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Identitat visual aplicada a elements publicitaris de gran format

Portades publicacions. D1

Anuncis. D1

Opis. D2 Cartells. D1Banderola. D2

Identificació bàsica
El conjunt de signes que identifiquen
la UAB i que componen la marca són:
el símbol, l’acrònim, el logotip i els colors
corporatius. Els tres primers s’utilitzen
gairebé en la totalitat dels suports com
un conjunt identificador de la UAB.
Per adaptar el conjunt a les diverses
proporcions dels diferents suports
de comunicació, s’han previst diverses
solucions d’aplicació de la marca.
Totes aquestes possibilitats alternatives
normalitzades fan que la marca tingui
una major versatilitat i proporcionen
a l’usuari una gran flexibilitat en el moment
de la seva correcta aplicació. Sempre
que sigui possible, es reproduirà el
conjunt logotip-acrònim en els colors
corporatius.

Aplicacions de la marca

Versió en una tinta Versió en color Versió en negatiu

Acompanyaments. Exemples

Acompanyaments de primer nivell Acompanyaments de primer i de segon nivell

Marca UAB Ús de la pastilla
Per a les aplicacions a les portades
de publicacions i als diferents elements
publicitaris de la Universitat Autònoma
de Barcelona, s’ha dissenyat una versió
de la marca en negatiu, dintre d’una
pastilla negra, amb la intenció de
crear una àrea de reserva de la marca
per poder aplicar-la amb més llibertat,
independentment del color o de la imatge
de fons del suport, protegint-la.
L’aplicació de la pastilla és flexible
i es pot aplicar a dalt o a baix depenent
de les necessitats del dissenyador.
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148x148

210x100

700x500

950x500

D1 i D2
S’ha creat un codi per normalitzar
l’aplicació correcta de la marca amb
pastilla (D1 i D2). El D1 s’aplica a les
peces de comunicació de la UAB de mida
més petita i la seva unitat bàsica
de mesura (x) equival a 5 mm. El codi
d’aplicació de la marca D2 s’aplica,
sobretot, als elements publicitaris de
comunicació externa de gran format com
opis, tanques publicitàries, banderoles,
etc. La seva unitat bàsica de mesura
(x) equival a 5 cm.

A4 revista

1/4 pàgina diari

1/2 plana revista

Faldó diari

10x

Paper de carta

Paper de carta
Format 297x210 mm (A4)
Paper tipus offset reciclat blanc de 100 g
Logotip UAB en color
Tipografia cos/interlineat):
Acompanyaments: Helvetica Neue 75 i 55 cos 8/10
Adreça: Helvetica Neue 55 cos 7/9
Registre mercantil: Helvetica Neue 55 cos 5/7
Mateixa normativa per a la targeta gran i el saluda.

Sobre
Format 115x225 mm
Paper tipus offset reciclat blanc
Logotip UAB en color
Tipografia (cos/interlineat):
Acompanyaments: Helvetica Neue 75 i 55 cos 8/10
Adreça: Helvetica Neue 55 cos 7/9
Mateixa normativa per a sobres format A5 i A4 apaïsat.

Targeta
Format 55x80 mm
Paper tipus offset reciclat blanc 300 g mínim
Logotip UAB en color
Tipografia (cos/interlineat):
Acompanyaments i nom: Helvetica Neue 75 i 55 cos 7/9
Nom i cognoms: Helvetica Neue 75 i 55 cos 7/9
Adreça: Helvetica Neue 55 cos 6/8

Targeta

Edifici X · Campus de la UAB · 08193 Bellaterra
(Cerdanyola del Vallès) · Barcelona · Spain
Tel. +34 93 581 22 99 · Fax +34 93 581 33 00
adreca.electronica@uab.cat · www.uab.cat

Acompanyament de primer nivell
Acompanyament de segon nivell

Nom i cognoms
Càrrec

5 55

7,5

A4

= 5 mmD1

= 5 cmD2

Opis

10x

10x

7x
Gabinet del Rectorat

Vicerectorat d’Ordenació
Acadèmica

 Facultat de Medicina
Diplomatura de Fisioteràpia

Unitat de Treball Campus
Serveis a la Comunitat Universitària

Facultat de Ciències
de la Comunicació

Comunicació Audiovisual

Unitat d’Infraestructures
i Manteniment

Direcció d’Arquitectura
Color del text
El color dels textos de tota la papereria serà el negre, excepte
a les targetes de visita on el nom i els cognoms de la persona
aniran en el color corporatiu Pantone 1605 C.
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Edifici X · Campus de la UAB · 08193 Bellaterra
(Cerdanyola del Vallès) · Barcelona · Spain
Tel. +34 93 581 22 99 · Fax +34 93 581 33 00
gabinet.rectorat@uab.cat · www.uab.cat
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Acompanyament de segon nivell
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Introduction

Length functions. In mathematics, it is frequent to introduce real valued functions, which
may attain infinity, to measure some finiteness properties of the objects we are dealing with
(e.g., dimension of vector spaces, rank, composition length, logarithm of the cardinality). In
1968, Northcott and Reufel observed the underlying common properties of some particularly
well-behaved invariants and axiomatized the abstract notion of length function. Indeed, given
an Abelian category C, a function

L : ObpCq Ñ Rě0 Y t8u

is a length function provided it satisfies the following properties:

(LF.1) L is additive, that is, LpY2q “ LpY1q ` LpY3q for any short exact sequence 0 Ñ Y1 Ñ

Y2 Ñ Y3 Ñ 0 in C;

(LF.2) L is upper continuous, that is, LpY q “ suptLpYαq : α P Λu for any object Y in C and
any directed system S “ tYα : α P Λu of sub-objects of Y such that

ř

Λ Yα “ Y .

One of the goals of this thesis is to answer (at least partially) to the following question
regarding the extension of length functions to modules over crossed products:

Question 0.1. Let R be a ring, let G be a monoid and fix a crossed product R˚G. Is it possible
to find a map

tlength functions on R-Modu ÝÑ tlength functions on R˚G-Modu

L ÞÝÑ LR˚G

satisfying the formula LpMq “ LR˚GpR˚GbRMq for any left R-module M?

Extension to polynomial rings. There is a classical way to answer Question 0.1 in the
positive when G “ N is the monoid of natural numbers and R˚G “ RrNs “ RrXs is the ring of
polynomials in one variable over R.

Indeed, let A be a left Noetherian ring with a distinguished central element X P A. There is
an important length function of the category of left A-modules called the multiplicity of X (see
for example [79, Chapter 7]). Given a finitely generated left A-module AF , the multiplicity of
X in F is defined as

mult`pX,F q “

#

`pF {φXpF qq ´ `pKerpφXqq if `pF {φXpF qq ă 8;

8 otherwise;
(0.0.1)

where ` is the composition length and φX : F Ñ F is the endomorphism of F induced by left
multiplication by X. Given an arbitrary left A-module AM , one lets

mult`pX,Mq “ suptmult`pX,F q : F ďM fin. gen.u .

i
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This classical notion of multiplicity was used by Vámos as a model to construct an L-multplicity
of X based on a given length function L of A-Mod (see [98, Chapter 5]), just substituting ` in
the above definition by an arbitrary length function L.

Let A “ RrXs be a polynomial ring over a left Noetherian ring R, and let L : R-Mod Ñ
Rě0Yt8u be a length function. One can extend trivially L to A-Mod (just forgetting the action
of X) and then take the L-multiplicity multL of the element X P A, which is formally defined
as in (0.0.1). This defines a map

mult : tlength functions on R-Modu ÝÑ tlength functions on RrXs-Modu

L ÞÝÑ multL .

The values of L can be recovered via the formula

LpMq “ multLpRrXs bRMq ,

that holds for any left R-module M . This procedure of extending length functions from the
category of modules over a given ring to the modules over its ring of polynomials is useful in
many situations but it has the disadvantage that it just works in the Noetherian case.

In the recent paper [93], Salce, Vámos and the author studied the problem of the extension
of a given length function on a category of modules R-Mod to a length function of (suitable
subcategories of) RrXs-Mod, without any hypothesis on the base ring. The key idea is to
see a left RrXs-module RrXsM as a pair pRM,φXq of a left R-module and a distinguished
endomorphism, given by left multiplication by X. This allows us to see left RrXs-modules as
discrete-time dynamical systems. Then, under suitable hypotheses, we can attach a dynamical
invariant to pRM,φXq, called algebraic L-entropy (see below for more details). Surprisingly
enough, it turns out that the values of the algebraic L-entropy and of the L-multiplicity of a left
RrXs-module coincide whenever these values are both defined.

A dynamical approach. Let us say something more about the dynamical aspects of this work.
Indeed, given a set M and a self-map φ : M ÑM , one can consider the discrete-time dynamical
system pM,φq, whose evolution law is

NˆM ÑM such that pn, xq ÞÑ φnpxq .

Depending on the possible structures on pM,φq – for example when φ is a continuous self-map
of a topological space M , or φ is an endomorphism of a module M – there exist various notions
of entropy, which, roughly speaking, provide a tool to measure the “disorder”, “growth rate” or
“mixing” of the evolution of the system.

In 1965, Adler, Konheim and McAndrew introduced the topological entropy, which is an
invariant of dynamical systems pM,φq, where M is a compact space and φ is a continuous
self-map. This concept was successively modified and generalized by Bowen, Hood and others.

Turning to the algebraic side, in the final part of the paper where the topological entropy
was introduced, Adler et al. suggested a notion of entropy for a given endomorphism φ : GÑ G
of a discrete torsion Abelian group G:

entpφq “ sup

"

lim
nÑ8

log |F ` φpF q ` . . .` φn´1pF q|

n
: F ď G, log |F | ă 8

*

.

In 1974, Weiss studied the basic properties of entp´q, also connecting it with the topological
entropy of endomorphisms of profinite Abelian groups via the Pontryagin-Van Kampen dual-
ity. The turning point in the study of this notion of entropy came in 2009, when Dikranjan,
Goldsmith, Salce and Zanardo proved the main properties of entp´q.
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Another important step to make a notion of entropy available to module-theorists, is due
to Salce and Zanardo [94]. Given a ring R and a suitable invariant i : R-Mod Ñ Rě0 Y t8u,
Salce and Zanardo defined a notion of entropy entipφq for a given endomorphism φ of a left R-
module, substituting by the invariant i the logarithm of the cardinality used to define entp´q for
endomorphisms of torsion Abelian groups. In the autor’s master thesis [99], it was proved that
if the invariant i is a length function satisfying suitable conditions then the resulting entropy
is a length function. This result was published in the joint paper with Salce and Vámos [93],
which also includes the connection with multiplicity we mentioned before.

At this point one should notice that the dynamical systems pM,φq described above are just
actions of the monoid N on the set M by iterations of φ, that is, morphisms from N to the
monoid of self-maps of M . But, of course, there is nothing special about N; in fact, given any
monoid Γ, one can study dynamical systems pM,λq where λ is a map that associates to any
γ P Γ an endomorphism λγ : M Ñ M (in the previous case λn “ φn for all n P N). In this
direction, it is worth noting that Ornstein and Weiss [81] extended the main results about the
topological entropy of a self-map to the topological entropy of the action of an amenable group.

In this thesis we construct a general machinery to associate a notion of entropy to this kind
of dynamical systems pM,λq. Most of the existing notions of entropy can be viewed as particular
cases of this general framework.

A general scheme for entropies. To define our entropy function we need essentially four
ingredients:

– a commutative semigroup pS,`q;

– a map v : S Ñ Rě0;

– a monoid Γ that acts on S via a homomorphism λ : Γ Ñ AutpS, vq;

– an averaging sequence s “ tFn : n P Nu of non-empty finite subsets of Γ.

We call the pair pS, vq a pre-normed semigroup and we define the s-entropy of the action λ as

hpλ, sq “ sup

$

&

%

lim sup
nPN

v
´

ř

gPFn
λgpxq

¯

|Fn|
: x P S

,

.

-

.

When Γ “ N one usually takes s to be the sequence of intervals Fn “ t0, . . . , n´ 1u. When Γ is
an amenable group (see Section 4.2), the most natural choice for the averaging sequence s seems
to be that of a Følner sequence.

We encode the above scheme in a category l.RepΓpSemivq of left representations of Γ on
pre-normed semigroups and this yields a general notion of entropy

hp´, sq : l.RepΓpSemivq Ñ Rě0 Y t8u .

Given a category C, an entropy function CÑ Rě0 Y t8u is defined via a functor

F : CÑ l.RepΓpSemivq ,

letting the entropy of Y P ObpCq be hpF pY q, sq.
The philosophical point is that, whenever one has a notion of entropy in a given category,

there is “usually” a functorial way to construct a “pre-normed semigroup”, a monoid Γ and a
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suitable Γ-action such that the entropy in the category of representations of Γ on pre-normed
semigroups equals the original entropy. It turns out that most of the usual notions of entropy can
be defined this way. For example, the topological entropy con be defined via a semigroup of open
covers, while the algebraic entropy entp´q can be defined via a semigroup of finite subgroups.

The idea that all the notions of entropy in mathematics should be considered as different
instances of a unique underlying concept is due to Dikran Dikranjan and he started working on
it, at least, from 2006. In 2008, we started collaborating on a common project. During the years
these ideas continued growing and we could include more and more examples in our general
scheme. Some of this work, for actions of the monoid N, will be included in the forthcoming
paper [30] by Dikranjan and Giordano Bruno (see also the recent survey paper [29]).

The algebraic L-entropy. We can now come to our partial answer to Question 0.1. Given
a crossed product R˚G of a ring R with a countable amenable group G, and given a length
function L : R-Mod Ñ Rě0 Y t8u, for any left R˚G-modules R˚GM we consider the semigroup

FinLpMq “ tRK ď RM : LpKq ă 8u ,

with the sum of submodules. We endow FinLpMq with the pre-norm

vL : FinLpMq Ñ Rě0 Y t8u such that vLpKq “ LpKq .

There is a natural left action λ : GÑ AutpFinLpMqq given by left multiplication. Given a Følner
sequence s of G, we can consider the s-entropy of the action λ in the category of pre-normed
semigroups. With this procedure we construct an invariant

entL : R˚G-Mod Ñ Rě0 Y t8u .

It turns out that entL is not well-behaved on the entire category R˚G-Mod, so we define
lFinLpR˚Gq to be the subclass of R˚G-Mod consisting of all left R˚G-modules R˚GM such
that LpKq ă 8, for any finitely generated R-submodule K of M . For example, lFinLpR˚Gq
contains all the left R˚G-modules R˚GM such that LpMq ă 8. Furthermore, a consequence of
the continuity of L on directed colimits of submodules is that, given a left R-module RK such
that LpKq ă 8, the left R˚G-module R˚GbR K is in lFinLpR˚Gq.
We prove the following

Theorem 8.18. Given a ring R and a countable amenable group G, fix a crossed product R˚G
and a discrete (i.e. the finite values of L form a subset of Rě0 which is order-isomorphic to N)
length function L : R-Mod Ñ Rě0 Y t8u which is compatible with R˚G (see Definition 8.2).
Then, the invariant

entL : lFinLpR˚Gq Ñ Rě0 Y t8u

satisfies the following properties:

(1) entL is upper continuous;

(2) entLpR˚GbR Kq “ LpKq for any L-finite left R-module K;

(3) entLpNq ą 0 for any non-trivial R˚G-submodule N ď R˚GbR K;

(4) entL is additive.
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In particular, entL is a length function of lFinLpR˚Gq.

Thus, using entropy, we show that when G is an amenable group there are “many” length
functions of R-Mod which can be extended to a “large” subcategory of R˚G-Mod. Let us also
remark that, even for R “ Z and L “ log2 | ´ |, Elek [36] proved that it is not always possible
to find a length function of the category RrGs-Mod which takes a finite value on the module

RrGsRrGs, if G is not amenable. This shows that the answer to Question 0.1 is negative in
general.

In order to understand how to apply Theorem 8.18, it is important to know when there are
“enough” length functions in R-Mod that satisfy the hypotheses of the theorem. Starting with
an easy example, if R is a field then all the length functions are multiples of the dimension of
vector spaces. All such functions can be used to construct a well-behaved notion of entropy.

More generally, when R is a ring with left Gabriel dimension (e.g., a left Noetherian ring, see
Chapter 2), we can prove a complete structure theorem for all the length functions of R-Mod, in
terms of the Gabriel spectrum of R-Mod (i.e., the set of isomorphism classes of indecomposable
injective modules). For this we re-prove, partially using different methods, and slightly generalize
an old result of Vámos [98]. For the proof of this theorem we make use of some torsion-theoretic
methods.
Using the structure of length functions, we can deduce the existence of many length functions of
R-Mod that satisfy the hypotheses of Theorem 8.18 independently on the choice of the crossed
product R˚G, when R has left Gabriel dimension.

Three motivating problems. The interest in having a well-behaved invariant, like entL, for
categories of modules over crossed products comes from some classical conjectures that we are
now going to describe.

– (Linear) Surjunctivity Conjecture. A map is surjunctive if it is non-injective or surjective. Let
A be a finite set and equip AG “

ś

gPGA with the product of the discrete topologies on each

copy of A. There is a canonical left action of G on AG defined by

gxphq “ xpg´1hq for all g, h P G and x P AG .

A long standing open problem by Gottschalk [52] is that of determining whether or not any
continuous and G-equivariant map φ : AG Ñ AG is surjunctive, we refer to this problem as
the Surjunctivity Conjecture.
An analogous problem is as follows. Let K be a field, let V be a finite dimensional K-vector
space, endow V G with the product of the discrete topologies and consider the canonical left G-
action on V G. It is asked whether any G-equivariant continuous and K-linear map V G Ñ V G

is surjunctive, we refer to this problem as the L-Surjunctivity Conjecture.

– Stable Finiteness Conjecture. A ring R is directly finite if xy “ 1 implies yx “ 1 for all
x, y P R. Furthermore, R is stably finite if the ring of kˆ k matrices MatkpRq is directly finite
for all k P N`. A long-standing open problem due to Kaplansky [64] is to determine whether
the group ring KrGs is stably finite for any field K, we refer to this problem as the Stable
Finiteness Conjecture. Notice that, MatkpKrGsq – EndKrGspKrGskq, so an equivalent way to
state the Stable Finiteness Conjecture is to say that any surjective endomorphism of a free
left KrGs-module of finite rank is injective.

– Zero-Divisors Conjecture. Another conjecture of Kaplasky (see [84] and [83]) affirms that
KrGs is a domain for any torsion free group G and any field K. We refer to this conjecture as
the Zero-Divisors Conjecture.
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All the above conjectures are open in general. In 1999, Gromov [53] defined sofic groups (see
Definition 9.5) and proved a very general version of the Surjunctivity Conjecture (see also [105])
for this class of groups. Gromov’s result also implies the L-Surjunctivity Conjecture for sofic
groups (see also [13]).

The Stable Finiteness Conjecture was known in full generality for fields of characteristic 0,
while there was no progress in the positive characteristic case until 2002, when Ara, O’Meara
and Perera [5] proved that any crossed product K˚G of a division ring K with an amenable
group G is stably finite, and used this result to deduce the Stable Finiteness Conjecture for the
class of residually amenable groups. Short after, Elek and Szabó [38] verified the conjecture for
G a sofic group (see also [13] and [6] for alternative proofs).

Applications of entropy. Let us remark that the Surjuctivity Conjecture was classically
known to hold for amenable groups: the usual proof in this particular case was an application
of the topological entropy studied by Orstein and Weiss. This fact suggested that the notion of
algebraic entropy should be applicable to the amenable case of the Stable Finiteness Conjecture.
In fact, an application of Theorem 8.18 is the following:

Theorem 10.6. Let R be a left Noetherian ring, let G be a countable amenable group and let
R˚G be a crossed product. Let RK be a finitely generated left R-module, let R˚GM “ R˚GbRK,
and let R˚GN ď R˚GM . Then, any surjective endomorphism of left R˚G-modules φ : N Ñ N is
injective.
In particular, EndR˚GpNq is directly finite.

The hypothesis that G is amenable in the above theorem is essential. In fact, already for
non-commutative free groups the above theorem fails (see Example 10.9).

A different application of the algebraic entropy is to problems related to the Zero-Divisors
Conjecture. In fact, in [22] Chung and Thom used the topological entropy to study some cases
of the Zero-Divisors Conjecture. We can generalize and complete their results as follows:

Theorem 10.10. Let K be a division ring and let G be a countably infinite amenable group.
For any fixed crossed product K˚G, the following are equivalent:

(1) K˚G is a left and right Ore domain;

(2) K˚G is a domain;

(3) entdimpK˚GMq “ 0, for every proper quotient M of K˚G;

(4) Impentdimq “ NY t8u.

In other words, the algebraic entropy detects the zero-divisors in K˚G. As an immediate
consequence of the above theorem, we obtain that, in the above hypotheses, K˚G is a domain if
and only if it admits a flat embedding in a division ring.

A point-free approach in the sofic case. After viewing that in the amenable case we could
generalize the known results about the Stable Finiteness Conjecture to crossed products, we
tried to obtain a similar result for sofic groups. As we said, in this generality there is no hope
to prove a result like Theorem 8.18 and so we need to find different tools to tackle the problem.
Let us describe our strategy.

Let G be a group, let R be a ring and fix a crossed product R˚G. Let K be a finitely
generated left R-module, let R˚GM “ R˚G bR K and consider an endomorphism of left R˚G-
modules φ : M Ñ M . It is well-known that the poset LpMq of R-submodules of M (ordered
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by inclusion) is a lattice with very good properties. Consider the natural left action (by left
multiplication) of G on LpMq. The first important observation is that, at this level of lattices
of R-submodules, there is essentially no difference between RrGs and general crossed products
(since the difference between the two construction is just in some units of R which leave invariant
the R-submodules). Furthermore, φ induces a G-equivariant semi-lattice homomorphism

Φ : LpMq Ñ LpMq such that ΦpHq “ φpHq .

The second key-observation is that φ is injective (resp., surjective) if and only if Φ has the same
property. Thus, using this construction we can translate our original problem in terms of some
“well-behaved” lattices with a G-action and semi-lattice G-equivariant endomorphisms on them.

The surprising thing is to realize that, when proving the L-Surjunctivity Conjecture, one is
actually working with the same kind of group actions on lattices as for the Stable Finiteness
Conjecture. Let us be more precise: consider a left R-module N , take the product NG endowed
with the product of the discrete topologies and the usual left G-action, and consider a G-
equivariant continuous endomorphism ψ : NG Ñ NG. If N is Artinian, one can show that
the poset N pNGq of closed submodules of NG, ordered by reverse inclusion, is a lattice with
many common features with a lattice of submodules of a discrete module. There is a natural
right action of G on N pNGq, induced by the left G-action on NG. Furthermore, ψ induces a
G-equivariant semi-lattice homomorphism

Ψ : N pNGq Ñ N pNGq such that ΨpHq “ ψ´1pHq .

It turns out that ψ is injective (resp., surjective) if and only if Ψ is surjective (resp., injective).
Thus, with this construction we can translate (a general form of) the L-Surjunctivity Conjecture
in terms of lattices with a G-action and G-equivariant semi-lattice endomorphisms on them,
exactly as we did for the Stable Finiteness Conjecture.

After these observations it was clear that the Stable Finiteness Conjecture and the L-
Surjunctivity Conjecture should be treated as expressions in different languages of the same
problem. In Chapter 2 we study the category of qframes, which are lattices with properties
analogous to the lattices LpR˚GMq and N pNGq described above. Then, in Chapter 11, we prove
a general theorem (see Theorem 11.5) for a G-equivariant endormorphism of left representations
on qframes, where G is a sofic group. The proof is quite technical and uses the machinery of
torsion and localization to reduce the problem to semi-Artinian qframes.

As a consequence, we obtain the following general version of the L-Surjunctivity Conjecture
for sofic groups:

Theorem 11.8 Let R be a ring, let G be a sofic group and let RN be an Artinian left R-module.
Then any continuous and G-equivariant endomorphism φ : NG Ñ NG is surjunctive.

Notice that the above theorem generalizes in different directions the main results of [15] and
[14]. Furthermore, we prove a general version of the Stable Finiteness Conjecture in the sofic
case, extending results of [38] and [5]:

Theorem 11.11 Let R be a ring, let G be a sofic group, fix a crossed product R˚G, let NR be
a finitely generated right R-module and let M “ R˚GbN . Then,

(1) if NR is Noetherian, then any surjective R˚G-linear endomorphism of M is injective;

(2) if NR has Krull dimension, then EndR˚GpMq is stably finite.



viii Introduction

Another use of torsion theories: model approximations. In the last part of the thesis
we study a problem of a different nature, the connection with the rest of the thesis comes from
the methods we use. In fact, the formalism of torsion theories and localization of Grothendieck
categories, that is used directly or indirectly in all our main results, is applied in Chapter
12 to clarify and generalize some recent results of Chachólski, Neeman, Pitsch, and Scherer
about model approximations of the category of unbounded chain complexes over a Grothendieck
category.

Let us start with some background for the problem. Model categories were introduced in
the late sixties by Quillen [89]. A model category pM,W,B, Cq is a bicomplete category M
with three distinguished classes of morphisms, called respectively weak equivalences, fibrations
and cofibrations, satisfying some axioms (see Definition 12.2). An important property of model
categories is that one can invert weak equivalences, obtaining a new category, called the homotopy
category.

The concept of model approximation was introduced by Chachólski and Scherer [21] with the
aim of constructing homotopy limits and colimits in arbitrary model categories. The advantage
of model approximations is that it is easier in general to prove that a given category has a model
approximation than defining a model structure on it. On the other hand, model approximations
allow to construct derived functors and to define the homotopy category. Consider a category
C with a distinguished class of morphisms WC and a model category pM,W,B, Cq. A model
approximation of pC,WCq by pM,W,B, Cq is a pair of adjoint functors

l : C //oo M : r

such that l sends the elements of WC to elements of W and other technical conditions (for details
see Definition 12.13).

Chachólski, Pitsch, and Scherer [19] introduced a useful model approximation for the category
of unbounded complexes ChpRq over a ring R, whose homotopy category is the usual derived
category DpRq. This construction encodes in a pair of adjoint functors the classical ideas to
construct injective resolutions of unbounded complexes. The aim of the successive paper [18] of
the same three authors together with Neeman, is to modify the construction of [19] in order to
obtain a “model approximation for relative homological algebra”.

Let us be more specific about the meaning of relative homological algebra in this context.
Consider a Grothendieck category C, roughly speaking, an injective class is a suitable class I
of objects of C that is meant to represent a “different choice” for the injective objects in the
category (see Definition 12.30). Chachólski, Pitsch, and Scherer [20] studied the injective classes
of the category of modules Mod-R over a commutative ring R, classifying all the injective classes
of injective objects.

Given a Grothendieck category C and an injective class of injective objects I, one says
that a morphism of unbounded complexes φ‚ : M‚ Ñ N‚ is an I-quasi-isomorphism provided
HomCpφ

‚, Iq is a quasi-isomorphism of complexes of Abelian groups for all I P I. The following
questions naturally arise:

Question 0.2. In the above notation, denote by WI the class of I-quasi-isomorphisms, then

(1) is it possible to find a model approximation for pChpCq,WIq? If so, what does the homotopy
category of such approximation look like?

(2) Is it possible (in analogy with [19]) to give an adjunction that encodes an inductive construc-
tion of the relative injective resolutions of unbounded complexes?
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Chachólski, Neeman, Pitsch, and Scherer [18] partially answer the above questions in case
the category C is the category of modules over a commutative Noetherian ring R. They showed
that the above questions have a positive answer if R has finite Krull dimension. On the other
hand, if the Krull dimension of R is not finite, there always exists an injective class of injectives
I for which part (2) of the question has a negative answer.

In Chapter 12, we try to tackle the above questions in the general setting of Grothendieck
categories. Our key observation is that there is a bijective correspondence between injective
classes of injectives and hereditary torsion theories induced by the following correspondence:

τ “ pT ,Fq � // Iτ “ tinjective objects in Fu .

The bijection with hereditary torsion theories allows us to generalize the classification of the
injective classes of injective object. We can now answer part (1) of Question 0.2 in full generality.
First of all, recall that it is possible to associate to any hereditary torsion theory τ a localization
of the category C, which is encoded in the following pair of adjoint functors:

C
Qτ // C{T ,
Sτ

oo

where C{T is a Grothendieck category, which is called the localization of C at τ . One extends the
functors Qτ and Sτ to the categories ChpCq and ChpC{T q (just applying them degree-wise), this
gives rise to an adjunction. Abusing notation, we use the same symbols for these new functors.
Then, one proves that a morphism of complexes φ‚ in ChpCq is an Iτ -quasi-isomorphism if and
only if Qτ pφ

‚q is a quasi-isomorphism in ChpC{T q. Furthermore, if we endow ChpC{T q with
the canonical injective model structure, there is a model approximation

Qτ : pChpCq,WIτ q
//oo ChpC{T q : Sτ .

The homotopy category associated with this model approximation has a very concrete form: it
is precisely the derived category DpC{T q, see Theorem 12.50.

The answer to part (2) of Question 0.2 is more delicate. First of all, one needs to understand
what fails in the construction of [18]: the quotient category C{T may fail to be pAb.4˚q-k for
all k P N (see Definition 12.26), even if C is a very nice category (say a category of modules
over a commutative Noetherian ring). This, a fortiori trivial, observation is sufficient to explain
why one cannot always construct inductively the relative injective resolutions of unbounded
complexes. In fact, there is no reason for an object X‚ in the homotopy category DpC{T q
of pChpCq,WIτ q for being isomorphic to the homotopy limit of its truncations if C{T is not
pAb.4˚q-k for any k P N. Going back to the original question, we can partially answer as follows:
one can always find a model approximation of pChpCq,WIτ q by towers of model categories of
half-bounded complexes over C{T provided C{T is pAb.4˚q-k for some k P N.

Structure of the thesis
The thesis is organized in twelve chapters divided in five parts.

Part I encompasses the first three chapters and consists mainly of background material. Some
sections contain basic results and are included with the intention to fix notations and to make
the results of this thesis available to readers with diverse backgrounds. In general, we tend to
omit the proofs for the most widely known results (giving instead references to the literature),
while we include the proofs when we think that their arguments are particularly important for
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the comprehension or when the proofs available in the literature are not satisfactory for some
reason.

In Chapter 1 we provide the necessary background in general category theory with emphasis
on Abelian and Grothendieck categories. Furthermore, we recall the machinery of torsion the-
ories and localization of Gabriel categories, stating the Gabriel-Popescu Theorem and some of
its consequences.

In Chapter 2 we introduce the category of quasi-frame and we study the basic constructions
in this category. Two useful tools in this context are the Krull and the Gabriel dimension of
quasi-frames. Using the fact that the poset of sub-objects of a given object in a Grothendieck
category is a quasi-frame, we re-obtain the classical notions of Krull and Gabriel dimension for
such objects. We also introduce and study a relative version of the Gabriel dimension.

In Chapter 3 we provide the necessary background in topological groups and modules. In
particular, in the first half of the chapter, after some preliminaries, we state the Pontryagin-Van
Kampen Duality Theorem and the Fourier Inversion Theorem. In the second half of the chapter
we give a complete proof of particular case of the Mülcer Duality Theorem between discrete and
strictly linearly compact modules.

Part II is devoted to the study of entropy in a categorical setting, this part contains Chapters
4, 5 and 6.

In Chapter 4 we introduce the category of pre-normed semigroups and the category of left
Γ-representations of a monoid Γ over a given category. Then, we introduce and study an entropy
function in the category of left Γ-representations over the category of normed-semigroups. In
the second part of the chapter we concentrate on the case when Γ is an amenable group.

Chapter 5 consist of a series of examples of classical invariants that can be obtained functo-
rially using the entropy of pre-normed semigroups.

In Chapter 6 we prove a Bridge Theorem (generalizing a result of Peters) that connects the
topological entropy on locally compact Abelian groups to the algebraic entropy on the dual,
using the results of Chapter 3.

Part III is devoted to the study of length functions and to apply the machinery of entropy
to extend length functions to crossed products. It consists of Chapters 7 and 8.

In Chapter 7 we prove a general structure theorem for length functions of Grothendieck
categories with Gabriel dimension, this generalizes a result of Vámos. Given a ring R and a
group G, we use the structure of length functions over R-Mod to give a precise criterion for a
length function L : R-Mod Ñ Rě0Yt8u to be “compatible” with a given crossed products R˚G
(length functions compatible with R˚G are, roughly speaking, the functions that one may hope
to extend to R˚G-Mod).

In Chapter 8 we define the algebraic L-entropy of a left R˚G-module M , where R is a general
ring and G is a countable amenable group. The entire chapter is devoted to the proof of the
main properties of entropy. In particular the proof of the additivity of the entropy function takes
more than one third of the chapter.

In Part IV we apply the theory developed in the three previous parts of the thesis to some
classical conjectures in group representations. This part encompasses Chapters 9, Chapter 10
and 11.

In Chapter 9 we state the conjectures we are interested in, that is, the Surjunctivity Con-
jecture, the L-Surjunctivity Conjecture, the Stable Finiteness Conjecture and the Zero-Divisors
Conjecture. In order to state properly the (L-)Surjunctivity Conjecture we briefly recall some
basics about cellular automata. We use the Müller Duality Theorem to prove some relations
among the conjectures.
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In Chapter 10 we concentrate on the amenable case of the above conjectures. In particular,
we show how to use topological entropy to prove the surjunctivity conjecture for amenable groups
and we use the algebraic L-entropy to study (general versions of) the Stable Finiteness and the
Zero-Divisors Conjectures.

In Chapter 11 we concentrate on the sofic case of the L-Surjunctivity and of the Stable
Finiteness Conjectures. In particular, we reduce both conjectures to a more general statement
about endomorphisms of quasi-frames. This allows us to extend the known results on both
conjectures.

Finally, Part V is devoted to the study of model approximations for relative homological
algebra. In particular, we apply the machinery introduced in Chapters 1 and 2 to generalize and
reinterpret some recent results of Chachólski, Neeman, Pitsch, and Scherer.

We conclude this introduction with the following “dependence graph” among the various
chapters of the thesis:
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Chapter 1

Categories and modules: an outline

In Chapter 1 we present the categorical concepts needed in the thesis. We include basic def-
initions and examples about general category theory and then we specialize to Abelian and
Grothendieck categories. We also include some general facts about module theory and homo-
logical algebra. The chapter culminates with a discussion of the Gabriel-Popescu Theorem and
some of its consequences.
The theory of localization of Abelian categories goes back to Gabriel’s thesis [44] but we use here
a slightly different approach, analogous to the treatment of localization in [96] for categories of
modules: we first construct localizations in Grothendieck categories with enough injectives, we
use these results to localize categories of modules (that clearly have enough injectives) and we
deduce the Gabriel-Popescu Theorem which states that any Grothendieck category is a local-
ization of a category of modules. As a byproduct, one obtains that any Grothendieck category
has enough injectives and so we can localize any such category.

1.1 Categories and functors

1.1.1 Preliminar definition and basic examples

A category is an algebraic structure consisting of “objects” that are linked by “arrows” with two
basic properties: the ability to compose the arrows associatively and the existence of an identity
arrow for each object.

Definition 1.1. A category C consists of the following three data:

– a class of objects ObpCq;

– a set of morphisms HomCpA,Bq, for every ordered pair of objects pA,Bq of C;

– a composition law

HomCpA,Bq ˆHompB,Cq ÝÑ HomCpA,Cq

pφ, ψq ÞÝÑ ψ ˝ φ

for every ordered triple pA,B,Cq of objects of C.

To underline the fact that a morphism φ belongs to HomCpA,Bq, we also write φ : AÑ B. The
morphisms from one object to itself are called endomorphisms, we let EndCpAq “ HomCpA,Aq.
The above data are subject to the following axioms:

3
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(Cat.1) given φ1 : AÑ B, φ2 : B Ñ C and φ3 : C Ñ D, we have pφ3 ˝ φ2q ˝ φ1 “ φ3 ˝ pφ2 ˝ φ1q;

(Cat.2) for all A P ObpCq, there exists a morphism idA P EndCpAq, called identity, such that
idA ˝ φ “ φ and ψ ˝ idA “ ψ for all B P ObpCq, φ : B Ñ A and ψ : AÑ B.

Sometimes we denote composition of morphisms in a category by juxtaposition, omitting the
symbol “˝”.

Definition 1.2. Let C be a category and let A, B P ObpCq. A morphism φ P HomCpA,Bq is an
isomorphism if there exists ψ P HomCpB,Aq such that ψφ “ idA and φψ “ idB. An isomorphism
φ : X Ñ X is said to be an automorphism of X. The set of automorphisms of X is denoted by
AutCpXq.

If φ P HomCpA,Bq is an isomorphism, there exists a unique ψ P HomCpB,Aq such that
ψφ “ idA and φψ “ idB. We denote such ψ by φ´1 and we call it the inverse of φ.

Example 1.3. Let C be a category, we denote by Cop the opposite category of C, that is, the
category such that ObpCopq “ ObpCq and HomCoppA,Bq “ HomCpB,Aq for every A,B P ObpCopq.

Example 1.4. A semi-group is a pair pG, ¨q with G a set and where ¨ : GˆGÑ G is a binary
associative operation (that is, pf ¨ gq ¨ h “ f ¨ pg ¨ hq for all f , g and h P G). If there is a unit
element e P G (that is, e ¨ g “ g ¨ e “ g for all g P G) then we say that the triple pG, ¨, eq is a
monoid. In a monoid (or semi-group) we usually denote by ¨ the operation and we denote by e
the identity element. If the operation is commutative then it is denoted by ` and the identity
element is denoted by 0.
Any monoid G can be considered as a category CG with a single object ‚ and such that EndCGp‚q “

G. Any category with one object is of this form.
More generally, in a given category C, EndCpAq, with the operation induced by composition of
morphisms and idA as unit element, is a monoid for all A P ObpCq.

Example 1.5. We denote by Set the category of sets. The class of objects of Set is the class of
all sets and the set of morphisms between two sets is the family of all functions between them.
Composition and identity are as expected.

Example 1.6. We denote by Top the category of topological spaces. The class of objects of
Top is the class of all topological spaces pT, τq, where T is a set and τ is a topology, that is a
collection of subsets of T such that:

– H and T P τ ;

– arbitrary unions of elements of τ belong to τ ;

– finite intersections of elements of τ belong to τ .

The elements of τ are called open sets, while the elements of the form T zA, with A P τ , are
called closed sets. A morphism φ : pT1, τ1q Ñ pT2, τ2q in Top is a continuous map, that is, a map
φ : T1 Ñ T2 such that φ´1pAq P τ1 for all A P τ2. Composition and identities are as expected.

Example 1.7. Let I be a set. A binary relation “ď” on I is a preorder if it is transitive (i.e.,
if i ď j and j ď k, then i ď k, for all i, j, k P I), and reflexive (i.e., i ď i for all i P I). If ď is
a preorder on I, then the pair pI,ďq is said to be a preordered set. If ď is also antisymmetric
(i.e., if i ď j and j ď i, then i “ j, for all i, j P I) then it is a partial order and pI,ďq is a
partially ordered set (or a poset). Furthermore, pI,ďq is a totally ordered set if it is a poset
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such that, for all a, b P I, either a ď b or b ď a.
Given a preordered set pI,ďq, one can define a category CatpI,ďq whose objects are the elements
of I and, for all i, j P I,

HomCatpI,ďqpi, jq “

#

t‚u if i ď j;

H otherwise.

In particular, given any set J , the discrete order on J is a relation defined as follows: i ď j
if and only if i “ j. Of course this is a preorder. We call the category CatpJ,ďq the discrete
category over J .

Example 1.8. Let I be a set and let Ci be a category, for all i P I. The product category
ś

iPI Ci is defined as follows:

– Obp
ś

iPI Ciq “
ś

iPI ObpCiq, where the
ś

iPI on the right hand side represents the cartesian
product of classes;

– Homś

iPI Ci
ppCiqiPI , pC

1
iqiPIq “

ś

iPI HomCipCi, C
1
iq, for all pCiqiPI , pC

1
iqiPI P Obp

ś

iPI Ciq;

– composition is defined component-wise, using the composition laws in each Ci.

Definition 1.9. Given two categories C1 and C2, a functor F : C1 Ñ C2 is a (generalized)
function that

(Func.1) associates to any object A in C1 an object F pAq in C2;

(Func.2) associates to each morphism φ : X Ñ Y P C1 a morphism F pfq : F pY q Ñ F pXq P C2.
Furthermore, F pidAq “ idF pAq, for all A P ObpC1q and F pψ ˝ φq “ F pψq ˝ F pφq, for
any pair of morphisms φ : X Ñ Y and ψ : Y Ñ Z.

Let C be a category, the obvious functor idC : C Ñ C such that F pXq “ X and F pφq “ φ,
for any object X P ObpCq and any morphism φ : X Ñ Y in C, is said to be the identity functor.
Notice also that, given three categories C1, C2 and C3, and functors F : C1 Ñ C2, G : C2 Ñ C3,
there is a well defined composition G ˝ F : C1 Ñ C3.

Example 1.10. Let C be a category. Any fixed object A P ObpCq determines two functors

HomCpA,´q : CÑ Set and HomCp´, Aq : Cop Ñ Set .

The functor HomCpA,´q maps an object B P ObpCq to the set HomCpA,Bq and a morphism
φ : B Ñ C to the map

HomCpA, φq : HomCpA,Bq Ñ HomCpA,Cq such that ψ ÞÑ φ ˝ ψ .

The functor HomCp´, Aq is defined similarly.

Example 1.11. Given two semi-groups pG1, ¨q and pG2, ¨q, a map φ : G1 Ñ G2 is a homomor-
phism (resp., a anti-homomorphism) if φpg ¨hq “ φpgq ¨φphq (resp., φpg ¨hq “ φphq ¨φpgq), for all
g and h P G1. If G1 and G2 are monoids, then φ is a homomorphism of monoids (resp., anti-
homomorphism of monoids) if it is a homomorphism of semi-groups (resp., anti-homomorphism
of semi-groups) and φpeq “ e. If φ : G1 Ñ G2 is a homomorphism of monoids, one can see
that it induces a functor Fφ : CG1 Ñ CG2 in the obvious way, similarly a anti-homomorphism
ψ : G1 Ñ G2 corresponds to a functor Hψ : pCG1q

op Ñ CG2. All the functors among one-object
categories have this form.
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Example 1.12. The category of semi-groups Semi (resp., the category of monoids Mon), is
the category whose class of objects ObpSemiq (resp., ObpMonq) is the class of all semi-groups
(resp., monoids) and morphisms are semi-group (resp., monoid) homomorphisms with the usual
composition of maps.

Example 1.13. A group is a monoid in which any element has an inverse. A group is Abelian
if its operation is commutative. A homomorphism of (Abelian) groups is a semigroup homomor-
phism. We denote by Group (resp., Ab) the category of all (Abelian) groups and homomorphisms
of groups among them.
Notice that, given a category C and an object X P ObpCq, the set AutCpXq with the operation
induced by composition is a group.

Definition 1.14. A subcategory C1 of a category C is a category such that ObpC1q is a subclass
of ObpCq, HomC1pA,Bq is a subset of HomCpA,Bq for any pair of objects A,B P ObpC1q and
such that composition and identity morphisms in C1 and in C coincide.

One can see that Mon is a subcategory of Semi, which is a subcategory of Set. In general, if
C1 is a subcategory of C, then there is an inclusion functor F : C1 Ñ C.

Definition 1.15. Let F : C1 Ñ C2 be a functor between two categories. For any pair of objects
A and B P ObpC1q there is a map

HomC1pA,Bq ÝÑ HomC2pF pAq, F pBqq such that φ ÞÝÑ F pφq .

If the above map is surjective for any pair of objects of C1, one says that the functor F is full,
while if all such maps are injective one says that F is faithful. A functor which is both full and
faithful is said to be fully faithful.

An example of faithful functor is the inclusion of a subcategory C1 in a bigger category C.
Notice that the inclusions of Ab in Group and of Group in Mon are full functors, while the
inclusion of Mon in Semi is not full.

Definition 1.16. Let C be a category and let C1 be a subcategory. If the inclusion F : C1 Ñ C is
full, we say that C1 is a full subcategory of C.

Given a category C, in order to specify a full subcategory C1 of C, it is enough to specify
ObpC1q.

Definition 1.17. Let C1 and C2 be two categories and let F , F 1 : C1 Ñ C2 be two functors.
A natural transformation ν : F ñ F 1 between F and F 1 is obtained taking for all C P C1 a
morphism νC : F pCq Ñ F 1pCq such that the following squares commute

F pCq

νC
��

F pφq // F pDq

νD
��

F 1pCq
F 1pφq

// F 1pDq

for all D P ObpC1q and φ P HomC1pC,Dq. We say that ν is a natural isomorphism provided all
the νC are isomorphisms.



1.1 Categories and functors 7

Example 1.18. A category I is said to be small if its morphisms (and consequently its objects)
form a set (not a proper class). Given a small category I and a category C one can define
the functor category FuncpI,Cq as follows. The objects of FuncpI,Cq are the functors from I
to C, while the morphisms between two functors F, F 1 : I Ñ C are the natural transformations
F ñ F 1. Composition and identities are as expected.

Definition 1.19. Let C1 and C2 be two categories.

– An adjunction pF,Gq between C1 and C2 is a pair of functors F : C2 Ñ C1 and G : C1 Ñ

C2, such that the functor HomC2p´, Gp´qq : C2 ˆ C1 Ñ Set is naturally isomorphic to
HomC1pF p´q,´q : C2 ˆ C1 Ñ Set. In case pF,Gq is an adjunction, we say that F is left
adjoint to G and that G is right adjoint to F .

– A functor G : C1 Ñ C2 is an equivalence of categories if there exists a functor F : C2 Ñ C1 such
that FG and GF are naturally isomorphic to the identity functors idC1 and idC2 respectively.

– An equivalence between Cop1 and C2 is said to be a duality.

The proof of the following lemma is straightforward and so it is left to the reader.

Lemma 1.20. Let C be a category, let I be a set and let Ĩ be the discrete category over I. Then,
there is an equivalence of categories FuncpĨ ,Cq –

ś

I C.

Lemma 1.21. [96, Proposition 9.1, Ch. IV] Let C1 and C2 be two categories and let F : C2 Ñ C1

be a functor. If G, G1 : C1 Ñ C2 are both right adjoints to F , then there is a natural isomorphism
ν : Gñ G1.

Thanks to the above lemma, adjoints are uniquely determined up to natural isomorphism,
so we can speak about “the” right (or left) adjoint to a given functor

Lemma 1.22. [70, Theorem 1, Sec. 8, Ch. IV] Let C1, C2 and C3 be categories and let pF,Gq and
pH,Kq be two adjunctions between C1 and C2, and C2 and C3 respectively. Then, the composition
of the two adjunctions pF ˝H,G ˝Kq is an adjunction between C1 and C3.

Let I, J be small categories and consider a functor F : I Ñ J . Given a category C, there is
an induced functor

F˚ : FuncpJ,Cq Ñ FuncpI,Cq ,

defined by composition.

Definition 1.23. Let I, J be small categories, let C be a category and consider a functor
F : I Ñ J . Then,

– the left adjoint F : : FuncpI, Cq Ñ FuncpJ,Cq to F˚ is the left Kan extension of F (if it exists);

– the right adjoint F ; : FuncpI, Cq Ñ FuncpJ,Cq to F˚ is the right Kan extension of F (if it
exists).

1.1.2 Universal constructions

Let C be a category. In this subsection we briefly recall some constructions in C that are defined
by “universal properties”.

Definition 1.24. Let C be a category. An object C P ObpCq is said to be initial (resp., terminal)
if, for all A P ObpCq there exists a unique morphism φ : C Ñ A (resp., ψ : AÑ C).
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Lemma 1.25. Let C be a category and let C and D be two initial (resp., terminal) objects in
C. Then, there is a unique isomorphism φ : C Ñ D.

Proof. By definition of initial object, there is a unique morphism φ : C Ñ D and a unique
morphism ψ : D Ñ C, furthermore the unique endomorphism of C is idC and the unique
endomorphism of D is idD. It follows that φ ˝ ψ “ idD and ψ ˝ φ “ idC , that is, ψ “ φ´1 is
the inverse of φ, which is the unique isomorphism going from C to D. Analogous considerations
hold for terminal objects.

A universal property is a condition imposing that a given object is the initial or final object
in a suitable category. As we proved, this automatically ensures that an object satisfying such
a property (if it exists) is unique up to unique isomorphism.

Definition 1.26. Let I be a small category and let F : I Ñ C be a functor; for all i P ObpIq we
denote by Ci the object F piq. The colimit of F is a pair plim

ÝÑ
F, pεiqiPObpIqq with lim

ÝÑ
F P ObpCq

and εi P HomCpCi, limÝÑF q, for all i P ObpIq, such that εj ˝ F pφq “ εi, for any φ P HomIpi, jq,
and which satisfies the following universal property:

(˚) for any pair pC, pφiqiPObpIqq with C P ObpCq and φi P HomCpCi, Cq, for all i P ObpIq, such
that φj ˝ F pφq “ φi, for any φ P HomIpi, jq, there exists a unique morphism Φ : lim

ÝÑ
F Ñ C

such that φi “ Φ ˝ εi for all i P ObpIq.

Dually, consider a small category I and a functor F : Iop Ñ C. A pair plim
ÐÝ

F, pπiqiPObpIqq with
lim
ÐÝ

F P ObpCq and πi P HomCplimÐÝF,Ciq is a limit of F if, when viewed in Cop, this pair is a
colimit of the opposite functor F op : I Ñ Cop.

Notice that, given a category C, a small category I and a functor F : I Ñ C, one can define
a category whose objects are pairs pL, pπi : LÑ F piqqiPObpIqq, with L P ObpCq, such that, given
a morphism φ : iÑ j in I, F pφqπi “ πj . A morphism between two given objects pL, pφiqiPObpIqq

and pL1, pφ1iqiPObpIqq is a morphism Φ P HomCpL,L
1q such that φ1iΦ “ φi for all i P ObpIq. A

colimit of F is an initial object of this category.

By the universal property, if a (co)limit exists, then it is uniquely determined up to a unique
isomorphism, so there is no ambiguity in the notations lim

ÝÑ
F and lim

ÐÝ
F .

Definition 1.27. Let pI,ďq be a preordered set and let C be a category. A direct system
tCi, φj,i : i ď j P Iu consists of

– a family tCi : i P Iu of objects of C;

– a family tφj,i : Ci Ñ Cj : i ď ju of morphisms such that φk,jφj,i “ φk,i, whenever i ď j ď k.

An inverse system is defined dually.

Notice that, to specify a direct system tCi, φj,i : i ď j P Iu is equivalent to define a functor
F : CatpI,ďq Ñ C, dually, an inverse system tDi, ψi,j : i ď j P Iu corresponds to a functor
G : CatpI,ďqop Ñ C. In this case we also use the following notation

lim
ÝÑ

F “ lim
ÝÑ
iPI

Ci and lim
ÐÝ

G “ lim
ÐÝ
iPI

Di .

Definition 1.28. A category C is complete (resp., cocomplete) if for every small category I
and every functor F : Iop Ñ C (resp., F : I Ñ C), F has a limit (resp., a colimit).
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Lemma 1.29. [70, Corollary, Sec. 3, Ch. V] Let C be a complete (resp., cocomplete) category
and let I be a small category. Then, FuncpI,Cq is a complete (resp., cocomplete) category.

Example 1.30. Let I be a set and let A “ pAiqiPI be a family of objects of C indexed by I. A
product of A is a pair p

ś

A, pπiqiPIq, where
ś

A P ObpCq and πi P HomCp
ś

A, Aiq for all i P I,
which satisfies the following universal property:

(˚) for any pair pP, pφiqiPIq, with P P ObpCq and φi P HomCpP,Aiq for all i P I, there exists a
unique morphism Φ : P Ñ

ś

A such that φi “ πi ˝ Φ for all i P I.

Dually, the coproduct of A is a pair p
À

A, pεiqiPIq, with
À

A P ObpCq and εi P HomCpAi,
À

Aq
for all i P I, which is a product of A in Cop.
(Co)Products correspond to (co)limits of functors from the discrete category over the set I to
the category C.

Example 1.31. Let X, Y and Z P ObpCq, and consider two morphisms φ : Z Ñ X and
φ1 : Z Ñ Y . A push out (also denoted by PO) of φ and φ1 is a triple pP, α : X Ñ P, α1 : Y Ñ P q,
where αφ “ α1φ1, that satisfies the following universal property:

(˚) for any triple pQ, f : X Ñ Q, f 1 : Y Ñ Qq, where f 1φ “ φ1f , there exists a unique morphism
Φ : P Ñ Q such that Φα1 “ f 1 and Φα “ f .

Dually, given two morphisms ψ : X Ñ Z and ψ1 : Y Ñ Z. A pull back (also denoted by PB) of
ψ and ψ1 is a triple pP, β : P Ñ X,β : P Ñ Y q, where ψβ “ ψ1β1 which is a PO in Cop.
PBs and POs are respectively limits and colimit of functors from t‚ Ð ‚ Ñ ‚u to C.

Definition 1.32. A non-empty category I is said to be filtered if

– given i and j P ObpIq there exists k P ObpIq such that HomIpi, kq ‰ H ‰ HomIpj, kq;

– given i, j P ObpIq and two arrows φ, ψ P HomIpi, jq there exist k P ObpIq and ξ P HomIpj, kq
such that ξ ˝ φ “ ξ ˝ ψ.

Example 1.33. A preordered set pI,ďq is said to be directed(resp., downward directed) if for
all i, j P I there exists k P I such that i ď k and j ď k (resp., i ě k and j ě k).
Consider the category CatpI,ďq defined in Example 1.7. Notice that CatpI,ďq is filtered if and
only if pI,ďq is directed.

Definition 1.34. Let C be a category, let I be a small category and let F : I Ñ C (resp.,
G : Iop Ñ C) be a functor. If I is filtered, a colimit of F (resp., a limit of G) is said be a filtered
colimit (resp., a filtered limit).

Definition 1.35. Let C and D be two categories, let F : C Ñ D be a functor. We say that
F commutes with limits (or preserves limits) if, for any small category I and any functor
G : Iop Ñ C that has a limit in C, the composition FG : Iop Ñ D also has a limit and there is
an isomorphism

lim
ÐÝ
pFGq Ñ F plim

ÐÝ
Gq

that is compatible with the natural maps of limits. Functors that commute with colimits (or
preserve colimits) are defined dually.
Similarly, if F : Cop Ñ D is a functor, we say that F sends limits to colimits if, for any small
category I and any functor G : Iop Ñ C that has a limit in C, the composition FG : I Ñ D has
a colimit and there is an isomorphism

lim
ÝÑ
pFGq Ñ F plim

ÐÝ
Gq
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that is compatible with the natural maps of limits and colimits. Functors that send colimits to
limits are defined dually.
Restricting the class of possible small categories I, standard variations are possible. For example
we say that F : CÑ D commutes with (finite, countable) products, if for any discrete category
I over a (finite, countable) set and any functor G : Iop Ñ C that has a product in C, the
composition FG : Iop Ñ D also has a product and there is an isomorphism lim

ÐÝ
pFGq Ñ F plim

ÐÝ
Gq

that is compatible with the natural maps of products.

Lemma 1.36. [70, Theorem 1, Sec. 4, Ch. V] Let C be a category and let C P ObpCq. Then, the
functor HomCpC,´q : CÑ Set commutes with limits, while the functor HomCp´, Cq : Cop Ñ Set
sends colimits to limits.

Lemma 1.37. [70, Theorem 1, Sec. 5, Ch. V] Let C, D be two categories and let F : CÑ D be
a functor. If F is a right adjoint then it preserves limits, while, if it is a left adjoint, it preserves
colimits.

Let I be a small category, let C be a category and suppose that any functor F : I Ñ C has
a colimit. One can define a functor

lim
ÝÑ

: FuncpI,Cq Ñ C

that associates to any functor F P ObpFuncpI,Cqq its colimit lim
ÝÑ

F . Indeed, let F and F 1 P
ObpFuncpI,Cqq, denote by plim

ÝÑ
F, pεiqiPObpIqq and plim

ÝÑ
F 1, pε1iqiPObpIqq the colimits of F and F 1

respectively, and take a natural transformation ν P HomFuncpI,CqpF, F
1q. Then, for all i P ObpIq,

there is a map φi “ ε1i ˝ νi : F piq Ñ lim
ÝÑ

F 1. By the universal property of the colimit, there is a
unique morphism lim

ÝÑ
ν : lim
ÝÑ

F Ñ lim
ÝÑ

F 1, such that ε1i ˝ νi “ lim
ÝÑ

ν ˝ εi for all i P ObpIq.

Analogously, if any functor F : FuncpIop,Cq Ñ C has a limit, one can show that there is a
functor

lim
ÐÝ

: FuncpIop,Cq Ñ C .

With similar considerations (see also Lemma 1.20), given a set I and a category C which has a
coproduct (resp., product) for any I-indexed set of objects, one can define the coproduct functor
À

:
ś

I CÑ C (the product functor
ś

:
ś

I CÑ C).

Lemma 1.38. [96, Proposition 8.8, Ch. IV] Let C be a complete category and let I, J be two
small categories. Let F : I ˆ J Ñ C be a functor and notice that it induces two functors

F̂ : I Ñ FuncpJ,Cq and F̌ : J Ñ FuncpI,Cq .

Then, lim
ÝÑ
plim
ÝÑ

F̂ q “ lim
ÝÑ

F “ lim
ÝÑ
plim
ÝÑ

F̌ q.

Of course, the above lemma admits a dual formulation showing that “limits commute with
limits”.

Using the notions of limits and colimits one can give formulas to construct the left and right
Kan extensions of a functor. Using these formulas one proves the following

Lemma 1.39. [65, Theorem 2.3.3] Let I, J be small categories, let F : I Ñ J be a functor and
let C be a category. Then,

(1) if C has all colimits then F : exists. Furthermore, if F is fully faithful, then F : is fully
faithful and there is a natural equivalence of functors F˚F

: – idFuncpJ,Cq;
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(2) if C has all limits then F ; exists. Furthermore, if F is fully faithful, then F ; is fully faithful
and there is a natural equivalence of functors F˚F

; – idFuncpJ,Cq;

In the last part of this subsection we discuss the notions of kernel and cokernel.

Definition 1.40. Let C be a category. An object C P ObpCq is a zero-object if it is both initial
and terminal.

If a zero-object exists, all the zero-objects in C are isomorphic, so one can speak about
the zero-object of C, which is usually denoted by 0. For any A P ObpCq we denote by ζ0,A

(resp., ζA,0) the unique element of HomCpA, 0q (resp., HomCp0, Aq). The morphisms of the form
ζB,A “ ζB,0 ˝ ζ0,A P HomCpA,Bq are called zero-morphisms. If we do not need to specify A and
B we just write 0 for ζB,A.

Definition 1.41. Let C be a category with a zero-object and let φ : A Ñ B be a morphism in
C. A kernel of φ is a pair pKerpφq, kq with Kerpφq P ObpCq and k P HomCpKerpφq, Aq such that
kφ “ 0, which satisfies the following universal property

(˚) for any pair pK, k1q with K P ObpCq and k1 P HomCpK,Aq such that k1φ “ 0, there exists a
unique morphism ψ : K Ñ Kerpφq such that kψ “ k1.

Dually, a pair pCoKerpφq, cq with CoKerpφq P ObpCq and c P HomCpB,CoKerpφqq, is a cokernel
of φ if it defines a kernel of φ in Cop.

1.1.3 (Pre)Additive and Abelian categories

Definition 1.42. A category C is pre-additive if it satisfies the following two axioms:

(Add.1) it has a zero-object;

(Add.2) given A, B P ObpCq, there is a map ` : HomCpA,Bq ˆ HomCpA,Bq Ñ HomCpA,Bq
such that pHomCpA,Bq,`q is an Abelian group and

– pψ1 ` ψ2qφ “ ψ1φ ` ψ2φ, for all A, B, C P ObpCq, φ P HomCpA,Bq and ψ1,
ψ2 P HomCpB,Cq;

– φ1pψ1 ` ψ2q “ φ1ψ1 ` φ1 ` ψ2, for all B, C, D P ObpCq, ψ1, ψ2 P HomCpB,Cq and
φ1 P HomCpC,Dq.

A pre-additive category is additive if it satisfies the following axiom:

(Add.3) all finite products and coproducts exist.

Example 1.43. The category Ab is additive. In fact, the zero-object in Ab is the trivial Abelian
group, while the additive structure on HomAbpA,Bq, for any two Abelian groups A and B, is
given by point-wise addition. Furthermore, given a set I and Abelian groups Ai, for all i P I,
one defines

ź

I

Ai “ tpxiqiPI : xi P Aiu and
à

I

Ai “ tpxiqiPI P
ź

I

Ai : |i P I : xi ‰ 0| ă 8u .

For all i, j P I, let δji : Ai Ñ Aj be a group homomorphism such that δji pxq “ x if i “ j and

δji pxq “ 0 otherwise. For all j P I, there are canonical group homomorphisms

πj :
ź

I

Ai Ñ Aj and εj : Aj Ñ
à

I

Ai ,
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such that πjppxiqiPIq “ xj and εjpxq “ pδijpxqqiPI . One can show that p
ś

I Ai, pπiqiPIq and
p
À

I Ai, pεiqiPIq are respectively the product and the coproduct of the family tAi : i P Iu. So Ab
has not only finite products and coproducts, but it has a product and a coproduct for any set of
objects.

Definition 1.44. Given two pre-additive categories C and C1, a functor F : CÑ C1 is additive
if, given A and B P ObpCq, the canonical map

HomCpA,Bq Ñ HomC1pF pAq, F pBqq

is a homomorphism of Abelian groups.

Proposition 1.45. [70, Proposition 4, Sec. 2, Ch. VIII] Let C1 and C2 be additive categories
and let F : C1 Ñ C2 be a functor. Then, the following are equivalent:

(1) F is additive;

(2) F commutes with finite coproducts.

Example 1.46. Given a pre-additive category C, we usually consider the functors HomCpX,´q
and HomCp´, Xq, as functors C Ñ Ab and Cop Ñ Ab, respectively. Considering these functors
with target the category of Abelian groups, it is not difficult to show that they are both additive.

Example 1.47. A ring is a quintuple pR, ¨,`, 1, 0q such that pR, ¨, 1q is a monoid, that we call
the multiplicative structure of R, and pR,`, 0q is an Abelian group, that we call the additive
structure of R. Furthermore, one supposes that the multiplicative and the additive structures are
compatible, that is:

pr ` sq ¨ t “ pr ¨ tq ` ps ¨ tq and t ¨ pr ` sq “ pt ¨ rq ` pt ¨ sq ,

for all r, s and t P R. A ring is commutative if ¨ is a commutative operation.
Given two rings pR, ¨,`, 1, 0q and pR1, ¨1,`1, 11, 01q, a map φ : R Ñ R1 is a ring homomorphism
if it is a homomorphism of monoids with respect to the addivite and multiplicative structures
of R and R1. We denote by Ring the category of all rings with ring homomorphisms. It is not
difficult to show that Ring is an additive category.
For a given ring R, the one-object category CR described in Example 1.4 is naturally a pre-
additive category with the addition induced by the operation “`” in R. Furthermore, given a
ring homomorphism φ : RÑ R1, it naturally induces an additive functor between CR and CR1.

Lemma 1.48. [70, Theorem 3, Sec. 1, Ch. IV] Let C1 and C2 be two pre-additive categories
and let pF,Gq be an adjunction between them. Then, F is an additive functor if and only if G
is an additive functor. Furthermore, in this case the natural maps

νA,B : HomC2pB,GpAqq Ñ HomC1pF pBq, Aq

are isomorphisms of Abelian groups for all A P C1 and B P C2.

Corollary 1.49. Let C1 and C2 be additive categories and let F : C1 Ñ C2 be a functor. If F
has a right or a left adjoint, then F is additive.

Proof. By Lemma 1.37, a left adjoint functor preserves colimits and, in particular, it commutes
with binary coproducts. So, if F is a left adjoint, it is additive by Proposition 1.45. On the other
hand, if F has a left adjoint G, then G is additive and thus F is additive by Lemma 1.48.
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In a preadditive category one can show that finite products and finite coproducts coincide.
The following lemma can be proved using [96, Proposition 3.2, Ch. IV].

Lemma 1.50. Let C be a preadditive category and let tCi : i P Iu be a finite family of ob-
jects. Given a product p

ś

iPI Ci, pπiqiPIq there exist morphisms ε1j : Cj Ñ
ś

iPI Ci such that
p
ś

iPI Ci, pε
1
iqiPIq is a coproduct. Dually, given a coproduct p

À

iPI Ci, pεiqiPIq there exist mor-
phisms π1j :

À

iPI Ci Ñ Cj such that p
À

iPI Ci, pπ
1
iqiPIq is a product.

In particular, tCi : i P Iu has a product if and only if it has a coproduct and, in this case,

ź

iPI

Ci –
à

iPI

Ci .

Definition 1.51. Let C be an additive category. Given a morphism φ : A Ñ B in C, the
image Impφq (resp., the coimage CoImpφq) of φ is Impφq “ KerpCoKerpφqq (resp., CoImpφq “
CoKerpKerpφqq). We say that the additive category C is Abelian if and only if

(Ab.1) every morphism of C has a kernel and a cokernel;

(Ab.2) for every morphism φ : A Ñ B in C, the canonical morphism from Impφq to CoImpφq
is an isomorphism, that is, the unique map φ̄ making the following diagram commute
(which exists by the universal properties of kernels and cokernels) is an isomorphism:

Kerpφq // A //

φ

��

CoImpφq

φ̄
��

CoKerpφq Boo Impφq .oo

(1.1.1)

Example 1.52. The category Ab is an Abelian category. We have seen in Example 1.43 that
Ab is additive. Furthermore, given a morphism φ : A Ñ B, Kerpφq is the subgroup tx P A :
φpxq “ 0u with the natural inclusion in A, while CoKerpφq is the quotient B{tφpxq : x P Au,
with the natural projection B Ñ B{tφpxq : x P Au.

Definition 1.53. Let C be a category, let A, B and X P ObpCq and fix three morphisms φ, ψ P
HomCpA,Bq and χ P HomCpX,Aq. Then,

– χ separates φ and ψ if φ ‰ ψ implies φχ ‰ ψχ;

– χ is an epimorphism if it separates any pair of morphisms in HomCpA,Bq, for all B P ObpCq;

– χ is a monomorphism if it is an epimorphism in Cop.

The following lemma is an immediate consequence of the definitions:

Lemma 1.54. Let C be a category, let A, B, C P ObpCq and consider two morphisms φ : AÑ B
and ψ : B Ñ C. The following statements hold true:

(1) if ψφ is a monomorphism, then φ is a monomorphism;

(2) if ψφ is an epimorphism, then ψ is an epimorphism.

Example 1.55. In the category Set (resp., Semi, Mon), monomorphisms are precisely injective
maps (resp., injective homomorphisms), epimorphisms are surjective maps (resp., surjective
homomorphisms) and the isomorphisms are bijective maps (resp., bijective homomorphisms).
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The following lemma will be useful later on

Lemma 1.56. Let C be a category and let φ : X Ñ Y be a morphism in C. A morphism
k1 : K Ñ X is a kernel of φ if and only if it is a monomorphism such that:

(˚) for any pair pH,hq with H P ObpCq and h P HomCpH,Xq such that hφ “ 0, there exists a
morphism ψ : H Ñ K such that k1ψ “ h.

Proof. Let k : Kerpφq Ñ X be a kernel of φ. It is clear that k satisfies (˚), let us show that k is a
monomorphism. Indeed, given an object Z P ObpCq and morphisms ψ1, ψ2 P HomCpZ,Kerpφqq
such that kψ1 “ kψ2, since φpkψ1q “ 0 “ φpkψ2q and using the definition of kernel, there exists
a unique morphism ψ : Z Ñ Kerpφq such that kψ “ kψ1 “ kψ2, that is ψ1 “ ψ “ ψ2.
On the other hand, let k1 : K Ñ X be a monomorphism that satisfies (˚). Let Z P ObpCq and
let ψ : Z Ñ X be such that φψ “ 0. By (˚), there exists a morphism ψ1 : Z Ñ K such that
k1ψ1 “ ψ, while such ψ1 is unique by the fact that k1 is a monomorphism.

Notice that an isomorphism is both an epimorphism and a monomorphism. One can find
examples where the converse does not hold true. On the other hand, in Abelian categories we
can prove the following:

Lemma 1.57. [96, Propositions 2.3 and 4.1] Let C be an Abelian category and let φ : AÑ B be
a morphism. Then,

(1) φ is a monormophism if and only if Kerpφq “ 0;

(2) φ is an epimorphism if and only if CoKerpφq “ 0;

(3) φ is an isomorphism if and only if it is both mono and epi.

Definition 1.58. Let C be an Abelian category.

– A sequence C1 d1
ÝÑ C2 d2

ÝÑ . . .
dn´1

ÝÑ Cn of morphisms in C is exact in Ci (for i “ 2, 3, . . . , n´1)
if the canonical morphism Impφi´1q Ñ Ci is a kernel for φi; it is exact if it is exact in Ci for
all i “ 2, . . . , n´ 1;

– a short exact sequence is an exact sequence of the form 0 Ñ AÑ B Ñ C Ñ 0.

Proposition 1.59. [70, Lemma 5, Sec. 4, Ch. V] Let C be an Abelian category and consider
the following commutative diagram

A1 //

f
��

B1 //

g

��

C 1 //

h
��

0

0 // A // B // C

If the above diagram has exact rows, then there is an exact sequence

Kerpfq Ñ Kerpgq Ñ Kerphq Ñ CoKerpfq Ñ CoKerpgq Ñ CoKerphq .

Moreover, if A1 Ñ B1 is a monomorphism, then so is Kerpfq Ñ Kerpgq, and if B Ñ C is an
epimorphism, then so is CoKerpgq Ñ CoKerphq.

Definition 1.60. Let F : CÑ C1 be an additive functor between two Abelian categories. We say
that F is
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– left exact if 0 Ñ F pAq Ñ F pBq Ñ F pCq is an exact sequence for any short exact sequence
0 Ñ AÑ B Ñ C Ñ 0 in C;

– right exact if F pAq Ñ F pBq Ñ F pCq Ñ 0 is an exact sequence for any short exact sequence
0 Ñ AÑ B Ñ C Ñ 0 in C;

– exact if 0 Ñ F pAq Ñ F pBq Ñ F pCq Ñ 0 is a short exact sequence for any short exact
sequence 0 Ñ AÑ B Ñ C Ñ 0 in C.

Notice that F is exact if and only if it is both left and right exact.

Example 1.61. Given an Abelian category C and C P ObpCq, the Hom-functors HomCpC,´q :
C Ñ Ab and HomCp´, Cq : Cop Ñ Ab (see Example 1.46) are both left exact (use the universal
properties of kernels and cokernels).

The following proposition can be proved using that (co)kernels are particular (co)limits.

Proposition 1.62. [96, Proposition 8.6, Ch. IV] Let C, C1 be Abelian categories and let F :
CÑ C1 be an additive functor. Then,

(1) F is left exact if and only if F commutes with finite limits if and only if F preserves kernels;

(2) F is right exact if and only if F commutes with finite colimits if and only if F preserves
cokernels.

The following corollary follows from Proposition 1.62 and Lemma 1.37.

Corollary 1.63. Let C and C1 be Abelian categories. If F : CÑ C1 is a left (resp., right) adjoint
functor, then F is right (resp., left) exact.

1.1.4 Subobjects and quotients

Definition 1.64. Let A, B and B1 be objects in a category C. Two monomorphisms φ : B Ñ A
and φ1 : B1 Ñ A are equivalent if there exists an isomorphism ψ : B Ñ B1 such that φ “ φ1ψ. An
equivalence class of monomorphisms with target A is, by definition, a subobject of A. Quotient
objects are defined dually as equivalence classes of epimorphisms.
A subobject of a quotient object (or, equivalently, a quotient of a subobject) is said to be a
segment.

With a little abuse, we say that some representing monomorphism φ : B Ñ A is a subobject,
if there is no need to specify the morphism φ we just write B ď A. There is a partial order
relation between subobjects, in fact, given two subobjects φ : B Ñ A and φ1 : B1 Ñ A, B ď B1

if there is a morphism ψ : B Ñ B1 such that φ “ φ1ψ. It easily follows that, if B ď B1 and
B1 ď B, then they represent the same subobject.

Notice that if C has a zero-object 0 P ObpCq, then 0 ď X for all X P ObpCq.

Example 1.65. In the category Group any monomorphism into a group G is equivalent to the
inclusion of a subgroup in G, while any epimorphism is equivalent to the canonical projection
from G onto the quotient over a normal subgroup.
Similar descriptions hold in Ab.
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Definition 1.66. Let C be an Abelian category and let A P ObpCq. A subobject B ď A is a direct
summand of A if there exists a subobject C ď A such that the canonical morphism B ‘ C Ñ A
is an isomorphism.
Furthermore, a non-zero object X P ObpCq is indecomposable if its only direct summands are 0
and X.

By definition, a direct summand is a sub-object and, by Lemma 1.50, it is also a quotient
object.

Definition 1.67. A category C is said to be well-powered if for any object X there is a set (as
opposed to a proper class) of (equivalence classes of) subobjects. We denote by LpXq the poset
of subobjects of X, with the partial order relation ď.

For an example of an Abelian category which is not well-powered see [78, Corollary C.3.3].

Let C be an Abelian category and let φ be a morphism in C. Using Lemma 1.54 one can show
that the kernel of φ is a monomorphism, while its cokernel is an epimorphism. By the universal
property of kernels (resp., cokernels), any other kernel (resp., cokernel) of φ represents the same
subobject (resp., quotient object) of A. Thus, there is no ambiguity in writing Kerpφq ď A. For
any subobject A1 ď A, we denote by A{A1 the quotient object represented by the cokernel of
the monomorphism A1 Ñ A.

A consequence of the axiom (Ab.2) is the following

Lemma 1.68. Let C be an Abelian category and let φ : A Ñ B be a morphism. Then,
A{Kerpφq – Impφq.

Given an object A, a subobject ε : C Ñ A and a morphism φ : AÑ B, the restriction of φ to
C is the composition φæC “ φ ˝ ε : C Ñ B. The image of φæC is denoted by φpCq, in particular,
Impφq “ φpAq. By definition of the image, there is an induced morphism C Ñ φpCq, such that
the composition C Ñ φpCq Ñ B is exactly φæC . Abusing notation we denote also this second
morphism by φæC . On the other hand, given a sub-object ε : D Ñ B, there is a sub-object
φ´1pDq Ñ A defined by the following pullback diagram:

φ´1pDq //

��
PB

D

ε

��
A

φ
// B

Definition 1.69. Let C be an Abelian category. Given an endomorphism φ : AÑ A, a sub-object
C of A is φ-invariant if φpCq ď C.

Definition 1.70. Let pL,ďq be a poset and let F Ď L be a subset. An upper bound (resp., lower
bound) for F is an element x P L such that x ě f (resp., x ď f) for all f P F . The least upper
bound or join (resp., greatest lower bound or meet) of F is the minimum (resp., maximum) of
the set of all the upper (resp., lower) bounds of F . Least upper bounds and greatest lower bounds
may not exist but, if they do, we denote them respectively by

Ž

F and
Ź

F or, by f1 _ ¨ ¨ ¨ _ fk
and f1 ^ ¨ ¨ ¨ ^ fk if F “ tf1, . . . , fku is finite.
A poset is a lattice if any of its finite subsets has a least upper bound and a greatest lower
bound. Furthermore, a lattice is complete if it has joins and meets for any of its subsets (finite
or infinite).
Given two lattices pL,ďq, pL1,ďq and a map φ : LÑ L1,
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– φ is a homomorphism of semi-lattices if φpa_ bq “ φpaq _ φpbq, for all a, b P L;

– φ is a lattice homomorphism if it is a semi-lattice homomorphism and φpx^yq “ φpxq^φpyq,
for all x and y P L;

– φ commutes with arbitrary joins if φp
Ž

F q “
Ž

tφpfq : f P F u, whenever these joins exist.

Lemma 1.71. [96, Proposition 1.2, Ch. III] Let pL,ďq be a poset. If any subset of L has a least
upper bound, then L is a complete lattice.

Of course, the above lemma admits a dual statement: if any subset of a given poset pL,ďq
has a greatest lower bound, then L is a complete lattice.

Proposition 1.72. Let C be a well-powered Abelian category, let X, Y P ObpCq and let φ P
HomCpX,Y q. Then,

(1) LpXq is a lattice;

(2) if C is complete or cocomplete, then LpXq is complete;

(3) the induced map Φ : LpXq Ñ LpY q such that ΦpCq “ φpCq for all C P LpXq, is a homo-
morphism of semi-lattices;

(4) if C is cocomplete, then Φ commutes with arbitrary joins.

Proof. Let F “ tCi : i P Iu be a set of subobjects of LpXq. By [96, Proposition 4.2, Ch. IV]
we can construct the least upper bound (resp., greatest lower bound) of F as the image of the
natural map

À

I Ci Ñ X (resp., kernel of the natural map X Ñ
ś

I X{Ci) if this coproduct
(resp., product) exists in C. Thus, when F is finite we can always construct its join and meet.
Furthermore, if C is complete (resp., cocomplete) any subset of LpXq has a join (resp., meet),
so LpXq is a complete lattice by Lemma 1.71. This proves (1) and (2). To prove (3) and (4) see
the proof of [96, Corollary 8.5, Ch.IV].

Definition 1.73. Let C be a well-powered Abelian category, let F “ tXi : i P Iu be a set of
subobjects of an object X in C. We denote respectively by

ř

iPI Xi and
Ş

iPI Xi the least upper
bound and the greatest lower bound of F , whenever they exist. If I “ t1, . . . , ku is a finite set,
then we also use the notations

ř

iPI Xi “ X1`. . .`Xk and
Ş

iPI Xi “ X1X. . .XXk, respectively.

Lemma 1.74. [96, Proposition 5.2, Ch. IV] Let C be a well-powered Abelian category, let
C P ObpCq and let C1 and C2 P LpCq. Then,

pC1 ` C2q{C1 – C2{pC1 X C2q

Definition 1.75. Let M be an object in C. A sub-object N ď M is essential if N X K “ 0
implies K “ 0 for any sub-object K ď M . A morphism φ : M Ñ M 1 in C is essential if Impφq
is an essential sub-object of M 1.

1.1.5 Grothendieck categories

Let C be an Abelian category. In this subsection we introduce three further axioms together
with their duals, these axioms were first defined by Grothendieck in [55]. They are not required
in the definition of Abelian category but it is very common to work with Abelian categories
satisfying some of these further assumptions.
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(Ab.3) For every set tAi : i P Iu of objects of C, the coproduct
À

iPI Ai exists in C.

(Ab.3˚) For every set tAi : i P Iu of objects of C, the product
ś

Ai exists in C.

We have seen in Example 1.43 that Ab satisfies both (Ab.3) and (Ab.3˚).

Lemma 1.76. [96, Corollary 8.3, Ch. IV] Let C be an Abelian category. Then, C satisfies (Ab.3)
(resp., (Ab.3˚)) if and only if C is cocomplete (resp., complete).

(Ab.4) C satisfies (Ab.3), and the coproduct of a family of monomorphisms is a monomorphism.

(Ab.4˚) C satisfies (Ab.3˚), and the product of a family of epimorphisms is an epimorphism.

Lemma 1.77. Let C be an (Ab.3) Abelian category, then C is (Ab.4) if and only if, for any set
I, the functor

À

I :
ś

I CÑ C is exact. Dually, an (Ab.3˚) category C is (Ab.4˚) if and only if
ś

I :
ś

I CÑ C is exact, for any set I.

Proof. Let I be a set, by the dual of [96, Proposition 3.1, Ch. IV],
À

I :
ś

I CÑ C preserves
epimorphisms, that is, it sends cokernels to cokernels. By Proposition 1.62 this means that

À

I

is right exact, while (Ab.4) is equivalent to say that
À

I sends kernels to kernels, that is, it is
left exact.

(Ab.5) C satisfies (Ab.3), and filtered colimits of exact sequences are exact.

(Ab.5˚) C satisfies (Ab.3˚), and filtered limits of exact sequences are exact.

Proposition 1.78. [96, Proposition 1.1, Ch. V] Let C be a cocomplete Abelian category. Then
the following are equivalent:

(1) C satisfies (Ab.5);

(2) given M P ObpCq, K ďM and a directed system tNi : i P Iu Ď LpMq,
˜

ÿ

I

Ni

¸

XK “
ÿ

I

pNi XKq ;

(3) given a morphism φ : M ÑM 1 and a directed system tNi : i P Iu Ď LpMq,

φ´1

˜

ÿ

I

Ni

¸

“
ÿ

I

φ´1pNiq .

Definition 1.79. Let C be a category. A subclass G of ObpCq generates C if every pair of distinct
morphisms f, g P HomCpA,Bq there exists X P G and χ P HomCpX,Aq that separates φ and ψ.
If G “ tGu consists of a single object, we say that G is a generator of C. The definitions of
cogenerating class and cogenerator are dual.

Lemma 1.80. [96, Proposition 6.6, Ch. IV] Let C be an Abelian category with a generator, then
C is well-powered.

Definition 1.81. A Grothendieck category is an (Ab.5) Abelian category with a generator.
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1.1.6 Injective and projective objects

Definition 1.82. Let C be an Abelian category. An object X P ObpCq is injective (resp.,
projective) if the functor HomCp´, Xq : Cop Ñ Ab (resp., HomCpX,´q : CÑ Ab) is exact.

Notice that an object X is injective in C if and only if it is projective in Cop. In the following
lemma we give equivalent characterizations of injective and projective objects. The proof given
in [96, Proposition 6.1, Ch. I] can be easily adapted to our general context.

Lemma 1.83. Let C be an Abelian category and let X P ObpCq. The following are equivalent:

(1) X is an injective object;

(2) HomCpφ,Xq : HomCpB,Xq Ñ HomCpA,Xq is surjective for any monomorphism φ : AÑ B
in C;

(3) given a monomorphism φ : AÑ B in C and a morphism ψ : AÑ X, there exists a morphism
ψ̄ : B Ñ X making the following diagram commutative:

0 // A
φ //

ψ
��

B

ψ̄~~
X

Dual characterizations hold for projective objects.

The following corollary is a direct consequence of Lemma 1.36.

Corollary 1.84. Let C be an Abelian category and let tCi : i P Iu be a set of objects. Then,

(1)
À

I Ci is injective if and only if Ci is injective for all i P I;

(2)
ś

I Ci is projective if and only if Ci is projective for all i P I.

Lemma 1.85. [96, Proposition 1.4, Ch. X] Let C be a category, let D be an Abelian subcategory,
denote by F : DÑ C the inclusion functor and suppose that F has an exact left adjoint G : CÑ
D. Then, an object E P ObpDq is injective in D if and only if F pEq is injective in C.

Definition 1.86. Let C be an Abelian category. We say that C has enough injectives if, for any
X P ObpCq, there exists an injective object E and a monomorphism X Ñ E.

When a category has enough injectives, it is interesting to know if there exists a “minimal”
injective object containing a given object as a subobject:

Definition 1.87. Let C be an Abelian category and let X P ObpCq. An injective envelope of X
is an object E P ObpCq together with an essential monomorphism X Ñ E.

Lemma 1.88. [96, Proposition 2.3, Ch. V] Let C be an Abelian category, let X P ObpCq and
let α : X Ñ E, α1 : X Ñ E1 be two injective envelopes of X. Then, there is an isomorphism
φ : E Ñ E1 such that α1 “ φα. In particular, an injective envelope is unique up to isomorphism.

Given an Abelian category C and an object X P ObpCq, we denote by EpXq the injective
envelope of X, whenever it exists.

Lemma 1.89. [96, Proposition 2.5, Ch. V] Let C be a Grothendieck category. The following are
equivalent:

(1) C has enough injectives;

(2) any object of C has an injective envelope.
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1.1.7 Categories of modules

Definition 1.90. Let I be a small pre-additive category and let C be a pre-additive category.
The additive functor category AddpI,Cq is the full sub-category of FuncpI,Cq whose objects are
all the additive functors I Ñ C.

Proposition 1.91. Let C be an Abelian category and let I be a small category. Then,

(1) FuncpI,Cq is Abelian;

(2) if I is preadditive, then AddpI,Cq is an Abelian subcategory of FuncpI,Cq;

(3) if C is complete (resp., cocomplete), then AddpI,Cq is complete (resp., cocomplete).

Proof. Part (1) is [96, Propositions 7.1, Ch. IV], while part (2) is [96, Proposition 7.2, Ch. IV].
Finally, the proof of part (3) is completely analogous to the proof of [96, Proposition 8.7, Ch.
IV] (see the comment after Proposition 8.8 on p. 102 of [96]).

The following proposition is known under the name of Yoneda Lemma, it is important as it
gives a family of projective generators for AddpI,Cq.

Proposition 1.92. [96, Proposition 7.3 and Corollary 7.5, Ch. IV] Let C be an Abelian category
and let I be a small preadditive category. For all A P ObpIq let hA “ HomIpA,´q : I Ñ Ab and
hA “ HomIp´, Aq : Iop Ñ Ab. Then, there are natural isomorphisms:

HomAddpI,Cqph
A, T q – T pAq and HomAddpIop,CqphB, Sq – SpBq ,

for all A, B P ObpIq, T P AddpI,Cq and S P AddpIop,Cq. The category I is equivalent to the
full subcategory of AddpI,Cq (resp., of AddpIop,Cq) whose objects are of the form hB (resp.,
hB), with B P ObpCq. Finally, the sets phBqBPObpIq and phBqBPObpIq are families of projective
generators respectively for AddpI,Cq and AddpIop,Cq.

Let I, J be small preadditive categories, consider an additive functor F : I Ñ J and let C
be a Grothendieck category. Then, there is an induced functor

resF : AddpJ,Cq Ñ AddpI,Cq ,

defined by composition (which is the restriction of the functor F˚ : FuncpJ,Cq Ñ FuncpI,Cq used
in Definition 1.23). In the following lemma we prove the existence of what is usually called the
“additive Kan extension along F”, anyway in this context we prefer a different terminology, see
Definition 1.94; for a proof of Lemma 1.93 and more details on this construction we refer to [75,
Section 6].

Lemma 1.93. Let I, J be small preadditive categories, let C be a Grothendieck category and
consider an additive functor F : I Ñ J . Then, ??F : AddpJ,Cq Ñ AddpI,Cq is exact and it has
a left adjoint.

Definition 1.94. Let I, J be small preadditive categories, let C be a Grothendieck category
and consider an additive functor F : I Ñ J . The functor resF : AddpJ,Cq Ñ AddpI,Cq
defined by composition with F is called the scalar restriction along F while its left adjoint extF :
AddpJ,Cq Ñ AddpI,Cq is called the scalar extension along F .

In what follows we specialize to categories of modules.
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Definition 1.95. Let R be a ring and let CR be the pre additive category defined in Example 1.47,
an additive functor F : CR Ñ Ab (resp., G : CopR Ñ Ab) is said to be a left R-module (resp., right
R-module). The category of left (resp., right) R-modules AddpCR,Abq (resp., AddpCopR ,Abq) is
usually denoted by R-Mod (resp., Mod-R).

The following corollary can be deduced from Proposition 1.91, anyway the usual way to prove
it is to explicitly construct kernels, cokernels, products and coproducts in categories of modules.

Corollary 1.96. Let R be a ring, then Mod-R and R-Mod are complete and cocomplete Abelian
categories.

Consider a left R-module F : CR Ñ Ab and let M “ F p‚q. We generally adopt the compact
notation RM , instead of F : CR Ñ Ab, where the action of F on the morphisms of CR is encoded
in the following “scalar multiplication”:

RˆM ÑM pr,mq ÞÑ rm “ pF prqqpmq ,

that satisfies the following properties:

(Mod.1) rpm` nq “ rm` rn;

(Mod.2) pr ` sqm “ rm` sm;

(Mod.3) prsqm “ rpsmq;

(Mod.4) 1m “ m;

for all m, n P M and r, s P R. Notice that, given two left R-modules RM and RM
1, a homo-

morphism of Abelian groups φ : M Ñ M 1 is a morphism in the category of left R-modules if
and only if φprmq “ rφpmq.
Given a left R-module RM , a submodule (that is, a subobject in the category R-Mod) is a sub-
group N ďM such that rn P N for all r P R and n P N .
Given a left R-module RM and a submodule N ď M , the quotient module (that is, a quotient
object in the category R-Mod) RpM{Nq is the quotient group M{N with the following scalar
multiplication

RˆM{N ÑM{N such that pr,mNq ÞÑ prmqN .

Analogous definitions hold in Mod-R.

We denote by RR (resp., RR) the Abelian group underlying R with left (resp., right) R-
module structure coming from the multiplication in R. This module corresponds to the functor
h‚ (resp., h‚) described by the Yoneda Lemma and it is a projective generator for R-Mod (resp.,
Mod-R). The submodules of RR are the left ideals of R, while the submodules of RR are the
right ideals of R.

Theorem 1.97. Let R be a ring, then both R-Mod and Mod-R are complete and cocomplete
Grothendieck categories with enough injectives and a projective generator.

Proof. By Corollary 1.96, both R-Mod and Mod-R are complete and cocomplete Abelian cat-
egories generated respectively by RR and RR, furthermore one can verify the axiom (Ab.5) by
hand. The fact that they have enough injectives is proved, for example, in [96, Proposition 9.3,
Ch. I].
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Let R and S be two rings and let φ : R Ñ S be a ring homomorphism. As we said, this is
the same as taking an additive functor Fφ : CR Ñ CS between the two one-object categories CR
and CS . Abusing notation, we denote resFφ by resφ

resφ : S-Mod ÝÑ R-Mod

pM : CS Ñ Abq ÞÝÑ pM ˝ Fφ : CR Ñ Abq

The left adjoint extφ to resφ, that is, the scalar extension along Fφ, is usually constructed as a
tensor product in this context, that is, extφ – ´bR RRS (see [75, Section 6]).

Definition 1.98. Let R and S be two rings. A ring homomorphism φ : R Ñ S is left (resp.,
right) flat if extφ : R-Mod Ñ S-Mod (resp., extφ : Mod-RÑ Mod-S) is an exact functor.

Example 1.99. Let D be a ring and recall that an element x P D is a zero-divisor if there exists
a non-zero element y P D such that xy “ 0. An element which is not a zero-divisor is said to be
regular, if any non-zero element of D is regular then D is said to be a domain.
Given a domain D, we let Σ “ tx P D : x is regularu “ Dzt0u and we say that D is a left Ore
domain if it is a domain and DxXDy ‰ t0u for all x, y P Dzt0u (notice for example that any
commutative domain is left Ore).
Given a left Ore domain we define the left field of fractions of D as follows: first we say that two
elements ps, dq, ps1, d1q P ΣˆD are equivalent, in symbols ps, dq „ ps1, d1q, if there exist a, b P D
such that as “ bs1 P Σ and ad “ bd1. We denote by rs, ds the equivalence class of ps, dq and we
let Σ´1D “ ΣˆD{ „ be the set of these equivalence classes. The set Σ´1D is a skew field when
endowed with the following operations, for all ps1, d1q, ps2, d2q P ΣˆD:

rs1, d1s ¨ rs2, d2s “ ras1, bd2s and rs1, d1s ` rs2, d2s “ ru, cd1 ` dd2s ,

where ad1 “ bs2 P Σ and u “ cs1 “ ds2 P Σ. There is a canonical injective ring homomorphism
ε : D Ñ Σ´1D, this induces a scalar restriction resε : Σ´1D-Mod Ñ D-Mod, and a scalar
extension extε : D-Mod Ñ Σ´1D-Mod. One can show that the scalar extension is exact in this
particular case so that ε : D Ñ Σ´1D is a flat endomorphism of rings (see for example [96,
Proposition 3.5, Ch. II]).

1.2 Homological algebra

1.2.1 Cohomology

In this subsection we recall some basic definitions and constructions inside the category of cochain
complexes over a given Abelian category.

Definition 1.100. Let C be a an Abelian category and consider a sequence of objects and mor-
phisms

X‚ : ¨ ¨ ¨ ÝÑ Xi´1 di´1

ÝÑ Xi di
ÝÑ Xi`1 ÝÑ ¨ ¨ ¨

We say that X‚ is a cochain complex if didi´1 “ 0, for all i P Z. A cochain complex X‚ is exact
in Xi if Impdi´1q “ Kerpdiq. The cochain complex X‚ is exact (or acyclic) if it is exact in Xi

for all i P Z.

Definition 1.101. Given an Abelian category C and two cochain complexes C‚ and D‚, a
morphism of cochain complexes φ‚ : C‚ Ñ D‚ is a sequence of morphisms φi : Ci Ñ Di such
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that the following diagram commutes:

C‚

φ‚

��

¨ ¨ ¨ // Ci´1
di´1
C //

φi´1

��

Ci
diC //

φi

��

Ci`1
di`1
C //

φi`1

��

¨ ¨ ¨

D‚ ¨ ¨ ¨ // Di´1
di´1
D // Di

diD // Di`1
di`1
D // ¨ ¨ ¨

that is, di´1
D φi´1 “ φidi´1

C , for all i P Z.

Notice that the degree-wise composition of two composable morphisms of cochain complexes
is a morphism of cochain complexes.

Definition 1.102. Given an Abelian category C we denote by ChpCq the category of cochain
complexes and morphisms of cochain complexes. For all n P Z, we denote by ChěnpCq (resp.,
ChąnpCq, ChďnpCq, ChănpCq) the full subcategory of ChpCq whose objects are all the cochain
complexes C‚ such that Ci “ 0 for all i ă n (resp., i ď n, i ą n, i ě n).

The category ChpCq of cochain complexes is an Abelian category whose zero-object is the
complex whose i-th component is the zero-object of C, for all i P Z. The sum on the homo-
morphism sets is defined degree-wise exploiting the addition in the homomorphism groups in C.
Similarly, one can construct degree-wise products, coproducts, kernels and cokernels.
Furthermore, one can show that ChěnpCq, ChąnpCq, ChďnpCq and ChănpCq are Abelian sub-
categories of ChpCq for all n P Z.

Definition 1.103. Given an Abelian category C and a cochain complex X‚, we denote by Xěn P
ObpChěnpCqq the n-th truncation of X‚, that is

Xěn : ¨ ¨ ¨ // 0 // 0 // CoKerpdn´1q // Xn`1 // Xn`2 // ¨ ¨ ¨ .

Similarly, given a homomorphism of cochain complexes φ‚ : X‚ Ñ Y ‚, we denote by φěn :
Xěn Ñ Y ěn the obvious induced morphism. This allows to define the n-th truncation functor:

ChpCq Ñ ChěnpCq .

One can prove that the n-th truncation functor is the right adjoint to the inclusion functor
ChěnpCq Ñ ChpCq.

Lemma 1.104. Let C and D be two Abelian categories and let F : CÑ D be a functor. Applying
F degree-wise we obtain a functor F ‚ : ChpCq Ñ ChpDq. If we suppose also that F is exact,
then F ‚ is exact and

HnpF ‚pX‚qq – F pHnpX‚qq ,

for any cochain complex X‚ over C. Furthermore, if pF,Gq is an adjoint pair between Abelian
categories, then pF ‚, G‚q is an adjunction between the respective categories of complexes.

Proof. The first part follows using that exact functors preserve kernels and cokernels, and defined
using these constructions. The second part follows by [70, Theorem 1, Sec. 8, Ch. 1].

In the above settings we will usually abuse notation and denote F ‚ simply by F .
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Definition 1.105. Let C be an Abelian category and let n P Z. The n-th cohomology functor

Hn : ChpCq Ñ C

is defined as follows. Given a cochain comples X‚, HnpX‚q “ Kerpdnq{Impdn´1q, while, given a
morphism φ‚ : X‚ Ñ Y ‚ of cochain complexes, Hnpφ‚q : HnpX‚q Ñ HnpY ‚q is the map induced
by φn.
A morphism φ‚ : X‚ Ñ Y ‚ in ChpCq is said to be a quasi-isomorphism if Hnpφ‚q is an isomor-
phism for all n P Z.

Notice that a cochain complex X‚ is exact if and only if HnpX‚q “ 0 for all n P Z. In
particular, a complex is exact if and only if it is quasi-isomorphic to the zero-complex.

Definition 1.106. Given an Abelian category C and a morphism φ‚ : X‚ Ñ Y ‚ in ChpCq, the
mapping cone conepφ‚q is a cochain complex whose n-th component is Xn`1 ‘ Y n and whose
differentials are represented in matrix form as follows:

ˆ

dn`1
X 0
φn dnY

˙

: Xn`1 ‘ Y n // Xn`1 ‘ Y n .

The following lemma shows that the construction of the mapping cone provides a different
way to look at quasi-isomorphisms: these are exactly the homomorphisms whose cone is exact.

Lemma 1.107. [104, Corollary 1.5.4] Let C be an Abelian category and let φ‚ : X‚ Ñ Y ‚ be a
morphism in ChpCq. Then,

(1) φ‚ is a quasi-isomorphism;

(2) Hnpφ‚q is an isomorphism for all n P Z;

(3) conepφ‚q is an exact complex.

We conclude the section with the following fundamental lemma.

Lemma 1.108. [104, Corollary 1.3.1] Let C be an Abelian category and let 0 Ñ X‚ Ñ Y ‚ Ñ
Z‚ Ñ 0 be a short exact sequence in ChpCq. Then, there is an exact sequence:

. . .Ñ HnpX‚q Ñ HnpY ‚q Ñ HnpZ‚q Ñ Hn`1pX‚q Ñ Hn`1pY ‚q Ñ Hn`1pZ‚q Ñ . . .

1.2.2 Injective resolutions and classical derived functors

In this section we recall some basic results about injective resolutions and derived functors. Let
us start defining injective resolutions of objects in Abelian categories:

Definition 1.109. Let C be an Abelian category and let X P ObpCq. Identify X with an object
in ChpCq whose components are all 0 but its 0-th component which is X. Then, an injective
resolution of X is a quasi-isomorphism λ : X Ñ E‚ where E‚ P ObpChě0pCqq, and En is
injective for all n P Z.

The following lemma establishes the existence of injective resolutions and the so-called “Com-
parison Theorem”.

Lemma 1.110. [104, Lemma 2.3.6 and Theorem 2.3.7] Let C be an Abelian category with enough
injectives and let φ : X Ñ Y be a morphism in C. Then,
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(1) X has an injective resolution;

(2) given two injective resolutions λ1 : X Ñ E‚1 and λ2 : Y Ñ E‚2 , there is a homomorphism of
complexes Φ‚ : E‚1 Ñ E‚2 such that λ2φ “ Φ0λ1.

Using injective resolutions we can define right derived functors:

Definition 1.111. Let C and D be Abelian categories with enough injectives, let F : CÑ D be
a functor and let n P N. The n-th right derived functor RnF pφq : C Ñ D of F is defined as
follows:

– choose for any object X P ObpCq an injective resolution X Ñ E‚pXq;

– given X P ObpCq, let RnF pXq “ HnpF pE‚pXqqq;

– given a morphism φ : X Ñ Y in C, take a morphism Φ‚ : E‚pXq Ñ E‚pY q as in Lemma
1.110 and let RnF pφq “ HnpΦ‚q : RnF pXq Ñ RnF pY q.

In the following proposition we collect the main general properties of derived functors needed
in the thesis. For a proof see [104, Sections 2.4 and 2.5]

Proposition 1.112. Let C and D be Abelian categories with enough injectives and let F : CÑ D
be a functor. Then, for all n P N,

(1) RnF is a well-defined functor and it does not depend on the choice of resolutions;

(2) if F is left exact, then R0F is naturally isomorphic to F ;

(3) if F is left exact and if E P ObpCq is injective, then RnF pEq “ 0 for all n ą 0;

(4) F is an exact functor if and only if RnF is the 0-functor for all n ą 0;

(5) given a short exact sequence 0 Ñ X Ñ Y Ñ Z Ñ 0 in C, there is a long exact sequence

0 Ñ R0F pXq Ñ R0F pY q Ñ R0F pZq Ñ R1F pXq Ñ . . .

. . .Ñ RnF pZq Ñ Rn`1F pXq Ñ Rn`1F pY q Ñ Rn`1F pZq . . .

Let C be an Abelian category with enough injectives. After identifying a given object X P

ObpCq with a cochain complex concentrated in degree 0, by Lemma 1.110 we can find a bounded
below complex of injectives which is quasi-isomorphic to X. We can generalize this fact as
follows:

Lemma 1.113. [65, Lemma 13.2.1] Let C be an Abelian category with enough injectives and
let n P Z. Then any complex X‚ P ObpChěnpCqq is quasi isomorphic to a complex Y ‚ P
ObpChěnpCqq such that Y m is injective for all m P Z.

Given two complexes X‚ and Y ‚ with differentials denoted respectively by d‚X and d‚Y ,
HompX‚, Y ‚q is a cochain complex of Abelian groups whose n-th component is

HompX‚, Y ‚qn “
ź

iPZ
HomCpX

i, Y n`iq ,

and whose n-th differential is the following group homomorphism:

dn : HompX‚, Y ‚qn Ñ HompX‚, Y ‚qn`1 pφiqiPZ ÞÑ pφi`1d
i
X ` p´1qn`1dn`iY φiqiPZ .
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Definition 1.114. Given an Abelian category C, a cochain complex E‚ is said to be dg-injective
if En is an injective object for all n P Z and if the complex HompX‚, E‚q is exact, for any exact
cochain complex X‚.

Example 1.115. Bounded complexes of injectives are dg-injective, while unbounded complexes
of injectives may be non-dg-injective (see for example [65, Lemma 13.2.4]).

1.3 Torsion theories and localization

1.3.1 Torsion theories

Definition 1.116. Let C be a Grothendieck category and let A Ď ObpCq be a subclass. A is a
Serre class if, given a short exact sequence

0 Ñ AÑ B Ñ C Ñ 0 ,

B belongs to A if and only if both B and C belong to A. Furthermore, A is a hereditary torsion
class (or localizing class) if it is a Serre class and it is closed under taking arbitrary coproducts.

Let us recall also the following definition.

Definition 1.117. Let C be a Grothendieck category, let X P ObpCq, let κ be an ordinal and let
Xα be a subobject of X for all α ă κ. The family tXα : α ă κu is a continuous chain provided:

– X0 “ 0 and Xα ď Xα ` 1 for all α ă κ;

– if λ ă κ is a limit ordinal, then Xλ “
ř

αăλXα.

If tXα : α ă σu is a continuous chain of subobjects of a given X P ObpCq, we denote
ř

αăσXα

also by
Ť

αăσXα.

Lemma 1.118. Let C be a Grothendieck category and let D Ď ObpCq be closed under taking
subobjects and quotients. Then, the class T of all the D-filtrated objects, that is, all the X P

ObpCq admitting a continuous chain tXα : α ă κu of subobjects such that Xα`1{Xα P D for all
α ă κ and

Ť

αăκXα “ X, is a hereditary torsion subclass of C.

Proof. Let Y ď X P C.
If X P T , we can find a continuous chain tXα : α ă λu such that

Ť

αăλXα “ X and Xα`1{Xα P

D for all α ă λ. This implies (by the closure properties of D) that tXα X Y : α ă λu and
tpXα ` Y q{Y : α ă λu are continuous chains with successive quotients belonging to D. Thus, Y
and X{Y P T .
On the other hand, if Y and X{Y P T , that is, there exist continuous chains tYα : α ă λ1u and
tXα{Y : α ă λ2u such that

Ť

αăλ1
Yα “ Y ,

Ť

αăλ2
Xα{Y “ X{Y and with successive quotients

in D, then tYα : α ă λ1u Y tXα : α ă λ2u is a continuous chain with successive quotients in D
and whose union is X.
So far, this proves that T is a Serre class; we need to verify that T is closed under taking
coproducts. Let tXi : i P Iu be a family of objects in T and suppose that, for all i P I, tXi,α :
α ă λiu is a continuous chain with successive quotients in D and such that

Ť

αăλi
Xi,α “ Xi.

Chose a total order ď on I, and fix the lexicographic order on I “ tpi, αq : i P I, α ă λiu. For
all pi, αq P I we let X˚i,α “

À

jăiXj ‘Xi,α. Clearly, tX˚i,α : pi, αq P Iu is a continuous chain with
successive quotients in D and whose union equals

À

I Xi.
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Lemma 1.119. Let C be a Grotheindieck category and let T be a hereditary torsion class. For
all X P ObpCq, let

TpXq “
ÿ

tT ď X : T P T u .

Then,

(1) TpXq “ X if and only if X P T ;

(2) TpTpXqq “ TpXq and TpX{TpXqq “ 0, for all X P ObpCq.

Proof. (1) and the first part of (2) are easy consequences of the closure properties of T . For the
second half of part (2), let X P ObpCq and consider a subobject Y ď X{TpXq such that Y P T .
Then, there is a short exact sequence 0 Ñ TpXq Ñ π´1pY q Ñ Y Ñ 0, where π : X Ñ X{TpXq
is the canonical projection. Since T is a Serre class, π´1pY q P T and so π´1pY q ď TpXq,
showing that Y “ 0.

Given a subclass A of objects of C, we define the following two classes

AK “ tX P C : HomCpA,Xq “ 0 , @A P Au and KA “ tX P C : HomCpX,Aq “ 0 , @A P Au ,

which are called respectively right and left orthogonal class to A.

Corollary 1.120. Let C be a Grotheindieck category and consider a subclass T Ď ObpCq that is
closed under taking subobjects. The following are equivalent:

(1) T is a hereditary torsion class;

(2) T “ KpT Kq.

Proof. (1)ñ(2). It is easy to see that T Ď KpT Kq. On the other hand, let X P KpT Kq and define
TpXq as in Lemma 1.119. Then, we have a short exact sequence

0 Ñ TpXq Ñ X Ñ X{TpXq Ñ 0 .

Notice that X{TpXq P T K (use the fact that the image of an object in T is again in T ), so
the canonical morphism X Ñ X{TpXq is the zero-morphism, that is, X{TpXq “ 0, that is,
X “ TpXq P T .

(2)ñ(1). Suppose that T “ KpT Kq and let 0 Ñ X Ñ Y Ñ Z Ñ 0 be a short exact sequence. If
Y P T , then X P T by hypothesis. Furthermore, given M P T K and a morphism φ : Z ÑM , the
composition Y Ñ Z Ñ M has to be 0, thus φ “ 0 and so Z P KpT Kq “ T . On the other hand,
if X, Z P T , M P T K and ψ : Y Ñ M , then the composition X Ñ Y Ñ M is trivial and so, by
exactness, there exists a unique morphism ψ1 : Z Ñ M such that ψ1π “ ψ, where π : Y Ñ Z
is the canonical epimorphism. Since the unique morphism Z Ñ M is the zero-morphism, we
obtain that ψ “ 0, so Y P KpT Kq “ T . Thus, T is a Serre class. The fact that T is closed under
coproducts follows by Lemma 1.36.

Definition 1.121. A hereditary torsion theory τ in C is a pair of classes pT ,Fq such that

– T is a hereditary torsion class;

– pT qK “ F and KpFq “ T .
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We call T and F respectively the class of the τ -torsion and of the τ -torsion free objects. Since
all the torsion theories in the sequel are hereditary, we just say “torsion theory”, “torsion class”
and “torsion free class” to mean respectively “hereditary torsion theory”, “hereditary torsion
class” and “hereditary torsion free class”.

Example 1.122. (1) Let C be a Grothendieck category. The pairs p0,Cq and pC, 0q are torsion
theories. We call them respectively the trivial and the improper torsion theory.

(2) Let G be an Abelian group; an element g P G is torsion if there exists a positive integer n
such that ng “ 0. The group G is torsion if any of its elements is torsion, while it is torsion
free if its unique torsion element is 0. The class T of all torsion Abelian groups is a torsion
class in Ab, while the class F of the torsion free Abelian groups is a torsion free class. In
particular, pT ,Fq is a torsion theory.

(3) A generalization of part (2) is as follows: let D be a left Ore domain and denote by Σ
the set of the regular elements of D. Then T “ tM P ObpD-Modq : @m P M, Ds P
Σ, such that sm “ 0u is a torsion class. The orthogonal of T is F “ T K “ tM P

ObpD-Modq : @m PM, s P Σ, sm ‰ 0u.
Generalizing further, if we have two rings R, S, a flat ring homomorphism φ : R Ñ S and
a torsion theory pT ,Fq P S-Mod, then we can define a torsion theory pTφ,Fφq in R-Mod
letting Tφ “ tM P ObpR-Modq : extφpMq P T u.

(4) Let C be a Grothendieck category. Given an injective object E in C, one can define a torsion
theory τ “ pT ,Fq, with T “ KtEu and F “ T K; such τ is said to be the torsion theory
cogenerated by E. Similarly, given a class E of injective objects, and letting T 1 “ KtEu and
F 1 “ pT 1qK, τ 1 “ pT 1,F 1q is said to be the torsion theory cogenerated by E.

Lemma 1.123. Let C be a Grotheindieck category, let τ “ pT ,Fq be a torsion theory and let
φ : X1 Ñ X2 be a morphism in C. Let Tτ pXiq “

ř

tT ď Xi : T P T u (i “ 1, 2), then,
φpTτ pX1qq ď Tτ pX2q.

Proof. Notice that φpTτ pX1qq “ φp
ř

tT ď X1 : T P T uq “
ř

tφpT q ď X1 : T P T u (see
Proposition 1.72). Furthermore, since T is a Serre class, tφpT q ď X1 : T P T u Ď tT ď X2 : T P
T u.

Thanks to Lemma 1.123, we can define a functor C Ñ T , that turns out to be the right
adjoint to the inclusion T Ñ C:

Definition 1.124. Let C be a Grotheindieck category and let τ “ pT ,Fq be a torsion theory.
The τ -torsion functor Tτ : CÑ T is defined as follows:

– Tτ pXq “
ř

tT ď X : T P T u, for any object X P ObpCq;

– Tτ pφq : Tτ pXq Ñ Tτ pY q is the restriction of φ : X Ñ Y , for any morphism φ in C.

Lemma 1.125. Let C be a Grotheindieck category and let τ “ pT ,Fq be a torsion theory. Then,

(1) Tτ pXq “ 0 if and only if X P F . In particular, there is a short exact sequence 0 Ñ T Ñ
X Ñ F Ñ 0 with T P T and F P F , for all X P ObpCq;

(2) Tτ is right adjoint to the inclusion T Ñ C;

Proof. For part (1) see the first half of the proof of Corollary 1.120. For part (2) notice that,
for all T P T and X P ObpCq, HomCpT,Xq – HomCpT,Tτ pXqq “ HomT pT,Tτ pXqq, where the
isomorphism comes from the fact that T is closed under taking quotients, so φpT q ď Tτ pXq for
all φ P HomCpT,Xq.
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1.3.2 Localization

In this subsection we show how the concept of torsion theory is related to that of localization.
Most of the material in this subsection is adapted from Gabriel’s thesis [44].

Definition 1.126. Let C be a Grothendieck category. A localization of C is a pair of adjoint
functors pQ : C Ñ D,S : D Ñ Cq, where S is fully faithful, Q is exact and D is an Abelian
category. In this situation, D is said to be a quotient category, Q is a quotient functor and S
is a section functor. The composition L “ S ˝Q : CÑ C is said to be the localization functor.

Let us remark that, in other contexts, one may find definitions of localization of an Abelian
category that do not require that the quotient functor is exact. Anyway, some of the concepts
of localization commonly used in algebra are particular cases of the above definition, as the
following example shows.

Example 1.127. Let D be an Ore domain and let Σ be the set of regular elements of D. As we
said in Example 1.99, the canonical ring homomorphism ε : D Ñ Σ´1D, induces an adjunction
presε, extεq. Furthermore, resε is fully faithful and extε is exact, thus we can think to extε as
a quotient functor, to resε as a section functor and to Σ´1D-Mod as a quotient category of
D-Mod.

Lemma 1.128. [66, Lemma 2.2] Let C be a Grothendieck category, let pQ,Sq be a localization
of C and denote by L “ S ˝Q : C Ñ C the localization functor. For all X P ObpCq there is a
natural isomorphism LpXq – LpLpXqq.

One can encounter different definitions of localization in other contexts, see for example [90].
Let us explain the connection between localizations and torsion theories. Indeed, starting with
a localization pQ : CÑ D,S : DÑ Cq and letting L “ S ˝Q,

KerpLq “ tX P C : LpXq “ 0u “ tX P C : QpXq “ 0u “ KerpQq

is a torsion class (use the exactness of Q and the fact that it is a left adjoint). Hence, the
localization pQ,Sq induces a torsion theory pKerpQq,KerpQqKq.

On the other hand, one can construct a localization out of a torsion theory. In this section
we describe this localization in case our Grothendieck category C has enough injectives. By
Theorem 1.97, this allows us to localize any category of modules.

Definition 1.129. Let C be a Grothendieck category with enough injectives. An object X P

ObpCq is τ -local provided EpXq and EpXq{X P F . The localization of C at τ is the full sub-
category C{T of C of the τ -local objects. The inclusion Sτ : C{T Ñ C is called the τ -section
functor.

Lemma 1.130. Let C be a Grothendieck category with enough injectives, let τ “ pT ,Fq be a
torsion theory and let X, X 1, X2 P F . Then,

(1) the object Lτ pXq “ π´1pTτ pEpXq{Xqq, where π : EpXq Ñ EpXq{X is the canonical pro-
jection, is τ -local;

(2) given a morphism φ : X Ñ X 1, there exists a unique morphism Lτ pφq : Lτ pXq Ñ Lτ pX
1q

such that the following square commutes

X
φ //

��

X 1

��
Lτ pXq

Lτ pφq// Lτ pX
1q ;
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(3) given two morpshims φ : X Ñ X 1 and φ1 : X 1 Ñ X2, then Lτ pφ
1 ˝ φq “ Lτ pφ

1q ˝ Lτ pφq.

Proof. (1) Notice that X ď Lτ pXq ď EpXq, thus EpLτ pXqq “ EpXq P F . Furthermore,

EpLτ pXqq

Lτ pXq
“

EpXq

Lτ pXq
–

EpXq{X

Lτ pXq{X
–

EpXq{X

Tτ pEpXq{Xq
P F .

(2) Let φ1 : X Ñ EpX 1q be the composition of φ and X 1 Ñ EpX 1q. Since X Ñ EpXq is a

monomorphism we can extend φ1 to a morphism φ̄ : EpXq Ñ EpX 1q. We claim that φ̄pLτ pXqq ď
Lτ pX

1q. In fact, φ̄pLτ pXqq{X
1 is a quotient of φ̄pLτ pXqq{pX

1 X φpX 1qq – Lτ pXq{φ
´1pX 1q “

Lτ pXq{X P T , and so φ̄pLτ pXqq{X
1 P T . Thus, we can define Lτ pφq : Lτ pXq Ñ Lτ pX

1q as the
restriction of φ̄.
It remains to show the uniqueness of Lτ pφq. Indeed, let ψ : Lτ pXq Ñ Lτ pX

1q be a morphism
such that ψæX “ φ1. Then, pLτ pφq ´ ψqpXq “ 0 and so Lτ pφq ´ ψ can be decomposed as
Lτ pφq ´ ψ “ gf , with f : Lτ pXq Ñ Lτ pXq{X the canonical projection and g : Lτ pXq{X Ñ

Lτ pX
1q. By definition Lτ pXq{X P T , while Lτ pX

1q P F , thus g “ 0 and Lτ pφq ´ ψ “ 0f “ 0,
showing that ψ “ Lτ pφq.

(3) follows by the uniqueness proved in part (2).

The above lemma allows us to define a localization functor Lτ : CÑ C:

Definition 1.131. Let C be a Grothendieck category with enough injectives and let τ “ pT ,Fq
be a torsion theory. The τ -localization functor Lτ : CÑ C is defined as follows:

– Lτ pXq “ π´1pTτ pEpXq{Xqq, where π : EpXq Ñ EpXq{X is the canonical projection, for all
X P F ;

– Lτ pXq “ Lτ pX{Tτ pXqq, for all X P ObpCq;

– given a morphism φ : X Ñ X 1 in C, Lτ pφq : Lτ pXq Ñ Lτ pX
1q is the unique morphism that

makes the following square commute

X{Tτ pXq
φ̄ //

��

X 1{Tτ pX
1q

��
Lτ pXq

Lτ pφq // Lτ pX
1q.

Furthermore, we let Qτ : C Ñ C{T be the unique functor such that Lτ “ SτQτ . Qτ is called
τ -quotient functor. We say that τ is exact if Lτ is an exact functor.

Theorem 1.132. Let C be a complete Grothendieck category with enough injectives and let
τ “ pT ,Fq be a torsion theory on C. Then,

(1) Qτ is left adjoint to Sτ ;

(2) C{T is a complete Grothendieck category;

(3) Qτ is an exact functor that commutes with coproducts;

(4) an object E P C{T is injective if and only if Sτ pEq is injective in C.
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Proof. (1) We have to prove that there is a natural isomorphism

HomC{T pQτ pXq, Y q – HomCpX,Sτ pY qq ,

for all X P ObpCq and Y P C{T . Since Sτ is fully faithfull, this is the same as proving a
natural isomorphism HomCpLτ pXq, Y q – HomCpX,Y q (with X, Y P ObpCq and Y τ -local). Let
α : X Ñ Lτ pXq be the canonical morphism and notice that α induces a map

α˚ : HomCpLτ pXq, Y q
–
Ñ HomCpX,Y q α˚pφq “ φ ˝ α .

When X P F , α˚ is an isomorphism by Lemma 1.130(2), while the general case follows noticing
that there is a natural isomorphism HomCpX,Y q – HomCpX{Tτ pXq, Y q.

(2) By [96, Propositions 1.2 and 1.3, Ch. X] and part (1), we obtain that kernels exist in C{T
and that it is enough to show that Qτ sends kernels to kernels. We show this in two steps:

– First of all we prove that, given monomorphism φ : X Ñ Y in C, Qτ pφq : Qτ pXq Ñ Qτ pY q is
a monomorphism in C{T . It is sufficient to show that Lτ pφq is a monomorphism in C. We can
assume without loss of generality that X, Y P F (otherwise substitute them by X{Tτ pXq and
Y {Tτ pY q respectively, and notice that the induced morphism X{Tτ pXq Ñ Y {Tτ pY q is again
a monomorphism). In this case, 0 “ Kerpφq “ KerpLτ pφqqXX and thus KerpLτ pφqq “ 0 since
X is essential in Lτ pXq.

– Consider now a morphism φ : X Ñ Y in C, let k : K Ñ X be a kernel of φ and let us show
that Qτ pkq : Qτ pKq Ñ Qτ pXq is a kernel of Qτ pφq in C{T . We suppose without any loss
in generality that X, Y P F (in fact, letting φ̄ : X{Tτ pXq Ñ Y {Tτ pY q be the induced map,
Kerpφ̄q “ Kerpφq{Tτ pKerpφqq and so Qτ pKerpφ̄qq “ Qτ pKerpφqq). Let Z̄ P C{T , let ψ̄ : Z Ñ
Qτ pXq be a morphism such that Qτ pφqψ̄ “ 0 and let Z “ Sτ pZ̄q, ψ “ Sτ pψ̄q : Z Ñ Lτ pXq,
so that Lτ pφqψ “ 0. Consider the restriction ψ1 : ψ´1pXq Ñ X; since ψ1φ “ 0, there exists a
morphism f : ψ´1pXq Ñ K such that kf “ ψ1. Notice that Z{ψ´1pXq “ ψpZq{pψpZqXXq “
pZ `Xq{X ď Lτ pXq{X P T and so, Lτ pψ

´1pXqq “ Lτ pZq “ Z. Hence, Qτ pfq : Z̄ Ñ Qτ pKq
is such that Qτ pkqQτ pfq “ Qτ pψq “ ψ̄. We conclude by Lemma 1.56 that Qτ pKq is a kernel
for Qτ pφq.

(3) Qτ is exact since it is a left adjoint (thus right exact) and it preserves kernels. The fact that
it preserves coproducts follows by Lemma 1.37.

(4) This follows by Lemma 1.85.

1.3.3 The Gabriel-Popescu Theorem and its consequences

The following theorem, usually known as the “Gabriel-Popescu Theorem”, was first proved in
[88].

Theorem 1.133. [96, Theorem 4.1, Ch. X] Let C be a Grothendieck category, let G be a
generator of C, let R “ EndCpGq and denote by T : C Ñ Mod-R the functor T “ HomCpG,´q
where, for any object X P C, the right R-module structure on T pXq is given by the following
map

HomCpG,Xq ˆ EndCpGq Ñ HomCpG,Xq such that pφ, ρq ÞÑ φ ˝ ρ .

Then,

(1) T is fully faithful;
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(2) if we denote by τ “ pT ,Fq the torsion theory cogenerated by

E “ tEpT pXq ‘ EpT pXqq{T pXqq : X P ObpCqu ,

(see Example 1.122 (4)) then the composition C
T
ÝÑ Mod-R

Qτ
ÝÑ pMod-Rq{T is a natural

equivalence of categories.

The following corollaries are direct consequences of the above theorem and Theorem 1.132.

Corollary 1.134. Let C be a Grothendieck category, then

(1) C is complete;

(2) C has enough injective objects.

Corollary 1.135. Let C be a Grothendieck category and let τ “ pT ,Fq be a torsion theory on
C. Consider a family tXi : i P Iu Ď C{T , then

ź

iPI

Xi – Qτ

˜

ź

iPI

Sτ pXiq

¸

.

Proof. Being a right adjoint, Sτ commutes with limits, thus Sτ p
ś

iPI Xiq –
ś

iPI Sτ pXiq. Apply
Qτ to conclude.

Corollary 1.136. Let C be a Grothendieck category and let τ “ pT ,Fq be a torsion theory in
C. Then τ is cogenerated by an injective object E.

Proof. Take a generator G of C and let E be the product of all the injective envelopes of the
τ -torsion free quotients of G. Then, T coincides with KtEu and F “ T K is the class of all the
objects that embed in some product of copies of E.

The proof of Corollary 1.136 shows that the torsion theories in a Grothendieck category C
form a set, not a proper class (in fact, one can bound the cardinality of this set by the cardinality
of the power set of the family of quotients of a chosen generator G of C).

Definition 1.137. Let C be a Grothendieck category. We denote by TorspCq the poset of all the
torsion theories on C, ordered as follows: given τ “ pT ,Fq and τ 1 “ pT 1,F 1q P TorspCq,

τ 1 ĺ τ if and only if T 1 Ď T if and only if F Ď F 1 .

When τ 1 ĺ τ , we say that τ is a generalization of τ 1, while τ 1 is a specialization of τ .

Corollary 1.138. Let C be a Grothendieck category and let τ “ pT ,Fq be a torsion theory.
Then, F is closed under taking injective envelopes.

The notion of stable torsion theory was introduced by Gabriel in [48], see also [82] and [7].

Definition 1.139. Let C be a Grothendieck category. A torsion theory τ “ pT ,Fq on C is stable
if T is closed under taking injective envelopes. Furthermore, C is stable if any τ P TorspCq is
stable.

Corollary 1.140. Let C be a Grothendieck category and let τ “ pT ,Fq be a torsion theory on
C. The following statements are equivalent
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(1) τ is stable;

(2) given E P ObpCq is an injective object, then E – Tτ pEq ‘ E{Tτ pEq.

Proof. (1)ñ(2). Identify Tτ pEq and its injective envelope with subobjects of E, so that Tτ pEq ď
EpTτ pEqq ď E. Since EpTτ pEqq is τ -torsion, EpTτ pEqq ď Tτ pEq. Thus, Tτ pEq “ EpTτ pEqq.
Having proved that Tτ pEq is injective, the desired decomposition follows.

(2)ñ(1). Let X P T and let E be an injective envelope of X. Then, E “ Tτ pEq ‘ E{Tτ pEq
and so we can identify E{Tτ pEq with a sub-object of E. Since X is an essential sub-object of
E and X X E{Tτ pEq “ 0, E{Tτ pEq “ 0.
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Chapter 2

Lattice Theory

In Chapter 2 we introduce the category QFrame of quasi frames. In QFrame we study some
lattice-theoretic notions that are usually introduced in module theory, such as the composition
length, the uniform dimension and the socle series.
In the second part of the chapter we study the basic properties of two cardinal invariants of
qframes: Krull dimension and Gabriel dimension. Using these notions we can define torsion and
localization in the category QFrame.
Given a Grothendieck category C and a torsion theory τ in C, there is a notion of τ -Gabriel
dimension for the objects of C. We show that this notion can be defined using the Gabriel
dimension of quasi frames and we deduce its basic properties.

2.1 The category of Quasi-frames

2.1.1 Lattices

Let pL,ďq be a lattice. Given two elements x and y P L, the segment between x and y is

rx, ys “ ts P L : x ď s ď yu .

We also let px, ys “ rx, ysztxu, rx, yq “ rx, ysztyu and px, yq “ rx, ysztx, yu. Notice that rx, ys is
a lattice with the order induced by L.

Definition 2.1. Let pL,ďq be a lattice. Then,

– pL,ďq is bounded if it has a maximum (usually denoted by 1) and a minimum (usually denoted
by 0);

– pL,ďq is modular if, for all a, b and c P L with a ď c,

a_ pb^ cq “ pa_ bq ^ c ;

– pL,ďq is distributive if, for all a, b and c P L,

a_ pb^ cq “ pa_ bq ^ pa_ cq and a^ pb_ cq “ pa^ bq _ pa^ cq ;

– pL,ďq is upper-continuous if it is complete and, for any directed subset txi : i P Iu of L (or,
equivalently, for any chain in L) and any x P L,

x^
ł

iPI

xi “
ł

iPI

px^ xiq ;

35
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– given a P L, an element c is a pseudo-complement for a if it is maximal with respect to the
property that a^ c “ 0. pL,ďq is pseudo-complemented if, for any choice of x ď y in L, any
element a P rx, ys has a pseudo-complement in rx, ys, that is, an element c P rx, ys maximal
with respect to the property that a^ c “ x;

– pL,ďq is a frame if it is complete and, for any subset txi : i P Iu of L and any x P L,

x^
ł

iPI

xi “
ł

iPI

px^ xiq .

Notice that a complete lattice always has a minimum
Ž

H “ 0 and a maximum
Ź

H “ 1.

Example 2.2. (1) The family of closed sets ClosedpX, τq of a topological spaces pX, τq, ordered
by reverse inclusion, is a frame. In fact, given a set tCi : i P Iu of closed sets,

Ž

Ci “
Ş

Ci P ClosedpX, τq, while
Ź

Ci “
Ť

iPI Ci, where for any subset E Ď X we denote by
E “

Ş

tC : E Ď C P ClosedpX, τqu the closure of E in X;

(2) a total order pL,ďq is a frame, in fact, given x P L and tyi : i P Iu Ď L, we have two cases

x^
ł

iPI

yi “

#

x if x ď
Ž

iPI yi;
Ž

iPI yi if x ě
Ž

iPI yi.

In both cases, there exists (at least) an element j P I such that x ď yj, so
Ž

iPIpx ^ yiq “
Ž

i‰jpx^ yiq _ x ě x “ x^
Ž

iPI yi;

(3) given a Grothendieck category C and an object M P ObpCq, LpMq is an upper-continuous
modular lattice. Indeed, it is a complete lattice by Lemma 1.72, since any Grothendieck
category is well-powered, and it is upper-continuous by Proposition 1.78, for modularity see
for example [96, Proposition 5.3, Ch. IV]).

We collect in the following lemma some observations on the notions introduced in Definition
2.1, for a proof see Sections 2, 3 and 4 of Chapter III in [96].

Lemma 2.3. Let pL,ďq be a lattice. Then,

(1) if L is distributive, then it is also modular;

(2) if L is upper-continuous and modular, then it is pseudo-complemented;

(3) L is complete if and only if any subset F of L has a meet. Furthermore, if L is complete
then it is bounded;

(4) if L is a frame, then it is distributive, upper continuous, bounded, complete and pseudo-
complemented.

Definition 2.4. Let pL1,ďq and pL2,ďq be two lattices and consider a map φ : L1 Ñ L2. Then,
φ preserves segments if rφpaq, φpbqs “ φpra, bsq, for all a ď b P L1.

Example 2.5. Let C be a Grothendieck category and let φ : X Ñ Y be a morphism in C. Then,
the map

Φ : LpXq Ñ LpY q such that ΦpCq “ φpCq ,

induced by φ is a semi-lattice homomorphism that commutes with arbitrary joins and preserves
segments. Indeed, Φ is a semi-lattice homomorphism that commutes with arbitrary joins by
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Proposition 1.72 and the fact that any Grothendieck category is complete. To show that Φ sends
segments to segments, let K1 ď K2 P LpXq and consider K P rΦpK1q,ΦpK2qs. Then,

K “ Φpφ´1pKqq “ Φpφ´1pKq X φ´1pφpK2qqq

“ Φpφ´1pKq X pK2 `Kerpφqqq “ Φppφ´1pKq XK2q `Kerpφqq

“ Φpφ´1pKq XK2q ` ΦpKerpφqq “ Φpφ´1pKq XK2q ,

where in the first line we used that K ď Impφq, while in the second line we used the modularity
of LpXq. Since φ´1pKq XK2 P rK1,K2s we proved that Φ sends segments to segments.

Lemma 2.6. Let pL1,ďq and pL2,ďq be two lattices and consider a map φ : L1 Ñ L2. Then,

(1) if L1 has a minimum element 0 and φ commutes with arbitrary joins, then φp0q is a minimum
in L2;

(2) if L1 and L2 are bounded and φ preserves segments, then φ is surjective if and only if its
image contains 0 and 1.

Proof. Remember that 0 “
Ž

H and so, since φ commutes with arbitrary joins, φp0q “
Ž

H in
L2. This proves (1). Part (2) easily follows from the definitions.

Definition 2.7. A quasi-frame (or qframe) is an upper-continuous modular lattice. A map
between two quasi-frames is a homomorphism of quasi-frames if it is a homomorphism of semi-
lattices that preserves segments and commutes with arbitrary joins.
We denote by QFrame the category of quasi-frames and homomorphisms of quasi-frames.

Notice that, given a qframe pL,ďq and two elements a ď b P L, the segment ra, bs is again a
qframe, even if the inclusion ra, bs Ñ L is not a homomorphism of qframes.

2.1.2 Constructions in QFrame

Let us introduce some terminology and some useful constructions in the category of qframes.

Definition 2.8. Let φ : L1 Ñ L2 be a homomorphism of qframes. The element Kerpφq “
Ž

φpxq“0 x P L1 is called the kernel of φ. We say that φ is algebraic provided the restriction
φ : rKerpφq, 1s Ñ L2 of φ to rKerpφq, 1s is injective.

Notice that an algebraic homomorphism of qframes is injective if and only if its kernel is 0.

Example 2.9. Let C be a Grothendieck category and let φ : X Ñ Y be a morphism in C. Then,
the morphism Φ : LpXq Ñ LpY q such that ΦpKq “ φpKq, for all K P LpXq, is algebraic. Indeed,
notice that KerpΦq “ Kerpφq and that, given K1, K2 P rKerpφq, 1s such that ΦpK1q “ ΦpK2q, we
get K1 “ K1 `Kerpφq “ φ´1pφpK1qq “ φ´1pφpK2qq “ K2 `Kerpφq “ K2.

Definition 2.10. Let pL,ďq be a qframe, let I be a set and let F “ txi : i P Iu be a subset of L
such that xi ‰ 0 for all i P I. We say that F is a join-independent family if, for any i P I,

¨

˝

ł

jPIztiu

xj

˛

‚^ xi “ 0 .

Furthermore, we say that F is a basis for L if it is join-independent and
Ž

iPI xi “ 1. The
uniform dimension u.dimpLq of L is

u.dimpLq “ supt|F | : F a finite join independent family in Lu .

If u.dimpLq “ 1, L is said to be a uniform qframe.
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Lemma 2.11. Let pL,ďq be a qframe, let x P L and let tyi : i P Iu be a basis of L. If x ‰ 0,
there exists a finite subset of I such that x^

Ž

iPF xi ‰ 0.

Proof. Notice that 0 ‰ x “ x ^
Ž

t
Ž

iPF yi : F Ď I finiteu “
Ž

tx ^
Ž

iPF yi : F Ď I finiteu, so
for at least one finite subset F of I, x^

Ž

iPF xi ‰ 0

Definition 2.12. Let I be a set and, for all i P I, let pLi,ďq be a qframe. We construct the
product of this family as follows:

ź

iPI

Li “ tx “ pxiqI : xi P Li , for all i P Iu

with the partial order relation defined by

p x ď y q ðñ p xi ď yi , for all i P I q .

One can prove that
ś

iPI Li is again a qframe. Furthermore, for any subset J Ď I the
canonical surjective map

πJ :
ź

iPI

Li Ñ
ź

jPJ

Lj ,

defined by πJppxiqIq “ pxjqJ , and the canonical injective map

εJ :
ź

jPJ

Lj Ñ
ź

iPI

Li ,

defined by εJppxjqJq “ pyiqiPI , with yi “ xi if i P J , while xi “ 0 for all i P IzJ , are homomor-
phisms of qframes.

Definition 2.13. Let pL,ďq be a qframe. A congruence on pL,ďq is a subset R Ď LˆL which
satisfies the following properties:

(Cong.1) R is an equivalence relation;

(Cong.2) for all a, b and c P L, pa, bq implies pa_ c, b_ cq;

(Cong.3) for all a, b and c P L, pa, bq implies pa^ c, b^ cq.

When R is a congruence, we write a „ b to denote that pa, bq P R. Furthermore, if R satisfies
the following condition (Cong.4), then R is said to be a strong congruence:

(Cong.4) for all a P L the equivalence class ras has a maximum.

Lemma 2.14. Let pL,ďq be a qframe and let R be a strong congruence on L. Let L{R be the
set of equivalence classes in L and endow it with the following binary relation:

p ras ĺ rbs q ðñ p Da1 P ras and b1 P rbs such that a1 ď b1 q .

Then ĺ is a partial order, and pL{R,ĺq is a qframe. Furthermore, the canonical map π : LÑ
L{R such that x ÞÑ rxs is a surjective homomorphism of qframes which commutes with finite
meets.



2.1 The category of Quasi-frames 39

Proof. ĺ is a partial order. It is clear that ĺ is well-defined and reflexive. Let a, b P L be
such that ras ĺ rbs and rbs ĺ ras, let us show that ras “ rbs. Indeed, by definition there exists
a1, a2 P ras and b1, b2 P rbs such that a1 ď b1 and b2 ď a2. Thus, a „ a1 “ a1 ^ b1 „ a1 ^ b2 „
a2 ^ b2 “ b2 „ b, that is, ras “ rbs, proving that R is symmetric. Let us now verify transitivity,
that is, given ras ĺ rbs ĺ rcs P L{R, ras ĺ rcs. To do so, take a1 P ras, b1 and b2 P rbs, and
c1 P rcs such that a1 ď b1 and b2 ď c1. It is then clear that a1 ď b1 _ b2 ď b1 _ c1, and also that
c1 “ c1 _ b2 „ c1 _ b1, thus ras ĺ rcs as desired.
Lattice structure. Let a and b P L and let us show that ra ^ bs is a greatest lower bound for
ras and rbs in L{R. Indeed, it is clear that ra^ bs is ĺ of both ras and rbs. Furthermore, given
c P L such that rcs ĺ ras and rcs ĺ rbs, there exist ca, cb P rcs, such that ca ď a and cb ď b.
Thus, rcs “ rca ^ cbs ĺ ra ^ bs, showing that ra ^ bs is a greatest lower bound. One can show
analogously that ra_ bs is a least upper bound for ras and rbs.
Modularity. Let a, b and c P L and suppose ras ĺ rcs. Choose a1 P ras and c1 P rcs such that
a1 ď c1, then, by the modularity of L, a1 _ pb^ c1q “ pa1 _ bq ^ c1 and so

ras _ prbs ^ rcsq “ ra1s _ prbs ^ rc1sq “ pra1s _ rbsq ^ rc1s “ pras _ rbsq ^ rcs .

Completeness. Consider a family F “ trxis : i P Iu in L{R, we claim that r
Ž

iPI xis is a least
upper bound for F . In fact, it is clear that r

Ž

iPI xis ľ rxjs for all j P I. Furthermore, given
c P L such that rcs ľ rxis for all i P I, we can choose x1i P rxis such that x1i ď c̄ for all i P I,
where c̄ “

Ž

rcs. Letting x̄i “
Ž

rxis, c̄ “ c̄ ^ x1i „ c̄ ^ x̄i and so x̄i ď c̄, for all i P I. Thus,
rcs “ rc̄s ľ r

Ž

iPI x̄is “ r
Ž

iPI xis.
pL{R,ĺq is a qframe. We have just to verify upper continuity. Let trxis : i P Iu be a directed
family in L{R and let x̄i “

Ž

rxis, for all i P I. The set tx̄i : i P Iu is directed and so, for all
x P L, x^

Ž

iPI x̄i “
Ž

iPIpx^ x̄iq. Thus, by our description of the lattice operations,

rxs ^
ł

iPI

rxis “ rxs ^
ł

iPI

rx̄is “
ł

iPI

prxs ^ rx̄isq “
ł

iPI

prxs ^ rxisq .

π is a surjective homomorphism of qframes that commutes with finite meets. It is all clear from
the description of the lattice operation in L{R a part the fact that π preserves segments. So take
x ď y P L and consider rzs P rrxs, ryss. Let x1 P rxs and z1 P rzs be such that x1 ď z1. Clearly,
x ď z1_x P rzs, in fact, x „ x1 implies z1_x „ z1_x1 “ z1. Furthermore, y ě pz1_xq^y P rzs, in
fact, given z2 P rzs and y1 P rys such that z2 ď y1, we obtain pz1_xq^ y „ z2^ y „ z2^ y1 “ z2.
Thus, pz1 _ xq ^ y P rx, ys and πppz1 _ xq ^ yq “ rzs.

Definition 2.15. A qframe pL,ďq is compact if, for any subset S Ď L such that
Ž

S “ 1, there
exists a finite subset F Ď S such that

Ž

F “ 1.

Lemma 2.16. Let pL,ďq be a qframe, let x P L and let tyi : i P Iu be a family such that
Ž

yi “ 1. If r0, xs is compact, there exists a finite subset F of I such that x ď
Ž

iPF yi.

Proof. Notice that x “ x ^
Ž

iPIt
Ž

iPG yi : G Ď I finiteu “
Ž

tx ^
Ž

iPG yi : G Ď I finiteu.
By compactness, there exists a finite subset K of the set of finite subsets of I such that x “
Ž

tx^
Ž

iPG yi : G P Ku. Taking F “
Ť

GPK G we get

x “
ł

#

x^
ł

iPG

yi : G P K

+

ď x^
ł

iPF

yi ď x .

Thus, x “ x^
Ž

iPF yi, which means exactly that x ď
Ž

iPF yi.
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2.1.3 Composition length

Definition 2.17. Let pL,ďq be a qframe. Given a finite chain

σ : x0 ď x1 ď ¨ ¨ ¨ ď xn

of elements of L, we say that the length `pσq of σ is the number of strict inequalities in the chain.
A second chain σ1 : y0 ď y1 ď ¨ ¨ ¨ ď ym is a refinement of σ if tx0, x1, . . . , xnu Ď ty0, y1, . . . , ymu.

The following lemma is known as Artin-Schreier’s Refinement Theorem.

Lemma 2.18. [96, Proposition 3.1, Ch. III] Let pL,ďq be a qframe, let a ď b P L and let

σ1 : a “ x0 ď x1 ď ¨ ¨ ¨ ď xn “ b and σ2 : a “ y0 ď y1 ď ¨ ¨ ¨ ď ym “ b .

Then, there exists a series σ : a “ z0 ď z1 ď ¨ ¨ ¨ ď zt “ b that refines both σ1 and σ2.

Definition 2.19. Let pL,ďq be a qframe. The length of L is

`pLq “ supt`pσq : σ a finite chain of elements of Lu P NY t8u .

If `pLq ă 8 we say that L is a qframe of finite length.

For any element x P L we use the notation `pxq to denote the length of the segment r0, xs.
In the following lemmas we describe some properties of this numerical invariant.

A qframe pL,ďq is said to be trivial if it has just one element. In what follows, by non-trivial
qframe we mean a qframe which contains at least two elements. Furthermore, pL,ďq is said to
be an atom (or to be simple) if it has two elements.

Remark 2.20. A qframe pL,ďq is trivial if and only if `pLq “ 0, while it is an atom if and only
if `pLq “ 1.

Definition 2.21. Let pL,ďq be a qframe and consider a finite chain

σ : 0 “ x0 ď x1 ď ¨ ¨ ¨ ď xn “ 1

If all the segments rxi, xi`1s, with i “ 0, . . . , n´1, are simple, then we say that σ is a composition
series.

Using Lemma 2.18, it is not difficult to deduce the following lemma, which is usually known
as Jordan-Hölder Theorem.

Lemma 2.22. Let pL,ďq be a qframe of finite length. Then,

(1) any finite chain in L can be refined to a composition series;

(2) any two composition series in L have the same length;

(3) `pLq “ n if and only if there exists a composition series of length n in L.

Definition 2.23. A qframe pL,ďq is

– Noetherian if any ascending chain x1 ď x2 ď ¨ ¨ ¨ ď xn ď . . . stabilizes at some point;

– Artinian if any descending chain x1 ě x2 ě ¨ ¨ ¨ ě xn ě . . . stabilizes at some point.
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Using Lemma 2.22, one can prove that `pLq ă 8 if and only if L is both Noetherian and
Artinian (see also Lemma 2.35).

Lemma 2.24. Let pL,ďq be a qframe. Then, L is Noetherian if and only if r0, xs is compact
for all x P L.

Proof. Suppose that L is Noetherian, let x P L and consider a subset S Ď r0, xs such that
Ž

S “ x. Consider an ascending chain in L defined inductively as follows:

– let F0 “ H and let x0 “ 0;

– given n P N for which Fn has already been defined, we have two possibilities. If
Ž

Fn “ S
then we let Fn`1 “ Fn, otherwise there exists a finite subset Fn`1 of S that contains Fn and
such that

Ž

Fn ă
Ž

Fn`1. We let xn`1 “
Ž

Fn`1.

Now, the sequence x0 ď x1 ď ¨ ¨ ¨ ď xn ď . . . is an infinite ascending sequence so that there
exists n̄ P N such that xn “ xn̄ for all n ě n̄. In particular, x “

Ž

Fn̄, where Fn̄ is a finite
subset of S, proving that r0, xs is compact.
On the other hand, suppose that r0, xs is compact for all x P L and consider an ascending chain

x0 ď x1 ď . . . ď xn ď . . .

Let x̄ “
Ž

iPN xi and notice that, by compactness, there exists a finite subset F Ď N such that
x̄ “

Ž

fPF xf . Letting n̄ “ maxtF u, xm “ xn̄ for all m ě n̄.

Lemma 2.25. [26, Lemma 3.2] Let pL,ďq be a qframe of finite length and let x, y P L. Then,

`px_ yq ` `px^ yq “ `pxq ` `pyq .

Lemma 2.26. Let φ : L1 Ñ L2 be a homomorphism of qframes:

(1) if φ is injective, then `pL1q ď `pL2q;

(2) if φ is surjective, then `pL2q ď `pL1q.

Proof. (1) Let σ : x1 ď x2 ď ¨ ¨ ¨ ď xn be a chain in L1, then φpσq : φpx1q ď φpx2q ď ¨ ¨ ¨ ď φpxnq
is a chain in L2. Furthermore, if xi ‰ xj , then φpxiq ‰ φpxjq by injectivity. Thus, `pφpσqq “ `pσq
and so `pL1q ď `pL2q.

(2) Let σ : x1 ď x2 ď ¨ ¨ ¨ ď xn be a chain in L2. Since φ is surjective, there exist y1, . . . , yn P L1

such that φpyiq “ xi for all i “ 1, . . . , n. Clearly, σ1 : y1 ď py1 _ y2q ď ¨ ¨ ¨ ď py1 _ y2 _ . . ._ ynq
and, for all i “ 1, . . . , n, φpy1 _ . . ._ yiq “ φpy1q _ . . ._ φpyiq “ x1 _ . . ._ xi “ xi. If xi ‰ xi`1,
then y1 _ . . ._ yi ‰ y1 _ . . ._ yi _ yi`1 and so `pσq ď `pσ1q. Thus, `pL2q ď `pL1q.

Corollary 2.27. Let I be a set. For all i P I, let pLi,ďq be a non-trivial qframe and let
L “

ś

I Li. Then,

`pLq “

#

ř

iPI `pLiq if I is finite;

8 otherwise.

Proof. If `pLiq “ 8 for some i P I there is nothing to prove, so we suppose that `pLiq is finite
for all i P I. Let εi : Li Ñ L be the canonical inclusion and let 1i “

Ž

εpLiq, for all i P I. Notice
that εipLiq “ r0, 1is, so `pLiq “ `p1iq, and L “ r0,

Ž

iPI 1is, so `pLq “ `p
Ž

iPI 1iq.
When I is finite, the proof follows by Lemma 2.25 and the fact that, 1i ^

Ž

j‰i 1j “ 0.
If I is not finite, then for any finite subset J Ď I, we have `p

ś

J Ljq “
ř

J `pLjq ě |J | by the
first part of the proof. Furthermore, `p

ś

I Liq ě `p
ś

J Ljq, by Lemma 2.26 applied to the maps
πJ :

ś

I Li Ñ
ś

J Lj . Thus, ` p
ś

I Liq ě supt|J | : J Ď I finiteu “ 8.



42 Lattice Theory

Lemma 2.28. Let pL,ďq be a qframe of finite length, let pL1,ďq be a qframe, and let φ : LÑ L1

be a homomorphism of qframes. Then φ is injective if and only if it is surjective, if and only if
`pLq “ `pφpLqq.

Proof. Let us start proving that φ is injective if and only if `pLq “ `pφpLqq. Indeed, suppose
that `pLq “ `pφpLqq and let x, y P L be such that φpxq “ φpyq. If, looking for a contradiction
x ‰ y, then either x ă x_y or y ă x_y. Without loss of generality, we suppose that x ă x_y.
Take the chain 0 ď x ă x_ y ď 1 between 0 and 1 and refine it to a composition chain

σ : 0 ď ¨ ¨ ¨ ď x ă ¨ ¨ ¨ ă x_ y ă ¨ ¨ ¨ ď 1 ,

thus `pσq “ `pLq (see Lemma 2.22). The image via a homomorphism of qframes of a composition
chain is a (eventually shorter) composition chain in the image. Thus, `pφpσqq “ `pφpLqq “ `pLq “
`pσq, in particular, φpxq ‰ φpx_ yq “ φpxq _ φpyq, which contradicts the fact that φpxq “ φpyq.
For the converse it is enough to verify that the image of a composition chain via an injective
homomorphism is a composition chain in the image with the same length.
Let us now verify that φ is surjective if and only if `pLq “ `pφpLqq. Indeed, if φ is not surjective,
that is

Ž

φpLq ‰ 1, consider a composition chain σ : 0 “ x0 ď x1 ď . . . ď xn “
Ž

φpLq in
r0,

Ž

φpLqs. We can define a longer chain σ1 : 0 “ x0 ď x1 ď . . . ď xn ă 1 in L. Hence,
`pφpLqq “ `pσq ă `pσ1q ď `pLq. The converse is trivial since L “ φpLq clearly implies that
`pLq “ `pφpLqq.

2.1.4 Socle series

Definition 2.29. Let pL,ďq be a qframe. The socle spLq of L is the join of all the atoms in L.
For all x P L, we let spxq “ spr0, xsq.

Lemma 2.30. Let pL,ďq be a qframe and let I be a set. Then,

(1) spxq ď x and spx1q ď spx2q, for all x P L and x1 ď x2 P L;

(2) sp
Ž

iPI xiq “
Ž

iPI spxiq, where xi P L for all i P I;

(3) sp
Ź

iPI xiq “
Ź

iPI spxiq, where xi P L for all i P I;

(4) if φ : LÑ L1 is a homomorphism of qframes, then φpspLqq ď spL1q.

Proof. Parts (1), (2) and (3) follow by the properties described in [26, page 47]. For part (4),
notice that φpspLqq “ φp

Ž

tx P L : r0, xs is an atomu “
Ž

tφpxq : r0, xs is an atomu ď
Ž

ty P
L1 : r0, ys is an atomu (use the fact that φ takes intervals to intervals).

Thanks to part (4) of Lemma 2.30, we can give the following

Definition 2.31. Let pL,ďq be a qframe and let SocpLq “ r0, spLqs. Furthermore, given a
homomorphism φ : L Ñ L1 of qframes, we denote by Socpφq : SocpLq Ñ SocpL1q the restriction
of φ. This defines a covariant functor Soc : QFrame Ñ QFrame.

Definition 2.32. Let pL,ďq be a qframe and let x P L. We say that x is completely meet
irreducible if, given a family tyiuiPI Ď rx, 1s such that

Ź

yi “ x, there exists i P I such that
yi “ x.

Lemma 2.33. Let pL,ďq be a qframe and let x P L. Then, x is completely meet irreducible if
and only if the lattice rx, 1s is uniform and its socle is an atom.
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Proof. Suppose first that x is completely meet irreducible. To show that rx, 1s is uniform consider
any two elements y1, y2 P px, 1s such that y1 ^ y2 “ x. Then either y1 “ x or y2 “ x, so the
family ty1, y2u is not join-independent. If Socprx, 1sq ‰ txu, then Socprx, 1sq is an atom by
uniformity. On the other hand, if looking for a contradiction Socprx, 1sq “ txu, then for all
y P px, 1q, px, yq is not empty (otherwise rx, ys is an atom) and so we can inductively construct
a transfinite sequence as follows:

– y1 “ 1;

– if α is an ordinal for which yα is already constructed, yα`1 is an element in px, yαq;

– if λ is a limit ordinal for which yα is constructed for all α ă λ, and px,
Ź

αăλ yαq ‰ H, we
choose yλ P px,

Ź

αăλ yαq, otherwise we stop.

Of course, there exists a limit ordinal λ̄ for which x “
Ź

αăλ̄ yα, so we obtain a sequence tyαuαăλ̄
such that

Ź

αăλ̄ yα “ x but x ‰ yα for all α ă λ̄, which is a contradiction.

On the other hand, suppose that rx, 1s is uniform and that Socprx, 1sq “ rx, ss is an atom,
and choose a family tyiuiPI Ď rx, 1s such that

Ź

iPI yi “ x. If, looking for a contradiction,
yi ‰ x for all i P I, then yi ^ s ‰ x by uniformity and, since rx, ss is an atom, s ď yi. Thus,
x “

Ź

iPI yi ě s^
Ź

iPI yi “
Ź

iPIps^ yiq “ s, which is a contradiction.

We can iterate the procedure that defines the socle as follows:

Definition 2.34. Let pL,ďq be qframe. Then,

– s0pLq “ spLq;

– for any ordinal α, sα`1pLq “ sprsαpLq, 1sq;

– for any limit ordinal α, sλpLq “
Ž

αăλ sαpLq.

L is semi-Artinian if sτ pLq “ 1 for some ordinal τ .

It is not difficult to show that the uniform dimension of a semi-Artinian qframe is the length
of its socle.

Lemma 2.35. [26, Theorem 5.2 and Proposition 5.3] Let pL,ďq be a qframe. Then,

(1) L is semi-Artinian if and only if r0, xs and rx, 1s are semi-Artinian for all x P L;

(2) L is semi-Artinian and Noetherian if and only if `pLq ă 8.

2.2 Krull and Gabriel dimension

2.2.1 Krull and Gabriel dimension

Definition 2.36. Let pL,ďq be a qframe. The Krull dimension K.dimpLq of L is defined as
follows:

– K.dimpLq “ ´1 if and only if L is trivial;

– if α is an ordinal and we already defined what it means to have Krull dimension β for any
ordinal β ă α, K.dimpLq “ α if and only if K.dimpLq ‰ β for all β ă α and, for any
descending chain

x1 ě x2 ě x3 ě . . . ě xn ě . . .

in L, there exists n̄ P N` such that K.dimprxn, xn`1sq “ βn for all n ě n̄ and βn ă α.



44 Lattice Theory

If K.dimpLq ‰ α for any ordinal α we set K.dimpLq “ 8.

Notice that the qframes with 0 Krull dimension are precisely the Artinian qframes.

Definition 2.37. A subclass X Ď ObpQFrameq is a Serre class if it is closed under isomorphisms
and, given L P ObpQFrameq and x ď y ď z P L, rx, ys, ry, zs P X if and only if rx, zs P X .

The class of all lattices with Krull dimension ď α for some ordinal α is a Serre class (see [26,
Proposition 13.5]).

Lemma 2.38. Let pL1,ďq and pL2,ďq be qframes. If K.dimpL1q exists and if there exists a
surjective homomorphism of qframes φ : L1 Ñ L2, then K.dimpL1q ě K.dimpL2q.

Proof. Let us proceed by induction on K.dimpL1q “ α. If α “ ´1, then clearly also K.dimpL2q “

´1. Suppose now that α ą ´1 and that we already proved our result for all β ă α. If
K.dimpL2q ă K.dimpL1q there is nothing to prove, so suppose that K.dimpL2q ­ă K.dimpL1q and
let us show that K.dimpL2q “ K.dimpL1q. Indeed, consider a descending chain in L2

x0 ě x1 ě ¨ ¨ ¨ ě xn ě . . .

By the surjectivity of φ, we can choose yi P L1 so that φpyiq “ xi, for all i P N, let also
y1i “

Ž

jěi yj . It is not difficult to see that

y10 ě y11 ě ¨ ¨ ¨ ě y1n ě . . .

and that φpy1iq “
Ž

jěi φpyjq “ xi. By definition of Krull dimension, there exists n̄ P N` such that
K.dimpry1n, y

1
n`1sq “ βn for all n ě n̄ and βn ă α. By inductive hypothesis, K.dimprxn, xn`1sq ď

K.dimpry1n, y
1
n`1sq “ βn, showing that K.dimpL2q ď α, and so, K.dimpL2q “ α.

Definition 2.39. Let pL,ďq be a qframe. We define the Gabriel dimension G.dimpLq of L by
transfinite induction:

– G.dimpLq “ 0 if and only if L is trivial. A qframe S is 0-simple (or just simple) if it is an
atom;

– let α be an ordinal for which we already know what it means to have Gabriel dimension β, for all
β ď α. A qframe S is α-simple if, for all 0 ‰ a P S, G.dimpr0, asq ę α and G.dimpra, 1sq ď α;

– let σ be an ordinal for which we already know what it means to have Gabriel dimension β, for
all β ă σ. Then, G.dimpLq “ σ if G.dimpLq ć σ and, for all 1 ‰ a P L, there exists b ą a
such that ra, bs is β-simple for some ordinal β ă σ.

If G.dimpLq ‰ α for any ordinal α we set G.dimpLq “ 8.

Notice that the qframes with Gabriel dimension equal to 1 are precisely the semi-Artinian
qframes. Also the class of all qframes with Gabriel dimension ď α for some ordinal α is a Serre
class (see part (1) of Lemma 2.42). For any ordinal α, G.dimpSq “ α ` 1, for any α-simple
qframe S.

Lemma 2.40. Let α be an ordinal and let pL,ďq be an α-simple qframe. Any non-trivial sub-
qframe of L is α-simple.
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Proof. We proceed by transfinite induction on α. If α “ 0, then L is an atom and there is
no non-trivial sub-qframe but L itself. Let α ą 0 and choose 0 ‰ b ď a P L. By definition,
G.dimpr0, bsq ę α so, to prove that r0, as is α-simple, it is enough to show that G.dimprb, asq ď α.
If G.dimprb, asq ă α there is nothing to prove, so let us consider the case when G.dimprb, asq ­ă α.
Let a1 P pb, as, choose a pseudo-complement c of a in ra1, 1s and let d P rc, 1s be such that rc, ds is
β-simple for some β ă α. Let b1 “ d^ a, then ra1, b1s is non-trivial by the maximality included
in the definition of pseudo-complement, furthermore, by modularity, ra1, b1s is isomorphic to
rc, b1 _ cs, which is a sub-qframe of rc, ds. By inductive hypothesis, ra1, b1s is β-simple. This
proves that G.dimprb, asq “ α, as desired.

Theorem 2.41. Let pL,ďq be a qframe. The following statements hold true:

(1) L has Krull dimension if and only if any segment of L has finite uniform dimension and L
has Gabriel dimension;

(2) if L has Krull dimension, then K.dimpLq ď G.dimpLq ď K.dimpLq ` 1;

(3) if L is Noetherian, then there exists a finite chain 0 “ x0 ď x1 ď ¨ ¨ ¨ ď xn “ 1 such that
rxi´1, xis is αi-simple for some ordinal αi, for all i “ 1, . . . , n. Furthermore, L has Krull
dimension and G.dimpLq “ K.dimpLq ` 1.

Proof. For (1), see Exercise (116) in [80] (an argument to solve that exercise can be found in
[51]). For parts (2) and (3) see respectively [26, Theorem 13.9] and (statement and proof of)
[26, Theorem 13.10].

In the following lemmas we collect some properties of Gabriel dimension. Their proof is
inspired by the treatment in [80] but we prefer to give complete proofs also here.

Lemma 2.42. Let L be a qframe with Gabriel dimension. The following statements hold true:

(1) if a ď b P L, then G.dimpra, bsq ď G.dimpLq;

(2) if a P L, then G.dimpLq “ maxtG.dimpr0, asq,G.dimpra, 1squ;

(3) given a subset F Ď L such that
Ž

F “ 1, G.dimpLq “ suptG.dimpr0, xsq : x P Fu.

(4) if L is not trivial, then G.dimpLq “ suptG.dimpra, bsq : ra, bs β-simple for some βu;

(5) G.dimpLq ď β ` 1, where β “ suptG.dimprx, 1sq : x ‰ 0u.

Proof. Let G.dimpLq “ α.

(1) We proceed by transfinite induction on α. If α “ 0, there is nothing to prove, as well as
when α ą 0 and G.dimpra, bsq ă α. Consider the case when α ą 0 and G.dimpra, bsq ­ă α. Let
a1 P ra, bq and let us find b1 P pa1, bs such that ra1, b1s is β-simple for some β ă α. Indeed, we
consider a pseudo-complement c of b in ra1, 1s and we let d P rc, 1s be such that rc, ds is β-simple
for some β ă α. Let b1 “ d ^ b. By modularity, ra1, b1s – rc, pd ^ bq _ cs, which is an initial
segment in rc, ds. By Lemma 2.40, ra1, b1s is β-simple.

(2) Let β1 “ G.dimpr0, asq and β2 “ G.dimpra, 1sq. By part (1), α ě maxtβ1, β2u. Let us show
that α ď maxtβ1, β2u, that is, given 1 ‰ b P L we need to find c P pb, 1s such that rb, cs is
γ-simple for some γ ă maxtβ1, β2u. Indeed, given 1 ‰ b P L, we distinguish two cases. If a ď b,
then b P ra, 1s and so there is c P pb, 1s such that rb, cs is γ-simple for some γ ă β2. If a ę b,
then there is c P ra ^ b, as such that rb ^ a, cs is γ-simple for some γ ă β1 and, by modularity,
rb, b_ cs – ra^ b, cs.
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(3) Let suptG.dimpr0, xsq : x P Fu “ β. Given 1 ‰ a P L, we have to show that there exists
b P ra, 1s such that ra, bs is γ-simple for some γ ă β. By hypothesis, there exists x P F such that
x ę a. Thus, x ‰ x^ a P r0, xs and so there exists b1 P rx^ a, xs such that rx^ a, b1s is γ-simple
for some γ ă G.dimpr0, xsq ď β. Let b “ b1 _ a; by modularity ra, bs – rx^ a, b1s is γ-simple as
desired.

(4) Consider a continuous chain in L defined as follows:

– x0 “ 0;

– if σ “ τ ` 1 is a successor ordinal, then xσ “ 1 if xτ “ 1, while xσ is an element ě xτ such
that rxσ, xτ s is β-simple for some β;

– xσ “
Ž

τăσ xτ if σ is a limit ordinal.

Since we supposed that L has Gabriel dimension, then the above definition is correct and there
exists an ordinal σ̄ such that xσ̄ “ 1. Let us prove our statement by induction on σ̄. If
σ̄ “ 1, there is nothing to prove. Furthermore, if σ̄ “ τ ` 1, then by part (2), G.dimpLq “
maxtG.dimpr0, xτ sq,G.dimprxτ , xσ̄sq and we can conclude by inductive hypothesis. If σ̄ is a
limit ordinal, one concludes similarly using part (3).

(5) It is enough to prove the statement for γ-simple lattices for all ordinals γ and then apply part
(4). So, let γ be an ordinal and let L be γ-simple lattice. Then, G.dimpLq “ γ`1 and we should
prove that suptG.dimprx, 1sq : x ‰ 0u ě γ. If, looking for a contradiction, suptG.dimprx, 1sq :
x ‰ 0u “ β ă γ, then just by definition, L is β-simple, that is a contradiction.

Corollary 2.43. Let pL,ďq be a qframe and let α be an ordinal. Then, G.dimpLq ď α if and
only if, for any element x ‰ 1, there exists y ą x such that G.dimprx, ysq ď α.

Proof. Let x0 “ 0, for any ordinal γ let xγ`1 “ 1 if xγ “ 1, otherwise we let xγ`1 be an
element ą xγ such that G.dimprxγ , xγ`1sq ď α. Furthermore, for any limit ordinal λ we let
xλ “

Ž

γăλ xγ . Let us prove by transfinite induction that G.dimpr0, xγsq ď α for all γ, this
will conclude the proof since there exists γ such that xγ “ 1. Our claim is clear when γ “ 0.
Furthermore, if γ “ β` 1 and G.dimpr0, xβsq ď α, then by Lemma 2.42 (2), G.dimpr0, xγsq ď α.
If γ is a limit ordinal and G.dimpr0, xβsq ď α for all β ă γ, one concludes by Lemma 2.42 (3).

Lemma 2.44. Let pL,ďq be a qframe with Gabriel dimension, let pL1,ďq be a qframe and let
φ : LÑ L1 be a surjective morphism of qframes. Then, G.dimpL1q ď G.dimpLq.

Proof. Let us proceed by transfinite induction on G.dimpLq.
If G.dimpLq “ 0, then L is a trivial as well as L1, so there is nothing to prove.
Suppose now that G.dimpLq “ α ą 0 and that we have already verified our claim for all β ă α.
Let first α “ γ ` 1 be a successor ordinal and let L be γ-simple. Then, for all 0 ‰ a P L,
G.dimpra, 1sq ď γ and so, by inductive hypothesis, G.dimpφpra, 1sqq ď γ. By Lemma 2.42 (5),
G.dimpφpLqq ď γ ` 1 “ α.
Let now x1 P L1, consider the set S “ tx P L : φpxq “ x1u and let x̄ “

Ž

S, so that φpx̄q “
Ž

xPS φpxq “ x1. Let also ȳ ě x̄ be such that rx̄, ȳs is β-simple for some β ă α and let
y1 “ φpȳq P L1. Then, y1 ě x1, furthermore y1 ‰ x1 (since y1 “ x1 would imply that ȳ P S, that
is, ȳ “ x̄, which is a contradiction). By the first part of the proof, G.dimprx1, y1sq ď β ` 1 ď α.
To conclude apply Corollary 2.43.
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2.2.2 Torsion and localization

Definition 2.45. Let pL,ďq be a qframe, and let α be an ordinal. We define the α-torsion part
of L as

tαpLq “
ł

tx P L : G.dimpr0, xsq ď αu .

For any given a P L, we let tαpaq “ tαpr0, asq.

Lemma 2.46. Let pL,ďq be a qframe, let a, b P L and let α be an ordinal. Then,

(1) tαpaq “ a^ tαp1q;

(2) tαpa_ bq ď tαpaq _ b, provided a^ b “ 0;

(3) tαpa_ bq “ tαpaq _ tαpbq, provided a^ b “ 0;

In particular, tαp
Ž

iPI xiq “
Ž

iPI tαpxiq for any join-independent set txi : i P Iu in L.

Proof. (1) By definition, tαpaq ď a^ tαp1q. On the other hand, by upper continuity,

a^
ł

tx P L : G.dimpr0, xsq ď αu “
ł

ta^ x P L : G.dimpr0, xsq ď αu

“
ł

tx P r0, as : G.dimpr0, xsq ď αu “ tαpaq .

This works since the family tx P L : G.dimpr0, xsq ď αu is directed by part (2) of Lemma 2.42.

(2) Let x P r0, a_bs be such that G.dimpr0, xsq ď α, then x_b P r0, a_bs and G.dimprb, x_bsq “
G.dimprb^ x, xsq ď G.dimpr0, xsq ď α. This shows (˚) below:

tαpa_ bq “
ł

tx P r0, a_ bs : G.dimpr0, xsq ď αu

p˚q

ď
ł

tx_ b P r0, a_ bs : G.dimprb, x_ bsq ď αu

“
ł

tx P rb, a_ bs : G.dimprb, xsq ď αu

p˚˚q
“

ł

tx_ b : x P r0, as and G.dimpr0, xsq ď αu

p ˚˚˚q
“ b_

ł

tx : x P r0, as and G.dimpr0, xsq ď αu “ b_ tαpaq ,

where (˚˚) holds since te map x ÞÑ x_ b is an isomorphism between r0, as and rb, b_ as (use the
fact that a^ b “ 0), and in

`

˚

˚˚

˘

we used upper-continuity.

(3) It is clear that tαpbq _ tαpaq ď tαpa_ bq. Using twice part (2) and the modularity of L,

tαpbq _ tαpaq ď tαpa_ bq ď ptαpaq _ bq ^ ptαpbq _ aq “ tαpaq _ pb^ ptαpbq _ aqq

“ tαpaq _ ppb^ aq _ tαpbqq “ tαpaq _ tαpbq .

where the last equality holds since a^ b “ 0.

For the last part of the statement, notice that

ł

iPI

xi “
ł

FĎI finite

˜

ł

iPF

xi

¸

.
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Thus, using upper-continuity and part (3) of the lemma,

tα

˜

ł

iPI

xi

¸

“ tαp1q ^
ł

FĎI finite

˜

ł

iPF

xi

¸

“
ł

FĎI finite

˜

tαp1q ^
ł

iPF

xi

¸

“
ł

FĎI finite

˜

ł

iPF

tαpxiq

¸

“
ł

iPI

tαpxiq .

Lemma 2.47. Let L be a qframe, let x P L and let tys : s P Su Ď L. Suppose that

(1) r0, yss – r0, yts for all s, t P S;

(2) r0, yss is Noetherian for some (hence all) s P S;

(3) tys : s P Su is a basis for L.

Then, G.dimpr0, xsq is a successor ordinal.

Proof. A consequence of Theorem 2.41 (3) is that, for all s P S, tα`1pysq ‰ tαpysq for just
finitely many ordinals α (the same α’s for all s P S). Furthermore,

Ž

sPS tαpysq “ tαp1q for all
α, by the above lemma. Thus, tα`1p1q ‰ tαp1q for finitely many ordinals α. Notice also that
tαpxq “ tαp1q^x for all α, thus tα`1pxq ‰ tαpxq implies tα`1p1q ‰ tαp1q and so, tα`1pxq ‰ tαpxq
for finitely many ordinals α. Hence, G.dimpr0, xsq “ suptα` 1 : tα`1pxq ‰ tαpxqu “ maxtα` 1 :
tα`1pxq ‰ tαpxqu is a successor ordinal.

Proposition 2.48. Let pL,ďq be a qframe and let α be an ordinal. Then,

(1) x P r0, tαp1qs if and only if G.dimpr0, xsq ď α;

(2) given a qframe pL1,ďq and a homomorphism of qframes φ : LÑ L1, φptαpLqq ď tαpL
1q.

Proof. (1) By part (3) of Lemma 2.42, G.dimpr0, tαp1qsq ď α and so, by part (1) of the same
lemma, G.dimpr0, xsq ď G.dimpr0, tαp1qsq ď α for all x P r0, tαp1qs. On the other hand, if
G.dimpr0, xsq ď α, then x ď tαp1q by construction.

(2) is an application of part (1) and Lemma 2.44.

Definition 2.49. Let α be an ordinal. Given a qframe pL,ďq, we let TαpLq “ r0, tαp1qs, while,
given a homomorphism of qframes φ : LÑ L1, we let tαpφq : TαpLq Ñ TαpL

1q be the restriction
of φ. This defines a covariant functor Tα : QFrame Ñ QFrame that we call α-torsion functor.

Definition 2.50. Let pL,ďq be a qframe, let α be an ordinal and define the following relation
between two elements x and y in L:

px „α yq if and only if pG.dimprx^ y, x_ ysq ď αq

Lemma 2.51. Let pL,ďq be a qframe and let α be an ordinal, then „α is a strong congruence
on L.
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Proof. The fact that „α is a congruence follows by Lemma 2.42 (2) and [4, Proposition 2.4].
Furthermore, given x P L, let us show that

Ž

rxs P rxs. In fact,

G.dim

¨

˝

»

–x,
ł

yPrxs

y

fi

fl

˛

‚“ G.dim

¨

˝

»

–x,
ł

yPrxs

x_ y

fi

fl

˛

‚“ suptG.dimprx, x_ ysq : y P rxsu ď α ,

by Lemma 2.42 (3). Thus, „α is a strong congruence.

We denote by QαpLq the quotient of L over „α and by πα : L Ñ QαpLq the canonical
surjective homomorphism.

Proposition 2.52. Let pL,ďq and pL1,ďq be qframes, let φ : L Ñ L1 be a homomorphism of
qframes, and let α be an ordinal.

(1) If x „α y in L, then φpxq „α φpyq in L1;

(2) G.dimpQαpTα`1pLqqq ď 1, that is, QαpTα`1pLqq is semi-Artinian for any ordinal α.

Proof. (1) By Lemma 2.44, G.dimprx ^ y, x _ ysq ě G.dimpφprx ^ y, x _ ysqq “ G.dimprφpx ^
yq, φpxq_φpyqsq. Furthermore, φpxq^φpyq ě φpx^yq and so G.dimprφpxq^φpyq, φpxq_φpyqsq ď
G.dimrφpx^ yq, φpxq _ φpyqs ď α, by Lemma 2.42 (1).

(2) Let S “ ra, bs be an α-simple segment of Tα`1pLq. Then, παpSq is an atom since a is not α-
equivalent to b (as G.dimpSq “ α`1) and b is α-equivalent to any c P pa, bs (as G.dimprc, bsq ď α).
If QαpTα`1pLqq “ 0 there is nothing to prove, otherwise choose an element x P Tα`1pLq
such that παptα`1p1qq ‰ παpxq P QαpTα`1pLqq and let x̄ “

Ž

rxs P Tα`1pLq. Notice that
G.dimprx̄, tα`1p1qsq “ α ` 1 (otherwise rxs “ rtα`1p1qs). By definition of Gabriel dimension,
there exists ȳ P Tα`1pLq such that rx̄, ȳs is β-simple for some β ă α ` 1 and, since ȳ R rx̄s,
we have β “ α. By the previous discussion, rπαpxq, παpȳqs is 0-simple. One can conclude by
Corollary 2.43.

Definition 2.53. Let α be an ordinal. Given a qframe pL,ďq, we let QαpLq “ L{„α, while,
given a homomorphism of qframes φ : L Ñ L1, we let Qαpφq : QαpLq Ñ QαpL

1q be the induced
homomorphism. This defines a functor Qα : QFrame Ñ QFrame that we call α-localization
functor.

It is not difficult to show that Qα is compatible with the composition of morphisms, so that
the above definition is correct.

2.2.3 Gabriel categories and Gabriel spectrum

Definition 2.54. Let C be a Grothendieck category. The Gabriel filtration of C is a transfinite
chain t0u “ C0 Ď C1 Ď ¨ ¨ ¨ Ď Cα Ď . . . of torsion classes defined as follows:

– C0 “ t0u;

– suppose that α is an ordinal for which Cα has already been defined, an object C P C is said to
be α-cocritical if C 1 R Cα and C{C 1 P Cα, for any non-trivial sub-object C 1 ď C;

– suppose that σ is an ordinal for which Cβ has already been defined, for all β ă σ. Then, Cσ is
the smallest torsion class containing Cβ and all the β-cocritical objects, for all β ă σ.

A Grothendieck category C is said to be a Gabriel category if C “
Ť

α Cα.
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As one may expect, there is a relation between Gabriel categories and the Gabriel dimension
for qframes. See Proposition 2.68 for a connection between these two concepts.

Let C be a Gabriel category and let τ “ pT ,Fq be a torsion theory. One can show that C{T
is a Gabriel category as well (showing by induction that Qτ pCαq Ď pC{T qα for all α).

For any ordinal α, we let τα “ pCα,C
K
αq; in what follows, we write α-torsion (resp., torsion free,

local,...) instead of τα-torsion (resp., torsion free, local,...). Furthermore, we let Tα : C Ñ Cα,
Sα : C{Cα Ñ C and Qα : C Ñ C{Cα be respectively the α-torsion, the α-section and the α-
quotient functors. Abusing notation, we use the same symbols for the functors Tα : Cα`1 Ñ Cα
and Qα : Cα`1 Ñ Cα`1{Cα, induced by restriction.

Definition 2.55. Let C be a Grothendieck category, an object X P ObpCq is simple if its qframe
of subobjects LpXq is an atom. Furthermore, X is said to be cocritical if it is α-cocritical for
some α.

Lemma 2.56. Let C be a Gabriel category, let X P ObpCq and consider an ordinal α. Then,

(1) X P Cα`1 if and only if there exists an ordinal σ and a continuous chain 0 “ N0 ď N1 ď

¨ ¨ ¨ ď Nσ “ X, such that Ni`1{Ni is either α-cocritical or α-torsion for every i ă σ.

(2) if α is a limit ordinal, then X P Cλ if and only if X “
ř

αăλ TαpXq.

Proof. (1) Let A be the class of all objects which are union of a chain as in the statement. Since
every hereditary torsion class is closed under taking direct limits and extension, we obtain the
inclusion A Ď Cα`1. On the other hand, Cα`1 is minimal between the hereditary torsion classes
which contain Cα and the α-cocritical objects, thus the converse inclusion follows by the fact
that A is a torsion class (apply Lemma 1.118 to the class Cα Y tα-cocritical objectsu).

(2) Notice that, since α is a limit ordinal, Cα is the smallest torsion class that contains all the
torsion classes Cβ with β ă α. Let D “ tX P C : X “

ř

βăα TβpXqu, we have to show that
Cα “ D. Indeed, given X P D, we have an epimorphism

À

βăα TβpXq Ñ X, and so, since Cα
is closed under quotients and coproducts, X P Cα. Thus, D Ď Cα. On the other hand, it is not
difficult to show that D is a torsion class and that it contains Cα, for all α ă λ. By minimality,
Cλ Ď D.

Corollary 2.57. Let C be a Gabriel category and let 0 ‰ X P ObpCq. Then, X has a cocritical
subobject.

Proof. Let α be the smallest ordinal such that X P Cα, we proceed by induction on α. If α “ 1,
then by Lemma 2.56 (1), X has a simple subobject (as being 0-torsion means being trivial, while
being 0-cocritical means being simple). Similarly, if α “ β ` 1, then there exists an ordinal σ
and a continuous chain 0 “ X0 ď X1 ď ¨ ¨ ¨ ď Xσ “ X, such that Xi`1{Xi is either β-cocritical
or β-torsion for every i ă σ. Let i the smallest ordinal for which Xi is not trivial. If Xi is β-
critical then we are done, while if Xi is β-torsion, then we can conclude by inductive hypothesis.
Finally, if α is a limit ordinal, then X “

Ť

βăα TβpXq, by Lemma 2.56 (1). Thus there exists
some β ă α for which 0 ‰ TβpXq ď X and, by the inductive hypothesis, TβpXq has a cocritical
subobject.

Lemma 2.58. Let C be a Gabriel category, let C P C be an object and let α be an ordinal. The
following are equivalent:

(1) C is α-cocritical;

(2) C is α-torsion free and QαpCq is simple;
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(3) there exists a simple object S P C{Cα such that C embeds in SαpSq.

Proof. (1)ñ(2). If C is α-cocritical, then it is α-torsion free by definition. Let 0 ‰ X ď QαpCq,
then 0 ‰ SαpXq ď LαpCq. Since C is essential in LαpCq, then C X SαpXq ‰ 0. This induces a
short exact sequence

0 Ñ SαpXq X C Ñ C Ñ C{pSαpXq X Cq Ñ 0 ,

with C{pSαpXqXCq P Cα. Applying Qα, we obtain a short exact sequence 0 Ñ X Ñ QαpCq Ñ
0 Ñ 0, showing that X “ QαpCq, that is therefore simple.

(2)ñ(3). Since C is α-torsion free, it embeds in LαpCq “ SαpQαpCqq.

(3)ñ(1). SαpSq is α-torsion free, so C is α-torsion free. Furthermore, let 0 ‰ X ď C, then
0 ‰ QαpXq ď QαpCq ď S and, since S is simple, QαpXq “ QαpCq “ S. Thus, QαpX{Cq “
QαpXq{QαpCq “ 0, that is, X{C P Cα.

Corollary 2.59. Let C be a Gabriel category. Then, Cα`1{Cα is semi-Artinian for all α ă
G.dimpCq.

Proof. Let 0 ‰ X P Cα`1{Cα and consider SαpXq P Cα`1. By Corollary 2.57, there exists a
cocritical subobject C ď SαpXq. Since SαpXq is α-torsion free by construction, C is α-cocritical
and so QαpCq is simple in Cα`1{Cα by Lemma 2.58. By the exactness of Qα, QαpCq ď X.
Thus, we proved that any object in Cα`1{Cα has a simple subobject.

Proposition 2.60. Let C be a Gabriel category and let E and E1 P C be injective objects. The
following statements hold true:

(1) E is indecomposable if and only if there exists a cocritical object C such that E – EpCq;

(2) if E and E1 are indecomposables and cogenerate the same torsion theory, then E – E1.

Proof. (1) Suppose E “ EpCq, where C is α-cocritical for some ordinal α and let E1, E2 ď E
be two subobjects such that E “ E1 ‘ E2 with E1 ‰ 0. Then E1 X C ‰ 0 and C{pC X E1q

embeds in E2. Since E2 is α-torsion free and C{pC XE1q is α-torsion, C{pC XE1q “ 0, that is,
C ď E1. Thus, E2 X C “ 0, which implies that E2 “ 0.
On the other hand, suppose 0 ‰ E is indecomposable. Since C is a Gabriel category, there exists
a cocritical subobject C ď E (see Corollary 2.57). Since E is indecomposable, E “ EpCq.

(2) Let τ “ pT ,Fq and τ 1 “ pT 1,F 1q be the torsion theories cogenerated by E and E1 respectively
and suppose τ “ τ 1. By part (1), there exists an ordinal α and an α-cocritical object C such that
E “ EpCq. Thus, E is α-torsion free and so Cα Ď T “ T 1. Furthermore, C ď E P F “ F 1 and
so HomCpC,E

1q ‰ 0. Let φ : C Ñ E1 be a non-trivial morphism and notice that it is necessarily
a monomorphism, in fact, if 0 ‰ Kerpφq ď C then φpCq – C{Kerpφq P Cα Ď T 1, that contradicts
the fact that φpCq ď E1 P F 1. Thus, C – φpCq and so E1 – EpφpCqq – EpCq “ E.

Remark 2.61. Let C be a stable Gabriel category and let E be an indecomposable injective object.
By Proposition 2.60, there is an ordinal α and an α-cocritical object C such that E – EpCq.
By construction C P Cα`1zCα and, by stability, EpCq P Cα`1. This shows that, in stable Gabriel
categories, any indecomposable injective object belongs to Cα`1zCα for some α.

Definition 2.62. Let C be a Grothendieck category. A torsion theory τ “ pT ,Fq that can be
cogenerated by the injective envelope of a cocritical object is said to be prime.
The α-Gabriel spectrum SpαpCq is the family of isomorphism classes of injective envelopes of
α-cocritical objects. The Gabriel spectrum SppCq of C is the family of isomorphism classes of
indecomposable injective objects in C.
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With this terminology, Proposition 2.60 translates as follows.

Corollary 2.63. Let C be a Gabriel category. Then the following map

SppCq // tprime torsion theoriesu

E � // pKE, pKEqKq

is a bijection. Furthermore, SppCq “
Ť

α SpαpCq.

Using the above corollary, we usually identify the set of prime torsion theories with the
Gabriel spectrum. In particular, we write π P SppCq (or π P SpαpCq) to mean that π is a prime
torsion theory. Furthermore, we let Epπq be a representative of the isomorphism class of the
indecomposable injectives which cogenerate π.

Theorem 2.64. Let C be a Gabriel category and let E P ObpCq be an injective object. For all
π P SppCq there exists a set Iπ such that

E – E

˜

à

πPSppCq

EpπqpIπq

¸

.

Furthermore, the set of pairs tpπ, |Iπ|q : π P SppCqu uniquely determines E up to isomorphism.

The proof of the above theorem uses a general machinery that we are not interested to treat
here. Thus, we give just a sketch of the proof, pointing to the literature for details.

Proof. Let CSpec be the spectral category of C defined as follows:

– the objects of CSpec are exactly the injective objects of C;

– given two objects E1, E2 of CSpec, the morphisms are defined as follows:

HomCSpecpE1, E2q “ lim
ÝÑ

HomCpE,E2q , E essential subobject of E1.

There is a canonical left exact functor P : CÑ CSpec taking an object to its injective envelope.
It is useful to notice that, given two objects X and Y P C we have that

P pXq – P pY q (in CSpec) ðñ EpXq – EpY q (in C) . (2.2.1)

For more details on this construction we refer to [96, Sec. 6 and 7, Ch. V]. By Corollary 2.57,
every non-trivial object in C has a cocritical subobject. By [96, Proposition 7.3, Ch. V], this
implies that CSpec is a discrete (i.e., any object of CSpec is a coproduct of simple objects) spectral
category. In particular, given an injective object E P C, P pEq decomposes in CSpec as the direct
sum of indecomposable (i.e., simple) objects. Furthermore, it is not difficult to see that an
object P pCq is simple in CSpec if and only if EpCq is indecomposable in C. We obtain in CSpec
the following decomposition

P pEq “
à

πPSppCq

P pEpπqqpIπq .

Thus, we get the desired decomposition E “ E
´

À

πPSppCqEpπq
pIπq

¯

. For the uniqueness state-

ment it is enough to apply Theorem 1 of [102] in the category CSpec.
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Lemma 2.65. Let C be a Gabriel category, let π, π1 P SppCq and consider the following condi-
tions (see Definition 1.137):

(1) π ĺ π1;

(2) HomCpEpπ
1q, Epπqq ‰ 0.

Then, (1) implies (2). If π is stable, also the converse holds.

Proof. By definition, π ĺ π1 if and only if any π1-torsion free object is π-torsion free. In this case,
Epπ1q is π-torsion free, thus HomCpEpπ

1q, Epπqq ‰ 0. On the other hand, if HomCpEpπ
1q, Epπqq ‰

0 and π is stable, then Epπ1q is not π-torsion, thus it is π-torsion free (see Lemma 1.140) and so
π ĺ π1.

Definition 2.66. Let C be a Grothendieck category. Given a subset S Ď SppCq, we say that S
is generalization closed (resp., specialization closed) if it contains all the prime torsion theories
that are generalizations (resp., specializations) of its members.

Theorem 2.67. Let C be a Gabriel category and let τ “ pT ,Fq be a torsion theory. Define the
following subsets of SppCq:

– Spτq “ tπ P SppCq : Tτ pEpπqq ‰ 0u;

– Gpτq “ tπ P SppCq : Tτ pEpπqq “ 0u.

Then, SpτqYGpτq “ SppCq and this is a disjoint union. Furthermore, given τ 1 P TorspCq, τ “ τ 1

if and only if Gpτq “ Gpτ 1q if and only if Spτq “ Spτ 1q.
If C is stable, then Spτq and Gpτq are respectively specialization and generalization closed. Fur-
thermore, any specialization (resp., generalization) closed subset of SppCq is of the form Spτq
(resp., Gpτq) for some τ P TorspCq and Sp´q (resp., Gp´q) induces a bijection between TorspCq
and the set of specialization (resp., generalization) closed subsets of SppCq.

Proof. Let τ and τ 1 be two torsion theories such that Gpτq “ Gpτ 1q. Given X P F , there
exist sets Iπ, for all π P Gpτq such that EpXq – Ep

À

πPGpτqEpπq
pIπqq (see Theorem 2.64).

Since Gpτq “ Gpτ 1q, EpXq is τ 1-torsion free, showing that F Ď F 1. One proves similarly
that F 1 Ď F , so F “ F 1, that is, τ “ τ 1. Analogously, notice that Spτq “ Spτ 1q implies
Gpτq “ SppCqzSpτq “ SppCqzSpτ 1q “ Gpτ 1q and so τ “ τ 1 for the first part of the proof.
Assume now that C is stable and let π ĺ π1 P SppCq, that is, HomCpEpπ

1q, Epπqq ‰ 0 (see Lemma
2.65). If Tτ pEpπ

1qq ‰ 0, then Epπ1q P T (by stability), thus any proper quotient of Epπ1q is
τ -torsion. Hence, Tτ pEpπqq ‰ 0. We proved that Spτq is specialization closed, the fact that
Gpτq is generalization closed follows from the fact that it is the complement of Spτq.
Finally, let G be a generalization closed subset of SppCq and let

T “ KtEpπq : π P Gu , F “ T K and τ “ pT ,Fq .

Then pSppCqzGq Y G “ SppCq “ Spτq Y Gpτq and it is easy to see that G Ď Gpτq. Let
π1 P SppCqzG. If, looking for a contradiction, Epπ1q R T , then there exists π P G such that
HomCpEpπ

1q, Epπqq ‰ 0. By Lemma 2.65 π1 is a generalization of π and so π1 P G, which is a
contradiction. Hence, SppCqzG Ď Spτq and so Spτq “ SppCqzG and Gpτq “ G.
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2.2.4 Relative Gabriel dimension in Grothendieck categories

Proposition 2.68. Let C be a Grothendieck category and let α be an ordinal. Then, Cα “ tX P

ObpCq : G.dimpLpXqq ď αu.

Proof. The case α “ 0 being clear, we prove the statement by induction on α. Suppose that,
for all β ă α

Cβ “ tX P ObpCq : G.dimpLpXqq ď βu .

By injective hypothesis, an object X is β-cocritical for some β ă α if and only if LpXq is a
β-simple qframe. Let D “ tX P ObpCq : G.dimpLpXqq ď αu and let us show that Cα “ D.
Indeed, Cα Ď D since D is a torsion class (see Lemma 2.42) that contains Cβ and the β-cocritical
objects, for all β ă α. On the other hand, let X P D and consider TαpXq. If, looking for a
contradiction, TαpXq ‰ X, then there exists Z P pTαpXq, Xs such that G.dimprTαpXq, Zsq ă α.
We obtain a short exact sequence

0 Ñ TαpXq Ñ Z Ñ Z{TαpXq Ñ 0 .

Since Cα is a Serre class, Z P Cα, so Z ď TαpXq, that is a contradiction. Thus, D Ď Cα.

The concept of Gabriel dimension in Grothendieck categories was introduced in [44] (under
the name of “Krull dimension”) and systematically studied in [51] and in many other papers
and books after that. We introduce here a relative version of this invariant.

Definition 2.69. Let C be a Gabriel category, let τ “ pT ,Fq be a torsion theory and let X P C
be an object. We define respectively the τ -Gabriel dimension of C and the τ -Gabriel dimension
of X as follows

G.dimτ pCq “ mintα : C{T “ pC{T qαu and G.dimτ pXq “ mintα : Qτ pXq P pC{T qαu .

When τ “ p0,Cq is the trivial torsion theory, the τ -Gabriel dimension is called Gabriel dimension
and we denote it respectively by G.dimpCq and G.dimpXq.

Let C be a Gabriel category, let τ “ pT ,Fq be a torsion theory and let X P ObpCq. Notice
that, by Proposition 2.68, G.dimτ pXq “ G.dimpLpQτ pXqqq.

Given an objectX in a Grothendieck category C, we say thatX is Noetherian (resp., Artinian,
semi-Artinian), provided LpXq is a qframe with the same property. Recall that a Grothendieck
category D is said to be semi-Artinian if D “ D1, that is, any of its objects is semi-Artinian,
equivalently, every object in D has a simple sub-object.

Lemma 2.70. Let C be a Grothendieck category and let τ “ pT ,Fq be a torsion theory. Then:

(1) G.dimτ pCq “ suptG.dimτ pXq : X P Cu;

(2) if Y ď X P C, then G.dimτ pXq “ maxtG.dimτ pY q,G.dimτ pX{Y qu;

(3) if tXi : i P Iu is a family of objects in C, then G.dimτ p
À

I Xiq “ supI G.dimτ pXiq;

(4) if N P C is a Noetherian object, then Qτ pNq is Noetherian and G.dimτ pNq is a successor
ordinal. Furthermore, there exists a finite series 0 “ Y0 ă Y1 ă ¨ ¨ ¨ ă Yk “ N such that
Yi{Yi´1 is cocritical for all i “ 1, . . . , k.
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Proof. (1) is trivial.

(2) By the exactness of Qτ , LpQτ pY qq equals the segment r0,Qτ pY qs in LpQτ pXqq, while
LpQτ pX{Y qq equals the segment rQτ pY q, 1s in LpQτ pXqq. Thus,

G.dimτ pXq “ G.dimpLpQτ pXqqq

“ maxtG.dimpr0,Qτ pY qsq,G.dimprQτ pY q, 1squ “ maxtG.dimτ pY q,G.dimτ pX{Y qu ,

where the second equality follows by Lemma 2.42 (2).

(3) Since Qτ commutes with coproducts, Qτ p
À

I Xiq “
À

I Qτ pXiq. Thus, we have a family
F “ tQτ pXiq : i P Iu Ď LpQτ p

À

I Xiqq such that
Ž

F “ 1. By Lemma 2.42 (3),

G.dimτ

˜

à

I

Xi

¸

“ G.dim

˜

L

˜

Qτ

˜

à

I

Xi

¸¸¸

“ sup
I

G.dimpr0,Qτ pXiqsq “ sup
I

G.dimτ pQτ pXiqq .

(4) Use Proposition 2.41 (3).

Definition 2.71. Let C be a Grothendieck category, let τ “ pT ,Fq P TorspCq, let C1 “ C{T
and consider a torsion theory τ 1 “ pT 1,F 1q P TorspC1q. The following class of objects of C is a
torsion class:

Tτ˝τ 1 “ tX P C : Qτ pXq P T 1u .

We denote by τ ˝ τ 1 the torsion theory whose torsion class is Tτ˝τ 1.

Notice that, just by definition, the quotient functors relative to τ , τ 1 and τ ˝ τ 1 fit in the
following commutative diagram:

C

Qτ˝τ 1

44
Qτ // C{T

Qτ 1 // C{Tτ˝τ 1 – C1{T 1 .

Lemma 2.72. Let C be a Gabriel category, let τ “ pT ,Fq P TorspCq, let C1 “ C{T , denote by τα
the torsion theory in C1 whose torsion class is pC1qα (the α-th member of the Gabriel filtration
of C1), and let X P C. Then:

(1) G.dimτ pXq “ α` 1 if and only if G.dimτ˝ταpXq “ 1;

(2) G.dimτ˝ταpXq “ 0 implies that G.dimτ pXq ď α.

Proof. (1) G.dimτ pXq “ G.dimpQτ pXqq “ α ` 1 if and only if Qτ pXq P pC
1qα`1zpC

1qα, that is,
G.dimτ˝ταpXq “ G.dimpQταpQτ pXqqq “ 1.

(2) G.dimτ˝ταpXq “ 0 if and only if Qτ˝ταpXq “ 0, that is, Qτ pXq P KerpQταq “ pC1qα.
Equivalently, G.dimτ pXq “ G.dimpQτ pXqq ď α.

Lemma 2.73. Let C be a stable Gabriel category, let τ P TorspCq and let π “ pT ,Fq and
π1 “ pT 1,F 1q be two distinct prime torsion theories. If G.dimτ pEpπqq “ G.dimτ pEpπ

1qq ą ´1,
then HomCpEpπq, Epπ

1qq “ 0.
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Proof. By Remark 2.61, G.dimτ pEpπqq “ G.dimτ pEpπ
1qq “ β ` 1 for some ordinal β ě ´1.

Denote by τβ P TorspC{T q the torsion theory whose torsion class is pC{T qβ. Then, by Lemma
2.72, G.dimτ˝τβ pEpπqq “ G.dimτ˝τβ pEpπ

1qq “ 1 and, by stability, both Epπq and Epπ1q are
τ ˝ τβ-torsion free, so τ ˝ τβ-local, thus

HomCpEpπq, Epπ
1qq “ HomCpLpτ˝τβEpπqq,Lτ˝τβ pEpπ

1qqq – HomC{Tτ˝τβ pEpπq, Epπ
1qq ,

so there is no loss in generality if we assume that τ is the trivial torsion theory and β “ 0. Suppose
now that HomCpEpπq, Epπ

1qq ‰ 0, that is, Epπq is not π1-torsion, thus, by stability, Epπq is π1-
torsion free. Now, since we are assuming G.dimpEpπqq “ 1, there exists a simple object S P C
such that Epπq – EpSq and HomCpS,Epπ

1qq ‰ 0. By the simplicity of S and the fact that Epπ1q
is indecomposable we obtain that Epπ1q – EpSq – Epπq, which is a contradiction.

Corollary 2.74. Let C be a stable Gabriel category, let τ “ pT ,Fq P TorspCq and let π ‰ π1 P
SppCq. If Epπq, Epπ1q R T and HomCpEpπq, Epπ

1qq ‰ 0, then G.dimτ pEpπqq ą G.dimτ pEpπ
1qq.

Proof. Looking for a contradiction, suppose that G.dimτ pEpπqq ď G.dimτ pEpπ
1qq. By Theorem

1.132, Qτ pEpπqq is an indecomposable injective object in C{T , thus, by Remark 2.61 there exists
an ordinal α such that G.dimτ pEpπqq “ α` 1. Let

– C1 “ C{T , τ̄1 “ pT1,F1q P TorspC1q, where T1 “ pC1qα, τ1 “ τ ˝ τ̄1 P TorspCq, E1 “ Qτ1pEpπqq
and E11 “ Qτ1pEpπ

1qq;

– C2 “ C1{T1, τ̄2 “ pT2,F2q P TorspC2q, where T2 “
KtE11u and τ2 “ τ ˝ τ̄2 P TorspCq;

– C3 “ C2{T2.

Both Epπq and Epπ1q are τ1-local and so HomC2pE1, E
1
1q – HomCpEpπq, Epπ

1qq ‰ 0. This
means that E1 is not τ̄2-torsion, thus both G.dimτ2pEpπqq and G.dimτ2pEpπ

1qq are strictly bigger
than 0. On the other hand, G.dimτ2pEpπqq ď G.dimτ1pEpπqq “ 1 (see Lemma 2.72), while
G.dimτ2pEpπ

1qq “ 1 (since, given a cocritical sub-object C of Epπ1q, Lτ2pCq is simple). This
contradicts the conclusion of Lemma 2.73.

2.2.5 Locally Noetherian Grothendieck categories

Definition 2.75. A Grothendieck category C is locally Noetherian if it has a set of Noethe-
rian generators. Equivalently, any object in C is the direct union of the directed family of its
Noetherian subobjects.

Corollary 2.76. Any locally Noetherian Grothendieck category C is a Gabriel category. More-
over, if G is a set of Noetherian generators for C, G.dimpCq “ G.dimp

À

Gq.

Proof. Let G be a set of Noetherian generators of C. By Lemma 2.70 (4), each G P G has Gabriel
dimension. By Lemma 2.70 (3),

À

G has Gabriel dimension and so, by Lemma 2.70 (2) any
quotient of

À

G has a smaller Gabriel dimension. Thus, by Lemma 2.70 (1), G.dimpCq exists
and it coincides with G.dimp

À

Gq.

In the following proposition and corollary we collect some results about locally Noetherian
categories:

Proposition 2.77. [96, Proposition 4.3 and Corollary 4.4, Ch. V] Let C be a Grothendieck
category. Then, C is locally Noetherian if and only if directed colimits of injective objects are
injective.
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By the above proposition, Theorem 2.64 has the following form in locally Noetherian cate-
gories.

Corollary 2.78. Let C be a locally Noetherian Grothendieck category and let E P ObpCq be an
injective object. For all π P SppCq there exists a set Iπ such that

E –
à

πPSppCq

EpπqpIπq .

Furthermore, the set of pairs tpπ, |Iπ|q : π P SppCqu uniquely determines E up to isomorphism.

A ring R is left (resp., right) Noetherian if RR (resp., RR) is a Noetherian object in R-Mod
(resp., Mod-R). Furthermore, a ring is Noetherian if it is both left and right Noetherian. By
Corollary 2.76, G.dimpR-Modq “ G.dimpRRq for any left Noetherian ring R.

In the last part of this subsection we specify some of the above results in the case when
C “ R-Mod is the category of modules over a commutative Noetherian ring. This particular
case will be used in Chapter 12 to re-obtain the main results of [20], [18] and [19], from our
general theory.

Lemma 2.79. [96, Proposition 4.5, Ch. VII] Let R be a commutative Noetherian ring. Then,
R-Mod is a stable Gabriel category.

Definition 2.80. Let R be a ring. The product of two two-sided ideals a, b Ď R is ab “ tab :
a P a, b P bu. A two-sided ideal p Ď R is prime if, given two two-sided ideals a, b such that
ab Ď p, either a Ď p or b Ď p. The spectrum SpecpRq of R is the poset of all the prime ideals
in R (ordered by inclusion). Given p, q P SpecpRq, if p Ď q we say that p is a generalization of
q and that q is a specialization of p.

Lemma 2.81. Let R be a commutative Noetherian ring, then there is a bijection

SpecpRq Ñ SppR-Modq , p ÞÑ EpR{pq .

Furthermore, given p, q P SpecpRq and denoting by πppq and πpqq the prime torsion theories
cogenerated by EpR{pq and EpR{qq respectively,

pp Ď qq ðñ pπpqq ĺ πppqq .

Proof. The fact that this map is well-defined and bijective is [72, Proposition 3.1]. Further-
more, if p ď q, then there is an epimorphism R{p Ñ R{q and this can be used to show that
HomRpEpR{pq, EpR{qqq ‰ 0. By Lemma 2.65, this shows that πpqq ĺ πppq. On the other hand,
if πpqq ĺ πppq, then EpR{pq is not πpqq-torsion and so, by stability, it is πpqq-torsion free. In
particular, HomRpR{p, EpR{qqq ‰ 0. Consider a non-trivial morphism φ : R{p Ñ EpR{qq and
consider the restriction φ1 : R{p Ñ φpR{pq. Since RR is a projective generator, there is a non-
trivial morphism ψ : RÑ φpR{pq that extends to a morphism ψ̄ : RÑ R{p such that φ1ψ̄ “ ψ.
Then, p Ď Kerpφq by construction and Kerpφq Ď q by [72, Lemma 3.2]. Thus, p Ď q.
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Chapter 3

Duality

The aim of Chapter 3 is to illustrate two classical duality theorems, taking also the occasion to
recall all the background needed to state and apply these theorems. Indeed, in the first part
of the chapter we recall some basics about topological groups and harmonic analysis in locally
compact groups. After that, we recall the Pontryagin-Van Kampen Duality Theorem for locally
compact Abelian groups and the Fourier Inversion Theorem.
In the second part of the chapter we recall some facts about (strictly) linearly compact modules
and we give a complete proof of the Müller Duality Theorem between discrete and strictly
linearly compact modules in a particular case.

3.1 Pontryagin-Van Kampen Duality

3.1.1 Topological spaces, measures and integration

In Example 1.6 we defined a topological space pX, τq to be a set X with a distinguished family
τ of open subsets that satisfies suitable closure properties. An easy example for a topological
space is given by the discrete spaces, that are the topological spaces in which any subspaces is
open.

Definition 3.1. Let pX, τq be a topological space. A set B of open subsets of X is a base of τ
if any non-empty open set is a union of elements of B.

In a discrete topological space pX, τq the set ttxu : x P Xu is a base for the topology.
In general, given a topological space pX, τq, it is possible to give a “local characterization” of τ ,
that is, we can describe τ via the collection of “filters of neighborhoods” of the points.

Definition 3.2. Let pI,ďq be a poset and let F Ď I be a subset. Then, F is a filter if the
following conditions hold:

– F is downward directed;

– for all x P F and y P I, if x ď y, then y P F .

Any downward directed set is said to be base of filter. Furthermore, given a base of filter B and
a filter F , we say that B is a base for F if F “ tx P I : Db P B s.t. b ď xu.

Definition 3.3. Let pX, τq be a topological space. Then,

59
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– given a point x P X, a neighborhood of x is a set V that contains an open A such that
x P A Ď V . We denote by VXpxq, or just Vpxq if X is clear from the context, the set
of neighborhoods of x. Given a subset S Ď X, a neighborhood of S is a set V that is a
neighborhood of each element of S.

– X is a Hausdorff space if, given x ‰ y P X, there exist V P Vpxq and U P Vpyq such that
U X V “ H.

Notice that a base completely determines the topology of a space. Furthermore, given a
topological space pX, τq and a point x P X, the family of neighborhoods Vpxq is a filter in the
poset of subsets of X (ordered by inclusion). The knowledge of these filters, for any point of X,
completely determines the topology, in fact, a subset is open if and only if it is a neighborhood
of each of its points. These observations can be used to prove the following elementary lemma.

Lemma 3.4. Let pX, τq and pY, τ 1q be topological spaces and let φ : X Ñ Y be a map. Then the
following are equivalent

(1) φ is continuous;

(2) given a base B1 of τ 1, φ´1pB1q is open for all B1 P B1;

(3) for all x P X, given a base C of VY pφpxqq, φ´1pUq P Vpxq for all U P C.

Definition 3.5. Let pX, τq be a topological space. Then,

– a pre-base of τ is a set B of open sets such that the set of finite intersections of members of
B is is a base of τ ;

– given x P X, a pre-base of neighborhoods of x is a family B of neighborhoods of x such that
the set of finite intersections of members of B is a base of the filter Vpxq.

The following corollary is a direct consequence of Lemma 3.4.

Corollary 3.6. Let pX, τq and pY, τ 1q be topological spaces and let φ : X Ñ Y be a map. Then
the following are equivalent

(1) φ is continuous;

(2) given a pre-base B1 of τ 1, φ´1pB1q is open, for all B1 P B1;

(3) given x P X and a pre-bae Bφpxq of Vpφpxqq, φ´1pUq P Vpxq, for all U P Bφpxq.

Definition 3.7. Let pX, τq be a topological space and let Y Ď X be a subset:

– the induced topology on Y is defined by declaring open all the subsets of the form AXY , with
A open in X. We sometimes denote this topology by τæY ;

– Y is compact if for any family of open sets tAi : i P Iu such that Y Ď
Ť

iPI Ai there exists a
finite subset F Ď I such that Y Ď

Ť

iPF Ai.

The space X is locally compact if any of its elements has a compact neighborhood.

Compare the definition of compact space with Definition 2.15. Notice also that, given a
topological space pX, τq and a subspace pY, τæY q, the inclusion Y Ñ X is a monomorphism in
the category of topological spaces. Not any subobject in this category is of this form.
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Definition 3.8. Let X be a set, and let F “ tCi : i P Iu be a family of subsets of X. Then F
has the finite intersection property if, for any finite subset F Ď I,

Ş

iPF Ci ‰ H.

Lemma 3.9. [87, Theorem 4, Ch. 2] Let pX, τq be a topological space. Then the following are
equivalent:

(1) X is compact;

(2) any family of open subsets of X with the finite intersection property has non-empty inter-
section;

Definition 3.10. Let pX, τq and pY, τ 1q be topological spaces and let φ : X Ñ Y be a map. We
say that φ is open (resp., closed, proper), provided for any open (resp., closed, compact) subset
A Ď X, φpAq has the same property. Furthermore, φ is a homeomorphism if it is bijective,
continuous and open.

Notice that homeomorphisms are the isomorphisms in the category of topological spaces.

Theorem 3.11. Let pX, τq and pY, τq be topological spaces and let φ : X Ñ Y be a continuous
map. Then,

(1) if X is compact (resp., locally compact), then so is any of its closed subsets;

(2) if Y is Hausdorff, then any of its compact subsets is closed;

(3) if X is compact and Y is Hausdorff, then φ is proper.

In particular, if X is compact, Y is Hausdorff and φ is surjective, then φ is open.

Proof. For parts (1), (2) and (3) see respectively B), C) and D) in [87, Section 13, Ch. 2]. For
the last part, consider an open subset A Ď X, then XzA is closed and so, by part (1), compact.
By part (3), φpXzAq is compact and so, by part (2), it is closed. By the surjectivity of φ,
φpXzAq “ Y zφpAq, showing that φpAq is open.

Definition 3.12. Let I be a set and let pXi, τiq be topological spaces, for all i P I. The product
p
ś

iPI Xi, τq of these topological spaces is a topological space defined as follows:

– as a set
ś

iPI Xi “ tpxiqiPI : xi P Xiu. For all j P I, there are surjections πj :
ś

iPI Xi Ñ Xj

such that πjppxiqiPIq “ xj;

– a pre-base of τ is given by tπ´1
j pAq : j P I, A P τju.

The topology τ is called the product topology.

Notice that, by definition, the maps πj in the above definition are continuous and open.
Furthermore, pp

ś

iPI Xi, τq, pπjqjPIq is a product in the category of topological spaces.
The following classical result is usually known as Tychonoff’s Theorem.

Theorem 3.13. [87, Theorem 5, Ch. 2] Let I be a set and let pXi, τiq be a topological space for
all i P I. Then, the product

ś

iPI Xi is compact if and only if Xi is compact for all i P I.

In the second part of this subsection we introduce some basic definition about measures and
Lebesgue integration.

Definition 3.14. Let X be a set. A family Σ of subsets of X is a σ-algebra if
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– Σ is not empty;

– Σ is closed under complementation, that is, XzA P Σ for all A P Σ;

– Σ is closed under countable unions.

If pX, τq is a topological space, the Borel sets are the sets belonging to the smallest σ-algebra
containing all the open sets.

Definition 3.15. Let pX, τq be a topological space and let Σ be the σ-algebra of the Borel sets.
A Borel measure on X is a function m : Σ Ñ Rě0 Y t8u such that

– mpHq “ 0;

– mp
Ť

nPNBnq “
ř

nPNBn, if Bn P Σ and Bn XBm “ H, for all n ‰ m P N.

Furthermore, a Borel measure m : Σ Ñ Rě0 Y t8u is regular if

– it is outer regular, that is, mpEq “ inftmpUq : E Ď U, U openu, for all E P Σ;

– it is inner regular, that is, mpAq “ suptmpKq : K Ď A, K compactu, for all A P τ .

Definition 3.16. Let pX, τq be a topological space and let φ : X Ñ R and ψ : X Ñ C be maps.
Then,

– φ is (Borel) measurable if tx P X : φpxq ą au is a Borel set, for all a P R;

– ψ is (Borel) measurable if its real and imaginary parts are measurable;

– ψ is positive if it is real-valued and φpxq ě 0 (in R), for all x P X;

– the support supppψq of ψ is defined as the closure of the set of points on which ψ is ‰ 0, that
is

supppψq “ tx P X : ψpxq ‰ 0u Ď X .

Recall that a continuous complex-valued function is always measurable.

Let X be a set, let φ, ψ : X Ñ C be maps and let λ P C. We use the following notations

– λφ : X Ñ C is the map such that x ÞÑ λ ¨ φpxq;

– φ ¨ ψ : X Ñ C is the map such that x ÞÑ φpxq ¨ ψpxq;

– φ` ψ : X Ñ C is the map such that x ÞÑ φpxq ` ψpxq;

– |φ| : X Ñ C is the map such that x ÞÑ |φpxq| (the norm of φpxq, see Example 3.25).

Let C be a subset of X and define the characteristic function χC : X Ñ C of C as

χCpxq “

#

1 if x P C;

0 otherwise.

Definition 3.17. Let pX, τq be a topological space, let m be a Borel measure on X and let
φ : X Ñ C be a measurable function. Then,

– a measurable partition of X is a family tA1, . . . , Aku of Borel subsets of X, such that
Ťk
i“1Ai “

X and Ai XAj “ H for all i ‰ j ď k;
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– if φ is positive, the Lebesgue integral
ş

X φpxq dmpxq (or simply
ş

X φdm) is

sup

#

k
ÿ

i“1

pinftφpxq : x P AiumpAiqq : tA1, . . . , Aku is a measurable partition of X

+

.

We say that φ is integrable provided
ş

X φdm ă 8

– if φpXq Ď R, then one defines two maps φ` : X Ñ Rě0 and φ´ : X Ñ Rě0 such that, for all
x P X:

φ`pxq “ maxt0, φpxqu and φ´pxq “ ´mint0, φpxqu .

If both φ` and φ´ are integrable, then φ is said to be integrable and one defines the Lebesgue
integral as

ş

X φdm “
ş

X φ
`dm´

ş

X φ
´ dm;

– in the general case, one can define two functions φ1, φ2 : X Ñ R such that φpxq “ φ1pxq `
iφ2pxq, for all x P X. If both φ1 and φ2 are integrable, then φ is said to be integrable and one
defines the Lebesgue integral as

ş

X φdm “
ş

X φ1 dm` i
ş

X φ2 dm.

Let pX, τq be a topological space, let m be a Borel measure and let φ : X Ñ C be a map.
Then, φ is integrable if and only if

ş

X |φ| dm ă 8. In this case, given a Borel subset E of X,
the function φ ¨ χE is still integrable and we let

ż

E
φdm “

ż

X
φ ¨ χE dm .

The following bounds for the integral follow directly from the definitions

inftφpxq : x P EumpEq ď

ż

E
φdm ď suptφpxq : x P EumpEq . (3.1.1)

We conclude this subsection with some general properties of Lebesgue integration. A proof
of parts (1), (2) and (3) of the following lemma can be found in [42, Propositions 2.21, 2.22 and
2.23], part (4) is a consequence of [42, Proposition 2.13], while an argument to prove part (5) is
given in [92, Appendix E8].

Lemma 3.18. Let pX, τq be a topological space, and let m be a Borel measure. Let φ, ψ : X Ñ C
be integrable maps and let a, b P C. Then

(1)
ş

X aφ` bψ dm “ a
ş

X φdm` b
ş

X ψ dm;

(2) |
ş

X φdm| ď
ş

X |φ| dm;

(3)
ş

E φdm “
ş

E ψ dm for any Borel subset E Ď X, if and only if
ş

X |φ ´ ψ| dm “ 0, if and
only if the set tx P X : φpxq ‰ ψpxqu is contained in a set of measure zero;

(4) if both φ and ψ are positive and φpxq ď ψpxq for all x P X, then
ş

X φdm ď
ş

X ψ dm;

(5) there exists a sequence of compact subsets C1 Ď C2 Ď . . . Ď Cn Ď . . . Ď X such that
ş

X |φ´ φ ¨ χCn | dm ă 1{n, for all n P N`.



64 Duality

3.1.2 Topological groups and Haar measure

Definition 3.19. Let G be a group. A topology τ on G is a group topology if the map

f : GˆGÑ G such that fpx, yq “ xy´1 ,

is continuous, where G ˆ G carries the product topology. A topological group is a pair pG, τq
of a group G and a group topology τ on G. We denote by TopGr the category whose objects
are the topological groups and the morphisms are the continuous group homomorphisms. Given
pG, τq, pG1, τ 1q P ObpTopGrq, we let HomTopGrpG,Hq “ CHompG,Hq. An isomorphism in the
category TopGr, that is, a map which is both an isomorphism of groups and a homeomorphism,
is said to be a topological isomorphism.
A topological group pG, τq is Hausdorff (resp., compact, locally compact), if it has the same
properties as a topological space. Analogously, pG, τq is Abelian if G is Abelian as a group. By
an LC group (resp., LCA group) we mean a locally compact Hausdorff (Abelian) group. We
denote by LcGr and LcaGr the full subcategory of TopGr, whose objects are the LC and LCA
groups respectively.

Let pG, ¨q be a group, let U, V Ď G and let x P G. We use the following notation

– xU “ txu : u P Uu;

– Ux “ tux : u P Uu;

– U´1 “ tu´1 : u P Uu;

– UV “ tuv : u P U and v P V u.

Let pG, τq be a topological group and let x P G. Notice that, just by definition, the morphisms

G // G G // G G // G

g � // xg g � // gx g � // x´1gx

(3.1.2)

are homeomorphisms. In particular, if Vpeq is the family of neighborhoods of e in G, Vpxq “
txV : V P Vpequ “ tV x : V P Vpequ.

Lemma 3.20. [34, Theorem 2.1.1] Let G be a group and let Vpeq be the filter of all neighborhoods
of e in some group topology τ on G. Then:

(1) for every U P Vpeq there exists V P Vpeq with V V Ď U ;

(2) for every U P Vpeq there exists V P Vpeq with V ´1 Ď U ;

(3) for every U P Vpeq and for every x P G there exists V P Vpeq with xV x´1 Ď U .

Conversely, if V is a filter on G satisfying (1), (2) and (3), then there exists a unique group
topology τ on G such that V coincides with the filter of all τ -neighborhoods of e in G.

A consequence of the above lemma is that, to specify a group topology on a given group,
one has just to specify a pre-base of the neighborhoods of a point. Another consequence is the
following:

Corollary 3.21. Let pG, τq and pG1, τ 1q be topological groups and let φ : G Ñ G1 be a map.
Then, φ is continuous if and only if φ´1pNq P VGpeq, for all N in a given pre-base VG1peq of the
neighborhoods of e in G1.
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Lemma 3.22. Let pG, τq be a topological group. Then, G is Hausdorff (resp., discrete) if and
only if teu is closed (resp., open).

Proof. If teu is open, then any point is open in G by (3.1.2) and, since arbitrary unions of opens
are open, any subset of G is open; the converse is trivial. On the other hand, teu is closed if and
only if all the points are closed, if and only if G is Hausdorff by [58, Theorem 4.8].

Let pG, τq be a group and let S be a subset. There is a useful way to describe the closure S̄
of S in G:

Lemma 3.23. Let pG, τq be a topological group, let B be a base of neighborhoods of e in G and
let S be a subset. Then,

S̄ “
č

V PB
SV “

č

V PB
V S .

Proof. Given x P G, x R S̄ “
Ş

SĎC closedC if and only if there exists a closed set containing
S such that x R C, if and only if there exists a neighborhood N of x such that N X S “ H

(take for example N “ GzC). Equivalently, there exists U P B such that UxX S “ H, that is,
x R SU´1 Ě

Ş

V PB SV .

Let pG, τq be a group and let H be a subgroup. One can show that the closure H̄ is still a
subgroup of G, and it is normal if H is normal. When not otherwise specified, we will assume
that H carries the topology induced by G. Furthermore, if H is normal, then there is a natural
group topology induced on the quotient group G{H. Indeed, letting π : GÑ G{H be the natural
projection, the open subsets of G{H are exactly the images of the open sets in G. Notice that,
by definition, the projection π is open and continuous.

Proposition 3.24. Let pG, τq be a topological group and let H ď G be a subgroup. Then,

(1) if H is open, then it is closed;

(2) if H is normal, then it is closed if and only if G{H is Hausdorff;

(3) if H is normal, then it is open if and only if G{H is discrete;

(4) if H is normal and closed, and G is Hausdorff, then G is compact (resp., locally compact)
if and only if both H and G{H have the same property.

Proof. (1) If H is open, then GzH “
Ť

gPGzH Hg and each Hg is open in G. Thus, GzH is open
in G.

(2) GzH is open if and only if πpGzHq “ pG{Hqzteu is open, if and only if teu is closed in G{H.
Conclude using Lemma 3.22.

(3) H is open if and only if πpHq “ teu is open in G{H. Conclude using Lemma 3.22.

(4) See [58, Theorem 5.2].

Example 3.25. (1) The additive group pR,`q is a topological LCA group when endowed with
the usual euclidean topology, that is, the unique topology having ttx P R : |x| ă 1{nu : n P
N`u as a base of neighborhoods of 0;

(2) given x “ a ` ib P C (with a, b P R) we let |x| “
?
a2 ` b2 be the norm of x. The

euclidean topology on pC,`q has a base of neighborhoods of 0 consisting of sets of the form
tx P C : |x| ă 1{nu, with n ranging in N`. With this topology, the additive group C is a
topological LCA group;
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(3) consider the subset S “ tx P C : |x| “ 1u. Then, pS, ¨q is a group, that is an LCA group with
the topology induced by C. Consider R with the topology described in (1); then Z is a closed
subgroup and we can take the quotient T “ R{Z. The map

TÑ S such that x ÞÑ e2πix

is a topological isomorphism.

Given a family tpGi, τiq : i P Iu of topological groups, the product group
ś

I Gi endowed
with the product topology is again a topological group. This construction gives us products in
the categories TopGr, LcGr and LcaGr.

Definition 3.26. Let pG, τq be a topological group and let Σ be the σ-algebra of Borel subsets
of G. A left Haar measure on G is a regular Borel measure µ : Σ Ñ Rě0 Y t8u such that
µpxEq “ µpEq for all E P Σ and x P G and such that µpCq ă 8 for any compact subset C Ď G.

Of course, one can define similarly right Haar measures. The two concepts coincide on
Abelian groups.

Example 3.27. Let G be a group endowed with the discrete topology, so that any subset of G is
a Borel subset, while the compact subsets are precisely the finite ones. Then, a left Haar measure
on G is given by µpEq “ |E| if E is a finite subset, µpEq “ 8 otherwise. Given φ : GÑ C one
can verify that

ş

G φdµ “ supt
ř

gPF φpgq : F Ď G finiteu.

In general it is not possible to prove the existence of a left Haar measure on a given topological
group G, but this is possible under suitable hypotheses. The following theorem is proved in [58,
Section 15].

Theorem 3.28. Let pG, τq be an LC group. Then, there exists a left Haar measure µ : Σ Ñ

Rě0 Y t8u on the Borel subsets of G. Furthermore, if µ1 is another left Haar measure, then
there exists λ P R such that λµpEq “ µ1pEq for all E P Σ.

Given a topological group pG, τq and a function φ : GÑ C we define

φa : GÑ C such that φapxq “ φpaxq .

A consequence of the left invariance and of the “uniqueness” of the left Haar measure is the
following

Corollary 3.29. Let pG, τq be an LC group, let µ be a fixed left Haar measure, let φ : G Ñ C
be an integrable function and let a P G. Then, φa is integrable and

ş

G φdµ “
ş

G φa dµ.

In the following lemma we introduce the modulus, that is a group homomorphism

∆ : AutpGq Ñ R`

that tells us how to compute the measure of the image of a Borel set under a topological
automorphism.

Lemma 3.30. [58, (15.26) pag. 208] Let pG, τq be an LC group and let µ be a fixed Haar
measure on G. Letting R` denote the multiplicative group of positive reals, there exists a group
homomorphism

∆ : AutpGq Ñ R`, such that µpαEq “ ∆pαqµpEq

for every topological automorphism α of G and every Borel subset E of G.
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Let us recall the following useful relation which allows to compute the integral of the com-
position of an integrable function with an automorphism (see again [58, (15.26) p. 208] for a
proof).

Corollary 3.31. Let pG, τq be a LC group and let µ be a fixed Haar measure on G. If φ : GÑ C
is integrable and α P AutpGq is a topological automorphism, then

ż

G
φ ˝ α´1 dµ “ ∆pαq

ż

G
φdµ .

Definition 3.32. Let pG, τq be an LC group and let µ : Σ Ñ Rě0 Y t8u be a Haar measure on
G. Given an integrable function φ : GÑ C, the L1-norm of φ is

||φ||1 “

ż

G
|φ| dµ .

A canonical example for an absolutely integrable function is given by the functions with
compact support.

Lemma 3.33. [58, Theorem 12.7] Let pG, τq be an LC group, let µ be a fixed Haar measure on
G and let φ, ψ : GÑ C be two positive, integrable functions. Then, ||φ` ψ||1 ď ||φ||1 ` ||ψ||1.

The following lemma is an easy consequence of the definition, we state it just because we
will need this precise statement.

Lemma 3.34. Let pG, τq be an LC group, let µ be a fixed Haar measure on G and let φ,
ψ : GÑ C be two positive, absolutely integrable functions. Then, ||φ´ ψ||1 ě ||φ||1 ´ ||ψ||1.

Proof. Since φ and ψ are positive, then |φ´ ψ|pxq ě pφ´ ψqpxq “ p|φ| ´ |ψ|qpxq, for all x P G.
Now apply Lemma 3.18 (4).

In the setting of Definition 3.32, given two integrable functions φ, ψ : GÑ C, we say that φ
is equivalent to ψ if ||φ´ ψ||1 “ 0. By part (3) of Lemma 3.18, this is an equivalence relation.

Definition 3.35. Let pG, τq be an LC group and let µ : Σ Ñ Rě0 Y t8u be a Haar measure on
G. We let L1pGq be the set of equivalence classes of integrable functions on G. Furthermore, we
let L1pGq` Ď L1pGq be the family of equivalence classes that contain at least a positive function.

By Lemma 3.18 (3), given two equivalent integrable functions φ and ψ,
ş

E φdµ “
ş

E ψ dµ
for any Borel subset E and ||φ||1 “ ||ψ||1, for any choice of a Haar measure µ on G. By writing
φ P L1pGq, we mean that φ is a representative of an equivalence class of integrable functions.
Furthermore, when working with an equivalence class in φ P L1pGq`, we generally choose a
positive representative. By the previous observations, the value of integrals and of the L1-norm
does not depend on the specific choice of the representative.

Until now we could work with general LC groups. From now on we will assume commuta-
tivity, so we will work on LCA groups. Therefore we pass to the additive notation.

Definition 3.36. Let G be an LCA group, let µ be a fixed Haar measure on G and let φ, ψ P
L1pGq. The convolution of φ and ψ is

φ ˚ ψ : GÑ C , φ ˚ ψpxq “

ż

G
φpgqψpx´ gqdµ .
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In the following lemma we recall some properties of convolutions; the proof of parts (1), (2)
and (3) can be found in [92, Sections 1.1.6 and 1.1.7], while the proof of (4) follows as in [92,
Section 1.1.6 (e)] using positivity.

Lemma 3.37. Let G be an LCA group, let µ be a fixed Haar measure on G and let φ, φ1,
ψ P L1pGq. Then

(1) φ ˚ ψ P L1pGq;

(2) pφ` φ1q ˚ ψ “ φ ˚ ψ ` φ1 ˚ ψ and φ ˚ ψ “ ψ ˚ φ;

(3) if φ and ψ have compact supports, then supppφ ˚ ψq Ď supppφq ` supppψq;

(4) if φ and ψ P L1pGq`, then ||φ ˚ ψ||1 “ ||φ||1||ψ||1.

In the following remark we show how convolution acts with respect to translation.

Remark 3.38. [58, Remark 20.11] Let G be an LCA group, let φ, ψ P L1pGq and let g, x P G.
Then

pφ ˚ ψqgpxq “ pφ ˚ ψqpx` gq “ pφg ˚ ψqpxq “ pφ ˚ ψgqpxq .

Definition 3.39. Let G be an LCA group. A function φ : GÑ C is said to be positive-definite
if, for any positive integer n and any choice of x1, . . . , xn P G and c1, . . . , cn P C, the following
condition holds true:

n
ÿ

i,j“1

cicjφpxi ´ xjq P Rě0 , (3.1.3)

where c̄ is the complex conjugate of c P C.

Let us start with some basic fact about positive-definite functions, whose proof follows by
[92, page 18] and [41, Corollary 3.21 and Proposition 3.35].

Lemma 3.40. Let G be an LCA group and let φ : GÑ C be a positive-definite function. Then,

(1) φp´xq “ φpxq, for all x P G;

(2) |φpxq| ď φp0q, for all x P G. In particular, if φ is positive then φpGq Ď r0, φp0qspĎ Rq and
so φp0q is a maximum;

(3) there exists a continuous function ψ : G Ñ C such that tx P G : φpxq ‰ ψpxqu is contained
in a set of Haar measure 0.

In principle it is not easy to figure out what the condition of being positive-definite means;
the following lemma allows one to produce a positive-definite function from a square integrable
function and so also to obtain some natural examples.

Lemma 3.41. [92, Section 1.4.2] Let G be an LCA group, let µ be a fixed Haar measure, let
φ : GÑ C be such that

ş

|φ|2 dµ ă 8 and let rφ : GÑ C be the function such that rφpxq “ φp´xq.

Then, φ ˚ rφ is positive-definite.

As a consequence of the above lemma, we get the following

Example 3.42. Let G be an LCA group. Whenever C “ ´C is a symmetric neighborhood of 0 in
G with compact closure, the above lemma shows that the convolution χC ˚χC is positive-definite.
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In the following lemma we study some properties of functions of the form χC ˚ χC .

Lemma 3.43. Let G be an LCA group, let α : G Ñ G be a topological automorphism and let
C Ď G be a Borel subset. Then,

(1) χαC “ χC ˝ α
´1;

(2) χαC ˚ χαC “ ∆pαqpχC ˚ χCq ˝ α
´1;

(3) ||pχC ˚ χCq ˝ α
´1||1 “ ∆pαqµpCq2.

Proof. Let µ be a fixed Haar measure.

(1) follows from the definition of characteristic function.

(2) Let x P G and define two maps φ, ψ : G Ñ C such that φpgq “ χCpα
´1pgqqχCpα

´1px ´ gqq
and ψpgq “ χCpgqχCpα

´1pxq ´ gq, for all g P G. Notice that φ “ ψ ˝ α´1, so by Corollary 3.31,

ppχC ˝ α
´1q ˚ pχC ˝ α

´1qqpxq “

ż

G
φdµ “ ∆pαq

ż

G
ψ dµ “ ∆pαqpχC ˚ χCqpα

´1pxqq .

(3) By parts (1) and (2), ||pχC ˚χCq˝α
´1||1 “ ||χαC ˚χαC ||1{∆pαq. Furthermore, χαC P L

1pGq`,
thus by Lemmas 3.37 and 3.30, ||χαC ˚ χαC ||1 “ ||χαC ||

2
1 “ µpαCq2 “ ∆pαq2µpCq2.

Definition 3.44. Let G be an LCA group. We denote by PpGq the family of equivalence classes
of positive-definite functions GÑ C (where two positive-definite functions are equivalent if they
differ on a set of measure 0). Furthermore, we let P1pGq “ PpGq X L1pGq and P1pGq` “
PpGq X L1pGq`.

Lemma 3.41 can be used to construct positive-definite functions with prescribed support:

Lemma 3.45. In the above notation, let U be a compact neighborhood of 0. Then, there exists
a non-trivial φ P P1pGq` such that supppφq Ď U .

Proof. Let V Ď U be a compact neighborhood of 0 such that V ´ V Ď U and let V 1 be an open
neighborhood of 0 contained in V . Notice that t0u and GzV 1 are two closed and disjoint subsets
of G. Thus there exists a continuous function

f : GÑ r0, 1s such that fp0q “ 1 and fpxq “ 0 @x P GzV 1 ,

by the Uryssohn Lemma (see for example [87, page 67]). In particular, supppfq Ď V 1 Ď V and
suppp rfq Ď ´V (where rfpxq “ fp´xq as in Lemma 3.41). We let φ “ f ˚ rf . By Lemma 3.37,
supppφq Ď V ´V Ď U and φ P L1pGq, while it is easily verified that φ is non-trivial and positive.
The conclusion follows by Lemma 3.41.

3.1.3 The duality theorem

Definition 3.46. Let G be an LCA group and let G˚ “ CHompG,Tq be the additive group
of continuous homomorphisms from G to T. The compact-open topology on G˚ is defined by
taking as a base of neighborhoods of 0 the sets of the form

WpC,Uq “ tγ P G˚ : γpCq Ď Uu

with C a compact neighborhood of 0 in G and U an neighborhood of 0 in T. Furthermore, given a
continuous homomorphism of LCA groups φ : GÑ H, we define φ˚ : H˚ Ñ G˚ by the following
formula

φ˚pγq “ γ ˝ φ ,

for all γ P H˚.
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Lemma 3.47. [34, Lemma 3.1.1 and Exercise 2.10.2(c)] Let G, H be LCA groups and let
φ : GÑ H be a continuous homomorphism. Then,

(1) G˚ is an LCA group;

(2) φ˚ is a continuous homomorphism;

(3) G is compact (resp., discrete) if and only if G˚ is discrete (resp., compact).

By the above lemma, the correspondence described in Definition 3.46 gives us a functor
p´q˚ : LcaGrop Ñ LcaGr. The Pontryagin-Van Kampen Duality states that p´q˚ is adjoint
to itself and, furthermore, that it induces a duality, in other words the functor p´q˚˚ (that is,
the composition of the functor p´q˚ with itself) is naturally equivalent to the identity functor.
Furthermore, by Lemma 3.47 (3), this restricts to a duality between the category of discrete and
the category of compact Hausdorff Abelian groups.

Theorem 3.48. [34, Theorem 3.2.7] Define, for all G P ObpLcaGrq the evaluation map ωG :
GÑ G˚˚ by x ÞÑ ωGpxq, where

ωGpxq : G˚ Ñ T is such that ωGpxqpγq “ γpxq .

Then, ω : idLcaGr ñ p´q˚˚ is a natural isomorphism of functors.

Using the Prontryagin-Van Kampen duality one can give the following useful characterization
of positive-definite functions, which can be found in [92, p. 19]. This result is usually called
Bochner’s Theorem.

Theorem 3.49. Let G be an LCA group. A continuous function φ : GÑ C is positive-definite
if and only if there exists a (necessarily unique) regular measure m on G˚ such that mpG˚q ă 8
and

φpxq “

ż

G˚
ωGpxq dm , for all x P G .

We conclude this section recalling the notion of Fourier transform.

Definition 3.50. Let G be an LCA group and let µ be a fixed Haar measure. Given φ P L1pGq,
the Fourier transform of φ is defined as

pφ : G˚ Ñ C such that pφpγq “

ż

G
φpxqγp´xq dµ , @γ P G˚ .

In the following lemma we describe the behavior of the Fourier transform with respect to
convolution and composition with an automorphism.

Lemma 3.51. Let G be an LCA group and let µ be a fixed Haar measure. Let φ, ψ P P1pGq`

and let α P AutpGq be a topological automorphism. Then,

(1) {φ ˝ α´1 “ ∆pαqpφ ˝ α˚;

(2) zφ ˚ ψ “ pφ ¨ pψ.
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Proof. For the proof of (1) one can proceed as in the following computation:

{φ ˝ α´1pγq “

ż

G
φpα´1pxqqγp´xqdµ “ ∆pαq

ż

G
φpxqγpαp´xqqdµ

“ ∆pαq

ż

G
φpxqα˚pγqp´xqdµ “ ∆pαqpφpα˚pγqq ,

where the appearance of ∆pαq at the end of the first line is due to Corollary 3.31. Part (2)
follows by [92, Section 1.2.4, Part (b)].

The following theorem is known as Fourier Inversion Theorem.

Theorem 3.52. Let G be an LCA group, let µ be a fixed Haar measure and let φ P L1pGq be a
continuous function.

(1) If φ is positive-definite, then pφ P L1pG˚q`.

(2) If pφ P L1pG˚q, then φpxq “
p

pφp´xq, for all x P G.

Proof. Part (1) follows by the first part (a) of [92, Theorem on p. 22] and [41, Corollary (4.23)].
For the proof of part (2) we refer to [41, Page 102].

3.2 Müller’s Duality

3.2.1 Generalities on topological rings and modules

Definition 3.53. A topological ring is a pair pR, τq, where R is a ring and τ is a group topology
on the Abelian group pR,`q and such that the function

RˆRÑ R such that pr, sq ÞÑ rs

is continuous when RˆR is endowed with the product topology. Given a topological ring pR, τq,
a topological right R-module is a pair pMR, σq where MR is a right R-module and σ is a group
topology on the Abelian group M , such that the function

M ˆRÑM such that pm, rq ÞÑ mr

is continuous when M ˆR is endowed with the product topology of τ and σ.
Analogous definitions hold for left R-modules.

In what follows we generally work with discrete rings (that is, topological rings endowed with
the discrete topology) and topological left or right modules over them. As for topological groups,
given a topological ring R and topological rightR-modules pM, τq and pN, τ 1q, pM, τq is Hausdorff
if and only if t0u is closed. Furthermore, a homomorphism of right R-modules φ : M Ñ N is
continuous if and only if φ´1pV q is a neighborhood of 0 in M for any neighborhood V of 0 in N .
If M 1

R ďM is a submodule, we consider on M 1
R and on pM{M 1qR the group topologies induced

by τ . When endowed with these topologies, M 1
R and pM{M 1qR are topological modules.

Definition 3.54. Let R be a discrete ring and let pMR, τq be a topological right R-module. Then
pM, τq is linearly topologized if there is a (pre-)base of neighborhoods of 0 consisting of open
submodules.

We denote by LT-R the category of linearly topologized Hausdorff right R-modules and con-
tinuous homomorphisms of right R-modules. We denote by CHomRpM1,M2q the group of all
the continuous homomorphisms from M1 to M2.
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Let R be a discrete ring and let MR be a right R-module. Notice that the discrete topology
on M is linear because a pre-base for this topology is t0u. In the following example we describe
two classes of modules whose only possible linear Hausdorff topology is the discrete one.

Example 3.55. Let R be a discrete ring and let pMR, τq be a linearly topologized Hausdorff
right R-module. If either MR is Artinian or if it is uniform and it has simple socle, then τ is
the discrete topology. Indeed, let B be a base of Vp0q consisting of open submodules. Since M is
Hausdorff, then t0u “

Ş

V PB V “ t0u. If MR is uniform and it has simple socle, the element 0 of
the qframe LpMq is completely meet irreducible (see Lemma 2.33), and so t0u P B. On the other
hand, if looking for a contradiction M is Artinian and t0u R B, then choose arbitrarily V1 P B
and, for all n P N`, let Vn`1 P B be such that Vn ą Vn`1 (it exists since Vn ‰ 0,

Ş

B “ t0u
and B is closed under taking intersections). Then, tVnunPN` is an infinite descending sequence
of submodules, contradicting the Artinianity of M .

3.2.2 (Strictly) Linearly compact modules

Definition 3.56. Let R be a discrete ring and let pMR, τq be a linearly topologized Hausdorff
right R-module. A (open, closed) linear variety is a subset of M of the form x`N where x PM
and N is a (open, closed) submodule. Then,

– pM, τq is linearly compact if any family of open linear varieties with the finite intersection
property has non-empty intersection;

– pM, τq is strictly linearly compact if it is linearly compact and any surjective continuous
homomorphism φ : M ÑM 1, with pM 1, τ 1q P ObpLT-Rq, is open.

We denote by SLC-R the full subcategory of LT-R whose objects are the strictly linearly compact
modules.

Compare the above definition with the characterization of compactness given in Lemma 3.9.
In particular, in a compact space any family of open neighborhoods of the points with the finite
intersection property is supposed to have non-empty intersection. In a linearly compact module
this is supposed to happen just for families of open linear varieties. The definition of strict linear
compactness is justified by the parallel with the last part of Theorem 3.11.

Lemma 3.57. Let R be a discrete ring, let pMR, τq be a linearly topologized Hausdorff right
R-module, let n be a positive integer and let xi ` Vi be an open variety for any i “ 1, . . . , n. If
Şn
i“1 xi ` Vi ‰ H, then there exists y PM such that

Şn
i“1 xi ` Vi “ y `

Şn
i“1 Vi.

Proof. Let us prove the result for n “ 2, the general case follows by induction. Choose arbitrarily
y “ x1`v1 “ x2`v2 P px1`V1qXpx2`V2q and let us show that px1`V1qXpx2`V2q “ y`pV1XV2q.
We show first that px1` V1q X px2` V2q Ď y` pV1X V2q. Indeed, given z “ x1`w1 “ x2`w2 P

px1 ` V1q X px2 ` V2q, w1 ´ w2 “ x2 ´ x1 “ v1 ´ v2 and so, v1 ´ w1 “ v2 ´ w2 P V1 X V2. Thus
y “ x1 ` v1 “ x1 `w1 ´w1 ` v1 “ z ` v1 ´w1, showing that z “ y ´ pv1 ´w1q P y ` pV1 X V2q.
On the other hand, given w P V1XV2, y`w “ x1`pv1`wq “ x2`pv2`wq P px1`V1qXpx2`V2q.
This show that px1 ` V1q X px2 ` V2q Ě y ` pV1 X V2q.

In the following lemma we work out the definition of strictly linearly compact module in the
discrete case.

Lemma 3.58. [103, Theorem 28.14] Let R be a discrete ring and let pMR, τq be a discrete right
R-module. Then, M is Artinian if and only if it is strictly linearly compact.



3.2 Müller’s Duality 73

Recall that a topological Abelian group pM, τq is complete if it is complete in the uniform
structure on M , defined by saying that a subset of M ˆM is an entourage if and only if it
contains the set tpx, yq : x´ y P Uu for some U P Vp0q (we refer to Section 5.3 for more details
about uniform spaces and completeness in this context).
For a linearly topologized Hausdorff right R-module pMR, τq there is another characterization
for completeness. Indeed, given a linear base B for τ , completeness of M is equivalent to affirm
that there is a topological isomorphism (i.e., isomorphism of right R-modules which is also a
homeomorphism)

M Ñ lim
ÐÝ
V PB

M{V

where the limit is endowed with the subset topology induced by the product of the discrete
topologies in

ś

V PBM{V .

The proof of the following properties can be found in [103, Chapter VII].

Proposition 3.59. Let R be a discrete ring and let pMR, τq be a linearly topologized Hausdorff
right R-module. Then,

(1) M is (strictly) linearly compact if and only if both N and M{N are (strictly) linearly compact
(with respect to the induced topologies), for any closed N ďM .

(2) If M is the product of a family tpNi, τiq : i P Iu, then M is (strictly) linearly compact if and
only if Ni is (strictly) linearly compact for all i P I;

(3) M is (strictly) linearly compact if and only if M is complete and M{Bi is (strictly) linearly
compact discrete, where B “ tBi : i P Iu is a linear base for M .

If R is a field, by part (3) of the above proposition and Lemma 3.58, a linearly topologized
Hausdorff R-vector space is linearly compact if and only if it is strictly linearly compact, if and
only if it is complete and it has a base of neighborhoods consisting of vector subspaces of finite
codimension.

We will need also the following fact, which can be found again in [103, Chapter VII]:

Lemma 3.60. Let R be a discrete ring and let pM1, τ1q, pM2, τ2q P ObpLT-Rq. If M1 is (strictly)
linearly compact and φ : M1 ÑM2 is a continuous morphism, then φpM1q is (strictly) linearly
compact.

3.2.3 The duality theorem

We start fixing the setting that we will keep all along this subsection.

(Dual.1) R is a ring that is linearly compact as a right R-module endowed with the discrete
topology;

(Dual.2) KR is a minimal injective cogenerator, that is, KR is the injective envelope of the
coproduct of a family of representatives of the simple right R-modules. We assume KR

is Artinian;

(Dual.3) we denote by A the endomorphism ring of KR.

Example 3.61. The above setting for duality occurs, for example, when R is a (skew) field or
a commutative local complete Noetherian ring (see [71]).
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Notice that K has a natural left A-module structure induced by the following map:

AˆK Ñ K such that αk “ αpkq ,

for all k P K and α P HomRpK,Kq “ A.

Lemma 3.62. [76, Lemma 4] In the setting (Dual.1, 2, 3), the left A-module AK is an injective
cogenerator of A-Mod.

Let AN be a left A-module and define a linearly topologized right R-module N˚ as follows.
As an Abelian group N˚ “ HomApN,Kq, the R-module structure is induced by

N˚ ˆRÑ N˚ such that pφrqpnq “ pφpnqqr ,

for all n P N , φ P N˚ and r P R. Furthermore, we consider on N˚ the so-called finite topology,
that is, the unique linear topology that has a base of neighborhoods of 0 composed by the
submodules of the form

WpF q “ tf P N˚ : fpxq “ 0 , @x P F u for a finite subset F Ď N .

Lemma 3.63. In the setting (Dual.1, 2, 3), let AN be a left A-module. Then, pN˚qR is a
strictly linearly compact right R-module.

Proof. First of all, notice that pN˚qR is Hausdorff since AK is a cogenerator by Lemma 3.62.
Furthermore, let F “ tf1, . . . , fnu be a finite subset of N . It is not difficult to verify that the
map

pN˚{WpF qqR Ñ KF such that ν `WpF q ÞÑ pνpf1q, . . . , νpfnqq ,

is an injective homomorphism. Thus, pN˚{WpF qqR embeds in the Artinian module KF , and it
is therefore Artinian.

For any finite subset F Ď N , let ΦF : N˚ Ñ N˚{WpF q be the natural projection. Let
also XR “

ś

FĎN finiteN
˚{WpF q, let πF : X Ñ N˚{WpF q be the natural projection and let

Φ : N˚ Ñ X be the unique morphism such that πFΦ “ ΦF for any finite subset F Ď N . Notice
that KerpΦq “

Ş

F KerpΦF q “
Ş

F WpF q “ t0u since N˚ is Hausdorff.
Endow X with the product topology, that is, a pre-base of neighborhoods of 0 is given by

tπ´1
F pt0uq : F Ď N finiteu. By Proposition 3.59 (2), this topology makes X into a strictly

linearly compact right R-module. Let us verify that

(a) Φ is continuous;

(b) A ď N˚ is open if and only if ΦpAq “ A1 X ΦpN˚q with A1 ď X open;

(c) ΦpN˚q is closed in X;

then N˚ is topologically isomorphic to the closed submodule ΦpN˚q of X and so it is strictly
linearly compact by Proposition 3.59 (1).
(a) Use that Φ´1pπ´1

F pt0uqq “ Φ´1
F pt0uq “WpF q is open in N˚.

(b) Notice that ΦpWpF qq “ ΦpΦ´1pπ´1
F pt0uqqq “ ΦpN˚q X π´1

F pt0uq. Given an open submodule
A ď N˚, there exists a finite subset F Ď N such that WpF q Ď A. It follows that A1 “
ΦpAq`π´1

F pt0uq ď X is open and that ΦpAq “ ΦpAq`ΦpWpF qq “ ΦpAq`pπ´1
F pt0uqXΦpN˚qq “

A1 X ΦpN˚q.
(c) Consider the closure

ΦpN˚q “
č

FĎN finite

ΦpN˚q ` π´1
F pt0uq ,
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so f P ΦpN˚q if and only if, for any finite F Ď N there exists gF P N
˚ such that f ´ ΦpgF q P

π´1
F pt0uq, that is, πF pfq “ ΦF pgF q. Define an element g P N˚ as follows

g : N Ñ K such that gpnq “ gtnupnq .

One can show that g is a homomorphism of left A-modules and that f “ Φpgq P ΦpN˚q. Thus,
ΦpN˚q “ ΦpN˚q.

Let AN and AN
1 be two left A-modules and let ψ : N Ñ N 1 be a morphism of left A-modules.

We define
ψ˚ : pN 1q˚ Ñ N˚ such that ψ˚pgq “ g ˝ ψ ,

for all g P pN 1q˚.

Lemma 3.64. In the setting (Dual.1, 2, 3), let AN and AN
1 be two left A-modules and let

ψ : N Ñ N 1 be a homomorphism of left A-modules. Then, ψ˚ : pN 1q˚ Ñ N˚ is continuous.

Proof. Let F be a finite subset of N and denote by WN pF q the basic neighborhood of 0 in N˚

corresponding to F . Then,
pψ˚q´1pWN pF qq “WN 1pψpF qq ,

where WN 1pψpF qq denotes the basic neighborhood of 0 in pN 1q˚ corresponding to ψpF q, and it
is therefore open.

Given a strictly linearly compact right R-module pMR, τq, we let ApM
˚q be a discrete left

A-module such that M˚ “ CHomRpM,Kq as an Abelian group, and the action of A is defined
by

AˆM˚ ÑM˚ such that pα, φq ÞÑ α ˝ φ ,

for all φ P M˚ and α P A “ EndRpKq. Furthermore, given another strictly linearly compact
right R-module pM 1, τ 1q and a continuous homomorphism φ : M Ñ M 1 we define the following
homomorphism of left A-modules:

φ˚ : pM 1q˚ ÑM˚ such that pφ˚pfqqpxq “ fpφpxqq ,

for all x PM and f P pM 1q˚.

Notice that we have defined two functors

p´q˚ : pSLC-Rqop Ñ A-Mod and p´q˚ : pA-Modqop Ñ SLC-R . (3.2.1)

In the following theorem we verify that these functors are a duality.

Theorem 3.65. Let R be a ring, let KR be a minimal injective cogenerator and let A “

EndRpKq. Suppose that R is linearly compact discrete and that KR is Artinian. Then, the
above functors (3.2.1) define a duality between A-Mod and SLC-R.

Proof. We define two natural isomorphisms

ω : idA-Mod ñ p´q˚˚ and ω : idSLC-R ñ p´q˚˚ .

Indeed, let pM, τq P ObpSLC-Rq, N P ObpA-Modq and define the evaluation maps

ωM : M ÑM˚˚ ωN : N Ñ N˚˚

x ÞÑ ωM pxq y ÞÑ ωN pyq ,
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where ωM pxqpfq “ fpxq for all f P M˚ and ωN pyqpgq “ gpyq for all g P N˚. It is easily seen
that these maps are homomorphisms of modules and that ωM is continuous. Furthermore, it is
not difficult to check that both ωM and ωN are injective, using the fact that KR and AK are
injective cogenerators in Mod-R and A-Mod respectively (see Lemma 3.62). Let us prove that

(a) ωM is surjective;

(b) ωN is surjective.

Notice that part (b) is sufficient to show that ω : idA-Mod ñ p´q˚˚ is a natural isomorphism.
Furthermore, if part (a) holds, then by definition of strictly linearly compact, ωN is also open.
Thus, ωN is a topological isomorphism and so also ω : idSLC-R ñ p´q˚˚ is a natural isomorphism.
It remains to verify (a) and (b).

(b) Let ν : N˚ Ñ K be a continuous homomorphism, that is, there exists a finite subset
F “ tf1, . . . , fnu Ď N such that WpF q Ď Kerpνq. In particular, there is an induced morphism
of discrete modules

ν̄ : N˚{WpF q Ñ K .

Notice that WpF q “
Şn
i“1 Wptfiuq and that N˚{Wptfiuq embeds in K for all i “ 1, . . . , n. Thus,

there is an embedding ε : N˚{WpF q Ñ Kn and ν̄ factors through it (by injectivity), that is,
there exists a map ν̃ : Kn Ñ K such that the following diagram commutes:

N˚{WpF q ν̄ //

ε
%%KKKKKKKKK
K

Kn

ν̃

OO

By Lemma 1.36, HomRpK
n,Kq “ pEndRpKqq

n “ An. Thus, there exist a1, . . . , an P A such
that ν̃ppkiqi“1,...,nq “

řn
i“1 aiki, for all pkiqi“1,...,n P K

n. This means that, given x P N˚,

νpxq “ ν̄px`WpF qq “ ν̃εpx`WpF qq

“

n
ÿ

i“1

aixpfiq “ x

˜

n
ÿ

i“1

aifi

¸

.

Thus, letting y “
řn
i“1 aifi P N , ν “ ωN pyq.

(a) Suppose, looking for a contradiction, that ωM : M Ñ M˚˚ is not surjective. Then, there
exists ξ PM˚˚zωM pMq. Since KR is a cogenerator, there exists a morphism φ : M˚˚ Ñ K such
that φpξq ‰ 0 and φpωM pMqq “ 0. Now, φ P M˚˚˚ and by part (b) there is f P M˚ such that
ωM˚pfq “ φ. Notice that, for all x PM

fpxq “ ωM pxqpfq “ ωM˚pfqpωM pxqq “ φpωM pxqq “ 0 ,

that is, f “ 0. This implies that φ “ 0, which contradicts the fact that φpξq ‰ 0.

The setting of the above theorem is a particular situation of a more general setting where a
duality theorem can be proved, see [77]. Notice also that the results in [77] have been generalized
in various directions (see for example the bibliography of [74]). On the other hand, the particular
statement above is powerful enough for our needs and it has the advantage that it is not necessary
to define “canonical choices” of topologies as in [77].

Remark 3.66. Theorem 3.65 can be used to recover Sections 4 and 5 in [37]. In particular,
the weak exactness of the duality functors described in [37, Section 5] can be improved to real
exactness.



Part II

A general scheme for entropies
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Chapter 4

Entropy on semigroups

In this chapter we introduce the category of commutative pre-normed semigroups and its non-
full subcategory of normed semigroups. After that, we define the categories of left and right
representations of a given monoid Γ on a category. Finally, we introduce a notion of entropy
for representations on commutative pre-normed semigroups and we study some of its basic
properties, with particular emphasis on the case when Γ is an amenable group.

4.1 Entropy for pre-normed semigroups

4.1.1 Pre-normed semigroups and representations

Definition 4.1. Let S “ pS, ¨q be a semigroup. A pre-norm on S is a non-negative real-valued
map v : S ÝÑ Rě0. A norm on S is a sub-additive pre-norm v, that is, vpx ¨yq ď vpxq`vpyq for
all x, y P S. If v is a pre-norm (resp., a norm) on S, we say that the pair pS, vq is a pre-normed
(resp., normed) semigroup. Furthermore, given two pre-normed semigroups pS, vq and pS1, v1q,
a semigroup homomorphism φ : S Ñ S1 is said to be contractive if v1pφpxqq ď vpxq for all x P S.

For example, consider a qframe pL,ďq. Then, the operation _ : L ˆ L Ñ L makes pL,_q
into a semigroup. If we consider the function ` : LÑ Rě0Yt8u, such that `pxq “ `pr0, xsq, then
pL, `q is a normed semigroup. Furthermore, any homomorphism of qframes φ : L Ñ L1 induces
a contractive homomorphism pL, `q Ñ pL1, `q.

Definition 4.2. Let Semiv be the category of commutative pre-normed semigroups, whose ob-
jects are all commutative pre-normed semigroups, and with morphisms all the semigroup homo-
morphisms. We denote by Semi˚v the non-full subcategory of Semiv whose objects are normed
semigroups and where all the morphisms are supposed to be contractive.

Definition 4.3. Let C be a category and let pΓ, ¨q be a monoid. The category l.RepΓpCq of
left Γ-representations (resp., right Γ-representations) on C is the functor category FuncpCΓ,Cq
(resp., FuncpCopΓ ,Cq), where CΓ is the one-object category defined in Example 1.4.

In the notation of the above definition,

– the objects of l.RepΓpCq are monoid homomorphisms α : Γ Ñ EndCpMq, for some M P ObpCq;

– a morphism φ : pα : Γ Ñ EndCpMqq Ñ pα1 : Γ Ñ EndCpM
1qq is a morphism φ : M ÑM 1 in C
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such that the following squares commute for all g P Γ:

M
φ //

αpgq
��

M 1

α1pgq
��

M
φ //M 1

Thus, a left Γ-representation is essentially a dynamical system on the “space” M and “time”
indexed by Γ. When we want to underline this dynamical point of view we use the notation
αüM (or pα,ΓqüM if we want to specify Γ) for α : Γ Ñ EndCpMq. Similar observations hold
for r.RepΓpCq, using anti-homomorphisms of monoids.

If the image of a left Γ-representation α is contained in AutCpMq, we say that α is invertible.
Notice that if Γ is a group, any left Γ-representation is necessarily invertible.

Example 4.4. Let pN,`q be the cyclic monoid of natural numbers, let R be a ring and consider
the category R-Mod of left R-modules. A left N-representation on R-Mod is exactly the same
as a left RrXs-module. In fact, it is a classical point of view (see for example [63, Section 12]
or [9, Chapter 7]) that of considering a left RrXs-module RrXsM as a left R-module RM with a
distinguished R-linear endomorphism φ : M ÑM , which represents the action of X. So, RrXsM
can be viewed as the left N-representation αφ ü M , where αφpnq “ φn for all n P N.

The above example can be generalized as follows:

Example 4.5. Let pΓ, ¨q be a monoid and let R be a ring. The monoid ring RrΓs is defined as
follows. For all g P Γ we take a symbol g, then the elements of RrΓs are formal sums of the form

ÿ

gPΓ

rgg ,

with rg “ 0 for all but a finite number of indices. The sum of two elements is defined component-
wise, that is, p

ř

gPΓ rggq ` p
ř

gPG sggq “
ř

gPΓprg ` sgqg, while multiplication is given by

˜

ÿ

gPΓ

rgg

¸˜

ÿ

gPΓ

sgg

¸

“
ÿ

gPΓ

¨

˝

ÿ

hk“g

shrk

˛

‚g .

Notice that in particular g ¨ h “ gh. Clearly, RrNs “ RrXs. Analogously, the ring of Laurent

polynomials is defined as RrZs “ RrX˘1s, one can find the notations RrX1, . . . , Xks “ RrNks
and RrX˘1

1 , . . . , X˘1
k s “ RrZks. As in the previous example one can show that the category

l.RepΓpR-Modq is equivalent to RrΓs-Mod.

4.1.2 Entropy of representations on pre-normed semigroups

Let Γ be a monoid, let pS, vq be a commutative pre-normed semigroup and let pα,Γq ü S be a
left Γ-representation. Let also FpΓq be the family of finite subsets of Γ. For all F P FpΓq and
x P S, the F -th α-trajectory of x is the following element of S:

TF pα, xq “
ź

fPF

αpfqpxq . (4.1.1)

Definition 4.6. Let pI,ďq be a directed poset and let X be a set:
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– a net with values in X is a function f : I Ñ X; we usually denote the net f by pxiqiPI , where
xi “ fpiq P X;

– when X is endowed with a topology τ , we say that x P X is a limit for the net pxiqiPI , in
symbols limiPI xi “ x if, for all V P Vpxq, there exists iV P I such that xi P V for all i ě iV .
If a net has a limit then we say that the net converges;

– if X “ R is the real numbers, the limit superior (resp., the limit inferior) of the net pxiqiPI , is

lim sup
iPI

xi “ inf

#

sup
jěi

xj : i P I

+

ˆ

resp., lim sup
iPI

xi “ sup

"

inf
jěi

xj : i P I

*˙

.

Notice that, if I is the set N of natural numbers with the usual order, then a net in X is just
a sequence in X.
In what follows we will use nets of subsets of a given set S, this means that our nets take values
in the collection of all subsets of S.

Let pI,ďq be a directed set and let x “ pxiqiPI and y “ pyiqiPI be two nets in a group pG, ¨q.
Then x ¨ y “ pxi ¨ yiqiPI is again a net in G.

In the following lemma we collect some well-known fact about nets, their proof is analogous
to the usual proof for sequences and can be found in many standard texts. We recall that, given
a poset pI,ďq a subset S Ď I is cofinal if and only if for all i P I, there exists s P S such that
i ď s.

Lemma 4.7. Let pI,ďq be a directed set and let x “ pxiqiPI and y “ pyiqiPI be two nets in R.
Then,

(1) lim suppx` yq ď lim supx` lim sup y (resp., lim infpx` yq ě lim inf x` lim inf y);

(2) if xi ď yi for all i P I, then lim supx ď lim sup y (resp., lim inf x ď lim inf y);

(3) if S Ď I is a directed subset and xS “ pxiqiPS, then lim supxS ď lim supx (resp., lim inf xS ě
lim inf x). Furthermore, if S is cofinal in I, then lim supxS “ lim supx (resp., lim inf xS “
lim inf x);

(4) x converges if and only if lim supx “ lim inf x. In this case, lim supx “ limx;

(5) if either x or y converges, then lim suppx` yq “ lim supx` lim sup y (resp., lim infpx` yq “
lim inf x` lim inf y).

With the notion of net, we can define the following notion of entropy.

Definition 4.8. Let Γ be a monoid, let pS, vq be a commutative pre-normed semigroup and let
pα,Γq ü S be a left Γ-representation. Let pI,ďq be a directed set and let s “ tFiuiPI be a net of
non-empty finite subsets of Γ. The s-entropy of α at x is

hpα, s, xq “ lim sup
iPI

vpTFipα, xqq

|Fi|
,

while the s-entropy of α is hpα, sq “ supthpα, s, xq : x P Su.
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Let us fix a monoid Γ and a net s “ tFiuiPI of non-empty finite subsets of Γ. We also add
to the non-negative reals Rě0 the symbol 8 in such a way that x ` 8 “ 8 ` x “ 8, for all
x P Rě0 Y t8u. The entropy we have just defined can be seen as a numerical invariant on the
category of representations, that is

hp´, sq : l.RepΓpSemivq ÝÑ Rě0 Y t8u , pα ü pS, vqq ÞÑ hpα, sq . (4.1.2)

Remark 4.9. In Definition 4.8 we defined the s-entropy for a left Γ-representation α on a
commutative pre-normed semigroups pS, vq. The reason to assume the commutativity of S comes
from the definition of the trajectories (see (4.1.1)): in fact, if S is not commutative, it is not
clear how to interpret the product TF pα, xq “

ś

fPF αpfqpxq. On the other hand, if we have
an order in the monoid Γ, then we can define the trajectories taking the products following that
order. We will adopt this approach in Section 5.1.

We are now going to discuss some basic properties of such invariant. In particular, we
study monotonicity under taking certain subrepresentations and quotients (Lemma 4.10), and
invariance under conjugation (Corollary 4.11).

Lemma 4.10. Let Γ be a monoid, let s “ tFiuiPI be a net of non-empty finite subsets of Γ and
let φ : pα ü pS, vqq Ñ pα1 ü pS1, v1qq be a morphism of left Γ-representations on commutative
pre-normed semigroups. The following statements hold true:

(1) if vpxq ď v1pφpxqq for all x P S, then hpα, sq ď hpα1, sq;

(2) if φ is surjective and vpxq ě v1pφpxqq for all x P S, then hpα1, sq ď hpα1, sq.

Proof. (1) Let x P S and H ‰ F P FpΓq, then

vpTF pα, xqq ď v1

˜

ź

gPF

φαpgqpxq

¸

“ v1

˜

ź

gPF

α1pgqφpxq

¸

“ v1pTF pα
1, φpxqqq .

Using the above inequality for any Fi P s, one obtains that hSemivpα, s, xq ď hSemivpα
1, s, φpxqq ď

hpα1, sq for all x P S. One concludes taking the supremum with respect to x.

(2) Let y P S1 and let x P S be such that φpxq “ y. Then,

vpTF pα, xqq “ v1

˜

ź

gPF

φαpgqpxq

¸

“ v1

˜

ź

gPF

α1pgqpyq

¸

“ v1pTF pα
1, yqq .

for all H ‰ F P FpΓq. Using the above equality for any Fi P s, one obtains that hSemivpα
1, s, yq “

hSemivpα, s, xq ď hpα, sq for all y P S1. One concludes taking the supremum with respect to y.

An easy consequence of the above lemma is the following invariance of entropy under conju-
gation.

Corollary 4.11. Let Γ be a monoid, let s “ tFiuiPI be a net of non-empty finite subsets of Γ and
let φ : pα ü pS, vqq Ñ pα1 ü pS1, v1qq be an isomorphism of left Γ-representations on commutative
pre-normed semigroups such that vpxq “ v1pφpxqq for all x P S. Then, hpα, sq “ hpα1, sq.

In the following definition we isolate a technical condition that allows us to compare the
entropies of different flows.
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Definition 4.12. Let Γ be a monoid, let s “ tFiuiPI be a net of non-empty finite subsets of Γ and
let αüpS, vq, α1 ü pS1, v1q be two left Γ-representations on commutative pre-normed semigroups.
We say that α is s-dominated by α1 if for all x P S, there exist a sequence pynqnPN of elements
of S1 and, for all i P I, a sequence of non-negative reals tkipnqunPN which verify the following
conditions:

lim
nÑ8

kipnq “ 0 and vpTFipα, xqq ď v1pTFipα
1, ymqq ` |Fi| ¨ kipmq ,

for all m P N and i P I.

The following proposition shows that domination gives a criterion to verify that the entropy
of a representation is less than or equal to the entropy of a second representation.

Proposition 4.13. Let Γ be a monoid, let s “ tFiuiPI be a net of non-empty finite subsets
of Γ and let αüpS, vq, α1 ü pS1, v1q be two left Γ-representations on commutative pre-normed
semigroups. If α is s-dominated by α1, then hpα, sq ď hpα1, sq.

Proof. Let x P S. Consider the sequence pynqnPN of elements of S1 and, for all i P I, the sequence
of non-negative reals tkipnqunPN given by Definition 4.12. Fix ε ą 0 and, for all i P I, choose
npε,iq P N such that kipnpε,iqq ă ε. We obtain that:

hpα, s, xq “ lim sup
iPI

vpTFipα, xqq

|Fi|

ď lim sup
iPI

v1pTFipα
1, ynpε,iqqq ` |Fi| ¨ kipnpε,iqq

|Fi|
ď hpα1, sq ` ε .

As this holds for all x P S and ε P Rą0, we obtain hpα, sq ď hpα1, sq.

We consider now the product of two commutative pre-normed semigroups pS1, v1q and
pS2, v2q. Indeed, let S “ S1 ˆ S2 be their direct product in the category of semigroups, that
is, the cartesian product with degree-wise operation. Then, S becomes a pre-normed semigroup
with the max-pre-norm, given by

vpx1, x2q “ maxtv1px1q, v2px2qu .

When the product is endowed with such norm, one can prove the following formula for the
s-entropy:

Lemma 4.14. Let Γ be a monoid, let s “ tFiuiPI be a net of non-empty finite subsets of Γ
and let α1 ü pS1, v1q, α2 ü pS2, v2q be two left Γ-representations on commutative pre-normed
semigroups and let pS, vq be the product of pS1, v1q and pS2, v2q. Then, the left Γ-representation
α ü pS, vq given by αpgq “ pα1pgq, α2pgqq for all g P Γ has s-entropy

hpα, sq “ maxthpα1, sq, hpα2, squ .

Proof. Given x “ px1, x2q P S, by definition vpTF pα, xqq “ maxtv1pTF pα1, x1qq, v2pTF pα2, x2qqu,
for all H ‰ F P FpΓq so,

hpα, s, xq “ inf

"

sup

"

max

"

vkpTFj pαk, xkqq

|Fj |
: k “ 1, 2

*

j ě i

*

i P I

*

“ inf

"

max

"

sup

"

vkpTFj pαk, xkqq

|Fj |
: j ě i

*

k “ 1, 2

*

i P I

*

“ max

"

inf

"

sup

"

vkpTFj pαk, xkqq

|Fj |
: j ě i

*

i P I

*

k “ 1, 2

*

“ maxthpα1, s, x1q, hpα2, s, x2qu .
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Taking suprema with x1 P S1 and x2 P S2 we obtain the result.

Let us consider also the coproduct of two commutative pre-normed semigroups pS1, v1q and
pS2, v2q. Indeed, we let S “ S1‘S2 be their coproduct in the category of semigroups, that coin-
cides again with the cartesian product. S becomes a pre-normed semigroup with the following
pre-norm

v‘px1, x2q “ v1px1q ` v2px2q .

When S is endowed with such norm, one can prove one inequality of a weak “addition formula”
for the s-entropy. The converse inequality is also true in many concrete situations (see Lemma
4.40) but it cannot be proved in full generality (see for example Walters’ book [100, p. 176]):

Lemma 4.15. Let Γ be a monoid, let s “ tFiuiPI be a net of non-empty finite subsets of Γ
and let α1 ü pS1, v1q, α2 ü pS2, v2q be two left Γ-representations on commutative pre-normed
semigroups. Then, letting S “ S1 ‘ S2, the left Γ-representation α ü pS, v‘q given by αpgq “
pα1pgq, α2pgqq for all g P Γ has s-entropy

hpα, sq ď hpα1, sq ` hpα2, sq .

Proof. Let x “ px1, x2q P S and i P I, then by definition vpTFipα, xqq “ v1pTFipα1, x1qq `

v2pTFipα2, x2qq. Dividing by |Fi| and taking the lim sup with i varying in I we obtain

hpα, s, xq “ lim sup
iPI

ˆ

v1pTFipα1, x1qq ` v2pTFipα2, x2qq

|Fi|

˙

ď hpα1, s, x1q ` hpα2, s, x2q .

Taking the supremum with x1 and x2 varying in S1 and S2 respectively, the thesis follows.

4.1.3 Bernoulli representations

Let Γ be a group, let S be a commutative monoid and let v be a pre-norm on S such that
vp1q “ 0. For all g P Γ let Sg “ S and consider the monoid M “

À

gPΓ Sg, which becomes a
pre-normed monoid with the pre-norm

v‘pxq “
ÿ

gPΓ

vpxgq for any x “ pxgqgPΓ PM .

We can naturally define a map:

BS : Γ Ñ AutpMq , BSphqpxgqgPΓ “ pxh´1gqgPΓ ,

for all h P Γ and x “ pxgqgPΓ PM . Notice that, the following relation holds

BSph1qpBSph2qpxqq “ pxh´1
2 h´1

1 gqgPΓ “ BSph1h2qpxq ñ BSph1qBSph2q “ BSph1h2q ,

so BS is a left Γ-representation. If one prefers to work with right representations, one can simi-
larly define B1

Sphqpxgqg “ pxhgqg. We call pBS ,Γq ü pM, v‘q the Bernoulli left Γ-representation
over S.

Lemma 4.16. Let pS, vq be a commutative pre-normed monoid, let Γ a group and let BS ü

pM,v‘q be the Bernoulli left Γ-representation. Then, for any net s “ tFiuiPI of non-empty finite
subsets of Γ:

hpBS , sq ě suptvpxq : x P Su .
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Proof. Identify S with S1 ĎM and notice that

vpTFipBS , xqq “ v

¨

˝

ź

fPFi

BSpfqpxq

˛

‚“ |Fi|vpxq ,

for all x P S and i P I. Hence hpBS , s, xq “ vpxq, and so hpBS , sq ě supthpBS , s, xq : x P Su “
suptvpxq : x P Su “ suptvpxq : x P Su.

We are going to verify the converse inequality for a particular choice of the sequence s in
Lemma 4.41.

4.2 Representation of amenable groups

The original definition of amenability of a group G, in terms of a finitely additive invariant
measure on the subsets of G, was introduced by von Neumann in 1929. We adopt here an
equivalent definition of amenability (see Definition 4.19) introduced by Følner [43].

Definition 4.17. Let G be a group and consider two subsets A, C Ď G, then

– the C-interior of A is InCpAq “ tx P G : Cx Ď Au;

– the C-exterior of A is OutCpAq “ tx P G : CxXA ‰ Hu;

– the C-boundary of A is BCpAq “ OutCpAqzInCpAq.

If e P C, one can imagine the above notions as in the following picture

A x.

e. C

G

BCpAq

x.

e. C

A

G

InCpAq

A x.

e. C

G

OutCpAq

The computations collected in the following lemma will be useful later on.

Lemma 4.18. Let G be a group, let A, C Ď G and c P G. Then,

(1) BCpAcq “ BCpAqc and BCcpAq “ c´1BCpAq;

(2) if A “
Ť

iPI Ai for some family tAi : i P Iu of subsets of G, then BCpAq Ď
Ť

iPi BCpAiq;

(3) if e P C, then BCpAq “ pC
´1AzAq Y

Ť

cPC Azc
´1A.

Proof. (1) Notice that

InCpAcq “ tx P G : Cx Ď Acu “ tx P G : Cxc´1 Ď Au “ txc P G : Cx Ď Au “ InCpAqc ,
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and that

OutCpAcq “ tx P G : CxXAc ‰ Hu “ tx P G : Cxc´1 XA ‰ Hu

“ txc P G : CxXA ‰ Hu “ OutCpAqc .

Thus, BCpAcq “ OutCpAcqzInCpAcq “ OutCpAqczInCpAqc “ pOutCpAqzInCpAqqc “ BCpAqc.
The proof of the second claim is analogous.

(2) Notice that

InCpAq “ tx P G : Cx Ď Au Ě tx P G : Cx Ď Ai for some i P Iu

“
ď

iPI

tx P G : Cx Ď Aiu “
ď

iPI

InCpAiq ,

and that

OutCpAq “ tx P G : CxXA ‰ Hu “ tx P G : CxXAi ‰ H for some i P Iu

“
ď

iPI

tx P G : CxXAi ‰ Hu “
ď

iPI

OutCpAiq .

Thus, BCpAq Ď
Ť

iPI OutCpAiqz
Ť

iPI InCpAq Ď
Ť

iPI BCpAiq.

(3) Since e P C, InCpAq Ď A Ď OutCpAq. Furthermore,

OutCpAqzA “ tx P GzA : Dc P C s.t. cx P Au “ tx P GzA : Dc P C s.t. x P c´1Au “ C´1AzA

and

AzInCpAq “ tx P A : Dc P C s.t. cx R Au “ tx P A : Dc P C s.t. x R c´1Au “
ď

cPC

Azc´1A .

Thus, BCpAq “ OutCpAqzInCpAq “ pOutCpAqzAq Y pAzInCpAqq “ pC
´1AzAq Y

Ť

cPC Azc
´1A.

Definition 4.19. A group G is amenable if and only if there exists a directed set pI,ďq and a
net tFi : i P Iu of non-empty finite subsets of G such that, for any C P FpGq,

lim
I

|BCpFiq|

|Fi|
“ 0 . (4.2.1)

Any such net is called a Følner net.

In the following lemma we collect some closure properties of the class of amenable groups.

Lemma 4.20. [16, Propositions 4.5.1, 4.5.4, 4.5.5 and 4.5.10] Let G be a group and let H ď G.
Then,

(1) if G is amenable, then H is amenable;

(2) if H is normal, then G is amenable if and only if both H and G{H are amenable;

(3) if G is the directed colimit of a directed system of amenable groups, then G is amenable.

Let X be a set and let A, B Ď X. The symmetric difference is the following subset of X:

A∆B “ pAzBq Y pBzAq
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Lemma 4.21. Let G be an amenable group and let s “ tFiuiPI be a net of non-empty finite
subsets of G. Then, the following are equivalent

(1) limI |Fi∆gFi|{|Fi| “ 0 for all g P G;

(2) limI |Fi∆CFi|{|Fi| “ 0 for all non-empty C P FpGq;

(3) s is a Følner net.

Proof. (1)ñ(2). Let C “ tg1, . . . , gnu P FpGq. Then, for all i P I, Fi∆CFi Ď
Ťn
k“1pFi∆gkFiq.

Thus, limI |Fi∆CFi|{|Fi| ď
řn
k“1 limI |Fi∆gkFi|{|Fi| “ 0.

(2)ñ(1) is trivial.

(2)ñ(3). First of all, notice that if limI |Fi∆KFi|{|Fi| “ 0 for some K P FpGq, then in particular
limI |FizKFi|{|Fi| “ 0 and limI |KFizFi|{|Fi| “ 0. Let C P FpGq, by Lemma 4.18 (1) we can
suppose that e P C. Furthermore, by Lemma 4.18 (3), |BCpFiq| ď |C

´1FizFi| Y
ř

cPC |Fizc
´1Fi|

and so, limI |BCpFiq|{|Fi| ď limI |C
´1AzA|{|Fi| Y

ř

cPC limI |Fizc
´1Fi|{|Fi| “ 0.

(3)ñ(1). Let g P G and let C “ te, g´1u. Then, OutCpFiq “ gFiYFi while InCpFiq “ gFiXFi.
Thus, BCpFiq “ Fi∆gFi and so limi |Fi∆gFi|{|Fi| “ limI |BCpFiq|{|Fi| “ 0.

Lemma 4.22. Let G be an amenable group, let F P FpGq be non-empty and let tFiuiPI be a
Følner net. Then, the following are Følner sequences:

(1) tFiF uiPI ;

(2) tFi Y F uiPI ;

(3) tFiuiPJ with J Ď I a cofinal subset.

Proof. (1) Let C P FpGq, then using Lemma 4.18

lim
I

|BCpFiF q|

|FiF |
ď lim

I

|F ||BCpFiq|

|Fi|
“ |F | lim

I

|BCpFiq|

|Fi|
“ 0 ,

proving (1).

(2) Let C P FpGq. Using again Lemma 4.18

lim
I

|BCpFi Y F q|

|Fi Y F |
ď lim

I

|BCpF q| ` |BCpFiq|

|Fi|
“ lim

I

|BCpF q|

|Fi|
` lim

I

|BCpFiq|

|Fi|
“ 0 ,

proving (2).

(3) is trivial.

Corollary 4.23. Let G be an infinite amenable group and let tFiuiPI be a Følner net. Then,
limiPI |Fi| “ 8.

Proof. We may suppose, without loss of generality, that e P Fi for all i P I. Indeed, set
F 1i “ Fi Y teu, this gives a Følner net by Lemma 4.22 and clearly limiPI |Fi| “ 8 if and only if
limiPI |F

1
i | “ 8.

If there exists an element g P G and i P I such that g R Fj for all j ě i, then let C “ te, g´1u

and notice that g P BCpFjq for all j ě i. Thus,

0 “ lim
iPI
|BCpFjq|{|Fj | ě lim

iPI
1{|Fj | .
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This may happen only if limiPI |Fi| “ 8.
On the other hand, if for all g P G and for all i P I there exists j ě i such that g P Fj , then

choose an infinite family tgn : n P Nu in G, let Sn “ ti P I : gn P Fiu Ď I for all n P N and let
S̄n “

Şn
k“0 Sk. By construction, S̄0 is cofinal in I. If all the S̄n are cofinal in I, in particular

they are not empty and, given s P S̄n, |Fs| ě |tg1, . . . , gnu| “ n and so limiPI |Fs| “ 8. On the
other hand, if there exists a minimum n P N such that S̄n is not cofinal in I, it means that S̄n´1

is cofinal in I and that there exists s P S̄n´1 such that gn R Ft for all t ě s. By the first part of
the proof, limiPI |Fi| “ limiPS̄n´1

|Fi| “ 8.

In the last part of the subsection we concentrate on countable amenable groups.

Remark 4.24. If G is countable, then also FpGq is countable. Thus, given a net s “ tFiuiPI in
FpGq, there is a countable subset J of I such that J is order-isomorphic to N and sJ “ tFiuiPJ
is cofinal in s. By Lemma 4.22 (3), sJ is Følner. This allows to always take I “ N and just
speak about Følner sequences in countable groups.

Definition 4.25. Given a group G and a Følner sequence s “ tFn : n P Nu, we say that s is a
Følner exhaustion if

– e P F0 and Fn Ď Fn`1 for all n P N;

–
Ť

nPN Fn “ G.

Example 4.26. Every finite group is amenable. Furthermore, taking G “ Zk, one can construct
explicitly a Følner exhaustion tFn : n P Nu as follows:

Fn “

#

k
ÿ

i“1

λiei : λi P Z such that
k
ÿ

i“1

|λi| ď n

+

where tei : i “ 1, . . . , nu are the canonical generators of G.

Lemma 4.27. Let G be a countably infinite amenable group and let tFnunPN be a Følner sequence
in G. Then there exists an increasing sequence tNpnqunPN of natural numbers and a Følner
exhaustion tSnunPN of G such that

(1) FNpnq Ď Sn for all n P N;

(2) limnPN
|FNpnq|

|Sn|
“ 1.

Proof. Since G is countable we can enumerate its elements, that is, G “ tgi : i P Nu, we suppose
that g0 “ e. For all n P N let An “ tg0, . . . , gnu, notice that teu Ď A0 Ď ¨ ¨ ¨ Ď An Ď . . . and
Ť

nPNAn “ G. Let also tεnunPN be a sequence in Rě0 which converges to 0. Put Np0q “ 0,
S0 “ F0YA0 and let Sn`1 “ SnYAn`1YFNpn`1q, where Npn`1q ě Npnq is chosen inductively
to satisfy

|BAn`1pSn`1q|{|Sn`1| ă εn`1 and
|An`1 Y Sn|

|FNpn`1q|
ă εn`1

this can be done since tFiYpSnYAnquiPN is a Følner sequence by Lemma 4.22 and limnÑ8 |Fn| “
8 by Corollary 4.23. Now, let C P FpGq, by construction there exists n̄ such that C Ď An for
all n ě n̄, thus

lim
N

|BCpSnq|

|Sn|
ď lim

něn̄

|BAnpSnq|

|Sn|
ď lim

něn̄
εn “ 0 ,
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showing that tSnunPN is a Følner exhaustion. Furthermore, part (1) of the statement is clear,
while part (2) can be shown as in the following computation:

1 “ lim
nPN

|FNpnq|

|FNpnq|
ě lim

nPN

|FNpnq|

|Sn|
“ lim

nPN

|FNpnq|

|Sn|
` lim
ně1

|An Y Sn´1|

|FNpnq|

“ lim
ně1

|FNpnq| ` |An Y Sn´1|

|Sn|
ě lim

nPN

|Sn|

|Sn|
“ 1 .

4.2.1 Quasi-tilings

In what follows, we recall some terminology and results due to Ornstein and Weiss [81] (see
also [62], [67] and [101]). All the proofs and statements of this subsection are adapted from the
original papers with some slight changes to make them fit into our context.

Definition 4.28. Let G be a group, let A P FpGq, let ε P p0, 1q, α P p0, 1s and δ P r0, 1q, let I
be a finite set and consider A “ tAiuiPI Ď FpGq. The family A is

– ε-disjoint if there is a family tBiuiPI Ď FpGq such that

- Bi Ď Ai and |Bi| ą p1´ εq|Ai|, for all i P I;

- Bi XBj “ H, whenever i ‰ j P I;

– a α-cover of A if |AX p
Ť

iPI Aiq| ě α|A|;

– a δ-even cover of A if

- Ai Ď A, for all i P I;

- there exists M ą 0 such that
ř

iPI χAipxq ďM for all x P A, and
ř

iPI |Ai| ě p1´ δq|A|M .

Remark 4.29. Let G be a group, let A P FpGq, let δ P p0, 1q, let I be a finite set and consider
A “ tAiuiPI Ď FpGq. If A is an δ-even cover, then A is an p1´ δq-cover. In fact,

ˇ

ˇ

ˇ

ˇ

ˇ

AX

˜

ď

iPI

Ai

¸ˇ

ˇ

ˇ

ˇ

ˇ

p˚q
“

ˇ

ˇ

ˇ

ˇ

ˇ

ď

iPI

Ai

ˇ

ˇ

ˇ

ˇ

ˇ

p˚˚q

ě
1

M

ÿ

iPI

|Ai|
p ˚˚˚q
ě

1

M
p1´ δqM |A| “ p1´ δq|A| ,

where p˚q holds since Ai Ď A for all i P I, p˚˚q is a consequence of the fact that each x P A can
belong to at most M elements of A and

`

˚

˚˚

˘

follows by the second condition in the definition of
δ-even cover.

Definition 4.30. Let G be a group, let A P FpGq, let ε P p0, 1q, let I be a finite set and consider
A “ tAiuiPI Ď FpGq. The family A is an ε-quasi-tiling of A if there exists a family of tiling
centers tCiuiPI Ď FpGq such that

– CiAi Ď A and tcAi : c P Ciu forms an ε-disjoint family, for all i P I;

– CiAi X CjAj “ H, if i ‰ j P I;

– tCiAi : i P Iu forms an p1´ εq-cover of A.
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It is a deep result, due to Ornstein and Weiss, that whenever G is a countable amenable group
and tFnunPN is a Følner exhaustion, for any (small enough) ε ą 0, one can find a nice family of
subsets of G that ε-quasi-tiles Fn for all (big enough) n P N. In the rest of this subsection we
are going to prove the following theorem.

Theorem 4.31. Let G be a countably infinite amenable group, let tFnunPN and tF 1nunPN be
respectively a Følner sequence and a Følner exhaustion for G. Then, for all ε P p0, 1{4q and
n̄ P N, there exist n1, . . . , nk P N such that n̄ ď n1 ď ¨ ¨ ¨ ď nk and tFn1 , . . . , Fnku ε-quasi-tiles
F 1m, for all big enough m.

Before proceeding to the proof, we need a series of technical lemmas.

Lemma 4.32. Let G be a group, let C and A P FpGq, let ε P p0, 1q and let c P G. If |BCpAq| ă
ε|A|, then |BCpAcq| ă ε|Ac|.

Proof. By Lemma 4.18, BCpAcq “ BCpAqc and so |BCpAcq| “ |BCpAq|. Similarly, |A| “ |Ac|.

Lemma 4.33. Let G be a group, let I be a finite set, let A “ tAiuiPI Ď FpGq, let A “
Ť

A, let
C P FpGq and let ε, δ P p0, 1q.

(1) If A is ε{2-disjoint, then
ř

iPI |Ai| ď p1` εq|A|;

(2) If A is ε{2-disjoint and |BCpAiq| ď δ|Ai| for all i P I, then BCpAq ď δp1` εq|A|.

Proof. (1) By definition of ε{2-disjointedness, there exists a family tBiuiPI Ď FpGq such that
Bi Ď Ai, |Bi| ą p1´ ε{2q|Ai| and Bi XBj “ H, for all i ‰ j P I. Then,

|A| ě

ˇ

ˇ

ˇ

ˇ

ˇ

ď

iPI

Bi

ˇ

ˇ

ˇ

ˇ

ˇ

“
ÿ

iPI

|Bi| ě p1´ ε{2q
ÿ

iPI

|Ai| .

One concludes noticing that p1´ ε{2q´1 ď 1` ε.

(2) By Lemma 4.18, BCpAq Ď
Ť

iPi BCpAiq, so

|BCpAq| ď

ˇ

ˇ

ˇ

ˇ

ˇ

ď

iPI

BCpAiq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

iPI

|BCpAiq|
p˚q

ď δ
ÿ

iPI

|Ai|
p˚˚q

ď δp1` εq|A| ,

where p˚q holds since |BCpAiq| ď δ|Ai| for all i P I, while p˚˚q is true by part (1).

Lemma 4.34. Let G be a group, let A and S be two finite subsets of G containing e, let
H “ InSS´1pAq and let ε P p0, 1q. If |BSS´1pAq| ď p1 ´ εq|A|, then tSgugPH is an ε-even cover
of A.

Proof. Let M “ |S|, we have to prove that
ř

gPH χSgpxq ď M , for all x P A (which is true no
element of A can belong to more that |S| translates of S) and that

ř

gPH |Sg| ě ε|A|M . The
fact that |BSS´1pAq| ď p1´ εq|A| implies that |H| ě ε|A| and so

ř

gPH |Sg| ě ε|A|M .

Lemma 4.35. Let G be a group, let A P FpGq and let ε, δ P p0, 1q. If A is a δ-even cover of A,
then there is a subset B Ď A such that

(1) B is ε-disjoint;

(2) it εp1´ δq-covers A;



4.2 Representation of amenable groups 91

(3) given B P B, |
Ť

BzB| ă εp1´ δq|A|.

Furthermore, if (1), (2) and (3) hold for some set B, then for all B P B,

1´ εp1´ δq ě
|Az

Ť

B|
|A|

ą 1´ εp1´ δq ´ |B|{|A| .

Proof. Let B be a maximal ε-disjoint subfamily of A. Suppose, looking for a contradiction, that
B is not an εp1´ δq-cover of A (that is, |

Ť

B| ă εp1´ δq|A|) and consider the following claim:

p˚q there exists B̄ P A such that |B̄ X
ď

B| ă ε|B̄|.

Let us verify p˚q. Assume, looking for a contradiction, that p˚q does not hold and consider the
following observations:

a) by our initial absurd hypothesis, |
Ť

B| ă εp1´ δq|A|;

b) by the negation of (˚),
ř

BPA |B X
Ť

B| ě ε
ř

BPA |B|;

c) by the definition of δ-even cover, there exists M ą 0 such that
ř

BPA |B| ě p1´ δq|A|M ;

d) by the definition of δ-even cover, given x P
Ť

BpĎ Aq, there exist at most M different
members B P A such that x P B. Thus,

ř

BPA |B X
Ť

B| ďM |
Ť

B|.

Combining b) and c),
ř

BPA |B X
Ť

B| ě εp1´ δq|A|M , while, combining a) and d),
ř

BPA |B X
Ť

B| ă εp1 ´ δq|A|M , that is a contradiction. Thus, (˚) is verified. Now, consider B̄ P A such
that |B̄X

Ť

B| ă ε|B̄| and notice that B̄ R B and that BYtB̄u is still ε-disjoint. This contradicts
the maximality of B.
Thus, B satisfies properties (1) and (2) in the statement. Take now B P B and notice that, if
|
Ť

BzB| ě εp1 ´ δq|A|, then B1 “ BztBu is again a subset of A satisfying (1) and (2). Thus,
removing a finite number of elements from B, we can find a subset of A that satisfies (1), (2)
and (3).
For the last part of the statement, notice that the bound |Az

Ť

B| {|A| ď 1 ´ εp1 ´ δq comes
directly from condition (2), while the other bound can be computed as follows. Take B P B,
then

|Az
Ť

B|
|A|

“ 1´
|
Ť

BzB| ` |B|
|A|

ą 1´ εp1´ δq ´
|B|

|A|

We can finally prove the main result of this section:

Proof of Theorem 4.31. Fix ε P p0, 1{4q and n̄ P N, and choose k P N` and δ ą 0 such that

´

1´
ε

2

¯k
ă ε and 6kδ ă

ε

2
.

Notice that the second condition, together with the choice of ε, implies δ ă 1{48. Since tFnunPN
is a Følner exhaustion, we can choose n̄ ď n1 ď n2 ď . . . ď nk P N such that

|BFniF
´1
ni
pFni`1q|

|Fni`1 |
ă δ and

|Fni |

|Fni`1 |
ă δ (4.2.2)



92 Entropy on semigroups

Furthermore, since tF 1nunPN is a Følner sequence, for any big enough m P N,

|BFnkF
´1
nk
pF 1mq|

|F 1m|
ă δ and

|Fnk |

|F 1m|
ă δ . (4.2.3)

Fix a positive integer m as above; we construct by downward induction a family tC1, . . . , Cku
with the following properties: letting Ak “ F 1m and Aj´1 “ AjzFnjCj for all j “ 2, . . . , k, and
letting Ki “ FniF

´1
ni for all i “ 1, . . . , k,

(ai) tFnic : c P Ciu is ε-disjoint;

(bi) tFnic : c P Ciu is an εp1´ 6iδq-cover of Ai;

(ci) 1´ εp1´ δq ě |AizFniCi| {|Ai| ą 1´ εp1´ δq ´ δ, |BKipAiq|{|Ai| ă δ and |Fni |{|Ai| ă δ.

Notice that, once we found such families, FniCi “ AizAi´1 and so FniCi X FnjCj “ H if i ‰ j.
Furthermore,

|Akz
Ť

FniCi|

|Ak|
“
|A1zFn1C1|

|Ak|
“
|A1zFn1C1|

|A1|

|A1|

|A2|
. . .
|Ak´1|

|Ak|

ď p1´ εp1´ 6kδqqp1´ εp1´ 6k´1δqq . . . p1´ εp1´ δqq ă p1´ ε{2qk ă ε .

Thus, tFn1 , . . . , Fnku ε-quasi-tiles Ak “ F 1m with tiling centers tC1, . . . , Cku and the proof is
concluded.

Case i “ k. Let Ak “ F 1m and let Kk “ FnkF
´1
nk

; with this notation, (4.2.3) reads as

|BKkpAkq|

|Ak|
ă δ and

|Fnk |

|Ak|
ă δ ,

notice that these are the two last conditions in (ck). Consider Hk “ InKkpAkq, then tFnkhuhPHk
is a δ-even cover of Ak, by Lemma 4.34. Thus, by Lemma 4.35, there exists Ck Ď Hk that
satisfies (ak), (bk) and (ck).

Case i ă k. Suppose we have already constructed Ck, . . . , Ci`1 with the desired properties.
Then,

|BKipAiq|

|Ai|
ď
|BKi`1pAi`1q|

|Ai|
` |Ci`1|

BKipFni`1q

|Ai|

ă
δ

|Ai`1zFni`1Ci`1|
p|Ai`1| ` |Fni`1 ||Ci`1|q (ci`1) and (4.2.2)

ă
δ|Ai`1|

|Ai`1zFni`1Ci`1|

ˆ

1`
1

1´ ε

˙

(ai`1)

ă
δ

1´ εp1´ δq ´ δ

ˆ

1`
1

1´ ε

˙

(ci`1)

ă 6δ ε ă 1{4 and δ ă 1{48,

where the first inequality follows since BKipAiq Ď BKi`1pAi`1qY
Ť

cPCi`1
BKipFni`1qc (use Lemma

4.18). Furthermore, using again (4.2.2), (ci`1) and the initial bounds for ε and δ,

|Fni |

|Ai|
“

|Fni |

|Fni`1 |

|Fni`1 |

|Ai`1|

|Ai`1|

|Ai|
ă

δ2

1´ εp1´ δq ´ δ
ă δ .

This shows the second part of (ci). Now, if we let Hi “ InKipAiq, then tFnihuhPHi is a 6δ-even
cover of Ai, by Lemma 4.34. Thus, by Lemma 4.35, there exists Ci Ď Hi that satisfies (ai), (bi)
and (ci).
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4.2.2 Non-negative real functions on finite subsets of an amenable group

In this subsection we recall some results and terminology about non-negative invariants for the
finite subsets of G, that is, functions f : FpGq Ñ Rě0.

Definition 4.36. Let G be a group and let f : FpGq Ñ Rě0. We say that f is

– monotone if fpAq ď fpA1q, for all A Ď A1 P FpGq;

– sub-additive if fpAYA1q ď fpAq ` fpA1q, for all A, A1 P FpGq;

– (left) G-equivariant if fpgAq “ fpAq, for all A P FpGq and g P G.

Notice that, given a group G and a G-equivariant function f : FpGq Ñ Rě0, fptguq “ fpteuq,
for all g P G. Thus, if f is also sub-additive, then fpAq ď

ř

gPA fptguq “ |A|fpteuq, for all
A P FpGq. Notice that a consequence of this is that, given a net s “ tFiuiPI of non-empty finite
subsets of G, then

lim sup
iPI

fpFiq

|Fi|
ď lim sup

iPI

|Fi|fpteuq

|Fi|
“ fpteuq .

In particular, any such limit superior is finite.

The following corollary is a consequence of Theorem 4.31. It is important to underline that
the choice of the n1, . . . , nk in the statement does not depend on the function f , but we can
really find a family tn1, . . . , nku, which works for all f at the same time.

Corollary 4.37. Let G be a countably infinite amenable group and let tFnunPN, tF 1nunPN be
respectively a Følner exhaustion and a Følner sequence in G. Then, for any ε P p0, 1{4q and
n̄ P N there exist integers n1, . . . , nk such that n̄ ď n1 ď ¨ ¨ ¨ ď nk and, for any sub-additive and
G-equivariant f : FpGq Ñ R

lim sup
nÑ8

fpF 1nq

|F 1n|
ďMε`

1

1´ ε
max
1ďiďk

fpFniq

|Fni |
,

where M “ fpteuq.

Proof. Let ε P p0, 1{4q and n̄ P N. By Theorem 4.31, there exist positive integers n1, . . . , nk such
that n̄ ď n1 ď ¨ ¨ ¨ ď nk and tFn1 , . . . , Fnku ε-quasi-tiles F 1n, for all big enough n P N. We let
Cn1 , . . . , C

n
k be the tiling centers for F 1n. Thus, when n is big enough,

F 1n Ě
k
ď

i“1

Cni Fni and

ˇ

ˇ

ˇ

ˇ

ˇ

k
ď

i“1

Cni Fni

ˇ

ˇ

ˇ

ˇ

ˇ

ě max

#

p1´ εq|F 1n| , p1´ εq
k
ÿ

i“1

|Cni ||Fni |

+

.

Letting f : FpGq Ñ Rě0 be a sub-additive and G-invariant function,

fpF 1nq

|F 1n|
ď

f
´

F 1nz
Ťk
i“1C

n
i Fni

¯

|Fn|
`

f
´

Ťk
i“1C

n
i Fni

¯

|F 1n|
ďM

ˇ

ˇ

ˇ
F 1nz

Ťk
i“1C

n
i Fni

ˇ

ˇ

ˇ

|F 1n|
`

f
´

Ťk
i“1C

n
i Fni

¯

ˇ

ˇ

ˇ

Ťk
i“1C

n
i Fni

ˇ

ˇ

ˇ

ďMε`

řk
i“1 |C

n
i |fpFniq

p1´ εq
řk
i“1 |C

n
i ||Fni |

ďMε`
1

1´ ε
max
1ďiďk

fpFniq

|Fni |
,

where M “ fpteuq, as desired.
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The following result, generally known as “Ornstein-Weiss Lemma”, is proved in [81] for a
suitable class of locally compact amenable groups (a direct proof, along the same lines, in the
discrete case can be found in [101], while a nice alternative argument, based on ideas of Gromov,
is given in [67]).

Proposition 4.38. Let G be a countably infinite amenable group and consider a monotone, sub-
additive and G-equivariant function f : FpGq Ñ Rě0. Then, for any Følner sequence tFnunPN,
the sequence pfpFnq{|Fn|qnPN converges and the value of the limit limnPN fpFnq{|Fn| is the same
for any choice of the Følner sequence.

Proof. Let f : FpGq Ñ Rě0 be a monotone, sub-additive and G-equivariant function, and let
M “ fpteuq. Choose also a Følner exhaustion tFnunPN and a Følner sequence tF 1nunPN in G. By
Corollary 4.37, for all ε P p0, 1{4q and n̄ P N there exist k P N and n̄ ď n1 ă ¨ ¨ ¨ ă nk P N such
that

lim sup
nPN

fpF 1nq

|F 1n|
ďMε`

1

1´ ε
max
1ďiďk

fpFniq

|Fni |
ďMε`

1

1´ ε
sup
n̄ďn

fpFniq

|Fni |

Since this holds for all ε P p0, 1{4q and n̄ P N, we get lim supnPN
fpF 1nq
|F 1n|

ď lim supnPN
fpFnq
|Fn|

. Let

now tNpnqu be an increasing sequence of natural numbers such that limnPN fpFNpnqq{|FNpnq| “
lim infnPN fpFnq{|Fn|. Then, by the first part of the proof,

lim sup
nPN

fpFnq{|Fn| ď lim
nPN

fpFNpnqq{|FNpnq| “ lim inf
nPN

fpFnq{|Fn| ,

thus tfpFnq{|Fn|u converges to a limit λ. Using the same kind of argument one shows that, for
any Følner exhaustion tSnunPN, limnPN fpSnq{|Sn| “ λ. Using Lemma 4.27, choose an increasing
sequence tNpnqunPN of natural numbers and a Følner exhaustion tSnunPN of G such that F 1Npnq Ď

Sn for all n P N and limnPN
|F 1
Npnq

|

|Sn|
“ 1. Notice that

λ ě lim sup
nPN

fpF 1Npnqq

|F 1Npnq|
ě lim inf

nPN

fpF 1Npnqq

|F 1Npnq|
“ lim inf

nPN

fpF 1Npnqq ` fpSnzF
1
Npnqq

|Sn|
ě lim

fpSnq

|Sn|
“ λ .

The Ornstein-Weiss Lemma immediately implies the following convergence result for the
entropy of left representations on normed semigroups. Notice that there exists a generalization of
the above result to cancelable amenable semigroups (see [17]), using such stronger version of the
Ornstein-Weiss Lemma one would obtain more general results about s-entropies. Furthermore,
Krieger’s proof (see [67]) of the Ornstein-Weiss Lemma holds for Følner nets in general, this
would allow to extend the following corollary to amenable groups of any cardinality.

As usual, we are tacitly assuming Hypothesis (˚).

Corollary 4.39. Let pM,vq be a normed semigroup, let Γ be a countably infinite amenable group
and let α ü M be a left Γ-representation. For any given Følner sequence s “ tFnunPN of Γ, the
lim sup defining the s-entropy of α converges and its limit does not depend on the choice of the
particular Følner sequence, provided the following conditions hold:

(1) vpxq, vpyq ď vpxyq for all x and y PM ;

(2) vpαgpxqq “ vpxq for all x PM and g P Γ.
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Proof. One has just to show that, for all x P M , the following function satisfies the hypothesis
of the Ornstein-Weiss Lemma:

fx : FpΓq Ñ Rě0 Y t8u such that fxpF q “ vpTF pα, xqq .

Now, fx is sub-additive by the sub-additivity of the norm, it is monotone by hypothesis (1) and
it is left Γ-equivariant by hypothesis (2).

4.2.3 Consequences of the convergence of defining limits

The convergence of defining limits has many nice consequences, in this subsection we show
two of them: the additivity of s-entropy on the coproduct of two representations and a precise
computation of the entropy of some Bernoulli flows.

Lemma 4.40. Let Γ be a countably infinite amenable group and let s be a Følner sequence.
Consider two left Γ-representations α1 ü pS1, v1q and α2 ü pS2, v2q on normed semigroups
and let S “ S1 ‘ S2 and α ü pS, v‘q be such that αpgq “ pα1pgq, α2pgqq for all g P Γ. If
vipsq, viptq ď vipstq for all s, t P Si (with i “ 1, 2) and vipαipgqpsqq “ vipsq for all s P Si (with
i “ 1, 2) and g P Γ, then

hpα, sq “ hpα1, sq ` hpα2, sq .

Proof. The proof is the same of Lemma 4.15, using the fact that the limit of the sum of two
converging sequences is the sum of the limits of the two sequences.

Lemma 4.41. Let pK, vq be a normed monoid such that

(1) vpxq, vpyq ď vpxyq for all x, y P K;

(2) there exists an element k̄ P K such that suptvpxq : x P Ku “ vpk̄q.

Given a countably infinite amenable group Γ and a Følner sequence s “ tFnunPN, the s-entropy
of the Bernoulli Γ-flow is hpBK , sq “
suptvpxq : x P Ku.

Proof. For all g P Γ let pKg, vgq “ pK, vq and let M “
À

gPΓKg. Endow M with the coproduct

norm v‘ of the norms vg. For any F P FpΓq let k̄F PM be such that k̄F “ pk̄F,gqgPΓ, where

k̄F,g “

#

k̄ if g P F ;

e otherwise.

These elements have the following useful properties:

(a) by definition, v‘pk̄F q “ |F | suptvpxq : x P Ku, for all F P FpΓq. Furthermore, since
k̄F “

ś

fPF k̄tfu and by our hypotheses (1) and (2), it follows that v‘pαgpk̄F qαhpk̄F qq “

|gF YhF | suptvpxq : x P Ku, for all F P FpΓq and g, h P Γ. More generally v‘pTF 1pα, k̄F qq “
|F 1F | suptvpxq : x P Ku, for all F and F 1 P FpΓq;

(b) given x “ pxgqgPΓ P M , let F “ tg P Γ : xg ‰ eu and notice that v‘pxq ď v‘pk̄F q, by the
choice of k̄. Applying again our hypotheses, it follows that v‘pTF pα, xqq ď v‘pTF pα, k̄F qq.
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The above property (b) shows that hpα, sq “ supFPFpΓq hpα, s, k̄F q. Now, using the Følner
condition, we obtain

lim
nÑ8

|FnF |

|Fn|
ď lim

nÑ8

|Fn Y
Ť

fPF BF pFnqf |

|Fn|
ď 1` lim

nÑ8

ÿ

fPF

|BF pFnqf |

|Fn|
“ 1 . (4.2.4)

Thus, also applying the above property (a),

hpBK , s, k̄F q “ lim sup
iPI

|FiF | suptvpxq : x P Ku

|Fi|
ď lim

iPI

|FiF |

|Fi|
suptvpxq : x P Ku

p˚q
“ suptvpxq : x P Ku ,

where (˚) follows by (4.2.4). The converse inequality follows by Lemma 8.21.



Chapter 5

Lifting entropy along functors

In this chapter we show how to lift along a functor the general notion of entropy defined in
Chapter 4 for representations on normed semigroups. This allows us to define many classical
invariants that we will describe.

Definition 5.1. Let C be a category, let Γ be a monoid and let s be a net of non-empty finite
subsets of Γ. Given a functor F : CÑ l.RepΓpSemivq and an object X P ObpCq, we define

hF pX, sq “ hpF pXq, sq .

The generality of the above definition will be needed in some concrete situations, nevertheless
it is sometimes useful to lift entropies along a functor F : C Ñ l.RepΓpSemivq which “factors
through” the category l.RepΓpSemi˚vq. This means that, if F pXq “ pα : Γ Ñ AutSemivpS, vqq for a
given X P ObpCq, then v is a norm (not just a pre-norm) and αg is contractive for all g P Γ (when
G is a group, this implies that αg´1 is contractive as well, so we have the stronger condition that
vpαgpxqq “ vpxq, for all x P S). Furthermore, given a morphism φ : X Ñ Y in C, the image F pφq
is a morphism of representations which is induced by a contractive homomorphism of normed
semigroups:

Definition 5.2. Let C be a category and let F 1 : C Ñ l.RepΓpSemivq be a functor. We say
that F 1 factors through l.RepΓpSemi˚vq if there exists a functor F : CÑ l.RepΓpSemi˚vq such that
F 1 “ E ˝ F , where E : l.RepΓpSemi˚vq Ñ l.RepΓpSemivq is the inclusion functor.

Notice that in practice it is the same to give a functor F : C Ñ l.RepΓpSemi˚vq or a functor
F 1 : C Ñ l.RepΓpSemivq that factors through l.RepΓpSemi˚vq. In what follows we will also write
hF pX, sq with X P ObpCq to mean hE˝F pX, sq.

Corollary 5.3. Let C be a category, let Γ be a group, let s be a net of non-empty finite subsets
of Γ and let F : CÑ l.RepΓpSemi˚vq be a functor. Given two objects X and Y in C,

(1) if X – Y , then hF pX, sq “ hF pX, sq;

(2) if F sends monomorphisms to monomorphisms and X ď Y , then hF pX, sq ď hF pY, sq;

(3) if F sends epimorphisms to epimorphisms and X is a quotient object of Y , then hF pX, sq ď
hF pY, sq;

(4) if F commutes with products, then hF pX ˆ Y, sq “ maxthF pX, sq, hF pY, squ;
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(5) if F commutes with coproducts, then hF pX ‘ Y, sq ď hF pX, sq ` hF pY, sq. Furthermore, if
G is a countably infinite amenable group and s is a Følner sequence, then hF pX ˆ Y, sq “
hF pX, sq ` hF pY, sq.

We remark that, in the notation of the above corollary, F does not commute with coproducts
in most of the concrete cases that we will study. Anyway, the strategy to prove the analog of
part (5) above is to show that F pX ‘ Y q is s-dominated by F pXq ‘ F pY q, even if they are not
isomorphic representations.

5.1 Statical and dynamical growth of groups

Definition 5.4. A digraph G is a pair pV,Eq, where V is a set of vertices and E Ď V ˆ V is
a set of ordered pairs of vertices, called edges. Furthermore, G is a labeled digraph if we fix a
map E Ñ B, from the set of edges to a set of labelings B. If we need to make explicit that the
set of labelings is B we say that G is a B-labeled digraph.

One can construct a category of B-labeled digraphs for a fixed set of labelings B. For doing
so we need to introduce the notion of morphism of labeled digraphs:

Definition 5.5. Let B be a set of labelings and consider two B-labeled digraphs G1 “ pV1, E1q

and G2 “ pV2, E2q. Let also φ1 : E1 Ñ B and φ2 : E2 Ñ B be the maps which define the labeling.
A morphism of labeled digraphs α : G1 Ñ G2 is a map α : V1 Ñ V2 such that

(1) pv, v1q P E1 implies that pαpvq, αpv1qq P E2, for all v, v1 P V1;

(2) φ1pv, v
1q “ φ2pαpvq, αpv

1qq, for all pv, v1q P E1.

By definition, a digraph G consists of a set of vertices connected by directed edges. This
simple structure is enough for introducing a concept of distance and a family of neighborhoods
of any vertex of G:

Definition 5.6. Let G “ pV,Eq be a digraph. Given v, v1 P V , a (finite) directed path from v to
v1 is a sequence of edges pv0, v1q, pv1, v2q, . . . , pvn´1, vnq P E such that v0 “ v and vn “ v1. The
path distance (or just distance) in G is a function d : V ˆ V Ñ N Y t8u such that dpv, v1q “
tnumber of edges in a minimal directed path between v and v1u if some directed path connecting
v and v1 exists; dpv, v1q “ 8 otherwise. For all v P V and n P N we let NG

n pvq “ tv1 P V :
dpv, v1q ď nu be the n-th neighborhood of v in G. If G is clear from the context we also denote
NG
n pvq by Nnpvq.

Since the B-labeled digraphs for a fixed set B form a category, we can safely speak about
isomorphic B-labeled digraphs or about labeled sub-digraphs. In particular, given a B-labeled
digraph G “ pV,Eq, with a little abuse of terminology we consider Nnpvq (for all v P V and
n P N) as a labeled sub-digraph of G, where pv1, v2q is an edge in Nnpvq (for v1, v2 P Nnpvq) if
and only if pv1, v2q P E.

Our main example for a labeled digraph will be the following:

Definition 5.7. Let G be a finitely generated group and let B be a finite symmetric set of
generators. The Cayley digraph of G with respect to B is a B-labeled digraph GpG,Bq “ pV,Eq
such that the set of vertices V coincides with G and there is a directed edge pg, gbq for all g P G
and b P B; such edge is labeled by b.
The distance between two vertices in GpG,Bq is denoted by dBp´,´q. For all g P G and n P N
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we denote by NnpB, gq the n-th neighborhood of g in GpG,Bq. In order to simplify notation, we
usually denote NnpB, eq simply by NnpBq. The B-length of an element x P G is `Bpxq “ dBpe, xq,
so that NnpBq “ tx P G : `Bpxq ď nu.

Example 5.8. Let G “ Zk “ Ze1 ˆ ¨ ¨ ¨ ˆZek for some positive integer k. The canonical choice
of generators is to take B “ t´e1, . . . ,´ek, 0, e1, . . . , eku. Then,

NnpBq “

#

k
ÿ

i“1

λiei : λi P Z such that
k
ÿ

i“1

|λi| ď n

+

.

Definition 5.9. Let β, β1 : N Ñ R be two functions, then β1 weakly dominates β if there are
constants h and k P N such that βpnq ď hβ1phn ` kq ` k, for all x P N. In symbols, β ĺ β1.
We also say that β and β1 are weakly equivalent if they weakly dominate one another; weak
equivalence is an equivalence relation that we denote by β „ β1.
A given map β : NÑ N has

– polynomial growth if β „ f , where f : NÑ R is such that fpnq “ nk for some k P N`;

– exponential growth if β „ g, where g : NÑ R is such that gpnq “ hn for some real h ą 1;

– intermediate growth if it is not of polynomial nor exponential growth and there exist f, g : NÑ
N such that f ĺ β ĺ g, with f of polynomial growth and g of exponential growth.

With all these definitions at hand, we can recall the notion of “growth rate of a group”.

Definition 5.10. Let G be a finitely generated group and denote by CpGq be the family of the
finite subsets of G containing e. For all B P CpGq, the growth function γB of G relative to B is
defined by

γB : NÑ N γBpnq “ |NnpB
˚q| ,

where B˚ “ B Y B´1 and NnpBq is the n-th neighborhood of e in the Cayley digraph of the
subgroup xBy of G generated by B.

Lemma 5.11. Let G be a group and let B, B1 P CpGq.

(1) If xB1y Ď xBy, then γB1 ĺ γB. In particular, γB1 „ γB provided xB1y “ xBy;

(2) If xBy is infinite, then γB has at least polynomial and at most exponential growth.

Proof. (1) Since xBy Ď xB1y “
Ť

nPNNnpB
1q, there exists k P N such that B Ď NkpB

1q. Then,
for all n P N, NnpBq Ď Nn`kpB

1q, which implies that

γBpnq “ |NnpBq| ď |Nn`kpB
1q| “ γB1pn` kq ,

showing that γB ĺ γB1 . A similar argument gives γB1 ĺ γB in case xB1y “ xBy.

(2) It is enough to prove that n ď γBpnq ď |B|
n, for all n P N. The upper bound comes by the

definition of NnpB
˚q, which is the set of all words of length ď n in the alphabet B˚ (recall that

B is assumed to contain e). For the lower bound suppose, looking for a contradiction, that there
exists a smallest n̄ P N such that γBpn̄q ă n̄ (such n̄ is necessarily ą 1 as γB takes values ě 1).
By the minimality of n̄ and the monotonicity of γB, we get

n̄´ 1 ď γBpn̄´ 1q ď γBpn̄q ď n̄´ 1 .

This implies that Nn̄pB
˚q “ Nn̄´1pB

˚q “ xBy, which contradicts our assumption of xBy being
infinite.
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Definition 5.12. Let G be a group. Then,

(1) G has polynomial growth if γB has at most polynomial growth for all B P CpGq;

(2) G is of exponential growth if there exists B P CpGq such that γB has exponential growth;

(3) G is of intermediate growth otherwise.

Furthermore, we say that M has subexponential growth if it has either polynomial or interme-
diate growth.

The following lemma is a useful tool to find examples of amenable groups.

Lemma 5.13. Let G be a finitely generated group of subexponential growth. Fixed a finite
symmetric set e P B of generators, tNnpBq : n P Nu is a Følner exhaustion for G.

Proof. First of all, let us show that, for all k P N, limN γBpn ` kq{γBpnq “ 1. Indeed, suppose
looking for a contradiction that there exists ε ą 0 such that γBpn ` kq ą p1 ` εqγBpnq. Then,
γBpnkq ą p1 ` εqn|B| showing that γB weakly dominates the map n ÞÑ p1 ` εqn|B| which has
exponential growth, a contradiction.

Let now g P G “
Ť

nPNNnpBq and let k be the minimal positive integer such that g P NkpBq.
Then,

lim
N

|NnpBqgzNnpBq|

|NnpBq|
ď lim

N

|Nn`kpBqzNnpBq|

|NnpBq|
“ lim

N

|Nn`kpBq|

|NnpBq|
´ lim

N

|NnpBq|

|NnpBq|
“ 1´ 1 “ 0 ,

by the first part of the proof. One should also verify that limN |NnpBqzNnpBqg|{|NnpBq| “ 0.
This follows by what we proved, observing that |NnpBqzNnpBqg| “ |NnpBqg

´1zNnpBq|.

Definition 5.14. The growth rate of the group G with respect to a set B P CpGq is γpG,Bq “
lim supnÑ8 log γBpnq{n. We let also γpGq “ suptγpG,Bq : B P CpGqu.

Observe that γpGq ą 0 if and only if G has exponential growth.

In the last part of the section we establish a connection between γp´q and the entropy of
pre-normed semigroups. We omit the proof of the following easy lemma.

Lemma 5.15. Let G be a group, endow CpGq with the following operation

¨ : CpGq ˆ CpGq Ñ CpGq such that pB1, B2q ÞÑ B1B2 .

Let also vpBq “ log |B| for all B P CpGq. Then, pCpGq, ¨, vq is a normed monoid.
Furthermore, any group homomorphism φ : G1 Ñ G2 induces a homomorphism of monoids

Φ : CpG1q Ñ CpG2q such that B ÞÑ φpBq .

Let now G be a group and consider the trivial N-representation

αG : NÑ EndpCpGqq such that αGpnq “ idCpGq .

Let also s “ tFnunPN be the sequence of finite subsets of N such that

Fn “ t0, 1, . . . , nu .
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Notice that CpGq is not a commutative semigroup in general. According to Remark 4.9, we can
still define the s-entropy of αG with respect to a fixed order in N. We just choose the usual one
(even if, for the trivial action any order would give the same result).

Notice that TFnpαG, Bq “ NnpBq, and so vpTFnpαG, Bqq “ logpγBpnqq, for all B P CpGq and
for all n P N. Thus,

γpGq “ supthpαG, s, Bq : B P Su “ hpαG, sq .

One can interpret the above equation as saying that γpGq is the entropy of a dynamical
system whose evolution law is given by the identity; it seems legit to call γpGq the statical
growth rate of G. If one substitutes the trivial N-representation on CpGq by some other, say the
left N-representation αpG,φq : N Ñ EndpCpGqq such that αpG,φqpnqpBq “ φnpBq (for all n P N
and B P CpGq) for some endomorphism φ : GÑ G, one obtains what we can call the dynamical
growth rate of G with respect to φ:

γφpGq “ supthpαpG,φq, s, Bq : B P Su “ hpαpG,φq, sq .

We refer to [29] and its reference list for an account of classical and recent results on both
the statical and the dynamical growth rates. We remark that in [29] one can also find a brief
discussion of what happens reversing the order on N.

5.2 Mean topological dimension

In this section we recall the definition of the mean topological dimension, given by Gromov [54]
(see also [68] and [24]), showing that this invariant can be recovered using our general scheme
for entropies.

Definition 5.16. Let pX, τq be a topological space. Then,

– an open cover of X is a family U “ pUiqiPI of open subsets of X, such that
Ť

iPI Ui “ X. We
denote by covpXq the family of finite open covers of X;

– given U , V P covpXq and a continuous self-map φ : X Ñ X, we let

U _ V “ tU X V : U P U , V P Vu and φ´1pUq “ tφ´1U : U P Uu ;

– given U , V P covpXq, U is a refinement of V, in symbols U ĺ V provided for all U P U there
exists V P V such that U Ď V .

Notice that U _ V is a refinement of both U and V, furthermore a cover W refines both U
and V if and only if it refines U _ V.

Lemma 5.17. Let pX, τq, pY, τ 1q be topological spaces. Then, pcovpXq,_q is a commutative
monoid. Furthermore, given a continuous map φ : X Ñ Y the following map is a monoid
homomorphism:

Φ : covpY q Ñ covpXq such that ΦpUq “ φ´1pUq .

Proof. Let U , V P covpXq, then U _V is an open cover of X, in fact the intersection of two open
sets is open and

X “ X XX “
ď

UPU
U X

ď

V PV
V “

ď

V PV

˜

ď

UPU
U X V

¸

“
ď

V PV

ď

UPU
pU X V q “

ď

WPU_V
W .

Furthermore, the associativity of _ follows by the associativity of the intersection and the unit in
covpXq is the open cover tXu. Finally, it is an easy exercise to show that Φ is a homomorphism
of monoids.
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Definition 5.18. Let pX, τq be a topological space and let U “ pUiqiPI P covpXq. Then,

– given x P X, the local order of U at x is ordpU , xq “ |tj P J : x P Uju| ` 1;

– the global order of U is ordpUq “ maxtordpU , xq : x P Xu;

– the topological dimension of U is

DpUq “ mintordpVq : V is a finite open cover of X such that V ĺ Uu .

Lemma 5.19. Let pX, τq, pY, τ 1q be topological spaces. Then, pcovpXq, Dq is a normed monoid.
Furthermore, given a continuous map φ : X Ñ Y , the induced map Φ : covpY q Ñ covpXq is a
contracting monoid homomorphism.

Proof. The first part follows by [24, Lemma 2.5]. On the other hand, choose V P ordpXq such
that U ĺ V and DpUq “ ordpVq. Given x P X such that ordpΦpVqq “ ordpΦpVq, xq,

DpΦpUqq ď ordpΦpVqq “ ordpΦpVq, xq ď ordpV, φpxqq ď ordpVq “ DpUq .

Definition 5.20. Let pX, τq be a topological space, let Γ be a monoid and let α ü X be a left
Γ-representation. For any finite open cover U of X, and F P FpΓq we let

Uα,F “
ł

fPF

α´1
f pUq .

Given a net s “ tFiuiPI of non-empty finite subsets of Γ, the topological s-mean dimension of α
with respect to U is

ηpα, s,Uq “ lim sup
iPI

DpUα,Fiq
|Fi|

.

The topological s-mean dimension of α is ηpα, sq “ suptηpα, s,Uq : U a finite open coveru.

Proposition 5.21. Define a functor F : r.RepΓpTopq Ñ l.RepΓpSemi˚vq such that

(1) if α ü X P Obpr.RepΓpTopqq and αpgq “ φ : X Ñ X, then F pαqpgq “ Φ : covpXq Ñ covpXq
is such that ΦpVq “ φ´1pVq;

(2) for any morphism φ : α1 Ñ α2 of right Γ-representations, F pφq is defined as in Lemma 5.19.

Then, ηpα, sq “ hF pα, sq. Furthermore, if G is an amenable group and s is a Følner sequence,
then ηpα, sq converges, that is, ηpα, sq “ limnPNDpUα,Fnq{|Fn|.

5.3 Uniform spaces and their entropies

Let X be a set, given two subsets U and V Ď X ˆX we consider the following operations:

– U´1 “ tpy, xq : px, yq P Uu, the inverse of U ;

– U ˝ V “ tpx, yq P X ˆX : Dz P X, px, zq P U and pz, yq P V u, the composition of U and V ;

– Upxq “ ty P X : px, yq P Uu, the U -neighborhood of x.
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Definition 5.22. Let X be a set. A uniform structure on X is a set U of subsets of X ˆ X,
whose elements are called entourages and satisfy the following axioms:

(U1) if U P U, then U contains the diagonal ∆ “ tpx, xq : x P Xu;

(U2) if U P U, V Ď X ˆX and U Ď V , then V P U;

(U3) if U , V P U, then U X V P U;

(U4) if U P U, then there exists V P U such that V ˝ V Ď U ;

(U5) if U P U, then U´1 P U.

A pair pX,Uq is said to be a uniform space. Given two uniform spaces pX,Uq, pY,Vq, a map
φ : X Ñ Y is uniformly continuous if for every entourage V P V there exists an entourage U P U
such that for every px1, x2q P U , pφpx1q, φpx2qq P V .

The class of uniform spaces together with uniformly continuous maps form a category. There
is a canonical functor from this category to the category of topological spaces that is described
in the following lemma, whose proof follows from the definitions.

Lemma 5.23. Let pX,Uq, pY,Vq be uniform spaces and let φ : X Ñ Y be a uniformly continuous
map. The family tUpxq : U P U, x P Xu is a pre-base for a topology on X that we denote by τU.
Furthermore, φ is continuous when we endow X and Y with the topologies τU and τV respectively.

Definition 5.24. Let pX,Uq be a uniform space, let pI,ďq be a directed set and let pxiqiPI be a
net in X. Then,

– pxiqiPI is a Cauchy net if, for every entourage V P U there exists k such that for all i, j ě k,
pxi, xjq P V ;

– pxiqiPI is a convergent net if it converges with respect to the topology τU induced by U.

Furthermore, pX,Uq is complete if any Cauchy net is a convergent net.

Definition 5.25. Let pX,Uq be a uniform space. To any entourage U P U, one associates a
basic uniform cover

CpUq “ tUpxq : x P Xu .

A cover A of X is said to be uniform if there exists U P U such that CpUq ĺ A.

The proof of the following lemma is an easy exercise.

Lemma 5.26. Let pX,Uq be a uniform space. If A and B are uniform covers and φ : X Ñ X
is a uniformly continuous map, then both A_ B and φ´1pAq are uniform covers.

Our main example of uniform space are the topological groups:

Example 5.27. Let pG, τq be a topological group. There are two canonical uniform structures
on G:

– an entourage for the right uniformity is a subset U of GˆG that contains tpm,nq : mn´1 P Nu
for some N P VGpeq;

– an entourage for the left uniformity is a subset U of GˆG that contains tpm,nq : m´1n P Nu
for some N P VGpeq.
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Of course these two uniform structures coincide if M is Abelian. Furthermore, the topology
induced by these two uniformities is the original topology τ .

Another important example of uniform space is described in the following proposition.

Proposition 5.28. [40, Section 8] Let pX, τq be a Hausdorff compact topological space. The set
Uτ of all the neighborhoods of the diagonal ∆ Ď X ˆ X is the unique uniform structure on X
that induces the topology τ . Furthermore, a continuous map X Ñ X is automatically uniformly
continuous with respect to this uniform structure.

5.3.1 Entropy in uniform spaces

Let Γ be a monoid, let pX,Uq be a uniform space and consider a left Γ-representation α : Γ Ñ
AutpX,Uq. In this subsection we describe three different ways to define a notion of entropy for
α; two of them, via separated and spanning sets, are classical and based on ideas of Bowen [10],
the third is based on ideas described in [33] and generalizes the original definition of topological
entropy introduced in [1].

Definition 5.29. Let pX,Uq be a uniform space, let K Ď X be a compact subset (with respect
to τU), let U P U, let Γ be a monoid and let F P FpΓq. Given a left Γ-representation α : Γ Ñ
AutpX,Uq,

– a subset S Ď X is said to pF,Uq-span K with respect to α, if for every k P K there is x P S
such that pαgpkq, αgpxqq P U for all g P F . We set

rF pU,K,αq “ mint|S| : S pF,Uq-spans K with respect to αu ;

– a subset S Ď X is said to be pF,Uq-separated with respect to α, if for each pair of distinct
points x, y P S there exists g P F such that pαgpxq, αgpyqq R U . We set

sF pU,K,αq “ maxt|S| : S Ď K and F is pF,Uq-separated with respect to αu ;

– if A is a uniform cover of X, let NpK,Aq “ mint|B| : B ĺ Au. We set

cF pU,K, αq “ N

˜

K,
ł

gPF

α´1
g pCpUqq

¸

.

The quantities rF pU,K,αq, sF pU,K, αq and cF pU,K,αq are well defined (and finite) as K is
compact.

Lemma 5.30. Let pX,Uq be a uniform space, let Γ be a monoid and consider a left Γ-representation
α : Γ Ñ AutpX,Uq. If U P U, K is a compact subset of X and F P FpΓq, then

(1) σF pU,K,αq ď σF pW,K,αq, with σ “ s, r, c, provided W P U and W Ď U ;

(2) sF pU,K,αq ď cF pW,K,αq, for each W P U with W´1 ˝W Ď U ;

(3) cF pU,K, αq ď rF pW,K,αq, for each W P U with W´1 Ď U ;

(4) rF pU,K,αq ď sF pU,K,αq.
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Proof. (1) is a consequence of the definitions.

(2) By part (1), we only need to prove that K contains no pF,W´1 ˝ W q-separated subsets
with respect to α of size ą cF pW,K,αq. Indeed, suppose there is a subset S Ď K such that
|S| ą cF pW,K,αq. By definition, we can find two distinct elements x1, x2 P S and, for all g P F ,
an element yg P X such that

x1, x2 P
č

gPF

α´1
g pW pygqq P

ł

gPF

α´1
g pCpW qq .

Thus, pαgpx1q, αgpx2qq PW
´1 ˝W , for all g P F , proving that S is not pF,W´1 ˝W q-separated

with respect to α.

(3) Let E Ď K be a finite subset that pF,W q-spans K with respect to α. By definition, given
k P K, there exists x P E such that pαgpkq, αgpxqq PW for all g P F , that is,

k P α´1
g pW

´1 pαgpxqqq Ď α´1
g pU pαgpxqqq ,

for all g P F . For all x P E, let Bx “
Ş

gPF α
´1
g pUpαgpxqqq, so that B “ tBx : x P Eu covers

K, |B| “ |E| and B ĺ
Ž

gPF α
´1
g pCpUqq. Thus, by the definition of cF pU,K, αq, we have that

cF pU,K, αq ď |E|.

(4) follows by the fact that a maximal pF,Uq-separated subset of K with respect to α, pF,Uq-
spans K with respect to α.

Definition 5.31. Let pX,Uq be a uniform space, let K Ď X be a compact subset, let U P U
and let s “ tFi : i P Iu be a net of non-empty finite subsets of a monoid Γ. Given a left
Γ-representation α : Γ Ñ AutpX,Uq, we define

σspU,K,αq “ lim sup
iPI

log σFi pU,K,αq

|Fi|
,

where σ stands for r, s or c.

The following lemma follows easily by Lemma 5.30.

Lemma 5.32. Let pX,Uq be a uniform space, let Γ be a monoid, fix a net s of non-empty finite
subsets of Γ and consider a left Γ-representation α : Γ Ñ AutpX,Uq. If U P U and K is a
compact subset of X, then

(1) sspU,K,αq ď cspW,K,αq, for each W P U with W´1 ˝W Ď U ;

(2) cspU,K, αq ď rspW,K,αq, for each W P U with W´1 Ď U ;

(3) rspU,K,αq ď sspU,K,αq.

We conclude this subsection showing that the three approaches for defining the entropy of a
representation on a uniform space are just different ways to introduce the same invariant:

Theorem 5.33. Let pX,Uq be a uniform space, let Γ be a monoid, fix a net s of non-empty
finite subsets of Γ and consider a left Γ-representation α : Γ Ñ AutpX,Uq. Given a compact
subset K of X and letting

hσpK,α, sq “ suptσspU,K, αq : U P Uu

where σ stands for r, s or c, hrpK,α, sq “ hspK,α, sq “ hcpK,α, sq.
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Proof. We will prove the following inequalities:

hspK,α, sq
p˚q

ď hcpK,α, sq
p˚˚q

ď hrpK,α, sq
p˚˚˚ q
ď hspK,α, sq .

Indeed, given U P U, by the axiom (U4), there exists V P U such that V ˝ V Ď U , furthermore,
by the axioms (U3) and (U5), W “ V ´1 X V P U. It follows that W´1 ˝W Ď U and so, by
Lemma 5.32 (1), sspU,K,αq ď cspW,K,αq ď hcpK,α, sq. This proves (˚) by the arbitrariness of
U . The proof of (˚˚) follows similarly using the axiom (U5) and Lemma 5.32 (2). Finally,

`

˚˚

˚

˘

is a direct application of Lemma 5.32 (3).

By the above theorem one can give the following definition.

Definition 5.34. Let pX,Uq be a uniform space, let Γ be a monoid, let α : Γ Ñ AutpX,Uq be a
left Γ-flow and let s be a net of non-empty finite subsets of Γ. The uniform s-entropy of α is

hUpα, sq :“ sup
K
hrpK,α, sq “ sup

K
hspK,α, sq “ sup

K
hcpK,α, sq

In general, the uniform s-entropy cannot be defined functorially via the semigroup s-entropy.
One can generalize the notion of semigroup s-entropy considering the category of semigroups
with suitable families of pre-norms and not just pre-normed semigroups, this is done in [32].
Anyway, we will see in the following subsections that the uniform s-entropy can be defined using
the formalism of the semigroup entropy in case pX,Uq is compact and Hausdorff or when X is
an LC group and U is its canonical (left or right) uniformity.

5.3.2 Topological entropy

The following definition generalizes the topological entropy defined in [1].

Definition 5.35. Let pX, τq be a compact Hausdorff topological space, let Γ be a monoid, let
α ü pX, τq be a left Γ-representation and fix a net s “ tFi : i P Iu of non-empty finite subsets
of G. Given an open cover A of X one lets

NpAq “ mint|B| : B ĺ Au .

The topological s-entropy of α is defined as follows

hT pα, sq “ sup thT pA, α, sq : A open cover of Xu ,

where

hT pA, α, sq “ lim sup
iPI

log
´

N
´

Ž

gPFi
α´1
g A

¯¯

|Fi|
.

Using Theorem 5.33 we obtain the following

Corollary 5.36. Let pX, τq be a compact Hausdorff space and denote by U the unique uniform
structure on X compatible with τ . Given a monoid Γ, a net s “ tFi : i P Iu of non-empty finite
subsets of Γ and a left Γ-representation α ü pX, τq,

hT pα, sq “ hUpα, sq .
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Proof. For all U P U, one can find an open refinement AU of CpUq (just take, for all x P X,
an open neighborhood of x contained in Upxq). Furthermore, for any open cover A of X, there
exists UA P U such that CpUAq ĺ A (see, for instance, [40, Exercise 8.1.H]). Notice that, directly
from the definitions,

hT pA, α, sq ď cspUA, X, αq and cspU,X, αq ď hT pAU , α, sq .

Also using the fact that cspU,C, αq ď cspU,X, αq for any compact subset C Ď X, one easily
obtains that hT pα, sq “ hUpα, sq.

Let CompTop be the category of compact Hausdorff topological spaces and continuous maps,
and define a functor

F : CompTop Ñ Semiv

such that F pX, τq “ pcovpXq, Np´qq for any compact Hausdorff space pX, τq and that acts
contravariantly on maps analogously to Lemma 5.17. Given a monoid Γ, F induces a functor
pF : r.RepΓpCompTopq Ñ l.RepΓpSemivq. It is now easy to see that hT p´, sq “ hF˚p´, sq for any
net s of non-empty finite subsets of Γ.

5.3.3 Topological entropy on LC groups

Definition 5.37. Let G be an LC group and denote by CpGq the set of compact neighborhoods
of e in G (this notation is compatible with the one used in Section 5.1. In fact, the elements
of CpGq are just finite subsets containing e, provided the group G is discrete). Let also Γ be a
monoid and let α : Γ Ñ EndpGq be a left Γ- representation. Given K P CpGq and F P FpΓq, let

CF pα,Kq “
č

gPF

α´1
g K .

Given a net s “ tFi : i P Iu of non-empty elements of FpΓq, we let

kpK,α, sq “ lim sup
iPI

´ logpµpCFipα,Kqq

|Fi|
.

Finally, let kpα, sq “ sup tkpK,α, sq : K P CpGqu.

Proposition 5.38. In the notation of the above definition, kpα, sq coincides with the uniform
s-entropy hUpα, sq of α, where U is the canonical right uniformity on G, provided supiPI |Fi| “ 8.

Proof. We start proving that hUpα, sq ď kpα, sq. Fix arbitrarily a compact subset C Ď G and
an entourage U P U, we are going to show that

sspU,C, αq ď kpα, sq . (5.3.1)

By the arbitrariness of C and U , this would imply hUpα, sq ď kpα, sq. So, let us verify (5.3.1).
Take two compact neighborhoods of e, K and H P CpGq, with the following properties:

(N1) tpx, yq : xy´1 P Ku Ď U ;

(N2) H´1H Ď K and HH Ď K.
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Now consider the cover txH : x P Cu of C and, using compactness, extract a finite sub-cover
txH : x P C 1u, for some finite subset C 1 Ď C. Then N “

Ť

xPC1 xK is a compact neighborhood
of C and µpNq is finite and not 0. Notice that, for any given c P C there exists xc P C

1 such
that c Ď xcH and so, a direct consequence of (N2) is that

cH Ď xcHH Ď xcK Ď N . (5.3.2)

For all i P I, let Ei be a maximal pFi, Uq-separated subset of C with respect to α (that is,
|Ei| “ sFipU,C, αq); by construction, the following conditions are verified:

ď

ePEi

eCFipα,Hq
p˚q

Ď N , eCFipα,Hq X fCFipα,Hq
p˚˚q
“ H , @e ‰ f P Ei ,

where (˚) holds by (5.3.2). To verify (˚˚), notice that, since Ei is pFi, Uq-separated, there
exists g1 P Fi such that pαg1peq, αg1pfqq R U , which implies that αg1pef

´1q R K, thus ef´1 R
Ş

gPFi
α´1
g pKq. By (N1), ef´1 R

Ş

gPFi
α´1
g pH

´1Hq “ CFipα,Hq
´1CFipα,Hq, which clearly

implies (˚˚). We obtain that,

µpNq ě µ

˜

ď

ePEi

eCFipα,Hq

¸

“
ÿ

ePEi

µpeCFipα,Hqq “ sFipU,C, αqµpCFipα,Hqq .

Hence, logpsFipU,C, αqq ď ´ logpµpCFipα,Hqqq ` logpµpNqq for all i P I, which, dividing by |Fi|
and passing to the lim sup implies (5.3.1), as desired.

On the other hand, let K P CpGq be a compact neighborhood of 1 and for all i P I, choose
a minimal subset Ei of M that pFi, Uq-spans K, where U “ tpx, yq : xy´1 P Ku P U. It follows
directly from the definitions that K Ď

Ť

ePEi
eCFipα,Kq for all i P I, thus

rFipU,K,αqµpCFipα,Kqq ě
ÿ

ePEi

µpeCFipα,Kqq ě µ

˜

ď

ePEi

eCFipα,Kq

¸

ě µpKq ą 0 .

Hence, ´ logpµpCFipα,Kqqq ď logprFipU,K,αqq ´ logpµpKqq for all i P I, which, dividing by |Fi|
and passing to the lim sup implies hUpα, sq ě rspU,K,αq ě kpK,α, sq. By the arbitrariness of
K P CpGq, one gets hUpα, sq ě kpα, sq, concluding the proof.

Definition 5.39. Let G be an LC group, let Γ be a monoid, let α : Γ Ñ EndpGq be a left Γ-
representation and let s be a net of non-empty finite subsets of Γ. The common value kpα, sq “
hUpα, sq is called topological entropy and denoted by hT pα, sq.

One can take as a partial justification for the above terminology the fact that hT pα, sq
really coincides with the topological entropy of α when G is compact (as shown in the previous
subsection). We conclude this subsection showing how to recover hT pα, sq from our general
scheme for defining entropies, in case α is an invertible representation.

Definition 5.40. Let G be an LC group and fix an Haar measure µ on G. The topological
pre-normed semigroup associated to G is

CT pGq “ pCpGq,X, vT q ,

where the operation is just intersection and, for all K P CpGq

vT pKq “

#

´ logpµpKqq if µpKq ď 1;

0 otherwise.
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Let G be an LC group, let Γ be a monoid and let α : Γ Ñ AutpGq be an invertible right
representation. Fix an Haar measure µ on G such that µpK̄q “ 1 for a given K̄ P CpMq. Notice
that vT pKq “ 0 if K contains K̄, while vT pKq ą 0 if K is contained in K̄. There is an induced
left Γ-representation αT : Γ Ñ AutSemivpCT pGqq such that αT pgqpKq “ α´1

g pKq. With this
notation, we have the following equalities:

CF pα,Kq “ TF pαT ,Kq , kpK,α, sq “ hpαT , s,Kq

Thus, hT pα, sq “ kpα, sq “ hpαT , sq.

5.4 Algebraic entropies

5.4.1 Peters’ entropy

In this subsection we introduce our candidate for being the “dual” of the topological s-entropy
on LCA groups, that is, Peters’ algebraic s-entropy. This is analogous to the entropies studied
for Z-representations in [85] and [86].

Definition 5.41. Let G be an LCA group, let Γ be a monoid and let α : Γ Ñ EndpGq be a left
Γ- representation. Given K P CpGq and F P FpΓq, let

TF pα,Kq “
ÿ

gPF

αgpKq .

Given a net s “ tFi : i P Iu of non-empty elements of FpΓq, we let

hApK,α, sq “ lim sup
iPI

logpµpTFipα,Kqq

|Fi|
.

Peters’ algebraic s-entropy of α is hApα, sq “ sup thApK,α, sq : K P CpGqu.

Let G be an LCA group and fix an Haar measure µ on the Borel subsets of G; the algebraic
pre-normed semigroup associated to G is CApGq “ pCpGq,`, vAq, such that K `K 1 “ tx ` x1 :
x P K and x1 P K 1u for all K and K 1 P CpMq and the pre-norm is defined by

vApKq “

#

logpµpKqq if µpKq ě 1;

0 otherwise.

Given a left Γ-flow α ü G, there is an induced left Γ-representation

αA : GÑ EndpCApMqq αApgqpKq “ αgpKq for all g P G, k P K .

Thus, hApα, sq “ hpαA, sq.

5.4.2 Algebraic L-entropy

Definition 5.42. Let C be an Abelian category and let L : ObpCq Ñ Rě Y t8u be an invariant
of C (i.e., Lp0q “ 0 and LpMq “ LpNq whenever M – N). The invariant i is called sub-additive
if the following conditions hold:

(Inv.1) LpN1 `N2q ď LpN1q ` LpN2q for all subobjects N1, N2 of M ;
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(Inv.2) LpM{Nq ď LpMq for every subobjects N of M .

For all M P ObpCq, let FinLpMq “ tN P LpMq : ipNq ă 8u.

The following definition of algebraic entropy is a generalization of the entropy defined in [94]:

Definition 5.43. Let C be an Abelian category and let L : ObpCq Ñ RěYt8u be a sub-additive
invariant. Let M P ObpCq, let Γ be a monoid and let α : Γ Ñ EndCpMq be a left Γ-representation.
For any F P FpΓq and K P FinLpMq we let

TF pα,Kq “
ÿ

fPF

αf pKq .

Given a net s “ tFiuiPI of non-empty finite subsets of Γ, the algebraic s-entropy of α with respect
to K is entLpα, s,Kq “ lim supiPI LpTFipα,Kqq{|Fi|. Furthermore, the algebraic s-entropy of α
is entLpα, sq “ suptentLpα, s,Kq : K P FinLpMqu.

Let C be an Abelian category and let L be a sub-additive invariant of C. Notice that, given
M P ObpCq, FinLpMq is a sub-monoid of pLpMq,`q. Define a norm on FinLpMq setting

vLpHq “ LpHq

for any H P FinLpMq. For any morphism φ : M Ñ N in C, there is an induced morphism

FinLpφq : FinLpMq Ñ FinLpNq such that FinLpφqpHq “ φpHq .

Moreover the norm vL makes the morphism FinLpφq contractive by the property (Inv.2) of
the invariant. Therefore, the assignments M Ñ FinLpMq and φ Ñ FinLpφq define a functor
F : C Ñ Semi˚v . Given a monoid Γ, F induces a functor pF : l.RepΓpCq Ñ l.RepΓpSemi˚vq. Let
now s be a net of non-empty finite subsets of Γ and let α P Obpl.ReppCqq, one can show easily
that entLpα, sq “ h

pF
pα, sq.



Chapter 6

The Bridge Theorem

Let Γ be a monoid, let s be a net of non-empty finite subsets of Γ, let C and D be two categories
and let

F1 : CÑ l.RepΓpSemivq and F2 : DÑ l.RepΓpSemivq

be functors. If there exists a functor G : CÑ D such that F2 ˝G “ F1, then by definition

hF1pX, sq “ hF2pGpXq, sq (6.0.1)

for all X P ObpCq. Of course, it may happen that we can find a functor G : C Ñ D such that
(6.0.1) holds but not necessarily F2 ˝ G “ F1. The expression “bridge theorem” was coined by
Luigi Salce to indicate any theorem claiming the existence of a functor G : C Ñ D (which is a
bridge between hF1p´, sq and hF2p´, sq) such that (6.0.1) holds for all X P C. There are many
examples of bridge theorems, this chapter is devoted to the proof of the Bridge Theorem between
Peters’ algebraic entropy and topological entropy on LCA groups. In this case the functor G is
the Pontryagin-Van Kampen duality functor.

The statement of the following theorem (when Γ “ Z, I “ N and Fn “ t0, . . . , n ´ 1u for
all n P N) is due to Justin Peters [85] and r86s. Anyway the proof given in [86] contains many
misprints and, in some cases, some of the arguments are so obscure that we had to find different
proofs for some lemmas. On the other hand, the machinery of semi-group entropies clarifies the
ideas of Peters and allows for a clean proof of the following Bridge Theorem.

Theorem 6.1. Let G be an LCA group, let Γ be a monoid, let s “ tFiuiPI be a net of non-empty
finite subsets of Γ and let α : Γ Ñ AutpGq be an invertible left representation. Then,

hApα, sq “ hT pα
˚, sq ,

where α˚ : Γ Ñ AutpG˚q is the right Γ-representation induced by the Pontryagin-Van Kampen
duality, that is, α˚pgqpγq “ γ ˝ αpgq : GÑ T, for all γ P G˚ and g P G.

In what follows, we fix the notation of the above theorem. Furthermore, as we explained in
the previous sections, one can consider the induced G-flows αA ü CApGq and α˚T ü CT pG˚q in
order to define the algebraic s-entropy of α and the topological s-entropy of α˚ respectively.
As the net s remains unchanged throughout this chapter, we omit to specify it. In particular, we
say that a Γ-representation dominates another Γ-representation to mean that it s-dominates it
and we use the notations hApαq and hT pα

˚q, instead of hApα, sq and hT pα
˚, sq. In this notation,

the Bridge Theorem consists in proving that

hApαq “ hT pα
˚q .

111
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Even if the definitions of algebraic and topological entropy seem to be “dual” to each other,
the Bridge Theorem hides some difficulty. In fact, their definitions are based on measures of
suitable subsets of G and G˚; thus, such definitions are not “categorical” –subobjects in the
category of LCA groups are closed subgroups– and it is therefore difficult to translate their
properties to the dual, as a duality is only useful for dualizing categorical statements.

The main idea in order to connect algebraic and topological entropy is to reformulate their
definition in terms of positive positive-definite complex-valued and absolutely integrable func-
tions on G and G˚ respectively (see Propositions 6.5 and 6.6) and then use the Fourier Inversion
Theorem to conclude (see Theorem 6.7).

6.1 Pre-normed semigroups of positive-definite functions

Let P1pGq` be the family of absolutely integrable, positive and positive definite functions on G.
There are two canonical commutative and associative operations which can be defined in this
family, namely convolution and pointwise product. In what follows we introduce two pre-normed
semigroups based on these operations.

Definition 6.2. Let PApGq “ pP1pGq`, ˚, wAq be the semigroup P1pGq`, where the operation
is convolution and with the following pre-norm

wApφq “ log

ˆ

||φ||1
φp0q

˙

, for all φ P PApGq .

Definition 6.3. Let PT pG˚q “ pP1pG˚q`, ¨, wT q be the semigroup P1pG˚q`, where the operation
is pointwise product and with the following pre-norm

wT pψq “ log

ˆ

ψp0q

||ψ||1

˙

, for all ψ P PT pG˚q .

As an example, consider the case when G is compact and µpGq “ 1, then ||φ||1 ď φp0qµpGq “
φp0q (by Lemma 3.40 and (3.1.1)), thus wApφq ď 1 for all φ P PApGq. Similarly, G˚ is discrete
and we can let the Haar measure be the cardinality of subsets, then ||ψ||1 “

ř

γPG˚ ψpγq ě ψp0q
and so wT pψq ě 1, for all ψ P PT pG˚q.

Definition 6.4. Let βA ü PApGq and βT ü PT pG˚q be the invertible left Γ-representation
defined as follows:

βApgqpφq “ φ ˝ α´1
g and βT pgqpψq “ ∆pαgqψ ˝ α

˚
g , for all g P Γ .

The constant ∆pαgq in the definition of βT is just a technicality and in fact the value of the
entropy does not change if one removes it.

The hard part of the proof of Theorem 6.1 consist in proving the following propositions

Proposition 6.5. In the above notation, hApαq “ hpβAq.

The proof of the above proposition is given in Subsection 6.2.1 and it consists in showing
that αA and βA dominate each other. The topological analog of the above proposition is proved
in Subsection 6.2.2 using a similar strategy. Here is the precise statement:

Proposition 6.6. In the above notation, hT pα
˚q “ hpβT q.
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When the above propositions are proved, one can conclude the proof of Theorem 6.1 using
the following theorem.

Theorem 6.7. In the above notation, consider the following map induced by the Fourier trans-
form

f : PApGq Ñ PT pG˚q , fpφq “ pφ .

Then, f is an isomorphism in Semiv and it induces an isomorphism of left Γ-representations
between βA and βT . In particular, hpβAq “ hpβT q.

Proof. Let us start proving that the definition of f is correct, that is, fpφq belongs to P1pG˚q`,
for all φ P P1pGq`. Indeed, consider φ P P1pGq`, then pφ P L1pG˚q` by the Fourier Inversion
Theorem. Let now µφ be the non-negative and bounded (as φ P L1pGq`) regular measure defined
on a generic Borel subset E of G by µφpEq “

ş

E φpxqdµ. One can show that

pφpγq “

ż

G
φpxqγp´xqdµ “

ż

G
γp´xqdµφ “

ż

G
γpxqdµφ

and so pφ P PpG˚q by the Bochner Theorem. Furthermore, f is a bijective morphism of semi-
groups by Fourier Inversion Theorem and Lemma 3.51(2), while the fact that f induces a mor-
phism of left Γ-representations follows by Lemma 3.51(1). Finally, f is norm preserving since

pφp0q “

ż

G
φpxq0pxqdµ “

ż

G
φpxqdµ “ ||φ||1 ,

and so, also ||pφ||1 “
p

pφp0q “ φp´0q “ φp0q, by Fourier Inversion Theorem. The last statement
about entropies follows by Corollary 4.11.

We summarize the scheme of the proof of Theorem 6.1 in the following picture:

CApMq

Pr.6.5
��

Bridge Theorem

Algebraic entropy PApMq

^^

pα,Gq ü M

66lllllllllllllll

22fffffffffffff

,,XXXXXXXXXXXXX

((RRRRRRRRRRRRRRR
Th. 6.7

Topological entropy PT pxMq

Pr.6.6��
CT pxMq

^^

6.2 Proofs

6.2.1 Proof of Proposition 6.5

Recall that we have an LCA group G and an invertible left Γ-representation α ü G, which
induces two left Γ-representations on two different pre-normed semigroups that are functorially
associated to G:

α ü M

ww ''
αA ü CApMq βA ü PApMq
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We have to show that the entropy of the two induced representations is the same. We start
proving that αA is dominated by βA. Roughly speaking this says that the way in which α acts
on compact neighborhoods is controlled by the action on positive-definite complex functions.
This, by Proposition 4.13, implies the inequality “ď” in Proposition 6.5.

Lemma 6.8. In the above notation, βA dominates αA.

Proof. Let C P CApGq and F P FpΓq; for all n P N we construct φn P PApGq and εn P R` such
that

vApTF pαA, Cqq ď wApTF pβA, φnqq ` 2|F | log pεnq and lim
nÑ8

εn “ 1 . (6.2.1)

Indeed, let D1 be an open neighborhood of 0 contained in C; by the compactness of C there
exist x1, . . . , xh P G such that C Ď px1 `D1q Y ¨ ¨ ¨ Y pxh `D1q “ D. One can verify that D is
an open neighborhood of 0 in G with compact closure. For all K Ď G and n P N`, let

Kpnq “ tk1 ` . . .` kn : k1, . . . , kn P Ku .

We let

εn “
µ
`

Dpn`1q
˘

µ
`

Dpnq
˘ and φn “ χDpnq ˚ χDpnq ;

thus, to conclude we have just to verify (6.2.1). In particular, the fact that limnÑ8 εn “ 1
follows by [39, Corollary 1.2] and so we have just to compute the value of wApTF pβA, φnqq.
For all x P TF

`

αA, D
p2q
˘

there exist xf and x1f P αApfqpD
p2qq for all f P F such that x “

ř

fPF pxf ` x
1
f q and so, letting ∆pαF q “

ś

fPF ∆pαpfqq,

TF pβA, φn`1q pxq “ TF pβA, φn`1qx p0q “
æ

fPF

pβA pfq pφn`1qqxf`x1f
p0q

“ ∆ pαF q
æ

fPF

´

χαApfqpDpn`1qq

¯

xf
˚

´

χαApfqpDpn`1qq

¯

x1f

p0q (6.2.2)

ě ∆ pαF q
æ

fPF

´

χαApfqpDpnqq ˚ χαApfqpDpnqq

¯

p0q “ TF pβA, φnq p0q ;

where the first line follows by Remark 3.38, the equality in the second line comes from Lemma
3.43 and Remark 3.38, and the inequality in the third line follows since pχαApfqpDpn`1qqqy ě

χαApfqpDpnqq, for all y P αApfqpCq. Using (6.2.2) and (3.1.1) we get

||TF pβA, φn`1q||1 ě

ż

TF pαA,Dp2qq
TF pβA, φn`1qpxqdµ ě µpTF pαA, D

p2qqq ¨ TF pβA, φnqp0q .

Furthermore, by Lemmas 3.37(4) and 3.43,

||TF pβA, φnq||1 “
ź

fPF

||βApfqpφnq||1 “ ∆pαF qµpCpnqq2|F | .

Putting together all the above estimates, one can conclude as follows:

vApTF pαA, Cqq ď logµpTF pαA, D
p2qqq ď log

ˆ

||TF pβA, φnq||1
TF pβA, φnqp0q

˙

`

ˆ

log
||TF pβA, φn`1q||1

||TF pβA, φnq||1

˙

“ wApTF pβA, φnqq ` 2|F | log

˜

∆pαF qµpDpn`1qq

∆pαF qµpDpnqq

¸

“ wApTF pβA, φnqq ` 2|F | logpεnq .
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We can now conclude the proof of Proposition 6.5 showing the converse inequality.

Lemma 6.9. In the above notation, αA dominates βA.

Proof. Let φ P PApGq and F P FpΓq; for all n P N` we construct a ψn P PApGq with compact
support such that

wApTF pβA, φqq ď wApTF pβA, ψnqq ` 2|F | logp1` 1{nq . (6.2.3)

After that we let Dn “ supppψnq P CApGq and we verify that wApTF pβA, ψnqq ď vApTF pαA, Dnqq,
so that

wApTF pβA, φqq ď vApTF pαA, Dnqq ` 2|F | logp1` 1{nq , (6.2.4)

concluding the proof. Let us start with our program: we define φ1 “ 1
||φ||1

φ. Notice that

||φ1||1 “ 1 and

wApTF pαA, φ
1qq “ log

ˆ

||TF pβA, φ
1q||1

TF pβA, φ1qp0q

˙

“ log

˜

||φ||
´|F |
1 ¨ ||TF pβA, φq||1

||φ||
´|F |
1 ¨ TF pβA, φqp0q

¸

“ wApTF pβA, φqq .

Now let ψ “ φ1 ˚φ1 and notice that ψ P PApGq (φ1 “ rφ1 by Lemma 3.40, now apply Lemma 3.41)
and ||ψ||1 “ 1. Furthermore,

TF pβA, ψqp0q “

ż

G
TF pβA, φ

1qpxq ¨ TF pβA, φ
1qp´xqdµ ď TF pβA, φ

1qp0q ¨ ||TF pβA, φ
1q||1

and, by Lemma 3.37(4), ||TF pβA, ψq||1 “ ||TF pβA, φ
1q||21, thus

wApTF pβA, ψqq ě log

ˆ

||TF pβA, φ
1q||21

TF pβA, φ1qp0q||TF pβA, φ1q||1

˙

“ wApTF pβA, φ
1qq “ wApTF pβA, φqq .

For all n P N there exists a compact symmetric neighborhood Cn P CApGq such that φn “ φ1 ¨χCn
satisfies ||φ1´φn||1 ă 1{p2nq. We let ψn “ φn ˚φn P PApGq (φn “ Ăφn and so one can use Lemma
3.41). Furthermore, using Lemma 3.37 and the fact that ||φn||1 ď ||φ

1||1 “ 1, we get

1´ ||ψn||1 “ ||ψ||1 ´ ||ψn||
3.34
ď ||ψ ´ ψn||1 ď ||ψ ´ φ

1 ˚ φn||1 ` ||φ
1 ˚ φn ´ ψn||1 (6.2.5)

ď ||φ1||1||φ
1 ´ φn||1 ` ||φn||1||φ

1 ´ φn||1ď2||φ1 ´ φn||1 ă 1{n .

Notice also that ||TF pβA, ψq||1 “
ś

fPF ||βApfqpψq||1 “ ∆pαF q||φ1||
2|F |
1 “ ∆pαF q by Lemma 3.37

and (3.31). Similarly, ||TF pβA, ψnq||1 “ ∆pαF q||ψn||
|F |
1 . Furthermore, by construction φn ď φ1,

thus ψn ď ψ and, more generally, βApgqpψnq ď βApgqpψq for all g P Γ and so TF pβA, ψnqp0q ď
TF pβA, ψqp0q. Putting together all the above computations, we can verify (6.2.3):

wApTF pβA, φqq ď wApTF pβA, ψqq “ log

ˆ

||TF pβA, ψnq||1
TF pβA, ψqp0q

¨
||TF pβA, ψq||1
||TF pβA, ψnq||1

˙

ď wApTF pβA, ψnqq ` log

˜

∆pαF q||ψ||
|F |
1

∆pαF q

¸

(6.2.5)
ď wApTF pβA, ψnqq ` |F | log p1` 1{nq
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As we said, to conclude we have just to verify that wApTF pβA, ψnqq ď vApTF pαA, Dnqq, where
Dn “ supppψnq P CApGq. Indeed, let χ “ χTF pαn,Dnq and notice that, by Lemma 3.37,
supppTF pβA, ψnqq Ď TF pβA, Dnq. Thus,

pχ ˚ TF pβA, ψnqqp0q “

ż

G
χpxq ¨ TF pβA, ψnqp´xqdµ

“

ż

G
TF pβA, ψnqpxqdµ “ ||TF pβA, ψnq||1 .

The conclusion now follows by Lemma 3.40 and (3.1.1) as in the following computation

0 “ logppχ ˚ TF pβA, ψnqqp0qq ´ logp||TF pβA, ψnq||1

“ log

ˆ
ż

G
χpxq ¨ TF pβA, ψnqp´xqdµ

˙

´ log p||TF pβA, ψnq||1q

“ log

˜

ż

TF pαA,Dnq
TF pβA, ψnqp´xqdµ

¸

´ log p||TF pβA, ψnq||1q

ď logpµpTF pαA, Dnqq ¨ TF pβA, ψnqp0qq ´ log p||TF pβA, ψnq||1q

“ vApTF pαA, Dnqq ´ wApTF pβA, ψnqq .

6.2.2 Proof of Proposition 6.6

Let us rapidly recall the situation. We have an LCA groupG˚ and invertible right Γ-representation
α˚ ü G˚, which induces two left Γ-representations on two different pre-normed semigroups that
are functorially associated to G˚:

α˚ ü G˚

ww ((
αT ü CT pG˚q βT ü PT pG˚q

We have to show that the entropy of the two representations is the same. We divide the proof
in two lemmas. We start proving that αT dominates βT . Roughly speaking this says that the
way in which α˚ acts on positive-definte complex functions on G˚ is controlled by the action
on compact neighborhoods. This implies the inequality “ď” in Proposition 6.6, by Proposition
4.13.

Lemma 6.10. In the above notation, αT dominates βT .

Proof. Let us consider F P s and φ P PT pG˚q. We will show that, for all n P N`, there exists a
compact neighborhood Vn such that

wT pTF pβT , φqq ď vT pTF pαT , Vnqq ` |F | logppn` 1q{nq . (6.2.6)

In fact, letting εn “ nφp0q{pn` 1q, any compact neighborhood Vn P CT pGq contained in

V pφ, nq “
!

f P xM : φpfq ě εn

)

,

will work. To see this, one can verify that αT pgqpVnq Ď V pβT pgqpφq, nq and so

βT pgqpφq ě εn ¨ χαT pgqpVnq , @ g P Γ .
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In particular, TF pβT , φq “
ś

gPF βT pgqpφq ě
ś

gPF εn ¨ χαT pgqpVnq “ ε
|F |
n ¨ χTF pαT ,Vnq, where the

last equality just follows noticing that the pointwise product of characteristic functions is the
characteristic function of the intersection. We obtain that

ε´|F |n ¨ ||TF pβT , φq||1 ě ||TF pβT , χVnq||1 “ µpTF pαT , Vnqq .

Taking logarithms one can derive (6.2.6).

We can now conclude the proof of Proposition 6.6 showing the converse inequality.

Lemma 6.11. In the above notation, βT dominates αT .

Proof. Given U P CT pG˚q, we can find a function φ P PT pG˚q such that φp0q “ 1 and supppφq Ď
U , by Lemma 3.45. By Lemma 3.40, φp0q “ 1 is a maximum for φ, thus φ ď χU . Similarly,
βT pgqpφq ď βT pgqpχU q for all g P Γ.
For all F P s we obtain the following inequality ||TF pβT , φq||1 ď ||TF pβT , χU q||1 “ µpTF pαT , Uqq.
To conclude notice that TF pβT , φqp0q “ φp0q|F | “ 1 and so wT pTF pβT , φqq ě vT pTF pαT , Uqq.
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Chapter 7

Length functions in Grothendieck
categories

7.1 A Structure Theorem for length functions

7.1.1 Length functions

In any category C it is possible to define real-valued invariants in order to measure various
finiteness properties of the objects. In general, we call invariant of C, any map i : ObpCq Ñ
Rě0 Y t8u such that ipXq “ ipX 1q whenever X and X 1 are isomorphic objects in C.

If we make some stronger assumption on the structure of the category C, we can refine our
definition of invariant in order to obtain a more treatable notion. Indeed, suppose that C is an
Abelian category. In this setting it seems natural to ask that, given a short exact sequence

0 Ñ X1 Ñ X2 Ñ X3 Ñ 0 (7.1.1)

in C, ipX2q “ ipX1q ` ipX3q. In this case, we say that i is additive on the sequence (7.1.1). If i
is additive on all the short exact sequences of C and ip0q “ 0, then we say that i is an additive
invariant (or additive function).
In the following lemma we collect some useful properties of additive functions.

Lemma 7.1. Let C be an Abelian category and let i : ObpCq Ñ Rě0 Y t8u be an additive
function. Then,

(1) ipXq ě ipY q for every segment Y of X P ObpCq;

(2) ipX1`X2q` ipX1XX2q “ ipX1q` ipX2q for every pair of sub-objects X1, X2 of X P ObpCq;

(3)
ř

jodd ipXjq “
ř

jeven ipXjq for every exact sequence 0 Ñ X1 Ñ X2 Ñ ¨ ¨ ¨ Ñ Xn Ñ 0 in C.

A natural assumption in the context of Grothendieck categories is the upper continuity of
invariants: given an object X P C and a directed set S “ tXα : α P Λu of sub-objects of X such
that

ř

ΛXα “ X, we say that i is continuous on S if

ipXq “ suptipXαq : α P Λu . (7.1.2)

If i is continuous on all the directed systems of subobjects of the objects of C, we say that i is
upper continuous. Obviously, upper continuity can be defined in arbitrary Abelian categories
even if it seems more meaningful when all directed colimits exist and are exact.
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Definition 7.2. Let C be an Abelian category. An additive and upper continuous invariant
i : ObpCq Ñ Rě0 Y t8u is said to be a length function.

In what follows we generally denote length functions by the symbol L.

Definition 7.3. Let C be a Grothendieck category. An object X P ObpCq is finitely generated
(resp., Noetherian) if and only if its qframe of subobjects LpXq is compact (resp., Noetherian).
Furthermore, a category C is locally finitely generated (resp,. locally Noetherian) if there exists
a set F of generators of C such that each G P F is finitely generated (resp,. Noetherian).

Given a ring R, the category R-Mod is locally finitely generated (here RR is a finitely
generated generator), while R-Mod is locally Noetherian if and only if R is a Noetherian ring.

The usual definition of length function is given in module categories, which are in particular
locally finitely generated Grothendieck categories. In this special setting, the usual definition of
upper continuity is different (see part (3) of the following proposition). We now show that we
are not defining a new notion of upper continuity but just generalizing this concept to arbitrary
Grothendieck categories (similar observations, with analogous proofs, were already present in
[98] for module categories).

Proposition 7.4. Let C be a Grothendieck category and L : C Ñ Rě0 Y t8u be an additive
function. Consider the following statements:

(1) L is a length function;

(2) given an object M P ObpCq, an ordinal κ and a continuous chain tMα : α ă κu of sub-objects
of M such that M “

ř

αăκMα, LpMq “ suptLpMαq : α ă κu;

(3) for every object M P ObpCq, LpMq “ suptLpF q : F finitely generated sub-object of Mu.

Then (1)ô(2) and (2)ð(3). If C is locally finitely generated, then the above statements are all
equivalent.

Proof. (1)ñ(2) is trivial since continuous chains are directed posets. On the other hand, consider
a directed poset pI,ďq and a direct system tMi : i P Iu of sub-objects of M . If I is finite then
I has a maximum, so there is nothing to prove. On the other hand, if I is an infinite set, one
shows as in the proof of [47, Lemma 1.2.10], that pI,ďq is the union of a continuous well-ordered
chain of directed subsets, each of which has strictly smaller cardinality than I. One concludes
by transfinite induction that (2)ñ(1).
Assume now (3) and consider a continuous chain as in part (2). For every finitely generated
sub-object F of X, there exists α ă κ such that F ďMα and so we obtain that

LpMq “ suptLpF q : F f.g. sub-object of Mu ď suptLpMαq : α ă κu ď LpMq .

To conclude, notice that if C is locally finitely generated, then any object is the direct union of
the direct system of its finitely generated sub-objects. In this situation, (1) implies (3).

The notion of length function on a Grothendieck category is quite formal, this is why it seems
useful to stop for a while and describe some concrete examples of length functions.

Example 7.5. The logarithm of the cardinality log |´| : Z-Mod Ñ Rě0Yt8u, where log |G| “ 8
whenever G is not finite, is a length function.
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Example 7.6. Given a skew field K, the dimension dim : ObpK-Modq Ñ Rě0Yt8u is a length
function. More generally, given a left Ore domain D, the rank of a left D-module DM is defined
as rkpDMq “ dimpΣ´1D bDMq. This gives a length function rk : ObpD-Modq Ñ Rě0 Y t8u.

Example 7.7. Let C be a Grothendieck category. Then, the composition length ` : ObpCq Ñ
Rě0 Y t8u, defined by `pMq “ `pLpMqq, is a length function.

Other examples can be obtained lifting a known length function along a localization functor as
shown in Section 7.1.2. Another strategy to produce new examples is that of “linearly combining”
some known length functions:

Definition 7.8. (1) Given a length function L of C and λ P Rě0Yt8u, we consider the function

λL : ObpCq Ñ Rě0 Y t8u such that λLpMq “ λ ¨ pLpMqq , @M P ObpCq ,

with the convention that 8 ¨ 0 “ 0 ¨ 8 “ 0;

(2) given a set I and additive functions Li of C for all i P I, we consider the function

ÿ

iPI

Li : ObpCq Ñ Rě0 Y t8u such that
ÿ

iPI

LipMq “ sup

#

ÿ

iPF

LipMq : F Ď I finite

+

,

for all M P ObpCq.

It is an exercise to prove that the sum of length functions and the multiplication of a length
function by a constant are again length functions.

7.1.2 Operations on length functions

Let C be a Grothendieck category and let τ “ pT ,Fq be a torsion theory on C. In this section
we are going to show how the length functions of C are related with the ones of T and C{T .

Proposition 7.9. In the above notation, there is a bijective correspondence

f : tlength functions L of C with T Ď KerpLqu
//
tlength functions of C{T u : goo .

Proof. The maps f and g are defined in Lemmas 7.10 and 7.11 respectively. It follows by the
definitions that they are inverse each other.

Lemma 7.10. If Lτ : ObpC{T q Ñ Rě0 Y t8u is a length function, then there exists a unique
length function L : ObpCq Ñ Rě0 Y t8u such that LpMq “ Lτ pQτ pMqq for all M P ObpCq.
Furthermore, T Ď KerpLq. We set gpLτ q “ L.

Proof. Existence follows by the fact that Qτ is an exact functor that preserves colimits. Unique-
ness is clear and the last statement comes from the fact that T “ KerpQτ q.

Lemma 7.11. If L : ObpCq Ñ Rě0Yt8u is a length function such that T Ď KerpLq, then there
exists a unique length function Lτ : ObpC{T q Ñ Rě0 Y t8u such that LpMq “ Lτ pQτ pMqq for
all M P ObpCq. We set fpLq “ Lτ .
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Proof. For all M P ObpCq, there is an exact sequence of the form 0 Ñ T1 ÑM Ñ SτQτ pMq Ñ
T2 Ñ 0, with T1, T2 P T . As by hypothesis L is trivial on τ -torsion objects, we obtain by
additivity that LpMq “ LpSτQτ pMqq. Using this simple observation, we can define

Lτ pNq “ LpSτ pNqq, for all N P ObpC{T q ,

and verify that LpMq “ LpSτQτ pMqq “ Lτ pQτ pMqq as desired. The uniqueness statement
follows by the fact that the functor Qτ is essentially surjective. It remains to verify that Lτ is a
length function. Indeed, let 0 Ñ N ÑM ÑM{N Ñ 0 be a short exact sequence in C{T . This
induces an exact sequence 0 Ñ Sτ pNq Ñ Sτ pMq Ñ Sτ pM{Nq Ñ T Ñ 0, with T P T . Hence,
Lτ pMq “ LpSτ pMqq “ LpSτ pNqq ` LpSτ pM{Nqq ` 0 “ Lτ pNq ` Lτ pM{Nq. The proof that L
is upper continuous follows by a similar argument and transfinite induction.

In the first part of this subsection we described how to transfer length functions along the
adjoint pair Qτ : C Õ C{T : Sτ ; now we turn our attention to the adjunction Tτ : C Õ T : inc.
In particular, whenever L is a length function on C, one can define its restriction to T as
LæT : T Ñ Rě0 Y t8u, such that LæT pMq “ LpMq for all M P C, and prove that it is a length
function. Notice that this can be applied to any full abelian subcategory T of C, not only to
hereditary torsion classes.

On the other hand, if we start with a length function L on T , we want to find a canonical
way to extend it to the bigger category C. In [98] (see also [97]) Peter Vámos introduced a
technique to extend length functions which works in a more general setting. Indeed, let T be
a Serre subclass of C and consider a length function L on T . We start defining an invariant
(which is not supposed to have any good property but that of being useful for our constructions)
L˚ : ObpCq Ñ Rě0 Y t8u as follows:

L˚pXq “

#

LpXq if X P T ;

0 otherwise.
(7.1.3)

Given an object M P ObpCq and a series σ : 0 “ N0 Ď N1 Ď ¨ ¨ ¨ Ď Nn “M of M , we let

pLpσq “
ÿ

iďn

L˚pNi{Ni´1q .

Definition 7.12. In the above notation, the Vámos extension pL : ObpCq Ñ Rě0 Y t8u of L to
C is the function defined by pLpXq “ suptpLpσq : σ ranging over all the finite series of Xu.

In the next proposition we verify that pL satisfies the axioms of a length function.

Proposition 7.13. Let T be a Serre subclass of a Grothendieck category C. If L : T Ñ Rě0Yt8u

is a length function, then pL : ObpCq Ñ Rě0 Y t8u is a length function. Furthermore, if L1 :
ObpCq Ñ Rě0 Y t8u is any additive function extending L, then L1pMq ď LpMq for all M P C.

Proof. We start by proving additivity. Let 0 // A
ι // B

π // C // 0 be a short exact
sequence in C. Consider two series

σA : 0 Ď A0 Ď ¨ ¨ ¨ Ď An “ A , σC : 0 Ď C0 Ď ¨ ¨ ¨ Ď Cm “ C .

For all i “ 0, . . . ,m, let Bi “ π´1pCiq, this defines a series of B

σB : 0 Ď ιpA0q Ď ¨ ¨ ¨ Ď ιpAnq Ď B0 Ď ¨ ¨ ¨ Ď Bm “ B .
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Clearly, pLpσBq “ pLpσAq ` pLpσCq, proving that pLpBq ě pLpAq ` pLpCq. On the other hand, given
a series σB : 0 Ď B0 Ď ¨ ¨ ¨ Ď Bn “ B, we let, for all i “ 1, . . . , n, Ai “ ι´1pBiq and Ci “ πpBiq.
This defines two series

σA : 0 Ď A0 Ď ¨ ¨ ¨ Ď An “ A , σC : 0 Ď C0 Ď ¨ ¨ ¨ Ď Cn “ C .

Furthermore, there are short exact sequences 0 Ñ Ai{Ai´1 Ñ Bi{Bi´1 Ñ Ci{Ci´1 Ñ 0. Using
the additivity of L˚ on T and the closure properties of T , pLpσAq ` pLpσCq ě pLpσBq, which
implies that pLpBq ď pLpAq ` pLpCq. It remains to prove upper continuity. Indeed, let M P C
and consider a directed set tMα : α P Λu of sub-objects such that

ř

ΛMα “ M . By additivity,
pLpMq ě supΛ

pLpMαq. On the other hand, given a series σ : 0 “ N0 Ĺ N1 Ĺ ¨ ¨ ¨ Ĺ Nn “M , we
prove by induction on n P N` that pLpσq ď supΛ

pLpMαq. We distinguish two cases:

(1) if pLpσq “ 8, then there exists a non-negative integer m ă n such that Nm`1{Nm P T and
LpNm`1{Nmq “ 8. Notice also that Nm`1{Nm “

ř

ΛppMα XNm`1q `Nmq{Nm and so,

sup
Λ

pLpMαq ě sup
Λ

pL

ˆ

pMα XNm`1q `Nm

Nm

˙

“ sup
Λ
L

ˆ

pMα XNm`1q `Nm

Nm

˙

“ LpNm`1{Nmq “ 8 ,

where the first inequality comes by additivity of pL and the following equalities come by the
fact that pL coincides with L on T .

(2) Suppose now that pLpσq ă 8. If n “ 1, then either pLpσq “ 0 and there is nothing to prove,
or 0 ă pLpσq “ L˚pMq, but in this case M P T and the thesis follows by the fact that L is a
length function on T . On the other hand, if n ą 1, let

σ1 : 0 “ N0 Ĺ N1 Ĺ ¨ ¨ ¨ Ĺ Nn´1 , and σ2 : 0 Ĺ Nn{Nn´1 ,

and notice that pLpσq “ pLpσ1q ` pLpσ2q. Furthermore, Nn´1 “
ř

ΛpNn´1 X Mαq and

Nn{Nn´1 “
ř

ΛpMα ` Nn´1q{Nn´1. By inductive hypothesis pLpσ1q ď supΛ
pLpNn´1 XMαq

and pLpσ2q ď supΛ
pLppMα `Nn´1q{Nn´1q. Hence,

pLpσq “ pLpσ1q ` pLpσ2q ď sup
Λ

pLpNn´1 XMαq ` sup
Λ

pLppMα `Nn´1q{Nn´1q “ sup
Λ

pLpMαq ,

where the last equality comes from the additivity of pL and the fact that the sum of suprema
of two convergent nets is the supremum of the sum of the two nets.

We conclude this section proving that Vámos extension and lifting of length functions via a
localization functor preserve linear combinations.

Lemma 7.14. Let T be a Serre subclass of a Grothendieck category C, let Λ be a set and choose
λpαq P Rě0 Y t8u for all α P Λ.

(1) Given length functions Lα : T Ñ Rě0 Y t8u for all α P Λ and letting L “
ř

Λ λpαqLα,
pL “

ř

Λ λpαq
xLα.

(2) If T is closed under direct limits, Lα : ObpC{T q Ñ Rě0 Y t8u are length functions for all
α P Λ and L “

ř

Λ λpαqLα, then gpLq “
ř

Λ λpαqgpLαq, where g is defined in Lemma 7.10.
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Proof. (1) By the minimality of Vámos extension proved in Proposition 7.13, pL ď
ř

Λ λpαq
xLα.

On the other hand, if M P ObpCq and pLpMq “ 8, then 8 “ pLpMq ď
ř

Λ λpαq
xLαpMq and there

is nothing to prove. It remains to show that, if pLpMq ă 8, then pLpMq ě
ř

Λ λpαq
xLαpMq. The

case |Λ| ă 8 is essentially an application of Lemma 2.18. Suppose now that Λ is not finite
and let LF “

ř

αPF λpαqLα for every non-empty finite subset F Ď Λ; by definition LpMq “

suptLF pMq : F Ď Λ finiteu. By the first part of the proof, xLF “
ř

αPF λpαq
xLα, so we have only

to prove that pLpMq ě suptxLF pMq : F Ď Λ finiteu for all M P ObpCq. This follows noticing that
xLF pσq ď pLpσq for any finite F Ď Λ and any series σ of M .

(2) follows by definition of the map g.

7.1.3 The classification in the semi-Artinian case

All along this subsection we denote by C a semi-Artinian Grothendieck category, that is, a
Gabriel category whose Gabriel dimension is 1. Notice that this is equivalent to say that any
object in C is the union of its socle series. The main result of this subsection is to give a structure
theorem for all the length functions in C.

Lemma 7.15. Let C be a semi-Artinian Grothendieck category and let L,L1 : C Ñ Rě0 Y t8u

be two length functions. Then L “ L1 if and only if their values on simple objects are the same.

Proof. One implication is trivial, so suppose that L and L1 coincide on simple objects. Consider
an object M P C and write it as the union of a continuous chain

0 “ N0 ď N1 ď ¨ ¨ ¨ ď Nα ď ¨ ¨ ¨ ď
ď

α

Nα “M ,

such that Ni`1{Ni is a simple object for all i (this can be done since M is the union of its socle
series). By hypothesis LpNi`1{Niq “ L1pNi`1{Niq for all i. The conclusion follows by transfinite
induction using additivity and upper continuity.

Definition 7.16. Let C be a semi-Artinian Grothendieck category and let π “ pT ,Fq P SppCq.
We let `π : ObpCq Ñ Rě0 Y t8u be the length function such that

`πpMq “ `pQπpMqq such that @M P ObpCq .

That is, `π is the lifting of the composition length ` : ObpC{T q Ñ Rě0Yt8u along the localization
functor Qπ : C Ñ C{T . The functions of the form `π with π P SppCq are called atomic length
function.

Lemma 7.17. Let C be a semi-Artinian Grothendieck category, let π “ pT ,Fq P SppCq, let Cpπq
be the socle of Epπq (which is a simple object) and let C be a simple object. Then,

`πpCq “

#

1 if C – Cpπq;

`πpCq “ 0 otherwise.

Proof. By definition of `π, it is clear that `πpCq “ 1 if and only if C R T and that `πpCq “ 0
otherwise. So let us prove that C R T if and only if C – Cpπq. Indeed, if there is an
isomorphism C Ñ Cpπq one takes the composition with the inclusion Cpπq Ñ Epπq to get
HomCpC,Epπqq ‰ 0, so C R T . On the other hand, suppose HomCpC,Epπqq ‰ 0, then
HomCpC,Cpπqq “ HomCpC,SocpEpπqqq ‰ 0 and, since any non-trivial morphism between two
simple objects is an isomorphism, C – Cpπq.
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In the following theorem we prove that any length function in C is a linear combination of
atomic length functions.

Theorem 7.18. Let C be a semi-Artinian Grothendieck category and let L : ObpCq Ñ Rě0Yt8u

be a length function. Then,

L “
ÿ

πPSppCq

λpπq ¨ `π ,

where λpπq “ LpCpπqq, with Cpπq “ SocpEpπqq for all π P SppCq. Furthermore, the constants
λpπq are uniquely determined by L.

Proof. Let L1 “
ř

πPSppCq λpπq ¨ `π; we already mentioned that a linear combination of length

functions is a length function, so L1 is a length function. By Lemma 7.17, `πpCpπ
1qq “ 0 for all

π1 ‰ π, so L1pCpπqq “ λpπq`πpCpπqq “ LpCpπqq for all π P SppCq, which shows that L “ L1, by
Lemma 7.15. The proof of the uniqueness statement is analogous.

Using the uniqueness of the above decomposition, we can unambiguously give the following
definition:

Definition 7.19. Let C be a semi-Artinian Grothendieck category and let L : ObpCq Ñ Rě0 Y

t8u be a length function. The support of L is SupppLq “ tπ P SppCq : λpπq ‰ 0u.

As an immediate consequences of the above theorem we obtain the following corollaries.

Corollary 7.20. Let C be a semi-Artinian Grothendieck category such that |SupppCq| “ 1.
Then, any length function L : ObpCq Ñ Rě0 Y t8u is a multiple of the composition length.

Corollary 7.21. Let D be a left Ore domain and denote by T Ď D-Mod the class of torsion left
D-modules. The following are equivalent for a non-trivial length function L : ObpD-Modq Ñ
Rě0 Y t8u:

(1) T Ď KerpLq;

(2) there exists α P Rě0 Y t8u such that L “ α ¨ rk (see Example 7.6).

Furthermore, if LpDq ă 8 then the above equivalent conditions hold and α “ LpDq in (2).

Proof. The implication (2)ñ(1) is trivial, in fact Kerprkq “ T . Let us prove that (1)ñ(2). By
Theorem 7.9, L is the lifting of a length function on D-Mod{T – Q-Mod, where Q is the skew
field of left fractions of D. Clearly, Q-Mod satisfies the hypotheses of the above corollary, thus
there exists α P Rě0 Y t8u such that L “ gpα ¨ dimQq “ α ¨ gpdimQq “ α ¨ rk.
For the last statement, we suppose LpDq ă 8 and we verify (1). Let M be a torsion left
D-module. Using upper continuity and additivity we can prove that LpMq “ 0 if and only if
LpDxq “ 0 for all x P M . Thus, let x P M be a non-trivial element and consider the following
exact sequences

0 Ñ AnnDpxq Ñ D Ñ DxÑ 0 and 0 Ñ D Ñ AnnDpxq ,

where the second sequence exists as AnnDpxq is a non-trivial left ideal of D (as M is torsion)
and D is a domain. This shows that LpDq “ LpDxq ` LpAnnDpxqq ě LpDxq ` LpDq; thus
LpDxq ď LpDq ´ LpDq “ 0. Finally, LpDq “ α ¨ rkpDq “ α.
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7.1.4 The main structure theorem

The main result of this subsection is to show that, analogously to the semi-Artinian case, any
length function on a Gabriel category C can be written as a linear combination of atomic length
functions. We start defining atomic length functions in this context.

Definition 7.22. Let C be a Gabriel category, let α ă G.dimpCq and let Cα`1 “ Cα`1{Cα. Then,
Cα`1 is semi-Artinian and so, given π “ pT ,Fq P SppCα`1q “ SpαpCq, the length function
`π : ObpCα`1q Ñ Rě0 Y t8u is defined, as in the previous subsection, to be the lifting of the
composition length in Cα`1{T . Using Lemma 7.10 we can uniquely lift `π to a length function
on Cα`1 such that Cα Ď Kerp`πq and then, using Vámos extension, we extend it to a length
function of C. Abusing notation, we denote this new function again by `π : ObpCq Ñ Rě0Yt8u.
The functions of the form `π with π P SppCq are called atomic length function.

Notice that, by definition, given π P SpαpCq, Cα Ď Kerp`πq.

Definition 7.23. Let C be a Gabriel category and let L : ObpCq Ñ Rě0 Y t8u be a length
function. An object M P ObpCq is L-finite if LpMq ă 8, we let FinpLq be the Serre class of
all the L-finite objects. Furthermore, we denote by FinpLq the minimal torsion class containing
FinpLq.

Definition 7.24. Let C be a Gabriel category and let L : ObpCq Ñ Rě0 Y t8u be a length
function. The finite component Lfin of L is the Vámos extension to C of the restriction of L to
FinpLq, that is Lfin “ {LæFinpLq : ObpCq Ñ Rě0 Y t8u.
The infinite component L8 of L is defined by

L8pMq “

#

0 if M P FinpLq;

8 otherwise.

We remark that the finite component Lfin can very well assume infinite values (if Lfin is
non-trivial, just take M such that LfinpMq ‰ 0, so Lfinp

À

NMq “ 8); anyway its name is
justified by the fact that Lfin is, by definition, determined by the finite values of L.

Lemma 7.25. Let C be a Gabriel category and let L : ObpCq Ñ Rě0Yt8u be a length function.
Then, both the finite and the infinite component of L are length functions.

Proof. The fact that Lfin is a legnth function follows by Proposition 7.13. On the other hand,
given a short exact sequence 0 Ñ N Ñ M Ñ M{N Ñ 0, M P FinpLq if and only if N
and M{N P FinpLq. Similarly, given an object M P C and a directed system of sub-objects
tNi : i P Iu such that

ř

iPI Ni “ M , M P FinpLq if and only if Ni P FinpLq for all i P I. Thus,
also L8 is a length function.

Notice that L “ Lfin`L8. This decomposition of L allows us to reduce the problem of finding
a presentation of L as linear combination of atomic length functions to the same problem for
L8 and Lfin.

Definition 7.26. Let C be a Gabriel category and let L : ObpCq Ñ Rě0 Y t8u be a length
function. For all α ă G.dimpCq we let τLα “ pT L

α ,FL
α q be the torsion theory in Cα`1{Cα such

that T L
α “ tQαpMq : M P FinpLqu. The infinite support of L is the following subset of the

spectrum

Supp8pLq “
ď

αăκ

Supp8α pLq , where Supp8α pLq “ tπ P SpαpCq : Cpπq P FL
α u .
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Notice that in Cα`1{Cα, T L
α “

Ş

πPSupp8α
Kerp`πq, to show this use the correspondences

described in Theorem 2.67 and the fact that torsion free classes are closed under taking injective
envelopes.

Proposition 7.27. Let C be a Gabriel category and let L : ObpCq Ñ Rě0 Y t8u be a length
function. Then, L8 “

ř

πPSupp8pLq8 ¨ `π.

Proof. Let L1 “
ř

πPSupp8pLq8 ¨ `π. Both L8 and L1 take values in t0,8u, thus they coincide if

and only if KerpL8q “ KerpL1q:

KerpL8q “ FinpLq “
č

αăκ

tM P C : QαTα`1pMq P T L
α u “

č

πPSupp8pLq

Kerp`πq “ KerpL1q .

We can now turn our attention to the decomposition of Lfin.

Lemma 7.28. Let C be a Gabriel category and let L : ObpCq Ñ Rě0Yt8u be a length function.
Then, there exists a unique family tLpαq : ObpCα`1q Ñ Rě0 Y t8u : α ă G.dimpCqu of length
functions such that

(1) Lfin “
ř

αăG.dimpCq Lα, where Lα : ObpCq Ñ Rě0 Y t8u is the Vámos extension of Lpαq;

(2) Cα Ď KerpLpαqq, for all α ă G.dimpCq.

Proof. For all α ď G.dimpCq we consider the Serre classes FinpαqpLq “ FinpLq X Cα and FinpLq.
We start defining inductively length functions Lpαq : Finpα`1qpLq Ñ Rě0Yt8u, and their Vámos
extensions Lα : FinpLq Ñ Rě0 Y t8u, for all α ă G.dimpCq:

– Lp0qpMq “ LpMq, for all M P Finp1qpLq;

– LpαqpMq “ LpMq ´
ř

βăα L
βpMq, for all M P Finpα`1qpLq and α ă G.dimpCq.

It is not difficult to verify by transfinite induction that all the Lpαq and Lα are length functions.
Let us verify the following claims by induction on G.dimpCq:

(1’) LpMq “
ř

αăG.dimpCq L
αpMq, for all M P FinpLq;

(2’) FinpαqpLq Ď KerpLpαqq, for all α ă G.dimpCq.

If G.dimpCq “ 1 (i.e., C is semi-Artinian), then LpMq “ Lp0qpMq “ L0pMq for all M P

Finp1qpLq “ FinpLq, proving (1’), while (2’) is trivial since Finp0qpLq “ t0u.
Suppose now that G.dimpCq is a limit ordinal. If M P FinpαqpLq for some α ă G.dimpCq, then
by inductive hypothesis, LpMq “

ř

βăα L
βpMq and so LpαqpMq “ LpMq ´

ř

βăα L
βpMq “ 0,

proving (2’). Furthermore, given M P FinpLq, we can write M “
Ť

βăG.dimpCqpTβpMqq (see
Lemma 2.56). Then,

LpMq “ sup
βăG.dimpCq

LpTβpMqq “ sup
βăG.dimpCq

$

&

%

ÿ

αďβ

LαpTβpMqq

,

.

-

“ sup
βăG.dimpCq

$

&

%

ÿ

αăG.dimpCq

LαpTβpMqq

,

.

-

“
ÿ

αăG.dimpCq

LαpMq ,
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where the first equality follows by the upper continuity of L, the second one follows by part
(1’) of the inductive hypothesis (TβpMq P Cβ and G.dimpCβq “ β ă G.dimpCq), the third one
follows by the, already established, claim (2’), and the last equality uses the upper continuity of
ř

αăG.dimpCq L
α.

Finally, if G.dimpCq “ κ`1 is a successor ordinal, andM P FinpκqpLq, then LpMq “
ř

αăκ L
αpMq

by inductive hypothesis and so LpκqpMq “ LpMq´
ř

αăκ L
αpMq “ 0, proving (2’). Furthermore,

for any M P FinpLq,

ÿ

αďκ

LαpMq “
ÿ

αăκ

LαpMq ` LκpMq
p˚q
“

ÿ

αăκ

LαpMq ` LpMq ´
ÿ

αăκ

LαpMq “ LpMq ,

where p˚q comes by the fact that Cκ`1 “ C so Finpκ`1qpLq “ FinpLq and Lκ “ Lpκq. Thus, also
(1’) is established.

For any α ă G.dimpCq we define the length functions Lpαq : Cα`1 Ñ Rě0 Y t8u and Lα :

CÑ Rě0Yt8u, as the Vámos extensions of Lpαq and Lα respectively. We can extend the above
claims (1’) and (2’) to these new functions as follows. First of all, LfinpMq “

ř

αăG.dimpCq LαpMq
by (1’) and the fact that Vámos extension preserves linear combinations. Furthermore, for all
α ă G.dimpCq and M P Cα, LpαqpMq “ 0 by the construction of Vámos extension and since, by

(2’), Lpαq vanishes on all the factors belonging FinpαqpCq of any series of M . This shows that
Cα Ď KerpLpαqq.

The proof of the uniqueness can be obtained by transfinite induction on G.dimpCq.

By the above lemma, we have uniquely determined length functions Lpαq : ObpCα`1q Ñ

Rě0Yt8u for all α ă G.dimpCq, such that Lpαq is trivial on Cα. Thus, there exist unique length
functions

Lα : ObpCα`1{Cαq Ñ Rě0 Y t8u (7.1.4)

such that LpαqpMq “ LαpQαpMqq for all M P ObpCα`1q, by Lemma 7.11. Notice also that all
the categories of the form Cα`1{Cα are semi-artinian and so we have a well defined notion of
support for the functions Lα.

Definition 7.29. Let C be a Gabriel category and let L : ObpCq Ñ Rě0 Y t8u be a length
function. The finite support of L is the following subset of SppCq:

SuppfinpLq “
ď

αăκ

SupppLαq .

With the above notion of support we can finally decompose Lfin as linear combination of
atomic length functions.

Proposition 7.30. Let C be a Gabriel category and let L : ObpCq Ñ Rě0 Y t8u be a length
function. Then, there is a unique choice of constants λpπq P Rą0 so that

Lfin “
ÿ

πPSuppfinpLq

λpπq ¨ `π .

Proof. For all α ă G.dimpCq, we have a uniquely determined decomposition

Lα “
ÿ

πPSupppLαq

λpπq`π



7.2 Length functions compatible with self-equivalences 131

in Cα`1{Cα, by Theorem 7.18. Furthermore, by Lemma 7.14, this decomposition can be lifted
to a decomposition in Cα`1 and then extended to a decomposition in C, obtaining that

Lα “
ÿ

πPSupppLαq

λpπq`π , for all α ă κ .

The desired decomposition now follows by Lemma 7.28.

We conclude this section summarizing the main results on decomposition of length functions
in Gabriel categories in the following theorem. We remark that this statement is analogous to
the “Main Decomposition Theorem” in [98]

Theorem 7.31. Let C be a Gabriel category and L : ObpCq Ñ Rě0 Y t8u a length function.
Then, there is a unique way to choose constants λpπq P Rą0, for all π P SuppfinpLq such that

L “ Lfin ` L8 “
ÿ

πPSuppfinpLq

λpπq ¨ `π `
ÿ

πPSupp8pLq

8 ¨ `π .

7.2 Length functions compatible with self-equivalences

Let C be a Grothendieck category and recall that a functor F : C Ñ C is an equivalence of
categories if and only if

(Eq. 1) F is essentially surjective, i.e., for all X P ObpCq, there exists Y P ObpCq such that
F pXq – Y ;

(Eq. 2) F is fully faithful.

A consequence of this characterization of self-equivalences is that any such functor preserves
all the structures defined by universal properties, in particular, it commutes with direct and
inverse limits and it preserves exactness of sequences. Furthermore, it commutes with injective
envelopes and it preserves lattices of subobjects.

Let now L : ObpCq Ñ Rě0 Y t8u be a length function and fix a self-equivalence F : CÑ C.
It is easily seen that LF : ObpCq Ñ Rě0 Y t8u such that LF pMq “ LpF pMqq for all M P ObpCq
is a length function. In what follows we are going to study to what extent LF can differ from
L. The following example shows that L and LF may be very different.

Example 7.32. Consider a field K and consider the category KˆK-Mod – K-ModˆK-Mod.
This category is semi-Artinian and it has a self-equivalence F : KˆK-Mod Ñ KˆK-Mod such
that pM,Nq ÞÑ pN,Mq and pφ, ψq ÞÑ pψ, φq. If we take L to be the length function such that
LppM,Nqq “ dimKpMq, then clearly LF ppM, 0qq “ 0 ‰ dimpMq “ LppM, 0qq, provided M ‰ 0.

Definition 7.33. Given a Grothendieck category C and a self-equivalence F : CÑ C, we say that
a length function L : ObpCq Ñ Rě0 Y t8u is compatible with F provided LF pMq “ LpF pMqq “
LpMq for all M P ObpCq.

In this section we exploit the classification of length functions in Gabriel categories to find a
necessary and sufficient condition on a length function to be compatible with a self-equivalence.
Our motivation for studying compatibility of length functions with self-equivalences is the fol-
lowing. Given a ring R and a ring automorphism φ : RÑ R, we obtain a restriction of scalars

Fφ : R-Mod Ñ R-Mod . (7.2.1)

Notice that Fφ is a self-equivalence since clearly Fφ ˝ Fφ´1 – idR-Mod – Fφ´1 ˝ Fφ. We are
interested in finding length functions L such that LpFφpMqq “ LpMq.
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7.2.1 Orbit-decomposition of the Gabriel spectrum

We start with a technical result. Let A be a subclass of C, we denote by rA the class of all the
objects of C which are isomorphic to some object in A.

Lemma 7.34. Let C be a Grothendieck category, let F : C Ñ C a self-equivalence and let
τ “ pT ,Fq be a torsion theory. The following are equivalent:

(1) ČF pT q “ T ;

(2) ČF pFq “ F ;

(3) given X P ObpCq, X is τ -local if and only if FX is τ -local;

(4) FLτ “ LτF .

Proof. The equivalence between (1) and (2) follows since HomCpA,Bq – HomCpF pAq, F pBqq,
for all A, B P ObpCq and by the fact that F “ T K and T “ KF .

(2)ñ(3). Given a τ -local X P ObpCq, one can consider the following exact sequence

0 Ñ Tτ pFXq Ñ FX Ñ LτFX Ñ T Ñ 0 ,

where T – Tτ pEpFXq{FXq P T . Since F is an equivalence, it is exact and it commutes
with injective envelopes, so T – Tτ pF pEpXq{Xqq which is trivial by the fact that X is τ -local
(implying that EpXq{X P F) and (2).

(3)ñ(1). It follows by the fact that the τ -torsion objects are exactly the objects not admitting
non-trivial morphisms to a τ -local object.

(1)&(3)ñ(4). Let X P ObpCq and consider the following exact sequence

0 Ñ Tτ pXq Ñ X Ñ Lτ pXq Ñ T Ñ 0 ,

where T P T . Applying QτF to the above sequence, using the exactness of such functor and
(1), one gets QτF pXq – QτFLτ pXq. Now, applying Sτ and using (3) we obtain LτF pXq –
LτFLτ pXq “ FLτ pXq.

(4)ñ(3). Let X P ObpCq. Then, X is τ -local if and only if X – Lτ pXq, if and only if FX –

FLτ pXq. Thus, using (4), FX – LτF pXq, which is equivalent to say that FX is τ -local.

In the following lemma we show that the equivalence F : CÑ C induces a bijection of Sp0pCq
onto itself. This fact is then applied in Proposition 7.36 to show that F induces bijections of
SpαpCq onto itself, for all α ă G.dimpCq.

Lemma 7.35. Let C be a Gabriel category. For any simple object S, the object F pSq is again
simple. Furthermore, if we define a function

f0 : Sp0pCq Ñ Sp0pCq

mapping π P Sp0pCq to the isomorphism class of F pEpπqq in Sp0pCq, then f0 is well-defined and
bijective.

Proof. The fact that F sends simples to simples follows by the fact that an equivalence preserves
the lattice of sub-objects of a given object. For the second part of the statement, just notice
that, given two simple objects S1 and S2, S1 – S2 is equivalent to F pS1q – F pS2q and so, since
any simple object is isomorphic to the socle of precisely one indecomposable injective, we are
done.
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Proposition 7.36. Let C be a Gabriel category and F : CÑ C a self-equivalence. Then,

(1α) ČF pCαq “ Cα;

(2α) the functor Fα : C{Cα Ñ C{Cα defined by the composition Fα “ QαFSα is an equivalence;

for all 0 ď α ă G.dimpCq. In particular, via the identification SpαpCq “ SppCα`1{Cαq “
Sp0pC{Cαq, each Fα induces a bijection

fα : SpαpCq Ñ SpαpCq ,

defined as in Lemma 7.35.

Proof. We prove simultaneously (1α) and (2α) by transfinite induction on α.
In case α “ 0, then (10) just says that F pt0uq “ t0u, so it is trivially verified, while (20) is true
as F0 is just F .
Suppose now that (1α) and (2α) are verified for some 0 ď α ă G.dimpCq. Notice that Cα`1{Cα
can be identified with pC{Cαq1, that is, the smallest hereditary torsion subclass of C{Cα containing
all the simple objects. Since Fα is an equivalence, it sends hereditary torsion classes to hereditary
torsion classes. Thus, the isomorphism closure of FαpCα`1{Cαq is exactly Cα`1{Cα, as by Lemma
7.35 the image under an equivalence of a class containing all the simples, contains all the simples.
Given X P ObpCq, we have the following equivalences:

pX P Cα`1q ô pX̄ :“ QαpXq P Cα`1{Cαq ô pDȲ P Cα`1{Cα : FαpȲ q – X̄q

ô pDY P Cα`1 : FαQαpY q – X̄q ,

where the second equivalence follows by (1α). Now, to prove (1α`1) we have to show that the
last of the above conditions is equivalent to pDY P Cα`1 : F pY q – Xq. The implication pDY P

Cα`1 : F pY q – Xq ñ pDY P Cα`1 : FαQαpY q – X̄q is trivial, as QαF pY q – QαFSαQαpY q “
FαQαpY q. For the converse implication, assume that there exists Y P Cα`1 such that FαQαpY q –
QαpXq. We have the following diagram with exact rows:

0 // T1
// F pY 1q // SαQαF pY

1q

–

��

// T2
// 0

0 // T3
// X // SαQαX // T4

// 0

where Y 1 “ SαQαpY q and T1, T2, T3, T4 P Cα. Using (2α), one obtains Cα “ ČF pCαq Ď ČF pCα`1q,

so the first line of the diagram says that SαQαF pY
1q P ČF pCα`1q, the isomorphism then shows

that SαQαX P ČF pCα`1q. One concludes by the second line that X P ČF pCα`1q, proving (1α`1).
In order to show (2α`1) one has to show that Fα`1 is essentially surjective and fully faithful.
The former is verified as follows: take X̄ P C{Cα`1, let X “ Sα`1X̄, choose Y P C such that
F pY q – X and let Ȳ “ Qα`1Y , one concludes that

Fα`1pȲ q “ Qα`1FSα`1Qα`1pY q
p˚q

– Qα`1Sα`1Qα`1F pY q – Qα`1F pY q – X̄ ,

where p˚q is given by Lemma 7.34 (4) (using that we already verified (1α`1), which corresponds
to part (1) of that lemma). To verify full faithfulness take X,Y P C{Cα`1, then

HomC{Cα`1
pX,Y q – HomCpSα`1X,Sα`1Y q – HomCpFSα`1X,FSα`1Y q

– HomC{Cα`1
pFα`1X,Fα`1Y q ,
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where the last isomorphism follows as, by Lemma 7.34 (3), FSα`1X and FSα`1Y are both
pα` 1q-local.
Finally, let λ ă G.dimpCq be a limit ordinal and assume (1α), (2α) for all α ă λ. Then, (1λ)

trivially follows recalling that Cλ is the smallest hereditary torsion class containing Cα “ ČF pCαq

for all α ă λ and the same description can be given for ČF pCλq. Furthermore, (2λ) follows by
(1λ) and Lemma 7.34 exactly as in the successor case.

Motivated by the above proposition, we can give the following:

Definition 7.37. Given a Gabriel category C, a self-equivalence F : C Ñ C and a point π P
SpαpCq Ď SppCq in the Gabriel spectrum, we let

OF pπq “ tf
n
α pπq : n P Zu

be the F -orbit of π, where fα : SpαpCq Ñ SpαpCq is the bijective map described in Proposition
7.36.

It is clear that each point of the spectrum belongs to a unique F -orbit. In particular, the
F -orbits induce a partition of the Gabriel spectrum.

7.2.2 A complete characterization in Gabriel categories

In the present subsection we use the orbit decomposition of the Gabriel spectrum and the
classification of length functions in Gabriel categories in order to give a sufficient and necessary
condition for a length function to be compatible with a given self-equivalence. The main result
of this section is the following

Theorem 7.38. Let C be a Gabriel category, F : C Ñ C be a self-equivalence and L : C Ñ
Rě0Y t8u be a length function. Then, F and L are compatible if and only if, for all π P SppCq,

(1) if π P Supp8pLq then OF pπq Ď Supp8pLq;

(2) if π P SuppfinpLq, then

(2.a) OF pπq Ď SuppfinpLq;

(2.b) λpπ1q “ λpπq, for all π1 P OF pπq.

Let us recall our decomposition of L : ObpCq Ñ Rě0 Y t8u obtained in Section 7.1.4. The
first thing we did was to define a torsion theory τ “ pT ,Fq, where T “ FinpLq is the smallest
hereditary torsion class containing FinpLq. This allowed us to write L a sum of its finite and
infinite components:

L “ Lfin ` L8 ,

where L8 assumes the value 0 on T and 8 elsewhere, while Lfin is the Vámos extension of the
restriction of L to T .
Similarly we can define a torsion theory τF “ pT F ,FF q with T F “ FinpLF q. This induces a
decomposition

LF “ LfinF ` L8F .

Theorem 7.38 will follow showing that τ “ τF (or, equivalently, L8 “ L8F ) and Lfin “ LfinF . In
the setting of Theorem 7.38, we denote by fα the self-bijection of SpαpCq induced by F .

Lemma 7.39. In the above notation, the following are equivalent:



7.2 Length functions compatible with self-equivalences 135

(1) τ “ τF , that is, L8 “ L8F ;

(2) π P Supp8pLq implies OF pπq Ď Supp8pLq, for all π P SppCq.

Proof. Let α ă G.dimpCq and choose π P SpαpCq. Then, π P Supp8α pLF q if and only if
L8F pSαpCpπqqq “ 8 (where Cpπq “ SocpEpπqq in Cα`1{Cα), if and only if L8pFSαpCpπqqq “ 8,
if and only if fαpπq P Supp8α pLq. Thus,

Supp8α pLF q “ fαpSupp8α pLqq .

By this equality it is clear that Supp8α pLF q “ Supp8α pLq if and only if Supp8α pLq “ fαpSupp8α pLqq,
which is equivalent to affirm that Supp8α pLq is fα and f´1

α -invariant. This happens for all
α ă G.dimpCq if and only if (2) is verified.

We can now concentrate on showing that Lfin “ LfinF is equivalent to condition (2) in
Theorem 7.38:

Lemma 7.40. In the above notation, the following are equivalent:

(1) Lfin “ LfinF ;

(2) if π P SuppfinpLq, then

(2.a) OF pπq Ď SuppfinpLq;

(2.b) λpπ1q “ λpπq, for all π1 P OF pπq.

Proof. For all α ă G.dimpCq, let

Lα, pLF qα : ObpCα`1{Cαq Ñ Rě0 Y t8u

be the functions described in (7.1.4) relative to L and LF respectively. Using Lemma 7.34,
one can follow the steps of the construction of Lα in the proof of Lemma 7.28 and show
that pLF qαpMq “ LαpF pMqq for all M P Cα`1. Thus pLF qαpMq “ LαpFαpMqq for all M P

ObpCα`1{Cαq (where as usual Fα “ QαFSα). By the structure of length functions in Gabriel

categories, Lfin “ LfinF if and only if Lα “ pLF qα for all α ă G.dimpCq. Let α ă G.dimpCq,
π P SpαpCq and let Cpπq “ SocpEpπqq in Cα`1{Cα. Then,

pLF qαpCpπqq “ LαpFαpCpπqqq “ LαpCpfαpπqqq .

Thus, Suppfinα pLq “ fαpSuppfinα pLF qq and so Suppfinα pLq “ Suppfinα pLF q if and only if Suppfinα pLq
is fα and f´1

α -invariant, which is condition (2.a) in the statement. Furthermore, given π P
Suppfinα pLq, the constant associated to π in the decomposition of L is LαpCpπqq, while the
constant associated to π in the decomposition of LF is LαpCpfαpπqqq. Thus the two functions
coincide if and only if Lα is constant on the simple objects belonging to the same orbit under
fα, that is, condition (2.b) in the statement.

7.2.3 Examples

Let K be a division ring and consider the category K-Mod of left K-modules. SppK-Modq
consist of a single point, thus Theorem 7.38 says that any length function is compatible with
any self-equivalence of K-Mod. On the other hand, we already proved in Corollary 7.20 that
the length functions on K-Mod are just multiples of the composition length (which in this case
is just the dimension over K) so this is not a very deep result.
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The previous example can be generalized as follows. Let C be a Gabriel category and consider
the composition length ` : ObpCq Ñ Rě0 Y t8u. Then, Finp`q “ C1 and so Supp8p`q “
SppC{C1q “

Ť

αě1 SpαpCq, while Suppfinp`q “ SppC1q “ Sp0pCq. Clearly both the finite and the
infinite spectrum are invariant under any family of self-bijections tfα : SpαpCq Ñ SpαpCq : α ă
G.dimpCqu. Furthermore, the constants associated to each π P Suppfinp`q in the decomposition
of ` as linear combination of atomic functions are all 1. Thus, Theorem 7.38 can be applied to
show that ` is compatible with any self-equivalence of C.

A further generalization of the above example can be achieved as follows. Let C be a Gabriel
category, for any α ă G.dimpCq we define a length function

`α : ObpCq Ñ Rě0 Y t8u such that `αpMq “ `pQαpMqq ,

where ` is the composition length in C{Cα`1. One can show that Suppfinp`αq “ SpαpCq and
Supp8p`αq “ SppC{Cα`1q “

Ť

βąα SpβpCq, furthermore

`α “
ÿ

πPSpαpCq

`π `
ÿ

πPSppC{Cα`1q

8 ¨ `π .

Theorem 7.38 implies that `α (and any of its multiples) is compatible with any self-equivalence
of C.



Chapter 8

Algebraic L-entropy

8.1 Algebraic L-entropy for amenable group actions

8.1.1 Crossed products

Given a ring R and a group G, we constructed in Example 4.5 the group ring RrGs. In this
subsection we introduce the concept of crossed product R˚G, which is a generalization of RrGs.
For more details on this kind of construction we refer to [84].

Definition 8.1. Let R be a ring and let G be a group. A crossed product R˚G of R with G is
a ring constructed as follows: as a set, R˚G is the collection of all the formal sums of the form

ÿ

gPG

rgg ,

with rg P R and rg “ 0 for all but finite g P G, and where each g is a symbol uniquely assigned
to a g P G. Sum in R˚G is defined component-wise exploiting the addition in R:

˜

ÿ

gPG

rgg

¸

`

˜

ÿ

gPG

sgg

¸

“
ÿ

gPG

prg ` sgqg .

To define a product in R˚G, one takes two maps σ : G Ñ AutRingpRq and ρ : G ˆ G Ñ UpRq,
(where UpRq is the group of units of R); we denote the image of r via the automorphism σpgq
by rσpgq, for all g P G and r P R. We impose the following axioms on the maps σ and ρ, for all
r P R and g1, g2, g3 P G:

(Cross.1) ρpg1, g2qρpg1g2, g3q “ ρpg2, g3q
σpg1qρpg1, g2g3q;

(Cross.2) rσpg2qσpg1q “ ρpg1, g2qr
σpg1g2qρpg1, g2q

´1;

(Cross.3) ρpg1, 1q “ ρp1, g1q “ 1 and σpeq “ 1.

The product in R˚G is defined by the rule prgqpshq “ rsσpgqρpg, hqgh, together with bilinearity,
that is

˜

ÿ

gPG

rgg

¸˜

ÿ

gPG

sgg

¸

“
ÿ

gPG

¨

˝

ÿ

h1h2“g

rh1s
σph1q
h2

ρph1, h2q

˛

‚g .
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The axioms (Cross.1) and (Cross.2), are the exact conditions to make multiplication in R˚G
associative and unitary, while (Cross.3) is telling us that 1R˚G “ e. Of course the definition of
R˚G does not depend only on R and G, as the choices of σ and ρ are fundamental for defining
the product. Anyway one avoids a notation like RrG, ρ, σs and uses the more compact (though
imprecise) R˚G. Of course, the easiest example of crossed product is the group ring RrGs, which
corresponds to trivial maps σ and ρ.

Notice that there is a canonical injective ring homomorphism

RÑ R˚G r ÞÑ re .

In view of this embedding we identify R with a subring of R˚G. Notice also that the homomor-
phism RÑ R˚G induces a scalar restriction functor

R˚G-Mod Ñ R-Mod , such that R˚GM ÞÑ RM .

and a scalar extension functor

R-Mod Ñ R˚G-Mod , such that RM ÞÑ R˚GbRM .

On the other hand, in general there is no natural map G Ñ R˚G which is compatible with
the operations. Anyway, the obvious assignment g ÞÑ g respects the operations modulo some
units of R. As described in (7.2.1), for all g P G there is a self-equivalence of the category
R-Mod, induced by the ring automorphism σpgq

Fσpgq : R-Mod Ñ R-Mod .

Definition 8.2. Let R be a ring, let G be a group and let R˚G be a given crossed product.
A length function L : R-Mod Ñ Rě0 Y t8u is said to be compatible with R˚G provided L is
compatible with the self-equivalence Fσpgq, for all g P G.

Notice that, given a ring R such that R-Mod has Gabriel dimension, the length functions `α
of R-Mod described in Subsection 7.2.3 are compatible with any crossed product R˚G for any
group G.

8.1.2 The action of G on monoids of submodules

LetR be a ring, letG be a group and fix a crossed productR˚G. In this subsection we functorially
associate to a left module over R˚G a left G-representation on a suitable submonoid of its monoid
of submodules, this will allow us to define a notion of algebraic entropy in R˚G-Mod, lifting the
semigroup entropy along this functor.

Given a leftR˚G-module R˚GM , we denote by pLRpMq,`, 0q the monoid of leftR-submodules
of M . We let also

λ : GÑ AutpLRpMqq such that λpgq “ λg ,

where λgpKq “ gK for all K P LRpMq. For any subset F Ď G and any K P LRpMq, the F -th
λ-trajectory of K is

TF pλ,Kq “
ÿ

gPF

λgpKq “
ÿ

gPF

gK .

Notice that TF pR˚G,Kq P LRpMq. The (full) λ-trajectory of K is the R˚G-submodule of M
generated by K, that is,

TGpλ,Kq “
ÿ

gPG

λgpKq “
ÿ

gPG

gK “ R˚G ¨K .
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Lemma 8.3. Let R be a ring, let G be a group, fix a crossed product R˚G and let R˚GM be
a left R˚G-module. Then R˚GM is finitely generated as a left R˚G-module if and only if there
exists a finitely generated R-submodule K P LRpMq such that M “ TGpλ,Kq.

Proof. If R˚GM is finitely generated as a left R˚G-module then choose a finite set of generators
x1, . . . , xn, so that, M “ R˚Gx1 ` ¨ ¨ ¨ `R˚Gxn “ TGpλ, x1R` ¨ ¨ ¨ ` xnRq. On the other hand,
if M “ TGpλ,Kq with K finitely generated, than any finite set of generators of K generates M
as R˚G-module.

Lemma 8.4. Let R be a ring, let G be a group, fix a crossed product R˚G and let R˚GM be a
left R˚G-module. Given a R˚G-submodule R˚GN ď M and a subset F Ď G, there is a short
exact sequence of left R-modules

0 Ñ TF pλ,Kq XN Ñ TF pλ,Kq Ñ TF pλ, pK `Nq{Nq Ñ 0 .

Proof. The non-trivial maps in (8.4) are induced by the embedding N ÑM and by the projec-
tion M Ñ M{N . One can verify that the resulting sequence is exact noticing that TF pλ, pK `

Nq{Nq “ pTF pλ,Kq `Nq{N , in fact, g
1
pk1 `Nq ` ¨ ¨ ¨ ` gnpkn `Nq “ pg1

k1 ` ¨ ¨ ¨ ` gnknq `N
for all k P N`, k1, . . . , kn P K and g1, . . . , gn P F .

Thanks to the following lemma, we can define the announced functor (see Definition 8.6)

R˚G-Mod Ñ l.RepGpSemi˚vq .

Lemma 8.5. Let R be a ring, let G be a group, let R˚G be a fixed crossed product and let
L : ObpR-Modq Ñ Rě0Yt8u be a length function compatible with R˚G. Let also R˚GM, R˚GN
be left R˚G-modules and let φ : M Ñ N be a homomorphism of left R˚G-modules. Then

(1) pFinLpMq,`, vLq is a normed monoid, where FinLpMq “ tK P LRpMq : LpKq ă 8u, and
vLpKq “ LpKq for all K P FinLpMq;

(2) letting λgpKq “ gK “ tg ¨k : k P Ku for all g P G and K P FinLpMq, gives a homomorphism
of groups

λ : GÑ AutpFinLpMqq, λpgq “ λg : FinLpMq Ñ FinLpMq ,

where AutpFinLpMqq denotes here the automorphism group of FinLpMq as a normed monoid;

(3) there is an induced contracting homomorphism of valued monoids FinLpφq : FinLpMq Ñ
FinLpNq such that FinLpφqpKq “ φpKq for all K P FinLpMq. Furthermore, λgFinLpφq “
FinLpφqλg, for all g P G.

Proof. (1) By the additivity of L, FinLpMq is a sub-monoid of LRpMq. The fact that vL is a
norm can be proved as follows: let K1, K2 P FinLpMq, then K1 `K2 is a quotient of K1 ‘K2,
so LpK1q ` LpK2q “ LpK1 ‘K2q ě LpK1 `K2q.

(2) First of all one should verify that λgpKq is an R-submodule of M . Indeed, given r P R and

k P K, rpgkq “ prgqk “ pgrσpg
´1qqk “ gprσpg

´1qkq P gK “ λgpKq. It is easy to see that each λg
respects the operation and the unit of our monoid. Furthermore,

λgλhpKq “ pg ¨ hqK “ pρpg, hqghqK “ ghρpg, hqσppghq
´1qK “ ghK “ λghpKq .

To conclude, it remains to show that vLpλgpKqq ď vLpKq for any given g P G and K P FinLpMq.
This follows from our assumption that L is compatible with Fσpgq, in fact, λgpKq – FσpgqpKq
and so vLpλgpKqq “ vLpKq.
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(3) It is clear the FinLpφq is a monoid homomorphism. To show that is is contractive use the
additivity of L and the fact that φ is in particular a homomorphism of left R-modules. Now,
given K P FinLpMq and g P G,

λgpFinLpφqpKqq “ tgφpkq : k P Ku “ tφpgkq : k P Ku “ FinLpφqpλgpKqq ,

where the second equality holds since φ is a homomorphism of left R˚G-modules.

Definition 8.6. Let R be a ring, let G be a group, let R˚G be a crossed product and let
L : ObpR-Modq Ñ Rě0 Y t8u be a length function compatible with R˚G. We define a functor

FinL : R˚G-Mod Ñ l.RepGpSemi˚vq

that sends a left R˚G-module R˚GM to λ : G Ñ AutpFinLpMqq and a homomorphism φ of left
R˚G-modules to FinLpφq (see Lemma 8.5).

In many cases, the monoid FinLpMq carries redundant information for our needs, for this
reason it is usually useful to reduce to the smaller monoid consisting of the finitely generated
modules in FinLpMq. The following lemma, which is an immediate consequence of the upper
continuity and of the discreteness of L, allows for such reduction. Before that, we need to recall
the following definition:

Definition 8.7. Let R be a ring and let L : ObpR-Modq Ñ Rě0Yt8u be a length function. We
say that L is discrete if the set of finite values of L is isomorphic to N as an ordered set.

Given a subset S of Rě0 that is order isomorphic (with the order induced by R) to N, then

– inftS1u P S1 for all S1 Ď S;

– suptS1u P S1 for any bounded above S1 Ď S.

Lemma 8.8. Let R be a ring, let G be a group, fix a crossed product R˚G and let R˚GM be
a left R˚G-module. Given a discrete length function L : ObpR-Modq Ñ Rě0 Y t8u compatible
with R˚G and given K P FinLpMq, there exists a finitely generated K 1 P FinLpMq such that
LpK 1q “ LpKq.

Proof. By the upper continuity of L, LpKq “ suptLpHq : RH ď K fin. gen.u. By the discrete-
ness of L, the bounded set tLpHq : RH ď K fin. gen.u has a maximum and so one can take any
finitely generated RK

1 ď K that realizes this maximum.

We need to introduce a last tool on the monoid of submodules LRpMq, that is, a closure
operator. Indeed, we consider the torsion class KerpLq of all left R-modules K such that LpKq “
0. The torsion functor relative to this class was denoted in [93] by zL : R-Mod Ñ KerpLq, where,
given K P R-Mod,

zLpKq “ tx P K | LpRxq “ 0u ;

zLpKq is called the L-singular submodule of K. If zLpKq “ K (or, equivalently, LpKq “ 0)
we say that M is L-singular. There is a standard technique to associate a closure operator to
any given torsion class (see [96]). In particular, given K P LpMq, we let π : M Ñ M{K be the
natural projection and we define

KL˚ “ π´1pzLpM{Kqq

to be the L-purification of K in M . An element K P LpMq is said to be L-pure if KL˚ “ K,
while, if K ď K 1 P LpMq, we say that N is L-essential in K 1 if LpK 1{Kq “ 0, that is, if
K ď K 1 ď KL˚. With this terminology we can reformulate Lemma 8.8 as follows:
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Corollary 8.9. In the notation of Lemma 8.8, any K P FinLpMq has an L-essential finitely
generated submodule.

We collect in the following lemma some useful properties of L-purifications, which follow by
the fact that p´qL˚ is a closure operator associated to a torsion theory (see for example [96]).
We give a complete proof for the sake of completeness.

Lemma 8.10. Let R be a ring, let L : ObpR-Modq Ñ Rě0Yt8u be a length function, let M be
a left R-module and consider two submodules K1 and K2 P LpMq. Then,

(1) ppK1qL˚qL˚ “ pK1qL˚;

(2)

ˆ

K1 `K2

K1

˙

L˚

“
pK1 `K2qL˚

K1
;

(3) pK1qL˚ ` pK2qL˚ ď pK1 `K2qL˚ and ppK1qL˚ `K2qL˚ “ pK1 `K2qL˚;

(4) LppK1 `K2q{pK
1
1 `K

1
2qq “ 0 whenever K 1

1 ď K1 ď pK
1
1qL˚ and K 1

2 ď K2 ď pK
1
2qL˚.

Proof. (1) It is clear thatK1 ď pK1qL˚ ď ppK1qL˚qL˚, furthermore pK1qL˚{K1, ppK1qL˚qL˚{pK1qL˚

belong to KerpLq. The following short exact sequence

0 Ñ pK1qL˚{K1 Ñ ppK1qL˚qL˚{K1 Ñ ppK1qL˚qL˚{pK1qL˚ Ñ 0

shows that ppK1qL˚qL˚{K1 P KerpLq and so ppK1qL˚qL˚ ď pK1qL˚.

(2) Consider the following commutative diagram

M
π1

{{wwwwwwwww
π2

&&NNNNNNNNNNN

M{K1
π3 //M{pK1 `K2q

where π1, π2 and π3 denote the natural projections. Then

ˆ

K1 `K2

K1

˙

L˚

“ π´1
3

ˆ

zL

ˆ

M

K1 `K2

˙˙

“ π1

ˆ

π´1
2

ˆ

zL

ˆ

M

K1 `K2

˙˙˙

“
pK1 `K2qL˚

K1

(3) Notice that K1, K2 ď K1`K2, hence pK1qL˚, pK2qL˚ ď pK1`K2qL˚, showing that pK1qL˚`

pK2qL˚ ď pK1 ` K2qL˚. Furthermore, the inclusion pK1qL˚ ` K2 ď pK1 ` K2qL˚ proves that
ppK1qL˚ ` K2qL˚ ď ppK1 ` K2qL˚qL˚ “ pK1 ` K2qL˚. For the converse inclusion one can use
that K1 `K2 ď pK1qL˚ `K2 and so pK1 `K2qL˚ ď ppK1qL˚ `K2qL˚.

(4) By hypothesis, K 1
1 ď K1 ď pK

1
1qL˚ and K 1

2 ď K2 ď pK
1
2qL˚. Thus,

K1 `K2

K 1
1 `K

1
2

ď
pK 1

1qL˚ ` pK
1
2qL˚

K 1
1 `K

1
2

ď
pK 1

1 `K
1
2qL˚

K 1
1 `K

1
2

P KerpLq .
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8.1.3 Definition of the L-entropy

Let us start this subsection with the definition of L-entropy.

Definition 8.11. Let R be a ring, let G be a countably infinite amenable group, let R˚G be a
crossed product, choose a Følner sequence s “ tFnunPN and let L : ObpR-Modq Ñ Rě0 Y t8u

be a discrete length function compatible with R˚G. Let also R˚GM be a left R˚G-module and
denote by λ : G Ñ FinLpMq the left G-representation induced by the left R˚G-structure of M .
For all K P FinLpMq, the algebraic L-entropy of R˚GM at K is

entLpλ,Kq “ lim
nPN

LpTFnpλ,Kqq

|Fn|
.

The algebraic L-entropy of R˚GM is entLpMq “ suptentLpλ,Kq : K P FinLpMqu.

Notice that the algebraic L-entropy is exactly the lifting of the semigroup entropy h along
the functor

FinL : R˚G-Mod Ñ l.RepGpSemi˚vq

described in Subsection 8.1.2. In fact, the limit that defines entL exists by Corollary 4.39 (since
the monoid FinLpMq satisfies conditions (1) and (2) in that corollary by Lemma 8.5). Similarly,
the definition of entL does not depend on the choice of the Følner sequence s, as any such
sequence gives rise to the same invariant.

Let us remark that, if R is a (skew) field and if we choose L to be the dimension of left
vector spaces over R, then L is discrete and compatible with any crossed product R˚G; more
generally, this happens for all the functions `α described in Subsection 7.2.3. On the other hand,
if R˚G “ RrGs, then the compatibility condition is trivially satisfied by any length function L
and one just needs to assume discreteness.

It turns out that the L-entropy is not well-behaved on the whole category R˚G-Mod but just
on a suitable class of left R˚G-modules with “enough” L-finite submodules:

Definition 8.12. Let R be a ring and let M be a left R-module. We say that M is locally
L-finite if FinLpMq contains all the finitely generated submodules of M . We denote by lFinpLq
the class of all the locally L-finite left R-modules. Furthermore, given a group G and a crossed
product R˚G, we denote by lFinLpR˚Gq the class of all the left R˚G-modules R˚GM such that

RM P lFinpLq.

Notice that lFinpLq is closed under taking direct limits, quotients and submodules but not
in general under extensions (see [93] for a counter-example).

In general, we will consider entL as an invariant on the class of locally L-finite R˚G-modules
and not on the whole class ObpR˚G-Modq:

entL : lFinLpR˚Gq Ñ Rě0 Y t8u .

Remark 8.13. We defined the algebraic L-entropy for left R˚G-modules in case G is countable.
Anyway, standard variations of the above arguments using Følner nets, allow one to define a
similar invariant in case G is not countable.
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8.1.4 Basic properties

In this subsection we study the basic properties of the algebraic L-entropy. For simplicity we
fix all along this subsection a ring R, a countably infinite amenable group G, a crossed product
R˚G and a discrete length function L : ObpR-Modq Ñ Rě0 Y t8u compatible with R˚G. We
also let R˚GM be a locally L-finite left R˚G-module and we denote by λ : G Ñ FinLpMq the
left G-representation induced by the left R˚G-structure of M .

Example 8.14. If LpRMq ă 8, then entLpR˚GMq “ 0. In fact, if RK ď M is any L-finite
R-submodule of M , then by definition entLpλ,Kq ď limnÑ8 LpMq{|Fn| ď limnÑ8 LpMq{n “ 0
(for the second inequality use the fact that, as G is infinite we can take a Følner sequence such
that Fn ň Fn`1 for all n P N, thus |Fn| ě n).

The following result allows us to redefine the algebraic entropy in terms of finitely generated
submodules.

Proposition 8.15. Let K P FinLpMq and H ď K be an L-essential submodule. Then

(1) entLpλ,Hq “ entLpλ,Kq;

(2) entLpR˚GMq “ suptentLpλ,Kq : K finitely generatedu.

Proof. (1) By definition of L-essential submodule, K{H P KerpLq. Furthermore, for all g P G,
λgpKq{λgpHq – FσpgqpK{Hq so, as by hypothesis L is compatible with Fσpgq, also λgpKq{λgpHq P
KerpLq. In particular, λgpHq is L-essential in λgpKq for all g P G. By Lemma 8.10(4) and the
additivity of L,

LpTFnpλ,Kqq “ LpTFnpλ,Hqq ,

for all n P N, where tFnunPN is a Følner sequence. Therefore, entLpλ,Kq “ entLpλ,Hq.

(2) The “ď” inequality comes directly from the definition of entropy. On the other hand, by
Lemma 8.8 any L-finite submodule K of M has an L-essential finitely generated submodule H
and by part (1) entLpλ,Kq “ entLpλ,Hq, which easily yields our claim.

The definition of entropy in terms of finitely generated submodules given in Proposition 8.15
allows us to prove many important properties. In the following lemma we show that the entropy
is monotone under taking submodules and quotients.

Lemma 8.16. Let N ďM be an R˚G-submodule. Then

(1) entLpR˚GMq ě entLpR˚GNq;

(2) entLpR˚GMq ě entLpR˚GpM{Nqq.

Proof. Denote respectively by λ1 : G Ñ FinLpNq and λ̄ : G Ñ FinLpM{Nq the left G-
representation induced by the left R˚G-structure of N and M{N respectively.

(1) It is enough to notice that, whenever K ď N is an L-finite submodule of N , it is also an
L-finite submodule of M and entLpλ

1,Kq “ entLpλ,Kq ď entLpR˚GMq.

(2) Given a finitely generated submodule K̄ ď M{N , there exists a finitely generated (thus
L-finite) submodule K ď M such that pK `Nq{N – K̄. Given a Følner sequence tFnunPN, by
Lemma 8.4,

TFnpλ̄, K̄q “ pTFnpλ,Kq `Nq{N and so LpTFnpλ̄, K̄qq ď LpTFnpλ,Kqq for all n P N .

Dividing by |Fn| and taking the limit with nÑ8 we get entLpλ̄, K̄q ď entLpλ,Kq ď entLpR˚GMq.
This ends the proof by Proposition 8.15.
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The above lemma has a converse in some particular situation:

Lemma 8.17. Let N ďM be an R˚G-submodule. Then,

(1) entLpR˚GMq “ entLpR˚GNq, provided LpM{Nq “ 0;

(2) entLpR˚GMq “ entLpR˚GpM{Nqq, provided LpNq “ 0.

Proof. One inequality of both statements follows by Lemma 8.16, thus we have just to verify
the other one. We denote respectively by λ1 : G Ñ FinLpNq and λ̄ : G Ñ FinLpM{Nq the left
G-representation induced by the left R˚G-structure of N and M{N respectively.
Part (1) follows by Proposition 8.15, noticing that, whenever K ďM is an L-finite submodule,
then K X N is L-essential in K, thus, entLpλ,Kq “ entLpλ,K X Nq “ entLpλ

1,K X Nq ď
entLpR˚GNq
For part (2), let K P FinLpMq and consider the short exact sequence described in Lemma
8.4, which shows that LpTFnpλ,Kqq “ LpTFnpλ̄, K̄qq ` LpTFnpλ,Kq XNq “ LpTFnpλ̄, K̄qq. The
conclusion follows.

8.2 The algebraic entropy is a length function

In the present section we are going to prove the following

Theorem 8.18. Let R be a ring, let G be a countably infinite amenable group, fix a crossed
product R˚G and let L : ObpR-Modq Ñ Rě0Yt8u be a discrete length function compatible with
R˚G. Then the invariant entL : lFinLpR˚Gq Ñ Rě0 Y t8u satisfies the following properties:

(1) entL is upper continuous;

(2) entLpR˚GbR Kq “ LpKq for any L-finite left R-module K;

(3) entLpNq ą 0 for any non-trivial R˚G-submodule N ď R˚GbR K;

(4) entL is additive.

In particular, entL is a length function on lFinLpR˚Gq.

Part (1) will be verified in Subsection 8.2.1, parts (2) and (3) will be proved in Subsection
8.2.2 and part (4) will be the main result of Subsection 8.2.3. All along this section we will keep
the notation of Theorem 8.18.

8.2.1 The algebraic entropy is upper continuous

In this subsection we are going to show that the algebraic L-entropy is an upper continuous
invariant. We start with the following lemma that deals with the case when M is generated (as
R˚G-module) by an L-finite R-submodule K, that is, M “ TGpλ,Kq. In such situation one does
not need to take a supremum to compute entropy.

Lemma 8.19. Let M be a left R˚G-module such that M “ TGpλ,Kq for some K P FinLpMq,
then

entLpMq “ entLpλ,Kq .
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Proof. Given a finitely generated R-submodule H of M , we can find a finite subset e P F Ď G
such that H Ď TF pλ,Kq. This shows that entLpλ,Hq ď entLpλ, TF pλ,Kqq. Now notice that,
using the Følner condition,

lim
nÑ8

|FnF |

|Fn|
ď lim

nÑ8

|Fn Y
Ť

fPF BF pFnqf |

|Fn|
ď 1` lim

nÑ8

ÿ

fPF

|BF pFnqf |

|Fn|
“ 1 .

On the other hand, |FnF |{|Fn| ě 1 so limnÑ8 |FnF |{|Fn| “ 1. We obtain that

entLpλ, TF pλ,Kqq “ lim
nÑ8

TFnpλ, TF pλ,Kqq

|Fn|
“ lim

nÑ8

TFnF pλ,Kq

|Fn|
¨
|Fn|

|FnF |
“ entLpλ,Kq ,

where the last equality comes from the fact that tFnF unPN is a Følner sequence by Lemma
4.22 and since the definition of entL does not depend on the choice of a particular Følner
sequence. Thus, entLpλ,Hq ď entLpλ,Kq for any finitely generated H P LpMq; one concludes
using Proposition 8.15.

The upper continuity of entL can now be verified easily using the above lemma and Propo-
sition 8.15:

Corollary 8.20. entL : lFinLpR˚Gq Ñ Rě0 Y t8u is an upper continuous invariant.

Proof. The fact that entL is an invariant can be derived by the definition and the fact that L is
an invariant. Now, let M P lFinLpR˚Gq, then by Proposition 8.15 and Lemmas 8.19 and 8.3 we
get

entLpR˚GMq “ suptentLpλ,Kq : K finitely generated R-submodule of Mu

“ suptentLpR˚GpTGpλ,Kqq : K finitely generated R-submodule of Mu

“ suptentLpR˚GNq : N finitely generated R˚G-submodule of Mu .

8.2.2 Values on (sub)shifts

The present subsection is devoted to compute the values of the algebraic entropy on the R˚G-
modules of the form M “ R˚G bR K, for some left R-module K, and their R˚G-submodules.
Indeed, fix a left R-module K and let M “ R˚GbRK. As a left R-module there is a direct sum
decomposition RM –

À

gPG gK, so that one can uniquely represent a generic element x PM in
the form x “

ř

gPG gxg, where xg P K for all g P G and xh “ 0 for almost all h P G. Notice that

hp
ÿ

gPG

gxgq “
ÿ

gPG

h gxg “
ÿ

gPG

hgρph, gqσpgq
´1
xg “

ÿ

gPG

g ρph, h´1gqσph
´1gq´1

xh´1g .

We denote the action of G on FinLpMq by

β : GÑ AutpFinLpMqq, where βpgq “ βg .

The choice of the greek letter β to represent this action comes from the Bernulli actions which
are defined in ergodic theory and can be viewed as dual to the actions described here. We
remark that the left action β : G Ñ FinLpMq is not isomorphic in general to the left Bernoulli
G-representation B : GÑ

À

G FinLpKq described in Subsection 4.1.3, even if we will show that
these two representations have the same entropy.
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Notice that β has the following properties, where F is a subset of G:

TF pβ, gKq “
à

hPF

hgK and TGpβ, gKq “M . (8.2.1)

In the following example we compute the algebraic entropy of Bernoulli shifts.

Example 8.21. In the above notation, suppose LpKq ă 8. By Lemma 8.19 and (8.2.1),
we obtain that entLpR˚GMq “ entLpβ,Kq. Furthermore, again by (8.2.1), LpTF pβ,Kqq{|F | “
LpKq, for all F P FpGq. Therefore, entLpMq “ LpKq.

The computation in the above example shows that the entropy of M “ R˚G bR K is 0 if
and only if LpKq “ 0, if and only if LpMq “ 0. Our next goal is to show that, if R˚GN is a
submodule of R˚GM , then entLpR˚GNq “ 0 if and only if LpRNq “ 0. This will be proved in
Proposition 8.23 but first we need to recall some useful terminology and results from [12].

Let E and F be subsets of G. A subset N Ď G is an pE,F q-net if it satisfies the following
conditions:

– the subsets pgEqgPN are pairwise disjoint, that is, gE X g1E “ H for all g ‰ g1 P N ;

– G “
Ť

gPN gF .

It is proved in [12, Lemma 2.2] that, for any subset E of a group G, one can always find an
pE,EE´1q-net. The following lemma is a variation of [12, Lemma 4.3].

Lemma 8.22. Let tFnunPN be a Følner sequence of G, let E Ď F Ď G be finite subsets with e P F
and let N be an pE,F q-net. Then there exist 0 ă α ď 1 and n0 P N such that |FnXN | ě α ¨ |Fn|,
for all n ą n0.

Proof. For each n P N, let F`Fn “ OutF pFnq X N and notice that F`Fn zpFn X N q Ď BF pFnq.
Furthermore, since Fn is covered by the sets gF , g P F`Fn , we have |Fn| ď |F ||F

`F
n |. Let now

α1 “ 1{|F |, thus

α1|Fn| ´ |Fn XN | ď |F`Fn | ´ |Fn XN | ď |F`Fn zpFn XN q| ď |BF pFnq| .

Let 0 ă α2 ă α1; by the Følner condition, there exists n0 P N such that |BF pFnq|{|Fn| ď α2 for all
n ą n0. Thus, letting α “ α1´α2, one has 0 ă α ď 1 and |FnXN | ě α1|Fn| ´ BF pFnq ě α|Fn|,
for all n ą n0.

Proposition 8.23. Let K be an L-finite left R-module and let R˚GN be a submodule of R˚GM .
Then,

entLpR˚GNq “ 0 if and only if LpRNq “ 0 .

Proof. Suppose LpRNq ‰ 0, then there exists x P N such that LpRxq ‰ 0. Let E be the set
of all elements h P G such that, writing x “

ř

gPG gxg, the component xh is not 0. We fix an

pE,EE´1q-net N . Notice that, given f1 ‰ f2 P N , then βf1pRxq X βf2pRxq “ 0. Thus, by
Lemma 8.22 we can find n0 P N and 0 ă α ď 1 such that

LpTFnpβ,Rxqq ě LpTFnXN pβ,Rxqq “ |Fn XN |LpRxq ě α|Fn|LpRxq

for all n ą n0. In particular, entLpR˚GNq ě entLpβ,Rxq ě αLpRxq ‰ 0.
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8.2.3 The Addition Theorem

In the present subsection we complete the proof of Theorem 8.18 verifying a very strong property
of the algebraic entropy, that is, its additivity on lFinLpR˚Gq. In particular, we have to verify
that, given a locally L-finite left R˚G-module M , and an R˚G-submodule N ďM ,

entLpR˚GMq “ entLpR˚GNq ` entLpR˚GpM{Nqq . (8.2.2)

We fix all along this subsection the following notations for the actions induced by the R˚G-
module structures:

λ : GÑ AutpFinLpMqq λ1 : GÑ AutpFinLpNqq λ̄ : GÑ AutpFinLpM{Nqq

g ÞÑ λg g ÞÑ λ1g “ λgæFinLpNq g ÞÑ λ̄g

We start proving the inequality “ě” of (8.2.2).

Lemma 8.24. entL pR˚GMq ě entL pR˚GNq ` entL pR˚GpM{Nqq .

Proof. Let K1 ď N and K2 ďM{N be finitely generated R-submodules. Fix a finitely generated
submodule K ďM such that pK `Nq{N “ K2 and K XN Ě K1. Given a finite subset F Ď G,
by Lemma 8.4 there is a short exact sequence

0 Ñ TF pλ,Kq XN Ñ TF pλ,Kq Ñ TF pλ̄,K2q Ñ 0 .

Noticing that TF pλ
1,K1q Ď TF pλ,KqXN , we get LpTF pλ,Kqq ě LpTF pλ

1,K1qq`LpTF pλ̄,K2qq.
Applying this inequality to the sets belonging to a Følner sequence tFnunPN, yields

entLpR˚GMq ě entLpλ,Kq ě entLpλ
1,K1q ` entLpλ̄,K2q .

The result follows by the arbitrariness of the choice of K1 and K2.

The first step in proving the converse inequality is to show that we can reduce the problem
to the case when both M and N are finitely generated R˚G-modules. This goal is obtained in
the following corollary (which is just a reformulation of Corollary 4.37), and the subsequent two
lemmas.

Corollary 8.25. Let tFnunPN be a Følner exhaustion of G. Then, for any ε P p0, 1{4q and
n P N there exist n1, . . . , nk P N with n ď n1 ď ¨ ¨ ¨ ď nk such that, given an L-finite submodule
K ďM ,

entLpλ,Kq ď ε ¨ LpKq `
1

1´ ε
¨ max

1ďiďk

LpTFni pλ,Kqq

|Fni |
.

Proof. This is a straightforward application of Corollary 4.37. In fact, the function fK : FpGq Ñ
Rě0 such that fKpF q “ LpTF pλ,Kqq satisfies the hypotheses of such corollary for any L-finite
R-submodule K of M , by Lemma 8.5. Furthermore, limnÑ8 fKpFnq{|Fn| “ entLpλ,Kq by the
definition of entropy.

Lemma 8.26. Consider a sequence N0 ď N1 ď ¨ ¨ ¨ ď Nt ď ¨ ¨ ¨ ď M of R˚G-submodules
of M such that N “

Ť

tPNNt and let λ̄t : G Ñ AutpFinLpM{Ntqq be the actions induced on
the quotients. Then, given an L-finite submodule K ď M and letting K̄ “ pK ` Nq{N and
K̄t “ pK `Ntq{Nt for all t P N,

entLpλ̄, K̄q “ inf
tPN

entLpλ̄t, K̄tq .
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Proof. The inequality “ď” follows by Lemma 8.16. On the other hand, for all ε ą 0 there exists
nε P N such that

LpTFnpλ̄, K̄qq

|Fn|
ď entLpλ̄, K̄q ` ε , for all n ě nε . (8.2.3)

By Corollary 8.25, for any given ε1 P p0, 1{4q, there exist n1, . . . , nk P N such that nε ď n1 ď

¨ ¨ ¨ ď nk and

entLpλ̄t, K̄tq ď ε1 ¨ LpK̄tq `
1

1´ ε1
¨ max

1ďiďk

LpTFni pλ̄t, K̄tqq

|Fni |
(8.2.4)

holds for all t P N. Now, for all i P t1, . . . , ku, the set tLpTFni pλ̄t, K̄tqq : t P Nu is a set of values of
L, all smaller than or equal to the finite value LpTFipλ,Kqq. Since we supposed L to be discrete,
this set has a minimum, say LpTFni pλ̄ti , K̄tiqq. Let s “ max1ďiďk ti and notice that

LpTFni pλ̄s, K̄sqq “ LpTFni pλ̄, K̄qq , for all i “ 1, . . . , k.

(This follows by the additivity of L and the fact that LppN X pTFni pλ,Kq ` Nsqq{Nsq “ 0, as
this module is the union of modules of the form pNt X pTFni pλ,Kq `Nsqq{Ns with t ě s, which
are L-singular by the choice of s).
Using the above computations, we get

inf
tPN

entLpλ̄t, K̄tq ď entLpλ̄s, K̄sq ď ε1 ¨ LpK̄sq `
1

1´ ε1
¨ max

1ďiďk

LpTFni pλ̄s, K̄sqq

|Fni |

“ ε1 ¨ LpK̄sq `
1

1´ ε1
¨ max

1ďiďk

LpTFni pλ̄, K̄qq

|Fni |

ď ε1 ¨ LpKq `
1

1´ ε1
¨ pentLpλ̄, K̄q ` εq .

Letting ε1 tend to 0 we obtain that inftPN entLpλ̄t,Kq ď entLpλ̄, K̄q ` ε. As this holds for all
ε ą 0, the conclusion follows.

As we announced, we can now prove the following reduction to the case when R˚GN and

R˚GM are finitely generated.

Lemma 8.27. If (8.2.2) holds whenever R˚GN and R˚GM are finitely generated, then it holds
in general.

Proof. We already proved the inequality “ě” in (8.2.2) always holds, thus we concentrate just
on the converse inequality. Indeed, given a finitely generated submodule R˚GK of R˚GM we
claim that

entLpR˚GKq “ entLpR˚GpK XNqq ` entLpR˚GppK `Nq{Nqq . (8.2.5)

Notice that, if we prove the above claim, we can easily conclude using upper continuity as follows:

entLpR˚GMq “ suptentLpR˚GKq : K ďM f.g.u

“ suptentLpR˚GpK XNqq ` entLpR˚GpK `Nq{Nq : K ďM f.g.u

ď suptentLpR˚GpK XNqq : K ďM f.g.u ` suptentLpR˚GpK `Nq{Nq : K ďM f.g.u

“ entLpR˚GNq ` entLpR˚GpM{Nqq .

It remains to verify claim (8.2.5). Indeed, choose a finitely generated R-submodule H of K, such
that K “ TGpλ,Hq. Notice also that KXN “

Ť

nPN TGpλ, TNnpBqpλ,HqXNq. For all n P N, we
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let Hn be an L-essential, finitely generated R-submodule of TNnpBqpλ,Hq XN . By Proposition
8.15, we obtain that

entLpR˚GpN XKqq “ sup
nPN

entLpλ, TNnpBqpλ,Hq XNq “ sup
nPN

entLpλ,Hnq .

We let K 1 “
Ť

nPN TGpλ,Hnq. Notice that K 1 is L-essential in K X N (in fact, pK X Nq{K 1 is
the union of modules of the form ppTNnpBqpλ,Hq XNq `K

1q{K 1 and each of these modules is a
quotient of an L-singular module of the form pTNnpBqpλ,Hq XNq{TGpλ,Hnq). By Lemma 8.17
and Proposition 8.15 we obtain that

entLpR˚GpK XNqq “ entLpR˚GK
1q

“ lim
nÑ8

entLpR˚GTGpλ,Hnqq

“ sup
nPN

entLpR˚GTGpλ,Hnqq .

Similarly, one derives by Lemma 8.26 that

entLpR˚GpK{pK XNqq “ entLpR˚GpK{K
1qq

“ lim
nÑ8

entLpR˚GpK{TGpλ,Hnqqq

“ inf
nPN

entLpR˚GpK{TGpλ,Hnqqq .

By hypothesis, entLpR˚GTGpλ,Hnqq ` entLpR˚GpK{TGpλ,Hnqqq “ entLpR˚GKq for all n P N.
Putting together all these computations we obtain:

entLpR˚GKq “ lim
nÑ8

pentLpR˚GTGpλ,Hnqq ` entLpR˚GpK{TGpλ,Hnqqqq

“ lim
nÑ8

entLpR˚GTGpλ,Hnqq ` lim
nÑ8

entLpR˚GpK{TGpλ,Hnqqq

“ entLpR˚GpK XNqq ` entLpR˚GpK{pK XNqq ,

which verifies (8.2.5), concluding the proof.

Finally, we have all the instruments to conclude the proof of the additivity of entL. The
computations in the proof of the following lemma are freely inspired to the proof of the Abramov-
Rokhlin Formula given in [101]. The context (and even the statements) in that paper is quite
different but the ideas contained there can be perfectly adapted to our needs.

Lemma 8.28. entL pR˚GMq ď entL pR˚GNq ` entL pR˚GpM{Nqq .

Proof. By Lemma 8.27, we can suppose that both M and N are finitely generated R˚G-modules.
In particular, there exists a finitely generated R-submodule K 1 ď N and a finitely generated
R-submodule K̄2 ďM{N such that N “ TGpλ

1,K 1q and M{N “ TGpλ̄, K̄2q. Since K̄2 is finitely
generated, there exists a finitely generated R-submodule K2 of M , such that pK2 ` Nq{N “

K̄2. We let K “ K 1 ` K2 and we notice that M “ TGpλ,Kq. Finally, we let K1 be an L-
essential finitely generated submodule of K X N containing K 1. Notice that, by Lemma 8.19
we obtain that entLpR˚GMq “ entLpλ,Kq, entLpR˚GNq “ entLpλ

1,K X Nq “ entLpλ
1,K1q and

entLpR˚GpM{Nqq “ entLpλ̄, K̄2q.
Let ε P p0, 1{4q and fix a Følner exhaustion tFnunPN. By the existence of the limits defining

the algebraic L-entropies, we can find n̄ P N such that, for all n ą n̄
ˇ

ˇ

ˇ

ˇ

LpTFnpλ,Kqq

|Fn|
´ entLpMq

ˇ

ˇ

ˇ

ˇ

ă ε ,

ˇ

ˇ

ˇ

ˇ

LpTFnpλ
1,K1qq

|Fn|
´ entLpNq

ˇ

ˇ

ˇ

ˇ

ă ε , (8.2.6)
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ˇ

ˇ

ˇ

ˇ

LpTFnpλ̄, K̄2qq

|Fn|
´ entLpM{Nq

ˇ

ˇ

ˇ

ˇ

ă ε .

For all m P N,

LpTFmpλ,Kqq

|Fm|
“
LpTFmpλ

1,K1qq

|Fm|
`
LpTFmpλ,Kq{TFmpλ

1,K1qq

|Fm|

and so, for all m ě n̄,

entLpMq ă
LpTFmpλ,Kqq

|Fm|
` ε “

LpTFmpλ
1,K1qq

|Fm|
`
LpTFmpλ,Kq{TFmpλ

1,K1qq

|Fm|
` ε (8.2.7)

ă entLpNq `
LpTFmpλ,Kq{TFmpλ

1,K1qq

|Fm|
` 2ε .

In the remaining part of the proof we are going to show that there exists a positive integer k
such that

LpTFmpλ,Kq{TFmpλ
1,K1qq

|Fm|
ď

1

1´ ε
entLpR˚GpM{Nqq ` ε

ˆ

LpKqpk ` 1q `
1

1´ ε

˙

, (8.2.8)

for all big enough m P N. Applying (8.2.8) to (8.2.7), one gets

entLpMq ă entLpNq `
1

1´ ε
entLpM{Nq ` ε

ˆ

LpKqpk ` 1q `
1

1´ ε

˙

` 2ε

which, as it holds for all ε P p0, 1{4q, gives the desired inequality. Thus, to conclude we have to
verify (8.2.8).

Since tFnu is a Følner exhaustion, N “
Ť

nPN TFnpλ
1,K1q and so, for any L-finite submodule

H ďM , we can use the upper continuity of L to obtain that

LpH XNq “ lim
nÑ8

LpH X TFnpλ
1,K1qq .

By additivity, this implies that LppH`Nq{Nq “ limnÑ8 LppH`TFnpλ
1,K1qq{TFnpλ

1,K1qq and,
by the discreteness of L, this limit is the minimum of the values. By Theorem 4.31, there exist
n̄ ă n1 ă ¨ ¨ ¨ ă nk P N such that tFn1 , . . . , Fnku ε-quasi-tiles Fm for all m ě n̄. Applying the
above argument with H “ TFni pλ,Kq (for all i “ 1, . . . , k), we can find n P N such that

L

ˆ

TFni pλ,Kq ` TFnpλ
1,K1q

TFnpλ
1,K1q

˙

“ L

ˆ

TFni pλ,Kq `N

N

˙

(8.2.9)

for all n ě n and all i “ 1, . . . , k. From now on we suppose m to be a positive integer such that

m ě maxtn̄, nu and |BFnpFmq|{|Fm| ď ε , (8.2.10)

where the second condition can be assumed since tFnunPN is Følner. Since tFn1 , . . . , Fnku ε-
quasi-tiles Fm, we can choose tiling centers C1, . . . , Ck, obtaining the following inequalities

|Fm| ě

ˇ

ˇ

ˇ

ˇ

ˇ

k
ď

i“1

CiFni

ˇ

ˇ

ˇ

ˇ

ˇ

ě max

#

p1´ εq|Fm| , p1´ εq
k
ÿ

i“1

|Ci||Fni |

+

, (8.2.11)
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which imply that

LpTFmz
Ťk
i“1 CiFni

pλ,Kqq

|Fm|
ď
|Fmz

Ťk
i“1CiFni |

|Fm|
LpKq “

¨

˝1´

ˇ

ˇ

ˇ

Ťk
i“1CiFni

ˇ

ˇ

ˇ

|Fm|

˛

‚LpKq ď εLpKq .

Applying this computation and using again (8.2.11), one gets:

LpTFmpλ,Kq{TFmpλ
1,K1qq

|Fm|
ď

1

|
Ťk
i“1CiFni |

L

˜

TŤk
i“1 CiFni

pλ,Kq ` TFmpλ
1,K1q

TFmpλ
1,K1q

¸

` εLpKq

ď
p1´ εq´1

řk
i“1 |Ci||Fni |

k
ÿ

i“1

L

ˆ

TCiFni pλ,Kq ` TFmpλ
1,K1q

TFmpλ
1,K1q

˙

` εLpKq .

(8.2.12)

Now, let ti “ p|Ci||Fni |q{
řk
j“1 |Cj ||Fnj | and notice that ti P p0, 1q and

řk
i“1 ti “ 1. Then

1
řk
j“1 |Cj ||Fnj |

k
ÿ

i“1

L

ˆ

TCiFni pλ,Kq ` TFmpλ
1,K1q

TFmpλ
1,K1q

˙

(8.2.13)

“

k
ÿ

i“1

ti
|Ci||Fni |

L

ˆ

TCiFni pλ,Kq ` TFmpλ
1,K1q

TFmpλ
1,K1q

˙

.

Since e P Fni , Ci Ď Fm Ď InFnpFmq Y BFnpFmq for all i “ 1, . . . , k and so

1

|Ci||Fni |
L

ˆ

TCiFni pλ,Kq ` TFmpλ
1,K1q

TFmpλ
1,K1q

˙

ď
1

|Ci||Fni |

ÿ

cPCi

L

ˆ

TcFni pλ,Kq ` TFmpλ
1,K1q

TFmpλ
1,K1q

˙

ď
1

|Ci||Fni |

¨

˚

˝

ÿ

cPCiXInF
n
pFmq

L

ˆ

TFni pλ,Kq ` Tc´1Fmpλ
1,K1q

Tc´1Fmpλ
1,K1q

˙

` |BFnpFmq|LpKq

˛

‹

‚

(8.2.14)

ď
1

|Fni |
L

˜

TFni pλ,Kq ` TFnpλ
1,K1q

TFnpλ
1,K1q

¸

`
|BFnpFmq|LpKq

|Ci||Fni |

“
1

|Fni |
L

ˆ

TFni pλ,Kq `N

N

˙

`
|BFnpFmq|LpKq

|Ci||Fni |

where the first inequality in the last line comes from the fact that (by definition of InFnpFmq),
Fn Ď c´1Fm for all c P Ci X InFnpFmq; the last equality is an application of (8.2.9)).
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Let us assemble together the above computations:

LpTFmpλ,Kq{TFmpλ
1,K1qq

|Fm|

(8.2.12)
ď

p1´ εq´1

řk
i“1 |Ci||Fni |

k
ÿ

i“1

L

ˆ

TCiFni pλ,Kqq ` TFmpλ
1,K1qq

TFmpλ
1,K1q

˙

` εLpKq

(8.2.13)
ď

1

1´ ε

k
ÿ

i“1

ti
|Ci||Fni |

L

ˆ

TCiFni pλ,Kq ` TFmpλ
1,K1q

TFmpλ
1,K1q

˙

` εLpKq

(8.2.14)
ď

1

1´ ε

k
ÿ

i“1

ti
|Fni |

L

ˆ

TFni pλ,Kq `N

N

˙

`

k
ÿ

i“1

ti
1´ ε

|BFnpFmq|LpKq

|Ci||Fni |
` εLpKq

ď

k
ÿ

i“1

ti
1´ ε

TFni pλ̄, K̄2q

|Fni |
`

1

1´ ε

k
ÿ

i“1

|BFnpFmq|LpKq
řk
i“1 |Ci||Fni |

` εLpKq

(8.2.11),(8.2.10),(8.2.6)
ď

1

1´ ε
pentLpR˚GpM{Nqq ` εq ` εLpKqpk ` 1q

“
1

1´ ε
entLpR˚GpM{Nqq ` ε

ˆ

LpKqpk ` 1q `
1

1´ ε

˙

.
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Chapter 9

Description of the conjectures and
known results

Recall that a concrete category is a pair pC, F : C Ñ Setq, where C is a category and F is a
faithful functor. In a concrete category one says that a morphism φ is injective (resp., surjective,
bijective) if so is the map F pφq. An object X of C is said to be hopfian (resp., cohopfian) if any
surjective (resp., injective) endomorphism of X is bijective. Such notion is usually introduced
in categories of (Abelian) groups, rings, modules, or topological spaces.

In this chapter we describe some classical conjectures related with the concepts of (co)Hopficity,
also underlying the relations among them and explaining some of the main known results.

9.1 Cellular Automata

In this section we introduce some basic definitions and facts about cellular automata. For more
details we refer to [16].

Definition 9.1. Let X be a set and let G be a group. We consider the product XG of |G|-many
copies of X, endowed with the product topology of the discrete topologies on each copy of G. We
consider the elements of XG as functions x : GÑ X, so that for any subset F of G, there is a
well-defined restriction xæF : F Ñ X. Consider the following left G-representation on XG

λ : GÑ AutToppX
Gq λpgq “ λg

such that pλgpxqqphq “ xpg´1hq, for all g, h P G. A cellular automaton is a map φ : XG Ñ XG

such that there exists a finite subset W Ď G and a map τ : XW Ñ X such that

φpxqpgq “ τpλ´1
g pxqæW q .

The map τ is called a local defining map and W is a defying window for φ. The set X is said
to be the alphabet of our automaton.

Let us give the following easier characterization of those maps φ : XG Ñ XG that are cellular
automata. This characterization, due to Ceccherini-Silberstein and Coornaert, is a generalization
of the classical Curtis-Hedlund Theorem.

Lemma 9.2. Let X be a set and let G be a group. Consider the uniformity on XG whose
entourages of the diagonal are of the form:

UF “ tpx, yq P XG ˆXG : xæF “ yæF u ,
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where F runs over all the finite subsets of G. Then, a map φ : XG Ñ XG is a cellular automaton
if and only if φ is uniformly continuous and λgφ “ φλg, for all g P G.

Proof. Suppose first that φ is a cellular automaton, let W be a defining window and let τ :
XW Ñ X be a local defining map. Then, for any finite subset F of G,

φ´1pUF q “ tpx, yq P XG ˆXG : φpxqæF “ φpyqæF u

“ tpx, yq P XG ˆXG : φpxqpfq “ φpyqpfq, @f P F u

“ tpx, yq P XG ˆXG : τpλ´1
f pxqæW q “ τpλ´1

f pyqæW q, @f P F u

Ě tpx, yq P XG ˆXG : xæfW “ yæfW , @f P F u “ UFW .

Let g P G and x P XG, then

λgpφpxqqphq “ φpxqpg´1hq “ τpλ´1
g´1h

pxqæW q “ τpλ´1
h pλgpxqqæW q “ φpλgpxqqphq ,

for all h P G. This proves that λgφ “ φλg for all g P G.

On the other hand, suppose that φ is uniformly continuous and λgφ “ φλg, for all g P G.
Choose a finite subset W Ď G such that φ´1pUteuq Ě UW , notice that W exists by uniform

continuity. By the choice of W , whenever we have two elements x, y P XG such that xæW “ yæW ,
φpxqpeq “ φpyqpeq, thus we can unambiguously define a map τ : XW Ñ X, where τpx : W Ñ

Xq “ φpx̃ : GÑW qpeq, where x̃ is any element of XG such that x̃æW “ x. Now, given g P G,

φpxqpgq “ λg´1φpxqpeq “ φpλg´1pxqqpeq “ τpλ´1
g pxqæW q ,

so τ is a defining map and W is a defining window for φ.

A map is surjunctive if it is non-injecitve or surjective. By the above lemma, one can see
that, given a set X and a group G, all the automata φ : XG Ñ XG are surjunctive if and only
if pλ,Gq ü XG is co-Hopfian in the category of right G-representations on Top.

The following long standing conjecture was stated by Gottschalk [52] in 1973:

Conjecture 9.3. Let X be a finite set and let G be a group. Then, any cellular automaton
φ : XG Ñ XG is surjunctive.

We refer to Conjecture 9.3 as the Surjunctivity Conjecture. This classical problem, which is
open in general, has been known for a long time to have a positive solution whenever G is an
amenable group. It was just in 1999 when Gromov [53] came out with a general theorem solving
the problem in the positive for the large class of sofic groups (see also [105]). In what follows we
recall the definition of this class of groups.

Let V be a nonempty finite set and denote by SV the symmetric group on V . Given two
permutations σ1 and σ2 P SV we let

dV pσ1, σ2q “
|tv P V : σ1pvq ‰ σ2pvqu|

|V |
,

be the normalized Hamming distance between σ1 and σ2.

Definition 9.4. Let G be a group, let K Ď G be a subset and let ε ě 0. Given a finite set V , a
left pK, εq-quasi representation of G on V is a map ϕ : GÑ SV such that:
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(QA.1) ϕpeq “ idV ;

(QA.2) for all k1 and k2 P K, dV pϕpk1k2q, ϕpk1qϕpk2qq ď ε;

(QA.3) for all k1 ‰ k2 P K, dV pϕpk1q, ϕpk2qq ě 1´ ε.

Whenever we have a left quasi representation ϕ : G Ñ SV we adopt the following notation.
Given two subsets V 1 Ď V and G1 Ď G, we let G1V 1 “ tϕgpvq : g P G1, v P V 1u. In case V 1 “ tvu
is a singleton set we let G1v “ G1tvu. Similarly, if G1 “ tgu is a singleton, gV 1 “ tguV 1.
Furthermore, gv “ ϕgpvq for all v P V and g P G1.

Notice that a left pG, 0q-quasi representation is just a left G-representation on Set.

For finitely generated groups, the following definition of sofic group is equivalent to the
definition given in [105] and [53] (see [11]).

Definition 9.5. A group G is sofic if, for any finite subset K Ď G and for any positive constant
ε, there exists a finite set V and a left pK, εq-quasi representation of G on V .

9.1.1 Linear cellular automata

One can define particular classes of cellular automata requiring the existence of a defining map
with specific properties. In this subsection we consider automata defined by continuous linear
maps:

Definition 9.6. Let G be a group, let R be a topological ring, let X be a topological left R-module
and consider a cellular automaton φ : XG Ñ XG. We say that φ is a linear cellular automaton
if there is a defining window W and a local defining map τ : XW Ñ X that is a continuous
homomorphism of left R-modules (where XW is endowed with the product topology).

One defines analogously linear cellular automata starting with topological right R-modules.

Lemma 9.7. Let G be a group, let R be a topological ring, let X be a topological left R-module
and consider a map φ : XG Ñ XG. Endow XG with the product topology and consider the
following statements:

(1) φ is a linear cellular automaton;

(2) φ is a continuous and λgφ “ φλg, for all g P G.

Then, (1)ñ(2). If N is discrete, then also (2)ñ(1).

Proof. (1)ñ(2). Let W Ď G be a defining window and let α : XW Ñ X be the associated
local defining map. For any subset G1 Ď G we let πG1 : XG Ñ XG1 be the canonical projection
πpxq “ xæG1 . Recall that a typical basic neighborhood of 0 for the product topology on XG is
of the form π´1

G1 pAq for some finite subset G1 Ď G and some open neighborhood A of 0 in XG1 .

For any open neighborhood A of 0 in X, φ´1pπ´1
tgupAqq “ π´1

gW pτ
´1pAqq is an open neighbor-

hood in XG. This is enough to show that φ is continuous since tπ´1
tgupAq : g P Gu is a prebase of

the topology. The fact that λgφ “ φλg, for all g P G is true for any cellular automaton.

(2)ñ(1). When X is discrete this follows by Lemma 9.2.
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A consequence of Lemma 9.7 is that, in the notation of the lemma, if pλ,Gq ü XG is co-
Hopfian in the category of left G-representations on topological left R-modules, then any linear
cellular automaton φ : XG Ñ XG is surjunctive.

The following conjecture is analogous to the Surjunctivity Conjecture for a particular class
of linear cellular automata.

Conjecture 9.8. Let K be a field, let V be a finite dimensional K-vector space and let G be a
group. Then, any linear cellular automaton φ : V G Ñ V G is surjunctive.

The above conjecture, to which we refer as the Linear Surjunctivity Conjecture was stated
by Ceccherini-Silberstein and Coornaert (see [16]) and has a positive solution for fields of char-
acteristic 0. Furthermore, Gromov’s general surjunctivity theorem in [53] (see also [13]) shows
that the L-Surjunctivity Conjecture holds for the class of sofic groups. Again, the general case
is unknown.

9.2 Endormophisms of modules

Let us start with the following example:

Example 9.9. Let R be a ring and let M be a Noetherian left R-module. Then, M is Hopfian.
Indeed, given a surjective morphism φ : M ÑM , consider the following sequence of submodules:

Kerpφq ď Kerpφ2q ď ¨ ¨ ¨ ď Kerpφnq ď . . .

By noetherianity there exists n̄ P N` such that Kerpφnq “ Kerpφn̄q, for all n ě n̄. By the
following sequence of isomorphisms induced by φ, we obtain that φ is a monomorphism and so
it is injective:

Kerpφq –
Kerpφ2q

Kerpφq
– ¨ ¨ ¨ –

Kerpφn̄`1q

Kerpφn̄q
“ 0 .

Let us consider also the following definition related to hopficity.

Definition 9.10. A ring R is directly finite if xy “ 1 implies yx “ 1 for all x, y P R. Further-
more, R is stably finite if the ring MatkpRq of k ˆ k square matrices with coefficients in R, is
directly finite for all k P N`.

The connection with hopficity is given in the following lemma.

Lemma 9.11. Let R be a ring, let RM be a left R-module and consider the following statements:

(1) M is hopfian;

(2) EndRpMq is directly finite.

In general, (1) implies (2). Furthermore, if M is projective, then (1) and (2) are equivalent.

Proof. (1)ñ(2). Let φ, ψ P EndRpMq be such that φψ “ id, which implies that φ is surjective.
By the hopficity of M we obtain that φ is an automorphism, that is, φψ “ ψφ “ id.

(2)ñ(1) assuming thatM is projective. Let φ : M ÑM be a surjective endomorphism. Consider
the following diagram in which the dotted arrow is given by the projectivity of M

M aa

Dψ

φ //M // 0

M

id

OO

Thus, φ has a right inverse which, by (2), is also a left inverse.
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Lemma 9.12. Let R be a ring, let RM and RN be left R-modules; suppose that RM is hopfian
and RN is a direct summand of RM . Then RN is hopfian as well.
In particular, R is stably finite (if and) only if any finitely generated projective left R-module is
hopfian.

Proof. Let RN
1 ď M be a complement for N , that is M – N ‘ N 1 and let φ : N Ñ N be a

surjective endomorphism. Let Φ : M Ñ M be such that Φpn, n1q “ pφpnq, n1q, for all n P N
and n1 P N 1. Clearly Φ is surjective and KerpΦq “ Kerpφq ‘ t0u. Now, KerpΦq is trivial by the
hopficity of M and so also Kerpφq “ 0 concluding the proof.

By the above lemma the class of Hopfian modules is closed by taking direct summands. On
the other hand, in general the class of Hopfian modules is not closed under taking finite direct
sums, not even over the ring Z, for a classical (counter)example see [25, Example 3]. Similarly,
the class of Hopfian modules is not closed under taking submodules. In order to obtain a class
with better closure properties, Anna Giordano Bruno and the author used in [46] the concept of
hereditarily hopfian Abelian group, that is, an Abelian group all of whose subgroups are Hopfian.
We remark that prof. Brendan Goldsmith let us know that this concept is well-known to experts,
even if it seems not to appear in the literature before [46].

Example 9.13. The additive group of ring of p-adic integers Jp is Hopfian but not hereditarily
Hopfian.
In fact, any Z-linear endomorphism of pJp,`q is also Jp-linear, so EndZpJpq is canonically
isomorphic, as a ring, to the commutative ring EndJppJpq – Jp. This shows that JpJp is directly
finite (since EndJppJpq is commutative) and so JpJp is Hopfian, being a projective Jp-module
(alternatively one can argue directly that JpJp is a Noetherian Jp-module). Thus, also ZJp is
Hopfian.
On the other hand, ZJp has infinite torsion-free rank, that is, there is a subgroup G ď Jp of the
form G – ZpNq which is clearly not Hopfian. Hence, ZJp is not hereditarily hopfian.

Generalizing from the case of Abelian groups we get the following definition:

Definition 9.14. Given a ring R, we say that a left R-module M is hereditarily Hopfian if and
only if all of its submodules are Hopfian.

9.2.1 The Stable Finiteness Conjecture

A long-standing open question about directly finite rings is the following conjecture due to
Kaplansky [64]

Conjecture 9.15. For any field K and any group G, the group ring KrGs is stably finite.

In case the field K is commutative and has characteristic 0, then the problem was solved in
the positive by Kaplansky. There was no progress in the positive characteristic case until 2002,
when Ara, O’Meara and Perera [5] proved that a group algebra DrGs is stably finite whenever
G is residually amenable and D is any division ring. This last result was generalized by Elek
and Szabó [38] (see also [13] and [6] for alternative proofs), who proved the following

Theorem 9.16. For any division ring K and any sofic group G, the group ring KrGs is stably
finite.
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A straightforward consequence of the above theorem is that MatnpKrGsq is stably finite for
any division ring K and any sofic group G. Now, by the Artin-Wedderburn Theorem, given
a semisimple Artinian ring R, there exist positive integers k, n1, . . . , nk P N` and division
rings K1, . . . ,Kk such that R – Matn1pK1q ˆ ¨ ¨ ¨ ˆ MatnkpKkq. This implies that, RrGs –
Matn1pK1rGsq ˆ ¨ ¨ ¨ ˆ MatnkpKkrGsq, thus a consequence of the above theorem is that RrGs
is stably finite whenever R is semisimple Artinian and G sofic. This result can be further
generalized as follows:

Remark 9.17. [Ferran Cedó, private communication (2012)] If R is a ring with left Krull
dimension, then RrGs is stably finite. First of all, notice that, if I is a nilpotent ideal of R,
then IrGs “ RrGsI is a nilpotent ideal of RrGs and so one can reduce the problem modulo
nilpotent ideals. Now, by [73, Corollary 6.3.8], the prime radical N of R is nilpotent and N “

P1 X ¨ ¨ ¨ X Pm, where P1, . . . , Pm are minimal prime ideals. Thus, by [73, Proposition 6.3.5],
R{N is a semiprime Goldie ring and so, by [73, Theorem 2.3.6] R{N has a classical semisimple
Artinian ring of quotients S. In particular, pR{NqrGs embeds in SrGs and it is therefore stably
finite.

Both the proof of the residually amenable case due to Ara, O’Meara and Perera, and the
proof of the sofic case due to Elek and Szabó, consist in finding a suitable embedding of KrGs
in a ring which is known to be stably finite. Such methods are really effective but, as far as we
know, cannot be used to obtain information on the modules over KrGs. It seems natural to ask
the following question related to Conjecture 9.15:

Question 9.1. Let R be a ring, let G be a group, let R˚G be a crossed product and let M be a
finitely generated left R-module. Under what conditions is R˚GbRM Hopfian (or hereditarily)
Hopfian?

In particular, Theorem 9.16 proves the Hopficity of R˚G bR R in the very particular case
when R is a field, R˚G “ RrGs and G is sofic. Furthermore, in [5] one can find a proof of the
fact that any crossed product D˚G of a division ring D and an amenable group G, is stably
finite.

We will generalize both these results in Chapters 10 and 11.

9.2.2 The Zero-Divisors Conjecture

Let us introduce another classical conjecture due to Kaplansky about group rings:

Conjecture 9.18. Let K be a field and G be a torsion-free group. Then KrGs is a domain.

Some cases of the above conjecture are known to be true but the conjecture is fairly open
in general (for a classical reference on this conjecture see for example [83]). In most of the
known cases, the strategy for the proof is to find an immersion of KrGs in some division ring.
This is clearly sufficient but, in principle, it is a stronger property. To the best of the author’s
knowledge, the following question remains open:

Question 9.2. Is it true that KrGs is a domain if and only if KrGs is a subring of a division
ring?

The above question is known to have positive answer if G is amenable (see [69, Example
8.16]).
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9.3 Relations among the conjectures

9.3.1 Duality

In the introduction of [38], it is observed that the Surjunctivity Conjecture implies the Stable
Finiteness Conjecture, in case K is a finite field. Roughly speaking, the idea is to consider K
as an Abelian group, view pKrGsqk as a dense subgroup of the compact group pKkqpGq and to
extend maps by continuity.
Let us give a different argument. In brief, consider the finite field K as a finite discrete Abelian
group; then, applying Pontryagin-Van Kampen’s duality to a G-equivariant endomorphism φ of
the discrete group pKkqpGq (with the left G-action) we get a continuous G-equivariant endomor-
phism pφ of the compact group pKkqG (with the right G-action) endowed with the product of the
discrete topologies, and viceversa.
Thus, Pontryagin-Van Kampen’s duality induces an anti-isomorphism

pEndl.RepGpLcaGrqppKkqpGqqqop – Endr.RepGpLcaGrqppKkqGq

between the ring of G-equivariant K-endomorphisms of pKkqpGq and the ring of G-equivariant
continuous K-endomorphisms of pKkqG. Ceccherini-Silberstein and Coornaert [13] give a differ-
ent argument that shows that the same ring anti-isomorphism holds for arbitrary fields (they
compose their map with the usual anti-involution on MatkpKrGsq to make it an actual ring
isomorphism). This proves that the L-Surjunctivity Conjecture is equivalent to the Stable
Finiteness Conjecture.

In this subsection we apply the Mülcer Duality Theorem, proved in Chapter 3, to relate ques-
tions regarding linear cellular automata to questions regarding modules. This process culminates
in Corollary 9.22, which is a generalization of the above anti-isomorphism.

Given a ring R and a group G, by Lemmas 3.58 and 9.7, and Proposition 3.59, a linear
cellular automaton whose alphabet is a discrete Artinian right R-module is exactly a morphism
in r.RepGpSLC-Rq. In particular, the following corollary applies to show that such linear cellular
automata have the so-called closed image property.

Corollary 9.19. Let G be a group and let R be a ring. Let λ1 : G Ñ AutSLC-RpN1q and
λ2 : G Ñ AutSLC-RpN2q be two right representations of G on strongly linearly compact right
R-modules. Given a morphism of representations φ : N1 Ñ N2, the image φpN1q is closed and
invariant under the action of G on N2.

Proof. Apply Lemma 3.60.

The following corollary of Theorem 3.65 provides a “bridge” between automata and homo-
morphisms of left ArGs-modules.

Corollary 9.20. Let G be a group and consider the setting described in (Dual.1, 2, 3). The
duality described in Theorem 3.65 induces a duality between ArGs-Mod and r.RepGpSLC-Rq.

Proof. It is enough to notice that a left action ρ : G Ñ AutApMq of G on a left A-module M
corresponds to a right action ρ˚ : GÑ AutSLC-RpM

˚q of G on the dual module M˚ (just letting
ρ˚pgq “ pρpgqq˚ for all g P G) and that a right action λ : GÑ AutSLC-RpNq on a strongly linearly
compact right R-module N (notice that G acts via topological automorphisms) corresponds to
a left action λ˚ : G Ñ AutApN

˚q of G on N˚. Applying Theorem 3.65 one obtains a duality
between r.RepGpSLC-Rq and l.RepGpMod-Aq; to conclude just remember that l.RepGpA-Modq
is equivalent to ArGs-Mod.
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The following corollary generalizes [16, Theorem 8.12.1]

Corollary 9.21. Let G be a group, let R be a ring and let N be a strictly linearly compact right
R-module. Let X ď NG be a closed G-invariant submodule. Then, any bijective G-equivariant
continuous homomorphism φ : X Ñ X has a continuous and G-equivariant inverse.
Furthermore, in the setting described in (Dual.1, 2, 3) and letting H “ Kn for some positive
integer n, any injective linear cellular automaton φ : HG Ñ HG has a left inverse that is a linear
cellular automaton.

Proof. By Proposition 3.59, X is strictly linearly compact, so φ is a topological automorphism
and thus its inverse ψ : X Ñ X is automatically a topological automorphism. The fact that ψ
is G-equivariant can be deduced from the fact that it is the inverse of a G-equivariant map.

For the second part, since H is strictly linearly compact discrete, an endomorphism of HG is
G-equivariant and continuous if and only if it is a linear cellular automaton. Furthermore, the
dual of HG is ArGsn that is a projective left ArGs-module, so HG is an injective object in
the category r.RepGpSLC-Rq. Now, an injective linear cellular automaton φ : HG Ñ HG is a
monomorphism and so it has a left inverse ψ : HG Ñ HG in r.RepGpSLC-Rq. By the previous
discussion, ψ is a linear cellular automaton.

The following corollary improves [13, Theorem 1.3].

Corollary 9.22. Let G be a group and consider the setting described in (Dual.1, 2, 3). Given a
right G-representation λ : G Ñ AutSLC-RpNq on a strictly linearly compact right R-module N ,
let M be the left ArGs-module which is dual to λ ü N . Then there is an anti-isomorphism of
rings

pEndr.RepGpSLC-RqpNqq
op // EndArGspMq

φ � // φ˚ .

In particular, Endr.RepGpSLC-RqppK
nqGq is anti-isomorphic to MatnpArGsq for any positive integer

n. Hence, ArGs is stably finite if and only if any linear cellular automaton φ : pKnqG Ñ pKnqG

is surjunctive, for any positive integer n.

Proof. The first statement is an easy consequence of duality. The fact that Endr.RepGpSLC-RqpK
nq

is anti-isomorphic to MatkpArGsq follows noticing that the dual of pKnqG is exactly ArGsn and
that EndArGspArGs

nq – MatnpArGsq. The last statement follows by the previous one recall-

ing that linear cellular automata pKnqG Ñ pKnqG are exactly the continuous G-equivariant
endomorphisms of pKnqG and using the second part of Corollary 9.21.

9.3.2 Zero-divisors and pre-injectivity

The following lemma will allow us to translate the Zero-Divisors Conjecture in the language of
linear cellular automata. Before that, consider a group G and the setting described (Dual.1, 2,
3), take a strictly linearly compact right R-module N and let G ü NG be the usual right action
of G. Then, the dual of this right G-representation is the left ArGs-module ArGs bA N

˚.

Lemma 9.23. Let G be a group and consider the setting described in (Dual.1, 2, 3). Let N
be a strictly linearly compact right R-module and let M “ N˚ be its dual. The following are
equivalent:

(1) any non-trivial endomorphism ArGs bAM Ñ ArGs bAM of left ArGs-modules is injective;
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(2) any non-trivial linear cellular automaton NG Ñ NG is surjective.

Proof. Let φ : NG Ñ NG be a linear cellular automaton. We have already noticed that φ is a
morphism in r.RepGpSLC-Rq , let us show that φ is an epimorphism in this category if and only
if it is surjective. Surjective implies epimorphism in any concrete category so let us suppose that
φ is an epimorphism. By Lemma 3.60, Impφq is closed in NG and it is clearly G-invariant. We
obtain the following sequence in r.RepGpSLC-Rq:

NG φ // NG π // NG{Impφq

where πφ “ 0 but, since we supposed that φ is an epimorphism, π “ 0, that is, Impφq “ NG.

By the above discussion, condition (2) holds if and only if any linear cellular automaton
NG Ñ NG is an epimorphism in r.RepGpSLC-Rq, thus, by duality, any endomorphism ArGs bA
M Ñ ArGs bAM in ArGs-Mod is a monomorphism, which is equivalent to condition (1) in the
statement.

We conclude this subsection combining the above result with a result of Ceccherini-Silberstein
and Coornaert, for which we need the following

Definition 9.24. Let R be a ring, let N be right R-module, let G be a group and let φ :
NG Ñ NG be a linear cellular automaton. Then, φ is pre-injective if and only if the restriction
φ : N pGq Ñ N pGq is injective.

Proposition 9.25. Let K be a field and let G be a group. The following are equivalent:

(1) KrGs is a domain;

(2) any non-trivial linear cellular automaton KG Ñ KG is pre-injective;

(3) any non-trivial linear cellular automaton KG Ñ KG is surjective.

Proof. The equivalence between (1) and (3) is a consequence of Lemma 9.23, while the equiva-
lence between condition (1) and condition (2) is [16, Corollary 8.16.12]

The above proposition extends [16, Corollary 8.16.13] to non-amenable groups.
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Chapter 10

The amenable case

10.1 Surjunctivity

Let X be a finite set and let G be an amenable group. The classical way to prove that any given
cellular automaton φ : XG Ñ XG is surjunctive is via topological entropy. In this section we
explain in detail this approach. First of all we need to give a formula to compute the entropy of
left G-representations induced on the closed G-invariant subsets Y of XG. Given an open cover
B of XG we let

BY “ tB X Y : B P Bu .

Notice that BY is an open cover of Y .

Lemma 10.1. Let X be a finite set, let G be a group and let Y Ď XG be a G-invariant (with
respect to the usual left G-representation pλ,Gq ü XG) closed subset. For any finite subset
F Ď G, let πF : XG Ñ XF be the restriction map and let A “ tπ´1

teupxq : x P Xu. Then,

(1) let C “ tC1, . . . , Cnu be a finite open cover of Y , where Ci “ π´1
Fi
pxiq X Y for some finite

subset Fi Ď G and xi P X
Fi, for all i “ 1, . . . , n. Then, C has a refinement of the form

p
Ž

gPF λ
´1
g AqY for some finite subset F Ď G.

(2) given an open cover B of Y , there is a finite subset e P F Ď G such that p
Ž

gPF λ
´1
g AqY ĺ B;

(3) Npp
Ž

gPF λ
´1
g AqY q “ |πF pY q| for any F Ď G.

Proof. (1) Let F “
Ťn
i“1 Fi and notice that p

Ž

gPF λ
´1
g AqY is a partition. Furthermore, each Ci

is a finite union of elements of p
Ž

gPF λ
´1
g AqY and any element of p

Ž

gPF λ
´1
g AqY is contained in

some Ci (since
Ťn
i“1Ci “ Y “

Ť

p
Ž

gPF λ
´1
g AqY and since p

Ž

gPF λ
´1
g AqY is a partition). Thus,

p
Ž

gPF λ
´1
g AqY ĺ C.

(2) First of all, we extract a finite sub-cover B1 of B. Let B1 “ tB1, . . . , Bnu, then each Bi is
a union of sets of the form

Ş

gPF λ
´1
g π´1

Fi
pxq X Y with F Ď G finite and x P XF . Let C be the

family of all such sets and let C1 be a finite sub-cover of C, which exists by compactness. Notice
that C1 ĺ C ĺ B1 ĺ B and that C1 has a refinement of the desired form by part (1).

(3) Let A1, A2 P p
Ž

gPF λ
´1
g AqY . By definition, there exist xi P πF pY q such that Ai “ π´1

F pxiqX

Y (for i “ 1, 2) and so A1 “ A2 if and only if x1 “ x2. Thus, the sets in p
Ž

gPF λ
´1
g AqY are in

bijection with the elements of πF pY q.

The above technical lemma allows us to prove the following useful formula.
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Proposition 10.2. Let X be a finite set, let G be a countably infinite amenable group and let
s “ tFnunPN be Følner sequence for G. Given a closed G-invariant subset Y Ď XG with the
induced G-action pλæY , Gq ü Y ,

hT pλæY , sq “ lim
nPN

log |πFnpY q|

|Fn|
.

In particular, hT pλæY , sq ď log |X| and hT pλ, sq “ log |X|.

Proof. Notice that, given two open covers B1, B2 of Y , if B1 ĺ B2, then NpB1q ě NpB2q and
Ž

gPF λ
´1
g B1 ĺ

Ž

gPF λ
´1
g B1 for any finite subset F Ď G. This shows that hT pB1, λæY , sq ě

hT pB2, λæY , sq whenever B1 ĺ B2.

By the above discussion and Lemma 10.1 (2)

hT pλæY , sq “ sup

$

&

%

hT

¨

˝

˜

ł

gPF

λ´1
g A

¸

Y

, λæY , s

˛

‚: F Ď G finite

,

.

-

.

Consider now a finite subset F Ď G and notice that

hT

¨

˝

˜

ł

gPF

λ´1
g A

¸

Y

, λæY , s

˛

‚“ lim
nPN

logN
´´

Ž

gPFnF
λ´1
g A

¯

Y

¯

|FnF |

|FnF |

|Fn|

p˚q
“ lim

nPN

logN
´´

Ž

gPFnF
λ´1
g A

¯

Y

¯

|FnF |

p˚˚q
“ hT pAY , λæY , sq

where p˚q is true since limnPN |FnF |{|Fn| “ 1 (this can be proved as in the proof of Lemma
8.19), while p˚˚q follows from the fact that FnF is a Følner sequence (see Lemma 4.22) and the
topological entropy does not depend on the choice of the Følner sequence.

The above computation proves that hT pλæY , sq “ hT pAY , λæY , sq, thus by Lemma 10.1 (3)

hT pλæY , sq “ lim
nPN

log |πFnpY q|

|Fn|
.

The last statements follow since log |πFnpY q| ď log |XFn | “ |Fn| log |X|, for all n P N.

For our application to surjunctivity we need also to show that the inequality hT pλæY , sq ď
log |X| in the above proposition is strict whenever the inclusion Y Ď XG is proper. For that we
need to apply the formalism of pE,F q-nets (see Subsection 8.2.2).

Lemma 10.3. Let G be a group, let E, K Ď G be finite subsets, let F “ EE´1 and let N Ď G
be an pE,F q-net. Then,

K Ď
ď

gPNXInEpKq
gF Y BF pKqF .

In particular, |N X InEpKq|{|K| ě 1{|F | ´ |BF pKq|{|K|.

Proof. By the definition of pE,F q-net, the translates of F cover G, so

K Ď
ď

NXOutF pKq
gF .
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Furthermore, pN X OutF pKqqzpN X InEpKqq Ď OutF pKqzInF pKq “ BF pKq. Putting together
these observations we obtain:

Kz
ď

gPNXInEpKq
gF Ď

ď

gPNXOutF pKq
gF z

ď

gPNXInEpKq
gF

Ď
ď

gPpNXOutF pKqqzpNXInEpKqq
gF Ď BF pKqF .

This shows that |K| ´ |
Ť

gPNXInEpKq gF | “ |K| ´ |N X InEpKq||F | ď |BF pKq||F |.

Using the above technical lemma we can give some concrete computation of topological
entropy.

Proposition 10.4. Let X be a finite set, let G be a countably infinite amenable group and let
s “ tFnunPN be Følner exhaustion for G. Given a closed G-invariant proper subset Y Ĺ XG

with the induced G-action pλæY , Gq ü Y , hT pλæY , sq ň log |X|.

Proof. We verified in Proposition 10.2 that

hT pλæY , sq “ lim
nPN

log |πFnpY q|

|Fn|
ď log |X| ,

so we have to show that the above inequality is strict. Since Y Ĺ XG, there exists n̄ P N such
that πFnpY q ‰ XFn for all n ě n̄, thus, log |πFnpY q| ď |Fn| log |X|´1 for all n ě n̄. Let E “ Fn̄,
let F “ EE´1 and let N be an pE,F q-net. Then, for all n ě n̄, let Fn “ Fnz

Ť

gPNXInEpFnq gE,
so

πFnpY q Ď
ź

gPNXInEpFnq
πgEpY q ˆX

Fn .

Using Lemma 10.3, |N X InEpFnq|{|Fn| ě 1{|F | ´ |BF pFnq|{|Fn| and so, for all n ě n̄,

log |πFnpY q|

|Fn|
ď
|N X InEpFnq| log |πEpY q| ` p|Fn| ´ |N X InEpFnq||E|q log |X|

|Fn|

ď
|N X InEpFnq| logp|XE | ´ 1q ` p|Fn| ´ |N X InEpFnq||E|q log |X|

|Fn|

“ log |X| ´
|N X InEpFnq|

|Fn|
log

ˆ

|XE |

|XE | ´ 1

˙

ď log |X| ´

ˆ

1

|F |
´
|BF pFnq|

|Fn|

˙

log

ˆ

|XE |

|XE | ´ 1

˙

By the above computation and the Følner condition,

lim
nPN

log |πFnpY q|

|Fn|
“ lim

něn̄

log |πFnpY q|

|Fn|
ď lim

něn̄

ˆ

log |X| ´

ˆ

1

|F |
´
|BF pFnq|

|Fn|

˙

log

ˆ

|XE |

|XE | ´ 1

˙˙

“ log |X| ´
1

|F |
log

ˆ

|XE |

|XE | ´ 1

˙

ă log |X| ,

as desired.

We are now ready for the announced result:



168 The amenable case

Theorem 10.5. Let X be a finite set, let G be a countably infinite amenable group and let
φ : XG Ñ XG be a cellular automaton. Then, φ is surjunctive.

Proof. Suppose that φ is injective and let us prove that φ is surjective. Notice that φpXGq “ Y is
a closed and φ induces an homeomorphism between XG and Y (see Theorem 3.11); furthermore,
Y is a G-invariant subset of XG. Let s “ tFnunPN be Følner sequence for G, then hT pλæY , sq “
hT pλ, sq since λæY ü Y and λ ü XG are isomorphic representations. By Proposition 10.4 this
implies that Y “ XG, that is, φ is surjective.

10.2 Stable finiteness

In this section we use the theory of algebraic entropy to prove that a large class of left R˚G-
modules is hereditarily Hopfian, in case R is left Noetherian and G is amenable. We remark
that this is a very strong version of Kaplasky’s Stable Finiteness Conjecture in the amenable
case, which can be re-obtained as a corollary.

Theorem 10.6. Let R be a left Noetherian ring, G a countably infinite amenable group and
let R˚G be a fixed crossed product. Then, for any finitely generated left R-module RK, the left
R˚G-module R˚GbR K is hereditarily Hopfian.
In particular, EndR˚GpMq is stably finite for any submodule R˚GM ď R˚GbR K.

The proof of the above theorem makes use of the full force of the localization techniques
introduced in Chapters 1 and 2. Such heavy machinery hides in some sense the idea behind
the proof; this is the reason for which we prefer to give first the proof of the following more
elementary statement, whose proof is far more transparent.

Lemma 10.7. Let K be a division ring, let G be a countably infinite amenable group and fix
a crossed product K˚G. For all n P N`, pK˚Gqn “ K˚G b Kn is a hereditarily hopfian left
K˚G-module.

Proof. Let n P N` and choose K˚G-submodules N ď M ď pK˚Gqn such that there exists a
short exact sequence

0 Ñ N ÑM ÑM Ñ 0 ,

we have to show that N “ 0. The length function dim : K-Mod Ñ Rě0Yt8u is compatible with
any crossed product, so we can consider the dim-entropy of left K˚G-modules. In particular, we
have that entdimpMq “ entdimpMq ` entdimpNq and

0 ď entdimpNq ď entdimpMq ď entdimpK˚GbKnq “ n .

Thus, entdimpNq “ 0. By Proposition 8.23, this implies that dimpNq “ 0, that is, N “ 0.

The same argument of the above proof can be used to prove Theorem 10.6, modulo the
fundamental tool of Gabriel dimension:

Proof of Theorem 10.6. Consider a left R˚G-submodule M ď R˚G bR K and a short exact
sequence of left R˚G-modules

0 Ñ Kerpφq ÑM
φ
ÝÑM Ñ 0 .

In order to go further with the proof we need to show that, as a left R-module, the Gabriel
dimension of Kerpφq is a successor ordinal whenever it is not ´1 (i.e., whenever Kerpφq ‰ 0).
This follows by the following
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Lemma 10.8. In the hypotheses of Theorem 10.6, G.dimpRNq is a successor ordinal for
any non-trivial R-submodule N ď R˚GbR K.

Proof. A consequence of Lemma 2.70 (4) is that Tα`1pKq{TαpKq ‰ 0 for just finitely
many ordinals α. Notice that TαpR˚G bR Kq – R˚G bR TαpKq, as left R-modules, for
any ordinal α. Thus, Tα`1pR˚G bR Kq{TαpR˚G bR Kq ‰ 0 for finitely many ordinals.
Notice also that TαpNq “ TαpR˚GbR Kq XN for all α, thus,

Tα`1pNq

TαpNq
“

Tα`1pR˚GbR Kq XN

TαpR˚GbR Kq XN
–

–
pTα`1pR˚GbR Kq XNq `TαpR˚GbR Kq

TαpR˚GbR Kq
ď

Tα`1pR˚GbR Kq

TαpR˚GbR Kq

is different from zero for finitely many ordinals α. Thus,

G.dimpNq “ suptα` 1 : Tα`1pNq{TαpNq ‰ 0u “ maxtα` 1 : Tα`1pNq{TαpNq ‰ 0u

is clearly a successor ordinal.

Now, suppose that Kerpφq ‰ 0 and let G.dimpKerpφqq “ α` 1. We want to show that

φæTα`1pMq : Tα`1pMq Ñ Tα`1pMq

is surjective. Indeed, if there is x P Tα`1pMqzφpTα`1pMqq, it means that there exists y P
MzTα`1pMq such that φpyq “ x (by the surjectivity of φ). This is to say that there is a short
exact sequence

0 Ñ Kerpφq XR˚Gy Ñ R˚Gy Ñ R˚GxÑ 0 ,

with G.dimpRpR˚Gyqq ŋ α ` 1 ě maxtG.dimpRpKerpφq X R˚Gyqq,G.dimpRpR˚Gxqqu, which
contradicts Lemma 2.70 (2). Thus, we have a short exact sequence of left R˚G-modules

0 Ñ Kerpφq Ñ Tα`1pMq Ñ Tα`1pMq Ñ 0 .

Consider the length function `α : R-Mod Ñ Rě0 Y t8u described in Subsection 7.2.3 and recall
that Kerp`αq is exactly the class of all left R-modules with Gabriel dimension ď α. Furthermore,
Tα`1pKq is a Noetherian module, thus, QαpTα`1pKqq is a Noetherian object in a semi-Artinian
category, that is, an object with finite composition length, for this reason `αpTα`1pKqq “
`pQαpTα`1pKqqq ă 8. Using the computations of Example 8.21 and the Addition Theorem, we
get

ent`αpTα`1pR˚GbKqqq “ ent`αpR˚GbTα`1pKqqq “ `αpTα`1pKqq ă 8

and
ent`αpTα`1pMqq “ ent`αpTα`1pMqq ` ent`αpKerpφqq .

Hence, ent`αpKerpφqq “ 0 which, by Proposition 8.23, is equivalent to say that Kerpφq Ď Kerp`αq,
contradicting the fact that G.dimpKerpφqq “ α` 1.

In the above proof we made use of the Addition Theorem for the algebraic entropy, which
is quite a deep result. We want to underline that if one is only interested in the second part
of the statement, that is, stable finiteness of endomorphism rings, then it is sufficient to use
the weaker additivity of the algebraic entropy on direct sums, which can be verified as an easy
exercise independently from the Addition Theorem.



170 The amenable case

Example 10.9. Let G be a free group of rank ě 2 and let K a field. It is well-known that KrGs
is not left (nor right) Noetherian so we can find a left ideal KrGsI ď KrGs which is not finitely
generated. Furthermore, by [23, Corollary 7.11.8], KrGs is a free ideal ring, so I is free. This
means that I is isomorphic to a coproduct of the form KrGspNq which is obviously not Hopfian.

10.3 Zero-Divisors

In this section we provide an alternative argument to answer Question 9.2 for amenable groups (in
the more general setting of crossed products) and we translate the amenable case of Conjecture
9.18 into an equivalent statement about algebraic entropy. This approach is inspired to the work
of Nhan-Phu Chung and Andreas Thom [22]. Indeed, we can prove the following

Theorem 10.10. Let K be a division ring and let G be a countably infinite amenable group.
For any fixed crossed product K˚G, the following are equivalent:

(1) K˚G is a left Ore domain;

(2) K˚G is a domain;

(3) entdimpK˚GMq “ 0, for every proper quotient M of K˚G;

(4) Impentdimq “ NY t8u.

Before proving the above theorem we need to establish the following relation between the
Ore property and the existence of a suitable length function.

Proposition 10.11. A domain D is left Ore if and only if there exists a length function
L : ObpD-Modq Ñ Rě0 Y t8u such that LpDq “ 1.

Proof. If D is left Ore, then D is a flat subring of a division ring K. Then there is an exact
functor K bD ´ : D-Mod Ñ K-Mod which commutes with direct limits. Thus, we can define
the desired length function L simply letting LpDMq “ dimKpKbDMq.
On the other hand, suppose that there is a length function L : ObpD-Modq Ñ Rě0 Y t8u such
that LpDq “ 1 and choose x, y P Dzt0u. Since D is a domain, both Dx and Dy contain
(and are contained in) a copy of D, thus LpDxq “ LpDyq “ 1. If, looking for a contradiction,
DxXDy “ t0u, then

1 “ LpDq ě LpDx`Dyq “ LpDx‘Dyq “ LpDxq ` LpDyq “ 2,

which is a contradiction.

It is a classical result that any left Noetherian domain is left Ore (see for example [73,
Theorem 1.15 in Chapter 2.1]). By the above proposition we can generalize this result as follows:

Corollary 10.12. A domain with left Gabriel dimension is necessarily left Ore.

Proof. Let D be a domain with left Gabriel dimension. First of all we verify that G.dimpDDq is
not a limit ordinal. Indeed, if G.dimpDDq “ λ is a limit ordinal, then D “

Ť

αăλ TαpDq. This
means that, for any non-zero x P D, there exists α ă λ such that Dx P TαpDq. Choose a non-
zero x P D, as D is a domain, there is a copy of D inside Dx. Thus, G.dimpDq ď G.dimpDxq ď α
for some α ă λ, a contradiction.
If G.dimpDDq “ α` 1 for some ordinal α, then we can consider the length function

`α : ObpD-Modq Ñ Rě0 Y t8u , `αpMq “ `pQαpMqq .
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To conclude one has to show that `αpDq “ 1, that is, QαpDq is a simple object. Since Cα`1{Cα
is semi-Artinian, there is a simple subobject S of QαpDq. Then SαpSq is a sub-module of
SαQαpDq. Identify SαpSq, SαQαpDq and D with submodules of EpDq, since D is essential in
EpDq, there is 0 ‰ x such that x P SαpSq XD, but then SαpSq contains an isomorphic copy of
D. Thus QαSαpSq “ S contains an isomorphic copy of QαpDq, which is therefore simple.

We can finally prove our result:

Proof of Theorem 10.10. (1)ñ(2) is trivial while (2)ñ(1) follows by Proposition 10.11 and the
fact that the algebraic dim-entropy is a length function on K˚G-Mod such that entdimpK˚GK˚Gq “
1.

(2)ñ(3). Consider a short exact sequence 0 Ñ K˚GI Ñ K˚GK˚G Ñ K˚GM Ñ 0, with
I ‰ 0. Choose 0 ‰ x P I, then K˚Gx – K˚G, and so entdimpK˚GMq “ entdimpK˚GK˚Gq ´
entdimpK˚GIq ď 1´ 1 “ 0.

(3)ñ(4). Let us show first that for any finitely generate left K˚G-module K˚GF , entdimpK˚GF q P
N. In fact, choose a finite set of generators x1, . . . , xn for F and, letting F0 “ 0 and Fi “
K˚Gx1 ` ¨ ¨ ¨ ` K˚Gxi for all i “ 1, . . . , n, consider the filtration 0 Ď F1 Ď F2 Ď ¨ ¨ ¨ Ď Fn “ F .
By additivity,

entdimpF q “
n
ÿ

i“1

entdimpFi{Fi´1q .

All the modules F1{F0, . . . , Fn{Fn´1 are cyclics (i.e. quotients of K˚G), thus entdimpFi{Fi´1q P

t0, 1u by hypothesis. Hence, entdimpF q P N. To conclude one argues by upper continuity that
the algebraic dim-entropy of an arbitrary left K˚G-module is the supremum of a subset of N,
thus it belongs to NY t8u.
(4)ñ(2). Let x P K˚G and consider the short exact sequence

0 Ñ I Ñ K˚GÑ K˚GxÑ 0

where I “ ty P K˚G : yx “ 0u. Suppose that x is a zero-divisor, that is, I ‰ 0 or, equivalently,
dimpKIq ‰ 0. By Proposition 8.23, entdimpIq ą 0 and, by our assumption, entLpIq ě 1. Hence,
using additivity, entdimpK˚Gxq “ 0. Again by Proposition 8.23, this implies dimpK˚Gxq “ 0
and consequently K˚Gx “ 0, that is, x “ 0. Thus, the unique zero-divisor in K˚G is 0.
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Chapter 11

The sofic case

In this chapter we describe a “point-free strategy” to solve the sofic case of both the L-
Surjunctivity and of the Stabel Finiteness Conjectures. In particular, we will prove the following
theorems.

Theorem 11.8 Let R be a ring, let G be a sofic group and let RN be an Artinian left R-module.
Then, any linear cellular automaton φ : NG Ñ NG is surjunctive.

Notice that the above theorem generalizes in different directions the main results of [15] and
[14]. Furthermore, the following general version of the Stable Finiteness Conjecture for sofic
groups, generalizes results of [38] and [5]:

Theorem 11.11 Let R be a ring, let G be a sofic group, fix a crossed product R˚G, let NR be
a finitely generated right R-module and let MR˚G “ N bR R˚G.

(1) If NR is Noetherian, then any surjective homomorphism φ : M ÑM is injective;

(2) if NR has Krull dimension, then EndR˚GpMq is stably finite.

The chapter is organized as follows: first we prove some general results for qframes in Section
11.1, then in Section 11.2 we deduce from these results the proof of the above theorems.

11.1 Main Theorems

11.1.1 The 1-dimensional case

I’ve learnt the arguments used in the proof of the following lemma while reading [38, proof of
Proposition 4.4] and [105, proof of Lemma 3.1]. Also Lemma 11.2 is inspired by the argument
used by Weiss to show surjunctivity of sofic groups.

Lemma 11.1. Let G be a group, let K be a finite symmetric subset of G and let H “ KK.
Choose n P Ně2, let ε be a positive constant such that ε ă 1

2n|H|2
, let V be a finite set, let

ϕ : GÑ SV be an pH, εq-quasi-action of G on V and define the following set:

V̄ “ tv P V : hv ‰ h1v and ph1h2qv “ h1ph2vq, for all h ‰ h1 P H, h1, h2 P Hu .

Then, the following statements hold true:

(1) |V̄ | ě p1´ 1{nq|V |;

(2) there is a subset W Ď V̄ such that Kv XKw “ H for all v ‰ w PW and |W | ě |V |{2|H|.
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Proof. (1) A given v P V belongs to V̄ if and only if it satisfies the following two conditions:

(a) ϕh1pvq ‰ ϕh2pvq for all h1 ‰ h2 P H;

(b) ϕh1h2pvq “ ϕh1pϕh2pvqq for all h1, h2 P H.

There are less than |H|2 equations in (a) and each of these equations can fail for at most ε|V |
elements v in V . Similarly, there are |H|2 equations in (b) and each of these equations can fail
for at most ε|V | elements v P V . Thus, the cardinality of V̄ is at least

|V | ´ p|H|2ε|V | ` |H|2ε|V |q ě |V |p1´ 2|H|2εq ě |V |p1´ 1{nq .

(2) Let W be a maximal subset of V̄ with the property that Kv XKw “ H for all v ‰ w PW .
We claim that HW contains V̄ . In fact, if there is v P V̄ such that v R HW , this means that, for
all w P W , Kv XKw “ H, contradicting the maximality of W . Thus, |V̄ | ď |WH| ď |W ||H|.
To conclude, use that 2|V̄ | ě |V | by part (1) and the choice of n.

Lemma 11.2. In the same setting of Lemma 11.1, let pL1,ďq and pL2,ďq be two qframes of
finite length and consider a homomorphism of qframes Φ : L1 Ñ L2. Let l P Ně1 and suppose
that

(1) there is distinguished family of elements tx̄v : v P KV̄ u such that

(1.1)
Ž

KV̄ x̄v “ 1 ;

(1.2) `px̄vq “ l, for all v P KV̄ ;

(2) ` p
Ž

vPKw Φpx̄vqq ď |K|l ´ 1, for all w P V̄ .

Then, `pImpΦqq ď
´

1´ 1
2|H|l

¯

|V |l.

Proof. Choose a W Ď V̄ as in part (2) of Lemma 11.1. By Lemma 2.25,

`pΦpL1qq “ `

˜

ł

vPKV̄

Φpx̄vq

¸

ď `

¨

˝

ł

vPKV̄ zKW

Φpx̄vq

˛

‚` `

˜

ł

vPKW

Φpx̄vq

¸

.

Furthermore,

`

˜

ł

vPKW

Φpx̄vq

¸

ď
ÿ

wPW

`

˜

ł

vPKw

Φpx̄vq

¸

ď |W |p|K|l ´ 1q .

By the choice of W , |KV̄ zKW | “ |KV̄ | ´
ř

wPW |Kw| “ |KV̄ | ´ |W ||K| and, by Lemma 2.26,

`
´

Ž

vPKV̄ zKW Φpx̄vq
¯

ď `
´

Ž

vPKV̄ zKW x̄v

¯

, thus

`

¨

˝

ł

vPKV̄ zKW

x̄v

˛

‚ď
ÿ

vPKV̄ zKW

`px̄vq “ |KV̄ zKW |l “ p|KV̄ | ´ |W ||K|ql ď p|V | ´ |W ||K|ql ,

Putting together all these data, we get

`pΦpL1qq ď |W |p|K|l ´ 1q ` p|V | ´ |W ||K|ql “ ´|W | ` |V |l ď

ˆ

1´
1

2|H|l

˙

|V |l .
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Theorem 11.3. Let M be a qframe, let G be a sofic group, let ρ : G Ñ AutpMq be a right
action of G on M (we let ρpgq “ ρg for all g P G) and let φ : M Ñ M be a G-equivariant
homomorphism of qframes, that is, ρgφ “ φρg, for all g P G. Choose an element ȳ P M such
that

(a) `pȳq “ l ă 8;

(b) the family tȳg : g P Gu is join-independent, where ȳg “ ρgpȳq for all g P G;

(c) there exists a finite symmetric subset F Ď G such that φpȳq ď
Ž

gPF ȳg and e P F .

Fix an F as in (c) and let K be a finite symmetric subset of G containing F . Then, the following
conditions are mutually exclusive:

(1) ȳ ď
Ž

gPK φpȳgq;

(2) `
´

Ž

gPK φpȳgq
¯

ď |K|l ´ 1.

Proof. Assume, looking for a contradiction, that both (1) and (2) are verified. We start by
constructing some objects to which we want to apply Lemmas 11.1 and 11.2.

First we construct the objects mentioned in Lemma 11.1. Choose a positive integer n ě 2|H|l,
letH “ KK, let ε be a positive constant such that ε ă 1

2n|H|2
, let V be a finite set, let ϕ : GÑ SV

be an pH, εq-quasi-action of G on V and define

V̄ “ tv P V : hv ‰ h1v and ph1h2qv “ h1ph2vq, for all h ‰ h1 P H, h1, h2 P Hu .

Secondly, we construct the objects mentioned in Lemma 11.2. For a subset G1 Ď G, we use
the notation ȳG1 “

Ž

gPG1 ȳg and, for all v P V , we let QG
1

v be a qframe isomorphic to r0, ȳG1s.

For all v P V , we identify both Qev “ Q
teu
v and QKv with sub-qframes of QHv in such a way that

there is an isomorphism of qframes

qv : QHv ÝÑ r0, ȳHs ,

such that qvpQ
e
vq “ r0, ȳs and qvpQ

K
v q “ r0, ȳKs. For all v P V̄ , the map σv : Hv Ñ H such that

σvphvq “ h is well defined and bijective. So, given v P V̄ and w P Hv we let

qwv : QHw Ý̃Ñr0, ȳHσvpwqs

be the composition qwv “ ρσvpwqqw. Let us introduce the following notation for all G1 Ď G:

QG
1

“
ź

vPV̄

QG
1

v , @G1 Ď G .

For all v P V̄ , we denote by ιG
1

v : QG
1

v Ñ QG
1

the canonical inclusion in the product. Consider,
for all v P V̄ , the following homomorphism of qframes:

Ψv : QH ÝÑ r0, ȳHHs such that pawqwPV̄ ÞÑ
ł

wPHvXV̄

qwv pawq

Given a, b P QH , let

a „ b ðñ Ψvpaq “ Ψvpbq @v P V̄ .
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This defines a strong congruence on QH and, by restriction, on QK . Let L1 “ QK{„ and
L2 “ QH{„ and let π1 : QK Ñ L1 and π2 : QH Ñ L2 be the canonical projections. For all
v P ¯̄V , let Φv : QKv Ñ QHv be the unique map such that qvΦvpxq “ φpqvpxqq, for all x P QKv . We
let Φ : QK Ñ QH be the product of these maps, that is, ΦpxvqvPV̄ “ pΦvpxvqqvPV̄ . Given two
elements a „ b P QK , Φpaq „ Φpbq. In fact, for all v P V̄ ,

ΨvΦpaq “
ł

wPHvXV̄

ρσvpwqqwΦwpawq “
ł

wPHvXV̄

ρσvpwqφqwpawq “ φ

˜

ł

wPHvXV̄

qwv pawq

¸

“ φ

˜

ł

wPHvXV̄

qwv pbwq

¸

“ . . . “ ΨvΦpbq .

Let Φ̄ : L1 Ñ L2 be the unique map such that Φ̄π1 “ π2Φ. One verifies that Φ̄ is a morphism of
qframes.

Now that the setting is constructed we need to verify that the hypotheses (1) and (2) of
Lemma 11.2 are satisfied. For all v P V̄ and k P K we let xvk “ ιKv pq

´1
v pȳkqq. Let us show that

xvk „ xv
1

k1 if and only if kv “ kv1. Indeed, given v, v1 P V̄ and k, k1 P K such that xvk „ xv
1

k1 , notice
that

Ψvpx
v
kq “ ȳk and Ψvpx

v1

k1q “ ρσvpv1qȳk1

if v1 P Hv, otherwise it is 0. Thus, σvpv
1qk1 “ k, that is, v1 “ σvpv

1qv “ pk1q´1kv, so k1v1 “ kv
(here we are using that v, v1 P V̄ ). Hence, given w “ kv P KV̄ , we can define x̄w “ π1px

v
kq

without any ambiguity. Clearly
Ž

vPKV̄ x̄v “ 1, let us show that the family tx̄v : v P KV̄ u Ď L1

is join-independent. Indeed, given k1v1 P KV̄ ,

x̄k1v1 ^
ł

k1v1‰kvPKV̄

x̄kv “ π1

¨

˝xv
1

k1 ^
ł

k1v1‰kwPKV̄

xvk

˛

‚“ π1p0q “ 0 ,

where the first equality comes from the definition of the x̄w and the properties of π1 (see Lemma
2.14), while the second equality holds since the family txvk : kv P KV̄ u Ď QK is join-independent.

Furthermore, for all w P V̄ :

`

˜

ł

vPKw

Φ̄px̄vq

¸

“ `

˜

ł

vPKw

Φ̄π1pQ
K
v q

¸

“ `

˜

ł

vPKw

π2ΦvpQ
K
v q

¸

ď `

˜

ł

vPKw

ΦpQKv q

¸

ď `pφpr0, ȳKsqq ď |K|l ´ 1 .

In the last part of the proof we obtain the contradiction we were looking for. Indeed, we claim
that the restriction of π2 to Qe is injective and that π2pQ

eq Ď Φ̄pL1q. In fact, let a “ pavqvPV̄ and
b “ pbvqvPV̄ P Q

e and suppose that π2paq “ π2pbq, that is, a „ b. For all v P V̄ and w P Hv X V̄ ,
by construction, qwv pawq, q

w
v pbwq ď ȳσvpwq. So, using modularity and the independence of the

family tȳg : g P Gu,

qvpavq “ qvpavq _ 0 “ hvpavq _

¨

˝

ł

v‰wPHvXV̄

qwv pawq ^ ȳ

˛

‚“ ȳ ^

¨

˝qvpavq _
ł

v‰wPHvXV̄

qwv pawq

˛

‚

“ ȳ ^Ψvpaq “ ȳ ^Ψvpbq “ . . . “ qvpbvq ,
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that is, av “ bv, for all v P V̄ . Our second claim follows by construction and the hypothesis (1).
Also recalling the estimate for |V̄ | given in Lemma 11.1, the two claims we just verified imply
that

`pImpΦ̄qq ě `pπ2pQ
peqqq “ `pQpeqq “ |V̄ |l ě

ˆ

1´
1

n

˙

|V |l .

Furthermore, by Lemma 11.2, `pImpΦ̄qq ă
´

1´ 1
2|H|l

¯

|V |l. Thus, n ă 2|H|l, which is a contra-

diction.

11.1.2 Higher dimensions

Lemma 11.4. Let pM,ďq be a qframe, let G be a group, let ρ : GÑ AutpMq be a right action
of G on M and consider an algebraic G-equivariant homomorphism of qframes φ : M Ñ M .
Suppose that there exists an element y P M such that r0, ys is finitely generated and such that,
letting yg “ ρgpyq for all g P G, the family tyg : g P Gu is a basis for M . Then,

(1) φ is surjective if and only if there exists a finite subset K Ď G such that y ď
Ž

gPK φpygq;

(2) φ is not injective if and only if there exist a finite subset K Ď G and 0 ‰ x ď
Ž

gPK yg such
that φpxq “ 0.

Proof. (1) Suppose that φ is surjective, then
Ž

gPG φpygq “ φp1q “ 1. By Lemma 2.16, one
can find a finite subset K Ď G such that y ď

Ž

gPG φpygq . On the other hand, if there exists
K Ď G such that y ď

Ž

gPK φpygq, then yh ď
Ž

gPKh´1 φpygq ď φp1q for all h P G. Thus,
1 “

Ž

hPG yh ď φp1q and so φ is surjective.

(2) By the algebraicity of φ, if φ is not injective, there is a non-trivial element x1 P Kerpφq.
By Lemma 2.11, there exists a finite subset K Ď G such that x1 ^

Ž

gPK yg ‰ 0, so that
x “ x1 ^

Ž

gPK yg is the element we were looking for. The converse is trivial.

Theorem 11.5. Let pM,ďq be a qframe, let G be a sofic group, let ρ : GÑ AutpMq be a right
action of G on M and consider a surjective algebraic G-equivariant homomorphism of qframes
φ : M Ñ M . For a given element y P M such that r0, ys is compact, consider the following
conditions:

(a˚) r0, ys is Noetherian;

(a˚
1) K.dimpr0, ysq exists and there is a homomorphism of qframes ψ : M Ñ M such that
φψ “ id;

(b˚) letting yg “ ρgpyq for all g P G, the family tyg : g P Gu is a basis for M .

If (b˚) and either (a˚) or (a1˚) hold, then φ is injective.

Proof. Suppose, looking for a contradiction, that φ is not injective. Suppose that (b˚) is verified,
so by Lemma 11.4, there exists a finite subset K of G such that

(1˚) y ď
Ž

gPK φpygq;

(2˚) there exists 0 ‰ x ď
Ž

gPK yg such that φpxq “ 0.

Furthermore, since r0, ys is compact, also r0, φpyqs is compact and so there exists a finite subset
F Ď G such that
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(3˚) φpyq ď
Ž

gPF yg.

In case (a˚) is verified, by Lemma 2.47 there exists an ordinal α such that G.dimpr0,Kerpφqsq “
α` 1. On the other hand, if (a’˚) is verified, we let α be any ordinal such that tαpxq ‰ tα`1pxq.
In both cases, let M̄ “ QαpTα`1pMqq and denote by π : Tα`1pMq Ñ M̄ the canonical projection.
We let x̄ “ πptα`1pxqq and ȳ “ πptα`1pyqq. There is an induced right action of G on M̄ , ρ̄ : GÑ
AutpM̄q, where ρ̄g “ QαpTα`1pρgqq for all g P G. Of course, the map φ̄ “ QαpTα`1pφqq : M̄ Ñ M̄
is G-equivariant. One can prove that ρ̄gpȳq “ πptα`1pygqq, for all g P G, and so, whenever (b˚) is
verified, the family tȳg : g P Gu, where ȳg “ ρ̄gpȳq, is a basis of M̄ (it is clear that

Ž

ȳg “ 1, to
see that this family is join-independent use that the canonical projection commutes with joins
and finite meets by Lemma 2.14).

Suppose that (a˚) is verified. By Proposition 2.52 (2), r0, ȳs is semi-Artinian and, by
(a˚), it is also Noetherian. Thus, `pȳq “ l ă 8. Notice that, by (3˚), φ̄pȳq ď

Ž

gPF ȳg
and, by (1˚), tα`1pyq P r0,

Ž

gPK φpygqs, thus there exists z ď
Ž

gPK yg such that φpzq “
tα`1pyq. By the algebraicity of φ and Lemma 2.42 (2), G.dimpr0, zsq “ maxtG.dimpr0,Kerpφq ^
zsq,G.dimpr0, tα`1pyqsqu “ α ` 1, thus z P r0,

Ž

gPK tα`1pygqs. Applying π, we obtain an ele-

ment πpzq P r0,
Ž

gPK ȳgs such that φ̄pπpzqq “ πpφpzqq “ ȳ. Thus, ȳ ď
Ž

gPK φ̄pȳgq. By the

choice of α, Kerpφ̄q ‰ 0 and so, by Lemma 2.11, there exists a finite subset F 1 Ď G such that
Kerpφ̄q ^

Ž

gPF 1 ȳg ‰ 0. Let K 1 be a finite symmetric subset of G which contains both F 1 and
K, then

ȳ ď
ł

gPK1

φ̄pȳgq and `

¨

˝

ł

gPK1

φ̄pȳgq

˛

‚ď |K 1|l ´ 1 ,

by the above discussion and Lemma 2.28. These two conditions cannot happen for the same K 1

by Theorem 11.3, so we get a contradiction.

Suppose now that (a1˚) is verified. We define ψ̄ “ QαpTα`1pψqq : M̄ Ñ M̄ , so that φ̄ψ̄ “ id.
Consider the socle SocpM̄q “ r0, spM̄qs and notice that spM̄q “

Ž

gPG spr0, ȳgsq. Since r0, ȳs
is semi-Artinian and it has Krull dimension, then it is Artinian, thus, it has a socle of finite
length: let l “ `pspȳqq. By the choice of α, x̄ ‰ 0 and spx̄q “ x̄ ^ spM̄q ‰ 0, since, being
M̄ semi-Artinian, spM̄q is essential in M̄ . Since SocpM̄q is fully invariant (see Lemma 2.30
(4)), φ̄æSocpM̄qψ̄æSocpM̄q “ idSocpM̄q. The family tspȳgq : g P Gu is clearly join-independent.

Furthermore, using the fact that r0, spȳqs is compact (since it has finite length), also r0, φ̄pspȳqqs
and r0, ψ̄pspȳqqs are compact, so there exists a finite subset F 1 Ď G such that φ̄pspȳqq, ψ̄pspȳqq ď
Ž

gPF 1 spȳgq. Let K 1 Ď G be a finite symmetric subset that contains both F 1 and K, then

spȳq “ φ̄pψ̄pspȳqqq ď φ̄

¨

˝

ł

gPK1

spȳgq

˛

‚ď
ł

gPK1

φ̄pspȳgqq and `

¨

˝

ł

gPK1

φ̄pspȳgqq

˛

‚ď |K 1|l ´ 1 ,

by Lemma 2.28 and the fact that φ̄pspx̄qq “ 0. This is a contradiction by Theorem 11.3.

11.2 Applications

11.2.1 L-Surjunctivity

In this subsection we use the general results we proved for qframes in the first half of the chapter
to deduce a surjunctivity theorem for a suitable family of linear cellular automaton. Let us start
defining a natural qframe associated with strictly linearly compact modules.
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Definition 11.6. Let R be a discrete ring and let M be a linearly topologized left R-module.
We let pN pMq,ďq be the poset of submodules of M , ordered by reverse inclusion.

Lemma 11.7. Let R be a discrete ring, let M and N be strictly linearly compact left R-modules
and let φ : M Ñ N be a continuous homomorphism of left R-modules. Then, N pMq and N pNq
are qframes and the map

Φ : N pNq Ñ N pMq such that ΦpCq “ φ´1pCq

is a homomorphism of qframes. Furthermore, if φ is injective then Φ is surjective and algebraic,
and, under these hypotheses, Φ is injective if and only if φ is surjective.

Proof. It is easy to check that N pMq and N pNq are complete lattices (in fact, the maximum
of N pMq is 0, while its minimum is M ; furthermore the meet of two closed submodules is the
closure of their sum, while the join of a family (finite or infinite) of closed submodules is their
intersection). To show that N pMq is modular take A, B, C P N pMq such that A ď C (that
is, C Ď A). Using, the modularity of the lattice of all submodules LpMq of M with the usual
order, one gets C ` pB XAq “ pC `Bq XA, thus

C ` pB XAq “ pC `Bq XA “ pC `Bq XA ,

which is the modular law in N pMq. The fact that N pMq and N pNq are upper continuous is
proved for example in [103, Theorem 28.20].

The map Φ is well-defined by the continuity of φ, that ensures that φ´1pCq P N pMq, for all
C P N pNq. Since φ´1 commutes with arbitrary intersections, Φ commutes with arbitrary joins.
Let now C1 ď C2 P N pNq and let us show that ΦprC1, C2sq “ rΦpC1q,ΦpC2qs. Indeed, given
C P rΦpC1q,ΦpC2qs, φ

´1pC2q Ď C Ď φ´1pC1q, so that C2 X φpMq Ď φpCq Ď C1 X φpMq. Thus,

C “ ΦpφpCqq “ ΦpφpCq ` pC2 X φpMqqq

“ ΦppφpCq ` C2q X φpMqq “ ΦpφpCq ` C2q ,

where in the first line we used that C contains the kernel of φ, while in the second line we
applied the modular law. Since φpCq ` C2 P rC1, C2s, Φ sends segments to segments and so it is
a morphism of qframes.

Suppose now that φ is injective. To show that Φ is surjective notice that, by the injectivity of φ,
Φpr0, 1sq “ r0,Φp1qs “ r0,Kerpφqs “ N pMq. It remains to show that Φ is algebraic: it is enough
to notice that KerpΦq “ φpMq and that, given C1, C2 P rφpMq, 1s such that ΦpC1q “ ΦpC2q,
then

C1 “ C1 X φpMq “ φpφ´1pC1qq “ φpφ´1pC2qq “ C2 X φpMq “ C2 .

Finally, since Φ is algebraic, Φ is injective if and only if KerpΦq “ 0, that is, φpMq “M , which
is equivalent to say that φ is surjective.

Theorem 11.8. Let R be a ring, let G be a sofic group and let RN be an Artinian left R-module.
Then, any linear cellular automaton φ : NG Ñ NG is surjunctive.

Proof. Suppose that φ : NG Ñ NG is an injective linear cellular automaton and let us prove
that it is surjective.

By Lemmas 3.58 and 3.59 (2), NG is strictly linearly compact so, by Lemma 11.7, N pNGq is a
qframe. Furthermore, the map

ρ : GÑ AutpN pNGqq ρpgq “ ρg ,
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such that ρgpKq “ λ´1
g pKq, for all K P N pNGq and g P G, is a right action and the map

Φ : N pNGq Ñ N pNGq ΦpKq “ φ´1pKq ,

for all K P N pNGq, is a G-equivariant surjective algebraic homomorphism of qframes.

Let y “ π´1
e pt0uq, where πe : NG Ñ N e is the usual projection, notice that r0, ys – N pNq is a

Noetherian lattice and let yg “ ρgpyq, for all g P G. It is clear that tyg : g P Gu is a basis for
N pNGq.

By the above discussion, hypotheses (a˚) and (b˚) of Theorem 11.5 are satisfied and so Φ is
injective. By Lemma 11.7, φ is surjective.

11.2.2 Stable finiteness of crossed products

Lemma 11.9. Let R be a ring, let MR and NR be right R-modules and let φ : M Ñ N be a
homomorphism of right R-modules. Then, pLpMq,ďq and pLpNq,ďq are qframes and the map

Φ : LpMq Ñ LpNq such that ΦpKq “ φpKq

is a homomorphism of qframes. Furthermore, if φ is surjective, then Φ is surjective and algebraic,
and, in this case, Φ is injective if and only if φ is injective.

Proof. In any given Grothendieck category, the posets of sub-objects are qframes (the maximum
of LpMq is M , while its minimum is 0, furthermore, join and meet are given by sum and inter-
section respectively). By Proposition 1.72, Φ is a semi-lattice homomorphism which commutes
with arbitrary joins. To show that Φ sends segments to segments, let K1 ď K2 P LpMq and
consider K P rΦpK1q,ΦpK2qs. Then,

K “ Φpφ´1Kq “ Φpφ´1K X φ´1φpK2qq

“ Φpφ´1K X pK2 `Kerpφqqq “ Φppφ´1K XK2q `Kerpφqq

“ Φpφ´1K XK2q ` ΦpKerpφqq “ Φpφ´1K XK2q ,

where in the first line we used that K is contained in the image of φ, while in the second line we
used the modularity of LpMq. Since φ´1pKq XK2 P rK1,K2s we proved that Φ sends segments
to segments, thus it is a morphism of qframes.

Suppose now that φ is surjective. Then, Φ is surjective as Φp1q “ φpMq “ N , which is the
maximum of LpNq. To show that Φ is algebraic, notice that KerpΦq “ Kerpφq and that, given
K1, K2 P rKerpφq, 1s such that ΦpK1q “ ΦpK2q, we get

K1 “ K1 `Kerpφq “ φ´1pφpK1qq “ φ´1pφpK2qq “ K2 `Kerpφq “ K2 .

Finally, notice that φ is injective if and only if Kerpφq “ KerpΦq “ 0, which happen, by the
algebraicity of Φ, if and only if Φ is injective.

Lemma 11.10. Let R be a ring, let G be a group, fix a crossed product R˚G, let MR˚G be
a right R˚G-module and let φ : MR˚G Ñ MR˚G be an endomorphism of right R˚G-modules.
Letting LRpMq denote the qframe of R-submodules of M , the following map

ρ : GÑ AutpLRpMqq ρ ÞÑ ρg : LRpMq Ñ LRpMq ,

where ρgpKq “ Kg, for all g P G and K P LRpMq is a right G-representation. Furthermore, the
endomorphism of qframes

Φ : LRpMq Ñ LRpMq such that ΦpKq “ φpKq

is G-equivariant.
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Proof. Let N P LRpMq, r P R and g P G. Then, ρgpNqr “ Ngr “ Nrσpgqg Ď Ng and so
ρgpNq P LRpMq. Let now tNi : i P Iu a family of elements in LRpMq, then

ρg

˜

ÿ

iPI

Ni

¸

“

˜

ÿ

iPI

Ni

¸

g “
ÿ

iPI

pNigq “
ÿ

iPI

ρgpNiq

so ρg is a semi-lattice homomorphism which commutes with arbitrary joins. Furthermore, given
g, h P G and N P LRpMq,

ρgpρhpNqq “ ρgpNhq “ Nhg “ Nτph, gqhg “ Nhg “ ρhgpNq ,

where the fourth equality holds since τph, gq P UpRq. In particular, ρgρg´1 “ ρg´1ρg “ idLRpMq
so, given a segment rN1, N2s in LRpMq and N P rρgpN1q, ρgpN2qs, then N “ ρgpρg´1Nq and
ρg´1N P rN1, N2s. Thus we proved that each ρg is a homomorphism of qframes and that ρ is a
right G-representation.

Finally, let us show that ρgΦ “ Φρg. Indeed, given N P LRpMq,

ρgΦpNq “ φpNqg “ φpNgq “ ΦpρgpNqq ,

where the third equality holds since φ is a homomorphism of left R˚G-modules.

Theorem 11.11. Let R be a ring, let G be a sofic group, fix a crossed product R˚G, let NR be
a finitely generated right R-module and let M “ N bR˚G . Then,

(1) if NR is Noetherian, then any surjective R˚G-linear endomorphism of M is injective;

(2) if NR has Krull dimension, then EndR˚GpMq is stably finite.

Proof. The proof is an application of Theorem 11.5 and consists in translating the statement in
a problem about qframes using the above lemmas.

Suppose first (1) and let φ : M Ñ M be a surjective endomorphism of right R˚G-modules.
Consider the qframe LRpMq of all the right R-submodules of M (which is described in Lemma
11.9), with the right G-action described in Lemma 11.10. By the same lemma, φ induces a
G-equivariant surjective algebraic homomorphism of qframes Φ : LRpMq Ñ LRpMq.
Let y “ N b e P LRpMq, and notice that conditions (a˚) and (b˚) in Theorem 11.5 are verified
for this choice of y. Thus, by the theorem, Φ is injective and this is equivalent to say that φ is
injective by Lemma 11.9.

The proof of part (2) is analogous.
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Chapter 12

Model approximations

12.1 Model categories and derived functors

In this section we recall some definitions and terminology about the general machinery of model
categories.

Definition 12.1. Let C be a category and let W be a collection of morphisms in C. The pair
pC,Wq is said to be a category with weak equivalences if, given two composable morphisms φ
and ψ, whenever two elements of tφ, ψ, ψφu belong to W so does the third. The elements of W
are called weak equivalences.

We now recall the definition of a model category. We will just give few concrete examples
of model category (see Examples 12.3 and 12.12), we refer to [35] and [61] for further examples
and properties.

Definition 12.2. Let M be a complete and cocomplete category and let W, B and C be three
classes of morphisms; pM,W,B, Cq is a model category provided the following conditions hold:

(MC.1) pC,Wq is a category with weak equivalences;

(MC.2) W, B and C are closed under retracts (in the category of morphisms). That is, given a
commutative diagram as follows:

X
id ))//

φ

��

X 1 //

φ1

��

X

φ

��
Y //

id
55Y 1 // Y

if φ1 belongs to W (resp., B or C), so does φ;

(MC.3) consider the following diagram,

C //

c
��

B

b
��

C 1

ψ

>>

// B1

where b P B and c P C. If the external square commutes and either b P W or c P W,
then there exists ψ as above making the entire diagram commutative;
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(MC.4) given a morphism φ, there exist b P B XW, c P C, b1 P B and c1 P C XW, such that

φ “ bc and φ “ b1c1 .

The elements of W, B, BXW, C and CXW are called respectively weak equivalences, fibrations,
acyclic fibrations, cofibrations and acyclic cofibrations.
Given an object X P ObpMq, if the unique map from the initial object to X is a cofibration, then
X is said to be cofibrant. If the unique map from X to the terminal object is a fibration then X
is said to be fibrant.

The following example allows one to encode the machinery of classical homological algebra
in the scheme of model categories.

Example 12.3. Let C be a Grothendieck category and recall that the category ChpCq of (un-
bounded) cochain complexes on C is a complete and cocomplete category. Let W be the class of
quasi-isomorphisms in ChpCq, then pChpCq,Wq is a category with weak equivalences.
Let B be the class of all the epimorphisms with dg-injective kernels (see Definition 1.114) and
let C be the class of monomorphisms, then pChpCq,W,B, Cq is a model category (see for example
[61] or [45] for a proof).
Notice that, in this model category, the fibrant objects are exactly the dg-injective complexes,
while any complex is cofibrant.

Consider now the following definition:

Definition 12.4. Let pM,W,B, Cq be a model category and let X, Y P ObpMq.
A morphism α : QX Ñ X is a cofibrant replacement of X if QX is a cofibrant object and α is
an acyclic fibration. Furthermore, given a morphism φ : X Ñ Y and two cofibrant replacements
α : QX Ñ X and α1 : QY Ñ Y , a cofibrant replacement Qφ of φ is a morphism that makes the
following square commute:

QX
α //

Qφ

��

X

φ

��
QY

β // Y.

Dually, β : X Ñ RX is a fibrant replacement of X if RX is a fibrant object and β is an acyclic
cofibration. Given a morphism φ : X Ñ Y and two fibrant replacements β : X Ñ RX and
β1 : Y Ñ RY , a cofibrant replacement Rφ of φ is a morphism that makes the following square
commute:

X
α //

φ
��

RX

Rφ
��

Y
β // RY.

The axioms that define a model category always allow one to find cofibrant an fibrant re-
placements for any object and morphism in a model category.

In the concrete situation of Example 12.3, a fibrant replacement of a cochain complex X‚ P
ObpChpCqq is a quasi-isomorphism X‚ Ñ E‚, where E‚ is a dg-injective complex. By Lemma
1.113 we can always find a fibrant replacement for any left-bounded complex. A consequence of
the existence of the model structure described in Example 12.3 is that any cochain complex in
ChpCq is quasi-isomorphic to a dg-injective complex.
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12.1.1 The homotopy category

Let pC,Wq be a category with weak equivalences. Ideally one would like to “invert” all the
morphisms in the class W in order to obtain a new category CrW´1s in which all the weak
equivalences become isomorphisms. Furthermore, one also wants this process to be minimal in
some sense. This can be formalized using the concept of universal localization:

Definition 12.5. The universal localization of a category with weak equivalences pC,Wq is a
pair pCrW´1s, F q of a category CrW´1s and a canonical functor F : CÑ CrW´1s such that F pφq
is an isomorphism for all φ P W. Furthermore, if G : C Ñ D is a functor such that Gpφq is
an isomorphism for all φ P W, then there exists a unique functor G1 : CrW´1s Ñ D such that
G1F “ G.

In the context of model categories, the category CrW´1s is usually called homotopy category
(see Proposition 12.7). In the following definition we give an explicit construction of the ho-
motopy category of a category with weak equivalences. The drawback is that this construction
may produce a proper class of morphism between two objects: in this case the result is not a
category. For this reason we use the word “category” in quotes in the following definition.

Definition 12.6. Let pC,Wq be a category with weak equivalences. We define the homotopy
“category” HopCq of pC,Wq as follows. An object HopCq is just an object of C. For all
X, Y P ObpHopCqq, we define HomHopCqpX,Y q as the quotient of the class of all finite strings
of composable morphisms pf1, . . . , fnq, where fi is either a morphism in C or the formal in-
verse fi “ w´1

i of an arrow wi PW, with respect to the equivalence relation „ generated by the
following relations:

(Ho.1) given X P ObpXq, consider the empty string pq at X. Then, pq „ pidXq;

(Ho.2) pf, gq „ pg ˝ fq for all composable arrows f, g of C;

(Ho.3) pw,w´1q „ pidXq „ pw
´1, wq for all w : X Ñ Y PW.

One says that the homotopy category of pC,Wq exists if HomHopCqpX,Y q is a set for any pair of
objects in C. We denote by Hop´q : CÑ HopCq the obvious functor.

The notions of model category, homotopy category and universal localization are interrelated
as explained in the following proposition. For the proof see [60, Section 1.2] and [35, Proposition
5.11].

Proposition 12.7. Let pC,Wq be a category with weak equivalences. The following statements
hold true:

(1) if the homotopy category of pC,Wq exists, then pHopCq, Hop´qq is a universal localization of
pC,Wq;

(2) if we can choose two classes of morphisms B and C in C such that pC,W,B, Cq is a model
category, then the homotopy category of pC,Wq exists. Furthermore, given two objects
X, Y P ObpCq, there is a surjection

HomCpQX,RY q Ñ HomHopCqpX,Y q such that φ ÞÑ pα´1, φ, β´1q ,

where α : QX Ñ X and β : Y Ñ RY are respectively a cofibrant replacement of X and a
fibrant replacement of Y .
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Let us apply the above proposition to the setting of Example 12.3:

Example 12.8. Let C be a Grothendieck category and consider the injective model structure
pChpCq,W,B, Cq on the cochain complexes over C. By Proposition 12.7, the universal localization
HopChpCqq of pChpCq,Wq exists. The localized category HopChpCqq is usually called the derived
category of C and it is denoted by DpCq.
Consider now X‚, Y ‚ P ObpChpCqq, then there is a surjection

HomChpCqpX
‚, E‚q Ñ HomDpCqpX

‚, Y ‚q ,

where E‚ is any dg-injective complex which is quasi-isomorphic to Y ‚.
Choose now n P Z and notice that, just by definition, the n-th cohomology functor Hn : ChpCq Ñ
C sends quasi-isomorphisms to isomorphisms. By the properties of the universal localization,
there is a unique functor DpCq Ñ C which makes the following diagram commutative:

ChpCq

��

Hn
// C

DpCq

<<zzzzzzzzz

Abusing notation, we denote also this functor DpCq Ñ C by Hn.

12.1.2 Derived functors

Definition 12.9. Let pC,Wq, pD,W 1q be categories with weak equivalences and suppose that
HopCq exists. Given a functor F : D Ñ C, a total right derived functor of F is a functor
RF : DÑ HopCq together with a natural transformation Hop´q ˝ F ñ RF .

The existence of a model structure allows one to construct right derived functors explicitly:

Lemma 12.10. [21] Let pC,Wq be a category with weak equivalences such that HopCq exists, let
pM,W,B, Cq be a model category and let F : M Ñ C be a functor that maps weak equivalences
between fibrant objects to weak equivalences. Then the total right derived RF of F exists.
Furthermore, RF can be constructed as follows. Given X P ObpMq, we take first a fibrant
replacement X Ñ RX and then we let RF pXq “ F pRXq; RF is defined similarly on morphisms.
The natural transformation F ñ RF is induced by the morphisms F pX Ñ RXq.

Let us return to the setting of Example 12.3. Consider two Grothendieck categories C, D and
an additive functor F : C Ñ D. We denote by F : ChpCq Ñ ChpDq the extension of F . If we
endow ChpCq with its injective model structure, one can show that the composite Hop´q ˝ F :
ChpCq Ñ DpDq sends quasi-isomorphisms among dg-injective complexes to isomorphisms in
DpDq. Thus there is a right derived functor RF : ChpCq Ñ DpDq. It is now just an exercise to
show that the classical derived functors RnF : CÑ D defined in Subsection 1.2.2, are a suitable
restriction of the composition Hn ˝RF , where Hn : DpDq Ñ D is the n-th cohomology functor.

Definition 12.11. Let I be a small category and let pM,W,B, Cq be a model category. The
category FuncpIop,Mq is naturally a category with weak equivalence with the following choice of
weak equivalences:

WI “ tη : F1 ñ F2 : pηpiq : F1piq Ñ F2piqq PW, @i P ObpIqu

The total right derived functor of the limit functor lim
ÐÝ

: FuncpIop,Mq Ñ M is called homotopy
limit. We denote the homotopy limit of a functor F : Iop ÑM by holimF .
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It is not known whether there exists a model structure on FuncpIop,Mq with WI as class
of weak equivalences that allows one to construct homotopy limits. Anyway, there are positive
answers for specific choices of the small category I. We consider just one example:

Example 12.12. Let I be the category induced by the poset N with the inverse of its natural
order, that is:

I : 0 1oo 2oo 3oo . . .oo

Choose also a model category pM,W,B, Cq. Given two functors F, G : I Ñ M and a natural
transformation α : F ñ G,

F p0q

α0

��

F p1q

α1

��

oo F p2q

α2

��

oo F p3q

α3

��

oo . . .oo

Gp0q Gp1qoo Gp2qoo Gp3qoo . . .oo

we say that

(1) α is a weak-equivalence if and only if αi PW for all i P N;

(2) α is a cofibration if and only if αi P C for all i P N;

(3) α is a fibration if and only if the following conditions hold true:

– α0 P B;

– for any given i P N, we consider the following diagram

F piq //

��

Gpiq

��

��77777777777777777

F pi` 1q //

**TTTTTTTTTTTTTTTT X

φi
$$

Gpi` 1q

where the small square is a push out diagram and φi is the unique map given by the
universal property. Then, φi is a fibration for all i P N.

One can verify, that with the above choice of weak-equivalence, fibrations and cofibrations,
FuncpI,Mq is a model category.

12.1.3 Model approximation

The concept of model approximation was introduced by Chachólski and Scherer in order to
circumvent the difficulties in constructing homotopy limits (see [21]).

Definition 12.13. Let pC,WCq be a category with weak equivalences. A right model approxi-
mation for pC,WCq is a model category pM,W,B, Cq and a pair of functors

l : C //oo M : r

satisfying the following conditions:
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(MA.1) l is left adjoint to r;

(MA.2) if φ PWC, then lpφq PW;

(MA.3) if ψ is a weak equivalence between fibrant objects in M, then rpψq PWC;

(MA.4) if lpXq Ñ Y is a weak equivalence in M with X fibrant, the adjoint morphism X Ñ rpY q
is in WC.

Given two categories with weak equivalences pC1,W1q and pC2,W2q, one can find conditions
under which a model approximation of pC2,W2q gives automatically a model approximation of
pC1,W1q:

Lemma 12.14. Let pC1,W1q and pC2,W2q be categories with weak equivalences and let

l : C1
//oo C2 : r

be an adjunction such that:

(1) φ PW1 implies lφ PW2;

(2) ψ PW2 implies rψ PW1;

(3) if a morphism lpCq Ñ D is in W2, then the adjoint morphism C Ñ rpDq is in W1.

If pM,W,B, Cq is a model category and l1 : C2 Ô M : r1 is a model approximation, then

L : C1
//oo M : R

is a model approximation, where L “ l1 ˝ l and R “ r ˝ r1.

Proof. We have to verify conditions (MA.1)-(MA.4):

(MA.1) is [70, Theorem 1, Sec. 8, Ch. 1].

(MA.2) If φ P W1, then lφ P W2 by our hypothesis (1). Apply the definition of model approxi-
mation to obtain that Lpφq “ l1plpφqq is a weak equivalence in M.

(MA.3) If ψ is a weak equivalence between fibrant objects in M, then r1pψq P W2, by the
definition of model approximation. Apply (2) to obtain that Rψ “ rpr1pψqq PW1.

(MA.4) Let X P M be fibrant, let Y P C1 and let X Ñ LpY q be a weak equivalence in M.
The adjoint (under the adjunction pl1, r1q) morphism r1pXq Ñ lpY q belongs to W2, by the
definition of model approximation. Using (3), the adjoint (under the adjunction pl, rq) morphism
rpr1pXqq Ñ Y belongs to W1.

The above lemma provides a motivation for the following

Definition 12.15. Let pC1,W1q and pC2,W2q be two categories with weak equivalences. An
adjunction l : C1 Ô C2 : r is said to be compatible with weak equivalences if conditions (1), (2)
and (3) in Lemma 12.14 are satisfied.
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12.1.4 Towers of models

In this subsection we recall the construction of the category of towers introduced in [19].

Definition 12.16. Let M‚ “ tMn : n P Nu be a sequence of categories connected with adjunc-
tions

ln`1 : Mn`1
//oo Mn : rn .

The category of towers on M‚, TowpM‚q is defined as follows:

– an object is a pair pa‚, α‚q, where a‚ “ tan P Mn : n P Nu is a sequence of objects one for
each Mn, and α‚ “ tαn`1 : an`1 Ñ rnpanq : n P Nu is a sequence of morphisms;

– a morphism f‚ : pa‚, α‚q Ñ pb‚, β‚q is a sequence of morphisms f‚ “ tfn : an Ñ bn : n P Nu
such that rnpfnq ˝ αn`1 “ βn`1 ˝ fn`1, for all n P N.

If each Mn in the above definition is a bicomplete category, then one can construct limits
and colimits component-wise in TowpM‚q, so, under these hypotheses, the category of towers is
bicomplete.

Proposition 12.17. [19, Proposition 2.3] Let M‚ “ tpMn,Wn,Bn, Cnq : n P Nu be a sequence
of model categories connected with adjunctions

ln`1 : Mn`1
//oo Mn : rn

and suppose that each rn preserves fibrations and acyclic fibrations. Define the following classes
of morphisms in TowpM‚q:

– WTow “ tf‚ : fn PWn , @n P Nu;

– BTow “ tf‚ : f˚n P Bn , @n P Nu, where f˚n is constructed as follows. First we define an object
pp‚, π‚q in TowpM‚q where each pn comes from a pull-back diagram

pn

P.B.β̄n
��

f̄n´1 // bn

βn
��

rn´1pan´1q
rn´1pfn´1q

// rn´1pbn´1q

and πn “ rn´1pfn´1q ˝ β̄n. Then, f˚n : an Ñ pn is defined, using the universal property of the
pull-back, as the unique morphism such that β̄nf

˚
n “ αn and f̄n´1f

˚
n “ fn.

– CTow “ tf‚ : fn P Cn , @n P Nu

Then, pTowpM‚q,WTow,BTow, CTowq is a model category.

12.2 Local cohomology

In this subsection we introduce a general notion of local cohomology. The definitions and many
arguments in the proofs are adapted directly from existing papers like [3], [2], [48], [49], [50]
and many others. We give here complete proofs for completeness sake and because, to the best
of the author’s knowledge, there is no book or paper with a comprehensive exposition of these
matters in a setting as general as we need in the sequel.
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Definition 12.18. Let C be a Grothendieck category and let τ “ pT ,Fq P TorspCq. The n-
th τ -local cohomology Γnτ : C Ñ T is the n-th right derived functor of the τ -torsion functor
Tτ : CÑ T .

It is difficult to study the properties of local cohomology in full generality, so we need to
impose one or more of the following hypotheses on the ambient category C in almost all of our
results:

(Hyp.1) C is stable (see Definition 1.139).

(Hyp.2) C is locally Noetherian (see Definition 2.75).

(Hyp.3) all the prime torsion theories on C are exact (see Definition 1.131).

Example 12.19. Let C “ R-Mod be the category of left R-modules over a ring R. When C
satisfies (Hyp.1), (Hyp.2) and (Hyp.3), R is said to be left effective. Examples of left effective
rings include:

(1) commutative Noetherian rings;

(2) left Noetherian Azumaya algebras, see [50, page 173];

(3) prime hereditary Noetherian quasi-local rings which are bounded orders in their classical
rings of fractions, see [50, Example 2.3].

Lemma 12.20. Let C be a Grothendieck category, let τ “ pT ,Fq P TorspCq be stable and let
X P ObpCq. Then,

(1) Γnτ pXq “ 0 for all n ą 0, provided X is τ -torsion;

(2) there is a natural isomorphism Γnτ pXq – Γnτ pX{Tτ pXqq, for all n ą 0;

(3) there is a natural isomorphism Γn`1
τ pXq – Γnτ pEpXq{Xq, for all n ą 0;

(4) if X is τ -torsion free, then Γ1
τ pXq – Tτ pEpXq{Xq.

(5) there is a natural isomorphism Γn`1
τ pXq – RLnτ pXq, for all n ą 0;

(6) if X is τ -torsion free, then Γ1
τ pXq – Lτ pXq{X.

Proof. (1) Let us consider an injective resolution λ : X Ñ E‚ inductively as follows:

– En “ 0 and dn “ 0 for all n ă 0;

– E0 “ EpXq and λ is the canonical embedding of X in its injective envelope;

– E1 “ EpCoKerpλqq and d0 “ ε0 ˝ π0 where π0 : E0 Ñ CoKerpλq is the canonical projection
and ε0 is the canonical embedding of CoKerpλq in its injective envelope;

– for all n ě 1 we let En`1 “ EpCoKerpdn´1qq and dn “ εn ˝ πn where πn : En Ñ CoKerpdn´1q

is the canonical projection and εn is the canonical embedding of CoKerpdn´1q in its injective
envelope.
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It is an exercise to show that λ : X Ñ E‚ is an injective resolution (this is well-known, for
example one can use the dual argument of the proof of [104, Lemma 2.2.5]). Using the fact that
τ is stable, we obtain that EnpXq is τ -torsion for all n P N and so E‚pXq “ Tτ pE

‚pXqq is an
exact complex in all degrees but, eventually, in the 0-th degree.

(2) Consider the short exact sequence 0 Ñ Tτ pXq Ñ X Ñ X{Tτ pXq Ñ 0. This gives a long
exact sequence in cohomology

0 Ñ Γ0
τ pTτ pXqq Ñ Γ0

τ pXq Ñ Γ0
τ pX{Tτ pXqq Ñ

Ñ Γ1
τ pTτ pXqq Ñ Γ1

τ pXq Ñ Γ1
τ pX{Tτ pXqq Ñ Γ2

τ pTτ pXqq Ñ ¨ ¨ ¨ ,

which implies the desired isomorphism as, by part (1), we have that Γnτ pTτ pXqq “ 0, for all
n ą 0.

(3)–(4) Consider the short exact sequence 0 Ñ X Ñ EpXq Ñ EpXq{X Ñ 0. This gives a long
exact sequence in cohomology

0 Ñ Tτ pXq Ñ Tτ pEpXqq Ñ Tτ pEpXq{Xq Ñ Γ1
τ pXq Ñ Γ1

τ pEpXqq Ñ

Γ1
τ pEpXq{Xq Ñ Γ2

τ pXq Ñ Γ2
τ pEpXqq Ñ Γ2

τ pEpXq{Xq Ñ Γ3
τ pXq Ñ Γ3

τ pEpXqq Ñ . . .

which implies the isomorphism in (3) as, Γnτ pEpXqq “ 0 for all n ą 0, being EpXq is injective.
If X P F , then EpXq P F by stability and so Tτ pEpXqq “ 0, proving (4).

(5)–(6) Fix an injective resolution X Ñ E‚. By Lemma 1.140, En – Tτ pE
nq ‘ En{Tτ pE

nq for
all n P N. Consider the complex Tτ pE

‚q and the quotient complex E‚{Tτ pE
‚q, which are both

complexes of injective objects. Notice that there is a short exact sequence in ChpCq

0 Ñ Tτ pE
‚q Ñ E‚ Ñ E‚{Tτ pE

‚q Ñ 0 .

The cohomologies of the complex Tτ pE
‚q are exactly the τ -local cohomologies of M , while the

cohomologies of E‚ are all trivial but, eventually, the 0-th cohomology. Furthermore, En{Tτ pE
nq

is τ -torsion free and injective, so it is τ -local; in particular, Lτ pE
nq – En{Tτ pE

nq for all
n P N. We obtain an isomorphism of complexes E‚{Tτ pE

‚q – Lτ pE
‚q, which shows that the

cohomologies of the complex E‚{Tτ pE
‚q give exactly the right derived functors of the localization

functor L. Thus, we have a long exact sequence

0 Ñ Tτ pXq Ñ X Ñ Lτ pXq Ñ Γ1
τ pXq Ñ 0 Ñ R1Lτ pXq Ñ

Ñ Γ2
τ pXq Ñ 0 Ñ R2Lτ pXq Ñ Γ3

τ pXq Ñ 0 Ñ R3Lτ pXq Ñ ¨ ¨ ¨ ,

which gives the desired isomorphisms.

An immediate consequence of parts (5) and (6) of the above proposition is the following

Corollary 12.21. Let C be a Grothendieck category, let τ P TorspCq be stable and exact, and let
X P C. Then,

Γnτ pXq “ 0 @n ą 1 .

If X is τ -local, then also Γ0
τ pXq “ Γ1

τ pXq “ 0.

Corollary 12.22. Let C be a Grothendieck category and let τ2 ĺ τ1 P TorspCq be stable. Then,

pΓiτ1pXq “ 0 , @0 ď i ď nq ñ pΓiτ2pXq “ 0 , @0 ď i ď nq

for all X P ObpCq and n P N.
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Proof. We prove our statement by induction on n P N.
If n “ 0, the result is clear as 0 “ Γ0

τ1pXq – Tτ1pXq Ě Tτ2pXq – Γ0
τ2pXq.

If n ě 1 and suppose the result holds for any smaller integer. Consider the following isomor-
phisms:

(a) Γ0
τ1pXq – Γ0

τ2pXq “ 0, as in the case n “ 0, in particular X is both τ1 and τ2-torsion free;

(b) Γ1
τ pXq – Γ0

τ pEpXq{Xq for τ P tτ1, τ2u, by (a) and Lemma 12.20(4).

(c) Γkτ pXq – Γk´1
τ pEpXq{Xq for all 1 ă k ď n and τ P tτ1, τ2u, by Lemma 12.20(3).

By (b) and (c), we have that Γiτ1pEpXq{Xq “ 0 for all 0 ď i ď n ´ 1 and so, by inductive
hypothesis, Γiτ2pEpXq{Xq “ 0 for all 0 ď i ď n ´ 1. Applying again (b) and (c), Γiτ2pXq “ 0
for all 1 ď i ď n. Hence, adding (a), Γiτ2pXq “ 0 for all 0 ď i ď n which is what we wanted to
prove.

Given a Noetherian object N in C, recall that N is automatically a compact object, that
is, the functor HomCpN,´q commutes with direct limits (see for example [96, Proposition 3.4,
Ch. V]). More explicitly, given a directed set Λ and a direct system pXα, φβ,αqΛ in C, we have a
natural isomorphism

lim
ÝÑ
αPΛ

HomCpN,Xαq – HomC

˜

N, lim
ÝÑ
αPΛ

Xα

¸

. (12.2.1)

Proposition 12.23. Let C be a Grothendieck category satisfying (Hyp.2) and let τ P TorspCq.
Then,

(1) given two objects X and M P ObpCq, we have a natural isomorphism

HomCpX,TτMq – lim
ÝÑ
Y

HomCpX{Y,Mq ,

with Y ranging in the family of sub-objects of X such that X{Y P T (ordered by reverse
inclusion);

(2) all the τ -local cohomology functors commute with direct limits.

Proof. (1) Let Y be a sub-object of X such that X{Y P T . For any morphism φ : X{Y Ñ M ,
φpX{Y q ď Tτ pMq ď M and so HomCpX{Y,Tτ pMqq – HomCpX{Y,Mq. Furthermore, there is
an injective map

´ ˝pY : HomCpX{Y,Tτ pMqqp– HomCpX{Y,Mqq ÝÑ HomCpX,Tτ pMqq (12.2.2)

where pY : X Ñ X{Y is the canonical projection. By the universal property of the direct limit,
there is a unique map Φ, making the following diagrams commutative, whenever Y1 ď Y2 ď X
and X{Y1 P T :

HomCpX{Y1,Mq

))

´˝pY1

  
HomCpX,Tτ pMqq lim

ÝÑY
HomCpX{Y,Mq .D! Φoo

HomCpX{Y2,Mq

OO

´˝pY2

>> 44
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Now, Φ is injective by the injectivity of the maps described in (12.2.2) and the commutativity
of the above diagram; furthermore, one can show that Φ is surjective as follows: an element φ P
HomCpX,Tτ pMqq belongs to the image of Φ if and only if there exists Y ď X such that X{Y P T
and there is a morphism ψ : X{Y Ñ M such that φ “ ψpY . Given φ P HomCpX,Tτ pMqq, we
easily get that φpXq P T and so, letting Y “ Kerpφq, we have that X{Y P T . Furthermore,
there is an induced (mono)morphism ψ : X{Y Ñ Tτ pXq such that φ “ ψpY , as desired.

(2) According to [56, Proposition 3.6.2], it suffices to verify that

(a) R0Tτ – Tτ commutes with direct limits;

(b) lim
ÝÑΛ

Eα is Tτ -acyclic (i.e., Γnτ plimÝÑΛ
Eαq “ 0 for all n ą 0) for any directed system pEα, φβ,αqΛ

of injective objects.

Let pMα, φβ,αqΛ be a directed system in C, over a directed set Λ. We have to verify that
Tτ plimÝÑΛ

Mαq – lim
ÝÑΛ

Tτ pMαq. For this we show that there is a natural equivalence of functors
HomCp´,Tτ plimÝÑΛ

Mαqq – HomCp´, limÝÑΛ
Tτ pMαqq, which implies (a) by the Yoneda Lemma.

For all X P C there is a natural isomorphism

HomCpX,Tτ plimÝÑ
Λ

Mαqq – Homplim
ÝÑ
N

N,Tτ plimÝÑ
Λ

Mαqq ,

with N ranging in the family of Noetherian sub-objects of X, so

HomCpX,Tτ plimÝÑ
Λ

Mαqq – lim
ÐÝ
N

HompN,Tτ plimÝÑ
Λ

Mαqq

This allows us to assume that X is itself Noetherian. In this case:

HomCpX,Tτ plimÝÑ
Λ

Mαqq – lim
ÝÑ
Y

HompX{Y, lim
ÝÑ
Λ

Mαq with X{Y P T , by (1)

– lim
ÝÑ
Y

lim
ÝÑ
Λ

HompX{Y,Mαq by (12.2.1)

– lim
ÝÑ
Λ

lim
ÝÑ
Y

HompX{Y,Mαq

– HompX, lim
ÝÑ
Λ

Tτ pMαqq .

Part (b) follows by Proposition 2.78 (1), and the fact that injective objects are F -acyclic for any
left exact functor F .

Lemma 12.24. Let C be a Grothendieck category satisfying (Hyp.1) and (Hyp.2), let π̄ P SppCq,
let τ “ pT ,Fq P TorspCq and let C be a cocritical object such that EpCq – Epπ̄q.
If ´1 ă G.dimτ pCq ă 8, then G.dimτ pLπ̄pCq{Cq ă G.dimτ pCq.

Proof. By hypothesis G.dimτ pCq ą ´1. Furthermore, if G.dimτ pCq “ n ` 1 for some n P N,
we can denote by τn P TorspC{T q the torsion theory whose torsion class is pC{T qn. Then,
G.dimτ˝τnpCq “ 0. Thus, there is no loss of generality in assuming that G.dimτ pCq “ 0 (other-
wise substitute τ by τ ˝ τn and then use part (2) of Lemma 2.72).
Assuming that G.dimτ pCq “ 0, we have to show that Lπ̄pCq{C P T . Let E be an injective
object that cogenerates τ . By Proposition 2.78, there exist a set I, a family of prime torsion
theories tπi “ pTi,Fiq : i P Iu Ď SppCq and a family of non-trivial cardinals tαi : i P Iu such that
E –

À

iPI Epπiq
pαiq, thus T “

Ş

iPI Ti and so we reduced to prove that

HomCpLπ̄pCq{C,Epπiqq “ 0 , (12.2.3)
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for all i P I. Let i P I, if πi “ π̄, then Lπ̄pCq{C – Tπ̄pEpπ̄q{Cq is πi-torsion by construction,
so (12.2.3) follows. On the other hand, if πi ‰ π̄, suppose looking for a contradiction, that
HomCpLπ̄pCq{C,Epπiqq ‰ 0 which implies HomCpLπ̄pCq, Epπiqq ‰ 0 which, by the injectivity of
Epπiq, implies HomCpEpπ̄q, Epπiqq ‰ 0. By Corollary 2.74, 0 “ G.dimτ pEpπ̄qq ą G.dimτ pEpπiqq,
equivalently, Epπiq P T , that is HomCpEpπiq, Eq “ 0, which is clearly a contradiction.

The following theorem is an improved version of [50, Proposition 2.4].

Theorem 12.25. Let C be a Grothendieck category satisfying (Hyp.1), (Hyp.2) and (Hyp.3),
let τ P TorspCq and let X P ObpCq. Then, Γnτ pXq ‰ 0 implies G.dimτ pXq ` 2 ě n.

Proof. By (Hyp.3), X is the direct union of its Noetherian sub-objects. By Proposition 12.23,
the vanishing of τ -local cohomologies on Noetherian objects implies their vanishing on X. Thus
we can suppose X to be Noetherian. By Lemma 2.70 (4), there exist sub-objects 0 “ Y0 ď

Y1 ď ¨ ¨ ¨ ď Yk “ X such that Yi{Yi´1 is cocritical for all i “ 1, . . . , k. One can verify by
induction on k that the vanishing of the τ -local cohomology functors on all the factors of the
form Yi{Yi´1 implies their vanishing on X. Thus we may suppose X to be cocritical, in particular
EpXq – Epπq for some π P SppCq.

If G.dimτ pXq is not finite, then there is nothing to prove, therefore we suppose G.dimτ pXq “
d ă 8 and we proceed by induction on d. If d “ ´1, then Γnτ pXq “ 0 for all n ą 0, by
Lemma 12.20 (1). Thus, Γnτ pXq ‰ 0 implies n “ 0 ď G.dimτ pXq ` 2 “ ´1 ` 2 “ 1. If d ą ´1,
consider the following long exact sequence:

0 Ñ Γ0
τ pXq Ñ Γ0

τ pLπpXqq Ñ Γ0
τ pLπpXq{Xq Ñ Γ1

τ pXq Ñ Γ1
τ pLπpXqq Ñ

Ñ Γ1
τ pLπpXq{Xq Ñ ¨ ¨ ¨ Ñ Γnτ pXq Ñ Γnτ pLπpXqq Ñ Γnτ pLπpXq{Xq Ñ Γn`1

τ pXq Ñ . . .

Notice that Γ0
τ pXq “ Γ0

τ pLπpXqq “ 0, since we supposed that d ą ´1 and so, by stability, X is τ -
torsion free. Furthermore, using (Hyp.3) and Corollary 12.21, one can show that ΓnπpLπpXqq “ 0
for all n P N. Using again that X (and so Epπq) is τ -torsion free, we get τ ĺ π and so we can
apply Corollary 12.22 to show that Γnτ pLπpXqq “ 0 for all n ą 0. One obtains the following
isomorphisms:

Γnτ pXq “ Γn´1
τ pLπpXq{Xq , @n ě 1 .

By Lemma 12.24, G.dimτ pLπpXq{Xq ă d and so we can apply our inductive hypothesis to
show that Γnτ pLπpXq{Xq “ 0 for all n ą G.dimτ pLπpXq{Xq ` 2. Thus, if Γnτ pXq ‰ 0 for
some n ą 0, then Γn´1

τ pLπpXq{Xq ‰ 0 and so n ´ 1 ď G.dimτ pLπpXq{Xq ` 2, that is, n ď
G.dimτ pLπpXq{Xq ` 3 ď G.dimτ pXq ` 2.

12.2.1 Exactness of products in the localization

In the definition of Grothendieck category one assumes direct limits to be exact but no assump-
tion is required on the exactness of products. We will see in the last part of this paper that
knowing that a Grothendieck category has “almost exact products” has very nice consequences
on its derived category. In the following definition we precise the meaning of “almost exact
products”:

Definition 12.26. Let C be a Grothendieck category. For a non-negative integer n, C is said to
satisfy the axiom (Ab.4˚)-k if, for any set I and any collection of objects tXiuiPI ,

ź

iPI

pnqXi “ 0 @n ą k ,

where
śpnq
iPIp´q is the n-th derived functor of the product

ś

: CI Ñ C.
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Notice that condition (Ab.4˚)-0 is exactly (Ab.4˚) (see Subsection 1.1.5).
In general, there is no reason for a Grothendieck category to be (Ab.4˚)-k for any k. Anyway,

categories of modules are (Ab.4˚) and, by the Gabriel-Popescu Theorem, any Grothendieck
category is a quotient category of a category of modules. Thus, it seems natural to ask for
sufficient conditions on a torsion theory τ “ pT ,Fq in an (Ab.4˚) Grothendieck category C that
ensure that the quotient category C{T is (Ab.4˚)-k for some k P N. We give two such conditions
in the following lemma, a deeper criterion is given in Theorem 12.28.

Lemma 12.27. Let C be an (Ab.4˚) Grothendieck category, let τ “ pT ,Fq P TorspCq and
suppose one of the following conditions holds:

(1) T is closed under taking products (in this case τ is said to be a TTF);

(2) τ is exact.

Then, the quotient category C{T is still (Ab.4˚).

Proof. Let I be a set and for each i P I consider objects Ai, Bi and Ci P C{T such that

0 Ñ Ai Ñ Bi Ñ Ci Ñ 0 is exact in C{T .

Hence, for all i P I, one obtains exact sequences 0 Ñ Sτ pAiq Ñ Sτ pBiq Ñ Sτ pCiq Ñ Ti Ñ 0 in
C, where Ti P T . Using the (Ab.4˚) property in C we get an exact sequence

0 Ñ
ź

iPI

Sτ pAiq Ñ
ź

iPI

Sτ pBiq Ñ
ź

iPI

Sτ pCiq Ñ
ź

iPI

Ti Ñ 0 .

If τ is a TTF, then
ś

iPI Ti is τ -torsion and so we can apply Qτ to the above exact sequence
obtaining the following short exact sequence

0 Ñ
ź

iPI

Ai Ñ
ź

iPI

Bi Ñ
ź

iPI

Ci Ñ Qτ p
ź

iPI

Tiq “ 0 ,

by Corollary 1.135 and the exactness of Qτ . On the other hand, if Sτ is exact, we get Ti “ 0
for all i P I above and so again one can easily conclude.

Theorem 12.28. Let C be an (Ab.4˚) Grothendieck category which satisfies hypotheses (Hyp.1),
(Hyp.2) and (Hyp.3), and let τ P TorspCq. If G.dimpC{T q “ k ă 8, then C{T is (Ab.4˚)-k ` 1.

Proof. Let tXiuiPI be a family of objects in C{T . For all i P I, choose an injective resolution
0 Ñ Sτ pXiq Ñ E‚i of Sτ pXiq in C. Since Qτ is exact and sends injective objects to injective
objects, the complex Qτ pE

‚
i q provides an injective resolution for Xi. Thus, for all n ą k ` 1,

ź

iPI

pnqXi “ Hn

˜

ź

iPI

Qτ pE
‚
i q

¸

“ Hn

˜

Qτ

˜

ź

iPI

Lτ pE
‚
i q

¸¸

by Corollary 1.135

“ Qτ

˜

Hn

˜

ź

iPI

Lτ pE
‚
i q

¸¸

exact funct. commute with cohom.

“ Qτ

˜

ź

iPI

Hn pLτ pE
‚
i qq

¸

“ Qτ

˜

ź

iPI

RLnτ pE
‚
i q

¸

exact funct. commute with cohom.

“ Qτ

˜

ź

iPI

Γn`1
τ pE‚i q

¸

“ 0 Lemma 12.20 and Theorem 12.25.
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Corollary 12.29. Let C be an (Ab.4˚) Grothendieck category which satisfies hypotheses (Hyp.1),
(Hyp.2) and (Hyp.3). If G.dimpCq “ k ă 8, then C{T is (Ab.4˚)-k ` 1 for all τ “ pT ,Fq P
TorspCq.

12.3 Injective classes

Let C be a Grothendieck category and let I be a class of objects of C. Slightly generalizing the
setting of [20], we say that a morphism φ : X Ñ Y in C is an I-monomorphism if

HomCpφ,Kq : HomCpY,Kq Ñ HomCpX,Kq

is an epimorphism of Abelian groups for every K P I. We say that C has enough I-injectives if
every object X admits an I-monomorphism X Ñ K for some K P I.

Definition 12.30. [20] A subclass I of a Grothendieck category C is an injective class (of C) if
it is closed under products and direct summands, and C has enough I-injectives.

Lemma 12.31. Let I be an injective class of a Grothendieck category C. An object X of C
belongs to I if and only if HomCp´, Xq sends all I-monomorphisms to epimorphisms of Abelian
groups.

Proof. Suppose that HomCp´, Xq sends I-monomorphisms to surjective morphisms. By defi-
nition of injective class, there is an I-monomorphism ϕ : X Ñ E for some E P I. Hence,
HomCpϕ,Xq : HomCpE,Xq Ñ HomCpX,Xq is surjective and so X is a direct summand of E.
Thus, X belongs to I. The converse is trivial.

Definition 12.32. Let C be a Grothendieck category and let I be an injective class. I is an
injective class of injectives provided any object in I is an injective object. We denote by InjpCq
the poset of all the injective classes of injectives in C, where, given I and I 1 P InjpCq

I ĺ I 1 if and only if I Ď I 1 .

12.3.1 Examples

Before proceeding further we give some examples of injective classes (not necessarily of injec-
tives).

Example 12.33. Let C be a Grothendieck category. Then

(1) I “ 0 is an injective class. In this case every morphism is an I-monomorphism;

(2) I “ C is an injective class. In this case, a morphism is an I-monomorphism if and only if
it has a left inverse (it is a splitting monomorphism);

(3) the class I of all injective objects is an injective class. With this choice, I-monomorphisms
are the usual monomorphisms.

Part (3) of the above example can be generalized as follows:

Lemma 12.34. Let C be a Grothendieck category and let φ : X Ñ Y be a morphism in C. Then,
φ is a monomorphism if and only if HomCpφ,Eq is an epimorphism of Abelian groups for any
injective object E of C.
In particular, given an injective class I of C, every I-monomorphism is in particular a monomor-
phism if and only if I contains the class of injectives.
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Proof. If φ is a monomorphism, it is clear that HomCpφ,Eq is an epimorphism for any injective
object E. On the other hand, suppose that HomCpφ,Eq is an epimorphism for any injective
object E of C. Let ψ : Z Ñ X be a morphism such that φψ “ 0, and let us verify that ψ “ 0.
We can suppose that ψ is a monomorphism, in fact, otherwise we can substitute ψ with the
induced morphism ψ̄ : Z{Kerpψq Ñ X. Thus, let E “ EpZq and notice that HomCpψ,Eq and
HomCpφ,Eq are both epimorphisms and so HomCpψ,Eq ˝ HomCpφ,Eq is an epimorphism, but
HomCpψ,Eq ˝ HomCpφ,Eq “ HomCpφ ˝ ψ,Eq “ 0. Thus, HomCpZ,Eq “ 0 which is to say that
Z “ 0, as desired.
For the last statement, notice that if I contains all the injective objects then, by the first part,
any I-monomorphism has to be a monomorphism. On the other hand, suppose that any I-
monomorphism is a monomorphism. This means in particular that any given injective object
E is such that HomCp´, Eq sends I-monomorphism to epimorphisms. By Lemma 12.31, this
means that E P I.

Example 12.35. Let C be a Grothendieck category and let τ “ pT ,Fq P TorspCq, then F is an
injective class. In fact, F is closed under taking products and direct summands. Furthermore,
given an object X and F P F , apply the functor HomCp´, F q to the exact sequence 0 Ñ Tτ pXq Ñ
X Ñ X{Tτ pXq Ñ 0, to obtain the following exact sequence of Abelian groups:

HomCpX{Tτ pXq, F q Ñ HomCpX,F q Ñ HomCpTτ pXq, F q .

Since HomCpTτ pXq, F q “ 0, the canonical projection X Ñ X{Tτ pXq is an F-monomorphism
of X into an element of F .

Example 12.36. Let R be a ring and let I ď R be a two-sided ideal. We claim that the class

I “ tM P R-Mod : IM “ 0u

is an injective class in R-Mod. In fact, I is closed under products and direct summands. Further-
more, given a left R-module M , we can always consider the canonical projection p : M ÑM{IM ,
where M{IM P I. We have to show that p is an I-monomorphism. Let N P I and let
φ : M Ñ N be a morphism. Given x P IM , there exists y P M and i P I such that iy “ x and
so, φpxq “ φpiyq “ iφpyq “ 0 as IN “ 0. Thus, φ factors through p as desired.

We remark that an injective class does not need to satisfy any reasonable closure property
but closure under products and direct summands (that are assumed in the definition). In fact, an
example of an injective class that is closed nor under subobjects or infinite direct sums is given
by the class of all injective objects (at least in the non-locally Noetherian case). An injective
class that is not closed under extensions is described in Example 12.36. For further examples
we refer to [20].

12.3.2 Injective classes vs torsion theories

Definition 12.37. Let C be a Grothendieck category and let τ “ pT ,Fq P TorspCq. We define
the following subclass of C:

Iτ “ tinjective objects in Fu .

It is possible to give quite an explicit characterization of those morphisms that are Iτ -
monomorphism:

Lemma 12.38. Let C be a Grothendieck category, let τ “ pT ,Fq P TorspCq and let φ : X Ñ Y
be a morphism in C. The following are equivalent:
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(1) φ is an Iτ -monomorphism;

(2) HomCpφ,Eq is an epimorphism for any injective object E which cogenerates τ ;

(3) Kerpφq is τ -torsion;

(4) Qτ pφq is a monomorphism.

Proof. The implication (1)ñ(2) is trivial since an injective object which cogenerates τ necessarily
belongs to Iτ . Let us prove the implication (2)ñ(3). Choose an injective cogenerator E for τ
and apply the functor HomCp´, Eq to the exact sequence 0 Ñ Kerpφq Ñ X Ñ Y obtaining the
following exact sequence of Abelian groups

HomCpY,Eq Ñ HomCpX,Eq Ñ HomCpKerpφq, Eq Ñ 0 .

If HomCpφ,Eq is an epimorphism then HomCpKerpφq, Eq “ 0 that is, Kerpφq is τ -torsion. The
equivalence (3)ô(4) follows by the exactness of Qτ and the fact that KerpQτ q “ T . It remains
only to prove that (3)ñ(1). Indeed, given K P Iτ we can obtain as before an exact sequence
HomCpY,Kq Ñ HomCpX,Kq Ñ HomCpKerpφq,Kq. Since K is τ -torsion free and Kerpφq is
τ -torsion, HomCpKerpφq,Kq “ 0, as desired.

Lemma 12.39. Let C be a Grothendieck category and let τ “ pT ,Fq P TorspCq. Then, Iτ P
InjpCq.

Proof. Iτ is the intersection of F with the class EC of all the injective objects in C. The closure
properties of F and EC imply that Iτ is closed under products and direct summands. It remains
to show that C has enough Iτ -injectives. Indeed, let X be an object of C and let φ : X Ñ

EpX{Tτ pXqq be the composition of the canonical morphisms X Ñ X{Tτ pXq and X{Tτ pXq Ñ
EpX{Tτ pXqq. Clearly EpX{Tτ pXqq P Iτ and, furthermore, the kernel of φ is precisely Tτ pXq.
By Lemma 12.38, φ is an Iτ -monomorphism.

Let C be a Grothendieck category. By the above lemma, we can associate an injective class
of injectives to any given torsion theory. Let now I P InjpCq and define

FI “ tsub-objects of the elements of Iu .

Lemma 12.40. Let C be a Grothendieck category and let I P InjpCq. Then, FI is a torsion free
class.

Proof. Closure under taking sub-objects, products and injective envelopes easily follow by con-
struction and the closure hypotheses on I. It remains to prove that FI is closed under taking
extensions. Let X be an object in C and let Y ď X be a sub-object such that both Y and
X{Y P FI . By construction, there exist I1 and I2 P I such that Y ď I1 and X{Y ď I2.
Let φ1 : X Ñ I1 be a morphism extending the canonical inclusion Y Ñ I1 (whose existence
is ensured by the injectivity of I1) and let φ2 : X Ñ I2 be the composition of the canonical
projection X Ñ X{Y with the inclusion X{Y Ñ I2. Define φ “ φ1 ‘ φ2 : X Ñ I1 ‘ I2. Then,
Kerpφq “ Kerpφ1q XKerpφ2q “ 0 and so X is a sub-object of I1 ‘ I2 P I.

Definition 12.41. Let C be a Grothendieck category and let I P InjpCq. We define τI to be the
unique torsion theory on C whose torsion free class is FI .

We are now ready to prove the main result of this subsection:
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Theorem 12.42. Let C be a Grothendieck category. Then the map τ ÞÑ Iτ is an order-reversing
bijection between TorspCq and InjpCq. The inverse bijection is given by the correspondence I ÞÑ
τI .

Proof. Let τ “ pT ,Fq P TorspCq we want to prove that FIτ “ F . The inclusion FIτ Ď F is
trivial, while, given F P F and an injective cogenerator E for τ , there exists a set S such that
F ď ES P Iτ and so F P FIτ .

On the other hand, let I P InjpCq and τI “ pF , T q. We want to prove that IτI “ I. The
inclusion I Ď IτI is trivial, while, given I P IτI , by definition I P F “ FI and so I is an injective
sub-object, and so a summand, of an element of I, thus I P I.

The above theorem together with Theorem 2.67 gives the following

Corollary 12.43. Let C be a Grothendieck category satisfying (Hyp.1). There are bijections

tGen. closed subsets of SppCqu // InjpCqoo //
tSpec. closed subsets of SppCquoo

GpτIq I�oo � // SpτIq

12.3.3 Module categories

In this subsection we specialize our results about injective classes to categories of modules,
re-obtaining as corollaries the main results of [20].

Definition 12.44. [27, 20] Let R be a ring. A non-empty set A of left ideal of R is said to be
a torsion free set (or, saturated set) if the following conditions hold:

(NS.1) A is closed under arbitrary intersections;

(NS.2) for all x P R and I P A, pI : xq “ tr P R : rx P Iu P A;

(NS.3) if a proper left ideal J ă R has the property that, for all x P RzJ , there is I P A, such
that pJ : xq Ď I, then J P A.

Let us recall the following fact from [27].

Lemma 12.45. [27, Corollary 2.3.14] Let R be a ring. There is a bijective correspondence
between TorspR-Modq and the family of torsion free sets of ideals of R.

The following corollary, which is a consequence of Lemma 12.45 and Theorem 12.42, is a
generalization of [20, Theorem 3.7].

Corollary 12.46. Let R be a ring. There is a bijective correspondence between InjpR-Modq and
the family of torsion free sets of ideals of R.

The following corollary is a consequence of the above lemma and Corollary 12.43.

Corollary 12.47. [20, Corollary 3.9] Let R be a commutative Noetherian ring. There is a
bijective correspondence between InjpR-Modq and the family generalization closed sets of prime
ideals of R.
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12.4 Model approximations for relative homological algebra

12.4.1 A relative injective model approximation

Let C be a Grothendieck category and let τ “ pT ,Fq P TorspCq. We extend the τ -quotient and
the τ -section functors to categories of complexes applying them compont-wise:

Qτ : ChpCq //oo ChpC{T q : Sτ . (12.4.1)

We use the same symbols for these new functors, it is an exercise to show that they are adjoint.

Definition 12.48. Let C be a Grothendieck category and let I P InjpCq. A morphism φ‚ of
cochain complexes is an I-quasi-isomorphism provided HomCpφ

‚,Kq is a quasi-isomorphism of
complexes of Abelian groups for all K P I.
Given τ “ pT ,Fq P TorspCq, we define the following class of morphisms in ChpCq

Wτ “ tφ
‚ : Hnpconepφ‚qq P T , @n P Zu .

Recall that the mapping cone construction commutes with any additive functor (this can be
easily verified by hand). This is used repeatedly in the following lemma.

Lemma 12.49. Let C be a Grothendieck category, let τ “ pT ,Fq P TorspCq and denote by W
be the class of quasi-isomorphisms in ChpC{T q. The following are equivalent for a morphism
φ‚ in ChpCq:

(1) φ‚ PWτ ;

(2) Qτ pφ
‚q PW;

(3) φ‚ is an Iτ -quasi-isomorphism.

Furthermore, pChpCq,Wτ q is a category with weak equivalences.

Proof. Since Qτ is exact, Hn and Qτ commute. Thus, for all n P N:

Qτ pH
npconepφ‚qqq – HnpconepQτ pφ

‚qqq .

This proves the equivalence between (1) and (2).

For the equivalence between (1) and (3), notice that HomCpφ
‚,Kq is a quasi-isomorphism for all

K P Iτ if and only if, for all n P Z and K P Iτ ,

0 “ HnpconepHomCpφ
‚,Kqqq – HnpHomCpconepφ‚q,Kqq – HomCpH

npconepφ‚qq,Kq .

Thus, HomCpφ
‚,Kq is a quasi-isomorphism for all K P Iτ if and only if Hnpconepφ‚qq P KpIτ q “

T , for all n P Z.

The following theorem answers part (1) of Question 0.2 in full generality:

Theorem 12.50. Let C be a Grothendieck category and let τ “ pT ,Fq P TorspCq. Consider the
category with weak equivalences pChpCq,Wτ q and the injective model category pChpC{T q,W,B, Cq
defined as in Example 12.3. Then, the adjunction

Qτ : pChpCq,Wτ q
//oo pChpC{T q,W,B, Cq : Sτ

is a model approximation. Furthermore, the homotopy category relative to this model approxi-
mation is naturally isomorphic to the unbounded derived category DpC{T q.
Proof. We have to verify conditions (MA.1)–(MA.4). Condition (MA.1) just states that pQτ ,Sτ q
is an adjunction, while (MA.2), (MA.3) and (MA.4) are consequences of Lemma 12.49. The state-
ment about the homotopy category follows by the explicit construction given in Proposition 5.5
of [21] and the fact that Qτ is essentially surjective.
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12.4.2 Approximations via towers of models

In this last subsection we try to approximate pChpCq,Wτ q by a category of towers of models.
Let us introduce the specific sequence of model categories we are interested in:

Lemma 12.51. Let C be a Grothendieck category, let τ “ pT ,Fq P TorspCq and let n P N`.
There is a model category pChě´npCq,Wě´n

τ ,Bě´nτ , Cě´nτ q, where:

– Wě´n
τ “ tφ‚ : φ‚ is a τ -quasi-isomorphismu;

– Bě´nτ “ tφ‚ : φi is an epimorphism and Kerpφiq P Iτ for all i ě ´nu;

– Cě´nτ “ tφ‚ : φi is a τ -monomorphism for all i ě ´nu.

For all n P Z, the above choice of weak equivalences, fibrations and cofibrations makes
pChě´npCq,Wě´n

τ ,Bě´nτ , Cě´nτ q into a model category.
Furthermore, there is an adjunction

ln`1 : Chě´n´1pCq //oo Chě´npCq : rn , (12.4.2)

where ln`1 is the obvious inclusion while rn is the truncation functor. In this situation, rn
preserves fibrations and acyclic fibrations.

Proof. The proof can be obtained exactly as in the case when C is a category of modules, see
[18, Theorem 1.9].

Definition 12.52. Let C be a Grothendieck category and let τ “ pT ,Fq P TorspCq. Con-
sider the sequence M‚ “ tpChě´npCq,Wě´n

τ ,Bě´nτ , Cě´nτ q : n P Nu defined in Lemma 12.51.
We denote the category pTowpM‚q,WTow,BTow, CTowq constructed as in Proposition 12.17 by
pTowτ pCq,WTow,BTow, CTowq. Furthermore, we denote by Tow : ChpCq Ñ Towτ pCq the so-
called tower functor, which sends a complex X‚ to the sequence of its successive truncations
¨ ¨ ¨ Ñ Xě´n Ñ Xě´n`1 Ñ ¨ ¨ ¨ Ñ Xě0 and acts on morphisms in the obvious way (see [19]).
If τ “ p0,Cq is the trivial torsion theory we denote Towτ pCq by TowpCq.

A typical object X‚‚ of Towτ pCq is a commutative diagram of the form

...

��

...

��

...

��

...

��

...

��

...

��
0 // X´2

2

��

d´2
2 // X´1

2

t´1
2
��

d´1
2 // X0

2

t02
��

d02 // X1
2

t12
��

d12 // X2
2

t22
��

d22 // . . .

0 // X´1
1

��

d´1
1 // X0

1

t01
��

d01 // X1
1

t11
��

d11 // X2
1

t21
��

d21 // . . .

0 // X0
0

d00 // X1
0

d10 // X2
0

d20 // . . .

where pX‚n, d
‚
nq is a cochain complex for all n P N, and Xm

n “ 0 for all m ă ´n.
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12.4.3 Approximation of (Ab.4˚)-k categories

Let C be a Grothendieck category and let τ “ pT ,Fq P TorspCq. The category Towτ pCq can be
seen as a full subcategory of the category FuncpN,ChpCqq of functors N Ñ ChpCq and so we
can restrict the usual limit functor to obtain a functor lim : Towτ pCq Ñ ChpCq.

In [19] and [18] the authors show that when C is a category of modules over a commutative
Noetherian ring of finite Krull dimension,

Tow : pChpCq,Wτ q
//oo pTowτ pCq,WTow,BTow, CTowq : lim , (12.4.3)

is a model approximation for all τ P TorspCq. On the other hand, if the Krull dimension is not
finite, one can always find counterexamples. In what follows we try to better understand this
kind of construction when C is a general Grothendieck category. First of all, notice that when
we construct the homotopy category DpC{T q inverting the weak equivalences in pChpCq,Wτ q

we are really doing two things at the same time:

(1) localize complexes over C to complexes over C{T ;

(2) pass from a category of complexes over C{T to its derived category.

Our strategy is to separate the two operations in two different “steps”, where each “step”
corresponds to a pair of adjoint functors. The composition of these adjunctions is our candidate
for a model approximation, as we will see in Theorem 12.54.

When C is an (Ab.4˚) Grothendieck category, let X‚ P ObpChpCqq and consider the sequence
of truncations ¨ ¨ ¨ Ñ Xě´2 Ñ Xě´1 Ñ Xě0. By Example 12.12 we can construct holimXě´i.
One can prove as in [8, Application 2.4] that there is a quasi-isomorphism

X‚Ý̃ÑholimXě´i . (12.4.4)

This formula is useful as it allows to reduce many questions to half-bounded complexes. On the
other hand, for (12.4.4) to hold, it is sufficient that the ambient category is (Ab.4˚)-k for some
finite k:

Theorem 12.53. [59, Theorem 1.3] Let C be a Grothendieck and assume that C satisfies (Ab.4˚)-
k for some positive integer k. Then, for every X‚ P ObpChpCqq, there is a quasi-isomorphism
X‚Ý̃ÑholimXě´i.

We are now ready to prove our main result.

Theorem 12.54. Let C be a Grothendieck category and let τ “ pT ,Fq P TorspCq be a torsion
theory such that C{T is (Ab.4˚)-k for some positive integer k. Then, the composition of the
following adjunctions

pChpCq,Wτ q
Qτ //oo
Sτ

pChpC{T q,Wq
Tow //oo
lim

pTowpC{T q,WTow,BTow, CTowq

is a model approximation.

Proof. By Lemma 12.14, it is enough to show that pQτ ,Sτ q is compatible with weak equivalences
(and this follows by Lemma 12.49) and that pTow, limq is a model approximation. The proof
that pTow, limq is a model approximation is given in [19] for categories of modules. One can
follow that proof almost without changes, using Theorem 12.53 (that applies here since C{T is
(Ab.4˚)-k) instead of Application 2.4 in [8].
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Combining the above theorem with Theorem 12.28 we obtain the following corollary, which
extends the main results of [18]:

Corollary 12.55. Let C be a Grothendieck category satisfying (Hyp.1), (Hyp.2) and (Hyp.3),
and let τ P TorspCq. If G.dimτ pCq ă 8, then the composition

pChpCq,Wτ q
Qτ //oo
Sτ

pChpC{T q,Wq
Tow //oo
lim

pTowpC{T q,WTow,BTow, CTowq

is a model approximation.



206 Model approximations



Bibliography

[1] R. L. Adler, A. G. Konheim, and M. H. McAndrew, Topological entropy, Trans. Amer.
Math. Soc. 114 (1965), 309–319. MR 0175106 (30 #5291)
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