UNB

Universitat Autonoma de Barcelona

DEPARTAMENT DE MATEMATIQUES

TESI DOCTORAL:

Group representations, algebraic dynamics

and torsion theories

Dirigida per: Candidat:
Prof. DOLORS HERBERA ESPINAL SIMONE VIRILI

Curs AcabpeMic 2013-2014






Memoria presentada per a
aspirar al grau de doctor
en Matematiques






Certifico que la present Memoria ha estat
realitzada per en Simone Virili,

sota la direccié de la

Dra. Dolors Herbera Espinal.

Bellaterra, Juliol 2014

Firmat: Dra. Dolors Herbera Espinal






Acknowledgements

First of all, I want to give my sincere acknowledgement to my advisor Dolors Herbera for her
guidance, encouragement and trust: she gave me time, freedom and several suggestions that
helped me to carry out this project.

I am grateful to the Departament de Matematiques, in particular to Pere Ara, Ferran Cedé
and Wolfgang Pitsch, for sharing their knowledge and for having contributed to this work with
comments, ideas and corrections.

Part of this work was carried out during two short visits to the BIREP group in Bielefeld and
to the Department of Mathematics of the University of Vienna: I want to thank respectively
Henning Krause and Goulnara Arzhantseva for giving me these opportunities.

It is a pleasure to thank all the collaborators that played a part in the development of this
project. In particular I want to express my gratitude to Dikran Dikranjan, Anna Giordano
Bruno and Luigi Salce for teaching me about algebraic entropy and for the last six years of
mathematical collaboration. I want also to thank Peter Vamos for discussing with me about his
old and new ideas.

My special thanks go to my family and friends, both in Italy and in Catalonia. I'm particu-
larly grateful to Matteo for his support when this adventure started four years ago. Finally, my
greatest acknowledgement goes to Gerard, for his friendship, love and patience.






Introduction

Length functions. In mathematics, it is frequent to introduce real valued functions, which
may attain infinity, to measure some finiteness properties of the objects we are dealing with
(e.g., dimension of vector spaces, rank, composition length, logarithm of the cardinality). In
1968, Northcott and Reufel observed the underlying common properties of some particularly
well-behaved invariants and axiomatized the abstract notion of length function. Indeed, given
an Abelian category €, a function

L:Ob(€) - Rxp U {oo}
is a length function provided it satisfies the following properties:

(LF.1) L is additive, that is, L(Y3) = L(Y1) + L(Y3) for any short exact sequence 0 — Y} —
Yo - Y3 > 0in ¢

(LF.2) L is upper continuous, that is, L(Y) = sup{L(Y,) : « € A} for any object Y in € and
any directed system S = {Y,, : @ € A} of sub-objects of Y such that »}, Y, =Y.

One of the goals of this thesis is to answer (at least partially) to the following question
regarding the extension of length functions to modules over crossed products:

Question 0.1. Let R be a ring, let G be a monoid and fix a crossed product R+G. Is it possible
to find a map

{length functions on R-Mod} — {length functions on R+G-Mod}
L — Lpx«a

satisfying the formula L(M) = Lpw.q(R+*G ®gr M) for any left R-module M ?

Extension to polynomial rings. There is a classical way to answer Question in the
positive when G = N is the monoid of natural numbers and R«G = R[N] = R[X] is the ring of
polynomials in one variable over R.

Indeed, let A be a left Noetherian ring with a distinguished central element X € A. There is
an important length function of the category of left A-modules called the multiplicity of X (see
for example [79, Chapter 7]). Given a finitely generated left A-module 4F', the multiplicity of
X in F'is defined as

U(F/ox(F)) — {(Ker(¢x)) if £(F/opx(F)) < o0;

k (0.0.1)
0 otherwise;

multy(X, F) = {

where £ is the composition length and ¢x : F — F' is the endomorphism of F' induced by left
multiplication by X. Given an arbitrary left A-module 4 M, one lets

multy (X, M) = sup{mult,(X, F) : FF < M fin. gen.}.
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This classical notion of multiplicity was used by Vamos as a model to construct an L-multplicity
of X based on a given length function L of A-Mod (see [98, Chapter 5]), just substituting ¢ in
the above definition by an arbitrary length function L.

Let A = R[X] be a polynomial ring over a left Noetherian ring R, and let L : R-Mod —
R>pu {0} be alength function. One can extend trivially L to A-Mod (just forgetting the action
of X) and then take the L-multiplicity mult; of the element X € A, which is formally defined

as in ((0.0.1)). This defines a map
mult : {length functions on R-Mod} — {length functions on R[X]-Mod}

L — multy, .
The values of L can be recovered via the formula
L(M) =mult,(R[X]|®r M),

that holds for any left R-module M. This procedure of extending length functions from the
category of modules over a given ring to the modules over its ring of polynomials is useful in
many situations but it has the disadvantage that it just works in the Noetherian case.

In the recent paper [93], Salce, VAmos and the author studied the problem of the extension
of a given length function on a category of modules R-Mod to a length function of (suitable
subcategories of) R[X]-Mod, without any hypothesis on the base ring. The key idea is to
see a left R[X]-module grixjM as a pair (gM,¢x) of a left R-module and a distinguished
endomorphism, given by left multiplication by X. This allows us to see left R[X]-modules as
discrete-time dynamical systems. Then, under suitable hypotheses, we can attach a dynamical
invariant to (rM, ¢x), called algebraic L-entropy (see below for more details). Surprisingly
enough, it turns out that the values of the algebraic L-entropy and of the L-multiplicity of a left
R[X]-module coincide whenever these values are both defined.

A dynamical approach. Let us say something more about the dynamical aspects of this work.
Indeed, given a set M and a self-map ¢ : M — M, one can consider the discrete-time dynamical
system (M, ¢), whose evolution law is

N x M — M such that (n,z)— ¢"(x).

Depending on the possible structures on (M, ¢) — for example when ¢ is a continuous self-map
of a topological space M, or ¢ is an endomorphism of a module M — there exist various notions
of entropy, which, roughly speaking, provide a tool to measure the “disorder”, “growth rate” or
“mixing” of the evolution of the system.

In 1965, Adler, Konheim and McAndrew introduced the topological entropy, which is an
invariant of dynamical systems (M, ¢), where M is a compact space and ¢ is a continuous
self-map. This concept was successively modified and generalized by Bowen, Hood and others.

Turning to the algebraic side, in the final part of the paper where the topological entropy
was introduced, Adler et al. suggested a notion of entropy for a given endomorphism ¢ : G — G
of a discrete torsion Abelian group G:

ent(¢) = sup{ lim log |F + ¢(F) + ...+ ¢" L(F)]

n—oo n

:F <G, log]F|<oo}.

In 1974, Weiss studied the basic properties of ent(—), also connecting it with the topological
entropy of endomorphisms of profinite Abelian groups via the Pontryagin-Van Kampen dual-
ity. The turning point in the study of this notion of entropy came in 2009, when Dikranjan,
Goldsmith, Salce and Zanardo proved the main properties of ent(—).
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Another important step to make a notion of entropy available to module-theorists, is due
to Salce and Zanardo [94]. Given a ring R and a suitable invariant i : R-Mod — Rx( u {0},
Salce and Zanardo defined a notion of entropy ent;(¢) for a given endomorphism ¢ of a left R-
module, substituting by the invariant i the logarithm of the cardinality used to define ent(—) for
endomorphisms of torsion Abelian groups. In the autor’s master thesis [99], it was proved that
if the invariant 7 is a length function satisfying suitable conditions then the resulting entropy
is a length function. This result was published in the joint paper with Salce and Vémos [93],
which also includes the connection with multiplicity we mentioned before.

At this point one should notice that the dynamical systems (M, ¢) described above are just
actions of the monoid N on the set M by iterations of ¢, that is, morphisms from N to the
monoid of self-maps of M. But, of course, there is nothing special about N; in fact, given any
monoid T', one can study dynamical systems (M, \) where A is a map that associates to any
v € I an endomorphism A, : M — M (in the previous case A, = ¢" for all n € N). In this
direction, it is worth noting that Ornstein and Weiss [81] extended the main results about the
topological entropy of a self-map to the topological entropy of the action of an amenable group.

In this thesis we construct a general machinery to associate a notion of entropy to this kind
of dynamical systems (M, \). Most of the existing notions of entropy can be viewed as particular
cases of this general framework.

A general scheme for entropies. To define our entropy function we need essentially four
ingredients:

— a commutative semigroup (S, +);

—amapv:S — Ryp;

— a monoid T" that acts on S via a homomorphism A : I' — Aut(S,v);

— an averaging sequence s = {F,, : n € N} of non-empty finite subsets of T".

We call the pair (S,v) a pre-normed semigroup and we define the s-entropy of the action X as

A
h(A,s) = sup < limsup ‘ <2gan g($)>

cx el
neN |Fn|

When I' = N one usually takes s to be the sequence of intervals F,, = {0,...,n —1}. When I is
an amenable group (see Section, the most natural choice for the averaging sequence s seems
to be that of a Fglner sequence.

We encode the above scheme in a category l.Reprp(Semi,) of left representations of I" on
pre-normed semigroups and this yields a general notion of entropy

h(—,s) : LRepp(Semi, ) — Rxp u {0} .
Given a category €, an entropy function € — R U {00} is defined via a functor
F : ¢ — L.Repr(Semi,),

letting the entropy of Y € Ob(€) be h(F(Y),s).
The philosophical point is that, whenever one has a notion of entropy in a given category,
there is “usually” a functorial way to construct a “pre-normed semigroup”, a monoid I and a
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suitable I'-action such that the entropy in the category of representations of I' on pre-normed
semigroups equals the original entropy. It turns out that most of the usual notions of entropy can
be defined this way. For example, the topological entropy con be defined via a semigroup of open
covers, while the algebraic entropy ent(—) can be defined via a semigroup of finite subgroups.

The idea that all the notions of entropy in mathematics should be considered as different
instances of a unique underlying concept is due to Dikran Dikranjan and he started working on
it, at least, from 2006. In 2008, we started collaborating on a common project. During the years
these ideas continued growing and we could include more and more examples in our general
scheme. Some of this work, for actions of the monoid N, will be included in the forthcoming
paper [30] by Dikranjan and Giordano Bruno (see also the recent survey paper [29]).

The algebraic L-entropy. We can now come to our partial answer to Question [0.1] Given
a crossed product R+G of a ring R with a countable amenable group G, and given a length
function L : R-Mod — R u {0}, for any left R«G-modules rygM we consider the semigroup

Finp,(M) = {rK < gM : L(K) < o0},
with the sum of submodules. We endow Finy, (M) with the pre-norm
v, : Fing (M) — Rsg u {0} such that vy (K) = L(K).

There is a natural left action A : G — Aut(Fing(M)) given by left multiplication. Given a Fglner
sequence s of G, we can consider the s-entropy of the action A in the category of pre-normed
semigroups. With this procedure we construct an invariant

entr, : R+*G-Mod — Rx¢ u {0} .

It turns out that enty is not well-behaved on the entire category R*G-Mod, so we define
IFing, (R+*G) to be the subclass of R*G-Mod consisting of all left R«G-modules rygM such
that L(K) < oo, for any finitely generated R-submodule K of M. For example, IFing(R+G)
contains all the left R«G-modules r.gM such that L(M) < oo. Furthermore, a consequence of
the continuity of L on directed colimits of submodules is that, given a left R-module rK such
that L(K) < oo, the left R+*G-module R+G ®p K is in IFing, (R*G).

We prove the following

Theorem [8.18| Given a ring R and a countable amenable group G, fix a crossed product RxG
and a discrete (i.e. the finite values of L form a subset of Rso which is order-isomorphic to N)
length function L : R-Mod — Rxg u {0} which is compatible with R+=G (see Definition .
Then, the invariant

enty, : IFing (R*G) — Rxg U {0}

satisfies the following properties:

(1) enty, is upper continuous;

(2) entr(R+G ®gr K) = L(K) for any L-finite left R-module K ;

(3) enty(N) > 0 for any non-trivial R+G-submodule N < R+G ®p K ;

(4) enty, is additive.



In particular, enty, is a length function of IFing (R*G).

Thus, using entropy, we show that when G is an amenable group there are “many” length
functions of R-Mod which can be extended to a “large” subcategory of R+G-Mod. Let us also
remark that, even for R = Z and L = log, | — |, Elek [36] proved that it is not always possible
to find a length function of the category R[G]-Mod which takes a finite value on the module
r[c)RIG], if G is not amenable. This shows that the answer to Question is negative in
general.

In order to understand how to apply Theorem [8.18] it is important to know when there are
“enough” length functions in R-Mod that satisfy the hypotheses of the theorem. Starting with
an easy example, if R is a field then all the length functions are multiples of the dimension of
vector spaces. All such functions can be used to construct a well-behaved notion of entropy.

More generally, when R is a ring with left Gabriel dimension (e.g., a left Noetherian ring, see
Chapter , we can prove a complete structure theorem for all the length functions of R-Mod, in
terms of the Gabriel spectrum of R-Mod (i.e., the set of isomorphism classes of indecomposable
injective modules). For this we re-prove, partially using different methods, and slightly generalize
an old result of Vamos [98]. For the proof of this theorem we make use of some torsion-theoretic
methods.

Using the structure of length functions, we can deduce the existence of many length functions of
R-Mod that satisfy the hypotheses of Theorem independently on the choice of the crossed
product R+G, when R has left Gabriel dimension.

Three motivating problems. The interest in having a well-behaved invariant, like enty, for
categories of modules over crossed products comes from some classical conjectures that we are
now going to describe.

— (Linear) Surjunctivity Conjecture. A map is surjunctive if it is non-injective or surjective. Let
A be a finite set and equip A% =[] 9eG A with the product of the discrete topologies on each
copy of A. There is a canonical left action of G on AY defined by

gz(h) = z(g~h) for all g,h e G and z € A,

A long standing open problem by Gottschalk [52] is that of determining whether or not any
continuous and G-equivariant map ¢ : A® — A% is surjunctive, we refer to this problem as
the Surjunctivity Conjecture.

An analogous problem is as follows. Let K be a field, let V' be a finite dimensional K-vector
space, endow V& with the product of the discrete topologies and consider the canonical left G-
action on V&, It is asked whether any G-equivariant continuous and K-linear map V¢ — V&
is surjunctive, we refer to this problem as the L-Surjunctivity Conjecture.

— Stable Finiteness Conjecture. A ring R is directly finite if xy = 1 implies yx = 1 for all
x,y € R. Furthermore, R is stably finite if the ring of k x k matrices Maty(R) is directly finite
for all k € N;. A long-standing open problem due to Kaplansky [64] is to determine whether
the group ring K[G] is stably finite for any field K, we refer to this problem as the Stable
Finiteness Conjecture. Notice that, Maty(K[G]) =~ Endg|q (K[GT¥), so an equivalent way to
state the Stable Finiteness Conjecture is to say that any surjective endomorphism of a free
left K[G]-module of finite rank is injective.

— Zero-Divisors Conjecture. Another conjecture of Kaplasky (see [84] and [83]) affirms that
K[G] is a domain for any torsion free group G and any field K. We refer to this conjecture as
the Zero-Divisors Congecture.
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All the above conjectures are open in general. In 1999, Gromov [53] defined sofic groups (see
Definition [9.5)) and proved a very general version of the Surjunctivity Conjecture (see also [105])
for this class of groups. Gromov’s result also implies the L-Surjunctivity Conjecture for sofic
groups (see also [13]).

The Stable Finiteness Conjecture was known in full generality for fields of characteristic 0,
while there was no progress in the positive characteristic case until 2002, when Ara, O’Meara
and Perera [5] proved that any crossed product K«G of a division ring K with an amenable
group G is stably finite, and used this result to deduce the Stable Finiteness Conjecture for the
class of residually amenable groups. Short after, Elek and Szabé [38] verified the conjecture for
G a sofic group (see also [13] and [6] for alternative proofs).

Applications of entropy. Let us remark that the Surjuctivity Conjecture was classically
known to hold for amenable groups: the usual proof in this particular case was an application
of the topological entropy studied by Orstein and Weiss. This fact suggested that the notion of
algebraic entropy should be applicable to the amenable case of the Stable Finiteness Conjecture.
In fact, an application of Theorem [8.1§]is the following:

Theorem Let R be a left Noetherian ring, let G be a countable amenable group and let
R«G be a crossed product. Let K be a finitely generated left R-module, let oM = RxGQRr K,
and let e N < gegM . Then, any surjective endomorphism of left R+G-modules ¢ : N — N s
injective.
In particular, Endg.c(N) is directly finite.

The hypothesis that G is amenable in the above theorem is essential. In fact, already for
non-commutative free groups the above theorem fails (see Example .

A different application of the algebraic entropy is to problems related to the Zero-Divisors
Conjecture. In fact, in [22] Chung and Thom used the topological entropy to study some cases
of the Zero-Divisors Conjecture. We can generalize and complete their results as follows:

Theorem [10.10} Let K be a division ring and let G be a countably infinite amenable group.
For any fized crossed product K«G, the following are equivalent:

1) K«G is a left and right Ore domain;

2) K«G is a domain;

(

(2)

(3) entgim(ksgM) = 0, for every proper quotient M of K«G;
(4)

4) Im(entgim) = N U {o0}.

In other words, the algebraic entropy detects the zero-divisors in K«(G. As an immediate
consequence of the above theorem, we obtain that, in the above hypotheses, K+G is a domain if
and only if it admits a flat embedding in a division ring.

A point-free approach in the sofic case. After viewing that in the amenable case we could
generalize the known results about the Stable Finiteness Conjecture to crossed products, we
tried to obtain a similar result for sofic groups. As we said, in this generality there is no hope
to prove a result like Theorem and so we need to find different tools to tackle the problem.
Let us describe our strategy.

Let G be a group, let R be a ring and fix a crossed product R*G. Let K be a finitely
generated left R-module, let r.acM = R+G ®r K and consider an endomorphism of left R+G-
modules ¢ : M — M. It is well-known that the poset £L(M) of R-submodules of M (ordered
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by inclusion) is a lattice with very good properties. Consider the natural left action (by left
multiplication) of G on £(M). The first important observation is that, at this level of lattices
of R-submodules, there is essentially no difference between R[G] and general crossed products
(since the difference between the two construction is just in some units of R which leave invariant
the R-submodules). Furthermore, ¢ induces a G-equivariant semi-lattice homomorphism

®: L(M)— L(M) such that ®(H) = ¢(H).

The second key-observation is that ¢ is injective (resp., surjective) if and only if ® has the same
property. Thus, using this construction we can translate our original problem in terms of some
“well-behaved” lattices with a G-action and semi-lattice G-equivariant endomorphisms on them.

The surprising thing is to realize that, when proving the L-Surjunctivity Conjecture, one is
actually working with the same kind of group actions on lattices as for the Stable Finiteness
Conjecture. Let us be more precise: consider a left R-module N, take the product N endowed
with the product of the discrete topologies and the usual left G-action, and consider a G-
equivariant continuous endomorphism ¢ : N¢ — NC. If N is Artinian, one can show that
the poset N(N®) of closed submodules of N&, ordered by reverse inclusion, is a lattice with
many common features with a lattice of submodules of a discrete module. There is a natural
right action of G on N (N®), induced by the left G-action on N&. Furthermore, v induces a
G-equivariant semi-lattice homomorphism

U : N(NY) - N(NY) such that W(H) =y 1(H).

It turns out that 1 is injective (resp., surjective) if and only if ¥ is surjective (resp., injective).
Thus, with this construction we can translate (a general form of) the L-Surjunctivity Conjecture
in terms of lattices with a G-action and G-equivariant semi-lattice endomorphisms on them,
exactly as we did for the Stable Finiteness Conjecture.

After these observations it was clear that the Stable Finiteness Conjecture and the L-
Surjunctivity Conjecture should be treated as expressions in different languages of the same
problem. In Chapter [2] we study the category of gframes, which are lattices with properties
analogous to the lattices £( s M) and N'(N¥) described above. Then, in Chapter (11} we prove
a general theorem (see Theorem for a G-equivariant endormorphism of left representations
on gframes, where G is a sofic group. The proof is quite technical and uses the machinery of
torsion and localization to reduce the problem to semi-Artinian gframes.

As a consequence, we obtain the following general version of the L-Surjunctivity Conjecture
for sofic groups:

Theorem Let R be a ring, let G be a sofic group and let gIN be an Artinian left R-module.
Then any continuous and G-equivariant endomorphism ¢ : N¢ — N is surjunctive.

Notice that the above theorem generalizes in different directions the main results of [15] and
[14]. Furthermore, we prove a general version of the Stable Finiteness Conjecture in the sofic
case, extending results of [38] and [5]:

Theorem [11.11] Let R be a ring, let G be a sofic group, fix a crossed product R+G, let N be
a finitely generated right R-module and let M = R+G ® N . Then,

(1) if Ng is Noetherian, then any surjective R+G-linear endomorphism of M is injective;

(2) if Ngr has Krull dimension, then Endg.c(M) is stably finite.
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Another use of torsion theories: model approximations. In the last part of the thesis
we study a problem of a different nature, the connection with the rest of the thesis comes from
the methods we use. In fact, the formalism of torsion theories and localization of Grothendieck
categories, that is used directly or indirectly in all our main results, is applied in Chapter
to clarify and generalize some recent results of Chachélski, Neeman, Pitsch, and Scherer
about model approximations of the category of unbounded chain complexes over a Grothendieck
category.

Let us start with some background for the problem. Model categories were introduced in
the late sixties by Quillen [89]. A model category (M, W,B,C) is a bicomplete category M
with three distinguished classes of morphisms, called respectively weak equivalences, fibrations
and cofibrations, satisfying some axioms (see Definition . An important property of model
categories is that one can invert weak equivalences, obtaining a new category, called the homotopy
category.

The concept of model approximation was introduced by Chachdlski and Scherer [21] with the
aim of constructing homotopy limits and colimits in arbitrary model categories. The advantage
of model approximations is that it is easier in general to prove that a given category has a model
approximation than defining a model structure on it. On the other hand, model approximations
allow to construct derived functors and to define the homotopy category. Consider a category
¢ with a distinguished class of morphisms W and a model category (M, W, B,C). A model
approximation of (€, We) by (M, W, B,C) is a pair of adjoint functors

l: €—=M :r

such that [ sends the elements of We to elements of YW and other technical conditions (for details

see Definition [12.13)).

Chachdlski, Pitsch, and Scherer [19] introduced a useful model approximation for the category
of unbounded complexes Ch(R) over a ring R, whose homotopy category is the usual derived
category D(R). This construction encodes in a pair of adjoint functors the classical ideas to
construct injective resolutions of unbounded complexes. The aim of the successive paper [18] of
the same three authors together with Neeman, is to modify the construction of [19] in order to
obtain a “model approximation for relative homological algebra’.

Let us be more specific about the meaning of relative homological algebra in this context.
Consider a Grothendieck category €, roughly speaking, an injective class is a suitable class 7
of objects of € that is meant to represent a “different choice” for the injective objects in the
category (see Deﬁnition. Chachdlski, Pitsch, and Scherer [20] studied the injective classes
of the category of modules Mod-R over a commutative ring R, classifying all the injective classes
of injective objects.

Given a Grothendieck category € and an injective class of injective objects Z, one says
that a morphism of unbounded complexes ¢* : M* — N*® is an Z-quasi-isomorphism provided
Homg(¢*, I) is a quasi-isomorphism of complexes of Abelian groups for all I € Z. The following
questions naturally arise:

Question 0.2. In the above notation, denote by Wr the class of Z-quasi-isomorphisms, then

(1) is it possible to find a model approximation for (Ch(€), Wr)? If so, what does the homotopy
category of such approximation look like?

(2) Is it possible (in analogy with [19]) to give an adjunction that encodes an inductive construc-
tion of the relative injective resolutions of unbounded complexes?
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Chacholski, Neeman, Pitsch, and Scherer [18] partially answer the above questions in case
the category € is the category of modules over a commutative Noetherian ring R. They showed
that the above questions have a positive answer if R has finite Krull dimension. On the other
hand, if the Krull dimension of R is not finite, there always exists an injective class of injectives
7 for which part (2) of the question has a negative answer.

In Chapter we try to tackle the above questions in the general setting of Grothendieck
categories. Our key observation is that there is a bijective correspondence between injective
classes of injectives and hereditary torsion theories induced by the following correspondence:

7= (T,F) ——= Z, = {injective objects in F}.

The bijection with hereditary torsion theories allows us to generalize the classification of the
injective classes of injective object. We can now answer part (1) of Question in full generality.
First of all, recall that it is possible to associate to any hereditary torsion theory 7 a localization
of the category €, which is encoded in the following pair of adjoint functors:

¢

where €/T is a Grothendieck category, which is called the localization of € at 7. One extends the
functors Q, and S+ to the categories Ch(€) and Ch(€/T) (just applying them degree-wise), this
gives rise to an adjunction. Abusing notation, we use the same symbols for these new functors.
Then, one proves that a morphism of complexes ¢* in Ch(€) is an Z,-quasi-isomorphism if and
only if Q,(¢°®) is a quasi-isomorphism in Ch(€/7). Furthermore, if we endow Ch(¢€/T) with
the canonical injective model structure, there is a model approximation

Q- : (Ch(€),Wz,) ===Ch(¢/T) :S;.

The homotopy category associated with this model approximation has a very concrete form: it
is precisely the derived category D(€/T), see Theorem [12.50

The answer to part (2) of Question |0.2|is more delicate. First of all, one needs to understand
what fails in the construction of [I8]: the quotient category €/7 may fail to be (Ab.4*)-k for
all k € N (see Definition , even if € is a very nice category (say a category of modules
over a commutative Noetherian ring). This, a fortiori trivial, observation is sufficient to explain
why one cannot always construct inductively the relative injective resolutions of unbounded
complexes. In fact, there is no reason for an object X* in the homotopy category D(&/T)
of (Ch(€), Wz, ) for being isomorphic to the homotopy limit of its truncations if €/7 is not
(Ab.4*)-k for any k € N. Going back to the original question, we can partially answer as follows:
one can always find a model approximation of (Ch(€), Wz ) by towers of model categories of
half-bounded complexes over €/T provided €/T is (Ab.4*)-k for some k € N.

Structure of the thesis

The thesis is organized in twelve chapters divided in five parts.

Part[[encompasses the first three chapters and consists mainly of background material. Some
sections contain basic results and are included with the intention to fix notations and to make
the results of this thesis available to readers with diverse backgrounds. In general, we tend to
omit the proofs for the most widely known results (giving instead references to the literature),
while we include the proofs when we think that their arguments are particularly important for
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the comprehension or when the proofs available in the literature are not satisfactory for some
reason.

In Chapter [1] we provide the necessary background in general category theory with emphasis
on Abelian and Grothendieck categories. Furthermore, we recall the machinery of torsion the-
ories and localization of Gabriel categories, stating the Gabriel-Popescu Theorem and some of
its consequences.

In Chapter [2| we introduce the category of quasi-frame and we study the basic constructions
in this category. Two useful tools in this context are the Krull and the Gabriel dimension of
quasi-frames. Using the fact that the poset of sub-objects of a given object in a Grothendieck
category is a quasi-frame, we re-obtain the classical notions of Krull and Gabriel dimension for
such objects. We also introduce and study a relative version of the Gabriel dimension.

In Chapter [3] we provide the necessary background in topological groups and modules. In
particular, in the first half of the chapter, after some preliminaries, we state the Pontryagin-Van
Kampen Duality Theorem and the Fourier Inversion Theorem. In the second half of the chapter
we give a complete proof of particular case of the Miilcer Duality Theorem between discrete and
strictly linearly compact modules.

Part[[I]is devoted to the study of entropy in a categorical setting, this part contains Chapters
and [

In Chapter 4] we introduce the category of pre-normed semigroups and the category of left
I'-representations of a monoid I' over a given category. Then, we introduce and study an entropy
function in the category of left I'-representations over the category of normed-semigroups. In
the second part of the chapter we concentrate on the case when I' is an amenable group.

Chapter [5] consist of a series of examples of classical invariants that can be obtained functo-
rially using the entropy of pre-normed semigroups.

In Chapter |§| we prove a Bridge Theorem (generalizing a result of Peters) that connects the
topological entropy on locally compact Abelian groups to the algebraic entropy on the dual,
using the results of Chapter

Part [I[TT] is devoted to the study of length functions and to apply the machinery of entropy
to extend length functions to crossed products. It consists of Chapters [7] and [§]

In Chapter [7] we prove a general structure theorem for length functions of Grothendieck
categories with Gabriel dimension, this generalizes a result of Vamos. Given a ring R and a
group G, we use the structure of length functions over R-Mod to give a precise criterion for a
length function L : R-Mod — Rxg u {00} to be “compatible” with a given crossed products R+G
(length functions compatible with R+G are, roughly speaking, the functions that one may hope
to extend to R+G-Mod).

In Chapter [§ we define the algebraic L-entropy of a left R+G-module M, where R is a general
ring and G is a countable amenable group. The entire chapter is devoted to the proof of the
main properties of entropy. In particular the proof of the additivity of the entropy function takes
more than one third of the chapter.

In Part [[V] we apply the theory developed in the three previous parts of the thesis to some
classical conjectures in group representations. This part encompasses Chapters [9] Chapter
and [111

In Chapter [0] we state the conjectures we are interested in, that is, the Surjunctivity Con-
jecture, the L-Surjunctivity Conjecture, the Stable Finiteness Conjecture and the Zero-Divisors
Conjecture. In order to state properly the (L-)Surjunctivity Conjecture we briefly recall some
basics about cellular automata. We use the Miiller Duality Theorem to prove some relations
among the conjectures.
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In Chapter [L0| we concentrate on the amenable case of the above conjectures. In particular,
we show how to use topological entropy to prove the surjunctivity conjecture for amenable groups
and we use the algebraic L-entropy to study (general versions of) the Stable Finiteness and the
Zero-Divisors Conjectures.

In Chapter we concentrate on the sofic case of the L-Surjunctivity and of the Stable
Finiteness Conjectures. In particular, we reduce both conjectures to a more general statement
about endomorphisms of quasi-frames. This allows us to extend the known results on both
conjectures.

Finally, Part [V] is devoted to the study of model approximations for relative homological
algebra. In particular, we apply the machinery introduced in Chapters[l|and [2|to generalize and
reinterpret some recent results of Chachdlski, Neeman, Pitsch, and Scherer.

We conclude this introduction with the following “dependence graph” among the various
chapters of the thesis:

-
@ \\ j %@7
g
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Chapter 1

Categories and modules: an outline

In Chapter [1] we present the categorical concepts needed in the thesis. We include basic def-
initions and examples about general category theory and then we specialize to Abelian and
Grothendieck categories. We also include some general facts about module theory and homo-
logical algebra. The chapter culminates with a discussion of the Gabriel-Popescu Theorem and
some of its consequences.

The theory of localization of Abelian categories goes back to Gabriel’s thesis [44] but we use here
a slightly different approach, analogous to the treatment of localization in [96] for categories of
modules: we first construct localizations in Grothendieck categories with enough injectives, we
use these results to localize categories of modules (that clearly have enough injectives) and we
deduce the Gabriel-Popescu Theorem which states that any Grothendieck category is a local-
ization of a category of modules. As a byproduct, one obtains that any Grothendieck category
has enough injectives and so we can localize any such category.

1.1 Categories and functors

1.1.1 Preliminar definition and basic examples

A category is an algebraic structure consisting of “objects” that are linked by “arrows” with two
basic properties: the ability to compose the arrows associatively and the existence of an identity
arrow for each object.

Definition 1.1. A category € consists of the following three data:

— a class of objects Ob(€);

— a set of morphisms Homg (A, B), for every ordered pair of objects (A, B) of €;
— a composition law

Homg (A, B) x Hom(B, C) — Homg (A, C)
(9, 0) — oo
for every ordered triple (A, B,C') of objects of €.

To underline the fact that a morphism ¢ belongs to Home (A, B), we also write ¢ : A — B. The
morphisms from one object to itself are called endomorphisms, we let Endg(A) = Home (A, A).
The above data are subject to the following axioms:
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(Cat.1) given ¢1: A — B, ¢p2: B — C and ¢3: C — D, we have (¢p30 ¢p3) 0 1 = ¢p30 (Ppa0¢1);

(Cat.2) for all A € Ob(C), there exists a morphism id4 € Ende(A), called identity, such that
idgoop =¢ and 1poidy = ¢ for all Be Ob(€), ¢: B —-> A and : A — B.

Sometimes we denote composition of morphisms in a category by juxtaposition, omitting the
symbol “o”.

Definition 1.2. Let € be a category and let A, B € Ob(€). A morphism ¢ € Homg(A, B) is an
isomorphism if there exists 1) € Homg(B, A) such that ¢ = id4 and ¢3p = idp. An isomorphism
¢ : X — X is said to be an automorphism of X. The set of automorphisms of X is denoted by
Aute(X).

If ¢ € Home(A, B) is an isomorphism, there exists a unique 1) € Homg(B, A) such that
¢ = idy and ¢ = idg. We denote such ¢ by ¢! and we call it the inverse of ¢.

Example 1.3. Let € be a category, we denote by €°P the opposite category of &€, that is, the
category such that Ob(€?) = Ob(€) and Homgor (A, B) = Home (B, A) for every A, B € Ob(€?).

Example 1.4. A semi-group is a pair (G,-) with G a set and where - : G x G — G is a binary
associative operation (that is, (f-g)-h = f-(g-h) for all f, g and h € G). If there is a unit
element e € G (that is, e-g = g-e = g for all g € G) then we say that the triple (G,-,e) is a
monoid. In a monoid (or semi-group) we usually denote by - the operation and we denote by e
the identity element. If the operation is commutative then it is denoted by + and the identity
element is denoted by 0.

Any monoid G can be considered as a category € with a single object ® and such that Endg,, (o) =
G. Any category with one object is of this form.

More generally, in a given category €, Ende(A), with the operation induced by composition of
morphisms and ida as unit element, is a monoid for all A € Ob(C).

Example 1.5. We denote by Set the category of sets. The class of objects of Set is the class of
all sets and the set of morphisms between two sets is the family of all functions between them.
Composition and identity are as expected.

Example 1.6. We denote by Top the category of topological spaces. The class of objects of
Top is the class of all topological spaces (T,T), where T is a set and T is a topology, that is a
collection of subsets of T such that:

-~ JandTeT;
— arbitrary unions of elements of T belong to T;
— finite intersections of elements of T belong to T.

The elements of T are called open sets, while the elements of the form T\A, with A € T, are
called closed sets. A morphism ¢ : (T1, 1) — (T%,72) in Top is a continuous map, that is, a map
¢ : Ty — Ty such that ¢~ (A) € 71 for all A € 7. Composition and identities are as expected.

Example 1.7. Let I be a set. A binary relation “<” on I is a preorder if it is transitive (i.e.,
ifi<jandj <k, theni <k, foralli, j, kel), and reflexive (i.e., i < i for allie I). If < is
a preorder on I, then the pair (I,<) is said to be a preordered set. If < is also antisymmetric
(i.e., if i < j and j < i, then i = j, for all i, j € I) then it is a partial order and (I,<) is a
partially ordered set (or a poset). Furthermore, (I,<) is a totally ordered set if it is a poset
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such that, for all a, be I, either a <b orb < a.
Given a preordered set (I, <), one can define a category Cat(I, <) whose objects are the elements
of I and, for alli, j €I,

{o} ifi<y;

Homcat(l’é)(ivj) - {@ otherwise.

In particular, given any set J, the discrete order on J is a relation defined as follows: i < j
if and only if i = j. Of course this is a preorder. We call the category Cat(J, <) the discrete
category over J.

Example 1.8. Let I be a set and let €; be a category, for all i € I. The product category
[ Lc; €i is defined as follows:

— Ob([ Lie; €i) = [ 1;e; Ob(€;), where the [[,c; on the right hand side represents the cartesian
product of classes;

- Hom]_[iel Ci((ci)iel, (Cz()iel) = Hz’e[ Hoin(CZ’v C{), for all (Ci)ier, (Cz{)iEI € Ob(Hz’EI &);
— composition is defined component-wise, using the composition laws in each €;.

Definition 1.9. Given two categories € and €3, a functor F' : € — €y is a (generalized)
function that

(Func.1) associates to any object A in €1 an object F(A) in €y;

(Func.2) associates to each morphism ¢ : X — Y € € a morphism F(f): F(Y) - F(X) € &,.
Furthermore, F(ida) = idp(a), for all A € Ob(€1) and F(y o ¢) = F(¢) o F(¢), for
any pair of morphisms ¢ : X - Y and:Y — Z.

Let € be a category, the obvious functor idg : € — € such that F(X) = X and F(¢) = ¢,
for any object X € Ob(€) and any morphism ¢ : X — Y in €, is said to be the identity functor.
Notice also that, given three categories €1, € and €3, and functors F : €, — €y, G : €& — &3,
there is a well defined composition G o F': €, — €3.

Example 1.10. Let € be a category. Any fized object A € Ob(€) determines two functors
Homg(A,—) : € — Set and Homge(—, A) : € — Set.

The functor Homg(A, —) maps an object B € Ob(C) to the set Homg(A, B) and a morphism
¢ : B — C to the map

Homg (A, ¢) : Homg(A, B) — Homg (A, C) such that ¥ — ¢po.
The functor Homg(—, A) is defined similarly.

Example 1.11. Given two semi-groups (Gy,-) and (Ga,-), a map ¢ : G1 — G2 is a homomor-
phism (resp., a anti-homomorphism) if ¢(g-h) = ¢(g)-¢(h) (resp., p(g-h) = ¢(h)-é(g)), for all
g and h € G1. If G1 and G2 are monoids, then ¢ is a homomorphism of monoids (resp., anti-
homomorphism of monoids) if it is a homomorphism of semi-groups (resp., anti-homomorphism
of semi-groups) and ¢(e) = e. If ¢ : G1 — G2 is a homomorphism of monoids, one can see
that it induces a functor Fy : €g, — Cq, in the obvious way, similarly a anti-homomorphism
Y G1 — Go corresponds to a functor Hy : (Cq,)? — €g,. All the functors among one-object
categories have this form.
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Example 1.12. The category of semi-groups Semi (resp., the category of monoids Mon), is
the category whose class of objects Ob(Semi) (resp., Ob(Mon)) is the class of all semi-groups
(resp., monoids) and morphisms are semi-group (resp., monoid) homomorphisms with the usual
composition of maps.

Example 1.13. A group is a monoid in which any element has an inverse. A group is Abelian
if its operation is commutative. A homomorphism of (Abelian) groups is a semigroup homomor-
phism. We denote by Group (resp., Ab) the category of all (Abelian) groups and homomorphisms
of groups among them.

Notice that, given a category € and an object X € Ob(€), the set Aute(X) with the operation
nduced by composition is a group.

Definition 1.14. A subcategory €' of a category € is a category such that Ob(€’) is a subclass
of Ob(€), Home (A, B) is a subset of Home (A, B) for any pair of objects A, B € Ob(€’) and

such that composition and identity morphisms in € and in € coincide.

One can see that Mon is a subcategory of Semi, which is a subcategory of Set. In general, if
¢’ is a subcategory of €, then there is an inclusion functor F : ¢ — €.

Definition 1.15. Let F': €; — &3 be a functor between two categories. For any pair of objects
A and B € Ob(€y) there is a map

Homyg, (A, B) — Homg, (F(A), F(B)) such that ¢ +— F(¢).

If the above map is surjective for any pair of objects of €1, one says that the functor F is full,
while if all such maps are injective one says that F' is faithful. A functor which is both full and
faithful is said to be fully faithful.

An example of faithful functor is the inclusion of a subcategory €’ in a bigger category €.
Notice that the inclusions of Ab in Group and of Group in Mon are full functors, while the
inclusion of Mon in Semi is not full.

Definition 1.16. Let € be a category and let € be a subcategory. If the inclusion F : € — € is
full, we say that € is a full subcategory of €.

Given a category €, in order to specify a full subcategory €’ of €, it is enough to specify
Ob(¢’).

Definition 1.17. Let €; and € be two categories and let F, F' : € — € be two functors.
A natural transformation v : F' = F’ between F and F' is obtained taking for all C € €1 a
morphism vo : F(C) — F'(C) such that the following squares commute

for all D € Ob(€;) and ¢ € Homg, (C, D). We say that v is a natural isomorphism provided all
the vo are isomorphisms.



1.1 Categories and functors 7

Example 1.18. A category I is said to be small if its morphisms (and consequently its objects)
form a set (not a proper class). Given a small category I and a category € one can define
the functor category Func(I,€) as follows. The objects of Func(I, &) are the functors from I
to €, while the morphisms between two functors F, F': I — € are the natural transformations
F = F'. Composition and identities are as expected.

Definition 1.19. Let €, and € be two categories.

— An adjunction (F,G) between €1 and €3 is a pair of functors F : € — & and G : €; —
€y, such that the functor Home,(—,G(—)) : € x € — Set is naturally isomorphic to
Homg, (F(—),—) : €2 x & — Set. In case (F,G) is an adjunction, we say that F is left
adjoint to G and that G is right adjoint to F.

— A functor G : € — €4 is an equivalence of categories if there exists a functor F : € — €1 such
that FG and GF are naturally isomorphic to the identity functors ide, and idg, respectively.

— An equivalence between € and € is said to be a duality.
The proof of the following lemma is straightforward and so it is left to the reader.

Lemma 1.20. Let € be a category, let I be a set and let I be the discrete category over I. Then,
there is an equivalence of categories Func(l,€) = [ [, €.

Lemma 1.21. [96] Proposition 9.1, Ch. IV] Let €; and €3 be two categories and let F' : €5 — &
be a functor. If G, G' : € — & are both right adjoints to F, then there is a natural isomorphism
v:G= G

Thanks to the above lemma, adjoints are uniquely determined up to natural isomorphism,
so we can speak about “the” right (or left) adjoint to a given functor

Lemma 1.22. 70, Theorem 1, Sec. 8, Ch. IV] Let €, € and €3 be categories and let (F,G) and
(H, K) be two adjunctions between €1 and €2, and €2 and €3 respectively. Then, the composition
of the two adjunctions (F o H,G o K) is an adjunction between €1 and €3.

Let I, J be small categories and consider a functor F': I — J. Given a category €, there is
an induced functor

F : Func(J,C) — Func(7, €),
defined by composition.

Definition 1.23. Let I, J be small categories, let € be a category and consider a functor
F:I1—J. Then,

~ the left adjoint FT : Func(I, C) — Func(J, €) to Fy is the left Kan extension of F' (if it exists);

— the right adjoint F* : Func(I,C) — Func(J,€) to Fy is the right Kan extension of F (if it
exists).

1.1.2 Universal constructions

Let € be a category. In this subsection we briefly recall some constructions in € that are defined
by “universal properties”.

Definition 1.24. Let € be a category. An object C € Ob(C) is said to be initial (resp., terminal)
if, for all A € Ob(€) there exists a unique morphism ¢ : C — A (resp., ¢ : A — C).
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Lemma 1.25. Let € be a category and let C and D be two initial (resp., terminal) objects in
&. Then, there is a unique isomorphism ¢ : C — D.

Proof. By definition of initial object, there is a unique morphism ¢ : C — D and a unique
morphism ¢ : D — C, furthermore the unique endomorphism of C is id¢g and the unique
endomorphism of D is idp. It follows that ¢ o ¢ = idp and 9 o ¢ = id¢, that is, ¥ = ¢~ is
the inverse of ¢, which is the unique isomorphism going from C' to D. Analogous considerations
hold for terminal objects. O

A universal property is a condition imposing that a given object is the initial or final object
in a suitable category. As we proved, this automatically ensures that an object satisfying such
a property (if it exists) is unique up to unique isomorphism.

Definition 1.26. Let I be a small category and let F' : I — € be a functor; for all i € Ob(I) we
denote by C; the object F(i). The colimit of F' is a pair (im F, (€;);jcon(r)) with lim F' € Ob(&)
and ¢; € Home (C;, lim F'), for all i € Ob(I), such that €j o F(¢) = €, for any ¢ € Homy (4, ),
and which satisfies the following universal property:

(%) for any pair (C,(#i)iconr)) with C € Ob(€) and ¢; € Home(C;, C), for all i € Ob(I), such
that ¢; o F(¢) = ¢4, for any ¢ € Homy(i,j), there exists a unique morphism ® : lim i — C
such that ¢; = ® o €; for all i € Ob(I).

Dually, consider a small category I and a functor F: I[P — €. A pair (im F, (7;);con(r)) with
lim F' € Ob(€) and m; € Home(lim F, C;) is a limit of F' if, when viewed in €7, this pair is a
colimit of the opposite functor F°P : I — €°P.

Notice that, given a category €, a small category I and a functor F': I — €, one can define
a category whose objects are pairs (L, (m; : L — F(i));con(r)), With L € Ob(€), such that, given
a morphism ¢ : 7 — j in I, F(¢)m; = 7;. A morphism between two given objects (L, (#)icob(r))
and (L, (¢;)icob(r)) is a morphism ® € Homg(L, L") such that ¢;® = ¢; for all i € Ob(I). A
colimit of F' is an initial object of this category.

By the universal property, if a (co)limit exists, then it is uniquely determined up to a unique
isomorphism, so there is no ambiguity in the notations lim F' and lim F'.

Definition 1.27. Let (I,<) be a preordered set and let € be a category. A direct system
{Ci, ¢ji i < jelI} consists of

— a family {C; : i € I} of objects of €;
— a family {¢;; : C; — Cj : i < j} of morphisms such that ¢y j¢;i = ¢ri, whenever i < j <k.
An inverse system is defined dually.

Notice that, to specify a direct system {C;, ¢;; : i < j € I} is equivalent to define a functor
F : Cat(I,<) — €, dually, an inverse system {D;, ¢; ; : i < j € I} corresponds to a functor
G : Cat(l,<)? — €. In this case we also use the following notation

lim F'=lim C; and lmG =limD;.
iel el

Definition 1.28. A category € is complete (resp., cocomplete) if for every small category I
and every functor F : 1P — € (resp., F : I — €), F has a limit (resp., a colimit).
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Lemma 1.29. [70, Corollary, Sec. 3, Ch. V] Let € be a complete (resp., cocomplete) category
and let I be a small category. Then, Func(I,€) is a complete (resp., cocomplete) category.

Example 1.30. Let I be a set and let A = (A;)ier be a family of objects of € indexed by I. A
product of A is a pair ([ [ A, (m;)ier), where [ [.A € Ob(€) and m; € Home([ [ A, A;) for allie I,
which satisfies the following universal property:

(x) for any pair (P, (¢;)icr), with P € Ob(€) and ¢; € Home (P, A;) for all i € I, there exists a
unique morphism ® : P — [[.A such that ¢; = m; 0 ® for allie I.

Dually, the coproduct of A is a pair (P A, (€)icr), with @ A € Ob(€) and ¢; € Home(A;, P A)
for all i € I, which is a product of A in €°P,

(Co)Products correspond to (co)limits of functors from the discrete category over the set I to
the category €.

Example 1.31. Let X, Y and Z € Ob(€), and consider two morphisms ¢ : Z — X and
¢': Z —Y. Apushout (also denoted by PO) of ¢ and ¢' is a triple (P,a: X — P,/ : Y — P),
where ap = o' @', that satisfies the following universal property:

() for any triple (Q, f : X — Q. f': Y — Q), where f'¢ = ¢'f, there exists a unique morphism
®: P — Q such that o/ = f' and da = f.

Dually, given two morphisms ¢ : X — Z and ' : Y — Z. A pull back (also denoted by PB) of
Y and ' is a triple (P, : P — X,8: P —Y), where 13 = /8" which is a PO in €°P.
PBs and POs are respectively limits and colimit of functors from {e < e — e} to €.

Definition 1.32. A non-empty category I is said to be filtered if
— giwen i and j € Ob(I) there exists k € Ob(I) such that Homy (i, k) # & # Homy(j, k);

— gwen i, j € Ob(I) and two arrows ¢, 1» € Homy(i,j) there exist k € Ob(I) and £ € Homy(j, k)
such that £ o ¢ =€ o).

Example 1.33. A preordered set (I,<) is said to be directed (resp., downward directed) if for
all i, j € I there exists k € I such that i <k and j <k (resp., i =k and j = k).

Consider the category Cat(I,<) defined in Example . Notice that Cat(I, <) is filtered if and
only if (I,<) is directed.

Definition 1.34. Let € be a category, let I be a small category and let F' : I — € (resp.,
G : 1P — €) be a functor. If I is filtered, a colimit of F' (resp., a limit of G) is said be a filtered
colimit (resp., a filtered limit ).

Definition 1.35. Let € and ® be two categories, let F' : € — D be a functor. We say that
F commutes with limits (or preserves limits) if, for any small category I and any functor
G : I°? — € that has a limit in €, the composition FG : I°° — © also has a limit and there is
an isomorphism

lim(FG) — F(lim G)

that is compatible with the natural maps of limits. Functors that commute with colimits (or
preserve colimits) are defined dually.

Stmilarly, if F: €°P — 3 is a functor, we say that F' sends limits to colimits if, for any small
category I and any functor G : I°°? — € that has a limit in €, the composition FG : I — 2 has
a colimit and there is an isomorphism

lim(FG) — F(lim G)
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that is compatible with the natural maps of limits and colimits. Functors that send colimits to
limits are defined dually.

Restricting the class of possible small categories I, standard variations are possible. For example
we say that F : € — D commutes with (finite, countable) products, if for any discrete category
I over a (finite, countable) set and any functor G : I’ — € that has a product in €, the
composition F'G : [P — ® also has a product and there is an isomorphism lim(FG) — F(lim G)
that is compatible with the natural maps of products.

Lemma 1.36. [70, Theorem 1, Sec. 4, Ch. V] Let € be a category and let C € Ob(C). Then, the
functor Home (C, —) : € — Set commutes with limits, while the functor Homg(—,C') : €°P — Set
sends colimits to limits.

Lemma 1.37. [70, Theorem 1, Sec. 5, Ch. V] Let €, © be two categories and let F': € — D be
a functor. If F' is a right adjoint then it preserves limits, while, if it is a left adjoint, it preserves
colimits.

Let I be a small category, let € be a category and suppose that any functor F' : I — € has
a colimit. One can define a functor

lim : Func(Z, &) — €

that associates to any functor F' € Ob(Func(/, €)) its colimit lim F'. Indeed, let F' and F’ €
Ob(Func(/, €)), denote by (lim F, (€;)icon(r)) and (lim F”, (€;)icon(r)) the colimits of F' and F
respectively, and take a natural transformation v € Hompype(r,¢)(F, F”). Then, for all i € Ob([),
there is a map ¢; = €, ov; : F(i) — li_n)lF’ . By the universal property of the colimit, there is a
unique morphism lim v : lim F' — lim F”, such that €] o v; = lim v o ¢; for all i € Ob(I).

Analogously, if any functor F' : Func(I°,€) — € has a limit, one can show that there is a
functor

lim : Func(I, &) — €.

With similar considerations (see also Lemma [1.20]), given a set I and a category € which has a
coproduct (resp., product) for any I-indexed set of objects, one can define the coproduct functor

@ :1]; € — € (the product functor [[: ][], € — €).

Lemma 1.38. [96, Proposition 8.8, Ch. IV] Let € be a complete category and let I, J be two
small categories. Let F': I x J — € be a functor and notice that it induces two functors

F:I—Func(J,€) and F:J — Func(l,Q).
Then, liny(ling ') = lim F* = ling ling F").

Of course, the above lemma admits a dual formulation showing that “limits commute with
limits”.
Using the notions of limits and colimits one can give formulas to construct the left and right

Kan extensions of a functor. Using these formulas one proves the following

Lemma 1.39. [65, Theorem 2.3.3] Let I, J be small categories, let F': I — J be a functor and
let € be a category. Then,

(1) if € has all colimits then FT exists. Furthermore, if F is fully faithful, then FT is fully
faithful and there is a natural equivalence of functors Fy FT ~ dpunc(s,e)s
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(2) if € has all limits then F* exists. Furthermore, if F is fully faithful, then F* is fully faithful
and there is a natural equivalence of functors Fy Ft ~ Idpunc(s,¢)s

In the last part of this subsection we discuss the notions of kernel and cokernel.

Definition 1.40. Let € be a category. An object C € Ob(C€) is a zero-object if it is both initial
and terminal.

If a zero-object exists, all the zero-objects in € are isomorphic, so one can speak about
the zero-object of €, which is usually denoted by 0. For any A € Ob(C€) we denote by (p.a
(resp., Ca,0) the unique element of Homg (A, 0) (resp., Homg(0, A)). The morphisms of the form
(B,A = (B,00° 0,4 € Homg(A, B) are called zero-morphisms. If we do not need to specify A and
B we just write 0 for (B a.

Definition 1.41. Let € be a category with a zero-object and let ¢ : A — B be a morphism in
¢. A kernel of ¢ is a pair (Ker(¢), k) with Ker(¢) € Ob(€) and k € Homg(Ker(¢), A) such that
k¢ = 0, which satisfies the following universal property

(%) for any pair (K, k") with K € Ob(€) and k' € Home (K, A) such that k'¢ = 0, there exists a
unique morphism 1 : K — Ker(¢) such that kv = k'.

Dually, a pair (CoKer(¢), c) with CoKer(¢) € Ob(€) and ¢ € Home (B, CoKer(¢)), is a cokernel
of ¢ if it defines a kernel of ¢ in €°P.

1.1.3 (Pre)Additive and Abelian categories

Definition 1.42. A category € is pre-additive if it satisfies the following two axioms:

(Add.1) it has a zero-object;

(Add.2) given A, B € Ob(€), there is a map + : Home(A, B) x Homg(A, B) — Home (A, B)
such that (Home (A, B), +) is an Abelian group and

o (wl + ¢2)¢ = wlﬁb + ¢2¢7 fO’f’ all A; B7 C € Ob<¢)7 ¢ € HOHIQ(A, B) and wl;
Y2 € Home (B, C);
= ¢'(Y1 +1p2) = @1 + ¢’ + ¢, for all B, C, D € Ob(€), 91, ¢ € Home(B,O) and
¢' € Homg(C, D).
A pre-additive category is additive if it satisfies the following axiom.:
(Add.3) all finite products and coproducts exist.

Example 1.43. The category Ab is additive. In fact, the zero-object in Ab is the trivial Abelian
group, while the additive structure on Homay(A, B), for any two Abelian groups A and B, is
given by point-wise addition. Furthermore, given a set I and Abelian groups A;, for all i € I,
one defines

HAZ' = {(xi)iel L X; € Az} and @Al = {(aj‘i)ie] € HAl : |Z el: T; # 0| < OO} .
I I I

For alli, j eI, let 517' : Aj — Aj be a group homomorphism such that (55(95) =z ift=j and
87 (z) = 0 otherwise. For all j € I, there are canonical group homomorphisms

WjZHAZ'HAj and Gj:Aj—><—BAi,
I 1
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such that mj((zi)ier) = x; and €j(z) = (5;(55))151 One can show that ([ [; Ai, (mi)ier) and
(@ As, (€)ier) are respectively the product and the coproduct of the family {A; : i € I}. So Ab
has not only finite products and coproducts, but it has a product and a coproduct for any set of

objects.

Definition 1.44. Given two pre-additive categories € and €', a functor F : € — €' is additive
if, given A and B € Ob(€), the canonical map

HOIIIQ(A, B) - HOHlQ‘/(F(A), F(B))
18 a homomorphism of Abelian groups.

Proposition 1.45. [70, Proposition 4, Sec. 2, Ch. VIII| Let €; and €, be additive categories
and let F': € — & be a functor. Then, the following are equivalent:

(1) F is additive;
(2) F commutes with finite coproducts.

Example 1.46. Given a pre-additive category €, we usually consider the functors Home (X, —)
and Home(—, X), as functors € — Ab and €°P — Ab, respectively. Considering these functors
with target the category of Abelian groups, it is not difficult to show that they are both additive.

Example 1.47. A ring is a quintuple (R, -, +,1,0) such that (R,-,1) is a monoid, that we call
the multiplicative structure of R, and (R,+,0) is an Abelian group, that we call the additive
structure of R. Furthermore, one supposes that the multiplicative and the additive structures are
compatible, that is:

(r+s)-t=-t)+(s-t) and t-(r+s)={t-r)+(t-s),

forallr, s andt € R. A ring is commutative if - is a commutative operation.

Given two rings (R,-,+,1,0) and (R',,+',1',0"), a map ¢ : R — R’ is a ring homomorphism
if it is a homomorphism of monoids with respect to the addivite and multiplicative structures
of R and R'. We denote by Ring the category of all rings with ring homomorphisms. It is not
difficult to show that Ring is an additive category.

For a given ring R, the one-object category €r described in Example is naturally a pre-
additive category with the addition induced by the operation “+7 in R. Furthermore, given a
ring homomorphism ¢ : R — R/, it naturally induces an additive functor between € and Cpr.

Lemma 1.48. [70, Theorem 3, Sec. 1, Ch. IV] Let €; and € be two pre-additive categories
and let (F,G) be an adjunction between them. Then, F is an additive functor if and only if G
1s an additive functor. Furthermore, in this case the natural maps

vap : Homg, (B, G(A)) — Homg, (F(B), A)
are isomorphisms of Abelian groups for all A€ &€ and B € €s.

Corollary 1.49. Let €; and &€ be additive categories and let F': €& — & be a functor. If F
has a Tight or a left adjoint, then F is additive.

Proof. By Lemma [1.37] a left adjoint functor preserves colimits and, in particular, it commutes
with binary coproducts. So, if F is a left adjoint, it is additive by Proposition[I.45] On the other
hand, if F' has a left adjoint G, then G is additive and thus F is additive by Lemma O
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In a preadditive category one can show that finite products and finite coproducts coincide.
The following lemma can be proved using [96] Proposition 3.2, Ch. IV].

Lemma 1.50. Let € be a preadditive category and let {C; : i € I} be a finite family of ob-
jects.  Given a product (] [,c; Ci, (mi)ier) there exist morphisms e;» : Cj — [l;e; Ci such that
(I Lic; Cis (€))ier) is a coproduct. Dually, given a coproduct (B,c; Ci, (€)ier) there exist mor-
phisms 75 : @;e; Ci — Cj such that (Dje; Ci, (})ier) is a product.

In particular, {C; : i € I} has a product if and only if it has a coproduct and, in this case,

[[ci=PDc.

iel 1€l

Definition 1.51. Let € be an additive category. Given a morphism ¢ : A — B in €, the
image Im(¢) (resp., the coimage Colm(¢)) of ¢ is Im(¢) = Ker(CoKer(¢)) (resp., Colm(¢) =
CoKer(Ker(¢))). We say that the additive category € is Abelian if and only if

(Ab.1) every morphism of € has a kernel and a cokernel;

(Ab.2) for every morphism ¢ : A — B in €, the canonical morphism from Im(¢) to Colm(¢)
s an isomorphism, that is, the unique map ¢ making the following diagram commute
(which exists by the universal properties of kernels and cokernels) is an isomorphism:

Ker(¢) —= A —= Colm(¢) (1.1.1)

P

CoKer(¢) <— B <——1Im(¢).

Example 1.52. The category Ab is an Abelian category. We have seen in Example that
Ab is additive. Furthermore, given a morphism ¢ : A — B, Ker(¢) is the subgroup {x € A :
¢(x) = 0} with the natural inclusion in A, while CoKer(¢) is the quotient B/{¢(z) : x € A},
with the natural projection B — B/{¢(x) : x € A}.

Definition 1.53. Let € be a category, let A, B and X € Ob(€) and fix three morphisms ¢, €
Homg (A, B) and x € Home (X, A). Then,

— x separates ¢ and i if ¢ # ¥ implies px # Px;
— X is an epimorphism if it separates any pair of morphisms in Home (A, B), for all B € Ob(€);
— x 48 a monomorphism if it is an epimorphism in CP.

The following lemma is an immediate consequence of the definitions:

Lemma 1.54. Let € be a category, let A, B, C' € Ob(C') and consider two morphisms ¢ : A — B
and vy : B — C. The following statements hold true:

(1) if v¢ is a monomorphism, then ¢ is a monomorphism;
(2) if Yo is an epimorphism, then 1 is an epimorphism.

Example 1.55. In the category Set (resp., Semi, Mon ), monomorphisms are precisely injective
maps (resp., injective homomorphisms), epimorphisms are surjective maps (resp., surjective
homomorphisms) and the isomorphisms are bijective maps (resp., bijective homomorphisms).
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The following lemma will be useful later on

Lemma 1.56. Let € be a category and let ¢ : X — Y be a morphism in €. A morphism
k' : K — X is a kernel of ¢ if and only if it is a monomorphism such that:

() for any pair (H,h) with H € Ob(€) and h € Home(H, X) such that h¢ = 0, there exists a
morphism v : H — K such that k'vp = h.

Proof. Let k : Ker(¢) — X be a kernel of ¢. It is clear that k satisfies (x), let us show that k is a
monomorphism. Indeed, given an object Z € Ob(€) and morphisms 1, 12 € Home(Z, Ker(¢))
such that ki1 = kg, since ¢p(ki)1) = 0 = ¢(kip2) and using the definition of kernel, there exists
a unique morphism 1 : Z — Ker(¢) such that k¢ = ki = kg, that is ¢ = 1p = 1.

On the other hand, let ¥’ : K — X be a monomorphism that satisfies (x). Let Z € Ob(€) and
let ¢ : Z — X be such that ¢y = 0. By (%), there exists a morphism ¢’ : Z — K such that
k'+)’ = 1), while such v’ is unique by the fact that k&’ is a monomorphism. O

Notice that an isomorphism is both an epimorphism and a monomorphism. One can find
examples where the converse does not hold true. On the other hand, in Abelian categories we
can prove the following:

Lemma 1.57. [96], Propositions 2.3 and 4.1] Let € be an Abelian category and let ¢ : A — B be
a morphism. Then,

(1) ¢ is a monormophism if and only if Ker(¢) = 0;
(2) & is an epimorphism if and only if CoKer(¢) = 0;
(3) ¢ is an isomorphism if and only if it is both mono and epi.

Definition 1.58. Let € be an Abelian category.

1 2 n—1 .
— A sequence C! LiNye - B e [ of morphisms in € is exact in C* (fori =2,3,...,n—1)

if the canonical morphism Im(¢*~1) — C* is a kernel for ¢'; it is exact if it is evact in C* for
alli =2,...,n—1;

— a short exact sequence is an exact sequence of the form 0 - A —- B — C — 0.

Proposition 1.59. [7(, Lemma 5, Sec. 4, Ch. V| Let € be an Abelian category and consider
the following commutative diagram

Al B’ C’ 0

ol b

0 A B C

If the above diagram has exact rows, then there is an exact sequence
Ker(f) — Ker(g) — Ker(h) — CoKer(f) — CoKer(g) — CoKer(h).

Moreover, if A” — B’ is a monomorphism, then so is Ker(f) — Ker(g), and if B — C' is an
epimorphism, then so is CoKer(g) — CoKer(h).

Definition 1.60. Let F : € — &' be an additive functor between two Abelian categories. We say
that F' s
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— left exact if 0 > F(A) — F(B) — F(C) is an ezxact sequence for any short exact sequence
0-A—->B->C—-0inC;

— right exact if F(A) — F(B) — F(C) — 0 is an exact sequence for any short exact sequence
0>A—>B->C—-0inC;

— exact if 0 - F(A) —» F(B) —» F(C) — 0 is a short exact sequence for any short exact
sequence 0 > A —- B — C — 0 in €.

Notice that F'is exact if and only if it is both left and right exact.

Example 1.61. Given an Abelian category € and C € Ob(€), the Hom-functors Home(C, —) :
¢ — Ab and Homge(—,C) : €P — Ab (see Example are both left exact (use the universal

properties of kernels and cokernels).
The following proposition can be proved using that (co)kernels are particular (co)limits.

Proposition 1.62. [96, Proposition 8.6, Ch. IV] Let €, € be Abelian categories and let F :
¢ — ¢ be an additive functor. Then,

(1) F isleft exact if and only if F' commutes with finite limits if and only if F' preserves kernels;

(2) F is right exact if and only if F' commutes with finite colimits if and only if F' preserves
cokernels.

The following corollary follows from Proposition [1.62| and Lemma [1.37]

Corollary 1.63. Let € and &' be Abelian categories. If F : € — €' is a left (resp., right) adjoint
functor, then F is right (resp., left) exact.

1.1.4 Subobjects and quotients

Definition 1.64. Let A, B and B’ be objects in a category €. Two monomorphisms ¢ : B — A
and ¢' : B' — A are equivalent if there exists an isomorphism 1 : B — B’ such that ¢ = ¢'1p. An
equivalence class of monomorphisms with target A is, by definition, a subobject of A. Quotient
objects are defined dually as equivalence classes of epimorphisms.

A subobject of a quotient object (or, equivalently, a quotient of a subobject) is said to be a
segment.

With a little abuse, we say that some representing monomorphism ¢ : B — A is a subobject,
if there is no need to specify the morphism ¢ we just write B < A. There is a partial order
relation between subobjects, in fact, given two subobjects ¢ : B — A and ¢' : B’ - A, B< B’
if there is a morphism 1) : B — B’ such that ¢ = ¢/¢. It easily follows that, if B < B’ and
B’ < B, then they represent the same subobject.

Notice that if € has a zero-object 0 € Ob(€), then 0 < X for all X € Ob(€).

Example 1.65. In the category Group any monomorphism into a group G is equivalent to the
inclusion of a subgroup in G, while any epimorphism is equivalent to the canonical projection
from G onto the quotient over a normal subgroup.

Similar descriptions hold in Ab.
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Definition 1.66. Let € be an Abelian category and let A € Ob(€). A subobject B < A is a direct
summand of A if there exists a subobject C' < A such that the canonical morphism B@®C — A
s an tsomorphism.

Furthermore, a non-zero object X € Ob(€) is indecomposable if its only direct summands are 0
and X.

By definition, a direct summand is a sub-object and, by Lemma [1.50] it is also a quotient
object.

Definition 1.67. A category € is said to be well-powered if for any object X there is a set (as
opposed to a proper class) of (equivalence classes of ) subobjects. We denote by L(X) the poset
of subobjects of X, with the partial order relation <.

For an example of an Abelian category which is not well-powered see [78, Corollary C.3.3].

Let € be an Abelian category and let ¢ be a morphism in €. Using Lemma[I.54] one can show
that the kernel of ¢ is a monomorphism, while its cokernel is an epimorphism. By the universal
property of kernels (resp., cokernels), any other kernel (resp., cokernel) of ¢ represents the same
subobject (resp., quotient object) of A. Thus, there is no ambiguity in writing Ker(¢) < A. For
any subobject A’ < A, we denote by A/A’ the quotient object represented by the cokernel of
the monomorphism A" — A.

A consequence of the axiom (Ab.2) is the following

Lemma 1.68. Let € be an Abelian category and let ¢ : A — B be a morphism. Then,
A/Ker(¢) = Im(¢).

Given an object A, a subobject € : C' — A and a morphism ¢ : A — B, the restriction of ¢ to
C'is the composition ¢ = ¢poe: C — B. The image of ¢ ¢ is denoted by ¢(C), in particular,
Im(¢) = ¢(A). By definition of the image, there is an induced morphism C' — ¢(C), such that
the composition C' — ¢(C) — B is exactly ¢[¢. Abusing notation we denote also this second
morphism by ¢[c. On the other hand, given a sub-object € : D — B, there is a sub-object
¢~ 1 (D) — A defined by the following pullback diagram:

¢{(D) —=D
| =
A p B

Definition 1.69. Let € be an Abelian category. Given an endomorphism ¢ : A — A, a sub-object
C of A is ¢-invariant if ¢(C) < C.

Definition 1.70. Let (L, <) be a poset and let F < L be a subset. An upper bound (resp., lower
bound) for F' is an element x € L such that x > f (resp., x < f) for all f € F. The least upper
bound or join (resp., greatest lower bound or meet) of F' is the minimum (resp., mazimum,) of
the set of all the upper (resp., lower) bounds of F. Least upper bounds and greatest lower bounds
may not exist but, if they do, we denote them respectively by \/ F and \F or, by fi v -+ v fi
and fi Ao A frif F={f1,..., fx} is finite.

A poset is a lattice if any of its finite subsets has a least upper bound and a greatest lower
bound. Furthermore, a lattice is complete if it has joins and meets for any of its subsets (finite
or infinite).

Given two lattices (L, <), (L', <) and a map ¢ : L — L',
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— ¢ is a homomorphism of semi-lattices if ¢(a v b) = ¢(a) v ¢(b), for all a,be L;

— ¢ is a lattice homomorphism if it is a semi-lattice homomorphism and ¢(x Ay) = ¢(x) A P(y),
for all x and y € L;

— ¢ commutes with arbitrary joins if ¢(\/ F') = \/{¢(f) : f € F}, whenever these joins exist.

Lemma 1.71. [96, Proposition 1.2, Ch. III] Let (L, <) be a poset. If any subset of L has a least
upper bound, then L is a complete lattice.

Of course, the above lemma admits a dual statement: if any subset of a given poset (L, <)
has a greatest lower bound, then L is a complete lattice.

Proposition 1.72. Let € be a well-powered Abelian category, let X, Y € Ob(€) and let ¢ €
Home(X,Y). Then,

(1) L(X) is a lattice;
(2) if € is complete or cocomplete, then L(X) is complete;

(3) the induced map ® : L(X) — L(Y) such that ®(C) = ¢(C) for all C € L(X), is a homo-
morphism of semi-lattices;

(4) if € is cocomplete, then ® commutes with arbitrary joins.

Proof. Let F' = {C; : i € I} be a set of subobjects of £(X). By [96, Proposition 4.2, Ch. IV]
we can construct the least upper bound (resp., greatest lower bound) of F' as the image of the
natural map @; C; — X (resp., kernel of the natural map X — [[; X/C;) if this coproduct
(resp., product) exists in €. Thus, when F is finite we can always construct its join and meet.
Furthermore, if € is complete (resp., cocomplete) any subset of £(X) has a join (resp., meet),
so £(X) is a complete lattice by Lemma [1.71] This proves (1) and (2). To prove (3) and (4) see
the proof of [96, Corollary 8.5, Ch.IV]. O

Definition 1.73. Let € be a well-powered Abelian category, let F = {X; : i € I} be a set of
subobjects of an object X in €. We denote respectively by ¥,.; Xi and (\;c; Xi the least upper
bound and the greatest lower bound of F, whenever they exist. If I = {1,...,k} is a finite set,
then we also use the notations Y, ; X; = X1 +...+ Xy, and ﬂie] X; = X10n...n Xy, respectively.
Lemma 1.74. [96, Proposition 5.2, Ch. IV] Let € be a well-powered Abelian category, let
C € Ob(€) and let Cy and Cy € L(C). Then,

(Cl + CQ)/Cl s 02/(01 N 02)

Definition 1.75. Let M be an object in €. A sub-object N < M is essential if N n K = 0
implies K = 0 for any sub-object K < M. A morphism ¢ : M — M’ in € is essential if Im(¢)
is an essential sub-object of M’'.

1.1.5 Grothendieck categories

Let € be an Abelian category. In this subsection we introduce three further axioms together
with their duals, these axioms were first defined by Grothendieck in [55]. They are not required
in the definition of Abelian category but it is very common to work with Abelian categories
satisfying some of these further assumptions.
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(Ab.3) For every set {A; : i€ I} of objects of €, the coproduct @, ; A; exists in .
(Ab.3*) For every set {A; : i € I} of objects of €, the product [ [ A; exists in €.

We have seen in Example that Ab satisfies both (Ab.3) and (Ab.3*).

Lemma 1.76. [96], Corollary 8.3, Ch. IV] Let € be an Abelian category. Then, € satisfies (Ab.3)
(resp., (Ab.3*)) if and only if € is cocomplete (resp., complete).

(Ab.4) € satisfies (Ab.3), and the coproduct of a family of monomorphisms is a monomorphism.
(Ab.4*) € satisfies (Ab.3*), and the product of a family of epimorphisms is an epimorphism.

Lemma 1.77. Let € be an (Ab.3) Abelian category, then € is (Ab.4) if and only if, for any set
I, the functor @; : [[; € — € is exact. Dually, an (Ab.3*) category € is (Ab.4*) if and only if
[1;:11;€ — € is exact, for any set I.

Proof. Let I be a set, by the dual of [96, Proposition 3.1, Ch. IV], @; : [[; € — € preserves
epimorphisms, that is, it sends cokernels to cokernels. By Proposition this means that @,
is right exact, while (Ab.4) is equivalent to say that @, sends kernels to kernels, that is, it is
left exact. O

(Ab.5) € satisfies (Ab.3), and filtered colimits of exact sequences are exact.
(Ab.5*) € satisfies (Ab.3*), and filtered limits of exact sequences are exact.

Proposition 1.78. [96, Proposition 1.1, Ch. V| Let € be a cocomplete Abelian category. Then
the following are equivalent:

(1) € satisfies (Ab.5);
(2) given M € Ob(€), K < M and a directed system {N; :ie€ I} < L(M),

(ZN) nK =Y (NinK);
T I
(3) given a morphism ¢ : M — M’ and a directed system {N; : i€ I} < L(M),
¢! (2 Ni> => 7NV
T 1

Definition 1.79. Let € be a category. A subclass G of Ob(€) generates € if every pair of distinct
morphisms f, g € Home (A, B) there exists X € G and x € Home (X, A) that separates ¢ and ).
If G = {G} consists of a single object, we say that G is a generator of €. The definitions of
cogenerating class and cogenerator are dual.

Lemma 1.80. [96], Proposition 6.6, Ch. IV] Let € be an Abelian category with a generator, then
¢ is well-powered.

Definition 1.81. A Grothendieck category is an (Ab.5) Abelian category with a generator.
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1.1.6 Injective and projective objects

Definition 1.82. Let € be an Abelian category. An object X € Ob(€) is injective (resp.,
projective) if the functor Homg(—, X) : €P — Ab (resp., Home (X, —) : € > Ab) is exact.

Notice that an object X is injective in € if and only if it is projective in €°P. In the following
lemma we give equivalent characterizations of injective and projective objects. The proof given
in [96], Proposition 6.1, Ch. I] can be easily adapted to our general context.

Lemma 1.83. Let € be an Abelian category and let X € Ob(€). The following are equivalent:

(1) X is an injective object;

(2) Homg (¢, X) : Homg (B, X) — Homg (A, X) is surjective for any monomorphism ¢ : A — B
m &

(3) given a monomorphism ¢ : A — B in € and a morphism 1) : A — X, there exists a morphism

Y : B — X making the following diagram commutative:

0—=A—"+B

wl o
s
X

Dual characterizations hold for projective objects.
The following corollary is a direct consequence of Lemma [1.36
Corollary 1.84. Let € be an Abelian category and let {C; : i € I} be a set of objects. Then,
(1) @, C; is injective if and only if C; is injective for all i € I;
(2) 11, C is projective if and only if C; is projective for all i€ I.

Lemma 1.85. [96, Proposition 1.4, Ch. X] Let € be a category, let D be an Abelian subcategory,
denote by F : ® — € the inclusion functor and suppose that F' has an exact left adjoint G : € —
©. Then, an object E € Ob(D) is injective in © if and only if F(F) is injective in €.

Definition 1.86. Let € be an Abelian category. We say that € has enough injectives if, for any
X € Ob(€), there exists an injective object E and a monomorphism X — E.

When a category has enough injectives, it is interesting to know if there exists a “minimal”
injective object containing a given object as a subobject:

Definition 1.87. Let € be an Abelian category and let X € Ob(€). An injective envelope of X
is an object E € Ob(€) together with an essential monomorphism X — E.

Lemma 1.88. [96, Proposition 2.3, Ch. V] Let € be an Abelian category, let X € Ob(€) and
leta: X - E, o : X — E' be two injective envelopes of X. Then, there is an isomorphism
¢ : E — E' such that o/ = ¢a. In particular, an injective envelope is unique up to isomorphism.

Given an Abelian category € and an object X € Ob(€), we denote by E(X) the injective
envelope of X, whenever it exists.

Lemma 1.89. [96], Proposition 2.5, Ch. V] Let € be a Grothendieck category. The following are
equivalent:

(1) € has enough injectives;

(2) any object of € has an injective envelope.
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1.1.7 Categories of modules

Definition 1.90. Let I be a small pre-additive category and let € be a pre-additive category.
The additive functor category Add(I,€) is the full sub-category of Func(I, &) whose objects are
all the additive functors I — €.

Proposition 1.91. Let € be an Abelian category and let I be a small category. Then,
(1) Func(I,€) is Abelian;

(2) if I is preadditive, then Add(I, ) is an Abelian subcategory of Func(I, €);

(3) if € is complete (resp., cocomplete), then Add(I,€) is complete (resp., cocomplete).

Proof. Part (1) is [96, Propositions 7.1, Ch. IV], while part (2) is [96, Proposition 7.2, Ch. IV].
Finally, the proof of part (3) is completely analogous to the proof of [96, Proposition 8.7, Ch.
IV] (see the comment after Proposition 8.8 on p. 102 of [96]). O

The following proposition is known under the name of Yoneda Lemma, it is important as it
gives a family of projective generators for Add(Z, €).

Proposition 1.92. [96, Proposition 7.3 and Corollary 7.5, Ch. 1V] Let € be an Abelian category
and let T be a small preadditive category. For all A€ Ob(I) let h* = Homy(A, —): I — Ab and
ha = Homj(—, A) : I°? — Ab. Then, there are natural isomorphisms:

Hompqa(r,e)(h*, T) = T(A) and Hompgq(ror ¢)(hs, S) = S(B),

for all A, B e Ob(I), T € Add(I,€) and S € Add(I°P,€). The category I is equivalent to the
full subcategory of Add(I,€) (resp., of Add(I°?,€)) whose objects are of the form hB (resp.,
hp), with B € Ob(€). Finally, the sets (hB)BeOb(I) and (hp)peow(r) are families of projective
generators respectively for Add(I,€) and Add(I°?,€).

Let I, J be small preadditive categories, consider an additive functor F': I — J and let €
be a Grothendieck category. Then, there is an induced functor

resp : Add(J, €) - Add(Z, @),

defined by composition (which is the restriction of the functor F : Func(J, €) — Func(/, €) used
in Definition . In the following lemma we prove the existence of what is usually called the
“additive Kan extension along F”, anyway in this context we prefer a different terminology, see
Definition for a proof of Lemma and more details on this construction we refer to [75]
Section 6].

Lemma 1.93. Let I, J be small preadditive categories, let € be a Grothendieck category and
consider an additive functor F : I — J. Then, ?7F : Add(J,€) — Add(I, €) is exact and it has
a left adjoint.

Definition 1.94. Let I, J be small preadditive categories, let € be a Grothendieck category
and consider an additive functor F : I — J. The functor resp : Add(J,€) — Add([,¢)
defined by composition with F is called the scalar restriction along F' while its left adjoint extp :
Add(J,€) — Add(I, ) is called the scalar extension along F'.

In what follows we specialize to categories of modules.
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Definition 1.95. Let R be a ring and let € be the pre additive category defined in Example[1]77,
an additive functor F : €g — Ab (resp., G : €% — Ab) is said to be aleft R-module (resp., right
R-module). The category of left (resp., right) R-modules Add(Cr, Ab) (resp., Add(€F, Ab)) is
usually denoted by R-Mod (resp., Mod-R).

The following corollary can be deduced from Proposition|1.91] anyway the usual way to prove
it is to explicitly construct kernels, cokernels, products and coproducts in categories of modules.

Corollary 1.96. Let R be a ring, then Mod-R and R-Mod are complete and cocomplete Abelian
categories.

Consider a left R-module F': €z — Ab and let M = F(e). We generally adopt the compact
notation rM, instead of F' : €z — Ab, where the action of F' on the morphisms of €g is encoded
in the following “scalar multiplication”:

RxM—M (r,m)—rm=(F(r))(m),
that satisfies the following properties:
(Mod.1) 7(m +n) =rm + rn;
(Mod.2) (r+ s)m =rm+ sm;
(Mod.3) (rs)m = r(sm);
(Mod.4) 1m = m;

for all m, n € M and r, s € R. Notice that, given two left R-modules gkM and rM’, a homo-
morphism of Abelian groups ¢ : M — M’ is a morphism in the category of left R-modules if
and only if ¢p(rm) = r¢(m).
Given a left R-module M, a submodule (that is, a subobject in the category R-Mod) is a sub-
group N < M such that rn e N for all r € R and ne N.
Given a left R-module pM and a submodule N < M, the quotient module (that is, a quotient
object in the category R-Mod) r(M/N) is the quotient group M /N with the following scalar
multiplication

Rx M/N — M/N such that (r,mN)+— (rm)N .

Analogous definitions hold in Mod-R.

We denote by rR (resp., Rg) the Abelian group underlying R with left (resp., right) R-
module structure coming from the multiplication in R. This module corresponds to the functor
h*® (resp., he) described by the Yoneda Lemma and it is a projective generator for R-Mod (resp.,
Mod-R). The submodules of grR are the left ideals of R, while the submodules of Rp are the
right ideals of R.

Theorem 1.97. Let R be a ring, then both R-Mod and Mod-R are complete and cocomplete
Grothendieck categories with enough injectives and a projective generator.

Proof. By Corollary both R-Mod and Mod-R are complete and cocomplete Abelian cat-
egories generated respectively by rR and Rpg, furthermore one can verify the axiom (Ab.5) by

hand. The fact that they have enough injectives is proved, for example, in [96, Proposition 9.3,
Ch. IJ. O
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Let R and S be two rings and let ¢ : R — S be a ring homomorphism. As we said, this is
the same as taking an additive functor Fy : €r — €g between the two one-object categories €r
and €g. Abusing notation, we denote resg, by resy

resg : S-Mod — R-Mod
(M :C€g— Ab) — (M o Fy : Cgp — Ab)

The left adjoint exty to resy, that is, the scalar extension along Fy, is usually constructed as a
tensor product in this context, that is, exty ~ — ®pg rRg (see [75, Section 6]).

Definition 1.98. Let R and S be two rings. A ring homomorphism ¢ : R — S is left (resp.,
right) flat if exty : R-Mod — S-Mod (resp., exty : Mod-R — Mod-S) is an exact functor.

Example 1.99. Let D be a ring and recall that an element x € D is a zero-divisor if there exists
a non-zero element y € D such that xy = 0. An element which is not a zero-divisor is said to be
regular, if any non-zero element of D is reqular then D is said to be a domain.

Given a domain D, we let ¥ = {x € D : x is reqular} = D\{0} and we say that D is a left Ore
domain if it is a domain and Dx n Dy # {0} for all z, y € D\{0} (notice for example that any
commutative domain is left Ore).

Given a left Ore domain we define the left field of fractions of D as follows: first we say that two
elements (s,d), (s',d') € ¥ x D are equivalent, in symbols (s,d) ~ (s',d’), if there exist a, b€ D
such that as = bs' € 3 and ad = bd'. We denote by [s,d] the equivalence class of (s,d) and we
let X~1D = X x D/ ~ be the set of these equivalence classes. The set X1D is a skew field when
endowed with the following operations, for all (s1,dy), (s2,d2) € ¥ x D:

[31, dl] . [SQ,dg] = [asl, bdg] and [Sl,dl] + [82, dQ] = [U,Cd1 + ddQ] R

where ad; = bse € ¥ and u = cs1 = dsg € . There is a canonical injective ring homomorphism
e : D — Y7ID, this induces a scalar restriction res, : X~ 'D-Mod — D-Mod, and a scalar
extension ext. : D-Mod — Y71 D-Mod. One can show that the scalar extension is exact in this
particular case so that € : D — X 71D is a flat endomorphism of rings (see for example [96,
Proposition 3.5, Ch. II]).

1.2 Homological algebra

1.2.1 Cohomology

In this subsection we recall some basic definitions and constructions inside the category of cochain
complexes over a given Abelian category.

Definition 1.100. Let € be a an Abelian category and consider a sequence of objects and mor-
phisms

X e, xi 1 AT i A il
We say that X* is a cochain complex if d’d*~' = 0, for alli € Z. A cochain complex X* is exact

in X' if Im(d"~1) = Ker(d'). The cochain compler X*® is exact (or acyclic) if it is evact in X*
for all i € Z.

Definition 1.101. Given an Abelian category € and two cochain complexes C* and D*®, a
morphism of cochain complexes ¢°* : C* — D*® is a sequence of morphisms ¢' : C* — D' such
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that the following diagram commutes:

) di71 ) d'L ) 141
C* L. Ci-1 c Ot c Citl ¢
l(bo i(bzl id)z id)i#»l
i—1 i i+l
D* . Difl dp DZ dp DiJrl dp

that is, diy ¢t = ¢'di !, for alli € Z.

Notice that the degree-wise composition of two composable morphisms of cochain complexes
is a morphism of cochain complexes.

Definition 1.102. Given an Abelian category € we denote by Ch(€) the category of cochain
complexes and morphisms of cochain complexes. For all n € 7, we denote by Ch="(&) (resp.,
Ch”"(¢), Ch="(¢), Ch~"(¢)) the full subcategory of Ch(€) whose objects are all the cochain
complexes C* such that C* =0 for alli <n (resp., i <mn,i>n,i>=n).

The category Ch(€) of cochain complexes is an Abelian category whose zero-object is the
complex whose i-th component is the zero-object of €, for all i € Z. The sum on the homo-
morphism sets is defined degree-wise exploiting the addition in the homomorphism groups in €.
Similarly, one can construct degree-wise products, coproducts, kernels and cokernels.
Furthermore, one can show that Ch="(¢), Ch”"(¢), ChS"(¢) and Ch~"(¢) are Abelian sub-
categories of Ch(€) for all n € Z.

Definition 1.103. Given an Abelian category € and a cochain complex X*®, we denote by X=" €
Ob(Ch”"(€)) the n-th truncation of X*, that is

xX>m e 0 0 CoKer(d" 1) —— X1 Xn+2

Similarly, given a homomorphism of cochain complezes ¢* : X* — Y*, we denote by ¢=" :

X>" — Y>" the obvious induced morphism. This allows to define the n-th truncation functor:
Ch(¢) — Ch™"(¢).

One can prove that the n-th truncation functor is the right adjoint to the inclusion functor

Ch>"(¢) — Ch(€).

Lemma 1.104. Let € and ® be two Abelian categories and let F : € — 2 be a functor. Applying
F degree-wise we obtain a functor F* : Ch(€) — Ch(D). If we suppose also that F is exact,
then F* is exact and

H"(F*(X*®)) = F(H"(X")),

for any cochain complex X* over €. Furthermore, if (F,G) is an adjoint pair between Abelian
categories, then (F*,G*) is an adjunction between the respective categories of complezes.

Proof. The first part follows using that exact functors preserve kernels and cokernels, and defined
using these constructions. The second part follows by [70, Theorem 1, Sec. 8, Ch. 1]. O

In the above settings we will usually abuse notation and denote F'* simply by F'.
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Definition 1.105. Let € be an Abelian category and let n € Z. The n-th cohomology functor
H":Ch(C¢) > ¢

is defined as follows. Given a cochain comples X*, H"(X*) = Ker(d")/Im(d" '), while, given a
morphism ¢°® : X* — Y'* of cochain complexes, H"(¢*) : H"(X*) — H™(Y'*) is the map induced
by o".

A morphism ¢* : X* — Y* in Ch(C) is said to be a quasi-isomorphism if H™($*) is an isomor-
phism for all n € Z.

Notice that a cochain complex X* is exact if and only if H"(X®) = 0 for all n € Z. In
particular, a complex is exact if and only if it is quasi-isomorphic to the zero-complex.

Definition 1.106. Given an Abelian category € and a morphism ¢* : X* — Y* in Ch(C), the
mapping cone cone(¢®) is a cochain complex whose n-th component is X" @ Y™ and whose
differentials are represented in matrixz form as follows:

d?gjrl 0 n+1 n n+1 n
B ) XTEYT — X" ey
Y

The following lemma shows that the construction of the mapping cone provides a different
way to look at quasi-isomorphisms: these are exactly the homomorphisms whose cone is exact.

Lemma 1.107. [104, Corollary 1.5.4] Let € be an Abelian category and let ¢* : X* — Y* be a
morphism in Ch(€). Then,

(1) ¢° is a quasi-isomorphism;
(2) H™(¢*) is an isomorphism for all n € Z;
(3) cone(¢®) is an exact complex.
We conclude the section with the following fundamental lemma.

Lemma 1.108. [104, Corollary 1.3.1] Let € be an Abelian category and let 0 — X* — Y* —
Z* — 0 be a short exact sequence in Ch(€). Then, there is an exact sequence:

.= HY(X®) - H"(Y*) > H"(Z*) > H""N(X*) > H"" (Y*) > H"(Z°) — ...

1.2.2 Injective resolutions and classical derived functors

In this section we recall some basic results about injective resolutions and derived functors. Let
us start defining injective resolutions of objects in Abelian categories:

Definition 1.109. Let € be an Abelian category and let X € Ob(€). Identify X with an object
in Ch(€) whose components are all 0 but its 0-th component which is X. Then, an injective
resolution of X is a quasi-isomorphism \ : X — E* where E* € Ob(Ch>%(¢)), and E™ is
injective for all n € 7.

The following lemma establishes the existence of injective resolutions and the so-called “Com-
parison Theorem”.

Lemma 1.110. [104, Lemma 2.3.6 and Theorem 2.3.7] Let € be an Abelian category with enough
injectives and let ¢ : X — Y be a morphism in €. Then,
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(1) X has an injective resolution;

(2) given two injective resolutions \1 : X — EY and Ay :' Y — E3, there is a homomorphism of
complexes ®° : £} — E3 such that Ao¢ = DO\, .

Using injective resolutions we can define right derived functors:

Definition 1.111. Let € and © be Abelian categories with enough injectives, let F': € — ® be
a functor and let n € N. The n-th right derived functor R"F(¢) : € — © of F is defined as
follows:

— choose for any object X € Ob(€) an injective resolution X — E*(X);
— gwen X € Ob(€), let R"F(X) = H"(F(E*(X)));

— gwen a morphism ¢ : X — Y in €, take a morphism ®°* : E*(X) — E*(Y) as in Lemma
and let R"F(¢) = H"(®*) : R*F(X) — R"F(Y).

In the following proposition we collect the main general properties of derived functors needed
in the thesis. For a proof see [104], Sections 2.4 and 2.5]

Proposition 1.112. Let € and ®© be Abelian categories with enough injectives and let F' : € — D
be a functor. Then, for all n € N,

1) R"F is a well-defined functor and it does not depend on the choice of resolutions;

2) if F is left exact, then ROF is naturally isomorphic to F;

4) F is an exact functor if and only if R™F is the O-functor for all n > 0;

(1)
(2)
(3) if F is left exact and if E € Ob(€) is injective, then R"F(E) = 0 for all n > 0;
(4)
(5)

given a short exact sequence 0 - X — Y — Z — 0 in €, there is a long exact sequence

0—-RF(X) -»RF(Y) - R°F(Z) - R'F(X) — ...
...—»R"F(Z) > R"MF(X) > R"MFY) > R"FZ)...

Let € be an Abelian category with enough injectives. After identifying a given object X €
Ob(€) with a cochain complex concentrated in degree 0, by Lemma [1.110| we can find a bounded
below complex of injectives which is quasi-isomorphic to X. We can generalize this fact as
follows:

Lemma 1.113. [65, Lemma 13.2.1] Let € be an Abelian category with enough injectives and
let n € Z. Then any compler X* € Ob(Ch”"(€)) is quasi isomorphic to a complex Y* €
Ob(Ch="(€)) such that Y™ is injective for all m € Z.

Given two complexes X* and Y* with differentials denoted respectively by d% and ds,
Hom(X*,Y*) is a cochain complex of Abelian groups whose n-th component is

Hom(X*,V*)" = | [ Home (X', Y"H),
€L

and whose n-th differential is the following group homomorphism:

d" : Hom(X*,Y*)" — Hom(X*,Y*) "™ (¢)icz — (¢is1dy + (—1)”+1d’§”¢i)iez.
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Definition 1.114. Given an Abelian category €, a cochain complex E® is said to be dg-injective
if E™ is an injective object for all n € Z and if the complex Hom(X*, E®) is exact, for any exact
cochain complex X°.

Example 1.115. Bounded complexes of injectives are dg-injective, while unbounded complexes
of injectives may be non-dg-injective (see for example [65, Lemma 13.2.4]).

1.3 Torsion theories and localization

1.3.1 Torsion theories

Definition 1.116. Let € be a Grothendieck category and let A < Ob(€) be a subclass. A is a
Serre class if, given a short exact sequence

0>A—->B—->C—0,

B belongs to A if and only if both B and C belong to A. Furthermore, A is a hereditary torsion
class (or localizing class) if it is a Serre class and it is closed under taking arbitrary coproducts.

Let us recall also the following definition.

Definition 1.117. Let € be a Grothendieck category, let X € Ob(€), let k be an ordinal and let
Xo be a subobject of X for all a < k. The family {X, : o < k} is a continuous chain provided:

- Xo=0and Xo < Xo+1 forall a < k;
— if A < K is a limit ordinal, then X = _\ Xa.

If {X, : @ < 0} is a continuous chain of subobjects of a given X € Ob(€), we denote >, __ X,

also by |-, Xa-

Lemma 1.118. Let € be a Grothendieck category and let D < Ob(€&) be closed under taking
subobjects and quotients. Then, the class T of all the D-filtrated objects, that is, all the X €
Ob(€) admitting a continuous chain {X, : o < k} of subobjects such that Xo+1/Xa € D for all
a<kand|J Xo =X, is a hereditary torsion subclass of €.

a<o

a<<K

Proof. Let Y < X e €.

If X € T, we can find a continuous chain {X, : o < A} such that | J,_, Xo = X and Xo41/Xq €
D for all a < A. This implies (by the closure properties of D) that {Xo, nY : @ < A} and
{(Xa +Y)/Y : o < A} are continuous chains with successive quotients belonging to D. Thus, Y
and X/Y e T.

On the other hand, if Y and X /Y € T, that is, there exist continuous chains {Y, : & < A1} and
{Xo/Y 1 a < A2} such that | .y, Yo =Y, Uscr, Xo/Y = X/Y and with successive quotients
in D, then {Y, : o < M1} U {X4 : @ < A2} is a continuous chain with successive quotients in D
and whose union is X.

So far, this proves that 7 is a Serre class; we need to verify that T is closed under taking
coproducts. Let {X; : i € I} be a family of objects in 7 and suppose that, for all i € I, {X;, :
a < \;} is a continuous chain with successive quotients in D and such that [ J,,_ A\ Xia = X
Chose a total order < on I, and fix the lexicographic order on J = {(i,«0) : i € I, o < \;}. For
all (i,a) e Twelet X, = @D,_; X;® X o Clearly, {X, : (i,@) € T} is a continuous chain with
successive quotients in D and whose union equals @; X;. O
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Lemma 1.119. Let € be a Grotheindieck category and let T be a hereditary torsion class. For
all X € Ob(C), let

T(X)=){T<X:TeT}.
Then,
(1) T(X) = X if and only if X € T;
(2) T(T(X)) = T(X) and T(X/T(X)) = 0, for all X € Ob(C).

Proof. (1) and the first part of (2) are easy consequences of the closure properties of 7. For the
second half of part (2), let X € Ob(€) and consider a subobject Y < X /T(X) such that Y € T.
Then, there is a short exact sequence 0 — T(X) — 7 1(Y) - Y — 0, where 7 : X — X/T(X)
is the canonical projection. Since 7 is a Serre class, 7~ }(Y) € 7 and so 7 (V) < T(X),
showing that Y = 0. 0

Given a subclass A of objects of €, we define the following two classes
Al = {X € ¢:Homg(A,X) =0, VAe A} and ‘A= {XeC:Home(X,A) =0, VAe A},
which are called respectively right and left orthogonal class to A.

Corollary 1.120. Let € be a Grotheindieck category and consider a subclass T < Ob(€) that is
closed under taking subobjects. The following are equivalent:

(1) T is a hereditary torsion class;
(2) T=HTH).

Proof. (1)=(2). It is easy to see that 7 < +(71). On the other hand, let X € +(7+) and define
T(X) as in Lemma|1.119] Then, we have a short exact sequence

0> T(X) > X > X/T(X)—0.

Notice that X/T(X) € T+ (use the fact that the image of an object in 7 is again in 7T, so
the canonical morphism X — X /T(X) is the zero-morphism, that is, X/T(X) = 0, that is,
X=T(X)eT.

(2)=(1). Suppose that 7 = +(7+) and let 0 - X — Y — Z — 0 be a short exact sequence. If
Y € T, then X € T by hypothesis. Furthermore, given M € 7+ and a morphism ¢ : Z — M, the
composition Y — Z — M has to be 0, thus ¢ = 0 and so Z € (7+) = 7. On the other hand,
if X, ZeT,MeTtand ¢ :Y — M, then the composition X — Y — M is trivial and so, by
exactness, there exists a unique morphism 1’ : Z — M such that ¢/7 = 1), where 7 : ¥ — Z
is the canonical epimorphism. Since the unique morphism Z — M is the zero-morphism, we
obtain that 1) = 0, s0 Y € +(T+) = T. Thus, T is a Serre class. The fact that 7 is closed under
coproducts follows by Lemma [1.36 O

Definition 1.121. A hereditary torsion theory 7 in € is a pair of classes (T, F) such that

— T is a hereditary torsion class;

- (Mt =Fad - (F)=T.
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We call T and F respectively the class of the T-torsion and of the T-torsion free objects. Since
all the torsion theories in the sequel are hereditary, we just say “torsion theory”, “torsion class”
and “torsion free class” to mean respectively “hereditary torsion theory”, “hereditary torsion
class” and “hereditary torsion free class”.

Example 1.122. (1) Let € be a Grothendieck category. The pairs (0,€&) and (€,0) are torsion
theories. We call them respectively the trivial and the improper torsion theory.

(2) Let G be an Abelian group; an element g € G is torsion if there exists a positive integer n
such that ng = 0. The group G is torsion if any of its elements is torsion, while it is torsion
free if its unique torsion element is 0. The class T of all torsion Abelian groups is a torsion
class in Ab, while the class F of the torsion free Abelian groups is a torsion free class. In
particular, (T,F) is a torsion theory.

(3) A generalization of part (2) is as follows: let D be a left Ore domain and denote by X
the set of the regular elements of D. Then T = {M € Ob(D-Mod) : Ym € M, 3s €
¥, such that sm = 0} is a torsion class. The orthogonal of T is F = T+ = {M €
Ob(D-Mod) : Ym e M, s € ¥, sm # 0}.

Generalizing further, if we have two rings R, S, a flat ring homomorphism ¢ : R — S and
a torsion theory (T,F) € S-Mod, then we can define a torsion theory (Tg, Fy) in R-Mod
letting Ty = {M € Ob(R-Mod) : exty(M) € T}.

(4) Let € be a Grothendieck category. Given an injective object E in €, one can define a torsion
theory T = (T, F), with T = H{E} and F = T*; such T is said to be the torsion theory
cogenerated by E. Similarly, given a class £ of injective objects, and letting T' = +{£} and
F' = (T"*, ' = (T, F') is said to be the torsion theory cogenerated by &.

Lemma 1.123. Let € be a Grotheindieck category, let 7 = (T,F) be a torsion theory and let

¢+ X1 — Xo be a morphism in €. Let T(X;) = X{T < X; : T e T} (i =1,2), then,

o(Tr-(X1)) < Tr(Xz).

Proof. Notice that ¢(T,(X1)) = ¢Q{T < X;1 : T e T}) = 2{o(T) < X1 :T € T} (see

Proposition [1.72)). Furthermore, since 7 is a Serre class, {¢(T) < X1 : T e T} {T < Xy2:Te€

T} O

Thanks to Lemma [[.123] we can define a functor € — 7, that turns out to be the right
adjoint to the inclusion 7 — €:

Definition 1.124. Let € be a Grotheindieck category and let T = (T, F) be a torsion theory.
The T-torsion functor T : € — T is defined as follows:

- T(X)=>{T <X :TeT}, for any object X € Ob(C);
— T (¢) : T (X) — T-(Y) is the restriction of ¢ : X — Y, for any morphism ¢ in €.
Lemma 1.125. Let € be a Grotheindieck category and let T = (T, F) be a torsion theory. Then,

(1) T-(X) =0 if and only if X € F. In particular, there is a short exact sequence 0 — T —
X >F—>0withTeT and F € F, for all X € Ob(C);

(2) T is right adjoint to the inclusion T — €;

Proof. For part (1) see the first half of the proof of Corollary For part (2) notice that,
for all T'e T and X € Ob(€), Home (7, X) = Home(7, T(X)) = Homy (7, T-(X)), where the
isomorphism comes from the fact that 7 is closed under taking quotients, so ¢(T") < T,(X) for
all ¢ € Home (T, X). O
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1.3.2 Localization

In this subsection we show how the concept of torsion theory is related to that of localization.
Most of the material in this subsection is adapted from Gabriel’s thesis [44].

Definition 1.126. Let € be a Grothendieck category. A localization of € is a pair of adjoint
functors (Q : € - ©,S : © — &), where S is fully faithful, Q is exact and ® is an Abelian
category. In this situation, ® is said to be a quotient category, Q is a quotient functor and S
18 a section functor. The composition L =S o0 Q : &€ — & is said to be the localization functor.

Let us remark that, in other contexts, one may find definitions of localization of an Abelian
category that do not require that the quotient functor is exact. Anyway, some of the concepts
of localization commonly used in algebra are particular cases of the above definition, as the
following example shows.

Example 1.127. Let D be an Ore domain and let 3 be the set of reqular elements of D. As we
said in Example the canonical ring homomorphism ¢ : D — X71D, induces an adjunction
(rese,ext.). Furthermore, res. is fully faithful and ext. is exact, thus we can think to ext. as
a quotient functor, to res. as a section functor and to X~ 'D-Mod as a quotient category of

D-Mod.

Lemma 1.128. [66, Lemma 2.2] Let € be a Grothendieck category, let (Q,S) be a localization
of € and denote by L = So Q : € — € the localization functor. For all X € Ob(C) there is a
natural isomorphism L(X) = L(L(X)).

One can encounter different definitions of localization in other contexts, see for example [90].
Let us explain the connection between localizations and torsion theories. Indeed, starting with
a localization (Q : € - ©,S: D — ¢) and letting L = So Q,

Ker(L) = {X eC:L(X) =0} ={XeC:Q(X) =0} =Ker(Q)
is a torsion class (use the exactness of Q and the fact that it is a left adjoint). Hence, the
localization (Q,S) induces a torsion theory (Ker(Q),Ker(Q)™h).

On the other hand, one can construct a localization out of a torsion theory. In this section
we describe this localization in case our Grothendieck category € has enough injectives. By
Theorem this allows us to localize any category of modules.

Definition 1.129. Let € be a Grothendieck category with enough injectives. An object X €
Ob(€) is T-local provided E(X) and E(X)/X € F. The localization of € at 7 is the full sub-
category €/T of € of the T-local objects. The inclusion S, : €/T — € is called the T-section
functor.

Lemma 1.130. Let € be a Grothendieck category with enough injectives, let 7 = (T,F) be a
torsion theory and let X, X', X" € F. Then,

(1) the object L, (X) = 771 (T,(E(X)/X)), where 7 : BE(X) — E(X)/X is the canonical pro-
jection, s T-local;

(2) given a morphism ¢ : X — X', there exists a unique morphism L;(¢) : L (X) — L.(X’)
such that the following square commutes

x— % _x

o |

L. (X) —2 L, (X);
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(3) given two morpshims ¢ : X — X' and ¢' : X' — X", then L;(¢' 0 ¢) = L-(¢') o L-(¢).
Proof. (1) Notice that X < L;(X) < E(X), thus E(L,(X)) = E(X) € F. Furthermore,

ElL. (X)) _EX) BEX)/X _  EX)/X

— ~

LX) LX) L(X)X ~T,Ex)xX) <

(2) Let ¢' : X — E(X') be the composition of ¢ and X' — F(X’). Since X — E(X) is a
monomorphism we can extend ¢’ to a morphism ¢ : F(X) — E(X’). We claim that ¢(L, (X)) <
L.(X'). In fact, (L. (X))/X" is a quotient of ¢(L(X))/(X' n ¢(X')) = L. (X)/o 1(X') =
L. (X)/X € T, and so ¢(L,(X))/X" € T. Thus, we can define L,(¢) : L. (X) — L,(X’) as the
restriction of ¢.

It remains to show the uniqueness of L. (¢). Indeed, let ¢ : L(X) — L,(X’) be a morphism
such that ¥ x = ¢. Then, (L;(¢) — ¢)(X) = 0 and so L;(¢) — ¢ can be decomposed as
L:(¢) —¢ = gf, with f : L;(X) — L;(X)/X the canonical projection and g : L;(X)/X —
L, (X’). By definition L-(X)/X € T, while L.(X’) € F, thus g = 0 and L;(¢) —¢ = 0f =0,
showing that ¢ = L;(¢).

(3) follows by the uniqueness proved in part (2). O
The above lemma allows us to define a localization functor L : € — €:

Definition 1.131. Let € be a Grothendieck category with enough injectives and let T = (T, F)
be a torsion theory. The T-localization functor L, : € — € is defined as follows:

- L(X) =7 YT-(E(X)/X)), where 7 : E(X) — E(X)/X is the canonical projection, for all
XeF;

- L (X) =L (X/T-(X)), for all X € Ob(€);
— giwen a morphism ¢ : X — X' in €, L;(¢) : L (X) — L;(X') is the unique morphism that

makes the following square commute

X /T, (X) —2= X/ T, (X)

| |

L.(X)—9 1 (x).

Furthermore, we let Qr : € — €/T be the unique functor such that Ly = S;Q,. Q; is called
T-quotient functor. We say that T is exact if L, is an exact functor.

Theorem 1.132. Let € be a complete Grothendieck category with enough injectives and let
7= (T,F) be a torsion theory on €. Then,

(1) Q7 is left adjoint to S;;

)

(2) €/T is a complete Grothendieck category;

(3) Q; is an exact functor that commutes with coproducts;
)

(4) an object E € €/T s injective if and only if S+ (E) is injective in €.
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Proof. (1) We have to prove that there is a natural isomorphism
HOIH@/T(QT(X), Y) = HOHI@(X, ST(Y)) )

for all X € Ob(€) and Y € &/T. Since S; is fully faithfull, this is the same as proving a
natural isomorphism Home (L, (X),Y) = Home(X,Y) (with X, Y € Ob(€) and Y 7-local). Let
a: X — L;(X) be the canonical morphism and notice that o induces a map

o* : Homg (L (X),Y) S Home(X,Y) a*(¢) = doa.

When X € F, o* is an isomorphism by Lemma [1.130{2), while the general case follows noticing
that there is a natural isomorphism Home(X,Y) = Home (X /T, (X),Y).

(2) By [96, Propositions 1.2 and 1.3, Ch. X] and part (1), we obtain that kernels exist in /7T
and that it is enough to show that Q. sends kernels to kernels. We show this in two steps:

— First of all we prove that, given monomorphism ¢ : X — Y in €, Q,(¢) : Q- (X) — Q,(Y) is
a monomorphism in €/7. It is sufficient to show that L. (¢) is a monomorphism in €. We can
assume without loss of generality that X, Y € F (otherwise substitute them by X /T.(X) and
Y /T, (Y) respectively, and notice that the induced morphism X/T,(X) — Y/T,(Y) is again
a monomorphism). In this case, 0 = Ker(¢) = Ker(L;(¢)) n X and thus Ker(L,(¢)) = 0 since
X is essential in L, (X).

— Consider now a morphism ¢ : X — Y in €, let £k : K — X be a kernel of ¢ and let us show
that Q- (k) : Q- (K) — Q,(X) is a kernel of Q,(¢) in €/T. We suppose without any loss
in generality that X, Y € F (in fact, letting ¢ : X/T,(X) — Y/T,(Y) be the induced map,
Ker(¢) = Ker(¢)/T,(Ker(¢)) and so Q,(Ker(¢)) = Q. (Ker(¢))). Let Z € €/T, let v : Z —
Q- (X) be a morphism such that Q,(¢)y = 0 and let Z = S.(2), ¢ = S;(¢) : Z — L,(X),
so that L. (¢)y = 0. Consider the restriction ¢’ : p~1(X) — X; since 1/'¢ = 0, there exists a
morphism f : ~1(X) — K such that kf = 1’. Notice that Z/1~1(X) = ¥(2)/((Z) n X) =
(Z+ X)/X <L.(X)/X €T and so, L, (¢ 1(X)) = L,(Z) = Z. Hence, Q-(f) : Z — Q,(K)
is such that Q. (k)Q,(f) = Q. () = . We conclude by Lemma that Q,(K) is a kernel
for Q.(6).

(3) Q- is exact since it is a left adjoint (thus right exact) and it preserves kernels. The fact that
it preserves coproducts follows by Lemma [1.3

4) This follows by Lemma [1.85 O]
(4) y

1.3.3 The Gabriel-Popescu Theorem and its consequences

The following theorem, usually known as the “Gabriel-Popescu Theorem”, was first proved in
[88].

Theorem 1.133. [96, Theorem 4.1, Ch. X] Let € be a Grothendieck category, let G be a
generator of €, let R = Endg¢(G) and denote by T : € — Mod-R the functor T = Homg (G, —)
where, for any object X € €, the right R-module structure on T(X) is given by the following
map

Hom¢ (G, X) x Ende(G) — Home(G, X)  such that (¢, p) — ¢pop.

Then,
(1) T is fully faithful;
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(2) if we denote by T = (T,F) the torsion theory cogenerated by
& ={E(T(X)® E(T(X))/T(X)) : X € Ob(¢)},
(see Example (4)) then the composition € T, Mod-R & (Mod-R)/T is a natural
equivalence of categories.
The following corollaries are direct consequences of the above theorem and Theorem
Corollary 1.134. Let € be a Grothendieck category, then
(1) € is complete;
(2) € has enough injective objects.

Corollary 1.135. Let € be a Grothendieck category and let T = (T,F) be a torsion theory on
€. Consider a family {X; :i€ I} < €/T, then

[[xi=q: (H ST(Xn) -

1€l i€l
Proof. Being a right adjoint, S; commutes with limits, thus S; ([ [,c; Xi) = [ [;c; S+(X3). Apply
Q. to conclude. ]

Corollary 1.136. Let € be a Grothendieck category and let T = (T, F) be a torsion theory in
€. Then T s cogenerated by an injective object E.

Proof. Take a generator G of € and let £ be the product of all the injective envelopes of the
T-torsion free quotients of G. Then, 7 coincides with L{E} and F = T is the class of all the
objects that embed in some product of copies of E. O

The proof of Corollary [1.136] shows that the torsion theories in a Grothendieck category €
form a set, not a proper class (in fact, one can bound the cardinality of this set by the cardinality
of the power set of the family of quotients of a chosen generator G of €).

Definition 1.137. Let € be a Grothendieck category. We denote by Tors(€) the poset of all the
torsion theories on €, ordered as follows: given 7 = (T, F) and 7" = (T, F') € Tors(<),

7' <7 ifand only if T'< T if and only if F< F .
When 7" < 7, we say that T is a generalization of 7/, while 7’ is a specialization of 7.

Corollary 1.138. Let € be a Grothendieck category and let T = (T,F) be a torsion theory.
Then, F is closed under taking injective envelopes.

The notion of stable torsion theory was introduced by Gabriel in [48], see also [82] and [7].

Definition 1.139. Let € be a Grothendieck category. A torsion theory T = (T, F) on € is stable
if T is closed under taking injective envelopes. Furthermore, € is stable if any 7 € Tors(€) is
stable.

Corollary 1.140. Let € be a Grothendieck category and let T = (T,F) be a torsion theory on
&. The following statements are equivalent
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(1) 7 is stable;
(2) given E € Ob(€) is an injective object, then E ~ T,(E)® E/T,(E).

Proof. (1)=>(2). Identify T, (F) and its injective envelope with subobjects of E, so that T, (F) <
E(T,(E)) < E. Since E(T.(E)) is rtorsion, E(T,(E)) < T,(E). Thus, T,(E) = E(T,(E)).
Having proved that T, (E) is injective, the desired decomposition follows.

(2)=(1). Let X € T and let E be an injective envelope of X. Then, £ = T.(E)® E/T.(E)
and so we can identify E/T,(F) with a sub-object of E. Since X is an essential sub-object of
Eand X n E/T,(E) =0, E/T-(E) = 0. O



34

Categories and modules: an outline




Chapter 2

Lattice Theory

In Chapter [2] we introduce the category QFrame of quasi frames. In QFrame we study some
lattice-theoretic notions that are usually introduced in module theory, such as the composition
length, the uniform dimension and the socle series.

In the second part of the chapter we study the basic properties of two cardinal invariants of
gframes: Krull dimension and Gabriel dimension. Using these notions we can define torsion and
localization in the category QFrame.

Given a Grothendieck category € and a torsion theory 7 in €, there is a notion of 7-Gabriel
dimension for the objects of €. We show that this notion can be defined using the Gabriel
dimension of quasi frames and we deduce its basic properties.

2.1 The category of Quasi-frames

2.1.1 Lattices
Let (L, <) be a lattice. Given two elements x and y € L, the segment between z and y is
[z,y] ={seL:x<s<vy}.

We also let (z,y] = [2,y]\{«}, [z,y) = [z,y]\{y} and (2,y) = [2,y]\{x, y}. Notice that [z,y] is
a lattice with the order induced by L.

Definition 2.1. Let (L, <) be a lattice. Then,

~ (L, <) is bounded if it has a mazimum (usually denoted by 1) and a minimum (usually denoted
by 0);

~ (L, <) is modular if, for all a, b and c € L with a < c,
av (bac)=(avb)nc;
— (L, <) s distributive if, for all a, b and c€ L,
av(barc)=(avb)a(ave) and an(bve)=(anb)v(anc);

— (L, <) is upper-continuous if it is complete and, for any directed subset {x; : i € I} of L (or,
equivalently, for any chain in L) and any x € L,

:c/\\/xiz\/(xAxi);

el el

35
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given a € L, an element c is a pseudo-complement for a if it is maximal with respect to the
property that a A ¢ = 0. (L, <) is pseudo-complemented if, for any choice of v <y in L, any
element a € [x,y] has a pseudo-complement in [z,y], that is, an element ¢ € [z,y] mazimal
with respect to the property that a A ¢ = x;

— (L, <) is a frame if it is complete and, for any subset {x; :i€ I} of L and any x € L,
:C/\\/xiz\/(a:Axi).
el el
Notice that a complete lattice always has a minimum \/ & = 0 and a maximum A & = 1.

Example 2.2. (1) The family of closed sets Closed(X, ) of a topological spaces (X, T), ordered
by reverse inclusion, is a frame. In fact, given a set {C; : 1 € I} of closed sets, \/ C; =
N C; € Closed(X,7), while N\ C; = |J;c; Ci, where for any subset E € X we denote by
E=){C:EcCeClosed(X,7)} the closure of E in X;

(2) a total order (L, <) is a frame, in fact, given x € L and {y; :i € I} < L, we have two cases

:L‘/\\/y'_ {x Z.fxs\/’ie[yi;
z - .
iel \/ieI yi ifz = \/ie] Y-

In both cases, there exists (at least) an element j € I such that x < yj, so \/,c;(x A y;) =
Vigi@ry) ve =z =2\ irvis

(3) given a Grothendieck category € and an object M € Ob(€), L(M) is an upper-continuous
modular lattice. Indeed, it is a complete lattice by Lemma since any Grothendieck
category is well-powered, and it is upper-continuous by Proposition [1.78, for modularity see
for example [96), Proposition 5.3, Ch. IV]).

We collect in the following lemma some observations on the notions introduced in Definition
for a proof see Sections 2, 3 and 4 of Chapter III in [96].

Lemma 2.3. Let (L, <) be a lattice. Then,
(1) if L is distributive, then it is also modular;
(2) if L is upper-continuous and modular, then it is pseudo-complemented;

(3) L is complete if and only if any subset F' of L has a meet. Furthermore, if L is complete
then it is bounded;

(4) if L is a frame, then it is distributive, upper continuous, bounded, complete and pseudo-
complemented.

Definition 2.4. Let (L1, <) and (Lo, <) be two lattices and consider a map ¢ : Ly — Lo. Then,
¢ preserves segments if [¢(a), ¢(b)] = ¢([a,b]), for alla <be L.

Example 2.5. Let € be a Grothendieck category and let ¢ : X — Y be a morphism in €. Then,
the map
O L(X)— LY) such that ®(C) = ¢(C),

mduced by ¢ is a semi-lattice homomorphism that commutes with arbitrary joins and preserves
segments. Indeed, ® is a semi-lattice homomorphism that commutes with arbitrary joins by
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Proposition[1.79 and the fact that any Grothendieck category is complete. To show that ® sends
segments to segments, let K1 < Ko € L(X) and consider K € [®(K1), ®(K2)]. Then,
K =o(¢"H(K)) = ®(¢" (K) n ¢~ (¢(K2)))
= ®(¢"'(K) n (K2 + Ker())) = ®((¢~(K) n Ka) + Ker(¢))
= ®(¢"'(K) N K2) + ®(Ker(¢)) = ®(¢ ' (K) N K2),
where in the first line we used that K < Im(¢), while in the second line we used the modularity
of L(X). Since p~(K) n Ko € [K1, K3] we proved that ® sends segments to segments.
Lemma 2.6. Let (L1, <) and (Lo, <) be two lattices and consider a map ¢ : Ly — Lo. Then,
(1) if L1 has a minimum element 0 and ¢ commutes with arbitrary joins, then ¢(0) is a minimum
m LQ,’
(2) if L1 and Lo are bounded and ¢ preserves segments, then ¢ is surjective if and only if its
image contains 0 and 1.
Proof. Remember that 0 = \/ & and so, since ¢ commutes with arbitrary joins, ¢(0) = \/ & in
Lo. This proves (1). Part (2) easily follows from the definitions. O

Definition 2.7. A quasi-frame (or gframe) is an upper-continuous modular lattice. A map
between two quasi-frames is a homomorphism of quasi-frames if it is a homomorphism of semi-
lattices that preserves segments and commutes with arbitrary joins.

We denote by QFrame the category of quasi-frames and homomorphisms of quasi-frames.

Notice that, given a gframe (L, <) and two elements a < b € L, the segment [a, b] is again a
gframe, even if the inclusion [a,b] — L is not a homomorphism of gframes.

2.1.2 Constructions in QFrame

Let us introduce some terminology and some useful constructions in the category of gframes.

Definition 2.8. Let ¢ : L1 — Ly be a homomorphism of qframes. The element Ker(¢) =
\/¢ 2)=0 % € L1 is called the kernel of ¢. We say that ¢ is algebraic provided the restriction
¢ EKer(¢), 1] = L2 of ¢ to [Ker(¢),1] is injective.

Notice that an algebraic homomorphism of gframes is injective if and only if its kernel is 0.

Example 2.9. Let € be a Grothendieck category and let ¢ : X — Y be a morphism in €. Then,
the morphism ® : L(X) — L(Y) such that ®(K) = ¢(K), for all K € L(X), is algebraic. Indeed,
notice that Ker(®) = Ker(¢) and that, given Ky, Ky € [Ker(¢), 1] such that ®(K;) = ®(K2), we
get K1 = K1 + Ker(¢) = ¢~ H(¢(K1)) = ¢ 1 (#(K2)) = Kz + Ker(¢) = Ko.

Definition 2.10. Let (L, <) be a gframe, let I be a set and let F = {x; : i € I} be a subset of L
such that x; # 0 for all i € I. We say that F is a join-independent family if, for any i € I,

\/ zj | Az =0.

jen\{i}

Furthermore, we say that F is a basis for L if it is join-independent and \/,.;x; = 1. The
uniform dimension u.dim(L) of L is

u.dim(L) = sup{|F| : F a finite join independent family in L} .

If udim(L) = 1, L is said to be a uniform gframe.
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Lemma 2.11. Let (L,<) be a qframe, let x € L and let {y; : i € I} be a basis of L. If x # 0,
there exists a finite subset of I such that x A \/,.p i # 0.

Proof. Notice that 0 # x = x A \/{\V,cpyi : F < I finite} = \/{x A \/,cpyi : F < I finite}, so
for at least one finite subset F' of I, x A \/,cpz; # 0 O

Definition 2.12. Let I be a set and, for all i € I, let (L;, <) be a gqframe. We construct the
product of this family as follows:

HLi:{gz(xi)I:xieLi, for allie I}

el
with the partial order relation defined by
(z<y) = (xi<y;, foralliel).

One can prove that [[,.; L; is again a qgframe. Furthermore, for any subset J < I the

canonical surjective map
w01
el jedJ

defined by 7;((z;)1) = (z;)s, and the canonical injective map

GJIHLJ‘—)HLi,

jed iel

defined by €;((xj)s) = (Yi)ier, with y; = x; if i € J, while z; = 0 for all i € I\J, are homomor-
phisms of gframes.

Definition 2.13. Let (L, <) be a gframe. A congruence on (L,<) is a subset R < L x L which
satisfies the following properties:

(Cong.1) R is an equivalence relation;
(Cong.2) for all a, b and c € L, (a,b) implies (a v ¢,b v ¢);
(Cong.3) for all a, b and c€ L, (a,b) implies (a A ¢,b A c).

When R is a congruence, we write a ~ b to denote that (a,b) € R. Furthermore, if R satisfies
the following condition (Cong.4), then R is said to be a strong congruence:

(Cong.4) for all a € L the equivalence class [a] has a mazimum.

Lemma 2.14. Let (L, <) be a qframe and let R be a strong congruence on L. Let L/R be the
set of equivalence classes in L and endow it with the following binary relation:

([a] <[b] ) = (3d €[a] and V' € [b] such that a’ <V ).

Then < is a partial order, and (L/R, <) is a gframe. Furthermore, the canonical map m: L —
L/R such that x — [z] is a surjective homomorphism of qframes which commutes with finite
meets.
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Proof. < s a partial order. It is clear that < is well-defined and reflexive. Let a, b € L be
such that [a] < [b] and [b] < [a], let us show that [a] = [b]. Indeed, by definition there exists
a', d” € [a] and V', b" € [b] such that o’ < b and V" < a”. Thus,a ~d =ad AV ~ad AV ~
a’” AV =1" ~ b, that is, [a] = [b], proving that R is symmetric. Let us now verify transitivity,
that is, given [a] < [b] < [¢] € L/R, [a] < [¢]. To do so, take a’ € [a], b’ and b" € [b], and
c € [c] such that @’ < b and b” < . Tt is then clear that o’ < b v " < b v ¢, and also that
d=d vt ~d v, thus [a] < [c] as desired.

Lattice structure. Let a and b € L and let us show that [a A b] is a greatest lower bound for
[a] and [b] in L/R. Indeed, it is clear that [a A b] is < of both [a] and [b]. Furthermore, given
¢ € L such that [¢] < [a] and [c] < [b], there exist ¢4, ¢, € [c], such that ¢, < a and ¢, < b.
Thus, [c] = [¢a A @] < [a A b], showing that [a A D] is a greatest lower bound. One can show
analogously that [a v b] is a least upper bound for [a] and [b].

Modularity. Let a, b and ¢ € L and suppose [a] < [¢]. Choose a’ € [a] and ¢’ € [¢] such that
a’ < ¢, then, by the modularity of L, a’ v (b A ¢/) = (a’ v b) A ¢ and so

[a] v ([B] A [e]) = [a'] v ([0] A [€]) = ([a] v []) A [€] = ([a] v [b]) A [e].

Completeness. Consider a family F = {[z;] : i € I} in L/R, we claim that [\/,.; ;] is a least
upper bound for F. In fact, it is clear that [\/,.; x;] > [z;] for all j € I. Furthermore, given
¢ € L such that [c] > [z;] for all i € I, we can choose z} € [x;] such that 2} < ¢ for all i € I,
where ¢ = \/[c]. Letting 7; = \/[zi], ¢ =¢Aa}, ~ AT and so T; < ¢, for all i € I. Thus,
[e] = [2] > Vs 3] = [V ey 31,

(L/R,<) is a gframe. We have just to verify upper continuity. Let {[x;] : i € I} be a directed
family in L/R and let 7; = \/[z;], for all i € I. The set {Z; : i € I} is directed and so, for all

xeL,xA\c;Z%i = \V;e(x A ;). Thus, by our description of the lattice operations,

[c] A\ Tzl = [e] A /2] = \/([2] A [23]) = \/([2] A [2]).

i€l el i€l 1€l

T 1S a surjective homomorphism of qframes that commutes with finite meets. It is all clear from
the description of the lattice operation in L/R a part the fact that 7 preserves segments. So take
x < y € L and consider [z] € [[z],[y]]- Let 2’ € [z] and 2’ € [z] be such that 2’ < 2’. Clearly,
x <2 vae|z],in fact, x ~ 2’ implies 2/ v ~ 2/ va’ = 2. Furthermore, y > (2’ va) Ay € [2], in
fact, given 2” € [z] and ¥/’ € [y] such that 2" <4/, we obtain (2 va) Ay ~ 2" Ay~ 2" ny =2".
Thus, (2/ v ) Ay € [z,y] and 7((z' v ) A y) = [2]. O

Definition 2.15. A gframe (L, <) is compact if, for any subset S < L such that \/ S = 1, there
exists a finite subset F < S such that \/ F = 1.

Lemma 2.16. Let (L,<) be a gframe, let x € L and let {y; : i € I} be a family such that
Vi = 1. If [0, ] is compact, there exists a finite subset F' of I such that x < \/,cp Yi-

Proof. Notice that x = z A \/;c/{Vieq¥i : G < I finite} = \/{x A ey : G < I finite}.
By compactness, there exists a finite subset K of the set of finite subsets of I such that x =
VA{z A Veqyi : G € K}. Taking F = (e G we get

xz\/{x/\\/yi:GeK}gx/\\/yi<az.

1eG

Thus, = x A \/,cp ¥i, which means exactly that o < \/,.p ui. O
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2.1.3 Composition length
Definition 2.17. Let (L,<) be a gqframe. Given a finite chain
c:xg<x <---<ap

of elements of L, we say that the length ¢(c) of o is the number of strict inequalities in the chain.
A second chain o’ : yo < y1 < -+ < Y, is avefinement of o if {xo, T1,. .., Tn} S {Y0, Y1, - Ym}-

The following lemma is known as Artin-Schreier’s Refinement Theorem.

Lemma 2.18. [96], Proposition 3.1, Ch. III] Let (L, <) be a qframe, let a < be L and let
orra=20< 21 < <xp=b and o:a=y< Yy <---<yYynp=>=>.

Then, there exists a series 0: a = zy9 < z1 < -+ < 2z = b that refines both o1 and 3.

Definition 2.19. Let (L,<) be a gframe. The length of L is
(L) = sup{l(o) : o a finite chain of elements of L} € N U {0} .
If (L) < oo we say that L is a qframe of finite length.

For any element z € L we use the notation ¢(x) to denote the length of the segment [0, z].
In the following lemmas we describe some properties of this numerical invariant.

A gframe (L, <) is said to be trivial if it has just one element. In what follows, by non-trivial
gframe we mean a qframe which contains at least two elements. Furthermore, (L, <) is said to
be an atom (or to be simple) if it has two elements.

Remark 2.20. A gframe (L, <) is trivial if and only if £(L) = 0, while it is an atom if and only
if (L) = 1.

Definition 2.21. Let (L, <) be a gframe and consider a finite chain
c: 0=z <--<2,, =1

If all the segments [x;, x;i41], withi = 0,...,n—1, are simple, then we say that o is a composition
series.

Using Lemma [2.18] it is not difficult to deduce the following lemma, which is usually known
as Jordan-Holder Theorem.

Lemma 2.22. Let (L, <) be a qframe of finite length. Then,

(1) any finite chain in L can be refined to a composition series;

(2) any two composition series in L have the same length;

(3) 4(L) = n if and only if there exists a composition series of length n in L.
Definition 2.23. A gframe (L, <) is

— Noetherian if any ascending chain r1 < x9 < -+ <z, < ... stabilizes at some point;

— Artinian if any descending chain r1 = xo = -+ = x, = ... stabilizes at some point.
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Using Lemma one can prove that ¢(L) < oo if and only if L is both Noetherian and
Artinian (see also Lemma [2.35)).

Lemma 2.24. Let (L,<) be a gframe. Then, L is Noetherian if and only if [0,z] is compact
forall x e L.

Proof. Suppose that L is Noetherian, let € L and consider a subset S < [0,z] such that
\/ S = z. Consider an ascending chain in L defined inductively as follows:

— let Fy = & and let x¢ = 0;

— given n € N for which F,, has already been defined, we have two possibilities. If \/ F;, = S
then we let F,,.1 = F},, otherwise there exists a finite subset F, 11 of S that contains F;, and
such that \/ F}, < \/ Fy41. Welet zp11 = \/ Frop1.

Now, the sequence zg < 1 < -+ < x, < ... is an infinite ascending sequence so that there
exists m € N such that z, = x5 for all n > n. In particular, z = \/ Fy, where Fj is a finite
subset of S, proving that [0, z] is compact.

On the other hand, suppose that [0, z] is compact for all z € L and consider an ascending chain

oS < ...< Ty < ...

Let Z = \/,y i and notice that, by compactness, there exists a finite subset ' < N such that
T =\ jep vy Letting n = max{F}, z,, = z; for all m > 7. O

Lemma 2.25. [26, Lemma 3.2] Let (L, <) be a gframe of finite length and let x, y € L. Then,
vy +lxny)=Lx)+Ly).

Lemma 2.26. Let ¢ : L1 — Lo be a homomorphism of qframes:

(1) if ¢ is injective, then €(L1) < €(Ls);

(2) if ¢ is surjective, then €(La) < ¢(Ly).

Proof. (1) Leto: x1 < x9 <--- < xy, beachainin Ly, then ¢(0) : ¢(x1) < p(ag) <--- < ¢
is a chain in Ly. Furthermore, if z; # x;, then ¢(z;) # ¢(z;) by injectivity. Thus, ¢(¢(0)) =
and so ¢(L1) < 4(Lo).

(2) Let 0 : 21 < w9 < -+ < xy, be a chain in Ls. Since ¢ is surjective, there exist y1,...,yn € L1
such that ¢(y;) = x; foralli =1,...,n. Clearly,o’: 1 <(y1vys) < < (Y1 Vvy2Vv...VYyn)
and, foralli=1,....,n,0(y1 v...vy) =0d(y1) v...vo(y) =21 v ... v =ax;. Ifx; #xi41,
then y1 v ...vyi #y1 v ... vy vyt and so (o) < £(o’). Thus, ¢(L2) < ¢(Ly). O

Corollary 2.27. Let I be a set. For all i € I, let (L;,<) be a non-trivial qframe and let
L =1];Li. Then,

0 otherwise.

(L) = {Zie] €(L;) if I is finite;

Proof. 1f ¢(L;) = oo for some i € I there is nothing to prove, so we suppose that ¢(L;) is finite
for all i € I. Let ¢; : L — L be the canonical inclusion and let 1; = \/ €(L;), for all i € I. Notice
that Ei(LZ‘) = [0, li], SO g(Lz) = E(li), and L = [0, \/ieI li], SO f(L) = g(\/iel li).

When [ is finite, the proof follows by Lemma and the fact that, 1; A \/j# 1; =0.

If I is not finite, then for any finite subset J < I, we have ¢(][; L;) = >, ¢(L;) = |J| by the
first part of the proof. Furthermore, ¢(] [, L;) = (] [; L;), by Lemma applied to the maps
g1 Li = 11, L. Thus, £(]]; Li) = sup{|J| : J < [ finite} = oo. O
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Lemma 2.28. Let (L, <) be a gframe of finite length, let (L', <) be a gqframe, and let ¢ : L — L’
be a homomorphism of qframes. Then ¢ is injective if and only if it is surjective, if and only if

(L) = £(o(L)).

Proof. Let us start proving that ¢ is injective if and only if ¢(L) = ¢(¢(L)). Indeed, suppose
that ¢(L) = ¢(¢(L)) and let x, y € L be such that ¢(z) = ¢(y). If, looking for a contradiction
x # y, then either x < z vy or y < z v y. Without loss of generality, we suppose that x < z v y.
Take the chain 0 < x <z v y < 1 between 0 and 1 and refine it to a composition chain

c: 0 <zr<---<zxvy<---<1

)

thus ¢(0) = ¢(L) (see Lemma[2.22)). The image via a homomorphism of gframes of a composition
chain is a (eventually shorter) composition chain in the image. Thus, ¢(¢(0)) = £(¢(L)) = ¢(L) =
{(0), in particular, ¢(x) # ¢(x v y) = ¢(z) v ¢(y), which contradicts the fact that ¢(z) = ¢(y).
For the converse it is enough to verify that the image of a composition chain via an injective
homomorphism is a composition chain in the image with the same length.

Let us now verify that ¢ is surjective if and only if /(L) = ¢(¢(L)). Indeed, if ¢ is not surjective,
that is \/ ¢(L) # 1, consider a composition chain ¢ : 0 = zp < 21 < ... <z, = V ¢(L) in

[0,\/ ¢(L)]. We can define a longer chain ¢/ : 0 = 29 < 23 < ... < x, < 1 in L. Hence,
Up(L)) = L(o) < l(o’) < ¢(L). The converse is trivial since L = ¢(L) clearly implies that
(L) = L(o(L))- O

2.1.4 Socle series

Definition 2.29. Let (L, <) be a gframe. The socle s(L) of L is the join of all the atoms in L.
For all x € L, we let s(x) = s([0, x]).

Lemma 2.30. Let (L, <) be a qframe and let I be a set. Then,

1) s(z) < x and s(x1) < s(x2), forallz e L and 1 < x9 € L;

(1)

(2) s(Vierxi) = Vyep s(xi), where x; € L for all i€ I;

(3) s(Nierxi) = N\ics s(xi), where z; € L for all i € I;

(4) if ¢ : L — L' is a homomorphism of qframes, then ¢(s(L)) < s(L’).

Proof. Parts (1), (2) and (3) follow by the properties described in [26, page 47]. For part (4),
notice that ¢(s(L)) = ¢(\/{z € L : [0,z] is an atom} = \/{¢(z) : [0,z] is an atom} < \/{y €
L’ :[0,y] is an atom} (use the fact that ¢ takes intervals to intervals). O

Thanks to part (4) of Lemma we can give the following

Definition 2.31. Let (L,<) be a gframe and let Soc(L) = [0,s(L)]. Furthermore, given a
homomorphism ¢ : L — L' of qframes, we denote by Soc(¢) : Soc(L) — Soc(L') the restriction
of ¢. This defines a covariant functor Soc : QFrame — QFrame.

Definition 2.32. Let (L,<) be a qframe and let x € L. We say that x is completely meet
irreducible if, given a family {y;}icr < [2,1] such that N\vy; = x, there exists i € I such that

Yi =2z

Lemma 2.33. Let (L, <) be a gframe and let x € L. Then, x is completely meet irreducible if
and only if the lattice [z, 1] is uniform and its socle is an atom.
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Proof. Suppose first that x is completely meet irreducible. To show that [z, 1] is uniform consider
any two elements yi, y2 € (z,1] such that y; A y2 = x. Then either y; = = or ya = x, so the
family {y1,y2} is not join-independent. If Soc([z,1]) # {z}, then Soc([z,1]) is an atom by
uniformity. On the other hand, if looking for a contradiction Soc([z,1]) = {z}, then for all
y € (z,1), (z,y) is not empty (otherwise [z,y] is an atom) and so we can inductively construct
a transfinite sequence as follows:

=1
— if a is an ordinal for which y, is already constructed, y,+1 is an element in (z,y,);

— if X is a limit ordinal for which y, is constructed for all & < X, and (z, A, ¥a) # &, we
choose yy € (z, \, -, Ya), Otherwise we stop.

Of course, there exists a limit ordinal A for which z = A o< Yo, 80 We obtain a sequence {yq},3
such that /\,_5 Ya =  but = # y, for all @ < A, which is a contradiction.

On the other hand, suppose that [z, 1] is uniform and that Soc([z,1]) = [z, s] is an atom,
and choose a family {y;}ier < [,1] such that A, ;y; = x. If, looking for a contradiction,

y; # x for all ¢ € I, then y; A s # = by uniformity and, since [z, s] is an atom, s < y;. Thus,
= Nicr¥i =5 A Nier Yi = Nies(s A yi) = s, which is a contradiction. O

We can iterate the procedure that defines the socle as follows:
Definition 2.34. Let (L,<) be qframe. Then,
— so(L) = s(L);
— for any ordinal o, so+1(L) = s([sa(L),1]);
— for any limit ordinal o, sx(L) = \/ <\ Sa(L).
L is semi-Artinian if s;(L) = 1 for some ordinal T.

It is not difficult to show that the uniform dimension of a semi-Artinian gframe is the length
of its socle.

Lemma 2.35. [26, Theorem 5.2 and Proposition 5.3] Let (L, <) be a qframe. Then,
(1) L is semi-Artinian if and only if [0, z] and [z, 1] are semi-Artinian for all x € L;

(2) L is semi-Artinian and Noetherian if and only if {(L) < c0.

2.2 Krull and Gabriel dimension

2.2.1 Krull and Gabriel dimension

Definition 2.36. Let (L,<) be a gframe. The Krull dimension K.dim(L) of L is defined as
follows:

- K.dim(L) = —1 if and only if L is trivial;

— if a is an ordinal and we already defined what it means to have Krull dimension 3 for any
ordinal f < a, K.dim(L) = « if and only if K.dim(L) # B for all 8 < « and, for any
descending chain

L1 Z2T2 =203 =2...20p = ...

in L, there exists n € Ny such that K.dim([xy, Tnt1]) = Bn for alln = n and 5, < a.
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If K.dim(L) # « for any ordinal o we set K.dim(L) = 0.
Notice that the gframes with 0 Krull dimension are precisely the Artinian gframes.

Definition 2.37. A subclass X < Ob(QFrame) is a Serre class if it is closed under isomorphisms
and, given L € Ob(QFrame) and v <y < ze€ L, [z,y], [y,2] € X if and only if [x,z] € X.

The class of all lattices with Krull dimension < « for some ordinal « is a Serre class (see [20],
Proposition 13.5]).

Lemma 2.38. Let (L1,<) and (Lo,<) be gframes. If K.dim(Ly) exists and if there exists a
surjective homomorphism of qframes ¢ : L1 — Lo, then K.dim(L1) > K.dim(Ly).

Proof. Let us proceed by induction on K.dim(L;) = a. If & = —1, then clearly also K.dim(Lg) =
—1. Suppose now that o« > —1 and that we already proved our result for all 3 < «a. If
K.dim(Ly) < K.dim(L1) there is nothing to prove, so suppose that K.dim(Ls) < K.dim(L;) and
let us show that K.dim(Ls2) = K.dim(L1). Indeed, consider a descending chain in Loy

o =21 ==Xy = ...

By the surjectivity of ¢, we can choose y; € L; so that ¢(y;) = x;, for all i € N, let also
Y = \/j>i yj. It is not difficult to see that

/ ! !
Yo=Y =2 Z2Yy=...

and that ¢(y)) = \/ j>i #(y;j) = x;. By definition of Krull dimension, there exists 7 € N such that
K.dim([y;,,y;,1]) = Bn for all n > n and B, < o. By inductive hypothesis, K.dim([zy, Tp41]) <
K.dim([y;,, ¥}, 1]) = Bn, showing that K.dim(L2) < «, and so, K.dim(Lz) = c. O

Definition 2.39. Let (L,<) be a qframe. We define the Gabriel dimension G.dim(L) of L by
transfinite induction:

— G.dim(L) = 0 if and only if L is trivial. A qframe S is 0-simple (or just simple) if it is an
atom;

— let a be an ordinal for which we already know what it means to have Gabriel dimension (3, for all
B < a. A qframe S is a-simple if, for all 0 # a € S, G.dim([0,a]) € a and G.dim([a, 1]) < «;

— let o be an ordinal for which we already know what it means to have Gabriel dimension 3, for
all B < 0. Then, G.dim(L) = o if G.dim(L) « o and, for all 1 # a € L, there ezists b > a
such that [a,b] is B-simple for some ordinal B < o.

If G.dim(L) # « for any ordinal o we set G.dim(L) = 0.

Notice that the gframes with Gabriel dimension equal to 1 are precisely the semi-Artinian
gframes. Also the class of all gqframes with Gabriel dimension < « for some ordinal « is a Serre
class (see part (1) of Lemma [2.42). For any ordinal «, G.dim(S) = a + 1, for any a-simple
gframe S.

Lemma 2.40. Let o be an ordinal and let (L, <) be an a-simple qframe. Any non-trivial sub-
qframe of L is a-simple.
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Proof. We proceed by transfinite induction on a. If @ = 0, then L is an atom and there is
no non-trivial sub-qframe but L itself. Let @ > 0 and choose 0 # b < a € L. By definition,
G.dim([0,b]) € « so, to prove that [0, a] is a-simple, it is enough to show that G.dim([b, a]) < a.
If G.dim([b, a]) < « there is nothing to prove, so let us consider the case when G.dim([b,a]) € .
Let ' € (b, a], choose a pseudo-complement ¢ of a in [a/,1] and let d € [c, 1] be such that [c,d] is
B-simple for some 8 < . Let b’ = d A a, then [a, V'] is non-trivial by the maximality included
in the definition of pseudo-complement, furthermore, by modularity, [a’,0’] is isomorphic to
[c,b' v ¢], which is a sub-gframe of [¢,d]. By inductive hypothesis, [a/,¥'] is S-simple. This
proves that G.dim([b, a]) = «, as desired. O

Theorem 2.41. Let (L, <) be a gframe. The following statements hold true:

(1) L has Krull dimension if and only if any segment of L has finite uniform dimension and L
has Gabriel dimension;

(2) if L has Krull dimension, then K.dim(L) < G.dim(L) < K.dim(L) + 1;

(3) if L is Noetherian, then there exists a finite chain 0 = g < 21 < -+ < zp, = 1 such that
[zi—1,x;] is aj-simple for some ordinal o, for all i = 1,... ,n. Furthermore, L has Krull
dimension and G.dim(L) = K.dim(L) + 1.

Proof. For (1), see Exercise (116) in [80] (an argument to solve that exercise can be found in
[51]). For parts (2) and (3) see respectively [26, Theorem 13.9] and (statement and proof of)
[26, Theorem 13.10]. O

In the following lemmas we collect some properties of Gabriel dimension. Their proof is
inspired by the treatment in [80] but we prefer to give complete proofs also here.

Lemma 2.42. Let L be a gframe with Gabriel dimension. The following statements hold true:
1) ifa <be L, then G.dim([a,b]) < G.dim(L);

2) if a € L, then G.dim(L) = max{G.dim([0, a]), G.dim([a, 1])};

(

(

(3) given a subset F < L such that \/ F =1, G.dim(L) = sup{G.dim([0, z]) : = € F}.
(4) if L is not trivial, then G.dim(L) = sup{G.dim([a, b]) : [a,b] B-simple for some B};
(

)
)
)
5) G.dim(L) < 8 + 1, where 8 = sup{G.dim([z,1]) : z # 0}.
Proof. Let G.dim(L) = .

(1) We proceed by transfinite induction on «. If o = 0, there is nothing to prove, as well as
when a > 0 and G.dim([a,b]) < a. Consider the case when o > 0 and G.dim([a,b]) € «. Let
a' € [a,b) and let us find ¥’ € (@, b] such that [a,0'] is S-simple for some 8 < a. Indeed, we
consider a pseudo-complement ¢ of b in [a, 1] and we let d € [¢, 1] be such that [¢, d] is S-simple
for some 8 < a. Let ¥ = d A b. By modularity, [a/,b'] = [¢,(d A b) v ¢], which is an initial
segment in [¢,d]. By Lemma [a’,b'] is B-simple.

(2) Let g1 = G.dim([0,a]) and 2 = G.dim([a, 1]). By part (1), @ = max{/, 2}. Let us show
that o < max{f1, 52}, that is, given 1 # b € L we need to find ¢ € (b, 1] such that [b,c] is
~v-simple for some v < max{f1, S2}. Indeed, given 1 # b € L, we distinguish two cases. If a < b,
then b € [a,1] and so there is ¢ € (b, 1] such that [b, c] is y-simple for some v < By. If a € b,
then there is ¢ € [a A b,a] such that [b A a,c] is y-simple for some v < 1 and, by modularity,
[b,bv c] = [a A b,c|.
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(3) Let sup{G.dim([0,z]) : z € F} = B. Given 1 # a € L, we have to show that there exists
b € [a, 1] such that [a,b] is y-simple for some v < 5. By hypothesis, there exists € F such that
x € a. Thus, x # x A a € [0, x] and so there exists V' € [z A a,z] such that [z A a, '] is y-simple
for some v < G.dim([0,z]) < . Let b = b’ v a; by modularity [a,b] = [z A a,b] is y-simple as
desired.

(4) Consider a continuous chain in L defined as follows:
— g = 0;

— if 0 = 7 4+ 1 is a successor ordinal, then z, = 1 if z, = 1, while z, is an element > x, such
that [z, z;] is S-simple for some f;

— 2o = \V, -, %7 if 0 is a limit ordinal.

Since we supposed that L has Gabriel dimension, then the above definition is correct and there
exists an ordinal ¢ such that zz = 1. Let us prove our statement by induction on &. If
o = 1, there is nothing to prove. Furthermore, if & = 7 + 1, then by part (2), G.dim(L) =
max{G.dim([0, z,]), G.dim([x-,z5]) and we can conclude by inductive hypothesis. If 7 is a
limit ordinal, one concludes similarly using part (3).

(5) It is enough to prove the statement for «-simple lattices for all ordinals v and then apply part
(4). So, let v be an ordinal and let L be ~-simple lattice. Then, G.dim(L) = 4+ 1 and we should
prove that sup{G.dim([z,1]) :  # 0} > . If, looking for a contradiction, sup{G.dim([z,1]) :
x # 0} = B <, then just by definition, L is S-simple, that is a contradiction. O

Corollary 2.43. Let (L, <) be a qframe and let « be an ordinal. Then, G.dim(L) < « if and
only if, for any element x # 1, there exists y > = such that G.dim([z,y]) < a.

Proof. Let x9 = 0, for any ordinal v let xy11 = 1 if z, = 1, otherwise we let 2,41 be an
element > z, such that G.dim([z,,2zy41]) < a. Furthermore, for any limit ordinal A\ we let
Ty = \/V ) &. Let us prove by transfinite induction that G.dim([0,z,]) < « for all v, this
will conclude the proof since there exists v such that x, = 1. Our claim is clear when v = 0.
Furthermore, if ¥ = § 4+ 1 and G.dim([0, 24]) < , then by Lemma [2.42 (2), G.dim([0, z,]) < o
If  is a limit ordinal and G.dim([0,z4]) < a for all 8 < ~, one concludes by Lemma[2.42|(3). [

Lemma 2.44. Let (L, <) be a gframe with Gabriel dimension, let (L', <) be a qframe and let
¢ : L — L' be a surjective morphism of qframes. Then, G.dim(L') < G.dim(L).

Proof. Let us proceed by transfinite induction on G.dim(L).

If G.dim(L) = 0, then L is a trivial as well as L’ so there is nothing to prove.

Suppose now that G.dim(L) = a > 0 and that we have already verified our claim for all 5 < «.
Let first « = v 4+ 1 be a successor ordinal and let L be v-simple. Then, for all 0 # a € L,
G.dim([a, 1]) < v and so, by inductive hypothesis, G.dim(¢([a, 1])) < 7. By Lemma [2.42] (5),
G.dim(¢p(L)) <y+ 1=

Let now 2’ € L', consider the set S = {r € L : ¢(x) = 2’} and let £ = \/ S, so that ¢(z) =
Vies @(@) = a'. Let also § > = be such that [z,g] is S-simple for some S < « and let
y' = ¢(y) € L. Then, y > 2/, furthermore y' # 2’ (since y' = 2’ would imply that § € S, that
is, ¥ = T, which is a contradiction). By the first part of the proof, G.dim([z’,y']) < 8+ 1 < «a.
To conclude apply Corollary O
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2.2.2 Torsion and localization

Definition 2.45. Let (L, <) be a qframe, and let o be an ordinal. We define the a-torsion part
of L as

ta(L) = \/{z € L : G.dim([0, 2]) < o} .

For any given a € L, we let t,(a) = t4([0,a]).
Lemma 2.46. Let (L,<) be a gframe, let a, b€ L and let o be an ordinal. Then,
(1) ta(a) =a A to(1);
(2) ta(a v b) < to(a) v b, provided a Ab=0;
(3) tala v b) =ty(a) v ty(b), provided a A b = 0;
In particular, to(\/ ey i) = Viep ta(i) for any join-independent set {x; : i€ I} in L.
Proof. (1) By definition, t,(a) < a A to(1). On the other hand, by upper continuity,

an\/{reL:Gdim([0,2]) <a}=\/{arzeL:Gdm(0,z]) <a}
= \/{z € [0,a] : G.dim([0,2]) < a} = ta(a).

This works since the family {z € L : G.dim([0, z]) < a} is directed by part (2) of Lemma

(2) Let z € [0,a v b] be such that G.dim([0, z]) < «, then zvb € [0,a v b] and G.dim([b, z vb]) =
G.dim([b A z,z]) < G.dim([0, z]) < a. This shows (%) below:

tala v b) = \/{$ €[0,a v b] : G.dim([0, z]) < a}
(;) \/{x vbe[0,avb]:Gdim([b,x v b]) <a}
— \/{x € [b,a v b] : G.dim([b, z]) < a}
"W\/{z v b:eel0,a] and C.dim([0,2]) < a}
("g‘) bv \/{x :x € [0,a] and G.dim([0,z]) < a} = b v ty(a),

where (##) holds since te map x — x v b is an isomorphism between [0, a] and [b,b v a] (use the
fact that a A b =0), and in ( ***) we used upper-continuity.

(3) It is clear that t,(b) v tq(a) < to(a v b). Using twice part (2) and the modularity of L,

ta(b) v ita(a) <to(a v ) < (ta(a) v b) A (ta(b) v a) =ta(a) v (b A (to(b) v a))
=to(a) v ((b A a)viy(b)) =tala) v ity(d).

where the last equality holds since a A b = 0.

For the last part of the statement, notice that

Ve Vo (V).

el FcI finite \i€eF
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Thus, using upper-continuity and part (3) of the lemma,

to (\/xz> =ta()r \/ <\/xz)

el FcI finite \ieF
=V [ta(D)n \/xi> -V (\/ ta(xi)> = \/ talz:).
FclI finite el FcI finite \ieF el

Lemma 2.47. Let L be a qframe, let x € L and let {ys : s € S} < L. Suppose that
(1) [0,ys] = [0,y] for all s, te S;

(2) [0,ys] is Noetherian for some (hence all) s € S;

(3) {ys:se S} is a basis for L.

Then, G.dim([0, x]) is a successor ordinal.

Proof. A consequence of Theorem m (3) is that, for all s € S, tat1(ys) # ta(ys) for just
finitely many ordinals « (the same o’s for all s € S). Furthermore, \/, g ta(ys) = ta(1) for all
a, by the above lemma. Thus, t,4+1(1) # to(1) for finitely many ordinals «. Notice also that
ta(x) = ta(1) Az for all a, thus to41(x) # to(x) implies to4+1(1) # ta(1) and so, ta11(z) # to(x)
for finitely many ordinals . Hence, G.dim([0, z]) = sup{a+1: tat1(x) # to(x)} = max{a+1:
ta+1(x) # to(x)} is a successor ordinal. O

Proposition 2.48. Let (L,<) be a qframe and let a be an ordinal. Then,
(1) z €[0,ta(1)] if and only if G.dim([0, z]) < «;
(2) given a gqframe (L', <) and a homomorphism of qframes ¢ : L — L', ¢(to(L)) < to(L').

Proof. (1) By part (3) of Lemma [2.42] G.dim([0,¢a(1)]
lemma, G.dim([0,z]) < G.dim([0,t4(1)]) < « for all
G.dim([0, z]) < a, then = < t,(1) by construction.

(2) is an application of part (1) and Lemma O

< « and so, by part (1) of the same
€

)
x € [0,ty(1)]. On the other hand, if

Definition 2.49. Let o be an ordinal. Given a qframe (L, <), we let T, (L) = [0,t4(1)], while,
given a homomorphism of qframes ¢ : L — L', we let to(¢) : To(L) — T, (L) be the restriction
of ¢. This defines a covariant functor T, : QFrame — QFrame that we call a-torsion functor.

Definition 2.50. Let (L,<) be a qframe, let o be an ordinal and define the following relation
between two elements x and y wn L:

(x ~oy) if and only if (G.dim([z A y,z v y]) < )

Lemma 2.51. Let (L, <) be a qframe and let o be an ordinal, then ~, is a strong congruence
on L.
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Proof. The fact that ~, is a congruence follows by Lemma (2) and [4, Proposition 2.4].
Furthermore, given x € L, let us show that \/[z] € [z]. In fact,

G.dim | |z, \/ y|]=G.dim| |z, \/ zvy| | =sup{G.dim([z,z vy]):y€e|z]} <,
ye[z] ye(z]

by Lemma m (3). Thus, ~ is a strong congruence. O

We denote by Qn(L) the quotient of L over ~, and by 7, : L — Q4(L) the canonical
surjective homomorphism.

Proposition 2.52. Let (L,<) and (L', <) be qframes, let ¢ : L — L' be a homomorphism of
gframes, and let o be an ordinal.

(1) If x ~o y in L, then ¢(x) ~q ¢(y) in L';
(2) Gdim(Qa(Ta+1(L))) <1, that is, Qu(Ta+1(L)) is semi-Artinian for any ordinal o.

Proof. (1) By Lemma G.dim([z A y,z v y]) = G.dim(¢([z A y,z v y])) = G.dim([¢p(x A
), 8(x) v 9(y)]). Furthermore, 6(x) A 8(y) > 6z Ay) and so G.dim([4(z) A H(), 6(z) v $(y)]) <
G.dim[¢(z A y), d(z) v #(y)] < a, by Lemma [2.42] (1).

(2) Let S = [a, b] be an a-simple segment of Ty+1(L). Then, 7,(S) is an atom since a is not a-
equivalent to b (as G.dim(S) = a+1) and b is a-equivalent to any ¢ € (a, b] (as G.dim([c,b]) < a).
If Qa(Ta+1(L)) = 0O there is nothing to prove, otherwise choose an element = € T,41(L)
such that 7y (tat+1(1)) # ma(z) € Qu(Tu+1(L)) and let T = \/[z] € To41(L). Notice that
G.dim([Z,ta+1(1)]) = a + 1 (otherwise [z] = [ta+1(1)]). By definition of Gabriel dimension,
there exists § € To+1(L) such that [z,y] is S-simple for some f < « + 1 and, since § ¢ [Z],
we have = a. By the previous discussion, [, (x), 74 (¥)] is 0-simple. One can conclude by

Corollary [2.43] O

Definition 2.53. Let a be an ordinal. Given a gqframe (L,<), we let Qa(L) = L., while,
given a homomorphism of qframes ¢ : L — L', we let Qo (@) : Qu(L) — Qu(L') be the induced
homomorphism. This defines a functor Q, : QFrame — QFrame that we call a-localization
functor.

It is not difficult to show that @), is compatible with the composition of morphisms, so that
the above definition is correct.
2.2.3 Gabriel categories and Gabriel spectrum

Definition 2.54. Let € be a Grothendieck category. The Gabriel filtration of € is a transfinite
chain {0} = €= € < --- < &€, S ... of torsion classes defined as follows:

- Q:O = {O};

— suppose that « is an ordinal for which €, has already been defined, an object C € € is said to
be a-cocritical if C' ¢ €, and C/C’" € €, for any non-trivial sub-object C' < C;

— suppose that o is an ordinal for which €g has already been defined, for all B < o. Then, &5 is
the smallest torsion class containing €g and all the (B-cocritical objects, for all B < o.

A Grothendieck category € is said to be a Gabriel category if € = ( J, Ca.
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As one may expect, there is a relation between Gabriel categories and the Gabriel dimension
for gframes. See Proposition for a connection between these two concepts.

Let € be a Gabriel category and let 7 = (7, F) be a torsion theory. One can show that €/7
is a Gabriel category as well (showing by induction that Q,(€,) S (€/T), for all «).

For any ordinal «, we let 7, = (€4, @0%); in what follows, we write a-torsion (resp., torsion free,
local,...) instead of 7,-torsion (resp., torsion free, local,...). Furthermore, we let T, : € — €,,
Sa : €/€, — € and Q, : € — €/C, be respectively the a-torsion, the a-section and the a-
quotient functors. Abusing notation, we use the same symbols for the functors Ty, : €op1 — €4
and Qg : €41 — €oy1/€,, induced by restriction.

Definition 2.55. Let € be a Grothendieck category, an object X € Ob(€) is simple if its gframe
of subobjects L(X) is an atom. Furthermore, X is said to be cocritical if it is a-cocritical for
some a.

Lemma 2.56. Let € be a Gabriel category, let X € Ob(€) and consider an ordinal . Then,

(1) X € €oq1 if and only if there exists an ordinal o and a continuous chain 0 = Ny < Nj <
-+ < Ny = X, such that N;y+1/Nj is either a-cocritical or a-torsion for every i < o.

(2) if a is a limit ordinal, then X € €y if and only if X = >\ Ta(X).

Proof. (1) Let A be the class of all objects which are union of a chain as in the statement. Since
every hereditary torsion class is closed under taking direct limits and extension, we obtain the
inclusion A € €,.1. On the other hand, €, is minimal between the hereditary torsion classes
which contain €, and the a-cocritical objects, thus the converse inclusion follows by the fact
that A is a torsion class (apply Lemma to the class €, U {a-cocritical objects}).

(2) Notice that, since « is a limit ordinal, €, is the smallest torsion class that contains all the
torsion classes €5 with 3 < a. Let D = {X e €: X = }5_, Tp(X)}, we have to show that
¢, = D. Indeed, given X € D, we have an epimorphism C—BB - Tp(X) — X, and so, since €,
is closed under quotients and coproducts, X € €,. Thus, D < €,. On the other hand, it is not
difficult to show that D is a torsion class and that it contains €,, for all a < A. By minimality,
¢, cD. L]

Corollary 2.57. Let € be a Gabriel category and let 0 # X € Ob(€). Then, X has a cocritical
subobject.

Proof. Let a be the smallest ordinal such that X € €., we proceed by induction on a.. If &« =1,
then by Lemma m (1), X has a simple subobject (as being 0-torsion means being trivial, while
being 0-cocritical means being simple). Similarly, if « = § + 1, then there exists an ordinal o
and a continuous chain 0 = Xy < X; < --- < X, = X, such that X;1/X; is either S-cocritical
or B-torsion for every i < o. Let ¢ the smallest ordinal for which X; is not trivial. If X, is 8-
critical then we are done, while if X; is S-torsion, then we can conclude by inductive hypothesis.
Finally, if o is a limit ordinal, then X = (Jz_, T(X), by Lemma (1). Thus there exists
some 3 < a for which 0 # T3(X) < X and, by the inductive hypothesis, T3(X) has a cocritical
subobject. O

Lemma 2.58. Let € be a Gabriel category, let C' € € be an object and let a be an ordinal. The
following are equivalent:

(1) C is a-cocritical;

(2) C is a-torsion free and Qq(C) is simple;
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(3) there exists a simple object S € €/&, such that C embeds in Sy (5).

Proof. (1)=(2). If C' is a-cocritical, then it is a-torsion free by definition. Let 0 # X < Q4 (C),
then 0 # S, (X) < Lo (C). Since C is essential in L, (C), then C' n S, (X) # 0. This induces a
short exact sequence

0> Sa(X) N C > C — C/(Sa(X)nC) -0,

with C/(Sa(X) nC) € €,. Applying Q, we obtain a short exact sequence 0 - X — Q. (C) —
0 — 0, showing that X = Q. (C), that is therefore simple.

(2)=(3). Since C is a-torsion free, it embeds in L, (C) = S, (Q4(C)).

(3)=(1). S,(S5) is a-torsion free, so C is a-torsion free. Furthermore, let 0 # X < C, then
0 # Qa(X) < Qu(C) < S and, since S is simple, Qu(X) = Qu(C) = S. Thus, Q. (X/C) =
Q0 (X)/Qa(C) =0, that is, X/C € €,. O

Corollary 2.59. Let € be a Gabriel category. Then, €uy1/Cq is semi-Artinian for all a <
G.dim(¢).

Proof. Let 0 # X € €,41/€, and consider S, (X) € €,41. By Corollary there exists a
cocritical subobject C' < S, (X). Since S, (X) is a-torsion free by construction, C' is a-cocritical
and so Q. (C) is simple in €441/€, by Lemma By the exactness of Q,, Q.(C) < X.
Thus, we proved that any object in €,1/€, has a simple subobject. O

Proposition 2.60. Let € be a Gabriel category and let E and E’ € € be injective objects. The
following statements hold true:

(1) E is indecomposable if and only if there exists a cocritical object C' such that E ~ E(C);

(2) if E and E' are indecomposables and cogenerate the same torsion theory, then E ~ E'.

Proof. (1) Suppose E = E(C), where C' is a-cocritical for some ordinal o and let Eq, B3 < E
be two subobjects such that £ = E; @ FEy with E; # 0. Then Ey n C # 0 and C/(C n Ey)
embeds in Fs. Since Fs is a-torsion free and C/(C' n E7) is a-torsion, C/(C' n E7) = 0, that is,
C < E;. Thus, E5 n C = 0, which implies that Fy = 0.

On the other hand, suppose 0 # E is indecomposable. Since € is a Gabriel category, there exists
a cocritical subobject C' < E (see Corollary 2.57). Since E is indecomposable, E = E(C).

(2) Let 7 = (T, F) and 7" = (T', F') be the torsion theories cogenerated by F and E’ respectively
and suppose 7 = 7/. By part (1), there exists an ordinal a and an a-cocritical object C such that
E = E(C). Thus, FE is a-torsion free and so €, € T = T'. Furthermore, C < E € F = F' and
so Homg(C, E') # 0. Let ¢ : C — E’ be a non-trivial morphism and notice that it is necessarily
a monomorphism, in fact, if 0 # Ker(¢) < C then ¢(C) =~ C/Ker(¢) € €, < T, that contradicts
the fact that ¢(C) < E' € F'. Thus, C = ¢(C) and so E' >~ E(¢(C)) ~ E(C) = E. O

Remark 2.61. Let € be a stable Gabriel category and let E be an indecomposable injective object.
By Proposition there is an ordinal o and an «a-cocritical object C' such that E =~ E(C).
By construction C' € €q41\Co and, by stability, E(C) € €q4y1. This shows that, in stable Gabriel
categories, any indecomposable injective object belongs to €o11\&y for some a.

Definition 2.62. Let € be a Grothendieck category. A torsion theory T = (T,F) that can be
cogenerated by the injective envelope of a cocritical object is said to be prime.

The a-Gabriel spectrum Sp®(€) is the family of isomorphism classes of injective envelopes of
a-cocritical objects. The Gabriel spectrum Sp(€) of € is the family of isomorphism classes of
indecomposable injective objects in €.
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With this terminology, Proposition [2.60] translates as follows.

Corollary 2.63. Let € be a Gabriel category. Then the following map

Sp(€) —————— {prime torsion theories}

Ei (*E,(*E)Y)

is a bijection. Furthermore, Sp(€) =, Sp*(€).

Using the above corollary, we usually identify the set of prime torsion theories with the
Gabriel spectrum. In particular, we write 7 € Sp(€) (or m € Sp*(€)) to mean that 7 is a prime
torsion theory. Furthermore, we let E(m) be a representative of the isomorphism class of the
indecomposable injectives which cogenerate 7.

Theorem 2.64. Let € be a Gabriel category and let E € Ob(€) be an injective object. For all
7 € Sp(€) there exists a set I such that

E =~ E< ) E(ﬂ)(l’*)> :

TeSp(C)
Furthermore, the set of pairs {(m,|I|) : m € Sp(€)} uniquely determines E up to isomorphism.

The proof of the above theorem uses a general machinery that we are not interested to treat
here. Thus, we give just a sketch of the proof, pointing to the literature for details.

Proof. Let €gpe. be the spectral category of € defined as follows:
— the objects of €gpe. are exactly the injective objects of &;

— given two objects F1, F of €gpe., the morphisms are defined as follows:

Homgyg,.. (E1, B2) = lim Home (E, E2), E essential subobject of Ej.

There is a canonical left exact functor P : € — Cg). taking an object to its injective envelope.
It is useful to notice that, given two objects X and Y € € we have that

P(X)= P(Y) (inCgpe) — E(X)=E(Y) (inC). (2.2.1)

For more details on this construction we refer to [96, Sec. 6 and 7, Ch. V]. By Corollary
every non-trivial object in € has a cocritical subobject. By [96, Proposition 7.3, Ch. V], this
implies that Cgpe. is a discrete (i.e., any object of €gpe. is a coproduct of simple objects) spectral
category. In particular, given an injective object E € €, P(E) decomposes in Cgpe. as the direct
sum of indecomposable (i.e., simple) objects. Furthermore, it is not difficult to see that an
object P(C) is simple in €gp, if and only if E(C) is indecomposable in €. We obtain in €gpe.
the following decomposition
P(E)= @ P(Em).

TeSp(C)

Thus, we get the desired decomposition £ = E (@wesp(e) E(W)(I”)). For the uniqueness state-
ment it is enough to apply Theorem 1 of [I02] in the category Cgpec. O
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Lemma 2.65. Let € be a Gabriel category, let w, @’ € Sp(€) and consider the following condi-

tions (see Definition :

(2) Homg(E(n'), E(m)) # 0.
Then, (1) implies (2). If 7 is stable, also the converse holds.

Proof. By definition, 7 < #’ if and only if any 7’-torsion free object is m-torsion free. In this case,
E(n') is m-torsion free, thus Home (E(7’), E(m)) # 0. On the other hand, if Home(E(7'), E(7)) #
0 and 7 is stable, then E(n’) is not m-torsion, thus it is 7-torsion free (see Lemma |1.140) and so
T O

Definition 2.66. Let € be a Grothendieck category. Given a subset S < Sp(€), we say that S
is generalization closed (resp., specialization closed ) if it contains all the prime torsion theories
that are generalizations (resp., specializations) of its members.

Theorem 2.67. Let € be a Gabriel category and let T = (T, F) be a torsion theory. Define the
following subsets of Sp(€):

= 5(7) = {m e Sp(€) : T-(E(r)) # 0},

- G(r) = {m e Sp(€) : T (B(r)) = 0}.

Then, S(1) UG(7) = Sp(€) and this is a disjoint union. Furthermore, given 7’ € Tors(€), 7 = 7’
if and only if G(1) = G(7') if and only if S(7) = S(7).

If € is stable, then S(7) and G(T) are respectively specialization and generalization closed. Fur-
thermore, any specialization (resp., generalization) closed subset of Sp(€) is of the form S(T)
(resp., G(1)) for some 7 € Tors(€) and S(—) (resp., G(—)) induces a bijection between Tors(€)
and the set of specialization (resp., generalization) closed subsets of Sp(<).

Proof. Let 7 and 7' be two torsion theories such that G(7) = G(7'). Given X € F, there
exist sets Ir, for all 7 € G(7) such that E(X) = E(B,cq E(m))) (see Theorem @ .
Since G(1) = G(7'), E(X) is 7/-torsion free, showing that F < F’. One proves similarly
that 7/ < F, so F = F', that is, 7 = 7/. Analogously, notice that S(r) = S(7') implies
G(7) = Sp(€)\S(7) = Sp(€)\S(7') = G(7') and so 7 = 7/ for the first part of the proof.
Assume now that € is stable and let 7 < 7’ € Sp(€), that is, Home(E ("), E(7)) # 0 (see Lemma
2.65). If T,(E(r')) # 0, then E(r’) € T (by stability), thus any proper quotient of E(r’) is
7-torsion. Hence, T, (E(mw)) # 0. We proved that S(7) is specialization closed, the fact that
G(7) is generalization closed follows from the fact that it is the complement of S(7).

Finally, let G be a generalization closed subset of Sp(€) and let

IZL{E(T(')iﬂ'EG}, F=T" and T=(T,F).

Then (Sp(€)\G) u G = Sp(€) = S(r) u G(r) and it is easy to see that G < G(r). Let
7' € Sp(E)\G. If, looking for a contradiction, E(n’) ¢ T, then there exists m € G such that
Home (E(7'), E(m)) # 0. By Lemma [2.65 7’ is a generalization of m and so 7’ € G, which is a
contradiction. Hence, Sp(€)\G < S(7) and so S(7) = Sp(€)\G and G(7) = G. O
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2.2.4 Relative Gabriel dimension in Grothendieck categories

Proposition 2.68. Let € be a Grothendieck category and let o be an ordinal. Then, €, = {X €
Ob(€) : G.dim(L(X)) < a}.

Proof. The case a@ = 0 being clear, we prove the statement by induction on a. Suppose that,
for all 8 < «

s = {X € Ob(€) : G.dim(L(X)) < S} .

By injective hypothesis, an object X is S-cocritical for some 8 < « if and only if £(X) is a
p-simple gframe. Let D = {X € Ob(€) : G.dim(L(X)) < o} and let us show that €, = D.
Indeed, €, < D since D is a torsion class (see Lemma [2.42)) that contains €3 and the S-cocritical
objects, for all 5 < a. On the other hand, let X € D and consider T, (X). If, looking for a
contradiction, T (X) # X, then there exists Z € (T, (X), X] such that G.dim([Ty(X), Z]) < a.
We obtain a short exact sequence

0= To(X) > Z — Z/To(X) — 0.
Since €, is a Serre class, Z € €,, so Z < T,(X), that is a contradiction. Thus, D < €,. O

The concept of Gabriel dimension in Grothendieck categories was introduced in [44] (under
the name of “Krull dimension”) and systematically studied in [5I] and in many other papers
and books after that. We introduce here a relative version of this invariant.

Definition 2.69. Let € be a Gabriel category, let T = (T, F) be a torsion theory and let X € €
be an object. We define respectively the T-Gabriel dimension of € and the 7-Gabriel dimension
of X as follows

G.dim,(€) = min{a : €/T = (€/T)a} and G.dim,(X) = min{a: Q,(X) € (€/T)a}.

When T = (0, €) is the trivial torsion theory, the T-Gabriel dimension is called Gabriel dimension
and we denote it respectively by G.dim(€) and G.dim(X).

Let € be a Gabriel category, let 7 = (7, F) be a torsion theory and let X € Ob(€). Notice
that, by Proposition 2.68] G.dim,(X) = G.dim(£(Q-(X))).

Given an object X in a Grothendieck category €, we say that X is Noetherian (resp., Artinian,
semi-Artinian), provided £(X) is a gframe with the same property. Recall that a Grothendieck
category @ is said to be semi-Artinian if ©® = ©4, that is, any of its objects is semi-Artinian,
equivalently, every object in ® has a simple sub-object.

Lemma 2.70. Let € be a Grothendieck category and let T = (T, F) be a torsion theory. Then:
(1) G.dim,(€) = sup{G.dim,(X) : X € €};

(2) if Y < X €€, then G.dim,(X) = max{G.dim,(Y), G.dim,(X/Y)};

(3) if {X; i€ I} is a family of objects in €, then G.dim,(P; X;) = sup; G.dim,(X;);

(4) if N € € is a Noetherian object, then Q-(N) is Noetherian and G.dim(N) is a successor
ordinal. Furthermore, there exists a finite series 0 = Yy < Yy < -+ <Y = N such that
Y;/Yi_1 is cocritical for alli=1,... k.
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Proof. (1) is trivial.

(2) By the exactness of Q;, L(Q-(Y)) equals the segment [0,Q,(Y)] in £(Q-(X)), while
L(Q-(X/Y)) equals the segment [Q-(Y), 1] in £L(Q,(X)). Thus,

G.dim,(X) = G.dim(£(Q-(X)))
= max{G.dim([0, Q,(Y)]), G.dim([Q-(Y),1])} = max{G.dim,(Y), G.dim,(X/Y)},

where the second equality follows by Lemma [2.42] (2).

(3) Since Q, commutes with coproducts, Q-(P; X;) = @; Q-(X;). Thus, we have a family
F ={Q,(X;) :ie I} < L(Q-(P; X;)) such that \/ F = 1. By Lemma [2.42| (3),

o (@) -« (o (@)

= 51}p G.dim([0, Q- (X;)]) = sgp G.dim-(Q-(X3)) .

(4) Use Proposition [2.41] (3).
O

Definition 2.71. Let € be a Grothendieck category, let T = (T,F) € Tors(€), let ¢ = €/T
and consider a torsion theory 7" = (T',F') € Tors(€'). The following class of objects of € is a
torsion class:

Tror ={X €C: Q. (X)eT'}.

We denote by T o 7' the torsion theory whose torsion class is Trom.

Notice that, just by definition, the quotient functors relative to 7, 7/ and 7 o 7/ fit in the
following commutative diagram:

Q. or

Lemma 2.72. Let € be a Gabriel category, let T = (T, F) € Tors(€), let € = &/T, denote by 74
the torsion theory in € whose torsion class is (') (the a-th member of the Gabriel filtration
of €), and let X € €. Then:

(1) Gdim,(X) = a+ 1 if and only if G.dim,or, (X) = 1;
(2) G.dimyor, (X) = 0 implies that G.dim,(X) < a.

Proof. (1) G.dim,(X) = G.dim(Q,(X)) = a+ 1 if and only if Q,(X) € (¢')a+1\(¢)4, that is,
G.dimsor, (X) = G.dim(Qr, (Q,(X))) = 1.

(2) G.dimsor, (X) = 0 if and only if Qor, (X) = 0, that is, Q,(X) € Ker(Q.,) = (¢/)a.
Equivalently, G.dim.(X) = G.dim(Q-(X)) < a. O

Lemma 2.73. Let € be a stable Gabriel category, let 7 € Tors(€) and let 1 = (T,F) and
7' = (T, F') be two distinct prime torsion theories. If G.dim,(E(r)) = G.dim,(E(7")) > —1,
then Home (E(7), E(1")) = 0.
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Proof. By Remark G.dim,(E(7)) = G.dim,(E(n")) = B + 1 for some ordinal § > —1.
Denote by 73 € Tors(¢/T) the torsion theory whose torsion class is (€/7)g. Then, by Lemma
G.dimror, (E(7)) = G.dimror,(E(7')) = 1 and, by stability, both E(7) and E(n’) are
T o Tg-torsion free, so 7 o 7g-local, thus

Home (E (), E(n')) = Home (L(ror; E(7)), Lror, (E(7))) = Homey ..., (E(r), E(7)),

so there is no loss in generality if we assume that 7 is the trivial torsion theory and 5 = 0. Suppose
now that Homg(E(7), E(7')) # 0, that is, E(7) is not 7'-torsion, thus, by stability, F(r) is «'-
torsion free. Now, since we are assuming G.dim(E(7)) = 1, there exists a simple object S € €
such that E(7) =~ E(S) and Homg(S, E(7)) # 0. By the simplicity of S and the fact that E(7")
is indecomposable we obtain that E(n') >~ F(S) =~ E(r), which is a contradiction. O

Corollary 2.74. Let € be a stable Gabriel category, let T = (T,F) € Tors(€) and let 7 # 7' €
Sp(€). If E(r), E(r') ¢ T and Home(E(w), E(7')) # 0, then G.dim,(E (7)) > G.dim,(E(7")).

Proof. Looking for a contradiction, suppose that G.dim,(E (7)) < G.dim,(E(7")). By Theorem
1.132] Q,(E(m)) is an indecomposable injective object in €/T, thus, by Remark there exists
an ordinal « such that G.dim(E(7)) = a + 1. Let

- ¢ =¢/T, 71 = (T1,F1) € Tors(€y), where T; = (€1)q, 11 = 7071 € Tors(€), By = Q, (E(7))
and B} = Qq, (E(7'));

~ €&y =€ /T1, 2 = (T2, F2) € Tors(€s), where T2 = *{E}} and 5 = 7 0 7 € Tors(&);

— €3 =/Ts.

Both E(7) and E(n’) are 7i-local and so Homg,(E1, E]) =~ Homge(E(w), E(7')) # 0. This
means that F; is not 7a-torsion, thus both G.dim,,(E (7)) and G.dim,, (E(n’)) are strictly bigger
than 0. On the other hand, G.dim.,(E(7)) < G.dim (E(7)) = 1 (see Lemma [2.72)), while
G.dim, (E(7")) = 1 (since, given a cocritical sub-object C' of E(7’), L;,(C) is simple). This
contradicts the conclusion of Lemma 273l O

—_

2.2.5 Locally Noetherian Grothendieck categories

Definition 2.75. A Grothendieck category € is locally Noetherian if it has a set of Noethe-
rian generators. FEquivalently, any object in &€ is the direct union of the directed family of its
Noetherian subobjects.

Corollary 2.76. Any locally Noetherian Grothendieck category € is a Gabriel category. More-
over, if G is a set of Noetherian generators for €, G.dim(¢) = G.dim(P G).

Proof. Let G be a set of Noetherian generators of €. By Lemmam (4), each G € G has Gabriel
dimension. By Lemma (3), @G has Gabriel dimension and so, by Lemma (2) any
quotient of @ G has a smaller Gabriel dimension. Thus, by Lemma (1), G.dim(¢) exists
and it coincides with G.dim(P G). O

In the following proposition and corollary we collect some results about locally Noetherian
categories:

Proposition 2.77. [96, Proposition 4.3 and Corollary 4.4, Ch. V] Let € be a Grothendieck
category. Then, € is locally Noetherian if and only if directed colimits of injective objects are
mjective.
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By the above proposition, Theorem [2.64] has the following form in locally Noetherian cate-
gories.

Corollary 2.78. Let € be a locally Noetherian Grothendieck category and let E € Ob(€) be an
injective object. For all m € Sp(€) there exists a set I such that

Ex~ @ B,

weSp(<)
Furthermore, the set of pairs {(m,|I|) : m € Sp(€)} uniquely determines E up to isomorphism.

A ring R is left (resp., right) Noetherian if rR (resp., Rg) is a Noetherian object in R-Mod
(resp., Mod-R). Furthermore, a ring is Noetherian if it is both left and right Noetherian. By
Corollary G.dim(R-Mod) = G.dim(gR) for any left Noetherian ring R.

In the last part of this subsection we specify some of the above results in the case when
¢ = R-Mod is the category of modules over a commutative Noetherian ring. This particular
case will be used in Chapter [12| to re-obtain the main results of [20], [I8] and [19], from our
general theory.

Lemma 2.79. [96, Proposition 4.5, Ch. VII] Let R be a commutative Noetherian ring. Then,
R-Mod is a stable Gabriel category.

Definition 2.80. Let R be a ring. The product of two two-sided ideals a, b € R is ab = {ab :
a€a,be b}l A two-sided ideal p S R is prime if, given two two-sided ideals a, b such that
ab S p, either a € p or b < p. The spectrum Spec(R) of R is the poset of all the prime ideals
in R (ordered by inclusion). Given p, q € Spec(R), if p S q we say that p is a generalization of
q and that q is a specialization of p.

Lemma 2.81. Let R be a commutative Noetherian ring, then there is a bijection
Spec(R) — Sp(R-Mod), p— E(R/p).

Furthermore, given p, q € Spec(R) and denoting by m(p) and w(q) the prime torsion theories
cogenerated by E(R/p) and E(R/q) respectively,

hsa) <= (7(a) <m(p)).

Proof. The fact that this map is well-defined and bijective is [72, Proposition 3.1]. Further-
more, if p < ¢, then there is an epimorphism R/p — R/q and this can be used to show that
Hompg(E(R/p), E(R/q)) # 0. By Lemma[2.65] this shows that 7(q) < 7(p). On the other hand,
if 7(q) < 7(p), then E(R/p) is not m(q)-torsion and so, by stability, it is 7(q)-torsion free. In
particular, Homg(R/p, E(R/q)) # 0. Consider a non-trivial morphism ¢ : R/p — E(R/q) and
consider the restriction ¢’ : R/p — ¢(R/p). Since pR is a projective generator, there is a non-
trivial morphism v : R — ¢(R/p) that extends to a morphism 1 : R — R/p such that ¢'¢) = 1.
Then, p € Ker(¢) by construction and Ker(¢) < q by [72, Lemma 3.2]. Thus, p < q. O
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Chapter 3

Duality

The aim of Chapter [3]is to illustrate two classical duality theorems, taking also the occasion to
recall all the background needed to state and apply these theorems. Indeed, in the first part
of the chapter we recall some basics about topological groups and harmonic analysis in locally
compact groups. After that, we recall the Pontryagin-Van Kampen Duality Theorem for locally
compact Abelian groups and the Fourier Inversion Theorem.

In the second part of the chapter we recall some facts about (strictly) linearly compact modules
and we give a complete proof of the Miiller Duality Theorem between discrete and strictly
linearly compact modules in a particular case.

3.1 Pontryagin-Van Kampen Duality

3.1.1 Topological spaces, measures and integration

In Example we defined a topological space (X, 7) to be a set X with a distinguished family
7 of open subsets that satisfies suitable closure properties. An easy example for a topological
space is given by the discrete spaces, that are the topological spaces in which any subspaces is
open.

Definition 3.1. Let (X,7) be a topological space. A set B of open subsets of X is a base of T
if any non-empty open set is a union of elements of B.

In a discrete topological space (X, 7) the set {{z} : x € X} is a base for the topology.
In general, given a topological space (X, 7), it is possible to give a “local characterization” of T,
that is, we can describe 7 via the collection of “filters of neighborhoods” of the points.

Definition 3.2. Let (I,<) be a poset and let F < I be a subset. Then, F is a filter if the
following conditions hold:

— F is downward directed;
—forallze Fandyel, ifx <y, thenye F.

Any downward directed set is said to be base of filter. Furthermore, given a base of filter B and
a filter F, we say that B is a base for F if F ={xel:3be B s.t. b < x}.

Definition 3.3. Let (X, 1) be a topological space. Then,

59
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— given a point x € X, a neighborhood of x is a set V' that contains an open A such that
x e A c V. We denote by Vx(x), or just V(z) if X is clear from the context, the set
of neighborhoods of x. Given a subset S < X, a neighborhood of S is a set V' that is a
neighborhood of each element of S.

— X is a Hausdorff space if, given x # y € X, there exist V € V(z) and U € V(y) such that
UnV =¢g.

Notice that a base completely determines the topology of a space. Furthermore, given a
topological space (X, 7) and a point = € X, the family of neighborhoods V(z) is a filter in the
poset of subsets of X (ordered by inclusion). The knowledge of these filters, for any point of X,
completely determines the topology, in fact, a subset is open if and only if it is a neighborhood
of each of its points. These observations can be used to prove the following elementary lemma.

Lemma 3.4. Let (X, 7) and (Y, 7') be topological spaces and let ¢ : X — Y be a map. Then the
following are equivalent

(1) ¢ is continuous;

(2) given a base B' of 7', ¢~ (B') is open for all B' € B';

(3) for all z € X, given a base C of Vy(¢(z)), ¢~ (U) € V() for all U € C.
Definition 3.5. Let (X, 1) be a topological space. Then,

— a pre-base of T is a set B of open sets such that the set of finite intersections of members of
B is is a base of T;

— given x € X, a pre-base of neighborhoods of x is a family B of neighborhoods of x such that
the set of finite intersections of members of B is a base of the filter V(x).

The following corollary is a direct consequence of Lemma

Corollary 3.6. Let (X,7) and (Y,7') be topological spaces and let ¢ : X — Y be a map. Then
the following are equivalent

(1) ¢ is continuous;

(2) given a pre-base B' of 7', ¢~1(B') is open, for all B' € B;

(3) given x € X and a pre-bae By, of V(¢(x)), ¢~H(U) € V(x), for all U € Byy).
Definition 3.7. Let (X, 7) be a topological space and let Y < X be a subset:

— the induced topology on Y is defined by declaring open all the subsets of the form AnY , with
A open in X. We sometimes denote this topology by 71y ;

— Y is compact if for any family of open sets {A; : i € I} such that Y < |J,c; Ai there exists a
finite subset F < I such that Y < | J,cp Ai-

The space X is locally compact if any of its elements has a compact neighborhood.

Compare the definition of compact space with Definition Notice also that, given a
topological space (X, 7) and a subspace (Y, 7[y), the inclusion ¥ — X is a monomorphism in
the category of topological spaces. Not any subobject in this category is of this form.
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Definition 3.8. Let X be a set, and let F = {C; : 1 € I} be a family of subsets of X. Then F
has the finite intersection property if, for any finite subset F < I, (\,.p C; # &.

Lemma 3.9. [87, Theorem 4, Ch. 2] Let (X, 7) be a topological space. Then the following are
equivalent:

(1) X is compact;

(2) any family of open subsets of X with the finite intersection property has non-empty inter-
section;

Definition 3.10. Let (X, 7) and (Y,7') be topological spaces and let ¢ : X — 'Y be a map. We
say that ¢ is open (resp., closed, proper), provided for any open (resp., closed, compact) subset
A < X, ¢(A) has the same property. Furthermore, ¢ is a homeomorphism if it is bijective,
continuous and open.

Notice that homeomorphisms are the isomorphisms in the category of topological spaces.

Theorem 3.11. Let (X, 7) and (Y, T) be topological spaces and let ¢ : X — Y be a continuous
map. Then,

(1) if X is compact (resp., locally compact), then so is any of its closed subsets;
(2) if Y is Hausdorff, then any of its compact subsets is closed;

(3) if X is compact and Y is Hausdorff, then ¢ is proper.

In particular, if X is compact, Y is Hausdorff and ¢ is surjective, then ¢ is open.

Proof. For parts (1), (2) and (3) see respectively B), C) and D) in [87, Section 13, Ch. 2]. For
the last part, consider an open subset A € X, then X\ A is closed and so, by part (1), compact.
By part (3), ¢(X\A) is compact and so, by part (2), it is closed. By the surjectivity of ¢,
?(X\A) = Y\¢p(A), showing that ¢(A) is open. O

Definition 3.12. Let I be a set and let (X;,7;) be topological spaces, for alli € I. The product
([ Lic; Xi,7) of these topological spaces is a topological space defined as follows:

—as a set | [;.; Xi = {(zi)ier : v € Xy}. For all j € I, there are surjections 7 : [ [,c; Xi — X
such that 7;((z:)ier) = ;;

— a pre-base of T is given by {W;l(A) cjel, Ae .

The topology T is called the product topology.

Notice that, by definition, the maps m; in the above definition are continuous and open.
Furthermore, (([ [;c; Xi,7), (m;)jer) is a product in the category of topological spaces.
The following classical result is usually known as Tychonoff’s Theorem.

Theorem 3.13. [87, Theorem 5, Ch. 2] Let I be a set and let (X;, ;) be a topological space for
all i € I. Then, the product | [,.; X; is compact if and only if X; is compact for all i € I.

iel

In the second part of this subsection we introduce some basic definition about measures and
Lebesgue integration.

Definition 3.14. Let X be a set. A family 3 of subsets of X is a o-algebra if
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— X 18 not empty;
— X is closed under complementation, that is, X\A € ¥ for all A€ X;
— X is closed under countable unions.

If (X, 7) is a topological space, the Borel sets are the sets belonging to the smallest o-algebra
containing all the open sets.

Definition 3.15. Let (X, 7) be a topological space and let 3 be the o-algebra of the Borel sets.
A Borel measure on X is a function m : 3 — Rsg u {00} such that

- m(J) = 0;

= M(Upen Bn) = Donen Bns if Bp € £ and By, 0 By, = &, for alln # m e N.
Furthermore, a Borel measure m : ¥ — Rxg u {00} is regular if

— it is outer regular, that is, m(F) = inf{m(U) : E < U, U open}, for all E € 3;

— it is inner regular, that is, m(A) = sup{m(K) : K € A, K compact}, for all A€ T.

Definition 3.16. Let (X, 7) be a topological space and let ¢ : X — R and ¢ : X — C be maps.
Then,

— ¢ is (Borel) measurable if {z € X : ¢(z) > a} is a Borel set, for all a € R;
— 1 is (Borel) measurable if its real and imaginary parts are measurable;
— 1) is positive if it is real-valued and ¢(x) =0 (inR), for all xz € X;

— the support supp(v)) of ¥ is defined as the closure of the set of points on which v is # 0, that
18

supp(¢)) = {z € X : ¢(x) # 0} < X .

Recall that a continuous complex-valued function is always measurable.
Let X be a set, let ¢, 9 : X — C be maps and let A € C. We use the following notations

— A¢: X — C is the map such that x — X\ ¢(z);

— ¢ -1 : X — C is the map such that x — ¢(x) - ¥ (z);

— ¢+ 1 : X — Cis the map such that z — ¢(z) + (z);

— |¢| : X — C is the map such that z — |¢(z)| (the norm of ¢(z), see Example [3.25).

Let C be a subset of X and define the characteristic function xo : X — C of C' as

1 ifzeC;
xc(z) =

0 otherwise.

Definition 3.17. Let (X,7) be a topological space, let m be a Borel measure on X and let
¢ : X — C be a measurable function. Then,

— ameasurable partition of X is a family {A1, ..., A} of Borel subsets of X, such that Ule A; =
X and Ay n Aj = foralli # j <k;
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— if ¢ is positive, the Lebesgue integral { ¢(x) dm(z) (or simply §y ¢ dm) is

k
sup {Z(inf{qﬁ(m) cx e Aitm(4;))  {Ax, ..., Ak} is a measurable partition ofX} .
i=1

We say that ¢ is integrable provided SX ¢dm < oo

— if ¢(X) S R, then one defines two maps ¢p* : X — Rxg and ¢~ : X — Rxq such that, for all
re X:

¢ (x) = max{0,¢(z)} and ¢~ (z) = —min{0,¢(z)}.

If both ¢ and ¢~ are integrable, then ¢ is said to be integrable and one defines the Lebesgue
integral as §y ¢pdm = § ¢pTdm —§, ¢~ dm;

— in the general case, one can define two functions ¢1, ¢2 : X — R such that ¢p(x) = ¢1(x) +
ig2(x), for all x € X. If both ¢1 and ¢ are integrable, then ¢ is said to be integrable and one
defines the Lebesgue integral as §, ¢dm = { ¢ dm + i ¢o dm.

Let (X, 7) be a topological space, let m be a Borel measure and let ¢ : X — C be a map.

Then, ¢ is integrable if and only if SX |¢p| dm < co. In this case, given a Borel subset E of X,
the function ¢ - x g is still integrable and we let

The following bounds for the integral follow directly from the definitions
inf{¢(z): x € E}m(E) < J ¢pdm < sup{o(z) : x € E}m(E). (3.1.1)
E

We conclude this subsection with some general properties of Lebesgue integration. A proof
of parts (1), (2) and (3) of the following lemma can be found in [42] Propositions 2.21, 2.22 and
2.23], part (4) is a consequence of [42] Proposition 2.13], while an argument to prove part (5) is
given in [92) Appendix ES8].

Lemma 3.18. Let (X, 7) be a topological space, and let m be a Borel measure. Let ¢, ¢ : X — C
be integrable maps and let a, b e C. Then

(1) SXa¢+b@ZJdm = aSqudm~|—bSX1/)dm;
(2) [§x odm| < [y |¢]dm;

(3) Spodm = S v dm for any Borel subset E = X, if and only if §y | —|dm = 0, if and
only if the set {x € X : ¢(x) # (x)} is contained in a set of measure zero;

(4) if both ¢ and ¢ are positive and p(x) < (x) for all x € X, then § ¢pdm < (¢ dm;

(5) there exists a sequence of compact subsets C; < Cy < ... € C,, < ... € X such that
SX o — - xc,|dm < 1/n, for alln e N .
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3.1.2 Topological groups and Haar measure

Definition 3.19. Let G be a group. A topology T on G is a group topology if the map
f:GxG—G suchthat f(z,y)=zy ",

is continuous, where G x G carries the product topology. A topological group is a pair (G, )
of a group G and a group topology T on G. We denote by TopGr the category whose objects
are the topological groups and the morphisms are the continuous group homomorphisms. Given
(G, 1), (G',7") € Ob(TopGr), we let Homropa: (G, H) = CHom(G, H). An isomorphism in the
category TopGr, that is, a map which is both an isomorphism of groups and a homeomorphism,
1s said to be a topological isomorphism.

A topological group (G,7) is Hausdorff (resp., compact, locally compact), if it has the same
properties as a topological space. Analogously, (G,T) is Abelian if G is Abelian as a group. By
an LC group (resp., LCA group) we mean a locally compact Hausdorff (Abelian) group. We
denote by LcGr and LeaGr the full subcategory of TopGr, whose objects are the LC and LCA
groups respectively.

Let (G,+) be a group, let U, V < G and let z € G. We use the following notation
—aU ={zu:uelUl;
—Uzx={ux:ueUl
~Ut={ut:uelU}
~ UV ={wv:ueUandveV}

Let (G, 7) be a topological group and let « € G. Notice that, just by definition, the morphisms

G——G G—=G G G (3.1.2)
gr——>xg gr——gzx g|—>a:_lga:

are homeomorphisms. In particular, if V(e) is the family of neighborhoods of e in G, V(x) =
{zV :VeV()} ={Va:VeVie)}

Lemma 3.20. [34, Theorem 2.1.1] Let G be a group and let V(e) be the filter of all neighborhoods
of e in some group topology T on G. Then:

(1) for every U € V(e) there exists V € V(e) with VV < U;
(2) for every U € V(e) there exists V € V(e) with V=1 < U;
(3) for every U € V(e) and for every x € G there exists V € V(e) with 2V~ € U.

Conversely, if V is a filter on G satisfying (1), (2) and (3), then there exists a unique group
topology 7 on G such that V' coincides with the filter of all T-neighborhoods of e in G.

A consequence of the above lemma is that, to specify a group topology on a given group,
one has just to specify a pre-base of the neighborhoods of a point. Another consequence is the
following:

Corollary 3.21. Let (G,7) and (G',7') be topological groups and let ¢ : G — G’ be a map.
Then, ¢ is continuous if and only if =1 (N) € Vg(e), for all N in a given pre-base Vg (e) of the
neighborhoods of e in G'.
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Lemma 3.22. Let (G, 1) be a topological group. Then, G is Hausdorff (resp., discrete) if and
only if {e} is closed (resp., open).

Proof. 1f {e} is open, then any point is open in G by (3.1.2)) and, since arbitrary unions of opens
are open, any subset of G is open; the converse is trivial. On the other hand, {e} is closed if and
only if all the points are closed, if and only if G is Hausdorff by [58, Theorem 4.8]. O

Let (G, 7) be a group and let S be a subset. There is a useful way to describe the closure S
of §in G:

Lemma 3.23. Let (G, 1) be a topological group, let B be a base of neighborhoods of e in G and

let S be a subset. Then, )
S=[()sv=[)Vs.
VeB VeB

Proof. Given x € G, z ¢ S = (Nscc closed C if and only if there exists a closed set containing
S such that = ¢ C, if and only if there exists a neighborhood N of x such that N n S = ¥
(take for example N = G\C). Equivalently, there exists U € B such that Uz n S = J, that is,
z¢ SUTT 2Ny SV. O

Let (G,7) be a group and let H be a subgroup. One can show that the closure H is still a
subgroup of GG, and it is normal if H is normal. When not otherwise specified, we will assume
that H carries the topology induced by G. Furthermore, if H is normal, then there is a natural
group topology induced on the quotient group G/H. Indeed, letting 7 : G — G/H be the natural
projection, the open subsets of G/H are exactly the images of the open sets in G. Notice that,
by definition, the projection 7 is open and continuous.

Proposition 3.24. Let (G, 7) be a topological group and let H < G be a subgroup. Then,
(1) if H is open, then it is closed;

2) if H is normal, then it is closed if and only if G/H is Hausdorff;

(2)
(3) if H is normal, then it is open if and only if G/H s discrete;
(4)

4) if H is normal and closed, and G is Hausdorff, then G is compact (resp., locally compact)

if and only if both H and G/H have the same property.

Proof. (1) If H is open, then G\H = Ugeg\H Hg and each Hg is open in G. Thus, G\H is open
in G.
(2) G\H is open if and only if 7(G\H) = (G/H)\{e} is open, if and only if {e} is closed in G/H.
Conclude using Lemma [3.22
(3) H is open if and only if 7(H) = {e} is open in G/H. Conclude using Lemma
(4) See [58, Theorem 5.2].

O

Example 3.25. (1) The additive group (R,+) is a topological LCA group when endowed with
the usual euclidean topology, that is, the unique topology having {{z € R : |x| < 1/n} :n €
Ny} as a base of neighborhoods of 0;

(2) given x = a +ib € C (with a, b € R) we let |x| = va®>+ b*> be the norm of x. The
euclidean topology on (C,+) has a base of neighborhoods of 0 consisting of sets of the form
{x € C: |z| < 1/n}, with n ranging in N.. With this topology, the additive group C is a
topological LCA group;
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(3) consider the subset S = {x € C: |x| = 1}. Then, (S,-) is a group, that is an LCA group with
the topology induced by C. Consider R with the topology described in (1); then Z is a closed
subgroup and we can take the quotient T = R/Z. The map

T — S such that x> >
s a topological isomorphism.

Given a family {(G;,7;) : i € I} of topological groups, the product group [[; G; endowed
with the product topology is again a topological group. This construction gives us products in
the categories TopGr, LcGr and LeaGr.

Definition 3.26. Let (G,T) be a topological group and let ¥ be the o-algebra of Borel subsets
of G. A left Haar measure on G is a regular Borel measure j1 : ¥ — Rsg u {00} such that
p(zE) = u(E) for all E € X and x € G and such that u(C) < oo for any compact subset C < G.

Of course, one can define similarly right Haar measures. The two concepts coincide on
Abelian groups.

Example 3.27. Let G be a group endowed with the discrete topology, so that any subset of G is
a Borel subset, while the compact subsets are precisely the finite ones. Then, a left Haar measure
on G is given by u(E) = |E| if E is a finite subset, u(F) = o otherwise. Given ¢ : G — C one
can verify that SG odyp = SUP{deF #(g) : F < G finite}.

In general it is not possible to prove the existence of a left Haar measure on a given topological
group G, but this is possible under suitable hypotheses. The following theorem is proved in [58],
Section 15].

Theorem 3.28. Let (G, 7) be an LC group. Then, there exists a left Haar measure p : ¥ —
R>o u {00} on the Borel subsets of G. Furthermore, if ' is another left Haar measure, then
there exists A € R such that \u(E) = p/(E) for all E € 3.

Given a topological group (G, 7) and a function ¢ : G — C we define
¢q : G — C such that ¢,(z) = ¢(ax).

A consequence of the left invariance and of the “uniqueness” of the left Haar measure is the
following

Corollary 3.29. Let (G,7) be an LC group, let u be a fized left Haar measure, let ¢ : G — C
be an integrable function and let a € G. Then, ¢, is integrable and Sngd,u = SG ba dis.

In the following lemma we introduce the modulus, that is a group homomorphism
A Aut(G) - Ry

that tells us how to compute the measure of the image of a Borel set under a topological
automorphism.

Lemma 3.30. [58, (15.26) pag. 208] Let (G,7) be an LC group and let p be a fized Haar
measure on G. Letting Ry denote the multiplicative group of positive reals, there exists a group
homomorphism

A Aut(G) — Ry, such that  p(aE) = Ala)u(E)

for every topological automorphism « of G and every Borel subset E& of G.
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Let us recall the following useful relation which allows to compute the integral of the com-
position of an integrable function with an automorphism (see again [58, (15.26) p. 208] for a
proof).

Corollary 3.31. Let (G, 7) be a LC group and let p be a fivred Haar measure on G. If ¢ : G — C
is integrable and o € Aut(G) is a topological automorphism, then

Lma—ldu = A(a) quﬁdu.

Definition 3.32. Let (G,7) be an LC group and let p: ¥ — Rxo U {00} be a Haar measure on
G. Given an integrable function ¢ : G — C, the L'-norm of ¢ is

161ls =L|¢|du-

A canonical example for an absolutely integrable function is given by the functions with
compact support.

Lemma 3.33. [58, Theorem 12.7] Let (G, 7) be an LC group, let u be a fized Haar measure on
G and let ¢, ¢ : G — C be two positive, integrable functions. Then, ||¢ + ¥||1 < ||6]l1 + [|¥]]1-

The following lemma is an easy consequence of the definition, we state it just because we
will need this precise statement.

Lemma 3.34. Let (G,7) be an LC group, let p be a fired Haar measure on G and let ¢,
Y : G — C be two positive, absolutely integrable functions. Then, ||¢ — |1 = ||o||1 — ||¥]|1-

Proof. Since ¢ and 1 are positive, then |¢ — |(z) = (¢ — ¢)(x) = (|¢] — |[¢])(x), for all x € G.
Now apply Lemma (4). O

In the setting of Definition [3.32] given two integrable functions ¢, ¢ : G — C, we say that ¢
is equivalent to ¢ if ||¢ — ¥|[1 = 0. By part (3) of Lemma this is an equivalence relation.

Definition 3.35. Let (G,7) be an LC group and let pn: ¥ — Rxg U {00} be a Haar measure on
G. We let L' (G) be the set of equivalence classes of integrable functions on G. Furthermore, we
let LY(G)* < LY(G) be the family of equivalence classes that contain at least a positive function.

By Lemma (3), given two equivalent integrable functions ¢ and 1, SE odu = SEwdu
for any Borel subset E and ||¢|[1 = ||¢]|1, for any choice of a Haar measure p on G. By writing
¢ € LY(G), we mean that ¢ is a representative of an equivalence class of integrable functions.
Furthermore, when working with an equivalence class in ¢ € L'(G)", we generally choose a
positive representative. By the previous observations, the value of integrals and of the L'-norm
does not depend on the specific choice of the representative.

Until now we could work with general LC groups. From now on we will assume commuta-
tivity, so we will work on LCA groups. Therefore we pass to the additive notation.

Definition 3.36. Let G be an LCA group, let u be a fited Haar measure on G and let ¢, i €
LY(G). The convolution of ¢ and 1 is

bx1p:G—C, ¢*¢($)=L¢(9)¢(m—g)du-
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In the following lemma we recall some properties of convolutions; the proof of parts (1), (2)
and (3) can be found in [92] Sections 1.1.6 and 1.1.7], while the proof of (4) follows as in [92,
Section 1.1.6 (e)] using positivity.

Lemma 3.37. Let G be an LCA group, let u be a fivred Haar measure on G and let ¢, ¢/,
Y e LNG). Then

(1) o= e LY(G);

(2) (@+d) =t =dx1p+ ¢ =t and px1p =)+ ¢;
(3)

(4) if ¢ and Y € LY(G)™, then ||¢ = Pl|1 = [|8][1[9]]1-

In the following remark we show how convolution acts with respect to translation.

if ¢ and v have compact supports, then supp(¢ 1) < supp(¢) + supp(¥);

Remark 3.38. [58, Remark 20.11] Let G be an LCA group, let ¢, v € L' (G) and let g, v € G.
Then

(@ Y)g(x) = (@ P)(x +g) = (dg # Y)(2) = (¢ % Yy) ().

Definition 3.39. Let G be an LCA group. A function ¢ : G — C is said to be positive-definite
if, for any positive integer n and any choice of x1,...,x, € G and c1,...,c, € C, the following

condition holds true: .

Z cicjo(x; — zj) € Rxo, (3.1.3)

3,j=1

where ¢ is the complex conjugate of c € C.

Let us start with some basic fact about positive-definite functions, whose proof follows by
[92, page 18] and [41], Corollary 3.21 and Proposition 3.35].

Lemma 3.40. Let G be an LCA group and let ¢ : G — C be a positive-definite function. Then,

(1) ¢(—=z) = ¢(z), for all x € G;

(2) |o(x)] < ¢(0), for all x € G. In particular, if ¢ is positive then ¢(G) < [0,$(0)](S R) and
so ¢(0) is a maximum;

(3) there exists a continuous function 1 : G — C such that {x € G : ¢(z) # ¥(x)} is contained
in a set of Haar measure 0.

In principle it is not easy to figure out what the condition of being positive-definite means;
the following lemma allows one to produce a positive-definite function from a square integrable
function and so also to obtain some natural examples.

Lemma 3.41. [92], Section 1.4.2] Let G be an LCA group, let ju be a fized Haar measure, let
¢ : G — C be such that §|¢|> du < o0 and let ¢ : G — C be the function such that ¢(x) = ¢(—z).
Then, ¢ = q~5 1$ positive-definite.

As a consequence of the above lemma, we get the following

Example 3.42. Let G be an LCA group. Whenever C = —C' is a symmetric neighborhood of 0 in
G with compact closure, the above lemma shows that the convolution xc * xc s positive-definite.
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In the following lemma we study some properties of functions of the form y¢ * xc.
Lemma 3.43. Let G be an LCA group, let o : G — G be a topological automorphism and let

C < G be a Borel subset. Then,

(1) Xac =xcoa™;

(2) XaC * Xac = A(@)(xc * xc) o™ ;

(3) ll(xe = xc) o a™ i = Ala)u(C)*.
Proof. Let pu be a fixed Haar measure.
(1) follows from the definition of characteristic function.

(2) Let x € G and define two maps ¢, ¥ : G — C such that ¢(g) = xc(a™1(g))xc(a "z — g))
and ¥(g) = xc(g9)xc(a!(z) — g), for all g € G. Notice that ¢ = 1) o a™!, so by Corollary

(xcoa™) % (xc o a™))(x) = chdu NG Lwdu — A0)(xc * xc) (o~ ().

(3) By parts (1) and (2), [|(xc*xc)oa |1 = [[Xac *Xac|[1/A(a). Furthermore, xac € L'(G)*,
thus by Lemmas and Ixac * Xac|lt = [IXac||] = w(aC)? = A(a)?u(C)2. O

Definition 3.44. Let G be an LCA group. We denote by P(G) the family of equivalence classes
of positive-definite functions G — C (where two positive-definite functions are equivalent if they
differ on a set of measure 0). Furthermore, we let P*(G) = P(G) n LY(G) and PH(G)* =
P(G) n LY(G)*.

Lemma [3:41] can be used to construct positive-definite functions with prescribed support:

Lemma 3.45. In the above notation, let U be a compact neighborhood of 0. Then, there exists
a non-trivial ¢ € P(G)* such that supp(¢) € U.

Proof. Let V < U be a compact neighborhood of 0 such that V' —V < U and let V'’ be an open
neighborhood of 0 contained in V. Notice that {0} and G\V' are two closed and disjoint subsets
of G. Thus there exists a continuous function

f:G —[0,1] such that f(0) =1 and f(z) =0 Vxe G\V’,

by the Uryssohn Lemma (see for example [87, page 67]). In particular, supp(f) € V' <V and
ﬂ

supp(f) € —V (where f(z) = f(—z) as in Lemma . Welet ¢ = f =+ f. By Lemma

supp(¢) €V —V C U and ¢ € L'(G), while it is easily verified that ¢ is non-trivial and positive.
The conclusion follows by Lemma [3.41 O

3.1.3 The duality theorem

Definition 3.46. Let G be an LCA group and let G* = CHom(G,T) be the additive group
of continuous homomorphisms from G to T. The compact-open topology on G* is defined by
taking as a base of neighborhoods of O the sets of the form

W(C,U)={yeG":~(C)c U}

with C' a compact neighborhood of 0 in G and U an neighborhood of 0 in T. Furthermore, given a
continuous homomorphism of LCA groups ¢ : G — H, we define ¢* : H* — G* by the following
formula

¢*(y) =700,
for all v e H*.
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Lemma 3.47. [34, Lemma 3.1.1 and Exercise 2.10.2(c)] Let G, H be LCA groups and let
¢ : G — H be a continuous homomorphism. Then,

(1) G* is an LCA group;
(2) ¢* is a continuous homomorphism;
(3) G is compact (resp., discrete) if and only if G* is discrete (resp., compact).

By the above lemma, the correspondence described in Definition [3.46| gives us a functor
(—)* : LcaGr? — LcaGr. The Pontryagin-Van Kampen Duality states that (—)* is adjoint
to itself and, furthermore, that it induces a duality, in other words the functor (—)** (that is,
the composition of the functor (—)* with itself) is naturally equivalent to the identity functor.
Furthermore, by Lemmam (3), this restricts to a duality between the category of discrete and
the category of compact Hausdorff Abelian groups.

Theorem 3.48. [34, Theorem 3.2.7] Define, for all G € Ob(LcaGr) the evaluation map wq :
G — G** by v — wg(x), where

wa(z) : G* > T s such that wg(z)(y) = v(z).
Then, w : idpcagr = (—)** is a natural isomorphism of functors.

Using the Prontryagin-Van Kampen duality one can give the following useful characterization
of positive-definite functions, which can be found in [92, p. 19]. This result is usually called
Bochner’s Theorem.

Theorem 3.49. Let G be an LCA group. A continuous function ¢ : G — C is positive-definite
if and only if there exists a (necessarily unique) reqular measure m on G* such that m(G*) < «©
and

o(x) = f wg(x)dm, forallzeG.
G*
We conclude this section recalling the notion of Fourier transform.

Definition 3.50. Let G be an LCA group and let u be a fivzed Haar measure. Given ¢ € L}(G),
the Fourier transform of ¢ is defined as

¢:G* > C such that $(7) = J; o(z)y(—x)dp, VyeG*.

In the following lemma we describe the behavior of the Fourier transform with respect to
convolution and composition with an automorphism.

Lemma 3.51. Let G be an LCA group and let ju be a fived Haar measure. Let ¢, ¢ € PH(G)*
and let a € Aut(G) be a topological automorphism. Then,

(1) goat = Al@)poa*;
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Proof. For the proof of (1) one can proceed as in the following computation:
Foai(y) = fG B0 (@))y(~2)dp = Aa) fG o)y(e(—2))dy
— Ala) f o(x)a* () (—2)dp = A(@)d(a*(7))
G

where the appearance of A(«) at the end of the first line is due to Corollary Part (2)
follows by [92, Section 1.2.4, Part (b)]. O

The following theorem is known as Fourier Inversion Theorem.

Theorem 3.52. Let G be an LCA group, let p be a fived Haar measure and let ¢ € L*(G) be a
continuous function.

(1) If ¢ is positive-definite, then be LY(G*)*.

(2) If$e LY(G*), then ¢(x) = gﬁ(—x), forall xz € G.

Proof. Part (1) follows by the first part (a) of [92, Theorem on p. 22] and [41], Corollary (4.23)].
For the proof of part (2) we refer to [41, Page 102]. O

3.2 Miiller’s Duality

3.2.1 Generalities on topological rings and modules

Definition 3.53. A topological ring is a pair (R, T), where R is a ring and 7 is a group topology
on the Abelian group (R, +) and such that the function

Rx R— R suchthat (r,s)—rs

is continuous when R x R is endowed with the product topology. Given a topological ring (R, T),
a topological right R-module is a pair (Mg, o) where Mg is a right R-module and o is a group
topology on the Abelian group M, such that the function

M x R— M such that (m,r)— mr

s continuous when M x R is endowed with the product topology of T and o.
Analogous definitions hold for left R-modules.

In what follows we generally work with discrete rings (that is, topological rings endowed with
the discrete topology) and topological left or right modules over them. As for topological groups,
given a topological ring R and topological right R-modules (M, 7) and (N, 7’), (M, 7) is Hausdorff
if and only if {0} is closed. Furthermore, a homomorphism of right R-modules ¢ : M — N is
continuous if and only if ¢~!(V) is a neighborhood of 0 in M for any neighborhood V of 0 in N.
If M}, < M is a submodule, we consider on My, and on (M/M')g the group topologies induced
by 7. When endowed with these topologies, M} and (M /M’)g are topological modules.

Definition 3.54. Let R be a discrete ring and let (Mg, T) be a topological right R-module. Then
(M, T) is linearly topologized if there is a (pre-)base of neighborhoods of 0 consisting of open
submodules.

We denote by LT-R the category of linearly topologized Hausdorff right R-modules and con-
tinuous homomorphisms of right R-modules. We denote by CHomp(M;, M) the group of all
the continuous homomorphisms from My to M.
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Let R be a discrete ring and let Mp be a right R-module. Notice that the discrete topology
on M is linear because a pre-base for this topology is {0}. In the following example we describe
two classes of modules whose only possible linear Hausdorff topology is the discrete one.

Example 3.55. Let R be a discrete ring and let (Mg, T) be a linearly topologized Hausdorff
right R-module. If either Mg is Artinian or if it is uniform and it has simple socle, then T is
the discrete topology. Indeed, let B be a base of V(0) consisting of open submodules. Since M is
Hausdorff, then {T} =(NvegV = {0}. If MR is uniform and it has simple socle, the element 0 of
the qframe L(M) is completely meet irreducible (see Lemma[2.33), and so {0} € B. On the other
hand, if looking for a contradiction M is Artinian and {0} ¢ B, then choose arbitrarily V, € B
and, for all n € Ny, let V11 € B be such that V,, > V41 (it exists since V,, # 0, (B = {0}
and B is closed under taking intersections). Then, {Vi}nen, is an infinite descending sequence
of submodules, contradicting the Artinianity of M.

3.2.2 (Strictly) Linearly compact modules

Definition 3.56. Let R be a discrete ring and let (Mg, T) be a linearly topologized Hausdor(f
right R-module. A (open, closed) linear variety is a subset of M of the form x + N where x € M
and N is a (open, closed) submodule. Then,

— (M, 1) is linearly compact if any family of open linear varieties with the finite intersection
property has non-empty intersection;

— (M, 7) is strictly linearly compact if it is linearly compact and any surjective continuous
homomorphism ¢ : M — M', with (M',7") € Ob(LT-R), is open.

We denote by SLC-R the full subcategory of LT-R whose objects are the strictly linearly compact
modules.

Compare the above definition with the characterization of compactness given in Lemma 3.9
In particular, in a compact space any family of open neighborhoods of the points with the finite
intersection property is supposed to have non-empty intersection. In a linearly compact module
this is supposed to happen just for families of open linear varieties. The definition of strict linear
compactness is justified by the parallel with the last part of Theorem |3.11

Lemma 3.57. Let R be a discrete ring, let (Mg, T) be a linearly topologized Hausdorff right
R-module, let n be a positive integer and let x; + V; be an open variety for any i =1,...,n. If
"+ Vi # &, then there exists y € M such that (\[_ i+ Vi=y + [ )izy Vi.

Proof. Let us prove the result for n = 2, the general case follows by induction. Choose arbitrarily
y = x1+v] = x9+vg € (£1+V1)n(z2+V2) and let us show that (x1+Vi)n(x2+V2) = y+(Vina).
We show first that (x1 + V1) n (22 + V2) € y+ (V1 n Va). Indeed, given z = 1 + w1 = x9 + wy €
(x1+ V1) n (22 + V2), wy —wg = x9 — 21 = v1 — vy and so, v] — wy = vy — wy € Vi N Vo, Thus
y=2x1+v =x +w; —wi +v1 =2+ v —wiy, showing that z =y — (v —wy) ey + (V1 n V3).
On the other hand, given w € Vi nVa, y+w = x1+ (v1+w) = 22+ (va+w) € (x1+ V1) N (22 +V2).
This show that (z1 + V1) n (22 + Vo) 2y + (Vi n Va). O

In the following lemma we work out the definition of strictly linearly compact module in the
discrete case.

Lemma 3.58. [103, Theorem 28.14] Let R be a discrete ring and let (Mg, T) be a discrete right
R-module. Then, M is Artinian if and only if it is strictly linearly compact.
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Recall that a topological Abelian group (M, ) is complete if it is complete in the uniform
structure on M, defined by saying that a subset of M x M is an entourage if and only if it
contains the set {(z,y) : © —y € U} for some U € V(0) (we refer to Section |5.3[ for more details
about uniform spaces and completeness in this context).

For a linearly topologized Hausdorff right R-module (Mg, 7) there is another characterization
for completeness. Indeed, given a linear base B for 7, completeness of M is equivalent to affirm
that there is a topological isomorphism (i.e., isomorphism of right R-modules which is also a
homeomorphism)

M — lim M/V
VeB
where the limit is endowed with the subset topology induced by the product of the discrete
topologies in [ [y, M/V.
The proof of the following properties can be found in [I03, Chapter VII].

Proposition 3.59. Let R be a discrete ring and let (Mg, T) be a linearly topologized Hausdorff
right R-module. Then,

(1) M is (strictly) linearly compact if and only if both N and M /N are (strictly) linearly compact
(with respect to the induced topologies), for any closed N < M.

(2) If M is the product of a family {(N;, ;) : i € I}, then M is (strictly) linearly compact if and
only if N; is (strictly) linearly compact for all i € I;

(3) M is (strictly) linearly compact if and only if M is complete and M /B; is (strictly) linearly
compact discrete, where B = {B; :i € I} is a linear base for M.

If R is a field, by part (3) of the above proposition and Lemma a linearly topologized
Hausdorff R-vector space is linearly compact if and only if it is strictly linearly compact, if and
only if it is complete and it has a base of neighborhoods consisting of vector subspaces of finite
codimension.

We will need also the following fact, which can be found again in [103, Chapter VII]:

Lemma 3.60. Let R be a discrete ring and let (My,11), (Ma,2) € Ob(LT-R). If My is (strictly)
linearly compact and ¢ : My — My is a continuous morphism, then ¢p(My) is (strictly) linearly
compact.

3.2.3 The duality theorem

We start fixing the setting that we will keep all along this subsection.

(Dual.1) R is a ring that is linearly compact as a right R-module endowed with the discrete
topology;

(Dual.2) Kg is a minimal injective cogenerator, that is, Kgr is the injective envelope of the
coproduct of a family of representatives of the simple right R-modules. We assume Kg
1s Artinian;

(Dual.3) we denote by A the endomorphism ring of Kg.

Example 3.61. The above setting for duality occurs, for example, when R is a (skew) field or
a commutative local complete Noetherian ring (see [71]).
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Notice that K has a natural left A-module structure induced by the following map:
Ax K — K suchthat ok = a(k),

for all k € K and a € Homp(K, K) = A.

Lemma 3.62. [76, Lemma 4] In the setting (Dual.1, 2, 3), the left A-module oK is an injective
cogenerator of A-Mod.

Let 4N be a left A-module and define a linearly topologized right R-module N* as follows.
As an Abelian group N* = Homy4 (N, K), the R-module structure is induced by

N* x R— N* such that (¢r)(n) = (¢(n))r,

for allme N, ¢ € N* and r € R. Furthermore, we consider on N* the so-called finite topology,
that is, the unique linear topology that has a base of neighborhoods of 0 composed by the
submodules of the form

W(F)={feN*: f(x) =0, Vexe F} for a finite subset FF < N .

Lemma 3.63. In the setting (Dual.1, 2, 3), let AN be a left A-module. Then, (N*)g is a
strictly linearly compact right R-module.

Proof. First of all, notice that (N*)g is Hausdorff since 4K is a cogenerator by Lemma m
Furthermore, let F' = {fi,..., fn} be a finite subset of N. It is not difficult to verify that the
map

(N*/W(F))g — KT such that v+ W(F) — (v(f1),...,v(fa)),

is an injective homomorphism. Thus, (N*/W(F))g embeds in the Artinian module K, and it
is therefore Artinian.

For any finite subset F' € N, let ®r : N* — N*/W(F) be the natural projection. Let
also Xp = [pen finite V*/WI(F), let mp : X — N*/W(F) be the natural projection and let
® : N* — X be the unique morphism such that 7p® = ®p for any finite subset F < N. Notice
that Ker(®) = (pKer(®r) = (| W(F) = {0} since N* is Hausdorff.

Endow X with the product topology, that is, a pre-base of neighborhoods of 0 is given by
{rz'({0}) : F < N finite}. By Proposition m (2), this topology makes X into a strictly
linearly compact right R-module. Let us verify that

(a) @ is continuous;
(b) A < N*is open if and only if ®(4) = A" n ®(N*) with A’ < X open;
(c) ®(N*) is closed in X;

then N* is topologically isomorphic to the closed submodule ®(N*) of X and so it is strictly
linearly compact by Proposition (1).

(a) Use that @~ (7' ({0})) = @' ({0}) = W(F) is open in N*.

(b) Notice that ®(W(F)) = ®(®~ (7, ({0}))) = ®(N*) n 7' ({0}). Given an open submodule
A < N*, there exists a finite subset ' € N such that W(F) < A. It follows that A" =
®(A)+7' ({0}) < X is open and that ®(A) = ®(A)+P(W(F)) = ®(A)+ (15 ({0}) nD(N*)) =
A N D(N*).

(¢) Consider the closure

o(N*) =[] oW +r'({0}),
FCN fi

nite
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so f € ®(N*) if and only if, for any finite F' € N there exists gr € N* such that f — ®(gr) €
77 ({0}), that is, 7#(f) = ®r(gr). Define an element g € N* as follows

g: N — K suchthat g(n)=g((n).

One can show that ¢ is a homomorphism of left A-modules and that f = ®(g) € ®(N*). Thus,
B(N*) = B(N*). O

Let 4N and 4N’ be two left A-modules and let ¢) : N — N’ be a morphism of left A-modules.
We define
* : (N')* - N* such that *(g) =go1,
for all g € (N')*.
Lemma 3.64. In the setting (Dual.1, 2, 3), let AN and AN’ be two left A-modules and let
¥ : N — N’ be a homomorphism of left A-modules. Then, ¥* : (N')* — N* is continuous.

Proof. Let F be a finite subset of N and denote by Wy (F') the basic neighborhood of 0 in N*
corresponding to F'. Then,

()" W (F)) = W (%(F))

where Wy (1(F')) denotes the basic neighborhood of 0 in (N')* corresponding to ¢(F'), and it
is therefore open. O

Given a strictly linearly compact right R-module (Mg, 7), we let 4(M™*) be a discrete left
A-module such that M* = CHompg(M, K) as an Abelian group, and the action of A is defined
by

Ax M* — M* such that (o, ¢) — ao ¢,

for all $ € M* and a € A = Endg(K). Furthermore, given another strictly linearly compact
right R-module (M’,7’) and a continuous homomorphism ¢ : M — M’ we define the following
homomorphism of left A-modules:

¢*: (M')* — M* such that (¢*(f))(x) = f(é(x)),
for all z € M and f e (M')*.
Notice that we have defined two functors
(—=)*: (SLC-R)” - A-Mod and (—)*:(A-Mod)” — SLC-R. (3.2.1)
In the following theorem we verify that these functors are a duality.

Theorem 3.65. Let R be a ring, let Kr be a minimal injective cogenerator and let A =
Endgr(K). Suppose that R is linearly compact discrete and that Kgr is Artinian. Then, the
above functors (3.2.1) define a duality between A-Mod and SLC-R.

Proof. We define two natural isomorphisms

kk * %

W idA—Mod = (—) and w: idSLC—R = (—)

Indeed, let (M, 7) € Ob(SLC-R), N € Ob(A-Mod) and define the evaluation maps

wM:M—>M** (.UN:N—>N**

x — wy(x) y— wn(y),
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where wys(2)(f) = f(x) for all f € M* and wy(y)(g) = g(y) for all g € N*. It is easily seen
that these maps are homomorphisms of modules and that wj; is continuous. Furthermore, it is
not difficult to check that both wj; and wy are injective, using the fact that Kr and 4K are
injective cogenerators in Mod-R and A-Mod respectively (see Lemma . Let us prove that

(a) wyy is surjective;

(b) wy is surjective.

Notice that part (b) is sufficient to show that w : idg.noq = (—)** is a natural isomorphism.

Furthermore, if part (a) holds, then by definition of strictly linearly compact, wy is also open.
Thus, wy is a topological isomorphism and so also w : idspc.g = (—)** is a natural isomorphism.
It remains to verify (a) and (b).
(b) Let v : N* — K be a continuous homomorphism, that is, there exists a finite subset
F ={fi,..., fn} € N such that W(F) < Ker(v). In particular, there is an induced morphism
of discrete modules

v:N*W(F)— K.
Notice that W(F') = ()i_; W({/i}) and that N*/W({fi}) embeds in K for alli = 1,...,n. Thus,
there is an embedding € : N*/W(F) — K" and v factors through it (by injectivity), that is,
there exists a map 7 : K™ — K such that the following diagram commutes:

N*/W(F) =K

By Lemma [1.36) Homg(K™, K) = (Endg(K))" = A". Thus, there exist ai,...,a, € A such
that 7((ki)i=1,..n) = Dy aiki, for all (k;)i—1,.. , € K™. This means that, given x € N*,

v(z) =v(x +W(F)) = ve(z + W(F))

2 a;x(f;) =z <Z a,-fi> :
i=1

=1

Thus, letting y = Y."  aifi € N, v = wn(y).

(a) Suppose, looking for a contradiction, that wy; : M — M** is not surjective. Then, there
exists £ € M**\wps(M). Since Kp is a cogenerator, there exists a morphism ¢ : M** — K such
that ¢(§) # 0 and ¢(wpr(M)) = 0. Now, ¢ € M*** and by part (b) there is f € M* such that
wprx(f) = ¢. Notice that, for all z € M

f(2) = wnm(@)(f) = was (f)(wm(2)) = plwm(z)) =0,
that is, f = 0. This implies that ¢ = 0, which contradicts the fact that ¢(&) # 0. O

The setting of the above theorem is a particular situation of a more general setting where a
duality theorem can be proved, see [77]. Notice also that the results in [77] have been generalized
in various directions (see for example the bibliography of [74]). On the other hand, the particular
statement above is powerful enough for our needs and it has the advantage that it is not necessary
to define “canonical choices” of topologies as in [77].

Remark 3.66. Theorem can be used to recover Sections 4 and 5 in [37]. In particular,
the weak exactness of the duality functors described in [37, Section 5] can be improved to real
exactness.



Part 11

A general scheme for entropies

7






Chapter 4

Entropy on semigroups

In this chapter we introduce the category of commutative pre-normed semigroups and its non-
full subcategory of normed semigroups. After that, we define the categories of left and right
representations of a given monoid I' on a category. Finally, we introduce a notion of entropy
for representations on commutative pre-normed semigroups and we study some of its basic
properties, with particular emphasis on the case when I' is an amenable group.

4.1 Entropy for pre-normed semigroups

4.1.1 Pre-normed semigroups and representations

Definition 4.1. Let S = (S,-) be a semigroup. A pre-norm on S is a non-negative real-valued
map v : S —> Rxg. A norm on S is a sub-additive pre-norm v, that is, v(z-y) < v(z)+v(y) for
allz, y€ S. Ifv is a pre-norm (resp., a norm) on S, we say that the pair (S,v) is a pre-normed
(resp., normed ) semigroup. Furthermore, given two pre-normed semigroups (S,v) and (S",v'),
a semigroup homomorphism ¢ : S — S’ is said to be contractive if v/'(¢(x)) < v(x) for allxz € S.

For example, consider a gframe (L, <). Then, the operation v : L x L — L makes (L, v)
into a semigroup. If we consider the function ¢ : L — R>q u {0}, such that ¢(z) = £([0, z]), then
(L, ?) is a normed semigroup. Furthermore, any homomorphism of gframes ¢ : L. — L’ induces
a contractive homomorphism (L, ¢) — (L', ¢).

Definition 4.2. Let Semi, be the category of commutative pre-normed semigroups, whose o0b-
jects are all commutative pre-normed semigroups, and with morphisms all the semigroup homo-
morphisms. We denote by Semi’; the non-full subcategory of Semi, whose objects are normed
semigroups and where all the morphisms are supposed to be contractive.

Definition 4.3. Let € be a category and let (I',-) be a monoid. The category 1.Repr(€) of
left T-representations (resp., right I'-representations) on € is the functor category Func(Cr, €)
(resp., Func(€{’, €) ), where € is the one-object category defined in Example .

In the notation of the above definition,
— the objects of .Repr(€) are monoid homomorphisms « : I' — End¢ (M), for some M € Ob(€);

— a morphism ¢ : (a: ' - Endg(M)) — (o/ : T' — Ende(M')) is a morphism ¢ : M — M’ in €

79
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such that the following squares commute for all g € I":

M2

a(9) i la’ (9)
¢

M —— M

Thus, a left I'-representation is essentially a dynamical system on the “space” M and “time”
indexed by I'. When we want to underline this dynamical point of view we use the notation
aGM (or (o,)GM if we want to specify I') for a : I' — Endg(M). Similar observations hold
for r.Repr(€), using anti-homomorphisms of monoids.

If the image of a left I'-representation « is contained in Aute (M), we say that « is invertible.
Notice that if I' is a group, any left I'-representation is necessarily invertible.

Example 4.4. Let (N, +) be the cyclic monoid of natural numbers, let R be a ring and consider
the category R-Mod of left R-modules. A left N-representation on R-Mod is exactly the same
as a left R[X|-module. In fact, it is a classical point of view (see for example [63, Section 12]
or [9, Chapter 7]) that of considering a left R[X]-module pix1M as a left R-module M with a
distinguished R-linear endomorphism ¢ : M — M, which represents the action of X. So, rx1M
can be viewed as the left N-representation oy G M, where ag(n) = ¢™ for all n € N.

The above example can be generalized as follows:

Example 4.5. Let (T',-) be a monoid and let R be a ring. The monoid ring R[I'] is defined as
follows. For all g € I' we take a symbol g, then the elements of R[I'] are formal sums of the form

Z T9g,

gel’

with rg = 0 for all but a finite number of indices. The sum of two elements is defined component-
wise, that is, (e T99) + (XLgea 599) = 2ger(Tg + Sg)g, while multiplication is given by

(Z 7”99) (Z Sg9> =2 | X2 s |

gel gel gel’ \ hk=g

Notice that in particular g - h = gh. Clearly, R[N] = R[X]. Analogously, the ring of Laurent
polynomials is defined as R[Z] = R[X*'], one can find the notations R[X1,..., Xz] = R[NF]
and R[Xf—rl, . .,X,:—rl] = R[ZF]. As in the previous example one can show that the category
L.Repr(R-Mod) is equivalent to R[I']-Mod.

4.1.2 Entropy of representations on pre-normed semigroups

Let T be a monoid, let (S,v) be a commutative pre-normed semigroup and let (o, ') G S be a
left I'-representation. Let also F(I') be the family of finite subsets of I'. For all F' € F(I') and
x € S, the F'-th a-trajectory of x is the following element of S:

Tp(o,z) = [ [ a(f)(z). (4.1.1)

feF

Definition 4.6. Let (I,<) be a directed poset and let X be a set:
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— a net with values in X is a function f: I — X; we usually denote the net f by (x;)ier, where

— when X is endowed with a topology T, we say that x € X is a limit for the net (x;)icr, in
symbols lim;er x; = x if, for all V € V(x), there exists iy € I such that z; € V for all i = iy .
If a net has a limit then we say that the net converges;

— if X =R is the real numbers, the limit superior (resp., the limit inferior) of the net (x;)icr, is

lim sup z; = inf {sup Tjii€ I} (resp., lim sup x; = sup {i.nij 11 € I}) .
iel j=i iel j=i

Notice that, if I is the set N of natural numbers with the usual order, then a net in X is just
a sequence in X.
In what follows we will use nets of subsets of a given set S, this means that our nets take values
in the collection of all subsets of S.

Let (I, <) be a directed set and let z = (;);c; and y = (y:)icr be two nets in a group (G, -).
Then z -y = (x; - yi)ier 1s again a net in G.

In the following lemma we collect some well-known fact about nets, their proof is analogous
to the usual proof for sequences and can be found in many standard texts. We recall that, given
a poset (I,<) a subset S € [ is cofinal if and only if for all i € I, there exists s € S such that
1< S,

Lemma 4.7. Let (I,<) be a directed set and let x = (x;);er and y = (y;)ier be two nets in R.
Then,

(1) limsup(z + y) < limsupz + limsupy (resp., liminf(z + y) > liminf z + liminfy);

(2) if x; <w; for allie I, then limsupz < limsupy (resp., liminfz < liminfy);

(3) if S < I is a directed subset and xg = (z;)ies, then limsupzg < limsupz (resp., liminfzg >
liminf z). Furthermore, if S is cofinal in I, then limsupzg = limsupz (resp., liminfxg =
liminf z);

(4) z converges if and only if limsupz = liminf z. In this case, limsupz = lim z;

(5) if either x ory converges, then limsup(z +y) = limsup z +limsupy (resp., liminf(z +y) =
liminf 2 + liminfy).

With the notion of net, we can define the following notion of entropy.

Definition 4.8. Let I be a monoid, let (S,v) be a commutative pre-normed semigroup and let
(a,T') G S be a left T'-representation. Let (I,<) be a directed set and let s = {F}}ier be a net of
non-empty finite subsets of I'. The s-entropy of « at x is

Tk
h(O&,57x) = lim sup M :
iel ‘Fz‘

while the s-entropy of « is h(a, ) = sup{h(«a,s,x) : z € S}.
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Let us fix a monoid I and a net s = {F}};c;r of non-empty finite subsets of I'. We also add
to the non-negative reals R>q the symbol oo in such a way that x + 00 = 00 + = = o0, for all
x € Ryp u {0o}. The entropy we have just defined can be seen as a numerical invariant on the
category of representations, that is

h(—,s) : LRepp(Semi,) — Rsog u {0}, (a G (S,v)) — ba,s). (4.1.2)

Remark 4.9. In Definition [{.8 we defined the s-entropy for a left T'-representation « on a
commutative pre-normed semigroups (S,v). The reason to assume the commutativity of S comes
from the definition of the trajectories (see ) i fact, if S is not commutative, it is not
clear how to interpret the product Tp(a,x) = |[;cp (f)(z). On the other hand, if we have
an order in the monoid I', then we can define the trajectories taking the products following that
order. We will adopt this approach in Section |5. 1.

We are now going to discuss some basic properties of such invariant. In particular, we
study monotonicity under taking certain subrepresentations and quotients (Lemma |4.10)), and
invariance under conjugation (Corollary |4.11).

Lemma 4.10. Let I" be a monoid, let s = {F;}icr be a net of non-empty finite subsets of I' and
let ¢ : (a G (S,v)) — (&/ G (5',v")) be a morphism of left T'-representations on commutative
pre-normed semigroups. The following statements hold true:

(1) if v(z) < V' (P(x)) for all z € S, then h(a,s) < h(/,s);
(2) if ¢ is surjective and v(x) = v'(P(x)) for all x € S, then h(a',s) < h(d/,5).
Proof. (1) Let z € S and & # F € F(I'), then
v(Tr(a, z) (H pa(y ) =/ (H 0/(9)¢($)> = (Tr(d, 8(2))) -
geF geF

Using the above inequality for any F; € s, one obtains that hgemi (o, §,2) < hgemi, (@', 5, ¢(x)) <
h(c/,s) for all z € S. One concludes taking the supremum with respect to x.

(2) Let y € S” and let « € S be such that ¢(z) = y. Then,

v(Tr(a, ) <H pa(g ) = (H a’(g)(y)> =0 (Tr(d,y)).

geF geF

for all @ # F' e F(I'). Using the above equality for any F; € 5, one obtains that hgemi (o', 5,y) =
hsemi, (a5, 2) < h(a, s) for all y € S’. One concludes taking the supremum with respect toy. [

An easy consequence of the above lemma is the following invariance of entropy under conju-
gation.

Corollary 4.11. Let T be a monoid, let s = {F;}icr be a net of non-empty finite subsets of ' and
letg: (a G (S,v)) = (¢ G (5,0)) be an isomorphism of left I'-representations on commutative
pre-normed semigroups such that v(z) = v'(P(x)) for all x € S. Then, h(a,s) = h(d/,s).

In the following definition we isolate a technical condition that allows us to compare the
entropies of different flows.
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Definition 4.12. LetI" be a monoid, let s = {F;}icr be a net of non-empty finite subsets of I' and
let aG(S,v), o G (5',v) be two left T-representations on commutative pre-normed semigroups.
We say that « is s-dominated by o if for all x € S, there exist a sequence (yn)nen of elements
of 8" and, for all i € I, a sequence of non-negative reals {k;(n)}nen which verify the following
conditions:

nh_r)rgokz(n) =0 and v(Tp(o,2)) <V (Tr( ym)) + |Fi| - ki(m) ,

forallmeN andiel.

The following proposition shows that domination gives a criterion to verify that the entropy
of a representation is less than or equal to the entropy of a second representation.

Proposition 4.13. Let T' be a monoid, let s = {F;}ic;r be a net of non-empty finite subsets
of T' and let aG(S,v), o' G (5',v) be two left T'-representations on commutative pre-normed
semigroups. If o is s-dominated by o', then h(«a,s) < h(d/,s).

Proof. Let x € S. Consider the sequence (¥, )nen of elements of S’ and, for all 7 € I, the sequence
of non-negative reals {k;(n)}nen given by Definition Fix ¢ > 0 and, for all ¢ € I, choose
N € N such that k;(n( ;) < e. We obtain that:

h(a,s,x) = limsup M

iel |FZ|
V' (Tr (o, N+ NE| - ki(ne
< lim sup T (@ o)) F 1Bl Filngei) <h(a',s) +e.
iel ’Fl’
As this holds for all z € S and ¢ € R~q, we obtain h(a,s) < h(o/, ). O

We consider now the product of two commutative pre-normed semigroups (S1,v;) and
(S2,v92). Indeed, let S = S; x Sy be their direct product in the category of semigroups, that
is, the cartesian product with degree-wise operation. Then, S becomes a pre-normed semigroup
with the max-pre-norm, given by

v(x1,xe) = max{vy(z1),va(z2)} .

When the product is endowed with such norm, one can prove the following formula for the
s-entropy:

Lemma 4.14. Let T' be a monoid, let s = {F;}ic; be a net of non-empty finite subsets of T
and let o G (S1,v1), ae G (S2,v2) be two left T'-representations on commutative pre-normed
semigroups and let (S,v) be the product of (S1,v1) and (S2,v2). Then, the left T'-representation
a G (S,v) given by a(g) = (a1(g), a2(g)) for all g € T has s-entropy

b, 5) = max{h(a1,5),h(az,5)} .

Proof. Given z = (x1,22) € S, by definition v(Tr(c, x)) = max{vi(Tr (a1, z1)), v2(Tr (a2, x2))},
for all @ # F e F(T') so

b(a, s, ) = inf {sup {max{”’“(TFf(a’“’x’“)) k=1 2} }z e 1}

|}
= inf {max {sup

W(T,
{ Fak’xk)):j>i}k=1,2}iel}
W(T,
:max{inf{sup{ Fak’xk)):j>i}zel}k—1,2}
)

|51
|51

= max{h(a,s, 1), h(az,5,x2)}.
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Taking suprema with x1 € S; and z9 € S we obtain the result. ]

Let us consider also the coproduct of two commutative pre-normed semigroups (S1,v1) and
(S2,v2). Indeed, we let S = 51 @S2 be their coproduct in the category of semigroups, that coin-
cides again with the cartesian product. .S becomes a pre-normed semigroup with the following
pre-norm

v (1, x2) = v1(21) + v2(22)

When S is endowed with such norm, one can prove one inequality of a weak “addition formula”
for the s-entropy. The converse inequality is also true in many concrete situations (see Lemma
4.40) but it cannot be proved in full generality (see for example Walters’ book [100} p. 176]):

Lemma 4.15. Let T' be a monoid, let s = {F;}ic; be a net of non-empty finite subsets of T
and let a1 G (S1,v1), aa G (S2,v2) be two left T'-representations on commutative pre-normed
semigroups. Then, letting S = S1 @ Sa, the left I'-representation a G (S,vg) given by a(g) =
(a1(g9),a2(g)) for all g € T has s-entropy

ba,s) < blo,s) +h(az,s).

Proof. Let x = (z1,22) € S and ¢ € I, then by definition v(TF (e, z)) = vi(Tp (o1,21)) +
vo(TF, (a2, x2)). Dividing by |F;| and taking the lim sup with ¢ varying in I we obtain

v1(TF, (o1, 21)) + v2(TF, (2, 22))
| F]

h(a, s, ) = limsup (

i€l

) < h(absvwl) + h(a2a57x2) :
Taking the supremum with x; and x5 varying in S7 and Sy respectively, the thesis follows. [

4.1.3 Bernoulli representations

Let I' be a group, let S be a commutative monoid and let v be a pre-norm on S such that
v(1) = 0. For all g e I' let S, = S and consider the monoid M = @ . Sy, which becomes a
pre-normed monoid with the pre-norm

gel
vg(x) = Z v(zg) for any @ = (xg)ger € M .
gel

We can naturally define a map:
Bg:I'—> Aut(M), Bs(h)(xg)ger = (Th-14)ger
for all h e I" and « = (x4)ger € M. Notice that, the following relation holds
Bs(h1)(Bs(ha) (@) = (2),-1),-1 )ger = Bs(hha)(z) = Bs(h1)Bs(ha) = Bs(hihe),

so By is a left [-representation. If one prefers to work with right representations, one can simi-
larly define B (h)(zg)g = (hg)g- We call (Bg5,T") G (M, vg) the Bernoulli left I'-representation
over S.

Lemma 4.16. Let (S,v) be a commutative pre-normed monoid, let I' a group and let Bs G
(M, vg) be the Bernoulli left T'-representation. Then, for any net s = {F;}cr of non-empty finite
subsets of I':

h(Bgs,s) = sup{v(z) : z € S}.
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Proof. Identify S with S; € M and notice that
v(Tr,(Bs,z)) =v | [[ Bs(F)(@) | = [Filo(z),
JEF;

for all z € S and ¢ € I. Hence h(Bg,s,z) = v(z), and so h(Bg,s) = sup{h(Bg,s,x) : x € S} =
sup{v(z) : x € S} = sup{v(x) : x € S}. O

We are going to verify the converse inequality for a particular choice of the sequence s in
Lemma 4.41

4.2 Representation of amenable groups

The original definition of amenability of a group G, in terms of a finitely additive invariant
measure on the subsets of G, was introduced by von Neumann in 1929. We adopt here an
equivalent definition of amenability (see Definition 4.19)) introduced by Fglner [43].

Definition 4.17. Let G be a group and consider two subsets A, C < G, then
— the C-interior of A is Inc(A) ={zre G:Cx < A};

— the C-exterior of A is Outc(A) ={xre G:Cxn A+ J};

— the C-boundary of A is 0c(A) = Outc(A)\Inc(A).

If e € C, one can imagine the above notions as in the following picture

Inc(A)

The computations collected in the following lemma will be useful later on.
Lemma 4.18. Let G be a group, let A, C < G and c€ G. Then,
(1) dc(Ac) = dc(A)e and dce(A) = ¢ e (A);
(2) if A= ;s Ai for some family {A; : i € I} of subsets of G, then 0c(A) S U,e; O0c(Ai);
(3) ifee C, then dc(A) = (CT1TA\A) U U, A\c A,
Proof. (1) Notice that

Inc(Ac) ={zeG:Cer < Ac} = {xeG:Caxc ' € A} = {zce G:Cx < A} = Inc(A)c,
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and that

Outc(Ac)={zeG:CrnAc# J}={reG:Cac ' n A+ T}
={zceG:Cxn A+ I} =Outc(A)c.

Thus, dc(Ac) = Outc(Ac)\Inc(Ac) = Outc(A)c\Inc(A)e = (Outc(A)\Inc(A))e = dc(A)e.
The proof of the second claim is analogous.

(2) Notice that

Inc(A)={xeG:Cxc A} 2 {xeG:Cx < A for some ic I}
= Jze@:Cxc A} = Inc(4),

i€l i€l
and that
Outc(A) ={xeG:CxnA+ P} ={reG:Coxn A # J for some i€ I}
=U{336G:meAi7£@}=UOutC(Ai).

iel el

Thus, dc(A) € U,e; Outc(Ai)\U,er Inc(A) S U,er 0c(As).
(3) Since e € C, Inc(A) € A < Outc(A). Furthermore,

Outc(ANA={reG\A:3ceCst. cxe A ={zeG\A:IceCst. zec A} =C1A\A
and

A\Inc(A) ={xeA:3ceCst. cx¢ A\ ={xreA:IceCst. x¢c A} = U A\c'A.
ceC
Thus, dc(A) = Outc(A)\Inc(A) = (Outc(ANA) U (A\Inc(A)) = (CTTA\A) U o A\c A,
O

Definition 4.19. A group G is amenable if and only if there exists a directed set (I,<) and a
net {F; : i € I} of non-empty finite subsets of G such that, for any C € F(G),

Joe(F)|
i

=0. (4.2.1)

Any such net is called a Fglner net.

In the following lemma we collect some closure properties of the class of amenable groups.

Lemma 4.20. [16, Propositions 4.5.1, 4.5.4, 4.5.5 and 4.5.10] Let G be a group and let H < G.
Then,

(1) if G is amenable, then H is amenable;

(2) if H is normal, then G is amenable if and only if both H and G/H are amenable;

(3) if G is the directed colimit of a directed system of amenable groups, then G is amenable.
Let X be a set and let A, B < X. The symmetric difference is the following subset of X:

AAB = (A\B) U (B\A)



4.2 Representation of amenable groups 87

Lemma 4.21. Let G be an amenable group and let s = {F;};cr be a net of non-empty finite
subsets of G. Then, the following are equivalent

(1) lims |F;AgF;|/|Fi| = 0 for all g € G;
(2) lim; |[F;ACF;|/|F;| = 0 for all non-empty C € F(G);
(3) s is a Folner net.

Proof. (1)=(2). Let C' = {g1,...,gn} € F(G). Then, for all i € I, ;ACF; < | J;_,(FiAgrF;).
(2)=>(1) is trivial.

(2)=(3). First of all, notice that if lim; | F;AK F;|/|F;| = 0 for some K € F(G), then in particular
lim; |F;\KF;|/|F;| = 0 and lim; |KF;\F;|/|F;| = 0. Let C € F(G), by Lemma [£.1§] (1) we can
suppose that e € C. Furthermore, by Lemma (3), |0c(F)| < |CTYE\F;| U Y e | i\ F|
and so, limy |0 (F})|/|Fi| < limy [CT T ANAY/|Fi| U X e limy |\ Fyl/| | = 0.

(3)=(1). Let g € G and let C = {e, g '}. Then, Outc(F;) = gF; u F; while Inc(F;) = gF; n F;.
Thus, dc(F;) = F;AgF; and so lim; |[F5AgF;|/|F;| = limy [0c (Fy)|/|Fi| = 0. o

Lemma 4.22. Let G be an amenable group, let F' € F(G) be non-empty and let {F;}cr be a
Falner net. Then, the following are Folner sequences:

(1) {FiF}Yier:
(2) {Fi v Flier;
(3) {Fi}ies with J < I a cofinal subset.

Proof. (1) Let C € F(G), then using Lemma

. Noc(FF)| _ L |Fl[oc(F)] _|0c(Fi)|
lim 12T gy STy ~ 0,
TR F | Flln = =0
proving (1).
(2) Let C € F(G). Using again Lemma [4.18]
i PR P L oo(P) +1eR)] _ | [oetP] ol _
I |F;UF| I | F I |F I |F
proving (2).
(3) is trivial. O

Corollary 4.23. Let G be an infinite amenable group and let {F;};cr be a Folner net. Then,
limie] ’Fz’ = 0.

Proof. We may suppose, without loss of generality, that e € F; for all ¢ € I. Indeed, set
F! = F; U {e}, this gives a Fglner net by Lemma and clearly limes |F;| = oo if and only if
limie[ |FZ/| = 0.

If there exists an element g € G and 4 € I such that g ¢ Fj for all j > 4, then let C' = {e, g7}
and notice that g € dc(F}) for all j > i. Thus,

0 = lim |0c(F)|/|F;| = lim 1/|F;| .
}er?’ c(F5)|/|Fy im /1 Ej]
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This may happen only if lim;e; |F;| = oo.

On the other hand, if for all g € G and for all i € I there exists j > ¢ such that g € F}, then
choose an infinite family {g, : n € N} in G, let S,, = {ie [ :g, € F;} < I for all n € N and let
Sy = (i—o Sk- By construction, S is cofinal in I. If all the S,, are cofinal in I, in particular
they are not empty and, given s € S,,, |Fs| = |{g1,...,9n}| = n and so lim;c; |Fs| = 00. On the
other hand, if there exists a minimum n € N such that S,, is not cofinal in I, it means that S,,_;
is cofinal in I and that there exists s € S,,_1 such that g, ¢ F; for all t > s. By the first part of
the proof, lime; [F;| = lim;cg | |Fi| = 0. O

In the last part of the subsection we concentrate on countable amenable groups.

Remark 4.24. If G is countable, then also F(G) is countable. Thus, given a net s = {F;}ier in
F(G), there is a countable subset J of I such that J is order-isomorphic to N and s5 = {F};};cs
is cofinal in 5. By Lemma (3), 55 is Folner. This allows to always take I = N and just
speak about Fglner sequences in countable groups.

Definition 4.25. Given a group G and a Folner sequence s = {F), : n € N}, we say that s is a
Fglner exhaustion if

—e€e Fy and F,, € Fy11 for allm e N;

o UnENF":G'

Example 4.26. Every finite group is amenable. Furthermore, taking G = 7, one can construct
explicitly a Folner exhaustion {F, : n € N} as follows:

k k

F, = {Z Nie;i : \i € Z such that Z A < n}
i=1 i=1

where {e; : i =1,...,n} are the canonical generators of G.

Lemma 4.27. Let G be a countably infinite amenable group and let { F}, }nen be a Folner sequence
in G. Then there exists an increasing sequence {N(n)}nen of natural numbers and a Folner
exhaustion {Sy}nen of G such that

(1) Fneny € Sn for all n e N;

) Fxn
(2) limpery T = 1.

Proof. Since G is countable we can enumerate its elements, that is, G = {g; : i € N}, we suppose

that go = e. For all n € N let A, = {go,...,9n}, notice that {e} < Ag < --- < 4, < ... and

U,en An = G. Let also {ep}nen be a sequence in R>o which converges to 0. Put N(0) = 0,

So = Fou Ag and let Sp1 = Sp U Apy1 U Fnpi1), where N(n+1) = N(n) is chosen inductively

to satisfy

|An+1 Y Sn|
|E'N (n+1)]

this can be done since {F; U (S, U Ap) }ien is a Folner sequence by Lemma and limy, o |Fy| =
o by Corollary Now, let C' € F(G), by construction there exists n such that C < A,, for
all n = n, thus

|8An+1(sn+1)’/"sn+1| <épt1 and < én+1

lim 19¢(Sn)l < lim 194, (Sn)| < lime, =0,

N |Sy] nzn Sy n>n
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showing that {S,}nen is a Folner exhaustion. Furthermore, part (1) of the statement is clear,
while part (2) can be shown as in the following computation:

F F F A —
1th‘ N(n)| 211H1| N(n)| =11H1| N(n)|+hm‘ n U Sy 1‘
neN ‘FN(n)’ neN ’Sn’ neN ’Sn’ n=1 ‘FN(n)‘

F + |A, U S,—
=lim| N(n)‘ |Ap U n1|/1.m@:1.
n=1 | S neN | S|

4.2.1 Quasi-tilings

In what follows, we recall some terminology and results due to Ornstein and Weiss [81] (see
also [62], [67] and [I01]). All the proofs and statements of this subsection are adapted from the
original papers with some slight changes to make them fit into our context.

Definition 4.28. Let G be a group, let A€ F(G), let € € (0,1), a € (0,1] and § € [0,1), let I
be a finite set and consider A = {A;}ier € F(G). The family A is

— e-disjoint if there is a family {B;}ic; < F(G) such that
- B; € A; and |B;| > (1 —¢)|Ail, for allie I;
- Bin Bj = &, whenever i # j € I;

— a a-cover of A if |An (U;e; 4i)| = alAl;

1€l
— a d-even cover of A if

- A, €A, foralliel;
- there exists M > 0 such that Y ,..; xa,(x) < M for allze A, and Y, ;|A;| = (1 —0)|A|M.

Remark 4.29. Let G be a group, let Ae F(Q), let 6 € (0,1), let I be a finite set and consider
A ={A;}icr € F(G). If A is an d-even cover, then A is an (1 — §)-cover. In fact,

i€l
where () holds since A; € A for all i€ I, (%) is a consequence of the fact that each x € A can
belong to at most M elements of A and (***) follows by the second condition in the definition of
d-even cover.

(%) () LZ Ay (%‘) i(1 —0)M|A| = (1 —-9)|A]
= = M 1 = M - ’

el

Definition 4.30. Let G be a group, let A€ F(QG), let e € (0,1), let I be a finite set and consider
A ={A;}ier € F(G). The family A is an e-quasi-tiling of A if there exists a family of tiling
centers {C;}ier < F(G) such that

- C;A; € A and {cA; : c € C;} forms an e-disjoint family, for all i€ I;
— CiAiﬁCjAj =, ZfZ #je[;

— {CjA; i e I} forms an (1 — g)-cover of A.
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It is a deep result, due to Ornstein and Weiss, that whenever G is a countable amenable group
and {F),}nen is a Folner exhaustion, for any (small enough) € > 0, one can find a nice family of
subsets of G that e-quasi-tiles F), for all (big enough) n € N. In the rest of this subsection we
are going to prove the following theorem.

Theorem 4.31. Let G be a countably infinite amenable group, let {F)}nen and {F}}nen be
respectively a Folner sequence and a Folner ezhaustion for G. Then, for all ¢ € (0,1/4) and
n € N, there exist ny,...,ng € N such that n < ny < --- < ny and {Fy,,..., F,,} e-quasi-tiles
E]., for all big enough m.

Before proceeding to the proof, we need a series of technical lemmas.

Lemma 4.32. Let G be a group, let C and A€ F(G), let e € (0,1) and let c€ G. If |0c(A)| <
e|Al, then |0c(Ac)| < €| Ac|.

Proof. By Lemma [1.18] dc(Ac) = dc(A)c and so [0c(Ac)| = |0c(A)|. Similarly, |[A| = [Ac|. O

Lemma 4.33. Let G be a group, let I be a finite set, let A = {A;}ier € F(G), let A=JA, let
C e F(G) and let ¢,6 € (0,1).

(1) If A is /2-disjoint, then Y., |Ail < (1+¢)|A|;
(2) If A is e/2-disjoint and |0c(A;)| < 0|Ai| for allie I, then dc(A) < 5(1 + ¢)|Al.

Proof. (1) By definition of ¢/2-disjointedness, there exists a family {B;}ier < F(G) such that
B; < A;, |Bi| > (1 —¢/2)|A;| and B; n B; = &, for all i # j € I. Then,

U

el

Al = = 2 IBil = (1 —¢/2) ) |Ail.

el el

One concludes noticing that (1 —¢/2)7! <1 +¢.

(2) By Lemma [1.18] 0c(A) < U;e; 0c(As), so

(%) (%)
loo(A)] < || Joc(An)| < Xl0c(A)] < 6D 1Al < 6(1+¢)|Al,
iel i€l 1€l
where (x) holds since |0c(A;)| < 0|A;| for all ¢ € I, while (#x*) is true by part (1). O

Lemma 4.34. Let G be a group, let A and S be two finite subsets of G containing e, let
H = Ingg-1(A) and let € € (0,1). If |055-1(A)| < (1 —¢)|A|, then {Sg}sen is an e-even cover
of A.

Proof. Let M = |S|, we have to prove that >, c;y Xsq(z) < M, for all z € A (which is true no
element of A can belong to more that |S| translates of S) and that > ., [Sg| > €[A[M. The
fact that [0gs-1(A)| < (1 — ¢)|A| implies that [H| > e|A| and so 3] . [Sg| = e[ A[M. O

Lemma 4.35. Let G be a group, let A€ F(G) and let e, 6 € (0,1). If A is a 6-even cover of A,
then there is a subset B < A such that

(1) B is e-disjoint;

(2) it (1 — 0)-covers A;
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(3) given Be B, ||JB\B| <e(1 —6)|A].

Furthermore, if (1), (2) and (3) hold for some set B, then for all B € B,

1_5(1_5)2W>1_5(1_5)_‘B’/’A’-

Proof. Let B be a maximal e-disjoint subfamily of .A. Suppose, looking for a contradiction, that
B is not an (1 — d)-cover of A (that is, || JB| < e(1 —0)|A|) and consider the following claim:

(%) there exists B € A such that |B n UB| < ¢|B].

Let us verify (). Assume, looking for a contradiction, that (*) does not hold and consider the
following observations:

a) by our initial absurd hypothesis, || JB| < (1 — §)|Al;
b) by the negation of (x), Y pc 4 |B N UB| = X gea|Bl;
c) by the definition of J-even cover, there exists M > 0 such that >, |B| = (1 — §)|A|M;

d) by the definition of d-even cover, given x € |JB(S A), there exist at most M different
members B € A such that x € B. Thus, > 5. 4 |B n|JB| < M|{JB].

Combining b) and ¢), > 5. 4 |B n|JB| = e(1 — §)|A|M, while, combining a) and d), > pc 4 |B N
UB| < e(1 —68)|A|M, that is a contradiction. Thus, (x) is verified. Now, consider B € A such
that |Bn|JB| < €| B| and notice that B ¢ B and that Bu { B} is still e-disjoint. This contradicts
the maximality of B.

Thus, B satisfies properties (1) and (2) in the statement. Take now B € B and notice that, if
|UB\B| = (1 — 9)|A|, then B’ = B\{B} is again a subset of A satisfying (1) and (2). Thus,
removing a finite number of elements from B, we can find a subset of A that satisfies (1), (2)
and (3).

For the last part of the statement, notice that the bound |A\(JB|/|A] < 1 — (1 — ) comes
directly from condition (2), while the other bound can be computed as follows. Take B € B,

then [A\U B U B\B| + |B|
B| +|B

L L e B Ll R R )

Al Al (1=9)

_ 1Bl
Al

We can finally prove the main result of this section:

Proof of Theorem[[.31} Fix e € (0,1/4) and 71 € N, and choose k € N and § > 0 such that

k
(1—%) < e and 6k5<%.

Notice that the second condition, together with the choice of €, implies 0 < 1/48. Since {F}, },en
is a Fglner exhaustion, we can choose n < n; < ne < ... < ng € N such that

‘5FM_FHZ1 (Fni+1)’
| F

Fo,
<4 and || <0 (4.2.2)
|Fni+1|

’H»l’
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Furthermore, since {F) },cn is a Folner sequence, for any big enough m € N,

’ap F71(F’ )| F
—hk " <5 and | 7?‘“’ <9. (4.2.3)
| F7] | F7]
Fix a positive integer m as above; we construct by downward induction a family {C1,...,C}

with the following properties: letting Ay = F,, and A;_; = Aj\Fnj Cj for all j =2,...,k, and
letting K; = F,,, Fy, ! foralli =1,... k,

(a;) {Fn,c:ce C;} is e-disjoint;
(b;) {Fp,c:ce C;}is an e(1 — 6'6)-cover of Aj;;
(ci) 1—e(1—=90) = |A\F,Cil /|Ail > 1 —¢e(1 —6) =6, |0k, (A:)|/|Ai] < and |Fy,|/|Ai] < 9.
Notice that, once we found such families, F,,,C; = A;\Ai—1 and so F,,,C; n Fy, C;=giti+#j.
Furthermore,
[A\NUFnCi _ AN G| [ANF G| [Ar] A
| Al | A| [Arl - [A2[ Ak
<(1—e(1- 6k5))(1 —e(1— 6]"_16)) (=1 —9)) < (1— 5/2)k <e.

Thus, {Fy,,..., Fn,} e-quasi-tiles Ay = F}, with tiling centers {C1,...,Cy} and the proof is
concluded.

Case i = k. Let Ay, = F), and let K}, = F,, F,,1; with this notation, (£.2.3) reads as
|0r, (Ax) | | Fn |
—EE2E <5 and B <4,
| Al | Al

notice that these are the two last conditions in (cj). Consider Hy = Ing, (Ax), then {F,, h}nem,
is a d-even cover of Ay, by Lemma Thus, by Lemma there exists C, € Hj that
satisfies (ag), (bg) and (c).

Case i < k. Suppose we have already constructed Cy,...,C;11 with the desired properties.
Then,
|aK(Az)| |8K‘+1(Ai+1)’ aK'(Fn‘+1)
1 < 7 + |Ci 1| k2 K2
| Ail | Ail " | Ail
1)
< ] ] (‘Ai+1‘ + ‘Fni+1HCZ'+1D (Ci+1) and "
’Al+1\Fni+1C%+1‘
0| Ait1] < 1 )
< 1+ — a;
’Ai+1\Fni+1Ci+1‘ l—e (8i11)
) 1
1 i
<1—g(1—5)—5< +1—€> (i)
< 60 € <1/4 and § < 1/48,

where the first inequality follows since dx, (4;i) S Ok, (Ait1) U Ucec,,, K (Fniy ) (use Lemma
4.18)). Furthermore, using again (4.2.2), (c;+1) and the initial bounds for £ and 4§,

|Fnz| _ |Fm’ ‘Fni+1’ |Ai+1| &
[Ail - [Pl [Ai] (Al 1—e(1=06) =46
This shows the second part of (c;). Now, if we let H; = Ing,(A;), then {F,,h}peq, is a 66-even

cover of A;, by Lemma Thus, by Lemma there exists C; € H; that satisfies (a;), (b;)
and (¢;). O

<.
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4.2.2 Non-negative real functions on finite subsets of an amenable group

In this subsection we recall some results and terminology about non-negative invariants for the
finite subsets of G, that is, functions f : F(G) — Rxp.

Definition 4.36. Let G be a group and let f : F(G) — Rsg. We say that f is

=

— monotone if f(A) < f(A), for all Ac A" € F(G);
— sub-additive if f(Au A") < f(A) + f(A)), for all A, A" € F(G);
— (left) G-equivariant if f(gA) = f(A), for all Ae F(G) and g € G.

Notice that, given a group G and a G-equivariant function f : F(G) — Rxo, f({g}) = f({e}),
for all g € G. Thus, if f is also sub-additive, then f(A) < X, c4 f({g}) = [A[f({e}), for all
A € F(G). Notice that a consequence of this is that, given a net s = {F;};c; of non-empty finite

subsets of G, then
F; . F;
lim sup J(F) < lim sup [Filf(ed) = f({e}).
el |Fil iel | Fi

In particular, any such limit superior is finite.

The following corollary is a consequence of Theorem It is important to underline that
the choice of the ni,...,n; in the statement does not depend on the function f, but we can
really find a family {ni,...,n;}, which works for all f at the same time.

Corollary 4.37. Let G be a countably infinite amenable group and let {Fy,}nen, {F)}nen be
respectively a Folner exhaustion and a Folner sequence in G. Then, for any € € (0,1/4) and
n € N there exist integers ny,...,ng such that n < ni; < --- < ng and, for any sub-additive and

G-equivariant f : F(G) -> R

: f(F) 1 f(Fa,)
lim <M L
P |F/ | 8+1—51<?§c |Fo, |

)

where M = f({e}).

Proof. Let € € (0,1/4) and 7 € N. By Theorem there exist positive integers nq, ..., ng such
that 7 < ny < -+ < ng and {F),,,..., F,, } e-quasi-tiles F), for all big enough n € N. We let
CT,...,C} be the tiling centers for F},. Thus, when n is big enough,

k
U Cr'FE,,
=1

Letting f : F(G) — Rxq be a sub-additive and G-invariant function,

k
F 2 U C{'F,, and
i=1

k
>nmx&1—@u%m<1—@§]cmw@@.

i=1

s _ T (FAULOrR) (UL i) 7 (Ui e

~ + ~
) il ] ] Ui
k
- |CHf(F, 1 F,.
(1 = &) 21 |G| Fni| 1 —ei<isk |Fy,l

where M = f({e}), as desired. O



94 Entropy on semigroups

The following result, generally known as “Ornstein-Weiss Lemma”, is proved in [81] for a
suitable class of locally compact amenable groups (a direct proof, along the same lines, in the
discrete case can be found in [I01], while a nice alternative argument, based on ideas of Gromov,
is given in [67]).

Proposition 4.38. Let G be a countably infinite amenable group and consider a monotone, sub-
additive and G-equivariant function f : F(G) — Rso. Then, for any Folner sequence {F,}nen,
the sequence (f(F,)/|Fn|)nen converges and the value of the limit limyen f(F,)/|Fn| is the same
for any choice of the Fglner sequence.

Proof. Let f : F(G) — Rsp be a monotone, sub-additive and G-equivariant function, and let
M = f({e}). Choose also a Fglner exhaustion {F, },en and a Fglner sequence {F) },en in G. By
Corollary for all € € (0,1/4) and 7 € N there exist k € Nand n < nj < --- < ni € N such

that
. f(F) 1 f(Fn,) 1 f(F,)
lim su < Me + ma < Me + su :
neNp |F1/1| 1_51@3]“ |Fm| 1_5ﬁ<l’?t |Fm|

Since this holds for all € € (0,1/4) and n € N, we get limsup,,cy fl(;é‘) < limsup,,ey flgﬁ) Let

now {N(n)} be an increasing sequence of natural numbers such that lim,en f(Fnm))/|[Fnm)| =
liminf,en f(Fy,)/|Fn|. Then, by the first part of the proof,

limsup f(Fp)/[F| < lim f(Fy )/ [Fivgy| = lminf f(F,)/|Fal
neN neN neN

thus {f(F},)/|Fn|} converges to a limit A. Using the same kind of argument one shows that, for
any Folner exhaustion {Sy, }nen, limyen f(Sn)/|Sn| = A. Using Lemma choose an increasing
sequence { N (n)}nen of natural numbers and a Fglner exhaustion {5, },en of G such that FJ’V(n) c

. Pyl .
Sy, for all n € N and lim,,en N 1. Notice that
FENm) FEN ) FEN ) + F(S\Fy )
A}limsup#} iminf#zlimin V() N(r) >limf(sn) =\
neN |FN(n)| neN |FN(n)| neN ’Sn‘ |Sn|
]

The Ornstein-Weiss Lemma immediately implies the following convergence result for the
entropy of left representations on normed semigroups. Notice that there exists a generalization of
the above result to cancelable amenable semigroups (see [17]), using such stronger version of the
Ornstein-Weiss Lemma one would obtain more general results about s-entropies. Furthermore,
Krieger’s proof (see [67]) of the Ornstein-Weiss Lemma holds for Fglner nets in general, this
would allow to extend the following corollary to amenable groups of any cardinality.

As usual, we are tacitly assuming Hypothesis ().

Corollary 4.39. Let (M,v) be a normed semigroup, let T' be a countably infinite amenable group
and let o G M be a left T'-representation. For any given Folner sequence s = {Fy}nen of T, the
limsup defining the s-entropy of a converges and its limit does not depend on the choice of the
particular Folner sequence, provided the following conditions hold:

(1) v(x),v(y) <v(zy) for allz and y e M;

(2) v(og(z)) =v(z) for all x e M and geT.
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Proof. One has just to show that, for all x € M, the following function satisfies the hypothesis
of the Ornstein-Weiss Lemma:

fo: F(T') »> Rspu {oo} such that f,(F) = v(Tp(a,x)).

Now, f; is sub-additive by the sub-additivity of the norm, it is monotone by hypothesis (1) and
it is left I'-equivariant by hypothesis (2). O

4.2.3 Consequences of the convergence of defining limits

The convergence of defining limits has many nice consequences, in this subsection we show
two of them: the additivity of s-entropy on the coproduct of two representations and a precise
computation of the entropy of some Bernoulli flows.

Lemma 4.40. Let I' be a countably infinite amenable group and let s be a Folner sequence.
Consider two left I'-representations a; G (S1,v1) and e G (S2,v2) on normed semigroups
and let S = S1 @ S2 and o G (S,vg) be such that a(g) = (a1(g),a2(g)) for all g € T. If
vi(8), vi(t) < vi(st) for all s, t € S; (with i =1, 2) and vi(a;i(g)(s)) = vi(s) for all s € S; (with
i=1,2) and ge T, then

bc,s) = b(ar,s) + h(az,s).

Proof. The proof is the same of Lemma using the fact that the limit of the sum of two
converging sequences is the sum of the limits of the two sequences. O

Lemma 4.41. Let (K,v) be a normed monoid such that
(1) v(z), v(y) < v(zy) for all z,y € K;
(2) there exists an element k € K such that sup{v(z) : z € K} = v(k).

Given a countably infinite amenable group I' and a Folner sequence s = {F, }nen, the s-entropy
of the Bernoulli T'-flow is h(Bk,s) =
sup{v(z) : x € K}.

Proof. For all g € T' let (Kg,vg) = (K,v) and let M = P r Ky. Endow M with the coproduct
norm vg of the norms v,. For any F' € F(I') let kr € M be such that kp = (Eﬂg)ger, where

- k ifge F;
k;F’gz{ J

e otherwise.

These elements have the following useful properties:

(a) by definition, vg(kr) = |F|sup{v(z) : * € K}, for all F € F(I'). Furthermore, since
kp = [Ljer ks and by our hypotheses (1) and (2), it follows that vg(cy(kp)on(kr)) =
|gF UhF|sup{v(x) : x € K}, for all F € F(T') and g, h € I'. More generally vg(Tr (o, kr)) =
|F'F|sup{v(z) : x € K}, for all F' and F’ € F(T);

(b) given x = (wg)ger € M, let F' = {g € I' : 25 # e} and notice that vg(z) < ve(kr), by the
choice of k. Applying again our hypotheses, it follows that vg(Tr(a, x)) < ve(Tr(a, kr)).
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The above property (b) shows that h(a,s) = supperr) b(a,s, kr). Now, using the Fglner
condition, we obtain

E,F F, v or(F, Op(F
fim L [ User O n)f|<1+lim27|F( n)f]

~1. (4.2.4)

Thus, also applying the above property (a),

h(Bxk,s, kr) = limsup | [supfv(z) : v € K} < lim | |

St supvx:mEK ——supvx:xEK,

where () follows by (4.2.4). The converse inequality follows by Lemma O



Chapter 5

Lifting entropy along functors

In this chapter we show how to lift along a functor the general notion of entropy defined in
Chapter {4 for representations on normed semigroups. This allows us to define many classical
invariants that we will describe.

Definition 5.1. Let € be a category, let I' be a monoid and let s be a net of non-empty finite
subsets of I'. Given a functor F' : € — L.Repp(Semi,) and an object X € Ob(€), we define

br(X,s) = b(F(X),s).

The generality of the above definition will be needed in some concrete situations, nevertheless
it is sometimes useful to lift entropies along a functor F' : € — L.Repp(Semi,) which “factors
through” the category l.Repr(Semiy). This means that, if F/(X) = (o : I' — Autgemi (S, v)) for a
given X € Ob(C), then v is a norm (not just a pre-norm) and ¢ is contractive for all g € I' (when
G is a group, this implies that o ,—1 is contractive as well, so we have the stronger condition that
v(ay(z)) = v(x), for all x € S). Furthermore, given a morphism ¢ : X — Y in €, the image F'(¢)
is a morphism of representations which is induced by a contractive homomorphism of normed
semigroups:

Definition 5.2. Let € be a category and let F' : € — 1.Reprp(Semi,) be a functor. We say
that F' factors through 1.Repp(Semi¥) if there exists a functor F : € — L. Repp(Semi) such that
F' = EoF, where E : 1.Repp(Semi)) — LRepr(Semi,) is the inclusion functor.

Notice that in practice it is the same to give a functor F' : € — L.Repp(Semi}) or a functor
F’: € — L.Repp(Semi,) that factors through 1.Repp(Semi’). In what follows we will also write
hr(X,s) with X € Ob(€) to mean hgor(X,s).

Corollary 5.3. Let € be a category, let I' be a group, let s be a net of non-empty finite subsets
of I' and let F' : € — L.Repp(Semi’) be a functor. Given two objects X and Y in €,

(1) ’LfX = Y; then hF(Xas) = hF(Xaﬁ);
(2) if F' sends monomorphisms to monomorphisms and X <Y, then hp(X,s) < bp(Y,s);

(3) if F sends epimorphisms to epimorphisms and X is a quotient object of Y, then hp(X,s) <
hF(Y7 5)7.

(4) if F commutes with products, then hp(X x Y,s) = max{hp(X,s),hp(Y,s)};

97
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(5) if F commutes with coproducts, then hp(X ®Y,s) < bp(X,s) + bp(Y,s). Furthermore, if
G is a countably infinite amenable group and s is a Folner sequence, then hp(X x Y s) =
brp(X,s) +bp(Y,s).

We remark that, in the notation of the above corollary, F' does not commute with coproducts
in most of the concrete cases that we will study. Anyway, the strategy to prove the analog of
part (5) above is to show that F(X @Y) is s-dominated by F(X)@® F(Y), even if they are not
isomorphic representations.

5.1 Statical and dynamical growth of groups

Definition 5.4. A digraph G is a pair (V, E), where V is a set of vertices and E €V x V is
a set of ordered pairs of vertices, called edges. Furthermore, G is a labeled digraph if we fix a
map E — B, from the set of edges to a set of labelings B. If we need to make explicit that the
set of labelings is B we say that G is a B-labeled digraph.

One can construct a category of B-labeled digraphs for a fixed set of labelings B. For doing
so we need to introduce the notion of morphism of labeled digraphs:

Definition 5.5. Let B be a set of labelings and consider two B-labeled digraphs G1 = (Vi, E1)
and Go = (Va, E3). Let also ¢1 : E1 — B and ¢ : E5 — B be the maps which define the labeling.
A morphism of labeled digraphs o : G1 — G2 is a map o« : Vi3 — Vo such that

(1) (v,v") € Ey implies that (a(v),a(v')) € Eq, for all v,v' € Vi;

(2) ¢1(v,0v") = do(a(v), a(v)), for all (v,v') € Ey.

By definition, a digraph G consists of a set of vertices connected by directed edges. This
simple structure is enough for introducing a concept of distance and a family of neighborhoods
of any vertex of G:

Definition 5.6. Let G = (V, E) be a digraph. Given v, v' € V', a (finite) directed path from v to
V' is a sequence of edges (vo,v1), (v1,v2),...,(Un—1,v,) € E such that v = v and v, = v'. The
path distance (or just distance) in G is a function d : V x V. — N u {0} such that d(v,v") =
{number of edges in a minimal directed path between v and v'} if some directed path connecting
v and v’ exists; d(v,v') = oo otherwise. For allv € V andn € N we let N9(v) = {v/ € V :
d(v,v") < n} be the n-th neighborhood of v in G. If G is clear from the context we also denote
NS(u) by Na(o).

Since the B-labeled digraphs for a fixed set B form a category, we can safely speak about
isomorphic B-labeled digraphs or about labeled sub-digraphs. In particular, given a B-labeled
digraph § = (V, E), with a little abuse of terminology we consider N, (v) (for all v € V' and
n € N) as a labeled sub-digraph of G, where (v1,v2) is an edge in N, (v) (for vy, vy € Ny(v)) if
and only if (vy,v2) € E.

Our main example for a labeled digraph will be the following:

Definition 5.7. Let G be a finitely generated group and let B be a finite symmetric set of
generators. The Cayley digraph of G with respect to B is a B-labeled digraph §(G,B) = (V, E)
such that the set of vertices V' coincides with G and there is a directed edge (g, gb) for all g€ G
and b € B; such edge is labeled by b.

The distance between two vertices in G(G, B) is denoted by dg(—,—). For all g€ G and n € N
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we denote by Ny (B, g) the n-th neighborhood of g in §(G, B). In order to simplify notation, we
usually denote Ny, (B, e) simply by Ny,(B). The B-length of an element x € G isg(x) = dp(e, x),
so that Nyp(B) = {x € G : {p(x) < n}.

Example 5.8. Let G = ZF = Ze, x --- x Zey, for some positive integer k. The canonical choice
of generators is to take B = {—eq,...,—ex,0,e1,...,ex}. Then,

k k
N,(B) = {Z Aiei * \; € Z such that Z |\ < n} )

=1 =1

Definition 5.9. Let 3, 8/ : N — R be two functions, then 3’ weakly dominates 3 if there are
constants h and k € N such that B(n) < hf'(hn + k) + k, for all x € N. In symbols, 8 < [3'.
We also say that 8 and 3’ are weakly equivalent if they weakly dominate one another; weak
equivalence 1s an equivalence relation that we denote by 3 ~ [3'.

A given map 6 : N — N has

— polynomial growth if 3 ~ f, where f : N — R is such that f(n) = n* for some ke N, ;
— exponential growth if 5 ~ g, where g : N — R is such that g(n) = h™ for some real h > 1;

— intermediate growth if it is not of polynomial nor exponential growth and there exist f, g: N —
N such that f < 8 < g, with f of polynomial growth and g of exponential growth.

With all these definitions at hand, we can recall the notion of “growth rate of a group”.

Definition 5.10. Let G be a finitely generated group and denote by C(G) be the family of the
finite subsets of G containing e. For all B € C(G), the growth function v5 of G relative to B is
defined by

75 :N—>N  vp(n) = [N, (B¥)|,

where B¥* = B U B™! and N,(B) is the n-th neighborhood of e in the Cayley digraph of the
subgroup {(B) of G generated by B.

Lemma 5.11. Let G be a group and let B, B' € C(G).
(1) If (B"y = {B), then v < vp. In particular, yg ~ vp provided (B") = (B);
(2) If{(B) is infinite, then vp has at least polynomial and at most exponential growth.

Proof. (1) Since (B) < (B’) = U, ;e Nn(B'), there exists k € N such that B < Nj(B’). Then,
for all n € N, N,,(B) S Ny4x(B'), which implies that

15(1) = [Nu(B)| < |Nusk(B)| = v (n + k),

showing that vp < vp/. A similar argument gives v < yp in case (B") = (B).

(2) It is enough to prove that n < yg(n) < |B|", for all n € N. The upper bound comes by the
definition of N, (B*), which is the set of all words of length < n in the alphabet B* (recall that
B is assumed to contain e). For the lower bound suppose, looking for a contradiction, that there
exists a smallest € N such that yp(n) < n (such n is necessarily > 1 as yp takes values > 1).
By the minimality of # and the monotonicity of vg, we get

n—1<~vyp(n—1)<ypr)<n-—1.

This implies that Nz (B*) = Nj_1(B*) = (B), which contradicts our assumption of (B) being
infinite. O
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Definition 5.12. Let G be a group. Then,

(1) G has polynomial growth if yp has at most polynomial growth for all B € C(G);

(2) G is of exponential growth if there exists B € C(G) such that g has exponential growth;
(3) G is of intermediate growth otherwise.

Furthermore, we say that M has subexponential growth if it has either polynomial or interme-
diate growth.

The following lemma is a useful tool to find examples of amenable groups.

Lemma 5.13. Let G be a finitely generated group of subexponential growth. Fized a finite
symmetric set e € B of generators, {Ny(B) : n € N} is a Folner exhaustion for G.

Proof. First of all, let us show that, for all k € N, limy~yg(n + k)/yp(n) = 1. Indeed, suppose
looking for a contradiction that there exists ¢ > 0 such that yg(n + k) > (1 + €)yg(n). Then,
vB(nk) > (1 + €)"|B| showing that yp weakly dominates the map n — (1 + ¢)"|B| which has
exponential growth, a contradiction.

Let now g € G = |J,,ey Nn(B) and let k be the minimal positive integer such that g € Ni(B).
Then,

’Nn(B)g\Nn(B” <li |Nn+k(B)\Nn(B)| — lim |Nn+k(B)‘ — lim |Nn(B)|

IN,.(B)| N NJB)] N [Na(B)] N |Nu(B)]

lim =1-1=0,
N

by the first part of the proof. One should also verify that limy |N,,(B)\N,(B)g|/|Nn(B)| = 0.
This follows by what we proved, observing that |N,,(B)\N,(B)g| = |[N,(B)g~"\N,(B)|. O

Definition 5.14. The growth rate of the group G with respect to a set B € C(G) is v(G,B) =
limsup,,_,, logvg(n)/n. We let also v(G) = sup{~(G, B) : B C(G)}.

Observe that v(G) > 0 if and only if G has exponential growth.

In the last part of the section we establish a connection between ~(—) and the entropy of
pre-normed semigroups. We omit the proof of the following easy lemma.

Lemma 5.15. Let G be a group, endow C(G) with the following operation
-:C(G) xC(G) - C(G) such that (By,B2)— B1Bs.

Let also v(B) = log|B| for all B € C(G). Then, (C(G),-,v) is a normed monoid.
Furthermore, any group homomorphism ¢ : G1 — G induces a homomorphism of monoids

®:C(G1) — C(Ga) such that B — ¢(B).
Let now G be a group and consider the trivial N-representation
ag : N —End(C(G)) such that ag(n) =ideq) -
Let also s = {F},}en be the sequence of finite subsets of N such that

F, ={0,1,...,n}.
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Notice that C(G) is not a commutative semigroup in general. According to Remark we can
still define the s-entropy of a with respect to a fixed order in N. We just choose the usual one
(even if, for the trivial action any order would give the same result).

Notice that Tp, (aq, B) = Np(B), and so v(TF, (aqg, B)) = log(yg(n)), for all B € C(G) and
for all n € N. Thus,

V(G) = sup{b(ag,s,B) : B€ S} = b(ag,s).

One can interpret the above equation as saying that v(G) is the entropy of a dynamical
system whose evolution law is given by the identity; it seems legit to call v(G) the statical
growth rate of G. If one substitutes the trivial N-representation on C(G) by some other, say the
left N-representation a (g : N — End(C(G)) such that a(q e (n)(B) = ¢"(B) (for all n € N
and B € C(G)) for some endomorphism ¢ : G — G, one obtains what we can call the dynamical
growth rate of G with respect to ¢:

7(G) = sup{b((c.4),5, B) : B€ S} =bh(age),s) -

We refer to [29] and its reference list for an account of classical and recent results on both
the statical and the dynamical growth rates. We remark that in [29] one can also find a brief
discussion of what happens reversing the order on N.

5.2 Mean topological dimension

In this section we recall the definition of the mean topological dimension, given by Gromov [54]
(see also [68] and [24]), showing that this invariant can be recovered using our general scheme
for entropies.

Definition 5.16. Let (X, 7) be a topological space. Then,

— an open cover of X is a family U = (U;)ier of open subsets of X, such that | J,c; Ui = X. We
denote by cov(X) the family of finite open covers of X;

— givenU, V € cov(X) and a continuous self-map ¢ : X — X, we let

UvY ={UnV:Uel, VeV} and ¢ U)={o"'U:Uecl};

— given U, V € cov(X), U is a refinement of V, in symbols U <V provided for all U € U there
exists V€V such that U < V.

Notice that U v V is a refinement of both U and V), furthermore a cover W refines both U
and V if and only if it refines U v V.

Lemma 5.17. Let (X,7), (Y,7') be topological spaces. Then, (cov(X),v) is a commutative
monoid. Furthermore, given a continuous map ¢ : X — Y the following map is a monoid
homomorphism:

®:cov(Y) — cov(X) such that ®U) = ¢ (U).

Proof. Let U, V € cov(X), then U vV is an open cover of X, in fact the intersection of two open
sets is open and

X=Xnx=JUunlJVv=J (UUmV)= JJorvy= | W

UeUd Vey Vey \UeU VevUeld Wedvy

Furthermore, the associativity of v follows by the associativity of the intersection and the unit in
cov(X) is the open cover {X}. Finally, it is an easy exercise to show that ® is a homomorphism
of monoids. O
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Definition 5.18. Let (X, ) be a topological space and let U = (U;);er € cov(X). Then,
— given x € X, the local order of U at x is ord(U,x) = |{j e J:x € Uj}| +1;
— the global order of U is ord(U) = max{ord(U,x) : x € X};
— the topological dimension of U is
D(U) = min{ord(V) : V is a finite open cover of X such thatV <U}.
Lemma 5.19. Let (X, 1), (Y,7') be topological spaces. Then, (cov(X), D) is a normed monoid.

Furthermore, given a continuous map ¢ : X — Y, the induced map ® : cov(Y) — cov(X) is a
contracting monoid homomorphism.

Proof. The first part follows by [24, Lemma 2.5]. On the other hand, choose V € ord(X) such
that U <V and D(U) = ord(V). Given x € X such that ord(®(V)) = ord(®(V), z),

D(@U)) < ord(®(V)) = ord(®(V),z) < ord(V, ¢(z)) < ord(V) = D(U) .
]

Definition 5.20. Let (X, 7) be a topological space, let T' be a monoid and let « G X be a left
[-representation. For any finite open cover U of X, and F € F(T') we let

Uap = \/ a7 U).

Given a net s = {F;}ier of non-empty finite subsets of T, the topological s-mean dimension of «
with respect to U is

DUy, F,
n(e5,U4) = lim sup ZHer)
iel |F3|
The topological s-mean dimension of a is n(a,s) = sup{n(a,s,U) : U a finite open cover}.

Proposition 5.21. Define a functor F': r.Repr(Top) — 1.Repp(Semiy) such that

(1) ifa G X € Ob(r.Repp(Top)) and a(g) = ¢ : X — X, then F(a)(g) = ® : cov(X) — cov(X)
is such that ®(V) = ¢~ L(V);

(2) for any morphism ¢ : a1 — ag of right I'-representations, F(¢) is defined as in Lemma .
Then, n(a,s) = hr(a,s). Furthermore, if G is an amenable group and s is a Folner sequence,
then n(a, s) converges, that is, n(a, s) = limpeny D(Uq,F,) /| Frl-

5.3 Uniform spaces and their entropies

Let X be a set, given two subsets U and V € X x X we consider the following operations:

-~ Ut ={(y,2) : (z,y) € U}, the inverse of U;

~UoV ={(zr,y) e X x X :3z€ X, (z,2) e U and (z,y) € V}, the composition of U and V;

- U(zx) ={ye X : (z,y) € U}, the U-neighborhood of x.
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Definition 5.22. Let X be a set. A uniform structure on X is a set 4 of subsets of X x X,
whose elements are called entourages and satisfy the following axioms:

Ul) if U e i, then U contains the diagonal A = {(z,z) : x € X};

U2) fUed, VX xXandUCV, thenV e i;

U4

(U1)

(U2)

(U3) ifU, Ve, thenU NV el

(U4) if U € M, then there exists V € i such that VoV < U;
)

(U5) if U e U, then U~ e 4.

A pair (X,81) is said to be a uniform space. Given two uniform spaces (X, ), (Y,0), a map
¢ : X — Y isuniformly continuous if for every entourage V € U there exists an entourage U € 4

such that for every (x1,z2) € U, (¢p(x1), p(x2)) € V.

The class of uniform spaces together with uniformly continuous maps form a category. There
is a canonical functor from this category to the category of topological spaces that is described
in the following lemma, whose proof follows from the definitions.

Lemma 5.23. Let (X,4), (Y,0) be uniform spaces and let ¢ : X — Y be a uniformly continuous
map. The family {U(z) : U € U, x € X} is a pre-base for a topology on X that we denote by Ty.
Furthermore, ¢ is continuous when we endow X and'Y with the topologies 7y and Ty respectively.

Definition 5.24. Let (X, ) be a uniform space, let (I,<) be a directed set and let (z;)ier be a
net in X. Then,

— (x4)ier s a Cauchy net if, for every entourage V € A there exists k such that for all i, j = k,
(Ii, :Ej) € V,'

— (wi)ier is a convergent net if it converges with respect to the topology 1y induced by L.
Furthermore, (X, 1) is complete if any Cauchy net is a convergent net.

Definition 5.25. Let (X,4) be a uniform space. To any entourage U € i, one associates a
basic uniform cover

CU)={U(x):ze X}.
A cover A of X is said to be uniform if there exists U € 4 such that C(U) < A.

The proof of the following lemma is an easy exercise.

Lemma 5.26. Let (X, ) be a uniform space. If A and B are uniform covers and ¢ : X — X
is a uniformly continuous map, then both A v B and ¢$~*(A) are uniform covers.

Our main example of uniform space are the topological groups:

Example 5.27. Let (G, T) be a topological group. There are two canonical uniform structures
on G:

— an entourage for the right uniformity is a subset U of G x G that contains {(m,n) : mn~! e N}
for some N € Vg(e);

— an entourage for the left uniformity is a subset U of G x G that contains {(m,n) : m~‘n e N}
for some N € Vg(e).
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Of course these two uniform structures coincide if M is Abelian. Furthermore, the topology
induced by these two uniformities is the original topology T.

Another important example of uniform space is described in the following proposition.

Proposition 5.28. [40] Section 8] Let (X, 7) be a Hausdorff compact topological space. The set
S of all the neighborhoods of the diagonal A € X x X is the unique uniform structure on X
that induces the topology 7. Furthermore, a continuous map X — X is automatically uniformly
continuous with respect to this uniform structure.

5.3.1 Entropy in uniform spaces

Let T" be a monoid, let (X,4l) be a uniform space and consider a left I'-representation o : I' —
Aut(X,4l). In this subsection we describe three different ways to define a notion of entropy for
a; two of them, via separated and spanning sets, are classical and based on ideas of Bowen [10],
the third is based on ideas described in [33] and generalizes the original definition of topological
entropy introduced in [I].

Definition 5.29. Let (X,4) be a uniform space, let K < X be a compact subset (with respect
to 1y), let U € U, let T’ be a monoid and let F € F(T'). Given a left T'-representation o : T’ —
Aut(X, L),

— a subset S € X is said to (F,U)-span K with respect to «, if for every k € K there is x € S
such that (og(k), oq(x)) € U for all ge F. We set

rr(U, K,a) = min{|S| : S (F,U)-spans K with respect to a};

— a subset S < X is said to be (F,U)-separated with respect to «, if for each pair of distinct
points x,y € S there exists g € F' such that (og(x), aq(y)) ¢ U. We set

sp(U,K,a) =max{|S|: S < K and F is (F,U)-separated with respect to a};

— if Ais a uniform cover of X, let N(K, A) = min{|B|: B < A}. We set

cr(U, K,a) =N (K \ ag_l(C(U))> .

geF

The quantities rp(U, K, a), sp(U, K, ) and cp(U, K, o) are well defined (and finite) as K is
compact.

Lemma 5.30. Let (X, $) be a uniform space, let T be a monoid and consider a left T'-representation
a: T — Aut(X, ). If U e U, K is a compact subset of X and F € F(T'), then

op(U K,a) < op(W,K,a), with o = s,r, ¢, provided W € U and W < U;

(1)
(2) sp(U, K,a) < cp(W, K, a), for each W e 4 with W= oW < U;
(3)
(4)

4) rp(U,K,a) < sp(U, K, a).
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Proof. (1) is a consequence of the definitions.

(2) By part (1), we only need to prove that K contains no (F, W~! o W)-separated subsets
with respect to « of size > cp(W, K, «). Indeed, suppose there is a subset S € K such that
|S| > cp(W, K, ). By definition, we can find two distinct elements z1, 2z € S and, for all g € F,
an element y, € X such that

vz € () oyt (Wiyy)) € \/ oy (C(W)).
geF geF
Thus, (ay(21), ay(x2)) € W Lo W, for all g € F, proving that S is not (F, W~ o W)-separated
with respect to a.

(3) Let E < K be a finite subset that (F,W)-spans K with respect to . By definition, given
k € K, there exists z € E such that (og(k),aq(x)) € W for all g € F', that is,

ke oy (W (ag(a))) < 0y (U (ag()).

for all g € F. For all w € E, let By = (,cp oyt (U(ay(x))), so that B = {B, : z € E} covers
K, [B] = |[E| and B </ p ay(C(U)). Thus, by the definition of cp(U, K, ), we have that
CF(Uv K,CY) < |E|

(4) follows by the fact that a maximal (F,U)-separated subset of K with respect to «, (F,U)-
spans K with respect to a. O

Definition 5.31. Let (X,4) be a uniform space, let K € X be a compact subset, let U € 8
and let s = {F; : i € I} be a net of non-empty finite subsets of a monoid I'. Given a left
[-representation o : I' — Aut(X, ), we define

1 (U, K
os(U, K, ) = limsup ogor (U, K, a) ,
i€l |FZ|

where o stands for r, s or c.
The following lemma follows easily by Lemma, [5.30)

Lemma 5.32. Let (X,4) be a uniform space, let I' be a monoid, fiz a net s of non-empty finite
subsets of T' and consider a left T-representation o : T' — Aut(X, ). IfU € U and K is a
compact subset of X, then

(1) ss(U, K,a) < cs(W, K, ), for each W € U with W Lo W C U;
(2) (U, K,a) < rs(W, K, ), for each W € U with W= € U;
(3) rs(U, K, ) < s5(U, K, ).

We conclude this subsection showing that the three approaches for defining the entropy of a
representation on a uniform space are just different ways to introduce the same invariant:

Theorem 5.33. Let (X, ) be a uniform space, let T' be a monoid, fix a net s of non-empty
finite subsets of I' and consider a left I'-representation o : I' — Aut(X,U). Given a compact
subset K of X and letting

he (K, a,s) = sup{os(U, K,a) : U e U}

where o stands for r, s or ¢, hy.(K,a,s) = hs(K,a,8) = ho(K, o, s).



106 Lifting entropy along functors

Proof. We will prove the following inequalities:

(**) ok

(%)
he(K,0,8) < he(K,a,8) < ho(K,0,8) < he(K,a,s).

Indeed, given U € 4, by the axiom (U4), there exists V € 4 such that V oV < U, furthermore,
by the axioms (U3) and (U5), W = V- AV e 4. It follows that W=t oW < U and so, by
Lemma [5.32] (1), ss(U, K, @) < (W, K, ) < ho(K, o, 5). This proves (x) by the arbitrariness of
U. The proof of (xx) follows similarly using the axiom (U5) and Lemma m (2). Finally, (%)
is a direct application of Lemma[5.32] (3). O

By the above theorem one can give the following definition.

Definition 5.34. Let (X, L) be a uniform space, let I be a monoid, let o : T' — Aut(X, ) be a
left T'-flow and let s be a net of non-empty finite subsets of I'. The uniform s-entropy of « is

hy(a, s) := sup h, (K, a,8) = sup hs(K, o, 8) = sup he(K, a, 5)
K K K

In general, the uniform s-entropy cannot be defined functorially via the semigroup s-entropy.
One can generalize the notion of semigroup s-entropy considering the category of semigroups
with suitable families of pre-norms and not just pre-normed semigroups, this is done in [32].
Anyway, we will see in the following subsections that the uniform s-entropy can be defined using
the formalism of the semigroup entropy in case (X, ) is compact and Hausdorff or when X is
an LC group and i is its canonical (left or right) uniformity.

5.3.2 Topological entropy

The following definition generalizes the topological entropy defined in [I].

Definition 5.35. Let (X, 7) be a compact Hausdorff topological space, let T' be a monoid, let
a G (X,7) be a left T'-representation and fix a net s = {F; : i € I} of non-empty finite subsets
of G. Given an open cover A of X one lets

N(A) = min{|B| : B < A}.
The topological s-entropy of « is defined as follows

hr(a,s) = sup {hr(A,a,s) : A open cover of X} ,

where

hr(A, a,s) = lim sup e <N (\/QEFi a;1«4>> )
iel | Fi

Using Theorem [5.33| we obtain the following

Corollary 5.36. Let (X, 7) be a compact Hausdorff space and denote by U the unique uniform
structure on X compatible with . Given a monoid I', a net s = {F; : i € I} of non-empty finite
subsets of T' and a left T'-representation o G (X, ),

hT(a,ﬁ) = hu(oz,s) .
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Proof. For all U € 4, one can find an open refinement Ay of C(U) (just take, for all x € X,
an open neighborhood of = contained in U(x)). Furthermore, for any open cover A of X, there
exists Uy € U such that C(Ua) < A (see, for instance, [40, Exercise 8.1.H]). Notice that, directly
from the definitions,

hr(A,a,s) < cs(Ug, X, ) and (U, X,a) < hp(Ay, a,s) .

Also using the fact that ¢(U,C,a) < ¢(U, X, «) for any compact subset C' € X, one easily
obtains that hr(a,s) = hy(a,s). O

Let CompTop be the category of compact Hausdorff topological spaces and continuous maps,
and define a functor

F: CompTop — Semi,,

such that F(X,7) = (cov(X),N(—)) for any compact Hausdorff space (X,7) and that acts
contravariantly on maps analogously to Lemma [5.17 Given a monoid I', F' induces a functor
F: r.Repr(CompTop) — 1.Repr(Semi, ). It is now easy to see that hy(—,s) = hpx(—,s) for any
net s of non-empty finite subsets of I'.

5.3.3 Topological entropy on LC groups

Definition 5.37. Let G be an LC group and denote by C(G) the set of compact neighborhoods
of e in G (this notation is compatible with the one used in Section . In fact, the elements
of C(G) are just finite subsets containing e, provided the group G is discrete). Let also T be a
monoid and let o : T' — End(G) be a left I'- representation. Given K € C(G) and F € F(I'), let

Cr(a, K) = ﬂ a;lK.

geF
Given a net s = {F; :i € I} of non-empty elements of F(I'), we let

| (o K
k(K,a,s) = limsup Og(/ﬁ(cpl(oz, ))
iel | Fi

Finally, let k(c,s) = sup {k(K,a,s) : K € C(G)}.

Proposition 5.38. In the notation of the above definition, k(«,s) coincides with the uniform
s-entropy hy(a,s) of a, where i is the canonical right uniformity on G, provided sup;; | F;| = o0.

Proof. We start proving that hy(a,s) < k(a,s). Fix arbitrarily a compact subset C' < G and
an entourage U € 4, we are going to show that

ss(U,C,a) < k(a,s) . (5.3.1)

By the arbitrariness of C' and U, this would imply hy(a,s) < k(a,s). So, let us verify (5.3.1).
Take two compact neighborhoods of e, K and H € C(G), with the following properties:

(N1) {(z,y) 2y te K} S U,

(N2) H'Hc K and HH € K.
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Now consider the cover {zH : z € C} of C' and, using compactness, extract a finite sub-cover
{zH : x € C'}, for some finite subset C' < C. Then N = |J,.» K is a compact neighborhood
of C' and p(N) is finite and not 0. Notice that, for any given ¢ € C there exists z. € C’ such
that ¢ € z.H and so, a direct consequence of (N2) is that

cHcyx.HH C 2z, K € N. (5.3.2)

For all ¢ € I, let E; be a maximal (F;, U)-separated subset of C' with respect to a (that is,
|Ei| = sp, (U, C, «)); by construction, the following conditions are verified:

| eCr(e, H) ON L eCrla H) o fCrla H) D &, e £ fe By

eel;
where (#) holds by (5.3.2). To verify (), notice that, since E; is (Fj, U)-separated, there
exists ¢’ € F; such that (ay(e), ay(f)) ¢ U, which implies that agy(ef™!) ¢ K, thus ef ™! ¢
Nyer, a;l(K). By (N1), ef~! ¢ Myer, ozg_l(H_lH) = Cp (o, H)7'Cp, (e, H), which clearly
implies (*%). We obtain that,

M(N) = ( U eCFi (Oé, H)) = Z M(eCFi(aa H)) = SF (Uv C, Q)M(CFi (Oé, H)) :
eek; eck;

Hence, log(sg, (U, C, ) < —log(u(Cr, (o, H))) + log(u(N)) for all i € I, which, dividing by |Fj|

and passing to the lim sup implies ([5.3.1)), as desired.

On the other hand, let K € C(G) be a compact neighborhood of 1 and for all ¢ € I, choose
a minimal subset E; of M that (F;,U)-spans K, where U = {(z,y) : 2y~ € K} € 8. It follows
directly from the definitions that K S |J g, €CF,(a, K) for all i € I, thus

r (U, K, )p(Cr(o, K)) = Y leCr (0 K)) > g (U echa,K)) > u(K) > 0.
ecFE; eckl;
Hence, —log(u(CF,(a, K))) < log(rp, (U, K, ) —log(u(K)) for all i € I, which, dividing by |Fj|
and passing to the limsup implies hy(a,s) = 75(U, K, a) > k(K,a,s). By the arbitrariness of
K € C(G), one gets hy(a,s) = k(a,s), concluding the proof. O

Definition 5.39. Let G be an LC group, let T’ be a monoid, let o : T' — End(G) be a left T-
representation and let s be a net of non-empty finite subsets of I'. The common value k(a,s) =
hy(a, s) is called topological entropy and denoted by hp(a,s).

One can take as a partial justification for the above terminology the fact that hp(a,s)
really coincides with the topological entropy of o when G is compact (as shown in the previous
subsection). We conclude this subsection showing how to recover hr(a,s) from our general
scheme for defining entropies, in case « is an invertible representation.

Definition 5.40. Let G be an LC group and fix an Haar measure p on G. The topological
pre-normed semigroup associated to G is

Cr(G) = (C(G),n,vr),

where the operation is just intersection and, for all K € C(G)

or(K) = {O—IOgm(K)) 4tk <1



5.4 Algebraic entropies 109

Let G be an LC group, let I" be a monoid and let  : I' — Aut(G) be an invertible right
representation. Fix an Haar measure p on G such that u(K) = 1 for a given K € C(M). Notice
that vy (K) = 0 if K contains K, while vp(K) > 0 if K is contained in K. There is an induced
left T-representation ar : I' — Autgeni (Cr(G)) such that ar(g)(K) = oy (K). With this
notation, we have the following equalities:

CF(OJ,K) = TF(aT,K), k(K, 04,5) = [)(OéT,E,K)

Thus, hr(a,s) = k(a,s) = hlar,s).

5.4 Algebraic entropies

5.4.1 Peters’ entropy

In this subsection we introduce our candidate for being the “dual” of the topological s-entropy
on LCA groups, that is, Peters’ algebraic s-entropy. This is analogous to the entropies studied
for Z-representations in [85] and [86].

Definition 5.41. Let G be an LCA group, let T' be a monoid and let o : T' — End(G) be a left
I'- representation. Given K € C(G) and F € F(T'), let

Tr(o, K) = ) ay(K).
geF

Given a net s = {F; : i € I} of non-empty elements of F(T'), we let

1 Te (o, K
hA(Kvoé,ﬁ) = lim sup Og(“( Fz(aJ ))
el ’Fz’

Peters’ algebraic s-entropy of « is hy(a,s) = sup {ha(K,«,s) : K € C(G)}.

Let G be an LCA group and fix an Haar measure p on the Borel subsets of G; the algebraic
pre-normed semigroup associated to G is Ca(G) = (C(G), +,v4), such that K + K' = {z + 2’ :
z€ K and 2’ € K'} for all K and K’ € C(M) and the pre-norm is defined by

log(u(K)) if p(K) = 1;
0 otherwise.

vA(K) = {
Given a left I'-flow @ G G, there is an induced left I'-representation
ap:G—End(Ca(M)) aa(g)(K)=oqay(K) forallgeG, ke K.
Thus, ha(a,s) = baa,s).

5.4.2 Algebraic L-entropy

Definition 5.42. Let € be an Abelian category and let L : Ob(€) — R U {0} be an invariant
of € (i.e., L(0) = 0 and L(M) = L(N) whenever M =~ N ). The invariant i is called sub-additive
if the following conditions hold:

(Inv.1) L(Ny + N2) < L(Ny) 4+ L(N2) for all subobjects N1, No of M;
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(Inv.2) L(M/N) < L(M) for every subobjects N of M.
For all M € Ob(€), let Finp,(M) = {N € L(M) : i(N) < «}.
The following definition of algebraic entropy is a generalization of the entropy defined in [94]:

Definition 5.43. Let € be an Abelian category and let L : Ob(€) — Rs U {0} be a sub-additive
invariant. Let M € Ob(€), letI" be a monoid and let o : I' — End¢ (M) be a left I'-representation.
For any F € F(I') and K € Fing, (M) we let

Tp(o, K) = Y ap(K).
feF

Given a net s = {F;}icr of non-empty finite subsets of ', the algebraic s-entropy of av with respect
to K is entr (o, s, K) = limsup,e; L(Tk, (o, K))/|F;|. Furthermore, the algebraic s-entropy of «
is entr, (o, 5) = sup{ent(a, s, K) : K € Fin,(M)}.

Let € be an Abelian category and let L be a sub-additive invariant of €. Notice that, given
M € Ob(€), Fing (M) is a sub-monoid of (L(M),+). Define a norm on Fing (M) setting

for any H € Finy,(M). For any morphism ¢ : M — N in €, there is an induced morphism
Fing(¢) : Fing (M) — Fing(N) such that Fing(¢)(H) = ¢(H).

Moreover the norm vy makes the morphism Finy(¢) contractive by the property (Inv.2) of
the invariant. Therefore, the assignments M — Fing (M) and ¢ — Fing(¢) define a functor
F : ¢ — Semi*. Given a monoid I', F induces a functor F' : LRepp(€) — LRepp(Semi*). Let
now s be a net of non-empty finite subsets of I' and let a € Ob(l.Rep(€)), one can show easily
that entz (o, 5) = ha(a,s).



Chapter 6

The Bridge Theorem

Let I" be a monoid, let s be a net of non-empty finite subsets of I, let € and © be two categories
and let
Fy: € - LRepr(Semi,) and F5:® — LRepp(Semi,)

be functors. If there exists a functor G : € — D such that F> o G = Fi, then by definition

bFl (X75) = hFQ(G(X>>5> (6'0'1)

for all X € Ob(€). Of course, it may happen that we can find a functor G : € — © such that
holds but not necessarily F> o G = F;. The expression “bridge theorem” was coined by
Luigi Salce to indicate any theorem claiming the existence of a functor G : € — © (which is a
bridge between hp, (—,s) and hp,(—,s)) such that holds for all X € €. There are many
examples of bridge theorems, this chapter is devoted to the proof of the Bridge Theorem between
Peters’ algebraic entropy and topological entropy on LCA groups. In this case the functor G is
the Pontryagin-Van Kampen duality functor.

The statement of the following theorem (when I' = Z, I = N and F,, = {0,...,n — 1} for
all n € N) is due to Justin Peters [85] and [86]. Anyway the proof given in [86] contains many
misprints and, in some cases, some of the arguments are so obscure that we had to find different
proofs for some lemmas. On the other hand, the machinery of semi-group entropies clarifies the
ideas of Peters and allows for a clean proof of the following Bridge Theorem.

Theorem 6.1. Let G be an LCA group, let I be a monoid, let s = {F;};c1 be a net of non-empty
finite subsets of T' and let o : T' — Aut(G) be an invertible left representation. Then,

hA(O[,E) = hT(Oé*,B),

where o : I' — Aut(G*) is the right I'-representation induced by the Pontryagin-Van Kampen
duality, that is, «*(g)(y) =voalg) : G —> T, for all v € G* and g € G.

In what follows, we fix the notation of the above theorem. Furthermore, as we explained in
the previous sections, one can consider the induced G-flows ay G Ca(G) and o G Cr(G*) in
order to define the algebraic s-entropy of a and the topological s-entropy of a* respectively.
As the net s remains unchanged throughout this chapter, we omit to specify it. In particular, we
say that a I'-representation dominates another I'-representation to mean that it s-dominates it
and we use the notations h4(«) and hr(a*), instead of ha(a,s) and hr(a*,s). In this notation,
the Bridge Theorem consists in proving that
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Even if the definitions of algebraic and topological entropy seem to be “dual” to each other,
the Bridge Theorem hides some difficulty. In fact, their definitions are based on measures of
suitable subsets of G and G*; thus, such definitions are not “categorical” —subobjects in the
category of LCA groups are closed subgroups— and it is therefore difficult to translate their
properties to the dual, as a duality is only useful for dualizing categorical statements.

The main idea in order to connect algebraic and topological entropy is to reformulate their
definition in terms of positive positive-definite complex-valued and absolutely integrable func-
tions on G and G* respectively (see Propositions and and then use the Fourier Inversion
Theorem to conclude (see Theorem [6.7).

6.1 Pre-normed semigroups of positive-definite functions

Let P1(G)* be the family of absolutely integrable, positive and positive definite functions on G.
There are two canonical commutative and associative operations which can be defined in this
family, namely convolution and pointwise product. In what follows we introduce two pre-normed
semigroups based on these operations.

Definition 6.2. Let P4(G) = (PY(G)*,*,wa) be the semigroup P1(G)*, where the operation
18 convolution and with the following pre-norm

||¢|!1>
quﬁzlog( ,  forall p € PA(G).
(0) = 1ot (o (@)
Definition 6.3. Let Pr(G*) = (PL(G*)T, -, wr) be the semigroup PL(G*)*, where the operation
1s pointwise product and with the following pre-norm

»(0)
[11]1

As an example, consider the case when G is compact and u(G) = 1, then ||¢||1 < ¢(0)u(G) =
#(0) (by Lemma [3.40] and (3.1.1))), thus wa(¢) < 1 for all ¢ € P4(G). Similarly, G* is discrete
and we can let the Haar measure be the cardinality of subsets, then [[1|[1 = X cqx ¥(7) = ¥(0)
and so wp(y) = 1, for all ¥ € Pp(G*).

wr(v) = log ( > , for all ) € Ppr(G¥).

Definition 6.4. Let 4 G Pa(G) and fr G Pr(G*) be the invertible left I'-representation
defined as follows:

Ba(9)(@) = poay and  Pr(g)(¥) = Alag)poay, forallgel.

The constant A(ay) in the definition of fr is just a technicality and in fact the value of the
entropy does not change if one removes it.

The hard part of the proof of Theorem [6.1] consist in proving the following propositions
Proposition 6.5. In the above notation, ha(a) = h(Ba).

The proof of the above proposition is given in Subsection and it consists in showing
that a4 and 84 dominate each other. The topological analog of the above proposition is proved
in Subsection [6.2.2| using a similar strategy. Here is the precise statement:

Proposition 6.6. In the above notation, hy(a™*) = b(Br).
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When the above propositions are proved, one can conclude the proof of Theorem [6.1] using
the following theorem.

Theorem 6.7. In the above notation, consider the following map induced by the Fourier trans-
form

f[:Pa(G) = Pr(G¥), f(d)=20.
Then, f is an isomorphism in Semi, and it induces an isomorphism of left I'-representations
between B4 and Pr. In particular, H(Ba) = h(Br).

Proof. Let us start proving that the definition of f is correct, that is, f(¢) belongs to PLG*)*,
for all ¢ € PY(G)*. Indeed, consider ¢ € P1(G)T, then ¢ € L}(G*)* by the Fourier Inversion
Theorem. Let now p, be the non-negative and bounded (as ¢ € L' (G)T) regular measure defined
on a generic Borel subset E of G by pug(FE) = §, ¢(x)dp. One can show that

600 = | oaho)dn = | A = | @i
G G G
and so gg € P(G*) by the Bochner Theorem. Furthermore, f is a bijective morphism of semi-

groups by Fourier Inversion Theorem and Lemma |3.51[2), while the fact that f induces a mor-
phism of left I'-representations follows by Lemma [3.51(1). Finally, f is norm preserving since

$@=LMM@@=LMWMﬂMh

and so, also ||¢||1 = $(0) = ¢(—0) = ¢(0), by Fourier Inversion Theorem. The last statement

about entropies follows by Corollary O
We summarize the scheme of the proof of Theorem [6.1]in the following picture:
Ca(M) \
7z 7/
)
[ Algebraic entropy | - - . Pa(M)
////////// H i
"""""""" (a7 G) G M T Th. m o Brldge 'E]g‘heorem
S~ T—— |
AR /
[Topological entropy |  ~ - > pT(jT/[\)
~ - \
™o pPrl6d | /
h $< A/ //
Cr(M) ’

6.2 Proofs

6.2.1 Proof of Proposition [6.5

Recall that we have an LCA group G and an invertible left I'-representation a G G, which
induces two left I'-representations on two different pre-normed semigroups that are functorially
associated to G:

aG M

BN

s G Ca(M) Ba G Pa(M)

N
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We have to show that the entropy of the two induced representations is the same. We start
proving that a4 is dominated by S4. Roughly speaking this says that the way in which « acts
on compact neighborhoods is controlled by the action on positive-definite complex functions.
This, by Proposition implies the inequality “<” in Proposition [6.5

Lemma 6.8. In the above notation, 4 dominates a 4.

Proof. Let C € C4(G) and F € F(I'); for all n € N we construct ¢, € P4(G) and ¢, € R, such
that
vA(Tr(aa,C)) <wa(Tr(Ba,¢n)) +2|F|log(e,) and lim g, =1. (6.2.1)

n—a0
Indeed, let D’ be an open neighborhood of 0 contained in C; by the compactness of C there
exist x1,...,x, € G such that C < (x1 + D') U --- U (z, + D') = D. One can verify that D is
an open neighborhood of 0 in G with compact closure. For all K € G and n e N, let

KW = {ky+ .. 4 kp:ky,... kne K}.

We let
p (D)
En = W and  ¢n = Xpm) * Xpm) ;

thus, to conclude we have just to verify (6.2.1). In particular, the fact that lim, ,ne, = 1
follows by [39, Corollary 1.2] and so we have just to compute the value of wa(Tr (B84, ¢n)).
For all x € Tp (aA,D(Q)) there exist zy and 2y € aa(f)(DP) for all f € F such that z =

Y ser(zp + %) and so, letting A(aF) = [ [ cp Ala(f)),
Tr (Bas ¢n+1) (2) = Tr (Ba; dnt1), (0) = ¥) (Ba (f) (¢n+1))xf+$/f (0)

feF

= A(aF) (%) (XQA(f)(D("H)))xf * (XaA(f)(DW“)))m/f (0) (6.2.2)

feF
> A @F) @ (Xaa(5) (D) * Xara(r)(00) ) (0) = Tre (B, 60) (0)
feF

where the first line follows by Remark the equality in the second line comes from Lemma
and Remark and the inequality in the third line follows since (XaA(f)(D(nH)))y >

Xaa(f)(Dm), for all y € as(f)(C). Using and we get
Tr(Bas n+1)ll = J Tr(Ba, bns1)(@)dp > p(Tp(aa, DP)) - Tr(Ba, én)(0) .
TF(O‘AvD@))

Furthermore, by Lemmas [3.37(4) and
1 Tr(Ba, 6u)lls = [ T1Ba(H) (@n)lh = A(aF)u(C)FT,

feF

Putting together all the above estimates, one can conclude as follows:

I Tr(Bas 6n)lls I Te(Ba, dnst) |
TF<5A,¢n>(0>) " <1°g 1Tr(Ba, du) s >

A(aF)u(D0+D)
A(@F)u(D0)

= wA(TF(be d’n)) + 2|F| IOg(gn) .

va(Tr(as, O)) < log j(Tr(aa, DP)) < log (

= wa(Tr(Ba, ¢n)) + 2|F|log (
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We can now conclude the proof of Proposition showing the converse inequality.
Lemma 6.9. In the above notation, oy dominates B4.

Proof. Let ¢ € P4(G) and F € F(T'); for all n € Ny we construct a ¢, € P4(G) with compact
support such that

wA(Tr(B4,¢)) < wa(Tr(Ba,¥n)) + 2|F|log(1 + 1/n). (6.2.3)

After that we let D,, = supp(¢,,) € Ca(G) and we verify that wa(Tr(Ba, ¥n)) < va(Tr(aa, Dy)),
so that
wA(Tr(Ba, ¢)) < va(Tr(aa,Dy)) + 2|F|log(1 +1/n), (6.2.4)

concluding the proof. Let us start with our program: we define ¢/ = 1 ¢1\|1¢' Notice that
¢'[lL = 1 and

HTF</3A,¢'>\1> e (w;F I Te (B, 6)l1
Tr(Ba, ¢/)(0) l17""- Tr(B.4,)(0)

Now let ) = ¢/ x¢' and notice that ¢ € P4(G) (¢’ = ¢’ by Lemma now apply Lemma |3.41))
and ||¢||; = 1. Furthermore,

wa(Tr(aa, ¢')) = log ( ) =wa(Tr(Ba, 9)).

Tr(Ba,)(0) = L Tr(Ba,¢')(x) - Tr(Ba, ¢')(—x)dp < Tr(B4,9")(0) - [|Tr(Ba, ¢')|11

and, by Lemma [3.37(4), ||Tr (84, )1 = [|Tr(Ba, ¢')||7, thus

1Zr(Ba, O)IIE
Tr(Ba, ) ONITr(Ba, )l

For all n € N there exists a compact symmetric neighborhood C,, € C4(G) such that ¢,, = ¢'-xc,
satisfies ||¢' — ¢nll1 < 1/(2n). We let 1, = ¢y, x ¢y € Pa(G) (¢, = ¢y, and so one can use Lemma
3.41). Furthermore, using Lemma [3.37 and the fact that ||¢n|[1 < ||¢/|[1 = 1, we get

wA(Tr(Bas)) > log ( ) — wA(Tr(Ba &) = wa(Tr(Ba, 8)).

B3
L—|[¢nlls = 191l =[]l < 119 = ¥nlly < [[¢ — ¢ # nll + 1|6 * dn — tnllx (6.2.5)
<

' 111116" = dnllr + Iénll1l1¢" — dnll1<2]1¢" — dnllr < 1/n.

Notice also that [|Tr (84, ¥)|l1 = [Tep [1Ba(f) (@)l = A(aF)||¢/||;" = A(aF) by Lemma3.37

and (3.31)). Similarly, ||TF(8a,¥n)||1 = A(aF)HwnHllFl. Furthermore, by construction ¢, < ¢/,

thus 1, < ¥ and, more generally, B4(g)(tn) < Ba(g)() for all g € T and so Tr(Ba, ) (0) <
Tr(Ba,1)(0). Putting together all the above computations, we can verify (6.2.3)):

| Tr(Bas ¥n)lli (| TF(Bas¥)|a )
Tr(Bas¥)(0)  [|Tr(Basbn)ll

A(aF>||¢||'f'>
A(aF)

wA(Tr(Ba, ) < wa(Tr(Barh)) = log <

S wA(Tr(Ba,¥n)) +log (

wA(Tr(Ba,¥n)) + |F|log (1 + 1/n)
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As we said, to conclude we have just to verify that wa(Tr(Ba,¥n)) < va(Tr(aa, Dy)), where
D, = supp(¢¥n) € Ca(G). Indeed, let X = X7,(a,,p,) and notice that, by Lemma W’
supp(Tr(Ba, ¥n)) S Tr(Ba, Drn). Thus,

(x * T (Ba, ) (0) = L \(@) - T (Ba, thn) (—2)dp
_ L Tr(Ba, ) (@)dpt = | Te(Bas )1 -

The conclusion now follows by Lemma [3.40] and (3.1.1)) as in the following computation
= log((x * Tr (B4, ¥n))(0)) = log(||Tr (B4, Pn)l1
10g< GX ) - Tp(Bastn)(—z)d ) —log ([|[Tr(Ba, ¥n)ll1)

(j v (B, ) (—2)d )—longF(ﬁA,wn)Hl)
TF(aA,Dn)

< log(u(Tr(aa, Dp)) - Tr(Ba, ¥n)(0)) — log (|[Tr(Ba, ¥n)l|1)
= vA(Tr(aa, D)) —wa(Tr(Ba,bn)) -

6.2.2 Proof of Proposition

Let us rapidly recall the situation. We have an LCA group G* and invertible right I'-representation
a® G G*, which induces two left I'-representations on two different pre-normed semigroups that
are functorially associated to G*:

e N
ar G CT(G*) BT G PT(G*)

We have to show that the entropy of the two representations is the same. We divide the proof
in two lemmas. We start proving that ar dominates Sr. Roughly speaking this says that the
way in which a* acts on positive-definte complex functions on G* is controlled by the action
on compact neighborhoods. This implies the inequality “<” in Proposition [6.6] by Proposition
413l

Lemma 6.10. In the above notation, ap dominates Br.

Proof. Let us consider F € s and ¢ € Pp(G*). We will show that, for all n € N, there exists a
compact neighborhood V,, such that

wr(Te(Br, 6)) < vr(Te(ar, Vi) + [Fllog((n + 1)/n). (6.2.6)
In fact, letting &, = n¢(0)/(n + 1), any compact neighborhood V;, € Cr(G) contained in
V(gn) = {fe M o(f) > enf,
will work. To see this, one can verify that ar(g)(V,,) € V(Br(g9)(¢),n) and so

Br(9)(9) = €n Xar(g)(v)s Y 9eET.
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. F
In particular, Tp(Br, ¢) = [,cr Br(9)(®) = [jeren - Xar(g)(vi) = elf! * XTp(ar,Vy), Where the

last equality just follows noticing that the pointwise product of characteristic functions is the
characteristic function of the intersection. We obtain that

e 1 1 Te(Br, 0)lI1 = ||Tr (Br, xvi) L = (T (ar, Vi) -

Taking logarithms one can derive ((6.2.6)). O
We can now conclude the proof of Proposition showing the converse inequality.
Lemma 6.11. In the above notation, Br dominates ar.

Proof. Given U € Cp(G*), we can find a function ¢ € Pp(G*) such that ¢(0) = 1 and supp(¢) =
U, by Lemma [3.45 By Lemma #(0) = 1 is a maximum for ¢, thus ¢ < xy. Similarly,
Br(g9)(¢) < Br(g)(xv) for all g e T'.

For all F' € s we obtain the following inequality ||Tr (87, ¢)||1 < ||Tr(Br, xv)| = p(Tr(ar,U)).
To conclude notice that Tr(Br, ¢)(0) = ¢(0)/F! = 1 and so wr(Tr(Br, ¢)) = vr(Tr(ar,U)). O
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Chapter 7

Length functions in Grothendieck
categories

7.1 A Structure Theorem for length functions

7.1.1 Length functions

In any category € it is possible to define real-valued invariants in order to measure various
finiteness properties of the objects. In general, we call invariant of €, any map i : Ob(¢€) —
R>p U {00} such that i(X) = i(X’) whenever X and X’ are isomorphic objects in €.

If we make some stronger assumption on the structure of the category €, we can refine our
definition of invariant in order to obtain a more treatable notion. Indeed, suppose that € is an
Abelian category. In this setting it seems natural to ask that, given a short exact sequence

0-Xi—>Xo—>X3—-0 (7.1.1)

in €, i(Xy) = i(X1) + i(X3). In this case, we say that i is additive on the sequence (7.1.1]). If ¢
is additive on all the short exact sequences of € and ¢(0) = 0, then we say that i is an additive
invariant (or additive function).

In the following lemma we collect some useful properties of additive functions.

Lemma 7.1. Let € be an Abelian category and let i : Ob(€) — Rxo U {00} be an additive
function. Then,

(1) i(X) = i(Y) for every segment Y of X € Ob(€);
(2) i(X1+ X2) +i(X1n Xo) =i(X71) +i(X2) for every pair of sub-objects X1, Xo of X € Ob(€);
(3) 2joad ©(X5) = Dljeven i(X;) for every exact sequence 0 — X1 — Xy — - — X, — 0 in €.

A natural assumption in the context of Grothendieck categories is the upper continuity of
invariants: given an object X € € and a directed set S = {X,, : @ € A} of sub-objects of X such
that >, Xo = X, we say that i is continuous on S if

i(X) =sup{i(X,) : € A}. (7.1.2)

If 4 is continuous on all the directed systems of subobjects of the objects of &€, we say that 7 is
upper continuous. Obviously, upper continuity can be defined in arbitrary Abelian categories
even if it seems more meaningful when all directed colimits exist and are exact.

121
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Definition 7.2. Let € be an Abelian category. An additive and upper continuous invariant
i: Ob(€) > Rxo U {0} is said to be a length function.

In what follows we generally denote length functions by the symbol L.

Definition 7.3. Let € be a Grothendieck category. An object X € Ob(C€) is finitely generated
(resp., Noetherian) if and only if its qframe of subobjects L(X) is compact (resp., Noetherian ).
Furthermore, a category € is locally finitely generated (resp,. locally Noetherian) if there exists
a set F of generators of € such that each G € F is finitely generated (resp,. Noetherian ).

Given a ring R, the category R-Mod is locally finitely generated (here rR is a finitely
generated generator), while R-Mod is locally Noetherian if and only if R is a Noetherian ring.

The usual definition of length function is given in module categories, which are in particular
locally finitely generated Grothendieck categories. In this special setting, the usual definition of
upper continuity is different (see part (3) of the following proposition). We now show that we
are not defining a new notion of upper continuity but just generalizing this concept to arbitrary
Grothendieck categories (similar observations, with analogous proofs, were already present in
[98] for module categories).

Proposition 7.4. Let € be a Grothendieck category and L : € — Rxo u {0} be an additive
function. Consider the following statements:

(1) L is a length function;

(2) given an object M € Ob(€), an ordinal k and a continuous chain {M, : a < K} of sub-objects
of M such that M =Y, _ Mgy, L(M) =sup{L(M,) : o < k};

a<Kk

(3) for every object M € Ob(€), L(M) = sup{L(F) : F finitely generated sub-object of M}.

Then (1)=(2) and (2)<=(3). If € is locally finitely generated, then the above statements are all
equivalent.

Proof. (1)=(2) is trivial since continuous chains are directed posets. On the other hand, consider
a directed poset (I, <) and a direct system {M; : i € I} of sub-objects of M. If I is finite then
I has a maximum, so there is nothing to prove. On the other hand, if I is an infinite set, one
shows as in the proof of [47, Lemma 1.2.10], that (I, <) is the union of a continuous well-ordered
chain of directed subsets, each of which has strictly smaller cardinality than I. One concludes
by transfinite induction that (2)=(1).

Assume now (3) and consider a continuous chain as in part (2). For every finitely generated
sub-object F' of X, there exists a < k such that F' < M, and so we obtain that

L(M) =sup{L(F): F f.g. sub-object of M} < sup{L(M,):«a <k} < L(M).

To conclude, notice that if € is locally finitely generated, then any object is the direct union of
the direct system of its finitely generated sub-objects. In this situation, (1) implies (3). O

The notion of length function on a Grothendieck category is quite formal, this is why it seems
useful to stop for a while and describe some concrete examples of length functions.

Example 7.5. The logarithm of the cardinality log|—| : Z-Mod — Rsqu{oo}, where log |G| = o0
whenever G is not finite, is a length function.
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Example 7.6. Given a skew field K, the dimension dim : Ob(K-Mod) — Rx u {0} is a length
function. More generally, given a left Ore domain D, the rank of a left D-module p M is defined
as tk(pM) = dim(X "D ®p M). This gives a length function rk : Ob(D-Mod) — Rxq U {o0}.

Example 7.7. Let € be a Grothendieck category. Then, the composition length ¢ : Ob(€) —
R>o U {00}, defined by £(M) = ¢(L(M)), is a length function.

Other examples can be obtained lifting a known length function along a localization functor as
shown in Section Another strategy to produce new examples is that of “linearly combining”
some known length functions:

Definition 7.8. (1) Given a length function L of € and X € Rsgu{0}, we consider the function
AL : Ob(€) — R U {00} such that AL(M) = A - (L(M)), YM € Ob(€),
with the convention that o0 -0 =0-0 = 0;
(2) given a set I and additive functions L; of € for alli € I, we consider the function
D Li: Ob(€) - Rog U {0} such that Y Li(M) = sup {Z LiM):FcI ﬁm’te} :
iel iel ieF
for all M € Ob(C).

It is an exercise to prove that the sum of length functions and the multiplication of a length
function by a constant are again length functions.

7.1.2 Operations on length functions

Let € be a Grothendieck category and let 7 = (7, F) be a torsion theory on €. In this section
we are going to show how the length functions of € are related with the ones of 7 and €/7.

Proposition 7.9. In the above notation, there is a bijective correspondence
I : {length functions L of € with T < Ker(L)} — {length functions of €/T}: g .

Proof. The maps f and ¢ are defined in Lemmas and respectively. It follows by the
definitions that they are inverse each other. O

Lemma 7.10. If L; : Ob(€/T) — Rxg u {00} is a length function, then there exists a unique
length function L : Ob(€) — Rsg u {00} such that L(M) = L:(Qr(M)) for all M € Ob(C).
Furthermore, T < Ker(L). We set g(L;) = L.

Proof. Existence follows by the fact that Q. is an exact functor that preserves colimits. Unique-
ness is clear and the last statement comes from the fact that 7 = Ker(Q;). O

Lemma 7.11. If L : Ob(€) — Rxg u {0} is a length function such that T < Ker(L), then there
exists a unique length function L, : Ob(€/T) — Rsg u {0} such that L(M) = L (Q-(M)) for
all M € Ob(€). We set f(L) = L.
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Proof. For all M € Ob(€), there is an exact sequence of the form 0 - 77 — M — S, Q, (M) —
Ty — 0, with Ty, T € T. As by hypothesis L is trivial on 7-torsion objects, we obtain by
additivity that L(M) = L(S,;Q-(M)). Using this simple observation, we can define

L.(N) = L(S:(N)), for all N € Ob(¢/T),

and verify that L(M) = L(S;Q,(M)) = L:(Q;(M)) as desired. The uniqueness statement
follows by the fact that the functor Q, is essentially surjective. It remains to verify that L, is a
length function. Indeed, let 0 > N — M — M /N — 0 be a short exact sequence in €/7. This
induces an exact sequence 0 — S;(N) —» S;(M) — S;(M/N) - T — 0, with T' € T. Hence,
L (M) = L(S;(M)) = L(S;(N)) + L(S;(M/N)) + 0 = L;(N) + L.(M/N). The proof that L
is upper continuous follows by a similar argument and transfinite induction. O

In the first part of this subsection we described how to transfer length functions along the
adjoint pair Q, : € 2 €/T : S;; now we turn our attention to the adjunction T, : € 2 T : inc.
In particular, whenever L is a length function on &€, one can define its restriction to 7T as
L7 :T — Rsg u {0}, such that LI+(M) = L(M) for all M € €, and prove that it is a length
function. Notice that this can be applied to any full abelian subcategory 7 of €, not only to
hereditary torsion classes.

On the other hand, if we start with a length function L on 7, we want to find a canonical
way to extend it to the bigger category €. In [98] (see also [97]) Peter Vamos introduced a
technique to extend length functions which works in a more general setting. Indeed, let 7 be
a Serre subclass of € and consider a length function L on 7. We start defining an invariant

(which is not supposed to have any good property but that of being useful for our constructions)
L* : Ob(€) — Rxp U {0} as follows:

LX) - {L(X) if XeT;

] (7.1.3)
0 otherwise.

Given an object M € Ob(€) and a series 0: 0=Ny S Ny < --- < N, = M of M, we let
L(o) = Y L*(Ni/Ni-1).

<n

Definition 7.12. In the above notation, the Vimos extension L : Ob(€¢) > Rsg U {0} of L to
¢ is the function defined by L(X) = sup{L(c) : o ranging over all the finite series of X}.

In the next proposition we verify that L satisfies the axioms of a length function.

Proposition 7.13. Let T be a Serre subclass of a Grothendieck category €. If L : T — Ryou{o}
is a length function, then L : Ob(€) — Rsg u {0} is a length function. Furthermore, if L' :
Ob(€) — Rxg U {00} is any additive function extending L, then L'(M) < L(M) for all M € €.

Proof. We start by proving additivity. Let 0 A—L>-B-">C 0 be a short exact
sequence in €. Consider two series

cp:0CcAyc---cA,=A, oc:0cCypc---cC,,=C.
For all i = 0,...,m, let B; = 7~ 1(C;), this defines a series of B

op:0<ci(Ag)c---<c(Ap) € Byc---< By, =B.
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Clearly, ./[:(O'B) = E(O’A) + f/(ac), proving that E(B) > E(A) + E(C) On the other hand, given
aseries ocp:0Z By ---C B, =B, welet, foralli =1,...,n, A; = (B;) and C; = 7n(B;).
This defines two series

o4:0CcApyc---cA,=A, oc:0cCyc---cC,=C.

Furthermore, there are short exact sequences 0 — A;/A;_1 — B;/B;—1 — C;/C;—1 — 0. Using
the additivity of L* on 7 and the closure properties of T, L(04) + L(0c¢) = L(op), which
implies that L(B) < L(A) + L(C). It remains to prove upper continuity. Indeed, let M € €
and consider a directed set {M, : a € A} of sub-objects such that >}, M, = M. By additivity,
f/(M) > supy f/(Ma) On the other hand, given aserieso: 0=No & N1 S --- & Ny, = M, we
prove by induction on n € N, that L(c) < sup, L(M,). We distinguish two cases:

(1) if f/(a) = o0, then there exists a non-negative integer m < n such that Np,4+1/Np, € T and
L(Np+1/Nm) = 00. Notice also that Np,11/Nm = D5 (Mo N Nypg1) + Ni)/ Ny, and so,

~ ~ ((My N N, N,
sup L(M,) = sup L <( o 0 Nim1) + m>
A A N

My N N, N,

—sup L
wr (R

where the first inequality comes by additivity of L and the following equalities come by the
fact that L coincides with L on T.

(2) Suppose now that E(O’) < . If n =1, then either Z}(a) = 0 and there is nothing to prove,
or 0 < L(o) = L*(M), but in this case M € T and the thesis follows by the fact that L is a
length function on 7. On the other hand, if n > 1, let

o 0=No&Ni<---=N,_1, and o OgNn/Nn_l,

and notice that L(c) = L(o’) + L(¢”). Furthermore, N,_; = Ya(Np—1 n M,) and

Nyp/Np—1 = 2 \(My + Np—1)/Np—1. By inductive hypothesis L(¢’) < supp L(Np—1 n M,)
and L(o”) < supy L((My + Ny—1)/Np—1). Hence,

~

L(0) = L(0') + L(0") < sup L(Np—1 0 My) + sup L((Ma + Np—1)/Np—1) = sup L(M,),
A A A

where the last equality comes from the additivity of L and the fact that the sum of suprema

of two convergent nets is the supremum of the sum of the two nets.

O

We conclude this section proving that Vamos extension and lifting of length functions via a
localization functor preserve linear combinations.

Lemma 7.14. Let T be a Serre subclass of a Grothendieck category €, let A be a set and choose
AMa) € Rsg u {0} for all a e A.

(1) Given length functions Lo : T — Rxg u {00} for all o € A and letting L = ;) AM(a)Lq,
L=Y,Ma)L,.

(2) If T is closed under direct limits, Lo : Ob(&/T) — Rxg u {0} are length functions for all
ae A and L = Y\ Ma)Lq, then g(L) = Y5 Ma)g(La), where g is defined in Lemma[7.10),
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Proof. (1) By the minimality of Vamos extension proved in Proposition L< DA )\(a)[//;.
On the other hand, if M € Ob(€) and E(M) = o0, then o0 = E(M) <A )\(oz)[//;(M) and there
is nothing to prove. It remains to show that, if L(M) < co, then L(M) > DA )\(a)l//;(M). The
case |A| < o0 is essentially an application of Lemma Suppose now that A is not finite
and let Ly = ), g A()Lq for every non-empty finite subset F' < A; by definition L(M) =
sup{Lr(M) : F < A finite}. By the first part of the proof, Ir= D eF )\(a)l/l;, so we have only
to prove that E(M) > sup{I//;(M) : F < A finite} for all M € Ob(€). This follows noticing that
Li(0) < L(0) for any finite F < A and any series o of M.

(2) follows by definition of the map g. O

7.1.3 The classification in the semi-Artinian case

All along this subsection we denote by € a semi-Artinian Grothendieck category, that is, a
Gabriel category whose Gabriel dimension is 1. Notice that this is equivalent to say that any
object in € is the union of its socle series. The main result of this subsection is to give a structure
theorem for all the length functions in €.

Lemma 7.15. Let € be a semi-Artinian Grothendieck category and let L, L' : € — Rxqg u {00}
be two length functions. Then L = L' if and only if their values on simple objects are the same.

Proof. One implication is trivial, so suppose that L and L’ coincide on simple objects. Consider
an object M € € and write it as the union of a continuous chain

0=No<Ni < <Ny<-o- < JNa =M,
o

such that N;;1/N; is a simple object for all 7 (this can be done since M is the union of its socle
series). By hypothesis L(N;11/N;) = L'(N;4+1/N;) for all i. The conclusion follows by transfinite
induction using additivity and upper continuity. O

Definition 7.16. Let € be a semi-Artinian Grothendieck category and let m1 = (T,F) € Sp(€).
We let £ : Ob(€) — R>g U {00} be the length function such that

0e(M) =0(Qr(M)) such that VM € Ob(€).

That is, £y is the lifting of the composition length ¢ : Ob(€/T) — Rsgu{oo} along the localization
functor Qr : € — &/T. The functions of the form £, with m € Sp(€) are called atomic length
function.

Lemma 7.17. Let € be a semi-Artinian Grothendieck category, let m = (T, F) € Sp(€), let C(m)
be the socle of E(m) (which is a simple object) and let C' be a simple object. Then,

0:(C) = 1 if C = C(m);
" :(C) =0 otherwise.

Proof. By definition of ¢, it is clear that ¢,(C) = 1 if and only if C' ¢ 7 and that £;(C) =0
otherwise. So let us prove that C' ¢ T if and only if C =~ C(w). Indeed, if there is an
isomorphism C — C(m) one takes the composition with the inclusion C(7) — E(m) to get
Home(C, E(m)) # 0, so C ¢ T. On the other hand, suppose Homg(C, E(7)) # 0, then
Home(C, C(7)) = Home(C, Soc(E(m))) # 0 and, since any non-trivial morphism between two
simple objects is an isomorphism, C' =~ C(7). O
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In the following theorem we prove that any length function in € is a linear combination of
atomic length functions.

Theorem 7.18. Let € be a semi-Artinian Grothendieck category and let L : Ob(€) — Rxgu{oo}
be a length function. Then,
L= Y Am)-lx,
meSp(<)
where \(m) = L(C(r)), with C(w) = Soc(E(7)) for all m € Sp(€). Furthermore, the constants
A7) are uniquely determined by L.

Proof. Let L' = ZﬂESp(C) A(7) - Ur; we already mentioned that a linear combination of length
functions is a length function, so L’ is a length function. By Lemma 0:(C(x")) = 0 for all
7' # m, 80 L'(C(m)) = AN(m)lx(C(m)) = L(C(n)) for all m € Sp(€), which shows that L = L', by
Lemma [7.15] The proof of the uniqueness statement is analogous. ]

Using the uniqueness of the above decomposition, we can unambiguously give the following
definition:

Definition 7.19. Let € be a semi-Artinian Grothendieck category and let L : Ob(€) — Rxg U
{oo} be a length function. The support of L is Supp(L) = {m € Sp(€) : A\(7) # 0}.

As an immediate consequences of the above theorem we obtain the following corollaries.

Corollary 7.20. Let € be a semi-Artinian Grothendieck category such that |Supp(€)| = 1.
Then, any length function L : Ob(€) — Rxg u {00} is a multiple of the composition length.

Corollary 7.21. Let D be a left Ore domain and denote by T < D-Mod the class of torsion left
D-modules. The following are equivalent for a non-trivial length function L : Ob(D-Mod) —
R;O U {OO}

(1) T < Ker(L);
(2) there exists o € Rxg U {00} such that L = -1tk (see Ezample[7.6)).
Furthermore, if L(D) < oo then the above equivalent conditions hold and o = L(D) in (2).

Proof. The implication (2)=>(1) is trivial, in fact Ker(rk) = 7. Let us prove that (1)=(2). By
Theorem L is the lifting of a length function on D-Mod/T = @-Mod, where @ is the skew
field of left fractions of D. Clearly, Q-Mod satisfies the hypotheses of the above corollary, thus
there exists a € Rx¢ U {00} such that L = g(a - dimg) = o - g(dimg) = a - rk.

For the last statement, we suppose L(D) < oo and we verify (1). Let M be a torsion left
D-module. Using upper continuity and additivity we can prove that L(M) = 0 if and only if
L(Dz) = 0 for all x € M. Thus, let z € M be a non-trivial element and consider the following
exact sequences

0 — Amnp(z) > D - Dxr—0 and 0— D — Annp(z),

where the second sequence exists as Annp(z) is a non-trivial left ideal of D (as M is torsion)
and D is a domain. This shows that L(D) = L(Dz) + L(Annp(z)) = L(Dx) + L(D); thus
L(Dz) < L(D) — L(D) = 0. Finally, L(D) = a - k(D) = a. O
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7.1.4 The main structure theorem

The main result of this subsection is to show that, analogously to the semi-Artinian case, any
length function on a Gabriel category € can be written as a linear combination of atomic length
functions. We start defining atomic length functions in this context.

Definition 7.22. Let € be a Gabriel category, let o < G.dim(€) and let €o i1 = €4y1/Co. Then,

Ca+1 is semi-Artinian and so, given 1 = (T,F) € Sp(€qt1) = Sp*(€), the length function
lr : Ob(€ay1) — R U {0} is defined, as in the previous subsection, to be the lifting of the
composition length in C€oy1/T. Using Lemma we can uniquely lift £ to a length function
on €uy1 such that €, < Ker(l;) and then, using Vdamos extension, we extend it to a length
function of €. Abusing notation, we denote this new function again by £, : Ob(€) — Rxg U {0}.

The functions of the form £, with m € Sp(€) are called atomic length function.
Notice that, by definition, given 7 € Sp*(¢), €, < Ker (/).

Definition 7.23. Let € be a Gabriel category and let L : Ob(€) — Rsg u {0} be a length
function. An object M € Ob(€) is L-finite if L(M) < oo, we let Fin(L) be the Serre class of
all the L-finite objects. Furthermore, we denote by Fin(L) the minimal torsion class containing

Fin(L).

Definition 7.24. Let € be a Gabriel category and let L : Ob(€) — Rsg u {0} be a length
function. The finite component LI of L is the Viamos extension to € of the restriction of L to
Fin(L), that is L™ = L1 piyz) : Ob(€) — Rxq U {o0}.

The infinite component L® of L is defined by

Lo = 0 ifMe E(L);
o otherwise.
We remark that the finite component L/% can very well assume infinite values (if L/™ is
non-trivial, just take M such that L/™(M) # 0, so L/™(@y M) = o0); anyway its name is
justified by the fact that Lf™ is, by definition, determined by the finite values of L.

Lemma 7.25. Let € be a Gabriel category and let L : Ob(€) — Rxgu {00} be a length function.
Then, both the finite and the infinite component of L are length functions.

Proof. The fact that L™ is a legnth function follows by Proposition On the other hand,
given a short exact sequence 0 - N — M — M/N — 0, M € Fin(L) if and only if N
and M/N e Fin(L). Similarly, given an object M € € and a directed system of sub-objects
{N; :i €I} such that },,.;, N; = M, M € Fin(L) if and only if N; € Fin(L) for all i € I. Thus,
also L™ is a length function. O

Notice that L = L™+ L*. This decomposition of L allows us to reduce the problem of finding

a presentation of L as linear combination of atomic length functions to the same problem for
L® and Lf™,

Definition 7.26. Let € be a Gabriel category and let L : Ob(€) — Rsg u {0} be a length
function. For all a < G.dim(€) we let X = (T, FL) be the torsion theory in €411/€s such
that T = {Qu(M) : M € Fin(L)}. The infinite support of L is the following subset of the
spectrum

Supp® (L) = U SuppX (L), where SuppX(L) = {me Sp*(¢): C(x)e FL}.

a<<K
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Notice that in €441/€o, TL = (Mresuppe Ker(fr), to show this use the correspondences
described in Theorem [2.67] and the fact that torsion free classes are closed under taking injective
envelopes.

Proposition 7.27. Let € be a Gabriel category and let L : Ob(€) — Rsg u {0} be a length
function. Then, L* = ZﬂeSUPPOO(L) 0 - Uy

Proof. Let L' = 3 cqupp= (1) - {x. Both L and L’ take values in {0, o0}, thus they coincide if
and only if Ker(L*) = Ker(L’):

Ker(L*) =Fin(L) = [|{M € €: QuTani (M) e T} = (]  Ker(ly) = Kex(L').

a<k m€Supp® (L)

We can now turn our attention to the decomposition of L/

Lemma 7.28. Let € be a Gabriel category and let L : Ob(€) — Rxou {00} be a length function.
Then, there exists a unique family {L() : Ob(€aq1) — Rxo U {0} 1 a < G.dim(€)} of length
functions such that

(1) Lfn = 2ia<G.dim(e) La, where Lo : Ob(€) — Rxg U {0} is the Vimos extension of La);
(2) €4 S Ker(Ly)), for all a < G.dim(C).

Proof. For all & < G.dim(€) we consider the Serre classes Fin(® (L) = Fin(L) n €4 and Fin(L).
We start defining inductively length functions L(® : Fin(®*1) (L) — R>qu {oo}, and their Vamos
extensions L* : Fin(L) — Rsg u {0}, for all @ < G.dim(&):

~ LO(M) = L(M), for all M € Fin™(L);
— L@(M) = L(M) = Y5, LP(M), for all M € Fin®*)(L) and o < G.dim(€).

It is not difficult to verify by transfinite induction that all the L(® and L* are length functions.
Let us verify the following claims by induction on G.dim(€):

(1) L(M) = X <G dim(e) L (M), for all M € Fin(L);
(2)) Fin® (L) < Ker(L®), for all @ < G.dim(¢).

If G.dim(€¢) = 1 (ie., ¢ is semi-Artinian), then L(M) = LO(M) = L°(M) for all M €
Fin® (L) = Fin(L), proving (1’), while (2’) is trivial since Fin® (L) = {0}.

Suppose now that G.dim(€) is a limit ordinal. If M € Fin(® (L) for some a < G.dim(¢), then
by inductive hypothesis, L(M) = >5_, LA(M) and so L (M) = L(M) — 2iB<a LA(M) = 0,
proving (2’). Furthermore, given M € Fin(L), we can write M = {Jg_q gime)(Ts(M)) (see
Lemma . Then,

L(M)= sup L(Tg(M))= sup > L(T3(M))
B<G.dim(¢) B<G.dim(¢) a<p
- sup DO LNTM)) = D, LYM),

B<G.dim(€) | 4<G.dim(e) a<G.dim(¢)
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where the first equality follows by the upper continuity of L, the second one follows by part
(1) of the inductive hypothesis (Tg(M) € €5 and G.dim(Cg) = f < G.dim(¢)), the third one
follows by the, already established, claim (2’), and the last equality uses the upper continuity of
Za<G.dim(€) L.

Finally, if G.dim(¢) = x+1 is a successor ordinal, and M € Fin® (L), then L(M) = 3.
by inductive hypothesis and so L) (M) = L(M)—Y]
for any M € Fin(L),

o< LU (M)
LY(M) = 0, proving (2’). Furthermore,

a<kK

S ey = Nz + L) N pen) + L) = Y LM = (M),

a<K a<k a<k a<rk

where (*) comes by the fact that €, = € so Fin®**(L) = Fin(L) and L* = L"), Thus, also
(17) is established.

For any o < G.dim(€) we define the length functions L(,) : €at1 — Rz U {00} and L, :
¢ — Rxq U {o0}, as the Vamos extensions of L(®) and L* respectively. We can extend the above
claims (1) and (2°) to these new functions as follows. First of all, L/ (M) = 2ia<G.dim(e) La(M)
by (1’) and the fact that Vamos extension preserves linear combinations. Furthermore, for all
a < G.dim(€) and M € &4, L()(M) = 0 by the construction of Vamos extension and since, by
(2), L@ vanishes on all the factors belonging Fin(®(€) of any series of M. This shows that
¢ S Ker(L(a)).

The proof of the uniqueness can be obtained by transfinite induction on G.dim(€). O

By the above lemma, we have uniquely determined length functions L, : Ob(€n41) —
R>o U {oo} for all @ < G.dim(C), such that L, is trivial on €,. Thus, there exist unique length
functions

Lu : Ob(Cay1/C0) — Rag U {00} (7.1.4)

such that L) (M) = La(Qa(M)) for all M € Ob(€q41), by Lemma Notice also that all
the categories of the form7€a+1 /€ are semi-artinian and so we have a well defined notion of
support for the functions L,,.

Definition 7.29. Let € be a Gabriel category and let L : Ob(€) — Rsgp u {0} be a length
function. The finite support of L is the following subset of Sp(€):

Supp’™(L) = | J Supp(Za)-

a<k

With the above notion of support we can finally decompose L™ as linear combination of
atomic length functions.

Proposition 7.30. Let € be a Gabriel category and let L : Ob(€) — Rsg u {0} be a length
function. Then, there is a unique choice of constants \(w) € R~q so that

L= 3 MNa) Ly

meSupp/ " (L)

Proof. For all a < G.dim(€), we have a uniquely determined decomposition
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in €44+1/€4, by Theorem Furthermore, by Lemma this decomposition can be lifted
to a decomposition in €441 and then extended to a decomposition in €, obtaining that

L, = Z A7)y, foralla<k.
meSupp(La)
The desired decomposition now follows by Lemma [7.28] O

We conclude this section summarizing the main results on decomposition of length functions
in Gabriel categories in the following theorem. We remark that this statement is analogous to
the “Main Decomposition Theorem” in [98]

Theorem 7.31. Let € be a Gabriel category and L : Ob(€) — Rxg U {00} a length function.
Then, there is a unique way to choose constants A(r) € R, for all m € Supp/™ (L) such that

L=Lm+L"= Y  A@) Lot D> ol
meSupp/ (L) meSupp® (L)

7.2 Length functions compatible with self-equivalences

Let € be a Grothendieck category and recall that a functor F' : € — € is an equivalence of
categories if and only if

(Eq. 1) F is essentially surjective, i.e., for all X € Ob(€), there exists Y € Ob(€) such that
F(X)2Y;

(Eq. 2) Fis fully faithful.

A consequence of this characterization of self-equivalences is that any such functor preserves
all the structures defined by universal properties, in particular, it commutes with direct and
inverse limits and it preserves exactness of sequences. Furthermore, it commutes with injective
envelopes and it preserves lattices of subobjects.

Let now L : Ob(€) — R>g u {0} be a length function and fix a self-equivalence F': € — €.
It is easily seen that Lp : Ob(€) — Rso u {00} such that Lp(M) = L(F(M)) for all M € Ob(€)
is a length function. In what follows we are going to study to what extent Lg can differ from
L. The following example shows that L and Lr may be very different.

Example 7.32. Consider a field K and consider the category K x K-Mod =~ K-Mod x K-Mod.
This category is semi-Artinian and it has a self-equivalence F' : K x K-Mod — K x K-Mod such
that (M,N) — (N, M) and (¢,v) — (¢,¢). If we take L to be the length function such that
L((M,N)) = dimg (M), then clearly Lrp((M,0)) =0 # dim(M) = L((M,0)), provided M # 0.

Definition 7.33. Given a Grothendieck category € and a self-equivalence F : € — &, we say that
a length function L : Ob(€) — Rsg u {00} is compatible with F' provided Lp(M) = L(F(M)) =
L(M) for all M € Ob(€).

In this section we exploit the classification of length functions in Gabriel categories to find a
necessary and sufficient condition on a length function to be compatible with a self-equivalence.
Our motivation for studying compatibility of length functions with self-equivalences is the fol-
lowing. Given a ring R and a ring automorphism ¢ : R — R, we obtain a restriction of scalars

Fy : R-Mod — R-Mod . (7.2.1)

Notice that Fy is a self-equivalence since clearly Fy o Fy-1 =~ idgnod = Fy—1 0 Fg. We are
interested in finding length functions L such that L(Fy(M)) = L(M).



132 Length functions in Grothendieck categories

7.2.1 Orbit-decomposition of the Gabriel spectrum

We start with a technical result. Let A be a subclass of €, we denote by A the class of all the
objects of € which are isomorphic to some object in A.

Lemma 7.34. Let € be a Grothendieck category, let F : € — € a self-equivalence and let
T = (T,F) be a torsion theory. The following are equivalent:

) F(T)=T;
2) F(F) = F;
3) given X € Ob(€), X is 7-local if and only if FX is T-local;

(1
(
(

(4) FL, = L, F.

Proof. The equivalence between (1) and (2) follows since Home (A, B) =~ Homg(F(A), F(B)),

for all A, B € Ob(€) and by the fact that F = 7+ and 7 =+

(2)=(3). Given a 7-local X € Ob(C), one can consider the following exact sequence
0— T (FX) > FX >L.FX > T —0,

where T' = T, (E(FX)/FX) € T. Since F is an equivalence, it is exact and it commutes
with injective envelopes, so T' =~ T, (F(E(X)/X)) which is trivial by the fact that X is 7-local
(implying that E(X)/X € F) and (2).

(3)=(1). It follows by the fact that the 7-torsion objects are exactly the objects not admitting
non-trivial morphisms to a 7-local object.

(1)&(3)=(4). Let X € Ob(€) and consider the following exact sequence
0->T,(X) > X->L,(X)>T—0,

where T' € T. Applying Q. F to the above sequence, using the exactness of such functor and
(1), one gets Q- F(X) = Q,FL,-(X). Now, applying S; and using (3) we obtain L, F(X) =~
L,FL.(X) = FL.(X).

(4)=(3). Let X € Ob(€). Then, X is 7-local if and only if X ~ L. (X), if and only if FX =~
FL(X). Thus, using (4), FX =~ L. F(X), which is equivalent to say that F'X is 7-local. O

In the following lemma we show that the equivalence F' : € — ¢ induces a bijection of Sp°(¢)
onto itself. This fact is then applied in Proposition to show that F' induces bijections of
Sp®(€) onto itself, for all @ < G.dim(€).

Lemma 7.35. Let € be a Gabriel category. For any simple object S, the object F(S) is again
simple. Furthermore, if we define a function

fo:Sp°(€) — Sp’(€)

mapping 7 € Sp°(€) to the isomorphism class of F(E(r)) in Sp°(&), then fy is well-defined and
bijective.

Proof. The fact that F' sends simples to simples follows by the fact that an equivalence preserves
the lattice of sub-objects of a given object. For the second part of the statement, just notice
that, given two simple objects S; and Sa, S1 =~ S5 is equivalent to F(S1) =~ F(S2) and so, since
any simple object is isomorphic to the socle of precisely one indecomposable injective, we are
done. O
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Proposition 7.36. Let € be a Gabriel category and F : € — € a self-equivalence. Then,
(la) F(€a) = &a;
(24) the functor F, : €/€, — €/€, defined by the composition F, = Qo FS, is an equivalence;

for all 0 < a < G.dim(€). In particular, via the identification Sp*(€) = Sp(€oy1/Ca) =
SpY(¢/€,), each F, induces a bijection

fa : Sp™(€) — Sp*(€),
defined as in Lemma[7.55

Proof. We prove simultaneously (1) and (2,) by transfinite induction on «.

In case o = 0, then (1p) just says that F({0}) = {0}, so it is trivially verified, while (2¢) is true
as Fp is just F.

Suppose now that (1,) and (2,) are verified for some 0 < a < G.dim(€). Notice that €,11/C,
can be identified with (€/€,)1, that is, the smallest hereditary torsion subclass of €/, containing
all the simple objects. Since Fy, is an equivalence, it sends hereditary torsion classes to hereditary
torsion classes. Thus, the isomorphism closure of F,,(€y+1/€,) is exactly €441/Cq, as by Lemma
[7.35] the image under an equivalence of a class containing all the simples, contains all the simples.
Given X € Ob(C), we have the following equivalences:

(X eChi1) = (X :=Qu(X)€Chi1/C) & (AY € €qy1/Cq: Fu(Y) = X)
=AY el : F,Qu(Y) = X),

where the second equivalence follows by (1,). Now, to prove (1441) we have to show that the
last of the above conditions is equivalent to (3Y € €441 @ F(Y) = X). The implication (3Y €
Cot1: F(Y) = X) = (Y € €op1 : FuQu(Y) = X) is trivial, as Qo F(Y) = QuFS,Q.(Y) =
F,Q.(Y). For the converse implication, assume that there exists Y € €, 1 such that F,,Q,(Y")
Q. (X). We have the following diagram with exact rows:

lle

0— =T —=FY') —>SaQuF(Y) —= Ty —=0

i
]
0 T3 X SaQaX Ty 0
where Y/ = S,Q.(Y) and T1, T, T5, Ty € €,. Using (2,), one obtains €, = Im/) c F@l),
so the first line of the diagram says that S,Q.F(Y”) € F(€441), the isomorphism then shows
that SpQaX € F(€q41). One concludes by the second line that X € F(€441), proving (1o+1).
In order to show (2,41) one has to shovy that F,.1 is essentially sgrjective and fully faithful.
The former is verified as follows: take X € €/€41, let X = S,41X, choose Y € € such that
F(Y) =~ X and let Y = Q,.1Y, one concludes that
_ (%) _
Fa+1(Y) = Qa+1FSa+1Qa+1(Y) = Qa+lsa+1ch+1F(Y) = Qa+1F(Y) = Xv

where (*) is given by Lemma (4) (using that we already verified (14+1), which corresponds
to part (1) of that lemma). To verify full faithfulness take X,Y € €/€,1, then

H0m¢/¢a+1 (X, Y) = HOmQ(SQ_HX, Sa+1Y) = HOmQ‘(FSaJ,_]_X, FSa+1Y)
= HOHI@/@O(_*_1 (FQ_HX, Fa+1Y) R
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where the last isomorphism follows as, by Lemma (3), FSa+1X and FS,41Y are both
(o + 1)-local.
Finally, let A < G.dim(€) be a limit ordinal and assume (1), (24) for all & < A. Then, (1,)

trivially follows recalling that € is the smallest hereditary torsion class containing €, = F(&,)

for all @« < A and the same description can be given for }*:(\Qj) Furthermore, (2)) follows by
(1)) and Lemma exactly as in the successor case. O

Motivated by the above proposition, we can give the following:

Definition 7.37. Given a Gabriel category €, a self-equivalence F' : € — € and a point m €
Sp*(€) < Sp(€) in the Gabriel spectrum, we let

Op(m) = {fa(m) :n e Z}

be the F-orbit of m, where fq : Sp*(€) — Sp*(€) is the bijective map described in Proposition
[7.36

It is clear that each point of the spectrum belongs to a unique F-orbit. In particular, the
F-orbits induce a partition of the Gabriel spectrum.

7.2.2 A complete characterization in Gabriel categories

In the present subsection we use the orbit decomposition of the Gabriel spectrum and the
classification of length functions in Gabriel categories in order to give a sufficient and necessary
condition for a length function to be compatible with a given self-equivalence. The main result
of this section is the following

Theorem 7.38. Let € be a Gabriel category, F' : € — € be a self-equivalence and L : € —
R>o u {00} be a length function. Then, F and L are compatible if and only if, for all m € Sp(€),

(1) if m € Supp™(L) then Op(r) < Supp™(L);
(2) if € Supp/™(L), then

(2.a) Op(r) = Supp/™(L);
(2.b) A(n') = A(w), for all 7' € Op (7).

Let us recall our decomposition of L : Ob(€) — R u {00} obtained in Section The
first thing we did was to define a torsion theory 7 = (7, F), where T = Fin(L) is the smallest
hereditary torsion class containing Fin(L). This allowed us to write L a sum of its finite and

infinite components:
L=L"4+ L%,
where L® assumes the value 0 on 7 and o0 elsewhere, while L™ is the Vamos extension of the
restriction of L to 7.
Similarly we can define a torsion theory 77 = (77, FF) with 7! = Fin(Lr). This induces a

decomposition '
Lp=Li"+ L%,

Theorem m will follow showing that 7 = 7 (or, equivalently, L* = L) and L/ = L? " In
the setting of Theorem we denote by f, the self-bijection of Sp*(€) induced by F.

Lemma 7.39. In the above notation, the following are equivalent:
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(1) 7 =71p, that is, L* = LY;
(2) me Supp® (L) implies Op(m) < Supp™(L), for all m € Sp(€).
Proof. Let o < G.dim(€) and choose 7 € Sp*(€). Then, 7 € Suppy (Lp) if and only if

LE(Sa(C(m))) = o (where C(m) = Soc(E(7)) in €q41/€y), if and only if L (FS,(C(7))) = oo,
if and only if f,(7) € Suppy’ (L). Thus,

Suppg (Lr) = fo(Suppy (L)) .

By this equality it is clear that Suppy’ (Lr) = Suppy’ (L) if and only if SuppX’ (L) = fo(SuppX (L)),
which is equivalent to affirm that Supp®(L) is f, and f;!'-invariant. This happens for all
a < G.dim(€) if and only if (2) is verified. O

We can now concentrate on showing that L/ = L?n is equivalent to condition (2) in
Theorem [7.38

Lemma 7.40. In the above notation, the following are equivalent:
j fin

(1) Lfim = D",

(2) if m € Supp’™(L), then

(2.2) Op(m) = Supp’™(L);
(2.b) A7) = A=), for all 7’ € Op(r).

Proof. For all a < G.dim(€), let
Zou (TF)a : Ob(Q:oHrl/Q:Oz) - Ryou {OO}

be the functions described in relative to L and Lp respectively. Using Lemma
one can follow the steps of the construction of L, in the proof of Lemma [7.28 and show
that (Lp)a(M) = Lo(F(M)) for all M € €oy1. Thus (Lp)o(M) = Lo(Fa(M)) for all M €
Ob(€n+1/€) (where as usual F, = Q,FS,). By the structure of length functions in Gabriel
categories, L/ = L™ if and only if L, = (Lp), for all @ < G.dim(€). Let a < G.dim(€),
m e Sp*(€) and let C(7) = Soc(E(m)) in €441/€. Then,

(E)a(c(ﬂ-)) = fa(Fa(C(Tr))) = Za(c(fa(ﬂ-))) :

Thus, Supp’™(L) = fa(Supp/™(Lr)) and so Supp/™(L) = Supp/ (L) if and only if Supp/™ (L)
is f, and f;!'-invariant, which is condition (2.a) in the statement. Furthermore, given 7 €
Supp/™(L), the constant associated to m in the decomposition of L is Lo (C(7)), while the
constant associated to 7 in the decomposition of L is Lo (C(fa(7))). Thus the two functions
coincide if and only if L, is constant on the simple objects belonging to the same orbit under
fa, that is, condition (2.b) in the statement. O

7.2.3 Examples

Let K be a division ring and consider the category K-Mod of left K-modules. Sp(K-Mod)
consist of a single point, thus Theorem [7.38] says that any length function is compatible with
any self-equivalence of K-Mod. On the other hand, we already proved in Corollary that
the length functions on K-Mod are just multiples of the composition length (which in this case
is just the dimension over K) so this is not a very deep result.
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The previous example can be generalized as follows. Let € be a Gabriel category and consider
the composition length ¢ : Ob(¢) — Rsq U {o0}. Then, Fin({) = ¢; and so Supp®(¢) =
Sp(€/€1) = Ups1 SP™(€), while Supp/™(¢) = Sp(€;) = Sp’(€). Clearly both the finite and the
infinite spectrum are invariant under any family of self-bijections {f,: Sp*(€) — Sp*(€) : a <
C.dim(€)}. Furthermore, the constants associated to each m € Supp/™(¢) in the decomposition
of £ as linear combination of atomic functions are all 1. Thus, Theorem can be applied to
show that ¢ is compatible with any self-equivalence of €.

A further generalization of the above example can be achieved as follows. Let € be a Gabriel
category, for any o < G.dim(¢) we define a length function

lo : Ob(€) - Rsg U {0} such that Lo (M) = £(Qa(M)),

where £ is the composition length in €/€,1. One can show that Supp/™(£,) = Sp*(¢) and
Supp™(fa) = Sp(€/€at1) = Up=a Sp? (@), furthermore

0, = Z O + Z 0L,

reSpP(€)  meSp(€/Cart)

Theorem implies that ¢, (and any of its multiples) is compatible with any self-equivalence
of €.



Chapter 8

Algebraic L-entropy

8.1 Algebraic L-entropy for amenable group actions

8.1.1 Crossed products

Given a ring R and a group G, we constructed in Example the group ring R[G]. In this
subsection we introduce the concept of crossed product R+G, which is a generalization of R[G].
For more details on this kind of construction we refer to [84].

Definition 8.1. Let R be a ring and let G be a group. A crossed product R+G of R with G is
a ring constructed as follows: as a set, R+xG is the collection of all the formal sums of the form

Z T99

geG

with g € R and vy = 0 for all but finite g € G, and where each g is a symbol uniquely assigned
to a ge G. Sum in R+G is defined component-wise exploiting the addition in R:

(Z 7“99> + (Z Sgg> = Y (rg + 50)g-

gelG gelG gelG

To define a product in R+G, one takes two maps o : G — Autring(R) and p : G x G — U(R),
(where U(R) is the group of units of R); we denote the image of r via the automorphism o(g)
by r°9), for all g€ G and r € R. We impose the following axioms on the maps o and p, for all
re R and g1, g2, g3 € G:

(Cross.1) p(g1,92)p(9192.93) = p(g2, 93)° 9 p(g1, 9293);
(CTOSS.Q) ,'40'(92)0'(_(]1) e p(gl’92)7'0(9192)[)(91792)_1;
(Cross.3) p(g1,1) = p(1,91) =1 and o(e) = 1.

The product in R+G is defined by the rule (rg)(sh) = rs”9p(g, h)gh, together with bilinearity,
that is

(Z TgQ) (Z SQQ) - Z Z Thlszihl)p(h1’h2) g-

geG geG geG \ hi1ha=g

137
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The axioms (Cross.1) and (Cross.2), are the exact conditions to make multiplication in R+G
associative and unitary, while (Cross.3) is telling us that 1z« = e. Of course the definition of
R+G does not depend only on R and G, as the choices of o and p are fundamental for defining
the product. Anyway one avoids a notation like R[G, p, o] and uses the more compact (though
imprecise) R+G. Of course, the easiest example of crossed product is the group ring R[G], which
corresponds to trivial maps o and p.

Notice that there is a canonical injective ring homomorphism
R — R+G rw—re.

In view of this embedding we identify R with a subring of R+G. Notice also that the homomor-
phism R — R=G induces a scalar restriction functor

R+«G-Mod — R-Mod, such that oM — rM .
and a scalar extension functor
R-Mod — R+G-Mod, such that gM — R+G ®pr M .

On the other hand, in general there is no natural map G — R*G which is compatible with
the operations. Anyway, the obvious assignment g — ¢ respects the operations modulo some
units of R. As described in , for all g € G there is a self-equivalence of the category
R-Mod, induced by the ring automorphism o(g)

Fa(g) : R-Mod — R-Mod.

Definition 8.2. Let R be a ring, let G be a group and let R+G be a given crossed product.
A length function L : R-Mod — Rxg u {00} is said to be compatible with R+G provided L is
compatible with the self-equivalence Fy4), for all g € G.

Notice that, given a ring R such that R-Mod has Gabriel dimension, the length functions /,,
of R-Mod described in Subsection are compatible with any crossed product R*G for any
group G.

8.1.2 The action of G on monoids of submodules

Let R be aring, let G be a group and fix a crossed product R+G. In this subsection we functorially
associate to a left module over R+G a left G-representation on a suitable submonoid of its monoid
of submodules, this will allow us to define a notion of algebraic entropy in R+G-Mod, lifting the
semigroup entropy along this functor.

Given a left R«G-module g, M, we denote by (Lg(M), +,0) the monoid of left R-submodules
of M. We let also
A: G — Aut(Lr(M)) such that A(g) = Ay,

where \j(K) = gK for all K € Lgr(M). For any subset F' < G and any K € Lgr(M), the F-th
A-trajectory of K is
Trp(\K) = ) Ag(K) = 3] gk

geF geF

Notice that Tr(R+G, K) € Lr(M). The (full) A-trajectory of K is the R+G-submodule of M
generated by K, that is,

Ta(\K) = D Ag(K) = Y gK = R+G - K .
geG geG
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Lemma 8.3. Let R be a ring, let G be a group, fix a crossed product RxG and let p.gM be
a left R«G-module. Then rp.qgM 1is finitely generated as a left R+G-module if and only if there
exists a finitely generated R-submodule K € Lr(M) such that M = Tg(\ K).

Proof. If pwgM is finitely generated as a left R+G-module then choose a finite set of generators
Zly...,Zn, 0 that, M = R«Gz1 + -+ + R+«Gx,, = Tg(N\,z1R + - -+ + x,R). On the other hand,
if M = Tg(\, K) with K finitely generated, than any finite set of generators of K generates M
as R+G-module. O

Lemma 8.4. Let R be a ring, let G be a group, fix a crossed product R+G and let p.gM be a
left R«G-module. Given a R+G-submodule pegN < M and a subset F = G, there is a short
exact sequence of left R-modules

0 Tr(\ K) AN — Te(\, K) - Te(\, (K + N)/N) - 0.

Proof. The non-trivial maps in (8.4)) are induced by the embedding N — M and by the projec-
tion M — M/N. One can verify that the resulting sequence is exact noticing that Tp(\, (K +
N)/N) = (Tp(A,K)+ N)/N, infact, g (k1 + N)+---+g (kn + N) = (g,k1 +---+g kn) + N
forall ke Ny, ki,....kne Kand ¢1,...,9p, € F. O

Thanks to the following lemma, we can define the announced functor (see Definition
R+G-Mod — 1.Repg(Semiy) .

Lemma 8.5. Let R be a ring, let G be a group, let R«G be a fived crossed product and let
L : Ob(R-Mod) — R>g u {00} be a length function compatible with R+G. Let also pxgM, recN
be left R+G-modules and let ¢ : M — N be a homomorphism of left R+G-modules. Then

(1) (Fing (M), +,vr) is a normed monoid, where Finp,(M) = {K € Lr(M) : L(K) < o}, and
vr,(K) = L(K) for all K € Fing,(M);

(2) letting \g(K) = gK = {g-k: ke K} forallge G and K € Fing (M), gives a homomorphism
of groups
A: G — Aut(Fing (M)), Mg) = Ag : Fing, (M) — Fing (M),
where Aut(Fing, (M)) denotes here the automorphism group of Fing (M) as a normed monoid;

(3) there is an induced contracting homomorphism of valued monoids Fing(¢) : Fing (M) —
Fing,(N) such that Fing(¢)(K) = ¢(K) for all K € Fing,(M). Furthermore, A\jFing(¢) =
Fing(¢)Ag, for all g€ G.

Proof. (1) By the additivity of L, Finy (M) is a sub-monoid of Lr(M). The fact that vy, is a
norm can be proved as follows: let K1, Ky € Fing (M), then K; + K> is a quotient of K; ® Ko,
SO L(Kl) + L(KQ) = L(Kl (—DKQ) = L(Kl + KQ)

(2) First of all one should verify that A\y(K) is an R-submodule of M. Indeed, given r € R and
ke K, r(gk) = (rg)k = (gr°9 Nk = g(r°@ k) e gK = A\, (K). Tt is easy to see that each ),
respects the opera?ion and the unit of our monoid. f‘urthermore,

AAn(K) = (g- WK = (p(g, h)gh) K = ghp(g, h)" @ DK = ghK = \y(K) .

To conclude, it remains to show that v, (Ag(K)) < vr(K) for any given g € G and K € Fing (M).
This follows from our assumption that L is compatible with Fy ), in fact, \j(K) = F, ) (K)
and so v, (A\g(K)) = v (K).
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(3) It is clear the Fing(¢) is a monoid homomorphism. To show that is is contractive use the
additivity of L and the fact that ¢ is in particular a homomorphism of left R-modules. Now,
given K € Finy (M) and g € G,

Xg(Fing (9)(K)) = {gb(k) : k € K} = {9(gh) : k € K} = Fing (6) Ay (K)),
where the second equality holds since ¢ is a homomorphism of left R+G-modules. 0

Definition 8.6. Let R be a ring, let G be a group, let RxG be a crossed product and let
L : Ob(R-Mod) — R u {00} be a length function compatible with R+«G. We define a functor

Finy, : R+*G-Mod — 1.Rep(Semi’)

that sends a left R+G-module gyaM to \ : G — Aut(Fing (M)) and a homomorphism ¢ of left
R«G-modules to Finy,(¢) (see Lemmal[8.5).

In many cases, the monoid Fing, (M) carries redundant information for our needs, for this
reason it is usually useful to reduce to the smaller monoid consisting of the finitely generated
modules in Fing (M). The following lemma, which is an immediate consequence of the upper
continuity and of the discreteness of L, allows for such reduction. Before that, we need to recall
the following definition:

Definition 8.7. Let R be a ring and let L : Ob(R-Mod) — Rxg u {0} be a length function. We
say that L is discrete if the set of finite values of L is isomorphic to N as an ordered set.

Given a subset S of Rx( that is order isomorphic (with the order induced by R) to N, then
— inf{S’} € S’ for all 8" < S;
— sup{S’} € S’ for any bounded above S’ < S.

Lemma 8.8. Let R be a ring, let G be a group, fix a crossed product RxG and let r.gM be
a left R«G-module. Given a discrete length function L : Ob(R-Mod) — Rxg u {00} compatible
with R+«G and given K € Fing (M), there exists a finitely generated K' € Fing (M) such that
L(K') = L(K).

Proof. By the upper continuity of L, L(K) = sup{L(H) : pRH < K fin. gen.}. By the discrete-
ness of L, the bounded set {L(H) : gH < K fin. gen.} has a maximum and so one can take any
finitely generated p K’ < K that realizes this maximum. O

We need to introduce a last tool on the monoid of submodules Lr(M), that is, a closure
operator. Indeed, we consider the torsion class Ker(L) of all left R-modules K such that L(K) =
0. The torsion functor relative to this class was denoted in [93] by z1, : R-Mod — Ker(L), where,
given K € R-Mod,

20(K) ={x e K | L(Rz) = 0};
zr,(K) is called the L-singular submodule of K. If z(K) = K (or, equivalently, L(K) = 0)
we say that M is L-singular. There is a standard technique to associate a closure operator to

any given torsion class (see [96]). In particular, given K € L(M), we let m: M — M /K be the
natural projection and we define

Kpy =7 (21(M/K))

to be the L-purification of K in M. An element K € £L(M) is said to be L-pure if Kr, = K,
while, if K < K’ € L(M), we say that N is L-essential in K' if L(K'/K) = 0, that is, if
K < K' < K. With this terminology we can reformulate Lemma as follows:
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Corollary 8.9. In the notation of Lemma any K € Fing (M) has an L-essential finitely
generated submodule.

We collect in the following lemma some useful properties of L-purifications, which follow by
the fact that (—)r« is a closure operator associated to a torsion theory (see for example [96]).
We give a complete proof for the sake of completeness.

Lemma 8.10. Let R be a ring, let L : Ob(R-Mod) — Rx¢ u {00} be a length function, let M be
a left R-module and consider two submodules K1 and Ko € L(M). Then,

(1) (K1) Ls) s = (K1) L«

(2) <K1+K2> _ (K1+K2)L*‘
K )., K

(3) (K1)rx + (K2)px < (K1 + K2) s and (K1)ps + K2)rx = (K1 + K2) 145
(4) L((K1 + K2)/(K{ + K})) = 0 whenever K| < K1 < (K1)« and K) < Ko < (K}) .

Proof. (1) It is clear that K1 < (K1)rx < ((K1)L«)Lx, furthermore (K1) r+/K1, (K1) L«) L/ (K1) L%
belong to Ker(L). The following short exact sequence

0— (K1)r+/K1 — (K1) ps) Lo/ K1 — (K1) ps) s/ (K1) s — 0

shows that ((K1)r«)r«/K1 € Ker(L) and so ((K1)rs)nx < (K1)«
(2) Consider the following commutative diagram

M

T T2

3

M/K1 M/(K1+K2)

where 71, m and 73 denote the natural projections. Then

K, + K> _ . M (=, M _ (K + Ky) s
K L 3 L K+ K, ! 2 L K+ K K

(3) Notice that Ky, Ko < K1+ K3, hence (K1) 14, (K2)p« < (K1+K3)14, showing that (K1)« +
(K2)rs« < (K1 + K2)rs. Furthermore, the inclusion (Ki)r« + Ko < (K1 + K2)r« proves that
(K1)pe + Ko)pe < (K1 + Ko)ps) s = (K1 + Ka)p«. For the converse inclusion one can use
that K7 + Ko < (Kl)L* + K5 and so (Kl + KQ)L* < ((KI)L* + KQ)L*.

(4) By hypothesis, K} < K1 < (K})r« and K} < Ko < (K})p«. Thus,

i+ Ky _ (K)pe+ (Ky)e _ (K] + K)rs
Ki+K, = K/ +K} T K+ K,

€ Ker(L).
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8.1.3 Definition of the L-entropy

Let us start this subsection with the definition of L-entropy.

Definition 8.11. Let R be a ring, let G be a countably infinite amenable group, let R+G be a
crossed product, choose a Folner sequence § = {Fy}neny and let L : Ob(R-Mod) — Rxp u {0}
be a discrete length function compatible with R+G. Let also regM be a left R«G-module and
denote by A : G — Fing (M) the left G-representation induced by the left R+G-structure of M.
For all K € Fingp (M), the algebraic L-entropy of gi.gM at K is

enty (A, K) = Llélr\l] A

The algebraic L-entropy of recM is enty, (M) = sup{ent;(\, K) : K € Finp(M)}.

Notice that the algebraic L-entropy is exactly the lifting of the semigroup entropy § along
the functor

Finy, : R*G-Mod — 1.Repg(Semi})

described in Subsection In fact, the limit that defines enty, exists by Corollary (since
the monoid Finy, (M) satisfies conditions (1) and (2) in that corollary by Lemma [3.5)). Similarly,
the definition of ent; does not depend on the choice of the Fglner sequence s, as any such
sequence gives rise to the same invariant.

Let us remark that, if R is a (skew) field and if we choose L to be the dimension of left
vector spaces over R, then L is discrete and compatible with any crossed product R#G; more
generally, this happens for all the functions ¢, described in Subsection On the other hand,
if R+«G = R|G], then the compatibility condition is trivially satisfied by any length function L
and one just needs to assume discreteness.

It turns out that the L-entropy is not well-behaved on the whole category R+G-Mod but just
on a suitable class of left R«G-modules with “enough” L-finite submodules:

Definition 8.12. Let R be a ring and let M be a left R-module. We say that M is locally
L-finite if Fing (M) contains all the finitely generated submodules of M. We denote by IFin(L)
the class of all the locally L-finite left R-modules. Furthermore, given a group G and a crossed
product R+G, we denote by IFing, (R=G) the class of all the left R+*G-modules rwgM such that
rM € 1Fin(L).

Notice that 1Fin(L) is closed under taking direct limits, quotients and submodules but not
in general under extensions (see [93] for a counter-example).

In general, we will consider entz, as an invariant on the class of locally L-finite R+*G-modules
and not on the whole class Ob(R+*G-Mod):

enty, : IFing (R*G) — Rxp U {00} .
Remark 8.13. We defined the algebraic L-entropy for left R+G-modules in case G is countable.

Anyway, standard variations of the above argquments using Folner nets, allow one to define a
similar invariant in case G is not countable.
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8.1.4 Basic properties

In this subsection we study the basic properties of the algebraic L-entropy. For simplicity we
fix all along this subsection a ring R, a countably infinite amenable group G, a crossed product
R+G and a discrete length function L : Ob(R-Mod) — Rz u {o0} compatible with R«G. We
also let p.gM be a locally L-finite left R+*G-module and we denote by A : G — Fing (M) the
left G-representation induced by the left R+G-structure of M.

Example 8.14. If L(rM) < o, then enty(r«gM) = 0. In fact, if pK < M is any L-finite
R-submodule of M, then by definition entr,(\, K) < limy,_,o0 L(M)/|F,| < limy—oo L(M)/n =0
(for the second inequality use the fact that, as G is infinite we can take a Folner sequence such
that F, < Fyy1 for alln e N, thus |F,| = n).

The following result allows us to redefine the algebraic entropy in terms of finitely generated
submodules.

Proposition 8.15. Let K € Fing (M) and H < K be an L-essential submodule. Then
(1) enty (A, H) =entr(\ K);
(2) entr(reaM) = sup{entr(\, K) : K finitely generated}.
Proof. (1) By definition of L-essential submodule, K/H € Ker(L). Furthermore, for all g € G,
Ag(K)/Ag(H) = F,4)(K/H) so, as by hypothesis L is compatible with F; (), also A\;(K)/Ag(H) €
Ker(L). In particular, Ay(H) is L-essential in A\j(K) for all g € G. By Lemma [8.10(4) and the
additivity of L,

L(Tp, (A K)) = L(TF, (A H)),
for all n € N, where {F} },en is a Folner sequence. Therefore, enty (A, K) = entr(\, H).

(2) The “<” inequality comes directly from the definition of entropy. On the other hand, by
Lemma [8.8| any L-finite submodule K of M has an L-essential finitely generated submodule H
and by part (1) entr(\, K) = entr (A, H), which easily yields our claim. O

The definition of entropy in terms of finitely generated submodules given in Proposition 8.15
allows us to prove many important properties. In the following lemma we show that the entropy
is monotone under taking submodules and quotients.

Lemma 8.16. Let N < M be an R+«G-submodule. Then
(1) entL(R*GM) = entL(R*GN);

(2) entL(R*GM) = entL(R*G(M/N)).
Proof. Denote respectively by X : G — Fing(N) and A : G — Fing(M/N) the left G-
representation induced by the left R«G-structure of N and M /N respectively.

(1) It is enough to notice that, whenever K < N is an L-finite submodule of N, it is also an
L-finite submodule of M and enty (N, K) = enty(\, K) < entp (e M).

(2) Given a finitely generated submodule K < M/N, there exists a finitely generated (thus
L-finite) submodule K < M such that (K + N)/N =~ K. Given a Fglner sequence {F,},en, by

Lemma [8.4]
Tr, (M K) = (Tg,(A\, K) + N)/N and so L(Tk,(\, K)) < L(Tg,(\, K)) for allneN.

Dividing by |F,| and taking the limit with n — o0 we get entz (A, K) < enty (A, K) < enty(regM).
This ends the proof by Proposition [8.15 O
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The above lemma has a converse in some particular situation:
Lemma 8.17. Let N < M be an R+G-submodule. Then,
(1) entr,(reaM) = entr(rsqN), provided L(M/N) = 0;
(2) entr(reaM) = entr(req(M/N)), provided L(N) = 0.

Proof. One inequality of both statements follows by Lemma thus we have just to verify
the other one. We denote respectively by X' : G — Fing(N) and ) : G — Fing(M/N) the left
G-representation induced by the left R«G-structure of N and M /N respectively.

Part (1) follows by Proposition noticing that, whenever K < M is an L-finite submodule,
then K n N is L-essential in K, thus, enty (A, K) = ent (A, K n N) = ent (N, K n N) <
entr,(r«aV)

For part (2), let K € Finp(M) and consider the short exact sequence described in Lemma
which shows that L(Tr, (\, K)) = L(Tk, (M, K)) + L(Tk, (A, K) A N) = L(Tr, (A, K)). The

conclusion follows. O

8.2 The algebraic entropy is a length function
In the present section we are going to prove the following

Theorem 8.18. Let R be a ring, let G be a countably infinite amenable group, fix a crossed
product R+G and let L : Ob(R-Mod) — Rxg U {0} be a discrete length function compatible with
RxG. Then the invariant enty, : IFing (R+G) — Rxg U {00} satisfies the following properties:

(1) enty, is upper continuous;

(2) enty(R+G ®pr K) = L(K) for any L-finite left R-module K ;

(3) entr,(N) > 0 for any non-trivial R+G-submodule N < R+G Qg K;
(4) enty, is additive.

In particular, enty, is a length function on 1Fing (R*G).

Part (1) will be verified in Subsection parts (2) and (3) will be proved in Subsection
and part (4) will be the main result of Subsection All along this section we will keep
the notation of Theorem [R.18

8.2.1 The algebraic entropy is upper continuous

In this subsection we are going to show that the algebraic L-entropy is an upper continuous
invariant. We start with the following lemma that deals with the case when M is generated (as
RxG-module) by an L-finite R-submodule K, that is, M = T(A, K). In such situation one does
not need to take a supremum to compute entropy.

Lemma 8.19. Let M be a left R+G-module such that M = Tg(\, K) for some K € Fing (M),
then

entL(M) = entL()\, K) .
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Proof. Given a finitely generated R-submodule H of M, we can find a finite subset e € FF € G
such that H € Tp(A, K). This shows that enty(\, H) < enty (A, Tr(\, K)). Now notice that,
using the Fglner condition,

F, u or(F,
g [P VB0 U GBI

im Z’F =1.
s (B S e £ w2 ra

On the other hand, |F,,F|/|F| = 1 so lim,,—,o |FpF|/|Fy| = 1. We obtain that

Tp, A, Tr(\K)) . Tp,p(\K) |F,
im = lim :
nesoo |E,| n— |F, | |F. F|

ent;, (A, Tr(\, K)) = =ent;(\, K),

where the last equality comes from the fact that {F,F},ecy is a Folner sequence by Lemma
2| and since the definition of ent; does not depend on the choice of a particular Fglner
sequence. Thus, enty(\, H) < enty (A, K) for any finitely generated H € L£L(M); one concludes
using Proposition 8.15] ]

The upper continuity of ent; can now be verified easily using the above lemma and Propo-
sition [8.15

Corollary 8.20. enty, : IFing (R+G) — Rsg U {0} is an upper continuous invariant.

Proof. The fact that enty, is an invariant can be derived by the definition and the fact that L is
an invariant. Now, let M € IFiny (R+G), then by Proposition and Lemmas and [8.3| we
get

enty (regM) = sup{enty (A, K) : K finitely generated R-submodule of M}
= sup{entr (r«q(Tg(\, K)) : K finitely generated R-submodule of M}
= sup{enty,(r«gN) : N finitely generated R*G-submodule of M} .

8.2.2 Values on (sub)shifts

The present subsection is devoted to compute the values of the algebraic entropy on the RxG-
modules of the form M = R+G ®pr K, for some left R-module K, and their R+«G-submodules.
Indeed, fix a left R-module K and let M = R+«G®pr K. As a left R-module there is a direct sum
decomposition pM =~ P 9eG gk, so that one can uniquely represent a generic element x € M in
the form z = deG gxg, where r, € K for all g € G and xj, = 0 for almost all h € G. Notice that

WY grg) = Y hgzg =Y hgp(h.g)” D wg = > gp(h, k™ g)7 "Dy

geG geG geG geG
We denote the action of G on Fing (M) by
B : G — Aut(Fing(M)), where 3(g) = fq .

The choice of the greek letter 3 to represent this action comes from the Bernulli actions which
are defined in ergodic theory and can be viewed as dual to the actions described here. We
remark that the left action 8 : G — Fing (M) is not isomorphic in general to the left Bernoulli
G-representation B : G — @ Fing (K) described in Subsection even if we will show that
these two representations have the same entropy.
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Notice that 8 has the following properties, where F' is a subset of G:

P(B,9K) = P hgK and Tg(B,9K) =M. (8.2.1)
heF

In the following example we compute the algebraic entropy of Bernoulli shifts.

Example 8.21. In the above notation, suppose L(K) < o. By Lemma and (8.2.1)),
we obtain that enty (regM) = ent (8, K). Furthermore, again by (8.2.1)), L(Tr(5, K))/|F| =
L(K), for all F € F(G). Therefore, enty (M) = L(K).

The computation in the above example shows that the entropy of M = RxG Qg K is 0 if
and only if L(K) = 0, if and only if L(M) = 0. Our next goal is to show that, if r«qN is a
submodule of r«gM, then entr,(r«g/N) = 0 if and only if L(zrN) = 0. This will be proved in
Proposition but first we need to recall some useful terminology and results from [12].

Let E and F be subsets of G. A subset N € G is an (E, F)-net if it satisfies the following
conditions:

— the subsets (gF)g4en are pairwise disjoint, that is, gE n ¢'E = & for all g # ¢’ € N;

- G:UgeNgF

It is proved in [12] Lemma 2.2] that, for any subset E of a group G, one can always find an
(E, EE~')-net. The following lemma is a variation of [I2, Lemma 4.3].

Lemma 8.22. Let {F),}nen be a Folner sequence of G, let E € F < G be finite subsets with e € F
and let N be an (E, F)-net. Then there exist 0 < a < 1 and ng € N such that |F,, nN| = a-|F,|,
for all n > ng.

Proof. For each n € N, let ¥ = Outp(F,) n N and notice that E\(F, n N) € 0p(F,).
Furthermore, since F}, is covered by the sets gF, g € FX¥| we have |F,| < |F||F;FF|. Let now
a1 = 1/|F|, thus

ar|Fo| = [Fn a NI < |FS| = By 0 NI < |FSI\(EL 0 N)| < [0p(F)] -

Let 0 < ay < aq; by the Fglner condition, there exists ng € N such that |0p(Fy)|/|Fn| < a2 for all
n > ng. Thus, letting a = a3 — ag, one has 0 < a < 1 and |F,, nN| = aq|Fy,| — 0p(F,) = o F,|,
for all n > ny. ]

Proposition 8.23. Let K be an L-finite left R-module and let p+cN be a submodule of pscM.
Then,
enty(regN) =0 if and only if L(rN)=0.

Proof. Suppose L(rN) # 0, then there exists x € N such that L(Rz) # 0. Let E be the set
of all elements h € G such that, writing z = deG gzg, the component j is not 0. We fix an
(E,EE~')-net N. Notice that, given f; # fo € N, then 8y, (Rz) n B, (Rz) = 0. Thus, by
Lemma [8.22] we can find ng € N and 0 < o < 1 such that

L(TF,(B,Rz)) = L(Tg,~n (8, Rx)) = |F, n N|L(Rz) = o|F,|L(Rz)

for all n > ng. In particular, entr(r«qN) = entr (8, Rz) = aL(Rx) # 0. O
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8.2.3 The Addition Theorem

In the present subsection we complete the proof of Theorem [8.18] verifying a very strong property
of the algebraic entropy, that is, its additivity on 1Finy (R=+G). In particular, we have to verify
that, given a locally L-finite left R«G-module M, and an R+G-submodule N < M,

entr (regM) = entr(regN) + entr(r«c(M/N)). (8.2.2)

We fix all along this subsection the following notations for the actions induced by the Rx+G-
module structures:

A: G — Aut(Fing (M)) N1 G — Aut(Fing (N)) A: G — Aut(Fing (M/N))
g Ay 9= Ay = Ag M Fing (V) g—Ag
We start proving the inequality “=" of .
Lemma 8.24. enty, (r«gM) = enty, (rxgN) + entr, (rec(M/N)).

Proof. Let K1 < N and Ky < M/N be finitely generated R-submodules. Fix a finitely generated
submodule K < M such that (K + N)/N = Ky and K n N 2 K;. Given a finite subset F < G,
by Lemma [8.4] there is a short exact sequence

0—=Tr(\K)nN — Tp(\,K) - Tp(\, Ks) — 0.

Noticing that Tr(N, K1) € Tr(\, K) N N, we get L(Tp(\, K)) = L(Tp(N, K1) + L(Tr(\, K2)).
Applying this inequality to the sets belonging to a Fglner sequence {F}, },en, yields

entL(R*GM) = entL()\, K) = entL()\', Kl) + entL(j\, KQ) .
The result follows by the arbitrariness of the choice of K; and Ko. O

The first step in proving the converse inequality is to show that we can reduce the problem
to the case when both M and N are finitely generated R+G-modules. This goal is obtained in
the following corollary (which is just a reformulation of Corollary , and the subsequent two
lemmas.

Corollary 8.25. Let {F,}nen be a Folner exhaustion of G. Then, for any € € (0,1/4) and
n € N there exist ny,...,nE € N withn <ny <--- < ng such that, given an L-finite submodule
K <M,
1 L(Tr,, (N K))
1—c i<ick | Fon, |

Proof. This is a straightforward application of Corollary In fact, the function fx : F(G) —
R>¢ such that fx(F) = L(Tr(\, K)) satisfies the hypotheses of such corollary for any L-finite
R-submodule K of M, by Lemma Furthermore, lim, o fx (F,)/|Fn| = entr, (A, K) by the
definition of entropy. O

ent, (A, K) <e-L(K) +

Lemma 8.26. Consider a sequence Ng < N1 < --- < N < --- < M of R+G-submodules
of M such that N = |J,en Nt and let Ny : G — Aut(Fing(M/Ny)) be the actions induced on
the quotients. Then, given an L-finite submodule K < M and letting K = (K + N)/N and
Ki = (K 4+ N;)/N; for all t e N,

enty (A, K) = infenty (A, K3) .
teN
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Proof. The inequality “<” follows by Lemma[8.16] On the other hand, for all € > 0 there exists

ne € N such that o
L(Tk, (A, K))

7l <enty(\,K)+e, foralln>n.. (8.2.3)
n
By Corollary for any given &’ € (0,1/4), there exist ny,...,n; € N such that n. < nj <
< ny and o
1 L(TF,, (A, Kt))

ent; (M, Ki) < &' - L(Ky) + (8.2.4)

1o 128 | F |
holds for all t € N. Now, for all i € {1,..., k}, the set {L(TF,, (A, Ky)) : t € N} is a set of values of
L, all smaller than or equal to the finite value L(TF, (A, K)). Since we supposed L to be discrete,
this set has a minimum, say L(Tr,, (A, Kt,)). Let s = maxj<i<k t; and notice that

L(Tr, (As, Ks)) = L(Tk, (A, K)), foralli=1,... k.

(This follows by the additivity of L and the fact that L((N n (T, (A, K) + Ns))/Ns) = 0, as
this module is the union of modules of the form (N; n (Tp, (A, K) + NS) /Ns with ¢ > s, which
are L-singular by the choice of s).

Using the above computations, we get

. ) B 1 L(TFn(S\&KS))
inf entz (b, K) < entr(hs, Ko) < '+ LK) + 7= - max —— 7=
7 L Ty T
€ (K) + 1—¢ 12?3]4 ‘Fm’
1 _
S L) + g (entz (A K) +2).

Letting ¢’ tend to 0 we obtain that inf;eyenty (A, K) < enty(\, K) + . As this holds for all
€ > 0, the conclusion follows. O

As we announced, we can now prove the following reduction to the case when gr.gN and
r+qM are finitely generated.

Lemma 8.27. If (8.2.2) holds whenever p.gN and r«.gM are finitely generated, then it holds
i general.

Proof. We already proved the inequality “=” in (8.2.2)) always holds, thus we concentrate just
on the converse inequality. Indeed, given a finitely generated submodule r.qK of rsgM we

claim that
enty (regK) = entr(reg(K N N)) + entr (gec((K + N)/N)). (8.2.5)

Notice that, if we prove the above claim, we can easily conclude using upper continuity as follows:

enty (regM) = sup{ent; (r«cK): K < M fg.}
= sup{entr(r«c(K N N)) + entr(rec(K + N)/N): K < M f.g.}
< supf{entr (req(K N N)): K < M f.g.} + sup{enty(r«q(K + N)/N): K < M f.g.}
= entr(r«aN) + entr (req(M/N)).

It remains to verify claim ({8.2.5)). Indeed, choose a finitely generated R-submodule H of K, such
that K = Tg(\, H). Notlce also that KN N = {J,enTa (A, T, (B) (M, H) " N). For all n € N, we

neN
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let H,, be an L-essential, finitely generated R-submodule of Ty, gy(\, H) n N. By Proposition
B.15] we obtain that

entr(req(N N K)) = supentr(\, Ty, (A, H) n N) = supentr(\, Hy).

neN neN

We let K/ = (J,,cy Ta(A, Hy). Notice that K’ is L-essential in K n N (in fact, (K n N)/K' is
the union of modules of the form ((Tn,g) (A, H) n N) + K')/K" and each of these modules is a
quotient of an L-singular module of the form (T, g)(A, H) n N)/Tg(\, Hy)). By Lemma
and Proposition we obtain that

thL(R*G(K N N)) = entL(R*GK’)
= lingoentL(R*GTG()\aHn))

= supenty (gscTc(A, Hy)) -
neN
Similarly, one derives by Lemma that

entL(R*G(K/(K N N)) = entL(R*G(K/K’))
= nlglgo entL(R*G(K/TG()\an)))

= TlLrelg entr (rec(K/Ta(X, Hy))) -

By hypothesis, entr(r«cTc(A\, Hy)) + entr (req(K/Ta(N\, Hy))) = entr(regK) for all n € N.
Putting together all these computations we obtain:

entr (recK) = T}E%O(entL(R*GTG(/\v H,)) +entr(rec(K/Tc (N Hy))))
= nh_r)r;o enty (recTa(N, Hy)) + nh_r)rolo entr (rec(K/Ta(A, Hy)))
= entr (r«q(K N N)) + entr(rec(K/(K n N)),
which verifies , concluding the proof. O

Finally, we have all the instruments to conclude the proof of the additivity of enty. The
computations in the proof of the following lemma are freely inspired to the proof of the Abramov-
Rokhlin Formula given in [I0I]. The context (and even the statements) in that paper is quite
different but the ideas contained there can be perfectly adapted to our needs.

Lemma 8.28. enty, (r«gM) < enty (regN) + entr, (reg(M/N)).

Proof. By Lemma [8.27] we can suppose that both M and N are finitely generated R+G-modules.
In particular, there exists a finitely generated R-submodule K’ < N and a finitely generated
R-submodule K3 < M/N such that N = Tg(\N, K') and M/N = Tg(\, K3). Since Kj is finitely
generated, there exists a finitely generated R-submodule Ks of M, such that (K + N)/N =
Ks. We let K = K' + K, and we notice that M = Tg(\, K). Finally, we let K; be an L-
essential finitely generated submodule of K n N containing K’. Notice that, by Lemma
we obtain that enty(r«gM) = enty (A, K), entr(regN) = entp (N, K n N) = enty (N, K;) and
enty (reg(M/N)) = entp (N, K2).

Let € € (0,1/4) and fix a Folner exhaustion {F),},en. By the existence of the limits defining
the algebraic L-entropies, we can find n € N such that, for all n > n

L(Tr, (A K)) Tk, (N, K1))

L(
—enty (M) <e, |——=—F —ent(N)| <e, 8.2.6
0 son)| <e, |FIEL L) (326)
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L(TFn(S‘v KQ))

—ent;, (M/N)| <e.
Ty L(M/N)

For all m € N,

L{Tr, (N K)) _ LTF, (X, K1) | L(Tr, (A K)/TF, (N, K1))

[Ful [ Fom [ Eom

and so, for all m > n,

<enty(N) + L<TFm(A?[j¥T!Fm(AI7 K)o

In the remaining part of the proof we are going to show that there exists a positive integer k
such that

P < T 8entL(R*G(M/N)) +e (L(K)(k +1)+ 11> ,  (8.2.8)

for all big enough m € N. Applying (8.2.8) to (8.2.7)), one gets

1
enty (M) < entr(N) + i
—€

enty (M/N)+e <L(K)(k5 +1)+ 11> + 2¢

which, as it holds for all € € (0,1/4), gives the desired inequality. Thus, to conclude we have to
verify (82.5).

Since {F,} is a Fglner exhaustion, N = | J,,cx TF, (X, K1) and so, for any L-finite submodule
H < M, we can use the upper continuity of L to obtain that
L(H A N) = lim L(H  Tg, (X, K})).
n—o0
By additivity, this implies that L((H + N)/N) = limy o0 L((H + Tg, (N, K1))/TF, (N, K1)) and,
by the discreteness of L, this limit is the minimum of the values. By Theorem there exist

n<mny <---<mnge Nsuch that {F,,,..., F,,} e-quasi-tiles F,,, for all m > n. Applying the
above argument with H = Tf, (A, K) (for all i =1,...,k), we can find 7 € N such that

Tp, (\K)+Tp, (N, K T, (M K)+ N
I Fog A K) + T, (N, K1)\ I Fn, (A, K) (8.2.9)
Tr, (N, K1) N
forallm >mand all i = 1,...,k. From now on we suppose m to be a positive integer such that
m > max{n,n} and [0r(Fp)|/|Fnl <€, (8.2.10)
where the second condition can be assumed since {F),},en is Folner. Since {F,,,..., Fy,} e-
quasi-tiles F},, we can choose tiling centers C1, ..., Cy, obtaining the following inequalities
k k
|Fnl = || CiFn,| = max {(1 — )|, (1—-¢))] \ciHme} , (8.2.11)
i=1 i=1
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which imply that

LTy op (AK)) [ UL, CiFy,
m\Ui_y CiFn; \ |Fm\ i= CZFm| i=1 v
Applying this computation and using again (8.2.11)), one gets:
L(Tr, (A K)/Tr, (N, K1) _ 1 (Tuem, W E) + Th (VL ) +eL(K)
[Fon UL GiF| Tr, (N, K1)

< G%WiL(mMMQHnWKw+dm)

S (Gl S Trn (X, KG)
(8.2.12)

Now, let ¢; = (|CZHFnZ\)/Zf:1 |C;||Fy;| and notice that ¢; € (0,1) and % ti=1. Then

! Zk] L (TCiFni (A, K) + T, (X' Kl)) (8.2.13)

mz 1 TFm(X7K1)

Z <TCiFni()‘7K) +TFm(/\/,K1)>
1 |Ci HFm! Tr,, (N, K1)

Since e € F,,,, C; € Fy,, < InF%(Fm) U (3’F%(Fm) foralli=1,...,%k and so

1 <RWANM+EMMKH

an )\ K) +TFm()\/ Kl)
|Cil | Fo, | Tr,, (N, K1) e HFm\ Z

T, (V. K1)

< 1 I TFM ()‘7 K) + chlFm ()‘/a K
|G| F, | Z To1p, (N, Ky)

ceCmInF:(Fm)

L (TFM( K) + Tk (>\’7K1)> N |07 (Fim) | L(K)

1>> o ()| L(K) | (8.2.14)

e T (V. K) Gl B
L (TR Y | ol L)
o N GillF

where the first inequality in the last line comes from the fact that (by definition of Inp_(F)),
Fz c ¢ 'F,, for all c € C; n Inp(Fy); the last equality is an application of (8.2.9)).
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Let us assemble together the above computations:

LTy (N K)/Tr. (N, K) B2 (1—o)' & (Tor, (A K)) + Tk, (N, K
(01 T 0116 €D (=05 (Tema KD+ T KDY
1 i t; Tc,F,, (A K) + TF,, (A/a Ky)
< L t L(K
T 2 TG ( T OV, K1) )*5( )
Bz 1 & Tr, (M K)+ N oot |0 (F)|L(K)
< i n L(K
1= 4R, < N > LT Rt
k N7 k
t. Tr (N K | Op (Fo)|L(K
Cf TR L SRR
z=11_6 [ Ei| 1_8@'=1 Yiie1 |Cill o,
E211),®210),E20) 1
< ——(enty (rac:(M/N)) + 2) + =L(K) (k + 1)
1

enty, (rec(M/N)) + £ (L(K)(k+1) - ) .

1—¢ —¢



Part 1V

Surjunctivity, Stable Finiteness
and Zero-Divisors

153






Chapter 9

Description of the conjectures and
known results

Recall that a concrete category is a pair (€, F': € — Set), where € is a category and F' is a
faithful functor. In a concrete category one says that a morphism ¢ is injective (resp., surjective,
bijective) if so is the map F'(¢). An object X of € is said to be hopfian (resp., cohopfian) if any
surjective (resp., injective) endomorphism of X is bijective. Such notion is usually introduced
in categories of (Abelian) groups, rings, modules, or topological spaces.

In this chapter we describe some classical conjectures related with the concepts of (co)Hopficity,
also underlying the relations among them and explaining some of the main known results.

9.1 Cellular Automata

In this section we introduce some basic definitions and facts about cellular automata. For more
details we refer to [16].

Definition 9.1. Let X be a set and let G be a group. We consider the product X of |G|-many
copies of X, endowed with the product topology of the discrete topologies on each copy of G. We
consider the elements of X as functions x : G — X, so that for any subset F of G, there is a
well-defined restriction x| p : F — X. Consider the following left G-representation on X

A1 G - Autrep(X9) Ag) = Ag

such that (\y(x))(h) = z(g7th), for all g, h € G. A cellular automaton is a map ¢ : X% — X¢
such that there exists a finite subset W < G and a map 7 : X" — X such that

¢(x)(g) = TG (@) tw) -

The map 7 is called a local defining map and W is a defying window for ¢. The set X is said
to be the alphabet of our automaton.

Let us give the following easier characterization of those maps ¢ : X¢ — X that are cellular
automata. This characterization, due to Ceccherini-Silberstein and Coornaert, is a generalization
of the classical Curtis-Hedlund Theorem.

Lemma 9.2. Let X be a set and let G be a group. Consider the uniformity on X whose
entourages of the diagonal are of the form:

MF:{(x,y)eXG xXG:przy[F},

155
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where F runs over all the finite subsets of G. Then, a map ¢ : X — X is a cellular automaton
if and only if ¢ is uniformly continuous and A\g¢ = ¢Ay, for all g € G.

Proof. Suppose first that ¢ is a cellular automaton, let W be a defining window and let 7 :
X" — X be alocal defining map. Then, for any finite subset F of G,

¢~ (Ur) = {(z,y) e X x X9 : () r = (y) I 7}
= {(z,y) € X9 x X : ¢(2)(f) = ¢(y)(f), V[ € F}
= {(z,9) e X9 x X 7M@) tw) = TN (W) tw), VS € F}
o {(z,y) e XE x XY 2l yw =yl pw, Vf e F} =Upw.

Let g€ G and z € X%, then

Ag(6(x))(h) = d(x) (g7 h) = 7O\, (@) Tw) = TG (g (@) Tw) = ¢(Ag(2))(h) ,

for all h € G. This proves that A\j¢ = ¢, for all g € G.

On the other hand, suppose that ¢ is uniformly continuous and A¢¢ = ¢y, for all g € G.
Choose a finite subset W < G such that ¢! (Uy;) = Uy, notice that W exists by uniform
continuity. By the choice of W, whenever we have two elements z, y € X such that z}w = ylw,
#(z)(e) = ¢(y)(e), thus we can unambiguously define a map 7 : X" — X, where 7(z : W —
X) = ¢(Z : G — W)(e), where Z is any element of X such that %y = z. Now, given g € G,

$(x)(9) = Ag16(x)(€) = p(A\g-1(2))(€) = (A () Iw) ,
so 7 is a defining map and W is a defining window for ¢. 0

A map is surjunctive if it is non-injecitve or surjective. By the above lemma, one can see
that, given a set X and a group G, all the automata ¢ : X¢ — X are surjunctive if and only
if (\,G) G X% is co-Hopfian in the category of right G-representations on Top.

The following long standing conjecture was stated by Gottschalk [52] in 1973:

Conjecture 9.3. Let X be a finite set and let G be a group. Then, any cellular automaton
¢: XC — XY is surjunctive.

We refer to Conjecture as the Surjunctivity Conjecture. This classical problem, which is
open in general, has been known for a long time to have a positive solution whenever G is an
amenable group. It was just in 1999 when Gromov [53] came out with a general theorem solving
the problem in the positive for the large class of sofic groups (see also [105]). In what follows we
recall the definition of this class of groups.

Let V be a nonempty finite set and denote by Sy the symmetric group on V. Given two
permutations o1 and oy € Sy we let

{v eV :01(v) # oa(v)}]
V] ’

dy(o1,02) =

be the normalized Hamming distance between o1 and 0.

Definition 9.4. Let G be a group, let K < G be a subset and let € = 0. Given a finite set V, a
left (K, e)-quasi representation of G on V is a map ¢ : G — Sy such that:
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(QA.1) ¢(e) = idy;
(QA.2) for all k1 and ky € K, dy(p(ki1kz), o(k1)e(ke)) < &;
(QA.3) for all ky # ko€ K, dy(p(k1),p(ke)) =1 —¢.

Whenever we have a left quasi representation ¢ : G — Sy we adopt the following notation.
Giwven two subsets V!V <V and G' < G, we let G'V' = {pg(v) : g€ G', ve V'}. In case V' = {v}
is a singleton set we let G'v = G'{v}. Similarly, if G' = {g} is a singleton, gV' = {g}V"’.
Furthermore, gv = @4(v) for allveV and g € G'.

Notice that a left (G, 0)-quasi representation is just a left G-representation on Set.

For finitely generated groups, the following definition of sofic group is equivalent to the
definition given in [105] and [53] (see [11]).

Definition 9.5. A group G is sofic if, for any finite subset K < G and for any positive constant
g, there exists a finite set V and a left (K, e)-quasi representation of G on V.

9.1.1 Linear cellular automata

One can define particular classes of cellular automata requiring the existence of a defining map
with specific properties. In this subsection we consider automata defined by continuous linear
maps:

Definition 9.6. Let G be a group, let R be a topological ring, let X be a topological left R-module
and consider a cellular automaton ¢ : X — X&. We say that ¢ is a linear cellular automaton
if there is a defining window W and a local defining map 7 : XV — X that is a continuous
homomorphism of left R-modules (where X" is endowed with the product topology).

One defines analogously linear cellular automata starting with topological right R-modules.

Lemma 9.7. Let G be a group, let R be a topological ring, let X be a topological left R-module
and consider a map ¢ : X — XY Endow X© with the product topology and consider the
following statements:

(1) ¢ is a linear cellular automaton;
(2) ¢ is a continuous and g = @Ay, for all g€ G.
Then, (1)=(2). If N is discrete, then also (2)=(1).

Proof. (1)=(2). Let W < G be a defining window and let o : X" — X be the associated
local defining map. For any subset G’ € G we let 7 : X& — X&' be the canonical projection
m(x) = x|q. Recall that a typical basic neighborhood of 0 for the product topology on X¢ is
of the form 775,1(A) for some finite subset G/ < G and some open neighborhood A of 0 in X&',

For any open neighborhood A of 0 in X, ¢_1(7T£]1}(A)) = W;I/%/(T_l(A)) is an open neighbor-
hood in X©. This is enough to show that ¢ is continuous since {7r{_gl} (A) : g € G} is a prebase of
the topology. The fact that \j¢ = ¢y, for all g € G is true for any cellular automaton.

(2)=(1). When X is discrete this follows by Lemma O
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A consequence of Lemma is that, in the notation of the lemma, if (A\,G) G X¢ is co-
Hopfian in the category of left G-representations on topological left R-modules, then any linear
cellular automaton ¢ : X¢ — X is surjunctive.

The following conjecture is analogous to the Surjunctivity Conjecture for a particular class
of linear cellular automata.

Conjecture 9.8. Let K be a field, let V' be a finite dimensional K-vector space and let G be a
group. Then, any linear cellular automaton ¢ : VG — VC is surjunctive.

The above conjecture, to which we refer as the Linear Surjunctivity Conjecture was stated
by Ceccherini-Silberstein and Coornaert (see [16]) and has a positive solution for fields of char-
acteristic 0. Furthermore, Gromov’s general surjunctivity theorem in [53] (see also [I3]) shows
that the L-Surjunctivity Conjecture holds for the class of sofic groups. Again, the general case
is unknown.

9.2 Endormophisms of modules

Let us start with the following example:

Example 9.9. Let R be a ring and let M be a Noetherian left R-module. Then, M is Hopfian.
Indeed, given a surjective morphism ¢ : M — M, consider the following sequence of submodules:

Ker(¢) < Ker(¢?) < --- < Ker(¢") < ...

By noetherianity there exists i € Ny such that Ker(¢") = Ker(¢"), for all n = n. By the
following sequence of isomorphisms induced by ¢, we obtain that ¢ is a monomorphism and so
1t 18 injective:

K 2 K n+1

Ker(¢) Ker(¢m)

Let us consider also the following definition related to hopficity.

Definition 9.10. A ring R is directly finite if zy = 1 implies yx = 1 for all x,y € R. Further-
more, R is stably finite if the ring Matg(R) of k x k square matrices with coefficients in R, is
directly finite for all ke N,

The connection with hopficity is given in the following lemma.
Lemma 9.11. Let R be a ring, let gM be a left R-module and consider the following statements:
(1) M s hopfian;
(2) Endgr(M) is directly finite.
In general, (1) implies (2). Furthermore, if M is projective, then (1) and (2) are equivalent.

Proof. (1)=(2). Let ¢,v% € Endr(M) be such that ¢ = id, which implies that ¢ is surjective.
By the hopficity of M we obtain that ¢ is an automorphism, that is, ¢1 = ¢ = id.

(2)=>(1) assuming that M is projective. Let ¢ : M — M be a surjective endomorphism. Consider
the following diagram in which the dotted arrow is given by the projectivity of M

M-—2sM——0
V,
Tid
I
M

Thus, ¢ has a right inverse which, by (2), is also a left inverse. O
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Lemma 9.12. Let R be a ring, let RM and N be left R-modules; suppose that M is hopfian
and gN is a direct summand of gM. Then rN is hopfian as well.

In particular, R is stably finite (if and) only if any finitely generated projective left R-module is
hopfian.

Proof. Let RN’ < M be a complement for N, that is M =~ N@® N’ and let ¢ : N — N be a
surjective endomorphism. Let ® : M — M be such that ®(n,n’) = (¢(n),n’), for all n € N
and n’ € N'. Clearly ® is surjective and Ker(®) = Ker(¢) @ {0}. Now, Ker(®) is trivial by the
hopficity of M and so also Ker(¢) = 0 concluding the proof. O

By the above lemma the class of Hopfian modules is closed by taking direct summands. On
the other hand, in general the class of Hopfian modules is not closed under taking finite direct
sums, not even over the ring Z, for a classical (counter)example see [25, Example 3]. Similarly,
the class of Hopfian modules is not closed under taking submodules. In order to obtain a class
with better closure properties, Anna Giordano Bruno and the author used in [46] the concept of
hereditarily hopfian Abelian group, that is, an Abelian group all of whose subgroups are Hopfian.
We remark that prof. Brendan Goldsmith let us know that this concept is well-known to experts,
even if it seems not to appear in the literature before [46].

Example 9.13. The additive group of ring of p-adic integers I, is Hopfian but not hereditarily
Hopfian.

In fact, any Z-linear endomorphism of (Jp,+) is also Jp-linear, so Endz(J,) is canonically
isomorphic, as a ring, to the commutative ring Endy, (Jp) = Jp. This shows that 5,1, is directly
finite (since Endy, (J,) is commutative) and so y,J, is Hopfian, being a projective J,-module
(alternatively one can argue directly that y,J, is a Noetherian J,-module). Thus, also zJ, is
Hopfian.

On the other hand, 7J, has infinite torsion-free rank, that is, there is a subgroup G' < J, of the
form G = Z™) which is clearly not Hopfian. Hence, zdp is not hereditarily hopfian.

Generalizing from the case of Abelian groups we get the following definition:

Definition 9.14. Given a ring R, we say that a left R-module M is hereditarily Hopfian if and
only if all of its submodules are Hopfian.

9.2.1 The Stable Finiteness Conjecture

A long-standing open question about directly finite rings is the following conjecture due to
Kaplansky [64]

Conjecture 9.15. For any field K and any group G, the group ring K[G] is stably finite.

In case the field K is commutative and has characteristic 0, then the problem was solved in
the positive by Kaplansky. There was no progress in the positive characteristic case until 2002,
when Ara, O’Meara and Perera [5] proved that a group algebra D[G] is stably finite whenever
G is residually amenable and D is any division ring. This last result was generalized by Elek
and Szabé [38] (see also [13] and [6] for alternative proofs), who proved the following

Theorem 9.16. For any division ring K and any sofic group G, the group ring K[G] is stably
finite.
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A straightforward consequence of the above theorem is that Mat, (K[G]) is stably finite for
any division ring K and any sofic group G. Now, by the Artin-Wedderburn Theorem, given
a semisimple Artinian ring R, there exist positive integers k, ni,...,nx € Ni and division
rings Ky,..., Ky such that R =~ Mat,, (K;) x --- x Mat,, (Ky). This implies that, R[G] =
Maty,, (Ki[G]) x --- x Maty, (K;[G]), thus a consequence of the above theorem is that R[G]
is stably finite whenever R is semisimple Artinian and G sofic. This result can be further
generalized as follows:

Remark 9.17. [Ferran Cedd, private communication (2012)] If R is a ring with left Krull
dimension, then R[G] is stably finite. First of all, notice that, if I is a nilpotent ideal of R,
then I|G] = R[G]I is a nilpotent ideal of R[G]| and so one can reduce the problem modulo
nilpotent ideals. Now, by [73, Corollary 6.3.8], the prime radical N of R is nilpotent and N =
Py n---n Py, where Py,..., Py, are minimal prime ideals. Thus, by [73, Proposition 6.3.5],
R/N is a semiprime Goldie ring and so, by [73, Theorem 2.53.6] R/N has a classical semisimple
Artinian ring of quotients S. In particular, (R/N)[G] embeds in S[G] and it is therefore stably
finite.

Both the proof of the residually amenable case due to Ara, O’'Meara and Perera, and the
proof of the sofic case due to Elek and Szabd, consist in finding a suitable embedding of K[G]
in a ring which is known to be stably finite. Such methods are really effective but, as far as we
know, cannot be used to obtain information on the modules over K[G]. It seems natural to ask
the following question related to Conjecture

Question 9.1. Let R be a ring, let G be a group, let R+«G be a crossed product and let M be a
finitely generated left R-module. Under what conditions is R+G ®r M Hopfian (or hereditarily)
Hopfian?

In particular, Theorem proves the Hopficity of R+G ®g R in the very particular case
when R is a field, R+*G = R[G] and G is sofic. Furthermore, in [5] one can find a proof of the
fact that any crossed product D+G of a division ring D and an amenable group G, is stably
finite.

We will generalize both these results in Chapters [10] and

9.2.2 The Zero-Divisors Conjecture

Let us introduce another classical conjecture due to Kaplansky about group rings:
Conjecture 9.18. Let K be a field and G be a torsion-free group. Then K[G] is a domain.

Some cases of the above conjecture are known to be true but the conjecture is fairly open
in general (for a classical reference on this conjecture see for example [83]). In most of the
known cases, the strategy for the proof is to find an immersion of K[G] in some division ring.
This is clearly sufficient but, in principle, it is a stronger property. To the best of the author’s
knowledge, the following question remains open:

Question 9.2. Is it true that K[G] is a domain if and only if K[G] is a subring of a division
ring?

The above question is known to have positive answer if G is amenable (see [69, Example
8.16]).
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9.3 Relations among the conjectures

9.3.1 Duality

In the introduction of [38], it is observed that the Surjunctivity Conjecture implies the Stable
Finiteness Conjecture, in case K is a finite field. Roughly speaking, the idea is to consider K
as an Abelian group, view (K[G])* as a dense subgroup of the compact group (K*)(©) and to
extend maps by continuity.

Let us give a different argument. In brief, consider the finite field K as a finite discrete Abelian
group; then, applying Pontryagin-Van Kampen’s duality to a G-equivariant endomorphism ¢ of
the discrete group (K*)(&) (with the left G-action) we get a continuous G-equivariant endomor-
phism ¢ of the compact group (K*)& (with the right G-action) endowed with the product of the
discrete topologies, and viceversa.

Thus, Pontryagin-Van Kampen’s duality induces an anti-isomorphism

(Endl.RepG (LcaGr) ( (Kk) @ ) )op = Endr.RepG (LcaGr) ( (Kk ) G)

between the ring of G-equivariant K-endomorphisms of (Kk)(G) and the ring of G-equivariant
continuous K-endomorphisms of (K¥)&. Ceccherini-Silberstein and Coornaert [T3] give a differ-
ent argument that shows that the same ring anti-isomorphism holds for arbitrary fields (they
compose their map with the usual anti-involution on Matg(K[G]) to make it an actual ring
isomorphism). This proves that the L-Surjunctivity Conjecture is equivalent to the Stable
Finiteness Conjecture.

In this subsection we apply the Miilcer Duality Theorem, proved in Chapter[3] to relate ques-
tions regarding linear cellular automata to questions regarding modules. This process culminates
in Corollary which is a generalization of the above anti-isomorphism.

Given a ring R and a group G, by Lemmas and and Proposition [3.59, a linear
cellular automaton whose alphabet is a discrete Artinian right R-module is exactly a morphism
in r.Rep; (SLC-R). In particular, the following corollary applies to show that such linear cellular
automata have the so-called closed image property.

Corollary 9.19. Let G be a group and let R be a ring. Let A\ : G — Autspc.r(N1) and
Ao : G — Autspc.r(N2) be two right representations of G on strongly linearly compact right
R-modules. Given a morphism of representations ¢ : Ny — Na, the image ¢(Ny) is closed and
invariant under the action of G on Ns.

Proof. Apply Lemma [3.60 O

The following corollary of Theorem [3.65| provides a “bridge” between automata and homo-
morphisms of left A[G]-modules.

Corollary 9.20. Let G be a group and consider the setting described in (Dual.1, 2, 3). The
duality described in Theorem[3.65 induces a duality between A[G]-Mod and r.Repg(SLC-R).

Proof. Tt is enough to notice that a left action p : G — Aut4(M) of G on a left A-module M
corresponds to a right action p* : G — Autgrc.r(M™) of G on the dual module M* (just letting
p*(g) = (p(g))* for all g € G) and that a right action A : G — Autsrc.r(/V) on a strongly linearly
compact right R-module N (notice that G acts via topological automorphisms) corresponds to
a left action \* : G — Auto(N*) of G on N*. Applying Theorem one obtains a duality
between r.Rep,(SLC-R) and 1.Reps(Mod-A); to conclude just remember that 1.Repg(A-Mod)
is equivalent to A[G]-Mod. O
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The following corollary generalizes [16, Theorem 8.12.1]

Corollary 9.21. Let G be a group, let R be a ring and let N be a strictly linearly compact right
R-module. Let X < N be a closed G-invariant submodule. Then, any bijective G-equivariant
continuous homomorphism ¢ : X — X has a continuous and G-equivariant inverse.
Furthermore, in the setting described in (Dual.1, 2, 3) and letting H = K™ for some positive
integer n, any injective linear cellular automaton ¢ : HC — HS has a left inverse that is a linear
cellular automaton.

Proof. By Proposition [3.59 X is strictly linearly compact, so ¢ is a topological automorphism
and thus its inverse ¥ : X — X is automatically a topological automorphism. The fact that
is G-equivariant can be deduced from the fact that it is the inverse of a G-equivariant map.

For the second part, since H is strictly linearly compact discrete, an endomorphism of H® is
G-equivariant and continuous if and only if it is a linear cellular automaton. Furthermore, the
dual of H® is A[G]" that is a projective left A[G]-module, so H® is an injective object in
the category r.Repg(SLC-R). Now, an injective linear cellular automaton ¢ : H® — HC is a
monomorphism and so it has a left inverse ¢ : H® — H in r.Reps(SLC-R). By the previous
discussion, ¢ is a linear cellular automaton. ]

The following corollary improves [I3, Theorem 1.3].

Corollary 9.22. Let G be a group and consider the setting described in (Dual. 1, 2, 8). Given a
right G-representation \ : G — Autspc.r(N) on a strictly linearly compact right R-module N,
let M be the left A|G]-module which is dual to X\ G N. Then there is an anti-isomorphism of
TIngs

(End; Repgsue-r) (V) —— End 411 (M)

b o
In particular, End; rep,, (SLC-R) (K™ ) is anti-isomorphic to Mat,,(A[G]) for any positive integer

n. Hence, A[G] is stably finite if and only if any linear cellular automaton ¢ : (K™)¢ — (K™)&
18 surjunctive, for any positive integer n.

Proof. The first statement is an easy consequence of duality. The fact that End, rep . (sLc-r) (K™)
is anti-isomorphic to Maty(A[G]) follows noticing that the dual of (K™)¢ is exactly A[G]™ and
that Ends;¢)(A[G]") = Mat,(A[G]). The last statement follows by the previous one recall-
ing that linear cellular automata (K™)¢ — (K™)¢ are exactly the continuous G-equivariant
endomorphisms of (K™)@ and using the second part of Corollary O

9.3.2 Zero-divisors and pre-injectivity

The following lemma will allow us to translate the Zero-Divisors Conjecture in the language of
linear cellular automata. Before that, consider a group G and the setting described (Dual.1, 2,
3), take a strictly linearly compact right R-module N and let G G N© be the usual right action
of G. Then, the dual of this right G-representation is the left A[G]-module A[G]®4 N*.

Lemma 9.23. Let G be a group and consider the setting described in (Dual.1, 2, 3). Let N
be a strictly linearly compact right R-module and let M = N* be its dual. The following are
equivalent:

(1) any non-trivial endomorphism A[G]®@a M — A[G]|®a M of left A[G]-modules is injective;
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(2) any non-trivial linear cellular automaton NG — N is surjective.

Proof. Let ¢ : N4 — N© be a linear cellular automaton. We have already noticed that ¢ is a
morphism in r.Rep;(SLC-R) , let us show that ¢ is an epimorphism in this category if and only
if it is surjective. Surjective implies epimorphism in any concrete category so let us suppose that
¢ is an epimorphism. By Lemma Im(¢) is closed in N¢ and it is clearly G-invariant. We
obtain the following sequence in r.Repg(SLC-R):

NG o NG T NG Im(¢)

where ¢ = 0 but, since we supposed that ¢ is an epimorphism, 7 = 0, that is, Im(¢) = N G,
By the above discussion, condition (2) holds if and only if any linear cellular automaton
N% — N€ is an epimorphism in r.Repg(SLC-R), thus, by duality, any endomorphism A[G] ®4
M — A[G]®4 M in A[G]-Mod is a monomorphism, which is equivalent to condition (1) in the
statement. O

We conclude this subsection combining the above result with a result of Ceccherini-Silberstein
and Coornaert, for which we need the following

Definition 9.24. Let R be a ring, let N be right R-module, let G be a group and let ¢ :
NC — N€ be a linear cellular automaton. Then, ¢ is pre-injective if and only if the restriction
¢ : NG - N s injective.

Proposition 9.25. Let K be a field and let G be a group. The following are equivalent:
(1) K[G] is a domain;

(2) any non-trivial linear cellular automaton K& — K& is pre-injective;

(3) any non-trivial linear cellular automaton K& — K& is surjective.

Proof. The equivalence between (1) and (3) is a consequence of Lemma while the equiva-
lence between condition (1) and condition (2) is [16, Corollary 8.16.12] O

The above proposition extends [16, Corollary 8.16.13] to non-amenable groups.
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Chapter 10

The amenable case

10.1 Surjunctivity

Let X be a finite set and let G be an amenable group. The classical way to prove that any given
cellular automaton ¢ : X¢ — X is surjunctive is via topological entropy. In this section we
explain in detail this approach. First of all we need to give a formula to compute the entropy of
left G-representations induced on the closed G-invariant subsets Y of X“. Given an open cover
B of X we let

By ={BnY :BebB}.

Notice that By is an open cover of Y.

Lemma 10.1. Let X be a finite set, let G be a group and let Y < X be a G-invariant (with
respect to the usual left G-representation (\,G) G X©) closed subset. For any finite subset
Fc @G, letp: XY — XTI be the restriction map and let A = {71{_6% () : x € X}. Then,

(1) let C = {C4,...,Cy} be a finite open cover of Y, where C; = W;il(xi) NY for some finite
subset F; € G and x; € X, for all i = 1,...,n. Then, C has a refinement of the form
(Vger A, LAy for some finite subset F < G.

(2) given an open cover B of Y, there is a finite subset e € F' < G such that (\/ jcp )\EIA)Y < B;

(3) N((Vgep Ay Ay) = mp(Y)]| for any F < G.

Proof. (1) Let F' = | J/_, F; and notice that (\/ cp A, ' A)y is a partition. Furthermore, each Cj
is a finite union of elements of (\/ ¢ A, ' A)y and any element of (\/ e A, 1 A)y is contained in
some Cj (fince Ui Ci =Y = UV yer A; ' A)y and since (Vger A, ' A)y is a partition). Thus,
(Vger Ay 1)y < C.

(2) First of all, we extract a finite sub-cover B’ of B. Let B’ = {By,...,B,}, then each B; is

a union of sets of the form ﬂgeF )\;177}?1,1 (r) Y with F € G finite and z € XF'. Let C be the

family of all such sets and let C’ be a finite sub-cover of C, which exists by compactness. Notice
that ¢’ < C < B’ < B and that C’ has a refinement of the desired form by part (1).

(3) Let A1, Az € (V yep A, ' A)y. By definition, there exist 2; € mp(Y) such that A; = Tt (i) N
Y (for i = 1,2) and so A; = Ay if and only if #; = z5. Thus, the sets in (\/geF A;lA)y are in
bijection with the elements of 7p(Y). O

The above technical lemma allows us to prove the following useful formula.

165
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Proposition 10.2. Let X be a finite set, let G be a countably infinite amenable group and let
5 = {Fy}nen be Folner sequence for G. Given a closed G-invariant subset Y < XGC with the
induced G-action (A\y,G) GY,

_ . Jogmr, (V)
hT()‘ rY75) - }_ng\l] |Fn|

In particular, hp(Aly,s) <log|X| and hr(),s) = log | X|.

Proof. Notice that, given two open covers By, By of Y, if By < Ba, then N(By) = N(B2) and
\/geF Ay 1B, < \/geF )\g_lBl for any finite subset F' < G. This shows that hp(Bi, Aly,s) =
hr(Ba, Aly,s) whenever By < Bs.

By the above discussion and Lemma [10.1] (2)

hr(Aly,s) =sup < hp (\/)\ 1.A) JAly,s | : F € G finite

geF
Consider now a finite subset F' € G and notice that

105N ((Vyer,r " 4) ) 17,1
(vA 1A> s 7o RE IR

geF

9 g N (Vo Xi4), )

= lim
neN |FnF|
(**) hr (AY7 f a5)
where (%) is true since lim,ey |F, F|/|F,| = 1 (this can be proved as in the proof of Lemma

8.19)), while (#x) follows from the fact that F, F is a Fglner sequence (see Lemma [4.22)) and the
topological entropy does not depend on the choice of the Fglner sequence.
The above computation proves that hr(Aly,s) = hr (Ay, Aly,s), thus by Lemma [10.1] (3)

log |7, (V)]
hr(Alys) = lim ==
The last statements follow since log |1x, (Y)| < log |XT"| = |F,,|1log | X]|, for all n e N. O

For our application to surjunctivity we need also to show that the inequality hp(Aly,s) <
log | X| in the above proposition is strict whenever the inclusion Y € X G is proper. For that we
need to apply the formalism of (E, F')-nets (see Subsection [8.2.2)).

Lemma 10.3. Let G be a group, let E, K < G be finite subsets, let F = EE™" and let N € G
be an (E, F)-net. Then,
K< | gFudr(K)F
geN nIng(K)

In particular, |IN n Ing(K)|/|K| = 1/|F| — [0r(K)|/|K]|.
Proof. By the definition of (E, F')-net, the translates of F' cover G, so

Ke |J oF.
NnOutp(K)
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Furthermore, (N N Outp(K))\(N N Ing(K)) € Outp(K)\Inp(K) = dp(K). Putting together
these observations we obtain:

B |y 9res | 9 Y 9F

geN nIng(K) geN NOutp(K) geNnIng(K)

- U gF < 0p(K)F .
gENNOutp(K))\(NnIng(K))

This shows that |K| — [Ugenn g ) 9F| = [K| = IN 0 Ing(K)||F| < [0p(K)[|F|. O

Using the above technical lemma we can give some concrete computation of topological
entropy.

Proposition 10.4. Let X be a finite set, let G be a countably infinite amenable group and let
s = {F,}nen be Folner exhaustion for G. Given a closed G-invariant proper subset Y < X¢
with the induced G-action (Ay,G) GY, hr(Aly,s) < log|X]|.

Proof. We verified in Proposition that

, (Y)]
= ———" - <log|X]|,

neN [P og | X
so we have to show that the above inequality is strict. Since Y < X &, there exists 7 € N such
that g, (V) # X for all n > n, thus, log |7g, (V)| < |Fu|log | X|—1 for all n > n. Let E = Fj,
let F = EE~! and let A be an (E, F)-net. Then, for all n > 7, let F, = F,,\ Ugenningr) 9B

SO

WFn(Y) - H WgE(Y) X XF—"
geNnIng(F,)

Using Lemma [10.3} [N N Ing(F,)|/|Fn| = 1/|F| — |0p(Fy)|/|Fa| and so, for all n > 7,

log |7r, (V)| _ W o Ing(Fa)|log lmp(Y)| + (|Fa] = [N 0 Ing(Fa)||E]) log | X]|

X

Tl )
_ W Ing(B) 105X F) — 1) + ([Fal = IV Ing(Fo)||E]) log |X|
E)
N Ing(F,)| | XE|
=1 X| — 1
og|X| ARl

1 1on(F) x|
<log|X| — (= — 1Y o0 (121
oz |X| <1F| ) e\

By the above computation and the Fglner condition,

loglrr, (V)] loglrr, (V)] _ . 1 [or(F) X7
lim 8P\ L iy PETMEET i (tog | X| = (oo — 1) o (12 T
N T A R A GG

1 |XE|

as desired. O

We are now ready for the announced result:
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Theorem 10.5. Let X be a finite set, let G be a countably infinite amenable group and let
¢: XC — X% be a cellular automaton. Then, ¢ is surjunctive.

Proof. Suppose that ¢ is injective and let us prove that ¢ is surjective. Notice that ¢(X G) =Yis
a closed and ¢ induces an homeomorphism between X and Y (see Theorem [3.11)); furthermore,
Y is a G-invariant subset of X¢. Let s = {F},},,en be Folner sequence for G, then hp(Aly,s) =
hr(A,s) since Aly GY and A G X G are isomorphic representations. By Proposition m this
implies that Y = X©, that is, ¢ is surjective. ]

10.2 Stable finiteness

In this section we use the theory of algebraic entropy to prove that a large class of left R+G-
modules is hereditarily Hopfian, in case R is left Noetherian and G is amenable. We remark
that this is a very strong version of Kaplasky’s Stable Finiteness Conjecture in the amenable
case, which can be re-obtained as a corollary.

Theorem 10.6. Let R be a left Noetherian ring, G a countably infinite amenable group and
let R+G be a fixed crossed product. Then, for any finitely generated left R-module rK, the left
R«G-module R+G @r K is hereditarily Hopfian.

In particular, Endgeq (M) is stably finite for any submodule pecM < R+G ®p K.

The proof of the above theorem makes use of the full force of the localization techniques
introduced in Chapters [1| and Such heavy machinery hides in some sense the idea behind
the proof; this is the reason for which we prefer to give first the proof of the following more
elementary statement, whose proof is far more transparent.

Lemma 10.7. Let K be a division ring, let G be a countably infinite amenable group and fix
a crossed product K«G. For all n € Ny, (K«G)" = K«G ® K" is a hereditarily hopfian left
K«G-module.

Proof. Let n € Ny and choose K«G-submodules N < M < (K«G)™ such that there exists a
short exact sequence
0->N->-M->M-—>0,

we have to show that N = 0. The length function dim : K-Mod — Rx>gu {o0} is compatible with
any crossed product, so we can consider the dim-entropy of left K«G-modules. In particular, we
have that entqiy, (M) = entgim (M) + entqim, (N) and

0 < entgim (V) < entgim (M) < entgin (K«GQK") =n.
Thus, entqim (V) = 0. By Proposition this implies that dim(/V) = 0, that is, N = 0. O

The same argument of the above proof can be used to prove Theorem [10.6], modulo the
fundamental tool of Gabriel dimension:

Proof of Theorem[10.6, Consider a left R+G-submodule M < R+*G ®r K and a short exact
sequence of left R+G-modules

0 — Ker(¢) — M -2 M — 0.

In order to go further with the proof we need to show that, as a left R-module, the Gabriel
dimension of Ker(¢) is a successor ordinal whenever it is not —1 (i.e., whenever Ker(¢) # 0).
This follows by the following
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Lemma 10.8. In the hypotheses of Theorem G.dim(gN) is a successor ordinal for
any non-trivial R-submodule N < R+G ®p K.

Proof. A consequence of Lemma (4) is that To41(K)/To(K) # 0 for just finitely
many ordinals a. Notice that Ty (R+G ®r K) ~ R+G ®r To(K), as left R-modules, for
any ordinal a. Thus, Tq41(R*G ®r K)/To(R+G ®r K) # 0 for finitely many ordinals.
Notice also that To(N) = To(R+G ®g K) n N for all «, thus,

To1(N) Top(R+GRRK)N N

To(N)  To(R+GRrK)NnN ~

- (Ta+1(R*G ®r K) N N) + TQ(R*G ®r K) < Ta+1(R*G ®r K)
To(R+G ®p K) S T, (R+G®r K)

is different from zero for finitely many ordinals . Thus,
G.dim(N) =sup{a+1: Tq11(N)/To(N) # 0} = max{a +1: Tay1(N)/Ta(N) # 0}

is clearly a successor ordinal. O

Now, suppose that Ker(¢) # 0 and let G.dim(Ker(¢)) = o + 1. We want to show that

Al Tar1 (M) — Toq1(M)

is surjective. Indeed, if there is z € To11(M)\¢(Ta+1(M)), it means that there exists y €
M\Ty+1(M) such that ¢(y) = = (by the surjectivity of ¢). This is to say that there is a short
exact sequence

0 — Ker(¢) n R+Gy — R«Gy — R+Gx — 0,

with G.dim(gr(R*Gy)) = a + 1 > max{G.dim(r(Ker(¢) n R*Gy)), G.dim(r(R+Gz))}, which
contradicts Lemma m (2). Thus, we have a short exact sequence of left R+G-modules

0 — Ker(¢) > To41(M) > Toi1(M) — 0.

Consider the length function ¢, : R-Mod — R u {0} described in Subsection and recall
that Ker({,) is exactly the class of all left R-modules with Gabriel dimension < «. Furthermore,
T,+1(K) is a Noetherian module, thus, Q. (Tq+1(K)) is a Noetherian object in a semi-Artinian
category, that is, an object with finite composition length, for this reason fn(Toi1(K)) =
0(Qa(Ta+1(K))) < 0. Using the computations of Example and the Addition Theorem, we
get

enty, (To+1(R+*G® K))) = enty, (R+*G Q To11(K))) = lo(Tar1(K)) < 0

and
enty, (Tas1(M)) = enty, (Tay1(M)) + enty, (Ker(g))

Hence, enty, (Ker(¢)) = 0 which, by Proposition is equivalent to say that Ker(¢) < Ker(4,),
contradicting the fact that G.dim(Ker(¢)) = a + 1. O

In the above proof we made use of the Addition Theorem for the algebraic entropy, which
is quite a deep result. We want to underline that if one is only interested in the second part
of the statement, that is, stable finiteness of endomorphism rings, then it is sufficient to use
the weaker additivity of the algebraic entropy on direct sums, which can be verified as an easy
exercise independently from the Addition Theorem.
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Example 10.9. Let G be a free group of rank = 2 and let K a field. It is well-known that K[G]
is not left (nor right) Noetherian so we can find a left ideal gjg1I < K[G] which is not finitely
generated. Furthermore, by [23, Corollary 7.11.8], K[G] is a free ideal ring, so I is free. This
means that I is isomorphic to a coproduct of the form K[G](N) which is obviously not Hopfian.

10.3 Zero-Divisors

In this section we provide an alternative argument to answer Questionfor amenable groups (in
the more general setting of crossed products) and we translate the amenable case of Conjecture
[0.18)into an equivalent statement about algebraic entropy. This approach is inspired to the work
of Nhan-Phu Chung and Andreas Thom [22]. Indeed, we can prove the following

Theorem 10.10. Let K be a division ring and let G be a countably infinite amenable group.
For any fized crossed product K«G, the following are equivalent:

(1) K«G is a left Ore domain;

2) K«G is a domain;

(2)
(3) entgim(k«gM) = 0, for every proper quotient M of K«G;
(4) Im(entqim) = N U {o0}.

Before proving the above theorem we need to establish the following relation between the
Ore property and the existence of a suitable length function.

Proposition 10.11. A domain D is left Ore if and only if there exists a length function
L: Ob(D-Mod) — Rxg u {0} such that L(D) = 1.

Proof. If D is left Ore, then D is a flat subring of a division ring K. Then there is an exact
functor K®p — : D-Mod — K-Mod which commutes with direct limits. Thus, we can define
the desired length function L simply letting L(pM) = dimg(K ®p M).

On the other hand, suppose that there is a length function L: Ob(D-Mod) — R u {00} such
that L(D) = 1 and choose z, y € D\{0}. Since D is a domain, both Dz and Dy contain
(and are contained in) a copy of D, thus L(Dx) = L(Dy) = 1. If, looking for a contradiction,
Dz n Dy = {0}, then

1= L(D) = L(Dx + Dy) = L(Dx @ Dy) = L(Dx) + L(Dy) = 2,
which is a contradiction. O

It is a classical result that any left Noetherian domain is left Ore (see for example [73]
Theorem 1.15 in Chapter 2.1]). By the above proposition we can generalize this result as follows:

Corollary 10.12. A domain with left Gabriel dimension is necessarily left Ore.

Proof. Let D be a domain with left Gabriel dimension. First of all we verify that G.dim(pD) is
not a limit ordinal. Indeed, if G.dim(pD) = A is a limit ordinal, then D = J,_, Ta(D). This
means that, for any non-zero x € D, there exists & < A such that Dz € T,(D). Choose a non-
zero x € D, as D is a domain, there is a copy of D inside Dz. Thus, G.dim(D) < G.dim(Dz) < «
for some o < A, a contradiction.

If G.dim(pD) = a + 1 for some ordinal «, then we can consider the length function

la: Ob(D-Mod) — Rsg U {0} ,  La(M) = £(Qa(M)).
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To conclude one has to show that ¢, (D) = 1, that is, Qn (D) is a simple object. Since €411/C,
is semi-Artinian, there is a simple subobject S of Qu(D). Then S,(S) is a sub-module of
SaQa (D). Identify So(S5), SaQa(D) and D with submodules of E(D), since D is essential in
E(D), there is 0 # = such that x € S,(S) n D, but then S,(S) contains an isomorphic copy of
D. Thus Q,S.(S) = S contains an isomorphic copy of Q (D), which is therefore simple. O

We can finally prove our result:

Proof of Theorem[10.10 (1)=>(2) is trivial while (2)=(1) follows by Proposition [10.11| and the
fact that the algebraic dim-entropy is a length function on K«G-Mod such that entgiy, (k+cK*G) =
1.

(2)=>(3). Consider a short exact sequence 0 — kil — g:cK+G — gugM — 0, with
I # 0. Choose 0 # x € I, then K«Gzr =~ K«G, and so entgim(k«cM) = entgim(k+cK+G) —
entdim(]K*GI) <1—-1=0.
(3)=(4). Let us show first that for any finitely generate left K«G-module g«gF', entgim(k«cF) €
N. In fact, choose a finite set of generators x1,...,z, for F' and, letting Fp = 0 and F; =
K+«Gr1 + -+ + K«Gux; for all i = 1,...,n, consider the filtration 0 € Fy € Fb € --- C F,, = F.
By additivity, .
entgim (F) = Z entqim (F3/Fi—1) -

i=1
All the modules Fy/Fy,..., F,/F,_1 are cyclics (i.e. quotients of K«G), thus entqy, (F;/Fi—1) €
{0,1} by hypothesis. Hence, entqiy, (F) € N. To conclude one argues by upper continuity that

the algebraic dim-entropy of an arbitrary left K«G-module is the supremum of a subset of N,
thus it belongs to N u {c0}.

(4)=(2). Let z € K«G and consider the short exact sequence
0—1—-Ks«G - KeGzr — 0

where I = {y € K«G : yz = 0}. Suppose that x is a zero-divisor, that is, I # 0 or, equivalently,
dim(g/) # 0. By Proposition entgin, (1) > 0 and, by our assumption, entz,(I) > 1. Hence,
using additivity, entgy,(K«Gz) = 0. Again by Proposition this implies dim(K«Gz) = 0
and consequently K«Gz = 0, that is, x = 0. Thus, the unique zero-divisor in K«G is 0. ]
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Chapter 11

The sofic case

In this chapter we describe a “point-free strategy” to solve the sofic case of both the L-
Surjunctivity and of the Stabel Finiteness Conjectures. In particular, we will prove the following
theorems.

Theorem Let R be a ring, let G be a sofic group and let rRN be an Artinian left R-module.
Then, any linear cellular automaton ¢ : NG — NS is surjunctive.

Notice that the above theorem generalizes in different directions the main results of [15] and
[14]. Furthermore, the following general version of the Stable Finiteness Conjecture for sofic
groups, generalizes results of [38] and [5]:

Theorem [11.11] Let R be a ring, let G be a sofic group, fix a crossed product R+G, let N be
a finitely generated right R-module and let Mp.q = N ®gr R+G.

(1) If Ng is Noetherian, then any surjective homomorphism ¢ : M — M is injective;
(2) if Nr has Krull dimension, then Endpsq(M) is stably finite.

The chapter is organized as follows: first we prove some general results for gframes in Section
then in Section we deduce from these results the proof of the above theorems.

11.1 Main Theorems

11.1.1 The 1-dimensional case

I've learnt the arguments used in the proof of the following lemma while reading [38, proof of
Proposition 4.4] and [105], proof of Lemma 3.1]. Also Lemma is inspired by the argument
used by Weiss to show surjunctivity of sofic groups.

Lemma 11.1. Let G be a group, let K be a finite symmetric subset of G and let H = KK.
Choose n € Nxo, let € be a positive constant such that € < ﬁ, let V' be a finite set, let

¢ : G — Sy be an (H,e)-quasi-action of G on 'V and define the following set:
V ={veV:hv#hvand (hithe)v = hi(hav), for allh # h' € H, hy,ho € H}.
Then, the following statements hold true:
1) V=@ =1/m)V];
(2) there is a subset W <V such that Kv n Kw = & for allv #we W and |W| = |V|/2|H]|.

173
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Proof. (1) A given v € V belongs to V if and only if it satisfies the following two conditions:
(a) Phy (1)) 7 ©hy (U) for all hy # ha € H;

(b) Phihs (’U) = Phy (Qohz (’U)) for all h’l: he € H.

There are less than |H|? equations in (a) and each of these equations can fail for at most ¢|V/|
elements v in V. Similarly, there are |H|? equations in (b) and each of these equations can fail
for at most €|V| elements v € V. Thus, the cardinality of V' is at least

VI = (IHPelV] + [HPe|V]) = [VI(1 = 2|H[*¢) > [V|(1 = 1/n).

(2) Let W be a maximal subset of V with the property that Kv n Kw = & for all v # w e W.
We claim that HW contains V. In fact, if there is v € V' such that v ¢ HW, this means that, for
all we W, Kvn Kw = &, contradicting the maximality of W. Thus, |V| < |[WH| < |W||H]|.
To conclude, use that 2|V| > |V| by part (1) and the choice of n. O

Lemma 11.2. In the same setting of Lemma let (L1,<) and (L2, <) be two qframes of
finite length and consider a homomorphism of qframes ® : L1 — Lo. Let | € N3y and suppose
that

(1) there is distinguished family of elements {Z, : ve KV} such that

(1.1) VgpZo=1;
(1.2) £(z,) =1, for allve KV;

(2) £V perw ®(@0)) < |K[l—1, for allwe V.
Then, /(Im(®)) < (1 - Q%HU) VL.

Proof. Choose a W € V as in part (2) of Lemma By Lemma

0(D(Ly)) =z<\/ @(mv)> </ \/ @) +e< \/ <I>(xv)> .

veKV veKV\KW veKW

Furthermore,

z( \V4 <I>(xv)> < > ( \V Cb(mv)> < |WI(K|1-1).

veKW weW veKw
By the choice of W, |[KV\KW| = |KV| =3, v |Kw| = |KV| — |W||K| and, by Lemmam
¢ <\/veK\7\KW q)(fi‘v)) <! <\/ver/\Kw fv>, thus

ol wm < ) U@ = [KV\EW|L= (KV| - [W|IK|)l < (V|- [W||K|)I,
veKV\KW veKV\KW

Putting together all these data, we get

(L) < WK~ 1) + (V] — W] = —[W] + V]I < (1 - 2|1H|l> Vil
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Theorem 11.3. Let M be a qframe, let G be a sofic group, let p : G — Aut(M) be a right
action of G on M (we let p(g) = pg for all g € G) and let ¢ : M — M be a G-equivariant
homomorphism of gframes, that is, pgd = ¢pg, for all g € G. Choose an element yj € M such
that

(a) £(y) =1 <o0;
(b) the family {g, : g € G} is join-independent, where g, = py(y) for all g € G;
(c) there ezists a finite symmetric subset F' < G such that ¢(y) < \/geF g and e € F'.

Fiz an F as in (¢) and let K be a finite symmetric subset of G containing F. Then, the following
conditions are mutually exclusive:

(1) g< \/geK ¢(gg);'
() €(Vyer 00 ) < 1KJL-1.

Proof. Assume, looking for a contradiction, that both (1) and (2) are verified. We start by
constructing some objects to which we want to apply Lemmas [T1.1] and [I1.2}

First we construct the objects mentioned in Lemma Choose a positive integer n > 2|H|l,
let H = KK, let € be a positive constant such that ¢ < let V' be a finite set, let p : G — Sy

be an (H,e)-quasi-action of G on V and define

_ 1
2n|H|?>

V ={veV :hv#hvand (hihs)v = hi(hov), forall h # h' € H, hy,ho € H}.

Secondly, we construct the objects mentioned in Lemma [11.2] For a subset G’ < G, we use
the notation yg = \/gEG’ g and, for all v € V, we let le be a gframe isomorphic to [0, ge].

For all v € V, we identify both Q§ = 1{,6} and QX with sub-qframes of QI in such a way that
there is an isomorphism of gframes

Qv : QUH - [OagH])

such that ¢,(Q¢) = [0, 7] and ¢,(QX) = [0, yx]. For all ve V, the map o, : Hv — H such that
oy(hv) = h is well defined and bijective. So, given v € V and w € Hv we let

q;” : Qg;’[oa gHav(w)]
be the composition g, = py, (w)qw- Let us introduce the following notation for all G' c G:
QY =JJQf, va'ca.
veV

For all v € V, we denote by L,f’ : Qfl — Q% the canonical inclusion in the product. Consider,
for all v € V, the following homomorphism of gframes:

U, : QY — [0, 1] such that (ay)yer — \/ q,) (ay)
weHvAV

Given a, be QF let
a~b <= V,la)=V,0b)VveV.
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This defines a strong congruence on Qff and, by restriction, on Q¥. Let L; = Q¥ /. and
Ly = QH/~ and let 7 : QX — Ly and m : Qf — Lo be the canonical projections. For all
veV,let &, : QX — QF be the unique map such that ¢,®,(x) = ¢(g.(2)), for all z € QXK. We
let @ : QX — Q be the product of these maps, that is, ®(,),cp = (Po(20))pep- Given two
elements a ~ b e QX, ®(a) ~ ®(b). In fact, for all v e V,

\I/vq)(a) = \/ pov(w)QwCI’w(aw) = \/ pav(w)ngw(aw) =¢ < \/ qqu)(aw)>

weHvNV weHvNV weHvAV
:¢< \/ QUw(bw)>:”-:\I/v(I)(b)'
weHvAV

Let ® : Ly — Lo be the unique map such that ®m; = ma®. One verifies that ® is a morphism of
gframes.

Now that the setting is constructed we need to verify that the hypotheses (1) and (2) of
Lemma |11.2) are satisfied. For all v € V and k € K we let 2} = B¢ (). Let us show that
x} ~ x}, if and only if kv = kv’. Indeed, given v, v’ € V and k, k’ € K such that z} ~ x}éi, notice
that

\I]U(x}é) = Yk and \Ilv(qu;;) = pav(v’)gk’
if v' € Hv, otherwise it is 0. Thus, o, (v )k’ = k, that is, v" = oy, (v')v = (k") kv, so kK'v' = kv
(here we are using that v, v € V). Hence, given w = kv € KV, we can define z,, = mi(z})

without any ambiguity. Clearly \/ cxy Zv = 1, let us show that the family {Z, : v € KV}c
is join-independent. Indeed, given k'v' € KV,

/
Ty A \/ Tpy = T le/\ \/ JJZ =7T1(0)=0,

kv #£kve KV kv £kwe KV

where the first equality comes from the definition of the z,, and the properties of 7; (see Lemma
, while the second equality holds since the family {7 : kv e KV} < Q¥ is join-independent.
Furthermore, for all w e V:

e ( v @(x») _ ( V w@f)) e ( Y mwff)) <t ( \ @(Qf))

veKw veKw veKw veKw

< U¢([0,7x])) < [K[l—1.

In the last part of the proof we obtain the contradiction we were looking for. Indeed, we claim
that the restriction of mg to Q° is injective and that 72 (Q¢) € ®(L1). In fact, let a = (ay),cp and
b= (by)yey € Q° and suppose that m(a) = m(b), that is, a ~ b. For allve V and we Hvn'V,
by construction, ¢ (aw), ¢ (bw) < Yoo (w)- S0, using modularity and the independence of the
family {g, : g € G},

QU(CLU) = QU(CLU) v 0= hv(av) v \/ q;;u(aw) ANYI=YAN QU(CLU) \% \/ q;v(aw)
v#FweHvNV vEweHvNV
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that is, a, = by, for all v € V. Our second claim follows by construction and the hypothesis (1).
Also recalling the estimate for |V| given in Lemma the two claims we just verified imply
that

() > () = £Q) = V1> (1- 1) Wt

Furthermore, by Lemma [11.2] /(Im(®)) < (1 - ﬁ) |V|l. Thus, n < 2|H|l, which is a contra-
diction. O

11.1.2 Higher dimensions

Lemma 11.4. Let (M, <) be a gframe, let G be a group, let p: G — Aut(M) be a right action
of G on M and consider an algebraic G-equivariant homomorphism of qframes ¢ : M — M.
Suppose that there exists an element y € M such that [0,y] is finitely generated and such that,
letting yq = pg(y) for all g € G, the family {yq : g € G} is a basis for M. Then,

(1) ¢ is surjective if and only if there exists a finite subset K = G such that y < \/geK &(yq);

(2) @ is not injective if and only if there exist a finite subset K € G and 0 # x < \/geK Yg such
that ¢(x) = 0.

Proof. (1) Suppose that ¢ is surjective, then \/ .; ¢(yy) = #(1) = 1. By Lemma one
can find a finite subset K < G such that y < \/geG #(yg) - On the other hand, if there exists
K < G such that y <\ cx ¢(yg), then yp < Vg1 6(yg) < ¢(1) for all b € G. Thus,
1=V jeayn < é(1) and so ¢ is surjective.

(2) By the algebraicity of ¢, if ¢ is not injective, there is a non-trivial element 2’ € Ker(¢).
By Lemma there exists a finite subset K < G such that 2/ A Ve Yg # 0, so that
r=1 A\ gek Yg 18 the element we were looking for. The converse is trivial. O

Theorem 11.5. Let (M, <) be a gframe, let G be a sofic group, let p : G — Aut(M) be a right
action of G on M and consider a surjective algebraic G-equivariant homomorphism of qframes
¢ : M — M. For a given element y € M such that [0,y] is compact, consider the following
conditions:

(ax) [0,y] is Noetherian;

(ax’) K.dim([0,y]) ezists and there is a homomorphism of qframes 1» : M — M such that
oY = id;

(by) letting y, = py(y) for all g € G, the family {y, : g € G} is a basis for M.
If (by) and either (ay) or (d,) hold, then ¢ is injective.

Proof. Suppose, looking for a contradiction, that ¢ is not injective. Suppose that (by) is verified,
so by Lemma there exists a finite subset K of G such that

(L) ¥ < Vgex 0(yg);
2.) there exists 0 # x < 1q such that ¢(x) = 0.
geK 99

Furthermore, since [0, y] is compact, also [0, ¢(y)] is compact and so there exists a finite subset
F < G such that
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(3+) 0(y) < Vyer Ug-

In case (ay) is verified, by Lemma [2.47] there exists an ordinal o such that G.dim([0, Ker(¢)]) =
a+ 1. On the other hand, if (a’,) is verified, we let o be any ordinal such that t,(z) # ta+1(z).
In both cases, let M = Qu(Tp11(M)) and denote by 7 : Ty, 1(M) — M the canonical projection.
We let = 7(tor1(7)) and § = 7(tas1(y)). There is an induced right action of G on M, p: G —
Aut(M), where py = Qo (Ta+1(pg)) for all g € G. Of course, the map ¢ = Qo (Tu+1(¢)) : M — M
is G-equivariant. One can prove that py(y) = 7(ta+1(yg)), for all g € G, and so, whenever (b,) is
verified, the family {7, : g € G}, where §, = p,(7), is a basis of M (it is clear that \/ 7, = 1, to
see that this family is join-independent use that the canonical projection commutes with joins
and finite meets by Lemma .

Suppose that (ay) is verified. By Proposition (2), [0,y] is semi-Artinian and, by
(as), it is also Noetherian. Thus, £(j) = | < oo. Notice that, by (3:), ¢(y) < V ger Yg
and, by (14), tat+1(y) € [0,V i #(yg)], thus there exists z < \/ cx yy such that ¢(z) =
ta+1(y). By the algebraicity of ¢ and Lemma [2.42] (2), G.dim([0, z]) = max{G.dim([0, Ker(¢) A
z]), G.dim([0, ta+1(y)])} = a + 1, thus z € [0,\/geK ta+1(yg)]- Applying m, we obtain an ele-
ment 7(z) € [0,\/ cx Yg] such that ¢(m(z)) = m(é(2)) = §. Thus, § < Vi ¢(yg). By the
choice of a, Ker(¢) # 0 and so, by Lemma there exists a finite subset F” < G such that
Ker(¢) A \/ ger Ug # 0. Let K " be a finite symmetric subset of G which contains both F’ and
K, then

Y s \/ ¢(gy) and ¢ \/ o(gy) | < |K'll -1,
geK’ geK’
by the above discussion and Lemma These two conditions cannot happen for the same K’
by Theorem so we get a contradiction.

Suppose now that (a’,) is verified. We define ¥ = Qo (Tws1(¥)) : M — M, so that ¢¢p = id.
Consider the socle Soc(M) = [0,s(M)] and notice that s(M) = V yec 8([0,9g])- Since [0, 7]
is semi-Artinian and it has Krull dimension, then it is Artinian, thus, itﬁhas a socle of finite

length: let I = /(s(y)). By the choice of a, Z # 0 and s(z) = Z A s(M) # 0, since, being
M semi-Artinian, s(M) is essential in M. Since Soc(M) is fully invariant (see Lemma

(4)), QE[SOC(M)@Z_’TSOC(M) = idgoe(np)- The family {s(yy) : g € G} is clearly join-independent.
Furthermore, using the fact that [0, s()] is compact (since it has finite length), also [Olqz_ﬁ(s(g))]
and [0,(s(7))] are compact, so there exists a finite subset F' < G such that ¢(s()), ¥ (s(y)) <

V jer 8(Jg)- Let K’ € G be a finite symmetric subset that contains both F' and K, then

s@) =W))< b | \/ s@) | <\ d(s(Wy) and €| \/ d(s(y)) | <|K'J1 -1,

geK’ geK’ geK'

by Lemma and the fact that ¢(s(z)) = 0. This is a contradiction by Theorem m O

11.2 Applications

11.2.1 L-Surjunctivity

In this subsection we use the general results we proved for qframes in the first half of the chapter
to deduce a surjunctivity theorem for a suitable family of linear cellular automaton. Let us start
defining a natural gframe associated with strictly linearly compact modules.
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Definition 11.6. Let R be a discrete ring and let M be a linearly topologized left R-module.
We let (N (M), <) be the poset of submodules of M, ordered by reverse inclusion.

Lemma 11.7. Let R be a discrete ring, let M and N be strictly linearly compact left R-modules
and let ¢ : M — N be a continuous homomorphism of left R-modules. Then, N' (M) and N'(N)
are qframes and the map

®: N(N) - N(M) such that ®(C) = ¢~1(C)

1§ a homomorphism of qframes. Furthermore, if ¢ is injective then ® is surjective and algebraic,
and, under these hypotheses, ® is injective if and only if ¢ is surjective.

Proof. 1t is easy to check that N (M) and N(N) are complete lattices (in fact, the maximum
of N (M) is 0, while its minimum is M; furthermore the meet of two closed submodules is the
closure of their sum, while the join of a family (finite or infinite) of closed submodules is their
intersection). To show that N(M) is modular take A, B, C € N(M) such that A < C (that
is, C < A). Using, the modularity of the lattice of all submodules £(M) of M with the usual
order, one gets C' + (B n A) = (C + B) n A, thus

C+(BnA)=(C+B)nA=(C+B)nA,

which is the modular law in N (M). The fact that N (M) and N (N) are upper continuous is
proved for example in [I03, Theorem 28.20].

The map ® is well-defined by the continuity of ¢, that ensures that ¢=!(C) € N(M), for all
C e N(N). Since ¢! commutes with arbitrary intersections, ® commutes with arbitrary joins.
Let now C; < Co € N(N) and let us show that ®([C1,C3]) = [®(C1), ®P(C2)]. Indeed, given
C e [®(C1), ®(Cy)], ¢~ 1(Ca) < C < ¢ 1(CY), so that Cy N ¢(M) S ¢(C) < Cy N ¢(M). Thus,

C = 3(¢(C)) = B(¢(C) + (Ca 1 $(M)))
= 9((¢(C) + Ca2) N ¢(M)) = &(¢(C) + Ca)

where in the first line we used that C contains the kernel of ¢, while in the second line we
applied the modular law. Since ¢(C) + Cq € [C1, C2], ® sends segments to segments and so it is
a morphism of qgframes.

Suppose now that ¢ is injective. To show that @ is surjective notice that, by the injectivity of ¢,
®([0,1]) = [0,®(1)] = [0,Ker(¢)] = N(M). It remains to show that ® is algebraic: it is enough
to notice that Ker(®) = ¢(M) and that, given Cy, Cy € [¢(M),1] such that ®(Cy) = ®(Ch),
then

Ci1=Cing(M) =¢(¢~(Ch)) = (¢~ (Ca)) = Ca n ¢(M) = Cs.

Finally, since ® is algebraic, ® is injective if and only if Ker(®) = 0, that is, ¢(M) = M, which

is equivalent to say that ¢ is surjective. O

Theorem 11.8. Let R be a ring, let G be a sofic group and let gN be an Artinian left R-module.
Then, any linear cellular automaton ¢ : N& — NC is surjunctive.

Proof. Suppose that ¢ : N — N© is an injective linear cellular automaton and let us prove
that it is surjective.

By Lemmas and (2), N¢ is strictly linearly compact so, by Lemma N(N%) is a
gframe. Furthermore, the map

p:G— AN (NY) plg) = py.,
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such that pg(K) = )\g_l(K), for all K e N(N%) and g € G, is a right action and the map
©:N(NY) - N(N) ©(K) =¢!(K),

for all K € N(N%), is a G-equivariant surjective algebraic homomorphism of gframes.

Let y = 7, 1({0}), where 7. : N — N€ is the usual projection, notice that [0,y] = N(N) is a

Noetherian lattice and let y, = py(y), for all g € G. It is clear that {y, : g € G} is a basis for

N(NG).

By the above discussion, hypotheses (a,) and (bs) of Theorem are satisfied and so @ is

injective. By Lemma ¢ is surjective. O

11.2.2 Stable finiteness of crossed products

Lemma 11.9. Let R be a ring, let M and Ny be right R-modules and let ¢ : M — N be a
homomorphism of right R-modules. Then, (L(M),<) and (L(N),<) are gframes and the map
O L(M)— L(N) such that ®(K) = ¢(K)

18 a homomorphism of qframes. Furthermore, if ¢ is surjective, then ® is surjective and algebraic,

and, in this case, ® is injective if and only if ¢ is injective.
Proof. In any given Grothendieck category, the posets of sub-objects are gframes (the maximum
of L(M) is M, while its minimum is 0, furthermore, join and meet are given by sum and inter-
section respectively). By Proposition ® is a semi-lattice homomorphism which commutes
with arbitrary joins. To show that ® sends segments to segments, let K1 < Ko € £L(M) and
consider K € [®(K), P(K2)]. Then,
K= 'K)=%¢ 'K n¢ '¢(K))

= ®(¢7 K n (Ka + Ker(¢))) = ©((¢7 'K n K») + Ker(¢))

= ®(¢" K n k) + ®(Ker(9) = D(¢ 'K n Ka),
where in the first line we used that K is contained in the image of ¢, while in the second line we

used the modularity of £L(M). Since ¢~(K) n Ky € [K1, K2] we proved that ® sends segments
to segments, thus it is a morphism of gframes.

Suppose now that ¢ is surjective. Then, ® is surjective as ®(1) = ¢(M) = N, which is the
maximum of £(N). To show that & is algebraic, notice that Ker(®) = Ker(¢) and that, given
K, Ky € [Ker(¢), 1] such that ®(K;) = ®(K3), we get

Ky = K1 + Ker(¢) = ¢ (¢(K1)) = ¢ (#(K2)) = Ky + Ker(¢) = K».

Finally, notice that ¢ is injective if and only if Ker(¢) = Ker(®) = 0, which happen, by the
algebraicity of ®, if and only if ® is injective. O

Lemma 11.10. Let R be a ring, let G be a group, fix a crossed product R+G, let Mpr.q be
a right R+G-module and let ¢ : Mp.g — Mp«c be an endomorphism of right R+G-modules.
Letting Lr(M) denote the gframe of R-submodules of M, the following map

p:G— Aut(Lp(M)) p— pg: Lr(M) — Lr(M),

where py(K) = Kg, for all g€ G and K € Lr(M) is a right G-representation. Furthermore, the
endomorphism of qframes

®: Lr(M) — Lr(M) such that ®(K) = ¢(K)

18 G-equivariant.
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Proof. Let N € Lr(M), r € R and g € G. Then, ps(N)r = Ngr = Nra(g)g S Ng and so
pg(N) € Lr(M). Let now {N; : i € I} a family of elements in Lp(M), then

Py (Z NZ-) = (Z Ni) g = (Nig) = X pg(Ni)

el el iel iel

SO pg is a semi-lattice homomorphism which commutes with arbitrary joins. Furthermore, given

g,heGand N € Lr(M),

pg(pr(N)) = pg(Nh) = Nhg = N7(h,g)hg = Nhg = ppe(N),

where the fourth equality holds since 7(h, g) € U(R). In particular, pgp,—1 = pg-1pg = idz,an)
so, given a segment [Ny, No| in Lg(M) and N € [py(N1), pg(N2)], then N = py(p,~1N) and
pg-1IN € [N1, N2]. Thus we proved that each py is a homomorphism of gframes and that p is a
right G-representation.

Finally, let us show that p,® = ®p,. Indeed, given N € Lr(M),

pg®(N) = ¢(N)g = ¢(Ng) = ®(pyg(N)),
where the third equality holds since ¢ is a homomorphism of left R+G-modules. O

Theorem 11.11. Let R be a ring, let G be a sofic group, fix a crossed product RxG, let Ng be
a finitely generated right R-module and let M = N @ R+G . Then,

(1) if Ng is Noetherian, then any surjective R+G-linear endomorphism of M is injective;
(2) if Nr has Krull dimension, then Endg.q(M) is stably finite.

Proof. The proof is an application of Theorem and consists in translating the statement in
a problem about gframes using the above lemmas.

Suppose first (1) and let ¢ : M — M be a surjective endomorphism of right RxG-modules.
Consider the gframe Lr(M) of all the right R-submodules of M (which is described in Lemma
, with the right G-action described in Lemma By the same lemma, ¢ induces a
G-equivariant surjective algebraic homomorphism of gframes ® : Lr(M) — Lr(M).

Let y = N ® e € Lr(M), and notice that conditions (as) and (bs) in Theorem are verified
for this choice of y. Thus, by the theorem, ® is injective and this is equivalent to say that ¢ is
injective by Lemma

The proof of part (2) is analogous. O
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Chapter 12

Model approximations

12.1 Model categories and derived functors

In this section we recall some definitions and terminology about the general machinery of model
categories.

Definition 12.1. Let € be a category and let W be a collection of morphisms in €. The pair
(€, W) is said to be a category with weak equivalences if, given two composable morphisms ¢
and ¥, whenever two elements of {¢,1, 1o} belong to W so does the third. The elements of VW
are called weak equivalences.

We now recall the definition of a model category. We will just give few concrete examples
of model category (see Examples and [12.12]), we refer to [35] and [61] for further examples

and properties.

Definition 12.2. Let M be a complete and cocomplete category and let W, B and C be three
classes of morphisms; (M, W, B,C) is a model category provided the following conditions hold:

(MC.1) (€,W) is a category with weak equivalences;

(MC.2) W, B and C are closed under retracts (in the category of morphisms). That is, given a
commutative diagram as follows:

id
X—X —=X

i)

Y —Y ——=Y

if ¢' belongs to W (resp., B or C), so does ¢;

(MC.3) consider the following diagram,
C——B

' . B
where b € B and c € C. If the external square commutes and either b € W or c e W,
then there exists Y as above making the entire diagram commutative;

185
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(MC.4) given a morphism ¢, there existbe BAW, ceC, b € B and ¢ € C n W, such that

¢=bc and ¢p="bc.

The elements of W, B, BAW, C and Cn W are called respectively weak equivalences, fibrations,
acyclic fibrations, cofibrations and acyclic cofibrations.

Given an object X € Ob(M), if the unique map from the initial object to X is a cofibration, then
X is said to be cofibrant. If the unique map from X to the terminal object is a fibration then X
1s said to be fibrant.

The following example allows one to encode the machinery of classical homological algebra
in the scheme of model categories.

Example 12.3. Let € be a Grothendieck category and recall that the category Ch(€) of (un-
bounded) cochain complexes on € is a complete and cocomplete category. Let W be the class of
quasi-isomorphisms in Ch(€), then (Ch(€), W) is a category with weak equivalences.

Let B be the class of all the epimorphisms with dg-injective kernels (see Deﬁnition and
let C be the class of monomorphisms, then (Ch(€), W, B,C) is a model category (see for example
[61] or [45] for a proof).

Notice that, in this model category, the fibrant objects are exactly the dg-injective complezes,
while any complex is cofibrant.

Consider now the following definition:

Definition 12.4. Let (M, W, B,C) be a model category and let X, Y € Ob(M).

A morphism o : QX — X is a cofibrant replacement of X if QX is a cofibrant object and « is
an acyclic fibration. Furthermore, given a morphism ¢ : X — Y and two cofibrant replacements
a:QX — X and o : QY — Y, a cofibrant replacement Q¢ of ¢ is a morphism that makes the
following square commute:

QXL>X

o

QY 2 -v.

Dually, B : X — RX is a fibrant replacement of X if RX is a fibrant object and 3 is an acyclic
cofibration. Given a morphism ¢ : X — Y and two fibrant replacements § : X — RX and
B :Y — RY, a cofibrant replacement R¢ of ¢ is a morphism that makes the following square
commute:

X % RX

e

Y —— RY.

The axioms that define a model category always allow one to find cofibrant an fibrant re-
placements for any object and morphism in a model category.

In the concrete situation of Example a fibrant replacement of a cochain complex X*® e
Ob(Ch()) is a quasi-isomorphism X* — E* where E*® is a dg-injective complex. By Lemma
we can always find a fibrant replacement for any left-bounded complex. A consequence of
the existence of the model structure described in Example [12.3]is that any cochain complex in
Ch(¢) is quasi-isomorphic to a dg-injective complex.



12.1 Model categories and derived functors 187

12.1.1 The homotopy category

Let (€,V) be a category with weak equivalences. Ideally one would like to “invert” all the
morphisms in the class W in order to obtain a new category €[WW™!] in which all the weak
equivalences become isomorphisms. Furthermore, one also wants this process to be minimal in
some sense. This can be formalized using the concept of universal localization:

Definition 12.5. The universal localization of a category with weak equivalences (€, W) is a
pair (W], F) of a category E(W™1] and a canonical functor F : € — €W~ such that F(¢)
is an isomorphism for all ¢ € W. Furthermore, if G : € — B is a functor such that G(¢) is
an isomorphism for all ¢ € W, then there exists a unique functor G' : €W~ — D such that
G'F=@G.

In the context of model categories, the category €[W 1] is usually called homotopy category
(see Proposition . In the following definition we give an explicit construction of the ho-
motopy category of a category with weak equivalences. The drawback is that this construction
may produce a proper class of morphism between two objects: in this case the result is not a
category. For this reason we use the word “category” in quotes in the following definition.

Definition 12.6. Let (€,WV) be a category with weak equivalences. We define the homotopy
“category” Ho(€) of (€, W) as follows. An object Ho(€) is just an object of €. For all
X,Y € Ob(Ho(€)), we define Homp,e)(X,Y) as the quotient of the class of all finite strings
of composable morphisms (fi,..., fn), where f; is either a morphism in € or the formal in-
verse f; = w;l of an arrow w; € W, with respect to the equivalence relation ~ generated by the
following relations:

(Ho.1) given X € Ob(X), consider the empty string () at X. Then, () ~ (idx);
(Ho.2) (f,g9) ~ (go f) for all composable arrows f, g of &;
(Ho.3) (w,w™") ~ (idx) ~ (w™t,w) forallw: X - Y e W.

One says that the homotopy category of (€, W) exists if Homp,)(X,Y) is a set for any pair of
objects in €. We denote by Ho(—) : € — Ho(C€) the obvious functor.

The notions of model category, homotopy category and universal localization are interrelated
as explained in the following proposition. For the proof see [60, Section 1.2] and [35], Proposition
5.11].

Proposition 12.7. Let (€, W) be a category with weak equivalences. The following statements
hold true:

(1) if the homotopy category of (€, W) exists, then (Ho(€), Ho(—)) is a universal localization of
(€, W);

(2) if we can choose two classes of morphisms B and C in € such that (€, W, B,C) is a model
category, then the homotopy category of (€, W) exists. Furthermore, given two objects
X, Y € Ob(€), there is a surjection

Home (QX, RY') — Hompoe)(X,Y) such that ¢ — (a7t 0,87Y),

where a : QX — X and B :'Y — RY are respectively a cofibrant replacement of X and a
fibrant replacement of Y.
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Let us apply the above proposition to the setting of Example

Example 12.8. Let € be a Grothendieck category and consider the injective model structure
(Ch(€), W, B,C) on the cochain complexes over €. By Pmpositz’on the universal localization
Ho(Ch(2)) of (Ch(€), W) exists. The localized category Ho(Ch(€)) is usually called the derived
category of € and it is denoted by D(€).

Consider now X*®, Y* € Ob(Ch(C)), then there is a surjection

Homgp () (X*, E*) — Homp¢)(X*,Y*),

where E* is any dg-injective complex which is quasi-isomorphic to Y°.

Choose now n € Z and notice that, just by definition, the n-th cohomology functor H" : Ch(¢) —
¢ sends quasi-isomorphisms to isomorphisms. By the properties of the universal localization,
there is a unique functor D(€) — € which makes the following diagram commutative:

Ch(e) ¢

D()

Abusing notation, we denote also this functor D(€) — € by H".

12.1.2 Derived functors

Definition 12.9. Let (€, W), (D, W') be categories with weak equivalences and suppose that
Ho(€) exists. Given a functor F' : ©® — €, a total right derived functor of F' is a functor
RF : ® — Ho(C) together with a natural transformation Ho(—) o F' = RF.

The existence of a model structure allows one to construct right derived functors explicitly:

Lemma 12.10. [21] Let (€, W) be a category with weak equivalences such that Ho(€) exists, let
(M, W, B,C) be a model category and let F : Ml — € be a functor that maps weak equivalences
between fibrant objects to weak equivalences. Then the total right derived RF of F' exists.
Furthermore, RF can be constructed as follows. Given X € Ob(M), we take first a fibrant
replacement X — RX and then we let RF(X) = F(RX); RF is defined similarly on morphisms.
The natural transformation F = RF is induced by the morphisms F(X — RX).

Let us return to the setting of Example Consider two Grothendieck categories €, ® and
an additive functor F' : € — ®. We denote by F' : Ch(€) — Ch(®) the extension of F. If we
endow Ch(€) with its injective model structure, one can show that the composite Ho(—) o F':
Ch(¢) — D(®) sends quasi-isomorphisms among dg-injective complexes to isomorphisms in
D(®). Thus there is a right derived functor RF : Ch(€) — D(®). It is now just an exercise to
show that the classical derived functors R"F : € — D defined in Subsection [I.2.2] are a suitable
restriction of the composition H™ o RF, where H" : D(®) — D is the n-th cohomology functor.

Definition 12.11. Let I be a small category and let (M, W,B,C) be a model category. The
category Func(1°P; M) is naturally a category with weak equivalence with the following choice of
weak equivalences:

Wr = {77 Fi =6 (77(1) : Fl(’L) - FQ(Z)) € W, Vi e Ob(I)}

The total right derived functor of the limit functor lim : Func(I°P, M) — M is called homotopy
limit. We denote the homotopy limit of a functor F' : I°P — M by holimF'.
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It is not known whether there exists a model structure on Func(/°?,M) with Wy as class
of weak equivalences that allows one to construct homotopy limits. Anyway, there are positive
answers for specific choices of the small category I. We consider just one example:

Example 12.12. Let I be the category induced by the poset N with the inverse of its natural
order, that is:

I: 0 1 2 3

Choose also a model category (M, W, B,C). Given two functors F, G : I — M and a natural
transformation o : F' = G,

we say that

(1) « is a weak-equivalence if and only if a; € W for all i € N;

(2) « is a cofibration if and only if a; € C for all i € N;

(3) « is a fibration if and only if the following conditions hold true:

- OéoEB,’

— for any given i € N, we consider the following diagram

F(i) G (i)

-

Fii+1) ——

=N

G@i+1)

where the small square is a push out diagram and ¢; is the unique map given by the
universal property. Then, ¢; is a fibration for all i € N.

One can verify, that with the above choice of weak-equivalence, fibrations and cofibrations,
Func(I,M) is a model category.

12.1.3 Model approximation

The concept of model approximation was introduced by Chachélski and Scherer in order to
circumvent the difficulties in constructing homotopy limits (see [21]).

Definition 12.13. Let (€, Ws) be a category with weak equivalences. A right model approxi-
mation for (€, We) is a model category (M, W, B,C) and a pair of functors

l: C—=M :r

satisfying the following conditions:
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(MA.1) 1 is left adjoint to r;
(MA.2) if ¢ € We, then [(¢) € W;
(MA.3) if ¢ is a weak equivalence between fibrant objects in M, then r(¢) € We;

(MA4) if (X) = Y is a weak equivalence in M with X fibrant, the adjoint morphism X — r(Y')
s in We.

Given two categories with weak equivalences (€1, W;) and (€2, Ws), one can find conditions
under which a model approximation of (€2, Wh) gives automatically a model approximation of
(€4, Wh):

Lemma 12.14. Let (€1, W)) and (€2, Ws) be categories with weak equivalences and let
[: Ci=—=0C :r

be an adjunction such that:

(1) ¢ € Wy implies lp € Wa;

(2) v € Wy implies rip € Wy;

(3) if a morphism I(C) — D s in Wh, then the adjoint morphism C — r(D) is in Wj.

If (M, W, B,C) is a model category and l' : € <5 M : 1’ is a model approzimation, then
L: ¢ —=M ' R

is a model approximation, where L =1'ol and R=1ror’.

Proof. We have to verify conditions (MA.1)-(MA.4):

(MA.1) is [70, Theorem 1, Sec. 8, Ch. 1].

(MA.2) If ¢ € Wy, then l¢ € Wy by our hypothesis (1). Apply the definition of model approxi-
mation to obtain that L(¢) = I'(l(¢)) is a weak equivalence in M.

(MA.3) If ¢ is a weak equivalence between fibrant objects in M, then 7'(¢) € Ws, by the
definition of model approximation. Apply (2) to obtain that Ry = r(r'(¢)) € Wi.

(MA.4) Let X € M be fibrant, let Y € ¢€; and let X — L(Y) be a weak equivalence in M.
The adjoint (under the adjunction (I’,7')) morphism 7'(X) — I(Y) belongs to W,, by the
definition of model approximation. Using (3), the adjoint (under the adjunction (I, 7)) morphism
r(r'(X)) — Y belongs to W;. O

The above lemma provides a motivation for the following

Definition 12.15. Let (&, W) and (€2, Wh) be two categories with weak equivalences. An
adjunction l : € < €y : 1 is said to be compatible with weak equivalences if conditions (1), (2)

and (8) in Lemma|12.14) are satisfied.
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12.1.4 Towers of models

In this subsection we recall the construction of the category of towers introduced in [19].

Definition 12.16. Let M, = {M,, : n € N} be a sequence of categories connected with adjunc-
tions
lny1: Mppn =M, :m,.

The category of towers on M,, Tow(M,) is defined as follows:

— an object is a pair (ae, ), where as = {a, € M, : n € N} is a sequence of objects one for
each M, and ce = {Qp+1: ant1 — mn(ay) : n € N} is a sequence of morphisms;

— a morphism fo : (e, s) — (be, Bs) is a sequence of morphisms fo = {fn: an — b, : n € N}
such that rn(fn) © Qnt1 = Bnt1 © fot1, for alln e N.

If each M, in the above definition is a bicomplete category, then one can construct limits
and colimits component-wise in Tow(MS,), so, under these hypotheses, the category of towers is
bicomplete.

Proposition 12.17. [19, Proposition 2.3] Let My = {(M,,, Wy, B,,Cy) : n € N} be a sequence
of model categories connected with adjunctions

lny1: Mppr=—=M,, :m,

and suppose that each ry, preserves fibrations and acyclic fibrations. Define the following classes
of morphisms in Tow(M,):

~ Wrow = {fe : fn €Wy, VneN};

— Brow = {fe : f¥ € By, Vn e N}, where f is constructed as follows. First we define an object

(pe, me) in Tow(M,) where each p, comes from a pull-back diagram

Fue
DPn : by

Bnl P.B. Bn

rnfl(anfl)4>rn 1 bn 1

fnl

and T, = rn_1(fn_1) © Bn. Then, f¥: an — pn is defined, using the universal property of the
pull-back, as the unique morphism such that B, [ = o, and fo_1f} = fn.

— Crow = {fe : fn€Cy, VneN}

Then, (Tow(Mas), Wrow, BTow, CTow) @S a model category.

12.2 Local cohomology

In this subsection we introduce a general notion of local cohomology. The definitions and many
arguments in the proofs are adapted directly from existing papers like [3], [2], [48], [49], [50]
and many others. We give here complete proofs for completeness sake and because, to the best
of the author’s knowledge, there is no book or paper with a comprehensive exposition of these
matters in a setting as general as we need in the sequel.
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Definition 12.18. Let € be a Grothendieck category and let 7 = (T,F) € Tors(€). The n-
th 7-local cohomology I'? : € — T is the n-th right derived functor of the T-torsion functor
T,:¢—T.

It is difficult to study the properties of local cohomology in full generality, so we need to
impose one or more of the following hypotheses on the ambient category € in almost all of our
results:

(Hyp.1) € is stable (see Definition |[1.139)).
(Hyp.2) € is locally Noetherian (see Definition [2.75]).
(Hyp.3) all the prime torsion theories on € are exact (see Definition [1.131]).

Example 12.19. Let € = R-Mod be the category of left R-modules over a ring R. When €
satisfies (Hyp.1), (Hyp.2) and (Hyp.3), R is said to be left effective. Ezamples of left effective
rings include:

(1) commutative Noetherian rings;
(2) left Noetherian Azumaya algebras, see [50, page 173];

(3) prime hereditary Noetherian quasi-local rings which are bounded orders in their classical
rings of fractions, see [50, Example 2.3].

Lemma 12.20. Let € be a Grothendieck category, let T = (T,F) € Tors(€) be stable and let
X € Ob(€). Then,

(1) IT(X) =0 for all n > 0, provided X is T-torsion;

(2) there is a natural isomorphism I'M(X) = I''(X/T-(X)), for alln > 0;

(3) there is a natural isomorphism T"*1(X) = T™(E(X)/X), for all n > 0;

(4) if X is T-torsion free, then TL(X) =~ T, (E(X)/X).

(5) there is a natural isomorphism I'"T1(X) =~ RL*(X), for alln > 0;

(6) if X is T-torsion free, then TL(X) = L,(X)/X.

Proof. (1) Let us consider an injective resolution A : X — E* inductively as follows:
— E" =0and d* =0 for all n < 0;

—~ EY = B(X) and X is the canonical embedding of X in its injective envelope;

— B! = E(CoKer(\)) and d° = €% o 7° where 7% : E® — CoKer()) is the canonical projection
and €Y is the canonical embedding of CoKer()) in its injective envelope;

— for all n > 1 we let E"*! = E(CoKer(d"!)) and d"® = " o " where 7" : E™ — CoKer(d"!)
is the canonical projection and £” is the canonical embedding of CoKer(d" 1) in its injective
envelope.
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It is an exercise to show that A : X — E* is an injective resolution (this is well-known, for
example one can use the dual argument of the proof of [104, Lemma 2.2.5]). Using the fact that
T is stable, we obtain that E"(X) is 7-torsion for all n € N and so E*(X) = T,(E*(X)) is an
exact complex in all degrees but, eventually, in the 0-th degree.

(2) Consider the short exact sequence 0 — T,(X) - X — X/T,(X) — 0. This gives a long
exact sequence in cohomology

0 — DY(T, (X)) — T9(X) — T2(X /T, (X)) —
— LT, (X)) — TH(X) = TH(X /T, (X)) - T2(T (X)) - -,

which implies the desired isomorphism as, by part (1), we have that I'?(T,(X)) = 0, for all
n > 0.

(3)—(4) Consider the short exact sequence 0 - X — E(X) — E(X)/X — 0. This gives a long
exact sequence in cohomology
0 — Tr(X) - T-(E(X)) = T-(B(X)/X) - T+(X) - [(BE(X)) -

PLB(X)/X) - T2(X) - T2(E(X)) — T2(B(X)/X) — T3(X) = T3(E(X)) - ...
which implies the isomorphism in (3) as, I'?(E(X)) = 0 for all n > 0, being E(X) is injective.
If X € F, then E(X) € F by stability and so T,(E(X)) = 0, proving (4).

(5)—(6) Fix an injective resolution X — E*. By Lemma(1.140, E" ~ T, (E") ® E"/T,(E") for
all n € N. Consider the complex T,(E*®) and the quotient complex E*/T,(E*®), which are both
complexes of injective objects. Notice that there is a short exact sequence in Ch(€)

0—-T,(E*) > E*— E*/T, (E*) — 0.

The cohomologies of the complex T, (E*) are exactly the 7-local cohomologies of M, while the
cohomologies of E* are all trivial but, eventually, the 0-th cohomology. Furthermore, E" /T (E"™)
is T-torsion free and injective, so it is 7-local; in particular, L,(E") = E"/T,(E™) for all
n € N. We obtain an isomorphism of complexes E*/T,(E®) =~ L,(E*), which shows that the
cohomologies of the complex E* /T (E*) give exactly the right derived functors of the localization
functor L. Thus, we have a long exact sequence

0—T-(X) = X - L(X) > I'(X) - 0 - R'L(X) -
= T7(X) = 0 = R*L(X) > T7(X) = 0> R*Lo(X) — -+,
which gives the desired isomorphisms. O
An immediate consequence of parts (5) and (6) of the above proposition is the following

Corollary 12.21. Let € be a Grothendieck category, let T € Tors(€) be stable and exact, and let
X e €. Then,
M(X)=0 vn>1.

If X is 7-local, then also T9(X) = TL(X) = 0.
Corollary 12.22. Let € be a Grothendieck category and let 7o < 71 € Tors(€) be stable. Then,
I (X)=0,Y0<i<n) = (I (X)=0, V0<i<n)

for all X € Ob(€) and n € N.
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Proof. We prove our statement by induction on n € N.

If n = 0, the result is clear as 0 = I'? (X) = T, (X) 2 T, (X) = T, (X).

If n > 1 and suppose the result holds for any smaller integer. Consider the following isomor-
phisms:

(a) T (X) =TY (X) =0, as in the case n = 0, in particular X is both 7y and 7-torsion free;
(b) TLH(X) = TYE(X)/X) for T € {71, 72}, by (a) and Lemma [12.20(4).
(c) TH(X) = TE-Y(B(X)/X) for all 1 < k <n and 7 € {71, 72}, by Lemma [12.20(3).

By (b) and (c), we have that I': (E(X)/X) = 0 for all 0 < i < n — 1 and so, by inductive
hypothesis, T (E(X)/X) = 0 for all 0 < i < n— 1. Applying again (b) and (c), I': (X) =0
for all 1 < i < n. Hence, adding (a), I'. (X) = 0 for all 0 < i < n which is what we wanted to
prove. [

Given a Noetherian object N in €, recall that N is automatically a compact object, that
is, the functor Home(V, —) commutes with direct limits (see for example [96, Proposition 3.4,
Ch. V]). More explicitly, given a directed set A and a direct system (Xq, ¢5.)a in €, we have a
natural isomorphism

lim Homg (N, Xo) = Homge | N, lim X, | . (12.2.1)
ael ael

Proposition 12.23. Let € be a Grothendieck category satisfying (Hyp.2) and let T € Tors(€).
Then,

(1) given two objects X and M € Ob(€), we have a natural isomorphism

Home (X, T, M) = lim Home (X /Y, M),
Y

with Y ranging in the family of sub-objects of X such that XY € T (ordered by reverse
inclusion);

(2) all the T-local cohomology functors commute with direct limits.

Proof. (1) Let Y be a sub-object of X such that X/Y € 7. For any morphism ¢ : X/Y — M,
d(X/)Y) < T,(M) < M and so Home(X /Y, T-(M)) =~ Homg(X /Y, M). Furthermore, there is
an injective map

— opy : Home(X /Y, T, (M))(= Home(X /Y, M)) —> Home (X, T, (M)) (12.2.2)

where py : X — X /Y is the canonical projection. By the universal property of the direct limit,
there is a unique map ®, making the following diagrams commutative, whenever Y} < Yo < X
and X /Y1 € T:

Home (X /Y1, M) =~

Home(X, T, (M)) <—31e— lim, Home (X /Y, M) .

—OPyy

HOHI@(X/YQ, M) =
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Now, ® is injective by the injectivity of the maps described in and the commutativity
of the above diagram; furthermore, one can show that ® is surjective as follows: an element ¢ €
Homg (X, T-(M)) belongs to the image of ® if and only if there exists Y < X such that X/Y € T
and there is a morphism ¢ : X/Y — M such that ¢ = ¢¥py. Given ¢ € Homg (X, T, (M)), we
easily get that ¢(X) € T and so, letting Y = Ker(¢), we have that X/Y € 7. Furthermore,
there is an induced (mono)morphism ¢ : X /Y — T, (X) such that ¢ = ¢py, as desired.

(2) According to [56, Proposition 3.6.2], it suffices to verify that

(a) R°T, = T, commutes with direct limits;

(b) lim, Eq is Tr-acyclic (i.e., I7(lim, Eq) = 0 for all n > 0) for any directed system (Eq, #g,a)A
of injective objects.

Let (Ma,¢pa)a be a directed system in €, over a directed set A. We have to verify that
T;(lim, My) = lim, T-(M,). For this we show that there is a natural equivalence of functors
Home(—, T7(lim, My)) = Home(—,lim, T7(M,)), which implies (a) by the Yoneda Lemma.
For all X € € there is a natural isomorphism

Home (X, T (lim M,)) = Hom(lim N, T, (lim M,)),
A N A

with IV ranging in the family of Noetherian sub-objects of X, so

Home (X, T (lim M, )) = lim Hom (N, T (lim M,))
A N A

This allows us to assume that X is itself Noetherian. In this case:

Homg (X, T (lim M,)) = lim Hom (X /Y, lim M,) with X/Y € T, by (1)
A Y A
= lim lim Hom(X /Y, M,) by (12.2.1)
Y A
= lim lim Hom(X /Y, M,)
A Y
=~ Hom(X, lim T (M,)) -
A

Part (b) follows by Proposition 2.7 (1), and the fact that injective objects are F-acyclic for any
left exact functor F'. O

Lemma 12.24. Let € be a Grothendieck category satisfying (Hyp.1) and (Hyp.2), let ™ € Sp(€),
let 7= (T,F) € Tors(€) and let C be a cocritical object such that E(C) = E(7).
If -1 < G.dim,(C) < o, then G.dim,(Lz(C)/C) < G.dim,(C).

Proof. By hypothesis G.dim,(C) > —1. Furthermore, if G.dim(C) = n + 1 for some n € N,
we can denote by 7, € Tors(¢€/T) the torsion theory whose torsion class is (€/T),. Then,
G.dim;.r, (C) = 0. Thus, there is no loss of generality in assuming that G.dim,(C) = 0 (other-
wise substitute 7 by 7o 7,, and then use part (2) of Lemma[2.72).

Assuming that G.dim,(C) = 0, we have to show that Lz(C)/C € T. Let E be an injective
object that cogenerates 7. By Proposition [2.78] there exist a set I, a family of prime torsion
theories {m; = (7;, F;) : i € I} < Sp(€) and a family of non-trivial cardinals {c; : i € I'} such that
E =@, E(m;)®), thus T = (,c; T; and so we reduced to prove that

Home (L (C)/C, E(mi)) = 0, (12.2.3)
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forall i € I. Let i € I, if m; = 7, then Lz(C)/C = Tx(E(w)/C) is m;-torsion by construction,
SO follows. On the other hand, if m; # 7, suppose looking for a contradiction, that
Home (L= (C)/C, E(m;)) # 0 which implies Homg(Lz(C), E(7;)) # 0 which, by the injectivity of
E(m;), implies Home (E(7), E(m;)) # 0. By Corollary 2.74], 0 = G.dim.(E(7)) > G.dim.(E(m;)),
equivalently, E(m;) € T, that is Home(E(7;), E) = 0, which is clearly a contradiction. O

The following theorem is an improved version of [50, Proposition 2.4].

Theorem 12.25. Let € be a Grothendieck category satisfying (Hyp.1), (Hyp.2) and (Hyp.3),
let 7 € Tors(€) and let X € Ob(€). Then, I'?(X) # 0 implies G.dim,(X) +2 = n.

Proof. By (Hyp.3), X is the direct union of its Noetherian sub-objects. By Proposition
the vanishing of 7-local cohomologies on Noetherian objects implies their vanishing on X. Thus
we can suppose X to be Noetherian. By Lemma (4), there exist sub-objects 0 = Yy <
Y1 < -+ < Y, = X such that Y;/Y;_; is cocritical for all ¢ = 1,...,k. One can verify by
induction on k that the vanishing of the 7-local cohomology functors on all the factors of the
form Y;/Y;_1 implies their vanishing on X. Thus we may suppose X to be cocritical, in particular
E(X) = E(m) for some 7 € Sp(€).

If G.dim,(X) is not finite, then there is nothing to prove, therefore we suppose G.dim,(X) =
d < oo and we proceed by induction on d. If d = —1, then I'?(X) = 0 for all n > 0, by
Lemma [12.20] (1). Thus, I'?(X) # 0 implies n = 0 < G.dim,(X) +2=-1+2=1. If d > —1,
consider the following long exact sequence:

0 — LX) = T2(Ln (X)) — DU(La(X)/X) — TL(X) — TH(LA(X)) —
o TH L (X)/X) = -+ = T2(X) = TH(Ly (X)) = TH(La(X)/X) — T2F(X) > ...

Notice that T?(X) = T%(L.(X)) = 0, since we supposed that d > —1 and so, by stability, X is 7-
torsion free. Furthermore, using (Hyp.3) and Corollary [12.21], one can show that I'? (L. (X)) =0
for all n € N. Using again that X (and so E(w)) is 7-torsion free, we get 7 < 7 and so we can
apply Corollary to show that I'?(L,(X)) = 0 for all n > 0. One obtains the following
isomorphisms:

(X)) =T L.(X)/X), Vn>1.

By Lemma G.dim, (L, (X)/X) < d and so we can apply our inductive hypothesis to
show that I'?(L,(X)/X) = 0 for all n > G.dim,(L,(X)/X) + 2. Thus, if I'?(X) # 0 for
some n > 0, then I (L, (X)/X) # 0 and so n — 1 < G.dim,(L.(X)/X) + 2, that is, n <
G.dim,(Lr(X)/X) + 3 < G.dim.(X) + 2. O

12.2.1 Exactness of products in the localization

In the definition of Grothendieck category one assumes direct limits to be exact but no assump-
tion is required on the exactness of products. We will see in the last part of this paper that
knowing that a Grothendieck category has “almost exact products” has very nice consequences
on its derived category. In the following definition we precise the meaning of “almost exact
products”:

Definition 12.26. Let € be a Grothendieck category. For a non-negative integer n, € is said to
satisfy the axiom (Ab.4*)-k if, for any set I and any collection of objects {X;}ier,

H(")Xi:O Vn >k,

el

where H(n)(—) is the n-th derived functor of the product []: ¢! — €.

el
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Notice that condition (Ab.4*)-0 is exactly (Ab.4*) (see Subsection [1.1.5).

In general, there is no reason for a Grothendieck category to be (Ab.4*)-k for any k. Anyway,
categories of modules are (Ab.4*) and, by the Gabriel-Popescu Theorem, any Grothendieck
category is a quotient category of a category of modules. Thus, it seems natural to ask for
sufficient conditions on a torsion theory 7 = (7, F) in an (Ab.4*) Grothendieck category € that
ensure that the quotient category €/7 is (Ab.4*)-k for some k € N. We give two such conditions
in the following lemma, a deeper criterion is given in Theorem [12.28

Lemma 12.27. Let € be an (Ab.4*) Grothendieck category, let T = (T,F) € Tors(€) and
suppose one of the following conditions holds:

(1) T is closed under taking products (in this case T is said to be a TTF);

(2) 7 is exact.

Then, the quotient category €/T is still (Ab.4*).

Proof. Let I be a set and for each i € I consider objects A;, B; and C; € €/T such that
0—> A, - B;—C;—0 isexactin ¢/T.

Hence, for all ¢ € I, one obtains exact sequences 0 — S (A4;) — S;(B;) — S;(C;) = T; — 0 in
¢, where T; € T. Using the (Ab.4*) property in € we get an exact sequence

0—[8+(4) = [[8+(B) = ]]8-(Co) - ] [Ti = 0.
el el el el
If 7 is a TTF, then [[,.; T; is 7-torsion and so we can apply Q; to the above exact sequence
obtaining the following short exact sequence

o-J[a—[]Bi=]]Ci—-Q(][T)=0

el el el iel
by Corollary [1.135] and the exactness of Q,. On the other hand, if S; is exact, we get T; = 0
for all 7 € I above and so again one can easily conclude. O

Theorem 12.28. Let € be an (Ab.4*) Grothendieck category which satisfies hypotheses (Hyp.1),
(Hyp.2) and (Hyp.3), and let T € Tors(€). If G.dim(€/T) = k < oo, then €/T is (Ab.4*)-k + 1.

Proof. Let {X;}ier be a family of objects in €/7. For all i € I, choose an injective resolution
0 — S, (X;) — E? of S;(X;) in €. Since Q; is exact and sends injective objects to injective
objects, the complex Q- (E;) provides an injective resolution for X;. Thus, for all n > k + 1,

H(”)Xi =H" (H Q- (E;)) =H" (QT <H L, (E;))) by Corollary [I.135]

iel el el
( < b ))) exact funct. commute with cohom.
i€l
el

F"Jrl > =0 Lemma [12.20 and Theorem [12.25
ze[

=Q, (H RL? (E}) ) exact funct. commute with cohom.

el

O]
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Corollary 12.29. Let € be an (Ab.4* ) Grothendieck category which satisfies hypotheses (Hyp.1),
(Hyp.2) and (Hyp.3). If G.dim(€) = k < oo, then €/T is (Ab.4*)-k+ 1 for all 7 = (T, F) €
Tors(€).

12.3 Injective classes

Let € be a Grothendieck category and let Z be a class of objects of €. Slightly generalizing the
setting of [20], we say that a morphism ¢ : X — Y in € is an Z-monomorphism if

Homg (¢, K) : Home (Y, K) — Home (X, K)

is an epimorphism of Abelian groups for every K € Z. We say that € has enough Z-injectives if
every object X admits an Z-monomorphism X — K for some K € 7.

Definition 12.30. [20] A subclass T of a Grothendieck category € is an injective class (of €) if
it 1is closed under products and direct summands, and € has enough L-injectives.

Lemma 12.31. Let T be an injective class of a Grothendieck category €. An object X of €
belongs to I if and only if Home(—, X) sends all Z-monomorphisms to epimorphisms of Abelian
groups.

Proof. Suppose that Home(—, X) sends Z-monomorphisms to surjective morphisms. By defi-
nition of injective class, there is an Z-monomorphism ¢ : X — F for some F € Z. Hence,
Homg (g, X) : Homg(F, X) — Homg(X, X) is surjective and so X is a direct summand of E.
Thus, X belongs to Z. The converse is trivial. O

Definition 12.32. Let € be a Grothendieck category and let T be an injective class. T is an
injective class of injectives provided any object in T is an injective object. We denote by Inj(€)
the poset of all the injective classes of injectives in €, where, given T and Z' € Inj(<)

Z<7T ifandonlyif T<T.

12.3.1 Examples

Before proceeding further we give some examples of injective classes (not necessarily of injec-
tives).
Example 12.33. Let € be a Grothendieck category. Then

(1) Z =0 is an injective class. In this case every morphism is an Z-monomorphism;

(2) Z = € is an injective class. In this case, a morphism is an Z-monomorphism if and only if
it has a left inverse (it is a splitting monomorphism);

(3) the class T of all injective objects is an injective class. With this choice, Z-monomorphisms
are the usual monomorphisms.

Part (3) of the above example can be generalized as follows:

Lemma 12.34. Let € be a Grothendieck category and let ¢ : X — Y be a morphism in €. Then,
¢ is a monomorphism if and only if Home (¢, E) is an epimorphism of Abelian groups for any
injective object E of €.

In particular, given an injective class T of €, every Z-monomorphism s in particular a monomor-
phism if and only if T contains the class of injectives.
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Proof. If ¢ is a monomorphism, it is clear that Home (¢, F) is an epimorphism for any injective
object E. On the other hand, suppose that Homg(¢, E) is an epimorphism for any injective
object E of €. Let v : Z — X be a morphism such that ¢ = 0, and let us verify that ¢ = 0.
We can suppose that v is a monomorphism, in fact, otherwise we can substitute v with the
induced morphism 1) : Z/Ker()) — X. Thus, let E = F(Z) and notice that Homg (¢, E) and
Homg (¢, E') are both epimorphisms and so Homg (1), E) o Homg (¢, E) is an epimorphism, but
Homg (¢, E) o Homg (¢, E) = Homg (¢ 0 ¢, E) = 0. Thus, Home(Z, E) = 0 which is to say that
Z =0, as desired.

For the last statement, notice that if Z contains all the injective objects then, by the first part,
any Z-monomorphism has to be a monomorphism. On the other hand, suppose that any Z-
monomorphism is a monomorphism. This means in particular that any given injective object
E is such that Homg(—, F) sends Z-monomorphism to epimorphisms. By Lemma this
means that F € 7. ]

Example 12.35. Let € be a Grothendieck category and let T = (T, F) € Tors(€), then F is an
injective class. In fact, F is closed under taking products and direct summands. Furthermore,
given an object X and F € F, apply the functor Homg(—, F') to the exact sequence 0 — T, (X) —
X - X/T-(X) — 0, to obtain the following exact sequence of Abelian groups:

Home(X/T-(X), F) — Home(X, F) — Home (T (X), F).

Since Home (T, (X), F) = 0, the canonical projection X — X /T, (X) is an F-monomorphism
of X into an element of F.

Example 12.36. Let R be a ring and let I < R be a two-sided ideal. We claim that the class
Z={M € R-Mod : IM = 0}

1s an injective class in R-Mod. In fact, T is closed under products and direct summands. Further-
more, given a left R-module M , we can always consider the canonical projectionp : M — M /IM,
where M/IM € I. We have to show that p is an Z-monomorphism. Let N € T and let
¢: M — N be a morphism. Given x € IM, there exists y € M and i € I such that iy = x and
so, ¢(x) = ¢(iy) = ip(y) =0 as IN = 0. Thus, ¢ factors through p as desired.

We remark that an injective class does not need to satisfy any reasonable closure property
but closure under products and direct summands (that are assumed in the definition). In fact, an
example of an injective class that is closed nor under subobjects or infinite direct sums is given
by the class of all injective objects (at least in the non-locally Noetherian case). An injective
class that is not closed under extensions is described in Example [[2.36] For further examples
we refer to [20].

12.3.2 Injective classes vs torsion theories

Definition 12.37. Let € be a Grothendieck category and let T = (T,F) € Tors(€). We define
the following subclass of €:
Z, = {injective objects in F}.

It is possible to give quite an explicit characterization of those morphisms that are Z,-
monomorphism:

Lemma 12.38. Let € be a Grothendieck category, let 7 = (T,F) € Tors(€) and let ¢ : X — Y
be a morphism in €. The following are equivalent:
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¢ is an L,-monomorphism;

(1)
(2) Homg (¢, E) is an epimorphism for any injective object E which cogenerates T;
(3) Ker(¢) is T-torsion;

(4)

Q- (o) is a monomorphism.

Proof. The implication (1)=-(2) is trivial since an injective object which cogenerates T necessarily
belongs to Z,. Let us prove the implication (2)=>(3). Choose an injective cogenerator E for 7
and apply the functor Home(—, F) to the exact sequence 0 — Ker(¢) — X — Y obtaining the
following exact sequence of Abelian groups

Home (Y, E) — Home (X, F) — Homg(Ker(¢), E) — 0.

If Home (¢, E) is an epimorphism then Home (Ker(¢), E) = 0 that is, Ker(¢) is 7-torsion. The
equivalence (3)<>(4) follows by the exactness of Q. and the fact that Ker(Q,) = 7. It remains
only to prove that (3)=(1). Indeed, given K € Z. we can obtain as before an exact sequence
Home (Y, K) — Homg(X, K) — Home(Ker(¢), K). Since K is 7-torsion free and Ker(¢) is
7-torsion, Home (Ker(¢), K) = 0, as desired. O

Lemma 12.39. Let € be a Grothendieck category and let T = (T,F) € Tors(€). Then, I, €
Inj(@).

Proof. I, is the intersection of F with the class & of all the injective objects in €. The closure
properties of F and &g imply that Z. is closed under products and direct summands. It remains
to show that € has enough Z.-injectives. Indeed, let X be an object of € and let ¢ : X —
E(X/T;(X)) be the composition of the canonical morphisms X — X/T,(X) and X/T,(X) —
E(X/T;(X)). Clearly E(X/T,(X)) € Z, and, furthermore, the kernel of ¢ is precisely T-(X).
By Lemma ¢ is an Z,-monomorphism. O

Let € be a Grothendieck category. By the above lemma, we can associate an injective class
of injectives to any given torsion theory. Let now Z € Inj(€) and define

Fr1 = {sub-objects of the elements of Z} .

Lemma 12.40. Let € be a Grothendieck category and let T € Inj(€). Then, Fr is a torsion free
class.

Proof. Closure under taking sub-objects, products and injective envelopes easily follow by con-
struction and the closure hypotheses on Z. It remains to prove that Frz is closed under taking
extensions. Let X be an object in € and let Y < X be a sub-object such that both Y and
X/Y € Fr. By construction, there exist I; and Is € Z such that ¥ < [} and X/Y < Is.
Let ¢1 : X — I; be a morphism extending the canonical inclusion Y — I; (whose existence
is ensured by the injectivity of I) and let ¢2 : X — I» be the composition of the canonical
projection X — X /Y with the inclusion X/Y — Is. Define ¢ = ¢1 ® ¢2 : X — I; @ Io. Then,
Ker(¢) = Ker(¢1) n Ker(¢2) = 0 and so X is a sub-object of Iy @ I € Z. O

Definition 12.41. Let € be a Grothendieck category and let T € Inj(€). We define T1 to be the
unique torsion theory on € whose torsion free class is Fr.

We are now ready to prove the main result of this subsection:
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Theorem 12.42. Let € be a Grothendieck category. Then the map T — Z; is an order-reversing
bijection between Tors(€) and Inj(€). The inverse bijection is given by the correspondence I —
TI.

Proof. Let 7 = (T,F) € Tors(€) we want to prove that Fz, = F. The inclusion Fz, < F is
trivial, while, given F' € F and an injective cogenerator E for 7, there exists a set S such that
F < ESeZ. and so FeFz.

On the other hand, let Z € Inj(€) and 7z = (F,T). We want to prove that Z., = Z. The
inclusion Z < 7, is trivial, while, given I € Z._, by definition I € F = F7 and so [ is an injective
sub-object, and so a summand, of an element of Z, thus I € Z. O

The above theorem together with Theorem gives the following

Corollary 12.43. Let € be a Grothendieck category satisfying (Hyp.1). There are bijections

{Gen. closed subsets of Sp(€)} —— Inj(&) —— {Spec. closed subsets of Sp(<)}

G(TI) WA S(Tz)

12.3.3 Module categories

In this subsection we specialize our results about injective classes to categories of modules,
re-obtaining as corollaries the main results of [20].

Definition 12.44. |27, 20] Let R be a ring. A non-empty set A of left ideal of R is said to be
a torsion free set (or, saturated set) if the following conditions hold:

(NS.1) A is closed under arbitrary intersections;
(NS.2) forallre Rand € A, (I:x)={reR:rxel}ecA;

(NS.3) if a proper left ideal J < R has the property that, for all x € R\J, there is I € A, such
that (J : x) < I, then J € A.

Let us recall the following fact from [27].

Lemma 12.45. [27, Corollary 2.3.14] Let R be a ring. There is a bijective correspondence
between Tors(R-Mod) and the family of torsion free sets of ideals of R.

The following corollary, which is a consequence of Lemma [12.45] and Theorem [[2.42] is a
generalization of [20, Theorem 3.7].

Corollary 12.46. Let R be a ring. There is a bijective correspondence between Inj(R-Mod) and
the family of torsion free sets of ideals of R.

The following corollary is a consequence of the above lemma and Corollary

Corollary 12.47. [20, Corollary 3.9] Let R be a commutative Noetherian ring. There is a
bijective correspondence between Inj(R-Mod) and the family generalization closed sets of prime

ideals of R.
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12.4 Model approximations for relative homological algebra

12.4.1 A relative injective model approximation
Let € be a Grothendieck category and let 7 = (7, F) € Tors(€). We extend the 7-quotient and
the 7-section functors to categories of complexes applying them compont-wise:

Q- : Ch(¢)—=Ch(¢/T) :S,. (12.4.1)
We use the same symbols for these new functors, it is an exercise to show that they are adjoint.

Definition 12.48. Let € be a Grothendieck category and let T € Inj(€). A morphism ¢°* of
cochain complezxes is an Z-quasi-isomorphism provided Home(¢®, K) is a quasi-isomorphism of
complezes of Abelian groups for all K € T.

Given T = (T,F) € Tors(€), we define the following class of morphisms in Ch(€)

Wy = {¢°®: H"(cone(¢*)) e T, YneZ}.

Recall that the mapping cone construction commutes with any additive functor (this can be
easily verified by hand). This is used repeatedly in the following lemma.

Lemma 12.49. Let € be a Grothendieck category, let T = (T, F) € Tors(€) and denote by W
be the class of quasi-isomorphisms in Ch(€/T). The following are equivalent for a morphism
@* in Ch(€):

(1) ¢* € W,

(2) Q-(¢%) e W;

(3) ¢° is an Z.-quasi-isomorphism.

Furthermore, (Ch(€),W;) is a category with weak equivalences.

Proof. Since Q; is exact, H" and Q, commute. Thus, for all n € N:
Q- (H"(cone(¢%))) = H" (cone(Qr(¢%))) -

This proves the equivalence between (1) and (2).

For the equivalence between (1) and (3), notice that Home(¢®, K) is a quasi-isomorphism for all
K €7, if and only if, for all n € Z and K € Z,,

0 = H"(cone(Homg(¢*, K))) =~ H"(Homg(cone(¢®), K)) = Homg(H™ (cone(¢*®)), K) .

Thus, Homg(¢*, K) is a quasi-isomorphism for all K € Z, if and only if H"(cone(¢*)) € +(Z;)
T, for all n € Z.

[

The following theorem answers part (1) of Question [0.2]in full generality:

Theorem 12.50. Let € be a Grothendieck category and let T = (T, F) € Tors(€). Consider the
category with weak equivalences (Ch(€), W;) and the injective model category (Ch(€/T), W, B,C)
defined as in Example[12.5. Then, the adjunction

Q. : (Ch(¢),W,) == (Ch(¢/T), W, B,C) :S-

1s a model approrimation. Furthermore, the homotopy category relative to this model approxi-
mation is naturally isomorphic to the unbounded derived category D(C/T).

Proof. We have to verify conditions (MA.1)-(MA.4). Condition (MA.1) just states that (Q,, S;)
is an adjunction, while (MA.2), (MA.3) and (MA.4) are consequences of Lemmal[12.49] The state-
ment about the homotopy category follows by the explicit construction given in Proposition 5.5
of [21] and the fact that Q. is essentially surjective. O
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12.4.2 Approximations via towers of models

In this last subsection we try to approximate (Ch(€), W;) by a category of towers of models.
Let us introduce the specific sequence of model categories we are interested in:

Lemma 12.51. Let € be a Grothendieck category, let 7 = (T,F) € Tors(€) and let n € N.
There is a model category (Ch=~"(&), WZ"" BZ~" CZ~™), where:

— WZ™" = {¢* : ¢° is a T-quasi-isomorphism};
~ BZ7" = {¢* : ¢ is an epimorphism and Ker(¢') € I, for all i = —n};
— CZ7" = {¢*: ¢' is a T-monomorphism for all i = —n}.

For all n € Z, the above choice of weak equivalences, fibrations and cofibrations makes
(Ch>~™(€), Wz"" B2—" CZ~") into a model category.
Furthermore, there is an adjunction

lny1: Ch>"1(@) == Ch>"(¢) :71,, (12.4.2)

where l,41 is the obvious inclusion while ry, is the truncation functor. In this situation, 1,
preserves fibrations and acyclic fibrations.

Proof. The proof can be obtained exactly as in the case when € is a category of modules, see
[18, Theorem 1.9]. O

Definition 12.52. Let € be a Grothendieck category and let T = (T,F) € Tors(€). Con-
sider the sequence My = {(Ch®~"™(€),WZ"" BZ~".CZ"") : n € N} defined in Lemma[12.51,
We denote the category (Tow (M), Wrow, BTow,Crow) constructed as in Proposition by
(Tow(€), Wrow, BTow, Crow). Furthermore, we denote by Tow : Ch(€) — Tow,(€) the so-
called tower functor, which sends a complex X°® to the sequence of its successive truncations

c— XZTn s Xzl s X220 and acts on morphisms in the obvious way (see [19]).
If 7 = (0,€) is the trivial torsion theory we denote Tow,(€) by Tow(C).

A typical object X of Tow,(€) is a commutative diagram of the form

0 e x2 B x 1By B By B
ty ! 9 5 3

0—— X! 4 X9 il X} % X? il
t9 t1 t2

0 X{ i X3 % X2 i

where (X, d?) is a cochain complex for all n € N, and X" = 0 for all m < —n.
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12.4.3 Approximation of (Ab.4*)-k categories

Let € be a Grothendieck category and let 7 = (7, F) € Tors(€). The category Tow,(€) can be
seen as a full subcategory of the category Func(N, Ch(€)) of functors N — Ch(€) and so we
can restrict the usual limit functor to obtain a functor lim : Tow,(€) — Ch(C).

In [19] and [18] the authors show that when € is a category of modules over a commutative
Noetherian ring of finite Krull dimension,

Tow : (Ch(€),W;) ——= (Tow,(€), Wrow, BTow; CTow) : lim, (12.4.3)

is a model approximation for all 7 € Tors(€). On the other hand, if the Krull dimension is not
finite, one can always find counterexamples. In what follows we try to better understand this
kind of construction when € is a general Grothendieck category. First of all, notice that when
we construct the homotopy category D(€/7T) inverting the weak equivalences in (Ch(€), W;)
we are really doing two things at the same time:

(1) localize complexes over € to complexes over €/T;
(2) pass from a category of complexes over €/7 to its derived category.

Our strategy is to separate the two operations in two different “steps”, where each “step”
corresponds to a pair of adjoint functors. The composition of these adjunctions is our candidate
for a model approximation, as we will see in Theorem [12.54

When € is an (Ab.4*) Grothendieck category, let X* € Ob(Ch(€)) and consider the sequence
of truncations --- — X>72 - X>~! — X>0 By Example [12.12| we can construct holimX>"".
One can prove as in [8, Application 2.4] that there is a quasi-isomorphism

X*holimX>~¢. (12.4.4)

This formula is useful as it allows to reduce many questions to half-bounded complexes. On the
other hand, for (12.4.4]) to hold, it is sufficient that the ambient category is (Ab.4*)-k for some
finite k:

Theorem 12.53. [59 Theorem 1.3] Let € be a Grothendieck and assume that € satisfies (Ab.4* )-
k for some positive integer k. Then, for every X* € Ob(Ch(C€)), there is a quasi-isomorphism
X*—>holimX="".

We are now ready to prove our main result.

Theorem 12.54. Let € be a Grothendieck category and let T = (T,F) € Tors(€) be a torsion
theory such that €/T is (Ab.4*)-k for some positive integer k. Then, the composition of the
following adjunctions

Q- — ow
(Ch(€), W,) == (Ch(¢/T), W) =2 (Tow(€/T), Wivw Brow, Crow)

lim
1s a@ model approximation.

Proof. By Lemma it is enough to show that (Q,, S;) is compatible with weak equivalences
(and this follows by Lemma and that (Tow,lim) is a model approximation. The proof
that (Tow,lim) is a model approximation is given in [19] for categories of modules. One can
follow that proof almost without changes, using Theorem (that applies here since €/7 is
(Ab.4*)-k) instead of Application 2.4 in [§]. O
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Combining the above theorem with Theorem we obtain the following corollary, which
extends the main results of [I§]:

Corollary 12.55. Let € be a Grothendieck category satisfying (Hyp.1), (Hyp.2) and (Hyp.3),
and let T € Tors(€). If G.dim,(€) < oo, then the composition

QT _— ow
(Ch(€), Wr) == (Ch(¢/T), W) %% (Tow(€/T), Whow Bow Crow)

-

18 a model approximation.
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