽ (Ĥ)P +N0

Φ̃(Ĥ)PW +N0

)]
. (A.6)



B

Appendices to Chapter 2

B.1 Proof of Lemma 2.1

We expand the mutual information as

I(S;AS +B|A,C) = h(S|A,C)− h(S|AS +B,A,C). (B.1)

Since, by assumption, S is zero-mean, variance-P , circularly-symmetric, complex Gaussian and
independent of (A,C), the first entropy on the RHS of (B.1) is readily evaluated as

h(S|A,C) = h(S) = log(πeP ). (B.2)

Conditioned on (A,C) = (a, c), the second entropy can be upper-bounded as follows:

h(S|AS +B,A = a,C = c) = h
(
S − αA,C(AS +B − µB|A,C)

∣∣ AS +B,A = a,C = c
)

≤ h
(
S − αA,C(AS +B − µB|A,C)

∣∣ A = a,C = c
)

≤ log
(
πeE

[∣∣S − αA,C(AS +B − µB|A,C)
∣∣2 ∣∣∣ A = a,C = c

])
(B.3)

for any arbitrary αa,c ∈ C, where µB|a,c , E[B|A = a,C = c]. Here the first inequality follows
because conditioning cannot increase entropy, and the second inequality follows from the entropy-
maximizing property of the Gaussian distribution. Combining (B.3) with (B.2) and (B.1) thus
yields for every (A,C) = (a, c) and αa,c

I(S;AS +B|A = a,C = c) ≥ log P

E
[
|S − αA,C(AS +B − µB|A,C)|2

∣∣∣A = a,C = c
] . (B.4)

We choose αa,c so that αa,c(aS + B − µB|a,c) is the linear MMSE estimate of S from the
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observation AS +B given (A,C) = (a, c), namely,

αa,c =
E
[
S(AS +B − µB|A,C)∗

∣∣ A = a,C = c
]

E
[
|AS +B − µB|A,C |2

∣∣ A = a,C = c
] = a∗P

|a|2P + VB(a, c) (B.5)

where VB(a, c) denotes the conditional variance of B conditioned on (A,C) = (a, c). Here we have
used that, conditioned on (A,C) = (a, c), the random variables S and B are uncorrelated and
that S has zero mean and variance P and is independent of (A,C). Combining these conditions
with (B.5), we obtain

E
[∣∣S − αA,C(AS +B − µB|A,C)

∣∣2 ∣∣∣ A = a,C = c
]

= P
VB(a, c)

|a|2P + VB(a, c) . (B.6)

Consequently, (B.6) and (B.4) give for every (A,C) = (a, c)

I(S;AS +B|A = a,C = c) ≥ log
(

1 + |a|2P
VB(a, c)

)
. (B.7)

Lemma 2.1 follows then by averaging over (A,C).

B.2 Proof of Lemma 2.2

To prove Lemma 2.2, we shall demonstrate for every L ∈ N that, if the layerings Q ∈ Q(P,L)
and Q′ ∈ Q(P,L+ 1) satisfy

{
Q1, . . . , QL

}
⊂
{
Q′1, . . . , Q

′
L+1

}
(B.8)

then R[Q] ≤ R[Q′] with equality if, and only if, Pr
{
Ĥ · Ṽ (Ĥ) = 0

}
= 1. The general case where

Q′ ∈ Q(P,L′) for some arbitrary L′ > L follows directly from the case L′ = L + 1 by applying
the above result (L′ − L) times.

Let the element in Q′ that is not contained in Q be at position τ ∈ {1, . . . , L}, i.e.,1

Q` = Q′`, ` = 1, . . . , τ − 1 (B.9a)

and
Q` = Q′`+1, ` = τ, . . . , L. (B.9b)

We next express Γ`,A(X`−1, Ĥ) in (2.14) for some general layering A as

Γ`,A(X`−1, Ĥ) = |Ĥ|2(A` −A`−1)
Ṽ (Ĥ) |

∑
i<`Xi|2 +

(
|Ĥ|2 + Ṽ (Ĥ)

)
P − |Ĥ|2A` − Ṽ (Ĥ)A`−1 +N0

. (B.10)

1 By the definition of a layering, we have Q′L+1 = QL = P , so the element in Q′ not contained in Q cannot be at position
τ = L+ 1.
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Noting that for the layering Q the term |
∑
i<`Xi|2 has an exponential distribution with mean

Q`−1, whereas for the layering Q′ it has an exponential distribution with mean Q′`−1, and using
(B.9a) and (B.9b), it can be easily verified that

E
[
log
(
1 + Γ`,Q(X`−1, Ĥ)

)]
= E

[
log
(
1 + Γ`,Q′(X`−1, Ĥ)

)]
, ` = 1, . . . , τ − 1 (B.11)

and

E
[
log
(
1 + Γ`,Q(X`−1, Ĥ)

)]
= E

[
log
(
1 + Γ`+1,Q′(X`, Ĥ)

)]
, ` = τ + 1, . . . , L. (B.12)

Subtracting R[Q] from R[Q′] yields

R[Q′]−R[Q] = E
[
log
(
1 + Γτ,Q′(Xτ−1, Ĥ)

)]
+ E

[
log
(
1 + Γτ+1,Q′(Xτ , Ĥ)

)]
− E

[
log
(
1 + Γτ,Q(Xτ−1, Ĥ)

)]
. (B.13)

Since the random variables X1, . . . , Xτ , Ĥ are independent, we can express the second expecta-
tion as

E
[
EXτ

[
log
(
1 + Γτ+1,Q′(Xτ , Ĥ)

)∣∣∣Xτ−1, Ĥ
]]

(B.14)

where the subscript indicates that the inner expected value is computed with respect to Xτ .
Using that, for every α > 0, the function x 7→ log(1 + α/x) is strictly convex in x > 0, it
follows from Jensen’s inequality that, for every Xτ−1 = xτ−1 and Ĥ = ĥ, the inner expectation
is lower-bounded by2

EXτ
[
log
(
1 + Γτ+1,Q′(xτ−1, Xτ , ĥ)

)]
≥ log

(
1 + Γ̄τ+1,Q′(xτ−1, ĥ)

)
(B.15)

where we define

Γ̄τ+1,Q′(xτ−1, ĥ) ,
|ĥ|2(Q′τ+1 −Q′τ )

Ṽ (ĥ) |
∑
i<τ xi|

2 + (|ĥ|2 + Ṽ (ĥ))P − |ĥ|2Q′τ+1 − Ṽ (ĥ)Q′τ−1 +N0
. (B.16)

The denominator of Γ̄τ+1,Q′(xτ−1, ĥ) is obtained by noting that Xτ has zero mean, so

EXτ

∣∣∣∣∣∑
i<τ

xi +Xτ

∣∣∣∣∣
2
 =

∣∣∣∣∣∑
i<τ

xi

∣∣∣∣∣
2

+Q′τ −Q′τ−1. (B.17)

Since Q′ ∈ Q(P,L+ 1) implies that E
[
|Xτ |2

]
> 0, the inequality in (B.15) is strict except in the

trivial cases Ṽ (ĥ) = 0 or ĥ = 0. Combining (B.14) and (B.15) yields

E
[
log
(
1 + Γτ+1,Q′(Xτ , Ĥ)

)]
≥ E

[
log
(
1 + Γ̄τ+1,Q′(Xτ−1, Ĥ)

)]
(B.18)

2 With a slight abuse of notation, we write Γτ+1,Q′ (xτ , ĥ) as Γτ+1,Q′ (xτ−1, xτ , ĥ).
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which together with (B.13) gives

R[Q′]−R[Q] ≥ E
[
log
(
1 + Γτ,Q′(Xτ−1, Ĥ)

)]
+ E

[
log

(
1 + Γ̄τ+1,Q′(Xτ−1, Ĥ)

1 + Γτ,Q(Xτ−1, Ĥ)

)]
(B.19)

with the inequality being strict except if Pr
{
Ĥ · Ṽ (Ĥ) = 0

}
= 1.

We next use (B.9a) and (B.9b) and the fact that |
∑
i<τ Xi|2 has an exponential distribution

with mean Q′τ−1 under both layerings Q and Q′ to evaluate the second expected value on the
RHS of (B.19):

E
[
log

(
1 + Γ̄τ+1,Q′(Xτ−1, Ĥ)

1 + Γτ,Q(Xτ−1, Ĥ)

)]
= E

[
log

(
T − |Ĥ|2Q′τ − Ṽ (Ĥ)Q′τ−1 +N0

T − |Ĥ|2Q′τ−1 − Ṽ (Ĥ)Q′τ−1 +N0

)]

= −E
[
log

(
1 +

|Ĥ|2(Q′τ −Q′τ−1)
T − |Ĥ|2Q′τ − Ṽ (Ĥ)Q′τ−1 +N0

)]
(B.20)

where we introduce

T , Ṽ (Ĥ)
∣∣∣∣∣∑
i<τ

Xi

∣∣∣∣∣
2

+
(
|Ĥ|2 + Ṽ (Ĥ)

)
P (B.21)

for ease of exposition. By noting that

|Ĥ|2(Q′τ −Q′τ−1)
T − |Ĥ|2Q′τ − Ṽ (Ĥ)Q′τ−1 +N0

= Γτ,Q′(Xτ−1, Ĥ) (B.22)

it follows that the RHS of (B.19) is zero, thus demonstrating that

R[Q] ≤ R[Q′] (B.23)

with equality if, and only if, Pr
{
Ĥ · Ṽ (Ĥ) = 0

}
= 1. This proves Lemma 2.2.

B.3 Proof of Theorem 2.1

For every L-layering Q ∈ Q(P,L), we can construct an (L + 1)-layering Q′ ∈ Q(P,L + 1)
satisfying Q ⊂ Q′ by adding (Q1 +Q2)/2 to Q. Together with Lemma 2.2, this implies that for
every Q ∈ Q(P,L) there exists a Q′ ∈ Q(P,L+1) such that R[Q] ≤ R[Q′], from which we obtain
that R?(P,L) is monotonically nondecreasing upon maximizing both sides of the inequality over
all layerings Q ∈ Q(P,L) and Q′ ∈ Q(P,L+ 1), respectively.

To show that if Pr
{
Ĥ · Ṽ (Ĥ) = 0

}
= 1 then R?(P,L) = R(P ), L ∈ N (where N denotes the

set of positive integers), we first note that Médard’s lower bound (1.28) corresponds to R[Q]
with Q ∈ Q(P, 1). Since the only 1-layering is {P}, it follows that R[Q] = R?(P, 1) = R(P ).
Furthermore, every L-layering Q′ ∈ Q(P,L), L > 1 satisfies Q ⊂ Q′, so applying Lemma 2.2
with the condition Pr

{
Ĥ · Ṽ (Ĥ) = 0

}
= 1 yields R[Q′] = R[Q] = R(P ) for every Q′ ∈ Q(P,L)

and L ∈ N. The claim follows then by maximizing R[Q′] over all L-layerings Q(P,L).
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B.4 Proof of Theorem 2.2

To prove theorem 2.2, we first note that for ĥ = 0

log
(

1 + |ĥ|2P
Ṽ (ĥ)P +N0

)
= 0 (B.24)

whereas for Ṽ (ĥ) = 0

log
(

1 + |ĥ|2P
Ṽ (ĥ)P +N0

)
= log

(
1 + |ĥ|

2P

N0

)
(B.25)

which in both cases is equal to

|ĥ|
|ĥ|+ Ṽ (ĥ) + N0

P

Θ
(
Ṽ (ĥ)(W − 1)− |ĥ|2

|ĥ|2 + Ṽ (ĥ) + N0
P

)
(B.26)

where W is as in Theorem 2.2. This implies that, if Pr
{
Ĥ · Ṽ (Ĥ) = 0

}
= 1, then

R(P ) = E
[

|Ĥ|
|Ĥ|+ Ṽ (Ĥ) + N0

P

Θ
(
Ṽ (Ĥ)(W − 1)− |Ĥ|2

|Ĥ|2 + Ṽ (Ĥ) + N0
P

)]
(B.27)

from which Theorem 2.2 follows because, by Theorem 2.1, R?(P,L) = R(P ), L ∈ N.

In the following, we consider the case where Pr
{
Ĥ · Ṽ (Ĥ) = 0

}
< 1. To this end, we first

show that it suffices to consider equi-power layerings

U(P,K) ,
{
P

K
, 2P
K
, . . . , (K − 1)P

K
,P

}
. (B.28)

More precisely, we shall show that for every L-layering Q ∈ Q(P,L) there exists some sufficiently
large K such that U(P,K) outperforms Q, i.e.,

R[U(P,K)] > R[Q]. (B.29)

This then implies that

R?(P ) = sup
L∈N

{
sup

Q∈Q(P,L)
R[Q]

}
= sup

K∈N
R[U(P,K)] (B.30)

from which we obtain, by Lemma 2.2, that

R?(P ) = lim
K→∞

R[U(P,K)] (B.31)

upon noting that U(P,K) ⊂ U(P, 2K) for every K ∈ N.

To show that for every L-layering Q ∈ Q(P,L) there exists some U(P,K) (with K sufficiently
large) outperforming Q, we first note that for every ε > 0 one can find a sufficiently large K and
two (L+ 1)-layerings S ∈ Q(P,L+ 1) and T ∈ Q(P,L+ 1) satisfying Q ⊂ S and T ⊂ U(P,K)
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such that
max

1≤`≤L+1
|T` − S`| ≤ ε. (B.32)

Indeed, S may be obtained by including (Q1 + Q2)/2 into Q, i.e., S = Q ∪ {(Q1 + Q2)/2}.
Furthermore, for K larger than P/(min0≤`≤L |S`+1−S`|) (where S0 = 0 by convention), choosing

T` =
⌈
S`K

P

⌉
P

K
, ` = 1, . . . , L+ 1

yields T ⊂ U(P,K) and
max

1≤`≤L+1
|T` − S`| ≤

P

K
(B.33)

from which (B.32) follows. To prove (B.29), we then need the following lemma.

Lemma B.1. The function R[Q] satisfies

lim
Q→Q′

R[Q] = R[Q′] (B.34)

where Q→ Q′ is to be understood as max` |Q`−Q′`| → 0 with Q and Q′ having an equal number
of layers.

Proof: See Appendix B.5.

From Lemma B.1 and from the observation (B.32), it follows that for every δ > 0 there exists
a sufficiently large K such that ∣∣R[T]−R[S]

∣∣ ≤ δ. (B.35)

Since by Lemma 2.2 and the assumption Pr
{
Ĥ · Ṽ (Ĥ) = 0

}
< 1 we have

R[Q] < R[S] and R[T] < R[U(P,K)] (B.36)

this yields
R[Q] < R[S] ≤ R[T] + δ (B.37)

which for a sufficiently small δ is strictly smaller than R[U(P,K)] due to T ⊂ U(P,K). This
proves (B.29).

Recalling that (B.29) implies (B.31), we continue by evaluating R[U(P,K)] in the limit as
K tends to infinity. To this end, we write R[U(P,K)] as

R[U(P,K)] =
K∑
`=1

E
[
log
(
1 + Γ`,U(W`, Ĥ)

)]
(B.38)

with [cf. (2.14)]

Γ`,U(W`, Ĥ) = |Ĥ|2

Ṽ (Ĥ)(`− 1)W` + Ṽ (Ĥ) +
(
|Ĥ|2 + Ṽ (Ĥ)

)
(K − `) +N0

K
P

(B.39)
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and

W` ,


0, ` = 1

1
(`− 1) PK

|
∑
i<`Xi|2 , ` = 2, . . . ,K.

(B.40)

The random variables (W1, . . . ,WK) are dependent but have equal marginals. (Each marginal
has a unit-mean exponential distribution.) Since the RHS of (B.38) depends on (W1, . . . ,WK)
only via their marginal distributions, we can thus express R[U(P,K)] as

R[U(P,K)] = E
[
K∑
`=1

log
(
1 + Γ`,U(W, Ĥ)

)]
(B.41)

where W is independent of Ĥ and has a unit-mean exponential distribution.

Combining (B.41) with (B.31) yields

R?(P ) = lim
K→∞

E
[
K∑
`=1

log
(
1 + Γ`,U(W, Ĥ)

)]
. (B.42)

We next show that

R?(P ) = E
[

lim
K→∞

K∑
`=1

Γ`,U(W, Ĥ)
]

(B.43)

and evaluate
∑K
`=1 Γ`,U(W, Ĥ) for every (W, Ĥ) = (w, ĥ) in the limit as K tends to infinity. To

this end, we first lower-bound R?(P ) using Fatou’s Lemma [Ash00, (1.6.8), p. 50] and the lower
bound log(1 + x) ≥ x− x2/2, x ≥ 0:

R?(P ) = lim
K→∞

E
[
K∑
`=1

log
(
1 + Γ`,U(W, Ĥ)

)]

≥ E
[

lim
K→∞

K∑
`=1

log
(
1 + Γ`,U(W, Ĥ)

)]

≥ E
[

lim
K→∞

K∑
`=1

Γ`,U(W, Ĥ)
]
− 1

2 E
[

lim
K→∞

K∑
`=1

Γ2
`,U(W, Ĥ)

]
(B.44)

where lim denotes the limit inferior. We next argue that the second term on the RHS of (B.44)
is zero. Indeed, we have for every (W, Ĥ) = (w, ĥ) [cf. (B.39)]

Γ2
`,U(w, ĥ) = |ĥ|4[

Ṽ (ĥ)(`− 1)w + Ṽ (ĥ) +
(
|ĥ|2 + Ṽ (ĥ)

)
(K − `) +N0

K
P

]2
≤ |ĥ|4[

min
{
Ṽ (ĥ)w,

(
|ĥ|2 + Ṽ (ĥ)

)}
(K − 1) + Ṽ (ĥ) +N0

K
P

]2 (B.45)

where the inequality follows from observing that the denominator of Γ2
`,U(w, ĥ) is the square of
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a positive affine linear function of ` ∈ {1, . . . ,K} and is therefore minimized for either ` = 1 or
` = K. This yields

K∑
`=1

Γ2
`,U(w, ĥ) ≤ K|ĥ|4[

min
{
Ṽ (ĥ)w,

(
|ĥ|2 + Ṽ (ĥ)

)}
(K − 1) + Ṽ (ĥ) +N0

K
P

]2 . (B.46)

Since
∑K
`=1 Γ2

`,U(w, ĥ) is nonnegative, and since the RHS of (B.46) vanishes as K tends to
infinity, it follows that, for every (W, Ĥ) = (w, ĥ),

lim
K→∞

K∑
`=1

Γ2
`,U(w, ĥ) = 0. (B.47)

Combining (B.47) with (B.44) yields

R?(P ) ≥ E
[

lim
K→∞

K∑
`=1

Γ`,U(W, Ĥ)
]
. (B.48)

We next show that

R?(P ) ≤ E
[

lim
K→∞

K∑
`=1

Γ`,U(W, Ĥ)
]
. (B.49)

To this end, we first use the upper bound log(1 + x) ≤ x, x ≥ 0 to obtain

R?(P ) = lim
K→∞

E
[
K∑
`=1

log
(
1 + Γ`,U(W, Ĥ)

)]

≤ lim
K→∞

E
[
K∑
`=1

Γ`,U(W, Ĥ)
]
. (B.50)

Noting that, for every (W, Ĥ) = (w, ĥ), the sum inside the expectation is upper-bounded by

K∑
`=1

Γ`,U(w, ĥ) ≤
K∑
`=1

|ĥ|2

N0
K
P

= P |ĥ|2

N0
, ζ(ĥ) (B.51)

and noting that, since Ĥ has a finite second moment, we have that 0 < E[ζ(Ĥ)] < ∞, we
obtain (B.49) upon applying Fatou’s Lemma to the nonnegative function (w, ĥ) 7→ ζ(ĥ) −∑K
`=1 Γ`,U(w, ĥ).

It remains to show that, for every (W, Ĥ) = (w, ĥ),

lim
K→∞

K∑
`=1

Γ`,U(w, ĥ) = |ĥ|2

|ĥ|2 + Ṽ (ĥ) + N0
P

Θ
(
Ṽ (ĥ)(w − 1)− |ĥ|2

|ĥ|2 + Ṽ (ĥ) + N0
P

)
(B.52)

where Θ(·) is defined in (2.27). This then implies that the bounds (B.48) and (B.49) coincide
and

R?(P ) = E
[

|Ĥ|2

|Ĥ|2 + Ṽ (Ĥ) + N0
P

Θ
(
Ṽ (Ĥ)(W − 1)− |Ĥ|2

|Ĥ|2 + Ṽ (Ĥ) + N0
P

)]
(B.53)
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which proves Theorem 2.2.

To show (B.52), we express the denominator in Γ`,U(w, ĥ) as a`+ bK + c with

a = Ṽ (ĥ)(w − 1)− |ĥ|2 (B.54a)

b = |ĥ|2 + Ṽ (ĥ) + N0
P

(B.54b)

c = Ṽ (ĥ)(1− w) (B.54c)

allowing us to write
K∑
`=1

Γ`,U(w, ĥ) =
K∑
`=1

|ĥ|2

a`+ bK + c
. (B.55)

Observe that, for every (w, ĥ), a+ b and a are strictly positive.

If a = 0, then we get the limit

lim
K→∞

K∑
`=1

Γ`,U(w, ĥ) = |ĥ|
2

b
. (B.56)

We next consider the case a 6= 0. Note that

lim
K→∞

(
K∑
`=1

|ĥ|2

a`+ bK + c
−

K∑
`=1

|ĥ|2

a`+ bK

)
= 0. (B.57)

Indeed, by the triangle inequality, we have∣∣∣∣∣
K∑
`=1

|ĥ|2

a`+ bK + c
−

K∑
`=1

|ĥ|2

a`+ bK

∣∣∣∣∣ ≤
K∑
`=1

|c||ĥ|2

(a`+ bK + c)(a`+ bK) . (B.58)

Since the two factors (a`+bK+c) and (a`+bK) appearing in the denominator are both positive
affine functions of ` with equal coefficient a, their product takes its extremal values at ` = 1 or
` = K, depending on the sign of a. If a > 0, then∣∣∣∣∣

K∑
`=1

|ĥ|2

a`+ bK + c
−

K∑
`=1

|ĥ|2

a`+ bK

∣∣∣∣∣ ≤ K|c||ĥ|2

(a+ bK + c)(a+ bK) . (B.59)

If a ≤ 0, then ∣∣∣∣∣
K∑
`=1

|ĥ|2

a`+ bK + c
−

K∑
`=1

|ĥ|2

a`+ bK

∣∣∣∣∣ ≤ K|c||ĥ|2

((a+ b)K + c)(a+ b)K . (B.60)

Since the RHS of (B.59) and of (B.60) vanish as K tends to infinity, this yields (B.57). Conse-
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quently,

lim
K→∞

K∑
`=1

|ĥ|2

a`+ bK + c
= lim

K→∞

K∑
`=1

|ĥ|2

a`+ bK

= lim
K→∞

1
K

K∑
`=1

|ĥ|2

a `
K + b

=
∫ 1

0

|ĥ|2

ax+ b
dx

= |ĥ|
2

a
log

(
1 + a

b

)
(B.61)

where the third step follows by noting that the function x 7→ 1
ax+b is Riemann integrable, so the

Riemann sum converges to the integral.

Using the definition of Θ(·) [cf. (2.27)], it follows from (B.56) and (B.61) that

lim
K→∞

K∑
`=1

Γ`,U(w, ĥ) = |ĥ|
2

b
Θ
(
a

b

)
= |ĥ|2

|ĥ|2 + Ṽ (ĥ) + N0
P

Θ
(
Ṽ (ĥ)(w − 1)− |ĥ|2

|ĥ|2 + Ṽ (ĥ) + N0
P

)
(B.62)

thus proving (B.52), which in turn proves Theorem 2.2.

B.5 Proof of Lemma B.1

We show that
lim

Q→Q′
R[Q] = R[Q′] (B.63)

where Q→ Q′ should be read as
max
`

∣∣Q` −Q′`∣∣→ 0. (B.64)

To this end, we write R[Q] as

R[Q] =
L∑
`=1

E
[
log
(
1 + Γ`,Q(W`, Ĥ)

)]
(B.65)

with

Γ`,Q(W`, Ĥ) , |Ĥ|2(Q` −Q`−1)
Ṽ (Ĥ)W`Q`−1 + Ṽ (Ĥ)(Q` −Q`−1) +

(
|Ĥ|2 + Ṽ (Ĥ)

)
(P −Q`) +N0

(B.66)

(assuming that Q0 = 0) and

W` ,


0, ` = 0

1
Q`−1

∣∣∣∣∣∣
∑
i<`

Xi

∣∣∣∣∣∣
2

, ` = 2, . . . , L.
(B.67)
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Using that, with probability one,

0 ≤ log
(
1 + Γ`,Q(W`, Ĥ)

)
≤ |Ĥ|

2P

N0
(B.68)

and that Ĥ has finite variance, it follows from the Dominated Convergence Theorem [Ash00,
(1.6.9), p. 50] that

lim
Q→Q′

E
[
log
(
1 + Γ`,Q(W`, Ĥ)

)]
= E

[
lim

Q→Q′
log
(
1 + Γ`,Q(W`, Ĥ)

)]
= E

[
log
(
1 + Γ`,Q′(W`, Ĥ)

)]
(B.69)

where the last step follows by noting that, for every (w`, ĥ), the function Q 7→ log
(
1+Γ`,Q(w`, ĥ)

)
is continuous. Combining (B.69) with (B.65) proves (B.63) and, hence, Lemma B.1.

B.6 Proof of Theorem 2.3

To prove theorem 2.3, we show that, in the limit as the SNR tends to infinity, the difference

I(XG;Y |Ĥρ)−R?(ρ) (B.70)

is upper-bounded by log(M) Pr{|H| > 0} provided that (2.36a)–(2.36b) are satisfied. To this
end, we introduce the random variable

D ,

0 if H = 0

1 if |H| > 0
(B.71)

and upper-bound the mutual information in (B.70) as

I(XG;Y |Ĥρ) ≤ I(XG;Y |Ĥρ, D) (B.72)

which follows because XG is independent of Ĥρ and D. We next note that

I(XG;Y |Ĥρ, D = 0) = I(XG;Z) = 0 (B.73)

since XG, Z, and (Ĥρ, H) are independent. If Pr{H = 0} = 1, then Theorem 2.3 follows
directly from (B.72), (B.73), and the nonnegativity of R?(ρ). In the following, we assume that
Pr{H = 0} < 1.

We express R?(ρ) in (2.26) as E[R?(ρ,W, Ĥρ)] with3

R?(ρ, w, ξ) , |ξ|2

|ξ|2 + Ṽρ(ξ) + ρ−1 Θ
(

(w − 1)Ṽρ(ξ)− |ξ|2

|ξ|2 + Ṽρ(ξ) + ρ−1

)
,
(
ρ > 0, w ≥ 0, ξ ∈ C

)
. (B.74)

3 Recall W is independent of Ĥρ and has a unit-mean exponential distribution.
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Note that, by the definition of Θ(·) in (2.27), R?(ρ, w, ξ) ≥ 0 for every (ρ > 0, w ≥ 0, ξ ∈ C).
Using this result together with (B.72) and (B.73), we obtain

I(XG;Y |Ĥρ)−R?(ρ) ≤ I(XG;Y |Ĥρ, D = 1) Pr{|H| > 0}−E
[
R?(ρ,W, Ĥρ)

∣∣ D = 1
]
Pr{|H| > 0}.

(B.75)
To prove Theorem 2.3, it remains to show that if (2.36a)–(2.36b) hold, then

lim
ρ→∞

{
I(XG;Y |Ĥρ, D = 1)− E

[
R?(ρ,W, Ĥρ)

∣∣ D = 1
]}
≤ log(M). (B.76)

For ease of exposition, we will omit in the remainder of the proof the conditioning on the event
|H| > 0 and replace tacitly the joint distribution of (Ĥρ, H) by its conditional distribution,
conditioned on |H| > 0. This change will not affect the bounds (1.28), (2.26), and (1.34),
since they hold irrespective of the distribution of (Ĥρ, H) (provided that H and Ĥρ satisfy
the conditions indicated in the Introduction). Note that, under this new distribution, we have
Pr{H = 0} = 0.

To prove (B.76), we upper-bound I(XG;Y |Ĥρ) by Iupper(ρ) using (1.34) and express
Iupper(ρ)−R?(ρ) as

Iupper(ρ)−R?(ρ) = E
[
R(ρ, Ĥρ)] + E

[
∆(ρ,W, Ĥρ)

]
− E

[
R?(ρ,W, Ĥρ)

]
= E

[
Σ(ρ, Ĥρ)

]
(B.77)

where we have defined [cf. (1.28), (1.34)]

R(ρ, ξ) , log
(

1 + |ξ|2

Ṽρ(ξ) + ρ−1

)
,
(
ρ > 0, w ≥ 0, ξ ∈ C

)
(B.78)

∆(ρ, w, ξ) , log
(
Ṽρ(ξ) + ρ−1

Φ̃ρ(ξ)w + ρ−1

)
,

(
ρ > 0, w ≥ 0, ξ ∈ C

)
(B.79)

and

Σ(ρ, ξ) , R(ρ, ξ) + E
[
∆(ρ,W, ξ)

]
− E

[
R?(ρ,W, ξ)

]
,
(
ρ > 0, ξ ∈ C

)
. (B.80)

Note that Σ(ρ, ξ) ≥ 0, ξ ∈ C since Iupper(ρ) − R?(ρ) is nonnegative for any distribution of Ĥρ,
hence it is also nonnegative if Ĥρ = ξ with probability one.

We next show that

lim
ρ→∞

E
[
Σ(ρ, Ĥρ)

]
≤ log(M). (B.81)

To this end, we write the RHS of (B.77) as

E
[
Σ
(
ρ, Ĥρ

)]
= E

[
Σ
(
ρ, Ĥρ

)
I
{
|Ĥρ| ≤ ξ0

}]
+ E

[
Σ
(
ρ, Ĥρ

)
I
{
|Ĥρ| > ξ0

}]
(B.82)
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for some arbitrary 0 < ξ0 < 1, where I{·} denotes the indicator function. We then show that

lim
ξ0↓0

lim
ρ→∞

E
[
Σ
(
ρ, Ĥρ

)
I
{
|Ĥρ| ≤ ξ0

}]
= 0 (B.83a)

and
lim
ξ0↓0

lim
ρ→∞

E
[
Σ
(
ρ, Ĥρ

)
I
{
|Ĥρ| > ξ0

}]
≤ log(M). (B.83b)

To prove (B.83a), we need the following two lemmas.

Lemma B.2. We have

lim
ρ→∞

sup
ξ∈C

Σ(ρ, ξ) ≤ γ + log(M). (B.84)

where γ ≈ 0.577 denotes Euler’s constant.

Proof: See Appendix B.7.

Lemma B.3. Let Ṽρ(Ĥρ) and H̃ρ satisfy (2.36a) and (2.36b), and assume that Pr{H = 0} = 0.
Then

lim
ξ0↓0

lim
ρ→∞

Pr
{
|Ĥρ| > ξ0

}
= 1. (B.85)

Proof: See Appendix B.8.

Lemma B.2 implies that for every ε > 0 there exists a ρ0 > 0 such that

sup
ξ∈C

Σ(ρ, ξ) ≤ γ + log(M) + ε, ρ ≥ ρ0. (B.86)

Consequently, for ρ ≥ ρ0 we have

E
[
Σ
(
ρ, Ĥρ

)
I
{
|Ĥρ| ≤ ξ0

}]
≤
(
γ + log(M) + ε

)
Pr
{
|Ĥρ| ≤ ξ0

}
. (B.87)

Together with Lemma B.3, this yields (B.83a) upon taking limits on both sides of (B.87):

lim
ξ0↓0

lim
ρ→∞

{
E
[
Σ
(
ρ, Ĥρ

)
I
{
|Ĥρ| ≤ ξ0

}]}
≤
(
γ + log(M) + ε

) {
lim
ξ0↓0

lim
ρ→∞

Pr
{
|Ĥρ| ≤ ξ0

}}
= 0. (B.88)

To prove (B.83b), we first upper-bound Σ(ρ, ξ) by lower-bounding E[R?(ρ,W, ξ)] for ρ > 0 and
|ξ| > ξ0 using that R?(ρ, w, ξ) is nonnegative and recalling that W is unit-mean exponentially
distributed:

E
[
R?(ρ,W, ξ)

]
≥
∫ κ(ρ,ξ)

0
R?(ρ, w, ξ)e−w dw,

(
ρ > 0, |ξ| > ξ0

)
(B.89)
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where

κ(ρ, ξ) , ξ2
0√

Ṽρ(ξ) + ρ−1
. (B.90)

This choice for κ(ρ, ξ) together with the assumption Ṽρ(ξ) ≤ 1 ensures that (1− w)Ṽρ(ξ) + |ξ|2

is strictly positive for all values of the integration variable w and for all |ξ| > ξ0. Using (B.74)
and the definition (2.27) of the function Θ(·), the lower bound (B.89) reads as

E
[
R?(ρ,W, ξ)

]
≥
∫ κ(ρ,ξ)

0

|ξ|2

(w − 1)Ṽρ(ξ)− |ξ|2
log

(
1 + (w − 1)Ṽρ(ξ)− |ξ|2

|ξ|2 + Ṽρ(ξ) + ρ−1

)
e−w dw,

(
ρ > 0, |ξ| > ξ0

)
. (B.91)

Combining (B.91) with (B.78)–(B.80) yields

Σ(ρ, ξ) ≤ log
(

1 + |ξ|2

Ṽρ(ξ) + ρ−1

)
+
∫ ∞

0
log

(
Ṽρ(ξ) + ρ−1

Φ̃ρ(ξ)w + ρ−1

)
e−w dw

+
∫ κ(ρ,ξ)

0

|ξ|2

(1− w)Ṽρ(ξ) + |ξ|2
log

(
1 + (w − 1)Ṽρ(ξ)− |ξ|2

|ξ|2 + Ṽρ(ξ) + ρ−1

)
e−w dw,

(
ρ > 0, |ξ| > ξ0

)
. (B.92)

This upper bound has the form Σ(ρ, ξ) ≤ Σ1(ρ, ξ) + Σ2(ρ, ξ) + Σ3(ρ, ξ) where the terms can be
expanded as

Σ1(ρ, ξ) = log
(
|ξ|2 + Ṽρ(ξ) + ρ−1

) ∫ κ(ρ,ξ)

0
e−w dw −

∫ κ(ρ,ξ)

0
log

(
Ṽρ(ξ) + ρ−1

)
e−w dw

+
∫ ∞
κ(ρ,ξ)

log
(

1 + |ξ|2

Ṽρ(ξ) + ρ−1

)
e−w dw (B.93a)

Σ2(ρ, ξ) =
∫ κ(ρ,ξ)

0
log

(
Ṽρ(ξ) + ρ−1

)
e−w dw −

∫ κ(ρ,ξ)

0
log

(
Φ̃ρ(ξ)w + ρ−1

)
e−w dw

+
∫ ∞
κ(ρ,ξ)

log
(
Ṽρ(ξ) + ρ−1

Φ̃ρ(ξ)w + ρ−1

)
e−w dw (B.93b)

Σ3(ρ, ξ) =
∫ κ(ρ,ξ)

0

|ξ|2

(1− w)Ṽρ(ξ) + |ξ|2
log

(
Ṽρ(ξ)w + ρ−1

)
e−w dw

− log
(
|ξ|2 + Ṽρ(ξ) + ρ−1

) ∫ κ(ρ,ξ)

0

|ξ|2

(1− w)Ṽρ(ξ) + |ξ|2
e−w dw. (B.93c)

Upon reordering terms in (B.93a)–(B.93c), the upper bound (B.92) can be further rewritten as

Σ(ρ, ξ) ≤
5∑
i=1

Ji(ρ, ξ) (B.94)
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with the five terms

J1(ρ, ξ) ,
∫ κ(ρ,ξ)

0
log

(
Ṽρ(ξ)w + ρ−1

Φ̃ρ(ξ)w + ρ−1

)
e−w dw (B.95a)

J2(ρ, ξ) , −
∫ κ(ρ,ξ)

0

(1− w)Ṽρ(ξ)
(1− w)Ṽρ(ξ) + |ξ|2

log
(
Ṽρ(ξ)w + ρ−1)e−w dw (B.95b)

J3(ρ, ξ) , log
(
|ξ|2 + Ṽρ(ξ) + ρ−1) ∫ κ(ρ,ξ)

0

(1− w)Ṽρ(ξ)
(1− w)Ṽρ(ξ) + |ξ|2

e−w dw (B.95c)

J4(ρ, ξ) ,
∫ ∞
κ(ρ,ξ)

log
(
Ṽρ(ξ) + ρ−1

Φ̃ρ(ξ)w + ρ−1

)
e−w dw (B.95d)

J5(ρ, ξ) , log
(

1 + |ξ|2

Ṽρ(ξ) + ρ−1

)
e−κ(ρ,ξ). (B.95e)

Here, the term J1(ρ, ξ) is the second term of (B.93b) to which we add
∫ κ(ρ,ξ)
0 log

(
Ṽρ(ξ)w +

ρ−1)e−w dw; the term J2(ρ, ξ) is the first term in (B.93c) from which we subtract∫ κ(ρ,ξ)
0 log

(
Ṽρ(ξ)w+ ρ−1)e−w dw; the term J3(ρ, ξ) follows from adding the first term in (B.93a)

to the second term in (B.93c); the term J4(ρ, ξ) is the third term in (B.93b); the term J5(ρ, ξ) is
the third term in (B.93a). The second term of (B.93a) and the first term of (B.93b) cancel out.

We proceed by showing that, for every ξ0 > 0,

lim
ρ→∞

E
[
J1(ρ, Ĥρ) I

{
|Ĥρ| > ξ0

}]
≤ log(M) (B.96a)

lim
ρ→∞

E
[
Ji(ρ, Ĥρ) I

{
|Ĥρ| > ξ0

}]
≤ 0, i = 2, 3, 4, 5. (B.96b)

The claim (B.83b) then follows by combining (B.96a) and (B.96b) with (B.94) and by letting
ξ0 tend to zero from above. The following lemma will be useful.

Lemma B.4. Consider the family of random variables Υρ parametrized by ρ > 0 taking values
on (0, η) and satisfying limρ→∞ E[Υρ] = 0, where η belongs to the extended positive reals, i.e., η ∈
(0,∞]. Let f(·) be a continuous bounded function on the interval (0, η) with limit limt↓0 f(t) = f0.
Then

lim
ρ→∞

E
[
f(Υρ)

]
= f0. (B.97)

Proof: See Appendix B.9.

B.6.1 Limit related to J1(ρ, ξ)

Noting that Φ̃ρ(ξ) ≤ Ṽρ(ξ), we have that

w 7→ Ṽρ(ξ)w + ρ−1

Φ̃ρ(ξ)w + ρ−1
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is monotonically increasing in w. Consequently, J1(ρ, ξ) is upper-bounded by

J1(ρ, ξ) ≤
∫ κ(ρ,ξ)

0
log Ṽρ(ξ)

Φ̃ρ(ξ)
e−w dw

≤

1− e
−

ξ20√
Ṽρ(ξ)+ρ−1

 log
(

sup
ξ∈C

Ṽρ(ξ)
Φ̃ρ(ξ)

)
,
(
ρ > 0, |ξ| > ξ0

)
(B.98)

where in the last step we have used (B.90). Setting ξ to Ĥρ, averaging (B.98) over Ĥρ, and
upper-bounding

I
{
|Ĥρ| > ξ0

}
≤ 1 (B.99)

we obtain

E
[
J1(ρ, Ĥρ) I

{
|Ĥρ| > ξ0

}]
≤

1− E

e− ξ20√
Ṽρ(Ĥρ)+ρ−1


 log

(
sup
ξ∈C

Ṽρ(ξ)
Φ̃ρ(ξ)

)
, ρ > 0. (B.100)

Noting that the function t 7→ exp
(
−ξ2

0/
√
t
)

is continuous and bounded on (0,∞) and vanishes
as nT tends to zero, it follows from (2.36a) and Lemma B.4 that

lim
ρ→∞

E

exp

− ξ2
0√

Ṽρ(Ĥρ) + ρ−1

 = 0. (B.101)

We further have by (2.36b) as well as the continuity and monotonicity of x 7→ log(x) that

lim
ρ→∞

log
(

sup
ξ∈C

Ṽρ(ξ)
Φ̃ρ(ξ)

)
≤ log(M). (B.102)

Combining (B.101) and (B.102) with (B.100) proves (B.96a).

B.6.2 Limit related to J2(ρ, ξ)

To prove (B.96b) for i = 2, first note that 0 < ξ0 < 1 implies that, for sufficiently large ρ, we
have

Ṽρ(ξ)w + ρ−1 ≤ 1, 0 ≤ w ≤ κ(ρ, ξ) (B.103)

and
(1− w)Ṽρ(ξ) ≥ −|ξ|2, 0 ≤ w ≤ κ(ρ, ξ). (B.104)
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Further note that t 7→ t/(t + |ξ|2) is monotonically increasing on (−|ξ|2,∞). Consequently, for
sufficiently large ρ, (B.95b) is upper-bounded by

J2(ρ, ξ) ≤ − Ṽρ(ξ)
Ṽρ(ξ) + |ξ|2

∫ κ(ρ,ξ)

0
log
(
Ṽρ(ξ)w + ρ−1)e−w dw

≤ Ṽρ(ξ)
Ṽρ(ξ) + |ξ|2

[(
1− e−κ(ξ,ρ)

)
log 1

Ṽρ(ξ)
+
∫ κ(ρ,ξ)

0
|log(w)| e−w dw

]
(B.105)

where the second inequality follows by lower-bounding log
(
Ṽρ(ξ)w+ ρ−1) ≥ log

(
Ṽρ(ξ)

)
+ log(w)

and from the triangle inequality.

By using that the exponential function is nonnegative, by upper-bounding the integral by
integrating to infinity, and by using that |ξ| > ξ0, we can further upper-bound (B.105), for
sufficiently large ρ, by

J2(ρ, ξ) ≤ Ṽρ(ξ)
Ṽρ(ξ) + ξ2

0

[
log 1

Ṽρ(ξ)
+K

]
(B.106)

where we define

K ,
∫ ∞

0
|log(w)| e−w dw = γ − 2 Ei(−1) (B.107)

and where Ei(·) denotes the exponential integral function, i.e.,

Ei(x) , −
∫ ∞
−x

e−u

u
du. (B.108)

Noting that the RHS of (B.106) is a continuous and bounded function of 0 < Ṽρ(ξ) ≤ 1 that
vanishes as Ṽρ(ξ) tends to zero, it follows from (B.106), (B.99), (2.36a), and Lemma B.4 that

lim
ρ→∞

E
[
J2(ρ, Ĥρ) I

{
|Ĥρ| > ξ0

}]
≤ lim

ρ→∞
E
[

Ṽρ(Ĥρ)
Ṽρ(Ĥρ) + ξ2

0

(
log 1

Ṽρ(Ĥρ)
+K

)]
≤ 0 (B.109)

thus proving (B.96b) for i = 2.

B.6.3 Limit related to J3(ρ, ξ)

To prove (B.96b) for i = 3, we shall prove the stronger statement

lim
ρ→∞

E
[∣∣J3(ρ, Ĥρ)

∣∣ I{|Ĥρ| > ξ0
}]

= 0. (B.110)

To this end, note that by the triangle inequality∣∣∣∣∣ (1− w)Ṽρ(ξ)
(1− w)Ṽρ(ξ) + |ξ|2

∣∣∣∣∣ ≤
(
1 + κ(ρ, ξ)

)
Ṽρ(ξ)(

1− κ(ρ, ξ)
)
Ṽρ(ξ) + ξ2

0
, 0 ≤ w ≤ κ(ρ, ξ). (B.111)

In (B.111) we have used that, for 0 ≤ w ≤ κ(ρ, ξ) and |ξ| ≥ ξ0, the denominator is lower-
bounded by

(
1− κ(ρ, ξ)

)
Ṽρ(ξ) + ξ2

0 > 0. It follows from (B.111) and the triangle inequality that
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the absolute value of the integral in (B.95c) is upper-bounded by∣∣∣∣∣
∫ κ(ρ,ξ)

0

(1− w)Ṽρ(ξ)
(1− w)Ṽρ(ξ) + |ξ|2

e−w dw
∣∣∣∣∣ ≤ (1− e−κ(ρ,ξ)

) (
1 + κ(ρ, ξ)

)
Ṽρ(ξ)(

1− κ(ρ, ξ)
)
Ṽρ(ξ) + ξ2

0
. (B.112)

Consequently,

∣∣J3(ρ, ξ)
∣∣ ≤ (1− e−κ(ρ,ξ)

) (
1 + κ(ρ, ξ)

)
Ṽρ(ξ)(

1− κ(ρ, ξ)
)
Ṽρ(ξ) + ξ2

0

∣∣∣log
(
|ξ|2 + Ṽρ(ξ) + ρ−1)∣∣∣

≤
(
1 + κ(ρ, ξ)

)(
Ṽρ(ξ) + ρ−1)

ξ2
0 −

(
κ(ρ, ξ)− 1

)+(
Ṽρ(ξ) + ρ−1) ∣∣∣log

(
|ξ|2 + Ṽρ(ξ) + ρ−1)∣∣∣ , (

ρ > 0, |ξ| ≥ ξ0
)
(B.113)

where we define (a)+ , max(a, 0).4 Here the last step follows by upper-bounding Ṽρ(ξ) ≤
Ṽρ(ξ) + ρ−1 and by lower-bounding

(
1 − κ(ρ, ξ)

)
Ṽρ(ξ) ≥ −

(
κ(ρ, ξ) − 1

)+(
Ṽρ(ξ) + ρ−1) and

e−κ(ρ,ξ) ≥ 0.

Using the definition (B.90) of κ(ρ, ξ), and defining Υρ(ξ) , Ṽρ(ξ) + ρ−1, the RHS of (B.113)
reads as

Υρ(ξ) + ξ2
0

√
Υρ(ξ)

ξ2
0 −

(
ξ2

0 −
√

Υρ(ξ)
)+√Υρ(ξ)

∣∣∣log
(
|ξ|2 + Υρ(ξ)

)∣∣∣ . (B.114)

Since Ṽρ(ξ) ≤ 1 and x 7→ log(x) is a monotonically increasing function, we have

log
(
Υρ(ξ)

)
≤ log

(
|ξ|2 + Υρ(ξ)

)
≤ log

(
1 + ρ−1 + |ξ|2

)
. (B.115)

The absolute value of the logarithm on the RHS of (B.114) is thus upper-bounded by∣∣∣log
(
|ξ|2 + Υρ(ξ)

)∣∣∣ ≤ ∣∣log
(
Υρ(ξ)

)∣∣+ log
(
1 + ρ−1 + |ξ|2

)
. (B.116)

By noting that

Υρ(ξ) 7→
Υρ(ξ) + ξ2

0

√
Υρ(ξ)

ξ2
0 −

(
ξ2

0 −
√

Υρ(ξ)
)+√Υρ(ξ)

∣∣log
(
Υρ(ξ)

)∣∣ (B.117)

is a continuous and bounded function of 0 < Υρ(ξ) ≤ 1 + ρ−1 that vanishes as Υρ(ξ) tends to
zero, we obtain from (2.36a), (B.99), and Lemma B.4 that

lim
ρ→∞

E

 Υρ(Ĥρ) + ξ2
0

√
Υρ(Ĥρ)

ξ2
0 −

(
ξ2

0 −
√

Υρ(Ĥρ)
)+√Υρ(Ĥρ)

∣∣log
(
Υρ(Ĥρ)

)∣∣ I{|Ĥρ| > ξ0
}

≤ lim
ρ→∞

E

 Υρ(Ĥρ) + ξ2
0

√
Υρ(Ĥρ)

ξ2
0 −

(
ξ2

0 −
√

Υρ(Ĥρ)
)+√Υρ(Ĥρ)

∣∣log
(
Υρ(Ĥρ)

)∣∣
= 0. (B.118)

4 The condition ξ0 < 1 ensures that the denominator remains positive.
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Furthermore, (B.99) together with the Cauchy-Schwarz inequality yields

E

 Υρ(Ĥρ) + ξ2
0

√
Υρ(Ĥρ)

ξ2
0 −

(
ξ2

0 −
√

Υρ(Ĥρ)
)+√Υρ(Ĥρ)

log
(
1 + ρ−1 + |Ĥρ|2

)
I
{
|Ĥρ| > ξ0

}
≤ E

 Υρ(Ĥρ) + ξ2
0

√
Υρ(Ĥρ)

ξ2
0 −

(
ξ2

0 −
√

Υρ(Ĥρ)
)+√Υρ(Ĥρ)

log
(
1 + ρ−1 + |Ĥρ|2

)

≤

√√√√√√E


 Υρ(Ĥρ) + ξ2

0

√
Υρ(Ĥρ)

ξ2
0 −

(
ξ2

0 −
√

Υρ(Ĥρ)
)+√Υρ(Ĥρ)

2√E
[
log2

(
1 + ρ−1 + |Ĥρ|2

)]
. (B.119)

Note that the term inside the first expected value is a continuous and bounded function of
0 < Υρ(Ĥρ) ≤ 1 + ρ−1 that vanishes as Υρ(Ĥρ) tends to zero, so it follows from (2.36a) and
Lemma B.4 that the first expected value on the RHS of (B.119) vanishes as ρ tends to infinity.
We further show in Appendix B.10 that

lim
ρ→∞

E
[
log2

(
1 + ρ−1 + |Ĥρ|2

)]
<∞. (B.120)

The above arguments combine to demonstrate that

lim
ρ→∞

E

 Υρ(Ĥρ) + ξ2
0

√
Υρ(Ĥρ)

ξ2
0 −

(
ξ2

0 −
√

Υρ(Ĥρ)
)+√Υρ(Ĥρ)

log
(
1 + ρ−1 + |Ĥρ|2

)
I
{
|Ĥρ| > ξ0

} = 0. (B.121)

Combining (B.121), (B.118), (B.116), and (B.113) proves (B.110).

B.6.4 Limit related to J4(ρ, ξ)

To upper-bound J4(ρ, ξ), we use that, for w ≥ κ(ρ, ξ),

Ṽρ(ξ) + ρ−1

Φ̃ρ(ξ)w + ρ−1 = Ṽρ(ξ)
Φ̃ρ(ξ)w + ρ−1 + ρ−1

Φ̃ρ(ξ)w + ρ−1

≤ Ṽρ(ξ)
Φ̃ρ(ξ)κ(ρ, ξ)

+ 1

≤ sup
ξ∈C

{
Ṽρ(ξ)
Φ̃ρ(ξ)

}√1 + ρ−1

ξ2
0

+ 1 (B.122)

where the first inequality follows by lower-bounding ρ−1 ≥ 0 and w ≥ κ(ρ, ξ) in the denominator
of the first fraction and by lower-bounding Φ̃ρ(ξ)w ≥ 0 in the denominator of the second fraction;
and where the second inequality follows by lower-bounding κ(ρ, ξ) ≥ ξ2

0/
√

1 + ρ−1 using Ṽρ(ξ) ≤
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1 and by maximizing over ξ. Combining (B.122) with (B.95d) yields

J4(ρ, ξ) ≤ log
(

1 + sup
ξ∈C

{
Ṽρ(ξ)
Φ̃ρ(ξ)

}√1 + ρ−1

ξ2
0

)∫ ∞
κ(ρ,ξ)

e−w dw

= exp

− ξ2
0√

Ṽρ(ξ) + ρ−1

 log
(

1 + sup
ξ∈C

{
Ṽρ(ξ)
Φ̃ρ(ξ)

}√1 + ρ−1

ξ2
0

)
. (B.123)

Setting ξ to Ĥρ, averaging (B.123) over Ĥρ, and using (B.99), we obtain

E
[
J4(ρ, Ĥρ) I

{
|Ĥρ| > ξ0

}]
≤ E

exp

− ξ2
0√

Ṽρ(Ĥρ) + ρ−1

 log
(

1 + sup
ξ∈C

{
Ṽρ(ξ)
Φ̃ρ(ξ)

}√1 + ρ−1

ξ2
0

)
. (B.124)

Since, by (2.36b), the term inside the logarithm is bounded for sufficiently large ρ, (B.96b) for
i = 4 follows by combining (B.124) with (B.101).

B.6.5 Limit related to J5(ρ, ξ)

Using (B.90) and defining Υρ(ξ) , Ṽρ(ξ) + ρ−1, the term J5(ρ, ξ) reads as

J5(ρ, ξ) = e
−

ξ20√
Υρ(ξ) log

(
1 + |ξ|2

Υρ(ξ)

)
. (B.125)

Since Ṽρ(ξ) ≤ 1 and x 7→ log(x) is a monotonically increasing function, this can be upper-
bounded as

J5(ρ, ξ) ≤ e
−

ξ20√
Υρ(ξ) log

(
1 + ρ−1 + |ξ|2

)
+ e
−

ξ20√
Υρ(ξ)

∣∣log
(
Υρ(ξ)

)∣∣. (B.126)

We next note that the function t 7→ e−ξ
2
0/
√
t| log(t)| is continuous and bounded on (0, 1 + ρ−1)

and tends to zero as nT tends to zero. Consequently, (B.99) and Lemma B.4 yield

lim
ρ→∞

E

e− ξ20√
Υρ(Ĥρ)

∣∣log
(
Υρ(Ĥρ)

)∣∣ · I{|Ĥρ| > ξ0
} = 0. (B.127)
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Furthermore, by (B.99) and the Cauchy-Schwarz inequality we have

E

e− ξ20√
Υρ(Ĥρ) log

(
1 + ρ−1 + |Ĥρ|2

)
I
{
|Ĥρ| > ξ0

}
≤ E

e− ξ20√
Υρ(Ĥρ) log

(
1 + ρ−1 + |Ĥρ|2

)

≤

√√√√√√E

e− 2ξ20√
Υρ(Ĥρ)

√E
[
log2

(
1 + ρ−1 + |Ĥρ|2

)]
. (B.128)

Since the function t 7→ exp
(
−2ξ2

0/
√
t
)

is continuous and bounded on (0,∞) and vanishes as
nT tends to zero, it follows from (2.36b) and Lemma B.4 that the first expected value on the
RHS of (B.128) vanishes as ρ tends to infinity. Furthermore, by (B.120), the second expected
value on the RHS of (B.128) is bounded for sufficiently small ρ. The above arguments combine
to demonstrate that

lim
ρ→∞

E

e− ξ20√
Υρ(Ĥρ) log

(
1 + ρ−1 + |Ĥρ|2

)
I
{
|Ĥρ| > ξ0

} = 0 (B.129)

which together with (B.126) and (B.127) proves (B.96b) for i = 5.

B.7 Proof of Lemma B.2

We first note that, by specializing Theorem 2.1 to the case where Ĥ = ξ with probability one,
it follows that

R(ρ, ξ) ≤ E
[
R?(ρ,W, ξ)

]
,
(
ρ > 0, ξ ∈ C

)
. (B.130)

Combining (B.130) with (B.79) and (B.80), we obtain

Σ(ρ, ξ) ≤ E
[
∆(ρ,W, ξ)

]
= log

(
Ṽρ(ξ) + ρ−1

Φ̃ρ(ξ)

)
− E

[
log

(
W + 1

ρΦ̃ρ(ξ)

)]
. (B.131)

The expected value on the RHS of (B.131) can be evaluated as [Gra07, (4.337), p. 568]

E
[
log

(
W + 1

ρΦ̃ρ(ξ)

)]
= log

(
1

ρΦ̃ρ(ξ)

)
− e

1
ρΦ̃ρ(ξ) Ei

(
− 1
ρΦ̃ρ(ξ)

)
(B.132)



108 Appendices to Chapter 2

where Ei(·) denotes the exponential integral as defined in (B.108). This yields

E
[
∆(ρ,W, ξ)

]
= log

(
1 + ρṼρ(ξ)

)
+ e

1
ρΦ̃ρ(ξ) Ei

(
− 1
ρΦ̃ρ(ξ)

)

= log
(

1 + ρΦ̃ρ(ξ)
Ṽρ(ξ)
Φ̃ρ(ξ)

)
+ e

1
ρΦ̃ρ(ξ) Ei

(
− 1
ρΦ̃ρ(ξ)

)

≤ log
(

1 + ρΦ̃ρ(ξ)
Ṽρ(ξ)
Φ̃ρ(ξ)

)
+ Ei

(
− 1
ρΦ̃ρ(ξ)

)

= g

(
ρΦ̃ρ(ξ);

Ṽρ(ξ)
Φ̃ρ(ξ)

)
(B.133)

where we define
g(t; a) , log(1 + at) + Ei

(
−1
t

)
. (B.134)

The inequality in (B.133) follows because Ei(−x) is negative for x > 0 and ex ≥ 1, x ≥ 0.

For a fixed a, the function t 7→ g(t; a) satisfies [Lap03, Section VI-A]5

lim
nT→∞

g(t; a) = γ + log(a). (B.135)

We next show that, for every a ≥ 1, the function t 7→ g(t; a) is monotonically increasing. Indeed,
using d

dx Ei(−x) = e−x/x, we have

∂

∂t
g(t; a) = e−

1
t

(1 + at)t
[
e

1
t at− 1− at

]
≥ e−

1
t

(1 + at)t [a− 1]

≥ 0, a ≥ 1 (B.136)

where the second step follows from the lower bound e
1
t ≥ 1 + 1

t , t ≥ 0.

By (A.4), we have that Ṽρ(ξ)/Φ̃ρ(ξ) ≥ 1. It thus follows from (B.131)–(B.136) that

Σ(ρ, ξ) ≤ g
(
ρΦ̃ρ(ξ);

Ṽρ(ξ)
Φ̃ρ(ξ)

)

≤ lim
t→∞

g

(
t; Ṽρ(ξ)

Φ̃ρ(ξ)

)

= γ + log
(
Ṽρ(ξ)
Φ̃ρ(ξ)

)
,
(
ρ > 0, ξ ∈ C

)
. (B.137)

5 The function g(·; ·) corresponds to g0(·) in [Lap03, Equation (210)] via g(t; a) = log(a) + log
(
1 + 1

at

)
− g0

(
1
t

)
. The result

(B.135) follows by noting that g0(0) = −γ; cf. [Lap03, Equations (212) and (213)].
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Maximizing the RHS of (B.137) over ξ ∈ C, and computing the limit as ρ tends to infinity, gives

lim
ρ→∞

sup
ξ∈C

Σ(ρ, ξ) ≤ γ + lim
ρ→∞

log
(

sup
ξ∈C

Ṽρ(ξ)
Φ̃ρ(ξ)

)
≤ γ + log(M) (B.138)

where the last step follows from the continuity and monotonicity of x 7→ log(x) and from (2.36b).
This proves Lemma B.2.

B.8 Proof of Lemma B.3

By the law of total probability, we have

Pr
{
|H| > 2ξ0

}
= Pr

{
|H| > 2ξ0, |Ĥρ| ≤ ξ0

}
+ Pr

{
|H| > 2ξ0, |Ĥρ| > ξ0

}
≤ Pr

{
|H − Ĥρ| > ξ0

}
+ Pr

{
|Ĥρ| > ξ0

}
(B.139)

using the fact that |H| > 2ξ0 and |Ĥρ| ≤ ξ0 together imply that |H−Ĥρ| > ξ0 due to the triangle
inequality, and that |H| > 2ξ0 and |Ĥρ| > ξ0 together imply |Ĥρ| > ξ0. Using Chebyshev’s
inequality [Ash00, (4.10.7), p. 192], the first term on the RHS of (B.139) can be further upper-
bounded by

Pr
{
|H − Ĥρ| > ξ0

}
≤

E
[
Ṽρ(Ĥρ)

]
ξ2

0
. (B.140)

Combining (B.140) with (B.139) gives

Pr
{
|H| > 2ξ0

}
≤

E
[
Ṽρ(Ĥρ)

]
ξ2

0
+ Pr

{
|Ĥρ| > ξ0

}
. (B.141)

By (2.36a), taking the limit inferior for ρ→∞ on either side of (B.141) yields

Pr
{
|H| > 2ξ0

}
≤ lim

ρ→∞
Pr
{
|Ĥρ| > ξ0

}
. (B.142)

Furthermore, the assumption that Pr
{
H = 0

}
= 0, we have

lim
ξ0↓0

Pr
{
|H| > 2ξ0

}
= Pr

{
|H| > 0

}
= 1. (B.143)

Lemma B.3 follows therefore by taking limits as ξ0 ↓ 0 on both sides of (B.142).
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B.9 Proof of Lemma B.4

For every family of random variables Υρ parametrized by ρ > 0 and taking values on (0, η) with
η ∈ (0,∞], we have by Markov’s inequality

Pr {Υρ > ν} ≤ E[Υρ]
ν

, for every ν ∈ (0, η). (B.144)

Using that limρ→∞ E[Υρ] = 0, we thus have

lim
ρ→∞

Pr {Υρ > ν} = 0, for every ν ∈ (0, η) (B.145)

or equivalently, limρ→∞ Pr {Υρ ≤ ν} = 1. We upper-bound E[f(Υρ)] for any ν ∈ (0, η) as

E[f(Υρ)] = E [f(Υρ) I{Υρ ≤ ν}] + E [f(Υρ) I{Υρ > ν}]

≤ sup
0<t≤ν

f(t) Pr{Υρ ≤ ν}+ sup
ν<t<η

f(t) Pr{Υρ > ν}. (B.146a)

Similarly, we lower-bound E[f(Υρ)] for any ν ∈ (0, η) as

E[f(Υρ)] ≥ inf
0<t≤ν

f(t) Pr{Υρ ≤ ν}+ inf
ν<t<η

f(t) Pr{Υρ > ν}. (B.146b)

Since f(·) is bounded, and by (B.145), taking limits for ρ→∞ in (B.146a) and (B.146b) gives

inf
0<t≤ν

f(t) ≤ lim
ρ→∞

E[f(Υρ)] ≤ lim
ρ→∞

E[f(Υρ)] ≤ sup
0<t≤ν

f(t). (B.147)

Taking the limit as ν tends to zero from above and using the continuity of f , we finally obtain

lim
ρ→∞

E[f(Υρ)] = lim
t↓0

f(t) = f0 (B.148)

which proves Lemma B.4.

B.10 Proof of (B.120)

To prove (B.120), we first note that the function x 7→ log2(1 + x) is concave for x ≥ e− 1. We
thus have for an arbitrary δ ≥ e− 1 and for ρ ≥ 1

E
[
log2

(
1 + ρ−1 + |Ĥρ|2

)]
= E

[
log2

(
1 + ρ−1 + |Ĥρ|2

)
I
{
|Ĥρ|2 ≤ δ

}]
+ E

[
log2

(
1 + ρ−1 + |Ĥρ|2

)
I
{
|Ĥρ|2 > δ

}]
≤ log2 (2 + δ) + E

[
log2

(
2 + |Ĥρ|2

)
I
{
|Ĥρ|2 > δ

}]
≤ log2 (2 + δ) + Pr

{
|Ĥρ|2 > δ

}
log2

2 +
E
[
|Ĥρ|2 I

{
|Ĥρ|2 > δ

}]
Pr
{
|Ĥρ|2 > δ

}
 (B.149)
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where we define 0 log2(1 + a/0) , 0 for every a ≥ 0. Here the first inequality follows by upper-
bounding ρ−1 ≤ 1 in both expected values and by upper-bounding |Ĥρ|2 ≤ δ in the first expected
value, and the second inequality follows by upper-bounding the second expected value using
Jensen’s inequality.

We next use (B.99) and (2.35) to upper-bound

E
[
|Ĥρ|2 I

{
|Ĥρ|2 > δ

}]
≤ E

[
|Ĥρ|2

]
≤ 1. (B.150)

This yields

E
[
log2

(
1 + ρ−1 + |Ĥρ|2

)]
≤ log2 (2 + δ) + Pr

{
|Ĥρ|2 > δ

}
log2

2 + 1
Pr
{
|Ĥρ|2 > δ

}


≤ log2 (2 + δ) + sup
0<x≤1

{
x log2

(
2 + 1

x

)}
, ρ ≥ 1 (B.151)

where the second step follows by maximising the second term over Pr
{
|Ĥρ|2 > δ

}
. Note that the

supremum on the RHS of (B.151) is finite since the function x 7→ x log2(2 + 1/x) is continuous
on 0 < x ≤ 1 and tends to zero as x tends to zero. Consequently, we have

lim
ρ→∞

E
[
log2

(
1 + ρ−1 + |Ĥρ|2

)]
≤ log2 (2 + δ) + sup

0<x≤1

{
x log2

(
2 + 1

x

)}
<∞ (B.152)

which proves (B.120).

B.11 Proof of Theorem 2.4

Let us assume without loss of generality that the covariance matrix of x` is full-rank6. We expand
the mutual information as

I
(
x`; y

∣∣ x`−1, Ĥ
)

= h
(
x`
∣∣ x`−1, Ĥ

)
− h

(
x`
∣∣ x`−1, Ĥ,y

)
. (B.153)

Since, by assumption, x` ∼ NC(0,Q`) is independent of (x`−1, Ĥ) and has a full-rank covariance
matrix, the first entropy on the right-hand side of (B.153) is readily evaluated as

h
(
x`
∣∣ x`−1, Ĥ

)
= h(x`) = log det(πeQ`). (B.154)

Let

µy|x`−1,Ĥ , E[y|x`−1, Ĥ] = Ĥ
`−1∑
i=1

xi (B.155)

denote the expectation of y conditioned on (x`−1, Ĥ) = (x`−1, Ĥ) and let fx`−1,Ĥ(·) denote some
arbitrary complex-valued function. Conditioned on (x`−1, Ĥ) = (x`−1, Ĥ), the second entropy

6 the general case of a possibly rank-deficient covariance may be treated by an appropriate rank reduction
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can be upper-bounded as follows:

h
(
x`
∣∣ x`−1 = x`−1, Ĥ = Ĥ,y

)
= h

(
x` − fx`−1,Ĥ

(
y− µy|x`−1,Ĥ

) ∣∣∣ x`−1 = x`−1, Ĥ = Ĥ,y
)

≤ h
(
x` − fx`−1,Ĥ

(
y− µy|x`−1,Ĥ

) ∣∣∣ x`−1 = x`−1, Ĥ = Ĥ
)

≤ log det
(
πe cov

(
x̃`
∣∣∣ x`−1, Ĥ

))
≤ log det

(
πeE

[
x̃`x̃†`

∣∣∣ x`−1, Ĥ
])

(B.156)

where
x̃` , x` − fx`−1,Ĥ

(
y− µy|x`−1,Ĥ

)
. (B.157)

In (B.156) the first inequality follows because conditioning cannot increase entropy; the second
inequality follows from the entropy-maximizing property of the Gaussian distribution; the third
inequality follows because the covariance is not larger than the second moment (in a matrix-
monotone sense).

Combining (B.156) with (B.154) and (B.153) thus yields for every (x`−1, Ĥ) = (x`−1, Ĥ) and
fx`−1,Ĥ(·) the inequality

I
(
x`; y

∣∣ x`−1 = x`−1, Ĥ = Ĥ
)
≥ log det(Q`)− log det

(
E
[
x̃`x̃†`

∣∣∣ x`−1, Ĥ
])
. (B.158)

We choose the function fx`−1,Ĥ(·) so that fx`−1,Ĥ
(
y− µy|x`−1,Ĥ

)
is the linear MMSE estimate of

x` from (x`−1, Ĥ,y) = (x`−1, Ĥ, y), namely,

fx`−1,Ĥ
(
y− µy|x`−1,Ĥ

)
= FG−1(y− µy|x`−1,Ĥ

)
(B.159)

with matrices F and G given by

F = E
[
x`
(
y− µy|x`−1,Ĥ

)† ∣∣∣ x`−1, Ĥ
]

= √ρĤQ` (B.160a)

G = cov
(
y
∣∣ x`−1, Ĥ

)
= E

[(
y− µy|x`−1,Ĥ

)(
y− µy|x`−1,Ĥ

)† ∣∣∣ x`−1, Ĥ
]

= ρĤQ`Ĥ
† + cov

(
z̃
∣∣ x`−1, Ĥ

)
(B.160b)

respectively, and where z̃ = y−√ρĤx`.

Inserting (B.159)–(B.160) into the expression of E
[
x̃`x̃†`

∣∣ x`−1, Ĥ
]

yields

E
[
x̃`x̃†`

∣∣∣ x`−1, Ĥ
]

= Q` − ρĤQ`

(
ρĤQ`Ĥ

† + cov
(
z̃
∣∣ x`−1, Ĥ

))
Q`Ĥ

†

=
(
ρĤ† cov

(
z̃
∣∣ x`−1, Ĥ

)−1Ĥ + Q−1
`

)−1
(B.161)

where in the last step we have used the Matrix Inversion Lemma. Finally, combining (B.161)
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with (B.158) yields

I
(
x`; y

∣∣ x`−1 = x`−1, Ĥ = Ĥ
)
≥ log det

(
InT + ρĤ† cov

(
z̃
∣∣ x`−1, Ĥ

)−1ĤQ`

)
. (B.162)

Theorem 2.4 follows by averaging (B.162) over (x`−1, Ĥ).

B.12 Proof of Theorem 2.5

It suffices to prove that if the (L + 1)-indexing I ′ is a refinement of the L-indexing I , then
R(L,I ) ≤ R(L,I ′). The general case where the refinement I ′ contains any number of elements
L′ > L then follows by applying the result (L′ − L) times.

Let us write the indexings I and I ′ as

I =
{
0 = ι0, . . . , ιL = 1

}
(B.163a)

I ′ =
{
0 = ι′0, . . . , ι

′
τ , . . . , ι

′
L+1 = 1

}
(B.163b)

with labels in ascending order, i.e., ι0 < . . . < ιL and ι′0 < . . . < ι′τ < . . . < ι′L+1 respectively,
such that the single element of I ′ \ I = {ι′τ} is located at position τ ∈ {1, . . . , L}. Let us
further define

LI
` , L(ι`), ` = 0, . . . , L (B.164a)

LI ′
` , L(ι′`), ` = 0, . . . , L+ 1 (B.164b)

as well as the differences

∆LI
` , L(ι`)− L(ι`−1), ` = 1, . . . , L (B.165a)

∆LI ′
` , L(ι′`)− L(ι′`−1), ` = 1, . . . , L+ 1. (B.165b)

Since I ′ matches I except for the single element ιτ , we have that

LI
` = LI ′

` , ` = 0, . . . , τ − 1 (B.166a)

LI
` = LI ′

`+1, ` = τ, . . . , L (B.166b)

as well as

∆LI
` = ∆LI ′

` , ` = 1, . . . , τ − 1 (B.167a)

∆LI
` = ∆LI ′

`+1, ` = τ + 1, . . . , L. (B.167b)

In particular, it follows from [cf. (2.59)]

L∑
`=1

∆LI
` =

L+1∑
`=1

∆LI ′
` = Q
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together with (B.165) that
∆LI

τ = ∆LI ′
τ + ∆LI ′

τ+1. (B.168)

The rate-splitting bounds R(L,I ) and R(L,I ′) are respectively given by [cf. (2.67)]

R(L,I ) =
L∑
`=1

E log det
(
InT + Ĥ†

(
ΓI
`

)−1Ĥ ∆LI
`

)
(B.169a)

R(L,I ′) =
L+1∑
`=1

E log det
(
InT + Ĥ†

(
ΓI ′
`

)−1Ĥ ∆LI
`

)
(B.169b)

with random matrices Γ` and Γ′` defined respectively as [cf. (2.68)]

ΓI
` , E

[
H̃
(
LI
`−1
) 1

2 ξξ†
(
LI
`−1
) 1

2 H̃†
∣∣ ξ, Ĥ]+

+ Ĥ
(
Q− LI

`

)
Ĥ† + E

[
H̃
(
Q− LI

`−1
)
H̃†

∣∣ Ĥ
]

+ ρ−1InR , ` = 1, . . . , L (B.170a)

ΓI ′
` , E

[
H̃
(
LI ′
`−1
) 1

2 ξξ†
(
LI ′
`−1
) 1

2 H̃†
∣∣ ξ, Ĥ]+

+ Ĥ
(
Q− LI ′

`

)
Ĥ† + E

[
H̃
(
Q− LI ′

`−1
)
H̃†

∣∣ Ĥ
]

+ ρ−1InR , ` = 1, . . . , L+ 1 (B.170b)

with ξ ∼ NC(0, InT) being independent of Ĥ.

We see from (B.169)–(B.170) that the `-th term of the sum (B.169a) depends on the layering
L,I via LI

`−1 and ∆LI
` , and similarly, that the `-th term of the sum (B.169b) depends on the

layering (L,I ′) via LI ′
`−1 and ∆LI ′

` . As a consequence, by comparing the terms of the respective
sums (B.169a) and (B.169b), we infer that the following terms coincide:

E log det
(
InT + Ĥ†

(
ΓI
`

)−1Ĥ ∆LI
`

)
= E log det

(
InT + Ĥ†

(
ΓI ′
`

)−1Ĥ ∆LI ′
`

)
,

` = 1, . . . , τ − 1 (B.171)

E log det
(
InT + Ĥ†

(
ΓI
`

)−1Ĥ ∆LI
`

)
= E log det

(
InT + Ĥ†

(
ΓI ′
`+1
)−1Ĥ ∆LI ′

`+1

)
,

` = τ + 1, . . . , L. (B.172)

Subtracting R(L,I ) from R(L,I ′), these identical terms cancel out, leaving us with

R(L,I ′)−R(L,I ) = E log det
(
InT + Ĥ†

(
ΓI ′
τ

)−1Ĥ ∆LI ′
τ

)
+ E log det

(
InT + Ĥ†

(
ΓI ′
τ+1

)−1Ĥ ∆LI ′
τ+1

)
− E log det

(
InT + Ĥ†

(
ΓI
τ

)−1Ĥ ∆LI
τ

)
. (B.173)

To show that this quantity is non-negative, we will lower-bound the second term on the right-
hand side of (B.173), which involves the random matrix ΓI ′

τ+1 [cf. (B.170)], which itself involves
a Gaussian random vector ξ ∼ NC(0, InT). Upon observing that, due to LI ′

τ = LI ′
τ−1 + ∆LI ′

τ ,
the random matrix

(
LI ′
τ

) 1
2 ξ ∼ NC

(
0,LI ′

τ

)
has the same marginal distribution as

(
LI ′
τ−1

) 1
2 ξ +

(
∆LI ′

τ

) 1
2η ∼ NC

(
0,LI ′

τ

)
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we can replace ΓI ′
τ+1 on the right-hand side of Expression (B.173) with a matrix of same distri-

bution

Γ̄I ′
τ+1 , E

[
H̃
((

LI ′
τ−1

) 1
2 ξ +

(
∆LI ′

τ

) 1
2η
)((

LI ′
τ−1

) 1
2 ξ +

(
∆LI ′

τ

) 1
2η
)†

H̃†
∣∣∣ ξ, Ĥ]+

+ Ĥ
(
Q− LI ′

τ−1 −∆LI ′
τ −∆LI ′

τ+1
)
Ĥ† + E

[
H̃
(
Q− LI ′

τ−1 −∆LI ′
τ

)
H̃†

∣∣∣ Ĥ
]

+ ρ−1InR . (B.174)

wherein η ∼ NC(0, InT) is independent of (ξ, Ĥ). Using the fact that, for every A � 0, the
function X 7→ log det(I + AX−1) is strictly convex on the set of positive definite matrices
X � 0, it follows from Jensen’s inequality that the second term on the right-hand side of
(B.173) is lower-bounded as

E log det
(
InT + Ĥ†

(
ΓI ′
τ+1

)−1Ĥ ∆LI ′
τ+1

)
= E log det

(
InT + Ĥ†

(
Γ̄I ′
τ+1

)−1Ĥ ∆LI ′
τ+1

)
≥ E log det

(
InT + Ĥ† E

[
Γ̄I ′
τ+1

∣∣ ξ, Ĥ]−1Ĥ ∆LI ′
τ+1

)
. (B.175)

Using the identities LI
τ−1 = LI ′

τ−1 [cf. (B.166a)] and (B.168), we find by comparison of (B.170a)
and (B.174) that

E
[
Γ̄I ′
τ+1

∣∣ ξ, Ĥ] = ΓI
τ (B.176)

and by comparison of (B.170a) and (B.170b) that

ΓI ′
τ = ΓI

τ + Ĥ∆LI ′
τ+1Ĥ†. (B.177)

Hence, combining (B.173), (B.175), (B.176) and (B.177), we have

R(L,I ′)−R(L,I ) ≥ E log det
(
InT + Ĥ†

(
ΓI
τ + Ĥ∆LI ′

τ+1Ĥ†
)−1Ĥ ∆LI ′

τ

)
+ E log det

(
InT + Ĥ†

(
ΓI
τ

)−1Ĥ ∆LI ′
τ+1

)
− E log det

(
InT + Ĥ†

(
ΓI
τ

)−1Ĥ ∆LI
τ

)
= 0 (B.178)

where the last equality follows again from the identity (B.168). This concludes the proof of the
inequality (2.72).

B.13 Proof of the Lipschitz Property of Layering Functions (2.63)

Due to tr(L(ι)) =
∑nT
i=1 Li,i(ι) = ι [cf. Definition 2.1], it follows that

tr(L(ι2))− tr(L(ι1)) =
nT∑
i=1

(
Li,i(ι2)− Li,i(ι1)

)
= ι2 − ι1. (B.179)
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The positive semidefiniteness of L(ι) [cf. Definition 2.1] warrants that its diagonal entries Li,i(ι)
are real-valued and non-negative, and the matrix-monotonicity of layering functions [cf. (3)]
implies that Li,i(ι) is non-decreasing. Therefore, for any 0 ≤ ι1 ≤ ι2 ≤ 1 we have

0 ≤ Li,i(ι2)− Li,i(ι1) ≤ ι2 − ι1 (B.180)

from which the claim follows for the diagonal entries Li,i(ι).

As regards the off-diagonal entries Lj,i(ι) (with i 6= j), we proceed as follows: given that
L(ι2) − L(ι1) is positive semidefinite, all its principal minors are non-negative [Hor90, Corol-
lary 7.1.5], i.e.,

det

Li,i(ι2)− Li,i(ι1) L∗j,i(ι2)− L∗j,i(ι1)
Lj,i(ι2)− Lj,i(ι1) Lj,j(ι2)− Lj,j(ι1)

 ≥ 0. (B.181)

This translates to

∣∣Lj,i(ι2)− Lj,i(ι1)
∣∣ ≤ √(Li,i(ι2)− Li,i(ι1)

)(
Lj,j(ι2)− Lj,j(ι1)

)
≤
(
Li,i(ι2)− Li,i(ι1)

)
+
(
Lj,j(ι2)− Lj,j(ι1)

)
2

≤ ι2 − ι1 (B.182)

where the second bounding step is due to the inequality between the geometric and the arithmetic
mean, whereas the last bounding step follows from (B.180). In particular, it follows that

max
{∣∣<Lj,i(ι2)−<Lj,i(ι1)

∣∣, ∣∣=Lj,i(ι2)−=Lj,i(ι1)
∣∣} ≤ ι2 − ι1. (B.183)

Hence, both the real and the imaginary part of any entry Lj,i(ι) of the layering function L(ι) is
Lipschitz-continuous with Lipschitz constant 1. This concludes the proof.

B.14 Proof of Theorem 2.6

Let the transmit covariance Q and the layering function L be fixed throughout. Given some
L-indexing I = (0, ι1, . . . , ιL−1, 1), consider the uniquely defined, piecewise linear function
ΦI : [0; 1] → [0; 1] with support points ( `L , ι`), ` = 0, . . . , L. This is to say that the function
ΦI is defined as

ΦI (x) = (ι` − ι`−1) (Lx− `+ 1) + ι`−1, for `− 1
L
≤ x ≤ `

L
, ` = 0, . . . , L. (B.184)

We define the equi-power N -indexing as

EN ,
(

0, 1
N
, . . . ,

N − 1
N

, 1
)

(B.185)
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0 1
L

L−1
L

10

1

ι1

ιL−1

Figure B.1 Example of a piecewise linear function ΦI

with the help of which we can express the indexing I as

I = ΦI
(
EL
)

(B.186)

where the notation should be understood as an elementwise application of the function ΦI , i.e.,

ΦI
(
EL
)

=
(

ΦI (0),ΦI

( 1
L

)
, . . . ,ΦI

(
L− 1
L

)
,ΦI (1)

)
. (B.187)

This way, we can express the rate-splitting bound R(L,I ) in terms of an equi-power indexing,
namely,

R(L,I ) = R
(
L,ΦI

(
EL
))
. (B.188)

Clearly, the function ΦI , like any increasing bijection of the unit interval onto itself, preserves
indexings. Specifically, for any indexings

(
I1,I2

)
∈ I2, we have that ΦI1

(
I2
)
∈ I. Noting that

EN ⊂ E2N for any N ∈ N, by virtue of Theorem 2.5, the sequence R
(
L,E2nL

)
is non-decreasing

in n. Therefore, R(L,I ) can be upper-bounded as

R(L,I ) = R
(
L,ΦI

(
EL
))

≤ lim
n→∞

R
(
L,ΦI

(
E2nL

))
, R∞(L,I ). (B.189)

Since R∞(L,I ) is the limit of a sequence of rate-splitting bounds with fixed layering function
and varying indexing, it must therefore be upper-bounded by the supremum

R∞(L,I ) ≤ sup
I ′∈I

R(L,I ′) = R?(L). (B.190)

In the following, we evaluate the limit R∞(L,I ) and then show that it is not a function of the
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indexing I . Therefore, it eventually follows that

R?(L) = R∞(L,I ). (B.191)

To prove this claim, it will thus suffice to compute an analytical expression of the limit R∞(L,I )
as per (B.189), and then verify that it is not a function of the indexing I .

For notational brevity, let us denote

Ĩ2nL , ΦI
(
E2nL

)
(B.192)

so we have
I = ĨL ⊂ Ĩ2L ⊂ Ĩ4L ⊂ Ĩ8L ⊂ . . . (B.193)

Note as well that the piecewise linear functions are constructed in such way that the following
holds:

ΦI = ΦĨ2nL
n ∈ N. (B.194)

By writing the channel input as a sum

xG =
2nL∑
`=1

x`

of 2nL mutually independent complex circularly-symmetric zero-mean Gaussian variables x` of
covariance [cf. (2.65)]

E
[
x`x†`

]
= ∆LĨ2nL

` , ` = 1, . . . , 2nL (B.195)

and using Expression (2.67), we can write out R∞(L,I ) as

R∞(L,I ) = lim
n→∞

2nL∑
`=1

E
[
log det

(
InT + Ĥ†

(
ΥĨ2nL
`

)−1
Ĥ ∆LĨ2nL

`

)]
(B.196)

with the random matrix ΥA
` being defined for an indexing A as in (2.68), i.e.,

ΥA
` , E

[
H̃
(
LA
`−1
) 1

2 ξξ†
(
LA
`−1
) 1

2 H̃†
∣∣∣∣ξ, Ĥ]+ ĤL̄A

` Ĥ† + E
[
H̃L̄A

`−1H̃†
∣∣∣ Ĥ

]
+ ρ−1InR (B.197)

with ξ ∼ NC(0, InT) independent of Ĥ.

Given that Theorem 2.5 holds irrespective of the distribution of Ĥ, we have that for any
` = 1, . . . , 2nL, the conditional expectation

E
[
log det

(
InT + Ĥ†

(
ΥĨ2nL
`

)−1
Ĥ ∆LĨ2nL

`

)∣∣∣∣Ĥ]

is non-decreasing in n (for any Ĥ = Ĥ), and therefore, by the Monotone Convergence Theo-
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rem [Rud87], we can exchange the limit and expectation over Ĥ in Expression (B.196) to get

R∞(L,I ) = E
[

lim
n→∞

E
[2nL∑
`=1

log det
(

InT + Ĥ†
(
ΥĨ2nL
`

)−1
Ĥ ∆LĨ2nL

`

)∣∣∣∣∣Ĥ
]]

(B.198)

if this pointwise limit exists. Using the fact that ΥĨ2nL
` � ρ−1InR , and that log det(I+A) ≤ tr(A)

for a positive semidefinite matrix A, we can upper-bound the sum of log-determinants in (B.198)
by means of7

2nL∑
`=1

log det
(

InT + Ĥ†
(
ΥĨ2nL
`

)−1
Ĥ ∆LĨ2nL

`

)
≤ ρ

2nL∑
`=1

tr
(

Ĥ†Ĥ ∆LĨ2nL
`

)
= ρ tr

(
Ĥ†ĤQ

)
. (B.199)

Thus, the pointwise limit in (B.198) exists. Furthermore, we can exploit this boundedness to
apply the Dominated Convergence Theorem [Rud87], whereby we can interchange the limit and
inner expectation (over ξ) in (B.198) so as to obtain

R∞(L,I ) = E
[

lim
n→∞

2nL∑
`=1

log det
(

InT + Ĥ†
(
ΥĨ2nL
`

)−1
Ĥ ∆LĨ2nL

`

)]
(B.200)

provided that this limit exists. As we shall see in the following, it does exist and can be rep-
resented as a Riemann integral. To prove its existence, we will lower-bound the corresponding
limit inferior and upper-bound the corresponding limit superior, and eventually show that both
limits coincide.

Let us define

Υ(n)
` , ΥĨ2nL

` ∆L(n)
` , ∆LĨ2nL

` L(n)
` , LĨ2nL

` (B.201)

to alleviate notation. With this notation, the problem at hand is to compute the two limits

lim
n→∞

2nL∑
`=1

log det
(

InT + Ĥ†
(
Υ(n)
`

)−1
Ĥ ∆L(n)

`

)
(B.202a)

lim
n→∞

2nL∑
`=1

log det
(

InT + Ĥ†
(
Υ(n)
`

)−1
Ĥ ∆L(n)

`

)
. (B.202b)

and show that they coincide.

An upper bound on the limit superior (B.202b) is obtained by using the inequality log det(I+

7 Note that for same-sized positive semidefinite matrices A and B, we have log det(I + AB) = log det
(
I + A

1
2 BA

1
2
)
≤

tr
(
A

1
2 BA

1
2
)

= tr(AB)
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A) ≤ tr(A), valid for A � 0, leading to

lim
n→∞

2nL∑
`=1

log det
(

InT + Ĥ†
(
Υ(n)
`

)−1
Ĥ ∆L(n)

`

)

≤ lim
n→∞

2nL∑
`=1

tr
(

Ĥ†
(
Υ(n)
`

)−1
Ĥ ∆L(n)

`

)
. (B.203)

Similarly, a lower bound on the limit inferior (B.202a) is obtained by using the inequality tr(A)−
1
2 tr(A2) ≤ log det(I + A), valid for A � 0, and the superadditivity of the limit inferior. It reads
as8

lim
n→∞

2nL∑
`=1

log det
(

InT + Ĥ†
(
Υ(n)
`

)−1
Ĥ ∆L(n)

`

)

≥ lim
n→∞

2nL∑
`=1

tr
(

Ĥ†
(
Υ(n)
`

)−1
Ĥ ∆L(n)

`

)

− 1
2 lim
n→∞

2nL∑
`=1

tr
(

Ĥ†
(
Υ(n)
`

)−1
Ĥ ∆L(n)

` Ĥ†
(
Υ(n)
`

)−1
Ĥ ∆L(n)

`

)
. (B.204)

Here, the limit superior [second term on the right-hand side of (B.204)] vanishes. This is best
seen if, using Υ(n)

` � ρ−1InR and the inequality tr(AB) ≤ tr(A) tr(B) for same-sized positive
semidefinite A and B, we bound it via

0 ≤ tr
(

Ĥ†
(
Υ(n)
`

)−1
Ĥ ∆L(n)

` Ĥ†
(
Υ(n)
`

)−1
Ĥ ∆L(n)

`

)
≤ ρ2 tr

(
Ĥ†Ĥ ∆L(n)

` Ĥ†Ĥ ∆L(n)
`

)
≤ ρ2 tr

(
Ĥ†Ĥ ∆L(n)

`

)2
. (B.205)

By the Heine-Cantor Theorem [Rud76, Theorem 4.19], the continuous mapping

[0; 1]→ R, ι 7→ tr
(

Ĥ†ĤL(ι)
)

must be uniformly continuous due to [0; 1] being a compact set. It follows that for every ε > 0,
there exists a large enough n such that for any ` ∈ {1, . . . , 2nL}, we have tr

(
Ĥ†Ĥ ∆L(n)

`

)
< ε,

hence

ρ2 tr
(

Ĥ†Ĥ ∆L(n)
`

)2
≤ ρ2ε

2nL∑
`=1

tr
(

Ĥ†Ĥ ∆L(n)
`

)
= ρ2ε tr

(
Ĥ†ĤQ

)
. (B.206)

Since ε > 0 can be arbitrarily small, we conclude from (B.205)–(B.206) that the limit superior

8 Note that for same-sized positive semidefinite A and B, we have log det(I+AB) = log det
(
I+A

1
2 BA

1
2
)
≥ tr
(
A

1
2 BA

1
2
)
−

tr
(
A

1
2 BA

1
2 ·A

1
2 BA

1
2
)

= tr(AB)− tr(ABAB).
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in (B.204) vanishes indeed. Hence (B.204) reduces to

lim
n→∞

2nL∑
`=1

log det
(

InT + Ĥ†
(
Υ(n)
`

)−1
Ĥ ∆L(n)

`

)
≥ lim

n→∞

2nL∑
`=1

tr
(

Ĥ†
(
Υ(n)
`

)−1
Ĥ ∆L(n)

`

)
. (B.207)

Next, we focus on computing the right-hand sides of (B.203) and (B.207), which will turn out
to coincide. For this purpose, let us define, for any indexing A ∈ I(LA ), the random matrix
[cf. (B.197)]

Υ̃A
` , ΥA

` + Ĥ∆L`Ĥ†

= E
[
H̃
(
LA
`−1
) 1

2 ξξ†
(
LA
`−1
) 1

2 H̃†
∣∣∣∣ξ, Ĥ]+ ĤL̄A

`−1Ĥ† + E
[
H̃L̄A

`−1H̃†
∣∣∣ Ĥ

]
+ ρ−1InR . (B.208)

Notice that Υ̃A
` was constructed so as to fulfill [cf. (2.82)]

Υ̃A
` = Γ

(
LA
`−1

)
= Γ

(
L
(

ΦA

(
`− 1
LA

)))
(B.209)

and we will need this identity later on. In analogy to the concise notations (B.201), we define

Υ̃(n)
` , Υ̃Ĩ2nL

` . (B.210)

We now show that, in the limit as n → ∞, the right-hand sides of (B.203) and (B.207) do not
change if we replace Υ(n)

` by Υ̃(n)
` , that is,

lim
n→∞

2nL∑
`=1

tr
(

Ĥ†
(
Υ(n)
`

)−1
Ĥ ∆L(n)

`

)
= lim

n→∞

2nL∑
`=1

tr
(

Ĥ†
(
Υ̃(n)
`

)−1
Ĥ ∆L(n)

`

)
(B.211a)

lim
n→∞

2nL∑
`=1

tr
(

Ĥ†
(
Υ(n)
`

)−1
Ĥ ∆L(n)

`

)
= lim

n→∞

2nL∑
`=1

tr
(

Ĥ†
(
Υ̃(n)
`

)−1
Ĥ ∆L(n)

`

)
. (B.211b)

To prove this, consider the sequence of inequalities

0 ≤ tr
(

Ĥ†
(
Υ(n)
`

)−1
Ĥ ∆L(n)

`

)
− tr

(
Ĥ†
(
Υ̃(n)
`

)−1
Ĥ ∆L(n)

`

)
≤ tr

((
Υ(n)
`

)−1
−
(
Υ̃(n)
`

)−1
)

tr
(

Ĥ†Ĥ ∆L(n)
`

)
≤ tr

((
ρ−1InR + ĤL̄(n)

` Ĥ†
)−1
−
(
ρ−1InR + ĤL̄(n)

`−1Ĥ†
)−1)

tr
(

Ĥ†Ĥ ∆L(n)
`

)
(B.212)

In (B.212), the first inequality is due to Υ̃(n)
` � Υ(n)

` ; the second inequality is due to tr(AB) ≤
tr(A) tr(B) for same-sized positive semidefinite matrices A and B; the third and last inequality
is obtained by subtracting a common quantity

E
[
H̃
(
LA
`−1
) 1

2 ξξ†
(
LA
`−1
) 1

2 H̃†
∣∣∣∣ξ, Ĥ]+ E

[
H̃L̄A

`−1H̃†
∣∣∣ Ĥ
]

from Υ(n)
` and Υ̃(n)

` alike. The inequality holds because for nR × nR matrices 0 ≺ A � A′, the
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function

F : CnR×nR
+ → R+

X 7→ tr
(
(X + A)−1 − (X + A′)−1

)
(B.213)

is non-increasing in the sense that 0 � X1 � X2 implies F (X1) � F (X2). By virtue of the
Heine-Cantor Theorem [Rud76, Theorem 4.19], the continuous mapping

[0; 1]→ R, ι 7→ tr
((
ρ−1InR + ĤL̄(ι)Ĥ†

)−1)
is uniformly continuous because [0; 1] is compact. As a consequence, for every ε, there is a
sufficiently large n such that for all ` ∈ {1, . . . , 2nL} we have

tr
((
ρ−1InR + ĤL̄(n)

` Ĥ†
)−1
−
(
ρ−1InR + ĤL̄(n)

`−1Ĥ†
)−1)

≤ ε (B.214)

whence

0 ≤
2nL∑
`=1

[
tr
(

Ĥ†
(
Υ(n)
`

)−1
Ĥ ∆L(n)

`

)
− tr

(
Ĥ†
(
Υ̃(n)
`

)−1
Ĥ ∆L(n)

`

)]

≤ ε
2nL∑
`=1

tr
(

Ĥ†Ĥ ∆L(n)
`

)
≤ ε tr

(
Ĥ†ĤQ

)
. (B.215)

Since ε > 0 may be arbitrarily small, (B.211) follows. Writing the trace expression from the
right-hand side of (B.211) as a double sum

tr
(

Ĥ†
(
Υ̃(n)
`

)−1
Ĥ ∆L(n)

`

)
=

nT∑
i=1

nT∑
j=1

[
Ĥ†
(
Υ̃(n)
`

)−1
Ĥ
]
i,j

[
∆L(n)

`

]
j,i

=
nT∑
i=1

nT∑
j=1

Gi,j

(
ΦI

(
`− 1
2nL

))[
Lj,i

(
ΦI

(
`

2nL

))
− Lj,i

(
ΦI

(
`− 1
2nL

))]
(B.216)

where the function Gi,j is defined as

Gi,j(ι) ,
[
Ĥ† (Γ (L(ι)))−1 Ĥ

]
i,j
. (B.217)

With this definition of Gi,j we can easily convince ourselves of the validity of the last equality
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in (B.216), because using that ΦI = ΦĨn
and (B.209), we have

Gi,j

(
ΦI

(
`− 1
2nL

))
=
[

Ĥ†
(

Γ
(

L
(

ΦI

(
`− 1
2nL

))))−1
Ĥ
]
i,j

=
[

Ĥ†
(

Γ
(

L
(

ΦĨ2nL

(
`− 1
2nL

))))−1
Ĥ
]
i,j

=
[
Ĥ†
(
Γ
(
LĨ2nL
`−1

))−1
Ĥ
]
i,j

=
[
Ĥ†
(
Υ̃(n)
`

)−1
Ĥ
]
i,j
. (B.218)

Here, the second equality is due to (B.194); the third equality holds by construction of ΦĨ2nL
;

the last equality follows from (B.209)–(B.210).

Though Gi,j and Lj,i may be complex-valued for i 6= j, we know that the trace of a product
of two Hermitian matrices [as is the left-hand side of (B.216)] is real, hence the double sum
on the right-hand side of (B.216) must be real. We thus only need to retain the real-valued
contributions to the double sum. We split these contributions as

tr
(

Ĥ†
(
Υ̃(n)
`

)−1
Ĥ ∆L(n)

`

)
=

nT∑
i=1

nT∑
j=1

(
T

(`,n)
<,i,j − T

(`,n)
=,i,j

)
(B.219)

with the real-valued functions

T
(`,n)
<,i,j = <Gi,j

(
ΦI

(
`

n

))[
<Lj,i

(
ΦI

(
`

n

))
−<Lj,i

(
ΦI

(
`− 1
n

))]
(B.220a)

T
(`,n)
=,i,j = =Gi,j

(
ΦI

(
`

n

))[
=Lj,i

(
ΦI

(
`

n

))
−=Lj,i

(
ΦI

(
`− 1
n

))]
(B.220b)

where <f and =f denote the real and imaginary part of f , respectively. The superadditivity
(resp. subadditivity) of the limit inferior (resp. limit superior) imply

lim
n→∞

2nL∑
`=1

tr
(

Ĥ†
(
Υ̃(n)
`

)−1
Ĥ ∆L(n)

`

)
≥

nT∑
i=1

nT∑
j=1

lim
n→∞

2nL∑
`=1

(
T

(`,n)
<,i,j − T

(`,n)
=,i,j

)
(B.221a)

lim
n→∞

2nL∑
`=1

tr
(

Ĥ†
(
Υ̃(n)
`

)−1
Ĥ ∆L(n)

`

)
≤

nT∑
i=1

nT∑
j=1

lim
n→∞

2nL∑
`=1

(
T

(`,n)
<,i,j − T

(`,n)
=,i,j

)
(B.221b)

On the right-hand side of (B.221), the sums of T (`,n)
<,i,j and T

(`,n)
=,i,j over ` are Riemann-Stieltjes

sums. A sufficient condition for the existence of the Riemann-Stieltjes integral as the limit of
its corresponding Riemann-Stieltjes sum is that the integrand is continuous and the integrator
function is of bounded variation. In our specific case, the integrand functions are <Gi,j and =Gi,j ,
whereas the integrator functions are <Lj,i and =Lj,i. The continuity of Gi,j is a consequence of
the (entrywise) continuity of the layering function L(ι), whereas the variation-boundedness of
Lj,i is a consequence of the (entrywise) Lipschitz-continuity of the layering function L, which
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was established in Lemma B.13. As a consequence, the following Riemann-Stieltjes integrals
exist:

lim
n→∞

2nL∑
`=1

T
(`,n)
<,i,j =

∫ 1

0
<Gi,j

(
ΦI (ι)

)
d<Lj,i

(
ΦI (ι)

)
(B.222a)

lim
n→∞

2nL∑
`=1

T
(`,n)
=,i,j =

∫ 1

0
=Gi,j

(
ΦI (ι)

)
d=Lj,i

(
ΦI (ι)

)
. (B.222b)

From the existence of these two Riemann-Stieltjes integrals, we can infer that the right-hand
sides of (B.221a) and (B.221b) coincide, and both are equal to the double sum of (complex-
valued) Riemann-Stieltjes integrals:

nT∑
i=1

nT∑
j=1

∫ 1

0
Gi,j

(
ΦI (ι)

)
dLj,i

(
ΦI (ι)

)
=
∫ 1

0

nT∑
i=1

nT∑
j=1

Gi,j
(
ΦI (ι)

)
dLj,i

(
ΦI (ι)

)
,
∫ 1

0
tr
[
Ĥ†
(
Γ
(
L
(
ΦI (ι)

)))−1
Ĥ dL

(
ΦI (ι)

)]
. (B.223)

Here, the right-hand side, which involves the infinitesimal quantity dL sitting inside the trace
operator, is nothing but a compact notation for the double sum of Riemann-Stieltjes integrals on
the left-hand side of the last equation. After a change of variable ι′ = ΦI (ι) using the increasing
bijective map ΦI : [0; 1]→ [0, 1], the Riemann-Stieltjes integrals simplify to∫ 1

0
Gi,j

(
ΦI (ι)

)
dLj,i

(
ΦI (ι)

)
=
∫ 1

0
Gi,j(ι) dLj,i(ι) (B.224)

and we thus end up with [Rud76, Theorem 6.19]

nT∑
i=1

nT∑
j=1

∫ 1

0
Gi,j

(
ΦI (ι)

)
dLj,i

(
ΦI (ι)

)
=
∫ 1

0
tr
[
Ĥ†
(
Γ
(
L(ι′)

))−1
Ĥ dL(ι′)

]
. (B.225)

We deduce that the right-hand sides of (B.202b) and (B.202a) coincide with the Riemann-
Stieltjes integral (B.225), and thus, that the limit involved in (B.200) exists. Therefore, by
inserting (B.225) into (B.200), we obtain

R∞(L,I ) = E
[∫ 1

0
tr
(
Ĥ†Γ(L(ι))−1Ĥ dL(ι)

)]
. (B.226)

Note that in this expression, the expectation and integration operators can be interchanged,
owing to the Fubini Theorem [Rud87, Theorem 8.8]. Finally, since the right-hand side of (B.226)
does not depend on the indexing I , we infer that (B.191) holds. This concludes the proof of
Theorem (2.6).
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B.15 Proof of Lemma 2.3

Let L = [Li,j ]i,j and L̃ = [Li,j ]i,j denote two layering functions. We prove that for any ε > 0,
there exists a δ > 0 such that

sup
ι∈[0;1]

∥∥L(ι)− L̃(ι)
∥∥

F < δ ⇒
∣∣R?(L)−R?(L̃)

∣∣ < ε. (B.227)

where ‖·‖F stands for the Frobenius norm.9 Besides the Frobenius norm ‖A‖F, let us also in-
troduce the one-norm ‖A‖1 of an n × m matrix A = [ai,j ]i,j , these two matrix norms being
respectively defined as

‖A‖F =
√

tr(A†A) =
√∑

i,j

|ai,j |2 ‖A‖1 =
∑
i,j

|ai,j |. (B.228)

For future reference, let us state the bounds

‖A‖F ≤ ‖A‖1 ≤
√
nm‖A‖F (B.229)

which are a consequence of the fact that the ratio

‖A‖1
‖A‖F

=
∑n
i=1

∑m
j=1 |ai,j |√∑n

i=1
∑m
j=1 |ai,j |2

(B.230)

is maximal when all |ai,j | are equal, and minimal when all terms |ai,j | vanish except one.

To begin with, let us write out the trace involved in the expression (2.81) of the rate-splitting
bound, so as to represent R?(L) and R?(L̃) as sums of scalar Riemann-Stieltjes integrals

R?(L) =
nT∑
i,j=1

∫ 1

0
ei,j(ι) dLj,i(ι) (B.231a)

R?(L̃) =
nT∑
i,j=1

∫ 1

0
ẽi,j(ι) dK̃j,i(ι), (B.231b)

where ei,j(ι) =
[
E(L(ι))

]
i,j

and ẽi,j(ι) =
[
E(L̃(ι))

]
i,j

are the (i, j)-th entries of the matrices
E(L(ι)) and E(L̃(ι)), respectively, where E(X) is defined for arguments 0 � X � Q as

E(X) = E
[
Ĥ†Γ(X)−1Ĥ

]
. (B.232)

9 We choose the Frobenius norm for convenience, but due to the norm equivalence property, any other matrix norm would
also do.
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Using integration by parts, the Riemann-Stieltjes integrals in (B.231) can be written as∫ 1

0
ei,j(ι) dLj,i(ι) = ei,j(1)Lj,i(1)−

∫ 1

0
Lj,i(ι) dei,j(ι) (B.233a)∫ 1

0
ẽi,j(ι) dK̃j,i(ι) = ẽi,j(1)K̃j,i(1)−

∫ 1

0
K̃j,i(ι) dẽi,j(ι) (B.233b)

because Lj,i(0) = K̃j,i(0) = 0. Note that both integrals on the right-hand side of (B.233) are
well-defined, since the existence of either integral [on the left-hand or right-hand side of (B.233)]
implies the existence of the other. Also note that, due to L and L̃ being layering functions for
the same transmit covariance Q, we have that ei,j(1) = ẽi,j(1) and Lj,i(1) = K̃j,i(1). Denoting
κi,j(ι) = Li,j(ι) − K̃i,j(ι) and ηi,j(ι) = ei,j(ι) − ẽi,j(ι), the absolute value of the difference
R?(L)−R?(L̃) can therefore be bounded as follows:

∣∣R?(L)−R?(L̃)
∣∣ =

∣∣∣∣∣∣
nT∑
i,j=1

∫ 1

0

[
Li,j(ι) dej,i(ι)− K̃i,j(ι) dẽj,i(ι)

]∣∣∣∣∣∣
=

∣∣∣∣∣∣
nT∑
i,j=1

∫ 1

0

[
κi,j(ι) dei,j(ι) + K̃j,i(ι) dηi,j(ι)

]∣∣∣∣∣∣
≤

nT∑
i,j=1

[∣∣∣∣∫ 1

0
κi,j(ι) dei,j(ι)

∣∣∣∣+ ∣∣∣∣∫ 1

0
K̃j,i(ι) dηi,j(ι)

∣∣∣∣] (B.234)

The bounding step follows from the triangle inequality.

Upon writing out the Riemann-Stieltjes integral as the limit of its corresponding Riemann-
Stieltjes sum, the first term in (B.234) can be upper-bounded via∣∣∣∣∫ 1

0
κi,j(ι) dei,j(ι)

∣∣∣∣ =
∣∣∣∣∣ lim
N→∞

N∑
n=1

κi,j
(
n
N

) [
ej,i

(
n
N

)
− ej,i

(
n−1
N

)]∣∣∣∣∣
≤ lim sup

N→∞

N∑
n=1

∣∣κi,j ( nN )∣∣ · ∣∣∣ej,i ( nN )− ej,i (n−1
N

)∣∣∣
≤ sup

0≤ι1<ι2≤1

∣∣∣∣ej,i(ι1)− ej,i(ι2)
ι1 − ι2

∣∣∣∣ · lim sup
N→∞

1
N

N∑
n=1

∣∣κi,j ( nN )∣∣
≤ sup

0≤ι1<ι2≤1

∣∣∣∣ej,i(ι1)− ej,i(ι2)
ι1 − ι2

∣∣∣∣ · sup
ι∈[0;1]

|κi,j(ι)| . (B.235)

Here, the first inequality is the triangle inequality; the second inequality results from upper-
bounding

N ·
∣∣∣ej,i ( nN )− ej,i (n−1

N

)∣∣∣
by the Lipschitz constant of ej,i; the third and last inequality results from upper-bounding
|κi,j(ι)| by its supremum over the integration interval ι ∈ [0; 1]. This supremum is itself upper-
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bounded as

sup
ι∈[0;1]

|κi,j(ι)| ≤ sup
ι∈[0;1]

√√√√ nT∑
i,j=1
|κi,j(ι)|2

= sup
ι∈[0;1]

‖L(ι)− L̃(ι)‖F

< δ (B.236)

and therefore, by plugging (B.236) into (B.235),∣∣∣∣∫ 1

0
κi,j(ι) dei,j(ι)

∣∣∣∣ ≤ sup
0≤ι1<ι2≤1

∣∣∣∣ej,i(ι1)− ej,i(ι2)
ι1 − ι2

∣∣∣∣ · δ. (B.237)

We now focus on the second term in (B.234). Using integration by parts and the fact that
ηi,j(0) = ηi,j(1) = 0, we have∫ 1

0
K̃j,i(ι) dηi,j(ι) = −

∫ 1

0
ηi,j(ι) dK̃j,i(ι). (B.238)

Upon taking absolute values on either side of the last expression, and writing out the Riemann-
Stieltjes integral as the limit of its corresponding Riemann-Stieltjes sum, the second term in
(B.234) can be upper-bounded in a similar way as was done previously for the first term:∣∣∣∣∫ 1

0
K̃j,i(ι) dηi,j(ι)

∣∣∣∣ =
∣∣∣∣∣ lim
N→∞

N∑
n=1

ηi,j
(
n
N

) [
K̃j,i

(
n
N

)
− K̃j,i

(
n−1
N

)]∣∣∣∣∣
≤ lim

N→∞

N∑
n=1

∣∣ηi,j ( nN )∣∣ · ∣∣∣K̃j,i
(
n
N

)
− K̃j,i

(
n−1
N

)∣∣∣
≤ sup

0≤ι1<ι2≤1

∣∣∣∣∣K̃j,i(ι1)− K̃j,i(ι2)
ι1 − ι2

∣∣∣∣∣ · lim
N→∞

N∑
n=1

1
N

∣∣ηi,j ( nN )∣∣
≤ sup

ι∈[0;1]

∣∣ηi,j(ι)∣∣ (B.239)

The first inequality is the triangle inequality; the second inequality results from upper-bounding

N ·
∣∣∣K̃j,i

(
n
N

)
− K̃j,i

(
n−1
N

)∣∣∣
by the Lipschitz constant of K̃j,i; the third and last inequality results from the Lipschitz-
continuity of the layering function L̃ [cf. (2.63)] and from upper-bounding |ηi,j(ι)| by its supre-
mum on the integration interval.

Combining (B.234), (B.237) and (B.239), we get

∣∣R?(L)−R?(L̃)
∣∣ ≤ nT∑

i,j=1

[
sup

0≤ι1<ι2≤1

∣∣∣∣ej,i(ι1)− ej,i(ι2)
ι1 − ι2

∣∣∣∣ · δ + sup
ι∈[0;1]

∣∣ηi,j(ι)∣∣
]
. (B.240)

To prove Lemma 2.3, we wish to prove that the right-hand side of (B.240) can be made
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arbitrarily small by an appropriate choice of δ > 0. We will now argue that to complete this
proof, it suffices to show that X 7→ E(X) as previously defined in (B.232) is Lipschitz-continuous
in the sense that for any two distinct X1 and X2 from CnT×nT

+ fulfilling 0 � X1 � Q and
0 � X2 � Q, the quotient

‖E(X1)−E(X2)‖F
‖X1 −X2‖F

≤ C < +∞ (B.241)

has a finite upper bound C which is independent of (X1,X2).

In fact, if this Lipschitz property holds, this has two consequences for the terms on the right-
hand side in (B.240): on the one hand, the last supremum term can then be upper-bounded
as

sup
ι∈[0;1]

∣∣ηi,j(ι)∣∣ ≤ sup
ι∈[0;1]

√√√√ nT∑
i,j=1

∣∣ηi,j(ι)∣∣2
= sup

ι∈[0;1]

∥∥E(L(ι))−E(L̃(ι))
∥∥

F

≤ sup
ι∈[0;1]

C
∥∥L(ι)− L̃(ι)

∥∥
F

≤ Cδ. (B.242)

On the other hand, the other supremum term in (B.240) would be finite for all i, j, because
for any 0 ≤ ι1 < ι2 ≤ 1, one can upper-bound the ratio |ej,i(ι1)− ej,i(ι2)| / |ι1 − ι2| by upper-
bounding the numerator as

|ej,i(ι1)− ej,i(ι2)| ≤

√√√√ nT∑
i,j=1

∣∣ej,i(ι1)− ej,i(ι2)
∣∣2

=
∥∥E(L(ι1))−E(L(ι2))

∥∥
F (B.243)

and lower-bounding the denominator as

|ι1 − ι2| = tr
(
L(ι2)− L(ι1)

)
≥ 1
nT

∥∥L(ι2)− L(ι1)
∥∥

1

≥ 1
nT

∥∥L(ι2)− L(ι1)
∥∥

F. (B.244)

Here, the equality follows from ι1 < ι2 and from tr(L(ι)) = ι by the definition of layering
functions [cf. Definition 2.1]; the first inequality follows from the fact that L(ι2) − L(ι1) is
positive semidefinite as a consequence of the definition of layering functions [cf. Definition 2.1]
and by applying Lemma B.5 stated below, whose proof is relegated to the next Appendix Section;
the second and last inequality follows from (B.229).

Lemma B.5. For any nT × nT positive semidefinite matrix A, the following inequality holds:

‖A‖1 ≤ nT · tr(A). (B.245)
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Proof: The proof is relegated to Appendix B.16.

Combining (B.243), (B.244), together with (B.241) we get

sup
0≤ι1<ι2≤1

∣∣∣∣ej,i(ι1)− ej,i(ι2)
ι1 − ι2

∣∣∣∣ ≤ nTC (B.246)

and finally, combining (B.240), (B.242) and (B.246), we arrive at

∣∣R?(L)−R?(L̃)
∣∣ ≤ nT

2(nT + 1)Cδ (B.247)

which establishes Lemma 2.3.

To complete the proof, the Lipschitz property (B.241) remains to be proven. For the sake
of notational concision, we will write Γ1 and Γ2 instead of Γ(X1) and Γ(X2), respectively. We
start by upper-bounding the numerator of (B.241) as

∥∥E(X1)−E(X2)
∥∥

F ≤ E
[∥∥Ĥ†(Γ−1

1 − Γ−1
2
)
Ĥ
∥∥

F

]
≤ E

[
‖Ĥ‖2F ·

∥∥Γ−1
1 − Γ−1

2
∥∥

F

]
. (B.248)

Here, the first inequality follows because the absolute value | · | is a convex function on the
complex numbers, which allows us by Jensen’s inequality to upper-bound the one-norm of an
expectation by the expectation of the one-norm; the second inequality results from the sub-
multiplicativity of the Frobenius norm, i.e., the property ‖AB‖F ≤ ‖A‖F · ‖B‖F. Next, the
factor in (B.248) involving Γ1 and Γ2 can be upper-bounded as

∥∥Γ−1
1 − Γ−1

2
∥∥

F =
∥∥Γ−1

1
(
Γ2 − Γ1

)
Γ−1

2
∥∥

F

≤ ‖Γ−1
1 ‖F · ‖Γ

−1
2 ‖F ·

∥∥Γ2 − Γ1
∥∥

F

≤ nRρ
2∥∥Γ2 − Γ1

∥∥
F. (B.249)

Here, the first inequality is again due to the sub-multiplicativity of the Frobenius norm, whereas
the second inequality is due to Γ1 � ρ−1InR and Γ2 � ρ−1InR , and the fact that the Frobenius
norm is matrix-monotone in the sense that 0 � A � B implies ‖A‖F ≤ ‖B‖F. The difference
Γ2 − Γ1 reads as

Γ2 − Γ1 = E
[
H̃
(
X

1
2
2 ξξ

†X
1
2
2 −X

1
2
1 ξξ

†X
1
2
1
)
H̃†

∣∣∣ ξ, Ĥ]− E
[
H̃(X2 −X1)H̃†

∣∣ Ĥ
]
− Ĥ(X2 −X1)Ĥ†

(B.250)
so by applying the triangle inequality onto the last expression, we can upper-bound

∥∥Γ2−Γ1
∥∥

F
by the sum of three positive terms, each of which we shall upper-bound once more. The first
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term in (B.250) is upper-bounded as∥∥∥E[H̃(X 1
2
2 ξξ

†X
1
2
2 −X

1
2
1 ξξ

†X
1
2
1
)
H̃†

∣∣∣ ξ, Ĥ]∥∥∥
F
≤
∥∥∥E[H̃(X 1

2
2 ξξ

†X
1
2
2 −X

1
2
1 ξξ

†X
1
2
1
)
H̃†

∣∣∣ ξ, Ĥ]∥∥∥
1

≤ E
[∥∥∥H̃(X 1

2
2 ξξ

†X
1
2
2 −X

1
2
1 ξξ

†X
1
2
1
)
H̃†
∥∥∥

1

∣∣∣ ξ, Ĥ]
≤ E

[∥∥H̃∥∥2
1
∣∣ Ĥ

]
·
∥∥X 1

2
2 ξξ

†X
1
2
2 −X

1
2
1 ξξ

†X
1
2
1
∥∥

1

≤ nT E
[∥∥H̃∥∥2

1
∣∣ Ĥ

]
· ‖X2 −X1‖F · ‖ξ‖22. (B.251)

Here, the first bounding step results from (B.229); the second bounding step is due to Jensen’s
inequality; the third step uses that the one-norm is sub-multiplicative; the fourth step is detailed
as follows:

∥∥X 1
2
2 ξξ

†X
1
2
2 −X

1
2
1 ξξ

†X
1
2
1
∥∥

1 ≤ nT
∥∥X 1

2
2 ξξ

†X
1
2
2 −X

1
2
1 ξξ

†X
1
2
1
∥∥

F

≤ nT
∣∣∣∥∥X 1

2
2 ξξ

†X
1
2
2
∥∥

F −
∥∥X 1

2
1 ξξ

†X
1
2
1
∥∥

F

∣∣∣
= nT

∣∣ξ†(X2 −X1)ξ
∣∣

≤ nT‖X2 −X1‖S · ‖ξ‖22
≤ nT‖X2 −X1‖F · ‖ξ‖22. (B.252)

where ‖·‖S denotes the spectral radius norm, defined for an n× n matrix A as

‖A‖S = max
i=1,...,n

|λi(A)|.

where λi(A) denote the eigenvalues of A. In the above chain of inequalities, the first step follows
from (B.229); the second is the triangle inequality in the form ‖A−B‖F ≤

∣∣‖A‖F − ‖B‖F∣∣; the
third inequality follows from |u†Au| ≤ ‖u‖22‖A‖S; the fourth and last step follows because for
a Hermitian n× n matrix A, we have the norm inequality

‖A‖S ≤
n∑
i=1
|λi(A)| ≤

√√√√ n∑
i=1
|λi(A)|2 = ‖A‖F. (B.253)

As to the remaining two terms in (B.250), their Frobenius norm is upper-bounded via the triangle
inequality and sub-multiplicativity of the Frobenius norm as

∥∥E[H̃(X2 −X1)H̃†
∣∣ Ĥ

]
+ Ĥ(X2 −X1)Ĥ†

∥∥
F ≤

(
‖Ĥ‖2F + E

[
‖H̃‖2F

∣∣ Ĥ
])
·
∥∥X2 −X1

∥∥
F. (B.254)

All in all, combining (B.250), (B.251) and (B.254), we get

∥∥Γ2 − Γ1
∥∥

F ≤
(
nT E

[
‖H̃‖2F

∣∣ Ĥ
]
· ‖ξ‖22 + ‖Ĥ‖2F + E

[
‖H̃‖2F

∣∣ Ĥ
])
·
∥∥X2 −X1

∥∥
F (B.255)

so that plugging the latter expression into (B.249) combined with (B.248), and recalling that
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E
[
‖ξ‖22

]
= nT, we obtain

∥∥E(X1)−E(X2)
∥∥

F ≤ nRρ
2 E
[
‖Ĥ‖2F

(
(nT

2 + 1) E
[∥∥H̃∥∥2

F
∣∣ Ĥ

]
+ ‖Ĥ‖2F

)]
·
∥∥X2 −X1

∥∥
F

≤ nRρ
2(nT

2 + 1) E
[(

E
[
‖H̃‖2F

∣∣ Ĥ
]

+ ‖Ĥ‖2F
)2]
·
∥∥X2 −X1

∥∥
F

≤ nRρ
2(nT

2 + 1) E
[(

E
[
‖H‖2F

∣∣ Ĥ
])2]

·
∥∥X2 −X1

∥∥
F

≤ nRρ
2(nT

2 + 1) E
[
‖H‖4F

]
·
∥∥X2 −X1

∥∥
F. (B.256)

Hence, if E
[
‖H‖4F

]
is finite, the Lipschitz property (B.241) follows. This concludes the proof of

Lemma (2.3).

B.16 Proof of Lemma B.5

Since the matrix A, whose (i, j)-th entry we shall denote as ai,j , is assumed to be positive
semidefinite, we have that the diagonal entries ai,i are non-negative, and that ai,j = a∗j,i. A further
consequence is that all the principal submatrices of A are positive semidefinite. In particular,
any 2× 2 principal submatrix is positive semidefinite, and therefore

ai,iaj,j − |ai,j |2 ≥ 0. (B.257)

Written differently,

|ai,j | ≤
√
ai,iaj,j

≤ ai,i + aj,j
2 , (B.258)

where the last step follows from the inequality between the geometric mean and the arithmetic
mean. An upper bound on the one-norm ‖A‖1 is therefore given by the one-norm of a matrix
whose (i, j)-th entry is (ai,i + aj,j)/2, i.e.,

‖A‖1 =
∑
i,j

|ai,j |

≤
∑
i,j

ai,i + aj,j
2

= nT · tr(A). (B.259)

This upper bound is achieved when all entries of A are equal to a common non-negative number.

B.17 Proof of Lemma 2.4

For an arbitrary layering L ∈ L and ε > 0, we provide an explicit construction of a continuously
differentiable layering L̃ ∈ LD such that

∥∥L − L̃
∥∥
∞ < ε. The proposed construction is in two



132 Appendices to Chapter 2

steps: we first construct a function F : [0; 1]→ CnT×nT
+ (not necessarily a layering function) which

is continuously differentiable and arbitrarily close to L, and then another function L̃ ∈ L which
is a layering function arbitrarily close to F.

Let us continuously extend the layering function L to negative arguments by setting L(ι) = 0
for ι < 0. Let Φ: R→ R+ be an arbitrary non-negative, continuously differentiable function with
finite derivative, support set10 (0; 1) and which fulfills

∫ 1
0 Φ(t) dt = 1. Additionally, we require

that there exist t0 > 0 and α > 0 such that Φ(t) ≥ αt2 for all 0 ≤ t ≤ t0.11 For example, one
can choose a raised-cosine

Φ(ι) =

1− cos(2πι), 0 ≤ ι ≤ 1

0, ι ≤ 0 or ι ≥ 1
(B.260)

for which α = 1 and t0 = 1
8 can be chosen. We define F(ι) as a convolution-type integral

F(ι) ,
∫ 1

0
L((1 + tε)ι− tε)Φ(t) dt. (B.261)

This integral is always defined, because Φ is differentiable with finite derivative, and the entries
of L are Lipschitz-continuous (and thus integrable). In order to show that F is differentiable, we
perform the change of variable u = (1 + tε)ι− tε (valid only for ι 6= 1) so as to get

F(ι) =
∫ ι

ι−ε(1−ι)

L(u)
ε(1− ι)Φ

(
ι− u
ε(1− ι)

)
du

, G(ι, ι)−G(ι− ε(1− ι), ι), (0 ≤ ι < 1). (B.262)

where we have defined G(u, ι) as an antiderivative (with respect to u) of the integrand from the
previous expression, i.e.,

∂G
∂u

(u, ι) , L(u)
ε(1− ι)Φ

(
ι− u
ε(1− ι)

)
, (0 ≤ ι < 1). (B.263)

This antiderivative exists because L(·) and Φ(·) are both integrable functions. Also note that the
partial derivative of G(u, ι) with respect to ι also exists because ∂G

∂u is partially differentiable
with respect to ι. Therefore, we infer that F is continuously differentiable on [0; 1). Since it
appears from (B.261) that F is left-continuous around ι ↑ 1 with finite limit limι↑1 F(ι) = Q, it
further follows that F is continuously differentiable on the entire interval ι ∈ [0; 1].

We next prove that F is arbitrarily close to L. Let us define <F and <L as the real parts,

10 The term support set shall refer to the set on which Φ is non-zero.
11 Any less restrictive condition will also do, but since Φ can be chosen freely, there is no loss of generality in making this

assumption.
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and =F and =L as the imaginary parts, respectively, of F and L.

∥∥L− F
∥∥
∞ = max

i,j
sup
ι∈[0;1]

|Li,j(ι)− Fi,j(ι)|

≤ max
i,j

sup
ι∈[0;1]

{∣∣<Li,j(ι)−<Fi,j(ι)∣∣}+ max
i,j

sup
ι∈[0;1]

{∣∣=Li,j(ι)−=Fi,j(ι)∣∣} . (B.264)

Let us focus on the first term, corresponding to the real parts (the other term, corresponding
to the imaginary parts, can be treated in the exact same way). According to (2.63), Li,j is
Lipschitz-continuous with Lipschitz constant 1, so it follows that [cf. (B.261)]

<Fi,j(ι) =
∫ 1

0
<Li,j(ι− ε(1− ι)t)Φ(t) dt (B.265)

can be upper- and lower-bounded by observing that for 0 ≤ t ≤ 1,

∣∣<Li,j(ι− ε(1− ι)t)−<Li,j(ι)∣∣ ≤ ∣∣Li,j(ι− ε(1− ι)nT)− Li,j(ι)
∣∣

≤ ε(1− ι)

≤ ε. (B.266)

Hence, considering that the same inequality holds for the imaginary part, we get by combining
(B.265) and (B.266)

∣∣<Li,j(ι)−<Fi,j(ι)∣∣ ≤ ε, ∣∣=Li,j(ι)−=Fi,j(ι)∣∣ ≤ ε (B.267)

and thus ∥∥L− F
∥∥
∞ ≤ 2ε. (B.268)

Now that we have shown an example of a continuously differentiable function F which is
arbitrarily close to L, we will construct a layering function L̃ which is arbitrarily close to F.

For this purpose, let us first study the trace of F(ι). Recalling that tr(L(ι)) = ι for ι ∈ [0; 1]
and that tr(L(ι)) = 0 for ι ≤ 0 (due to the convention L(ι) = 0 for ι < 0), we observe that the
trace of F(ι), which we shall denote as τ(ι), is given by

τ(ι) , tr(F(ι))

=
∫ 1

0

[
ι− εt(1− ι)

]+Φ(t) dt

=
∫ min

(
ι

ε(1−ι) ,1
)

0

[
ι− εt(1− ι)

]
Φ(t) dt. (B.269)

Here, [·]+ stands for max(·, 0). For any 0 ≤ ι1 < ι2 ≤ 1, we denote m(ι) = min
(

ι
ε(1−ι) , 1

)
and
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notice that m(ι1) < m(ι2), and compute the difference

τ(ι2)− τ(ι1) =
∫ m(ι2)

0

[
ι2 − εt(1− ι2)

]
Φ(t) dt−

∫ m(ι1)

0

[
ι1 − εt(1− ι1)

]
Φ(t) dt

= (ι2 − ι1)
∫ m(ι1)

0
(1 + tε)Φ(t) dt+

∫ m(ι2)

m(ι1)

[
ι2 − εt(1− ι2)

]
Φ(t) dt. (B.270)

From inspecting the last line of (B.270), we draw a few conclusions on the properties of the
function τ :

1) Continuity: Both integrands in (B.270) are finite, and since ι 7→ m(ι) is continuous, it is
easily seen that τ is continuous.

2) Monotonicity: Both integrals in (B.270) are non-negative. If ι1 = 0, then m(ι1) = 0 and
m(ι2) > 0 so the second integral is positive because its integrand is positive on [m(ι1);m(ι2)).
Else, if ι1 > 0, then the first integral is positive. Therefore, τ is strictly increasing.

3) Border values: The function τ has endpoints τ(0) = 0 and τ(1) = 1.

4) Lower bound on the secant slope: The secant slope is lower-bounded as

τ(ι2)− τ(ι1)
ι2 − ι1

≥
∫ m(ι1)

0
(1 + tε)Φ(t) dt ≥

∫ m(ι1)

0
Φ(t) dt. (B.271)

If ι1 > ε
1+ε , then m(ι1) = 1 and due to

∫ 1
0 Φ(t) dt = 1 the above lower bound becomes 1.

Otherwise, let us assume that ε is sufficiently small (without loss of generality) to satisfy ε
1+ε < t0.

Now if ι1 ≤ ε
1+ε < t0, we can lower-bound the secant slope as

τ(ι2)− τ(ι1)
ι2 − ι1

≥ α
∫ ι1

ε(1−ι1)

0
t2 dt

≥ α

3ε3
(

ι1
1− ι1

)3
. (B.272)

Summing up, we have for sufficiently small ε > 0 the lower bound∣∣∣∣τ(ι2)− τ(ι1)
ι2 − ι1

∣∣∣∣ ≥ min
{

1, α3ε3
(

ι1
1− ι1

)3
}
. (B.273)

5) Differentiability: Since F has been shown above to be continuously differentiable, its trace
τ(ι) = tr(F(ι)) is too.

Due to its strict monotonicity, we infer that the function τ has an inverse τ−1 : [0; 1]→ [0; 1].
Said inverse
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• is continuous due to the continuity of τ ,
• is strictly monotone due to the continuity and strict monotonicity of τ ,
• has border values τ−1(0) = 0 and τ−1(1) = 1,
• is continuously differentiable on (0; 1] due to τ being continuous, continuously differ-

entiable and monotone, and due to the secant slope of τ being lower-bounded by a
positive constant on any interval comprised in (0; 1].

Let us define the function
L̃(ι) = F(τ−1(ι)) (B.274)

and verify in the following, using the above findings on τ and τ−1, that it is a continuously
differentiable layering function, and that it is arbitrarily close to L.

Since τ−1 and F are continuously differentiable on (0; 1] and [0; 1], respectively, we infer that
L̃(ι), which results from the concatenation ι 7→ τ−1(ι) 7→ F(τ−1(ι)), is continuously differentiable
on (0; 1]. Additionally, we know that limι↓0 L̃(ι) = L̃(0) = 0 due to the continuity of F and τ−1,
so it follows that L̃(ι) is continuously differentiable on the closed interval [0; 1].

The function L̃(ι) further satisfies all defining properties of layering functions:

1) Continuity: The function L̃ inherits the continuity of τ−1 and F.

2) Positive semidefiniteness: Since L(·) is positive semidefinite and Φ(·) is non-negative, it
follows from its definition (B.261) that F(ι) is positive semidefinite, and so is F(τ−1(ι)) = L̃(ι).

3) Matrix-monotonicity: For any 0 ≤ ι1 < ι2 ≤ 1,

L̃(ι2)− L̃(ι1) = F(τ−1(ι2))− F(τ−1(ι1))

=
∫ 1

0

[
L((1 + tε)τ−1(ι2)− tε)− L((1 + tε)τ−1(ι1)− tε)

]
Φ(t) dt

� 0. (B.275)

The last step follows from the monotoniticity of τ−1 and from the matrix-monotonicity of L.

4) Border values: We have L̃(0) = 0 and L̃(1) = Q.

5) Trace normalization: Using the definition of τ , we have tr(L̃(ι)) = tr(F(τ−1(ι))) =
τ(τ−1(ι)) = ι.

Now that we have shown that L̃ is a continuously differentiable layering function, it only
remains to show that L̃ is arbitrarily close to F (and thus to L). From (B.268) it follows that
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for any ι ∈ [0; 1], ∣∣tr(F(ι))− tr(L(ι))
∣∣ = |τ(ι)− ι| ≤ 2nTε. (B.276)

Here, exploiting the bijectivity of τ , we perform the substitution ι′ = τ(ι) to obtain, for any
ι′ ∈ [0; 1], ∣∣ι′ − τ−1(ι′)

∣∣ ≤ 2nTε. (B.277)

It follows that

‖L̃− F‖∞ = max
i,j

sup
ι∈[0;1]

∣∣Fi,j(τ−1(ι))− Fi,j(ι)
∣∣

≤ sup
ι∈[0;1]

∣∣τ−1(ι)− ι
∣∣

≤ 2nTε. (B.278)

The first bounding step is due to Lemma B.5, stated within Appendix B.15 [cf. Equation B.245]
and proven in Appendix B.16. This concludes the proof of Lemma 2.4.
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Appendices to Chapter 3

C.1 Proof of Lemma 2.5

Let us endow the set of layering functions L with the metric

d(L1,L2) = ‖L1 − L2‖∞ = max
i,j

sup
0≤ι≤1

∣∣∣[L1(ι)
]
i,j
−
[
L2(ι)

]
i,j

∣∣∣ . (C.1)

to form the metric space (L, d). This metric space is totally bounded, since for any L ∈ L and
any ι ∈ [0; 1] we have 0 � L(ι) � Q and therefore

d(L1,L2) ≤ ‖Q‖∞ = max
i

[
Q
]
i,i
≤ ‖Q‖tr = 1. (C.2)

Since all layering functions are Lipschitz-continuous [cf. (2.63)] with a modulus of continuity not
larger than 1, we have that any sequence of layering functions {Ln}n∈N is uniformly equicon-
tinuous in (L, d). By the Arzelà-Ascoli Theorem, it follows that every sequence {Ln}n∈N has a
convergent subsequence, so (L, d) is relatively compact.

Next, we argue that (L, d) is complete. Consider a Cauchy sequence {Ln}n∈N. Since this
sequence converges uniformly, it also converges pointwise, in the sense that for any given ι ∈ [0, 1],
{Ln(ι)}n∈N is a Cauchy sequence for the infinite matrix norm ‖A‖∞ = maxi,j

∣∣[A]i,j
∣∣. Let us

define the pointwise limit
L∞(ι) , lim

n→∞
Ln(ι). (C.3)

Since the terms of the sequences {Ln(ι)}n∈N and {Ln(ι2)−Ln(ι1)}n∈N (for any 0 ≤ ι1 < ι2 ≤ 1)
all belong to the complete metric space (CnT×nT

+ , d), it follows that their pointwise limits L∞(ι)
and L∞(ι2)−L∞(ι1) also belong to CnT×nT

+ . Furthermore, we have L∞(0) = 0 and L∞(1) = Q

137



138 Appendices to Chapter 3

and
tr
(
L∞

)
= tr

(
lim
n→∞

Ln(ι)
)

= lim
n→∞

tr
(
Ln(ι)

)
= ι. (C.4)

Therefore, any pointwise limit L∞ belongs to L and it thus follows that the metric space (L, d)
is complete.

Since (L, d) is relatively compact and complete, it is compact. Due to L 7→ R?(L) being a
continuous mapping from L to R with respect to the metric d provided that E

[
‖H‖4F

]
is finite

(cf. Theorem 2.3), it follows that the image set R?(L) is a closed subset of the real numbers.
Hence, R? possesses a maximizer in L.

C.2 Derivation of (3.13)

Setting the layering function to Lstag in the generic expression (3.3) and splitting the integration
domain into nT equal intervals, we get

R?(Lstag) = V̂
nT∑
i=1

∫ i
nT

i−1
nT

E tr
[
Ŵ†Γ(Lstag(ι))−1Ŵ dLstag(ι)

]
. (C.5)

On each closed integration interval
[
i−1
nT

; i
nT

]
, the function Lstag(ι) is continuously differentiable

and reads as

Lstag(ι) , 1
nT


I(i−1)×(i−1) 0

ιnT − i+ 1
0 0(nT−i)×(nT−i)

 , i− 1
nT

≤ ι ≤ i

nT
(C.6)

or in more concise notation

Lstag(ι) = 1
nT

i−1∑
j=1

ejeT
j +

(
ι+ 1− i

nT

)
eieT

i ,
i− 1
nT

≤ ι ≤ i

nT
(C.7)

where [e1, . . . , enT ] = InT denotes the canonical basis of the CnT×nT . Its derivative is

L̇stag(ι) = eieT
i ,

i− 1
nT

≤ ι ≤ i

nT
. (C.8)

Thus, the Riemann-Stieltjes integrals in the sum in (C.5) can be written as Riemann integrals
[cf. Remark 2.7 under Theorem 2.6], which gives us

R?(Lstag) = V̂
nT∑
i=1

∫ i
nT

i−1
nT

E
[
eT
i Ŵ†Γ(Lstag(ι))−1Ŵei

]
dι. (C.9)
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By the Fubini Theorem [Rud87, Theorem 8.8], the expectation operator and the integral over ι
can be exchanged. After a change of variable ν = ιnT − i+ 1, we get

R?(Lstag) = V̂

nT
E
[
nT∑
i=1

∫ 1

0
eT
i Ŵ†Ti(ν)−1Ŵei dν

]
(C.10)

where

Ti(ν) = Γ
(

Lstag

(
ν + i− 1

nT

))
= Γ

 1
nT

i−1∑
j=1

ejeT
j + ν

nT
eieT

i

 . (C.11)

Let ŵi denote the i-th column of Ŵ and let Ŵn:m denote the matrix formed by the columns n
through m of Ŵ. Writing out Ti(ν) by means of (3.4), one can show after some algebra that

nTTi(ν) = αi(ν)InR + V̂ Ŵ(i+1):nTŴ†
(i+1):nT

+ V̂ (1− ν)ŵiŵ†i (C.12)

with
αi(ν) , Ṽ

(Ξi−1
nT

+ ν

nT
Ξ̃1 + 1− ν + nT − i

)
+ ρ−1. (C.13)

and where Ξi−1 and Ξ̃1 are gamma-distributed with shape i − 1 and scale 1, and unit-mean
exponentially distributed, respectively. Expression (C.10) becomes

R?(Lstag) = V̂ E
[
nT∑
i=1

∫ 1

0
ŵ†i
(
αi(ν)InR + V̂ Ŵ(i+1):nTŴ†

(i+1):nT
+ V̂ (1− ν)ŵiŵ†i

)−1
ŵi dν

]

= V̂ E

 nT∑
i=1

∫ 1

0

ŵ†i
(
αi(ν)InR + V̂ Ŵ(i+1):nTŴ†

(i+1):nT

)−1
ŵi

1 + V̂ (1− ν)ŵ†i
(
αi(ν)InR + V̂ Ŵ(i+1):nTŴ†

(i+1):nT

)−1
ŵi

dν

 (C.14)

where the last equality follows from applying the Matrix Inversion Lemma.

C.3 Proof of Theorem 3.1

Since L is continuously differentiable and Ĥ and H̃ are assumed to be independent, we can use
the representation (2.85) for the infinite-layering bound R?(L). Under the i.i.d. Rayleigh fading
assumption (3.1), this specializes to

R?(L) = −
∫ 1

0
E
[
Kι

(
Ṽ
(
ξ†L(ι)ξ − ι

)
InR

)]
dι (C.15)

where

Kι(∆) = d
dι E

[
log det

(
∆ + (Ṽ + ρ−1)InR + V̂ Ŵ

(
1
nT

InT − L(ι)
)
Ŵ†

)]
. (C.16)

Since the distribution of Ŵ is rotationally invariant, we see that the function Kι does not depend
on the eigenbasis of L(ι). Similarly, since the distribution of ξ is rotationally invariant, it follows
that the integrand (C.15) does not depend on the eigenbasis of L(ι).



140 Appendices to Chapter 3

If L(ι) = UL(ι)ΛL(ι)UL(ι)† denotes the eigendecomposition of L(ι), then ΛL ∈ L is also a
layering function, and we have

R?(L) = R?(ΛL) (C.17)

which concludes the proof.

C.4 Proof of Theorem 3.2

The difference I(xG; y|Ĥ)−R?(L) is clearly non-negative, and it is upper-bounded by

Σ = R+ ∆−R?(L) (C.18)

due to R + ∆ being an upper bound on I(xG; y|Ĥ) [cf. (2.56)]. In the following, we will write
Ĥ =

√
V̂ Ŵ and H̃ =

√
Ṽ W̃, with Ŵ and W̃ having i.i.d. entries distributed as NC(0, 1). Here,

the three quantities involved are respectively written out as [cf. (2.54),(2.57),(2.81)]

R = E log det
(

1
nT
V̂ ŴŴ + (Ṽ + ρ−1)InR

)
− nR log(Ṽ + ρ−1) (C.19a)

∆ = nR E log Ṽ + ρ−1

Ṽ ΞnT + ρ−1 (C.19b)

R?(L) = V̂ E
∫ 1

0
tr
[
Γ
(
L(ι)

)−1ŴL̇(ι)Ŵ†
]

dι (C.19c)

where [cf. (2.55)]

Γ(X) =
(
Ṽ ξ†Xξ + Ṽ (1− ι) + ρ−1

)
InR + V̂ Ŵ( 1

nT
InT −X)Ŵ†. (C.20)

To prove Theorem 3.2, we will prove that Σ tends to zero as ρ tends to infinity. First note that
due to

dΓ
(
L(ι)

)
dι = Ṽ

(
ξ†L̇(ι)ξ − 1

)
InR − V̂ ŴL̇(ι)Ŵ† (C.21)

we have

R? = −E
∫ 1

0
tr
[
Γ
(
L(ι)

)−1 dΓ
(
L(ι)

)
dι

]
dι+ Ṽ E

∫ 1

0
tr
[
Γ
(
L(ι)

)−1(
ξ†L̇(ι)ξ − 1

)]
dι (C.22)

wherein the first term is

−E
∫ 1

0
tr
[
Γ
(
L(ι)

)−1 dΓ
(
L(ι)

)
dι

]
= −E

[
log det

(
Γ
(
L(1)

))
− log det

(
Γ
(
L(0)

))]
= −nR E log det

(
Ṽ ΞnT + ρ−1)+

+ E log det
(

1
nT
V̂ ŴŴ + (Ṽ + ρ−1)InR

)
. (C.23)

In the expression of Σ, six terms cancel out to yield

Σ = Ṽ E
∫ 1

0

(
1− ξ†L̇(ι)ξ

)
tr
[
Γ
(
L(ι)

)−1] dι. (C.24)
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Since Γ
(
L(ι)

)
is positive semidefinite, the trace of its inverse is positive, so that Σ can be

upper-bounded using

1− ξ†L̇(ι)ξ ≤ 1 + ξ†L̇(ι)ξ

≤ 1 + tr(L̇(ι))‖ξ‖22
= 1 + ‖ξ‖22 (C.25)

where the last equality is due to the property tr(L(ι)) = ι [cf. (4)]. This yields an upper bound

Σ ≤ Ṽ E
[(

1 + ‖ξ‖22
) ∫ 1

0
tr
[
Γ
(
L(ι)

)−1] dι
]
. (C.26)

Let 0 < ν < 1 be some arbitrary number. We now decompose Σ = Σ1 + Σ2 into a sum of two
terms by partitioning the integration interval ι ∈ [0; 1] into [0; ν)∪ [ν; 1]. The first term Σ1 shall
correspond to the interval [0; ν), while the second term Σ2 shall correspond to the interval [ν; 1].
Both terms Σ1 and Σ2 will be upper-bounded in the following. To begin with, consider that for
0 ≤ ι < ν, we have the matrix lower bound

Γ
(
L(ι)

)
� Ṽ (1− ν)InR + V̂ Ŵ

( 1
nT

InT − L(ν)
)
Ŵ† (C.27)

which, when plugged into Σ1, yields an upper bound

Σ1 = Ṽ E
[(

1 + ‖ξ‖22
) ∫ ν

0
tr
[
Γ
(
L(ι)

)−1] dι
]

≤ Ṽ (1 + nT) E
∫ ν

0
tr
[(
Ṽ (1− ν)InR + V̂ Ŵ

( 1
nT

InT − L(ν)
)
Ŵ†

)−1
]

dι

= nR(1 + nT)ν E
[

Ṽ

Ṽ (1− ν) + V̂ λ̂ν

]
(C.28)

where λ̂ν is a random variable following the empirical eigenvalue distribution of the matrix
Ŵ
( 1
nT

InT−L(ν)
)
Ŵ†. Since λ̂ν is strictly positive almost surely, we can condition the expectation

appearing in the last line of (C.28) on λ̂ν > 0. Recalling that V̂ = 1− Ṽ , and noting that said
expectation is upper-bounded by 1/(1 − ν), we can interchange the expectation operator and
the limit as ρ→∞ by means of the Dominated Convergence Theorem, to get

lim sup
ρ→∞

Σ1 ≤ nR(1 + nT)ν · E
[
lim sup
ρ→∞

{
Ṽ

Ṽ (1− ν − λ̂ν) + λ̂ν

}∣∣∣∣∣λ̂ν > 0
]

= 0 (C.29)

due to limρ→∞ Ṽ = 0. Similarly, for ν ≤ ι ≤ 1, we can use the lower bound

Γ
(
L(ι)

)
�
(
Ṽ ξ†L(ν)ξ + ρ−1)InR (C.30)
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by means of which we construct an upper bound on Σ2 as

Σ2 = Ṽ E
[(

1 + ‖ξ‖22
) ∫ 1

ν
tr
[
Γ
(
L(ι)

)−1] dι
]

≤ nR(1− ν) E
[

Ṽ
(
1 + ‖ξ‖22

)
Ṽ ξ†L(ν)ξ + ρ−1

]
. (C.31)

Since ν ∈ (0; 1) is arbitrary, let us choose a constant ν0 ∈
(nT−1

nT
; 1
)

and constrain ν to belong
to the interval (ν0; 1). This choice ensures that L(ν) is full rank, because each eigenvalue of
L(ν) is upper-bounded by 1/nT (the multiple eigenvalue of the transmit covariance), while as
a consequence of (4), the eigenvalues of L(ν) sum up to tr(L(ν)) = ν ≥ ν0 >

nT−1
nT

. Hence, the
smallest eigenvalue of L(ν) is

λmin
(
L(ν)

)
≥ ν0 −

nT − 1
nT

> 0 (C.32)

so that Σ2 can be further upper-bounded as

Σ2 ≤ nR(1− ν) E
[

Ṽ
(
1 + ‖ξ‖22

)
Ṽ
(
ν0 − nT−1

nT

)
‖ξ‖22 + ρ−1

]
. (C.33)

Since the fraction inside the expectation operator is finite for ‖ξ‖2 = 0, and since the random
variable ‖ξ‖22 is strictly positive almost surely, we can condition said expectation on ‖ξ‖2 > 0
without affecting its value. Then, by removing ρ−1 from the denominator, we obtain the upper
bound

Σ2 ≤
nR(1− ν)
ν0 − nT−1

nT

E
[

1 + ‖ξ‖22
‖ξ‖22

∣∣∣∣∣‖ξ‖2 > 0
]
. (C.34)

Without loss of generality, we can assume that nT ≥ 2, since for a single transmit antenna, the
rate-splitting bound R?(L) does not depend on the layering function. For nT ≥ 2, the expected
value of ‖ξ‖−2

2 is finite. Therefore, the upper bound (C.34) is finite and reads as

Σ2 ≤
nR(1− ν)
ν0 − nT−1

nT

(
1 + E

[
‖ξ‖−2

2

])
. (C.35)

Since ν can be chosen freely in the interval (ν0; 1), the upper bound (C.35) can be made arbi-
trarily close to zero by choosing ν arbitrarily close to one. We conclude that upper bounds on
Σ = Σ1 + Σ2 can be found whose limit as ρ → ∞ is arbitrarily close to zero. Consequently, Σ
tends to zero as ρ→∞, which finalizes the proof of Theorem 3.2.

C.5 Proof of Theorem 3.3

The matrix 1
nT

Ŵ†
nTŴnT converges to InR almost surely as nT →∞. Since the function

X 7→ log
(

InR + V̂

Ṽ + ρ−1 X
)

(C.36)
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is continuous in the vicinity of X→ InR , it follows from the Continuous Mapping Theorem that
RnT converges to

lim
nT→∞

RnT = nR log
(

1 + V̂

Ṽ + ρ−1

)
. (C.37)

It now suffices to prove that

lim
nT→∞

R?nT(LnT) = nR log
(

1 + V̂

Ṽ + ρ−1

)
. (C.38)

For this purpose, let us fix ι to an arbitrary value from [0; 1], and consider the functions

fnT,ι : X 7→ E tr
[
Ŵ†

nTΓnT(X)−1ŴnTL̇nT(ι)
]

(C.39a)

f̃nT,ι : X 7→ E tr
[

ŴnTL̇nT(ι)Ŵ†
nT

Ṽ X + 1− ι+ ρ−1

]
= nR

Ṽ X + 1− ι+ ρ−1 (C.39b)

in which [cf. (3.22)]

ΓnT(X) =
(
Ṽ X + Ṽ (1− ι) + ρ−1

)
InR + V̂ ŴnTL̄nT(ι)Ŵ†

nT . (C.40)

where we have used the abbreviation L̄nT(ι) , 1
nT

InT − LnT(ι). By comparing (C.39) with
(3.21)–(3.22), we notice that the rate-splitting bound R?nT(LnT) can be written as

R?nT(LnT) = V̂

∫ 1

0
E
[
fnT,ι(ξ

†LnT(ι)ξ)
]

dι (C.41)

where the expectation is over the distribution of ξ ∈ NC(0, I).

Notice that the expectation in (C.39a) is taken only over the distribution of Ŵ, and that
f̃nT,ι results from replacing the term ŴnTL̄nT(ι)Ŵ†

nT inside the expression of ΓnT(X) by its
expected value

E
[
ŴnTL̄nT(ι)Ŵ†

nT

]
= (1− ι)InR (C.42)

and by recalling that V̂ + Ṽ = 1.

Next, we show that the difference fnT,ι − f̃nT,ι tends pointwise to zero as nT →∞. For this
purpose, we upper-bound the magnitude of this difference by means of

∣∣fnT,ι(X)− f̃nT,ι(X)
∣∣ =

∣∣∣∣E tr
[(

ΓnT(X)−1 − InR

Ṽ X + 1− ι+ ρ−1

)
ŴnTL̇nT(ι)Ŵ†

nT

]∣∣∣∣
=

∣∣∣∣∣∣E tr

ΓnT(X)−1
(
ŴnTL̄nT(ι)Ŵ†

nT − (1− ι)InR

)
Ṽ X + 1− ι+ ρ−1

ŴnTL̇nT(ι)Ŵ†
nT

∣∣∣∣∣∣
≤ ρE

∣∣∣tr [ΓnT(X)−1
(
ŴnTL̄nT(ι)Ŵ†

nT − (1− ι)InR

)
ŴnTL̇nT(ι)Ŵ†

nT

]∣∣∣
≤ ρE

[∥∥∥ΓnT(X)−1
(
ŴnTL̄nT(ι)Ŵ†

nT − (1− ι)InR

)∥∥∥
tr

∥∥∥ŴnTL̇nT(ι)Ŵ†
nT

∥∥∥
tr

]
(C.43)
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where ‖A‖tr , tr
(
(A†A)

1
2
)

stands for the trace norm. Here, the second equality is obtained using
the identity A−1−B−1 = A−1(B−A)B−1; the first inequality is obtained by Jensen’s inequality
applied on the convex function | · |, and by lower-bounding the denominator Ṽ X+1− ι+ρ−1 by
ρ−1; the second inequality is a consequence of von Neumann’s trace inequality.1 Note that for a
fixed trace norm ‖A‖tr =

∑n
i=1 σi(A), the Frobenius norm ‖A‖F =

(∑n
i=1 σi(A)2) 1

2 is minimal
when all singular values σi(A) are equal to ‖A‖tr/n. Therefore the trace norm and Frobenius
norm are related via an inequality

‖A‖tr ≤
√
n‖A‖F. (C.44)

We apply the latter onto (C.43), and exploit the submultiplicative property ‖AB‖F ≤ ‖A‖F‖B‖F
to get

∣∣fnT,ι(X)− f̃nT,ι(X)
∣∣

≤ ρnR E
[∥∥∥ΓnT(X)−1

∥∥∥
F

∥∥∥ŴnTL̄nT(ι)Ŵ†
nT − (1− ι)InR

∥∥∥
F

∥∥ŴnTL̇nT(ι)Ŵ†
nT

∥∥
F

]
≤ ρ2nR

√
nR E

[∥∥∥ŴnTL̄nT(ι)Ŵ†
nT − (1− ι)InR

∥∥∥
F

∥∥ŴnTL̇nT(ι)Ŵ†
nT

∥∥
F

]
≤ ρ2nR

√
nR

√
E
[∥∥∥ŴnTL̄nT(ι)Ŵ†

nT − (1− ι)InR

∥∥∥2

F

]
E
[∥∥ŴnTL̇nT(ι)Ŵ†

nT

∥∥2
F

]
. (C.45)

Here, the second inequality is obtained by noting that ΓnT(X)−1 � ρInR , hence
∥∥ΓnT(X)−1∥∥

F ≤
ρ
√
nR; the third bounding step is due to the Cauchy-Schwarz inequality.

Next, we determine an upper bound on the expectation E
[
‖ŴnTL̇nT(ι)Ŵ†

nT‖
2
F
]
. Note that

for any Ŵ, the expression ‖ŴL̇nT(ι)Ŵ†‖2F = tr
(
ŴL̇nT(ι)Ŵ†ŴL̇nT(ι)Ŵ†) is convex in L̇nT(ι)

on the cone of positive semidefinite matrices, and thus convex in the diagonal entries of L̇nT(ι).
Therefore, if we represent L̇nT(ι) , diag(L̇nT,1(ι), . . . , L̇nT,nT(ι)

)
as a convex combination of

matrices eieT
i , where ei, i = 1, . . . , nT denote the canonical unit vectors, i.e.,

L̇nT(ι) =
nT∑
i=1

L̇nT,i(ι)eie
T
i (C.46)

then we can use said convexity to upper-bound the expectation E
[
‖ŴnTL̇nT(ι)Ŵ†

nT‖
2
F
]

as

E
[∥∥ŴnTL̇nT(ι)Ŵ†

nT

∥∥2
F

]
= E

∥∥∥∥∥ŴnT

(
nT∑
i=1

L̇nT,i(ι)eie
T
i

)
Ŵ†

nT

∥∥∥∥∥
2

F


≤ max

i∈{1,...,nT}
E
[∥∥∥ŴnTeieT

i Ŵ†
nT

∥∥∥2

F

]
= E

[
‖ŵnT,1‖

4
2

]
(C.47)

1 Von Neumann’s trace inequality states that for n × n matrices A and B, we have | tr(AB)| ≤
∑n

i=1 σi(A)σi(B) where
σi(X), i = 1, . . . , n denote the non-increasingly ordered singular values of X. Clearly, this implies the weaker result
| tr(AB)| ≤

(∑n

i=1 σi(A)
) (∑n

k=1 σk(B)
)

= ‖A‖tr‖B‖tr.
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where ŵnT,i , ŴnTei, i = 1, . . . , nT denote the columns of ŴnT . The last equality follows
because said columns are identically distributed. The vector ŵnT,1 ∼ NC(0, InR) has a squared
Euclidian norm which is gamma-distributed with shape nR and scale 1. Hence, we can compute
the right-hand side of (C.47) as

E
[
‖ŵnT,1‖

4
2

]
= 1

(nR − 1)!

∫ ∞
0

xnR+1e−x dx = nR(nR + 1). (C.48)

Combining (C.45), (C.47) and (C.48), we obtain

∣∣fnT,ι(X)− f̃nT,ι(X)
∣∣ ≤ ρ2nR

2√nR + 1
√

E
[∥∥∥ŴnTL̄nT(ι)Ŵ†

nT − (1− ι)InR

∥∥∥2

F

]
. (C.49)

Next, we concentrate on the remaining factor on the right-hand side of (C.49). Note that
L̄nT(ι) = 1

nT
InT − LnT(ι) is a diagonal, positive semidefinite matrix whose diagonal entries

belong to the interval
[
0; 1

nT

]
and sum up to 1− ι ∈ [0; 1]. Let us define the function

g : RnT
+ → R

λ 7→ E
[∥∥∥ŴnT diag(λ)Ŵ†

nT − (1− ι)InR

∥∥∥2

F

]
. (C.50)

The expectation on the right-hand side of (C.49) can be upper-bounded by means of the maxi-
mum value

max
(λ1,...,λnT )∈

[
0; 1
nT

]nT
g(λ) subject to

nT∑
i=1

λi = 1− ι. (C.51)

Due to the symmetry of the constraint and of the objective function g in the entries of λ, we can
restrict the search set to one of non-increasingly ordered entries, that is, we can assume without
loss of generality that λ1 ≥ . . . ≥ λnT . The resulting search set thus reduces to{

λ ∈
[
0; 1
nT

]nT
∣∣∣∣∣λ1 ≥ . . . ≥ λnT ,

nT∑
i=1

λi = 1− ι
}
. (C.52)

Definition C.1 (Schur convexity). A symmetric2 function g : Rn+ → R is said to be Schur
convex if for any two vectors p =

[
p1 . . . pn

]T and q =
[
q1 . . . qn

]T with non-negative entries
fulfilling

(1) p1 ≥ . . . ≥ pn ≥ 0

(2) q1 ≥ . . . ≥ qn ≥ 0

(3)
∑n
i=1 pi =

∑n
i=1 qi

(4)
∑j
i=1 pi ≥

∑j
i=1 qi for all j = 1, . . . , n− 1

2 A symmetric function is a function whose image is invariant against permutations of its arguments
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we have that g(p) ≥ g(q).

A necessary and sufficient condition for a differentiable function g to be Schur convex is that
it is symmetric and fulfills

(xi − xj)
(
∂g

∂xi
− ∂g

∂xj

)
≥ 0. (C.53)

We now verify that the objective function of (C.51), which is symmetric and differentiable,
fulfills the condition (C.53) for Schur convexity. Its partial derivatives read as

∂g

∂λi
= 2 E

[
ŵ†nT,i

(
ŴnT diag(λ)Ŵ†

nT − (1− ι)InR

)
ŵnT,i

]
. (C.54)

Hence,

1
2

(
∂g

∂λi
− ∂g

∂λj

)
= E tr

[
ŴnT diag(λ)Ŵ†

nT

(
ŵnT,iŵ

†
nT,i
− ŵnT,jŵ

†
nT,j

)]
= E tr

[(
nT∑
k=1

λkŵnT,kŵ
†
nT,k

)(
ŵnT,iŵ

†
nT,i
− ŵnT,jŵ

†
nT,j

)]
= E

[
λi‖ŵnT,i‖

4
2 − λj‖ŵnT,j‖

4
2

]
= (λi − λj) E

[
‖ŵnT,1‖

4
2

]
. (C.55)

We infer that the objective function g is Schur convex. Consider the vector

λ? ,

[
1
nT

1
nT

. . .
1
nT︸ ︷︷ ︸⌊ 1− ι

1/nT

⌋
elements

(1− ι)−
⌊ 1− ι

1/nT

⌋ 1
nT

0 . . . 0
]T

(C.56)

We can readily verify that λ? belongs to the search set (C.52) and that for any vector λ from
said search set, we have [cf. Definition C.1, Condition 4]

j∑
i=1

λ?i ≥
j∑
i=1

λi, j = 1, . . . , n− 1. (C.57)

We conclude from Definition C.1 that g(λ) ≤ g(λ?), so λ? is the maximizer of (C.51). Denoting
τ , bnT(1− ι)c, the corresponding maximum g(λ?) can be bounded as follows:

g(λ?) = E
[∥∥∥ŴnT diag(λ?)Ŵ†

nT − (1− ι)InR

∥∥∥2

F

]

= E

∥∥∥∥∥ 1
nT

τ∑
i=1

ŵnT,iŵ
†
nT,i

+
(

1− ι− τ

nT

)
ŵnT,τ+1ŵ†nT,τ+1 − (1− ι)InR

∥∥∥∥∥
2

F


≤ E

∥∥∥∥∥ 1
nT

τ+1∑
i=1

ŵnT,iŵ
†
nT,i
− (1− ι)InR

∥∥∥∥∥
2

F


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= E

 1
nT2

τ+1∑
i=1

τ+1∑
j=1

∣∣∣ŵ†nT,i
ŵnT,j

∣∣∣2 − 21− ι
nT

τ+1∑
k=1
‖ŵnT,k‖

2
2 + nR(1− ι)2


= 1
nT2

τ+1∑
i,j=1
i 6=j

tr E
[
ŵnT,iŵ

†
nT,i

ŵnT,jŵ
†
nT,j

]
+ 1
nT2

τ+1∑
`=1

E
[
‖ŵnT,`‖

4
2

]

− 21− ι
nT

τ+1∑
k=1

E
[
‖ŵnT,k‖

2
2

]
+ nR(1− ι)2

= τ(τ + 1)
nT2 nR + τ + 1

nT2 nR(nR + 1)− 21− ι
nT

(τ + 1)nR + nR(1− ι)2. (C.58)

Here, the inequality follows from upper-bounding the factor
(
1− ι− τ

nT

)
by 1

nT
. For the last

equality, we have used E
[∥∥ŵnT,`

∥∥4
2

]
= nR(nR + 1), which was already evaluated in (C.48). Using

nT(1− ι)− 1 ≤ τ ≤ nT(1− ι) (C.59)

we can further upper-bound (C.58) as

g(λ?)

≤ nT(1− ι)(nT(1− ι) + 1)
nT2 nR + nT(1− ι) + 1

nT2 nR(nR + 1)− 21− ι
nT

nT(1− ι)nR + nR(1− ι)2

= nR

(
nT(1− ι)
nT2 + nT(1− ι) + 1

nT2 (nR + 1)
)

≤ nR(nR + 2)nT(1− ι) + 1
nT2 . (C.60)

Finally, plugging (C.60) into (C.49), we end up with the bound

∣∣fnT,ι(X)− f̃nT,ι(X)
∣∣ ≤ ρ2nR

2
√
nR(nR + 1)(nR + 2)

√
nT(1− ι) + 1

nT
. (C.61)

Next, by a similar reasoning we will determine an upper bound on the difference [cf. (C.39b)]

∣∣∣E [f̃nT,ι(ξ
†LnT(ι)ξ)

]
− f̃nT,ι(ι)

∣∣∣ =
∣∣∣∣∣E
[

nR

Ṽ ξ†LnT(ι)ξ + 1− ι+ ρ−1

]
− nR

Ṽ X + 1− ι+ ρ−1

∣∣∣∣∣
= nRṼ

∣∣∣∣∣E
[

ξ†LnT(ι)ξ − ι(
Ṽ ξ†LnT(ι)ξ + 1− ι+ ρ−1)(Ṽ X + 1− ι+ ρ−1)

]∣∣∣∣∣
≤ nRṼ E


∣∣∣ξ†LnT(ι)ξ − ι

∣∣∣(
Ṽ ξ†LnT(ι)ξ + 1− ι+ ρ−1)(Ṽ X + 1− ι+ ρ−1)


≤ nRρ

2Ṽ E
[∣∣∣ξ†LnT(ι)ξ − ι

∣∣∣]
≤ nRρ

2Ṽ

√
E
[(
ξ†LnT(ι)ξ − ι

)2]
. (C.62)

Here, the first inequality is Jensen’s inequality applied onto the convex function |·|; the second
inequality is obtained by lower-bounding the denominator by ρ−2; the last inequality is again
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Jensen’s inequality applied on the convex square function. We will now continue upper-bounding
the expectation on the right-hand side of (C.62). This expectation reads as

E
[(
ξ†LnT(ι)ξ − ι

)2] = E
[(
ξ†LnT(ι)ξ

)2]− ι2 (C.63)

because E
[
ξ†LnT(ι)ξ

]
= tr(LnT(ι)) = ι. Note that LnT(ι) is a diagonal, positive semidefinite

matrix whose diagonal entries belong to the interval
[
0; 1

nT

]
and sum up to ι ∈ [0; 1]. Let us

define the function

g̃ : RnT
+ → R

λ̃ 7→ E
[(
ξ† diag(λ̃)ξ

)2]
. (C.64)

The expectation on the right-hand side of (C.63) can be upper-bounded by the maximum

max
(λ̃1,...,λ̃nT )∈

[
0; 1
nT

]nT
g̃(λ̃) subject to

nT∑
i=1

λ̃i = ι. (C.65)

Due to the symmetry of the constraint and of the objective function g̃ in the entries of λ̃, we
can restrict the search set to one of non-increasingly ordered entries, i.e.,{

λ̃ ∈
[
0; 1
nT

]nT
∣∣∣∣∣λ̃1 ≥ . . . ≥ λ̃nT ,

nT∑
i=1

λ̃i = ι

}
. (C.66)

The function g̃ is symmetric, differentiable, and Schur convex since

∂g̃

∂λi
− ∂g̃

∂λj
= 2 E

[
ξ† diag(λ̃)ξ · (|ξi|2 − |ξj |2)

]
(C.67)

= 2(λi − λj) E
[
|ξ1|4

]
(C.68)

where the last equality is due to the components ξi, i = 1, . . . , nT of the vector ξ being identically
distributed. The vector

λ̃? ,

[
1
nT

1
nT

. . .
1
nT︸ ︷︷ ︸

bιnTc elements

ι− bιnTc
1
nT

0 . . . 0
]T

(C.69)

belongs to the search set (C.66) and is such that for any vector λ̃ =
[
λ̃1 . . . λ̃nT

]T belonging to
this search set, we have [cf. Definition C.1, Condition 4]

j∑
i=1

λ̃?i ≥
j∑
i=1

λ̃i, j = 1, . . . , n− 1. (C.70)

We conclude from Definition C.1 that g̃(λ̃) ≤ g̃(λ̃?), hence λ̃? is the maximizer of (C.51). The
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resulting maximum g̃(λ̃?) can be bounded as follows:

g̃(λ̃?) = E
[(
ξ† diag(λ̃?)ξ

)2]
= E


 1
nT

bιnTc∑
i=1
|ξi|2 +

(
ι− bιnTc

1
nT

)
|ξbιnTc+1|2

2


≤ E


 1
nT

bιnTc+1∑
i=1

|ξi|2
2


= 1
nT2

2
∑

1≤i<j≤bιnTc+1
E
[
|ξi|2|ξj |2

]
+
bιnTc+1∑
k=1

E
[
|ξk|4

]
= 1
nT2

(
bιnTc

(
bιnTc+ 1

)
+ 2

(
bιnTc+ 1

))
≤
(
ι+ 2

nT

)2
. (C.71)

Here, the first inequality is obtained by upper-bounding the factor
(
ι−bιnTc 1

nT

)
by 1

nT
; the last

inequality results from upper-bounding the factors
(
bιnTc+ 1

)
by
(
bιnTc+ 2

)
. In between these

inequalities, we have also used

E
[
|ξk|2

]
=
∫ ∞

0
x e−x dx = 1 E

[
|ξk|4

]
=
∫ ∞

0
x2e−x dx = 2. (C.72)

By plugging (C.71) into (C.63) to upper-bound the right-hand side of (C.62), we finally obtain

∣∣∣E [f̃nT,ι(ξ
†LnT(ι)ξ)

]
− f̃nT,ι(ι)

∣∣∣ ≤ nRρ
2Ṽ

√(
ι+ 2

nT

)2
− ι2

= 2rρ2Ṽ

√
1
nT

(
1 + 1

nT

)
. (C.73)

Combining the bounds (C.61) and (C.73) by means of the triangle inequality, we obtain a bound
on the difference between the expectation E

[
fnT,ι(ξ†LnT(ι)ξ)

]
and f̃nT,ι(ι) which reads as

∣∣∣E [fnT,ι(ξ
†LnT(ι)ξ)

]
− f̃nT,ι(ι)

∣∣∣
≤ 2rρ2Ṽ

√
1
nT

(
1 + 1

nT

)
+ ρ2nR

2
√
nR(nR + 1)(nR + 2)

√
nT(1− ι) + 1

nT
. (C.74)

Since this upper bound tends to zero as nT tends to infinity, we conclude that the limit of
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R?nT(LnT) as nT tends to infinity is equal to [cf. (C.41)]

lim
nT→∞

R?nT(LnT) = V̂ lim
nT→∞

{∫ 1

0
E
[
fnT,ι(ξ

†LnT(ι)ξ)
]

dι
}

= V̂ lim
nT→∞

{∫ 1

0
f̃nT,ι(ι) dι

}
= V̂ lim

nT→∞

{∫ 1

0

nR

Ṽ ι+ 1− ι+ ρ−1 dι
}

= nR log
(

1 + V̂

Ṽ + ρ−1

)
. (C.75)

In the last step, we have integrated over ι ∈ [0; 1] and made use of the fact that V̂ + Ṽ = 1. This
establishes (C.38) and concludes the proof.

C.6 Proof of Theorem 3.4

Since we are interested in the large-system limit as nR → ∞, we will assume throughout that
nR ≥ nT, without loss of generality.

We start by observing that the worst-case-noise bound under i.i.d. Rayleigh fading (3.2) [or
(3.25)] is expressible as the expected value of a function of the Gram form V̂ Ŵ†Ŵ [cf. (3.3)]

R = E
[
log det

(
InT + V̂ Ŵ†Ŵ

Ṽ + ρ−1 Q
)]

, E
[
RnR×nT

(
V̂ Ŵ†Ŵ, Ṽ , ρ

)]
(C.76)

where RnR×nT (·, ·, ·) is a function of three arguments defined as

RnR×nT : CnT×nT
+ × R+ × R++ → R+

(X, Ṽ , ρ) 7→ log det
(

InT + X
Ṽ + ρ−1 Q

)
(C.77)

Here, V̂ and the transmit covariance Q are assumed to have fixed values and are not included
as arguments of the function RnR×nT , since their influence on the worst-case-noise bound is not
relevant in this proof.

A first observation is that we have the identity

RnR×nT

(
V̂ Ŵ†Ŵ, Ṽ , ρ

)
= RnT×nT

(
V̂ Ŵ†Ŵ, Ṽ , ρ

)
= RnT×nT

(
Ĉ†Ĉ, Ṽ , ρ

)
(C.78)

where V̂ Ŵ†Ŵ = ĈĈ† is the Cholesky decomposition of the matrix V̂ Ŵ†Ŵ, that is, Ĉ is a
nT × nT square matrix. We infer that the worst-case-noise lower bound R(L) is not only a
mutual information lower bound for a channel with a nR × nT tall channel matrix

√
V̂ Ŵ, but

also a mutual information lower bound for a channel with a nT × nT square channel matrix Ĉ.
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We call this channel the associated square channel.

To make this statement precise, we have that R is simultaneously a lower bound on two
mutual informations, namely,

R ≤ min
{
I

(
xG;

(√
V̂ Ŵ +

√
Ṽ W̃

)
xG + z

∣∣∣∣Ŵ)
, I
(
xG;

(
Ĉ + C̃

)
xG + z′

∣∣∣Ĉ)} (C.79)

where vec(C̃) ∼ NC
(
0, Ṽ InT2

)
is independent of Ĉ and where z′ ∼ NC

(
0, InT

)
.

A second observation is that for any k > 0, we have

RnR×nT

(
kX, Ṽ , ρ

)
= RnR×nT

(
X, Ṽ

k
, kρ

)
. (C.80)

It means that scaling the channel component Ĥ =
√
V̂ Ŵ by a factor

√
k amounts to both

multiplying the SNR ρ and dividing the channel error variance Ṽ by a factor k. Obviously, this
property also holds for the associated square channel. It is important to note that here, we do
not assume that V̂ and Ṽ are related via V̂ + Ṽ = 1. Instead, V̂ has some arbitrary, constant
value throughout. Hence, changing the second argument of the function RnR×nT does not change
the value of V̂ .

The same two observations apply to the infinite-layering bounds as well. In fact, the infinite-
layering bound (3.3) [or (3.26)] reads as

R?(L) = V̂

∫ 1

0
E tr

[
Ŵ†(αInR + V̂ ŴL̄(ι)Ŵ†)−1ŴL̇(ι)

]
dι (C.81)

where α is the random variable

α = Ṽ ξ†L(ι)ξ + Ṽ (1− ι) + ρ−1. (C.82)

Using the reduced factorization L̄(ι) = AA† such that A ∈ CnT×rank(L̄(ι)), and applying the
Matrix Inversion Lemma to the matrix V̂ Ŵ†Γ

(
L(ι)

)−1Ŵ we obtain

V̂ Ŵ†Γ
(
L(ι)

)−1Ŵ = V̂ Ŵ†
(
αI + V̂ ŴAA†Ŵ†

)−1
Ŵ

= V̂

α
Ŵ†Ŵ− V̂ 2

α2 Ŵ†ŴA
(

Irank(A) + V̂

α
A†Ŵ†ŴA

)−1

A†Ŵ†Ŵ. (C.83)

This expression reveals that the expression inside the trace operator of (C.81) actually depends
on the random matrix Ŵ via its Gram form Ŵ†Ŵ. Therefore, similarly to the worst-case-noise
bound expressed as the expected value of a function RnR×nT , we can express the infinite-layering
bound as an expected value

R?(L) = E
[
R?nR×nT

(
V̂ Ŵ†Ŵ, Ṽ , ρ,L

)]
(C.84)
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where R?nR×nT(·, ·, ·, ·) denotes a function of four arguments defined as

R?nR×nT : CnT×nT
+ × R+ × R++ × LD → R+

(X, Ṽ , ρ,L) 7→ R?nR×nT(X, Ṽ , ρ,L) (C.85)

where

R?nR×nT(X, Ṽ , ρ,L) =
∫ 1

0
E tr

[(
X
α
− 1
α2 XA

(
Irank(A) + 1

α
A†XA

)−1
A†X

)
L̇(ι)

]
dι. (C.86)

Here, the expectation is over the distribution of α.

Using the same Cholesky decomposition V̂ Ŵ†Ŵ = ĈĈ† as before, we observe firstly that

R?nR×nT

(
V̂ Ŵ†Ŵ, Ṽ , ρ,L

)
= R?nT×nT

(
V̂ Ŵ†Ŵ, Ṽ , ρ,L

)
= R?nT×nT

(
Ĉ†Ĉ, Ṽ , ρ,L

)
(C.87)

so it can be inferred that the infinite-layering bound R?(L) is not only a mutual information
lower bound for a channel with a nR×nT tall random channel matrix

√
V̂ Ŵ, but also a mutual

information lower bound for its associated nT×nT square channel with random channel matrix
Ĉ.

More precisely, we have that R?(L) is a common lower bound for two mutual informations,
namely

R?(L) ≤ min
{
I

(
xG;

(√
V̂ Ŵ +

√
Ṽ W̃

)
xG + z

∣∣∣∣Ŵ)
, I
(
xG;

(
Ĉ + C̃

)
xG + z′

∣∣∣Ĉ)} (C.88)

where vec(C̃) ∼ NC
(
0, Ṽ InT2

)
is independent of Ĉ and where z′ ∼ NC

(
0, InT

)
.

We observe secondly that for any k > 0, we have the identity

R?nR×nT

(
kX, Ṽ , ρ,L

)
= R?nR×nT

(
X, Ṽ

k
, kρ,L

)
. (C.89)

Let us now proceed to bounding the difference R?(L)−R from above and from below in order
to derive tight bounds that will allow to compute its limit as nR → ∞. We start by switching
to the associated square channel representation:

R?(L)−R = E
[
R?nR×nT

(
V̂ Ŵ†Ŵ, Ṽ , ρ,L

)]
− E

[
RnR×nT

(
V̂ Ŵ†Ŵ, Ṽ , ρ

)]
= E

[
R?nT×nT

(
Ĉ†Ĉ, Ṽ , ρ,L

)]
− E

[
RnT×nT

(
Ĉ†Ĉ, Ṽ , ρ

)]
. (C.90)

Since the minuend on the right-hand side of the last expression is a lower bound on the mutual
information of the associated square channel, this minuend is upper-bounded by the mutual
information upper bound (2.56) corresponding to said square channel. For the associated square
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channel at hand, the general expression of the upper bound (2.56)–(2.57) specializes to

I
(
xG;

(
Ĉ + C̃

)
xG + z′

∣∣∣Ĉ) ≤ E
[
RnT×nT

(
Ĉ†Ĉ, Ṽ , ρ

)]
+ ∆nT×nT

(
Ṽ , ρ

)
(C.91)

where we have implicitly defined the bound gap ∆nT×nT

(
Ṽ , ρ

)
to stand for

∆nT×nT

(
Ṽ , ρ

)
= nT E

[
log

(
Ṽ + ρ−1

Ṽ ξ†Qξ + ρ−1

)]
. (C.92)

Since the latter expression does not depend on nR, it follows from combining (C.90) and (C.91)
that the large system limit is upper-bounded as

lim
nR→∞

{
R?(L)−R

}
≤ ∆nT×nT

(
Ṽ , ρ

)
. (C.93)

Next, we will derive a matching lower bound. We start again with the expression of the bound
gap in terms of the associated square channel (C.90). The subtrahend can be upper-bounded by
Jensen’s inequality as

R = E
[
RnT×nT

(
Ĉ†Ĉ, Ṽ , ρ

)]
= E

[
log det

(
InT + Ĉ†Ĉ

Ṽ + ρ−1

)]

≥ nT log
(

1 + nR
V̂

Ṽ + ρ−1

)
(C.94)

because E
[
Ĉ†Ĉ

]
= V̂ E

[
Ŵ†Ŵ

]
= nRInT .

As to the minuend of (C.90), we fix an arbitrary ε ∈ (0; 1) and lower-bound the minuend as
follows:

R?(L) = E
[
R?nT×nT

(
Ĉ†Ĉ, Ṽ , ρ,L

)]
≥ E

[
R?nT×nT

(
Ĉ†Ĉ, Ṽ , ρ,L

)∣∣∣Ĉ†Ĉ � nRV̂ (1− ε)InT

]
Pr
{
Ĉ†Ĉ � nRV̂ (1− ε)InT

}
.

(C.95)

We next lower-bound the first factor on the right-hand side of the last expression using the
following lemma.

Lemma C.1. The function
X 7→ R?nT×nT

(
X, Ṽ , ρ,L

)
(C.96)

is matrix-monotone, i.e.,

X1 � X2 ⇒ R?nT×nT

(
X1, Ṽ , ρ,L

)
≤ R?nT×nT

(
X2, Ṽ , ρ,L

)
(C.97)

Proof: See Section C.7.
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Hence,

R?(L) ≥ R?nT×nT

(
nRV̂ (1− ε)InT , Ṽ , ρ,L

)
Pr
{
Ĉ†Ĉ � nRV̂ (1− ε)InT

}
= R?nT×nT

(
V̂ (1− ε)InT ,

Ṽ
nR
, nRρ,L

)
Pr
{
Ĉ†Ĉ � nRV̂ (1− ε)InT

}
(C.98)

where for the last inequality we have used the identity (C.89).

Denoting the eigenvalues of Ŵ†Ŵ as λi
(
Ŵ†Ŵ

)
, i = 1, . . . , nT, we can lower-bound the last

factor in (C.98) as follows:

Pr
{
Ĉ†Ĉ � nRV̂ (1− ε)InT

}
= Pr

{
Ŵ†Ŵ � nR(1− ε)InT

}
= Pr

{
nT⋃
i=1

{
λi
(
Ŵ†Ŵ

)
≥ nR(1− ε)

}}

= 1− Pr
{
nT⋂
i=1

{
λi
(
Ŵ†Ŵ

)
< nR(1− ε)

}}

≥ 1− Pr
{
nT⋃
i=1

{
λi
(
Ŵ†Ŵ

)
< nR(1− ε)

}}

≥ 1−
nT∑
i=1

Pr
{
λi
(
Ŵ†Ŵ

)
< nR(1− ε)

}
= 1− nT Pr

{
λ1
(
Ŵ†Ŵ

)
< nR(1− ε)

}
. (C.99)

Here, the first inequality is due to Pr{A ∪ B} ≥ Pr{A ∩ B}; for the second inequality we have
used the union bound; the last equality holds because the eigenvalues of Ŵ†Ŵ have a symmetric
distribution, so the marginal distribution of each eigenvalue λi

(
Ŵ†Ŵ

)
is equal to the empirical

eigenvalue distribution of Ŵ†Ŵ. To further pursue this lower-bounding, we need the following
lemma.

Lemma C.2. For a real-valued random variable X with mean E[X] = µ and variance E[X2]−
µ2 = σ2, we have for any η ≤ µ the inequality

Pr{X ≤ η} ≤ σ2

(µ− η)2 + σ2 . (C.100)

Proof: See Section C.8.

Noting that

E
[
λ1
(
Ŵ†Ŵ

)]
= 1
nT

nT∑
i=1

E
[
λi
(
Ŵ†Ŵ

)]
= 1
nT

E tr
(
Ŵ†Ŵ

)
= nR (C.101)
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is larger than nR(1− ε), we can apply Lemma C.2 on (C.99) to obtain the lower bound

Pr
{
Ĉ†Ĉ � nRV̂ (1− ε)InT

}
≥ 1− nT Pr

{
λ1
(
Ŵ†Ŵ

)
< nR(1− ε)

}
≥ 1− nT Pr

{
λ1
(
Ŵ†Ŵ

)
≤ nR(1− ε)

}
≥ 1− nT

var
(
λ1
(
Ŵ†Ŵ

))
(nRε)2 + var

(
λ1
(
Ŵ†Ŵ

)) . (C.102)

Here, the second inequality is because λ1
(
Ŵ†Ŵ

)
< nR(1 − ε) implies λ1

(
Ŵ†Ŵ

)
≤ nR(1 − ε).

Denoting as ŵi the i-th column of Ŵ, and Ŵi,j the (i, j)-th entry of Ŵ, the variance in the last
expression can be computed as

var
(
λ1
(
Ŵ†Ŵ

))
= 1
nT

E
[
nT∑
i=1

λi
(
Ŵ†Ŵ

)2]− E
[
λ1
(
Ŵ†Ŵ

)]2
= 1
nT

E
[
tr
(
Ŵ†ŴŴ†Ŵ

)]
− nR

2

= E
[
ŵ†1ŴŴ†ŵ1

]
− nR

2

= E
[
‖ŵ1‖42

]
+ (nT − 1) E

[
|ŵ†1ŵ2|2

]
− nR

2

= nR(nR + 1) + (nT − 1) E


∣∣∣∣∣∣
nR∑
j=1

Ŵ ∗j,1Ŵj,2

∣∣∣∣∣∣
2
− nR

2

= nR(nR + 1) + (nT − 1)
nR∑
j=1

E
[∣∣∣Ŵj,1

∣∣∣2]E
[∣∣∣Ŵj,2

∣∣∣2]− nR
2

= nR(nR + 1) + (nT − 1)nR − nR
2

= nTnR. (C.103)

Combining this with (C.102), we end up with the lower bound

Pr
{
Ĉ†Ĉ � nRV̂ (1− ε)InT

}
≥ 1− nT

2

nRε2 + nT
(C.104)

which we insert into (C.98) to obtain

R?(L) ≥
(

1− nT
2

nRε2 + nT

)
·R?nT×nT

(
V̂ (1− ε)InT ,

Ṽ
nR
, nRρ,L

)
. (C.105)

Applying Theorem 3.2 to the associated square channel, we have

lim
nR→∞

{
RnT×nT

(
V̂ (1− ε)InT ,

Ṽ
nR
, nRρ

)
+ ∆nT×nT

(
Ṽ , ρ

)
−R?nT×nT

(
V̂ (1− ε)InT ,

Ṽ
nR
, nRρ,L

)}
= 0. (C.106)
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Therefore, we can write

R?nT×nT

(
V̂ (1− ε)InT ,

Ṽ
nR
, nRρ,L

)
= RnT×nT

(
V̂ (1− ε)InT ,

Ṽ
nR
, nRρ

)
+ ∆nT×nT

(
Ṽ , ρ

)
− δ(nR)

= nT log
(

1 + nR
V̂ (1− ε)
Ṽ + ρ−1

)
+ ∆nT×nT

(
Ṽ , ρ

)
− δ(nR) (C.107)

with a non-negative term δ(nR) fulfilling

lim
nR→∞

δ(nR) = 0. (C.108)

Plugging (C.107) into (C.105), we get

R?(L) ≥
(

1− nT
2

nRε2 + nT

)(
nT log

(
1 + nR

V̂ (1− ε)
Ṽ + ρ−1

)
+ ∆nT×nT

(
Ṽ , ρ

)
− δ(nR)

)
. (C.109)

We can now combine this lower bound on R?(L) with the upper bound (C.94) on R to compute
a lower bound on the limit of the bound difference R?(L)−R as nR →∞. Note that

lim
nR→∞


nT log

(
1 + nR

V̂ (1−ε)
Ṽ+ρ−1

)
nRε2 + nT

 = 0 (C.110)

and that

lim
nR→∞

{
nT log

(
1 + nR

V̂ (1− ε)
Ṽ + ρ−1

)
− nT log

(
1 + nR

V̂

Ṽ + ρ−1

)}
= nT log(1− ε). (C.111)

Combining (C.110)–(C.111) with (C.94) and (C.109), we finally obtain

lim
nR→∞

{
R?(L)−R

}
≥ ∆nT×nT

(
Ṽ , ρ

)
+ nT log(1− ε). (C.112)

Since ε can be chosen arbitrarily small, we conlude by comparison of (C.93) and (C.112) that

lim
nR→∞

{
R?(L)−R

}
= ∆nT×nT

(
Ṽ , ρ

)
. (C.113)

This concludes the proof of Theorem 3.4.

C.7 Proof of Lemma C.1

By comparison with (C.86), it suffices to prove that the function

f : CnT×nT
+ → R+,X 7→ tr

[(
X
α
− 1
α2 XA

(
Irank(A) + 1

α
A†XA

)−1
A†X

)
L̇(ι)

]
(C.114)



C.8. Proof of Lemma C.2 157

is matrix-monotone for any given α > 0. For this purpose, we will prove that its derivative

d
dν f(X + νX0)

∣∣∣∣
ν=0

(C.115)

is non-negative. Using the abbreviation

B = A
(

Irank(A) + 1
α

A†XA
)−1

A† (C.116)

this derivative reads as

d
dν f(X + νX0)

∣∣∣∣
ν=0

= 1
α3 tr

[(
α2X0 − αX0BX− αXBX0 + XBX0BX

)
L̇(ι)

]
= 1
α3 tr

[(
αInT − XB

)
X0
(
αInT −BX

)
L̇(ι)

]
≥ 0. (C.117)

The last inequality follows because X0 and L̇(ι) are positive semidefinite, and the trace of a
product of positive semidefinite matrices is non-negative.

C.8 Proof of Lemma C.2

By the law of total probability, we have

µ = E
[
X
∣∣X ≤ η]Pr

{
X ≤ η

}
+ E

[
X
∣∣X > η

]
Pr
{
X > η

}
(C.118a)

µ2 + σ2 = E
[
X2∣∣X ≤ η]Pr

{
X ≤ η

}
+ E

[
X2∣∣X > η

]
Pr
{
X > η

}
. (C.118b)

Since the square function is convex, by Jensen’s inequality we have

µ2 + σ2 ≥ E
[
X2∣∣X ≤ η]Pr

{
X ≤ η

}
+ E

[
X
∣∣X > η

]2 Pr
{
X > η

}
. (C.119)

Using (C.118a), we can eliminate the expectation E
[
X
∣∣X > η

]
from (C.119) and obtain

µ2 + σ2 ≥ E
[
X2∣∣X ≤ η]Pr

{
X ≤ η

}
+
(
µ− E

[
X
∣∣X ≤ η]Pr

{
X ≤ η

}
Pr
{
X > η

} )2

Pr
{
X > η

}
. (C.120)

Using that Pr
{
X > η

}
= 1− Pr

{
X ≤ η

}
and upon rearranging terms, we get

σ2 ≥
((
µ− E

[
X
∣∣X ≤ η])2 + σ2

)
Pr
{
X ≤ η

}
+ E

[
X2∣∣X ≤ η]Pr

{
X ≤ η

}
Pr
{
X > η

}
≥
((
µ− E

[
X
∣∣X ≤ η])2 + σ2

)
Pr
{
X ≤ η

}
≥
(
(µ− η)2 + σ2

)
Pr
{
X ≤ η

}
(C.121)

where the last inequality follows because µ ≥ η by assumption. This proves Lemma C.2.
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C.9 Proof of Theorem 3.6

Denote ΞnT = ‖ξ‖22 which is a gamma-distributed random variable with shape nT and scale 1
whose probability density function is given by fΞnT

(x) for x ≥ 0 [cf. (3.10)]. Upon performing
the variable change u = σ2(x)

1−ι , applying the identity A(A + zI)−1 = I − z(A + zI)−1 for some
matrix A and scalar z, and using the Fubini theorem, one can express the rate-splitting bound
as

R?(Llev) =
∫ ∞

0

∫ ∞
σ2(x)

nR
u
− g(x, u)

u
E

tr
(

WW†

nT
+ g(u, x)InR

)−1
 fΞnT

(x) dudx. (C.122)

Lemma C.3. Let vec(W) ∼ NC(0, InRnT) where W ∈ CnR×nT. Then, for any x > 0,∣∣∣∣∣∣E
tr

(
WW†

nT
+ xInR

)−1
− nTζ(x)

∣∣∣∣∣∣ ≤ 2nR
x4nT2 (C.123)

where ζ is given in (3.38).

Sketch: The result can be easily proved along the lines of the proofs of [Hac08, Theorem 3,
Proposition 3 and 5].

Applying Lemma C.3 to the trace term on the right-hand side of the last equation yields

R?(Llev) =
∫ ∞

0

∫ ∞
σ2(x)

(
nR − nRg(x, u)ζ(g(x, u))

u
+ ε

)
fΞnT

(x) dudx (C.124)

for some ε, satisfying |ε| ≤ 2nR
ug(x,u)3nT2 . One can verify that nRg(x, u)ζ(g(x, u)) ≤ nR and continue

by bounding the error term:∣∣∣∣∣
∫ ∞

0

∫ ∞
σ2(x)

εfΞnT
(x) dudx

∣∣∣∣∣ ≤
∫ ∞

0

∫ ∞
σ2(x)

2nR
ug(x, u)3nT2 fΞnT

(x) dudx

≤
∫ ∞

0

∫ ∞
σ2(x)

2nR
σ2(x)g(x, u)3nT2 fΞnT

(x) dudx

=
∫ ∞

0

2nR
σ2(x)(g(x, σ2(x)))2nT2 fΞnT

(x) dx

≤ 2nRρV̂
3(

Ṽ + ρ−1)2nT2
= O(nT

−1). (C.125)

Since this integral is finite, the integral over the first two integrands in (C.124) must also exist.
This concludes the proof.
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C.10 Derivation of (3.47)

Let us define

nmin , min(nR, nT) nmax , max(nR, nT) n∆ , nmax − nmin. (C.126)

In [Tel99], Telatar proved that for vec(Ŵ) ∼ NC
(
0, InRnT

)
, we have the closed-form expression

E
[
log det

(
InR + α−1ŴŴ†

)]
=
∫ ∞

0
log

(
1 + ν

α

) nmin−1∑
k=0

k!
(k + n∆)!

[
Λn∆
k (ν)

]2
νn∆e−ν dν (C.127)

in which Λij denote Laguerre polynomials of order j defined as

Λij(x) = 1
j!e

xx−i
dj

dxj
(
e−xxi+k

)
. (C.128)

Using the function ς(x) = −ex Ei(−x) defined earlier in (2.25), we can evaluate the definite
integral from (C.127) as [Alo99, Equation (78)]∫ ∞

0
log

(
1 + x

α

)
xne−x dx

=
n∑
i=0

n!
(n− i)!

[
n−i∑
k=1

(k − 1)!(−α)n−i−k − (n− i− 1)!αn−iς(α)
]

(C.129)

or alternatively, in terms of the incomplete gamma function [Gra07, Formula 4.337.5]

∫ ∞
0

log
(

1 + x

α

)
xne−x dx = n!eα

n+1∑
i=1

αn−i+1Γ(−n− i− 1, α) (C.130)

where said incomplete gamma function is defined as [Gra07, Formula 8.350.2]

Γ(u, v) =
∫ ∞
v

e−ttu−1 dt. (C.131)

The resulting closed-form expression of (C.127) is given in [Kan06, Equation (34)]. It reads as

E
[
log det

(
InR + α−1ŴŴ†

)]
= eα

nmin−1∑
i=0

(n∆ + i)!
(n∆)!2i! ×

×
2i∑
j=0

 j∑
k=0

(−i)k(−i)j−k(n∆ + j)!
(n∆ + 1)kk!(n∆ + 1)j−k(j − k)!

×
×
n∆+j+1∑
`=1

Γ(−n∆ − j + `− 1, α)αn∆+j−`+1 (C.132)

where (a)q = a · (a+ 1) · . . . · (a+ q − 1) = Γ(a+ q)/Γ(a) is the Pochhammer symbol.
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A similar closed-form expression for the function

Ωlev(α) , 1
α

E tr
[
Ŵ†

(
InR + α−1ŴŴ†

)−1
Ŵ
]

(C.133)

can be derived by observing that

Ωlev(α) = −α d
dα E

[
log det

(
InR + α−1ŴŴ†

)]
. (C.134)

Using that for non-negative exponents N ≥ 0 we have

d
dαΓ(−N,α)αN = 1

α

(
NΓ(−N,α)αN − e−α

)
(C.135)

we compute the derivative on the right-hand side of (C.134) by differentiation of (C.132) with
respect to α, which gives us

Ωlev(α) = −αE
[
log det

(
InR + α−1ŴŴ†

)]
+

− eα
nmin−1∑
i=0

(n∆ + i)!
(n∆)!2i!

2i∑
j=0

 j∑
k=0

(−i)k(−i)j−k(n∆ + j)!
(n∆ + 1)kk!(n∆ + 1)j−k(j − k)!

×
×
n∆+j+1∑
`=1

[
(n∆ + j − `+ 1)Γ(−n∆ − j + `− 1, α)αn∆+j−`+1 − e−α

]
. (C.136)

wherein the log-determinant term can be evaluated with the help of (C.132). The semi-closed
form of R?(Llev) is now obtained by observing that (3.8) can be written as

R?(Llev) =
∫ 1

0
E
[

1
1− ιΩlev

(
ΞnT Ṽ + (1− ι)Ṽ nT + ρ−1nT

(1− ι)V̂

)]
dι (C.137)

in which the random variable ΞnT has a probability density function given by (3.10).

C.11 Derivation of (3.48)

We start with the first line of Equation (C.14) from Appendix C.2, which is an expression for
R?(Lstag) reading as

R?(Lstag) = V̂
nT∑
i=1

∫ 1

0
E
[
ŵ†i
(
αi(ν)InR + V̂ (1− ν)ŵiŵ†i + V̂ Ŵ(i+1):nTŴ†

(i+1):nT

)−1
ŵi

]
dν.

(C.138)
Recall that αi(ν) is given by [cf. (C.13)]

αi(ν) , Ṽ

(Ξi−1
nT

+ ν

nT
Ξ̃1 + 1− ν + nT − i

)
+ ρ−1 (C.139)

where Ξi−1 and Ξ̃1 are mutually independent, gamma-distributed with scale 1 and respective
shapes i− 1 and 1 [cf. (3.10)].



C.11. Derivation of (3.48) 161

C.11.1 Tall or Square Channel Matrices (nT ≤ nR)

Assume that nT ≤ nR. We will first derive a closed-form expression for an expectation of the
form

E
[
log det

(
Im + β−1Ŵ1:(n−1)Ŵ

†
1:(n−1) + δ−1ŵnŵ†n

)]
= E

log det

Im + Ŵ

β−1In−1 0
0 δ−1

Ŵ†

 (C.140)

in which 0 < β−1 < δ−1, and where Ŵ ∈ Cm×n is tall or square (i.e., m ≥ n) and follows a
distribution vec(Ŵ) ∼ NC(0, InRnT).

To this end, we start with a known closed-form expression for

E
[
log det

(
Im + ŴΛ−1Ŵ†

)]
(C.141)

where Λ−1 is a n× n diagonal matrix having positive, distinct and increasingly ordered entries
Λ−1
j , j = 1, . . . , n, i.e., 0 < Λ−1

1 < . . . < Λ−1
n . Said closed-form expression reads as [Kan03,

Theorem 2, Case 1]

E
[
log det

(
Im + ŴΛ−1Ŵ†

)]
= det(Λ)n

∑n
k=1 det(Ψk(Λ))

V(Λ)
∏n
j=1(m− j)! (C.142)

where
V(Λ) =

∏
p<q

(Λq − Λp) (C.143)

denotes the determinant of the Vandermonde matrix3
1 Λ1 Λ2

1 . . . Λn1
1 Λ2 Λ2

2 . . . Λn2
... . . .
1 Λn Λ2

n . . . Λnn

 (C.144)

and where Ψk(Λ), k = 1, . . . , n are n× n matrices whose (p, q)-th entry is given by

[
Ψk(Λ)

]
p,q

=


∫ ∞

0
log(1 + x)xm−pe−Λqx dx if p = k

(m− p)!Λp−m−1
q if p 6= k.

(C.145)

Notice that the p-th column of Ψk(Λ) is a function of Λp only, so Ψk(Λ) can be represented as

Ψk(Λ) =
[
ψk,1(Λ1) . . . ψk,n(Λn)

]
(C.146)

3 Note that for n = 1, the Vandermonde determinant equals 1
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where ψk,p(Λp) denotes the p-th column of Ψk(Λ).

The closed-form expression on the right-hand side of (C.142) is only valid when the val-
ues Λp, p = 1, . . . , n are distinct. In fact, whenever two values are equal, the determinants
det(Ψk(Λ)) and V(Λ) become zero, leading to an indeterminate form of the kind ‘0/0’. Nev-
ertheless, it can be easily shown that the left-hand side of (C.142) is continuous in the vector
(Λ1, . . . ,Λn) and well-defined even when the entries of the latter are not all distinct. Therefore,
we can extend the above closed-form expression to cases of eigenvalue multiplicities by taking
appropriate limits so as to derive an expression for (C.140). Specifically, we are interested in
the limiting expression for all Λp tending to some value β > 0 except one value that is equal to
δ > 0, where it holds that δ < β. That is, we want to compute the limit

E

log det

Im + Ŵ

β−1In−1 0
0 δ−1

Ŵ†

 = lim
(Λ1,...,Λn−1)→(β,...,β)

Λn→δ

E
[
log det

(
Im + ŴΛ−1Ŵ†

)]

= lim
(Λ1,...,Λn−1)→(β,...,β)

Λn→δ

det(Λ)n
∑n
k=1 det(Ψk(Λ))

V(Λ)
∏n
j=1(m− j)!

(C.147)

where 0 < β−1 < δ−1. Using [Sim06, Lemma 6], we have for n ≥ 3 that4

lim
(Λ1,...,Λn−1)→(β,...,β)

Λn→δ

det(Ψk(Λ))
V(Λ) =

det
([

Φk(β) ψk,n(δ)
])

(δ − β)n−1∏n−2
j=1 j!

(C.148)

Here, Φk(β) stands for the n× (n− 1) matrix

Φk(β) =
[
ψk,1(β) ψ

(1)
k,2(β) ψ

(2)
k,3(β) . . . ψ

(n−2)
k,n−1(β)

]
(C.149)

where ψk,p(Λp) denotes the p-th column of Ψk(Λ), and where ψ(ν)
k,p(x) denotes its ν-th derivative

function dν
dxνψk,p(x). By differentiation of (C.145), we can express the entries of Φk(β) as

[
Φk(β)

]
p,q

=


(−β)q−1

∫ ∞
0

log(1 + x)xm−pe−βx dx if p = k and q < n

(−1)q−1(m− p+ q − 1)!βp−m−q if p 6= k and q < n.
(C.150)

Upon setting m = nR and n = nT− i+ 1, and noticing that (Ŵ1:(n−1), ŵn) and (Ŵ(i+1):nT , ŵi)

4 The case n = 2 entails no eigenvalue multiplicities and should be handled directly using (C.142) without taking limits.
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have the same distribution, by combining (C.140), (C.147) and (C.148), we obtain

E
[
log det

(
InR + β−1Ŵ(i+1):nTŴ†

(i+1):nT
+ δ−1ŵiŵ†i

)]
= β(nT−i)(nT−i+1)∏nT−i+1

j=1 (nR − j)!
∏nT−i−1
`=1 `!

nT−i+1∑
k=1

δ

(
δ

δ − β

)nT−i
det

([
Φk(β) ψk,nT−i+1(δ)

])
. (C.151)

Let us denote

Ωstag,i(β, δ) , E
[
ŵi

(
InR + β−1Ŵ(i+1):nTŴ†

(i+1):nT
+ δ−1ŵiŵ†i

)−1
ŵi

]
. (C.152)

Observe that

Ωstag,i(β, δ) = −δ2 d
dδ E

[
log det

(
InR + β−1Ŵ(i+1):nTŴ†

(i+1):nT
+ δ−1ŵiŵ†i

)]
. (C.153)

Therefore, upon differentiating (C.151) with respect to δ, we get a closed-form expression for
Ωstag,i(β, δ) which reads as

Ωstag,i(β, δ) = β(nT−i)(nT−i+1)∏nT−i+1
j=1 (nR − j)!

∏nT−i−1
`=1 `!

nT−i+1∑
k=1

(
δ

δ − β

)nT−i
×

×
[(

1− β(nT − i)
δ − β

)
det

([
Φk(β) ψk,nT−i+1(δ)

])
+ δ det

([
Φk(β) ψ

(1)
k,nT−i+1(δ)

])]
. (C.154)

By comparison with (C.138) and (C.139), we infer that

R?(Lstag) = V̂
nT∑
i=1

∫ 1

0
E
[

1
αi(ν)Ωstag,i

(
αi(ν)
V̂

,
αi(ν)

V̂ (1− ν)

)]
dν. (C.155)

C.11.2 Broad Channel Matrices (nR < nT)

Assume that nR < nT. We will follow the same proof steps as in Subsection C.11.1. We first
derive a closed-form expression for

E
[
log det

(
Im + β−1Ŵ1:(n−1)Ŵ

†
1:(n−1) + δ−1ŵnŵ†n

)]
= E

log det

Im + Ŵ

β−1In−1 0
0 δ−1

Ŵ†

 (C.156)

in which 0 < β−1 < δ−1, and where Ŵ ∈ Cm×n is broad (i.e., m < n) and follows a distribution
vec(Ŵ) ∼ NC(0, InRnT).

We start with a known closed-form expression for an expectation

E
[
log det

(
Im + ŴΛ−1Ŵ†

)]
(C.157)
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where Λ−1 is a n× n diagonal matrix having positive, distinct and increasingly ordered entries
Λ−1
j , j = 1, . . . , n, i.e., 0 < Λ−1

1 < . . . < Λ−1
n . Said closed-form expression reads as [Kan03,

Theorem 2, Case 2]

E
[
log det

(
Im + ŴΛ−1Ŵ†

)]
= (−1)m(n−m) det(Λ)m

∑m
k=1 det(Ψ̃k(Λ))

V(Λ)
∏m
j=1(j − 1)! (C.158)

where the n× n matrix Ψ̃k(Λ) can be partitioned in an upper and a lower part as

Ψ̃k(Λ) =

 Ψ̃upper(Λ)
Ψ̃lower,k(Λ)

 , k = 1, . . . ,m (C.159)

whose (p, q)-th entries are given respectively by

[
Ψ̃upper(Λ)

]
p,q

= (−Λq)n−m−p (p = 1, . . . , n−m, q = 1, . . . , n) (C.160a)

[
Ψ̃lower,k(Λ)

]
p,q

=


∫ ∞

0
log(1 + x)xm−pe−Λqx dx if p = k

(m− p)!Λp−m−1
q if p 6= k

(C.160b)

(p = 1, . . . ,m, q = 1, . . . , n)

The p-th column of Ψ̃upper(Λ) and of Ψ̃lower,k(Λ) are functions of Λp only, so these matrices can
be represented as

Ψ̃upper(Λ) =
[
ψ̃upper,1(Λ1) . . . ψ̃upper,n(Λn)

]
(C.161a)

Ψ̃lower,k(Λ) =
[
ψ̃lower,k,1(Λ1) . . . ψ̃lower,k,n(Λn)

]
(C.161b)

where ψ̃upper,p(Λp) and ψ̃lower,k,p(Λp) denote the p-th column of Ψ̃upper(Λ) and Ψ̃lower,k(Λ),
respectively.

As in Subsection C.11.1, we are interested in the limiting expression for all Λp tending to a
common value β > 0 except for one value, which tends to δ > 0, where it holds that δ < β. That
is, we want to compute the limit

E

log det

Im + Ŵ

β−1In−1 0
0 δ−1

Ŵ†


= lim

(Λ1,...,Λn−1)→(β,...,β)
Λn→δ

E
[
log det

(
Im + ŴΛ−1Ŵ†

)]

= lim
(Λ1,...,Λn−1)→(β,...,β)

Λn→δ

(−1)m(n−m) det(Λ)m
∑m
k=1 det(Ψ̃k(Λ))

V(Λ)
∏m
j=1(j − 1)! . (C.162)
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Using [Sim06, Lemma 6], we have for n ≥ 3 that

lim
(Λ1,...,Λn−1)→(β,...,β)

Λn→δ

det(Ψ̃k(Λ))
V(Λ) =

det
([

Φ̃k(β) ψ̃k,n(δ)
])

(δ − β)n−1∏n−2
j=1 j!

. (C.163)

Here, Φ̃k(β) stands for the n× (n− 1) matrix

Φ̃k(β) =
[
ψ̃k,1(β) ψ̃

(1)
k,2(β) ψ̃

(2)
k,3(β) . . . ψ̃

(n−2)
k,n−1(β)

]
(C.164)

where ψ̃k,p(Λp) denotes the p-th column of Ψ̃k(Λ), and where ψ̃(ν)
k,p(x) denotes its ν-th derivative

function dν
dxν ψ̃k,p(x). Much like the matrix Ψ̃k(Λ), we can partition the matrix Φ̃k(β) into an

upper and a lower part as

Φ̃k(β) =

 Φ̃upper(β)
Φ̃lower,k(β)

 . (C.165)

By differentiation of (C.160), we can express the entries of Φ̃k(β) as

[
Φ̃upper(β)

]
p,q

=

(n−m− p)q−1(−β)n−m−p−q+1 if p+ q ≤ n−m+ 1

0 if p+ q > n−m+ 1
(C.166a)

(p = 1, . . . , n−m, q = 1, . . . , n)

[
Φ̃lower,k(β)

]
p,q

=


(−β)q−1

∫ ∞
0

log(1 + x)xm−pe−βx dx if p = k

(−1)q−1(m− p+ q − 1)!βp−m−q if p 6= k
(C.166b)

(p = 1, . . . ,m, q = 1, . . . , n)

Upon setting m = nR and n = nT− i+ 1, and noticing that (Ŵ1:(n−1), ŵn) and (Ŵ(i+1):nT , ŵi)
have the same distribution, by combining (C.156), (C.162) and (C.163), we obtain

(C.167)

E
[
log det

(
InR + β−1Ŵ(i+1):nTŴ†

(i+1):nT
+ δ−1ŵiŵ†i

)]
= (−1)nR(nT−nR−i+1)βnR(nT−i)∏nR

j=1(j − 1)!
∏nT−i−1
`=1 `!

· δnR

(δ − β)nT−i

nR∑
k=1

det
([

Φ̃k(β) ψ̃k,nT−i+1(δ)
])
. (C.168)

Let us denote

Ωstag,i(β, δ) , E
[
ŵi

(
InR + β−1Ŵ(i+1):nTŴ†

(i+1):nT
+ δ−1ŵiŵ†i

)−1
ŵi

]
= −δ2 d

dδ E
[
log det

(
InR + β−1Ŵ(i+1):nTŴ†

(i+1):nT
+ δ−1ŵiŵ†i

)]
. (C.169)
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Upon differentiating (C.168) with respect to δ, we get

Ωstag,i(β, δ) = −δ2 (−1)nR(nT−nR−i+1)βnR(nT−i)∏nR
j=1(j − 1)!

∏nT−i−1
`=1 `!

· δnR

(δ − β)nT−i×

×
nR∑
k=1

[(
nR
δ
− nT − i

δ − β

)
det

([
Φ̃k(β) ψ̃k,nT−i+1(δ)

])
+ det

([
Φ̃k(β) ψ̃

(1)
k,nT−i+1(δ)

])]
.

(C.170)

By comparison with (C.138) and (C.139), we infer that

R?(Lstag) = V̂
nT∑
i=1

∫ 1

0
E
[

1
αi(ν)Ωstag,i

(
αi(ν)
V̂

,
αi(ν)

V̂ (1− ν)

)]
dν. (C.171)
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Appendices to Chapter 4

D.1 Examples of utilities

Table D.1 Examples of utilities from the class F

Utility Curvature in S
1 I(S) concave
2 tr(S) linear
3 det(S) log-concave
4 tr(S−1)−1 log-concave
5 det(I + νS) with ν ≥ 0 log-concave
6 E det(I + ŴSŴ†) log-concave
7 E log det(ŴSŴ†) for nT ≥ nR concave
8 E det(ŴSŴ†) for nT ≥ nR log-concave
9 − tr E

{
(I + ŴSŴ†)−1} concave

10 tr E
{
(S−1 + Ŵ†Ŵ)−1} for det(S) 6= 0 concave

11 Pr
(
det(I + ŴSŴ†) ≥ η

)
–/–

12 Pr
(
log det(ŴSŴ†) ≥ η

)
for nT ≥ nR –/–

13 Pr
(
det(ŴSŴ†) ≥ η

)
for nT ≥ nR –/–

14 Pr
(
− tr

{
(I + ŴSŴ†)−1} ≥ η) –/–

15 Pr
(
tr
{
(S−1 + Ŵ†Ŵ)−1} ≥ η) –/–

16 ‖S‖2F convex
17 λmax(S) convex

In the following, we provide a few examples illustrating from which bounds or approximations
of the mutual information I(S) the above utilities may arise.

167
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Utility 2 A simple upper bound on I(S) is obtained using the fact that E[ŴSŴ†] = tr(S)nTI
and by applying Jensen’s inequality to the concave log-determinant:

I(S) ≤
nR∑
i=1

log(1 + tr(S)nT). (D.1)

Utility 5 with ν = nTnR Using the determinant identity det(I+AB) = det(I+BA) to write
I(S) = E log det(I + SŴ†Ŵ), and applying Jensen’s inequality, we get another upper bound:

I(S) ≤ log det (I + nTnRS) . (D.2)

Here, we have used E[Ŵ†Ŵ] = nTnR.

Utilities 6 and 11 By applying Jensen’s inequality to the concave log function, we get the
upper bound

I(S) ≤ log E[det(I + ŴSŴ†)]. (D.3)

Utilities 3, 7 and 12 We can lower bound I(S) by removing the identity matrix inside the
log-determinant. Depending on the sizes of antenna arrays, this gives us a bound I(S) ≥ I(S)
with

I(S) =

E log det
(
ŴSŴ†) for nT ≥ nR

E log det
(
SŴ†Ŵ

)
for nT ≤ nR,

(D.4)

The former case (i.e., nT ≥ nR) justifies utilities 7 and 12. In the latter case (i.e., nT ≤ nR), note
that

I(S) = log det(S) + E log det
(
Ŵ†Ŵ

)
(D.5)

leads to utility 3. Clearly, I(S) is good as an approximation of I(S) at high SNR, and was used
as such in [Gau00], [Gra02]. Let us also mention the tighter lower bound [Oym02]

I(S) ≥ nR log
(

1 + exp
( log(e)

nR
I(S)

))
, (D.6)

the derivation of which makes use of the Minkowski inequality for determinants.

D.2 Proof of Theorem 4.1

Let P and Q have rank(P) = rP and rank(Q) = rQ respectively, with rP, rQ ∈ {1, . . . , nT}.
The absolute difference of ranks be d = |rP − rQ|. The pilot matrix and precoder have reduced
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spectral decompositions P = UPΛPU†P and Q = UQΛQU†Q, respectively, where the eigenbases
UP ∈ UnT×rP and UQ ∈ UnT×rQ are tall or square, whereas ΛP and ΛQ are diagonal and
positive definite. Let UP⊥ ∈ UnT×(nT−rP) and UQ⊥ ∈ UnT×(nT−rQ) denote orthonormal bases of
the nullspaces of P and Q, respectively, so that U†PUP⊥ = 0 and U†QUQ⊥ = 0.

The reduced eigendecomposition of R̂ is consistently denoted as UR̂ΛR̂U†R̂, where ΛR̂ ∈
RrP×rP

+ is diagonal positive definite and of size rP × rP, due to the rank equality (4.18)
which states that rank(R̂) = rank(P). The orthonormal nullspace of R̂ is denoted as UR̂⊥ ∈
UnT×(nT−rP). We introduce the notation LA∩B to designate an orthonormal basis of the inter-
section of range spaces range(A) and range(B). If it exists, LA∩B is a matrix with the maximum
number of columns defined as

LA∩B =

L

∣∣∣∣∣∣ L†L = I,
∀x 6= 0 : ALx 6= 0 and BLx 6= 0

 . (D.7)

Assume that range(Q) * range(R̂), so the matrix LQ∩R̂⊥ is defined and has at least one
column. We define a new precoder Q′ ∈ Q(µQ) as

Q′ = Q− λrQ(Q)LQ∩R̂⊥L†Q∩R̂⊥ , (D.8)

where λrQ(Q) is the smallest non-zero eigenvalue of Q. First, we verify that Q′ ∈ Q(µQ). Clearly,
since λrQ(Q) ≥ 0, we have Q′ � Q, and therefore tr(Q′) ≤ tr(Q). What remains to prove is
that Q′ � 0. The smallest eigenvalue of Q′ is

λmin(Q′) = min
‖w‖=1

w†Q′w.

But since by definition of LQ∩R̂, the range space of Q contains the range space of LQ∩R̂L†Q∩R̂,
we have that w†Q′w is equal to w†Π†QQ′ΠQw, where ΠQ = UQ(U†QUQ)−1U†Q is the projector
from CnT×nT onto the basis UQ. We thus have

λmin(Q′) = λmin
(
Π†Q

(
Q− λrQ(Q)LQ∩R̂⊥L†Q∩R̂⊥

)
ΠQ

)
≥ λmin

(
Π†QQΠQ

)
− λrQ(Q)λmax

(
Π†QLQ∩R̂⊥L†Q∩R̂⊥ΠQ

)
≥ λrQ(Q)

(
1− λmax

(
Π†QΠQ

)
λmax

(
L†Q∩R̂⊥LQ∩R̂⊥

))
= 0. (D.9)

The second inequality holds because the spectral radius norm λmax(·) is sub-multiplicative, while
the last equality holds because the projector ΠQ and the (sub)unitary LQ∩R̂⊥ have a largest
singular value of at most 1. We infer that Q′ ∈ Q(µQ).

Notice that Q′ is purposely constructed so that Q′R̂ = QR̂. As compared to the matrix
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S = S(P,Q) obtained with the precoder Q, the new matrix S′ = S(P,Q′) thus reads as

S′ = R̂
1
2 Q′R̂

1
2

1 + tr(Q′R̃)

= R̂
1
2 QR̂

1
2

1 + tr(QR̃)− λrQ(Q) tr
(
L†Q∩R̂⊥R̃LQ∩R̂⊥

)
= kS (D.10)

and thus turns out to be a scaled version of S, where the positive scalar k is

k = 1 + tr(QR̃)
1 + tr(QR̃)− λrQ(Q) tr

(
L†Q∩R̂⊥R̃LQ∩R̂⊥

) > 1.

Therefore, we have S′ � S, so the precoder Q is necessarily suboptimal, which means that
range(Q) * range(R̂) cannot hold for optimal Q. Instead, we must have range(Q) ⊆ range(R̂)
for optimality, which concludes the proof.

D.3 Proof of Lemma 4.1

Supposing we are in the first situation, i.e., A has full column rank, then A has a left pseudoin-
verse A] = (A†A)−1A† which can be used to define the inverse function %−1. Let Z = %(X)
be the image of X. Given Z, one obtains X by insulating it via left-multiplication with A] and
right-multiplication with A]†, and appropriate scaling:

A]ZA]†(1 + tr(BX)) = X (D.11)

Left-multiplying (D.11) with B and taking the trace yields

tr(BA]ZA]†) = tr(BX)
1 + tr(BX) , (D.12)

or equivalently,

1 + tr(BX) = 1
1− tr(BA]ZA]†) (D.13)

By combining (D.11) with (D.13), we recover the pre-image X = %−1(Z), and see that the inverse
function %−1 is linear fractional with parameters A] and −A]†BA].

We now suppose that we are in the second situation, i.e., A has full row rank and X is such
that range(X) = range(A†) for every element of X . Due to the latter constraint on the span of
X, we can write any X ∈ X as X = A†X̂A, with X̂ given by the inverse relation X̂ = A[†XA[,
where A[ = A†(AA†)−1 denotes the right pseudoinverse of A. The function % can be represented
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as

% : X 7→ AXA†

1 + tr(BX) = ÂX̂Â†

1 + tr(B̂X̂)
(D.14)

with abbreviations AA† , Â and B̂ , ABA†. Since Â = AA† has full rank (because A has full
row rank), the function % appears as an injective linear fractional function of X̂ with parameters
Â and B̂, whose inverse, according to findings above, is linear fractional with parameters Â]

and −Â]†B̂Â]. Denoting as Z = %(X) the image of X under the function %, we can thus recover
the pre-image X from Z as

X = A†X̂A = A† Â]ZÂ]†

1− tr(Â]†BÂ]Z)
A

= A[ZA[†

1− tr(A[†BA[Z)
. (D.15)

Consequently, the inverse %−1 is linear fractional with parameters A[ and −A[†BA[.

D.4 Proof of Lemma 4.2

We first establish that S(P,Q) is monotonic in the transmit power, in the sense that

0 ≤ k < k′ ⇒ S(P, kQ) ≺ S(P, k′Q). (D.16)

This monotonicity holds because

S(P, kQ) = k

1 + k tr(QR̃)
R̂

1
2 QR̂

1
2 (D.17)

<
k′

1 + k′ tr(QR̃)
R̂

1
2 QR̂

1
2 = S(P, k′Q) (D.18)

owing to the fact that k 7→ k
1+k tr(QR̃) is monotonically increasing in k.

Now, as a consequence of Theorem 4.1 and of the power monotonicity (D.16), optimal pre-
coders Q will be elements of ∂+Q(µQ)∩range(R̂). By definition, this set can be parametrized by
rP non-negative coefficients ψ = [ψ1, . . . , ψrP ]T ∈ RrP

+ stored in a diagonal matrix Ψ = diag(ψ),
and a tall or square (sub)unitary basis Υ ∈ UnT×rP as follows:

QΨ,Υ =
(
R̂

1
2
)+ΥΨΥ†

(
R̂

1
2
)+
, (D.19)

where (•)+ denotes the Moore-Penrose pseudoinverse, and where the parameter pair (Ψ,Υ)



172 Appendices to Chapter 4

shall be subject to the four constraints

ψ ≥ 0, (D.20a)

tr(QΨ,Υ) = µQ, (D.20b)

Υ†Υ = I, (D.20c)

range(Υ) = range(R̂). (D.20d)

The first two constraints ensure that QΨ,Υ belongs to ∂+Q(µQ), while the structure of Expres-
sion (D.19) ensures that QΨ,Υ belongs to range(R̂). The third and fourth constraints (D.20c)–
(D.20d) are clearly not necessary to fulfill QΨ,Υ ∈ range(R̂)∩∂+Q(µQ), but they induce no loss
of generality either and will turn out helpful later. The set ∂+Q(µQ) is thus entirely parametrized
by the parameter pair (Ψ,Υ) subject to the constraints (D.20). Consider now the feasible vectors

s(P,QΨ,Υ) = λ

(
R̂

1
2 QΨ,ΥR̂

1
2

1 + tr(QΨ,ΥR̃)

)

= λ

UR̂U†R̂ΥΨΥ†UR̂U†R̂
1 + tr(QΨ,ΥR̃)

 ∈ RnT
+ . (D.21)

This vector has at most rP non-zero entries because Ψ is rP× rP. Therefore, we define a vector
s̄ ∈ RrP

+ of reduced dimension, which contains the rP topmost (i.e., largest) entries of s. Since
range(Υ) = range(R̂) [cf. (D.20d)], the matrix U†R̂Υ is unitary, so we have

s̄(P,QΨ,Υ) = ψ

1 + tr(QΨ,ΥR̃)

= ψ

1 + tr
(
Υ†
(
R̂

1
2
)+R̃

(
R̂

1
2
)+ΥΨ

) . (D.22)

Note that we have not assumed so far that the entries of ψ or s̄ are sorted in any specific order.
For notational brevity, call α the vector of entries αi =

[
Υ†
(
R̂

1
2
)+R̃

(
R̂

1
2
)+Υ

]
i,i

, then

s̄(P,QΨ,Υ) = ψ

1 +αTψ
. (D.23)

On the other hand, the second constraint (D.20b) translates to βTψ = µQ, where β denotes
the vector of diagonal entries of Υ†R̂+Υ, i.e., βi = [Υ†R̂+Υ]i,i. Together, this constraint and
equation (D.23) describe an affine plane of dimension rP − 1, because left-multiplying (D.23)
with 1

µQ
βT +αT leads to the affine equation

( 1
µQ
β +α

)T
s̄(P,QΨ,Υ) = 1. (D.24)

This affine equation, together with the non-negativity constraint ψ ≥ 0 [cf. (D.20a)], thus delimit
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a (rP − 1)-dimensional simplex, whose elements fulfill
∑
i

s̄i
ωi

= 1

s̄ ≥ 0
(D.25)

where

ωi = 1
1
µQ
βi + αi

. (D.26)

The rP vertices of the simplex described by (D.25) are the axis points ωiei.

Due to the symmetry property of utilities from the class F , the ordering of the s̄i does not
influence the utility value. Assume that, for a given s̄ ≥ 0 fulfilling (D.25), there exists an index
permutation π such that

∑
i
s̄π(i)
ωi

< 1, then s̄ is suboptimal, since there exists an s̄′ = kΠs̄ with
k > 1 which also fulfills (D.25) and yields a larger utility value f(s̄′) = f(kΠs̄) = f(ks̄) > f(s̄).
Therefore, we can discard all s̄ for which some permutation π yields

∑
i
s̄π(i)
ωi

< 1. This is
equivalent to the requirement that the s̄i and ωi be ordered in the same way, i.e.,

ωi ≤ ωj ⇒ s̄i ≤ s̄j . (D.27)

Hence, without loss of optimality, we will restrain the set of admissible s̄ to the following convex
set, called S:

S =
{

s̄ ∈ RrP
+

∣∣∣∣∣
rP∑
i=1

s̄i
ω̄i

= 1,∀j : s̄j ≥ s̄j+1

}
, (D.28)

where ω̄ = [ω̄1, . . . , ω̄rP ]T contains the entries of ω arranged in non-increasing order, i.e., ω̄1 ≥
. . . ≥ ω̄rP . Let us define rP special points pertaining to S, which we shall denote as σ(n), and
define as

∀n = 1, . . . , rP : σ(n) = H(ω̄1, . . . , ω̄n)
n∑
j=1

ej , (D.29)

where H(·, . . . , ·) and ej are defined in the statement of Lemma 4.2. In fact, it is easy to see

that the σ(n) have non-increasing entries and fulfill
∑rP
i=1

σ
(n)
i
ω̄i

= 1, and thus belong to S. Now,
we will show that the set S ′ of all convex combinations of the σ(n), i.e,

S ′ =
{
rP∑
n=1

νnσ
(n)
∣∣∣∣∣∑
n

νn = 1,∀n : νn ≥ 0
}
, (D.30)

is the same as the set S. We know that S ′ is a subset of the convex set S, for being a convex
combination of a collection of points from S, hence S ′ ⊆ S. Next, we argue that, if we assume
that some particular point σ̃ belongs to S \ S ′, this implies that σ̃ does not lie in S because it
would fail to comply with some constraint from the definition (D.28) of S. Therefrom, it will
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follow that S = S ′.

Since the σ(n) pertain to S and are rP linearly independent vectors, they define the (rP−1)-
dimensional affine plane described by

∑rP
i=1

s̄i
ω̄i

= 1. Therefore, to prove the equality S = S ′, it
will be sufficient to take some point σ̃ = [σ̃1, . . . , σ̃rP ]T to lie on said plane, and show that an
infringement of an inequality σ̃i ≥ σ̃i+1 implies that σ̃ =

∑rP
n=1 ν̃nσ

(n) with coefficients ν̃n such
that either

∑
n ν̃n 6= 1 or ν̃n < 0 for some index n. So, assume that σ̃i < σ̃i+1 for a given i. There

exist unique coefficients ν̃n such that σ̃ =
∑rP
n=1 ν̃nσ

(n). The inequality σ̃i < σ̃i+1 can thus be
written as

rP∑
n=1

ν̃neT
i σ

(n) <
rP∑
n=1

ν̃neT
i+1σ

(n). (D.31)

By inserting (D.29) into the latter inequality, we get

rP∑
n=i

ν̃nH(ω̄1, . . . , ω̄n) <
rP∑

n=i+1
ν̃nH(ω̄1, . . . , ω̄n), (D.32)

which boils down to ν̃i < 0. This concludes the proof that S = S ′. Also, this simplex S contains
only Pareto border points, in the sense that S = ∂+S. In fact, any point s̄′′ dominating some
point s̄′ ∈ S would fulfill

∑rP
i=1 s̄

′′
i /ω̄i > 1 and thus lie outside S.

Now that we have fully characterized the set of Pareto border points s̄ = s̄(P,QΨ,Υ) for a
fixed Υ as a simplex set S, we ask what the best choice for Υ is under the constraints (D.20c)–
(D.20d). Clearly, if there exists one single Υ? that simultaneously maximizes all vertices σ(n) in
the sense that for any Υ, we have

σ(n)(Υ?) ≥ σ(n)(Υ), n = 1, . . . , rP (D.33)

then this Υ? is optimal. Here, σ(n)(Υ) denotes the value of σ(n), as defined in (D.29), with the
ω̄i interpreted as functions of Υ. Next, we show that such Υ? is well-defined and characterize
it.

We state the multiobjective optimization problem

∀n = 1, . . . , rP : max
Υ∈UnT×rP

range(Υ)=range(R̂)

H(ω̄1, . . . , ω̄n). (D.34)

Omitting the range space constraint on Υ, we have that, with the definition (D.26) of the
coefficients ωi together with the definitions of αi and βi, this multiobjective problem reads as

∀n : min
Υ∈UnT×rP

n∑
i=1

[
Υ†
(
R̂

1
2
)+( I

µQ
+ R̃

)(
R̂

1
2
)+Υ

]
π(i),π(i)

, (D.35)

where π denotes the permutation which orders the diagonal entries of the matrix between square



D.5. Proof of Theorem 4.3 175

brackets so as to be non-decreasingly ordered. If WDW† denotes the spectral decomposition
of
(
R̂

1
2
)+( I

µQ
+ R̃

)(
R̂

1
2
)+ where W ∈ UnT×rP , and D has non-increasingly ordered, positive

diagonal entries, then it is well known from majorization theory that the solution of (D.35) is
Υ? = W, up to a column permutation (e.g., [Hor90, Theorem 4.3.26]). It turns out as well that
range(Υ?) = range(W) = range(R̂), so the range space constraint is systematically fulfilled.
The columns of Υ? contain the eigenvectors υi of the generalized eigenvalue problem

R̂υi = ωi
( 1
µQ

I + R̃
)
υi, (D.36)

corresponding to the rP largest generalized eigenvalues ωi.

D.5 Proof of Theorem 4.3

Assume that rP > rQ. Similarly as for the proof of Theorem 4.1 in Appendix D.2, we will
proceed by constructing another pilot matrix in P(µP) which strictly outperforms P. Recall
that the covariance of the channel estimate is R̂ = R − R̃, as usual, and R̃ = (R−1 + P)−1 is
the estimation error covariance. We construct P′ as

P′ =
[
R̃ + λrP(R̂)LQ⊥∩R̂L†Q⊥∩R̂

]−1
−R−1. (D.37)

The subunitary matrix LQ⊥∩R̂ is defined as in the proof of Theorem 4.1. It exists and has at
least d = rP − rQ columns. First, we verify that P′ ∈ P(µP). In fact, P′ can be written out as

P′ =
[
R − R̂ + λrP(R̂)LQ⊥∩R̂L†Q⊥∩R̂

]−1
−R−1, (D.38)

where it becomes clear that P′ � 0, because R̂−λrP(R̂)LQ⊥∩R̂L†Q⊥∩R̂ � 0. On the other hand,
the trace of P′ is upper-bounded as

tr(P′) = tr
([

R̃ + λrP(R̂)LQ⊥∩R̂L†Q⊥∩R̂

]−1)
− tr(R−1)

< tr(R̃−1)− tr(R−1)

= tr(P). (D.39)

If we write R̃ = R̃(P) to stress that it is essentially a function of P, then we notice that P′ is
designed so as to leave the product

QR̃(P′) = Q
(
R̃ + λrP(R̂)LQ⊥∩R̂L†Q⊥∩R̂

)
= QR̃(P) (D.40)

unchanged, irrespective of whether the pilots are P or P′. The same is true for s = λ(S), which
is left unchanged when replacing P by P′, because s depends on P only via the product QR̃(P),
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as seen from the relationship

s =
λ
(
R̂

1
2 QR̂

1
2
)

1 + tr(QR̃)
=
λ
(
QR −QR̃

)
1 + tr(QR̃)

. (D.41)

We have thus constructed alternative pilots P′ which yield the same utility value f(s), yet saving
on the training energy, since tr(P′) < tr(P). We generate another pilot matrix P′′ = κP′ with
κ = tr(P)/ tr(P′). The new pilots P′′ spend the same amount of training energy as P, but yield
a strictly larger S′′ = S(P′′,Q) � S(P,Q). Hence, P is suboptimal.

D.6 Convexity of the set of feasible R̂

Showing the convexity of the set of feasible R̂ is equivalent to showing the convexity of the set
of feasible R̃, because R̂ = R − R̃ is merely R̃ scaled with −1 and summed with a constant
matrix R. Therefore, we show that the set

{
R̃ = (R−1 + P)−1∣∣P ∈ P(µP)

}
(D.42)

is convex. For any pair (P1,P2) ∈ P(µP)2, there exists a P3 ∈ P(µP) and a α ∈ [0; 1] such that

αR̃1 + (1− α)R̃2 = R̃3, (D.43)

where R̃i = (R−1 + Pi)−1 for i = 1, 2, 3. By isolating P3 in (D.43), the pilot Gram P3 is given
by

P3 =
[
αR̃1 + (1− α)R̃2

]−1 −R−1. (D.44)

Obviously, since R̃i � R for i = 1, 2, we have P3 � 0. What remains to prove is that tr(P3) ≤ µP .
Knowing that the function X 7→ tr(X−1) is convex on the positive cone X � 0, we have

tr(P3) ≤ α tr(R̃−1
1 ) + (1− α) tr(R̃−1

2 )− tr(R−1)

= α tr(P1) + (1− α) tr(P2)

≤ µP . (D.45)

Hence, the set of feasible R̂ is convex, and so is Problem (P.1.b).

D.7 Proof of Theorem 4.4

We will proceed by showing that, in Problem (P.2), for any given value of the pair (µP , µQ), the
search set s(P(µP),Q(µQ))—and thus its Pareto border ∂+s(P(µP),Q(µQ))—is left unchanged
whether we allow (P,Q) to take any value within P(µP) × Q(µQ), or whether we restrict the
choice of the basis UP such that col(UP) = {uR,1, . . . ,uR,r?}, where r? denotes the number of
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non-zero entries of the s? . With a consequence of Theorem 4.2, we will eventually conclude on
the desired result col(UP) = col(UQ) = {uR,1, . . . ,uR,r?}.

To begin with, note that the set s(P(µP),Q(µQ)) can be represented as the union

s(P(µP),Q(µQ)) =
⋃

P∈P(µP )
s(P,Q(µQ)). (D.46)

As a consequence of the rank equality (4.18), the elements of s(P,Q(µQ)) have at most rP
non-zero entries, because rank(S) = rank(R̂

1
2 QR̂

1
2 ) ≤ rank(R̂) = rank(P) = rP. They can thus

be written as s(P,Q) =
[
s̄(P,Q)T 0T]T with s̄(P,Q) ∈ RrP

+ of reduced size. According to
Theorem 4.2, this set of reduced-size vectors s̄(P,Q(µQ)) is the simplex given by the convex
hull of the points

σ(0) = 0 σ(n) = H(ω1, . . . , ωn)
n∑
j=1

ej , n ∈ {1, . . . , rP}. (D.47)

Every such simplex is entirely described by ω = [ω1, . . . , ωrP ]T, the vector non-increasingly
ordered eigenvalues of the matrix R̂

(
µ−1
Q I + R̃

)−1, which is a function of P alone (not of Q).
Consistently with the notation used so far, ω(P(µP)) shall denote the set of feasible ω given
that P belongs to P(µP). To prove Theorem 4.4, we will first show that the set of Pareto
border points ∂+ω(P(µP)) is still achievable under the restriction col(UP) ⊆ {uR,1, . . . ,uR,r?}.
Recalling that R = R̂ + R̃ and R̃ = (R−1 + P)−1, we write out ω as

ω = λ
(
R̂
( 1
µQ

I + R̃
)−1)

= λ

((
R − (R−1 + P)−1

)(
1
µQ

I + (R−1 + P)−1
)−1)

.

Let us denote P′ = R
1
2 PR

1
2 , then using the property λ(AB) = λ(BA), the last expression can

be rewritten as

ω = λ

((
I− (I + P′)−1

)(
(µQR)−1 + (I + P′)−1

)−1)
.

Let us now denote P′′ = U†RP′UR, so that the last expression becomes

ω = λ

((
I− (I + P′′)−1

)(
(µQΛR)−1 + (I + P′′)−1

)−1)
. (D.48)

Let us write out the mutual relations linking P and P′′ in full:

P′′ = Λ
1
2
RU†RUP diag(p)U†PURΛ

1
2
R (D.49a)

P = URΛ−
1
2

R UP′′ diag(p′′)U†P′′Λ
− 1

2
R U†R. (D.49b)

Regarding the (non-reduced) eigendecomposition P′′ = UP′′ΛP′′U†P′′ with UP′′ ∈ UnT×nT and
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ΛP′′ = diag(p′′) = diag(p′′1, . . . , p′′nT), one can say that, if P is drawn from P(µP), then the

corresponding eigenvalue profile p′′ = λ(P′′) = λ
(
Λ

1
2
RU†RPURΛ

1
2
R
)

= λ(PR) [cf. (D.49a)] is
drawn from a feasible set which we shall call p′′(P(µP)), a notation which emphasizes its direct
dependence on the domain P(µP). As to the eigenbasis UP′′ , it obviously belongs to UnT×nT by
definition, yet in general, we must presume that not all pairs (p′′,UP′′) ∈ p′′(P(µP))×UnT×nT are
jointly feasible, since the eigenbasis UP′′ and the eigenvalues p′′ cannot be chosen independently
of each other, due to the special structure of Expression (D.49a). Instead, U′′P belongs to a feasible
set UP′′(p′′) ⊆ UnT×nT (which depends on p′′), so the overall set of feasible pairs (p′′,UP′′) forms
a subset of the Cartesian product p′′(P(µP))× UnT×nT .

However, suppose for a while that p′′ and UP′′ can be drawn independently of each other
from their respective domains p′′(P(µP)) and UnT×nT . This assumption then corresponds to
a relaxation of the original problem, as it possibly extends the overall set of feasible P′′, and
consequently, of feasible ω. The resulting set of achievable vectors ω under this relaxation shall
be denoted ω̄(P(µP)) ⊇ ω(P(µP)) and is formally defined as

ω̄(P(µP)) =
{
ω(p′′,UP′′)

∣∣(p′′,UP′′) ∈ p′′(P(µP))× UnT×nT
}
, (D.50)

wherein the two-argument notation ω(•, •) is defined as [cf. (D.49b)]

ω(p′′,UP′′) , ω(URΛ−
1
2

R UP′′ diag(p′′)U†P′′Λ
− 1

2
R U†R). (D.51)

The set ω̄(P(µP)) can be represented as a double union

ω̄(P(µP)) =
⋃

p′′∈p′′(P(µP ))

⋃
UP′′∈UnT×nT

ω(p′′,UP′′)

=
⋃

p′′∈p′′(P(µP ))
ω
(
p′′,UnT×nT

)
. (D.52)

As seen from expression (D.48), ω(p′′,UP′′) is monotonic in the eigenvalues p′′i , meaning that

∀d ≥ 0 : ω(p′′ + d,UP′′) ≥ ω(p′′,UP′′).

Hence, since we are essentially interested in the Pareto border ∂+ω̄(P(µP)) of the set ω̄(P(µP)),
we can restrict our further analysis to the set1

ω̄+(P(µP)) =
⋃

p′′∈∂+p′′(P(µP ))
ω
(
p′′,UnT×nT

)
. (D.53)

The remainder of the proof of Theorem 4.4 is completed in four successive steps, each of
which is detailed in a separate paragraph, for the sake of a clearer structure: first, we specify

1 Note that ω̄+(P(µP )) is generally not the Pareto border of ω̄(P(µP )), but rather a superset thereof.
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a method for constructing a particular Pareto border point of the set ω(p′′,UnT×nT) given a
particular value of the vector p′′, where we show that this construction requires the alignment
col(UP) ⊆ col(UR); second, we show that the point constructed this way, besides yielding a
Pareto border point of the relaxed set ω̄(P(µP)), is also contained in the smaller (non-relaxed)
set ω(P(µP)), so it must be a Pareto border point of ω(P(µP)) as well; third, we show that, by
varying the eigenvalues p′′ over the feasible set p′′(P(µP)), with the aforementioned method of
constructing particular Pareto border points, we reach the whole Pareto border of ω(P(µP));
fourth, we show that the alignment col(UP) ⊆ col(UR) implies that UQ must as well be aligned
such that col(UQ) = col(UP) to reach the whole feasible set s(P(µP),Q(µQ)), and conclude.

1) Let the orthonormal eigenbasis UP′′ = [u1, . . . ,unT ] be spanned by unit vectors ui, where
the i-th vector ui is associated to the i-th largest eigenvalue p′′i . Given a fixed value of p′′ ∈
p′′(P(µP)), we construct a particular point of the Pareto border ∂+ω(p′′,UnT×nT) by solving
the sequence of optimization problems:

∀i ∈ {1, . . . , nT} : U(i) = argmax
U∈UnT×nT

ωi
(
p′′,U

)
s.t. ∀` ∈ {1, . . . , i− 1} : ω` = ω`

(
p′′,U(i−1)). (D.54)

Clearly, U(nT) will yield a Pareto optimal point, that is,

ω(p′′,U(nT)) ∈ ∂+ω(p′′,UnT×nT). (D.55)

Next, we will show by induction that U(nT) = I. For this purpose, let us explicitly solve the first
problem (i = 1) of (D.54), i.e.,

U(1) = argmax
U∈UnT×nT

ω1
(
p′′,U

)
(D.56)

With Expression (D.48), this reads as

max
U∈UnT×nT

max
‖v1‖=1

[
v†1
(
I− (I + UΛP′′U†)−1)v1

v†1
(
(µQΛR)−1 + (I + UΛP′′U†)−1)v1

]

≤ max
U∈UnT×nT

[
1− λmin

(
(I + UΛP′′U†)−1)

λmin
(
(µQΛR)−1)+ λmin

(
(I + UΛP′′U†)−1)

]

=
1− 1

1+λmax(ΛP′′ )

(µQλmax(ΛR))−1 + 1
1+λmax(ΛP′′ )

=
1− 1

1+p′′1
(µQr1)−1 + 1

1+p′′1

. (D.57)
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This upper bound is tight and achieved if and only if v1 = e1, and when U is of the form

U(1) =

1 0
0 W(1)

 (D.58)

with some arbitrary W(1) ∈ U(nT−1)×(nT−1). To prove the induction step, we will show that if
for a certain i ≥ 1, all maximizers U(i) are of the form

U(i) =

Ii 0
0 W(i)

 (D.59)

with some arbitrary W(i) ∈ U(nT−i)×(nT−i), and ∀` = 1, . . . , i : v` = e`, then U(i+1) also has the
above block structure (D.59), with an identity matrix Ii+1 top left and an arbitrary rotation
matrix W(i+1) bottom right. After solving the i-th problem, we know that all solutions thereof
are of the form (D.59), which implies that the equality constraints for the (i + 1)-th problem
[cf. (D.54)] can only be fulfilled if U(i+1) has the same structure as U(i), i.e.,

U(i+1) =

Ii 0
0 W̃(i)

 (D.60)

with some unitary matrix W̃(i) ∈ U(nT−i)×(nT−i) to be determined. According to a straightfor-
ward adaptation of the Courant-Fisher Theorem [Hor90, Theorem 4.2.11], the non-increasingly
ordered eigenvalues λi(AB−1) with corresponding eigenvectors vi of a product of two Hermitian
matrices A and B−1 can be expressed as

λi(AB−1) = max
v⊥Bvi−1,...,Bv1

v†Av
v†Bv . (D.61)

The (i+ 1)-th optimization problem reads as

U(i+1) = argmax
U∈UnT×nT

{
max

vi+1⊥Bvi,...,Bv1

v†i+1Avi+1

v†i+1Bvi+1

}
s.t. U =

Ii 0
0 W̃(i)

 (D.62)

with A = I − (I + UΛP′′U†)−1 and B = (µQΛR)−1 + (I + UΛP′′U†)−1 [cf. (D.48)], and
∀` = 1, . . . , i : v` = e`. When writing out B, the vectors involved in the orthogonality constraints
vi ⊥ Bei−1, . . . ,Be1 read as

Be` =
[
(µQΛR)−1 + (I + UΛP′′U†)−1

]
e`

= e`
µQr`

+

(I+Λ[i]
P′′
)−1 0

0 W̃(i)(I+Λ̄[i]
P′′
)−1(W̃(i))†

e`

=
[ 1
µQr`

+ 1
1 + p′′`

]
e` ∀` = 1, . . . , i (D.63)
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where Λ[i]
P′′ = diag(p′′1, . . . , p′′i ) and Λ̄[i]

P′′ = diag(p′′i+1, . . . , p
′′
nT). Thus, the orthogonality con-

straints simply translate into vi+1 ⊥ ei, . . . , e1. In other terms, the first i entries of vi+1 must
be zero. Thus, we can define matrices (nT − i)× (nT − i) matrices Ă and B̆ as

Ă = I−
(
I + W̃(i)Λ̄[i]

P′′
(
W̃(i))†)−1

B̆ = (µQΛ̄(i)
R )−1 +

(
I + W̃(i)Λ̄[i]

P′′
(
W̃(i))†)−1

, (D.64)

so that the optimization problem (D.62) boils down to solving

W̃(i) = argmax
W∈U(nT−i)×(nT−i)

{
max
v̆i+1

v̆†i+1Ăv̆i+1

v̆†i+1B̆v̆i+1

}
. (D.65)

This problem is fully equivalent in structure to the first optimization problem (i = 1) as written
out in Equation (D.57) and has the same solution, i.e., [cf. (D.58)]

W̃(i) =

1 0
0 W(i+1)

 . (D.66)

Consequently, U(i+1) has indeed the structure (D.59), which concludes the induction proof. We
infer that U(nT) = I, and thus

ω(p′′, I) ∈ ∂+ω(p′′,UnT×nT) ⊂ ω̄+(P(µP)). (D.67)

Thus, we have specified a method to construct specific Pareto optimal points of the inner union
in (D.52).

2) Recalling how P′′ is obtained from P ∈ P(µP), namely [cf. (D.49a)]

P′′ = Λ
1
2
RU†RUP diag(p)U†PURΛ

1
2
R,

we can leverage Theorem 4.2 (although with other variables) to characterize the set p′′(P(µP))
of vectors of feasible, non-increasingly sorted eigenvalues of the above matrix. First note that P′′

has the same eigenvalues as URP′′U†R, so that the set p′′(P(µP)) may be defined as [compare
with (4.32)]

p′′(P(µP)) =
{
λ
(
R

1
2 PR

1
2
) ∣∣∣ P ∈ CnT×nT

+ , tr(P) ≤ µP
}

(D.68)

Now, Theorem 4.2 can be applied upon replacing R̂, R̃, Q, Q(µQ) and µQ (as they appear in the
formulation of said theorem) with R, 0, P, P(µP) and µP respectively. This leads to p′′(P(µP))
being characterized as the convex hull of the points σ′′(n), n = 0, . . . , nT defined as

σ′′
(0) = 0 σ′′

(n) = µP · H(r1, . . . , rn)
n∑
`=1

e`, n = 1, . . . , nT. (D.69)
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It can be readily verified that all points of this convex hull can be reached when setting col(UP) ⊆
col(UR). When doing so, the eigenbasis of P′′ is precisely UP′′ = I. But remember that the
choice UP′′ = I was required in the previous paragraph for constructing a Pareto optimal
point of ∂+ω(p′′,UnT×nT). Consequently, this Pareto optimal point is also contained in the
subset ω(p′′,UP′′(p′′)) ⊆ ω(p′′,UnT×nT), and is thus necessarily a Pareto optimal point of
ω(p′′,UP′′(p′′)), too.

3) We now ask whether all points of the overall Pareto border ∂+ω(P(µP)) are attained by
the construction method specified above, i.e., whether

∂+ω(P(µP)) ⊆
⋃

p′′∈∂+p′′(P(µP ))
ω(p′′, I). (D.70)

Let us write out ω(p′′, I) by means of (D.48) as

Πω(p′′, I) = p′′ �
(
(µQr)−1p′′ + ξ

)−1
, (D.71)

where Π ∈ PnT is a sorting permutation, ‘�’ denotes componentwise multiplication, r−1 denotes
the vector of entries r−1

i (i.e., componentwise reciprocal), and diag(ξ) = Ξ = I + (µQΛR)−1.
The mapping p′′ 7→ p′′�

(
(µQr)−1p′′+ ξ

)−1 is clearly injective, since ξ > 0. Additionally, it has
the property that for any real unit-norm vector e ≥ 0, there exists a scalar ε > 0 and a single
feasible vector p′′ ∈ ∂+p′′(P(µP)) such that

p′′ �
(
(µQr)−1p′′ + ξ

)−1 = εe. (D.72)

To see this, we first rewrite Expression (D.72) as

p′′ = εe� ξ �
(
1− εe� (µQr)−1)−1

. (D.73)

Since p′′ ≥ 0, the scalar ε must lie in the semi-open interval ε ∈ [0; mini µQri/ei[. From taking
the Euclidian norm of Expression (D.73), we obtain a function ε 7→ ‖p′′‖2 which bijectively maps
[0; mini µQri/ei[ onto R+. Since any p′′ ∈ ∂+p′′(P(µP)) has finite norm, there must necessarily
exist one single value of ε fulfilling

εe� ξ �
(
1− εe� (µQr)−1)−1 ∈ ∂+p′′(P(µP)). (D.74)

Consequently, all Pareto optimal points ∂+ω(P(µP)) can be reached by the construction method
from paragraphs 2) and 3), so that we may write

∂+ω(P(µP)) = ω
(
∂+p′′(P(µP)), I

)
. (D.75)

4) Now that we have established that the Pareto border ∂+ω(P(µP)) can be reached by
setting col(UP) ⊆ col(UR), we have that R̃ = (R−1 + P)−1 and R̂ = R − R̃ acquire the same
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eigenbasis, up to a column permutation. Specifically, we have that the alignment col(UP) ⊆
col(UR) implies col(UP) = col(UR̂) ⊆ col(UR̃). But as a consequence of Theorem 4.2, the
alignment col(UR̂) ⊆ col(UR̃) leads to [cf. (4.34)]

col(UQ) ⊆ col(UR̂). (D.76)

Hence, we obtain col(UQ) ⊆ col(UP) ⊆ col(UR). Since we know from Section 4.5.2 that
rank(P?) = rank(Q?) at any joint optimum (P?,Q?), we get the desired alignment property

col(UP) = col(UQ) ⊆ col(UR). (D.77)

Obviously, in case (D.77) is a strict inclusion, the eigenbases of P and Q should contain the
eigenvectors of R associated to the largest eigenvalues of R, hence

col(UP) = col(UQ) = {uR,1, . . . ,uR,r?} ⊆ col(UR), (D.78)

which concludes the proof of Theorem 4.4.

D.8 Proof of Lemma 4.3

For any set A ⊆ Rn+, the Pareto border ∂+A is a subset of the front border ∂fA. In fact, if it
were not so, then there would exist a Pareto optimal point, say a′ ∈ ∂+A, which would not be
the solution to

max
a∈A

a=νa′
ν (D.79)

in that another a′′ ∈ A colinear with a′ would exist that would have larger norm, i.e., ‖a′′‖ >
‖a′‖. Yet this is impossible by the definition of ∂+A, because a′′ would dominate a′ in the sense
a′′ ≥ a′, hence the contradiction.

It thus suffices to prove that ∂fs(Γ) ⊆ ∂+s(Γ) in order to conclude on set equality ∂fs(Γ) =
∂+s(Γ). For this purpose, take s′ to be some point of the front border ∂fs(Γ). Assume that there
would exist another point s′′ ∈ s(Γ) different from s′ that dominates s′, that is, s′′ ≥ s′. For
belonging to the set s(Γ), which is the union

s(Γ) =
⋃

(µP ,µQ)
µP+(T−Tτ )µQ≤Tµ

⋃
P∈P(µP )

s(P,Q(µQ)), (D.80)

the point s′′ would be contained in at least one of the sets s(P,Q(µQ)). Call P′′ ∈ P(µP) a
pilot Gram of rank rP′′ such that s′′ lies in s(P′′,Q(µQ)). According to Theorem 4.2, the set
s(P′′,Q(µQ)) is a simplex consisting of all convex combinations of rP′′ + 1 points σ(n), n =
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0, . . . , rP′′ , with σ(0) = 0 and [cf. (4.33)]

σ(n) = H(ω1, . . . , ωn)
n∑
j=1

ej , n ∈ {1, . . . , rP′′}, (D.81)

where ωi are the non-increasingly ordered eigenvalues of the generalized eigenvalue problem
[cf. (4.31)]

R̂′′vi = ωi(µ−1
Q I + R̃′′)vi (D.82)

with R̃′′ = (R−1 + P′′)−1 and R̂′′ = R − R̃′′. Notice that the linearly independent vectors
σ(n), n = 1, . . . , rP′′ , when linearly combined with non-negative coefficients, span the linear
subspace of RnT

+ of vectors having non-increasingly sorted entries on positions 1 through rP′′ ,
and zero entries on positions rP′′ + 1 through nT. Consequently, both s′ and s′′, which by
definition have non-increasing non-negative entries, can be written as linear combinations

s′ =
rP′′∑
n=1

ν ′nσ
(n) s′′ =

rP′′∑
n=1

ν ′′nσ
(n) (D.83)

with unique non-negative coefficients ν ′n and ν ′′n. Since s′′ ∈ s(P′′,Q(µQ)), the coefficients ν ′′n
sum up to

∑
n ν
′′
n ≤ 1. Now, since s′ and s′′ are distinct, and s′ ≤ s′′ by assumption, we must

have
rP′′∑
n=1

ν ′n <

rP′′∑
n=1

ν ′′n ≤ 1. (D.84)

Therefore s′ lies in the interior of s(P′′,Q(µQ)). Consequently, for a small enough ε > 0, the point
(1 + ε)s′ is element of s(P′′,Q(µQ)), and thus of s(Γ), which contradicts the initial assumption
that s′ ∈ ∂fs(Γ). Hence ∂fs(Γ) = ∂+s(Γ).

D.9 Proof of Lemma 4.4

Clearly, maximizing ν(p, e) as defined in (4.66) is equivalent to minimizing the function

ν̆(p) = 1
ν(p, e) + 1 = 1 + rTq(p, e)

η(p, e) , (D.85)
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where contrary to ν(p, e), the direction vector e is omitted in the notation of the function ν̆(p).
Writing the latter function out in full with help of definitions (4.64) and (4.65) yields

ν̆(p) =
1 + Tµ−

∑
i
pi

T−Tτ

(∑
i ei

1+ripi
r2
i pi

)−1 (∑
i ei

1+ripi
ripi

)
Tµ−

∑
i
pi

T−Tτ

(∑
i ei

1+ripi
r2
i pi

)−1

= T − Tτ
Tµ−

∑
i pi

(∑
i

ei
1 + ripi
r2
i pi

)
+
∑
i

ei
1 + ripi
ripi

, (T − Tτ )
(
ν̆1(p) + ν̆2(p)

)
+ ν̆3(p), (D.86)

the three functions ν̆1(p), ν̆2(p), ν̆3(p) in the last line being

ν̆1(p) =
∑
j

ejr
−2
j

1
pj(Tµ−

∑
i pi)

(D.87a)

ν̆2(p) =
∑
j

ejr
−1
j

1
Tµ−

∑
i pi

(D.87b)

ν̆3(p) =
∑
i

ei
1 + ripi
ripi

. (D.87c)

We will now show that the three functions ν̆1(p), ν̆2(p) and ν̆3(p) are all convex functions of p
on the interior of D(Tµ) ⊂ (0;∞)nT , which we shall denote as int(D(Tµ)). It is easy to see that
ν̆3 is essentially a linear combination (plus a constant) of functions 1/pi that are convex on the
entire open orthant (0,∞)nT , and thus on int(D(Tµ)) ⊂ (0;∞)nT . Similarly, ν̆2 is convex on the
open half-space

∑
i pi < Tµ, and thus on the subset int(D(Tµ)) thereof. Finally, ν̆1 is a linear

combination of functions 1
pj

1
Tµ−

∑
i
pi

, each of which is convex in p on int(D(Tµ)). This can be

shown as follows: take a pair of points
(
p(1),p(2)) ∈ int(D(Tµ))2, then for any θ ∈ [0; 1],

1
θp

(1)
j + (1− θ)p(2)

j

1
Tµ−

∑
i

(
θp

(1)
i + (1− θ)p(2)

i

) ≤ θ 1
p

(1)
j

1
Tµ−

∑
i p

(1)
i

+ (1− θ) 1
p

(2)
j

1
Tµ−

∑
i p

(2)
i

,

(D.88)

because the left-hand side of the latter inequality is convex in θ ∈ [0; 1], since it is of the form

A
1

1 +Bθ

1
1 + Cθ

(D.89)

with constants A = 1
p

(2)
j (Tµ−

∑
i
p

(2)
i )
≥ 0, B = p

(1)
j −p

(2)
j

p
(2)
j

, C =
∑

i
(p(2)
i −p

(1)
i )

Tµ−
∑

i
p

(2)
i

, and 1 + Bθ ≥ 0 and

1 + Cθ ≥ 0 by construction. The convexity of (D.89) is best seen by differentiating twice:

d2

dθ2

[ 1
1 +Bθ

1
1 + Cθ

]
= 2

(1 +Bθ)(1 + Cθ)

(
B2

(1 +Bθ)2 + C2

(1 + Cθ)2 + BC

(1 +Bθ)(1 + Cθ)

)
.

(D.90)
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The above expression is obviously positive if BC ≥ 0. Otherwise, if BC ≤ 0, then the expression
between square brackets on the right-hand side of the last equality is lower bounded by

B2

(1 +Bθ)2 + C2

(1 + Cθ)2 + 2BC
(1 +Bθ)(1 + Cθ) =

[
B

(1 +Bθ) + C

(1 + Cθ)

]2
≥ 0. (D.91)

Hence (D.88), and all the three functions ν̆1, ν̆2 and ν̆3 are convex in p on the open set int(D(Tµ)).
Thus, ν̆(p) is convex on int(D(Tµ)). Therefore ν(p, e) = 1/(ν̆(p) − 1), which is a decreasing
function of ν̆(p) > 1, is quasi-concave in p on int(D(Tµ)), according to Definition 4.2. Since
ν(p, e) vanishes on the boundary of D(Tµ) and is continuous in the vicinity of this boundary,
we conclude that p 7→ ν(p, e) is quasi-concave on the closure D(Tµ).
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