
SCALABILITY IN EXTENSIBLE AND

HETEROGENEOUS STORAGE SYSTEMS

Alberto Miranda

SCALABILITY
in extensible
and heterogeneous

STORAGE SYSTEMS

SCALABILITY
in extensible
and heterogeneous

STORAGE SYSTEMS
Alberto Miranda

Scalability in Extensible and Heterogeneous Storage Systems
by Alberto Miranda Bueno

A thesis submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Computer Science.
Copyright © 2009–2014 Alberto Miranda Bueno.
All rights reserved.
Printed in Spain.

01 12 35 81 32 13 45 58 91 44

First edition: September 2013
Second edition: June 2014

Advisor: Prof. Dr. Toni CORTÉS ROSSELLÓ

Department: Department of Computer
Architecture (DAC)

University: Universitat Politècnica de
Catalunya–BarcelonaTech (UPC)

Pre-dissertation Prof. Dr. Julita CORBALÁN GONZÁLEZ
Committee: Prof. Dr. Jordi TORRES VIÑALS

Prof. Dr. Juan José COSTA PRATS

Dissertation Prof. Dr. Angelos BILAS
Committee: Prof. Dr. Pilar GONZÁLEZ-FÉREZ

Prof. Dr. Julita CORBALÁN GONZÁLEZ

Many of the designations used bymanufacturers and sellers to distinguish their products are claimed
as trademarks™ or registered® trademarks. Where those designations appear in this book, and the
author was aware of a trademark claim, the designations have been printed in caps or initial caps,
and/or with the corresponding symbols.

This work was partially supported by the Spanish Ministry of Economy and Competitiveness
under grants TIN2007-60625, BES-2008-006019, SEV-2011-00067 (Severo Ochoa Program) and
TIN2012-34557 and by the Catalan Government under grant 2009-SGR-980. Part of the research
was also supported by the European Community under the Marie Curie Initial Training Network
SCALUS grant agreement #238808 and the Seventh Framework Programme (FP7/2007-2013) un-
der grant agreement RI-283493, as part of the PRACE-2IP project.

en memoria de mi madre
Isabel Bueno Sáez

31/12/1952–14/11/2013

Abstract
The evolution of computer systems has brought forth an exponential growth
in data volumes, which is pushing the capabilities of current storage architec-
tures to organize and access this information effectively: as the unending cre-
ation and demand of computer-generated data grows at an estimated rate of
40–60% per year, storage infrastructures need increasingly scalable data dis-
tribution strategies that are able to adapt to this growth and provide adequate
performance.

Hardware-wise, the most flexible approach consists in using pools of stor-
age devices that can be expanded as needed by adding new devices or replacing
older ones, thus seamlessly increasing the system’s performance and capacity.
Such an approach, however, necessitates data distribution strategies that can
adapt to these changes in the infrastructure and can also exploit the potential
performance offered by the hardware. Such strategies should be able to rebuild
the data layout to accommodate the new devices in the storage infrastructure,
extracting the utmost performance from the hardware and offering a balanced
workload distribution. An inadequate data layout might not effectively use the
enlarged capacity or better performance provided by newer devices, thus lead-
ing to unbalancing problems like bottlenecks or resource underutilization.

The title of this dissertation, ‘Scalability in Extensible and Heterogeneous
Storage Systems’, refers to the main focus of our research in scalable data distri-
butions that can adapt to increasing volumes of data. With this thesis we make
several novel contributions to storage research: first we design and evaluate a
pseudo-randomized distribution strategy that can adapt to hardware changes
while redistributing only the minimum data to keep a balanced workload; sec-
ond, we perform a comparative study about the influence of pseudo-random
number generators on the performance and distribution quality of randomized
distributions; third, we conduct an analysis of long-term data access patterns in
several real-world traces in order to determine if it is possible to offer high per-
formance and a balanced load with less than minimal data rebalancing; fourth,
we apply the knowledge learned on long-term access patterns to design an ex-
tensible RAID architecture that can adapt to changes in the number of disks
without migrating large amounts of data.

a

ix

Contents

Abstract ix

List of Figures xv

List of Tables xvii

Preface xix

0 Humans and information storage 1
0.1 Overview and objectives 5
0.2 Publications 7
0.3 Finding your way around 8

1 Background and related work 11
1.1 Distributed file systems background 11
1.2 Storage architectures 13
1.3 RAID 14
1.4 Object-based storage 18
1.5 Data distribution, reliability and adaptivity 19
1.6 Hierarchical storage and layout optimization 24
1.7 Characterization of storage behavior 25

xi

2 Scalable data distribution 29
2.1 Motivation 29
2.2 Research model 32
2.3 Randomized data distribution 33
2.4 Proposal: Random Slicing 37
2.5 Methodology 43
2.6 Scalability of Random Slicing 44
2.7 Comparative evaluation 51
2.8 Conclusions 63

3 PRNGs in data distribution 65
3.1 Motivation 65
3.2 Introduction to (pseudo-)randomness 67
3.3 Methodology 70
3.4 Influence on fairness 72
3.5 Influence on performance 77
3.6 Evaluation summary 80
3.7 Conclusions 80

4 Long-term locality in mass storage 83
4.1 Motivation 83
4.2 Methodology 85
4.3 Block sharing 88
4.4 Block usage 92
4.5 Scope of our hypothesis 99
4.6 Conclusions 103

5 Extensibility in RAID architectures 107
5.1 Motivation 107
5.2 Proposal: CRAID 110
5.3 Methodology 115
5.4 Management of the Cache Partition 121
5.5 CRAID-5* Response Time 122
5.6 CRAID-5* Workload Distribution 127
5.7 Performance of CRAID-0* 129
5.8 Conclusions 132

xii

6 Conclusion 135

A The ENT test for pseudo-random sequences 141

B The NIST test suite 145
B.1 Frequency (MONOBIT) test 146
B.2 Frequency test within a block 146
B.3 Runs test 147
B.4 Test for the longest run of ones in a block 148
B.5 Binary matrix rank test 148
B.6 Discrete Fourier transform (SPECTRAL) test 149
B.7 Non-overlapping template matching test 149
B.8 Overlapping template matching test 150
B.9 Maurer’s “Universal Statistical” test 151
B.10 Linear complexity test 152
B.11 Serial test 152
B.12 Approximate entropy test 153
B.13 Cumulative sums (CUSUM) test 154
B.14 Random excursions test 154
B.15 Random excursions variant test 155

Bibliography 157

Further Reading 173

Index 177

List of Acronyms 183

xiii

List of Figures

0.1 The digital universe: 50x growth from 2010 to 2020 2
0.2 CAGR trends in disk drive technology 3

1.1 Striping with parity 15

2.1 Overview of Random Slicing’s data distribution 38
2.2 Example of the CutShift+Sorted algorithm 42
2.3 Percentage of new intervals created 46
2.4 Total number of intervals created 47
2.5 Lookup time after several reorganizations 50
2.6 Scalability of fairness in homogeneous settings 52
2.7 Impact of the number of points onConsistentHashing’s fairness 54
2.8 Fairness of Share depending on the stretch factor 55
2.9 Scalability of fairness in heterogeneous settings 56
2.10 Memory usage and performance in heterogeneous settings 58
2.11 Scalability of adaptivity in heterogeneous settings 59
2.12 Fairness ofConsistentHashing using a fixednumber of points 62

3.1 Three-dimensional plot of the first numbers generated byRANDU 68
3.2 Influence of PRNG subclasses on fairness 73
3.3 Existence of patterns in the first numbers generated by several PRNGs 75
3.4 Influence of PRNG subclasses on performance 78

xv

4.1 Time required for data migration due to capacity upgrades 84
4.2 Individual and binned percentages of shared blocks 88
4.3 Working set overlap and time in general purpose workloads 90
4.4 Working set overlap and time in specialized workloads 91
4.5 Individual andbinnedpercentages of accesses to shared blocks 93
4.6 CDF of blocks’ lifespan by block count 94
4.7 CDF of blocks actual usage by block count 96
4.8 CDF of consecutive usage by block count 97
4.9 Daily count of blocks with 90% accesses 99
4.10 Block-frequency in the examined traces 101
4.11 Working-set overlap in the examined traces 102

5.1 RAID restriping process 108
5.2 CRAID architecture using RAID-0 112
5.3 Software components and I/O control flow of CRAID 113
5.4 Overview of configurations based on RAID-5 118
5.5 Overview of configurations based on RAID-0 119
5.6 Read response time in CRAID-5* 123
5.7 Sequentiality CDFs for traces cello99 and webusers 124
5.8 Write response time in CRAID-5* 126
5.9 CDFs of the coefficient of variation in traces deasna andwdev 128
5.10 Average I/O response time in CRAID-0* 130
5.11 CDFs of 𝑐𝑣 for traces cello99, deasna, home02 and webusers 131

xvi

List of Tables

2.1 Pros and cons of several approaches to data distribution 31
2.2 Properties of examined strategies in heterogeneous architectures 63

3.1 List of evaluated PRNGs 71
3.2 Results obtained with the ENT suite 76
3.3 Results obtained with the NIST suite 77
3.4 Final PRNG ranking 79

4.1 Summary of traces examined 86
4.2 Summary statistics of traces from seven different systems 100

5.1 Hit ratio for each cache partition management algorithm 121
5.2 Replacement ratio for each cache partitionmanagement algorithm 122
5.3 Best hit ratio and worst eviction ratio from all simulations 124
5.4 Comparison ofCRAID’s dedicated vs. non-dedicated approach 125
5.5 Influence of PC size on workload distribution 129

xvii

Preface

Dear prospective reader,

Research can be daunting sometimes, but it is certainly an enjoyable experience.
When I first met with my advisor, Toni Cortés, a number of years ago to dis-
cuss what being a researcher was like, he replied “It is akin to playing with the
largest, funniest toys in the world.” And boy, was he right; during my research I
re-experienced the childhood joy (and frustration) of trying to build whatever my
imagination came up with, feeling certainly stupid at times whenever I was inca-
pable of seeing apparently obvious solutions, and wickedly clever whenever I felt
that my contributions had led to something really original. Whatever the case, this
thesis is the extensive result of the bubbling ideas from my slightly deranged mind,
and represents a formal way of asking society whether it deems that my contribu-
tions are really innovative and original.

g
In my opinion, even though a thesis is necessarily a work by one author, more

often than not it would be impossible without the selfless collaboration of a certain
number of people. This is my, admittedly small, recognition to all those who have
helped (voluntarily or not) during my research process.

First of all, I owe a deep professional and personal gratitude to my advisor, Prof.
Dr. Toni Cortés. On a professional level, he helped me mature as a computer en-
gineer (by being one of my professors and also the advisor of no less than three
master theses) and as a researcher (by offering his guidance and unwavering con-
fidence in that everything works out in the end). I am particularly fond of those

xix

discussions where we contradict each other constantly in order to eventually shape
an idea, and I am sorry if could not write this thesis in “one afternoon”. On a per-
sonal level, I cannot describe how grateful I am for his support during some of the
worst moments in my life.

Besides my advisor, I very much appreciate the collaboration of all the (current
and past) members of the storage systems research group, specially of Dr.
Ernest Artiaga who has an uncanny ability to detect and destroy weak argumen-
tations. With him I have really learned to think things through before proposing
them aloud.

I must not forget to mention my gratitude to Prof. Dr. André Brinkmann from
the Johannes Gutenberg–Universität Mainz, who has helped several times to im-
prove the quality of the research presented in this dissertation, and could be con-
sidered like a “foster advisor” of sorts.

g
Part of the research in this thesis would not have been possible without the high-

performance computing infrastructures kindly provided by the Barcelona Super-
computing Center (BSC–CNS) and the Department of Computer Architecture at
the Universitat Politècnica de Catalunya–BarcelonaTech (UPC). To them, and spe-
cially to the people in their systems and support departments I owe my most
sincere gratitude.

g
Writing this thesis has also offered me the opportunity to dabble into what has

turned to be a really interesting craft: typography and the typesetting of long text
documents. While doing this, I have learnedmany things about bookmaking, spe-
cially from the always helpful people atTEX StackExchange, and I have tried to apply
it to the document you are now holding in your hands. Every decision I took was
always made with you, the reader, in mind: it was always my intention to improve
the legibility of the content and increase the comprehensiveness of the information
presented; the result is now for you to judge.

g
Besides the people directly relatedwithmy research, Imust also thank themem-

bers of the programming models research group Xavier Teruel, Javier Bueno,
Roger Ferrer and Juan José Costa for creating a cordial and fun workplace from
day one. I must not forget Dr. David Ródenas, Jordi Vaquero, Miguel Tomás and
Jairo Balart (whose annoying coffee jokes are certainly exhausting) for sharing a
whole lot of good times.

xx

I also need to thank my friends Iván García, Jorge Sánchez, Toni Molina and,
most specially, Alejandro Touza for being withmewhen I needed themmost. Even
when our lives make it difficult to meet often, you are still the greatest friends!

g
Para concluir, debo darle las gracias a mi familia porque sin su apoyo y sacrifi-

cio nunca habría llegado hasta aquí. A mis padres Isabel y Antonio, que trabajaron
muy duro durante muchos años para que mi hermano y yo tuviéramos oportu-
nidades que ellos nunca tuvieron. Gracias por demostrarme que el amor incondi-
cional existe aún en los peores momentos. A mi hermano José Andrés, por creer
enmí como deben hacer todos los hermanosmayores, y especialmente por escribir
aquella carta de despedida cuando yo no era capaz. A mi sobrina Aina, por ilumi-
nar la vida con su sonrisa cuando es más necesario. A Lidia, mi mujer, por estar
siempre ahí; por tu paciencia, tu soporte y por hacer mi vida un poco más feliz
cada día.

A todos vosotros os dedico este trabajo, pero en especial te lo dedico a ti, mamá,
después de los malos momentos y los años de lucha te merecías más que nadie
poder vivir para leer esto y asistir a la lectura. Espero que estés orgullosa y ojalá
volvamos a vernos. Hasta siempre.

Barcelona, 15 June 2014

A. Manda
'`

xxi

Chapter0
Humans and Information Storage

“Begin at the beginning,” the King said, gravely, “and go on till you
come to an end; then stop.”

— Lewis Carroll, Alice in Wonderland

“He’d always felt he had a right to exist as a wizard in the same way
that you couldn’t do proper maths without the number 0, which wasn’t

a number at all but, if it went away, would leave a lot of larger
numbers looking bloody stupid.”

— Sir Terry Pratchett, Interesting Times

Information storage has accompanied mankind for at least 40,000 years. Before
the Sumerian writing system—which is considered the first writing script ever
developed—was invented ca.3200 BCE, accounting and record keeping were prac-
ticed by carving tally marks in wood, bone, and stone [67]. Later, the invention of
more sophisticated writing materials like papyrus, leather, parchment and, finally,
wood-pulp paper (China ca.100CE) dramatically facilitated reading and writing
and greatly increased the density of information conveyed in that early, rudimen-
tary media.

After the invention of modern paper and the printing press, came a steady de-
cline in the manufacturing and acquisition cost of writing material, which further
increased the production of information. Nevertheless, it was not until the pop-
ularization of electronic computers and digitally aware personal devices that the
means to easily produce and process large amounts of data were readily available.

1

http://en.wikipedia.org/wiki/Lewis_Carroll
http://en.wikipedia.org/wiki/Terry_Pratchett

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

10,000

20,000

30,000

40,000

Exabytes

Figure 0.1: The digital universe. Historical and predicted growth of stored digital data due to the aggregation of social,
mobile, cloud and analytic sources. Source: Gantz and Reinsel. “The digital universe in 2020: Big data, bigger digital
shadows, and biggest growth in the far east” [47].

Today, the amount of information created by each individual—be it documents
written, pictures taken or music downloaded—is much larger than anything we
have ever seen before.

As a result, digital data volumes are growing exponentially (see Figure 0.1↑). The
amount of online, digital data exceeded 1.8 Zettabytes in 2011 and is estimated to
continue to grow at a 40–60% compound annual growth rate (CAGR), leading to
a projected output of 7.9 Zettabytes for 2015 [46, 47]. If this growth continues to
hold true, an enterprise with a respectable 200 TB of stored data at the end of 2013
will have more than 1.6 PB of data by 2019, and we are not considering the extra
information required for backing up or replicating that data.

In order to provide the required performance and reliability, large-scale stor-
age systems have traditionally relied on multiple RAID-5 or RAID-6 configurations
of storage devices, interconnected with high-speed networks like Fibre Channel or
SAS.1 Unfortunately, the performance of the current, most commonly-used stor-

1Serial
Attached SCSI.

age technology—the magnetic disk drive—is unable to keep pace with the rate of
growth needed to sustain the aforementioned data explosion. Though the cur-
rent growth rate of areal density (GB/in2) of disks is at 25–40% per year (see Fig-
ure 0.2a↷), faster access times are limited by improvements on both rotational la-
tency and seek time. Rotational latency has settled down to 2, 3, and 4.1 millisec-
onds, depending on whether the disk spins at 7200, 10,000 or 15,000 revolutions
perminute, respectively, and faster speeds are not expected within the next 5 years,
if at all [45]. The other component of access time, seek time, is not expected to im-

2

(a) Areal density

1950 1960 1970 1980 1990 2000 2010 2020
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102
103
104

GB
/in

2

60-100% CAGR
25% CAGR

60-100% CAGR

25-40% CAGR

(b) Seek time

1985 1990 1995 2000 2005 2010 2015
0
2
4
6
8
10
12
14

m
illi
se
co
nd
s

Figure0.2: CAGR trends in disk drive technology. Figures show thehistorical andpredicted evolution of disk drives areal
density and seek time. Source: Freitas, Slember, Sawdon, and Chiu. “GPFS Scans 10 Billion Files in 43 Minutes” [44].

provemuch. Historically, its improvement has been less than 5%per year and there
are no indications that this trend will change in the future (see Figure 0.2b↑).

On the other hand, storage architectures based on solid-state devices (SSDs),
which are the theoretical successors of current magnetic drives, do not seem prone
to replace HDD-based storage for the next 5 to 10 years, at least in data centers.
Even though the performance of SSDs significantly improves that of hard drives,
the main problem resides in the lack of manufacturing capacity. While in 2012 the
HDD industry delivered 66,358 PB in 63.4 million enterprise-grade hard-drives,
the NAND industry delivered only 1781 PB in 5.7 million SSDs. It would cost the
NAND industry hundreds of billions of dollars to build enough manufacturing
plants to satisfy the forecasted demand for enterprise storage [48].

Conversely, improvements in magnetic recording could improve the capabili-
ties of hard drives significantly. For instance, the emerging shingledmagnetic record-
ing achieves higher densities and performance by removing the gaps between disk
tracks,2 and could be deployed with existing manufacturing lines. In addition,

2An HDD track is
the circular path
on the surface of a
disk where data is
magnetically recorded.development of other technologies like heat-assisted magnetic recording [119], bit-

patterned recording [116, 112] and CPP/GMR3 heads [35], is underway tomaintain 3Current Perpendic-
ular to Plane Giant
Magnetoresistance.

the competitiveness of hard-disk drives with SSDs, and could topple the apparent
advantage of solid-state technology. In any case, however, it is still not clear if the
improvements derived from these technologies will be enough to sustain the up-
coming data growth.

3

Besides the problems derived from technological and mechanical limitations,
the massive amounts of data growth impose more challenges. First, large-scale
storage systems are required to expand according to the needs of the users, and
they must do so in an efficient manner. This means, for instance, that whenever
new devices are installed, large amounts of data must be migrated from the old
storage devices to the new, in order to keep a balanced data load and use the new
devices appropriately. The reason for this, is that an inadequate balance of the data
workload can lead to misused hardware, overloading devices with too much data
or client requests and underusing others. Nevertheless, in the case of Petascale
storage systems, the amounts of data to be moved to regain a balanced workload
can be enormous, and the required migration times cost-prohibitive.

Second, massive storage systems will inevitably be composed of a collection of
heterogeneous hardware: as capacity and performance requirements grow, new
storage devicesmust be added to cope with demand, but it is unlikely that these de-
vices will have the same capacity and/or performance that those currently installed.
Furthermore, upon failure, disks are most commonly replaced by faster and larger
ones, since it is not always easy (or cheap) to find a particular model of drive. In
the long run, any large-scale storage system will have to cope with a myriad of de-
vices (SATA/SATA2/SATA3 or SCSI hard drives, magnetic tapes, SSDs, …) with
very different performance characteristics and capacities, and should be able to
aggregate and exploit them adequately.

To address these challenges, in this dissertation we propose two novel mecha-
nisms, based on several of our contributions, that improve the resilience of large-
scale storage against huge volumes of data. The first mechanism, called Random
Slicing, uses a controlled pseudo-randomized data distribution in order to adapt
to changes in the storage architecture. This permits to migrate only the minimum
amount of data required to keep a balanced I/O distribution, while easily support-
ing the hardware heterogeneity of the devices.

The secondmechanism, called CRAID, is a RAID extension that optimizes the lay-
out of long-term, frequently-used data with the goal of maintaining a good perfor-
mance when extending the array of devices. By identifying and tracking changes
to this data subset, the mechanism is able to distribute only relevant data into the
new disks in an on-line fashion, which significantly reduces the amount of work
necessary to use the new disks in a balanced manner.

4

0.1 Overview and Objectives

The main achievement of this thesis consists in proving that, by tracking long-
term data locality and optimizing its on-storage layout, it is possible to improve
the performance of mass storage systems and have the ability to gracefully adapt
to dynamic changes in the underlying architecture, without a loss in efficiency. In
order to reach this conclusion, our research has made several novel contributions
that originated from the following three main research objectives.

1. Determine scalability issues. As we have already discussed, the current ap-
proaches to upgrade heterogeneous storage systems are insufficient to han-
dle data loads in the Petascale order ofmagnitude or beyond. Themain cause
for this problem, is either because data rebalancing takes too long to perform
or because the internal data structures used to speed up this process occupy
toomuchmemory. The allocation policies derived from our research should
be able to organize data in a way that favors a graceful redistribution to new
disks, without requiring neither excessive time nor memory.

2. Achieve good storage performance with minimal data migration. Once the is-
sues that affect scalability are determined, we need to be able to design a scal-
able distribution strategy that requires only minimal data migration. Notice
that by minimal data migration we refer to the minimum amount of data
required to use the storage devices effectively. As we will see, some strategies
already exist, but they can be improved either in terms ofmemory consump-
tion or response time.

3. Achieve good storage performance with less than minimal data migration. Min-
imal data migration may not be enough in Petascale or Exascale storage sys-
tems. For this reason, scalable solutions are needed that offer good perfor-
mance levelswith even less data redistribution. To achieve this goal, we focus
on using the properties of long-term, heavily accessed data in an attempt to
reduce the amount of work needed. In order to achieve this goal, we need
to prove the existence of long-term data locality, demonstrate that long-term
data can be predicted with high reliability, and verify the technical feasibility
of locality-based layout optimizations.

5

Although this overview is necessarily linear, these goals are interspersed be-
tween the different chapters of the document; therefore, let us first have a brief
look at what each chapter contains and why. Note that we disregard this very same
‘Humans and information storage’1 and the ‘Conclusion’135 from the upcoming de-
scription, since their contents are pretty much self-explanatory.

0.1.1 Background and RelatedWork

To make sure that we start from common ground, Chapter 1, ‘Background and re-
lated work’11, gives an overview of the basic concepts needed to understand this
dissertation and reviews the existing literature on the field. As such, a good under-
standing of its contents is essential prior to reading any of the other parts. Themain
topics of this chapter include key concepts about current storage architectures, data
distribution and hybrid/hierarchical storage devices. We also discuss some of the
design issues involved in the conception of large-scale storage systems, and the new
interfaces to access stored data.

0.1.2 Scalable Data Distribution

Chapter 2, ‘Scalable data distribution’29, presents the design and experimental eval-
uation of the Random Slicing data distribution strategy. We also discuss the theo-
retical evaluationmodel on which pseudo-randomized data distribution strategies
are based, and we perform a comparative evaluation of our proposal against some
of its best well-known competitors. With this chapter, we demonstrate that it is
possible to design a highly-scalable data distribution withminimal datamigration,
with low memory and performance overheads.

0.1.3 PRNGs in Data Distribution

In Chapter 3, ‘PRNGs in data distribution’65, we discuss the issues associated to us-
ing pseudo-randomized number generators for data distribution. In an attempt to
make it as self-contained as possible, we provide a bit of the relevant background
on the design and implementation of random number generators, and also eval-
uate their influence on all the distribution strategies discussed in Chapter 2. The
main contribution of this chapter is a ranking of the best pseudo-random number
generators, both in terms of data distribution balancing and performance.

6

0.1.4 Long-term Locality in Mass Storage

With Chapter 4, ‘Long-term locality in mass storage’83, we dive into the semantics of
data by examining the access patterns in large-scale storage systems. We analyze
in detail twelve storage traces focusing in the clients’ long-term access patterns and
locality. Notice that though the presence of short-termdata locality has been exten-
sively demonstrated, there is nowhere near as much literature regarding long-term
data locality. In addition, since the main goal of the chapter is to identify gen-
eral access traits that can be exploited to improve the scalability of current storage
systems, the traces discussed represent a variety of different workloads and were
captured at different points in time over the last 14 years.

More specifically, in this chapter we show: (1) that there is an important amount
of long-term locality in mass storage systems, and that it makes sense to apply spe-
cific optimizations for it; (2) that this subset of “reused” data is small (compared
to the overall dataset), and that there are benefits in rebalancing it instead of the
whole dataset when upgrading the mass storage system; (3) that this subset is not
volatile, that is, that any changes to it happen over a period of time long enough to
compensate the time spent optimizing its on-device location.

0.1.5 Extensibility in RAID Architectures

Finally, in Chapter 5, ‘Extensibility in RAID architectures’107, we use the information
learned about access patterns in Chapter 4 to prove that it is possible to extend cur-
rent RAID architectures by redistributing only frequently accessed data, without a
significant loss in performance. We discuss the design of CRAID and also present its
simulation-driven, experimental evaluation, with special emphasis on comparing
it against current RAID solutions.

0.2 Publications

This dissertation is the amalgamation of several research ideas that we have devel-
oped over four years of research. That being the case, some of the ideas and figures
presented in this dissertation have appeared previously (or are bound to appear)
in several peer-reviewed international conferences, a scientific journal and a tech-
nical deliverable for an EU project (which includes our research on extensible data
layout optimizations for RAID-0 arrays).

7

The following list shows the bibliographic references of all these scientificworks,
with entries sorted in reverse chronological order of appearance:

• [Miranda2014b] A. Miranda, S. Effert, Y. Kang, I. Popov, T. Friedet-
zky, E.L. Miller, A. Brinkmann, and T. Cortes. “Random Slicing: Effi-
cient and Scalable Data Placement for Large-scale Storage Systems”. ACM
Transactions on Storage 10.3 (2014), 36.

• [Miranda2014a] A. Miranda and T. Cortes. “CRAID: Online RAID Up-
grades Using Dynamic Hot Data Reorganization”. Proceedings of the 12th
USENIX Conference on File and Storage Technologies, 2014. Santa Clara, CA:
USENIX, Feb. 2014, 133–146. isbn: 978-1-931971-08-9.

• [Artiaga2013] E. Artiaga andA.Miranda. “PRACE-2IP Technical Deliv-
erable D12.4: Performance Optimized Lustre”. INFRA-2011-2.3.5 – Second
Implementation Phase of the European High Performance Computing (HPC)
service PRACE (2012).

• [Miranda2012] A. Miranda and T. Cortes. “Analyzing Long-Term Access
Locality to FindWays to ImproveDistributed Storage Systems”. 20th Euromi-
cro International Conference on Parallel, Distributed and Network-Based Pro-
cessing, 2012. IEEE. Garching, Germany, Feb. 2012, 544–553. doi: 10.1109/
PDP.2012.15.

• [Miranda2011] A. Miranda, S. Effert, Y. Kang, E.L. Miller, A. Brink-
mann, and T. Cortes. “Reliable and randomized data distribution strate-
gies for large scale storage systems”. Proceedings of the 18th International Con-
ference on High Performance Computing, 2011. IEEE. Bangalore, India, Dec.
2011, 1–10. doi: 10.1109/HiPC.2011.6152745.

0.3 Finding Your Way Around

This thesis, as most scientific works, contains a lot of both internal and external
references. The internal references consist of chapters, sections, subsections and
(a few) theorems and equations. The electronic version of this document is fully
hyperlinked, and it is easy to go back and forth through the relevant contents. Since
it is impossible to include such commodities in the “dead tree edition” of this work,

8

http://dx.doi.org/10.1109/PDP.2012.15
http://dx.doi.org/10.1109/PDP.2012.15
http://dx.doi.org/10.1109/HiPC.2011.6152745

all the cross-references that are located on the same double-page spread are accom-
panied by a visual cue to look above (↑), at the recto (↷) page or at the verso (↶)
page, depending on where the referenced content is located.4 For cross-references

4Also, any side re-
marks or concepts
will be done using
marginal notes.that are not located in the same page spread, we include the relevant page number

as a subindex to the reference.
In addition, to allow this thesis to be used as a reference itself, we include an

Index177 of the most relevant terms and, additionally, a plain List of Acronyms183
as well. Bibliographic data about external references is collected in the Bibliog-
raphy157 and the Further Reading173 sections, which include, respectively, texts
directly cited in the dissertation and additional works worth reading.

9

Chapter1
Background and RelatedWork

“Student: Dr. Einstein, aren’t these the same questions
as last year’s [physics] final exam?

Dr. Einstein: Yes; But this year the answers are different.”
— Albert Einstein

As we have seen, systems with billions of files and Petabytes of storage are slowly
becomingmore andmore common [15]. In this scenario, the constraints placed on
modern storage systems are tough: they must be able to manage huge amounts of
data, provide efficient search mechanisms and organize millions of concurrent re-
quests to minimize competition issues. Furthermore, they must be elastic enough
to growwhen new devices are installed and react appropriately when those devices
malfunction or need to be removed because of old age.

There is a wide range of solutions taking on these problems, though nowadays,
with the advent of cloud computing, there is a special interest on distributed envi-
ronments. In the following sections we will discuss the most relevant approaches
to the problems related to high performing Petascale and Exascale storage.

1.1 Distributed File Systems Background

A file system is usually described as a subsystem of an operating system whose
purpose is to provide long-term storage [79]. To achieve this goal, the file system
produces files: named objects created to store user data that exist from their explicit

11

http://en.wikipedia.org/wiki/Albert_Einstein

creation to their explicit destruction. By keeping these files into secondary storage
devices (i.e. magnetic disks, tapes or SSDs) the file system guarantees that this data
will not be erasedwhen the systemgoes offline, and also (relatively) protects it from
system failures. The file system also provides a set of file operations that its clients
can use to operate on files: create a file, delete a file, read from a file and write to a
file are the most common ones.

By extension, the purpose of a distributed file system is to allow users of phys-
ically distributed computers to share data. By its very own nature, a distributed
file system will be run on a set of dispersed machines interconnected by a net-
work but, ideally, it should appear to its clients as a conventional, centralized file
system. It does not matter if those clients are human beings using a workstation
or a software component running on a server, as long as the file system is able to
provide a unified, consistent view of the data. Distributed file systems achieve this
goal bymeans of independent software components that cooperate with each other
to provide a common service interface. This interface provides the implementa-
tion of the file operations discussed above, effectively abstracting processes from
the fact that they are running on a distributed environment. This component ori-
ented approach, however, means that bookkeeping information and file data have
to be transported across a network, therefore incurring an overhead that classical
centralized file systems do not have.

The software components that build up a distributed file system can be roughly
classified as clients, file servers and storage servers (although, of course, particu-
lar implementations may vary). Clients capture the file operation requests issued
by file system users and forward them to the appropriate components distributed
throughout the system. They are the software layer that provides the file opera-
tion services and, therefore, the facade that hides the complexities of the system
from users. File servers index files, properly organize data and manage all the ad-
ministrative information—metadata—referred to them (such as owner, size, access
permissions and timestamps). Storage servers, on the other hand, control physical
storage devices and the way users data is stored and retrieved. They are also often
in charge of making the necessary adjustments when new devices are added to the
system or disappear from it (due to removal or failure).

In the context of this dissertation, we will be focusing mainly on strategies for
distributed storage servers, and from time to time we will discuss the facilities that
need to be implemented in clients (and how they need to coordinate among each
other) in order to successfully carry them out.

12

1.2 Storage Architectures

Choosing the appropriate architecture to access data from multiple locations is
a major concern for current distributed systems. Ideally, a storage architecture
should provide a strong security infrastructure, seamless data sharing across differ-
ent platforms, high performance and scalability in terms of clients and devices.
There are three main storage architecture in use nowadays, wich we review in the
following paragraphs: direct-attached storage (DAS), storage area networks (SAN) and
network-attached storage (NAS).

A DAS architecture connects block-based storage devices to the I/O bus of a
server or workstation (usually via SCSI, SAS or Fibre Channel), without the need
for a network in between. It offers high performance due to the high data band-
width and access rate offered by this direct connection, as well as minimal security
concerns. Nevertheless, there are limits to the number of devices than can be di-
rectly connected (e.g. a SCSI 16-bit bus will support at most 16 hosts or devices)
and it is not possible to access the contents of such devices from another host.

SAN architectures were developed to address the connectivity limitations ofDAS.
SAN architectures use a fast and scalable interconnect network (such as iSCSI or
Fibre Channel) to connect remote storage devices to servers in a way that they
appear to be locally attached. For instance, in the case of iSCSI, each set of blocks
is exposed as an iSCSI target and can be mounted by an iSCSI initiator, a setup that
has been proven to be competitive in terms of performance [4]. However, since
a SAN can be shared by different machines, new security concerns appear which
require for the introduction of new concepts like host-device authentication or
zoning [136].

In DAS and SAN architectures, the file system is responsible for mapping the
blocks in the different devices with its high level data structures (files and direc-
tories). When access is shared among several hosts, this information must also be
shared and kept consistent across all the hosts. The complexity of this task is one of
the major drawbacks that effectively limits scalability in terms of number of hosts.

The most common approach used to improve this scalability on the host side,
is to use a NAS architecture. In a NAS, there is a reduced number of hosts acting
as dedicated file servers that are directly attached to storage devices using a SAN
architecture, while the rest of the clients access the storage system indirectly using
such file servers. Hence, metadata is completely managed by the file servers, and

13

its reliability and consistency is independent of the number of clients. The NFS file
system [27, 130] is a clear example of such an architecture.

NAS architectures shift the pressure of scalability from the storage devices to the
file servers, which have to channel all the storage traffic and can become a bottle-
neck. SAN filesystems were introduced in order to mitigate this effect. In a SAN
file system, both file servers and clients are connected to a SAN: file servers can
now share metadata with its clients and then recover the data directly from the de-
vices. This way, consistency is guaranteed by a small number of servers, without
hindering the I/O bandwidth. Security is the main drawback of a SAN file system,
however, because devices export data as fixed-sized blocks with no information
about their contents. Since all hosts have access to all storage devices, there is no
mechanism to validate I/O operations and prevent a malicious client from altering
the data stored. Due to this problem, some file systems add additional mecha-
nisms like encryption or digital signatures (Farsite [1]) or even replace block-based
devices withObject StorageDevices (OSDs),1 which can enrich data with semantic

1We will review
OSDs in detail

in Section 1.418. information (zFS [117], Ceph [146], Lustre [18]).
Now that we know how to access data stored in multiple networked locations,

let us review the more common, high-performing technologies used for storing
data in physical devices.

1.3 RAID

The term RAID [109]—an acronym for Redundant Array of Independent Disks—
describes a technology to distribute data across several physical disks with the pur-
pose of improving performance and reliability. This is done by providing a con-
troller, which can be implemented in hardware or software, that groups disks into
a single logical storage device and handles all data transfers to it by redistributing
them among the original disks. Even though this involves adding significant com-
putation when reading and writing data, in deployments where high-performance
is a concern, a hardware controller can do the work efficiently.

Three are the key mechanisms on which RAID technology is based: mirroring,
striping and error correction, with the first two being mutually exclusive.2 A par-

2A RAID volume
can choose to use

either mirroring or
striping, but not both.

ticular chunk of data is said to be mirrored if several copies of it are sent to more
than one disk, whereas it is said to be striped if it is sliced into fragments—striping
units—that are sent to different disks (see Figure 1.1↷). With error correction, par-
ity information is stored in order to detect and repair data consistency problems.

14

Figure 1.1: Striping with parity. The storage
space of a RAID disk array is divided into
stripes, where each stripe contains one
striping unit on each disk of the array. One of
the striping units holds parity data that can be
used to recover after a disk failure.

..stripe....
data

. +..
parity

................

Notice that the impact these mechanisms have in a RAID configuration is signifi-
cant: basic mirroring can speed up reading as the system can acquire the data from
more than one disk at once, but penalizes writing as all the disks have to confirm
that the data was correctly written; striping is often used for performance since it
allows sequences of data to be read frommultiple disks at the same time, but losing
one of these disks means losing data; error correction allows for data to be recov-
ered in case of failure but slows down the system as data needs to be read from
several places to compute error codes.

Since a RAID has more disks than traditional disk-based storage systems, the
probability of disk failures increases. In addition, a failure anywhere in the array
can make the entire RAID unusable. In order to improve data integrity, some RAID
organizations may reserve one striping unit in each stripe for parity instead of data
and uses it to store the XOR of the other striping units. If one disk fails, all its
striping units can be recovered with the parity stripes contained in the other disks.

The original specification suggested a number of prototype RAID levels, each giv-
ing different trade-offs against loss of data, speed and capacity. Over the years,
these original configurations have evolved and many more different implementa-
tions have appeared, remarkably some that are nested levels. For brevity’s sake only
the standard levels are described.

� RAID-0 (striped set without parity): A RAID-0 stripes data evenly across
two or more disks with no parity information, with the number of stripes
dictated by the number of disks in the array. This allows stripes to be read
off the disks in parallel, thus providing huge bandwidth, but at the cost that
the array’s entire data may be lost should a failure in any disk happen. It
is normally used in order to increase performance in systems where data
integrity is not important or to build large virtual disks out of a large number
of smaller ones. A RAID-0 can be created with disks of different sizes, but all

15

disks are treated as if they had the same capacity (the smallest one) and the
same performance (the slowest one). It is worth noting that RAID-0 was not
one of the original RAID levels but is considered a standard level nevertheless.

� RAID-1 (mirrored setwithout parity): A RAID-1mirrors a set of data on two
or more disks. Applications can benefit from increased read performance if
the controller supports split seeks, as disks can be addressed independently.
The biggest asset of this configuration, however, is that the reliability of the
system augments geometrically as new disks are added to the array. Nev-
ertheless, since all the disks of the array must contain a complete copy of
the data, the total capacity of the RAID-1 is reduced to that of the smallest
member. This kind of array is useful when read performance or reliability
are more important than data storage capacity.

� RAID-2 (redundancy through Hamming codes): Data in a RAID-2 config-
uration is distributed in very small stripes, often at the bit or word level, and
error correction is provided by using Hamming codes [57]. The controller
synchronizes the disks so that they spin in perfect tandem thus allowing for
extremely high data transfer rates. The use of Hamming codes for error cor-
rection fixes the number of disks in the array. For example, a Hamming(7,4)

code—four data bits plus three parity bits—forces the array to use four disks
to store data and three for error correction. RAID-2 is the only standard RAID
level, other than some implementations of RAID-6, that can accurately de-
tect and correct single-bit corruptions in data. RAID-2 is the only one of the
original levels that is not currently used.

� RAID-3 (striped set with dedicated parity): RAID-3 uses byte-level striping
with a dedicated parity disk. The parity information allows the array towith-
stand the failure of one disk since the information on the failed disk can be
reconstructed by calculating the parity of the remaining disks. RAID-3 con-
figurations cannot serve multiple requests concurrently because, as blocks
are spread across all the members of the array, any I/O operation will re-
quire activity on every disk. Furthermore, the single parity disk constitutes
a bottleneck for writing operations, since any change in a stripe requires up-
dating the parity information. Due to these drawbacks, this configuration is
rarely seen in practice.

16

� RAID-4 (block level parity): RAID-4 is identical to RAID-3 but the striping is
done at block rather than byte level. Disks can now act independently when
only a single block of data is requested, which in turn allows for multiple
concurrent requests to be served, if the controller is smart enough to orga-
nize disk accesses effectively. Although read requests are highly parallelized
with this configuration, writes are penalized since they have to read the par-
ity disk to get the old parity information, compute the new parity and write
it back.

� RAID-5 (striped set with distributed parity): A RAID-5 configuration uses
block level striping like that of a RAID-4, but the parity information is dis-
tributed across all the disks instead of only one. The performance impact of
this small change is large, since RAID-5 can now support simultaneous write
operations. RAID-5 has achieved high popularity due to its low cost of redun-
dancy and performance levels, which are close to those of RAID-1.

� RAID-6 (striped set with dual distributed parity): As with RAID-0, this last
RAID level was not one of the original levels but over time has grown to be
regarded as a standard level. A RAID-6 array is identical to a RAID-5 one,
but improves its fault tolerance and recoverability by storing an additional
parity block. RAID-6 is the only standard configuration capable of surviving
the simultaneous failure of two disks, though at the cost of a relative space
inefficiency. However, as an array becomes biggerwithmore storage devices,
this loss in capacity becomes less important, while the probability of two
disks failing at once grows.

The use of RAID arrays, however, entails some difficulties. First, the use of parity
mechanisms makes small writes expensive. If a write operation is made in whole
stripes, it will be fairly easy to compute the new parity for each stripe and write
it together with the data. However, if the write is smaller than a stripe, it will be
necessary to read the current value of the corresponding parity block and use it
to compute the new parity block, in order to keep the stripe’s parity consistent.
This makes small writes in a RAID about four times slower. Another problem is
that all the disks of the array are attached to a single machine, so its memory and
I/O system will probably end up being a bottleneck. The most critical problem,
however, is the incapability of current RAID mechanisms to effectively use disks of
different sizes. Later in this chapter, we will review the research that has been done
on the matter (Section 1.5.223).

17

RAID allows for higher performance (via parallel access), increased reliability
(via redundancy) and greater capacity (via aggregation) than using the same disks
independently. RAID arrays are used extensively to deploy distributed file systems
since they provide high performing, reliable storage in an inexpensive manner,
(inexpensive because the file systems do not need to be changed to benefit from
the RAID’s features). Furthermore, with the appearance of networked RAID pro-
tocols [71], RAID configurations have been proved to be valid even in distributed
environments, thus extending the technology’s usefulness and exceeding the de-
signers’ original expectations.

1.4 Object-based Storage

As we have mentioned, as storage infrastructures grow in size and complexity, the
amount of data stored on file systems will increase by several orders of magni-
tude, easily reaching the Petascale and Exascale order. Furthermore, recent indus-
try and academic research trends seem to converge to a shift in storage technology,
in which intelligent, self-managed devices will collaborate to provide distributed
storage capabilities, effectively carrying part of the burden of the file system. The
main problem with this approach, however, is that the current storage interface—
blocks—has remained largely unchanged since its introduction.

Traditional (block-based) distributed file systems like NFS [104], AFS [124] or
CODA [125] store file data as blocks across the network, decoupling blocks from
their association to a file. This separation makes the direct sharing of files between
hosts difficult, as a client must have previous knowledge of how the file blocks are
laid out over the network in order to acquire them. This usually forces this kind of
file systems to provide one or more file servers that are in charge of giving access
to the metadata needed to locate the blocks. Of course, centralizing the mapping
between files and blocks in file servers introduces bottlenecks and penalizes scala-
bility.

Parallel file systems likeOCFS2 [43] follow a different approach: all themachines
are organized in a SAN, and hence are able to access any block device. The file sys-
tem code is then parallelized in order to enable coordinated, concurrent access to
the disks. In thismanner, every file system client has at the same time the function-
ality of a file server and is involved in managing the blocks on the storage devices.
This can be a disadvantage as the scalability of this approach is limited by the high
number of clients managing the block devices explicitly. IBM’s GPFS [127] shows

18

better scaling behavior since it offloads a part of the block management from the
clients to Network Storage Device (NSD) servers.

Object-based storage [93, 92] has gradually gained importance as a design par-
adigm for distributed and parallel file systems, since it seems to provide a feasible
solution for these problems. Instead of presenting a storage device as a logical
array of unrelated blocks, addressed by a Logical Block Address (LBA), an object-
based device appears as a collection of storage objects. A storage object is a logical
collection of bytes, with attributes describing its characteristics, high level access
methods and security policies. Unlike blocks, an object is of variable size and can
be used to store any type of data, such as files or database tables. Objects can be
seen as the convergence of files and blocks. Like blocks, objects are a primitive
unit of storage that can be accessed directly on the storage device without pass-
ing through a server. Like files, objects can be accessed without having to know
how they are internally stored in the disk, removing the necessity to access the file
system’s metadata.

Object-based file systems store the pure file contents—the objects—on anObject
Storage Device (OSDs), whereas the file namespace and files’ metadata are kept in
Metadata Servers (MDSs). This separation of file content and metadata prevents
I/O bottlenecks. File contents can now be spread across a large number of OSDs,
while the dedicated MDSs provide fast, independent access to metadata. Once a
file system client is properly authorized by the MDS to access a file’s objects, all
the subsequent I/O operations are served directly by the OSDs, that intelligently
manage their own on-disk storage and enforce security policies. In this way read
and write operations can be effectively parallelized.

Existing object-based file systems like the Panasas [147] parallel file system, Lus-
tre [18], Ceph [146], and XtreemFS [64, 65] are designed to be deployed in clusters.
In this homogeneous environment, all OSDs are equal from a latency and band-
width point of view with the main cause of failure being hard disks (which is nor-
mally handled using RAID). This technology, however, is not yet ready to withstand
the heterogeneity inherent to a globally distributed file system although research
is currently under way [65, 64].

1.5 Data Distribution, Reliability and Adaptivity

Data reliability and support for scalability as well as the dynamic addition and re-
moval of storage systems is one of the most important issues in designing stor-

19

age environments. As we have seen, data reliability is commonly achieved by us-
ing RAID encoding schemes, which divide data blocks into specially encoded sub-
blocks, and place them on different disks to ensure that a certain number of disk
failures can be tolerated without losing information [108]. RAID encoding schemes
are normally implemented by striping data blocks according to a pre-calculated
pattern across all the available storage devices, achieving a nearly optimal perfor-
mance in small environments. Even though deterministic extensions for the sup-
port of heterogeneous disks have been developed [34, 54], adapting the placement
to a changing number of disks is cumbersome as a majority of the data may have
to be reorganized.

In the following, we review the current data placement strategies that are able
to cope with dynamic changes in the capacities or the set of storage devices in the
system. These can be classified into two main classes depending on whether the
position of a block can be computed in a deterministic manner or not: pseudo-
randomized and RAID scaling solutions.

1.5.1 Extensible Pseudo-Randomized Layouts

Pseudo-randomized data distribution is a technique that uses a hash function in
order to compute the mapping between blocks and storage devices. Depending
on the function, the computation of this mapping can be very fast, and the inher-
ent flexibility of pseudo-randomized hashing makes the strategies based on this
principle very adaptable to changes in the storage infrastructure.

Karger et al. proposed an adaptive hashing strategy for homogeneous devices
called Consistent Hashing, that is uniform in its data distribution and is competitive
when considering adaptivity [70]. This technique uses a hash function ℎ to map
each data object to a point in a [0, 1) ring. Once that is done, storage devices are
also mapped to the same ring but this time choosing multiple 𝑘 points in the ring.
In order to compute the location of a data block 𝑏, the strategy computes the point
𝑝 = ℎ(𝑏) and follows the ring until it finds the first point where a storage system
is mapped. In the resulting distribution, a storage device contains all the blocks
located between its point and the previous device point. Thus, the computation of
the location of a block takes only an expected number of 𝑂(1) steps. Nevertheless,
the data structures needed to enforce this strategy require at least 𝑛 log2 𝑛 bits to
ensure a good data distribution, limiting its applicability.

Brinkmann et al. presented the cut-and-paste strategy as an alternative place-
ment strategy for uniform capacities [23]. Similarly to Consistent Hashing, their

20

scheme also maps blocks to a [0, 1) interval using a hash function, but the distri-
bution into storage devices is done using the following assimilation method: given
𝑛 disks, the strategy begins by assigning the interval [0, 1) to the first disk. Then,
the algorithm cuts off the range [1/(𝑛 + 1), 1/𝑛]𝑖 from every disk 𝑖, and concate-
nates them to create a range [0, 1/(𝑛 + 1)] for disk 𝑛 + 1. This scheme requires
𝑂(𝑛 log 𝑛) bits and 𝑂(log 𝑛) steps to compute the position of a block. Furthermore,
it keeps the deviation from an ideal distribution extremely small with high proba-
bility. Interestingly, the theoretical analysis of this strategy has been experimentally
re-evaluated and applied to RAID-0 in Zheng’s et al. FastScale [154]. Additionally,
Sanders considered the case that disks might fail and suggested to use a set of for-
warding hash functions that are reconfigured online taking into account only active
disks [123].

Adaptive data placement schemes that are able to cope with arbitrary hetero-
geneous capacities were introduced by Brinkmann et al. [24]. The presented strat-
egies Share and Sieve are compact, fair, and (amortized) competitive for arbitrary
changes from one capacity distribution to another. Share supports heterogeneity
by dividing the distribution in two phases. The first phase divides the capacity of
each device into several virtual devices, each with 𝛿 capacity, which serves to re-
duce the problem to that of a homogeneous distribution in 𝑛 devices of capacity 𝛿.
Then, the second phase uses a randomized data distribution for uniform capaci-
ties, like Consistent Hashing above, to generate the mapping. Since Share has a large
space complexity and needs an alternative strategy to work, Brinkmann et al. also
introduced Sieve in the same paper, which cuts the [0, 1) ring into 2⌈log 𝑛⌉+1 equal
intervals that are assigned exclusively to storage devices. The strategy then uses
𝐿 random hash functions ℎ1, … , ℎ𝐿, that are applied in a loop until a successful
assignment is found.

Other data placement schemes for heterogeneous capacities are based on ge-
ometrical constructions like the weighted distributed hash tables [126]: this linear
method combines the standard Consistent Hashing approach with a linear weighted
distance measure.

All previously mentioned work is only applicable for environments where no
replication is required. Certainly, it is easy to come up with proper extensions of
the schemes so that no two copies of a block are placed in the same storage device.
A simple approach feasible for all randomized strategies to replicate a data block
𝑘 times is to perform the experiment 𝑘 times and to remove the selected device
after each experiment. Nevertheless, it has been shown that fairness cannot be
guaranteed for these simple strategies and that some capacity will be wasted [21].

21

The algorithm proposed in SCADDAR [50] moves a data block only if the desti-
nation disk is one of the newly added disks. This approach reduces data migration
significantly, but produces an unbalanced data distribution after subsequent up-
grade operations.

Thefirstmethodswith dedicated support for replicationwere proposed byHon-
icky and Miller [60, 61]. RUSH (Replication Under Scalable Hashing) maps repli-
cated objects to a scalable collection of storage servers according to user-specified
server weighting. When the number of servers changes, RUSH tries to redistribute
as few objects as possible to restore a balanced data distribution while ensuring
that no two replicas of an object are ever placed on the same server. Depending
on the technique used to map blocks to the appropriate servers the strategy can
be specialized in three variants: RUSHP, RUSHT, and RUSHR. We will review each of
them in detail in Chapter 229.

A drawback of the RUSH-variants is that they require that new capacity is added
in chunks, where each chunk is based on servers of the same type and the number
of disks inside a chunk has to be sufficient to store a complete redundancy group
without violating fairness and redundancy. The use of sub-clusters is required to
overcome the problem if more than a single block of a redundancy group is ac-
cidentally mapped to the same hash-value. This property leads to restrictions for
bigger numbers of sub-blocks. In this case, prime numbers can be used to guaran-
tee a uniquemapping between blocks of a redundancy group and the servers inside
a chunk.

CRUSH is derived from RUSH, and supports different hierarchy levels that pro-
vide the administrator finer control over the data placement in the storage envi-
ronment [145].The algorithm accommodates awide variety of data replication and
reliability mechanisms and distributes data in terms of user-defined policies.

Amazon’s Dynamo [38] uses a variant of Consistent Hashing with support for
replication where each node is assigned multiple “tokens” (positions in a [0 − 1) ∈
ℝ ring) chosen at random that are used to partition the hash space. The number
of tokens that a node is responsible for is decided based on its capacity, thus taking
into account the heterogeneity in the performance of nodes. In addition, Dynamo
uses a membership model where each node is aware of the data hosted by its peer
nodes, and requires that each node actively gossips the full routing table. Dynamo’s
authors, however, claim that scaling this design to run with tens of thousands of
nodes is not easy because the complexity of the routing table increases with the size
of the system, which may make the strategy unsuitable for Exascale storage in its
current form.

22

Brinkmann et al. showed that a huge class of placement strategies cannot pre-
serve fairness and redundancy at the same time and presented a placement strat-
egy called Redundant Share for an arbitrary fixed number 𝑘 of copies for each data
block, which is able to run in 𝑂(𝑘). The strategy shows a competitiveness3 of log 𝑛

3A strategy is
𝜖-competitive if it
can store at least
(1 − 𝜖)-times the data
stored by an optimal
strategy.

for the number of replacements in case of a change of the infrastructure [21], but
can be reduced to 𝑂(1) by breaking the heterogeneity of the storage systems [20].
The Spread strategy is also worth mentioning, having similar properties to those of
Redundant Share [91].

1.5.2 Extensible RAID Layouts

There are several approaches to improve the extensibility of RAID systems. The
reshape toolkit in the Linux MD driver implementing RAID-5 uses a fixed-size win-
dow to write mapping metadata. The main problem with this approach, however,
is that user requests to this window must wait until all its data blocks have been
migrated, which is inefficient.

Gonzalez andCortes proposed theGradualAssimilation algorithm [52] to control
the overhead of upgrading a RAID-5 system, which still has a large redistribution
cost since all parities still need to be modified after a data migration.

The US Patent #6,000,010 “Method of increasing the storage capacity of a level five
RAID disk array by adding, in a single step, a new parity block and N–1 new data
blocks which respectively reside in a new columns, where N is at least two” presents a
method to upgrade RAID-5 volumes called MDM. MDM reduces data movement by
exchanging some data blocks between the original disks and the new disks. It also
eliminates parity modification costs since all parity blocks are maintained, but it is
unable to increase (only maintain) the storage efficiency by adding new disks [76].

More recently, FastScale [154] attempted tominimize data migration bymoving
only data blocks between old andnewdisks. It also optimizes themigration process
by accessing physically sequential data with a single I/O request and byminimizing
the number of metadata writes. At the moment, however, it cannot be used with
RAID-5, only RAID-0, which limits its applicability.

GSR [151] divides data on the original array into two consecutive sections. Dur-
ing RAID-5 upgrades,GSRmoves the second section of data onto the newdisks keep-
ing the layout of most stripes, thus minimizing data migration and parity updates.
Its main limitation is the performance of the array after upgrades, since accesses to
the first section are served by original disks only, and accesses to the second section
are served by new disks only.

23

1.6 Hierarchical Storage and Layout Optimization

There has been extensive research on hierarchical architectures and data layout
optimizations, in order to improve the performance, reliability and scalability of
storage media. Since Chapter 5107 proposes a solution that mixes both concepts, it
is interesting to have a look at the existing literature first. Note that neither of the
works discussed herein tackle the problem of upgrading a RAID array.

The first publication on hierarchical storage that we know of is a 1992 study by
Baker et al. [12] that considered the use of battery-backed non-volatile RAM4 in

4NVRAM

distributed file system servers to reduce write traffic. Later, HP’s AutoRAID [148]
extended traditional RAID organizations by partitioning storage in a mirrored zone
and a RAID-5 zone. Writes are initially made to the mirrored storage and later mi-
grated in large chunks to the RAID-5 zone, thus reducing the space overhead of
redundancy data and increasing parallel bandwidth for subsequent reads.

Hu et al. [152, 103] proposed an architecture called Disk Caching Disk (DCD),
where an additional HDD is successfully used as a cache in order to convert small
random writes into large log appends, thus demonstrating that a dedicated cache
can improve the overall I/O performance. Similarly to DCD, iCache [59] added a
log-disk along with a piece of NVRAM to create a two-level hierarchy cache for
iSCSI requests, coalescing small requests into large ones before writing data and
also improving performance.

A study by Uysal et al. [137] offered a cost-performance analysis of replacing
some or all of the disks with microelectromechanical storage (MEMS) in the stor-
age hierarchy. It showed that for those workloads where performance is more im-
portant than capacity, MEMS can be competitive.

More recently, several HDD+SSD hybrid architectures have been proposed in
order to combine the benefits of both magnetic media and solid state devices. For
instance, Intel®’s Turbo Memory [87] and Windows ReadyBoost [94] used flash-
based storage as a cache on top of hard drives to improve performance. In contrast,
Griffin [132] used the HDD as a write cache to extend the lifetime of SSDs.

Researchers have also considered placing SSDs and HDDs at the same level in
the storage hierarchy. ComboDrive [111] concatenated sectors from an SSD and an
HDD to create a continuous address range, where data was allocated according to
certain heuristics. Similarly, Koltsidas et al. divided a database store between the
two media types based on several on-line algorithms and successfully improved its
performance [74].

24

Regarding data layout optimizations, early works by Wong [149], Vongsathorn
et al. [140] and Ruemmler and Wilkes [120] argued that placing frequently ac-
cessed data in the center of the disk served to minimize the expected head move-
ment. Specifically, Ruemmler and Wilkes demonstrated that the best results in I/O
performance came from relatively infrequent shuffling (once a week) with small
granularity (block or track size). Akyurek and Salem also proved the importance
of data reorganization at the block level, as well as the advantages of copying over
shuffling [5].

In 2004, Li et al. propose C-Miner [81], which uses data mining techniques
to model the correlations between different block I/O requests. They show that
correlation-directed prefetching and data layout can reduce average I/O response
time by 12–25%. ALIS [62] and, more recently, BORG [16], reorganize frequently
accessed blocks (and block sequences) so that they are placed sequentially on a
dedicated area on the disk, thus improving the overall performance of the storage
device. Neither of them explores multi-disk systems, however.

1.7 Characterization of Storage Behavior

In Chapter 483, we develop an extensive study on the long-term behavior of stored
data in an attempt to determine common optimizable access patterns. Neverthe-
less, effectively characterizing file system behavior is difficult because of several
problems. First, there is a wide range of workloads to take on, each with its partic-
ular type of access patterns, data and intended users. Second, there are technical
difficulties associated with the generation of traces, such as the performance im-
pact incurred by enabling the tracing framework or the large amounts of data gen-
erated by it. Third, usage semantics of file systems change as time goes on which
can render currentmodels invalid for future workloads. In spite of these problems,
several studies have been conducted over time that have provided a global view on
common file system behaviors. Let us review some of them.

Early trace-based file system studies like those fromSmith [131] andOusterhout
et al. [105] provide useful observations on file system behavior that, though useful,
have been slowly losing relevance due to changes in storage semantics. Smith stud-
ied text-based user files for thirteenmonths which are very different from the large
multimedia files of current user workloads. Ousterhoust’s analysis traced three
servers running BSD over a period of three to four days which is insufficient to
predict long-term access trends.

25

Ramakrishnan et al. were the first to examine traces collected from commer-
cial customer sites over several environments. They observed that only a relatively
small percentage of all data was active at a time and that it received a consider-
able amount of accesses. They also described that a large portion of active data
(23%–37%) was shared by multiple processes over time [115]. Nevertheless, their
analysis focused on file accesses with a resolution of hundreds of nanoseconds and
their results may not apply to access patterns seen over longer spans of time.

In 1996, Gibson, Miller and Long [49] conducted a long-term study on file sys-
tem activity on different UNIX environments. In particular, they were interested
in long-term behavior of files over a distributed file system to find common activity
trends and access patterns. Consistently with previous works, they described that
90% of all files were not used after creation, and that approximately 1% of all files
were used daily. Furthermore, they determined that files were usually short-lived
and, that if they were not used immediately after being created, they would never
be. However, their study is file-based which limits its applicability when consider-
ing block access behavior.

In an attempt to track how the behavior of a file system changes over time,
Roselli et al. [118] measured a wide range of file systems and compared their re-
sults with those from the Sprite study, conducted almost a decade earlier [13].
They noted that I/O load varied greatly depending on the environment studied,
but that file access patterns were bimodal in all environments: files were mostly
read or mostly written. Most interestingly, they described that block lifetimes had
increased since past studies, as well as maximum file sizes. Their primary interest
was determining how caching, memory mapping and file system parameters affect
disk behavior.

Ellard et al. [42] analyzed NFS traffic for research and email environments and
found that blocks died quickly in both, and that many read access patterns clas-
sified as “random” by NFS servers were in fact long reads composed of sequential
sub-runs. Though they focused on determining access patterns for individual files
and blocks, they did not consider block or file sharing semantics.

In 2008, Leung et al. examined CIFS traffic for two enterprise servers during
three months [78]. They described that read-write and random access patterns
were more common than previously thought, that file sharing by clients was rarely
concurrent and that a small fraction of clients accounted for most file activity.
Again, this study used files as its basis and even though it analyzed file sharing
by multiple clients, it only considered concurrent sharing, disregarding temporal
sharing.

26

In the most recent study that we are aware of (2011), Chen et al. [31] analyzes
data access patterns in two CIFS file system traces from a production enterprise dat-
acenter. Among other relevant observations, they note that client access patterns
reflect the aggregate behavior of the system’s human users, with session activity
corresponding exactly to the U.S. work day/week (including the rushes to meet
daily/weekly deadlines). They also observe that application generated I/O departs
significantly from human patterns. This study is particularly interesting as it con-
tributes several observations and implications for both clients and servers.

These studies show that data access patterns are as variable as the semantics of
the storage system contents, and that it is as important to determine what is going
to be stored as what its prospective clients are meant to do with it.

27

Chapter2
Scalable Data Distribution

“We are just an advanced breed of monkeys on a minor planet
of a very average start. But we can understand the Universe.

That makes us something very special.”
— Stephen W.Hawking

2.1 Motivation

As we mentioned in Chapter 01, the ever-growing creation of, and demand for,
massive amounts of data requires highly scalable storage solutions. The most flex-
ible approach is to use a pool of storage devices that can be expanded and down-
graded as needed by adding new storage devices or removing older ones. This
approach, however, necessitates a scalable solution for locating data items in such
a dynamic environment.

An ideal data distribution solution should be fair and distribute data blocks
taking into account the capacity of each device. It should also be adaptable and
requireminimal datamigrationwhen the number of devices in the system changes.
These challenges have led to the proposal of several families of data distribution
strategies (see Table 2.131).

Table-based strategies can provide an optimal mapping between data blocks and
storage devices, but obviously do not scale to large systems because the tables used
grow linearly in the number of data blocks.

29

http://en.wikipedia.org/wiki/Stephen_Hawking

Rule-based methods, on the other hand, tend to run into fragmentation prob-
lems, which require a periodic defragmentation in order to preserve scalability.
Furthermore, they force the migration of exceedingly large amounts of data when
storage devices are added or removed [52, 53].

Hashing-based strategies use a compact function ℎ in order to map balls with
unique identifiers out of some large universe 𝑈 into a set of bins called 𝑆 so that
the balls are evenly distributed among the bins. In our case, balls are data items
and bins are storage devices. Given a static set of devices, it is possible to construct
a hash function so that every device gets a fair share of the data load.

Standard hashing techniques, however, do not adapt well to a changing set of
devices: consider, for example, the hash function ℎ(𝑥) = (𝑎 ⋅ 𝑥 + 𝑏) mod 𝑛, where
𝑆 represents the set of storage devices and is defined as 𝑆 = {0, … , 𝑛 − 1}. If a
new device is added, we are left with two choices: either replace 𝑛 by 𝑛 + 1, which
would require virtually all the data to be relocated; or add additional rules to ℎ(𝑥)
to force a certain set of data blocks to be relocated on the new device in order to
get back to a fair distribution, which, in the long run, destroys the compactness of
the hashing scheme.

Pseudo-randomized hashing schemes that can adapt to a changing set of devices
have been proposed and theoretically analyzed, showing promising results. The
most popular is probably Consistent Hashing [70], which is able to evenly distribute
single copies of each data block among a set of storage devices and to adapt to a
changing number of disks. Wewill show that these pure randomized data distribu-
tion strategies have, despite their theoretical perfectness, serious drawbacks when
used in very large systems. Especially, many of their beneficial properties are only
achieved if a certain level of randomness can be achieved. This is particularly impor-
tant because, as we will show in Chapter 365, it has a serious influence either on
the necessary amount of memory required by a strategy, or on the performance it
delivers, which may render it infeasible in large-scale environments.

Besides adaptivity and fairness, redundancy is important as well. Storing just a
single copy of a data item in real systems is dangerous because if a storage device
fails, all of the blocks stored in it are lost. It has been shown that simple extensions
of standard randomized data distribution strategies to storemore than a single data
copy are not always capacity efficient [21].

Nevertheless, despite the sheer amount of randomized data distribution strate-
gies that have been proposed over the years, there does not exist a formal analysis
that evaluates them in a common environment. We believe it is a good idea to ex-
plore the advantages and disadvantages of current data distribution strategies, as

30

Table 2.1: Pros and cons of several approaches to data distribution

Strategy Advantages Limitations

Table-based
T [b]↦ D

Extremely fast† lookup
Easily adaptable to new devices

Poor scalability (tables grow linearly with
number of blocks)
Computationally intensive reversibility for
large table sizes

Rule-based
f (b)↦ D

Fast† lookup
Easily reversible‡

May run into fragmentation problems
Adapting to new devices involves huge
data migrations

Pseudo-randomized
hn(b)↦ D

Moderately∗ fast† lookup
Inherently fair
Extremelyflexible (naturally adapts tonew
devices)

May require substantial memory to pro-
vide desired randomness
Not easily reversible‡

Definitions used: b, data block ID; D, device ID; T [x], content of table T for block ID x ; f (x), result of applying rule f to block ID x ; hn(x), value
of applying one, several or a combination of n hash functions h0,…, hn to block ID x.
†Depending on particular implementation.
‡It is possible to compute the collection of blocks managed by a particular device.
∗Depending on the number of hash functions applied.

dissecting their strengths and limitations can be useful for storage researchers and
developers alike, and may lead to the invention of better distribution mechanisms.

A second motivation is to use this information to design a large-scale data dis-
tribution strategy that shares the advantages of current solutions and shows none
of their limitations. Based on these motivations, the main contributions of this
chapter can be summarized in the two following points:

1. The contribution of the first comparative evaluation of different hashing-
based distribution strategies that are able to replicate data in a heterogeneous
and dynamic environment. This comparison shows the strengths and draw-
backs of the different strategies as well as their constraints. Such comparison
is novel because hashing-based data distribution strategies have beenmostly
analytically discussed, with only a few implementations available, and in the
context of peer-to-peer networks with limited concern for the fairness of
the data distribution [135]. Only a few of these strategies have been imple-
mented in storage systems, where limited fairness immediately leads to a
strong increase in costs [22, 146].

31

2. The introduction of a novel distribution mechanism called Random Slicing,
which overcomes the drawbacks of current randomized data distribution
strategies by incorporating lessons learned from table-based, rule-based and
pseudo-randomized hashing strategies. Random Slicing keeps a small table
with information on previous storage system insertions and removals, which
helps to contain the required amount of randomness that needs to be com-
puted and thus reduces the amount of necessary main memory by several
orders of magnitude.

It is important to note that all randomized strategies map (virtual) addresses to
a set of disks, but do not define the placement of the corresponding block on the
disk surface. This placement on the block devices has to be resolved by additional
software running on the disk itself. Therefore, we will assume for the remainder of
the chapter that the presented strategies work in an environment that uses object-
based storage. Unlike conventional block-based hard drives, object-based storage
devices (OSDs) manage disk block allocation internally, exposing an interface that
allows others to read andwrite to variably-sized, arbitrarily-named objects [10, 39].

2.2 Research Model

Our research is based on an extension of the standard “balls into bins” mathemati-
cal model [69, 100, 114]. Let {0, … , 𝑀 − 1} be the set of all identifiers for the balls
and {0, … , 𝑁 − 1} be the set of all identifiers for the bins, where each ball repre-
sents a data block and each bin a storage device. Suppose that the current number
of balls in the system is 𝑚 ≤ 𝑀 and that the current number of bins in the system is
𝑛 ≤ 𝑁 . We will often assume for simplicity that the balls and bins are numbered in
a consecutive way starting with 0, but any numbering that gives unique numbers
to each ball and bin would work for our strategies.

Suppose that bin 𝑖 can store up to 𝑏𝑖 (copies of) balls. Then we define its relative
capacity as 𝑐𝑖 = 𝑏𝑖/ ∑𝑛−1

𝑗=0 𝑏𝑗 . We require that, for every ball, 𝑘 copies must be stored
in different bins for some fixed 𝑘. In this case, a trivial upper bound for the number
of balls the system can storewhile preserving fairness and redundancy is ∑𝑛−1

𝑗=0 𝑏𝑗 /𝑘,
but it can be much less than that in certain cases. We term the 𝑘 copies of a ball a
redundancy group.

Placement schemes for storing redundant information can be compared based
on the following criteria (see also the work by Brinkmann et al. [24]):

32

� Capacity Efficiency and Fairness. A scheme is called capacity efficient if it al-
lows us to store a near-maximum number of data blocks. We will see in the
following that the fairness property is closely related to capacity efficiency,
where fairness describes the property that the number of balls and requests
received by a bin are proportional to its capacity. Also, we will often refer to
the competitiveness of a replication scheme: a scheme is called 𝜖-competitive
if it is able to store at least (1 − 𝜖)-times the amount of data that could be
stored by an optimal strategy.

� Time Efficiency. A scheme is called time efficient if it allows a fast computa-
tion of the position of any copy of a data block without the need to refer to
centralized tables. Schemes often use smaller tables that are distributed to
each node that must locate blocks.

� Compactness. We call a scheme compact if the amount of information the
scheme requires to compute the position of any copy of a data block is small
(in particular, it should only depend on 𝑛—the number of bins).

� Adaptivity. Wecall a scheme adaptive if it only redistributes a near-minimum
amount of copies when new storage is added in order to get back into a state
of fairness. Therefore, in Section 2.751 we compare the different strategies
with theminimum amount ofmovements which is required to keep the fair-
ness property.

The better a distribution strategy performs under all of these criteria, the closer
it is to being an ideal solution.

2.3 Randomized Data Distribution

For the reader’s convenience, we present in this section a short description of the
applied data distribution strategies we will evaluate. We start with Consistent Hash-
ing and Share, which can, in their original form, only be applied for 𝑘 = 1 (i.e. only
one copy of each data block) and therefore lack support for redundancy. Both strat-
egies are used as sub-strategies inside some of the investigated data distribution
strategies. Besides their usage as sub-strategies, we will also present a simple repli-
cation strategy which can be based on any of these simple strategies. Afterwards,
we present Redundant Share and RUSH, which directly support data replication.

33

2.3.1 Consistent Hashing

We start with the description of the Consistent Hashing strategy, which solves the
problem of (re-)distributing data items in homogeneous systems [70]. In Consis-
tent Hashing, both data blocks and storage devices are hashed to random points
in a [0, 1)-interval, and the storage device closest to a data block in this space is
responsible for that data block. In order to produce a balanced distribution, how-
ever, storage devices need to be associated to more than one point in the ring and,
therefore, the strategy needs to produce 𝑘 ⋅ log 𝑛 points for each device for some
constant 𝑘. As we will see later, this requirement can affect the applicability of the
strategy.

Consistent Hashing ensures that adding or removing a storage device only re-
quires a near minimal amount of data replacements to get back to an even distri-
bution of the load, because the only blocks that migrate are those closest to one of
the new device’s associated points and no blocks can move between old devices.
However, this technique cannot be applied well if the storage devices can have ar-
bitrary non-uniform capacities since in this case the load distribution has to be
adapted to the capacity distribution of the devices. The memory consumption of
Consistent Hashing heavily depends on the required fairness. Using only a single
point for each storage devices leads to a load deviation of 𝑛 ⋅ log 𝑛 between the least
and heaviest loaded storage devices. Instead it is necessary to use log 𝑛 virtual de-
vices to simulate each physical device, and to respectively throw log 𝑛 points for
each device to achieve a constant load deviation.

2.3.2 Share

The Share strategy supports heterogeneous environments by introducing a two
stage process [24]. In the first stage, the strategy randomly maps one interval for
each storage system to the [0, 1)-range. The length of these intervals is proportional
to the size of the corresponding storage systems (plus some stretch factor 𝜎) and
can cover the [0, 1)-ring many times. In addition, the interval for each device is di-
vided into equally-sized ranges of capacity 𝛿, called virtual bins. The purpose of this
division is to simplify the initial problem to that of data distribution with uniform
capacities, where the distribution targets are equally-sized bins. Share now only
needs to use an adaptive strategy for homogeneous storage systems, like Consistent
Hashing, to get the storage system for which the corresponding interval includes
this point.

34

The analysis of the Share strategy shows that it is sufficient to have a stretch
factor 𝜎 = 𝑂(log 𝑁) to ensure correct functioning and that Share can be imple-
mented in expected time 𝑂(1) using a space of 𝑂(𝜎 ⋅ 𝑘 ⋅ (𝑛 + 1/𝛿)) words (without
considering the hash functions), where 𝛿 characterizes the required fairness. Share
has an amortized competitive ratio of at most 1 + 𝜖 for any 𝜖 > 0. Nevertheless,
we will show that, similar to Consistent Hashing, the memory consumption heavily
depends on the expected fairness.

2.3.3 Trivial Data Replication

Consistent Hashing and Share are, in their original implementations, unable to sup-
port data replication or erasure codes, since it is always possible that multiple
stripes belonging to the same stripe set are mapped to the same storage system and
that data recovery in case of failures becomes impossible. Nevertheless, it is easy to
imagine strategies to overcome this drawback and to support replication strategies
by, e.g., simply removing all previously selected storage systems for the next ran-
dom experiment for a stripe set. Another approach, used inside the experiments
in this chapter, is to simply perform as many experiments as are necessary to get
enough independent storage systems for the stripe set. It has been shown that this
trivial approach wastes some capacity [21], but we will show that this amount can
often be neglected.

2.3.4 Redundant Share

Redundant Share [21] was developed to support the replication of data in heteroge-
neous environments. The strategy orders the bins according to their weights 𝑐𝑖 and
sequentially iterates over them. The basic idea is that the weights are calculated in
a way that ensures perfect fairness for the first copy and to use a recursive descent
to select additional copies. Therefore, note that the strategy needs 𝑂(𝑛) rounds for
each selection process, where 𝑛 is the number of storage devices.

Each round starts by selecting a random value 𝑣 ∈ [0, 1), which is calculated
based on the data block identifier and the identifier of the bin that is being tested
to hold the data block. For each bin 𝑖, if 𝑣 is smaller than the adapted weight

̌𝑐𝑖 = 2 ⋅ 𝑐𝑖/ ∑𝑛−1
𝑗=𝑖 𝑏𝑗 of bin 𝑖—which represents the probability that bin 𝑖 can hold

the ball while maintaining a uniform distribution—the bin is chosen for the pri-
mary copy. The remaining copies are placed by repeating the process with all bins
with a smaller weight.

35

This algorithm is log 𝑛-competitive concerning the number of replacements if
storage systems enter or leave the system. The authors of the original strategy also
presented extensions of Redundant Share, which are 𝑂(1)-competitive concerning
the number of replacements as well as strategies which have 𝑂(𝑘) runtime [20].
Both strategies rely on Share and we will discuss in the evaluation section why they
are not feasible in realistic settings.

2.3.5 RUSH

RUSH algorithms are based in the notion that, as large storage systems expand, new
capacity is typically added several disks at a time. Thus, the RUSH algorithms all
proceed in two stages, first identifying the appropriate sub-cluster inwhich to place
an object, and then identifying the disk within that particular sub-cluster [60, 61].
Within a sub-cluster, replicas assigned to the sub-cluster are mapped to disks using
a hash function and prime number arithmetic that guarantees that no two replicas
of a single object can be mapped to the same disk.

The selection of sub-clusters is a bit more complex and differs between the three
RUSH variants: RUSHP, RUSHR, and RUSHT. RUSHP considers sub-clusters in the re-
verse of the order they were added, comparing the hash value of the object with the
ratio of the weight of the most recently added sub-cluster to the total weight of the
system. If the hash value is smaller than this ratio, the search terminates and the
object is placed in that sub-cluster. Otherwise, RUSHP discards the most recently
added sub-cluster and repeats the process with the remaining ones. RUSHR works
in a similar way, but it determines the number of objects in each sub-cluster si-
multaneously, rather than requiring a draw for each object. RUSHR uses the same
ratio as RUSHP in order to determine the placement of objects, but these values are
used as parameters to a draw from the hypergeometric1 distribution. The result of

1The hypergeometric
distribution applies
to sampling without

replacement from
a finite population

whose elements can
be classified into two

mutually exclusive
categories like Suc-

cess/Error. As random
selections are made

from the popula-
tion, each subsequent

draw decreases the
population causing

the probability of
success to change
with each draw.

this operation yields the number of replicas that belong in the most recently added
sub-cluster.

RUSHT improves the scalability of the system by descending a tree to assign ob-
jects to sub-clusters; this reduces computation time to log 𝑐, where 𝑐 is the number
of sub-clusters added. RUSHT is similar to RUSHP, except that it uses a binary tree
data structure rather than a list, where each tree node is aware of the weights of
its child sub-trees. Also, each tree node has a unique identifier which is used as
a parameter to the hash function. In order to locate the appropriate sub-cluster,
the algorithm computes the hash value 𝑣 of the object and the current tree node,
beginning at the root of the tree. Then, 𝑣 is compared with the weight of the sub-

36

trees, and the algorithm chooses the sub-tree with fewer weight. This process is
repeated until a leaf node is reached.

The main drawback of the RUSH-variants is that they require that new capacity
is added in chunks, where each chunk is based on servers of the same type and the
number of disks inside a chunk has to be sufficient to store a complete redundancy
group without violating fairness and redundancy, which leads to restrictions for
larger numbers of sub-clusters.

2.4 Proposal: Random Slicing

In this section we describe our proposal for a new data distribution strategy called
Random Slicing. This strategy tries to overcome the drawbacks of current random-
ized data distribution strategies by incorporating lessons learned from table-based
and pseudo-randomized hashing strategies. In particular, it tries to reduce the re-
quired amount of randomness necessary to keep a uniform distribution, which can
cause memory consumption problems.

2.4.1 Description

Random Slicing is designed to be fair and efficient both in homogeneous and het-
erogeneous environments and to adapt gracefully to changes in the number of bins.
Suppose that we have a random function ℎ ∶ {1, … , 𝑀} → [0, 1) that maps balls
uniformly at random to real numbers in the interval [0, 1). Also, suppose that the
relative capacities for the 𝑛 given bins are (𝑐0, … , 𝑐𝑛−1) ∈ [0, 1)𝑛 and that it is always
the case that ∑𝑛−1

𝑖=0 𝑐𝑖 = 1.
The strategy works by dividing the [0, 1) range into intervals and assigning them

to the bins currently in the system (see Figure 2.138). Notice that the intervals
created do not overlap and completely cover the [0, 1) range. Also note that bin
𝑖 can be responsible for several non-contiguous intervals 𝑃𝑖 = (𝐼0, … , 𝐼𝑘), where
𝑘 < 𝑛, which will form the partition of that bin. To ensure fairness, Random Slicing
will always enforce that the accumulated capacity of all intervals for bin 𝑖 equals its
relative capacity, that is ∑𝑘−1

𝑗=0 |𝐼𝑗| = 𝑐𝑖.
In an initial phase, i.e. when the first set of bins enters the system, each bin 𝑖 is

given only one interval of length 𝑐𝑖, since this suffices to maintain fairness. When-
ever new bins enter the system, however, relative capacities for old bins change
due to the increased overall capacity. To maintain fairness, Random Slicing shrinks

37

.............

.

.

.

......

intervals

.

a partition is composed
by all intervals assigned
to the same node

.

h(b) in
[,) ∈ R

.

da
ta
sp
ac
e

.

st
or
ag
ed

ev
ice

s

Figure 2.1: Overview of Random Slicing’s
data distribution. The data space is divided
into numeric intervals that are assigned to
storage devices. A storage device can be

responsible for several intervals that
configure the device’s partition of the data

space. The size of each partition is
computed so that the amount of data

contained in it matches the capacity of the
device relative to the overall storage

capacity. Blocks are assigned to intervals
using a pseudo-randomized hash function
that guarantees uniformity of distribution.

existing partitions by splitting the intervals that compose them until their new rel-
ative capacities are reached. Splitted interval fragments can now be used to create
partitions for the new bins that maintain the fairness constraint.

The splitting mechanism works as follows. First, the strategy computes how
much partitions should be reduced by in order to keep the fairness of the distribu-
tion. Since the global capacity has increased, each partition 𝑃𝑖 must be reduced by
𝑟𝑖 = 𝑐𝑖 − ̌𝑐𝑖, where ̌𝑐𝑖 corresponds to the new relative capacity of bin 𝑖.

Partitions become smaller by releasing or splitting some of their intervals, thus
generating gaps, which can be used for new intervals. This way, the lengths of parti-
tions for the old bins already represent their corresponding relative capacities and
it is only necessary to use these gaps to create new partitions for the newly added
bins.

The time efficiency and the memory consumption of the strategy, of course,
crucially depend on the maximum number of intervals being managed. In the
following theorems we derive a theoretical upper bound for this number.

Theorem 2.4.1. Assume an environment where storage systems can only be added. In
this case, adding 𝑛 storage systems leads to at most (1/2) ⋅ 𝑛 ⋅ (𝑛 + 1) intervals.

Proof. We use an induction technique to prove the theorem. For the base case
it holds that adding the first storage system leads to 1 interval and it holds that
(1/2) ⋅ 1 ⋅ 2 = 1. In the following we show the inductive step from change 𝑛 to

38

change (𝑛 + 1). We show that adding a new storage system leads to at most 𝑛 new
intervals and that therefore the number of intervals after the insertion is at most:

(1/2) ⋅ 𝑛 ⋅ (𝑛 + 1) + 𝑛 = (1/2) ⋅ (𝑛2 + 𝑛) + 𝑛
= (1/2) ⋅ (𝑛2 + 𝑛 + 2𝑛)
= (1/2) ⋅ (𝑛2 + 3𝑛)
≤ (1/2) ⋅ (𝑛2 + 3𝑛 + 2)
= (1/2) ⋅ (𝑛 + 1) ⋅ (𝑛 + 2),

(2.1)

which is the inductive step.
The number of intervals is smaller than 𝑛 before a new storage system is added.

Then, a part of the intervals of each storage system already within the system has to
be assigned to the new storage system. Assume now for each existing storage sys-
tem that we pick an arbitrary interval first. If the size of this interval is smaller than
the interval length, which has to be assigned to the new storage system, we assign
the complete interval to the new storage system. The number of intervals does not
change in this case and we continue with the next intervals until we reach one in-
terval which cannot be completely assigned to the new storage system. In this case,
we split this interval and assign one part to the new storage system and keep the
other for the previously existing one. Therefore, the number of intervals increases
by at most one for each previously existing storage system (or stays constant if the
last assigned interval will be completely assigned to the new storage system).

In the following, we investigate an environment where storage systems can also
be removed. We assume that the number of storage systems is not decreasing for a
long time in a typical storage environment and that new storage systems are always
bigger than storage systems which have been removed. We suppose a situation
where the number of storage devices added to the environment steady state, is at
most equal to the number of devices previously removed.

Theorem2.4.2. Assume that there have been atmost 𝑛 storage systems in the environment
at any time. Then the number of intervals will necessarily be smaller than (1/2)⋅𝑛⋅(𝑛+1)
in the steady state.

Proof. Assume that 𝑘 storage systems have been removed and no new storage sys-
tems have been added. In this case it can occur that the number of intervals be-
comes bigger than (1/2) ⋅𝑛 ⋅ (𝑛+1). Now assume that at least 𝑘 new storage systems
have been added to the environment and the system is back in a steady state. We

39

will show in this case that the number of intervals is at most (1/2) ⋅ 𝑛 ⋅ (𝑛 + 1), where
𝑛 is the number of all storage systems which have previously been part of the en-
vironment. We use a technique inspired by the zero-height-strategy proposed by
Brinkmann et al. [23], and assign first all intervals which have been previously as-
signed to the removed storage system, to the new storage systems. This is possible
as the new storage systems are at least as big as the removed storage systems. If the
new storage systems are bigger than the removed ones, additional intervals lengths
have to be assigned to them. In this case, we just assign the remaining capacity in
the same way as we did in Theorem 2.4.138.

As we have seen, the theoretical upper bound on the total number of intervals
is bounded by 𝑂(𝑛2), which means that the pressure on performance and mem-
ory consumption could become a challenge after several reorganizations. Notice,
however, that the theorem assumes a worst-case scenario where storage systems
are added one by one and that, as we will demonstrate with the experiments of
Section 2.644, an appropriate algorithm can significantly reduce the number of in-
tervals to a manageable amount if several storage systems are added in bulk.

2.4.2 Interval Creation Algorithm

The goal of the interval creation algorithm is to split existing intervals in a way
that allows new intervals to be created while maintaining the relative capacities of
the system. Note that the strategy’s memory consumption directly depends on the
number of intervals used and, therefore, the number of new intervals created in
each addition phase can hamper scalability. We briefly explain two interval cre-
ation strategies and two variants.

� Greedy: This algorithm tries to collect as many complete intervals as pos-
sible and will only split an existing interval as a last resort. Furthermore,
when splitting an interval is the only option, the algorithm tries to expand
any adjacent gap instead of creating a new one. Once enough gaps are col-
lected to produce an even distribution, they are assigned sequentially to new
partitions.

� CutShift: This algorithm also tries to collect as many complete intervals as
possible, but, when it is necessary to split an interval, alternates between
splitting it by the beginning or by the end in an attempt to maximize gap

40

length. Once enough gaps are collected to produce an even distribution,
they are assigned sequentially to new partitions.

� Greedy+Sorted: A variant of Greedy where the largest partitions are as-
signed greedily to the largest gaps available.

� CutShift+Sorted: A variant of CutShift where the largest partitions are as-
signed greedily to the largest gaps available.

Note that these strategies are intentionally simple since our intention is that
interval reorganizations can be computed as fast as possible in order to reduce the
reconfiguration time of the storage system.

An example of the CutShift+Sorted reorganization can be seen in Figure 2.242,
where two new bins 𝐵3 and 𝐵4, representing a 33% capacity increase, are added
to bins 𝐵0, 𝐵1, and 𝐵2. Figure 2.2a42 shows the initial configuration and the rel-
ative capacities for the initial bins. Figure 2.2b42 shows that the partition of 𝐵0
must be reduced by 0.06, the partition of 𝐵1 by 0.11, and the one of 𝐵2 by 0.16,
whereas two new partitions with a size of 0.14 and 0.19 must be created for 𝐵3 and
𝐵4. The interval [0.1, 0.2) ∈ 𝐵1 can be completely cannibalized, whereas the in-
tervals [0.0, 0.1) ∈ 𝐵0, [0.2, 0.6) ∈ 𝐵2, and [0.7, 0.9) ∈ 𝐵1 are split while trying to
maximize gap lengths. Figure 2.2c42 shows that the partition for 𝐵3 is composed
of intervals [0.23, 0.36) and [0.7, 0.71), while the partition for 𝐵4 consists only of
interval [0.04, 0.23).

2.4.3 Data Lookup

Once all partitions are created, the location of a data item/ball 𝑏 can be easily de-
termined by calculating 𝑥 = ℎ(𝑏) and retrieving the bin associated with it. Notice
that some balls will change partition after the reorganization, but as partitions al-
ways match their ideal capacity, only a near minimal amount of balls will need to
be reallocated. Furthermore, if ℎ(𝑏) is uniform enough and the number of balls
in the system is significantly larger than the number of intervals (both conditions
easily feasible), the fairness of the strategy is guaranteed.

2.4.4 Fault Tolerance

As explained in Section 2.3.335, Random Slicing provides fault tolerance to data loss
by using data replication. In order to ensure data resilience, and given a block

41

(a) Initial configuration

..



.



.



.



.



.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.. . . .
c₂=%

.
c₁=%

.
c₀=%

.

(b) Gap collection

......... . . .
c’₂=%

.
c’₁=%

.
c’₀=%

. +. .
c₃=%

. .
c₄=%

.



..



.



..



.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(c) Final configuration

......... . . .
c’₂=%

.
c’₁=%

.
c’₀=%

. .
c₃=%

. .
c₄=%

.



.



.



.



.



.



.



.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 2.2: Example of the CutShift+Sorted
interval management algorithm. Two new
devices B3 and B4 are added to an existing
system, each representing an increase in

capacity of 14% and 19%, respectively. The
algorithm first computes the new relative

capacities (𝑐𝑖) of the existing partitions and
proceeds to create gaps by either assimilating

or slicing intervals. Interval [0.1, 0.2) is
completely assimilated, while intervals

[0.0,0.1) and [0.2, 0.6) are cut. Note how the
algorithm shifts the cutting point to the
beginning or the end of the interval in an

attempt to increase the potential length of the
current gap. When all gaps are created, the
largest partitions are assigned to the largest

intervals in an greedy fashion, in order to avoid
unnecessary splitting the new partitions.

identifier, the strategy simply needs to perform as many random experiments as
needed to get enough independent partitions to place each replica. In the worst
case, this trivial approach can have a negative effect in performance (due to a po-
tentially high number of random experiments) and fairness (due to an unbalanced
placement of copies). Nevertheless, as we will see in Section 2.751, the practical
impact in our strategy is neglectable.

Concerning metadata, the interval table should be safe-guarded at all costs,
since it is the key element that allows clients to locate data blocks. Nevertheless,
for performance reasons it should be kept in memory in order to be able to locate
the appropriate partitions efficiently, which could cause problems in case of un-
expected shutdowns or node failures. In case of metadata loss, the strategy could
recover in three ways:

1. A client node could rebuild the interval table simply by replaying the suc-
cessive changes in devices (and capacity) made to the storage system. This

42

data could be kept in an external log, or could be provided by the system
administrator if needed.

2. As we will see in Section 2.644, the memory footprint of the interval table is
small even for tens of thousands of storage devices. Since the interval table
is only modified when changes are made to the storage system, it would be
reasonable to keep a backup copy of the table in secondary storage.

3. All client nodes must have an in-memory copy of the interval table in order
to access the storage system; it would be easy to transfer this information
from an active client to a newly-recovered one.

2.4.5 Extensions

Note that up to nowwe have discussed RandomSlicing’s capability to distribute data
blocks according to the relative capacities of the storage system’s devices. Neverthe-
less, it is also possible to distribute data according to any other metrics devised by
the system administrator. For instance, Random Slicing could be used to monitor
I/O workload or power efficiency by simply defining an appropriate parameter to
model the relative I/O load of each device or its relative power consumption.

By increasing or reducing these parameters, the administrator could control
how many intervals are assigned to each storage device and thus redistribute the
data load to other devices when I/O bottlenecks were detected or when a device
needed to be spun down/turned off.

This kind of extensions are more dynamic in nature than a change in capacity
and, as such, pose additional challenges like a more frequent update of the data
structure in charge of partitions, or increased data migration. It remains to see,
however, if Random Slicing’s current techniques would be effective in such a dy-
namically changing environment but this falls beyond the scope of this thesis and
is a subject of future research.

2.5 Methodology

Most previous evaluations of data distribution strategies are based on an analytical
investigation of their properties. In contrast, we use a simulation environment to
examine the real-world properties of the investigated protocols. The simulation
environment has been developed through collaboration with researchers from the

43

University of Paderborn and the University of California Santa Cruz and is avail-
able online [98]. The software package also includes the parameter settings for the
individual experiments described in this chapter.

First, we evaluate the scalability of Random Slicing with the different interval
creation algorithms proposed in Section 2.4.240. This way, we determine how well
the strategy scales and we select the best algorithm for the rest of the simulations.

Second, we run experiments for all distribution strategies described in Sec-
tion 2.333 in an environment that scales from a few storage systems up to thou-
sands of devices. We evaluate these strategies in terms of fairness, adaptivity, per-
formance and memory consumption and compare the results with those of our
proposal Random Slicing.

All experiments assume that each storage node (also called storage system in
the following) consists of 16 hard disks (plus potential disks to add additional
intra-shelf redundancy). Besides, most experiments distinguish between a homo-
geneous setting (all devices have the same capacity) and a heterogeneous settings
(the capacity of devices varies).

In all experiments described, the implementations of Consistent Hashing, Share
and Redundant Share use a custom implementation of the SHA1 pseudo-random
number generator [41]. The RUSH* variants use the William-Hill generator, while
the implementation of Random Slicing uses Thomas Wang’s 64 bit mixing func-
tion [143].

2.6 Scalability of Random Slicing

As demonstrated by Theorem 2.4.138, Random Slicing’s performance and memory
consumption largely depends on how well the number of intervals scales when
there are changes in the storage system. An excessive amount of new intervals
can render the strategy useless due to memory or performance constraints. In
this section we evaluate the different interval creation algorithms proposed in Sec-
tion 2.4.240 and measure how well they scale in terms of performance, the number
of new intervals created in each step, and the total number of intervals managed
by the strategy.

44

2.6.1 Creation of New Intervals

Figure 2.346 plots the percentage of new intervals created when adding devices to
the storage system. Each experiment begins with 50 devices and adds, in each step,
as much new devices as needed to increase the overall capacity of the system by
10%, 50% or 80%, respectively. We evaluate a homogeneous setting where all the
devices added have the same capacity, as well as a heterogeneous setting where
the capacity of new devices increases by a factor of 1.5 in each step. In order to test
long-term scalability, we continuously add devices until we surpass 25,000 devices.

Figures 2.3a, 2.3c and 2.3e46 depict the evaluation results for the homogeneous
setting, while Figures 2.3b, 2.3d and 2.3f46 show the results for the heterogeneous
setting. All four algorithms behave similarly in all experiments, which is to be
expected as the number of intervals is not directly related to the capacity of the
devices. All show an initial phase where adding devices leads to a high percentage
of new intervals, with the Greedy algorithm even doubling the number of intervals
in the first addition phase. This is not surprising since initially the number of in-
tervals to work with is small, which limits the capability of the algorithms to create
large gaps and increases the number of new intervals. This also explains why Cut-
Shift is more successful at reducing the number of new intervals than Greedy, since
it is able to create larger gaps.

Assigning the largest partitions to the largest gaps also has some influence in
reducing the number of new intervals, as the results for Greedy+Sorted and Cut-
Shift+Sorted show when comparing them against the non-sorted variants.

Note that once the algorithms have enough intervals to work with, they are sig-
nificantly more effective: depending on the target increase in capacity, all strate-
gies are able to reduce the number of new intervals to around 10%, 50% or 80%
per step, respectively, and keep it steady even after more than 10 reorganizations.
Interestingly enough, the number of new intervals created roughly corresponds to
the increase in capacity, regardless of the number of devices added.

2.6.2 Absolute Intervals Created

Figure 2.447 shows the total number of intervals created by each algorithm. As
expected, the CutShift algorithms produce a substantial reduction in the number
of intervals when compared to the Greedy algorithms: by the end of each homoge-
neous experiment, CutShift algorithms produce ≈30,000, ≈12,000 and ≈9000 fewer
intervals than Greedy algorithms (Figures 2.4a, 2.4c and 2.4e47, respectively). In

45

Greedy
CutShift
Greedy+Sort
CutShift+Sort

(a) +10% capacity, homogeneous

50 92 162 285 502 886
1562

2758
4873

8619
15253

27002

storage systems

0

20

40

60

80

100

120
ne

w
in

te
rv

als
 (%

)

(b) +10% capacity, heterogeneous

50 92 162 285 502 886
1562

2758
4873

8619
15253

27002

storage systems

0

20

40

60

80

100

120

(c) +50% capacity, homogeneous

50 113 255 572
1285

2888
6493

14603
32850

storage systems

0
20
40
60
80

100
120
140
160

ne
w

in
te

rv
als

 (%
)

(d) +50% capacity, heterogeneous

50 113 255 572
1285

2888
6493

14603
32850

storage systems

0
20
40
60
80

100
120
140
160

(e) +80% capacity, homogeneous

50 90 162 292 526 946
1702

3063
5512

9920
17855

32137

storage systems

0

40

80

120

160

200

ne
w

in
te

rv
als

 (%
)

(f) +80% capacity, heterogeneous

50 90 162 292 526 946
1702

3063
5512

9920
17855

32137

storage systems

0

40

80

120

160

200

Figure 2.3: Percentage of new intervals created. Each step adds as many homogeneous or heterogeneous devices as
necessary to reach the target capacity increase (i.e. +10%, +50%, and +80%). In the case of heterogeneous devices,
the capacity of each device is increased by 1.5x.

46

Greedy
CutShift
Greedy+Sort
CutShift+Sort

(a) +10% capacity, homogeneous

50 92 162 285 502 886
1562

2758
4873

8619
15253

27002

storage systems

0.0

0.5

1.0

1.5

2.0

2.5

3.0

to
ta

l in
te

rv
als

×105
(b) +10% capacity, heterogeneous

50 92 162 285 502 886
1562

2758
4873

8619
15253

27002

storage systems

0.0

0.5

1.0

1.5

2.0

2.5

3.0
×105

(c) +50% capacity, homogeneous

50 113 255 572
1285

2888
6493

14603
32850

storage systems

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

to
ta

l in
te

rv
als

×104
(d) +50% capacity, heterogeneous

50 113 255 572
1285

2888
6493

14603
32850

storage systems

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
×104

(e) +80% capacity, homogeneous

50 90 162 292 526 946
1702

3063
5512

9920
17855

32137

storage systems

0.0

1.0

2.0

3.0

4.0

5.0

6.0

to
ta

l in
te

rv
als

×104
(f) +80% capacity, heterogeneous

50 90 162 292 526 946
1702

3063
5512

9920
17855

32137

storage systems

0.0

1.0

2.0

3.0

4.0

5.0

6.0
×104

Figure 2.4: Total number of intervals created. Each step adds as many homogeneous or heterogeneous devices as
necessary to reach the target capacity increase (i.e. +10%, +50%, and +80%). Again, for heterogeneous devices the
capacity of each device is increased by 1.5x.

47

the heterogeneous experiments, this reduction amounts to ≈30,000, ≈15,000 and
≈8000 intervals (Figures 2.4b, 2.4d and 2.4f47, respectively).

We also observe that, by the end of the experimental runs, the number of inter-
vals grows considerably: for instance, the system shown in Figures 2.4a and 2.4b47
needs 3 × 105 intervals after its 23rd reorganization. Such a number of intervals,
though not insignificant, can be effectively managed using an appropriate segment
tree [14] structure, which has a storage cost of 𝑂(𝑛 ⋅ 𝑙𝑜𝑔 𝑛) and a lookup cost of
𝑂(𝑙𝑜𝑔 𝑛) [37], where 𝑛 is the number of intervals. Using this structure, the worst
case memory requirement for 3 × 105 intervals is ≈167MB,2 which seems accept-

2Assuming each node
needs 32 bytes: 2
pointers for child

trees and 2 integers
for interval ranges.

able for over 25,000 devices and can be computed in a matter of minutes.
Based on the evaluation above, we select the CutShift+Sorted as ourmanagement

algorithm, since it gives good results in the initial and the stable phase. From now
on, in every experiment we discuss, Random Slicingwill use this algorithm. For the
sake of completion, Algorithm 2.1↷ shows the pseudo-code for this mechanism.

2.6.3 Performance Scalability

The graphs shown in Figure 2.550 demonstrate the evolution of Random Slicing’s
lookup time depending on the number of disks added to the system using the Cut-
Shift+Sorted assimilation algorithm. As in the previous experiments, we beginwith
50 devices and add, in each step, as much devices as needed to increase the overall
capacity of the system by 10%, 50% or 80%, respectively. For each configuration,
we distribute 106 independent data blocks and measure the average time taken
by Random Slicing in each operation. The measurements include 95% confidence
intervals, and the homogeneous and heterogeneous environments use the same
settings as in the previous experiments.

The results from these experiments show that the lookup time for a block is ex-
tremely fast, with amoderate growth trend that exhibits a lookup penalty of ≈1.5 µs
in the latest configurations, which use 27,002, 49,272, and 57,845 devices, respec-
tively (see Figures 2.5a to 2.5f50). This moderate growth of the lookup time is due
to two reasons: first, the tree structure used in our implementation is able tomodel
the configuration of intervals using very few levels, which in practice turn the log 𝐼
times to 𝑂(1); second, the lookup time depends on the number of intervals used
by the strategy rather than the number of devices. Thus, the better the assimilation
algorithm can contain the growth of new intervals, the better the results produced
by the lookup structure. All in all, these results show that Random Slicing is able to
handle large numbers of devices with small performance and memory overhead.

48

Algorithm 2.1: CutShift Gap Collection Algorithm

Require: Bins = {𝑏0, … , 𝑏𝑛−1, 𝑏𝑛, … , 𝑏𝑝−1} such that 𝑏0, … 𝑏𝑛−1 are the capacities for
old bins and 𝑏𝑛 … 𝑏𝑝−1 are the capacities for new bins

Require: Intervals = {𝐼0, … , 𝐼𝑞−1}
Require: (𝑝 > 𝑛) ∧ (𝑞 ≥ 𝑛)
Ensure: Gaps = {𝐺0, … , 𝐺𝑚−1}

1: procedure CutShift(Bins, Intervals, Gaps)
2: ∀𝑖 ∈ {0, … , 𝑛 − 1} ∶ 𝑐𝑖 ← 𝑏𝑖/ ∑𝑛−1

𝑗=1 𝑏𝑗

3: ∀𝑖 ∈ {0, … , 𝑝 − 1} ∶ ̌𝑐𝑖 ← 𝑏𝑖/ ∑𝑝−1
𝑗=1 𝑏𝑗

4: ∀𝑖 ∈ {0, … , 𝑛 − 1} ∶ 𝑟𝑖 ← BlockCount(𝑐𝑖 − ̌𝑐𝑖)
5: Gaps ← ∅
6: for all 𝑖 ∈ Intervals do
7: 𝑏 ← bin assigned to 𝑖
8: 𝑔 ← last gap from Gaps
9: if 𝑟𝑏 > 0 then

10: if Length(𝑖) < 𝑟𝑏 then
11: if Adjacent(𝑔, 𝑖) then
12: g.end ← g.end + Length(𝑖)
13: else
14: Gaps ← Gaps + {i.start, i.end}
15: end if
16: 𝑟𝑏 ← 𝑟𝑏 − Length(𝑖)
17: if last interval was assimilated completely then
18: CutIntervalEnd ← False
19: end if
20: else
21: if Adjacent(𝑔, 𝑖) then
22: g.end ← g.end + Length(𝑖)
23: else
24: if CutIntervalEnd then
25: Gaps ← Gaps + {i.end − 𝑟𝑏, i.end}
26: else
27: Gaps ← Gaps + {i.start, i.start + 𝑟𝑏}
28: end if
29: end if
30: 𝑟𝑏 ← 0
31: CutIntervalEnd ← ¬CutIntervalEnd
32: end if
33: end if
34: end for
35: end procedure

49

(a) +10% capacity, homogeneous

50 92 162 285 502 886
1562

2758
4873

8619
15253

27002

storage systems

-1.0

0.0

1.0

2.0

3.0

4.0

loo
ku

p t
im

e (
μs

)
(b) +10% capacity, heterogeneous

50 92 162 285 502 886
1562

2758
4873

8619
15253

27002

storage systems

-1.0

0.0

1.0

2.0

3.0

4.0

(c) +50% capacity, homogeneous

50 113 255 572
1285

2888
6493

14603
32850

storage systems

-1.0

0.0

1.0

2.0

3.0

loo
ku

p t
im

e (
μs

)

(d) +50% capacity, heterogeneous

50 113 255 572
1285

2888
6493

14603
32850

storage systems

-1.0

0.0

1.0

2.0

3.0

(e) +80% capacity, homogeneous

50 162
526

1702
5512

17855
57845

storage systems

-1.0

0.0

1.0

2.0

3.0

loo
ku

p t
im

e (
μs

)

(f) +80% capacity, heterogeneous

50 162
526

1702
5512

17855
57845

storage systems

-1.0

0.0

1.0

2.0

3.0

Figure 2.5: Lookup time after several reorganizations. Each step adds asmany homogeneous or heterogeneous devices
as necessary to reach the target capacity increase (i.e. 10%, 50%, and 80%). In the case of heterogeneous devices, the
capacity of each device is increased by 1.5x. Each experiment distributes 106 data blocks and measures the time spent
by Random Slicing for each individual lookup. Each measure includes 95% confidence intervals.

50

2.7 Comparative Evaluation

Thefollowing section evaluates the impact of the different distribution strategies on
the data distribution quality, the memory consumption of the different strategies,
their adaptivity and their performance.

2.7.1 Experimental Setup

We assume that each storage system in the homogeneous setting can hold up to
𝑘 ⋅ 500,000 data items, where 𝑘 is the number of copies of each block. Assuming a
hard disk capacity of 1 TB and putting 16 hard disks in each shelf means that each
data item has a size of 2MB. The number of placed data items is 𝑘 ⋅ 250,000-times
the number of storage systems. In all cases, we compare the fairness, the memory
consumption, as well as the performance of the different strategies for a different
number of storage systems.

In the heterogeneous setting we begin with 128 storage systems and we add 128
new systems in each step, each with 1.5-times the size of the previously added sys-
tem. We are placing again half the number of items, which saturates the capacity
of all disks. For each of the homogeneous and heterogeneous tests, we also count
the number of data items, which have to be moved in case we are adding disks,
so that the data distribution delivers the correct location for a data item after the
redistribution phase. The number of moved items has to be as small as possible to
support dynamic environments, as the systems typically tend to a slower perfor-
mance during the reconfiguration process.

We will show that the dynamic behavior can be different if the order of the 𝑘
copies is important, e.g., in the case of RAID parities, Reed-Solomon, or EvenOdd
erasure codes, or if this order can be neglected in the case of pure replication strat-
egies [108, 17, 33].

All graphs presented in the section contain four bars for each number of stor-
age systems, which represent the experimental results for one, two, four, and eight
copies (please see Figure 2.652 for the color codes in the legend). Thewhite boxes in
each bar represent the range of results, i.e., between the minimum and the maxi-
mum usage. Also, in some cases the white boxes include errorbars to depict the
standard deviation measured for the experiments. Small or non-existing white
boxes indicate a very small deviation between the different experiments.

51

1 copy
2 copies
4 copies
8 copies

min/max
usage

(a) Consistent Hashing

8 16 32 64 128 256 512
1024

2048
4096

8192

storage systems

0.0
0.2
0.4
0.6
0.8
1.0
1.2

no
rm

ali
ze

d u
sa

ge

(b) Share

8 16 32 64 128 256 512
1024

2048
4096

8192

storage systems

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

(c) Redundant Share in O(k)

8 16 32 64 128 256 512
1024

2048
4096

8192

storage systems

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

no
rm

ali
ze

d u
sa

ge

(d) Redundant Share

8 16 32 64 128 256 512
1024

2048
4096

8192

storage systems

0.0
0.2
0.4
0.6
0.8
1.0
1.2

(e) RUSHP

8 16 32 64 128 256 512
1024

2048
4096

8192

storage systems

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

no
rm

ali
ze

d u
sa

ge

(f) RUSHR

8 16 32 64 128 256 512
1024

2048
4096

8192

storage systems

0.0
0.2
0.4
0.6
0.8
1.0
1.2

(g) RUSHT

8 16 32 64 128 256 512
1024

2048
4096

8192

storage systems

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

no
rm

ali
ze

d u
sa

ge

(h) Random Slicing

8 16 32 64 128 256 512
1024

2048
4096

8192

storage systems

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Figure 2.6: Scalability of the fairness achieved by each strategy in homogeneous settings. Each storage system has a
capacity of k · 500,000 data items and the experiment allocates k · n · 250,000 data items, where k is the number of
copies used in the experiment and n the number of storage systems. A normalized usage of 1.0 represents an ideally
balanced data distribution.

52

2.7.2 Fairness

The first simulations evaluate the fairness of the strategies for different sets of ho-
mogeneous disks, beginning at 8 storage systems and going up to 8192 storage
systems (see Figure 2.6↶). Notice that there are some missing results for Consis-
tent Hashing, Share and Redundant Share. These correspond to configurations that
took too much time to evaluate or used more resources than available.

Consistent Hashing was developed to evenly distribute one copy over a set of
homogeneous disks of the same size. Figure 2.6a↶ shows that the strategy is able
to fulfill these demands for the test case, in which all disks have the same size.
The difference between the maximum and the average usage is always below 7%
and the difference between the minimum and average usage is always below 6%.
The deviation is nearly independent from the number of copies as well as from
the number of disks in the system, and therefore the strategy can be reasonably
well applied. We have thrown 400 ⋅ log 𝑛 points for each storage system (please see
Section 2.3.134 for the meaning of points in Consistent Hashing).

The fairness of Consistent Hashing can be improved by throwing more points for
each storage system (see Figure 2.754 for an evaluation with 64 storage systems).
The evaluation shows that initial quality improvements can be achieved with very
few additional points, while further small improvements require a high number of
extra points per storage system. Note that, 400 ⋅ log 𝑛 points represent 2400 points
for 𝑛 = 64 storage systems, which means that the strategy already needs a high
number of points, and further quality improvements will become very costly.

Share was developed to overcome the drawbacks of Consistent Hashing for het-
erogeneous disks. Its main idea is to (randomly) partition the disks into intervals
and assign a set of disks to each interval. Inside an interval, each disk is treated
as homogeneous and strategies like Consistent Hashing can be applied to finally
distribute the data items. This basic idea implies that Share has to compute and
keep the data structures for each interval. Note that 1000 disks lead to a maximum
of 2000 intervals, implying 2000-times the memory consumption of the applied
uniform strategy. On the other hand, the number of disks inside each interval is
smaller than 𝑛, which is the number of disks in the environment. The analysis of
Share shows that on average 𝑐 ⋅ log 𝑛 disks participate in each interval (see Sec-
tion 2.3.234; without loss of generality we will neglect the additional 1

𝛿
to keep the

argumentation simple). Applying Consistent Hashing as the homogeneous strategy
thus leads to a memory consumption which is in 𝑂(𝑛⋅ log2 𝑛⋅ log2(log 𝑛)), only fac-
tor of log2(log 𝑛) bigger than the memory usage of the original Consistent Hashing.

53

100 200 300 400 500 600 700 800 900
1000

1100
1200

1300
1400

1500

points for each storage system

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

no
rm

ali
ze

d u
sa

ge

1 copy 2 copies 4 copies 8 copies min/max usage

Figure 2.7: Evaluation of the impact
of using different number of points in
the fairness offered by the strategy

Consistent Hashing, for 64
homogeneous storage systems.

Notice that a normalized usage of 1.0
represents an ideally balanced

data distribution.

Unfortunately, it is not possible to neglect the constants in a real implemen-
tation. Figure 2.6b52 shows the fairness of Share for a stretch factor of 3 ⋅ log 𝑛,
which shows huge deviations even for homogeneous disks. A deeper analysis of
the Chernoff-bounds used by the authors [24], shows that it would have been nec-
essary to use a stretch factor of 2146 to keep fairness in the same order as that
achieved with Consistent Hashing, which is infeasible in scale-out environments.

Simulations including different stretch factors for 64 storage systems for Share
are shown in Figure 2.8↷, where the x-axis depicts the stretch factor divided by ln 𝑛.
The fairness can be significantly improved by increasing the stretch factor. Unfor-
tunately, a stretch factor of 32 already requires in our simulation environmentmore
than 50GB main memory for 64 storage systems, making Share impractical in big-
ger environments. For this reason, in the following we will skip this strategy in our
evaluations.

On the other hand,Redundant Share uses precomputed intervals for each disk
and therefore does not rely too much on randomization properties. The inter-
vals exactly represent the share of each disk on the total disk capacity, leading to a
very even distribution of the data items (see Figure 2.6d52). The drawback of this
version of Redundant Share is that it has linear runtime, possibly leading to high
delays in case of huge environments. Brinkmann et al. have presented enhance-
ments, which enable Redundant Share to have a runtime in 𝑂(𝑘), where 𝑘 is the
number of copies [20]. Redundant Share in 𝑂(𝑘) requires a huge number of Share
instances as sub-routines, making it impractical to support a huge number of disks
and offer good fairness at the same time. Figure 2.6c52 shows that it is even difficult
to support multiple copies for more than 64 disks, even if the required fairness is
low, as 64GB main memory have not been sufficient to calculate these distribu-
tions. Therefore, we will also neglect Redundant Share with runtime in 𝑂(𝑘) in the
following measurements.

54

Figure 2.8: Evaluation of the fairness offered
by the Share strategy using several stretch
factors for 64 homogeneous storage systems.
The x-axis depicts the stretch factor
normalized by ln(n). Note that a normalized
usage of 1.0 represents an ideally balanced
data distribution. 1 2 4 8 16 32

stretch factor
0.0

0.5

1.0

1.5

2.0

no
rm

ali
ze

d u
sa

ge

1 copy 2 copies 4 copies 8 copies min/max

RUSHP, RUSHT and RUSHR distribute objects almost ideally according to the ap-
propriate weights, though the distribution begins to degrade as the number of disks
grows (see Figures 2.6e to 2.6g52). Interestingly, however, this deviation from the
ideal load decreases when the number of copies increases, which might imply that
the hash function is not as uniform as expected and needsmore samples to provide
an even distribution.

In Random Slicing, precomputed partitions are used to represent a disk’s share
of the total system capacity, in a similar way to Redundant Share’s use of intervals.
This property, in addition to the hash function used, enforces an almost optimal
distribution of the data items, as shown in Figure 2.6h52.

The fairness of the different strategies for a set of heterogeneous storage systems
is depicted in Figure 2.956. As described in Section 2.7.151, we start with 128 storage
systems and add every time 128 additional systems having 1.5-times the capacity
of the previously added. Once again, missing results in Redundant Share and RUSH*
are due to configurations too expensive in terms of the computing power available.

The fairness of Consistent Hashing in its original version is obviously very poor
(see Figure 2.9a56). Assigning the same number of points in the [0, 1)-interval for
each storage system, independent of its size, leads to huge variations. Simply adapt-
ing the number of points based on the capacities leads to much better deviations
(see Figure 2.9b56). The difference between the maximum, minimum and the av-
erage usage is around 10% and increases slightly with the number of copies. In the
following, wewill always use ConsistentHashingwith an adaptive number of copies,
depending on the capacities of the storage systems.

Both Redundant Share and Random Slicing show again a nearly perfect distri-
bution of data items over the storage systems, due to their precise modeling of
disk capacities and the uniformity of the distribution functions (see Figures 2.9c
and 2.9g56, respectively).

55

1 copy
2 copies
4 copies
8 copies

min/max
usage

(a) Consistent Hashing (fixed)

128 256 384 512 640 768 896
1024

1152
1280

storage systems

0
2
4
6
8

10
12

no
rm

ali
ze

d u
sa

ge

(b) Consistent Hashing (adaptive)

128 256 384 512 640 768 896
1024

1152
1280

storage systems

0.0
0.2
0.4
0.6
0.8
1.0
1.2

(c) Redundant Share

128 256 384 512 640 768 896
1024

1152
1280

storage systems

0.0
0.2
0.4
0.6
0.8
1.0
1.2

no
rm

ali
ze

d u
sa

ge

(d) RUSHP

128 256 384 512 640 768 896
1024

1152
1280

storage systems

0.0
0.2
0.4
0.6
0.8
1.0
1.2

(e) RUSHR

128 256 384 512 640 768 896
1024

1152
1280

storage systems

0.0
0.2
0.4
0.6
0.8
1.0
1.2

no
rm

ali
ze

d u
sa

ge

(f) RUSHT

128 256 384 512 640 768 896
1024

1152
1280

storage systems

0.0
0.2
0.4
0.6
0.8
1.0
1.2

(g) Random Slicing

128 256 384 512 640 768 896
1024

1152
1280

storage systems

0.0
0.2
0.4
0.6
0.8
1.0
1.2

no
rm

ali
ze

d u
sa

ge

Figure 2.9: Scalability of the fairness achieved by each strategy in heterogeneous settings. Storage systems in the
first configuration have a capacity of k · 500,000 data items, where k is the number of copies used in the experiment.
Subsequent configurations increase this capacity by 1.5x and each experiment allocates 1/2 · TotalCapacity data items.
A normalized usage of 1.0 represents an ideally balanced data distribution.

56

The fairness provided by RUSHP degrades steadily after the fourth reconfigura-
tion. In contrast, RUSHT delivers a perfect data distribution, even when it was un-
able to do so in a homogeneous setting (see Figures 2.9d and 2.9f↶, respectively).
Figure 2.9e↶, however, shows that RUSHR does a good distribution job for 1, 2, and
4 copies but degradeswith 8 copies showing important deviations from the optimal
distribution.

2.7.3 Memory Consumption and Compute Time

The memory consumption as well as the performance of the different data distri-
bution strategies have a strong impact on the applicability of the different strate-
gies. We assume that scale-out storage systems mostly occur in combination with
huge cluster environments, where the different cores of a cluster node can share
the necessary data structures for storage management. Assuming memory capac-
ities of 192GB per node in 2015 [6], we do not want to waste more than 10% (or
approximately 20GB) of this capacity for themetadata information of the underly-
ing storage system. Furthermore, we assume access latencies of 5ms for magnetic
storage systems and access latencies of 50 µs for solid state disks. These access la-
tencies set an upper limit on the time allowed for calculating the translation from
a virtual address to a physical storage system.

As described in Section 2.7.151, all experiments begin with 128 storage systems
and add 128 additional systems in every upgrade operation, each with 1.5-times
the capacity of the previously added systems. During each test, we measure the
memory used in each configuration as well as the performance of each request.

The bars in Figure 2.1058 represent the average allocatedmemory, and the white
bars on top the peak consumption of virtual memory over the different tests. The
points in that figure represent the average time required for a single request. These
latencies include confidence intervals.

The memory consumption of Consistent Hashing only depends on the number
and kind of disks in the system, while the number of copies 𝑘 has no influence on
it (see Figures 2.10a and 2.10b58). In Figure 2.10b58 we are throwing 400 ⋅ log 𝑛
points for the smallest disk, and the number of points for larger disks grows pro-
portionally to their capacity, which is necessary to keep fairness in heterogeneous
environments. Using 1280 heterogeneous storage systems requires a memory ca-
pacity of nearly 9GB, which is still below our limit of 20GB.

The time to calculate the location of a data item only depends on the number
of copies, as Consistent Hashing is implemented as a 𝑂(1)-strategy for a single copy.

57

1 copy
2 copies
4 copies
8 copies
used time

(a) Consistent Hashing (fixed)

128 256 384 512 640 768 896
1024

1152
1280

storage systems

0
2
4
6
8

10
m

em
or

y (
M

B)
×102

0
10
20
30
40
50
60
70

(b) Consistent Hashing (adaptive)

128 256 384 512 640 768 896
1024

1152
1280

storage systems

0
2
4
6
8

10
×103

0
20
40
60
80
100
120

tim
e (

μs
)

(c) Redundant Share

128 256 384 512 640 768 896
1024

1152
1280

storage systems

0
2
4
6
8

10

m
em

or
y (

M
B)

0
5
10
15
20
25

×102
(d) RUSHP

128 256 384 512 640 768 896
1024

1152
1280

storage systems

0
2
4
6
8

10

0
100
200
300
400
500
600

tim
e (

μs
)

(e) RUSHR

128 256 384 512 640 768 896
1024

1152
1280

storage systems

0
2
4
6
8

10

m
em

or
y (

M
B)

0
10
20
30
40
50
60

(f) RUSHT

128 256 384 512 640 768 896
1024

1152
1280

storage systems

0
2
4
6
8

10

0
100
200
300
400
500

tim
e (

μs
)

(g) Random Slicing

128 256 384 512 640 768 896
1024

1152
1280

storage systems

0
2
4
6
8

10

m
em

or
y (

M
B)

0
2
4
6
8
10
12
14
16

tim
e (

μs
)

Figure 2.10: Scalability of the memory usage (left-hand y-axis) and the performance (right-hand y-axis) achieved by
each strategy in a heterogeneous setting. The bars represent the average allocatedmemory for each configuration. The
points represent the average response time for a single request (95% confidence interval).

58

1 copy
2 copies
4 copies
8 copies
order changed
order kept

(a) Consistent Hashing (fixed)

1 2 3 5 7 11 13
added storage systems

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

m
ov

ed
 da

ta

(b) Consistent Hashing (adaptive)

1 2 3 5 7 11 13
added storage systems

0
2
4
6
8

10
12
14
16

(c) Redundant Share

1 2 3 5 7 11 13
added storage systems

0.0
1.0
2.0
3.0
4.0
5.0

m
ov

ed
 da

ta

(d) RUSHP

1 2 3 5 7 11 13
added storage systems

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

(e) RUSHR

1 2 3 5 7 11 13
added storage systems

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

m
ov

ed
 da

ta

(f) RUSHT

1 2 3 5 7 11 13
added storage systems

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

(g) Random Slicing

1 2 3 5 7 11 13
added storage systems

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

m
ov

ed
 da

ta

Figure 2.11: Scalability of the adaptivity achieved by each strategy in heterogeneous settings. All storage systems
begin with k · 500,000 data items and subsequent configurations increase this capacity by 1.5x, where k is the number
of copies used in the experiment. A moved data value of 1.0 represents the minimum, ideal data movement.

59

The number of copies has only an influence for a small number of storage systems,
i.e., it needs significantly more time to place 8 copies if it only uses 8 storage sys-
tems. The reason for this is how we chose to implement redundancy: we generate
new random values into the [0, 1) ring until we find 𝑘 different disks, which can
take quite long in case of hash collisions. Therefore, this proves that it is possible
to use Consistent Hashing in scale-out environments based on solid state drives, as
the average latency for the calculation of a single data item stays below 10 µs.

Redundant Share has very good properties concerning memory usage, but the
computation time grows linearly with the number of storage systems. Even the
calculation of a single item for 128 storage systems takes 145 µs. Using 8 copies in-
creases the average access time for all copies to 258 µs, which is 50 µs for each copy,
making it suitable for mid-sized environments that are based on SSDs. Increas-
ing the environment to 1280 storage systems raises the calculation time almost
linearly for a single copy to 669 µs, which is reasonable in magnetic disk based en-
vironments.

All RUSH variants show good results both in memory consumption and in com-
putation time (see Figures 2.10d to 2.10f58), being RUSHR the strategy with the low-
est computation time. The reducedmemory consumption is explained because the
strategies do not need a great deal of in-memory structures in order to maintain
the information about clusters and storage nodes. Lookup times depend only on
the number of clusters in the system, which can be kept comparatively small for
large systems.

Random Slicing shows very good behavior concerning memory consumption
and computation time, as both only depend on the number of intervals 𝐼 currently
managed by the algorithm (see Figure 2.10g58). In order to compute the position
of a data item 𝑥, the strategy only needs to locate the interval containing 𝑓𝐵(𝑥),
which can be done in 𝑂(log 𝐼) using an appropriate tree structure. Furthermore,
the algorithm strives to reduce the number of intervals created in each step in order
to minimize memory consumption as much as possible. In practice, this yields
an average access time of 5 µs for a single data item and 13 µs for 8 copies, while
keeping a memory footprint similar to that of Redundant Share.

2.7.4 Adaptivity

Adaptivity to changing environments is an important requirement for data dis-
tribution strategies and one of the main drawbacks of standard RAID approaches.
Adding a single disk to a RAID system typically either requires the replacement of

60

all data items in the system or splitting the RAID environment into multiple inde-
pendent domains.

The theory behind randomized data distribution strategies claims that these
strategies are able to compete with a best possible strategy in an adaptive setting.
This means that the number of data movements to keep the properties of the strat-
egy after a storage system has been inserted or deleted can be bounded against
the best possible strategy. We assume in the following that a best possible algo-
rithm just moves as much data from old disks to new disks (and respectively from
removed disks to remaining disks), as necessary to have the same usage on all stor-
age systems. All bars in Figure 2.1159 have been normalized to this definition of an
optimal algorithm.

Furthermore, we distinguish between placementswhere the ordering of the data
items is relevant and where it is not. The first case occurs, e.g., for standard parity
codes, where each data item has a different meaning (labeled “order kept” in Fig-
ure 2.1159). If a client accesses the third block of a parity set, then it is necessary to
receive exactly that block. In contrast, the second case occurs for RAID-1 sets, where
each copy has the same content and receiving any of these blocks is sufficient (la-
beled “order changed”). We will see in the following that not having to keep the
order strongly simplifies the rebalancing process.

We start our tests in all cases with 128 storage systems and increase the number
of storage systems by 1, 2, 3, 5, 7, 11, or 13 storage systems. Thenew storage systems
have 1.5-times the capacity of the devices in the previous configuration.

The original Consistent Hashing paper shows that the number of replacements
is optimal for Consistent Hashing by showing that, in a homogeneous setting, data
is only moved from old disks to new disks in case of the insertion of a storage sys-
tem or from a removed disk to old disks in case of a deletion [70]. Figure 2.11b59
shows a very different behavior, the number of datamovements is sometimesmore
than 20-times higher than necessary. The reason is that we are placing 400⋅⌈log 𝑛⌉
points for each storage system and ⌈log 𝑛⌉ increases from 7 to 8 when adding stor-
age system number 129. This leads to a large number of data movements between
already existing storage systems. Furthermore, the competitiveness strongly de-
pends on whether the ordering of the different copies has to be maintained or can
be safely ignored.

Figure 2.11a59 shows the adaptivity of Consistent Hashing in case that the num-
ber of points is fixed for each individual storage system and only depends on its
own capacity. We use 2400 points for the smallest storage system and use a pro-
portionally higher number of points for bigger storage systems. In this case the

61

128 256 384 512 640 768 896
1024

1152
1280

storage systems

0.0
0.2
0.4
0.6
0.8
1.0
1.2

no
rm

ali
ze

d u
sa

ge

1 copy 2 copies 4 copies 8 copies min/max

Figure 2.12: Evaluation of the fairness
achieved by Consistent Hashing when
using a fixed number of points for each

storage system in a heterogeneous
environment. The first 128 storage

systems begin with 2400 points, which
increase proportionally with the

capacity of the newly added devices.

insertion of new storage systems only leads to data movements from old systems
to new ones (and not between old ones) and therefore the adaptivity is very good
in all cases. Figure 2.12↑ shows that the fairness in this case is still acceptable even
in a heterogeneous setting.

The adaptivity of Redundant Share for adding new storage systems is nearly op-
timal, which is in line with the analysis previously presented [21]. Nevertheless,
Redundant Share is only able to achieve an optimal competitiveness if a new stor-
age system is inserted that is at least as big as the previous ones. Otherwise it can
happen that Redundant Share is only log 𝑛-competitive (see Figure 2.11c59).

Figure 2.1159 shows that RUSH variants adapt nearly optimally when storage
nodes are added. Note, however, that we did not evaluate the effect on replica
ordering because the current implementations do not support replicas as distinct
entities. Instead, RUSH variants distribute all replicas within one cluster. Note also
that the missing columns in the results correspond to configurations not accepted
in the current implementation.

Figure 2.11g59 shows that the adaptivity of Random Slicing is very good in all
cases. This is explained because intervals for new storage systems are always created
from fragments of old intervals, thus forcing data items to migrate only to new
storage systems.

2.7.5 Summary

We conclude this section with a brief qualitative overview of the results collected.
Table 2.2↷ summarizes our observations on the evaluated strategies, for all the
properties examined. Where available, we provide either average or worst case val-
ues of every parameter examined, in order to offer a general view of each strategy’s
strong points and weaknesses.

62

Table 2.2: Properties of the examined strategies in heterogeneous architectures

Strategy Fairness Memory usage Lookup time Adaptivity

Consistent Hashing (fixed) Poor
(δ↑with n)

High
(μ≈ 800 MB)

Moderate
(τ≈ 50 μs)

Good
(α≈ 7%)

Consistent Hashing (adapt.) Moderate
(δ≈ 10%)

High
(μ≈ 8 GB)

High
(τ≈ 98 μs)

Poor
(α≈ 1172%)

Redundant Share Good
(δ≈ 0.36%)

Low
(μ≈ 5 MB)

Very High
(τ≈ 1800 μs)

Good
(α≈ 0.08%)

RUSHP Poor
(δ↑with n)

Low
(μ≈ 9 MB)

Very High
(τ≈ 400 μs)

Very Good1

(α≈ 0.001%)
RUSHR Good, if k<8

(δ≈ 0.22%)
Poor, if k=8
(δ↑with n)

Low
(μ≈ 9 MB)

Low
(τ≈ 14 μs)

Very Good1

(α≈ 0.001%)

RUSHT Good
(δ≈ 0.36%)

Low
(μ≈ 9 MB)

Very High
(τ≈ 300 μs)

Very Good1

(α≈ 0.05%)
Random Slicing Good

(δ≈ 0.4%)
Low
(μ≈ 4.5 MB)

Low
(τ≈ 14 μs)

Good
(α≈ 1.63%)

Definitions used: n, number of devices; k, number of copies; δ, average deviation from ideal load; μ, worst case memory consump-
tion; τ, worst case lookup time; α, worst case deviation from ideal number of movements.
1The implementation evaluated does not support replicas as distinct entities.

2.8 Conclusions

In this chapter of the thesis, we have shown that many randomized data distri-
bution strategies are unable to scale to Exascale environments, since either their
memory consumption, their load deviation, or their processing overhead is too
high. Nevertheless, they are able to easily adapt to changing environments, a prop-
erty which cannot be delivered by table or rule-based approaches.

The proposed Random Slicing strategy combines the advantages of all these ap-
proaches by keeping a small table and thereby reducing the amount of necessary
random experiments. The presented evaluation and comparison with well-known
strategies shows that Random Slicing is able to deliver the best fairness in all the
cases studied and to scale up to Exascale data centers.

63

Chapter3
PRNGs in Data Distribution

“Random numbers should not be generated
with a method chosen at random.”

— Donald E. Knuth

“Any one who considers arithmetical methods of producing
random digits is, of course, in a state of sin.”

— John von Neumann

3.1 Motivation

Chapter 229 shows that one of the most efficient and effective ways to achieve a
balanced data load is using hashing techniques to distribute data. This relies on the
intrinsic connection that exists between randomness and evenness of distribution:
since a random number sequence is defined as a series of numbers that are drawn
froma set of equally-probable values, andwhere each draw is statistically independent
from the others, it can be safely considered that such a sequence follows a uniform
distribution [11, 114, 56].

In practice, however, real randomness cannot be (easily) achieved using a com-
puter, as they have the odd inclination of blindly following their programmed in-
structions, which makes them completely predictable. For this reason, two main
approaches are used in order to generate randomnumbers for computer programs:
Pseudo-Random Number Generators (PRNGs) and True Random Number Gen-
erators (TRNGs).

65

http://en.wikipedia.org/wiki/Donald_Knuth
http://en.wikipedia.org/wiki/John_von_Neumann

PRNGs are algorithms that use mathematical formulae or precomputed tables
to produce a sequence of numbers that appears random. PRNGs typically are effi-
cient (they can producemany numbers in a small amount of time) and deterministic
(a sequence can be reproduced if the starting point is known) which makes them
extremely useful for simulation and modeling applications. Usually, they are also
periodic, i.e., the sequence eventually repeats itself. Although periodicity is unde-
sirable in a truly random sequence, modern PRNGs have a really long period that
can be ignored for most purposes.

TRNGs, on the other hand, normally extract randomness from physical phe-
nomena like radioactive decay [142], atmospheric noise [56] or even snapshots
from lava lamps [90], and feed it to a computer. Notably, this produces a true, non-
periodic and non-deterministic, random sequence as long as the source is carefully
selected. Compared to PRNGs, however, TRNGs generally need a considerably
longer time to generate numbers, which makes them inefficient for applications
with stringent performance constraints.

Therefore, even though using true randomness would be desirable in a large-
scale storage system, the performance constraints associated to TRNGs force us
to discard them and rely on PRNGs in order to construct the required hashing
functions. For this reason, it is very important to choose an appropriate PRNG
in order to design an effective hashing function. Specifically, the PRNG chosen to
implement the hashing function ℎ has two main requirements:

1. The computation time of ℎ(𝑥) for each data value 𝑥 should be as small as
possible. Since the PRNG is an integral part of ℎ its efficiency is of the utmost
importance.

2. Successive calls to ℎ(𝑥𝑖) should distribute input data as evenly as possible,
for each data value 𝑥𝑖. This means that the sequence of numbers produced
by the PRNG must be as uniformly distributed as possible.

The main contribution of this chapter is to evaluate how PRNGs impact data
distribution in randomized strategies. Most specifically, we analyze the influence
(or lack thereof) of eighteen different pseudo-random number generators in all
the strategies studied in Chapter 229. We evaluate each PRNG individually using
well-known randomness tests, and we also measure the quality of distribution and
the performance it offers to each strategy. We believe that the results of this anal-
ysis may help other researchers choose an appropriate PRNG when designing and
implementing new randomized data distribution strategies.

66

3.2 Introduction to (Pseudo-)Randomness

Formally, a PRNG is defined as a deterministic algorithm that generates a sequence
of numbers 𝑋𝑛 = {𝑢0, 𝑢1, … , 𝑢𝑛} that approximates the properties of truly random
numbers. According to NIST,1 a random bit sequence can be interpreted as the

1National Institute
of Standards and
Technology,
U.S. Department of
Commerce: federal
agency that works
with industry to
develop and apply
technology, measure-
ments, and standards.

result of the flips of an unbiased “fair” coin with sides that are labeled “0” and “1”, with
each flip having a probability of exactly 1⁄2 of producing a “0” or “1”. Furthermore, the
flips are independent of each other: the result of any previous coin flip does not affect
future coin flips [122].

Obviously, numbers generated deterministically cannot be truly random, but it
is usually sufficient that finite segments of the sequence behave in a manner indis-
tinguishable from an actual random sequence. Nevertheless, since 𝑋𝑛 is usually
constructed based on a finite state (or “seed”) it will eventually be periodic, i.e.,
there exists a positive integer 𝑝 such that 𝑢𝑛+𝑝 = 𝑢𝑛 for a sufficiently large 𝑛. That
minimal 𝑝 is called the generator’s period and, as we mentioned, it is important
that it is much larger than the number of random numbers that will ever be used,
to avoid the presence of patterns in 𝑋𝑛.

Depending on the mathematical approach used to generate the 𝑋𝑛 sequence,
pseudo-random number generators can be roughly classified in one of the follow-
ing generic classes:

� Linear congruential generators (LCGs) are one of the oldest and best known
PRNG algorithms [77]. They are very popular because they tend to be very
efficient and easy to implement, and are included in the runtime libraries
of various compilers. In these generators, the sequence of pseudo-random
integers 𝑋𝑛 is defined by the following recurrence:

𝑋𝑛+1 ≡ (𝑎 ⋅ 𝑋𝑛 + 𝑐) mod 𝑚, (3.1)

where 𝑋0 is the seed or start value, 𝑚 > 0 is the modulus, 𝑎 is the multiplier
(0 < 𝑎 < 𝑚) and 𝑐 is an additive constant or increment (0 ≤ 𝑐 < 𝑚).

The main advantages of LCGs are that they are usually very fast and do not
require much data to be stored in memory, but they are extremely sensitive
to the values chosen for 𝑐, 𝑚 and 𝑎 [19]. In particular, it has been shown that
poor choices of 𝑚, 𝑎 and 𝑐 can lead to large correlations between the values
generated [113] (see Figure 3.168).

67

0.0
0.2

0.4
0.6

0.8
1.0

0.0
0.2

0.4
0.6

0.8
1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.1: Spectral test for the RANDU generator: 3D scatter plot of the first 100,000 numbers generated by the lin-
ear congruential PRNG RANDU [66] (m = 231 ; a = 65,539 ; c = 0), normalized to the restricted interval [0.0, 1.0] and
plotted as (x, y, z) successive triples. Notice the evident correlations between the numbers generated, which fall in 15
two-dimensional planes [55, 84].

Nevertheless, modern LCGs are capable of producing pseudo-randomnum-
bers of decent quality and, provided that 𝑐 is nonzero, can have a maximal
period if and only if: (1) 𝑐 and 𝑚 are relatively prime;2 (2) 𝑎 − 1 is divisible

2𝑔𝑐𝑑(𝑐, 𝑚) = 1.

by all prime factors of 𝑚; and (3) 𝑎 − 1 is a multiple of 4 [72, 129].

� Multiplicative congruential generators (MCGs) are a variant of LCGs that op-
erate in a multiplicative group of integers modulo 𝑚. Hence, the sequence
of pseudo-random integers 𝑋𝑛 can be generally defined as:

𝑋𝑛+1 ≡ 𝑎 ⋅ 𝑋𝑛 mod 𝑚 (3.2)

where 𝑚 is usually chosen to be either a prime number or a power of a prime
number. The multiplier 𝑎 is chosen to be an element of high multiplicative
order3 modulo 𝑚 and the seed is relatively prime to 𝑚. They exhibit similar

3The multiplicative
order of 𝑎 modulo

𝑚 is the smallest
positive integer 𝑘

with 𝑎𝑘 ≡ 1 mod 𝑛.

behavior and properties as standard LCGs.

� Inversive congruential generators (ICGs) are a type of non-linear congruential
PRNG algorithms that use the modular multiplicative inverse to generate

68

the sequence of values. The general formula for an ICG is the following:

{
𝑋𝑛+1 ≡ (𝑎 ⋅ 𝑋−1

𝑛 + 𝑐) mod 𝑚 if 𝑋𝑛 ≠ 0
𝑋𝑛+1 = 𝑐 if 𝑋𝑛 = 0 (3.3)

Similarly to LCGs and MCGs, 𝑚 is chosen to be a prime number for best
results. Sequences of integers produced by ICGs have the advantage of being
free of undesirable statistical deviations, and an algorithm is known [32] to
maximize period length.

� Lagged Fibonacci generators (LFGs) are an improvement over standard LCGs
that are based on the following generalization of the Fibonacci sequence:

𝑋𝑛+1 ≡ 𝑋𝑛−𝑟𝜃𝑋𝑛−𝑠 mod 𝑚, (3.4)

for fixed “lags” 𝑟 and 𝑠 (0 < 𝑟 < 𝑠) and where 𝜃 is some binary operator
(addition, subtraction, multiplication or the bitwise arithmetic exclusive-or
operator). For these generators, 𝑚 is usually a power of 2. LFGs are very
sensitive to initial conditions (e.g., it is required that at least one of the first
𝑠 values chosen to initialize the generator be odd) and may show statistical
defects in the output sequence if inappropriate parameters are used [155].
Note that when the recurrence used is of the form:

𝑋𝑛+1 ≡ (𝑋𝑛−𝑟 − 𝑋𝑛−𝑠 − 𝑐𝑛−1) mod 𝑚,

𝑐𝑛 = {
1 if 𝑥𝑛−𝑠 − 𝑥𝑛−𝑟 − 𝑐𝑖−𝑞 < 0
0 if 𝑥𝑛−𝑠 − 𝑥𝑛−𝑟 − 𝑐𝑖−𝑞 ≥ 0

(3.5)

the LFGs are typically referred to as Subtract with carry generators (SWCGs)
in literature [85].

� Generalized feedback shift register (GFSR) generators are defined by a map
𝑓 ∶ 𝐹 𝑑

𝑞 → 𝐹 𝑑
𝑞 of the form:

𝑓(𝑋0, … , 𝑋𝑛−1) = (𝑋1, 𝑋2, … , 𝑋𝑛),
𝑥𝑛 = 𝐶(𝑋0, … , 𝑋𝑛−1)

(3.6)

where 𝐶 ∶ 𝐹 𝑑
𝑞 → 𝐹𝑞 is a given linear function. The general idea is to use

a shift register4 to generate 𝑋𝑛 from two or more previous numbers (called

4An electronic device
that shifts bits though
a one-dimensional
array.

69

taps). Since the operation on previous values is deterministic, the next value
of the sequence is completely determined by its current (or previous) state.
Likewise, because the register has a finite number of possible states, it must
eventually enter a repeating cycle. Depending on the intended application
however, a well-chosen feedback function can produce a sequence of bits
which appears random and which has a very long cycle.

Note that when 𝐶 is of the form:

𝐶(𝑋0, … , 𝑋𝑛−1) = 𝑎0 ⋅ 𝑋0 + … + 𝑎𝑛−1 ⋅ 𝑋𝑛−1 (3.7)

for some given constants 𝑎𝑖 ∈ 𝐹𝑞, the map is called a linear feedback shift
register (LFSR). The most commonly used linear function of single bits is the
binary exclusive-or operation. The well-known Mersenne twister genera-
tor [86] is an example of a twisted GFSR.

� Cryptographic hash functions. A cryptographic hash function 𝐻 is an algo-
rithm that, given an arbitrary block of data, returns a cryptographic hash
value ℎ, such that any change to the data modifies ℎ. That is, for any two
distinct inputs 𝐴 and 𝐵, 𝐻(𝐴) and 𝐻(𝐵) should be uncorrelated.

Though not a PRNG per se, the output of a cryptographic function usually
follows (by design) a uniform distribution over its period, which makes it
theoretically suitable to generate sequence of pseudo-random numbers, al-
beit with more computation than classical PRNGs [82, 139].

In the following sections, we assess several PRNGs from each of these types in
an attempt to find which are more likely to produce good results (both quality and
performance-wise) when used for randomized data distribution.

3.3 Methodology

In order to evaluate the influence of PRNGs in randomized data distribution, we
use the same simulation environment described in Section 2.543 in the previous
chapter. This time however, we reevaluate each data distribution strategy, discard-
ing its original PRNG implementation and substituting it with several PRNGs. By
measuring the distribution quality and the performance offered by each strategy

70

Table 3.1: List of evaluated PRNGs

PRNG Subclass

minstd_rand LCG
minstd_rand0 LCG
ecuyer1988 LCG + LCG (additive combine)
kreutzer1986 LCG improved (shuffle)
hellekalek1995 ICG
rand48 MCG
Unix_rand MCG
lagged_fibonacci607 LFG
ranlux3 LFG SWC (+ discard block)
ranlux64_3 LFG SWC (+ discard block)
ranlux3_01 LFG SWC (+ discard block)
ranlux64_3_01 LFG SWC (+ discard block)
mt11213b GFSR (Mersenne twister)
mt19937 GFSR (Mersenne twister)
taus88 LFSR (XOR)
SHA1 Cryptographic hash
MD5 Cryptographic hash
Tiger-192 Cryptographic hash

Generator subclass: Linear congruential (LCG), inversive congruential (ICG) multiplicative congruential (MCG),
lagged Fibonacci (LFG), linear feedback shift (LFSG), subtract with carry (SWC), generalized feedback shift
register (GFSR), linear feedback shift register (LFSR).

during the simulations, we can assess which PRNGs influence data distribution
significantly and whether any particular PRNG subclass is better (or worse) suited
for data distribution.

The strategies we simulate are the same we discuss in Chapter 229, Consistent
Hashing, Redundant Share, the three variants of RUSH and Random Slicing. Ad-
ditionally, Table 3.1↑ lists the set of pseudo-random number generators that we
evaluate; we use implementations from Boost [36] and Libgcrypt [73], both well-
known C/C++ libraries, since they are thoroughly and extensively tested. Besides,
we try to cover a diverse set of PRNGs and, when possible, include more than one
example of each particular subclass.

We simulate each strategy with all the aforementioned PRNGs and we measure
performance and fairness in the same way as the experiments presented in Sec-
tion 2.751. In these experiments, however, we distribute 𝑚 = 1000 ⋅ 𝑛 data blocks,
with 𝑛 being the number of configured storage systems. In order to avoidmeasure-
ment artifacts as much as possible, all experiments have been run for 10, 100 and

71

1000 homogeneous storage systems, since, in the previous chapter, all the studied
strategies showed almost ideal distributions in these environments.

Whenever we need to evaluate the quality of the numbers produced by each
PRNG, we will resort to statistical tests. As we have seen, randomness is a rather
abstract concept which is impossible to demonstrate, since, by definition, it cannot
be expressed deterministically. Nevertheless, randomness can indeed be character-
ized and described in terms of probability, and it is for this reason that the quality
of a pseudo-random sequence can be evaluated with statistical tests that compare it
against a (statistically) true random sequence. Most of these tests initially assume
that the sequence tested is random and try to assess the presence (or absence) of
patterns that indicate if the sequence is random. In this chapter we will use two
well-known batteries of statistical tests, the NIST [122] and the ENT [141] test
suites.

3.4 Influence on Fairness

Figure 3.2↷ shows the results obtained when evaluating the fairness provided by
each combination of PRNG and strategy, grouped by PRNG subclass. The white
boxes in each bar represent the range of results between the minimum and maxi-
mum usage per disk, thus small or non-existing white boxes indicate a very small
deviation from an ideal data distribution. Note that for some strategies we needed
to split the y-axis to show all the relevant results, due to the huge variability of the
measurements obtained with every algorithm.

Interestingly, the results are very different from those we saw in the previous
chapter (see Section 2.7.253). Consistent Hashing, for instance, which showed a dis-
tribution that was close to ideal in the previous experiments, now exhibits a clearly
unbalanced data distribution with some storage systems even receiving more than
250 times the expected amount of data blocks in some cases (see Figure 3.2a↷).

Other strategies seem to be less affected by the change of PRNG, though in gen-
eral the evaluations show worse results than those obtained with the original hash
functions, even for those strategies that previously showed a quasi-ideal distribu-
tion like Redundant Share, RUSHR and Random Slicing (Figures 3.2b, 3.2d and 3.2f↷,
respectively).

There does not seem to be much difference between the results for different
subclasses as long as the number of disks is low. If we consider the generators in-
dividually, however, the results for all the PRNGS evaluated except for the crypto-

72

LCG
ICG
MCG
LFG
GFSR
Crypt

(a) Consistent Hashing

10 100 1000
storage systems

0
5

10
15
20
50

150
250
350

no
rm

ali
ze

d u
sa

ge

(b) Redundant Share

10 100 1000
storage systems

0
10
20
30
40

390
395
400
405
410

(c) RUSHP

10 100 1000
storage systems

0.0

0.5

1.0

1.5

2.0

no
rm

ali
ze

d u
sa

ge

(d) RUSHR

10 100 1000
storage systems

0
1
2
3
4

11
12
13
14
15

(e) RUSHT

10 100 1000
storage systems

0.0

0.5

1.0

1.5

2.0

no
rm

ali
ze

d u
sa

ge

(f) Random Slicing

10 100 1000
storage systems

0
1
2
3
4

10
11
12
13
14

Figure 3.2: Influence of PRNG subclasses on fairness. Generators from left to right: LCGs:minstd_rand, minstd_rand0,
ecuyer1988, kreutzer1986; ICGs: hellekalek1995; MCGs: rand48, Unix_rand; LFGs: lagged_fibonacci607, ranlux3, ran-
lux64_3, ranlux3_01, ranlux64_3_01; GFSR:mt11213b, mt19937, taus88; Cryptographic: SHA1, MD5, Tiger-192.

73

graphic functions (SHA1, MD5 and Tiger-192) degrade significantly when increasing
the number of storage systems from 100 to 1000 devices. This behavior is less no-
ticeable in Redundant Share (Figure 3.2b73), because it uses 𝑂(𝑛) PRNG calls for
each data block, which results in a better random distribution.

Most interestingly, the taus88 PRNG shows really bad results in all experiments,
significantly degrading the fairness of all strategies when compared against the
other PRNGs. In order to understand the reasons for this behavior, we must ana-
lyze the quality of the number distribution produced by each PRNG. Figure 3.3↷
shows a visualization of the first 220 numbers produced by each PRNG in the pre-
vious experiment. Each number of the sequence is assigned an (𝑥, 𝑦) coordinate in
a 1024×1024 grid based on its order in the sequence, and a grayscale color based
on its value. While this approach is not a formal or exhaustive one, it is a fast way
to get a general impression of a generator’s quality.

Surprisingly, most of the generators show obvious patterns in the distributions
produced, even when considering only a few thousand generations. In partic-
ular, LF-based generators lagged_fibonacci607, ranlux3, ranlux64_3 ranlux3_01 and
ranlux64_3_01 display highly predictable patterns that should not appear in a truly
random sequence (Figures 3.3h to 3.3l↷, respectively). Also, notice how genera-
tor taus88 (Figure 3.3o↷) shows a clearly discernible pattern that explains the poor
distribution quality seen in the previous experiment.

The reason for this poor distribution quality lies in how the examined strate-
gies use PRNGs: in order to generate an appropriate hash value, strategies need
to use the data block identifier as the seed of the generator, thus producing an in-
dependent 𝑋𝑛 sequence for each block. Most PRNGs guarantee a certain level of
randomness within a sequence but say nothing of the correlation between parallel
sequences of different seeds, which can lead to more predictable distributions and
poor fairness.

By contrast, generators kreutzer1986, hellekalek1995 and Unix_rand, as well as the
Mersenne twister generators (mt11213b, mt19937) and the cryptographic hash func-
tions (SHA1, MD5, Tiger-192) produce uniformly distributed values with no clear
patterns, making them more suitable for data distribution (see Figures 3.3d, 3.3e,
3.3g, 3.3m, 3.3n and 3.3p to 3.3r↷, respectively). Note however that it has been
shown [144, 133, 134] that bothMD5 and SHA1 are not resistant to collision attacks.

For a more formal approach, we evaluate the same sequences of 220 numbers
with the ENT and NIST statistical batteries. For the ENT battery we show the re-
sults of each test compared against a reference value for a totally random sequence.
For the NIST battery, however, we divide the sequence in 128 subsequences which

74

(a) minstd_rand (b) minstd_rand0 (c) ecuyer1988 (d) kreutzer1986

(e) hellekalek1995 (f) rand48 (g) Unix_rand (h) lagged_fibo607

(i) ranlux3 (j) ranlux64_3 (k) ranlux3_01 (l) ranlux64_3_01

(m) mt11213b (n) mt19937 (o) taus88 (p) SHA1

(q) MD5 (r) Tiger-192

Figure 3.3: Test for patterns in the first 220 numbers generated by several PRNGs. The experiment assigns an (x, y)
coordinate to each number in the sequence and a grayscale color based on the value of the number produced. Note
how some generators exhibit evident patterns that should not appear in a truly random sequence.

75

Table 3.2: Results obtained with the ENT suite

PRNG Entropy 𝜒2 Statistic Mean Monte Carlo𝜋 Serial correlation
(bits/byte) Distribution (p) deviation estimation error coefficient

minstd_rand 7.999 0.01% 0.049 0.131% 9.94E-4
minstd_rand0 7.999 0.01% 0.018 0.037% 2.83E-3
ecuyer1988 7.999 0.01% 0.055 0.080% 5.05E-4
kreutzer1986 7.999 0.01% 1.262 0.104% 3.94E-3
hellekalek1995 7.999 0.01% 0.146 0.050% -7.42E-4
rand48 7.885 0.01% 0.031 0.669% 2.12E-4
Unix_rand 7.498 0.01% 7.034 7.090% -4.86E-2
lagged_fibonacci607 7.996 0.01% 0.037 1.331% 1.43E-3
ranlux3 7.999 0.01% 0.078 0.091% 1.94E-4
ranlux64_3 7.996 0.01% 0.037 1.647% 1.43E-3
ranlux3_01 7.999 0.01% 0.078 0.091% 1.94E-4
ranlux64_3_01 7.996 0.01% 0.081 1.647% -1.17E-3
mt11213b 7.999 0.01% 0.127 0.154% 5.87E-4
mt19937 7.999 0.01% 0.029 0.036% -8.87E-4
taus88 7.865 0.01% 15.547 6.453% -3.28E-2
SHA1 7.999 3.18% 0.029 0.036% 4.42E-4
MD5 7.999 71.33% 0.008 0.001% -2.97E-4
Tiger-192 7.999 93.68% 0.032 0.014% 8.70E-5

Totally random 8 5%< p<95% 0.0 0% (𝜋) 0

are all subjected to the different tests. We show the proportion of successful subse-
quences and also list the specific tests where a certain subsequence failed. For the
interested reader, we include a detailed discussion of each test and its interpretation
in Appendix A141 (ENT battery) and Appendix B145 (NIST battery).

Table 3.2↑ shows the results for the ENT evaluation. Most interestingly the
𝜒2 test classifies all distributions (except the cryptographic ones) as almost cer-
tainly not random, which confirms the visualizations shown in Figure 3.375. With
respect to the other estimators, there are not clear evidences of which PRNGs be-
have better and which worse, and the results for generators of the same type seem
unrelated. Cryptographic hashes, once again, display the best results formost tests,
while taus88 generator does the contrary.

The results obtained with the NIST test battery (see Table 3.3↷) show that only
generators kreutzer1986, hellekalek1995, mt11213b, mt19937 and the cryptographic
functions successfully pass all tests. Linear congruential generators minstd_rand,
minstd_rand0 and ecuyer1988 show good results for over 73% of the subsequences

76

Table 3.3: Results obtained with the NIST suite

PRNG Passed tests Failed tests
(proportion)

minstd_rand 0.867 FFT, Ent
minstd_rand0 0.933 FFT
ecuyer1988 0.733 Freq, CumSum, FFT, Serial
kreutzer1986 1.000
hellekalek1995 1.000
rand48 0.200 Freq, BFreq, CumSum, Runs, LRuns, Rank, FFT, NOT, OT, Uni, Ent, Serial
Unix_rand 0.267 Freq, BFreq, CumSum, Runs, LRuns, FFT, NOT, OT, Uni, Ent, Serial
lagged_fibonacci607 0.667 BFreq, Runs, LRuns, FFT, Ent
ranlux3 0.733 BFreq, FFT, Ent, Serial
ranlux64_3 0.533 BFreq, Runs, LRuns, FFT, OT, Uni
ranlux3_01 0.733 BFreq, FFT, Ent, Serial
ranlux64_3_01 0.533 BFreq, Runs, LRuns, FFT, OT, Uni
mt11213b 1.000
mt19937 1.000
taus88 0.133 Freq, BFreq, CumSum, Runs, LRuns, Rank, FFT, NOT, OT, Uni, Ent, Serial, LC
SHA1 1.000
MD5 1.000
Tiger-192 1.000

FFT: Discrete Fourier Transform; Ent: Approximate Entropy; Freq: Frequency; CumSum: Cumulative Sums; BFreq: Block Frequency;
LRuns: Longest Runs; Rank: BinaryMatrix Rank; NOT:Non-OverlappingTemplate; OT:OverlappingTemplate; Uni: Maurer’s Universal
Statistical; LC: Linear Complexity

tested. On the contrary, however, multiplicative congruential generators rand48
and Unix_rand demonstrate poor results, with only ≈20% subsequences passing
successfully. The taus88 generator shows the worst results once again, with only
≈10% good sequences.

These evaluations demonstrate that choosing a wrong PRNG can have disas-
trous balancing results for randomized data distribution, as it can invalidate all the
benefits provided by a nonetheless good strategy.

3.5 Influence on Performance

Figure 3.478 shows the results obtained in the performance experiments for each
combination of PRNG and strategy. Each bar shows the average time required for
a single request. These times include upper 95% confidence intervals, which we
plot as a white segment stacked atop the average bar.

77

LCG
ICG
MCG
LFG
GFSR
Crypt

(a) Consistent Hashing

10 100 1000
Storage Systems

0
10
20
30
40
50
60

loo
ku

p t
im

e (
μs

)
(b) Redundant Share

10 100 1000
Storage Systems

0
1
2
3
4
5

10
20
30
×103

(c) RUSHP

10 100 1000
Storage Systems

0
20
40
60
80

100
120

loo
ku

p t
im

e (
μs

)

(d) RUSHR

10 100 1000
Storage Systems

0
10
20
30
40
50
60

(e) RUSHT

10 100 1000
Storage Systems

0

20

40

60

80

100

loo
ku

p t
im

e (
μs

)

(f) Random Slicing

10 100 1000
Storage Systems

0
20
40
60
80

100
120
140
160
180

Figure 3.4: Influence of PRNG subclasses on performance. Generators from left to right: LCGs: minstd_rand, min-
std_rand0, ecuyer1988, kreutzer1986; ICGs: hellekalek1995; MCGs: rand48, Unix_rand; LFGs: lagged_fibonacci607, ran-
lux3, ranlux64_3, ranlux3_01, ranlux64_3_01; GFSR:mt11213b, mt19937, taus88; Cryptographic: SHA1, MD5, Tiger-192.

78

Table 3.4: Final PRNG ranking

Load distribution Performance

Position Generator Subclass Generator Subclass

1st Tiger-192 Cryptographic rand48 MCG
2nd SHA1 Cryptographic minstd_rand0 LCG
3rd MD5 Cryptographic ecuyer1988 LCG
4th mt19937 GFSR (Mersenne) minstd_rand LCG
5th hellekalek1995 ICG taus88 LFSR
6th mt11213b GFSR (Mersenne) SHA1 Cryptographic
7th Unix_rand MCG kreutzer1986 LCG
8th kreutzer1986 LCG hellekalek1995 ICG
9th lagged_fibonacci607 LFG ranlux3 LFG SWC
10th minstd_rand LCG Unix_rand MCG
11th minstd_rand0 LCG ranlux3_01 LFG SWC
12th ranlux64_3 LFG SWC MD5 Cryptographic
13th ranlux64_3_01 LFG SWC ranlux64_3 LFG SWC
14th ranlux3_01 LFG SWC Tiger-192 Cryptographic
15th ranlux3 LFG SWC mt11213b GFSR (Mersenne)
16th ecuyer1988 LCG ranlux64_3_01 LFG SWC
17th rand48 MCG mt19937 GFSR (Mersenne)
18th taus88 LFSR lagged_fibonacci607 LFG

Similarly to the previous experiments, there is a lot of variability in the results
obtained. This time, however, the taus88 generator provides the best performance
(on average) for all strategies except Consistent Hashing, where rand48 is slightly
faster (see Figure 3.4a↶). Notice that in these experiments the lagged_fibonacci607
generator consistently shows the worst performance results, even though it was
able to provide an acceptable fairness in the previous section.

Notice that all the PRNGs examined tend to behave similarly with 10, 100, or
1000 storage systems, which is to be expected since the generators should not be
influenced by the number of devices in the system. There is one significant ex-
ception, however, with the Redundant Share strategy (Figure 3.4b↶), which shows
increased response times in each successive setting. Once again, this can be ex-
plained because Redundant Share performs 𝑂(𝑘) calls to the selected generator for
each data block, which can significantly increase the computation time if 𝑘 is large.

Most interestingly, notice that PRNGs that provided similar levels of fairness in
the previous experiment (e.g., SHA1, MD5, or Tiger), differ significantly when con-
sidering average response times. In addition, cryptographic hashes usually per-

79

form worse than simpler PRNGs that delivered similar fairness in the previous
experiments, which can be a concern in time-critical conditions. This means that,
when designing a randomized distribution strategy, a careful consideration of the
selected PRNG is necessary in order to avoid potential performance pitfalls.

3.6 Evaluation Summary

To conclude the evaluation, and as a final contribution, we summarize the results
of this chapter by deriving two rankings of the studied PRNGs (see Table 3.479).
The first ranking orders PRNGs based on their effectiveness in distributing data
load and the number of successful ENT/NIST tests passed, while the second one
orders PRNGs based on the average performance they offer per request.

Based on this ranking, we conclude that cryptographic hash functions andMer-
senne twister generators provide the best results concerning load balance, though
they are not particularly fast when computing pseudo-random values. Neverthe-
less, the SHA1 generator shows good balancing results at acceptable performance
costs, which makes it a good candidate for data distribution.

On the other hand, if distribution performance is an issue and some amount of
unbalance is tolerable, linear congruential generators are among the fastest PRNGs
in our evaluation with acceptable results for load balance.

3.7 Conclusions

In this chapter we have shown that it is extremely important to choose an appropri-
ate PRNG when designing a randomized data distribution strategy. Such decision
should be taken after careful evaluation of the PRNGs considered because, as we
have seen, a badly chosen generator can degrade the quality of the strategy, effec-
tively negating the benefits intended by the designer.

We have also demonstrated standard methods for evaluating PRNGs, and de-
scribed some of the parameters that aremost important for the quality of a pseudo-
randomsequence of numbers. Finally, we have ranked all the studiedPRNGsbased
on their load distribution and performance results, which may serve future re-
searchers to quickly assess the effectiveness of each of the studied generators.

80

Chapter4
Long-term Locality in Mass Storage

“There are two kinds of truths: those of reasoning and those of fact.
The truths of reasoning are necessary and their opposite is impossible;

the truths of fact are contingent and their opposites are possible.”
— Gottfried Wilhelm von Leibniz

4.1 Motivation

As we discuss in Chapter 229, pseudo-randomized distribution is an effective way
to store data efficiently that reorganizes only theminimumamount of datanecessary
to maintain a balanced load. Nevertheless, even this minimum reorganization of
data can be prohibitively expensive in Petascale and Exascale storage systems.

Figure 4.184 shows an optimistic estimation of the time required to reorganize
existing data with current technology1 due to infrastructure upgrades. It clearly

1As of July 2013.

shows that, when stored data grows to 1 Petabyte or more, the associated reor-
ganization time spirals upwards, rapidly making it cost-prohibitive. And that is
assuming an scenario where we can shutdown the storage infrastructure at will
while disregarding client applications, which is completely unacceptable in 24/7
environments!

In this situation, it is obvious that some measures have to be taken in order to
guarantee a sustainable data distribution that uses the full capacity of the storage
infrastructure: if minimum data reorganization is not enough to keep with the

83

http://en.wikipedia.org/wiki/Gottfried_Leibniz

1TB 10TB 100TB 1PB 10PB 100PB 1EB
existing data

1 hour

1 day

1 week

1 month

1 year

re
or

ga
ni

za
tio

n t
im

e

x+30% additional capacity

Figure 4.1: Bars depict the time spent performing data transfers due to rebalancing procedures with current technol-
ogy. Each upgrade increases the capacity of the system by 30% and data transferred to new devices is the minimum
required to regain a balanced load. Weassume (optimistically) that themigration process can use the full capacity of the
storage interconnection network and that devices copewith it. We also assume that client I/O during the reorganization
process is stopped (Parameters used: Fibre Channel 32GFC–6400 MBps full duplex [9]; 30% increase/6 months [83]).

growth of Petascale and Exascale environments, we will have to design systems
that migrate even less data. However, if we reorganize less than the ideal amount
of data when upgrading the system, we will negatively affect load balance and per-
formance.

One solution to this, seemingly unsolvable, paradox is to stop considering data
blocks as anonymous entities and begin taking into account their semantic prop-
erties. Consider, for instance, data that is rarely (if ever) used: this kind of data
does not benefit much from a balanced distribution and, thus, it makes no sense to
spend significant efforts to optimize how it is laid out. Frequently accessed data, on
the other hand, receives themajority of client accesses and can significantly benefit
from the improved performance and parallelism of an adequately balanced distri-
bution. Thus, this “simple” classification could significantly reduce the amount of
work needed during an upgrade process, assuming that frequently used data is a
small proportion of the overall dataset.

Besides, the study of the relations between data blocks is also of value. The
migration process offers an opportunity to tailor where specific blocks are placed:
related data blocks can be clustered in a device’s neighboring regions in order to be
read sequentially; or heavily accessed data blocks could be distributed among the
fastest devices in order to improve their access rate and avoid potential bottlenecks.

84

The main contribution of this chapter is an analytical study of long-term access
patterns in large-scale storage systems. We try to determine semantic properties
and interrelations between data blocks, in order to establish a solid foundation
on which to build better allocation strategies or prediction algorithms to improve
current ones. Specifically, we focus on long-term working sets and the lifespans of
data blocks, and how they evolve over time. In order to broaden the scope of the
study, we apply this analysis to eight sets of traces collected from different storage
systems and at different points in time, in an attempt to establish patterns common
to different workloads and their historical persistence. Additionally, in the last
section of the chapter we verify our observations with four extra traces that we
acquired at a later time, to see if the conclusions derived from our first analysis
also apply to them.

4.2 Methodology

Though there are already several studies about data access patterns and locality,
most of them focus on short-term access patterns and are normally performed
from a process or file perspective [13, 42, 105, 118]. This is fine for data heavily
used for a few seconds, since the extremely fast transfer rates of memory allow it
to be cached when needed. For storage devices, however, data transfers are signifi-
cantly slower,2 therefore any access pattern that can be exploited must involve sta-

2Around two
orders of
magnitude.ble working sets that survive for a long period of time or change gradually. For this

reason, we focus our study on long-term block access patterns, with a minimum
granularity of 24 hours, since they offer the best opportunities for improvement.

4.2.1 Traces

In order to make the study as complete as possible, we use a set of eight differ-
ent traces each representing a different computing environment. The traces used,
though relatively old, correspond to well-known datasets that cover a wide range
of workloads and have not been studied for long-term access locality. We study
traces collected atHP Labs (cello99), theUniversity ofHarvard at Cambridge,Mas-
sachusetts (deasna and home02) and at a feature animation company (render, vcs,
dbs, nfss and nfsc). Note that whenever we need to address this last set of traces as
a group, we will refer to them as the animation collection. Table 4.186 summarizes
these traces which we describe in detail in the following paragraphs:

85

Table 4.1: Summary of traces examined

Trace Environment Date I/O level Trace length Read accesses Blocks read Avg. rd/block

cello99 research 1999 block 352 days 734,239,483 377,484,947 1.945
render rendering 2003 NFS 25 days 1,941,929,527 170,068,738 11.418
vcs versioning server 2003 NFS 8 days 25,799,219 9,202,048 2.804
dbs database 2004 NFS 12 days 172,851 146,174 1.183
nfss file server 2003 NFS 20 days 1,159,197,936 144,597,245 8.017
nfsc caching server 2004 NFS 7 days 621,741,766 31,451,864 19.768
deasna research & email 2002 NFS 38 days 1,356,254,187 49,156,529 27.591
home02 home share 2001 NFS 110 days 2,755,799,037 197,645,388 13.943

� The cello99 traces are a set of I/O traces that have been used in many I/O-
related studies [75, 106, 150, 42]. Collected at HP Labs in 1999, cello99 cap-
ture I/O workloads from a typical research computer cluster. These traces
are particularly interesting as they run for almost a year which makes them
suitable for researching long-term locality patterns. Notice that trace data
is missing for two days and is incomplete for nine days. Nevertheless, this
does not affect the accuracy of our analysis.

� The animation traces were collected from the NFS file system of a feature
animation company between fall 2003 and spring 2004. The traces were
collected at several network locations, and include a pair of render racks
(render), a version control server (vcs), a commercial database server (dbs),
various NFS servers and an NFS cache (nfss and nfsc, respectively). In our
analysis we consider each one as an individual environment to study.

Trace data seems incomplete for two days in the render and nfss datasets.
Also, even though the traces were collected daily over several weeks, the
render dataset has a large gap of fifteen days just after the first three days of
traces. After that, it continues normally.

� The deasna traces [42] were taken from the NFS system at Harvard’s De-
partment of Engineering and Applied Sciences over the course of 6 weeks,
in mid-fall 2002. This system’s workload is a mix of research and email.

� The home02 traces [42] were collected from one of the fourteen disk arrays
in the Harvard CAMPUS system over 16 weeks. The CAMPUS NFS sys-
tem served the majority of the school and administration at Harvard, with

86

over 10,000 accounts and consisted of three NFS servers, all connected to
fourteen 53GB disk arrays. Traces were collected between August 2001 and
December 2001 and trace data is missing for two days.

It is worth noting that cello99 traces are block-level traces, whereas the rest of
the traces are NFS level traces. This means that there should be fewer accesses to
blocks for cello99 since after the first accesses, file system level caches will store
block data thus reducing disk accesses. Nevertheless, this is not a problem since
we only need to know whether a block was accessed or not to determine if it is
shared between two different days.

4.2.2 Analysis

Due to the high amount of data involved in the study, we perform a preliminary
analysis where we study data and metadata accesses separately and we try to deter-
mine an estimate of the working set overlap between different days.

Concerning metadata, this study shows significant amounts of block sharing, a
result which concurs with previous studies [2, 40, 78, 118]. Nevertheless, since this
behavior is already described and we did not make new findings, we will not delve
further into it.

For data blocks, we must distinguish between read and write operations: while
the former show important amounts of long-term sharing, the latter display very
little access locality (most data blocks tend to be written and seldom accessed)
which makes them less suitable for data placement optimizations. For this rea-
son, we keep write operations out of the detailed study and focus on analyzing
usage patterns for read operations, since they are more likely to exhibit long-term
locality and stable working sets and, therefore, show more opportunities for im-
provement.

For read operations we analyze sharing proportions for individual blocks and
accesses, as well as the usage history for each block in the system. Since we are
particularly interested in understanding how sharing and block usage change over
time, we study sharing from a temporal distance point of view, and we analyze the
typical lifespan of shared blocks. We also study relevant access patterns, access
sequentiality and working set density.

87

distribution
histogram

(a) cello99

0 20 40 60 80 100
shared blocks (%)

0
10
20
30
40
50
60
70

%
 da

ys

(b) render

0 20 40 60 80 100
shared blocks (%)

0
10
20
30
40
50
60
70

(c) vcs

0 20 40 60 80 100
shared blocks (%)

0
10
20
30
40
50
60
70

(d) dbs

0 20 40 60 80 100
shared blocks (%)

0
10
20
30
40
50
60
70

(e) nfss

0 20 40 60 80 100
shared blocks (%)

0
10
20
30
40
50
60
70

%
da

ys

(f) nfsc

0 20 40 60 80 100
shared blocks (%)

0
10
20
30
40
50
60
70

(g) deasna

0 20 40 60 80 100
shared blocks (%)

0
10
20
30
40
50
60
70

(h) home02

0 20 40 60 80 100
shared blocks (%)

0
10
20
30
40
50
60
70

Figure 4.2: Individual and binned percentages of shared blocks by day count. The graphs in the figure depict, for each
trace, the proportion y of examined days that showed a number of shared blocks equal to x. Note that we include the
pure raw numbers (without binning) and also show proportions using a bin size of 20%.

4.3 Block Sharing

Histograms in Figure 4.2↑ show the distribution of shared blocks by the number of
days of each dataset. For each proportion of shared blocks we plot the normalized
count of days that showed that proportion. In addition, in order to provide a better
perspective of the distribution of sharing across days, we aggregate the results in
20% bins and plot the number of days for each interval. For instance, for cello99
the graph shows that around 5% traced days shared exactly 40% of their blocks. It
also shows that in aggregate around 45% days shared 40–60% of their blocks.

Figure 4.2↑ shows, unsurprisingly, that very differentworkloads have very differ-
ent sharing profiles. Most days in traces cello99, deasna and home02 share be-
tween 20–80% of their blocks, with distributions mostly centered around 40–60%,
30–50% and 55–75% ranges respectively (see Figures 4.2a, 4.2g and 4.2h↑).

88

As expected, workloads in the animation collection vary significantly, with ren-
der, vcs and dbs rarely sharing more than 60%, 35% or 30% blocks, respectively
(see Figures 4.2b to 4.2d↶). The distribution for nfss and nfsc, however, is more
similar to that of traces cello99, deasna and home02 (see Figures 4.2e and 4.2f↶).
This is interesting because all these environments are more interactive in nature,
either because they are directly accessed by students or researchers (e.g., home02,
cello99, deasna) or because they react directly to user requests (e.g., nfss, nfsc). This
behavior suggests that interactive environments might have an increased sharing
profile due to human repetitive access patterns.

Rendering processes, on the other hand, usually need to read a set of 3Dmodels
in order to write a scene to disk. Thus, each process reuses some file blocks (cor-
responding to models common to several scenes) and writes new file blocks that
might or might not be used in the following days. This might explain the reduced
sharing percentage when compared to interactive environments.

Note that, predictably, each dataset exhibits a large proportion of days with very
few blocks shared. However, there is also a noticeable amount of days (5–10%)
sharing over 80% blocks.

Observation 1 More than half of the days studied (60%) share 40% blocks or more.

4.3.1 Sharing and Temporal Distance

While Figure 4.2↶ shows the overall distribution of block sharing for each work-
load, it says nothing about the temporal locality of this sharing. Figures 4.390
and 4.491 show the evolution of the working set overlap in function of the dis-
tance between days: for each point (𝑥, 𝑦) in the plot, 𝑦 is computed as the mean of
the percentage of unique shared blocks between every pair of days whose distance is
𝑥. We also compute the standard error 𝜖 with 95% confidence to show the variabil-
ity of those percentages.3 Note that positive distances account for the working set

3For instance, for
trace cello99 the point
𝑝 = (100, 58 ± 0.02)
in the graph shows
that all days at dis-
tance +100 of one
another shared, on
average, 58% of their
blocks with 0.02%
error.

overlap with future days while negative distances represent the amount of overlap
with past days. Figure 4.390 includes long-term mostly general purpose workloads
and Figure 4.491 includes mid-term specialized workloads.

Figure 4.390 shows that an overlap of 40–60%of a day’s blocks is a fairly common
situation for all environments plotted, and that this overlap happens with days all
over the year. It is fairly apparent, however, that there is much more overlap with
future days than with past days, which might be explained by the creation of new
blocks that can be shared with future days but not past days. Sharing over 60%

89

average overlap
ε error

(a) cello99

-300 -200 -100 0 100 200 300
temporal distance (days)

0
20
40
60
80

100

ov
er

lap
 %

(b) deasna

-30 -20 -10 0 10 20 30
temporal distance (days)

0
20
40
60
80

100

ov
er

lap
 %

(c) home02

-100 -50 0 50 100
temporal distance (days)

0
20
40
60
80

100

Figure 4.3: Correlation between working set overlap and temporal distance in general purpose workloads. For each
point (x, y) shown in the figure, and defining S(a, b) as the percentage of unique blocks common to two arbitrary days a
and b, the y coordinate is calculated as the arithmeticmean s (±𝜖 standard error) of the set composed of all S(di, dj), for
each pair of days where i-j=x. Thus, if 𝜖 is small, all pairs of days at distance x had approximately s blocks in common.

of a day’s blocks only happens with extremely close distances, around 15 days for
cello99, 1–3 days for deasna and 25–50 days for home02 (see Figures 4.3a to 4.3c↑,
respectively). This makes sense, as it is likely that blocks in use today were also
used yesterday and will also be used tomorrow. An overlap above 80% is very rare.

It is worth mentioning that the three workloads exhibit a periodical pattern
where the overlap is higher than normal. This can be observed in all datasets in
Figure 4.3↑ as a series of peaks that are almost evenly spaced, though it is more
noticeable in the cello99 trace. Careful examination of the traces shows that this
increase tends to repeat every 6 or 7 days, which strongly implies that it might be
related to cyclical events associated to work weeks and repetitive human behavior.

Regarding specialized workloads, Figure 4.4↷ shows, again, that workloads in
the animation collection are very diverse. Workloads render, nfss and nfsc have
a similar behavior to those of Figure 4.3↑ but with a lower amount of sharing:
30–40% for render, 30–50% for nfss and 40–60% for nfsc (see Figures 4.4a, 4.4d
and 4.4e↷). The render workload in particular seems to favor sharing with future
days which supports our hypothesis that an important proportion of newly cre-
ated blocks will be reused. Workloads vcs and dbs show the least amount of over-

90

average overlap
ε error (a) render

-40 -30 -20 -10 0 10 20 30 40
temporal distance (days)

0
20
40
60
80

100

ov
er

lap
 %

(b) vcs

-6 -4 -2 0 2 4 6
temporal distance (days)

0
20
40
60
80

100

(c) dbs

-50 0 50
temporal distance (days)

0
20
40
60
80

100

ov
er

lap
 %

(d) nfsc

-6 -4 -2 0 2 4 6
temporal distance (days)

0
20
40
60
80

100

(e) nfss

-40 -20 0 20 40
temporal distance (days)

0
20
40
60
80

100

ov
er

lap
 %

Figure 4.4: Correlation between working set overlap and temporal distance in specialized workloads. For each point
(x, y) shown in the figure, and defining S(a, b) as the percentage of unique blocks common to two arbitrary days a and
b, the y coordinate is calculated as the arithmetic mean s (±𝜖 standard error) of the set composed of all S(di, dj), for
each pair of days where i-j=x. Thus, if 𝜖 is small, all pairs of days at distance x had approximately s blocks in common.

lap (0–10% and 10–20%, respectively) that only grows for days that are extremely
close to the one examined. This is a typical behavior of source control systems,
where writes (source commits) tend to dominate over reads (source checkouts),
and would be expected of databases used mostly to keep information, rather than
accessing it. Interestingly enough, the overall sharing for the dbs workload in-
creases by the end of the tracing period. Lack of further data prevents us from
attempting to explain this behavior (see Figures 4.4b and 4.4c↑).

Observation 2 The overlap in working sets remains fairly stable at 30–50%,
and decreases as temporal distance grows.

Observation 3 The overlap in working sets is heavily influenced
by repetitive human behavior.

91

4.3.2 Accesses to Shared Blocks

In the previous section, we saw that there is a significant temporal overlap in work-
ing sets in most workloads. However, it would be interesting to determine how
often the blocks in these working sets are accessed, since shared data is of no inter-
est if it does not receive a significant amount of activity. Histograms in Figure 4.5↷
show the distribution of accesses to shared blocks normalized by the number of
days of each dataset. Like in Figure 4.288, we plot the normalized day count for
each percentage of accesses to shared blocks, as well as the aggregate in 20% bins.

Once again, we find the duality between general purpose, mostly interactive
environments and environments with specialized workloads. Accesses to shared
blocks are predominant for the former, with cello99 being in the 50–70% range,
deasna in the 70–95% and home02 in the 60–80% range (see Figures 4.5a, 4.5g
and 4.5h↷).

Workloads in the animation collection (Figures 4.5b to 4.5f↷) are particularly
interesting, because all except dbs have an important amount of days with 40–80%
accesses to shared blocks: 55%, 85%, 51% and 80% for render, vcs, nfss and nfsc,
respectively. Note also that render, nfss and nfsc also exhibit 10–30% days accessing
over 80% shared blocks, implying that working sets for these environments might
be nearly identical in those days. Thiswouldmake sense for processes continuously
accessing the same sets of files over several days.

Note as well that there is also a large proportion of days accessing very few
shared blocks for render and nfss, with dbs being the best representative for this
tendency. This suggests that these environments accessed an important amount of
blocks that had not been seen before. This would make sense for short-lived, tem-
porary files like those created as part of a rendering process. This is not conclusive,
however, since there is no more data available for these environments.

Observation 4 Shared blocks are significantly more accessed
than non-shared blocks.

4.4 Block Usage

In previous sections we have determined that there are considerable amounts of
shared blocks in most of the workloads studied and that these blocks represent a
large portion of daily accesses. Nevertheless, it is still unclear if this set of shared

92

distribution
histogram(a) cello99

0 20 40 60 80 100
shared block access (%)

0
10
20
30
40
50
60
70

%
 da

ys

(b) render

0 20 40 60 80 100
shared block access (%)

0
10
20
30
40
50
60
70

(c) vcs

0 20 40 60 80 100
shared block access (%)

0
10
20
30
40
50
60
70

(d) dbs

0 20 40 60 80 100
shared block access (%)

0
10
20
30
40
50
60
70

(e) nfss

0 20 40 60 80 100
shared block access (%)

0
10
20
30
40
50
60
70

%
da

ys

(f) nfsc

0 20 40 60 80 100
shared block access (%)

0
10
20
30
40
50
60
70

(g) deasna

0 20 40 60 80 100
shared block access (%)

0
10
20
30
40
50
60
70

(h) home02

0 20 40 60 80 100
shared block access (%)

0
10
20
30
40
50
60
70

Figure 4.5: Individual and binned percentages of accesses to shared blocks by day count. The graphs in the figure
depict, for each trace, the proportion y of examined days that showed a number of accesses to shared blocks equal to x.
Note that we include the pure raw numbers (without binning) and also show proportions using a bin size of 20%.

blocks changes over time or the same blocks are being accessed over and over again.
In this section we evaluate how long blocks “survive” and the different access pat-
terns present in the traces.

4.4.1 Block Lifespan

In a trace, we define the “lifespan” of a block as the number of days between the first
and last accesses recorded for it. Figure 4.694 depicts the cumulative distribution
function (CDF)4 of the blocks’ lifespan, grouped by lifespan length for the sake of

4A CDF describes
the probability that
a real-value random
variable 𝑋 will be
found at a value less
than or equal to 𝑥.

legibility. Notice that due to the existence of gaps in some traces, lifespan length
can be larger than trace length.

All traces show different but relevant amounts of short-lived blocks. This is to
be expected as there should be many blocks that are accessed only once or for a
few days (e.g., those related to short-lived files that are created and accessed over

93

0 1 2 3 4 5 6 7 8
lifespan (days)

0

20

40

60

80

100

%
 of

 bl
oc

ks

vcs
nfsc

0 10 20 30 40 50 60
lifespan (days)

0

20

40

60

80

100

render
nfss
deasna

0 50 100 150 200 250 300 350 4000

20

40

60

80

100

%
 of

 bl
oc

ks

cello99
dbs
home02

Figure 4.6: Cumulative distribution function of blocks’ lifespan by block count. A coordinate (x, y) in the figure shows
the percentage y of blockswith a lifespan l≤ x. The lifespan of a block is defined as the number of days passed between
the first and last recorded accesses to it.

a week). For instance, blocks accessed in the deasna, dbs and vcs workloads are
extremely short-lived, with more than 75% not being accessed again after 1 or 2
days. Workloads render, nfss, nfsc and home02 show that 40–50% blocks are not
accessed for more than 4, 3, 1 and 16 days, respectively. The cello99 case stands out
as short-lived blocks only represent a 13% of all examined blocks.

The relevance of medium to long-lived blocks (alive between 1–7 days) varies
wildly for each environment. For the cello99, dbs, vcs, render and deasnaworkloads
these represent but a small fraction of all blocks (between 5–8%), whereas 15–20%
of all nfss and home02 blocks as well as 20–25% of nfsc blocks fall into this category.

Long-lived blocks (seen formore than aweek) represent 10–12%of all blocks for
deasna and dbs workloads. For render, nfss and home02 they add up to 40%, while
80% of cello99’s blocks are long-lived. It is apparent that, the longer the trace, the
longer the period of timewhere blocks are accessed repeatedly. It seems that blocks

94

survivingmore than 1 day are very likely to live a relatively long time, which agrees
with previous observations [42, 118]. Notice that we have not considered the vcs
and nfsc traces due to their short duration.

Observation 5 All workloads show important amounts of short-lived blocks
(around 1-day lifespan).

Observation 6 Lifespans greater than 1 day follow a uniform distribution.

4.4.2 Block Access Patterns

The previous section showed how long blocks are being used, but it said nothing
about how often they are accessed during this period of time. For instance, a block
only accessed once on the 1st day and once on the 200th day will have a lifespan of
200 days, but this will not reflect its real usage. Figure 4.796 shows the CDF for the
actual usage of blocks in days, grouped by trace length.

We can see that although there is a lot of diversity concerning blocks’ lifes-
pan, there are evident similarities when considering the actual amount of days
each block is used. Around 80% blocks in research oriented workloads like cello99
and deasna have been used for very few days (25 days for cello99 and 2–3 days for
deasna), and the same happens with the dbs trace. This means that those blocks
are either accessed very frequently for a short amount of time or accessed intermit-
tently over the trace duration. Workloads vcs and render also show this behavior
predominantly (around 5 days for 80% blocks).

In the case of nfss and home02workloads, 25%blocks are accessed formore than
55 and 75 days, respectively. Given that both environments are not computation-
intensive, and the inherent randomness and unpredictability of their workloads, it
seems likely that this represents large amounts of data accessed periodically.

The behavior of the nfsc trace is interesting, given that it shows up to 40% blocks
being accessed for more than 4 days. Given the length of the trace (7 days) and
the caching behavior of this environment, this suggests clients accessing the same
blocks for several days.

Observation 7 Blocks are accessed for short periods of time,
even if their lifespans are long.

95

0 1 2 3 4 5 6 7 8
days used

0

20

40

60

80

100

%
 of

 bl
oc

ks

vcs
dbs
nfsc

0 5 10 15 20 25 30 35 40
days used

0

20

40

60

80

100

render
nfss
deasna

0 50 100 150 200 250 300 3500

20

40

60

80

100

%
 of

 bl
oc

ks

cello99
home02

Figure 4.7: Cumulative distribution function of blocks actual usage by block count. A coordinate (x, y) in the figure
shows the percentage y of blocks with an actual usage u≤ x. The actual usage of a block is defined as the number of
days it was accessed during its lifespan.

4.4.3 Access Sequentiality

Previous analysis were useful to determine the proportions of short, medium and
long-lived blocks that characterize each environment, and also whether blocks are
used often during their lifetime or not. Now it would be interesting to find out
whether blocks are accessed in sequential day bursts or, on the contrary, they are
accessed randomly. Figure 4.8↷ shows the cumulative distribution of the longest
periods of time when blocks are used. We consider a period of time as a series of
consecutive days when a particular block is used.

It is worth noting that this notion of consecutiveness is not strict, as we have
included a tolerance factor 𝜏 in order to ignore small-sized gaps. Hence, a block
used during 𝑁 consecutive days, that stops being used during 𝑑 ≤ 𝜏 days but is
used again for another 𝑀 consecutive days, will be considered as used 𝑁 + 𝑑 + 𝑀

96

no gap tolerance
1-day gap tolerance
2-day gap tolerance
3-day gap tolerance

(a) cello99

0 100 200 300 400
consecutive days

0
20
40
60
80

100

%
 bl

ks
 ac

ce
sse

d ≤
 x

(b) render

0 5 10 15 20 25
consecutive days

0
20
40
60
80

100
(c) vcs

0 1 2 3 4 5 6 7 8
consecutive days

0
20
40
60
80

100
(d) dbs

0 1 2 3 4 5 6 7
consecutive days

0
20
40
60
80

100

(e) nfss

0 5 10 15 20
consecutive days

0
20
40
60
80

100

%
 bl

ks
 ac

ce
sse

d ≤
 x

(f) nfsc

0 1 2 3 4 5 6 7
consecutive days

0
20
40
60
80

100
(g) deasna

0 10 20 30 40
consecutive days

0
20
40
60
80

100
(h) home02

0 30 60 90 120
consecutive days

0
20
40
60
80

100

Figure 4.8: Cumulative distribution function of blocks consecutive usage by block count. A coordinate (x, y) in the
figure shows the percentage y of blocks with a consecutive usage c ≤ x. The consecutive usage of a block is defined as
the number of consecutive days it was accessed, also considering a tolerance factor 𝜏 .

consecutive days. The rationale behind this decision is that, due to weekends and
holidays, there might be intermittent gaps in the blocks usage. Using this method
we can filter out with high probability the usage gaps due to non-working days like
weekends or holidays.

Figure 4.8↑ has been generated using different tolerance factors 𝜏 ∈ [0, 3] in or-
der to see how they affect access sequentiality. Notice that lower tolerance factors
seem to “contain” higher tolerance factors. This is to be expected since, for instance,
a 3-day gap tolerance factor will ignore 3-day gaps, as well as 2-day and 1-day gaps.

When considering 0-gap tolerance, datasets in the animation collection show
that about 90% of their blocks have been used consecutively for 5 days or less,
though most curiously render, nfss and nfsc settle around the 5-day mark and vcs
and dbs around the 1-daymark (see Figures 4.8b to 4.8f↑, respectively). For general
purpose environments, 90% blocks for cello99 and deasna are used consecutively
for 5 days or less (Figures 4.8a and 4.8g↑). Workload home02 (Figure 4.8h↑) does
not follow this pattern, however, with 90% blocks being accessed up to 25 consecu-

97

tive days. This might be explained by the different requirements between research
and user workloads.

Setting 𝜏 to 1 day only increases sequentiality counts significantly for the nfsc
trace (5–7 days for 90% blocks), whereas other workloads only exhibit slight in-
creases. Nevertheless, for all workloads except dbs and nfsc, gap tolerances of 2–3
days increase sequential usage for 90% blocks by 2 and 2.5 times, respectively. No-
tice also that cello99, render and home02 workloads exhibit around 5% blocks with
very long runs (300–350, 18–25 and 96–120 days, respectively) that are not visible
with lower tolerance factors. Since the 2-day gap curves should be most “realistic”
(as they include both weekends and 1-day holidays) this information could be very
important when designing long-term caching algorithms.

Observation 8 Most blocks are accessed for a few consecutive days.

Observation 9 Consecutive usage for blocks increases when taking into
account repetitions in human behavior.

4.4.4 Working Set Density

Finally, it would be interesting to determine if daily working sets are sparse and
include a large number of different blocks, or if they are dense and a small number
of blocks concentrate a large amount of accesses. Figure 4.9↷ plots, for each day,
the number of blocks that concentrate up to 90% daily accesses, grouped again by
trace length.

Figure 4.9↷ shows that for all environments, except cello99 and dbs, 90% ac-
cesses concentrate on 1–6% blocks with low variance. All these systems are fairly
stable, occasionally showing peaks or valleys where the block count increases or
decreases significantly. This is important because a careful inspection of the data
contained by the animation collection shows several days where significantly less
blocks are accessed. The number of blocks accessed these days is so low compared
to the usual behavior for the rest of the trace, that we believe the difference might
be due to tracing collection errors or anomalous situations. The case for the dbs is
special since considerably more blocks are accessed at the beginning of the tracing
period, thus lowering the results when compared to the rest of the trace. Never-
theless, the data provided is sensible enough to consider it as normal behavior.

General purpose environments like cello99, deasna and home02 show the vari-
able behavior typical in interactive systems, though 90% accesses are usually made

98

0 5 10 15 20
trace days

0

20

40

60

80

100

%
 bl

oc
ks

 ≥
 90

%
 ac

ce
sse

s vcs
dbs
nfss
nfsc

0 5 10 15 20 25 30 35 40
trace days

0

2

4

6

8

10

12
render
deasna

0 50 100 150 200 250 300 350 4000

10

20

30

40

50

60

70
%

 bl
oc

ks
 ≥

 90
%

 ac
ce

sse
s cello99

home02

Figure 4.9: Daily count of blocks with 90% accesses. The plots in the figure show the total percentage of blocks that
received more than 90% daily accesses w.r.t the trace day when they were measured.

to the same block percentages: 20–40% for cello99, 0.05–0.15% for deasna and
1–2% for home02. Notice also a peak around day 33 in deasna and a valley around
day 200 in cello99. Both anomalies correspond to trace collection errors.

Observation 10 A small percentage of blocks receives up to 90% of daily accesses.

4.5 Scope of Our Hypothesis

In this last section, we want to verify if the hypotheses drawn from our study can
be validated against additional (newer) traces, that were not included in our initial
study. In order to do that, we focus on evaluating the distribution of block accesses
and the working set overlap for the newer traces5 and see if our observations in the

5Our proposal for an
extensible RAID strat-
egy in Chapter 5107
is based on these
parameters.previous sections hold. The newer traces are theMSRC and the SRCMap collections.

99

Table 4.2: Summary statistics of 1-week long traces from seven different systems

Trace Year Workload Reads (GB) Writes (GB) R/W Accessed Accesses to
total unique total unique ratio data (GB) top 20% data

cello99 1999 research 73.73 10.52 129.91 10.92 0.62 203.65 65.77%
deasna 2002 research/email 672.40 23.32 231.57 45.45 2.54 903.97 86.88%
home02 2001 NFS share 269.29 9.07 66.35 4.49 3.94 335.64 61.36%
webresearch 2009 web server – – 3.37 0.51 – 3.37 51.33%
webusers 2009 web server 1.16 0.45 6.85 0.50 0.09 8.01 56.17%
wdev 2007 test server 2.76 0.20 8.77 0.42 0.21 11.54 72.44%
proj 2007 file server 2152.74 1238.86 367.05 168.88 7.33 2519.79 57.64%

The MSRC collection [101] is a set of block-level traces collected over one week
at Microsoft Research Cambridge’s data center in 2007. The traces include I/O
requests on 36 storage volumes containing 179 disks on 13 servers. For this study,
we focus on thewdev and proj servers, a test web server (4 volumes) and a server of
project files (5 volumes), respectively, since they contain the workloads involving
more requests.

The SRCMap collection [138] is also a set of block-level traces, but this time col-
lected by the Systems Research Laboratory (SyLab) at Florida International Uni-
versity. The traces were collected for three weeks at three production systems that
included, among others, an email server, an NFS file server and a virtual machine
monitor. Of all the workloads traced, we focus on the webresearch and webusers
workloads: the former corresponds to an Apache web server managing FIU re-
search projects, while the latter comes from a web server hosting faculty, staff, and
graduate student web sites. Once again, we choose these workloads over the others
available because they involve a large number of requests.

In these new experiments, we use some of the traces from the previous sections
in order to have a meaningful comparison background, and see how results differ
between the newer and the older traces. Specifically, we revisit the cello99, deasna
and home02 traces because they exhibited the best results concerning long-term
block sharing, and we include write requests to enlarge the scope of the experi-
ments. In all experiments, we use an entire continuous week of traced requests
chosen at random rather than the whole trace, since we are only interested in val-
idating our previous conclusions.

Figure 4.10↷ shows the CDF for block access frequency for each workload. As
expected, all workloads show highly skewed distributions of frequency of access:

100

reads
writes

(a) cello99

100 101 102 103 104 105

frequency

0
20
40
60
80

100

%
 bl

oc
ks

(b) deasna

100 101 102 103 104 105

frequency

0
20
40
60
80
100

(c) home02

100 101 102 103

frequency

0
20
40
60
80
100

(d) webresearch

100 101 102 103 104 105

frequency

0
20
40
60
80
100

(e) webusers

100 101 102 103 104 105

frequency

0
20
40
60
80

100

%
 bl

oc
ks

(f) wdev

100 101 102 103 104 105

frequency

0
20
40
60
80
100

(g) proj

100 101 102 103 104 105 106

frequency

0
20
40
60
80
100

Figure 4.10: Block-frequency in the examined 1-week traces. Plots depict the CDF of block accesses for different fre-
quencies: a point (f, p1) on the block percentage curve indicates that p1% of total number of blocks were accessed at
most f times.

for read requests ≈76–98% blocks are accessed 50 times or less, while for write
requests this value rises to ≈89–98% blocks. On the other hand, a small fraction of
blocks (≈0.05–0.7%) are very heavily accessed in all cases (read or write requests).

This skew can also be observed in the measurements collected in Table 4.2↶:
the top 20%most frequently accessed data blocks contribute to a significantly large
fraction (≈51–83%) of all I/O, which are similar results to those reported by pre-
vious studies on the subject [51, 78, 16, 138, 95].

Thus, the following remark holds true for all the workloads examined: data us-
age is highly skewed with a small percentage of blocks being heavily accessed, which is
in consonance with our earlier observations in the chapter.

Plots in Figure 4.11102, depict the changes in the daily working-sets for each
of the workloads, i.e., each bar in the figure represents the percentage of unique
blocks that are accessed both in day 𝑑 and day 𝑑 +1. In all workloads there is a sig-
nificant overlap (≈20–80%) in the data blocks accessed in immediately successive
days. Most importantly, we observe that there is a substantial overlap even when

101

all accesses
top 20%

(a) cello99

d1 d2 d3 d4 d5 d6
week days

0
20
40
60
80

100
%

 ov
er

lap
 d+

1

(b) deasna

d1 d2 d3 d4 d5 d6
week days

0
20
40
60
80

100
(c) home02

d1 d2 d3 d4 d5 d6
week days

0
20
40
60
80

100
(d) webresearch

d1 d2 d3 d4 d5 d6
week days

0
20
40
60
80

100

(e) webusers

d1 d2 d3 d4 d5 d6
week days

0
20
40
60
80

100

%
 ov

er
lap

 d+
1

(f) wdev

d1 d2 d3 d4 d5 d6
week days

0
20
40
60
80

100
(g) proj

d1 d2 d3 d4 d5 d6
week days

0
20
40
60
80

100

Figure 4.11:Working-set overlap in the examined 1-week traces. Plots depict the changes in the daily working-sets of
the workloads: a bar (d, p2) indicates that days d and d+1 had p2% blocks in common. This is shown for all blocks and
for the 20% blocks receiving more accesses.

considering the top 20%most accessed blocks. The deasna workload is particularly
interesting because it exhibits low values of overlap (≈20–35%) when considering
all accesses, which greatly improves when considering blocks in the top 20%. This
implies that the working-set for this particular workload is more diverse but still
contains a significant amount of heavily reused blocks. Nevertheless, this proves
that working-sets remain fairly stable over long durations, which is one of the obser-
vations derived from the previous traces.

Based on the above remarks, it seems reasonable to exploit long-term temporal
locality and non-uniform access frequency distribution to improve the extensibil-
ity of a storage system. In the following chapter, we will use this information to
design a RAID extension mechanism based on redistributing copies of heavily used
data blocks.

102

4.6 Conclusions

In this chapter we have shown an analysis of eight different network file system
traces, three of which were collected over periods of time longer than a month.
The traces selected include two research workloads, an NFS home share workload,
a rendering workload, three server workloads and a database workload. By an-
alyzing the daily usage of blocks and read access patterns for each environment
we have found significant similarities between those with direct human influence,
even though they were collected in different years. Besides, we verified the validity
of our conclusions by examining the working set overlap and frequency of accesses
of four, more modern, additional traces that we acquired at a later time.

The analysis of variation of block sharing across file systems demonstrates that
in general purpose workloads at least 50% of the blocks used in a day are reused
some other day. Specialized workloads vary depending on the work performed,
though there is a noticeably high amount of block sharing in those systems where
human interaction was normal.

The study of the correlation between block sharing and the temporal distance
between days demonstrate similarities in systems with direct and indirect human
interaction. Unsurprisingly, block sharing is higher for closer days and tends to
propagate to the future rather than the past, decreasing as the distance between
days increases. Interestingly, for general purpose environments there is an im-
portant amount of sharing even for extremely distant days. Specialized workloads
without human interaction, on the other hand, are likely to have less sharing. A
most interesting result is that week periods have a strong influence in the working
set overlap. A surprising but important result is that more than half daily accesses
are directed to shared blocks for all environments.

Block lifespan is very variable for different environments though similarly to
previous results [42, 118] we see that blocks living longer than a day are very likely
to live a relatively long time, for the interactive long-term traces studied. Further-
more, in all environments blocks are more likely to be accessed over a few consec-
utive days. Finally, the most important result of this analysis is the proof that 90%
daily accesses are directed to a small subset of blocks.

In summary, the analysis demonstrates that most environments have a high
amount of blocks shared over time, that most accesses are made to shared blocks,
and that the majority of those accesses is concentrated in very few blocks.

103

In the next chapter we will see how these findings can be used to design a pre-
diction-based, long-term caching strategy that determines futureworking sets with
high probability, which allows it to improve the extensibility and performance of a
RAID architecture.

104

Chapter5
Extensibility in RAID Architectures

“We can only see a short distance ahead,
but we can see plenty there that needs to be done.”

— Alan M. Turing

5.1 Motivation

Randomized data layouts yield a global uniform block distribution across all stor-
age systems, support heterogeneous environments and provide minimal data re-
organization when upgrading the storage system. Does this mean that they are a
perfect solution for all problems? Not by a long shot.

First of all, in the introduction of Chapter 483 we already make a good point of
whyminimal data reorganization is not sufficient in Petascale and Exascale storage
environments: it is simply toomuch information tomove efficiently! Additionally,
however, file systems typically try to allocate together a file’s blocks [88], in order
to use spatial and temporal locality to improve access performance, which can be
problematic for randomized distributions that scatter blocks across the data space,
even if it is in a controlled manner. Though this can be (somewhat) alleviated by
increasing the block size, which helps maintain spatial locality, it can cause prob-
lems to applications that rely on fine-tuning the allocation unit1 to improve their

1Scientific and da-
tabase applications
commonly use data
block sizes between
8KB and 256KB,
due to their high con-
currency and small
request size.I/O throughput [30].

107

http://en.wikipedia.org/wiki/Alan_Turing

(a) Original RAID-0..
disk 
.

disk 
.

disk 
.

disk 
.

disk 
.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



(b) Upgraded RAID-0..
disk 
.

disk 
.

disk 
.

disk 
.

disk 
.

disk 
.

disk 
.

disk 
.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



...................



.



.



.



.



.



.



.



Figure 5.1: RAID restriping process. The figure shows the layout of data blocks in a RAID-0 array before and after being
upgraded using a restriping process. This process simply rebuilds the Round-robin distribution of data blocks extending
it to the new stripe size. Note that 25 out of 30 blocks (≈83.4%) migrate to different locations in the disk. Numbers
inside each cell represent the logical block identifier.

On the other hand, storage architectures based on RAID are still a popular choice
to deploy reliable and high performing storage into environments with intensive
I/O requirements, with acceptable economic and spatial costs. In this kind of ar-
chitectures, capacity and performance upgrades are usually achieved by adding
new devices to the existing RAID array and restriping (reorganizing) the current
data set. Extending RAID architectures in this manner, however, poses several new
challenges not present in randomized data distributions:

1. To regain the uniformity of the data distribution, certain blocks must be moved
to the newly added disks. The traditional approaches that try to preserve the
Round-robin order [25, 52, 153] end up redistributing large amounts of data
blocks between old and new disks, regardless of what the numbers of new and
old disks are (see Figure 5.1↑).

2. Alternative methods that migrate only a minimum amount of data, can have
problems to keep a uniform data distribution after several upgrade operations
(like the Semi-RR algorithm [50]), or end up producing a data layout that does
not use all the available hardware at all times (GSR [151]), thus limitting the
array’s performance.

3. Some existing RAID solutions like RAID-5 and RAID-6 offer redundancy mech-
anisms by computing erasure codes or parities that allow to reconstruct data
blocks if one or several devices fail. Extending this kind of strategies can be

108

problematic due to the additional overhead of recalculating and updating the
associated parities, as well as the necessary metadata updates associated with
stripe migration.

4. Furthermore, RAID solutions are widely used in online services where clients
and applications need to access data constantly. In these services, the downtime
cost can be extremely high [110], and thus any strategy to upgrade RAID arrays
should be able to interleave its job with normal I/O operations.

For all these reasons, in this chapter we focus on developing a mechanism that
can be used to extend RAID arrays in a Petascale or Exascale architecture, while
solving the challenges we just mentioned. The main contribution of this chapter,
thus, is an extension of the standard RAID layout called CRAID, which minimizes
the overhead of the upgrade process by redistributing “relevant data” in real-time.
To do that, CRAID2 tracks data that is currently being used by clients and reorga-

2Which, by the way,
is pronounced as
[cee·reid], with a
short ‘i’.

nizes it in a specific, dedicated partition. This allows the disk array to maintain the
performance and distribution uniformity of the data that is actually being used by
clients and, at the same time, significantly reduces the amount of data that must be
migrated when new devices are installed.

The design of this RAID extension is based on the notion that providing good
levels of performance and load balance for the current working set suffices to pre-
serve the QoS3 of the RAID array. This idea is born from three key observations

3Note that, through-
out this chapter, the
term QoS refers to the
performance levels
and load distribution
quality offered by
a RAID array and is
unrelated to SLAs.

about storage workload characteristics, which are distilled from our earlier discus-
sion in Chapter 483:

1. Data in a storage system displays a non-uniform access frequency distribution:
when considering coarse-granularity time spans, “frequently accessed” data
is usually a small fraction of total data.

2. This active data set exhibits long-term temporal locality and is stable, with
small amounts of data losing or gaining importance gradually.

3. Even within the active working set, data usage is heavily skewed, with “really
popular” data receiving over 90% of user accesses.

Though these observations are largely intuitive and in consonancewith the find-
ings of other researchers [51, 62, 121, 5, 120, 140, 138, 16], to our knowledge there
have not been any attempts to apply this information to the extension of large-scale
RAID architectures.

109

5.2 Proposal: CRAID

In this sectionwe describe CRAID, our proposal for a self-optimizing RAID array that
performs an online block reorganization of frequently used, long-term accessed
data, in order to reduce the overhead of large-scale rebalancing. Two are the main
ideas behind the design of CRAID: first, we intend to prove that it is possible to effi-
ciently extend deterministic, rule-based data distributions for large-scale storage
with good performance and load balance; second, we want to demonstrate that the
layout used for “cold” data (i.e., data that is not currently being accessed) is not very
important as long as I/O access to currently important data is heavily optimized.
We will see in the following section whether these two ideas can be held true in a
realistic setting or not.

5.2.1 Description

Thegoal that drives CRAID is to reduce the amount of data that needs to bemigrated
during reconfigurations while providing QoS levels similar to those of traditional
RAID arrays. In order to achieve this, CRAID claims a small portion of each device
and uses it to create a cache partition (𝑃𝐶) that will be used to place copies of heavily
accessed data blocks. The aim of this partition is to separate data that is currently
important for clients from data that is rarely (if ever) used. Data not currently
being accessed is kept in an archive partition (𝑃𝐴) that uses the remainder of the
disks. Note that this partition can be managed by any data allocation strategy, but
it is important that it can grow gracefully (though without the strict performance
requirements of “hot”, live data) and that any archived data can be accessedwith ac-
ceptable QoS, so as not to hinder data transfers between partitions (see an example
of a RAID-0+RAID-0 CRAID layout in Figure 5.2112).

Using two independent partitions for hot and cold data allows for amore appro-
priate management of these two data sets, and also offers the opportunity to apply
layout optimizations suited to each of their requirements. In particular, effectively
optimizing the layout of data within a small confined partition offers several po-
tential benefits:

1. It is possible to create a large cache by using only a small fraction of all avail-
able disks, which allows important data to be cache-resident for longer pe-
riods of time with a small capacity tradeoff.

110

2. A disk-based cache is a persistent cache: this means that any optimized lay-
out continues to be valid as long as it is warranted by access semantics, even
if it is necessary to shutdown or reconfigure the storage system.

3. The size of the partition can be easily configured by an administrator or an
automatic process to better suit storage demands.

4. Clustering frequently accessed data together offers the opportunity to im-
prove access patterns: data accesses that were originally scattered can be se-
quentialized if the layout is appropriate. This also helps reduce seek times
and rotational delays in all disks since hot data blocks are placed close to
each other.

5. As we have seen, whenever new devices are added, the current strategies
need to redistribute large amounts of data in order to be able to use the
hardware effectively and maintain QoS levels (e.g. performance or load bal-
ance). A disk-based cache offers a unique possibility to maintain QoS by re-
distributing only the most accessed data. This significantly reduces the cost
of the extension process, since it limits the amount of data being worked on.

6. A partition extended over several devices has two advantages over using
dedicated disks. First, it maximizes the potential parallelism offered by the
storage system. Second, it is much more likely to saturate a reduced set of
dedicated disks than a large array. Third, benefits can be gained with the
existing set of devices, without having to acquire more.

Figure 5.3113 shows the control flow supported by CRAID’s architecture and its
main components. When an I/O request enters the system (see control path A in
the figure), it is captured by CRAID’s I/O Monitor which determines if the data ac-
cessed must be considered “active”. If so, data blocks are copied to the caching par-
tition if they are not already in it and an appropriate mapping [LBAorig ↦ LBAcache]
is stored in theMapping Cache (paths B.1 and B.2). From this point on, an I/O Redi-
rector will redirect all future accesses to LBAorig to the caching partition (paths C.1
and C.2). This continues until the I/O Monitor decides that a block is no longer
active and removes the entry from the Mapping Cache. Any update to the block’s
contents is then written back to 𝑃𝐴 (path D).

Hence, the upgrade process begins immediately when a new disk is added to
CRAID, (which forces 𝑃𝐶 to grow), and is interwoven with the array’s normal I/O

111

... . . . . .


.


.


.


.


.


.



.



.



.



...



.



.



.
RAID-
cache
partition

.
disk 
.

disk 
.

disk 
.

disk 
.

disk 
.

disk 
.

spatial locality
is maintained

.

empty blocks

.



.



.



.



.



.



.



.



.



.



.



.



.

. . .

.

. . .

.

. . .

.

. . .

.

. . .

.

. . .

.



.



.



.



.



.



.



.



.



.



.

RAID-
archive
partition

.

active data is copied
into PC : further accesses
will go there

.

disk 

.

disk 

.

disk 

.

disk 

.

disk 

.

disk 

Figure 5.2: Concept of a CRAID
architecture with RAID-0 in both

partitions. The caching partition is
assembled with segments from all five
disks. Active data is then copied into it,
where it is accessed and updated. When

a data block is no longer active, the
original block in the archival partition is
updated and the copy is removed from

the caching partition.

operation. This permits CRAID to use the new disks from the moment they are
added to the array.

In order to better understand CRAID’s inner workings, in the following sections
we elaborate on its design details by discussing each of the individual components
mentioned in the previous control flow: the I/O Monitor, the Mapping Cache, and
the I/O Redirector.

5.2.2 I/O Monitor

The I/O Monitor is the “intelligent” component responsible for analyzing I/O to
identify the current working set, and schedule the appropriate operations to copy
data between partitions. The I/O Monitor uses a conservative definition of working
set that includes the latest 𝑘 distinct blocks that have been more active, where 𝑘 is
𝑃𝐶 ’s current capacity.

Whenever a request requires a block copy that exceeds 𝑃𝐶 ’s current capacity, the
I/OMonitor checks if the cached copy is dirty and, if so, schedules the corresponding
I/O operations to update the original data. Otherwise, the datum is replaced by the
newly cached block, since there is no need to synchronize its contents back to 𝑃𝐴.
Currently, the I/Omonitor supports the following simple policies in order tomake
replacement decisions:

� Least Recently Used (LRU) uses the recency of access to decide if a block has
to be replaced: the algorithm simply discards the oldest block within the
working set.

112

...
CRAID

.

I/O request

.I/O MONITOR.

I/O REDIRECTOR

.

A

.

LBAorig

...

LBAorig

.

LBAorig

.

LBAcache

...

LBAcache

.

LBAcache

.

MAPPING CACHE

.

lookup

.

C.

.
update

.

B.

.

storagedevices

.
PC→PA
update.

send I/O
to PC

.

PA→PC
copy

. D.

C.

.

B.

.

Figure 5.3:Main software components and I/O control flow of a CRAID controller. The I/O Monitor captures incoming
data requests and analyzes them to determine the current set of hot data blocks. If a block is considered hot, the I/O
Monitor schedules the appropriate I/Os to copy it into the cache partition, and updates the Mapping Cache accordingly.
After that, subsequent requests to hot blocks are forwarded to the approppriate partition by the I/O Redirector, that uses
the Mapping Cache to determine the block’s specific location.

� Least Frequently Used with Dynamic Aging (LFUDA) uses popularity of access
and replaces the block with the smallest key 𝐾𝑖 such that:

𝐾𝑖 = (𝐶𝑖 × 𝐹𝑖) + 𝐿, (5.1)

where 𝐶𝑖 is the retrieval cost, 𝐹𝑖 is a frequency count and 𝐿 is a running age
factor that starts at 0 and is updated for each replaced block [7].

� Greedy-Dual-Size with Frequency (GDSF) is similar to LFUDA, but includes the
size of the original request, 𝑆𝑖, to scale the weight of the blocks. The GDSF
strategy [68, 28, 7] replaces the block with minimum key 𝐾𝑖 such that:

𝐾𝑖 = (𝐶𝑖 × 𝐹𝑖)/𝑆𝑖 + 𝐿 (5.2)

� Adaptive Replacement Cache (ARC) balances between recency and frequency
of access in an online and self-tuning fashion. ARC adapts to changes in the
workload by tracking ghost hits (i.e., recently evicted cache entries) and re-

113

places either the least recently used block or the least frequently used block,
depending on recent history [89].

� Weighted LRU (WLRU) is a simple extension of the LRU algorithm that tries to
find the least recently used block that is also clean (i.e. not dirty). In order to
avoid lengthy 𝑂(𝑘) traversals it uses a parameter 𝜔 ∈ ℝ to limit the number
of blocks that will be evaluated to 𝑘 ⋅ 𝜔. This also helps reduce the number
of I/O operations needed to keep consistency: if the data block replaced has
not been modified, there is no need to copy it back to 𝑃𝐴. If no suitable
candidate is found, the least recently used block is replaced.

We evaluate the effectiveness of these basic strategies to accurately predict varia-
tions in the workload in Section 5.4121. We implemented these basic strategies into
our prototype, instead of more complex ones, because these algorithms are typi-
cally extremely efficient and consume few resources, which makes them suitable
to be included in a RAID controller. Furthermore, their prediction rates are usually
quite high. Improving the I/O monitor by exploring more complex strategies and
data mining approaches is one aspect of our future work.

The I/O monitor is also in charge of rebalancing 𝑃𝐶 . When new devices are
added, the I/O monitor invalidates all the blocks contained in 𝑃𝐶 (writing back
to 𝑃𝐴 the copies that need updating) and starts filling it with the current working
set when blocks are requested. This conservative approach allows to create long
sequential chains of potentially related blocks, which improves the sequentiality
and parallelism of the data in 𝑃𝐶 . Note that since 𝑃𝐶 always holds ‘hot blocks’, the
rebalancing is never completely finished unless the working set remains stable for
a long time. Nevertheless, as we show in the following sections, the cost of this
‘on-line’ rebalancing is amortized by the performance obtained.

5.2.3 Mapping Cache

The Mapping Cache is an in-memory data structure used to translate block ad-
dresses in the 𝑃𝐴 to their corresponding copies in 𝑃𝐶 . The structure stores, for
each block copied to 𝑃𝐶 , the block’s LBA in 𝑃𝐴, the corresponding LBA in 𝑃𝐶 and
a flag indicating whether the cached copy has been modified or not.

Our current implementation uses a tree-based binary structure to handle map-
pings, which ensures that the total time complexity for a lookup operation is given
by 𝑂(𝑙𝑜𝑔 𝑘). Concerning memory, for every block in 𝑃𝐶 , CRAID stores 4 bytes for

114

each LBA and 1 dirty bit, plus 8 additional bytes for the structure pointer. Assum-
ing that all 𝑘 blocks are occupied, that the configured block size is 4 KB and a 𝑃𝐶
size of 𝑆 GB, the worst case memory requirement is 2 × 𝑆 MB for LBAs, 𝑆/25 MB
for the dirty information, and 4 × 𝑆 MB for the tree pointers. Thus, in the worst
case, CRAID requires memory of 0.58%4 the size of the cache partition, or approxi-

4That is,
(6𝑆 + 𝑆/25) ×
100/1024𝑆.mately 5.9MB per GB, an acceptable requirement for a RAID controller.

Notice that the destruction of the Mapping Cache can lead to data loss since
block updates are performed in place in the cache partition. To avoid this, failure
resilience is provided by maintaining a persistent log of which cached data blocks
have been modified and their translations. This ensures that these blocks, whose
cached copies were not identical to the original data, can be successfully recovered.
Blocks that were not dirty in 𝑃𝐶 do not need to be recovered and are invalidated.

5.2.4 I/O Redirector

The I/O Redirector is responsible for intercepting all read and write requests sent to
the CRAID volume and redirect them to the appropriate partition. For each request,
it first checks the Mapping Cache for an existing cached copy. If none is found, the
request is served from 𝑃𝐴. Otherwise, the request is dispatched to the appropriate
location in 𝑃𝐶 . Multi-block I/Os are split as required.

5.3 Methodology

In order to evaluate our proposal under realistic conditions, we use detailed sim-
ulations where we replay some of the real-time storage traces described in Chap-
ter 483. Note that some of these traces include data collected over several weeks or
months, which makes them intractable for fine-grained simulations. For this rea-
son, we simulate an entire continuous week5 chosen at random from each dataset.

5Just about
168 hours.

Specifically, the traces chosen to run the simulations are cello99, deasna, home02,
webresearch, webusers, wdev and proj. Note that we discard the animation collec-
tion in order to keep the number of experiments contained.

The first set of experiments (which we review in Section 5.4121), evaluates the
ability of the management algorithms presented in Section 5.2.2112 to effectively
predict and adapt to changes in the working set. The second set, on the other hand,
is designed tomeasure the performance and workload distribution of CRAID under

115

conditions as realistic as possible. Since CRAID’s goal is to extend current RAID ar-
chitectures like RAID-5 and RAID-0, this second set of experiments is further divided
into two independent groups of comparative simulations: one for CRAID configu-
rations based on RAID-5 and another for configurations based on RAID-0.

5.3.1 Configurations based on RAID-5

This first group of simulations evaluates how CRAID configurations based on RAID-5
perform against pure RAID-5 distributions. This allows us to see how the overhead
of computing, accessing and writing parities affects CRAID, and we can also com-
pare how it performs against current RAID-5 deployments. These simulations use
the following data configurations:

� RAID-5: A RAID-5 configuration that uses all disks available. Stripes are as
long as possible but are divided into parity groups to improve the robustness
and recoverability of the array (Figure 5.4a118). Results for this data config-
uration serve as an ideal baseline as it provides maximum parallelism and
ideal workload distribution. Notice, however, that extending such an array
in real life can be prohibitively expensive.

� RAID-5+: A RAID-5 configuration that has been expanded and restriped sev-
eral times. Each expansion phase adds 30% additional disks [83] that con-
stitute a new independent RAID-5. Thus, the system can be considered a
collection of independent RAID-5 arrays (or Logical Volumes), each with its
own stripe size, that have been united to expand the storage capacity (see
Figure 5.4b118). Results for this configuration establish a real baseline for a
more realistic storage system that has been upgraded many times.

� CRAID-5: A CRAID configuration that uses RAID-5 both in the cache partition
and the archive partition (see Figure 5.4c118). This strategy lets us evaluate
the effect of transferring data from and to the cache when the archive parti-
tion is ideally distributed.

� CRAID-5+: A CRAID configuration that uses RAID-5 for the caching partition
and RAID-5+ for the archive partition (see Figure 5.4d118). This lets us evalu-
ate the impact of our hybrid architecture in a more realistic storage system,
where the archive partition grows as a collection of Independent Logical Vol-
umes, and the cache partition as a unified data space.

116

� CRAID-5d and CRAID-5+d: CRAID configurations that are analogous to CRAID-5
and CRAID-5+ but using a fixed number of dedicated disks for the cache parti-
tion (see Figures 5.4e and 5.4f118). This allows us to evaluate the advantages,
if any, of using dedicated hardware instead of a partition that grows with the
number of disks.

� RandSlp: Additionally, we also evaluate a Random Slicing configuration with
support for parity groups as we are interested in seeing how RAID-5-based
CRAID fares against our previous proposal. Nevertheless, the default im-
plementation of Random Slicing offers fault tolerance via replication, which
cannot be meaningfully compared against parity methods like those used in
RAID-5. For this reason, we extend the Random Slicing implementation with
a parity mechanism so that the comparison makes sense.

Please note that in the following sections we may need to refer to the CRAID
configurations explained above as a group. Whenever this happens we will use the
term CRAID-5* to include all the different variations.

5.3.2 Configurations based on RAID-0

Similarly to the first group, the second group simulates several CRAID configura-
tions based on RAID-0 and compares them against a pure RAID-0. This group of
experiments allows us to determine the effect of the caching partition in a pure
parallel distribution like RAID-0. These simulations use the following data layouts,
an overview of which can be seen in Figure 5.5119:

� RAID-0: A RAID-0 configuration that uses all disks available. Stripes are as
long as possible with no parity groups or other fault tolerance mechanism.
Results for this layout serve as an ideal baseline as it provides maximum par-
allelism and ideal workload distribution. Similarly to RAID-5, however, ex-
tending such an array in real life can be prohibitively expensive.

� SEQ:This strategy simply places data sequentially in a device. When the de-
vice in question is full, SEQ chooses the next device in the array and proceeds
to fill it sequentially as well. Obviously, this kind of strategy offers very poor
results regarding performance (a request can only be served by one or two
devices atmost) and load balance (data fills up disks one at a time, leaving the
others unused), but serves to determine how CRAID can improve its results
in a combined strategy.

117

..data.

hot data

.

parity

(a) RAID-5

... . P. . . P. . P.


.
P

.


.


.
P

.


.
P

.


.

P

.



.



.

P

.



.



.



.

P

.



.



.

P

.



.



.

P

.

P

.



.

parity group 

.

parity group 

.

parity group 

.
d
.

d
.

d
.

d
.

d
.

d
.

d
.

d
(b) RAID-5+

... . . . P. . . P.


.


.


.
P

.


.


.
P

.


.



.



.

P

.



.



.

P

.



.



.



.

P

.



.



.



.



.



.

P

.

RAID- LV

.

RAID- LV

.
d
.

d
.

d
.

d
.

d
.

d
.

d
.

d

(c) CRAID-5

... . P’. . . P’. . P’.


.
P’

.


.


.
P’

....



.



.

P

.



.



.

P

.



.

P

.



.

P

.



.



.

P

.



.

P

.



.

P

.



.



.

P

.



.



.



.

P

.



.



.



.



.



.



.



.



.

parity group 

.

parity group 

.

parity group 

.

parity group ’

.

parity group ’

.

parity group ’

.
d
.

d
.

d
.

d
.

d
.

d
.

d
.

d
.

ca
ch
e .

ar
ch
iv
e

(d) CRAID-5+

... . P’. . . P’. . P’.


.
P’

.


.


.
P’

....



.



.



.



.

P

.



.



.

P

.



.



.



.

P

.



.



.

P

.



.



.



.

P

.



.



.

P

.



.



.



.



.



.



.



.



.



.



.

RAID- LV

.

RAID- LV

.

parity group ’

.

parity group ’

.

parity group ’

.
d
.

d
.

d
.

d
.

d
.

d
.

d
.

d
.

ca
ch
e .

ar
ch
iv
e

(e) CRAID-5d

.. . . . . P’.


.


.


.
P’

.


.



.



.

P

.



.



.

P

.



.

P

.



.

P

.



.



.

P

.



.

P

.



.

P

.



.



.

P

.



.



.



.

P

.



.



.

P

.



.



.

P

.

P

.



.



.



.



.



.



.



.



.



.



.

parity group 

.

parity group 

.

parity group 

.
d

.
d

.
d

.
d

.
d

.

d

.

d

.

d

.

d

.

d

.

d

.

d

.

d

.

de
di
ca
te
d

LR
U
ca
ch
e.

ar
ch
iv
e

(f) CRAID-5+d

.. . . . . P’.


.


.


.
P’

.


.



.



.



.



.

P

.



.



.

P

.



.



.



.

P

.



.



.

P

.



.



.



.

P

.



.



.

P

.



.



.



.

P

.



.



.



.



.



.

P

.



.



.



.



.



.



.



.



.

RAID- LV

.

RAID- LV

.
d

.
d

.
d

.
d

.
d

.

d

.

d

.

d

.

d

.

d

.

d

.

d

.

d

.

de
di
ca
te
d

LR
U
ca
ch
e.

ar
ch
iv
e

Figure5.4:Overviewof thedifferent configurationsbasedonRAID-5 that are evaluated in thefirst groupof simulations.
Note that in all configurations based on RAID-5 stripes use all data disks, whereas in configurations based on RAID-5,+

stripes in the archive partition are confined to independent logical volumes.

118

..data.

hot data

(a) RAID-0

... . . . . . . .


.


.


.


.


.


.


.


.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.
d
.

d
.

d
.

d
.

d
.

d
.

d
.

d
(b) SEQ

... . . . . . ..


.


.


.


.


.


...



.



.



.



.



.



...



.



.



.



.



.



...
d
.

d
.

d
.

d
.

d
.

d
.

d
.

d

(c) CRAID-0

... . . . . . . .


........



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.



.
d
.

d
.

d
.

d
.

d
.

d
.

d
.

d
.

ca
ch
e .

ar
ch
iv
e

(d) CRAID-0+

... . . . . . . .


.


.......



.



.



.



.



.



.



.



.



.



.



.



.



.



.



..



.



.



.



.



.



.



..



.



.



.



.



.



.



.



.



.



.
d
.

d
.

d
.

d
.

d
.

d
.

d
.

d
.

ca
ch
e .

ar
ch
iv
e

Figure 5.5: Overview of the different configurations based on RAID-0 that are evaluated in the second group of simula-
tions. Note that in all configurations based on RAID-0 data is striped across all available disks, whereas in configurations
based on SEQ, data blocks in the archive partition are allocated sequentially as long as disk capacity is not full.

� CRAID-0: A configuration that uses RAID-0 both in the cache partition and
archive partition. This strategy lets us evaluate if a dedicated RAID-0 distri-
bution for frequently used data outperforms a global RAID-0 layout.

� CRAID-0+: ACRAID configuration that uses RAID-0 for the cache partition and
SEQ for the archive partition. With this combination we intend to examine
the effect of CRAID in a bad allocation policy like SEQ.

� RandSl: Additionally, we also evaluate a Random Slicing configuration since
we are interested in seeing how RAID-0-based CRAID fares against our previ-
ous proposal.

Please note that, like before, in the following sections we may need to refer to
the CRAID configurations explained above as a group. Whenever this happens we
will use the term CRAID-0* to include all the different variations.

119

5.3.3 Simulation system and parameters

The simulator itself consists of a Workload Generator and a simulated storage sub-
system, which is composed of an array controller and the appropriate storage com-
ponents. For each request recorded in the trace files, the workload generator issues
a corresponding I/O at the appropriate time and sends it to the array controller.

The array controller’s main component is the I/O Processor which encompasses
the functions of both the I/O Monitor and the I/O Redirector. According to the in-
coming I/O address it checks the Mapping Cache and forwards it to the segment of
the caching partition of the appropriate disk.

The Workload Generator, the Mapping Cache and the I/O Processor are imple-
mented in C++, while the different storage components are implemented by a disk
simulation tool called DiskSim. DiskSim [26] is an accurate and thoroughly vali-
dated disk system simulator developed by the Carnegie Mellon University. It has
been used extensively in several research projects for the study of storage system
architectures [3, 102, 154, 80].

All experiments use a simulated testbed consisting of several Seagate Cheetah®
15,000 rpm disks [128], each with a capacity of 146GB and 16MB of cache. This
is the latest (fully validated) disk model available to DiskSim. Though somewhat
old, we decided to use these disks in order to take advantage of the detailed sim-
ulation model offered by DiskSim, rather than using a less detailed one. Besides,
since our analysis is a comparative one, the disks’s performance should benefit or
harm all strategies equally. Since the capacity and number of disks in the original
traced systems is different from our configuration, we determine the datasets for
each trace via static analysis. These datasets are mapped onto the simulated disks
uniformly so that all disks have the same access probability.

All the arrays simulated use 50 disks, except those for CRAID-5d and CRAID-5+d
that include 10 additional disks (20%) for the dedicated cache. RAID-5 uses a parity
group size of 10 disks both as a stand-alone allocation policy or as a part of a CRAID
configuration. Similarly, RAID-5+ begins with 10 disks and adds a new array of 3, 4,
5, 7, 9 and 12 disks in each expansion step until the 50 disk mark is reached. The
stripe unit for all policies is 128KB and has been computed based on Chen’s and
Lee’s work [29].

We simulate RAID-5 and RAID-5+ in their ideal state, i.e., when the dataset has
been completely restriped. Since CRAID is permanently in an “expansion” phase
and sacrifices a small amount of capacity from each disk, for the strategy to be
useful its performance should be close to an optimum RAID-5 array, rather than to

120

Table 5.1: Hit ratio (%) for each cache partition management algorithm

Trace LRU LFUDA GDSF ARC WLRU
(ω=0.5)

cello99 65.23 65.23 48.75 65.66 65.22
deasna 89.63 89.90 67.24 89.65 89.73
home02 93.91 93.86 77.93 93.92 93.90
webresearch 81.14 78.92 54.41 82.38 82.14
webusers 80.40 78.72 60.49 81.01 81.40
wdev 91.04 91.88 32.78 91.06 91.02
proj 75.55 75.73 25.43 75.58 75.65

one being restriped. In the remainder of this section we present the summarized
results of our experimental runs. In all experiments, the cache partition begins in
a cold state.

5.4 Management of the Cache Partition

Here we evaluate the effectiveness of the different cache management algorithms
supported by the I/O Monitor (refer to Section 5.2.2112). In this experiment we are
concerned with the ideal results of the prediction algorithms to select the best one
for CRAID. Thus, we use a simplified disk model that resolves each I/O instantly,
and allows us to measure the properties of each algorithm with no interferences.
The remaining experiments use the more realistic disk model.

Tables 5.1↑ and 5.2122 show, respectively, the hit and replacement ratio delivered
by each algorithm using a 𝑃𝐶 size of 0.1% the weekly working set. We observe
that all algorithms but one behave similarly, with the ARC algorithm showing the
best results in both evaluations. The only exception is the GDSF algorithm, which
shows significantly worse results probably due to the addition of the request size as
a metric, which is not very useful in this kind of scenario.

For CRAID-5* strategies, however, evictions of clean blocks are preferred as long
as the effectiveness of the algorithm is not compromised. This is because evicting
a dirty block forces CRAID to update the original blocks and its parity in the 𝑃𝐴,
which requires 4 additional I/Os (2 reads and 2 writes).

For this reason, in the CRAID-5* experiments we configure the I/O Monitor with
the WLRU (𝜔 = 0.5) algorithm since it shows a hit and replacement ratio similar to
ARC, while reducing the amount of dirty evictions. For the CRAID-0 experiments,

121

Table 5.2: Replacement ratio (%) for each cache partition management algorithm

Trace LRU LFUDA GDSF ARC WLRU
(ω=0.5)

cello99 34.76 34.76 51.24 34.31 33.76
deasna 10.36 10.09 32.74 10.34 10.34
home02 6.08 6.13 22.06 6.07 6.08
webresearch 18.84 21.06 45.58 17.60 18.83
webusers 19.58 21.26 39.50 18.98 19.28
wdev 8.88 8.04 67.13 8.85 8.58
proj 24.42 24.24 74.55 24.39 24.72

however, we favor a pure LRU algorithm because its implementation is simpler than
that of ARC, which is more desirable in a RAID controller.

5.5 CRAID-5* Response Time

In this section we evaluate the performance impact of using CRAID with parities:
for each allocation policy and configuration, wemeasure the response time of each
read and write request occurred during the simulations. Figures 5.6123 and 5.8126
show the response time measurements6 of each CRAID variant, compared to the

6Computed with
a 95% confi-

dence interval. RAID-5 and RAID-5+ layouts.
Note that each strategy was simulated with different cache partition sizes in

order to estimate the influence of this parameter on performance. In the results
shown in this section, the cache partition is successively doubled until no evictions
have to be performed. This represents the best case for CRAID since data movement
between the partitions is reduced to a minimum.

5.5.1 Read requests

The results for read requests are shown in Figure 5.6↷. First, we observe that re-
quests take notably longer to complete in RAID-5+ than in RAID-5 in all cases. This
is to be expected since the longer stripes in RAID-5 increase its potential parallelism
and provide a more effective workload distribution.

Second, in most traces, hybrid strategies CRAID-5 and CRAID-5+ offer perfor-
mance comparable to that of vanilla RAID-5, and even better for certain cache sizes
(e.g., the webusers trace in Figure 5.6d↷). The explanation lies in the fact that

122

RAID-5
RAID-5+

CRAID-5
CRAID-5+

CRAID-5d

CRAID-5+d
RandSlp

(a) cello99

0.02 0.04 0.08 0.16 0.32
cache size (% per disk)

0

5

10

15

20

re
sp

on
se

 ti
m

e (
m

s)
(b) deasna

0.08 0.16 0.32 0.64 1.28
cache size (% per disk)

0.0
0.5
1.0
1.5
2.0
2.5

(c) home02

0.02 0.04 0.08 0.16 0.32
cache size (% per disk)

0
2
4
6
8

10

(d) webusers

0.004 0.008 0.016 0.032 0.064
cache size (% per disk)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

re
sp

on
se

 ti
m

e (
m

s)

(e) wdev

0.002 0.004 0.008 0.016 0.032
cache size (% per disk)

0
2
4
6
8

10
(f) proj

0.016 0.032 0.064 0.128 0.256
cache size (% per disk)

0
2
4
6
8

10

Figure 5.6: I/O response time for read requests in CRAID-5* strategies. The experiment simulates all individual user
requests collected in the traces andmeasures the time taken for each read request to complete. The points in the figure
depict the mean response time for all user requests computed with a 95% confidence interval. Note that errorbars are
not included since the error interval is too small to be meaningful.

CRAID’s cache partition is able to better exploit the spatial locality available in com-
monly used data: co-locating hot data in a small area of each disk helps reduce
seek times when compared to the same data being randomly spread over the en-
tire disk. This is proven by the results shown in Figure 5.7124: this figure shows the
probability distribution (CDF) of the sequential access percentage for the cello99 and
webusers traces (computed as #seq_access/#accesses and aggregated per second of simu-
lation). Here we see that access sequentiality in CRAID-5 and CRAID-5+ is similar to
that of RAID-5 and significantly better than that of the RAID-5+ strategy.

Nevertheless, the effectiveness of the strategy depends on how well hot data is
predicted. Figure 5.6f↑ shows that performance results for the proj trace are not as
good as in the other traces. Table 5.3124 shows that CRAID’s best hit ratio for the proj
trace is lower than in other traces (85.25% vs. 99.51% in home02, for instance) and
that its eviction count is higher. These two factors contribute to more data being
transferred to the cache partition and explain the drop in performance.

123

RAID-5
RAID-5+

CRAID-5
CRAID-5+

(a) cello99

0 20 40 60 80 100
sequential access %

0.0

0.2

0.4

0.6

0.8

1.0

%
 of

 se
co

nd
s w

ith
 se

q
≤

x

(b) webusers

0 20 40 60 80 100
sequential access %

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.7: Cumulative distribution functions of sequential accesses in traces cello99 andwebusers. Sequentiality per-
centages are computed as

#seq_access

#accesses
and captured at each second of simulation. Simulations themselves are configured

with PC size of 0.02% and 0.004%, respectively. Similar results were observed for the other traces.

Table 5.3: Best hit ratio and worst eviction ratio from all simulations

Trace Best hit ratio Worst eviction ratio
Reads Writes Reads Writes

cello99 97.85% 98.88% 21.28% 9.53%
deasna 99.53% 97.80% 0.92% 3.17%
home02 99.51% 99.53% 3.32% 2.59%
webresearch - 98.76% - 7.66%
webusers 94.95% 99.33% 16.65% 6.56%
wdev 98.62% 99.40% 1.90% 10.76%
proj 85.25% 88.45% 21.97% 9.13%

Also notice that, most interestingly, the performance and sequentiality provided
by CRAID-5+ is similar to that of CRAID-5, even though it uses a RAID-5+ strategy for
the archive partition. This proves that the cache partition is absorbing most of the
I/O, and the array behaves like an ideal RAID-5 array independently of the strategy
used for stale data.

Third, increasing the size of the cache partition improves read response times in
all CRAID-5 variants. This is to be expected since a larger cache partition increases
the probability of a cache hit and also decreases the number of evictions, which
greatly improves the effectiveness of the strategy. In most traces, however, once a
certain partition size 𝑆𝑚𝑎𝑥 is reached, response times stop improving (e.g., deasna

124

Table 5.4: Comparison of CRAID’s dedicated vs. non-dedicated approach for the wdev trace (PC size:
0.002%). Similar results were observed for the other traces.

Strategy Mean 99th pctile Max

Ioq Conc Ioq Conc Ioq Conc

CRAID-5+d 4.74 6.49 63 23 807 40
CRAID-5+ 2.11 8.65 20 44 381 50

Ioq: ioqueue size, Conc: concurrent disks.

with 𝑆𝑚𝑎𝑥 = 0.16% or home02 with 𝑆𝑚𝑎𝑥 = 0.08%, Figures 5.6b and 5.6c123, re-
spectively). Examination of these traces shows that CRAID is able to deliver a near
maximum hit ratio with a partition of size 𝑆𝑚𝑎𝑥, and increasing it further provides
barely noticeable benefits.

Finally, we see that using dedicated disks for the cache partition significantly
degrades the performance offered by CRAID. Examination of the traces reveals that,
as expected, the I/O queues in the dedicated disks have significantly more pending
requests than those in the disks of the non-dedicated strategies. Also, the number
of concurrently active disks during the simulation is lower (see Table 5.4↑). These
results confirm our expectations that using a part of each disk to create the cache
partition is better than using dedicated disks (elaborated in Section 5.2.1110).

Interestingly, the results from Random Slicing with parity support (RandSlp) are
usually faster than RAID-5+ but slower than RAID-57 and are always worse than the

7Except in those
workloads where the
two RAID variants
show similar results.

results of the non-dedicated CRAID strategies. This is to be expected since a ran-
domized distribution can disrupt locality patterns and the maximum parallelism
obtained by this kind of distribution will be lower than that of an adequately dis-
tributed RAID in most cases.

5.5.2 Write requests

The results for write requests are shown in Figure 5.8126. Similarly to read requests,
we observe that write requests are significantly slower in RAID-5+ than in RAID-5, for
all traces. Most importantly, the hybrid strategies CRAID-5 and CRAID-5+ perform
better than traditional RAID-5 in all traces except webusers, where performance is
slightly below that of RAID-5.

These improved response times can be explained by two reasons. First, since
write requests are always served from the cache partition (except in the case of

125

RAID-5
RAID-5+

CRAID-5
CRAID-5+

CRAID-5d

CRAID-5+d
RandSlp

(a) cello99

0.02 0.04 0.08 0.16 0.32
cache size (% per disk)

0
50

100
150
200
250
300

re
sp

on
se

 ti
m

e (
m

s)

(b) deasna

0.08 0.16 0.32 0.64 1.28
cache size (% per disk)

0
10
20
30
40
50
60
70

(c) home02

0.02 0.04 0.08 0.16 0.32
cache size (% per disk)

0
200
400
600
800

1000

(d) webresearch

0.002 0.004 0.008 0.016 0.032
cache size (% per disk)

0
5

10
15
20
25
30
35
40

re
sp

on
se

 ti
m

e (
m

s)

(e) webusers

0.004 0.008 0.016 0.032 0.064
cache size (% per disk)

0
5

10
15
20
25
30
35
40

(f) wdev

0.002 0.004 0.008 0.016 0.032
cache size (% per disk)

0
2
4
6
8

10
12
14

re
sp

on
se

 ti
m

e (
m

s)

(g) proj

0.016 0.032 0.064 0.128 0.256
cache size (% per disk)

0
5

10
15
20
25
30
35
40

Figure 5.8: I/O response time for write requests in CRAID-5* strategies. The experiment simulates all individual user
requests collected in the traces andmeasures the time taken for eachwrite request to complete. The points in the figure
depict the mean response time for all user requests computed with a 95% confidence interval. Note that errorbars are
not included since the error interval is too small to be meaningful.

an eviction), response times benefit greatly from the improved spatial locality and
sequentiality provided by the cache partition.8 Second, the smaller the cache par-

8Obviously, pro-
vided that the pre-

diction of the work-
ing set is accurate.

tition fragment for each disk is, the more likely it is that accesses to this fragment
benefit from the disk’s internal cache. This explains why response times in Fig-
ure 5.8↑ increase slightly for larger partition sizes: a smaller cache partition means
more evictions in CRAID, but it also means a smaller fragment for each disk and a

126

more effective use of its internal cache. The effect of this internal cache is highly
beneficial, to the point that it amortizes the additional work produced by extra
evictions.

Dedicated strategies CRAID-5d and CRAID-5+d, on the other hand, show worse re-
sponse times when compared to their non-dedicated counterparts, exactly by the
same causes explained for read requests.

Concerning RandomSlicing, the results show the same pattern observed for read
requests: it is usually faster than RAID-5+ but slower than RAID-5, and the non-
dedicated variants of CRAID behave better in most cases.

5.6 CRAID-5* Workload Distribution

In this experiment we evaluate the ability of CRAID-5* strategies to maintain a uni-
form workload distribution. For each second of simulation we measure the I/O
load in MBs received by each disk and we compute the coefficient of variation as
a metric to evaluate the uniformity of its distribution. The coefficient of varia-
tion (𝑐𝑣) expresses the standard deviation as a percentage of the average (𝜎/𝜇), and
can be interpreted as how the actual workload deviates from an ideal distribution.9

9The smaller 𝑐𝑣 is,
the more uniform the
data distribution.We perform this experiment for all strategies already described and with all the

partition sizes used in Section 5.5122.

5.6.1 Impact of CRAID

Figures 5.9a and 5.9b128 showCDFs of 𝑐𝑣 per% of samples (seconds) for the deasna
andwdev traces, respectively. Notice that for CRAID strategies we showboth the best
and worst curves obtained (labeled as ‘b.c’ and ‘w.c’, respectively) and we compare
them with the results for RAID-5 and RAID-5+ (see Table 5.5129 for their respective
correspondences with actual partition sizes). We observe that there is a signifi-
cant difference between the workload distribution offered by RAID-5 and that of
the RAID-5+ layout, which is to be expected since the “segmented” nature of RAID-5+
naturally hinders a uniform workload distribution.

Most interestingly, all CRAID strategies exhibit a workload distribution very sim-
ilar to (and sometimes better than) that of RAID-5. More importantly, this benefit
appears in even those CRAID configurations that use RAID-5+ for the archive parti-
tion, despite its poor performance and uneven distribution. This definitely proves

127

RAID-5
RAID-5+

CRAID-5 (b.r.)
CRAID-5 (w.r.)
CRAID-5+ (b.r.)
CRAID-5+ (w.r.)

(a) deasna (not dedicated)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
coefficient of variation (σ/μ)

0.0

0.2

0.4

0.6

0.8

1.0

%
 of

 se
co

nd
s w

ith
 c v

 ≤
 x

(b) wdev (not dedicated)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
coefficient of variation (σ/μ)

0.0

0.2

0.4

0.6

0.8

1.0

RAID-5
RAID-5+

CRAID-5d (b.r.)

CRAID-5d (w.r.)

CRAID-5+
d (b.r.)

CRAID-5+
d (w.r.)

(c) deasna (dedicated)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
coefficient of variation (σ/μ)

0.0

0.2

0.4

0.6

0.8

1.0

%
 of

 se
co

nd
s w

ith
 c v

 ≤
 x

(d) wdev (dedicated)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
coefficient of variation (σ/μ)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.9: Cumulative distribution functions of the coefficient of variation (𝖼𝗏) for workload distribution in traces
deasna and wdev. Results were collected during simulations (1-week) and aggregated per % of samples (seconds).
Note that curves that follow the same path as others are drawnwith a thicker line width in order to be distinguishable.
Similar results were observed for the other traces.

that the cache partition is successful in absorbing most I/O, and that it behaves
close to an ideal RAID-5 despite the cost of the additional data transfers.

5.6.2 Influence of the cache partition size

Though barely noticeable, an unexpected result is that, in all traces, the workload
distribution degrades as the cache partition grows (see Table 5.5↷). Examination
of the traces shows that a larger cache partition slightly increases the probability
that certain subsets of disks aremore used than others due to the different layout of
data blocks. This is reasonable since the current version of CRAID does not perform
direct actions to enforce a certain workload distribution, but rather relies on the

128

Table 5.5: Influence of PC size on workload distribution

Trace CRAID-5 CRAID-5+

best 𝗰𝘃 worst 𝗰𝘃 best 𝗰𝘃 worst 𝗰𝘃

cello99 0.02% 0.32% 0.02% 0.32%
deasna 0.08% 1.28% 0.08% 1.28%
home02 0.02% 0.32% 0.02% 0.32%
webresearch 0.002% 0.032% 0.002% 0.032%
webusers 0.004% 0.064% 0.004% 0.064%
wdev 0.002% 0.032% 0.002% 0.032%
proj 0.016% 0.256% 0.016% 0.256%

strategy used for the cache partition. Improving CRAID to employ workload-aware
layouts is one of the subjects of our future investigation.

5.6.3 Workload with dedicated disks

Thecurves for CRAID-5d and CRAID-5+d seen in Figures 5.9c and 5.9d↶ demonstrate a
poor workload distribution for dedicated approaches, when compared to the other
strategies. This is to be expected since the dedicated disks absorb much of the
I/O workload and end up degrading the global workload of the system. Note that
this does not necessarily mean that the workload directed to the dedicated disks is
unbalanced, but rather that the other disks are being underutilized.

5.7 Performance of CRAID-0*

Finally, to conclude CRAID’s experimental evaluation, let’s take a look to the results
of CRAID-0. For brevity’s sake, we only review the simulations of some of the traces,
since the results and conclusions are similar to those shown in the CRAID-5* evalu-
ation. Please note that all the experiments discussed in this section use the 𝑃𝐶 size
that produced the best results for the CRAID-5* experiments.

5.7.1 Response time

The bar plots in Figure 5.10130 (top row) show the average response time10 for read
10Again, computed
with a 95% confi-
dence interval.requests for the cello99, deasna, home02 andwebusers traces. As expected, requests

129

SEQ
RAID-0
CRAID-0
CRAID-0+

RandSl

(a) cello99

reads
1
2
5

10
20
50

100
tim

e (
m

se
cs

, lo
g)

(b) deasna

reads
1
3
10
30
100
300
1000

(c) home02

reads
1

4
10

40
100

400
(d) webusers

reads
1

2
3
5

10

20

writes1

5
10
25
50

100
250

tim
e (

m
se

cs
, lo

g)

writes1

10

100

500
2000

writes1
4
10
40
100
400
1600

writes1
2
3
5
10
20
40

Figure 5.10: Average I/O response time in CRAID-0* strategies. The experiment simulates all individual user requests
collected in the traces andmeasures the time taken for each write request to complete. Bars depict the mean response
time for all user requests computed with a 95% confidence interval.

are significantly slower in SEQ than in RAID-0, with response times in general be-
tween one and two orders of magnitude slower. Notice that in most cases, the
performance of CRAID-0+ is similar to that of RAID-0, which further validates our
hypothesis that there’s no need to optimize the data placement of all the data space,
since CRAID is able to obtain good results even with a bad archival strategy.

In addition, notice that the performance of CRAID-0 shown for traces cello99
and webusers is slightly better than that of RAID-0. Again, this happens because
currently active data is clustered in the cache partition, thus benefiting from im-
proved spatial locality. Interestingly, the performance gain for webusers is lower
than for others workloads.

Plots in the bottom row show the average response time for writes requests. We
can see the same behavior than in the previous experiment: the response times of
the hybrid strategies are similar to those of RAID-0 even taking into account the
simple LRU replacement policy and the extra overhead added by replacing data
from the cache partition.

The results for Random Slicing are similar to those we saw in Section 5.5122. As
expected, the performance exhibited by Random Slicing is much better than that of

130

RAID-0
SEQ
CRAID-0
CRAID-0+

RandSl

(a) cello99

0 1 2 3 4 5 6 7 8
coefficient of variation (σ/μ)

0.0

0.2

0.4

0.6

0.8

1.0

%
 of

 sa
m

ple
s ≤

 x
(b) deasna

0 1 2 3 4 5 6 7 8
coefficient of variation (σ/μ)

0.0

0.2

0.4

0.6

0.8

1.0

(c) home02

0 1 2 3 4 5 6 7 8
coefficient of variation (σ/μ)

0.0

0.2

0.4

0.6

0.8

1.0

%
 of

 sa
m

ple
s ≤

 x

(d) webusers

0 1 2 3 4 5 6 7 8
coefficient of variation (σ/μ)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.11: Cumulative distribution function of the coefficient of variation (𝖼𝗏) for workload distribution in traces
cello99, deasna, home02 and webusers. Results were collected during simulations (1-week) and aggregated per % of
samples (seconds).

SEQ, but in general requests are slower than RAID-0 and the CRAID-0 variants. The
reasoning behind this behavior is that since Random Slicing does not take any steps
to preserve locality patterns, it is highly possible that the randomization process
degrades spatial locality.

5.7.2 Workload distribution

CDFs in Figure 5.11↑ show the probability distribution of the coefficient of vari-
ation for each simulation. As expected, SEQ offers highly unbalanced I/O in all
simulations, whereas the workload distribution offered by RAID-0 is significantly
better in all cases, even when using SEQ as the archival strategy.

Interestingly, the workload distribution shown by Random Slicing is slightly bet-
ter than the exhibited by RAID-based strategies. Clearly, the workload distribution
provided by the use of a pseudo-random hash function is closer to an ideal distri-

131

bution than RAID striping. The reason for this lies in that access patterns to certain
clusters of blocks can be better spread by a randomization function, whereas a nor-
mal striping can be liable to use only a certain number of devices. Nevertheless, the
difference is only significant in the home02 trace (Figure 5.11c131), and the results
offered by RAID-0 and the CRAID-0* variants are still good considering the perfor-
mance improvement.

5.8 Conclusions

In this chapter, we have proposed and evaluated CRAID, a self-optimizing RAID ar-
chitecture that automatically rebalances the layout of frequently accessed data in
a dedicated cache partition. CRAID is designed to accelerate the upgrade process
of traditional RAID architectures by limiting it to this partition, which contains the
data that is currently important and on which certain QoS levels must be kept.

We have analyzed CRAID using seven real-world traces each with differing work-
loads and collected at different times during the last decade. Our analysis shows
that CRAID is highly successful in predicting the data workload and its variations
both in RAID-5 and RAID-0 arrays. Further, if an appropriate data distribution is
used for the cache partition, CRAID optimizes the performance of read and write
traffic due to the increased locality and sequentiality of frequently accessed data.
Specifically, with our experiments we have shown that it is possible to achieve a
QoS competitive with an ideal RAID-5 or RAID-0 array by creating a small partition
of 1.28% the available storage size or less, regardless of the layout used for cold data
within the archive partition. This is particularly important, because it proves that it
is possible to archive data incrementally with no special treatment and, at the same
time, create specific optimizations for heavily accessed data so that the throughput
of the storage architecture scales gracefully.

Additionally, we have also compared CRAID against our previous proposal Ran-
dom Slicing. Despite redistributing in all cases less data than the ideal amount,
CRAID consistently improves the response time of Random Slicing, regardless of the
trace examined, both in its RAID-0 and RAID-5 variants. Concerning workload dis-
tribution, Random Slicing offers results closer to an ideal distribution than those of
CRAID, due to its randomized approach. Nevertheless, the difference is minimal,
and the distribution offered by CRAID is competitive with RAID.

In summary, we believe that CRAID is a novel approach to building RAID architec-
tures that can offer reduced upgrade times and I/O performance improvements. In

132

addition, its ability to combine different data layouts can serve as a starting point
to design scalable allocation strategies more conscious about the semantics and
correlations between different data blocks.

133

Chapter6
Conclusion

“Let the future tell the truth, and evaluate each one according to his
work and accomplishments. The present is theirs;

the future, for which I have really worked, is mine.”
— Nikola Tesla

Dear reader, if you have painstakingly worked your way through all or most of the
pages in this dissertation let me thank you and salute you: it is no meager task. In
this final chapter of the thesis, we will muse upon the topics discussed in the main
chapters and highlight the principal contributions of this work. Finally, we will try
to answer one of the most dreaded questions for any scientist: “what’s next?”

oo

In Chapter 0, ‘Humans and information storage’1, we presented an overview of
the problem that continuous data creation poses for current and future storage
systems. This chapter served as a starting point to discuss the reasons that lead
to the increasing creation and storage of data, the intrinsic challenges tied to the
management of large amounts of data and the technical limitations of magnetic
disks which are still the dominant technology used in large-scale storage.

m

With Chapter 1, ‘Background and related work’11, we gave an overview of the
current state-of-the-art knowledge in large-scale storage infrastructures. The pri-
mary intention of this chapter was to establish a necessary knowledge basis for the

135

http://en.wikipedia.org/wiki/Nikola_Tesla

rest of the thesis, and also to get deeper into the specific problems in large-scale
data management, abandoning the necessarily shallow views presented in the first
chapter. It was also important to introduce the technological foundations onwhich
later chapters are based, and thus we reviewed the most common storage architec-
tures (like SAN and NAS), as well as the data distribution mechanisms (randomized
versus deterministic) currently in use. The chapter concluded by discussing the
characterization of access patterns and hierarchical storage which were necessary
for Chapter 483 and Chapter 5107, respectively.

m

Chapter 2, ‘Scalable data distribution’29 reported on our research in scalable stor-
age infrastructures based on pseudo-randomized data distribution. In this chapter,
the emphasis was put on attaining a balanced data distribution with minimal data
migration during storage upgrades. Although randomized data distribution is a
commonly used technique to solve this particular problem and differing strategies
abound, there were no formal comparative studies between them before our work.
Thus, we offered an analysis that compared some of the best known randomized
data distribution strategies in a common environment, evaluating them in terms
of distribution fairness, performance, memory usage and adaptivity to changes in
the infrastructure.

In addition, we also contributed a definition for a new pseudo-randomized
strategy that outperformed the current ones, both in memory usage and lookup
time, and had comparable adaptivity. What was novel about this strategy is that it
used a small interval table to keep track of changes in the storage infrastructure,
thus decoupling the lookup process (which was based on a random function) from
the reconfiguration process (which was deterministic).

m

WithChapter 3, ‘PRNGs in data distribution’65, we dived into the field of pseudo-
random number generation and how it might affect data distribution. Our main
contribution in this chapter was an analysis of eighteen different pseudo-random
number generators and their influence on the performance anddistribution quality
of several randomized strategies. We also contributed a ranking of all the analyzed
PRNGs based on how they affected load balance and performance.

oo

136

The previously discussed chapter marked the end of the first part of the thesis,
where we established that minimal data migration is necessary in order to achieve
a sustainable growth. With the second part of the thesis, we introduced the no-
tion that minimum data migration might be too costly for storage infrastructures
of Petascale and above complexity. This apparent conundrum led us to propose a
novel concept for data migration that used semantic information in order to de-
termine favorable data to migrate. Hence, instead of looking at the dataset as an
opaque slab of data that needs to be sliced and redistributed, we inspected its in-
dividual components and redistributed only those that could maximize the future
overall performance of the system.

oo

In Chapter 4, ‘Long-term locality in mass storage’83, we showed our attempts to
find a group of long-term, frequently used data; that is, a group of data that received
the majority of client accesses and remained stable over time. Our hypothesis was
that if such a group existed in a large amount of workloads, it would be possible to
design an upgrade strategy that focused only on this data, reducing the amount of
work to be done during upgrades and with—hopefully—performance levels simi-
lar to other storage strategies.

The chapter contributed an analysis of long-term access patterns in eight stor-
ageworkloads, whichwas later extended to four additionalworkloads. The analysis
demonstrated that our initial hypothesis was valid: most workloads showed a high
amount of blocks shared during relatively long periods of time, and those blocks re-
ceived the majority of client accesses. Furthermore, this set of “interesting” blocks
was small when compared to the entire dataset. These discoveries are what led
us to the final chapter, which finally used the knowledge learned to implement a
usage-aware distribution strategy.

m

Finally, with Chapter 5, ‘Extensibility in RAID architectures’107, we presented the
results of applying data semantics to the upgrade process of two RAID architectures,
RAID-0 and RAID-5. Our proposed solution, CRAID, tracked frequently-used blocks
and redistributed them—in real-time—into a dedicated caching partition created
from regions in all disks. We analyzed CRAID’s performance and workload distri-
bution using one of the most detailed device simulators available, which was fed
with real-world traces from seven different environments.

137

Our experiments with CRAID demonstrated that it is possible to achieve perfor-
mance levels comparable to those of RAID-0 and RAID-5—and also adapt to changes
in the storage infrastructure—only with the on-line migration of frequently-used
data. Furthermore, the largest cache partition used in our simulations, and thus
the amount of data that needs to be migrated, accounted for 1.28% of the stor-
age capacity, which significantly reduces the migration cost and is an acceptable
trade-off in a current storage infrastructure. Finally, we proved that CRAID deliv-
ered better response times and a similar workload distribution than our previous
proposal, Random Slicing, despite redistributing significantly less data.

oo

Concerning future research lines, the work presented in this dissertation can
be developed extensively. While the current CRAID prototype has served to ver-
ify that it is possible to amortize the cost of a RAID upgrade by using knowledge
about hot data blocks, it uses simple algorithms for prediction and expansion, and
it might be worth improving them. For instance, the prototype currently invali-
dates the entire cache partition when new disks are added, a process which scraps
all optimizations done up to that point. Though this benefits the parallelism of
the data distribution and new disks can be used immediately, the current strategy
was devised to test if our hypothesis held in the simplest case, without complex
algorithms. Since in most data workloads the working sets should not change dra-
matically over time, CRAID could benefit greatly from strategies to rebalance the
small amount of data held in the cache partition more intelligently, like those pre-
sented in Section 1.5.223. Similarly, the current CRAID prototype does notmake any
effort to allocate related blocks close to each other. Alternate layout strategies more
focused on preserving semantic relations between blocks might yield greater ben-
efits. For instance, it might be interesting to evaluate the effect of copying entire
stripes to the cache partition as away to preserve spatial locality. Besides, this could
help reduce the number of parity computations, thus reducing the background I/O
present in the array.

Additionally, it would be an interesting challenge to extend the idea behind
CRAID to pseudo-randomized data layouts, and add data semantics awareness to
RandomSlicing in order to reduce the amount of rebalancing between devices. Ran-
domized data distributions aremore flexible in nature than deterministic solutions
like RAID, and we envision that they may benefit significantly from an enhanced
perspective on the data they manage.

138

Furthermore, the study on data semantics can be significantly expanded. In
this dissertation we have only considered the usage of data blocks, but we have not
taken into account the interrelations that exist between them. Successfully predict-
ing these relations could, for instance, allowmigration algorithms to determine the
interesting working sets faster and physically allocate semantic groups of data. For
instance, the current version of CRAID relies on the fact that blocks accessed con-
secutively in a short period of time tend to be related. Using techniques to detect
block correlations could improve CRAID and scalable layouts significantly, allowing
hot data migration before it is actually needed. Regarding this idea, a line of re-
search we are particularly interested in, is to explore the applicability of machine
learning techniques to this kind of detection. We believe that unsupervised learn-
ing techniques could be used to model this interrelations, and neural networks
could be constructed to infer, learn and take advantage of these access patterns.

While our experiences with CRAID have been positive in RAID-0 and RAID-5 stor-
age, we believe that they can also be applied to RAID-6 or more general erasure
codes (𝑘 > 2), since the overall principle still applies: rebalancing hot data should
require less work than producing an ideal distribution. The main caveat of our so-
lution, however, is the cost of additional parity computations and I/O operations
for dirty blocks, which directly increaseswith the number of parity blocks required.
It would be interesting to explore if, in these data distributions, the extension cost
can also be leveraged by the performance benefits obtained with separate hot-data
management, as well as up to which point these results could be generalized.

It would also be interesting to apply our semantic-aware research to power-
aware storage. For instance, CRAID could be modified to favor minimal power
consumption rather than maximum parallelism and optimal distribution. A pre-
liminary approach, which we have not truly developed yet, could be to confine
the caching partition to a dynamically changing subset of disks, thus reducing the
power consumption of the remaining disks. Newer metrics would have to be de-
vised in order to adequately balance the performance degradation (due to the re-
stricted partition) and the savings in energy consumption (due to the usage of less
disks). Semantic information could also be used to classify data blocks according
to their usage schedule and place blocks with similar requirements into the same
devices. This would allow the storage architecture to shut down these devices when
the “usual usage time” has passed or even to turn themonwhen they are likely to be
used. How this clustering would affect performance, however, has yet to be seen.

a

139

AppendixA
The ENT Test for Pseudo-random Sequences

This appendix describes a program, ent, which applies various tests to sequences
of bytes stored in files and reports the results of those tests. The program is useful
for evaluating pseudo-random number generators for encryption and statistical
sampling applications, compression algorithms, and other applications where the
information density of a file is of interest.

The ent program performs a variety of tests on the stream of bytes provided and
produces output as follows:

Entropy = 7.980627 bits per character.

Optimum compression would reduce the size

of this 51768 character file by 0 percent.

Chi square distribution for 51768 samples is 1542.26 , and

randomly

would exceed this value less than 0.01 percent of the times.

Arithmetic mean value of data bytes is 125.93 (127.5= random).

Monte Carlo value for Pi is 3.169834647 (error 0.90 percent).

Serial correlation coefficient is 0.004249 (totally

uncorrelated =0.0).

141

In the following pages we describe each of the tests performed and the meaning
behind the produced values.

� Entropy test: The information density of the contents of the sequence, ex-
pressed as a number of bits per character. The results above, which resulted
from processing an image file compressed with JPEG, indicate that the file is
extremely dense in information—essentially random. Hence, compression
of the file is unlikely to reduce its size. By contrast, the C source code of the
program has entropy of about 4.9 bits per character, indicating that optimal
compression of the file would reduce its size by 38% [58, pp. 104–108].

� Chi-square test: The Chi-square (𝜒2) test is the most commonly used test
for the randomness of data, and is extremely sensitive to errors in pseudo-
random sequence generators. The 𝜒2 distribution is calculated for the file’s
streamof bytes and expressed as an absolute number and a percentagewhich
indicates how frequently a truly random sequence would exceed the value
calculated. We interpret the percentage as the degree to which the sequence
tested is suspected of being non-random. If the percentage is greater than
99% or less than 1%, the sequence is almost certainly not random. If the
percentage is between 99% and 95% or between 1% and 5%, the sequence
is suspect. Percentages between 90% and 95% and 5% and 10% indicate the
sequence is “almost suspect”. Note that our JPEG file, while very dense in
information, is far from random as revealed by the 𝜒2 test.

Applying this test to the output of various pseudo-random sequence gen-
erators is interesting. The low-order 8 bits returned by the standard Unix
rand() function, for example, yield:

Chi square distribution for 500000 samples is 0.01, and

randomly would exceed this value more than 99.99

percent of the times.

While an improved generator [107] reports:

Chi square distribution for 500000 samples is 212.53 , and

randomly would exceed this value 97.53 percent of the

times.

142

Thus, the standard Unix generator (or at least the low-order bytes it returns)
is unacceptably non-random, while the improved generator is much better
but still sufficiently non-random to cause concern for demanding applica-
tions. Contrast both of these software generators with the 𝜒2 result of a
genuine random sequence created by timing radioactive decay events:

Chi square distribution for 500000 samples is 249.51 , and

randomly would exceed this value 40.98 percent of the

times.

See Knuth’s “The Art of Computer Programming, Volume 2: Seminumerical
Algorithms” pp. 35–40 [72] for more information on the 𝜒2 test.

� Arithmetic mean test: This is simply the result of summing the all the bytes
in the sequence and dividing by the sequence length. If the data are close to
random, this should be about 127.5 (0.5 if individual bits are considered). If
the mean departs from this value, the values are consistently high or low.

� Monte Carlo Value for 𝜋: Each successive sequence of six bytes is used as
24 bit 𝑥 and 𝑦 coordinates within a square. If the distance of the randomly-
generated point is less than the radius of a circle inscribed within the square,
the six-byte sequence is considered a “hit”. The percentage of hits can be
used to calculate the value of 𝜋. For very large streams (this approximation
converges very slowly), the value will approach the correct value of 𝜋 if the
sequence is close to random. A 500,000 byte sequence created by radioactive
decay yielded:

Monte Carlo value for Pi is 3.14358057 (error 0.06

percent).

� Serial correlation coefficient test: This value measures the extent to which
each byte in the sequence depends upon the previous byte. For random se-
quences, this value (which can be positive or negative) will, of course, be
close to zero. A non-random byte stream such as a C program will yield
a serial correlation coefficient on the order of 0.5. Wildly predictable data
such as uncompressed bitmaps will exhibit serial correlation coefficients ap-
proaching 1. Again, refer to Knuth’s “The Art of Computer Programming, Vol-
ume 2: Seminumerical Algorithms” pp. 35–40 [72] for more details.

143

AppendixB
The NIST Test Suite

The NIST Test Suite is a statistical package consisting of 15 tests that were devel-
oped to test the randomness of (arbitrarily long) binary sequences produced by
either hardware or software based cryptographic randomor pseudo-randomnum-
ber generators. These tests focus on a variety of different types of non-randomness
that could exist in a sequence. Some tests are decomposable into a variety of sub-
tests.

A number of tests in the test suite have the standard normal and the chi-square
(𝜒2) as reference distributions. If the sequence under test is in fact non-random,
the calculated test statistic will fall in extreme regions of the reference distribution.
The standard normal distribution (i.e., the bell-shaped curve) is used to compare
the value of the test statistic obtained from the random number generator with
the expected value of the statistic under the assumption of randomness. The test
statistic for the standard normal distribution is of the form 𝑧 = (𝑥 − 𝜇)/𝜎, where
𝑥 is the sample test statistic value, and 𝜇 and 𝜎2 are the expected value and the
variance of the test statistic. The 𝜒2 distribution (i.e. a left skewed curve) is used
to compare the goodness-of-fit of the observed frequencies of a sample measure to
the corresponding expected frequencies of the hypothesized distribution. The test
statistic is of the form:

𝜒2 = ∑ (
(𝑜𝑖 − 𝑒𝑖)2

𝑒𝑖), (B.1)

145

where 𝑜𝑖 and 𝑒𝑖 are the observed and expected frequencies of occurrence of the
measure, respectively.

For many of the tests in this test suite, the assumption has been made that the
size of the sequence length, 𝑛, is large (of the order 103 to 107). For such large sam-
ple sizes of 𝑛, asymptotic reference distributions have been derived and applied to
carry out the tests. Most of the tests are applicable for smaller values of 𝑛. How-
ever, if used for smaller values of 𝑛, the asymptotic reference distributions would
be inappropriate and would need to be replaced by exact distributions that would
commonly be difficult to compute.

B.1 Frequency (Monobit) Test

The focus of the test is the proportion of zeroes and ones for the entire sequence.
The purpose of this test is to determine whether the number of ones and zeros in
a sequence are approximately the same as would be expected for a truly random
sequence. The test assesses the closeness of the fraction of ones to 1/2, that is, the
number of ones and zeroes in a sequence should be about the same. All subsequent
tests depend on the passing of this test.

Reference distribution half-normal distribution

Decision Rule (at the 1% Level) 𝑝 < 0.01 ⇒ 𝑋𝑛 non-random

References for Test

[1] Kai Lai Chung and Farid AitSahlia. Elementary Probability Theory:
With Stochastic Processes and an Introduction to Mathematical Finance.
Springer, 2003

[2] Jim Pitman. Probability. Springer New York, 1993, 93–108

B.2 Frequency Test within a Block

The focus of the test is the proportion of ones within 𝑚-bit blocks. The purpose of
this test is to determine whether the frequency of ones in an 𝑚-bit block is approx-

146

imately m/2, as would be expected under an assumption of randomness. For block
size 𝑚 = 1, this test degenerates to test 1, the Frequency (Monobit) Test.

Reference distribution 𝜒2 distribution

Decision Rule (at the 1% Level) 𝑝 < 0.01 ⇒ 𝑋𝑛 non-random

References for Test

[1] Milton Abramowitz and Irene A. Stegun. Handbook of Mathemati-
cal Functions: With Formulars, Graphs, and Mathematical Tables. Vol. 55.
DoverPublications.com, 1964

[2] D.E. Knuth. “Volume 2: Seminumerical Algorithms”. The Art of Computer
Programming (1997), 192

[3] Nick Maclaren. “Cryptographic Pseudo-random Numbers in Simula-
tion”. Fast Software Encryption. Springer, 185–190

B.3 Runs Test

The focus of this test is the total number of runs in the sequence, where a run is
an uninterrupted sequence of identical bits. A run of length 𝑘 consists of exactly 𝑘
identical bits and is bounded before and after with a bit of the opposite value. The
purpose of the runs test is to determine whether the number of runs of ones and
zeros of various lengths is as expected for a random sequence. In particular, this
test determines whether the oscillation between such zeros and ones is too fast or
too slow.

Reference distribution 𝜒2 distribution

Decision Rule (at the 1% Level) 𝑝 < 0.01 ⇒ 𝑋𝑛 non-random

References for Test

[1] JeanDickinsonGibbons and Subhabrata Chakraborti. Nonparamet-
ric statistical inference. Vol. 168. CRC press, 2003

147

[2] Anant P. Godbole and Stavros G. Papastavridis. Runs and patterns in
probability: Selected papers. Vol. 283. Springer, 1994

B.4 Test for the Longest Run of Ones in a Block

The focus of the test is the longest run of ones within 𝑚-bit blocks. The purpose of
this test is to determine whether the length of the longest run of ones within the
tested sequence is consistent with the length of the longest run of ones that would
be expected in a random sequence. Note that an irregularity in the expected length
of the longest run of ones implies that there is also an irregularity in the expected
length of the longest run of zeroes. Therefore, only a test for ones is necessary.

Reference distribution 𝜒2 distribution

Decision Rule (at the 1% Level) 𝑝 < 0.01 ⇒ 𝑋𝑛 non-random

References for Test

[1] Florence Nightingale David and David Elliot Barton. Combinato-
rial chance. Griffin London, 1962

[2] PálRévész.Randomwalk in randomand non-random environments.World
Scientific, 2005

B.5 Binary Matrix Rank Test

The focus of the test is the rank of disjoint sub-matrices of the entire sequence. The
purpose of this test is to check for linear dependence among fixed length substrings
of the original sequence.

Reference distribution 𝜒2 distribution

Decision Rule (at the 1% Level) 𝑝 < 0.01 ⇒ 𝑋𝑛 non-random

148

References for Test

[1] I.N. Kovalenko. “Distribution of the linear rank of a randommatrix”.The-
ory of Probability & Its Applications 17.2 (1973), 342–346

[2] George Marsaglia. “DIEHARD: a battery of tests of randomness”. On-
line: http://www.stat.fsu.edu/pub/diehard/ (1996)

[3] George Marsaglia and Liang-Huei Tsay. “Matrices and the structure
of randomnumber sequences”. Linear algebra and its applications 67 (1985),
147–156

B.6 Discrete Fourier Transform (Spectral) Test

The focus of this test is the peak heights in the Discrete Fourier Transform of the
sequence. The purpose of this test is to detect periodic features (i.e., repetitive
patterns that are near each other) in the tested sequence that would indicate a de-
viation from the assumption of randomness. The intention is to detect whether the
number of peaks exceeding the 95% threshold is significantly different than 5%.

Reference distribution normal distribution

Decision Rule (at the 1% Level) 𝑝 < 0.01 ⇒ 𝑋𝑛 non-random

References for Test

[1] Ronald Newbold Bracewell. The Fourier transform and its applications.
Vol. 31999. McGraw-Hill New York, 1986

[2] Song-Ju Kim, Ken Umeno, and Akio Hasegawa. “Corrections of the
NIST statistical test suite for randomness”. arXiv preprint nlin/0401040
(2004)

B.7 Non-overlapping Template Matching Test

The focus of this test is the number of occurrences of pre-specified target strings.
The purpose of this test is to detect generators that produce too many occurrences

149

of a given non-periodic (aperiodic) pattern. For this test and for the Overlapping
Template Matching Test of Appendix B.8, an 𝑚-bit window is used to search for a
specific 𝑚-bit pattern. If the pattern is not found, the window slides one bit posi-
tion. If the pattern is found, the window is reset to the bit after the found pattern,
and the search resumes.

Reference distribution 𝜒2 distribution

Decision Rule (at the 1% Level) 𝑝 < 0.01 ⇒ 𝑋𝑛 non-random

References for Test

[1] Andrew D. Barbour, Lars Holst, and Svante Janson. Poisson approx-
imation. Clarendon press Oxford, 1992

B.8 Overlapping Template Matching Test

The focus of the Overlapping TemplateMatching test is the number of occurrences
of pre-specified target strings. Both this test and the Non-overlapping Template
Matching Test of Appendix B.7 use an 𝑚-bit window to search for a specific 𝑚-bit
pattern. As with the previous test, if the pattern is not found, the window slides
one bit position. The difference between this test and the test in Appendix B.7 is
that when the pattern is found, the window slides only one bit before resuming the
search.

Reference distribution 𝜒2 distribution

Decision Rule (at the 1% Level) 𝑝 < 0.01 ⇒ 𝑋𝑛 non-random

References for Test

[1] O. Chrysaphinou and S. Papastavridis. “A limit theorem on the num-
ber of overlapping appearances of a pattern in a sequence of independent
trials”. Probability theory and related fields 79.1 (1988), 129–143

150

[2] KenjiHamanoandToshinobuKaneko. “Correction of overlapping tem-
platematching test included inNIST randomness test suite”. IEICE transac-
tions on fundamentals of electronics, communications and computer sciences
90.9 (2007), 1788–1792

[3] Norman L. Johnson, Adrienne W. Kemp, and Samuel Kotz. Univariate
discrete distributions. Vol. 444. John Wiley & Sons, 2005

B.9 Maurer’s “Universal Statistical” Test

The focus of this test is the number of bits between matching patterns (a measure
that is related to the length of a compressed sequence). The purpose of the test
is to detect whether or not the sequence can be significantly compressed without
loss of information. A significantly compressible sequence is considered to be non-
random.

Reference distribution half-normal distribution

Decision Rule (at the 1% Level) 𝑝 < 0.01 ⇒ 𝑋𝑛 non-random

References for Test

[1] Jean-Sébastien Coron and David Naccache. “An accurate evaluation
of Maurer’s universal test”. Selected Areas in Cryptography. Springer, 57–71

[2] Helen Gustafson, Ed Dawson, Lauren Nielsen, and W. Caelli. “A
computer package for measuring the strength of encryption algorithms”.
Computers & Security 13.8 (1994), 687–697

[3] Ueli M. Maurer. “A universal statistical test for random bit generators”.
Journal of cryptology 5.2 (1992), 89–105

[4] Alfred J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone.
Handbook of applied cryptography. CRC press, 2010

[5] J. Ziv. “Compression, tests for randomness and estimating the statistical
model of an individual sequence”. Sequences. Springer, 366–373

[6] Jacob Ziv and Abraham Lempel. “A universal algorithm for sequential
data compression”. Information Theory, IEEE Transactions on 23.3 (1977),
337–343

151

B.10 Linear Complexity Test

The focus of this test is the length of a linear feedback shift register (LFSR). The
purpose of this test is to determine whether or not the sequence is complex enough
to be considered random. Random sequences are characterized by longer LFSRs.
An LFSR that is too short implies non-randomness.

Reference distribution 𝜒2 distribution

Decision Rule (at the 1% Level) 𝑝 < 0.01 ⇒ 𝑋𝑛 non-random

References for Test

[1] Helen Gustafson, Ed Dawson, Lauren Nielsen, and W. Caelli. “A
computer package for measuring the strength of encryption algorithms”.
Computers & Security 13.8 (1994), 687–697

[2] Alfred J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone.
Handbook of applied cryptography. CRC press, 2010

[3] Rainer A. Rueppel. Analysis and design of stream ciphers. Springer-Verlag
New York, Inc., 1986

B.11 Serial Test

The focus of this test is the frequency of all possible overlapping 𝑚-bit patterns
across the entire sequence. The purpose of this test is to determine whether the
number of occurrences of the 2𝑚 𝑚-bit overlapping patterns is approximately the
same as would be expected for a random sequence. Random sequences have uni-
formity; that is, every 𝑚-bit pattern has the same chance of appearing as every other
𝑚-bit pattern. Note that for 𝑚 = 1, the Serial test is equivalent to the Frequency
Test of Appendix B.1.

Reference distribution 𝜒2 distribution

Decision Rule (at the 1% Level) 𝑝 < 0.01 ⇒ 𝑋𝑛 non-random

152

References for Test

[1] I.J. Good. “The serial test for sampling numbers and other tests for ran-
domness”. Proceedings of the Cambridge Philosophical Society. Vol. 49. Cam-
bridge Univ Press, 276–284

[2] M. Kimberley. “Comparison of two statistical tests for keystream se-
quences”. Electronics Letters 23.8 (1987), 365–366

[3] D.E. Knuth. “Volume 2: Seminumerical Algorithms”. The Art of Computer
Programming (1997), 192

[4] Alfred J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone.
Handbook of applied cryptography. CRC press, 2010

B.12 Approximate Entropy Test

As with the Serial test of Appendix B.11, the focus of this test is the frequency of all
possible overlapping 𝑚-bit patterns across the entire sequence. The purpose of the
test is to compare the frequency of overlapping blocks of two consecutive/adjacent
lengths (𝑚 and 𝑚 + 1) against the expected result for a random sequence.

Reference distribution 𝜒2 distribution

Decision Rule (at the 1% Level) 𝑝 < 0.01 ⇒ 𝑋𝑛 non-random

References for Test

[1] Steve Pincus and Rudolf E. Kalman. “Not all (possibly)“random” se-
quences are created equal”. Proceedings of the National Academy of Sciences
94.8 (1997), 3513–3518

[2] Steve Pincus and BurtonH. Singer. “Randomness and degrees of irreg-
ularity”. Proceedings of the National Academy of Sciences 93.5 (1996), 2083–
2088

[3] Andrew L. Rukhin. “Approximate entropy for testing randomness”. Jour-
nal of Applied Probability 37.1 (2000), 88–100

153

B.13 Cumulative Sums (Cusum) Test

The focus of this test is the maximal excursion (from zero) of the random walk
defined by the cumulative sum of adjusted (−1, +1) digits in the sequence. The
purpose of the test is to determine whether the cumulative sum of the partial se-
quences occurring in the tested sequence is too large or too small relative to the
expected behavior of that cumulative sum for random sequences. This cumulative
sum may be considered as a random walk. For a random sequence, the excur-
sions of the random walk should be near zero. For certain types of non-random
sequences, the excursions of this random walk from zero will be large.

Reference distribution normal distribution

Decision Rule (at the 1% Level) 𝑝 < 0.01 ⇒ 𝑋𝑛 non-random

References for Test

[1] PálRévész.Randomwalk in randomand non-random environments.World
Scientific, 2005

[2] Frank Spitzer. Principles of random walk. Vol. 34. Springer, 2001

B.14 Random Excursions Test

The focus of this test is the number of cycles having exactly 𝐾 visits in a cumulative
sum random walk. The cumulative sum random walk is derived from partial sums
after the (0, 1) sequence is transferred to the appropriate (−1, +1) sequence. A cycle
of a random walk consists of a sequence of steps of unit length taken at random
that begin at and return to the origin. The purpose of this test is to determine
if the number of visits to a particular state within a cycle deviates from what one
would expect for a random sequence. This test is actually a series of eight tests (and
conclusions), one test and conclusion for each of the states: -4, -3, -2, -1 and +1,
+2, +3, +4.

Reference distribution 𝜒2 distribution

Decision Rule (at the 1% Level) 𝑝 < 0.01 ⇒ 𝑋𝑛 non-random

154

References for Test

[1] Michael Baron and Andrew L. Rukhin. “Distribution of the number of
visits of a random walk”. Stochastic Models 15.3 (1999), 593–597

[2] PálRévész.Randomwalk in randomand non-random environments.World
Scientific, 2005

[3] Frank Spitzer. Principles of random walk. Vol. 34. Springer, 2001

B.15 Random Excursions Variant Test

The focus of this test is the total number of times that a particular state is visited
(i.e., occurs) in a cumulative sum random walk. The purpose of this test is to de-
tect deviations from the expected number of visits to various states in the random
walk. This test is actually a series of eighteen tests (and conclusions), one test and
conclusion for each of the states: -9, -8, …, -1 and +1, +2, …, +9.

Reference distribution half-normal distribution

Decision Rule (at the 1% Level) 𝑝 < 0.01 ⇒ 𝑋𝑛 non-random

References for Test

[1] Michael Baron and Andrew L. Rukhin. “Distribution of the number of
visits of a random walk”. Stochastic Models 15.3 (1999), 593–597

[2] PálRévész.Randomwalk in randomand non-random environments.World
Scientific, 2005

[3] Frank Spitzer. Principles of random walk. Vol. 34. Springer, 2001

155

Bibliography

[1] A. Adya, W.J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J.R. Dou-
ceur, J.Howell, J.R. Lorch,M.Theimer, andR.P.Wattenhofer. “FAR-
SITE: Federated, available, and reliable storage for an incompletely trusted
environment”. ACM SIGOPS Operating Systems Review 36 (2002), 1–14
(cited on p. 14)

[2] N. Agrawal, W.J. Bolosky, J.R. Douceur, and J.R. Lorch. “A five-year
study of file-system metadata”. ACM Transactions on Storage (TOS) 3.3
(2007), 9 (cited on p. 87)

[3] N. Agrawal, V. Prabhakaran, T.Wobber, J.D. Davis,M.Manasse, and
R. Panigrahy. “Design tradeoffs for SSD performance”. USENIX Annual
Technical Conference, 2008, 57–70 (cited on p. 120)

[4] S. Aiken, D. Grunwald, A.R. Pleszkun, and J. Willeke. “A performance
analysis of the iSCSI protocol”.Proceedings of the 20th IEEE/11thNASAGod-
dard Conference on Mass Storage Systems and Technologies (MSST), 2003.
IEEE, 123–134 (cited on p. 13)

[5] S. Akyürek and K. Salem. “Adaptive block rearrangement”. ACM Trans-
actions on Computer Systems (TOCS) 13.2 (1995), 89–121 (cited on pp. 25,
109)

[6] S. Amarasinghe, D. Campbell, W. Carlson, A. Chien, W. Dally, E.
Elnohazy, M. Hall, et al. ExaScale Software Study: Software Challenges in
Extreme Scale Systems. Tech. rep. sponsored byDARPA IPTO in the context
of the ExaScale Computing Study, 2010 (cited on p. 57)

157

[7] M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, and T. Jin. “Evaluat-
ing contentmanagement techniques for web proxy caches”.ACM SIGMET-
RICS Performance Evaluation Review 27.4 (2000), 3–11 (cited on p. 113)

[8] E. Artiaga and A. Miranda. “PRACE-2IP Technical Deliverable D12.4:
Performance Optimized Lustre”. INFRA-2011-2.3.5 – Second Implemen-
tation Phase of the European High Performance Computing (HPC) service
PRACE (2012) (cited on p. 8)

[9] Fibre Channel Industry Association. Fibre Channel Roadmaps - Re-
trieved 7/10/2013. http://www.fibrechannel.org/fibre-channel-roadmaps
.html (cited on p. 84)

[10] A. Azagury, V. Dreizin, M. Factor, E. Henis, D. Naor, Y. Rinetzky,
O. Rodeh, J. Satran, A. Tavory, and L. Yerushalmi. “Towards an object
store”. Proceedings of the 20th IEEE Conference on Mass Storage Systems and
Technologies (MSST), 2003, 165–176 (cited on p. 32)

[11] Y. Azar, A.Z. Broder, A.R. Karlin, and E. Upfal. “Balanced allocations”.
SIAM Journal on Computing 29.1 (1999), 180–200 (cited on p. 65)

[12] M. Baker, S. Asami, E. Deprit, J. Ouseterhout, and M. Seltzer. “Non-
volatile memory for fast, reliable file systems”. ACM SIGPLAN Notices 27.9
(1992), 10–22 (cited on p. 24)

[13] M.G. Baker, J.H. Hartman, M.D. Kupfer, K.W. Shirriff, and J.K. Ous-
terhout. “Measurements of a distributed file system”. Proceedings of the
thirteenth ACM symposium on Operating systems principles, 1991. ACM,
198–212. isbn: 0897914473 (cited on pp. 26, 85)

[14] Jon Louis Bentley. “Solutions to Klee’s rectangle problems”. Unpublished
manuscript (1977) (cited on p. 48)

[15] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M.
Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller, et al. “ExaScale
Computing Study: Technology Challenges in Achieving Exascale Systems”
(2008) (cited on p. 11)

[16] M. Bhadkamkar, J. Guerra, L. Useche, S. Burnett, J. Liptak, R. Ran-
gaswami, and V. Hristidis. “BORG: block-reORGanization for self-opti-
mizing storage systems”. Proceedings of the 7th conference on File and Storage
Technologies (FAST), 2009. USENIX Association, 183–196 (cited on pp. 25,
101, 109)

158

http://www.fibrechannel.org/fibre-channel-roadmaps.html
http://www.fibrechannel.org/fibre-channel-roadmaps.html

[17] M. Blaum, J. Brady, J. Bruck, and J. Menon. “EVENODD: An Opti-
mal Scheme for Tolerating Double Disk Failures in RAID Architectures”.
Proceedings of the 21st International Symposium on Computer Architecture
(ISCA), 1994, 245–254 (cited on p. 51)

[18] P.J. Braam. The Lustre Storage Architecture. Cluster File Systems Inc. archi-
tecture, design, andmanual for Lustre.Nov. 2002. url: http://www.lustre.
org/docs/lustre.pdf (cited on pp. 14, 19)

[19] R.P. Brent. “Uniform random number generators for supercomputers”.
Proceedings of the Fifth Australian Supercomputer Conference, 1992, Mel-
bourne, 95–104 (cited on p. 67)

[20] A. Brinkmann and S. Effert. “Redundant Data Placement Strategies for
Cluster Storage Environments”. Proceedings of the 12th International Con-
ference on Principles of Distributed Systems (OPODIS), 2008 (cited on pp. 23,
36, 54)

[21] A. Brinkmann, S. Effert, F. Meyer auf der Heide, and C. Scheideler.
“Dynamic and Redundant Data Placement”. Proceedings of the 27th IEEE
International Conference on Distributed Computing Systems (ICDCS), 2007.
Toronto, Canada (cited on pp. 21, 23, 30, 35, 62)

[22] A. Brinkmann,M.Heidebuer, F.Meyer auf derHeide, U. Rückert, K.
Salzwedel, and M. Vodisek. “V: Drive - Costs and Benefits of an Out-of-
Band StorageVirtualization System”.Proceedings of the 21st IEEEConference
on Mass Storage Systems and Technologies (MSST), 2004, 153–157 (cited on
p. 31)

[23] A. Brinkmann,K. Salzwedel, andC. Scheideler. “Efficient,Distributed
Data Placement Strategies for Storage Area Networks”. Proceedings of the
12thACMSymposiumonParallel Algorithms andArchitectures (SPAA), 2000,
119–128 (cited on pp. 20, 40)

[24] A. Brinkmann, K. Salzwedel, and C. Scheideler. “Compact, adaptive
placement schemes for non-uniform distribution requirements”. Proceed-
ings of the 14th ACM Symposium on Parallel Algorithms and Architectures
(SPAA), 2002. Winnipeg, Manitoba, Canada, 53–62 (cited on pp. 21, 32,
34, 54)

[25] N. Brown. Online RAID-5 resizing. drivers/md/raid5.c in the source code of
Linux Kernel 2.6.18. 2006 (cited on p. 108)

159

http://www.lustre.org/docs/lustre.pdf
http://www.lustre.org/docs/lustre.pdf

[26] J.S. Bucy, J. Schindler, S.W. Schlosser, andG.R.Ganger. “TheDiskSim
SimulationEnvironmentVersion 4.0 ReferenceManual”.Parallel Data Lab-
oratory, Carnegie Mellon University (2008), 26 (cited on p. 120)

[27] B. Callaghan, B. Pawlowski, and P. Staubach. NFS version 3 protocol
specification. Tech. rep. RFC 1813, Network Working Group, 1995 (cited
on p. 14)

[28] P. Cao and S. Irani. “Cost-aware WWW proxy caching algorithms”. Pro-
ceedings of the 1997 USENIX Symposium on Internet Technology and Systems.
Vol. 193 (cited on p. 113)

[29] P.M. Chen and E.K. Lee. Striping in a RAID level 5 disk array. Vol. 23. 1.
ACM, 1995 (cited on p. 120)

[30] P.M. Chen and D.A. Patterson. Maximizing performance in a striped disk
array. Vol. 18. 3a. ACM, 1990 (cited on p. 107)

[31] Y. Chen, K. Srinivasan, G. Goodson, and R. Katz. “Design implications
for enterprise storage systems via multi-dimensional trace analysis”. Pro-
ceedings of the 23rd ACM Symposium on Operating Systems Principles, 2011.
ACM, 43–56 (cited on p. 27)

[32] W.S. Chou. “On inversive maximal period polynomials over finite fields”.
Applicable Algebra in Engineering, Communication and Computing 6.4-5
(1995), 245–250 (cited on p. 69)

[33] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong,
and S. Sankar. “Row-Diagonal Parity for Double Disk Failure Correction”.
Proceedings of the 3rd USENIX Conference on File and Storage Technologies
(FAST), 2004. San Francisco, CA, 1–14 (cited on p. 51)

[34] T. Cortes and J. Labarta. “Extending heterogeneity to RAID level 5”. Pro-
ceedings of the USENIX Annual Technical Conference, 2001. Boston, Mas-
sachusetts, 119–132 (cited on p. 20)

[35] T.Coughlin andE.Grochowski. “Years ofDestiny:HDDCapital Spend-
ing and Technology Developments from 2012–2016” (June 19, 2012). url:
http://ewh.ieee.org/r6/scv/mag/MtgSum/Meeting2012_06_Presentation.

pdf (cited on p. 3)

[36] B. Dawes, D. Abrahams, and R. Rivera. “Boost C++ libraries”. Online at
http://www.boost.org (2009) (cited on p. 71)

160

http://ewh.ieee.org/r6/scv/mag/MtgSum/Meeting2012_06_Presentation.pdf
http://ewh.ieee.org/r6/scv/mag/MtgSum/Meeting2012_06_Presentation.pdf
http://www.boost.org

[37] M. De Berg, O. Cheong, and M. Van Kreveld. Computational geometry:
algorithms and applications. Springer, 2008 (cited on p. 48)

[38] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Laksh-
man, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels.
“Dynamo: Amazon’s Highly Available Key-value Store”. ACM SIGOPS Op-
erating Systems Review 41.6 (2007), 205–220 (cited on p. 22)

[39] A. Devulapalli, D. Dalessandro, and P. Wyckoff. “Data Structure
Consistency Using Atomic Operations in Storage Devices”. Proceedings of
the 5th International Workshop on Storage Network Architecture and Parallel
I/Os (SNAPI), 2008. Baltimore, USA, 65 –73 (cited on p. 32)

[40] J.R. Douceur and W.J. Bolosky. “A large-scale study of file-system con-
tents”. Proceedings of the 1999 ACM SIGMETRICS international conference
on Measurement and modeling of computer systems. ACM, 59–70. isbn:
158113083X (cited on p. 87)

[41] D. Eastlake and P. Jones. US secure hash algorithm 1 (SHA1). 2001 (cited
on p. 44)

[42] D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer. “Passive NFS tracing
of email and researchworkloads”.Proceedings of the 2ndUSENIXConference
on File and Storage Technologies, 2003. USENIXAssociation, 203–216 (cited
on pp. 26, 85, 86, 95, 103)

[43] M. Fasheh. “OCFS2: The Oracle Clustered File System, Version 2”. Ottawa
Linux Symposium (2006) (cited on p. 18)

[44] R. Freitas, J. Slember, W. Sawdon, and L. Chiu. “GPFS Scans 10 Bil-
lion Files in 43 Minutes”. IBM Advanced Storage Laborator. IBM Almaden
Research Center. San Jose, CA 95120 (2011) (cited on p. 3)

[45] Fujitsu Ltd. “Analyzing the Trends in the Enterprise Hard Disk Drive In-
dustry” (2006). White paper. Online: http://www.fujitsu.com/downloads/
COMP/fcpa/hdd/enterprise-hdd-single_wp.pdf (cited on p. 2)

[46] J. Gantz and D. Reinsel. “Extracting value from chaos”. IDC research re-
port, Framingham, MA, June. Retrieved September 19 (2011), 2011 (cited on
p. 2)

[47] J. Gantz and D. Reinsel. “The digital universe in 2020: Big data, bigger
digital shadows, and biggest growth in the far east”. IDC iView: IDCAnalyze
the Future (2012) (cited on p. 2)

161

http://www.fujitsu.com/downloads/COMP/fcpa/hdd/enterprise-hdd-single_wp.pdf
http://www.fujitsu.com/downloads/COMP/fcpa/hdd/enterprise-hdd-single_wp.pdf

[48] Gartner Inc. Solid-State Drives Will Complement, Not Replace, Hard-Disk
Drives in Data Centers. Apr. 15, 2013. url: http://www.storagenewsletter.
com/news/marketreport/gartner-ssd-hdd (cited on p. 3)

[49] T.J. Gibson and E.L. Miller. “Long-term file activity and inter-reference
patterns”.ComputerMeasurementGroup (CMG98) Proceedings (1998) (cited
on p. 26)

[50] A. Goel, C. Shahabi, S.Y.D. Yao, and R. Zimmermann. “SCADDAR: An
efficient randomized technique to reorganize continuous media blocks”.
Proceedings of the 18th International Conference on Data Engineering, 2002.
IEEE, 473–482 (cited on pp. 22, 108)

[51] M. Gómez and V. Santonja. “Characterizing temporal locality in I/O
workload”. Proc. of the International Symposium on Performance Evaluation
of Computer and Telecommunication Systems, 2002 (cited on pp. 101, 109)

[52] J.L. Gonzalez andT. Cortes. “Increasing the capacity of RAID5 by online
gradual assimilation”. Proceedings of the international workshop on Storage
network architecture and parallel I/Os, 2004. ACM, 17–24 (cited on pp. 23,
30, 108)

[53] J.L. Gonzalez and T. Cortes. “Evaluating the effects of upgrading hetero-
geneous disk arrays”. International Symposium on Performance Evaluation of
Computer and Telecommunication Systems (SPECTS 2006). Calgary, Canada
(cited on p. 30)

[54] J.L. Gonzalez and T. Cortes. “Distributing Orthogonal Redundancy on
Adaptive Disk Arrays”. Proceedings of the International Conference on Grid
computing, high-performAnce and Distributed Applications (GADA), 2008.
Monterrey, Mexico (cited on p. 20)

[55] M. Greenberger. “Method in randomness”. Communications of the ACM
8.3 (1965), 177–179 (cited on p. 68)

[56] M. Haahr. “Random.org: True random number service”. School of Com-
puter Science and Statistics, Trinity College, Dublin, Ireland. Website URL:
http://www.random.org (2010) (cited on pp. 65, 66)

[57] R.W. Hamming. “Error Detection and Error Correction Codes”. The Bell
System Technical Journal 26.2 (1950), 147–160 (cited on p. 16)

[58] R.W. Hamming. Coding and information theory. Prentice-Hall, Inc., 1986
(cited on p. 142)

162

http://www.storagenewsletter.com/news/marketreport/gartner-ssd-hdd
http://www.storagenewsletter.com/news/marketreport/gartner-ssd-hdd
http://www.random.org

[59] X. He, Q. Yang, and M. Zhang. “A caching strategy to improve iSCSI per-
formance”. Proceedings of the 27th Annual IEEE Conference on Local Com-
puter Networks, 2002. IEEE, 278–285 (cited on p. 24)

[60] R.J. Honicky and E.L. Miller. “A fast algorithm for online placement and
reorganization of replicated data”. Proceedings of the 17th IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2003. Nice, France
(cited on pp. 22, 36)

[61] R.J. Honicky and E.L. Miller. “Replication Under Scalable Hashing: A
Family of Algorithms for Scalable Decentralized Data Distribution”. Pro-
ceedings of the 18th IEEE International Parallel and Distributed Processing
Symposium (IPDPS), 2004 (cited on pp. 22, 36)

[62] W.W. Hsu, A.J. Smith, and H.C. Young. “The automatic improvement of
locality in storage systems”.ACMTransactions on Computer Systems (TOCS)
23.4 (2005), 424–473 (cited on pp. 25, 109)

[63] J. D. Hunter. “Matplotlib: A 2D graphics environment”. Computing In Sci-
ence & Engineering 9.3 (2007), 90–95 (cited on p. 187)

[64] F. Hupfeld, T. Cortes, B. Kolbeck, J. Stender, E. Focht, M. Hess, J.
Malo, J.Marti, and E. Cesario. “TheXtreemFS architecture”. Proceedings
of the LinuxTag 2007 (cited on p. 19)

[65] F. Hupfeld, T. Cortes, B. Kolbeck, J. Stender, E. Focht, M. Hess, J.
Malo, J.Marti, and E. Cesario. “XtreemFS – a case for object-based stor-
age in Grid data management”. Proceedings of 33th International Conference
on Very Large Data Bases (VLDB) Workshops, 2007 (cited on p. 19)

[66] IBMCorp. “System 360 Scientific Subroutine PackageVersion II Program-
mer’s Manual, H20-0205-1” (1967), 54 (cited on p. 68)

[67] G. Ifrah, E.F. Harding, D. Bellos, S. Wood, et al. The Universal History
of Computing: From the Abacus to Quantum Computing. JohnWiley & Sons,
Inc., 2000 (cited on p. 1)

[68] S. Jin andA. Bestavros. “GreedyDual*Web caching algorithm: exploiting
the two sources of temporal locality in Web request streams”. Computer
Communications 24.2 (2001), 174–183 (cited on p. 113)

[69] N. L. Johnson and S. Kotz. Urn Models and Their Applications. New York:
John Wiley and Sons, 1977 (cited on p. 32)

163

[70] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Pani-
grahy. “ConsistentHashing andRandomTrees: DistributedCaching Pro-
tocols for Relieving Hot Spots on the World Wide Web”. Proceedings of the
29th ACMSymposium onTheory of Computing (STOC), 1997. El Paso, Texas,
USA, 654–663 (cited on pp. 20, 30, 34, 61)

[71] D.R. Kenchammana-Hosekote, R.A. Golding, C. Fleiner, and O.A.
Zaki. “The design and evaluation of network RAID protocols”. Research
report RJ 10316 (2004) (cited on p. 18)

[72] D.E. Knuth. “Volume 2: Seminumerical Algorithms”. The Art of Computer
Programming (1997), 192 (cited on pp. 68, 143)

[73] W. Koch and M. Schulte. The Libgcrypt Reference Manual. url: http :
//www.gnu.org/software/libgcrypt/ (cited on p. 71)

[74] I. Koltsidas and S.D. Viglas. “Flashing up the storage layer”. Proceedings
of the VLDB Endowment 1.1 (2008), 514–525 (cited on p. 24)

[75] S. Lee and H. Bahn. “Data allocation in MEMS-based mobile storage de-
vices”. Consumer Electronics, IEEE Transactions on 52.2 (2006), 472–476
(cited on p. 86)

[76] C.B. Legg. Method of increasing the storage capacity of a level five RAID disk
array by adding, in a single step, a new parity block and N–1 new data blocks
which respectively reside in a new columns, where N is at least two. US Patent
6,000,010. Dec. 1999 (cited on p. 23)

[77] D.H. Lehmer. “Mathematical methods in large-scale computing units”.
Ann. Comput. Lab. Harvard Univ 26 (1951), 141–146 (cited on p. 67)

[78] A.W. Leung, S. Pasupathy, G. Goodson, and E.L. Miller. “Measure-
ment and analysis of large-scale network file system workloads”. USENIX
2008 Annual Technical Conference on Annual Technical Conference, 213–226
(cited on pp. 26, 87, 101)

[79] E. Levy and A. Silberschatz. “Distributed File Systems: Concepts and
Examples”. ACM Computing Surveys 22.4 (1990), 321–374 (cited on p. 11)

[80] D. Li and J. Wang. “EERAID: energy efficient redundant and inexpen-
sive disk array”. Proceedings of the 11th workshop on ACM SIGOPS European
workshop 2004. ACM, 29 (cited on p. 120)

164

http://www.gnu.org/software/libgcrypt/
http://www.gnu.org/software/libgcrypt/

[81] Z. Li, Z. Chen, S.M. Srinivasan, and Y. Zhou. “C-miner: Mining block
correlations in storage systems”. Proceedings of the 3rd USENIX Conference
on File and Storage Technologies, 2004. Vol. 186. USENIX Association (cited
on p. 25)

[82] M. Luby. Pseudorandomness and Cryptographic Applications. Princeton
University Press, 1996. isbn: 978-0691025469 (cited on p. 70)

[83] P. Lyman. “How much information? 2003”. http://www.sims.berkeley.
edu/research/projects/how- much- info- 2003/ (2003) (cited on pp. 84,
116)

[84] G.Marsaglia. “Randomnumbers fall mainly in the planes”. Proceedings of
the National Academy of Sciences of the United States of America 61.1 (1968),
25 (cited on p. 68)

[85] G. Marsaglia and A. Zaman. “A new class of random number genera-
tors”. The Annals of Applied Probability (1991), 462–480 (cited on p. 69)

[86] M. Matsumoto and T. Nishimura. “Mersenne twister: a 623-dimension-
ally equidistributed uniform pseudo-random number generator”. ACM
Transactions on Modeling and Computer Simulation (TOMACS) 8.1 (1998),
3–30 (cited on p. 70)

[87] J. Matthews, S. Trika, D. Hensgen, R. Coulson, and K. Grimsrud.
“Intel® Turbo Memory: Nonvolatile disk caches in the storage hierarchy
of mainstream computer systems”. ACM Transactions on Storage (TOS) 4.2
(2008), 4 (cited on p. 24)

[88] M.K.McKusick,W.N. Joy, S.J. Leffler, and R.S. Fabry. “A fast file system
forUNIX”.ACMTransactions onComputer Systems (TOCS) 2.3 (1984), 181–
197 (cited on p. 107)

[89] N.Megiddo andD.S.Modha. “ARC: A self-tuning, low overhead replace-
ment cache”. Proceedings of the 2nd USENIX Conference on File and Storage
Technologies, 2003, 115–130 (cited on p. 114)

[90] B.Mende, L.Noll, and S. Sisodiya. “HowLavarandWorks”. SiliconGraph-
ics Incorporated, published on Internet: http : / / lavarand . sgi . com (also
reported in Scientific American) (1997), 18 (cited on p. 66)

165

http://www.sims.berkeley.edu/research/projects/how-much-info-2003/
http://www.sims.berkeley.edu/research/projects/how-much-info-2003/
http://lavarand.sgi.com

[91] M. Mense and C. Scheideler. “SPREAD: An Adaptive Scheme for Re-
dundant and Fair Storage in Dynamic Heterogeneous Storage Systems”.
Proc. of the 19th ACM-SIAM Symposium on Discrete Algorithms (SODA),
2008. San Francisco, California (cited on p. 23)

[92] M. Mesnier, G. Ganger, and E. Riedel. “Object-based storage: pushing
more functionality into storage”. Potentials, IEEE 24.2 (2005), 31–34 (cited
on p. 19)

[93] M. Mesnier, G.R. Ganger, and E. Riedel. “Object-based storage”. Com-
munications Magazine, IEEE 41.8 (2003), 84–90 (cited on p. 19)

[94] Microsoft Corporation. Microsoft Windows ReadyBoost. url: http://
www.microsoft.com/windows/windows-vista/features/readyboost.aspx

(cited on p. 24)

[95] A. Miranda and T. Cortes. “Analyzing Long-Term Access Locality to
Find Ways to Improve Distributed Storage Systems”. 20th Euromicro Inter-
national Conference on Parallel, Distributed and Network-Based Processing,
2012. IEEE.Garching,Germany, 544–553. doi: 10.1109/PDP.2012.15 (cited
on pp. 8, 101)

[96] A. Miranda and T. Cortes. “CRAID: Online RAID Upgrades Using Dy-
namic Hot Data Reorganization”. Proceedings of the 12th USENIX Confer-
ence on File and Storage Technologies, 2014. Santa Clara, CA: USENIX, 133–
146. isbn: 978-1-931971-08-9 (cited on p. 8)

[97] A. Miranda, S. Effert, Y. Kang, E.L. Miller, A. Brinkmann, and T.
Cortes. “Reliable and randomized data distribution strategies for large
scale storage systems”. Proceedings of the 18th International Conference on
High Performance Computing, 2011. IEEE. Bangalore, India, 1–10. doi: 10.
1109/HiPC.2011.6152745 (cited on p. 8)

[98] A. Miranda, S. Effert, Y. Kang, E.L. Miller, A. Brinkmann, and T.
Cortes. Data Distribution Simulator. http://dadisi.sourceforge.net/.
2011 (cited on p. 44)

[99] A. Miranda, S. Effert, Y. Kang, I. Popov, T. Friedetzky, E.L. Mill-
er, A. Brinkmann, and T. Cortes. “Random Slicing: Efficient and Scal-
able Data Placement for Large-scale Storage Systems”. ACM Transactions
on Storage 10.3 (2014), 36 (cited on p. 8)

166

http://www.microsoft.com/windows/windows-vista/features/readyboost.aspx
http://www.microsoft.com/windows/windows-vista/features/readyboost.aspx
http://dx.doi.org/10.1109/PDP.2012.15
http://dx.doi.org/10.1109/HiPC.2011.6152745
http://dx.doi.org/10.1109/HiPC.2011.6152745
http://dadisi.sourceforge.net/

[100] M.D. Mitzenmacher. “The Power of Two Choices in Randomized Load
Balancing”. PhD thesis. Computer Science Department, University of Cal-
ifornia at Berkeley, 1996 (cited on p. 32)

[101] D. Narayanan, A. Donnelly, and A. Rowstron. “Write off-loading:
Practical power management for enterprise storage”. ACM Transactions on
Storage (TOS) 4.3 (2008), 10 (cited on p. 100)

[102] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and A. Row-
stron. “Migrating server storage to SSDs: analysis of tradeoffs”.Proceedings
of the 4th ACM European conference on Computer systems, 2009. ACM, 145–
158 (cited on p. 120)

[103] T. Nightingale, Y. Hu, and Q. Yang. “The design and implementation
of DCD device driver for UNIX”. Proceedings of the 1999 USENIX Technical
Conference, 295–308 (cited on p. 24)

[104] B. Nowicki. “NFS: Network File System Protocol Specification”. Network
Working Group RFC 1094 (1989) (cited on p. 18)

[105] J.K. Ousterhout, H. Da Costa, D. Harrison, J.A. Kunze, M. Kupfer,
and J.G. Thompson. “A trace-driven analysis of the UNIX 4.2 BSD file sys-
tem”. Proceedings of the tenth ACM symposium on Operating systems princi-
ples, 1985. ACM, 24. isbn: 0897911741 (cited on pp. 25, 85)

[106] J. Park,H. Chun,H. Bahn, andK. Koh. “G-MST: A dynamic group-based
scheduling algorithm for MEMS-based mobile storage devices”. Consumer
Electronics, IEEE Transactions on 55.2 (2009), 570–575 (cited on p. 86)

[107] S.K. Park and K.W. Miller. “Random number generators: good ones are
hard to find”. Communications of the ACM 31.10 (1988), 1192–1201 (cited
on p. 142)

[108] D. A. Patterson, G. Gibson, and R. H. Katz. “A Case for Redundant Ar-
rays of Inexpensive Disks (RAID)”. Proceedings of the 1988 ACM Conference
on Management of Data (SIGMOD), 109–116 (cited on pp. 20, 51)

[109] D.A. Patterson, G. Gibson, and R.H. Katz. A case for redundant arrays of
inexpensive disks (RAID). Vol. 17. 3. ACM, 1988 (cited on p. 14)

[110] D.A. Patterson et al. “A simple way to estimate the cost of downtime”.
Proc. 16th Systems Administration Conf.| LISA 2002, 185–8 (cited on p. 109)

167

[111] H. Payer, M.A. Sanvido, Z.Z. Bandic, and C.M. Kirsch. “Combo drive:
Optimizing cost and performance in a heterogeneous storage device”. First
Workshop on Integrating Solid-state Memory into the Storage Hierarchy, 2009.
Vol. 1. 1, 1–8 (cited on p. 24)

[112] PCMAG.COM. Will Toshiba’s Bit-Patterned Drives Change the HDD Land-
scape? Aug. 19, 2010. url: http://www.pcmag.com/article2/0, 2817,
2368023,00.asp (cited on p. 3)

[113] W.H. Press. Numerical recipes in Fortran 77: the art of scientific computing.
Vol. 1. Cambridge university press, 1992 (cited on p. 67)

[114] M. Raab and A. Steger. ““Balls into Bins”–A Simple and Tight Analysis”.
Randomization and Approximation Techniques in Computer Science (1998),
159–170 (cited on pp. 32, 65)

[115] K.K. Ramakrishnan, P. Biswas, and R. Karedla. “Analysis of file I/O
traces in commercial computing environments”. Proceedings of the 1992
ACM SIGMETRICS joint international conference on Measurement and mod-
eling of computer systems. ACM, 78–90. isbn: 0897915070 (cited on p. 26)

[116] H.J. Richter, A.Y. Dobin, O. Heinonen, K.Z. Gao, R.J. Veerdonk, R.T.
Lynch, J. Xue, D. Weller, P. Asselin, M.F. Erden, et al. “Recording on
Bit-Patterned Media at Densities of 1 Tb/in2 and Beyond”. IEEE Transac-
tions on Magnetics 42.10 (2006), 2255–2260 (cited on p. 3)

[117] O. Rodeh and A. Teperman. “zFS: a scalable distributed file system us-
ing object disks”. Proceedings of the 20th IEEE/11th NASA Goddard Confer-
ence on Mass Storage Systems and Technologies, 2003. IEEE Computer Soci-
ety Washington, DC, USA, 207–218. isbn: 0-7695-1914-8 (cited on p. 14)

[118] D. Roselli, J.R. Lorch, and T.E. Anderson. “A comparison of file system
workloads”. Proceedings of the USENIX Annual Technical Conference, 2000.
USENIX Association, 4 (cited on pp. 26, 85, 87, 95, 103)

[119] R.E. Rottmayer, S. Batra, D. Buechel, W.A. Challener, J. Hohlfeld,
Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield, et al. “Heat-
assisted magnetic recording”. IEEE Transactions on Magnetics 42.10 (2006),
2417–2421 (cited on p. 3)

[120] C. Ruemmler and J.Wilkes.Disk shuffling. Tech. rep.HPL-91-156,Hewlett
Packard Laboratories, 1991 (cited on pp. 25, 109)

168

http://www.pcmag.com/article2/0,2817,2368023,00.asp
http://www.pcmag.com/article2/0,2817,2368023,00.asp

[121] C. Ruemmler and J. Wilkes. “UNIX disk access patterns”. Proceedings of
the Winter 1993 USENIX Technical Conference, 405–420 (cited on p. 109)

[122] A. Rukhin, J. Soto, J. Nechvatal,M. Smid, E. Barker, S. Leigh,M. Lev-
enson, M. Vangel, D. Banks, A. Heckert, et al. A Statistical Test Suite for
Random and Pseudorandom Number Generators for Cryptographic Applica-
tions. Tech. rep. DTIC, 2001 (cited on pp. 67, 72)

[123] P. Sanders. “Reconciling Simplicity and Realism in Parallel Disk Mod-
els”. Proceedings of the 12th ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2001. SIAM, Philadelphia, PA, 67–76 (cited on p. 21)

[124] M. Satyanarayanan. “Scalable, secure, and highly available distributed
file access”. Computer 23.5 (1990), 9–18 (cited on p. 18)

[125] M. Satyanarayanan, J.J. Kistler, P. Kumar,M.E. Okasaki, E.H. Siegel,
and D.C. Steere. “Coda: a highly available file system for a distributed
workstation environment”. IEEE Transactions on Computers 39.4 (1990),
447–459 (cited on p. 18)

[126] C. Schindelhauer and G. Schomaker. “Weighted Distributed Hash Ta-
bles”. Proceedings of the 17th ACM Symposium on Parallel Algorithms and Ar-
chitectures (SPAA), 2005. Las Vegas, Nevada, USA, 218–227 (cited on p. 21)

[127] F. Schmuck and R. Haskin. “GPFS: A Shared-Disk File System for Large
Computing Clusters”. Proceedings of the 1st USENIX Conference on File and
Storage Technologies (2002) (cited on p. 18)

[128] Seagate Technology PLC. Seagate Cheetah 15K.5 FC product manual.
url: http : / / www . seagate . com / staticfiles / support / disc / manuals /
enterprise/cheetah/15K.5/FC/100384772f.pdf (cited on p. 120)

[129] F.L. Severence. System modeling and simulation: an introduction. John Wi-
ley & Sons, 2009 (cited on p. 68)

[130] S. Shepler, M. Eisler, D. Robinson, B. Callaghan, R. Thurlow, D.
Noveck, C. Beame, and N. Appliance. “Network file system (NFS) ver-
sion 4 protocol”. Network Working Group RFC 3530 (2003) (cited on p. 14)

[131] A.J. Smith. “Analysis of Long Term File Reference Patterns for Application
to File Migration Algorithms”. IEEE Transactions on Software Engineering
7.4 (1981), 403–417. issn: 0098-5589 (cited on p. 25)

169

http://www.seagate.com/staticfiles/support/disc/manuals/enterprise/cheetah/15K.5/FC/100384772f.pdf
http://www.seagate.com/staticfiles/support/disc/manuals/enterprise/cheetah/15K.5/FC/100384772f.pdf

[132] G. Soundararajan, V. Prabhakaran, M. Balakrishnan, and T. Wob-
ber. “Extending SSD lifetimes with disk-based write caches”. Proceedings of
the 8th USENIX conference on File and storage technologies, 2010. USENIX
Association, 8–8 (cited on p. 24)

[133] M. Stevens, A.K. Lenstra, and B. de Weger. “Chosen-Prefix Collisions
forMD5 and Colliding X.509 Certificates for Different Identities”. Proceed-
ings of the 26th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques (EUROCRYPT) , 2007, 1–22 (cited on
p. 74)

[134] M. Stevens, A. Sotirov, J. Appelbaum, A.K. Lenstra, D. Molnar, D.A.
Osvik, and B. de Weger. “Short Chosen-Prefix Collisions for MD5 and
the Creation of a Rogue CA Certificate”. Proceedings of the 29th Annual In-
ternational Cryptology Conference (CRYPTO), 2009, 55–69 (cited on p. 74)

[135] I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F. Kaashoek,
F. Dabek, and H. Balakrishnan. “Chord: a scalable peer-to-peer lookup
protocol for internet applications”. IEEE/ACM Transactions on Networking
11.1 (2003), 17–32 (cited on p. 31)

[136] J. Tate, F. Lucchese, R. Moore, and International Business Ma-
chines Corporation. International Technical Support Organi-
zation. Introduction to storage area networks. IBM, International Technical
Support Organization, 2006 (cited on p. 13)

[137] M. Uysal, A. Merchant, and G.A. Alvarez. “Using MEMS-based stor-
age in disk arrays” (2003) (cited on p. 24)

[138] A. Verma, R. Koller, L. Useche, and R. Rangaswami. “Srcmap: Energy
proportional storage using dynamic consolidation”. Proceedings of the 8th
USENIX Conference on File and Storage Technologies, 2010. USENIX Asso-
ciation, 20–20 (cited on pp. 100, 101, 109)

[139] J. Viega. “Practical Random Number Generation in Software”. Proceed-
ings of the 19th Annual Computer Security Applications Conference (ACSAC),
2003, 129–141 (cited on p. 70)

[140] P. Vongsathorn and S.D. Carson. “A system for adaptive disk rearrange-
ment”. Software: Practice and Experience 20.3 (1990), 225–242 (cited on
pp. 25, 109)

170

[141] J. Walker. “ENT Test suite”. Online: http://www.fourmilab.ch/random
(1998) (cited on p. 72)

[142] J. Walker. “HotBits: Genuine random numbers, generated by radioactive
decay”. Online at http://www.fourmilab.ch/hotbits (2001) (cited on p. 66)

[143] T. Wang. “Integer hash function”. Online: http://www.concentric.net/
~ttwang/tech/inthash.htm (2007) (cited on p. 44)

[144] X. Wang, Y.L. Yin, and H. Yu. “Finding Collisions in the Full SHA-1”. Pro-
ceedings of the 25th Annual International Cryptology Conference (CRYPTO),
2005, 17–36 (cited on p. 74)

[145] S. A.Weil, S. A. Brandt, E. L.Miller, andC.Maltzahn. “CRUSH:Con-
trolled, Scalable And Decentralized Placement Of Replicated Data”. Pro-
ceedings of the ACM/IEEE Conference on Supercomputing, 2006. Tampa, FL
(cited on p. 22)

[146] S.A. Weil, S.A. Brandt, E.L. Miller, D.D.E. Long, and C. Maltzahn.
“Ceph: A Scalable, High-Performance Distributed File System”. OSDI’06:
Proceedings of the 7th Symposium onOperating SystemDesign and Implemen-
tation. Seattle, WA, USA, 307–320 (cited on pp. 14, 19, 31)

[147] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J. Small,
J. Zelenka, and B. Zhou. “Scalable Performance of the Panasas Parallel
File System”. Proceedings of the 6th USENIX Conference on File and Storage
Technologies (FAST), 17–33 (cited on p. 19)

[148] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. “The HP AutoRAID
hierarchical storage system”.ACMTransactions onComputer Systems (TOCS)
14.1 (1996), 108–136 (cited on p. 24)

[149] C.K. Wong. “Minimizing expected head movement in one-dimensional
and two-dimensionalmass storage systems”.ACMComputing Surveys (CSUR)
12.2 (1980), 167–178 (cited on p. 25)

[150] T.M. Wong, G.R. Ganger, J. Wilkes, et al. My Cache Or Yours?: Making
Storage More Exclusive. School of Computer Science, CarnegieMellonUni-
versity, 2000 (cited on p. 86)

[151] C. Wu and X. He. “GSR: A Global Stripe-based Redistribution Approach
to Accelerate RAID-5 Scaling”. Parallel Processing (ICPP), 2012 41st Inter-
national Conference on. IEEE, 460–469 (cited on pp. 23, 108)

171

http://www.fourmilab.ch/random
http://www.fourmilab.ch/hotbits
http://www.concentric.net/~ttwang/tech/inthash.htm
http://www.concentric.net/~ttwang/tech/inthash.htm

[152] Q. Yang and Y. Hu. “DCD—disk caching disk: A new approach for boost-
ing I/O performance”. 23rd Annual International Symposium on Computer
Architecture, 1996. IEEE, 169–169 (cited on p. 24)

[153] G. Zhang, J. Shu, W. Xue, and W. Zheng. “SLAS: An efficient approach to
scaling round-robin striped volumes”. ACM Transactions on Storage (TOS)
3.1 (2007), 3 (cited on p. 108)

[154] W. Zheng and G. Zhang. “FastScale: Accelerate RAID Scaling by Mini-
mizing Data Migration”. Proceedings of the 9th USENIX Conference on File
and Storage Technologies (FAST), 2011 (cited on pp. 21, 23, 120)

[155] R.M. Ziff. “Four-tap shift-register-sequence random-number generators”.
Computers in Physics 12 (1998), 385 (cited on p. 69)

172

Further Reading

[1] E. Anderson, M. Arlitt, C.B. Morrey III, and A. Veitch. “DataSeries:
an efficient, flexible data format for structured serial data”. ACM SIGOPS
Operating Systems Review 43.1 (2009), 70–75. issn: 0163-5980

[2] E. Anderson, S. Spence, R. Swaminathan, M. Kallahalla, and Q.
Wang. “Quickly finding near-optimal storage designs”. ACM Transactions
on Computer Systems (TOCS) 23.4 (2005), 337–374. issn: 0734-2071

[3] L. Carroll. Alice in wonderland. Vol. 836. Pelangi Publishing Group Bhd,
1942

[4] P.M. Chen, E.K. Lee, G.A. Gibson, R.H. Katz, and D.A. Patterson.
“RAID: High-performance, reliable secondary storage”. ACM Computing
Surveys (CSUR) 26.2 (1994), 145–185

[5] T. Cortes and J. Labarta. “HRaid: A Flexible Storage-system Simulator”.
Proceedings of the International Conference on parallel and Distributed Pro-
cessing Techniques and Applications (PDPTA’99). Las Vegas, NV

[6] T. Cortes and J. Labarta. A Case for Heterogeneous Disk Arrays. Tech. rep.
Departament d’Arquitectura de Computadors - Universitat Politècnica de
Catalunya, 2000

[7] A.B. Downey. “The structural cause of file size distributions”. Proceedings
of the 9th International Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems, 2001. IEEE, 361–370. isbn:
0769513158

173

[8] M. Factor, K. Meth, D. Naor, O. Rodeh, and J. Satran. “Object stor-
age: The future building block for storage systems”. Local to Global Data
Interoperability-Challenges and Technologies, 2005. IEEE, 119–123

[9] S. Ghemawat, H. Gobioff, and S. Leung. “The Google File System”.
SOSP’03: Proceedings of the nineteenth ACM symposium on Operating sys-
tems principles. New York, NY, USA: ACM, 29–43. isbn: 1-58113-757-5

[10] K. Goda and M. Kitsuregawa. “The history of storage systems”. Proceed-
ings of the IEEE 100.13 (2012), 1433–1440

[11] J. Guerra, H. Pucha, J. Glider, W. Belluomini, and R. Rangaswami.
“Cost effective storage using extent based dynamic tiering”. Proceedings of
the 9th USENIX conference on File and storage technologies, 2011. USENIX
Association, 20–20

[12] J.H. Howard and Carnegie-Mellon University. Information Tech-
nology Center. An overview of the andrew file system. Carnegie Mellon
University, Information Technology Center, 1988

[13] S. Kavalanekar, B. Worthington, Q. Zhang, and V. Sharda. “Charac-
terization of storage workload traces from production Windows servers”.
IEEE International Symposium on Workload Characterization, 2008. IISWC
2008. IEEE, 119–128

[14] G.W.F. von Leibniz. Monadologie. Braumüller und Seidel, 1847

[15] D.T. Meyer and W.J. Bolosky. “A study of practical deduplication”. ACM
Transactions on Storage (TOS) 7.4 (2012), 14

[16] D.A. Muntz, P. Honeyman, and C.J. Antonelli. “Evaluating delayed
write in a multilevel caching file system”. Proceedings of the IFIP/IEEE In-
ternational Conference on Distributed Platforms: Client/Server and Beyond:
DCE, CORBA, ODP and Advanced Distributed Applications, 2002. IEEE,
415–429. isbn: 0412732807

[17] D. Narayanan, A. Donnelly, E. Thereska, S. Elnikety, and A. Row-
stron. “Everest: Scaling down peak loads through I/O off-loading”. Pro-
ceedings of the 8th USENIX conference on Operating systems design and im-
plementation, 2008. USENIX Association, 15–28

[18] J. von Neumann. “Various techniques used in connection with random
digits”. Applied Math Series 12.36-38 (1951), 1

174

[19] I. Popov,A. Brinkmann, andT. Friedetzky. “On the Influence of PRNGs
on Data Distribution”. 20th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP), 2012. IEEE, 536–543

[20] T. Pratchett. Interesting times. HarperCollins, 2009

[21] P. Scheuermann, G. Weikum, and P. Zabback. “Data partitioning and
load balancing in parallel disk systems”. The VLDB Journal 7.1 (1998), 48–
66

[22] A. Traeger, E. Zadok,N. Joukov, andC.P.Wright. “Anine year study of
file system and storage benchmarking”. ACM Transactions on Storage (TOS)
4.2 (2008), 1–56. issn: 1553-3077

[23] A.M.Turing. “Computingmachinery and intelligence”.Mind 59.236 (1950),
433–460

[24] W. Vogels. “File system usage in Windows NT 4.0”. Proceedings of the sev-
enteenth ACM symposium on Operating systems principles, 1999. ACM, 93–
109. isbn: 1581131402

[25] J. Wilkes. “Traveling to Rome: QoS specifications for automated storage
system management”. Quality of Service—IWQoS 2001 (2001), 75–91

[26] R. Yellin. “The data storage evolution. Has disk capacity outgrown its use-
fulness?” Terada magazine (2006)

[27] Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton, and J. Wilkes. “Hiberna-
tor: helping disk arrays sleep through the winter”. ACM SIGOPS Operating
Systems Review, 2005. Vol. 39. 5. ACM, 177–190

175

Index

A

access patterns (data blocks)
(see working sets)

access sequentiality
(see working sets)

AFS, 18
ALIS, 25
ARC, 113
atmospheric noise, 66

(see also TRNGs)

B

BORG, 25

C

C-Miner, 25
CAGR, 2, 3
Ceph, 14

(see also SAN filesystems, OSDs)
CODA, 18

coefficient of variation, 127
compound annual growth rate

(see CAGR)
Consistent Hashing, 34

adaptivity, 61–62
fairness, 53, 55
memory usage, 57
performance, 57–60

CRAID, 4, 110
architecture, 110–112
archive partition, 110
cache partition, 110
control flow, 111
I/O Monitor, 112–114
I/O Redirector, 115
Mapping Cache, 114–115
response time, with parities,

122–127
response time, without parities,

129–131
workload balancing, with parities,

127–129
workload distribution, without

parities, 131–132
CRAID-0, 119
CRAID-0+, 119

177

CRAID-5, 116
CRAID-5+, 116
CRAID-5d, 117
CRAID-5+d, 117
cryptographic hash functions, 70

D

DAS architectures, 13
data layout optimizations, 25

(see also C-Miner, ALIS, BORG)
data rebalancing, 83–84
data storage

annual growth, 2
digital data online, 2
history, 1

direct-attached storage
(see DAS architectures)

DiskSim, 120
distributed file systems, 12

block-based, 18
(see also NFS, AFS, CODA,

OCFS2)
clients, 12
file servers, 12
metadata, 12
object-based, 19

(see also OSDs, MDSs, Panasas,
Lustre, Ceph, XtreemFS,
GoogleFS)

parallel, 18
(see also OCFS2, GPFS,

Panasas)
storage servers, 12

E

ecuyer1988, 79
ENT statisctical test, 72

EvenOdd-Codes, 51

F

Farsite, 14
(see also SAN filesystems)

Fibre Channel, 13
file systems, 11

file operations, 12
files, 11

G

GDSF, 113
generalized feedback shift register

generators
(see also PRNGs types)

generalized feedback shift registers,
69–70

GPFS, 18
GSR, 108

H

hard disk drive
(see HDDs)

HDD technology trends, 2–3
areal density, 2
bit-patterned recording, 3
CPP/GMR heads, 3
heat assisted recording, 3
rotational latency, 2
seek time, 2
shingled recording, 3

HDDs
(see also HDD technology trends)

hellekalek1995, 79
heterogeneous RAID

178

(see RAID)
hierarchical storage, 24

AutoRAID, 24
DCD, 24
HDD+SSD storage, 24

(see also Turbo Memory,
ReadyBoost, Griffin,
Combo Drive)

iCache, 24
MEMS, 24
NVRAM (battery backed), 24

hypergeometric distribution, 36 (n.)

I

information storage
(see data storage)

inversive congruential generators,
68–69

(see also PRNGs types)
iSCSI, 13

(see also SCSI, Fibre Channel)

K

kreutzer1986, 79

L

lagged Fibonacci generators, 69
(see also PRNGs types)

lagged_fibonacci607, 79
lags

(see lagged Fibonacci generators)
large-scale storage systems

extensibility, 4
heterogeneity, 4

minimum rebalancing, 5
rebalancing, 4
redundancy, 30
scalability issues, 5

lava lamps, 66
(see also TRNGs)

LBA, 19
lifespan (data blocks)

(see working set)
linear congruential generators, 67–68

(see also PRNGs types)
linear feedback shift register generators

(see also PRNGs types)
linear feedback shift registers, 70
logical block address

(see LBA)
LRU, 112
Lustre, 14, 19

(see also SAN filesystems, OSDs)

M

MD5, 79
MDSs, 19
Mersenne twister generator, 70

(see also generalized feedback shift
registers)

minstd_rand, 79
minstd_rand0, 79
mt11213b, 79
mt19937, 79
multiplicative congruential generators,

68
(see also PRNGs types)

N

NAS architectures, 13
network-attached storage

179

(see NAS architectures)
NFS, 14, 18

(see also NAS architectures)
NIST statisctical test, 72

O

object-based storage, 18–19
metadata servers

(see MDSs)
object storage devices

(see OSDs)
OSDs, 19
storage object, 19
(see also distributed file systems)

OCFS2, 18

P

Panasas, 19
partitioning, benefits of, 110–111
PRNG, 72
PRNGS

influence on distribution fairness,
72–77

PRNGs, 65–66
efficiency, 66
influence on distribution

performance, 77–80
period, 67
seed, 67
sequence uniformity, 66
types, 67–70

pseudo-random number generators
(see PRNGs)

R

radioactive decay, 66
(see also TRNGs)

RAID, 14
error correction, 14
failure probability, 15
hamming codes, 16
heterogeneity, 17
mirroring, 14
rebalancing, 23

FastScale, 23
gradual assimilation, 23
GSR, 23
MDM, 23

restriping, 108
small writes, 17
striping, 14
(see also RAID standard levels)

RAID standard levels, 15–17
(see also RAID)

RAID-0, 117
RAID-5, 116
RAID-5+, 116
rand48, 79
Random Slicing, 4, 37–43, 119

adaptivity, 62
data lookup, 41
extensions, 43
fairness, 55
fault tolerance, 41
interval creation algorithm, 38,

40–41
CutShift, 40
CutShift+Sorted, 41
Greedy, 40
Greedy+Sorted, 41

intervals, 37
memory usage, 60
parity support, 117
performance, 60

180

scalability, 44–48
segment tree, 48

randomized data distribution, 20–23
balls into bins, 32

adaptivity, 33
capacity efficiency, 33
compactness, 33
competitiveness, 33
fairness, 33
time efficiency, 33

Consistent Hashing, 20
CRUSH, 22
cut-and-paste, 20
Dynamo, 22
hash function, 20

(see also PRNGs)
redundancy group, 32
Redundant Share, 22
relative capacity, 32
replication, 21
RUSH, 22
SCADDAR, 22
Share, 21
Sieve, 21
Spread, 23
trivial replication, 35

randomness, 65–66
connection with fairness, 65

ranlux3, 79
ranlux3_01, 79
ranlux64_3, 79
ranlux64_3_01, 79
Redundant Share, 35–36

adaptivity, 62
fairness, 54–55
memory usage, 60
performance, 60

Reed-Solomon codes, 51
RUSH, 36–37

adaptivity, 62
fairness, 54–57

memory usage, 60
performance, 60

S

SAN architectures, 13
SAN filesystems, 14
SAS, 13
SATA, 4
SCSI, 4, 13
Seagate Cheetah, 120
SEQ, 117
SHA1, 79
Share, 34–35

fairness, 53–54
simulator

CRAID, 120–121
data distribution, 43

solid-state device
(see SSDs)

SSD, 12, 24
SSDs, 3, 4

manufacturing capacity, 3
storage architectures, 13

(see also DAS architectures,
NAS architectures,
SAN architectures,
SAN filesystems)

storage area networks
(see SAN architectures)

striping
(see RAID)

subtract with carry generators, 69
(see also PRNGs types)

T

taus88, 79
Tiger-192, 79

181

traces
animation collection, 86

dbs, 86
nfsc, 86
nfss, 86
render, 86
vcs, 86

cello99, 85–86
deasna, 86
home02, 86–87

TRNGs, 66
true random number generators

(see TRNGs)

U

Unix_rand, 79

W

WLRU, 114
working sets

access patterns (data blocks), 95
access sequentiality, 96–98
density of access, 98–99
lifespan (data blocks), 93–95
overlap, 87
shared blocks, 88–92

X

XtreemFS, 19

Z

zFS, 14

(see also SAN filesystems, OSDs)

182

List of Acronyms

ARC Adaptive Replacement Cache

BCE Before the Common/Current/Christian Era

CAGR Compound Annual Growth Rate

CDF Cumulative Distribution Function

CE Common/Current/Christian Era

CIFS Common Internet File System

CPP/GMR Current Perpendicular to Plane/Giant Magnetoresistance

DAS Direct-Attached Storage

GDSF Greedy-Dual-Size with Frequency

GFSR Generalized Feedback Shift Register

HDD Hard Disk Drive

ICG Inverse Congruential Generator

iSCSI Internet Small Computer System Interface

LBA Logical Block Address

LCG Linear Congruential Generator

LFG Lagged Fibonacci Generator

LFSR Linear Feedback Shift Register

183

LFUDA Least-Frequently Used with Dynamic Aging

LRU Least-Recently Used

MCG Multiplicative Congruential Generator

MD5 Message Digest #5

MDS Metadata Server

MEMS Microelectromechanical Systems

NAS Network-Attached Storage

NFS Network File System

NIST National Institute of Standards and Technology

NSD Network Storage Device

NVRAM Non-volatile RAM

OSD Object Storage Device

𝑃𝐴 Archive partition

𝑃𝐶 Cache partition

PRNG Pseudo-Random Number Generator

QoS Quality of Service

RAID Redundant Array of Independent Disks

RAM Random-access Memory

SAN Storage Area Network

SAS Serial Attached SCSI

SATA Serial Advanced Technology Attachment

SCSI Small Computer System Interface

SHA1 Secure Hash Algorithm #1

SLA Service-Level Agreement

SSD Solid-State Device

SWCG Subtract With Carry Generator

TRNG True Random Number Generator

WLRU Weighted Least-Recently Used

184

Colophon

This thesis, which includes 41 figures and 13
tables, was typeset using the LuaLATEX

typesetting system originally developed by
Jonathan Kew, based on TEX created by

Donald Knuth.

The body text is set 11/13.6pt on a 29pc measure
with Minion Pro designed by Robert Slimbach.

Other fonts include Adobe’s Myriad Pro and
TheSansMono Condensed by Luc(as) de Groot.

Mathematical equations are typeset using XITS
Math and Asana Math. The title page uses

League Gothic and Adobe Caslon Pro.

The use of sidenotes instead of footnotes was
inspired by Edward Tufte’s Beautiful Evidence.

Figures were prepared using matplotlib [63],
PGF/TikZ and, to a lesser extent, gnuplot.

© 2009–2014 by Alberto Miranda Bueno.
All rights reserved.

http://matplotlib.org
http://sourceforge.net/projects/pgf/
http://www.gnuplot.info/

The evolution of computer systems has brought an exponential growth in the volumes

of data which is pushing the capabilities of current storage to organize and access this

information efectively: as the creation and demand for computer-generated data

grows at an estimated rate of 40% to 60% per year, large storage architectures need

increasingly scalable data layouts that are able to adapt to this growth and provide the

suicient performance, since inadequate layouts may lead to unbalancing problems

like bottlenecks or resource underutilization.

This dissertation presents the results of our research in scalable data layouts that can

adapt to continuously increasing volumes of data. With this thesis, we make several

novel contributions to storage research: irst we design and evaluate a pseudorandom

distribution strategy that can adapt to hardware changes with minimal rebalancing;

second, we undertake a comparative study about the inluence of pseudorandom

number generators on the performance and distribution quality of several randomized

data layouts; third, we conduct an analysis of long-term data access patterns in several

real-world traces in order to determine if it is possible to ofer high performance and a

balanced load with less than minimal data rebalancing; fourth, we use the knowledge

learned on long-term access patterns to design an extensible RAID architecture that

can adapt to changes in the number of disks without migrating large amounts of data.

	Abstract
	Contents
	List of Figures
	List of Tables
	Preface
	0 Humans and information storage
	0.1 Overview and objectives
	0.1.1 Background and Related Work
	0.1.2 Scalable Data Distribution
	0.1.3 PRNGs in Data Distribution
	0.1.4 Long-term Locality in Mass Storage
	0.1.5 Extensibility in RAID Architectures

	0.2 Publications
	0.3 Finding your way around

	1 Background and related work
	1.1 Distributed file systems background
	1.2 Storage architectures
	1.3 RAID
	1.4 Object-based storage
	1.5 Data distribution, reliability and adaptivity
	1.5.1 Extensible Pseudo-Randomized Layouts
	1.5.2 Extensible RAID Layouts

	1.6 Hierarchical storage and layout optimization
	1.7 Characterization of storage behavior

	2 Scalable data distribution
	2.1 Motivation
	2.2 Research model
	2.3 Randomized data distribution
	2.3.1 Consistent Hashing
	2.3.2 Share
	2.3.3 Trivial Data Replication
	2.3.4 Redundant Share
	2.3.5 RUSH

	2.4 Proposal: Random Slicing
	2.4.1 Description
	2.4.2 Interval Creation Algorithm
	2.4.3 Data Lookup
	2.4.4 Fault Tolerance
	2.4.5 Extensions

	2.5 Methodology
	2.6 Scalability of Random Slicing
	2.6.1 Creation of New Intervals
	2.6.2 Absolute Intervals Created
	2.6.3 Performance Scalability

	2.7 Comparative evaluation
	2.7.1 Experimental Setup
	2.7.2 Fairness
	2.7.3 Memory Consumption and Compute Time
	2.7.4 Adaptivity
	2.7.5 Summary

	2.8 Conclusions

	3 PRNGs in data distribution
	3.1 Motivation
	3.2 Introduction to (pseudo-)randomness
	3.3 Methodology
	3.4 Influence on fairness
	3.5 Influence on performance
	3.6 Evaluation summary
	3.7 Conclusions

	4 Long-term locality in mass storage
	4.1 Motivation
	4.2 Methodology
	4.2.1 Traces
	4.2.2 Analysis

	4.3 Block sharing
	4.3.1 Sharing and Temporal Distance
	4.3.2 Accesses to Shared Blocks

	4.4 Block usage
	4.4.1 Block Lifespan
	4.4.2 Block Access Patterns
	4.4.3 Access Sequentiality
	4.4.4 Working Set Density

	4.5 Scope of our hypothesis
	4.6 Conclusions

	5 Extensibility in RAID architectures
	5.1 Motivation
	5.2 Proposal: CRAID
	5.2.1 Description
	5.2.2 I/O Monitor
	5.2.3 Mapping Cache
	5.2.4 I/O Redirector

	5.3 Methodology
	5.3.1 Configurations based on RAID-5
	5.3.2 Configurations based on RAID-0
	5.3.3 Simulation system and parameters

	5.4 Management of the Cache Partition
	5.5 CRAID-5* Response Time
	5.5.1 Read requests
	5.5.2 Write requests

	5.6 CRAID-5* Workload Distribution
	5.6.1 Impact of CRAID
	5.6.2 Influence of the cache partition size
	5.6.3 Workload with dedicated disks

	5.7 Performance of CRAID-0*
	5.7.1 Response time
	5.7.2 Workload distribution

	5.8 Conclusions

	6 Conclusion
	A The ENT test for pseudo-random sequences
	B The NIST test suite
	B.1 Frequency (MONOBIT) test
	B.2 Frequency test within a block
	B.3 Runs test
	B.4 Test for the longest run of ones in a block
	B.5 Binary matrix rank test
	B.6 Discrete Fourier transform (SPECTRAL) test
	B.7 Non-overlapping template matching test
	B.8 Overlapping template matching test
	B.9 Maurer's “Universal Statistical” test
	B.10 Linear complexity test
	B.11 Serial test
	B.12 Approximate entropy test
	B.13 Cumulative sums (CUSUM) test
	B.14 Random excursions test
	B.15 Random excursions variant test

	Bibliography
	Further Reading
	Index
	List of Acronyms

