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CHAPTER 1 

INTRODUCTION

Energy Harvesting (EH) has attracted the attention of the scientific community for the 
latest years motivated in first place by the interest on reducing the energy consumption 
at all scales and, secondly, by the trend of developing portable devices: the landscape of 
a smarter society, where electronic devices provide sensing, actuating and 
communication capabilities to distributed control systems, will not be reached unless 
the powering issue is solved. 

Several efforts have been mostly directed to attempt satisfying three energy 
requirements: the need of green energies, the need of powering at any time and 
wherever the system is and the need of developing low-power electronics. 

Photovoltaic and windmills shown in Fig.1.1 are the most well known examples of 
green energies for the vast majority of the population. 

 
Fig.1. 1. Examples of large scale energy harvesting installations: (a) aerial view of the photovoltaic park in 
Olmedillas (Alcorcón, Spain) capable of producing up to 85MW, (b) windmill park in Øresund (Copenhagen, 
Denmark) capable of producing 40MW.

http://en.wikipedia.org/wiki/%C3%98resund
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These installations are designed to generate electric power in a massive way (in the 
range of tens of MW) in order to supply electricity to entities with very high power 
needs such as industrial plants, cities, etc. In the example of Fig.1.1.a an aerial view of 
the Olmedillas photovoltaic park (Alcorcón, Spain) is shown, which generates between 
60 and 85 MW, the average power consumption of a set of 40000 houses. Fig.1.1.b
show another example of harvesting parks, this one built on 2009 at Øresund
(Copenhagen, Denmark) capable of producing 40 MW. Although these technologies are 
nowadays a reality, they are not able to satisfy the huge amount of energy demanded by 
human activity. Yet, they are advanced examples for the first claim. The attention of 
this work is focused on a sort of devices designed for applications in other using scale. 

Actually, EH is a concept closer to battery free self-powered devices and low-power 
consumption electronics rather than production plants. Due to the low intensity of the 
energy currently present in the environment, the EH community focuses its efforts on 
meso, micro and nano-scale devices with low-power consumption requirements.  

One commercial and much extended example is represented by SEIKO watches. This 
company developed two different self-powered engines based on scavenging strategies 
from sunlight and human body movement. Schematics of these examples are depicted in 
Fig.1.2. 

 
Fig.1. 2. At the left a scheme of the SSC005P1 light-powered watch capable of harvest energy not only from sunlight 
but from many other light sources. At the right the SNP036P1 designed to be powered by the human body movement. 

Regardless of the specific harvesting strategy, there is a key point differentiating the 
SEIKO engines from the massive generator plants shown in Fig.1.1, which is also 
present along this thesis dissertation and it is the portability and autonomy of both 
devices meeting the second claim. Generally speaking, these watches exemplify the 
need of powering electronics in a ubiquitously manner, as in many applications it is not 
possible to replace or recharge the battery once it is wasted. Imagine a set of thermal
and humidity sensors spread in a forest indicating areas with danger of fire or some 
health monitoring devices running through a human body alerting of a particular 
medical threat: battery replacement is unpractical and not realistic as the number of 

http://en.wikipedia.org/wiki/%C3%98resund
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devices increases and even more if their dimensions are scaled down. Self-powered 
systems are also useful to track the state of industrial machinery, trains, cars, and other 
engines as it is currently the case in the London's train net [1]. The possibility of 
powering sensors capable of sending the obtained data to a control center allows to 
know in real time the behavior of the engine. This make possible to maintain in an 
optimal state all the trains from the net without needing to retire periodically the trains 
from the circulation to check the state of the things. 
 
Electronics and its development were (and still are) a tremendous revolution and they 
have played a central role in the progress of all kind of scientific and non-scientific 
fields: fundamental science, computing science, mathematics, geography, among others 
and can be considered to be a milestone in the development of modern society, even in 
such important fields as medicine. The trend of increasing the performance of 
electronics by means of high speed, miniaturization and low heat dissipation among 
others is a fact [2]. Fig.1.3 represents this improvement for the particular case of laptop 
components (especially Complementary Metal-Oxide-Semiconductor, CMOS, based 
technology) but it can be generalized to all kind of microelectronics [3].  
 

 
Fig.1. 3. Trend of the improvement on laptop technology. Reference value, improvement=1, corresponds to a 4Mbyte 
hard-drive space, 16MHz and 8Mbyte RAM capacity computer. While the disk capacity has increased by a factor of 
approximately 1200, the battery energy density improved only by a factor of 2. Graph extracted from [4]. 

 
This trend is called Moore’s Law [5-6] and a lot of efforts are dedicated nowadays in 
order to keep the trend [7]. Generally one can say that these performance improvements 
are due to the downscaling of the CMOS technology and the resultant decrease of the 
power consumption covering from transistors to low-power electronics, i.e. active 
devices as actuators [8], RF-communication nodes [9], sensors [10]. Here it is met the 
third claim. Moreover, the miniaturization allowed the integration of those active 
devices in CMOS technology obtaining in a single micro-device the active micro-
system and the management electronics. However, quoting from [4]: 
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 “Battery technology is the least likely to change in the 12-
month development cycle and could be the most limiting 
factor in the design with respect to size, weight and cost” 

 

 
This usually leads the designers to specify the battery first and then design the device 
electronics under constrictions. 
 
The importance of this topic can be measured in terms of economic investment. Smart 
Dust, project financed by the US, pursued to bring a complete sensor node with 
capability for sensing, processing and communicating in a single 1 mm3 device. The 
trend of miniaturization also forced the reduction of the dimensions of their powering 
systems and the autonomy of such ICT devices trying to eliminate the need of batteries. 
Table 1.1 shows a comparison between ordinary battery strategies and ambient energy 
sources in terms of power density and its lifetime dependence. 
 

Energy Source Initial Power per volume 
unit (W/cm3) 

Power per volume unit 
after one year lifetime 

(W/cm3) 
Solar 10 – 1000 10 – 1000 

Vibrations 10 – 200 10 – 200 
Lithium 500 70 
Alkaline 200 10 

Lithium rechargeable 200 10 
Zinc air 500 0 

Table 1. 1. Lifetime of different common power supply strategies. Solar energy and vibrations are two of the 
numerous sources of energy which can be harvested presenting infinite lifetime against the finite battery lifetime. 
Data extracted from [11]. 

 
The main advantages for environmental energy sources relies in the high power 
availability and the infinite lifetime together with their ubiquity. 
Beyond this goal, the SINAPS project (www.sinaps-fet.eu), financed by the European 
Commission within the FP7 frame, aims to go further in this path enabling 
miniaturization below the 1 mm3 device incorporating an energy harvesting device from 
electromagnetic radiation. After the reduction in size and energetic autonomy the next 
step was diminishing the power consumption of ICTs. A remarkable currently ongoing 
example working in this topic is the Landauer project (www.landauer-project.eu), also 
financed by the European Commission, this last one focused on the reduction of 
information processing consumption trying to approximate at maximum to the Landauer 
limit (see textbox). 
 

http://www.sinaps-fet.eu/
http://www.landauer-project.eu/


  
 

5 
 

Finally, ICTs have a non negligible impact in the CO2 footprint. It is considered a 
contribution of a 3% and continuously increasing. At this point we met again the goals 
pursued by the green energy strategies presented in Fig. 1.1.  

 
Fig.1. 4. Representation  of the scenario in terms of power consumption and size. The shadowed box remarks the part 
of the graph of interest for this thesis dissertation: ultra-low power consumption technologies at the micro and nano-
scale.

EH meets electronics in a vast number of situations, but only that at the micro and nano-
scale is the object of this study (Fig.1.4) leaving behind the energy sources and 
strategies described until this point. An example of a technology working within the 
shadowed region of Fig.1.4 is the EH-Link™ [12] wireless node: a self powered sensor 
capable of harvesting energy from ambient sources using as transducing elements a 
wide range of generators such as piezoelectric, electrodynamic, solar, and 
thermoelectric generators. Some of its features are an on-board tri-axial accelerometer, 
relative humidity sensor, temperature sensor, torque sensors, pressure transducers and 
magnetic sensors, all of them in a miniature package. Then, an energy harvesting device 
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can solve the problem of the power supply for these kinds of electronics, transferring 
energy from the environment into usable electric energy to the system. One of these 
energy sources is what is called mechanical vibrations, to be discussed later on, and it 
represents the principal target for this work. 

Fig.1.5 shows a scheme describing the different parts of an energy harvesting 
electromechanical device. It takes two transducing steps to convert the environmental 
energy into the electrical domain each of them with the corresponding losses. In order to 
store the converted energy it must be rectified to achieve a DC signal which is not a 
matter of discussion for this work. This thesis dissertation focuses its efforts on both 
transduction mechanisms of Fig.1.5 with the aim of optimizing the efficiency of the 
harvester. 

 
Fig.1.5. Representation of the different parts of a electromechanical harvesting device showing the different 
transduction steps to take into account. Each transduction carries losses due to the transformation of the energy 
domain. 

Finally, it has to be stressed that the advantage of being autonomous has an unavoidable 
cost: environmental energy may be a non-constant energy source and the energy 
harvested in a certain active period could not be enough to power constantly the active 
block. For this reason some hybrid strategy mixing the potential of different kinds of 
energy sources should be considered [13]. 

This section is structured in three parts: first, an introduction to different sources of 
energy with particular interest in mechanical vibrations and its details accompanied with 
some numbers is argued. Secondly, a review of the state of the art for different kind of 
harvesting devices and a justification for the need of downscaling to the micro and 
nano-scale are provided. Finally, a third part is presented showing the main benefits of 
the so-called “bistable approach” for EH proposes. 
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1.1. Vibration energy sources 

 
This section is devoted to give an insight of which energy sources are commonly 
considered in the EH community and to point out the differences between them. Table 
1.2 gives some numbers to compare between different electric power supply strategies 
in terms of power density and their performance: 
 

Energy source Maximum power 
density  

Harvested power 
density Performance (%) 

Solar 1 mW/cm2 100 W/cm2 10 
Thermoelectric  60 W/cm2  

Vibrations* 200 W/cm3 5 W/cm3 2.5 
Radioactive 120 W/cm2 2.2 W/cm2 2 

Table 1.2. Typical values for different energy sources [11]. 

 
It has been shown that energy scavenging sources, like solar and vibrations, can provide 
power for an unlimited period of time making the difference with standard power 
storage devices such as lithium batteries or fuel cells in order to power ICTs 
technologies. Mechanical vibrations, understood as those energy sources represented by 
a mechanical movement of a structure, represent a very interesting energy reservoir 
because of its high power potentiality and its ubiquity. Table 1.3 lists different examples 
of this kind of reservoirs indicating which frequency contains the majority of the energy 
and the acceleration it can provide ranging from 10-3g  up to 1g. Thus, all these cases 
present different preferred frequencies but with a common characteristic: the peak is 
placed at the low frequency range, from 0.1Hz to 500Hz. As a matter of fact, it can be 
said that mechanical vibrations are found in the low-frequency band. 
 

Vibration source a (m/s2) fpeak (Hz) 
Refrigerator 0.1 240 

Washing machine 0.5 109 
Car instrument panel 3 13 

Window 0.7 100 
Bridge 0.6 20 

Airplane 1.4 30 
Table 1. 3. List of different vibration sources and their acceleration and fundamental frequencies: it can be seen 
accelerations up to more than 1g and frequency peaks ranging from 0 to 250Hz. Data from [14, 15,16]. 

 
Other vibration reservoirs present no peak as those showed in Fig. 1.6. From the 
Wisepower web site (www.wisepower.it) one can obtain the characterization of a huge 
number of different real vibrations. Fig.1.6 shows the vibration power spectral density 
up to 50Hz for a running car (Fig.1.6.a) and for a train upper arm (Fig.1.6.b) in the three 
Cartesian directions.  
 

http://www.wisepower.it/
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Fig.1. 6. Power spectral densities for a (a) Running BMW x3 and a (b) train upperarm along the three cartesian axis: 
x-axis (blue line), y-axis (green line) and z-axis (red line). Data extracted from [14]. 

The three spectral representations shown in Fig. 1.6(a) have a constant level through all 
the considered frequency range of -45dB/Hz for x-axis and -55dB/Hz for y and z-axis 
approximately. An increase of the vibration power spectral density in the low frequency 
range can be seen for the case shown in Fig. 1.6(b) reaching -40 dB/Hz between 0 and 5 
Hz and becoming flat for frequencies higher than 30Hz with about -70dB/Hz. However, 
in both cases no clear peak is observed and the energy is concentrated in the low 
frequency range as it was pointed out before. 

In order to compare the EH devices throughput reported in the literature, there are 
different options and it is still being a matter of discussion. The power density, PD, in 
terms of harvested power per unit volume, can provide some information about the 
goodness of the device but it does not take into account the maximum amount of energy 
the enviornment can supply for each particular case. Moreover, some strategies would 
express in a more clarifying way its performance in terms of power per unit area, which 
makes difficult the comparison with the rest of engines. The normalized power density, 
NPD, could solve the first of these two problems in the case of vibration EH, 
introducing to the expression of the PD the acceleration of the main peak in the spectral 
picture. Unfortunatelly, as it has been showed before, some energy reservoirs do not 
show a peak, therefore NPD becomes ill defined. With the aim of giving the reader an 
insight on the state of the art with some numbers, we report both PD and NPD for some 
exemples taken from the literature in cases where this type of comparison is accepted. 
The results are showed in Table.1.4 and Fig.1.7. 
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P

(W)
fo

(Hz)
a

(m/s2)
V

(cm3)
PD

(W/cm3)
NPD 

(W/cm3/g2)
Roundy 

[15] 275 120 2.5 1 275 4.5 

White
[16] 2.1 80.1 2.3 0.125 16.8 0.3 

Elfrink
[17] 17 353 6.4 24.5 0.7 0.002 

Shearwood
[18] 0.3 4400 382 0.0054 55.6 3.9 

Perpetuum
[1] 4000 100 0.4 30 133.3 85 

Wen
[19] 830 110 95.5 1 830 0.01 

Mitcheson
[20] 3.7 30 50 0.75 4.93 0.0002 

Despesse
[21] 1052 50 8.8 1.8 584.4 0.8 

Present 
work*

(chapter 3)
0.14·10-6 - - 7.7·10-9 12.7* 11.3** 

Present 
work 

(chapter 4)
0.15·10-6 - - 9·10-12 15·103* 500** 

Table 1. 4. List of different piezoelectric, electromagnetic and electrostatic EH devices reported in the literature 
comparing the corresponding P, PD and NPD along with the main frequency, acceleration and volume. 
*Transduction mechanism not optimized. 
 **Considering the root mean square of the acceleration instead of the acceleration for the main peak. Without taking 
into account the volume it would occupy the management electronics but only the harvester’s.

Notice that, in terms of PD performance, Wen holds the first position while in the NPD 
representation it falls to the fifth position. The contrary can be appreciated with 
perpetuum which goes from the fourth to the first position. Hence, the throughput for 
the different harvesters developed by the EH community has not a well established 
manner to be quantified as it is clear in the light of the results listed in Table 1.4.  
 

 
Fig.1. 7. Graphic representation of (a) PD and (b) NPD from the data of Table 1.4 without considering the results 
achieved for the present work.
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At this point it must be stressed that there is an important difference when referring to 
the “vibration intensity” between inertial and non-inertial vibration forces. The latest 
have been considered for the results from chapter 3 and 4, while the rest of examples 
showed in Fig. 1.7 are based on inertial forces. This will be widely addressed during 
section 1.2. 
 
 
 

1.2. The need for downscaling 

 
When designing a harvester device one may need to arrange some parameters to match 
the specifications of, for instance, the place where it will be installed or thrown, the 
period of time it should be working, i.e. lifetime or the specific nature of the energy 
source. When dealing with vibrations, this last constraint becomes really important: the 
spectral characterization of the source and its intensity are two of the main parameters to 
take in consideration. 
 
First of all, one should discern if the input vibration shows some preferred frequencies 
where the majority of the energy is contained or, on the contrary, the energy is spread 
over a broad band in the frequency domain. In the first case, the most studied one [22], 
one need to match the resonant frequency of the mechanical structure with the 
characteristic frequency of the source. The narrower the frequency peak is, the more 
precise the frequency match needs to be. Under some conditions the maximum output 
power,    , achievable for a resonating harvester as a function of the external force 
frequency,  , could be expressed as [23]: 
 

        
             

 
  

   
 

             
 
 

  (1.1) 

 
Where m is the mass of the resonator, be and bT are the electrical and viscous damping 
respectively, n is the natural frequency of the structure and Y represents the input 
excitation in terms of displacement. Regardless of the specificities of parameters like 
the moving mass, m, and the damping, be and bT, one can derive directly from this 
expression that a maximum is achieved whenn. 
In second place we should take into account the input intensity. For the simple model 
given above, the relation between input and output vibration amplitude can be described 
as follows: 
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     (1.2) 

 
Where     and     stand for output and input displacement amplitudes respectively. 
Even if the frequency match is not achieved, an increase of the input intensity is 
translated to a linear increase of the output displacement, thus of the generated power, 
showing no saturation. Some practical drawbacks must be considered at this point. On 
one hand, an increase of the input intensity leads to a greater amount of harvested 
power, but at some point the mechanical structure will meet the rupture point becoming 
useless. This means that the designer must adapt the device to the input intensity in the 
upper band or to the design to limit the maximum vibration amplitude [24]. On the other 
hand, if     decreases dramatically maintaining the device characteristics it will not be 
sensitive enough to respond adequately in terms of harvested power density. 
In order to illustrate this, consider equation 1.1: assuming the frequency match 
condition one can express the generated power as: 
 

         (1.3) 

 
Where a stands for the acceleration. If a linear downscaling of the device by a factor h 
(l hl; w hw; t ht; h<1) is considered, then PD depends on h as: 
 

 
 

      
 

 

 
 (1.4) 

 
This indicates that downscaling improves the power performances. Therefore, 
resonators based energy harvesters work on a two-fold restrictive window: frequency 
and intensity constraints. After that, one can suggest reducing the device dimensions to 
increase the sensitivity to an adequate level and, in fact, this is one of the main strategies 
to increase the device yield. Unfortunately, two problems arise from that: first, the 
reduction in size carries a reduction of the inertial mass which can provoke the system 
to reduce its response to the external vibration in some cases, as later will be discussed. 
Second, this leads to a dramatic increase of the resonant frequency, as it can be seen 
from the expression corresponding to a cantilever with length l, width w and thickness t: 
 

    
 

  
 

 

 
  

    (1.5) 

 
Thereby, when performing a linear downscaling, h, the resonant frequency is up-shifted 
by the same factor h as it can be appreciated from Fig.1.8. In some cases, reducing the 
device dimensions could be done in such a manner that makes possible to keep the 
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frequency match [25]. However, downscaling becomes generally problematic for what 
concern the preferred frequencies (Table.1.3), which are far away in terms of MEMS 
and NEMS specifications with resonant frequencies in the kHz and MHz range.  

 
Fig.1. 8. Ressonant frequency as a function of the inverse of the scaling factor, h, showing the trend of the 
miniaturization.

The situation becomes worse if one consider a frequency distribution of the energy 
where the main source is not concentrated around one specific frequency range, but it is 
spread all over the low frequency range as pointed out on section 1.1. Even accepting 
the possibility of downscaling to a micro-structure capable of resonating at the low 
frequency range, the scenario will demand to adequately respond to a large number of 
different frequencies, thus revealing the need of using a set of different low frequency 
micro-systems [26] consisting of an array of MEMS covering the whole frequency band 
of interest.  Although it solves some aspects of the problem, stills being a lost in terms
of used area and PD. Actually, this is the most probable scenario when dealing with real 
applications. The present work is focused on this situation trying to describe the broad-
band vibrations in a general frame related with its intensity and spectrum characteristics. 
Besides the need to design the harvester device depending on the energy source, another 
motivation for the downscaling could be given by the application itself as it was 
mentioned before. 
 

m K F xrms P PD
h3 H h3 h2 h2 1/h 

Table 1. 5. Dependence of the mass, m, elastic constant, k, external force, F, root mean square of the displacement, 
xrms, generated power, P, and power density, PD.

 

Very often vibrations are treated as a source of acceleration. This is the case for 
example for a resonator attached to a domestic machine: the excitation is transferred to 
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the moving part of the harvester through the anchor. For this kind of inertial excitations 
the force suffered by the harvesting device can be expressed as: 

         (1.6)

Consequently, for a given acceleration, the root mean square of the displacement can be 
expressed as follows: 

     
 

 
    (1.7)

Therefore, following the dependences shown in Table 1.5, if the system is downscaled 
by a factor h the ratio m/k decreases in a factor h2 which means that to maintain the 
same amplitude of displacement the external acceleration must increase in a factor 1/h2.
Even if a reduction of the achieved displacement by the same factor is assumed it stills 
need an increase of 1/h. This relation between acceleration and displacement constraints 
the number of inertial vibrations to be considered for EH proposes (see Table 1.5). 

Non-inertial forces are another source of vibrations to take under consideration. 
Roughly speaking they can be treated as a force source and therefore only the intensity 
of the force is of interest. One of these representing a very interesting particular case is 
the vibration induced by the movement of a bacteria population living in the surface of a 
mechanical structure [27]: a relatively low density bacteria population induces a force of 
about 0.4nN to the AFM cantilever considered in the referenced work. Taking into 
account the cantilever’s mass, the corresponding acceleration root mean square is 
50·103m/s2 which is clearly higher than the values listed in Table 1.2 corresponding to 
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inertial excitations. Sources of vibrations like acoustic waves [28], fluid turbulences 
[29], electrostatic forces [30, 31]. actuating directly on the moving part are some 
excitation reservoirs to take into account. 

1.3. The bistable approach 

A novel strategy for breaking the need of a frequency match between the mechanical 
structure and the target was presented on 2009 [32] by the group of L. Gammaitoni at 
the Universitá di Perugia (Italy). It was based on non-linearizing the resonator response 
inducing a bistable behavior as it is discussed below. It was demonstrated that the 
response of a bistable system is improved under some conditions in terms of harvested 
electrical power when driven by an external force with a white Gaussian noise (WGN) 
spectrum considered as the most general case of broadband frequency excitation. 

This work opened the door to the possibility of reducing the device dimensions without 
getting far away from the target input frequency. 
Fig1.9 shows a scheme of the demonstrator. A permanent magnet of strength     is 
placed at the free end of a pendulum. At the same time another magnet is placed in front 
of the first one, oriented in such a way that an anti-restoring force is added to the 
original system. Depending on the intensity of the magnetic repulsion, which is a 
function of     and the distance between magnets, d, the system becomes bistable with 
the emergence of two new stable states together with the fade out of the original mono-
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stable elastic potential energy. In this situation the original stable point becomes a 
saddle point. 

Fig.1. 9. (a) Scheme of the magnet-based demonstrator. Bi-stability is achieved by tuning the distance between 
magnets. Two extra magnets are placed near the clamped end of the pendulum in order to excite the structure. A 
piezoelectric transduction strategy is considered. (b) Generated power under three different WGN intensities 
achieving a maximum power of 3 mW for an excitation of 1.2 mN rms.

Bistability could be achieved by different means and some of these will be later
discussed in this thesis dissertation, but there are some common characteristics. First, 
the potential energy barrier height between the two minima fixes a threshold value for 
the input noise or low frequency vibration to make the system to jump from one well to 
the other. Beneath this threshold value, the system behaves as a resonant one with its 
characteristic frequency determined by the potential curvature around the specific well 
where the system is confined. Therefore, it is worth to note that, in the resonating case, 
we deal with an accepted frequency window while in the bistable case this window is 
largely broadened. However, the required intensity for the input needs to overcome a 
certain value to operate at its maximum. This is shown in Table.1.6: 

Amplitude bandwidth Frequency bandwidth
Resonating device                     
Bi-stable device                

Table 1. 6. Practical constraints for the resonator based and bistable based strategies. 

Thereby, the bi-stable approach requires a precise tuning of the different parameters 
which tune the bistable configuration to be sensitive enough to a specific external 
excitation. If the example here commented is considered in a particular configuration to 
respond at its maximum under an excitation of 1.2mN, a reduction of this excitation 
intensity down to 0.6mN represents a reduction of the generated power of more than 
one order of magnitude. 
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1.4. Goals and outline of the thesis 

 
The goal of this thesis dissertation is to explore the capability of bistable-based energy 
harvesting strategies to increase the performance of standard resonator-based harvesters, 
particularly at the micro and nano-scale. The following specific objectives are 
established: 
 
 
i) Design, model, fabricate and test bi-stable MEMS for EH with a special effort on 

the agreement between model and experimental characterization in order to find a 
systematic way to achieve a rule of thumb for future fabrication, taking into 
account the particular specifications. 

  

ii) Design and modeling of bi-stable NEMS for EH through atomistic description with 
special focus on 2D nano-structured materials. Piezoelectric effect is studied to be 
the mechanism for transduction. Fabrication of graphene devices is explored. 

  

iii) Evaluate the benefits of the bistable approach and specify the conditions of 
operation. 

  

iv) Investigate the feasibility of MEMS and NEMS as a main blocks for building EH 
devices. 

 
  
Pursuing these objectives, the dissertation is divided in the following chapters 
(excluding the present one): 
 
 
Chapter 2 This chapter is devoted to explain the framework within which this work 

has been carried out, with special emphasis on the spring-mass model and 
atomistic calculations.   

  

Chapter 3 This chapter explains the results obtained in Paper A (appendix) and 
gives further information about the model, the fabrication process and the 
experimental realization. 
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Chapter 4 In this chapter a full description of 2D materials as graphene, h-BN and 
MoS2 and their applicability for EH proposes is provided. It summarizes 
the results obtained in Paper B, C and D (appendix). 

  

Chapter 5 The achievements concerning the attempts of fabricating graphene-based 
devices are presented also reported in Paper E (appendix). 

  

Chapter 6 The main achievements explained in the previous chapters are 
summarized in this chapter. 
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CHAPTER 2 
 

WORKFRAME 
 
 
 
The workframe of this dissertation is well defined within the limits of two different 
fields. In one hand, the modeling of electro-mechanical systems in an analytical form 
considering chunks of materials treated as a continuum that can be modeled with 
effective parameters within the spring-mass model [1]. In the other hand, atomistic 
description of structures in which the atomic scale details have an important role is 
carried out by ab initio calculations as implemented in the SIESTA package [2] within 
the Generalized Gradient Approximation, to be later discussed. Both allow the study of 
the dynamic and static characterization of the desired systems. 
An important point is choosing the appropriate approach for each case. For instance, 2D 
crystals cannot be described through effective parameters, such the Young modulus, 
because they have no well-defined thickness, while standard MEMS and NEMS do. 
 
In the two first sections of this chapter an overview of the static and dynamic behavior 
will be addressed without entering to the deepest details. In the third section the 
dynamic simulation and the electrical conversion model will be explained. 
 
 
 

2.1. The spring-mass model 

 
Mechanical structures have been widely studied from both static and dynamic points of 
view. As it was mentioned in chapter 1, MEMS and NEMS are widely used for 
applications in RF-communications, sensors and actuators. which demands a high 
control of the mechanical characteristics of the mobile part in terms of geometric 
parameters and material specifications. A first overview of the spring-mass model will 
be held in this section and will be taken up again in the first lines of the third section of 
this chapter. 
 
Considering the bar depicted in Fig. 2.1, the arc defined by the angular differential, d, 
can be expressed as a function of the coordinate z accomplishing that its length does not 
varies when the bar is bended along the dashed white line (neutral plane): 
 

            (2.1a) 
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      (2.1b)

Where dl stands for the length variation of the bar, r the radius of the bending, z is the 
position where the change in length is measured and dx is the projection of dl in the x-
axis. Therefore, for z>0 the bar is stretched while for z<0 a compressive strain is 
produced. 

 
Fig. 2. 1. Segment of a beam under deformation caused by a force, F, provoking a bending moment, M. The neutral 
plane represented by a dashed white line is under no stress.

The slope of the beam at any point for a certain deformation defining an angle, , is 
given by: 

  

  
     (2.2)

And the relation between the bending radius and the bending moment can be expressed 
as: 

   
    

   
  

  

 
(2.3)

Where l, w and t are defined in Fig. 2.2 and Y is de Young’s modulus. The second 
moment of area is defined as I=t3w/12. Both, I and Y, are normally assumed to be 
constant. Combining equations 2.1, 2.2 and 2.3 one can obtain the differential equation 
for a beam under deformation:  

   

   
  

 

  
(2.4)
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Once M is determined the deflection at any point is known integrating twice equation 
2.4, taking into account particular boundary conditions. 

The power of this theory is its ability of describing correctly the majority of the features 
of beams, regardless of the particular conditions, including composite structures and 
rare geometries. However, the interest of this work is focused on what is known as 
“clamped-free beams”, or “cantilevers”, and “clamped-clamped beams”, or its 
abbreviation “cc-beam”, with constant rectangular cross-section. 
Therefore, if a cantilever of length, l, width, w, thick, t, with u(0)=0 and    

  
 
   

   as 

boundary conditions is considered (Fig. 2.2), equation 2.4 can be solved directly to 
obtain:  

     
 

  
 
   

 
 

  

 
 (2.5)

where u(x) represents the deflection of the beam at some point x. Here the force, F, is 
assumed to be a point load acting at the free end of the cantilever and, therefore, the 
deflection of the free end can be expressed in a very compact manner as: 

  
 

 

   

  
    (2.6)

 
Fig. 2. 2. Representation of a point load, F, acting at the free end of a cantilever provoking a deformation, u.

The whole structure is treated as a system containing two elements: a spring governed 
by the Hook’s law and a mass. If equation 2.6 is compared with the Hook’s law, F=kx, 
it seems reasonable to state that the mechanical system behaves as a spring with elastic 
constant: 

   
 

 

   

  
(2.7)
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The same development could be done in order to describe the deflection of a cc-beam 
(Fig. 2.3), which is the other structure concerning the present dissertation. In this case a 
point load acting on the center of the beam is considered, and boundary conditions 
described by u(0)=u(l)=0 and    

  
 
   

    

  
 
   

  . This time the displacement of the 

center of the beam is expressed as: 

  
      

  
      (2.8)

 
Fig. 2. 3. Representation of a point load, F, acting at the center of the structure, x=l/2, of a cc-beam provoking a 
deformation, u.

And the expression for its elastic constant may be written as: 

   
      

  
(2.9)

Once the statics of these two cases have been determined in terms of material and 
geometric parameters, the next step is to determine the dynamics, that is, determining 
the natural frequency of the mode n, n=2fn. Considering the principle of minimum 
action, derived from the Hamilton principle [3], the governing equation is obtained for a 
dynamic deflection: 

   
   

   
    

   

   
  (2.10)

Where  stands for the longitudinal mass density, ·w·t. Equation 2.10 can be solved 
assuming variable separation,                 , with                 and 
considering free vibrations, thus, no external force is applied, F=0. Therefore: 
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        (2.11) 

 
This equation has four solutions which can be written as: 
 

     
    

 

  
 

   

    (2.12a) 

 
        (2.12b) 

 
        (2.12c) 

 
         (2.12d) 

 
These expressions determine the dependence of the resonant frequency for each mode 
of vibration in terms of a parameter, kn: 
 

    
  

  

  
 

 

   
 (2.13) 

 
In other words, the solution of equation 2.11 can be expressed as a sum of trigonometric 
functions as follows: 
 

        
            

            
             

           (2.14) 

 
Once again, the boundary conditions must be here applied in order to obtain the 
different coefficients showed on equation 2.14. For a cantilever beam, the Di 
coefficients can be expressed as: 
 

   
     

  (2.15a) 

 
   

     
  (2.15b) 

 

 
  

 

  
   

                  

                  
 (2.15c) 
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 (2.15d) 

 
These equations lead to the transcendental equation for the cantilever beam which is: 
 

                       (2.16) 

 
For a cc-beam, as the boundary conditions are not the same than those for a cantilever 
beam, the equations for the coefficients are: 
 

   
     

  (2.17a) 

 
   

     
  (2.17b) 

 

 
  

 

  
  

                  

                  
 (2.17c) 

 

 
  

 

  
   

                  

                  
 (2.17d) 

 
For these kinds of structures, then, the transcendental equation becomes: 
 

                      (2.18) 

 
The valid solutions for kn are listed in Table 2.1 for both kind of beams. 
 

 
 Cantilever beam Clamped-clamped 

beam 
First mode      1.87 4.73 

Second mode      4.69 7.85 
Third mode      7.85 10.99 

Table 2. 1. Solution parameters to the transcendental equations 2.13 and 2.15 for a rectangular cross-section 
cantilever and a cc-beam for the three first vibration modes. 

 

Fig.2.4 plots the three first modes for both cantilever (a) and cc-beam (b). For the sake 
of simplicity the first mode is assumed to be the only relevant [4]. 
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Fig. 2. 4. Shape for the three first modes,  , for a (a) cantilever and (b) cc-beam. For a cantilever it presents 1, 2 and 
3 nodes while for a cc-beam it has 2,3 and 4 nodes.

2.2. Atomistic calculations: DFT and the SIESTA code 

Quantum mechanics has revealed to be a very powerful theory in order to describe the 
most intimate nature of matter. There are many situations where quantum effects 
become no negligible. One of the fields where a quantum description is required is 
condensed matter nano-physics. Unfortunately, the describing equations cannot be 
exactly solved for complex systems, and even for simple cases like the helium atom 
some approximations must be done in order to keep the problem at a manageable level. 
The equations of a quantum mechanical many-body system are not possible to be solved 
even through numerical methods due to the high complexity of the related wave-
function describing it, so one approach is to consider approximations to the exact 
theory, for instance treating the atoms as spheres whose interactions with the rest of 
atoms are described through effective potentials. However, the main objective of the 
Density Functional Theory (DFT) [5] is simplifying the Schrödinger equation to 
become a manageable problem without any approximation. DFT played a central role 
allowing a sound description of many-body systems achieving very accurate results, 
mainly for solid state physics. DFT belongs to a larger class of algorithms known as 
total energy methods, as the main output of the atomistic calculation is the estimation of 
the total energy and many other properties are obtained from it by mathematical 
derivations (forces on atoms by differentiation with respect to the strain tensor and so 
forth). 
A detailed description of DFT is clearly beyond the scope of this Thesis. However, the 
main ideas and the capabilities of this powerful theoretical approach are quickly 
outlined in the following paragraphs. The interested reader is referred to Refs. [6-8]. 

The exact quantum mechanical description for a quantum system can be obtained 
solving the Schrödinger equation: 
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           (2.19) 

 
Assuming that the relativistic effects could be neglected, then the many-body 
Hamiltonian,   , can be expressed as follows: 
 

 

                

    

 

    

 

 
  

 
  

    

           

 
  

 
  

 

           

     
  

       
  

 

(2.20) 

 
Here, K stands for the kinetic energy contribution split into KI for nuclei and Ki for 
electrons. The following three terms in this equation define, in order, the interaction 
energy between nuclei, between electrons and, finally, between each electron and the 
collection of atomic nuclei. A first way to simplify equation 2.20 comes from the 
observation that electrons move much quicker than nuclei, as their mass is much lower. 
Therefore, from the electronic density viewpoint nuclei can be considered to be static 
and the dynamics of nuclei consequently decoupled from that of the electron. This is the 
so-called Born-Oppenheimer approximation and it allows splitting the total wave-
function solution to equation 2.19 into: 
 

                       (2.21) 

 
Where (R,r) is the solution to the Schrödinger equation for the electronic Hamiltonian: 
 

                      (2.22) 

 
where     stands for: 
 

        

 

 
  

 
  

 

           

     
  

       
  

 (2.23) 
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Notice that the simplification introduced with Born-Oppenheimer approximation is 
limited to the decoupling of electrons and nuclei and has, strictly speaking, nothing to 
do with DFT. Yet, it is nowadays used in most DFT codes, but not in all of them. 

The fundamental theorem to formulate the DFT is the following: 

“The electron density, n(r), of a bound system of interacting 
electrons under some external potential, V(r), determines this 
potential uniquely”

Actually, it is the inverse formulation what sustains DFT and it can be written as: 

“Given an electron density, n(r), there is a unique external 
potential, V(r), which can have determined it”

The bijectivity of the relation between the electron density and the external potential 
leads us to the core of the DFT. Our starting point is the many-body system, made of 
interacting particles, that we cannot solve. However, if we can find a simpler system 
that we know how to solve, as long as it has the same electron density of the interacting 
system, we are guaranteed by the first theorem of DFT that the solution, i.e. the external 
potential, is the same. The trick consists in mapping the interacting-particle many-body
system into a fictitious non-interacting particle ensemble, embedded into an effective 
potential. Thereby, considering equation 2.23, V(r) would represent the interaction 
between electrons and nuclei, and then the total energy of the system can be expressed 
as: 
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                                        (2.24) 

 
The second basic theorem, due to Hohenberg and Khon, states that the true electron 
density is that which minimizes the functional E[n] being this last one the ground state 
energy always accomplishing            and       . 
 
The Coulombian interaction between electrons can be reformulated in terms of the 
electron density, n(r), as: 
 

     
 

 
 

         

      
                  (2.25) 

 
At this point the kinetic energy of the interacting electron system will be split into two 
terms: one regarding the kinetic energy of the fictitious system of non-interacting 
electrons with the same n(r), and another term taking into account the difference of 
kinetic energy between the interacting and the non-interacting system and the exchange-
correlation energy: 
 

 
                             

                                   
(2.26) 

 
And then: 
 

                                                        (2.27) 

 
Back to equation 2. 23, the most critical term regards the electron-electron interactions: 
for a system with N electrons, a N 2-dimensional differential equation set must be 
solved. The main achievement of DFT is simplifying the problem to finding the right 
n(r) which can be expressed involving a single-electron equations set. This was done by 
Kohn and Sham showing that the DFT treatment is more simple. 
 
Now, we can rewrite the Schrödinger equation acting on non-interacting states 
represented by   , as: 
 

  
   

  
                                          (2.28) 

 
This form a set of differential equations known as Kohn – Sham equations. Till this 
point the DFT is an exact theory. Unfortunately the exchange-correlation term of 
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equation 2. 28 remains unknown. A good approximation of VXC[n] is required in order 
to describe the main physical properties for a given system. 
 
Until now we have simplified the problem to a non-interacting electron system with a 
exchange-correlation contribution yet to be determined. The Local Density 
Approximation (LDA) approach [9] the exact form of EXC considering it to be close to 
that for an homogenous electron gas with the same n(r) with energy density,    

   : 
 

        
        

                (2.29) 

 
A more complex functional comes from adding a correction to this    

    considering the 
spatial distribution of n(r) called Generalized Gradient Approximation (GGA) [10]: 
 

        
       

        
                    (2.30) 

 
In the work presented in this thesis dissertation we have considered the GGA approach. 
Once the exchange-correlation energy density functional is determined equation 2.24 
form a set of nonlinear coupled differential equations with a functional dependence on 
n(r). At this point, it is worth to note there is something circular in the treatment of the 
problem: to solve the Kohn – Sham equations one must know Vee, but to determine it 
the electron density is needed. Finaly, to know n(r) the wave functions must be known 
but    are known once the Kohn – Sham equations are solved, and we are again at the 
beginning of this circle. Thus, the problem must be solved iterating until self-
consistency is achieved. 
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Fig. 2. 5. Flow diagram for a standard DFT based code. The buckling is iterated until self-consistency is achieved.

The flow-diagram of Fig. 2.5 shows the iteration path implemented in the most of the 
DFT based simulating codes: 

1. Define an initial electron density, n0(r). 
2. Build the potential related to this particular electron density. 
3. Solve the Kohn – Sham equations to find the single-particle wave functions. 
4. Calculate the resulting electron density. 
5. Compare the obtained n(r) with this used to solve the Kohn – Sham 

equations. If the two electron densities are the same within numerical 
accuracy, n(r) is used to compute the total energy of the system, if not, the 
electron density is updated following a concrete protocol to begin again from 
point 2. 

The calculation of the total energy of an infinite crystal is naturally approached by 
means of an expansion of ir) in terms of plane-waves. In this way one takes 
advantage of the periodicity of the potential, as showed by the Bloch’s theorem. The 
number of plane-waves required to obtain converged values of energy and forces scales 
with the computational volume. However, the systems under study in this dissertation 
are two-dimensional (graphene, h-BN and MoS2) and a large vacuum region is needed 
in the non-periodic direction1. This makes in principle plane-wave not an optimal 

                                                           
1 For numerical reason, most DFT codes require the system to be periodic along all three coordinate 
directions. In this framework, the way of dealing with lack of periodicity is allowing a large vacuum 
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choice, as vacuum has to be described with the same accuracy of the space filled with 
atoms and, clearly, we are more interested in the latter. 
For this reason a DFT code that uses localized basis function (which can be Gaussian 
functions, atomic orbitals…) seems in principle, more suited to this problem, as basis 
functions are centered on atoms and computational power is not wasted in the 
description of vacuum. 

The results here presented are obtained using the SIESTA method [11]. It implements a 
self-consistent density functional method using standard norm-conserving pseudo-
potentials of the Troullier-Martins type [12] and atomic orbitals as basis sets. The main 
advantage of this particular implementation relies in the use of numerical atomic 
orbitals (NAO), atomic orbitals that go smoothly to zero beyond a certain cutoff radius 
thus saving computational time [13]. Locality is needed for certain quantities to achieve
linear scalability, meaning that perturbations at a distance sufficiently far do not affect 
substantially the system [14]. Moreover, this linear-scaling ab-initio method allows 
computing stresses and forces for structural relaxation and molecular dynamics analysis. 
In the following lines the main features and parameters of this particular code will be 
discussed. 

 
Fig. 2. 6. Comparison between radial harmonic contributions to the spherical harmonic for three different cases: 
Sankey [15], based on an ab initio thight-binding model for simulation of molecular dynamics, where a box-like 
potential is used. Junquera [16] considering a smoother potential and, thus, requiring a truncation of the radial 
function. Finally, the free atom is considered to use the respective orbitals as basis functions being extremely 
extended. Regarding condensed matter systems the effect of the truncated part is depreciable as their effect can be 
described by the basis orbitals of other atoms.

                                                                                                                                                                          
region. For instance, to deal with a zero-dimensional system such as a molecule, the atoms will be place 
into a very large cubic (the shape is really not important in this case) computational cell of side a. Now, 
the system is periodic, but the images of the molecule under study will be a faraway and the molecule in 
the computational cell, provided a is large enough, will behave as an isolated molecule. 
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Atomic orbitals are considered as basis functions. In Fig. 2. 6 the radial harmonic 
component for different examples are shown. As noted before, the main advantage of 
doing so is their efficiency in terms of number of orbitals needed for a similar precision 
than this for plane waves (PW). The main disadvantage is the lack of a rule for 
optimization. For linear scaling purposes it is important to obtain sparse Hamiltonian 
and overlap matrices. The traditional way to assure that condition is to neglect 
interactions with strength under a certain tolerance value. The approach considered here 
is using strictly localized basis, i.e. falling to zero beyond a cutoff radius [16]. Within 
this radius the atomic basis orbitals, NAO’s are products of radial functions and 
spherical harmonics, as it was explained before. SIESTA counts with several automatic 
procedures to build a basis set, for example single-ζ or minimal basis set, but the 
generation of them as it happens with the pseudo-potentials is completely independent 
of the SIESTA method itself. Then, the user is free to use a basis set as complete as the 
user wants, keeping in mind that as more complete is the choice as higher will be in 
terms of computational time the cost. In addition to the atomic valence orbitals 
sometimes it is worth to consider polarization orbitals, i.e. extra pseudo-atomic orbitals 
with angular momentum lmax+1.  

 
Fig. 2. 7. Total energy for bulk silicon for different basis sets starting from single-ζ to triple-ζ examples. The data 
obtained for a Plane Wave based basis is showed for comparison with atomic orbital based calculations.

Fig. 2. 7 show the total energy curve as a function of the lattice parameter of bulk 
silicon for different basis sets [16]. The dotted line follows the minima for each curve 
allowing to track the differences between the results for different choices. 

As in the other DFT codes a variation of the Hellmann-Feynman method is used to 
compute the atomic forces [11]. The truncation of the basis functions affect the resulting 
forces which needs to be rearranged through Pulay-like corrections. Stresses are 
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computed by differentiation of the total energy E[n] with respect the atomic positions 
and the strain tensor directly: 
 

     
  

    
 (2.34) 

 
These quantities are continually calculated with the total energy in a real space grid. The 
related deformations needed to compute the derivatives are done in such a way that the 
shapes of the basis functions, KB projectors and atomic densities and potentials are not 
changed but only translated. Therefore, the stresses calculated are almost parallel to the 
forces, saving computational time.  
 
 
 

2.3. Dynamic simulation 

 
Once it is assumed that all the physics behind a mechanical structure can be described 
with a simplified linear model described by the Hook’s law, the equation of motion can 
be expressed as: 
 

        
  

  
   (2.35) 

 
Where the mass is considered to be concentrated at the end of the structure, for a 
cantilever, and at the center, for a cc-beam, with a value meff. This effective value takes 
into account that each mass element contributes to the inertial terms with different 
weight when performing a deformation. As it can be seen from Fig. 2.8, mass elements 
at x1 and x2 always fulfill u(x1)<u(x2), therefore, the amplitude of deformation depends 
on the longitudinal coordinate. Hence, this allows reducing the system to a point-like 
system with mass meff [2]: 
 

                   (2.36) 

 
greatly simplifying its analysis. The approach here is considering the mode shape,   , to 
be normalized to 1. For a cantilever beam and a cc-beam the effective mass, in this 
picture, can be approximated to be: 
 

     
                    (2.37) 
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               (2.38)

 
Fig. 2. 8. Approximation of the system through the spring-mass model: the real structure is replaced by a virtual 
system consisting on a punctual mass, meff, and a spring, k.

At this point another term must be added to equation 2.35 to take into account the 
mechanical damping, i.e. energy losses that are dissipated to the medium, which can be 
modeled through the quality factor, Q [17-21]. These energy losses can be related to 
internal friction effects on the structure or the interaction with the surroundings. For 
resonating systems, it is defined as the energy stored in the resonator, Estored, divided by 
the energy delivered to the system to keep constant the amplitude of vibration, Esupplied,
at a certain frequency, fr: 

       
       

         
(2.39)

It is assumed that the quality factor can be expanded in a sum of contributing terms as 
follows [19]: 

 

 
  

 

  
 

(2.40)

For the purpose of this thesis dissertation,   will be experimentally measured, if 
possible, or left as a free parameter and introduced to the motion equation, assuming the 
damping term to be proportional to velocity,   , as follows: 

            
  

  
  (2.41)

Where the relation between the proportional constant, bm, and the quality factor is: 
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 (2.42) 

 
Where f0 is the natural frequency of the system as it was defined on section 2.1. The 
higher the damping term in equation 2.41 is, the higher the wasted energy per cycle is. 
Thereby, oscillations vanish faster for low than for high Q values.  
 
In order to measure Q experimentally, the standard procedure [22] is followed, which is 
based on considering the ratio between the resonance frequency of the structure, f0, and 
the full width of the frequency response at half maximum (FWHM). Therefore, the 
quality factor can be computed from the following expression: 
 

   
  

    
 (2.43) 

 
It is worth noting that, in this picture, the quality factor does not depend on any 
particular amplitude of vibration, neither the strength of the external excitation. 
 
When actuated by an external driving force, Fext, whatever its nature is, the dynamics of 
the system can be obtained solving the following second order differential equation: 
 

             
  

  
        (2.44) 

 
Troughout this thesis, Fext will represent different stochastic processes related to WGN 
(White Gaussian Noise), pink noise or other broad-band signals in order to emulate a 
generic input containing the main characteristics of real vibrations or environmental 
made excitation processes as those described before (Fig. 1.6). Thus, due to the random 
nature of Fext, equation 2.44 represents a Langevine-like equation which must be solved 
numerically as it does not accept analytical solutions. To carry out this task we have 
used MATLAB, implementing a 4th-order Runge-Kutta method [23]. During this work, 
the specific parameters for each simulation have been optimized till the obtained 
dynamics are stable under small changes of these parameters as shown in Fig.2.9. 
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Fig. 2. 9. Results from a dynamic simulation for the system explained in chapter 3 (section 2): root mean square for 
(a) the displacement and (b) the generated electrical power as a function of the simulation length. The number of 
points needed to achieve the saturation for zrms is around 104, while this for the Prms is increased to 3·104. The more 
restrictive value is taken as the optimal.

Fig.2.9a show the obtained root mean square for the displacement of the system 
discussed in chapter 3. It can be seen that a minimum of 10000 points is required to 
obtain a stable value. 

When performing electrical transduction the energy extracted and wasted in load 
impedance must be included in the model: the electrical damping. A piezoelectric 
method of transduction based on [24] is assumed. It is not the aim of this work to 
discuss the suitability of transducing with one method in particular. However, other 
works have demonstrated the good performances in terms of integration in 
microelectronics and high output power for the piezoelectric strategy [25]. Moreover, in 
the nanostructured materials study, that will be later shown, piezoelectric materials are 
contemplated to facilitate the fabrication and integration of the transducer. 

Equation 2.44 is replaced by two coupled differential equations aggregating the voltage 
drop in the load, V, as a new variable: 

            
  

  
          

(2.45a)

    
 

 
    (2.45b)

Where the electrical damping has been added through the electromechanical coupling 
parameter, , I is the current flowing through the load and C represents the capacitance 
of the piezoelectric element. 
These equations still need numerical methods to obtain the trajectory, z(t), and the 
voltage across the load, V(t). The output of the numerical simulation are two vectors, 
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z={xi(ti)} and V={Vi(ti)}. Following the steps of [26] it is assumed that the generated 
power in a certain period of time can be evaluated by: 
 

   
    

 
 (2.46) 

 
Due to the stochastic nature of the obtained dynamics, the numerical simulation period 
need to overcome a minimum value to achieve a stable output as it is shown on 
Fig.2.9b. Notice that the minimum number of points needed for output stabilization is 
not the same for zrms (10000 approximately) and Prms which needs 30000 points, at least. 
Moreover, the combination of stochastic forces and the random behavior of the obtained 
bistable dynamics demands a larger number of simulation points than this for a mono-
stable system. 
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CHAPTER 3 
 

ELECTRET BASED BISTABLE 

MEMS 
 

 
 
This chapter is devoted to report and extend the main results reported in paper A. Here, 
an electrostatic based bistable system for EH is proposed concerning both modeling and 
experimental realization. It represents a proof of concept of what was presented in 
section 1.3. at the micro-scale. No electric transduction is achieved, although the main 
results from [1] are reproduced with good agreement between modeling and 
experimental realization. 
The content of this chapter splits in two parts: in one hand the modeling of the electro-
mechanical structure, in the other, the details of the experimental realization and the 
data obtained in the laboratory, giving further information to what was published.  
 
 
 
3.1. Modeling 

 
The modeling of the system through the techniques presented on section 2.1 and 2.3 
allows to obtain simple expressions describing the main characteristics of the device in 
terms of measurable parameters, i.e. k and q, and fabrication specifications, i.e. material 
and geometry. At the end of this section an evaluation of the possible achievable output 
power is given. 
 
 
 
3.1.1. Potential calculation 
 
In order to bring the bistable approach to the micro-scale, a commercial micro-
cantilever from NANOWORLD [2] is considered: it is a typical Si3N4 tip-less AFM-
micro-cantilever with a one-side gold coating to assure good laser beam reflection. The 
V-shape allows to achieve very low elastic constants (k~0.08N/m in the present case) 
for a given dimensions which is of great interest for our proposes as it will be discussed 
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later on. Fig. 3.1 shows an optical image of the cantilever, pointing out its dimensions 
and the material specifications. 

 
Fig. 3. 1. Optical image showing a top view of the V-shaped cantilever. The dimensions are l=200m, 
B=184m,w=28m, t=665nm and the density is assumed to be =2300Kg/m3.

Following the description for cantilevers and its dynamic behavior presented in section 
2.1. and 2.3. one can achieve a sound description of such a structure in terms of elastic 
potential energy, U, and effective mass, meff~0.28lwt, within the Parallel Beam 
Approximation (PBA) [3].
Therefore, if electric charges, q1 and q2, are trapped at the tip of the cantilever and at the 
tip of a counter electrode (CE) respectively and brought close, as depicted in Fig. 3.2a, a 
bi-stable configuration can be achieved. For a given mechanical structure with stiffness 
k, the details of the bi-stable potential energy depend on the amount of charge 
q=(q1q2)1/2 and the distance between them, d. The total potential energy concerning both 
the mechanical and electrostatic contribution can be expressed as: 

                
 

 
                  (3.1)

Where K stand for the Coulomb constant. Once the cantilever stiffness and the value for 
q are determined the resulting system has only one tuning parameter: d. 
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Fig. 3. 2. (a) Scheme of the prototype (top view) made of a cantilever and a CE: a distance d separates two electric 
charges, q1 and q2, which are ideally trapped at the free ends of both structures. The total potential energy as a 
function of the out-of-plane displacement, x, for three different distances, d, is showed: (b) the electrostatic 
interaction vanishes for large enough distances recovering the potential energy of a linear resonator, (c) bi-stability 
appears when the distance reaches d=dB  which is determined by the elastic constant, k, and the average electric 
charges. (d) For d<dB two stable points appear separated by a potential barrier. All figures correspond to q=10fC.

Fig. 3.2 shows UT considering q=10fC for three different distances: for large d (Fig. 
3.2.b) the system behaves as a linear resonator with a frequency determined by equation 
2.13. As electric charges get closer, the electrostatic interaction becomes not negligible 
and starts flatten UT, making it less and less harmonic, but preserving the resonant 
behavior (Fig. 3.2.c). Below a threshold distance, which can be expressed by 

    
   

 
 

   

(3.2)
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two potential wells start to be well defined. The distance between potential minima and 
the potential barrier height that defines the bistable behavior increases (Fig. 3.2.d) when 
dB is decreased. These two can be analytically expressed as: 
 

       
   

 
 

   

    (3.3) 

                    
   

 
 

 

 
   

   

 
 

   

     (3.4) 

 
It is possible to find analytical expressions for the natural frequencies of the system for 
the different regimes it presents depending on the parameter d: 
 

   
  

 

       
 
    

   
 
      

 (3.5) 

 
Here we have to differentiate two different cases: d>dB and d<dB as xmin=0 and 
xmin=x+=-x- respectively. The different resonant frequencies can be expressed as: 
 

 
  

  
 

  
 

   
   

   

    
          (3.6) 

 
  

  
 

  

 
     

   

 
 

    

  
   

 
 

   

    

    
          

(3.7) 

 
The trend of these two branches can be seen in Fig. 3.3 where f0 represents the resonant 
frequency for the linear case as it was discussed in section 2.1. 
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Fig. 3. 3. Natural frequency of the system as a function of the distance between charges, d. For d>dB the resonant 
frequency describes the oscillations around x=0, while for d<dB describes the oscillations around x=x+. The natural 
resonant frequency of the mechanical structure is represented by the red dashed line.

It is clear that, starting at the mono-stable configuration (blue-shadowed region in Fig. 
3. 3) from d=20m, bringing near the electric charges softens the mechanical structure 
providing lower resonant frequencies. This fact suggests it could be used as a method to 
modify the resonant behavior of mechanical structures at the micro-scale. However, as 
the bi-stable region is approached, the resonant frequency becomes too sensitive to little 
variations of d. Once entered in the bi-stable configuration (red-shadowed region in Fig. 
3. 3) the resonant frequency shifts its behavior increasing its value as d decreases. The 
limit for this phenomena regards the maximum achievable x+ without meeting the 
rupture point of the mechanical structure.  

3.1.2. Dynamics of the system

As specified in section 2.3, in order to obtain the dynamics of the system, the Langevine 
equation 2.44 must be numerically solved. Thus, 

       
        

 
   

   

  
     

 (3.8)

where f0 and Q are measured experimentally as later will be showed. In order to be able 
to compare the results obtained from the model and the experiment the external force, 
F*

ext, is set to match the real characteristics of the force measured during the 
experimental realization. 
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The dynamics of the system depends on the tuning parameter, d, and on the intensity of 
the external excitation, F*

ext. Fig. 3.4a shows the root mean square of the displacement 
at the tip of the cantilever after numerical simulation under 1/f noise excitation with 
    

   =4nN. The considered trapped charge is around 10fC which determines the 
threshold distance value at 4.6m approximately.  

 
Fig. 3. 4. Results of numerical simulation. (a) Root mean square of the displacement, xrms, as a function of the 
distance, d. The red and blue box separate the bi- and mono-stable regions. A peak can be observed once bi-stability 
is achieved. (b) Phase portrait for the three possible regimes. Lower panel: electrostatic interaction is not capable of 
inducing bistability and the system oscillates around x=0. Middle panel: Once bi-stability is achieved the system 
suffers transitions from one attractor to the other if an external force threshold is reached. Upper panel: electrostatic 
interaction is that intense that the system cannot overcome the potential barrier and the system gets confined in one of 
the two attractors.

The maximum xrms value appears for distances below dB which points out the benefit of 
bistability. It can be seen that even for the mono-stable configuration there is a sustained 
increase for decreasing distance between charges: although the bi-stable configuration is 
not achieved, the interaction between charges flatten the elastic potential energy, which 
leads to larger trajectories around x=0. Once the two minima appear there is an optimal 
value dopt which combines the oscillations around the two minima and large excursions 
between and maximizes xrms. If d is further decreased, after a certain point, the 
cantilever gets stuck in one of the two wells oscillating around x+ or x- with a 
characteristic frequency determined by the curvature of the total potential energy, UT, at 
this point. These three different regimes are showed on Fig. 3.4b corresponding to 
d=2m (upper), d=dopt (middle) and d=10m (lower) in a phase-portrait representation. 
The evolution of the attractors can be followed as the bistable configuration is achieved. 

3.1.3. Power guess

As it was pointed out in the introduction to this chapter no electric transduction was 
considered in the experimental realization. However, the maximum power achievable 
can be estimated based on the model discussed in sections 3.1.1 and 3.1.2, and 
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considering piezoelectric transduction. For this purpose a 20m x 28m x 150nm ZnO
layer [4] placed at the clamped ends of the cantilever is considered, operating on the 31 
mode with d31=-5pm/V [5]. Regardless of the stiffening of the resulting structure, the 
consequent electric damping on the system is taken into account, as it was explained in 
section 2.3. In order to evaluate the generated power we computed the energy dissipated 
in a purely resistive load, R, by means of: 

     
    

 

 
(3.9)

The optimal load corresponds to a resistance of Ropt=55k providing a maximum 
output power of approximately     

   =0.14pW when reaching dopt~4.5m as it can be 
seen from Fig. 3.5. 

 
Fig. 3. 5. xrms(blue line) and Prms (green line) as a function of the distance, d, after numerical simulation.

The difference between the distances that maximizes the root mean square for the 
displacement and the generated electric power comes from the transduction process and 
the characteristics of the different elements. As a limit case if RC>>1 then integrating 
equation 2. 45b one can express the voltage across the load as: 

     
 

 
    (3.10)

Therefore, the dissipated power becomes strictly proportional to the square of the root 
mean square of the position: 

     
  

   
    

 (3.11)
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allowing to estimate the generated output power by means of the performance of the 
mechanical transducer, i.e. xrms, and the performance of the electro-mechanical 
transducer, i.e. 2/RC2. Out of this condition and supposing a certain value for  and C 
(which is determined by the considered materials and geometries), the optimization of 
the mechanical response through the distance parameter, d, and the optimization of the 
electro-mechanical coupling through the load impedance, R, cannot be done separately.  
 
 
 
3.2. Experimental results 

 
In this section the experimental data is reported not without previous description of the 
measurement set-up and the procedure followed in order of trapping electric charges in 
the cantilever’s tip. 
 
 
 
3.2.1.Electret fabrication 
 
As explained in section 3.1., trapped electric charges are considered in order to add a 
repulsive force to the system. At this point we take advantage of the insulating nature of 
Si3N4 [6]: it is a well known fact the generation of electron and holes traps in the deep 
body or surface of an insulator when polarized [7] ruled by several mechanisms [8]. 
When polarized, these trapped charges assist the current through the insulator [9,10]. As 
a consequence, during the polarization of the capacitor-like structure formed by the 
polarization electrodes and the insulator itself, the characteristic I(V) curve presents an 
average increment revealing the presence of trapped charges in the body of the 
insulating material. The approach here presented is to consider the cantilever as a 
capacitor, as it is depicted in Fig. 3.6, which is polarized across the thickness of the 
structure, taking advantage of the Au/Cr coating of the cantilever which is used as an 
electrode. The cantilever is pushed against a gold substrate by a probe tip to achieve the 
capacitor configuration once it meets the substrate.  
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Fig. 3. 6. Optical image of the top view (left panel) and scheme of the lateral view (right panel) of the charging 
process considered to trap electric charge in the body of the cantilever. A voltage difference of     is applied 
between the gold coated top-side of the cantilever and a gold substrate. The cantilever is bended by the probe to 
assure good contact with the substrate.

Fig. 3.7a shows the current flowing through the capacitor-like structure when polarized 
at constant voltage. The variations in the measured current correspond to trapped or 
released charges into the insulator which assist or diminish the current through the 
capacitor respectively. The different I-V curves from Fig. 3.7b show the measured 
current when performing a voltage sweep after different stressing steps revealing the 
existence of electric charges in the body of the cantilever [11]. 
 

 
Fig. 3. 7. Evidence of the trapping process. (a) Measured electric current through the capacitor-like structure for a 
period of time of approximately 20min showing sparks that can be related to trapping and releasing processes. (b) I-V 
curves after electrical stress.

 

The data reported in Fig. 3. 7 evidences the existence of electric charges in the structure, 
although the exact value for the total trapped charge is unknown. The evaluation of the 
electric charge will be commented in following section. 
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3.2.2. Experimental set-up

Fig. 3.8 show a scheme of the experimental set-up considered to measure both static and 
dynamic deflection of the cantilever. It is based on a conventional AFM-like optical 
readout setup: a laser beam (HeNe, 632.8nm, 15mW) incident to the cantilever free end 
is reflected by the gold coating along a certain direction determined by the relative 
position between the cantilever and the laser. The reflected beam is detected by means 
of a Position Sensor Detector (PSD, New Focus 2930) which gives an electrical signal 
proportional to the cantilevers deflection, VPSD   xcant. The transduced signal is 
measured  by an oscilloscope (Agilent InfiniiVision D50-X3054A). 

In order to ensure the required alignment between the cantilever and the CE, they are 
attached to two manual 3D-positioners which also fix the initial distance, d0, between 
them. Two CCD cameras giving top and lateral views of the whole system allow 
tracking the relative position of the different elements. 

 
Fig. 3.8. Scheme of the optical read-out and excitation set-up.

The distance between the cantilever and the CE is tuned by a long range piezo-stack 
attached to the CE which produces a longitudinal displacement with a ratio of 
rv~0.1m/V, allowing to achieve a precise enough control of the gap between electric 
charges: 

              (3.12)
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where d0 stands for the initial distance between the cantilever and the CE and Vstack is 
the polarization across the piezoelectric stack. 
In order to induce a mechanical excitation to the cantilever, a piezoelectric shaker is 
attached to the cantilever support and connected to a voltage generator. 

3.2.3. Charge and Q-factor measurement

For our purposes the meaningful quantity to know is not the particular charge q1 or q2

but the geometric average expressed as q=(q1q2)1/2. In order to evaluate q, we measure 
the static deflection of the cantilever when approaching frontally the CE. It is assumed 
that the measured static deflection corresponds to the position of one of the minima, x+

and x-, of the potential energy from equation 3. 1. Therefore, from equation 3.3. we 
obtain: 

   
 

 
   

     
   (3.13)

Fig. 3.9 shows the obtained data for the rest position, x+, as a function of the distance d
(squares)  and the curve defined by equation 3.3 which allows estimating the electric 
charge to be approximately q=10fC by adjusting the theoretical curve to the 
experimental data. 

 
Fig. 3. 9. Measured rest position (squares) as a function of the distance, d. The blue line is a representation of 
equation 3.3: the average electric charge, q, is left as a free parameter which is determined by adjusting the blue line 
to the measured data. q~10fC is achieved.
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On the other hand, as it was discussed in section 2.3. the quality factor could be 
measured from the resonance peak in the linear regime, as expressed on equation 2.43. 
Fig. 3.10 shows the measured resonance of the first mode of vibration around 11.3kHz 
when mechanically excited by a force Fharm  sin(t). 

 
Fig. 3. 10. Measured response to harmonic excitation showing a resonance peak around 11.3kHz and a FWHM of 
1kHz. The related quality factor is Q~10.

The measured FWHM is approximately 1kHz which leads to a quality factor of Q~10,
being considered along the following lines. 
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3.2.4. Dynamics measurement

With the aim of reproducing the results showed for the model, two different 
experimental realizations are carried out. In one hand, the noise intensity is kept 
constant at Frms=4nN while the distance, d, is swept from 2.5 to 10m. In the other 
hand, the distance is set to 3.6m while the excitation intensity is increased starting 
from 2nN up to 4nN. 
Fig. 3.11a it can be seen that the measured trajectories followed by the cantilever for the 
three different regimes: quasi-free oscillations around x=0 (lower panel), bistable 
regime combining oscillations around x=x+=-x- and jumps between the two minima 
(middle panel) and oscillations stuck around one of the two minima where the system 
gets confined. 
Fig. 3.11b show the root mean square of the displacement, xrms, against the distance d
when excited by 1/f noise with intensity Frms~4nN. A good agreement between 
measured data (squares) and model (blue line) is achieved as it is shown by the very 
precise estimation of the optimal distance value that produces the maximum root mean 
square of x. Nevertheless, the model overestimates the width of the xrms peak. 

 
Fig. 3. 11. Measured data of the dynamics under noise excitation. (a) Displacement, x, as a function of time. Lower 
panel: oscillations around x=0. Middle panel: combined oscillations around x=x+ and large excursions from one 
attractor to the other happening randomly. Upper panel: oscillations only around x=x+ with no transitions between 
potential energy minima. (b) Measured xrms (squares) as a function of the distance, d, compared to that from 
numerical simulation. A good agreement is achieved in terms of maximum xrms and the related distance, dopt.

As it was discussed before, dopt depends on the statistics and intensity of the external 
excitation. Roughly speaking, the higher the Frms is, and therefore more intense is the 
noise, the higher the potential barrier and the distance between minima should be in 
order to optimize the bistable condition. There is a practical constraint arising from the 
fabrication process: once the implanted electric charges and the distance between them 
are determined a threshold value for the external force needs to be overcome. Below 
this threshold the system will behave as a resonating one with a xrms lower than this for 
the harmonic case with q=0. Well beyond this Fthreshold, the benefit of the bi-stable 
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condition still applies. A comparison between model (blue line) and experiment 
(squares) of this step-like behavior can be seen in Fig. 3.12. 

 
Fig. 3. 12. Measured xrms (black line and squares) and simulated data (blue line) as a function of the intensity of the 
external force for a given distance between charges, d=3.6m. An underestimation of the response can be seen for 
the numerical simulation results. The black and blue dashed lines represents the trend it would be followed if no 
transitions between attractors happens.

 

The model underestimates the xrms for F<Fthreshold also providing a softer slope for their 
trends (dashed lines).  
The increase of the response with respect to the resonating case extends for a range of 
external force intensity, F. Unfortunately, from the data represented in Fig. 3. 12 it is 
not possible to determine the extension of F as the experiment should be done also for 
d>4nN and this was the limit for practical issues. However, if the trend showed  by the 
model is applicable to the experimental realization, the experimental slope of xrms for 
F>Fthreshold should be softer than this for the model. Assuming that, it can be determined 
a minimum value of approximately F=5nN, corresponding to the meeting point 
between the simulated xrms and the experimentally derived dashed line. Therefore, in a 
situation where the external force varies in intensity within a certain range the system 
should be tuned to be able to exploit the bi-stable condition for the lower value of the 
force. 

3.3. Conclusions 

In this chapter it has been demonstrated the feasibility of bringing electrostatic based bi-
stable systems to the micro-scale. A proof-of-concept prototype based on a micro-
cantilever and a CE with trapped electric charge at both ends has been modeled, 



  
 

57 
 

fabricated and tested with good agreement between modeling and experimental data 
allowing a systematic study and optimization for this kind of devices. 
A maximum electric power of 0.14pW is achieved assuming a piezoelectric 
transduction strategy based on ZnO layers attached at one side of the cantilever close to 
the clamped end of the moving part. This means a power density, PD, of approximately 
1W/cm3. The mechanical power of the structure, evaluated as (Fext·v)rms with q=0 
and R=inf, is Pmech=194pW while this for q=10fC increases reaching a value of 250pW 
for d=2m. 
The model allows to give an insight of what would be the situation for a system 
composed of a cantilever with different dimensions. If a scale factor of 10 is considered 
for all the dimensions and the electric charge, q, is also scaled in order to maintain 
constant the ratio between x± and the length of the structure, l, the Fthreshold decreases by 
a factor of 100 (~0.04nN). The electric power harvested in this case decreases to 3.5fW 
which means 317.0W/cm3 which is a considerable increase in terms of performance. 
The mechanical power is also reduced consistently to a value of 1.7pW reaching a 
maximum of 3.7pW for d=0.43m which implies that also the capability of harvesting 
mechanical energy is increased when scaling down the system. 
Regarding the applicability of such a system, other materials should be taken into 
account to enlarge the average time the trapped charge remains in the body of the 
insulator. Other materials such Teflon provide extremely high performances in this 
direction. Even though, in the present case, where Si3N4 has been considered, the 
presence of the electric charge has been measured to remain for, at least, more than six 
months which make of it an optimal candidate for experimentation. 
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CHAPTER 4 
 

2D-MATERIALS BASED NON-

LINEAR NEMS 
 
 
 
Along this fourth chapter the main results obtained from atomistic calculations for 
different 2D-materials based structures will be presented. Graphene, h-BN and MoS2 
are studied exploring the possibility to bring them to bi-stability. The object of study in 
all cases is a clamped-clamped ribbon under compressive strain. Generally, the static 
and dynamic behavior of the system is modified by the action of the compression.  
 
 
 
4.1. Atomistic description 

 
As described in section 2.2, the electro-mechanical characterization of the considered 
structures have been done using DFT as implemented within the SIESTA package [1] in 
order to have a purely atomistic description and an electronic structure calculated from 
first-principles. The diagram in Fig. 4. 1 shows the different steps followed in order to 
have a sound mechanical description of the system showing the main computed 
quantities and the approximations it has to be taken into account. First, the optimization 
of the unit cell, composed of n0 atoms, which consists in determining the atomic 
coordinates minimizing the total energy of the system and the lattice vectors minimizing 
the stress tensor. Secondly, the "super-cell" construction consists on generating a 
structure made of n x m unit cells obtaining a system of N=n0·n·m atoms. Finally, 
compressive strain, , and out-of-plane deformation, z, is applied to the super-cell 
conforming the studied system configurations. The compression is directly applied to 
the ribbon by means of a constant translation of the atoms at one of the ends of the 
structure. The bend is generated by means of sinusoidal out-of-plane changes on the 
atomic coordinates. 
 
Periodic boundary conditions are assumed for all three spatial directions with a height 
for the out-of-plane direction falling between    and     to prevent the interaction 
between periodic images. As it was pointed out in section 2.2, the electronic wave 
function is expanded in a numerical atomic orbital basis set. The sampling of the 
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Brillouin zone is done with a 1 x 10 Monkhorst-Pack mesh of k-points. The iterations 
for the self-consistency of the density matrix are done until an error, (i,i-1), below 
5·10-5 is achieved. For those calculations where relaxation of the structure is considered 
a threshold value for the atomic forces of 0.4 eV/nm is used.  

 
Fig. 4. 1. Block diagram of the steps followed for describing electromechanically the considered materials and 
specific geometries. Optimization of the unit-cell determines the lattice constants and the atomic coordinates. Little 
variations of these parameters allow to compute the piezoelectric coefficients. Here it is considered the extension of 
the two-dimensional material to the infinite by means of periodic images of the computational super-cell, which 
yields to the linear relation between the energy of the unit-cell and the energy for the super-cell. The computation of 
the total energy under compression and bending tracks the mechanical behavior of the suspended structure while the 
related macroscopic polarization describes the transduction capability of the system.

The unit-cell for graphene and h-BN consist in four atoms, and six atoms for MoS2. A 
non-primitive rectangular unit-cell is considered which allows to simplify the 
construction of the super-cell. The initial atomic positions should not be far from the 
optimal final configuration. Moreover, an educated guess can save computational time. 
In Fig. 4. 2 the unit-cell for the three cases and the generation of the n x 1 super-cell are 
shown. To determine unequivocally the unit cell, the lattice constants a and c must be 
fixed together with the three lattice vectors,    

 , and the atomic coordinates for all 
atoms,    , once the system is relaxed. 
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Fig. 4. 2. Representation of the unit-cells and the construction of the computational n x 1 x 1 cells for graphene (up), 
h-BN (middle) and MoS2 (bottom). Graphene and h-BN are truly two-dimensional materials while the S atoms on the 
MoS2 configuration present a dislocation respect the plane formed by the Mo atoms. Computational cells are formed 
by multiple unit-cells along the x-axis.

The piezoelectric properties are associated with ground electronic state changes under 
linear deformation giving changes in the total polarization of the system. Here we take 
advantage of the Berry Phase approach [2] implemented in SIESTA to compute the 
piezoelectric coefficients for h-BN and MoS2. This means to calculate the polarization 
for each system configuration by evaluating the surface integral resulting of a 1D 
integral in the considered direction as follows:  

     
    

   
      

 

 

                        
    

 

 

   

(4.1)

Where f is the occupation number (2 for non-magnetic systems), M stands for the 
number of occupied bands implying the material has to be an insulator,       are the 
periodic Bloch functions, qe is the electron charge and      is the shortest reciprocal 
vector along the chosen direction. 
Due to the discretization of the integrals of equation 4. 1 and the periodicity of the 
considered cell, it is possible that during the expansion or contraction of the unit-cell a 
quantum of polarization enters or exits the computational cell which can cause a shift of 
the value for the macroscopic polarization. Therefore, it must be subtracted or added 
respectively. The quantum of polarization along the i direction can be computed 
through: 

    
  

 
         (4.2)

where V is the total volume of the unit cell and vi is the length of the unit cell vector 
along the i direction. 
The related quantum of polarization for 2D materials can be expressed as: 
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                  (4.3)

Where t stands for the thickness of the considered computational cell. An offset of 
2·P2Dcan be seen in Fig. 4. 3 corresponding to the calculation of the piezoelectric 
response of MoS2 which is approximately 5.03·10-10 C/m:  

 
Fig. 4. 3. Polarization change under deformation of MoS2. An abrupt step is shown related to the entrance of a pair of 
quantum of polarization.

 

With the aim of comparing the three different cases (graphene, h-BN and MoS2) and, 
simultaneously, keeping the computational weight at a reasonable level, infinite 
graphene, h-BN and MoS2 are considered rather than nanoribbons. Therefore, the 
structures are modeled by a n x 1 computational super-cell, thus, considering one single 
unit-cell along the y axis. Implicitly, it is assumed that the energy for a structure with a 
given width, W, can be calculated by rescaling the energy by a factor W/a. Within this 
approximation, edge effects [3] on the total energy and polarization are not considered 
since a infinite periodicity is considered along x and y directions. This is a reasonable 
approximation if the final structure is composed of several unit-cells in the 
perpendicular direction of the deformation, as expected for realistic devices [4-6], when 
the energy contribution from these free edges become negligible.

The followed strategy for bringing these mechanical structures into bi-stability is to 
apply a longitudinal compressive strain bringing closer the two clamped ends as it is 
depicted on Fig. 4. 4. Under these conditions, if the ribbon is suspended a buckled 
configuration is favored (not for all geometries as it will be shown later on) presenting 
two symmetric stable states around the plane defined by the uncompressed 
configuration. Only the deformations along the z-axis will be considered reducing the 
problem to compute the total energy, E=E(z,), as a function of the applied compression 
and the z coordinate. 
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Fig. 4. 4. Scheme of the system: a 2D-material ribbon is compressed along the length direction favoring the 
appearance of two symetric stable points at ±zmin. The energy landscape defines the mechanical behavior of the 
system. Four unit-cells at each end are kept flat and uncompressed. One unit-cell at the center of the ribbon is frozen 
to prevent the structure to colapse to the ground state.

Notice that once the total energy, E, is known the simulation of the dynamics of the 
system can be done again in the frame of the spring-mass model. We assume only the 
first vibration mode to be of relevance which means considering meff ~ 0.4m with 
m=·l·w·teff where teff stands for the effective thickness of the structure which will be 
determined for each case in the following sections. The quality factor, Q, is left as a free 
parameter ranging from    to       as it strongly depends on the specific conditions 
[4, 7]. 
To reproduce the shape of the ribbons under out-of-plane deformation a sinusoidal 
translation is applied to the atomic coordinates, zi, of the kind of 

                 
             (4.4a)

  
                    

  

     
   (4.4b)

In this frame, z defines the amplitude of the sinusoidal deformation and represents the 
maximum displacement corresponding to the center of the suspended ribbon. 
Computing the total energy for different amplitudes allows achieving an expression for 
the elastic potential energy similar to this defined for the device presented in chapter 3, 
UT=UT(x,d), with the difference that the tuning parameter that was represented by the 
distance d now is the strain, . 

An intriguing issue concerns the type of calculations to carry out to define correctly the 
static and dynamic regimes of such devices: relaxing or not the atomic positions. In 
general the natural frequencies of NEMS are around the GHz range and it would 
represent a non-adiabatic process. Therefore, if it was possible to take an instant picture 
of the atomic positions during a free oscillation the xi and yi components are expected to 
keep unchanged. When a compression is applied the rest state is replaced by the above 
mentioned symmetric states changing these “in-plane” components of the position 
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vector for each atom in order to relax the forces seen by each atom. If relaxation is 
allowed then the expression for the change in the atomic coordinates becomes: 

                 
              

 
      (4.5)

as depicted in Fig. 4. 5. For all cases, the frozen approach presents the advantage of 
saving computational time in comparison to the relaxed approach. The computation of 
the total energy after relaxation is carried out for graphene. For the MoS2 ribbon only 
frozen configurations are considered. In order to evaluate the committed error both kind 
of calculations are performed for h-BN allowing a comparison in terms of the energies 
Erelaxed and Efrozen. 

 
Fig. 4. 5. Scheme of the induced sinusoidal deformation to a one-dimensional atomic chain.

The clamped ends of the ribbons consist of four uncompressed and non-deformed unit-
cells. In order to compute the total energy for the ribbons under deformation when 
relaxation is allowed, the central unit-cell (red lighted atoms from Fig. 4. 4) of the strip 
is frozen in order to prevent the collapsing into the ground state configuration, i.e. flat 
graphene for the non-compressed case. 

The specific technical details of each case such as the used pseudo-potentials or basis 
sets will be discussed in the following subsections. 

4.2. Graphene 

Graphene is a carbon allotrope distributed in a hexagonal lattice forming a honey-comb 
structure one atom thick as illustrated in Fig. 4. 2. It presents outstanding electrical [8] 
and mechanical properties [9-11] such as the capacity to support high strains without
breaking [12] (around ~10-20%) which makes of it an optimal material for the interest 
of this work. Moreover, it is a useful paradigm of 2D materials and perfectly illustrates 
the basic ideas behind our proposal. This seems to be a common property of all sp2-
bonded crystals [13]. The results here presented are mainly reported on the papers of 
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section 6.2 and 6.3 including also other relevant information for the completeness of 
this section. 
 
A minimal basis set is considered (single-ζ) for the most time spending calculations, 
although for short graphene lattices satisfactory convergence tests have been carried out 
against a more reliable single-ζ polarized basis set. 
 
 
 
Mechanical description── The considered graphene unit cell is a rectangular cell that 
consists of four carbon atoms as it is showed on Fig. 4. 2. The optimized lattice constant 
is a=2.479 Å in good agreement with other experimental value and DFT based 
calculations reported in other works [14, 15]. Computing the energy of the system under 
a linear deformation along the arm-chair direction allows to extract a Young's modulus 
of 0.85 TPa. If, when performing the deformation, a relaxation along the zig-zag 
direction is allowed the Poisson ratio is obtained giving 0.18. Both values are in good 
agreement with other reported values [9, 16].  
 
These test results were obtained assuming an effective thick of 3.34 Å as it is done for 
all the simulations carried out during the present study. As a matter of fact, the thick of 
a 2D material is an ill defined quantity. Therefore, a thickness definition based on the 
separation between consecutive layers for bulk graphite is assumed [17]. 
 
The computational cell consists on a 40 x 1 super-cell (17nm length) along the arm-
chair direction as the one represented on Fig. 4. 2. 
 
Fig. 4. 6 show the energy, computed as E=E-E0

0, as a function of the deformation 
amplitude, z, for non-compressed graphene. E0

0 stands for the energy of flat graphene, 
i.e. z=0, =0. 
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Fig. 4. 6. Elastic potential energy, E, for a 40 x 1 graphene ribbon as a function of the out-of-plane displacement, z.
An intrinsic non-linearity can be seen for small displacements flattening the potential: small forces are needed to 
provoke a large displacement.

A satisfactory fit to the obtained data is achieved by a 4th order polynomial setting to 
zero the coefficients for odd contributions. A strong non-harmonic behavior can be 
observed specially for little displacements where the curve presents a flat region. 
Therefore no natural frequency can be associated to the given geometry as         has 
a dependence on z. The fitting polynomial needs to be extended to 8th order to have a 
sound description for the energies with    from Fig. 4. 7a, where a bi-stable 
configuration is induced by compression. Table 4. 1 shows the coefficients for the 
different studied cases: 
 

 (%)                                     

                                                 

                                                   

                                                   

                                                   

                                                   
Table 4. 1. Coefficients of the 8th order fit of the elastic potential energy for different compression values. 

These coefficients    follow a quite linear relation with the compression so a linear fit 
can be done in order to achieve a full description of the total energy in terms of 
displacement,  , and compression,  .
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                                            (4.6a)

                              (4.6b)

                             (4.6c)

                            (4.6d)

                             (4.6e)

Notice that the only coefficient that change sign as a compression is applied to the 
system is p2 and, as a matter of fact, this is what mainly describes the transition from the 
monostable potential with a minimum at z=0 to the corresponding saddle point at this 
coordinate as bistability is achieved. Then, from the analytical expression of this 
coefficient, one can say that bistability appears when it changes its sign, bistable

which indicates that below this bistable the structure prefer to absorb the stress 
incrementing the energy of the particular configuration rather than releasing this energy 
by buckling. 

 
Fig. 4. 7. (a) Elastic potential energy, E, as a function of the out-of-plane displacement, z, for a 17nm length ribbon 
(40 x 1 supercell) for five different compressive strains. Compression makes appear to symmetric stable points at 
±zmin separated by a potential barrier of height E. (b) Variation of zmin and E with compressive strain. Higher 
compressions produce higher potential barriers and a great separation between minima.
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As it was the case in the previous chapter, the two meaningful quantities are the position 
of the potential energy minima, zmin, and the barrier height between them, E. Both 
increase by increasing the applied compression, as it can be seen from Fig. 4. 7b with 
the following dependence on the compression, : 
 

                  (4.7) 

 
                 (4.8) 

 
Notice that, due to the assumption that the energy of the ribbon is strictly proportional 
to the number of unit cells taken into account in the y-direction, m, the barrier height can 
be expressed in a more general manner as Em=m·E while the minima position remains 
invariable. Consequently, the ribbon width is an additional control parameter to tune 
bistability. 
 
 
 
Dynamics and electric power── Until this point the statics of the system in terms of 
energy has been described and a continuous modeling depending on the displacement 
and the applied compressive strain has been derived. With the aim of describing the 
dynamical behavior of the ribbon the following Langevine type equation of motion has 
to be solved: 
 

         
  

  
          (4.9) 

 
where meff is the effective mass and b stands for a linear viscous damping term. As it 
was mentioned before, the quality factor remains as a free parameter to be determined. 
The external force, Fext, is considered to be a white Gaussian noise,WGN, with zero 
mean and an intensity related to the level of the thermal fluctuations, as it is assumed to 
be the minimum level of noise for all systems [18]: 
 

               
            

 
 (4.10) 

 
Where kB is the Boltzmann constant, T is the temperature of the thermal bath and B 
stand for the bandwidth of the noise which is determined by the time-step of the 
numerical simulation. Due to the dependence of the damping coefficient, b, with the 
quality factor, Q, expressed in equation 2.42, the external force decreases as Q 
increases.  
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The randomness of Fext, forces equation 4.7 to be solved by numeric methods as 
explained in subsection 2.3. The WGN to model the external force is defined by 
Fext=Frms·(t) where (t) is generated by the MATLAB function randn. An integration 
step of 5ps is used, which implies a noise bandwidth of 0.2THz, giving stable 
trajectories under bistable condition.

Fig. 4. 8 shows the response of the system to an external excitation of approximately  
Frms~0.2 pN, corresponding to the force generated by thermal fluctuations (Q=100) of 
different compressions for a 17nm long and 1nm wide ribbon. As expected, for a certain 
range of compressions the system is able to suffer transitions from the two wells of the 
potential energy increasing the response to the external excitation. Fig. 4. 8a illustrates 
this increment in terms of frequency response. The lower panel corresponds to the non-
compressed case where a quasi-harmonic behavior is showed presenting oscillations 
mainly around f~30 GHz. In the middle panel it can be seen that the frequency response 
for the bistable regime extends to the low frequency range presenting an average 
increment between 2 and 3 orders of magnitude compared to the other two cases. There 
is no preferred frequency as it is the case for the other two configurations. The upper 
panel corresponds to the situation where the graphene ribbon gets stuck in one of the 
two wells and the frequency recovers the shape of this for resonating systems with a 
clear peak around f~40 GHz. 

 
Fig. 4. 8. Dynamics of the three different regimes: uncompressed (lower panels), moderately compressed (middle 
panels) and overcompressed (upper panels). (a) Spectral response: zero or too large strains yields rather selective 
frequency responses while for an optimal compression value the response is broaded to the low frequency range. (b) 
The evolution of the different attractors of the system can be seen from the phase portrait. Frms=0.2 pN, Q=100, l x w
= 17 nm x 1 nm.

From the phase portrait showed in Fig 4. 8b, the evolution of the attractors can be 
followed for the three different regimes. At this point it is worth to note that for non-
linear systems the response at a given frequency range is not directly related to the 
excitation at this same frequency range, so it cannot be said that the middle panels 
correspond to a situation where the system responds better to the low frequency range 
as it will be discussed along the following lines. 
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In Fig. 4. 9 the root mean square for the out-of-plane displacement, z, is showed. An 
increase of the mechanical response is achieved for increasing compressive strains 
reaching the maximum at opt~0.13%. Beyond this optimal value, the response is 
drastically reduced giving a zrms even lower than this for the non-compressed 
configuration. 

 
Fig. 4. 9. Root mean square of the out-of-plane displacement, z, as a function of the compressive strain, . As 
compression is increased and bi-stability is reached, the zrms increases as well. The gray shadowed area represent the 
range of compressive strains giving the grater increment on zrms. After opt~0.13%, zrms suddenly drops to values 
lower than that for =0. Frms=0.2 pN, Q=100, l x w = 17 nm x 1 nm.

At this point colored noise rather than WGN is considered in order to know in what 
extent the response depends on the kind of excitation. Fig. 4. 10 shows the root mean 
square of the displacement, zrms, for low-pass and high-pass filtered noises respectively 
maintaining for all cases an standard deviation of 0.2pN. It can be observed that the 
maximum response is achieved at optwith zrms~3 Å for all cases independently 
of the kind of frequency distribution, which suggests the system response depends only 
on the excitation intensity, Frms. 

 
Fig. 4. 10. System response in terms of zrms under the action of colored external excitations (insets) with equal Frms
presenting a maximum at the same compressive strain, opt, regardless of the filtering. (a) zrms under low-pass filtered 
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noise. The maximum response is achieved around ~0.13% for all cases. Inset: spectral charaxcterization of the force. 
The intensity increment in the low frequency band compensates the high frequency filtering. (b) zrms under high-pass 
filtered noise also showing a maximum at opt~0.13%. Frms=0.2 pN, Q=100, l x w = 17 nm x 1 nm.

As it can be seen from the inset on Fig. 4. 10a the response of the system is 
approximately the same even when the contribution of the external excitation around 30 
GHz is decreased for more than one order of magnitude (clear grey line). As it was 
pointed out before, there is no relation between the response of the system at the low 
frequency range and the excitation at the same band. Therefore, the parameter 
determining the capacity of the ribbon to suffer intra-well transitions is the noise 
intensity and not the contribution of the external excitation at the high-frequency range. 

The phase portrait of Fig. 4. 8b (middle panel) indicates that the increment in the low 
frequency range is related to the transitions between potential wells which would 
explain why, if the low frequency contribution is cut off, the dynamics keeps showing 
its characteristic peak as shown in Fig. 4. 10b.  

As it was said in the introduction to this chapter, graphene is a very promising material 
to be the future basis of electronics. Unfortunately piezoelectricity is not one of its 
outstanding properties. In order to transduce the energy from the mechanical to the 
electric domain it is considered a piezoelectric transduction strategy as it was done in 
chapter 3 consisting in two AlN layers 2 nm long with equal width that this for the 
graphene ribbon attached at both clamped-ends. The thickness of am AlN mono-layer is 
considered to be 0.3 nm [19]. The piezoelectric constant in the 31 mode is taken to be 
d31= 1.73 pm/V [19]. The mechanical effects of the transducer on the system are not 
considered in the modeling although electro-mechanical coupling effects are. The 



  
 

72 
 

optimal resistive load value, R~10 M, is obtained after numerical simulation for the 
non-compressed configuration.  
The generated electric power for Q=100 and 10000 are represented on Fig. 4. 11 (green 
line) with the corresponding      (grey solid line) and this for the case without 
transduction (grey dashed line). 

 
Fig. 4. 11. zrms (grey line) and Prms (green line) as a function of the compressive strain considering (a) Q=10000 and 
(b) Q=100. The grey dashed lines represent the zrms when no transduction is performed. Frms   Q-1/2, l x w = 17 nm x
1 nm.

There are two remarkable aspects in these two figures: first, the reduction of the power 
dissipated by   for higher Q values due to the reduction of the noise intensity as it 
varies with Q-1/2. Second, the shift towards lower compression values of opt. The 
maximum output power for Q=10000 is increased by a factor of   respect this for flat 
graphene, while for Q=100 the gain is reduced to a factor of    . It is worth to keep in 
mind that the non-compressed graphene presents an intrinsic non-linear behavior so to 
reproduce the kind of curves achieved for the device presented on chapter 3 it would be 
necessary to consider not only compressive but also tensile stresses. 

Now, if a constant external force of 2.2 pN independent of the quality factor is 
considered, i.e. the noise source is not due to thermal fluctuations, the dependence with 
Q can be better understood. In this case the optimal compression depends only on the 
external force intensity and then it remains approximately constant around 0.05% to 
achieve a maximum power of 9 pW for a quality factor of Q=10000 and of 2 pW for 
Q=10 as shown in Fig. 4. 12. This means that higher quality factors allows converting 
more efficiently the mechanical power into the electrical domain due to the reduction of 
the damping coefficient, b.
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Fig. 4. 12. Prms as a function of the compression for different quality factors, Q. The maximum value is achieved 
approximately for the same opt though it is increased for increasing values of the quality factor indicating that more 
energy can be stored for low damping factors, b. Frms=2.2 pN, l x w = 17 nm x 1 nm.

Taking into account the results presented along this section regarding the electric power, 
it can be seen that a higher external force intensity is translated to an increment of the 
optas it is expected since more energy is available to overcome the potential barrier.  

4.3. h-BN 

Despite the historical relevance of the graphene discovery and its 2D nature, it is by no 
means the only mono-layered material. Another material that allows isolating mono-
layers is hexagonal Boron Nitride, h-BN. Like graphene, as it is a sp2-bonded crystal, it 
can support huge out-of-plane deformations. h-BN, as other noncentrosymetric crystals, 
presents a macroscopic in-plane polarization under deformation stress due to the well-
known piezoelectric effect. The use of a piezoelectric material not only as the 
mechanical-energy-to-electric-energy transducer, as considered for graphene, but also as 
the external-vibration-to-mechanical-energy transducer represents a simplification for 
the realization of such a device.   

In this section the results obtained for h-BN will be presented following the structure of 
the previous section but focusing on characterizing the piezoelectric effect and its 
applicability for EH purposes.  

A single-ζ polarized basis set is considered for all calculations, though a comparison 
against single-ζ and double-ζ polarized sets is carried out regarding the piezoelectric 
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characterization and the elastic potential energy calculation for the uncompressed case. 
Table 4. 2 shows a relation of the different calculations. 
  

 Erelaxed vs Efrozen 
Elastic potential 

energy 
Piezoelectric 
coefficient 

Single-ζ X X X 
Single-ζ 

polarized - X X 
Double-ζ 
polarized - X X 

Table 4. 2. Summary of the different basis sets considered along the present subsection. 

 
As a rule of thumb, the more complete the basis set is the higher the computational 
weight is. Double-ζ polarized based calculations are performed for several cases for 
checking the results from single-ζ polarized based results. The reason of comparing the 
the single-ζ polarized based results with those from the Single-ζ is to evaluate the 
committed error when comparing the energies from the relaxed and frozen approaches. 
The same motivation applies for the calculation of the piezoelectric coefficient. 
 
 
 
Mechanical description── Like in the case of graphene, for convenience we have used 
a rectangular unit-cell and that consists of two boron and two nitrogen atoms, as showed 
in Fig. 4. 2. The optimized lattice constant is a~2.508 Å which falls in the range of other 
publications [20].  
Following the steps showed in the previous section, a 47 x 1 computational super-cell is 
considered upon which E(z,) and P(z,) will be computed. The results that follow are 
obtained assuming an effective thickness of 3.5 Å. 
 
As mentioned in the first lines of this subsection, the total energy for the uncompressed 
case, E(z,), is computed for three different basis in order to evaluate the committed 
error. The error between the energies for single-ζ polarized and double-ζ polarized basis 
sets falls between 0.18 and 0.21% and this for single-ζ polarized and single-ζ is around 
0.35%. Fig. 4. 13 shows the normalized energies E=E(z,)-E(0,0) for the three cases 
commented before. 
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Fig. 4. 13. Elastic potential energy for a 47 x 1 computational-cell for three different basis. The comparison allows to 
evaluate the committed error considering a single-ζ polarized basis instead of a more reliable double-ζ polarized. As 
it happened with graphene an intrinsic non-linearity for small displacements can be seen in a form of a energy 
flattening. 

As it was the case for the graphene ribbon, the uncompressed suspended ribbon presents 
an intrinsic non-linearity which can be fitted by a 4th order polynomial curve, that needs 
to be extended to the 8th to keep the track of the bi-stable regime once a compression is 
applied. 
As it was pointed out before in this chapter, a comparison between relaxed and frozen 
calculations has been done. For the sake of minimizing the time of the relaxing 
calculations the single-ζ basis set is considered for this comparison. As it can be seen 
from Fig. 4. 14 there is a mismatch between the two curves: although the position of the 
minima is approximately the same, the potential barrier height is higher for the frozen 
calculation than for the relaxed one. Therefore, the following simulations, as they are 
performed in frozen conditions, will overestimate the barrier height around a ~50%. 
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Fig. 4. 14. Elastic potential energy (=0.5%) comparison for the relaxed and frozen approaches showing a good 
agreement for the minima position and a overestimated potential barrier for the frozen case.

One of the main advantages of bi-stable harvesters is the generation of a greater 
separation of electric charges in the transducer element due to greater amplitude of 
movement. Thereby, the increasing of the barrier height, as long as the minima position 
remains unchanged, would fix the lower bound of the potentially achievable electric 
power. 
The changes suffered by the potential energy curve are due to the rearrangement of the 
atomic positions that reduces the strain along the mode defined by u(x). The normalized 
displacement, representing a measure of a kind of local-strain, is calculated for each 
atom labeled by an atomic index, i, by means of: 

  
    

 

       

    
  

 
        

    
   

 

       

    
   

 (4.11)

where   
             and the super index, z, stands for the amplitude of the 

deformation. 
Fig. 4. 15 shows the trend of the computed strain for both type of calculations, relaxed 
(a and b) and frozen structures (c and d). The relaxation of the atomic positions trend to 

equal the distances between atomic periodic distances,   
         

    
  

 
, as it can 

be seen from Fig. 4. 15a and b regardless of the amount of compressive strain applied, 
while for the other cases from Fig. 4. 15c and d the strain follows the proper form of the 
function from equation 4.2. Due to the fact that the central unit-cell atomic positions are 
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kept frozen, as it was mentioned in the introduction of this chapter, the strain for these 
four atoms equals the value of the compression applied to the whole structure. 

 
Fig. 4. 15. Strain profiles along the ribbon’s length for the relaxed (a and b) and frozen approaches (c and d).  

Regarding the curves from the relaxed calculations, a change on the strain sign can be 
appreciated for the compressed configuration: for z=0 the computed strain is negative in 
accordance with the fact that the ribbon is compressed. As z increases the average value 
of the strain decreases and at a certain amplitude value, z0, it starts to be positive in a 
similar way it happens with the first derivative of the energy although there is a 
mismatch between the corresponding z0. Fig. 4. 16 plots the average strain for four 
different configurations in front of the out-of-plane displacement, z. 
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Fig. 4. 16. Mean strain along the ribbon’s length for different compression values. The red dashed line represents =0.

As it was done for the graphene ribbon, the elastic potential energy is computed as a 
function of the out-of-plane displacement, z, and the applied compression ranging from 
0 to 2%. Fig. 4. 17 shows the obtained data in terms of the energy difference, E.

 
Fig. 4. 17. Elastic potential energy as a function of the out-of-plane displacement, z. A buckled configuration is 
favored for compressed h-BN.

The compression applied to the ribbon flattens the potential energy provoking at certain 
point the buckling of the ribbon as it was the case for the graphene ribbon. 
Table 4. 3 lists the coefficients of the 8th order polynomial fit of the energies for the 
different considered compressions. In contrast to what happens with graphene, p8 and p6

are considered to be almost  constant while p4 and p2 have a linear dependence with the 
compressive strain, , with very similar behavior to what was reported for graphene. 
Also, the only coefficient that change sign as compression increases is p2, giving a value 
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for the transition strain of bistable~0.08%, very close to what was reported for graphene, 
bistable~0.05%.  
 

                                         

                                                   

                                                    

                                                    

                                                    

                                                    
Table 4. 3. Coefficients of the 8th order fit of the elastic potential energy for different compression values. 

 

 
                                              (4.12a) 

                (4.12b) 

                (4.12c) 

                              (4.12d) 

                               (4.12e) 

 
The trend of the minima separation, zmin, and the potential barrier height, E, is similar 
to those for graphene: 
 

                  (4.13) 

 
                 (4.14) 

 
In the frame of z=0, the variation of the energy due to the compressive strain is related 
to the Young Modulus, Y. It is defined as a measure of the stiffness for an elastic 
material in terms of stress and strain along a certain direction for soft deformations, 
when the Hook’s law applies: 
 

   
  

  
 (4.15) 
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Where i is the stress along the i-direction produced by a strain along the same 
direction, i. From a variational point of view, equation 4. 15 can be rewritten as: 

  
  

  
 

  
 
  

  
 

 

 

  

  
(4.16)

Where F stands for the force related to the stress. The force can be expressed in terms of 
elastic potential energy as: 

   
  

  
 

  

  

  

  
 

 

  

  

  
(4.17)

Rearranging equation 4. 17, the relation between the changes in the elastic energy, E,
and the compressive strain, , can be expressed as: 

  
 

 

  

  
 

 

 

 

  
 
 

  

  

  
  

 

 

   

   
 (4.18)

As it was the case when computing the piezoelectric coefficients, an approximated 
thickness for the material should be considered in order to evaluate the volume, V. It is 
assumed a thickness of 0.35Å as it was done before. 
Fig. 4. 18 shows the energy variation which shows a quadratic dependence with 
compressive strain: 

 
Fig. 4. 18. The Young’s modulus, Y, can be computed from E(0,) by differenciating respect the strain, .
Considering an effective thicness of 0.35 Å the obtained value for h-BN is around 749 GPa.



  
 

81 
 

                                (4.19) 

 
                  (4.20) 

 
The derived value for the Young modulus, Yh-BN~750 GPa, is similar to other 
theoretically calculated values [21]. 
 
 
 
Piezoelectric and flexoelectric description── Standard e11 piezoelectric coefficient is 
also computed applying straining and stretching in-plane stresses and reading the 
generated polarization within the Berry Phase approach as mentioned before in the 
introduction to this chapter. 
 
The related piezoelectric coefficient can be calculated through: 
 

     
 

      
 
   

   
      

 

      
 
   

   
  (4.21) 

 
Due to the difficulty to define the thickness of layered materials it is usual to define the 
piezoelectric response in terms of a 2D piezoelectric coefficient labeled e2D which 
consists on replacing the “volume” divinding in equation 4. 21 by the in-plane area, S, 
as follow: 
 

    
   

 

 
 
   

   
  (4.22) 

 
The change in the x-polarization is shown in Fig. 4. 19 for all the three considered basis 
sets, i.e. single-ζ, single-ζ polarized and double-ζ polarized corresponding to the 
relaxed-ion approach: 
.  
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Fig. 4. 19. Polarization change under compressive and tensile stress along the x-direction (arm chair) for three 
different basis sets. Piezoelectric coefficients are directly derived from the slope of P(). For the proposes of this 
work only the 11 mode is considered.

The resulting piezoelectric coefficients are listed in Table 4. 4 together with the 
deviation with respect to the values from [22] for the relaxed-ion approach. 
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Relaxed-ion Clamped-ion

Basis set    	
           

Error (%)
[22]

   	
           

single-ζ 2.920 18.2 2.717 

single-ζ polarized 3.085 13.6 2.885 

double-ζ 
polarized 3.138 12.1 - 

Table 4. 4. Calculated piezoelectric coefficients within the relaxed- and clamped-ion approaches for basis sets 
considered in this subsection and the error for the relaxed-ion approach compared to 3.57pC/cm from [22].

Before studying the dynamics of the system we have computed the macroscopic 
polarization for each state. The longitudinal strain profile is  not constant, as it is clear 
from Fig. 4. 15, due to the constraint imposed to all atomic coordinates. The 
polarization change is computed taking as a reference value the polarization for the non-
compressed and flat case. Fig. 4. 20 shows the polarization change, Px, for the five 
different compressive strains considered in Fig. 4. 17: 

 
Fig. 4. 20. Polarization change along the x-direction as a function of the out-of-plane displacement, z. The effect of 
compressing seems to affect mainly in a shift towards higher P. The capability of transducing the mechanical 
energy to a electrical domain depends on the polarization variations, d(P)/dz, thus, shifting the polarization curve 
does not affect the transduction capability.  

The macroscopic polarization is computed for all considered out-of-plane 
displacements, z. The different curves corresponding to each compressive strain fits in a 
bi-quadratic adjustment allowing to achieve an analytic expression for Px in terms of 
compression, , and displacement, z. All  data are listed in Table 4. 5: 
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 (%)                               

                                  

                                          

                                          

                                          

                                          
Table 4. 5. Coefficients of the bi-quadratic fit of the macroscopic polarization for different compression values. 

 
The bi-quadratic fit allows to track the dependence of the three coefficients P4, P2 and 
P0, with the applied compressive strain as follows: 
 

   
     

                                (4.23a) 

                                (4.23b) 

                                 (4.23c) 

                    (4.23d) 

 
The functional dependence with the compression only applies a linear shift to   

  . 
 
To validate the obtained macroscopic polarizations, a comparison with the results from 
[22] is carried out. The target of the publication is to characterize an unusual 
flexoelectric effect on h-BN under certain conditions concerning the chosen chirality of 
the particular ribbon under study. The main achievement is a characterization of the 
generated macroscopic polarization of a l-long h-BN sheet under sinusoidal deformation 
along the z-axis with amplitude A of the kind of: 
 

                        (4.24) 

 
Similar to the deformation expressed on equation 4. 24 where A is related to the out-of-
plane displacement, z, and =0.     is the undulation wave vector and    the in-plane 
vector. In its most general expression uz expresses the deformation profile for 
deformations along whatever direction from arm-chair to zigzag chirality.=0 
corresponds to a wave vector parallel to an arm-chair chirality and for this case, which 
is the one of interest for this work, the polarization is demonstrated to be well fitted with 
the following expression: 



  
 

85 
 

               
 

 
    (4.25)

Where  is the piezoelectric constan,    
    

 
 the net film stretching along     due to 

the deformation and    stands for the director vector parallel to    . For the particular case 
of the h-BN ribbons considered along this thesis we set        . Then the polarization is 
reduced to have only a component different to zero along the x-axis with no unusual 
flexoelectric contribution: 

    
    

 
   

 

 

    

 
 (4.26)

With the aim of comparing the present results with these from [22] a           is 
considered and Px/2 is calculated for different amplitudes, A. Fig. 4. 21 shows a 
graphic comparison between the data from [22] and the polarization obtained in this 
work considering zero compressive strain, =0. 

 
Fig. 4. 21. A good agreement is achieved between the calculated polarization change and the phenomenological 
expression from [22].

Comparing the coefficients accompanying the amplitude of the deformation,  , of 
equation 4. 26 with the coefficients P2 and P4 from Table 4. 5 for the case where no 
compression is applied we can extract the related piezoelectric coefficient:
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                   (4.27) 

 

  

 

  

  
    

           
                

           
                   (4.28) 

 
Almost a perfect match is achieved although the value is higher than the reported in 
Table 4. 4 for the clamped-ion approach, e11=2.885·10-10 C/m, however both values 
coincide with this extracted from considering the polarization values from Fig. 4. 20 
corresponding to a zero out-of-plane displacement, z: 
 

(%)           
   

      

     0.000       

     0.005            

     0.010            

     0.015            

     0.020            
Table 4. 6. Macroscopic polarization for the flat configurations (zero out-of-plain deformation) for different 
compression values. 

 
From the data shown in Table 4.6 the piezoelectric coefficient can be computed by 
considering only zero out-of-plane configurations: e11~3.26·10-10C/m, very close to this 
from equation 4. 27 and 4. 28. The mismatch (~10%) is attributed to the effects of the 
clamped ends of the suspended structure. 
 
Therefore, the standard approach of computing the generated voltage across the 
piezoelectric material through the standard piezoelectric constants does not apply as it is 
defined as the derivative of the polarization respect the strain: in the present situation we 
are dealing with a strain gradient. The following lines aim to explain the approach 
followed in this work. 
 
 
 
Dynamics and electric power── The  second coupled equation of 2. 45 relates the time 
evolution of the voltage across the resistive load, R, with the time evolution of the 
voltage across the piezoelectric itself. The piezoelectric voltage was considered to be 
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proportional to the displacement of the center of the ribbon, z, and the piezoelectric 
constant, e11. 
 

                
   

  
  

   

   
     (4.29) 

 
In the present case these expressions cannot be applied due to the non-linear 
contributions of the polarization of equation 4. 27a and then we introduce directly the 
polarization across the piezoelectric into the dynamic equation treating the h-BN 
structure as a capacitor. Therefore, taking into account that Q=Cp·Vp and P=Q/w, the 
ribbon is electrically compared to an infinity parallel wire capacitor with capacitance 
equal to: 
 

    
    

         
   (4.30) 

 
Where lq is the separation between the charged edges (the length of the ribbon), rq is the 
effective radius of those states that can be approximated to be rq~a,   and    stand for 
the BN and vacuum electric permittivity respectively and   is the width of the ribbon. 
Therefore, the dependence of the voltage, V, and the 2D macroscopic polarization,   

  , 
can be expressed as follows: 
 

    
         

    
  

   (4.31) 

 
Then, the time derivative of equation 4. 29 is replaced by: 
 

   
  

         

    
 
   

  

  
  

         

    

                        (4.32) 

 
And the second coupled equation 4. 45 can be expressed as: 
 

    
         

    

                        
 

  
 (4.33) 

 
In order to evaluate the power dissipated through the resistor R, numerical simulations 
are carried out. As it was the case for graphene, the quality factor determining the 
viscous damping of the system is left as a free parameter. The main results from the 
simulations are shown in the following figures considering Q=100 and R=0.24 M , 
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which is the calculated optimal value that maximizes the output power. The external 
force is described again by a WGN with Frms=5 pN. 

Fig. 4. 22 shows the dynamics of the structure for a period of time of 2 ns for three 
different compression values. As it was expected, there is a range of compressions that 
makes the system jump from one well to the other maximizing the amplitude of the 
trajectory implying an improvement of the generated polarization. 

 
Fig. 4. 22. Obtained dynamics after solving the corresponding coupled stochastic differential equations. For =0 
(bottom panels) show oscillations around z=0 generating a voltage of 1 mV at maximum. For moderate strains 
(middle panels) oscillations around minima combined with large excursions from one well to the other can be 
observed. The output voltage is increased almost in an order of magnitude (~10 mV) in comparison to the non-
compressed configuration. For over-compressed configurations (upper panel) the system stuck in one of the two wells 
reducing drastically the amplitude of the oscillations. However, the generated voltage still shows a high value due to 
the bi-quadratic shape of Px showed on Fig. 4. 18. Frms=5 pN, Q=100, l x w = 17 nm x 1 nm.

The voltage across the load R corresponding to the trajectories of Fig. 4. 22a is shown in 
Fig. 4. 22b.  A remarkable phenomena happens for the over-compressed case: although 
the system becomes confined in one of the two potential wells and its amplitude of 
movement is reduced in comparison to the case of optimal compression, the voltage 
amplitude keeps showing a high value that can be compared to that for the optimal 
compressed case. This is due to the bi-quadratic behavior of the macroscopic 
polarization,   

  , shown before: a displacement amplitude of 5 Å around z=10 Å 
induces a polarization change of 2.7 pC/m approximately, while to achieve the same 
amount of polarization around z=0 an amplitude of 14 Å is needed. An amplitude 
almost three times larger is needed to generate the same output voltage. 

The obtained output power as a function of the applied compression can be seen from 
Fig. 4. 23. The positions for the zrms and Prms peaks present almost a perfect match 
around ~0.3%. The non-linear dependence of the macroscopic polarization with the 
out-of-plane displacement,  , makes the slope of the Prms for opt much softer than it 
was for the case of graphene or the system presented on chapter 3 and this broads 
significantly the range of compressions that lead an improvement in terms of electric 
power with respect to the non-compressed case. It is worth to note that the model for the 
piezoelectric transduction for graphene was extremely simple and, possibly, not 
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realistic. For the present case, the range of compressions that improves the response in 
terms of zrms is around 0.2% while in terms of power it is extended to more than a 1%. 

 
Fig. 4. 23. zrms and Prms as a function of the applied compressive strain. It can be seen a clear peak for zrms around 
=0.3%. The maximum for the electric power is also reached around this strain value but the decreasing trend 
followed by Prms after reaching the maximum is softer than this for the xrms.

Thus, considering h-BN operating in the 11 mode not only makes easier the 
implementation of the transduction mechanism but also makes the system more robust 
and versatile. The lack of control in the tuning parameter (the distance d for the device 
studied in chapter 3, and the compressive strain  during the present) is one of the 
drawbacks for the bi-stable strategy as it was pointed out during chapter 1. The results 
shown in Fig. 4. 23 paves the way to avoid the tuning problem, which seems to be not 
that dramatic as it was in previous reported cases. 

4.4. MoS2 

Among other piezoelectric materials, MoS2 is a very promising one due to the 
possibility of exfoliation for transferring to arbitrary substrates [23] forming mono-
layered devices as the one here discussed. It is worth to note that this is not a one-atom 
thick material as the sulphur atoms, S, are displaced from the plane formed by the 
molybdenum atoms, Mo. The interest for this material has tremendously increased 
lately [24, 25] and a complete mechanical description is required. The mechanical and 
piezoelectric characterization for a 17 nm long cc-beam like structure is provided in this 
section. 
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As it was done for h-BN, a single-ζ polarized basis set is used for all calculations during 
this section including piezoelectric behavior which is also computed for a double-ζ 
polarized set.  

Mechanical description── For this material 6 atoms conform the rectangular unit cell. 
It consists of two molybdenum atoms and four sulphur atoms as it is showed on Fig. 4. 
2. The optimized lattice constants are a~3.182 Å and c~1.612 Å, in good agreement 
with publications [26]. 

Fig. 4. 24 show the elastic potential energy for the ribbon as a function of the out-of-
plane displacement, z, for different compression values, , ranging from 0 up to 2%. As 
it is clear from these curves compressive strain does not favor a buckled configuration 
for MoS2 even for the maximum compression value. This means that a mono-layer of 
this material prefers to absorb the stress rather than relax it modifying the non-
compressed rest state. Moreover, the only effect of compression is a soft stiffening of 
the mechanical response which is a non-intuitive feature not sheared by the other two 
studied cases where a softening of the structure was observed. The energies calculated 
for small displacements, from 0 to 20 Å, are surprisingly similar for all compressions. 

 
Fig. 4. 24. Elastic potential energy as a function of the out-of-plane displacement, z. No buckling is achieved for this 
particular geometry even for the larger compression values.

In contrast to what happens with graphene and h-BN, the potential energy for small 
displacements can be adjusted by a second order polynomial function recovering the 
linear resonator-like shape. However, a bi-quadratic description is required to fit well 
the data for all the displacement range. Table 4. 7 lists the value of the polynomial 
coefficients: 
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 (%)                   

                       

                       

                       

                       

                       
Table 4. 7. Coefficients of the bi-quadratic fit of the elastic potential energy for different compression values. 

                          (4.34a)

                             (4.34b)

                       (4.34c)

Following the same procedure reported on subsection 4.1.2, the energies for flat 
configurations allow to obtain the Young modulus, Y, as shown in Fig. 4. 25. 

 
Fig. 4. 25. Calculation of the Young’s modulus, Y, from E(0,) curve by direct differentiation respect the strain, .
Considering an effective thicness of 3.2 Å the obtained value for MoS2 is around 270 GPa.

The curve can be adjusted by an expression like E=E2·2+E1·. Using equation 4. 18 we 
obtain an effective value for the Young modulus for MoS2 of      

=269 GPa in very 
good agreement with previous publications [27]:
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                                   (4.35)

     
            (4.36)

Piezoelectric and flexoelectric description── Standard e11 piezoelectric coefficient is 
computed following the same procedure it is considered for the h-BN study, i.e. 
computing the generated polarization change under compressive and tensile in-plane 
stress. The obtained results for the two basis sets corresponding to the relaxed-ion 
approach are shown in Fig. 4. 26. 

 
Fig. 4. 26. Polarization change under compressive and tensile stress along the x-direction (arm chair) for two different 
basis sets. Piezoelectric coefficients are directly derived from the slope of P(). For the purposes of this work only 
the 11 mode is considered.

In Table 4. 8 the piezoelectric coefficients for the two basis sets considering the 
clamped and relaxed-ion approaches are listed. The obtained results are compared to 
those obtained in [26]: 
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Relaxed-ion Clamped-ion

Basis set    

            
Error (%)

[26]
   

            
Error (%)

single-ζ 
polarized 3.87 6.3 3.81 24.5 

double-ζ 
polarized 3.43 5.7 3.47 13.4 

Table 4. 8. Calculated piezoelectric coefficients within the relaxed- and clamped-ion approaches for the basis sets 
considered in this subsection and the error compared to 3.64 pC/cm and 3.06 pC/cm respectively from [26].

As it was done in the two previous cases, h-BN and graphene, a computational super-
cell of 39 x 1 is considered giving a ribbon of approximately 215 Å total length. 
Considering the clamped ends of the suspended structure formed by 4 unit cells each 
gives a 17 nm long suspended ribbon. 

The polarization along the x-direction has been computed for all considered 
configurations as it was done for h-BN. The resulting macroscopic polarizations can be 
seen from Fig. 4. 27 where a similar behavior to what was achieved for h-BN is 
observed: 

 
Fig. 4. 27. Polarization change along the x-direction as a function of the out-of-plane displacement, z. The effect of 
compressing seems to affect mainly, as it was the case for h-BN, in a shift towards lower P.

The main difference with respect to the results previously reported is the higher slopes 
the curves present. As it was presented before, MoS2 has a greater piezoelectric 
constants and this leads to greater changes in the polarization under a certain 
deformation, z. 
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 (%)                               

     6.057·10-18 -5.442·10-14 0.0 

     4.456·10-18 -5.543·10-14 -1.367·10-12 

     5.197·10-18 -5.578·10-14 -2.541·10-12 

     7.078·10-18 -5.633·10-14 -3.722·10-12 

     8.304·10-18 -5.659·10-14 -4.915·10-12 
Table 4. 9. Coefficients of the bi-quadratic fit of the macroscopic polarization for different compression values. 

Following the steps done for the h-BN case, data listed in Table 4.9 can be well 
described through a polynomial fit. The macroscopic polarization is expressed as a 
function of the compression and the out-of-plane displacement as: 
 
 

   
     

                                (4.37a) 

                                (4.37b) 

                                 (4.37c) 

                     (4.37d) 

 
The same treatment it was done on section 4.1.2 with the polarization change for a h-
BN ribbon (see equation 4. 26) is here applied comparing the results the model from 
[22] would achieve and the curves here presented for the MoS2 ribbon. This is shown in 
Fig. 4. 28. 
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Fig. 4. 28. A good agreement is achieved between the calculated polarization change and the phenomenological 
expression from ref [22] applied to MoS2.

A good agreement is achieved even fo11.r this material. Equations 4. 27 and 4. 28 are 
written in this case as: 

  

  
    

           
                

           
                  (4.38)

 

 

  

  
    

           
                

           
                  (4.39)

 
 
 
Dynamics and electric power── Bi-stability allows to achieve higher displacements 
when the optimal compression value, opt, is reached. However, for MoS2 it seems that a 
buckled induced bi-stable configuration is not achievable, at least for the considered 
dimensions, so it is not possible to produce oscillations around a z providing greater 
polarization changes traduced to higher output power. Instead of that an intrinsic higher 
slope for the Px curves can be explored to be an advantage respect other materials 
under certain conditions. Comparing equations 4. 23d and 4. 37d it can be seen that for 
a given variation in the out-of-plane displacement would generate a greater polarization 
variation for MoS2, which is quite intuitive taking into account that the piezoelectric 
effect is stronger for MoS2 than for h-BN. However, due to the stiffness of the MoS2

ribbon it is easier to induce a given deformation to the h-BN ribbon. 
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Fig. 4. 29 shows an extract of the dynamics for a MoS2 ribbon under the action of an 
external force equal to which was considered for the dynamics study for h-BN, i.e. 
Frms=5 pN: 

 
Fig. 4. 29. Obtained dynamics after solving the corresponding coupled stochastic differential equations. Only =0 is 
considered showing oscillations around z=0 with a maximum amplitude of 0.5 pm. A voltage of 0.1 V at maximum 
is achieved which means that the higher piezoelectric response of MoS2 compared to this for h-BN does not 
compensates the rigidity of the structure. Frms=5 pN, Q=100, l x w = 17 nm x 1 nm.

The maximum amplitude of vibration achieved is around 0.5 pm, largely below the 2 Å 
afforded in the h-BN study for the non-compressed configuration. A reduction in two 
orders of magnitude of the displacement is translated into a decrease in the output 
voltage of more than four orders of magnitude due to the nonlinear dependence between 
the voltage, V, and the displacement, z. 

It is worth to note that a greater piezoelectric effect as it is shown by MoS2 in 
comparison to h-BN is an advantage even in the light of the results reported in this 
work. It is assumed that the impossibility of inducing bi-stability to the structure and the 
extreme stiffness of the system are due to the particular size it has been considered. 
Further calculations with large structures (beyond the computational capabilities of a 
DFT-based approach) should be taken into account in order to compare the throughput 
between different materials using, for instance, an empiric potential approach. At this 
point many parameters play an important role such as the specific dimensions or the 
piezoelectric response, and each one need to be analyzed to find the best strategy for 
each specific application. 
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4.5. Conclusions 

 
In this chapter a full description of 2D-materials based bi-stable NEMS has been 
provided regarding graphene, h-BN and MoS2. The computation of the elastic potential 
energy allows to describe the systems in terms of a punctual-mass system with 
coordinate z. The piezoelectric and flexoelectric description is carried out to include the 
possibility of using these materials as transducers. This fact would simplify the 
fabrication procedure as the structure acts as mechanical and electric transducer at the 
same time. Moreover, the flexoelectric effect some materials present enhances the 
throughput as the range of compressions that increases the output power is notably 
broadened.  
From the experimental point of view, the procedure followed for the fabrication of 
suspended graphene ribbons is reported although further work must be done in order to 
reproduce the results obtained along this chapter. However, the fabrication procedure 
represents a novel approach to obtain sets of identical graphene resonators.    
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CHAPTER 5 
 

GRAPHENE NEMS 
FABRICATION 
 
 
 
The fabrication of graphene-based electro-mechanical devices is a very active area 
nowadays as graphene is called to be the basis material for future electronics. 
Particularly, a lot of efforts have been done in order to fabricate and characterize 
graphene-based NEMS. Two different approaches represent the main strategies to 
achieve mono and bi-layer graphene structures: chemical-growth [1,2] and mechanical 
exfoliation [3], very common due to its simplicity. The work here presented is focused 
on the second approach, following standard exfoliation procedures from a primary 
graphite stack. A well-known drawback of this method is the low probability of 
achieving single-layer graphene flakes and the high shape variability they present from 
flake to flake. However, its simplicity makes it the most suitable approach for 
demonstrating proofs-of-concepts. 
 
In the following lines it is presented the results achieved in the attempts to fabricate the 
device presented in section 4.2. The long term goal would be fabricating nanostructures 
able to validate the results discussed earlier. Although no results validating the 
dynamics obtained from the combination of atomistic calculations and numerical 
simulations have been achieved, it has been possible to develop a simple fabrication 
method capable to obtain large arrays of very regular and identical suspended graphene 
ribbons without requiring multiple post-processing steps. A characterization of the 
structures is also provided along this section. 
 
 
 
5.1. Fabrication process 

 

Very often, graphene flakes are deposited directly over a Si substrate with a SiO2 layer. 
It is possible to determine the number of layers conforming a particular graphene flake 
by means of the color it presents under optical inspection. This was not achievable in 
the laboratory and, therefore, a different approach is considered. 
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The starting point is a standard p-type silicon substrate of 500 m thick with a 20 
nm/100 nm thick layer of chromium/gold. 950 K molecular weight PMMA (2% 
dissolved in anisole) is spun at 1500 rpm for 1 minute. After spinning the anisole 
solvent is removed by baking the sample at 180°C for 1 minute. The process is iterated 
three times in order to achieve a final PMMA thick of 300 nm. PMMA will be used as a 
sacrificial material as it will be explained below. The scheme of the resulting stack is 
showed in Fig. 5. 1a. 
 
Mechanical exfoliation from a graphite stack is done following the standard procedure 
[3] peeling repeatedly to allow leaving thinner layers on one side of the scotch tape to 
be transferred. Usually the peeling process is repeated until few layers remain attached 
to the scotch tape to increase the relative number of mono and bi-layer graphene flakes 
transferred to a SiO2 substrate: doing it this way some regions of the tape loss all the 
rests of graphene then exposing some adhesive parts. As PMMA is the outermost layer 
in the present case rather than SiO2, the adhesive would pull out part of the Cr + Au + 
PMMA stack. Therefore, the peeling process is done in a manner that prevents to 
expose any adhesive part. Product of that is that some thick amorphous flakes are 
present in the sample. At this point the method used to transfer the graphene to the 
sample consists on putting the scotch tape against the PMMA surface dragging a spatula 
along a certain direction as it is depicted in Fig. 5. 1b. As it will be commented later on 
the dragging direction represents an important parameter in order to maximize the 
quality of the obtained graphene flakes. 
 
A simple optical inspection of the sample on Fig. 5. 1c allows to determine the areas 
with higher density of graphene flakes. 
 
In order to release the structures the PMMA is selectively exposed to a EBL process. 
Thanks to the well defined orientation of the transferred graphene flakes (see section 
5.5) it is possible to perform the EBL process patterning the trenches perpendicular to 
the length direction of the obtained structures as shown in Fig. 5. 1d. Dipping the 
sample into a standard methyl isobutyl ketone/isopropyl alcohol developer allows to 
erase the exposed PMMA and obtaining suspended graphene structures of the type of a 
cc-beam. As it is shown in Fig. 5. 1e after releasing the PMMA the underlying gold 
layer becomes visible allowing the good contrast needed for SEM imaging. 
 
Because of the direction of the EBL process, the trenches width determines the length of 
the suspended structures. Different trench widths have been considered, i.e. 100, 300, 
500 and 600 nm. 
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Fig. 5. 1. Scheme of the fabrication steps. (a) Initial Si/Cr/Au/PMMA stack. (b) graphene transfer by means of 
dragging a spatula in a certain i-direction. (c) Spacial disposition of the graphene flakes in the substrate. (d) EBL step 
exposing selectively some areas of PMMA. (e) After developing the exposed PMMA the graphene structures are 
suspended.
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5.2. SEM characterization 

 

The first step once graphene is transferred is to locate where the interesting ribbons are. 
Unfortunately, mono-layers are often difficult to see optically and SEM imaging is 
required for catch the detail. At any rate, optical inspection could be useful to localize 
non mono-layer graphene expecting mono-layer graphene to be around.  
Fig. 5. 2 shows two SEM images of different samples with trenches (vertical strips) 
presenting widths of 500 nm, Fig. 5. 2a, and 100, 300 and 600 nm, Fig. 5. 2b. Different 
ribbons (defined as primary ribbons) containing each several suspended devices 
(defined as secondary ribbons) can be seen (horizontal structures). Therefore, graphene 
resonators have a length equal to the dug trenches. Both images were taken with a 60 
deg tilting that provokes only the center of the image to be totally focused. 

 
Fig. 5. 2. SEM images of two samples: (a) trenches of 500 nm width (vertical strips) define the length of the 
suspended graphene devices (horizontal structures). (b) trenches of 100, 300 and 600 nm are patterned achieving 
suspended ribbons with different lengths.

From Fig. 5. 2a several flakes can be seen with very varying shapes although there are 
some recurrent angles the edge of the flakes follow (30 deg approx.) which are 
highlighted with red solid lines. Around the lower highlighted angle a clearer square 
zone can be seen. It is due to the statically charging effect the SEM image at high 
energies provokes, as it was the case for the commented squared area. In Fig. 5. 2b it is 
shown at the right side a edge of the exposed area. Contrary to what happens in Fig. 5. 
2a, the thinner ribbons are most and only one comparably larger flake is observed. 
Although from this it cannot be seen their edges it can be appreciated how all ribbons 
follow a certain direction which is taken as a reference for the orientation of the 
trenches in order to achieve a perpendicular position between them. 

A more detailed SEM image of the suspended structures can be seen in Fig. 5. 3 
corresponding to the same samples of Fig. 5. 2 showing a remarkably high shape 
regularity between secondary ribbons with almost constant width, w~[0.5 m, 1.0 m], 
and length, l=wtrench. Inevitably they differ between primary ribbons as a result from the 
transfer process. 
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Fig. 5. 3. Detailed SEM image from the samples showed on Fig. 5. 2. (a) A primary ribbon containing a minimum of 
9 secondary ribbons can be appreciated. Regardless of the inerent variability of shape between primary ribbons, a 
very regular shape can be seen for all secondary ribbons. (b) Several ribbons containing many secondary ribbons with 
different lengths can be seen.

Moreover, a single primary ribbon can contain from 2 up to 50 secondary ribbons, 
paving the way to a systematic study of graphene properties due to their high regularity. 
Looking at the larger structures commented before it can be seen that the wider the 
structure is the worse is the developing of PMMA under it. It prevents the ribbons to be 
released indicating there is a ratio between length and width which has to be overcome 
in order to achieve totally suspended structures. Dipping the sample in the developer 
alcohol for a longer period of time will probably solve the undercut problem; 
nevertheless it would provoke an ill defined shape of the PMMA walls. 

Fig. 5. 4 shows a detail of the fabricated suspended ribbons with different lengths, 
where it can be seen that the structures are fully suspended: 500 nm for Fig. 5. 4a, 300 
nm and 600 nm for those from Fig. 5. 4b. A narrower trench was patterned in the 
sample from Fig. 5. 4b but unfortunately they were not totally removed and no good 
contrast was achievable. 

 
Fig. 5. 4. Detailed SEM image of the three different length devices.

In the introduction to this section the nominal value for the trenches height was said to 
be around 300 nm. Taking advantage of the 60 deg tilting of the sample and the 
electronic shadow it provokes, it is possible to measure approximately through 
geometric considerations the real height for the PMMA trenches. The procedure is 
depicted in Fig. 5. 5:  
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Fig. 5. 5. Scheme of the 60 deg tilted sample. s can be measured from the SEM images showed in Fig. 5.4.

Hence, it follows that: 

   
  

       
         (5.1)

Table 5. 1 lists the measured values for s and the derived value for t.  

# ribbon               
1      
2       
3       

Table 5. 10. Deduced trenches height obtained from equation 5.1

The measured trench heights are considerably below the expected value. This fact could 
be ascribed to many causes, such as a lost of purity in the PMMA which seems to be the 
most probable. The objective of depositing a 300 nm thick PMMA layer is to prevent 
the collapse of the graphene devices over the gold layer due to superficial tension or van 
der Waals interactions. Although this mismatch between the measured and expected 
values, the structures are fully suspended and only a negligible reduction of the distance 
between the structures and the gold layer is achieved. 
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5.3. Raman spectroscopy characterization 

 
Raman spectroscopy has been successfully utilized as a convenient technique for 
identifying and counting graphene layers on different substrates [4,5]. It was shown that 
the evolution of the 2D-band Raman signatures with the addition of each extra layer of 
graphene can be used to accurately count the number of layers [4] together with the 
position of G peak, which up-shifts with the increasing 1/n, where n is the number of 
graphene layers [6]. 
 
The quality and number of layers of the suspended graphene ribbons were evaluated by 
Micro-Raman spectroscopy using a Jobin-Yvon T64000 with a liquid N2-cooled CCD 
detector and the 514 nm excitation wavelength at low power levels to avoid laser 
heating and subsequent degradation of PMMA and graphene.  
 
Fig. 5. 6a shows the Raman spectra for graphite (dark gray line), mono- and bi-layer 
graphene (light grey and blue lines respectively) and PMMA (orange line). The laser 
spot used for this study was around 1 m diameter and, because of the width of the 
explored mono- and bi-layer ribbons, some contribution from the gold layer exposed in 
the deep of the trenches can distort the results for these two cases. For the single layer 
case the G band peak,   

  =1584±2 cm-1, is less intense than this for the bi-layer, 

  
  =2182±2 cm-1 as it is expected with a ratio of around   

  

  
  ~0.9. Fig. 5. 6b show the 

detail of the 2D peaks which represent the most used characteristic to discern from 
mono- and multi-layered graphene: mono-layered graphene show a simple peak while 
bi-layered graphene, as it happens with the rest of multi-layered cases, show a multiple 
peak.  
 

Number of layers G band intensity, iG (a.u.) 2D band intensity, iG (a.u.) 

1 1465 1846 

2 1591 1379 
Table 5. 2. Measured peaks height for the G and 2D band expressed in arbitrary units. 

 
Moreover, the 2D peak is more intense for a mono-layer than that for a bi-layer ribbon 
as discussed in the literature. The concrete values of the intensities of both peaks for the 
two reported cases can be seen from Table 5. 2. 
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Fig. 5. 6. Raman spectrums of: (a) PMMA (orange line), bi-layered graphene (blue line), mono-layered graphene 
(light gray line) and graphite (dark grey line), (b) the 2D band comparing the contribution to this for a mono-layered 
ribbon (top panel) and a bi-layered ribbon (bottom panel), (c) a mono-layered ribbon showing a higher peak height 
for the 2D band than this for the G band. The marked peaks (*) are Raman modes from the PMMA layer. 

Fig. 5. 6 show the results of a suspended monolayer graphene with a sharp G band 
(~1584 cm-1) and 2D band (~2690 cm-1) peaks and a low G/2D ratio. The single layer 
nature of the graphene ribbon is further confirmed by the full with at half maximum 
(FWHM) of the Lorentz fit of the 2D band being ~30 cm-1. The small D peak (~1350 
cm-1) intensity indicates that the graphene has low defect density. The peaks marked 
with a star (*) are originated in the PMMA layer [7] also excited with the incident laser 
radiation. 
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5.4. AFM characterization 

A AFM study has been carried out in order to have a deeper knowledge of the 
topography of the fabricated devices. Non-contact mode is considered to avoid sample 
damaging. 

Fig. 5. 7a shows a topography image of the devices previously studied by SEM on Fig. 
5. 2 (a) 5. 3 (a) and 5. 4 (a). As it can be appreciated, the primary ribbon contains more 
than 20 secondary ribbons with very sharp and regular widths. 

 
Fig 5. 7. (a) Topographic AFM images of the 500 nm long secondary ribbons. (b) Upper panel: height profile along 
the red line from (a) superposed to the expected PMMA trench profile. Lower panel: height profiles for both red and 
grey lines from (a) showing the suspension of the fabricated devices. Graphene adhesion to the walls can be 
appreciated. 

The zoom showed on the right side of Fig. 5. 7a  shows a more detailed topographic 
image revealing some corrugations on the suspended parts. These corrugations are in 
the range of less than 1 nm. Fig. 5. 7b show the height profile along the grey and red 
solid lines drawed on Fig. 5. 7a. In the upper panel the measured trenches profile (red 
line) can be seen compared to the expected height revealing a strong mismatch between 
them. Moreover, the measure show some irregularities in the shape of the walls. Both 
fenomena can be regarded to a lack of vertical resolution due to the dimensions of the 
AFM-cantilever's tip. The lower panel shows the profile along the studied primary 
ribbon superimposed to this for the trenches. It also shows an approximately 4.5 nm 
deep nanoindentation to the PMMA walls, which is a very low value compared to the 
device length. 
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Fig. 5. 8a shows a topography image of the from Fig. 5. 2 (b) 5. 3 (b) and 5. 4 (b). In 
this case the suspended structures have different lengths, i.e. 100, 300 and 600 nm. As it 
is done with the devices from Fig. 5. 7 the height profile along an area clean of 
graphene ribbons (red line) and along the graphene primary ribbon (grey line) is showed 
on Fig. 5. 8b. The grey shadowed rectangles remarks the free PMMA areas. As it was 
shown in Fig. 5. 7 an underestimation of the trench deepness can be appreciated. This is 
more pronounced for trenches with small widths which reinforces the argument of the 
over-dimensioned AFM-cantilever tip. Besides the indentation of graphene on the 
PMMA walls also seen in the sample from Fig. 5. 7, an apparent buckling can be seen 
with an amplitude of less than 1 nm. This can be explained by residual stresses 
generated after the exposed PMMA removal.  

 

 
Fig 5. 8. (a) Topographic AFM images of the 100, 300 and 600 nm long ribbons. (b) Upper panel: graphene height 
profile along the grey line from (a). Lower panel: height profile along the red line from (a). Grey bars indicate the 
dimensions of the 100, 300 and 600 nm wide trenches.
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In the other hand, AFM allow to evaluate the thickness of graphene on PMMA. 
Obviously, the measured height does not represent the real thick of this material but it 
can provide a measure comparable to findings from other works. It has been measured 
to be 1.44 nm approximately, in good agreement with ref. [8] reporting 1.6 nm for 
mono-layer graphene on PMMA. 

5.5. Dragging direction study 

As it was commented in the first lines of this section, graphene is obtained from a 
primary HOPG stack and the transfer is done by means of dragging a spatula along a 
certain direction. Although the number of graphene ribbons obtained by this method is 
the same reported by other methods [8], 0.13mm2 per square centimeter of exposed 
area, the novel feature here is the highly oriented set of graphene samples it is obtained 
and their shape regularity. 
HOPG is formed by multiple graphene platelets with no spatial coherence between 
them. A scheme of the appearance of the HOPG surface can be seen on Fig. 5. 9.  

 
Fig 5. 9. Schematic of the platelets composing the exfoliated layers from the graphite stack. The red arrows represent 
the random orientation of a certain direction, for instance the arm-chair direction, without indicating their periodic 
images at 60deg.

The red arrows represent a certain arbitrary crystallographic direction (arm chair for 
instance). Each platelet show or may show different orientation. The approach followed 
here is to reduce the area under the action of the spatula to an area as the remarked by 
the dashed white square, trying to expose a single platelet.   
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A study on the dependence of the total achieved graphene area with the dragging 
direction is carried out. The possibility of avoiding the previous optical inspection 
needed to pattern the trenches perpendicularly to the graphene ribbons would simplify 
even more the fabrication procedure. In order to do so the occupied area by graphene is 
computed for different dragging directions from 0 to 90 deg in a 15 deg step. The 0 deg 
direction corresponds to one of the sample edges. Fig. 5. 10 shows the result in terms of 
total ribbon area in m2 reaching a maximum for =60 deg approximately. A Gaussian 
fit (black line) can be also seen. 

 
Fig 5. 10. Ribbon’s occupied area for different dragging direction from 0 to 90 degrees, relative to the (001) Si cut. 

The results here presented indicate that if the right direction is considered the 
transference of graphene is maximized. In the light of the devices presented along this 
section, the match of the dragging direction with the "preferred direction" of the 
considered platelet will produce a set of highly oriented ribbons along the same 
direction. In this sense, knowing a priori the exact orientation of each part of the HOPG 
stack would allow to reduce the fabrication to a one single EBL step after transferring 
the graphene on the PMMA. 

5.6. Conclusions 

In this chapter a full description of 2D-materials based bi-stable NEMS has been 
provided regarding graphene, h-BN and MoS2. The computation of the elastic potential 
energy allows to describe the systems in terms of a lumped-mass system with 
coordinate z. The piezoelectric and flexoelectric description is carried out to include the 
possibility of using these materials as transducers. This fact would simplify the 
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fabrication procedure as the structure acts as mechanical and electric transducer at the 
same time. Moreover, the flexoelectric effect some materials present enhances the 
throughput as the range of compressions that increases the output power is notably 
broadened.  
From the experimental point of view, the procedure followed for the fabrication of 
suspended graphene ribbons is reported although further work must be done in order to 
validate experimentally the results obtained along this chapter. However, the fabrication 
procedure represents a novel approach to obtain sets of identical graphene resonators.    
 
  



  
 

114 
 

References 

 
[1] Garcia, Jorge M., et al. "Graphene growth on h-BN by molecular beam epitaxy." 
Solid State Communications 152.12 (2012): 975-978. 

[2] Reina, Alfonso, et al. "Large area, few-layer graphene films on arbitrary substrates 
by chemical vapor deposition." Nano letters 9.1 (2008): 30-35. 

[3] Chang, You Min, et al. "Multilayered graphene efficiently formed by mechanical 
exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers." Applied 
Physics Letters 97.21 (2010): 211102-211102. 

[4] Ferrari, A. C., et al. "Raman spectrum of graphene and graphene layers." Physical 
review letters 97.18 (2006): 187401. 

[5] Calizo, Irene, et al. "The effect of substrates on the Raman spectrum of graphene: 
Graphene-on-sapphire and graphene-on-glass." Applied Physics Letters 91.20 (2007): 
201904-201904. 

[6] Gupta A, Chen G, Joshi P, Tadigadapa S and Eklund P C “Raman Scattering from 
High-Frequency Phonons in Supported n-Graphene Layer Films” Nano Letters 6 (2006) 
2667 

[7] Sumit Kumar, Anshu Sharma, Balram Tripathi, Subodh Srivastava, Shweta 
Agrawal, M. Singh, Kamlendra Awasthi, Y.K. Vijay “Enhancement of hydrogen gas 
permeability in electrically aligned MWCNT-PMMA composite membranes”, Micron 
41 (2010) 909–914 

[8] , Floriano, et al. "Elastic properties of graphene suspended on a polymer substrate by 
e-beam exposure." New Journal of Physics 12.2 (2010): 023034. 

  



  
 

115 
 

CHAPTER 6 
 

RESULTS SUMMARY AND 
FUTURE WORK 
 
 
 
This thesis is devoted to study the suitability of bistable energy harvesting devices for 
scavenging energy from vibration sources for ultra-low power ICT technologies. The 
fact that low intensity vibrations generally show broad frequency spectra and the 
difficulty of matching the natural frequency of resonators to this of the target source 
makes unpractical the use of MEMS and NEMS for energy harvesting purposes. 
Bistable systems open the door to avoid the problem of the frequency match and to 
bring these kinds of mechanics down to the micro and nano-scale. Two different 
strategies, based on electrostatic interaction and compression, are proposed to bring 
mechanical structures to a bistable configuration. An incursion to an experimental 
characterization of such systems has been done attempting to reproduce the theoretical 
results obtained from modeling and numerical simulations. Due to the difficulty for 
establishing a common metrics for quantifying the performance of energy harvesting 
devices, it is not possible to directly compare the results here obtained with results 
reported by other authors. Moreover, the miniaturization of these devices allows 
considering new low-intensity vibration sources described in this thesis dissertation as 
non-inertial forces, i.e. bacteria movement or structure-medium interaction. These kinds 
of vibrations contain much more power than vibrations based on inertial mechanisms, 
i.e. machinery and building vibrations. 
 
The main conclusions as well as possible lines of future work extension of this thesis 
are summarized as foolows: 
 
In chapter 1 an extended introduction to the objectives and achievements of the Energy 
Harvesting community is given: starting from the well-known green energies based 
technologies for energy generation and moving to the applicability of self-powering for 
ultra-low power consumption ICT devices. The state of the art is reviewed focusing on 
harvesting from mechanical vibrations and introducing the bistable approach. 
  
In chapter 2 the different approaches for modeling the systems under consideration in 
chapter 3 and 4 are provided. In one hand, a continuum description of mechanical 
structures based on effective parameters is used to describe the static behavior of 
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cantilevers and cc-beams. In the other hand, an ab-initio approach allows to find 
expressions to achieve a sound description of 2D-crystals regarding mechanical, 
piezoelectric and flexoelectric characteristics. For both cases the dynamical response 
under the action of different mechanical vibrations is obtained by means of solving 
numerically the corresponding Langevine equation considering, when needed, the 
transduction mechanism used to convert the mechanical energy into the electric domain. 
 
In chapter 3 a MEMS based bistable system prototype is presented where the bistable 
condition is achieved by means of electrostatic repulsion. A commercial V-shaped 
cantilever and a counter electrode are polarized across their thickness in order to 
provoke permanent charge trapping allowing to tune the potential energy of the 
cantilever in terms of the distance between the electric charges. The model is checked 
experimentally presenting a good agreement for both static and dynamical behavior. 
The model foresee a maximum output power of 0.14pW when the system is excited by 
a 1/f noise with root mean square 4nN. This represents a PD of 12.7W/cm3, although 
no optimization of the transduction mechanism is carried out, which is comparable to 
other values found in the literature. The performance of the device is increased when 
downscaled: for a linear dimension shrinking of a factor 10 gives a PD more than 20 
times higher. Moreover, although the benefit of the bistable configuration is reduced to 
a certain value of the distance between electric charges, it allows having a good 
performance for a wide range of force intensities. 
No transduction mechanism is included in the experimental realization. A verification of 
the output power achieved by numerical simulations would be the following milestone 
for this part of the present work. Regarding the charge trapping procedure, the 
consideration of other materials with improved trapping lifetime must be addressed to 
assure the functionality at long term, which represent a basic characteristic for energy 
harvesting devices. Also regarding the optimization of the prototype, the different key 
parameters of the model must be adjusted to maximize the performance under specific 
excitation conditions. 
 
In chapter 4 ab initio calculations based on a DFT code are performed to study 2D 
materials such graphene, h-BN and MoS2. A suspended nano-ribbon is studied to be the 
main block of an energy harvester. The bistable condition is achieved by applying a 
compressive strain along the length of the structure which allows to tune the response of 
the system to reach its maximum.  
In order to evaluate the capability of harvesting energy from noisy vibrations of a 
graphene-based device, two piezoelectric AlN layers placed at the clamped ends of the 
structure are included in the model during the simulation of the dynamics. A maximum 
output power of 5pW is achieved considering a quality factor of Q=100 and setting the 
external force to match the intensity of thermal noise which has an explicit dependence 
on Q. This value is reduced to 0.5 if Q=10000.  
For h-BN and MoS2 is the mechanical transducer itself that act as electromechanical 
transduction element, thanks to the piezoelectric effect this materials show. 
Flexoelectric effects observed during simulation also provide a higher generation of 
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electric power even when the external excitation is not capable of producing the 
transitions between the two potential energy minima. This enlarges the range of 
compressive strains providing high output electric power. A maximum value of 0.18pW 
is achieved for the h-BN case, considering a force described by a white Gaussian noise 
with a root mean square of  5pN. 
No bistability was seen for MoS2 for the particular dimensions considered in this work. 
The fabrication of a real device verifying the present characterization, which is treated 
in chapter 5, and the generalization of the obtained results to other geometries and 
dimensions represent the main goal to achieve in the near future. 
 
In chapter 5 the first steps in order to fabricate the graphene device discussed in chapter 
4 are reported. A novel approach to maximize the number of obtained suspended 
graphene ribbons is presented. It is supposed to allow a systematic study of the 
characteristics of graphene resonators thanks to the possibility of obtaining quasi-
identical suspended structures. 
The bistabilization of the device and the verification of the results reported on chapter 4 
represent the most ambitious goals to pursue although, as it is shown in chapter 4, other 
2D crystals with piezoelectric effect will facilitate the fabrication of a prototype with 
harvesting capabilities. 
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A micro-electro-mechanical system based vibration energy harvester is studied exploring the

benefits of bistable non linear dynamics in terms of energy conversion. An electrostatic based

approach to achieve bistability, which consists in the repulsive interaction between two electrets

locally charged in both tip free ends of an atomic force microscope cantilever and a counter

electrode, is experimentally demonstrated. A simple model allows the prediction of the measured

dynamics of the system, which shows an optimal distance between the cantilever and the counter

electrode in terms of the root mean square vibration response to a colored Gaussian excitation

noise. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4800926]

Among all the explored alternatives to improve the per-

formance characteristics in vibration energy harvesting

(VEH) schemes, those based on the non-linear mechanical

properties of the transducer element have demonstrated to be

one of the most promising options.1–3 In particular, two main

issues make these systems to perform better than traditional

linear ones. First, they are able to harvest energy from wide

band non-harmonic vibration sources; consequently, they do

not require complex tuning strategies in the transducer to

match the characteristic frequency of the energy source.4

Second, they can extract energy from low frequency sources

in a non-resonant way. Therefore large inertial masses and

large volume realizations are not strictly needed.5

On the one hand, bistable implementations have become

one of the most reported non-linear vibration energy harvest-

ing (NLVEH) choices. Several ways to induce bistability in

NLVEH have been demonstrated so far: magnetic repul-

sion,2 inverted cantilever,6 induced or residual stress.7

On the other hand, it has been demonstrated that micro-

electro-mechanical systems (MEMS) technology can provide

solutions for NLVEH with improvements in the energy level

sensitivity,8 according to their extremely high mechanical

compliance.

However, in most of the previous cases, a physical real-

ization of the transducer at the nano or even at the microscale

becomes technologically difficult, due to the low control of

the bistability parameter during the fabrication process (stress)

or due to material non-compatibility (magnetic materials).

In this paper, we demonstrate an alternative based on

local electret technology to induce bistability in the mechani-

cal behavior of a triangular tipless AFM-like microcantile-

ver. A simple method based on the capacitance constant

voltage stress is used to locally charge the free end of a sili-

con nitride cantilever. A counter electrode (CE), having the

same geometry and material as the cantilever, is also locally

charged by the same procedure and brought in close proxim-

ity to the cantilever. Repulsive electrostatic interaction

between both electrets combined with the restoring force of

the cantilever gives rise to a bistable potential for a certain

cantilever-electrode distance, which is used as the parameter

to control the bistability. A detailed study of the cantilever

dynamics when it is excited with a colored vibration noise is

presented for different bistability and noise intensity

conditions.

We consider a commercial 600 nm thick silicon nitride

(Si3N4) V-shaped cantilever,9 as the one depicted in the top

side of Figure 1(a) with a 65 nm thick Cr/Au layer coating

the backside of the structure.

The AFM-like cantilever has a nominal resonance fre-

quency and a spring constant of 17 kHz and 0.08 N/m,

respectively. The same kind of triangular structure, but hav-

ing a length short enough to prevent any significant displace-

ment, is used to define a counter electrode (see bottom side

of Figure 3(a)).

The tip of the cantilever or the counter electrode are in-

dependently charged by applying a voltage (15 V typically

during 30 min) between the Cr/Au coated top side and the

back sides through a contacting gold coated sample, as

shown in Figure 2(a). During this process, some charges

overcome the barrier at the metal-insulator junction and end

up trapped at the surface or deep in the body of the cantile-

ver/electrode.10 To detect the dynamics of the system we use

a conventional AFM optical readout setup, as described in

Figure 2(b). The alignment of the cantilever and the counter

electrode is achieved by moving both elements with one

each 3D micropositioners. Top and lateral views are obtained

by means of two CCD cameras which provide an optical

feedback during the whole process. A precise control of the

cantilever-CE gap distance, d, is achieved with a long range

piezo-stack which produces a longitudinal displacement of

the CE at a 0.1 lm/V ratio. The deflection of a reflected

HeNe laser beam (632.8 nm, 15 mW) on the cantilever sur-

face is detected by means of a position sensitive detector

(PSD, New Focus 2930). The transduced electrical signal is

captured and stored through an oscilloscope. The mechanical

excitation of the cantilever is done through a piezoelectric

shaker connected to a voltage noise generator. We have
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verified that the noise used to excite the device is a pink

noise, with the intensity inversely proportional to the fre-

quency, as expected in 1/f noise.

We assume a simple elastic restoring force, Fel¼�k � x,

for the cantilever, where k and x are the stiffness and the

out-of-plane displacement, respectively. A nominal value of

k¼ 0.08 N/m is considered.

We assume that the electric charges, q1 and q2, have the

same sign and that they are trapped at the tip end of the can-

tilever and CE. Facing them as shown in Figure 1, we can

compute the total potential energy of the system as

VðxÞ ¼ 1=2 � k � x2 þ K � q2=ðd2 þ x2Þ1=2; (1)

where K is the Coulomb constant and q¼ (q1 � q2)1/2. This

defines a bistable potential for certain values of the parame-

ters k, q, and d as it can be seen in Figure 1(b). Deriving and

solving the equation dV/dx¼ 0, the position of the stable

points can be found as well as the potential barrier height in

terms of these three parameters

xmin ¼ ððKq2=kÞ2=3 � d2Þ1=2; (2)

DV ¼ Vð0Þ � VðxminÞ: (3)

It is clear that to achieve the bistability condition, expression

(2) must give a real number and, then, one can express this

condition as d< (Kq2/k)1/3. As it is expected, this range of

values assure a real value for the barrier height as well. For

the experimental purposes, the nonlinearizing parameter will

be the distance between electric charges as both q and k

will be determined before displaying the experiment while d

will be a tunable quantity.

Figure 3(a) (bottom) shows the trajectory followed by

the system when driven by a Colored Gaussian noise for

three different values of the distance between charges, d,

FIG. 1. (a) Scheme of the experimental system.

A V-shaped cantilever (top) (l¼ 200 lm;

w¼ 28 lm; B¼ 184 lm) and a counter electrode

(bottom) are permanent and locally charged with

q1 and q2, respectively, at their free ends and sep-

arated by a distance d. (b) Total potential energy

for different d values showing the transition from

monostability to bistability as this distance is

reduced. For the sake of simplicity an effective

electric charge is defined as q¼ (q1 � q2)1/2. Inset

in (b) is a view of the system indicating the thick-

ness of the composite structure.

FIG. 2. (a) Optical image (top) and scheme (bottom) of the electrets charging setup/procedure. A probe is used to apply a voltage to the Cr/Au-Si3N4-Au ca-

pacitor formed by a gold coated sample and the cantilever (or counter electrode). (b) Measurement setup: the deflection of a laser beam incident to the cantile-

ver surface is detected by a PSD in terms of voltage. Two optical images of the system show the captures of the two CCD’s which allow the cantilever-CE

alignment through two 3D micro-positioners. The finer control of d is carried out through a DC piezoelectric stack with a characteristic ratio of 0.1 lm/V.
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representative of the three characteristic dynamical regimes.

(i) For large d, the system responds as a linear resonant sys-

tem oscillating around x¼ 0 (black line). (ii) As d decreases

and charges get closer, the bistability appears and the cantile-

ver is able to jump from one potential minimum to the other

in a random sequence (red line). (iii) Finally, when charges

are too close, the potential barrier is too high and the dynam-

ics gets stuck in one of the two wells: the cantilever

oscillates around one of its equilibrium positions, but lower-

frequency swings to the other minimum are hindered by the

barrier height (blue line). An optical image of the system is

shown in the upper panel of Figure 3(a), where magnified

images slightly allow differentiating the up and down states

of the bistable regime. This can be seen more clearly in the

video provided (see link in Fig. 3 caption). Besides, note that

in top Figure 3(a) images, the optical resolution and the lack

of perfect perpendicularity of the view avoid to solve both

the 600 nm thickness of the cantilever (or of the CE) and the

gap distance. In Figure 3(b) we plot the displacement root

mean square, xrms, obtained experimentally (red symbols)

for different values of the distance d, while keeping fixed the

noise intensity. These results are in good agreement with the

predictions of the model (continuous lines). Clearly, there is

an optimal cantilever-CE gap, dopt¼ 3.6 lm, that maximizes

the system response in terms of xrms, which is closely related

to the capability of transducing kinetic energy into electric

energy.7 The position of the potential energy minima as a

function of d (inset of Figure 3(b)), obtained by measuring

the average position, also shows a good agreement between

experimental data and model (Eq. (2)).

Thus far, we have considered a given noise intensity and

optimized the separation between charges, achieving the

bistability and maximizing the root mean square of the canti-

lever displacement. Now we consider the case of a given

value of d, and we show that, as expected, there is always a

value for the noise intensity from which the system again

becomes strongly non-linear, jumping from one well to the

other, while below this threshold the cantilever gets stuck in

one of the two wells. This behavior is shown in Figure 4,

pointing out that the benefits of bistability can be extended

to all Frms below the rupture limit when overcoming a thresh-

old value. Furthermore, even beneath this threshold value,

when the external noise is not able to provoke transitions

over the potential barrier, the response seems to be of the

same order of that for the resonating case.

In summary, we have modeled, fabricated, and tested a

bistable NLVEH where a strategy based on local electrets

technology is used to engineer the non-linearity of the sys-

tem. The harvester, consisting in a 0.08 N/m Si3N4 microcan-

tilever faced to a counter electrode, is driven into bistable

regime by controlling the distance between the tip end of

both elements, where two electric charges of the same sign

have been implanted, thus tuning their electrostatic repul-

sion. A good agreement between the predictions of a simple

FIG. 3. (a) Upper side: lateral optical image and drawing showing the “up” and “down” states of the cantilever (left, black) movement, with respect to the fixed

CE (right, green). Lower side: different regimes of the dynamical response of the system for three different values of the distance between the charges, d:

monostability around x¼ 0 (black squares), bistability (red circles), and monostability around x¼ xþ (blue triangles). (b) Experimental (symbols) and simu-

lated (lines) results for the xrms and potential minima position xmin¼ xþ as a function of d. The dynamics of the system is obtained solving meff�d2x/dt2

¼�b � dx/dt� dV/dxþFextx(t), where x stands for the displacement, b represents the energy losses of the system, and Fextx(t) represents the external force as a

stochastic process with intensity Fext. The noise intensity is given by Frms¼ 4 nN (enhanced online) [URL: http://dx.doi.org/10.1063/1.4800926.1].

FIG. 4. Experimental (red line-symbols) and simulated (black line) results

for the xrms for a given distance d as the noise intensity is swept showing an

abrupt increment when a threshold value is overcome. The dashed line rep-

resents the trend of this quantity if no bistability is considered, i.e., q¼ 0.
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model and the experimental data is achieved reproducing all

the main features of the expected dynamics. The proof-of-

concept demonstrated in this letter should now be followed

by a careful optimization of the device parameters, including

the material of choice. While here we have used commercial

Si3N4 cantilevers, other materials such as Teflon should be

preferred for the much longer decay times of the trapped

charge.11,12
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1Departament d’Enginyeria Electrònica, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain
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Engineered nonlinearities have been shown to play an important role in increasing the efficiency of energy
harvesting devices. Macroscopic prototypes using this approach have been demonstrated recently [F. Cottone,
H. Vocca, and L. Gammaitoni, Phys. Rev. Lett. 102, 080601 (2009).] Here, in order to implement such a scheme
at the nanoscale, we propose a simple device which is based on strained nanostructured graphene and discuss
how it can respond to many energy sources that, although having a low intensity, are freely available, such as
ambient vibrations or thermal noise. We discuss in some detail the case of thermal fluctuations harvesting in the
steady-state nonequilibrium regime and of ambient vibrations.
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An efficient power supply for increasingly small electronic
devices is a challenging task that could prevent prototype
nanocircuitry to move to mass production. On the other hand,
as the size of devices shrinks, their power requirements also
diminish.1 Hence, energy sources that are freely available, such
as ambient vibrations or thermal energy, become important
and allow envisaging a batteryless world of self-powered
devices.2–5 For this reason, and to pursue clean energy sources
compatible with a sustainable development, energy harvesting
and energy conversion have become a very intense field of
research.6–9

Linear mechanical resonators are the most common solu-
tion to convert vibrational into electrical energy10,11 exploiting
piezoelectric7 or capacitive transduction.12 Unfortunately, it
is not always possible to tune their resonant frequency in
the spectral region of ambient vibrations and, even when
such tuning is possible, their efficiency rapidly decreases
when moving away from the resonant frequency, which is an
important limitation especially for broad spectral densities
such as those of ambient vibrations. Cottone et al.13 have
demonstrated the role of engineered nonlinearity to improve
significantly the efficiency of noise harvesting devices. Their
macroscopic toy model consists of an inverted pendulum with a
magnet attached to its tip. The approach of an external magnet
is used to control the pendulum dynamics, pushing its tip
away from its equilibrium position and making it oscillate
around two unique and symmetric equilibrium positions. The
magnetic repulsion can be tuned in a way that the pendulum
operates as a bistable device, combining high-frequency
oscillations around one of the two equilibrium positions—
where it spends most of the time—with low-frequency, large
excursions from one to the other.

In this Rapid Communication we show that a compressed
graphene sheet can be used to implement such a bistable
device to harvest thermal fluctuations and ambient vibrations
at the nanoscale. The degree of compression ε is the only
control parameter and allows switching among three possible
regimes: (a) single-well potential (ε ∼ 0), (b) double-well
potential with allowed swings from one minimum to the other
(intermediate ε), i.e., the bistable device, and (c) double-well

potential with no commutation between the two equilibrium
positions (large ε). Yet, we show that graphene possesses an
intrinsic nonlinearity14 and can harvest thermal fluctuations
and other kinds of nonequilibrium noise, outperforming any
comparable linear oscillator, even when it is not compressed
(see, for instance, Ref. 15 for general nonlinear potentials).

Thermal fluctuations are ubiquitously present in every
dissipative system at a finite temperature. In principle, random
fluctuations in equilibrium with their surroundings cannot be
harvested without violating the second law of thermodynam-
ics. However, it has been argued that equilibrium, a concept
derived from macroscopic physics, is elusive when applied
to the atomic scale and fluctuations become important.16

Nevertheless, to avoid formal problems related to the definition
of thermodynamical equilibrium of a nanoscale system, we
restrict our discussion to the case of open systems in the
steady-state nonequilibrium regime or systems under slowly
varying local equilibrium conditions.

To calculate the deformation potential of graphene, we
perform first-principles electronic structure calculations within
density-functional theory (DFT). We use the SIESTA package,17

norm-conserving pseudopotentials, and the generalized gradi-
ent approximation18 to the exchange-correlation energy. Given
the very large number of atoms necessary to describe the
deformation that oscillating graphene undergoes, we use a
minimal basis set, though for short graphene strips satisfactory
convergence tests have been carried out against a more reliable
single-ζ polarized basis. We obtain a Young’s modulus of
0.85 TPa (assuming an effective thickness of the graphene
sheet of 3.34 Å) and a Poisson ratio of 0.18. The structures
were relaxed until all the forces were lower than 0.04 eV/Å,
except for those atoms that need to be constrained to sample
the transition states. To keep the computational load at a man-
ageable level, rather than nanoribbons, we consider infinite
graphene, which can be modeled by one single primitive cell
along the y axis, the direction perpendicular to the deformation
(see Fig. 1). The energy of a device with a given width W is
obtained by rescaling the calculated energy by a factor W/w,
w being the width of the primitive cell. It should be stressed
that within this approximation, where a linear scaling of the

161401-11098-0121/2011/84(16)/161401(5) ©2011 American Physical Society
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FIG. 1. (Color online) Buckled ground-state configuration of a
graphene sheet under compressive strain. The atoms of the primitive
cell explicitly introduced in the calculation within periodic boundary
conditions are shown in light yellow (light gray). Atoms of the
computational cell that need to be constrained to sample transition
states (at the apex and at the clamped ends) are displayed with a
darker color (gray). The potential profile is obtained by performing
a series of calculations of sinusoidal deformations with increasing
amplitudes hi , as shown schematically in the inset.

energy with W is assumed, edge effects are neglected. Edges
can generate stress fields, induce the formation of ripples and,
in general, will affect the overall dynamic behavior of the
system. These effects are not accounted for in our model.
However, for the width of ribbons to be used in realistic devices
the energetics and the dynamic response of the system is not
expected to qualitatively change.

We start from a flat graphene sheet with a compressive
strain ε [defined as (L0 − L)/L0, where L is the length of the
graphene sheet and L0 its equilibrium value in absence of com-
pression; see also Fig. 1] ranging from 0% to 0.1%. For each
value of ε we generate several sinusoidal deformations with
an increasing amplitude hi (see the inset of Fig. 1). Previous
tests indicated that sinuslike profiles are close to the minimum
energy configurations, and thus are good initial guesses. Next,
we carry out a geometric optimization of each structure. Small
regions at the beginning and at the end of the strip are kept flat

to mimic typical nanoindentation experiments. As our purpose
is mapping the potential landscape, the apex of each of the
deformed strip is kept fixed to prevent all the structures from
relaxing to their atomic ground state.

As illustrated in Fig. 2, the potential has a minimum at
h = 0 in the case of uncompressed graphene, while for ε > 0
two symmetric minima appear, indicating that graphene favors
a buckled configuration such as the one sketched in Fig. 1. As
ε increases, the minima move apart and the transition barrier
grows, making the commutation between wells less likely.

The dynamics of the system is described by the equation of
motion

mẍ = −∂Ep

∂x
− bẋ + F0ξ (T ), (1)

where Ep is the elastic (potential) energy as obtained by
the electronic structure calculations and reported in Fig. 2.
As customary in the study of beam deflection or cantilever
vibrations, we reduce the dynamics of the clamped graphene
sheet of total mass M to the equivalent dynamics of a
free pointlike mass m = 0.4M .19 Here we assume a simple
phenomenological viscous damping term20 with a damping
coefficient that in the harmonic potential case can be expressed
as b = mω0/Q, taking Q = 100 for the quality factor of a
graphene sheet in air. In general the mechanical dissipation
in the graphene dynamics is due to a number of different
phenomena21,22 and can be more properly expressed in terms
of a dissipation function that takes into account generalized
memory effects as in the expression

∫ t

−∞ b(t − τ )ẋ(τ )dτ .
F0ξ (T ) represents the random force [ξ (T ) is a flat spectrum

stochastic process, Gaussian distributed, with zero mean and
unitary standard deviation] accounting for the thermal noise-
induced stochastic dynamics of the graphene sheet. When
the potential is harmonic (Ep = 1/2kx2) and the system is
at thermal equilibrium, the fluctuation-dissipation theorem
links the magnitude of the thermal fluctuation to the damping
coefficient via F̂ 2

0 = 4kBT b, where kB is the Boltzmann

FIG. 2. (Color online) Potential as a func-
tion of the out-of-plane coordinate h for com-
pressions ε ranging from 0% to 0.1%. Finite
values of ε favor buckling of the graphene sheet,
with two symmetric minima at h �= 0. The inset
displays the separation between the minima and
the transition barrier as a function of ε, together
with fits to ε2 and

√
ε, respectively.
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FIG. 3. (Color online) Evolution of the po-
sition x in the three possible regimes: (i) At low
applied compressions the system oscillates in
a single-well potential at approximately x = 0
(black circles); (ii) at the optimal compression a
bistable behavior is clearly observed, with long
swings from one well to the other (red dia-
monds); (iii) at large compressions the buckled
graphene gets trapped in one of the minima (blue
squares). The left-hand panel shows the time
evolution x = x(t); the right-hand panel is the
attractor diagram x = x(v).

constant and T is the temperature. In this case the root mean
square (rms) of the displacement amounts to xrms = √

kBT /k.
The potential that we obtained from the DFT calculations,

however, is strongly nonharmonic, even in the simple case of
uncompressed graphene, where a satisfactory fit is achieved
only with the order-4 polynomial c4x

4 + c2x
2 (we obtain c4 =

0.12 meV Å−4 and c2 = 6.59 meV Å−2 for the nanoribbon
of Fig. 2). Hence a useful prediction from the stochastic
differential equation (1) can only be obtained numerically.
Here we used the well-known Euler-Maruyama method, where
the stochastic force intensity is set arbitrarily at F̂ 2

0 = 4kBT b

with a flat spectral distribution (white noise approximation)
and T = 300 K, to mimic a nonequilibrium thermal noise
acting on the graphene sheet.

Solutions of Eq. (1) for a graphene nanoribbon of 1 × 17 nm
are shown in Fig. 3 for the different working regimes. This
graph illustrates how the dynamics of the system can be
controlled by tuning the level of compression. At high values
of ε the trajectory is confined around one of the two attractors,
in a buckled configuration, whereas for low ε the barrier is not
effective and the system is swinging in a perturbed, single-well
potential around zero. It is at intermediate compressions that
the system can jump from one well to the other, increasing
the rms of the position vector. This optimal compression range
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FIG. 4. Root mean square (rms) of the position vector x (left-hand
side) and mechanical power (right-hand side) as a function of the
compressive strain ε. The optimal compression that maximizes xrms

is ε ∼ 0.17. This value of ε also maximizes the piezoelectrically
generated voltage in the transduction circuit described in the text.
The dashed line in the right-hand panel gives an estimation of the
mechanical power accumulated by a linear oscillator of comparable
size to the one discussed.

depends on the geometrical parameters of the graphene device
and the temperature of the noise that has to be harvested.13

The dependence of xrms on the compression level is shown
in Fig. 4(a). Here the x(t) time series has been averaged to
zero before computing the xrms in order to filter out any dc
component that cannot be considered interesting for energy
harvesting purposes as in Ref. 13. Increasing ε leads to an
increase of the rms of the position: The two attractors of
the dynamics have appeared, but the barrier still allows low-
frequency swings from one well to the other. At approximately
ε̄ = 0.17, xrms gets to a maximum and then drops dramatically,
indicating that the barrier has reached a critical value and the
dynamics is trapped in one of the two attractors.

The mechanical power, defined as Pmech = 〈F0ξ (T )ẋ〉, on
the other hand, is slowly decaying and does not present a
maximum at ε̄ [see Fig. 4(b)]. This happens because, although
the graphene sheet on average moves more, as shown in
Fig. 4(a), it also moves slower, yielding a decrease in the
mechanical power.23

Figure 4(b) seems to suggest that it is pointless to pursue
the double-well potential of the buckled graphene, because the
maximum mechanical power is accumulated by flat graphene.
However, as it will be clear in the following, in order to harvest
electrical energy we need a conversion mechanism that is
capable of transforming the available mechanical energy into
this final form of energy. Before dealing with the conversion
mechanism, we further note that another energy source that
could be scavenged is represented by ambient vibrations,
such as mechanical vibrations and acoustic energy,3,4,24 that
are not intrinsic to the system as is the thermal noise
considered so far. The main limitation of conventional linear
nano-oscillators with respect to these kinds of environmental
vibrations is the poor flexibility of their frequency sensitivity:
Not only is the spectral response usually very narrow, but it
is also difficult to shift it toward the low-frequency domain,
which is where most of the ambient vibration energy is
located.

The spectral response of the proposed graphene device,
expressed by the vector X(ω) = F{x(t)}, is shown in Fig. 5.
The output spectrum shown represents the amplitude of
movement in response to each frequency component of the
incident noise. Indeed, the larger average mechanical power is
harvested by the flat graphene [Fig. 4(b)], but responds only to
frequencies close to a resonance frequency of ∼30 GHz, with
an approximate bandwidth of 10 GHz. On the other hand,
close to the optimal compression, when the system is allowed
to swing from one well to the other, a very broad range of
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FIG. 5. (Color online) Spectral response in the three operating
regimes. Zero or too large compressive strains yields rather selective
frequency responses (black circles and blue squares, respectively).
Around the optimal compression, on the other hand, the spectral
response is much broader and extends significantly to the low-
frequency domain (red diamonds). The spectral response is defined
as the Fourier transform of the position vector as follows: X(ω) =
F{x(t)} = 1√

2π

∫ +∞
−∞ x(t)e−iωt dt .

frequencies can be harvested, with a noticeable extension to
low frequencies. This means that even if the maximum power is
higher in the uncompressed case [P (ε̄) is 2/3 of the maximum
power P (0)], the device becomes sensitive to a much broader
frequency spectrum, with an integrated power that exceeds
significantly the linear case, especially in the case of harvesting
ambient vibrations. It should be noticed that when the optimal
compression is exceeded and the system gets stuck in one of
the two wells, the spectral response gets significantly worse,
resulting in a narrower and higher-frequency distribution, even
with respect to the case of flat graphene. This fact suggests that
certain caution should be paid when choosing the value of ε,
especially in view of the experimental difficulties to control it
with accuracy.

The energy harvested by the vibrating graphene device,
however, cannot be stored in a simple way, as mechanical
energy storing is an elusive task and a very intense research
field. Yet, the harvested thermomechanical energy needs to be
converted to electrical energy and used immediately or stored
with known storing procedures, namely, through electrical
capacitors. As we discuss below, such a conversion provides
an argument in favor of the buckled configuration.

Devising and engineering an efficient transduction scheme
is subjected to the optimization of many parameters. Here we
assume a simplified piezoelectric conversion model consisting
of two ZnO transducers placed at the clamped ends of the
suspended sheet. The behavior of the piezoelectric material

is modeled as a capacitance with a deformation-dependent
charge density d31 = −5.1 × 10−12 m/V,25,26 coupled to a
load resistance. Following Roundy and Wright,11 the whole
dynamics of the graphene harvester can be described by

mẍ = −∂Ep

∂x
− bẋ − 	1V + F0ξ (T ), (2)

V̇ = 	2ẋ − V

RC
, (3)

where the motion equation is modified by the inclusion
of a piezoelectric term [Eq. (3)], which accounts for the
forces associated with the transduction mechanism and which
couples motion and the transduction equations [Eq. (3)].
Taking a large enough value of the time constant RC of the
transducing circuit (low cut-on frequency ωhp = 1/RC), the
second equation provides V = 	2x, where V is the generated
voltage and 	2 is the electromechanical coupling coefficient
as defined in Ref. 11. Therefore, the piezoelectric rms voltage
V is simply the rms of the position vector rescaled by a factor
	2—taken to be 5.8 V/m from Ref. 11. Now the maximum
harvested electrical power Pel = V 2/R no longer corresponds
to the unstrained graphene sheet and the optimal compression
is ε̄, the one that gives the larger xrms (see Fig. 4), as previously
observed in Ref. 13. This piezoelectric model is admittedly a
simple one, and it should be taken into account that the specific
transduction scheme implemented will also affect the overall
dynamics of the system.

In conclusion, we have shown that a nanostructured
graphene device can harvest ambient noise thanks to its
intrinsically anharmonic deformation potential, outperforming
conventional linear oscillators. A linear oscillator of a size
comparable to our device is estimated to harvest 2.2 pW of
mechanical power, almost one order of magnitude less than
flat graphene. Under an appropriate compressive strain the
graphene sheet assumes a buckled configuration and behave
as a bistable device. Such an engineered nonlinearity is shown
to broaden the spectral response, extending it toward the
low-frequency domain, where most of the ambient energy
source is typically available. Mechanical-to-electrical energy
conversion through a model piezoelectric transduction scheme
is briefly discussed.
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Most mechanical vibrations in our environment can be classified as noisy vibrations, since they have no
preferred frequency and a spectrum that spreads to the low frequency range. Bistable systems have
shown to be a solution to the existing frequency mismatch between the energy source and the harvester
device. In this work a parametric study is carried out in order to show the dependence of these improve-
ments with the quality factor Q of a vibrating beam and the different responses when driven by different
types of model noise. Specifically, we studied Colored Gaussian Noise instead of the much more common
White Gaussian Noise, considered as a reference in most studies.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Mechanical vibration harvesters are mostly based on resonators
capable of transducing the energy from the mechanical to the elec-
trical domain through piezoelectric, electromagnetic or capacitive
strategies [1]. The need to deal with low intensity vibrations makes
the use of MEMS/NEMS suitable in order to improve the response
of the device in terms of the ratio between input and output power.
The reduction of the dimensions of such a resonator increases dra-
matically their resonant frequency [2,3]. This feature and the typ-
ical frequency selectivity of these devices make them not optimal
to harvest energy from broad band noises, particularly when it ex-
tends to the low frequency range.
2. Modeling

In order to address the problems described above we propose a
bistable device based on a suspended graphene nanoribbon: bista-
bility has been demonstrated to improve the response in compar-
ison with that of resonators when driven by noise [4]. The
bistability is achieved by applying compression as it is shown in
Fig. 1. Once the compression is applied the resonating behavior is
broken and two new attractors appear symmetrically positioned
with respect to the initial stable point (x = 0). The description of
the graphene nanoribbon is done through the determination of
the elastic potential energy through ab initio calculations as it is ex-
plained in [5]. Fig. 2 shows different potential energy curves that
ll rights reserved.

uárez).
highlight the role of the compressive strain, i.e. the larger the com-
pression, the larger the separation of the two attractors and the
higher the barrier are. The inset shows the dependence of the bar-
rier height and the minima position with the compression, which is
the non-linearizing parameter. It is worth noting the strong non-
harmonic shape the uncompressed case shows. Therefore, even
when the system is not strained it shows a non-resonating
behavior.

In this work we extend our previous report [5] by studying the
response to different types of noise. Specifically, we start with a
White Gaussian Noise (WGN) and then filter it to selectively elim-
inate the contributions of certain frequency range, as discussed be-
low. Additionally, we focus on the dependence of the performances
of the harvesting device on the quality factor Q, which is a highly
variable parameter and might vary significantly from realization
to realization of the device.

3. Simulation and results

To characterize the dynamics of this kind of system a Langevine
differential equation of motion must be solved numerically:

meff � x00 ¼ �dEp=dx� b � x0 þ FnðtÞ ð1Þ

where meff stands for the effective mass as it is defined in the frame
of the spring-mass model [6] and x, x0 and x00 are the position vector
and its first and second time derivatives, respectively. The constant
b accounts for the losses in the system which we assume to be dom-
inated by friction processes, and can be expressed in terms of the
quality factor as follows:

b ¼ meff �x0=Q ð2Þ

miquel
Typewriter
Paper C

miquel
Typewriter

http://dx.doi.org/10.1016/j.mee.2013.02.053
mailto:miquel.lopez@uab.cat
http://dx.doi.org/10.1016/j.mee.2013.02.053
http://www.sciencedirect.com/science/journal/01679317
http://www.elsevier.com/locate/mee


Fig. 1. (a) Scheme of the structure showing the two clamped ends and the arm-
chair configuration along the longitudinal axis it has been considered. (b)
Illustration of the compression applied in the arm-chair direction in order to
produce the bistability. The x-coordinate is shown and it is considered as the only
displacement direction of the mechanical system in the dynamical regime.
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Fn describes the force suffered by the oscillator when it is driven by
a mechanical vibration and it will have a root mean square value of
2.2 pN from now on, which corresponds to a sound pressure of
approximately 200 dB.

In order to describe the dynamics of the system we considered a
WGN excitation. Although real vibrations are better approximated
by a colored noise, we first analyze this reference case due to its
relevance to previous literature. Fig. 3 shows the dynamics in
terms of trajectory and phase portrait. Three different working re-
gimes, corresponding to different compression values, are dis-
played. For a non-stressed graphene system the dynamics is that
of a resonator with a single attractor i.e. it oscillates around x = 0.
For larger values of e the trajectory shows oscillations around just
one of the two wells. However, at intermediate compressions the
system can suffer transitions from one attractor to the other, then
increasing the root mean square of the position vector as it is
shown in Fig. 4. The increase of xrms is understood as an improve-
ment with respect to the non-stressed case and it is very closely re-
lated to the capability of generating electric power when allowing
the transduction [4]. In order to compute the generated power, a
piezoelectric method of transduction is considered, as previously
proposed in [5]. Fig. 4 shows a shift of the peak towards smaller
compression values between the xrms computed when no transduc-
)
.

tion is considered and when it is. It can be easily understood in
terms of available energy: during transduction some of the energy
is extracted, thus leaving less energy to overcome the potential
barrier. Notice that there is also a difference between the optimal
compression for the xrms and this for the Prms. Under certain condi-
tions there can be an absolute match [7], though these cannot be
applied in our particular case due to the very high time constant
s = RC of the electromechanical system [5].
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The value of the optimal compression to be applied depends on
the kind of vibration taken into account and its intensity as later
will be discussed. Generally one can argue that more energy leads
to larger values for the optimal compression.

In Fig. 5 the spectra for the three purely mechanical regimes
showed in Fig. 3 are shown. The optimal compression spreads
the spectrum to the low frequency range increasing the area under
the curve indicating an increase of the response in that domain.
The other two curves show preferred frequencies specified by the
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of these driving forces.
curvature of the elastic potential energy around the minima where
the system is stuck thus lowering the amount of harvested energy.

3.1. Noise issues

The broadening of the spectrum in the low frequency range
must not be understood as a larger response to the components
of the driving force at that frequency range. This is just applicable
to linear systems. In the next lines the responses of the system to
different kinds of noise will be discussed in order to justify the pre-
vious affirmation.

We start again from a WGN and then we follow by different fil-
tering of this first case as it is showed in the corresponding insets
of Fig. 6. Although the spectra of these noisy vibrations are very dif-
ferent among them, they preserve their root mean square value. It
seems clear that no remarkable change is induced in the xrms curves
not even for the value of the optimal compression to be applied.

This points out that the response in the low frequency range is not
due to excitations at that particular interval as it has been said be-
fore. Bistability improves the features of resonating systems not just
for those drift by WGN but also for different broad band excitations.

3.2. The importance of the quality factor

It has been reported that graphene resonators can have a very
high quality factor Q [8]. However, as Q is very hard to control,
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especially considering its strong dependence on the environmental
conditions, it is reasonable to consider it as a main parameter of
the system and to study to what extent it affects the dynamics of
the system, while keeping the WGN intensity constant. We take
Q to vary from 10 to 10,000, which is a common range for this
parameter according to the values reported in the literature [8].

As it can be seen from Eq. (2) friction losses, i.e. the damping
parameter, b are inversely proportional to the quality factor: large
values of Q leads to small losses, thus more energy can be in prin-
ciple harvested. Indeed, this is what can be observed in Fig. 7: the
reduction of the friction is expressed as an increment of both the
optimal compression and the corresponding xrms peak. There is a
slight difference between the dependence with Q of xrms and Prms

as it can be seen in Fig. 8.
There is no appreciable shift of the optimal compression that

stands around 0.05 for all quality factors values. An increase of
the harvested power can be observed as well.

4. Conclusions

A theoretical work has been done in order to put some light on
the possibility of using mechanical graphene resonators as energy
harvesters. The atomistic computations show some peculiarities
which are characteristics of these kinds of systems and allow a
well-grounded description of the device. We also show how bista-
ble systems are not just interesting when driven by WGN but also
for different spectral kinds of noisy inputs. A piezoelectric method
of transduction has been considered in order to give concrete elec-
tric power values taking into account the dependence with the
quality factor associated to a mechanical structure of this kind:
the maximum generated power for the device considering
Q = 10,000 is around 9 pW, which drops to 2 pW for Q = 10.
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We study the dynamics of h-BN monolayers by �rst performing ab-initio calculations of the
deformation potential energy and then solving numerically a Langevine type equation to explore
their use in vibration energy harvesting devices. Similarly to our previous proposal for a graphene-
based harvester [L�opez-Su�arez et al., Phys. Rev. B 84, 161401(R) (2011)], an applied compressive
strain is used to drive the system into a bistable regime, where quasi-harmonic vibrations are
combined with low frequency swings between the minima of a double-well potential. Due to its
intrinsic piezoelectric response, the mechanical harvester naturally provides an electrical power that
is readily available or can be stored by simply contacting the monolayer at its ends. Engineering the
induced non-linearity, a 20 nm2 device is predicted to harvest an electrical power of up to 0.18 pW
for a noisy vibration of 5 pN.

Two-dimensional materials, such as graphene and
other monolayer systems [1] exhibit many properties that
render them promising candidates for electromechanical
actuation [2]. Suspended nanostructures that combine a
low mass density and relatively large areas seem to be
ideally suited for the harvesting of mechanical vibrations
and other energy sources that are freely available [3, 4].
Harmonic oscillators are, in most of the cases, very good
approximations of the dynamical behavior of these sys-
tems. Nevertheless, a harmonic oscillator is very sensi-
tive around a set of frequencies {its resonant frequencies{
but responds poorly otherwise. Unfortunately, ambient
vibrations and thermo-mechanical noise have normally a
very broad frequency spectrum that extends into the very
low frequency region (typically below 100 Hz). Harmonic
oscillators that respond in such frequency range, besides
being intrinsically ine�cient, would be extremely large,
making their use in self-powering of small devices im-
practical. To overcome this limitation, mechanical har-
vesters with non-linear potentials have been analyzed and
compared to linear resonators [5] as optimal alternatives
when the energy sources are stochastic and characterized
by a wideband spectrum [6{8].

Following the ground-breaking work of Cottone et
al. [9], in a previous study we have shown how engineered
non-linearities can increase the e�ciency of ambient vi-
bration harvesting of a suspended graphene nanorib-

∗rrurali@icmab.es

bon [10]. By compressively straining it, the graphene
sheet is driven into a bistable regime that maximizes the
root mean square (rms) of the displacement, thus the me-
chanical power. However, harvested mechanical power is
di�cult to use and it is desirable to convert it into elec-
trical energy, which can be straightforwardly stored. Al-
though piezoelectricity {the electrical response to applied
mechanical stress{ is not one of the many outstanding
properties of graphene, non-centrosymmetric monolayers
have been predicted to have remarkable intrinsic piezo-
electric coe�cients [11].

In this work we discuss the nanoscale implementation
of a bistable device based on piezoelectric h-BN capable
of harvesting thermo-mechanical noise and low frequency
vibrations from the environment, yielding an electrical
voltage due to the intrinsic electromechanical response
of these materials. Remarkably, the generated voltage is
mostly independent of the degree of strain, as long as the
resonator operates in the bistable regime.

Our device consists of a 20 nm long (17 nm suspended)
single-layer h-BN subjected to compressive strains rang-
ing from 0 to 2 %. Upon compression the monolayer fa-
vors two buckled ground states, symmetric with respect
to the plain de�ned by the ideal 
at layer. A sketch of the
system is shown in Fig. 1. As in our previous work[10],
we calculated the deformation potential of the vibrating
system, and the changes in induced polarization due to
the mechanical deformation by means of atomistic �rst-
principles calculations within density-functional theory
(DFT) as implemented in the Siesta package [12].

To reduce the computational load, we consider the two-
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FIG. 1. Sketch of the h-BN structure studied, highlighting the
two symmetric equilibrium configurations under compressive
strain. The double-well potential is shown on the left-hand
side.

dimensional material, rather than a nanoribbon with fi-
nite width. The energies quoted in the text have been
obtained by rescaling the results obtained for the com-
putational cell and thus neglect edge effects. which can
generate stress fields and ripples. These effects are not ac-
counted for in our model. However, the dynamic response
of the system is not expected to qualitatively change.

Changes in polarization are calculated using the stan-
dard Berry’ s phase approach [13]. The Brillouin zone was
sampled with a grid of 1 × 14 × 1 k-points. We used
norm-conserving pseudopotentials to account for the core
electrons and the generalized gradient approximation
(GGA) for the exchange-correlation functional [14]. We
used a carefully optimized single-ζ polarized basis set to
expand the one-electron wave function [15]. This lighter
basis set allowed us to deal efficiently with the large
number of structures involved and with the computa-
tionally intensive calculations of the polarization, main-
taining a very good accuracy (tests against a high-quality
optimized double-ζ basis set gave lattice parameter and
piezoelectric constant of h-BN within 3 and 2 %, respec-
tively).

The two minimum energy configurations that appear
under compressive strain are separated by a barrier
whose maximum corresponds to the strained, flat layer
(see Fig. 2). Increasing the compression leads to higher
barriers and larger separation between the minima, as
shown in the left inset (see also Ref. [10]). Notice that
Es(ε) = E(ε)| z=0−E(0)| z=0 is the energy cost of sustain-
ing a strain ε. By performing a similar set of calculation
for tensile strains the uniaxial Young modulus can be es-

timated as Y = 1
V0

∂2Es

∂ε2 | ε=0, where V0 is the equilibrium

volume [16] (right inset of Fig. 2). We obtain a value of
0.85 TPa, in good agreement with previous results [17].

Non-centrosymmetric planar BN sheet develops an
electric dipole moment either by (i) the applied uniaxial
strain (direct piezoelectric effect, z = 0 and ε> 0), (ii) the
elastic deformation induced by the vibrating mode (flex-
oelectric effect, z �= 0 and ε= 0) or (iii) a combination
of the two (z �= 0 and ε> 0). The uniaxial strain is the
simplest of these cases: it yields an electrical polariza-
tion aligned with the straining direction which depends
linearly on the strain through the piezoelectric constant
of the material, P = αε. We have estimated this pa-
rameter by applying increasingly higher uniaxial strains

-25 -20 -15 -10 -5 0 5 10 15 20 25
Z (Å)

0

2

4

6

8

E 
- E

0 (e
V)

! = 0.000
! = 0.005
! = 0.010
! = 0.015
! = 0.020

0

0.5

1

1.5

ba
rri

er
 (e

V)

0 0.01 0.02
!

0

5

10

15

z m
in

 (Å
)

0 0.01 0.02
!

0

2

E s (e
V)

FIG. 2. Potential energy as a function of the amplitude of the
sinusoidal deformation for different values of the compressive
strain ε. The position of the minima and the height of the
barrier between them are plotted in the left inset (symbols).
Fits (continuous line) reveal the

√
ε and ε2 dependence of

these two quantities. Energies of the main panel are referred
to the energy of the flat and unstrained h-BN sheet. The
right inset show how the energy increases upon straining, i.e.
the strain energy. Its dependence on the strain ε is used to
extract the Young’ s modulus (see text).

to the BN sheet and calculating the polarization, obtain-
ing a value of 3.085· 10− 10 C/m in good agreement with
previously published results [18]. The situation becomes
considerably more intricate when out of plane displace-
ments are involved. As discussed in detail by Naumov
et al. [18], these configurations feature not only a finite
strain, but also a strain gradient. Therefore the polariza-
tion also includes a flexoelectric term, beside the conven-
tional piezoelectric response. Our numerical results are
in excellent agreement with the phenomenological expres-
sion of P induced by a sinusoidal out-of-plane displace-
ment of Ref. [18] (circles and continuous line in the inset
of Fig. 3, respectively). The calculated values of the po-
larization as a function of the applied strain and of the
amplitude of the sinusoidal vibration (symbols in Fig. 3)
can be satisfactorily fitted to a biquartic polynomial (con-
tinuous lines in Fig. 3).

We now move to the study of the dynamical behavior of
the device, which is described by the equation of motion:

mz̈ = −∂E
∂ z
− bż + F0ξ(T ) (1)

where E is the elastic (potential) energy as obtained by
the ab initio calculations and reported in Fig. 2, m is the
effective mass (taken to be 0.4 times the total mass [19]),
and b is a viscous damping coefficient [20] related to the
quality factor Q through b = 2πf0m/Q. We have consid-
ered Q = 100 throughout all this work [21, 22]. F0ξ(T )
represents a random force with flat spectrum that re-
produces the main characteristics of most kinds of en-
vironmental vibrations. We take a noise intensity of
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FIG. 3. Electrical polarization as a function of the ampli-
tude of the sinusoidal deformation for di�erent values of the
compressive strain �. The continuous lines are �ts of the ab-
initio data to a biquartic polynomial. The inset shows the
good agreement between our calculated data (symbols) for
� = 0 and the phenomenological relation given in Naumov et
al. [18] (dashed line), where the polarization is related to the
amplitude of the sinusoidal deformation.

5 pN, which suits most vibrational ambient noise [23]
(for comparison, 1 pN corresponds to room temperature
pure thermo-mechanical noise).

Notice that having �tted the calculated polarizations
for arbitrary compressions, together with the generalized
position z, we can also trace the dynamical evolution
of the polarization and, consequently, of the generated
voltage across a load RL by solving [24]

m•z = �@E
@z
� b _z � �1

@P 2D
x

@z
_z + F0�(T ) (2)

_V = �2
@P 2D

x

@z
_z � 1

RLCp
V (3)

where P 2D
x is the 2D polarization along x, Cp is the ca-

pacity of an in�nite parallel wire capacitor analogous to
our system [25], �2 = w=Cp, w being the layer thick-
ness, is the electromechanical coupling coe�cient [26] and
�1 = �2=Cp. RL is taken to be 2.4 G
, which is the
impedance matched value that maximizes the electrical
power (see below).

The device exhibit three distinct modes of operation
that are summarized in Fig. 4, where we plot z and V as
a function of time (left and right column, respectively).
(i) At moderate compressive strains the BN sheet vibrate
around the equilibrium position of the unstrained sys-
tem, i.e. the 
at sheet, and a voltage of at most 1 mV
is generated (bottom panels). (ii) As the strain increases
the two potential wells appear: the system will vibrate
around the equilibrium position of one of them, but if
the barrier is not too high it will be able to stochasti-
cally swing to the other well. When bistability kicks in
the greatly increased zrms results in a voltage which is

FIG. 4. Time evolution of the generalized coordinate z (left)
and the generated voltage V (right) in the three characteris-
tic regimes: (i) at no compression the single-well potential is
quasi-harmonic (bottom); (ii) a moderate strain induces the
bistable dynamics (middle); (iii) at large strains the dynamics
is trapped in one of the minima of the double-well potential
(top). These simulations correspond to a 200 �A � 10 �Ah-BN
monolayer.

almost one order of magnitude larger (middle panels).
(iii) Finally, for high values of the strain, the barrier will
be high enough for the system to remain trapped in one
of the two minima (top panels). Interestingly, although
zrms is reduced and is even smaller than for the uncom-
pressed sheet, the generated voltage is of the same order
of the purely bistable case (top panels).

To further investigate the evolution of the dynam-
ics with stress, Fig. 5 shows the rms of the general-
ized coordinate z and the harvested electrical power [9],
Prms = V 2

rms=RL, are plotted as a function of the ap-
plied strain. Increasing the strain drives progressively
the vibrating sheet into the bistable regime, zrms goes
through a steep increase and the harvested power follows
it. At � � 0:3 zrms is maximum and features a sharp
peak: slightly larger strains trap the system in one of
the minima of the double-well potential. In this regime,
nonetheless, the harvested power starts to be dominated
by the polarization, which experiences very large changes
even for small variations of the amplitude of the vibrat-

ing mode. This increase of
@P 2D

x

@z almost entirely balances
the reduction in zrms.

This fact has important consequences from the de-
vice design viewpoint, because one can pursue the op-
timal compression � � 0:3 without risking that small
errors can suddenly drive the system into an operation
regime where the e�ciency is even lower than with the
unstrained sheet. When the optimal strain is exceeded,
the device progressively recovers a quasi-linear behavior
with an harvested electrical power that is still within 85%
its maximum value.

We conclude by observing that the overall perfor-
mance in term of energy harvesting has two compo-
nents: (i) the intrinsic properties of the material, such
as the piezoelectric coe�cient or the Young's modulus
and (ii) the way the device is engineered. Although
these two components are not independent (the optimal
strain, for instance, depends on the material compress-
ibility), it seems that other 2D materials with a larger
piezoelectric response would in principle result in more
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x , thus the harvested power decreases gently after its
maximum for the optimal compression. These simulations
correspond to a 200 �A � 10 �Ah-BN monolayer.

e�cient harvesting. A good candidate is MoS2, which
has larger piezoelectric coe�cients (in good agreement
with previous studies [11], we have obtained values of
3.87�10�10 and 3.81�10�10 C/m in the relaxed-ion and
clamped-ion frameworks, respectively, to be compared
with 3.085�10�10 and 2.855�10�10 C/m for h-BN). Un-
fortunately, we could not observe buckling of the MoS2

sheet, as it is much sti�er than one atom thick h-BN
concerning out-of-plane displacements. The larger piezo-

electric coe�cients do not compensate the lack of bista-
bility and at this size the choice of h-BN still pays o�.
For longer ribbons, currently beyond our computational
capabilities, buckling should be observed and the over-
all performances of a MoS2-based harvester could proba-
bly exceed those of h-BN. More work in this direction is
needed.

In conclusions, we have shown that engineered non-
linearities in piezoelectric two-dimensional system such
as monolayer h-BN can lead to sizeable energy harvest-
ing of ambient vibrations, thermo-mechanical and other
broad band energy source freely available. In particular,
a 20 nm � 1 nm h-BN monolayer under a compressive
strain � = 0.3 % can harvest up to 0.18 pW from a 5 pN
vibration. Finally, the combination of piezoelectric and
mechanical bistability properties of the suspended BN
structures can pave the way for the future development of
beyond CMOS devices that could perform sensing, com-
puting and transmission functions at the nanoscale in a
selfpowered way.
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Abstract 
A method to obtain pre-oriented large 1-D arrays of identical suspended graphene 
nanoribbons is presented. Mechanical exfoliation from graphite was done in order to 
deposit single- and multiple-layered graphene over a Polymethyl-Methacrylate 
(PMMA) substrate, which is used as a sacrificial material. Electron Beam Lithography 
(EBL) is used to define the anchors and the suspended part of the structures. The 
method allows to achieve a high number of graphene suspended nanoribbons with a 
very regular width and length. The main advantage of the method, from the process 
point of view, with respect to other standard procedures is that only one EBL step is 
needed in the whole sequence, so that the overall process is extremely simplified. 
 
1. Introduction 
 
Graphene, among other 2D-structured materials, has attracted the attention for the last 
years of both experimental and theoretical researchers due to its outstanding mechanical 
[1-3] and electrical [4] properties. In particular, a lot of efforts have been devoted to the 
fabrication and characterization of graphene-based-nanoelectromechanical systems 
(NEMS) [5-9]. Graphene sheets can be obtained through chemical growth [10,11] or 
mechanical exfoliation of a primary graphite stack [12]. The latter is very common 
thanks to its simplicity, though its drawbacks are the low probability of obtaining 
single-layer graphene ribbons and the high shape variability they present from flake to 
flake, hindering the achievement of reproducible results for different ribbons and the 
systematic study of the properties of graphene-based NEMS. 
Here we present a simple fabrication method that maximizes the probability of 
obtaining mono and bi-layered graphene (usually around 0.13%, or a total graphene area 
of 0.13 mm2 per square centimeter of exposed area) and to largely reduce their 
geometric variability, controlling the orientation and increasing the shape regularity of 
the ribbons. The proposed method simply requires a standard mechanical exfoliation 
and the transfer of graphene flakes on a Si/Cr/Au/PMMA substrate as initial step, 
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followed by an EBL-based definition of large areas of nanotrenches on the PMMA layer 
at the flakes zone, to achieve suspended ribbons. 
 
2. Fabrication process 
 
A 20nm/100nm thick layer of chromium/gold is deposited on a p-type (100) silicon 
substrate 500m thick. 950k molecular weight Polymethyl-Methacrylate (PMMA), 2% 
dissolved in anisole, is spun at 1500 rpm for 1 min. After spinning, the sample is baked 
in a hot plate to evaporate the anisole solvent at 180ºC for 1 min. The spinning/baking 
sequence is repeated 3 times in order to achieve a total PMMA layer 300 nm thick. Such 
a thickness will assure the suspension of the graphene structure once the sacrificial 
PMMA layer is removed. A scheme of the resultant stack can be seen in Fig. 1(a). 
Mechanical exfoliation is done following a pseudo-standard procedure [12]. Once the 
multilayered graphene flake is attached to the scotch tape, the transfer is done pressing 
it onto the substrate and dragging a spatula following a certain i-direction, as 
represented on Fig.1(b and c). As it will be later discussed, the probability of obtaining 
a high density of graphene ribbons depends on the chosen dragging direction.  
 



 
Fig.  1: Schematic representation of the fabrication process. (a) A stack of silicon (0.5 mm), chromium 
(20 nm), gold (100 nm) and PMMA (300 nm) is used as a substrate. (b) A non-abrasive spatula is used to 
favor the transfer along a certain direction. (c) A set of pre-oriented graphene ribbons are transferred onto 
the substrate. (d) The sample is exposed selectively to an EBL process to pattern the trenches. (e) The 
exposed PMMA is removed achieving the suspended devices. From (c) to (e), left and right figures 
correspond to cross-section and top-view of the sample, respectively. 



 

Trenches are dug under graphene by exposing the PMMA selectively to Electron Beam 
Lithography (EBL) (Fig.1.d) and dipping the sample into a standard methyl isobutyl 
ketone/isopropyl alcohol developer (Fig.1.e). After removing the exposed PMMA, the 
graphene ribbons get released and the underlying Au film becomes visible, allowing a 
good contrast for SEM imaging. Different trench widths, that in turn determine  the 
length of the suspended ribbons, are considered, i.e. 100, 300, 500 and 600 nm.

3. Characterization of the devices 

3.1 Scanning Electron Microscopy inspection 
Fig. 2 shows SEM images of a processed sample, where some graphene flakes 
(horizontal structures) on the trench patterned PMMA surface (vertical strips) are 
visible. Trenches have been defined with different widths depending on the sample, but 
those in Fig. 2(a) present only one single width value of 500nm. The trench widths 
determine the length of the suspended devices, yielding a high-degree of reproducibility 
of this dimension from ribbon to ribbon. All SEM images were performed with a tilt in 
the sample of 60 deg that provokes that only the center of the image is totally focused. 

 
Fig. 2: SEM images of the sample with 500nm length suspended nanoribbons. (a) Shows a part of the 
area exposed to EBL. (b) Shows the detail of the white rectangle remarked in (a). A very straight primary 
ribbon can be seen presenting nine secondary ribbons with identic dimensions. 

Different ribbons (defined as primary ribbons) containing each one several suspended 
devices (defined as secondary ribbons) can be seen. Fig. 2(b), in particular, shows a
magnified SEM image of the obtained suspended graphene. As it can be seen, primary 
ribbons are remarkably straight, although they inevitably differ from one to another as a
result of the exfoliation and transfer process. On the other hand, the secondary ribbons, 
i.e. the suspended devices, have very high shape regularity, with a constant width, w,
and length, l. The obtained structures have a width between 0.5 and 1m. Each primary 
ribbon can contain from 2 to up to 50 secondary ribbons, paving the way to a systematic 
study of their properties, due to their high regularity. 

Fig. 3 shows a high resolution SEM image of three devices with different lengths,
where it can be seen that the structure is fully suspended and all the PMMA under the 



graphene ribbon has been removed. A narrower 100 nm trench was patterned in the 
sample of Fig. 3(b), besides those of 300 and 600 nm shown, but unfortunately they 
were not fully developed and we could not achieve the contrast exhibited by the other 
devices. 

 
Fig.  3: High resolution SEM image for three different length suspended ribbons. (a) 500nm and (b) 
300nm (left), 600nm (right). 

3.2 Raman spectroscopy 
Raman spectroscopy has been successfully utilized as a convenient technique for 
identifying and counting graphene layers on different substrates [13-14]. It was shown 
that the evolution of the 2D-band Raman signatures with the addition of each extra layer 
of graphene can be used to accurately count the number of layers [13] together with the 
position of G peak, which up-shifts with the increasing 1/n, where n is the number of 
graphene layers [15].
The quality and number of layers of the suspended graphene ribbons were evaluated by 
Micro-Raman spectroscopy using a Jobin-Yvon T64000 with a liquid N2-cooled CCD 
detector and the 514 nm excitation wavelength at low power levels to avoid laser 
heating and subsequent degradation of PMMA and graphene. Figure 4 shows the typical 
Raman spectra of a suspended monolayer graphene with a sharp G band (~1584 cm-1)



and 2D band (~2690 cm-1) and a low G/2D ratio. The single layer nature of the 
graphene ribbon is further confirmed by the full with at half maximum (FWHM) of the 
Lorentz fit of the 2D band being ~30 cm-1. The small D peak (~1350 cm-1) intensity 
indicates that the graphene has low defect density. The peaks marked with a star (*) are 
originated in the PMMA layer [16] also exited with the incident laser radiation. 

 
Fig. 4: Raman spectrum of a suspended single layer graphene flake. The marked peaks (*) are Raman 
modes from the PMMA layer.

3.3 Atomic Force Microscopy high resolution topography 
In order to have a higher resolution topography characterization of the suspended 
devices, we also performed AFM images. Non-contact mode has been used in order to 
avoid damaging of the samples. In Fig 5(a), different lateral range AFM images of the 
area previously studied by SEM (Fig.2 and Fig. 3.a) are shown. As it can be 
appreciated, fig. 5(a) shows the topographic image of a graphene primary ribbon 
containing more than 20 equal suspended 500 nm long secondary ribbons. 
In the upper side of Fig. 5(b) the estimated height of the PMMA walls is represented by 
colored vertical bars. The red line indicates the height profile measured with the AFM 
in a scan performed in an area free of graphene nanoribbons (red line in Fig.5.a). The 
difference between the estimated and the measured height of the trenches is attributed to 
the lack of sharpness of the AFM cantilever tip, whose cone angle should be smaller 
than the width of the trenches in order to allow the tip to penetrate and reach their
bottom [17].  



 
Fig. 5: (a) Topographic AFM images of the 500 nm long secondary ribbons. (b) Upper panel: height 
profile along the red line from (a) superposed to the expected PMMA trench profile. Lower panel: height 
profiles for both red and grey lines from (a) showing the suspension of the fabricated devices. Graphene 
adhesion to the walls can be appreciated. 

The difference between the height profile along the graphene ribbon (grey line) and 
trenches (red line) indicated in Fig. 5(a) that can be appreciated in the lower panel of 
fig. 5(b), demonstrates that the secondary graphene ribbons are suspended after the last 
releasing step. The lower panel of fig.5(b) also shows a 4.5nm deep indentation close to 
the walls of the dug trenches, which is a very low value compared to the device length.  



 
Fig. 6: (a) Topographic AFM images of the 100, 300 and 600 nm long ribbons. (b) Upper panel: graphene 
height profile along the grey line from (a). Lower panel: height profile along the red line from (a). Grey 
bars indicate the dimensions of the 100, 300 and 600 nm wide trenches.

Fig. 6 shows the results of the AFM topography of a sample with trenches of different 
widths, i.e. 100, 300 and 600 nm. In Fig. 6(a) it is shown a detail of a primary ribbon 
containing seven suspended structures with the corresponding 100, 300 and 600 nm 
lengths. The upper panel of fig. 6(a) shows that the graphene structure is apparently 
buckled with an amplitude of less than 1nm. Such a buckling can be explained as being 
produced by the residual stress difference between the two materials, PMMA and 
graphene. The lower panel shows the AFM measured profile of 100, 300 and 600nm 
wide trenches. The same mismatch between the measured and nominal heights of the 
PMMA columns is reproduced. Besides, in this case the difference in penetration of the 
AFM tip through the trenches with different widths (the wider the trench the deeper the 
penetration is) confirms that this effect is due to the lack of probe sharpness. On the 
other hand, small lateral range topographic AFM images reveal an apparent thickness of 
the graphene ribbons around 1.44 nm, which is in good agreement with previous works 
[3] reporting 1.6 nm for mono-layer graphene on PMMA. 

3.4 Dragging direction dependence 
Although the number of mono-layer graphene ribbons obtained by this method is 
comparable to what is reported in previous works [3], here we obtain a highly oriented 
set of graphene samples. This fact represents a considerable advantage to pattern the 
trenches, because previous imaging can be avoided, thus simplifying the e-beam step. 



 
Fig. 7: Ribbon’s occupied area for different dragging direction from 0 to 90 degrees, relative to the (001) 
Si cut.  

As mentioned before, the dragging i-direction plays an important role in terms of the 
number of achieved graphene ribbons. In Fig. 7 the statistics of the obtained graphene 
flakes as a function of the dragging direction in terms of the total ribbon area over the 
same substrate area of approximately 0.2 cm2 is shown, extracted from optical 
inspection. A maximum density of graphene structures is achieved around          
with respect the initial dragging direction corresponding to one of the edges of the Si 
substrate. Other works reported that both armchair and zig-zag chirality are preferred 
directions for the mechanical rupture of the honey-comb lattice (with a larger 
probability for the first), suggesting that   is related in some way to the armchair 
direction. Additionally, as it can be seen from Fig. 5(a), the ribbons trend to break 
during the transfer step showing a recurrent angle of 30 deg between their non-parallel 
edges, which is the angle between the armchair and zigzag directions. This seems to 
support the idea of having armchair boundaries in the suspended ribbons. However, 
beyond the origin of the observed dependence of the nanoribbon population on the 
dragging direction, from the nanoengineering point of view of graphene–based NEMS 
devices the dragging angle becomes an extremely useful process parameter to optimize 
the fabrication yield. The control provided by the dragging angle, combined with the 
simplicity of a single e–beam lithography step and the uniformity in length and width of 
the obtained secondary suspended nanoribbons, turn this method in a very promising 
way for NEMS prototyping. 

4. Conclusions 

Tens of suspended highly regular single-layer and few-layer graphene nanoribbons have 
been fabricated by mechanical exfoliation of graphite and transfer to a Si-Au-PMMA 
stack. The polymer is used as a sacrificial layer to release the graphene structures by 
means of a single e-beam lithography step consisting on the patterning of trenches 



perpendicular to the graphene ribbons. A preferred dragging direction in the transfer 
step has been found, which increases the probability of obtaining graphene ribbons. The 
control of this dragging angle allows predicting the directions of the ribbons so that the 
releasing trenches can be patterned with a minimum previous inspection for flakes 
region location. 
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SUMMARY 
 
 
Information and Communication Technologies (ICTs) are ubiquitous and experience a growth of a 
5% every year with applications in very different areas ranging from cell-phones to healthcare 
control. ICT’s are responsible of the extraordinary increment in the amount of information 
exchange all around the world and also represents a considerable contribution to what is known as 
CO2-footprint. A huge effort is nowadays devoted to decrease more and more the power needed to 
switch a bit trying to reach Landauer’s limit which states an energy requirement of at least 2.85 zJ: 
this is the physical limit for a unit of information. The fast developing of low-power consumption 
electronics and its miniaturization opened the door to the possibility of self-powered and autonomy 
for these kinds of technologies. Moreover, the development of self-powered devices is a key point 
in order to avoid the issue of battery replacing or recharging. Vibrations based Energy Harvesting 
(EH) represents a very attractive possibility to power such devices in terms of availability and 
power density.  
 
The objective of this Thesis is to provide an outlook of the state of the art and to find new strategies 
to increase the performance of vibration-based EH technologies. A bistable approach at the micro 
and nano-scale is explored to increase the generated power when dealing with broad-band and low-
intensity vibrations in comparison to the throughput of resonator-based approaches. 
 




