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“There is a driving force more powerful than steam, 

 electricity and atomic energy: the will”  
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In this doctoral thesis it has been carried out an experimental and theoretical study of 

solubility of new absorbents in natural refrigerants for absorption refrigeration cycles. 

Commercial absorption refrigeration systems use H2O/LiBr and NH3/H2O 

(refrigerant/absorbent) as working fluids with good performance in air conditioning and 

refrigeration applications. However these systems have some drawbacks that have driven research 

in improving their efficiency, enlarging the working ranges and extending to new applications. 

These limitations are caused by the physicochemical properties of such mixtures: crystallization, 

corrosion and operating vacuum pressure for H2O/LiBr mixture or the need of rectification of the 

stream generated in the generator and the high level of the activation thermal energy required for 

NH3/H2O mixture. 

The use of absorbents such as LiNO3 or NaSCN in NH3 allow the operation of the refrigeration 

system at lower temperatures than in the case of NH3/H2O mixture, facilitating the use of solar 

thermal energy at low temperature or waste heat as activation energy as well as avoiding the need 

of rectification in the cycle. On the other hand, the use of additives like NaOH to the conventional 

NH3/H2O mixture allows better separation of the ammonia in the generator. 

In the case of absorption systems with H2O/LiBr as working fluid, the addition of LiNO3 and LiI 

involve a significant solubility improvement of the mixture, allowing the equipment to operate at 

higher temperatures in the absorber and the use of air-coolers for the heat dissipation to the 

environment. 

The use of CO2 as refrigerant and amines as absorbents have been currently proposed as 

alternatives to conventional ammonia/water systems, avoiding toxicity and flammability problems 

that ammonia presents. 

Regarding the available information of physicochemical properties of the new working fluids, 

in the case of NH3/LiNO3 and NH3/NaSCN the solubility data available in literature is scarce, old and 

incomplete. Also, for NH3/(H2O+NaOH) system, no solubility data were found in literature. Thus, in 

order to complete the solubility data of these mixtures it has been designed and built a new 

experimental device based on the visual-polythermal method with the capacity to work at 

moderate-high pressures to keep the ammonia in liquid state. Validation of the experimental 

device and methodology performed at atmospheric pressure with H2O/LiNO3 system and at a 

pressure conditions up to 20 bar with the system NH3/LiNO3. Additionally, to avoid the subjective 

criterion in the solubility temperature measurements, it has been developed a new image 

processing method based on the analysis of images taken and recorded during the experiment. 

From the experimental results obtained, the solubility temperature of H2O/LiNO3, NH3/LiNO3 and 

NH3/NaSCN has been modelled by means of solid-liquid equilibrium and LIQUAC and symmetric 

electrolyte-NRTL models. 
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To improve the solubility of H2O/LiBr mixture it has been performed an extension of the study 

of Koo et al. (1999) based on the addition of LiNO3, LiI and LiCl (salt mole ratio 5:1:1:2) with the aim 

of improving solubility and reducing corrosiveness and vapour pressure of the mixture. Also it has 

been studied the effect of the addition of LiCl on the vapour pressure of the mixture by modelling 

the vapour pressure with asymmetric electrolyte-NRTL thermodynamic model. From the results 

obtained it has been proposed a new composition mixture with a salt mole ratio 7:1:0.5 

(LiBr:LiNO3:Lil). The addition of LiCl has been discarded because doesn’t provides any improvement 

in solubility and vapour pressure of the mixture. Additionally, by using the visual-polythermal 

method it has been measured the solubility of this new mixture in a range of total salt mass 

fraction from 65 % to 69 %, obtaining a decrease of solubility temperature regarding the mixture 

proposed by Koo et al. (1999) from 8 K to 35 K. 

Finally, it has been studied the flow-calorimetric methodology to measure the solubility limit 

for CO2 in amines. This technique allows the simultaneous determination of enthalpies of solution 

and the solubility limit. This study has been performed with 2-methylpiperidine and 4-

methylpiperidine aqueous solutions. These amines are used in CO2 capture processes as they 

present liquid-liquid separation at a certain temperature and CO2 composition, thus reducing the 

energy required for the desorption process. The comparison of experimental measurements made 

in previous experiments against specific experimental methodologies has shown deviations lower 

than 5 %, which confirms that this method is suitable for measuring the gas solubility limits in 

absorbents. 
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En esta tesis doctoral se ha realizado un estudio teórico-experimental de la solubilidad de 

nuevos absorbentes en refrigerantes naturales para ciclos de refrigeración por absorción. 

Los sistemas comerciales de refrigeración por absorción utilizan los fluidos de trabajo H2O/LiBr 

y NH3/H2O con buenas prestaciones en aplicaciones de climatización y refrigeración. Sin embargo 

dichos sistemas presentan algunos inconvenientes y limitaciones que han impulsado la 

investigación en la mejora de su eficiencia, ampliación de intervalos de operación y nuevas 

aplicaciones. Esta problemática esta originada por las propiedades físico-químicas de dichas 

mezclas: problemas de cristalización, corrosión y presión de operación de vacío para la mezcla 

H2O/LiBr o la necesidad de rectificación del flujo generado en el generador y la alta temperatura de 

activación requerida para la mezcla NH3/H2O.  

El uso de absorbentes tales como LiNO3 o NaSCN en NH3 permite operar al sistema de 

refrigeración a temperaturas inferiores que en el caso de la mezcla NH3/H2O facilitando la 

utilización de energía solar térmica a baja temperatura o calor residual para su activación así como 

evitar la necesidad de rectificación en el ciclo. Por otra parte, el uso de aditivos como NaOH a la 

mezcla convencional NH3/H2O permite una mejor separación del amoniaco en el generador.  

En el caso de sistemas de refrigeración de H2O/LiBr, la adición de LiNO3 y LiI supone una 

mejora significativa en la solubilidad de la mezcla, posibilitando que el equipo pueda operar a 

mayores temperaturas en el absorbedor y la utilización de aero-refrigeradores para la disipación 

del calor al ambiente.  

Por otro lado, el uso de CO2 como refrigerante y aminas como absorbentes han sido 

propuestos en recientemente como alternativas a los sistemas convencionales de NH3/H2O, 

evitando los problemas de toxicidad e inflamabilidad que el amoniaco presenta.  

En lo referente a la información existente de las propiedades físico-químicas de las nuevas 

mezclas de trabajo, en el caso del NH3/LiNO3 y el NH3/NaSCN los datos de solubilidad en la 

literatura son escasos, antiguos e incompletos. Así mismo, para la mezcla NH3/(H2O+NaOH) no se 

encontraron datos de solubilidad del NaOH en la mezcla amoniaco/agua.  Por ello, para completar 

el estudio de la solubilidad de estas mezclas, se ha  diseñado y construido un nuevo dispositivo 

experimental basado en el método politérmico-visual que puede trabajar a presiones moderadas-

altas  con objeto de mantener el amoníaco en estado líquido. La validación del dispositivo y 

metodología experimental se ha realizado a presión atmosférica con el sistema H2O/LiNO3 y en 

condiciones de presión de hasta 20 bar con el sistema NH3/LiNO3. Además, para conseguir una 

mayor objetividad en las mediciones de temperatura de solubilidad, se desarrolló un nuevo 

método de procesamiento de imágenes basado en el análisis de fotografías tomadas en el interior 

de la celda durante el experimento. A partir de los datos experimentales obtenidos, la temperatura 

de solubilidad de las mezclas H2O/LiNO3, NH3/LiNO3 y NH3/NaSCN ha sido modelizada utilizando los 

modelos LIQUAC y Electrolyte-NRTL simétrico. 
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Para mejorar la solubilidad de la mezcla H2O/LiBr se ha realizado una extensión del estudio 

efectuado por Koo et al. (1999) basado en la adición de LiNO3, LiI y LiCl, en una relación molar 

5:1:1:2, con el objeto de mejorar la solubilidad y reducir la corrosión y la presión de vapor de la 

mezcla. También se ha analizado el efecto de la adición del LiCl sobre la presión de vapor de las 

mezclas mediante la modelización con el modelo termodinámico Electrolyte-NRTL. A partir de los 

resultados obtenidos se propone una nueva mezcla con una relación molar 7:1:0.5 (LiBr:LiNO3:Lil).  

El LiCl ha sido descartado ya que no supone una mejora ni en la solubilidad ni en la presión de 

vapor de la mezcla. Finalmente, mediante el método politérmico-visual se ha medido la solubilidad 

de esta nueva mezcla en un rango de fracción másica total de sales de 65 % a 69 %, obteniéndose 

un descenso respecto a la mezcla propuesta por Koo et al. (1999) de 8 K a 35 K para el intervalo de 

composición estudiado.  

Finalmente, se ha utilizado la calorimetría de flujo para medir el límite de solubilidad de CO2 en 

aminas. Esta técnica permite la simultánea determinación de entalpias de disolución y el límite de 

solubilidad. Dicho estudio se ha realizado con disoluciones acuosas de 2-Methylpiperydine y 4-

Methylpiperydine. Estas aminas son utilizadas en procesos de captura de CO2 ya que presentan un 

equilibrio líquido-líquido a partir de cierta temperatura y composición de CO2, disminuyendo así la 

energía requerida en el proceso de desorción. La comparación de medidas experimentales 

realizadas previamente frente a metodologías experimentales específicas ha obtenido desviaciones 

menores al 5 %, lo que confirma que dicha metodología es adecuada para medir el límite de 

solubilidad de gases en absorbentes.  

  

UNIVERSITAT ROVIRA I VIRGILI 
EXPERIMENTAL AND THEORETICAL STUDY OF SOLUBILITY OF NEW ABSORBENTS IN NATURAL REFRIGERANTS. 
Javier Mesones Mora 
Dipòsit Legal: T 1549-2014



 

xiii 
 

J. Mesones, T. Altamash, E. Pérez, D. Salavera, A. Coronas. New device for measuring the solubility 

of inorganic salts in liquid ammonia. Fluid Phase Equilibria 355 (2013) 46–51. 

Y. Coulier, K. Ballerat-Busserolles, J. Mesones , A. Lowe, J-Y. Coxam. Excess molar enthalpies and 

heat capacities of {N-methylpiperidine – water} and {2-methylpiperidine – water} systems. (In 

preparation). 

J. Mesones, D. Salavera, A. Coronas. Effect of the addition of LiNO3, LiI and LiCl in the solubility of 

H2O+LiBr mixtures. (In preparation) 

J. Mesones, S. Steiu, D. Salavera, J.C. Bruno, A. Coronas. Solubility study of alkali hydroxides in 

ammonia+water mixtures. (In preparation) 

 

J. Mesones, T. Altamash, D. Salavera, A. Coronas. Dispositivo experimental de medida de las 

temperaturas de solubilidad y cristalización de sales en disolventes no-acuosos a alta presión. VII 

Congreso Nacional de Ingeniería Termodinámica. Bilbao (Spain) June 2011. ISBN: 84-95416-79-4. 

J. Mesones, D. Salavera, A. Coronas. Determinación experimental y predicción de la temperatura de 

solubilidad de sales en disolventes no-acuosos a alta presión. Third International Seminar on 

Engineering Thermodynamics of Fluids. Tarragona (Spain) July 2011.  

J. Mesones, D. Salavera, A. Coronas. Solubility Measurements of Lithium Nitrate & Sodium 

Thiocyanate in Ammonia Solutions. ANQUE International Congress of Chemical Engineering. Sevilla 

(Spain) June 2012. ISBN: 988-84-695-3536-3. 

J. Mesones, D. Salavera, A. Coronas. Solubility Prediction of Lithium Nitrate and Sodium Thiocyanate 

in Water and/or Ammonia Solutions with Symmetric Electrolyte NRTL Model. International 

Workshop on New Working Fluids for Absorption Heat Pumps and Refrigeration Systems. 

Tarragona (Spain) July 2013. ISBN: 84-616-5547-8. 

Y. Coulier, J. Mesones, A. Lowe, K. Ballerat-Busserolles, J-Y. Coxam. Experimental determination and 

modeling of enthalpy of solution of carbon dioxide in aqueous solutions of demixing amines. 

International Conference on Chemical Thermodynamics. Durban (South Africa) July 2014. 

J. Mesones, D. Salavera, A. Coronas. Effect of the Addition of LiNO3, LiI and LiCl in the Solubility of 

LiBr Aqueous Solutions for Absorption Refrigeration Systems. International Symposium on Solubility 

Phenomena and Related Equilibrium Processes (ISSP). Karlsruhe (Germany) July 2014. 

 

UNIVERSITAT ROVIRA I VIRGILI 
EXPERIMENTAL AND THEORETICAL STUDY OF SOLUBILITY OF NEW ABSORBENTS IN NATURAL REFRIGERANTS. 
Javier Mesones Mora 
Dipòsit Legal: T 1549-2014



xiv 
 

SOLEF - Absorption systems for the simultaneous production of refrigeration and mechanical 

energy with solar thermal energy or waste heat. 

Ministry of Science and Innovation. National Plan I+D +I (ENE2009- 14177). 

Nuevos fluidos de trabajo y componentes para bombas de calor de absorción de altas prestaciones. 

Ministry of Economy and Competitiveness. National Plan I+D +I (DPI2012-38841-C02-01). 

NARILAR - New Working Fluids based on Natural Refrigerant and Ionic Liquids for Absorption 

Refrigeration.  

People International Research Staff Exchange Scheme. Seventh Framework Programme. Marie 

Curie Actions (PIRSES – GA – 2010) (269321). 

 

Institute of Chemistry of Clermont-Ferrand. Thermodynamics and Molecular Interactions (France). 

Period: September 2013 – December 2013. 

Advisor:  Dr. Jean-Yves Coxam. 

Topic: Experimental measurement of enthalpy of solution and solubility limit of CO2 in aqueous  

methylpiperidine solutions.  

Scholarship: URV - Grants for short stays in foreign countries (AEE2013). 

 

NCL - National Chemical Laboratory (Pune, India). 

NARILAR Project. 

Period: November 2011 – December 2011. 

Advisor: Dr. Anil Kumar. 

  

UNIVERSITAT ROVIRA I VIRGILI 
EXPERIMENTAL AND THEORETICAL STUDY OF SOLUBILITY OF NEW ABSORBENTS IN NATURAL REFRIGERANTS. 
Javier Mesones Mora 
Dipòsit Legal: T 1549-2014



 

xv 
 

Chapter 1. Introduction, Justification and Objectives .......................................................................... 1 

1.1. Global energy situation ....................................................................................................... 1 

1.1.1. Past, present and future of world energy use ............................................................ 1 

1.1.2. Building energy consumption ..................................................................................... 4 

1.2. Absorption refrigeration cycles .......................................................................................... 6 

1.2.1. General overview ........................................................................................................ 6 

1.2.2. Principle of operation ................................................................................................. 8 

1.2.3. Classification ............................................................................................................... 9 

1.3. Conventional working fluids ............................................................................................. 11 

1.3.1. Water/Lithium Bromide Systems .............................................................................. 11 

1.3.2. Ammonia/Water Systems ......................................................................................... 12 

1.4. New working fluids ........................................................................................................... 13 

1.4.1. Working fluids with NH3 as refrigerant ..................................................................... 14 

1.4.2. Working fluids with H2O as refrigerant ..................................................................... 15 

1.4.3. Working fluids with CO2 as refrigerant ..................................................................... 15 

1.5. Justification and Objectives .............................................................................................. 16 

1.6. Thesis structure ................................................................................................................ 18 

1.7. References ........................................................................................................................ 20 

 

Chapter 2. Solubility of LiNO3, NaSCN and NaOH+H2O in Ammonia ................................................... 23 

2.1. Introduction ...................................................................................................................... 23 

2.2. Operating methodology and procedure ........................................................................... 24 

2.3. Experimental device description....................................................................................... 26 

2.3.1. Equilibrium cell ......................................................................................................... 28 

2.3.2. Visual observation system ........................................................................................ 30 

2.3.3. Temperature control system .................................................................................... 31 

2.3.4. Pressure control system ........................................................................................... 32 

2.4. Experimental methodology .............................................................................................. 34 

2.4.1. Chemicals .................................................................................................................. 34 

2.4.2. Sample preparation and introduction into equilibrium cell ...................................... 34 

UNIVERSITAT ROVIRA I VIRGILI 
EXPERIMENTAL AND THEORETICAL STUDY OF SOLUBILITY OF NEW ABSORBENTS IN NATURAL REFRIGERANTS. 
Javier Mesones Mora 
Dipòsit Legal: T 1549-2014



xvi 
 

2.4.3. Preparation of the pressure system .......................................................................... 37 

2.4.4. Solubility temperature measurement ....................................................................... 37 

2.4.5. Sample extraction and cell cleaning .......................................................................... 38 

2.4.6. Image processing ...................................................................................................... 39 

2.5. Experimental results ......................................................................................................... 40 

2.5.1. H2O/LiNO3 system ..................................................................................................... 40 

2.5.2. NH3/LiNO3 system ..................................................................................................... 43 

2.5.3. NH3/NaSCN system ................................................................................................... 45 

2.5.4. NH3/(H2O+NaOH) system .......................................................................................... 46 

2.6. Uncertainty of measurements .......................................................................................... 49 

2.6.1. Mass fraction uncertainty ......................................................................................... 49 

2.6.2. Temperature uncertainty .......................................................................................... 49 

2.7. Conclusions ....................................................................................................................... 50 

2.8. References ........................................................................................................................ 52 

 

Chapter 3. Solubility Modelling of H2O/LiNO3, NH3/LiNO3 and NH3/NaSCN Systems .......................... 53 

3.1. Introduction ...................................................................................................................... 53 

3.2. Solid-liquid equilibrium ..................................................................................................... 54 

3.3. LIQUAC activity coefficient model for modelling SLE in aqueous electrolyte systems ...... 57 

3.3.1. Activity coefficient of solvent .................................................................................... 59 

3.3.2. Activity coefficient of ions ......................................................................................... 61 

3.4. Symmetric E-NRTL activity coefficient model for modelling SLE in electrolyte systems with 

ammonia as solvent ...................................................................................................................... 62 

3.4.1. Description of the model .......................................................................................... 62 

3.4.2. Modelling with Aspen Properties software ............................................................... 66 

3.5. Results of solubility temperature modelling ..................................................................... 69 

3.5.1. LIQUAC model - H2O/LiNO3 system ........................................................................... 69 

3.5.2. Symmetric Electrolyte-NRTL model – NH3/LiNO3 & NH3/NaSCN systems ................. 74 

3.6. Conclusions ....................................................................................................................... 78 

3.7. Nomenclature ................................................................................................................... 80 

3.8. References ........................................................................................................................ 82 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
EXPERIMENTAL AND THEORETICAL STUDY OF SOLUBILITY OF NEW ABSORBENTS IN NATURAL REFRIGERANTS. 
Javier Mesones Mora 
Dipòsit Legal: T 1549-2014



 

xvii 
 

Chapter 4. Solubility of LiBr + LiNO3 + LiI + LiCl in Aqueous Solutions  ................................................ 85 

4.1. Introduction ...................................................................................................................... 85 

4.2. Operating principle and procedure .................................................................................. 88 

4.3. Experimental device ......................................................................................................... 88 

4.3.1. Sample tubes ............................................................................................................ 88 

4.3.2. Glass solubility cell .................................................................................................... 89 

4.4. Experimental methodology .............................................................................................. 91 

4.4.1. Chemicals .................................................................................................................. 91 

4.4.2. Sample preparation .................................................................................................. 91 

4.4.3. Solubility temperature measurement procedure ..................................................... 92 

4.4.4. Sample extraction and cleaning ................................................................................ 93 

4.5. Experimental results ......................................................................................................... 93 

4.5.1. Determination of the optimum mole ratio of lithium salts ....................................... 93 

4.5.2. Solubility of the optimum mixture ............................................................................ 97 

4.6. Measurement uncertainty .............................................................................................. 100 

4.6.1. Mass fraction uncertainty ....................................................................................... 100 

4.6.2. Temperature uncertainty ....................................................................................... 100 

4.7. Vapour pressure modelling ............................................................................................ 100 

4.7.1. Validation of vapour pressure modelling ................................................................ 101 

4.7.2. Vapour pressure modelling of the optimum mixture ............................................. 105 

4.8. Conclusions ..................................................................................................................... 110 

4.9. Nomenclature ................................................................................................................. 112 

4.10. References ...................................................................................................................... 113 

 

Chapter 5. Solubility Limit of CO2 in Aqueous Methylpiperidine Solutions ....................................... 115 

5.1. Introduction .................................................................................................................... 115 

5.2. Experimental setup ......................................................................................................... 116 

5.2.1. Calorimeter block ................................................................................................... 118 

5.2.2. Mixing cell ............................................................................................................... 118 

5.2.3. Impulsion pumps and flow lines system ................................................................. 119 

5.2.4. Temperature control system .................................................................................. 120 

5.2.5. Pressure control system ......................................................................................... 120 

5.3. Experimental procedure ................................................................................................. 121 

UNIVERSITAT ROVIRA I VIRGILI 
EXPERIMENTAL AND THEORETICAL STUDY OF SOLUBILITY OF NEW ABSORBENTS IN NATURAL REFRIGERANTS. 
Javier Mesones Mora 
Dipòsit Legal: T 1549-2014



xviii 
 

5.3.1. Chemicals ................................................................................................................ 121 

5.3.2. Sample preparation and insertion into the calorimeter ......................................... 121 

5.3.3. Pressure and temperature adjustment ................................................................... 122 

5.3.4. Heat flow data acquisition ...................................................................................... 122 

5.3.5. Density measurements of aqueous amine solutions .............................................. 123 

5.3.6. Calculation of solution enthalpy and CO2 solubility limit. ....................................... 125 

5.4. Equipment calibration .................................................................................................... 126 

5.4.1. Base line SLB ............................................................................................................. 126 

5.4.2. Calorimeter sensitivity adjustment ......................................................................... 128 

5.5. Uncertainty estimation ................................................................................................... 129 

5.6. Experimental results ....................................................................................................... 130 

5.6.1. Solubility limit of CO2 in aqueous amine solutions .................................................. 130 

5.7. Conclusions ..................................................................................................................... 136 

5.8. Nomenclature ................................................................................................................. 138 

5.9. References ...................................................................................................................... 139 

 

Chapter 6. Conclusions and Future Work ........................................................................................ 141 

6.1. Conclusions ..................................................................................................................... 141 

6.2. Future Work .................................................................................................................... 145 

 

Appendix A. Matlab Program for Image Processing .......................................................................... A-1 

 

Appendix B. Uncertainty Calculation ................................................................................................ A-3 

B.1. Introduction .......................................................................................................................... A-3 

B.2. Evaluation of uncertainties ................................................................................................... A-4 

B.3. Calculation of the standard and expanded uncertainty ........................................................ A-4 

B.3.1. Mass fraction uncertainty .............................................................................................. A-5 

B.3.2. Temperature uncertainty............................................................................................... A-7 

 

Appendix C. Enthalpy of Solution of Aqueous Methylpiperidine Solutions ........................................ A-9 

C.1. CO2/(H2O+2-Methylpiperidine) System ................................................................................ A-9 

C.2. CO2/(H2O+4-Methylpiperidine) System .............................................................................. A-11  

UNIVERSITAT ROVIRA I VIRGILI 
EXPERIMENTAL AND THEORETICAL STUDY OF SOLUBILITY OF NEW ABSORBENTS IN NATURAL REFRIGERANTS. 
Javier Mesones Mora 
Dipòsit Legal: T 1549-2014



Chapter 1. Introduction, Justification and Objectives 

  1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Throughout history and especially since the beginning of the industrial revolution, the use of 

energy in new and different areas has determined a socio-economic, technological and cultural 

transformation and evolution of the society. In the current world, the energy is so integrated in our 

life that we hardly notice its presence and the society has become critically dependent of its use. 

While taking hot shower every morning, using gas for cooking, electricity in our homes or petrol in 

our cars, we consume energy; also all the elements of common use are fabricated in factories 

which consume energy.  

The energy situation in the world has changed a lot in the last century. In the past 20 years the 

energy consumption has been doubled, mainly due to the evolution of the developing countries 

and the unceasing growth of the world population and economy, and the studies performed 

indicate that the need of energy will continue increasing at a similar rate. 
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The International Energy Outlook (2013) projects that world energy consumption will grow a 

56 % between 2010 and 2040. While in 2010 the total world energy consumption was 524 

quadrillion Btu, the prediction for the year 2020 is 630 quadrillion Btu and this amount is predicted 

to rise up to 820 quadrillion Btu in 2040 (figure 1.1). Most of the growth of the world energy 

consumption occurs in the non-OECD countries, where demand is driven by strong long-term 

economic growth and the restrictions in legislation and policies for energy saving are much less 

restrictive. While the use of energy in non-OECD countries increases by 90 %; in OECD countries, 

the increase is 17 %. 

    

 

    

As a result, the world energy consumption from all fuel sources (figure 1.2) will continue 

increasing in the next years, even at a higher rate than the actual. Fossil fuels (petroleum, coal, or 

natural gas) will continue supplying most of the worldwide energy, being liquid fuels, which are 

mostly petroleum-based, the largest source of energy used (mainly in transport and industrial 

sectors). Renewable and nuclear energy are the energy sources which will reach the fastest 

growing rate, compared with the current rates. The renewables share of total energy use rises 

from 11 % in 2010 to 15 % in 2040, and the nuclear share grows from 5 % to 7 %.  

Considering that the electrical energy is a secondary energy source produced, its demand is 

directly related with the consumption of primary energy sources (fossil fuels, nuclear or renewable 

energies). The total net electricity generated is expected to increase a 93 % in 2040 (IEO 2013). In 

OECD countries, where electricity markets are well established and consumption markets are 

mature, the growth of electricity demand presents an average of 1.1 % per year from 2010 to 

Figure 1.1. World energy consumption,  

1990-2040, Quadrillion Btu. 

(EIA,IEO2013) 

 

Figure 1.2. World energy consumption 

 by fuel type, 1990-2040. Quadrillion Btu 

(EIA,IEO2013) 
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2040. This value is lower than in the non-OECD countries (excluding Asia), where is expected an 

average increase of 3.1 % per year (figure 1.3). 

        

 

 

As it can be seen in figure 1.4, although the use of coal is, and is expected to be (though could 

be altered in future policies or international agreements), the largest source of world power 

generation through 2040, the use of renewable energy supposes the fastest growing source of 

electricity generation, at 2.8 % per year, followed by natural gas and nuclear energy with a 2.5 %.  

Many organizations state that there exists a direct relationship between the continuous 

increasing emissions of CO2 coming from fossil fuels (figure 1.5) as a consequence of the increasing 

energy consumption, and global warming or climate change. For this reason, from the last decade, 

the union of the high fossil prices, the increasing concern about the security of energy supplies and 

the environmental consequences of greenhouse gas emissions, have encouraged a boost in 

government policies focused on the development and sustained use of renewable energy sources. 

Coal, main source of the energy produced, is the fossil fuel which contributes maximum to the 

total world carbon dioxide emissions, representing 44 % in 2010, involving emissions from liquid 

fuels and natural gas 36 % and 22 % respectively. However, the emissions of CO2 vary depending if 

the countries belong to OECD or not. As can be observed in figure 1.6, non-OECD countries present 

higher emissions with a higher increase per year than OECD countries. While OECD emissions 

increase only a 0.2 % per year on average, non-OECD emissions increase by an average of 1.9 %. 

Figure 1.3. OECD and non-OECD net 

electricity generation 1990-2040.  

Trillion kilowatthours. (EIA,IEO2013) 

 

Figure 1.4. World net electricity generation 

by fuel, 2010-2040. Trillion kilowatthours, 

(EIA,IEO2013) 
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In 2010, building sector accounted for more than one-fifth of total worldwide consumption of 

delivered energy. This fast growth is a consequence of the global growth in living standards and 

economic conditions, which leads to an increasing demand of services and comfort levels. Building 

represents the most energy consuming sector of OECD Europe, with about 40 % of total final 

energy requirements in 2010, of which 27 % corresponds to residential and 13% to services or 

tertiary sector (offices, health sector, education, restaurants, etc). Transport 32 %, industry 25 % 

and agriculture 2 % represent the rest of the consuming sectors (Energy Efficiency Status Report 

2012). 

  

Figure 1.7. European energy consumption breakdown into sectors, 2010 (EESR 2012) 

Every year the number of appliances, lighting, cooling and heating increases in buildings and, 

though they are each time more efficient, they are used more often and for longer periods and 

Figure 1.5. World carbon dioxide emissions 

by fuel type, 1990-2040. Billion metric tons. 

(EIA,IEO2013) 

 

Figure 1.6. OECD and non-OECD world CO2 

emissions by fuel type, 1990-2040.  

Billion metric tons. (EIA,IEO2013) 
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hence every year more energy is required. Electricity supposes the main energy use in residential 

and commercial buildings, rising in OECD Europe by an annual average rate of 1.4 % and 5.4 % 

respectively (figure 1.8 and 1.9). 

    

 

 

From the last decade, a wide array of measures has been adopted at EU level and 

implemented across individual Member States to actively promote better energy performance of 

buildings. As a result, the energy consumption in the building sector has increased only around 

0.6% per year in households and 1.5 % per year in the tertiary sector since 1990 (Energy Efficiency 

Trends in Buildings in the EU 2012).  

In buildings, one of the elements that requires more electrical energy is the refrigeration 

based on mechanical vapour compression technology. Under this pretext, the increasing interest in 

protecting the environment and saving energy has favoured the use of absorption chillers, whose 

requirements in electricity are much lower and are driven by thermal energy and environmental 

friendly working fluids.  

  

Figure 1.8. OECD Europe residential energy 

consumption. Quadrillion Btu 

(EIA,IEO2013) 

 

Figure 1.9. OECD Europe commercial energy 

consumption. Quadrillion Btu 

(EIA,IEO2013) 
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Most of the industrial processes use thermal energy by burning fossil fuel to produce steam or 

heat for the purpose and after the process heat is rejected to the surrounding as waste. By using a 

heat operated refrigeration system, like an absorption refrigeration cycle, this waste heat can be 

used to drive a refrigeration system. 

The origin of absorption refrigeration cycles can be situated in 1755 when William Cullen 

observed that, regardless of the environmental conditions, ice could be produced by evaporating 

volatile liquids. From its experiments he published a paper called Essay on Cold Produced by 

Evaporating Fluids in which at a given temperature of 6 °C a jar filled with ether was placed inside 

another jar, slightly larger, that contained water. The pressure was decreased to vacuum to force 

the evaporation of the nitrous ether, which has a higher volatility (boiling point of 17 °C), absorbing 

thermal energy from water. As a result, almost all the water was found frozen. Few years later, 

other researchers Gerald Nairne in year 1777 and John Leslie in 1810 carried out similar 

experiments based on the same principle using water and sulphuric acid to obtain ice. 

The first absorption refrigeration cycle, with water/ammonia as working fluid was introduced 

by Ferdinand Carre in 1859 and was used in the following years as a base design in the absorption 

refrigeration development. In 1950’s a system using lithium bromide/water as working fluid was 

introduced for air-conditioning and industrial applications. Years later, the double-effect absorption 

system was introduced as improvement in the performance of the refrigeration cycle. 

Absorption refrigeration systems use thermal energy as the driving energy, instead of electrical 

or mechanical power required for conventional vapour compression devices, therefore the 

electricity required is drastically reduced. Additionally, the use of absorption refrigeration systems 

helps to reduce problems related to global environment like the so called greenhouse effect due to 

CO2 emissions from the combustion of fossil fuels in utility power plants. The working fluids used in 

the absorption refrigeration cycles differ from classical vapour compression systems. While vapour 

compression systems use refrigerants such as hydrofluorocarbons (HFCs) because of their 

thermophysical properties, the absorption refrigeration cycles uses natural refrigerants such as 

water, ammonia and salts as absorbents. 
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Some advantages of absorption cycles in front of compression systems are listed in the 

following table: 

Table 1.1. Comparison between absorption and compression systems 

Absorption Systems Compression Systems 

Low grade energy like heat,  

which can proceed from solar energy. 
High grade energy like electricity. 

Initial capital cost of installation is higher but 

operation is cheaper. 

Cost of the entire system is cheaper but operation 

is much more expensive. 

Typical refrigerants used are green and cheap. 
Halocarbons used as refrigerants as expensive and 

produce greenhouse effect. 

Lower efficiency. 

Coefficient of performance ≈ 0.5-1.5. 

Higher efficiency. 

Coefficient of performance ≈ 4.5-5.5. 

Overall system is larger due to the dimensions of 

absorber and generator 
Lower system dimensions. 

Higher reliability and durability.   

Moving parts are only in the pump.  

Smooth operation. 

Moving parts are in the compressor.  

More wear, tear and noise. 

The system can work on lower evaporator pressures 

without affecting COP. 

The COP decreases considerably with decrease in 

evaporator pressure. 

No effect of reducing the load on performance. Performance adversely affected at partial loads. 

Liquid traces of refrigerant present in piping at the 

exit of evaporator constitute no danger. 

Liquid traces in suction line may damage the 

compressor. 

Although absorption systems are a good alternative due to all the above described advantages, 

they still have some important drawbacks such as high cost and low efficiency compared to the 

vapour compression systems, which still dominate all market sectors. Absorption systems are only 

preferable from the energetic point of view if they use thermal energy from sources such as waste 

heat, cogeneration or even solar thermal energy. Furthermore, these systems are recommended 

where electricity is unreliable or costly and where the noise and vibrations from the compressor 

are not admissible. Consequently, in order to promote the use of absorption systems, current 

efforts are focussed in the improvement of their characteristics and performance. 
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As it can be observed in figure 1.10, single-stage absorption refrigeration systems are similar to 

mechanical vapour compression systems. Basically, the difference lies in the procedure of fluid 

compression from low to high pressure. The mechanical compressor is replaced by a chemical 

compressor, which is composed of absorber, pump, generator and expansion valve. 

Condenser Generator

Solution 
Heat Exchanger

Evaporator Absorber

Chemical Compressor

Heat in

Heat out

Heat out

Cooling effect

Heat in

Refrigerant

Refrigerant
+

Absorbent

Refrigerant

 

Figure 1.10. Schematic diagram of absorption Refrigeration cycle 

The absorber is a heat exchanger in which the refrigerant in vapour phase is absorbed by a 

highly concentrated liquid solution called as absorbent. As the absorption produces an exothermic 

reaction, the temperature of the absorber is dissipated and controlled by means induced air or 

cooling water. The solution diluted in refrigerant is pumped from low pressure to the generator at 

high pressure with the advantage that requires much less energy to pressurize it than a 

compressor, reducing drastically the electricity requirements for the cycle operation. The 

generator is another heat exchanger in which the refrigerant evaporated and desorbed from the 

solution by applying thermal energy. This is the so called activation energy of the cycle. The 

remaining solution highly concentrated in absorbent is returned to the absorber at low pressure by 

means an expansion valve, closing thus the refrigerant/absorbent solution cycle in the chemical 

compressor.  
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Between the absorber and the generator, in many cases there is another heat exchanger 

installed which allows the solution from the absorber to be preheated before entering the 

generator by  the hot solution leaving the generator. Therefore, the coefficient of performance is 

improved as the heat input at the generator is reduced. Moreover, the size of the absorber can be 

reduced as less heat is rejected. The rest of the elements, evaporator and condenser have the 

same role functions as in vapour compression cycles: in the condenser the refrigerant at high 

pressure changes from vapour phase to liquid phase by releasing thermal energy, then, the 

pressure is decreased to low pressure by an expansion valve.  In the evaporator the refrigerant at 

low pressure is evaporated by absorbing heat from the fluid or medium where the cooling effect is 

produced. The high and low pressures of the cycle are determined by the condensation and 

evaporation saturation temperature respectively. 

The coefficient of performance (COP) is a common measure of the efficiency of a refrigeration 

cycle. It’s defined as the ratio of cooling power produced (QE) to the energy input in the system 

(QG) plus the pump consumption (W) (eq. 1.1).  

      
  

    
                                                                       (1.1  

 As the work input of the pump is very small as compared to the thermal energy input in the 

generator, the consumption of the pump is sometimes neglected for the calculation of the COP. 

 

Absorption refrigeration systems are classified depending upon the different aspects: 

 Heat dissipation technology 

Water-cooled systems: Uses water cooling tower to dissipate the heat released in the absorber 

(due to the exothermic reaction produced) and in the condensation process of the refrigerant. This 

method is restricted to industrial or commercial applications.  

Air-cooled systems: Uses induced air currents to perform the heat dissipation in the absorber 

and condenser. 
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 Source of heat activation  

Direct-fired systems: The absorption system is activated by an integrated burner with the 

flame being in direct contact with the generator. Natural gas is the most used fuel. 

Indirect-fired systems: The generator is heated by means of a fluid at high temperature such as 

steam, thermal oil or exhaust gases coming from combustion, solar thermal collectors or industrial 

processes. 

 Number of activation stages 

Single effect absorption systems: These are the simplest and basic systems. The configuration 

is the explained in section 1.2.2, obtaining coefficients of performance between 0.6 - 0.7 in the 

most favourable conditions. They require low temperatures of activation, from (85-90) °C 

depending of the working fluids used. 

Double-effect absorption systems: Systems activated by two generators suppose an 

improvement in the performance of the cycle with requirements of heat sources > 150 °C. They are 

used with H2O/LiBr as working fluids obtaining COP of 1 - 1.2. 

Triple-effect absorption systems: These systems are currently developed as prototypes to 

make use of thermal sources at high temperature (> 200 °C), achieving coefficients of performance 

up to 1.7. At the temperatures reached in the cycle, conventional working fluid H2O/LiBr presents 

problems of decomposition. To overcome this problem, new absorbents such as the so called 

alkitrate aqueous solution (LiNO3+KNO3+NaNO3) are studied due to its thermal stability at high 

temperatures. 

GAX absorption systems: In these systems the cycle is activated by only one generator, like 

single effect systems. However, the absorber and generator are divided in two sections. In the low 

temperature absorber section the heat released by the absorption process is rejected to 

surroundings and in the high temperature absorber section the heat released is used to preheat 

the solution entering the generator. They are used with NH3/H2O working fluids at temperatures of 

activation > 160 °C with coefficients of performance of 1.0. 
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The overall performance of absorption refrigeration systems is strongly dependent on the 

physic-chemical properties of the working fluids. The working fluid in an absorption refrigeration 

system is a solution consisting of refrigerant and absorbent. The refrigerant is a volatile fluid and 

the absorbent can be another fluid or a solution in which the solute is a non-volatile inorganic salt 

and the solvent is the same fluid as the refrigerant. The fundamental requirements for a proper 

absorbent/refrigerant combination are as follows:  

- In liquid phase, the absorbent/refrigerant must have a margin of miscibility within the 

operating temperature range of the cycle. 

- At the same pressure, the difference between the boiling points of pure refrigerant and the 

solution must be as large as possible. 

- The refrigerant must have a high heat of vaporisation and high composition within the 

absorbent to maintain low circulation rate between the generator and the absorber per unit of 

cooling capacity. 

- Transport properties, which determine the heat and mass transfer, such as viscosity, thermal 

conductivity or diffusion coefficient, should be favourable. 

- If the absorbent is composed by a salt, its solubility has to be good enough to avoid 

crystallisation at working temperatures and salt compositions. 

- The solution refrigerant/absorbent should be chemically stable, non-toxic, non-corrosive, and 

environmental friendly. 

Many mixtures have been proposed as working fluids over the last 50 years (Macriss et al., 

1988), however only commercial systems based on H2O/LiBr for air conditioning and NH3/H2O for 

industrial refrigeration are used nowadays.  

 

In H2O/LiBr systems, water is the refrigerant and lithium bromide is the absorbent, which 

performs an excellent absorbance of water due to the strong association of lithium ion Li+ with the 

water molecules (highly hygroscopic).  
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The main advantage of these systems is the high latent heat and the excellent environmental 

and toxicity properties that water presents, as well as the negligible vapour pressure, low viscosity 

and non-toxicity of the LiBr solution. 

However they present some drawbacks such the necessity to work at vacuum conditions. For 

example, at typical operating conditions of absorption chillers for air-conditioning applications the 

low pressure is only 0.680 kPa for water evaporation temperature of 1.5 °C and the higher pressure 

corresponds to 7.35 kPa for a condensing temperature of 40 °C (Herold et al., 1996). Also, at high 

compositions the absorbent solution is close to crystallization. At the outlet of the solution/solution 

heat exchanger, before entering the absorber, there exists a high risk of crystallization due to the 

unfavourable temperature/composition ratio, i.e. low temperature and high salt composition. 

Additionally, the equipment large dimensions due to vacuum operation, the lithium bromide 

solution is corrosive to some metals and since the refrigerant is water, the minimum possible 

chilled water temperature at its lowest is about 1.5 °C, what limits the application of H2O/LiBr 

absorption chillers from being used for air-conditioning uses. These systems require water cooling 

tower for heat dissipation in the absorber (wet dissipation) in an interval of 25-30 °C with no 

possibility to perform it by atmospheric air (dry dissipation).  Air cooled absorbers could be a big 

improvement in H2O/LiBr absorption systems for the non-necessity of cooling towers, but its 

utilisation is restricted due to the poor heat transfer of air that leads to higher heat exchange areas 

and temperatures up to (40-45) °C, what attached to a constant low pressure entails to an increase 

in the salt composition and hence crystallisation of the mixture. 

Nevertheless, absorption systems operated with this working fluid allows high energy and 

economic efficiency using simple and compact equipment. Current technology of water/lithium 

bromide absorption systems is based on double effect machines activated by direct flame. They are 

used mainly for medium and high power charges such as industry, hospitals, offices or big 

buildings, with production of cold water at temperatures of (7-12) °C for fan-coils and (14-18) °C 

for cold roofs.  

 

In NH3/H2O absorption systems, ammonia is the refrigerant and water is the absorbent. The 

most advantage of these systems is that they can provide chilled temperatures down to -40 °C. 

Unlike water/lithium bromide systems, ammonia/water absorption systems work with pressure 
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conditions (e.g. low pressure corresponds to 2.9 bar for NH3 evaporation temperature of -10 °C 

and high pressure is 15.6 bar for a condensing temperature of 40 °C) which means equipment with 

smaller dimensions. Another advantage of working with water as absorbent is the absence of 

crystallization problems.  

 Nonetheless, they also present some drawbacks: due to the significant vapour pressure of 

water, part is evaporated when the ammonia/water solution is heated in the generator. To avoid 

the presence of water in the condenser and evaporator, the installation of a rectifier column after 

the generator is required to separate the water from the solution by water condensation, 

supposing a decrease in the energy efficiency of the cycle and limits the cooling capacity. There are 

also other drawbacks of ammonia such as the high temperature of activation required, its toxicity 

and flammability.  

 The commercial uses of ammonia/water machines are limited to industrial refrigeration or 

low power air-conditioning units (18 kW) of single-effect or GAX, direct flame and air-cooled 

systems for air-conditioning applications. 

 

Conventional refrigerant/absorbent fluids H2O/LiBr and NH3/H2O have been used for many 

years in commercial absorption systems for air-conditioning and refrigeration applications 

respectively. However, as explained in the previous section, they present drawbacks that have 

promoted research efforts focussed in the improvement of their characteristics, performance and 

applicability. The use of new absorbents such as LiNO3 or NaSCN for systems with ammonia as 

refrigerant allows the non-necessity of rectification and the capacity to operate with solar thermal 

energy as activation energy (Libotean, 2007, Infante Ferreira, 1984). Also, other alternative 

includes the use of NaOH as additive to reduce the necessity of rectification (Steiu et al., 2008, 

2009, 2011). In case of absorption systems with water as refrigerant, the use of additives such as 

ethylenegylcol, ethanolamine or lithium based salts (LiNO3, LiI) improves the solubility of the LiBr 

solution, inhibiting crystallization and making it capable to work with air-cooled absorbers (Kim et 

al., 1996; Koo et al, 1999). Additionally, the use of CO2 as refrigerant and ionic liquids, alcohols or 

amines as absorbents has been proposed by some authors to be an alternative to conventional 

absorption systems, obtaining good efficiencies in conventional and absorption/desorption cycles 

(Sen and Paolucci, 2006; Jones, 2002; Jones, NASA, 2004).  
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In the next sections are explained in detail these new mixtures, divided by the three different 

refrigerants studied. 

 

Absorption refrigeration systems based on NH3/LiNO3 and NH3/NaSCN as working fluids have 

been established in literature as a good alternative to the classical ammonia/water systems 

(Libotean, 2007, Infante Ferreira, 1984; Rivera and Rivera, 2003; Abdulateef et al., 2008,). The most 

important features of these new mixtures are that they allow activating the system with lower 

temperatures, which permits to use low grade waste heat or solar energy as thermal energy source 

by using flat plate collectors (FPC) or evacuated tube collectors (ETC), obtaining temperatures of 

(40-80) °C and (70-120) °C respectively (Montero, 2012); and, due to the non-volatility of the salt 

the necessity of rectifier is avoided because only ammonia is present in vapour phase, making the 

system smaller and cheaper. 

While single-effect ammonia/water systems require generation temperatures higher than 

115°C to achieve refrigeration temperatures of -10 °C, the temperatures required in 

ammonia/lithium nitrate and ammonia sodium thiocyanate systems for obtaining the same 

refrigeration temperatures are 90 °C and 100 °C respectively (Infante Ferreira, 1984). Additionally, 

the lower working temperatures allow the use of plate heat exchangers, which results in more 

compact equipment (Zacarías, 2009). These systems also present a slight improvement in the 

coefficient of performance regarding conventional ammonia/water system (Sun, 1998). The 

advantages of using the NH3/NaSCN or NH3/LiNO3 cycles are very similar but they present some 

problems such as high viscosity, which limits heat and mass transfer processes in the absorber 

(Amaris et al., 2014) or even in the case of NH3/NaSCN, the cycle cannot operate below -10 °C 

evaporator temperature because of the possibility of crystallization (Sun, 1998). 

Another alternative to improve the performance of absorption NH3/H2O systems is the 

addition of a third component to the mixture. Reiner and Zaltash (1991, 1992, 1993) studied 

different compounds to reduce the necessity of rectification and observed that LiBr, LiCl or LiNO3 

strengthen ammonia-water attraction, making absorption easier, and hydroxides such as LiOH or 

KOH weakens their attraction, obtaining a higher composition of ammonia in vapour phase. In this 

way, Steiu et al. (2008, 2009, 2011) studied the performance of absorption cycles by adding NaOH 

to the absorbent. As a result, the ammonia composition in vapour phase leaving the generator is 
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increased, diminishing the need of rectification in the process. The addition of NaOH also reduces 

the boiling temperature regarding the binary solution, which it is translated in a lower temperature 

needed in the generator and an increase in the COP of the cycle. However, due to the fact that the 

presence of sodium hydroxide worsens the absorption of ammonia, it is necessary to introduce a 

reverse osmosis separation system to prevent that the hydroxyl arrives to the absorber. 

 

In H2O/LiBr absorption systems, the major drawbacks of working fluid pair H2O/LiBr are the 

corrosive nature of lithium bromide and the crystallization risk that presents the solution at high 

salt compositions. To overcome these problems some authors studied the addition of inorganic 

compounds to improve the solubility. Some examples are the mixture H2O/LiBr+Ethylene 

gylcol+Phenylmethylcarbinol developed by Carrier, using ethylene glycol as crystallisation inhibitor 

and Phenylmethylcarbinol as heat and mass transfer enhancer; or H2O/LiBr+Ethanolamine 

(Rockenfeller and Langeliers 1988; Kim et al., 1996) in which further studies of heat and mass 

transfer need to be carried out to analyse the performance. Other proposed working fluids to 

improve solubility and another thermodynamic properties are based on the addition of lithium 

salts such as H2O/(LiBr+LiI), H2O/(LiBr+LiNO3) (Iyoki et al., 1993), H2O/(LiBr+LiI+LiCl) (Koo and Lee, 

1998), or H2O/(LiBr+LiNO3+LiI+LiCl) (Koo et al, 1999), where lithium iodide decreases crystallisation 

temperature, lithium nitrate improves both solubility and corrosion and lithium chloride reduces 

vapour pressure without altering the performance of the cycle.  

 

The use of CO2 as refrigerant has been successfully used from few years ago in vapour-

compression refrigeration systems as an option to overcome the security problems that presents 

ammonia. Carbon dioxide is environmental friendly, it has non-toxicity, non-flammability and 

additionally low cost. Due to its very low evaporation point (-57 °C) can provide very low 

temperatures of refrigeration, making it excellent for cryogenic uses. Also, as the volumetric 

relation of the CO2 as compared to ammonia is 10:1, the dimensions of the equipment and the 

amount of refrigerant required are lower. 
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Nevertheless, though its properties make it a promising fluid, CO2 has not been used so far as 

refrigerant in absorption refrigeration cycles; it has only been done proposals of suitable 

absorbents and its integration in the absorption systems (Klocker et al, 2001; Zhang and Lior, 

2007). Some authors have studied the use of CO2 in conventional absorption systems using ionic 

liquids as absorbents (Martín and Bermejo, 2010, Sen and Paolucci, 2006), alcohols or amines 

(Jones, 2002). Also it has been studied the use of alcohols or amines as absorbents in 

absorption/desorption cycles called “champagne heat pumps”, where the absorber and generator 

are the only components of the system (Jones, NASA, 2004). These systems can provide proper 

performances with working pressures from 40 bar to 100 bar to provide cooling to about 4 °C.  

 

The knowledge of thermophysical properties of the working fluids is essential to design and 

evaluate the efficiency of absorption refrigeration systems. In particular, the knowledge of the 

solubility of absorbents consisting in single salts or multicomponent salt mixtures in the refrigerant 

plays a critical role because they present a partial solubility that impose restrictions in the 

operability and applications of the refrigeration systems, limiting the working conditions in order to 

avoid crystallization of the solution refrigerant/absorbent. The higher crystallisation risk occurs 

before returning the solution into the absorber because is where the relation 

temperature/composition is the most unfavourable of the cycle: the solution has high salt 

composition and low temperature. 

In this context, the overall objective of this study is to perform an experimental and theoretical 

study of the solubility of the new absorbents in natural refrigerants (H2O, NH3 and CO2) as 

alternative of H2O/LiBr and NH3/H2O absorption systems: 

 For absorption systems with NH3 as refrigerant it will be studied the solubility temperature 

(temperature in which is completely dissolved a fixed composition of the solution under study) 

of mixtures NH3/LiNO3 and NH3/NaSCN, because the solubility data available in literature is 

scarce, very old and without reported working pressure. For NH3/NaSCN only is presented a 

phase diagram, no experimental data is tabulated. Additionally, for NH3/(H2O+NaOH) no 

solubility data of NaOH in ammonia+water were found in literature. 

 For absorption systems with H2O as refrigerant it will be made an extension of the solubility 

study carried out by Koo et al. (1999) with the H2O/(LiBr+LiNO3+LiI+LiCl) mixture. It will be 
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optimized the ratio of salts in order to improve the solubility at higher absorbent compositions 

than presented in literature. 

 On the other hand, it will be studied a flow-calorimetric methodology to measure the solubility 

limit of CO2 in amines. This technique allows the simultaneous determination of the enthalpies 

of solution and solubility limits. Specifically it will be used 2-Methylpiperydine and 4-

Methylpiperydine solutions because there is no data published in literature. In process of CO2 

capture they present liquid-liquid phase separation at a specific temperature and CO2 

composition that allows separation of the amine from water + carbon dioxide solution, 

diminishing the energy requirements in the amine recuperation process (Coulier et al., 2010). 

(Work carried out in Institute of Chemistry of Clermont-Ferrand, France). 

 

To success with the main objectives of this work, the followings tasks will be carried out: 

 Design and build an experimental device based on the visual-polythermal methodology to 

measure the solubility temperature of salts in ammonia at moderate-high pressure. 

 Develop a methodology for sample preparation in order to work under pressure conditions. 

 Validate the experimental device and methodology with H2O/LiNO3 system at atmospheric 

pressure and NH3/LiNO3 system at 20 bar (also for providing new data to literature). 

 Measurement of solubility temperature NH3/NaSCN and NH3/(H2O+NaOH) at different salt 

compositions. 

 Development of a new image processing methodology to provide an objective criterion in the 

solubility measurements. 

 Solubility modelling of H2O/LiNO3, NH3/LiNO3, and NH3/NaSCN systems in order to provide a 

theoretical study of solubility and a comparison of the modelling procedure for aqueous or 

non-aqueous solvents. 

 Solubility temperature measurements, using a rough technique, of the different mole ratios 

LiNO3/LiBr, LiI/LiNO3 and LiCl/Li in the systems H2O/(LiBr+LiNO3), H2O/(LiBr+LiNO3+LiI) and 

H2O/(LiBr+ LiNO3+LiI+LiCl) respectively, at total salt mass fractions from 0.65 to 0.69, in order 

to obtain the ratio with lower solubility temperature at higher composition than studied in 

literature. 
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 Measurement in a glass solubility cell based visual-polythermal method (but simpler due to 

atmospheric pressure conditions) the solubility temperature of the obtained optimum solution 

of lithium salts in water in a wide range of salt composition. 

 Vapour pressure modelling of the optimum solution of lithium salts obtained in order to 

analyse the effect of the addition of lithium chloride in the vapour pressure. 

 Comprehensive study of flow-calorimetric methodology to measure solubility limit of CO2 in 

methylpiperydine aqueous solutions. 

 Study of the uncertainties associated to the experimental measurements. 

 

The methodology followed to reach  the objectives listed previously is presented in the 

different chapters that form this thesis: 

In Chapter 2 it is studied the solubility of working fluids of absorption refrigeration systems 

with ammonia as refrigerant. First, the design and methodology of a new experimental device is 

described, based in the visual-polythermal method, to determine the solubility of salts in ammonia 

at moderate-high pressure to maintain ammonia in liquid phase. It presents the experimental 

measurements of solubility temperature in a wide range of absorbent composition for the systems: 

H2O/LiNO3 for device validation at atmospheric pressure, NH3/LiNO3 for providing new useful data 

and device validation under pressure, and NH3/NaSCN systems to provide also new accurate data 

to literature. Additionally, it is presented a new image processing method with Matlab software, 

based on the analysis of the images taken from the inner of the cell with a digital camera, in order 

to provide an objective criterion in the solubility temperature determination.  

On the other hand, it is also measured the solubility temperature of sodium hydroxide in the 

ternary system NH3/(H2O+NaOH). However, for a certain composition of ammonia and water, 

sodium hydroxide presents a composition that represents its solubility limit in the solution that 

causes the impossibility to dissolve it by increasing temperature. For this reason, the solubility 

temperature curve as a function of sodium hydroxide composition could not be performed as 

usual, instead, the maximum ammonia composition which allows a constant composition of salt in 

the water + salt solution without salt precipitation was measured.  
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Chapter 3 presents the solubility modelling of the H2O/LiNO3, NH3/LiNO3 and NH3/NaSCN 

systems, carried out by means of solid-liquid equilibrium and the activity coefficient models 

LIQUAC (J. Li et al., 1994) for water solvents and Symmetric Electrolyte-NRTL (Song and Chen, 

2009) for ammonia solvents. It is also presented the differences in the modelling procedure when 

is used aqueous or non-aqueous solvents. Aqueous solvents allow the use of a rigorous method 

based on the calculation of the Gibbs free energy that avoids the use of experimental solubility 

data. However, for systems with ammonia as solvent the required thermodynamic properties are 

not available and it is required the use of experimental solubility data for the modelling.   

In chapter 4 is presented the experimental measurement of solubility temperature of a new 

working fluid with water as refrigerant and lithium salts as absorbent. Based on the previous 

studies of Koo et al. (1999) it is analysed by a rough visual-polythermal method how the addition of 

lithium salts (LiNO3, LiI and LiCl) at different mole salt ratios and mass fractions from 0.65 to 0.69, 

affects to the solubility of H2O/LiBr, with the aim to achieve an optimum ratio that obtains a 

minimum solubility temperature, making it compatible for air-cooled absorbers. The solubility of 

the resulting optimum mixture is measured with a glass solubility cell in a wide range of absorbent 

compositions. Finally, the vapour pressure of the optimum mixture obtained is modelled in order 

to analyse if lithium chloride, as reported in literature, decreases the vapour pressure of the 

solution and if this effect really justifies its use. 

In chapter 5 it is studied the solubility of working fluids with carbon dioxide as refrigerant and 

amines as absorbent. It is measured the solubility limit of CO2 in aqueous solutions of 2-

methylpiperidine and 4-methylpiperidine with flow-calorimetric methodology by means of the 

determination of the enthalpy of solution of the mixture. The main purpose of these experiments 

lies in the study of other methodology to measure solubility limit of gases into absorbents. 

Finally, in Chapter 6 there are presented the conclusions of this thesis and the proposed future 

work. 
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Systems based on NH3/LiNO3 and NH3/NaSCN working pairs can be activated at lower 

temperature heat sources than the ammonia/water systems at the same working conditions, what 

permits the use of solar thermal energy or low grade waste heat. Also, due to non-volatility of the 

salt, the necessity of rectification is avoided. On the other hand, the use of additives like NaOH to 

the conventional ammonia/water system increases the composition of ammonia in vapour phase 

at the outlet of the generator, reducing the necessity of rectification in the process. 

The study of the solubility of these systems is an important task to establish the optimum 

composition and temperatures of the solution in the system in order to maximize the efficiency of 

the cycle avoiding crystallization of the solution before returning to the absorber, where the 

relation composition/temperature is the most unfavourable, as explained in Chapter 1.  

Experimental solubility data of LiNO3, NaSCN and (NaOH + H2O) in ammonia available the 

literature is scarce, old and incomplete. Tsimbalist et al. (1983) studied the solubility of LiNO3 in 
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NH3 by isothermal method (no more details were given) at 278.15 K, 288.15 K, 298.15 K and 308.15 

K, which corresponded to salt mass fractions  0.6175, 0.6955, 0.7090 and 0.7225 respectively, with 

no data of working pressure specified. Portnow and Dwilewitch (1937) also reported the solubility 

of the same mixture in all the range of salt compositions, with no data of the working pressure in 

the measurements. Blytas and Daniels (1962) measured the solubility of NaSCN in NH3 by visual-

polythermal method in all the range of ammonia composition but no experimental data was 

tabulated and the working pressure of the experiments was also not indicated. For the system 

NH3/(H2O+NaOH) no results of solubility of sodium hydroxide in water + ammonia solutions were 

found in literature. 

In this study, the experimental measurement of solubility of LiNO3, NaSCN and aqueous 

solutions of NaOH in liquid ammonia has been done in order to provide new useful data to 

literature, giving details of operating conditions and working pressure for maintaining the ammonia 

in liquid phase.  

The solubility measurements have been carried out by means of a new experimental device 

designed and built for this work in GATE-CREVER group, based on visual-polythermal method and 

capable of working at moderate-high pressures.  

The experimental device and methodology have been validated at atmospheric pressure with 

water/lithium nitrate system and at 20 bar with ammonia/lithium nitrate system. Also, an image 

processing treatment has been developed and compared with visual procedure for determining 

the solubility temperature in an attempt to provide a more objective criterion than visual 

detection. 

 

The methodologies for the experimental measurement of solubility are generally divided in 

two categories and its choice depends mainly on the characteristics of the components involved in 

the mixture and the purpose of the measurement: 

 Analytic methods: The solubility is determined by analysing the composition of the saturated 

solution at a fixed pressure and temperature. Allow the determination of tie lines but presents 

technical problems and is more complex. 
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 Synthetic methods: A known composition mixture is prepared and the dependence of the 

phase behaviour with pressure and temperature is determined. They are suitable for 

determining phase boundaries. 

Likewise, the experimental solubility can be carried out by two different methodologies: 

 Isothermal methods: Consists in the determination of the solubility of a system at constant 

temperature, maintaining the solution of known composition oversaturated and with 

continuous stirring, while aliquots of solvent of known mass are added until there solute is 

completely solved. 

 Polythermal method: It is based on the regular heating of an oversaturated solution at constant 

composition of salt and solvent. With constant stirring, the solute is gradually dissolved as 

temperature increases. The temperature at which the last crystal of solute is dissolved 

corresponds to solubility temperature. 

The measurement of the solubility, either polythermal or isothermal method, can be carried 

out by non-visualization or by direct visualization of the experiment. Despite visual methods 

present some limitations of accuracy, they are good and specially appreciated in laboratory work 

due to its simplicity and versatility, but they can also be suitable for quick or complete studies of 

system phase behaviour. 

Considering the characteristics of each of the different alternatives to determinate the 

composition and the solubility of the sample under study, this study has been performed by means 

of the synthetic method to determine the composition of the sample and the visual-polythermal 

method to determine the solubility temperature of the salts in water at constant composition of 

the sample. 

The basis of the solubility determination by polythermal and visual methodology consists in 

the direct visual observation of the dissolution or crystallization of the solute into the solvent by 

means the procedure of heating and cooling the sample respectively.  Since the amount of salt 

decreases when the temperature increases, the solubility temperature of the sample is reached 

when the dissolution of the salt crystal of salt is observed. 
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The design and characteristics of a device built for measuring solubility of salts in ammonia 

under moderate-high pressure conditions becomes more complex than a device designed for 

working with water or low volatile solvents at atmospheric pressure. 

The illumination and observation system is the most critical aspect to take into account when 

the device is developed. It is necessary to install windows of a special material like sapphire to 

resist high pressures. In some devices two windows are placed on opposite sides, one to be used 

for viewing the experiment and the other for illumination. This ensure a very effective visual 

observation (figure 2.1-a) (Pérez, 2007). The problem of these devices is that the pressurization 

system is outside the field of view; thus, part of the volume cannot be observed, causing blind 

volumes where phase change can appear but not be detected.  

Another possibility consists of a device with only one window through which illumination and 

observation of the experiment is done. The pressurization system is located in the opposite side 

thus allowing the observation of the entire volume (figure 2.1-b) (Pérez, 2007).  The experimental 

device used in this work is based in this configuration. 

 

Figure 2.1. Cell configuration types for illumination and observation of solubility measurements under 

pressure conditions. a) Two opposite windows, b) One window (Pérez, 2007) 

The experimental device consists of a stainless steel variable-volume cell with a sapphire 

window in one of its sides through which the illumination and visual observation of the experiment 

is carried out. The other side of the cell is connected to a hydraulic line, which is in turn connected 

to a manual hydraulic pressure generator. The measuring device was designed and built in-house 

based on the design of Pérez (2007).  Figures 2.2 and 2.3 show a diagram and photograph of the 

equilibrium cell and the entire equipment used to measure solubility temperature of salts in liquid 

ammonia or mixtures of ammonia and water, respectively. 
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Figure 2.2. Diagram of the device for solubility temperature determination at moderate-high pressure 

 

 

Figure 2.3. Entire equipment for experimental solubility temperature determination 

 at moderate-high pressure 
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A detailed description of the equilibrium cell, the visual observation system and the 

temperature and pressure control systems is given in the following sections. 

 

The design of the equilibrium cell is the most important factor to consider because it must 

reach a number of requirements to obtain a successful experiment. It must be a watertight 

compartment, must be able to withstand high pressures and temperatures and at the same time 

must have the capacity to vary its internal volume. A small variation in the characteristics of its 

components (such as breakage or incorrect placement of the sealing o-rings) results in the loss of 

the sealing, causing ammonia leaks to the environment or to the hydrostatic line, thus changing the 

composition of the sample and ruining the experiment.  The cylindrical equilibrium cell is built in 

stainless steel to resist high pressures and temperatures, as well as to make it compatible with the 

chemicals used, especially with ammonia. The inner chamber which houses the sample under study 

has a total length of 128 mm with an internal diameter of 14 mm. Figure 2.4 and 2.5 shows a 

photograph and diagram of the equilibrium cell with the different elements that constitutes it. 

 

 Figure 2.4. Equilibrium cell 

  

Figure 2.5. Schematic diagram of equilibrium cell 

A: Sapphire window  

B: EPDM o-ring 

C: Teflon seal  

D: Piston limit  

E: Three-way valve  

F: Pt100 probe 

G: Piston  

H: Magnetic stirrer 
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A movable piston (figure 2.6), also made of stainless steel and fitted with o-rings of ethylene 

propylene diene monomer rubber (EPDM), is used to modify the internal volume of the cell and is 

the responsible of providing the working pressure to the solution by its connection to a hydraulic 

line, which is in turn connected to the manual hydraulic pressure generator (figure 2.2). 

 

Figure 2.6. Movable piston 

The piston dimensions are 30 mm length and diameter 13.7 mm, 0.3 mm narrower than the 

internal diameter of the equilibrium cell. Two EPDM o-rings with measures 10 mm x 2.5 mm, are 

placed in two grooves of 2.1 mm depth with the objective of providing mobility and at the same 

time to isolate the internal chamber of the cell from the hydraulic system to avoid mixing of both 

fluids. A screw is installed at 58 mm from the sapphire window to establish a limit to the piston 

movement and prevent an excess of pressure, which could cause the breakage of the o-rings or the 

sapphire window (figure 2.5-D). Thus, the useful volume of the internal chamber can change from 

15.1 cm3 to 8.9 cm3. 

The visual observation of the experiment is made through a circular sapphire window of 25 

mm diameter (useful visualization diameter 10 mm) and 2mm thickness, which allows pressures up 

to 40 bar. In order to avoid possible ammonia leaks and/or the breakage of sapphire window, the 

window is located between o-rings of EPDM and teflon (2.5 mm x 14.85 mm). 

 The insertion of ammonia and water as well as the extraction of air is done by a three-way 

valve located at the top of the cell. The insertion of salts is done through the opposite side of the 

sapphire window where a screw cap is located. Finally, a scabbard is placed in the cell to allow an 

easy insertion and extraction of the platinum temperature probe Pt100 to prevent its breakage 

when the cell is cleaned. 
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Due to the small dimensions of the sapphire window (10 mm diameter), direct visual 

observation of the experiment is not possible. For this reason, a rigid borescope (Olympus Series 5 

R080-044-000-50) with source light (Olympus ILK-7B) is used.  

A borescope is an optical device consisting of a rigid or flexible tube with an eyepiece on one 

end and a lens on the other. A lens captures the image and transmits it to the eyepiece by an 

optical relay, while surrounding optical fibres transmit light for illumination of remote object. 

Figure 2.7 depicts a typical rigid borescope.  

 

Figure 2.7. Diagram a typical rigid borescope with light source (www.gradientlens.com) 

Instead of observing the experiment directly through the eyepiece, a camera Moticam 2000 

2.0M is connected to the eyepiece in order to allow visualization and recording of the image with a 

personal computer using Moticam Images Plus 2.0 software.  

 

Figure 2.8. Digital camera connected to borescope 
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This configuration also allows the determination of solubility temperature using directly the 

images taken from the camera, with a special processing in Matlab software. Figure 2.9 illustrates 

two examples of images taken from Moticam 2000 camera during dissolution of lithium nitrate in 

ammonia: a) salt in process of dissolution and b) salt completely dissolved. 

 

Figure 2.9. Images of the inside of the equilibrium cell: a) Unsolved NaSCN in ammonia at 20 bar.  

b) Completely solved NaSCN in liquid ammonia at 20 bar 

 

The temperature of the experiments is controlled externally with the thermal bath Julabo F33-

EH (working temperature range between 243 K - 423 K, temperature stability ± 0.03 K and 

resolution ± 0.1 K) by means of recirculation of thermostatic fluid through silicon tube (Øint = 8 mm) 

rolled over the cell and covered by thermal insulator.  

The thermostatic fluid used is an aqueous solution of 85 % ethylene glycol because it provides 

the required range of working temperatures (237-400) K. Temperature is measured by a platinum 

probe Pt100 inserted to the cell through a scabbard and connected to a temperature indicator 

Kosmon PXR-4 with resolution ± 0.1 K. To ensure a correct temperature homogenization and a 

correct distribution and dissolution of the salt, the content of the cell is continuously agitated using 

a magnetic nucleus placed inside the cell and a magnetic stirrer P-Selecta AGIMATIC-N. 

It is important to analyse the temperature homogeneity of the sample because some factors, 

such as the geometry of equilibrium cell or the non-thermostatization of sapphire window, 

generate a temperature gradient in the inner of the cell. Furthermore, since the temperature 

probe is not in direct contact with the sample, there exists a difference of temperature between 

the real temperature and the temperature reading of the probe. Therefore, the homogeneity has 
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been evaluated in the following way: the equilibrium cell is filled with water, a reference 

temperature probe is placed inside through the back of the cell, and the cell is sealed. Next, 

different experiments are carried out in a range of temperatures from 268 K to 353 K, with the 

reference probe placed at three different positions (0.5 cm, 3.5 and 8 cm from sapphire window) 

and constant stirring in the middle of the cell. The maximum temperature difference has been 

determined to be 0.4 K and has been considered in the calculation of the temperature uncertainty. 

The working probe has been calibrated in the same range of temperatures by means of 

quadratic regression of the average reference temperature in the inner of the cell at the two 

positions nearest to the working probe (maximum temperature difference of 0.1 K), and the 

temperature of the working probe. The estimated expanded uncertainty (k = 2) of temperature has 

been determined to be 0.5 K (details in section 2.6.2) 

 

The pressure control system consists of a manual high-pressure generator (HiP model #87-6-5) 

connected to a hydraulic pressurized line with water as hydrostatic fluid. The pressure generator 

can operate at pressures up to 345 bar and has an internal chamber of 60 cm3 which houses the 

hydrostatic fluid and pressurizes it with a piston movement by the rotation of a screw, allowing the 

increasing or decreasing of the pressure.  

       

Figure 2.10. Mechanical scheme of hydraulic pressure generator (HiP specification sheet) 

The hydraulic pressure line is made in stainless steel (external diameter 1/8”) and contains a 

number of accessories which complete the pressure control system (figure 2.11): 

1. Handle 
2. Gland nut 
3. Support set-up 
4. Upper packing washer 
5. Gasket 
6. Lower gasket washer 
7. Axis 
8. Body 
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 Three-way valve V4, which enables on one hand filling up the line with hydrostatic fluid, and on 

the other hand, to make vacuum to purge the air from the hydrostatic line in order to prevent 

the appearance of air bubbles which imply pressure fluctuations. 

 Pressure gauge Baumer with pressure limit up to 40 bars (resolution ± 2 bar) 

 Gate valve V3, which isolates the high-pressure generator and the fluid charging valve from the 

equilibrium cell. 

 Air purge valve V2. 

 

 

Figure 2.11. Elements of the hydraulic pressure line 

The differential pressure between the hydraulic system and the inner of the cell has been 

evaluated by applying hydraulic pressure against atmospheric pressure. The piston was moved 

when the hydraulic pressure applied was approximately between 1 bar and 2 bar higher than 

atmospheric. This differential pressure cannot be considered important, because the objective of 

pressurizing the cell is to maintain the ammonia in liquid phase and the influence of this difference 

of pressure on the solid–liquid equilibrium is negligible. 
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The experimental procedure is divided in four phases: sample preparation and introduction 

into the equilibrium cell, preparation of the pressure system, solubility temperature measurement, 

and sample extraction and cell cleaning. 

 

Lithium nitrate (purity ≥ 0.98) is supplied by Fluka. Sodium thiocyanate (purity ≥ 0.98) is 

supplied by Panreac. Compressed ammonia (purity 0.9998) is supplied by Carburos Metálicos. Milli-

Q water (resistivity lower than 18.2 MΩcm) is used to prepare aqueous solutions. All chemicals are 

used without further purification. The salts are dried in an oven at 373 K for at least 24 h and 

maintained in a desiccator at room temperature before being used. 

 

The solution is constituted by two components: the solute which consists of LiNO3, NaSCN or 

NaOH and the solvent, which can be water (for device validation at atmospheric pressure), 

ammonia or a mixture of both.   

The preparation and insertion of the solute is carried out in the following way: the desired 

mass of salt is taken in a funnel for solids and is introduced through the back of the cell; then, a 

magnetic stirrer and the piston are placed inside and the cell is sealed and closed.  The quantity of 

salt introduced into the cell is determined by mass difference with a balance Mettler AE260 

DeltaRange (resolution ± 0.0001 g). 

The preparation and insertion of the solvent changes depending if the fluid is in liquid phase 

(water) or vapour phase (ammonia): 

a) Water as solvent 

In this case, the desired mass of deionised water is taken in a syringe and is introduced into the 

cell through an injector connected to one side of the three-way valve V1 (figure 2.12). 
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Figure 2.12. Insertion of water into equilibrium cell 

Before introducing water, the cell is cooled to ~283 K in order to stabilize the temperature of 

the solution due to the exothermic reaction produced when water and lithium nitrate are mixed. 

Air is purged from the cell and injector by creating vacuum for 5 minutes to avoid the presence 

of air or death volumes. One side of the three-way valve is connected to the vacuum pump and the 

opposite side is connected to the injector. On the injector orifice is placed a piece of parafilm, then 

valve is opened slowly towards the injector to purge the air from it taking care to avoid breakage of 

the parafilm. When the parafilm starts to deforms the valve is closed and is opened towards the 

vacuum pump for 1 minute. After that, the valve is closed and the vacuum pump is switched off. 

Finally, the syringe is connected to the injector breaking the parafilm and the valve is opened 

towards the syringe to introduce water.  

b) Ammonia as solvent 

In this second case, an auxiliary cylinder is used to contain and introduce into the cell the 

desired amount of ammonia. The cylinder is connected to a line with a coil, which is in turn 

connected to the equilibrium cell and the vacuum pump (figure 2.13).  
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Figure 2.13. Insertion of ammonia into equilibrium cell 

First of all, the air of the equilibrium cell and the coil-line is purged by creating vacuum for 5 

minutes. Next, it is started the procedure of ammonia insertion into the cell. There are three main 

steps for introducing ammonia inside the cell and to determine the amount of ammonia 

introduced:   

 Introduction of ammonia from the cylinder 

To introduce the ammonia into the cell it is necessary to produce a higher vapour pressure in 

the cylinder than the cell. Therefore, the cell is cooled to ~283 K, then the cylinder is heated 

and the coil is partially submerged in liquid nitrogen with a Dewar vessel. Valve V6 (figure 2.13) 

is opened slowly and progressively while valve V1 is opened. Cylinder is heated for 10 minutes 

to ensure that the maximum possible amount of ammonia passes to the cell.  

The low temperature of the cell also helps stabilize the temperature because the mixing of 

ammonia with salts produces also an exothermic reaction.  

 Introduction of the remaining ammonia of the coil-line 

Valve V6 is closed and the Dewar vessel is removed from the coil. The line and coil are heated 

for 3 minutes and then V1 is closed. 

 Introduction of possible ammonia remaining in the line into the cylinder 

With the cylinder at least half covered with liquid nitrogen, valve V6 is opened and the coil-line 

are heated again to assure all possible remaining ammonia returns to the cylinder.  

 

V1 V5 

V6 
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c) Water + Ammonia as solvent 

In the third case, the procedure to introduce both solvents is a mixture of the procedures 

explained previously, therefore the details are omitted here. First, in one side of the three-way 

valve is connected the coil-line which is in turn connected to the cylinder and to vacuum pump. 

Then the air is purged by creating vacuum and the cell is cooled to ~283 K. Next, water is 

introduced from a syringe connected to an injector connected to the other side of the three-way 

valve and ammonia is then introduced from the cylinder. 

The quantities of the solvent, water or ammonia, introduced into the cell are determined by 

mass difference of the syringe or the cylinder by means of the balance Mettler Toledo PR2003 

DeltaRange (precision ± 0.001 g). 

The estimated expanded average uncertainty (k = 2) of mass fraction for systems with water 

and ammonia has been determined to be 0.0002 and 0.002 respectively (details in section 2.6.1) 

 

To avoid pressure fluctuations, it is necessary to purge the air from the hydrostatic line. The 

vacuum pump is connected to one side of the three-way valve V4 and vacuum is generated for 3 

minutes. Since the other side is connected to a tube whereby is introduced water to the circuit, is 

necessary to extract the air from this tube by sequential movement of the three-way valve. Filling 

of the hydrostatic line is carried out by moving the three-way valve towards the tube placed inside 

a vessel with deionized water and turning the screw wheel in anti-clockwise direction. 

 

Once the sample is prepared, in case of working with ammonia as solvent, a fixed pressure is 

set to the desired value and is kept constant along the whole process by means of the high-

pressure generator. For this work, a pressure of 20 bars is set to maintain the ammonia in liquid 

phase.  
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Being the solution oversaturated of salt and continuously stirred, the procedure for 

determining the solubility temperature is described as follows:  

1) Initially the salt presents compacted blocks that require more temperature to be dissolved, for 

this reason first solubility temperature measurement is always higher than the real solubility 

temperature. Hence, a high enough temperature is set until the salt is completely dissolved. 

The temperature at which the solution is dissolved is maintained for 15 minutes to ensure a 

complete dissolution. 

2) Next, a low temperature is set to cool the sample until reaching the complete precipitation of 

the solution at temperature T2. 

3) The temperature is increased to a value 5 K higher than T2 and later in intervals of 2 K until 

complete dissolution in the interval T3-T4 is achieved, waiting 15 minutes between each 

change of temperature to ensure thermal stabilization.  

4) The sample is again cooled by setting a temperature 2 K lower than T2 until the precipitation is 

reached at T4. 

5) Temperature is set to T3 and is increased at intervals of 0.5, 0.2 and 0.1 K progressively as the 

amount and size of the salt decreases, waiting 15 minutes between them to guarantee 

thermal stabilisation. 

6) The temperature in which no crystal is visible in the solution corresponds to the solubility 

temperature. 

7) To assure reproducibility, steps 4-6 are repeated at least two more times. 

 

The method of extracting the solution from the cell varies depending on the solvent used, 

being the procedure carried out in one or another way: 

When an experiment is made with ammonia as solvent, pressure needs to be decreased 

before extracting ammonia by turning the screw counter clockwise. Thus, one end of a flexible tube 

is connected to the three-way valve V1 (fig. 2.13) and the other end is immersed in a bottle filled 

with water. When the valve V1 is opened, ammonia becomes vapour phase, and by pressure 

difference it passes to the bottle with water where is absorbed. Once evacuated most of the 
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ammonia, equilibrium cell is disassembled by the rear cap and the rest of the residue is emptied in 

a proper container.  

On the other hand, when an experiment is performed with water as solvent, the procedure 

consists on the disassembling of the equilibrium cell, extracting the mixture through the rear cap 

and emptying it in the proper container. The equilibrium cell and the piston with o-rings are 

cleaned by means of hot water with soap and acetone, and finally they are dried. 

 

In order to avoid the subjective criterion of the visual method, an image processing has been 

developed using Matlab software (Annex A).  This treatment is based on quantification of the pixel 

colours from the recorded image in the inner of the equilibrium cell, which varies depending 

whether crystals of salt are present or not, and its comparison to the pixel colours of the recorded 

image when the salt is completely dissolved. 

 In this procedure, a blank (base) image is recorded after first complete dissolution of the salt 

in solvent. Next, the procedure is followed as previously explained. Then, multiple images are 

systematically recorded at each temperature change along the experiment. Only red channel from 

RGB (red-green-blue) range of each image is extracted and compared with those of the blank 

image because shows higher contrast between the salt crystals and the cell. The result shows the 

presence of the salt unsolved by means of red pixels (figure 2.14). The stirrer is sent to the end of 

the cell and is stopped when the pictures are taken to avoid the interference in the image 

processing, being only a specific part of the cell bottom analysed. Solubility temperature is 

determined when quantification of red pixels in the resultant image is negligible. 

 

Figure 2.14. Processed sample images: a) Non-solved LiNO3 in water; b) Solved LiNO3 in water. 

UNIVERSITAT ROVIRA I VIRGILI 
EXPERIMENTAL AND THEORETICAL STUDY OF SOLUBILITY OF NEW ABSORBENTS IN NATURAL REFRIGERANTS. 
Javier Mesones Mora 
Dipòsit Legal: T 1549-2014



J. Mesones. Doctoral Thesis. URV. Tarragona 2014 
 

40  
 

Few red pixels always appear in the image but cannot be associated with the presence of salt 

because they also appear in the blank image. Thus, it has been considered the salt completely 

dissolved in solvent when the image has a maximum of 30 red pixels. The choice of this amount of 

pixels has been carried out through empirical deductions. For example, in figure 2.15 the number 

of red pixels, which indicate the presence of salt, are quantified at temperature intervals of 0.1 K, 

for a H2O/LiNO3 mixture with a salt mass fraction of 0.6166. Using the criterion selected, it can be 

concluded from this figure that the temperature at which the salt is dissolved is 323.6 K. Image 

processing was only performed for the H2O/LiNO3mixture. 

 

Figure 2.15. Number of red colour pixels at several temperatures for  

H2O/LiNO3 mixture with 0.6166 salt mass fraction 

 

 

 

In order to test the measurement trueness at atmospheric pressure, solubility of LiNO3 in 

water has been measured and compared with literature data (Tsimbalist et al, 1983; Donnan and 

Burt, 1903; Campbell and Bailey, 1958; Berthet and Counioux, 1990; Zeng et al., 2008). Table 2.1 

and figure 2.16 show the solubility temperature results and its comparison with reported literature 
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data in a range of lithium nitrate mass fraction from 0.35 to 0.64, which corresponds to a range of 

solubility temperatures from 279 K to 340 K.  

The solubility temperature increases as usual with the salt composition but not in the same 

way for the whole range. The experimental data obtained in this work fits very well in all the range 

of salt compositions measured with reported data of Donnan and Burt (1903). For a salt mass 

fraction up to 0.60 there is also good agreement with data reported by the rest of authors, but for 

higher compositions there exist a big discrepancy between the experimental values of this work, 

Donnan and Burt (1903), and the values of the other authors. 

 

Figure 2.16. Solubility of lithium nitrate in water at atmospheric pressure 

The tendency of the points in figure 2.16 presents a turning point associated to a transition 

between different salt hydration states. For salt mass fractions from 0.345 to 0.600 all the authors 

agree with the existence of trihydrate solid phase, LiNO3·3H2O(s), but for higher compositions there 

are some discrepancies. While Donnan and Burt (1903) reported the existence of hemihydrate 

solid phase, LiNO3·0.5H2O(s), in the interval of salt mass fraction from 0.608 to 0.636 and 

anhydrous solid phase, LiNO3(s), for higher compositions, the rest of authors dismissed the 

existence of the hemihydrate solid phase and only reported the existence of the anhydrous phase 

for salt mass fractions higher than 0.600. 
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Table 2.1. Solubility temperature of LiNO3 in H2O 

w LiNO3 T / K 

0.3455 278.6 

0.3806 286.2 

0.4026 292.5 

0.4715 300.3 

0.5653 303.6 

0.5913 303.5 

0.6078 306.3 

0.6086 315.4 

0.6098 320.4 

0.6166 323.4 

0.6259 328.1 

0.6382 339.7 

 

As explained in section 2.4.6, a new method for measuring solubility temperature based on an 

image processing has been proposed with the aim of providing a more objective criterion than the 

visual method. Table 2.2 shows, for the same composition of salt, a comparison of the results 

obtained of solubility temperature by visual and image processing method.  

Table 2.2. Comparison of solubility temperature by visual and image processing methods 

w LiNO3 
T / K  

Visual 
T / K  

Image Processing 
ΔT 

0.3806 286.2 286.0 -0.2 

0.4026 293.7 293.5 -0.2 

0.4715 300.3 300.2 -0.1 

0.6098 320.4 320.4 -0.1 

0.6159 323.6 323.5 0.0 

0.6166 323.4 323.6 +0.2 

0.6259 328.1 328.1 -0.1 

There is a good agreement between both methods, with a maximum temperature difference 

of 0.2 K, which is an acceptable value, being in almost all cases the higher temperature obtained by 
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the visual method. The reason of this difference lies in the fact that this method cannot detect the 

minimal illumination changes of the sample when is very close to the solubility point.  

 

The solubility measurements of LiNO3 in liquid ammonia have been performed to validate the 

measurements under pressure conditions (20 bar) and also, to provide new useful experimental 

data since only two old references are available in literature (Tsimbalist et al., 1983 & Portnow and 

Dwilewitch, 1937). In both references the working pressure is not specified and the data reported 

by Tsimbalist et al. doesn’t represent all the composition range studied. 

 

Figure 2.17. Solubility of lithium nitrate in liquid ammonia at 20 bar 

Table 2.3 shows tabulated values of the experimental solubility temperature obtained. Figure 

2.17 compares the results obtained with those reported in literature in a range of LiNO3 mass 

fraction from 0.48 to 0.78, which corresponds to a range of solubility temperatures from 276 K to 

352 K. 
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Table 2.3. Solubility temperature of LiNO3 in NH3 at 20 bar 

w LiNO3 T / K 

0.4768 276.0 

0.4988 277.9 

0.5284 276.0 

0.5689 265.0 

0.6291 281.3 

0.6470 287.3 

0.6603 288.5 

0.6780 289.9 

0.6847 282.2 

0.7047 300.7 

0.7160 315.2 

0.7272 330.8 

0.7319 334.7 

0.7458 352.0 

As it can be observed in figure 2.17, the experimental points present three well differenced 

tendencies, which are due to different molecular associations of the salt with the solvent. Portnow 

and Dwilewitch (1937) reported the existence of three different solid phases in equilibrium 

depending on the composition of lithium nitrate. First one corresponds to LiNO3·4NH3(s) for a 

range of salt mass fraction from 0.357 to 0.570, second one to LiNO3·2NH3(s) for salt mass fraction 

up to 0.692, and the last one to LiNO3(s) for higher mass fractions.   

In the areas where the salt is associated to n molecules of solvent, there is very good 

agreement with both literature references. When the solid phase consists only of solid salt there is 

good agreement with reported values by Portnow and Dwilewitch (1937) but differences with 

values of Tsimbalist et al. (1983) increase. The reason of this difference could lie in the steep slope 

of the composition range, that is to say, small differences in ammonia composition lead to 

considerable variations in solubility temperature, which affects the accuracy of the measurements. 
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The solubility of sodium thiocyanate in liquid ammonia at 20 bar has been measured in a salt 

mass fraction range from 0.528 to 0.684, which cover temperature range from 263.8 K to 333.5 K. 

The results obtained are shown in figure 2.18 and table 2.4. 

For this mixture, Blytas and Daniels (1962) reported a phase diagram of temperature versus 

composition of NaSCN in liquid ammonia, but no experimental data were tabulated and working 

pressure is unknown. For this reason, reference data shown in figure 2.18 are the values directly 

extracted by interpolation from the reported plot. The uncertainties associated to the interpolation 

have been estimated to be 0.9 K for the temperature and 0.009 for mass fraction of sodium 

thiocyanate. 

 

Figure 2.18. Solubility of sodium thiocyanate in liquid ammonia at 20 bar 

In this case the points present two different behaviours associated with two different solid 

phases. Blytas and Daniels (1962) reported the existence of NaSCN·3.5NH3(s) solid phase in the 

range from 0.437 to 0.639 in salt mass fraction with a soft concave curve behaviour, and NaSCN(s) 

solid phase for higher salt mass fractions with a pronounced straight line tendency. 
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Table 2.4. Solubility of NaSCN in NH3 at 20 bar 

w NaSCN T / K 

0.5283 263.8 

0.5627 266.6 

0.5774 268.0 

0.5940 266.3 

0.6099 264.1 

0.6418 256.0 

0.6529 263.5 

0.6549 280.8 

0.6632 298.6 

0.6793 327.9 

0.6809 331.0 

0.6843 333.5 

For a range of salt mass fraction up to 0.642 there is good agreement with literature data. 

However, for higher salt compositions it cannot be done a proper comparison due to the scarce 

and inaccurate data available. It can however be noted that as the composition of salt increases 

the deviation with the experimental values of this work also increases. The differences at the 

highest compositions and temperatures could lie in the working pressure of reference data. Blytas 

and Daniels didn’t report any pressure control in their experiments and in those conditions the 

vapour pressure corresponds to a maximum approximate value of 6 bar (Chaudhari et al., 2011). 

Thus, if there is no pressure applied in the system, not all the ammonia remains in liquid phase and 

therefore the composition of salt increases, causing the real point to shift rightwards following the 

same tendency that the experimental values of this work. 

 

Initially, the purpose of the solubility study of NaOH in H2O+NH3 was to measure the solubility 

temperature at different salt mass compositions. However, the study could not be performed in 

this way because for a certain composition of ammonia and water, sodium hydroxide presents a 

composition that represents its solubility limit in the solution that causes the impossibility to 

dissolve it by increasing temperature. For a solution with a mass fraction 0.3 of ammonia and 0.7 of 

water + sodium hydroxide, a sodium hydroxide mass fraction of 0.05 supposed the impossibility to 
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be crystallized at a temperature of 262 K, and at a sodium hydroxide mass fraction of 0.06 

supposed the impossibility to be dissolved at temperatures up to 363 K. 

The most probable hypothesis of this behaviour can be explained as follows: The solubility of 

sodium hydroxide in water is based on the attraction forces of the Na+ ion and dipoles of water 

(figure 2.19). When these forces are sufficiently intense to break interionic forces of the salt it is 

produced the dissolution. On the other hand, NH3 interacts with water molecules creating NH4OH 

and hydrogen bonds between free hydrogen radicals of ammonium and water (figure 2.20). The 

Na+ cation and the NH4
+ compete for the association to water molecules, and due to the limited 

amount of water available, it results in a limited number of Na+ that can be dissolved in water. 

Thus, this limit corresponds to the limit of solubility of sodium hydroxide in a certain composition 

of water and ammonia mixture. 

                                 

   Figure 2.19. Ions Na
+
 in water solution                   Figure 2.20. NH4OH in water solution 

Given the impossibility of measuring the solubility temperature of different compositions of 

NaOH in a solution with constant composition of NH3 and (H2O+NaOH), it has been performed a 

study to determine the maximum composition of ammonia which allows a certain composition of 

salt in the water + salt solution without salt precipitation. The results obtained for a range of NaOH 

mass fraction from 0.02 to 0.15 are shown in figure 2.21. 
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Figure 2.21. Solubility of ammonia in water + sodium hydroxide solutions. T = 288 K 

 

Table 2.5. Solubility of NH3 in H2O+NaOH solutions. T = 288 K 

w NaOH w NH3 

0.0194 0.3801 

0.0404 0.3426 

0.0578 0.3118 

0.0799 0.2918 

0.0975 0.2615 

0.1198 0.2631 

0.1504 0.2354 

For each NaOH composition analysed, the corresponding value of ammonia composition 

represents the solubility limit of the solution. Higher mass fractions of ammonia or sodium 

hydroxide cause the precipitation of the solution, being impossible to solubilise with temperature. 

At the beginning of the experiment, the temperature was set to (286-288) K to facilitate the 

insertion of ammonia in the equilibrium cell and later the temperature was increased up to 363 K 

but no change was found in the solubility of the NaOH, for this reason, a constant temperature of 

288 K was maintained for all the experiments. 
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At the system conditions, all the solutions present a vapour pressure near to atmospheric 

(Salavera et al., 2005), thus, it is not necessary to increase the pressure of the system. To assure 

and prove this fact an experiment was done in which the ammonia was in a composition very near 

to precipitation point. Then the pressure was increased up to 20 bar and as there was no change in 

solubility it was concluded that there was no ammonia in the vapour phase. 

 

 

The uncertainties corresponding to the salt mass fraction of the different systems analysed are 

associated to the uncertainty sources provided by the manufacturer of the balances Mettler AE260 

DeltaRange and Mettler Toledo PR2003 DeltaRange (resolution, calibration, linearity, accuracy and 

reproducibility) used to measure the mass of the components of the mixture.  

Table 2.6 lists the uncertainties obtained for each system. It includes the maximum and 

average uncertainty of all the samples prepared.  

Table 2.6. Maximum and average mass fraction uncertainties of analysed systems 

 
H2O/LiNO3 NH3/LiNO3 NH3/NaSCN NH3/(H2O+NaOH) 

 
w LiNO3 w LiNO3 w NaSCN w NH3 w NaOH 

Maximum 0.0003 0.0024 0.0021 0.0026 0.0002 

Average 0.0002 0.0017 0.0017 0.0021 0.0002 

 

The uncertainty of the temperature corresponds to the uncertainties associated to the 

resolution and calibration and of the thermometer Kosmon PXR-4 connected to a probe Pt100, as 

well as the homogeneity, stability and repeatability of the temperature measurements along the 

experiments. The expanded uncertainty (k = 2) obtained is 0.5 K. A detailed explanation of the 

uncertainty calculation is presented in Annex B.
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In this work, it has been designed and built a new experimental device based on the visual-

polythermal method for the determination of solubility temperature of inorganic salts in liquid 

ammonia or mixtures of ammonia and water at pressures up to 40 bar. 

The experimental device and methodology have been validated at atmospheric pressure with 

the system H2O/LiNO3 in a range of lithium nitrate mass fractions from 0.35 to 0.64 which 

corresponds to a range of solubility temperatures from 279K to 340 K. The experimental solubility 

data obtained is in good agreement with reported literature data for mass fractions of lithium 

nitrate up to 0.60, obtaining lower deviations than the experimental temperature uncertainty value 

(0.5 K) compared with reported data of Donan and Burt (1903). However, for higher mass fractions 

there is a remarkable deviation of experimental solubility with those reported by most of the 

authors, obtaining only good agreement with reported data of Donnan and Burt.  

The experimental device has been evaluated under pressure conditions by the measurement 

of solubility temperature of LiNO3 in ammonia. It also provides new useful information because the 

reported data is scarce, old and at unknown working pressure. Solubility data have been analysed 

in a range of salt mass fraction from 0.48 to 0.78 which corresponds to a range of solubility 

temperatures from 276 K to 352 K.  The solubility results are in good agreement with those 

reported in literature, obtaining in most of the points lower temperature deviations than the 

uncertainty temperature of the equipment. 

The solubility temperature of sodium thiocyanate in liquid ammonia at 20 bar has been 

measured in a salt mass fraction range from 0.53 to 0.69, which cover a solubility temperature 

range from 263.8 K to 329.8 K. The results could not be properly compared with those reported by 

Blytas and Daniels (1962) because they only reported a phase diagram of temperature versus 

composition and no experimental data were tabulated. The solubility temperature uncertainty of 

the interpolation of the points (0.9 K) was bigger than the experimental solubility temperature 

uncertainty. 

Due to the solubility limit that NaOH presents in the water and ammonia solutions, it was 

analysed the maximum composition of ammonia which allows a constant composition of sodium 

hydroxide in the water + salt solution without salt precipitation. The results were performed for a 

salt mass fraction range from 0.02 to 0.15, obtaining a limit of ammonia from 0.38 to 0.235. 
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To avoid the subjective criteria in the determination of the solubility temperature by the visual 

method, a new method based on the image processing treatment has been developed. In this 

treatment, the pixel colours of the recorded image in the inner of the equilibrium cell are 

quantified and compared to the pixel colours of the recorded image when the salt is completely 

dissolved. The comparison of the results obtained in the system H2O/LiNO3 by the visual method 

and the image processing method shows a maximum difference in solubility temperature of 0.2 K 

which is an acceptable value and is under the measurement uncertainty. Thus it can be concluded 

that the image processing method is suitable to perform measurements of solubility temperature.  

From the results obtained at atmospheric and moderate-high pressure, it can be concluded 

that the experimental device and the visual and image processing methodologies are suitable for 

measuring the solubility of salts in aqueous and non-aqueous solvents at pressures up to 20 bar. 

  

UNIVERSITAT ROVIRA I VIRGILI 
EXPERIMENTAL AND THEORETICAL STUDY OF SOLUBILITY OF NEW ABSORBENTS IN NATURAL REFRIGERANTS. 
Javier Mesones Mora 
Dipòsit Legal: T 1549-2014



J. Mesones. Doctoral Thesis. URV. Tarragona 2014 
 

52  
 

 

Blytas, G.C.; Daniels, F. Concentrated Solutions of NaSCN in Liquid Ammonia. Solubility, Density, 

Vapor Pressure, Viscosity, Thermal Conductance, Heat of Solution and Heat Capacity. J. Amer. 

Chem. Soc. 84 (1962) 1075-1083. 

Berthet, J.; Counioux, J.J.; Floreancing, A.; Cohen-Adad, R. Les isothermes −25, 0, 25, 35, 50 et 70oC 

du système ternaire H2O−LiNO3−Al(NO3)3. Bull. Soc. Chim. Fr. 616 (1990). 

Campbell, A.N.; Bailey, R.A. The system lithium nitrate-ethanol-water and its component binary 

systems. Canadian J. Chem. 36 (1958) 518-536. 

Chaudhari, S.K.; Salavera, D.; Coronas, A. Densities, Viscosities, Heat Capacities, and Vapour Liquid 

Equilibria of Ammonia + Sodium Thiocyanate Solutions at Several Temperatures. J. Chem. Eng. Data 

56 (2011) 2861–2869.  

Donnan, F.G.; Burt, B.C. The solubilities and transition-points of lithium nitrate and its hydrates. J. 

Chem. Soc. Trans. 83 (1903) 335. 

Pérez, E. Equilibrio de fases y solubilidades en fluidos supercríticos. Tesis doctoral, Universidad 

Complutense de Madrid, 2007. 

Salavera, D.; Chaudhari, S.K.; Esteve, X.; Coronas, A. Vapor-Liquid Equilibria of Ammonia + Water + 

Potassium Hydroxide and Ammonia + Water + Sodium Hydroxide Solutions at Temperatures from 

(293.15 to 353.15) K. J. Chem. Eng. Data 50 (2005) 471-476. 

Seidell, A. Solubilities of Inorganic and Metal Organic Compounds. 4th ed., Van Nostrand Company, 

New York, 1958. 

Tsimbalist, A.O.; Prudnikov, A.I.; Orekhov, I.I. Solubility in a Lithium Nitrate - Ammonia - Water 

System. Zh. Prikl. Khim. 56 (1983) 167. 

Zeng, D.; Ming, J.; Voigt, W. Thermodynamic study of the system (LiCl + LiNO3 + H2O). J. Chem. 

Thermodyn. 40 (2008) 232– 239. 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
EXPERIMENTAL AND THEORETICAL STUDY OF SOLUBILITY OF NEW ABSORBENTS IN NATURAL REFRIGERANTS. 
Javier Mesones Mora 
Dipòsit Legal: T 1549-2014



Chapter 3. Solubility Modelling of H2O/LiNO3, NH3/LiNO3 and NH3/NaSCN Systems 
 

  53 
 

 

 

 
 

 

 

 
 

 

A variety of models for the description of electrolyte solutions have been developed over the 

last decades. However, only few models allow a reliable description of solvent activity coefficients 

up to high salt compositions. In this context, once the solubility temperature of H2O/LiNO3, 

NH3/LiNO3 and NH3/NaSCN systems has been experimentally measured in Chapter 2, in order to 

make a comparison of the modelling procedure for aqueous or non-aqueous solvents, in the 

following study the solid-liquid equilibrium has been modelled by means the activity coefficient 

models LIQUAC (for systems with water as solvent), and Electrolyte Nonrandom Two-Liquid (E-

NRTL) (for systems of ammonia as solvent). 

For system H2O/LiNO3 the solubility modelling has been performed in a salt mass fraction 

range between 0.323 and 0.666, for NH3/LiNO3 system between 0.41 and 0.75, and for NH3/NaSCN 

between 0.51 and 0.69. The modelling of NH3/(H2O+NaOH) couldn’t be performed due the 

impossibility to measure the solubility temperature at different salt compositions (explanation in 

Chapter 2). 
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In aqueous or non-aqueous electrolyte systems the solid phase can be associated with various 

numbers of solvent molecules (in case of water are called hydrates). The equilibrium between the 

solvent and the solid phase in dissolution, which consists of     cations C,    anions A, and   

molecules of    solvent, can be expressed as the following reaction: 

   
   

    ( )                  ( )                                              ( .1  

The condition of chemical equilibrium corresponds to an expression that relates the Gibbs free 

energy (  ) with chemical potential ( ) and in which the sum of the chemical potential of the 

reactants is equal to the sum of the chemical potentials of the products: 

                                                                                 ( .2  

             ( )                       ( )                                              ( .   

For the thermodynamic study of the non-ideal solutions it is necessary an expression of 

chemical potential of the components of a real solution similar to the chemical potentials of an 

ideal solution. This is achieved by the introduction of the a dimensionless function activity   : 

      
       (  )                                                                    ( .   

where   
  is the chemical potential in the standard state and the activity is defined as:  

                                                                                      ( .5   

The activity coefficient    represents a measure of the real behaviour deviation regarding ideal 

behaviour in which    = 1. The comparison between the expressions of chemical potential of a 

component in an ideal solution and in a real solution shows that, in ideal solutions the activity 

corresponds to the mole fraction (  =   ) and the activity of a component in its standard state is 

the unit (   
  = 1).  

The definition of activity is completed by choosing the standard state of the components of 

the solution, for which are taken as reference the models of ideal solution. There are two 

agreements for the election of the standard state: 
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a) Asymmetric convention 

Activity coefficients of solvent and electrolyte tend to unity (hypothetic ideal behaviour) when 

mole fraction of solvent tend to unity and mole fraction of electrolyte tend to zero, what means 

solvent is considered pure solvent and the electrolyte is in infinite dilution. This basis is defined to 

be used with aqueous solvents.  

   (     )                                                                         ( .   

   (         )     (         )                                                     ( .   

b) Symmetric convention 

Activity coefficients of solvent and electrolyte tend to unity when the mole fractions of the 

solvent and electrolyte tend also to unity. Thus, the reference state of solvent is the pure solvent 

and the electrolyte is considered pure molten salt. With this convention, infinite dilution for 

electrolyte is not required and for this reason can be used for non-aqueous solvents like ammonia. 

   (     )                                                                         ( .8  

   (         )     (         )                                                      ( .9  

By means of the use of equations 3.3 and 3.4 and taking into account that the activity of a solid 

is 1, the chemical potentials can be expressed as functions of the standard state chemical 

potentials, the composition, and the activity coefficients as follows: 

 
           
  [   (  

       (  ))]   [   (  
       (  ))]   [  (  

       (  ))]    ( .10    

The standard state chemical potentials of the previous equation can be ordered on the left 

hand side of the equation and the activities on the right hand side: 

  
             

      
      

  

  
   (   

      
      

 )                                 ( .11  

The numerical value of the left hand side of the equation can thus be calculated. However, to 

solve the right side of the equation it is necessary a model to calculate the activity coefficients as 

functions of composition and temperature. Equation 3.11 can be expressed in terms of Gibbs free 

energy in standard state in the following way:  
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   (  
   ( )

  
)  (   )

   (  )
   (  )                                               ( .12  

The relation between the Gibbs free energy in standard state in conditions of equilibrium 

(    ) with the equilibrium constant, which in the solid-liquid equilibrium is the solubility 

product constant     , is expressed as : 

                                                                             ( .1   

       
     

  
                                                                     ( .1   

Considering these relations, equation 3.12 is expressed in terms of solubility product constant 

    and the final equation of solid-liquid equilibrium is obtained: 

     (   )
   (  )

   (  )                                                           ( .15  

     (      )
   (     )

   (    )                                                    ( .1   

Equating this expression of     to the expression of solubility product constant which depends 

of temperature, it will be possible to calculate the solubility temperature of the solutions under 

study: 

(      )
   (     )

   (    )      [ ( )]                                           ( .1   

The expression of solubility product constant     in function of temperature can be obtained 

by means of two different methodologies:  

a) Rigorous method 

This method is chosen for modelling solutions with water as solvent. It is based on the direct 

calculation of the Gibbs free energy in the standard state at the temperature of the system. In 

Gibbs-Helmholtz equation the temperature dependency of solubility product is expressed as 

follows: 

        [
    (  )

   
  

   (  )

 
(
 

 
  

 

  
)   

    (  )

 
 (  

 

  
  

  

 
  )]                       ( .18  

Where    is reference temperature (298.15 K). Standard Gibbs energy    (  ), standard 

enthalpy    (  ) and standard heat capacity    
 (  ) are defined as follows: 
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It should be pointed out that the standard state corresponds to the hypothetic ideal solution in 

mole scale. 

b) Approximate method 

It is chosen for modelling solutions with ammonia as solvent because required standard Gibbs 

energy of formation, enthalpies of formation and heat capacities of the salts and ions are not 

available for non-aqueous solvents like ammonia, thus, Gibbs-Helmholtz equation cannot be used. 

As the activity coefficients for the solutions with ammonia as solvent are calculated with 

symmetric electrolyte NRTL model with Aspen Properties software, the solubility product constant 

is also obtained with Aspen Properties with the following equation: 

        (  
 

 
           )                                                ( .22  

With this method the solubility product constant is obtained from regression of experimental 

solubility data to obtain the four parameters A, B, C, D of the equation. 

 

The knowledge of electrolyte systems started in the last century with Debye and Hückel theory 

(1923), which was the first electrolyte model that delivered a reliable behaviour of infinite dilute 

solutions. From this theory, a wide range of models were developed to overcome the limitations of 

highly dilute compositions of the original theory, such as Pitzer (1973) or Bromley (1973) models.  
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Current models combine Debye–Hückel theory with the local composition models to represent 

a reliable behaviour of electrolyte systems at low and high salt mass fractions.  In this group appear 

models such as electrolyte-NRTL (Chen et al., 1982, 1986), extended UNIQUAC (Sander et al., 

1986), LIQUAC (Li et al., 1994, 2005) based on UNIQUAC model (Abrams and Prausnitz, 1975), 

electrolyte group-contribution UNIFAC (Kikic et al. 1991) or LIFAC (Yan et al., 1999) based on 

UNIFAC model (Fredenslund et al., 1975). In this study, LIQUAC model has been chosen for 

modelling activity coefficients of aqueous electrolyte systems (H2O/LiNO3) because obtains a 

reliable prediction of systems with strong electrolytes up to high salt compositions (Kiepe et al., 

2006). 

Li et al. (1994) developed an excess Gibbs energy model for single and mixed solvents with 

strong electrolytes based on the results of statistical thermodynamics and taking into account the 

interactions between the ions and molecules present in electrolyte solutions. The contributions of 

the short-range interactions were described by the UNIQUAC model; therefore, the model was 

called LIQUAC. 

LIQUAC model is based on the asymmetric convention and takes into account the interactions 

which occur in electrolyte solutions. The model calculates the Gibbs energy as the sum of three 

contributions which represent long-range (LR), middle-range (MR) and short-range (SR) 

interactions: 

       
     

     
                                                                ( .2   

Long-range interactions represent charge-charge interaction contribution caused by Coulomb 

electrostatic forces.    
  can thus be calculated in terms of the extended Debye-Hückel theory. 

Middle-range interactions represent contributions of the indirect effects between pair species of 

charge interactions such as charge-dipole and charge-induced dipole and it is calculated using a 

Pitzer type virial equation. Short-range interactions represent the contribution of non-charge 

interactions and can be described using the UNIQUAC approach with minimum modifications. 

From equation 3.23, the activity coefficients of the molecular and ionic species are derived as 

follows: 

      
 

  
 
    

    
                                                                    ( .2   
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In the following lines is described in detail the LIQUAC model of a single-solvent aqueous 

electrolyte system to obtain the activity coefficient of the solvent and the cation and anion of the 

electrolyte solute.  

 

Activity coefficient of solvent m can be expressed as the sum of the three contributions 

mentioned before, long-range, middle-range and short-range: 

         
       

       
                                                      ( .25  

 Long-range LR contribution 

LR term is calculated using Debye-Hückel theory modified by Fowler and Guggenheim (1949). 

    
    (

     

  
) [   √  (   √ )

  
     (   √ )]                                           ( .2   

where    is molecular mass of solvent in kg·mol-1. I is the ionic strength of electrolyte and A, 

b are Debye-Hückel parameters calculated as: 
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   and   
  are molality and charges of ions of the electrolyte respectively,   is dielectric 

constant of solvent,   is the density and     is dielectric relative constant of solvent. 

 Middle-range MR contribution 

Interactions between equally charged ions and between solvent molecules are not considered. 

With these considerations, the MR contribution leads to the following expression: 
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    ,     , and      are temperature-depend parameters, being        . Parameters      and 

        are set to 0.125 and 0.250 respectively following the recommendations of Kiepe et al. 

(2006). To extend the capability of MR term to a wider temperature range, the parameters are 

improved as follows (Li et al., 2011): 

          
( )      

( ) (
 

 
  

 

      
)       

( )   
 

      
                                                     ( .    

          
( )      

( ) (
 

 
  

 

      
)       

( )   
 

      
                                                      ( .    

    
( )     

( )     
( )     

( )     
( )     

( ) are adjustable parameters. 

 Short-range SR contribution 

SR contribution is calculated by the UNIQUAC model as follows: 
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                                                                                                                              ( .    

  and   corresponds to Van der Waals volume and surface area of solvent respectively. 

     represents UNIQUAC interaction parameters, being            , covering    and    all ions 

and solvents. 

 

Activity coefficients of cations and anions, based on asymmetric convention and molality scale, 

are obtained by means of the sum of the contributions by the next equation: 

    
  (    

       
       

  )     (  ∑    

   

)                                ( .    

  
  is the asymmetric rational activity coefficient and is defined as the ratio of the value of the 

activity coefficient at the relevant composition and the value of the activity coefficient at infinite 

dilution   
 . 

Contributions of long, middle and short range are defined as: 

 Contribution of large-range LR 
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 Contribution of middle-range MR 
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 Contribution of short-range MR 
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Established necessary expressions to calculate activity coefficients of solvent and ions of the 

electrolyte, equating equation 3.16, based on asymmetric convention and molality scale for solvent 

and mole fraction scale for ions, with the solubility product equation of Gibbs-Helmholtz (eq. 3.18), 

it is obtained equation 3.52 whereby with an iterative calculus it can be obtained the solubility 

temperature or the composition of salt that can be dissolved in a certain temperature.  
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As it was explained in section 3.3, in literature can be found some widely referenced activity 

coefficient models for electrolyte solutions such as Pitzer, extended UNIQUAC, LIQUAC, OLI MSE 

model (Wang et al., 2002) or electrolyte NRTL models. However, some of them have some lacks, 

for example, Pitzer model is only applicable to dilute aqueous electrolyte systems and requires high 

number of binary and ternary interaction parameters, extended UNIQUAC model has inconsistent 

treatments in both reference state and concentration scale and OLI MSE model fails in the 

inconsistent treatment of ion-ion and ion-molecule interactions with the viral expansion-type 

equation and molecule-molecule interactions with UNIQUAC equation.  

In this work, electrolyte nonrandom two-liquid model based in the symmetric reference state 

(Song and Chen, 2009) has been chosen for modelling solubility of the systems with ammonia as 
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solvent (NH3/LiNO3 and NH3/NaSCN) because allows working with aqueous and non-aqueous 

solvents and also requires less interaction parameters than the other models. Furthermore, this 

model is included in Aspen Properties software and therefore its application becomes much easier. 

Chen et al. (1982, 1986) proposed the electrolyte-NRTL model for the representation of the 

Gibbs excess energy of single liquid electrolyte systems and multicomponent systems. Initially, it 

was proposed as an asymmetric activity coefficient model, with the reference state chosen to be 

the electrolyte in aqueous infinite dilution, what makes it non appropriate for non-aqueous 

solvents. 

Song and Chen (2009) proposed a formulation of the symmetric electrolyte-NRTL to overcome 

the limits of applicability, making it feasible for non-aqueous electrolyte systems and mixed-solvent 

electrolyte systems. The model is based on a symmetric reference state, which considers the pure 

liquid for solvents and pure fused salts for electrolytes (eq. 3.8-3.9). 

The basis of the model consists in the interactions which exist between molecular and ionic 

species to describe the thermodynamic properties of the solution. These interactions are 

constituted by two contributions: local interactions and long-range interactions. Local interactions 

are those which exist at the immediate neighbourhood of any species (molecule-molecule and ion-

molecule). Long-range interactions exist beyond the immediate neighbourhood of ionic species 

(ion-ion). The contribution of local interactions is represented by the local composition NRTL 

model. In the case of long-range interactions instead it is used the symmetric Pitzer-Debye-Hückel 

(PDH) model (Pitzer 1980, 1986). 

The excess Gibbs free energy of electrolyte systems is represented in the following equation as 

the basis the E-NRTL model: 

                                                                                 ( .5   

       and         represent contributions from local and long-range interactions, respectively. 

Activity coefficients of the molecule (solvent), cation and anion (electrolyte) are derived from 

equation 3.53 as follows: 
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where    is the mole number of component  , which represents the molecular component    

(solvent), the cation    and anion   (electrolyte species). 

 Local interaction contribution based on Electrolyte NRTL model 

In Electrolyte NRTL model there are two main assumptions. First one is based on the local 

electroneutrality between the central molecular component and the rest of the species in the 

immediate neighbourhood. The other one is based on the like-ion repulsion when ionic species are 

surrounding respective central ionic species. 

The excess Gibbs free energy        for an electrolyte system can be written as:  
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Each one of the terms of the right side of the equation 3.56 corresponds to the contribution 

when molecular component, cation and anion respectively are in the centre.         where    is 

the charge number    for ionic species and is the unity for the solvent. 

Activity coefficients of the solvent, cation and anion are derived and expressed as: 
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Which once normalized corresponds to: 
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where    is defined as the ionic strength and   
  represents the ionic strength at the reference 

state. 

In the above equations appears two parameters,   and  , which are related to each other by 

the nonrandomness NRTL factor parameter   with the following equation. 

     (    )                                                                      ( . 5  

The adjustable model parameters include the asymmetric binary interaction energy 

parameter,  , and the symmetric non-random factor parameter,  . In the case of study, with single 

electrolyte systems, these parameters correspond to molecule-electrolyte pairs (            

while              where m represents molecule and ca the ion pair). 

 Long-range interaction contribution based on extended PDH model 

To take into account the long-range ion-ion interactions it is used the symmetric Pitzer-Debye-

Hückel model. The following equation describes the excess Gibbs free energy         in the 

symmetric PDH model for single electrolyte systems: 
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The Debye-Hückel parameter   , ionic strength    and ionic strength in standard state     
   are 

defined with the following equations: 
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where    is Avogadro’s number,    is the electron charge,    is the Boltzmann constant,    is 

the molar volume,   the dielectric constant of the solvent and    is the charge number. 

A general expression of the activity coefficient of each component of the solution is derived as 

follows: 
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Activity coefficient of solvent (molecule) is described with the following expression: 
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In the case of cation and anion, activity coefficient is described as follows: 
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The calculation of the activity coefficients with Electrolyte-NRTL model and the solid-liquid 

equilibrium has been performed with Aspen Properties software, which from version 7.3 (2011) 

incorporates the new symmetric formulation of the model.  
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 Fitted model parameters 

Aspen Properties doesn’t incorporate in its database binary electrolyte parameters of systems 

with ammonia as solvent, which are required for the calculation of the activity coefficients ( 
 
). 

Thus, first of all, electrolyte pair parameters are calculated from the vapour-liquid equilibrium with 

regression of experimental data. Asymmetric binary interaction energy parameters, τm,ca and τca,m, 

are related with temperature by means of equations 3.75 and 3.76, being  ref= 298.15 K.  
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Cm,ca   Cca,m, Dm,ca   Cca,m and Em,ca   Eca,m are the fitting parameters.  

Symmetric non-random factor α is fixed to 0.1, according to the recommendations of Mock et 

al. (1986) for non-aqueous solvents. 

 Solid phases and reactions in equilibrium 

The databank of Aspen Properties doesn’t include solid phases in equilibrium of the systems 

analysed, therefore, in addition to the solvent, anions and cations, the solid phases have to be 

introduced manually as new elements. It is also necessary to introduce the electrolyte dissociation 

reactions and salt dissolution/precipitation reactions of the new solid-phases introduced: 

For ammonia / lithium nitrate system: 

Salt   LINO3    ↔   Li+  +  NO3
- 

Salt   LINO3 · 2NH3   ↔   Li+  +  NO3
-  +  2 NH3 

Salt   LINO3 · 4NH3   ↔   Li+  +  NO3
-  +  4 NH3 

Dissociation  LINO3     →   Li+  +  NO3
- 

For ammonia / sodium thiocyanate system: 

Salt   NaCNS       ↔   Na+  +  CNS- 

Salt   NaCNS · 3.5NH3      ↔   Na+  +  CNS-  +  3.5 NH3 

Dissociation  NaCNS               →   Na+  +  CNS- 
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 Solid-liquid equilibrium 

By the equality of the expression of Ksp [ (   )] (eq. 3.16) with the solubility product constant 

equation that Aspen Properties uses as approximate method (eq. 3.77) it is obtained the solid-

liquid equilibrium (eq. 3.78). 
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Parameters of the equation 3.77 are obtained by regression of experimental solubility data for 

each solid phase in equilibrium. To determine solubility temperature it is used the solubility index 

of a salt, defined as the ratio of the activity of the salt by its solubility product, and is expressed as: 
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The solubility index of salt is unity when the solution is supersaturated (salt exists as solid) and 

less than unity when the solution is unsaturated (dissolved). Thus, the temperature in which the 

solubility index changes from 1.00 to 0.99 will correspond to solubility temperature of the solution.  

 

Figure 3.1. Solubility index of ammonia solution with 0.66 in NaSCN mass fraction 

Figure 3.1 shows an example of the behaviour of the solubility index of an ammonia solution 

with 0.66 in NaSCN mass fraction, which corresponds to a solubility temperature of 292.16 K. 
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As defined in the theoretical basis, LIQUAC activity coefficient model requires a series of 

constants and parameters, such as adjustable binary interaction parameters, relative dielectric 

constants of water, superficial area or Van der Waals volume of the ions and solvent.  

Binary interaction parameters      ,     ,      have been obtained in a iterative procedure by the 

comparison of experimental vapour pressure (Campbell et al., 1956) and the calculated vapour 

pressure from vapour-liquid equilibrium using LIQUAC activity coefficient model. Due to the non-

volatility of lithium nitrate, only water is considered in the phase equilibrium:  
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The left side of the equation corresponds to vapour phase and the right side to the liquid 

phase.    is the fugacity coefficient of water,     and    are the mole fraction of water in vapour 

and liquid phase respectively,   is the pressure,    is the activity coefficient of water,    
  is the 

fugacity coefficient of water at saturation pressure,    
  is saturation vapour pressure of water and 

    is the molar volume of water. The fugacity coefficient is calculated with the equation of state of 

Redlich-Kwong: 
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Parameters a, b, A and B are calculated with the following expressions: 
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where Tc and Pc are the critical points of temperature and pressure respectively.  

The optimal parameters are those which minimize the objective function, based on the sum of 

the squared deviations between the experimental and calculated vapour pressure: 
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where   is the number of experiments, Pcalc is the calculated pressure and Pexp is the 

experimental pressure.  The binary interaction parameters obtained are shown in the following 

table: 

Table 3.1. Fitted binary interaction SR and MR parameters  

i j aij aji bij
0
 bij

1
 bij

2
 

H2O Li
+
 -478.061 4904.084 0.0009954 -0.000611 -0.0007159 

H2O    
  40.565 3811.265 0.0003899 -0.000648 -0.0007152 

Li
+
    

  3300.919 1133.808 0.0922517 -0.007533 0.0004002 

i j cij
0
 cij

1
 cij

2
 dij 

H2O Li
+
 -0.011815 -23.78393 0.005681 0.25 

H2O    
  -0.006724 -0.601466 0.003159 0.25 

Li
+
    

  0.649695 0.000659 -3.622443 0.125 

In order to check the feasibility of the calculated parameters, the calculated vapour pressure 

has been compared with experimental data and it has been evaluated with the calculus of the root 

mean square deviation (RMSD) and maximum deviation ( ): 
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Figure 3.2 shows the vapour pressure obtained of H2O/LiNO3 system and its comparison with 

reported values by Campbell et al. (1956) at different temperatures. 
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Figure 3.2. Vapour pressure of lithium nitrate aqueous solutions at different temperatures.  

Lines: modelling. Points: reported experimental values (Campbell et al., 1956) 

As it can be observed, there is good agreement between experimental and calculated values at 

temperatures up to 353 K, for higher temperatures the bigger differences are in the range of 0.6 – 

0.7 in mass fraction of water. The RMSD obtained is 5.4 % and the maximum relative deviation is 

19 %. 

The relative dielectric constants of water are obtained from Aspen Properties databank. 

Table 3.2. Water relative dielectric constants (Aspen Properties databank) 

      78.54 

      31989.38 

      298.15 

Superficial area (q) and Van der Waals volume (r) of the anion, cation and water are obtained 

from Kiepe et al. (2006): 
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Table 3.3. Superficial area (q) and Van der Waals volume (r) (Kiepe et al., 2006) 

 
q r 

Li
+
 0.2556 0.1292 

   
  1.9745 1.6925 

H2O 1.4 0.92 

Gibbs energy of formation and enthalpy of formation in standard state of all the species can be 

obtained from NBS tables of Wagman et al. (1982). However, the heat capacity of solid phases is 

not available. To overcome this problem, two empirical rules have been adopted: 

a) Dulong–Petit (1819) rule expresses that for all solid elemental substances, the product of 

relative atomic mass (number-ratio representing the relative atomic mass of the substance) 

and the specific heat capacity, obtains a roughly constant value of 25 J·mol-1·K-1. This 

expression is called atomic heat. 

b) Koop’s rule establishes that the heat capacity of all solid compounds corresponds to the sum of 

the atomic heats of the constituent atoms. 

With these two rules and considering that the heat capacity of H2O as water of crystallization 

in solid substances is 41.033 J·mol-1·K-1 according Li et al. (2011), in table 3.4 there are shown the 

results obtained: 

Table 3.4. ΔfG
o
,  ΔfH

o
, Cp

o
 of ions, water and solid phases in equilibrium 

 
ΔfG

o
 ΔfH

o
 Cp

o
 

Li
+
 (aq) -293.31 -278.49 68.60 

NO3
-
 (aq) -108.74 -205.00 -86.60 

H2O (l) -237.13 -285.83 75.29 

LiNO3·3H2O (s) -1103.50 -1374.40 212.10 

LiNO3·0.5H2O (s) -501.50 -631.68 56.50 

LiNO3 (s) -381.10 -483.13 89.00 

With all the parameters and constants obtained, the calculation of the solubility of lithium 

nitrate in water is accomplished by an iterative calculus changing the lithium nitrate molality in 

order to obtain the equality of both expressions of Ksp (eq. 3.52).   
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Additionally, Gibbs energy of formation, enthalpy of formation and heat capacity in standard 

state of solid phases have been optimized from original values by including it as a modifiable values 

in the iterative calculus, as in the procedure followed by Li et al. (2011). 

Table 3.5. Optimized ΔfG
o
,  ΔfH

o
, Cp

o
 of solid phases in equilibrium 

 
ΔfG

o
 ΔfH

o
 Cp

o
 

LiNO3·3H2O (s) -1099.04 -1351.80 212.12 

LiNO3·0.5H2O (s) -495.30 -589.85 56.00 

LiNO3 (s) -372.22 -423.90 91.81 

Finally, figure 3.3 shows the results obtained of solubility of lithium nitrate in water. The 

modelling has been carried out considering the three different solid phases in equilibrium 

depending on the composition of lithium nitrate, obtaining three well differenced tendencies in the 

curves (section 2.5.1).  

 

Figure 3.3. Modelling of solubility temperature of lithium nitrate aqueous solutions 

The results obtained in the modelling can be considered correct, there is good agreement with 

experimental values obtained in this work, following the same tendency in the different solid 
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phases. The root mean square deviation and the maximum relative deviation regarding 

experimental data of this work are 2.9 % and 6.9 % respectively. 

 

Aspen Properties doesn’t incorporate in its databank the binary interaction energy parameters 

of symmetric electrolyte NRTL model, τm,ca and τca,m, for systems with ammonia as solvent. Thus, 

the parameters Ci,j, Di,j, and Ei,j, (eq. 3.75 - 3.76) need to be obtained by regression of vapour 

pressure experimental data, considering the restrictions of vapour-liquid phase equilibrium (only 

ammonia un vapour phase) by minimizing an objective function of maximum likelihood type, which 

is calculated as follows:  

   ∑[(
               

    
)

 

  (
               

    
)

 

 ∑(
                   

      
)

  

   

]

 

   

          ( .90  

where   is the number of experiments,   is the standard deviation,   is the number of species 

in solution and   is the mass fraction in liquid phase. Table 3.6 shows the results of the parameters 

obtained: 

Table 3.6. Electrolyte pair parameters C, D, E 

 Species Electrolyte pair parameters 

Molecule   or  
electrolyte   

Molecule   or 
 electrolyte   

C D E 

NH3 Li
+
    

  19.462 -9756.582 104.890 

Li
+
    

  NH3 -7.768 63.557 -89.114 

NH3 Na
+
 SCN

-
 23.035 -10000 0.629 

Na
+
 SCN

-
 NH3 -1.650 -774.322 -4.741 

Figure 3.4 shows the vapour pressure obtained of NH3/LiNO3 system and its comparison with 

reported values by Libotean et al. (2007) at different temperatures and compositions. 
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Figure 3.4. Experimental and calculated values of vapour pressure of LiNO3 in ammonia solutions.  

Lines: modelling. Points: reported experimental data (Libotean et al., 2007) 

Experimental and calculated values of vapour pressure present good agreement, with root 

mean square deviation (RMSD) of 5.1 % and maximum relative deviation of 12 %. The maxim 

deviation corresponds to calculated values at lower temperatures and higher compositions of 

ammonia. 

In the case of NH3/NaSCN system, the comparison of experimental and calculated vapour 

pressure is shown in figure 3.5. There is also good agreement between reported values by 

Chaudhari et al. (2011) and calculated values at different temperatures and salt compositions, with 

RMSD of 2.9 % and maximum relative deviation of 8.5 %. 
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Figure 3.5. Experimental and calculated values of vapour pressure of NaSCN in ammonia solutions. 

Lines: modelling. Points: reported experimental data (Chaudhari et al., 2011) 

Parameters A, B, C, D of solubility product constant Ksp based on the approximate method (eq. 

3.77) of each solid phase in equilibrium are obtained by the regression of experimental solubility 

data by minimizing the objective function of maximum likelihood type (eq. 3.91). 
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The following tables show the parameters obtained for each solid phase in equilibrium: 

Table 3.7. Parameters of solubility product constant equation for NH3/LiNO3 system 

Solid phase  A B C D 

LiNO3·4NH3 -592.97 -10000 113.65 -0.185 

LiNO3·2NH3 -242.59 -10000 41.68  0.027 

LiNO3 -749.70 10000 123.41 -0.035 
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Table 3.8. Parameters of solubility product constant equation for NH3/NaSCN system 

Solid phase  A B C D 

NaSCN·3.5NH3 -1289.81 10000 236.725 -0.4009 

NaSCN -947.01 -2060.77 184.880 -0.4032 

Finally, with the binary interaction energy parameters required for the calculation of activity 

coefficients and the required parameters of the solubility product constant, the solid-liquid 

equilibrium can be carried out. As a result of the calculation of the solubility index, figures 3.6 and 

3.7 present the results of modelling of solubility temperature of NH3/LiNO3 and NH3/NaSCN 

systems respectively. 

 

Figure 3.6. Modelling of solubility temperature of lithium nitrate in liquid ammonia at 20 bar 

The modelling of solubility temperature of lithium nitrate in liquid ammonia presented in 

figure 3.6 shows very good agreement with experimental data of this work and from reported 

literature data. The RMSD and the maximum relative deviation obtained regarding experimental 

data of this work are 0.6 % and 2.0 % respectively. 
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Figure 3.7. Modelling of solubility temperature of sodium thiocyanate in liquid ammonia at 20 bar 

As it can be seen, the modelling of solubility temperature of sodium thiocyanate in liquid 

ammonia (figure 3.7) also presents a very good agreement with the experimental data of this work 

and with those values reported in literature. From the comparison of calculated and experimental 

solubility temperature presented in this work it is obtained a maximum relative deviation of 5.7 % 

and root mean square deviation of 1.7 %.

 

The modelling of solubility temperature of the systems H2O/LiNO3, NH3/LiNO3 and NH3/NaSCN 

have been carried out by means of the solid-liquid equilibrium and thermodynamic models LIQUAC 

and Symmetric Electrolyte-NRTL. 

The activity coefficient allows the representation of the behaviour of a real solution regarding 

an ideal solution in the chemical equilibrium; however, it is necessary to establish the criterion of 

the reference state of the components of the solution for its calculation.  In the case of water as 
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dilution. In the case of ammonia as solvent it is used the symmetric convention, in which the 

electrolyte is represented as the pure molten salt.  

The obtainment of the solubility product constant that allows the calculation of the solubility 

temperature of the solutions under study was obtained by a rigorous method for systems with 

water as solvent and an approximate method for systems with ammonia as solvent. The rigorous 

method is based on the direct calculation of the Gibbs free energy in the standard state by using 

Gibbs-Helmholtz equation, permitting the non-necessity of experimental solubility data for its 

calculation. On the other hand, the approximate method, due to the fact that the Gibbs free 

energy in the standard state ions is not available for non-aqueous solvents, is based on an 

expression with parameters that are obtained from regression of experimental solubility data. 

The required binary interaction parameters of LIQUAC and symmetric electrolyte NRTL models 

have been obtained from the modelling of vapour liquid equilibrium and its comparison with 

reported vapour pressure literature data, obtaining root mean square deviation below 5.5 % and 

maximum deviations below 17 %. 

For system H2O/LiNO3, the solubility modelling has been performed in a salt mass fraction 

range between 0.32 and 0.67, for NH3/LiNO3 system, between 0.41 and 0.75, and for NH3/NaSCN 

between 0.51 and 0.69. From the results obtained, with root square mean deviations and 

maximum relative deviations regarding experimental data of this work lower than 3 % and 7 % 

respectively, it can be concluded that the modelling allows the obtainment of reliable results, but 

in the case of mixtures with ammonia as solvent it is required the use of experimental solubility 

data, what make it not as predictive as in the case of systems with water as solvent. 
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  activity 

  Debye-Hückel parameter 

     UNIQUAC interaction parameter between species   and   

  Debye-Hückel parameter 

  second virial coefficient 

     middle-range interaction parameter between species   and   

     middle-range interaction parameter between species   and   

   heat capacity (J·mol-1·K-1) 

  dielectric constant 

     middle-range interaction parameter between species   and   

  Gibbs energy (J·mol-1) 

  enthalpy (J·mol-1) 

  ionic strength, ionization potential 

    solubility product constant 

   Boltzmann constant 

  molar mass (kg·mol-1) 

   Avogadro’s number 

  molality (mol·kg-1) 

  mole number 

  pressure (kPa) 

   electron charge 

  surface area parameter 

  general gas constant (J·mol-1·K-1) 

  volume parameter 

  temperature (K) 

  mass fraction  

  liquid mole fraction 

  vapour mole fraction 

  charge 

 

 

Greek Letters 

  chemical potential 

  activity coefficient (mole fraction scale) 

   activity coefficient (molality scale) 

  density (g·cm-3) 

  molar volume 
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    dielectric relative constant 

  asymmetric binary interaction energy parameters 

  NRTL symmetric non-randomness factor parameter 

  fugacity coefficient 

  deviation 

 

 

Subscripts 

  anion 

  cation 

  component   

  component   

   solvent 

  reference property 

  water 

 

 

Superscripts 

   Standard state 

  excess property 

    local interaction contribution (electrolyte NRTL model) 

   long range  

   middle range 

    long-range interaction contribution (Pitzer-Debye-Hückel model) 

  saturated state 

   short range 
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Throughout last years, many studies on the new absorbents have been carried out to improve 

the solubility of H2O/LiBr mixture, used in absorption refrigeration chillers for air-conditioning 

applications in order to make it compatible with air-cooled absorbers, which involves higher 

absorbent compositions. As shown in the Chapter 1, these new proposed absorbents can be based 

on either organic or inorganic compounds added into the mixture. However, in this study only the 

addition of lithium salts to the original H2O/LiBr mixture is analysed. 

Iyoki et al. (1993) proposed two different alternatives to the H2O/LiBr mixture with the aim of 

improving its properties. The first one consisted in the addition of LiI to improve the solubility and 

the second one consisted in the addition of LiNO3 to improve the solubility and to decrease the 

corrosivity of the mixture. The solubility study of the mixture H2O/(LiBr+LiI) was performed by 

visual-polythermal method in a range of salt mass fraction from 0.56 to 0.686, with an optimum 

salt mole ratio 4:1, determined in a previous study (Iyoki et al., 1990) at a constant absorbent mass 

fraction of 0.625. The solubility of H2O/(LiBr+LiNO3) was studied in a range of total salt mass 
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fraction from 0.615 to 0.811, with the optimum salt mole ratio of 4:1 obtained at constant salt 

mass fraction of 0.70. The results showed that the H2O/(LiBr+LiI) mixture provides better solubility 

than the H2O/(LiBr+LiNO3) mixture regarding the original water/lithium bromide mixture (Salavera 

et al., 2004) (figure 4.1). 

 

Figure 4.1. Solubility temperature of some mixtures of water with lithium salts.  

Experimental data reported in literature 

Koo and Lee (1998), based on the H2O/(LiBr+LiI) mixture of Iyoki et al. (1993), proposed the 

addition of LiCl to decrease the vapour pressure because it was considered higher than desired  for 

a working fluid (Iyoki et al., 1990). The effect of lithium chloride in the solubility was measured by 

visual-polythermal method in a range of salt mass fraction from 0.56 to 0.686. The proposed 

optimum salt mole ratio was 4.5:1:2 obtained at 0.60 total salt mass fraction. However, they only 

showed solubility results of LiBr/LiI ratios, no results of solubility and vapour pressure at different 

LiCl salt ratios were presented. The addition of LiCl supposed a considerable worsening in the 

solubility regarding the same mixture without LiCl (figure 4.1) but still supposed a solubility 

improvement regarding H2O/(LiBr+LiNO3) mixture for salt mass fractions higher than 0.66. 
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Koo et al. (1999) suggested the H2O/(LiBr+LiNO3+LiI+LiCl) mixture which collects the 

improvements of the mixtures introduced previously by Iyoki et al. and Koo et al. (1998). Also using 

visual-polythermal method, the solubility of the mixture was studied in a range of total salt mass 

fraction from 0.60 to 0.694 with salt mole ratio of 5:1:1:2. The determination of the optimum salt 

mole ratio was carried out in experiments at different salt mole ratios of LiBr/LiNO3, LiI/LiNO3 and 

LiI/LiCl at total salt mass fractions of 0.58, 0.60 and 0.625. However, no results of solubility at 

different ratios of LiCI/Li were shown. The results showed an improvement in the solubility as 

compared to the other lithium salt mixtures proposed previously in the literature (figure 4.1). 

Recently, some authors (Salavera et al., 2004, 2005; Yoon et al., 2005) have considered the 

lithium salts mixture proposed by Koo et al. (1999) as a good alternative to improve the solubility 

and reduce corrosivity of the conventional water-lithium bromide solution.  Consequently, they 

studied its thermophysical properties and heat/mass transfer performance in the absorber. 

However, this mixture should be discussed and reconsidered because some aspects, such as the 

solubility for concentrated solutions higher than 62.5 % of salt or the effect of the addition of LiCl 

to the solubility of the mixture, were not taken into account. 

Within this background and considering that the mixture proposed by Koo et al. (1999) is the 

one that obtains better solubility, the objective of this work is to accomplish an extension of the 

solubility study of Koo et al. (1999) by analysing the optimum salt mole ratio at higher absorbent 

compositions.  

In the first study it has been analysed, by rough visual-polythermal method using sample 

tubes, how the separate addition of LiNO3, LiI and LiCl at different salt mole ratios LiNO3/LiBr, 

LiI/LiNO3 and LiCl/Li respectively affects to the solubility of H2O/LiBr. The experiments have been 

done at total salt mass fractions of 0.65, 0.675 and 0.69 with the aim to obtain the mole ratio of 

salts that has the minimum solubility temperature of the mixture. The order of lithium salts 

addition has been established following the experimental procedure Koo et al. (1999), with the aim 

of obtaining the main solubility improvement with LiNO3 diminishing as much as possible the 

amount of LiI because of the high economic cost that suppose regarding the other salts. The 

addition of LiCl has been left to the final stage because according to the literature it is not expected 

to improve the solubility, its addition is made with the aim of decreasing the vapour pressure of the 

mixture.  
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In this way, it has also been modelled with Aspen Properties software, using asymmetric 

Electrolyte-NRTL activity coefficient model, the vapour pressure of the mixture when the different 

lithium salts are added, especially lithium chloride in order to analyse whether its addition to 

decrease the vapour pressure of the optimum mixture obtained is justified. 

Once obtained the optimum mole ratio of lithium salts, the solubility temperature of the new 

composition mixture has been precisely measured, by visual-polythermal methodology using a 

glass solubility cell, in a range of salt mass fraction from 0.61 to 0.70. 

 

The principle of measurement of the solubility temperature of the studied mixtures is a 

synthetic and visual—polythermal method. The procedure is based on the variation of the 

temperature of the experiment, maintaining constant the pressure and composition of the sample, 

until the visual determination of the dissolution of the last crystal of solute. The temperature at 

which the last crystal of salt is dissolved corresponds to the solubility temperature. 

 

Depending on the working solvent, the characteristics and configurations of the devices for the 

solubility determination based on the direct visualization of the experiment changes. In case of 

aqueous solvents at atmospheric working pressure, the devices are quite simple, mainly made of 

glass for an optimal visualisation of the experiment. 

This section describes the apparatus used for the determination of the optimum lithium salts 

ratios (LiBr:LiNO3:LiI:LiCl) in aqueous solution and the apparatus used for the precise solubility 

temperature determination of the optimal mixture obtained. 

 

Rough solubility measurements of lithium salt mole ratios have been carried out by means of 

standard sample tubes (figure 4.2) of 17.4 cm3 (1.5 cm diameter, 16.1 cm height) immersed in a 

thermal bath Julabo F33-EH with working temperature range from 240 K to 423 K, temperature 
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stability ± 0.03 K and resolution ± 0.1 K (figure 4.3). Ethylene glycol, with a range of temperatures 

from 233 K to 403 K in liquid phase, is used as thermostatic fluid to provide the required range of 

temperatures to perform all the measurements.  

                    

                       

 

Although this methodology has not been previously validated, it has been chosen because the 

purpose of these experiments is not to obtain a very accurate value of solubility temperature, but 

to obtain the behaviour and tendency of the different ratios of lithium salts in order to find the 

mixture with better solubility. In addition, it allows multiple simultaneous solubility measurements, 

thus saving experimentation time.  

 

The accurate solubility temperature measurements of the optimum mole ratio of lithium salts 

obtained has been performed by means of a glass solubility cell. The solubility cell available in 

Group of Research on Applied Thermal Engineering – CREVER is the same that reported by Salavera 

et al. (2004). The experimental device (figure 4.4) has total dimensions (without orifices) of 12.6 cm 

height and 9.8 cm diameter, and is entirely made of pyrex glass with three concentric chambers. 

Figure 4.2. Sample tubes with lithium  
salts in aqueous solution 

Figure 4.3. Sample tubes immersed in 
thermal bath to temperature control 
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The internal chamber, with an approximate volume of 40 cm3, houses the sample under study 

and it is constituted by two orifices through which can be introduced the solute and solvent and 

the temperature probe for measuring the temperature of the experiment. The intermediate 

chamber allows the temperature control of the experiment by means of the recirculation of 

thermostatic fluid, which enter the cell through the bottom orifice and exit through the top orifice 

to ensure that the cell is always filled, avoiding dead volumes. The external chamber has vacuum 

atmosphere to thermally isolate the intermediate chamber from the outside and to avoid 

condensation at the wall when the temperature is lower than the room temperature, allowing an 

optimal visualization of the experiment.  

The temperature control is carried out with a thermal bath Julabo EH-F33 by means of 

ethylene glycol recirculation. The temperature is measured by a platinum temperature Pt100 with 

uncertainty 0.005 K, connected to a calibrated thermometer ASL F100 with resolution ± 0.001 K in 

a range from 273.15 K to 423.15 K. In order to ensure the correct homogenization of the solution 

and temperature, the content of the solubility cell is continuously stirred using a magnetic bar 

placed inside the solution and activated by a magnetic stirrer P-Selecta AGIMATIC-N placed under 

the solubility cell. 

The estimated expanded uncertainty (k = 2) of temperature has been determined to be 0.2 K 

(details in section 4.6.2) 

 

Figure 4.4. Solubility cell Figure 4.5. Equipment used for measuring solubility of 
salts in water at atmospheric pressure 
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In the following section it is explained the experimental methodology used for the solubility 

temperature determination, which is divided in three parts: the preparation of the aqueous 

solutions of lithium salts (LiBr, LiNO3, LiI and LiCl), the solubility temperature measurement and the 

emptying and cell cleaning. 

 

Lithium bromide (purity ≥ 0.99) is supplied by Sigma-Aldrich. Lithium iodide (purity 99.9 %) is 

supplied by Sigma-Aldrich. Lithium nitrate (purity ≥ 0.98) is supplied by Fluka. Lithium chloride 

(purity ≥ 0.99) is supplied by Panreac. Milli-Q water (resistivity lower than 18.2 MΩcm  is used to 

prepare aqueous solutions. All chemicals are used without further purification. The salts are dried 

in an oven at 373 K for at least 24 h and maintained in a desiccator at room temperature before 

being used. 

 

The preparation of the sample, constituted by the salt/s and the solvent, depends on whether 

the experiment is performed in the sample tubes or in the solubility cell.  

a) Sample tubes 

The required mass of lithium salts for the mixture under study is measured separately in a 

funnel for solids and is directly introduced into the sample tube. The required amount of water is 

determined by mass in an appropriate syringe and is directly introduced into the sample tube.  

The quantity of lithium salts and water introduced is determined by mass difference of the 

funnel and the syringe in balance Mettler AE260 DeltaRange (resolution ± 0.1 mg).  

b) Solubility cell 

The solubility cell is placed inside a mass balance Mettler Toledo PR2003 DeltaRange 

(resolution ± 0.001 g). In one of the orifices of its internal chamber is placed a funnel whereby are 

introduced and directly determined the required mass of lithium salts. The deionised water is 

introduced through the same orifice with a syringe.  
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The desired most concentrated solution is prepared first to reduce the amount of salt required 

for the experiments and to simplify the procedure of the sample preparation. Finally, by the 

addition of the required water into the solution, the rest of the desired diluted compositions of the 

mixture will be obtained.  

The estimated expanded uncertainty (k = 2) of mass faction has been determined to be 0.0003 

for the most concentrated solution and 0.0009 for the most diluted solution (details in section 

4.6.1) 

 

The determination of the solubility temperature of the mixtures is practically similar for the 

measurements in the sample tubes or in the solubility cell. The only difference is the accuracy in 

which the solubility temperature is obtained. The solubility measurements for the determination of 

the optimum mole ratio of lithium salts are performed with an accuracy of ± 1 K. On the other 

hand, the solubility temperature determination of the optimum ratio obtained is precisely 

measured with an accuracy of ± 0.1 K.  

Before starting the procedure, since the mixture of water with lithium salts produces an 

exothermic reaction, after the addition of water to the lithium salts the solution has to be 

immediately cooled to control the reaction temperature. Once the oversaturated solution is stable 

and with continuous stirring, the procedure for determining the solubility temperature is described 

as follows: 

1) The first solubility temperature measurement is always higher than the real solubility 

temperature because at the beginning salt presents compacted blocks that require more 

temperature to be dissolved. For this reason, a high temperature is set until the salt is 

dissolved. The reached temperature is maintained for 15 minutes to ensure a complete 

dissolution. 

2) Next, a low temperature is set to cool the sample until reaching the precipitation of the 

solution at temperature T2. 

3) Temperature is increased at a value 5 K higher than T2 and later in intervals of 2 K until 

complete dissolution is reached in the interval T3-T4, waiting 15 minutes between each 

change of temperature to ensure thermal stabilization.   
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4) The sample is cooled again until the precipitation is reached at T5. 

5) For the third dissolution the temperature is set at T3. Then, if the experiment is to obtain the 

optimum salt ratio, the temperature is increased in intervals of 1 K. If the experiment is for 

obtaining the precise solubility temperature of the optimum mixture, the temperature is 

increased in intervals of 0.5 K, which are lowered to 0.2, and 0.1 K progressively as the amount 

and size of the salt decrease. For both cases, 15 minutes are waited between each 

temperature change to assure thermal stabilization. 

6) The solubility temperature is reached when no crystal is visualized in the solution. 

7) Finally, the steps 4-6 are repeated at least two times more to assure reproducibility. 

 

Once the experiments are finalized, the sample extraction procedure consists of disassembling 

the measuring device from the thermal bath, extracting the solution from the sample tube or from 

the orifices of the solubility cell and emptying it in the proper container. Both devices are cleaned 

with soapy water, acetone and finally dried in a drying oven at 373 K.

 

 

The procedure for the determination of the optimum mole ratio of lithium salts has been 

carried out in three different stages at total salt mass fraction of 0.65, 0.675 and 0.69. These 

compositions suppose an extension and improvement of the study of Koo et al. (1999) for 

absorption chillers with air-cooled absorbers, in which the absorbent compositions achieves higher 

values than absorbers refrigerated by water cooling tower. 

In a first stage, it is analysed how the addition of LiNO3 affects to the solubility of the mixture 

H2O/LiBr. In these experiments, firstly the solubility temperature of water/lithium bromide is 

measured and then the solubility temperature of the system H2O/(LiBr+LiNO3) by adding lithium 

nitrate at LiNO3/LiBr mole ratios from 0 to 0.20 for 0.65 total salt mass fraction  and from 0 to 0.23 

for 0.675 and 0.69 total salt mass fractions. Figure 4.6 shows the experimental solubility results of 

this work and the results of crystallization temperature obtained by Koo et al. (1999) at total salt 
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mass fractions of 0.58, 0.60 and 0.625. The solubility temperature decreases as the ratio LiNO3/LiBr 

increases until certain ratio in which a minimum is reached and is produced a pronounced turning 

point, from which the solubility increases again. 

In the results of Koo et al. (1999), the minimum crystallization temperature obtained 

corresponds to a mole ratio of 0.2. However, the experimental results obtained in this work are 

quite different. For a total salt mass fraction of 0.65, the ratio with the minimum solubility 

temperature is the same that obtained by Koo et al. (1999), with a decrease in the solubility 

temperature of 22 K regarding H2O/LiBr mixture. At total salt mass fraction of 0.675 and 0.69, the 

minimum solubility temperature obtained for both mass fractions correspond to a salt mole ratio 

LiNO3/LiBr of 0.15, with a decrease of the solubility temperature of 27 K and 26 K respectively. 

Thus, the optimum salt mole ratio of the H2O/(LiBr+LiNO3) mixture has been set to 0.143 (to allow 

margin of error in the sample preparation) because the minimum ratio that obtains a minimum 

solubility temperature of one composition determines the optimum mole ratio of lithium salts. 

 

Figure 4.6. Solubility temperature of H2O/(LiBr+LiNO3) mixture at different LiNO3/LiBr mole ratios and total  

salt mass compositions from 58 % to 62.5 % (lit.) and 65 % to 69 % (experimental) 

In the second stage, it is analysed how the addition of LiI affects to the solubility of the 

H2O/(LiBr+LiNO3) mixture. Fixed the optimum mole ratio LiNO3/LiBr obtained in the previous 
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mixture to 0.143, the solubility temperature of the H2O/(LiBr+LiNO3+LiI) system at LiI/LiNO3 mole 

ratios from 0 to 2 has been measured. 

As it can be observed in figure 4.7, there is no pronounced turning point from which the 

temperature increases as the previous case. Instead, the solubility temperature decreases up to 

the last ratio Li/LiNO3 measured. For the total salt mass fraction of 0.69, the solubility temperature 

drops rapidly 18 K and then continues decreasing slowly. The same pattern happens with total salt 

mass fraction of 0.65, with a temperature drop of 11 K, but in this case there is a smooth turning 

point corresponding to the salt mole ratio of 0.5. For the mass fraction of 0.675 it is not observed a 

temperature drop as the other salt composition, but there is also a smooth turning point 

associated to salt the mole ratio of 0.5. Hence, the optimum Li/LiNO3 salt mole ratio has been 

established to 0.5 because it provides a good decease in the solubility temperature with low 

amount lithium iodide. 

 

Figure 4.7. Experimental solubility temperature of H2O/(LiBr+LiNO3+LiI) mixture at different Li/LiNO3 mole 

ratios and salt mass composition from 65 % to 69 % 

In the third stage it is analysed how the addition of LiCl affects to the solubility of the 

H2O/(LiBr+LiNO3+LiI) mixture. For these experiments, the LiNO3/LiBr and LiI/LiNO3 mole ratios have 

been fixed to the optimum value obtained from the previous experiments, that is, 0.143 and 0.5 

respectively. The solubility temperature of H2O/(LiBr+LiNO3+LiI+LiCl mixture has been measured at 

LiCl/LiI mole ratios from 0.125 to 2.000.  
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As expected according to the literature, there is no appreciable solubility improvement with 

the addition of lithium chloride. For the three absorbent compositions analysed, between 0 – 0.250 

LiCl/LiI salt mole ratios, it is produced an increase in the solubility temperature and then slightly 

decreases again maintaining the solubility temperature constant up to LiCl/LiI mole ratio of 1 

(figure 4.8). From this point, the solubility varies depending on the salt mass composition of the 

mixture. For salt mass fraction of 0.675 the solubility remains constant, obtaining the same 

solubility than the lower mole ratios measured. However, for mixtures with salt mass fractions of 

0.65 and 0.69 it is produced a high worsening in the solubility. In the case of salt mass fraction of 

0.65, a change of the mole ratio from 1 to 1.5 leads  to an increase in the solubility temperature of 

30 K and still increases 3 K when a mole ratio of 2 is achieved. The mixture with salt mass fraction 

of 0.69 shows a similar behaviour, when the mole ratio is increased from 1 to 1.5 the solubility 

temperature increases 16 K but remains constant when the mole ratio is increased to 2. 

 

Figure 4.8.  Experimental solubility temperature of H2O/(LiBr+LiNO3+LiI+LiCl) mixture at different LiCl/LiI mole 

ratios and salt mass compositions from 65 % to 69 % 

Considering the obtained results, from the point of view of the improvement in solubility, the 

addition of LiCl to the mixture can be discarded. Also, from the point of view of vapour pressure 

(see section 4.7), it is shown that it doesn’t provide a decrease of vapour pressure of the mixture, 

obtaining even worse results of vapour pressures for the higher salt compositions analysed. 
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Thus, from each one of the experiments carried out at total salt fraction range from  0.65 to 

0.69 and salt mole ratios LiBr/LiNO3, LiBr/LiI and LiCl/Li, the optimum mole ratio of lithium salts has 

been determined to be 7:1:0.5 (LiBr:LiNO3:Lil) in the H2O/(LiBr+LiNO3+LiI) system. 

 

Once the optimum mole ratio of lithium salts is obtained, the solubility temperature of the 

optimum mixture H2O/(LiBr+LiNO3+Lil) is precisely measured in a range of total salt mass fraction 

from 0.6245 to 0.6907, covering a solubility temperature range from 275.1 K to 309.8 K (figure 

4.9). 

 

Figure 4.9.  Experimental solubility temperature of H2O/(LiBr+LiNO3+LiI) mixture (molar salt ratio 7:1:0.5) and 

comparison with solubilities of H2O(/LiBr+LiNO3+LiI+LiCl) mixture (mole ratio 5:1:1:2) reported in literature 

Figure 4.9 shows a comparison of the experimental solubility results obtained in this work 

(table 4.1) with the results obtained by Salavera et al. (2004) using the mixture proposed by Koo et 

al. (1999) (H2O/(LiBr+LiNO3+LiI+LiCl), mole salt ratio of 5:1:1:2), and the solubility of the H2O/LiBr 

mixture. Both measured with the same experimental device and methodology than the used in this 

work. 
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As it can be observed, the solubility temperature increases as the lithium salt composition 

increases. The behaviour of the curves obtained by Salavera et al. (2004) present a turning point 

that corresponds to a change of the solid phase in equilibrium with the solvent (solid phase 

associated to    solvent molecules). However, the solubility of the optimum mixture obtained in 

this work doesn’t present any turning point. 

Table 4.1. Experimental solubility temperature of H2O/(LiBr+LiNO3+LiI) mixture (7:1:0.5) 

w salt T / K 

0.6907 309.8 

0.6848 307.8 

0.6794 306.0 

0.6743 304.1 

0.6693 302.2 

0.6644 300.0 

0.6597 297.8 

0.6548 295.4 

0.6495 292.6 

0.6446 289.6 

0.6396 286.5 

0.6346 283.0 

0.6295 279.2 

0.6245 275.1 

The results obtained in this work present similar solubilities regarding the results presented by 

Salavera et al. (2004) for salt mass fractions up to 0.65.  From this point, a significant improvement 

of the solubility is obtained as the salt composition increases, reaching a decrease of solubility 

temperature of 35 K for salt mass fraction of 0.69.  

The solubility of the new composition mixture proposed in this work has been quantitatively 

compared with the solubility of the quaternary solution reported by Salavera et al. (2004) (table 

4.3) by means of the correlation of the experimental results of this work using the following 

polynomial equation: 

    ∑    
 

 

   

                                                                        ( .1  
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where   is the salt mass fraction and    are the coefficients listed in table 4.2. The maximum and 

average solubility temperature deviation obtained is 0.3 K and 0.1 K respectively.  

Table 4.2. Coefficients of equation 4.1 

    -1.77075·10
3
 

    5.77359·10
3
 

    -3.99868·10
3
 

Table 4.3. Comparison between solubility temperature of H2O/(LiBr+LiNO3+LiI+LiCl) (5:1:1:2) 

 (Salavera et al., 2004) and H2O/(LiBr+LiNO3+LiI) (7:1:0.5) calculated with equation 4.1 

w salt 
T / K 

Salavera et al.  
T / K 

This work 
ΔT 

0.6906 344.0 309.4 -34.6 

0.6848 337.6 307.8 -29.7 

0.6799 332.7 306.3 -26.4 

0.6772 329.2 305.3 -23.8 

0.6700 321.8 302.5 -19.3 

0.6654 315.9 300.6 -15.3 

0.6599 309.5 297.9 -11.6 

0.6555 303.7 295.7 -8.0 

0.6514 295.6 293.4 -2.1 

0.6466 290.2 290.6 +0.5 

0.6424 287.9 288.0 +0.1 

0.6370 285.0 284.5 -0.5 

0.6302 280.2 279.7 -0.5 

0.6226 276.0 273.9 -2.2 

 

To sum up, regarding the mixture proposed by Koo et al. (1999) the mixture proposed in this 

work provides not only a significant improvement in the solubility for salt mass fractions from 0.65, 

but also is constituted by lower amount of lithium nitrate, lithium iodide, and the lithium chloride is 

eliminated from the mixture. 
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The uncertainties associated to the salt mass fraction of the different aqueous mixtures of 

lithium salts are directly related to the balances Mettler AE260 and Mettler Toledo PR 2003, used 

to determine the mass of all compounds of the mixtures. The uncertainty sources of the mass 

balances given by the manufacturer include resolution, calibration, linearity, accuracy and 

reproducibility.   

Since the first sample prepared is the most concentrated solution and the subsequent 

solutions are obtained by dilutions, the uncertainty of the mass of water propagates and increases 

as the number of dilutions increases. Hence, the minimum uncertainty corresponds to the initial 

prepared solution, and the maximum uncertainty corresponds to the most diluted solution. This 

results to an expanded uncertainty (k = 2) of the total salt mass fraction of 0.0003 and 0.0009 

respectively.  

 

The uncertainty of the temperature corresponds to the uncertainties associated to the 

resolution and calibration of the thermometer ASL F100 connected to a probe Pt100, as well as the 

homogeneity, stability and repeatability of the temperature measurements along the experiments. 

The expanded uncertainty (k = 2) obtained is 0.2 K. A detailed explanation of the uncertainties 

calculation is presented in Annex B. 

 

Vapour liquid equilibrium of water/salts mixtures are expressed with equation 4.2, in which 

due to the non-volatility of the lithium salts, only water is exchanged in vapour-liquid phases 

(detailed previously in section 3.5.1): 

                
    

    [
   (     

 )

  
]                                              ( .2  
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The modelling of vapour pressure of the aqueous lithium salts mixtures has been performed 

with Aspen Properties software by means of asymmetric Electrolyte-NRTL activity coefficient model 

in order to analyse if lithium chloride decreases the vapour pressure of the optimum mixture 

experimentally obtained. 

The explanation of the model is omitted because Aspen Properties uses the symmetric E-NRTL 

model explained in (section 3.4.1) but modified to work as asymmetric model (infinite dilution). 

Electrolyte-NRTL model, based on the representation of the excess Gibbs energy of aqueous 

electrolyte systems, allows obtaining good data correlation results over a wide range of salt 

composition and temperature.   

 

In a first step, the vapour pressure modelling of LiBr, LiNO3, LiI and LiCl aqueous solutions has 

been compared to reported literature data in a wide range of salt mass fractions and temperatures 

from 273.15 K to 483.7 5 K to validate and evaluate the reliability of the model for single 

electrolyte aqueous solutions (figures 4.10 – 4.13). In all cases, the relative deviation increases with 

salt mass fraction. In order to mitigate these deviations the interaction parameters have been 

fitted (eq. 3.75 and 3.76, Chapter 3) from reported literature values of vapour pressure (table 4.3). 

 

Figure 4.10. Deviation between calculated and experimental vapour pressure of H2O/LiBr system 

(Iyoki and Uemura, 1989; Jeter et al., 1992; Boryta et al., 1975; Patil et al., 1990)  

and comparison between original and regressed electrolyte pair parameters 
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Figure 4.11. Deviation between calculated and experimental vapour pressure (Campbell et al., 1956) of 

H2O/LiNO3 and comparison between original and regressed electrolyte pair parameters 

 
Figure 4.12. Deviation between calculated and experimental vapour pressure (Patil et al., 1990) of H2O/LiI 

and comparison between original and regressed electrolyte pair parameters 

 

 

Figure 4.13. Deviation between calculated and experimental vapour pressure (Patil et al., 1990) of H2O/LiCl 

and comparison between original and regressed electrolyte pair parameters 
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In the case of LiBr aqueous solutions, vapour pressure data of different authors have been 

used to analyse the relative deviation obtained by the vapour pressure modelling with the original 

parameters of Aspen Properties (figure 4.10a). In accordance with the results, up to salt mass 

fraction of 0.55 of LiBr the deviations obtained are lower than 10 % excepting with Boryta et al. 

(1975). For this reason, reported vapour pressure data by Boryta et al. (1975) has been discarded 

to perform the regression of experimental data for obtaining  the electrolyte pair parameters. Once 

obtained the new parameters, the deviations are mainly lower 10 %. Regarding reported data of 

Iyoky and Uemura (1989), the root mean square deviation (RMSD) decreased from 5.1 % to 4.6 %, 

maintaining the maximum relative deviation in 11 %. Regarding Jeter et al. (1992), RMSD 

decreased from 5.5 % to 3.3 % and the maximum relative deviation from 10.7 % to 7.4 %. Finally, 

regarding Patil et al. (1990) RSMD decreased from 11.0 % to 6.0 % and maximum relative deviation 

from 37.1 % to 13.2 %. In the rest of LiNO3, LiI and LiCl aqueous solutions, the regression of the 

binary parameters show a remarkable improvement in the maximum relative deviation, with all the 

points under 16 % and RSMD under 8 % (table 4.4). 

Table 4.4. Maximum relative deviation and root mean square deviation before and after 

 regression of electrolyte pair parameters of H2O/LiNO3, H2O/LiI and H2O/LiCl systems 

 
H2O/LiNO3 H2O/LiI H2O/LiCl 

 
Original 

parameter 
Regressed 
parameter 

Original 
parameter 

Regressed 
parameter 

Original 
parameter 

Regressed 
parameter 

Max. Rel. Deviation % 40 8 80 16 40 13 

RMSD % 14 4 33 8 14 7 

Table 4.5. Electrolyte pair parameters C, D, E for LiNO3, LiI and LiCl aqueous solutions (eq. 3.75 and 3.76) 

Species Electrolyte pair parameters 

Molecule   or  
electrolyte   

Molecule   or 
 electrolyte   

C D E 

H2O Li
+
 Br

-
 75.6225 -33130.976 -54.1754 

Li
+
 Br

-
 H2O 14.2194 -5574.6973 -88.4163 

H2O Li
+
    

  86.2138 54959.1331 82612.9897 

Li
+
    

  H2O -2.1932 -98.0105 9.07161 

H2O Li
+
 I

-
 -1074.8168 -487737.47 434076.891 

Li
+
 I

-
 H2O -5.7405 437.2852 20.2003 

H2O Li
+
 Cl

-
 -37.8535 9592.3604 412.34383 

Li
+
 Cl

-
 H2O 0.5487 -1208.2119 3.1180 

* Nonranddom factor α = 0.0416 for H2O/LiBr 

** Nonranddom factor α fixed 0.2 for the rest of solutions (Chen et al. 1982) 
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As a summary, the calculated vapour pressures of each one of the lithium salts (LiBr, LiNO3, LiI 

and LiCl) aqueous binary solutions of have been compared to see the behaviour they present at 

303.15 K and a wide range of salt mass fraction (figure 4.14).  

 

Figure 4.14. Vapour pressures of LiBr, LiNO3, LiI and LiCl aqueous solutions at 303.15 K  

calculated using Electrolyte-NRTL model 

The upper limit of salt mass fraction is determined by the solubility limit of the salt at the 

temperature of study, 303.15 K. As it can be observed, H2O/LiI and H2O/LiNO3 presents higher 

vapour pressures than H2O/LiBr solutions. However, H2O/LiCl solutions present lower vapour 

pressure than the rest of solutions.  

In order to validate the vapour pressure modelling for a multi-component electrolyte solution 

of lithium salts, figure 4.15 shows a comparison between calculated and reported literature values 

(Epelde et al., 2013) of vapour pressure of the mixture proposed by Koo et al. (1999) 

(H2O/(LiBr+LiNO3+LiI+LiCl), mole salt ratio 5:1:1:2) in a range of total salt mass fraction from 0.40 

to 0.65 and temperature range from 273 K to 393 K.  

Although the results obtained show an appreciable deviation, especially in the temperature 

range from 288 K to 308 K, with a maximum relative deviation of 49.4 % and root mean square 

deviation of 22.2 %, the calculated vapour pressure presents the same behaviour and tendency 
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than experimental values, what means that the vapour pressure modelling is suitable for 

calculating vapour pressure of the lithium salts solutions. 

 

Figure 4.15. Vapour pressure of H2O/(LiBr+LiNO3+LiI+LiCl) mixture (5:1:1:2). 

◊, exp. data (Epelde et al., 2013). ─, this work, calculated with Electrolyte-NRTL model  

 

 

Once obtained the scope and limitations of the vapour pressure modelling from the validation 

with single lithium salts solutions and the quaternary mixture proposed by Koo et al. (1999), in this 

section it has been modelled the vapour pressure of the optimum mixture of lithium salts obtained 

experimentally in this work (mole salt ratio 7:1:0.5, LiBr:LiNO3:LiI) and the effect of the addition of 

LiCl on the vapour pressure of the mixture. 

For this purpose, firstly the behaviour of the vapour pressure has been analysed when lithium 

nitrate is added over aqueous solutions of lithium bromide (H2O/(LiBr+LiNO3)). The modelling has 

been carried out at LiNO3/LiBr mole ratios from 0 to 2 and total salt mass fractions from 0.58 to 

0.69 at 363.15 K (figure 4.16). The high temperature chosen for the modelling is because at high 
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solution. The results show that the vapour pressure increases as the LiNO3/LiBr mole ratio 

increases. The difference of vapour pressure of all points analysed (optimum mole ratio from 

solubility analysis indicated with a circle) regarding H2O/LiBr solution decreases with salt mass 

fraction (figure 4.16). In the case of addition of LiI (H2O/(LiBr+LiNO3+LiI)) maintaining fixed the 

obtained optimum mole ratio LiNO3/LiBr, the same behaviour is obtained (figure 4.17).  

 

Figure 4.16. Effect of addition of LiNO3 in the vapour pressure of H2O/(LiBr+LiNO3) mixture at 363.15 K 

 

 

 

Figure 4.17. Effect of addition of LiI in the vapour pressure of H2O/(LiBr+LiNO3+LiI) mixture at 363.15 K 
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However, the addition of LiCl (H2O/(LiBr+LiNO3+LiI+LiCl)), maintaining fixed the obtained 

optimum LiNO3/LiBr and LiI/LiNO3mole ratios, doesn’t obtain an appreciable decrease of the 

vapour pressure of the mixture, showing a steady plateau as the amount of lithium chloride 

increases (figure 4.18). At 363.15 K, the maximum decrease of vapour pressure obtained is 0.2 kPa, 

at total salt mass fraction of 0.58. 

 

Figure 4.18. Effect of addition of LiCl in the vapour pressure of H2O/(LiBr+LiNO3+LiI+LiCl) mixture at 363.15 K 

In order to understand the results obtained before with LiCl aqueous solutions, it has been 

modelled and analysed the variation of vapour pressure when is added LiCl at different mole ratios 

in the optimum mixture proposed in this work (7:1:0.5, LiBr:LiNO3:LiI) for a total salt mass fraction 

range from 0.35 to 0.6 at 363.15 K (figure 4.19).  

The results show a slight decrease of vapour pressure when the salt mole ratio is increased 

from 0 to 2. However, this improvement in the vapour pressure decreases as the salt composition 

increases, obtaining from 0.65 salt mass fractions a decrease of vapour pressure lower than 0.5 

kPa. For this reason, the addition of LiCl is discarded from the point of view of the improvement of 

vapour pressure.   
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Figure 4.19. Effect of addition of LiCl in vapour pressure of optimum mixture (7:1:0.5, LiBr:LiNO3:LiI) at 363 K 

Finally, the calculated vapour pressures of LiBr aqueous solutions, calculated vapour pressures 

of the solution proposed by Koo et al. (1999), and the calculated vapour pressures of the optimum 

solution obtained in this work, have been compared in the figure 4.25 at 303.15 K (curves cut in the 

solubility limit) and at 363.15 K in figure 4.26. 

 

Figure 4.20. Calculated vapour pressure comparison between mixture proposed by Koo et al and the 

optimum mixture obtained in this work at 303.15 K 
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Figure 4.21. Calculated vapour pressure comparison between mixture proposed by Koo et al and the 

optimum mixture obtained in this work at 363.15 K 

As it can be observed in figures 4.25 and 4.26, the modelling obtains different behaviours 

depending on the temperature. Regarding the solution proposed by Koo et al. (1999), at 303.15 K a 

decrease of vapour pressure is obtained from the initial total salt mass fraction analysed, achieving 

for salt mass fraction range between 0.60 and 0.65 a decrease of vapour pressure from 0.13 kPa to 

0.05 kPa respectively. At 363.15 K the improvement is only obtained from total salt mass fraction 

of 0.5, obtaining a decrease of vapour pressure from 1.09 kPa to 1.22 kPa for salt mass fraction 

range between 0.60 and 0.70. It is important to mention that the results obtained at 363 K are 

more reliable due to the lower deviations obtained in the validation of the modelling (figure 4.15). 

Therefore, it can be concluded that not only the mixture proposed in this work obtains better 

solubility than the mixture proposed by Koo et al. (1999) it has even a slight decrease of vapour 

pressure at high salt compositions. 
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In this study, a new aqueous solution based on the addition of lithium salts to the conventional 

H2O/LiBr mixture has been optimised for improving the solubility (and corrosivity) without an 

excessive increase of the vapour pressure, as well as for allowing its use in absorption systems with 

air-cooled absorbers, which involves higher salt composition and consequently the crystallization 

risk becomes critical. 

Different alternatives proposed in literature have been considered but only 

H2O/(LiBr+LiNO3+LiI+LiCl) (mole salt ratio 5:1:1:2) proposed by Koo et al. (1999) has been taken as 

reference because it is the mixture that achieves better solubility. In this context, as this mixture 

was optimized for salt mass fraction from 0.58 to 0.625, this study has performed an extension of 

the original solubility study of Koo et al. (1999) by measuring the ratio of salts that reaches the 

lowest solubility temperature in a salt fraction range from 0.65 to 0.69 (operation range of air-

cooled absorbers). 

The experimental solubility measurements of the different mole salt ratios have been roughly 

analysed by visual-polythermal method using in sample tubes. From each one of the experiments 

carried out at salt mass fractions between 0.65 and 0.69 and different LiBr/LiNO3, LiBr/LiI and 

LiCl/Li mole ratios, the optimum mole ratio of lithium salts has been determined to be 7:1:0.5 in 

the H2O/(LiBr+LiNO3+LiI) system. The addition of LiNO3, H2O/(LiBr+LiNO3), supposes a remarkable 

solubility temperature decreasing of 15 K- 27 K depending of total salt mass fraction. The addition 

of LiI, H2O/(LiBr+LiNO3+LiI), leads an additional decreasing of 18 K and 11 K for salt mass fractions 

0.69 and 0.65 respectively. Nevertheless, the addition of LiCl, H2O/(LiBr+LiNO3+LiI+LiCl), doesn’t 

lead to improvements in solubility, so its addition is discarded.  

The solubility of the obtained optimum mixture has been precisely measured in a solubility 

glass cell based on the visual-polythermal method. The measurements have been performed in a 

range of salt mass fractions from 0.6245 to 0.6907, covering a solubility temperature range from 

275.1 K to 309.8 K. The comparison of the solubility of the mixture proposed in this work with the 

results obtained by Salavera et al. (2004) using the mixture proposed by Koo et al. (1999) shows 

similar results up to 0.65 salt mass fraction. From this point, a significant improvement of the 

solubility is obtained as the salt mass fraction increases. For a range of salt mass fractions from 

0.655 to 0.69 decrease of solubility temperature from 8 K to 35 K is reached. 
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The study of the effect of the addition of lithium chloride on the vapour pressure of the 

optimum mixture obtained experimentally has been carried out by modelling the vapour pressure 

with asymmetric Electrolyte-NRTL activity coefficient model using Aspen Properties software.  

The vapour pressure modelling has been validated first in LiBr, LiNO3, LiI and LiCl single 

electrolyte solutions, which required the calculation of new electrolyte energy parameters from 

regression of experimental data to obtain root mean square deviations lower than 10 %. The 

validation in multi component electrolyte solutions has been made by comparing calculated and 

reported literature values of vapour pressure of the mixture proposed by Koo et al. (1999). 

Although the modelling presents a maximum relative deviation of 49.4 % and root mean square 

deviation of 22 %, since it presents the same trend than experimental values it can be concluded 

that the model is suitable for calculating vapour pressure of lithium salts mixtures solutions. 

The results of the calculated vapour pressure of the proposed mixture have shown that the 

addition of LiCl doesn’t significantly decrease the vapour pressure of the solution. Thus, from the 

point of view of vapour pressure is discarded the addition of LiCl. Finally, the calculated vapour 

pressure of the optimum mixture of this work has been compared with the calculated vapour 

pressure the solution proposed by Koo et al. (1999). At 303.15 a decrease of vapour pressure from 

0.13 kPa to 0.05 kPa has been obtained in a range of salt mass fraction from 0.60 to 0.65. At 363 K 

the decrease of vapour pressure for a range of salt mass fraction from 0.60 to 0.70 has been 

between 1.09 kPa to 1.22 kPa. 

As a final conclusion, the mixture proposed in this work is considered a better option than the 

mixture proposed by Koo et al. (1999) due to the improvement in solubility, the reduction in the 

number of salts, the reduction of required amount of LiNO3 and LiI, and the reduction of the 

vapour pressure that it presents. 
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  pressure (kPa) 

  general gas constant (J·mol-1·K-1) 

  temperature (K) 

  mass fraction  

  liquid mole fraction 

  vapour mole fraction 

 

 

Greek Letters 

  activity coefficient 

  asymmetric binary interaction energy parameters 

  NRTL symmetric non-randomness factor parameter 

  fugacity coefficient 

  molar volume 

 

 

Subscripts 

  water 

 

 

Superscripts: 

  saturated state 
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Vapour-compression refrigeration systems with CO2 as refrigerant are used in industry to 

achieve lower refrigerating temperatures (evaporation temperatures up to -50 °C) than systems 

operated with ammonia. Though the main disadvantage is that requires higher working pressures, 

the friendly properties such as its natural origin, non-corrosivity, non-flammability or non-toxicity 

has promoted the study of its use in absorption refrigeration systems.  

 Although CO2 is a promising refrigerant, nowadays there are only theoretical proposals for its 

integration in absorption refrigeration systems with suitable absorbents. These proposals have 

been based in the use of ionic liquids, alcohols or amines as absorbents in conventional absorption 

systems (Sen and Paolucci, 2006; Jones, 2002) or absorption/desorption cycles where the absorber 

and generator are the only components of the system (Jones, NASA, 2004). 

Within this scope, in this chapter it has been studied the use of flow-calorimetric methodology 

to measure solubility of CO2 in absorbents. This technique allows the simultaneous determination 
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of the enthalpies of solution and solubility limit of CO2. Specifically, in this work it has been used 2-

Methylpiperydine and 4-Methylpiperydine aqueous solutions, proposed for CO2 capture processes. 

Alkanolamines such as monoethanolamine (MEA) or diethanolamine (DEA) have been the 

most common CO2 absorbents used over the years (Jung et al., 2012; Arcis et al., 2011, 2012), 

however, they have some drawbacks such as high degradation, foam formation, high corrosivity 

and the most important, they require much energy to desorb the CO2, causing a significant 

reduction in the efficiency of the installation. 

For this reason, the purpose of current researches lies in the reduction of the energy cost of 

CO2 removal from the amine solution (Raynal et al., 2011). In this way, some investigations are 

focused in the use of aqueous methylpiperidine solutions (cyclic secondary amine) as absorbents 

because they exhibit liquid–liquid phase separation (amine/CO2+water) when the system reaches a 

certain temperature and CO2 composition, what reduces the energy requirements for the 

desorption process (Stephenson, 1993; Coulier et al., 2010).  

Following with the studies of solubility carried out in the previous chapters, it has been studied 

the solubility limit of CO2 in aqueous 2-methylpiperidine and 4-methylpiperidine solutions at 

absorbent mass fractions of 0.20 and 0.40, temperature of 338.5 K and working pressures of 5 bar, 

10 bar and 15 bar because there is no data of enthalpy of solution and solubility available in 

literature. The solubility limit has been studied by measuring the enthalpy of solution of the 

systems CO2/(2MP+H2O) and CO2/(4MP+H2O) in a custom-made flow-mixing cell adapted to a 

calorimeter Calvet Setaram BT2.15. 

This study has been carried out in the group of Thermodynamics and Molecular Interactions of 

the Institute of Chemistry of Clermont-Ferrand (France). 

 

The experimental device used for measuring the heat of absorption of CO2 in aqueous amine 

solutions consists in a Calvet Setaram BT2.15 heat conduction differential calorimeter, which is a 

variation of the classical Setaram C-80 with the capability to work at low temperatures (from 77 K 

to 473 K).  
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Both CO2 and aqueous amine solution are introduced into the calorimeter by two syringe 

pumps and its corresponding flow lines. Before entering the fluids into the calorimeter, they pass 

through three preheaters to adjust its temperature to the temperature of the calorimeter. Then, 

both fluids enter separately into the calorimetric block, where are mixed in the mixing unit of a 

custom-made flow-mixing cell, in which the heat effect during the absorption of the gas into the 

aqueous amine solution of amine is detected by the thermopiles of the calorimeter. The resultant 

solution leaves the calorimeter and the system through a buffer volume which helps to control the 

pressure of the system. Figure 5.1 shows a schematic diagram of the entire measurement 

equipment. 
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Figure 5.1. Schematic diagram of the entire experimental device  

 

In the following sections is explained in detail the features of the calorimetric block, mixing 

cell, pumps used to introduce the fluids into the calorimeter, the characteristics and accessories of 

the flow lines, and the temperature and control system. 
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The measurement zone of calorimetric block is constituted by two holes in which are placed 

two cells, one is the measurement cell and the other is the reference cell. Both sample and 

reference cell are totally surrounded by an array of thermocouple detectors (also called 

thermopiles) allowing the measurement of all heat exchanged between the cells and the 

calorimetric block (exothermic or endothermic), including radiation, convection or conduction. The 

reference cell allows compensating the non-desired effects produced as well as the influence of 

external perturbations. The heat exchanged between the thermopile and the calorimetric bock is 

proportional to an electromotive force, which is amplified and sent to a personal computer by 

means of an interface RS232. 

 

The mixing cell is the most important part of the calorimeter because its correct design 

determines the obtainment of good enthalpy of solution results. The mixing cell (figure 5.2) is 

made of Hastelloy C22 to avoid corrosion. Two parallel tubes of 1.6 mm outside diameter, through 

which are driven the CO2 and aqueous amine solution, are placed in the middle of the mixing cell 

and are silver-soldered to the mixing point M located at the bottom of the cell, where both fluids 

get in contact and are mixed. The correct design of this mixing point is critical because has to be 

able to provide a perfect mixing of both working fluids.  

 

Figure 5.2. Diagram of mixing cell and detail of mixing point 
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At the outside of the mixing point it is silver-soldered a tube of 1.6 mm o.d. and 2.8 m long 

where takes place the quantitative mixing of the fluids. This tube is coiled in good thermal contact 

with the inner wall of the confinement cylinder (80 mm height and 18.7 mm i.d.) in order to 

transmit all heat produced in the absorption to the thermopiles of the calorimeter.   

 

Both fluids, aqueous amine solution and CO2, are injected into the calorimeter by means of 

two high-pressure and low-flow precision syringe pumps provided by ISCO, model 100DM, which 

have a capacity of 103 mL, flow range from 0.00001 to 30 mL/min and flow accuracy of 0.5 % of 

the full scale.  

The syringe pumps have two flow lines connected to the outlet, located at the top side, with 

one high pressure valve installed in each of them. One of the lines allows the suction of the fluid 

into the syringe pump and the other impulses the fluid into the calorimeter. The syringes are 

maintained at a constant temperature of 298.15 K by using a thermostatic bath, with water as 

refrigerant fluid, to maintain the mass flow rate of the pumps constant.  

The flow lines are made by stainless steel, with an internal and external diameter of 1.0 mm 

and 1.6 mm respectively. To isolate the flow lines from the syringe pumps there are installed one 

valve in each flow line (V1 – V2, figure 5.1) and also they incorporate non-return valves (V3-V4, 

figure 5.1) to avoid possible contamination of the pumps. 

Due to the corrosivity of the pure amines analysed (methylpiperidine), its insertion in the 

syringe pumps is not recommended. To overcome this problem, in the liquid flow line is connected 

a loop with a total volume of 30 mL, where the corrosive fluid can be directly inserted in it and be 

pushed into the calorimeter by the pump filled with water. In the loop is installed a six-way valve 

which allow its connection or disconnection from the flow line, which means that allows the 

loading and emptying of the loop and its bypass when the loop is not required. 
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The temperature of the calorimeter is measured by a platinum temperature probe Pt200 and 

controlled with a precision of ± 0.01 K by Setaram G11 system controller, which also amplifies and 

digitalises the thermopile sign. Additionally, the fluids injected in the calorimeters need to be 

preheated to avoid temperature drops inside the mixing cell and thus allow a better control of 

temperature. For this reason, three preheaters are installed in the system: one outside and two 

inside the calorimeter, being all thermoregulated by heating cartridges and a platinum resistance 

thermometer connected to a PID controller. 

The external preheater is located just above the calorimetric block and consists of a copper 

cylinder with tubing coiled on its outer surface. The internal preheaters are located inside the 

calorimeter block housing the mixing cell and consist on a cooper cylinder with tightly fitted tubing 

placed in grooves inside the cylinder. The temperatures of the external and first internal preheaters 

are controlled by two Eroelectronic LFS controllers, with a precision ± 0.1 K. The second internal 

preheater is thermoregulated by a Fluke Hart Scientific 2200 controller with a precision of ± 0.01 K. 

 

The pressure of the system is measured at the outlet of the calorimeter by means of a Keller 

pressure transducer connected to a pressure indicator Druck DPI260 with an accuracy of ± 0.3 % 

full scale. The valve V6 (figure 5.1), which connects the flow line to the outlet of the system, allows 

the increase of the pressure by its connection to a nitrogen pressurized line, as well as the 

decrease of the pressure by the discharge of amine and gas from the system. A buffer volume is 

located at the end of the flow line, before valve V6, to provide a better control and stability of the 

pressure when it is adjusted to the desired value.   
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2-methylpiperidine (purity ≥ 0.98  and  -methylpiperidine (purity ≥ 0.9   are supplied by 

Aldrich. Water is distilled and degassed under vacuum before use (resistivity 18.2 MΩcm . Carbon 

dioxide (purity 99.998 %) is obtained from Saga. All chemicals are used without further purification. 

 

The aqueous solutions of 2-methylpiperidine and 4-methylpiperidine are prepared by mass 

with distilled and degassed water with an uncertainty of the mass fraction lower than 0.001. Before 

introducing the samples into the syringe pumps they are cleaned with ethanol and dried with 

pressurized nitrogen in order to avoid contamination of the samples. 

The CO2 is introduced into the syringe pump directly from the carbon dioxide pressurized line. 

Maintaining the impulsion valve of the pump closed, the suction valve attached to the CO2 line is 

opened and the syringe pump is directly filled by the automatic filling function of the pump. Since 

the entering gas is pressurized, the desired pressure is then adjusted by means of the suction valve.  

The filling procedure of the aqueous amine syringe pump is practically the same. The only 

difference is that in this case the aqueous amine is introduced from a tube connected to the 

suction line and not from a pressurized line as explained for carbon dioxide. For this reason, once 

the syringe pump is filled, both suction and impulsion valves are closed and the pressure is set by 

adjusting the desired pressure in the pump with the automatic function incorporated. In both 

cases, the pressure of the pumps must be higher than the pressure of the system in order to 

transport of the fluids into the calorimeter. 

Once both fluids are introduced in their respective pumps, they are driven into the calorimeter 

by the adjustment of the desired flow rate in the control unit of the pumps. Typical flow rates used 

in the experiments cover a range of 0.05 to 0.3 mL·min-1 for aqueous amine solutions and from 

0.17 to 1.06 mL·min-1 for CO2. 
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Since the pumps are pressurized, when both fluids are driven into the calorimeter the pressure 

of the system changes and increases. The pressure can be adjusted to the desired value by opening 

valve V6 (figure 5.1), which involves the extraction of both fluids from the system into a container. 

The pressure of the system can also be increased by introducing pressurized nitrogen into the flow 

line (and consequently into the buffer volume) through valve V6, which at the same time permits 

the adjustment of the desired pressure. The temperature of the calorimeter is adjusted in the 

temperature control unit Setaram G11. The temperature of the preheaters is adjusted in the 

equipment calibration procedure. 

 

The heat flow produced when the carbon dioxide is absorbed by the aqueous amine is 

registered by the thermopiles of the calorimeter, which transmits the obtained signal S (mV) to a 

personal computer.  The heat flow signal is represented in front of the time (figure 5.3). Negative 

signals represents that energy is delivered to the calorimetric block (exothermic reaction) and 

positive signals represents that energy has been absorbed from the calorimetric block 

(endothermic reaction). 

 

Figure 5.3. Typical heat flow behaviour along the experiments 
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In figure 5.3 it can be observed an example of the behaviour of the signal obtained when is 

produced the absorption. At the beginning the signal presents sharp changes until the mixture of 

both fluids becomes correct and the signal achieves a stable behaviour. The signal is considered 

stable when it achieves a sinusoidal tendency, with a maximum difference between the higher and 

lower value of ± 2-4 mV. The time necessary to get the stable signal value is not constant, depends 

of the conditions of the experiment, but usually takes between 1.5 – 2 hours at the beginning of 

the experiment and later, when small flow rate changes are made, takes usually between 0.5 – 1 

hour.  

 

The densities of the aqueous 4-Methylpiperydine solutions (densities of aqueous 2-

methylpiperidine solutions obtained previously by Coulier et al., 2010), required for the calculation 

of the molar flow-rate, have been measured at the temperature of the syringe pumps (298 K) and 

the working pressure of the experiments (5 bar – 15bar).  

The experimental device is a vibrating tube flow densimeter Anton Paar DMA HP connected to 

a controller DMA 5000 to read the measurements. The densimeter works at pressures up to 700 

bar and temperatures up to 473 K. The pressure of the densimeter is measured by a Druck PMP 

4010 pressure transducer connected to a pressure indicator Druck DPI 280 with accuracy of ± 0.1 % 

full scale.    

The vibrating tube densimetry (figure 5.4) is based on the mechanical oscillation principle, 

which consists on the variation of the oscillation period of a fluid with unknown density regarding 

another fluid of known density when are contained in a U-shape mechanical oscillator. 

 

Figure 5.4. Internal diagram of a U-tube mechanical oscillator (Salavera, 2005) 

Attachment Internal chamber with high 

thermal conductivity gas 
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The oscillating period can be expressed as follows: 

     √
      

 
                                                                     (5.1  

where   is the mass of the oscillator,    is the inner volume,   is the density of the fluid and   

is the oscillating constant. Equation 5.1 can be expressed in terms of density as: 

  
     

        
 

  

    
                                                                     (5.2  

This expression can be rewritten as function of two calibration parameters A and B: 

    (    )                                                                        (5.   

where A and B correspond to the following equations: 

  
     

  
    

                                                                            (5.   

  
  

        
   

  
    

                                                                       (5.5  

The parameters A and B depend on the temperature as well as the pressure, and are obtained 

from the calibration of the densimeter by measuring the oscillating period of two fluids (subindex 1 

and 2 of equations 5.4 and 5.5) with known density at the working temperature and pressure 

conditions.   

 The calibration has been carried out by the average of two pair of fluids: water-hexane and 

water-octane at 303.15 K (temperature of pump) at 5 and 10 bar (calorimeter working pressures). 

The densities of the fluids have been obtained from National Institute of Standards and Technology 

(NIST) webpage. These fluids have been chosen because their densities are situated above (water) 

and bellow (hexane and octane) regarding the aqueous amine solutions under study. Table 5.1 

shows the results of 4-methylpiperidine solutions with amine mass composition of 20 % and 40 %, 

303.15 K and pressures of 5 bar and 10 bar. As expected, no appreciable changes in density of 

liquids are obtained when the pressure is increased. 
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Table 5.1. Densities of aqueous 4-methylpiperidine solutions at 303.15 K 

Pressure 4-MP 20 % 4-MP 40 % 

5 bar 0.97164 0.94402 

10 bar 0.97182 0.94420 

 

The experiments to obtain the enthalpy of solution have been carried out as function of CO2 

loadings at constant temperature and pressure. The carbon dio ide loading α is defined as the total 

molar flow rate of CO2 divided by the total molar flow rate of amine (eq. 5.6). 

   
 ̇    

 ̇      
                                                                            (5.   

Molar flow rates have been calculated from the volumetric flow rates of syringe pumps 

(mL/min), mass composition of the aqueous amine solution and the molar mass and densities of 

both fluids (densities of CO2 obtained from NIST). 

The enthalpy of solution is calculated directly from the thermopile signal    (mV) and the 

molar flow rate  ̇ (mol·s-1) of the solution as follows: 

       
       

   ̇
                                                                      (5.   

As it can be seen, in equation 5.7 also appears the terms     and  .     is called the base line 

signal and corresponds to the thermopile signal when only water is measured in the calorimeter. 

This base line is determined by establishing a signal close to zero with the temperature adjustment 

of the preheaters. The term   corresponds to the thermopile sensitivity (mV·mW-1), which is used 

to convert the thermopile signal to heat power and is given by the calorimeter manufacturer 

(Setaram). This sensitivity however has been recalibrated by measuring the heat of mixing of a 

well-known binary system such as ethanol-water, using the enthalpy data of Ott et al. (1986). The 

results obtained in the calibration of the preheaters to establish the baseline and the recalibration 

of the thermopile signal are shown in the Equipment calibration section. 
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The solubility limit of the carbon dioxide into the absorbent is determined graphically from the 

results of solution enthalpy expressed in terms of kJ per mole of amine when are plotted in front of 

the CO2 loading. 

 

Figure 5.5. Example of graphical determination of solubility limit of CO2 in aqueous amine solution 

Figure 5.5 shows an example of enthalpy of solution expressed in kJ per mole of CO2 

(diamonds) and in terms of kJ per mole of 2-methylpiperidine amine (squares). The -ΔsolH/(kJ·mol-1 

of amine) presents two well differenced behaviours, in the first one, the enthalpy of solution shows 

a linear increase as the loading α increases. This behaviour corresponds to the unsaturated 

solution. The second behaviour of the enthalpy presents a plateau and corresponds to the 

saturated solution. Therefore, the intersection between the unsaturated and saturated domain 

corresponds to the solubility limit of the CO2 in the amine solution.  

 

 

The obtainment of the base line has been carried out by means of experiments with only 

water flowing through the calorimeter. The objective of these experiments is to obtain a signal 

value close to zero by adjusting the temperature of the preheaters (table 5.2) when the flow rate is 
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changed. The base line calibration has been made at the temperature of the enthalpy of solution 

experiments, which is 338.15 K. 

Table 5.2. Preheaters calibration for calorimeter temperature of 338.15 K 

Calorimeter 
Temperature  

External 
Preheater / K 

Internal  
Preheater 1 

Internal  
Preheater 2 

338.15 K 338.65 K 338.65 K 335.35 K 

As it can be seen in figure 5.6 and table 5.3, with the temperature of the preheaters adjusted it 

was possible to achieve a signal close to 0 for flow rates up to 0.4 mL/min, but for higher values (up 

to 0.8 mL/min) as the flow rate increases the signal obtained increases exponentially. This 

behaviour is typical in the calibration of the baseline, for this reason it has been accepted for its use 

in the enthalpy of solution experiments. 

 

Figure 5.6. Flow-heat signal obtained for different flow rates of water 
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Table 5.3. Tabulated values of calorimeter signal for different flow rates of water 

Flow rate / mL·min
-1

 Signal / mV 

0.1000 1.32 

0.3000 1.53 

0.4000 1.6 

0.5000 4.3 

0.6000 13.8 

0.8000 51.95 

The signal values obtained have been fitted to a cubic polynomial equation, shown in figure 

5.6, in order to adapt the base line made with water to the flow rates of the experiments with CO2 

and aqueous amine solutions, allowing the calculation of the base line for each one of the 

experiments carried out. 

 

The thermopile sensitivity   used to convert the thermopile signal to heat power has been 

chemically recalibrated from the value given by Setaram by measuring the heat of mixing of the 

system ethanol + water in a range of ethanol mole fraction from 0.0276 to 0.3769 at 338.15 K 

(temperature of solution enthalpy experiments).  

The enthalpy of mixing of the mixture ethanol + water was first calculated with equation 5.7 

using the original sensitivity provided by the manufacturer (K = 3.700), and the values obtained 

were compared with those values provided by Ott et al. (1986). Then, the sensibility was adjusted 

in order to minimize the difference between the experimental results and the reported literature 

values with the following objective function, where   represents the number of experiments: 

      ∑(      
         

  )

 

   

                                                        (5.8  

The minimum of the function objective corresponded to a value  = 3.689. Figure 5.7 and table 

5.4 show experimental results of enthalpy of mixing and its comparison with calculated values of 

reported literature data. 
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Figure 5.7. Experimental and literature reported values 

 of enthalpy of mixing of ethanol+water at 338.15 K 

As can be appreciated in the results obtained, there is good agreement between the 

experimental results and literature data, obtaining a maximum relative deviation of 7.7 % and root 

mean square deviation of 4.0 %. 

Table 5.4. Experimental and literature reported values of enthalpy of mixing of ethanol+water at 338.15 

x ethanol ΔmH
E

exp / J∙mol
-1

 ΔmH
E

lit / J∙mol
-1

 

0.0276 -116.8 -120.1 

0.0703 -223.8 -229.7 

0.1314 -256.4 -256.5 

0.1678 -232.2 -233.4 

0.2322 -166.7 -167.4 

0.2322 -86.2 -80.5 

0.3121 -18.0 -18.6 

0.3769 80.3 86.5 

 

The uncertainties associated to the molar flow rates of the high-pressure pumps depend on 

the uncertainty of the fluids density and the uncertainty of the volumetric flow rate of the pump 

(equation 5.9). 
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The relative error of the volumetric flow rate of the pump (         ⁄ ) is established by the 

manufacturer to ± 0.3 % for both gas and liquid fluids. The uncertainty of the density of the amine 

aqueous solutions corresponds to 0.0001 g·cm3. The uncertainty of molar flow rate of the amine 

has been estimated to 0.3 %. For CO2, the uncertainty of the molar flow rate has been estimated to 

be 1 % at 5 bar, 0.6 % at 10 bar and 0.45 % at 15 bar. 

The uncertainty of the CO2 loading depends on the uncertainties of the molar flow rate of 

carbon dioxide and the amine (eq. 5.10). For working pressures of 5 bar, 10 bar and 15 bar the 

uncertainties obtained were 1.1 %, 0.7 % and 0.5 % respectively.  
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                                                      (5.10  

The uncertainties associated to the enthalpy of solution are determined by the uncertainties of 

the thermopile sensitivity (estimated to 2 %), the calorimetric signals and the molar flow rate of gas 

or amine depending on the enthalpy of solution that is analysed (eq. 5.11). 
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  (
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)

 

                                          (5.11  

where    is the difference of thermopile signal    and baseline    . The uncertainty of the 

signal is associated to the detection limit (0.02 mV) as well as the fluctuation of the signal obtained, 

which has been observed to be between 1 % and 5 %.  

 

 

The enthalpy of solution of CO2 in aqueous 2-methylpiperidine and 4-methylpiperidine 

solutions (amine mass fraction of 0.4 for 2-methylpiperidine and 0.2 – 0.4 for 4-methylpiperidine) 

have been measured as function of CO2 loadings at 338.15 K and working pressures from 5 to 15 

bar (figures 5.8 – 5.10). The values obtained of enthalpy of solution are tabulated in Annex C. 
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In all cases the absorption process produces exothermic heat flows. The representation of the 

enthalpy of solution in terms of kJ·mol-1 of CO2 or amine shows two well differenced behaviours. 

When the enthalpy of solution is represented in kJ·mol-1 of CO2 the most exothermic effect is 

obtained for the lowest loadings and then decreases as the loading increases. On the other hand, 

the enthalpy of solution represented in kJ·mol-1 of amine shows a linear increase of the exothermic 

effect as the loading increases (unsaturated solution) until reaching the solubility limit of CO2 in 

amine solution, from which the enthalpy presents a plateau that indicates that the solution is 

saturated and no more carbon dioxide can be dissolved. The experimental results of the solubility 

limit (molC 2 ∙molamine
   -1

) are directly determined from the results represented in the graphs. For the 

methylpiperidine solutions analysed, the solubility limit also corresponds to the intersection of 

both curves of enthalpy of solution (kJ·mol-1 of CO2 / kJ·mol-1 of amine) 

Previous studies (Arcis et al., 2011, 2012) determined that this methodology allows obtaining 

solubility limit with lower deviation than 5 % when is compared to the values obtained by specific 

experimental methodologies such as phase equilibrium measurements. 
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Figure 5.8. -ΔsolH / kJ·mol
-1

 of 2-methylpiperidine (40 % amine mass composition)  

at 338.15 K and working pressures from 5 bar to 15 bar 
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Figure 5.9. -ΔsolH / kJ·mol
-1

 of 4-methylpiperidine (20 % amine mass composition) 

 at 338.15 K and working pressures from 5 bar to 15 bar 
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Figure 5.10. -ΔsolH / kJ·mol
-1

 of 4-methylpiperidine (40 % amine mass composition)  

at 338.15 K and working pressures from 5 bar to 15 bar 

Figure 5.8 shows the enthalpy of solution of CO2 in an aqueous solution of 2-methylpiperidine 

(amine mass fraction of 0.40). The exothermic effect of the absorption expressed as kJ·mol-1 of 

amine follows the same linear increase for the three pressures measured until reaching a loading 

of 0.6, from which for 5 bar it is produced a lower heat flow. The differences are evaluated from 

the loading corresponding to the solubility limit, which shows a stable plateau, obtaining an 

average difference of 5 kJ·mol-1.  

In the case of the absorption of CO2 in an aqueous solution of 4-methylpiperidine (amine mass 

fraction of 0.20), the behaviour obtained is similar to 2-methylpiperidine (figure 5.9). The lower 

exothermic effect corresponds to the lower pressure measured; however, in this case it is obtained 
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a higher heat flow for 10 bar than 15 bar, which can be attributed to a lack of accuracy in the 

experiments carried out.  

The experiments for 4-methylpiperidine solutions with amine mass fraction of 0.40 show that, 

as the previous analysis, up to a loading of 0.6 the enthalpy of solution expressed as kJ·mol-1 of 

amine is the same for both pressures measured and then, from this point the differences increases. 

However, for this amine composition at 5 bar it is not obtained a plateau when the solubility point 

is reached, the enthalpy of solution decreases as loading increases.  

In tables 5.5 – 5.7 are presented the experimental values of the solubility limit of carbon 

dioxide in aqueous amine solutions.  

Table 5.5. Solubility limit of CO2 in aqueous solution of 2-methylpiperidine (w2MP = 0.400) at 338.15 K 

P / bar s /  molC 2  molamine
   -1

 

5.6 0.966 

10.4 0.976 

15.5 0.978 

 

Table 5.6. Solubility limit of CO2 in aqueous solution of 4-methylpiperidine (w4MP = 0.200) at 338.15 K 

P / bar s /  molC 2  molamine
   -1

 

5.5 1.008 

10.5 1.021 

15.7 1.034 

 

Table 5.7. Solubility limit of CO2 in aqueous solution of 4-methylpiperidine (w4MP = 0.400) at 338.15 K 

P / bar s /  molC 2  molamine
   -1

 

5.3 0.929 

15.4 1.021 

 

The solubility limit presents low differences in the two amines studied as well as when it is 

increased the working pressure or the amine composition, being in all cases the solubility around 1 

molC 2  molamine
   -1

. Regarding the working pressure, as expected, it can be appreciated how the 
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solubility slightly increases as system pressure increases. This is caused by the Le Châtelier 

principle, which states that if the pressure of the system is increased more gas molecules collide 

with the surface of the liquid to enter the solution, shifting the reaction in the direction in which 

gas moles disappear to minimize the pressure. The comparison of solubility limit of CO2 in 4-

methylpiperidine solutions shows that solubility decreases with amine composition. This behaviour 

is due to the decrease of the number of water molecules available to solvate carbon dioxide when 

is increased the amine composition. The uncertainties associated to the solubility limit, which 

depends on the accuracy of the determination of the first point of the plateau, have been 

estimated to be between 5 % and 10 %. 

 

In this chapter it has been measured the solubility limit of CO2 in aqueous solutions of 2-

Methylpiperydine and 4-methylpiperidine (amine mass fraction of 0.20 and 0.40) at 338.15 K and 5 

bar, 10 bar and 15 bar working pressures. The aim of studying these amines, used in CO2 capture 

processes, lies in the fact that they present a liquid-liquid phase separation at a certain 

temperature and CO2 composition, decreasing thus the energy necessary to separate the CO2 from 

the amine in the desorption process of the cycle (amine regeneration). 

The solubility of carbon dioxide in the amine has been obtained by means of the measurement 

of the enthalpy of solution in a custom-made flow-mixing cell adapted to a calorimeter Calvet 

Setaram BT2.15. The base line signal is obtained by the adjustment of the temperature of the 

calorimeter preheaters when only water flows through it. The sensibility factor is recalibrated by 

minimizing the differences between the measured and the literature reported values of the 

enthalpies of mixing of the system ethanol + water.  

The enthalpy of solution expressed as kJ·mol-1 of amine presents a linear increase until 

reaching the solubility limit. From this point the solution is saturated of CO2 and no more 

exothermic effect is produced, obtaining a plateau as the CO2 loading increases. The comparison of 

the heat flow obtained at the three pressures analysed shows that the lower enthalpies of 

solutions are obtained at the lower pressure.  

The solubility limit of carbon dioxide in the amines studied scarcely changes for both 2-

methylpiperidine and 4-methylpiperidine solutions as well as with changes in amine composition or 
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system pressure, obtaining results of around 1 molC 2∙molamine
   -1

. However, the results show that 

solubility is slightly increased with pressure and slightly decreased when is increased the amine 

composition.  

This study has permitted to learn and understand the flow-calorimetric methodology to 

measure solubility limit of gases into amines. Previous studies have confirmed the obtainment of 

good agreement regarding specific experimental methodologies, with deviations lower than 5 % in 

the experimental solubility limit measurements, which confirms that this method is suitable for 

measuring the solubility limit of gases in absorbents. 
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  oscillating constant 

    enthalpy of mixing (J·mol-1) 

     enthalpy of solution (kJ·mol-1)

  thermopile sensitivity (mV·mW-1) 

  mass (kg) 

 ̇ molar flow rate (mol·s-1) 

  pressure (bar) 

  thermopile signal 

  limit of solubility 

  temperature (K) 

   oscillator inner volume 

  mole fraction 

 

 

Greek Letters 

  density (kg·m-3) 

  oscillating period 

  uncertainty 

  loading 

 

 

Subscripts 

  component   

 

 

Superscripts: 

  excess property 
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Nowadays, the incessant growth of the population and the progressively evolution of the 

developing countries has entailed an important increasing of the global energy requirements. 

Within the scope of the refrigeration of buildings, absorption refrigeration systems have 

demonstrated to provide remarkable electricity savings regarding classical compression systems. 

However, though they present weaknesses such as cost and performance, its advantages has 

driven research in the improvement of their characteristics and new working fluids.  

The study of the solubility of the new working fluids proposed in literature for improving the 

features of the conventional H2O/LiBr and NH3/H2O mixtures becomes an important task because 

they present a partial solubility that impose restrictions in the operability and applications of the 

refrigeration systems. In this context, this thesis has presented an experimental and theoretical 

study of solubility new absorbents in natural refrigerants (NH3, H2O and CO2) for absorption 

refrigeration cycles.  
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 Regarding absorption systems with NH3 as refrigerant: 

- The solubility of NH3/LiNO3, NH3/NaSCN and NH3/(H2O+NaOH) mixtures was measured 

with a new experimental device designed and built for this work based on the visual-

polythermal method and with the capacity to work at moderate-high pressures,. 

- The new device and the measurement procedure were validated at atmospheric pressure 

with H2O/LiNO3 mixture, and at 20 bar with NH3/LiNO3. The deviations obtained were 

lower than the estimated uncertainty of the measure (0.5 K), concluding that they are 

adequate for measuring the solubility temperature of salts in aqueous and non-aqueous 

solvents at pressure conditions. 

- A new image processing method based on the analysis of photographs taken from the 

inner of the cell was developed to provide a more objective criterion in the solubility 

measurements. 

- The comparison of the results obtained with the H2O/LiNO3 solution between visual and 

image processing methods showed a maximum difference in solubility temperature of 0.2 

K, which means that the image processing method is suitable to perform proper solubility 

measurements. 

- The solubility temperature of NH3/LiNO3 mixture was measured in a range of salt mass 

fraction from 0.48 to 0.78. 

- The solubility temperature of NH3/NaSCN was measured at 20 bar in a salt mass fraction 

range from 0.53 to 0.69. 

- Solubility of NaOH in NH3/H2O could not be performed as in the other experiments 

because at certain composition presents its solubility limit, what causes the impossibility 

to dissolve it by increasing temperature. The maximum quantity of ammonia which allows 

a saturated NaOH/H2O solution was experimentally determined. The results were 

performed for salt mass fractions from 0.02 to 0.15, obtaining a maximum quantity of 

ammonia mass fractions from 0.38 to 0.235. 

- The modelling of the solid-liquid equilibrium of H2O/LiNO3, NH3/LiNO3 and NH3/NaSCN 

mixtures was carried out by means of the activity coefficient models LIQUAC (for the 

mixture with water as solvent) and Symmetric Electrolyte-NRTL (for the mixtures with 

ammonia as solvent). 
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- For mixtures with ammonia the model requires the use of experimental solubility data, 

what make it not as predictive method as in the case of the solubility modelling of systems 

with water as solvent. 

- The solubility modelling results showed deviations lower than 7 % regarding experimental 

data, concluding that the modelling allows obtaining good and reliable results. 

 Regarding absorption systems with H2O as refrigerant 

- An extension of the solubility study carried out by Koo et al. (1999) with the solution 

H2O/(LiBr+LiNO3+LiI+LiCl) (salt mole ratio 5:1:1:2) was carried out with the aim of 

improving the solubility at higher salt mass compositions (65 % - 69 %) in order to make 

the solution feasible for air-cooled absorption systems. 

- The optimum salt mole ratio of the mixture was performed with a rough visual-

polythermal method.  The optimum ratio obtained was 7:1:0.5 (LiBr:LiNO3:Lil).  Lithium 

chloride was discarded because it did not show improvement in solubility. 

- The accurate solubility temperature of the optimum mixture obtained was measured by a 

visual-polythermal method, in a range of total salt mass fractions from 0.6245 to 0.6907.   

- Results obtained were compared with the reported data by Salavera et al. (2004) using the 

mixture proposed by Koo et al. (1999). Similar results were obtained up to salt mass 

fraction of 0.65. At higher salt compositions it was obtained a decrease of solubility 

temperature from 8 K to 35 K.  

- The effect of addition of LiCl in vapour pressure of optimum mixture was studied by 

modelling the vapour-liquid equilibrium with the asymmetric Electrolyte-NRTL activity 

coefficient model using Aspen Properties software. 

- A new set of parameters of the model were fitted from reported literature data of the 

single solutions in order to obtain deviations between experimental and calculated vapour 

pressure lower than 10 %. The validation with quaternary solution 

H2O/(LiBr+LiNO3+LiI+LiCl) (5:1:1:2) obtained a noticeable deviation (RMSD 22.2 %); 

however as it follows the same trend than experimental values, and it can be concluded 

that the model is suitable for calculating vapour pressure of lithium salts mixtures 

solutions. 
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- The results of the vapour pressure modelling of the optimum mixture proposed in this 

work showed that the LiCl doesn’t decrease significantly the vapour pressure of the 

solution. Thus, the addition of LiCl was not justified and was discarded. 

- The calculated vapour pressure of the mixture proposed in this work showed a slight 

decrease regarding the calculated vapour pressure of the mixture proposed by Koo et al. 

(1999). In the range of salt mass fractions from 0.60 to 0.70, a decrease of vapour pressure 

between 0.13 kPa to 1.2 Kpa was obtained respectively. 

- The mixture proposed in this work provides improvement in solubility, eliminates the LiCl 

from the mixture, reduces the required quantity of LiNO3 and LiI, and slightly reduces the 

vapour pressure of the mixture. Thus, the new mixture is considered a promising working 

fluid that could work with air-cooled absorption systems. 

 Regarding absorption systems with CO2 as refrigerant 

- A flow-calorimetric methodology was used to measure the solubility of CO2 in amines. 

- This method allows obtaining at the same time the enthalpies of solution and the solubility 

limit of the CO2 in the aqueous amine solutions. 

- The solubility limit of CO2 in aqueous 2-Methylpiperydine and 4-Methylpiperydine 

solutions (amine mass fraction of 0.20 and 0.40) was measured at 338.15 K and 5 bar, 10 

bar and 15 bar. 

- The study of these amines, used in CO2 capture processes, lies in the fact that they present 

a liquid-liquid equilibrium from certain temperature and CO2 composition, decreasing thus 

the energy necessary to separate the CO2 from the amine in the desorption process. 

- The solubility limit of carbon dioxide presents scarce changes for both methylpiperidine 

solutions. Changes in amine composition or pressure presents no significant variations in 

the solubility limit, obtaining results of around 1 molC 2∙molamine
   -1

. However, the results 

show that solubility slightly increases with pressure and slightly decreases when the amine 

composition increases. 

- The flow-calorimetric method is presented as an adequate technique to measure the 

solubility limit of gases into absorbents. Previous studies have confirmed good agreement 
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with specific experimental methodologies, with deviations lower than 5 % in the 

experimental solubility limit measurements. 

 

From the results obtained in this study, in the next future the following task can be considered: 

 Improving the image processing method, validating with other reference systems, especially at 

moderate-high pressure. 

 Experimental measurement of the thermophysical properties, especially the vapour pressure, 

of the new mixture proposed in this work, H2O/(LiBr+LiNO3+LiI) with salt mole ratio 7:1:0.5.  

 Modelling of the performance of air-cooled absorption systems with the working fluid 

H2O/(LiBr+LiNO3+LiI) (salt mole ratio 7:1:0.5). 

 Applying the flow-calorimetric technique to the measurement of the solubility limit of CO2 with 

other absorbents like ionic liquids. 
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Appendix A. Matlab Program for Image Processing 
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The measurement of the number of red colour pixels of the pictures has been carried out in 

two separate programs. First one provides the resultant red channel image from the comparison 

of the picture at each temperature and the blank image taken when all salt is dissolved. The 

second program takes the image obtained in the first program and measures the total number of 

red colour pixels. 

 

Program 1 

clc 

clear all 

addpath(genpath('C:\Matlab')) 

  

ZoneY=(1330:1536); 

ZoneX=(650:1550); 

  

disp('Select blank file?')       

blankFile=uigetfile('.jpg') 

blank=imread(blankFile);   

blank=double(blank);   

blankLayer=blank(:,:,1);      

  

disp(['Select image file/s?']) 

sampleFile=uigetfile('.jpg','Multiselect','on') 

sampleFile=char(sampleFile); 

sampleFile=strvcat(sampleFile); 

number=size(sampleFile); 

for i=1:number(1) 

sample=imread(sampleFile(i,:));   

sample=double(sample); 

sampleLayer=sample(:,:,1); 

sampleMatrix(:,:,i)=sampleLayer; 
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blankMatrix(:,:,i)=blankLayer; 

end 

  

sampleMatrix=sampleMatrix(ZoneY,ZoneX,:);  

blankMatrix=blankMatrix(ZoneY,ZoneX,:);  

  

subRow=round(sqrt(number(1))) 

subCol=round(number(1)/subRow)+1 

  

for i=1:number(1) 

    final(:,:,i)=blankMatrix(:,:,i)-sampleMatrix(:,:,i); 

    subplot(subRow,subCol,i) 

    image(final(:,:,i)) 

end 

 

Program 2 

clc;             

close all;           

imtool close all;    

clear;           

 

% Read the figure image. 

rgbImage = imread('figure.png'); 

[rows columns numberOfColorBands] = size(rgbImage); 

subplot(2, 2, 1); 

imshow(rgbImage, []); 

title('Original Color Image', 'Fontsize', fontSize); 

set(gcf, 'Position', get(0,'Screensize'));  

  

redPlane = rgbImage(:, :, 1); 

greenPlane = rgbImage(:, :, 2); 

bluePlane = rgbImage(:, :, 3); 

  

[pixelCountR grayLevelsR] = imhist(redPlane); 

subplot(2, 2, 2); 

bar(pixelCountR, 'r'); 

title('Histogram of red plane', 'Fontsize', fontSize); 

xlim([0 grayLevelsR(end)]); % Scale x axis manually. 
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The purpose of a measurement is to determine the value of a specific magnitude to be 

measured, called measurand. In any measurement always appear a series of errors from different 

sources: the measurand, the procedure of the measurement, the measurement instrument, the 

operator, etc., which are classified in systematics and accidental (random) errors.  

Systematic errors are repeated constantly along the experiment and the final result is always 

affected in the same way. Calibration errors or non-appropriate experimental conditions are the 

causes which origin them. These errors can be corrected if the error sources are known. When it is 

not possible to apply a correction the systematic error is added to the expanded measurement 

uncertainty. Accidental or random errors are the errors due to unpredictably circumstances and 

vary oscillating around a mean value. It is not possible to control it, but it can be reduced by 

increasing the number of experiments. These kinds of errors are due to causes such as changes of 

the surrounding conditions along the experiment or appreciation errors (e.g. human limitations). 

The measurement uncertainty is an estimation of the possible error in a measurement. It can 

be defined as the estimation of a range of values which contains the true value of the 

measurement.  

The evaluation of the measurement uncertainties have been carried out in accordance with 

the rules of the guide of Expression of the Uncertainty of Measurement in Calibration from 

European co-operation for Accreditation EA 4/02.  
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The uncertainty of a measurement associated with an input is evaluated according to two 

different types of evaluation: 

- Type A evaluation of standard uncertainty:  

In this method the uncertainty is estimated by the statistical analysis (standard deviation) of a 

series of measurements made under the same conditions. In this evaluation the uncertainty 

sources follow a normal distribution. 

- Type B evaluation of standard uncertainty:  

In this case the uncertainty is evaluated with other than the statistical analysis of a series of 

observations. It is estimated by scientific knowledge based on all available information such as 

manufacturer specification, calibration certificates or experience of previous experiments. In 

this evaluation the uncertainty sources follow a rectangular distribution. 

The calculus of the uncertainties has been carried out by means of the law of propagation of 

uncertainty, in which if an output    is function of   inputs variables   ,     (         ), the 

standard uncertainty of variable   ,  (  )  is obtained as function of the standard uncertainties of 

the inputs   ,  (  ) with the next equation: 

 (  )  √ ∑ [ (  )    
 ]

 

   

                                                                 ( .1  

The standard uncertainties associated to each one of the input uncertainty sources,  (  ), are 

calculated by the relation of the estimated value of the input source and its probability of 

distribution (eq. B.2). Normal distributions correspond to divisor 1, however, rectangular 

distributions corresponds to divisor  √ . 

 (  )   
               

       
                                                                ( .2  

The sensibility factor    corresponds to the partial derivative of the function   regarding     

(eq. B.3). It describes how the output    is influenced by variations of the input   . 

UNIVERSITAT ROVIRA I VIRGILI 
EXPERIMENTAL AND THEORETICAL STUDY OF SOLUBILITY OF NEW ABSORBENTS IN NATURAL REFRIGERANTS. 
Javier Mesones Mora 
Dipòsit Legal: T 1549-2014



Appendix B. Uncertainty Calculation 
 

A-5 
 

     
  

   
                                                                           ( .   

The uncertainties obtained by the equation B.1 are called standard uncertainties and they 

assure that the real value has 66.7 % of probability to be within the calculated uncertainty. To 

increase the level of confidence, the uncertainty is multiplied to a coverage factor k, obtaining thus 

the expanded uncertainty  (  ).  

 (  )      (  )                                                                   ( .   

In this work, it has been selected a coverage factor k=2 in order to provide a confidence level 

of 95.45 %. As example, in the following two sections are shown in detail the uncertainty sources 

as well as the final uncertainties obtained of mass fraction and temperature in the solubility 

temperature determination of sodium thiocyanate in ammonia. 

Table B.1. Uncertainty of mass balance Mettler AE260 DeltaRange (NaSCN mass measurement) 

Source Unit Estimation Divisor Sensibility factor u
2
(m) 

Resolution g 0.0001 2 √  1 8.33·10
-10

 

Calibration g 0.0001 2 1 2.50·10
-9

 

Linearity g 0.0002 1 1 4.00·10
-8

 

Precision g 0.0001 1 1 1.00·10
-8

 

Reproducibility g 0.0001 1 1 1.00·10
-8

 

u(m) 
    

0.0003 

U(m) 
   

k=2  0.0006 

 

Table B.2. Uncertainty of sodium thiocyanate mass 

Source Unit Estimation Divisor Sensibility factor u
2
(mNaSCN) 

Funnel NaSCN  g 0.0003 1 1 6.33·10
-8

 

Funnel NaSCN rest g 0.0003 1 1 6.33·10
-8

 

u (mNaSCN)         0.0004 

U (mNaSCN)       k=2  0.0008 
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Table B.3. Uncertainty of mass balance Mettler Toled PR2003 DeltaRange (NH3 mass measurement) 

Source Unit Estimation Divisor Sensibility factor u
2
(m) 

Resolution g 0.01 2 √  1 8.33·10
-6

 

Calibration g 0.01 2 1 2.50·10
-5

 

Precision g 0.01 1 1 1.00·10
-4

 

Linearity g 0.005 1 1 2.50·10
-5

 

Reproducibility g 0.003 1 1 9.00·10
-6

 

u(m) 
    

0.01 

U(m) 
   

k=2 0.02 

 

Table B.4. Uncertainty of ammonia mass 

Source Unit Estimation Divisor Sensibility factor u
2
(mNH3) 

Cylinder NH3  g 0.01 1 1 1.67·10
-4

 

Cylinder NH3 rest g 0.01 1 1 1.67·10
-4

 

u (mNH3)         0.02 

U (mNH3)       k=2 0.04 

 

Table B.5. Uncertainty of sodium thiocyanate mass fraction (wNaSCN=0.5627) 

Source Unit Estimation Divisor Sensibility factor u
2
(w) 

Mass NaSCN g 0.0004 1 0.0305 1.49·10
-10

 

Mass NH3 g 0.02 1 -0.0392 6.16·10
-7

 

u (w)         0.0008 

U (w)       k=2 0.0016 

Since the salt mass fraction of the different solutions prepared depends on the mass of 

sodium thiocyanate and the mass of ammonia, it has a sensibility factor that takes into account 

the change of the salt mass fraction when the mass of salt or water is changed in each of the 

experiments. The sensibility factors associated to NaSCN mass fraction are calculated as follows: 

       

       
   

    

(           
)
                                                    ( .5  

       

     

   
       

(           
)
                                                     ( .   
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Table B.6. Uncertainty solubility temperature of NaSCN in NH3 

Source Unit Estimation Divisor Sensibility factor u
2
(T) 

Calibration K 0.2 2 1 1.00·10
-2

 

Resolution K 0.1 2 √  1 8.33·10
-4

 

Homogeneity K 0.4 √  1 5.33·10
-2

 

Stability K 0.1 √  1 3.33·10
-3

 

Repeatability K 0.05 1 1 2.50·10
-3

 

u(T)         0.265 

U(T)       k=2 0.5 K 

The homogeneity is evaluated as the maximum temperature difference when the probe is 

placed at different positions inside the cell. The repeatability is the standard deviation of the 

measurements and the stability is difference between the maximum and the minimum 

temperature measured. 
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Table C.1. Enthalpies of solution of CO2 in aqueous 2-methylpiperidine solutions 

 (40 % amine mass composition) at 338.15 K and 5 bar 

α / mol C 2 · mol 2MP
-1

 -ΔsolH / kJ·mol
-1

 of 2MP -ΔsolH / kJ·mol
-1

 of CO2 

0.695 55.7 80.2 

0.546 46.8 85.6 

0.795 60.4 76.0 

0.878 65.5 74.6 

0.995 70.9 71.2 

0.634 51.1 80.6 

0.751 57.0 76.0 

0.506 43.8 86.5 

0.447 39.8 89.0 

0.383 34.5 90.0 

0.313 28.5 91.0 

0.586 50.5 86.2 

1.093 70.0 64.0 

0.966 69.7 72.2 

1.044 70.0 67.0 

1.168 69.4 59.4 
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Table C.2. Enthalpies of solution of CO2 in aqueous 2-methylpiperidine solutions  

(40 % amine mass composition) at 338.15 K and 10 bar 

α / mol C 2 · mol 2MP
-1

 -ΔsolH / kJ·mol
-1

 of 2MP -ΔsolH / kJ·mol
-1

 of CO2 

0.842 68.7 81.6 

0.945 74.2 78.5 

1.021 77.5 75.9 

1.135 77.1 68.0 

0.976 77.1 79.0 

0.898 71.7 79.8 

1.077 76.9 71.3 

1.215 76.3 62.8 

0.756 62.9 83.2 

0.567 49.2 86.8 

0.397 36.8 92.6 

0.225 22.8 101.7 

0.309 30.1 97.5 

0.504 44.2 87.7 

0.658 56.0 85.1 

1.190 76.1 64.0 

Table C.3. Enthalpies of solution of CO2 in aqueous 2-methylpiperidine solutions 

(40 % amine mass composition) at 338.15 K and 15 bar 

α / mol C 2 · mol 2MP
-1

 -ΔsolH / kJ·mol
-1

 of 2MP -ΔsolH / kJ·mol
-1

 of CO2 

0.869 69.99 80.50 

0.978 76.18 77.90 

1.094 76.80 70.19 

0.941 73.94 78.57 

1.036 76.84 74.19 

1.160 76.16 65.66 

1.007 76.64 76.13 

1.243 76.29 61.39 

0.777 64.59 83.16 

0.585 51.40 87.89 

0.487 43.63 89.53 

0.406 37.12 91.50 

0.674 57.69 85.63 

0.300 29.95 99.85 

0.213 22.73 106.81 
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Table C.4. Enthalpies of solution of CO2 in aqueous 4-methylpiperidine solutions  

(20 % amine mass composition) at 338.15 K and 5 bar 

α / mol C 2 · mol 4MP
-1

 -ΔsolH / kJ·mol
-1

 of 4MP -ΔsolH / kJ·mol
-1

 of CO2 

0.702 60.1 85.6 

0.826 65.0 78.8 

0.551 50.8 92.3 

0.898 67.0 74.6 

0.757 61.6 81.3 

0.619 55.1 89.0 

0.480 45.7 95.2 

0.415 41.2 99.2 

1.215 70.1 57.7 

1.165 70.0 60.1 

1.115 71.1 63.8 

1.046 70.9 67.8 

0.655 57.7 88.0 

0.572 52.4 91.7 

0.362 35.5 98.0 

0.305 31.1 102.2 

0.513 48.1 93.7 

0.932 68.5 73.5 

0.972 69.6 71.6 

1.008 69.7 69.1 

0.858 65.6 76.5 
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Table C.5. Enthalpies of solution of CO2 in aqueous 4-methylpiperidine solutions 

(20 % amine mass composition) at 338.15 K and 10 bar 

α / mol C 2 · mol 4MP
-1

 -ΔsolH / kJ·mol
-1

 of 4MP -ΔsolH / kJ·mol
-1

 of CO2 

1.306 77.0 59.0 

0.956 73.0 76.4 

0.829 67.1 80.9 

0.709 60.7 85.6 

1.070 76.5 71.4 

1.195 76.4 63.9 

1.120 76.4 68.2 

1.257 76.5 60.8 

0.896 70.0 78.1 

0.996 75.1 75.4 

1.046 76.5 73.2 

1.021 75.9 74.3 

1.157 76.7 66.3 

0.764 64.8 84.8 

0.655 58.2 88.8 

0.532 50.8 95.4 

0.532 50.8 95.5 

0.444 45.0 101.6 

0.367 38.3 104.4 

0.608 55.6 91.4 

0.271 30.3 111.8 

0.205 23.5 114.3 
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Table C.6. Enthalpies of solution of CO2 in aqueous 4-methylpiperidine solutions 

(20 % amine mass composition) at 338.15 K and 15 bar 

α / mol C 2 · mol 4MP
-1

 -ΔsolH / kJ·mol
-1

 of 4MP -ΔsolH / kJ·mol
-1

 of CO2 

0.790 61.4 77.7 

0.862 67.4 78.2 

0.985 72.1 73.2 

1.010 72.8 72.1 

0.942 70.0 74.3 

0.911 69.1 75.8 

0.733 60.5 82.5 

0.628 55.0 87.5 

0.574 51.9 90.5 

1.166 75.0 64.4 

1.076 74.7 69.4 

1.034 73.8 71.3 

0.528 48.8 92.4 

0.458 43.8 95.7 

1.238 74.3 60.0 

0.392 38.4 98.0 

1.126 75.0 66.6 

0.310 31.3 101.0 

0.234 24.5 104.7 

0.676 57.1 84.4 

 

 

 

 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
EXPERIMENTAL AND THEORETICAL STUDY OF SOLUBILITY OF NEW ABSORBENTS IN NATURAL REFRIGERANTS. 
Javier Mesones Mora 
Dipòsit Legal: T 1549-2014



J. Mesones. Doctoral Thesis. URV. Tarragona 2014 

A-14 

 

 

Table C.7. Enthalpies of solution of CO2 in aqueous 4-methylpiperidine solutions 

(40 % amine mass composition) at 338.15 K and 5 bar 

α / mol C 2 · mol 4MP
-1

 -ΔsolH / kJ·mol
-1

 of 4MP -ΔsolH / kJ·mol
-1

 of CO2 

0.331 32.0 96.5 

0.770 57.1 74.1 

0.674 54.3 80.6 

0.607 51.5 84.9 

0.539 48.2 89.4 

0.404 38.4 95.1 

0.239 23.6 98.8 

0.470 42.3 90.0 

1.121 58.4 52.1 

1.005 62.5 62.2 

0.929 63.9 68.7 

0.850 62.1 73.1 

1.065 59.8 56.1 

1.177 56.8 48.2 

1.177 56.5 48.0 

1.248 52.8 42.3 

 

Table C.8. Enthalpies of solution of CO2 in aqueous 4-methylpiperidine solutions  

 (40 % amine mass composition) at 338.15 K and 15 bar 

α / mol C 2 · mol 4MP
-1

 -ΔsolH / kJ·mol
-1

 of 4MP -ΔsolH / kJ·mol
-1

 of CO2 

0.869 67.8 78.1 

0.977 73.1 74.8 

1.086 74.5 68.6 

1.021 74.4 72.9 

0.934 71.7 76.7 

0.797 64.6 81.1 

0.719 60.3 83.8 

0.630 55.7 88.5 

0.541 50.5 93.4 

0.437 42.7 97.6 

0.336 33.6 100.1 

1.159 75.3 64.9 

1.233 75.3 61.0 
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