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Chapter 1

Introduction

The structural materials used in airframe and propulsion systems in�uence the
cost, performance and safety of aircrafts, spacecrafts, etc. The knowledge of
available materials, as well as their properties and reliability, is essential for the
aerospace community.

Metallic glasses are metastable solids without the long-range order present
in crystals. Conventional metallic materials have a crystalline structure consist-
ing of single crystal grains of varying sizes that �t together to form the metal's
microstructure. Metal alloys are usually obtained by melting and subsequent
solidi�cation; the particular cooling path, as well us further thermal treatments,
are eventually responsible of the crystallization process and �nal metallic mi-
crostructure which, in turn, de�ne the mechanic response.

Unlike crystalline alloys, bulk metallic glasses (BMG) are obtained by fast
cooling below the crystallization temperature. Fast cooling prevents regular
crystallization, and thus the material keeps the structure of the precursor liq-
uid; bulk metallic glasses are thus solid materials with liquid-like structure at
the atomic level. This non-crystalline structure makes bulk metallic glasses
more resistant to permanent deformation than their crystalline counterparts -
by factors of 2 or 3 � and tougher than ceramics.

The �rst metallic glass, discovered over �fty years ago by Pol Duwez at
Caltech, was produced by rapid cooling an Au�Si eutectic liquid [1]. However,
the extremely high critical cooling rate (e.g., 106 K/s) limited sample dimensions
to the micrometer range, restricting applications to a few areas such as micro
mechanisms in transformers and sensors. It was in the 1990s when a variety
of alloy systems with low critical cooling rates, around 0.1�100 K/s [2, 3] , was
discovered. This allowed the production of metallic glasses with dimensions of
millimeters to centimeters via conventional casting technologies well known by
metallurgists.

The disordered atomic structure of metallic glasses provides many superior
mechanical properties compared to crystalline exemplars. For example, elastic
strains up to 2% have been measured (most engineering metals exhibit 0.2%
or less), with failure strengths approaching theoretical values; the strength-to-
density ratio for Al- , Ca- , and Mg- based bulk metallic glasses is at least twice
that of the corresponding crystalline materials. Most exciting is the development
of new Fe- based bulk metallic glasses, so-called amorphous steels [4, 5] , which
have exhibited failure strengths exceeding twice those measured for conventional
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high strength steels. The combination of the unique mechanical properties with
easy processability and shaping provides the potential for a new generation
of structural materials with cutting-edge applications in a variety of industries
including aerospace and aeronautics, high-performance sports equipment, armor
and anti-armor devices, biomedical, and conventional structural applications [6].

The continuous research e�ort on bulk metallic glasses is resulting in the
continuous appearing of new amorphous compositions for use in several appli-
cations - sports equipment, medical tools, military hardware, spacecraft parts,
etc. -. Better measurements of viscosity and a better understanding of the
atomic structure will help researchers to improve a variety of materials with a
wide application range.

The macroscopic mechanical properties of a material are intimately linked to
its atomic structure. The fracture behavior of brittle materials, in particular, is
initiated by the generation of vibrational modes. In crystals, where periodicity
is found in their structure, the vibrational states can be described as quantized
plane-waves phonons, but in amorphous systems the nature of vibrations re-
mains unclear. Their vibration spectrum strongly deviates from that expected
from Debye's elasticity theory [7].

The structural and elastic heterogeneities present on glasses at the nm scale
determine the physical properties at the mesoscale, this is the transition between
the atomic level, de�ned by the particular atomic bonding of the substance, and
the macroscopic elastic continuum [8, 9]. The nature of low frequency modes
and how they are in�uenced by local atomic structure is unclear.

Amorphous materials exhibit a number of peculiar low temperature prop-
erties that strongly di�er from the ones observed in crystalline systems. The
speci�c heat, C , presents an excess ∝ T 3 over the Debye prediction which ap-
pears as a maximum in C/T 3 . This excess is visible as a maximum, which is
called Boson-Peak.

The so-called Boson Peak re�ects an enhancement of states in the low fre-
quency regime of the Vibrational Density of States and is believed to be the
key to the fundamental understanding of the vibrational properties in metallic
glasses.

The disordered atomic structure of glasses makes extremely di�cult the ex-
perimental analysis of its atomic structure. Thus one of the principal tools in
the theoretical study of metallic glasses is the simulation by molecular dynam-
ics (MD). MD simulations are used to investigate the topology and structural
dynamics of materials. Detailed simulations, based on �rst principles, give a
precise description of the material but are restricted to moderate number of
atoms due to their large computational cost. The use of empirical potentials
allows faster calculations following only speci�c atomic degrees of freedom and,
as a result, larger and more complex systems can be treated by allowing some
reduction in accuracy. This is particularly important in the case of glasses, as
the properties of the glassy state are consequence of the long range interaction
of large number of atoms. In particular, the study of the Boson Peak can be
performed by MD
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1.1 Metallic Glasses

Metallic glasses are metastable solids without the long-range order present in
crystals. They are emerging as potentially useful materials at the frontier of
materials science research. They combine some advantages and avoid some of
the problems of normal metals and glasses.

Amorphous metallic alloys or metallic glasses are relatively newcomers to the
world of glasses, and they have properties that are unusual for metallic solids.
Metallic glasses, which exist in very wide variety of compositions, combine fun-
damental interest with practical applications. They also serve as precursors for
exciting new nano crystalline materials.

Amorphous alloys have attracted considerable attention due to their unique
properties, such as mechanical, magnetic, electronic, chemical and other proper-
ties. Specially, their magnetic (soft and hard) and mechanical properties are of
particular interest [10]. These properties make them candidates for fundamental
studies in solid state physics as well as for industrial applications [11, 12, 13].

In the last two decades, metallic glasses have regained more interest due
to the discovery of new glass-forming compositions with critical cooling rates
below 100K/s, thus remaining glassy in bulk shapes. The availability of bulk
metallic glasses allows their consideration for engineering applications. They
o�er an opportunity to reshape the �eld of structural materials with unfamiliar
combinations of strength, elastic limit, toughness, wear resistance and corrosion
resistance.

1.1.1 What are Metallic glasses?

A glass is a solid material produced when a liquid is cooled without crystallizing.
Bulk Metallic Glasses (BMGs) are metallic alloys having amorphous or glassy
structure.

When a conventional metal or alloy cools from the liquid melt, equilibrium
is reached when it solidi�es into the lowest energy state in a crystalline lat-
tice. Most metals crystallize at a temperature just below the melting point
in microseconds during solidi�cation. But rather than forming a perfect single
crystal, most metals are polycrystalline, with grains of varying shape and size.
Grain boundaries and crystal defects represent weak spots of less than optimal
atomic packing, where fracture can form and corrosion often starts.

A glass solidi�es without crystallizing; it retains a much more disordered
structure reminiscent of the liquid state. The disordered structure of glasses
gives them unique properties, the most distinctive of which is the glass transi-
tion, T g. A crystal will melt at a speci�c temperature when heated. A glass will
not melt; instead, it gradually softens, changing from solid to liquid over a range
of temperature as shown in Figure 1.1. This can be very useful for processing
glasses into complex shapes.

1.1.2 Processing

Virtually any liquid can be turned into a glass if it is cooled quickly enough to
avoid crystallization. The question is: how fast does the cooling need to be?

Common oxide glasses (such as ordinary window glass) are quite resistant
to crystallization, they can be formed even cooling the liquid really slowly, and
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Figure 1.1: Glass transition.

many polymers cannot be crystallized at all. For both oxides and polymers,
the key to glass formation is that the liquid structure cannot be rearranged to
the more ordered crystalline structure in the time available. Metallic glasses,
however, do not have these features. Because the structural units are individual
atoms (as opposed to polymer chains or the network structure of an oxide), in
most metallic alloys it is relatively easy for crystals to nucleate and grow. As a
result, the earliest metallic glasses (which were discovered at Caltech in the late
1950s [1]) required very rapid cooling - around one million degrees Celsius per
second - to avoid crystallization. Although this sounds impressive, it's actually
not as hard to achieve. One way to do it is by single-roller melt spinning, as
shown in Figure 1.2:

In this process, the alloy is melted (typically in a quartz crucible) by induc-
tion heating, and then forced out through a narrow nozzle onto the edge of a
rapidly rotating chill wheel (typically made of copper). The melt spreads to
form a thin ribbon, which cools rapidly because it is in contact with the copper
wheel.

Melt spinning and other rapid solidi�cation techniques have been used to
make a wide variety of amorphous and nano crystalline metals from the 1960s
to the present. However, materials produced in this way have a key limitation:
At least one dimension must be very small, so that heat can be extracted quickly
enough to achieve the necessary cooling rate. As a result, the early glass-forming
alloys could only be produced as thin ribbons (typically around 50 μm thick),
wires, foils, or powders. Although some applications (notably those that made
use of the magnetic properties of iron- and nickel-based alloys) could use metallic
glasses in these forms, structural applications were obviously impractical. The
earliest demonstration of a bulk metallic glass came from Harvard University
in the 1980s, where was shown that by using a �ux to remove impurities, a
palladium-based glass could be produced in thickness of more than a millimeter
[2, 14]. More rapid progress was made in the early 1990s on developing alloys
that could form glasses at much lower cooling rates, down to one degree Celsius
per second or less. Today, a wide range of glass-forming alloys are known, based
on common elements including iron, copper, titanium, magnesium, zirconium,
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Figure 1.2: Single-roller melt spinning.

and platinum. These alloys can be produced using variations on standard met-
allurgical casting techniques, although in most cases processing must be done
in vacuum or under an inert atmosphere to prevent contamination. Another
technique suitable for producing metallic glasses is suction casting. An ingot
in the upper chamber under an inert atmosphere is melted with an electric arc
(much like in arc welding) and then sucked into a mold when the lower chamber
is opened to vacuum, see Figure 1.3.

One of the potentially useful properties of metallic glasses is that they do not
melt abruptly at a �xed temperature. Instead, like ordinary oxide glasses, they
gradually soften and �ow over a range of temperatures. By careful control of
temperature, the viscosity of the softened glass can be precisely controlled. This
ability can be used to form metallic glasses into complex shapes by techniques
similar to those used for molding polymers.

1.1.3 Structure

In a crystal (Figure 1.4), there is a strong regularity or order in the atomic
positions. In comparison, the atomic positions in a glass (Figure 1.5) lack the
long range crystal periodicity.

There are several things to notice about these simple models. In the crystal,
the local environment around each atom is the same. In the tho-dimensional
hexagonal lattice of Figure 1.4 every atom has six neighbors, all at the same
distance. In a close packed three dimensional lattice, each atom would have
twelve neighbors. In the glass, di�erent atoms will have a di�erent number of
neighbors, often below the expected average. Furthermore, the neighbors around
a given atom are not all at the same distance, although an average near-neighbor
distance can be de�ned. The same basic principles apply to real metallic glasses,
but the situation is more complex because metallic glasses usually have more
than one kind of atom.
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Figure 1.3: Suction casting.

Figure 1.4: Crystal.

Figure 1.5: Amorphous.
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Figure 1.6: X-ray di�raction experiment.

We can study the atomic-scale structure of metallic glasses using some of
the same techniques used to study crystalline materials. The most widely-used
technique is X-ray di�raction. Because of their wave nature, X-rays will di�ract
from the regularly-spaced planes of atoms in a crystal, following Bragg's Law:

sin θ = λ/2d (1.1)

where θ is one-half of the scattering angle, λ is the wavelength of the X-rays,
and d is the distance between the atomic planes.

In an X-ray di�raction experiment, the intensity of the di�racted X-rays is
measured as a function of θ, as shown schematically in Figure 1.6:

If Bragg's Law is satis�ed, then X-rays will be strongly di�racted and a large
intensity will be recorded. Because of the highly ordered nature of a crystal,
this will happen only at a few angles. So the di�raction pattern from a crystal
consists of a few, sharp di�raction peaks as shown in Figure 1.7 (top):

The disordered atomic-scale structure of a glass, however, leads to a di�rac-
tion pattern that has only a few, broad scattering, features as shown in Figure
1.7 (bottom).

The di�erence in structure can also be seen in the electron microscope. Fig-
ure 1.8 shows two (HRTEM) images. The left image shows the highly ordered
contrast associated with the periodicity of a crystal; the right image corresponds
to a glass, showing no periodic features.

1.1.4 Properties

1.1.4.1 Mechanical properties

Much of the recent interest in metallic glasses is due to their unusual and po-
tentially useful mechanical properties [10, 15, 16]. The di�erences in behavior
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Figure 1.7: Di�raction pattern.

Figure 1.8: High resolution transmission electron microscope image (HRTEM).



1.1 Metallic Glasses 9

ALLOY Yield Strenght Density Strength

to weigth

ratio

Elongation

(%)

MPa ksi g cm−3 Lb in−3

Metallicglasses

Zr41.25Ti13.75Cu12.5Ni10Be22.5 1900 275 6.1 0.22 310 2

Mg65Cu25Tb10 700 100 4.0 0.14 175 1.5

Fe59Cr6Mo14C15B6 3800 550 7.9 0.29 480 2

Conventionalalloys

Aluminium (7075-T6) 505 73 2.8 0.1 180 11

Titanium (Ti-6Al-4V) 1100 160 4.4 0.16 250 10

Steel (4340) 1620 190 7.9 0.29 206 6

Magnesium (AZ80) 275 400 1.8 0.07 150 7

Table 1.1: Mechanical properties of Metallic glasses compared to some conven-
tional alloys.

between metallic glasses and conventional, crystalline alloys result directly from
the di�erences in their structures.

The strength and deformation behavior of a crystalline metal are ruled by
the presence of defects in the crystalline structure, namely dislocations and grain
boundaries. An amorphous material, such as a metallic glass, has neither grain
boundaries or crystalline directions susceptible to generate dislocations and so
its strength can approach the theoretical limit associated with the strength of
its atomic bonds. Table 1.1 gives a comparison of the mechanical properties of
some metallic glasses, along with a few conventional alloys for comparison:

It can be seen from the table that metallic glasses can in fact be quite
strong. For instance, the iron-based glass in the table (Fe59Cr6Mo14C15B6)
is more than twice as strong as high-strength steel. As it might be expected,
the high strength of metallic glasses has generated a high interest in them for
structural applications.

Another consequence of the unusual structure of metallic glasses is that they
are somewhat (20-30%) less sti� than similar crystalline alloys. ("Less sti�"
means that in the elastic region they deform more, given the same amount of
force.) Although this might seem undesirable, in some applications a less sti�
alloy is actually advantageous. For instance, springs made of metallic glasses are
springier. Another example would be orthopedic implants; in this case, if the
implant material is much sti�er than the bone, the implant carries too much
of the load and the bone becomes weaker (a response called "remodeling").
A metallic glass could be a better match than a crystalline alloy of similar
composition, reducing the e�ects of remodeling.

Not all of the mechanical properties of metallic glasses are good. Notice
the rightmost column of the table 1.1 above, "Plastic elongation", which is
a measure of ductility, and it is a useful property of metals for two reasons.
First, it means that metals can be formed into a wide variety of shapes by
deformation processing (such as forging, rolling, and extrusion). Second, since
the opposite of ductile behavior is brittle fracture, ductility is obviously desirable
in any structural application. But from the table above we see that most of
metallic glasses are not ductile, which is potentially a signi�cant barrier to their
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Figure 1.9: SEM picture of two shear bands crossing with each other on the
Zr52.5Cu17.9Ni14.6Al10Ti5.0 .

widespread application.

Ironically, the same feature of metallic glasses that gives them their high
strengths, the lack of dislocations, is also responsible for their lack of ductil-
ity. Dislocations cause strain hardening, which means that crystalline metals
actually get stronger in response to deformation. Thus, if a small region of a
crystalline metal deforms plastically, it gets stronger. Rather than continuing
to deform in that same spot, deformation occurs someplace else which has not
strain hardened and is therefore weaker. In this way, plastic deformation spreads
through a relatively large volume of material. Metallic glasses have exactly the
opposite response: their strain soften. So once plastic deformation sets in, it
tends to continue in the same region, a process called shear localization. The re-
sult is the formation of shear bands, which are regions of highly localized plastic
deformation [17], as seen in the SEM picture shown in Figure 1.9.

The image shows the surface of a metallic glass specimen subjected to bend-
ing, as seen in a scanning electron microscope. The deformation has caused
shear bands to form on the surface of the specimen. There is extensive shear
deformation on each shear band, but little deformation occurs in between the
bands. The fracture could occur easily on the major shear band. The lack of
tensile ductility in metallic glasses presents a potential problem for structural
applications, where brittle behavior is undesirable. The problem is not quite
as bad as it might seem, because despite their brittle behavior many metallic
glasses still have reasonably good fracture toughness [18]. In addition, it is
possible to achieve some ductility by making composite materials consisting of
relatively soft, ductile crystalline metal particles or �bers embedded in a metal-
lic glass matrix [19]. The particles both promote shear band formation and
inhibit shear band propagation. Generating more shear bands might not seem
like a good thing, but the idea is that many small shear bands are preferable to
a single, large shear band that would cause fracture. One �nal consequence of
the microstructure of metallic glasses is that they appear to be more susceptible
to fatigue failure than conventional crystalline alloys. A simple explanation for
this is that once a small crack forms, there are no micro structural features in a
metallic glass to impede its growth under cyclic loading. It may be that fatigue
performance of metallic glasses can also be improved by making a composite
material, but to date there has been relatively little work in this area.
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1.1.4.2 Magnetic properties

Despite the tremendous recent interest in the mechanical properties of metal-
lic glasses, the most common real-world application of metallic glasses actually
make use of the novel magnetic properties of some amorphous alloys based on
iron, nickel, and cobalt. Although the saturation magnetization of these alloys
is not as great as that of the pure elements, the lack of a crystalline structure
can be an important advantage. In particular, amorphous alloys tend to have
low coercivity because there are no boundaries between crystalline grains to
impede the motion of magnetic domain walls and because there is no magneto
crystalline anisotropy [20]. Furthermore, although metallic glasses are electri-
cally conductive, their resistance to current �ow is generally higher than that
of crystalline alloys. This helps to minimize eddy-current losses that occur due
to rapid magnetization and demagnetization of the material.

1.1.4.3 Other properties

Like crystalline metals, metallic glasses have free electrons to conduct electric-
ity, which makes them both electrically and thermally conductive. However,
compared to crystalline alloys they are not especially good conductors, due to
their disordered atomic structure and high levels of alloying elements. Contrar-
ily to common oxide glasses, metallic glasses are not transparent to visible light;
their metallic character prevent so. Photons at visible wavelengths are strongly
scattered and absorbed by the conduction electrons in metallic glasses. As a
result, metallic glasses have the shiny luster typical of other metals and are not
transparent.

Another common claim about metallic glasses is that they are resistant to
corrosion, a property which is usually attributed to the lack of crystalline grain
boundaries (which in ordinary crystalline metals can be particularly suscepti-
ble to chemical attack). The extension of solubility, respect to the crystalline
phases, permits the homogeneous distribution of high concentrations of bene-
�cial corrosion-resistant elements. One example of this strategy are the amor-
phous steels with high-contents of chromium [21]. It is true that some amor-
phous alloys are resistant to corrosion, but others are not, so any such claims
should be treated with caution.

1.1.5 Glass forming criteria

In order to obtain amorphous structure from the liquid state the crystallization
kinetics must be slowed down. According to Inoue [22], in order to obtain
amorphous structures some criteria must be ful�lled:

� Multi-component alloys (three of more elements) increase the complexity
and size of the crystal unit cell, resulting in a low energetic advantage of forming
an ordered structure with long-range order.

� An atomic radius mismatch between elements, 4r/r > 12%, leads to
a higher packing density and smaller free volume and so smaller free energy
di�erence between the stable crystalline phase and the supercooled melt.

� A negative heat of mixing between the main elements increases the energy
barrier at the liquid-solid interface and decreases atomic di�usion. This retards
local atomic rearrangements and the crystal nucleation rate.
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Figure 1.10: Free volume schematic representation.

� An alloy composition close to a deep eutectic forms a stable liquid phase
at low temperature. Slower crystallization allows a decreased critical cooling
rate and an increased size of the BMGs.

1.1.6 Free Volume

Free volume is de�ned as the excess of volume 4V which can be redistributed
without energy change. In this section the free volume is de�ned for the case of
a metallic glass.

Amorphous liquids display a complex relaxation path and transport proper-
ties near the glass transition T g; the changes in free volume justify this behavior.

The free volume models based upon the theories of Cohen [23, 24, 25, 26]
consider than an atom in a liquid state is trapped in a cage formed by its
neighboring atom. This cage a�ects the atom movement conditioning it. Only
when the space next to the atom is larger than the atomic volume, the atom
can move into the liquid.

Figure 1.10 sketches the free volume around two atoms in a liquid. There,
Va corresponds to the atomic volume, Vm to the speci�c volume of the cage and
Vvoid corresponds to the void space available for the atomic movement.

In order to allow atom's movement, void space should appear with a volume
equal or bigger than the atomic volume (Vvoid > Va).

A local free volume V for every atom is de�ned as V = Vm − Va, and this
local free volume can be redistributed between neighboring cages. When void
spaces are greater than this V , atomic movement takes place by redistribution
of the local free volume.

The free volume model can describe the thermodynamics for dense liquids
and glasses in metastable equilibrium, but it does not give information about
local atomic structure.

The local volume and speci�c geometry of the cage formed around individual
atoms are not de�ned by free volume model.
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1.1.7 Short Range Order

The structure of metallic glasses is characterized by their random long range
structural order (LRO), although a considerable amount of short range order
(SRO) [27, 28, 29, 30] is expected to be present in these alloys, due to their high
atomic packing density and the varying chemical a�nity between the constituent
elements.

The �rst recognized structural model for metallic glasses is Bernal's [31, 32]
dense random packing model. The atomic rearrangement is considered to be
sphere packing using their atomic radius. This model is valid for mono-atomic
metals and alloys where elements have similar atomic size. In spite of being
one of the most accepted structural model, it does not provide any information
about short range order (SRO) and medium range order (MRO) observed in
glassy systems with more components and low critical cooling rate.

In general, atoms in glassy systems prefer to rearrange in SRO where the
local nearest-neighbor environment of each atom is similar to other equivalent
atoms, although this feature does not remain over considerable distance. This
provides higher packing density and low free volume than their equivalent alloys.
Finney[33] developed geometrical studies of two random packing models of high
density by means of Voronoi polyhedral construction [34] obtaining a sensitive
structural description.

The Voronoi tessellation method [34] split up the glass in Voronoi polyhe-
dra around each atom, obtaining information about local volumes and nearest
neighbor environment. The SRO of the amorphous samples is de�ned by the
occurrence of certain types of Voronoi polyhedra.

In addition to Voronoi tessellation method applied by mean of Molecular
dynamics, some experimental methods like X-ray and neutron di�raction [35,
36, 37, 38] are used to study the SRO in metallic glasses. Although it must be
remarked that they give only averaged structural information in one dimension.
MRO, can be de�ned as the next structural organization level beyond the SRO.
It describes how Voronoi polyhedral are connected and arranged in a three-
dimensional space.

1.2 Phonons

In the study of physical properties of solids, phonons play a major role.
A phonon is a collective excitation in a periodic elastic arrangement of atoms

or molecules in condensed matter, such as solids and some liquids. The study of
the propagation of phonons is an important tool to investigate the unexpected
and ba�ing dynamic properties of amorphous solids.

In perfect crystals the vibrational motion of undamped atoms is easily de-
composed into independent normal modes, therefore their vibrational excita-
tions are generally well-understood. These normal modes are plane-wave exci-
tations and are the already named phonons [39].

Phonons have associated a frequency (ω), wave-vector (q) and polarization
vector. Anharmonic e�ects lead to a coupling between these modes resulting in
a �nite lifetime. In general crystal imperfections give rise to localized excitations
which can also limit the phonon lifetime through elastic or inelastic scattering.

In amorphous solids, the situation is more complex and less understood. The
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Figure 1.11: Phonons have energy (E), frequency (ω), wavelength (λ), wave
vector (q) and propagate at a velocity v=ω/q.

lack of periodicity generates a complex situation. The normal modes can not be
expressed as a normal waves, phonons are damped as in anharmonic crystals,
and this e�ect is more important as the phonon wavelength approaches the inter-
atomic spacing. Therefore, the dispersion curve in amorphous solids is smeared
out increasing wave vector and phonons in the original sense pass away.

Anyhow, reaching the wavelength limit - at low frequencies -, glasses behave
as elastic continua, like crystals. A well de�ned dispersion relation exists.

It must be taken into account that the fact that a system is in equilibrium
does not mean absence of particle dynamics. Fluctuations appear continuously
in the system. How �uctuations are able to disappear is an essential feature
associated with the macroscopic behavior. This is an important reason for the
study of the phonons of metallic glasses.

1.2.1 Debye model

In 1907 Einstein [40] made the �rst successful model to explain the behaviour
of the speci�c heat C of solids at low temperatures. However, Einstein's model
couldn't explain the behaviour when the temperature T approaches 0 K, where
experimental data indicates that the speci�c heat is proportional to T 3 (C ∝
T 3). In 1912 Peter Debye [41] developed a quantum mechanics theory for esti-
mating the phonon contribution to speci�c heat in a solid.

Debye described the phonon oscillations of atoms as sound waves. Atomic
movements are not isolated movements, there is a collective movement. So
Debye quantized atomic movements as Planck quantized light waves.

Besides the di�erence on the velocity between speed of light and sound, there
is one minor di�erence. Light is a transverse wave that contains two possible
polarizations for each k, while, for sound there are three possible di�erent modes
(a longitudinal mode and two transverse modes).
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In order to simplify this theory, it is assumed that the transverse and longi-
tudinal modes have the same velocity, although longitudinal velocity is greater
than transverse velocity.

We consider waves with Periodic Boundary Conditions, PBC. PBC, as-
sume an in�nite repetition of the solid in space. Let's consider, �rst, an one-
dimensional solid in the x-coordinate direction; an one-dmensional wave, de-
scribed for example by exp(ikx) must have the same amplitude in points equiv-
alents by translation such as x and x + L, where L, is the box length. Then,
this restricts the possible values of k to be

k =
2πn

L
(1.2)

for n integer. In order to sum over all values ofk, forL large enough, this sum
can be replaced by an integral ∑

→ L

2π

ˆ
dk (1.3)

Expanding to three dimensions, a three-dimensional wave is described by
exp

(
i
−→
k ·−→r

)
. By considering PBC the �nite sample of size L3 wraps onto itself

in all three coordinate directions, generating a hypertorus. Moving a distance
L in any direction, you get back to where you started. This implies

−→
k =

2π

L
(n1, n2, n3) (1.4)

for ni integer
With this, the volume of every point is (2π/L)3 , and summing over every k

we obtain ∑
→ L3

(2π)3

ˆ
dk (1.5)

Let's suppose that oscillation modes are waves with frequency ω(
−→
k ) = v

∣∣∣−→k ∣∣∣
with v being the sound velocity. For each

−→
k there are three possible oscillation

modes (one longitudinal and two transverse) . Taking this into account, an
expression similar to Einstein's expression is obtained

< E >= 3
∑

~ω
(∣∣∣−→k ∣∣∣)(nB [β~ω (∣∣∣−→k ∣∣∣)]+

1

2

)
(1.6)

< E >= 3
L3

(2π)3

ˆ
dk~ω

(∣∣∣−→k ∣∣∣)(nB [β~ω (∣∣∣−→k ∣∣∣)]+
1

2

)
(1.7)

each excitation mode is a boson of frequency ω
(∣∣∣−→k ∣∣∣) and it is occupied

on average nB(βhω
(∣∣∣−→k ∣∣∣)) times, nB (βE) being the boson occupation factor,

β = 1/kBT and kB the Boltzmann constant.
Given the spherical symmetry, we can transform the three dimension integral

to an one dimension integral
ˆ
d
−→
k → 4π

ˆ
k2dk (1.8)
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where k = ω/v. An open question on this expression are the integration
limits. Though any wavenumber is possible, Debye assumed that the number
of allowed excitations should coincide with the number of normal modes of
vibration, which for a system of N atoms would be 3N . This allows us to de�ne
a cuto� frequency, namely the Debye frequency, ω3

d = 6π2nv3 , where n is the
atomic density de�ned by nL3 = N .

< E >= 3
4πL3

(2π)3

ˆ ωD

o

ω2dω

v3
(~ω)(nB(β~ω(k)) +

1

2
) (1.9)

The Density of States is de�ned by

g(ω) = N

[
12πω2

(2π)3nv3

]
= N

9ω2

ω3
d

(1.10)

< E >=

ˆ ωD

o

dωg(ω)(~ω)(nB(β~ω(k)) +
1

2
) (1.11)

The density of Stated de�nes the number of oscillation modes with frequen-
cies between ω and ω+dω, therefore equation 1.11 represents the modes available
for a frequency ω times the energy in each mode, integrated over all frequencies.

This result, reminders Planck's result for the quantum energy of light waves
replacing 2/c3 → 3/v3. The factor 2 came from the number of modes in light and
it is replaced by the number of modes available in sound waves.

The second di�erence between the two cases is the factor +1/2. This accounts
for the zero point energy of each oscillator and gives us a contribution which is
independent on temperature.

When the heat capacity is calculated C = ∂<E>
∂T the zero point energy does

not a�ect, it can be ignored.

< E >=
9N~
ω3
d

ˆ ωD

o

dω
ω3

exp(β~ω)− 1
+ E0 (1.12)

De�ning x = β~ω, the Debye temperature from ~ωd = kBTD and xD = TD/T
we get

< E >=
9N~

ω3
d(β~)4

ˆ xD

o

dx
x3

exp(x)− 1
+E0 =

9NkBT
4

T 3
d

ˆ xD

o

dx
x3

exp(x)− 1
+E0

(1.13)
The speci�c heat is then obtained by derivation against T :

C =
∂ < E >

∂T
=

9NkBT
4

T 3
d

ˆ xD

o

dx
x4

(exp(x)− 1)
2 (1.14)

For high temperatures - T > TD - exp(x) − 1 ∼ x, and the speci�c heat
approaches the classical value given by Dulong-Petit's law. For intermediate
temperatures - T ∼ TD the integral must be solved numerically. And, �nally,
for low temperatures - T � TD - xD = TD/T → ∞; substituting xD by ∞ the
integral can be evaluated analytically, giving

C = NkB
T 312π4

(TD)35
(1.15)
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which reproduces the experimental behaviour at low temperatures. The De-
bye model of speci�c heat reproduces qualitatively - and in some cases quantita-
tively the main features of the speci�c heat of solids. The observed di�erences
a�ect mainly to metals, and are due to the contribution of electrons to the
speci�c heat which are out of the scope of this work.

1.2.2 Boson Peak

Experimental measurements of the Vibrational Density of States (VDOS) in
amorphous materials show a maximum above the standard Debye contribution
at low frequency regimes. This maximum is commonly termed as Boson Peak
(BP). In 3D systems it can be outlined by plotting the V DOS/ω2 versus ω, see
Figure 1.12.

Figure 1.12: Boson Peak observed in a Lennard-Jones binary system of 1098500
atoms and quenching rate η1.

It is generally accepted that the BP is associated to some sort of disorder
in metallic glasses. The origin of the excess of vibrational modes is not clear.
It appears to be connected to the so called quasi-localized eigen modes of the
vibrational spectrum.

There have been proposed two main frameworks in order to understand the
origin of the BP. On one hand, it is considered that the excess modes has a
structural origin. The excess modes are localized and originated from defects or
speci�c groups of atoms [42, 43].

On the other hand, the excess of modes may represent a counterpart of the
van Hove singularity, which comes from transverse acoustic sound waves of the
crystalline state. Constant random forces broaden and shift the singularity to
lower frequencies.
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Moreover, in the study of the origin of the BP some controversial issues
have been found. The relation of the BP frequency to the Io�e-Regel limit
for transverse phonons limiting the frequency for the propagation nature of the
transverse modes was studied by Shintani and Tanaka [44]. Ru�e, Ruocco
et al. studied the existence of a strong damping for the acoustic modes with
Ω4frequency dependence near and above the BP [45, 46, 43]. Furthermore, the
apparent sound velocity display a characteristic behaviour in the area where the
BP occurs [47, 46, 7, 48, 49, 50]. Thus, the origin and features of the BP is still
a very active �eld of research.
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Objectives

The purpose of this research work is to study the vibrational properties of
metallic glasses by Molecular Dynamics (MD) simulation. Molecular Dynamics
simulation consists in the integration of the equations of motion at the atomic
scale. MD gives access to the atomic con�guration and dynamics. This allows
one to access the atomic topology and to correlate the microscopic state to the
macroscopic features of the material. In the particular case of glasses, where the
structure and dynamics of the material depend on the interaction at di�erent
scales, MD is one of the most powerful research tools available, though realistic
simulations require a very large number of atoms.

The accuracy of MD depends on several factors. First, the interatomic in-
teraction may be computed with di�erent degrees of accuracy. Full quantum
mechanics computations are possible but at a high computational cost. In or-
der to save computing time, simpli�ed or empirical potentials are often used.
Second, a large number of atoms is needed to simulate collective phenomena.
And, �nally, the extremely high frequency of the atomic movement requires to
simulate them on a very short time scale. Consequently, even using simpli�ed
empirical potentials MD simulation has a large computational cost.

Despite its computational cost, MD is a very powerful tool in the analysis
of the dynamical properties of glasses. These properties depend on physical
aspects, such as the quenching rate of the glass, and also on technical aspects,
such as the size of the simulation box. In this work we will study the e�ect of
these factors on the vibrational properties of metallic glasses by using di�erent
interatomic potentials. Lennard-Jones (LJ), Embedded Atom method (EAM)
and Morse potentials will be used and compared. The Lennard-Jones potential
has been largely used in the literature to describe the features of glasses, but the
Embedded Atom method potentials are used in the simulation of the behaviour
of crystalline materials, giving very precise results. Morse potentials are an
intermediate option between them. Being still spherical simpli�ed potentials,
they give good results in the simulation of metallic systems.

Thus, the target of this work is to simulate glassy systems with di�erent
interatomic potentials, obtained at di�erent quenching rates in boxes of di�erent
sizes, and to distinguish between the common features and those which are
dependent on the parameters of the simulation. The dynamical properties, such
as the dynamical structure factor and the Boson Peak will be computed and
analyzed, and the results will be compared to the available experimental data.
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Chapter 3

State of the art

The structure of metallic glasses (MG) has been a long standing challenge.
On one hand, MG are amorphous materials without long range order in

their structure; on the other hand, short to medium range is expected to be
pronounced due to their high atomic packing density.

The goal of the structural study of MGs is to extract statistical information
about the glass structure to unveil the key features of the short and medium
range order, and to identify the physical principles that constitute the structural
basis of glass formation and glass properties. Di�erent aspects have been already
analyzed along the last years. In this work, we are interested in the collective
dynamics in the MG. Elementary excitations such as phonons were extensively
studied in crystalline materials by both experimental and theoretical techniques
in the eighties, but the situation is very di�erent for amorphous solids. In dis-
ordered systems, one cannot take advantage of the reciprocal-lattice vectors,
and this is the main reason for the absence of experimental information on dy-
namic structure factors in glasses. As far as the Raman scattering is concerned,
a large amount of experimental data is available on dielectric glasses mainly
in the spectral region of the so-called 'boson peak', that is the energy region
where the intermolecular modes are expected to dominate. Unfortunately, the
interpretation of the Raman spectra of topologically disordered solids is contro-
versial and this is basically due to the theoretical di�culty in disentangling the
true dynamical e�ects from the frequency dependence of the photon excitation
coupling.

Thus, in spite of the large e�orts dedicated to the study of topologically
disordered systems, the description of the microscopic dynamic of glasses is still
poorly understood. It is, for example, quite di�cult to obtain the dispersion
relationship of phonons in a glass since only average quantities are known, such
as the radial distribution function or the density. The dispersion relations of
the crystal excitations can be measured, for example, by inelastic (coherent)
neutron scattering. However, this technique, which is able to explore a large
region of the energy- momentum plane, cannot access the low-q wavenumber
region due to kinematic limitations. Of particular interest because wave vector
is no longer a good quantum number, one would like to know how far out the
dispersion curve can be followed and how the peaks in S(q,ω) broaden with
increasing frequency.

Gary S. Grest, Sidney R. Nagel and A. Rahamn [51] calculated for the �rst
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time the structure of the normal modes for a monoatomic closed packed glass.
Later, J.Hafner calculated the dynamical structure factor and the local vi-

brational density of state for a particular metallic glass Ca70Mg30 [52]. This
study was performed via Molecular Dynamic Simulations in 2D models.

Other similar systems were studied later using more realistic potentials. R.
N. Barnett, C. L. Cleveland and U. Landman [53] studied the glass transition,
structure and dynamics of Ca67Mg33.

In the ninety's Wei Jin, Priya Vashishta and Rajiv K.Kalia [54] performed
a study of the Dynamic structure factor and vibrational properties of the glass
SiO2. The structure was studied by experimental and theoretical methods. X-
ray, neutron and NMR experiments were compared to the results obtained using
molecular dynamics simulations in 2D systems.

In this period some other studies were performed. M. Sampoli, P. Benassi,
R. Dell'anna, V. Mazzacurati and G. Ruocco [55] studied the low frequency
atomic dynamics in a monoatomic Lennard-Jones glass.

On one hand, in 2008, H.Shintani and H. Tanaka [44] analyzed the boson
peak that is believed to be the key to the fundamental understanding of the
vibrational states of glassy and amorphous materials. The calculations were
performed using molecular dynamic simulations and numerical methods. In
this work some of the parameters of our interest were computed, but all of them
in 2D systems or in small 3D systems. In their work 10 di�erent con�guration
systems were used and averaged to obtain the �nal result. Moreover, in the
study of the origin of the BP some controversial issues were found. The relation
of the BP frequency to a limiting frequency for the propagation nature of the
acoustic modes, the Io�e-Regel limit.

On the other hand, P.M.Derlet, R. Maaÿ and J.F. Lö�er studied the local
atomic structure for 3D systems using numerical simulations and numerical
methods [56]. In this work they investigated the nature of the low-frequency
modes and how they are in�uenced by local atomic structure.

As mentioned before the BP is associated to some sort of disorder in metallic
glasses with an unclear origin. In order to understand this origin of the BP,
di�erent frameworks have been proposed. In 2012, N. Jackse and A. Nassour
studied the short-time dynamics of the Cu50Zr50 metallic glass. The structural
origin of the BP is associated to the mean square displacement in low density
defective local structures from Cu, Zr atoms. Moreover, B. Ru�e already
pointed in 2006 that the boson-peak frequency is closely related with the Io�e-
Regel limit for sound in many glasses. They conjecture that this relation, speci�c
to glassy materials, might be rather common among them. Ru�e, Ruocco et al.
and Scopigno studied the existence of a strong damping for the acoustic modes
with Ω4 frequency dependence near and above the BP[45, 46, 43]. Furthermore,
the apparent sound velocity display a characteristic behaviour in the area where
the BP occurs. Ichitsubo studied experimentally for a Pd-based metallic glass
how the sound velocity of nanometer wavelength exceeds that of millimeter
wavelength [47].

Using inelastic x-ray scattering Scopigno studied, for �rst time, the dynam-
ics of the �rst pseudo-Brillouin-zone.The momentum transfer dependence of
the sound velocity and the acoustic damping of the glassy alloy Ni33Zr67 was
de�ned. Speci�cally, the existence in this strong glass of well de�ned (in the
Io�e-Regel sense) acoustic-like excitations well above the boson peak energy was
proved [46].
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B. Ruta performed an experimental study of the high-frequency acoustic
dynamics and a study of the vibrational density of states (VDOS) as a function
of temperature in a glass. They found that the quasiharmonic temperature
dependence of the acoustic dispersion curves o�ers a natural explanation for
the observed scaling of the boson peak with the elastic medium properties [48].

At the same time and under collaboration, Baldi established a direct con-
nection between the BP and the acoustic dispersion curves in vitreous silica.
The apparent sound velocity shows a marked dispersion with frequency while
the sound attenuation undergoes a crossover from a fourth to a second power
law frequency dependence at the position of the BP [49] .

In 2011, P. Bruna, G. Baldi, E. Pineda, J. Serrano, J.B. Suck, D. Crespo,
and G. Monaco studied the collective dynamics of the Pd77Si16.5Cu6.5 metallic
glass using high resolution X-ray scattering. The dispersion relation and the
width of the acoustic excitations were determined showing how the longitudinal
acoustic modes maintain their dispersive character for frequencies well above
the boson peak frequencies. [50]

Moreover, the position and intensity of the BP was studied by M. Bauchy
for densi�ed silicate in small systems. For systems with lower density the BP
intensity decreases an shift to higher frequencies [57] results that were already
observed experimentally in silicate systems and polymers [58, 59, 60, 61].
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Chapter 4

Methodology

In this chapter the methodology used will be explained in more detail. On the
one hand, most of the work in this project is performed by using Molecular
Dynamics simulations [62, 63, 64]. This part is addressed to describe the main
functions implemented and the parameters used in the simulations.

On the other hand, in the discussion of the following chapter, the simula-
tion results will be compared with experimental data from real metallic glass
systems. Thus, some of the experimental techniques used to obtain the suitable
experimental data are also described here.

4.1 Molecular dynamics

Molecular dynamics simulations are a major tool in the study of Metallic glasses.
They are used for computing the equilibrium and transport properties [62, 64].

The results obtained from computer simulations are compared with analyt-
ical predictions and experimental data to test the accuracy of the models.

Moreover, they are used as a complement to conventional experiments or
to gain a deeper insight on MG, carrying out simulations that are di�cult or
impossible in the laboratory (for example, working at extreme conditions of
temperature or pressure). Molecular dynamics simulations also help one to
understand experiments on a microscopic level. Molecular dynamic simulations
can be considered and intermediate trade between experiments and theory, and
provide a good test for theory. The predictions are 'exact' in the sense that they
can be made as accurate as desired, subject mostly to the limitations imposed
by the available computing infrastructure.

Molecular dynamics simulation is a technique of numerical integration of the
Newton's equations of motion, for a speci�c interatomic potential, with given
initial conditions and boundary conditions. This way it is possible to generate
the atomic trajectories of the atoms in the system, allowing to access to the
static and dynamic properties of the system.

Simulations can be treated like an experiment in which the system is adjusted
until it reaches the desired condition, and then it is possible to compute property
averages. In order to eliminate the in�uence of the initial conditions it is required
to allow the system to evolve under stationary boundary conditions until the
macroscopic properties of the system, such as average energy and box size, are
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Figure 4.1: Molecular dynamics simulations diagram.

independent of time; this process is called equilibration. After equilibration,
measurements can be performed, always taking into account that they have
to be expressed in terms of the microscopic observables, namely position and
moment of the system's particles.

4.1.1 Interatomic potentials

In order to use Molecular Dynamics Simulations the rules that de�ne the atomic
interactions in the system must be de�ned. These are given by the Schrödinger
equation. Nowadays it is possible to integrate numerically the Schrödinger equa-
tions for a moderate number of atoms, thus obtaining the exact value of the en-
ergy of the system; this is called 'ab-initio' simulation, and is commonly used in
quantum chemistry to resolve the structure of molecules. However, when collec-
tive properties are the subject of interest, ab-initio computations are extremely
slow and thus impractical. Furthermore, interatomic forces are consequence of
the interaction of the outer atomic orbitals only. Up to a reasonable level of
accuracy, these interactions can be modeled with simple interatomic potentials,
often analytical, which allow the simulation of a large number of particles with
a moderate computational cost.

To obtain the potential functions for a particular system one can assume a
functional form for the potential function and then adjust the parameters to
reproduce a set of experimental data (Lennard-Jones [65], Morse [66]). Alterna-
tively, one could try to determine the electronic wave function for �xed atomic
positions. This second option becomes really complex for systems with many
atoms. For this reason, di�erent approximations are used and semi-empirical
potentials are derived from quantum-mechanical arguments (EAM [67, 68]).

The choice of an appropriate potential can in�uence the results. The ac-



4.1 Molecular dynamics 27

Figure 4.2: Molecular dynamics simulations process.

curacy, transferability and computational speed must be taken into account in
order to study the problem.

In general, in Material Science where processes have a collective character
and big systems are simulated for long periods, computing time is the limiting
factor. In this case computational speed is relevant and simple potentials are
used.

The forces in molecular dynamics are derived from a potential energy func-
tion U , which depend on the particle coordinates:

Fi = −∇
−→
U (−→r 1,

−→r 2, ...,
−→r N ) (4.1)

The potential energy between N particles ,can be developed into terms that
depend on individual atoms, pairs, triplets and so on :

−→
U (rN ) =

∑
U1(−→r i) +

∑∑
U2(−→r i,−→r j) +

∑∑∑
U3(−→r i,−→r j ,−→r k) + ...

(4.2)
where rN = (−→r 1,

−→r 2, ...,
−→r N ) stands for the complete set on 3N particle co-

ordinates, U1corresponds to one-body term due to an external �eld or boundary
conditions, U2 is associated to two body term or pair-potential and it depends
on the distance between the atoms without taking into account other atoms.
U3 is related with three-body term, when the interaction of a pair of atoms is
modi�ed by the presence of a third atom.

Mainly pair-wise interactions are considered because this contribution is the
most signi�cant. Therefore the total potential energy of the system of N atoms
interacting via pair potential can be de�ned as:

−→
U (−→r 1,

−→r 2, ...,
−→r N ) =

∑∑
U2(rij) (4.3)

where rij =| −→r j −−→r i |
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Figure 4.3: Lennard-Jones potential.

4.1.1.1 Lennard-Jones

The Lennard-Jones Potential (LJ) [65] is a mathematical approximation that
exempli�es the interaction energy between two non-bonding atoms or molecules
based on their distance of separation. The equation takes into account the
di�erence between attractive forces and repulsive forces.

This potential is used often to model general e�ects rather than properties
of a speci�c material.

Lennard-Jones is a pair-potential de�ned by:

VLJ = 4ε

[(σ
r

)12
−
(σ
r

)6]
(4.4)

where V is the intermolecular potential between the two atoms or molecules, ε is
the energy well depth and σ is the distance at which the intermolecular poten-
tial between the two particles is zero and gives a measurement of how close two
non-bonding particles can get; it is thus referred to as the Van der Waals ra-
dius. Finally, r is the distance of separation between both particles (measured
between the center of both particles).

Note that the deeper the well depth ε the stronger the interactions between
the two particles. When the bonding potential energy is equal to zero, the
distance of the separation r will be equal to σ.

4.1.1.2 Morse

Morse potential is similar to Lennard-Jones potential but it is a more �bonding-
type� potential and more suitable for cases when attractive interaction comes
from the formation of a chemical bond. It is a popular potential for simulation
of metals that have fcc and hcp structures [66, 69, 70, 71]. In a Morse potential,
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the pair potential energy of two atoms i and j separated by a distance rij is
given by

φ(rij) = D [exp(−2α(rij − re))− 2 exp(−α(rij − re))] (4.5)

where α and D are constants and they have respectively the dimension of
reciprocal distance and energy. Both parameters are determined empirically for
every element.

The parameter re is the equilibrium distance between the atoms i and j
within the �rst nearest neighbor, and is given as re = a0/

√
2, where a0 is the

equilibrium lattice constant of the crystal.
Several combining rules for Morse potential have been suggested [70]:

(
D12α12 exp(2α12)

4re12

)re12/α12

=

(
D11α11 exp(2α11)

4re11

)re11/2α11
(
D22α22 exp(2α22)

4re22

)re22/α22

(4.6)

re12
α12

=
1

2

(
re11
α11

+
re22
α22

)
(4.7)

D12

4
exp(re12

(
α11

2re11
+

α22

2re22

)
) =

1

4
(D11 exp(α11)D22 exp(α22))

1/2 (4.8)

4.1.1.3 Embedded Atom Method (EAM)

The embedded atom method is a semi-empirical method based on the density-
functional theory [3].

Semi-empirical potentials are an intermediate trade between simple Lennard-
Jones and Morse potential and realistic ab-initio simulations. They capture the
atomic potential behavior by considering explicitly only some atomic degrees of
freedom, with a certain reduction in accuracy respect to ab-inito simulations.

The Embedded Atom Method was suggested by Daw and Baskes [67, 68]
as a way to overcome the main problem with two-body potentials, the coor-
dination independence of the bond strength, without increasing too much the
computational time.

From density functional theory, the form for the total energy can be de�ned:

ETOTAL =
1

2

∑
Φij(rij) +

∑
Fi(ni) (4.9)

where ni =
∑
ρj(rij) ,Φij(rij) represents the pair potential term with the

electrostatic core-core repulsion and Fi(ni) represents the energy won by the
ion when it is �embedded� in the local electron density.

4.1.2 Boundary conditions

In Molecular dynamics simulations Periodic Boundary Conditions (PBC) are
used to overcome the problem of surface e�ects. The macroscopic properties of
a physical system are averaged on many millions of atoms; however, to simulate
such amount of atoms is at present impossible. By molecular dynamics it is
only possible to simulate only a small sample of it [62, 64].
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Figure 4.4: Periodic Boundary conditions in a simulation box. As a molecule
leaves the central box, one of its images will enter through the opposite face.

PBC are used to simulate a large system by modeling a small part that
is far from the edge. They are implemented for removing the surface e�ects
implementing an in�nite bulk surrounding.

The track of the N particles is studied in a cubic box. By imposing PBC
the sample is replicated in�nitely in each of the coordinate directions. In other
words, spatial periodicity of length Li is assumed, Li being the length of the
simulation box in the coordinate direction i. When a particle moves out from
the simulation box by crossing one of the box walls, its periodic image moves
into the simulation box by crossing the opposite wall. Thus, as a particle passes
through one face of the unit cell, it reappears on the opposite face with the same
velocity, as shown in 4.4[72].

This way, during the simulation only the properties of the unit cell need to
be recorded, with the corresponding saving of memory space.

4.1.3 Equations of motion

Newton's equation of motion is integrated in order to obtain the velocity of the
particles of the system [73, 62].

Time integration algorithms, are required to integrate the equation of motion
of the interacting particles and follow their trajectory. The most commonly
used time integration is the Verlet algorithm. In this case, the Verlet Velocity
algorithm is used [74, 75].

The basic idea is to use Taylor expansion of the coordinates of a particle
around time t.

r(t+4t) = r(t) + v(t)·4t+
1

2
·a(t)·4t2 +

1

6
˙·b(t)·4t3 +O

(
4t4

)
(4.10)

r(t−4t) = r(t)− v(t)·4t+
1

2
·a(t)·4t2 − 1

6
˙·b(t)·4t3 +O

(
4t4

)
(4.11)
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Adding equation (4.10) and equation (4.11)

r(t+4t) = 2r(t)− r(t−4t) + a(t)·4t2 +O
(
4t4

)
(4.12)

the truncation error is O(4t4) . Using this expression and derivation, the
velocity of the particle is:

v(t) =
r(t+4t)− r(t−4t−)

2·4t
+O

(
4t4

)
(4.13)

The velocity Verlet algorithm, it is a variant of the Verlet algorithm, although
with small di�erences. It obtains positions at time t+4t using only positions
at time t and their time derivation. In this case, there is no need for storing the
positions from two previous steps. The equations are de�ned as:

r(t+4t) = r(t) + v(t)·4t+
1

2
a(t)·4t2 (4.14)

v(t+ 4t/2) = v(t) +
1

2
·a(t)·4t (4.15)

4.1.4 Nosé-Hoover thermostat and Parinello-Rahman baro-
stat

Nose-Hoover thermostat [76, 77] and Parrinello-Rahman barostat [78, 79] are
used to provide realistic �uctuations in temperature and pressure when the
interest relies on the thermodynamic properties of a system.

Nose-Hoover thermostat is a method for controlling the temperature in
molecular dynamics simulations. It uses a friction factor, µ, in order to control
the velocity of the particles. This friction factor is the scaled velocity dµ/dt of
an additional and dimensionless degree of freedom. The friction parameter is
determined using a di�erential equation:

dµ

dt
= (
∑

v2i − 2·N ·kB ·T )/Q (4.16)

where Q is a mass associated to the friction factor, which determines the
strength of the thermostat.

The thermostat tries to reproduce the canonical phase-space distribution. In
order to do this, modi�es the equations of motion to include a non-Newtonian
term in order to maintain the total kinetic energy constant.

The modi�ed equations are given by:

d−→ri
dt

=
−→pi
m

(4.17)

d−→pi
dt

=
−→
Fi − µ−→pi (4.18)

The thermostat can be implemented using predictor-corrector method or a
variation to Verlet Algorithm. The choice of Q is critical in the implementation
of this thermostat.

The hydrostatic pressure applied to the system is controlled by using a
barostat, such as the Parrinello-Rahman. Parinello and Rahman extended the
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method initially proposed by Andersen [80]. The equations of movement of the
individual particles are completed by a term which includes the potential en-
ergy stored by a volume submitted to an external pressure. Here, the volume is
that of the simulation box V , and the pressure p is externally controlled. An-
dersen developed the equations for an orthogonal box; in this case, the motion
equations become

d−→ri
dt

=
−→pi
mi

+
1

3
−→ri
d lnV

dt

d−→pi
dt

= −
∑

r̂ijU
′ (−→rij)−

1

3
−→pi
d lnV

dt

Md2V

dt2
= p0 +

1

V

(
2

3

∑ p2i
2mi

− 1

3

∑−→rijU ′ (−→rij)
)

The new parameter M appearing here accounts for the box mass, which
establishes the relaxation time of the system under pressure �uctuations. An-
dersen suggested that it should be chosen such as this relaxation time is of the
order of the time L/c, where L is the length of the box and c the sound speed.
However, static averages are independent of the value of M . Parrinello and
Rahman modi�ed the Andersen method to allow the box to change its shape,
which is needed to allow crystallographic transformations in crystals. In the
case of glasses, however, this is not needed and simulations can be performed in
orthogonal boxes.

4.1.5 MoldyPSI software

At present there are several MD software implementations available. This work
was performed by using the MoldyPSI software, developed by Dr. Peter Derlet
from Paul Scherrer Institute (PSI) [81, 82], Switzerland. MoldyPSI is an ex-
tension of MOLDY/MDCASK, initially developed at the Lawrence Livermore
National Laboratory [83]. MoldyPSI is written in FORTRAN and uses MPI to
allow parallel processing. It can handle multimillion atom structures and com-
putes several thousand time-steps with a reasonable computing cost. Simple
interatomic potentials were used to simulate metallic glasses. Initially Lennard-
Jones potentials were used, and further other potentials were implement, such
as Morse potential and Embedded Atom Method potential.

Parallelization of the code is necessary to study large systems. The behavior
of glasses is controlled by the collective interaction of a large number of atoms: to
obtain more realistic results, simulations of metallic glasses must be performed
at a really large atomic scale.

After a short stay at PSI, some additional subroutines were developed and
implemented into MoldyPSI in order to allow the study of structural and vibra-
tional properties.

For the parallelization of the code Open MPI libraries are used and the dif-
ferent routines in the program are adapted to this parallelization. The program
was installed at Barcelona Supercomputing Center (BSC) [84] and large scale
atomic simulations (up to 10 millions atoms) were performed.
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Figure 4.5: Atoms at a r distance from a given reference particle

4.2 Structural properties

Metallic glasses are solid metallic materials with a disordered atomic-scale struc-
ture. In order to ensure that we are studying an amorphous material it is impor-
tant to check that the sample creation process (equilibration plus fast quench)
produces a disordered structure, that is a metallic glass. Here we will recall the
structural parameters that characterize the atomic structure.

4.2.1 Pair correlation function

Pair Correlation Function (PCF) infers information about the topology of the
material. It describes how the atomic density varies as a function of the distance
from a particular atom [62].

It is a measure of the spatial correlation between particles within a system.
More speci�cally, it is measure of the average probability of �nding a particle
at a distance of r from a given reference particle, averaged over all particles of
the system. For small r , g(r) = 0 indication that the width of the atoms limits
their separation.

For three dimensions, this normalization is the number density of the system
multiplied by the volume of the spherical shell. It can be expressed mathemat-
ically as:

g(r) = 4π · r2 · ρ(r) · dr (4.19)

where ρ , is the number density.
The pair correlation function has distinguishable features for gas, liquid and

solid [85]. In a gas, atoms are constantly moving, for this reason there are not
prominent peaks. In contrast, in a liquid, one marked peak can be found easily,
corresponding to the average �rst interatomic distance. Glasses show a similar
pattern, as they keep the structure of the liquid. Finally, in a crystalline solid,
di�erent sharp peaks can be observed due to the reference network. Figure
4.6[86] shows an sketch of the pair correlation functions corresponding to the
di�erent states of matter.
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Figure 4.6: PCF for gaseous, liquid, glassy and solid state

In crystalline solids some peaks are observed indicating the atoms pack
around each other in 'shells' of nearest neighbors. As r increases, the peaks
are becoming weaker, due to the average over a large number of atoms in di�er-
ent crystallographic orientations that are at the same distance of the reference
atom. Finally, for r large enough, PCF tends to 1, corresponding to the macro-
scopic density of the material.

This characteristic features of the PCF are useful for checking the disordered
structure in metallic glasses.

4.2.2 Static Structure factor

The static structure factor, S(q), can be calculated in di�erent computational
ways and can be measured with di�raction techniques.

The S(q) can be de�ned in terms of the real-space pair density via the sinus
Fourier transform [87].

S(q) = 1 +
4πρ

q

ˆ
[g(r)− 1]sin(qr)dr (4.20)

where q, is the magnitude of the momentum transfer vector, and ρ is the
number density of the material.
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In the same way than with the pair correlation function, the static structure
factor has some key features for liquids and amorphous structures. Crystalline
solids show well de�ned peaks, corresponding to the well de�ned interatomic
distances in the crystal. The positions of the peaks ri and qi shown in both
g (r) and S (q) satisfy the Bragg condition, namely qiri = 2π. As q increases,
S (q) approaches to 1.

Liquids, and consequently also glasses, have no well de�ned interatomic dis-
tances; as shown by the pair correlation function, they have a continuous distri-
bution of interatomic distances. Their static structure factor shows also a few
broad peaks, which satisfy also the Bragg condition; thus, the maximum of the
�rst peak of S (q) appears at q1 = 2π/r1, r1 being the position of the maximum
of the �rst peak of g (r). These features are useful in order to check the true
amorphous structure present in metallic glasses, both in MD simulations and
experimentally. The absence of Bragg peaks in X-ray and neutron di�raction
reveals also the amorphous structure in metallic glasses [39].

4.3 Vibrational properties

In a crystal where periodicity is present, vibrational states can be well un-
derstood as plane-wave phonons modes, but in disordered systems vibrational
states remain elusive.

The vibrational properties of Bulk Metallic Glasses are directly related to
their thermodynamic and kinetic properties. Their general trends are those
of glasses and, in particular, an excess of vibrational modes appears at low
frequencies. This is the so-called Boson Peak, related to the Debye level, and
has been reported in a large number of glasses.

The vibrational properties of a material are manifested in the dynamic struc-
ture factor and in the vibrational density of states.

4.3.1 Dynamic Structure factor

The dynamic structure factor, S(−→q , ω), contains information about the time
evolution of the inter-particle correlation. S(−→q , ω) can be derived from the
Fourier transform of the self-correlation function of the current jα(−→q , t) [88],
that is:

Sα(−→q , ω) =
−→q ·−→q

2πω2N

ˆ
dt < jα(−→q , t)·jα(−−→q , 0) > exp(iωt) (4.21)

where α is L for the longitudinal case or T for the transverse case. These
currents are de�ned as:

jL(−→q , t) =
∑

(vi (t) ·q̂) q̂ exp(i−→q ·−→ri (t)) (4.22)

jT (−→q , t) =
∑

(vi(t)− (vi (t) ·q̂) q̂) exp(i−→q ·−→ri (t)) (4.23)

where vi(t) is the velocity of the i-th particle at a time t and q̂ =
−→q
|−→q | .

In a crystalline solid, Sα(−→q , ω) shows discrete peaks in each crystalline di-
rection at the frequency ω of the di�erent allowed - longitudinal or transverse -
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phonons of wavevector −→q . The corresponding relation between ω and −→q gives
the phonon relation of dispersion of the material. In non-crystalline materials
all crystalline directions are equivalent, and the discrete peaks are replaced by
a distribution of allowed frequencies; Sα(−→q , ω) loses its vectorial dependence
and becomes Sα(q, ω). The phonon relation of dispersion is then determined
by the frequency of the maximum intensity of phonons. However, given this
distribution of allowed frequencies for each wavenumber q, one would like to
know how far out the dispersion curve can be followed and how the peaks in
S(q, ω) broaden with increasing the temperature.

4.3.2 Vibrational Density of States (VDOS)

The Vibrational Density of States (VDOS) describes the preferred states of the
system and reveals the underlying features of the dynamical processes.

It is computed through the velocity autocorrelation function (VACF) [89].

< −→v (t)·−→v (0) >

< −→v (0)·−→v (0) >
(4.24)

Using the MD trajectories at temperature T , the VDOS D (ω) can be cal-
culated by Fourier transforming the velocity auto-correlation function, that is:

DFFT (ω) =
∑

Di(ω) =
∑ mi

2NkBT

ˆ
< −→vi (t)·−→vi (0) > exp(iωt)dt (4.25)

where mi is the mass for the i particle, T is the temperature, kB is the
Boltzmann constant and ω the frequency [44] .

4.4 Viscosity

The viscosity of a �uid is a measure of its resistance to gradual deformation
by shear stress or tensile stress and it is easy to determine by experiments. It
is inverse to the relaxation time of the �uid.

In Molecular dynamic simulations, the shear viscosity of a liquid is related
to the �uctuations of the o�-diagonal elements of the pressure or stress tensor.
Viscosity can thus be calculated in stationary conditions - constant T and P -
through the pressure �uctuations.

The Green-Kubo (GK) expression allows to compute the shear viscosity by
integration of the stress (pressure) autocorrelation function [90, 91]. That is

η =
V

kBT

ˆ 〈∑
Pαβ (t) ·Pαβ (0)

〉
dt (4.26)

where η is the shear viscosity, V is the volume of the system, T is the
temperature, kB is Boltzmann's constant, and Pαβ refers to an independent
component of the stress in the αβ = xy, yz, zx direction.

This formulation takes into account the contribution of all atoms into an
unique correlation function, for example

Cxy(t) =
〈∑

Pxy (t) ·Pxy (0)
〉
dt (4.27)
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Figure 4.7: Logarithm of the viscosity vs. Tg/T for a strong and a fragile glass
former. Fragility increases with the slope of curve at T = Tg. This plot is
commonly know as Angell plot.

The transition of a liquid into a glass is controlled by the behavior of the
viscosity as temperature decreases. At high temperatures, the relaxation time
follows and Arrhenius dependence.

τ = τ0 exp

(
−A
T

)
where τ is the in�nite temperature relaxation time and A is a constant.

When the temperature is decreased, this relaxation time deviates from Arrhe-
nius dependence to the Vogel-Fulcher-Tammann law. In terms of viscosity, the
Vogel-Fulcher-Tammann (VFT) [92] reads:

η = η0 exp(A/T − T0) (4.28)

where η0, A and T 0 are constants. The VFT expression reduces to the
Arrhenius dependence when T0 → 0.

The fragility concept was proposed to classify materials according to the
temperature dependence of their kinetics in the liquid and supercooled liquid
state. Fragility re�ects the degree of departure of the viscosity (or relaxation
time) with temperature from the Arrhenius behavior. This concept was origi-
nally proposed by Austen Angell [93].

The most common de�nition of fragility characterizes the slope of the vis-
cosity (or relaxation time) of a material with temperature as it approaches the
glass transition temperature from above [93]:

m =
∂log10η

∂(T/T )T=Tg

(4.29)

where Tg is the glass transition temperature, m is fragility, and T is temper-
ature.

Glass-formers with a high fragility are called "fragile"; those with a low
fragility are called "strong".
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4.5 Inelastic X-ray Scattering (IXS)

As previously mentioned, molecular dynamics simulations are an intermediate
trade between experiments and theory, for this reason most of the results ob-
tained can be compared and checked with the results obtained from experiments.

Inelastic X-ray scattering is a technique used in condensed matter to study
atomic and molecular motion.

An X-ray beam is monochromatized and then focused at the sample stage.
After colliding with the sample, the radiation is scattered in every direction. A
particular scattering angle is chosen and the energy of the scattered radiation
is analyzed in a spectrometer. In order to scan energies the temperature of
the monochromator is varied in the range of mK, while the temperature of
the subsequent energy analyzer is kept constant [94]. Finally, the spectrometer
consists on the above cited crystal analyzer and a detector. (Figure 4.9).

The incident and scattered photons from the beam are characterized by
their energy E, wave vector

−→
k , and polarization vector −→ε . The momentum

and energy conservation laws impose that:

−→
Q =

−→
ki −

−→
kf (4.30)

E = Ei − Ef (4.31)

Q2 = k2i + k2f − 2·ki·kf cos (θ) (4.32)

where
−→
Q and E are the momentum and energy of the phonon respectively,

and θ is the scattering angle between the incident and scattered photons ( Figure
4.10).

In the case of photons, the momentum and energy are related by E(k) = ~ck.
Taking into account that the energy that the photon looses or gains associated
to phonon excitations is always much smaller than the energy of the incident
photon E � Ei, ki ∼= kf we obtain that:

Q

ki
= 2kisin

(
θ

2

)
(4.33)
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Figure 4.8: Collision between the X-rays and the sample.

Inelastic X-ray Scattering (IXS) is the only method to gain information on
the high frequency collective dynamics in Metallic Glasses due to their usually
high longitudinal sound speeds. Trough X-ray Scattering one can obtain infor-
mation about the elastic and inelastic excitations. It covers the intensity region
for the study of the acoustic excitations in amorphous systems. Results are
presented as the S(q, ω), which is the space and time Fourier transform of the
density-density correlation function.

Figure 4.9: Experimental setup.
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Figure 4.10: Schema of the Inelastic Scattering process.



Chapter 5

Results

The choice of the right potential and simulation parameters can e�ect the results.
In this chapter, the results of Molecular Dynamic simulations preformed using
the di�erent potentials de�ned before are presented.

This chapter is structured in three parts according to the three di�erent po-
tentials used. In every chapter, the results obtained for the di�erent potentials
are shown and compared with each other to see the di�erence e�ects of the
potential election. The results presented in this section are a selection of the
complete set of results obtained for all system sizes, quenching rates and poten-
tials. The whole set of results is presented in the Appendix and some further
analysis of the results and comparison with the data obtained from experiments
is given in the Discussion section.

5.1 Lennard-Jones systems

The Lennard-Jones potential (LJ) is one of the simplest potential that faithfully
represents the essentials physics of interacting atoms having a small computa-
tional cost. This chapter displays the results obtained by using this potential.

The Lennard-Jones potential is an analytical potential de�ned as

VLJ(r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
(5.1)

where σ and ε de�ne the length and energy scales of the potential. The
minimum potential energy is obtained at 21/6σ = 1.12σ, and the depth of the
potential well is ε, see Figure 5.1.

The Lennard-Jones potential is a soft, long range potential. It was designed
to model the Van der Waals interactions between neutral atoms; however, it has
been used as a model potential in many other cases and, in particular, in the
study of glasses and the glass transition.

Molecular Dynamic simulations were performed on binary Lennard-Jones
systems. All simulations were carried out at constant pressure and temperature
(NPT). Periodic Boundary conditions were used for the study of all systems.

Wahnström parametrization was used [95], where ε = 1, σAA = 1, σAB =
σBA = 11/12, σBB = 5/6 and cut-o� distance rc = 2.5σ. The masses of the LJ

41
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Figure 5.1: Lennard-Jones potential.

particles are taken as mA = 2 and mB = 1 and concentrations cB = 0.8 and
cB = 0.2.

The results are reported in reduced units, following the standard conven-
tion when using LJ potentials. Energy is measured in ε, length in σAA = σ,
temperatures in ε/kB and time in τ = (mAσ

2
AA/ε)

1/2 = (mσ2/ε)1/2.

5.1.1 Quenching procedure

Glasses are obtained from a melt by quenching. In order to obtain amorphous
samples for computing the structural and vibrational properties, some well equi-
librated liquid con�gurations at initial temperature Ti = 10000 · kB [ε/kB ] and
hydrostatic pressure Pi = 8/160[ε/σ3

AA] were prepared. The simulation time
step is 4t = 6.95 · 10−4[τ ].

After equilibrating the liquid con�guration at these conditions, systems were
quenched applying di�erent quenching rates. Temperature and pressure were
reduced periodically at a given time interval. The reduction for the temperature
is chosen to be 4T = −198.0·kB [ε/kB ] and pressure 4P = −0.158/160[ε/σ3

AA]
and applied every 500, 5000 and 50000 timesteps. The corresponding quench
rates are η1 = 24.57/500, η2 = 24.57/5000 and η3 = 24.57/50000 [ε/(kBτ)].
A Parinello-Rahman [79, 78] barostat is used to evolve the response of the
periodic side length to the applied hydrostatic pressure and an Nose-Hoover
[96] thermostat is used for the control of the temperature. After the quenching
procedure, the samples at Tf = 100·kB [ε/kB ] and pressure Pf = 0.1/160[ε/σ3

AA]
were relaxed to 1K and 0 hydrostatic pressure and equilibrated again.

For a �rst analysis of the properties and development of the code some sets
of simulations were considered for N=1728, 13824 and 110592 atoms. After
this, in order to be able to analyze lower frequency ranges, bigger systems were
studied, N=1098500, 2048000, 3764768 and 5470524 atoms.
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5.1.2 Glass transition

Along the quenching process a reduction of the pressure and temperature is
applied. The e�ect of both reductions is signi�cant in the average volume per
atom. The temperature reduction results in a reduction in the average atomic
volume, while the reduction on pressure allows an increase of the average atomic
volume. In the conditions chosen in this work the dominant e�ect is the reduc-
tion of atomic volume due to the temperature reduction.

When the temperature is decreased below the melting temperature (Tm)
of the material, the system enters the region where crystalline state is ther-
modynamicalle stable. For low quenching rates the material crystallizes. The
developed crystalline structure has usually a lower average volume per atom.
Crystallization is a �rst order phase transition showing a discontinuity in the
thermodynamic variables and, in particular, in the atomic volume. On the con-
trary, if the quench rate is high enough - above some critical quenching rate -
the material can reach temperatures below Tm, becoming a supercooled liquid.
Here, the viscosity of the liquid increases too fast and prevents crystallization.
Further, at lower temperatures, the atomic structure of the liquid is frozen and
the material becomes an amorphous solid, a glass. The glass transition is not
itself a phase transition. It is rather a kinetic phenomenon, as the atomic mo-
bility decreases until a level in which no macroscopic changes can be observed
in the laboratory time-scale. From the thermodynamic point of view, the glass
is in a metastable state, but the characteristic time for evolution is, for practical
purposes, in�nite.

The glass transition can be visualized on the behavior of the average volume
per atom. Figure 5.2 shows the behavior of the atomic volume in a simulation of
a LJ mixture along the glass transition temperature (Tg). Tg can be determined
from the intersection of the extrapolated linear behaviors of the atomic volume
in the supercooled melt and the glass.

Given the kinetic origin of the glass transition, the determined value of Tg
depends on the quenching rate. In fact, this dependence allows to determine
the activation energy of the glass transition.

5.1.3 Amorphous structure

In order to check the amorphous structure of the samples the static structure
factor, S (q), and the pair correlation function, PCF, were calculated for every
system after quenching.

The pair correlation function, shown in Figure 5.3, displays a �rst sharp
peak at r ∼ σ splitted in three contributions corresponding to AA, AB and
BB neighbouring pairs. The second atomic shell ranges from distance of at
r ∼ 1.5σ to at r ∼ 2.2σ and displays the peak-with-shoulder structure typical
of hard sphere and metallic glasses[97] .

The static structure factor, shown in Figure 5.4, displays no sharp peaks
which may indicate crystallization. Thus, the amorphous character of the sam-
ples after quenching is con�rmed.

The analysis of the PCF and S(q) for all the samples shows similar results,
indicating no crystallization in any of the studied systems. It is worth noting
that the topology changes induced by the di�erent cooling rates used in this
work are too subtle to appear in the pair correlation function. This is shown in
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Figure 5.2: Change on the volume per atom during the quench η2 in a Lennar-
Jones binary system of 1098500 atoms.

Figure 5.3: Pair Correlation Function of Lennar-Jones binary system of 1098500
atoms and quenching rate η2.
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Figure 5.4: Static structure factor of Lennar-Jones binary system of 1098500
atoms and quenching rate η2.

Table 5.1, were it can be seen that the positions of the main peaks of both the
S (q), and the PCF are unafected by either the quenching rate or the size of the
simulation box. Furthermore, the box size is large enough, even in the smaller
systems, to not introduce any unexpected periodicity.

Finally, the xMakemol software [98] was used in order to con�rm again the
amorphous structure of the samples. An example is shown in Figure 5.5. In
every case, amorphous structures are obtained with a disordered structure and
homogeneous distribution of the two atomic species.

5.1.4 Vibrational Density of States

The analysis starts with the vibrational density of states (VDOS). The VDOS is
calculated by computing the Fourier transform of the velocity auto-correlation
function as indicated in Section 4.3.

The VDOS computations were performed in all cases at a temperature of
1 · kB [ε/kB ] on well equilibrated systems and for times long enough to obtain a
good frequency resolution. In Figure 5.6, the VACF for the system of 1098500
atoms and quenching rate η2 is represented and from this the VDOS is calcu-
lated, see Figure 5.7.

The Debye frequency of the system is de�ned as:

ωD =

(
6π2N

V

)1/3

〈c〉 (5.2)

where V is the volume of the simulated system and < c > is the averaged
sound velocity, calculated as:
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Figure 5.5: Atomic structure of a LJ system at 1K showing 80% of A atoms
(orange) and 20% of B atoms (green). The disordered structure of the system
and the density �uctuations are revealed.

Figure 5.6: Velocity Autocorrelation Function of Lennard-Jones binary system
of 1098500 atoms at the equilibrium and quenching rate η2.
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Figure 5.7: Vibrational Density of States calculated from the velocity auto-
correlation function in a Lennar-Jones binary system of 1098500 atoms at the
equilibrium and quenching rate η2.

〈c〉3 =
3

1
c3L

+ 2
c3T

(5.3)

where cL and cT are longitudinal and transverse macroscopic sound velocities
of sound respectively, assuming constant macroscopic values for the propagation
velocities.

The Debye level de�ned as 9/ω3
D has a value of 7.99×10−4τ3 in this system.

The Boson peak (BP) designates an excess over the Debye level in the vi-
brational density of states at low frequencies. Figure 5.8, shows the excess of
vibrational states over the Debye level corresponding to the Boson peak. In this
case, the peak position appears at ωBP = 1.66τ−1.

The study of the Debye level and the Boson peak was performed for all the
samples, in table 5.1 the values of the macroscopic sound velocities (cL, cT ),
density (N/V ), Debye frequency (ωD), Boson Peak position (ωBP ), Boson Peak
maximum intensity (IBP ) and the Io�e-Regel frequencies (ωLIR,ω

T
IR), the peak

positions for the pair correlation function (max1(PCF ), max2(PCF )) and the
maximum of the static structure factor (qm) are detailed for all the systems
studied.

The increase of sample size leads to more realistic results. The density of the
systems does not signi�cantly change with the size of the simulation box. On
one hand, by increasing the number of atoms, in most of the times, the Debye
level increases slightly, although this is not a general tendency, see Figure 5.9.
On the other hand, the Debye level decreases as the quenching rate decreases.
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Table 5.1: Results obtained from simulations using the Lennard-Jones potential.
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Figure 5.8: Boson Peak observed in of Lennar-Jones binary system of 1098500
atoms at the equilibrium and quenching rate η2 .

When the quenching rate is decreased more relaxed systems are obtained, with
less free volume and higher elastic constants. This increase on the density and
the sound velocities of the glass a�ects the value of ωD, obtaining higher values
and consequently smaller values for the Debye level.

The position of the Boson peak is a�ected by the size e�ects. The increase
of the number of atoms and the corresponding number of vibrational states
permits a better study of the low frequency region. Figure 5.10, shows how the
Boson peak intensity is higher when applying fast quenching rates and their
position shifts slightly to smaller frequencies. More relaxed systems with higher
density a�ect the elastic constants of the system that increase as the quenching
rate decreases. A higher BP intensity for less relaxed glasses is expected and it
is a well-known phenomenon. In metallic glasses the increase of BP intensity
has been found to be correlated with the decrease of shear modulus [99] in the
less dense (more defective) structures of the as-quenched materials.

The quenching rates applied in MD simulations are far higher than the ones
applied in any real system. However, the change in the BP intensity shown in �g-
ure 5.10 proves that the di�erent quenching rates used in this work can produce
glass structures with signi�cant di�erences in the vibrational properties, and
similar to the ones experimentally observed between relaxed and as-quenched
metallic glasses. More relaxed systems with higher density, obtained with de-
creasing quenching rates, results in higher elastic constants. These results are
in agreement with the ones obtained by Bauchy on the study of densi�ed sili-
cates using MD in small systems [57]. Moreover, similar results were observed
experimentally in di�erent systems as pure silica [58], lithium silicate glass ,
Na2FeSi3O8 glass [60], as well as in di�erent polymers [61].
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Figure 5.9: Debye level versus quenching rate determined in simulation boxes
of di�erent sizes. The size of the box, namely 1 · 104, 1 · 105, 1 · 106, 2 · 106 and
3 · 106 atoms, is indicated by the size of the corresponding symbol.

Figure 5.10: E�ect of the quench rate on the Boson peak position and intensity
in a Lennard-Jones binary system of 1098500 atoms with fast (η1 ) and medium
(η2 ) quenching rate .
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Figure 5.11: Longitudinal dynamic structure factor for 5 di�erent q wave vectors
in a Lennard-Jones system of 1098500 atoms and quenching rate η2.

5.1.5 Dynamic Structure Factor (S(q,w))

The behavior of acoustic excitations in glasses is studied by means of the dy-
namic structure factor, S(q, ω). For that reason, the dependence of the longitu-
dinal and transverse dynamics structure factor, SL(q, ω) and ST (q, ω) according
to the wavevector (q) has been calculated as indicated in Section 4.3.

Figure 5.11 displays the longitudinal dynamic structure factor, computed for
di�erent wave vectors. The wave vectors considered, are de�ned as qi = 2πki/L,
where L is the box length and ki = 1, 2, ..., n. Below q1 = 2π/L the physics of
the system is altered by the periodic boundary conditions of the simulations,
which would reproduce a crystalline-like phonon band structure with a �rst
Brillouin zone border at π/L [56]. The vibrational modes below q1 are a�ected
by such artifact and this implies that the access to lower q values is limited by
the box size.

As shown in the �gure, the width of the peak in S(q, ω) increases and the
characteristic frequency is shifted to higher frequencies as the wave-vector in-
creases. In order to extract information on the peak position and width, the
calculated S(q, ω) will be �tted by a Damped Harmonic Oscillator (DHO) model:

SL,T (q, ω) ∝ ΩL,T (q)2ΓL,T (q)

(ω2 − ΩL,T (q)2)2 + ω2ΓL,T (q)2
(5.4)

where ΩL,T (q) and ΓL,T (q) are the peak frequency and the full width at half
maximum respectively, and L and T stand for the longitudinal and transverse
acoustic modes. In this case, the �tting is performed by using a Levenberg-
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Figure 5.12: Fit for the longitudinal dynamic structure factor for a wave-vector
q = 0.066σ−1 in a Lennard-Jones system of 1098500 atoms and quenching rate
η2.

Marquard algorithm with a tolerance of 1 · 10−8. Figure 5.12 shows an example
of the �tting. The DHO model used for S(q, ω) is a valid approximation in the
low-frequency region [100], and it is commonly used to model the experimental
INS and IXS results in metallic liquids and glasses [46, 50].

The �tted values of ΩL,T (q) allow us to build the dispersion relation of the
material. Acoustic excitations in glasses show dispersion curves ΩL,T (q) similar
to that of the crystalline acoustic modes with an almost linear region at low q
numbers and a bending when approaching the limit of the �rst pseudo-Brillouin
zone qm/2, where qm is the position of the maximum of the static structure
factor S(q) .

The broadening of the excitation ΓL,T (q) describes the attenuation of the
acoustic propagation modes. The Io�e-Regel (IR) limit condition is given by:

Ω(q) = πΓ(q) (5.5)

Above the IR limit, the mean path-length is smaller than the wave-length of
the acoustic excitations and, therefore, the propagating nature of the vibrational
modes is suppressed. Figure 5.13, shows an example of the dispersion relations
Ω(q) of the longitudinal and transverse phonons obtained in the simulations.
For low q wave vectors they display a linear behavior. Because the access to
low q values and the data in this region is limited by the box size, an improved
and more detailed description of the low-q region requires multimillion atom
systems.

In the case shown in the �gure, the Io�fe-Regel limit for the longitudi-
nal wave, ωLIR, is determined as 3.538τ−1and for the transverse wave, ωTIR =
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Figure 5.13: Dispersion curve ΩL,T (q) and broadening πΓL,T (q) obtained from
SL,T (q, ω) in a Lennard-Jones system of 1098500 atoms and quenching rate η2.

0.996τ−1. The ωLIR is found at frequencies higher than the Boson peak frequency
(ωBP ) see Figure 5.14 ( ωLIR > ωBP ).

The corresponding dispersion relationships and Boson peak frequencies are
calculated for the di�erent size systems and applying di�erent quenching rates.
Slow quenching rates applied to large boxes imply a high computational cost;
for this reason the slow quench is performed only in smaller systems. The study
performed in di�erent size systems and di�erent quenching rates shows that in
all cases ωLIR > ωBP ; contrarily, ωTIR has values lower but close to that of ωBP .

The relation between the BP and the limiting frequency for the propagating
nature of the acoustic modes has been discussed in many works. In ref.[43]
the ωBP was found to coincide with the ωLIR in a Li2O-B2O3 glass, and it was
suggested that such relation could be extended to many other glassy materials.
On the contrary, Scopigno et al. [46] showed that in a Ni33Zr67 metallic glass
the ωLIR was well above the ωBP and, therefore, the propagating nature of
the longitudinal acoustic excitation was extended to frequencies above BP. In
Shintani et al. [44], by means of 2D and 3D simulations of systems with very
di�erent potentials and fragility parameters, they showed that the ωBP was
systematically related with the transverse ωTIR. One of the systems studied in
ref. [44] was a 3D Lennard-Jones glass with N = 6000 and concentration A33B67

where A and B are the big and small atoms respectively. The system was chosen
for approximating the Ni33Zr67 metallic glass studied experimentally by IXS.

The results presented here con�rm the same result in a 3D Lennard-Jones
system with concentration A80B20. This composition is chosen in order to ap-
proximate a large family of metallic glasses, including Fe, Pd and Pt-based
glasses, that have similar compositions. In ref. [44], it is proposed that the
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Figure 5.14: Dispersion curve ΩL,T (q) and broadening πΓL,T (q) obtained from
SL,T (q, ω) and frequency of the Boson Peak Lennard-Jones system of 1098500
atoms and quenching rate η2.

excess modes generating the BP correspond to transverse localized vibrational
modes generated by some kind of defective con�gurations of the glass structure.
These localized modes strongly couple with the propagating transverse excita-
tions and govern their damping and dissipation [101], this giving rise to the
relation ωTIR ' ωBP . In this picture, the ωBP indicates the frequency at which
the transverse excitations in glasses change from propagating to di�usive modes.
The extension of the propagating nature of the longitudinal modes above ωBP
is interpreted as an indication of the predominantly transverse character of the
BP. Indeed, it is widely recognized that the origin of the BP is predominantly
related to localized transverse modes and to the �uctuations of shear modulus
[102]. However, although ωLIR is above the maximum of the BP ωBP , the IR
limit for longitudinal modes is always within the frequency region of the BP.

The results obtained here for the A80B20 3D Lennard-Jones system are also
in agreement with the experimental IXS results obtained for the Pd77Si16.5Cu6.5
metallic glass shown in ref. [50]. The IXS technique is limited to the measure-
ment of longitudinal excitations. However, from the ratio between shear and
bulk modulus of the material, it seems plausible that the same overall picture
with ωTIR ' ωBP and ωLIR > ωBP will hold in Pd77Si16.5Cu6.5 glass.

The analysis of the dynamic structure factor gives information on the length-
scales governing the microscopic dynamics of the system. For the system shown
in Figure 5.14, the q-value for the Boson peak, qBP is found at 0.16σ−1. Here
qBP is de�ned as the intersection between the ωBP and the longitudinal dis-
persion curve. This value, calculated for all systems shows small changes by
increasing the size of the system and modifying the quenching rate. Figure
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Figure 5.15: qBP versus quenching rate determined in simulation boxes of dif-
ferent sizes. The size of the box, namely 1 · 104, 1 · 105, 1 · 106, 2 · 106 and 3 · 106

atoms, is indicated by the size of the corresponding symbol.

5.15 presents the qBP obtained for di�erent size systems and applying di�erent
quenching rates, showing that qBP increases as the quenching rate decreases.
Figure 5.10 shows that decreasing the quenching rate the position of the BP
shifts to higher frequencies. Furthermore, the slope of the dispersion curve is
also reduced for higher quenching rates. Both e�ects contribute to the increase
of the qBP in more relaxed systems (lower quenching rates). The in�uence of
the box size is also observed in �gure 5.15, qBP increases when studying smaller
systems.

The q-values corresponding to the Io�e-Regel (IR) limits of the longitudi-
nal and transverse polarizations, qIR, are shown in Figure 5.16. The values
computed in small systems, up to 106atoms, present a higher dispersion than
those obtained from larger systems. As already discussed before, the periodic
boundary conditions restrict the number of allowed wave-vectors in small boxes,
larger boxes allow us to access lower q-values allowing better determination of
the Io�e-Regel limit. For this reason, the IR limit cannot be determined pre-
cisely in small systems and we will concentrate our analysis on the behavior
observed in large systems. Unfortunately, due to the computational cost of ap-
plying slow quenching to large systems, only fast quenching rates are compared
in large boxes.

For the system with N = 1098500 (shown in �gure 5.14) the values are found
qLIR = 0.34σ−1 and qTIR = 0.236σ−1. When considering di�erent quenching rates
in large systems, the qIR values decrease as the quench rate is decreased, both
for longitudinal and transverse vibrations. This reduction indicates that the
coherence length increases in more relaxed systems, as expected. As per the
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Figure 5.16: Io�e-Regel limit frequency versus quenching rate for longitudinal
and transverse phonons, determined in simulation boxes of di�erent sizes. The
size of the box, namely1 ·104, 1 ·105, 1 ·106, 2 ·106 and 3 ·106 atoms, is indicated
by the size of the corresponding symbol.
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dependence of the Io�e-Regel limit on the size of the box, for the three larger
systems there is a consistent tendency to increase the value qIR when the size
of the box is increased, but the tendency is far less clear than the one observed
for qBP . From these results it is not clear if there is a dependency of the qIR
on the size of the box.

The elastic medium of glasses and liquids is characterized by the presence
of heterogeneities at the nm-length scale. The connection between the macro-
scopic homogeneous continuum and the atomic-scale short range order (SRO)
generates structural and elastic �uctuations with correlation lengths of the order
of tenths atomic sizes. The intensity of the �uctuations slightly decreases when
cooling down the liquid above Tg. Below the glass transition, the �uctuations
are frozen in the glassy structure and their intensity is expected to diminish
when increasing the degree of relaxation of the system [103]. As for the average
correlation length of such �uctuations, it is expected to increase as the liquid
is cooled down towards the glass transition [104] or the glassy state is more
deeply relaxed. In LJ simulations, the correlation length in the supercooled
liquid regime (above Tg) is found of the order of few atomic sizes [104]. Below
Tg, the correlation lengths of the frozen structure are found to be much larger.
In ref. [8], the mean correlation length of elastic �uctuations was found to be
ξ ' 23σ in a LJ simulation of a system with a poly disperse distribution of
atomic sizes.

In this work, for the case of N = 1098500 and quenching rate η2, the wave-
lengths ξ = 2π

q of the phonons corresponding to the qBP , qLIR and qTIR values
are found ξBP = 52σ (24σ if calculated using the transverse dispersion curve),
ξLIR = 18σ and ξTIR ' 26σ. As discussed before, all these correlation lengths are
increased when reducing the quenching rate. Therefore, the BP position and
the IR limit coincide well with the expected behavior if they were related to the
elastic heterogeneities and the break-down of the continuous elastic medium.

The size of the boxes L of the LJ simulations of this work goes from L ' 10σ
to L ' 175σ. The study of the e�ects of heterogeneities with sizes around 20
atomic sizes on the microscopic dynamics is then utterly a�ected in the smaller
systems. The existence of correlation lengths ξ > L is suppressed by the periodic
boundary conditions, thus changing arti�cially the distribution of correlation
lengths that would be present in an ideal system with in�nite length. It is
then expected that all the quantities associated with the presence of mesoscopic
inhomogeneity are a�ected by the size of the system. This e�ect is clearly seen
in the change of qBP as function of L in �gure 5.15. The di�erence between
the two largest systems indicates that, even for systems much more larger than
the wave-length of the studied acoustic excitations, the size of the box is still
in�uencing the distribution of elastic heterogeneities of the system.

Some extra information can be obtained from the q-dependence of the ap-
parent sound phase velocity cL,T (q) and the sound attenuation ΓL;T (q). The
apparent sound velocity is calculated as:

cL,T=
ΩL,T (q)

q
(5.6)

In Figure 5.17, the apparent sound phase velocity is represented for the
transverse and longitudinal cases presenting values around 4.2στ−1 and 10στ−1

respectively. For all the systems studied, the macroscopic longitudinal sound
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Figure 5.17: Apparent longitudinal and transverse phase velocity as a function of
moment transfer q in a Lennard-Jones system of 1098500 atoms and quenching
rate η2.

Figure 5.18: Apparent longitudinal phase velocity as a function of moment
transfer q, qBP and Macroscopic sound limit in a Lennard-Jones system of
1098500 atoms and quenching rate η2.
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limit has a value around 10.5στ−1with small di�erences due to the di�erent
quenching rates and box sizes. The values obtained in the A80B20 Lennard-
Jones systems of this work are similar to the ones obtained in the study of
a monoatomic Lennard-Jones systems[88]. Di�erent quenching rate leads to
diverse glassy states with di�erent overall properties such as the sound velocity.
By decreasing the quenching rate the sound speed increases slightly. This is
coherent with the reduction of the free volume and the increase in the rigidity
of the material.

For low q values the determined sound speeds are almost independent of the
box size, while for larger values small boxes give systematically larger values
than larger boxes. Thus, we consider that the analysis has to be focused in the
results obtained for larger boxes.

At small q it is observed a softening of the apparent sound velocity, see Figure
5.18. In previous references [88] the softening region in a monoatomic Lennard-
Jones glass was obtained at q < 0.27σ−1 and it was showed that this regime is
accompanied by strong scattering with Γ(q) ∝ q4. It was proposed [88, 7] that
this softening is originated by a Rayleigh-like scattering of sound waves by the
elastic �uctuations in the media. This reduction of the apparent sound velocity
was already observed in experimental results and also in monoatomic LJ glasses
[88, 50]. In our case, the acoustic waves with wave vectors smaller than 0.1σ−1

show a 6% reduction of the apparent sound velocity.
Figure 5.19 shows the q-dependence of the longitudinal damping. Although

the softening of the cL(q) is detected at the lowest q values, the size of the
simulation boxes does not allow us to investigate the q4 regime predicted by
the model up to the BP zone as there are just two points in this region. On
increasing the wave-vector q, there is a transition region characterized by a
plateau on the cL (q) values and in concordance with the change to a quadratic
Γ(q) ∝ q2 dependence (see Figures 5.18 and 5.19); this region is extended until
q ∼ 0.8−1σ−1. Above this region the Γ(q) shows a change in the slope towards a
linear q-dependence that is consistent with experimental observations in metallic
liquids and glasses [50, 46].

Finally, moving to higher frequencies, at q values approaching the pseudo-
Brillouin zone limit, the dispersion curve exhibits a bending on a very broad
shape. The bending expected at the limit of the �rst pseudo-Brillouin zone
should be observed as maximum of the dispersion curve Ω(q) at qm/2, where
qm is the position of the maximum of the S (q). [105] These q values are only
achieved in small systems due to the wavevector range studied, see Figure 5.20.

For all the systems studied previously the behavior of the sound velocity is
studied. In all the systems studied, the macroscopic longitudinal sound limit has
a value around 10.5στ−1with small di�erences due to the di�erent quenching
rates and the box sizes. The values obtained in this simulations are in agreement
with the ones obtained in the study of a monoatomic Lennard-Jones systems[88].
Although these values are higher than the ones obtained in experiments, the
systems keep identical behavior. [50]

Di�erent quenching rates lead to diverse glassy states with di�erent overall
properties such as the sound velocity. By decreasing the quenching rate the
sound speed increases slightly. This is coherent with the reduction of the free
volume and the increase in the rigidity of the material.

Moreover, an increase on the simulation box shows in all cases a reduction



60 Chapter5. Results

Figure 5.19: q-dependence of the acoustic excitations for the longitudinal in a
Lennard-Jones system of 1098500 atoms and quenching rate η2.

Figure 5.20: Apparent longitudinal and transverse phase velocity as a function
of moment transfer q in a Lennard-Jones system of 5324at atoms and quenching
rate η2. The boundary of the pseudo-Brillouin zone is found at qm

2 ∼ 3, 87σ−1.
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Figure 5.21: Stress autocorrelation function for a binary Lennard-Jones system
of 55296 atoms and quenching rate η2.

on the sound speed.

5.1.6 Viscosity

The shear viscosity is calculated by integration of the stress auto-correlation
function.

η =
V

kBT

ˆ
<
∑

Pαβ(t)·Pαβ(0) > dt (5.7)

Starting from an equilibrated con�guration of 55296 atoms, the stress auto-
correlation function is calculated at di�erent temperatures. The auto-correlations
of the three o�-diagonal elements were computed until convergence and aver-
aged, and from that the corresponding shear viscosity was computed. The choice
of the optimal system size of 55296 was performed by analyzing the in�uence of
the box size on the results and the computational cost.

The viscosity was calculated for a range of temperatures The stress auto-
correlation is computed for a range of temperatures between 10000 and T g,
see Figure 5.21. From this and by using Equation 5.7, the viscosity at each
temperature is calculated.

A common way to display the temperature dependence of the viscosity in
supercooled liquids is the so called Angell plot, in which log(η) is plotted against
Tg/T . This is done for several temperatures in the range between 10000k and
T g, see Figure 5.22

To reduce the stochastic noise, the pressure autocorrelation was �tted in
each case to a linear combination of two exponential functions:
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Figure 5.22: Angell plot for a binary Lennard-Jones system of 55296 atoms and
quenching rate η2.

a1 exp(−ω1·x) + a2 exp(−ω2·x) (5.8)

which allowed us to obtain a consistent estimation of the viscosity.
The Vogel Fulcher Tammann equation describes the temperature dependence

of viscosity:

η = η0 exp(A/T − T0) (5.9)

where η0, A and T 0 are constants.
This function �ts the values obtained for the viscosity at di�erent tempera-

tures.

log(η) = log(η0) +
A

T − T0
·

1

ln(10)
(5.10)

Consequently, by �tting the values for the temperatures calculated, the val-
ues for η0, A and T 0 can be obtained.

The fragility, m, is de�ned by the slop of Angell plot at T g/T = 1.

m =
∂log10η

∂(T/T )T=Tg

=
B·Tg

(Tg − T0)2·ln(10)
(5.11)

By convention, the glass transition, Tg, is where the viscosity reaches a
value of 1012Pa·s and then when the temperature tends to 0 reaches a value
of 10−2Pa·s. With this de�nition, an ideal strong glass would have a fragility
m ≈ 17, while higher values indicate higher fragility. [106, 107, 108, 109].
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These values have been used to re�ne the value of Tg and accordingly the
value of the fragility

Tg = T0 +
B

17·ln(10)
(5.12)

The values of Tg and B were computed iteratively, until convergence was
reached. In this case, the system studied gives a fragility m = 1316 this result
is in agreement with results indicating that Lennard-Jones systems are highly
fragile systems [110]. Moreover, the �tted value for Tg resulted to be 4027K,
in concordance with that obtained monitoring the volume change during the
quench.

5.2 Morse systems

The Morse potential is similar to the Lennard-Jones potential but is a more
�bonding-type� potential, suitable for cases when attractive interaction comes
from the formation of a chemical bond. The Morse potential is adequate to
analyze the behaviour of atoms in the metallic state, where the bond is non-
directional. In this sense, it is expected that its results be more realistic and
closer to those obtained with more sophisticated potentials such as the Embed-
ded atom method potential.

The Morse potential is de�ned as

VM (r) = D
[
e−2a(r−re) − 2e−a(r−re)

]
whereD is the depth of the potential well, a de�nes the width of the potential

and re is the equilibrium bond distance. The values of D, a and reare chosen
to describe the interatomic potential of the desired species. In particular, the
width of the potential is related with the interatomic force (and thus the elastic

constants of the material), as a =
√

ke
2D , kebeing the force constant at the energy

minimum. Figure 5.23 shows the shape of both potentials with the same bonding
energies and almost the same repulsive component. It can be appreciated that
the tail of the Morse potential is shorter than that of the Lennard-Jones.

There are several reasons to analyze the behaviour of systems with the Morse
potential. Firstly, the longer tail of the Lennard-Jones potential may induce an
arti�cial long range order without much physical sense. With the LJ potential
an atom may feel the potential of the second neighbour when this is not in a
perfect row with its �rst neighbour. This is quite unphysical inside a metallic
material, where the valence electronic clouds are mostly spherical, and induces a
�second-neighbour� ordering. For this reason it can be expected that LJ glasses
be more fragile than Morse glasses. Secondly, the numerical parameters of the
LJ potential have no relation with the actual parameters of a real glass, and so
the results obtained with the LJ potential can be compared only qualitatively
to the experimental results. Finally, the anharmonic component of the Morse
potential is di�erent from that of the LJ potential, allowing us to check the
in�uence of anharmonicity on the properties of the material and, in particular,
in its fragility. It may be argued that the Embedded Atom Method potential
is even more realistic than the Morse potential, but, on the one hand, it is
computationally more costly and, in the other hand, it is not possible to de�ne
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Figure 5.23: Comparison between Lennard-Jones and Morse potential. The
parameters of the Morse potential were chosen to have the same bonding energy
and almost the same repulsive component. To help comparison, interatomic
distances are normalized by the position of the potential minimum rm.

Table 5.2: Parameters of the Morse potential
mass/AMU D/eV re/Å a

Cu 63.546 0.2414 2.5562 1.4342
Pd 106.42 0.1713 2.7506 1.6464

Cu-Pd 0.2031 2.6589 1.5401

its anharmonicity in a clear way, as it considers the e�ect of the neighbourhood
electronic density as a many-body interaction. Thus, the Morse potential allows
us to use an analytical, computationally fast potential with realistic parameters
and known anharmonicity.

The studied system is a binary system Cu20Pd80. To help comparison, most
of the con�gurations simulated with the Morse potential coincide with those
simulated with the EAM potential, presented in the next Section.

The parameters of the potential were taken from [66, 69, 70, 71] and are
given in Table 5.2. These parameters were determined for the pure metals. In
order to obtain the interspecies potentials we followed the prescription from [70](
D12α12 exp(2α12)

4re12

)re12/α12

=

(
D11α11 exp(2α11)

4re11

)re11/2α11
(
D22α22 exp(2α22)

4re22

)re22/α22

(5.13)

re12
α12

=
1

2

(
re11
α11

+
re22
α22

)
(5.14)
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D12

4
exp(re12

(
α11

2re11
+

α22

2re22

)
) =

1

4
(D11 exp(α11)D22 exp(α22))

1/2 (5.15)

The simulations were ran using a timestep of 0.35 fs and a potential range
of 6.5 Å, the same values used further for the EAM simulations. All simulations
are performed at constant pressure and temperature (NPT) and using periodical
boundary conditions.

5.2.1 Quenching procedure and glass transition

Some well equilibrated liquid con�gurations at initial temperature Ti = 2000K
and hydrostatic pressure Pi = 0.135GPa were used as starting point for the
simulations. After equilibrating the liquid con�guration at these conditions, the
structures were quenched until the system reached a �nal temperature Tf =
300K and Pf = 0GPa. Temperature and pressure are reduced at a given time
interval. The reduction for the temperature is chosen to be 4T = −34K and
pressure 4P = −0.0027GPa and applied every 9700 timesteps. This quench
rate is η1 = 1013K/s. At the �nal temperature the system is left to equilibrate
again in NPT conditions prior starting the system analysis. The quenching
rate and equilibration process will be the same in the study of the systems by
using Embedded Atom Method potentials. The glass transition appears at a
temperature of about 628K.

5.2.2 Amorphous structure

In the same way that was done with the LJ systems, the existence of an amor-
phous structure is checked both at the end of the quenching process and after
the subsequent equilibration. The veri�cation is done by calculating the static
structure factor and the pair correlation function of the samples.

The pair correlation function, Figure 5.24, shows a well de�ned �rst peak
corresponding to the �rst neighbour.

It is interesting to notice that the �rst peak of the PCF is well de�ned, while
in the case of the Lennard-Jones potential (Figure 5.24) the �rst peak had a
clear substructure due to the three partial pair correlation functions. On the
contrary, the oscillations in the Morse PCF due to the second and successive
neighbours are more intense than for the Lennard-Jones case. When comparing
both potentials, the main di�erence is that in the LJ potential the depth of the
potential well is the same for both species, while in the present case the depth
of the potential wells are di�erent. The combination of a di�erent potential well
with a di�erent atomic radius seems to allow a better atomic packing in the
case of the Morse potential.

In the case of the static structure factor, Figure 5.25, no sharp peaks are
observed indicating the crystallization pattern. No signi�cant di�erences are
found in this case with the LJ case (Figure 5.25) although the oscillation at high
frequencies seem to also more intense in the Morse case. Both tests, con�rm
the lack of crystalline structure on the sample.
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Figure 5.24: Pair Correlation Function of Morse binary system of 32000 atoms
and quenching rate η1.

Figure 5.25: Static structure factor of Morse binary system of 32000 atoms and
quenching rate η1.
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N System Quenching rate qm (Å
−1

) PCFmax1(Å) PCFmax2(Å)
32000 Cu20Pd80 η1 = 1013K/s 3, 45 2, 2 4, 0

Table 5.3: Peak position qm of S(q) and of the two main peaks max1 and max2
in the PCF in the studied Morse system.

Figure 5.26: Velocity Autocorrelation Function in a Morse binary system of
32000 atoms Pd80Cu20 at the equilibrium and quenching rate η1.

5.2.3 Vibrational Density of States

After checking the amorphous structure of the samples, the analysis of the vi-
brational density of states (VDOS) is performed. From the molecular dynamics
trajectories at a temperature T in a well equilibrated system, the VDOS is cal-
culated by Fourier transforming the velocity auto-correlation function (VACF),
shown in Figure 5.26. The VACF tends to 0 in a timescale of about 1 ps.
Comparison with the VACF computed with the Lennard-Jones potential -5.6-
shows that the Morse's VACF displays several secondary peaks not present in
the Lennard-Jones' VACF. The shorter extent of the Morse potential, together
with the stronger atomic correlation shown in the Morse's PCF, may induce a
stronger correlation between the atomic movement which may be responsible of
the secondary peaks in the Morse's VACF.

The VDOS is calculated and plotted in Figure 5.27. It is noticeable that the
VDOS shows two peaks, while the VDOS of the LJ system, shown in Figure 5.7,
is single peaked. Due to the mixed transverse-longitudinal nature of phonons
in amorphous materials it is di�cult to interpret this result, which is probably
related to the above cited secondary peaks of the VACF.

The Debye frequency and Debye level are calculated as speci�ed in the pre-
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Figure 5.27: Vibrational Density of States calculated from the velocity auto-
correlation function in a Morse binary system of 32000 atoms Pd80Cu20 at the
equilibrium and quenching rate η1 .

Figure 5.28: Boson Peak observed in a Morse binary system of 32000 atoms
Pd80Cu20 at the equilibrium and quenching rate η1.
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N Tg m cL cT Density $Debye) Debye level

(km/s) (km/s) (N/V ) (ps−1) (ps3)

η1 = 1013K/s

32000 628 325 3, 0 1, 2 0, 112 2, 82 · 101 4, 03 · 10−4

N $BP $L
IR $T

IR qBP PCF PCF qm
(ps−1) (ps−1) (ps−1) max1 max2

η1 = 1013K/s

32000 3, 2 4.9 1.1 9.9 2, 2 14, 0 3, 45

Table 5.4: Results obtained from simulations using the Morse potential.

vious section. In this case, the Debye level corresponding to 9/ω3
D has a value

of 4·10−4ps. The Boson Peak designates and excess over the Debye level in the
vibration density of states at low frequencies. In Figure 5.28, a well de�ned Bo-
son Peak is observed with a maximum at ωBP = 3.2ps−1. These values are in
qualitative agreement with the available experimental data [50, 42]. Comparing
to the BP found in the LJ case, there are no signi�cant di�erences.

A review of all the data calculated is presented in table 5.4. The values
of the macroscopic sound velocities (cL, cT ), density (N/V ), Debye frequency
(ωD), Boson Peak position (ωBP ), Boson Peak maximum intensity (IBP ), the
Io�e-Regel frequencies (ωLIR,ω

T
IR) ,

5.2.4 Dynamic Structure Factor (S(q,w))

The dynamic structure factor for longitudinal excitations is calculated for dif-
ferent wave vectors, and is shown in Figure 5.29. The wave vectors considered,
are de�ned as qi = 2πki/L, where L is the box length and ki=1,2,...n.

It can be observed that the width of the peak in S(q, ω) increases and the
characteristic frequency is shifted to higher frequencies, as the wave-vector (q)
is increased. As in the previous cases, the shape of the resonance peak is �tted
by a damped harmonic oscillator model, as shown in Figure 5.30.

The Io�e-Regel limit condition is given by:

Ω(q) = πΓ(q) (5.16)

In Figure 5.31, a linear dispersion relation is observed for Ω(q) for the longi-
tudinal and transverse phonons. For low q wave vectors it has a linear behaviors
that bends when increasing q.

In this case, the Io�fe-Regel limit for the longitudinal wave, ωLIR, is deter-
mined as 0.004966fs−1 and for the transverse wave, ωTIR, as 0.00112fs−1. When
comparing both IR limits we �nd that ωLIR > ωBP as obtained in a similar sys-
tem (Pd77Si16.5Cu6.5) studied by Inelastic X-Ray Scattering (IXS).

Moreover, some extra information can be obtained from the q dependence
on the apparent sound phase velocity. This apparent sound phase velocity is
de�ned as:

cL,T=
ΩL,T (q)

q
(5.17)
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Figure 5.29: Longitudinal dynamic structure factor for 5 di�erent q wave vectors
of the Morse binary system of 32000 atoms Pd80Cu20 at the equilibrium, after
quenching at a cooling rate η1 .

Figure 5.30: Fit for the longitudinal dynamic structure factor for a wave-vector
q in the Morse binary system of 32000 atoms Pd80Cu20 at the equilibrium ,
after quenching at a cooling rate η1.
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Figure 5.31: Dispersion curve ΩL,T (q) and broadening πΓL,T (q) obtained from
SL,T (q, ω) of a Morse binary system of 32000 atoms Pd80Cu20 and quenching
rate η1.

Figure 5.32: Dispersion curve ΩL,T (q) and broadening πΓL,T (q) obtained from
SL,T (q, ω) and frequency of the Boson Peak of a Morse binary system of 32000
atoms Pd80Cu20 and quenching rate η1.
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Figure 5.33: Apparent longitudinal and transverse phase velocity as a function
of moment transfer q in a Morse binary system of 32000 atoms Pd80Cu20 and
quenching rate η1.

In Figure 5.33, the apparent sound phase velocity is represented for the
transverse and longitudinal case having values of ∼ 1.3km/s and ∼ 3.4km/s.
Both velocities have roughly the same behaviours, showing a maximum around
q ∼ 0.8 − 1Å

−1
. The experimental evidence on this point is contradictory

[49, 46, 88, 48, 47]
The apparent sound velocity displays a reduction of 20% at very low wave

vectors for small q vectors for the longitudinal case, see Figure 5.34. Below
qBP , where the softening appears Γ(q) ∝ q4. This behaviour is attributed to
Rayleigh-like scattering of the acoustic waves with the elastic heterogeneities of
the glass. This theoretical q4 regime can not be studied due to the small size of
the system studied; Figure 5.34 shows that only one of the computed q-values
falls into that regime.

Moving to higher frequencies, the sound speed increases until it reaches a
small plateau. This area is characterized for a quadratic dependence Γ(q) ∝ q2

that persists until the bending starts. This change occurs at 1.6Å
−1

when
approaching the Brillouin zone qm/2, where qm is the position of the maximum
of the static structure factor S (q), see Figure 5.25.

In the same way that with the sound speed, two di�erent regions are also
observed when displaying the q-dependence of the damping of the acoustic ex-
citations. For small frequencies the damping acoustic excitation shows a linear
behavior that changes to a quadratic one as this frequency increases. This
transition occurs at q=0.3 A−1 in agreement with the Boson Peak position
frequency.
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Figure 5.34: Apparent longitudinal phase velocity as a function of moment
transfer q , qBP and macroscopic sound limit in a Morse binary system of 32000
atoms Pd80Cu20 and quenching rate η1.

Figure 5.35: q-dependence of the acoustic excitations for the longitudinal in a
Morse binary system of 32000 atoms Pd80Cu20 and quenching rate η1.
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Figure 5.36: Fragility obtained for a binary Morse system of 32000 atoms and
quenching rate η2.

5.2.5 Viscosity

Using the same methodology than for the Lennard-Jones potential, the shear vis-
cosity is calculated. The binary system Pd80Cu20 of 32000 atoms obtained with
a fast quenching rate is used for the calculations. The stress auto-correlation
function is calculated at di�erent temperatures. The viscosity is calculated at
1796K, 1694K, 1592K, 1490K, 1388K, 1286K, 1252K, 1184K, 1082K and
1048K. using the Green-Kubo formula. The shear stress as a function of time
required for the Green-Kubo relation is determined in the standard way from
atomic forces, positions and volume from simulations.

Then, the Vogel-Fulcher-Tammann relationship was �t to the viscosity to
construct the Angell plot.

Following the same procedure than with LJ and EAM systems the fragility
is determined, m = 325, and the glass transition Temperature T g = 628K [111].
The Morse potential glass results to be quite stronger than the Lennard-Jones
glass, as expected.

The value of the fragility obtained in this simulation is higher than those
obtained experimentally. It is likely that this fact is related to the extremely
high quenching rates used in simulations, as it is known experimentally that
fragility increases with the quenching rate [111].

5.3 Embedded atom systems (EAM)

In this section we present the results of large scale MD simulations in binary
metallic glasses Cu50Pd50 and Cu20Pd80 by using Embedded Atom Method
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(EAM) potentials. Similarly to the previous sections, di�erent relaxation states
are obtained by changing the quenching rates of the simulated MGs.

The masses of the particles are taken as mPd = 106.42 AMU and mCu =
63.546 AMU. The EAM potentials parametrization is obtained from Ref. [112]
The simulations are run using a timestep 0.35fs and a potential range of 6.5 as
in the case of the Morse potential. All simulations are carried out at constant
pressure and temperature (NPT). Periodic boundary conditions are used for the
study of all systems.

The results presented in this section will be given in physical units, as the
parameters de�ning the EAM potential are intended to simulate the real bonding
of the metallic species. The EAM potential does not allow us to de�ne a clear
value of σ. However, in order to compare with the results of the LJ simulation
of the previous section, the approximate relations σ ≈ 3Å and τ ≈ 0, 5ps can
be used by the reader.

5.3.1 Quenching procedure and glass transition

The liquid con�gurations are equilibrated at initial temperature Ti = 2000K and
hydrostatic pressure Pi = 0.135GPa. Once at the equilibrium, the structures are
quenched until reaching a �nal temperature Tf = 300K and Pf = 0GPa. Tem-
perature and pressure are reduced at a given time interval. The reduction for
the temperature is chosen to be 4T = −34K and pressure 4p = −0.0027GPa
and applied at 9700 and 97000 timesteps. These two quenching rates correspond
to η1 = 1013K/s and η2 = 1012K/s. At the �nal temperature the system is left
to equilibrate again in NPT conditions prior starting the system analysis.

Two di�erent size systems containing 32000 and 4 · 106 atoms were studied
applying the quenching rates η1 and η2 for both compositions, Cu50Pd50 and
Cu20Pd80. The average size of the simulation boxes were L = 89.2Å and L =
440Å for the Cu50Pd50 system and L = 89.9Å and L = 449Å for the Cu20Pd80
system.

Figure 5.37 shows the volume per atom along the quenching process, Showing
the glass transition at a temperature of about ~1080K. As will be discussed
in the next section, this value is somewhat larger than that found by using
Morse potentials (Tg = 628K). This indicates that the EAM potential is more
attractive than the Morse potential, due to the indirect interaction between
neighbouring atoms through the electronic density.

5.3.2 Amorphous structure

In the same way that was done with the Lennard-Jones and Morse systems,
the pair correlation function, PCF, and the static structure factor S (q) are
calculated to check the amorphous structure of the system.

As expected in liquids and amorphous materials, the radial distribution func-
tion, Figure 5.38, shows only a clear maximum at the distance of �rst neighbors.
The substructure of the �rst peak due to the partial distributions of AA, AB
and BB atom pairs, that was clearly seen in the A80B20 LJ simulations, is
only slightly perceived in the Cu20Pd80 system, as happened in the simulation
performed using Morse potentials.

Analogously, the static structure factor (see Figure 5.39) shows no sharp
peaks, indicative of crystalline re�ections. The positions of the main peaks of



76 Chapter5. Results

Figure 5.37: Change on the volume per atom during the quench η1 in a EAM
binary system of 4 · 106 atoms.

Figure 5.38: Pair Correlation Function of EAM Cu20Pd80 binary system of
32000 atoms and quenching rate η2 at T=300K.
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N System Quenching rate qm (Å
−1

) PCFmax1(Å) PCFmax2(Å)
32000 Cu20Pd80 η1 = 1013K/s 2, 5 3, 00 5, 56

32000 Cu20Pd80 η2 = 1012K/s 2, 5 3, 08 5, 58

32000 Cu50Pd50 η1 = 1013K/s 2, 5 2, 86 5, 10

32000 Cu50Pd50 η2 = 1012K/s 2, 5 2, 85 5, 08

Table 5.5: Pic position for the S(q) and PCF for the EAM systems studied.

Figure 5.39: Static structure factor of EAM Cu20Pd80 binary system of 32000
atoms and quenching rate η2.

the PCF and the S (q) depend slightly on the quenching rate and system size,
as found in Table 5.5. The PCF and S (q) obtained from the simulations have
the same basic features obtained experimentally in many metallic glasses and
particularly in Pd-based systems [113].

The changes in particle density between the fast and slow cooling rates was
found to be 0, 1%. No signi�cant changes are found in the PCF or the S(q)
when modifying the cooling rate or the box size, as in Lennard-Jones and Morse
simulations previously reported.

5.3.3 Vibrational Density of States

Following the same procedure than in previous simulations, the velocity auto-
correlation function was computed and it is shown in Figure 5.40.

The VDOS is calculated and plotted in Figure 5.41. It can be seen that the
large number of atoms in the simulation box allows us to obtain a much lower
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Figure 5.40: Velocity autocorrelation function calculated in EAM Cu20Pd80
binary system of 4 · 106 atoms and quenching rate η2.

noise in the determination of the VDOS. For low frequencies, the VDOS displays
a quadratic behavior, see Figure 5.41. Both the VACF and the VDOS have the
same qualitative behaviour than those computed with the Morse potential.

The study of the Debye level and the Boson peak was performed for all the
samples, in table 5.1 the values of the macroscopic sound velocities (cL, cT ),
density (N/V ), Debye frequency (ωD), Boson Peak position (ωBP ), Boson Peak
maximum intensity (IBP ) and the Io�e-Regel frequencies (ωLIR,ω

T
IR,), the peak

positions for the pair correlation function (max1(PCF ), max2(PCF )) and the
maximum for the static structure factor (qm) are detailed for all the systems
studied.

The Debye level for the system has a value 5.49 · 10−4ps3, corresponding to
3/ω3

D.
The e�ect of the quenching rate and the box size on the Debye level is an-

alyzed, see Figure 5.43. Di�erent results although with similar behavior are
obtained for the di�erent compositions studied. As in the studied LJ simula-
tions, the quenching rate produces a slight increase on the Debye level. As it
happens with the Lennard-Jones systems, the structures obtained by applying
slower quenching rates are more relaxed, leading to more dense structures and
consequently a�ecting the sound speed and so on the Debye level.

The Boson Peak designates an enhancement over the Debye level 9/ω3
D in

the vibration density of states at low frequency, which is characterized by a
maximum in the plot of the reduced VDOS, see Figure 5.42. The Boson peak
is observed at around 2ps−1 and 7.5ps−1 for the Cu20Pd80 and Cu50Pd50 re-
spectively.
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Figure 5.41: Vibrational Density of States calculated from the velocity autocor-
relation function in EAM Cu20Pd80 binary system of 4·106 atoms and quenching
rate η2.

Figure 5.42: Boson Peak observed in a EAM Cu20Pd80 binary system of 4 · 106

atoms and quenching rate η1.
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Table 5.6: Results obtained from simulations using EAM potential.
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Figure 5.43: Debye level versus quenching rate determined in simulation boxes
of di�erent sizes (3·104 and 4·106 atoms) and di�erent concentrations, indicated
by the size of the corresponding symbol and the color.

In the previous simulation performed using Morse potentials simulations, the
BP was found at a frequency of 3, 2ps−1. Thus, there is a qualitative agreement
between the results of both simulations, but it seems that the dynamical properties
are somewhat di�erent in both cases.

For all the systems studied, the Boson peak is reproduced. Figure 5.44
and Figure 5.45, shows the Boson peak obtained for the binary Cu20Pd80 and
Cu50Pd50, respectively, obtained by applying a fast, η1, and a medium, η2,
quench.

The position and intensity of the Boson peak changes by modifying the
quenching rate. Figure 5.44 and Figure 5.45 show that the intensity of the
Boson peak increases when applying a faster quenching rate. Moreover, the
position of the Boson peak is slightly shifted to smaller frequencies. Again,
more relaxed systems with higher density produce an increase on the elastic
constants. However, the changes are almost not a�ected by the size e�ects,
showing only a small increase in the frequency for bigger systems.

These results are in qualitative agreement with the ones obtained studying
Lennard-Jones systems. Furthermore, these results are in concordance with
those published by N. Jakse in their study of EAM binary Cu50Zr50 [42], al-
though the di�erence on sound velocities a�ects them.

It is interesting to realize the di�erence in the BP position and shape when
comparing the results for Cu20Pd80 and Cu50Pd50. The BP position moves to
higher frequencies when the concentration of Cu - light - atoms is increased,
and the BP is much more sharper when the concentration di�erence is large
than when both concentrations are equal. It is expected that in Cu20Pd80 the
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Figure 5.44: E�ect of the quench rate on the Boson peak position and intensity
in a EAM binary Cu20Pd80 system of 32000 atoms with fast (η1) and slow (η2)
quenching rate.

Figure 5.45: E�ect of the quench rate on the Boson peak position and intensity
in a EAM binary Cu50Pd50 system of 32000 atoms with fast (η1) and slow (η2)
quenching rate.
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Figure 5.46: Longitudinal dynamic structure factor for 5 di�erent q wave vec-
tors in a EAM Cu20Pd80 binary system of 4 · 106 atoms at equilibrium , after
quenching at a cooling rate η2 .

dynamics are dominated by the behaviour of Pd atoms, which are heavier than
Cu atoms. In these conditions, lower frequency states are more probable than
when the concentration of Cu atoms is increased.

The wavelengths of the acoustic excitations with frequencies in the range

of the BP are
cL

ωBP
= 1.63nm,

cT

ωBP
= 0.75nm and

cL

ωBP
= 0.58nm,

cT

ωBP
=

0.29nm for the Cu20Pd80 and Cu50Pd50systems respectively. For the Cu20Pd80
system, the BP region is at very low q-values, this di�culting the analysis
of the system dynamics (see following section). It is interesting to note that
the expected increase of sound speed, due to the increase of concentration of
lighter Cu atoms, can not explain the ωBP shift towards higher frequencies.
The increase in frequency does not scale with the increase in sound speed and
part of it has to be attributed to the e�ect of the di�erent disordered structures,
with the localised states interacting with acoustic excitations with characteristic
wavelengths basically dependent on the average mass of the atoms.

5.3.4 Dynamic Structure Factor (S(q,ω))

The dynamic Structure factor, S(q, ω), for longitudinal and transverse excita-
tions is calculated for di�erent wave vectors in the same way that was done for
Lennard-Jones systems.

Figure 5.46 shows S(q, ω) for di�erent values of the wavevector q. The
average phonon frequency, Ω(q), de�ned by the position of the maximum of
S(q, ω), shifts to higher frequencies as the wave vector q increases. The full
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Figure 5.47: Dispersion curve ΩL,T (q) and broadening πΓL,T (q) obtained from
SL,T (q, ω) and frequency of the Boson Peak of a EAM Cu20Pd80 binary system
of 4 · 106 atoms at equilibrium , after quenching at a cooling rate η2 .

width maximum Γ(q) is a measure of the damping of the acoustic excitations
and its increase with the wavenumber indicates a decrease of the coherence
length of the phonons. S(q, ω) presents a behaviour analogous to that found in
the studied Lennard-Jones and Morse systems and also results available in the
bibliography [88, 114, 44, 42, 46]

The corresponding dispersion relations are computed for the di�erent sys-
tems and quenching rates. Figure 5.47 shows the dispersion curve ΩL,T (q) to-
gether with the Boson peak frequency ΩBP of a EAM Cu20Pd80 binary system
of 4 · 106 atoms obtained with a cooling rate η2 = 1012 [K/s]. According to the
dispersion relation and the frequency of the BP qBP = 0.061Å

−1
. The qBP is

calculated for all the systems Cu20Pd80 and for the small systems Cu50Pd50. In
Cu50Pd50, qBP increases as the quenching rate decreases due to the e�ect of the
relaxation state on the slope of the dispersion curve, and it is higher for smaller
systems, see Figure 5.48. This results are similar to that obtained studying
the Lennard-Jones systems. In Cu20Pd80, however, the values of qBP are very
low due to the highest concentration of heavy atoms, and it is not possible to
con�rm this tendency.

As discussed before, the BP frequency and the sound velocities (specially
in the case of the transverse polarization) are shifted towards signi�cantly low
values in the Cu20Pd80 system. This generates a small range of ω-values were
the di�erent e�ects related to the BP are observed. From Figure 5.47, the
Io�e-Regel, Ω(q) = πΓ(q), is determined for the longitudinal waves, ωLIR, as
2, 7ps−1. For the transverse waves the πΓ(q) shows values above the dispersion
relation in all the computed q-values indicating that the damping suppresses the
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Figure 5.48: qBP versus quenching rate determined in simulation boxes of dif-
ferent sizes (3 · 104 and 4 · 106 atoms) and di�erent concentrations indicated by
the size of the corresponding symboland the color.

propagating nature of the transverse modes even for wavelengths of the order of
the size of the simulation box. Assuming a parabolic law, Γ(q) ∝ q2, ωTIR would
be below 1.4ps−1. These values compare well with those found in the simulations
using Morse potentials, where ωLIR = 4.966ps−1 and ωTIR = 1.12ps−1.

By increasing the size of the system, the composition, and modifying the
quenching rate these values change. Figure 5.49 presents the values of ωIR
obtained for di�erent system compositions and sizes, and applying di�erent
quenching rates. As it is expected, ωLIR is higher than ωTIR . Moreover, the
composition Cu50Pd50 presents in all cases larger values for ωLIR and ωTIR than
the systems Cu20Pd80 . This is consistent with the decrease in the density
of the system as the Cu/Pd concentration ratio is increased. Furthermore,
for the case of Cu50Pd50, the frequency range of BP is expanded and this
allows a better determination of the Ω(q) and Γ(q) curves in such region. In
Figure A.58 (Appendix A) the Io�e-Regel limits are clearly de�ned obtaining
ωLIR = 0.0057ps−1 ωTIR = 0.0036ps−1.

Figure 5.47 also shows the Boson frequency, ωBP Cu20Pd80 system. In
agreement with the results obtained studying the Lennard-Jones systems ωLIR >
ωBP (ωBP = 1.8ps−1), but in the EAM systems the di�erence is much reduced.
In both Cu20Pd80 and Cu50Pd50 cases, and contrary to the typical results
obtained in the LJ systems, the longitudinal IR limit is very close to the position
of the BP while the transverse IR limit is found well below. Assuming an scheme
where the increase of damping is originated by the coupling of propagating
modes with the vibrational localized states forming the BP, this would indicate
that the EAM potential increases the interaction between the longitudinal modes
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and the BP excess states. This result may indicate that the excess of vibrational
states has a less transverse nature in the EAM systems. However, taking into
account the di�erent Poisson's ratio of the di�erent systems (ν = 0.40, ν = 0.37
and ν = 0.35 for the LJ, Cu20Pd80 and Cu50Pd50 respectively), it is also
possible that an increase of rigidity promotes the coupling between localized
modes with shear nature and longitudinal acoustic waves.

Comparing with experimental IXS results [50, 42, 88, 44, 46], the simu-
lated glasses show clear di�erences with the Ni33Zr67 of reference [46] and
Pd77Si16.5Cu6.5 of reference [50]. In both cases, the IR limit of the longitudi-
nal polarization was clear above the BP frequency, in accordance with the LJ
simulations of the previous section or the ones shown in reference [44]. In this
sense, we should take into account that the quenching rate of the simulations
(1012K/s) is unphysically very much higher than the ultra-fast quenching rates
(106K/s) achieved when producing the glassy metallic ribbons. However, from
the results of the simulations it seems clear that the longitudinal IR-limit moves
closer to the BP region for more rigid glasses (or glasses coming from stronger
liquids) which is in contradiction with some experimental results in metallic
glasses but in accordance to some proposed models [43].

Additionally, it can be observed some e�ect of the box size. By increas-
ing the size of the box, ωIR decreases although the changes are not signi�cant.
The reason for increasing the box size is to access lower wavevectors, allow-
ing a better determination of the Io�e-Regel limit. Finally, the ωIR decreases
slightly when applying faster quenching rates. This decrease of ωIR when in-
creasing the quenching rate may explain the lower IR-limit frequencies (relative
to the BP position) found in the EAM simulations respect to the experimental
measurements of real metallic glasses.

The sound phase velocity can be obtained from the slope of the linear dis-
persion at low wavevectors. Figure 5.50 shows the values for the longitudinal
and transverse sound velocities, respectively, for a EAM Cu20Pd80 binary sys-
tem of 4 · 106 atoms obtained with a cooling rate η2 = 1012 [K/s]. Figure 5.51,
shows the same results for a system obtained with the same procedure but re-
ducing Pd constant, Cu50Pd50. The sound velocities for the Cu20Pd80 system
are cL−Cu20Pd80 ∼ 3.28km/s and cT−Cu20Pd80 ∼ 1.50km/s and the ones for the
Cu50Pd50 are cL−Cu50Pd50 ∼ 5.34km/s and cT−Cu50Pd50 ∼ 2.56km/s . The
increase on the velocity when reducing the amount of Pd is logical. The lower
content on heavier elements induces a reduction in density without a noticeable
change in the elastic constants, and a consequent increase in the sound speed.
Moreover, these values are compatible with that obtained in experiments for a
metallic glass Pd77Si16.5Cu6.5 where the longitudinal sound speed was found to
be cL−Pd77Si16.5Cu6.5 ∼ 4.5km/s [50]. Pd77Si16.5Cu6.5, contains a similar per-
centage of Pd, but most of the Cu is substituted by Si, lighter than Cu. This
should result in an increase on the sound speed, as found experimentally. It must
be noted that only the longitudinal sound speed can be measured experimentally
[50]. Furthermore these results are in agreement with the ones obtained by N.
Jaksee [42] studying the amorphous Cu50Zr50 alloy, cL−Cu50Zr50 ∼ 5.08km/s
and cT−Cu50Zr50 ∼ 2.15km/s.

At increasing q values the dispersion curve exhibits a bending approaching
the �rst pseudo-Brilloun zone, qm/2, where qm is the position of the maximum
of the S (q) indicating that the acoustic excitations are not well described by
propagating plane-waves anymore. This bending occurs for Cu20Pd80 the sys-



5.3 Embedded atom systems (EAM) 87

Figure 5.49: Io�e-Regel limit wavelength versus quenching rate for longitudinal
and transverse phonons, determined in simulation boxes of di�erent sizes and
di�erent compositions. Systems have di�erent sizes (3 · 104 atoms and 4 · 106

indicated by the size of the corresponding symbol).
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Figure 5.50: Apparent longitudinal and transverse phase velocity as a function
of moment transfer q for a EAM Cu20Pd80 binary system of 4 · 106 atoms
obtained with a quenching rate η1.

Figure 5.51: Apparent longitudinal and transverse phase velocity as a function
of moment transfer q for a EAM Cu50Pd50 binary system of 4 · 106 atoms
obtained with a quenching rate η2.
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Figure 5.52: Apparent longitudinal phase velocity as a function of moment
transfer q, qBP and Macroscopic sound limit in a EAM Cu50Pd50 binary system
of 4 · 106 atoms obtained with a quenching rate η2.

tem at 0.45A−1. A value that is in perfect agreement with the one obtained in
experiments, 0.44A−1 [50]. In the case of the system Cu50Pd50 this bending
occurs at higher frequencies, 0.6A−1, due to their higher sound speed.

Although in all the studied systems the macroscopic sound limit has a similar
value for all the Cu20Pd80 and all the Cu50Pd50 metallic glasses, applying
di�erent quenching rates and changing the box size slightly modi�es the values.

By increasing the size of the studied systems there is a reduction on the sound
speed in all the cases. Moreover, applying di�erent quenching rate diverse glassy
states and di�erent sound speeds are obtained. By decreasing the quenching
rate the sound speed increases slightly. This is coherent with the increase on
the density of the material and its rigidity. This behavior was already observed
on Lennard-Jones metallic glasses

The sound attenuation changes his behavior as a function of the momentum
transfer. For high wave-vectors it follows a linear dependence that becomes
stronger to a quadratic law, for low wave-vectors, see Figure 5.53

5.3.5 Viscosity

The shear viscosity is calculated for an EAM Cu20Pd80 binary system of 32000
atoms quenched at di�erent temperatures with a cooling rate η1 = 1013 [K/s].

After studying of the in�uence of the box size on the results and the com-
putational cost, this system was chosen for being optimal.

Viscosity is calculated for seven di�erent temperatures in the range of 2000k
and T g (1898k, 1694k, 1581k, 1450k, 1354k, 1184k and 1048k) by studying the
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Figure 5.53: q-dependence of the acoustic excitations for the longitudinal of
EAM Cu20Pd80 binary system of 4 · 106 atoms at equilibrium, after quenching
at a cooling rate η2.

stress auto-correlation function.
Figure 5.54 shows Angell plot �tted by Vogel Fulcher Tammann equation.

From this �tting the values for η0, A and T 0 can be obtained, and consequently
the values for the fragility. In this case, the fragility has a value m = 344
obtained with a de�ned T g = 739.73K. The value for the fragility is smaller
than the one calculated for the Lennard-Jones system, as expected, due to
high fragility of Lennard-Jones systems not reproduced by using more realistic
potentials.

This value slightly smaller than the fragility for the Morse system indicates
a good concordance. Moreover, the glass transition temperature T g has a the-
oretical value higher than the theoretical one obtained for the Morse systems,
T g = 628K and higher than those obtained experimentally. This fact is related
with the di�erence on the quenching rates used in simulations and experiments
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Figure 5.54: Angell plot for a binary EAM Cu20Pd80 binary system of 32000
atoms and quenching rate η2.
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Chapter 6

Discussion

The results presented in the previous section permits to analyze the in�uence
of relaxation state, type of inter-atomic bonding and composition on the vibra-
tional dynamics of glasses. Some analysis of the results was performed in the
previous chapter, here we will extend such analysis, we will discuss the validity
of the results as models of real metallic glasses and we will remark some features
of the systems from a global point of view.

All the simulated binary systems showed an amorphous structure, as ex-
pected because of the high quenching rates used along the simulation. The
most remarkable di�erence comes from the structure of the Pair correlation
function. The Lennard-Jones shows a main peak with a visible substructure,
Figure 5.3, associated to the di�erent inter-atomic distances between AA, AB
and BB atoms. On the contrary, both the Morse, Figure 5.24, and EAM, Figure
5.38, show a single peaked PCF. This fact is due to the di�erent ratio between
the equilibrium distances of both species in the Lennard-Jones (0.833) and the
Cu/Pd radius ratio (0.927) used in the Morse and EAM systems. That is, the
Lennard-Jones species have much more dissimilar radius than Cu and Pd, and
thus it is likely that the atomic environments are more di�erentiated in the
Lennard-Jones system than in the Cu-Pd system.

The Morse potential produces a very compact glass structure coming from
a glass transition at 628K, this is close to the T g of the real material measured
at 20K/min but much lower than the glass transition temperature expected for
a quenching rate of 1013K/s. The structure factor obtained from the Morse
simulations shows the �rst peak at q = 3.45Å

−1
, which is much more higher

than the one obtained in similar real materials like Pd77Si16.5Cu6.5 glass (q ∼
2.7Å

−1
). On the contrary, the EAM potential produces lower density structures.

The maximum of the S (q) is found at q = 2.5Å
−1
, corresponding to a glassy

structure more similar to the one expected in a Pd-based metallic glass.
Despite the very di�erent glass structures resulting form the Morse and EAM

potentials, the similarity of the vibrational properties obtained in the Cu20Pd80
system is worth to mention. The shape of the VDOS and the sound velocities
are qualitatively comparable thus showing a strong dependence of the atomic
masses and the strength of the inter-atomic bonds and a smaller in�uence of the
particular glassy structure. There is no doubt that EAM potentials have a well
settled physical background, and Morse potentials are not so commonly used
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Figure 6.1: Representative vibrational densities of states of systems Cu20Pd80
simulated with Morse and EAM potentials.

in the literature in the simulation of amorphous materials. However, Lennard-
Jones potentials have been extensively used as a model systems in the study
of glassy materials, including metallic glasses. It is commonly argued that
Lennard-Jones potentials are much less computationally costly than realistic
potentials such as EAM. Our results show, however, that a potential such as
the Morse potential, with spherical symmetry and as mathematically simple as
the Lennard-Jones potential, gives a much closer description of the dynamical
behaviour of glasses, at least metallic glasses.

The main purpose of this work was the study of the vibrational properties
of metallic glasses. The comparison of the vibrational density of states between
Lennard-Jones systems and Cu-Pd systems shows noticeable di�erences. The
VDOS of LJ systems is single peaked, Figure 5.7 , while the VDOS of the Cu-Pd
glass is doubly peaked, see Figure 6.1. The di�erent position of the maxima in
this case is directly linked to the di�erences observed in the pair correlation
function.

It is tempting to thing that the two peaks are associated to the two kinds of
atoms, heavier atoms moving at lower frequencies than lighter ones. However,
the ratio of masses in the LJ system is 2, while in the Cu-Pd is ~ 1.68; the
secondary peak appears precisely when the ratio of masses is decreased. Thus,
we consider that the vibrational states are more related to the features of the
interatomic potential. The Lennard-Jones potential has a long tail, the elas-
tic constant being weaker than in the Cu-Pd system at increasing interatomic
distances. This may allow a more uncoupled movement between neighbour-
ing atoms, specially in relation to shearing forces. On the contrary, the Morse
potential is a more bounding potential, inducing a higher correlation between
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neighbour atoms. Shearing forces will be more e�ective in transmitting vibra-
tions three dimensionally. This is even more evident in the case of the EAM
potentials, which introduce an indirect many-body interaction. Thus, we think
that the phononic spectra of the Pd-Cu is more complex than in the LJ sys-
tem, and phonons are of mixed type, longitudinal-transverse, as it is common
in amorphous materials. .

It is worth to mention that, although the main physical results are quite sim-
ilar in small and large systems, the quality of the computed quantities increases
with the size of the simulation box. The noise observed in a simulation with
32000 atoms, Figure 5.27 reduces substantially when the system size increases
to 106 atoms, Figure 5.7, and even more to 4 · 106 atoms, Figure 5.41. This fact
is common in the computation of all the dynamical properties of the simulated
systems, contrary to the computation of the static properties such as the PCF
and the Static structure factor.

The Debye frequency and the corresponding Debye level was calculated for
all the studied systems, showing a consistent behaviour. In most of the studied
cases the Debye level increases slightly by increasing the number of the atoms.
Given that large systems are expected to be closer to the actual material be-
haviour, this fact indicates that small-size simulations always underestimate the
value of the Debye level. Furthermore, the Debye level increases as the quench-
ing rate increases. When applying slower quenching rates, systems with higher
density and less free volume are obtained. This increase on the density of the
glass usually increases the value of the Debye frequency ωD, leading to smaller
values for the Debye level.

The composition of the system also in�uences the Debye level. In particular,
the Debye level reduces noticeably when the amount of the heavy Pd atoms is
reduced. In the case of the Cu20Pd80 systems the values obtained by using
the EAM potentials are in concordance with those obtained in Morse system.
Moreover, the values obtained in this work are in qualitative agreement with
those obtained experimentally in glasses with comparable composition, although
the quenching rates are several orders the magnitude faster in simulations than
in the laboratory.

One of the particular features of glasses related with vibrational properties
is the Boson Peak. The Boson Peak re�ects an enhancement of states in the low
frequency regime of the Vibrational Density of States and is believed to be the
key to the fundamental understanding of the vibrational properties in metallic
glasses. For this reason an extended study for di�erent systems, samples and
using di�erent potentials was performed.

The Boson Peak designates an excess over the Debye level in the vibrational
density of states at low frequencies. Figure 6.2 shows the comparison betwen
the Boson Peak as simulated using Morse and EAM potentials. As expected,
the Debye level of the Morse (denser) system appears below that of the EAM
system (lighter). The Boson Peak appears at larger frequencies in the Morse
system, but with lower intensity.

In this work we observed that the position and intensity of the Boson peak
are slightly a�ected by the size e�ects. However, the Boson peak intensity is
higher in systems obtained with higher quenching rates and their position shifts
slightly to smaller frequencies. This e�ect is probably due to the increase of the
elastic constants of more relaxed systems obtained by lower quenching rates.
These results are in agreement with those obtained by Bauchy on the study of
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Figure 6.2: Representative intensity of the ratio between the density of states
and the frequency squared in systems Cu20Pd80 simulated with Morse and EAM
potentials.

densi�ed silicates using MD in small systems [57]. Moreover, similar results were
observed experimentally in di�erent systems as pure silica [58], lithium silicate
glass, Na2FeSi3O8 glass [60], as well as in di�erent polymers [61]. In the case
of the system studied experimentally, Pd77Si16.5Cu6.5 the BP was found at
3, 6 · 10meV [50], see Figure 6.3 (right). These are in qualitative agreement with
those obtained in Cu20Pd80, shown in Figure 6.3 (left). The values for the
BP position obtained in our simulations for Cu20Pd80 are 1, 3meV by using
EAM potentials and 2, 1meV using Morse potentials, respectively. In the case
of the Cu50Pd50 the BP is observed around 5meV . This indicates that the
wavenumber of the BP decreases as the mass ratio between the heavier and the
lighter atom increases. Thus, the di�erence found between the experimental
value in Pd77Si16.5Cu6.5 and the computed value in Cu20Pd80 may be due to
the Si content, Si being much lighter than Cu.

The dynamic structure factor, S(q, ω) provided us information about the
behavior of acoustic excitations. The access to lower frequencies is limited by
the box size, for this reason multimillion atoms systems were studied.

It was observed that in all the cases that the width of the peak, ΓL,T (q),
of the longitudinal and transverse phonons increases and the characteristic fre-
quency, ΩL,T (q), is shifted to higher frequencies as the wave-vector increases in
S(q, ω). By �tting the characteristic frequency the dispersion relation was built.
For all the studied systems a linear region at low q numbers was observed and
a bending when approaching the limit of the �rst pseudo-Brillouin zone qm/2,
where qm is the position of the maximum of the static structure factor S(q) as
shown in Figure 6.4. From this data, the apparent sound speed was computed,
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Figure 6.3: Left: Dispersion relationship in Cu20Pd80 simulated with EAM
potentials. Inset: reduced vibrational density of states. Right: Dispersion
relationship in Pd77Si16.5Cu6.5 measured experimentally by Inelastic X-Ray
scattering. Inset: reduced vibrational density of states.

and it is shown in Figure 6.5 right. The results obtained are very similar to
those obtained experimentally[50], see Figure 6.5 (right).

From the relation dispersion the Io�e-Regel limit was computed. The ωLIR is
found at frequencies higher than the Boson peak frequency (ωBP ) ( ωLIR > ωBP )
for all the cases, although the di�erence in EAM systems is much reduced.

In the case of the LJ systems ωTIR has values closer to ωBP than in the
CuPd system. It has been proposed that the excess modes generating the BP
corresponds to transverse localized vibrational modes generated by some kind of
defective con�gurations of the glass structure. These localized modes strongly
couple with the propagating transverse excitations and govern their damping
and dissipation [101], an so on ωTIR ' ωBP . Although the IXS technique is
limited to the study of the longitudinal excitations, it is expected that the same
features, ωTIR ' ωBP and ωLIR > ωBP , will hold in Pd77Si16.5Cu6.5 glass due to
the ratio between shear and bulk modulus of the material.

The di�erence between ωLIR and ωBP , in EAM systems is much reduced. In
both Cu20Pd80 and Cu50Pd50 cases, and contrary to the typical results obtained
in the LJ systems, the longitudinal IR limit is very close to the position of the
BP while the transverse IR limit is found well below. This may indicate that
the EAM potential increases the interaction between the longitudinal modes
and the BP excess states.

This result is in agreement with the results obtained experimentally in the
longitudinal case[50], see Figure 6.4. In the case of the ωTIR di�erent behaviours
were observed for the potentials studied. In the case of LJ systems the ωTIR is
found to be nearer to ωBP than in other cases. Comparing with experimental
IXS results [50, 42, 88, 44, 46], the simulated glasses show clear di�erences with
the Ni33Zr67 of reference [46] and Pd77Si16.5Cu6.5 of reference [50].

It is necessary to take into account that the quenching rate of the simulations
(1012K/s) is unphysically very much higher Thant the ultra-fast quenching rates
(106K/s) achieved when producing the glassy metallic ribbons. However, from
the results of the simulations it seems clear that the longitudinal IR-limit moves
closer to the BP region for more rigid glasses (or glasses coming from stronger
liquids).

In order to access lower wave vectors systems with di�erent sizes were stud-
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Figure 6.4: Experimental dispersion relationship obtained from IXS measure-
ments in Pd77Si16.5Cu6.5.

Figure 6.5: Left: apparent sound speed in Cu20Pd80 simulated with EAM
potentials. Right: Apparent sound speed in Pd77Si16.5Cu6.5, computed from
IXS.

ied. It was observed that by increasing the size of the box, ωIR decreases
although the changes are not signi�cant. Finally, the ωIR decreases slightly
when applying faster quenching rates. This decrease of ωIR when increasing
the quenching rate may explain the lower IR-limit frequencies (relative to the
BP position) found in the EAM simulations respect to the experimental mea-
surements of real metallic glasses.

The apparent sound phase velocity was calculated for all the systems from
the slope of the linear region of the dispersion relationship at low q-vectors.
In the case of the Lennard-Jones systems we obtain values of 10στ−1 and
4.2στ−1 for the longitudinal and transverse the sound phase velocity, respec-
tively. In the case of Morse potential the sound phase velocity has values
of∼ 3.4km/s and ∼ 1.3km/s in Cu20Pd80. Using more realistic potentials,
the sound velocities for the Cu20Pd80 system are cL−Cu20Pd80 ∼ 3.28km/s and
cT−Cu20Pd80 ∼ 1.50km/s while for Cu50Pd50 are cL−Cu50Pd50 ∼ 5.34km/s and
cT−Cu50Pd50 ∼ 2.56km/s . It is observed an increase on the velocity when re-
ducing the amount of Pd due to the reduction in density without a noticeable
change in the elastic constants, and a consequent increase in the sound speed.
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The values obtained in EAM systems are compatible with that obtained in ex-
periments for a metallic glass Pd77Si16.5Cu6.5 where the longitudinal sound
speed was found to be cL−Pd77Si16.5Cu6.5

∼ 4.5km/s[50]. Pd77Si16.5Cu6.5, con-
tains a similar percentage of Pd, but most of the Cu is substituted by Si, lighter
than Cu. This should result in an increase on the sound speed, as found ex-
perimentally. It must be noted that only the longitudinal sound speed can be
measured experimentally[50]. Furthermore these results are in agreement with
the ones obtained by N. Jaksee [42] studying the amorphous Cu50Zr50 alloy,
cL−Cu50Zr50 ∼ 5.08km/s and cT−Cu50Zr50 ∼ 2.15km/s.

The sound velocity is a�ected by the quenching rate. Di�erent quenching
rate lead to diverse glassy states with di�erent overall properties. By decreasing
the quenching rate the sound speed increases slightly. This is coherent with the
reduction of the free volume and the increase in the rigidity of the material. For
low q values the determined sound speeds are almost independent of the box
size, while for larger values small boxes give systematically larger values than
larger boxes.

At small q it is observed a softening of the apparent sound velocity. This soft-
ening was already observed in a monoatomic Lennard-Jones glass q < 0.27σ−1

and it was showed that this regime is accompanied by strong scattering with
Γ(q) ∝ q4. It was proposed [88, 7] that this softening is originated by a Rayleigh-
like scattering of sound waves by the elastic �uctuations in the media. This
reduction of the apparent sound velocity was already observed in experimental
results and also in monoatomic LJ glasses [88, 50].

Finally, moving to higher frequencies the dispersion curve exhibits a bending
approaching the pseudo Brillouin zone, qm/2. This bending occurs for Cu20Pd80
the system at 0.45A−1. A value that is in perfect agreement with the one
obtained in experiments, 0.44A−1[50]. In the case of the system Cu50Pd50 this
bending occurs at higher frequencies, 0.6A−1, due to their higher sound speed.

The fragility of the studied systems was obtained by calculating the viscosity
at di�erent temperatures. The values for the fragility in the LJ systems is
m = 1316, in Morse systems is m = 324 and in the case of the EAM systems is
m = 344. As expected LJ fragility is much higher than that of EAM and Morse
systems, due that Lennard-Jones are highly fragile systems. Even in the case of
the use of more realistic potentials the value for the fragility is higher than the
ones obtained experimentally. The reason might be related to the extremely
high quenching rates used in simulations, as it is known experimentally that
fragility increases with the quenching rate.

A �nal comment will be made on the computational costs of the simulations.
All simulations were performed by using the moldyPSI code [83], parallelized
with MPI. Small size systems, up to 105 atoms were simulated in a personal
workstation with 8 processors, but larger systems were performed at the facil-
ities of the Barcelona Supercomputing Center [84] using up to 512 processors.
Most of the computing time was needed for the quenching procedure and sub-
sequent equilibration below the glass transition temperature. The computation
of the dynamical properties required comparatively much less computing time.
However, the use of large systems was needed to reduce substantially the noise
in the computation of the dynamical properties.
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Conclusions

The macroscopic mechanical properties of a material are intimately linked to
its atomic structure. In particular, the fracture behavior of brittle materials,
is initiated by the generation of vibrational modes. In materials with periodic
structure, this vibrational states can be easily de�ned as quantized plane wave
phonons. In metallic glasses, where the structure appears to be amorphous, the
vibrational spectrum has di�erent, speci�c features.

In this work, the vibrational properties of metallic glasses were examined
by molecular dynamics simulations. The study was focused in binary systems
simulated using three di�erent interatomic potentials: Lennard-Jones, Morse
and Embedded atom (EAM). Systems of di�erent sizes, up to several millions of
atoms, were simulated. In all cases the ratio of masses of both species was high,
namely 2 in Lennard-Jones potentials and 1.67 in Morse and EAM potentials.
The purpose was to simulate Pd-based metallic glasses, where the mass ratio
between di�erence between the composing species is also high.

Well equilibrated systems were obtained by quench from a melt at high
temperature, followed by a simulated quench through the glass transition and
subsequent equilibration at constant temperature in the glass state.

The amorphous structure of the simulated materials was checked by comput-
ing the the Pair correlation function and the Static structure factor S(q). The
static structure factor showed no sharp peaks for any of the system indicating
no crystallization.

In the case of the PCF, the LJ systems shows a �rst sharp peak split in
three contributions and a second peak-with-shoulder. This structure has been
observed previously in hard sphere potentials and metallic glasses. In the case
of EAM and Morse systems, this �rst peak is well de�ned and no individual
contributions can be distinguished. Moreover, it is found that the position of
the main peak of both the PCF and the S(q) are not a�ected by changing the
size of the system.

The Vibrational density of states was computed by Fourier transformation
of the Velocity autocorrelation function. The VDOS is single-peaked in all
Lennard-Jones systems, but shows two peaks in both Morse and EAM systems.
We presume that this is due to the higher bonding strength of Morse and EAM
potentials, as well as to the mixed transverse-longitudinal nature of phonons in
amorphous materials. However, we cannot discriminate between these possible
reasons.

The behaviour of the Debye level was also studied. A positive correlation
between the Debye level and the box size was found, indicating that small-
size simulations always underestimate the value of the Debye level. The Debye
level was also found to increase with the quenching rate, as a consequence of the
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corresponding density decrease. Finally, there is a compositional dependence on
the Debye level, studied in the CuPd system, showing also a positive correlation
with the heavier atom; this is also attributed to the density variation. The
values obtained in this work are in qualitative agreement with those obtained
experimentally in similar glasses.

The so-called Boson peak, which designates an excess over the Debye level
in the vibrational density of states at low frequencies in glasses was also ex-
tensively observed. The dependence of the Boson peak position and intensity
on the system size was found to be weak. On the contrary, the Boson peak
intensity increases with the quenching rate, while its position shifts slightly to
smaller frequencies. This e�ect is probably due to the increase of the elastic
constants of more relaxed systems obtained by lower quenching rates. The re-
sults obtained by using realistic, semiempirical EAM potentials compare well
with the experimental data available in glasses of similar compositions.

The dynamic structure factor, S(q, ω) was also computed in large systems to
get information on the behavior of acoustic excitations at low wavenumbers. The
dominant frequencies ΩL,T (q) were computed for each considered wavevector,
in order to compute the relation of dispersion of longitudinal and transverse
phonons. In all studied cases the width of the peak, ΓL,T (q) , increases as the
frequency increases. For all the systems a linear region at low wavenumbers
was observed and a bending when approaching the limit of the �rst pseudo-
Brillouin. This behaviour is the same than that observed experimentally by
Inelastic X-Ray scattering.

The macroscopic sound speed was obtained in the limit of wavenumbers
tending to zero. The values obtained with EAM and Morse potentials are in
qualitative agreement with those obtained experimentally in systems of similar
composition.

The Io�er-Regel limit, where the coherence length of the phonon is similar
to the phonon wavelength, was computed. It was found that the Io�e-Regel
frequency decreases slightly when applying faster quenching rates. The longi-
tudinal Io�e-Regel limit was found at frequencies higher than the Boson peak
frequency for all the cases, although the di�erence in EAM systems is much
reduced. In both Cu20Pd80 and Cu50Pd50 cases, and contrary to the typical
results obtained in the LJ systems, the longitudinal IR limit is very close to
the position of the BP while the transverse IR limit is found well below. It is
inferred that the EAM potential increases the interaction between the longitudi-
nal modes and the BP excess states. There is a large dispersion in the available
experimental data but, from the results of the simulations it seems clear that
the longitudinal IR-limit moves closer to the BP region for more rigid glasses
(or glasses coming from stronger liquids).

Finally the fragility of the studied systems was obtained by calculating the
viscosity at di�erent temperatures. Lennard-Jones systems showed a much
larger fragility than EAM and Morse systems, as it is known in the literature.
However, even systems simulated with more realistic potentials showed fragility
values much higher than those obtained experimentally. This is attributed to
the extremely high quenching rates used in simulations, as it is known experi-
mentally that fragility increases with the quenching rate.



Appendix A

This appendix includes the results of all the simulated metallic glasses referred
in the text.

Lennard-Jones potential

This section presents the results obtained by using a Lennard-Jones potential in
systems of 13824, 110592, 1098500, 2048000 and 3764768 atoms obtained with a
fast (η1 = 24.57/500 [ε/(kBτ)]), medium (η2 = 24.57/5000 [ε/(kBτ)]) and slow
(η3 = 24.57/50000 [ε/(kBτ)]) quenching rate.

Binary systems (80%-20%)

13824 atoms

Figure A.1: Boson Peak observed in a Lennar-Jones binary system of 13824
atoms and quenching rate η1.
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Figure A.2: Boson Peak observed in a Lennar-Jones binary system of 13824
atoms and quenching rate η2.

Figure A.3: Boson Peak observed in a Lennar-Jones binary system of 13824
atoms and quenching rate η3.

Figure A.4: Dispersion relation curve (left) and apparent phase velocity (right)
of Lennar-Jones binary system of 13824 atoms and quenching rate η1.
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Figure A.5: Dispersion relation curve (left) and apparent phase velocity (right)
of Lennar-Jones binary system of 13824 atoms and quenching rate η2.

Figure A.6: Dispersion relation curve (left) and apparent phase velocity (right)
of Lennar-Jones binary system of 13824 atoms and quenching rate η3.

Figure A.7: Apparent longitudinal phase velocity as a function of wave vector
q, qBP and Macroscopic sound limit (left) and sound attenuation as a function
of wave vector q (right) of Lennar-Jones binary system of 13824 atoms and
quenching rate η1.
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Figure A.8: Apparent longitudinal phase velocity as a function of wave vector
q, qBP and Macroscopic sound limit (left) and sound attenuation as a function
of wave vector q (right) of Lennar-Jones binary system of 13824 atoms and
quenching rate η2.

Figure A.9: Apparent longitudinal phase velocity as a function of wave vector
q, qBP and Macroscopic sound limit (left) and sound attenuation as a function
of wave vector q (right) of Lennar-Jones binary system of 13824 atoms and
quenching rate η1.

110592 atoms

Figure A.10: Boson Peak observed in a Lennar-Jones binary system of 110592
atoms and quenching rate η1.
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Figure A.11: Boson Peak observed in a Lennar-Jones binary system of 110592
atoms and quenching rate η2.

Figure A.12: Boson Peak observed in a Lennar-Jones binary system of 110592
atoms and quenching rate η3.

Figure A.13: Dispersion relation curve (left) and apparent phase velocity (right)
of Lennar-Jones binary system of 110592 atoms and quenching rate η1.
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Figure A.14: Dispersion relation curve (left) and apparent phase velocity (right)
of Lennar-Jones binary system of 110592 atoms and quenching rate η2.

Figure A.15: Dispersion relation curve (left) and apparent sound speed (right)
of Lennar-Jones binary system of 110592 atoms and quenching rate η3.

Figure A.16: Apparent longitudinal phase velocity as a function of wave vector
q, qBP and Macroscopic sound limit (left) and sound attenuation as a function
of wave vector q (right) of Lennar-Jones binary system of 110592 atoms and
quenching rate η1.
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Figure A.17: Apparent longitudinal phase velocity as a function of wave vector
q, qBP and Macroscopic sound limit (left) and sound attenuation as a function
of wave vector q (right) of Lennar-Jones binary system of 110592 atoms and
quenching rate η2.

Figure A.18: Apparent longitudinal phase velocity as a function of wave vector
q, qBP and Macroscopic sound limit (left) and sound attenuation as a function
of wave vector q (right) of Lennar-Jones binary system of 110592 atoms and
quenching rate η3.

1098500 atoms

Figure A.19: Boson Peak observed in a Lennar-Jones binary system of 1098500
atoms and quenching rate η1.
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Figure A.21: Dispersion relation curve (left) and apparent phase velocity (right)
of Lennar-Jones binary system of 1098500 atoms and quenching rate η1.

Figure A.20: Boson Peak observed in a Lennar-Jones binary system of 1098500
atoms and quenching rate η2.

Figure A.22: Dispersion relation curve (left) and apparent phase velocity (right)
of Lennar-Jones binary system of 1098500 atoms and quenching rate η2.
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Figure A.23: Apparent longitudinal phase velocity as a function of wave vector
q, qBP and Macroscopic sound limit (left) and sound attenuation as a function
of wave vector q (right) of Lennar-Jones binary system of 1098500 atoms and
quenching rate η1.

Figure A.24: Apparent longitudinal phase velocity as a function of wave vector
q, qBP and Macroscopic sound limit (left) and sound attenuation as a function
of wave vector q (right) of Lennar-Jones binary system of 1098500 atoms and
quenching rate η2.

2048000 atoms

Figure A.25: Boson Peak observed in a Lennar-Jones binary system of 2048000
atoms and quenching rate η1.
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Figure A.26: Boson Peak observed in a Lennar-Jones binary system of 2048000
atoms and quenching rate η2.

Figure A.27: Dispersion relation curve (left) and apparent phase velocity (right)
of Lennar-Jones binary system of 2048000 atoms and quenching rate η1.

Figure A.28: Dispersion relation curve (left) and apparent phase velocity (right)
of Lennar-Jones binary system of 2048000 atoms and quenching rate η2.
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Figure A.29: Apparent longitudinal phase velocity as a function of wave vector
q, qBP and Macroscopic sound limit (left) and sound attenuation as a function
of wave vector q (right) of Lennar-Jones binary system of 2048500 atoms and
quenching rate η1.

Figure A.30: Apparent longitudinal phase velocity as a function of wave vector
q, qBP and Macroscopic sound limit (left) and sound attenuation as a function
of wave vector q (right) of Lennar-Jones binary system of 2048500 atoms and
quenching rate η2.

3764768 atoms

Figure A.31: Boson Peak observed in a Lennar-Jones binary system of 3764768
atoms and quenching rate η1.
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Figure A.32: Boson Peak observed in a Lennar-Jones binary system of 3764768
atoms and quenching rate η2.

Figure A.33: Dispersion relation curve (left) and apparent phase velocity (right)
of Lennar-Jones binary system of 3764768 atoms and quenching rate η1.

Figure A.34: Dispersion relation curve (left) and apparent phase velocity (right)
of Lennar-Jones binary system of 3764768 atoms and quenching rate η2.
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Figure A.35: Apparent longitudinal phase velocity as a function of wave vector
q, qBP and Macroscopic sound limit (left) and sound attenuation as a function
of wave vector q (right) of Lennar-Jones binary system of 3764768 atoms and
quenching rate η1.

Figure A.36: Apparent longitudinal phase velocity as a function of wave vector
q, qBP and Macroscopic sound limit (left) and sound attenuation as a function
of wave vector q (right) of Lennar-Jones binary system of 3764768 atoms and
quenching rate η2.

Embedded atom method potential

The EAM potential was tested on two di�erent system concentrations, Cu20Pd80,
and reducing the amount of Pd, Cu50Pd50. In both cases the metallic glasses
were studied in two di�erent system size (32000 and 4000000 atoms) in order
to study di�erent wave vectors frequency and applying two di�erent quenching
rates, η1 = 1013K/s and η2 = 1012K/s. This part shows the graphics obtained
by studying these metallic glasses.
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Binary systems (80%-20%)

32000 atoms

Figure A.37: Boson Peak observed in a EAM Cu20Pd80 binary system of 32000
atoms and quenching rate η1.

Figure A.38: Boson Peak observed in a EAM Cu20Pd80 binary system of 32000
atoms and quenching rate η2.

Figure A.39: Dispersion relation curve (left) and apparent phase velocity (right)
in a EAM Cu20Pd80 binary system of 32000 atoms and quenching rate η1.
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Figure A.40: Dispersion relation curve (left) and apparent phase velocity (right)
in a EAM Cu20Pd80 binary system of 32000 atoms and quenching rate η2.

Figure A.41: Apparent longitudinal phase velocity as a function of wave vector
q, qBP and Macroscopic sound limit (left) and sound attenuation as a function
of wave vector q (right) in a EAM Cu20Pd80 binary system of 32000 atoms and
quenching rate η1.

Figure A.42: Apparent longitudinal phase velocity as a function of wave vector
q, qBP and Macroscopic sound limit (left) and sound attenuation as a function
of wave vector q (right) in a EAM Cu20Pd80 binary system of 32000 atoms and
quenching rate η2.
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4 · 106 atoms

Figure A.43: Boson Peak observed in a EAM Cu20Pd80 binary system of 4 ·106

atoms and quenching rate η1.

Figure A.44: Boson Peak observed in a EAM Cu20Pd80 binary system of 4 ·106

atoms and quenching rate η2.

Figure A.45: Dispersion relation curve (left) and apparent phase velocity (right)
in a EAM Cu20Pd80 binary system of 4 · 106 atoms and quenching rate η1.
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Figure A.46: Dispersion relation curve (left) and apparent phase velocity (right)
in a EAM Cu20Pd80 binary system of 4 · 106 atoms and quenching rate η2.

Figure A.47: Apparent longitudinal phase velocity as a function of wave vector
q, qBP and Macroscopic sound limit (left) and sound attenuation as a function
of wave vector q (right) in a EAM Cu20Pd80 binary system of 4 ·106 atoms and
quenching rate η1.

Figure A.48: Apparent longitudinal phase velocity as a function of wave vector
q, qBP and Macroscopic sound limit (left) and sound attenuation as a function
of wave vector q (right) in a EAM Cu20Pd80 binary system of 4 ·106 atoms and
quenching rate η2.
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Binary systems (50%-50%)

32000 atoms

Figure A.49: Boson Peak observed in a EAM Cu50Pd50 binary system of 32000
atoms and quenching rate η1.

Figure A.50: Boson Peak observed in a EAM Cu50Pd50 binary system of 32000
atoms and quenching rate η2.

Figure A.51: Dispersion relation curve (left) and apparent phase velocity (right)
in a EAM Cu50Pd50 binary system of 32000 atoms and quenching rate η1.
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Figure A.52: Dispersion relation curve (left) and apparent phase velocity (right)
in a EAM Cu50Pd50 binary system of 32000 atoms and quenching rate η2.

Figure A.53: Apparent longitudinalphase velocity as a function of wave vector
q, qBP and Macroscopic sound limit (left) and sound attenuation as a function
of wave vector q (right) in a EAM Cu50Pd50 binary system of 32000 atoms and
quenching rate η1.

Figure A.54: Apparent longitudinal phase velocity as a function of wave vector
q, qBP and Macroscopic sound limit (left) and sound attenuation as a function
of wave vector q (right) in a EAM Cu50Pd50 binary system of 32000 atoms and
quenching rate η2.
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4 · 106 atoms

Figure A.55: Boson Peak observed in a EAM Cu50Pd50 binary system of 4 ·106

atoms and quenching rate η1.

Figure A.56: Boson Peak observed in a EAM Cu50Pd50 binary system of 4 ·106

atoms and quenching rate η2.

Figure A.57: Dispersion relation curve (left) and apparent phase velocity (right)
in a EAM Cu50Pd50 binary system of 4 · 106 atoms and quenching rate η1.
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Figure A.58: Dispersion relation curve (left) and apparent phase velocity (right)
in a EAM Cu50Pd50 binary system of 4 · 106 atoms and quenching rate η2.

Figure A.59: Apparent longitudinal phase velocity as a function of wave vector
q, qBP and Macroscopic sound limit (left) and sound attenuation as a function
of wave vector q (right) in a EAM Cu50Pd50 binary system of 4 ·106 atoms and
quenching rate η1.

Figure A.60: Apparent longitudinal phase velocity as a function of wave vector
q, qBP and Macroscopic sound limit (left) and sound attenuation as a function
of wave vector q (right) in a EAM Cu50Pd50 binary system of 4 ·106 atoms and
quenching rate η2.
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Morse potential

Morse potential was studied in a more brief way and without focus on the e�ect
of the size system and quenching rate. Just a single system was studied in this
case and the results are the ones present in Morse results section. The studied
system is a Cu20Pd80 of 32000 atoms obtained by applying a quenching rates
η1 = 1013K/s.

Figure A.61: Boson Peak observed in a Morse binary system of 32000 atoms
and quenching rate η1

Figure A.62: Dispersion relation curve (left) and apparent phase velocity (right)
in a Morse Cu20Pd80 binary system of 32000 atoms and quenching rate η1.
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Figure A.63: Apparent longitudinal phase velocity as a function of wave vector
q, qBP and Macroscopic sound limit (left) and sound attenuation as a function
of wave vector q (right) in a Morse Cu20Pd80 binary system of 32000 atoms and
quenching rate η1.
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