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1. Introduction 

This chapter has the following organization. The motivation for this Ph.D. is 

presented in section 1.1. Section 1.2 enumerates the results and contributions of the 

research work presented in this document. Finally, section 1.3 describes the structure of 

the document. 

1.1. Motivation 

Recent progress on wireless communications on the one hand, and technological 

improvements that allow to produce small, inexpensive and low-power wireless 

communication devices on the other, have caused Wireless Sensor Networks (WSNs) 

become increasingly important.  

WSNs comprise sensor and actuator nodes that enable intelligent monitoring and 

control applications in a wide spectrum of environments including smart cities, home 

automation, remote health and precision agriculture to mention a few [1].  

One of the main characteristics of WSNs is the fact that they are significantly 

constrained with respect to processing capabilities, memory and energy source. Another 

characteristic is that, being wireless, the links that interconnect these devices are lossy 

and usually support only low data rates. In certain IETF circles, networks of these 

characteristics are called Low Power and Lossy Networks (LLNs) [2].  

In the last decade, many LLN technologies have emerged [1]. Whereas most 

protocol architectures were born without native IP support, there exists a tendency in 

the market towards IP convergence, since IP-based LLNs offer an open and 

standardized way of connecting LLNs to the Internet, thus enabling the Internet of 

Things (IoT). The IETF anticipated this need by creating the IPv6 over Low power 

WPAN (6LoWPAN) Working Group (WG) [3], which provides an adaptation layer to 

enable and optimize the transmission of IPv6 packets on top of IEEE 802.15.4 

networks. However, 6LoWPAN needed a companion mechanism to enable the end-to-

end delivery of IP packets: a routing protocol, since most LLN configurations are 

multihop. The IETF then created the Routing Over Low power and Lossy networks 

(ROLL) WG [4] in order to analyze the suitability of and/or create IP-based routing 

functionality for LLNs. The main outcome of the ROLL WG has been a new routing 

protocol called IPv6 Routing Protocol for LLNs (RPL) [5].  
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RPL was specifically designed to meet the requirements of WSNs [6-9] and is a 

central component of the IETF protocol suite for the IoT. Since RPL has already been 

deployed in millions of nodes [10], it is fundamental to characterize the properties of 

RPL, evaluate the influence of its main parameters and options on network 

performance, and analyze performance improvement possibilities. In this thesis, we 

present several original contributions in this field, which are enumerated in the next 

subsection.   

1.2. Results and contributions 

The major contributions of this PhD dissertation are as follows: 

 Evaluation of the influence of the main RPL parameters on the network 

convergence process over IEEE 802.15.4 multihop networks of in terms of 

network characteristics such as size and density; proposal and evaluation of a 

mechanism that leverages an option available in RPL for accelerating network 

convergence. 

 Development of an analytical tool to estimate the number of control messages 

transmitted in a static network which uses the Trickle algorithm (a transmission 

scheduling algorithm used in RPL, see section 3.2) under steady state 

conditions. 

 Development of an analytical model for estimating the network convergence 

time of RPL in a static chain topology network of IEEE 802.15.4 nodes, in the 

presence of bit errors.  

 Theoretical evaluation of the route change latency incurred by RPL when 

6LoWPAN Neighbor Discovery (ND) is used. Study of the impact of the 

relevant 6LoWPAN ND and RPL parameters on path availability and the trade-

off between path availability and message overhead. 

 Development of a RPL simulator for OMNET++_4.3.1 using MiXiM-2.3. 

As can be seen, the contributions focus on performance of RPL in both transient 

state, i.e. during the network formation process, and steady state. 

1.3. Structure of this thesis  

This document is organized in eight chapters. The novel contributions of the author 

are mainly presented in chapter 4, chapter 5, chapter 6 and chapter 7. The context for 
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the contributions is provided in the first three chapters of this document. The 

organization of this document is shown next. 

Chapter 1 is the current introduction. 

Chapter 2 provides an overview on WSNs. First, the chapter introduces the main 

concepts and constraints of WSNs, which should be taken into account while designing 

a routing protocol for WSNs. Next, we review the main features of IEEE 802.15.4, a 

popular radio interface for WSNs.  

Chapter 3  first reviews the motivation and design requirements for RPL. Next, the 

chapter studies the main functionality of RPL and its transmission scheduling algorithm, 

Trickle. Subsequently, the routing metrics and constraints used in RPL for path 

selection are described. The last section of this chapter is devoted to RPL ancestors and 

other routing protocols used in different LLN technologies.  

Chapter 4 presents a study on the impact of two important RPL parameters on the 

network convergence process in IEEE 802.15.4 multihop networks. We also propose 

and evaluate a mechanism for accelerating the DODAG convergence process, by 

leveraging an option available in RPL. The study has been carried out by extensive 

simulations for a wide range of conditions, considering different values for network 

parameters such as network size and density. 

Chapter 5 presents an analytical model of the network convergence time in RPL 

under realistic assumptions, such as the presence of bit errors and the use of IEEE 

802.15.4 at the physical and link layers. The model is developed for a static chain 

multihop topology, which also provides a lower bound on the network convergence 

time in a generic topology. 

Chapter 6 presents an analytical model for the number of messages transmitted in a 

network that uses the Trickle algorithm. The model assumes a static network which is in 

steady state. However, for more dynamic WSNs, the model provides a lower bound on 

the number of message transmissions. The model is highly accurate for both 

synchronous and asynchronous networks. 

Chapter 7 presents a theoretical evaluation of the route change latency incurred by 

RPL when 6LoWPAN ND is used . The chapter also studies the impact of the relevant 

6LoWPAN ND and RPL parameters on path availability as well as the trade-off 

between path availability and message overhead. 

Chapter 8 summarizes the main concluding remarks from this Ph.D. and points out 

future work directions. 
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2. Wireless Sensor Networks  

In this chapter, we introduce the main concepts of Wireless Sensor Networks 

(WSNs), and give an overview on the IEEE 802.15.4 standard, which is the most 

prevalent radio interface for WSNs. The chapter is organized into three sections. Section 

2.1 defines WSNs, their constraints, and the main WSN application areas. Section 2.2 

introduces different topologies used in WSNs. Section 2.3 describes the main 

characteristics of the IEEE 802.15.4 standard and highlights the relevant features that 

will be mentioned in the subsequent chapters. 

2.1. Main characteristics of WSNs  

A WSN is a network that may be composed of a large set (hundreds or thousands) 

of distributed autonomous small and inexpensive low-power and low-cost sensors, 

actuators or smart objects which have significant limitations in terms of storage 

resources, processing power and energy.  

The basic task of a WSN is to monitor an environment in order to sense some 

specific events or collect data, and send the information gathered to requested 

destinations. Due to the low cost and the ad-hoc nature of this kind of networks, WSNs 

can be used for different purposes including [1, 11-13]: environmental monitoring, 

healthcare, structural monitoring, logistics, seismic detection, military surveillance, 

inventory tracking, home and building automation, industrial monitoring and control, 

smart cities, etc.  

Most wireless sensors have the ability of sensing, computation and communication 

among each other or with an infrastructure element like a sink node or gateway. The 

main components of a sensor node are the sensing unit, the processing unit, the memory 

unit, the communication unit, the power unit and, if necessary, Analogue to Digital 

Converters (ADCs), see Figure 2.1.  

2.2. Topologies 

As the network topology has a significant impact on the performance of a routing 

protocol, in this subsetion we review the main topologies used in WSNs. 
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There are different topologies that can be found in WSNs. These topologies can be 

classified in three main categories: star topology, tree topology and mesh topology. 

However, a WSN may use a combination of these topologies. 

2.2.1. Star topology 

In the star topology one of the sensor nodes plays the role of a sink node, and all 

other nodes are directly connected to the sink node, see Figure 2.2. Nodes can only 

communicate among each other through the sink node.  

The main advantage of this toplogy is its simplicity. However, since all sensor 

nodes must be in the transmission range of a sink node, this toplogy cannot be used in a 

large scale network or when the geographical distance between a sender and its 

destination is large (e.g. greater than the transmission range).  

2.2.2. Tree topology 

The tree topology is a combination of connected multiple star topologies, see 

Figure 2.3.a). One node which is in the highest level of the tree, is named root of the 

tree and can play the role of a sink node in the network. The tree topology facilitates 
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Figure 2.2. Star topology 
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Figure 2.1. The main components of a sensor node [1] 
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routing data collected from sensors towards a root node. On the other hand, in case of 

root failure, the whole network will be crippled. 

2.2.3. Mesh topology 

In the mesh topology, all possible links that exist in the network may be used for 

communication, see Figure 2.3.b). When a destination is not in the transmission range 

of the source node, multihop transmission is utilized. An advantage of this topology is 

that if a path between two nodes fails, the nodes may be able to communicate with each 

other through an alternative route, if such route exists.  

2.3. IEEE 802.15.4 overview  

IEEE 802.15.4 is the de-facto family of standard radio interfaces for low-cost and 

low-power, low-rate and short-range wireless communications. IEEE 802.15.4 specifies 

Physical (PHY) and Medium Access Control (MAC) layer [14].  

2.3.1. Physical layers of IEEE 802.15.4-2003 

This section reviews the physical layer (PHY) of the IEEE 802.15.4-2003 which is 

the most implemented variant of the IEEE 802.15.4 family. This PHY is responsible for 

the following  four tasks: 

1. Activation and deactivation of the radio transceiver. 

2. Data transmission and reception. 

3. Measurement of Energy detection (ED) and Link Quality Indication (LQI). The 

energy detection estimates the power of a signal received and it is used to 

accept or ignore a packet received. This parameter may also be used by an 

                            a)                                                             b) 

 
              Figure 2.3. a) Tree topology; b) Mesh topology 
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upper layer in order to avoid the use of busy channels. The LQI indicates the 

strength/quality of a received packet and may be used by network or application 

layers.  

4. Performing the Clear Channel Assessment (CCA) for Carrier Sense Multiple 

Access with Collision Avoidance (CSMA-CA) algorithm which is a function 

used by the MAC sub-layer. 

The original specification, IEEE 802.15.4-2003, specifies the Radio Frequency 

(RF) link parameters, including modulation type, coding, spreading, symbol/bit rate, 

and channelization. This specification defines 27 channels spread across three different 

frequency bands: 1 channel in the 868 MHz band which is available in Europe, 10 

channels in the 915 MHz band, available in the Americas region, and 16 channels in the 

2.4 GHz band that is available worldwide. 

The 2.4 GHz band is the most commonly used one among the bands available in 

IEEE 802.15.4.  Channels in this band provide a raw data rate of 250 kbit/s.  

Direct Sequence Spread Spectrum (DSSS) is used for spreading the spectrum of the 

signal in this standard. The modulations in IEEE 802.15.4-2003 are based on the Phase-

Shift-Key (PSK) modulation. However, the 868/915 MHz bands use Binary PSK 

(BPSK) modulation and the 2.4 GHz band uses Offset-Quadrature PSK (O-QPSK). 

Table 2.1 shows the main physical layer features of IEEE 802.15.4-2003. 

2.3.1.1.1. Physical Protocol Data Unit format 

The main service of the physical layer is to enable the transmission and reception of 

IEEE 802.15.4 PHY protocol data unit (PPDU), the data unit that carries the upper layer 

data unit (i.e. MAC frame), across the physical radio cannel.  

There are three components in the PPDU: the synchronization header (SHR), PHY 

header (PHR), and PHY payload. The structure of the PPDU is shown in Figure 2.4.  

 

Table 2.1. Physical layer features of IEEE 802.15.4-2003 [1] 

 

Frequency 

band 

Number of 

channels 

Spreading 

technique 

Modulation Symbol rate 

per channel 

(kbaud) 

Bit rate per 

channel 

(kbit/s) 

868 MHz 1 Binary DSSS BPSK 20 20 

915 MHz 10 Binary DSSS BPSK 40 40 

2.4 GHz 16 16-array 

DSSS 

O-QPSK 62.5 250 
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SHR allows a receiving node to synchronize and lock into the bit stream. It is 

composed of a preamble field, which is used by the transceiver to obtain chip and 

symbol synchronization, and the Start-of-Frame Delimiter (SFD) that indicates the end 

of the SHR and the start of the data packet. The PHR contains the length of the PHY 

payload and finally, the PHY payload carries the MAC sublayer frame. The PHY 

payload is also called PHY Service Data Unit (PSDU). 

2.3.2. MAC layer of IEEE 802.15.4  

The Medium Access Control (MAC) layer manages access to a physical radio 

channel shared between network nodes. At the MAC layer, IEEE 802.15.4 networks 

may be configured in two modes1: i) on the basis of a superframe structure delimited by 

beacons, or ii) in a beaconless mode. The latter is generally preferred due to its 

simplicity and also it does not require any specific network organization. For these 

reasons in this thesis we have assumed the beaconless mode of IEEE 802.15.4 MAC. 

Next we explain the operation of this mode. 

2.3.2.1. Beaconless mode of IEEE 802.15.4 MAC 

 

In the beaconless mode, nodes use unslotted CSMA/CA as the medium access 

mechanism. In this mode, the process for transmitting a data frame requires the sender 

to wait for an initial, uniformly random backoff time ranging from 0 to 2BE-1, where BE 

is the current backoff exponent. Initially, BE is set to macMinBE and its maximum 

value is macMaxBE. The default values of macMinBE and macMaxBE are 3 and 5, 

respectively. In addition to the backoff exponent, BE, IEEE 802.15.4 uses another 

variable called NB which is used to count the number of times the CSMA/CA algorithm 

has been used while attempting the current transmission and it is initialized to 0 at the 

beginning. After waiting for the backoff time, the sender carries out a Clear Channel 

                                                 
1 Note that we do not consider the recent MAC layer functionality mechanisms that have been added in 

IEEE 802.15.4e. 
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Figure 2.4. The IEEE 802.15.4 PPDU format 
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Assessment (CCA) to check the state of the medium. If the medium is idle during CCA 

time, the sender performs the transmission. Otherwise, the sender increases BE and NB 

by one unit (if BE < macMinBE) and does the same procedure up to 

macMaxCSMABackoffs+1 (while NB <= macMaxCSMABackoffs). After 

macMaxCSMABackoffs+1 unsuccessful attempts to access the channel, the procedure 

fails and the data frame is discarded. Figure 2.5. illustrates the steps of the CSMA/CA 

algorithm in the beaconless mode. 

2.3.2.2. MAC packet data unit format 

 

All MAC data frames are encapsulated in the PSDU. The format of a MAC data 

frame is shown in Figure 2.6.  

Each MAC data frame is composed of the three following components: 

 

No Yes 

Delay for random (2BE-1) 
unit backoff period 

NB=0 
BE= macMinBE 

CSMA/CA 

Perform CCA 

 Channel idle 

Failure 

Success 

NB=NB+1 
BE= min (BE, macMaxBE) 

 NB>macMaxCSMABackoffs 

Yes 

No 

Figure 2.5. CSMA/CA beaconless mode algorithm  
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1. MAC header (MHR): this part contains three different fields. The first is the 

Frame Control Field (FCF), which has a size of 2 bytes and includes information 

about the frame type, addressing fields and other control flags. The second field 

is the sequence number, which has a size of one byte. Finally, the addressing 

fields may include a two-byte destination PAN identifier, a 16- or 64-bit 

destination address, a two-byte source PAN identifier and a 16- or 64-bit source 

address 

2. MAC payload (MSDU): its content depends on the frame type and it has a 

variable size. 

3. MAC footer (MFR): this field contains a Frame Check Sequence (FCS) and has 

a size of 2 bytes. 
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Figure 2.6. Format of the IEEE 802.15.4 data frame 
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3. IP-based routing protocol for LLNs  

In this chapter we focus on RPL and its related mechanisms. First of all, we provide 

a RPL overview, including the motivation for its design and its basic functionality. Next 

we present a detailed description of a key RPL component, which is the Trickle 

algorithm. We also explain the objective function concept and neighbor discovery, and 

finally we review routing functionality related with RPL. 

3.1. RPL overview 

In this subsection, we first review the motivation for the design of RPL in section 

3.1.1. The basic operation of RPL is provided in section 3.1.2. Section 3.1.3 explains 

routing methods in RPL. Point-to-Point communication mechanism in RPL is discussed 

in section 3.1.4 and section 3.1.5 presents neighbor unreachability detection in RPL. 

Finally, section 3.1.6 reviews different repair mechanisms in RPL. 

3.1.1. Motivation for the design of RPL  

Five years ago, the IETF ROLL Working Group (WG) wrote four documents [6-9] 

to describe ROLL application requirements, in order to assist in the selection or the 

development of a new routing protocol for LLNs. The application environments 

considered in these documents were home automation, building automation, industrial 

networks and urban networks, respectively. 

Then, the IETF ROLL WG carried out a protocol survey [15] and specified five 

main criteria for routing over LLNs, extracted from the requirements that the above 

mentioned documents from different applications domains share. In this survey, it is 

considered that the ideal routing protocol to operate over LLNs should be able to satisfy 

all of the following criteria: "routing state", "loss response", "control cost", "link cost", 

and "node cost".  

The first criterion, "routing state", indicates that the amount of memory used in 

each router in the routing protocol must not scale with number of nodes in the network. 

Instead, it should scale with the number of one-hop neighbors of a router.  

The second criterion, "loss response", indicates that when a link failure occurs in 

LLNs, the routing protocol should try to repair the link failure by a local mechanism 

instead of triggering a global network re-optimization.  
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The “control cost” criterion proposes that, in order to maintain a network topology, 

the control traffic rate of a routing protocol should be bounded by the data traffic rate 

plus a small constant.  

“Link cost” and “node cost” criteria are related to the metrics used by the routing 

protocol. The routing protocol must be able to satisfy node/link metrics and constraints 

in finding paths. Examples of these criteria include minimizing latency, or maximizing 

link reliability, power processing and available amount of memory or battery life of a 

node. 

The IETF ROLL WG, after reviewing all the existing IETF routing protocols, see2 

Table 1, concluded that no existing routing protocol (in its current form) could fulfill the 

above mentioned criteria. Instead of adapting any of the existing routing protocols, the 

ROLL WG decided to develop a new routing protocol for IP-based LLNs. As a result, 

the IPv6 Routing Protocol for Low power and Lossy networks (RPL) [5] has been 

designed taking into account the above mentioned requirements. 

 

Table 3.1. Evaluation of existing IETF routing protocols 

 
Protocol Routing state Loss response Control cost Link cost Node cost 

OSPF/IS-IS [16-18] fail fail fail pass fail 

OLSRv2 [19] fail ? ? pass pass 

TBRPF [20] fail pass fail pass ? 

RIP [21] pass fail pass ? fail 

AODV [22] pass fail pass fail fail 

DYMO [23] pass ? pass ? ? 

DSR [24] fail pass pass fail fail 

 

3.1.2. RPL basic operation  

RPL is an IPv6-based proactive distance vector Routing Protocol for Low power 

and Lossy networks which has recently been developed by the IETF ROLL working 

group [5].  

RPL builds Destination Oriented Directed Acyclic Graphs (DODAGs), based on 

routing metrics and constraints. A DODAG is a directed graph whereby all edges are 

oriented in such a way that no cycles exist. The edges are contained in paths oriented 

towards and terminating at one node that is called the root. A set of one or more 

                                                 
2 In Table 1, the meaning of the word "pass" is that a given protocol has satisfactory performance 

according to the criterion. The value of "fail" means that the protocol cannot satisfy the criterion. Finally, 

the value of "?" means a protocol would require a supplementary document for better assessing whether 

the protocol passes the criteria or not. 
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DODAGs that try to provide a specific objective is called RPL instance (see Figure 3.1). 

In order to satisfy different constraints and criteria, a network may use multiple RPL 

instances concurrently, each of which may serve different and potentially antagonistic 

constraints or performance criteria. According to RPL rules, each node can only belong 

to one DODAG in the RPL Instance, but it can belong to multiple RPL instances 

concurrently.  

Each RPL Instance is defined by a unique identifier within a network called 

RPLInstanceID. In order to distinguish DODAGs in a RPL Instance, RPL uses a unique 

identifier for each DODAG called DODAGID. RPL uses a sequential counter, 

incremented by the DODAG root, to identify the version of each DODAG called 

DODAGVersionNumber. 

There are two types of DODAG in RPL: grounded and floating DODAG. A 

DODAG that, in addition to providing inner connectivity within itself, can provide 

connectivity to nodes in other networks, is called grounded DODAG. In contrast, a 

floating DODAG only offers connectivity between nodes within the DODAG and it 

cannot provide routes to nodes in other DODAGs. 

For the construction and maintenance of the DODAG, RPL nodes transmit 

DODAG Information Object (DIO) messages via link-local multicast pseudo-

periodically [25], further detail is given in section 3.2. A DIO message contains 

information that allows a node to discover a RPL instance, learn its configuration 

parameters, learn the Objective Function (OF) used and maintain the upward routing 

topology. In addition, the DIO message can include options. One of these options is the 

DODAG configuration option, which contains the necessary information to set the 

parameters in each new node: default lifetime, parameters for scheduling the 

Figure 3.1. A network with a RPL instance and two DODAGs. Nodes a 
and e are the roots of DODAG 1 and DODAG 2. respectively. 
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transmission of DIO messages, metric container, etc [5]. Default lifetime specifies the 

time of validity for all routes in a DODAG. RPL does not currently specify any default 

value for this parameter.  

Each node in a DODAG selects a DODAG parent set, which is composed of the 

nodes that provide connectivity to the rest of the nodes in the DODAG. For example, in 

Figure 3.1, the parent set of node k is {b, w, u}. A node uses the rank property in order 

to select another node as a DODAG parent. The rank property is the individual position 

of a node relative to other nodes with respect to the DODAG root. In other words, the 

rank of a node abstracts the topological distance between a node and the DODAG root. 

Each node of a DODAG indicates its rank in the DIO messages it transmits. A node 

calculates its rank property by applying the Objective Function (OF) in use in the 

DODAG, and using the rank of its neighbors as an input. The OF defines how nodes use 

one or more metrics and constraints in order to determine their own rank. Some of the 

metrics and constraints that can be used in the OF are the following ones: Expected 

Transmission count (ETX), Latency, HoP-Count (HP), Link Quality Level (LQL), and 

Remaining energy.  

When a node does not understand or support the RPL Instance’s OF or advertised 

metric/constraint, it may join a DODAG as a leaf node. A leaf node is a node that does 

not extend the DODAG connectivity; i.e. it should not send DIO messages. 

Another control message used in RPL is the DODAG Information Solicitation 

(DIS) message. When a new node wants to join a DODAG, it either can wait to receive 

DIO messages from nearby nodes or it can send a DIS message in order to request the 

immediate transmission of DIO messages from neighboring nodes. A DIS message can 

be sent either in multicast or unicast. When a node wants to receive information, such as 

the DODAG configuration option, from one of its parents, it unicasts a DIS to that 

parent. If the node does not have any parent and it is the first time that it wants to join a 

DODAG, it multicasts a DIS message.   

When a node sends a DIS message and does not receive any DIO message in 

response, after some time the node may decide to be the root of its own floating 

DODAG and start to multicast DIO messages.  

3.1.3. Upward and downward routing in RPL 

The core RPL functionality defines two types of routes depending on the direction 

in which data are transmitted in a DODAG: upward and downward routes. An upward 
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(downward) route provides a path towards (from) the DODAG root from (to) non-root 

nodes. After joining a DODAG, each node learns its upward routes by choosing its 

parent set. Upward routes are used for data transmission from non-root nodes to the 

root. However, to establish downward routes RPL uses Destination Advertisement 

Object (DAO) messages which are issued by non-root nodes in order to propagate 

destination information upwards. RPL defines two modes of operation for downward 

routing in a DODAG, depending on the storage capabilities of a node: storing and non-

storing mode. In the storing mode, all non-root nodes store downward routing tables for 

their sub-DODAG, which contain information obtained from the DAO messages. In 

non-storing mode, nodes do not store routing tables for their sub-DODAG. Instead, 

nodes downward packets by using source routes populated by the DODAG root.  

3.1.4. P2P mechanism  

3.1.4.1. P2P communication in the base RPL specification 

In RPL, one-hop Point-to-Point (P2P) communication between two nodes is 

allowed, for both modes of operation, storing and non-storing modes. A node can 

directly send data packets to a one hop neighbor. 

RPL uses the Multicast Destination Advertisement Object (Multicast DAO) 

message to provide P2P routes for one-hop communication between DODAG nodes. A 

node uses a multicast DAO message to advertise information about itself. This message 

can be sent to the link-local scope all-RPL-nodes multicast address. 

However, if the destination is not within the source’s range, this mechanism does 

not work. In such case, data have to be transmitted upwards and downwards following 

the DODAG structure, which may not be optimal. 

3.1.4.2. Optimized P2P communication 

Since the default P2P mechanism used in RPL may not be always optimal (i.e. 

there may exist shorter paths than the ones selected by RPL), a reactive mechanism for 

finding P2P routes has been designed [26].  

Using this mechanism, a source node will be able to request a route to any other 

DODAG node. To this end, the source node forms a temporary DODAG that is rooted 

at itself by disseminating DIO messages which include a P2P Route Discovery Option 

(P2P-RDO). Such DIO messages are called route discovery messages. Route discovery 

message transmission is based on the Trickle algorithm. However, Trickle parameters 
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used to send route discovery messages can be different from the ones used to form and 

maintain the main DODAG. 

All route discovery messages are sent via link-local multicast and all links between 

nodes in the temporary DODAG should have bidirectional reachability.   

A source node announces Trickle parameter values, number of desired routes, route 

type (source route/hop-by-hop route), route constraints that the discovered route must 

satisfy and the lifetime of the temporary DODAG by including them in the P2P-RDO 

that will be carried by DIO messages. Using the route discovery message a source node 

can request one hop-by-hop route or up to four source routes per target. A source node 

can ask a target to inform about discovered routes by setting a flag of the route 

discovery message. In this case, upon receiving a route discovery message, the target 

sends back a P2P Discovery Reply Object (P2P-DRO) message to the source node in 

response.  

3.1.5. Neighbor unreachability detection in RPL  

RPL does not provide any mechanism for neighbor unreachability detection. 

However, the RPL specification suggests two mechanisms for that purpose: i) use of the 

Neighbor Unreachability Detection mechanism defined in IPv6 Neighbor Discovery 

specification [27]; ii) layer two notifications when layer two is acknowledged. Using a 

proactive approach such as Keepalive messages is not desirable, because it is expensive 

in terms of bandwidth and energy. Further details about neighbor unreachability 

detection mechanism in IPv6 are given in section 3.4. 

3.1.6. DODAG repair in RPL  

Repair is an important feature of a routing protocol. When a link or node failure 

happens in a network, this mechanism tries to heal the network topology with a 

minimum cost. The RPL core offers two repair mechanisms called local repair and 

global repair, respectively.  

3.1.6.1. Local repair 

When a node’s parent set becomes empty and the node does not have any parent in 

the upward direction, or when a packet is sent out in the upward direction but the 

receiving router has greater rank than the sender of the packet, an inconsistency occurs. 

In these cases, local repair can be triggered to solve the problem.  
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In the first case, when the parent set of a node becomes empty, the node has to 

advertise a rank of INFINITE_RANK in order to inform its sub-DODAG that it no 

longer has any routes to the root. In addition it may become the root of a floating 

DODAG and reset its Trickle timer (see 3.2). There is a rule in RPL by which having a 

parent with a Rank of INFINITE_RANK in the parent set of a node is forbidden. In this 

way the nodes in the sub-DODAG must select another member of its parent set as a 

preferred parent, if any, to keep their connectivity. Otherwise, these nodes should do the 

same action.  

RPL includes a reactive mechanism to carry out loop avoidance and detection. To 

this end, each data packet sent by RPL nodes contains a RPL Packet Information field 

[28] that allows RPL to detect loops while forwarding a data packet. RPL Packet 

Information defines control flags that are checked upon reception of a data packet. 

These flags are defined as follows: 

 Down flag ‘O’ (1 bit flag): this flag is used to identify a packet direction. When the 

direction is downward this flag is set to 1, otherwise it is set to 0. 

 Rank-Error flag ‘R’ (1 bit flag): ‘R’ flag is relative to ‘O’ flag. When a packet 

direction is wrong, based on the ‘O’ flag, the ‘R’ flag is set to 1, otherwise it is set to 

1. 

 Forwarding-Error ‘F’ (1 bit flag): this flag is used when the ‘O’ flag is set, i.e. in the 

downward direction. When the ‘F’ flag is set it indicates that the sender node does 

not have any route towards destination. 

When a node receives a data packet with the ‘O’ flag set and the sender’s rank is 

higher than its own rank, an inconsistency has occurred. Also if a data packet is 

received from a sender with lower rank while the ‘O’ flag is zero, an inconsistency 

happens.  

When an inconsistency has occurred while forwarding a data packet, RPL nodes 

ignore it for the first time. This can be done by checking the ‘F’ flag within the packet 

received. If the ‘F’ is zero this means that it is the first time that an inconsistency has 

happened for this packet, in this case the receiving node should set the ‘F’ flag to 1. 

However, if the ‘F’ is 1, the packet will be discarded and the receiving node should reset 

its Trickle timer. This local mechanism, resetting the Trickle timer, will cause the 

receiving node to inform the sender node to adjust its rank.  

Another reason that can cause an inconsistency is the reception of a multicast DIS 

message from a node that is interested in selecting the receiving node as its parent. The 
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DIS message can contain information, carried within the Solicited Information option, 

that specifies which receiving nodes must reset their Trickle timer. In addition, when a 

node receives a DIS message without a Solicited Information option it should reset its 

Trickle timer. 

3.1.6.2. Global repair 

DODAG roots can trigger a mechanism called global repair by incrementing the 

DODAGVersionNumber that is included in each DIO sent. Global repair causes a 

DODAG to form again from the beginning, which means that all nodes must select their 

parent set and subsequently compute their rank in the new DODAG version. Whenever 

a node hears a new DODAGVersionNumber, propagated in a received DIO message, it 

may immediately join the new DODAG by selecting the sender of a DIO message 

received as a parent. The node can also defer joining the new DODAG in order to 

receive a DIO from a DODAG that is preferred. However, in both cases, upon joining a 

new DODAG version, a node must not select as a parent another node that advertises an 

old DODAGVersionNumber. 

Selecting the parent set in the new DODAG version is completely independent of 

the previous version. However, it is possible that a node chooses the same position, rank 

and parent set, in the new version. The RPL specification does not state when a 

DODAG root should increment its DODAGVersionNumber to form a new version of 

DODAG and leaves this decision up to implementation criteria.  

3.2. The Trickle algorithm  

The previous subsection introduced that DIO messages are disseminated pseudo-

periodically, by using an algorithm called Trickle. Trickle is a transmission scheduling 

algorithm for local primitive communication between nodes in a network which is 

based on a consistency model [25]. When a network is in consistent state, nodes slow 

their communications rate exponentially, such that they transmit Trickle messages at 

most a few packets per hour. In contrast, when a node detects an inconsistency, it 

communicates Trickle messages quickly to resolve the inconsistency. At first, the 

Trickle algorithm was proposed for code propagation and maintenance in Wireless 

Sensor Networks (WSNs) [29] but it has been shown that it can be used for different 

purposes, such as control traffic timing, multicast propagation and route discovery [25].  
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The Trickle algorithm has gained relevance in recent years, since it has been 

standardized by the IETF as the mechanism that regulates the transmission of DIO 

messages, which are used to create the network graph in RPL [5]. 

The Trickle algorithm divides time into non-identical intervals in such a way that 

the size of the smallest interval is Imin and the size of the largest one is Imax. In each 

interval each node tries to send its Trickle message based on the Trickle rules. The 

Trickle algorithm works based on some parameters, variables and rules. We next review 

this algorithm.  

There are three parameters to configure the Trickle algorithm:   

 The minimum interval size, Imin. 

 The maximum interval size, Imax. 

 And a redundancy constant, k. 

 In addition, the Trickle algorithm has three variables which track the current status 

of the algorithm which are as follows: 

 I: the current interval size. 

 t: a time within the current interval. 

 c: number of heard messages within the current interval. 

The main operation of the Trickle algorithm is based on the following steps: 

1. Initially, Trickle sets I to a value in the range [Imin, Imax]. 

2. At the beginning of each interval, Trickle sets I to a value in the range [Imin, Imax] 

and resets c to 0 and sets t to a random point from the range [I/2, I). 

3. Whenever Trickle hears a transmission that is consistent it increments its own 

counter c.  

4. At time t, Trickle transmits if, and only if, its counter c is lower than the 

redundancy constant, k; otherwise the transmission is suppressed. 

5. Whenever the interval I expires, Trickle doubles the interval length (if the new 

interval length is greater than Imax, the new interval length is set to Imax). Then, 

the algorithm goes back to execute step 2. 

6. If Trickle hears a transmission that is inconsistent, it must reset I, set this 

variable to Imin, start a new interval and execute step 2. 

In RPL, the three main parameters of the Trickle algorithm, Imin, Imax and k, are set 

by the DODAG root. The values for these parameters are encapsulated in the DIO 

messages sent by the root. Hence, these parameter values are learnt by the root 



Chapter 3. Requirements for an IP-based routing protocol for LLNs 

______________________________________________________________________ 

 32 

neighbors upon DIO reception, and are included in the DIO messages sent by these 

neighbors. The same process happens for the rest of nodes that join the DODAG, and 

thus the parameter values originally announced by the root are propagated to the whole 

DODAG. In order to keep a low network convergence time, Imin is commonly used as 

the value for the first interval [30]. 

Figure 3.3 depicts an example of the Trickle transmission in the four-node network 

shown in Figure 3.2, where the value of redundancy constant, k, is 1.  

In the first interval, node 2 sends a Trickle message before the other nodes because 

it has the lowest random value of t of all four nodes. Nodes 1 and 3 hear this 

transmission and increase their counter, c. Since node 4 is out of the coverage range of 

node 2, it does not hear this transmission, thus it does not increment its counter. The 

second minimum transmission time is the one selected by node 1, but this node 

suppresses its Trickle message because its counter’s value, c, is 1 (to be able to send the 

Trickle message, the value of c has to be smaller than 1, i.e. c < k). Subsequently, node 

4 transmits a Trickle message because it has not heard any transmission. The last node 

in the first interval is node 3, which suppresses its transmission, due to its counter’s 

value.  

In the second interval, first node 3 transmits a Trickle message, thus all other nodes 

increase their counters since all of them hear this transmission. In the rest of this 

interval no other node transmits because the value of c is 1 for all nodes, and this value 

is not smaller than the redundancy constant value.  

3.3. Objective functions  

The Objective Function (OF) defines how RPL nodes select and optimize routes 

within a RPL Instance. The OF used in a DODAG is indicated within DIO messages 

using a Metric Container suboption. Whereas several OFs can be defined and supported 

by a RPL implementation, the RPL specification only mandates the support of the 

Objective Function Zero (OF0), see 3.3.1.  

The set of node and link metrics and constraints that are desirable to consider in 

LLNs and can be used in RPL are listed in [31]. A routing metric can be used as a 

constraint as well. In general, this specification divides routing metrics in two 

categories: aggregated and recorded. An aggregated metric will be adjusted on each 

receiving node in a DODAG, e.g. hop count, etc. If a recorded metric is used, each node 

adds a sub-object reflecting the local computation of the metric, e.g. LQI, ETX, etc. The 



Chapter 3. Requirements for an IP-based routing protocol for LLNs 

______________________________________________________________________ 

 33 

aggregated metrics are classified in four different types: additive, multiplicative, 

minimum and maximum. The type of each metric is indicated within a Metric Container 

carried within the DIO message.  

Using multiple metrics and constraints in RPL is allowed. To this end, a DIO 

message can carry Multiple Metric Containers. It is very important that the mechanism 

used for the calculation of node/link metrics and constraints has to be the same for all 

nodes and links.  

In general, metrics and constraints used in wireless networks may try to satisfy at 

least one of the following goals: 

 Minimize delay 

 Maximize probability of data delivery 

 Maximize path throughput 

 Minimize energy consumption 

 Equally distribute traffic load 

Figure 3.2. A network with four nodes where the circles show the 
corresponding coverage range of each node. 

First interval Second interval 

Node 1 
C=0 

Node 2 
C=0 C=0 

Node 3 
C=0 C=0 

C=0 

Node 4 
C=0 C=0 

C=1 

C=0 

C=0 

C=1 C=2 

Suppress 

Suppress 

C=1 

C=0 

C=1 

C=1 
Suppress 

Suppress 

Suppress 

     
   : Trickle transmission.                                    : Suppression of Trickle transmission. 

   : Reception  of Trickle transmission. 

 

Figure 3.3. Trickle transmission in a synchronous network with the four nodes shown in 
Figure 3.2. 
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Link metrics/constraints that are listed in [31] for possible use in RPL are as 

follows: Throughput, Latency, LQL, ETX, and Link Color where Energy and Hop-

Count are specified as node metrics/constrains. 

In the following we present the OFs proposed as of the writing for RPL: OF0 and 

MRHOF. 

3.3.1. Objective Function Zero  

In order to find optimized routes in a RPL instance, using the same OF by DODAG 

nodes is very important, otherwise sub-optimal paths may form. It can also happen 

when different implementations want to cooperate together in the absence of an 

identical OF: correct interoperation between these implementations cannot be 

guaranteed. In this sense, Objective Function Zero (OF0) [32] is specified as the default 

OF for RPL in order to provide correct interoperation between different 

implementations of RPL.  

RPL nodes use the OF when they want to join a DODAG. This can be done by 

selecting a neighboring node as a preferred parent that presents a lower rank along with 

connectivity to a grounded root. To this end, a node scans all possible neighbors and 

assigns a value by using OF0 to each corresponding link, which is called step_of_rank. 

The value assigned to each link is based on link properties that can be static or dynamic. 

The exact method of step_of_rank computation is left to the implementation in OF0. In 

the case of using static link properties the result leads to a rank that is analogous to hop-

count. However, OF0 recommends use of dynamic metrics such as ETX instead of the 

statics ones. The implementation should set the step_of_rank between the fixed 

constants MINIMUM_STEP_OF_RANK and MAXIMUM_STEP_OF_RANK. Since the 

range of step_of_rank may not always be enough to strongly distinguish links of 

different types, e.g. powered over battery-operated or wired over wireless, OF0 allows 

the implementation to multiply step_of_rank by a factor that is called rank_factor. The 

implementation should set the rank_factor between the fixed constants 

MINIMUM_RANK_FACTOR and MAXIMUM_RANK_FACTOR. Sometimes after 

multiplication of step_of_rank by rank_factor an implementation needs to stretch the 

result by adding a configurable parameter that is called stretch_of_rank, in order to 

enable a node for selecting at least one feasible parent. This stretching can range from 0 

to the fixed constant MAXIMUM_RANK_STRETCH. Although stretching the 
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step_of_rank mechanism is allowed by OF0, it is not recommended, due to the 

possibility of loop creation.  

After the computation of the step_of_rank, rank_factor and stretch_of_rank, OF0 

computes a rank_increase value by applying the following equation: 

𝑟𝑎𝑛𝑘𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 = (𝑟𝑎𝑛𝑘𝑓𝑎𝑐𝑡𝑜𝑟 ∗ 𝑠𝑡𝑒𝑝𝑜𝑓𝑟𝑎𝑛𝑘
+ 𝑠𝑡𝑟𝑒𝑡𝑐ℎ𝑜𝑓𝑟𝑎𝑛𝑘

) ∗ 

 𝑀𝑖𝑛𝐻𝑜𝑝𝑅𝑎𝑛𝑘𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒                                                     (3.1) 

where MinHopRankIncrease is the minimum increase in rank between a node and any 

of its DODAG parents and it is defined in the RPL specification by the default value of 

DEFAULT_MIN_HOP_RANK_INCREASE.  

Finally a node’s rank can be computed as follows:  

𝑁𝑜𝑑𝑒′𝑠 𝑟𝑎𝑛𝑘 =  𝑃𝑎𝑟𝑒𝑛𝑡′𝑠 𝑟𝑎𝑛𝑘 + 𝑟𝑎𝑛𝑘_𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒                      (3.2) 

3.3.2. Minimum Rank with Hysteresis Objective Function  

Minimum Rank with Hysteresis Objective Function (MRHOF) [33] is another OF 

proposed for RPL that can only be used with an additive metric that must be minimized 

on the paths selected for routing. In other words MRHOF finds a path with the 

minimum cost based on the metric advertised in metric container. To do so, when a new 

path is found, MRHOF switches to the new path if and only if the new path cost is 

smaller than the cost of current path plus a given threshold, denoted by 

PARENT_SWITCH_THRESHOLD in MRHOF specification. The cost of a path is the 

summation of the selected metric of the links or nodes along the path.  

When a node wants to join a DODAG, it scans all of its feasible neighbors in order 

to calculate the corresponding metric to each of these neighbors/links, depending on the 

metric advertised in the metric container which is link or node metric. In parallel, the 

node has to compute the cost of each path by adding the calculated metric to the 

corresponding neighbor’s rank, which is advertised by that neighbor through its sent 

DIO messages. After these computations, the node selects a neighbor that offers the 

minimum path cost as its preferred parent and advertises this cost as cur_min_path_cost 

in each DIO transmission. DODAG roots must set its cur_min_path_cost to 

MIN_PATH_COST which is the default value for root nodes. In the case of using a link 

metric when the metric of the link to a neighbor is not available, the path cost for the 

path through that neighbor should be set to MAX_PATH_COST. Also, while using a 

node metric that is not available the path cost through all the neighbors should be set to 
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MAX_PATH_COST. When a node does not have metrics for calculating the path cost of 

its neighbors it should join one of its feasible neighbors as a leaf node. 

MRHOF uses ETX as default metric in the absence of metric container. In this 

case, a node computes the ETX metric for each of its reachable neighbors and selects 

the minimum one as preferred parent. In the case of using ETX as the metric, a node 

sends the path cost chosen as its rank. 

Some of the node/link metrics that can be used by MRHOF are the following ones: 

Node Energy, Hop-Count, Latency, Link Quality Level and ETX. 

3.4. IPv6 and 6LoWPAN Neighbor Discovery  

In this section we review the shortcomings of IPv6 Neighbor Discovery to operate 

over LLNs and the reasons that caused the IETF 6LoWPAN WG to design an optimized 

version of the IPv6 ND for LLNs, denoted 6LoWPAN ND. Next we focus on the 

neighbor unreachability detection mechanism in 6LoWPAN ND and we will study how 

this mechanism can be used in RPL.    

3.4.1. Overview of IPv6 Neighbor Discovery and 6LoWPAN Neighbor 

Discovery 

The IPv6 Neighbor Discovery protocol (ND) [27] has defined a set of important 

mechanisms for Address Resolution, Duplicate Address Detection, Redirect and Router 

Discovery along with Prefix and Parameter Discovery for IPv6 networks. However, 

IPv6 ND is not suitable for LLNs. One reason is the aggressive use of multicast 

signaling, which leads to link layer broadcast in IEEE 802.15.4 networks and consumes 

excessive energy and bandwidth. Another reason is that IPv6 ND does not support 

sleeping nodes [34]. 

In order to solve the problems of IPv6 ND on top of LLNs, the 6LoWPAN WG 

designed an optimized version of the IPv6 ND for LLNs (we refer to this ND version as 

‘6LoWPAN ND’) [34]. 

3.4.2. 6LoWPAN ND Neighbor Unreachability Detection 

In 6LoWPAN ND, each node registers its IPv6 address along with its link layer 

address in a neighbor cache entry of its default routers. This method is different from 

the one used in IPv6 ND [27]. In 6LoWPAN ND the address registration can be done by 
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sending a Neighbor Solicitation (NS) message, which in addition to the IPv6 and link 

layer addresses, includes the node registration lifetime [34]. The receiving router 

expects that the sending node will be reachable during the registration lifetime 

specified. After successful registration, the node also expects that the router will be 

available for the same lifetime. Whenever a node wants to check whether its default 

routers are still reachable or not, it performs Neighbor Unreachability Detection (NUD). 

NUD is a mechanism that detects the failure of a neighbor or the failure of the forward 

path to the neighbor [27].  

A node is responsible for maintaining its neighbor cache entries in its routers by 

performing re-registrations, even when the node does not have data packets to send. 

Sending data to the router does not serve as a re-registration. In fact, other nodes may 

want to send data to this node. For this reason, the node repeats sending NS messages to 

the router periodically before the registration lifetime expiration. In order to save power, 

sending the NS message for re-registration and NUD can be combined together. In the 

storing mode of RPL, nodes can use DAO messages instead of NS messages. NUD can 

only be performed in storing mode, because in non-storing mode, nodes cannot store the 

addresses of their children in a routing table. Sending the NS message will be repeated 

up to MAX_UNICAST_SOLICIT times using a minimum timeout of RETRANS_TIMER 

until the node receives a Neighbor Advertisement (NA) message from the router in 

response, or a  DAO-ACK if the DAO message has been used in the storing mode of 

RPL. 

The reachability of the router can be acknowledged by using different mechanisms: 

i) layer two notifications (e.g. by using link layer acknowledgments) or ii) upper layer 

mechanisms, such as hints from transport layer protocols. However, layer two-based 

mechanisms may not always be available. Hence, RPL relies by default on 6LoWPAN 

ND for neighbor reachability maintenance. 

3.5. RPL ancestors  

RPL has inherited a lot of its mechanisms from other protocols. In other words, 

these protocols can be considered to be RPL ancestors. In the following we will give a 

short overview on these protocols.  

In [35] the authors posed two principles for a routing protocol over wireless sensor 

networks. These principles are used in design of RPL. The first principle is data path 

validation, “traffic quickly discovers and fixes routing inconsistencies”, and the second 
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one is adaptive beaconing, “extending the Trickle algorithm to routing control traffic 

reduces route repair latency and sends fewer beacons”. These principles were presented 

in the Collection Tree Protocol (CTP) [36] for the first time.  

CTP is a tree-based protocol in which nodes construct and maintain one or more 

minimum-cost trees by sending routing messages (called as beacons). Beacon 

transmission is based on the Trickle algorithm. Each beacon sent includes an estimate of 

the sender’s route cost to a tree root, collection point. CTP uses ETX as its routing 

metric to estimate of this cost. The definition of node’s cost is the cost of its next hop 

plus the cost of its link to the next hop, parent, and the route’s cost is the sum of the 

costs of its links. Nodes that operate as collection points advertise a cost of zero. When 

a node wants to join a tree, based on receiving beacons, it must select the one that has 

the minimum ETX as its parent, next hop. Whenever a node wants to send data packets 

to the collection point it sends the data to its parent and the next hop does the same until 

the packets reach the collection point. This approach allows to carry out the 

transmission of multipoint-to-point traffic. However, CTP does provide any mechanism 

for point-to-point traffic and also it is not an IP-based protocol. Another difference 

between CTP and RPL is that CTP is link layer-dependent. CTP expects that the data 

link layer provides the following mechanisms: 

 An efficient local broadcast address. 

 Synchronous acknowledgments for unicast packets. 

 A protocol dispatch field to support multiple higher-level protocols. 

 Single-hop source and destination fields. 

Another protocol from which RPL has inherited ideas was proposed in an IPv6-

based network architecture for WSNs presented in [37]. The operation of this protocol 

is similar to that of CTP, e.g. control message transmission is based on the Trickle 

algorithm and parent selection is based on ETX and Hop count. However, this protocol 

is an IP-based protocol and also the roots store routing tables for all destinations that 

have sent a packet to the root while joining the network. Each datagram sent includes a 

Record Route Option that records the nodes visited on the way towards the root. After 

receiving a datagram, the root reverses the Record Route Option and creates an entry for 

destination received in its routing table, i.e. like in the non-storing mode of RPL. 

Another proposed mechanism deals with inconsistencies. A node that detects an 
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inconsistency must reset its Trickle timer in order to trigger a local repair to resolve the 

problem. RPL uses the same mechanism. 

3.6. Routing in other LLN technologies  

In this section we overview other routing technologies for LLNs. However none of 

these technologies are IP-based.  

3.6.1. Routing in ZigBee  

ZigBee is a wireless networking technology developed by the ZigBee Alliance for 

low-data rate and short-range applications [38]. The ZigBee protocol stack is composed 

of four main layers: the physical (PHY) layer, the medium access control (MAC) layer, 

the network (NWK) layer, and the application (APL) layer. In addition, ZigBee 

provides security functionality across layers (see Figure 4.a). The two lower layers of 

the ZigBee protocol stack are defined by the IEEE 802.15.4 standard, while the rest of 

the stack is defined by the ZigBee specification. 

ZigBee defines three device roles: 

 The ZigBee coordinator, which corresponds to an IEEE 802.15.4 PAN 

coordinator 

 The ZigBee router 

 The ZigBee end device 

The latter is normally a simple device with very low capabilities. The ZigBee NWK 

layer specifically supports addressing and routing for the tree and mesh topologies. The 

tree topology, which is adequate for data collection, is rooted at the ZigBee coordinator. 

This scheme includes a mechanism for address assignment, which also facilitates 

multihop data delivery.  

In a mesh topology, routes are created on demand and are maintained using a set of 

mechanisms based on the ad hoc on-demand distance vector (AODV) routing protocol 

[22] . This solution is used for arbitrary point-to-point traffic. The ZigBee PRO solution 

also offers many-to-one routing for communication between several devices and a 

central controller or sink node. This node may reply back to the devices using source 

routing. Only ZigBee coordinators and routers participate in routing operations. 
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3.6.2. Routing in Z-Wave  

Z-Wave is a wireless protocol architecture developed by ZenSys (now a division of 

Sigma Designs) and promoted by the Z-Wave Alliance for automation in residential and 

light commercial environments [39]. The main purpose of Z-Wave is to allow reliable 

transmission of short messages from a control unit to one or more nodes in the network 

[39]. Z-Wave is organized according to an architecture composed of five main layers: 

the PHY, MAC, transfer, routing, and application layers (see Figure 4.b). 

Z-Wave defines two types of devices: controllers and slaves. Controllers poll or 

send commands to the slaves, which reply to the controllers or execute the commands.  

The Z-Wave routing layer performs routing based on a source routing approach. 

When a controller transmits a packet, it includes the path to be followed in the packet. A 

packet can be transmitted over up to four hops, which is sufficient in a residential 

scenario and hard-limits the source routing packet overhead. A controller maintains a 

table that represents the full topology of the network. A portable controller (e.g., a 

remote control) tries first to reach the destination via direct transmission. If that option 

fails, the controller estimates its location and calculates the best route to the destination. 

Slaves may act as routers. Routing slaves store static routes (typically toward 

controllers) and are allowed to send messages to other nodes without being requested to 

do so. 

Slaves are suitable for monitoring sensors, in which the delay contributed by 

polling is acceptable, as well as for actuators that perform actions in response to 

activation commands. Routing slaves are used for time-critical and non-solicited 

transmission applications such as alarm activation.  

3.6.3. Routing in INSTEON  

INSTEON [40] is a solution developed for home automation by SmartLabs and 

promoted by the INSTEON Alliance. One of the distinctive features of INSTEON is the 

fact that it defines a mesh topology composed of RF and power line links. Devices can 

be RF-only or power-line-only, or can support both types of communication.  

INSTEON devices are peers, which means that any of them can play the role of 

sender, receiver, or relayer. Communication between devices that are not within the 

same range is achieved by means of a multihop approach that differs in many aspects 

from traditional techniques. All devices retransmit the messages they receive, unless 
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they are the destination of the messages. The maximum number of hops for each 

message is limited to four (as in Z-Wave). The multihop transmission is performed 

using a time slot synchronization scheme, by which transmissions are permitted in 

certain time slots, and devices within the same range do not transmit different messages 

at the same time. These time slots are defined by a number of power line zero crossings. 

RF devices not attached to the power line can transmit asynchronously, but the related 

messages will be retransmitted synchronously by RF devices attached to the power line. 

In contrast to classical collision avoidance mechanisms, devices within the same range 

are allowed to transmit the same message simultaneously. This approach, which is 

called simulcast, relies on the very low probability of multiple simultaneous signals 

being cancelled at the receiver.  

3.6.4. Routing in Wavenis  

Wavenis is a wireless protocol stack developed by Coronis Systems for control and 

monitoring applications in several environments, including home and building 

automation. Wavenis is currently being promoted and managed by the Wavenis Open 

Standard Alliance (Wavenis-OSA). It defines the functionality of physical, link, and 

network layers [41]. Wavenis services can be accessed from upper layers through an 

application programming interface (API) (see Figure 4.c).   

Wavenis defines only one type of device. The Wavenis network layer specifies a 

four-level virtual hierarchical tree. The root of the tree may play the role of a data 

collection sink or a gateway, for instance. A device that joins a Wavenis network 

intends to find an adequate parent. For this purpose, the new device broadcasts a request 

for a device of a certain level and a sufficient quality of service (QoS) value. The QoS 

value is obtained by taking into consideration parameters such as received signal 

strength indicator (RSSI) measurements, battery energy, and the number of devices that 

are already attached to this device. 
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Figure 3.4. Protocol architectures: a) ZigBee; b) Z-Wave; c) Wavenis [12]. 
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4. Network convergence process in RPL over IEEE 

802.15.4 multihop networks: improvement and trade-

offs 

This chapter first studies the influence of two important RPL parameters: the 

redundancy constant, k, and the minimum interval, Imin, on the network formation 

process in different network sizes with different densities in  RPL networks. We also 

propose and evaluate a mechanism that leverages an option available in RPL for 

accelerating the network convergence process. 

This chapter is organized in six parts as follows. Section 4.1 introduces and 

provides the motivation for this chapter. Section 4.2 describes the simulation 

environment and methodology used in the chapter. Section 4.3 studies the impact of the 

main RPL parameters on performance of the network convergence process. Section 4.4 

evaluates a mechanism proposed by the author for accelerating network convergence, 

leveraging an option available in RPL. Section 4.5 reviews related work with this 

chapter, finally, Section 4.6 presents the main conclusions of this chapter. 

4.1. Introduction 

Despite its novelty, RPL has already been a subject of study [42-53]. Most of the 

literature focuses mainly on evaluating RPL behavior in steady state [48-53]. However, 

performance of RPL during network convergence may be critical, since it may 

significantly affect user experience (e.g. when a user expects fast network creation to 

fulfill a certain action) and it is fundamental to global network recovery due to topology 

changes. Nevertheless, RPL network convergence has received limited attention. The 

studies that consider RPL performance in transient state do not provide a deep analysis, 

since they do not focus on the joint influence of RPL parameters and mechanisms, and 

network characteristics (such as network size and density), on network convergence 

performance [42-49, 53].  

To this end, as we mentioned before, in this chapter we investigate by simulation 

the influence of the main RPL parameters, the redundancy constant (i.e. the main 

parameter of the Trickle suppression mechanism) and the value of Imin (the smallest size 

of the Trickle intervals), on the network convergence process, and we also propose and 
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evaluate a mechanism that leverages an option available in RPL, the DIS messages, for 

spurring the network convergence process. The performance parameters we consider are 

network convergence time, network join time and message overhead. In order to assist 

the derivation of conclusions, we also evaluate the number of collisions during network 

convergence. With the aim of obtaining comprehensive results, we carry out extensive 

simulations for a wide range of conditions in terms of network size and density. We 

consider multihop networks whereby the nodes use IEEE 802.15.4, i.e., the most 

prevalent radio interface for WSNs. In order to achieve realistic results, we have tuned 

the simulation environment in order to accurately model the link behavior observed in 

real experiments. 

Results show that RPL network convergence performance depends dramatically on 

the use and adequate configuration of key parameters and mechanisms. The findings 

and contributions of this chapter provide a guideline for configuring and selecting 

adequately crucial RPL parameters and mechanisms for achieving high network 

convergence performance, on the basis of network characteristics such as size and 

density, as well as a characterization of the related performance trade-offs. 

4.2. Simulation environment and methodology 

This section presents the simulation environment and methodology used to evaluate 

the network convergence process of RPL in IEEE 802.15.4 multihop networks.  

In order to carry out our simulations, we used OMNeT++ [54], a well-known C++-

based discrete event simulator, jointly with MiXiM, an OMNeT++ framework created 

for various types of wireless networks [55]. We implemented RPL for this simulation 

environment. As a side contribution, we have made the simulation code publicly 

available [56]. The simulated network nodes were static and located following a 

uniformly random spatial distribution in two-dimensional square areas. We configured 

the nodes to use the 2.4 GHz band IEEE 802.15.4 physical layer, and the beaconless 

mode functionality. We set the MAC queue length of the nodes to 1 in order to replicate 

the value of this parameter in CC2420, a widely used IEEE 802.15.4 radio chip [57]. 

We used the log-normal shadowing propagation model available in MiXiM. In order to 

achieve accurate and realistic link behavior in our simulation framework, we carried out 

experiments and tuned the parameter settings of the simulated propagation model based 

on the experimental results. The experiments comprised communication in a link 



Chapter 4. Network convergence process in RPL over IEEE 802.15.4 multihop 

networks: improvement and trade-offs 

______________________________________________________________________ 

 45 

between two TelosB nodes [58] running TinyOS [59]. Table 4.1 shows the main 

physical and link layer parameter settings used in the simulations.   

 

In order to evaluate the influence of the network size in our study, we considered 3 

different scenarios, denoted small, medium and large network scenarios. The area of the 

large network scenario is 100 x 100 m2, which is 5 times greater than the medium 

network area. There is the same relationship between the medium and small network 

scenario areas. We also considered the network density in our study, by evaluating node 

degree values of 5, 10 and 15. Note that this range of network densities covers from 

relatively sparse networks to highly connected and dense networks. As a result, we 

simulated a variety of network sizes and densities, ranging from 8-node to 483-node 

networks, which cover a wide range of use cases. The number of nodes and the average 

rank for each network size and density scenario are shown in Table 4.2.  

For each individual combination of network size scenario, network density and 

Table 4.2. Number of nodes and average rank for each network size scenario and 

density. 

 

Network size Node degree Number of nodes Average rank 

Small 

5 8 3.09 

10 14 3.30 

15 21 3.30 

Medium 

5 34 6.52 

10 66 6.34 

15 99 5.78 

Large 

5 162 16.76 

10 322 12.43 

15 483 10.74 

 

Table 4.1. Main physical and link layer simulation parameters. 

 

Parameter Value 

Communication range (m) 9.96 

Carrier frequency (GHz) 2.4 

Carrier sense sensitivity (dBm) -95 

Transmit power (dBm) -25 

MAC queue length 1 
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protocol configuration, we simulated 1500 different randomly generated topologies, and 

evaluated 20 instances of the network convergence process for each topology, yielding a 

total of 30000 network convergence instances. We discarded the results of DODAGs 

not formed in less than 10000 seconds. The minimum and maximum percentage of 

times that DODAGs formed in less than 10000 seconds are 50.14% and 99.97%, which 

correspond to the large network scenario when the node degree is 5, and the small 

network scenario when the node degree is 15, respectively. 

4.2. Evaluation: influence of the main RPL parameters on 

network convergence performance 

In this section we study the influence of the two most crucial RPL parameters on 

the performance of the network convergence process, in the network scenarios 

presented in the previous section. The two considered RPL parameters are the 

redundancy constant, k, and the minimum interval, Imin. This section comprises two 

subsections, which focus respectively on the impact of each one of the aforementioned 

RPL parameters on network convergence performance. 

4.2.1. Influence of the redundancy constant on the network 

convergence process 

One of the RPL parameters that affects network convergence performance to a 

greatest extent is the redundancy constant, k. As presented in section 3.2, this parameter 

limits the number of transmitted messages per Trickle interval in a given coverage area. 

In order to analyze the influence of the redundancy constant on the network 

convergence process, we simulated the network size and density scenarios shown in 

Table 4.2 for a range of redundancy constant values between 1 and 15, which includes 

the default value for this parameter stated by the RPL specification (i.e. k = 10) [5]. For 

the results presented in this subsection, the rest of RPL parameters were set to the 

default values stated in the RPL specification. We evaluated network convergence time, 

DODAG join time of a node, number of DIO messages transmitted, and number of 

collisions.  

Figure 4.1 shows average network convergence time in small, medium and large 

network scenarios, for different node density and k values. To obtain the convergence 
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time of a network, we calculated the time from the instant in which the DODAG root 

starts its first Trickle interval until the instant in which all nodes have joined the 

DODAG. We consider that a non-root node joins a DODAG when it receives a DIO 

message for the first time. 

As it can be seen in Figure 4.1, using low values for the redundancy constant yields 

high network convergence time in all network size and density scenarios considered. 

This behavior is mainly due to the message suppression mechanism in the Trickle 

algorithm. When the root node transmits its first DIO message, the neighbors of the root 

that receive this DIO message schedule themselves to send their own first DIO message. 

However, when k is set to a low value, only a few neighbors of the root will be allowed 

to transmit their DIO message. If the rest of root neighbors (if any) hear a number of 

DIO messages greater than or equal to k, they will suppress their DIO message 

transmission in the current interval. As a result, nodes that are only neighbors of the 

latter root neighbors have to wait for subsequent intervals to have the opportunity to 

receive their first DIO message. The same phenomenon happens as DIO messages 

propagate through the network, which finally leads to high network convergence time.  

As the redundancy constant increases up to medium values, the network 

convergence time decreases. This occurs because, with greater redundancy constant 

values, the probability that nodes suppress their DIO messages is lower. Therefore, the 

probability that a node receives its first DIO message earlier is greater. However, 

network convergence times do not vary significantly as the value of k increases beyond 

Figure 4.1. Average network convergence time in three network size scenarios, for 
different densities, as a function of the redundancy constant, k: a) Small network 

scenario, b) medium network scenario, and c) large network scenario, respectively. 
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the values around the node degree. The reason for this behavior is that for such values 

of k, the number of DIO message suppressions is low, since many nodes have a number 

of neighbors lower than k, and thus varying k within the mentioned range does not 

significantly affect the network convergence time. 

As is also shown in Figure 4.1, network convergence time decreases with the node 

degree since  greater network density provides better network connectivity and a greater 

amount of opportunities for a node to receive DIO messages from its neighbors. 

By analyzing Figure 4.1 results in deeper detail, we found that the relative impact 

of the redundancy constant on network convergence time does not vary significantly 

with the network size when networks are sparse. However, as the network density 

increases, the improvement that can be achieved by increasing the redundancy constant 

grows with the network size. For example, when the node degree is 15, in the small size 

scenario, a network convergence time decrease factor of 8.3 can be achieved by using   

k = 15 in comparison with the result obtained for k = 1. However, for the same node 

density, the network convergence time decrease factor that can be achieved in the large 

network scenario is 14.5. 

Figures 4.2, 4.3 and 4.4 show the Cumulative Distribution Function (CDF) of the 

network convergence time for all the network size and density scenarios considered. 

The results illustrated by these figures evidence the dramatic impact of the redundancy 

constant on network convergence time. Increasing the redundancy constant value causes 

the percentage of DODAGs formed in a given time to increase as well. For example, in 

the medium network scenario, when the node degree is 5 (Figure 4.3.a)), and k is equal 

to 1, more than 80% of the DODAGs are formed in less than 120 s, while the same ratio 

of DODAGs are formed in less than 18 s for k ≥ 2. As the network density grows, 

network convergence times decrease as well. Still in the medium network scenario, 

when the node degree is 10 (Figure 4.3.b)), and k is set to 1, 80% of the DODAGs are 

formed in less than 2 s, whereas the same ratio of DODAGs are formed in less than    

0.6 s for k ≥ 2. In the same scenario, for a node degree of 15 (Figure 4.3.c)), 90% of the 

DODAGs are formed for any value of k in less than 0.6 s. 

On the other hand, the reader may observe the wave shape that can be appreciated 

in Figures 4.2, 4.3 and 4.4, especially when the node degree is low. This behavior is due 

to the interval duplication of the Trickle algorithm, and reflects the distribution of the 
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number of intervals needed to completely form a DODAG, as well as the size of the 

interval in which a DODAG is formed.  

Another useful performance result is the time it takes for a node to join a DODAG. 

Figure 4.5 shows the CDF of the DODAG join time for a node in the considered 

network scenarios. When the average node degree is 5 and k is equal to 1, around 80% 

of the nodes have joined the DODAG in 0.1 s, 1.1 s and 15 s in the small, medium and 

large network size scenarios, respectively. These times are significantly smaller than the 

average network convergence times shown in Figure 4.1. Therefore, a relatively small 

fraction of the nodes require a large amount of time to join a DODAG. Whether this is a 

critical aspect for the user depends on the application requirements the network is 

deployed for.   

As shown in Figures 4.2-4.5, the difference between the curves for k = 1 and for     

k = 2 is greater than the difference between the curve for k = 2 and any curve for k > 2. 

This result illustrates that the network convergence time and join time improvement that 

can be achieved by increasing the redundancy constant decreases as the redundancy 

constant grows. 

In order to provide insight on the influence of the redundancy constant on network 

convergence performance, we also evaluated the average number of DIO message 

transmissions and collisions that occur from the first DIO message transmission by the 

root until the instant in which all nodes join the DODAG, for all the network sizes and 

densities considered. The corresponding results are shown in Figure 4.6. The average 

number of DIO message transmissions increases as the redundancy constant grows up to 

the node degree. In fact, increasing the redundancy constant within this range of values 

leads to a lower number of DIO message suppressions. When the redundancy constant 

is greater than the node degree, varying this RPL parameter does not have a significant 

effect on the number of DIO messages transmitted, since the number of message 

suppressions is very low. The number of collisions varies with k similarly to the number 

of DIO messages transmitted, since the number of DIO message collisions grows with 

the number of DIO messages that are actually transmitted. Note that despite the number 

of DIO message collisions increase with the redundancy constant, the network 

convergence time decreases with the redundancy constant. This happens because, as the 

redundancy constant grows, even though a subset of the additional DIO messages 

transmitted are lost due to collisions, a greater number of DIO messages are received



Chapter 4. Network convergence process in RPL over IEEE 802.15.4 multihop 

networks: improvement and trade-offs 

______________________________________________________________________ 

 50 

 

Figure 4.2. CDF of network convergence time in the small network size scenario. The 
average node degrees are 5, 10 and 15 in figures a), b) and c), respectively. 
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Figure 4.3. CDF of network convergence time in the medium network size scenario. 
The average node degrees are 5, 10 and 15 in figures a), b) and c), respectively. 
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Figure 4.4. CDF of network convergence time in the large network size scenario. The 
average node degrees are 5, 10 and 15 in figures a), b) and c), respectively. 
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correctly by non-DODAG nodes. Finally, we found that the relative influence of k on 

the number of DIO messages transmitted, and to a lower extent, on the number of 

collisions, increases with both network size and network density. As network size 

grows, the influence of k increases due to the multiplicative effect of a greater hop count 

between the root and any other node.  

From the results shown in Figures 4.1-4.6, it can be concluded that there is a 

tradeoff between network convergence time (and node join time) and the number of 

DIO messages sent, which depends on the redundancy constant. In order to achieve a 

low network convergence time, the redundancy constant should be set to a value equal 

or close to the average node degree, since greater redundancy constant values might 

cause an unnecessary increase in the number of DIO messages transmitted and 

collisions in very dense areas of a network, which however would not yield a network 

convergence time decrease. The influence of the redundancy constant grows with both 

the network density and size. 

4.2.2. Influence of the minimum interval on the network convergence 

process 

In this subsection we study the effect of the minimum interval, Imin, on the network 

convergence process. We evaluate the impact of Imin on the network convergence time, 

number of DIO message transmissions and number of collisions during the network 

Figure 4.6. Average number of DIO messages transmitted (left) and collisions (right) in 
three network size scenarios, for different densities, as a function of the redundancy 

constant, k. NDeg denotes the average node degree.  
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convergence process. We also analyze the relationship among these performance 

parameters. The RPL specification states that the default value for Imin is 8 ms [5]. 

However, in order to investigate the influence of Imin on network convergence 

performance, we evaluate different Imin values in the same scenarios and for the same 

redundancy constant values considered in the previous subsection.  

Figure 4.7 shows the average network convergence time when Imin is set to 4 ms,    

8 ms and 16 ms in the scenarios and for the settings presented in Section 4.2. As it can 

be seen in Figure 4.7, decreasing the minimum interval yields a reduction of network 

convergence time regardless of the network size, the network density or the redundancy 

constant, for the range of Imin values considered. The reason is that when Imin decreases, 

the length of Trickle intervals decreases as well, therefore nodes send their DIO 

messages earlier and more frequently, and as result a DODAG forms faster. Another 

important consideration that can be inferred from Figure 4.7 is that halving the Imin 

value decreases the network convergence time by a factor smaller than two. As we 

already mentioned, when Imin decreases, the number of DIO message transmissions 

during network convergence increases; as a consequence, the number of collisions 

increases as well (see Figures 4.8-4.10). The number of collisions increase does not 
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Figure 4.7. Influence of Imin on the network convergence time in the small, medium 
and large network scenarios with different average node degrees as a function of the 

redundancy constant, k, when the Imin value is set to 4 ms, 8 ms and 16 ms. a) small, b) 
medium, and c) large network size scenarios. 



Chapter 4. Network convergence process in RPL over IEEE 802.15.4 multihop 

networks: improvement and trade-offs 

______________________________________________________________________ 

 54 

avoid the network convergence time decrease with Imin, but it is the reason why this 

decrease is smaller than the Imin decrease.  

Analyzing in deeper detail the number of DIO messages transmitted during network 

convergence (Figures 4.8.a), 4.9.a) and 4.10.a)), we observe that as both the redundancy 

constant and the network density grow, the influence of Imin becomes greater. This is 

due to a lower amount of DIO message suppressions in the network. As a consequence

Figure 4.8. Average number of DIOs transmitted and collisions in the small network 
scenario for different average node degrees, as a function of the redundancy constant, 

k, based on the different values of Imin.  
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Figure 4.9. Average number of DIOs transmitted and collisions in the medium network 
scenario for, different average node degrees, as a function of the redundancy constant, 

k, based on the different values of Imin.  
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of a greater number of DIO message transmissions, the number of collisions also grows 

with Imin (see Figures 4.8.b, 4.9.b) and 4.10.b)). The relative influence of Imin on the 

number of collisions does not vary with the redundancy constant, except for a high 

network density, whereby as the redundancy constant grows, the influence of Imin 

becomes smaller. This happens because for a large Imin value (e.g. Imin = 16 ms), the 

number of collisions is low for low redundancy constant values. However, as the 

redundancy constant grows, and when the network is dense, the probability of collision

significantly increases due to the greater number of DIO message transmissions in the 

network. On the contrary, for low Imin values (e.g. Imin =  4 ms), the number of collisions 

is already high for low redundancy constant values, since such Imin values approach the 

DIO message transmission time in the 2.4 GHz IEEE 802.15.4 physical layer (i.e.,    

2.82 ms), and thus the number of collisions increase with the redundancy constant is 

smaller than that observed for greater Imin values.  

From the study carried out in this subsection, we conclude that there exists a 

tradeoff between network convergence time and DIO message overhead (and collisions) 

that depends on Imin. Varying Imin in the range of values considered in this study has a 

greater quantitative effect on the number of DIO messages sent than on the network 

convergence time. Fine-tuning Imin has a greater impact on the number of DIO messages 

transmitted during network convergence as both the redundancy constant and network 

Figure 4.10. Average number of DIO messages transmitted and collisions in the large 
network scenario for different average node degrees, as a function of the redundancy 

constant, k, for different values of Imin.  
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density grow, whereas the relative impact of Imin on network convergence time does not 

vary significantly with the redundancy constant, network size or network density. 

4.3. DIS-Trickle: a mechanism for accelerating network 

convergence 

This section proposes and evaluates a mechanism for leveraging DIS messages in 

order to accelerate RPL network convergence. In some scenarios a node may have to 

wait for a long time to receive a DIO message (and thus, to join a DODAG). As we 

described in section 3.1.1, a node may discover nearby DODAG nodes in a short time 

by sending DIS messages, which will trigger a quick response (in the form of a DIO 

message) from neighbors that have already joined a DODAG. However, the RPL 

specification does not state any rule or scheduling algorithm for the transmission of DIS 

messages [5]. In this section we propose and evaluate DIS-Trickle, a mechanism for 

accelerating the network convergence process by using DIS messages. We first present 

DIS-Trickle and then evaluate its influence on network convergence performance.  

4.3.1. DIS-Trickle design  

DIS-Trickle comprises two components: an initial delay and a scheduling 

algorithm. This subsection describes in detail both components. 

For nodes that may send DIS messages, it is beneficial to introduce an initial delay 

before the first DIS message transmission. This is motivated by the fact that DIO 

messages need time to propagate through the network, and thus nodes at a multihop 

distance from the root node must have the opportunity of receiving DIO messages 

before sending premature, and unnecessary, DIS messages. The value of the initial 

delay has to be set carefully on the basis of the network size and density. Such an initial 

delay is also used in the COOJA/ContikiRPL implementation, whereby it is set by 

default to 5 s [30]. However, 5 s may be a too large value for the characteristics of many 

networks, including the ones considered in this chapter. Based on simulation results that 

are discussed later in subsection 4.3.2, we set the initial delay to 200 ms, which yields 

good performance in different network size and density scenarios, in terms of network 

convergence time, number of DIS and DIO messages transmitted, and collisions. 

After the initial delay, in network zones where nodes have not yet received any 

DIO message, these nodes may attempt to transmit DIS messages at the same time, 
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which may yield an initial DIS storm and a high number of collisions. On the other 

hand, it is not necessary that all non-DODAG neighbors of a DODAG node send a DIS 

message to trigger a DIO message transmission from the latter, since all these neighbors 

have the opportunity of receiving a DIO message sent by the DODAG node. In order to 

solve the initial DIS storm problem, as well as to limit unnecessary DIS message 

transmissions, we propose applying the Trickle algorithm to schedule the transmission 

of DIS messages. Since the main purpose of using DIS messages is the decrease of 

nodes’ DODAG join time, we disable the Trickle interval size doubling mechanism in 

DIS-Trickle. On the other hand, in order to decrease the number of DIS message 

transmissions and the probability of message collisions while sending DIS messages, we 

set the redundancy constant of DIS-Trickle, kDIS, to 1. Another important parameter of 

DIS-Trickle is the interval size, denoted IDIS, which defines the time between 

consecutive DIS message transmissions. The value of this parameter should be specified 

on the basis of the DIS response time, defined as the time between the transmission of a 

DIS message and the corresponding DIO message reply from a DODAG member. On 

the other hand, the time between consecutive DIS messages should not be unnecessarily 

large. 

In order to assist the determination of IDIS, we next calculate the minimum and 

maximum DIS response time, assuming that nodes use a 2.4 GHz band IEEE 802.15.4 

interface in the beaconless mode (see Figure 4.11). Let node A, which is interested in 

joining a DODAG, start the procedure for transmitting a DIS message at time t1. Let 

node B be already a DODAG member. The physical transmission of the DIS message 

starts after the backoff period and the CCA. We should note that, by default, the 

minimum and maximum backoff times in IEEE 802.15.4 are 0 ms and 16.96 ms, 

respectively. On the other hand, the time needed for performing the CCA on Telos B 

Figure 4.11. Calculation of the DIS response time. The figure illustrates the maximum 
delay between the transmission of a DIS message and the reception of a DIO message 
in response, where node A is interested in joining a DODAG and node B is already a 

DODAG member.  
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nodes running TinyOS is 3 ms. The physical layer of node A starts to send the DIS 

message at time t2, and it takes 1.34 ms (denoted by Ttx_DIS  in Figure 4.11) to transmit 

this message. On the other hand, node B, which has started to receive this DIS message 

at time t2, finishes receiving the DIS message at time t3, it immediately resets its Trickle 

timer to Imin (which is set to 8 ms by default) and schedules itself to transmit a DIO 

message in the second half of the Trickle interval (of size Imin). A DIO message 

transmission can take place at any point of the second half of the current interval, i.e. it 

can suffer a random delay between 4 ms and 8 ms (the latter is illustrated in Figure 

4.11). Finally, the physical transmission of this DIO message (which takes 2.82 ms) 

starts, after the backoff period and the CCA, at time t5, and node A finishes receiving 

the DIO message at time t6. Considering the duration of all the periods included

between t1 and t6, the DIS response time is a value between 14.16 ms and 52.08 ms. 

From the basis of this analysis, we tested different values for IDIS, (see the results 

obtained and discussed later in subsection 4.3.2), and based on these tests we finally set 

IDIS to 30 ms, since it yields good performance in terms of both network convergence 

time and number of DIO and DIS messages transmitted during network convergence. 

Table 4.3 shows the default values of the DIS-Trickle parameters used in our 

simulations. 

4.3.2. DIS-Trickle evaluation  

In this subsection, we evaluate DIS-Trickle and discuss the results obtained. We 

assume the default value of Imin = 8 ms, analyze the influence of the redundancy 

constant on network convergence when DIS-Trickle is used, and consider the same 

range of network density and size scenarios evaluated in Section 4.2. We analyze the 

network convergence time, total number of RPL (i.e. DIO and DIS) messages 

Table 4.3. DIS-Trickle parameter configuration 

 

Parameter Value 

Initial delay (ms) 200 

Interval length, IDIS  (ms) 30 

Number of doublings 0 

DIS-Trickle redundancy constant, kDIS 1 
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transmitted, and collisions during network convergence. We also study the impact of 

DIS-Trickle parameters on performance. 

As can be seen in Figure 4.12, using DIS-Trickle decreases network convergence 

time by 2 to 3 orders of magnitude, regardless of the network density and size. Actively 

requesting DIO messages constitutes a dramatically better strategy for non-DODAG 

nodes than passively waiting for DIO message reception, in terms of joining quickly a 

DODAG. 

Interestingly, the network convergence time improvement yielded by DIS-Trickle 

does not always lead to performance degradation in terms of the total number of RPL 

(i.e. DIO and DIS) messages sent. In dense networks, the RPL message overhead during 

network convergence does not grow, and even decreases, when DIS-Trickle is used (see 

Figure 4.13). However, in sparse networks (e.g. when the average node degree is 5), 

DIS-Trickle requires a greater amount of total RPL message transmissions than that 

needed in absence of DIS-Trickle; impact of this phenomenon increases with network 

size. For a deeper analysis of the number of RPL messages sent during network 

convergence, we next study the number of DIO and DIS messages sent, separately. 

Figure 4.14 shows that the average number of DIO messages transmitted decreases 

when DIS-Trickle is used. This reduction is more significant as network density 

decreases. The reason is that, as shown in subsection 4.2.1, in a sparse network, when 

DIS-Trickle is not used, the network convergence time is very high, and during this time 

a high number of DIO messages are transmitted until a DODAG is formed. However, 

using DIS-Trickle allows non-DODAG nodes to join a DODAG in a shorter time, and 

thus fewer DIO messages are required to complete the DODAG construction. On the 

other hand, when DIS-Trickle is used, the number of DIS message transmissions 

decreases as the redundancy constant grows (see Figure 4.15). This happens because as 

k increases, a greater number of DODAG nodes are able to send their DIO messages, 

therefore non-DODAG nodes have more chances to receive DIO messages, making it 

unnecessary to send DIS messages. Another important result is that the number of DIS 

message transmissions increases as network density decreases, since a lower amount of 

DIO messages are transmitted naturally by DODAG members. However, a large 

network size exacerbates the number of DIS message transmissions in sparse networks, 

due to the multiplicative effect of a greater number of end-to-end hops from the root to 

the most distant nodes. Therefore, in sparse networks, the high number of DIS message 
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transmissions dominates the total number of RPL messages transmitted during network 

convergence, shown in Figure 4.13. 

Figure 4.16 illustrates the influence of network density, network size, and the 

redundancy constant setting on the relative performance of DIS-Trickle (i.e. compared 

with not using DIS messages) in terms of both network convergence time and number 

Figure 4.12. Influence of using DIS-Trickle on network convergence time in the small, 
medium and large network scenarios, for different average node degrees, NDeg, as a 

function of the redundancy constant, k, when the Imin value is set to 8 ms. a) Small 
network size, b) medium network size, and c) large network size.  
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Figure 4.13. Influence of using DIS-Trickle on the total number of RPL messages (i.e. 
DIO and DIS messages) transmitted in the small, medium and large networks, for 

different average node degrees as a function of the redundancy constant, k, when the 
Imin value is set to 8 ms. a) Small network size, b) medium network size, and c) large 

network size.    
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of RPL message transmissions. In sparse networks (e.g. when the average node degree 

is 5), using DIS-Trickle improves network convergence time, but degrades the total 

number of RPL messages transmitted, since a high number of DIS message 

transmissions are required, as aforementioned.  

As the network density increases, the network convergence time improvement due 

to using DIS-Trickle becomes lower, and does not vary significantly with the network 

size. This occurs because the probability that a node receives DIO messages without the 

Figure 4.14. Influence of using DIS-Trickle on the number of DIO messages 
transmitted in the small, medium and large network scenarios, for different average 

node degrees, NDeg, as a function of the redundancy constant, k, when the Imin value is 
set to 8 ms: a) Small network size, b) medium network size, and c) large network size.  
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Figure 4.15. Influence of using DIS-Trickle on the number of DIS messages transmitted 
in the small, medium and large networks, for different average node degrees as a 
function of the redundancy constant, k. when the Imin value is set to 8 ms. a) Small 

network size, b) medium network size, and c) large network size.    
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need to send DIS messages increases with the network density. However, in dense 

networks, the total number of RPL message transmissions does not grow or even 

slightly decreases when DIS-Trickle is used. The reason for this result is that, in dense 

networks, a low number of DIS messages are required, and the DIS messages 

transmitted help reduce to a similar or even greater extent the number of DIO messages 

sent. Therefore, in dense networks, DIS-Trickle improves both network convergence 

time and number of RPL message transmissions, or at least does not degrade this last

performance parameter (note that the result obtained in small networks, for a node 

degree of 10 and k = 1 is an exception to this conclusion, whereby the number of RPL 

message transmissions is slightly degraded when DIS-Trickle is used). Lastly, it can 

also be observed in Figure 4.16 that the influence of DIS-Trickle decreases as the 

redundancy constant grows, since a greater amount of DIO messages are naturally 

transmitted and a lower amount of DIS message transmissions are required. 

With regard to the number of collisions, for both DIO and DIS messages, it does 

not vary significantly by using DIS-Trickle (see Figure 4.17). This occurs because DIS 

messages are likely to be sent from nodes that have a low number of neighbors, and in 

addition, DIS-Trickle randomizes DIS message transmission time and suppresses 

redundant DIS message transmissions. Therefore, when DIS-Trickle is used, the number 

of message collisions does not significantly increase compared with the one observed in 

absence of DIS messages. 

Finally, in order to understand the influence of IDIS and the DIS initial delay on 

performance of DIS-Trickle, we carried out simulations with different configurations of 

these DIS-Trickle parameters. The considered configurations of the aforementioned 

parameters are shown in Table 4.4.  

The evaluation is done in the medium network size scenario, for a node degree of 5. 

Note that this density corresponds to a sparse network and, as shown in Figure 4.1, the 

average network convergence time is high in the absence of the DIS-based mechanism, 

therefore we can observe the maximum influence of DIS-Trickle on network 

convergence performance within the range of considered network densities. The results 

obtained for these different configurations are plotted in Figure 4.18, which shows 

average results for the following performance parameters: network convergence time, 

number of DIO and DIS messages transmitted, and number of collisions (considering 

both DIO and DIS messages) during network convergence. Note that Config. 1 (dashed 
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line curve results in Figure 4.18) is the default set of DIS-Trickle parameter values used 

in our previous simulations.  

As shown in Figures 4.18.a) and 4.18.b), when the initial delay is set to 100 ms 

(Config. 2), the network convergence time and the total number of RPL messages 

transmitted are greater than those obtained for an initial delay of 200 ms. The main 

reason is that 100 ms is lower than the time needed by DIO messages to propagate 

Figure 4.16. Convergence time (left) and number of DIO messages sent (right) 
improvement by using DIS-Trickle in three network size scenarios, for different average 

node degrees as a function of the redundancy constant, k.  
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Figure 4.17. Influence of using DIS-Trickle on the number of collisions in the small, 
medium and large networks for different average node degrees, NDeg, as a function of 
the redundancy constant, k, when the Imin value is set to 8 ms compared with not using 
DIS messages: a) Small network size, b) medium network size, and c) large network 

size.    
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through the network. Thus, nodes that are not close to the root may start to prematurely 

(and unnecessarily) transmit DIS messages while their neighbors are receiving or

sending DIO messages, increasing the number of collisions during the network 

convergence process (Figure 4.18.e)). On the other hand, when the initial delay is set to 

300 ms (Config. 3), network convergence time increases compared with using      

Config. 2, due to the slower rate of DIS message generation (Figure 4.18.d)), while the 

rest of performance parameters do not vary significantly. As previously mentioned, a 

suitable value for the initial delay has to be set taking into account network 

characteristics such as density and size. From the results obtained, an initial delay of 

200 ms offers good performance in the scenario considered, since it offers reasonably 

low network convergence time, low number of DIO and DIS message transmissions and 

low number of collisions. 

Regarding the length of the DIS-Trickle interval, IDIS, we have tested values within 

the range of the DIS response time values presented in subsection 4.3.1. Figure 4.18 

illustrates that, although a small value for IDIS such as 15 ms (Config. 4), reduces 

slightly the network convergence time compared with the default IDIS value of 30 ms 

(Config. 1), it causes the rest of performance parameters analyzed to significantly 

degrade. When IDIS is set to a low value such as 15 ms, many premature DIS message 

transmissions take place, leading also to a high number of collisions. On the other hand, 

using a greater value for IDIS, such as 45 ms (Config. 5), has the opposite effect on 

performance.  

Results show that there is a tradeoff between the network convergence time and the 

rest of performance parameters that depends on IDIS. A medium IDIS value within the 

DIS response time range yields a good performance tradeoff. 

 

 

 

 

Table 4.4. DIS-Trickle parameter configurations evaluated. 

 

Parameter 
Configuration 

1 2 3 4 5 

DIS initial delay (ms) 200  100  300  200  200  

Interval length, IDIS (ms) 30  30  30  15  45  
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Figure 4.18. Comparing performance of different DIS-Trickle parameters settings 
(shown in Table 4.4) in medium network scenario when the average nodes degree is 5.  
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4.4. Related work 

Despite the novelty of RPL, it has already been a subject of study in the literature 

[42-53]. However, only a few research works focus on or consider RPL network 

convergence. This section reviews work related with this chapter highlighting the 

differences of such work with the contributions and findings from this chapter. 

Authors of [44] present a simulation study of RPL based on the 

COOJA/ContikiRPL simulator. The main goal of this work is to investigate the impact 

of network parameters including number of nodes, number of DODAG roots, and 

packet loss on the performance of the network convergence process. The authors 

evaluate a range of network size values. Two different network topologies are 

considered: regular topologies, whereby nodes are quasi-uniformly distributed, and 

random topologies. A single value is tested for Imin, which was set to 1 s. On the other 

hand, the redundancy constant value is not specified in the paper. Periodical 

transmission of DIS messages is evaluated in this work, based on a mechanism used in 

the COOJA/ContikiRPL [30] simulator. An initial delay is applied before the first DIS 

message transmission. The values used for the initial delay and for the length of the 

periodic intervals are 5 s and  60 s, respectively.  

A survey about the most relevant RPL research efforts, along with an experimental 

performance evaluation of RPL, is presented in [45]. The performance evaluation of 

RPL provided by the authors includes network convergence time as a performance 

parameter, based on a single network size of 30 TelosB motes running ContikiRPL [30]. 

Imin is set to a single value, equal to 4.096 s, which is the default value used in 

ContikiRPL. However, authors neither indicate which is the value of the redundancy 

constant nor whether DIS messages are used or not. 

Another performance analysis of RPL which is also based on the 

COOJA/ContikiRPL simulator is presented in [53]. The authors evaluate control 

message overhead, network throughput and end-to-end packet delay in RPL for fixed 

values of Imin and k set to 4.1 s and 10, respectively. This work considers a single area 

size and two different numbers of nodes: 20 and 100 nodes. However, the authors do 

not study the network convergence time. DIS messages are used in this work, but the 

parameter settings and further details on DIS message scheduling are not given. 
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A simulation-based performance evaluation of RPL for a single, medium size 

network is carried out by Tripathi et al. in [48]. Results include that global repair (i.e. a 

mechanism that allows the root node to form a new DODAG when bad performance is 

detected) has a significant effect on the control message overhead. However, network 

convergence time is not studied in this work. Imin is set to a single value (equal to 1 s), 

but the redundancy constant value used is not indicated. DIS-based mechanisms are not 

used in this work. 

Clausen et al. investigate the efficiency of broadcast mechanisms in WSNs using 

RPL in [42, 49]. The authors use two mechanisms for DIO message transmission: i) the 

Trickle algorithm, in which Imin is set to a single value (equal to 2 s), and ii) periodic 

DIO message transmission. In both schemes the redundancy constant is set to infinity, 

i.e. the suppression mechanism is disabled. The authors evaluate the network 

convergence time and message overhead parameters, based on a fixed node density    

(50 nodes/km2), for different network sizes in [42]. Results show that convergence time 

grows logarithmically with the number of nodes in the network. DIS-based mechanisms 

are not considered in the paper. 

An experimental evaluation of RPL in TinyOS devices is provided in [43]. 

Regarding RPL parameters, a single value of Imin is considered (Imin = 128 ms), whereas 

the paper does not mention the redundancy constant setting. In order to study the impact 

of the Imin value on the network convergence time, the authors present experimental in a 

single size and single density network of 40 nodes, with perfect and also with lossy 

channels for three different values of Imin: 0.25 s, 1 s and 4 s. Results show that network 

convergence time increases with Imin, which is consistent with results obtained in this 

paper. However, the influence of Imin on other performance parameters such as RPL 

message overhead or collisions, has not been considered in the work. DIS messages 

have been used in the work, however details about DIS message scheduling rules or 

related parameters are not provided by the authors. 

Analytical models have also been developed to estimate the network convergence 

time in a Trickle-based network. Authors in [46] provide such a model for line and grid 

network scenarios, based on a method to derive the probability density function of the 

time until network consistency through the use of Laplace transforms. However, the 

complexity of the analysis increases very quickly with the network diameter. 

Furthermore, the models presented do not take into account physical and link layer 
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characteristics. Other network convergence time analytical models for Trickle-based 

networks are provided for a single-hop, and for a grid network scenario in [47]. These 

models neither take into account radio interface characteristics, and assume error-free 

networks. 

Despite the fact that RPL has already been evaluated from different perspectives in 

the literature, to the best of our knowledge there is not any published research study that 

provides comprehensive insight on the influence of RPL parameters and mechanisms, 

and network characteristics, on the network convergence process in RPL. 

4.4. Discussion 

In this chapter we investigated by extensive simulation the influence of two 

important RPL parameters, the redundancy constant, k, and the minimum interval, Imin, 

on the network convergence process, on top of a variety of IEEE 802.15.4 multihop 

network densities and sizes. We also proposed and evaluated a mechanism called DIS-

Trickle for accelerating the network convergence process by exploiting DIS messages.  

Results show that using low values for the redundancy constant yields high network 

convergence time in all network size and density scenarios considered, since a high 

number of DIO messages are suppressed by the Trickle algorithm. As the redundancy 

constant increases up to medium values, the network convergence time decreases. 

However, network convergence times do not vary significantly as the value of k 

increases beyond the values around the node degree. There exists a tradeoff between 

network convergence time and other performance parameters, such as the number of 

DIO messages transmitted and number of collisions that depends on k. In order to 

achieve a low network convergence time, the redundancy constant should be set to a 

value equal or close to the average node degree, since greater values might cause an 

unnecessary increase in the number of DIO message transmissions and collisions in 

very dense network areas, which however would not yield a network convergence time 

decrease. As network density increases, the influence of the redundancy constant grows 

with the network size. In sparse networks, the relative influence of k is independent of 

the network size. 

With regard to the minimum interval, we found that there exists a tradeoff between 

network convergence time and DIO message overhead (and collisions) that depends on 

Imin. Varying Imin in the range of values considered in this study has a greater 
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quantitative effect on the number of DIO messages sent than on the network 

convergence time. Fine-tuning Imin has a greater impact on the number of DIO messages 

transmitted during network convergence as both the redundancy constant and network 

density grow, whereas the impact of Imin on network convergence time does not vary 

significantly with the redundancy constant, network size or network density. 

Finally, we proposed and evaluated DIS-Trickle, a mechanism that leverages DIS 

messages in order to reduce nodes’ DODAG join time. Results show that using DIS-

Trickle decreases network convergence time by 2-3 orders of magnitude, regardless of 

the network size or density. The improvement provided by this mechanism grows as 

network density decreases. Interestingly, in dense networks, DIS-Trickle does not 

increase or even reduces the total number of RPL messages sent during network 

convergence. However, in sparse networks, DIS-Trickle creates a trade-off between 

network convergence time and RPL message overhead. The influence of DIS-Trickle on 

network convergence performance decreases with the redundancy constant.  

The findings and contributions in this work offer a guideline for configuring and 

selecting adequately RPL parameters and mechanisms for achieving a good network 

convergence performance tradeoff, on the basis of network characteristics such as size 

and density. 
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5. Modeling the network convergence time in RPL in 

error-prone, IEEE 802.15.4 chain topology multihop 

network 

In the previous chapter we evaluated the network convergence process of RPL over 

IEEE 802.15.4 by simulation, considering the influence of RPL and network 

parameters. In this chapter we present an analytical model of the network convergence 

time in RPL in a chain topology network under realistic assumptions, such as the 

presence of bit errors and the use of IEEE 802.15.4 at the physical and link layers.  

The rest of this chapter is organized as follows. Section 5.1 gives an introduction to 

this chapter. Section 5.2 presents our analytical model. Section 5.3 describes the 

simulation environment and methodology used in the chapter, and shows the obtained 

results. Finally, section 5.4 presents the main conclusions of this chapter. 

5.1. Introduction 

An important performance aspect of RPL is the network convergence time, which 

is critical for applications whereby the user expects fast network creation [6]. However, 

only a few works focus on this performance parameter and, among these, the ones that 

analytically model the network convergence time in RPL assume ideal links or do not 

take into account important aspects such as radio interface characteristics. 

In this chapter we present an analytical model of the network convergence time in 

RPL under realistic assumptions, such as the presence of bit errors and the use of IEEE 

802.15.4 (i.e. the most popular radio interface for WSNs) at the physical and link layers. 

The model is developed for a static chain multihop topology, which may be found in 

various use cases, such as in trains, bridges or roads, and also provides a lower bound 

on the network convergence time in a generic topology. The model will be useful in the 

planning, deployment and evaluation of RPL-based networks. The model presented is 

validated by extensive simulation results, which show the accuracy of the model.  

5.2. Network convergence time model 

In this section, we present an analytical model of the expected DODAG 

convergence time in a network of RPL nodes that use IEEE 802.15.4 as the radio 



Chapter 5. Modeling the network convergence time in RPL in error-prone, IEEE 

802.15.4 chain topology multihop network 

______________________________________________________________________ 

 72 

interface, and in the presence of uncorrelated bit errors. For simplicity, the model 

assumes a static N-hop chain network (see Figure 5.1) where all links are of equal 

characteristics and uncorrelated. Nevertheless, the model provides accurate results for 

the scenario assumed, and also constitutes a lower bound on the DODAG convergence 

time in any network of a maximum number of hops between the DODAG root and non-

root nodes equal to N. 

The goal of the model is to calculate the expected DODAG convergence time, from 

the start of the first Trickle interval in which the DODAG root performs its first DIO 

message transmission until the instant in which all nodes have joined the DODAG. Note 

that our target scenario is an N-hop chain network topology, which consists of N non-

root nodes plus the root. In this scenario, the time required for the complete DODAG 

formation, denoted by 𝑇𝐷𝑂𝐷𝐴𝐺, can be expressed as follows: 

𝑇𝐷𝑂𝐷𝐴𝐺 = ∑ 𝑡𝑗𝑜𝑖𝑛𝑖

𝑁

𝑖=1

,                                                          (5.1) 

where 𝑡𝑗𝑜𝑖𝑛𝑖
 is a random variable that indicates the time from the instant in which a 

DODAG node i starts its first Trickle interval until the instant in which a non-DODAG 

node that is a neighbor of the sender, node i+1, receives the DIO message from node i 

and joins the DODAG. 

For a realistic approximation of the DODAG formation performance, we consider 

the presence of bit errors in the communication. In such conditions, 𝑡𝑗𝑜𝑖𝑛𝑖
 is a random 

variable that depends on the number of intervals, and DIO message transmissions, 

required until the node that joins the DODAG receives its first DIO message. 

On the basis of (5.1), and since we assume that the links of the N-hop chain 

topology are of equal characteristics and uncorrelated, the expected DODAG 

convergence time can be calculated as 

 𝐸[𝑇𝐷𝑂𝐷𝐴𝐺] = ∑ 𝐸[𝑡𝑗𝑜𝑖𝑛𝑖

𝑁

𝑖=1

] = 𝑁 · 𝐸[𝑡𝑗𝑜𝑖𝑛].                                    (5.2) 

Figure 5.1. A chain network including N+1 nodes where each node is only able to 
communicate with its immediate neighbors. Node 0 is the root of the DODAG. 

 



Chapter 5. Modeling the network convergence time in RPL in error-prone, IEEE 

802.15.4 chain topology multihop network 

______________________________________________________________________ 

 73 

where  𝑡𝑗𝑜𝑖𝑛𝑖
 has been substituted by  𝑡𝑗𝑜𝑖𝑛.  

We next calculate 𝐸[𝑡𝑗𝑜𝑖𝑛]. Let us define the term BER as the bit error rate and 

𝑃𝐷𝐼𝑂𝐸𝑟𝑟
 as the probability that a DIO message is affected by bit errors. Assuming that bit 

errors are not correlated, 𝑃𝐷𝐼𝑂𝐸𝑟𝑟
can be calculated as: 

𝑃𝐷𝐼𝑂𝐸𝑟𝑟
= 1 −  (1 − 𝐵𝐸𝑅)𝑙𝑒𝑛                                         (5.3) 

where len is the length of a DIO message. 

Let us define next 𝛼𝑗 as a random variable that indicates the time between the start 

of the first interval of a node and the instant of its first successful DIO message 

transmission, which happens in the j-th interval (where j is an integer greater than 0). 

Let us also define the term 𝑡𝑡𝑥 𝐷𝐼𝑂 as the time needed for a DIO message transmission at 

the physical layer and the term 𝑡𝑀𝐴𝐶 as the time incurred by the MAC layer operations 

needed for transmitting a message in IEEE 802.15.4 (𝑡𝑀𝐴𝐶 components comprise 

backoff time, the receiver setup time, CCA time, and the turnaround time needed to 

switch the radio from receiver mode to transmitter mode). Finally, let 𝜏𝑗  be the time 

between the second half of the j-th interval and the transmission time for that interval. 

Based on the above definitions, and neglecting message processing times, the values for 

𝛼1, 𝛼2 and 𝛼3 can be expressed as follows (see Figure 5.2): 

𝛼1 =
1

2
∙ 𝐼𝑚𝑖𝑛 + 𝜏1 + 𝑡𝑀𝐴𝐶 + 𝑡𝑡𝑥 𝐷𝐼𝑂,    𝜏1 ∈ [0,

1

2
∙ 𝐼𝑚𝑖𝑛]                        (5.4) 

𝛼2 = 2 ∙ 𝐼𝑚𝑖𝑛 + 𝜏2 + 𝑡𝑀𝐴𝐶 + 𝑡𝑡𝑥 𝐷𝐼𝑂,         𝜏2 ∈ [0, 𝐼𝑚𝑖𝑛]                         (5.5) 

𝛼3 = 5 ∙ 𝐼𝑚𝑖𝑛 + 𝜏3 + 𝑡𝑀𝐴𝐶 + 𝑡𝑡𝑥 𝐷𝐼𝑂,   𝜏3 ∈ [0, 2 ∙ 𝐼𝑚𝑖𝑛]                         (5.6) 

And, in fact, 𝛼𝑗 can be expressed as follows: 

𝛼𝑗 = (3 ∙ 2𝑗−2 − 1) ∙ 𝐼𝑚𝑖𝑛 + 𝜏𝑗 + 𝑡𝑀𝐴𝐶  + 𝑡𝑡𝑥 𝐷𝐼𝑂                               (5.7) 

where 𝜏𝑗 ∈ [0, 2𝑗−2𝐼𝑚𝑖𝑛].  

The expected value of 𝛼𝑗, 𝐸[𝛼𝑗] can be obtained as 

𝐸[𝛼𝑗] = (3 ∙ 2𝑗−2 − 1) ∙ 𝐼𝑚𝑖𝑛 + 𝐸[𝜏𝑗] + 𝐸[𝑡𝑀𝐴𝐶] + 𝑡𝑡𝑥 𝐷𝐼𝑂                    (5.8) 

We next calculate the expected value of 𝜏𝑗 , 𝐸[𝜏𝑗]. Let 𝐿𝑗 be the size of the j-th 

interval. Since, due to the Trickle rules, a DIO message transmission can occur at any 

moment within the second half of the j-th interval, 𝜏𝑗 can be characterized as a 

uniformly distributed random variable between 𝐿𝑗/2 and 𝐿𝑗. Therefore the expected 

value for 𝜏𝑗 can be calculated as follows: 
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𝐸[𝜏𝑗] =  

𝐿𝑗

2 + 𝐿𝑗

2
−

𝐿𝑗

2
=

1

4
∙ 𝐿𝑗                                                (5.9) 

 

Considering the size of the j-th interval, 𝐿𝑗, which is 2𝑗−1 ∙ 𝐼𝑚𝑖𝑛, (5.9) can be 

rewritten as follows 

𝐸[𝜏𝑗] =
1

4
∙  2𝑗−1 ∙ 𝐼𝑚𝑖𝑛 = 2𝑗−3 ∙ 𝐼𝑚𝑖𝑛                                 (5.10) 

By substituting (5.10) in (5.8), we obtain 

   𝐸[𝛼𝑗] = (7 ∙ 2𝑗−3 − 1) ∙ 𝐼𝑚𝑖𝑛 + 𝐸[𝑡𝑀𝐴𝐶] + 𝑡𝑡𝑥 𝐷𝐼𝑂                     (5.11)  

Based on (5.11), the expected time between the start of the first interval of a 

DODAG member, and the first successful DIO message reception by its next hop can be 

calculated as follows:  

𝐸[𝑡𝐽𝑜𝑖𝑛] = ∑ (𝐸[𝛼𝑗] ∙ 𝑃𝐷𝐼𝑂𝐸𝑟𝑟

𝑗−1 ∙ (1 − 𝑃𝐷𝐼𝑂𝐸𝑟𝑟
))

∞

𝑗=1

                     (5.12) 

Because the number of interval doublings is limited to 20 by default in the Trickle 

algorithm, we should rewrite (5.12) expressing the addition in two parts, as shown in 

(5.13). The first addend is related to the first 20 intervals, whose lengths are doubled in 

each iteration, and the second part corresponds to the rest of intervals, which have a 

fixed length equal to Imax. 

Figure 5.2. Variables used for calculating the time between the start of the first interval 
and the instant of a DIO message transmission in the first, second and third intervals. 
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Finally, the expected DODAG convergence time in a chain topology network of N 

hops, where the DODAG root is placed at one edge of the chain, 𝑇𝐷𝑂𝐷𝐴𝐺, can be found 

by plugging (5.13) into (5.2). 

5.3. Evaluation 

This section evaluates the analytical model presented and compares the analytical 

results with results obtained by extensive simulations. The section is organized in two 

parts. The first one introduces the simulation environment. The second subsection 

shows both analytical and simulation results.  

5.3.1. Simulation environment and methodology 

In order to validate the model presented, we implemented RPL [56] in OMNET++, 

a well-known C++-based discrete event simulator [54]. We also used MiXiM as a WSN 

simulator framework within OMNET++ [55]. In this framework, we selected the radio 

interface that simulates the CC2420 radio chip, a popular 2.4 GHz band IEEE 802.15.4 

radio interface. We used the beaconless mode and set the receiver setup time, the 

turnaround time and the CCA duration according to the CC2420 data sheet [57]. The 

rest of radio interface parameters were set to the default values specified in the IEEE 

802.15.4 standard [60]. The Imin and Imax parameters were set to 8 ms and 2.3 hours, 

respectively, which are the default values stated by the RPL specification [5]. In order to 

avoid unnecessary suppression of DIO messages and fast DODAG convergence, we set 

the redundancy constant, k, to 2 (note that greater values of k would yield the same 

results). Table I shows the main parameter settings used in the simulations. 

The simulated scenario is a static chain topology network whereby the distance 

between every two neighboring nodes is the same and is equal to 9.96 m. The DODAG 

root is placed at one edge of the chain. 

 𝐸[𝑡𝑗𝑜𝑖𝑛] =  ∑ (((7 ∙ 2𝑗−3 − 1) ∙ 𝐼𝑚𝑖𝑛 + 𝐸[𝑡𝑀𝐴𝐶] + 𝑡𝑡𝑥 𝐷𝐼𝑂    ) ∙ 𝑃𝐷𝐼𝑂𝐸𝑟𝑟

𝑗−1 ∙ (1 − 𝑃𝐷𝐼𝑂𝐸𝑟𝑟
)) +

21

𝑗=1

 

      ∑ ((((j − 20) ∙ 220 + 3 ∙ 218 − 1) ∙ 𝐼𝑚𝑖𝑛 + 𝐸[𝑡𝑀𝐴𝐶] + 𝑡𝑡𝑥 𝐷𝐼𝑂    ) ∙ 𝑃𝐷𝐼𝑂𝐸𝑟𝑟

𝑗−1 ∙ (1 − 𝑃𝐷𝐼𝑂𝐸𝑟𝑟
))

∞

𝑗=22

    (5.13) 
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We evaluated the model and performed simulations for various BER values, 

ranging from 0 up to 10-3 (note that the latter is the BER for which the receiver 

sensitivity is defined in IEEE 802.15.4). We also considered a chain topology length 

between 1 and 15 hops. For each individual configuration, we simulated 1000000 

DODAG formation iterations.  

To obtain the DODAG convergence time in the simulations, we computed the time 

from the instant in which the DODAG root starts its first Trickle interval until the 

instant in which all nodes have joined the DODAG. 

5.3.2. Simulation and analytical results 

In this subsection we compare the DODAG convergence time, as predicted by the 

analytical model presented in the previous section, with results obtained by simulation, 

for different values of both BER and chain topology length. 

In order to obtain the expected DODAG convergence time analytically, we applied 

the same radio interface and RPL parameter values used in the simulation, and solved 

the model numerically.  

For the calculation of the DIO message transmission time, 𝑡𝑡𝑥 𝐷𝐼𝑂, we determined 

the length of a DIO message. The size of a DIO message that carries the necessary 

parameters for DODAG formation is 52 bytes at the RPL layer. After adding a typical 

compressed IPv6 header [61], MAC layer and physical layer headers, the size of the 

DIO message is 88 bytes.  

Figures 5.2 and 5.3 compare results obtained by using the analytical model with 

simulation results. As can be seen in these figures, the analytical model approximates

Table 5.1. Parameter settings used in simulations and in the 

analytical model results. 

 

Parameter Value 

Imin (ms) 8  

Imax (hours) 2.3  

k 2 

IEEE 802.15.4 band (GHz) 2.4  

Transmit power (dBm) -25  

CCA (µs) 128  

Turnaround time (µs) 192  

Receiver setup time (ms) 1.792  
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well the results obtained by simulation. For BER values up to 5 ∙ 10−4, the model is 

highly accurate. For greater BER values, the model accuracy slightly decreases. 

Bit errors do not have a significant influence on the DODAG convergence time for 

BER values up to 5 ∙ 10−4. However, for greater BER values, the DODAG convergence 

time may increase by a factor of up to 10 (e.g. for BER=10−3) in comparison with the 

one obtained when the network is error-free. Note that when a user expects a response 

after an action, s/he is sensitive to delays greater than 500 ms [6]. This threshold is 

exceeded for various BER values considered for a chain topology length greater than 3. 

Furthermore, the evaluation has neglected processing times, which may contribute to 

the DODAG convergence time in a real network.   

 
Figure 5.3. Average DODAG convergence time for various chain topology number of 

hops and BER values: simulation (symbols) vs. analysis (lines) Part I. 

 
Figure 5.4. Average DODAG convergence time for various chain topology number of 

hops and BER values: simulation (symbols) vs. analysis (lines) Part II. 
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On the other hand, the DODAG convergence time linearly increases with the chain 

topology length (i.e. network diameter), which is consistent with results found in the 

literature by simulation [44, 45]. 

5.4. Related work 

This section reviews research work that is related with this chapter. Despite the 

novelty of RPL, many studies have already evaluated performance of this routing 

protocol and its mechanisms [48-52]. These works generally focus on performance 

parameters such as packet delivery ratio, control message overhead, power consumption 

or packet delay in various scenarios. However, only a few works have focused on the 

network convergence time in RPL, and only a subset of these provide analytical models 

[46, 47]. 

A survey on research efforts about RPL, as well as an experimental performance 

evaluation of RPL using TelosB motes [58] running ContikiRPL [30] is presented in 

[45]. Among other results, authors claim that network convergence time increases 

linearly with the number of nodes in the DODAG. However the relationship between 

the number of nodes and the related topologies is not clear in this work. 

A simulation study of RPL with special attention on the network formation process 

is provided in [44]. The main goal of this paper is to investigate the impact of a set of 

network parameters and mechanisms including the number of nodes, RPL parameters 

and mechanisms such as the number of DODAG roots or the objective function, and 

packet loss on the performance of the network construction process. Results are 

obtained based on two different network topologies: regular topologies, whereby nodes 

are quasi-uniformly distributed, and random topologies. Authors show a linear increase 

of the network convergence time with the network size. 

In [46], authors developed analytical models to estimate the duration of a 

propagation event, which is equivalent to the network convergence time, by using the 

mechanisms included in RPL for both line and grid network scenarios. These models 

take into account packet loss ratio, by using the Closest Pattern Matching (CPM) model 

as the propagation model. The authors provide a method to derive the probability 

density function of the time until network consistency through the use of Laplace 

transforms. However, a specific probability tree is required for each specific network, 

and an equation for the convergence time in terms of the network diameter is not given. 
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In fact, complexity of the analysis increases very quickly with the network diameter. 

Furthermore, the models presented do not take into account physical and link layer 

characteristics, such as transmission time, backoff time, etc.  

Finally, authors in [47] presented analytical models to estimate the number of 

control message transmissions per interval and also the propagation speed, which is 

related with the network convergence time, by using the mechanisms used in RPL in 

single-hop and multihop networks. However, these models have not taken into account 

physical and link layer characteristics and assume error-free networks. 

To the best of our knowledge, an analytical model for estimating the network 

convergence time in RPL that considers the network diameter, the presence of bit errors 

and radio interface characteristics has not yet been published. 

5.5. Discussion 

In this chapter we presented an analytical model for computing the expected 

DODAG convergence time in a static chain multihop network of IEEE 802.15.4 nodes, 

considering bit errors, when RPL is used as the routing protocol. We validated the 

model presented by extensive simulation results.  

As results show, the analytical model approximates well the results obtained by 

simulation for a wide range of both BER and chain topology length. We have found a 

linear increase of the network convergence time with the number of hops in the 

network, which is consistent with the literature. Bit errors do not have a significant 

effect on the network convergence time for BER values up to 5 ∙ 10−4. However, 

greater BER values may lead to degradation of this performance parameter, and BER 

values close to 10−3 may have a dramatic effect on the user experience for a chain 

topology length greater than 3 hops. 
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6. Modeling the Message Count of the Trickle Algorithm 

in a Steady-State, Static Wireless Sensor Network 

The last two chapters focused on RPL performance in transient state, i.e. during 

network convergence. This chapter considers steady-state networks. As presented in 

Chapter 3, the Trickle algorithm regulates the transmission of DIO messages in RPL. In 

this chapter we present an analytical model for the number of messages transmitted in a 

steady-state, static network that uses the Trickle algorithm, as a function of the 

redundancy constant  and the average node degree.  

6.1. Introduction  

As mentioned in section 3.2, the Trickle algorithm can be used for different 

purposes including control traffic timing, multicast propagation and route discovery. 

Knowing the number of transmitted messages for applications that use the Trickle 

algorithm can be very useful for network engineers and researchers in the planning, 

deployment and evaluation of Trickle-based networks, such as RPL networks. To this 

end, in this chapter we present an analytical model for the number of messages 

transmitted in a steady-state, static network that uses the Trickle algorithm, as a function 

of the redundancy constant (i.e. the main parameter of the Trickle suppression 

mechanism), and the average node degree. The model constitutes a tool that will be 

useful for network engineers and researchers in the planning, deployment and 

evaluation of Trickle-based networks. The model presented is validated by simulation 

results. 

6.2. Trickle model  

In this section, we present an analytical model for the number of message 

transmissions allowed by Trickle in a WSN within a given time interval (note: by ‘time 

interval’ we refer to the time intervals defined by the Trickle algorithm). Our study 

assumes a static network which is in steady state, where the current interval size of all 

the nodes is the same and is equal to Imax. This assumption is consistent with the 

characteristics of WSN deployments with very stable links [35]. For more dynamic 

WSNs, the model provides a lower bound on the number of message transmissions. 
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For simplicity, our model assumes a synchronized network whereby the interval 

start time is the same for all the network nodes. Nevertheless, as shown in section 6.3.3, 

the number of transmissions in a network when intervals have arbitrary start times is 

very close to the one in a synchronized network. 

In our model, we assume a uniformly random spatial distribution for the nodes on a 

two-dimensional area of size A, and a total number of nodes equal to N. Let the area 

defined by the coverage range of a node be equal to a. Based on these definitions and 

assumptions, the probability that a node will be a neighbor of a given node, q, can be 

calculated as follows:  

𝑞 =
𝑎

𝐴
 .                                                                           (6.1) 

The goal of the model is to calculate the total number of messages transmitted 

within a given interval in the whole network. In order to achieve this goal, in the 

following we calculate the average probability that a node belonging to the network, 

denoted by node x, will send a message in a given interval. This average probability is 

denoted by 𝑃(𝑡𝑥). 

Recall that k denotes the Trickle redundancy constant. In order to calculate  𝑃(𝑡𝑥), 

we consider two possible situations: a) node x has fewer than k neighbors; b) node x has 

at least k neighbors. 

Let y be the number of neighbors of node x. Also assume that 𝑃(𝑦 < 𝑘) is the 

probability that the number of neighbors of node x will be smaller than k, and 

𝑃(𝑡𝑥|𝑦 < 𝑘) is the probability that node x will send a message in the current interval 

when its number of neighbors is smaller than k. 

Let us define the term 𝑃(𝑦 ≥ 𝑘) as the probability that the number of neighbors of 

node x will be greater than or equal to k, and the term 𝑃(𝑡𝑥|𝑦 ≥ 𝑘) as the probability 

that node x will send its message in the current interval when it has k or more neighbors. 

Then, the average probability that a node will send a message in a given interval, 𝑃(𝑡𝑥), 

can be written as follows:  

𝑃(𝑡𝑥) = 𝑃(𝑡𝑥|𝑦 < 𝑘) ∙ 𝑃(𝑦 < 𝑘) + 𝑃(𝑡𝑥|𝑦 ≥ 𝑘) ∙ 𝑃(𝑦 ≥ 𝑘).                   (6.2) 

Next we calculate each term of (6.2) separately. First, when the number of 

neighbors for node x is smaller than k, the node will surely transmit at time t, i.e. 

𝑃(𝑡𝑥|𝑦 < 𝑘) = 1, because it will hear at most k-1 transmissions during the interval (i.e. 
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its counter c will never reach k). The probability that node x will have fewer than k 

neighbors, 𝑃(𝑦 < 𝑘), can be obtained as: 

𝑃(𝑦 < 𝑘) = ∑ ((
𝑁 − 1

𝑖
) ∙ 𝑞𝑖 ∙ (1 − 𝑞)𝑁−1−𝑖) .

𝑘−1

𝑖=0

                         (6.3) 

We next derive the second addend of (6.2). The probability that node x will have at 

least k or more neighbors, 𝑃(𝑦 ≥ 𝑘), can be calculated as follows: 

𝑃(≥ 𝑘) = ∑ ((
𝑁 − 1

𝑖
) ∙ 𝑞𝑖 ∙ (1 − 𝑞)𝑁−1−𝑖) .

𝑁−1

𝑖=𝑘

                         (6.4) 

Note that each node can have at most N-1 neighbors. 

In order to calculate the probability of message transmission for node x in the 

current interval when it has at least k neighbors, 𝑃(𝑡𝑥|𝑦 ≥ 𝑘), we consider two possible 

cases: i) the time selected by node x for the transmission of its message is one of the 

first k transmission times selected by its neighbors and by itself; and ii) the time selected 

by node x is not one of those first k transmission times. In the first case, node x will 

surely send its message at the selected time t. The probability of selecting one of the 

first k transmission times, denoted by 𝑃(𝑖), can be obtained as: 

𝑃(𝑖) =
𝑘

𝑦 + 1
.                                                        (6.5) 

In the second case, node x can send its message if, at time t, at most k-1 of the 

subset of neighbors that have selected smaller transmission times than that of node x 

actually transmit their messages. (Note that the remaining neighbors suppress their 

transmissions due to the influence of their own neighbors.) If these conditions are 

satisfied, node x will be able to send its message. The probability that node x will select 

any of the last 𝑦 + 1 − 𝑘 times, denoted by 𝑃(𝑖𝑖) is: 

𝑃(𝑖𝑖) = 1 − (
𝑘

𝑦 + 1
).                                              (6.6) 

The probability that, in that case, at most k-1 nodes will transmit before node x, 

denoted  𝛤, can be expressed as:  

 𝛤 =     ∑ ((
𝑛 − 1

𝑗
) ∙ (𝑃(𝑡𝑥))

𝑗
∙ (1 − 𝑃(𝑡𝑥))

𝑛−1−𝑗
),                    

𝑘−1

𝑗=0

(6.7) 

where n is the positive integer that denotes the position of node x transmission time in 

the set of increasingly ordered transmission times selected by node x and by its 
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neighbors. Note that there are n-1 nodes with smaller selected transmission time than 

the one chosen by node x, and n > k. 

By plugging (6.1) and (6.3)–(6.7) into (6.2), we obtain (6,8), which gives an 

expression for 𝑃(𝑡𝑥), i.e. the average probability of sending a message for node x 

during a given time interval. Since (6.8) is a polynomial in 𝑃(𝑡𝑥), 𝑃(𝑡𝑥) can be 

obtained from (6.8) by applying a root-finding algorithm. 

Finally, the average number of transmissions in a network composed of N nodes in 

a given time interval, denoted NTx, can be expressed as follows: 

𝑁𝑇𝑥 = 𝑃(𝑡𝑥) ∙ 𝑁.                                                  (6.9) 

6.3. Evaluation 

6.3.1. Simulation environment and methodology 

In order to validate the model presented, we have developed a simulator using 

Delphi programming language. In our simulation environment, 100 nodes (i.e. N=100) 

are placed according to a uniformly random spatial distribution on a square scenario of 

area 150 m x 150 m. The coverage range of a node is a circular area defined by the 

transmission radius of the node. Any node contained within the coverage range of 

another node receives correctly the messages transmitted by the latter. The coverage 

range (which is the same for all nodes) is varied in order to evaluate the results for 

different average node degrees. In order to cope with the border effect problem in the 

simulations, we use the toroidal distance for calculating the distances between nodes 

[62]. Nodes execute the Trickle algorithm, which has been implemented in the simulator 

according to the Trickle specification [25]. The simulator allows the network to be 

configured in two different modes: synchronous mode and asynchronous mode. 

In the synchronous mode, all nodes start their first interval (of size Imin) at the same 

time. When the intervals of all nodes reach the Imax size (i.e. the network reaches the 

steady state), the simulator computes the number of transmitted messages for five 

consecutive intervals.  
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In the asynchronous mode, each node randomly chooses a start time for its first 

interval (of size Imin) in the range between 0 and Imax. Thus, the last Trickle execution 

start can occur while the node that selected the first start time is already in its first 

interval of Imax size. When the last node starts its second interval of Imax size, the 

network reaches steady state (note that, during the previous interval of Imax size, the 

neighbors of the last node may have a decreased transmission probability, since the last 

node’s interval of 0.5·Imax size favored its own transmissions). Then, the simulator 

computes the number of transmitted messages for five consecutive intervals. 

The procedures described for both synchronous and asynchronous modes are 

repeated 2000 times, using a new randomly generated node spatial distribution instance 

for each procedure and set of conditions. Imin and Imax parameters are set to 8 ms and   

2.3 hours, respectively, which are the default values established by the RPL 

specification [5]. 

6.3.2. Synchronous network simulation results vs analytical model 

results 

In this subsection we compare the number of messages transmitted in a given 

interval, as predicted by the analytical model presented in the previous section, with 

results obtained by simulation, for values of both k and average node degree between 1 

and 15, respectively. The range of values considered for k includes the default value 

determined by the RPL specification (i.e. k=10) [5]. This subsection focuses on the 

synchronous mode, since the model assumes a synchronous network. The slightly 

different performance of an asynchronous network is discussed in the next subsection. 

Figure 6.1 compares simulation results (which show the average results obtained 

from 10000 intervals for each set of parameter values) with analytical results. The 

largest 95% confidence interval size obtained for the simulation results is 4.73% of the 

corresponding average result. For the sake of clarity, Figure 6.1 does not show the 

confidence intervals. 

𝑃(𝑡𝑥) = ∑ (
𝑁 − 1

𝑖
) ∙ (

𝑎

𝐴
)

𝑖

∙ (1 −
𝑎

𝐴
)

𝑁−𝑖−1
𝑘−1

𝑖=0

+ ∑ (
𝑘

𝑖 + 1
) ∙ ((

𝑁 − 1
𝑖

) ∙ (
𝑎

𝐴
)

𝑖

∙ (1 −
𝑎

𝐴
)

𝑁−𝑖−1

)

𝑁−1

𝑖=𝑘

+ 

 

               + ∑ [(1 −
𝑘

𝑖 + 1
) ∙ ((

𝑁 − 1
𝑖

) ∙ (
𝑎

𝐴
)

𝑖

∙ (1 −
𝑎

𝐴
)

𝑁−𝑖−1

) ∙ ∑ ((
𝑖
𝑗
) ∙ (𝑃(𝑡𝑥))

𝑗
∙ (1 − 𝑃(𝑡𝑥))

𝑖−𝑗
)

𝑘−1

𝑗=0

]

𝑁−1

𝑖=𝑘

      (6.8) 
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As shown in Figure 6.1, the analytical model approximates well the results obtained 

by simulation. When the average node degree is comparable to or smaller than k, the 

model is highly accurate. As the difference between the average node degree and k 

increases, the model accuracy decreases slightly. This occurs because the model 

assumes in (6.7) that message transmissions of node x neighbors are independent 

events. However, a transmission done by a node x neighbor within the coverage range 

of another node x neighbor will lead to an increment of the counter c and a decrease in 

the transmission probability of the latter. 

6.3.3. Synchronous vs asynchronous modes 

As can be seen in Figure 6.1, for low values of k in comparison with the average 

node degree, the asynchronous mode yields a slightly greater number of message 

transmissions than the synchronous one. Otherwise, an asynchronous network leads to a 

message count that is equal to or slightly smaller than that of a synchronous network. 

We next explain the reasons for the different performance of these two types of network 

modes. 

In an asynchronous network, when the value of k is small, results are influenced by 

the non-negligible probability that more than k transmissions will occur within the 

coverage range of a node during an interval. This happens because the start times of the 

Figure 6.1. Number of messages transmitted per time interval in a network composed 
of 100 nodes for different values of the redundancy constant, k, and different average 

node degrees, denoted NDeg: analysis (symbols) vs simulation (lines). 
 

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Simulation (synch.)

Simulation (asynch.)

Analysis (NDeg=1)

Analysis (NDeg=3)

Analysis (NDeg=5)

Analysis (NDeg=7)

Analysis (NDeg=10)

Analysis (NDeg=15)

T
ra

n
sm

it
te

d
 m

es
sa

g
es

 p
er

 t
im

e 
in

te
rv

al
 

Redundancy constant, k



Chapter 6. Modeling the Message Count of the Trickle Algorithm in a Steady-State, 

Static Wireless Sensor Network 

______________________________________________________________________ 

 87 

nodes’ intervals do not coincide. For example, Figure 6.2.a) depicts the behavior of a 

network composed of three nodes, all of which can listen to each other, whereby k = 1. 

As a consequence of the asynchronous interval start times of each node, 2 (i.e. more 

than k) transmissions occur in the last interval. As the average node degree grows in 

comparison with k, this phenomenon is more likely to occur. However, the same  

network in synchronous mode would yield k transmissions per interval. 

On the other hand, in an asynchronous network, when k is not small in terms of the 

average node degree, results are affected by the fact that less than k transmissions can 

occur within the coverage range of a node during an interval. This also happens as a 

consequence of the network asynchronicity. Figure 6.2.b) shows an example of the 

behavior of the same network referred to in Figure 6.2.a), albeit with k set to 2 (i.e. k is 

equal to the number of neighbors of all the nodes). In Figure 6.2.b), only one message is 

transmitted within the second interval. In fact, Node 2 suppresses its transmission in that 

interval since it has already heard k messages in its own interval. On the other hand, 

Node 3’s next transmission is scheduled out of the second interval, while Node 1 is 

allowed to carry out its transmission. In the second interval, since there are no further 

neighbors that can transmit, the total number of transmissions is finally smaller than k. 

(Note that as the node degree increases in comparison with k, more nodes have the

opportunity of transmitting.) Remarkably, the same network in synchronous mode 

would yield k transmissions per interval. 

6.4. Discussion 

In this chapter we presented an analytical model for predicting the number of 

transmitted messages in a Trickle-based steady-state, static WSN, as a function of the 

Figure 6.2. Example of Trickle operation in an asynchronous, steady-state network 
composed of three nodes where all nodes can hear each other’s transmissions: a) the 

value of k is set to 1 (i.e. k is smaller than NDeg); b) k is set to 2 (i.e. k is equal to NDeg). 
The total number of transmissions per interval is denoted ntx. 
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redundancy constant and the average node degree. We validated the model by 

simulation for synchronous and asynchronous networks. Whereas the model provided is 

highly accurate, the slight differences in the performance of synchronous and 

asynchronous networks were analyzed. Note that the model assumes that the Trickle 

algorithm never resets. Therefore, the model offers a lower bound on the message 

overhead in Trickle-based networks, such as RPL networks, of a greater degree of 

topology dynamics. 
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7. Route change latency with RPL and 6LoWPAN 

Neighbor Discovery 

The previous chapter focused on steady-state Trickle-based networks, such as RPL 

networks, assuming that topology changes do not occur. In this chapter we analyze 

performance of the mechanisms provided by default in 6LoWPAN ND and the impact 

of the relevant RPL parameters for detecting link failures. The goal of this chapter is the 

calculation of Route Change Latency (RCL), the time needed to determine an 

alternative route when a link or node failure occurs, in RPL, and its influence on end-to-

end connectivity, when 6LoWPAN ND is used, as well as the related message 

overhead.  

This chapter is organized as follows. Section 7.1 gives an introduction to this 

chapter. Section 7.2 is devoted to a theoretical analysis of the RCL in RPL and 

6LoWPAN ND. Section 7.3 presents a simple analytical model for evaluating end-to-

end path connectivity in a network by using RPL and 6LoWPAN ND. Section 7.4 

discusses the range of parameters used in the evaluation and Section 7.5 shows the 

obtained results. A simple analytical model for calculating the message overhead due to 

connectivity maintenance is given in section 7.6. Section 7.7 presents the main 

conclusions of this chapter.   

7.1. Introduction  

As we mentioned in chapter 3, RPL has been designed taking into account the 

requirements of control and monitoring applications from many environments, 

including home and building automation, industrial monitoring, and urban sensor 

networks. These applications operate in unstable environments, whereby link and node 

failures may frequently occur (e.g. due to wireless propagation issues, node mobility, 

changes in the environment, battery depletion, etc.) [63, 64]. In consequence, a radio 

link may unexpectedly disappear or become unreliable. If that link is being used, then 

the link failure should be detected and a new route should be used (if any available route 

exists). This procedure incurs a delay, which has been denoted by RCL [65], that may 

not be negligible. Nevertheless, timely data transmission is very important for many 

applications. Some examples are the transmission of medical alarms for users of body 
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medical sensors or pushing a remote control’s button in order to perform a command 

[6]. 

RPL may use a variety of mechanisms for detecting a link failure, including layer 

two and layer three mechanisms. The layer two mechanisms may not always be 

available, and depend on each particular link layer used and are tied to the 

implementation of RPL for a particular sensor node platform. Hence, RPL relies by 

default on the layer three protocol called IPv6 Neighbor Discovery (ND) [27]. However, 

it is expected that LLNs (in particular, those that use radios compatible with IEEE 

802.15.4) exploit an optimized version of ND, which has currently been developed by 

the IETF IPv6 over Low power Wireless Personal Area Networks (6LoWPAN) WG, 

denoted 6LoWPAN ND [34].  

This chapter presents a theoretical evaluation of: i) the RCL incurred by RPL when 

6LoWPAN ND is used, ii) the impact of the relevant 6LoWPAN ND and RPL 

parameters on path availability and iii) the trade-off between path availability and 

message overhead.  

7.2. RCL with RPL and 6LoWPAN IPv6 ND 

In this section we analyze the RCL of RPL and 6LoWPAN ND. For the basis of our 

study, we consider a simple topology which is shown in Figure 7.1 (the impact of the 

RCL on more complex topologies is analyzed in Section 7.4).  

Figure 7.1.a) illustrates a topology whereby node D is a parent of nodes B and C; 

node A has selected nodes B and C as its parent set; and node B is the preferred parent 

of node A. Suppose that node A has registered its address with both of its parents. Then, 

the AB link fails, which leads to the new network topology depicted in Figure 7.1.b).  

In order to analyze the RCL, we study two different scenarios (see Figure 7.2). In 

both scenarios, the last positive confirmation from node B in response to an NS (or 

DAO) message sent by node A is received at time T. Let us assume that node A wants 

Figure 7.1. a) Node A has selected nodes B and C as its parents and 
B is its preferred parent; b) Node B becomes unreachable for node A 

and subsequently node A selects node C as its preferred parent. 
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to send a data packet to node D via its preferred parent, node B.  

In the first scenario, assume that node B, after sending an acknowledgement to 

node A, becomes immediately unreachable for node A (see Figure 7.2.a)). In the second 

scenario, the router unreachability happens right before the registration lifetime 

expiration (see Figure 7.2.b). Node A may start sending data to node D at time t1 

because it believes its preferred parent is available during a period of time equal to the 

registration lifetime indicated in the last NS (or DAO) message sent by node A to node 

B. The node A will continue data transmission within the registration lifetime duration, 

until it performs re-registration along with NUD by sending a new NS (or DAO) 

message to its preferred parent. We assume that the registration lifetime used in ND is 

equal to the default lifetime contained in the RPL DIO message and path lifetime in 

DAO messages. For simplicity, we will use the term ‘path lifetime’ for any of these.  

The time required to detect the router unreachability, denoted by TNUD, can be 

expressed as follows: 

     𝑇𝑁𝑈𝐷 = 𝑀𝐴𝑋_𝑈𝑁𝐼𝐶𝐴𝑆𝑇_𝑆𝑂𝐿𝐼𝐶𝐼𝑇 ∗ 𝑅𝐸𝑇𝑅𝐴𝑁𝑆_𝑇𝐼𝑀𝐸𝑅                         (7.1) 

where the 𝑀𝐴𝑋_𝑈𝑁𝐼𝐶𝐴𝑆𝑇_𝑆𝑂𝐿𝐼𝐶𝐼𝑇 and RETRANS_TIMER parameters are the ones 

already presented in section 3.4.2. The default values for these parameters are 3, and 1 

second, respectively. 

If we denote the lifetime of node A by 𝑇𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒, the RCL for the first scenario (see 

Figure 7.2.a)), can be calculated as follows: 

𝑅𝐶𝐿 = 𝑇𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 + 𝑇𝑁𝑈𝐷                                                          (7.2) 

and for the second scenario (see Figure 7.2.b)), RCL is equal to: 

𝑅𝐶𝐿 = 𝑇𝑁𝑈𝐷                                                                (7.3) 

Figure 7.2. Two scenarios for data transmission and router unreachability. In a) router 
becomes unreachable right after sending an acknowledgement in response of NS 

message, at time t2. In b) router unreachability takes place right before the expiration of 
node’s lifetime, at time t3. 
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Since the router unreachability can occur at any moment within the path lifetime 

duration, the RCL can be characterized as a uniformly distributed random variable 

between the two values expressed in equations (7.2) and (7.3). Therefore the expected 

value for RCL can be expressed as follows: 

𝐸[𝑅𝐶𝐿] =
𝑇𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒

2
+ 𝑇𝑁𝑈𝐷                                                  (7.4) 

7.3. End-to-End connectivity model 

In this section, we present a simple analytical model to evaluate the impact of using 

RPL with 6LoWPAN ND on the end-to-end connectivity of an LLN.   

We denote the average lifetime of a link, from its creation until the instant in which 

it disappears, as Time to Link Failure (TLF). We assume that the parent set of all nodes 

in a DODAG has more than one member. Under this assumption, when a node or link 

failure occurs in an active path, a node can use another parent as preferred parent to 

continue the data transmission towards the same destination (note that this is an 

optimistic assumption). Hence, the probability of link unavailability, which we denote 

by q, can be calculated as follows: 

𝑞 =
𝐸[𝑅𝐶𝐿]

𝑇𝐿𝐹+𝐸[𝑅𝐶𝐿]
                                                         (7.5) 

We next calculate the probability of end-to-end path availability for data 

transmission in a path composed of N hops. We have considered that the length of both 

paths, i.e. the failed path and the new path, is equal to N. 

Based on these assumptions, and on equation (7.5), the probability of end-to-end 

path availability for data transmission in an N-hop path, denoted by P, is equal to: 

𝑃 = (1 − 𝑞)𝑁                                                          (7.6) 

7.4. Discussion of TLF and path length values 

This section discusses the TLF and path length range of values for the evaluation of 

link and end-to-end path availability of an LLN, which is shown in section 7.5. 

7.4.1. Time to Link Failure 

Link failures occur in static scenarios due to phenomena which are intrinsic to radio 

signal propagation (e.g. multipath, fading, etc.) [66]. Furthermore, changes in the 

environment that may temporarily attenuate the radio signal (e.g.  people moving 

around, opening and closing a door, rain or snow in an urban LLN) and interference 
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(e.g. from WiFi equipment or from a microwave oven) may affect the reception of radio 

signals [6] [34]. Link failures may also happen due to node mobility (e.g. due to the 

mobility of people using on-body sensors or using a portable remote control) and node 

failures (e.g. due to battery depletion). Depending on the particular environment, the 

expected TLF may range from less than one minute to more than one day. 

7.4.2. Number of hops 

The expected number of hops in a path depends on each particular scenario and 

application. For example, the number of hops in an industrial application can be up to 

20 [9], e.g. when a few hundred nodes are deployed for controlling a very large refinery. 

In home and building automation [7, 8] the number of hops can be up to 5, whereas for 

some applications the expected number of hops can be equal to 1 or 2. 

7.5. End-to-End connectivity evaluation 

In order to evaluate the probability of link unavailability and the probability of end-

to-end path availability, we consider different configurations for the RPL and 

6LoWPAN ND parameters that affect the RCL. These configurations are shown in 

Table 7.1. 

The value we use for MAX_UNICAST_SOLICIT for all of these ten configurations 

(i.e. #1 to #10) is equal to 3, i.e. the default value indicated in 6LoWPAN ND [34]. We 

believe this value constitutes an appropriate trade-off between reactivity to link failures 

and spurious link failure detection in a wireless environment.  

Note that the RETRANS_TIMER value in configurations #1 to #5 is the default 

Table 7.1.  Proposed parameter configurations. 

 

Configuration 

number 

Path 

Lifetime (s) 
RETRANS_TIMER (s) 

#1 10 1 

#2 50 1 

#3 100 1 

#4 500 1 

#5 1000 1 

#6 10 2 

#7 50 2 

#8 100 2 

#9 500 2 

#10 1000 2 
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value as proposed in [27]. In configurations #6 to #10 this value is multiplied by 2, in 

order to compare the impact of this parameter on the probability of end-to-end path 

availability. We considered as well a RETRANS_TIMER of 0.5 s. However, this setting 

led to very similar results to those obtained with the default value. Next, we evaluate the 

probability of link reachability (see Figure 7.3) and the probability of end-to-end path 

availability (see Figures 7.4, 7.5 and 7.6) by using equations (7.5) and (7.6).  

For Figure 7.3, we have considered the range of TLF values mentioned in Section 

7.4. As shown in Figure 7.3, all the configurations yield almost 100% link availability 

for TLF values greater than 5 hours. However, for short-lived links, only the 

configurations with low path lifetime values offer at least moderate link availability.  

For path lifetime greater than or equal to 100 s, results are almost independent of 

the RETRANS_TIMER setting. Figures 7.4, 7.5 and 7.6 illustrate the end-to-end path 

availability for a range of path lengths that covers the various application requirements 

mentioned in Section 7.3, and for TLF of 10, 30 and 60 minutes, respectively. For a 

TLF of 10 minutes, only the configurations that use a path lifetime equal to 10 s offer an 

end-to-end path availability beyond 70%. When TLF is 30 minutes or 60 minutes, the 

same end-to-end path availability can be achieved by using a path lifetime of 50 s or 

100 s, respectively. 

On the other hand, we recommend the use of layer two mechanisms for 

connectivity maintenance whenever possible, which allow faster reactions to topology 

changes and better network connectivity. For example, it is possible to detect a link 

failure in acknowledged IEEE 802.15.4 networks in only 30 ms [67].  

7.6. NUD message overhead 

Using NUD incurs message overhead. A simple analytical model to calculate the 

rate of NS messages transmitted by a node is as follows: 

𝑁𝑆  𝑟𝑎𝑡𝑒 =  
(1 − 𝑞) ∗ 1 + 𝑞 ∗ 𝑀𝐴𝑋_𝑈𝑁𝐼𝐶𝐴𝑆𝑇_𝑆𝑂𝐿𝐼𝐶𝐼𝑇

𝑃𝑎𝑡ℎ 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒
                       (7.7) 

where q is the probability of link unavailability (see equation (7.5)). Figure 7.7 

illustrates the NS message rate for different path lifetime configurations and for 

different TLF values. We have assumed a RETRANS_TIMER of 1 s (i.e. the default 

value). As it can be seen, there is a trade-off between the path lifetime and NS message 

overhead. The path lifetime should be set to a small value in order to increase path 

connectivity, but on the other hand this will cause a message overhead increase. For
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TLF values greater than one minute, the NS message overhead curves provide similar 

values because the probability of link availability is high. 

7.7. Discussion 

This chapter  provided an analysis of the impact of various RPL and 6LoWPAN 

ND parameter settings on the link availability, the end-to-end path availability, and the 

message overhead incurred by RPL and 6LoWPAN ND for connectivity maintenance. 

Remarkably, important parameters such as default lifetime, path lifetime and 
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Figure 7.5. Probability of end-to-end path 
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registration lifetime do not account with a default proposed value in the related 

specifications. Results show that careful tuning of the relevant parameters is critical for 

obtaining good network performance. There is a trade-off between connectivity 

maintenance and message overhead that depends on the path lifetime parameter. An 

appropriate configuration of the parameters considered depends on each particular LLN 

and application. In particular, the parameter choice has to be carried out depending on 

the expected path length and link lifetime of a scenario.  

On the other hand, we recommend the use of layer two mechanisms for detecting 

link failures whenever possible, since they can be various orders of magnitude faster 

than layer-three based mechanisms. 
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8. Conclusions and future work 

This chapter summarizes the main concluding remarks from this Ph.D. The chapter 

is divided in two parts as follows. Conclusions are presented in section 8.1 and future 

work is pointed out in section 8.2. 

8.1. Conclusions 

This thesis has presented a set of research contributions to the evaluation and 

eventual improvement of RPL, an IP-based routing protocol for operating over low 

power and lossy networks which has recently been developed by the IETF ROLL 

working group. Since RPL has been defined following a flexible approach (thus 

including many parameters and options), and given the key role that RPL plays in the 

Internet of Things, there is a need to evaluate and eventually propose improvement 

mechanisms for this protocol. 

The remainder of this subsection is organized in four parts as follows. The first one 

presents conclusions on network convergence process in RPL over IEEE 802.15.4 

multihop networks. The second one shows the main remarks from the analytical model 

presented for estimaing the expected DODAG convergence time in a network of RPL 

nodes that use IEEE 802.15.4. Third, the main results regarding the analytical model 

presented for the number of message transmissions allowed by Trickle in a WSN within 

a given time interval are provided. Finally, the fourth part summarizes the performance 

evaluation of the neighbor unreachability detection mechanisms in RPL when 

6LoWPAN ND is used.  

8.1.1. Network convergence process in RPL over IEEE 802.15.4 

multihop networks: improvement and trade-offs 

In the first contribution of this thesis we investigated by simulation the influence of 

the two most important RPL parameters, the redundancy constant parameter, k, and the 

minimum interval, Imin, on the network convergence process in IEEE 802.15.4 

networks. We also proposed and evaluated a mechanism called DIS-Trickle for 

accelerating the DODAG convergence process by leveraging DIS messages.  

Results show that increasing the value of k up to a value equal or close to the 

average node degree leads to a reduction of the network convergence time in all 
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network size and density scenarios. However, increasing the redundancy constant 

causes the number of DIO messages transmitted and collisions to increase as well. 

Therefore, there is a tradeoff between network convergence time and number of DIO 

messages transmitted and collisions. Results also show that as the network density 

increases, the influence of the redundancy constant grows with the network size. In 

sparse networks, the relative influence of k is independent of the network size. 

Regarding the minimum interval value, results show that decreasing the Imin value 

decreases the network convergence time regardless of the network size, the network 

density or the redundancy constant. On the other hand, decreasing the Imin value causes 

the number of DIO message transmissions and collisions to increase.  

Finally, results show that using DIS-Trickle decreases network convergence time in 

2-3 orders of magnitude, regardless of the network size or density. The improvement 

provided by this mechanism grows as network density decreases. Interestingly, in dense 

networks, DIS-Trickle does not increase or even reduces the total number of RPL 

messages sent during network convergence. However, in sparse networks, DIS-Trickle 

creates a trade-off between network convergence time and RPL message overhead. The 

influence of DIS-Trickle on network convergence performance decreases with the 

redundancy constant.  

8.1.2. Network convergence process in RPL over IEEE 802.15.4 

multihop networks: improvement and trade-offs 

In chapter 5, we presented an analytical model to estimate the expected DODAG 

convergence time in a network of RPL nodes that use IEEE 802.15.4, and in the 

presence of uncorrelated bit errors. The model assumes a static N-hop chain network 

where all links are of equal characteristics and uncorrelated, and constitutes a lower 

bound on the DODAG convergence time in any network of a maximum number of hops 

between the DODAG root and non-root nodes equal to N. Results show a linear 

increase of the network convergence time with the number of hops in the network. 

Results also show that bit errors do not have a significant effect on the network 

convergence time for BER values up to 5 ∙ 10−4. However, greater values may lead to 

degradation of this performance parameter, and BER values close to 10−3, may have a 

dramatic effect on the user experience for a chain topology length greater than 3 hops.    
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8.1.3. Modeling the Message Count of the Trickle Algorithm in a 

Steady-State, Static Wireless Sensor Network 

Chapter 6 presents an analytical model for the number of message transmissions 

allowed by Trickle in a steady-state WSN within a given time interval. Although the 

model assumes a synchronous network, results show the model can also be used in 

asynchronous networks. Since Trickle operation is critical for performance parameters 

such as energy consumption and available bandwidth, the model can be useful for 

network engineers and researchers in the planning, deployment and evaluation of 

Trickle-based networks. As expected, message overhead grows with the redundancy 

constant, thus leading to a tradeoff between the message overhead (in steady state and 

also during network convergence) and fast network convergence.  

8.1.4. Route change latency with RPL and 6LoWPAN Neighbor 

Discovery  

Chapter 7 evaluates the performance of the neighbor unreachability detection 

mechanisms in RPL when 6LoWPAN ND is used. We studied the effect of relevant 

parameters on performance in terms of link availability, end-to-end path availability, 

and message overhead. Results show that careful tuning of the relevant RPL and 

6LoWPAN ND parameters, such as default lifetime, path lifetime and registration 

lifetime, is critical for obtaining good network performance. However the RPL and 

6LoWPAN ND specifications have not proposed any default value for these parameters. 

Results show a trade-off between connectivity maintenance and message overhead 

which depends on the path lifetime parameter. In order to achieve high path 

connectivity, the path lifetime value should be set to a small value, at the expense of a 

message overhead increase.  

8.2. Future work 

This section presents several future work directions that can be derived from the 

research presented in this document. Some specific areas are listed below where future 

work can be carried out to extend the work presented in this PhD: 

 Designing an adaptive mechanism to determine a value for the initial delay in 

RPL when DIS-Trickle is used. As we mentioned in chapter 4, the value of this 

delay has to be set carefully on the basis of the network size and density. 
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 Developing an adaptive mechanism for Trickle redundancy constant 

autoconfiguration, based on the number of neighbors of a node. As the network 

density can change over the network lifetime due to battery depletion, hardware 

breakdown or operating system misbehavior, or due to the presence of new 

nodes, using such an adaptive mechanism will help nodes in a network to 

configure their redundancy constant based on their own local density 

measurements.   

 Extending the analytical model presented for estimating the DODAG 

convergence time for a random topology, IEEE 802.15.4 multihop network. The 

model should capture the influence of the redundancy constant on the DODAG 

convergence time. 

 The evaluation and potential improvement of the recently created "Multicast 

Protocol for Low power and Lossy Networks (MPL)", which is based on the 

Trickle algorithm. 

 Analysis of P2P-RPL. This protocol is based on the reactive discovery of routes 

which comprises two phases: i) the dissemination of request messages,  by using 

the Trickle algorithm, and ii) a response from the target node. The work in this 

PhD about network convergence time mostly applies to the first phase of the 

P2P-RPL route discovery. However, for a complete P2P-RPL study, the second 

phase should also be added. 
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6LoWPAN     IPv6 over Low power Wireless Personal Area Networks 

ADC  Analogue to Digital Converter 

AODV  Ad hoc On-Demand Distance Vector 

API    Application Programming Interface 

APL  Application 

BER  Bit Error Rate 

BPSK  Binary PSK 

CCA  Clear Channel Assessment  

CDF  Cumulative Distribution Function 

CPM  Closest Pattern Matching 

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance  

CTP    Collection Tree Protocol 

DAO    Destination Advertisement Object 

DAO-ACK  Destination Advertisement Object Acknowledgment 

DIO   DODAG Information Object 

DIS    DODAG Information Solicitation 

DODAG Destination Oriented Directed Acyclic Graphs 

DRO    Discovery Reply Object 

DSR   Dynamic Source Routing Protocol 

DSSS  Direct Sequence Spread Spectrum  

DYMO Dynamic Mobile Ad-hoc Networks On-demand 

ETX    Expected Transmission count 

FCF  Frame Control Field  

IEEE               Institute of Electrical and Electronics Engineers 

IETF  Internet Engineering Task Force 

IP  Internet Protocol 

IS-IS   Intermediate System-to-Intermediate System 

LLN   Low power and Lossy Network 

LQL    Link Quality Level 

MAC    Medium Access Control 

MFR  MAC footer  
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O-QPSK Offset-Quadrature PSK 

OF    Objective Function 

OLSRv2         Optimized Link State Routing Protocol version 2 

OSPF   Open Shortest Path First  

P2P    Point-to-Point 

PHR  PHY header 

PHY    Physical  

PLC   Power Line Communication 

PPDU  PHY protocol data unit 

PSDU  PHY Service Data Unit 

PSK  Phase-Shift-Key 

QoS    Quality of Service 

RCL    Route Change Latency 

RDO    Route Discovery Option 

RF  Radio Frequency 

RIP  Routing Information Protocol 

ROLL WG     Routing Over Low power and Lossy networks Working Group 

RPL  IPv6 Routing Protocol for Low power and Lossy Networks 
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SHR  Synchronization header 

TBRPF Topology Dissemination Based on Reverse-Path Forwarding 
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WSN   Wireless Sensor Network 
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