
APPROXIMATION OF
PHASE-FIELD MODELS
WITH MESHFREE METHODS:
EXPLORING BIOMEMBRANE DYNAMICS

Christian Peco Regales

Doctoral Thesis
Advisor: Marino Arroyo
Barcelona, September 2014

Departament de Matemàtica Aplicada III
Programa de Doctorat en Enginyeria Civil

To my parents

iii

A good hockey player plays where the puck is. A great hockey player plays where the puck
is going to be.

Wayne Gretzky

iv

Abstract

Approximation of phase-field models with meshfree methods: exploring
biomembrane dynamics

Christian Peco Regales

Biomembranes are the fundamental separation structure in animal cells, and are

also used in engineered bioinspired systems. Their simulation is challenging, particu-

larly when large shape changes and dynamics are involved, or micrometer systems are

considered, ruling out atomistic or coarse-grained molecular modeling. The main goal

of this thesis is to develop a computational framework to understand the dynamics

of biomembranes embedded in a viscous fluid using phase-field models. Phase-field

models introduce a scalar continuous field to define a diffuse moving interface, whose

physics is encoded in partial differential equations governing it. These models can

deal with dramatic shape and topological transformations and are amenable to multi-

physics coupling. However, they present significant numerical challenges, such as the

high-order character of the equations, the resolution of sharp and moving fronts,

or the efficient time-integration. We address all these issues through a combina-

tion of meshfree spacial discretization using local maximum-entropy basis functions,

and a Lagrangian variational formulation of the coupled elasticity-hydrodynamics.

The smooth meshfree approach provides accurate approximations of the phase-field

and can easily deal with local adaptivity, the Lagrangian approach naturally extend

adaptivity to dynamics, and the variational formulation enables nonlinearly-stable

robust variational time integration. The numerical implementation of these methods

in a high-performance computing framework has motivated the development of a new

computer code, which integrates state-of-the-art parallel libraries and incorporates

v

important technical contributions to overcome bottlenecks that arise in meshfree

methods for large-scale problems. The resulting code is flexible and has been applied

to other scientific problems in a number of collaborations dealing with flexoelectric-

ity, metal forming, creeping flows, or fracture in materials with strongly anisotropic

surface energy.

vi

Acknowledgments

I would like to express my special appreciation and thanks to my advisor, Prof.

Marino Arroyo. First, for his guidance, support, enthusiasm and fearless attitude

towards research and work. I have deeply enjoyed the vast majority of the projects

we have embraced and also felt his optimism, help and patience at the tough and un-

certain moments that inevitably appear to give value and meaning to any significant

task. Second, I would like to thank him for his priceless example not only within the

professional field but also within the human side. His balanced and flexible way of

dealing with delicate issues regarding the group and the individual has undoubtedly

improved my perception of leadership, managing and education. I am truly indebted

and thankful to the faculty of LaCàN and Departament de Matemàtica Aplicada III.

In particular, Professors Antonio Huerta, Antonio Rodŕıguez, Sonia Fernández and

Jose Muñoz. I met them at the Civil Engineering degree and all of them are responsi-

ble for the seeds that made me love and focus my attention in this new way of doing

science that is Computational Mechanics. Without their motivation and support,

this journey would not have been possible. I would also like to thank the reviewers

of the thesis and the members of the committee for their useful comments and ad-

vice. I am very grateful to the people at LaCàN for providing such an enjoyable and

stimulating working environment. A very special thanks to my colleagues and friends

at Omega lab. I’ll never forget the guidance, kindness and sense of humor of Adrián

Rosolen, the neverending but wise and valuable advices of Daniel Millán, the deep

conversations with Susanta Ghosh about the ”true flavour of research”, the rigorous-

ness of Mohammad Rahimi inside the lab and his happy view of the life outside, that

wonderful trip to Porto and the “Old Friends” bottle I shared with Amir Abdollahi,

the passion for cleanness, order and beer of Behrooz Hashemian, the enjoyable con-

versations about Catalonia independence with Alejandro Torres and everything that

vii

he uses to bring to the lab when he goes home, the example and kindness of Juan

Vanegas, the wonderful coffee and beach time with Aditya, the James Bond smile of

Bin Li when he does not understand something, the basketball matches of Kuan and

last but not least, that crazy man known as Dimitri Kaurin. My special thanks also

to David Modesto, Ana Tamayo and Cristina Diaz-Cereceda, among other colleagues

of the “far, far side of the Campus”. We spent perhaps too little but truly enjoyable

and genuine time together. I’m going to miss my lunch time with my dear friend

Gonzalo and our hot chocolates in the break of the french course.

I have so much to be grateful for my friends, specially Xavi and David, and my

dear loved ones, my parents, sisters, little brother and brother in law (”Aut viam

inveniam aut faciam!”), who have been a source of unconditional inspiration and

encouragement. During this time I had the privilege of walking through heaven and

hell, and it was in the darkness where I felt you brighter and closer. Life is like

a collective sport, no real success is achieved just by oneself. Thank you for being

my team now and always, everyone of you is a Ph.D. to me. Following with the

sport, let me bewilder yet and again of how much happiness and inspiration could a

pair of blades bring into my existence. Ice and hockey are already part of me, and

so my dear friends Avi (gracias por encontrarme, profeta del hockey!), Judit and

Cristina (hockey girls!), Ramón, Max, Artur, Octavi, Oriol, Ruth (la campeona),

Sebastian (the doctor), Sebastián (el maestro), Anna, Xavi, Carles and Cristina (el

tŕıo maravilla del staff), Marc (I did it my waaaayyy!!!!!), Petit (locura sobre la pista)

and Jarek (crack!).

And finally I thank to God. Or chaos, or chance or luck or fate or whatever word

that is able to describe an astonishing chain of circumstances that ends up with you

finding a treasure. In my case this treasure has a name and it is MaŕıaPaz. Thank

you for such many moments that worth a lifetime. “Le vent se lève... Il faut tenter

de vivre!”.

viii

Contents

Abstract v

Acknowledgments vii

Contents ix

1 Introduction and overview 1

2 Approximation of meshfree phase-field models 9

2.1 Model complexity . 9

2.2 Meshfree methods and the Local Maximum Entropy Approximants . . 12

3 Phase-field modeling of biomembranes 17

3.1 An introduction to biomembranes . 17

3.2 Vesicle modeling . 20

3.3 Vesicle statics: equilibrium shapes . 25

3.4 Vesicle dynamics : an adaptive Lagrangian approach 32

3.4.1 Lagrangian phase-field model formulation 33

3.4.2 Numerical approach . 38

3.4.3 Numerical results . 41

3.5 Complex biological processes : influence of kinetics and adhesion in
vesicle shaping . 47

3.5.1 Motivation . 47

3.5.2 Modeling adhesion . 51

3.6 Kinetics and morphogenesis . 55

4 High Performance Computing 59

4.1 Supercomputing: towards an efficient parallel sparse LME environment 59

4.1.1 Neighborhood coarsening algorithm 61

4.1.2 Compressed meshfree basis functions storage 64

4.1.3 Meshfree parallel sparse matrices in PETSc 67

4.2 A brief code overview . 70

ix

5 Other applications 75
5.1 Stabilization of Stokes equations with LME approximants 75
5.2 A stabilized formulation for viscoplastic flow in metal forming 81
5.3 Computational evaluation of the flexoelectric effect in dielectric solids 84
5.4 Fracture in brittle materials of anisotropic surface energy 89

6 Concluding remarks and future directions 93
6.1 Conclusions and future directions . 93
6.2 Publications . 95

References and list of figures 97

Appendix A
An adaptive meshfree method for phase-field models of biomem-
branes. Part I: approximation with maximum-entropy approxi-
mants. 119

Appendix B
An adaptive meshfree method for phase-field models of biomem-
branes. Part II: a Lagrangian approach for membranes in viscous
fluids. 149

Appendix C
Efficient implementation of meshfree Galerkin methods for large-
scale problems with an emphasis on maximum entropy approxi-
mants. 177

Appendix D
Meshfree Parallel Algorithms 211

x

Chapter 1

Introduction and overview

Phase-field modeling is a powerful methodology that introduces a scalar continuous

field to describe and connect the different phases of a system. This field, usually called

order parameter, takes constant values in the bulk and gradually changes between

phases naturally identifying an interface. In contrast with classical sharp-interface

methods (see Fig. 1.1), this interface is smeared over a diffuse region, whose thickness

may model a physical phenomenon or result from mathematical regularization.

Phase-field models enable seamless calculations over the bulk and through the in-

terface in a continuous way and thus presents several advantages within a range

of applications that is vast and keeps growing quickly. It has become a corner

stone in material sciences [1, 2], gaining popularity in a wide set of applications

Figure 1.1: Diffuse and sharp-interface approaches. (nele.studentenweb.org)

1

2 Introduction and overview

in applied science and engineering such as fracture [3], microstructure formation and

fracture evolution in ferroelectric materials [4], image segmentation [5], multi-phase

flows [6], infiltration in porous medium [7], shape memory alloys [8] or tumor angio-

genesis [9](see Fig. 1.2). The simulation of biomembrane systems has been a relatively

recent addition in phase-field modeling [10, 11].

First steps of phase-field modeling date back to Van der Waals [12]. In his ef-

forts to understand the density change between a liquid and its vapor, he inferred

from a thermodynamical point of view that the gas-liquid density interface was more

consistent if described as a diffuse transition rather than as a sharp one. These

considerations gave birth to the idea of phase-field or diffuse interface modeling,

which expanded quickly throughout the scientific community, but that was mainly

formalized and developed over the last 50 years. The study of phase transitions

of Ginzburg and Landau [13] in 1963 introduced the fundamental idea of the order

parameter, which was interpreted as an independent state variable of the thermo-

dynamical system. Hillert [14] applied similar concepts to build the first model for

spinodal decomposition using a discrete phase-field, while Cahn and Hilliard [15] an-

alyzed the same problem by using a continuous phase-field. Ginzburg-Landau and

Cahn-Hilliard made critical contributions to the model, in particular adding to the

mean field free energy (related to the bulk free energy) the contribution of phases

and interfaces and thus giving rise to a consistent free energy functional and a formal

structure to the modern understanding of phase-field modeling. Nevertheless, until

that moment, the concept of a diffuse interface had been built on the purpose of

approaching the physical reality and its properties (i.e. thickness and other related

microscopic parameters) were understood as real and deducible from the energy po-

tentials governing the system.

A second view of phase-field models came to light in 1987 when Langer [16]

proposed a more phenomenological view of the interface. In the new framework, the

3

Figure 1.2: Phase-field applications. Top: evolution of fracture in ferroelectric single
crystal [4]. Center: phase change. The non-uniform temperature results from the
release of latent heat at the solidifying interface. The dendrite arms grow fastest
where the temperature gradient is steepest (ctcms.nist.gov). Bottom: tridimensional
phase-field simulation for gravity-driven infiltration in a porous media [7].

4 Introduction and overview

real diffusiveness of the interface as well as the related parameters are considered to

be beyond the resolved scale and remain hidden at the microscopic level. Therefore,

the interface thickness becomes a mathematical artifact that mimics the original

sharp-interface model while keeping the phase-field formalism. This viewpoint also

provides a natural route to phase-field model development as a regularization of the

sharp-interface counterpart.

The modeling used in this thesis to simulate biomembrane systems follows this

numerical concept of phase-field i.e. the ratio between the characteristic sizes of

the vesicle radius and thickness is high enough to neglect the physical variations

along the interface. The simulation of these systems with sharp-interface models

poses several difficulties for classical parametrical approaches. From a numerical

point of view, parametric sharp-interface approaches suffer when complex geometries

and topology changes appear, e.g. merging and pinch-off phenomena, which can be

extremely difficult to parameterize. They also run into the necessity of tracking the

interface position at every time step. Many of these problems can be overcome with

phase-field modeling (Table 1.1). Since the interface arises as a change between the

phase-field values, it removes the surface tracking as well as other issues associated

with topological and geometrical difficulties. Of course, phase-field models have

their own drawbacks to be considered. The refinement of the interface, which has

to be resolved, introduces numerical difficulties e.g. the gradually increasing sharp

gradients located on the interface and the resulting stiffness of the system, both in

time and space (we refer to Section 2.1). As a consequence, phase-field models tend

to be computationally expensive.

Some geometrical and topological problems can be tackled with advanced tech-

niques such as subdivision surfaces [17] and level set methods [18]. Level set methods

provide a powerful technique to describe dynamical and complex sharp geometries

using implicit functions. However, modeling interfacial physics and imposing com-

5

Table 1.1: Sharp-interface (parametrical) and phase-field modeling comparison.
Aspect/Method Parametrical Phase-Field
Physical field vectorial scalar

Domain line/surface 2D/3D
Interface explicit tracking no tracking

Error sources discretization discretization
interface tracking model

Numerical challenges mesh entanglement local sharp-gradients
topological changes adaptivity

plex jump conditions may become difficult. Phase-field models, in contrast, eliminate

these interface conditions and replace them by the order parameter field and a partial

differential equation over the full domain which connects the interface with the rest

of the physical system. Moreover, the connection of the phase-field with the physics

is commonly modeled through a free energy that drives the kinetics of the system,

which makes straight-forward to gradually improve the model by adding contributing

energy terms.

We choose to discretize our Galerkin schemes with the local maximum entropy

(LME) approximants, a meshfree method. These smooth approximants can deal

with the second order derivatives present in many phase-field functionals and handle

local refinement in a robust manner. LME present as well a number of features that

make them suitable for phase-field models, such as their strict non-negativity, the

straightforward imposition of boundary data (they present a weak Kronecker-delta

property on the boundary) and the robustness of their evaluation. The variation

diminishing property is particularly well-suited for phase-field models exhibiting step-

like changes across the interphase.

The main objective of this thesis is to study biomembrane dynamics using phase-

field models discretised with LME approximates. The simulation of biomembranes

(both in space and time) is too expensive for atomistic and coarsed-grained methods

(see Section 3.1), and continuum models appear as an alternative to study their be-

6 Introduction and overview

havior while keeping the computational cost below reasonable limits. In this thesis

we propose methods that combine different numerical techniques to obtain a robust,

scalable and computationally efficient code. We use a variational approach that ac-

counts for a fourth-order phase-field model describing the vesicle and a dissipation

term to consider the surrounding viscous fluid media. We minimize the action with

respect to the phase field variable in the statics case to get equilibrium shape solu-

tions. In the study of the dynamics we propose a Lagrangian particle method where

we minimize with respect to the deformation mapping of the medium including both

the interface and the background. Since the phase-field is convected by the motion,

the refined regions of the mesh follow the interphase automatically. We extend the

phase-field model to account for adhesion and investigate how confinement and ki-

netics could play a fundamental role in biological membrane shaping, motivated by

recent experiments.

From a computational science perspective, we developed a C + + code that uses

MPI for parallelization and some of the state-of-the-art libraries in scientific super-

computing i.e. PETSc, ParMetis, QHULL, TetGen. We found that meshfree rou-

tines in these packages are not as developed in the field as they are in mesh based

techniques. In consequence, the implementation in supercomputing facilities has mo-

tivated a number of contributions to the implementation of meshfree methods. In

particular, we present an optimization that coarse-grains the connectivity speeding-

up critical algorithms in the system matrix assembly and also a compressed basis

functions storage strategy to overcome memory bottlenecks. The structure of the

resulting library is presented. We briefly report on collaborations in other prob-

lems beyond biomembranes, where the code has been successfully applied due to the

flexible and user-friendly structure of its design.

This thesis is organized as follows. In Chapter 2, we justify the complexity arising

from phase-field models in combination with meshfree methods and the need for

7

supercomputing. We also give an introduction to meshfree methods in general and

to the LME approximants in particular. We devote Chapter 3 to the phase-field

modeling of biomembranes. We motivate the problem, develop our contributions to

the phase-field modeling of vesicles and briefly introduce our main results in statics,

dynamics and ongoing research. Chapter 4 is a more technical document where

we present a comprehensive description of the C + + code and point out the main

contributions to the implementation of meshfree methods. In Chapter 5 we present

different applications to which we have applied LME and the codes developed in this

work. We finish with some concluding remarks, future research lines and an overview

of the publication record in Chapter 6. The main papers have been referred in the

text and can be consulted in Appendix A, Appendix B and Appendix C. Relevant

parts of our code are detailed in Appendix D.

8 Introduction and overview

Chapter 2

Approximation of meshfree
phase-field models

2.1 Model complexity

The main advantage of the phase-field model is the unified treatment of the interfacial

tracking and mechanics, which potentially leads to simple, robust, scalable computer

codes. Additionally, a meshfree method is well-suited to approximate high-order

phase-field models, because the free energy functionals involve high order derivatives.

This combination comes at the expense of a high computational cost, particularly if

the phase-field modeling error with respect to the sharp-interface limit needs to be

small. Furthermore, a meshfree method demands for a higher cost in terms of basis

functions calculation, and suffers from the lack of a mesh-supported connectivity and

heavier sparse matrices and assembly related routines.

In particular, biomembrane phase-field models resort to a 3D scalar PDE to de-

scribe an interphase, which would require a 2D vectorial description in a parametric

representation i.e. while a vesicle surface could be parameterized and resolved in two

dimensions, the phase-field model implies the use of a third dimension to describe

the volume containing the interface. Moreover, the phase-field model accuracy de-

9

10 Approximation of meshfree phase-field models

pends on the diffuse interface resolution, which is controlled by a width parameter

ε. In biomembrane models, ε dictates the thickness of the membrane, which should

be chosen as small as possible if the target is recovering the sharp-interface limit.

Resolving a smaller ε implies an even smaller nodal spacing on the discretization

grid. In our experience, the nodal spacing h should at least satisfy ε ≥ 2h. As a

consequence, using uniform grids implies a spatial complexity of order O(ε−d) in a

phase-field model describing an interface of dimension d − 1 embedded in a space

of dimension d. This justifies the necessity for adaptive strategies, since the order

of complexity can be then ideally lowered one dimension and match the interface

dimension i.e. order O(ε1−d).

Phase-field models introduce a field, which concentrates around a thin layer,

introducing numerical stiffness into the system. This stiffness can be broadly ex-

plained as a property of the system by which large variations in the output arise

from small changes in the input, hence limiting the time step in any explicit time

integration. Furthermore, this type of stiffness arising from different scales is com-

monly reflected by a high condition number in the matrices, thus hampering iterative

solvers, which are in general preferable to treat large sparse matrices. Indeed, it can

be proved that the biomembrane phase-field model produces solutions with the profile

φ(x) = tanh
[
dist(x)√

2ε

]
, where dist(x) is the distance to the interface. Resolving this

profile requires a very fine discretization for small values of ε, but this high resolution

is only required in the vicinity of the interface. Away from it, the phase-field is nearly

constant. These issues of phase-field models affect dramatically the performance and

motivate two fundamental choices in the proposed strategy for solving the problems

in this thesis: strong adaptivity and variational time integrators.

The other large source of complexity lies within the meshfree nature of the ap-

proximants used in the discretization. Their choice is motivated by a number of

properties that make them desirable to solve these kind of problems, but comes with

2.1 Model complexity 11

a more complex structure that can damage the final performance. Approximation of

high-order phase-field models has been previously tackled with other discretization

techniques. Isogeometric analysis [19], a non-negative technology showing precise ge-

ometrical descriptions and the required smoothness to handle high-order operators,

has been successful in approximating phase-field models for a variety of problems

[20, 21]. However, the straight-forward h-refinement and robustness of meshfree

methods in Lagrangian grids under large distortions has motivated the choice of

LME approximants to discretize the biomembrane phase-field models presented in

this thesis. Nevertheless, the non-negative character of these two technologies make

them suitable to be combined to get advantage of their combined strengths [22]. Dis-

cretization of PDE’s in a meshfree sparse framework involves a variety of routines

including (i) neighbor search over domain, (ii) computation of the basis functions,

(iii) creation of an sparse matrix structure and (iv) filling of matrix positions with

a particular operation. As discussed in Section 4.1, the last two routines gain rel-

evance as the size of the system increases, and are comparable to the final solver

step, particularly in 3D. The not known a priori structure of the sparse matrices,

the higher density of the connectivity matrix and the large number of integration

points required, introduce a non-negligeable overhead in comparison with standard

mesh-based methods e.g. FEM.

Thus, while mesh free methods provide smooth and flexible approximation for

high-order PDE, these technologies can be computationally demanding, particularly

in conjunction with phase-field models. For this reason, part of this thesis is devoted

to their implementation in a HPC framework.

12 Approximation of meshfree phase-field models

2.2 Meshfree methods and the Local Maximum En-

tropy Approximants

Meshfree methods provide an approximation to continuum field equations based on

basis functions that do not rely on a mesh or its connectivity (see [23] for an intro-

ductory review). Therefore, many of the requirements associated with the quality

of the elements in a traditional FEM are relaxed or disappear. This extra flexibil-

ity on the grid of nodes raises new challenges in the numerical implementation [24].

The most popular meshfree approximants are based on the moving least squares

idea [25]. One of the first meshfree methods, the smoothed particle hydrodynam-

ics [26], was originally designed in 1977 to solve astrophysical problems and applied

later to fluid dynamics. From there on, a variety of methods have emerged, such as

reproducing kernel particle method [27], partition of unity finite element method [28]

and element free Galerkin [29] to mention a few. FEM strategies have succeed in

countless computational mechanical and physical applications, but they have also

run into obstacles when facing problems involving discontinuities, sharp fronts, large

distortions and high-order derivatives. Meshfree methods offer several advantages

such as shape functions with high-order continuity, robustness in dramatic grid de-

formations [30, 31] and easier local adaptivity [32, 33]. Most of meshfree Galerkin

methods actually require a quadrature mesh in order to perform integration, and a

higher number of quadrature points to accurately integrate the weak form due to

their non-polynomial nature and non element-wise support. Other issues include

the awkward treatment of essential boundary conditions due to non-satisfaction of

the Kronecker delta property, the computational cost associated to neighborhood

creation to determine the basis functions support and the computation of the basis

functions themselves.

In recent years, the information theoretic concept of maximum-entropy has been

2.2 Meshfree methods and the Local Maximum Entropy Approximants 13

Basis function

Full support
Effective support

Tol0

Figure 2.1: Left: Full support of local maximum entropy (LME) basis functions
covers the convex hull of the computational domain. The effective numerical support
size is given by the truncation error Tol0. Right: Representation of two-dimensional
LME approximants. Notice the non-interpolant character and the smoothness of the
basis functions, and the fulfillment of a weak Kronecker delta at the boundary of the
convex hull.

put forth to develop polygonal approximants [34] and meshfree approximation schemes

[35]. Local maximum-entropy approximants are non-negative and are endowed with

features that are proper to convex approximants, such as monotonicity, smoothness

(C∞, and therefore handle without difficulties high-order derivatives) and variation

diminishing property [35]. They satisfy ab initio a weak Kronecker-delta property

at the boundary of the convex hull of the nodes [35] and therefore the imposition of

essential boundary conditions in Galerkin methods is straightforward. Their convex

geometry structure [35] enables the connection with other non-negative technologies

like isogeometric analysis [19] or subdivision surface [36]. Other advantages include

the robustness of their evaluation and a simpler quadrature [37]. Some of these

concepts are illustrated in Fig. 2.1.

Traditional numerical methodologies like finite difference [10, 38] and spectral

methods [39] have been used for phase-field models of biomembranes. Recently, iso-

geometric analysis [19], a Galerkin method based on tensor products of 1D NURBS

14 Approximation of meshfree phase-field models

approximants, has shown an excellent performance for the Cahn-Hilliard equation,

handling successfully the sharp transitions of the solutions without spurious over-

shoots [20, 40]. Although these structured methods can handle higher-order op-

erators, they have difficulties in adapting to localized features. C0 finite element

approaches can deal with the high-order character of the functional by reformulating

the model as a system of second order PDE [41] and are well suited for adaptiv-

ity [42], but suffer from poor accuracy for a given computational cost. A number of

adaptive techniques have been developed for the Cahn-Hilliard model, including an

adaptive multigrid finite-difference method [43, 44], a Fourier spectral moving-mesh

method [45], an adaptive FEM with linear [46, 47, 48] and quadratic [49] shape func-

tions after recasting the higher-order phase-field as a system of lower-order equations,

and a finite volume approach for unstructured grids [50]. Adaptive methods based

on finite differences [51, 52], Fourier spectral [53], or finite volumes [54, 55] have been

proposed for other higher-order phase-field equations.

Maximum-entropy basis functions, denoted by pa(x), a = 1, . . . , N with x ∈ Rd,

where d is the space dimension, are designed to be strictly non-negative and to fulfill

the zeroth and first order consistency conditions

pa(x) ≥ 0,
N∑

a=1

pa(x) = 1,
N∑

a=1

pa(x) xa = x, (2.1)

where the last equation allows us to identify the vectorial weights xa with the posi-

tions of the nodes associated with each basis function.

The idea behind local maximum-entropy basis functions is to construct local ap-

proximants as well as optimal from an information theory viewpoint. It means that

these approximants have to exhibit a (Pareto) compromise between two competing

objectives, minimum width (locality) and entropy maximization (information theory

optimality criteria), subject to the consistency constraints (reproducibility condi-

2.2 Meshfree methods and the Local Maximum Entropy Approximants 15

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1
γ = [0.6 1.2 1.8 2.4 3 3.6 4.2 4.8 5.4 6]

Figure 2.2: Seamless and smooth transition from meshfree to Delaunay affine basis
functions. The transition is controlled by the non-dimensional nodal parameters γa,
which here take linearly varying values from 0.6 (left) to 6 (right).

tions). These requirements enable us to write the following optimization program to

select the approximants

For fixed x, minimize
N∑

a=1

βapa|x− xa|2 +
N∑

a=1

pa ln pa

subject to pa ≥ 0, a = 1, . . . , N

N∑

a=1

pa = 1,
N∑

a=1

paxa = x,

(2.2)

where the set of non-negative nodal parameters {βa = γa/h
2
a}a=1,...,N defines the

locality of the approximants [35, 56]. The dimensionless parameter γa characterizes

the degree of locality of the basis function associated to the node xa, while ha repre-

sents the nodal spacing. The basis functions become sharper and more local as the

value of the dimensionless parameter γa increases, and the Delaunay approximants

arise as specialized limits (γa ≥ 4 in the practice), as illustrated in Fig. 2.2 for a

one-dimensional domain.

As fully detailed in [35], it can be mathematically proved that the optimization

problem has a unique solution. The efficient solution follows from standard duality

methods. Here, we just summarize the recipe for the final calculation of the basis

16 Approximation of meshfree phase-field models

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

x

B
as

is
 F

un
ct

io
ns

0 1 2 3 4 5
−2

−1

0

1

2

x

G
ra

di
en

t

0 1 2 3 4 5

−4

−2

0

2

x

H
es

si
an

Figure 2.3: One-dimensional local maximum-entropy basis functions (left), and its
first and second spatial derivatives (center-right) computed with a dimensionless
parameter γ = 0.8.

functions. By analogy with statistical mechanics, we define the partition function

Z(x,λ) =
N∑

b=1

exp
[
−βb|x− xb|2 + λ · (x− xb)

]
. (2.3)

At each evaluation point x, the Lagrange multiplier for the linear consistency

condition is the unique solution to a solvable, convex, unconstrained optimization

problem

λ∗(x) = arg min
λ∈Rd

lnZ(x,λ). (2.4)

This optimization problem with d unknowns is efficiently solved with Newton’s

method. Then, the basis functions adopt the form

pa(x) =
1

Z (x,λ∗(x))
exp

[
−βa|x− xa|2 + λ∗(x) · (x− xa)

]
. (2.5)

We refer to [57, 56] for the expressions to compute the gradient ∇pa(x) and

the Hessian matrix Hpa(x) of the local maximum-entropy basis functions, which

are illustrated in Fig. 2.3 for a one-dimensional domain uniformly discretized and a

dimensionless parameter γ = 0.8. We refer to [58] for a more detailed description of

maximum-entropy approximants and their applications.

Chapter 3

Phase-field modeling of
biomembranes

In this chapter the main contributions to the simulation of biomembranes are pre-

sented. First, in Section 3.1, we give a brief introduction of biomembranes from a

biological-chemical point of view. In Section 3.2 we go through the theory under-

lying their modeling, and devote Sections 3.3 and 3.4 to modeling and simulation

strategy for statics and dynamics, respectively. Further details can be found in pa-

pers Appendix A and Appendix B. We conclude with a review of the ongoing research

regarding adhesion and confinement phenomena in Section 3.5.

3.1 An introduction to biomembranes

The study of living cells is a very important issue in different fields such as biological

research, medicine and biotechnology. A general feature of all cells is an interface

membrane between the machinery in the interior of the cell and the extracellular

fluid, called the plasma membrane. Eukaryotic cells possess complex compartments

made out of internal membranes, called organelles, instrumental in their function (see

Fig. 3.1), which are also responsible for the transport of substances through cargo

17

18 Phase-field modeling of biomembranes

Figure 3.1: Human cell structure. Source: Encyclopedia Britannica Inc.

vesicles or tubes. They also play a key role in bio-mimetic engineered systems [59].

Their complex behavior, rich physical properties, formation and dynamics have been

objects of experimental and theoretical investigation for biologists, chemists and

physicists during many years [60, 61].

Cell membranes are mainly built from two mono-molecular layers of lipids (called

lipid bilayers) held together by entirely non-covalent forces. They are around 4

nm in the thickness and from tens of nanometers up to millimeters in the lat-

eral directions. Lipids in plasma membranes are chiefly phospholipids e.g. phos-

phatidyl ethanolamine. Phospholipids are amphiphilics with hydrocarbon tails and

hydrophilic polar heads [59, 62, 63]. Therefore, they assemble naturally forming a

hydrostable bilayer, which presents interesting mechanical properties (see Fig. 3.2).

Experimental observations as well as molecular simulations have revealed the in-

plane fluidity of lipid membranes [64, 65] while they behave as flexible solids which

store bending and extensional elastic energies. Upon mechanical loads, lipid bilayers

may be curved, compressed, dilated, or sheared. In the equilibrium state and within

the linear limit, the membrane response to these deformation modes is characterized

3.1 An introduction to biomembranes 19

Figure 3.2: Phospholipid bilayer structure and self assembly. (Source: astrobiol-
ogy.nasa.gov)

by the following constants: the bending rigidity, the Gaussian curvature modulus,

the area compressibility modulus, and the shear elastic modulus. At physiological

temperatures, most lipid membranes are fluid and therefore lipid membranes have

no strength against shear forces i.e. shear elastic modulus is zero. Below the phase

transition temperature of lipids, lipid membranes form a solid-like gel phase. Me-

chanically, the bilayer acquires a non-zero shear elasticity. In this so-called gel phase,

the relative motion of membrane inclusions is hindered. The fluidity of membranes at

higher temperatures is essential in the case of cellular membranes because it permits

the displacement of membrane anchored macromolecules or inclusions, e.g. trans-

membrane proteins, and provides the necessary malleability for the membrane to

form the intracellular organelles or mediate in tubular and vesicular transport of

proteins (see Fig. 3.3).

The membrane itself, on the one hand, and the surrounding fluid, on the other,

impose a hydrodynamic drag on the motion of an inclusion or in a membrane shape

20 Phase-field modeling of biomembranes

Figure 3.3: Phospholipid bilayer membrane composition. Source: Encyclopedia Bri-
tannica Inc.

change, as this involves a rearrangement (and shear) of the lipids and the surrounding

fluid. The resistance or shear in the plane of the film is characterized by the interfacial

shear viscosity of the membrane. One may equivalently define a viscosity related to

the dilation and compression of the membrane. For a complete and more realistic

description of the membranes, one has to consider the existence of two monolayers

which may slip with respect to each other. The intermonolayer slippage is dragged

by a friction force whose amplitude is proportional to the intermonolayer friction

coefficient.

3.2 Vesicle modeling

Vesicles are closed biomembranes, which play an important role in biophysical pro-

cesses such as the delivery of proteins, antibodies or drugs into cells, and separation of

different types of biological macromolecules within cells. Vesicles serve as simplified

models of more complex biological systems, and can be used to study the interaction

between lipid bilayers and the surrounding medium, e.g. under osmotic stress [66],

shear flow [67], or electrical fields [68]. Depending on the lipid composition, lipid

bilayers can phase-separate forming multicomponent vesicles [69], which have also

been the object of numerous studies as model systems for rafts.

3.2 Vesicle modeling 21

Atomistic molecular dynamics (MD) simulations have been very useful in the

prediction of the macroscopic characteristics of lipid membranes, but remain limited

to small membrane patches due to the large number of atoms involved in closed

vesicles, and more importantly due to the slow relaxation times of bending modes [70].

As a consequence, the computational cost scales as L6 where L denotes the lateral

dimension of the system. Coarse-grained simulation, where each particle represents

a number of atoms, can reach larger systems, and there has been notable successful

studies in recent years involving out-of-equilibrium phenomena at the scale of small

vesicles, e.g. [71]. Yet, as in atomistic MD, the scaling of the computational cost

poses a hard upper bound on the system sizes that can be reached with current

computers. Continuum mechanics has been shown to be very efficient in explaining

the statics of lipid bilayers, as well as their dynamics, particularly for large scale

systems [72, 73, 74, 75, 76].

From a mechanical point of view, the fluid vesicle dynamics result from a balance

of elastic forces and two main dissipative mechanisms : the bulk dissipation due to

the drag force of the surrounding fluid and the internal membrane dissipation of lipid

bilayer; likewise, this internal dissipation can be considered to arise from two main

phenomena : the in-plane membrane viscosity and the intermonolayer slippage. We

consider that the elastic behavior of the membrane is dominated by the bending

energy, leaving the extensional energy as a constraint due to its nearly inextensible

behaviour under common forces. Regarding the media, we note that the drag force

of the ambient fluid is dominant at large scales, while at small scales it is negligible

as compared to the surface viscosity. Here we focus on vesicle systems at large scales

(few microns and above), where the mechanics are given by the interplay of bending

elasticity and bulk viscosity (Fig. 3.4).

Therefore, the main effort is put on the continuum description of the coupled

physics of the vesicle embedded in the fluid media, and the numerical approach

22 Phase-field modeling of biomembranes

Figure 3.4: Elastic energies and dissipation mechanisms; the model considers the
preponderance of bending and solvent in large scale dynamics

to tackle the problem. Nevertheless, other types of dissipation, such as the ones

aforementioned, or the influence of chemical phenomena, such as the protein con-

centrations inducing additional curvature of the membrane, could be added to the

model eventually.

In this study, we are looking for numerically tractable approach for the simula-

tion of complex biological processes involving membranes embedded in a viscous fluid

media, enabling us to examine fundamental questions about cell and organelle physi-

ology. We approach the problem with an innovative continuum description based on a

phase-field model, a meshfree approximation and a Lagrangian framework, resulting

in a variational method that presents automatic adaptivity.

The development of the phase-field model for vesicles starts with the set up of an

order parameter in the spirit of the Cahn-Hilliard [15] approach. In this framework,

we define an order parameter φ(x) that takes values +1 and −1 to signal the exterior

and the interior enclosed volumes of a membrane, respectively. We then find a

connection between the field φ(x) and the relevant geometrical quantities involved

3.2 Vesicle modeling 23

in the energy functionals governing the behavior of the system. We follow here

the phase-field model for biomembranes proposed by [10] and developed in [?],

which start approximating the area and enclosed volume of the vesicle. The volume

description is almost trivial and serves as a primary example of this methodology. It

is clear that the functional,

EV =

∫

Ω

φ dΩ, (3.1)

approximates the difference between the exterior and the interior volumes, and the

functional

EA =

∫

Ω

(
ε

2
|∇φ|2 +

1

4ε
(φ2 − 1)2

)
dΩ, (3.2)

is proportional to the surface area as ε→ 0.

For fluid membranes in our scale range, the main term in the energy functional

was introduced by Canham [77], Evans [78] and Helfrich [79] , which accounts for

the bending elastic energy in a sharp-interface model,

EH =

∫

Γ

(
kH
2

(H − C0)2 + kgK + σ

)
dΓ, (3.3)

where Γ is the surface of the vesicle, H stands for the mean curvature, K for the

Gaussian curvature, σ represents the surface tension, C0 is the spontaneous curvature

(may be modeled by area difference elasticity [80]) and kH , kg are the bending and

Gaussian rigidities, respectively.

In our model, we let aside the Gaussian curvature term, whose integral remains

constant for a uniform vesicle in the absence of topological changes by virtue of the

Gauss-Bonnet theorem. The surface tension term is also omitted later, because it can

be incorporated e.g. in the Lagrange multiplier enforcing constant area. Considering

24 Phase-field modeling of biomembranes

for simplicity C0 = 0, the mean curvature remains as the only contribution to the

bending energy.

Under this assumptions, the Helfrich model admits a phase-field formulation [10,

11, 81], where the curvature energy and the associated constraints (area and volume)

of the vesicle can be written as,

E(φ) = fE
k

2ε

∫

Ω

[
ε∆φ+

(
1

ε
φ+ C0

√
2

)(
1− φ2

)]2

dΩ

V (φ) =
1

2

(
V ol(Ω) +

∫

Ω

φ dΩ

)
= V0

A(φ) = fA

∫

Ω

[
ε

2
|∇φ|2 +

1

4ε
(φ2 − 1)2

]
dΩ = A0

(3.4)

where ε is a small regularization parameter, fE = 3
8
√

2
, fA = 3

2
√

2
, Ω is the domain,

and ∂Ω its boundary. The regions {x : φ(x) > 0} and {x : φ(x) < 0} represent the

inside and outside of the membrane, while the level set {x : φ(x) = 0} can be used

to realize the position of the membrane. Formal asymptotics [11], as well as rigorous

mathematical analysis [82] (see also [83] for a review), provide the connection between

the phase-field and the sharp-interface models when ε → 0. As this limit is never

achieved in the numerical calculations, a modeling error is always present in practice.

This model has been coupled with the Navier-Stokes equations in [39]. Similar ideas

to couple phase-field models of biomembranes with fluid or other physical fields have

been developed by other researchers as well [68, 84, 38, 46].

Vesicles are always surrounded by a solvent. In most situations of interest, vesicles

evolve in low Reynolds number conditions. The assumption of creeping dynamics lets

us pose the problem from an energetic standpoint and use the dissipation rate from

the energy balance equation to state a variational principle. From the Rayleigh

dissipation potential it is possible to derive the classical form of momentum balance

3.3 Vesicle statics: equilibrium shapes 25

equations for creeping dynamics.

The Rayleigh dissipation potential for a compressible Newtonian fluid can be

written as

Diss[∂ty;y] = µ

∫

Ω

d′ : d′ dΩ +
λ

2

∫

Ω

(div v)2 dΩ, (3.5)

d′ = d− d̄ =
1

2
(∇v +∇vT)− 1

3
div vI. (3.6)

For an incompressible Newtonian fluid, the second term above is replaced by the

constraint

div v = 0. (3.7)

This expressions allow us to consider the action of the bulk fluid acting on the

vesicle and drive accordingly the dynamics of the system. Considering a slightly

compressible fluid simplifies the mathematical formulation and the numerical im-

plementation. Nevertheless, a numerical treatment of the fully incompressible case

using LME mesh free approximants is described in Chapter 5.

3.3 Vesicle statics: equilibrium shapes

We briefly introduce here the basics for biomembrane statics, which is fully developed

in our paper in Appendix A. In the static approach we aim to minimize the elastic

potential of the vesicle to get equilibrium shapes. These stable configurations have

been widely studied in the biophysical literature, which provides a valuable source

for comparison and validation. At this stage, the objective is to demonstrate that the

numerical scheme proposed to solve the phase-field formulation is able to handle the

different numerical challenges (sharp features, adaptivity, large deformations, topol-

ogy changes) imposed by the phase-field model. We also note the relevance of using

26 Phase-field modeling of biomembranes

adaptive grids with phase-field models by comparing different levels of refinement

with regular uniform grids. We rely for refinement on Centroidal Voronoi Tessella-

tions [85] to distribute appropriately the nodes based on the phase-field gradient.

In this framework, we simply minimize the elastic bending energy with respect

to the phase-field over a domain Ω containing the vesicle, subject to volume and

area constraints. This minimization leads to different local minima standing for

the different stable shapes. Note that an additional constraint is added in statics,

corresponding to the static moment in the vertical axis (in this work we develop the

formulation in axisymmetric coordinates). This constraint is needed in statics to

control the rigid solid movement in the axisymmetrical axis, and thus prevents the

vesicle from escaping the simulation domain.

We consider the following expansion for the phase-field in terms of the basis

functions

φ(x) ≈ φh(x,Φ) =
N∑

a=1

pa(x)φa, (3.8)

where Φ = (φ1, φ2, ..., φN) is an array containing the N nodal values of the phase-

field, and we insert this ansatz into the variational problem describing the phase-field

model to obtain the following algebraic optimization program:

Minimize Eh(Φ) = E[φh] = fE
k

2ε

∫

Ω

W 2
h dΩ

subject to Vh(Φ) = V [φh] =
1

2

(
V ol(Ω) +

∫

Ω

φh dΩ

)
= V0

Ah(Φ) = A[φh] = fA

∫

Ω

[
ε

2
|∇φh|2 +

1

4ε
(φ2
h − 1)2

]
dΩ = A0

Mh(Φ) = M [φh] =

∫

Ω

φh(z − zc) dΩ = 0

φh|∂Ω = −1,

(3.9)

3.3 Vesicle statics: equilibrium shapes 27

where

Wh = ε∆φh +

(
1

ε
φh + C0

√
2

)(
1− φ2

h

)
. (3.10)

The optimality conditions can be obtained from the Lagrangian function

L(Φ,ν) = Eh(Φ)−νA [Ah(Φ)−A0]−νV [Vh(Φ)− V0]−νM [Mh(Φ)−M0] , (3.11)

where the area, volume and static moment constraints are maintained by the La-

grange multipliers or physical reactions ν = (νA, νV , νM), where νA can be inter-

preted as a membrane tension and νV as a pressure difference across the membrane.

After defining a new set of variables x̃ = (Φ,ν) = (φ1, φ2, ..., φN , νA, νV , νM),

the optimal solution of this saddle-point problem can be sought with the Newton-

Raphson method applied to the nonlinear set of equations given by ∂ΦL = 0,

∂νL = 0. However, this approach may lead to mere stationary points, not mini-

mizers of the elastic energy, physically unstable equilibria. Furthermore, given the

difficulty in setting good initial guesses for the Lagrange multipliers, this solution

strategy is not robust. A robust strategy that guarantees stable equilibria is based

on the augmented Lagrangian method, which combines the standard Lagrangian with

penalties. This method retains the exactness of the Lagrange multipliers method and

the minimization principle of penalty methods. The minimization is performed itera-

tively on the phase-field variables for frozen Lagrange multipliers, which are updated

explicitly (see [86, 87] for further details). The augmented Lagrangian is

LA(Φ,ν) = Eh(Φ)− νA [Ah(Φ)−A0]− νV [Vh(Φ)− V0]− νM [Mh(Φ)−M0]

+
1

2µ
|Ah(Φ)−A0|2 +

1

2µ
|Vh(Φ)− V0|2 +

1

2µ
|Mh(Φ)−M0|2 .

(3.12)

28 Phase-field modeling of biomembranes

We solve the problem in two stages. First, we follow the augmented Lagrangian

method to find an approximate minimizer consistent with the constraints with a

coarse tolerance. Then, this approximation is refined with the regular Newton-

Raphson method on the extended set of variables x̃. Since the initial guess for

this second stage is very close to the actual minimizer, the algorithm never leads to

unstable equilibria. The expressions to compute the gradients r̃(Φ,ν) and r̃A(Φ,ν)

of the Lagrangian and augmented Lagrangian are lengthy but straightforward, and

can be found in Appendix A.

Numerical results recover stable equilibrium shapes that can be charted in a

phase diagram that has been extensively studied (see [1, 2] and references therein).

This diagram exhibits a number of equilibrium branches, including prolates, oblates,

discocytes, or stomatocytes. The equilibrium shape for a given area, volume, and

spontaneous curvature is not unique in general. For instance, upon deflation of

an initially spherical vesicle without spontaneous curvature, the prolate-dumbbell

and oblate-discocyte branches are possible. Mathematically, the transition shapes

of the equilibrium branches can be tracked by changing the volume constraint and

solving for constrained minimizers. A number of equilibrium shapes for the oblate

equilibrium branch are plotted in Fig. 3.5.

We illustrate the accuracy of the proposed method by analyzing two specific

aspects in axisymmetric examples: (i) the convergence of the phase-field model for

a fixed regularization parameter ε using uniform grids, and (ii) the convergence of

the phase-field model to the sharp-interface model when (ε → 0) and the points

are adaptively distributed, which is essential to simulate thinner interfaces without

significantly increasing the total number of degree of freedom.

To answer the first question we show in Table 3.1 the numerical energies for

a discocyte equilibrium shape considering different values of ε and several grids of

points in a computational domain Ω = [0, 1.5]× [0, 2]. The identification code (O: the

3.3 Vesicle statics: equilibrium shapes 29

Figure 3.5: 3D views of the oblate equilibrium branch: each shape is computed by
minimizing the energy and reducing by 5% the volume of the previous configuration.

Table 3.1: Energies of the discocyte equilibrium shape for different uniform grids of
points and several values of ε. The size of the computational domain is Ω = [0, 1.5]×
[0, 2]. Reference energy from a sharp interface simulation: Ediscocyte = 9.12657.

ID # nodes h̄ ε = 0.05 ε = 0.04 ε = 0.03 ε = 0.02 ε = 0.01
O1 6124 0.024 9.71279 9.59056 – – –
O2 12271 0.017 9.72137 9.59446 9.43775 – –
O3 24597 0.012 9.72671 9.59553 9.43483 9.29532 –
O4 49145 0.0084 9.73203 9.59786 9.43515 9.28938 –
O5 98388 0.0059 9.73536 9.59901 9.43481 9.28674 9.22082
O6 146545 0.0048 9.73716 9.59948 9.43422 9.28378 9.19139
O7 296344 0.0034 9.73989 9.60053 9.43437 9.28326 9.18627

oblate-discocyte branch) and the number of nodes for each grid are indicated in the

first and the second column. As the CVT-generated grids are not perfectly uniform,

the value of the average nodal spacing h̄ is reported in the third column. The re-

maining columns show the energies computed for different values of the regularization

parameter ε. We report the energies only when the transition profile is reasonably

resolved, as decided by the relation ε > 2h. Note the energy convergence from above

as the number of points increases for each ε (columns). We can also observe how the

value of the energy converges to the sharp interface value Ediscocyte = 9.12657 as the

parameter ε decreases.

30 Phase-field modeling of biomembranes

Table 3.2: Energies of the discocyte equilibrium shape for several values of ε and
uniform and adapted grids of 6,124 points. Reference energy from a sharp interface
simulation: Ediscocyte = 9.12657.

ID # nodes ε = 0.04 ε = 0.03 ε = 0.025 ε = 0.02 ε = 0.015 ε = 0.01
O1 6124 9.59056 – – – – –
O11 6124 9.59678 9.44002 – – – –
O12 6124 – 9.43506 9.35810 9.28849 – –
O13 6124 – – 9.35970 9.28701 9.22588 9.18703
O7 296344 9.60053 9.43437 9.35488 9.28326 9.22399 9.18627

We address now the ε → 0 behavior in adapted grids. As argued in Chapter2,

adaptivity is essential for numerical approaches based on phase-field models to be

competitive. A possible strategy for adaptivity is to solve the optimization problem

with a coarse grid of points (and thus a large value of ε), apply CVT to redistribute

the nodes concentrating them around the interface, and compute the phase-field

solution with a smaller ε for this new distribution of points. In practice, this strategy

cannot be applied at once to get a strong refinement. Indeed, the initial coarse grid

provides an inaccurate phase-field solution, which in turn produces an inadequate

relocation of the points. This ultimately constraints unphysically the phase-field

solutions. A better strategy is to adapt the grid and reduce ε progressively.

Table 3.2 reports the bending energies of the discocyte equilibrium shape for

uniform and adapted grids and several regularization parameters. The first and the

last rows correspond to uniform meshes with 6,124 and 296,344 nodes, and are the

same as those reported in Table 3.1. The other rows correspond to adapted grids

with 6,124 nodes, obtained in each step of the progressive adaption of the grid and

reduction of ε. The first column of the table gives an identification code for the

grids of points. A description of the features of each grid is given in Appendix A.

The smooth transition between the successive grids is apparent in the figure, as the

value of ε is slowly decreased in each step, while the refinement factor is increased

to maintain the relative effect of the phase-field gradient. The minimum allowable

3.3 Vesicle statics: equilibrium shapes 31

Figure 3.6: Discocyte equilibrium shape. Uniform and adapted grids of 6,124 points
(top). From left to right: O1, O11, O12 and O13. Zoom of the areas indicated
with black boxes (center). Phase-field (bottom). From left to right, the solutions
correspond to ε = 0.04, ε = 0.03, ε = 0.02, and ε = 0.01.

value for the regularization parameter εmin for a given grid is determined by the

nodal spacing distribution. As expected, the ability of adapted grids to accurately

support sharp phase-field solutions at an affordable cost is noteworthy. Adapted

grids grant the same accuracy (measured by the optimal energy) as uniform grids

with a 50-fold reduction in the number of degrees of freedom for ε = 0.01. Figure 3.6

(bottom) shows the equilibrium phase-field for the grids referred to in Table 3.2 and

shown in Figure 3.6 (top, center). It can be noticed that as the value of ε decreases,

the thickness of the diffuse interface shrinks considerably.

Further details and numerical examples can be found in the corresponding pa-

per Appendix A.

32 Phase-field modeling of biomembranes

3.4 Vesicle dynamics : an adaptive Lagrangian ap-

proach

We introduce here the meshfree Lagrangian method proposed in our paper Appendix

B to study vesicle dynamics. Having shown that the adaptive meshfree method based

on the local maximum entropy approximants can yield very accurate solutions at

an affordable cost for a phase-field model for biomembranes, we turn now to the

(creeping) dynamics of vesicles embedded in a viscous fluid. The adaptive method

proposed in Section 3.3 is adequate to analyze very accurately a given equilibrium

configuration, but is not as well-suited to study quasi-statically equilibrium branches,

as these exhibit buckling events, i.e. very large shape transitions for a small change

in the enclosed volume for instance. The adapted grid for a given state cannot

represent the solution for a very different state, as the high resolution is tailored to the

initial state. Over-damped dynamics or gradient flows, even without a clear physical

meaning [88, 89, 90], can be used to numerically obtain equilibrium shapes, and the

method we proposed here can be interpreted in this vein. Furthermore, the dynamics

of vesicles embedded in a viscous fluid is of interest by itself (see for instance [91] for

a state of the art parametric method for vesicles combined with a boundary integral

method for the Stokes equations with spherical harmonic approximants). Generally,

the inertial effects can be disregarded, and here we consider the low Reynolds number

limit.

Phase-field models for bio-membranes have been coupled with fluid dynamics by

various authors [84, 83]. In all previous approaches, Eulerian framework was adopted,

and a transport equation for the phase-field was set in place. If these models are

combined with adaptivity, cumbersome mesh projection steps will be needed. In

contrast, we propose here a meshfree Lagrangian method to study the dynamics of

biomembranes embedded in a viscous fluid with the following features:

3.4 Vesicle dynamics : an adaptive Lagrangian approach 33

• The phase-field is viewed as a material property of the continuous medium, and

the elastic energy changes as this field is pushed-forward by the deformation.

The deformation rate produces viscous forces. The dynamics result from the

balance of the configurational forces of the phase-field elastic energy and the

viscous forces, subject to area or volume constraints.

• Due to the Lagrangian nature of the method and the stability of membrane

structures, if the initial grid is adapted, the adaptivity automatically follows the

sharp features of the solution, although sporadic remeshing steps may become

necessary.

• The variational structure of the problem is fully preserved by the discretization

schemes, which allows us to use robust incremental minimization implicit time-

stepping schemes, which are non-linearly stable by construction.

• The smoothness of the basis functions allows us to treat in a straightforward

way the second order derivatives of the elastic energy functional.

• The meshfree approximants can deal robustly with large deformations of the

fluid/bio-membrane continuum. However, the basis functions can be updated

by reconnecting the nodes along the simulation.

• The method is the same in 2D or in 3D, and is easily made parallel.

A visual description of the method is shown in Fig. 3.7. The proposed method shares

common features with the optimal mass transport (OTM) method presented in [92].

3.4.1 Lagrangian phase-field model formulation

Consider a fixed fluid domain Ω, where a membrane is located and described at time

t = 0 by a phase-field φ0(x) (obtained from instance from an equilibrium calculations

34 Phase-field modeling of biomembranes

y

r�0

r�0(Dy)�1

x
�0(x)

y(x)

� = �0 � y�1

Figure 3.7: Main ideas behind the Lagrangian phase-field formulation. The back-
ground medium containing the viscous fluid and the smeared interface is rearranged
by a deformation map y(x), which deforms the phase-field, illustrated by a color
map on the nodes of the computational grid. The phase-field is advected (pushed
forward) as a material property as φ = φ0 ◦ y. The gradient of the deformed phase-
field transforms as indicated, and as shown in the text, we can also compute ∆φ as a
push-forward of ∆φ0. This allows us to write the Helfrich curvature energy in terms
of y, and the viscous dissipation in terms of ẏ. Computationally, the deformation
is discretized in terms of particle positions, indicated with colored circles, and the
phase-field and its derivatives are sampled at fixed quadrature points in the refer-
ence configuration. As the Lagrangian simulation proceeds, the adaptivity follows
the phase-field features.

3.4 Vesicle dynamics : an adaptive Lagrangian approach 35

as described in previous sections). Consider now a motion of the continuum medium,

i.e. a smooth bijective mapping on Ω at each instant of time, yt(x). Viewing the

phase-field as a material property, attached to the material particles, it is pushed

forward by the simulation following

φt(x) = φ0 ◦ y−1
t (x) = φ0

(
y−1
t (x)

)
. (3.13)

From this point on, we omit the explicit dependence on t of the motion and the

pushed-forward phase-field. The elastic energy of the membrane in terms of the

phase-field can be computed as

E =
3

8
√

2

k

2ε

∫

Ω

[
ε∆φ+

(
1

ε
φ+ C0

√
2

)(
1− φ2

)]2

dΩ. (3.14)

The enclosed volume and surface are can be computed as

V =
1

2

(
V ol(Ω) +

∫

Ω

φ dΩ

)
(3.15)

and

A =
3

2
√

2

∫

Ω

[
ε

2
|∇φ|2 +

1

4ε
(φ2 − 1)2

]
dΩ. (3.16)

To compute the spacial derivatives of the phase-field, we recall Eq. (3.13) and the

inverse function theorem to obtain

∇φ =
(
∇φ0F

−1
)
◦ y−1, (3.17)

where F = Dy is the deformation gradient. To compute the Laplacian of the pushed-

forward phase-field, we resort to indicial notation and omit the composition with the

deformation map or its inverse as it can be inferred from the context. From the

36 Phase-field modeling of biomembranes

relation ∂iφ = ∂Iφ0F
−1
Ii we have

∂2
ijφ ◦ y = ∂2

IJφ0F
−1
Ii F

−1
Jj + ∂Iφ0∂jF

−1
Ii . (3.18)

Now, from F−1
Ik FkJ = δIJ , we obtain

∂jF
−1
Ii = −F−1

In F
−1
Ji F

−1
Kj ∂KFnJ = −F−1

In F
−1
Ji F

−1
Kj ∂

2
JKyn. (3.19)

In particular, we have

∆φ ◦ y = ∂2
IJφ0F

−1
Ii F

−1
Ji + ∂Iφ0∂iF

−1
Ii . (3.20)

Thus, inserting these two equations into the above functionals and pulling-back the

integration by the deformation map, it is clear that they can be interpreted as func-

tions of the deformation mapping, depending parametrically on the initial phase-field:

E[y] =
3

8
√

2

k

2ε

∫

Ω

[
ε∆φ ◦ y +

(
1

ε
φ0 + C0

√
2

)(
1− φ2

0

)]2

det(F) dΩ, (3.21)

V [y] =
1

2

(
V ol(Ω) +

∫

Ω

φ0 det(F) dΩ

)
, (3.22)

and

A[y] =
3

2
√

2

∫

Ω

[
ε

2
|∇φ0F

−1|2 +
1

4ε
(φ2

0 − 1)2

]
det(F) dΩ (3.23)

Lengthy but otherwise straightforward calculations allow us to compute the varia-

tions of these functionals with respect to the deformation. It is obvious that if the

configuration mapping turns to be the identity, the expression for initial phase-field

description is recovered. We can apply this push-forward to the remaining terms

in our problem, such as the dissipation potential. To simplify the exposition of the

method, we consider the Stokes equations for a slightly compressible fluid, i.e. a

3.4 Vesicle dynamics : an adaptive Lagrangian approach 37

penalized formulation of the incompressible Stokes equations.

Following standard continuum mechanics definitions, the Eulerian velocity field

can be computed as

v = ∂ty ◦ y−1. (3.24)

Consequently, the velocity gradient tensor can be written as

∇v ◦ y = ḞF−1, (3.25)

where ḞiI = ∂I∂tyi, and the rate-of-deformation tensor in the Lagrangian domain as

d ◦ y =
1

2

(
ḞF−1 + F−T ḞT

)
. (3.26)

The Rayleigh dissipation potential for a compressible Newtonian fluid can therefore

be written as [93]

Diss[∂ty;y] = µ

∫

Ω

d : d dΩ +
λ

2

∫

Ω

(div v)2 dΩ

=
µ

4

∫

Ω

∣∣∣ḞF−1 + F−T ḞT
∣∣∣
2

(det F) dΩ

+
λ

2

∫

Ω

[
trace(ḞF−1)

]2
(det F) dΩ. (3.27)

where µ is the shear viscosity of the fluid, and by Diss[∂ty;y] we highlight the para-

metric dependence of the functional on the current deformation y. The coefficient λ

can be interpreted here as a penalty parameter enforcing incompressibility approx-

imately. For an incompressible Newtonian fluid, the second term above is replaced

by the constraint

tr(ḞF−1) = 0, (3.28)

the linearization of the condition det F = 1.

38 Phase-field modeling of biomembranes

We apply the following variational principle [94] to describe the motion of our

coupled problem system, arising from the minimization of a generalized potential

expressing the competition between elastic forces and bulk friction forces,

Diss[∂ty;y] + δE[∂ty;y], (3.29)

with respect to ∂ty subject to the constraints

δA[∂ty;y] = 0. (3.30)

If the surrounding fluid is incompressible, the following constraint can be added

δV [∂ty;y] = 0. (3.31)

3.4.2 Numerical approach

The numerical discretization of the variational principle 3.29 in spatial domain using

LME approximants is straight-forward and it is detailed in Appendix B. However, we

note here two additional issues regarding the time discretization and the reconnection

strategies. While minimizing the action and then applying the discretization leads to

a system of nonlinear differential algebraic equations that can be solved with standard

algorithms, the system is stiff because of the nature of the curvature energy, and

because of the presence of constraints. We find that standard numerical packages have

serious difficulties in dealing with these equations, and require very small time-steps

when the system is significantly out of equilibrium. Instead, we develop variational

time-incremental integrators, which can robustly deal with large time-steps. Let us

consider the simplest finite difference approximations for the rate of change of the

3.4 Vesicle dynamics : an adaptive Lagrangian approach 39

nodal positions

ẏ ≈ y
n+1 − yn

∆t
, (3.32)

and for the rate of change of the energy

Ė =
E(yn+1)− E(yn)

∆t
. (3.33)

We can then discretize in time the action, and given yn find yn+1 by minimizing

1

2
(y − yn)TK(yn)(y − yn) + ∆tE(y) (3.34)

with respect to y, subject to

Ah(y) = A0, (3.35)

where K is the stiffness matrix resulting from the Galerkin discretization of the Stokes

equations, providing a discrete dissipation potential that depends on yn, see Eq. 3.27.

In the expression we have multiplied the action by ∆t2 and ignored the constant

E(yn) in Eq. (3.34). This method is related to the backward-Euler method, and

many other variational time-integrators can be defined by choosing different time-

discrete approximations of the action. The resulting nonlinear optimization program

can be solved with a variety of methods. Here, we impose the constraints with

Lagrange multipliers and solve the first order optimality conditions with Newton’s

method. We also note that, by construction, E(yn+1) ≤ E(yn), and therefore the

method is endowed automatically with nonlinear stability. We note that adaptive

time-stepping algorithms can be easily designed, for instance adapting ∆t in such a

way that ∆E is nearly constant. The adaptivity may also be driven by the number

of iterations needed in the nonlinear solver.

As shown in Fig. 3.7, if the initial grid adapts to the features of the phase-field,

40 Phase-field modeling of biomembranes

y(x̂↵)

x̂↵

xa

Reset the reference
configuration

y(x) =
X

a

pa(x)ya

ya

The basis functions
are defined by the

reference set of nodes

pa(x)

xa ya

x̂↵ y(x̂↵)
w↵ (det F)w↵

(r�0)
↵ (r�0F

�1)↵

(@2
IJ�0)

↵ Eq. (3)

Reference configuration

Recompute with
the new set of nodes

pa(x)

Figure 3.8: As the Lagrangian simulation proceeds, the deformation may significantly
distort the domain. To avoid this, we periodically reset the reference configuration, as
shown in the figure. This involves reseting the reference node position to the current
position, recomputing the meshfree basis functions from the new node set, which
involves new neighbor searches as indicated with the colored regions, and reseting the
quadrature points x̂α, the corresponding weights, and the reference phase-field first
and second derivatives as indicated in the figure. Note that the reference phase-field
value at the quadrature points, φα0 , does not need to be updated as the phase-field
is a material property and the quadrature points keep their material identity.

adaptivity is advected by the Lagrangian map, and therefore local refinement along

the dynamics is accomplished for free. The Lagrangian framework allows us to pull-

back the successive states of the system to a reference configuration. Thus, we avoid

the calculation of the meshfree basis functions in every step of the evolution. It has

been shown that the meshfree method considered here can withstand significant de-

formation before the discretized deformation mapping ceases to be injective (i.e. the

Jacobian determinant becomes negative at a quadrature point) [35]. However, we

avoid coming close to this limit, which degrades the accuracy of the approxima-

tion, by reconnecting the nodes, recomputing the basis functions, and resetting the

3.4 Vesicle dynamics : an adaptive Lagrangian approach 41

reference configuration periodically along the simulation. These reconnection steps

are seamless, as detailed in Fig. 3.8: they do not involve re- meshing, recomput-

ing the background grid for quadrature, field projections, nor do they alter in any

way the variational structure of the discrete equations, e.g. the nonlinear stability

of the dynamics. In situations involving extreme Lagrangian deformations, particles

may accumulate or cover insufficiently parts of the domain. In such cases, a full

re-meshing and field projections are required.

3.4.3 Numerical results

As a sample of the proposed method performance, Fig. 3.9 shows the relaxation

dynamics of an oblate vesicle brought out-of-equilibrium. The reduced volume, a

ratio between the volume and area of the vesicle, is v = 0.9. We show the location of

the nodes ya(t), and color-code them by the value of the phase-field. In this example,

exhibiting moderate deformations, we do not reconnect in any way the nodes and

therefore the evolution is purely Lagrangian, with the initial configurations as a

reference configuration during the whole motion. The calculation proceeds robustly

despite the distortions. It can be appreciated how the phase-field elastic energy

maintains the transversal density of the nodes, and how the adapted region follows the

features of the phase-field. We check the accuracy of this simulation with additional

runs with a larger number of integration points, number of nodes, and different LME

aspect ratio parameters γ.

The performance of the method is analyzed in Fig. 3.10. The left plot shows the

non-dimensional energy E∗ = E/k and the non-dimensional time-step as a function

of non-dimensional time t∗ = tk/(µR3
0). The energy monotonically decreases as

expected, converging towards the equilibrium energy calculated independently with

a parametric method. As the process advances, the adaptive time-step grows to

42 Phase-field modeling of biomembranes

Figure 3.9: Relaxation dynamics of an oblate vesicle in a viscous fluid, initially
brought out-of-equilibrium. We represent the time-evolution of the nodes ya(t),
color-coded with the phase-field. The adapted grid has 6124 nodes.

3.4 Vesicle dynamics : an adaptive Lagrangian approach 43

roughly keep the energy decrement per time-step constant. Remarkably, the time-

step changes by two orders of magnitude during the simulation. At the final stages,

the time-step hits the maximum allowed size.

10
−2

10
0

7.5

8

8.5

9

9.5

t*

E
*

10
−2

10
0

0.001

0.01

0.02

∆
t*

t*

Figure 3.10: Energy relaxation and time adaptive strategy for the dynamics depicted
in Fig. 3.9. Energy and time-step evolution, where time is represented in logarithmic
scale. The blue horizontal line shows the equilibrium energy obtained independently
with a parametric method based on B-Splines.

Table 3.3: Elastic energy and computational cost for different constant time-steps
and methods (VTI: variational time-integration, FE: forward Euler). t∗1 = 1.0 · 10−3,
t∗2 = 1.1 · 10−2.

Method ∆t∗ E∗(t∗1) E∗(t∗2) steps grad hess
VTI 1.0 · 10−2 9.374 9.243 1 2 2
VTI 1.0 · 10−3 9.374 9.240 10 20 10
VTI 1.0 · 10−4 9.374 9.239 100 200 100
FE 1.0 · 10−5 9.374 9.239 1000 1000 0

Although more sophisticated time-stepping schemes are possible, we compare

the proposed variational time-integration (VTI) method with an explicit forward

Euler (FE) method. It is computationally infeasible to perform the full relaxation

dynamics with the forward Euler method, which imposes very stringent conditions on

the time-step. Instead, we focus on a portion of the dynamics, and report the results

44 Phase-field modeling of biomembranes

in Table 3.3. In the VTI method, we use Newton’s method to numerically solve

the optimization problem in Eq. (3.34), and for computational efficiency, update

the Hessian matrix only once per time-step, not per iteration. However, for the

largest time-step, we need to update the Hessian in each iteration for convergence.

In all cases, Newton’s method converges in two iterations. The table compares the

VTI method with time-steps ∆t∗ = 10−2, 10−3, 10−4, and the FE method with the

largest time-step for stability in this interval, ∆t∗ = 10−5. The accuracy is reported

in terms of the energy at the end of the interval, and the computational cost in

terms of gradient and Hessian evaluations. The table shows the ability of VTI to

robustly take large time-steps with accurate results. In contrast, we find that for this

nonlinear system, it is very difficult to stably adjust the time-step length in the FE

method. We find that the VTI method provides a similar accuracy to the explicit

method with time-steps between one and two orders of magnitude larger. This ratio

is even more dramatic in the initial fast stages of the dynamics.

We next exercise the method in more challenging dynamics, involving large shape

changes. Fig. 3.11 (left) shows a stomatocyte-discocyte dynamical transition. For

the considered reduced volume v = 0.6, both a stomatocyte and a discocyte are

metastable configurations, the latter having lower energy. We slightly displace the

stomatocyte equilibrium configuration beyond the energy barrier, and then the sys-

tem spontaneously evolves towards the discocyte configuration. The reference con-

figuration is reset when large distortions occur as measured with the gradient of

deformation mapping. In this simulation, the reference configuration is reset every

20 time-steps. The time-adaptive scheme allows us to efficiently track the entire tran-

sition, and by the end of the simulation the time-step is 2,048 times the initial time-

step. Fig. 3.11 (right) shows the response of an prolate vesicle (v = 0.8) subject to an

instantaneous change of spontaneous curvature from C0 = 0 to C0

√
A0/(4π) = 10.0,

which can be the result of exposing the bilayer to a different chemical environ-

3.4 Vesicle dynamics : an adaptive Lagrangian approach 45

Figure 3.11: Left: Stomacyte-discocyte transition. Right: Prolate vesicle evolving
after an instantaneous change of spontaneous curvature (6,124 nodes, constant area
and volume). The points represent the nodes, color-coded with the phase-field, while
the arrows depict the flow field in a symmetry plane.

46 Phase-field modeling of biomembranes

ment [95, 96, 89]. The system evolves towards a configuration consisting of two

dissimilar spheres connected by a narrow neck, which best adjusts to the imposed

spontaneous curvature with the available volume. Both simulations run on a CVT

adapted grid of 6,124 nodes.

Fig. 3.12 shows an even more dramatic shape change, in which a prolate vesicle

is deflated from v = 0.9 to v = 0.55 and its spontaneous curvature increased to

C0

√
A0/(4π) = 12.0, leading to an elongation and pearling transformation, widely

observed in experiments [97]. The method robustly follows all the large shape defor-

mations with an adapted grid of 12,650 nodes.

Figure 3.12: Relaxation dynamics of a constant area vesicle under combined volume
decrease and spontaneous curvature increase (12,650 nodes, constant area).

For further discussion, more examples and numerical details see our paper Ap-

pendix B.

3.5 Complex biological processes : influence of kinetics and adhesion in vesicle
shaping 47

3.5 Complex biological processes : influence of ki-

netics and adhesion in vesicle shaping

3.5.1 Motivation

We present here an overview of our current projects in the biomembrane research line.

We aim to apply our meshfree phase-field model to explain the formation of some

important biomembrane structures from a mechanical point of view. Microscopy ex-

periments have revealed the high degree of complexity of the spatial organization of

biological systems. Conventionally, the shaping of membrane structures is attributed

to biological regulation, involving membrane proteins and a tight control of lipid com-

position [98]. However, biological regulation should obey the laws of physics, which

for membrane shaping involves deforming the bilayer and displacing the surrounding

fluid. For example, the mitochondrium structure in Fig. 3.13 involves an external

and internal membrane. Since the inner membrane has an enormous excess of area, it

Figure 3.13: Representation of a mithocondrium external membrane and internal ma-
trix. The internal matrix has been shown to change between several complex geomet-
rical states experiencing merging and nucleation phenomena in the process. Although
several chemical agents come into play, some shapes could be partially or completely
explained by bare mechanical features, such as the combination of the elastic energy
of the membrane, the dissipative fluid media and the adhesion between the vesicle
surfaces. Sources: www.microscopy.fsu.edu, www.hybridmedicalanimation.com

48 Phase-field modeling of biomembranes

shapes in folds and invaginations (cristae), which are fundamental for their function.

Although there are chemical agents acting in matrix shaping, it is very likely that

some phenomena (isolated or in combination) such as adhesion or confinement could

explain by themselves the inner membrane shape before those chemical agents play

their role. In general, membranes are confined to adjacent membranes, to external

substrates such as the extra-cellular matrix, or to internal cytoskeletal structures,

such as the acto-myosin cortex. Despite this generic confinement, the main model

system for biomembrane shape transitions have been vesicles. Recent works have

focused on the mechanics of membranes under confinement, i.e. adhered to a de-

formable substrate.

It has been shown in experiments that in biomimetic systems, for example, pro-

trusions can arise from confined membranes upon straining the supporting surface

or by adding lipids or peptides. A similar process is undergone by a cell where

the plasma membrane bulges into microvesicles upon contraction of the underlying

cortex. In [99], an experimental setup is presented to study confinement effects, con-

sisting in a channel between a glass cover slip and a polydimethylsiloxane (PDMS)

slab, coated with a uniform lipid bilayer. Using this original setup, it is possible

to (1) subject a supported lipid membrane to a lateral strain by deforming (inflat-

ing or deflating) the PDMS sheet underneath the membrane and (2) modify the

volume of interstitial liquid by controlling the osmolarity of the solution above the

membrane. The results are shown in a phase diagram that summarizes the shape

transformations in terms of the two variables (Fig. 3.14) i.e. the volume enclosed

in the interstitial space between the bilayer and the substrate, and the compressive

strain of the substrate.

As the substrate is progressively compressed, the membrane undergoes a process

of relaxation by expelling from the adhered part of bilayer tubes containing the

excess area. These thin, highly curved tubes are stabilized by osmotic effects, and

3.5 Complex biological processes : influence of kinetics and adhesion in vesicle
shaping 49

Figure 3.14: Morphological strain-volume phase diagram of confined lipid bilayers,
derived theoretically for R0 = 4nm (a typical average half-distance between the
protrusions in the experiments). We distinguish between a fully adhered planar
bilayer (black region), and a bilayer with tubular protrusions, labeled TUBES (white
area), or with spherical protrusions, labeled BUDS (light grey) and CAPS (dark
grey). Source: [99]

can be inflated into spherical protrusions by subjecting the system to hypo-osmotic

conditions. While tube formation had been previously explained by localized forces

on the membrane and/or protein induced spontaneous curvature, these experiments

show that tubes can spontaneously form by the mechanics of confinement.

Moving to highly dynamical observations, in [100] outward tubes have been ob-

served in vesicles upon rapid lipid incorporation (fast area increase), where gradual

changes and no localized structures such as tubular shapes are expected if the rate of

lipid incorporation is slow. In [101], similar experiments were performed by dynam-

ically incorporating cholesterol into vesicles, effectively increasing their surface area

rapidly. In this case, vesicles were adhered to a substrate and tubes were inwards.

These experiments suggest that dynamics can be a previously unexplored means of

shaping membranes into highly curved structures, which may be later stabilized by

biochemical regulation. (see Fig. 3.15).

Here, we want to investigate to which degree highly curves membrane structures,

50 Phase-field modeling of biomembranes

Figure 3.15: Left: Transformation of the shape of a negatively charged giant vesicle
in contact with positive small vesicles. From an optically tense state, the ampli-
tude of the fluctuations increases rapidly, and the vesicle is strongly deformed with
outward thin tubular instabilities. After some time, the vesicle recovers its initial
spherical shape and tension but with dense lipid aggregates on its surface bar, 10µm).
Source: [100] Right: transformation of a vesicle adhered to a substrate upon rapid
lipid incorporation. Tubular instabilities show inward pattern. Source: [101]

3.5 Complex biological processes : influence of kinetics and adhesion in vesicle
shaping 51

e.g. tubes and invaginations, can arise merely from membrane mechanics. Motivated

by the aforementioned recent experiments, we want to specifically address the role

of kinetics and adhesion, which is a previously unexplored aspect.

3.5.2 Modeling adhesion

We introduce now the numerical framework to consider adhesion in our model. The

bilayer is subjected to various forces (electrostatic, Van der Waals, structural) that

define an attractive and repulsive behavior between the bilayer and a substrate/other

bilayers. This combined potential defines the membrane adhesion, which is important

in various situations. For example, tissue formation is based on mutual adhesion of

cell membranes to a macromolecule network. Binding and unbinding of vesicles is

also key to transport processes within the surface of cells and organelles within,

which can be used for targeted drug delivering. Biosensors are also a good example

of technology based on the binding of vesicles to surfaces. We take advantage of

the energy variational structure to easily extend the global energy functional with

an extra term accounting for the adhesion potential. We consider the adhesion by

adding the following term,

∫

Ω

W (x)F (φ(x)) dΩ, (3.36)

where W is a classical adhesion potential depending on the spatial domain and F is

a function needed in the phase-field model to localize W onto the membrane surface.

F can be defined in various ways. Here we use a simple version proposed by [102],

F (φ(x)) =
3
√

2

8

(φ2 − 1)2

ε
. (3.37)

We resort here to the Lennard-Jones (L-J) potential for W . The L-J potential is

52 Phase-field modeling of biomembranes

a simple model that approximates the interaction between a pair of neutral atoms

or molecules. A form of the potential was first proposed in 1924 by John Lennard-

Jones [103]. The most common expression of the L-J potential is:

W (h) = 4ω

[(
δ

h

)12

−
(
δ

h

)6
]
, (3.38)

where ω is the potential well, h is the distance between the two interacting molecules

and δ the distance at which the potential becomes zero. The first term accounts for

the repulsive part (Pauli repulsion) and the second for the attractive one (Van der

Waals forces).

Here we use an integrated version of the L-J potential with a linearized repul-

sive part, illustrated in Fig. 3.16. The attractive part expression accounts for an

δ δ

2ε 15,6 ω

 ω

(W
) I

ne
ra

ct
io

n
En

er
gy

Phase-field

(h) Distance

δ ’
δ ’= δ /31/6

𝑊𝑊 = −𝜔𝜔
3
2

𝛿𝛿
ℎ

3

+ 𝜔𝜔
1
2

𝛿𝛿
ℎ

9

 ℎ > 𝛿𝛿𝛿

𝑊𝑊 = ℎ − 𝛿𝛿′ Δ𝑊𝑊′ ℎ ≤ 𝛿𝛿𝛿

∆W’

Modified Lennard-Jones Potential

Figure 3.16: Lennard-Jones adhesion potential for a phase-field model of a biomem-
brane. The parameter δ determines the distance of the attractive well ω. δ is related
to the phase-field parameter ε to be effective throughout the whole thickness of the
vesicle. The repulsive part is linearized to avoid numerical problems due to its quick
growth, improving the robustness of the iterative process.

3.5 Complex biological processes : influence of kinetics and adhesion in vesicle
shaping 53

integrated potential i.e. the result of the combined forces of a surface on a single

atom. The linearized part of the expression is just a way of smoothing the numerical

stiffness that introduces the repulsive part of the L-J potential, which quickly grows

to infinite and generating numerical instability. On the other hand, and since we

are using a phase-field model and thus the thickness of the membrane is not zero, a

proper δ distance to the potential well ω has to be chosen. This value should extend

enough to be able to capture the phase-field thickness, which is approximately 2ε.

Setting the value to δ = 2ε we ensure that the adhesion potential is acting on the full

biomembrane interface, also leaving a layer 2ε thick of media in the repulsive contact

surface.

The adhesion energy is introduced in our framework as a straight substrate wall

and validated through classical theoretical results. The equilibrium shape of a vesi-

cle is now determined by the interplay of elastic and adhesion energies. This com-

petition establishes a phase diagram where two main states, namely free state and

bound state, can be identified [80]. It turns out that, while the bending elastic energy

is size independent, the adhesion is not. Therefore, one can work out a meaningful

length scale, which determines the boundary between the states. This scale is defined

in literature as a relation between the bending stiffness κ and the adhesion potential

well ω:

Rc =

√
κ

2ω
. (3.39)

This characteristic length corresponds to the inverse of the contact curvature of

the vesicle meridian at the contact point with the substrate, that is Cc = 1
Rc

. If

this length scale is comparable to the size of the vesicle (Rc ∼ R) then the bending

energy dominates and the membrane is free from the wall. As Rc << R the adhesion

energy takes over, the vesicle sticks to the wall and the contact curvature is set by

54 Phase-field modeling of biomembranes

Eq. 3.39. One interesting theory that can be applied here to further understand

these phenomena is the droplet theory. Droplets, in contrast with fluid vesicles,

lack bending energy and so the adhesion and surface tension determine the final

equilibrium shape. For κ = 0 the minimization of free energy leads to the Laplace

equation with the Young-Dupré equation as boundary condition [104]. This equation

states the expression for the contact angle ψ

ω = σ(1 + cosψ), (3.40)

where σ refers to the Lagrange multiplier enforcing a constant area of the vesicle.

Since in the presence of elastic bending energy κ 6= 0, a contact angle different from

π would always imply an infinite energy. Therefore, the concept of contact angle

looses in this case its meaning in an strict sense. However, when κ is very small (or

ω is large in comparison, meaning Rc << R), the vesicle shape recovers that of a

droplet with a rounded contact at scale Rc, and an effective contact angle ψeff can

be defined (see Fig. 3.17). This contact angle in bounded states can be checked to

measure the agreement of numerical results with theory. Along the same line, in the

limit of vanishing κ, the relation between the two Lagrange multipliers σ (area) and

p (volume) follows Laplace equation,

p = −2σ/R, (3.41)

which also helps to validate the pressurized state which has been reported in adhered

vesicles. The fact that an effective angle close to π is expectable in slightly deflated

vesicles, means that those vesicles will present a higher σ and therefore a higher

pressurized state. Our simulations in Fig. 3.17 approach the theoretical angles as the

adhesion potential well ω increases and the vesicle attaches the substrate.

3.6 Kinetics and morphogenesis 55

w = 0 w = 100

YEFF= 160º YEFF= 145º YEFF= 135º

Figure 3.17: The bounded and free states depend on the scale given by relation
between the potential well ω and the bending stiffness κ. As the characteristic
radius of the vesicle R increases for a given κ and ω, the adhesion effect becomes
more noticeable and it binds to the substrate. Geometrically defined effective angle
and adhesion lengths change as the potential well increases for fixed reduced volume
(ρ=0.85).

3.6 Kinetics and morphogenesis

Here we isolate the effect of kinetics arising in presence of the dissipative viscous

media and a bounding confinement, and let adhesion as an effect to be added in

future simulations. As we show in paper Appendix B, kinetic effects can become

important by driving the transition shapes in presence of changes of volume and

area in fast regimes. Area increase simulations are motivated by the dynamical lipid

incorporation experiments reported in Fig. 3.15. In Fig. 3.18, the finite viscosity

of the surrounding medium, together with the fast area increase rates, provide an

effective confinement that penalizes long-wave geometry changes and favors localized

deformation modes such as tubes. Higher area increase rates lead to higher number

of stable tubes. In the processes studied, we can identify a number of key points.

Initially, a large number of instabilities arise, more wiggly and energetic as high is

the increase rate. Next, several relaxations take place, particularly for moderated

rates, due to the impossibility to turn some of the buckling phenomena into tubular

structures. Once a number of tubes is defined, the structure becomes stable and the

tubes subsequently grow. In this propagation we can identify two separated stages.

56 Phase-field modeling of biomembranes

In the first one, tubes grow at the expense of the area and volume still undeveloped

Figure 3.18: Simulation diagram showing the significance of kinetic effects in biomem-
brane shaping. Three branches coming from a single circle are explored by applying
different area increase rates. The higher rates show more local buckling effects and
generate more stable tubular structures. (19256 nodes grid, ε = 0.01)

.

in the centre of the vesicle. In the second, the tubes are propagated by thinning,

which means that tube diameter is reduced and the curvature of the tip increased.

This generally leads to steepest rates in the overall elastic energy of the vesicle.

Additionally, we show in Fig. 3.19 and Fig. 3.20 two typical elastic energy patterns

observed in the simulations. The first, corresponding to low/moderated area increase

rates, shows the evolution of a circular vesicle towards a one single tubular structure.

This kind of processes are identified by an initial high rate elastic energy increase due

to the arising of several buckling features, and a series of subsequent relaxations that

remove some of them towards smoother stable configuration. In Fig. 3.20, the high

area increase rate generate a much quicker buckling sequence and most of initial

features grow into tubes. In these patterns, the change of regime in the tubular

growth, is clear by the change of rate in the elastic energy, which steeps when the

inner volume is consumed and thinning appears. This behavior would be observed

also in the moderate area increase rates if the simulation lasted long enough. Papers

3.6 Kinetics and morphogenesis 57

regarding this part are in preparation.

E

t

Figure 3.19: Energy profile for moderate area increase rates. The initial bucking
events generate an increase in the elastic energy profile. At this moderate rate of
area increase, not every instability is allowed to grow into a tubular structure, which
leads to decreases in the profile corresponding to elastic relaxations. The remaining
stable tubes advance then at smoother elastic energy rate of change.

E

t

Figure 3.20: Energy profile for high area increase rates. After a quick and short
increase due to initial instabilities, most of initial undulations due to buckling evolve
into tubular structures. In the mid-term the tubes advance at constant thickness at
the expense of the remaining volume at the centre, showing a smoother elastic energy
increase rate. When the interior volume is consumed, the tubes grow by thinning,
steeping the energy profile again.

58 Phase-field modeling of biomembranes

Chapter 4

High Performance Computing

We present here an overview of the implementation of the numerical methodologies

described in Chapter 3. As a necessary part of the project, we developed a C + +

library with a number of routines to handle parallelism in a meshfree framework and

proposed optimizations over the most demanding parts of our code. We describe in

this chapter the core idea underlying these routines and briefly introduce the main

contributions in Section 4.1, which are detailed in our paper Appendix C. A more

technical view of the library itself is presented in Section 4.2 and relevant C++ code

is presented in Appendix D.

4.1 Supercomputing: towards an efficient parallel

sparse LME environment

As argued in Section 2.1, meshfree phase-field methods lead to high computational

costs and, additionally, non-linear dynamics problems require a large number of iter-

ations and/or time steps. The goal of the newly developed routines presented here is

to speed-up critical parts of our code to overcome a possible bottleneck i.e. computa-

tional time and memory usage. Optimizing the most demanding routines and paral-

59

60 High Performance Computing

lelizing the code in a scalable way is therefore needed to use supercomputing facilities

and reach reasonable computational times. For parallelization we chose to work in

a distributed memory environment MPI, and use the package PETSc (Portable, Ex-

tensible Toolkit for Scientific Computation, see [105]) as a general routine wrapper.

PETSc is a widely used scientific software devoted to handle structures like vectors

and matrices in parallel, and comes with various scalable linear solvers. It also pro-

vides the user with several interfaces to useful external packages e.g. ParMetis [106]

for partitioning and reordering routines.

We have focused in three main aspects to reach a working implementation of

our methods. First, we have redesigned the way the meshfree sparse matrix and

right hand side (RHS) of the system are created and assembled. As we show in the

paper Appendix C, in meshfree methods these routines can become the bottleneck

in computational time. The main contribution is presented in 4.1.1, where we pro-

pose a coarsening strategy over integration to mitigate the associated computational

cost. Additional techniques to speed-up the creation and assembly routines can be

consulted in the same paper. Second, we have implemented a parallel version of our

routines in a new library in C++ that provides the user with very general and flexible

classes that use PETSc as basis. These classes are able to manage the creation and

filling routines in parallel for a meshfree method, among other functionalities. This

is not a minor issue since PETSc is very well design and developed for mesh-based

methods, but lacks actual routines for meshfree basis functions e.g. the creation of

non-zero positions and assembly. Finally, some problems require a repetitive usage of

the basis functions, hence their storage is advisable to reduce computational time. In

high-order problems, large number of Gauss points and large supports can generate a

bottleneck in the memory. In the paper Appendix C we also tackle this problem and

propose an efficient storage strategy based on compressed structures that allows to

recover the basis functions when needed. We particularize it for LME with excellent

4.1 Supercomputing: towards an efficient parallel sparse LME environment 61

results at the expense of little recovery overcost. In the following we briefly expand

on the main contributions of this thesis in this matter.

4.1.1 Neighborhood coarsening algorithm

We introduce here an algorithm, shown in detailed in paper Appendix C, that op-

timizes the computation of the global sparse matrix in a general meshfree scheme.

It is based on a coarsening strategy over integration points, e.g. Gauss points, and

its impact is particularly noticeable within the routines leading to creation and the

filling of the matrix and RHS of the system.

Regarding the matrices, we recall here that in a Galerkin discretization scheme

the number of non-zeros is small in comparison with the total number of positions.

These matrices are then called sparse and accept a variety of compression techniques

that help to maintain the memory requirements below admissible limits. There are

many methods for storing sparse matrices (see, for instance, [107] and [108]). We

follow in our code the compressed sparse by row (CSR) storage, which is a proper

choice for codes written in C/C + + due to its data structure. In CSR, a matrix

is given in terms of three lists. The first list, ia, is an array of integers that stores

the total number of nonzeros up to each row. Its dimension is the number of rows

plus one, the first position being filled with a zero. The second and third lists are

arrays of integers and doubles, ja and an, have as dimension the number of nonzeros

in the matrix, and store the column index position and the associated matrix entry.

We understand the sparse matrix structure creation as the collection of algorithms

required to obtain the lists ia and ja, and the filling as the ones needed to obtain

the values stored in an. Since unstructured grids and meshfree methods prevent the

sparse matrix from having a clear a priori non-zero pattern, the creation and filling

of these sparse structures is not straight-forward. We show in our paper Appendix

62 High Performance Computing

C how these routines become the most time consuming as the size of the problem

increases.

The core of the optimization presented is to alleviate the computational cost of

the system sparse matrix by coarse-graining the neighbor primal lists i.e. the lists

that contain the nodes that influence a particular quadrature point. In the process

also intervene the so called dual lists, which contain the quadrature points that

are influenced by a particular node. We refer to our paper Appendix C for a formal

definition of the neighbor lists. The key point is to generate a list for each cell/element

of a defined coarsening mesh rather than one per Gauss point. The coarsening mesh

provides us with a structure to group the primal lists of the Gauss points contained in

the cell/element. Without loss of generality, a straightforward and natural choice for

the coarsening mesh is the quadrature mesh cells/elements needed in most Galerkin

meshfree methods to perform the numerical integration. In this way the complexity

added by the increase of Gauss points due to accuracy requirements is removed and

the neighbor lists are generated disregarding the number of integration points. We

present next details of this procedure.

Once the coarsening mesh is set, we start with a neighbor search over the nodes

defining the mesh. This allows us to obtain nodal-based primal lists rather than

primal lists for quadrature points. To obtain the cell/element primal lists, the primal

lists of its associated nodes are simply merged. More specifically, we define

Nel =
⋃

a∈Tel

NX
xa
, (4.1)

where Tel is an index set containing the nodal indexes of the el-th cell/element (e.g the

mesh connectivity). Note that the Nel list is applicable to the totality of integration

points inside the cell/element, regardless their number. This merging operation is

negligible in terms of computational time, and give us the possibility to work from

4.1 Supercomputing: towards an efficient parallel sparse LME environment 63

now on with cell/element primal lists rather than with integration point based lists.

We illustrate this concept in Fig. 4.1.

Scattered set of
points/nodes

Point/Node
Gauss point
Nodal range 
Ni nodal neighborhood

Integrated
neighbor list

࢒ࢋࡺ ൌ 	 ራ ࢇ࢞ࡺ
ࢄ

࢒ࢋࢣ∋ࢇ

Figure 4.1: Integrated neighborhood concept. The new cell/element neighborhood is

described by the union of nodal vertices lists of neighbors. The triangular elements

given by the quadrature mesh are used here as background cell/element generator.

The creation and filling algorithms can be now based on cell/element neighbor

lists, which greatly speeds-up the computations. The structure creation is simplified

since only the nodes and cells/elements are involved in the whole procedure. Now the

nonzero positions are identified by looping over cell/element neighbor lists instead

of looping over Gauss points neighbor lists. The filling of the matrix benefits in

two distinct ways. Firstly, the element-wise approach leads to cell/element dense

matrices. These local matrices are efficiently filled since just a loop over the neighbor

list of the cell/element and a loop over the cell/element Gauss points are required.

Secondly, only one dense cell/element matrix is assembled into the global matrix,

hence the memory access is improved, as illustrated in the lower part of Fig. 4.2.

This optimization maintains constant the computational time associated with

64 High Performance Computing

the matrix-pattern creation algorithm regardless the number of integration points

used, see Fig. 4.3. This fact significantly alleviates one of the main disadvantages of

meshfree methods, namely the large number of quadrature points needed as compared

to piecewise polynomial approximants. Furthermore, the granularity of the element-

level approach is better suited for parallel computing, minimizing memory access

and limiting data exchange. The pseudo-code for the procedure is summarized in

Algorithm 1.

Gauss point
dense matrix

Cell/Element
dense matrix

Global sparse matrix

Gauss point
neighborhood

Cell/element
neighborhood

Figure 4.2: Filling algorithm transition from dense submatrices to global sparse
matrix. Dense submatrices are generated from the neighborhood of an integration
point (upper) or a cell/element (lower). Cell/element framework improves mem-
ory management since dense submatrix condenses information coming from several
integration points.

4.1.2 Compressed meshfree basis functions storage

We present in paper Appendix C an optimization to overcome a possible memory

limitation coming from the basis functions storage. Such memory difficulties arise

4.1 Supercomputing: towards an efficient parallel sparse LME environment 65

Algorithm 1 Pseudo-code for cell/element approach.

1: Compute adjacency lists for nodes NX
xa

and process cell/element lists Nel =⋃
a∈Tel

NX
xa

.
2: Compute shape functions pa.
3: Sparse matrix structure ia, ja.
4: Fill sparse matrix structure an: cell/element loop based.

1 3 6 12
0

2

4

6

8

10

Gauss points

se
co

n
d

s

1 3 6 12
0

10

20

30

40

50

60

Gauss points

se
co

n
d

s

1 3 6 12
0

100

200

300

400

500

Gauss points

se
co

n
d

s

γ = 4.0 γ = 1.6 γ = 0.8

1 3 6 12
0

1

2

3

4

5

Gauss points

se
co

n
d

s

1 3 6 12
0

5

10

15

20

25

Gauss points

se
co

n
d

s

1 3 6 12
0

20

40
60

80

100
120

Gauss points

se
co

n
d

s

γ = 0.8γ = 4.0 γ = 1.6

Standard implementation (structure) Cell/element implementation (structure)

Standard implementation (filling) Cell/element implementation (filling)

Figure 4.3: Structure creation (up) and filling (down) computational time vs Gauss
points for increasing γ. Standard and new implementation are shown (left and right
bars, respectively). DOF = 40,401.

when facing problems that require a repetitive usage of the values of the basis func-

tions and their first and second derivatives. For example, when solving evolutions

in time, incremental loading processes and problems that require non-linear iterative

solvers. In these cases the values of the basis functions are used in a continuous way

66 High Performance Computing

and it becomes interesting not to compute them every time but to store and use them

whenever needed. While this is optimal from a computational time perspective, the

memory can become a bottleneck if we take into account the meshfree framework. In

a meshfree method a standard implementation implies the storage of values, gradi-

ents and Hessians of the basis functions for every node in the neighborhood of every

integration point, so the memory can become a major obstacle. To solve this problem

we propose a partial storage of the basis functions based on proper structures that

enable a quick recovery of their values.

For a general meshfree method, and considering the Galerkin approximation of

a fourth-order PDE, the full storage of the basis functions requires MFS = L · n̄ ·

(1 + d+ d(d+ 1)/2) = L · n̄ ·
(
1 + 3

2d+ 1
2d

2
)

doubles. In this equation, L is the

total number of quadrature points, n̄ is the mean cardinality of the primal lists, 1

accounts for the basis functions themselves, d for their gradients, and d(d+ 1)/2 for

the Hessian, which is a symmetric matrix. In a for fourth-order PDE we typically

have n̄ ≈ 65 in 2D and n̄ ≈ 380 in 3D, where a four cells/elements radius has been

considered. In consequence, the memory requirements rapidly become unaffordable.

Focusing on LME approximants, we recall that the basis functions are obtained by

means of a nonlinear optimization problem at each evaluation point with d unknowns,

where d is the spatial dimension. This optimization problem yields the Lagrange

multiplier associated with first-order consistency conditions. Once the Lagrange

multiplier is known, an explicit expression for the basis functions, its gradient and

its Hessian is explicit (see our paper Appendix C). Even if the nonlinear optimization

problem is relatively easy to solve by Newton’s method, it accounts for a significant

part of the basis function evaluation time.

A straight-forward alternative to the full storage method would be to simply

store the d reals in the Lagrange multiplier at each quadrature point. Analyzing in

detail the structure of the explicit formulae for the basis functions and derivatives,

4.1 Supercomputing: towards an efficient parallel sparse LME environment 67

Table 4.1: Quantification and comparison of memory usage between the methods
of full and optimal or compressed storage of local maximum-entropy basis functions
and their derivatives. Here, n̄ is the mean cardinality of primal lists, L is the number
of Gauss points and d is the spatial dimension.

Full storage Optimal storage
Memory MFS = L · n̄ ·

(
1 + 3

2d+ 1
2d

2
)

MOS = L ·
(
2 + 7

2d+ 2d2 + 1
2d

3
)

n̄� (2 + d) MOS ≈ L · (2 + d) ·
(
1 + 3

2d+ 1
2d

2
)

Comparison MFS/MOS ≈ n̄/(2 + d)� 1

it is easy to identify a set of matrices and vectors whose size is independent on

n̄, and some of which involve summations over n̄. Thus, storing these arrays saves

significant computation time at a limited memory cost. As detailed in the paper, this

simple observation suggests the optimal or compressed storage, which only involves

MOS = L ·
(
2 + 7

2d+ 2d2 + 1
2d

3
)
≈ L ·(2+d) ·

(
1 + 3

2d+ 1
2d

2
)

doubles. As the mean

cardinality is in general much greater than the spatial dimension, i.e. n̄ � (2 + d),

from the ratio MFS/MOS = n̄/(2 + d) it is clear that the memory usage decreases

significantly when the compressed storage technique is used, as can be observed in

Table 4.1.

4.1.3 Meshfree parallel sparse matrices in PETSc

Here we give an insight into the main challenges found in the process of writing the

parallel C + + classes. PETSc is a well developed code with many useful routines

ready-to-go and creation and filling routines can become quite direct if we work in a

FEM-like environment since we have a connectivity that allows for a fast calculation

of the non-zero positions. When having an structured mesh, PETSc is very effi-

cient and provides the user with specific structures to exchange information between

processes. Unfortunately, meshfree methods and unstructured grids are not that de-

veloped. We will focus here in the ideas underlying the assembly of the distributed

68 High Performance Computing

sparse matrix of the system in a meshfree method i.e. LME. Other routines, such as

the ones leading to the RHS assembly, follow the same concepts.

Basically, PETSc distributes a matrix by partitioning sequentially its rows. Each

process owns a certain domain corresponding to a sequential list of rows in the ma-

trix. We assume the partitioning procedure has been applied in parallel e.g. by

ParMetis. The objective of every thread is now to create and fill its local chunk on

the global matrix. We start from a local collection of nodes and we proceed gener-

ating the integration points corresponding to this local node set. PETSc requires a

careful preallocation of the memory and asks for a sparse CSR storage lists, which

are local to the process, to maintain the scalability. Since some of the primal lists of

the local Gauss points or cell/elements will be including neighbors from more than

one nodal partition, it is required an information exchange between processes. We

comment here on two different possibilities, both of them coded and tested through-

out our simulations. In the former we focus on the minimal computational cost per

process and rely on heavier information exchange, while in the latter we minimize

the information exchange at the expense of increasing the computing load on every

process.

The first routine takes advantage of PETSc internal exchange of information,

which is direct, automatic and transparent to the user. Every thread starts by

generating a connectivity using only its local integration points or cells/elements.

That means that some of the dual lists created are not complete and will lack a

number of Gauss points, which lay outside the partition. In the same way, some

primal lists will have nodes corresponding to other processes. This generates an

exchange of information, particularly near the boundaries. In this first procedure,

every partition sends to the rest the part of the dual lists that they miss. In this

way every thread is able to work with extended dual lists that generate right and

complete non-zero positions for every row. The allocation is then achieved flawlessly

4.1 Supercomputing: towards an efficient parallel sparse LME environment 69

and PETSc runs with maximum efficiency. After allocation, the filling process is

straightforward. PETSc matrices are designed in such a way that any position can

be filled from any process, no matter if the row belongs or not to the process creating

the value. Nevertheless, most of values should be created in the assembly partition

to maintain scalability, which naturally happens if the repartitioning was correct.

Unfortunally, in our experience we found a problem with this set of routines

when the filling algorithms start. If the communication band is not too large, as ex-

pected after a good repartitioning, PETSc routines make the assembly efficient and

easy to implement at code level. However, PETSc creates a number of structures

before starting this internal communication. This structures are perfect for mesh-

based codes, where usually just one or two layers of neighbors define the exchange

band, but they run into memory issues when this band becomes larger. In meshfree

methods and when facing 3D problems , where this number of neighbors can increase

considerably, the first routine fails. For this reason a second approach was developed.

In this second approach we remove the information exchange in the filling process

at the expense of increasing the computational load in every thread at the structure

creation stage. We force the process not only to exchange information about the

integration points lists but also to exchange the coordinates of the integration points

themselves. In this way, every process expands its own integration point lists with

that on the surrounding bands, and is able to create and fill its local structure by

itself. The increase of computational cost is not important as long as the reparti-

tioning is reasonable (the band is noticeably smaller than the own domain), and the

gain is critical since the memory bottleneck is overcome. These routines and others

can be checked in Appendix D.

70 High Performance Computing

4.2 A brief code overview

We present here the basics for our C + + code. The computation of LME approxi-

mants values, gradients and Hessians is performed by a C+ + self-made library with

several classes using ANN searcher [109] for neighbor searching and QHULL [110]

and Metis [106] for different purposes e.g. triangulation, quadrature. This is called

by a main code that uses the software PETSc as parallel core. PETSc main purpose

in our code is the generation of data structures (matrices and vectors) in sparse mode

(CSR) in a distributed way using MPI. PETSc provides an understandable way of

declaring and filling this variables in an efficient pattern. Moreover, the library is

appropriately extended with a number of interfaces to other useful external packages.

In particular, we use it to easily call for Metis/Parmetis for parallel partitioning and

reordering, and distributed memory solvers such as SuperLu or Mumps, which com-

plete the set of direct and iterative solvers already embedded in PETSc. Partitioning

is a fundamental issue in our code. Since meshfree methods in general, and LME

approximants in particular (more as the aspect ratio parameter γ decreases), gen-

erate a wider communication band between partitions, a non-optimized distribution

can fatally impact the overall performance. Reordering is also important when using

direct solvers as LU to reduce the fill-in. The objective of the code is to generate

an efficient and scalable program cand exploit the possibilities of C + + language to

end up with a code as flexible as possible. In the following the basic structure of our

code, conceptually illustrated in Fig. 4.4, is described.

From a technical point of view, the so called LME-Petsc-PDE library enables

a particular problem main.cpp in C + + code to work with the main class Ba-

sicPDE.cpp, the reordering and the partitioning class Reorder.cpp and a user cus-

tomized file called operations.cpp. The BasicPDE class creates a superstructure that

is able to control the creation of several PETSc objects (matrices, vectors) and en-

4.2 A brief code overview 71

Set OptionsSetDimension
SetIntegration
SetMatrixType
SetLagrange SetConnectivity

CreateExtendedConnectivity
CreateStructureDimOne
CreateStructureDimN

CreateRHS

FillStructureDim
FillRHS

SetOperations

Operations.cpp

Node-to-node
Integration unit

Neighbor searcher

SolveSystem

Integration points

Reorder.cpp

BasicPDE class

Figure 4.4: Concept structure of BasicPDE C++ class. Routines in yellow are infor-
mation input methods. Continuous lines signal the general flux and the discontinuous
ones mark subordinated methods, files or classes.

vironments (solvers). This over-control is necessary to ensure a correct matching of

the parallelization applied to different objects that have to work together, as well as

optimizing the usage of information throughout the whole numerical simulation. The

Reorder.cpp class is a quite independent part of the code. It is meant to receive an ar-

bitrary partition of nodes, manage the reordering and partitioning through ParMetis

and reset each process with the new information. Operations.cpp is a file containing a

set of filling operations. It can be particularized for a problem or meant to become a

unique operations library that can grow with every project included. The BasicPDE

class is prepared to work with two kind of operations. In a node-to-node operation,

just a (dim×dim) matrix filling function has to be defined. Internally, the class uses

this function to fill every node-to-node contribution to every local integration point

or cell/element dense matrix (see Section 4.1.1). Simple mass or stiffness operations

72 High Performance Computing

can be defined as this. For operations involving more complex interactions between

the nodes in the primal list, the BasicPDE class can also work directly with functions

that define the local integration point or cell/element (dim×N)× (dim×N) dense

matrix itself.

Regarding the procedural point of view (illustrated in Fig. 4.5), a general problem

code starts reading an unstructured grid of points and possibly an initial phase-field.

Each processor is then given an arbitrary partition of the grid (usually sequential) and

works out a connectivity using a simple delaunay triangulation based in QHULL[110].

This information is then passed through the PETSc interface to ParMetis, which is

able to repartition and reorder the grid in parallel. The output involves a series of

mappings that can be used to migrate all necessary information, such as the phase-

field associated to each node. With the new partitions, the integration elements

are also assigned to the different processes and each process places the quadrature

points over its partition. Never leaving the parallel scope, each thread computes

the neighbor lists using the ANN searcher with CreateConnectivity(). Then follows

the creation of the general matrix, the RHS and the solution vector that can be

used afterwards in the PETSc solver integrated environment. The matrix struc-

ture creation starts with the routine CreateExtendedConnectivity(), which takes the

neighbors list of the associated integration points and analyzes the partitions in-

fluenced by the list. It separates the nodes acting on each process and generate a

bundle with the required integration points for each external process needing this

information. Then every process sends and receives an extension for the Gauss point

list, creating the extended lists described in Section 4.1.3. This will now generate

a preliminary one-dimensional complete CSR local memory allocation with the rou-

tine CreateStructureDimOne(). The method CreateStructureDimN() extends easily

these allocation to more dimensions if necessary. CreateRHS() completes the mem-

ory allocation by creating a distributed dense vector. Once the structure are set,

4.2 A brief code overview 73

FillStructure() and FillRHS() use the calculated basis functions and the file Opera-

tions.cpp to compute the corresponding values and fill the non-zero positions. This

routine generates the local matrix for each Gauss point owned by the process, and

PETSc is able to send the exterior positions to their corresponding processes auto-

matically. The class has similar routines to fill the RHS and generate the solution

vector and easily applies boundary conditions and Lagrange multipliers in a paral-

lelized fashion. Finally, these distributed objects can be used in a parallel solver,

either a PETSc provided one, either one within an external package. Besides the

classical Gauss point-wise strategy, the new cell/element approach shown in Sec-

tion 4.1.1 has been also implemented and can be chosen as an option. The same goes

for the zero-communication filling strategy presented in Section 4.1.3.

The rest of methods in the class correspond to an effort to enforce the flexibility

of the code, motivated by the will of creating a user friendly software at the lab which

can be easily adapted to solve a wide range of problems using LME or other meshfree

methods in a parallel framework. The way it is organized, the user can just define

a number of parameters with SetOptions(), e.g. the dimension of the problem, the

type of the matrix or the size of the matrix, and give the grid as an input to get

the PETSc objects created, allocated and ready to use. The filling of the matrix is

also simplified for a user not familiar with the sparse assembly process since only the

Operations.cpp file has to be modified with the particular problem operations. This

flexibility has been tested through its application in different collaboration works

within the lab, that we present in Chapter 5. We have conducted three periods in

the Marenostrum III supercomputing facility [111] at Barcelona, in the context of the

general project Phase field modeling of biomembrane dynamics and crack propagation.

The assigned hours add up to more than 1200 Kh and we have successfully run grids

of hundreds of thousands degrees of freedom using up to 1600 cores. Marenostrum

III supercomputer runs at a peak performance of 1,1 Petaflops and holds 100.8 TB

74 High Performance Computing

of main memory. Node specifications: Homogeneous nodes 3,056 compute nodes

2x Intel SandyBridge-EP E5-2670/1600 20M 8-core at 2.6 GHz 8x4GB DDR3-1600

DIMMS (2GB/core) Heterogeneous Nodes 42 heterogeneous compute nodes 2x Intel

SandyBridge-EP E5-2670/1600 20M 8-core at 2.6 GHz 2x Xeon Phi 5110 P 8x8GB

DDR3-1600 DIMMS (4GB/core) 2 PB of disk storages Interconnection networks:

Infiniband FDR10 Gigabit Ethernet Operating System: Linux - SuSe Distribution.

OPERATIONS FILE

A

C

B

A

A

REORDERING AND
PARTITIONING CLASS

BASIC MESHFREE
PDE CLASS

A

LOCAL INTEGRATION
POINTS AND

CONNECTIVITY

PARALLEL
SOLVER

Figure 4.5: Generic main code structure. A unstructured grid of nodes (and possibly
additional fields, such as a phase-field variable describing the initial state) is loaded
and reordered and partitioned in parallel by the reorder class based on ParMetis.
Every process advances generating its own integration points and connectivity. The
sequential chunk of rows in the matrix (and RHS) for each one is then created
and filled independently thanks to the BasicPDE class based on PETSc. The solver,
integrated in PETSc or taken from an external package, is the final step of a common
iteration.

Chapter 5

Other applications

Due to the flexible structure of the code, we have been able to apply and extend it

to other problems sharing common numerical background. The author of this thesis

has been involved in these projects by leading the computational implementation.

We refer to the corresponding papers for more information.

5.1 Stabilization of Stokes equations with LME ap-

proximants

In anticipation to an incompressibility constraint in biomembrane models, an equal

approximation method for velocities and pressure in the context of the incompressible

Stokes equations with LME approximation schemes is studied in our paper [112]. The

performance of the method is illustrated with classical benchmark tests, showing how

the Stokes equations discretized with LME approximants can be effectively stabilized.

The Stokes problem can be formulated:

75

76 Other applications

− ν4u+∇p = f en Ω, (5.1)

∇ · u = 0 en Ω, (5.2)

u = ud en Γd, (5.3)

where u is the velocity, p the pressure, f the vector of body forces, ν the kinematic

viscosity, ud the Dirichlet boundary conditions and Ω ⊂ Rd.

Let be V = H1
0 and Q = L2/R the velocity and pressure spaces, respectively.

Then, the weak formulation of the problem to find u ⊂ V and p ⊂ Q such that:

− ν(∇∆u,∇∆v)− (p,∇∆ · v) = 〈f, v〉 ∀v ∈ V, (5.4)

(q,∇ · u) = 0 ∀q ∈ Q. (5.5)

Defining,

a : V × V →R a(u, v) = ν(∇u,∇v),

b : Q× V →R b(q, v) = (q,∇ · v),

l : V →R l(v) = 〈f, v〉.

(5.6)

The problem can be written as follows,

a(u, v)− b(p, v) = l(v) ∀v ∈ V, (5.7)

b(q, u) = 0 ∀q ∈ Q. (5.8)

Existence and uniqueness of solutions of this widely studied problem relies on the

5.1 Stabilization of Stokes equations with LME approximants 77

the Ladyzhenskaya-Babuska-Brezzi (LBB) condition,

inf

q ∈ Q

sup

v ∈ V
b(q, v)

‖q‖Q‖v‖V
≥ Kb > 0. (5.9)

This condition holds true if b(q, v) = (q,∇ · v),∀q ∈ Q = L2(Ω)/R and ∀v ∈

V = H1
0 (Ω)d (Ladyzhenskaya), and therefore the continuous problem is well-posed.

Unfortunately, when the equations are discretized with finite-dimensional spaces,

the LBB condition can fail. In particular, using the same discretization space for

both pressure and velocity results in a loss of stability, which is the cardinal issue of

numerical methods for solving the Stokes problem.

The main strategies to deal with this obstacle are mixed formulations and the

stabilization of equal approximation methods for the Stokes equations. The mixed

formulations tackle the problem by seeking admissible pairs of spaces that fulfill the

inf-sup condition at the discrete level. Stabilization techniques use a discretization

based on a single space for both pressure and velocity, and add terms to the original

weak form to give coercivity to the resulting matrix. We are interested in the coupled

problem posed by the bending model of biomembranes and the Stokes flow in which

they are immersed. LME approximants present nice characteristics to solve the

phase-field governing the structure behavior and for simplicity we find convenient

to use the same discretization space for the fluid problem. Stabilization techniques

have undergone a large and satisfactory development in the FEM context [113]. We

develop a LME stabilization method inspired in FEM stabilization ideas. Because of

the differences between FEM and LME, the application of the FEM based methods is

not direct and redefinition of parameters is needed. The discretization of the Stokes

problem leads to the following system:

78 Other applications



K −DT

D 0






U

P


 =



F

0


 , (5.10)

where K comes from the Laplacian velocity and it is definite positive, while D

corresponds to the pressure terms and introduces the instability to the total matrix.

To stabilize the system we need to add an extra term to the weak form [113]:

∫

Ω

τP(w, q) R (u, p)dΩ, (5.11)

where R (u, p) is the residual of the strong form of the problem (which ensures

the consistency of the new weak form), τ is a parameter which controls the amount

of the stabilization to be applied and P(w, q) is a partition of the differential oper-

ator. Different choices of this partition lead to different stabilization methods. To

summarize the effect of the stabilization methods and to provide an integrated way

of implementation in the code, we write the stabilization term as [114]:

∫

Ω

τ1(−αν∆w + β1∇q)(−ν∆u+∇p− f), (5.12)

where alpha takes the values 1, 0 and −1, and beta 1 and −1. The different com-

binations of the values enable the user to switch from one stabilization method to

another while maintaining the same framework. structure.

Since in LME we work with a set of points instead of a mesh, some redefinition

of the parameter has to be worked out. In FEM, guidelines for the stabilization

parameter τ are given in terms of the nodal spacing. In meshfree methods, this

nodal spacing is usually interpreted as a measure of the effective support of the basis

functions. Here we propose a Gauss point-wise parameter based in this idea, which

is easy to implement and shows excellent performance.

5.1 Stabilization of Stokes equations with LME approximants 79

0 0.5 1 1.5 2
0

0.5

1

1.5

2

0 0.5 1 1.5 2
0

0.5

1

1.5

2

Figure 5.1: Velocity field for Colliding Flow: (top-left) Without stabilization. (top-
right) Stabilized. Pressure field for Colliding Flow: (bottom-left) Without stabiliza-
tion. (bottom-right) Stabilized. γ=1.0, DOF=1250.

τ1 =
C

ν
ρ̄2, (5.13)

where ρ̄ stands for a weighted sort of mean applied upon the effective support sizes

of the neighbors list 1, 2..., N .

We select and apply the GLS-LME stabilization technique (α = 1 and β1 = 1) to

the classical Poiseuille and Colliding flows benchmark tests for the Stokes problem.

Since these tests have analytical solution we can accurately compare the results of

the simulation. The velocity field of the Colliding flow problem is illustrated in the

Fig. 5.1 without the application of stabilizing method and after stabilization. The

analytical velocity field is recovered after the stabilization.

80 Other applications

Figure 5.2: Poiseuille: stabilized velocity fields (top) and pressure (bottom) stabi-
lized, γ=1.0, uniform set DOF=1152

The same behavior can be seen in the Fig. 5.1 where we plot the pressure for the

solution without stabilization. Disproportionate values of pressure and oscillations

are observed. This anomalous behavior disappears after the stabilization and the

obtained solution recovers the smoothness, matching the analytical field. This fact is

reflected in detail with the recovery of the optimal rate after the stabilization in the

convergence charts for L2 norm. The results obtained for Poiseuille flow confirm the

ones of the Colliding flow, showing identical behavior in its parameter dependence

and convergence rates. The stabilized results are shown in Fig. 5.2.

Another set of simulations have been run over an unstructured grid in order to

test the capability of the point-wise τ1 parameter introduced before, with excellent

results. This result enables the use of this fairly direct implementation parameter to

manage adaptive processes which are needed in high demanding computations such

as the ones in this thesis. Further information can be found in our paper [112].

5.2 A stabilized formulation for viscoplastic flow in metal forming 81

5.2 A stabilized formulation for viscoplastic flow in

metal forming

The FEM has been successfully applied to the simulation of metal forming [115, 116]

and, thanks to the increasing computer power, it can provide excellent results with

reasonable computational times. Thanks to its flexibility and robustness commercial

FEM codes are a standard tool in the industry.

However, the main limitation of the FEM in this kind of application is that the

quality of the results depends on the mesh. If a Lagrangian formulation is used

the mesh moves with the material and, due to the high distortions, the numerical

results loose their accuracy, unless remeshing-rezoning techniques are used. This step

becomes very time consuming in 3D. Furthermore additional errors are introduced

when the variables are mapped from the old mesh to the new one. Metal forming has

been also studied with Eulerian and ALE formulations which involve drawbacks such

as determining the geometry of the free surface of the flow in the former case and

controlling the mesh motion in the latter. For these reasons, even if the FEM provides

very good results in many applications, alternative techniques based on meshfree

approximation schemes appear as an interesting alternative in the simulation of metal

forming processes. Unfortunately, since meshfree methods are less mature than mesh-

based methods, only few works applied these techniques to metal forming.

Since pioneer works on metal forming [117, 118] it is an accepted assumption

to neglect elastic deformations and therefore treat the material as a non-newtonian

viscoplastic fluid, in the so called flow formulation [119]. This aspect is discussed

in detail in [120]. In the simulation of incompressible flows even if meshfree method

are less sensitive to volumetric locking FEM it is still preferable to employ mixed

pressure-velocity formulations. This poses some issues regarding the construction of a

discretization that satisfies the inf-sup or LBB compatibility condition. While in the

82 Other applications

FEM environment different type of shape functions, defined on the same elements,

can be used for the velocity and the pressure, the problem becomes more complicated

for meshfree methods. In the works based on the Natural Element Method, the ap-

proximants are used for the velocities and constant approximants directly defined on

the Voronoi diagram are used for the pressure. However, even if the method performs

well, some oscillation are still present. Here we propose a stabilized formulation based

on the LME meshfree approximants. Since the same basis functions approximate the

velocity and the pressure, we resort to stabilization to circumvent the LBB condi-

tion. As previously mentioned, a good approximation for metal forming problems is

to treat the material as a non-newtonian incompressible viscoplastic fluid. Due to

the analogy of the Stokes equations with a non-newtonian incompressible viscoplastic

material, we extend to metal forming applications a stabilization approach proposed

for fluid dynamics. Recently a family of consistent stabilization techniques for the

FEM has been widely studied in the literature [113, 121, 122]. In [112] they have

been also successfully applied to local maximum entropy schemes. In this work we

propose a modification of the technique used in [121] that consists in penalizing the

incompressibility equation with the gradient of the pressure. This approach recovers

a strategy already proposed in [122].

In our work we validate the method with a classical metalforming benchmark (see

Fig. 5.3), a cylindrical billet which is progressively flattened between two plates. The

pressure and velocity in this example are simple and easy to analyize, and provide a

proper frame to test the performance of our method, which provides excellent results.

Further information can be found in our published paper [123].

5.2 A stabilized formulation for viscoplastic flow in metal forming 83

Figure 5.3: Cylindrical billet progressively flattened between two plates. (a) sketch
of the geometry; (b-d) pressure at different time steps; (e) vertical velocity at the
end of the process.(524 nodes and 100 time steps).

84 Other applications

5.3 Computational evaluation of the flexoelectric

effect in dielectric solids

Since its introduction by [124], flexoelectricity has been identified as an important

electromechanical coupling in a wide variety of materials, including cellular mem-

branes, liquid crystals, polymers, graphene, and piezoelectric and non-piezoelectric

crystals. With the emergence of nanoscale fabrication and characterization, the in-

terest in the flexoelectric effect has acquired a renewed vitality. See [125, 126, 127]

for recent reviews. The flexoelectric effect describes the generation of an electric

polarization induced by strain gradient:

Pi = µijkl∇lεjk, (5.14)

where P is the electric polarization, ε is the mechanical strain, and µ is a fourth

order flexoelectric tensor. Two features make flexoelectricity distinct from other elec-

tromechanical coupling mechanisms such as piezoelectricity. The first feature is its

universality, due to the fact that a strain gradient can disrupt the inversion symmetry

of the internal structure of a material, e.g. its crystalline structure, regardless of the

lack of polarity of its undeformed configuration, hence inducing a polarization. As

a result, the flexoelectric coefficients are generically non-zero for all dielectrics. The

flexoelectric effect is prominent in materials with high dielectric constants such as

ferroelectrics [128, 129, 130, 131]. Piezoelectricity is less universal since it can only

appear in non-centrosymmetric crystals. The second distinguishing feature of flexo-

electricity is its size-dependence, due to the scaling of strain gradients with structural

size. Despite its universality, the flexoelectric effect is typically insignificant relative

to piezoelectricity at macroscopic scales, and only manifests itself noticeably at the

nanoscale. For this reason, the experimental observation of flexoelectricity is partic-

5.3 Computational evaluation of the flexoelectric effect in dielectric solids 85

ularly difficult, which motivates the development of theoretical models to investigate

this phenomenon.

Based on continuum models, the resulting fourth-order coupled system of partial

differential equations (PDEs) has been approached with analytical solutions rely-

ing on simplifying assumptions and/or in very simple geometries. However, these

assumptions may lead to under- or over-estimation of the flexoelectric effect. Fur-

thermore, this effect can be more prominent in complex geometries favoring strain

gradients, for which analytical solutions are not available. We are not aware of pre-

vious numerical approaches to solve the boundary value problems of flexoelectricity.

The main difficulty is the fourth order nature of the PDEs of flexoelectricity, which

demand at least C1 continuous basis functions for a direct Galerkin method. Alter-

natively, mixed finite elements only requiring C0 continuity and previously developed

for strain gradient elasticity [132, 133, 134] could be applied to flexoelectricity. In con-

sequence, we resort to local maximum-entropy (LME) meshfree approximants [135].

We summarize next a linear theory of flexoelectricity previously proposed in [136]

and references therein. The electrical enthalpy density of a linear dielectric solid

possessing piezoelectricity and flexoelectricity can be written as

H(εij , Ei, εjk,l, Ei,j) =
1

2
Cijklεijεkl − eiklEiεkl + fijklEiεjk,l

+ dijklEi,jεkl −
1

2
κijEiEj , (5.15)

where Ei = −φ,i is the electric field, φ being the electric potential. The first energy

term is the elastic potential, where C is the fourth-order tensor of elastic moduli.

The piezoelectric coupling between the strain and electric field is through the second

term with the third-order tensor of piezoelectricity e. The last energy term is the

electrostatic contribution, where κ is the second-order dielectric tensor. Here, our

particular attention is on the third and fourth terms, which define the flexoelectric

86 Other applications

behavior of the material. The term coupling the gradient of strain ∇ε to the electric

field is the direct flexoelectric coupling through the fourth-order tensor f . Conversely,

the gradient of electric field ∇E is coupled to strain through the fourth-order tensor

d, introduced by [137] and termed converse flexoelectric effect. Using integration by

parts, it has been shown that these flexoelectric energy terms can be expressed by

only one term with one material tensor µ [138]. The electrical enthalpy density in

Eq. (5.15) is then rewritten as

H(εij , Ei, εjk,l) =
1

2
Cijklεijεkl − eiklEiεkl − µijklEiεjk,l −

1

2
κijEiEj , (5.16)

where µijkl = diklj − fijkl. See [139] and [140] for recent accounts on the symmetry

of the tensor of flexoelectric coefficients. The two forms of the enthalpy density in

Eqs. (5.15) and (5.16) result in identical governing equations, and only the associated

natural boundary conditions are different. We ignore strain gradient elasticity for

simplicity and to isolate the effect of flexoelectricity, although as argued by [141],

this may compromise the stability of the model in some regimes.

We present here two numerical examples. In the first, the electromechanical

response of a cantilever beam due to flexoelectricity and the size-dependent elasticity

behavior is studied. We evaluate this effect by defining the normalized Young’s

modulus Y ′ as:

Y ′ =
1
2

∫
εe : C : εe

1
2

∫
εf : C : εf

, (5.17)

where εf and εe are the strains obtained from the simulations of the model with

and without considering flexoelectricity, respectively. Fig. 5.4(a) presents Y ′ as a

function of the normalized thickness h′. A similar size effect on the elastic behavior

of ferroelectrics due to flexoelectricity has been reported [142]. The particular de-

5.3 Computational evaluation of the flexoelectric effect in dielectric solids 87

formation of the beam due to flexoelectricity observed in the inset of Fig. 5.4(a) is

examined in Fig. 5.4(b).

2 4 6 8
1

1.5

2

2.5

Normalized Thickness

N
or

m
al

iz
ed

Y
ou

ng
’s

M
od

ul
us With flexoelectricity

Without flexoelectricity

F

+

||

(i)

(ii)

(iii)

(iv)

0

< 0

(a) (b)

Figure 5.4: (a) Normalized Young’s modulus Y ′ as a function of the normalized thick-
ness h′ for a non-piezoelectric material considering the closed circuit configuration.
The insets show the deformation of the midline of the beam at two different length-
scales, with and without flexoelectricity. The same mechanical load is applied for all
the simulations in the figure. (b) Illustration of the deformation mechanism of the
cantilever flexoelectric beam at small scales. The circular arrows show the moments
induced by (i) the mechanical point load F and (ii) the converse flexoelectric effect.
Due to the nearly uniform distribution of the electric potential along the beam, a
uniform moment is induced due to the converse flexoelectric effect. (iii) The total
moment distribution as the summation of the moments in (i) and (ii). The total
moments lead to a peculiar deformation of the beam in (iv). The deformation is
exaggerated for clarity.

The second example is a truncated pyramid. Under compression, it constitutes

another setup to quantify the flexoelectric response of dielectric solids. The geometry

of the truncated pyramid in plane strain and its boundary conditions are shown in

Fig. 5.5(a). A force of magnitude F is applied uniformly at the top surface. The top

and bottom surfaces have areas a1 and a2. Due to their different areas, the applied

force generates different tractions at the top and bottom surfaces, resulting in a

longitudinal strain gradient and thus generating a flexoelectric polarization. Here,

we focus on a two-dimensional problem by considering a truncated triangle with unit

88 Other applications

width.

Further information can be found in our published paper [143].

5.6

(c)

(d)

F
V

h
a2

F

1.8

0

-1.1

-3.3

0

a1

0

-6

(a)

-0.1

-4.1

2.6

0

(e)

x1x
2

Simplified model

Flexible support

Rigid support
(V)

Electric potentialElectric potential Strain

(b)

(V)

Electric potentialElectric potential

(V)

Electric potentialElectric potential

Strain

Strain

0 2 4 6 8 10
0

2

4

6

8

10

Normalized Thickness

N
or
m
al
iz
ed

ef
fe
ct
iv
e

pi
ez

oe
le
ct
ric

co
ns

ta
nt

(×
10

−2
)

Simplified model
Flexible support
Rigid support

Figure 5.5: (a) Truncated pyramid in plane strain under the mechanical load F ,
uniformly distributed at the top surface. The top face has length a1 and the bottom
length a2. The electric potential is fixed to zero at the top and is constant but
unknown at the bottom. (b) Normalized effective piezoelectric constant e′ as a
function of the normalized thickness h′ for a non-piezoelectric material, (c-e)(left)
Distribution of the electric potential and (right) the strain ε22 obtained from the
simplified analytical model (c) and the computational models with the flexible (d)
and rigid (e) supports.

5.4 Fracture in brittle materials of anisotropic surface energy 89

5.4 Fracture in brittle materials of anisotropic sur-

face energy

Understanding how cracks choose their path of propagation, resulting in possibly

complex crack patterns, is one of the outstanding problems in fracture mechanics.

Patterns become more complex as we move from isotropic to anisotropic behaviors.

The source of anisotropy may come from two different sources, namely the elastic

anisotropy and the surface energy anisotropy. While the first source has often been

addressed in literature, surface energy anisotropy remains less studied although it

seems to bear a strong impact in crack patterns [144]. Its simulation, although

challenging, may have interesting applications for industry since it is often produced

during manufacturing processes (e.g. rolling polycrystalline materials, deep-drawing

metals and alloys). Kinked and zig-zag patterns are experimentally observed in

materials showing anisotropic surface energy (see Fig. 5.6).

Figure 5.6: Zig-zag and kinked patterns in presence of anisotropic surface energy.
Source: [144]

The current theoretical framework brittle fracture was initiated nearly a century

ago by Griffith [145]. In this theory, crack propagation arises as a balance between the

surface energy and the release of elastic energy; a crack will propagate in a direction

given by the angle θ when the relation

90 Other applications

G(θ) = Gc (5.18)

holds, where G(θ) is the elastic energy release rate for a crack along θ and Gc is the

surface energy of the newly created crack faces.

Modeling of fracture mechanics involves the choice of a criterium for crack ad-

vance. Under quasi-static loading, several popular criteria have been appended to

Griffith?s theory to determine the crack path, including (1) the principle of local sym-

metry, (2) the maximum energy release rate, (3) the minimum strain energy density

and (4) the maximum hoop stress. While these criteria provide similar predictions

for homogeneous isotropic materials (in fact, (1) and (2) coincide under certain con-

ditions), they greatly differ when generalized to materials with anisotropic surface

energy, in which the fracture toughness Gc./ is orientation dependent.

Figure 5.7: Adapted mesh for crack propagation (left). Geometrical description and
boundary conditions for the benchmark problem (right).

Several have been proposed to model this issue, being the main ones the principle

of local symmetry, the maximum energy release rate, the minimum strain energy

density and the maximum hoop stress. These concepts give raise to very differ-

ent crack patterns, which arises questions about its adequacy (check further details

in [146, 147, 144]). In our work we resort to the variational approach, which considers

5.4 Fracture in brittle materials of anisotropic surface energy 91

the propagation of the crack as driven by the minimization of a global energy. This

energy takes into account the elastic energy and the crack surface energy. This has

the advantage of removing the constraints of the classical Griffith theory, namely the

existence of a pre-crack and a defined crack pattern. It can describe both short scale

failure and macroscopic linear elasticity self-consistently [148]. We apply a phase-

field model to easily introduce and substract energy additions in the potential. In

this case, the phase-field v is set to v = 1 for the healthy material and v = 0 for the

completely damaged (crack) zone. In the global functional, the elastic energy is thus

modified by the phase-field and the phase-field modified by the displacement.

Figure 5.8: crack propagation guided along an allowed but high-energy direction (b,
c) or along a forbidden direction (d, e). The red and green dots in (c) represent the
initial and final crack orientation, while in (e) represent the two orientations of the
sawtooth pattern.

We use the meshfree LME approximants due to the second order derivatives

appearing in the terms accounting for anisotropy. The high adapted meshes we

92 Other applications

use to capture the crack also call for the use of a meshfree method. We are running

simulations in 2D with different boundary conditions and adapted grids, e.g. Fig. 5.7.

We have successfully reproduced kinked cracks, as can be observed in the Fig. 5.8, and

plan to extend this model to 3D. Further information in our published paper [149].

Chapter 6

Concluding remarks and
future directions

6.1 Conclusions and future directions

We have demonstrated the suitability of the combination of phase-field modeling

with meshfree methods to simulate a variety of high-order problems. We have fo-

cused in the simulation of biomembranes, where continuum mechanics description

using parametrical sharp-interface models poses several obstacles that can be over-

come with a diffuse interface approach. We have shown that the minimization of a

variational scheme using a fourth-order phase-field model and highly adapted grids

leads to validated equilibrium shapes within reasonable computational times. We

have introduced the viscous fluid media with the Stokes equations and proposed a

Lagrangian approach that considers the phase-field as a material property of the

fluid. The competition of the dissipation potential and the bending elastic energy of

the vesicle govern the dynamics and allow for simulations showing complex patterns

with large deformations that the method is able to handle. We have extended the

model with a term accounting for a Lennard-Jones adhesion potential and explored

the role of kinetics in the morphogenesis of membrane structures. Meshfree phase-

93

94 Concluding remarks and future directions

field models, with high computational costs, demand for high adapted grids, adaptive

time stepping and scalable parallel codes. We have presented a number of contribu-

tions in the implementation of meshfree methods in a high-performance computing

environment. We showed how the creation and filling of sparse matrices can become

the bottleneck in large scale simulations, and presented algorithms to improve its

performance. The new algorithms involve the coarsening of the neighboring lists,

minimizing the dependence of computational time with the number of quadrature

points. We also presented a new strategy to efficiently store the basis functions and

their derivatives in problems where they are repeatedly required, removing memory

bottlenecks. The problems we solve within this work benefit from this optimizations

and have run successfully on a supercomputing facility. We developed a flexible code

in C + + using state-of-the-art supercomputing packages that permitted to tackle

similar problems in a very direct way. We introduced the results obtained with

the code in fluid mechanics, metal forming, flexoelectricity and fracture in brittle

materials.

Regarding the future research lines, it is clear that the applications of the proposed

methods can be extended to study many other biological processes. Cell motility,

kinetics effects in combination with adhesion and the analysis of specific structures

like organelle in living cells are just some of them. In the technical part, the code

works in 3D but a further effort is to be done to become even more efficient and

afford higher accuracies in tridimensional problems with evolutions which require a

high number of time steps. In the phase-field model of biomembranes, for example,

the need for an implicit method due to the stiffness of the system poses numerical

obstacles when calculating lengthy and time consuming Hessians of the functional.

Optimizations in this line are being carried on and should enable the simulation in

3D in the near future of the kind of problems we have already presented in 2D and

axisymmetric 3D.

6.2 Publications 95

6.2 Publications

2014 B. Li, C. Peco, D. Millán, I. Arias and M. Arroyo. Phase-field modeling and

simulation of fracture in brittle materials with strongly anisotropic

surface energy International Journal for Numerical Methods in Engineering,

DOI:10.1002/nme.4726, June 2014.

2014 C. Peco, D. Millán, and M. Arroyo. Simulation of adhesion and con-

finement effects in biological structures with adaptive Lagrangian

phase-field models. In preparation.

2014 A. Abdollahi, C. Peco, D. Millán, I.Arias and M. Arroyo, Computational

evaluation of the flexoelectric effect in dielectric solids. Journal of

Applied Physics, 116(9):093502, 2014.

2013 C. Peco, D. Millán, A. Rosolen, and M. Arroyo. Efficient implementation

of meshfree Galerkin methods for large-scale problems with an em-

phasis on maximum entropy approximants. Submitted to Computers

and Structures.

2013 F. Greco, L. Filice, C. Peco, M. Arroyo . A stabilized formulation with

maximum entropy meshfree approximants for viscoplastic flow sim-

ulation in metal forming. International Journal of Material Forming, DOI:

10.1007/s12289-014-1167-x, 2013.

2013 C. Peco, A. Rosolen, and M. Arroyo. Estabilización de las ecuaciones de

stokes con aproximantes locales de máxima entroṕıa. Submitted to

RIMNI, 2013.

2013 A. Rosolen, C. Peco, and M. Arroyo. An adaptive meshfree method for

phase-field models of biomembranes. part i: Approximation with

96 Concluding remarks and future directions

maximum-entropy basis functions. Journal of Computational Physics,

249(0):303–319, 2013.

2013 C. Peco, A. Rosolen, and M. Arroyo. An adaptive meshfree method

for phase-field models of biomembranes. part ii: A Lagrangian

approach for membranes in viscous fluids. Journal of Computational

Physics, 249(0):320–336, 2013.

Bibliography

[1] R.F. Sekerka. Morphology: from sharp interface to phase field models. Journal

of Crystal Growth, 264:530–540, 2004.

[2] I. Steinbach. Phase-field models in materials science. Modelling and Simulation

in Materials Science and Engineering, 17:73001, 2009.

[3] G.A. Francfort and J.-J. Marigo. Revisiting brittle fracture as an energy mini-

mization problem. Journal of the Mechanics and Physics of Solids, 46(8):1319–

1342, 1998.

[4] A. Abdollahi and I. Arias. Phase-field modeling of the coupled microstructure

and fracture evolution in ferroelectric single crystals. Acta Materialia, 59:4733–

4746, 2011.

[5] M. Benes, V. Chalupecky, and K. Mikula. Geometrical image segmentation by

the Allen-Cahn equation. Applied Numerical Mathematics, 51:187–205, 2004.

[6] D. Jacqmin. Calculation of Two-Phase Navier-Stokes Flows using Phase-Field

Modeling. Journal of Computational Physics, 155(1):96–127, 1999.

[7] H. Gomez, L. Cueto-Felgueroso, and R. Juanes. Three-dimensional simulation

of unstable gravity-driven infiltration of water into a porous medium. Journal

of Computational Physics, 238:217–239, 2013.

97

98 Bibliography

[8] R. Dhote, H. Gomez, R. Melnik, and J. Zu. Isogeometric analysis of a dy-

namic thermo-mechanical phase-field model applied to shape memory alloys.

Computational Mechanics, 53:1235–1250, 2014.

[9] G. Vilanova, I. Colominas, and H. Gomez. Capillary networks in tumor angio-

genesis: From discrete endothelial cells to averaged phase-field descriptions via

isogeometric analysis. International Journal for Numerical Methods in Biomed-

ical Engineering, 29:1015–1037, 2013.

[10] Q. Du, C. Liu, and X. Wang. A phase field approach in the numerical study

of the elastic bending energy for vesicle membranes. Journal of Computational

Physics, 198:450–468, 2004.

[11] X. Wang. Phase field models and simulations of vesicle bio-membranes. PhD

thesis, The Pennsylvania State University, 2005.

[12] J.S. Rowlinson. Translation of J. D. van der Waals’ “the thermodynamik

theory of capillarity under the hypothesis of a continuous variation of density”.

Journal of Statistical Physics, 20:197–200, 1979.

[13] L.D. Landau and I.M. Khalatikow. The Selected Works of L.D. Landau. Ox-

ford: Pergamon, 1963.

[14] M Hillert. A theory of nucleation for solid solutions, D.Sc Thesis. Cambridge,

MA: MIT Press, 1956.

[15] J.W. Cahn and J.E. Hillard. Free energy of a nonuniform system. i. interfacial

free energy. J. Chem. Phys., 28:258, 1958.

[16] J.S. Langer. Chance and matter, lectures on the theory of pattern formation.

Les Houches, session XLVI, pages 692–711, 1987.

Bibliography 99

[17] F. Feng and W.S. Klug. Finite element modeling of lipid bilayer membranes.

Journal of Computational Physics, 220(1):394–408, 2006.

[18] S.J. Osher and R.P. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces.

Springer-Verlag, 2002.

[19] T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD,

finite elements, NURBS, exact geometry and mesh refinement. Computer Meth-

ods in Applied Mechanics and Engineering, 194:4135–4195, 2005.

[20] H. Gomez, V.M. Calo, Y. Bazilevs, and T.J.R. Hughes. Isogeometric analysis of

the Cahn-Hilliard phase-field model. Computer Methods in Applied Mechanics

and Engineering, 197(49–50):4333–4352, 2008.

[21] M.J. Borden, T.J.R. Hughes, C.M. Landis, and C.V. Verhoosel. A higher-

order phase-field model for brittle fracture: Formulation and analysis within

the isogeometric analysis framework. Computer Methods in Applied Mechanics

and Engineering, 273:100–118, 2014.

[22] A. Rosolen and M. Arroyo. Blending isogeometric analysis and maximum en-

tropy meshfree approximants. Comput. Methods. Appl. Mech. Eng., 264:95 –

107, 2013.

[23] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl. Meshless

methods: An overview and recent developments. Computer Methods in Applied

Mechanics and Engineering, 139(1–4):3–47, 1996.

[24] Vinh Phu Nguyen, Timon Rabczuk, Stéphane Bordas, and Marc Duflot. Mesh-

less methods: A review and computer implementation aspects. Mathematics

and Computers in Simulation, 79(3):763–813, December 2008.

100 Bibliography

[25] P. Lancaster and K. Salkauskas. Surfaces Generated by Moving Least Squares

Methods. Mathematics of Computation, 37(155):141–158, 1981.

[26] J.J. Monaghan. An introduction to SPH. Computer Physics Communications,

48:89–96, 1988.

[27] W.K. Liu, S. Jun, and Y.F. Zhang. Reproducing kernel particle methods.

International Journal for Numerical Methods in Fluids, 20:1081–1106, 1995.

[28] J.M. Melenk and I. Babuška. The partition of unity finite element method :

Basic theory and applications. Computer Methods in Applied Mechanics and

Engineering, 139(1–4):289–314, 1996.

[29] T. Belytschko, Y.Y. Lu, and L. Gu. Element free Galerkin methods. Interna-

tional Journal for Numerical Methods in Engineering, 37:229–256, 1994.

[30] J.S. Chen, C. Pan, C.T. Wu, and W.K. Liu. Reproducing kernel particle meth-

ods for large deformation analysis of nonlinear structures. Computer Methods

in Applied Mechanics and Engineering, 139:195–227, 1996.

[31] J.S. Chen, C. Pan, C.M.O.L. Rogue, and H.P. Wang. A lagrangian reproducing

kernel particle method for metal forming analysis. Computational Mechanics,

22:289–307, 1998.

[32] U.H. Combe and C. Korn. An adaptive approach with the element-free-galerkin

method. Computer Methods in Applied Mechanics and Engineering, 162:203–

222, 1998.

[33] C.A. Duarte and J.T. Oden. An h–p adaptive method using clouds. Computer

Methods in Applied Mechanics and Engineering, 139:237–262, 1996.

Bibliography 101

[34] N. Sukumar. Construction of polygonal interpolants: a maximum entropy

approach. International Journal for Numerical Methods in Engineering,

61(12):2159–2181, 2004.

[35] M. Arroyo and M. Ortiz. Local maximum-entropy approximation schemes: a

seamless bridge between finite elements and meshfree methods. International

Journal for Numerical Methods in Engineering, 65(13):2167–2202, 2006.

[36] F. Cirak, M. Ortiz, and P. Schröder. Subdivision surfaces: a new paradigm for

thin-shell finite-element analysis. International Journal for Numerical Methods

in Engineering, 47(12):2039–2072, 2000.

[37] C.J. Cyron, M. Arroyo, and M. Ortiz. Smooth, second order, non-negative

meshfree approximants selected by maximum entropy. International Journal

for Numerical Methods in Engineering, 79(13):1605–1632, 2009.

[38] F. Campelo. Shapes in Cells. Dynamic instabilities, morphology, and curvature

in biological membranes. PhD thesis, Universitat de Barcelona, 2008.

[39] Q. Du, C. Liu, R. Ryham, and X. Wang. Energetic variational approaches in

modeling vesicle and fluid interactions. Physica D, 238:923–930, 2009.

[40] H. Gomez, T.J.R. Hughes, X. Nogueira, and V.M. Calo. Isogeometric analysis

of the isothermal Navier-Stokes-Korteweg equations. Computer Methods in

Applied Mechanics and Engineering, 199(25–28):1828–1840, 2010.

[41] Q. Du and L. Zhu. Analysis of a mixed finite element method for a phase

field bending elasticity model of vesicle membrane deformation. Journal of

Computational Mathematics, 24(3):265–280, 2006.

[42] Q. Du and J. Zhang. Adaptive Finite Element Method for a Phase Field

102 Bibliography

Bending Elasticity Model of Vesicle Membrane Deformations. SIAM J. Sci.

Comput., 30(3):1634–1657, 2008.

[43] H.D. Ceniceros, R.L. Nós, and A.M. Roma. Three-dimensional, fully adaptive

simulations of phase-field fluid models. Journal of Computational Physics,

229:6135–6155, 2010.

[44] S. Wise, J. Kim, and J. Lowengrub. Solving the regularized, strongly

anisotropic Cahn–Hilliard equation by an adaptive nonlinear multigrid method.

Journal of Computational Physics, 226(1):414–446, 2007.

[45] W.M. Feng, P. Yu, S.Y. Hu, Z.K. Liu, Q. Du, and L.Q. Chen. A Fourier

Spectral Moving Mesh Method for the Cahn-Hilliard Equation with Elasticity.

Communications in Computational Physics, 5(2–4):582–599, 2009.

[46] J.S. Lowengrub, A. Rätz, and A. Voigt. Phase-field modeling of the dynamics

of multicomponent vesicles: Spinodal decomposition, coarsening, budding, and

fission. Physical Review E, 79:31926, 2009.

[47] A. Voigt and T. Witkowski. Hybrid parallelization of an adaptive finite element

code. KYBERNETIKA, 46:316–327, 2010.

[48] P. Yue, C. Zhou, J.J. Feng, C.F. Ollivier-Gooch, and H.H. Hu. Phase-field

simulations of interfacial dynamics in viscoelastic fluids using finite elements

with adaptive meshing. Journal of Computational Physics, 219(1):47–67, 2006.

[49] C. Zhou, P. Yue, J.J. Feng, C.F. Ollivier-Gooch, and H.H. Hu. 3D phase-

field simulations of interfacial dynamics in Newtonian and viscoelastic fluids.

Journal of Computational Physics, 229:498–511, 2010.

[50] L. Cueto-Felgueroso and J. Peraire. A time-adaptive finite volume method for

Bibliography 103

the Cahn-Hilliard and Kuramoto-Sivashinsky equations. Journal of Computa-

tional Physics, 227:9985–10017, 2008.

[51] R.J. Braun and B.T. Murray. Adaptive phase-field computations of dendritic

crystal growth. Journal of Crystal Growth, 177:41–53, 1997.

[52] J. Rosam, P.K. Jimack, and A. Mullis. A fully implicit, fully adaptive time

and space discretisation method for phase-field simulation of binary alloy so-

lidification. Journal of Computational Physics, 225:1271–1287, 2007.

[53] W.M. Feng, P. Yu, S.Y. Hu, Z.K. Liu, Q. Du, and L.Q. Chen. Spectral im-

plementation of an adaptive moving mesh method for phase-field equations.

Journal of Computational Physics, 220(1):498–510, 2006.

[54] C.W. Lan and Y.C. Chang. Efficient adaptive phase field simulation of direc-

tional solidification of a binary alloy. Journal of Crystal Growth, 250:525–537,

2003.

[55] Z. Tan, K.M. Lim, and B.C. Khoo. An adaptive mesh redistribution method

for the incompressible mixture flows using phase-field model. Journal of Com-

putational Physics, 225:1137–1158, 2007.

[56] A. Rosolen, D. Millán, and M. Arroyo. On the optimum support size in

meshfree methods: a variational adaptivity approach with maximum entropy

approximants. International Journal for Numerical Methods in Engineering,

82(7):868–895, 2010.

[57] D. Millán, A. Rosolen, and M. Arroyo. Thin shell analysis from scattered points

with maximum-entropy approximants. International Journal for Numerical

Methods in Engineering, 85(6):723–751, 2011.

104 Bibliography

[58] A. Rosolen, D. Millán, and M. Arroyo. Second order convex maximum entropy

approximants with applications to high order PDE. International Journal for

Numerical Methods in Engineering, 94:150–182, 2013.

[59] M. Karlsson, K. Sott, M. Davidson, A. S. Cans, P. Linderholm, D. Chiu, and

O. Orwar. Formation of geometrically complex lipid nanotube-vesicle networks

of higher-order topologies. Proceedings of the National Academy of Sciences,

99(18):11573–11578, 2002.

[60] M. Edidin. Lipids on the frontier: a century of cell-membrane bilayers. Nature

Reviews Molecular Cell Biology, 4(5):414–418, 2003.

[61] S. Semrau and T. Schmidt. Membrane heterogeneity – from lipid domains to

curvature effects. Soft Matter, 5(17):3174–3186, 2009.

[62] H. Sprong, P. van der Sluijs, and G. van Meer. How proteins move lipids and

lipids move proteins. Nature Reviews Molecular Cell Biology, 2(7):504–513,

2001.

[63] B. M. Discher, Y. Y. Won, D. S. Ege, J. C. M. Lee, F. S. Bates, D. E. Dis-

cher, and D. A. Hammer. Polymersomes: Tough vesicles made from diblock

copolymers. Science, 284(5417):1143–1146, 1999.

[64] R. Dimova, S. Aranda, N. Bezlyepkina, V. Nikolov, K. A. Riske, and

R. Lipowsky. A practical guide to giant vesicles. Probing the membrane

nanoregime via optical microscopy. Journal of Physics-Condensed Matter,

18(28):S1151–S1176, 2006.

[65] E. Mabrouk, D. Cuvelier, L.L. Pontani, B. Xu, D. Levy, P. Keller, F. Brochard-

Wyart, P. Nassoy, and Min-Hui Li. Formation and material properties of giant

liquid crystal polymersomes. Soft Matter, 5(9):1870–1878, 2009.

Bibliography 105

[66] E. Reimhult, F. Höök, and B. Kasemo. Intact vesicle adsorption and supported

biomembrane formation from vesicles in solution: influence of surface chem-

istry, vesicle size, temperature, and osmotic pressure. Langmuir, 19(5):1681–

1691, 2003.

[67] M.˜Krausand W.˜Wintz, U. Seifert, and R. Lipowsky. Fluid vesicles in shear

flow. Physical Review Letters, 77(17):3685–3688, 1996.

[68] L-T. Gao, X-Q. Feng, and H. Gao. A phase field method for simulating mor-

phological evolution of vesicles in electric fields. Journal of Computational

Physics, 228:4162–4181, 2009.

[69] T. Baumgart, S.T. Hess, and W.W. Webb. Imaging coexisting fluid domains in

biomembrane models coupling curvature and line tension. Nature, 425:821–824,

2003.

[70] I.R. Cooke, K. Kremer, and M. Deserno. Tunable generic model for fluid bilayer

membranes. Physical Review E, 72:011506, 2005.

[71] B.J. Reynwar, G. Illya, V.A. Harmandaris, M.M. Mueller, K. Kremer, and

M. Deserno. Aggregation and vesiculation of membrane proteins by curvature-

mediated interactions rid b-2958-2009 rid b-3677-2009. Nature, 447(7143):461–

464, 2007.

[72] U. Seifert and S. A. Langer, S. A. Viscous modes of fluid bilayer membranes.

Europhysics Letters, 23(1):71–76, 1993.

[73] U. Seifert. Configurations of fluid membranes and vesicles. Advances in Physics,

46(1):13–137, 1997.

[74] E. Evans and A. Yeung. Hidden dynamics in rapid changes of bilayer shape.

Chemistry and physics of lipids, 73(1-2):39–56, 1994.

106 Bibliography

[75] P. Sens. Dynamics of nonequilibrium membrane bud formation. Physical Re-

view Letters, 93(10):108103, 2004.

[76] P. Sens and M.S. Turner. Budded membrane microdomains as tension regula-

tors. Physical Review E, 73(3):031918, 2006.

[77] P.B. Canham. The minimum energy of bending as a possible explanation of the

biconcave shape of the human red blood cell. Journal of Theoretical Biology,

26(1):61–81, 1970.

[78] E. A. Evans. Bending resistance and chemically induced moments in membrane

bilayers. Biophys. J., 14:923–931, 1974.

[79] W. Helfrich. Elastic properties of lipid bilayers: theory and possible experi-

ments. Z. Naturforsch C, 28(11):693–703, 1973.

[80] Udo Seifert and R Lipowsky. Adhesion and unbinding of vesicles. Dynamical

Phenomena at Surfaces, Interfaces, and Membranes, pages 295–304, 1993.

[81] F. Campelo and A. Hernández-Machado. Dynamic model and stationary shapes

of fluid vesicles. The European Physical Journal E, 20:37–45, 2006.

[82] G. Bellettini and L. Mugnai. Approximation of Helfrich’s Functional via Diffuse

Interfaces. SIAM J. Math. Anal., 42:2402–2433, 2010.

[83] Q. Du. Phase field calculus, curvature-dependent energies, and vesicle mem-

branes. Philosophical Magazine, 91:165–181, 2010.

[84] T. Biben, K. Kassner, and C. Misbah. Phase-field approach to three-

dimensional vesicle dynamics. Physical Review E, 72(4):41921, October 2005.

[85] Q. Du, V. Faber, and M. Gunzburger. Centroidal Voronoi Tessellations: Ap-

plications and Algorithms. SIAM Review, 41(4):637–676, 1999.

Bibliography 107

[86] A.R. Conn, N.I.M. Gould, and P.L. Toint. A globally convergent augmented

Lagrangian algorithm for optimization with general constraints and simple

bounds. SIAM J. Numer. Anal., 28(2):545–572, 1991.

[87] J. Nocedal and S.J. Wright. Numerical Optimization. Springer, USA, 1999.

[88] Q. Du, C. Liu, and X. Wang. Simulating the deformation of vesicle membranes

under elastic bending energy in three dimensions. Journal of Computational

Physics, 212:757–777, 2006.

[89] F. Campelo. Modeling morphological instabilities in lipid membranes with

anchored amphiphilic polymers. J.˜Chem.˜Biol., 2:65–80, 2009.

[90] A. Bonito, R.H. Nochetto, and S.M. Pauletti. Parametric FEM for geometric

biomembranes. Journal of Computational Physics, 229(9):3171–3188, 2010.

[91] S.K. Veerapaneni, A. Rahimian, G. Biros, and D. Zorin. A fast algorithm for

simulating vesicle flows in three dimensions. Journal of Computational Physics,

230:5610–5634, 2011.

[92] B. Li, F. Habbal, and M. Ortiz. Optimal Transportation Meshfree Approxima-

tion Schemes for Fluid and Plastic Flows. International Journal for Numerical

Methods in Engineering, 83(12):1541–1579, 2010.

[93] J. Happel and H. Brenner. Low Reynolds Number Hydrodynamics: with special

applications to particulate media. Martinus Nijhoff Publishers, 1983.

[94] H. Goldstein, C.P. Poole, and J.L. Safko. Classical Mechanics. Addison-Wesley,

2001.

[95] J.B. Fournier, N. Khalifat, N. Puff, and MI Angelova. Chemically triggered

ejection of membrane tubules controlled by intermonolayer friction. Physical

Review Letters, 102(1):18102, 2009.

108 Bibliography

[96] Nada Khalifat, Nicolas Puff, Stephanie Bonneau, Jean-Baptiste Fournier, and

Miglena I Angelova. Membrane Deformation under Local pH Gradient: Mim-

icking Mitochondrial Cristae Dynamics. Biophys. J., 95(10):4924–4933, 2008.

[97] J Sanborn, K Oglecka, R S Kraut, and A N Parikh. Transient pearling and

vesiculation of membrane tubes under osmotic gradients. Faraday Discussions,

DOI: 10.1039/C2FD20116J, 2013.

[98] Harvey T. McMahon and Jennifer L. Gallop. Membrane curvature and mech-

anisms of dynamic cell membrane remodelling. Nature, 438:590–596, 2005.

[99] Margarita Staykova, Marino Arroyo, Mohammad Rahimi, and Howard A.

Stone. Confined bilayers passively regulate shape and stress. Phys. Rev. Lett.,

110:028101, 2013.

[100] Jérôme Solon, Jacques Pécréaux, Philippe Girard, Marie-Claude Fauré,

Jacques Prost, and Patricia Bassereau. Negative tension induced by lipid up-

take. Phys. Rev. Lett., 97:098–103, 2006.

[101] Mohammad Rahimi, Margarita Staykova, Marino Arroyo, A.B. Subramaniam,

and H.A. Stone. Dynamical remodelling of lipid bilayers upon cholesterol ad-

sorption. In preparation, 2014.

[102] Jian Zhang, Sovan Das, and Qiang Du. A phase field model for vesicle–substrate

adhesion. Journal of Computational Physics, 228(20):7837–7849, November

2009.

[103] J. E. Lennard-Jones. On the determination of molecular fields. Proc. R. Soc.

Lond. A, 106:463–477, 1924.

[104] Udo Seifert and R Lipowsky. Adhesion of vesicles. Physical Review A,

42(8):4768–4771, 1990.

Bibliography 109

[105] Satish Balay, Jed Brown, Kris Buschelman, William D. Gropp, Dinesh Kaushik,

Matthew G. Knepley, Lois Curfman McInnes, Barry F. Smith, and Hong

Zhang. Portable, extensible toolkit for scientific computation. http://www.

mcs.anl.gov/petsc, 2013.

[106] George Karypis and Vipin Kumar. Metis-ParMetis: Unstructured Graph Par-

titioning and Sparse Matrix Ordering System, Version 4.0.3. http://www.cs.

umn.edu/~metis, 2009.

[107] Y. Saad. Iterative Methods for Linear Systems. PWS Publishing, Boston, 1996.

[108] V. Eijkhout. Distributed sparse data structures for linear algebra operations.

Technical Report CS 92-169, Computer Science Department, University of Ten-

nessee, 1992.

[109] M.D. Mount and S. Arya. A library for approximate nearest neighbor searching.

http://www.cs.umd.edu/~mount/ANN/, 2010.

[110] C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. The quick-

hull algorithm for convex hulls. ACM Transactions on Mathematical Software,

22:469–483, 1996.

[111] Barcelona supercomputing center (bsc). http://www.bsc.es, 2014.

[112] A. Rosolen C. Peco and M. Arroyo. Estabilización de las ecuaciones de stokes

con aproximantes locales de máxima entroṕıa. Submitted to RIMNI, 2014.

[113] R. Codina. Comparison of some finite element methods for solving the diffusion-

convection-reaction equation. Computer Methods in Applied Mechanics and

Engineering, 156:185–210, 1998.

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.cs.umn.edu/~metis
http://www.cs.umn.edu/~metis
http://www.cs.umd.edu/~mount/ANN/
http://www.bsc.es

110 Bibliography

[114] Teri Barth, Pavel Bochev, M A X Gunzburger, and John Shadid. A taxonomy

of consistently stabilized finite element methods for the Stokes problem . Siam

J. Sci.Comp, 25(5):1585–1607, 2004.

[115] S.I. Oh S. Kobayashi and T. Altan. Metal forming and the finite-element

method. Oxford University Press, 1989.

[116] D. Peric and D. R. J. Owen. Computational Modeling of Forming Processes.

Wiley and Sons, Ltd, 2004.

[117] O. C. Zienkiewicz. Flow formulation for numerical solution of forming pro-

cesses. John Wiley, Chichester, 1984.

[118] O. C. Zienkiewicz and P. N. Godbole. Flow of plastic and visco-plastic solids

with special reference to extrusion and forming processes. International Journal

for Numerical Methods in Engineering, 8:1–16, 1974.

[119] J.L. Chenot and M. Bellet. The viscoplastic approach for the finite-element

modelling of metal-forming processes. Numerical Modelling of Material Defor-

mation Processes, pages 179–224, 1992.

[120] D. Bel E. Cueto M. Doblaré I. Alfaro, D. González and F. Chinesta. Recent

advances in the meshless simulation of aluminium extrusion and other related

forming processes. Archives of Computational Methods in Engineering, 13:3–43,

2006.

[121] Pavel Bochev and Max Gunzburger. An absolutely stable pressure-poisson

stabilized finite element method for the stokes equations. SIAM J. Numer.

Anal., 42:1189–1207, 2004.

[122] F. Brezzi and J. Pitkaranta. On the stabilization of finite element approxima-

Bibliography 111

tions of the stokes equations. Notes on Numerical Fluid Mechanics, 10:11–19,

1984.

[123] F. Greco, L. Filice, C. Peco, and M. Arroyo. A stabilized formulation with max-

imum entropy meshfree approximants for viscoplastic flow simulation in metal

forming. International Journal of Material Forming DOI:10.1007/s12289-014-

1167-x, 2013.

[124] V. S. Mashkevich and K. B. Tolpygo. Electrical, optical and elastic properties

of diamond type crystals. I. Sov. Phys. JETP, 5:435–439, 1957.

[125] T. D. Nguyen, S. Mao, Y.-W. Yeh, P. K. Purohit, and M. C. McAlpine.

Nanoscale flexoelectricity. Adv. Mater., 25(7):946–974, 2013.

[126] P. Zubko, G. Catalan, and A. K. Tagantsev. Flexoelectric effect in solids. Annu.

Rev. Mater. Res., 43:387–421, 2013.

[127] P. V. Yudin and A. K. Tagantsev. Fundamentals of flexoelectricity in solids.

Nanotech., 24(43):432001, 2013.

[128] G. Catalan, L. J. Sinnamon, and J. M. Gregg. The effect of flexoelectricity on

the dielectric properties of inhomogeneously strained ferroelectric thin films. J.

Phys.: Cond. Matter, 16(13):2253, 2004.

[129] P. Zubko, G. Catalan, A. Buckley, P. R. L. Welche, and J. F. Scott. Strain-

gradient-induced polarization in SrTiO3 single crystals. Phys. Rev. Lett.,

99:167601, 2007.

[130] Wenhui Ma and L. Eric Cross. Flexoelectricity of barium titanate. Appl. Phys.

Lett., 88(23):232902, 2006.

112 Bibliography

[131] H. Lu, C.-W. Bark, D. Esque De Los Ojos, J. Alcala, C.B. Eom, G. Catalan,

and A. Gruverman. Mechanical writing of ferroelectric polarization. Science,

335(6077):59–61, 2012.

[132] J.Y. Shu, W.E. King, and N.A. Fleck. Finite elements for materials with strain

gradient effects. Int. J. Numer. Meth. Eng., 44(3):373–391, 1999.

[133] E. Amanatidou and N. Aravas. Mixed finite element formulations of strain-

gradient elasticity problems. Comput. Methods. Appl. Mech. Eng., 191(15-

16):1723–1751, 2002.

[134] S.I. Markolefas, D.A. Tsouvalas, and G.I. Tsamasphyros. Some c0-continuous

mixed formulations for general dipolar linear gradient elasticity boundary value

problems and the associated energy theorems. Int. J. Solids Struct., 45(11–

12):3255 – 3281, 2008.

[135] M. Arroyo and M. Ortiz. Local maximum-entropy approximation schemes: a

seamless bridge between finite elements and meshfree methods. Int. J. Numer.

Meth. Eng., 65(13):2167–2202, 2006.

[136] M. S. Majdoub, P. Sharma, and T. Cagin. Enhanced size-dependent piezo-

electricity and elasticity in nanostructures due to the flexoelectric effect. Phys.

Rev. B, 79(11), 2009.

[137] R. D. Mindlin. Polarization gradient in elastic dielectrics. Int. J. Solids Struct.,

4(6):637 – 642, 1968.

[138] N. D. Sharma, C. M. Landis, and P. Sharma. Piezoelectric thin-film super-

lattices without using piezoelectric materials. J. Appl. Phys., 108(2):024304,

2010.

Bibliography 113

[139] H Le Quang and Q C He. The number and types of all possible rotational

symmetries for flexoelectric tensors. Proc. Royal Soc. A, 467:2369–2386, 2011.

[140] L. Shu, X. Wei, T. Pang, X. Yao, and C. Wang. Symmetry of flexoelectric

coefficients in crystalline medium. J. Appl. Phys., 110(10):104–106, 2011.

[141] S. Mao and Prashant K. Purohit. A flexoelectric reciprocal theorem and some

boundary value problems. Submitted, 2014.

[142] M. Gharbi, Z. H. Sun, P. Sharma, and K. White. The origins of electromechan-

ical indentation size effect in ferroelectrics. Appl. Phys. Lett., 95(14):142901,

2009.

[143] A. Abdollahi, C. Peco, D. Millán, I. Arias, and M. Arroyo. Computational

evaluation of the flexoelectric effect in dielectric solids. Journal of Applied

Physics, 116:093502, 2014.

[144] Atsushi Takei, Benôıt Roman, José Bico, Eugenio Hamm, and Francisco Melo.

Forbidden directions for the fracture of thin anisotropic sheets: An analogy

with the wulff plot. Phys. Rev. Lett., 110:144301, Apr 2013.

[145] Griffith AA. The phenomena of rupture and flow in solids. Philosophical

Transactions of the Royal Society of London. Series A, Containing Papers of

a Mathematical or Physical Character, 221:163–198, 1921.

[146] V. Hakim and A. Karma. Laws of crack motion and phase-field models of

fracture. J. Mech. Phys Solids, 57:342–368, 2009.

[147] M. Marder. Cracks cleave crystals. EPL (Europhysics Letters), 66:364, 2004.

[148] J.J. Marigo G.A. Francfort. Revisiting brittle fracture as an energy minimiza-

tion problem. Journal of the Mechanics and Physics of Solids, 46:1319–1342,

1998.

114 Bibliography

[149] B. Li, C. Peco, D. Millán, I. Arias, and M. Arroyo. Phase-field modeling

and simulation of fracture in brittle materials with strongly anisotropic sur-

face energy. International Journal for Numerical Methods in Engineering

DOI:10.1002/nme.4726, 2014.

List of Figures

1.1 Diffuse and sharp-interface approaches 1

1.2 Phase-field applications . 3

2.1 Basis function truncation error and non-interpolant character 13

2.2 Local Maximum Entropy seamless transition from meshfree to Delau-

nay affine basis functions . 15

2.3 Basis functions, gradient and Hessians (one-dimensional LME) 16

3.1 Human cell structure . 18

3.2 Phospholipid bilayer structure and self assembly 19

3.3 Phospholipid bilayer membrane composition 20

3.4 Elastic energies and dissipation mechanisms 22

3.5 Statics: 3D views of the oblate equilibrium branch 29

3.6 Statics: Discocyte equilibrium shape and adaptive process 31

3.7 Dynamics: Lagrangian phase-field approach 34

3.8 Dynamics: nodal reconnection . 40

3.9 Dynamics: relaxation fluid particles motion 42

3.10 Energy relaxation and time adaptive strategy 43

3.11 Dynamics: stomacyte-discocyte and prolate transitions. 45

115

116 List of Figures

3.12 Dynamics: pearling . 46

3.13 Mithocondrium internal and external structure 47

3.14 Morphological strain-volume phase diagram of confined lipid bilayers . 49

3.15 In-out tubular instabilities . 50

3.16 Phase-field model Lennard-Jones adhesion potential 52

3.17 Adhesion states and effective angle . 55

3.18 Kinetic effects in biomembrane shaping 56

3.19 Low rate energy profile in confinement 57

3.20 Fast rate energy profile in confinement 57

4.1 Integrated neighborhood concept: cell/element framework 63

4.2 Filling algorithm transition from dense submatrices to global sparse

matrix . 64

4.3 Structure creation and filling computational time 65

4.4 Concept structure of BasicPDE C + + class 71

4.5 Generic main code structure . 74

5.1 Colliding flow velocity and pressure stabilized fields 79

5.2 Poiseuille flow velocity and pressure stabilized fields 80

5.3 Metal forming : cylindrical billet progressively flattened between two

plates . 83

5.4 Flexoelectricity : normalized Young modulus and deformation of the

flexoelectric cantilever beam . 87

5.5 Flexoelectricity : trucated pyramid . 88

5.6 Fracture in brittle materials : zig-zag and kinked patterns 89

5.7 Fracture in brittle materials : adapted mesh and benchmark description 90

5.8 Fracture in brittle materials : sawtooth crack propagation 91

Appendix A
An adaptive meshfree method
for phase-field models of biomembranes.
Part I: approximation with
maximum-entropy approximants.

Journal of Computational Physics,
249(0):303–319, 2013.

A. Rosolen, C. Peco and M. Arroyo

An adaptive meshfree method for phase-field models of biomembranes.
Part I: approximation with maximum-entropy approximants

A. RosolenI, C. Peco and M. Arroyo∗

LaCàN, Universitat Politècnica de Catalunya-BarcelonaTech (UPC), Barcelona 08034, Spain

Abstract

We present an adaptive meshfree method to approximate phase-field models of biomembranes.
In such models, the Helfrich curvature elastic energy, the surface area, and the enclosed volume
of a vesicle are written as functionals of a continuous phase-field, which describes the interface
in a smeared manner. Such functionals involve up to second-order spacial derivatives of the
phase-field, leading to fourth-order Euler-Lagrange partial differential equations (PDE). The
solutions develop sharp internal layers in the vicinity of the putative interface, and are nearly
constant elsewhere. Thanks to the smoothness of the local maximum-entropy (max-ent) mesh-
free basis functions, we approximate numerically this high-order phase-field model with a direct
Ritz-Galerkin method. The flexibility of the meshfree method allows us to easily adapt the grid
to resolve the sharp features of the solutions. Thus, the proposed approach is more efficient
than common tensor product methods (e.g. finite differences or spectral methods), and simpler
than unstructured C0 finite element methods, applicable by reformulating the model as a sys-
tem of second-order PDE. The proposed method, implemented here under the assumption of
axisymmetry, allows us to show numerical evidence of convergence of the phase-field solutions
to the sharp interface limit as the regularization parameter approaches zero. In a companion
paper, we present a Lagrangian method based on the approximants analyzed here to study the
dynamics of vesicles embedded in a viscous fluid.

Keywords: maximum-entropy approximants, meshfree methods, adaptivity, phase field
models, biomembranes, vesicles.

1. Introduction

Biomembranes are the fundamental separation structure in animal cells, and are responsible
for the compartmentalization of the cell or for the transport of substances through cargo vesi-
cles or tubes. They also play a key role in bio-mimetic engineered systems [1]. Their complex
behaviour, rich physical properties, formation and dynamics have been objects of experimental
and theoretical investigation for biologists, chemists and physicists during many years [2, 3].
Biomembranes are composed by several kinds of lipids self-assembled in a fluid bilayer, which

ICurrent address: Institute for Soldier Nanotechnologies, MIT, Cambridge MA, USA.
∗Correspondence to: marino.arroyo@upc.edu

Preprint submitted to Journal of Computational Physics April 7, 2014

presents a liquid behaviour in-plane and solid out-of-plane [4]. Vesicles are closed biomembranes,
which play an important role in biophysical processes such as in the delivery of proteins, anti-
bodies or drugs into cells, and separation of different types of biological macromolecules within
cells. Vesicles serve as simplified models of more complex biological systems, and can be used
to study the interaction between lipid bilayers and the surrounding medium, e.g. under osmotic
stress [5], shear flow [6], or electrical fields [7]. Depending on the lipid composition, lipid bilay-
ers can phase-separate forming multicomponent vesicles [8], which have also been the object of
numerous studies as model systems for rafts.

Lipid bilayers can be modeled by very different techniques, depending on the focus. Atomistic
[9] and coarse-grained [10] molecular dynamics (MD) can access molecular processes and the self-
assembly. However, due to the slow relaxation of the bending modes, the computational cost of
molecular simulations scales as L6, where L is the lateral dimension of the system [11]. Even if
coarse-grained MD simulations have been able to describe the collective dynamics of membrane
patches of tens of nanometers, this sets a very stringent limit on the system sizes accessible with
these methods. Other mesoscopic methods such as dynamically triangulated surfaces have been
proposed to deal with intermediate scales [12]. On the other end of the spectrum, continuum
mechanics has showed great success over the last decades in describing the equilibrium shapes of
vesicles [4, 13, 14]. Continuum models have also helped understand the dynamics of fluctuations
of bilayers [15], or the shape dynamics of membranes [16, 17]. Continuum mechanics models
of biomembranes disregard atomic details, but still can incorporate many important effects
such as the bilayer asymmetry, the spontaneous curvature, the diffusion of chemical species
on the bilayer, or the dissipative mechanisms arising from the friction between the lipids [18].
Furthermore, these methods can easily access wide spans of time and length scales. The main
drawback of these models is that they are usually formulated as complex nonlinear high-order
partial differential equations (PDE). Here, we focus on the numerical approximation of a simple
curvature model for biomembranes.

The Canham-Helfrich functional [19, 20] is a widely accepted continuum model for the cur-
vature elasticity of fluid membranes, which explains to a large extent the observed morphologies
of vesicles. This sharp interface model has been the basis of a number of numerical parametric
approaches for the equilibrium analysis of axisymmetric and three-dimensional vesicles. The
resulting equations for the parameterization are fourth-order nonlinear PDE. This functional is
reparameterization invariant, which reflects mathematically the in-plane fluidity of lipid bilay-
ers above the transition temperature. This feature poses numerical difficulties to parametric
methods, since this invariance needs to be controlled to avoid serious mesh distortions [21, 22].

Phase-field counterparts of this model have been proposed and exercised numerically [23,
24, 25]. Although these methods increase the dimension of the problem, they naturally over-
come the limitations of parametric methods when extreme shape, or even topology changes are
present, and produce more robust simulations. Furthermore, these methods are more amenable
to scalable parallel computations for complex systems, particularly when coupling it to the fluid
mechanics of the ambient medium. Yet, the numerical solution of these models, again expressed
mathematically as nonlinear fourth-order PDE, is challenging. Here, we propose to address
high-order character of the equations and the sharp fronts they develop with an adaptive mesh-
free method. We establish here the ability of the local maximum-entropy approximants [26]

2

to accurately and efficiently approximate equilibrium solutions of the phase-field model with a
straight Ritz-Galerkin approach. In a companion paper [27], we propose a Lagrangian method
to deal with the dynamics of vesicles embedded in a viscous fluid in the low Reynolds number
limit, representative of most biological situations of interest.

The outline of the paper is as follows. Section 2 introduces the sharp interface and the
phase-field models for the curvature elasticity of biomembranes, as well as a brief account of the
numerical strategies to address these models. Section 3 describes the discretization of the phase-
field functionals with the local maximum-entropy approximations schemes, the algorithm to find
equilibrium solutions, and the method used to distribute the nodes. Numerical experiments to
evaluate the performance of the approximants and the adaptive strategy are presented in Section
4. The final conclusions are collected in Section 5.

2. Sharp interface model, phase-field model, and its numerical treatment

2.1. Sharp interface model

In the sharp interface (S-I) approach, the membrane is a mathematical surface without
thickness. The equilibrium shapes of vesicles minimize the Canham-Helfrich energy under area
and enclosed volume constraints follow from

(S-I model) Minimize E(Γ) =
k

2

∫

Γ
(H − C0)2 dS + kG

∫

Γ
K dS

subject to V (Γ) =
1

3

∫

Γ
x · n dS = V0

A(Γ) =

∫

Γ
dS = A0,

where Γ is the surface, k the bending rigidity, kG the Gaussian bending rigidity, H the mean
curvature, K the Gaussian curvature, n the normal to the surface, V0 and A0 are the prescribed
volume and surface area, and C0 is the spontaneous curvature. For surfaces of constant topol-
ogy, the second integral in the curvature energy is a constant, and for this reason it is often
ignored. We do not consider this term in the remainder of the paper, although is can be easily
incorporated.

The area constraint comes from the near inextensibility of lipid bilayers under the usual
applied forces. The volume can be regulated by osmotic effects, since biomembranes are semi-
permeable. If the volume V0 is smaller than the volume enclosed by a sphere of area A0, then
various equilibrium shapes are possible. For a given area and volume, there exist multiple
equilibrium branches, as a consequence of the nonlinearity and non-convexity of the S-I model.

Various numerical methods have been proposed to solve the S-I model. Given the fact that
the functional involves second derivatives of the parameterization, a direct Galerkin approach
demands C1 parameterizations. In 3D, this has been realized with subdivision finite elements
[21, 28] and spherical harmonics [22]. Alternative formulations are amenable to C0 finite elements
[29, 30]. All these parametric approaches need to control the tangential motions of the mesh to
avoid severe distortions.

3

2.2. Phase-field model

Phase-field models provide a powerful tool to tackle moving interface problems [31], and
have been extensively used in physics and materials science (see [32, 33] and references therein).
Recently, they are gaining popularity in a wide set of applications in applied science and engi-
neering such as fracture [34, 35], microstructure formation and fracture evolution in ferroelectric
materials [36], growth of thin films [37], image segmentation [38] and multi-phase flows [39], to
mention a few.

The idea behind phase-field modeling is to replace the sharp description of the interface by
a smeared continuous layer. To this end, an auxiliary field φ, called order parameter or phase-
field, is introduced to represent the phases (e.g. inside and outside of the vesicle), and also
the interface. The phase-field adopts distinct values, say -1 and +1, in each of the phases, and
smoothly varies between these values in the diffuse interface. Typically, an energy functional
expressed in terms of the phase-field models the physical phenomena at hand. Hence, the
phase-field equation accomplishes two tasks at once: (1) it localizes the phase-field to represent
a (smeared) interface, and (2) it encodes the interfacial physics. In sharp interface models, the
geometric description of the interface is extrinsic to its physics.

The phase-field model for biomembranes proposed by Du et al. [23, 40] replaces the S-I model
by:

(P-F model) Minimize E[φ] = fE
k

2ε

∫

Ω

[
ε∆φ+

(
1

ε
φ+ C0

√
2

)(
1− φ2

)]2

dΩ

subject to V [φ] =
1

2

(
V ol(Ω) +

∫

Ω
φ dΩ

)
= V0

A[φ] = fA

∫

Ω

[
ε

2
|∇φ|2 +

1

4ε
(φ2 − 1)2

]
dΩ = A0

φ|∂Ω = −1,

where ε is a small regularization parameter, fE = 3
8
√

2
, fA = 3

2
√

2
, Ω is the domain bounding

the vesicle, and ∂Ω its boundary. The regions {x : φ(x) > 0} and {x : φ(x) < 0} represent, the
inside and outside of the membrane, while the level set {x : φ(x) = 0} can be used to realize
the position of the membrane.

Formal asymptotics [40], as well as rigorous mathematical analysis [41] (see also [42] for a
review), provide the connection between the P-F model and the S-I mode when ε → 0. As
this limit is never achieved in the numerical calculations, a modeling error is always present
in practice. This model has been coupled with the Navier-Stokes equations in [43]. Similar
ideas to couple phase-field models of biomembranes with fluid or other physical fields have been
developed by other researchers as well [7, 24, 44, 45].

2.3. Numerical approaches for the phase-field functionals

The main advantage of the phase-field model is the unified treatment of the interfacial
tracking and the mechanics, which potentially leads to simple, robust, scalable computer codes.
This comes at the expense of a much higher computational cost, particularly if the modeling
error with respect to the sharp interface limit needs to be small. Indeed, in can be seen that

4

the phase-field model produces solutions with the profile φ(x) = tanh
[
d(x)√

2ε

]
, where d(x) is the

distance to the interface. Resolving this profile requires a very fine discretization for small values
of ε, but this high resolution is only required in the vicinity of the interface. Away from it, the
phase-field is nearly constant. Hence, this problem naturally calls for adaptivity. Furthermore,
a numerical method for the phase-field model needs to address the second-order derivatives in
the energy and area functionals.

Traditional numerical methodologies like finite difference [23, 44] and spectral methods [43]
have been used for phase-field models of biomembranes. Recently, isogeometric analysis [46], a
Galerkin method based on tensor products of 1D NURBS approximants, has shown an excellent
performance for the Cahn-Hilliard equation, handling successfully the sharp transitions of the
solutions without spurious overshoots [47, 48]. Although these structured methods can handle
higher-order operators, they have difficulties in adapting to localized features. C0 finite element
approaches can deal with the high-order character of the functional by reformulating the model
as a system of second-order PDE [49] and are well suited for adaptivity [50], but suffer from poor
accuracy for a given computational cost. A number of adaptive techniques have been developed
for the Cahn-Hilliard model, including an adaptive multigrid finite-difference method [51, 52],
a Fourier spectral moving-mesh method [53], an adaptive FEM with linear [45, 54, 55] and
quadratic [56] shape functions after recasting the higher-order phase-field as a system of lower-
order equations, and a finite volume approach for unstructured grids [57]. Adaptive methods
based on finite differences [58, 59], Fourier spectral [60], or finite volumes [61, 62] have been
proposed for other higher-order phase-field equations.

Here, we propose a Ritz-Galerkin method based on the local maximum-entropy meshfree
approximants [26]. These meshfree approximants are:

• C∞, and therefore handle without difficulties the high-order character of the functionals,

• non-negative, and therefore possess monotonicity properties, as B-Splines and NURBS
successfully applied to Cahn-Hilliard models [47],

• ideally suited for local refinement and dynamic adaptivity, as the basis functions rely only
on the vicinity of neighboring nodes, instead of a mesh.

3. Ritz-Galerkin approximation of the functionals with maximum-entropy schemes

We describe here the numerical approximation of the variational problem to obtain equilib-
rium axisymmetric configurations for biomembranes. To fix the rigid body displacements of the
membrane along the axis of symmetry, we need to supplement the P-F model given above with
the constraint

M [φ] =

∫

Ω
φ (z − zc) dΩ = 0,

where zc allows us to center the phase-field solution in the simulation box.
We discretize the equations with local maximum-entropy approximation schemes. These

meshfree approximants are non-negative and satisfy up to first-order consistency conditions.
They have been shown to accurately approximate fourth-order PDE, such as the Kirchhoff-Love

5

Figure 1: Voronoi tessellation for a random nodal distribution (left), CVT for a uniform density (center) and for
a density function ρ = 10 exp

[
−2(x2 + y2)

]
+ 0.1 (right).

theory of thin shells [63, 64]. Second-order maximum entropy approximants have been developed
[65, 66], and it has been shown that the linear approximants used here deliver comparable accu-
racy with a much simpler implementation. We follow a Ritz-Galerkin approach to approximate
the variational formulation of the continuous problem by an algebraic optimization program,
which we solve with an augmented Lagrangian method to impose the linear and nonlinear con-
straints, combined with L-BFGS and Newton-Rahpson nonlinear solvers. We locally adapt the
node distribution to computationally afford very small values of ε by resorting to Centroidal
Voronoi Tesselations (CVT) [67]. This method distributes nice grids of points obeying a pre-
scribed density function, as illustrated in Figure 1. Here, we define the density functions such
that the points are highly concentrated in the regions with high gradients of the phase-field (see
Section 4.2).

3.1. Local maximum-entropy approximants

Meshfree methods define basis functions from a scattered set of nodes, not supported on a
mesh as in traditional finite elements. The most popular meshfree approximants are based on
the moving least squares (MLS) idea [68]. In recent years, the information theoretic concept
of maximum-entropy has been put forth to develop polygonal approximants [69] and meshfree
approximation schemes [26]. These maximum-entropy approximants present some advantages
over MLS methods, such as their strict non-negativity, the straightforward imposition of bound-
ary data, the robustness of their evaluation, or the simpler quadrature [65]. Moreover, the
non-negativity and the linear reproducing conditions endow them with the structure of convex
geometry [26], which enables the connection with other non-negative technologies like isogeo-
metric analysis [46] or subdivision surfaces [70].

Maximum-entropy basis functions, denoted by pa(x), a = 1, . . . , N with x ∈ Rd, where d
is the space dimension, are enforced to be non-negative and to fulfill the zeroth and first-order

6

consistency conditions

pa(x) ≥ 0,

N∑

a=1

pa(x) = 1,

N∑

a=1

pa(x) xa = x,

where the last equation allows us to identify the vectorial weights xa with the positions of the
nodes associated with each basis function.

The idea behind local maximum-entropy basis functions is to defined information-theoretical
optimal approximants, only biased by locality, i.e. the property that the function approximation
at a given point should depend on nodal values of nearby nodes. These approximants exhibit a
(Pareto) compromise between two competing objectives, minimum width (locality) and entropy
maximization (information theory optimality criteria), subject to the consistency constraints
(reproducibility conditions). With these requirements, we write the following optimization pro-
gram to select the approximants

For fixed x, minimize

N∑

a=1

βapa|x− xa|2 +

N∑

a=1

pa ln pa

subject to pa ≥ 0, a = 1, . . . , N

N∑

a=1

pa = 1,

N∑

a=1

paxa = x,

where the non-negative nodal parameters βa = γa/h
2
a, a = 1, . . . , N define the locality of the

approximants [26, 71]. The dimensionless aspect ratio parameter γa characterizes the degree of
locality of the basis function associated to the node xa, while ha denotes a measure of the nodal
spacing around node a. The local grid spacing ha should be chosen to resolve the sharp features
of the phase-field solutions, and should therefore be commensurate to ε. The basis functions
become sharper and more local as the value of the dimensionless parameter γa increases, and
the Delaunay approximants arise as specialized limits (γa ≥ 4 in the practice), as illustrated
in Figure 2 for a one-dimensional domain. In previous works, we characterized the behaviour
of the approximants for problems involving higher-order derivatives, specifically for plates and
thin-shells analysis [63, 66]. Typically, low values of γa lead to more accurate results for problems
with smooth solutions, but also result in significantly more expensive calculations. This is due
to the wider band-width and to the fact that more quadrature points are typically required. We
found that the appropriate locality parameters are in the range 0.6 ≤ γ ≤ 1, being γ = 0.8 the
most convenient because it provides a good trade-off between computational cost and accuracy.

As detailed in [26], the optimization problem is smooth and convex, and admits a unique
solution. An efficient solution follows from standard duality methods. Here, we just summarize
the recipe for the calculation of the basis functions. By analogy with statistical mechanics, we
define the partition function

Z(x,λ) =

N∑

b=1

exp
[
−βb|x− xb|2 + λ · (x− xb)

]
.

7

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1
γ = [0.6 1.2 1.8 2.4 3 3.6 4.2 4.8 5.4 6]

Figure 2: Seamless and smooth transition from meshfree to Delaunay affine basis functions. The transition is
controlled by the non-dimensional nodal parameters γa, which here take linearly varying values from 0.6 (left) to
6 (right).

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

x

B
as
is
Fu

nc
tio

ns

0 1 2 3 4 5
−2

−1

0

1

2

x

G
ra
di
en
t

0 1 2 3 4 5

−4

−2

0

2

x

H
es
si
an

Figure 3: One-dimensional local maximum-entropy basis functions (left), and its first and second spatial derivatives
(center-right) computed with a dimensionless parameter γ = 0.8.

At each evaluation point x, the Lagrange multiplier for the linear consistency condition is the
unique solution to a solvable, convex, unconstrained optimization problem

λ∗(x) = arg min
λ∈Rd

lnZ(x,λ).

This optimization problem with d unknowns is efficiently solved with Newton’s method. Then,
the basis functions adopt the form

pa(x) =
1

Z (x,λ∗(x))
exp

[
−βa|x− xa|2 + λ∗(x) · (x− xa)

]
.

We refer to [64, 71] for the expressions to compute the gradient ∇pa(x) and the Hessian matrix
Hpa(x) of the local maximum-entropy basis functions, which are illustrated in Figure 3 for a
one-dimensional domain uniformly discretized and a dimensionless parameter γ = 0.8.

Some properties of the local maximum-entropy approximants, such as smoothnes and vari-
ation diminishing properties [26], are illustrated in Figure 4. These approximants also satisfy
ab initio a weak Kronecker-delta property at the boundary of the convex hull of the nodes
[26]. With this property, the imposition of essential boundary conditions in Galerkin methods

8

Figure 4: Illustration of non-negativity, smoothness and weak Kronecker-delta properties for two-dimensional
local maximum-entropy basis functions (left), and the variation diminishing property (right).

is straightforward. Moreover, the approximants are multidimensional and lead to well behaved
mass matrices [26]. We refer to [66] for a more detailed description of maximum-entropy ap-
proximants and their applications.

3.2. Discretization of the minimization problem

We consider the following expansion for the phase-field in terms of the basis functions

φ(x) ≈ φh(x,Φ) =

N∑

a=1

pa(x)φa,

where Φ = (φ1, φ2, ..., φN) is an array containing the N nodal values of the phase-field, and
insert this ansatz into the variational problem describing the P-F model to obtain the following
algebraic optimization program:

Minimize Eh(Φ) = E[φh] = fE
k

2ε

∫

Ω
W 2
h dΩ

subject to Vh(Φ) = V [φh] =
1

2

(
V ol(Ω) +

∫

Ω
φh dΩ

)
= V0

Ah(Φ) = A[φh] = fA

∫

Ω

[
ε

2
|∇φh|2 +

1

4ε
(φ2
h − 1)2

]
dΩ = A0

Mh(Φ) = M [φh] =

∫

Ω
φh(z − zc) dΩ = 0

φh|∂Ω = −1,

(1)

where

Wh = ε∆φh +

(
1

ε
φh + C0

√
2

)(
1− φ2

h

)
.

9

The optimality conditions can be obtained from differentiating the Lagrangian function

L(Φ,ν) = Eh(Φ)− νA [Ah(Φ)−A0]− νV [Vh(Φ)− V0]− νM [Mh(Φ)−M0] ,

where the area, volume and static moment constraints are maintained by the Lagrange mul-
tipliers ν = (νA, νV , νM). Physically, νA is a membrane tension and νV a pressure difference
between the inside and the outside of the vesicle.

After defining a new set of variables (Φ,ν) = (φ1, φ2, ..., φN , νA, νV , νM), the optimal so-
lution of this saddle-point problem can be sought with the Newton-Raphson method applied
to the nonlinear system of equations ∂ΦL = 0, ∂νL = 0. However, this approach may lead
to mere stationary points, not minimizers of the elastic energy (physically unstable equilibria).
Furthermore, given the difficulty in setting good initial guesses for the Lagrange multipliers, this
solution strategy is not robust.

A robust strategy that guarantees stable equilibria is based on the augmented Lagrangian
method, which combines the standard Lagrangian with penalties. This method retains the
exactness of the Lagrange multipliers method and the minimization principle of penalty methods.
The minimization is performed iteratively on the phase-field variables only for frozen Lagrange
multipliers, which are updated explicitly (see [72, 73] for further details). The augmented
Lagrangian is

LA(Φ,ν) = Eh(Φ)− νA [Ah(Φ)−A0]− νV [Vh(Φ)− V0]− νM [Mh(Φ)−M0]

+
1

2µ
|Ah(Φ)−A0|2 +

1

2µ
|Vh(Φ)− V0|2 +

1

2µ
|Mh(Φ)−M0|2 .

We solve the problem in two stages. First, we follow the augmented Lagrangian method to
find an approximate minimizer consistent with the constraints with a coarse tolerance. Then,
this approximation is refined with the regular Newton-Raphson method on the extended set of
variables (Φ,ν). Since the initial guess for this second stage is very close to a minimizer, the
algorithm never leads to unstable equilibria. The expressions to compute the gradients r̃(Φ,ν)
and r̃A(Φ,ν), as well as the hessians, of the Lagrangian and augmented Lagrangian, respectively,
are given in Appendix A.

All the integrals in Eq. (1) and in its variations, see Appendix A, are approximated with
numerical quadrature based on a background integration grid, as usually done in Galerkin mesh-
free methods (see [26] and references therein). Here, we consider Gaussian quadrature rules sup-
ported on the Delaunay triangulation associated with the set of nodes, although other specialized
techniques are available [74].

4. Numerical Examples

The phase diagram for the equilibrium shapes of vesicles has been extensively studied (see
[4, 75] and references therein). This diagram exhibits a number of equilibrium branches, in-
cluding prolates, oblates, discocytes, or stomatocytes. The equilibrium shape for a given area,
volume, and spontaneous curvature is not unique in general. For instance, upon deflation of
an initially spherical vesicle without spontaneous curvature, the prolate-dumbbell and oblate-
discocyte branches are possible, as illustrated in Figure 5. Mathematically, the shape transitions

10

Figure 5: 3D view of discocyte (left) and dumbbell (right) equilibrium shapes.

and the equilibrium branches can be tracked by changing the volume constraint and solving for
constrained minimizers. A number of equilibrium shapes for the oblate equilibrium branch are
plotted in Figure 6. Each shape is an energy minimizer with fixed area and volume, after re-
ducing by 5% the volume of the previous configuration. The computations are carried out with
a uniform grid and a regularization parameter ε = 0.02. In all the calculations, we take C0 = 0
and S0 = 4πR2, with R = 0.4. The relative error in the energy is approximately 2% as compared
to the sharp interface approach.

The accuracy of phase-field solutions relative to the sharp interface model is intrinsically
linked to the regularization parameter ε, which in turn sets bounds on the required resolution
of the computational grid. This motivates us to study two relevant aspects of the proposed ap-
proach: (i) the convergence as the number of points increases for a fixed regularization parameter
ε and uniform grid, and (ii) the convergence to a sharp model as regularization parameter is
decreased (ε→ 0) and the grid of points is adapted.

To answer these questions, we analyze two specific equilibrium shapes, a discocyte and a
dumbbell configuration, both of them with spontaneous curvature C0 = 0. For the S-I model
and the sphere, we have Asphere = 4πR2 = 0.64π, Vsphere = 4

3πR
3 ≈ 0.08533π and Esphere = 2π.

The discocyte and dumbbell configurations are found by minimization of the curvature energy
with constraints A0 = Asphere = 0.64π and V0 = 0.8 Vsphere ≈ 0.06826π, i.e. the volume of
the sphere is reduced by 20%. The energies of the sharp interface model for the discocyte and
dumbbell equilibrium shapes are Ediscocyte = 9.12657 and Edumbbell = 8.71756. These energies
are computed with an overkill B-spline discretization of the S-I Model.

4.1. Convergence for fixed regularization parameter ε and uniform grids of points

Table 1 shows the numerical energies for the discocyte equilibrium shape considering different
values of ε and several grids of points in a computational domain Ω = [0, 1.5] × [0, 2]. The
identification code (O for the oblate-discocyte branch, P for the prolate-dumbbell branch) and
the number of nodes for each grid are indicated in the first and the second column. As the grids

11

Figure 6: 3D views of the oblate equilibrium branch: each shape is computed by minimizing the energy and
reducing by 5% the volume of the previous configuration.

Table 1: Energies of the discocyte equilibrium shape for different uniform grids of points and several values of ε.
The size of the computational domain is Ω = [0, 1.5] × [0, 2]. Reference energy from a sharp interface simulation:
Ediscocyte = 9.12657.

ID # nodes h̄ ε = 0.05 ε = 0.04 ε = 0.03 ε = 0.02 ε = 0.01

O1 6124 0.024 9.71279 9.59056 – – –
O2 12271 0.017 9.72137 9.59446 9.43775 – –
O3 24597 0.012 9.72671 9.59553 9.43483 9.29532 –
O4 49145 0.0084 9.73203 9.59786 9.43515 9.28938 –
O5 98388 0.0059 9.73536 9.59901 9.43481 9.28674 9.22082
O6 146545 0.0048 9.73716 9.59948 9.43422 9.28378 9.19139
O7 296344 0.0034 9.73989 9.60053 9.43437 9.28326 9.18627

12

Table 2: Energies of the dumbbell equilibrium shape for different uniform grids of points and several values of ε.
Reference energy from a sharp interface simulation: Edumbbell = 8.71756.

ID # nodes h̄ ε = 0.05 ε = 0.04 ε = 0.03 ε = 0.02 ε = 0.01

P1 6124 0.024 9.29504 9.15560 – – –
P2 12271 0.017 9.30167 9.15918 9.00361 – –
P3 24597 0.012 9.30627 9.16106 9.00310 8.87045 –
P4 49145 0.0084 9.31053 9.16315 9.00362 8.86669 –
P5 98388 0.0059 9.31307 9.16407 9.00331 8.86445 8.81432
P6 146545 0.0048 9.31439 9.16421 9.00217 8.86005 8.77677
P7 296344 0.0034 9.31650 9.16512 9.00251 8.86033 8.77359

are not perfectly uniform (see Figure 7, for instance), the value of the average nodal spacing h̄ is
reported in the third column. The remaining columns show the energies computed for different
values of the regularization parameter ε. We report the energies only when the transition profile
is reasonably resolved, as decided by the relation ε > 2h. Note the energy convergence from
above as the number of points increases for each ε (columns). We can also observe how the
value of the energy converges to the sharp interface value Ediscocyte = 9.12657 as the parameter
ε decreases.

In experiments not reported here, we consider the same problem in a slightly smaller domain
Ω1 = [0, 1]×[0, 2]. We find that for the larger values ε, the phase-field interacts with the boundary
of the simulation box, resulting in higher energies. The influence of the domain size on the
results further highlights the need for adaptivity, as local refinement makes it computationally
affordable to increase significantly the size of the simulation box.

Table 2 reports the numerical energies for the dumbbell shape considering different values
of ε and several refinements of the grid of points. We observe that the convergence both for ε
and h̄ presents the same behavior described for the discocyte shape.

4.2. Convergence as ε→ 0 and adapted grids of points

As argued earlier, adaptivity is essential for numerical approaches based on phase-field models
to be competitive. We now describe the node density function considered here to relocate the
nodes following the CVT method. The phase-field is constant in a large part of the domain and
presents a sharp variation in the thin region corresponding to the smeared interface. To capture
this behavior, consider the density function

ρ(x) = 1 + f |∇φ(x)|

where f is an amplification factor. This heuristic density function allows us to obtain a uni-
form nodal distribution where the phase-field is constant, since |∇φ(x)| = 0, and to locally
concentrate in zones where the field changes abruptly. The factor f gives us the flexibility to
increase/decrease the weight of the gradient, which in turn increases/decreases the local con-
centration of nodes.

A possible strategy for adaptivity is to solve the optimization problem with a coarse grid of
points (and thus a large value of ε), apply CVT to redistribute the nodes concentrating them

13

Table 3: Energies of the discocyte equilibrium shape for several values of ε and uniform and adapted grids of 6,124
points. See Table B.6 for a description of the grids of points. Reference energy from a sharp interface simulation:
Ediscocyte = 9.12657.

ID # nodes ε = 0.04 ε = 0.03 ε = 0.025 ε = 0.02 ε = 0.015 ε = 0.01

O1 6124 9.59056 – – – – –
O11 6124 9.59678 9.44002 – – – –
O12 6124 – 9.43506 9.35810 9.28849 – –
O13 6124 – – 9.35970 9.28701 9.22588 9.18703
O7 296344 9.60053 9.43437 9.35488 9.28326 9.22399 9.18627

around the interface, and compute the phase-field solution with a smaller ε for this new distri-
bution of points. In practice, this strategy cannot be applied at once with a large amplification
factor f . Indeed, the initial coarse grid provides an inaccurate phase-field solution, which in
turn produces an inadequate relocation of the points. This ultimately constraints unphysically
the phase-field solutions. A better strategy is to adapt the grid and reduce ε progressively, with
moderate values of f .

Table 3 reports the bending energies of the discocyte equilibrium shape for uniform and
adapted grids and several regularization parameters. The first and the last rows correspond
to uniform meshes with 6,124 and 296,344 nodes, and are the same as those reported in Table
1. The other rows correspond to adapted grids with 6,124 nodes, obtained in each step of the
progressive adaption of the grid and reduction of ε. The first column of the table gives an
identification code for the grids of points. A description of the features of each grid is given in
Table B.6, and some of the grids are shown in Figure 7. The smooth transition between the
successive grids is apparent in the figure, as the value of ε is slowly decreased in each step, while
f is increased to maintain the relative effect of the phase-field gradient. The minimum allowable
value for the regularization parameter εmin for a given grid is determined by the nodal spacing
distribution, as detailed in Appendix B. As expected, the ability of adapted grids to accurately
support sharp phase-field solutions at an affordable cost is noteworthy. Adapted grids grant the
same accuracy (measured by the optimal energy) as uniform grids with a 50-fold reduction in
the number of degrees of freedom for ε = 0.01.

Figure 7 (bottom) shows the equilibrium phase-field for the grids referred to in Table 3 and
shown in Figure 7 (top, center). It can be noticed that as the value of ε decreases, the thickness
of the diffuse interface shrinks considerably. Figure 8 (a) illustrates the phase-field solution
computed with grid O13 and ε = 0.01; an abrupt transition can be observed between the inner
(φh = 1) and the outer (φh = −1) regions. The superposition of the sharp interface solution
with the zero phase-field level set (φh = 0) is shown in Figure 8 (b). The two curves nearly lie
on top of each other, illustrating numerically the connection between the phase-field and the
sharp interface models.

Figure 8(c-e) shows cross sections of the phase-field solutions depicted in Figure 7 (bottom).
The position of the cross section is indicated in Figure 8 (b) with a dashed-dotted cutline. The
cross section corresponding to ε = 0.005 is computed with an adapted grid of 24,597 nodes,
as explained later. This figure highlights how the variation dimishing property (informally, the
approximation is not more wiggly than the data) of the local, smooth, non-negative maximum-

14

Figure 7: Discocyte equilibrium shape. Uniform and adapted grids of 6,124 points (top). From left to rigth:
O1, O11, O12 and O13. Zoom of the areas indicated with black boxes (center). Phase-field (bottom). From left
to rigth, the solutions correspond to ε = 0.04, ε = 0.03, ε = 0.02, and ε = 0.01. The values of energy for each
solution are given in Table 3.

15

P−F Model
S−I Model
cutline

0.5 1 1.5−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

ε=0.04
ε=0.03
ε=0.02
ε=0.01
ε=0.005
Sharp

0.6 0.65 0.7 0.75 0.8−1

−0.95

−0.9

−0.85

−0.8

ε=0.04
ε=0.03
ε=0.02
ε=0.01
ε=0.005
Sharp

0.8 0.9 1 1.10.7

0.75

0.8

0.85

0.9

0.95

1

ε=0.04
ε=0.03
ε=0.02
ε=0.01
ε=0.005
Sharp

r z

�h

�h

�h

�h �h

z z
z

a) b)

c) d) e)

Figure 8: Phase-field solution for the discocyte equilibrium shape: (a) abrupt transition between inner (φh = 1)
and outer (φh = −1) regions, and (b) superposition of the sharp interface solution and zero phase-field level set
φh = 0. The phase-field solution is obtained with an adapted grid of 6,124 nodes and ε = 0.01. (c) Cross sections
corresponding to the cutline indicated in (b) of the phase-field solutions with different values of ε. This plot,
together with the zooms in (d) and (e), illustrates the absence of oscillations or overshoots near the interface, and
how the interfacial thickness decreases as ε is reduced. The sharp interface solution is shown for comparison.

16

r
z

Figure 9: Illustration of the uniform aspect ratio of the basis functions, despite the strong non-uniformity of the
nodal spacing (discocyte solution, N=6,124, grid O13).

Table 4: Relative error (%) measured in energy for the discocyte equilibrium shape and several values of the
regularization parameter ε and different uniform (Un) and adapted (Ad) grids. The energy of the shape-interface
model Ediscocyte = 9.12657 is used as reference.

nodes Grid ε = 0.03 ε = 0.025 ε = 0.02 ε = 0.015 ε = 0.01 ε = 0.007 ε = 0.005

6124 Ad 3.38 2.55 1.76 1.09 0.66 – –
12271 Ad 3.34 2.49 1.69 1.11 0.62 0.57 –
24597 Ad 3.37 2.51 1.69 1.12 0.63 – 0.43
296344 Un 3.37 2.50 1.72 1.07 0.65 – –

entropy approximants results in monotone solutions of the phase-field PDE, devoid of spurious
oscillations even for very sharp transitions. A selection of the basis functions for grid O13 are
shown in Figure 9. The uniform aspect ratio of the interior basis functions is noteworthy, de-
spite the strong non-uniformity of the grid. The monotonicity of the approximants does not
immediately imply that the numerical solutions of the phase-field PDE is free of overshoots
outside of the physically meaningful limits −1 ≤ φ ≤ 1, but the numerical evidence suggests
that this is the case. Further numerical analysis is required to clarify this issue. Again, the
convergence of the phase-field solutions to the sharp interface stepped solution as ε → 0 is ap-
parent. Similar conclusions were drawn from isogeometric simulations of the Cahn-Hilliard and
isothermal Navier-Stokes-Korteweg phase-field equations, where similar smooth non-negative
basis functions, albeit structured in nature, were used [47, 48].

We repeat the refinement experiments reported in Table 3 with grids of 12,271 and 24,597
nodes. The larger number of nodes allows us to resolve the phase-field model with ε = 0.007 for
the grid of 12,271 points, yielding Eε=0.007 = 9.17824, and with ε = 0.005 for the grid of 24,597
points, yielding Eε=0.005 = 9.16539. Table 4 shows the relative errors in energy between the
sharp interface solution and the the adapted phase-field solutions for different number of nodes

17

Table 5: Energies of the dumbbell equilibrium shape for several values of ε and uniform and adapted grids of
6,124 points. See Table B.6 for a description of the grids. Reference energy from a sharp interface simulation:
Edumbbell = 8.71756.

ID # nodes ε = 0.04 ε = 0.03 ε = 0.025 ε = 0.02 ε = 0.015 ε = 0.01

P1 6124 9.15559 – – – – –
P11 6124 9.16513 9.01027 8.93545 – – –
P12 6124 – 9.00358 8.92990 8.86381 8.80003 –
P13 6124 – – 8.92452 8.86090 8.80834 8.77909
P7 296344 9.16512 9.00251 8.92706 8.86033 8.80628 8.77359

Figure 10: Distribution of points and phase-field density for adapted grids of 6,124 nodes (dumbbell equilibrium
shape). The values of energy for each solution are indicated in the Table 5.

and several values of ε. It can noticed that, with our criterion to select εmin for a given grid,
the adapted grids resolve the width of the smeared interface, and the error depends basically
on ε. Again, it is clear that the adaptive strategy can deliver very accurate solutions (error in
the energy below 0.5%) for very small values of the regularization parameter ε with a reduced
number of degrees of freedom.

We repeat the experiments for a dumbbell equilibrium shape. We observe the same behavior
as reported in Table 5. Figure 10 illustrates adapted grids of 6,124 points with the corresponding
phase-field solution for the regularization parameters ε = 0.03, ε = 0.02 and ε = 0.01.

5. Conclusions

We have proposed an adaptive meshfree Ritz-Galerkin method to numerically approximate
phase-field models of biomembranes. We have shown the ability of the proposed method, based

18

on local smooth non-negative approximants, to deal directly with the high-order character of the
equations. Furthermore, adaptivity is very natural for a meshfree method, and proves essential to
resolve the sharp features of the phase-field model at an affordable cost. We have shown that the
adaptive method is able to resolve phase-field models with very small regularization parameter
and numerically converge to the sharp interface limit. The method proposed here combines the
adaptive capabilities of C0 finite elements, which nevertheless require reformulating the fourth-
order PDE as a system of second-order PDEs, hence introducing extra degrees of freedom, with
the simplicity of tensor product methods, which do not require reformulations of the model.

An important issue in the adaptive strategy is to avoid excessive variations of the nodal
spacing. Otherwise, the resulting meshfree basis functions can exhibit irregular features, which
are difficult to integrate. CVT provides us with high quality graded distributions of points
by designing an appropriate heuristic density function, although it can be computationally
expensive. However, as discussed in a companion paper [27], in the proposed Lagrangian method
for the dynamics of biomembranes in a viscous fluid, the CVT grid and its associated quadrature
points and weights must only be computed once at the beginning of the calculation, and has
a negligible cost overall. Furthermore, the strategy to adapt the nodes is not essential to the
proposed method and other algorithms, such as octree methods, are more suitable and efficient
to locally refine grids in 3D.

The calculations presented here are not practical in many situations of interest to assess the
mechanics of vesicles and biomembranes in general, as these display very large and sometimes
abrupt shape changes as the control parameters are changed. Locally refined grids impose
very serious biases on the resolvable solutions, particularly when in a given optimization step,
the system buckles to a distant equilibrium shape. In a companion paper [27] we present
a Lagrangian method to deal with the coupled fluid-membrane overdamped dynamics, which
exploits the virtues of the method presented here as the local refinement follows naturally with
the Lagrangian flow the sharp features of the phase-field. This combination of methods shows
promise for robust, scalable computations of complex membrane systems in three dimensions.

Acknowledgments

We acknowledge the support of the European Research Council under the European Commu-
nity’s 7th Framework Programme (FP7/2007-2013)/ERC grant agreement nr 240487, and of the
Ministerio de Ciencia e Innovación (DPI2011-26589). MA acknowledges the support received
through the prize “ICREA Academia” for excellence in research, funded by the Generalitat de
Catalunya. CP acknowledges FPI-UPC Grant, FPU Ph. D. Grant (Ministry of Science and.
Innovation, Spain) and Col·legi d’Enginyers de Camins, Canals i Ports de Catalunya for their
support.

Appendix A. Derivatives for the optimization problem

In Section 3.2 we introduce a discretization for the continuum phase-field

φ(x) ≈ φh(x,Φ) =

N∑

a=1

pa(x)φa,

19

where pa(x) denote the meshfree maximum-entropy approximants and Φ = (φ1, φ2, ..., φN) the
array containing the N nodal values of the phase-field. The gradient and the hessian of the
phase-field follow as

∇φ(x) ≈ ∇φh(x,Φ) =

N∑

a=1

∇pa(x)φa and Hφ(x) ≈ Hφh(x,Φ) =

N∑

a=1

Hpa(x)φa.

The problem posed in Eq. (1) also requires the calculation of the Laplacian of the phase-field,
whose expression in Cartesian coordinates is ∆φ(x) ≈ ∆φh(x) = tr [Hφh(x,Φ)]. As we consider
axisymmetric solutions, we use cylindrical coordinates, which result in

∆φ(x) ≈ ∆φh(x,Φ) =
1

r

∂φh
∂r

+
∂2φh
∂r2

+
∂2φh
∂z2

.

To compute the gradient of the Lagrangian and the augmented Lagrangian, we need the
derivatives of Eh, Vh, Ah and Mh with respect to the nodal values Φ

[∂ΦEh]a =
∂Eh
∂φa

= fE
k

2ε

∫

Ω
2Wh

∂Wh

∂φa
dΩ,

[∂ΦVh]a =
∂Vh
∂φa

=
1

2

∫

Ω
pa dΩ,

[∂ΦAh]a =
∂Ah
∂φa

= fA

∫

Ω

[
ε∇φh · ∇pa +

1

ε
paφh(φ2

h − 1)

]
dΩ,

[∂ΦMh]a =
∂Mh

∂φa
=

∫

Ω
pa(z − zc) dΩ,

where

Wh = ε∆φh +

(
1

ε
φh + C0

√
2

)(
1− φ2

h

)
,

∂Wh

∂φa
= ε

∂∆φh
∂φa

+
pa
ε
− paφh

(
3

ε
φh + 2C0

√
2

)
,

and
∂∆φh
∂φa

=
1

r

∂pa
∂r

+
∂2pa
∂r2

+
∂2pa
∂z2

.

The calculation of the hessian of the Lagrangian and the augmented Lagrangian also requires
the second derivatives of Eh, Vh, Ah and Mh with respect to Φ

[∂Φ∂ΦEh]ab =
∂2Eh
∂φa∂φb

= fE
k

2ε

∫

Ω
2

(
∂Wh

∂φa

∂Wh

∂φb
+Wh

∂2Wh

∂φa∂φb

)
dΩ,

[∂Φ∂ΦVh]ab =
∂2Vh
∂φa∂φb

= 0,

[∂Φ∂ΦAh]ab =
∂2Ah
∂φa∂φb

= fA

∫

Ω

[
ε∇pa · ∇pb +

1

ε
papb(3φ

2
h − 1)

]
dΩ,

[∂Φ∂ΦMh]ab =
∂2Mh

∂φa∂φb
= 0,

20

where
∂2Wh

∂φa∂φb
= −2papb

(
3

ε
φh + C0

√
2

)
.

After defining a new set of variables x̃ = (Φ,ν) = (φ1, φ2, ..., φN , νA, νV , νM), where ν
denotes the set of Lagrange multipliers, the gradient r̃(x̃) for the Lagrangian is given by

r̃(x̃) = ∂x̃L(x̃) = [∂ΦL(x̃) ∂νL(x̃)]T ,

where
∂ΦL(x̃) = ∂ΦEh(Φ)− νA∂ΦAh(Φ)− νV ∂ΦVh(Φ)− νM∂ΦMh(Φ),

and
∂νL(x̃) = [(Ah(Φ)−A0) (Vh(Φ)− V0) (Mh(Φ)−M0)] .

The hessian J̃(x̃) can be computed as

J̃(x̃) = ∂x̃r̃(x̃) = ∂x̃∂x̃L(x̃) =

[
∂Φ∂ΦL(x̃) ∂Φ∂νL(x̃)
∂ν∂ΦL(x̃) 0

]
,

where

∂Φ∂ΦL(x̃) = ∂Φ∂ΦEh(Φ)− νA∂Φ∂ΦAh(Φ)− νV ∂Φ∂ΦVh(Φ)− νM∂Φ∂ΦMh(Φ),

∂Φ∂νL(x̃) = [∂ΦAh(Φ) ∂ΦVh(Φ) ∂ΦMh(Φ)] ,

and
∂ν∂ΦL(x̃) = [∂Φ∂νL(x̃)]T .

The gradient r̃A(Φ,ν) = ∂ΦLA(Φ,ν) and the hessian J̃A(Φ,ν) = ∂Φ∂ΦLA(Φ,ν) of the aug-
mented Lagrangian with respect to the phase-field nodal values are

r̃A(Φ,ν) = ∂ΦEh(Φ)−
[
νA −

Ah(Φ)−A0

µ

]
∂ΦAh(Φ)

−
[
νV −

Vh(Φ)− V0

µ

]
∂ΦVh(Φ)−

[
νM −

Mh(Φ)−M0

µ

]
∂ΦMh(Φ),

and

J̃A(Φ,ν) = ∂Φ∂ΦEh(Φ) +
1

µ
∂ΦAh(Φ)⊗ ∂ΦAh(Φ) +

1

µ
∂ΦVh(Φ)⊗ ∂ΦVh(Φ)

+
1

µ
∂ΦMh(Φ)⊗ ∂ΦMh(Φ)−

[
νA −

Ah(Φ)−A0

µ

]
∂Φ∂ΦAh(Φ).

With the above expressions, the Newton-Raphson iterations follow directly,

Φn+1 = Φn −
[
J̃A(Φn,νn)

]−1
r̃A(Φn,νn)

in the first stage described in Section 3.2, and

x̃n+1 = x̃n −
[
J̃(x̃n)

]−1
r̃(x̃n)

in the second stage.

21

Table B.6: Description of the uniform and adapted grids used in the calculations.

ID Grid # nodes Features

O1 Uniform 6124 h̄ = 0.024
O11 Adapted 6124 CVT starting from grid O1, with f = 10, and Φ for ε = 0.04
O12 Adapted 6124 CVT starting from grid O11, with f = 100, and Φ for ε = 0.03
O13 Adapted 6124 CVT starting from grid O12, with f = 1000, and Φ for ε = 0.025
O2 Uniform 12271 h̄ = 0.017
O21 Adapted 12271 CVT starting from grid O2, with f = 10, and Φ for ε = 0.03
O22 Adapted 12271 CVT starting from grid O21, with f = 100, and Φ for ε = 0.025
O23 Adapted 12271 CVT starting from grid O22, with f = 1000, and Φ for ε = 0.015
O3 Uniform 24597 h̄ = 0.012
O31 Adapted 24597 CVT starting from grid O3, with f = 10, and Φ for ε = 0.03
O32 Adapted 24597 CVT starting from grid O31, with f = 100, and Φ for ε = 0.015
O7 Uniform 296344 h̄ = 0.0034

P1 Uniform 6124 h̄ = 0.024
P11 Adapted 6124 CVT starting from grid P1, with f = 10, and Φ for ε = 0.04
P12 Adapted 6124 CVT starting from grid P11, with f = 100, and Φ for ε = 0.03
P13 Adapted 6124 CVT starting from grid P12, with f = 1000, and Φ for ε = 0.025
P7 Uniform 296344 h̄ = 0.0034

Appendix B. Progressive refinement of the grid

Table B.6 provides details about the progressive refinement of the grids presented in the pa-
per. The adaptive process produces non-uniform nodal distributions. We use the nodal spacing
as figure to measure the non-uniformity of a grid. The nodal spacing ha can be understood as
the average distance from a specific node xa to the first ring of nearest neighbors xb, and it can
be easily estimated with the information provided by the CVT. Indeed, as for a specific Voronoi
cell Ωa (associated to a node xa) we know all its adjacent Voronoi cells Ωb (and thus the first
ring of nodes xb), a good estimation of ha can be obtained by computing the average distance
among the node xa and all its neighbors xb. The nodal spacing is also required to compute the
basis functions (see Section 3.1) and to determine the transition parameter εmin, as we explain
later.

In Figure B.11 we illustrate the histograms for the nodal spacing distribution of uniform and
adapted grids of 6,124 points corresponding to the discocyte equilibrium shape (see Table B.6 for
the features of each grid). To facilitate the comparison between the different grids, we substract
the nodal spacing of the uniform grid, i.e. h̄ = 0.024, to the nodal spacing of all the histograms.
The top-left histogram corresponds to O1, and is strongly concentrated around zero because the
grid is almost perfectly uniform. The other three histograms show the nodal spacing distribution
for the adapted grids O11, O12 and O13. Note that the distributions exhibit two peaks, one
associated to the smallest nodal spacing and the other to the largest one. The location and
amplitude of these peaks change as the adaptivity algorithm concentrates further the nodes in
a thin region near the interface (see Figure 7). The peak of the left increases its magnitude and
becomes narrower, which means that the smallest nodal spacing decreases and a larger fraction

22

−0.03 −0.02 −0.01 0 0.01 0.02 0.03
0

0.05

0.1

0.15

0.2

0.25

−0.03 −0.02 −0.01 0 0.01 0.02 0.03
0

0.05

0.1

0.15

0.2

0.25

−0.03 −0.02 −0.01 0 0.01 0.02 0.03
0

0.05

0.1

0.15

0.2

0.25

−0.03 −0.02 −0.01 0 0.01 0.02 0.03
0

0.05

0.1

0.15

0.2

0.25

Figure B.11: Histograms of the nodal spacing distribution for different grids of 6124 points (discocyte equilibrium
shape). The histograms are centered in h̄ = 0.024 and correspond to grids O1 (top-left), O11 (top-right), O12
(bottom-left) and O13 (bottom-right).

of the nodes is in the refined region. The peak of the right decreases its magnitude and becomes
widespread, as fewer nodes suffice to describe the coarse region. The value of εmin that a given
grid can resolve is computed from the criterion εmin ≥ 2hmin, where hmin is the nodal spacing
of the left peak.

[1] M. Karlsson, K. Sott, M. Davidson, A.-S. Cans, P. Linderholm, D. Chiu, O. Orwar, For-
mation of geometrically complex lipid nanotube-vesicle networks of higher-order topologies,
Proceedings of the National Academy of Sciences 99 (18) (2002) 11573–11578.

[2] M. Edidin, Lipids on the frontier: a century of cell-membrane bilayers, Nature Reviews
Molecular Cell Biology 4 (5) (2003) 414–418.

[3] S. Semrau, T. Schmidt, Membrane heterogeneity – from lipid domains to curvature effects,
Soft Matter 5 (17) (2009) 3174–3186.

[4] U. Seifert, Configurations of fluid membranes and vesicles, Advances in Physics 46 (1)
(1997) 13–137.

23

[5] E. Reimhult, F. Höök, B. Kasemo, Intact vesicle adsorption and supported biomembrane
formation from vesicles in solution: influence of surface chemistry, vesicle size, temperature,
and osmotic pressure, Langmuir 19 (5) (2003) 1681–1691.

[6] M. K. W. Wintz, U. Seifert, R. Lipowsky, Fluid vesicles in shear flow, Physical Review
Letters 77 (17) (1996) 3685–3688.

[7] L.-T. Gao, X.-Q. Feng, H. Gao, A phase field method for simulating morphological evolution
of vesicles in electric fields, Journal of Computational Physics 228 (2009) 4162–4181.

[8] T. Baumgart, S. Hess, W. Webb, Imaging coexisting fluid domains in biomembrane models
coupling curvature and line tension, Nature 425 (2003) 821–824.

[9] E. Lindahl, O. Edholm, Mesoscopic undulations and thickness fluctuations in lipid bilayers
from molecular dynamics simulations, Biophysical Journal 79 (2000) 426–433.

[10] B. Reynwar, G. Illya, V. Harmandaris, M.M.Müller, K. Kremer, M. Deserno, Aggregation
and vesiculation of membrane proteins by curvature-mediated interactions, Nature 447
(2007) 461–464.

[11] I. Cooke, K. Kremer, M. Deserno, Tunable generic model for fluid bilayer membranes,
Physical Review E 72 (2005) 011506.

[12] H. Noguchi, G. Gompper, Dynamics of fluid vesicles in shear flow: Effect of membrane
viscosity and thermal fluctuations, Physical Review E 72 (2005) 011901.

[13] S. Svetina, B. Zeks, Bilayer couple hypothesis of red cell shape transformations and osmotic
hemolysis, Biochim. Biophys. Acta 42 (1983) 86–90.

[14] F. Julicher, R. Lipowsky, Shape transformations of vesicles with intermembrane domains,
Physical Review E 53 (3) (1996) 2670–2683.

[15] U. Seifert, S. A. Langer, S. A., Viscous modes of fluid bilayer membranes, Europhysics
Letters 23 (1) (1993) 71–76.

[16] P. Sens, Dynamics of nonequilibrium bud formation, Physical Review Letters 93 (10) (2004)
108103.

[17] M. Arroyo, A. DeSimone, Relaxation dynamics of fluid membranes, Phys. Rev. E 79 (3)
(2009) 031915.

[18] M. Rahimi, M. Arroyo, Shape dynamics, lipid hydrodynamics, and the complex viscoelas-
ticity of bilayer membranes, Physical Review E 86 (2012) 011932.

[19] P. Canham, The minimum energy of bending as a possible explanation of the biconcave
shape of the human red blood cell, Journal of Theoretical Biology 26 (1) (1970) 61–81.

[20] W. Helfrich, Elastic properties of lipid bilayers: theory and possible experiments, Z. Natur-
forsch C 28 (11) (1973) 693–703.

24

[21] F. Feng, W. Klug, Finite element modeling of lipid bilayer membranes, Journal of Compu-
tational Physics 220 (1) (2006) 394–408.

[22] S. Veerapaneni, A. Rahimian, G. Biros, D. Zorin, A fast algorithm for simulating vesicle
flows in three dimensions, Journal of Computational Physics 230 (2011) 5610–5634.

[23] Q. Du, C. Liu, X. Wang, A phase field approach in the numerical study of the elastic bending
energy for vesicle membranes, Journal of Computational Physics 198 (2004) 450–468.

[24] T. Biben, K. Kassner, C. Misbah, Phase-field approach to three-dimensional vesicle dynam-
ics, Physical Review E 72 (4) (2005) 041921.

[25] F. Campelo, Modeling morphological instabilities in lipid membranes with anchored am-
phiphilic polymers, J. Chem. Biol. 2 (2009) 65–80.

[26] M. Arroyo, M. Ortiz, Local maximum-entropy approximation schemes: a seamless bridge
between finite elements and meshfree methods, International Journal for Numerical Meth-
ods in Engineering 65 (13) (2006) 2167–2202.

[27] C. Peco, A. Rosolen, M. Arroyo, An adaptive meshfree method for phase-field models of
biomembranes. Part II: a Lagrangian approach for membranes in viscous fluids, Journal of
Computational Physics ?? (2013) ??–??

[28] L. Ma, W. Klug, Viscous regularization and r-adaptive remeshing for finite element analysis
of lipid membrane mechanics, Journal of Computational Physics 227 (11) (2008) 5816 –
5835.

[29] C. Elliott, B. Stinner, Modeling and computation of two phase geometric biomembranes
using surface finite elements, Journal of Computational Physics 229 (18) (2010) 6585–6612.

[30] A. Bonito, R. Nochetto, S. Pauletti, Parametric FEM for geometric biomembranes, Journal
of Computational Physics 229 (9) (2010) 3171–3188.

[31] L. Landau, On the theory of phase transitions, Gordon and Breach, 1937.

[32] R. Sekerka, Morphology: from sharp interface to phase field models, Journal of Crystal
Growth 264 (2004) 530–540.

[33] I. Steinbach, Phase-field models in materials science, Modelling and Simulation in Materials
Science and Engineering 17 (2009) 073001.

[34] G. Francfort, J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem,
Journal of the Mechanics and Physics of Solids 46 (1998) 1319–1342.

[35] C. Miehe, F. Welschinger, M. Hofacker, Thermodynamically consistent phase-field models
of fracture: Variational principles and multi-field fe implementations, International Journal
for Numerical Methods in Engineering 83 (2010) 1273–1311.

25

[36] A. Abdollahi, I. Arias, Phase-field modeling of the coupled microstructure and fracture
evolution in ferroelectric single crystals, Acta Materialia 59 (12) (2011) 4733–4746.

[37] A. Rätz, A. Ribalta, A. Voigt, Surface evolution of elastically stressed films under deposition
by a diffuse interface model, Journal of Computational Physics 214 (2006) 187–208.

[38] M. Benes, V. Chalupecky, K. Mikula, Geometrical image segmentation by the Allen-Cahn
equation, Applied Numerical Mathematics 51 (2004) 187–205.

[39] D. Jacqmin, Calculation of two-phase Navier-Stokes flows using phase-field modeling, Jour-
nal of Computational Physics 155 (1999) 96–127.

[40] X. Wang, Phase field models and simulations of vesicle bio-membranes, Ph.D. thesis, De-
partment of Mathematics, The Pennsylvania State University, Pennsylvania, USA (2005).

[41] G. Bellettini, L. Mugnai, Approximation of Helfrich’s functional via diffuse interfaces, SIAM
Journal on Mathematical Analysis 42 (2010) 2402–2433.

[42] Q. Du, Phase field calculus, curvature-dependent energies, and vesicle membranes, Philo-
sophical Magazine 91 (2010) 165–181.

[43] Q. Du, C. Liu, R. Ryham, X. Wang, Energetic variational approaches in modeling vesicle
and fluid interactions, Physica D 238 (2009) 923–930.

[44] F. Campelo, Shapes in Cells. Dynamic instabilities, morphology, and curvature in biological
membranes, Ph.D. thesis, Universitat de Barcelona (2008).

[45] J. Lowengrub, A. Rätz, A. Voigt, Phase-field modeling of the dynamics of multicomponent
vesicles: Spinodal decomposition, coarsening, budding, and fission, Physical Review E 79
(2009) 031926.

[46] T. Hughes, J. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS,
exact geometry and mesh refinement, Computer Methods in Applied Mechanics and Engi-
neering 194 (2005) 4135–4195.

[47] H. Gomez, V. Calo, Y. Bazilevs, T. Hughes, Isogeometric analysis of the Cahn-Hilliard
phase-field model, Computer Methods in Applied Mechanics and Engineering 197 (2008)
4333–4352.

[48] H. Gomez, T. Hughes, X. Nogueira, V. Calo, Isogeometric analysis of the isothermal Navier-
Stokes-Korteweg equations, Computer Methods in Applied Mechanics and Engineering 199
(2010) 1828–1840.

[49] Q. Du, L. Zhu, Analysis of a mixed finite element method for a phase field bending elasticity
model of vesicle membrane deformation, Journal of Computational Mathematics 24 (2006)
265–280.

[50] Q. Du, J. Zhang, Adaptive finite element method for a phase field bending elasticity model
of vesicle membrane deformations, SIAM J. Sci. Comput. 30 (3) (2008) 1634–1657.

26

[51] H. Ceniceros, R. Nós, A. Roma, Three-dimensional, fully adaptive simulations of phase-field
fluid models, Journal of Computational Physics 229 (2010) 6135–6155.

[52] S. Wise, J. Kim, J. Lowengrub, Solving the regularized, strongly anisotropic Cahn–Hilliard
equation by an adaptive nonlinear multigrid method, Journal of Computational Physics
226 (1) (2007) 414–446.

[53] W. Feng, P. Yu, S. Hu, Z. Liu, Q. Du, L. Chen, A Fourier spectral moving mesh method
for the Cahn-Hilliard equation with elasticity, Communications in Computational Physics
5 (2–4) (2009) 582–599.

[54] A. Voigt, T. Witkowski, Hybrid parallelization of an adaptive finite element code, KYBER-
NETIKA 46 (2010) 316–327.

[55] P. Yue, C. Zhou, J. Feng, C. Ollivier-Gooch, H. Hu, Phase-field simulations of interfacial
dynamics in viscoelastic fluids using finite elements with adaptive meshing, Journal of
Computational Physics 219 (1) (2006) 47–67.

[56] C. Zhou, P. Yue, J. Feng, C. Ollivier-Gooch, H. Hu, 3d phase-field simulations of interfacial
dynamics in Newtonian and viscoelastic fluids, Journal of Computational Physics 229 (2010)
498–511.

[57] L. Cueto-Felgueroso, J. Peraire, A time-adaptive finite volume method for the Cahn-Hilliard
and Kuramoto-Sivashinsky equations, Journal of Computational Physics 227 (2008) 9985–
10017.

[58] R. Braun, B. Murray, Adaptive phase-field computations of dendritic crystal growth, Jour-
nal of Crystal Growth 177 (1997) 41–53.

[59] J. Rosam, P. Jimack, A. Mullis, A fully implicit, fully adaptive time and space discretisation
method for phase-field simulation of binary alloy solidification, Journal of Computational
Physics 225 (2007) 1271–1287.

[60] W. Feng, P. Yu, S. Hu, Z. Liu, Q. Du, L. Chen, Spectral implementation of an adaptive
moving mesh method for phase-field equations, Journal of Computational Physics 220 (1)
(2006) 498–510.

[61] C. Lan, Y. Chang, Efficient adaptive phase field simulation of directional solidification of a
binary alloy, Journal of Crystal Growth 250 (2003) 525–537.

[62] Z. Tan, K. Lim, B. Khoo, An adaptive mesh redistribution method for the incompressible
mixture flows using phase-field model, Journal of Computational Physics 225 (2007) 1137–
1158.

[63] D. Millán, A. Rosolen, M. Arroyo, Nonlinear manifold learning for meshfree finite deforma-
tion thin shell analysis, International Journal for Numerical Methods in Engineering 93 (7)
(2013) 685–713.

27

[64] D. Millán, A. Rosolen, M. Arroyo, Thin shell analysis from scattered points with maximum-
entropy approximants, International Journal for Numerical Methods in Engineering 85 (6)
(2011) 723–751.

[65] C. Cyron, M. Arroyo, M. Ortiz, Smooth, second order, non-negative meshfree approximants
selected by maximum entropy, International Journal for Numerical Methods in Engineering
79 (13) (2009) 1605–1632.

[66] A. Rosolen, D. Millán, M. Arroyo, Second order convex maximum entropy approximants
with applications to high order PDE, International Journal for Numerical Methods in En-
gineering 94 (2) (2013) 150–182.

[67] Q. Du, V. Faber, M. Gunzburger, Centroidal Voronoi Tessellations: Applications and Al-
gorithms, SIAM Review 41 (4) (1999) 637–676.

[68] P. Lancaster, K. Salkauskas, Surfaces generated by moving least squares methods, Mathe-
matics of Computation 37 (155) (1981) 141–158.

[69] N. Sukumar, Construction of polygonal interpolants: a maximum entropy approach, Inter-
national Journal for Numerical Methods in Engineering 61 (12) (2004) 2159–2181.

[70] F. Cirak, M. Ortiz, P. Schröder, Subdivision surfaces: a new paradigm for thin-shell finite-
element analysis, International Journal for Numerical Methods in Engineering 47 (12)
(2000) 2039–2072.

[71] A. Rosolen, D. Millán, M. Arroyo, On the optimum support size in meshfree methods: a
variational adaptivity approach with maximum entropy approximants, International Jour-
nal for Numerical Methods in Engineering 82 (7) (2010) 868–895.

[72] A. Conn, N. Gould, P. Toint, A globally convergent augmented Lagrangian algorithm for
optimization with general constraints and simple bounds, SIAM J. Numer. Anal. 28 (2)
(1991) 545–572.

[73] J. Nocedal, S. Wright, Numerical Optimization, Springer, USA, 1999.

[74] J.-S. Chen, C.-T. Wu, S. Yoon, Y. You, A stabilized conforming nodal integration for
galerkin mesh-free methods, International Journal for Numerical Methods in Engineering
50 (2) (2001) 435–466.

[75] U. Seifert, K. Berndl, R. Lipowsky, Shape transformations of vesicles-phase-diagram for
spontaneous-curvature and bilayer-coupling models, Physical Review A 44 (2) (1991) 1182–
1202.

28

Appendix B
An adaptive meshfree method
for phase-field models of biomembranes.
Part II: A Lagrangian approach
for membranes in viscous fluids.

Journal of Computational Physics,
249(0):320–336, 2013.

C. Peco, A. Rosolen and M. Arroyo

An adaptive meshfree method for phase-field models of biomembranes.
Part II: a Lagrangian approach for membranes in viscous fluids

C. Peco, A. RosolenI and M. Arroyo∗

LaCàN, Universitat Politècnica de Catalunya-BarcelonaTech (UPC), Barcelona 08034, Spain

Abstract

We present a Lagrangian phase-field method to study the low Reynolds number dynamics of
vesicles embedded in a viscous fluid. In contrast to previous approaches, where the field variables
are the phase-field and the fluid velocity, here we exploit the fact that the phase-field tracks a
material interface to reformulate the problem in terms of the Lagrangian motion of a background
medium, containing both the biomembrane and the fluid. We discretize the equations in space
with maximum-entropy approximants, carefully shown to perform well in phase-field models of
biomembranes in a companion paper. The proposed formulation is variational, lending itself to
implicit time-stepping algorithms base on minimization of a time-incremental energy, which are
automatically nonlinearly stable. The proposed method deals with two of the major challenges
in the numerical treatment of coupled fluid/phase-field models of biomembranes, namely the
adaptivity of the grid to resolve the sharp features of the phase-field, and the stiffness of the
equations, leading to very small time-steps. In our method, local refinement follows the features
of the phase-field as both are advected by the Lagrangian motion, and large time-steps can
be robustly chosen in the variational time-stepping algorithm, which also lends itself to time
adaptivity. The method is presented in the axisymmetric setting, but it can be directly extended
to 3D.

Keywords: phase field models, biomembranes, vesicles, meshfree methods, variational
methods, adaptivity

1. Introduction

Biomembranes self-assemble in a fluid, and often, the fluid mechanics are important in their
dynamical behavior. Examples include the dynamics of vesicles in shear flows (see, e.g. [1, 2,
3, 4]), or the relaxation dynamics of membrane structures brought out-of-equilibrium [5, 6].
Describing explicitly the fluid surrounding biomembranes may also be useful in studying the
interactions between membranes and other structures [7]. Here, we consider the simplest, yet
very common and useful model of a biomembrane: an inextensible interface with curvature
elasticity, given by the Helfrich energy. We ignore here the bilayer architecture, the monolayer

ICurrent address: Institute for Soldier Nanotechnologies, MIT, Cambridge MA, USA.
∗Correspondence to: marino.arroyo@upc.edu

Preprint submitted to Journal of Computational Physics April 24, 2013

extensibility, the surface viscosity, and the inter-monolayer friction, which can be important in
some situations [8]. Our goal here is to develop a robust and efficient computational technique for
biomembranes embedded in a viscous fluid, capable of handling arbitrarily large shape changes
and the associated flows. We resort to phase-field models of biomembranes, and propose a non-
conventional discretization of the membrane-fluid system. In a companion paper [9], we have
shown that high-order phase-field models of biomembranes can be accurately approximated
in a direct Galerkin approach with the maximum-entropy meshfree approximants [10], in an
adaptive, accurate and efficient way. Here, we elaborate a Lagrangian method for the dynamics
of vesicles embedded in a viscous fluid, which builds on the meshfree approximation of the phase-
field equations. The proposed method shares common features with the optimal mass transport
(OTM) method presented in [11].

Background

A number of models and numerical approaches have been proposed to analyze the hydro-
dynamics of fluid membranes in a viscous fluid. These include a mesoscopic model, combining
a particle-based method for the fluid and a dynamically triangulated surface model for the
membrane [3], which has been put forth to study the effect of membrane viscosity and thermal
fluctuations in the dynamical behavior of vesicles in simple shear flow, as well as the behav-
ior of vesicles and red blood cells in microcapillaries [12]. Other methods rely on conventional
continuum mechanics models, e.g. [13, 14], where a sharp-interface Helfrich model coupled with
a Lagrangian form of the Navier-Stokes Equations is discretized with finite elements. An al-
ternative sharp-interface approach in three dimensions was presented in [15, 4], which relies on
spherical harmonics representations of the vesicle shapes and fields on it, and on a boundary
integral method for the Stokes flow. This method has been exercised in systems containing
many interacting vesicles. Immersed boundary methods [16] represent an alternative approach
to handle fluid-structure interaction, maintaining the Eulerian framework for the fluid media
and the Lagrangian description for solid objects immersed in the flow. This family of methods
have been applied to understand the hydrodynamic effects on fluid vesicles and biomembranes
in [17, 18]. Phase-field models of vesicles [19] have also been coupled with the ambient hydro-
dynamics [20, 21], through an Eulerian description of the fluid with a source term of membrane
elastic forces, and a transport equation to advect the phase-field representing the membrane.
Alternative phase-field approaches to vesicles in a flow have been proposed in [22, 23], where
the local area inextensibility was also accounted for, and in [24].

Phase-field models offer advantages when compared to sharp-interface models, in that they
provide unified treatment of interface tracking and surface mechanics with a single partial dif-
ferential equation (PDE) governing the phase-field. Phase-field approaches do not suffer from
severe mesh distortions, and can easily deal with large deformations and even topology changes
[22, 25] without demanding specific reparametrization techniques [13] or control of the tangen-
tial motions of the nodes [26]. In contrast, phase-field models are encoded by nonlinear PDEs,
often high-order, which develop sharp features, and therefore present computational challenges.
In phase-field models of biomembranes, an artificial length-scale ε governing the width of the
smeared interface is introduced, and the sharp-interface limit is recovered as ε→ 0 [19, 22, 27].
For phase-field models to accurately represent the sharp-interface limit, ε needs to be much

2

smaller than other relevant dimensions in the problem. Furthermore, this length-scale needs
to be resolved by the computational grids, typically leading to expensive calculations. From a
practical viewpoint, the high computational cost, associated with increasing the dimension of
the problem and having to resolve numerically the (small) thickness of the smeared interface, can
be outweighed by their simplicity, making them amenable to scalable parallel implementations.
Besides, the computational cost can be considerably mitigated with spacial adaptivity [28, 29].

The proposed method

In previous phase-field approaches to the ambient hydrodynamics-biomembrane mechanics,
the problem is formulated in a Eulerian frame, as a coupled system combining the fluid flow
equations with a source term coming from curvature elasticity forces and the advection of the
phase-field with the flow, in which the phase-field and the fluid velocity (and pressure) are the
unknowns [22, 25]. In such approaches, adaptive strategies, not proposed so far, would require
cumbersome grid projection steps. Since in the present situation the phase-field tracks a material
interface, here we view the phase-field as a material property, and formulate a Lagrangian
description of the problem in which the unknown is the Lagrangian motion of the background
medium, containing both the fluid and the smeared interface (see Fig. 1 for an illustration). See
[30] for a related approach. We particularize the model with the phase-field approach proposed
by [19], and since biomembranes often operate in the limit of vanishing Reynolds number,
describe the hydrodynamics with Stokes equations.

With the Lagrangian viewpoint, when discretized in space, the coupled membrane-fluid
model becomes a nonlinear dissipative particle system, driven by curvature elasticity and dragged
by a viscous force admitting a dissipation potential, whose dynamics minimize an action [31]
subject to area and volume constraints. With the same spirit as variational integrators for
Hamiltonian systems [32], we choose to discretize in time the action, and then derive by con-
strained minimization the discrete evolution equations from it, rather than discretizing in time
the continuous evolution equations. The method results in time-incremental nonlinear minimiza-
tion problems, as in modern treatments of dissipative processes in materials science following the
seminal work in [33]. As a consequence, it is possible to overcome the stiffness of the dynamics
(given by the fourth-order nature of the PDE) and take robustly large time-steps. Furthermore,
the algorithm is automatically nonlinearly stable as the energy monotonically decreases.

If the initial grid adapts to the features of the phase-field, adaptivity is advected by the
Lagrangian map, and therefore local refinement along the dynamics is accomplished for free (see
Fig. 1). The Lagrangian framework allows us to pull-back the successive states of the system to
a reference configuration. Thus, we avoid the calculation of the meshfree basis functions in every
step of the evolution. It has been shown that the meshfree method considered here can withstand
significant deformation before the discretized deformation mapping ceases to be injective (i.e. the
Jacobian determinant becomes negative at a quadrature point) [10]. However, we avoid coming
close to this limit, which degrades the accuracy of the approximation, by reconnecting the nodes,
recomputing the basis functions, and resetting the reference configuration periodically along the
simulation. These reconnection steps are seamless, as detailed later: they do not involve re-
meshing, recomputing the background grid for quadrature, field projections, nor do they alter
in any way the variational structure of the discrete equations, e.g. the nonlinear stability of the

3

y

r�0

r�0(Dy)�1

x
�0(x)

y(x)

� = �0 � y�1

Figure 1: Main ideas behind the Lagrangian phase-field formulation. The background medium containing the
viscous fluid and the smeared interface is rearranged by a deformation map y(x), which deforms the phase-field,
illustrated by a color map on the nodes of the computational grid. The phase-field is advected (pushed forward)
as a material property as φ = φ0 ◦ y. The gradient of the deformed phase-field transforms as indicated, and
as shown in the text, we can also compute ∆φ as a push-forward of ∆φ0. This allows us to write the Helfrich
curvature energy in terms of y, and the viscous dissipation in terms of ẏ. Computationally, the deformation is
discretized in terms of particle positions, indicated with colored circles, and the phase-field and its derivatives are
sampled at fixed quadrature points in the reference configuration. As the Lagrangian simulation proceeds, the
adaptivity follows the phase-field features.

dynamics. In situations involving extreme Lagrangian deformations, particles may accumulate
or cover insufficiently parts of the domain. In such cases, a full re-meshing and field projections
are required. We did not find the need to doing this, except in the example depicted in Figure
6.

From a purely numerical viewpoint, as exemplified later, accounting for the ambient fluid
can help in devising adaptive strategies in space, resolving with detail the sharp and moving
features of the phase-field, even if we are only interested in equilibria. Indeed, vesicles are
prone to buckling events, i.e. large shape transformations under small changes of the enclosed
volume or the spontaneous curvature as the system transitions between different metastable
equilibrium branches. Consequently, if the grid is locally adapted to a given conformation [28]
and the control parameters are slightly perturbed, the new energy minimizer may not be well
described by the current mesh, strongly biased by the previous minimizer. This poses a serious
challenge to adaptive phase-field methods based on free energy minimization. In contrast with
possibly discontinuous equilibrium paths, dynamics are always continuous, making it possible
to gradually adapt the resolution to the phase-field. Gradient flow dynamics, even without a

4

clear physical meaning [34, 27, 13], have been used to numerically obtain equilibrium shapes,
and the adaptive method we proposed here can be used in this vein.

The structure of this paper is as follows. In Section 2, we derive the Lagrangian formulation
for the phase-field membrane embedded in a viscous fluid, and obtain variationally the governing
equations of the coupled dynamics. In Section 3, we propose the space and time discretization.
In Section 4, we illustrate the method with several examples. Finally, we collect conclusions in
Section 5.

2. Lagrangian phase-field formulation for biomembranes in a viscous fluid

2.1. Lagrangian form of the phase-field model

The formulation we present here is three-dimensional, and the particularization to axisym-
metry is given in Appendix A. Consider a fixed fluid domain Ω, containing a fluid membrane
described at time t = 0 by a phase-field φ0(x). Such initial phase-field may result from an equi-
librium calculation. Consider now a motion of the background continuum medium containing
both the fluid and the smeared interface, i.e. a smooth bijective mapping on Ω at each instant
of time, yt(x) [35, 36]. Viewing the phase-field as a material property, attached to the material
particles, it is pushed forward by the motion following

φt(x) = φ0 ◦ y−1
t (x) = φ0

(
y−1
t (x)

)
. (1)

From this point on, we omit the explicit dependence on t of the motion and the pushed-forward
phase-field. Ignoring the Gaussian curvature term, the Helfrich elastic energy of the membrane
in terms of the phase-field can be computed as [19]

E =
3

8
√

2

k

2ε

∫

Ω

[
ε∆φ+

(
1

ε
φ+ C0

√
2

)(
1− φ2

)]2

dΩ,

where k is the bending stiffness of the bilayer, and ε is a regularization parameter controlling
the width of the smeared interface. The enclosed volume and surface are can be computed as

V =
1

2

(
V ol(Ω) +

∫

Ω
φ dΩ

)

and

A =
3

2
√

2

∫

Ω

[
ε

2
|∇φ|2 +

1

4ε
(φ2 − 1)2

]
dΩ

To compute the spacial derivatives of the phase-field, we recall Eq. (1) and the inverse function
theorem to obtain

∇φ =
(
∇φ0F

−1
)
◦ y−1, (2)

where F = Dy is the deformation gradient, or FiI = ∂Iyi, where upper-case subindices denote
indices or partial differentiation with respect to material (Lagrangian) coordinates, i.e. “x”, while
lower-case subindices refer to spacial (Eulerian) coordinates, i.e. “y”. To compute the Laplacian
of the pushed-forward phase-field, we resort to indicial notation and omit the composition with

5

the deformation map or its inverse as it can be inferred from the context. From the relation
∂iφ = ∂Iφ0F

−1
Ii we have

∂2
ijφ ◦ y = ∂2

IJφ0F
−1
Ii F

−1
Jj + ∂Iφ0∂jF

−1
Ii . (3)

Now, from F−1
Ik FkJ = δIJ , we obtain

∂jF
−1
Ii = −F−1

In F
−1
Ji F

−1
Kj∂KFnJ = −F−1

In F
−1
Ji F

−1
Kj∂

2
JKyn.

In particular, we have
∆φ ◦ y = ∂2

IJφ0F
−1
Ii F

−1
Ji + ∂Iφ0∂iF

−1
Ii . (4)

Thus, inserting these Eqs. (2,4) into the above functionals and pulling-back the integration by
the deformation map to the Lagrangian domain, the elastic energy, enclosed volume, and surface
area can be interpreted as functions of the deformation mapping alone, depending parametrically
on the initial phase-field:

E[y] =
3

8
√

2

k

2ε

∫

Ω

[
ε∆φ ◦ y +

(
1

ε
φ0 + C0

√
2

)(
1− φ2

0

)]2

det(F) dΩ, (5)

V [y] =
1

2

(
V ol(Ω) +

∫

Ω
φ0 det(F) dΩ

)
, (6)

and

A[y] =
3

2
√

2

∫

Ω

[
ε

2
|∇φ0F

−1|2 +
1

4ε
(φ2

0 − 1)2

]
det(F) dΩ (7)

Lengthy but otherwise straightforward calculations allow us to compute the variations of these
functionals with respect to the deformation. We report directly the first and second derivatives
of E, V and A after spacial Ritz-Galerkin discretization, required for the solution method, in
Appendix B.

2.2. Lagrangian form of the fluid dissipation potential

To simplify the exposition of the method, we consider the Stokes equations for a slightly
compressible fluid, i.e. a penalized formulation of the incompressible Stokes equations. The
numerical treatment of the incompressible case with a stabilized maximum-entropy meshfree
method is straightforward [37], but would distract from the main ideas of the present work.

Following standard continuum mechanics definitions, the Eulerian velocity field can be com-
puted as

v = ∂ty ◦ y−1.

Consequently, the velocity gradient tensor can be written as

∇v ◦ y = ḞF−1,

where ḞiI = ∂I∂tyi, and the rate-of-deformation tensor in the Lagrangian domain as

d ◦ y =
1

2

(
ḞF−1 + F−T Ḟ T

)
.

6

The Rayleigh dissipation potential for a compressible Newtonian fluid can therefore be written
as [38]

Diss[∂ty; y] = µ

∫

Ω
d : d dΩ +

λ

2

∫

Ω
(div v)2 dΩ

=
µ

4

∫

Ω

∣∣∣ḞF−1 + F−T Ḟ T
∣∣∣
2

(detF) dΩ +
λ

2

∫

Ω

[
trace(ḞF−1)

]2
(detF) dΩ. (8)

where µ is the shear viscosity of the fluid, and by Diss[∂ty; y] we highlight the parametric
dependence of the functional on the current deformation y. The coefficient λ can be interpreted
here as a penalty parameter enforcing incompressibility approximately. For an incompressible
Newtonian fluid, the second term above is replaced by the constraint

tr(ḞF−1) = 0, (9)

the linearization of the condition detF = 1.

2.3. Governing equations

The dynamics of the system can be obtained by minimizing the Rayleigh dissipation potential
plus the rate of change of the elastic energy with respect to the variables expressing the rate of
change of the system [31, 39, 8]. Here, the dynamics of the coupled membrane-fluid system are
obtained by minimizing the functional

Diss[∂ty; y] + δE[∂ty; y]

with respect to ∂ty subject to the constraint

δA[∂ty; y] = 0.

To control the enclosed volume explicitly, without relying on the fluid (quasi)-incompressiblity,
the following constraint can be added

δV [∂ty; y] = 0.

We note that this formulation enforces the global area preservation along the dynamics, while
physically, local area preservation throughout the membrane is more meaningful, see [4, 8] and
[23] for the phase-field modeling the local constraint. Again, for the sake of clarity, we stick here
to the global constraint as in [21].

3. Discrete equations

3.1. Space discretization: function approximation and quadrature

We start from a node set X = {x1, x2, . . . , xN} adapted to the reference phase-field φ0, and
define the associated local maximum-entropy basis functions pa(x), a = 1, . . . , N , for a given
aspect ratio parameter γ [40, 9]. We also consider a set of quadrature points X̂ = {x̂1, x̂2, . . . , x̂Q}
and the associated quadrature weights W = {w1, w2, . . . , wQ}, obtained for instance from a

7

triangulation of the node set X. The quadrature points and weights are only set up once in the
calculation, and are subsequently transported by the motion. They are not altered by the node
reconnection steps, see below. The gradient and the Hessian of the reference phase-field can be
obtained through interpolation with the smooth meshfree basis functions:

φ0(x) =
∑

a

pa(x)φa0, ∂Iφ0(x) =
∑

a

∂Ipa(x)φa0, ∂2
IJφ0(x) =

∑

a

∂2
IJpa(x)φa0,

which only need to be evaluated at the quadrature points in X̂ to yield the values φα0 , ∂Iφ
α
0 ,

and ∂2
IJφ

α
0 for α = 1, 2, . . . , Q. If computer memory is not an issue, these objects only need to

be evaluated once at the beginning of a simulation. The motion is represented numerically as

yt(x) =
∑

a

pa(x)ya(t). (10)

At the initial instant we have ya(0) = xa, and as a result of the linear consistency of the
approximants, y0(x) = x. Furthermore, we have

∂ty =
∑

a

pa(x)ẏa, FiI =
∑

a

∂Ipa(x)yai , ∂2
JKyn =

∑

a

∂JKpa(x)yan.

Recalling Eqs. (2,4), and approximating the integrals by numerical quadrature, the func-
tionals in Eqs. (5), (6) and (7) can be calculated, and expressed as functions of the nodal
positions, Eh(y), V h(y), and Ah(y), where the array y collects all the nodal positions ya(t).
These functions depend parametrically on φ̂α0 , ∂I φ̂

α
0 , and ∂2

IJ φ̂
α
0 for α = 1, 2, . . . , Q.

Likewise, by replacing the numerical ansatz into Eq. (8), the dissipation potential can be
written as

Dissh(ẏ;y) =
1

2

[
µKµ

ai,bj(y) + λKλ
ai,bj(y)

]
ẏai ẏ

b
j ,

where

Kµ
ai,bj(y) =

∫

Ω

(
δijF

−1
Ik ∂IpaF

−1
Jk ∂Jpb + F−1

Ij ∂IpaF
−1
Ji ∂Jpb

)
(detF) dΩ,

and

Kλ
ai,bj(y) =

∫

Ω
F−1
Ii ∂IpaF

−1
Jj ∂Jpb(detF) dΩ.

Then, the dynamics of the resulting nonlinear dissipative particle system follow from minimizing

1

2
ẏTK(y)ẏ − fE(y)T ẏ

with respect to ẏ subject to [
∇Ah(y)

]T
ẏ = 0,

where elastic forces are defined as fE(y) = −∇Eh(y) and we note that by the chain rule
Ė = −fE(y)T ẏ. To account for the constraint, we write the Lagrangian

L(ẏ, σ;y) =
1

2
ẏTK(y)ẏ − fE(y)T ẏ + σ

[
∇Ah(y)

]T
ẏ,

8

where σ is the membrane tension, which leads to the system

[
K(y) ∇Ah(y)[
∇Ah(y)

]T
0

](
ẏ
σ

)
=

(
fE(y)

0

)
.

This system of nonlinear differential algebraic equations can be solved with standard algorithms.
The system is stiff because of the nature of the curvature energy, and because of the presence
of constraints. We find that standard numerical packages have serious difficulties in dealing
with these equations, and require very small time-steps when the system is significantly out
of equilibrium. Instead, we develop next variational time-incremental integrators, which can
robustly deal with large time-steps.

3.2. Variational time discretization

The time-discretization in the previous section is performed on time-continuous evolution
equations derived from minimizing an action subject to constraints. Here, we adopt an alter-
native viewpoint, by first discretizing in time the action, and then minimizing the time-discrete
action with respect to the configuration of the system at time-step n+ 1.

Let us consider the simplest finite difference approximations for the rate of change of the
nodal positions

ẏ ≈ yn+1 − yn

∆t
,

and for the rate of change of the energy

Ė =
E(yn+1)− E(yn)

∆t
.

We can then discretize in time the action, and given yn find yn+1 by minimizing

1

2
(y − yn)TK(yn)(y − yn) + ∆tE(y) (11)

with respect to y, subject to
Ah(y) = A0,

where we have multiplied the action by ∆t2 and ignored the constant E(yn) in Eq. (11). This
method is related to the backward-Euler method, and many other variational time-integrators
can be defined by choosing different time-discrete approximations of the action. The resulting
nonlinear optimization program can be solved with a variety of methods. Here, we impose
the constraints with Lagrange multipliers and solve the first order optimality conditions with
Newton’s method, although an augmented Lagrangian method, combined with line-search may
be more robust at very large time-steps. Note that for large time-steps, the objective function
in Eq. (11) is dominated by the curvature energy, and the system nearly minimizes this energy
in one step. On the contrary, small time-steps give more weight to the viscous dissipation,
penalizing changes in the configuration of the system. Even though E(y) has in general a
complex, non-convex landscape, for a sufficiently small time-step, the viscous dissipation makes
the objective function convex, and hence the nonlinear optimization problem becomes easier

9

to solve. We also note that, by construction, E(yn+1) ≤ E(yn), and therefore the method
is endowed automatically with nonlinear stability. Of course, the issue may be being able to
numerically solve the nonlinear optimization problem.

We make the algorithm explicit in the dissipation matrix K(y), as otherwise the method is
significantly more complex and most of the nonlinearity is in E(y). In practical applications,
we often update the Hessian of E(y) once every time-increment, instead of in each iteration of
Newton’s method. We find that this significantly reduces the computational cost without af-
fecting much the convergence of Newton’s method. The treatment of the surface area constraint

may be simplified by discretizing in time the linearized constraint,
[
∇Ah(yn)

]T
(y − yn) = 0.

However, this option leads to significant drifts in the surface area for large time-steps. Finally,
we note that adaptive time-stepping algorithms can be easily designed, for instance adapting ∆t
in such a way that ∆E is nearly constant. The adaptivity may also be driven by the number of
iterations needed in the nonlinear solver.

3.3. Numerical quadrature and node reconnection

y(x̂↵)

x̂↵

xa

Reset the reference
configuration

y(x) =
X

a

pa(x)ya

ya

The basis functions
are defined by the

reference set of nodes

pa(x)

xa ya

x̂↵ y(x̂↵)
w↵ (det F)w↵

(r�0)
↵ (r�0F

�1)↵

(@2
IJ�0)

↵ Eq. (3)

Reference configuration

Recompute with
the new set of nodes

pa(x)

Figure 2: As the Lagrangian simulation proceeds, the deformation may significantly distort the domain. To avoid
this, we periodically reset the reference configuration, as shown in the figure. This involves reseting the reference
node position to the current position, recomputing the meshfree basis functions from the new node set, which
involves new neighbor searches as indicated with the colored regions, and reseting the quadrature points x̂α, the
corresponding weights, and the reference phase-field first and second derivatives as indicated in the figure. Note
that the reference phase-field value at the quadrature points, φα0 , does not need to be updated as the phase-field
is a material property and the quadrature points keep their material identity.

10

As discussed in Fig. 2, the evolution most likely produces large distortions, which may even
lead to non-injective deformation mappings in Eq. (10), i.e. negative Jacobian determinants
detF . Even if the deformation map remains injective, it is a good idea to avoid excessive distor-
tions, which degrade the accuracy of the approximation. For this reason, we periodically reset
the reference configuration, reconnect the nodes, and build new basis functions to parameterize
the deformation maps from the new reference configuration. The reconnection can be done when
a measure of the distortion (a norm of F) exceeds a threshold, or simply every a fixed number
of time steps. Numerical experience shows that frequent reconnection leads to better numerical
accuracy, but also that the method is very robust and can deliver acceptable results with very
few reconnections. In practice, the frequency of reconnection can be set by weighing accuracy
and efficiency, although objective criteria would be desirable.

Note carefully that the reconnection procedure does not require any projection of fields
if the multiplicative structure of the composition of maps is exploited. Indeed, suppose that
the deformation map in the motion at which we decide to reset the reference configuration is
y(x) =

∑
a pa(x)ya, and its deformation gradient F . The new node set is simply {y1, . . . , yN}

and the new quadrature points are y(x̂α), α = 1, . . . , Q. The value of the phase-field at these
material points is simply the original value φ0(x̂α) since the phase-field is viewed as a material
property. Its derivatives need to be updated with the formulas seen previously, but no new
interpolation of the phase-field is needed and no new quadrature needs to be defined. The reset
algorithm is sketched in Fig. 2. Remarkably, such reset of the reference configuration exactly
preserves the elastic energy, area, and enclosed volume of the system, as can be understood from
examining Eqs. (5,6,7).

4. Numerical examples

We present next a set of numerical simulations to test the proposed method. We first
illustrate the general performance of the method with regards to space and time adaptivity.
The former is automatic if the initial grid adapts to the interface, while for the second we set
the time-step such that the energy decrement per step is roughly constant. We compare the
proposed variational time integration with explicit Euler time-stepping. We then describe three
representative simulations of relaxation dynamics of vesicles initially placed out-of-equilibrium,
showing large shape changes, and requiring multiple node reconnections. Finally, we evaluate
kinetic effects on the shape trajectory by deflating a vesicle at different rates. In all examples,
we consider 6 integration points per cell (the triangles of the Delaunay triangulation of the the
initial set of nodes) and an aspect ratio parameter for the maximum-entropy basis functions
of γ = 0.8 [9]. The regularization parameter is chosen as about 1% of the size of the vesicle,
i.e. ε/

√
A0/(4π) = 0.01.

Figure 3 shows (with a movie/with a collection of snapshots) the relaxation dynamics of an
oblate vesicle brought out-of-equilibrium. The reduced volume, a non dimensional measure of
the volume to area ratio, is v = 0.9. We show the location of the nodes ya(t), and color-code
them by the value of the phase-field. In this example, exhibiting moderate deformations, we
do not reconnect the nodes and therefore the method is purely Lagrangian, with the initial
configurations as a reference configuration during the whole motion. The calculation proceeds
robustly despite the large deformations. It can be appreciated how the phase-field elastic energy

11

Figure 3: Relaxation dynamics of an oblate vesicle in a viscous fluid, initially brought out-of-equilibrium. We
represent the time-evolution of the nodes ya(t), color-coded with the phase-field. The adapted grid has 6124
nodes.

maintains the transversal density of the nodes, and how the adapted region follows the features
of the phase-field. We check the accuracy of this simulation with additional runs with a larger
number of integration points, more nodes, and different γ parameters.

The performance of the method is analyzed in Fig. 4. The left plot shows the non-dimensional

12

10
−2

10
0

7.5

8

8.5

9

9.5

t*

E
*

10
−2

10
0

0.001

0.01

0.02

∆
t*

t*

Figure 4: Energy relaxation and time adaptive strategy for the dynamics depicted in Fig. 3. Energy and time-step
evolution, where time is represented in logarithmic scale. The blue horizontal line shows the equilibrium energy
obtained independently with a parametric method based on B-Splines.

energy E∗ = E/k and the non-dimensional time-step as a function of non-dimensional time
t∗ = tk/(µR3

0). The energy monotonically decreases as expected, converging towards the equi-
librium energy calculated independently with a parametric method. As the process advances,
the adaptive time-step grows to roughly keep the energy decrement per time-step constant. Re-
markably, the time-step changes by two orders of magnitude during the simulation. At the final
stages, the time-step hits the maximum allowed size.

Table 1: Elastic energy and computational cost for different constant time-steps and methods (VTI: variational
time-integration, FE: forward Euler). t∗1 = 1.0 · 10−3, t∗2 = 1.1 · 10−2.

Method ∆t∗ E∗(t∗1) E∗(t∗2) steps grad hess

VTI 1.0 · 10−2 9.374 9.243 1 2 2
VTI 1.0 · 10−3 9.374 9.240 10 20 10
VTI 1.0 · 10−4 9.374 9.239 100 200 100
FE 1.0 · 10−5 9.374 9.239 1000 1000 0

Although more sophisticated time-stepping schemes are possible, as compare the proposed
variational time-integration (VTI) method with an explicit forward Euler (FE) method. It
is computationally infeasible to perform the full relaxation dynamics with the forward Euler
method, which imposes very stringent conditions on the time-step. Instead, we focus on a portion
of the dynamics, and report the results in Table 1. In the VTI method, we use Newton’s method
to numerically solve the optimization problem in Eq. (11), and for computational efficiency,
update the Hessian matrix only once per time-step, not per iteration. However, for the largest
time-step, we need to update the Hessian in each iteration for convergence. In all cases, Newton’s
method converges in two iterations. The table compares the VTI method with time-steps ∆t∗ =

13

10−2, 10−3, 10−4, and the FE method with the largest time-step for stability in this interval,
∆t∗ = 10−5. The accuracy is reported in terms of the energy at the end of the interval, and the
computational cost in terms of gradient and Hessian evaluations. The table shows the ability of
VTI to robustly take large time-steps with accurate results. In contrast, we find that for this
nonlinear system, it is very difficult to stably adjust the time-step length in the FE method. We
find that the VTI method provides a similar accuracy to the explicit method with time-steps
between one and two orders of magnitude larger. This ratio is even more dramatic in the initial
fast stages of the dynamics.

We next exercise the method in more challenging dynamics, involving large shape changes.
Figure 5 (left) shows a stomatocyte-discocyte dynamical transition. For the considered reduced
volume v = 0.6, both a stomatocyte and a discocyte are metastable configurations, the latter
having lower energy. We slightly displace the stomatocyte equilibrium configuration beyond the
energy barrier, and then the system spontaneously evolves towards the discocyte configuration.
The reference configuration is reset, as illustrated in Fig. 2, when large distortions occur as mea-
sured with the gradient of deformation mapping. In this simulation, the reference configuration
is reset every 20 time-steps. The time-adaptive scheme allows us to efficiently track the entire
transition, and by the end of the simulation the time-step is 2,048 times the initial time-step.
Figure 5 (right) shows the response of an prolate vesicle (v = 0.8) subject to an instantaneous
change of spontaneous curvature from C0 = 0 to C0

√
A0/(4π) = 10.0, which can be the result of

exposing the bilayer to a different chemical environment [5, 6, 27]. The system evolves towards
a configuration consisting of two dissimilar spheres connected by a narrow neck, which best
adjusts to the imposed spontaneous curvature with the available volume. Both simulations run
on a CVT adapted grid of 6,124 nodes.

Figure 6 shows an even more dramatic shape change, in which a prolate vesicle is deflated
from v = 0.9 to v = 0.55 and its spontaneous curvature increased to C0

√
A0/(4π) = 12.0,

leading to an elongation and pearling transformation, widely observed in experiments [41]. The
method robustly follows all the large shape deformations with an adapted grid of 12,650 nodes.
This simulation requires frequent nodal reconnection, and even four complete re-meshing steps
at later stages, in which a new grid is built and adapted to the current phase-field and the
phase-field is projected onto the new grid.

Finally, we present a series of simulations highlighting kinetic effects. By subjecting a vesicle
to fast changes (here a volume decrease rate), the system follows an out-of-equilibrium path that
significantly deviates from the quasi-static response. We then fix the enclosed volume, and let
the system relax towards equilibrium. In Fig. 7, we report the response of the system to three
different volume decrease rates in terms of elastic energy evolution and shape at the instant of
maximum energy for each evolution, which corresponds to the end of the deflection process. It
can be observed that, due to the fluid dissipative forces, the faster the dynamics, the further
apart is the shape at this instant from the equilibrium shape (D), eventually reached by all the
simulations for T ∗ ≈ 1.00. Also, the faster the rate, the larger the deviation between the elastic
energy at this instant and the elastic energy in equilibrium. In principle, kinetic effects such as
those reported here could assist in the transition to a different equilibrium branch, and bring the
system to a qualitatively different equilibrium configuration. We are currently exploring such
phenomena.

14

Figure 5: Left: Stomacyte-discocyte transition. Right: Prolate vesicle evolving after an instantaneous change
of spontaneous curvature (6,124 nodes, constant area and volume). The points represent the nodes, color-coded
with the phase-field, while the arrows depict the flow field in a symmetry plane.

5. Conclusions

We have proposed an adaptive meshfree Galerkin method to numerically approximate the
dynamics phase-field models of biomembranes embedded in a viscous fluid. We have shown the

15

Figure 6: Relaxation dynamics of a constant area vesicle under combined volume decrease and spontaneous
curvature increase (12,650 nodes, constant area).

ability of the proposed method, based on smooth approximants, to deal with the high order
character of the equations in a direct manner. Furthermore, adaptivity is very natural for a
meshfree method, and proves essential to resolve the sharp features of the phase-field model at
an affordable cost. We have presented an original Lagrangian and variational formulation of
the coupled fluid-membrane dynamics, which lends itself to efficient and robust time integrators
based on time-incremental minimization problems. In this method, the local refinement follows
naturally the sharp features of the phase-field. This combination of methods shows promise
of robust, scalable computations of complex membrane systems in three dimensions, currently
under development.

Acknowledgments

We acknowledge the support of the European Research Council under the European Commu-
nity’s 7th Framework Programme (FP7/2007-2013)/ERC grant agreement nr 240487, and of
the Ministerio de Ciencia e Innovacin (DPI2011-26589). MA acknowledges the support received
through the prize “ICREA Academia” for excellence in research, funded by the Generalitat de
Catalunya. CP acknowledges FPI-UPC Grant, FPU Ph. D. Grant (Ministry of Science and.
Innovation, Spain) and Col·legi d’Enginyers de Camins, Canals i Ports de Catalunya for their
support.

Appendix A. Cylindrical coordinates

We consider cylindrical coordinates, but assume that there is no angular dependence of any
function along the angular direction. We have x = (R,Z,Θ), and y(x) = (r(R,Z), z(R,Z),Θ).

16

0 0.05 0.1 0.15 0.2 0.25

0.75

0.8

0.85

0.9

t*

V
*

Fast (A)

Medium (B)

0 0.05 0.1 0.15 0.2 0.25

9

10

11

12

13

14

15

16

t*

E
*

Fast
Medium
Slow
E*∞

Slow (C)

Quasistatic (D)

Figure 7: Kinetic effects. Top-left: Enclosed volume evolution for the three volume decrease rates considered.
Bottom-left: Energy evolution for the three rates. Right: Shapes at the end of the volume reduction, therefore
enclosing the same volume, and equilibrium shape (D) for this enclosed volume. (6,124 nodes, constant area).

The metric tensors of the reference and the deformed coordinate systems are

GIJ =




1 0 0
0 1 0
0 0 R2


 , gij =




1 0 0
0 1 0
0 0 r2


 .

It follows immediately that the volume element can be written as dv = rdrdzdθ, dV = RdRdZdΘ.
The deformation gradient becomes

F iI =




r,R r,Z 0
z,R z,Z 0
0 0 1


 ,

where the comma denotes partial differentiation. We denote by F̃ its first 2 × 2 minor. The
Cauchy-Green deformation tensor can be written as CIJ = F iKF

j
JgijG

IK [35]. Consequently,

17

exploiting the block structure,

J =
√

detCIJ = (r/R) det F̃ .

Thus, we have
dv = J dV = r(det F̃) dRdZdΘ.

For a function φ0(R,Z), the gradient and the differential components coincide

φ0,JG
IJ = φ0,I =




φ0,R

φ0,Z

0


 .

By the chain rule, recalling that φ = φ0 ◦ y−1, we have

φ,i = (F−1)I i φ0,I ,

which reduces in the (R,Z) plane to

φ̃,i = (F̃−1)I i φ̃0,I ,

owing to the block structure of the formation gradient and the fact that φ0,θ = 0.
To compute covariant derivatives of vector fields and one-forms

vi|j = vi,j + γijkv
k, αi|j = αi,j − γkijαk,

we need the connection coefficients, which can be computed from

γijk = (1/2)gil(glj,k + glk,j − gjk,l).

The only non-zero components are

γrθθ = −r, γθrθ = γθθr = 1/r.

For a vector field v(r, z) = (vr(r, z), vz(r, z), 0), we can compute the covariant derivative

(∇v)ij = vi|j =




vr,r vr,z 0
vz,r vz,z 0
0 0 vr/r


 ,

and taking the trace, its divergence

div v = vr,r + vz,z + vr/r.

Now, from the above expressions, we can compute the Hessian of φ as

φ|ij = φ,ij − γlijφ,l.

18

Again, it has a block diagonal structure

φ|ij =

(
φ̃|ij 0

0 φ|θθ

)
.

In the first 2 × 2 minor, the Cartesian structure given in Eq. (3) is preserved, while in the θθ
component we have

φ|θθ = rφ,r = r
[
(F−1)Rrφ0,R + (F−1)Zrφ0,Z

]
.

The Laplacian is computed correspondingly as

∆φ = φ|ijg
ij = ∆φ̃+ φ,r/r = ∆φ̃+ (1/r)

[
(F−1)Rrφ0,R + (F−1)Zrφ0,Z

]
.

The Lagrangian expression of the rate-of-deformation tensor can be computed as [35]

2DIJ = gik

(
V k
|IF

i
J + V i

|JF
k
I

)
,

where the covariant derivative of the material velocity is defined as

V i
|J = V i

,J + γijkV
jF kJ .

This tensor is simply

V i
|J =




V r
,R V r

,Z 0
V z

,R V z
,Z 0

0 0 V r/r


 ,

which leads to

2DIJ =

(
Ṽ k
,I F̃

k
,J + Ṽ k

,J F̃
k
,I 0

0 2rV r

)
=

(
˙̃F T F̃ + F̃ T ˙̃F 0

0 2rV r

)
.

Now, noting that the Eulerian rate-of-deformation tensor can be computed as dij◦y = DIJ(F−1)I i(F
−1)J j

[35], we have

2dij ◦ y =

(
F̃−T ˙̃F T + ˙̃FF̃−1 0

0 2rṙ

)
.

Its trace can be computed as

(div v) ◦ y = (dijg
ij) ◦ y = (1/2)trace(F̃−T ˙̃F T + ˙̃FF̃−1) + ṙ/r,

while its norm squared is

|d ◦ y|2 = (dijdklg
ikgjl) ◦ y = (1/4)|F̃−T ˙̃F T + ˙̃FF̃−1|2 + (ṙ/r)2 .

Appendix B. Derivatives for gradient and Hessian of the energy, volume, and area

The main expressions and derivatives required to implement the proposed algorithm are
presented in this appendix. We start with the derivatives of the motion, then move to nodal
derivatives involving the gradient, and finish with the Hessian, used in Newton’s method. Lighter
gray symbols correspond to terms required in the axisymmetric formulation, which just need to
be dropped in 3D.

19

Appendix B.1. Spacial derivatives of the motion

The motion is discretized as

y(x, t) =

N∑

a=1

pa(x)ya(t)

From now on, we ignore the arguments of the basis functions and nodal values for simplicity,
y =

∑N
a=1 p

aya. We then have for the deformation gradient

FiI =

N∑

a=1

∂Ip
ayai , ∂JFiI =

N∑

a=1

∂I∂Jp
ayai , ∂JF

−1
Ii = −F−1

Il F
−1
Ki ∂JFlK .

Appendix B.2. Nodal derivatives of the motion

Nodal derivative of F and F−1

∂ybk
FiI =

N∑

a=1

∂Ip
a∂ybk

yai = ∂Ip
b∂ybk

ybi = ∂Ip
bδik, ∂ybk

F−1
Ii = −F−1

Il ∂ybk
FlKF

−1
Ki .

Nodal derivative of ∇F

∂ybk
∂JFiI =

N∑

a=1

∂I∂Jp
a∂ybk

yai = ∂I∂Jp
b∂ybk

ybi = ∂I∂Jp
bδik.

Nodal derivative of ∇F−1

∂ybk
∂JF

−1
iI = −(∂ybk

F−1
Il F

−1
Ki ∂JFiI + F−1

Il F
−1
Ki ∂ybk

∂JFiI + F−1
Il ∂ybk

F−1
Ki ∂JFiI).

Nodal derivative of detF

∂ybk
detF = detF (F−1

Ii ∂ybk
FiI)

Second nodal derivative of F−1

∂yaj ∂ybk
F−1
Ii = −(∂yaj F

−1
Il ∂ybk

FlKF
−1
Ki + F−1

Il ∂ybk
FlK∂yaj F

−1
Ki)

Second nodal derivative of ∇F−1

∂yaj ∂ybk
∂JF

−1
Ii = −(∂yaj ∂ybk

F−1
Il F

−1
Ki ∂JFlK + ∂ybk

F−1
Il ∂yaj F

−1
Ki ∂JFlK + ∂ybk

F−1
Il F

−1
Ki ∂yaj ∂JFlK +

∂yaj F
−1
Il F

−1
Ki ∂ybk

∂JFlK + F−1
Il ∂yaj F

−1
Ki ∂ybk

∂JFlK +

∂yaj F
−1
Il ∂ybk

F−1
Ki ∂JFlK + F−1

Il ∂yaj ∂ybk
F−1
Ki ∂JFlK + F−1

Il ∂ybk
F−1
Ki ∂yaj ∂JFlK)

Second nodal derivative of detF

∂yaj ∂ybk
detF = detF (F−1

Ii ∂ybk
FiI)(F

−1
Mm∂yaj FmM)− detF (F−1

Im∂yaj FmKF
−1
Ki ∂ybk

FiI)

20

Appendix B.3. Derivatives of the phase-field

From the numerical discretization of the reference phase-field

φ0(x) =

N∑

a=1

pa(x)φa0,

we have

∂Iφ0 =

N∑

a=1

∂Ip
aφa0, ∂I∂Jφ0 =

N∑

a=1

∂I∂Jp
aφa0

Consequently, we can compute the gradient and Hessian (2×2 minor for axisymmetry or full
tensor in 3D) of the deformed phase-field

∂iφ = ∂Iφ0F
−1
Ii , ∂i∂jφ = ∂I∂Jφ0F

−1
Ii F

−1
Jj + ∂Iφ0∂JF

−1
Ii F

−1
Jj

Its Laplacian becomes

∆φ = ∂I∂Jφ0F
−1
Ii F

−1
Ji + ∂Iφ0∂JF

−1
Ii F

−1
Ji +φ,r/r.

Appendix B.4. Nodal derivatives of the energy, volume and area

Defining for convenience

C1 = (φ0/ε+ c0

√
2)(1− φ2

0), C2 =
1

4ε
(1− φ2

0)2, W = ε∆φ+ C1,

we have

E = fE

∫

Ω0

W 2 detFrdΩ0,

A = fA

∫

Ω0

[ε
2
|∇φ|2 + C2

]
detFrdΩ0,

V =
1

2

[
V ol(Ω0) +

∫

Ω0

φ0 detFrdΩ0

]
,

where fE = 3k/(16
√

2ε) and fA = 3/(2
√

2).
The gradient of the energy then follows as

∂ybj
E = fE

∫

Ω0

(2W∂ybj
W detF +W 2∂ybj

detF)r +W 2 detF∂ybj
rdΩ0,

where

∂ybj
W/ε = ∂ybj

∂i∂iφ = ∂I∂Jφ0∂ybj
F−1
Ii F

−1
Ji + ∂I∂Jφ0F

−1
Ii ∂ybj

F−1
Ji +

∂Iφ0∂ybj
∂JF

−1
Ii F

−1
Ji + ∂Iφ0∂JF

−1
Ii ∂ybj

F−1
Ji + ∂ybj

φ,r/r − (φ,r/r
2)∂ybj

r

21

The gradient of the area is

∂ybj
A = fA

∫

Ω0

[ε
2
∂ybj
|∇φ|2 detF +

(ε
2
|∇φ|2 + C2

)
∂ybj

detF
]
r

+
(ε

2
|∇φ|2 + C2

)
detF∂ybj

rdΩ0,

where,

∂ybj
|∇φ|2 = ∂ybj

∂iφ∂iφ = ∂Iφ0∂ybj
F−1
Ii ∂Jφ0F

−1
Ji + ∂Iφ0F

−1
Ii ∂Jφ0∂ybj

F−1
Ji

= 2∂Iφ0F
−1
Ii ∂Jφ0∂ybj

F−1
Ji .

Finally, the derivative of the volume is

∂ybj
V =

1

2

∫

Ω0

(φ0∂ybj
detF)r + φ0 detF∂ybj

rdΩ0.

We can compute the Hessian of the energy as

∂yai ∂ybj
E = fE

∫

Ω0

(2W∂yai ∂ybj
W detF + 2∂yaiW∂ybj

W detF

+2W∂ybj
W∂yai detF + 2W∂yaiW∂ybj

detF +W 2∂yai ∂ybj
detF)r

+(2W∂ybj
W detF +W 2∂ybj

detF)∂yai r + (2W∂yaiW detF +W 2∂yai detF)∂ybj
rdΩ0,

where,

∂yai ∂ybj
W/ε = ∂I∂Jφ0∂yai ∂ybj

F−1
Ik F

−1
Jk + ∂I∂Jφ0∂ybj

F−1
Ik ∂yai F

−1
Jk + ∂I∂Jφ0∂yai F

−1
Ik ∂ybj

F−1
Jk

+∂I∂Jφ0F
−1
Ik ∂yai ∂ybj

F−1
Jk + ∂Iφ0∂yai ∂ybj

∂JF
−1
Ik F

−1
Jk + ∂Iφ0∂ybj

∂JF
−1
Ik ∂yai F

−1
Jk

+∂Iφ0∂yai ∂JF
−1
Ik ∂ybj

F−1
Jk + ∂Iφ0∂JF

−1
Ik ∂yai ∂ybj

F−1
Jk

+∂yai ∂ybj
φ,r/r − (1/r2)∂yai φ,r∂ybj

r − (1/r2)∂ybj
r∂yai φ,r + (2φ,r/r

3)∂yai r∂ybj
r.

For the area, we have

∂yai ∂ybj
A = fA

∫

Ω0

[ε
2
∂yai ∂ybj

|∇φ|2 detF +
(ε

2
|∇φ|2 + C2

)
∂yai ∂ybj

detF

+
ε

2
∂ybj
|∇φ|2∂yai detF +

ε

2
∂yai |∇φ|

2∂ybj
detF

]
r

+
[ε

2
∂yai |∇φ|

2 detF +
(ε

2
|∇φ|2 + C2

)
∂yai detF

]
∂ybj

r

+
[ε

2
∂ybj
|∇φ|2 detF +

(ε
2
|∇φ|2 + C2

)
∂ybj

detF
]
∂yai rdΩ0,

where,

∂yai ∂ybj
|∇φ|2 = 2∂Iφ0∂yai F

−1
Ik ∂Jφ0∂ybj

F−1
Jk + 2∂Iφ0F

−1
Ik ∂Jφ0∂yai ∂ybj

F−1
Jk

Finally,

∂yai ∂ybj
V =

1

2

∫

Ω0

φ0∂yai ∂ybj
detFr + φ0∂yai detF∂ybj

r + φ0∂ybj
detF∂yai rdΩ0.

22

[1] M. K. W. Wintz, U. Seifert, R. Lipowsky, Fluid vesicles in shear flow, Physical Review
Letters 77 (17) (1996) 3685–3688.

[2] U. Seifert, Fluid membranes in hdrodynamic flow fields: Formalism and an application to
fluctuating quasispherical vesicles in shear flow., Eur. Phys. J. B 8 (1999) 405–415.

[3] H. Noguchi, G. Gompper, Dynamics of fluid vesicles in shear flow: Effect of membrane
viscosity and thermal fluctuations, Physical Review E 72 (2005) 011901.

[4] S. Veerapaneni, A. Rahimian, G. Biros, D. Zorin, A fast algorithm for simulating vesicle
flows in three dimensions, Journal of Computational Physics 230 (2011) 5610–5634.

[5] J. B. Fournier, N. Khalifat, N. Puff, M. I. Angelova, Chemically triggered ejection of mem-
brane tubules controlled by intermonolayer friction, Phys. Rev. Lett. 102 (2009) 018102.

[6] N. Khalifat, N. Puff, S. Bonneau, J.-B. Fournier, M. I. Angelova, Membrane deformation
under local ph gradient: Mimicking mitochondrial cristae dynamics, Biophys. J. 95 (10)
(2008) 4924–4933.

[7] M. Staykova, M. Arroyo, M. Rahimi, S. H. A, Confined bilayers passively regulate shape
and stress, Phys. Rev. Lett. 110 (2013) 028101.

[8] M. Rahimi, M. Arroyo, Shape dynamics, lipid hydrodynamics, and the complex viscoelas-
ticity of bilayer membranes, Physical Review E 86 (2012) 011932.

[9] A. Rosolen, C. Peco, M. Arroyo, An adaptive meshfree method for phase-field models of
biomembranes. Part I: approximation with maximum-entropy approximants, Journal of
Computational Physics ?? (2013) ??–??

[10] M. Arroyo, M. Ortiz, Local maximum-entropy approximation schemes: a seamless bridge
between finite elements and meshfree methods, International Journal for Numerical Meth-
ods in Engineering 65 (13) (2006) 2167–2202.

[11] B. Li, F. Habbal, M. Ortiz, Optimal transportation meshfree approximation schemes for
fluid and plastic flows, International Journal for Numerical Methods in Engineering 83 (12)
(2010) 1541–1579.

[12] J. L. McWhirter, H. Noguchi, G. Gompper, Flow-induced clustering and alignment of
vesicles and red blood cells in microcapillaries, Proceedings of the National Academy of
Sciences 106 (15) (2009) 6039–6043.

[13] A. Bonito, R. Nochetto, S. Pauletti, Parametric FEM for geometric biomembranes, Journal
of Computational Physics 229 (9) (2010) 3171–3188.

[14] A. Bonito, R. H. Nochetto, M. S. Pauletti, Dynamics of biomembranes: Effect of the bulk
fluid, Mathematical Modelling of Natural Phenomena 6 (2011) 25–43.

23

[15] S. Veerapaneni, D. Gueyffier, G. Biros, D. Zorin, A numerical method for simulating the
dynamics of 3d axisymmetric vesicles suspended in viscous flows, Journal of Computational
Physics 228 (19) (2009) 7233–7249.

[16] C. S. Peskin, The immersed boundary method, Acta Numer. 11 (2002) 479–517.

[17] D. V. Le, J. White, J. Peraire, K. M. Lim, B. C. Khoo, An implicit immersed bound-
ary method for three-dimensional fluid-membrane interactions, Journal of Computational
Physics 228 (2009) 8427–8445.

[18] Y. Kim, M.-C. Lai, Simulating the dynamics of inextensible vesicles by the penalty immersed
boundary method, Journal of Computational Physics 229 (2010) 4840–4853.

[19] Q. Du, C. Liu, X. Wang, A phase field approach in the numerical study of the elastic bending
energy for vesicle membranes, Journal of Computational Physics 198 (2004) 450–468.

[20] X. Wang, Phase field models and simulations of vesicle bio-membranes, Ph.D. thesis, De-
partment of Mathematics, The Pennsylvania State University, Pennsylvania, USA (2005).

[21] Q. Du, C. Liu, R. Ryham, X. Wang, Energetic variational approaches in modeling vesicle
and fluid interactions, Physica D 238 (2009) 923–930.

[22] T. Biben, K. Kassner, C. Misbah, Phase-field approach to three-dimensional vesicle dynam-
ics, Physical Review E 72 (4) (2005) 041921.

[23] D. Jamet, C. Misbah, Towards a thermodynamically consistent picture of the phase-field
model of vesicles: Local membrane incompressibility, Phys. Rev. E 76 (2007) 051907.

[24] M. Farshbaf-Shaker, H. Garcke, Thermodynamically consistent higher order phase field
Navier-Stokes models with applications to biomembranes., Discrete Contin. Dyn. Syst.,
Ser. S 4 (2011) 371–389.

[25] Q. Du, Phase field calculus, curvature-dependent energies, and vesicle membranes, Philo-
sophical Magazine 91 (2010) 165–181.

[26] L. Ma, W. Klug, Viscous regularization and r-adaptive remeshing for finite element analysis
of lipid membrane mechanics, Journal of Computational Physics 227 (11) (2008) 5816 –
5835.

[27] F. Campelo, Modeling morphological instabilities in lipid membranes with anchored am-
phiphilic polymers, J. Chem. Biol. 2 (2009) 65–80.

[28] Q. Du, J. Zhang, Adaptive finite element method for a phase field bending elasticity model
of vesicle membrane deformations, SIAM J. Sci. Comput. 30 (3) (2008) 1634–1657.

[29] A. Rosolen, D. Millán, M. Arroyo, Second order convex maximum entropy approximants
with applications to high order PDE, International Journal for Numerical Methods in En-
gineering 94 (2) (2013) 150–182.

24

[30] E. Oñate, M. A. Celigueta, S. R. Idelsohn, F. Salazar, B. Suárez, Possibilities of the par-
ticle finite element method for fluid–soil–structure interaction problems, Computational
Mechanics 48 (2011) 307–318.

[31] H. Goldstein, C. Poole, J. Safko, Classical Mechanics, Addison-Wesley, 2001.

[32] A. Lew, J. E. Marsden, M. Ortiz, M. West, Variational time integrators, Internat. J. Numer.
Methods Engrg. 60 (2004) 153–212.

[33] M. Ortiz, E. A. Repetto, Nonconvex energy minimization and dislocation structures in
ductile single crystals, Journal of the Mechanics and Physics of Solids 47 (1999) 397–462.

[34] Q. Du, C. Liu, X. Wang, Simulating the deformation of vesicle membranes under elastic
bending energy in three dimensions, Journal of Computational Physics 212 (2006) 757–777.

[35] J. Marsden, T. Hughes, The mathematical foundations of elasticity, Prentice-Hall, 1983.

[36] T. Belytschko, W. Liu, B. Moran, Nonlinear Finite Elements for Continua and Structures,
John Wiley & Sons, England, 2001.

[37] C. Peco, A. Rosolen, M. Arroyo, Stabilized analysis of Stokes’s equations with local maxi-
mum entropy meshfree approximantsIn preparation.

[38] J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics: with special applications
to particulate media, Martinus Nijhoff Publishers, 1983.

[39] M. Arroyo, A. DeSimone, Relaxation dynamics of fluid membranes, Phys. Rev. E 79 (3)
(2009) 031915.

[40] A. Rosolen, D. Millán, M. Arroyo, On the optimum support size in meshfree methods: a
variational adaptivity approach with maximum entropy approximants, International Jour-
nal for Numerical Methods in Engineering 82 (7) (2010) 868–895.

[41] J. Sanborn, K. Oglecka, R. S. Kraut, A. N. Parikh, Transient pearling and vesiculation of
membrane tubes under osmotic gradients, Faraday Discussions DOI: 10.1039/C2FD20116J.

25

Appendix C
Efficient implementation of meshfree
Galerkin methods for large-scale
problems with an emphasis on
maximum entropy approximants.

Submitted to Computers and Structures

C. Peco, D. Millán, A. Rosolen and M. Arroyo

Efficient implementation of Galerkin meshfree methods for
large-scale problems with an emphasis on maximum entropy

approximants

Christian Peco, Daniel Millán, Adrian Rosolen and Marino Arroyo∗

LaCàN, Universitat Politècnica de Catalunya (UPC), Barcelona 08034, Spain

Abstract

Galerkin meshfree methods are well-established to approximate partial differential equations
(PDEs). However, since the support of the basis functions is not restricted to predefined elemen-
tary domains, the creation of sparse matrices and the assembly process is not straightforward.
Furthermore, it is often necessary to evaluate the basis functions repeatedly in a computation,
e.g. in nonlinear problems. As a result of the higher density of the connectivity graph in mesh-
free methods, the memory required to store the basis functions and its derivatives can quickly
become unaffordable for large problems, particularly in higher order PDEs involving Hessians
of the basis functions. The straightforward alternative, recomputing the basis functions every
time they are needed, is computationally inefficient. Here, we show that it is possible to over-
come or alleviate these two bottlenecks resorting to simple and effective algorithms. The first
algorithm deals with the sparse matrix structure creation and filling. It relies on a cell/element-
wise framework and it is easily made parallel. Its performance on a standard two-dimensional
heat equation is compared against that of a classical implementation based on looping over
quadrature points. The second algorithm stores only partial information of the basis functions,
striking a balance between storage and computation. This optimization reduces considerably
the memory usage at the expense of a minimum increment in the overall computational cost.
We detail the data structures and provide pseudo-codes for the proposed algorithms, and exer-
cise them in a Poisson problem and in a fourth order phase-field model. Both examples have
been discretized with nonnegative and smooth local maximum entropy approximants.

Keywords: meshfree methods, local maximum entropy, sparse matrix efficient assembly,
matrix structure creation, optimal memory storage, program optimization

∗Correspondence to: marino.arroyo@upc.edu

Preprint submitted to Computers and Structures July 16, 2014

1. Introduction

Meshfree methods have emerged in recent years as a viable alternative to finite elements in
a number of applications, see [1, 2, 3, 4, 5] for a detailed review. These methods are based on
basis functions that do not rely on a mesh. As a consequence, many of the requirements associ-
ated with the quality of the elements in traditional finite element method (FEM) are relaxed or
disappear, but this extra flexibility raises new challenges in the numerical implementation [6].
Meshfree methods also present several advantages such as basis functions with high-order con-
tinuity, robustness in dramatic grid deformations [7, 8, 9], and easier local adaptivity [10, 11].
Galerkin meshfree methods require a quadrature mesh to perform numerical integration, com-
monly requiring a higher number of quadrature points to accurately integrate the weak form
due to their nonpolynomial nature and nonelement-wise support [12, 13]. Additionally, most
of the meshfree methods present an awkward treatment of essential boundary conditions due to
nonsatisfaction of the Kronecker delta property [3, 14].

Basis function

Full support
Effective support

Tol0

Figure 1: Full support of some meshfree basis functions, such as local maximum entropy approximants, covers the
convex hull of the computational domain. The effective numerical support radius ra is determined by a cutoff basis
function value Tol0 (left). Representation of two-dimensional LME approximants basis functions (right). Notice
the noninterpolant character and the smoothness of the basis functions, and the fulfillment of a weak Kronecker-
delta at the boundary of the convex hull.

Since smoothed particle hydrodynamics [15], a variety of techniques have emerged, such as
reproducing kernel particle method [16], partition of unity finite element method [17], and ele-
ment free Galerkin [18] to mention a few. We resort in this work to the local maximum entropy
(LME) approximation schemes, a meshfree method inspired on information theory that gener-
ates nonnegative and smooth basis functions (see [19, 20, 21, 22, 23] for a detailed description,

2

properties and extensions). The capabilities of LME approximants have been examined in a va-
riety of computational mechanics applications, such as linear and nonlinear elasticity [23, 24],
plate [25] and thin-shell analysis [26, 27], convection-diffusion problems [28, 29], and phase-
field models of biomembranes [30, 31] and fracture mechanics [32, 33, 34].

Like other meshfree methods, LME approximants involve a dilation or locality parameter
that modulates their behavior and support. LME approximants show an exponential decay con-
trolled by the locality parameter, and far from the boundaries they look like Gaussian weighted
functions [35, 22]. Their effective support is controlled by setting a cut off or threshold value
(Tol0) below which the basis functions are taken numerically to be zero (see Fig. 1, Appendix
A). The proper choice of the locality parameter is problem dependent and not easy in general,
which has motivated a systematic studies for general meshfree methods [36] and for LME ap-
proximants [23] in particular. In LME approximations, the locality parameter is an aspect ratio
parameter γ, which allows us to smoothly move from simplicial finite elements shape functions
(γ > 4.0) to more spread out approximation schemes (e.g., γ = 0.6), as illustrated in Fig. 2. In
general, broader functions lead to more accurate results for problems with smooth solutions at
the expense of higher computational cost and worse matrix conditioning [20, 26].

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

x

p a

γ = [0.6 1.2 1.8 2.4 3 3.6 4.2 4.8 5.4 6]

Figure 2: Seamless transition from spread-out meshfree to linear finite elements basis functions.

In contrast to conventional FEM, where the structure of the matrix is inherited from the
mesh graph, stencils of meshfree schemes depend strongly on the aspect ratio parameter γ.
In our experience, a noticeable run-time computational cost of meshfree methods is due to the
creation of the sparse matrix structure and the assembly process, which can be specially harmful
for iterative processes. These stages can be as expensive as the solver stage in two-dimensional
problems and exceed it in three-dimensional ones. In a typical implementation of the assembly
process in meshfree methods, the code loops over the quadrature points. The denser sparsity
pattern and the large number of Gauss points required for accurate integration can make these
methods unpractical for large-scale calculations. To overcome this issue, we propose here a set
of algorithms based on a loop over cells/elements, as commonly done in FEM. We illustrate
in this work how this simple approach reduces significantly the computational cost associated

3

with the matrix structure creation and the assembly process.
Additionally, a widespread practice (both in FEM and in meshfree methods) is to store in

memory the basis functions and their derivatives for repetitive calculations required in nonlinear
iterative solvers, incremental loading, or evolution in time. In FEM, this storage is insignificant
because the basis functions of the parent element are mapped to each physical element. Since
this is not the case in meshfree methods, the amount of memory and its access can become a
bottleneck and substantially reduce the code efficiency, especially in large-scale problems. If
meshfree basis functions are not stored in memory but recomputed every time, the computa-
tional cost can also increase significantly. To alleviate this issue, we propose here a strategy
that is a trade-off solution between memory storage and computational time. The technique,
based on a data structure that stores only partial information about the basis functions and an
algorithm to reconstruct them when needed, reduces considerably the memory usage at the ex-
pense of a minimum increment in the overall computational cost. We illustrate and exploit this
concept on LME approximants.

The paper is organized as follows. In Section 2 we review the basic technicalities for a
meshfree method particularized to LME approximants and the classical implementation to ap-
proximate partial differential equations (PDEs). We then propose an algorithm to speed-up the
matrix assembly and an algorithm for the compressed memory storage of LME approximants
in Section 3. We extensively test our proposals with numerical examples in Section 4 and finish
with some concluding remarks in Section 5.

2. A standard meshfree scheme

Let X = {x1, x2, . . . , xN} ⊂ Rd, for d = 1, 2, 3, be an unstructured set of nodes used to
describe a domain Ω, and pa(x) the meshfree basis function associated to the a-th node, for
a = 1, . . . ,N. A continuous field Φ can be approximated as

Φ(x) =

N∑

a=1

pa(x)Φa,

where Φa stand for the nodal coefficients. Here we adopt the LME approximants as mesh-
free basis functions in a Galerkin method to approximate a general PDE. They are nonnega-
tive, smooth, satisfy at least up to the first order consistency conditions and present a weak
Kronecker-delta property. We rely on an integration mesh to define the quadrature points,
typically through a Gauss-Legendre quadrature rule. We use simplicial meshes made of tri-
angles/tetrahedra in 2D/3D, which are obtained via the library QHULL [37]. The procedure
needed to compute the system matrix in a Galerkin meshfree approach requires mainly four
steps: (i) neighborhood search, (ii) computation of the basis functions, (iii) creation of the
sparse matrix structure and (iv) Gauss point-wise matrix filling. The pseudocode shown in
Algorithm 1 summarizes these four steps. In the present work, we do not deal with solver
performance. In the following we briefly extend on the computational implications of every
step.

4

Algorithm 1 Pseudo-code for scheme based on a loop over quadrature points (see Section 2).
(i) Determine the neighborhood nodal index set NX

y for each Gauss point.
(ii) Compute shape functions (array pa).

(iii) Construct sparse matrix structure (arrays ia and ja).
(iv) Fill sparse matrix (array an) with the quadrature point loop based algorithm.

The objective of step (i) is to compute the so-called neighbor lists, which can be interpreted
as the counterpart of the mesh connectivity in FEM where the neighbor lists are given by the
mesh itself. In a meshfree scheme this is made by specialized algorithms, i.e. neighbor searchers
which identify the relationship between the quadrature points and the nodes. We will refer to
the neighbor lists as primal and dual lists [26], which are complementary. In particular, a dual
list identifies the quadrature points that are influenced by a particular node i.e. the quadrature
points falling within the effective support of a nodal basis function. Conversely, the primal list
contains the nodes that influence a particular quadrature point.

Formally, let Y = {y1, y2, . . . , yL} ⊂ Ω be a set of quadrature points. The dual list containing
the nearest points from Y associated with a node xa ∈ X can be defined as follows

ÑY
xa

= {k ∈ {1, 2, .., L} | |yk − xa| < ra},

where ra is the effective support radius of the shape function associated to the a-th node (which
is determined by a user defined cutoff value Tol0, see Fig. 1). In the same way, the primal list
containing the nodes from X associated with a particular quadrature point yk ∈ Y is defined as

NX
yk

= {a ∈ {1, 2, ..,N} | |yk − xa| < ra}.

The primal and dual lists are used afterwards in steps (ii), (iii) and (iv) to compute the basis
functions, identify the nonzero positions in the sparse matrix and perform the assembly. Both
lists can be obtained by simply invoking a neighbor searcher. The neighbor finding problem
is standard, and comes in two flavors, namely finding the k-first neighbors or finding neigh-
bors within a range. In our codes, we resort to the approximate nearest neighbor searching
library [38], whose computational cost scales as O(N log N), where N is the number of nodes.

In step (iii) the nonzero elements in the global matrix are identified using algorithms that
postprocess the neighbor lists. This information is critical to properly store the matrix in a sparse
scheme and perform the filling. There are many methods for storing sparse matrices (see, for
instance, [39] and [40]). We follow here the compressed sparse row (CSR) storage, which is a
proper choice for codes written in C/C++ due to its memory layout. In CSR, a matrix is given
in terms of three lists. The first list, ia, is an array of integers that stores the total number of
nonzeros up to each row. Its dimension is the number of rows plus one, the first position being
filled with a zero. The second and third lists are arrays of integers and doubles, ja and an, have
as dimension the number of nonzeros in the matrix, and store the column index position and

5

the associated matrix entry. We understand the sparse matrix structure creation as the collection
of algorithms required to obtain the lists ia and ja. An efficient way to compute this structure
based on a loop over quadrature points is presented in Appendix C. The standard algorithm
loops over the primal lists of the Gauss points associated to each nodal dual list, such that the
nonzero entries of the sparse matrix are identified when two nodes appear together in at least
one primal list. As a result, the sparse structure construction becomes increasingly expensive as
the number of quadrature points and the support of the basis functions becomes larger.

In step (iv) the nonzero positions of the system sparse matrix (an) are filled in an operation
dependent on the PDE. Pursuing a rational memory access, standard Galerkin meshfree algo-
rithms rely on a loop over the Gauss points, each contributing with a local dense matrix. The
number of rows of this local matrix is equal to the cardinality of the primal list |NX

y | = n times
the number of scalar fields in the problem. Again, the computing time of this step is directly
penalized by the increase of quadrature points and by the support size of the basis functions.
Furthermore, the local matrices have to be assembled into the global matrix. Since the global
matrix is sparse, a search is required to identify the global position to be filled. This concept is
illustrated in the upper part of Fig. 3.

Gauss point
dense matrix

Cell/Element
dense matrix

Global sparse matrix

Gauss point
neighborhood

Cell/element
neighborhood

Figure 3: Filling algorithm from neighbor lists to global sparse matrix. Nodal list of neighbors (black dots) can
be computed for an individual integration point (red X, top) or for a cell/element (white triangle, bottom). Dense
submatrices are generated from these neighborhoods and assembled into the global matrix. Cell/element algorithm
improves memory management since the resulting dense submatrix condenses information coming from several
integration points.

6

3. Meshfree optimization concepts

We present here two optimizations to improve the efficiency when facing the bottlenecks
described in Section 1. First we describe in Section 3.1 a neighborhood coarsening algorithm
that considerably speed-up steps (iii) and (iv). Finally, a reduced storage strategy that mitigates
the memory requirements when storing the basis functions is detailed in Section 3.2.

3.1. Neighborhood coarsening algorithm
A simple idea to alleviate the computational cost of the global sparse matrix is to coarse-

grain the neighbor primal lists. The key point is to generate a list for each cell/element of a
defined coarsening mesh rather than one per Gauss point. The coarsening mesh provides us
with a structure to group the primal lists of the Gauss points contained in the cell/element.
Without loss of generality, a straightforward and natural choice for the coarsening mesh is
the quadrature mesh cells/elements needed in most Galerkin meshfree methods to perform the
numerical integration. In this way the complexity added by the increase of Gauss points due to
accuracy requirements is removed and the neighbor lists are generated disregarding the number
of integration points. We present next details of this procedure.

Once the coarsening mesh is set, we start with a neighbor search over the nodes defining the
mesh. This allows us to obtain nodal-based primal lists rather than primal lists for quadrature
points. To obtain the cell/element primal lists, the primal lists of its associated nodes are simply
merged. More specifically, we define

Nel =
⋃

a∈Tel

NX
xa
,

where Tel is an index set containing the nodal indexes of the el-th cell/element (e.g the mesh
connectivity). Note that the Nel list is applicable to the totality of integration points inside the
cell/element, regardless their number. This merging operation is negligible in terms of com-
putational time, and give us the possibility to work from now on with cell/element primal lists
rather than with integration point based lists. We illustrate this concept in Fig. 4. The exam-
ples shown in Section 4 use the quadrature mesh as coarsening mesh and follow the proposed
unifying criterium.

7

Scattered set of
points/nodes

Point/Node
Gauss point
Nodal range 
Ni nodal neighborhood

Integrated
neighbor list

࢒ࢋࡺ ൌ 	 ራ ࢇ࢞ࡺ
ࢄ

࢒ࢋࢣ∋ࢇ

Figure 4: Integrated neighborhood concept. The new cell/element neighborhood is described by the union of nodal
vertices lists of neighbors. The triangular elements given by the quadrature mesh are used here as background
cell/element generator.

Vertex merging is a proper strategy when the support size ra is large relative to the mesh size
ha, which is the usually the case in meshfree methods. Conceivably, it could be the case that the
merging of the vertices lists would lead to some loss of information. A node could be influenc-
ing an integration point inside a cell/element without influencing any of the vertices containing
it, e.g. in highly distorted triangles in 2D. If these unlikely events need to be absolutely ruled
out, it is always possible to construct the unified lists by merging the neighbor lists of the Gauss
points belonging to a cell/element. In our experience, however, this never happens when using
a quadrature mesh; the agreement in numerical integration benchmarks is perfect, and for this
reason we recommend the proposed vertex merging to create the cell/element lists.

The creation and filling algorithms can be now based on cell/element neighbor lists, which
greatly speeds-up the computations. The structure creation is simplified since only the nodes
and cells/elements are involved in the whole procedure. Now the nonzero positions are identi-
fied by looping over cell/element neighbor lists instead of looping over Gauss points neighbor
lists. The filling of the matrix benefits in two distinct ways. Firstly, the element-wise approach
leads to cell/element dense matrices. These local matrices are efficiently filled since just a loop
over the neighbor list of the cell/element and a loop over the cell/element Gauss points are re-
quired. Secondly, only one dense cell/element matrix is assembled into the global matrix, hence
the memory access is improved, as illustrated in the lower part of Fig. 3.

As we show later in Section 4.1, this optimization maintains constant the computational
time associated with the matrix-pattern creation algorithm regardless the number of integration
points used. This fact significantly alleviates one of the main disadvantages of meshfree meth-
ods, namely the large number of quadrature points needed as compared to piecewise polynomial

8

approximants. Furthermore, the granularity of the element-level approach is better suited for
parallel computing, minimizing memory access and limiting data exchange. The pseudo-code
for the procedure is summarized in Algorithm 2.

Algorithm 2 Pseudo-code for scheme based on a loop over cells/elements (see Section 3).
(i) Compute adjacency lists for nodes NX

xa
and process cell/element lists Nel =⋃

a∈Tel
NX

xa
.

(ii) Compute shape functions (array pa).
(iii) Construct sparse matrix structure (arrays ia and ja).
(iv) Fill sparse matrix (array an) with the cell/element loop based algorithm.

3.2. Compressed meshfree basis functions storage
A standard practice in the numerical treatment of PDEs is to store in memory the basis

functions and their derivatives at each Gauss point. This strategy decreases considerably the
computational cost in problems involving nonlinear iterative solvers or evolution problems on
Lagrangian meshes. While this storage is insignificant in FEM, in meshfree methods the amount
of memory (as quantified later) and its access can become a bottleneck and substantially reduce
the code efficiency. Here we propose a storage concept that is based on finding structures that
optimally synthesize the basis function information at each integration point, striking a trade-
off between memory storage and computation time. We generate data structures that store only
partial information about the basis functions and an algorithm to reconstruct them when needed,
reducing considerably the memory usage at the expense of a marginal increment in the overall
computational cost.

For a general meshfree method, and considering the Galerkin approximation of a fourth-
order PDE, the full storage of the basis functions requires MFS = L · n̄ · [1 + d + d(d + 1)/2] =

L · n̄ ·
(
1 + 3

2d + 1
2d2

)
doubles. In this equation, L is the total number of quadrature points, n̄ is

the mean cardinality of the primal lists, 1 accounts for the basis functions themselves, d for their
gradients, and d(d + 1)/2 for the Hessian, which is a symmetric matrix. In a for fourth-order
PDE we typically have n̄ ≈ 65 in 2D and n̄ ≈ 380 in 3D. As a result, the memory requirements
rapidly become unaffordable.

Focusing on LME approximants, we recall that the basis functions are obtained by means
of a nonlinear optimization problem at each evaluation point with d unknowns, where d is
the spatial dimension. This optimization problem yields the Lagrange multiplier associated
with first-order consistency conditions. Once the Lagrange multiplier is known, an explicit
expression for the basis functions, its gradient and its Hessian is explicit (see Appendix A).
Even if the nonlinear optimization problem is relatively easy to solve by Newton’s method, it
accounts for a significant part of the basis function evaluation time.

A straight-forward alternative to the full storage method would be to simply store the d
reals in the Lagrange multiplier at each quadrature point. Analyzing in detail the structure

9

Table 1: Quantification and comparison of memory usage between the methods of full and optimal or compressed
storage of local maximum-entropy basis functions and their derivatives. Here, n̄ is the mean cardinality of primal
lists, L is the number of Gauss points and d is the spatial dimension.

Full storage Optimal storage
Total memory usage MFS = L · n̄ ·

(
1 + 3

2d + 1
2d2

)
MOS = L ·

(
2 + 7

2d + 2d2 + 1
2d3

)

n̄ � (2 + d) MOS ≈ L · (2 + d) ·
(
1 + 3

2d + 1
2d2

)

Comparison MFS /MOS ≈ n̄/(2 + d) � 1

of the explicit formulae for the basis functions and derivatives, it is easy to identify a set of
matrices and vectors whose size is independent on n̄, and some of which involve summations
over n̄. Thus, storing these arrays saves significant computation time at a limited memory cost.
As detailed in Appendix B, this simple observation suggests the optimal or compressed storage,
which only involves MOS = L ·

(
2 + 7

2d + 2d2 + 1
2d3

)
≈ L · (2 + d) ·

(
1 + 3

2d + 1
2d2

)
doubles.

As the mean cardinality is in general much greater than the spatial dimension, i.e. n̄ � (2 + d),
from the ratio MFS /MOS = n̄/(2 + d) it is clear that the memory usage decreases significantly
when the compressed storage technique is used, as can be observed in Table 1.

In Section 4.2 we apply this strategy to a fourth-order PDE requiring the storage of the
values, gradients and Hessians of the LME basis functions. We quantify the memory usage
and computational time devoted to evaluate the basis functions for both the full and for the
optimized storage implementations.

4. Numerical examples

The performance of the optimizations presented in Section 3 are studied here in two boundary-
value problems. We focus in the four steps presented in Section 2 and leave aside the solver
stage. As we specify in Section 1, in our experience the analized steps can be comparable in
computational time to the solver in 2D problems and exceed it in 3D. In the first example the
neighbor coarsening procedure from Section 3.1 is applied to solve a 2D heat diffusion PDE,
whereas the compressed basis functions storage detailed in Section 3.2 is exercised in a nonlin-
ear fourth-order phase-field PDE. Both problems use uniform grids that ensure a quite constant
number of nodal neighbors for every integration point and facilitate the comparison. In the first
example we use the quadrature mesh and the vertex merging approach to generate the unified
primal lists, as proposed in Section 2. These stages can be as expensive as the solver stage in
two-dimensional problems and exceed it in three-dimensional ones, particularly in problems
with vectorial fields.

4.1. The neighborhood coarsening algorithm applied to a heat equation
We exercise the neighborhood coarsening algorithm on a benchmark heat equation in 2D,

which is a scalar problem. The sparse matrix structure creation and assembly using the proposed

10

neighborhood coarsening for scalar and vectorial problems is detailed in Appendix C, along
with a description of the data structures and a C/C++ pseudo-code.

The diffusion boundary problem is defined as follows:

∆T= f , in Ω,
T= T0, on ΓD,

where T is the temperature field, Ω = (0, 1) × (0, 1) the domain, f is an arbitrary source of heat
and T0 is the prescribed temperature on the Dirichlet’s boundary ΓD. We consider T0 = 0 on
ΓD = ∂Ω and assume a source f = 2y. The solution obtained using LME approximants with a
uniform grid of points of 100 × 100 is depicted in Fig. 5.

Figure 5: 2D and 3D views of the solution for a heat equation with a source. We use LME approximants, a uniform
mesh of 100 × 100 nodes, γ = 1.6 and 6 Gauss points per triangular cell/element.

The entries of the stiffness matrix take the standard form

Kab =

∫

Ω

∇pa · ∇pb dΩ,

where Ω cannot be reduced to a set of elements as in FEM. A quadrature rule is defined on a
background integration mesh over the whole domain (that may or may not coincide with the
coarsening mesh) as

Kab =

L∑

k=1

∇pa(yk) · ∇pb(yk) ωk,

where ωk stand for the Gauss points quadrature weights in physical space.
The performance of the algorithm based on looping over quadrature points depends on the

number of nodes used to discretize the domain, the number of Gauss points per quadrature
cell and the size of the support of the basis functions (linked to the aspect ratio parameter
γ). In Fig. 6 we show a representative performance, reporting the computational time spent in

11

2601 10201 40401
0

0.5

1

1.5

2

2.5

DOF

se
co

n
d

s

2601 10201 40401
0
2
4
6
8

10
12
14
16
18

DOF

se
co

n
d

s

2601 10201 40401
0

10

20

30

40

50

60

DOF

se
co

n
d

s

2601 10201 40401
0

50
100
150
200
250
300
350
400
450

DOF

se
co

n
d

s

 γ = 4.0 Gauss points=3 γ = 1.6 Gauss points=3

 γ = 1.6 Gauss points=12 γ = 0.8 Gauss points=12

Neighbor search Shape functions Structure Filling

Figure 6: Computational time vs grid size for different values of Gauss points per cell and γ. From left to right,
bars correspond to stages: (i) neighborhood search, (ii) shape functions, (iii) matrix structure creation and (iv)
matrix structure filling.

the main four stages of the algorithm described in Section 2, i.e. (i) neighborhood search, (ii)
shape functions, (iii) matrix structure creation and (iv) matrix structure filling. The plots show
computational time vs degrees of freedom (number of nodes) for different combinations of the
aspect ratio parameter γ = 0.8, 1.6, 4.0 and three and twelve Gauss points per element. The
left-upper chart shows FEM-like LME approximants (γ = 4.0) with three points per integration
element. In this case, the bottleneck in the shape functions calculation. In the other plots we can
see how increasing the support size (decreasing γ) or/and increasing Gauss points per element
dramatically rises the cost of structure creation and structure filling in comparison with the
FEM-like shape functions. The upper charts in Fig. 7 illustrate the computing time growth for
different number of Gauss points, whereas the lower charts depict the growth when changing
the parameter γ. The results of both figures highlight the need for speed-up techniques in steps
(iii) and (iv) when the size of the system increase for spread-out basis functions (γ = 0.8, large
support) that require accurate numerical integration.

We proceed then to analyze the proposed cell/element scheme and review the performance
of critical stages (iii) and (iv). In the upper part of Fig. 8 the computational time vs number of
Gauss points is shown for γ = 0.8, 1.6, 4.0. The juxtaposed bars in the figures compare the stan-

12

0E+0 1E+4 2E+4 3E+4 4E+4
0

10

20

30

40

50

DOF

se
co

n
d
s

0E+0 1E+4 2E+4 3E+4 4E+4
0

10

20

30

40

50

DOF

se
co

n
d
s

Structure Filling

1
3
6
12

#Gauss

0E+0 1E+4 2E+4 3E+4 4E+4
0

10

20

30

40

50

DOF

se
co

n
d
s

Filling

0E+0 1E+4 2E+4 3E+4 4E+4
0

10

20

30

40

50

DOF

se
co

n
d
s

4.0
1.6
0.8

γ
Structure

Figure 7: Comparison between growth for matrix structure creation (left) and filling algorithms (right) with the
grid size for different values of Gauss points per cell (top, γ=1.6) and for different values of parameter γ (bottom,
Gauss points = 6).

dard and the new implementations. We can see how the gain in performance grows as the sup-
port size increases, giving greater speed-ups as γ decreases e.g. ten times faster for twelve Gauss
points and γ = 0.8. Notice also that the matrix structure creation is completely insensitive in the
new implementation to the number of quadrature points per element, see Fig. 8. No speed-up
is observed when a small number of integration points is used. We show in the lower panels of
Fig. 8 the filling algorithm computational time vs number of Gauss points for γ = 0.8, 1.6, 4.0.
We observe the same pattern of speed-ups when γ decreases. Notice that although the speed-up
is considerable, the filling operations do depend on the number of quadrature points in the nee
algorithm, but far less critically than in the standard implementation. Nevertheless, the filling
time is greatly reduced with the proposed approach, particularly for large supports i.e. five times
smaller for γ = 0.8 and twelve Gauss points.

Finally, the growth of computational time as a function of system size is presented in Fig. 9.
The standard implementation using twelve Gauss points is shown as reference. We conclude

13

1 3 6 12
0

2

4

6

8

10

Gauss points

s
e

c
o

n
d

s

1 3 6 12
0

10

20

30

40

50

60

Gauss points

s
e

c
o

n
d

s

1 3 6 12
0

100

200

300

400

500

Gauss points

s
e

c
o

n
d

s

γ = 4.0 γ = 1.6 γ = 0.8

1 3 6 12
0

1

2

3

4

5

Gauss points

s
e

c
o

n
d

s

1 3 6 12
0

5

10

15

20

25

Gauss points

s
e

c
o

n
d

s

1 3 6 12
0

20

40

60

80

100

120

Gauss points

s
e

c
o

n
d

s

γ = 0.8γ = 4.0 γ = 1.6

Standard implementation (structure) Cell/element implementation (structure)

Standard implementation (filling) Cell/element implementation (filling)

Figure 8: Structure creation (top) and filling (bottom) computational time vs Gauss points for decreasing γ (in-
creasing support). Standard and new implementation are shown (left and right bars, respectively). DOF = 40,401.

that our proposal is significantly more efficient than the algorithm based on looping over quadra-
ture points, and that the improvement increases as the number of quadrature points and support
size become larger. The improvements are even more dramatic in vectorial problems.

0E+0 1E+4 2E+4 3E+4 4E+4
0

50

100

150

200

DOF

se
co

n
d

s

Structure

0E+0 1E+4 2E+4 3E+4 4E+4
0

50

100

150

200

DOF

se
co

n
d

s

Filling

1
3
6
12
12s

#Gauss

Figure 9: Growth of the computational time as a function of the size of the system for the matrix structure creation
(left) and filling (right), using the new implementation different numbers of Gauss points per cell and γ = 0.8. For
comparison purposes, the standard implementation using 12 Gauss points (legend 12s) is presented.

14

4.2. The compressed meshfree basis functions storage applied to a phase-field fracture model
We present here the results of the proposed memory storage strategy for the LME approx-

imants. We compare the full storage and optimized schemes in a fourth-order PDE problem
requiring the values, gradients and Hessians of the basis functions. In a variational model of
fracture, the phase-field PDE results from the following functional

∫

Γ

Gc dΓ =

∫

Ω

Gc

[
(1 − φ)2

4l0
+

l0

2
|∇φ|2 +

l3
0

4
∆φ2

]
dΩ,

where Gc is the critical fracture energy density, φ the phase-field, and l0 the parameter control-
ling the width of the approximation of the crack. We illustrate a typical solution in Fig. 10.
More details about this particular model can be found in [41].

2l0=4h

Phase-field φ φ = 1 healthy
φ = 0 damaged

Figure 10: Fourth-order phase-field solution for a crack. Phase-field values range from 1 to 0 signaling the pro-
gressive damaging of the material (left). The ratio between the crack width parameter l0 and the nodal spacing h is
2 (right).

We focus on the amount of doubles that need to be stored when using a standard and the op-
timized scheme, and also on the impact on computational time of the structure filling routine for
the global matrix. The latter requires retrieving the stored basis functions in the usual approach,
and partially recomputing them in the optimized storage approach. The structure creation step
is completely independent on evaluation/retrieval of the basis functions, and for this reason we
do not report it here. As can be observed in the left panel of Fig. 11, the optimized storage
strategy decreases the memory requirements by an order of magnitude; the ratio of memory
requirements is about 20. For this two-dimensional problem we use γ = 1, leading to a mean
value of 72 neighbors per integration point. Here we use six Gauss points by element.

We analyze now the computational time invested in the filling of the global matrix. We can
observe in the right panel of Fig. 11 that the memory optimized storage is marginally slower
than the standard routine. The extra operations to retrieve the basis functions and its derivatives,

15

see Appendix A, is partially compensated by a more efficient access to the memory, resulting
in running time increments of about 10%.

10 3 10 4 10 5 10 6
10 5

10 6

10 7

10 8

10 9

10 10

DOF

#d
ou

bl
e

1

full storage
optimized

1

10 3 10 4 10 5 10 6
10 0

10 1

10 2

10 3

DOF

se
co

nd
s

full storage
optimized

1

1

Figure 11: Comparison between the full storage and optimized implementations. The plots show the number of
doubles stored in the global matrix vs the number of degrees of freedom (left) and the computational time invested
in the filling and assembly of the global matrix vs the number of degrees of freedom (right).

5. Conclusions

We have presented two optimization procedures to mitigate two fundamental bottlenecks
in Galerkin meshfree methods: matrix assembly and basis functions storage. We have shown
how the sparse structure creation and filling of the system matrix become critical in a mesh-
free context when either the support size of the basis functions or the number of integration
points increases. We have introduced a simple coarse-graining procedure for matrix structure
creation and filling, where we change from an integration point perspective to one based on
cells/elements. As a result of this optimization, the dependence of the computational time on
the number of integration points is completely severed in the sparse structure creation and dra-
matically decreased in the matrix assembly. We tested the new implementation on a 2D heat
diffusion PDE, speeding-up ten times the structure creation and five times the filling in the
case of twelve Gauss points and γ = 0.8. Furthermore, our analysis of a scalar 2D problem
suggests that the connectivity coarsening procedure should become particularly effective in 3D
vectorial boundary-value problems. Additionally, a compressed memory storage for LME ap-
proximants has been introduced to alleviate memory requirements. We have shown how this
methodology can recover with minimal computational overhead the basis functions, gradients
and Hessians that are repeatedly required in large-scale nonlinear or evolution problems, hence
reducing drastically the amount of memory by 20−fold for a scalar fourth-order PDE in 2D.

Further research in Galerkin meshfree methods should focus on tridimensional problems
and the study of proper parallelization algorithms for supercomputing. We have successfully
parallelized the presented techniques using state-of-the-art scientific codes such as PETSc (portable,

16

extensible toolkit for scientific computation library, [42]) and ParMetis [43] for reordering and
partitioning. Our current experience on a supercomputing facility further highlights the im-
portance of optimizations such as those presented here in large-scale vectorial problems in 3D.
Models showing an intrinsic high computational cost such as the phase-field approaches can par-
ticularly benefit from this concept due to the easy parallelization of the algorithms presented.
The approximation of phase-field models with LME in biomembrane dynamics [30, 31] and
fracture mechanics [33, 34] are successful examples of these optimization procedures.

Acknowledgments

We acknowledge the support of the European Research Council under the European Commu-
nity’s 7th Framework Programme (FP7/2007-2013)/ERC grant agreement nr 240487, and of
the Ministerio de Ciencia e Innovación (DPI2011-26589). CP acknowledges FPI-UPC Grant
and FPU Ph. D. Grant (Ministry of Science and Innovation, Spain).

17

Appendix A. Optimal storage of local maximum-entropy approximants

We review here the calculation of local maximum-entropy (LME) basis functions and their
derivatives. We represent spatial gradients of scalar functions by ∇, and we denote by D f (x) the
matrix of partial derivatives for vector-valued functions. The subindexes a and b refer to nodes.
Summation is not implied for repeated node indices (see [20, 23, 26] for further explanation).

Let X be a set of N scattered nodes X = {x1, x2, . . . , xN} ⊂ Rd, where d = 1, 2, 3 is the spatial
dimension, and their associate set of locality parameters {β1, β2, . . . , βN} ⊂ R. Given a point x,
recall that the primal listNX

x contains the indices of the nodes affecting x. The evaluation of the
basis function corresponding to the nodal point a is computed as

pa(x) =
exp[−βa|x − xa|2 + λ∗ · (x − xa)]

Z(x)
, (A.1)

where Z(x) is a partition function

Z(x) =
∑

a∈NX
x

exp[−βa|x − xa|2 + λ∗ · (x − xa)],

and the Lagrange multiplier λ∗ is the minimizer of the cost function ln Z(x, λ) [20], that is

λ∗(x) = arg min
λ∈Rd

ln Z(x, λ).

The first spatial derivatives of the basis functions (gradient) are computed as [20, 23]

∇pa(x) = pa

[
rβ − Ma(x − xa)

]
∈ Rd, (A.2)

where

rβ(x) = 2
∑

b∈NX
x

βb pb(x− xb) ∈ Rd, Ma = 2βaI−Dλ ∈ Rd×d, Dλ(x) =
(
Jβ − I

)
J−1 ∈ Rd×d,

Jβ(x) = 2
∑

b∈NX
x

βb pb (x− xb)⊗ (x− xb) ∈ Rd×d, and J(x) =
∑

b∈NX
x

pb(x− xb)⊗ (x− xb) ∈ Rd×d.

The second spatial derivatives of the basis functions (Hessian matrix) can be written as [26]

Hpa(x) = pa

[
rβ − Ma(x − xa)

]
⊗

[
rβ − Ma(x − xa)

]

+ pa

[
rβ ⊗ rβ + rβ ⊗ ja + ja ⊗ rβ +

(
rβ · ja

)
I
]

+ pa

[
2(β̄ − βa)I − Q − ja · T

]
∈ Rd×d,

(A.3)

where

ja = J−1(x − xa) ∈ Rd, Q(x) =
∑

b∈NX
x

pb Mb(x − xb) ⊗ Mb(x − xb) ∈ Rd×d,

β̄(x) =
∑

b∈NX
x

βb pb ∈ R, and T(x) =
∑

b∈NX
x

pb(x − xb) ⊗ Mb(x − xb) ⊗ Mb(x − xb) ∈ Rd×d×d.

18

Appendix B. Quantification of memory usage

We quantify here the memory usage for two different strategies to store local maximum-
entropy basis functions and their derivatives: the full storage and the optimal or compressed
storage methods.

The basis functions are usually computed and stored in memory for a given a set of L
quadrature points {y1, y2, . . . , yL} ⊂ Rd and the associated set of primal lists {NX

y1
,NX

y2
, . . . ,NX

yL
}

(see Section 2). By defining as nk = |NX
yk
| the cardinality corresponding to the primal list of the

quadrature point yk, we can construct the set of cardinalities {n1, n2, . . . , nL} ⊂ R. To simplify
the calculations, we define the mean cardinality as n̄ = (

∑L
k=1 nk)/L.

The full storage (FS) method demands a massive usage of memory because basis func-
tions and first and second derivatives associated to all the nodal points, and evaluated at all
the quadrature points, need to be stored in memory. The calculation of memory usage is
straightforward from the analysis of Eqs. A.1, A.2 and A.3 (see Table B.2 for a summary):
MFS = L · n̄ · (1 + d + d(d + 1)/2) = L · n̄ ·

(
1 + 3

2d + 1
2d2

)
doubles, where here and elsewhere

we exploit the symmetry of matrices (here the Hessian) to reduce storage. On the other hand,
the optimal or compressed storage (OS) method only requires the storage of some specific vari-
ables associated to the quadrature points. We quantify the memory usage of this method in
Table B.2: MOS = L ·

(
2 + 7

2d + 2d2 + 1
2d3

)
≈ L · (2 + d) ·

(
1 + 3

2d + 1
2d2

)
doubles. As the mean

cardinality is regularly much greater than the spatial dimension, i.e., n̄ � (2 + d), from the ratio
MFS /MOS = n̄/(2 + d) we can conclude that the memory usage decreases significantly when
the compressed storage technique is used.

Appendix C. Data structure and specialized algorithms

We detail here the data structures and algorithms proposed to handle more efficiently sparse
matrices in the context of meshfree methods. The data structures are specifically designed
to store the neighborhood index sets for particular “entities” (elements, nodes, or quadrature
points). The algorithms described are responsible for the creation of the sparse matrix structure
and the assembly process.

Appendix C.1. Data structure to store neighbor lists
The data structure to store neighbor lists is inspired in the compressed sparse row storage

format (see Section 2) and consists of two arrays, one indicating the number of neighboring
points to an entity (pointer array), and the other containing the index or identification number
of each one of these points (index array). Depending on the kind of assembly process, we need
to construct at least two of the following four neighborhood index sets:

• Primal lists: set of neighboring nodes to each quadrature point. These lists, stored in
the arrays is n and js n, are required for the assembly process based on a loop over the
quadrature points (see Section 2).

19

Table B.2: Quantification of memory usage for two methods that store local maximum-entropy basis functions and
their derivatives. The optimal or compressed storage (OS) technique needs approximately L·(2+d)·

(
1 + 3

2 d + 1
2 d2

)

doubles, while the full storage (FS) method demands L · n̄ ·
(
1 + 3

2 d + 1
2 d2

)
doubles, where L is the number of

quadrature points, d the spatial dimension, and n̄ � (2 + d) the mean cardinality of the primal lists. The ratio
MFS /MOS shows that memory usage decreases significantly when the compressed storage technique is used.

Full storage Optimal storage
Variable Memory usage Variable Memory usage

Basis functions
pa L · n̄ Z(x) L

λ(x) L · d
First spatial derivatives

∇pa L · n̄ · d rβ(x) L · d
Dλ(x) L · d · (d + 1)/2

Second spatial derivatives

Hpa L · n̄ · d · (d + 1)/2 β̄(x) L
J(x) L · d · (d + 1)/2
Q(x) L · d · (d + 1)/2
T(x) L · d · d · (d + 1)/2

Total memory usage MFS = L · n̄ ·
(
1 + 3

2d + 1
2d2

)
MOS = L ·

(
2 + 7

2d + 2d2 + 1
2d3

)

n̄ � (2 + d) MOS ≈ L · (2 + d) ·
(
1 + 3

2d + 1
2d2

)

Comparison MFS /MOS ≈ n̄/(2 + d) � 1

20

• Dual lists: set of the neighboring quadrature points to each nodal point (see Section 2 for
details). These lists, stored in the arrays in s and jn s, are dual to the primal lists.

• Lists of the neighboring nodal points to each cell/element, stored in the arrays ie n and
je n. These sets, defined in Section 3.1, are needed for the assembly process based on a
loop over the cell/elements.

• Lists of the neighboring cell/elements to each nodal point (arrays in e and jn e). These
lists are dual to those contained in the set of arrays ie n and je n.

We use here the primal lists to explain how the information of the neighborhood index
sets is stored in the arrays pointer array and index array, which in this work are respectively
referred as is n and js n. Given a set of L quadrature points {y1, y2, . . . , yL} ⊂ Rd and the
associated set of primal lists {NX

y1
,NX

y2
, . . . ,NX

yL
}, where d is the spatial dimension, NX

yk
= {a ∈

{1, 2, ..,N} | pa(yk) > Tol0} the primal list for the quadrature point yk, N the total number of
nodes, Tol0 a numerical tolerance, and pa(yk) the evaluation at the point yk of the basis function
corresponding to the node a, the information stored in the arrays is the following:

• is n: the component p + 1 of this array is defined as is n(p + 1) =
∑p

k=1 |NX
yk
|. In other

words, the element (or position) p + 1 of the array contains the summation of the cardi-
nalities of the primal lists associated with the first p quadrature points. Note that the first
component is always zero and the length of the array is dim(is n) = L + 1.

• js n: this array, which stores consecutively in memory all the primal lists, is defined as
js n = (NX

y1
,NX

y2
, . . . ,NX

yL
). The length of the array is dim(js n) =

∑L
k=1 |NX

yk
|, where the

cardinality can be different for each quadrature point. Note that the order of the quadrature
points is important and, in general, dim(js n) � N · L.

Appendix C.2. Algorithms for matrix structure creation and assembly process
The algorithms implemented to create the sparse matrix structure and the assembly process

are presented here in a C/C++ pseudo-code (declarations are left out for the sake of clarity).
The three routines detailed in the subsequent sections are:

• CreateElementBasicStructure1D(): this algorithm creates the arrays ia1 and ja1 of the
sparse matrix structure for the case in which the physical field is scalar. The neighbor
lists is n and js n are used in the method based on a loop over the quadrature points, and
the lists ie n, je n in the cell/element scheme.

• CreateStructureND(): extension of the previous algorithm to the n-dimensional case, i.e.,
when the physical field is vectorial. The arrays created are denoted by ia and ja.

• FillStructureND(): algorithm to fill the array an by executing the operations implemented
in the pointer function ∗p f unction. The arrays ia and ja are needed in the assembly
process to loop over the rows and columns of the sparse matrix.

21

Appendix C.2.1. CreateElementBasicStructure1D()

/* 1. Method based on a loop over the quadrature points */

// Input data:

// - is n and js n: lists of the neighboring nodes to the quadrature points

// - in s and jn s: lists of the neighboring quadrature points to the nodal points

// Creation of list ia1 for the case in which the physical field is scalar

iwa=new int[nPts]; // nPts: number of nodal points

for (i=0;i<nPts;i++) iwa[i]=0; // auxiliary arrays

sumrow=0; l ia1=nPts+1; ia1=new int[nPts+1]; ia1[0]=0; // auxiliary arrays

// loop over matrix rows

for (i=0;i<nPts;i++){
// loop over the neighboring quadrature points to a nodal point

for (j=in s[i];j<in s[i+1];j++){
// loop over the neighboring nodes to a quadrature point

for (k=is n[jn s[j]];k<is n[jn s[j]+1];k++) iwa[js n[k]]=1;

}
// loop over all the nodes

for (kk=0;kk<nPts;kk++){ sumrow+=iwa[kk]; iwa[kk]=0; }
ia1[i+1]=ia1[i]+sumrow;

sumrow = 0;

}

// Creation of list ja1 for the case in which the physical field is scalar

l ja1=ia1[nPts];

ja1=new int[ia1[nPts]];

std::set<int> row list;

std::set<int>::const iterator

// loop over matrix rows

for (i=0;i<nPts;i++){
// loop over the neighboring quadrature points to a nodal point

for (j=in s[i];j<in s[i+1];j++){
// loop over the neighboring nodes to a quadrature point

for (k=is n[jn s[j]];k<is n[jn s[j]+1];k++) row list.insert(js n[k]);

}
sit (row list.begin()),

send(row list.end());

for (kk=0;sit!=send;++sit,kk++) ja1[ia1[i]+kk]=*sit;

row list.clear();

}

22

/* 2. Method based on a loop over cell/elements */

// Input data:

// - ie n and je n: lists of the neighboring nodal points to the elements

// - in s and jn s: lists of the neighboring quadrature points to the nodal points

// Creation of dual lists in e, jn e

in e=new int[nPts+1];

jn e=new int[ie n[nElem]];

for (i=0;i<nPts+1;i++) in s[i]=0;

for (i=0;i<nElem;i++) for (j=ie n[i];j<ie n[i+1];j++) in e[je n[j]+1]+=1;

for (i=0;i<nPts;i++) in e[i+1]+=in e[i];

count=new int[nPts];

for (i=0;i<nPts;i++) count[i]=0;

// loop over elements

for (i=0;i<nElem;i++) {
// loop over the neighboring nodes to an element

for (j=ie n[i];j<ie n[i+1];j++){
jn e[in s[je n[j]]+count[je n[j]]]=i;

count[je n[j]]+=1;

}
}

// Creation of list ia1 for the case in which the physical field is scalar

iwa=new int[nPts];

for (i=0;i<nPts;i++) iwa[i]=0;

sumrow=0;

l ia1=nPts+1; ia1=new int[nPts+1]; ia1[0]=0;

// loop over the rows

for (i=0;i<nPts;i++){
// loop over the neighboring elements to a node

for (j=in e[i];j<in e[i+1];j++){
pos=ie n[jn e[j]];

for (k=pos;k<ie n[jn e[j]+1];k++) iwa[je n[k]]=1;

}
for (kk=0;kk<nPts;kk++){

sumrow+=iwa[kk];

iwa[kk]=0;

}
ia1[i+1]=ia1[i]+sumrow;

23

}

// Creation of list ja1 for the case in which the physical field is scalar

l ja1=ia1[nPts];

ja1=new int[ia1[nPts]];

std::set<int> row list;

std::set<int>::const iterator

// loop over the rows

for (i=0;i<nPts;i++){
// loop over the neighboring elements to a node

for (j=in e[i];j<in e[i+1];j++){
pos=ie n[jn e[j]];

for (k=pos;k<ie n[jn e[j]+1];k++) row list.insert(je n[k]);

}
sit (row list.begin()),

send(row list.end());

for (kk=0;sit!=send;++sit,kk++) ja1[ia1[i]+kk]=*sit;

row list.clear();

}

Appendix C.2.2. CreateStructureND()

l_ia=(l_ia1-1)*nDim+1;

ia=new int[l_ia];

l_ja=l_ja1*nDim*nDim;

ja=new int[l_ja];

an=new double[l_ja]; // matrix array

// Creation of ia for the case in which the physical field is vectorial

ia[0]=0;

for (i=0;i<l_ia1-1;i++){
size=ia1[i+1]-ia1[i];

for (j=0;j<nDim;j++) ia[nDim*i+1+j]=ia[nDim*i]+(j+1)*(size*nDim);

}

// Creation of ja for the case in which the physical field is vectorial

for (i=0;i<l_ia1-1;i++){
size=ia1[i+1]-ia1[i];

for (j=0;j<size;j++){
siseJ=nDim*ja1[ia1[i]+j];

for (k=0;k<nDim;k++){
for (kk=0;kk<nDim;kk++) ja[ia[nDim*i+k]+(nDim*j+kk)]=siseJ+kk;

}

24

}
}

Appendix C.2.3. FillStructureND()

/* 1. Method based on a loop over the quadrature points */

M=new double[nDim*nNNMax*nDim*nNNMax]; // quadrature point local matrix

for (k=0;k<sPts;k++){ // loop over quadrature points (sPts is the number of Gauss points)

size=is_n[k+1]-is_n[k];

for (i=0;i<nDim*nNNMax*nDim*nNNMax;i++) M[i]=0.0;

for (i=0;i<size;i++){ // loop over neighbors

for (j=0;j<size;j++){ // loop over neighbors

for (ii=0;ii<nDim*nDim;ii++) A[ii]=0.0;

(*pfunction)(A,parameters,shape_functions); // operation --> get matrix A

// fill local matrix M

for (ii=0;ii<nDim;ii++)

for (jj=0;jj<nDim;jj++)

M[(nDim*i+ii)*(size*nDim)+(nDim*j)+jj]=A[ii*nDim+jj];

}
}

}

// fill global sparse matrix an with quadrature point contribution

rows=nDim*size;

for (i=0;i<rows;i++){
if (symmetric) j_ini=i; // symmetric

else j_ini=0;

inc_i=i%nDim;

base_row=(int)(i/nDim); // floor row

genrow=js_n[is_n[k]+base_row]*nDim+inc_i;

for (j=j_ini;j<rows;j++){
nc_j=j%nDim;

base_col=(int)(j/nDim); // floor row

gencol=js_n[is_n[k]+base_col]*nDim+inc_j;

for (kk=ia[genrow];kk<ia[genrow+1];kk++){
if (ja[kk]==gencol){

an[kk]+=M[i*rows+j];

break;

}
}

25

}
}

/* 2. Method based on a loop over cell/elements */

M=new double[nDim*nNNMax*nDim*nNNMax]; // cell/element local matrix

for (k=0;k<nElem;k++){ // loop over elements

size=ie_n[k+1]-ie_n[k];

for (i=0;i<nDim*nNNMax*nDim*nNNMax;i++) M[i]=0.0;

for (i=0;i<size;i++){ // loop over neighbors

for (j=0;j<size;j++){ // loop over neighbors

for (ii=0;ii<nDim*nDim;ii++) A[ii]=0.0;

(*pfunction)(A,parameters,shape_functions); // operation --> get matrix A

// fill local matrix

for (ii=0;ii<nDim;ii++)

for (jj=0;jj<nDim;jj++)

M[(nDim*i+ii)*(size*nDim)+(nDim*j)+jj]=A[ii*nDim+jj];

}
}

}

// fill global sparse matrix an with quadrature point contribution

rows=nDim*size;

for (i=0;i<rows;i++){
if (symmetric) j_ini=i; // symmetric

else j_ini=0;

inc_i=i%nDim;

base_row=(int)(i/nDim); // floor row

genrow=je_n[ie_n[k]+base_row]*nDim+inc_i;

for (j=j_ini;j<rows;j++){
nc_j=j%nDim;

base_col=(int)(j/nDim); // floor row

gencol=je_n[ie_n[k]+base_col]*nDim+inc_j;

for (kk=ia[genrow];kk<ia[genrow+1];kk++){
if (ja[kk]==gencol){

an[kk]+=M[i*rows+j];

break;

}
}

}

26

}

27

References

1. Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., Krysl, P.. Meshless methods:
An overview and recent developments. Computer Methods in Applied Mechanics and
Engineering 1996;139(1):3–47.

2. Li, S., Liu, W.. Meshfree and particle methods and their applications. Applied Mechanics
Reviews 2002;55(1):1–34.

3. Fries, T., Matthies, H.. Classification and overview of meshfree methods. Tech. Rep.; In-
stitute of Scientific Computing, Technical University Braunschweig, Germany; July 2004.

4. Huerta, A., Belytschko, T., Fernández-Méndez, S., Rabczuk, T.. Meshfree Meth-
ods; vol. 1 of Encyclopedia of Computational Mechanics. E. Stein and R. de Borst and
T.J.R. Hughes (eds.); chap. 10. John Wiley & Sons, Ltd.; 2004, p. 279–309.

5. Fasshauer, G.. Meshfree Methods; chap. 2. Handbook of Theoretical and Computa-
tional Nanotechnology. M. Rieth and W. Schommers (eds.). American Scientific Publish-
ers; 2006, p. 33–97.

6. Nguyen, V.P., Rabczuk, T., Bordas, S., Duflot, M.. Meshless methods: A review
and computer implementation aspects. Mathematics and Computers in Simulation 2008;
79(3):763–813.

7. Chen, J., Pan C.and Wu, C., Liu, W.. Reproducing kernel particle methods for large
deformation analysis of nonlinear structures. Computer Methods in Applied Mechanics
and Engineering 1996;139:195–227.

8. Chen, J., Pan, C., Rogue, C., Wang, H.. A lagrangian reproducing kernel particle
method for metal forming analysis. Computational Mechanics 1998;22:289–307.

9. Li, B., Habbal, F., Ortiz, M.. Optimal transportation meshfree approximation schemes
for fluid and plastic flows. International Journal for Numerical Methods in Engineering
2010;83(12):1541–1579.

10. Combe, U., Korn, C.. An adaptive approach with the element-free-galerkin method.
Computer Methods in Applied Mechanics and Engineering 1998;162:203–222.

11. Duarte, C., Oden, J.. An h–p adaptive method using clouds. Computer Methods in
Applied Mechanics and Engineering 1996;139:237–262.

12. Dolbow, J., Belytschko, T.. Numerical integration of the galerkin weak form in meshfree
methods. Computational Mechanics 1999;23:219–230.

13. Babuška, I., Banerjee, U., Osborn, J., Li, Q.. Quadrature for meshless methods. Inter-
national Journal for Numerical Methods in Engineering 2008;76:1434–1470.

28

14. Fernández-Méndez, S., Huerta, A.. Imposing essential boundary conditions in mesh-
free methods. Computer Methods in Applied Mechanics and Engineering 2004;193(12–
14):1257–1275.

15. Monaghan, J.. An introduction to SPH. Computer Physics Communications 1988;48:89–
96.

16. Liu, W., Jun, S., Zhang, Y.. Reproducing kernel particle methods. International Journal
for Numerical Methods in Fluids 1995;20:1081–1106.

17. Melenk, J., Babuška, I.. The partition of unity finite element method : Basic theory and
applications. Computer Methods in Applied Mechanics and Engineering 1996;139(1–
4):289–314.

18. Belytschko, T., Lu, Y., Gu, L.. Element free Galerkin methods. International Journal
for Numerical Methods in Engineering 1994;37:229–256.

19. Sukumar, N.. Construction of polygonal interpolants: a maximum entropy approach.
International Journal for Numerical Methods in Engineering 2004;61(12):2159–2181.

20. Arroyo, M., Ortiz, M.. Local maximum-entropy approximation schemes: a seamless
bridge between finite elements and meshfree methods. International Journal for Numeri-
cal Methods in Engineering 2006;65(13):2167–2202.

21. Sukumar, N., Malsch, E.. Recent advances in the construction of polygonal finite element
interpolants. Archives of Computational Methods in Engineering 2006;13(1):129–163.

22. Sukumar, N., Wright, R.. Overview and construction of meshfree basis functions: From
moving least squares to entropy approximants. International Journal for Numerical Meth-
ods in Engineering 2007;70(2):181–205.

23. Rosolen, A., Millán, D., Arroyo, M.. On the optimum support size in meshfree methods:
a variational adaptivity approach with maximum entropy approximants. International
Journal for Numerical Methods in Engineering 2010;82(7):868–895.

24. Ullah, Z., Coombs, W., Augarde, C.. An adaptive finite element/meshless coupled
method based on local maximum entropy shape functions for linear and nonlinear prob-
lems. Computer Methods in Applied Mechanics and Engineering 2013;267:111–132.

25. Hale, J., Baiz, P.. A locking-free meshfree method for the simulation of shear-deformable
plates based on a mixed variational formulation. Computer Methods in Applied Mechanics
and Engineering 2012;241-244:311–322.

29

26. Millán, D., Rosolen, A., Arroyo, M.. Thin shell analysis from scattered points with
maximum-entropy approximants. International Journal for Numerical Methods in Engi-
neering 2011;85(6):723–751.

27. Millán, D., Rosolen, A., Arroyo, M.. Nonlinear manifold learning for meshfree finite
deformation thin shell analysis. International Journal for Numerical Methods in Engi-
neering 2013;93(7):685–713.

28. Nissen, K., Cyron, C., Gravemeier, V., Wall, W.. Information-flux method: a meshfree
maximum-entropy petrov-galerkin method including stabilised finite element methods.
Computer Methods in Applied Mechanics and Engineering 2012;241-244:225–237.

29. Wu, C., Young, D., Hong, H.. Adaptive meshless local maximum-entropy finite element
method for convection-diffusion problems. Computational Mechanics 2014;53:189–200.

30. Rosolen, A., Peco, C., Arroyo, M.. An adaptive meshfree method for phase-field models
of biomembranes. Part I: approximation with maximum-entropy approximants. Journal
of Computational Physics 2013;249:303–319.

31. Peco, C., Rosolen, A., Arroyo, M.. An adaptive meshfree method for phase-field models
of biomembranes. Part II: a Lagrangian approach for membranes in viscous fluids. Journal
of Computational Physics 2013;249:320–336.

32. Amiri, F., Anitescu, C., Arroyo, M., Bordas, S., Rabczuk, T.. XLME interpolants,
a seamless bridge between XFEM and enriched meshless methods. Computational Me-
chanics 2014;53:45–57.

33. Amiri, F., Millán, D., Shen, Y., Rabczuk, T., Arroyo, M.. Phase-field modeling
of fracture mechanics in linear thin shells. Theoretical and Applied Fracture Mechanics
2014;69:102–109.

34. Li, B., Peco, C., Millán, D., Arias, I., Arroyo, M.. Phase-field modeling and simula-
tion of fracture in brittle materials with strongly anisotropic surface energy. International
Journal for Numerical Methods in Engineering 2014;:DOI: 10.1002/nme.4726.

35. Arroyo, M., Ortiz, M.. Meshfree Methods for Partial Differential Equations III; vol. 57 of
Lecture Notes in Computational Science and Engineering; chap. Local Maximum-Entropy
Approximation Schemes. Springer; 2007, p. 1–16.

36. Du, Q., Gunzburger, M., Ju, L.. Meshfree, probabilistic determination of point sets and
support regions for meshless computing. Computer Methods in Applied Mechanics and
Engineering 2002;191(13-14):1349–1366.

37. Bradford Barber, C., Dobkin, D.P., Huhdanpaa, H.. The quickhull algorithm for convex
hulls. ACM Transactions on Mathematical Software 1996;22:469–483.

30

38. Mount, M., Arya, S.. A library for approximate nearest neighbor searching. http:

//www.cs.umd.edu/~mount/ANN/; 2010.

39. Eijkhout, V.. Distributed sparse data structures for linear algebra operations. Technical
Report CS 92-169; Computer Science Department, University of Tennessee; 1992.

40. Saad, Y.. Iterative Methods for Linear Systems. PWS Publishing, Boston; 1996.

41. Borden, M., Hughes, T., Landis, C., Verhoosel, C.. A higher-order phase-field model
for brittle fracture: Formulation and analysis within the isogeometric analysis framework.
Computer Methods in Applied Mechanics and Engineering 2014;273:100–118.

42. Balay, S., Brown, J., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M.G.,
et al. Portable, extensible toolkit for scientific computation. http://www.mcs.anl.gov/
petsc; 2013.

43. Karypis, G., Kumar, V.. Metis-ParMetis: Unstructured Graph Partitioning and Sparse
Matrix Ordering System, Version 4.0.3. http://www.cs.umn.edu/~metis; 2009.

31

Appendix D
Meshfree Parallel Algorithms

Meshfree Parallel Algorithms 211

The algorithms implemented to handle the matrix assembly in parallel are pre-

sented here in a C/C++ and PETSc pseudo-code (declarations are left out for the

sake of clarity). We limit ourselves to the routines detailed in the subsequent sections:

• CreateExtendedConnectivity(): this algorithm takes the local connectivity lists

(is n, js n) of each process integration points set and extend them with the

communication bands, obtaining is n ex and js n ex. In this way every process

will be able to locally compute the non-zero positions and create a local sparse

matrix structure in one dimension.

• CreateSructureDimOne(): generates in parallel ia1 and ja1 of the sparse matrix

structure for the case in which the physical field is scalar. The neighbor lists

is n ex and js n ex are used in the method based on a loop over the quadrature

points, and the lists ie n ex, je n ex in the cell/element scheme.

• CreateStructureDim(): extension of the previous algorithm to the n-dimensional

case, i.e., when the physical field is vectorial. The arrays created are denoted

by ia and ja.

• FillStructureDimN(): algorithm to fill the matrix A by executing the operations

implemented in the pointer function ∗pfunction. The arrays ia and ja are

needed in the assembly process to loop over the rows and columns of the sparse

matrix. The space is exactly preallocated through PETSc routines.We include

the algorithm to fill the values corresponding to the Lagrange multipliers in the

global matrix.

CreateExtendedConnectivity()

// Input data:

// - is n and js n: lists of the neighboring nodes to the quadrature points

Meshfree Parallel Algorithms 212

// - l_is n: length of is n list

// - low, high: range of nodes/rows which owns the process

// - map_part: the global mapping from node to partition

general_count = new int [num_procs];

// the integration point info is to be sent to a particular process (1-yes 0-no)

count_is_aux= new int [num_procs];

// cumulative number of integration points sent to each process

block_count= new int [num_procs];

// prevents from double counting an integration point.

for (i=0;i<num_procs;i++){general_count[i]=0;count_is_aux[i]=0;}

// counting extra integration points for each process

for (i=0;i<l_is_n-1;i++){// loop in integration points

for (k=0;k<num_procs;k++){block_count[k]=0;}

for (j=is_n[i];j<is_n[i+1];j++){// loop in nodes

node_proc=map_part[js_n[j]];

if (((js_n[j]<low) || (js_n[j]>=high)) && (block_count[node_proc]==0)){

general_count[node_proc]=1;

block_count[node_proc]=1;

count_is_aux[node_proc] += 1;

}

}

}

// integration list for each processor

count_is= new int [num_procs+1]; count_is[0]=0;

for (i=1;i<num_procs+1;i++) count_is[i] = count_is[i-1] + count_is_aux[i-1];

Meshfree Parallel Algorithms 213

// cumulative count

count_js=new int [count_is[num_procs]];

counter=new int[num_procs];

for (i=0;i<num_procs;i++) counter[i]=0;// fill count_js

for (i=0;i<l_is_n-1;i++){// loop integration points

for (k=0;k<num_procs;k++) block_count[k]=0;

for (j=is_n[i];j<is_n[i+1];j++){// loop nodes

node_proc=map_part[js_n[j]];

if (((js_n[j]<low) || (js_n[j]>=high)) && (block_count[node_proc]==0)){

block_count[node_proc]=1 ;

count_js[count_is[node_proc]+counter[node_proc]] = i;

counter[node_proc] +=1;

}

}

}

// count_is, count_js send to each processor the correspondent line of is_n,js_n

// allocate space for count_is

sdispls=new int[num_procs];

rdispls=new int[num_procs];

recv_cnts=new int[num_procs];

MPI_Alltoall(count_is_aux, 1, MPI_INT,recv_cnts, 1, MPI_INT, PETSC_COMM_WORLD);

//each process knows now how many integration points will come from every process

int l_is_n_loc=0;

for (i=0;i<num_procs;i++) l_is_n_loc += recv_cnts[i];

is_n_loc=new int[l_is_n_loc];

// store of number of nodes coming for every integration point received

// create is_n_aux with number of nodes seen by every integration point

int l_is_n_aux, integration_p, counter_int;

l_is_n_aux=count_is[num_procs];//number of integration points to send

Meshfree Parallel Algorithms 214

is_n_aux=new int[l_is_n_aux];

counter_int=0;

for (i=0;i<num_procs;i++){

for (j=count_is[i];j<count_is[i+1];j++){//points in process

integration_p=count_js[j];

is_n_aux[counter_int] = is_n[integration_p+1]-is_n[integration_p];

counter_int++;

}

}

// send info regarding is_n_aux

for (i=0;i<num_procs;i++) sdispls[i]=count_is[i];

rdispls[0]=0;

for (i=1;i<num_procs;i++) rdispls[i]=rdispls[i-1]+recv_cnts[i-1];

MPI_Alltoallv(is_n_aux, count_is_aux, sdispls,MPI_INT,

is_n_loc,recv_cnts,rdispls, MPI_INT, PETSC_COMM_WORLD);

//create js_n_aux

int l_js_n_aux=0;

for (i=0;i<l_is_n_aux;i++) l_js_n_aux += is_n_aux[i];

js_n_aux=new int[l_js_n_aux];

counter_int=0;

for (i=0;i<num_procs;i++){//process

for (j=count_is[i];j<count_is[i+1];j++){// local integration points

integration_p=count_js[j];

for (k=is_n[integration_p];k<is_n[integration_p+1];k++){// local nodes

js_n_aux[counter_int] = js_n[k];//aadimos lista de nodos

counter_int++;

}

}

}

Meshfree Parallel Algorithms 215

// send info regarding js_n_aux

int l_js_n_loc=0;

for (i=0;i<l_is_n_loc;i++) l_js_n_loc += is_n_loc[i];

js_n_loc=new int[l_js_n_loc];

count_is_n_aux=new int[num_procs];

for (i=0;i<num_procs;i++) count_is_n_aux[i]=0;

for (i=0;i<num_procs;i++){

for (j=count_is[i];j<count_is[i+1];j++){// local integration points

count_is_n_aux[i] += is_n_aux[j];

}

}

sdispls[0]=0;

for (i=1;i<num_procs;i++) sdispls[i]= sdispls[i-1] + count_is_n_aux[i-1];

recv_cnts_ac=new int[num_procs+1];

recv_cnts_ac[0]=0;

for (i=1;i<num_procs+1;i++) recv_cnts_ac[i] = recv_cnts_ac[i-1]+recv_cnts[i-1];

count_is_n_loc=new int[num_procs];

for (i=0;i<num_procs;i++) count_is_n_loc[i]=0;

for (i=0;i<num_procs;i++) {

for (j=recv_cnts_ac[i];j<recv_cnts_ac[i+1];j++) count_is_n_loc[i] += is_n_loc[j];

}

rdispls[0]=0;

for (i=1;i<num_procs;i++) rdispls[i]= rdispls[i-1] + count_is_n_loc[i-1];

MPI_Alltoallv(js_n_aux, count_is_n_aux, sdispls,MPI_INT,

js_n_loc, count_is_n_loc, rdispls, MPI_INT, PETSC_COMM_WORLD);

// with is_n_loc and js_n_loc extend the original lists

// is_n_ex dimension and fill

l_is_n_ex = l_is_n + l_is_n_loc;

is_n_ex=new int [l_is_n_ex];

Meshfree Parallel Algorithms 216

for (i=0;i<l_is_n;i++) is_n_ex[i]=is_n[i];

for (i=l_is_n;i<l_is_n_ex;i++) is_n_ex[i] = is_n_ex[i-1] + is_n_loc[i-l_is_n];

// js_n_ex dimension and fill

l_js_n_ex = l_js_n + l_js_n_loc;

js_n_ex=new int [l_js_n_ex];

for (i=0;i<l_js_n;i++) js_n_ex[i]=js_n[i];

for (i=l_js_n;i<l_js_n_ex;i++) js_n_ex[i]=js_n_loc[i-l_js_n];

CreateStructureDimOne()

// Input data:

// - is n ex and js n ex: extended neighbor lists

// - low, high: range of nodes/rows which owns the process

//Creation of ia1

iwa=new int[nPts];

for (i=0;i<nPts;i++) iwa[i]=0;// auxiliar array

l_ia1=loc_nPts+1; ia1=new int[l_ia1]; ia1[0]=0;

ia1_d=new int[l_ia1]; ia1_d[0]=0; ia1_od=new int[l_ia1]; ia1_od[0]=0;

for (i=0;i<loc_nPts;i++){// loop in local rows

for (j=in_s[i];j<in_s[i+1];j++){//integration points

for(k=is_n_ex[jn_s[j]];k<is_n_ex[jn_s[j]+1];k++) iwa[js_n_ex[k]]=1;

}

for (kk=0;kk<low;kk++){sumrow_left += iwa[kk];

iwa[kk]=0;

}

for (kk=low;kk<high;kk++){sumrow_d += iwa[kk];// in-diagonal

iwa[kk]=0;

Meshfree Parallel Algorithms 217

}

for (kk=high;kk<nPts;kk++){sumrow_right += iwa[kk];

iwa[kk]=0;

}

sumrow_od = sumrow_left + sumrow_right;// off-diagonal

sumrow=sumrow_d+sumrow_od;// total

ia1_d[i+1]=ia1_d[i]+sumrow_d;

ia1_od[i+1]=ia1_od[i]+sumrow_od;

ia1[i+1]=ia1[i]+sumrow;

sumrow_left=0; sumrow_right=0; sumrow_d=0; sumrow_od=0; sumrow=0;

}

// Creation of ja1

l_ja1=ia1[loc_nPts];

ja1=new int[l_ja1];

std::set<int> row_list;

for (i=0;i<loc_nPts;i++){// loop in local rows

for (j=in_s[i];j<in_s[i+1];j++){// integration points

for(k=is_n_ex[jn_s[j]];k<is_n_ex[jn_s[j]+1];k++)

row_list.insert(js_n_ex[k]);

}

std::set<int>::const_iterator

sit (row_list.begin()),

send(row_list.end());

kk=0;

for(;sit!=send;++sit) {ja1[ia1[i]+kk]= *sit; kk++;}

row_list.clear();

Meshfree Parallel Algorithms 218

CreateStructureDimN()

// Input data:

// - ia1, ja1: one-dimensional sparse matrix structure

// - low, high: range of nodes/rows which owns the process

// - num_lagrange: number of Lagrange multiplier constraints

l_ia=(l_ia1-1)*nDim+1;

if (myrank==(num_procs-1)) l_ia += num_lagrange;

ia=new int[l_ia];

ia_d=new int[l_ia];

ia_od=new int[l_ia];

// ia

ia[0]=0.0;

for (i=0;i<l_ia1-1;i++){

size=ia1[i+1]-ia1[i];

size_d=ia1_d[i+1]-ia1_d[i];

size_od=ia1_od[i+1]-ia1_od[i];

for (j=0;j<nDim;j++){

ia[nDim*i+1+j]=ia[nDim*i]+(j+1)*(size*nDim);

ia_d[nDim*i+1+j]=ia[nDim*i]+(j+1)*(size_d*nDim);

ia_od[nDim*i+1+j]=ia[nDim*i]+(j+1)*(size_od*nDim);

}

}

// ja

for (i=0;i<l_ia1-1;i++){

size=ia1[i+1]-ia1[i];

for (j=0;j<size;j++){

for (k=0;k<nDim;k++){

Meshfree Parallel Algorithms 219

for (kk=0;kk<nDim;kk++){

ja[ia[nDim*i+k]+(nDim*j+kk)]= nDim*ja1[ia1[i]+j]+kk;

}

}

}

}

int n_cols;

n_cols= nDim*nPts;//basic number of cols

int diff=0;int count;

if (num_lagrange>0){

for (i=0;i<l_ia_aux-1;i++){// in regular matrix lines

diff=0;

row=nDim*low + i;

size_lag=ia[i+1]-ia[i];

diff=size_lag-original_size[i];

if (diff>0){

count=0;

for (j=0;j<num_lagrange;j++){

for (k=0;k<long_lagrange_nodes[j];k++){

if (lagrange_nodes[j][k]==row){

ja[ia[i] + original_size[i] + count]= n_cols + j;

count++;

break;

}

}

}

}

}

Meshfree Parallel Algorithms 220

//add last lines to last process

if (myrank==num_procs-1){

for (j=0;j<num_lagrange;j++){

for (k=0;k<long_lagrange_nodes[j];k++)

ja[ia[l_ia_aux-1 + j] + k] = lagrange_nodes[j][k];

ja[ia[l_ia_aux + j] - 1] = n_cols + j;//add diagonal zero

}

}

}

max_ia=0;

// local maximum ia

for (i=0;i<l_ia-1;i++) if ((ia[i+1]-ia[i])>max_ia) max_ia=ia[i+1]-ia[i];

if (num_procs==1) MatSeqAIJSetPreallocationCSR(A,ia,ja,PETSC_NULL);

else MatMPIAIJSetPreallocationCSR(A,ia,ja,PETSC_NULL);

FillStructureDim()

// Input data:

// - is n and js n: lists of the neighboring nodes to the quadrature points

// - low, high: range of nodes/rows which owns the process

MatZeroEntries(A);

int *global_indexes_M=NULL;

global_indexes_M=new int[nNNMax*nDim];

M=new double [nDim*nNNMax*nDim*nNNMax];

for (k=0;k<sPts;k++){// loop in local integration points

Meshfree Parallel Algorithms 221

//shape functions of integration point

maxent->ComputeBasisFunctions(k);

ps = maxent->GetShapeFunctions();

dps = maxent->GetGradients();

hps = maxent->GetHessians();

size=is_n[k+1]-is_n[k];

for (i=0;i<nDim*nNNMax*nDim*nNNMax;i++) M[i]=0.0;

// initialize to 0.0 for integration point

// Option A: node-to-node operations

for (i=0;i<size;i++)

for (j=0;j<size;j++)

p_g = k;//integration point number

wpos_g[0]=w_s[k];//weight

for (ii=0;ii<sDim;ii++) wpos_g[1 + ii] = x_s[sDim*k + ii];

//coordinates of integration point

sparam for node-to-node operations

sparam[0]=ps[i];

sparam[1]=ps[j];

for (ii=0;ii<sDim;ii++){

sparam[2+ii]=dps[sDim*i+ii];

sparam[2+sDim+ii]=dps[sDim*j+ii];

}

for (ii=0;ii<sDim*sDim;ii++){

sparam[2+2*sDim+ii]=hps[sDim*sDim*i+ii];

sparam[2+2*sDim+sDim*sDim+ii]=hps[sDim*sDim*j+ii];

}

//call to correspondent operation --> get matrix A

for (ii=0;ii<nDim*nDim;ii++) A_g[ii]=0.0;

Meshfree Parallel Algorithms 222

(*pfunction)(A_g,nDim, iparam,dparam, sparam, p_g, wpos_g);

//fill local neighbour matrix M

for (ii=0;ii<nDim;ii++) for (jj=0;jj<nDim;jj++)

M[(nDim*i+ii)*(size*nDim)+(nDim*j)+jj] = A_g[ii*nDim+jj];

}

// Option B: integration point operations

(*pfunction_b)(M, &value_out, iparam, dparam,

x_n, is_n, js_n, ps, dps, hps, p_g, wpos_g);

}

int pos=0;

// fill global sparse matrix an with integration point contribution

// create vector with global positions

int rows=nDim*size;

int row;

for (i=0;i<size;i++){

pos=js_n[is_n[k]+i];//node global

for (j=0;j<nDim;j++) global_indexes_M[nDim*i+j]=nDim*pos+j;

MatSetValues(A,rows,global_indexes_M,rows,global_indexes_M,M,ADD_VALUES);

// send local M matrix directly into the global matrix

if (num_lagrange>0){

int row,col;

// columns in regular rows

for (i=0;i<l_ia_aux-1;i++){

row = nDim*low + i;

for (j=0;j<num_lagrange;j++){

col = nPts*nDim + j;

for (k=0;k<long_lagrange_nodes[j];k++){

if (lagrange_nodes[j][k]== row) {

Meshfree Parallel Algorithms 223

MatSetValues(A,1,&row,1,&col,&lagrange_values[j][k],ADD_VALUES);

break;

}

}

}

}

// last lines

int m_rows;

if (myrank==num_procs-1){

for (i=0;i<num_lagrange;i++){

//insert line

m_rows= nDim*nPts + i ;//basic number of cols + lagrange line

MatSetValues(A,1,&m_rows,long_lagrange_nodes[i],lagrange_nodes[i],

lagrange_values[i],ADD_VALUES);

}

}

MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);

MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);

	Abstract
	Acknowledgments
	Contents
	Introduction and overview
	Approximation of meshfree phase-field models
	Model complexity
	Meshfree methods and the Local Maximum Entropy Approximants

	Phase-field modeling of biomembranes
	An introduction to biomembranes
	Vesicle modeling
	Vesicle statics: equilibrium shapes
	Vesicle dynamics : an adaptive Lagrangian approach
	Lagrangian phase-field model formulation
	Numerical approach
	Numerical results

	Complex biological processes : influence of kinetics and adhesion in vesicle shaping
	Motivation
	Modeling adhesion

	Kinetics and morphogenesis

	High Performance Computing
	Supercomputing: towards an efficient parallel sparse LME environment
	Neighborhood coarsening algorithm
	Compressed meshfree basis functions storage
	Meshfree parallel sparse matrices in PETSc

	A brief code overview

	Other applications
	Stabilization of Stokes equations with LME approximants
	A stabilized formulation for viscoplastic flow in metal forming
	Computational evaluation of the flexoelectric effect in dielectric solids
	Fracture in brittle materials of anisotropic surface energy

	Concluding remarks and future directions
	Conclusions and future directions
	Publications

	References and list of figures
	Appendix A An adaptive meshfree method for phase-field models of biomembranes. Part I: approximation with maximum-entropy approximants.
	Appendix B An adaptive meshfree method for phase-field models of biomembranes. Part II: a Lagrangian approach for membranes in viscous fluids.
	Appendix C Efficient implementation of meshfree Galerkin methods for large-scale problems with an emphasis on maximum entropy approximants.
	Appendix D Meshfree Parallel Algorithms

