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Abstract

For many years, the fields of quantum optics and biology have rarely shared a com-

mon path. In quantum optics, most of the concepts and techniques developed over the

years stand for systems where only a few degrees of freedom are considered and, more

importantly, where the systems under study are assumed to be completely isolated

from their surrounding environment. This situation is far from what we can find in

nature. Biological complexes are, by definition, warm, wet and noisy systems sub-

jected to environmental fluctuations, where quantum phenomena are unlikely to be

observed. Notwithstanding, in recent years, this paradigm has begun to be questioned

by several works where quantum-mechanical concepts have been introduced in order

to describe the dynamics of important biological processes, such as energy transport

in photosynthetic light-harvesting complexes.

The goal of this thesis is twofold. Firstly, we will investigate how ideas and tech-

niques routinely used in quantum optics can be exploited in order to develop new

quantum-based spectroscopy techniques and, secondly, we will examine to what ex-

tent microscopic quantum phenomena could impact on the efficient transport behavior

of photosynthetic light-harvesting complexes. This problem is particularly relevant,

because the understanding of fundamental mechanisms that enable the highly efficient

transport of energy in photosynthetic systems could lead us to the design of future

quantum-inspired light-harvesting technologies, such as high-efficiency organic solar

cells.

The present thesis is organized as follows. In chapter 1, we will present a new

technique to enhance the robustness and sensitivity of an optical label-free imaging

system based on the interaction of coherent resonant pulses with an arbitrary sam-

ple via stimulated Raman adiabatic passage (STIRAP), which is a phenomenon that

benefits from quantum coherence in order to enhance the flow of energy between the

two light beams involved in the stimulated Raman process. Using this technique, in

combination with a high-frequency phase-sensitive detection scheme, we will demon-
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Abstract

strate that amazingly low concentration of atoms and molecules can be detected, up

to 5 atoms of calcium and up to 20 molecules of neocyanine in a volume of 0.1 µm3.

In chapter 2, we will use the light-matter interaction theory developed in the

previous chapter to design a new experimental setup for measuring the temperature

of atomic ensembles. The proposed scheme is based on a quantum interference effect

that relates the temperature of an atomic ensemble with the emission cone width of

Stokes photons that are spontaneously emitted when atoms are excited by an optical

pulse. One of the attributes of this new technique is that, unlike commonly used time-

of-flight measurements, the atomic cloud is not destroyed during each measurement.

The true role of entanglement in two-photon virtual-state spectroscopy, a two-

photon absorption spectroscopy technique that allows one to retrieve information

about the energy level structure of atoms or molecules, has been a controversial topic

for years. In chapter 3, we will provide a thorough analysis of the virtual-state spec-

troscopy technique to show that, in the two-photon absorption process, the ability to

obtain information about the energy level structure of a medium depends on the spec-

tral shape of existing frequency correlations between the absorbed photons. Using this

result, we will specify the type of two-photon source that is needed to experimentally

implement virtual-state spectroscopy. In addition, by clarifying the role of entangle-

ment in this technique, we will demonstrate that even paired photons carrying a low

degree of entanglement, but with a proper spectral shape, can guarantee the successful

retrieval of the energy level structure of the medium under study, thus showing that

entanglement, by itself, is not the key ingredient to experimentally perform two-photon

virtual state spectroscopy.

The last three chapters of this thesis are devoted to the description of energy

transport in photosynthetic light-harvesting systems. In chapter 4, we will question

recent claims that high-efficiency energy transport in light-harvesting complexes arises

as a consequence of the quantum coherent evolution of the photosynthetic system

and noise introduced by its surrounding environment, a process dubbed environment-

assisted quantum transport or ENAQT. By using a classical stochastic model, we

will explicitly demonstrate that highly efficient noise-assisted energy transport can be

observed as well in purely classical systems. Using this result, we will propose an

experimental setup, based on coupled classical electrical oscillators, where to observe

the noise-assisted energy transport effect.

Motivated by the results presented in the previous chapter, we will implement,

in chapter 5, the first phase of the experimental scheme proposed in chapter 4. It
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Abstract

consists of a setup that provides a unique tool to generate a tunable environment for

classical electrical oscillators. We will illustrate the operation of the proposed setup

by implementing the case of a damped random-frequency harmonic oscillator, where

the tunability of the system is demonstrated by gradually changing the statistics of

the oscillator’s frequency distribution. The relevance of the proposed scheme resides

in the fact that the high degree of tunability and control that it offers may allow us to

design various types of noise with different probability distributions, which could be

used in the study of non-Gaussian noise-induced effects. Moreover, it might allow us

to study the transition from Markovian to non-Markovian dynamics of open systems.

In chapter 6, we provide the first study of the efficiency of photosynthetic energy

transport where the initial excitation of the photosynthetic complex and the energy

transfer to a reaction center are treated in more physically realistic ways. We will

show that theoretical predictions are very sensitive to the details of these processes,

especially to the energy transfer to the reaction center. We will demonstrate that

the effect of ENAQT on the transport efficiency becomes negligible when considering

more physically accurate models of energy transfer to a reaction center. Thus, we

will call into question the widespread view that natural selection has optimized the

interplay between quantum dynamics and noise in order to achieve a highly efficient

photosynthetic energy transport.

Finally, because the topics addressed in this thesis are rather broad, we will present

the conclusions in each chapter.
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Resumen

Por muchos años, los campos de la óptica cuántica y la biología raramente han compar-

tido un mismo camino. En la óptica cuántica, la mayoría de los conceptos y técnicas

desarrolladas a lo largo de los años son válidas sólo en sistemas donde un número

pequeño de grados de libertad es considerado y, más importante aún, donde se asume

que los sistemas bajo estudio están completamente aislados del medio ambiente que

los rodea. Esta situación está muy lejos de lo que podemos encontrar en la naturaleza.

Los complejos biológicos son, por definición, sistemas a altas temperaturas, sujetos

a fluctuaciones, en los cuales se cree que los fenómenos cuánticos son imposibles de

observar. Sin embargo, en años recientes, esta creencia ha sido cuestionada por di-

ferentes trabajos en los que conceptos de la mecánica cuántica han sido usados con

el objetivo de describir la dinámica de procesos biológicos de gran importancia como,

por ejemplo, el transporte de energía en los complejos de captación de luz en sistemas

fotosintéticos.

El objetivo de esta tesis se divide en dos. Primeramente, investigaremos cómo las

ideas y técnicas usadas comunmente en óptica cuántica pueden ser explotadas con

el objetivo de desarrollar nuevas técnicas de espectroscopía y, segundo, estudiaremos

hasta que punto los fenómenos cuánticos microscópicos pueden influir en el compor-

tamiento del transporte eficiente de energía en sistemas fotosintéticos de captación

de luz. Este problema es particularmente relevante, pues el entender los mecanismos

fundamentales que permiten un eficiente transporte de energía en sistemas fotosintéti-

cos nos podría conducir al diseño de nuevas tecnologías de captación y recolección de

energía como, por ejemplo, celdas solares orgánicas de alta eficiencia.

La presente tesis está organizada de la siguiente forma. En el capítulo 1 presentare-

mos una nueva técnica para mejorar la robustez y sensibilidad de un sistema óptico

de obtención de imágenes sin etiquetas, basado en la interacción de pulsos resonantes

coherentes con una muestra biológica arbitraria a través del proceso conocido como

paso adiabático estimulado de Raman o STIRAP por sus siglas en inglés, el cual hace
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Resumen

uso de la coherencia cuántica con el objetivo de mejorar el flujo de energía entre los

dos haces de luz involucrados en el proceso estimulado de Raman. Usando esta téc-

nica, en combinación con un esquema de detección de alta frecuencia, sensible a la

fase, demostraremos que es posible detectar muy bajas concentraciones de átomos y

moléculas; hasta 5 átomos de calcio y hasta 20 moléculas de neocyanine en un volumen

de 0.1 µm3.

En el capítulo 2, usaremos la teoría de interacción luz-materia desarrollada en el

capítulo anterior, para diseñar un montaje experimental de medición de temperatura

de ensambles atómicos. El esquema propuesto está basado en un efecto de interferencia

cuántica que relaciona la temperatura de un ensamble atómico con el tamaño del cono

de emisión de fotones Stokes, que son emitidos de forma espontánea cuando los átomos

en el ensamble son excitados por un pulso óptico. Uno de los principales atributos

de esta nueva técnica es que, a diferencia de los métodos de medición basados en el

tiempo-de-vuelo de los átomos, TOF por sus siglas en inglés, la nube atómica no es

destruída durante cada medición.

El verdadero papel que juega el entrelazamiento en la espectroscopía de estados

virtuales, una técnica de espectroscopía de absorción de dos fotones que permite ex-

traer información de la estructura energética de átomos y moléculas, ha sido un tema

controversial por muchos años. En el capítulo 3, haremos un análisis exhaustivo de

la técnica de espectroscopía de estados virtuales para mostrar que, en el proceso de

absorción de dos fotones, la posibilidad de obtener información acerca de la estruc-

tura de los niveles de energía de un medio arbitrario, depende de la forma espectral

de las correlaciones en frecuencia entre los fotones que son absorbidos por el medio.

Usando este resultado, especificaremos el tipo de fuente de pares de fotones que es

necesario para implementar experimentalmente la espectroscopía de estados virtuales.

Adicionalmente, al clarificar el verdadero papel que juega el entrelazamiento en esta

técnica, demostraremos que incluso pares de fotones débilmente entrelazados, pero con

una forma espectral correcta, pueden garantizar la extracción exitosa de la estructura

energética del medio bajo estudio, mostrando así, que el entrelazamiento por si sólo

no es el ingrediente clave para realizar experimentalmente la espectroscopía de estados

virtuales.

Los últimos tres capítulos de esta tesis están dedicados a describir el transporte de

energía en sistemas fotosintéticos de captación de luz. En el capítulo 4, cuestionaremos

recientes ideas en las que se describe a la alta eficiencia en el transporte de energía de

complejos fotosintéticos como consecuencia de la interacción entre la evolución cuán-
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tica del sistema y el ruido introducido por el medio ambiente que lo rodea, un proceso

conocido como transporte cuántico asistido por ruido o ENAQT por sus siglas en in-

glés. Haciendo uso de un modelo clásico estocástico, demostraremos explícitamente

que el transporte de energía de alta eficiencia asistido por ruido, puede ser observado

también en sistemas puramente clásicos. Usando este resultado, propondremos un

arreglo experimental, basado en osciladores electrónicos clásicos acoplados, donde se

puede observar el efecto de transporte de energía asistido por ruido.

Motivados por los resultados presentados en el capítulo anterior, implementaremos,

en el capítulo 5, la primera fase del esquema experimental propuesto en el capítulo

4. El esquema consiste en un montaje electrónico que permite generar ruido sintoni-

zable para osciladores eléctricos clásicos. Mostraremos el funcionamiento del arreglo

propuesto, implementando el caso de un oscilador armónico amortiguado con una fre-

cuencia aleatoria. El control que ofrece nuestro sistema es demostrado al cambiar, de

forma gradual, la estadística de la distribución de frecuencias del oscilador. La rele-

vancia del sistema propuesto reside en que el alto nivel de control y sintonización que

ofrece, puede ser utilizado para diseñar varios tipos de ruido con diferentes distribu-

ciones de probabilidad que, a su vez, podrían ser utilizados en el estudio de efectos

inducidos por ruido no-Gaussiano. Además, este arreglo experimental nos permitiría

estudiar la transición de la dinámica Markoviana a no-Markoviana en sistemas abier-

tos.

En el capítulo 6, presentaremos el primer estudio de la eficiencia de transporte

de energía fotosintética en el cual la excitación inicial del complejo fotosintético y la

transferencia de energía al centro de reacción fotoquímico son tratados de una forma

físicamente realista. Mostraremos que las predicciones teóricas son muy sensibles a

los detalles de estos procesos, especialmente a la transferencia de energía al centro de

reacción. Demostraremos que el efecto de ENAQT en la eficiencia de transporte es

despreciable cuando se consideran modelos más precisos de transferencia de energía al

centro de reacción. Usando este resultado, cuestionaremos la idea de que la selección

natural ha optimizado la interacción entre la dinámica cuántica y el ruido, con el

objetivo de alcanzar una alta eficiencia en el transporte fotosintético de energía.

Finalmente, debido a que los temas abordados en esta tesis son bastante amplios,

presentaremos las conclusiones en cada capítulo.
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Chapter 1
Enhancing the sensitivity of label-free

imaging systems via stimulated

Raman adiabatic passage

Label-free optical imaging deals with the problem of detecting the presence of specific

molecular species without the use of auxiliary alien substances, such as fluorophores.

To address this issue, what is needed is an efficient, highly selective technique capable

of sampling specific vibrations of atoms or molecules, and this can be provided by

resonance Raman spectroscopy [1].

In 2008, an optical label-free imaging technique based on stimulated Raman scat-

tering (SRS) was demonstrated [2, 3]. In this technique, the frequency difference be-

tween two pulses (pump and Stokes) is tuned in order to match the atomic frequency

transition between two energy levels, which results in the depletion of the pump and,

consequently, in the amplification of the Stokes beam via a stimulated Raman transi-

tion. Using a high-frequency phase-sensitive detection technique, Freudiger et al. [2]

managed to measure a stimulated Raman loss (SRL) ∆Ep/Ep ∼ 10−7, where Ep is the

initial energy of the pump pulse and ∆Ep is the loss experienced by the pulse. This

value of the SRL corresponds, for instance, to detecting a concentration of some 50µM

(molecule number density of 1016 cm−3) of retinol.

Here, we introduce a new technique that combines the above mentioned optical

imaging scheme with a quantum optics technique that enhances the transfer of atomic

populations, namely stimulated Raman adiabatic passage (STIRAP). Using a STIRAP

1
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Raman adiabatic passage

(a) (b)

PUMP STOKES

Fig. 1.1 (a) Scheme of a three-level system in Λ configuration. (b) Ensemble of three-
level atoms shined by two temporally delayed classical pulses.

configuration, we show that one can, in principle, go beyond the current level of

sensitivity, i.e., lowering the minimum concentration of molecules that can be detected,

while at the same time enhancing the robustness of the system against variations in the

laser parameters: intensities, detunings, pulse shapes, pulse widths and pulse delays.

This high sensitivity could also be employed for detecting a larger number of molecules

within a shorter acquisition time, which is of great importance in applications such as

in-vivo optical imaging, a technique that requires primarily high speed.

This chapter is organized as follows. Section 2.1 provides the theoretical framework

of the proposed technique. Section 2.2 describes the robustness and high efficiency

that STIRAP can offer to label-free imaging systems. Finally, Section 2.3 shows how

STIRAP could enable the detection of very low concentration of atoms and molecules.

1.1 Basic equations

Stimulated Raman adiabatic passage is a robust process that benefits from quantum

coherence to enhance the population transfer between two quantum states of an atom,

ion or molecule by means of two coherent light pulses [4–7]. In general, STIRAP can be

modeled by considering an ensemble of atoms, with concentration N, where individual

atoms are described as a three-level system in a Λ configuration, as depicted in Fig.

1.1. Each of the states is non-degenerate and there is no direct coupling between states

|1〉 and |3〉. The atoms interact with two light pulses. The pump pulse, with central

frequency ωp, couples the state |1〉 with the intermediate state |2〉, and the Stokes pulse,

with central frequency ωs, couples the state |3〉 with the state |2〉. Because coherent

phenomena are important in the STIRAP process, specific energy level configurations

and nearly transform limited pulses are needed [8].

2



1.1 Basic equations

The Hamiltonian that describes the interaction of the atoms with the two pulses

can be written in the rotating-wave approximation as [5]

H (t) =
~

2




0 Ω∗
p (t) 0

Ωp (t) 2∆p Ωs (t)

0 Ω∗
s (t) 2 (∆p − ∆s)


 , (1.1)

where Ωp (t) = −µ12 · Ep/~ and Ωs (t) = −µ32 · Es/~ are the Rabi frequencies of the

pump and Stokes pulses, respectively, and the coefficients µ12 and µ32 describe the

dipole moments for each transition. Here, ∆p = ω21 −ωp and ∆s = ω23 −ωs correspond

to the detunings of the pump and Stokes frequencies, respectively.

To introduce dissipation effects from level |2〉 to levels |1〉 and |3〉, we model the

dynamics of the system by means of the Lindblad equation

i~
dρ

dt
= [H, ρ] + Ldiss[ρ], (1.2)

where ρ is the density matrix of the system and Ldiss is a Lindblad operator that

describes the spontaneous emission within the three-level system. This operator is

defined by [9]

Ldiss[ρ] =




−2Γ1ρ22 (Γ1 + Γ3)ρ12 0

(Γ1 + Γ3)ρ21 2(Γ1 + Γ3)ρ22 (Γ1 + Γ3)ρ23

0 (Γ1 + Γ3)ρ32 −2Γ3ρ22


 , (1.3)

where Γ1 and Γ3 are the decay rates from state |2〉 to states |1〉 and |3〉, respectively.

The measurement of atom (molecule) concentrations in an extended area requires

considering the changes of the pump and Stokes pulses while they propagate through

the sample [10, 11]. If we make use of the slowly varying envelope approximation,

the wave equations that describe the evolution of the pump and Stokes fields can be

written, in terms of the corresponding Rabi frequencies, as [12]

(
∂

∂t
+ c

∂

∂z

)
Ωp (z, t) = −iαpρ

∗
12, (1.4)

(
∂

∂t
+ c

∂

∂z

)
Ωs (z, t) = −iαsρ

∗
32, (1.5)

where c is the speed of light and ρij (i, j = 1, 2, 3) are the elements of the density matrix

3
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and ρ∗
ij stands for the complex conjugate of ρij . The effect of the atomic medium on

the pump and Stokes pulses propagation depends on the two absorption coefficients:

αp = ωpN |µ21|2 /ǫ0~ and αs = ωsN |µ23|2 /ǫ0~, with ǫ0 being the vacuum permittivity.

In writing Eqs. (1.4) and (1.5) we have considered that the fields propagate parallel

to the z-direction and that the medium is homogeneous, so atoms are assumed to

be fixed and uniformly distributed within the ensemble. Equations (1.2), (1.4) and

(1.5) constitute the mathematical description of the system under study. Due to the

complexity of the system of partial differential equations, we need to numerically solve

them in a moving frame defined by the variables t′ = t−z/c and z′ = z (see Appendix

A for further details).

1.2 Robustness and high efficiency of STIRAP

To provide a thorough analysis of the robustness and high efficiency that STIRAP

can offer to label-free imaging systems, we have solved the set of equations described

in the previous section by using a 40Ca+ ions ensemble as model system. In our

simulations, we have considered the atomic levels 42S1/2, 42P1/2 and 32D3/2 for the

states |1〉 , |2〉 and |3〉, respectively. Their corresponding transition lifetimes are taken

to be Γ−1
1 = 7.7 ns and Γ−1

3 = 94.3 ns. The initial condition of the atomic system is

then defined by considering that atoms are initially in the state |1〉, so the elements

of the initial density matrix read as

ρ11 (0) = 1, ρij (0) = 0 (ij 6= 1) . (1.6)

For the light excitation, we assume that the initial pump and Stokes pulses exhibit

a Gaussian shape given by

Ωp,s(t) = Ω0 exp
{
−4 ln 2 [(t± τ/2)/T]2

}
, (1.7)

where T is the full pulse width at half maximum, Ω0 is the peak Rabi frequency and

τ is the temporal delay between the pulses. Notice that, in order to reduce harmful

effects of the spontaneous decay, we need to employ light pulses with time duration

much shorter than the lifetime of each transition.

To provide a point of comparison, in what follows, we will compare STIRAP with

SRS based on overlapping pulses. Such comparison has been experimentally done for

instance, in the picosecond multiphoton detection of sodium [13].
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Fig. 1.2 Contour plot of the fraction of population transferred to level |3〉 as a function
of the detuning from the atomic resonances of the pump (∆p) and the Stokes (∆s)
pulses for (a) STIRAP, and (b) overlapping pulses.

STIRAP can achieve complete population transfer between states |1〉 and |3〉 if

the quantum state of the atom can follow adiabatically one particular time-dependent

eigenstate of the Hamiltonian given by Eq. (1.1), the so-called dark state [5]. Two

conditions must be satisfied for trapping the system in a dark-state [4]. Firstly, the

frequencies of the pulses need to be tuned to the two-photon resonance regime, i.e.,

∆p = ∆s. Figure 1.2 shows the fraction of population transferred to the state |3〉
as a function of the detunings of the pump and Stokes pulses. Notice from Fig.

1.2(a) that one-photon resonance (∆p = ∆s = 0) is not a requisite for achieving an

efficient transfer of population when using a STIRAP configuration. In contrast, when

performing SRS with overlapping pulses, the amount of atomic population transferred

to the state |3〉 do in fact depend on the one-photon condition, as shown in Fig. 1.2(b).

The second and most distinguishing condition is that the evolution of the fields

must be adiabatic, following a counterintuitive ordering of the light pulses [14]. The

system starts with all the population in the ground state |1〉 and the Stokes field Ωs

is applied first. In this case, the initial state of the system corresponds exactly to

the dark state. Afterwards, Ωp is adiabatically increased and, at the same time, Ωs is

decreased until the condition Ωp ≫ Ωs is reached. In this scenario, all the population

can be transferred to the state |3〉, with almost 100% efficiency.

We can produce nearly complete population transfer between states |1〉 and |3〉
when the pump and Stokes pulses overlap. However, SRS with overlapping pulses
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Fig. 1.3 Fraction of atomic population transferred to level |3〉 as a function of the
integrated Rabi frequency of pulses with time duration T = 10 ps and pulse delays
(a) τ = 0, (b) τ = 0.55 T.

is not so robust against changes in the shape or intensity of the pulses, features that

could change due to variations in the laser parameters or the propagation of the pulses

through the ensembles. Figure 1.3 shows the fraction of atoms that reach state |3〉 as a

function of the integrated Rabi frequency, i.e. A =
∫

Ω (t) dt, for the case of overlapping

pulses (τ = 0) and the STIRAP configuration with temporal delay τ = 0.55T. To

understand why STIRAP is more robust against changes in the pulse shapes than the

overlapping pulses configuration, let us assume that the initial pulses have an initial

Rabi frequency Ω0 so that A = 13, which corresponds to nearly 100% population

transfer in both configurations. For the case of overlapping pulses, increases of 10% in

the integrated Rabi frequency of the pulses diminish the population transfer to ∼ 50%,

while decreases of 10% produce a population transfer of ∼ 70%. On the contrary, in

the STIRAP regime, a nearly complete transfer of population is produced within the

same range of variations.

Information about the number of atoms or molecules that constitute the sample

under study is retrieved by measuring the stimulated Raman Gain (SRG), i.e. ∆Es/Es,

where ∆Es is the gain in energy of the Stokes pulse and Es is the energy carried by

the initial Stokes pulse. As previously mentioned, the integrated Rabi frequency is

set to A = 13, which maximizes the transfer of population for both the SRS with

overlapping and non-overlapping pulses, as depicted in Fig. 1.4(a).

Figure 1.4(b) shows the change of SRG as a function of the distance traversed

by the pulses through a sample with an ion number density of 1018 cm−3. We can

observe that the SRG is always higher in the STIRAP configuration. Furthermore,
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Fig. 1.4 (a) Population transferred to level |3〉 as a function of the delay between
pulses. (b) SRG as a function of the propagation distance through a sample with an
ion number density of 1018 cm−3. (c) Molar amplification coefficient as a function of
the distance. Solid line: STIRAP; dashed line: overlapping pulses.

the information provided by Fig. 1.4(b) can be used in order to analyze how the light

absorption changes when propagating along the sample. To this end, we compute

the effective molar amplification coefficient ǫ, which is a measure of how strongly a

sample absorbs light at a given wavelength. This coefficient is defined by ǫ = A/NL,

where A is the absorbance of the sample and L is the pathlength [15]. Figure 1.4(c)

shows the effective molar amplification (in units of M−1cm−1) as a function of the

propagation distance. Notice that, in the initial stages of propagation, the pulses

experience small changes that do not affect the absorption properties of the sample.

However, as the pulses continue to propagate, their shapes and temporal delays start to

change [see Fig. 1.5(a)]. One can see that, even though the changes in the integrated

Rabi frequency are comparable in both cases [see Fig. 1.5(b)], the effective molar

amplification coefficient remains practically unchanged for STIRAP, while it decreases

in the case of overlapping pulses.
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(a) (b)

Fig. 1.5 (a) Shapes of the pump and Stokes pulses during propagation. (b) Evolution
of the integrated Rabi frequency of the pulses propagating in STIRAP (solid line) and
overlapping pulse (dashed line) configurations.

We have observed that when considering samples containing a high concentration of

atoms or molecules (> 1018 cm−3), the SRG is always higher with STIRAP. However,

as we will see in the next section, for low concentration samples, variations in the SRG

are no longer due to propagation through the sample, but to the precise preparation

of the initial pulses.

1.3 Highly sensitive molecular detection

Optical imaging based on SRS is especially suited for detecting very low concentrations

of atoms or molecules. In particular, the combination of such technique together with

STIRAP provides a higher sensitivity than the commonly used overlapping pulses

configuration.

Figure 1.6 shows that in low concentration samples, both SRS configurations yield

the same linear dependence between concentration and SRG, with an effective molar

amplification coefficient ǫ = 440000 M−1cm−1. This value of the molar amplifica-

tion coefficient represents a sensitivity enhancement that would allow us to detect

concentrations of up to ∼ 1013 cm−3. We can observe from Fig. 1.6(b) that SRS

with STIRAP always achieves a higher sensitivity than SRS with overlapping pulses.

Moreover, notice that fractional changes in the initial integrated Rabi frequency do

not modify substantially the molar amplification coefficient in the case of STIRAP;

whereas in the case of overlapping pulses, a fractional change of 20% could severely

affect the sensitivity.
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(a) (b)

Fig. 1.6 (a) Stimulated Raman Gain as a function of the ion number density. (b)
Molar amplification coefficient as a function of the fractional change in the integrated
Rabi frequency of the pulses initially prepared in STIRAP (solid line) and overlapping
pulse (dashed line) configurations. Propagation distance is set to L = 500 nm.

At this point, we have presented the efficiency enhancement for detecting Calcium

ions; however, since our interest resides in molecular systems, we now turn our atten-

tion to ensembles of neocyanine molecules. This molecule is of great chemical interest

due to its intense absorption (180000 M−1cm−1) and short excited lifetimes (∼ 120

ps) [16]. Because of these properties, neocyanine has already been considered as a test

molecule in experimental realizations of label-free imaging [17, 18].

The level configuration for neocyanine is shown in Fig. 1.7(a). Transitions |1〉 →
|2〉 and |3〉 → |2〉 are excited by laser pulses with central wavelength of 770 nm and

850 nm, respectively. We illuminate the sample with 15 fs pulses and a time delay of

9.33 fs between them (STIRAP configuration). The laser is set to have 4 mW average

power and 80 MHz repetition rate. For the sake of comparison with Refs. [17, 18],

we have assumed that the pulses have a transversal section S∼ 1 µm2 and that they

propagate 100 nm within the sample. From these parameters, we obtain a volume in

the laser focus of 10−19 m3 (10−16 L ).

Figure 1.7(b) shows the SRG as a function of the neocyanine concentration. Notice

that by using a STIRAP configuration we can obtain an effective molar amplification

coefficient of ǫ = 11350 M−1cm−1. This value of the molar amplification coefficient

represents a sensitivity enhancement that would allow us to detect concentrations of

up to ∼ 0.5 µM, which is a concentration ten and two times smaller than previously

reported in Refs. [17] and [18], respectively.
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(a) (b)

Fig. 1.7 (a) Scheme of the neocyanine three-level configuration. (b) Stimulated Ra-
man Gain as a function of the concentration of neocyanine for pulses propagating in
STIRAP (solid line) and overlapping pulse (dashed line) configurations. Propagation
distance is set to L = 100 nm. The figure of neocyanine molecule was drawn using
PyMOL [19].

Conclusions

In this chapter, we have described a new technique to enhance the robustness and sensi-

tivity of an optical label-free imaging technique based on SRS. The proposed technique

is based on the interaction of coherent resonant pulses with a specific sample via stim-

ulated Raman adiabatic passage. In principle, in combination with a high-frequency

phase-sensitive detection scheme, it allows one to detect amazingly low concentrations

of atoms and molecules. For instance, with an effective molar amplification coefficient

of 440000 M−1cm−1 and SRG > 10−7, it is possible to detect n ∼ 10−7S/(2.303ǫ) ions,

which for S ∼ 10 µm2 yields n ∼ 5 ions.

In the case of molecular ensembles, we have shown that using a STIRAP configu-

ration, an effective molar amplification coefficient of 11350 M−1cm−1 can be obtained.

For this value of the molar coefficient, a SRG > 10−7 and S ∼ 1 µm2, we could ex-

perimentally detect n ∼ 20 neocyanine molecules, which is two times smaller than the

lowest reported value.

We have observed that when using a STIRAP configuration, the SRG remains

linear with respect to the concentration of molecules and the propagation distance

traveled by the pulses, which enables a straightforward quantitative analysis. Finally,

we have demonstrated that STIRAP is less sensitive to changes in the energy or shape

of the initial pulses, which would make it easy to experimentally carry out under

realistic experimental conditions.
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Chapter 2
A new technique for measuring the

temperature of atomic ensembles

Atomic ensembles provide a robust platform for many theoretical and experimental

schemes for the implementation of several quantum information protocols [20, 21]

and, in particular, for the generation of paired photons with non-classical correlations

[22, 23]. In these photon-generation schemes, a weak classical field (pump pulse)

interacts with an atomic ensemble leading to the spontaneous emission of a photon

with a lower energy (Stokes photon). Since the Stokes photon and the atomic ensemble

are highly correlated, the projection of the Stokes photon results in the generation of

an atomic state that is a coherent superposition of all possible states of the ensemble

where only one atom is excited, the so-called collective atomic state [24].

Although in most experiments the emitted Stokes photons are detected at small

angles (∼ 0◦ − 3◦) [22, 23, 25–27], the direction in which they can be emitted from

the atomic cloud has been a subject of study for years. For instance, it has been

shown that in the case of room-temperature ensembles, where atoms are considered

to move fast within the cloud, Stokes photons are emitted within a small cone around

the direction of propagation of the pump beam [28, 29]. In contrast, for the case in

which atoms are considered to be fixed in their positions, as in cold atomic ensembles,

Stokes photons have no preferred direction of emission [30, 31], always that it is not

forbidden by the transition matrix elements. These results consider only the angular

distribution of emitted photons in two limiting cases: when atoms are either moving

very fast (high temperature) or completely fixed (low temperature) within the cloud.
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However, the transition between these two cases had not been investigated before.

In this chapter, we construct a theoretical model that allows us to describe the

angular distribution of emitted Stokes photons as a function of the temperature of the

atomic ensemble. Then, by making use of this model, we develop a new technique

where the measurement of the width of the Stokes emission cone is used to determine

the temperature of the atomic cloud. Moreover, we demonstrate that such measure-

ment can be done thanks to the close relationship that exists between the range of pos-

sible directions of emission, and the which-way information available about where the

photon originated, i.e., knowledge of the position of the atom that emitted the photon

during the light-matter interaction. The importance of the proposed technique resides

in the fact that, unlike commonly used time-of-flight measurement [32], the atomic

cloud is not destroyed during each measurement. Therefore, this new technique takes

a place in the group of nondestructive measurements, such as resonance fluorescence

spectrum analysis [33], recoil-induced resonances [34], and transient four-wave mixing

[35], with the difference that it does not require any additional elements in the basic

writing-reading experimental setup, which makes it appealing for its implementation.

This chapter is organized as follows. Section 2.1 presents the developed theoreti-

cal model. In Section 2.2, we make use of the new model to investigate the angular

distribution of emitted Stokes photons as a function of the temperature of the atomic

ensemble. Finally, Section 2.3 describes the proposed experimental scheme for mea-

suring the temperature of atomic clouds.

2.1 The model

Imagine the scenario where an ensemble of N identical three-level atoms in Λ configu-

ration (Fig. 2.1) is illuminated by a weak laser pulse coupling the transition |g〉 → |e〉
with a detuning ∆. Then, after some time, spontaneous decay of an atom in the en-

semble leads to the generation of a photon with different wavelength (Stokes photon),

leaving the atom in the symmetric state |s〉. In this situation, how could we know the

direction in which the Stokes photon is emitted? Furthermore, how would the path

of the photon be related, if so, to the temperature of the ensemble? To address these

questions, we proceed as follows.

We consider the pump beam as a slowly varying classical field propagating along

the z direction, with a Rayleigh range much larger than the length of the atomic
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PUMP

STOKES

Fig. 2.1 Three-level atom in Λ configuration. Transition from the ground |g〉 to the
excited state |e〉 is produced by a weak pump pulse with detuning ∆. After excitation,
a photon with lower energy (Stokes photon) is spontaneously emitted, leaving the atom
in the symmetric state |s〉.

ensemble, defined as

Ep (r, t) = u (r⊥) ξ(t) exp {ik0z − iω0t} + H.c., (2.1)

where ω0 = k0c is the central frequency, c is the speed of light, u (r⊥) describes the

transverse spatial shape of the pump beam and ξ(t) its temporal shape. Here, H.c.

stands for the Hermitian conjugate.

Because only one Stokes photon is emitted by the ensemble, the Stokes field is

taken as a quantum field described by the expression

Ê†
s (r, t) =

∫
â(k) exp {ik · r − iωt} dk, (2.2)

where â(k) is the annihilation operator, k = (kx, ky, kz) is the wavevector of the Stokes

photon and ω = |k|c its frequency.

To model the interaction of the light fields with the atomic ensemble, we make use

of the Hamiltonian [28]

H(t) =
N∑

i=1

σ̂i
sg

∫
dkgka

†(k) exp {i∆ωt}u (r⊥,i) ξ (t) exp {−i∆k · ri} + H.c., (2.3)

where σ̂i
sg = |s〉i 〈g| is the transition operator for the ith atom, ri = (xi, yi, zi) is

the vector position of the ith atom, gk is the coupling coefficient of the transition,

∆ω = ω − (ω0 − ωsg) and ∆k = k − k0ẑ, with ωsg being the transition frequency

between states |g〉 and |s〉.
For the initial conditions of the system, we assume that, before the interaction, all
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the atoms are in the ground state and that there are no Stokes photons in the optical

modes, so the initial state of the system reads

|Ψ〉0 = |g1...gi...gN〉 ⊗ |0〉
k
. (2.4)

Then, considering that the pump field is weak enough, we can make use of first-order

perturbation theory to write the state of the system as

|Ψ〉 = |Ψ〉0 − i ε (∆ω)
N∑

i=1

∫
dk u (r⊥,i) exp {−i∆k · ri} |g1...si...gN 〉 |k〉, (2.5)

where ε(∆ω) =
∫ t

0 dt
′g ξ(t′) exp(i∆ωt′). In writing Eq. (2.5), we have assumed that

∆k is independent of the frequency, |k| ≃ k0, and that the coupling is the same for

all allowed directions of emission of the Stokes photons, gk = g.

Before we continue with the description of the model, it is important to remark

that the use of first-order perturbation theory is motivated by the experiments in

which a weak pump pulse and a short interaction time are used in order to guarantee

that the probability of creating more than one excitation in the collective atomic state

is very low [23, 25–27]. Therefore, the weak-pumping condition makes a perturbative

approach suitable for describing a realistic situation.

Making use of Eq. (2.5), we can recover the cases presented in Refs. [28–31], namely

the emission of Stokes photons from cold and hot atomic ensembles. In the former

case, since the atoms are considered to be fixed in their positions, we can directly use

Eq. (2.5) to find that the probability of emitting a photon in a given direction k is the

same for all directions (i.e., there is no preferred direction of emission) independently

of the specific shape of the atomic cloud. In contrast, in the latter case, due to the

fact that during the light-matter interaction the atoms are moving fast, an average

over all positions ri should be performed [28, 36], so the state of the systems takes the

form

|Ψ〉 = |Ψ〉0 − iε (∆ω)
∫
dk F (∆k) |k〉 ⊗

N∑

i=1

|g1...si...gN 〉 , (2.6)

where the average value over all positions is defined as

F (∆k) =
∫
dru(r⊥) exp {−i∆k · r} Pdis(r), (2.7)

with Pdis(r) being the atomic distribution function. Using Eq. (2.6), one can obtain

that the Stokes photons are emitted in a small cone around the direction of the pump
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(see Refs. [28, 29] for a detailed calculation), whose width depends on the particular

spatial shape of the atomic cloud. Notice that, in this case, the photon and atomic

degrees of freedom can be decoupled, and the quantum state of the atoms corresponds

to the so-called symmetric collective atomic state, i.e., |sa〉 = 1/
√
N
∑N

1 |g1...si...gN〉.

Notice that the transition from the two limiting cases, cold and hot atomic en-

sembles, cannot be explored by means of Eq. (2.5), because it does not show any

temperature dependence. However, we can model this dependence by introducing a

new function describing the movement of each atom as a function of the ensemble’s

temperature. This new function writes

f (r, ri) =
1

π3/2A3 (T )
exp

[
−|r − ri|2
A2 (T )

]
, (2.8)

where ri is the mean position of the ith atom and the function A (T ) = vaτ determines

the radius of the area over which the atoms can move during the interaction time. It

depends on the pump pulse duration τ , and on the speed (va =
√

2KBT/m) most

likely to be possessed by any atom of the system. m is the mass of the atom, KB

is the Boltzmann constant and T is the temperature of the atomic ensemble. Notice

that the origin of va lies in the Maxwell−Boltzmann distribution. This distribution is

assumed, because it has been shown that the Maxwell-Boltzmann distribution provides

an accurate description of the motion of atoms at temperatures above tenths of µK

[32, 37]. Therefore, Eq. (2.8) is useful for describing the motion of atoms undergoing

a transition from the hot to the cold condition, provided that the lowest temperature

values are above tenths of µK.

By substituting Eq. (2.8) into Eq. (2.5), we find that the temperature-dependent

quantum state of the system atoms-photon can be written as

|Ψ〉 = |Ψ〉0 − iε (∆ω)
N∑

i=1

∫
dk

∫

V
drf (r, ri)u (r⊥)

× exp {−i∆k · r} |g1...si...gN〉 |k〉,
(2.9)

where V stands for the volume of the cloud. Notice that, in the limit where A → 0

(cold atomic ensemble), the function given in Eq. (2.8) tends to a Dirac delta function,

and we recover the state of the system described by Eq. (2.5).

To obtain the angular distribution of the emitted Stokes photons, we trace out the

atomic variables of the density matrix of the system, i.e., ρ = |Ψ〉 〈Ψ|. Neglecting the
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vacuum contribution, the reduced density matrix of the photon state writes

ρs =
N∑

i=1

∫
dkdk′S(ri,k)S∗(ri,k

′)|k〉〈k′|, (2.10)

where

S(ri,k) =
∫

V
drf(r, ri)u(r⊥) exp (−i∆k · r) . (2.11)

Considering that the atoms are contained in a cell with transversal dimensions Lx,

Ly and length Lz , we can solve Eq. (2.11) to obtain

S(ri,k) =
1
8
α2Φ(xi, kx)Φ(yi, ky)Ω(zi, kz), (2.12)

where

α =

(
r2

0

A2 + r2
0

)1/2

, (2.13)

Φ(xi, kx) = exp


−k2

xr
2
0

4
−
[
α

r0

(
xi + i

r2
0kx

2

)]2



×
{

erf

[
−α3

2

(
2xi − ikxA

2 − Lx

α2

)]

− erf

[
−α3

2

(
2xi − ikxA

2 +
Lx

α2

)]}
,

(2.14)

Ω(zi, kz) = exp

[
−k2

zA
2

4
− ikzzj

]

×
{

erf
[
− 1

2A

(
2zi − ikzA

2 − Lz

)]

− erf
[
− 1

2A

(
2zi − ikzA

2 + Lz

)]}
.

(2.15)

Notice that the presence of the error function [erf(x)] in Eqs. (2.14) and (2.15) is due

to the integration over the finite volume V of the cell that contains the atoms.

Finally, we can find that the probability of emitting a Stokes photon in the direction

k is given by the diagonal terms of the density matrix (2.10),

P (k) =
N∑

i=1

|S (ri,k)|2 , (2.16)

where the normalization condition writes
∑N

i=1

∫
dk |S (ri,k)|2 = 1. In general, because
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Fig. 2.2 Angular distribution of emitted Stokes photons for different temperatures of
the atomic ensemble. Solid line: T = 100 µK; Dashed line: T = 1 K; Dash-dotted
line: T = 10 K; Dotted line: T = 300 K. In all cases, the pump pulse duration is set
to τ = 10 ns.

the atomic cloud contains a large atom number density, the atomic summation can be

rewritten as
∑N

i=1 → (N/V )
∫
dV .

Notice that, in order to obtain the angular distribution of photons as a function of

the temperature, equation (2.16) needs to be solved numerically due to the presence of

the error function in Eqs. (2.14) and (2.15). However, since the functions of the spatial

variables are separated [as can be seen from Eq. (2.12)], the numerical integration can

be easily performed.

2.2 Angular distribution of emitted Stokes photons

We have computed the angular distribution of the emitted Stokes photons considering

an ensemble of 87Rb atoms contained in a pencil-shaped cell with transversal dimen-

sions: Lx = Ly = 2 mm, and length Lz = 30 mm. The atoms are illuminated by

a pump pulse with a transversal shape given by u(r⊥) ∼ exp {−(x2 + y2)/r2
0}, where

r0 = 2 mm is the beam waist of the pump beam. The level configuration of the atoms

is set to 52P1/2 for the excited level |e〉, and the Zeeman-splitting levels 52S1/2 (F = 1)

and 52S1/2 (F = 2) for the |g〉 and |s〉 states, respectively.

Figure 2.2 shows the angular distribution (normalized to the maximum) of emitted

Stokes photons as a function of the angle θ between the direction of the pump and

the emitted photon [as shown in Fig. 2.3(a)]. In the low temperature limit, the
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spontaneous emission of Stokes photons has no preferred direction. This result agrees

with Ref. [23], in which Stokes photons are said to be emitted into 4π steradian. In

contrast, as the temperature of the cloud is increased, the probability distribution

narrows around θ = 0, showing that in the case of warm atomic ensembles, Stokes

photons are emitted preferentially along the direction of the pump, as it has been

experimentally observed, for instance, in Ref. [22].

The results presented in Fig. (2.2) can be understood in terms of the which-way

information left in the atoms after emitting a Stokes photon, i.e., the information about

the position of the atom that emitted the photon. In the case of cold atomic ensembles,

the fact that atoms are fixed would allow us, in principle, to obtain information about

the position of the atom that emitted the photon. In this situation, the possible paths

of the Stokes photon will not interfere, because which-way information has been left in

the ensemble. This can be clearly seen from Eq. (2.16), which for cold atomic clouds

takes the form

Pcold(k) =
N∑

i=1

|u (r⊥,i)|2 . (2.17)

Equation (2.17) shows that emission of Stokes photons from a cold atomic ensemble

has no preferred direction. Moreover, notice that it describes a sum of the squared

amplitudes of the fields, which is a footprint of an incoherent sum, where interference

effects are not present.

In the case of hot atomic ensembles, one can easily show that Eq. (2.8) is a

constant within the integration volume, so we can write Eq. (2.16), assuming a large

atom number density, as

Phot(k) =

∣∣∣∣∣

N∑

i=1

u (r⊥,i) e−i∆k·ri

∣∣∣∣∣

2

. (2.18)

We can observe from Eq. (2.18) that interference between possible paths of the

Stokes photon is now restored, because which-way information has been erased by the

movement of the atoms in the cloud. Interestingly, this which-way information effect

has also been observed, for instance, in the context of second-order interference of

single photons [38].

It is important to highlight that the results presented here show that whether

interference effects are present does not depend on the actual acquisition of information

from the system, but on the possibility to obtain such information. This fundamental

relationship between interference and indistinguishability has been pointed out, for
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Fig. 2.3 (a) Proposed experimental setup: an array of detectors is used to measure the
width of Stokes emission cone in order to determine the temperature of the atomic
ensemble. (b) Temperature of the atomic cloud as a function of the full width at
half maximum of the emission cone, considering different pulse durations. Solid line:
τ = 10 µs; Dashed line: τ = 30 µs; Dash-dotted line: τ = 100 µs.

instance, in Ref. [39].

2.3 Experimental proposal

The close relationship between the width of the Stokes emission cone and the temper-

ature of the atomic ensemble allows us to introduce a new technique for measuring

the temperature of atomic clouds. The proposed experimental scheme consists of an

array of detectors (or a movable detector) that would be able to detect Stokes photons

along different directions, as shown in Fig. 2.3(a). In this way, by measuring the

width of the emission cone, we could use Eq. (2.16) to retrieve information about the

temperature of the atomic ensemble. To exemplify how the proposed technique would
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perform, Fig. 2.3(b) shows the temperature of the atomic ensemble as a function of

the full width at half maximum (FWHM) of the emission cone. Notice that, by select-

ing a sufficiently short pulse, the dependence of the emission cone on the temperature

of the ensemble gets smoother. This can be useful for a better discrimination of the

width of the emission cone, enhancing thus the precision of the technique. Also, notice

that the proposed experimental scheme is not based on the ballistic expansion of the

atomic cloud [32], so each measurement can be performed without destroying it.

2.4 Heralded generation of the symmetric atomic

state

Another important feature of Eq. (2.9) is that it can also be used to describe how the

generation of the symmetric collective atomic state depends on the temperature of the

atomic cloud. When a Stokes photon is detected in an arbitrary direction k, i.e., is

projected into the state |k〉, the corresponding quantum state of the atomic cloud is

|Ψ〉a =
N∑

i=1

S (ri,k) |g1...si...gN〉 . (2.19)

The projection of Eq. (2.19) on the symmetric state |sa〉 can then be used to find

the probability of generating a symmetric state in the atomic ensemble. In the cold

atoms case, although Stokes photons are emitted in a larger emission cone, only a small

fraction of them (those in a small angle around the pump beam) correspond to the

symmetric state [see Figs. 2.4(a,b)]. In contrast, when the temperature of the cloud

is increased, which-way information is erased and the emission cone gets narrower

[Fig. 2.4(g)]. In this case, as it can be seen from Fig. 2.4(h), photons emitted in all

allowed possible directions are in the symmetric state. Notwithstanding, if we want

to enhance the flux of detected Stokes photons, we are again forced to detect them in

small emission angles around the pump beam. Therefore, in all cases, one needs to

detect the Stokes photons in a small cone around the direction of propagation of the

pump beam, if the goal is to generate the symmetric collective atomic state. But, as

Fig. 2.4 shows, the reason behind this restriction depends on the temperature of the

atomic ensemble.
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Fig. 2.4 Angular distribution of the emitted Stokes photons [(a),(c),(e) and (g)], and
the weight of the symmetric atomic state |〈sa|Ψ〉a|2 (within the FWHM of the emission
cone) [(b), (d), (f) and (h)] for different radius of the region where atoms are let to
move: (a,b) A=1 µm, (c,d) A=100 µm, (e,f) A=1 mm, and (g,h) A=100 mm. Pulse
duration: 10 µs.
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A new technique for measuring the temperature of atomic ensembles

Conclusions

In this chapter, we have described the relationship that exists between the temperature

of an atomic ensemble and the width of the emission cone of spontaneously emitted

Stokes photons. Using this fundamental result, we have presented a new nondestruc-

tive technique for measuring the temperature of atomic clouds. Furthermore, we have

shown that heralded generation of the collective symmetric atomic state requires the

detection of the heralding Stokes photon in a narrow cone around the direction of the

exciting pulse. For cold atomic clouds, this is the only direction that guarantees the

generation of such state, whereas for hot atomic ensembles, it is the direction with the

highest efficiency.
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Chapter 3
Role of entanglement in two-photon

virtual-state spectroscopy

The two-photon absorption (TPA) process has played a fundamental role in the devel-

opment of new technologies aimed at probing the structure of atoms and molecules,

such as two-photon microscopy [40] and two-photon spectroscopy [41]. In particular,

nonlinear two-photon spectroscopy has become an invaluable tool [42], where the ca-

pability of TPA is exploited to obtain information about a sample that would not be

accessible otherwise.

With the appearance of new light sources capable of generating entangled photon

pairs [43], new phenomena in TPA processes have been observed. Indeed, the linear

dependence of the TPA rate on the photon flux [44], two-photon induced transparency

[45], virtual-state spectroscopy [46, 47] and the selectivity of double-exciton states of

chromophore aggregates [48] are effects that have been attributed to the presence of

entanglement between the photons that participate in the TPA process. However, in

some cases, the link between entanglement and the new effect is sometimes blurred.

Thus, one can always wonder whether such effects are due to a particular feature of

the photons that might be unrelated to their entangled nature. This is the case of

certain phenomena that, when first described, were attributed to the existence of en-

tanglement between pairs of photons. For instance, Nasr et al. [49] demonstrated a

new scheme, based on entanglement, to enhance the resolution of an optical coherence

tomography system by erasing the effects due to second-order chromatic dispersion.

Later, the work in Ref. [50] showed that by properly introducing a phase conjugator
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Role of entanglement in two-photon virtual-state spectroscopy

element in the optical coherence tomography scheme, which produces a Gaussian-state

light source with frequency anti-correlation, a similar effect could be achieved. In dis-

persion cancelation, an effect that is observed in the temporal domain, namely the

broadening of the second-order correlation function of paired photons propagating in

two different optical fibers, it was shown that it could be suppressed, provided that

the group velocity dispersion parameters of both fibers were identical but opposite

in sign, and that the photons were entangled [51–53]. However, it has been recently

demonstrated that such effects could also be produced by frequency-correlated pho-

tons, which nonetheless might be non-entangled [54, 55].

Remote temporal modulation [56, 57], an effect similar to dispersion cancelation,

but observed in the frequency domain, describes the appearance of new frequency

correlations when entangled paired photons are synchronously driven by two tempo-

ral modulators. In a similar manner to dispersion cancelation, if the two identical

modulators are driven in opposite phases, their global effect is to negate each other,

and the spectral correlations appear as those when no phase modulators are present.

Again, it has been shown [55] that entanglement is not a requisite, and that the same

effect can be observed using non-entangled optical beams bearing certain frequency

correlations. All these examples illustrate the fact that the presence of entanglement

is not the key enabling factor that allows the observation of dispersion cancelation

and remote temporal modulation, but the existence of certain frequency correlations,

a characteristic that takes place along the presence of entanglement, but it can also

manifest without it.

In this chapter, we study one important spectroscopic application whose capabili-

ties have been associated with the use of entangled photon pairs, namely two-photon

virtual-state spectroscopy. The importance of this technique resides in the fact that,

unlike commonly used two-photon absorption spectroscopy techniques, where pulsed

and tunable sources are required, it is implemented by carrying out continuous-wave

absorption measurements without changing the wavelength of the source [46, 47]. Un-

fortunately, this technique has not been broadly applied because the ease with which

it can be performed is limited by the low efficiency photon generation in nonlinear

crystals. However, with the advent of ultrahigh flux sources of entangled photons [58],

this technique may open new research directions towards ultrasensitive detection in

chemical and biological systems [59, 60].

To unveil the true role of entanglement in virtual-state spectroscopy, we make use

of two ingredients. Firstly, we apply a full quantum formalism to the two-photon
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3.1 Light-matter interaction

state, so we can clearly identify the amount of entanglement existing between the

photons. Secondly, we consider a general form of the two-photon state, which allows

us to explore different types of correlations and spectral shapes of the photons. Using

these ingredients, we show that the presence of entanglement does not guarantee

the successful retrieval of spectroscopic information of the medium. In fact, it is

the combination of entanglement and a specific shape of the frequency correlations

between photons what makes the realization of two photon virtual-state spectroscopy

possible.

This chapter is organized as follows. Section 3.1 provides the most general expres-

sion of the TPA transition probability for an arbitrary initial two-photon state. Then,

by using this result, we compute the TPA transition probability for uncorrelated clas-

sical pulses, classical frequency-correlated photons, and quantum frequency-correlated

(entangled) photons in Sections 3.2, 3.3 and 3.4, respectively.

3.1 Light-matter interaction

Let us consider the scenario where two photons are absorbed by an atom or a molecule

inducing a transition between two of its energy levels that match the overall energy of

the incident photons. Using a quantum mechanical approach, one can find that the

probability that the atom or molecule undergoes a two-photon transition is given by

a weighted sum of many energy non-conserving atomic transitions (virtual-state tran-

sitions) [61, 62] between its energy levels (see below). Even though it has been shown

that information about these virtual-state transitions, a signature of the medium,

can be extracted by Fourier transforming the TPA transition probability of mutually

delayed entangled photons [46], one cannot avoid to wonder: Can we retrieve the

sought-after information (energy level structure) with any type of frequency correla-

tions between the photons? To address this question, we proceed as follows.

The interaction of a medium (atom or molecule) with a two-photon optical field

|Ψ〉 can be described by the interaction Hamiltonian

HI (t) = d (t)E(+) (t) , (3.1)

where d (t) is the dipole-moment operator and E(+) (t) is the positive-frequency part

of the electric-field operator, which reads as E(+) (t) = E
(+)
1 (t)+E

(+)
2 (t). The electric
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Role of entanglement in two-photon virtual-state spectroscopy

field operators E(+)
1 (t) and E

(+)
2 (t) can be written as

E
(+)
j (t) =

∫
dωj

√
~ωj

4πǫ0cA
a (ωj) exp (−iωjt) , (3.2)

where c is the speed of light, ǫ0 is the vacuum permittivity, A is the effective area of

the field, and a (ωj) is the annihilation operator of a photonic frequency-mode, with

frequency ωj , bearing a specific spatial shape and polarization that, for the sake of

simplicity, are not explicitly written.

The medium is initially in its ground state |g〉 (with energy εg). The probability

that the medium is excited to the final state |f〉 (with energy εf), through a two-photon

absorption process, is given by second-order time-dependent perturbation theory as

[63]

Pg→f =
∣∣∣∣

1
~2

∫ ∞

−∞
dt2

∫ t2

−∞
dt1Md (t1, t2) ME (t1, t2)

∣∣∣∣
2

, (3.3)

with

Md (t1, t2) = 〈f | d (t2) d (t1) |g〉 , (3.4)

ME (t1, t2) = 〈Ψf |E(+) (t2)E(+) (t1) |Ψ〉 , (3.5)

where |Ψf〉 denotes the final state of the optical field.

Equation (3.4) can be expanded in terms of virtual-state transitions to obtain

Md (t1, t2) =
∑

j=1

D(j) exp [−i (εj − iκj/2 − εf) t2] exp [−i (εg − εj + iκj/2) t1] , (3.6)

where D(j) = 〈f | d |j〉 〈j| d |g〉 are the transition matrix elements of the dipole-moment

operator. We can see from Eq. (3.6) that excitation of the medium occurs through

intermediate states |j〉, with complex energy eigenvalues εj − iκj/2, where κj stands

for the natural linewidth of the intermediate states [64]. Also, we can write Eq. (3.5)

as

ME (t1, t2) = 〈ψf |E(+)
2 (t2)E(+)

1 (t1) |ψi〉 + 〈ψf |E(+)
1 (t2)E

(+)
2 (t1) |ψi〉 , (3.7)

where we have kept the terms in which only one photon from each field contributes

to the overall two-photon excitation. The first term of Eq. (3.7) corresponds to the

case in which the photon field E(+)
1 (t) interacts first, and E(+)

2 (t) interacts later. The

remaining term describes the complementary case.
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3.1 Light-matter interaction

Because we are interested in a process in which the optical field that interacts with

the medium is composed by only two photons, we consider the initial state of the field

as an arbitrary two-photon state given by [65]

|Ψ〉 =
∫
dνsdνiΦ (νs, νi) a†

s

(
νs + ω0

s

)
a†

i

(
νi + ω0

i

)
|0〉 , (3.8)

where “s” and “i” stand for the signal and idler photonic modes, νj = ωj −ω0
j (j = s, i)

are the frequency deviations from the central frequencies ω0
j , and Φ (νs, νi) is the

joint spectral amplitude, or mode function, which fully describes the correlations and

bandwidth of the two-photon state.

To quantify the degree of entanglement between the absorbed photons, we will

make use of the entropy of entanglement, which is defined as [66]

S = −
∑

j

λj log2λj, (3.9)

where λj are the eigenvalues of the Schmidt decomposition of the joint spectral ampli-

tude, i.e., Φ (νs, νi) =
∑

j λ
1/2
j fj(νs)gj(νi), with fj(νs) and gj(νi) corresponding to the

Schmidt modes. It is worth remarking that the lack of entanglement between the pair

of photons is characterized by a value of the entropy equal to zero.

In what follows, with the aim of recognizing in which situations virtual-state spec-

troscopy can be performed, we will compute the TPA transition probability of atomic

hydrogen using different types of initial two-photon states. We have selected atomic

hydrogen as model system, because it has been used in previous studies of virtual-

state spectroscopy [46, 63] and it has been the subject of several one- and two-photon

absorption experiments [67–70]. In our calculations, we will focus on the 1s → 2s two-

photon transition. Due to quantum number selection rules [69], this transition takes

place via intermediate p states: 1s → {2p, 3p, ..., np} → 2s, which are coupled to the s

states by real-valued transition matrix elements. The hydrogen atom energy levels are

εn = −13.6/n2 eV (n = 1, 2, 3, ...) and the natural linewidths of intermediate states κj

are taken from Refs. [67, 69]. We will assume the condition εf − εg = ω0
s + ω0

i , and

that the final state 2s is Lorentzian broadened with a radiative lifetime 1/κf = 122

ms [68], which is introduced in the model by averaging the TPA transition probability

over a Lorentzian function of width κf [64].
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3.2 TPA transition probability with uncorrelated

classical pulses

We first consider the case in which the medium is illuminated by uncorrelated classical

light. This case has been presented in Ref. [71], where it has been pointed out that

spectroscopic information resident in the TPA signal is essentially the same, regardless

of the existence of correlations between the absorbed photons.

To investigate virtual-state spectroscopy by means of uncorrelated light, we will

assume that the two absorbed photons are embedded into rectangular-shaped pulses

of the same duration Tp, with a tunable time delay τ between them. This initial

optical field can be represented by an uncorrelated two-photon state described by the

normalized mode function

Φ (νs, νi) =
Tp

2π
sinc (Tpνs/2) sinc (Tpνi/2) exp [i (νs − νi) τ/2] . (3.10)

With the state given by Eq. (3.10), and making use of Eqs. (3.3), (3.6) and (3.7),

we can write the TPA transition probability as

Pg→f (Tp; τ) =
ω2

0

~2ǫ20c2A2T 2
p

∣∣∣∣∣∣

∑

j

D(j) [I1 + I2]

∣∣∣∣∣∣

2

, (3.11)

where

I1 =
sin [∆ω (Tp − τ) /2]

∆g∆ω
− sin [∆f (Tp − τ) /2] exp [i∆g (Tp + τ) /2]

∆g∆f

− 2i sin (∆gTp/2) sin (∆fτ/2) exp [−i (∆fTp − ∆gτ) /2]
∆g∆f

,

(3.12)

I2 =
sin [∆ω (Tp − τ) /2]

∆g∆ω
− sin [∆f (Tp − τ) /2] exp [i∆g (Tp − τ) /2]

∆g∆f
, (3.13)

with ∆f = εj−iκj/2−εf +ω0, ∆g = εg−εj+iκj/2+ω0, and ∆ω = εg−εf +2ω0. For the

sake of simplicity, in writing Eq. (3.11), we have assumed the condition ω0
i = ω0

s = ω0.

We have computed the TPA transition probability for different values of Tp and τ

and, in all cases, it turned out to be a constant as a function of the delay τ between

the pulses, when τ < Tp, which implies that a Fourier analysis with respect to τ

would result in only one peak centered at zero frequency, meaning that spectroscopic

information about intermediate levels of the medium is not present in the TPA signal.
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Therefore, based on these results, we can conclude that when frequency correlations

between the photons are not present, spectroscopic information about energy levels

is not available. This implies that virtual-state spectroscopy cannot be performed by

means of two delayed rectangular-shaped classical pulses, which is in contradiction

with the results presented in section VI of Ref. [71].1

3.3 TPA transition probability with classically cor-

related photons

We now explore the case in which the two absorbed photons are frequency correlated

but they are nonetheless non-entangled. To this end, we make use of the theory

presented by Mollow in Ref. [64] to rewrite the TPA transition probability [Eq. (3.3)]

as

Pg→f =
1
~4

∫ ∞

−∞
dt

′

2dt
′

1dt2dt1L∗(t
′

2, t
′

1)G
(2)(t

′

2, t
′

1; t2, t1)L(t2, t1), (3.14)

where L(t2, t1) = Θ (t2 − t1) Md (t1, t2), with Θ (t) being the Heaviside step function.

Here, G(2) corresponds to the second-order field correlation function, which is defined

in terms of the density operator ρ of the optical field as

G(2)(t
′

2, t
′

1; t2, t1) = Tr
[
ρE

(−)
2 (t

′

2)E(−)
1 (t

′

1)E(+)
1 (t2)E

(+)
2 (t1)

]

+ Tr
[
ρE

(−)
2 (t

′

2)E(−)
1 (t

′

1)E(+)
2 (t2)E(+)

1 (t1)
]

+ Tr
[
ρE

(−)
1 (t

′

2)E(−)
2 (t

′

1)E(+)
1 (t2)E(+)

2 (t1)
]

+ Tr
[
ρE

(−)
1 (t

′

2)E(−)
2 (t

′

1)E(+)
2 (t2)E(+)

1 (t1)
]
,

(3.15)

where Tr [...] stands for the trace over the field states.

To compute the second-order correlation function, we consider a classically corre-

lated two-photon state described by a density operator of the form

ρ =
∫
dν |Φ (ν,−ν)|2 |ω0 + ν〉1|ω0 − ν〉2〈ω0 + ν|1〈ω0 − ν|2, (3.16)

with ω0 being the central frequency of the photons and Φ (ν,−ν) the mode function

that describes the frequency correlations between them.

1The origin of this contradiction lies in the use, in Ref. [71], of a wrong identity for multiplication
of rectangular functions. This identity creates correlations between the fields, which ultimately lead
to non-monotonic behavior of the TPA transition probability.
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By using Eq. (3.16), we find that the second-order correlation function of the

classically correlated photons is given by

G2(t
′

2, t
′

1; t2, t1) =

(
~ω0

2πǫ0cA

)2

exp[iω0(t
′

2 + t
′

1 − t2 − t1)]

×
∫
dν |Φ (ν,−ν)|2 cos [ν (t2 − t1)] cos[ν(t

′

2 − t
′

1)].

(3.17)

Notice that the presence of the norm of the mode function cancels out any phase

difference introduced by the delay τ [see Eqs. (3.10), (3.18) and (3.21)], which results

in a TPA transition probability that does not depend on the delay between the pho-

tons. Therefore, we can conclude that when using non-entangled frequency-correlated

photons, spectroscopic information about intermediate energy levels of the medium is

not available in the TPA signal.

3.4 TPA transition probability with entangled pho-

tons

In light of the results presented so far, and the ideas and calculations originally in-

troduced in Ref. [46], one cannot help to ask whether the presence of frequency

entanglement between photons is the key ingredient that allows us to access informa-

tion about the energy level structure of an arbitrary medium. In the following, we

will compute the TPA transition probability using entangled photons bearing different

spectral shapes to demonstrate that the presence of entanglement does not guaran-

tee the successful retrieval of spectroscopic information of the medium. Rather, it is

the use of a specific spectral shape of existing frequency correlations what makes the

realization of two-photon virtual-state spectroscopy possible.

3.4.1 Two-photon state with a Gaussian spectral shape

In general, a two-photon state with tunable frequency correlations can be generated

by means of type-II spontaneous parametric down-conversion (SPDC). In this process,

two photons with orthogonal polarizations (signal and idler) are created by illuminat-

ing a second-order nonlinear crystal (of length L) with a Gaussian pulse, with temporal

duration T+ and frequency ωp. To make the generated photons indistinguishable, after

the crystal, the signal and idler interchange their polarization and traverse a similar
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3.4 TPA transition probability with entangled photons

Fig. 3.1 Joint spectrum of the two-photon state for different values of T−: (a) T− =
2 ps, (b) T− = 20 ps, and (c) T− = 200 ps. (d) Entropy of entanglement as a function
of T− for Gaussian (red solid line) and sine cardinal (blue dashed line) shapes of the
mode function. In all cases, the pump pulse duration is: T+ = 10 ps.

crystal of length L/2. Finally, after the addition of a tunable delay τ between the

photons, and restricting their spectrum using a Gaussian filter, the normalized mode

function of the generated two-photon state is described by

Φ (νs, νi) =

(
T−T+√

2π

)1/2

exp
[
−T 2

+ (νi + νs)
2
]

exp
[
−T 2

− (νs − νi)
2 /4

]

× exp [iLNp (νs + νi) /2 + iνiτ ] ,

(3.18)

where T− = (Ns −Ni)L/2, with Nj (j = i, s, p) being the inverse group velocities of

the idler, signal and pump photons, respectively. In writing Eq. (3.18), we have made

use of the group velocity matching condition [72]: Np = (Ni +Ns) /2, which ease the

tuning of the frequency correlations between the photons [73].
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Role of entanglement in two-photon virtual-state spectroscopy

The frequency correlation of down-converted photons can be tuned by properly

selecting the values of T+ and T−. Figures 3.1(a)-(c) show the joint probability distri-

bution of the two-photon state: S (νs, νi) = |Φ (νs, νi)|2, which measures the probability

of detecting a signal photon of frequency ω0
s +νs in coincidence with an idler photon of

frequency ω0
i + νi. Notice that frequency anti-correlated photons [Fig. 3.1(a)] are ob-

tained when T+ ≫ T−, whereas for T+ ≪ T− we obtain frequency-correlated photons

[Fig. 3.1(c)]. Interestingly, when T− = 2T+, one can generate a pair of uncorrelated

photons [as depicted in Fig. 3.1(b)]. Figure 3.1(d) (red solid line) shows the depen-

dence of the entropy of entanglement with T− for a fixed value of T+, considering a

mode function of the form given by Eq. (3.18).

We can make use of the state described by Eq. (3.18) to find that the TPA

transition probability for a two-photon state bearing a Gaussian spectral shape is

given by

Pg→f (T−, T+; τ) =
32πω2

0

~2ǫ20c2A2
T+T− exp

[
−2T 2

+ (εg − εf + ωp)2
]

×
∣∣∣∣∣∣

∑

j

D(j)
{
F+

[
η(j)T−; τ

]
exp

[
−iη(j)τ

]
+ F−

[
η(j)T−; τ

]
exp

[
iη(j)τ

]}
∣∣∣∣∣∣

2

,

(3.19)

where η(j) = ∆(j) − iκj/2, with the energy mismatch given by ∆(j) = εj − εg −ω0, and

F (ξ; τ) is the plasma dispersion function [74], which is defined as

F± (ξ; τ) = exp
(
−ξ2

) [
1 − 2i√

π

∫ ξ± iτ
2T

−

0
exp

(
y2
)
dy

]
. (3.20)

We have calculated the TPA transition probability as a function of the delay be-

tween the photons using two-photon states bearing different types of frequency correla-

tions. In particular, we have computed Eq. (3.19) for uncorrelated and anti-correlated

pairs of photons. As previously obtained, in the case of uncorrelated photons, the TPA

signal is constant with the delay τ , so no spectroscopic information about intermediate

energy levels is available.

Surprisingly, when considering anti-correlated photons, the TPA transition proba-

bility is also constant with the delay τ , which means that information about the energy

level structure of the medium cannot be retrieved from the TPA signal either. This

result demonstrates that the use of a source of paired photons with a high degree of

entanglement does not guarantee the successful implementation of two-photon virtual-

state spectroscopy. Therefore, we need to consider another property of the two-photon
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3.4 TPA transition probability with entangled photons

state that is necessary to perform such technique, namely a specific spectral shape of

the frequency correlations.

3.4.2 Two-photon state with a sine cardinal spectral shape

We now consider two-photon states bearing a sine cardinal spectral shape. The impor-

tant feature of such states is that they are naturally harvested in the SPDC process,

unlike states bearing a Gaussian spectral shape, which require a strong filtering of the

pair of photons [75].

As in the previous section, we consider a type-II SPDC process where an additional

nonlinear crystal of length L/2 is used to achieve indistinguishability of the photons.

Then, by introducing a tunable delay τ between the photons, and without restricting

their spectrum, the normalized mode function of the two-photon state can be written

as

Φ (νs, νi) =

(
T−T+

2π
√

2π

)1/2

exp
[
−T 2

+ (νi + νs)
2
]

sinc [T− (νs − νi) /2]

× exp [iLNp (νs + νi) /2 + iνiτ ] .

(3.21)

The entropy of entanglement of the two-photon described by Eq. (3.21) is shown

in Fig. 3.1(d) (blue dashed line). Notice that in this case, due to the presence of the

sine cardinal function, only quasi-uncorrelated photons can be generated in the SPDC

process.

Now, by using Eq. (3.21), we can find that the TPA transition probability for a

two-photon state bearing a sine cardinal spectral shape is given by

Pg→f (T−, T+; τ) =
64πω2

0

~2ǫ20c2A2T−

[√
2T+√
π

exp
[
−2T 2

+ (εg − εf + ωp)
2
]]

×
∣∣∣∣∣∣

∑

j

A(j)
{

2 − exp
[
−iη(j) (T− − τ)

]
− exp

[
−iη(j) (T− + τ)

]}
∣∣∣∣∣∣

2

,

(3.22)

where A(j) = D(j)/η(j).

Figure 3.2 shows the TPA transition probability as a function of the delay be-

tween the pulses. Notice that the TPA transition probability shows a non-monotonic

behavior when considering an anti-correlated two-photon state. This means that spec-

troscopic information is contained within the TPA signal, which might be related to

the energy level structure of the medium.
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Fig. 3.2 Transition probability as a function of the delay τ for anti-correlated photons
(T− = 2 ps). Pump pulse duration: T+ = 10 ps. Y-axis is set to a logarithmic scale.

In order to retrieve the information contained in the TPA signal, we follow Ref.

[46] and perform an average of Eq. (3.22) over a range of values of T− to obtain the

weighted-and-averaged TPA transition probability

P̄ (τ) =
1
T

∫ T max
−

T min
−

Pg→f (T−, T+; τ)T−dT−, (3.23)

where T = Tmax
− − Tmin

− .

To experimentally perform the average in Eq. (3.23), a set of experiments with

different values of T− is needed. The parameter T− can be tuned over a relatively

broad range by means of different methods, depending on the system’s configuration.

For instance, in type-I SPDC (parallel-polarized photons), by changing the width of

the pump beam the value of T− can be modified [76]. Alternatively, in type-II SPDC,

T− is linearly proportional to the crystal length [77], so a proper set of wedge-shaped

nonlinear crystals might be used.

To retrieve the spectroscopic information contained in the TPA signal, we perform

a straightforward Fourier analysis of Eq. (3.23), provided that the condition T ≫
1/
∣∣∣∆(j) − ∆(k)

∣∣∣ is satisfied. This condition needs to be fulfilled in order to eliminate

unwanted terms at intermediate frequencies [46]. Figure 3.3 shows the result of Fourier

transforming the weighted-and-averaged TPA transition probability. We can observe

peaks located at the energy mismatch values: 5.1, 6.98, 7.65, 7.95, and 8.12 eV. Using

these values, and the definition of energy mismatch, we obtain the virtual-state energy

values: −3.40, −1.51, −0.85, −0.54, and −0.37 eV, which can be readily identified
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3.4 TPA transition probability with entangled photons

Fig. 3.3 Fourier transform of the normalized weighted-and-averaged TPA transition
probability as a function of the energy mismatch ∆(j). The delay range is set to
0 ≤ τ ≤ 2 ps, with an integration time of 2 ≤ T− ≤ 10 ps. Y-axis is set to a
logarithmic scale.

with n = 2, 3, 4, 5, 6 corresponding to the 2p, 3p, 4p, 5p, and 6p states, respectively.

It is important to remark that, in obtaining Fig. 3.3, we have computed the average

over T− with a time step δT− = 3 fs. However, one can obtain the same results using

a larger time step (up to 60 fs) in order to reduce (by an order of magnitude) the

amount of experiments that are needed to calculate the weighted-and-averaged TPA

transition probability.

To understand why two-photon virtual-state spectroscopy depends on the quantum

interference of different contributions of intermediate-state transitions with a specific

spectral shape, let us consider a simpler, although ideal, case where a single inter-

mediate quantum state is present [75]. Figure 3.4 shows the two-photon transition

probability as a function of the delay τ for a fixed value of T− and T+, considering the

intermediate states: 3p, 4p and 5p. In the case of a two-photon state bearing a Gaus-

sian mode function [Figs. 3.4(a)-(b)], and uncorrelated photons [Figs. 3.4(e)-(f)], con-

tributions from different intermediate transitions are monotonically dependent on the

delay τ . In contrast, when considering an entangled two-photon state with a sine car-

dinal mode function [Figs. 3.4(c)-(d)], contributions from different intermediate states

exhibit an oscillatory behavior, whose frequency of oscillation corresponds precisely to

the frequency of each transition. Consequently, the coherent summation of these con-

tributions [Eq. (3.22)] leads to non-monotonic variations in the TPA signal [Fig. 3.2]

that carry information about the frequency of all intermediate-state transitions. This

information can later be extracted by Fourier transforming the weighted-and-averaged
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Fig. 3.4 Joint spectrum and single-intermediate level TPA transition probability as
a function of the delay τ for (a,b) Gaussian mode function, (c,d) sine cardinal mode
function and (e,f) uncorrelated photons. Intermediate levels correspond to: 3p (blue
solid line), 4p (orange dashed line) and 5p (green dotted line). Pump pulse duration
is set to T+ = 10 ps, and T− = 2 ps.

36



3.4 TPA transition probability with entangled photons

TPA signal [Eq. 3.23].

The physical reason why pairs of photons with a similar degree of entanglement,

but different spectral shape, give rise to different results comes from the fact that TPA

transition probabilities can be significantly affected by the shape of the two-photon

mode function, as pointed out, for instance, in Ref. [75]. By increasing the time

difference between the absorbed photons, i.e. increasing T− or τ , one would expect

a monotonic decay of the TPA signal, which is precisely what is observed with a

Gaussian spectral shape. Interestingly, the situation changes when one considers a

sine cardinal spectral shape of the photons. In this case, one can find values of T−

and τ where the TPA is no longer observed, a phenomenon dubbed entanglement-

induced two-photon transparency [45]. In two-photon virtual-state spectroscopy, we

benefit from this behavior to extract information about the energy level structure of

the medium under study.

It is important to remark that the specific value of the pump duration T+ does

not modify the presented results, since it does not affect the way in which the con-

tribution from different intermediate states interfere [Eq. (3.22)]. Moreover, we high-

light the fact that the information depicted in Fig. 3.4 can also be obtained when

quasi-uncorrelated photons are used, meaning that virtual-state spectroscopy can be

performed even with a low degree of entanglement between the pair of photons. This

low degree of entanglement, however, results in a lower TPA transition probability

[see Eq. (3.22)], which might result in a low signal-to-noise ratio of an experimen-

tally measured TPA signal. These results clearly describe the role of entanglement

between photons, and their corresponding spectral shape, in two-photon virtual-state

spectroscopy. While a proper spectral shape of the photons guarantees the successful

realization of the technique, the degree of entanglement is used to control the strength

of the TPA signal that is measured.

Conclusions

In this chapter, we have demonstrated that virtual-state spectroscopy cannot be per-

formed with two uncorrelated rectangular-shaped classical pulses, which contradicts

what was suggested in Ref. [71]. In addition, we have shown that the TPA transition

probability of non-entangled frequency-correlated two-photon states shows a constant

dependence on the temporal delay of the photons, meaning that they cannot be used

in the implementation of virtual-state spectroscopy either. From these results, we
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Role of entanglement in two-photon virtual-state spectroscopy

have concluded that one has to make use of two-photon states bearing non-classical

frequency correlations in order to extract information about the energy level structure

of an arbitrary medium. Interestingly, we have found that more important than the

degree of entanglement between the photons, it is the specific spectral shape of their

correlations what allows one to perform the two-photon virtual-state spectroscopy

technique. We have demonstrated that while entangled states with a Gaussian spec-

tral shape, and high degree of entanglement, cannot be used to perform virtual-state

spectroscopy, surprisingly, entangled two-photon states bearing a sine cardinal spectral

shape, and a very low degree of entanglement, can be used instead.

Finally, the results obtained in this chapter help to clearly identify the types of

two-photon sources that can be used to experimentally implement virtual-state spec-

troscopy. By clarifying the role of entanglement in this technique, we have found

that even paired photons carrying a low degree of entanglement, but with a proper

spectral shape, can guarantee the successful retrieval of the energy level structure of

the medium under study. This implies that entanglement, by itself, is not the key

ingredient to experimentally perform two-photon virtual state spectroscopy.
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Chapter 4
Highly efficient environment-assisted

energy transport in classical oscillator

systems

Because of their fundamental role in life, molecular mechanisms of energy transport

in photosynthetic systems have been a subject of study for decades [78–81]. Recently,

a renewed interest on this topic has arisen [82–84] thanks to the experimental ob-

servation of long-lived electronic coherences in bacterial light-harvesting complexes

[85–88]. In view of these findings, several theoretical studies have been developed in

order to describe, in a quantum scenario, how coherence effects could be playing an

important role in the remarkably high efficiency of energy transport in photosynthetic

systems [89–95]. This is specially notable since biological systems are, by definition,

warm, wet and noisy systems subjected to environmental fluctuations, where quantum

phenomena are unlikely to be observed.

In particular, it has been suggested that high efficiency transport arises as a re-

sult of the dynamical interplay between the “quantum” coherent evolution of the

photosynthetic system and dephasing noise introduced by its surrounding environ-

ment, a phenomenon dubbed environment-assisted quantum transport (ENAQT) [96]

or dephasing-assisted energy transport [97]. In coherent systems, disorder can cause lo-

calization and thus inhibit transfer [98]. In those cases, as stated in Ref. [99], ENAQT

can be understood as the suppression of coherent quantum localization mediated by

noise, which helps the excitation to move faster through the disordered photosynthetic
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oscillator systems

complex, thus increasing the efficiency of energy transport. In this context, ENAQT

might be seen as a phenomenon that exists only in a regime where the quantum and

classical worlds overlap [84].

However, in this chapter, we make use of the quantum-classical correspondence of

electronic energy transfer presented in Ref. [100], to show that environment-assisted

energy transport can also be found in a purely classical model, without the need

to resort to quantum effects. The wider scope of applicability of the enhancement

of energy transfer assisted by noise thus paves the way to the development of new

technologies aimed at enhancing the efficiency of a myriad of energy transfer systems,

from information channels in microelectronic circuits to long-distance high-voltage

electrical lines.

This chapter is organized as follows. Section 4.1 describes the quantum model,

which is represented by a system of N interacting sites, where its interaction with

a surrounding environment is modeled by a pure dephasing process. We adopt this

model, because it has been previously used for describing noise-assisted energy trans-

fer processes in photosynthetic systems [96, 97, 99]. Section 4.2 presents the classical

model of Refs. [100, 101], which corresponds to a system of N weakly-coupled har-

monic classical oscillators. In this case, environmental effects are introduced by as-

suming that the frequency of each oscillator varies stochastically as a Gaussian Markov

process. Finally, in section 4.3, we solve both cases using as model system a single

unit of the Fenna-Matthews-Olson (FMO) complex of Prosthecochloris aestuarii to

show that the same environment-assisted energy transport effect can be found in both

classical and quantum models.

4.1 Quantum model

The dynamics of a single excitation in a network of N interacting sites is given by the

tight-binding Hamiltonian [102]

HS =
N∑

n=1

ǫn |n〉 〈n| +
N∑

n 6=m

Vnm |n〉 〈m| , (4.1)

where |n〉 denotes the excitation being at site n. The nth-site energies and the coupling

between sites n and m are described by ǫn and Vnm, respectively.

To describe the dynamics of the system interacting with its surrounding environ-

ment, we make use of a simple Markovian model described by the Lindblad master
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equation [103]
∂ρnm

∂t
= − i

~
[HS, ρ]nm + Ldeph [ρ]nm +D [ρ]nm , (4.2)

where the interaction of the system with the environment is characterized by a pure

dephasing process given by the Lindblad operator

Ldeph [ρ]nm = − [1/2 (γn + γm) − √
γnγmδnm] ρnm, (4.3)

with γn being the dephasing rates. Even though the pure dephasing process described

by Eq. (4.3) is not able to capture important aspects of electronic energy transfer, such

as phonon relaxation [104], it provides a useful description of environmental effects in

a simple way.

To quantify the transfer of energy from a chosen site k to the reaction center,

we have phenomenologically introduced an irreversible decay process (with rate Γ)

described by the operator [105]

D [ρ]nm = −Γ {|k〉 〈k| , ρ}nm , (4.4)

where {·, ·} stands for the anticommutator.

By making use of Eq. (4.2), one can define a measure for the efficiency of energy

transport as the population transferred to the reaction center, within a time t, as

Qeff = 2Γ
∫ t

0
〈k| ρ (s) |k〉 ds. (4.5)

Equations (4.2) and (4.5) constitute the quantum equations, which have to be com-

pared with the equations that will be obtained in the classical model.

4.2 Classical model

For the classical model, we now consider an ensemble of N weakly-coupled harmonic

oscillators, each with mass M and frequency ωn. In this case, the evolution of the

system is described by the classical Hamiltonian

HS =
∑

n

(
p2

n

2M
+
Mω2

n

2
q2

n

)
+

1
2

∑

n 6=m

Knmqnqm, (4.6)
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where qn and pn are the position and momentum of the oscillators, respectively, and

Knm stands for the coupling coefficient between the oscillators. By defining a new

dimensionless complex amplitude [106]

z̃n (t) ≡ q̃n (t) + ip̃n (t) , (4.7)

with

q̃n = (Mωn/2~)1/2qn ; p̃n = (2~Mωn)−1/2pn, (4.8)

the Hamilton equations of motion of the system can be cast into a single equation

given by
∂z̃n

∂t
= −iωnz̃n − i

∑

m

K̃nmRe {z̃m} , (4.9)

where Re {...} stands for the real part of a complex number, and

K̃nm = Knm/(M
√
ωnωm). (4.10)

To include environmental effects on the system, we proceed in the same manner

as in the construction of a Kubo oscillator [107, 108]. We assume that the frequency

of each oscillator varies randomly, so it can be described by

ωn (t) = ωn + φn (t) , (4.11)

where ωn is now the average frequency of the nth oscillator and φn (t) describes a

Gaussian Markov process satisfying the conditions

〈φn (t)〉 = 0 (4.12)

〈φn (t)φm (t′)〉 = γnδnmδ (t− t′) , (4.13)

where δnm is the Kronecker delta, δ (t− t′) is the Dirac delta function, and 〈· · ·〉
represents a stochastic average.

In Ref. [100], Eisfeld and Briggs demonstrated that one can transform Eq. (4.9),

within the framework of Itô calculus [109], into a classical master equation that de-

scribes the temporal dynamics of a system of coupled harmonic oscillators subjected

to environmental noise. However, to describe the transfer excitation from the kth os-

cillator to the reaction center, we extend this result and introduce an irreversible decay

process (with rate Γ), described by D [σ]nm = −Γ {|k〉 〈k| , σ}nm, where σnm = 〈z̃nz̃
∗
m〉.
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In this way, we can write the classical master equation as

∂σnm

∂t
= H [σ]nm + L [σ]nm + D [σ]nm +

i

~

∑

j

(
Vmj 〈z̃j z̃n〉 − Vnj

〈
z̃∗

j z̃
∗
m

〉)
, (4.14)

with Vnm = K̃nm~/2, and

H [σ]nm = −i (ωn − ωm) σnm − i

~

∑

j

(Vnjσjm − Vjmσnj) , (4.15)

L [σ]nm = −
[1
2

(γn + γm) − √
γnγmδnm

]
σnm. (4.16)

Using the model described by Eq. (4.14), the energy transfer efficiency within the

ensemble of oscillators is then given by

Ceff = 2Γ
∫ t

0
σ̄kk (s) ds, (4.17)

where σ̄ (t) = σ (t) /
∑

n σnn is the normalized classical density operator.

Equations (4.14) and (4.17) represent the classical equations, whose results have to

be compared with their quantum-mechanical counterpart, equations (4.2) and (4.5).

Notice that due to the complexity of the set of quantum and classical equations, they

need to be solved numerically. In particular, the computation of the classical model

represents a major challenge because of the stochastic nature of Eq. (4.14). Appendix

B describes the method used for solving this particular case.

4.3 Results: quantum vs classical

In the calculations that follow, we have used as model system a single unit of the Fenna-

Matthews-Olson (FMO) complex of P. aestuarii [110]. The FMO is a pigment-protein

complex that funnels energy from the light-harvesting chlorosomes to the reaction

center in green sulfur bacteria [Fig. 4.1(a)] [111, 112]. It is a trimer of three identical

subunits that interact weakly with each other. Each of these subunits is composed

by seven bacteriochlorophyll-a (BChla) molecules supported by a protein scaffold as

shown in Fig. 4.1(b). The FMO complex is generally modeled by a network of

seven different sites, where the dynamics of a single excitation through the complex is

governed by the specific values of the site energies (ǫn) and the coupling coefficients

(Vnm). In particular, we can use the site energies and couplings given by Adolphs and

Renger in Tables 2 and 4 of Ref. [110], to write the Hamiltonian (4.1) in its matrix
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Fig. 4.1 (a) Diagram of the photosynthetic apparatus of green sulphur bacteria, in-
cluding its antenna, the Fenna-Matthews-Olson (FMO) complex, and the reaction
center. (b) Arrangement of the bacteriochlorophyll molecules of a single unit of the
FMO complex. The figure of the FMO complex was drawn using PyMOL [19] and it
is based on the Protein Data Bank entry 3ENI.

form (in units of cm−1) as

HS =




12445 −104.1 5.1 −4.3 4.7 −15.1 −7.8

−104.1 12450 32.6 7.1 5.4 8.3 0.8

5.1 32.6 12230 −46.8 1.0 −8.1 5.1

−4.3 7.1 −46.8 12355 −70.7 −14.7 −61.5

4.7 5.4 1.0 −70.7 12680 89.7 −2.5

−15.1 8.3 −8.1 −14.7 89.7 12560 32.7

−7.8 0.8 5.1 −61.5 −2.5 32.7 12510




. (4.18)

In our simulations, we take the initial state of the system as a single excitation

being in the site 1. In FMO, BChl 3 is believed to be closest to the reaction center

[110], so we set k = 3. We follow previous authors in estimating Γ = 1 ps−1 [97, 113].

Furthermore, for the pure dephasing process, we consider that dephasing rates are the

same for all sites (γn = γ) and that the efficiency of energy transfer is limited by the
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Fig. 4.2 Energy transfer efficiency in FMO as a function of the dephasing rate γ
obtained from the quantum (green solid line) and the classical (pink dashed line)
models.

finite excitation lifetime (t ∼ 1 ns).

Figure 4.2 (green solid line) shows the efficiency of energy transfer as a function of

the dephasing rate γ obtained by solving the quantum equations (4.2) and (4.5). We

observe that at low dephasing, coherent evolution of the system leads to an efficiency of

about 90%. However, when increasing the dephasing rate, efficiency grows to almost

100%, showing that environmental noise affects the system in such a way that the

excitation reaches faster the trapping site, thus increasing the amount of energy that

is transferred to the reaction center. Finally, for stronger dephasing, efficiency drops

rapidly and almost no energy is transferred to the reaction. The effect described

above corresponds to the so-called environment-assisted energy transport, which is

an important phenomenon that might play a crucial role in the future design of new

light-harvesting technologies.

Similar results can be obtained by using the classical model described by Eqs.

(4.14) and (4.17). Figure 4.2 (pink dashed line) shows the efficiency of energy transfer

as a function of the dephasing. We can observe that the same noise-assisted effect

appears also in the purely classical model. Notice that both solutions agree for de-

phasing rates up to 103 ps−1. However, for larger values of dephasing the quantum and

classical solutions differ from each other. This in agreement with Ref. [100], where

it has been shown that both models exhibit the same dynamics, provided that the

condition γ ≪ ωn is satisfied.
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oscillator systems

Conclusions

Until recent years, noise-assisted energy transport in photosynthetic systems was un-

derstood as the suppression of coherent “quantum” localization through noise [96, 99].

However, as we have found, the same effect can also be observed in purely classical

systems. This implies that one can make use of such systems in order to simulate the

intricate energy transfer mechanisms that take place in molecular aggregates, such as

the FMO complex.

Recently, it was suggested that classical LC oscillators (where L stands for induc-

tance and C for capacitance) can be used to model coupled quantum two-level systems

[114]. Therefore, one could think of an experimental apparatus comprising eight elec-

trical oscillators with the eighth acting as an energy sink, i.e., the reaction center.

Then, by stochastically modulating the frequencies ωn, and properly controlling the

noise intensity γn, one would be able, in principle, to observe the noise-assisted energy

transport effect by monitoring the signal in the eighth oscillator. These classical sim-

ulations could be further used to compare with recent experimental proposals based

on quantum-mechanical systems such as superconducting qubits [115], and coupled

quantum-optical cavities [116].

The concept of noise-assisted transport has been extensively used for describing the

inner working of quantum and classical systems [117]. Along these lines, the classical

version of energy transfer assisted by noise opens a new research direction towards

the development of new methods for enhancing the efficiency of a myriad of energy

transport systems, such as small-scale information and energy transfer systems in mi-

crowave and photonic circuits, and long-distance high-voltage electrical lines. In this

way, the work presented in this chapter demonstrates that a specific effect initially con-

ceived in a quantum scenario is possible to be mimicked in a purely classical context,

widening thus the scope of possible quantum-inspired light-harvesting technologies,

such as highly efficient organic (and inorganic) solar cells.
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Chapter 5
Generation of a tunable environment

for electrical oscillator systems

Motivated by the results presented in the previous chapter, we now present an im-

portant step towards the simulation of photosynthetic energy transport in classical

systems, namely the generation of a tunable environment for classical electrical oscil-

lators.

The damped random-frequency harmonic oscillator is, without any doubt, a fun-

damental tool in statistical physics that has been extensively used to describe various

physical systems in different research fields [118]. Amongst the many applications of

this model, one can find that it has been successfully used, for instance, in the descrip-

tion of the statistical properties of dye lasers [119], the propagation of electromagnetic

waves in random media [120], the population dynamics of living organisms [121], and

the distribution of stock market price changes in economics [122].

As we argued in the previous chapter, networks of interacting noisy classical os-

cillators can feature certain physical process originally described in the study of open

quantum systems, in particular the noise-assisted energy transport effect [123]. Based

on these findings, one could think of reproducing the noise-assisted phenomenon by

means of classical electrical systems. The use of such systems may result in experimen-

tal setups whose implementation could be easier than the recently proposed schemes

based on superconducting qubits [115], and coupled quantum-optical cavities [116].

Even though the simulation of the coherent (noise-free) evolution of electrical oscilla-

tor systems is straightforward [114], the way to experimentally introduce, and control,
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dephasing effects due to a surrounding environment remains a subject of lively interest.

In this chapter, we present an experimental setup that realizes as a tunable environ-

ment for classical electrical oscillators. We illustrate the operation of our experimental

scheme by implementing the case of a damped random-frequency harmonic oscillator.

The tunability of the system is then demonstrated by gradually modifying the statis-

tics of frequency fluctuations, which is done by properly controlling the mean and

variance of the oscillator’s frequency distribution.

The proposed setup is particularly relevant, because it directly introduces fluctu-

ations in the frequency of the oscillator, which contrasts with previous experimental

studies of electrical oscillators subjected to noise, where fluctuations in the amplitude,

rather than frequency, are introduced in the system [124]. Furthermore, because of its

high degree of control and tunability, this system can readily be used to design vari-

ous types of noise bearing different frequency probability distributions, which makes

it an important tool for experimentally studying the effect of multiplicative and addi-

tive noise on instabilities of harmonic oscillators [124, 125], and for investigating the

so-called noise-assisted energy transport in coupled oscillator networks.

This chapter is organized as follows. Section 5.1 provides the theoretical framework

of the noisy harmonic oscillator model. Section 5.2 describes the proposed setup and

section 5.3 presents the results of the experimental implementation of our scheme,

where comparison with theoretical predictions is provided.

5.1 The model

The temporal evolution of a damped harmonic oscillator with a randomly fluctuating

frequency is fully characterized by the equation

d2x

dt2
+ Γ

dx

dt
+ ω2

0 [1 + φ (t)]x = 0, (5.1)

where Γ is the damping coefficient, ω0 is the average frequency of the oscillator and

φ (t) describes a stochastic Gaussian process with zero average 〈φ (t)〉 = 0, and a

specific autocorrelation function defined by 〈φ (t)φ (t′)〉 = κ (t− t′), where the function

κ (t− t′) defines the type of noise that influences the dynamics of the oscillator. For

instance, when modeling ideal white noise, the autocorrelation function is defined

as 〈φ (t)φ (t′)〉 = 2Dδ (t− t′), where D denotes the intensity of the noise. Another,

more realistic example, is the colored noise, whose autocorrelation function writes
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〈φ (t)φ (t′)〉 = (D/τc) exp (− |t− t′| /τc), with τc being the correlation time of the

stochastic process [126].

Using the cumulant expansion described by Van Kampen [127], one can show that

the equation for the average amplitude of the oscillator 〈x〉 has the form (see Appendix

C for details)

d2 〈x〉
dt2

+

(
Γ +

ω4
0

2ν2
c2

)
d 〈x〉
dt

+ ω2
0

[
1 − ω2

0

2ν

(
c1 − Γ

2ν
c2

)]
〈x〉 = 0, (5.2)

where ν = (ω2
0 − Γ2/4)1/2, and the coefficients c1 and c2 are given by

c1 =
∫ ∞

0
〈φ (t)φ (t− ξ)〉 sin (2ω0ξ) dξ, (5.3)

c2 =
∫ ∞

0
〈φ (t)φ (t− ξ)〉 [1 − cos (2ω0ξ)] dξ. (5.4)

Notice from Eq. (5.2) that the existence of frequency fluctuations in Eq. (5.1)

introduces a noise-induced additional damping and a noise-induced frequency shift

to the average signal of the oscillator. In what follows, we will use the frequency

shift predicted by Eq. (5.2) in order to compare our experimental results with the

theoretical model described by Eq. (5.1).

5.2 Experimental setup

The experimental scheme that allows us to introduce random frequency fluctuations

into a harmonic oscillator model is described as follows. We first note that one can

construct a system whose temporal dynamics corresponds to Eq. (5.1) by making

use of electrical RLC oscillators (where R stands for resistance, L for inductance and

C for capacitance). In these systems, the charge in the capacitor satisfies the same

equation as Eq. (5.1), where the coefficients Γ and ω0 are defined by [124]

Γ = R/L, (5.5)

ω0 = (LC0)−1/2 , (5.6)

with C0 denoting the average capacitance of the circuit. From Eq. (5.6) one can

see that fluctuations in the frequency of the RLC oscillator can be introduced by
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Fig. 5.1 Scheme of the damped random-frequency electrical oscillator consisting of a
RLC circuit with central capacitance C, inductance L and a parasitic resistance R.
Frequency fluctuations are introduced by switching on and off individual capacitors Ca

by means of analog switches S, which are driven by the arbitrary function generator.

randomly switching the values of the capacitance.1

Random switching of capacitance is performed by connecting in parallel an ar-

ray of eight capacitors, each with equal capacitance Ca, to a central capacitor C of

the RLC circuit. To produce uncorrelated random switching, the individual capaci-

tors are independently turned on/off by means of analog switches (NXP-74HC4066N

quad bilateral switch), which are driven by independent digital signals provided by

an arbitrary function generator (Signadyne digital I/O module SD-PXE-DIO-H0001),

as depicted in Fig. 1. Since we are interested in simulating a Gaussian stochastic

process, we program the arbitrary function generator so each capacitor has the same

probability to be on or off. In this situation, one can show that the probability that

n capacitors in the array are on satisfies a binomial distribution given by

P (n) =

(
8
n

)
1
28
, (5.7)

where n = {0, 1, 2, ..., 8}. This distribution is defined by a mean value 〈n〉 = 4 and

a variance σ2
b = 2. Note that the binomial distribution described in Eq. (5.7) is

1For the sake of simplicity, we have selected a random switching of the capacitance. However, one
can always choose to randomly change the values of the inductance. By doing this, one adds more
complexity to the system since the damping coefficient would randomly fluctuate as well.
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Fig. 5.2 The probability that n capacitors in the array are on follows a binomial
distribution, which corresponds to a discretized Gaussian distribution with the same
average and variance.

a discrete version of a Gaussian distribution with the same mean and variance, as

depicted in Fig. 5.2. Notice from [Eq. (5.6)], that there exists a nonlinear relation

between frequency and capacitance, which implies that the probability distribution of

the frequency would correspond to a Gaussian distribution only in the cases where the

condition Ca ≪ C is satisfied [128].

5.3 Implementation and Results

To illustrate the working of the proposed scheme, we construct a RLC circuit where

the central capacitance C is provided by a 1 nF ceramic capacitor, the inductance

L is introduced by a 1.5 mH ferrite core inductor, and resistance R represents the

parasitic losses within the system. For the random switching of capacitance, we have

designed several arrays using different ceramic capacitors with capacitance value Ca =

{4.7, 10, 18, 33, 47, 68, 100} pF. Note from Fig. ?? that by changing the values of Ca,

we can modify the variance of the Gaussian frequency distribution, which in turn

modifies the statistics of the noise in the system [126].

Because the frequency fluctuations need to be faster than the characteristic time

evolution of the system, the digital signals from the arbitrary function generator are

set to a time rate τ = 650 ns, which is a longer time-duration than the response time

of the analog switches (400 ns), and much shorter than the temporal evolution window

(t = 100 µs) considered for the measurement of the signal.
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Fig. 5.3 (a) Signal frequency histograms using different capacitor arrays. From left
to right: Ca = 100, 68, 47, 33, 18, 10, 4.7 pF. Dotted line: Experimental data, Solid
line: Gaussian fitting. (b) Frequency shift as a function of the standard deviation σs.
Dotted line: Experiment, Solid line: Theory.

Using the system described above, we have performed the simulation of Eq. (5.1).

For this, we have kept the capacitor C fixed and measured the average signal of the

oscillator connected to different capacitor arrays. Figure 5.3(a) shows the histograms of

the measured frequency in each case. Histograms were obtained from 50000 different

realizations and they are normalized to the maximum number of events, where we

define number of events as the number of realizations that have the same value of

frequency. Notice that in all cases the probability distribution of the frequency follows

a Gaussian distribution whose variance σ2
s depends on the value of Ca used in each

capacitor array. These results demonstrate that the proposed setup allows one to
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Fig. 5.4 Frequency histograms for different capacitor arrays centered in the same mean
frequency f0 ≃ 123 kHz. Dotted line: Experimental data, Solid line: Gaussian fitting.
Parameters of the system used in each case are summarized in Table 5.1.

control the statistics of the noise that is introduced in the system, which is important

when simulating the dynamics of open systems [96, 97, 100, 123].

To compare the results presented in Fig. 5.3(a) with the theoretical model, we

have measured the frequency shift that arises out of the frequency fluctuations in Eq.

(5.2). Figure 5.3(b) shows the frequency shift for each capacitor array. We have made

use of Eq. (5.2), and the relation D = σ2τ [126], to find that the driving noise of our

system can be described by a colored-noise-like autocorrelation function of the form

〈φ (t)φ (t′)〉 =
σ2

ω2
0

exp

(
−|t− t′|

τ

)
, (5.8)

where the mean value of the frequency is obtained by setting C0 = C + 4Ca, and

the variance of the driving noise is σ2 = (ησs)
2, with η = 3.4. This relation between

both variances can be understood as a consequence of the damping term in Eq. (5.1).

The same effect can be found, for instance, in the Ornstein-Uhlenbeck process, where

the resulting variance is proportional to the variance of the driving noise due to the

presence of a damping term [127].

In general, when simulating open systems, one is interested in maintaining the

mean frequency of each oscillator while increasing the strength of the noise [96, 97,

123]. This can be achieved in our system by properly controlling the values of the

central capacitance C and the time duration τ of the digital signals. Figure 5.4

shows the frequency histograms measured with different capacitor arrays. Notice

that by carefully selecting the parameters of the system, we are able to center all
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Ca (pF) 4.7 10 18 33 47 68 100

C (nF) 1.120 1.090 1.053 0.978 0.933 0.840 0.355

τ (ns) 650 650 750 780 800 720 650

Table 5.1 Experimental parameters used to obtain the histograms shown in Fig. 5.4

the probability distributions in the same mean value of the frequency f0 ≃ 123 kHz.

Parameters of the system used in each case are summarized in Table 5.1. The results

shown in Figs. 5.3 and 5.4 demonstrate the flexibility of our system when modifying

the statistical properties of the environmental noise that interacts with the oscillator.

Conclusions

In this chapter, we have presented a system that performs as a tunable environment for

classical electrical oscillators. We have illustrated its operation by simulating the case

of a damped random-frequency harmonic oscillator, where perfect agreement with the

theoretical model was obtained. Furthermore, we have demonstrated the high degree

of control and tunability that our system can provide by gradually modifying the

variance of the frequency fluctuations, while at the same time maintaining a fixed

central frequency of oscillation, which is of great importance when simulating energy

transfer mechanisms.

The high degree of tunability and control of the system may also allow us to design

various types of noise with different probability distributions, which could be used in

the study of instabilities of harmonic oscillators. Moreover, it might allow us to study

the transition from Markovian to non-Markovian dynamics of open systems.

Finally, the results presented in this chapter represent an important step towards

the simulation of photosynthetic energy transport in classical systems. These clas-

sical simulations could be used to compare with experimental proposals based on

quantum-mechanical systems, to finally unveil which phenomena exclusively belong

to the quantum world and which could be reproduced by purely classical models.
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Chapter 6
Role of excitation and trapping

conditions in photosynthetic energy

transport

As we mentioned in previous chapters, since its first description in 2009, environment-

assisted quantum transport (ENAQT) has been shown to be an important effect that

occurs in a wide variety of quantum [96, 97, 99, 129–132] and classical [123] transport

systems. Most importantly, it has been considered as the key process that enables the

highly efficient energy transport of photosynthetic light-harvesting complexes [83, 84].

However, ENAQT has usually been investigated under assumptions that have been

challenged since. In particular, in most models, it has been assumed that the system

starts out with only one pigment molecule initially excited and that only one pigment

molecule (the “trap”) is responsible for the ultimate exciton transfer to the reaction

center (RC). These assumptions are now known to be physically inaccurate: unless

the system is so disordered that each eigenstate is effectively localized on one site,

both the initial state and the trap will be at least partially delocalized.

In this chapter, we examine ENAQT in situations where both the excitation and

the trapping are treated in more physically realistic ways. The most important result

that we show is that the description of the coupling to the RC significantly influences

the magnitude and, consequently, the importance of the predicted ENAQT. If the

trap is localized at a particular site, as it has been assumed in previous works, we

show that ENAQT persists under almost all excitation conditions, including excitation
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transport

by incoherent light (as predicted in Ref. [95]) as well as excitation transfer from

an antenna complex. Notwithstanding, ENAQT is either absent or negligible if the

coupling to the RC is treated as Förster transfer (as we argue it should be), meaning

that it is unlikely to be important for influencing the biological function of natural

light-harvesting complexes.

This chapter is organized as follows. Section 6.1 presents the general theoretical

model that allows us to explore ENAQT under different excitation and trapping con-

ditions. Section 6.2 shows the results of the calculations for each particular excitation

and trapping condition and, in Section 6.3, we discuss the obtained results and explain,

in physical terms, why they call into question the suggestion that natural selection

has optimized the interplay between quantum dynamics and noise in order to achieve

a highly efficient photosynthetic energy transport.

6.1 The model

Even though in chapter 4 we have already presented part of the theory of excitonic

transport in photosynthetic systems, for completeness and easy reading of this chapter,

we will describe the exciton dynamics model from the very beginning.

Let us consider the dynamics of excitons in a network of N chromophores (or

sites). Under usual weak illumination, it is rare to find more than one exciton in a

single complex. Therefore, we restrict ourselves to the single-exciton manifold, with

state |n〉 indicating that the exciton is on site n. The system is then described by the

tight-binding Hamiltonian [102]

HS =
N∑

n=1

ǫn |n〉 〈n| +
N∑

n 6=m

Vnm |n〉 〈m| , (6.1)

where ǫn are the excitation energies of the molecules and Vnm the intermolecular

couplings. We will denote the eigenstates of HS as |en〉, with energies En,

HS |en〉 = En |en〉 . (6.2)

Also, we will refer to the state where no excitons are present as |0〉 and the state where

the exciton has been transferred to the reaction center as |RC〉. Neither |0〉 nor |RC〉
are coupled to the states |n〉 through HS.

The dynamics of a photosynthetic system interacting with its environment is in
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general complicated and non-Markovian [102]. However, because this work is about

qualitative features of ENAQT, we will use a Markovian model that, although sim-

plistic, captures the essential physics, which is why it has been used in previous works

[96, 97, 129]. We assume that the system-environment interaction can be modeled

using a Lindblad master equation, according to which the density matrix ρ of the

system obeys [103]

∂ρ

∂t
= − i

~
[Hs, ρ] + Ldeph [ρ] + Ldiss [ρ] + LRC [ρ] , (6.3)

where the various non-unitary contributions are denoted L. In particular,

Ldeph[ρ] =
N∑

n=1

2γn

(
|n〉 〈n| ρ |n〉 〈n| − 1

2
{|n〉 〈n| , ρ}

)
, (6.4)

where {·, ·} is the anticommutator, describes a pure dephasing process that destroys

the phase coherence between different sites at a site-dependent dephasing rate γn. This

dephasing can be thought of as being caused by environment-induced fluctuations in

the site energies [102]. Notice that this interpretation of dephasing was used in chapter

4 in order to develop the classical model of the dynamics of photosynthetic systems

influenced by noise. The important aspect of Eq. (6.4) is that it acts on the site

basis, a feature it shares with most models of chromophore noise, even those that are

non-Markovian or at relatively low temperatures.

The remaining two terms in Eq. (6.3) describe two mechanisms by which the

excitation can be lost during its motion throughout the photosynthetic complex. For

the first term, we assume that the exciton can recombine at each site, transferring the

excitation to the ground state |0〉 at a rate Γn

Ldiss[ρ] =
N∑

n=1

2Γn

(
|0〉 〈n| ρ |n〉 〈0| − 1

2
{|n〉 〈n| , ρ}

)
. (6.5)

The second term, LRC[ρ], describes the unidirectional transfer of excitations to the

RC. Because it also causes exciton disappearance from the |n〉-manifold, it will have a

form analogous to Eq. (6.5). In what follows, we discuss its precise form, depending

on the trapping conditions. In any case, the exciton will eventually either dissipate

or be transferred to the RC, which motivates the definition of the efficiency η as the
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probability that the energy will arrive at the RC rather than being dissipated

η = lim
t→∞

〈RC| ρ(t) |RC〉 . (6.6)

The work presented in this chapter is about the value of η in different illumination

and trapping conditions.

6.1.1 Transfer to the RC

In this chapter, the important message that we want to convey is that η is highly sen-

sitive to how we describe the exciton transfer LRC[ρ] from the photosynthetic complex

to the RC. The usual approach has been to use

LRC[ρ] = Llocal
RC [ρ] = 2ΓRC

(
|RC〉 〈k| ρ |k〉 〈RC| − 1

2
{|k〉 〈k| , ρ}

)
, (6.7)

where it is assumed that only one site, denoted k, transfer excitation to the RC

(hence the superscript “local”). As we argued in chapter 4, Eq. (6.7) is based on the

assumption that a particular site is closest to the RC and, consequently, that it will

be the only one coupled to the RC. In that case, the efficiency can also be written as

in Eq. (4.5), i.e.,

η = 2ΓRC

∫ t

0
〈k| ρ (s) |k〉 ds. (6.8)

However, the localized transfer model does not correctly describe the physics of

exciton transfer between a photosynthetic complex and a reaction center, which are

weakly coupled. Exciton transfer between weakly coupled complexes is an incoherent

process and proceeds via Förster resonant energy transfer (FRET) [102] at a rate given

by Fermi’s golden rule,

κ =
2π
~

∑

Di,Ai

∑

Df ,Af

gD(Di)gA(Ai) |〈DiAi|J |DfAf〉|2 δ(EDi
+ EAi

−EDf
−EAf

), (6.9)

where the sums are over the eigenstates Di and Ai of the (excited) donor and the (de-

excited) acceptor and Df and Af of the (de-excited) donor and the (excited) acceptor.

The initial populations of the donor and acceptor states are gD and gA, respectively,

and the coupling 〈DiAi|J |DfAf〉 is the matrix element of the complete donor-acceptor

Coulomb interaction J .

As emphasized above, FRET is a transfer process between populations of the donor
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and acceptor eigenstates, not sites. In this situation, if the coupling J only involves

site k in the donor, as it is reasonable to suppose, it should be decomposed into

eigenstate components, each of which contributes to an independent incoherent rate.

In the present case, this means replacing Llocal
RC with

LFRET
RC [ρ] = 2ΓRC

N∑

n=1

|〈en|k〉|2
(

|RC〉 〈en| ρ |en〉 〈RC| − 1
2

{|en〉 〈en| , ρ}
)
. (6.10)

The efficiency can still be calculated using Eq. (6.6), or, alternatively, Eq. (6.8) can

be modified to

η = 2ΓRC

∫ t

0

N∑

n=1

|〈en|k〉|2 〈en| ρ (s) |en〉 ds. (6.11)

In the following, we will show results of calculations using both Llocal
RC and LFRET

RC

in order to relate this work to previous studies and to highlight the importance of

correctly modeling the system-RC coupling.

6.1.2 Initial excitation

In the same manner as in the case of energy transfer to the RC, the particular choice

of an initial state for Eq. (6.3) involves certain concerns. Most importantly, it should

be stressed that the excitation of photosynthetic complexes is not impulsive, except

perhaps in ultrafast experiments. Rather, excitation occurs through a steady state

[95, 133–135], where an external energy source, whether light or an antenna complex,

continuously pumps the systems and where the excitation energy is continuously lost

to either the environment or the RC.

In a steady-state context, the natural definition of efficiency is the ratio of exciton

(or energy) flux to the RC to the incoming flux that pumps the system. Consequently,

Eqs. (6.6), (6.8), and (6.11) may seem inappropriate. However, Jesenko and Žnidarič

have shown that the efficiency of a steady-state process is equal to the efficiency of

the corresponding impulsive case [136]. This implies that we can still use Eqs. (6.8)

and (6.11) to evaluate the efficiency of energy transport and, at the same time, relate

our results to the existing body of work.

We will consider three excitation regimes: localized excitation, excitation by trans-

fer from an antenna complex, and photoexcitation.
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Localized initial excitation

The simplest model of initial excitation is localized excitation of a single site, which

has been considered in numerous studies of excitonic energy transport and ENAQT

[90, 94, 96, 97, 99, 129, 131, 134]. In this case, we can take “1” as the initially excited

site and write the initial state of the system as

ρlocal = |1〉 〈1| . (6.12)

Using this initial state is equivalent, in the sense of Jesenko and Žnidarič [136], to a

steady-state system whose master equation includes an additional term that transfers

population from the ground state to |1〉,

Lpump[ρ] = 2Γpump

(
|1〉 〈0| ρ |0〉 〈1| − 1

2
{|0〉 〈0| , ρ}

)
. (6.13)

Excitation transfer from antenna complex

In many photosynthetic architectures, an exciton is harvested by peripheral antenna

complexes before being transferred to the RC via other, intermediate complexes. This

situation motivates the question of what is the appropriate initial state for an inter-

mediate complex like FMO, which is excited by an antenna complex. As with transfer

from a complex to the RC, transfer from an antenna is incoherent and proceeds by

FRET. If the site closest to the antenna is “1”, FRET would populate excitonic eigen-

states in proportion in which they occur at site 1, giving the initial state

ρant =
N∑

n=1

|〈1|en〉|2 |en〉 〈en| . (6.14)

The corresponding continuous pumping term is easily written down in analogy to Eq.

(6.13).

Photoexcitation

When a light-harvesting complex is excited, one must distinguish the cases of coherent

and incoherent illumination [95, 133, 135, 137–140].

On one hand, if the incoming light is incoherent (as is sunlight), various frequencies

only excite populations of the eigenstates with which they are resonant, and not co-

herences between them [133, 137, 138]. If we assume that each transition has the same
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oscillator strength, incoherent light will create a mixture of eigenstates in proportion

to the intensity of the light spectrum at the transition frequency. For thermal light,

such as sunlight, one obtains pumping from the ground state to

ρincoh =
1
N

N∑

n=1

I(En) |en〉 〈en| , (6.15)

where I(ω) is the Planck distribution for the thermal light (we have used T = 5800 K,

the effective temperature of the Sun, in calculations below) and N is the normalization

constant. This is the correct “initial” state, in the sense of Jesenko and Žnidarič [136],

for what is in reality a steady-state process.

If, on the other hand, the complex were excited by a coherent, transform-limited

laser pulse, one would obtain a superposition instead of a mixed state [133, 137,

138]. The state will depend on details such as the spectrum, duration, intensity, and

polarization of the pulse. However, to enable comparison with Eq. (6.15), we assume

the same spectrum and that all eigenstates acquire the same phase, so we write the

initial state as

ρcoh = |ψ〉 〈ψ| , where |ψ〉 =
1√
N

N∑

n=1

√
I(En) |en〉 . (6.16)

6.2 Results

In the calculations that follow, we have used as the model system system a single unit

of the FMO complex of P. aestuarii. In the same fashion as in chapter 4, we have

used the site energies ǫn and couplings Vnm given in Tables 2 and 4 of Ref. [110], as

well as the transfer rate ΓRC = 1 ps−1. For the newly introduced dissipation process,

namely the irreversible lost of energy to the environment, we have assumed that the

dissipative rates are the same for all molecules, Γn = Γ = 5.0 × 10−4 ps−1 [141], as are

the dephasing rates, γn = γ, which we have taken to be an adjustable parameter.

We have calculated the efficiency η of excitonic transport through FMO using

both the localized coupling to the RC and FRET models [Eqs. (6.7) and (6.10),

respectively], as well as using all of the initial excitation conditions described in the

previous section. In all cases, we have calculated the efficiency as a function of the

dephasing rate γ, which allows us to detect the presence or absence of ENAQT. The

results are shown in Figs. 6.1(a) and 6.1(b).
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Fig. 6.1 Energy transfer efficiency in FMO as a function of the dephasing rate, assum-
ing different initial states and different trapping mechanisms.
(a) Calculated using localized transfer to the reaction center (RC), as had been as-
sumed in most previous works, Eq. (6.7). The efficiency is shown for four initial states:

.. (i) ρlocal, transfer into site 1, Eq. (6.12) (solid line),

.. (ii) ρant, incoherent transfer from an antenna complex, Eq. (6.14) (dashed line),

.. (iii) ρincoh, incoherent photoexcitation, Eq. (6.15) (dotted line),

.. (iv) ρcoh, coherent photoexcitation, Eq. (6.16) (dash-dotted line).

(b) Same initial states as in (a), but the exciton transfer to the RC is modeled
as Förster resonant energy transfer (FRET), which is more physically realistic, see
Eq. (6.10). Note the enlarged scale on the vertical axis.
(c) Same as (a), but with 1000 randomly chosen initial states, showing that ENAQT
occurs in almost all initial conditions.
(d) Same as (b), but with 1000 randomly chosen initial states, showing that the four
initial states above are typical.

To verify that the results for particular initial states hold in general, we have

also computed the transport efficiency for 1000 random pure initial states, sampled

from the uniform distribution on the C7 Hilbert space. This was done by normalizing a
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vector X of 7 independent, identically distributed complex Gaussian random variables,

|ψ〉 = X/‖X‖. The results are shown in the shaded bands in Figs. 6.1(c) and 6.1(d).

It is important to remark that, if the initial state were mixed, the efficiency would

still lie within these bands because the efficiency, being a linear function of the initial

state, is a convex combination of the component pure-state efficiencies.

6.3 Discussion

The results presented in Figs. 6.1(a)-(c) are drastically different to those in Figs.

6.1(b)-(d), which implies that it is crucial to describe the process of energy transfer

to the RC correctly. We discuss the two cases separately.

6.3.1 Local transfer to the RC

In the case where Llocal
RC is used to model exciton transfer from the FMO to the RC, we

can observe from Figs. 6.1(a)-(c) that ENAQT survives under all initial conditions,

including the biologically relevant transfer from antenna complex and excitation by

incoherent light. The only exception would be if the exciton were initialized directly

at the trap, which would result in a maximum of efficiency at infinite dephasing.

Whether ENAQT is observed depends on a competition of time scales. In par-

ticular, the fact that ΓRC ≫ Γ implies that any excitation that can reach the trap

will be caught, increasing thus the efficiency. In any case, the excitation can only be

dissipated if it gets stuck away from the trap by some means.

If dephasing (or other type of noise) is weak or absent, it is most appropriate to

think of transport in the basis of the eigenstates of the Hamiltonian [102]. In the case

where dephasing is very weak (or completely absent), the trapping at rate ΓRC will

quickly remove the exciton population at the trap site, leaving behind a state with no

support at the trap. Since the exciton lifetime is finite, the eigenstate linewidths will

broaden and partially overlap, allowing excitons to flow back to the trap site. However,

because the dissipation is weak and the line broadening correspondingly small, this

process will be slow, allowing a fraction of the population to be dissipated at the slower

rate Γ. This dissipated energy would, of course, depend on the initial excitation state,

as can be observed from in Figs. 6.1(a)-(c), where transport efficiencies of about

70–90% are obtained.

In the presence of weak (moderate) noise, the time-dependent environmental fluc-
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tuations behave as perturbations that can shift populations between different eigen-

states. In this situation, the excitons will shift among various sites as well, allowing

almost all of them to reach the trapping site (and therefore be trapped) during the dis-

sipative lifetime Γ−1. This explains the enhancement in the energy transport efficiency

at intermediate levels of dephasing, where almost 100% efficiency is achieved.

However, if the dephasing becomes very strong, the environment is essentially mon-

itoring the populations at different sites. This gives rise to the Zeno effect, preventing

excitons from moving between sites. Because excitons at non-trap sites will all be

dissipated, the efficiency in this case would correspond to the initial population at the

trap site multiplied by the branching ratio ΓRC/(Γ + ΓRC).

6.3.2 FRET to the RC

In the case where exciton transfer to the RC is modeled by using LFRET
RC , one obtains

very different and contrasting results. We can observe from Figs. 6.1(b)-(d) that, in

this situation, ENAQT is either much reduced or vanishes altogether. At most, the

dephasing-induced enhancement of the energy transport rate is about 4%.

The efficiency is uniformly high in this case, always exceeding 96%. As mentioned

before, ΓRC ≫ Γ means that the only way to get low efficiency is if the exciton is

somehow prevented from reaching the trap site. If the trap is localized, as when Llocal
RC

is used, this can be achieved by also localizing the exciton. In contrast, when using

LFRET
RC the population from all eigenstates (albeit with different rates) is trapped,

meaning that the exciton has nowhere to hide. The difference between these two

regimes is most pronounced at high dephasing. In the local trap model, the Zeno

effect can completely suppress the motion of the exciton to the trapping site, whereas

in the FRET model this is no longer a problem, since all sites are able to transfer

energy to the reaction center.

It is important to remark that similar results about exciton transport in FMO

were obtained by Pelzer et al. [142] using the Keldysh Green’s function formalism and

assuming that the exciton source is an incoherent antenna complex. In their model

there is also no ENAQT, in the sense that the probability that an exciton injected into

FMO reaches the RC monotonically increases with the dephasing rate. The differences

between their results and ours follow from different descriptions of the antenna and

the RC. Pelzer et al. describe both the chlorosome and the RC as individual sites

that are resonant with the highest and lowest exciton energies in FMO, respectively.

One consequence of this model is that the exciton flux from the chlorosome to FMO
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decreases with the dephasing rate. In contrast, we have assumed that the chlorosome

spectrum is broad and that it can drive various transitions in FMO via FRET.

Conclusions

In this chapter, we have shown that changes in how the final exciton transfer to the

RC is modeled can lead to qualitatively different conclusions about the importance of

environmental noise in exciton transport. Although ENAQT is a robust effect that

occurs with all initial states if one assumes a localized trapping, it mostly vanishes if

the transfer to the RC is modeled as Förster transfer.

Even though we have used a simplified Markovian model in this work to emphasize

the relevant physics, we would expect qualitatively similar behavior in more compli-

cated models as well, provided that they involve variable-strength noise acting in the

site basis (as most noise models do). Indeed, simulations of ENAQT in FMO using

more sophisticated noise models have not found qualitatively important differences

from the results obtained in the pure-dephasing model [130, 132]. Furthermore, al-

though non-Markovian effects can influence the transport efficiency [132, 143], this is

not a concern in steady-state systems, such as natural or artificial light-harvesting,

where equivalent Markovian baths can be used.

Finally, as we have argued throughout this chapter, the FRET trapping model is

likely to be the one that correctly captures the physics of excitonic transfer between

weakly coupled complexes. The fact that the FRET model allows only a very small

ENAQT motivates us to call into question the widespread view that natural selection

has optimized the interplay between quantum dynamics and noise in order to achieve

a highly efficient photosynthetic energy transport.
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The results presented in this thesis can be summarized in two parts. In the first part,

we have shown how concepts and techniques routinely used in quantum optics can pro-

vide a means for developing new highly sensitive spectroscopy techniques. Along these

lines, (i) we have put forward a new technique for enhancing the sensitivity, and robust-

ness, of an optical label-free imaging system based on the quantum-mechanical effect

of stimulated Raman adiabatic passage. (ii) We have proposed a new way for mea-

suring the temperature of atomic ensembles by making use of a fundamental feature

of quantum interference known as which-way information, and (iii) we have demon-

strated that two-photon virtual-state spectroscopy cannot be performed by means of

classical light and that two-photon states bearing non-classical frequency correlations

(entanglement), with a specific spectral shape, are needed in order to perform such

technique.

The second part of this thesis has been devoted to exploring certain mechanisms

of energy transport in photosynthetic light-harvesting complexes. This work has been

done with the aim of recognizing whether quantum effects are necessary in order

to explain the highly efficient transport behavior of photosynthetic systems. In this

way, (iv) we have explicitly demonstrated that noise-assisted energy transport, a phe-

nomenon originally conceived in a quantum scenario, can be found as well in purely

classical systems. Motivated by these findings, (v) we have implemented the generation

of a tunable environment for electrical oscillators, which represents an important step

towards the simulation of photosynthetic energy transport in classical systems and,

finally, (vi) we have provided the first study of photosynthetic environment-assisted

energy transport, where the initial excitation of the photosynthetic complex and the

energy transfer to the reaction center are treated in more physically realistic ways.

We have shown that energy transport behavior is very sensitive to the details of these

processes, particularly to the energy transfer to the reaction center. Moreover, we have

demonstrated that the effect of the environment on the transport efficiency becomes
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negligible when considering more physically accurate models of energy transfer to a

reaction center. Therefore, based on these results, we have called into question the sug-

gestion that natural selection has optimized the interplay between quantum dynamics

and noise in order to achieve a highly efficient photosynthetic energy transport.
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Appendix A
To numerically solve Eqs. (1.2), (1.4) and (1.5), let us consider a moving frame defined

by the variables

z′ ≡ z, (A.1)

t′ ≡ t− z

c
. (A.2)

In this moving frame, the time and space derivatives read as

∂

∂t
=

∂t′

∂t

∂

∂t′
+
∂z′

∂t

∂

∂z′
=

∂

∂t′
, (A.3)

∂

∂z
=

∂t′

∂z

∂

∂t′
+
∂z′

∂z

∂

∂z′
=

∂

∂z′
− 1

c
∂

∂t′
. (A.4)

Using Eqs. (A.3) and (A.4), the equation describing the evolution of the atomic

ensemble [Eq. (1.2)] can be rewritten as

∂

∂t′
ρ (z′, t′) = − i

~
{[H (z′, t′) , ρ (z′, t′)] + Ldiss[ρ (z′, t′)]} , (A.5)

where

H (z′, t′) =
~

2




0 Ω∗
p (z′, t′) 0

Ωp (z′, t′) 2∆p Ωs (z′, t′)

0 Ω∗
s (z′, t′) 2 (∆p − ∆s)


 . (A.6)

In the same fashion, the evolution of the optical fields [Eqs. (1.4) and (1.5)] take the

form

∂

∂z′
Ωp (z′, t′) = −iqpρ

∗
12 (z′, t′) , (A.7)

∂

∂z′
Ωs (z′, t′) = −iqsρ

∗
32 (z′, t′) , (A.8)

where qp,s = αp,s/c.

Notice that the set of Eqs. (A.5), (A.7) and (A.8) can be solved by iteratively
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computing the evolution of the atomic ensemble and the optical fields, in small steps

of time ∆t′ and distance ∆z′. The iterative procedure starts by solving Eq. (A.5) for

a time t′0 +∆t′. Then, the obtained solutions ρij (z′, t′0 + ∆t′) are used to calculate the

evolution of the optical fields for a propagation distance z′
0 + ∆z′. Finally, the result

of this calculation Ωp,s (z′
0 + ∆z′, t′0 + ∆t′) is introduced into the Hamiltonian (A.6) to

compute Eq. (A.5) for the next time step t′0 + 2∆t′ and continue with the iterative

computation. It is important to remark that once the calculation is finished, we need

to transform the variables z′ and t′, by means of the relations (A.1) and (A.2), in order

to obtain the real values of the propagation distance z and time t.
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In this appendix, we describe how to numerically solve the classical equations (4.14).

For this, we first introduce the auxiliary matrices

Rnm = 〈q̃nq̃m〉 , (B.1)

Snm = 〈p̃np̃m〉 , (B.2)

Tnm = 〈q̃np̃m〉 . (B.3)

Using these new operators, the classical master equation takes the form

σnm = Rnm + Snm + i (Tmn − Tnm) . (B.4)

In Ref. [100], Eisfeld and Briggs have demonstrated that one can make use of the time

evolution equations of q̃n and p̃n to derive the set of coupled equations

∂Rnm

∂t
= ωnTmn + ωmTnm + L [R]nm , (B.5)

∂Snm

∂t
= − (ωnTnm + ωmTmn) −

∑

j

(2Vnj

~
Tjm +

2Vmj

~
Tjn

)
+ L [S]nm , (B.6)

∂Tnm

∂t
= ωnSnm − ωmRnm −

∑

j

2Vmj

~
Rnj + L [T ]nm . (B.7)

Now, to model the transfer of energy from the chosen site k to the reaction center,

we directly introduce the corresponding decay operators into Eqs. (B.5)-(B.7), so

the new set of equations describing the dynamics of the coupled oscillator network

subjected to environmental noise, and energy transfer to a reaction center [Eq. (4.14)],
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can be written as

∂Rnm

∂t
= ωnTmn + ωmTnm + L [R]nm + D [R]nm , (B.8)

∂Snm

∂t
= − (ωnTnm + ωmTmn) −

∑

j

(2Vnj

~
Tjm +

2Vmj

~
Tjn

)

+ + L [S]nm + D [S]nm , (B.9)
∂Tnm

∂t
= ωnSnm − ωmRnm −

∑

j

2Vmj

~
Rnj + L [T ]nm + D [T ]nm . (B.10)

The solutions of Eqs. (B.8)-(B.10) are then substituted into Eq. (B.4) in order

to compute the time evolution of the population of each oscillator and calculate the

energy transfer efficiency given by Eq. (4.17). Notice that in the classical model [Eq.

(4.14)], the number of coupled differential equations that needs to be solved is three

times larger than in the quantum case [Eq. (4.2)], which implies that the solution

to the classical equations is more computationally demanding. Therefore, in order

to reduce the computation time of our simulations, we have made use of adaptive

methods for solving systems of ordinary differential equations, such as the ode-solver

functions provided by MATLAB.
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