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Abstract

Ultracold atomic gases have established themselves as quantum systems, which are clean
and offer a high degree of control over crucial parameters. They are well isolated from
their environment and thus offer the possibility to study coherent many-body dynamics.
This allows, e.g. to address the fundamental question, whether and how an isolated
quantum many-body system can thermalize. In this thesis, we present results regarding
the dynamics of ultracold Fermions with large spin. Fermionic spinor gases are different
from bosonic spinor gases, which have been studied in greater detail the past, because the
Pauli-Principle ensures that many single-particle modes are involved. They also differ
from the typical situation in condensed matter physics, due to both the presence of the
trap and the possibility of having fermions with large (> 1/2) spin. Compared to the
spin-1/2 case, large spin fermions must have one of two possible new properties. Either
they obey an enhanced SU(N) symmetry between all spin states, (this attracted great
interest recently), or they feature spin-changing collisions (and a non-trivial quadratic
Zeeman shift). Here, we address the latter case, which is relevant for alkaline atoms such
as Potassium-40.

When studying the weakly interacting scenario, one can still distinguish three differ-
ent regimes. For extremely weak interactions, the system is in the collisionless regime and
interactions can be taken into account on a mean-field level. For sufficiently strong inter-
actions on the other hand, collisions are expected to ensure local equilibrium, such that
the system is described by hydrodynamic equations of fields like density, magnetization
or temperature, which only depend on position. For the intermediate regime however,
there is no simple description. Moreover, the scattering cross-section for spin-changing
and spin-conserving collisions can be quite different for large-spin fermions, such that a
situation can be found in which the system might be hydrodynamic with respect to one
process but not the other. In this thesis, a semi-classical Boltzmann-type theory with
full spin coherence is developed (and implemented on the machine) that allows one to
interpolate between the collisionless and hydrodynamic regime. Both the presence of the
trap as well as fermions with large spin are included.

This approach goes beyond mean-field theory and corresponds to the intuitive Ansatz
to treat the single-particle dynamics as an open system coupled to the environment given
by all other particles. Our theory is derived from the microscopic Hamiltonian of the
full system and even though it does not allow for an exact treatment, we find good
agreement with experiments performed in the group of Klaus Sengstock at Hamburg
University, using ultracold Potassium.

We begin by investigating the effect of the harmonic trap on a two-component, col-
lisionless system. We find a dynamical mechanism for spin-segregation, the mean-field
driven creation of two domains of opposite magnetization in phase-space, building up
from a spiral spin segregation in the trap. The effect finds a transparent explanation
when introducing the concept of dynamically induced long-range interactions, occurring



when the fast phase-space rotation induced by a strong parabolic trap effectively smears
out the contact interactions.

Further results in this thesis have been achieved in collaboration with the experimen-
tal group of Klaus Sengstock in Hamburg. In the first project, we study the collective
excitations of a trapped four-component Fermi gas. Long-wavelength spin waves (slosh-
ing, breathing, ...) are excited by preparing all atoms in a coherent superposition of
spin states and using a short magnetic field gradient to wind up a phase spiral. During
the subsequent dynamics, the four spin components counter-oscillate in the trap, while
the total density remains constant. The dynamics, including amplitude and frequency,
can be understood quantitatively on a mean-field level by disentangling it into dipolar,
nematic and octupolar spin configurations.

In a further experiment with spin-9/2 fermions, it was found that spin-changing
interactions can lead to collective and coherent oscillations of the spin state of the whole
Fermi sea, living for long times of several seconds. It is found theoretically, that these
giant oscillations are protected from spatial dephasing by dynamically induced long-
range interactions. Also the suppression of such oscillations, observed in the high-density
regime, is identified to be the consequence of incoherent non-forward scattering, beyond
mean-field.

In the last project, we study collision processes in ultracold Potassium in even greater
detail. We find that they can be arranged in three categories: Spin-changing vs. spin-
conserving collisions, processes depending on density vs. processes depending on gradi-
ents of density, and forward vs. lateral scattering. With this categorization, as well as the
exact dependence of each process on scattering lengths and momenta, we can explain and
simulate not only the coherent mean-field driven oscillations, but also relaxation effects
that appear to be incoherent on the single-particle level. For example, in agreement with
experiment, spin-conserving relaxation processes are found to occur much faster than the
redistribution of the particles between different spin states.
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Chapter 1

Introduction

Progress in the field of ultracold atoms in the last decade has established them as valuable
systems, with which physicists can improve their understanding of quantum many-body
systems, especially dynamics. Trapped ultracold atomic systems offer new possibilities to
simulate theoretical models, because they are in general very clean, isolated from their
environment and crucial parameters can be controlled with high accuracy [1–4]. This
control extends over temperature, particle number, interactions to even the dimension-
ality, or more general geometry of the system. Experimental work on the subject ranges
back to early work on superfluidity in liquid Helium [5], while the major breakthrough
was made in the 1990s with the demonstration of Bose-Einstein condensation (BEC) in
Rubidium [6, 7]. Further milestones were the preparation of a degenerate Fermi gas [8]
and the development of optical lattices, with which a variety of problems from solid state
physics can be studied [3].

Research on cold atoms can be roughly divided into two paths. A large proportion
focuses on equilibrium properties of many-body systems, where possibly the most famous
example is the transition from the superfluid phase to the Mott-insulator regime [9].
Other famous lines of work in this field are the BEC-BCS crossover [10, 11] and the
search for itinerant ferromagnetism in strongly interacting Fermi gases [12–15]. Here,
especially large-spin systems are expected to have very rich phase diagrams [16–19]. The
second path is the dynamics of ultracold atomic systems far from equilibrium. Research
on dynamics deals with e.g. transport properties [20, 21], domain and texture formation
[22, 23] and recently the relaxation of such systems after a quench, where it is hoped that
studies of ultracold atoms provide insight on how closed quantum many-body systems
equilibrate [24–30].

In this thesis, we present advances concerning the dynamics of Fermi gases. Tra-
ditionally, the motivation for work on Fermi gases comes from the field of condensed
matter physics, since electrons and 3He atoms both are fermions. However, in ultracold
atoms, situations can occur, which are absent in traditional condensed matter systems
and consequently have not been addressed so far. Electrons are fermions with spin 1/2,
while trapped atoms can have much larger values of spin, such as 40K with spin 9/2
featured in this thesis. The larger spin adds novel properties to the system compared to
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the spin 1/2 case. The magnetic quantum number m of an atom of spin F has 2F + 1

values. In some atoms, mostly alkaline-earths with zero electron spin, this leads to an
enhanced symmetry of SU(N) of the Hamiltonian, where N = 2F + 1 [31–35]. In the
more general case without the SU(N) symmetry, such as it occurs in alkali atoms, in-
teractions of particles will depend on the total spin of the collision partners. Hence,
scattering processes in large-spin systems are described by more than a single scattering
length, depending on the internal state of the colliding atoms. As a direct consequence,
collisions can allow the incoming and outgoing spin states {m1,m2} → {m3,m4} to be
different, which is prohibited in a spin 1/2 system by conservation of total magnetization
M = m1 + m2 = m3 + m4. This has consequences together with the fact that level
splittings induced by a magnetic field are in general not uniform because of the non-
linear Zeeman effect: a large number of different energies and hence time-scales affect
the dynamics of the system, which in turn becomes much more complex than the spin
1/2 case. A second feature of cold atom physics, which is absent in typical condensed
matter systems such as solid states or liquid Helium, is the trap used to confine the
atoms, which in theoretical descriptions can be usually assumed to be harmonic. In
this thesis, we show that the trap can play an important role for the spin dynamics of
ultracold fermions away from the hydrodynamic regime.

Coherent dynamics of large-spin systems has been studied extensively in the case of
Bose Einstein condensates and non-condensed Bose gases [4, 36]. This includes spinor
dynamics, i.e. dynamics of the population of the components of large-spin BEC [37–39]
and thermal Bose gases [40–42] but also spin waves [43, 44]. In the BEC case, such
dynamical effects can be well described theoretically using a multi-component Gross-
Pitaevskii-Equation [45]. The description of such effects is greatly facilitated because
effectively all particles occupy approximately the same spatial mode. In many-body Fermi
systems, the Pauli principle necessarily means, that many spatial modes are occupied.

A fundamental motivation to study dynamics of cold atom systems is their capacity
to vary single parameters with high accuracy and their good isolation from any envi-
ronment. This way, one can engineer non-equilibrium states and study e.g. how the
system equilibrates over time, a process still not fully understood for closed quantum
many-body systems. With the option to manipulate the system with a time-dependent
parameter variation, fundamental non-equilibrium situations can be arranged in cold
atom systems. One can vary a parameter slowly across a quantum phase transition, e.g.
from the ground state of a simple Hamiltonian into a more complex many body state, as
a procedure to reliably generate such states [9, 46–49]. Theoretical methods, which work
fine at equilibrium, are often not valid anymore to describe this situation [27].

Such a phase transition is believed to be described by a quantum mechanical version of
the Kibble-Zurek-Mechanism [26]. The Kibble-Zurek-Mechanism is originally a classical
concept [50, 51], where temperature is the parameter that drives the phase transition. As
the system approaches a critical point, its relaxation time diverges (critical freezing) and
it cannot adiabatically follow the parameter, regardless of how slow it is changed. The
change in the Hamiltonian while the system is frozen will lead to the formation of defects.
Also, sudden quenches induced by rapid parameter variations are possible, an example
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featured in this thesis would be instantaneously switching off a magnetic gradient thus
changing the symmetry of the system. The reaction of a system to such a rapid quench
might manifest in different behavior on several time-scales.

Beyond that, the tunable influence of symmetries and nearly conserved quantities can
be used to create situations, where the system first approaches an approximately steady
state, which is not the true equilibrium, before it eventually thermalizes, a process known
as prethermalization [28, 29, 52].

These cases are very difficult to address using “exact” theoretical many-body methods.
For instance, the Quantum Monte Carlo method does not model dynamics and other well
known techniques such as density matrix renormalization group (DMRG) [53, 54] and
time-evolving block decimation (TEBD) [55] become unstable at long times due to the
linear growth of block entropy and works. Moreover, they can only describe 1D systems
effectively. These examples make it necessary to study non-equilibrium dynamics in
quantum many-body systems in combination with cold atom or ion experiments and
simpler, approximate methods, which give guidance also for longer times [27]. In this
thesis, we develop and apply such an approximate method.

In our approach, we treat he single-particle dynamics as an open system in an en-
vironment, which is given by the other particles. Interactions are taken into account as
binary collisions and separated into the dominating forward scattering and the smaller
non-forward contribution. This leads to a kinetic Boltzmann equation with full spin co-
herence, where the forward scattering leads to a coherent mean-field modification of the
external fields and non-forward collisions produce an incoherent collision integral, which
acts dissipatively on the level of single-particle dynamics. With this approach we can
address weakly interacting system in the collisionless regime, where incoherent collisions
are negligible and coherent dynamics such as collective excitations and spin oscillations
with long lifetimes prevail. We can also explore the intermediate range between the col-
lisionless and the hydrodynamics regimes. While in the hydrodynamic regime, strong
collisions ensure local equilibrium and quantities such as temperature, density, magne-
tization or velocity are functions of position only, this simplification is not valid in the
intermediate regime. We can address a situation, where, due to differences in scatter-
ing lengths, the system may be hydrodynamic with respect to some collision processes,
but not others. This is unique to large-spin systems without SU(N) symmetry, where
several scattering lengths are present and e.g. spin-changing collisions whose scattering
cross section depends on differences of scattering lengths are much weaker than spin-
conserving collisions. In this thesis, our method is applied to experiments performed in
the experimental group of Klaus Sengstock in Hamburg featuring ultracold 40K with spin
9/2 and shows good agreement.

This thesis is divided in two parts. Part I outlines the main methods derived and
implemented in this thesis, in part II we apply these methods to describe large-spin
spin dynamics of trapped Fermi gases. In chapter 3, we first formulate the Hamiltonian
of the system we consider throughout this thesis. We introduce the concept of the
reduced single-particle density matrix and its phase-space representation, the Wigner
quasi-probability distribution function. Towards the end of the chapter, we derive a
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kinetic equation that describes the time-evolution of the system in terms of the Wigner-
function. In this derivation, we employ a mean-field Hartree-Fock approximation and
a semi-classical equation for the phase-space variables, while we keep the full quantum
description of the spin.

In the subsequent chapter 4, we derive the above mentioned Boltzmann method,
which describes interactions beyond the mean field level and generated the mean-field
equation of chapter 3 as a special case. In the Boltzmann method, we start from binary
low-energy collisions of particles with spin, where the change of the two-body density
matrix can be described by the Heisenberg S-matrix. The description is then reduced
by tracing over the second particle and keeping quantum statistics and particle indistin-
guishability into account. We find that this approach leads to a full Boltzmann equation
with a collision term. We find that mean-field equation of chapter 3 corresponds to the
forward scattering part from the S-matrix, while the non-forward contribution leads to
a collision term, which acts dissipatively on the single-particle level.

Chapter 5 is devoted to the different geometries of ultracold atom systems, which we
later describe with our theory. First, while in the previous chapter we derived everything
for the most general 3D case, we repeat the calculation for 1D systems, which can be
achieved in certain experimental setups by applying a very tight confinement to two
dimensions, such that all particles occupy the lowest radial mode, even in the case of
Fermions. Here of note is that in the mean-field case, only the scattering lengths are
rescaled, while for the Boltzmann equation the momentum dependence of the collision
integral is different.

Then we investigate the case of a strong harmonic confinement, where the trap os-
cillation frequency is faster than all relevant internal (interaction induced) dynamics of
the system. In this case, we can formulate a time-averaged equation of motion, in which
the dynamically induced interaction appear as long-range, despite being induced only by
contact interactions. This effective interaction can allow us to completely integrate out
the phase-space part of the equations in one or more dimensions. This will allow us to
justify a further approximation needed for the treatment of 3D systems. We can reduce
the effective dimension of the system, in a sense that kinetic motion is not frozen out in
tightly confined directions, but averaged out by rapid oscillations in the trap, such that
all relevant dynamics appear along the less confined axes. In the case of a tight trap in
all directions, we derive an extremely simplified model for spinor dynamics similar to a
single-mode-approximation employed for spinor BEC.

In chapter 7, we illustrate the effect of the dynamically induced long-range interaction
in a strongly trapped spin 1/2 system in one dimension. We simulate the dynamics of a
situation, where initially all atoms are perfectly spin polarized, and hence non-interacting
and in equilibrium. A rapid quench, induced by a short pulse of a magnetic field gradient
then creates a spiral configuration of spins, with spins polarized in the x-y-plane, but
in different directions depending on their position. This configuration is then suddenly
interacting and far from equilibrium. We show how two domains of magnetization along
the z-axis emerge over time and study the dependence of this effect on parameters. We
find that always two domains of positive and negative magnetization form, irrespective

10



of the number of windings or domains in the x-y-plane of the initial spin spiral. We show
that this effect is a result of dynamically induced long-range interactions.

In the following chapters, we present results obtained in collaboration with the exper-
imental group of Klaus Sengstock in Hamburg, who run an experiment using ultracold
40K, a fermionic species with spin 9/2. In the first joint project, laid out in chapter 8,
we perform the first study of spin waves in a large-spin Fermi gas. Through careful
preparation, we prohibit population of other components and create an effective spin 3/2
gas. This gas is then prepared in a superposition of its four spin states and a short mag-
netic field gradient is applied, to initialize the spin waves. These collective excitations
are characterized by oscillatory motion (breathing, sloshing) of spin-components in the
trap, while the total density distribution remains constant at all times. To reproduce the
oscillation frequencies and amplitudes, we derive a linearized mean-field equation and
obtain good agreement with the experiment. We categorize the spin wave excitations by
expanding the spin state into its scalar, dipole, nematic and octupole components, which
shows why some spin waves are excited easily while others appear only in subleading
order.

In chapter 9, we study long-lived and large-amplitude spin oscillations of a large-spin
Fermi sea. In the experiment it is observed that the system of 40K, now featuring all
10 spin states, exhibits coherent spin-changing dynamics on the time scale of several
seconds. Even more fascinating, all atoms in the trap change their spin collectively,
at first completely unexpected for a Fermi gas where particles occupy different spatial
modes. We identify this effect as a result of the harmonic trap, whose frequencies in
all three directions are higher than the observed frequency of the spin oscillations. We
can apply our results from chapter 5 on the dynamically induced long-range interaction
and show that in this setup it preserves the spatial structure of all spin components and
fully suppresses spatial dephasing expected from a multimode Fermi system. With this,
we reproduce the experimental results in good agreement using a simple single-mode
description. We also investigate the effect of incoherent scattering processes, which are
responsible for the eventual damping of the giant spin oscillations. With this knowledge
we are able to understand another fascinating effect. If the system is prepared in a
magnetically excited spin configuration, small fluctuations induce an instability and drive
it out of this configuration into long-lived oscillations. While this mean-field effect is
expected to get stronger with increased density, above a certain density the system
actually stabilizes, because the rate of incoherent collisions exceeds the coherent dynamics
and projects the system back onto its initial state, as in the quantum Zeno effect.

In chapter 10, we continue the investigation of spin-changing dynamics in the spin
9/2 system of Potassium. Here, we focus on dynamics on a very long time-scale, where
long after coherent spin oscillations are damped out a slow redistribution is observed.
By comparing the time evolution of a coherent and an incoherent spin state, we find
that this effect is the relaxation of the system towards a stationary state with approxi-
mately equal population in all ten spin states. We identify and categorize the scattering
processes responsible for the three main dynamical effects: spin oscillations, their damp-
ing and long-time redistribution. While oscillations are driven by forward spin-changing
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collisions, damping is caused by non-forward spin-conserving collisions, which lead to
a quasi-thermalization of each two-component ±m subsystem. The slow redistribution
is a result of spin-changing non-forward scattering, the weakest collision process in the
system. The difference in time-scale stems from the fact that spin-changing processes
depend on differences of scattering lengths, which in 40K are one order of magnitude
smaller than the scattering lengths themselves, and that forward scattering has a larger
cross-section than lateral processes. We study study the dependence of non-forward
spin-changing collisions on density and magnetic field. We use the fact that for large
magnetic fields, spin-changing collisions are suppressed to change the character of a two-
component subsystem from open (particles can scatter into the other empty states) to
closed, and monitor the evolution of the temperature of such a subsystem. We find that
a lossy system increases its temperature due to the creation of holes in the Fermi sea.

We close with chapter 11, where we conclude this thesis and provide some outlook
on further related problems and possible future research.

This thesis is based on the following publications [56–59]:

1. U. Ebling, A. Eckardt, and M. Lewenstein:
Spin segregation via dynamically induced long-range interactions in a system of

ultracold fermions. Phys. Rev. A 84, 063607 (2011):
Chapters 3, 5, 6 and 7.

2. J. Heinze, J. S. Krauser, N. Fläschner, K. Sengstock, C. Becker,
U. Ebling, A. Eckardt, and M. Lewenstein:
Engineering spin-waves in a high-spin ultracold Fermi gas. Phys. Rev. Lett. 110,
250402 (2013):
Chapters 3, 6 and 8.

3. J. S. Krauser, U. Ebling, N. Fläschner, J. Heinze, K. Sengstock, M. Lewenstein,
A. Eckardt, and C. Becker:
Giant spin oscillations in an ultracold Fermi sea. Science 343, 157 (2014):
Chapters 3, 6 and 9.

4. U. Ebling, J. S. Krauser, N. Fläschner, K. Sengstock, C. Becker, M. Lewenstein,
and A. Eckardt:
Relaxation dynamics of an isolated large-spin Fermi gas far from equilibrium. Phys.
Rev. X 4, 021011 (2014):
Chapters 4, 5, 6 and 10.
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Chapter 2

Large spin Fermi system

This chapter serves to prepare the reader for the subsequent parts of this thesis. We
first give a short overview of the ideal Fermi gas in a harmonic trap and introduce a
few basic concepts, most importantly the Fermi energy and equilibrium distributions of
a non-interacting gas of fermions. In the second section, we derive the Hamiltonian of
the weakly-interacting large-spin trapped Fermi gas we consider throughout this thesis
and conclude with a few remarks on spin-dependent interactions. For a far more detailed
overview of Fermi gases, we refer to [60] and [61], on which the first section of this chapter
is based.

2.1 Some basics of the trapped ideal Fermi gas

To introduce some basic concepts, we consider a gas of N non-interacting identical
Fermions of mass M in a harmonic trap, described by the potential

V trap(~x) =
M

2

(

ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

. (2.1)

Since two identical Fermions cannot occupy the same mode of this harmonic oscillator,
for a large value of N we can assume, that many modes single-particle modes in all
directions are occupied. For Fermions, the average occupation number for an energy
eigenstate i is given by the Fermi-Dirac distribution (see e.g. [62])

n(Ei) =
1

e(Ei−µ)/kBT + 1
, (2.2)

where kB denotes the Boltzmann constant, T the system temperature and µ is the chem-
ical potential. We consider very large particle numbers and occupation of many modes,
where wave-lengths are short compared to the extension of the trap. Then we can ap-
ply local density approximation and substitute Ei with the local single-particle energy
density [61], such that we obtain the (equilibrium) distribution

f(~x, ~p) =
1

(2π~)3
1

exp
(

1
kBT

[

~p2

2M + V trap(~x)− µ
])

+ 1
. (2.3)
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The chemical potential µ is defined by the condition

N =

∫

d3x

∫

d3pf(~x, ~p) (2.4)

and the temperature T by

E =

∫

d3x

∫

d3p

[

~p2

2M
+ V trap(~x)− µ

]

f(~x, ~p). (2.5)

The chemical potential at T = 0 is called the Fermi energy EF and corresponds to the
energy of the highest single-particle mode occupied at T = 0. We obtain it from solving
(2.4) at zero temperature:

EF = (6N)1/3~ω̄, (2.6)

where we have introduced the average trapping frequency ω̄ = (ωxωyωz)
1/3.

In this thesis, we also treat 1D systems very extensively (see e.g. chapter 7). In a 1D
system, two frequencies of the harmonic trap (2.1 are so large, that only modes corre-
sponding to the lowest frequency (without loss of generality ωx ≡ ω) are macroscopically
occupied, while in the transversal directions y, z all particles occupy the ground state.
In this case, motion in along y, z is effectively frozen out and we can treat the system in
one dimension only. The trap is then given by

V trap(x) =
M

2
ω2x2, (2.7)

and the distribution function by

f(x, p) =
1

2π~

1

exp
(

1
kBT

[

p2

2M + V trap(x)− µ
])

+ 1
, (2.8)

where now px ≡ p. The chemical potential is now fixed by

N =

∫

dx

∫

dpf(x, p), (2.9)

and the dependence of the Fermi energy on the particle number is different:

EF = N~ω, (2.10)

it is now proportional to N .

2.2 Hamiltonian of a large-spin Fermi gas

In this section, we introduce spin, external magnetic fields and spin-dependent interac-
tions to the picture. We use a second-quantized description, in which the single-particle
state of an atom is described by a field operator ψ̂m(~r), where m indicates the magnetic
quantum number m = −F,−F + 1, . . . , F and F the total spin of the atom, defined by
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nuclear spin, electron spin and electronic angular momentum. Throughout this thesis, if
a summation appears without specified delimiter, it denotes a summation over all values
of the magnetic quantum number. For a Fermi gas, F and m are half-integers and the

field operators fulfill the anticommutation relations
{

ψ̂m(~x), ψ̂†
n(~y)

}

= δ(~x − ~y)δmn. In

terms of these operators, the Hamiltonian describing our system consists of two parts,
Ĥ = Ĥ0 + Ĥ1, of which the single-particle part is given by

Ĥ0 =
∑

mn

∫

d3xψ̂†
m(~x)

[

−
~
2∇2

2M
δmn + V ext

mn (~x)

]

ψ̂n(~x). (2.11)

Here, M denotes the particle mass and V ext
mn (~x) the external fields. Here, we consider the

presence of a trapping potential and external magnetic fields, such that we write

V ext
mn (~x) = V trap(~x)δmn + gµB ~B(~x) · ~Smn +Q(~x)mn. (2.12)

The first term denotes the trapping potential, the other terms denote the effect of a
magnetic field. The linear Zeeman effect depends on the magnetic field ~B(~x), while ~S
denotes the spin operators, µB the Bohr magneton and g the gyromagnetic ratio. It
depends on the electronic state of the atom considered, as does the explicit form of
the non-linear contributions to the Zeeman splitting. For a spin 1/2-system, Q(~x)mn

is necessarily zero, while for the case of 40K, we show the explicit level splitting in
appendix A. If we assume magnetic fields parallel to the z-axis and the non-linear part
to be purely quadratic (for the range of magnetic fields considered in this thesis, this is
a good approximation), the potential (2.12) can be written

V ext
mn (~x) = V trap(~x) + gµBB(~x)m+Q(~x)m2, (2.13)

where Q is a scalar, which we calculate for 40K in appendix A.
We take two-body interactions into account in the interaction Hamiltonian

Ĥ1 =
1

2

∑

ijkl

∫

d3x

∫

d3yVijkl(~x, ~y)ψ̂
†
i (~x)ψ̂

†
k(~y)ψ̂l(~y)ψ̂j(~x), (2.14)

where Vijkl(~x, ~y) is the spin-dependent two-body interaction potential, with incoming
and outgoing spins {i, k} → {j, l}. In this thesis, we assume short-range Van-der-Waals
interaction between the atoms. In the low-energy regime of elastic scattering in an
ultracold gas, the range of the potential can be considered zero when compared to the
wavelength of the atoms. Further, at low energies s-wave scattering is the dominant
process [62] and we substitute it with a contact interaction described by the potential
Vijkl(~x, ~y) = Uijklδ(~x− ~y), such that

Ĥ1 =
1

2

∑

ijkl

∫

d3xUijklψ̂
†
i (~x)ψ̂

†
k(~x)ψ̂l(~x)ψ̂j(~x), (2.15)

The coupling constants Uijkl depend on the s-wave scattering lengths relevant for a
collision {i, k} → {j, l} [63]. S-wave scattering conserves the total spin S of two incoming
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particles, the total magnetizationM = i+k = j+l as well as the total kinetic and Zeeman
energy. For Fermions, the antisymmetry of the wave function of two identical particles
means s-wave scattering is not possible between fermions in the same spin state (see e.g.
[61]). Hence Uijkl 6= 0, if i 6= k and j 6= l. With S,M being the good quantum numbers
in this case of two body scattering, we expand the coupling constants into channels of
total spin:

Uijkl =
2F−1
∑

S=0,2,...

S
∑

M=−S,−S+1,...

gS 〈ik|SM〉 〈SM |jl〉 . (2.16)

Here, 〈F,m1;F,m2|S,M〉 denotes the Clebsch-Gordan coefficients for two spins to form
total spin S, and throughout this thesis we make use of the short hand notation

〈m1m2|SM〉 ≡ 〈F,m1;F,m2|S,M〉,

and omit the value of the single spin as we do not investigate mixtures of different atomic
species or hyperfine manifolds in this work, where this would be relevant. The coupling
constants gS = 4π~2

M aS are proportional to the s-wave scattering lengths aS in each total
spin channel. We note, that for s-wave scattering, only even values of S are relevant, as
the Clebsch-Gordan coefficients are zero for odd S, again due to the symmetry of the
wave functions. In the remainder of this thesis, wherever a summation over total spin
quantum numbers S,M appears, we will not explicitly write the delimiters, unless they
are different from the case in Eq. (2.16). The conservation of magnetization also allows
us to neglect the linear Zeeman effect in the single-particle Hamiltonian and (2.13), which
is unchanged regardless whether a collision is spin-changing or spin conserving, by going
into the Larmor frame, as long as the magnetic field is homogeneous.

As a last remark on Eq. (2.16), we take a short look at the simplest case of large
spins, where F = 3/2. In this case, Uijkl has only three non-zero values:

Uijkl =











−1
8 (g0 + g2)

−1
4g2

1
4 (g2 − g0) .

(2.17)

The first two values correspond to spin-conserving collisions {i, k} = {j, l}, the third one
to spin-changing collisions {i, k} 6= {j, l}. Without explicitly writing down the values for
large spins, we note that in general, the coupling constant for a spin-conserving collision
depends on a sum, or average of scattering lengths, while for spin-changing collisions,
it depends on a difference. In alkali atoms, scattering lengths are of the same order of
magnitude, hence spin-changing collisions are much weaker than spin-conserving ones.
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Chapter 3

Method 1: Mean-field approach

In this chapter we present the first of two approaches to derive an equation of motion
for a weakly-interacting system of trapped ultracold Fermions with large spin F in a
magnetic field. This approach corresponds to a mean-field and semi-classical treatment
of the single-particle dynamics of the system and describes the so-called collisionless
regime. For F = 1/2, this method has been applied to describe spin dynamics in weakly-
interacting Fermi systems [64, 65] and also spin-1 noncondensd Bose gases [42], see also
chapter 7 in this thesis. Its range of validity will be discussed in the next chapter, where
corrections are taken into account to describe systems outside the collisionless regime.

3.1 Wigner function

We describe the motion of the system, described by the Hamiltonian composed of (2.11)
and (2.14), in terms of the single-particle density matrix, defined as

ρmn(~x, ~y) =
〈

ψ̂†
m(~x)ψ̂n(~y)

〉

. (3.1)

The notation 〈. . .〉 here denotes the many-body expectation value of the field operators,
defined

〈

ψ̂m(~x)
〉

= Tr
(

ρ̃ψ̂m(~x)
)

, (3.2)

where ρ̃ denotes the full many-body density matrix.
The phase-space representation of the single-particle density matrix is obtained by

performing a Wigner-transform,

Wmn(~x, ~p) =
1

(2π~)3

∫

d3yei~p·~y/~ρmn(~x− ~y/2, ~x+ ~y/2), (3.3)

and the result called the Wigner function1. This function is the phase-space represen-
tation of the single-particle density matrix. All relevant single-particle quantities can
be extracted from it. It is a function of position and momentum and carries two spin

1For a review on applications of Wigner functions, see [66].
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indices m,n. The diagonal elements with respect to spin are the phase-space densi-
ties of the 2F + 1 spin-components, the off-diagonals are called coherences. The trace
W0(~x, ~p) =

∑

mWmm(~x, ~p) returns the total phase-space density. Position and momen-
tum distributions, measured experimentally using in-situ or time-of-flight techniques,
are related to the Wigner function by integration along the momentum or position axes
respectively:

nmn(~x) =

∫

d3pWmn(~x, ~p) (3.4)

ñmn(~p) =

∫

d3xWmn(~x, ~p). (3.5)

This amounts to a projection of the Wigner function onto the respective coordinate
axis. It is worth noting here, that time-of-flight experiments for finite expansion times
enable also projections onto axes diagonal in phase space, from which in return the entire
phase-space distribution can be reconstructed via tomography [67]. The Wigner function
is normalized to the total number of particles, because of the definitions (3.1) and (3.3),
such that

∫

d3x

∫

d3p
∑

m

Wmm(~x, ~p) = N. (3.6)

The inverse of the Wigner transform maps the Wigner-function back to the position or
momentum representation of the single-particle density matrix:

ρmn(~x, ~y) =

∫

d3pe
−i~p·(~x−~y)

~ Wmn

(

~x+~y
2 , ~p

)

, (3.7)

ρ̃mn(~p, ~q) =

∫

d3xe
−i~x·(~p−~q)

~ Wmn

(

~x, ~p+~q
2

)

. (3.8)

3.2 Mean-field approximation

We start the derivation of the equation of motion by computing the time evolution of
the single-particle density matrix (3.1). The motion of two field operators is governed by
the von Neumann equation

i~
d

dt

(

ψ̂†
m(~x)ψ̂n(~y)

)

=
[

Ĥ, ψ̂†
m(~x)ψ̂n(~y)

]

. (3.9)

Hence, by taking the many-body expectation value of (3.9), we see that the single-particle
density matrix evolves according to

i~
d

dt
ρmn(~x, ~y) =

〈[

Ĥ, ψ̂†
m(~x)ψ̂n(~y)

]〉

. (3.10)

The evaluation of the commutator in this equation contains commutators of field op-
erators of the form [ψ̂†

mψ̂n, ψ̂
†
i ψ̂j ] and [ψ̂†

mψ̂n, ψ̂
†
i ψ̂

†
kψ̂jψ̂l]. They reduce to the following
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expressions:

[

ψ̂†
m(~x)ψ̂n(~y), ψ̂

†
i (~r)ψ̂j(~r)

]

= δinδ(~y − ~r)ψ̂†
m(~x)ψ̂j(~r)

−δmjδ(~x− ~r)ψ̂†
i (~r)ψ̂n(~y), (3.11)

[

ψ̂†
m(~x)ψ̂n(~y), ψ̂

†
i (~r)ψ̂

†
k(~r)ψ̂j(~r)ψ̂l(~r)

]

= δinδ(~y − ~r)ψ̂†
m(~x)ψ̂†

k(~r)ψ̂j(~r)ψ̂l(~r)

− δknδ(~y − ~r)ψ̂†
m(~x)ψ̂†

i (~r)ψ̂j(~r)ψ̂l(~r)

+ δjmδ(~x− ~r)ψ̂†
i (~r)ψ̂

†
k(~r)ψ̂l(~r)ψ̂n(~y)

− δmlδ(~x− ~r)ψ̂†
i (~r)ψ̂

†
k(~r)ψ̂j(~r)ψ̂n(~y). (3.12)

Consequently, we obtain for the single-particle part of the commutator inside the brackets
on the r.h.s. of (3.10)

[

Ĥ0, ψ̂
†
m(~x)ψ̂n(~y)

]

=
∑

k

[(

−
~
2∇2

y

2M
δkn + V ext

nk (~y)

)

ψ̂†
m(~x)ψ̂k(~y)

−

(

−
~
2∇2

x

2M
δkn + V ext

kn (~x)

)

ψ̂†
k(~x)ψ̂n(~y)

]

, (3.13)

while the interaction terms are given by

[

Ĥ1, ψ̂
†
m(~x)ψ̂n(~y)

]

=
1

2

∑

jkl

[

(Unjkl − Ukjnl) ψ̂
†
m(~x)ψ̂†

k(~y)ψ̂j(~y)ψ̂l(~y)

+ (Uimkj − Uijkm) ψ̂†
i (~x)ψ̂

†
k(~x)ψ̂j(~x)ψ̂n(~y)

]

. (3.14)

When taking the expectation value of these terms, as prescribed in (3.10), we en-
counter quartic expectation values in the interaction term (3.14). We decompose them
as

〈ψ̂†
kψ̂

†
l ψ̂mψ̂n〉 ≈ 〈ψ̂†

kψ̂n〉〈ψ̂
†
l ψ̂m〉 − 〈ψ̂†

kψ̂m〉〈ψ̂†
l ψ̂n〉, (3.15)

such that we obtain a closed equation for only the single-particle density matrix. This
application of a Wick decomposition is exact for Gaussian states, i.e. equilibrium states
of a quadratic Hamiltonian and more broadly corresponds to a time-dependent Hartree-
Fock, or mean-field approximation suitable for weak interactions. In the next chapter,
we will give a more detailed estimate of its validity. The resulting equation for the time
evolution of the single-particle density matrix is given by

i~
d

dt
ρmn(~x, ~y) =

∑

k

[(

−
~
2∇2

y

2M
δkn + Vkn(~y)

)

ρmk(~x, ~y)

−

(

−
~
2∇2

x

2M
δmk + Vmk(~x)

)

ρkn(~x, ~y)

]

. (3.16)
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Here, we have combined the external potential, magnetic field with a mean-field poten-
tial, which formally reads V mf

mn(~x) =
∑

kl(Uklnm − Ukmnl)ρkl(~x, ~x) and arises from the
interaction Hamiltonian. Due to the definition of coupling constants (2.16), they are
antisymmetric in the fermionic case: Uklmn − Uknml = 2Uklmn, such that

V mf

mn(~x) = 2
∑

kl

Uklnmρkl(~x, ~x). (3.17)

The the total effective potential in Eq. (3.16) reads

Vmn(~x) = V ext

mn (~x) + V mf

mn(~x). (3.18)

Our next step is to transform Eq. (3.16) into the phase-space representation using
the Wigner transform (3.3) and obtain

i~
d

dt
Wmn(~x, ~p) +

i~

M
~p · ∇xWmn(~x, ~p) =

∑

k

∞
∑

l=0

1

l!

([

−
i~

2
∇y · ∇p

]l

Vkn(~y)

∣

∣

∣

∣

~y=~x

Wmk(~x, ~p)−

[

i~

2
∇y · ∇p

]l

Vmk(~y)

∣

∣

∣

∣

~y=~x

Wkn(~x, ~p)

)

.

(3.19)

In this representation, the mean-field potential is given by

V mf

mn(~x) = 2
∑

kl

∫

d3pUklnmWkl(~x, ~p). (3.20)

Equation (3.19) is an infinite expansion in terms of gradients of the Wigner func-
tion and potentials. It looks very similar to a Quantum-Liouville-Equation (QLE), the
equation of motion for a single spinless particle in phase space in a potential V (~x) [68].
However, here, the expansion contains terms for all values of l, whereas in the QLE, only
odd terms appear. This is a consequence of spin. In our case, the Wigner function and
potential are not numbers but matrices of size (2F + 1) × (2F + 1). The even terms in
(3.19) have the shape of commutators, which are obviously zero for numbers, but not
necessarily for matrices. The most striking feature here is the appearance of a term for
l = 0, without gradients and of lower order than the usual terms in the QLE. This term
can only appear in a system with spin, and being of lowest order, should have a very
large impact on the dynamics.

The Fermi statistics enters Eq. (3.19) twofold. First, the mean-field potential and
interactions contained in it obey a fermionic symmetry, inherent in the properties of
the Clebsch-Gordan coefficients for half-integer spins. Second, the single-particle Wigner
function is not completely free. The definition of single-particle density matrix as a many-
body expectation value (3.1) depends on the full many-body density matrix, which must
represent a fermionic state here 2.

2The same derivation can be done for Bosons as well, as long as they are not condensed. Then the
same considerations would apply: Interactions must have bosonic symmetry and the Wigner function
must be restricted to bosonic states.
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3.3 Semi-classical approximation

If we consider Eq. (3.19) for the non-interacting case (i.e. Uijkl = 0), we notice that in the
typical case of a harmonic trapping potential V trap(~x) = M

2

(

ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

, the
gradient expansion automatically ends at l = 1 due to the absence of higher derivatives.
We now employ a further semi-classical approximation of Eq. (3.19) and truncate the
sum at l = 1 as well for the interacting case. This approximation is valid for anharmonic
potentials, if the potential varies slowly compared to the single-particle wavelengths in
the system, here the thermal wavelength λT = 2π~/

√
3MkBT at higher temperatures or

the Fermi wavelength λF = 2π~/
√
2MEF in colder systems.

The truncated equation of motion now reads

d

dt
Wmn(~x, ~p) +

~p

M
· ∇xWmn(~x, ~p) =

i

~

∑

k

[Vmk(~x)Wkn(~x, ~p)−Wmk(~x, ~p)Vkn(~x)]

+
∑

k

{∇xVmk(~x) · ∇pWkn(~x, ~p) +∇pWmk(~x, ~p) · ∇xVkn(~x)} , (3.21)

or alternatively, if we change the notation from indices denoting matrix elements to
phase-space dependent matrices

d

dt
Ŵ (~x, ~p) +

~p

M
· ∇xŴ (~x, ~p) =

i

~

[

V̂ (~x), Ŵ (~x, ~p)
]

+
1

2

{

∇xV̂ (~x),∇pŴ (~x, ~p)
}

. (3.22)

This equation consists of four expressions. The second term on the left hand side is the
free drift term of the particles, obtained from the kinetic energy part of the Hamiltonian.
The leading order in the semi-classical expansion is the commutator [·, ·], it drives coher-
ent spin dynamics through the interplay of scattering and magnetic field. This term only
contains spin-dependent effects and is absent in the spinless case. The anticommutator
{·, ·} is a force term resulting from both the external potential, inhomogeneities in the
magnetic field and the mean field. The semi-classical nature of (3.22) and its derivation
reveals itself in these expressions. Both the kinetic drift term and the force term are
essentially expressions known from the classical Liouville equation. We note that these
terms do not contain ~ here, which appears only in the commutator and would appear in
higher order terms. Also, we recall that our semi-classical approximation only affects the
phase-space variables, we kept the full quantum description of the spin. This results in
the appearance of the commutator, which as a result is a quantum term, that is expected
to have a strong impact on the system dynamics, as it appears at lower order than the
classical (anticommutator) terms.
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Chapter 4

Method 2: Collision approach

The second theoretical method in this thesis involves the derivation of a Boltzmann
equation with full spin coherence and an explicit collision term. Previous work originating
in the 1980s for the description of spin-waves in liquid Helium and Hydrogen [69–73],
pioneered by Lhuillier and Laloë produced an intuitive approach to derive a Boltzmann
equation from microscopic two-body collision processes [74–76]. This method, called
the Lhuillier-Laloë transport equation, was later applied successfully to describe spin
segregation in a cold spin 1/2 Fermi gas of 6Li [64, 77]. In this chapter, we will generalize
this method to larger spins and spin-changing collisions in the presence of a quadratic
Zeeman effect, while in chapter 5, we also extend it to systems in a 1D geometry, where
the collision term has a different momentum dependence.

This method describes the single-particle dynamics as an open system, where the
other particles take the role of the bath. This makes some parts of the dynamics ap-
pear as dissipative on the single-particle level, which is not the case in the mean-field
description, which is fully coherent. We will show, that the processes responsible for this
dissipative dynamics are non-forward collisions, which become more relevant for stronger
interactions and higher densities, where the system leaves the collisionless and approaches
the hydrodynamic regime. Hence, this approach is required to describe experiments in
the intermediate regime, where incoherent effects such as damping of spin oscillations
are observed [58].

The Lhuillier-Laloë method features an expansion in scattering lengths for weak inter-
action and a remarkable feature of it is that in lowest order it reproduces the mean-field
result obtained in the preceding chapter. This means, that it helps us better understand
the limitations and validity of mean-field theory. Further, this approach is derived from
microscopic equations of motion and does not require phenomenological assumptions.
It does not require prior knowledge of the equilibrium state, whose determination is a
very challenging effort in systems with high spin. From the viewpoint of doing numerical
simulations, this allows us to build on existing code used to solve the mean-field equation
of motion (3.22) instead of producing a completely new implementation. This chapter is
based on Ref. [59].
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4.1 Microscopic derivation of the collision integral

A general form of a Boltzmann equation describes the time-evolution of the single-particle
density operator ρ̂ in the following form:

d

dt
ρ̂−

1

i~

[

ρ̂, Ĥ0

]

= Icoll[ρ̂]. (4.1)

The free motion of the particle in the trap is on the l.h.s., where Ĥ0 denotes the single-
particle Hamiltonian (2.11), which contains kinetic energy, trap and magnetic fields. All
effects of interactions are contained in the term on the r.h.s, called the collision integral or
collision term, in whose derivation the appropriate approximations have to be employed,
such that it only depends on the single particle density itself. In this and the following
sections we derive an explicit expression for Icoll[ρ̂].

The idea behind the approach of Lhuillier-Laloë is to interpret the collision integral
as the change rate of the single-particle density operator due to binary collisions,

Icoll =
ρ̂′ − ρ̂

∆t
, (4.2)

in a short time interval ∆t, which nevertheless is longer than the duration of a collision,
that is thus considered to be effectively instantaneous. Here we denote by ρ̂ the state
of a single particle before the collision and by ρ̂′ the state after the collision. With
this assumption, collisions are treated in the asymptotic limit, with incoming particles
coming from t = −∞ and going to t = +∞, neglecting the state of particles during the
collision process. In this limit, collisions can be described by the Heisenberg S-matrix.
This matrix relates the two-body density matrices ρ̂(1, 2) before and after the collision

ρ̂(1, 2)′ = Ŝρ̂(1, 2)Ŝ†, (4.3)

where “1” and “2” denote the orbital and spin degree of freedom of particles 1 and 2:
(~x1, ~y1,m1, n1) and (~x2, ~y2,m2, n2), which for now are treated as distinguishable. In
terms of field operators, the elements of this two-body density matrix are defined as

[ρ̂(1, 2)]m1,n1,m2,n2
(~x1, ~y1, ~x2, ~y2) =

〈

ψ̂†
m1

(~x1)ψ̂
†
m2

(~x2)ψ̂n2
(~y2)ψ̂n1

(~y1)
〉

. (4.4)

To reduce expression (4.3) to a single-body description, we later trace out particle 2.
Another key assumption of this approach is that the particles involved in a collision are
uncorrelated, both before and after the collision:

ρ̂(1, 2) = ρ̂(1)⊗ ρ̂(2), (4.5)

where now ρ̂(i) denotes the single-particle density matrix of particle i.

This assumption is effectively a quantum mechanical version of the molecular chaos
hypothesis (Stosszahlansatz) of Boltzmann, here it is justified for a dilute system with
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a large number of particles. For the single-particle density matrices before and after a
collision we obtain

ρ̂(1) ≈
1

2
Tr2{(1− P̂ex)ρ̂(1)⊗ ρ̂(2)(1− P̂ex), } (4.6)

ρ̂′(1) ≈
1

2
Tr2{(1− P̂ex)Ŝρ̂(1)⊗ ρ̂(2)Ŝ†(1− P̂ex)}, (4.7)

where we now treat the particles as indistinguishable and introduce the exchange operator
P̂ ex, which exchanges the quantum numbers of particles 1 and 2. Due to fermionic
statistics, it comes with a minus sign in front. This Ansatz yields the following expression
for the collision integral

Îcoll ≈
1

∆t
Tr2

{

1̂− P̂ex

√
2

Ŝρ̂(1)⊗ ρ̂(2)Ŝ† − ρ̂(1)⊗ ρ̂(2)
1̂− P̂ex

√
2

}

. (4.8)

The scattering S-matrix is related to the transmission T -matrix, Ŝ = 1̂ − 2πiT̂ , such
that Eq. (4.8) becomes

Îcoll ≈
2π

∆t
Tr2

{

1−P̂ex

√
2

[

iT̂ ρ̂(1)⊗ ρ̂(2)− iρ̂(1)⊗ ρ̂(2)T̂ †

+2πT̂ ρ̂(1)⊗ ρ̂(2)T̂ †
] 1−P̂ex

√
2

}

. (4.9)

It consists of two terms with linear dependence in the T -matrix and a quadratic term.
As a first step before performing the trace operation we evaluate the expression (4.9) in
the two-body phase space representation.

4.2 Two-body Wigner transform

Because the T -matrix depends only on the relative wave vectors, it is convenient to
evaluate Eq. (4.9) in the center-of-mass frame. We introduce the standard notation

~R =
1

2
(~x1 + ~x2), ~r = ~x1 − ~x2,

~P = ~p1 + ~p2, ~p =
1

2
(~p1 − ~p2), (4.10)

to denote center-of-mass with capital letters (~R, ~P ) and relative positions and momenta
with bare lower case letters (~r, ~p), versus the coordinates of particles 1 and 2 denoted
by subscript. We use the same notation style for wave vectors, which are related to
momenta: ~ ~K = ~P , ~~k = ~p and ~~k1,2 = ~p1,2.

We denote by W (T,T 2) the two-body Wigner transform of the part of Eq. (4.9) linear
in the T -matrix,

i×
1− P̂ex

√
2

[

T̂ ρ̂(1)⊗ ρ̂(2)− ρ̂(1)⊗ ρ̂(2)T̂ †
] 1− P̂ex

√
2

, (4.11)
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and the quadratic part,

1− P̂ex

√
2

[

T̂ ρ̂(1)⊗ ρ̂(2)T̂ †
] 1− P̂ex

√
2

, (4.12)

respectively. First, we take the wave-vector representation of expressions (4.11) and
(4.12) in the center-of mass frame,

i〈 ~K+, ~k+, i,m|
1− P̂ex

√
2

T̂ ρ̂(1)⊗ ρ̂(2)
1− P̂ex

√
2

| ~K−,~k−, j, n〉, (4.13)

〈 ~K+, ~k+, i,m|
1− P̂ex

√
2

T̂ ρ̂(1)⊗ ρ̂(2)T̂ † 1− P̂ex

√
2

| ~K−,~k−, j, n〉, (4.14)

where the notation | ~K,~k,m, n〉 denotes a two-particle state, where particle 1 has spin m,
particle 2 has spin n, ~K denotes the sum of the wave vectors of both particles and ~k the
relative wave vector. We perform a Wigner transform (3.3) from the basis of center-of-
mass wave vectors ~K±,~k± into the corresponding center-of-mass phase space variables

(4.10). For this, we substitute ~K± =
~P
~
±

~K
2 and ~k± = ~p

~
± ~κ

2 and perform a Fourier

transform with respect to ~K,~κ to obtain

W T
ijmn(~r, ~R, ~p, ~P ) =

i

(2π~)6

∫

d3K

∫

d3κei
~K·~Rei~κ·~r

× 〈 ~K+,~k+, i,m|
1− P̂ex

√
2

T̂ ρ̂(1)⊗ ρ̂(2)
1− P̂ex

√
2

| ~K−,~k−, j, n〉+ h.c.

(4.15)

W T 2

ijmn(~r, ~R, ~p, ~P ) =
1

(2π~)6

∫

d3K

∫

d3κei
~K·~Rei~κ·~r

× 〈 ~K+,~k+, i,m|
1− P̂ex

√
2

T̂ ρ̂(1)⊗ ρ̂(2)T̂ † 1− P̂ex

√
2

| ~K−,~k−, j, n〉. (4.16)

Now, we insert two complete bases
∫

d3K1

∫

d3k1
∑

ab |
~K1,~k1, a, b〉〈 ~K1, ~k1, a, b| and

∫

d3K2

∫

d3k2
∑

cd |
~K2,~k2, c, d〉〈 ~K2, ~k2, c, d| to the left and right of the tensor product of

density matrices ρ(1)⊗ ρ̂(2). The dependence of the T -matrix on the relative wave-vector
only makes the integration over K1,2 trivial. For the elements of the T -matrix, we note
that collisions conserve total single-particle energy, hence we make the substitution

〈 ~K1,~k1, a, b|T̂ | ~K2, ~k2, c, d〉 = δ (ǫk1 − ǫk2 +Qabcd)Tabcd(~k1, ~k2) (4.17)

in above expressions. The delta function ensures energy conservation, where ǫk1,2 =
~
2k21,2/2µ denotes kinetic energy, µ = M/2 the reduced mass and Qabcd = Q(a2 + b2 −

c2 − d2) the shift in quadratic Zeeman energy (see Eq. 2.13), which is non-zero during a
spin-changing collision. This shift is absent in spin 1/2 systems and introduces a situation
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not accounted for in the original theory, in which the total kinetic energy cannot change
during a collision. The term Tabcd(~k1, ~k2) is thus defined only for values of spin and wave
vector, which ensure energy conservation and hence called the on-shell T -matrix. We will
provide its explicit expression later in this chapter in section 4.6. With this substitution,
we obtain

W T
ijmn(~r, ~R, ~p, ~P ) =

−i

(2π~)6

∫

d3K

∫

d3κ

∫

d3k1

∫

d3k2e
i ~K·~Rei~κ·~r

×
∑

abcd

〈 ~K+, ~k+, i,m|
1− P̂ex

√
2

T̂ | ~K+, ~k1, a, b〉〈 ~K+, ~k1, a, b|ρ̂(1)⊗ ρ̂(2)| ~K−, ~k2, c, d〉

× 〈 ~K−,~k2, c, d|
1− P̂ex

√
2

| ~K−, ~k−, j, n〉+ h.c.

=
−i

2(2π~)6

∫

d3K

∫

d3κ

∫

d3k1

∫

d3k2e
i ~K·~Rei~κ·~r

∑

abcd

δ(ǫk+ − ǫk1 +Qimab)

×
(

δ(~k2 − ~k−)δcjδdn − δ(~k2 + ~k−)δncδjd

)(

Timab(~k+, ~k1)− Tmiab(−~k+,~k1)
)

× 〈 ~K+,~k1, a, b|ρ̂(1)⊗ ρ̂(2)| ~K−,~k2, c, d〉+ h.c. (4.18)

for the linear term and

W T 2

ijmn(~r,
~R, ~p, ~P ) =

1

2(2π~)6

∫

d3K

∫

d3κ

∫

d3k1

∫

d3k2e
i ~K·~Rei~κ·~r

×
∑

abcd

δ(ǫ~k+ − ǫ~k1 +Qimab)δ(ǫk2 − ǫk
−

+Qcdjn)

×
(

Timab(~k+, ~k1)− Tmiab(−~k+,~k1)
)(

T ∗
jncd(

~k−,~k2)− T ∗
njcd(−

~k−, ~k2)
)

× 〈 ~K+, ~k1, a, b|ρ̂(1)⊗ ρ̂(2)| ~K−,~k2, c, d〉 (4.19)

for the term quadratic in the T -matrix. The elements of the tensor product of den-
sity matrices are obtained from the Wigner functions by an inverse two-body Wigner
transform

〈 ~K+, ~k1, a, b|ρ̂(1)⊗ ρ̂(2)| ~K−,~k2, c, d〉 = ~
6

∫

d3R′

∫

d3r′e−i ~K·~R′

ei(
~k2−~k1)·~r′

×Wac(~R
′ + ~r′

2 ,
~P+~~k1+~~k2

2 )Wbd(~R
′ − ~r′

2 ,
~P−~~k1−~k2

2 ). (4.20)

and we substitute this expression into the terms forming the collision term (4.18) and

(4.19). This produces a delta function
∫

d3Kei
~K·(~R−~R′) = (2π)3δ(~R − ~R′) and after
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carrying out the integrations over ~K and ~R′ we obtain

W T
ijmn(~r, ~R, ~p, ~P ) =

−i

2(2π)3

∫

d3κ

∫

d3k1

∫

d3k2

∫

d3r′ei~κ·~rei(
~k2−~k1)·~r′

×
∑

abcd

(

δ(~k2 − ~k−)δcjδdn − δ(~k2 + ~k−)δncδjd

)

× δ(ǫk+ − ǫk1 +Qimab)
(

Timab(~k+, ~k1)− Tmiab(−~k+,~k1)
)

×Wac(~R+ ~r′

2 ,
~P+~~k1+~~k2

2 )Wbd(~R− ~r′

2 ,
~P−~~k1−~~k2

2 ) + h.c. (4.21)

and

W T 2

ijmn(~r, ~R, ~p, ~P ) =
1

(2π)3

∫

d3κ

∫

d3k1

∫

d3k2

∫

d3r′ei~κ·~rei(
~k2−~k1)·~r′

×
∑

abcd

δ(ǫk+ − ǫk1 +Qimab)δ(ǫk2 − ǫk
−

+Qcdjn)
(

Timab(~k+,~k1)− Tmiab(−~k+, ~k1)
)

×
(

T ∗
jncd(

~k−,~k2)− T ∗
lncd(−

~k−, ~k2)
)

Wac(~R+ ~r′

2 ,
~P+~~k1+~~k2

2 )Wbd(~R− ~r′

2 ,
~P−~~k1−~~k2

2 ).

(4.22)

4.3 Trace over second particle

In order to trace out particle 2 as described in Eq. (4.9) we return from the center-of-mass
frame to he lab frame by substituting equations (4.10) back into (4.21) and (4.22. In the
representation we use, taking the trace over particle 2 means performing the operation

I
(T,T 2)
ij (~x1, ~p1) =

1
∆t

∫

d3x2
∫

d3p2
∑

mn δmnW
(T,T 2)
ijmn (~r, ~R, ~p, ~P ) on each term. Introducing

the notations

~q = 2~~k, ~p′1 = ~p1 −
~q−~(~k1+~k1)

2 , ~p′2 = ~p1 −
~q+~(~k1+~k2)

2 , (4.23)

we arrive at the following expressions for the collision term:

ITij(~x1,~p1) =
−i

2(2π)3

∫

d3κ

∫

d3k1

∫

d3k2

∫

d3r′
∫

d3r

∫

d3qei~κ·~rei(
~k2−~k1)·~r′

×
∑

abcdl

δ(ǫk+ − ǫk1 +Qilab)
(

δ(~k2 − ~k−)δcjδdl − δ(~k2 + ~k−)δlcδjd

)

×
(

Tilab(~k+, ~k1)− Tliab(−~k+, ~k1)
)

Wac(~x1 −
~r−~r′

2 , ~p′1)Wbd(~x1 −
~r+~r′

2 , ~p′2) + h.c.

(4.24)

and

IT
2

ij (~x1,~p1) =
1

2(2π)3

∫

d3κ

∫

d3k1

∫

d3k2

∫

d3r′
∫

d3r

∫

d3qei~κ·~rei(
~k2−~k1)·~r′

×
∑

abcdl

δ(ǫk+ − ǫk1 +Qilab)δ(ǫk2 − ǫk
−

+Qcdjl)
(

Tilab(~k+, ~k1)− Tliab(−~k+, ~k1)
)

×
(

T ∗
jlcd(

~k−,~k2)− T ∗
ljcd(−

~k−, ~k2)
)

Wac(~x1 −
~r−~r′

2 , ~p′1)Wbd(~x1 −
~r+~r′

2 , ~p′2). (4.25)
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4.4 Semi-classical gradient expansion

In order to further simplify the expressions above we assume the Wigner function to
vary only slowly in space compared to single-particle wave-functions. This assumption
means that local contributions to the collision term dominate and we perform a Taylor
expansion for the spatial coordinate

Wij(~x1 −
~r±~r′

2 , ~p) =Wij(~x1, ~p)−
~r±~r′

2 · ∇~x1
Wij(~x1, ~p) + . . . , (4.26)

therefore the expansion of the product of Wigner functions in (4.24) and (4.25) reads

Wac(~x1 −
~r−~r′

2 , ~p′1)Wbd(~x1 −
~r+~r′

2 , ~p′2) =Wac(~x1, ~p
′
1)Wbd(~x1, ~p

′
2)

−~r
2 · ∇~x1

(

Wac(~x1, ~p
′
1)Wbd(~x1, ~p

′
2)
)

+ ~r′

2Wbd(~x1, ~p
′
2) · ∇~x1

Wac(~x1, ~p
′
1)

−~r′

2Wac(~x1, ~p
′
1) · ∇~x1

Wbd(~x1, ~p
′
2) + . . . (4.27)

Together with the expansion of the T -matrix above we must be careful to expand the
collision term in two small parameters in a meaningful way. One small parameter is
the coupling constant proportional to the s-wave scattering length. The other one is
related to the gradient expansion. Its magnitude is determined by the Fermi or thermal
wavelength compared to the spatial variation of the Wigner function and the trap, which
determines the system size. We expand the collision term to quadratic order in scattering
lengths aS . This means we will obtain terms linear in aS from ITij(~x, ~p) and quadratic

terms from ITij(~x, ~p) and IT
2

ij (~x, ~p). We expand the terms linear in aS up to first order
in gradients and the terms quadratic in aS to zero order, keeping only the local term.
This amounts to a semi-classical approximation of the theory. In this case we substitute
Wac(~x1 − ~r−~r′

2 , ~p′1)Wbd(~x1 − ~r+~r′

2 , ~p′2) ≈ Wac(~x1, ~p
′
1)Wbd(~x1, ~p

′
2) into (4.24) and (4.25),

which means that further delta functions
∫

d3r′ei(
~k2−~k1)·~r′ = (2π)3δ(~k2−~k1),

∫

d3rei~κ·~r =

(2π)3δ(~κ) appear. We introduce renamed variables ~k± → ~k, ~k1 → ~k′, ~x1, ~p1 → ~x, ~p and
~p± ≡ ~p− ~(~k ± ~k′) the local parts of the collision integral become

ITij(~x, ~p) =
−i

2(2π)3

∫

d3q

∫

d3k′
∑

abcdl

δ(ǫk − ǫk′ +Qilab)
(

δ(~k − ~k′)δjcδld − δ(~k + ~k′)δlcδjd

)

×
(

Tilab(~k+, ~k1)− Tliab(−~k+, ~k1)
)

Wac(~x, ~p−)Wbd(~x, ~p+) + h.c. (4.28)

and

IT
2

ij (~x, ~p) =
1

2(2π)3

∫

d3q

∫

d3k′
∑

abcdl

δ(ǫk − ǫk′ +Qilab)δ(ǫk′ − ǫk +Qcdjl)

×
(

Tilab(~k+,~k1)− Tliab(−~k+,~k1)
)(

T ∗
jlcd(

~k−, ~k2)− T ∗
ljcd(−

~k−,~k2)
)

×Wac(~x, ~p−)Wbd(~x, ~p+). (4.29)
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4.5 Squares and products of delta functions

In scattering theory, the square of a delta function of energy appears frequently, when
terms quadratic in the T -matrix are involved, where each T -matrix contains a delta-
function for the on-shell condition. The well-known interpretation of this artifact is
[δ(E)]2 ≈ ∆t

2π~δ(E), where ∆t denotes the elapsed time interval, which is quasi-infinite
when compared to the duration of a single scattering event but nevertheless short com-
pared to other relevant dynamics, like relaxation or the trapping period (see e.g. [78]).
We first illustrate the standard case and use the Fourier representation of the delta
function

δ(E) =
1

2π~

∫

dte
i
~
Et, (4.30)

such that

[δ(E)]2 = δ(E)
1

2π~

∫

dte
i
~
Et = δ(E)

1

2π~

∫

dt

≈ δ(E)
1

2π~

∫

∆t
dt =

∆t

2π~
δ(E) (4.31)

This can also be applied to products of the form δ(ǫk − ǫk′)δ(~k − ~k′) since in spherical
coordinates

δ(~k − ~k′) =
1

4πk2
δ(k − k′)δ(Θ−Θ′)δ(φ− φ′), (4.32)

while the delta function of energies reads

δ(ǫk − ǫk′) = δ

(

~
2k2

2µ
−

~
2k′2

2µ

)

=
µ

~2|k|
δ(k − k′). (4.33)

Hence, a product of both can be approximated as

δ

(

~
2k2

2µ
−

~
2k′2

2µ

)

δ(~k − ~k′) =
µ

4π~2k3
δ(k − k′)2δ(Θ−Θ′)δ(φ− φ′)

=
~
2

4πµk
δ(ǫk − ǫk′)

2δ(Θ−Θ′)δ(φ− φ′)

≈
~∆t

8π2µk
δ(ǫk − ǫk′)δ(Θ−Θ′)δ(φ− φ′)

=
∆t

2π~
δ(k − k′)δ(Θ−Θ′)δ(φ− φ′)

=
∆t

2π~
δ(~k − ~k′) (4.34)

We now deviate from the textbook example and modify this approximation to take into
account a shift Q in the quadratic Zeeman energy, which occurs in a spin-changing
collision at finite magnetic field. In our calculations two situations appear. In the first,
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coming from (4.28), there is only a Zeeman shift in one of the delta-functions and we
must be careful, that only the delta-function of energy with the shift comes from the
on-shell T -matrix, where we can approximate the integration area with the interval ∆t:

δ(ǫk − ǫk′)δ(ǫk − ǫk′ +Q)

≈ δ(ǫk − ǫk′)
1

2π~

∫

∆t
dte

i
~
(ǫk−ǫk′+Q)t

= δ(ǫk − ǫk′)
1

2π~

∫

∆t
dte

i
~
Qt/

=
∆t

2π~
δ(ǫk − ǫk′)sinc

(

Q∆t

2~

)

. (4.35)

In the second case, both delta-functions originate from the energy conservation of the
T -matrix and carry a quadratic Zeeman shift, which is not necessarily the same

δ(ǫk − ǫk′ +Q1)δ(ǫk − ǫk′ +Q2)

=
1

(2π~)2

∫

∆t
dt

∫

∆t
dt′e

i
~
(ǫk−ǫk′+Q1)te

i
~
(ǫk−ǫk′+Q2)t′

=
1

(2π~)2

∫

∆t
dt

∫

∆t
dt′e

i
~
((ǫk−ǫk′ )(t+t′)+Q1t+Q2t′)

=
2

(2π~)2

∫

∆t
du

∫

∆t
du′e

i
~
(ǫk−ǫk′ )ue

iQ1

2~
(u−u′)e

iQ2

2~
(u+u′)

=
2

(2π~)2

∫

∆t
du

∫

∆t
du′e

i
~
(ǫk−ǫk′+

Q1+Q2

2
)ue

i
2~

(Q2−Q1)u′

≈
∆t

2π~
δ
(

ǫk − ǫk′ +
1
2(Q1 +Q2)

)

sinc

(

Q2 −Q1

2~
∆t

)

. (4.36)

As it should, the time interval ∆t that appears in front cancels with the one introduced
at the beginning (4.2), like in the original theory (see [64, 79]). However, here, we must
take the limit that the time interval is small compared to any macroscopic dynamics,
such that ∆t→ 0 and the sinc function goes to 1.

With these approximations, the two expressions for the collision integral become

ITij(~x, ~p) =
(2π)3

2

i∆t

2π~

∫

d3k′
∫

d3q
∑

abcdl

(

δ(~k − ~k′)δcjδdl − δ(~k + ~k′)δlcδjd

)

×
(

Tilab(~k,~k
′)− Tliab(−~k,~k

′)
)

Wac(~x, ~p− ~(~k − ~k′))Wbd(~x, ~p− ~(~k + ~k′)) + h.c. (4.37)

and

IT
2

ij (~x, ~p) =
(2π)3

2

∆t

2π~

∫

d3k′
∫

d3q
∑

abcdl

δ(ǫk−ǫk′ +Qijlabcd)
(

Tilab(~k,~k
′)− Tliab(−~k,~k

′)
)

×
(

T ∗
jlcd(

~k,~k′)− T ∗
ljcd(−

~k,~k′)
)

Wac(~x, ~p− ~(~k − ~k′))Wbd(~x, ~p− ~(~k + ~k′)),

(4.38)
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where the quadratic Zeeman shift in the second term is given as Qijlabcd = 1
2Q(i2 + j2 +

2l2 − a2 − b2 − c2 − d2).

4.6 T -matrix for large spin

The two-body scattering problem in the center-of-mass frame is described by the Hamil-
tonian

H =
−~

2∇2

2µ
+ gδ(~r) (4.39)

in the case of contact interaction of strength g = 4π~2a/M , where a is the s-wave
scattering length. The wave function is of the form

ψ(~x) = ei
~k·~r + ψsc(~r), (4.40)

where ~k denotes the wave-vector of the incoming plane wave and ψsc(~r) the scattered wave

function. Making the Ansatz of a spherical wave ψsc(~r) = fk′
eik

′r

r , we obtain fk′ =
−a

1+ika
for the scattering amplitude fk′ by solving the stationary Schrödinger equation.

In the momentum-representation, the T -matrix is related to the scattered wave func-
tion through the identity

ψ̃sc(~k
′) = G(~k,~k′)T (~k′, ~k), (4.41)

with the free Green’s function G(~k,~k′) =
(

~
2k2

2µ − ~
2k′2

2µ + i0+
)−1

. Its representation in

position space is

G(~r) =
2µ

~2

∫

d3k′
ei
~k′·~r

k2 − k′2 + i0+

= −(2π)3
µ

2π~2
eikr

r
. (4.42)

Hence the T -matrix and the scattering amplitude differ only by a pre-factor and fulfill
the identity

T (~k′, ~k) = −(2π)−3 2π~
2

µ
fk′ (4.43)

and the expression for the T -matrix in terms of the scattering length is

T (~k′, ~k) = (2π)−3 2π~
2a

µ

1

1 + ik′a
. (4.44)

We have not made the usual assumption that k = k′, i.e. that kinetic energy is conserved,
since here this is not always the case. The on-shell (energy conservation) condition for
a spin-changing collision is a delta function δ(ǫk − ǫk′ + Q), where Q denotes a shift in
energy associated with different quadratic Zeeman energies for the initial and final spin-
configuration. Hence the moduli of the incoming and outgoing wave vectors are related
via k′ =

√

k2 +Q in this case. Here and throughout this thesis, we use an implicit

34



distinction of two cases: if the argument of such a square root becomes negative for a
negative Q < −k2, the T -matrix vanishes and with it the entire collision term, so the
square root is implicitly taken to be zero for a negative argument.

Obviously Eq. (4.44) holds in any total spin channel with associated scattering length
aS , so in each channel there is a T -matrix

TS(~k
′, ~k) = (2π)−3 2π~

2aS
µ

1

1 + ik′aS
, (4.45)

which can be transformed into the basis of individual spins in the same fashion as the
mean-field coupling constants (2.16), such that

Tijmn(~k
′, ~k) =

∑

SM

〈ij|SM〉〈SM |mn〉TS(~k
′,~k). (4.46)

We expand this in powers of the scattering lengths to obtain an expansion for weak
interactions, which can be performed alongside the gradient expansion (4.27),

TS(~k
′, ~k) =

1

(2π)3
2π~2

µ
aS(1− ik′aS) =

1

(2π)3
gS(1− ik′aS) =

1

(2π)3

(

gS − ik′
M

4π~2
g2S

)

(4.47)

Tijmn(~k
′, ~k) =

1

(2π)3

(

Uimjn − ik′
M

4π~2
Ũimjn

)

, (4.48)

where we introduced the second-order coupling constants

Ũimjn =
∑

SM

〈ij|SM〉〈SM |mn〉g2S . (4.49)

4.7 Full Boltzmann equation

Finally we substitute the result for the the T -matrix into the collision term (equations
(4.37),(4.38)). The expansion of the total collision term will be up to second order in
scattering lengths, which means that in IT we expand the T -matrix to second order and
in IT

2

to first order. We start with IT , where the integration over ~k′ is straightforward.
We split it into a term Imf linear in scattering lengths and a quadratic term IT , and
include the pre-factor 2π/∆t from Eq. (4.9), such that 2π/∆tIT → Imf + IT . We obtain

Imf

ij (~x, ~p) = −
2i

~

∫

d3q
∑

abl

[UialbWaj(~x, ~p)Wbc(~x, ~q)− UajblWia(~x, ~p)Wbc(~x, ~q)] . (4.50)

This term is identical to the zero order term in the mean field equation of motion (3.22).
The other term becomes

ITij(~x, ~p) = −
M

4π~4

∫

d3q
∑

abl

[

√

q2 +∆ilabŨialbWaj(~x, ~p)Wbc(~x, ~p− ~q)

+
√

q2 +∆abjlŨajblWia(~x, ~p)Wcb(~x, ~p− ~q)

]

. (4.51)
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The integration in IT
2

is less straightforward. We transform one integration variable into
spherical coordinates

∫

d3k′ =

∫ ∞

0
dk′

∫

dΩk′2 (4.52)

and integrate over k′. As a function of k′, the delta function fulfills

δ (ǫk − ǫk′ +Qijlabcd) =
M

2~2k̄
δ(k′ − k̄), (4.53)

where k̄ =
√

k2 +∆ijlabcd and ∆ijlabcd = 2MQ(i2 + j2 + 2l2 − a2 − b2 − c2 − d2). We
obtain

IT
2

ij (~x, ~p) =
M

4π2~4

∫

d3q

∫

dΩ
∑

abcdl

~k̄UialbUjcld

×Wac(~x, ~p− ~(~k − k̄~eΩ))Wbd(~x, ~p− ~(~k + k̄~eΩ)), (4.54)

where ~eΩ denotes the unit vector corresponding to solid angle dΩ. The full equation,
including the kinetic and external contributions reads

d

dt
Wij(~x, ~p) +

[

~p

M
· ∇x −M

(

ω2
xx, ω

2
yy, ω

2
zz
)

· ∇p +
iQ

~
(n2−m2)

]

Wij(~x, ~p)

+
i

~

∑

l

[Vjl(~x)Wil(~x, ~p)−Wli(~x, ~p)Vlj(~x)]

−
1

2

∑

l

{∇xVjl(~x) · ∇pWil(~x, ~p) +∇pWli(~x, ~p) · ∇xVlj(~x)}

= −
M

4π~4

∫

d3q

{

∑

abc

(

√

q2 +∆icabŨiacbWaj(~x, ~p)Wbc(~x, ~p− ~q)

+
√

q2 +∆abjcŨajbcWia(~x, ~p)Wcb(~x, ~p− ~q)

)

−
1

2π

∫

dΩ
∑

abcdl

~k̄UialbUjcldWac(~x, ~p− ~(~k − k̄~eΩ))Wbd(~x, ~p− ~(~k + k̄~eΩ))

}

.

(4.55)

This equation is the main result of this chapter. It extends the approach of Lhuillier-
Laloë to arbitrary values of spin, multiple scattering channels including spin-changing
collisions, and the presence of a quadratic Zeeman effect. We note, that on the left
hand side of Eq. (4.55), this method reproduces exactly the mean-field result (3.22)
of the previous section. The additional terms on the right hand side are quadratic in
scattering lengths and, with their origin from an expansion of the T -matrix in terms
of the scattering lengths, provide a correction to the mean-field terms. Physically, we
can identify them as different scattering processes. The mean-field terms arise from the
lowest order of the real part of the T -matrix (4.45), and describe forward scattering. The
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effect of forward scattering is basically a phase-shift, while individual momenta of the
scattering particles are unchanged. This phase shift can be mimicked by a (mean-field)
potential on the single-particle level. In the case of spin 1/2, this potential can actually be
decomposed into a scalar force and an effective magnetic field [56, 64, 77]. The quadratic
terms describe backwards and lateral scattering, where individual momenta are changed.
These processes cannot be described as coherent on the single-particle level, but make
the single-particle problem an open dissipative problem. Mathematically, they lead to
a decay of the off-diagonal elements of the Wigner function, the single-particle spin
coherences. The first two terms of the right-hand side of Eq. (4.55) originate from linear
terms in the T -matrix, but contain the second order of its expansion, which correspond
to the imaginary part of the T -matrix. This describes the intensity shift of the forward
scattered wave [64, 74, 79], as opposed to the phase shift in the mean-field term. The
last term in Eq. (4.55) describes lateral collisions, which manifests in the explicit angular
dependence.
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Chapter 5

One-dimensional systems

In this thesis, we derive equations of motion for Fermi gases in a variety of geometries,
given both by experimental setups and technical limitations when it comes to numerical
treatment of the kinetic equations. The full 3D Boltzmann equation (4.55) is a set of
(2F + 1)2 coupled partial integro-differential equations in seven dimensions (~x, ~p, t), and
numerical simulation of it is not feasible using standard methods for such equations.
However, studying the same high-spin Fermi system in a one-dimensional system reduces
it to three dimensions (x, px, t). In this chapter we describe, how to use dimensionally re-
duced equations to describe the essential physics in the system. There are two geometries
to distinguish here, which we term 1D and quasi-1D systems, respectively, throughout
this thesis. By 1D, we denote a system, where the harmonic trap is very strong in two di-
mensions, such that ωx ≪ ω⊥ =

√
ωyωz and the radial confinement is sufficiently strong

such that ~ω⊥ ≫ µ, kBT and we can assume that all particles occupy the radial ground
state, hence radial dynamics is completely frozen out. With a quasi-1D, we denote the
case, where ωx ≪ ω⊥, but large numbers of radial modes are still occupied. In this case,
transversal dynamics is assumed to be so fast that we can assume the system to be in
equilibrium with respect to the radial axes, and all relevant dynamics happens along
the x-axis. The former leads to a more rigid theoretical description, while the latter is
in many cases a good and practical approximation. It is justified for certain trapping
geometries, which lead to an effect we call dynamically induced long-range interactions

[56], which we introduce in chapter 6.

5.1 Hamiltonian of the 1D system

In this section, we derive the equivalent of the Hamiltonians (3.10) and (3.13) for a 1D
system, under the assumption that the radial dynamics are fully frozen out, as described
above. We assume, that any external magnetic fields vary only along the axial direction.
With this assumption, the trap and external fields can be split into radial and axial
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contributions as

V ext
mn (~x) = V ext

mn (x) + V ext(y, z)

=
M

2
ω2x2 +Q(x)m2δmn +

M

2

(

ω2
yy

2 + ω2
zz

2
)

. (5.1)

If the atoms are all in the ground state of the transversal harmonic oscillator, we can
replace the field operators by products

ψ̂m(~x) = φ̂m(x)χ(y, z), (5.2)

where χ(y, z) = (Mω⊥/π~)
1/4e−M(ωyy2+ωzz2)/2~ denotes the radial ground state wave

function. We substitute (5.1) and (5.2) into the single-particle Hamiltonian (3.10):

Ĥ0 =
∑

mn

∫

d3xφ̂†m(x)χ∗(y, z)

[

−
~
2∇2

2M
δmn + V ext

mn (x) + V ext(y, z)δmn

]

φ̂n(x)χ(y, z)

=
∑

mn

∫

dxφ†m(x)

[

−
~
2∂2x
2M

δmn + V ext
mn (x)

]

φn(x)×

∫

dy

∫

dz|χ(y, z)|2

+
∑

mn

∫

dxφ†m(x)φn(x)×

∫

dy

∫

dzχ∗(y, z)

[

−
~
2(∂2y + ∂2z )

2M
+ V ext(y, z)

]

χ(y, z).

(5.3)

Using the normalization of χ, we obtain

Ĥ0 =
∑

mn

∫

dxφ†m(x)

[

−
~
2∂2x
2M

δmn + V ext
mn (x)

]

φn(x) + const. (5.4)

for the one-dimensional single-particle Hamiltonian. The interaction Hamiltonian can be
derived similarly:

Ĥ1 =
1

2

∑

ijkl

∫

dxUijklφ̂
†
i (x)φ̂

†
k(x)φ̂l(x)φ̂j(x)×

∫

dy

∫

dz|χ(y, z)|4

=
Mω⊥

2π~

∑

ijkl

∫

dxUijklφ̂
†
i (x)φ̂

†
k(x)φ̂l(x)φ̂j(x). (5.5)

Hence, for the 1D system, we define rescaled coupling constants

g1D
S = 2~

√
ωyωzaS , U1D

ijkl =
∑

S,M

g1D
S 〈ik|SM〉 〈SM |jl〉 , (5.6)

such that in the end, both single-particle and interaction Hamiltonian retain their shape

Ĥ0 =
∑

mn

∫

dxφ̂†m(x)

[

−
~
2∂2x
2M

δmn + V ext
mn (x)

]

φ̂n(x), (5.7)

Ĥ1 =
1

2

∑

ijkl

∫

dxU1D
ijklφ̂

†
i (x)φ̂

†
k(x)φ̂l(x)φ̂j(x). (5.8)
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This kind of systems has been studied in greater detail in Ref. [80], however, through-
out this thesis, we remain in a regime where we can neglect the confinement-induced
resonance when aS approaches the transversal system size

√

~/Mω⊥.

5.2 Mean-field equations in 1D

The mean-field equation of motion is derived completely analogously to the 3D case
in chapter 3, using the Hamiltonian derived in the preceding section. We define the
one-dimensional Wigner function according to

Wmn(x, p) =
1

2π~

∫

dyeipy/~
〈

φ̂m(x− y/2)φ̂n(x+ y/2)
〉

. (5.9)

The mean field potential now contains the rescale coupling constants

V mf
mn(x) = 2

∑

kl

∫

d3pU1D
klnmWkl(x, p). (5.10)

and the semi-classical equation of motion is given by

d

dt
Ŵ (x, p) +

p

M
∂xŴ (x, p) =

i

~

[

V̂ (x), Ŵ (x, p)
]

+
1

2

{

∂xV̂ (x), ∂pŴ (x, p)
}

, (5.11)

where V (x) now contains the axial trap and 1D mean-field potential (5.10). This equation
allows for a simpler numerical treatment, having only 3 variables (x, p, t) and is used in
chapter (7) to generate the numerical data.

5.3 Boltzmann equation in 1D

The derivation of the full Boltzmann equation using the generalized method of Lhuillier
and Laloë is analogous to the 3D case in chapter 4, but we encounter additional difficul-
ties. Therefore, we derive the 1D Boltzmann equation in more detail than the mean-field
theory above. We start from the 1D-equivalent of equations (4.18) and (4.19),

W T
ijmn(r,R, p, P ) =

−i

4π~2

∫

dK

∫

dκ

∫

dk1

∫

dk2e
iKReiκr

×
∑

abcd

(δ(k2 − k−)δcjδdn − δ(k2 + k−)δncδjd) δ(ǫk+ − ǫk1 +Qimab)

× (Timab(k+, k1)− Tmiab(−k+, k1)) 〈K+, k1, a, b|ρ̂(1)⊗ ρ̂(2)|K−, k2, c, d〉+ h.c.,
(5.12)

W T 2

ijmn(r,R, p, P ) =
1

2~2

∫

dK

∫

dκ

∫

dk1

∫

dk2e
iKReiκr

∑

abcd

δ(ǫk+ − ǫk1 +Qimab)

× δ(ǫk2 − ǫk
−

+Qcdjn) (Timab(k+, k1)− Tmiab(−k+, k1))

×
(

T ∗
jncd(k−, k2)− T ∗

njcd(−k−, k2)
)

〈K+, k1, a, b|ρ̂(1)⊗ ρ̂(2)|K−, k2, c, d〉. (5.13)
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The inverse Wigner transform of the product of density matrices ρ(1)⊗ ρ(2) is given by

〈K+, k1, a, b|ρ̂(1)⊗ ρ̂(2)|K−, k2, c, d〉 = ~
2

∫

dR′

∫

dr′e−iKR′

ei(k2−k1)r′

×Wac(R
′ + r′

2 ,
P+~k1+~k2

2 )Wbd(R
′ − r′

2 ,
P−~k1−k2

2 ). (5.14)

in one dimension. We obtain the intermediate result

W T
ijmn(r,R, p, P ) =

−i

2

∫

dκ

∫

dk1

∫

dk2

∫

dr′eiκrei(k2−k1)r′
∑

abcd

δ(ǫk+ − ǫk1 +Qimab)

× (δ(k2 − k−)δcjδdn − δ(k2 + k−)δncδjd) (Timab(k+, k1)− Tmiab(−k+, k1))

×Wac(R+ r′

2 ,
P+~k1+~k2

2 )Wbd(R− r′

2 ,
P−~k1−~k2

2 ) + h.c., (5.15)

W T 2

ijmn(r,R, p, P ) = π

∫

dκ

∫

dk1

∫

dk2

∫

dr′eiκrei(k2−k1)r′
∑

abcd

δ(ǫk+ − ǫk1 +Qimab)

× δ(ǫk2 − ǫk
−

+Qcdjn)(Timab(k+, k1)− Tmiab(−k+, k1))
(

T ∗
jncd(k−, k2)− T ∗

lncd(−k−, k2)
)

×Wac(R+ r′

2 ,
P+~k1+~k2

2 )Wbd(R− r′

2 ,
P−~k1−~k2

2 ), (5.16)

before performing the trace operation

I
(T,T 2)
ij (x1, p1) =

1

∆t

∫

dx2

∫

dp2
∑

mn

δmnW
(T,T 2)
ijmn (r,R, p, P )

on the second particle. This provides us the next expressions

ITij(x1, p1) =
−i

2∆t

∫

dκ

∫

dk1

∫

dk2

∫

dr′
∫

dr

∫

dqeiκrei(k2−k1)r′

×
∑

abcdl

δ(ǫk+ − ǫk1 +Qilab) (δ(k2 − k−)δcjδdl − δ(k2 + k−)δlcδjd)

× (Tilab(k+, k1)− Tliab(−k+, k1))Wac(x1 −
r−r′

2 , p′1)Wbd(x1 −
r+r′

2 , p′2) + h.c.,
(5.17)

IT
2

ij (x1, p1) =
π

∆t

∫

dκ

∫

dk1

∫

dk2

∫

dr′
∫

dr

∫

dqeiκrei(k2−k1)r′

×
∑

abcdl

δ(ǫk+ − ǫk1 +Qilab)δ(ǫk2 − ǫk
−

+Qcdjl) (Tilab(k+, k1)− Tliab(−k+, k1))

×
(

T ∗
jlcd(k−, k2)− T ∗

ljcd(−k−, k2)
)

Wac(x1 −
r−r′

2 , p′1)Wbd(x1 −
r+r′

2 , p′2).

(5.18)

for the two parts of the 1D collision integral. The semi-classical gradient expansion (4.27)
is valid in 1D systems as well, where we expand the Wigner function as

Wij(x1 −
r±r′

2 , p) =Wij(x1, p)−
r±r′

2 ∂x1
Wij(x1, p) + . . . (5.19)
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and consequently obtain the expansion

Wac(x1 −
r−r′

2 , p′1)Wbd(x1 −
r+r′

2 , p′2) =Wac(x1, p
′
1)Wbd(x1, p

′
2)

− r
2∂x1

(

Wac(x1, p
′
1)Wbd(x1, p

′
2)
)

+ r′

2Wbd(x1, p
′
2)∂x1

Wac(x1, p
′
1)

− r′

2Wac(x1, p
′
1)∂x1

Wbd(x1, p
′
2) + . . . (5.20)

for their product. Introducing the same renamed variables k± → k, k1 → k′, x1, p1 →
x, p and p± ≡ p− ~(k ± k′), as in the 3D case, we arrive at the expressions

ITij(x, p) =
−i

4π

∫

dq

∫

dk′
∑

abcdl

δ(ǫk − ǫk′ +Qilab)
(

δ(k − k′)δjcδld − δ(k + k′)δlcδjd
)

× (Tilab(k+, k1)− Tliab(−k+, k1))Wac(x, p−)Wbd(x, p+) + h.c., (5.21)

IT
2

ij (~x, ~p) =
1

4π

∫

dq

∫

dk′
∑

abcdl

δ(ǫk − ǫk′ +Qilab)δ(ǫk′ − ǫk +Qcdjl)

× (Tilab(k+, k1)− Tliab(−k+, k1))
(

T ∗
jlcd(k−, k2)− T ∗

ljcd(−k−, k2)
)

Wac(x, p−)Wbd(x, p+).

(5.22)

for the local terms.
The approximations for a product of two delta functions of energy obviously does not

depend on the dimensionality. However, the proof of the relation

δ(ǫk − ǫk′)δ(k − k′) ≈
∆t

2π~
δ(k − k′) (5.23)

works different in the one-dimensional case. Here

δ(ǫk − ǫk′) = δ

(

~
2k2

2µ
−

~
2k′2

2µ

)

=
µ

~2|k′|
δ(|k| − |k′|)δsgn(k),sgn(k′), (5.24)

such that we have

δ

(

~
2k2

2µ
−

~
2k′2

2µ

)

δ(k − k′) =
µ

~2|k′|
δ(|k| − |k′|)δ(|k| − |k′|)δsgn(k),sgn(k′)

=
~
2|k′|

µ
δsgn(k),sgn(k′)

[

δ

(

~
2k2

2µ
−

~
2k′2

2µ

)]2

≈
~|k′|∆t

2πµ
δsgn(k),sgn(k′)δ

(

~
2k2

2µ
−

~
2k′2

2µ

)

=
∆t

2π~
δ(k − k′) (5.25)

and we see, that the approximation (5.23) also holds in the one-dimensional case.
The T -matrix is the part, which strongly depends on the dimensionality of the system.

This is not surprising, considering that in the Boltzmann approach (chapter 4), we have
incorporated the part of the T -matrix that described lateral collisions, which in a 1D
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Likewise, in the case of spin-changing collisions, where the particles are subject to
a quadratic Zeeman shift, incoming and outgoing wave vectors are related by |k′| =
√

k2 +Q.

When we now perform the next step, the low energy expansion of the T -matrix, we
encounter a problem absent in the 3D case. Now, the imaginary part of the T -matrix is
given by

ImTS(k, k
′) =

1

2π

k′ 2~
2

M

1 + k′24~4

(Mg1D

S
)2

(5.31)

and an expansion in powers of gS produces a singularity for k′ = 0, since

ImTS(k, k
′) =

1

2π

(g1D
S )2M

2~2k′
+ . . . . (5.32)

This singularity is artificial and we use a cutoff to circumvent it. We choose the cutoff to
be the maximum of ImT at k′ = MgS

2~2
, as depicted in Figure 5.1. So we use the expression

TS(k, k
′) ≈

g1D
S

2π
−

{

0 if |k′| <
Mg1D

S

2~2

iM(g1D

S )2

4π~2k′
+ . . . if |k′| ≥

Mg1D

S

2~2

. (5.33)

to expand the T -matrix. Transformation into the basis of individual spins using the
identity

Tklmn(k, k
′) =

∑

SM

TS(k, k
′) 〈km|SM〉 〈SM |ln〉 (5.34)

yields

Tklmn(k, k
′) ≈

U1D
knml

2π
−

{

0 if |k′| <
MU1D

knml

2~2

iMŨ1D

knml

4π~2Mk′
+ . . . if |k′| ≥

MU1D

knml

2~2

, (5.35)

where

U1D
klmn =

∑

SM

g1D
S 〈km|SM〉 〈SM |ln〉 , Ũ1D

klmn =
∑

SM

(g1D
S )2 〈km|SM〉 〈SM |ln〉 .

(5.36)

With all approximations performed for the 1D case, we obtain an expression for the
Boltzmann equation also in this regime. Here we note as well, that the terms linear in

45



aS match the mean-field result (5.11)

d

dt
Wmn(x, p) +

p

M
· ∂xWmn(x, p) +

i

~

∑

l

[Vnl(x)Wml(x, p)−Wlm(x, p)Vln(x)]

−
1

2

∑

l

{∂xVnl(x) · ∂pWml(x, p) + ∂pWlm(x, p) · ∂xVln(x)}

= −
M

~2

∑

abl

[

∫

q2>ǫm

dq
Ũ1D
malb

√

q2 +∆mlab

Wan(x, p)Wbl(x, p− q)

+

∫

q2>ǫn

dq
Ũ1D
nalb

√

q2 +∆nlab

Wma(x, p)Wlb(x, p− q)

−
∑

abcdl

∫

q2>ǫ′
dq
U1D
malbU

1D
ncld

~k̄
Wac(x, p−

1
2(q − ~k̄))Wbd(x, p−

1
2(q + ~k̄))

]

.

(5.37)

The infrared cutoffs are given by ǫ1 = MUmalb

~
− ∆mlab, ǫ2 = MUnalb

~
− ∆nlab and ǫ3 =

MUnalb

2~ (Umalb + Uncld) − ∆mnlabcd. This equation is a main result of this thesis. We
implement it numerically without further approximations (apart from those performed
in the numerical implementation, see appendix C for details) and use it to generate the
theoretical results in chapter 10, where it shows very good agreement with experimental
results.

A comparison of this equation with the 3D result Eq. (4.54) yields an interesting
feature. While the mean-field terms (3.22) and (5.11) differ only in a rescaled coupling
constant, the collision integral has a different dependence on momenta in both cases.
In the 3D case, the pair of Wigner functions has a prefactor ∝ k, while in 1D it is
∝ k−1. This means, that we can expect different dependence of the incoherent scattering
processes on crucial parameters such as density. In fact, our results in chapter 10 (see e.g.
Figure 10.3)) show that the 1D system does not simply act as a rescaled 3D system. The
relative strength of coherent (mean-field) collisions compared to incoherent scattering is
expected to increase for higher densities in the 1D case but decrease in three dimensions.
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Chapter 6

Dynamically induced long-range

interactions

In this section we investigate the case, where the interaction-induced dynamics of the
system, such as spin-waves or spin oscillations, are very slow compared to the free particle
motion induced by the harmonic trap. If this is the case, we can derive a simplified
kinetic equation by time-averaging the mean-field potential (3.17) over a trapping period
and eliminate the kinetic and trapping terms from the equation (3.22). This simplified
description – when valid – has a large impact, since it can stabilize the initial phase-space
distribution of the system while the dynamics of the system effectively only occur in spin
space, leading to a suppression of spatial dephasing and collective spin dynamics even in
nondegenerate Bose and Fermi systems [56, 58].

6.1 Dimensionless units

For our purposes, it is convenient here to switch to dimensionless units. In the case,
where the trap is the dominating source of dynamics, we choose to scale our units with
the trapping frequencies ωi, i = x, y, z. Lengths are then given in units of

√

~/Mωi and
momenta in units of

√
M~ωi, and energy, angular frequency and time with ~ω̄, ω̄, and

1/ω̄, where ω̄ = 3
√
ωxωyωz. With this choice of units, the leading order of the collisionless

kinetic equation (3.22) reads

d

dt
Ŵ (~x, ~p) + ~p · ∇xŴ (~x, ~p)− ~x · ∇pŴ (~x, ~p) = i

[

V̂ mf(~x), Ŵ (~x, ~p)
]

. (6.1)

The anticommutator in Eq. (3.22) is generally very small, and in this case of weak
interactions it is often safe to neglect it completely, with the exception of the trap and
external field gradients. Here, we neglect inhomogeneous external fields, and have split
the term corresponding to the harmonic trap from the usual combined potential term,
meaning that the (classical) terms describing free motion in the trap are on the left hand
side of (6.1), and the mean-field interactions on the right hand side. In dimensionless
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x

p

Figure 6.1: Motion of the Wigner function in a harmonic trap for a non-interacting
system. During a single trapping cycle τtrap = 2π/ω the function rotates around the
origin. Each point in phase-space follows its classical trajectory.

units, the mean-field potential is given as

V mf
mn(~x) =

∫

d3p
∑

kl

ŪklnmWkl(~x, ~p), (6.2)

with Ūklmn =
∑

SM ḡS 〈km|SM〉 〈SM |ln〉 and dimensionless 3D coupling constants gS =

4π
√

ω̄M
~
aS .

6.2 One-dimensional case

To show the essence of the effect of dynamically induced long-range interaction with a far
less technical description, let us first consider the 1D system introduced above in section
(5.1). The effect of the trap, in the phase-space picture, is a rotation of the Wigner
function around the origin with frequency ω (see Figure 6.1). Hence, the spin state of a
volume element in phase space moves along the classical trajectory (see Figure 6.1). If
this rotation is faster than any interaction-induced dynamical processes, such that we can
separate the time-scales, we can average it over a trapping cycle and obtain an effective
interaction. For this purpose, we change coordinates and transform into the frame, which
rotates with the trapping frequency:

x′ = x cos(t)− p sin(t) p′ = p cos(t) + x sin(t), (6.3)

where functions transform according to

f ′(x′, p′, t) = f(x(x′, p′, t), p(x′, p′, t), t). (6.4)

In this coordinate system, the kinetic energy and trap vanish from the equation, and
only the interaction part remains, described by the mean-field potential

V ′mf
mn(x

′, p′, t) = 2
∑

kl

∫

dsŪ1D
klnmW ′

kl(x
′ − s sin(t), p′ + s cos(t), t), (6.5)
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Figure 6.2: Effect of dynamically induced long-range interactions on spinor dynamics in a
F = 9/2 system of 40K. Evolution of the normalized spatial density n(x, t)/N of the m =
1/2 component during spin-oscillations and interactions with the other spin-components
[58]. Left: Low axial frequency, complex spatial structures evolve and spin oscillations are
suppressed by dephasing. Right: High axial frequency, dynamically induced long-range
interactions remove spatial dephasing. In both cases, trapping frequencies are chosen
such that the, density, particle number and Fermi energy remain the equal. Figure taken
from Ref. [58].

where W ′
kl(x

′, p′, t) = Wkl(x(x
′, p′), p(x′, p′), t) is the Wigner function in the new coordi-

nates and we introduced the dimensionless 1D coupling constants

Ū1D
klmn =

∑

SM

ḡ1D
S 〈km|SM〉 〈SM |ln〉

with ḡ1D
S = 2

√

Mωyωz/~ωaS . Without kinetic and trapping term, Eq. (6.1) in the
rotating frame becomes

d

dt
Ŵ ′(x′, p′, t) = i

[

V̂ ′
mf
(x′, p′, t), Ŵ ′(x′, p′, t)

]

. (6.6)

A time-average of (6.5) over a trapping period, (2π)−1
∫ 2π
0 dtV mf

mn(x
′, p′, t), results in

the effective potential

V eff
mn(x

′, p′, t) =
1

π

∑

kl

∫ 2π

0
dt

∫

dsŪklnmW ′
kl(x

′ − s sin(t), p′ + s cos(t), t)

=
∑

kl

∫

dx̃

∫

dp̃
Ūklnm

π
√

x̃2 + p̃2
W ′

kl(x
′ + x̃, p′ + p̃, t), (6.7)

which is long-range in both position and momentum, as well as isotropic in phase-space.
The intuition here is, that while in the original coordinates, interactions are short-range
in position space, but infinite range in momentum space, the rapid motion ensures that
each atom interacts with all atoms in the trap during a cycle, but not equally, resulting
in the ∝ (x2 + p2)−1/2-behavior of this effective interaction.
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If we slightly reformulate the expression for the effective time-averaged mean-field
potential (6.7),

V eff
mn(x

′, p′, t) =
∑

kl

∫

dx̃

∫

dp̃
Ūklnm

π
√

(x̃− x′)2 + (p̃− p′)2
W ′

kl(x̃, p̃, t), (6.8)

we see that it is of the form of an integral transformation g(x) =
∫

dyK(x − y)f(y).
Its effect here is to blur out spatial structures of the Wigner function, while keeping the
overall shape intact. This broadening of the mean-field potential counteracts dephasing.
We illustrate this in Figure 6.2, where the time evolution of a spin component is shown
for two 1D systems, where in one case the trapping frequency is low and in the other
case it is sufficiently high to justify the time average in (6.7).

6.3 Two or three dimensions: Commensurate trap frequen-

cies

In the case of d > 1 dimensions, the discussion above becomes more complicated and
technical, since there are now more than one trapping period involved, making the notion
of time-averaging less trivial. In the following, we distinguish two cases.

If the trap frequencies are commensurate, we can average over a time span given by
the least common divisor Tlcd of the periods Ti = 2π/ωi, provided that Tlcd is much
smaller than the timescale Tint associated with interaction induced dynamics dominated
by the commutator in Eq. (3.22), Tlcd ≪ Tint. This gives

V eff
mn(~x

′, ~p′, t) =
2

Tlcd

∑

kl

∫ Tlcd

0
dτ

∫

ddaŪklnmW ′
kl

(

~x′ + ~u(a, τ), ~p′ + ~v(a, τ), t
)

. (6.9)

Thus each phase space point (~x′, ~p′) interacts via the mean-field potential with the
d + 1-dimensional subspace of the 2d-dimensional phase space covered by the coordi-
nates (~x′ + ~u(a, τ), ~p′ + ~v(a, τ), t) during integration. It is not possible to find a compact
general expression.

6.4 Incommensurate trap frequencies

If the trap frequencies are pairwise incommensurate, such that Tlcd → ∞ or simply if
Tlcd becomes large compared to the individual periods Ti, we can still approximate the
mean-field potential by an effective time-averaged one. However, in this case a double
separation of timescales max(Ti) ≪ Tav ≪ Tint is required, with Tav denoting the interval
over which the time average is to be taken. This interval must be large compared to the
individual periods Ti, such that Tav ≈ niTi with integers ni ≫ 1. Excluding resonance
effects between the dynamics along the different trap directions one can, in a second step,
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assume independent averages along the individual trap dimensions

V eff
mn(~x

′, ~p′, t) =
2

Tav

∑

kl

∫ Tav

0
dτ

∫

ddaŪklnmW ′
kl

(

~x′ + ~u(a, τ), ~p′ + ~v(a, τ), t
)

≈
1

π

∑

kl

∫ 2π

0
dφ1

∫ ∞

−∞

da1 . . .

∫ 2π

0
dφd

∫ ∞

−∞

dadŪklnmW ′
kl

(

~x′ + ~u(a, τ), ~p′ + ~v(a, τ), t
)

≈
∑

kl

Ūklnm

∫

ddu

∫

ddv





d
∏

i=1

π−1

√

u2i + v2i



W ′
kl

(

~x′ + ~u, ~p′ + ~v, t
)

. (6.10)

Thus, we arrive at a mean-field potential corresponding to an anisotropic long-range
interaction of the type

ḡS

d
∑

i=1

π−1
(

(x(1) − x(2))2 + (p(1) − p(2))2
)−1/2

(6.11)

between two particles 1 and 2 in phase space. Later in this thesis, in chapter 9, we
will see, that this effect reduces spatial dephasing and thus allows for the observation of
long-lived large-amplitude spin oscillations [58].

6.5 Quasi-1D approximation

The effect of a dynamically induced long-range interaction described above has important
consequences. If we assume a trapped 3D system to have two trapping frequencies ωy, ωz

sufficiently high to induce this effect, we can again assume a quasi stationary behavior
of the Wigner function in these two directions. This means we can define the quasi

1D regime, in which the spatial dynamics of the system is effectively suppressed in two
dimensions by the rapid oscillation in the trap, as a result of dynamically induced long-
range interactions. This is different from the 1D case described in chapter 5, where we
can assume there is no dynamics along these directions, because all particles occupy
the transversal ground state. Here, the levels of the harmonic trap are macroscopically
occupied in all directions.

In this regime, we obtain a one-dimensional Wigner function by integrating out the
radial dimensions

W ‖
mn(x, p) =

∫

dy

∫

dz

∫

dpy

∫

dpzWmn(~x, ~p). (6.12)

As we show later in this thesis, we generally consider initial Wigner functions of the
product form

Wmn(~x, ~p, t = 0) = Mmnf0(~x, ~p), (6.13)

where f0(~x, ~p) is a phase-space distribution corresponding to the equilibrium state of
a two-component gas. The matrix Mmn describes a global spin state occupied by all
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particles, which is usually prepared sufficiently rapidly, that f0 remains unchanged. We
approximate f0 with the phase-space distribution for a non-interacting Fermi gas,

f0(~x, ~p) =
1

(2π~)3

{

exp

(

1

kBT

[

~p2

2M
+

1

2
M

(

ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

− µ

])

+ 1

}−1

.

(6.14)
The dimensionally reduced Wigner function (6.13) is then given by

W ‖
mn(x, p, t = 0) = Mmnf

‖
0 (x, p), (6.15)

where f
‖
0 (x, p) =

∫

dy
∫

dz
∫

dpy
∫

dpzf0(~x, ~p). Seeing, how in general the spin dynamics
driven by the commutator in Eq. (3.22) dominate, while the anticommutator, which
governs changes to the shape of the total density, has only a negligible effect (see e.g.
chapter 8, where in the experiment no deformation is observed), we assume the Wigner
function (6.14) to maintain its transversal component at each phase-space position (x, p).
Hence, we we make the Ansatz

Wmn(~x, ~p, t) = W ‖
mn(x, p, t)Λ(~x, ~p) (6.16)

for the full Wigner function at time t to close the connection between the 3D Wigner
function and the one in reduced dimensions. Integrating Eq. (6.16) over the radial di-
mensions and comparing it at t = 0 with (6.13) yields

Λ(~x, ~p) =
f0(~x, ~p)

f
‖
0 (x, p)

. (6.17)

Note the explicit dependence of Λ on x, p. This is different from similar work on ther-
mal gases [40, 41, 65], where the Wigner function can be expressed as a Boltzmann
distribution, a Gaussian, which automatically separates into a product of its x, y and
z components: f0(~x, ~p) = fx(x, p)fy(y, py)fz(z, pz), where each factor can be integrated
out separately. For large temperatures, our distribution (6.14) also becomes a Gaussian
and Λ(~x, ~p) loses its phase-space dependence.

Next, we substitute (6.16) into the mean-field equation of motion (3.22), and obtain
its quasi 1D-version by integrating out the radial phase-space coordinates:

d

dt
Ŵ ‖(x, p) +

p

M
∂xŴ

‖(x, p) =
i

~

[

V̂ ‖(x, p), Ŵ ‖(x, p)
]

+
1

2

{

∂xV̂
‖(x, p), ∂pŴ

‖(x, p)
}

.

(6.18)
The axial part of the mean-field potential is given by

V ‖
mn(x, p) = 2

∑

kl

Uklnm

∫

dy

∫

dz

∫

dpy

∫

dpzΛ(~x, ~p)Λ(~x, ~p)

∫

dpW
‖

kl(x, p), (6.19)

hence it has a dependence on momentum as well. This equation describes systems well,
where two trapping frequencies are very high and all spatial dynamics appears along the
radial direction. The experiments on spin waves in chapter 8 were performed in this
regime with very good agreement of results obtained using Eq. 6.18 to the experiment.
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6.6 Single-mode approximation

6.6.1 3D case

A special case happens when all three trapping frequencies are sufficiently high, such
that we can assume a time-dependent long-range interaction in every direction. If we
take the initial Wigner function to be of a product form (6.13), as we approximate
the experimentally generated initial states as (see section 8.1), we can assume it to
approximately keep this product form over time,

Wmn(~x, ~p, t) = Mmn(t)f0(~x, ~p), (6.20)

without significant changes to its phase-space distribution. Hence we can completely
integrate out the phase-space dependence and end up with a simple equation for the
spin-components only,

d

dt
Mmn(t) +Q(n2 −m2)Mmn =

2η

i~

∑

jkl

[UmjlkMjnMkl − UjnklMmjMlk] , (6.21)

where

η =
1

N

∫

d3x

∫

d3p

∫

d3qf0(~x, ~p)f0(~x, ~q). (6.22)

Due to its similarity to the single-mode approximation (SMA) used to describe spinor
BEC, we also call our approach single-mode approximation, but keep in mind that in a
Fermi gas, many modes are occupied. The very simple equation (6.21) rather accurately
describes spin dynamics in the regime, where all three trapping frequencies are sufficiently
high. The consequence is that the dynamically induced long-range interactions stabilize
the phase-space distribution of the system and reduce spatial dephasing. The spin degree
of freedom then evolves collectively for all particles, despite their Fermi statistics [58].

We can go further and substitute the product expression (6.20) into the collision
integral as well. This leads to an extension of Eq. (6.18),

d

dt
Mmn(t) +Q(n2 −m2)Mmn =

2η

i~

∑

jkl

[UmjlkMjnMkl − UjnklMmjMlk]

−
M

4π~4

{

∑

abl

(

λ
(1)
mlabŨmalbManMbl + λ

(1)
nlabŨnalbMmaMlb

)

−
∑

abcdl

λ
(2)
mnlabcdUmalbUncldMacMbd

}

, (6.23)

where the spin-dependent integrals λ(1,2) are given by

λ
(1)
abcd =

1

N

∫

d3x

∫

d3p

∫

d3q
√

~q2 +∆abcdf0(~x, ~p)f0(~x, ~p− ~q), (6.24)
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and

λ
(2)
mnlabcd =

1

N

∫

d3x

∫

d3p

∫

d3q
√

~q2 +∆mnlabcdf0(~x, ~p)f0(~x, ~p− ~q), (6.25)

respectively. However, this approximation neglects variations in the phase-space distribu-
tion of the individual spin components from recombination via lateral collisions. Despite
this, the agreement with experimental results is still very good, as shown in chapter 9.

6.6.2 1D case

A true 1D system can also be treated in the single-mode approximation. In this case,
the momentum dependence of the integrals λ is different, given by

λ
′(1)
abcd =

1

N

∫

dx

∫

dp

∫

q2>ǫ1,2

dq
f0(x, p)f0(x, p− q)

√

q2 +∆abcd

, (6.26)

and

λ
′(2)
mnlabcd =

1

N

∫

dx

∫

dp

∫

q2>ǫ3

dq
f0(x, p)f0(x, p− q)
√

q2 +∆mnlabcd

, (6.27)

The single-mode equation of motion in a 1D system reads

d

dt
Mmn(t) +Q(n2 −m2)Mmn =

2η

i~

∑

jkl

[

U1D
mjlkMjnMkl − U1D

jnklMmjMlk

]

−
M

4π~4

{

∑

abl

(

λ
′(1)
mlabŨ

1D
malbManMbl + λ

′(1)
nlabŨ

1D
nalbMmaMlb

)

−
∑

abcdl

λ
′(2)
mnlabcdU

1D
malbU

1D
ncldMacMbd

}

, (6.28)

in the 1D case. Here, f0(x, p) denotes the 1D equilibrium distribution

f0(x, p) =
1

2π~

{

exp

(

1

kBT

[

p2

2M
+

1

2
Mω2x2 − µ

])

+ 1

}−1

. (6.29)

In the 1D case, we can directly compare the full Boltzmann equation (5.37) to single-
mode results. We find good agreement when it comes to describing purely mean-field
dynamics [58], but the application of the single-mode approximation to the collision inte-
gral cannot be considered accurate. Spin-conserving lateral collisions will naturally lead
to a deformation of the phase-space distribution, which is unaccounted for in the single-
mode approximation, hence we expect effects related to these collisions to be strongly
underestimated.
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Part II

Application to trapped Fermi gases
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Chapter 7

Spin segregation for F = 1/2

In this chapter we discuss mean-field driven spin segregation in a spin-1/2 system. Before
dealing with larger spins and spin-changing collisions, we would like to first study mean-
field dynamics in phase space in the collisionless regime and in order to illustrate the role
of the trap on spin dynamics. In such a two-component system, mean-field interactions
take the form of an effective magnetic field [56, 64, 65, 77], that is proportional to the
local spin polarization. We will see in this chapter, as well as in the subsequent chapters,
that mean-field driven dynamics strongly depend on the off-diagonal elements of the
single-particle Wigner function (3.3). Here, in the spin-1/2 case, these matrix elements
correspond to the components of this effective magnetic field, which are orthogonal to
the quantization axis. These matrix elements are responsible for the fastest interaction-
driven processes in spinor Fermi gases, since they appear in the leading term of the
semi-classical expansion, the commutator in equations (3.22) and (4.55). Here, we study
scenarios, in which the atoms in the two spin components ↑, ↓ separate dynamically as a
transient effect into two domains in phase-space.

We start with a reproduction of the results of Ref. [65], a theoretical discussion of the
effect termed anomalous spin segregation in Ref. [81] and observed in ultracold 6Li. This
work was performed as a test of the simulation created to numerically integrate equation
(3.22). The second study on spin segregation explores the time evolution of a spin spiral
created using a magnetic field gradient [56]. In both cases, we use the parameters of a
cold-atom system of 6Li, where the atoms are trapped in two hyperfine ground states,
| ↑〉 and | ↓〉, which makes the system an effective spin 1/2 gas. The scattering length
between the two hyperfine states can be modified using a Feshbach resonance, and we
consider the regime close to a zero crossing, where interactions are particularly weak, and
a description using the collisionless mean-field equation (5.11) is adequate. We consider
a 1D system as described in section 5.1, but in this section omit the superscript “1D” of
the coupling constant.
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7.1 The system

A magnetic field only contributes a linear Zeeman splitting to a two-level system, of
which a constant (homogenous) part can be removed from the Hamiltonian by going into
the rotating Larmor frame. Interactions in the spin 1/2 case are SU(2) symmetric [56]
and thus the coupling constants (5.6) are given by

Uijkl = g
∑

S,M

〈ik|SM〉 〈SM |jl〉 =
g

2
(δijδkl − δilδkj) , (7.1)

which further simplifies the Hamiltonian. It has the simple form

Ĥ =

∫

dx

{

∑

m

ψ̂†
m(x)

[

−
~
2∂2x
2M

+
1

2
Mω2x2

]

ψ̂m(x) +
∑

mn

~B(x) · ~σmnψ̂
†
m(x)ψ̂n(x)

+
g

2
ψ̂↑(x)ψ̂↑(x)ψ̂

†
↓(x)ψ̂↓(x)

}

, (7.2)

where ~σ denotes the Pauli-matrices.

7.2 Anomalous spin segregation

The first effect we describe with this Hamiltonian is the anomalous spin segregation,
which was observed in 2008 in the group of J. E. Thomas at Duke University [81]. It
was later described theoretically by Natu and Mueller [65] using what corresponds to a
spin 1/2 version of Eq. (5.11) in this thesis. Hence, section 7.2 of this thesis contains
a reproduction of the results of Natu and Mueller and was used as the first test of our
numerical simulations of Eq. (5.11), using its spin 1/2 special case. In the experimental
setup, the behavior of the 6Li Fermi gas was investigated close to a zero-crossing of a
Feshbach resonance. It was found, that both spin components separate, one forming a
shell around the other. In the theoretical work [65, 77], the mechanism was identified
to be a slight mismatch of the trapping frequency experienced by atoms in the ↑ and ↓
states. Such a mismatch can e.g. occur in the presence of a magnetic field gradient, a
common experimental problem. Tuning Feshbach resonances often requires very strong
magnetic fields, which may have slight inhomogeneities along the atomic cloud in the
trap. Here we use a 1D configuration to illustrate this effect, with an axial trapping
frequency of ωx ≡ ω = 2π × 60Hz and a radial frequency of ωy = ωz ≡ 2π × 36 kHz.
The scattering length is tuned to be at a = 4.55a0, where a0 is the Bohr radius. With
a particle number of N = 600 at T ≈ 6 µK, the mean collision time in this system is
τ ≈ 1 s, justifying a collisionless description.

We assume the system to be prepared in a single spin-component (↑), so it is initially
non-interacting. The initial Wigner function in this thermal regime is approximately a
Gaussian, as the gas is non-degenerate. It can be considered the same for both spin com-
ponents m,n =↑, ↓, so we assume each component to have the phase-space distribution
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Figure 7.1: Snapshots of the phase-space-distribution for the spin components (↑ left, ↓
right) at t = 0, 4, 8 trapping periods.

of the spinless Fermi gas

W↑↑(x, p, t = 0) = A exp

(

−β

[

p2

2M
+

1

2
Mω2x2

])

. (7.3)

This is a stationary state of the harmonic trap. Using a π/2-pulse, the spins are then
rotated from pointing along the z-axis to the x-axis, where the Wigner-function reads

Wmn(x, p, t = 0) = Aσxmn exp

(

−β

[

p2

2M
+

1

2
Mω2x2

])

. (7.4)

In Figure 7.1, we show the time evolution of W↑↑ and W↓↓ from the initial state above
in the case, that the ↓-component experiences a trapping frequency, which is slightly
detuned from ω by δω ≈ 2π × 10mHz. The spin segregation occurs in the presence of
interaction and this slight difference in the trap frequencies provides a symmetry break in
spin space for the onset spin segregation [65, 77]. In Figure 7.2 we show the difference in
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Figure 7.2: Difference of spin components ↑ and ↓ at the center of the trap during the
time-evolution.

densities of the up and down-components at the center of the trap as a function of time.
Both figures reproduce the results of Ref. [65, 77, 81], where a more detailed description
of he effect can be found.

7.3 Spin-segregation via dynamically-induced long-range

interactions

We now turn towards another effect, the spinor dynamics of a two-component Fermi gas
far from equilibrium. The initial state now is created out of the spin-polarized equilibrium
(6.29) by rotating the spins spatially into a spiral configuration (as was done for a Bose
condensate [22] and proposed for strongly interacting fermions for the purpose of probing
the Stoner transition [82]). Here, spin segregation builds up over time on a time-scale
that is long compared to the oscillatory motion of the atoms in the trap and is explained
as a consequence of dynamically created long-range interactions (see chapter 6).

The Hamiltonian is again given by Eq. (7.2), without the magnetic term that is absent
in this setup, since we consider only a homogenous field during the time-evolution. The
corresponding kinetic equation is

(

d

dt
+

p

M
∂x −Mω2x∂p

)

Ŵ (x, p) = −
ig

~

[

Ŵ (x, p), n̂(x)
]

−
g

2

{

∂xn̂(x), ∂pŴ (x, p)
}

+ gTr (n̂(x)) Ŵ (x, p). (7.5)

Next, we note that in the spin 1/2 case, the Wigner function is a 2 × 2 hermitian
matrix in spin-space. Hence we can expand it in the basis of Pauli matrices

Wmn(x, p) =W0(x, p)δmn + ~W (x, p) · ~σmn, (7.6)

into a scalar part

W0(x, p) =
∑

m

Wmm(x, p), (7.7)
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equal to the total phase-space density, and a vector part

~W (x, p) =
∑

mn

Wmn(x, p)~σnm, (7.8)

all of which are real. Interactions can be likewise expanded in Pauli-matrices

Uijkl =
g

2
(δijδkl − δilδkj) = g

(

1

4
δijδkl − ~σij · ~σkl

)

. (7.9)

This ferromagnetic shape of the interactions, as illustrated by the negative sign in front
of the spin-spin-coupling term, can be understood intuitively from Pauli blocking. Due
to Pauli blocking, parallel spins cannot interact, hence avoid repulsion, which leads to a
ferromagnetic mean-field coupling. The resulting mean-field potential is given by

V mf
mn(x) = Vmf(x)δmn + ~Bmf(x) · ~σmn. (7.10)

Noting the way in which the mean-field potential acts in the equation of motion, we can
identify its scalar part,

Vmf(x) =
1

2
gn0(x), (7.11)

as a correction to the trapping potential, and its spin-vector component,

~Bmf(x) = −2g~n(x), (7.12)

as an effective magnetic field.
Using equations. (7.10)-(7.12), the mean-field equation of motion (5.11) is given by

d

dt
Wmn(x, p) =−

p

M
∂xWmn(x, p) + (∂xV (x)) ∂pWmn(x, p)

−
i

~

~B(x) ·
∑

k

(σmkWnk(x, p)− σknWkm(x, p))

+
1

2

(

∂x ~B(x)
)

· ∂p (σmkWnk(x, p) + σknWkm(x, p)) (7.13)

and we can reformulate it into equations of motion for the scalar and vector components
of the Wigner function and obtain

d

dt
W0(x, p) =

[

−
p

M
∂x +Mω2x∂p + (∂xVmf(x)∂p)

]

W0(x, p)

+
(

∂x ~B + ∂x ~Bmf(x)
)

· ∂p ~W (x, p) (7.14)

d

dt
~W (x, p) =

[

−
p

M
∂x +Mω2x∂p +

(

~B + ~Bmf(x)
)

×+(∂xVmf(x)∂p)
]

~W (x, p)

+
1

4
∂x ~Bmf(x)∂pW0(x, p), (7.15)

where × denotes a vector product.
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Figure 7.3: Wigner function components Wx(x, p) and Wz(x, p) at five times (i-v, shown
in Figure 7.4) during the first half cycle, for T = TF and λs/∆ = 0.5. The motion in
phase space is governed by an overall rotation at the trap frequency (see Figure 6.1),
during which Wz slowly develops two domains. Figure taken from Ref. [56].

To initialize dynamics, we prepare the system by winding up a spin spiral along its
longitudinal axis. For this, it is first prepared in a spin-polarized state, with all spins
pointing in the x direction. This is a non-interacting equilibrium state, and the Wigner
function of such a state is given by the phase-space distribution (6.29). We chose the
same system parameters as above, with, ω = 2π × 60Hz, ω⊥ = 2π × 3.6 kHz, N = 100
and a = 4.5 aB, and study the time evolution for different temperatures T/TF = 0.2, 1, 5.
The next step is to apply a magnetic field gradient to the system for a very short time.
The magnetic field is polarized along the z-axis, such that ~B(x) = (0, 0, B(x)), with
B(x) = qxδ(t). Larmor precession of the spins at different frequencies along x creates a
spin spiral of wave length λs = 2π/q, and while W0(x, p) is still given by Eq. (6.29), the
vector component of W has changed to

~W (x, p) = (cos(qx), sin(qx), 0)
W0(x, p)

2
, (7.16)

or equivalently

Wmn(x, p) = exp(iqx(m− n))
W0(x, p)

2
. (7.17)

This simple manipulation has displaced the system into a state far from thermal equilib-
rium.

Apart from having created a spiral spin configuration – not favorable with respect
to either energy or entropy –, we have also increased the number of available single-
particle states from one spin state to two. This means, that the the phase-space density
configuration (7.16) is far from being thermal, with the same kinetic energy as before
but suddenly only half the number of particle in each spin state. Also, the system has
become interacting, being no longer polarized with total magnetization zero.

On a short time scale of a single trapping cycle, the system evolves mainly as de-
termined by the harmonic potential. That is, neglecting interaction completely for the
moment, Wmn(x, p) simply rotates in phase space at constant angular velocity ω. Ev-
erywhere, the Wigner function follows a classical circular orbit. This behavior can be
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Figure 7.4: Time evolution of the averaged spatial polarizations σz and σxy for T/TF =
0.2, 1, 5 (thick solid, dashed, and thin solid lines, respectively) and for λs/∆ = 1, 0.5, 0.2
(top triple of red lines, middle triple of black lines, and bottom triple of blue lines,
respectively). While for the shorter wave lengths σxy shows rapid collapses followed by
periodic revivals, the emerging spatial z-polarization undergoes smooth oscillations as
a signature of the formation of only two domains in phase space. Figure taken from
Ref. [56].

observed clearly in Figure 6.1, which shows the evolution of Wx(x, p) during half a trap
cycle. Looking only at the spatial polarization

~n(x) =

∫

dp ~W (x, p), (7.18)

obtained by projecting ~W (x, p) onto the x axis, this rotation manifests as periodic decay
and revivals of the mean absolute spatial x-y-polarization

σxy =
1

N

∫

dx
√

n2x(x) + n2y(x), (7.19)

as seen in Figure 7.4. for the first two cycles. The collapse and revival become more
pronounced, the more windings we apply to the spiral.

When we add weak interactions to the picture, during a single cycle of oscillation in
the trap they cause only small deviations from the non-interacting behavior. The small
modification of the trap frequency and the slight anharmonicities caused by the scalar
part of the mean-field potential through the anticommutator in (5.11) are negligible.
However, Wz(x, p), which is zero initially, changes and develops a pattern. This pattern
is related to the magnetic mean-field ~Bmf(x). Regardless of the winding number of
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Figure 7.5: Evolution on longer times for T = TF and different initial spiral wave lengths
λs/∆. (left) Averaged spatial absolute z polarization σz vs time. Note the different
scaling of σz for each wave length. (right) Wigner function components Wx(x, p) and
Wz(x, p) plotted for five instants in time as in Figure 7.3, but during the 21st half cycle
(arbitrary color scale). Initially, σz increases linearly in time with a rate controlled by
the wave length λs/∆. Irrespective of the number of windings ∆/λs (directly visible in
Wx), Wz develops two oppositely polarized domains. Figure taken from Ref. [56].

the initial spiral, two domains of opposite polarization with respect to z form. This
formation of always two spin domains is a very robust effect. As a consequence of the
spin segregation happening in phase space (see Figure 7.3), the average polarization with
respect to the z-axis

σz =
1

N

∫

dx
√

n2z(x), (7.20)

oscillates in time, but because only two domains are formed, it does not feature the same
sharp collapses as σxy does for small values of λs/∆, where ∆ denoted the extension of
the atomic cloud along the x-axis. This is depicted in Figure 7.4.

The long-time behavior of this spin segregation effect is shown in Figure 7.5 for three
different spiral wave lengths λs: From cycle to cycle the spin segregation becomes more
and more pronounced, as can be seen in the left panel of Figure 7.6, where σz during the
21st half cycle is shown. For the spatial dependence only, again the rotation in phase
space of the two oppositely polarized domains corresponds to a phase-opposed dipole
oscillation of spin components ↑ and ↓ in the trap. While a z-polarization builds up over
time, the spiral spin structure in the x-y plane decreases but stays intact (right panel
in Figure 7.5) and the scalar part of the Wigner functions W0(x, p) remains practically
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Figure 7.6: Spatial densities n↑(x) and n↓(x) as well as z-polarization nz(x) =
1

2
[n↑(x)− n↓(x)] at five instants in time during the 21st half cycle for T = TF and

λs/∆ = 0.2. Times and parameters correspond to the middle row of panels on the right
in Figure 7.5. Spin ↑ and ↓ particles segregate and counter-oscillate in the trap. Figure
taken from Ref. [56].

unchanged during the entire time evolution. We can directly control the spin segregation
by choosing the number of windings ∆/λs of the spin spiral at t0 =. With more windings,
the segregation builds up slower. The fastest segregation is observed for ∆/λs = 1, where
already after ten half cycles, we find deviations from a linear increase, and a more complex
dynamics sets in (Figure 7.5).

The initial buildup of z-polarization and the formation of two domains can be ex-
plained intuitively by using the dynamically induced long-range interaction introduced
in chapter 6. In dimensionless units (see 6.1) and the the rotating frame (x′, p′) (6.3),
the scalar and vector parts of the mean-field become time-dependent, since it is obtained
by projecting onto the x axis, which rotates with respect to the new frame. Applying
the rotating-frame formalism derived in section 6.2 to the effective magnetic field (7.12),
it assumes the shape

~B′
mf(x

′, p′, t) ≈ ~Beff
mf(x

′, p′, t)

= −
2g

π

∫

dp̃

∫

dx̃
1

√

x̃2 + p̃2
~W ′(x′ + x̃, p′ + p̃, t). (7.21)

An equivalent expression can be obtained for the mean-field potential acting on the
density,

V eff
mf (x

′, p′, t) =
g

2π

∫

dp̃

∫

dx̃
1

√

x̃2 + p̃2
W ′

0(x
′ + x̃, p′ + p̃, t). (7.22)
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Figure 7.7: Cycle-averaged rate of the creation of z-polarization computed for the initial

state
[

~Beff
mf(0)×

~W ′(0)
]

z
for T = TF and different spiral wave lengths λs/∆ (arbitrary

color scale). This explains the formation of two oppositely polarized domains in Wz,
visible in Figure 7.3. Figure taken from Ref. [56].

We simplify the description further and use only the zero-order term in the equation
(7.13), we now arrive at the simple effective equations of motion

d

dt
W ′

0(x
′, p′, t) = 0, (7.23)

d

dt
~W ′(x′, p′, t) = ~Beff

mf(x
′, p′, t)× ~W ′(x′, p′, t). (7.24)

The second equation describes the time evolution of the polarization field ~W in the x′-
p′-plane. At each point the polarization ~W ′ is rotated by the mean field ~Beff

mf, such that

| ~W ′| stays constant.

We can now explain the spin segregation by first-order time-dependent perturba-
tion theory and dynamically induced long-range interactions, predicting initially a linear
growth of z-polarization,

W ′
z(x

′, p′, t) ≈ t
[

~Beff
mf(x

′, p′, 0)× ~W ′(x′, p′, 0)
]

z
, (7.25)

as we can observe in Figure 7.5. Deviations from the linear growth appear as soon
as W ′

z becomes comparable to | ~W ′|, as seen in Figure 7.5. In Figure 7.7 we show the

rate
[

~Beff
mf(0)×

~W ′(0)
]

z
obtained for an intermediate temperature T = TF and different

winding numbers ∆/λs. Notably, W ′
z always shows the same pattern with two oppositely

polarized domains, independent of the initial number of windings. The formation of two
domains only can be understood as follows. At any point in phase-space, the vector
component of the Wigner function ~W ′(x′, p′) experiences a magnetic field that is mainly
determined by the polarization of the nearby phase-space areas. Within the phase-space
neighborhood of (x′, p′), phase-space areas showing the largest polarization perpendicular
to z have the largest effect. Since, for the initial state, | ~W ′| = W ′

0
/2 increases toward

the origin at a given point (x′, p′), the effective magnetic mean field ~Beff
mf is dominated

by the polarization in the direction of the spiral toward the origin. On one side of the
spiral this results always in the creation of a positive z polarization; on the other side it
results always in the creation of a negative z polarization. This explains the creation of
two domains.
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The relatively simple example of spin dynamics presented in this section illustrates
very well the role of the trap for the dynamics of weakly-interacting systems. Moreover,
the phase-space treatment in combination with a semi-classical approximation is shown
to provide an adequate and intuitive theoretical framework. We find, that while the anti-
commutator of Eq. (3.22) can be neglected for our purposes, the commutator is sufficient
to generate dynamical phenomena with long lifetimes and large amplitudes, which we
describe in the following chapters for the situation of larger spins and consequently more
complex interactions.
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Chapter 8

Spin waves in a trapped large-spin

Fermi gas

Spin waves are collective excitations of the spin degree of freedom, characterized by
currents of spin-components within the bulk system. Transverse spin waves, where the
excitation propagates perpendicular to to the oscillation direction, were first observed in
experiments on liquid Helium [69, 72] and Hydrogen [71, 73], where exchange interactions
were identified as the mechanism behind these effects [70, 74, 75]. These systems can be
considered homogeneous systems, while trapped cold-atom systems are inhomogeneous
due to the trap. Spin waves are also a prominent feature of ultracold trapped spinor
gases, and longitudinal spin waves (the spin wave propagates parallel to the oscillation
direction) were observed in a thermal Bose gas of 87Rb [44, 83]. In this chapter, we present
a theoretical description of long wavelength excitations observed in a trapped Fermi gas
with an effective spin of F = 3/2 by the Hamburg group [57]. These results extend
beyond preceding work on spin-1 Bosons [40, 41] and show new physical phenomena
related to the emergence of higher order (octupole) components. The four-component
case is the simplest fermionic system with a larger spin than 1/2. While as of now there
still is no true spin-3/2 system experimentally available1, we consider a four-component
subsystem of the spin-9/2 atomic species of 40K. The four spin states are |F = 9/2,m〉
with m = ±1/2,±3/2. If the system is prepared in a superposition of these states the
remaining states with |m| > 3/2 are never sufficiently populated on the time scale we
consider in this chapter. This assumption breaks down on the far longer time scales
investigated in chapter 10. This chapter is based on Ref. [57].

We investigate the spin waves for small amplitudes, where a linearized description can
be applied and dipolar oscillations (sloshing modes) dominate, to the nonlinear regime
of large amplitudes, in which also quadrupolar spatial modes (breathing modes) turn
out to be relevant. We further show how by engineering the initial state, spin-currents
in the trap can be reversed for some spin components relative to others. In order to
explain these effects, we expand the Wigner function in terms of tensors in spin space,

1Proposed atomic species are 132Cs, 9Be, 135Ba, 137Ba and 201Hg [84].
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Figure 8.1: (a) In situ time evolution of the spatial distribution n(z) of all four spin
components after a 10 ms pulse with a magnetic field gradient of B = 3.4G/m. Shown
are the column densities at different times after the excitation. (b) Deviation from the
initial population of the m = 0 component of the vector (l = 1), nematic (l = 2)
and octupole (l = 3) components (diagonal tensors T 0

l , see appendix E). The vector
and octupole component show spatial dipole oscillations, while the nematic component
clearly exhibits quadrupolar spatial oscillations. (c,d) Numerical calculations in the quasi
1D regime for the same parameters of (a,b). Figure taken from Ref. [57].

which allow us to categorize the observed excitations and how they couple. Moreover,
we derive a linearized theory with which we calculate the spin wave frequencies in the
low-amplitude regime in good agreement with the experimental results.

8.1 Initialization of spin waves

We consider a sample of 40K atoms prepared in the F = 9/2 hyperfine manifold. The
atoms are cooled down evaporatively to degeneracy in a two-component mixture of the
states |F = 9/2,m = ±1/2〉 in an elongated optical dipole trap with frequencies ωx,y,z =
2π×(70, 70, 12)Hz (see appendix B) and [57, 58, 85] for details on the experiment). From
this point, an rf-pulse can be used to create a superposition of the states with m = ±12
and m = ±3/2. Mathematically, this amounts to a rotation of the initial 2-component
mixture around an axis in the x, y-plane (x without loss of generality) about an angle θ:

Ŵini(~x, ~p) = f0(~x, ~p)e
−iŜxθM̂eiŜxθ, (8.1)

where M ∝ diag(0, 1/2, 1/2, 0) and f0 denotes the phase-space distribution of the evap-
orated two-component mixture, which we approximate as a non-interacting distribution
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(2.3). The spin waves are then initialized by applying a magnetic field gradient of variable
strength ∆B, described by a magnetic field ~B = z∆B~ez for a very short time (∼ 10ms).
This gradient applies a force proportional to m to each spin component (see the anti-
commutator in Eq. (3.22)), and leads to a phase spiral for coherent superpositions of
different spin-components, as sketched in Figure 8.3. This amounts to a transformation

Ŵ (~x, ~p, t = 0) = e−igµB∆BŜzzŴini(~x, ~p)e
igµB∆BŜzz, (8.2)

where µB denotes the Bohr magneton and g the gyromagnetic ratio. While all particles
are still in the same spin superposition state – the atoms are initially still spin-polarized
locally – the phase-twist initializes a dynamics in the trapping potential, which allows
for interactions in a trapped gas and the potential induces spatial dynamics [56].

The resulting mean-field interaction couples the spin degrees of freedom to the modes
of the external trap and lead to the emergence of spin waves.

8.2 Observed dynamics

During the subsequent time evolution, the magnetic field is assumed to be homogenous.
This is in contrast to other work on spin-waves, where the gradient was present at all
times [21]. A break in spatial symmetry such as the one induced by the gradient is
only necessary for the initialization of spin waves, not their propagation [83]. Since
experimentally, magnetic field inhomogeneities can be hard to remove, undesired spin-
waves may be excited (see chapter 9) and are difficult to suppress.

In Figure 8.1(a), we show a typical picture of a spin wave as observed in the exper-
iment and induced using the prescriptions above. The initial state here is created as
described in Eq. (8.1) by an rf-pulse and corresponds to a rotation angle of θ = 0.44π
with respect to the initial two-component mixture. The applied magnetic field gradient
is 3.4G/m. An interesting feature is the reversed direction of the ±1/2-components com-
pared to the ±3/2 components. This effect cannot be explained by an intuitive picture
of the gradient "pushing" the spin components with a force proportional to m alone and
must be an interaction-induced effect.

In the elongated trap we consider, the gradient is applied along the z-axis and all
relevant spin wave dynamics take place in this direction, which is why we can describe
the time-evolution in the quasi 1D regime (section 6.5) by integrating out the phase-
space coordinates x, y, py, py. It is also observed, that the total density distribution
N(~x) =

∑

m

∫

d3pWmm(~x, ~p) does not change at all during the time evolution, such that
we can describe the dynamics with a simplified version of Eq. (6.18),

(

d

dt
−

p

M
∂z +Mω2

zz∂p

)

Ŵ (z, p) =
i

~

[

V̂ mf(z, p), Ŵ (z, p)
]

, (8.3)

with mean-field potential

Vmn(x, p) = 2
∑

kl

Ūklnm

∫

dpWkl(x, p). (8.4)
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Figure 8.2: (a) Frequency and (b) oscillation amplitude of spin-waves excited with dif-
ferent magnetic field gradients. Negative amplitudes denote an inverted initial direction.
Solid lines are numerical data for each component. The trapping frequency is ωz = 12Hz.
All error bars solely correspond to fit errors, representing one standard deviation. The
experimental amplitudes, which are taken after time-of-flight and the numerical ampli-
tudes calculated in situ are rescaled onto each other by a global factor. (c) Sketch of the
phase windings across the atom cloud for different gradients. Figure taken from Ref. [57].

Here, we have omitted the ‖-superscripts and defined p ≡ pz. We have introduced one
further approximation, namely that we neglect the explicit dependence on z, p of the
coupling constants in the quasi-1D regime (see Eq. (6.17)), which we found to be very
small for the system geometry considered in this chapter. Hence, here the coupling
constants are given by their peak value

Ūklmn =

∫

dx
∫

dy[f0(x, y, z)]
2

[
∫

dx
∫

dyf0(x, y, z)]2
× Ūklmn ≈

∫

dx
∫

dy[f0(x, y, 0)]
2

[
∫

dx
∫

dyf0(x, y, 0)]2
× Ūklmn. (8.5)

Working in a 4-component subsystem of a spin 9/2 system, one has to keep in mind, that
the coupling constants Ūklmn depend on the Clebsch-Gordan coefficients for F = 9/2,
not for F = 3/2. With these considerations, we find Eq. (8.3) to describe spin-waves
with good agreement to the experiment. Figure 8.1(c) depicts the results of numerical
simulations of Eq. (8.3) with the experimental parameters.

In Figure 8.2, we show the oscillation frequencies (a) and amplitudes (b) of the slosh-
ing oscillations of each spin component, as depicted in Figure 8.1, for different strengths
of the magnetic field gradient, while the angle θ corresponding to the rf-pulse before the
application of the gradient remains constant at θ = 0.44π. Also here, results obtained
using Equation Eq. (8.3) show good agreement with the experiment. In Figure 8.2(c),
we sketch the initial phase spiral along the cigar-shaped Fermi gas. For strong gradients,
the number of windings increases and we observe an increase in the oscillation frequency,
which seems to approach the trapping frequency. We also notice that for weak gradi-
ents, the amplitude depends linearly on the gradient, which indicates the possibility of
describing this regime with a linearized theory. We call this the linear regime, where
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as we did with the spin 1/2 case in chapter 7, Eq. (7.4), where the tensors are the Pauli
matrices. Here, with F = 3/2, the expansion reads

Ŵ (~x, ~p) =
3
∑

l=0

2l
∑

m=0

Wm
l (~x, ~p)Tm

l . (8.6)

These tensors transform invariantly under rotations and therefore can be ordered by a
total spin l and a magnetic quantum number m = 0, . . . , 2l. This means, that for a
matrix describing a spin-F rotation matrix around Euler angles ~θ, DF (~θ), with matrix
elements

DF
mn(

~θ) = 〈Fm|e−i~θ·~S |Fn〉, (8.7)

the tensors transform as spin-l vectors:

DF (~θ)Tm
l (DF (~θ))† =

∑

n

Tn
l D

l
nm(~θ). (8.8)

For the case of spin 1/2, l = 0, 1 and the tensors are the Pauli matrices and the Wigner
function can be decomposed into a scalar part (l = 0) and a vector part (l = 1). For spin
3/2, two further components appear, l = 2, 3, which we call spin quadrupole (or nematic)
and spin octupole components. At the time this project was done, a general prescription
on how to obtain suitable tensors for arbitrary spin did not exist (only F = 1/2 and 3/2
were studied). In early 2014 however, a general theory of a tensor expansion for arbitrary
spins was published [86].

In this thesis, we define a certain set of basis tensors, related, but not completely
identical to the choice of Dirac Gamma-matrices and their anticommutators used in
earlier work [84, 87–89], where using this expansion an intrinsic SO(5) symmetry was
proven for spin-3/2 quantum gases. The scalar (l = 0) and vector (l = 1) components
are simply given by the identity matrix

T 0
0 =

1

2
✶ (8.9)

and the three spin-matrices in spin-3/2 representation:

T 0
1 =

1
√
5
Sx, (8.10a)

T 1
1 =

1
√
5
Sy, (8.10b)

T 2
1 =

1
√
5
Sz, (8.10c)

where ~S for spin 3/2 are given explicitly in appendix E.

The pre-factors are chosen to ensure normalization, as we will show later. For the
spin quadrupole or nematic (l = 2) part we choose five traceless symmetric quadratic
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linear combinations of Si,

T 0
2 =

1

2

(

S2
z −

5

4
✶

)

(8.11a)

T 1
2 =

1

2
√
3

(

S2
x − S2

y

)

(8.11b)

T 2
2 =

1

2
√
3
(SxSy + SySx) (8.11c)

T 3
2 =

1

2
√
3
(SzSx + SxSz) (8.11d)

T 4
2 =

1

2
√
3
(SySz + SzSy) . (8.11e)

Apart from normalization, these matrices correspond to the Dirac Gamma matrices. The
remaining seven matrices for l = 3 are chosen to be

T 0
3 =

√
5

3

(

S3
z −

41

20
Sz

)

(8.12a)

T 1
3 =

√
5

3

(

S3
x −

41

20
Sx

)

(8.12b)

T 2
3 =

√
5

3

(

S3
y −

41

20
Sy

)

(8.12c)

T 3
3 =

1

2
√
3

{

Sx, S
2
y − S2

z

}

(8.12d)

T 4
3 =

1

2
√
3

{

Sy, S
2
z − S2

x

}

(8.12e)

T 5
3 =

1

2
√
3

{

Sz, S
2
x − S2

y

}

(8.12f)

T 6
3 =

1
√
3
(SxSySz + SzSySx) . (8.12g)

As defined above, the Tm
l obey the transformation properties (8.8). Roughly speaking,

the value of l corresponds to the powers of spin matrices ~S, out of which the Tm
l are

composed. The nematic tensors Tm
2 are symmetric linear combinations of products of

two spin matrices, the octupole tensors are antisymmetric combinations of products of
three spin matrices. In Figure 8.3 (c), the diagonal matrices T 0

l are depicted, along with
the corresponding spherical harmonic Yl0 to illustrate their rotational properties. We
provide a full list of all Tm

l in appendix E, where one an check that apart from T 0
0 , all

other tensors are traceless Tr(Tm
l ) = 0.

The entire set of 16 hermitian matrices Tm
l forms a complete, orthonormal set with

respect to the scalar product defined by the trace:

Tr
(

Tm
l Tm′

l′

)

= δll′δmm′ . (8.13)

75



As all 16 Tm
l are Hermitian, any 4×4 Hermitian matrix M̂ , such as the Wigner function,

can then be expanded in terms of these tensors

M̂ =
3
∑

l=0

2l
∑

m=0

Mm
l (z, p)Tm

l , (8.14)

with coefficients obtained using the formula

Mm
l = Tr

(

Tm
l M̂

)

. (8.15)

This expansion can be applied to the mean-field potential V mf as well. If we look at
the coupling constants (2.16), they are sums of terms of the form AikAjl, where Aik =
〈ik|SM〉. In general, we can transform such an expression according to

AikAjl =
∑

α

CαB
α
ijB

α
kl, (8.16)

where the matrices B̂α form a complete basis. This is called a Fierz transformation. If
the target basis {Bα} is composed of irreducible representations of a group, all matrices
belonging to one representation receive the same coefficient. In our case, the tensors Tm

l

belong to the scalar, vector, etc. representation of SU(2), so we can apply this theory
here and obtain

Uijkl =
3
∑

l=0

2l
∑

m=0

αm
l (Tm

l )ij(T
m
l )kl. (8.17)

In a true spin 3/2 system with only two scattering lengths a0 and a2, the coefficients
are given by

α0
0 =

1

2
(g0 + 5g2) , αm

1 =
1

2
(−g0 − g2) , αm

2 =
1

2
(g0 − 3g2) , αm

3 =
1

2
(−g0 − g2) .

(8.18)
so there is no dependence on m and α1 and α3 are identical, which is a result of an
intrinsic SO(5) symmetry in such a system (see e.g. [87]). In our case, where we treat
a spin-9/2 system “truncated” to spin 3/2, this degeneracy is lifted. For simplicity, in
the following, we will treat the system as a spin-3/2 and omit the m-dependence of the
coefficients αm

l → αl. For more details on the difference between a truncated and a true
spin-3/2 system, we refer to appendix D.

Using the identity (8.17), the mean-field potential (8.4) assumes the shape

V̂ mf(z) =

3
∑

l=0

2l
∑

m=0

V m
l (z)Tm

l (8.19)

in the new basis. We find each l-component to be proportional to the respective l-
component of the Wigner function

V m
l (z) = Tr

(

V̂ mf(z)Tm
l

)

= αl

∫

d3pWm
l (~x, ~p). (8.20)
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Roughly speaking, the coupling constants Uklmn have been diagonalized by transforming
into the basis of irreducible spherical tensors, which results in a simpler equation.

Substituting equations (8.6) and (8.19) into the mean-field equation of motion (8.4),
it is transformed into

(

d

dt
−

p

M
∂z +Mω2z∂p

) 3
∑

l=0

2l
∑

m=0

Wm
l (z, p)Tm

l

=
i

~

∑

l′,l′′

∑

m′,m′′

αl′′

∫

dqWm′

l′ (z, p)Wm′′

l′′ (z, q)
[

Tm′

l′ , Tm′′

l′′

]

,

(8.21)

from which we obtain the equation for Wm
l by multiplying with Tm′′′

l′′′ and taking the
trace, to obtain
(

d

dt
−

p

M
∂z +Mω2z∂p

)

Wm
l (z, p) =

i

~

∑

l′,l′′

∑

m′,m′′

αl′′

∫

dqWm′

l′ (z, p)Wm′′

l′′ (z, q)Λm′m′′m
l′l′′l .

(8.22)
The coefficients on the right hand side are derived from the commutation relations of the
Tm
l and are defined as

Λm′m′′m
l′l′′l = Tr

(

Tm
l

[

Tm′

l′ , Tm′′

l′′

])

, (8.23)

or in other words as the l,m-components of the commutators of two tensors Tm
l . While

it would be too cumbersome to write down a complete list of all Λm′m′′m
l′l′′l , we note

that for many combinations of (l, l′, l′′,m,m′,m′′), they vanish. In fact, only for certain
combinations, they are non-zero, given in the following table:

l (l’, l”)

1 (1,1), (2,2), (3,3)
2 (1,2), (2,1), (2,3), (3,2)
3 (2,2), (3,3), (1,3), (3,1).

(8.24)

In combination with Eq. (8.22), this allows us to know which excitations to expect de-
pending on the type of initial state we prepare the system in. For instance, the time
evolution of the dipolar components l = 1 depends only on excitations, where a com-
ponent with angular momentum l′ couples to one with the same value of l′′ = l′. We
visualize this by writing down the equations (8.22) in a short symbolic notation, sup-
pressing the m-indices:

∂tW0
∼= ∂0W0,

∂tW1
∼= ∂0W1 +

i

~
([W1, V1] + [W2, V2] + [W3, V3]) ,

∂tW2
∼= ∂0W2 +

i

~
([W2, V1 + V3] + [W1 +W3, V2]) ,

∂tW3
∼= ∂0W3 +

i

~
([W3, V1] + [W1 +W3, V3] + [W2, V2]) . (8.25)
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Figure 8.4: (a) Spatial oscillation amplitude of the spin-wave excitations for different
initial coherences but equal populations of the four components at B = 3.6,G/m: Solid
lines show the initial spin-wave amplitude extracted from numerical calculations. (b)
Exemplary spin Wigner functions for different initial coherences. (c) Amplitude of the
dipole and octupole tensor components W 0

1 and W 0
3 . (d) Vector and octupole tensors T 0

1

and T 0
3 evaluated in (c). All error bars solely correspond to fit errors, representing one

standard deviation. The experimental amplitudes, which are taken after time of flight
and the numerical amplitudes calculated in situ are rescaled onto each other by a global
factor. Figure taken from Ref. [57].

We now go back to the initial spin configuration, we considered so far (8.1), which
we obtained by applying a rotation to a two-component mixture, described by a matrix
Wmn(z, p) ∝ diag(0, 1, 1, 0). This matrix is a purely nematic spin state, since it can be
expanded according to

diag(0, 1, 1, 0) =
1

2
✶+

1

2
diag(−1, 1, 1,−1) = T 0

0 − T 0
2 . (8.26)

Due to the rotational properties of the tensors Tm
l , the rotation induced by the rf-

pulse does not change this fact. Hence, according to Eq. (8.25), excitations on top of
this nematic initial state should be dipolar and octupolar, but not nematic themselves.
And indeed, as shown in Figure (8.1) (b), where the spatial densities of the diagonal
components W 0

l are plotted, we see that dipolar and octupolar excitations dominate.
The motion of the l = 2 component is only a weak perturbation and has the shape of a
quadrupolar spatial mode (breathing mode), which we can attribute to imperfect state
preparation and the influence of the higher order anticommutator term in the equation of
motion. We have included this term in the simulations used to calculate the data for the
plots in Figure (8.1) (d), which show very good agreement to the experimental results.
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In order to further understand the interplay between the tensor degrees of freedom,
we can also use a different procedure to create initial spin configurations that are not
purely nematic. Using a different technique (see [57] for details), not only the full Wigner-
function can be rotated at a certain angle, but also such rotations can be applied to two-
component subsets of the Wigner-function. Mathematically, an exemplary operation of
this kind would be

Wini(z, p) = f0(z, p)
(

e−i~θ·~σ ⊗ ✶2×2

)

M̂
(

ei
~θ·~σ ⊗ ✶2×2

)

, (8.27)

where σ denote Pauli matrices and ✶2×2 the 2× identity matrix. This operation only
performs a rotation around Euler angles ~θ within the components m = 1/2, 3/2, while
leaving the other components unchanged.

With this technique, it is possible to create initial states Ŵini(z, p) with non-zero
dipolar and octupolar components from an initial two-component mixture of m = ±1/2.
A good measure to quantify these new initial states is the ratio of coherences to the
corresponding diagonal matrix element c = |W1/2,−1/2/W1/2,1/2|, which for the nematic
states considered earlier is always zero. In Figure 8.4, we tune c and plot the resulting
amplitude of the four spin components. At c ≈ 0.5, the inner components |±1/2〉 change
direction. An investigation in terms of the tensor expansion of section 8.3 yields that for
small values of c, the spin wave is dominated by the octupole component, while at large
c, the dipole component takes over. The second increase of the octupole amplitude at
large c is due to higher order spatial excitations, possible in the nonlinear regime, where
the measurements were performed. At c = 0.5, the vector and octupole component
contributions cancel, and the | ± 1/2〉 components are quasi stationary.

8.4 Linearized equations

In this section, we derive a linearized theory to analytically obtain the minimum of the
spin-wave frequencies shown in Figure 8.2. We apply a moment method technique, to a
linearized kinetic equation, in which we categorize excitation on top of the initial state
in terms of their dependence on powers of x, p, similar to the tensor expansion in section
8.1, where we expand the excitations in powers of ~S. It captures the long-wavelength
collective behavior of the trapped gas. This method is valid for small amplitudes spin
waves in the linear regime, i.e. for small gradients ∆B. For this purpose, we consider
small changes with respect to a stationary state W 0

mn(z, p), such that Wm
l (z, p, t) ≈

Wm
0l (z, p) + δWm

l (z, p, t). Thus we investigate the spin waves for short times and small
amplitudes. The mean-field, as a function of the Wigner function itself likewise separates
into a stationary part and a small perturbation: (V mf)ml (z, t) = V m

0l (z) + δV m
l (z, t). We

substitute both expressions into the simplified equation (8.22), keep only the linear terms,
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and obtain
(

d

dt
−

p

M
∂z +Mω2

zz∂p

)

δWm
l (z, p) =

i

~

∑

l′,l′′

∑

m′,m′′

Λm′m′′m
l′l′′l

(

δWm′

l′ (z, p)V m′′

0l′′ (z) +Wm′

0l′ (z, p)δV
m′′

l′′ (z)
)

,

(8.28)

the linearized kinetic equation.
For a good description of the observed spin-wave effects, we need to choose the sta-

tionary part accordingly. We use the spin state of the system after an rf-pulse is applied
to the initial m = ±1/2 mixture, but before the magnetic field gradient is used to excite
the spin waves. Assuming an infinitely fast rf-pulse, we approximate Wm

0l (z, p) with a
product of the equilibrium phase space distribution f0(z, p) and the spin-state created
by the rf-pulse:

Wm
0l (z, p) = f0(z, p)M

m
l . (8.29)

In our weakly-interacting regime, f0(z, p) can be approximated by the non-interacting
equilibrium distribution (3.21), such that in our quasi-1D description,

f0(z, p)=
1

(2π~)3

∫

dx

∫

dy

∫

dpx

∫

dpy

(

e
1

kBT

[

~p2

2M
+ 1

2
M(ω2

xx
2+ω2

yy
2+ω2z2)−µ

]

+ 1

)−1

.

(8.30)
This function is rotationally invariant in phase-space, using units rescaled with the trap
frequency ω. Hence

( p
M ∂z −Mω2z∂p

)

f0(z, p) = 0. The stationary part of the mean-field
now reads

V m
0l (z) = α̃lM

m
l n0(z), (8.31)

where n0(z) =
∫

dpf0(z, p).
We are interested in the long-wavelength excitations, which in a harmonic trap are

given by the sloshing (dipolar), breathing (quadrupolar) and higher modes. In order to
study these modes, we expand the phase-space degrees of freedom in moments of the
position and momentum operators. Let χ(z, p) be a polynomial in z and p, then we
define the stationary and dynamic moments

〈χ〉0 =

∫

dz

∫

dpχ(z, p)f0(z, p), (8.32)

〈χ〉ml (t) =

∫

dz

∫

dpχ(z, p)δWm
l (z, p, t). (8.33)

If χ = pl, xl we call 〈pn〉ml the n-th moment of p, the same holds for powers of z.
The time dependent part of the linearized equation (8.28) is expanded into moments

of x and p:

δWm
l (z, p) = f0(z, p) (A

m
l (t) + zBm

l (t) + pCm
l (t)) , (8.34)

δV m
l (z) = α̃ln0(z) (A

m
l (t) + zBm

l (t)) . (8.35)
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a0 a2 a4 a6 a8
119.92 147.83 161.11 166.00 168.53

Table 8.1: Partial scattering lengths for 40K in units of Bohr radii. Source: Ref. [90]
(Supplemental material).

The expansion goes up to first order in (z, p), such that we can calculate the frequencies
of the dipole modes without complications. Taking the appropriate moments of the
equations (8.34,8.35), we obtain the relationship between the coefficients A,B,C and
the moments in z, p:

Am
l (t) =

1

N
〈✶〉ml (t), (8.36a)

Bm
l (t) =

〈z〉ml (t)

〈z2〉0
, (8.36b)

Cm
l (t) =

〈p〉ml (t)

〈p2〉0
. (8.36c)

We note here, that the inclusion of higher moments can lead to more complicated
relationships than (8.36) and the matrix connecting coefficients and moments may no
longer be diagonal [44].

Next, we substitute (8.34) and (8.35) into (8.28) and obtain

(

d

dt
−

p

M
∂z +Mω2

zz∂p

)

f0(z, p) [A
m
l (t) + zBm

l (t) + pCm
l (t)] =

i

~
f0(z, p)n0(z)

∑

l′,l′′

∑

m′,m′′

α̃l′′Λ
m′m′′m
l′l′′l

([

Am′

l′ + zBm′

l′ + pCm′

l′

]

Mm′′

0l′′

+Mm′

0l′

[

Am′′

l′′ + zBm′′

l′′

])

. (8.37)

We integrate this equation over z, p to obtain the following set of equations for A,B,C:

Ȧm
l (t) = I0

1

i~

∑

l′,l′′

∑

m′,m′′

α̃l′′Λ
m′m′′m
l′l′′l

[

Am′

l′ (t)Mm′′

0l′′ +Mm′

0l′ A
m′′

l′′ (t)
]

,

(8.38a)

Ḃm
l (t)−Mω2

zC
m
l (t) = I1

1

i~

∑

l′,l′′

∑

m′,m′′

α̃l′′Λ
m′m′′m
l′l′′l

[

Bm′

l′ (t)Mm′′

0l′′ +Mm′

0l′ B
m′′

l′′ (t)
]

,

(8.38b)

Ċm
l (t) +

1

M
Bm

l (t) = I2
1

i~

∑

l′,l′′

∑

m′,m′′

α̃l′′Λ
m′m′′m
l′l′′l Cm′

l′ (t)Mm′′

0l′′ ,

(8.38c)
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Figure 8.5: Comparison of spin waves for the real scattering lengths of 40K (top) and
the SU(4) case (bottom). The dominating frequency of the dipole oscillations of all four
spin components is identical, but in the SU(N) case there are less spatial modulations
and dephasing in each individual component. Hence to obtain the main frequency, we
describe the system with the simpler SU(4) interactions. In both cases, the total density
(rightmost column) is stationary, supporting our simplification of Eq. (8.31) by omitting
the gradient term.

where

I0 =
1

N

∫

dz[n0(z)]
2, (8.39a)

I1 =
1

〈z2〉0

∫

dzz2[n0(z)]
2, (8.39b)

I2 =
1

〈p2〉0

∫

dz

∫

dpp2f0(z, p)n0(z). (8.39c)

The first equation (8.38a) is decoupled from the others and does not lead to spatial
dynamics (it describes spin dynamics such as that laid out in chapter 9), so we ignore it
here. Equations (8.38b) and (8.38c) describe dipole oscillations of all spin components
of the Wigner function and the frequencies can be obtained by a Fourier transform and
solving the eigenvalue equations.

A justification for further simplification can be seen in Figure 8.5, where we depict spin
waves for two systems, that are identical except for their scattering lengths. The results
were obtained by integrating the quasi-1D equation (8.3), including the anticommutator
term, which nevertheless has negligible effect here. In Figure 8.5(a), we use the scattering
lengths for 40K (see Table 8.4), while in 8.5(b) we use a single scattering length, a0 =
a2 = a4 = a6 = a8 ≡ a0. If there is only a single scattering length present, the coupling
constants (8.19) simplify to α0 = 3g/2 and α1 = α2 = α3 = −g (see appendix D for
more details). The interaction Hamiltonian then becomes SU(N)-invariant [32–34]. In
this case, spin-changing collisions are absent. We observe that for the study of spin waves,
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spin-changing collisions are not very relevant and we can describe them sufficiently well
with a simplified SU(4) model. A further justification lies in the fact, that in 40K, the
differences of the values for all aS are very small. If we apply the SU(N)-interactions
to equations (8.38), the first equation (8.38a) becomes zero on the right hand side. The
remaining two equations reduce to

Ḃm
l (t) = Mω2

zC
m
l (t) (8.40a)

Ċm
l (t) +

1

M
Bm

l (t) = I2
g

i~

∑

l′,l′′

∑

m′,m′′

Λm′m′′m
l′l′′l Cm′

l′ (t)Mm′′

0l′′ . (8.40b)

In order to decouple these equations, we take the time derivative of (8.40a) and substitute
it into (8.40b):

C̈m
l (t) + ω2

zC
m
l (t) = I2

g

i~

∑

l′,l′′

∑

m′,m′′

Λm′m′′m
l′l′′l Ċm′

l′ (t)Mm′′

0l′′ . (8.41)

After a Fourier transform with respect to time, Ċ → −iωC, we obtain the eigenvalue
equation

(

ω2 − ω2
z

)

Cm
l (t) = 2ωωmf

∑

l′,l′′

∑

m′,m′′

Λm′m′′m
l′l′′l Ċm′

l′ (t)Mm′′

0l′′ . (8.42)

Here, we have introduced the mean-field frequency ωmf = gI2/2~. As a result of our
simplification of the interactions, we obtain only a single mean-field frequency, instead
of a matrix of slightly different frequencies, which simplifies our analysis here. The
solutions of Eq. (8.42) lead to the frequencies of the dipole modes. There are trivial
solutions ω = ±ωz that describe the Kohn-mode [91], harmonic oscillations of the entire
atomic cloud in the trap, for instance if the atoms are somehow prepared off-center. The
other solutions apply to the propagation of dipolar oscillations and are given as

ω = −ωmf ±
√

ω2
mf

− ω2
z . (8.43)

8.5 Conclusions

In this chapter, we have described excitations of a four-component spinor Fermi gas in a
harmonic trap. We have performed an expansion of both spin and spatial modes, which
leads to a transparent theory for long-wavelength spin waves. Using this expansion, we
showed why the most visible spin waves in the experiments are dipole oscillations of
the spin dipole and octupole components, namely because only those modes appear in
the leading order term of the semiclassical equation of motion. We achieved very good
agreement with the experimental results for short time-scales, where damping is not an
issue yet, using the collisionless mean-field theory.
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Chapter 9

Coherent spin-changing dynamics

With spin-changing dynamics, we denote the time evolution of the macroscopic popu-
lation of individual spin components in a large system. This requires spins F > 1/2,
because s-wave collisions, which change the spin of a pair of atoms, conserve the to-
tal spin, hence more than two spin components are required. In the case of bosons,
spinor dynamics has been studied in spinor Bose-Einstein condensates, where several
spin states are trapped in an optical dipole trap [92–94]. Spinor BEC with spins F = 1
[22, 37, 40, 95, 96], F = 2 [16, 23, 38, 97] and F = 3 [17, 18, 45, 98] have been created
and larger spins up to F = 11 [99] may become available, for recent reviews see [4, 36].
In the case of Fermions, large spin gases have been experimentally available for a long
time – 40K was even used in the first demonstration of a degenerate Fermi gas [8] – and
degenerate Fermi gases with spins up to F = 21/2 are possible [100], but only recently
interest in spinor dynamics [90, 101] and other large spin effects [86, 102–104] has arisen.
This chapter is based on Ref. [58].

As we pointed out earlier, the mechanism behind spinor dynamics are spin-changing
collisions. In the regime of s-wave scattering, as well as due to the Pauli principle, not all
scattering processes {m1,m2} → {m3,m4} are allowed. S-wave scattering conserves total
spin m1 +m2 = m3 +m4, and the Pauli principle prohibits binary collisions, where the
incoming or outgoing atoms are in the same spin state. The exception happens, when
noticeable anisotropic long-range dipole-dipole interactions are present in the system,
such that a transfer of total spin into orbital angular momentum can occur [22, 105–
107]. There are also predictions for Dysprosium atoms, where even contact interactions
may be sufficiently anisotropic to break the conservation of total spin in a collision [108].
However, for the system of 40K considered in this chapter, such anisotropic effects do
not play a role. Atoms with large spins in an external magnetic field experience not
only a linear Zeeman splitting, which due to the conservation of total spin does not
play a role for spin-changing collisions. Quadratic or higher orders play a role. As a
possible consequence, a very large quadratic Zeeman splitting can suppress spin-changing
collisions.

85



0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (s)

R
e
la

ti
v
e
 o

c
c
u
p
a
ti
o
n

n(1/2)+n(-1/2)
n(3/2)+n(-3/2)
n(5/2)+n(-5/2)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

R
e
la

ti
v
e
 p

o
p
u
la

ti
o
n

Time (s)

Figure 9.1: Collective spinor dynamics in a Fermi gas. The system is prepared in a
coherent spin configuration with large populations in the states | ± 1/2〉 and | ± 3/2〉,
corresponding to a rotation angle of θ = 0.44. We plot the relative populations of the
sum of two components |±m〉, which remain equal during the time evolution due to total
spin conservation. Left: Experimental plot. Points denote measured values, lines are fits
to the data. Right: Theoretical plot obtained using the collisionless Boltzmann equation
in the quasi-1D regime (6.18). In both cases, the frequencies are ~ω = 2π×(32, 33, 137)Hz
and other parameters B = 0.12G, np = 5.9 × 1012 cm−3 and T = 0.13TF. Left figure
taken from Ref. [58].

9.1 Giant spin oscillations

The results presented in this chapter were again obtained in collaboration with the ex-
perimental group of Klaus Sengstock in Hamburg, using the same experimental setup
as in the preceding chapter 8, but with different parameters and different initial states.
Now we use all the 10 spin states of the 40K atoms in its F = 9/2 ground state hyperfine
manifold. Otherwise, the initial state preparation and theoretical description remains
similar to the spin waves in chapter 8. The equation of motion is given by

d

dt
Ŵ (~x, ~p) = ∇0Ŵ (~x, ~p) +

i

~

[

V̂ mf(~x), Ŵ (~x, ~p)
]

−
1

2

{

∇rV̂ (~x),∇pŴ (~x, ~p)
}

+ Îcoll(~x, ~p),

(9.1)
where now the matrices are of size 10× 10.

Using an initial state created via an rf-pulse (8.1), with a homogenous external mag-
netic field, the dynamics of the spin components is found to be oscillatory, as depicted in
Figure 9.1. We find large-amplitude long-lived spin-changing oscillations of the relative
populations of the m = ±12 and m = ±3/2 components, while the other spin compo-
nents hardly participate. This is because of the initial state, in which only coherences
between these components are sufficiently populated. A comparison with numerical sim-
ulations of the collisionless (Îcoll(~x, ~p) = 0) Boltzmann equation (9.1) in the quasi-1D
regime reproduces the measured behavior, except for damping. In the simulations, we
also observe oscillations in the population of the m = ±5/2 component, with a small
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Figure 9.2: Frequency (main plots) and amplitude (inset) of coherent spin oscillations
as functions of magnetic field (A) and density (B). The initial state is the same as
in Figure 9.1. Red points denote experimental data obtained from fits (see [58, 85] for
details), blue data are calculations using a collisionless single-mode equation. The shaded
area in (B) denotes fluctuations in particle number. Parameters are np = 1.0×1013 cm−3,
T = 0.22TF in (A); B = 0.17G and T = 0.18TF in (B). Taken from Ref. [58].

amplitude, likely too small to be observed experimentally. A striking feature of these
giant spin oscillations is that the atoms, despite being fermions, behave collectively, and
seem to change their internal state all at once. In the numerical data, we see no spatial
dynamics such as dephasing, which is why we obtain good agreement even if the trap-
ping frequencies do not justify a quasi-1D treatment. In the next section, we explain this
effect theoretically.

9.2 Collective behavior of a Fermi sea

The spin oscillations depicted in Figure 9.1 are governed by microscopic s-wave scat-
tering events. We can expect two energy scales to be involved in such a spin-changing
collision, the differential interaction energy and quadratic Zeeman energy. Hence, we
have measured the dependence of the oscillation frequency and amplitude on the applied
external magnetic field as well as the density at constant T/TF. The results are plotted
in Figure 9.2. We find, that the oscillation frequency is determined by the quadratic
Zeeman energy for large magnetic fields, which becomes evident from the quadratic de-
pendence in Figure 9.2A. For weak magnetic field, we find superposition of oscillation
with different frequencies, which indicates that in this regime, spin-changing collisions
determine the frequencies. These collisions have different scattering amplitudes for each
spin configuration, thus we observe more than a single frequency.

The behavior of the amplitude in 9.2A (inset) can also be understood intuitively. At
large magnetic fields, initial and final spin configurations during a spin-changing collision
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Figure 9.3: Comparison of numerical simulations of the collisionless equation 6.18 in the
quasi-1D regime for the two different trap geometries depicted in Figure 6.2. However,
here, in addition, the spin component populations are depicted in the top row. Left:
Trapping frequencies are ~ω = 2π × (5, 200, 200)Hz, hence the axial frequency is far too
low to induce a time-averaged long-range interaction, leading to strong dephasing. This
plot shows how spatial dephasing (bottom row depicts the normalized spatial distribution
of the m = 1/2-component, see also Figure 6.2), leads to a reduction of oscillations,
even without taking into account incoherent collisions. Right: Trapping frequencies are
~ω = 2π × (33, 34, 137)Hz and lead to long-lived undamped collective behavior, without
visible spatial structure. Note that in both cases, the average frequency ω̄ = (ωxωyωz)

1/3

is approximately equal. Bottom row taken from Ref. [58].

are energetically separated further, such that this difference cannot be overcome by the
interaction energy. The density dependence in 9.2B is taken at a rather low magnetic
field of B = 0.17G in the interaction dominated regime, where we expect frequency and
amplitude to depend on density, which determines the overall collision rate. As can be
expected, we observe an increase of oscillation frequency and amplitude with density.

Now, we focus on the most striking effect observed and depicted in Figures 9.1 and
9.2, the apparently collective dynamics of the spins in the system. In a Fermi gas,
each particle occupies a different single-particle mode, apart from spin degeneracy, which
even for F = 9/2 is very small compared to typical particle numbers of the order of
105. Hence, we would expect spatial dephasing in the system, where the spin oscillations
would have different frequencies at different positions in the trap, and as a consequence
no clear oscillations as shown in Figure 9.1 with a well-defined global frequency as shown
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Figure 9.4: Simulation of spin oscillation frequency (main graph) and amplitude (inset)
as a function of the applied magnetic field. The experimental parameters from the mea-
surements in Figure 9.2 A are used. Solid lines in insets correspond to the amplitude and
the shading in main graph to a Fourier spectrum, both deduced from calculations within
a single-mode approximation. Crosses are the extracted amplitudes and frequencies from
calculations using the mean-field equation in the quasi 1D-regime, with full momentum
and spatial resolution in one dimension. The very good agreement justifies the use of the
simple single-mode description in this parameter regime. Taken from Ref. [58].

in Figure 9.2 would be visible.

As the key mechanism for the observed collective spinor dynamics, we identify the
trap. As laid out in chapter 6, a sufficiently high trapping frequency leads to the preser-
vation of the symmetry of the original phase-space distribution. A lower trap frequency
leads to spatial dephasing, where the frequency of spin oscillations depends on the po-
sition in the trap and the oscillations of the total populations of each component wash
out in time due to this. In Figure 9.3 we compare theoretical results using two different
geometries. In the left frame, the axial trapping frequency is 5Hz and hence on the
order of magnitude as the spin-oscillations, in the right frame we use the experimental
trapping frequencies. In both cases, the Fermi energy ∝ (ωxωyωz)

1/3 is identical, as are
particle number, T/TF and magnetic field. We see that in the highly elongated case, the
oscillation amplitude of the relative spin populations decreases over time, and spin states
with higher m become populated, while for the case with the experimental parameters,
the oscillations between the components m = ±1/2 and m = ±3/2 continue with ap-
proximately fixed amplitude and frequency. The reason for this qualitatively different
behavior is depicted in the bottom row of Figure 9.3. There, we plot the spatial density
of the m = 1/2-component, normalized by its population. In the trap with low axial
frequency, we observe strong spatial dephasing, while for the experimental geometry, no
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Figure 9.5: Spin waves in a full spin 9/2 system, using the initial spin state with a rota-
tion angle of θ = 0.44π and a small magnetic field gradient. Unlike in chapter 8, here the
gradient is permanently present, to simulate a residual inhomogeneity present in the ex-
periment if not actively compensated for. The spatial separation of the spin components,
especially pronounced for m = ±1/2,±3/2, leads to strongly suppressed spin-changing
dynamics. Top row, from left to right: Spatial densities of m = 9/2, 7/2, 5/2, 3/2, 1/2,
bottom row: negative m showing the mirrored motion.

dephasing occurs at all.

The complete absence of spatial structures induced by strong harmonic confinement in
all spatial directions for in all spin component justifies the description of spinor dynamics
in the experimental setup with the single-mode approximation derived in section 6.6.1.
This description leaves the initial phase-space density intact and only describes the time-
evolution of the collective spins of the system (see e.g. Eq. (6.23)). To further support the
validity of the single-mode picture for the trapping frequencies used in the experiment,
in Figure 9.4 we compare numerical results using a quasi-1D collisionless Boltzmann
equation (9.1) with single-mode results, showing very good agreement.

9.3 Damping of coherent spin oscillations

Now that we have established, that spatial dephasing is prevented by dynamically-
induced long-range interactions, the damping of oscillations observed in Figure 9.1 must
have a different origin. First, we rule out another possible mechanism, namely the pos-
sibility of having excited spin-waves (as studied in chapter 8) in the system. The initial
spin configuration used to induce the coherent spin oscillation is created in the same way
as for the spin-waves, by applying an rf-pulse to a balanced mixture of atoms in spin
states m = ±1/2 (see Eq. (8.1)). This means that in the experiment, even the presence
of a small gradient will initiate spin-wave excitations characterized by periodic spatial
separation of the spin components. This separation would decrease the collision rate.
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Figure 9.6: Oscillations of spin populations in a homogeneous magnetic field (left, iden-
tical to Figure 9.1,right) and in the presence of a gradient (right). Results are obtained
using the collisionless equation in the quasi-1D regime. The parameters are identical to
Figure 9.1 except for the gradient of ∂xB(x) = 0.6G/m. Compared to Figure 9.1, oscilla-
tion amplitudes are greatly reduced. This shows how even a small gradient can strongly
suppress spin oscillations to the point, where they are hardly visible in an experiment.

Residual gradients are a common feature in experimental setups. In Figure 9.5, we plot
the time evolution of the spatial density profile of all ten spin states, using the same
parameters as in Figure 9.1 B, but in the presence of a weak gradient of ∆B = 0.6G/m.
We observe strong separation, especially between the spin components of m = 1/2 and
m = −1/2 (rightmost column).

With the spin components separating during the time-evolution, we expect a reduc-
tion of spin-changing interactions, and indeed spin oscillations can become strongly sup-
pressed even by small magnetic field gradients. In Figure 9.6, we show the time-evolution
of the population of the spin-components for two almost identical systems, which differ
only in the gradient. The gradient is zero in Figure 9.6 (left) and 0.6G/m in 9.6 (right),
which corresponds to the density profiles plotted in Figure 9.5. We realize that even
such a small gradient leads to a noticeable reduction of amplitude, which outlines the
importance of reducing or actively canceling inhomogeneities in the magnetic fields in
experiments in order to observe visible spinor dynamics with a large amplitude. How-
ever, we also observe that the gradient does not lead to a damping of the spin oscillation,
hence there must be another mechanism not described on a mean-field level.

This means, the damping of oscillations in Figure 9.1 is not described by the col-
lisionless version of Eq. (9.1) and must be a consequence of lateral scattering. As we
established in chapter 4, spin-conserving lateral collisions are much stronger than spin-
changing ones and are expected to be the relevant process here. In order to estimate
the damping rates observed in the experiment, we now take into account the collision
integral (4.55) describing the effect of lateral collisions and derive a simplified collision
term in the relaxation approximation. Similar to chapter 8, we use linearized theory but
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this time also apply it to the collision integral

Icoll

mn (~r, ~p) =−
M

4π~4

∫

d3q

{

∑

abc

(

√

q2 +∆mcabŨmacbWan(~r, ~p)Wbc(~r, ~p− ~q)

+
√

q2 +∆abncŨanbcWma(~r, ~p)Wcb(~r, ~p− ~q)
)

−
1

2π

∫

dΩ
∑

abcdl

~k̄UmalbUncldWac(~r, ~p−
1

2
(~q − ~p′)Wbd(~r, ~p−

1

2
(~q + ~p′)

}

.

(9.2)

Again, we separate the Wigner function into a stationary part and a time-dependent
perturbation Wmn(~r, ~p, t) = W 0

mn(~r, ~p) + δWmn(~r, ~p, t). The stationary part is given by
a product of phase-space distribution and spin density matrix W 0

mn(~r, ~p) = Mmnf0(~r, ~p),
with

f0(~r, ~p) =
1

(2π~)3

{

exp

(

1

kBT0

[

~p2

2M
+

1

2
M

(

ω2

xx
2 + ω2

yy
2 + ω2

zz
2
)

− µ0

])

+ 1

}−1

.

(9.3)
Since the rf-pulse used to generate Mmn is applied to a two-component mixture, the

Wigner function is normalized, and temperature T0 and chemical potential µ0 chosen,
such that

∫

d3r
∫

d3pf0(~r, ~p) = N/2. For short times, we can linearize the collision inte-
gral around W 0

mn(~r, ~p), but for longer times on which damping appears, this may not be
optimal. The experimental results 9.1 show that the system reaches a pre-equilibrium
state, where coherent oscillations have stopped, but the populations of the other spin
states such as m = ±7/2,±9/2 are still negligible. We assume the phase-space distribu-
tion of this state to be approximated by a second distribution

f1(~r, ~p) =
1

(2π~)3

{

exp

(

1

kBT1

[

~p2

2M
+

1

2
M

(

ω2

xx
2 + ω2

yy
2 + ω2

zz
2
)

− µ1

])

+ 1

}−1

,

(9.4)
where T1 and µ1 are chosen such that total single-particle energy and particle number
are conserved with respect to f0. Because this distribution has 4 spin states populated
it is normalized differently:

∫

d3r
∫

d3pf1(~r, ~p) = N/4 and we assume an approximately
balanced population of all four non-zero components. We model the system’s evolution
from f0 to f1 with the simple Ansatz

δWmn(~r, ~p, t) = (f0(~r, ~p)− f1(~r, ~p))Amn(t). (9.5)

We introduce

Amn(t) =
4

N

∫

d3r

∫

d3pδWmn(~r, ~p, t), (9.6)

which corresponds to the lowest term in the moment expansion (8.36) in chapter 8. The
linearized equation can now be written in matrix notation as

d

dt
A−

1

i~
ΩMF(A) = −ΓA+ I [W0] , (9.7)
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Figure 9.7: The influence of temperature on collective spinor dynamics. A Time evo-
lution of the occupations of spin states |m = ±3/2〉 for three different temperatures
(experimental data and fitted curves). B Frequency (main graph) and amplitude (inset)
for different temperatures. C Damping rate versus temperature. The initial state was
prepared as for the measurements in Figure 9.1 and the experimental parameters are
B = 0.12G and np = 5.2 × 1012 cm−3. Experimental data (red points) is deduced from
fits. Amplitude and frequency calculations in B are performed within a single-mode ap-
proximation, damping calculations in C within a relaxation approximation. Taken from
Ref. [58].

where ΩMF denotes a tensor of mean-field frequencies similar to the one appearing in
Eq. (8.43). In I[W0] only the stationary parts of the collision integral appear, it is
quadratic in W0 and does not depend on δW . The tensor Γ contains the damping
rates for each element of the Wigner function. With respect to spin it has the form
Γklmn = γklmnI(kBT ), where

I(kBT ) =

∫

d3r

∫

d3p

∫

d3q|~p+ ~q|f0(~r, ~p) (f0(~r, ~q)− f1(~r, ~q)) (9.8)

is a spin-independent function of temperature.
Results in Figure 9.7 C show the comparison of the relevant matrix element of Γ for

the damping of the spin component W3/2,3/2. It captures the general trend with respect to
temperature, but the increase for large temperatures is lower than the experimental value.
The reason for this lies in our strongly simplified model derived above, but also in the fact
that our Boltzmann equation is not a true quantum Boltzmann equation. It is derived
from two-body collisions (see section 4.1), but does not take Pauli blocking into account,
which arises from three-body effects. Here, where spin-conserving collisions are involved,
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Figure 9.8: Time evolution of a magnetically excited spin configuration with only very
small initial coherences, given by fluctuations. The particles quickly populate the other
spin states and coherences, leading to oscillations in the long run. Left: Experimental
results showing the relative populations of the spin states. Solid lines are a guide to the
eye only. Right: Numerical results, obtained using a collisionless Boltzmann equation in
the quasi 1D regime 6.18. The simulations show the same drop of the system from its
initial configuration, but the absence of collisional decoherence lead to a almost complete
return to the initial state. Left figure taken from Ref. [58].

our theory does not take into account that at low temperatures, many possible single-
particle states, into which the two colliding atoms could scatter, are already occupied by
a third atom. As a consequence, we cannot expect to fully reproduce the temperature
behavior of the damping in Figure 9.7 C. The dependence of the oscillation frequency
on temperature, depicted in Figure 9.7 B however, is reproduced, as the oscillations are
driven by forward scattering, where the colliding atoms stay in the same single-particle
mode, such that in this case, three-body Pauli blocking is irrelevant.

9.4 Stability properties

The oscillations described in the preceding sections depend on the preparation of co-
herences in the initial density matrix using rf-pulses. However, it not not necessary to
prepare these coherences, the system can also produce them on its own. This happens
when it is prepared in a two-state mixture |±m〉, but where m ≥ 1/2, such that the par-
ticles are not in the lowest energy state with respect to the quadratic Zeeman splitting
(see appendix A for details). Then such a spin configuration is unstable with respect
to the mean-field dynamics and any small perturbation or seed in the coherences leads
to a massive redistribution into the lower-lying Zeeman states, while quadratic Zeeman
energy is converted into interaction energy through mean-field interactions. This behav-
ior is shown in Figure 9.8, where in the experiment (left), a large-scale redistribution is
observed, which then leads to coherent, damped spin oscillations on longer time-scales.
Theoretical results (right) obtained using a collisionless quasi-1D equation reproduce this
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Figure 9.9: Experimental results for the stability of a Fermi gas prepared in an mag-
netically excited state. A Plotted is the occupation of the lowest quadratic Zeeman
states |m = ±1/2〉 after 2 s, as a function of magnetic field and initial density. We find
three distinct regions: A Zeeman-protected regime 1©, where interactions are too weak
to overcome the level spacing induced by the magnetic field. The unstable regime 2©,
where dynamics such as in Figure 9.8 occur appears for higher densities, but at very high
densities and weak magnetic fields, the is another stable region 3©, where the system
does not evolve. B] and C show the time evolution of the |m = ±1/2〉-components for
variable magnetic fields in regions 2© and 3©, with peak densities np = 7.2 × 1012 cm−3

B and np = 5.9× 1012 cm−3
C. Taken from Ref. [58].

effect. Without the damping induced by lateral collisions included in the equation, the
system almost returns to its initial spin configuration.

The entire effect can be understood as similar to an unstable inverted pendulum (see
also [39]), which starts in a state with maximal potential energy (here the quadratic
Zeeman energy), but minimal kinetic energy (here interaction energy). Here, in a Fermi
gas, the interaction energy is initially low, because in a two-component mixture, each
atom can only interact with N/2 other atoms, a number, which increases, the more other
spin states are populated.

In Figure 9.9, we map the dependence of this instability on magnetic field and density,
showing regions, where the dynamics is very fast, but also, where the instability does
not occur. In the region (2), the quadratic Zeeman and interaction energy are resonant
and hence spinor dynamics occur. This is the region corresponding to Figure 9.8. For
larger magnetic fields (1), the quadratic Zeeman levels are too strongly detuned, such
that collisions cannot overcome the energy differences and spinor dynamics becomes fully
suppressed. The more surprising feature is a region of stability (3) for low magnetic fields
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at large densities, where one would intuitively expect very rapid mean-field dynamics,
since the mean-field term in the kinetic equation (9.1) is quadratic in density. But we
observe a complete absence of dynamics, the system is stabilized in its initial excited state.
This unexpected region of stability can be reproduced using the single-mode description
with a simplified collision term in relaxation approximation,

Icoll

mn (~r, ~p) ≈ −
∑

kl

ΓklmnWkl(~r, ~p). (9.9)

This is plotted in Figure 9.10. For good agreement, we have to scale the damping
rate calculated in section 9.3 with a factor of 2.25. This is necessary because of the
many approximations made in this description, e.g. the damping rates are obtained from
a linearized theory. However, the same linearized approach with respect to the mean-
field level does not reproduce the instability, only spin oscillations such as in section 9.2.
This proves that the instabilities are a non-linear effect unlike the oscillations and we
cannot simply calculate something as a “growth rate” for the coherences in this case.
Nevertheless, the effect of incoherent collisions is that off-diagonal elements of the Wigner
function go to zero, and in the stability region for large densities in Figure 9.10 the
decoherence caused by an increased rate of such collisions is stronger than the growth
of coherences due to the spin instability. In other words, with each collision, the single-
particle density matrix is projected back onto its initial state at an increased rate, similar
to a measurement-induced quantum Zeno effect. It is worth noting that this stability
effect through decoherence is induced by the dominating spin-conserving collisions, which
depend on averages of scattering lengths. The effect of incoherent spin-changing collisions
is weaker, hence incoherent population transfer appears on a slower time-scale and shall
be treated in the next chapter of this thesis.

9.5 Conclusions

In this chapter, we have have identified the mechanism for an entire Fermi sea undergoing
collective long-lived large-amplitude spin oscillations. The oscillations are a mean-field
effect driven by spin-changing forward scattering and the differential quadratic Zeeman
energy. We have discussed possible mechanisms for dephasing, which would suppress
such large-amplitude oscillations, such as the presence of gradients. We found that
the harmonic trap induces dynamically induced long-range interactions, which suppress
spatial dephasing and lead to the observed collective spin oscillations, which can then be
described with a simple single-mode approach with good agreement to the experiment.
In addition, we investigated instabilities, another mean-field effect that occurs when
the system is prepared in an excited quadratic Zeeman state. We found, that the rate of
incoherent collisions can outgrow the instability and stabilize the system in an unexpected
regime of high densities.
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Figure 9.10: Theoretical calculations for the stability of the Fermi gas as plotted in
Figure 9.1. Shown is the calculated spin occupation of |m = ±1/2 after a time evolution
of 3.5 s, depending on magnetic field and density. The parameters are the same as in
Figure 9.1 and use as initial spin configuration a state prepared in an incoherent mixture
of |m = ±3/2 with a small rf-pulse corresponding to θ = 0.1 to account for fluctuations,
that trigger the instability. The calculations are performed in single-mode approximation,
with the damping rate taken from Eq. (9.8) and scaled with a factor of 2.25. We can
reproduce all the regions of the experimental stability diagram 9.9: a Zeeman-protected
regime 1©, a spin-oscillation regime 2© and the collisionally-stabilized regime 3©. In the
inset, we plot a stability diagram with a weak density-independent damping rate of 2Hz.
Here, only regimes 1© and 2© are present. Taken from Ref. [58].
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Chapter 10

Relaxation of a large-spin Fermi gas

In this chapter, we study the long-time relaxation dynamics of the trapped fermionic gas
of 40K atoms. This chapter is based on Ref. [59]. Different from the preceding chapters
8 and 9, we start from an initial two-state mixture of m = ±12 without coherences,
such that mean-field dynamics and instabilities discussed in section 9.4 are suppressed
and investigate its relaxation dynamics caused by the incoherent spin-changing collisions,
leading to a redistribution of the atoms among all available spin states on a long time
scale, as sketched in Figure 10.1. We again perform a comparison of numerical results
from simulations of a Boltzmann equation and experimental data and find good agree-
ment. We study the dependence of the relaxation process on density and magnetic field,
where a higher density enhances the spin relaxation in 3D and strong magnetic fields
suppress it. This suppression can be used to control the loss of particles from the ini-
tially populated two-component subsystem into the remaining empty states and allows
us to interpret this subsystem as an open system coupled to the environment given by the
initially empty spin states. We observe that the relaxation within such a subset of spin
states, driven by incoherent spin-conserving collisions, happens on a much faster time
scale than the redistribution among the spin components due to spin-changing collisions,
and thus we encounter a situation similar to prethermalization [52], where first a prether-
mal state is reached, approximately conserving the initial occupations of the single spin
states, before the redistribution among all spin states due to a slight symmetry breaking
sets in. The resulting separation of time scales also allows us to monitor the increase of
(effective) temperature within the subsystem of the initially populated spin states, as it
is caused by dissipation into empty spin states.

10.1 Relaxation processes in a large-spin system

A long-time relaxation of the spin 9/2 Fermi gas of 40K is already slightly visible in
the experimental measurements depicted in Figure 9.1, and becomes apparent when
the experiment is run for longer time scales. This is depicted in Figure 10.2, where
we show that long after the coherent oscillations have ceased because of damping, the
system continues evolving towards a state with approximately equal population in all
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Figure 10.2: (a) Measurement of damped spin oscillations and subsequent relaxation to-
wards equilibrium (b), observed in a 3D fermionic quantum gas with large spin. Depicted
is the time evolution of the relative populations of all spin-components ±m, starting from
an initial superposition of all ten spin states. For the exact experimental configuration,
see [85]. Solid lines are guides-to-the-eye. Note the three time scales of (i) the spin oscil-
lations, (ii) their damping and (iii) the subsequent relaxation of the total system. The
redistribution among all spin states occurs on a time scale of 10 s. The magnetic field is
B = 0.17G, particle number N = 4.9× 105 and temperature T/TF = 0.22. Taken from
Ref. [59].

term is linear in scattering lengths and the time scale is determined by the scattering
lengths and the external magnetic field. (ii) These oscillations are damped with a rate on
the order of several hundred ms, as explained in section 9.3. The mechanism here are spin-
conserving lateral (incoherent) collision, whose effect is a dissipation of single-particle spin
coherences. They are a beyond mean-field effect and contained in the collision integral
derived in chapter 4. This effect appears in a higher order in the Boltzmann equation
(10.1) and is quadratic in aS , but for 40K, the spin-conserving scattering lengths are one
order of magnitude greater than the spin-changing scattering lengths (see Table 8.4),
hence the time scales of (i) and (ii) are not too distinct. (iii) The slow redistribution
among the ten spin states on a much longer time scale on the order of tens of seconds.
In this chapter we show that this is the result of spin-changing lateral collisions, also
described by the collision integral in (10.1). Since this term is also quadratic in aS
and the corresponding scattering lengths are differences of aS , hence very small, the
time-scale is the longest of all three processes. It is worth noting that of course also spin-
conserving forward scattering events exist, which appear in our theoretical description in
the anticommutator in Eq. (10.1). We found that for our purposes, these effects are very
small and can often be safely neglected. They mainly have an effect on the shape of the
density distribution and hence do not affect the population of the spin components, as
we show them in Figures 10.2–10.6, in a noticeable way.
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Figure 10.3: Numerical simulation of coherent oscillations, damping and relaxation in
the 1D case. The initial spin configuration is the same as in Figure 10.2. Axial trapping
frequency is ωx = 2π × 84Hz and radial frequencies are ωy,z = 2π × 47 kHz, particle
number N = 100 per tube at temperature T/TF = 0.2 and magnetic field B = 1.5G.
As in Figure 10.2, we observe three time scales related to oscillations, damping and
relaxation. Taken from Ref. [59].

10.2 Dissipative redistribution of spin occupations

In order to focus on the long-term spin relaxation (iii) shown in Figures 10.2(b) and 10.3,
we omit the rf-pulse step in the preparation of the initial state. We leave the system
in an incoherent mixture of m = ±1/2. This removes coherent spin-changing collisions
described by the commutator in Eq. (10.1), since in this case the Wigner function and
mean-field potential are always diagonal. The time-evolution is then fully determined
by the anticommutator and the collision integral. For a direct comparison between
theory and experiment, we realize a 1D system employing a deep 2D optical lattice,
which confines the atoms into tight elongated tubes [109, 110] as described in chapter 5.
As shown in Figure 10.4(a), the system gradually occupies all spin states and evolves
towards a state of almost equal spin populations on a time scale of milliseconds. The 1D
Boltzmann equation (10.1) reproduces the experimental results with great accuracy and
without free parameters.

For experiments in the 3D case, we can again make use of the fact, that our trapping
frequencies a sufficiently large to induce an effective long-range interaction (6.7). Hence,
we apply the single-mode approximation to the collision integral as well, as described in
section 6.6.1. This leads to the equation

d

dt
Mmn = −λ

∑

abcd

T abcd
mn MacMbd, (10.2)

for the spin Mmn, where

T abcd
mn =

M

4π~4

(

Ũ ′
mabdδnc + Ũ ′

ncbdδma −
∑

l

U ′
malbU

′
ncld

)

(10.3)
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Figure 10.4: Comparison of spin relaxation for 1D and 3D. The initial spin configuration
is a mixture of m = ±1/2. (a) Experimental data in a 1D geometry (circles) compared
to numerical results (lines) from the 1D Boltzmann equation (10.1) and (dots) from
a 1D version of the single-mode approximation (10.2). The axial trapping frequency
is ωx = 2π × 84Hz and radial frequencies are ωy,z = 2π × 47 kHz, particle number
N = 100 per tube at temperature T/TF = 0.2 and magnetic field B = 0.12G. Inset:
The system approaches a steady state for longer times. (b) Experimental data (circles) in
a 3D configuration compared to calculations (lines) in single-mode approximation (10.2),
~ω = 2π× (33, 33, 137)Hz, N = 1.3× 105 and T/TF = 0.15 at B = 0.34G. Adapted from
Ref. [59].

and

λ =
1

N

∫

d3r

∫

d3p

∫

d3q|~q|f0(~r, ~p)f0(~r, ~p− ~q). (10.4)

Results of this equation are compared to experiments in Figure 10.4 (b).

For further insight we can also apply the single-mode approximation to the 1D case,
as we derive in section 6.6.1. Here, for simplicity, the quadratic Zeeman shift has been
neglected in the above equations, which are thus valid for small magnetic fields only (See
chapter 6 for full equations). The comparison of single-mode calculations in Figure 10.4
to the experiment yields a surprisingly good agreement without free parameters. Note
the qualitatively comparable behavior on different time scales of milliseconds for 1D and
seconds for 3D. On the contrary the damping of the coherent spin oscillations visible in
Figures 10.2 and 10.3 is not described by this approach. This results from the assump-
tion for the single-mode approximation, i.e. that it completely neglects the multi-mode
character of the fermionic many-body system and thus cannot account for spatial redis-
tribution via lateral scattering events. We first investigate the behavior of this relaxation
for different densities. As expected, an increase in density leads to a higher collision rate
and hence faster relaxation, as we show in Figure 10.5. The measured redistribution rates
are calculated for the transfer of atoms from m = ±1/2 components into m = ±3/2, 5/2
only, which are the first spin-components to be populated. The dependence is given by
the parameter λ (10.4).
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Figure 10.6: Dependence of spin relaxation on magnetic field. (a) Experimental data,
obtained from a 3D experiment (circles) and theoretical results from a single-mode ap-
proach (lines). Spin populations are measured after 2 s. (b) Spin populations after 2ms,
as obtained from full 1D simulations. The inset sketches how the interplay of differential
QZE and Fermi energy determines the probabilities for lateral spin-changing collisions.
Adapted from Ref. [59].

velocity. This collision time ranges from ∼ 10ms to ∼ 50ms for spin-conserving collisions
and ∼ 1 s to ∼ 5 s in the spin-changing case. Compared to the average trapping frequency
of ω̄ = (ωxωyωz)

1/3 ≈ 2π × 58Hz, we obtain values for ω̄τ3D between 3.5 and 17 for the
spin-conserving collisions and between 350 and 1700 in the spin-changing case. The
lowest and highest values of ω̄τ3D are reached for the lowest and highest densities shown
in Figure 10.5 respectively. This means we can approach the hydrodynamic regime,
where the collision rate is larger than ω̄ and local equilibrium can be established. On the
other hand our system becomes almost collisionless regarding the spin-changing collisions
and generally we are in an intermediate regime. In the 1D case, collision times τ1D ∼
(npωyωza

2/vT )
−1 are on the order of 1ms and 110ms respectively, meaning that ωτ1D ∼

0.6 and ωτ1D ∼ 60, concerning spin-conserving and spin-changing collisions respectively
[59].

This discussion allows us to make the following assumption. If we consider the system
to be in the hydrodynamic regime regarding the spin-conserving collisions, we can assume
that at each time, the atoms in a pair of spin states ±1/2 are close to an equilibrium
state defined by its current particle number and energy and hence can be assigned a well-
defined temperature. On the other hand, spin-changing collisions are at least two orders
of magnitude weaker and very slowly change the particle number in each subsystem.
This situation is similar to prethermalization, where first a "prethermal" state is reached
under the assumption of conserved quantities, which on a much longer time scale are
actually not fully conserved due to a "slightly broken symmetry", leading eventually to
full thermalization [52]. In our case, the role of the nearly conserved quantities is played
by the occupation numbers of the ten spin states, which change only on a very long time
scale. The "slightly broken symmetry" here would be the SU(N) symmetry one would
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rium distribution and the Wigner function,

R(t) =

∫

dx
∫

dpf0(x, p, t)W 1

2

1

2

(x, p, t)
∫

dx
∫

dpW 1

2

1

2

(x, p, t)W 1

2

1

2

(x, p, t)
, (10.8)

is plotted in Figure 10.8 and for the times we consider maintains sufficiently large values.
In the experimental 3D case, for both values of the magnetic field, we observe a small

heating rate, which we mainly attribute to inelastic photon scattering. However, at low
magnetic fields, the heating rate is significantly increased. In Figure 10.7(a), we plot
the temperature difference to extract the heating contributions solely generated by spin-
changing collisions. This additional increase in temperature is due to hole creation in the
Fermi sea [111] by scattering into the unoccupied spin states. We initially prepare a very
cold two-component Fermi sea, with only few unoccupied trap levels below the Fermi
energy. Losses through spin-changing collisions “perforate” this Fermi sea with holes,
such that the experimentally obtained temperature increases. Simulations of Eq. (10.1)
for the 1D case reproduce this behavior (see Figure 10.7(b)).

In summary, the Boltzmann approach derived in chapter 4 provides a theoretical
description of non-equilibrium spin-changing dynamics and relaxation with very good
agreement to the experimental results and is well suited for the quantitative description
of weakly interacting fermionic many-body systems with large spin. Both, the comparison
of numerical simulations with full spatial resolution to a 1D experiment as well as the
comparison of a simplified single-mode approximation to a 3D experiment yield a very
good agreement without free parameters. Moreover, the microscopically derived collision
integral allows for a clear identification of several types of scattering processes: Spin-
changing vs. spin-conserving collisions, processes depending on density vs. processes
depending on gradients of density, and forward vs. lateral scattering. By tuning the
magnetic field, we can precisely control the coupling strengths of individual spin-changing
collision channels, allowing to tune the character of a subsystem of two spin components
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within the large-spin Fermi sea continuously from an open to a closed system. The
spin relaxation manifests itself in a perforation of the Fermi sea accompanied with a
temperature increase.
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Chapter 11

Conclusions and outlook

In this thesis, we have addressed a number of fundamental problems concerning the
dynamics of ultracold atoms. We have developed a theoretical framework that allows
us investigate many facets of the spin dynamics of large-spin Fermi gases and shows
remarkable agreement with experiments. Our method is able to simulate non-equilibrium
dynamics and relaxation of closed quantum many-body systems even for long time scales
and is suitable for systems with arbitrarily large spins and the corresponding large number
of scattering channels. We have advanced the knowledge on the dynamics of Fermi gases
is several respects.

We have shown that for weakly-interacting systems, the harmonic trap is a very
important ingredient and its effect on the dynamics cannot be neglected. It also leads to
qualitatively new behavior beyond the local density approximation. We have shown, that
the trap can be the dominating dynamical process, when it induces effective long-range
interactions. It is crucial if experimentalists want to focus on the internal dynamics of the
system, as it prevents dephasing and stabilizes the orbital degrees of freedom. Trapped
Fermi systems can hence be engineered such that their dynamics becomes collective,
allowing us to describe them in a very simple fashion.

Moreover, the clear distinction we can make between coherent and incoherent pro-
cesses is vital, when it comes to distinguishing, whether an observed damping of coherent
dynamics is caused by true single-particle decoherence induced by collisions, or an ac-
cumulation of dephasing caused by mean-field interactions. Our study of spin waves
complements earlier work on Helium, Bosons and two-component Fermi gases and we
have thoroughly studied means of controlling spin currents in a multicomponent system.
By investigating the interplay of higher-order spin tensor components, we contributed
to the understanding of the dynamics of such non-trivial phases, which only occur in
large-spin systems.

In this thesis, we presented the first study of collective spinor dynamics in a large-
spin many-body ultracold Fermi system. This might open a new field such that the
spin degree of freedom might become a valuable component for both experimental and
theoretical work on ultracold Fermi gases. We showed that spinor dynamics with large
amplitudes and long lifetimes can actually be observed, we also discussed reasons, why
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earlier experiments with Fermions may not have reported seeing such effects. We showed
that magnetic field gradients, or trap geometries can lead to almost instant dephasing. We
performed a detailed study of the dependence of fermionic spinor dynamics on important
system parameter. Further, we found out how a complex interplay of coherent and
incoherent interactions creates an unexpected region of stability for an excited state.

Our last contribution is to the currently very active field of the relaxation of closed
quantum systems. In this thesis, we showed how processes, which happen on different
time scales, lead to relaxation first in subsystems defined by two spin states, before
at much larger times the entire system reaches a steady state, a situation that bears
some resemblance to prethermalization. We further demonstrated that with a suitable
initial state and a change in magnetic field, we can change from a closed system defined
by the initially populated spin components to an open system with a controllable loss
mechanism.

11.1 Outlook

This thesis opens the path for further work on ultracold Fermi gases, including extensions
to the main theory presented here. One possibility would be to include another fermionic
feature – pairing – to the description, which could be achieved by adding the anomalous
terms in the Wick decomposition (3.15). This way, the dynamics of a quench from a
phase without pairing to one, where it becomes relevant could be investigated, with the
additional feature of doing it with large spins. Pairing of large spins can lead to very
complex situations, where pairs of different total spins form and in general can appear all
at once. It may then be possible, to combine a kinetic equation describing the dynamics
of the normal component of the Fermi gas and one for the pairs in a similar fashion as
the Zaremba-Nikuni-Griffin theory, which describes the dynamics of a BEC coupled to
its thermal cloud [112, 113].

Another possibility is the combination of large-spin physics with dipolar physics. A
new generation of ultracold atom experiments is currently undergoing progress, which in-
volve degenerate gases of Lanthanide atoms. These atoms have far larger spins than even
40K, up to F = 11 for bosonic 165Ho [99] and F = 21/2 for fermionic 161Dy and 163Dy
[114]. These atoms have a very large magnetic moment, such that dipole-dipole interac-
tions are strong and cannot be neglected. Dipolar interactions lead to the violation of the
conservation of total spin during collisions [45], which was a valid assumption throughout
this thesis. Without this conservation, even richer spinor dynamics are expected. For
spinor BECs, studies have been performed on effects such as the Einstein-De Haas effect
in a dipolar BEC [105, 106], where violation if total spin conservation leads to orbital an-
gular momentum. Likewise, such interplay of large spins and orbital angular momentum
could be worthwhile to study in Fermions as well.
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Appendix A

Zeeman effect in Potassium

In this appendix, we give a short overview of some basic properties of 40K, which are
relevant for our results. For more details, like Feshbach resonances and properties of other
isotopes of Potassium, we refer to the appendix of Ref. [115], on which this appendix is
based. The electronic ground state of 40K is 42S1/2, which has electron spin S = 1/2 and

orbital angular momentum L = 0. The electronic total angular momentum ~J = ~L+ ~S is
then given by a single quantum number J = 1/2. The total spin is given by the coupling
of electron angular momentum and nuclear spin ~F = ~J + ~I. The nuclear spin of 40K
is I = 4, hence in the ground state, 40K has two hyperfine manifolds, with F = 7/2
and F = 9/2. In all the experiments featured in this thesis, the atoms are trapped in
the F = 9/2 manifold. However, the other hyperfine manifold is useful for experimental
procedures, in the sense that atoms can be transferred from F = 9/2 to F = 7/2 to
become invisible for the detection light used. This is described in the next appendix B
and in far greater detail in Ref. [85].

In a magnetic field ~B, the Zeeman interaction is described by the Hamiltonian

Ĥ =
µB

~

(

gJ ~J + gI~I
)

· ~B, (A.1)

where µB is the Bohr magneton, and gJ is the electron Landé factors and gI the nu-
clear gyromagnetic factor. For 40K, these factors are gJ = 2.00229421(49) and gI =
0.000176490(34) [116]. The eigenvalues of this Hamiltonian for L = 0 and S = 1/2 are
given by the Breit-Rabi formula [117]

Ehfs(B) = −
ahfs

4
+ gIµBmB ±

1

2
ahfs(I + 1/2)

√

1 +
4mx

2I + 1
+ x2, (A.2)

where

x =
(gJ − gI)µB

ahfs(I + 1/2)
B. (A.3)

The hyperfine structure coefficient is given by ahfs = −285.7308(24)h × MHz for the
ground state of 40K [116]. The sign ± corresponds to the manifold with F = 7/2
(−) and F = 9/2 (+) respectively. In Figure A.1 we plot the Zeeman splitting of
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Figure A.1: Zeeman splitting in the F = 9/2 hyperfine manifold of 40K. Left: Energy
splitting obtained from the full Breit-Rabi formula (A.2) for a wide range of magnetic
fields up to 1000G. Right: Quadratic part of the Breit-Rabi formula for magnetic fields
of the order of magnitude relevant for the results in this thesis.

the relevant F = 9/2 hyperfine manifold, once with the full Breit-Rabi formula (left),
and also subtracting the linear term (in the Larmor frame, right). Since spin-changing
collisions preserve total spin, the right figure is the more relevant graph for this thesis. For
convenience, throughout this thesis we approximate the non-linear part of the Breit-Rabi
formula with its quadratic term,

Q = −
ahfsx2

18
, (A.4)

as this is a good approximation in the range of magnetic fields we consider, which rarely
exceed 1G.
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Appendix B

Experimental techniques

In this appendix, we give a description of the experimental methods used by the Hamburg
group to prepare the degenerate gas of 40K and perform measurements on it. This
appendix is based on the following publications: [57–59, 90]. For even more details, e.g.
on the apparatus itself we refer to [85].

B.1 Preparation of the ultracold Fermi gas

The atoms are first cooled sympathetically to a temperature of typically 0.1TF. This
process happens in a magnetic trap, in which the atoms are polarized in the hyperfine
state |F = 9/2,m = 9/2〉, and bosonic bosonic 87Rb is used as a buffer gas. The atoms
are then transferred into a crossed circular-elliptical optical dipole trap operated at a
wavelength of λ = 812 nm. Using radio-frequency (rf) pulses and rf-sweeps, a spin mix-
ture is created, which is subsequently evaporated to quantum degeneracy by lowering
the power of the dipole trap exponentially in 2 s. This results in a sample with particle
numbers of the order of N ∼ 105 at temperatures of T = 0.1 − 0.2TF. After the evapora-
tion, the trap is compressed again to avoid particle loss during the experiments, realizing
typical trapping frequencies of ~ω = 2π × (70, 70, 12)Hz for the spin wave experiments
described in chapter 8 or ~ω = 2π× (33, 33, 137)Hz for the experiments on spin dynamics
in chapters 9 and 10. Uncertainties for the trapping frequencies are about 10%.

B.1.1 Initial spin configurations

By varying the evaporation sequence and including additional waiting times, the initial
temperature and particle number can be controlled independently in the same trap ge-
ometry. This allows to modify the density while keeping T/TF approximately constant,
important for the results in chapters 9 and 10, where density effects are studied. Typi-
cally, a balanced mixture of atoms in spin states m = ±1/2 is used as initial state, on
which rf-pulses can be applied, as described in section 8.3.

It is also possible to choose a different two-component mixture, e.g. m = ±3/2 for
the stability analysis in section 9.4. This procedure is more elaborate, as only the pair
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m = ±12 with the lowest quadratic Zeeman energy can be evaporatively cooled directly.
A mixture of m = ±3/2 is prepared as follows. At a magnetic field of B = 50G, a
mixture of m = −1/2, 3/2 is evaporated, which unlike m = ±3/2 is stable to losses,
because Pauli blocking prevents spin-changing collisions into spin configurations with
lower Zeeman energy. After this mixture has been sufficiently cooled down evaporatively,
a short rf-sweep of 2ms is performed to transfer the atoms from the m = −1/2 into the
m = −3/2-state.

B.1.2 Creation of a 1D geometry

The 1D configuration used in chapter 10 is realized by adiabatically ramping up a 2D
optical square lattice over 150ms. The lattice is created by two orthogonal retro-reflected
laser beams at wavelength λ = 1030 nm with a 1/e2-radius of 200µm detuned with
respect to each other by several tens of megahertz. The lattice depth is 25Erecoil with

Erecoil =
~
2k2

L

2M , where kL = 2π
λ . This creates an array of 1D tubes, where a single tube

can be described as a harmonically trapped system with frequencies ωx = 2π × 84Hz
and ωy,z = 2π × 47 kHz. With a particle number of N ≈ 100 and EF = 2π~ × 37 kHz,
the radial trapping frequencies fulfill ~ωy,z > EF and at a temperature kBT = 0.2EF,
a possible population of excited radial modes can be neglected, hence a true 1D system
is created. The extension of the radial ground state is around 1378 Bohr radii and thus
one order of magnitude larger than the scattering lengths.

B.2 Measurement

The experimental results shown in this thesis roughly depend on three types of measure-
ment. Either, the relative population of the spin components is counted, like e.g. in
chapter 9. In some cases, density profiles are mapped, which can be achieved by in-situ
measurement or time-of-flight (TOF) measurement. The former will provide the spa-
tial distribution, the latter the momentum distribution, in the ideal case of an infinite
time-of-flight.

B.2.1 Spin populations

The relative populations of spin components are measured as follows: The atoms are
released from the trap by suddenly switching off all optical potentials. An inhomogeneous
magnetic field is used to separate the spin components during a time-of-flight expansion
of typically 18.5ms. Then, the number of atoms in each spin component is counted with
resonant absorption imaging, giving the relative populations of each spin components.
Performing the same procedure without the inhomogeneous magnetic field allows to
independently total particle number as well.
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B.2.2 Spin waves

Two different detection schemes are used to measure the distributions and spatial oscil-
lation frequencies of the individual spin components in the case of spin waves. In most of
these experiments, time-of-flight imaging is used, as described above, however, the entire
distribution of each spin component is mapped. From this, the center-of-mass position
can be calculated for each of the separated clouds individually. This method has the
advantage that all spin-components can be detected simultaneously, but with a finite
free expansion time of 18.5ms, the momentum distribution is not obtained perfectly and
spatial and momentum components are mixed. This washes out all but the spatial dipole
modes.

To obtain more information on the spatial modes of the excited spin-waves, an in
situ detection protocol is used as well, which allows us to measure the distribution in
position space. With this method, also breathing modes can be measured, in which
the center-of-mass is stationary. In this method, instead of separating the different spin
components by a Stern-Gerlach procedure in TOF, microwave pulses at 1.3GHz are used
to transfer all but one single component to the F = 7/2 manifold of 40K. This manifold is
off-resonant to the detection light, and consequently the transferred atoms do not appear
in the absorption images and a single spin-component can be measured individually.

This is done by switching off all magnetic fields and optical potentials for 1ms to
detect the atomic sample. To record the time evolution of all four components, it is
therefore necessary to repeat the full measurement four times.

B.2.3 Temperatures

To determine the initial temperature of the gas, the initial two-component spin mixture
is released from the trap and a fugacity fit is employed, which is independent of the
particular trapping frequencies. This is applied after a time-of-flight of typically 21ms
without a Stern-Gerlach field and without spin-changing dynamics. The temperature
determination is performed separately to avoid deformations of the cloud due to the
Stern-Gerlach field.

In order to extract the change in temperature over time for a two-component sub-
system in Figure 10.7, the temperature is determined only in one spin component. This
circumventing deviations associated with the imbalance of the spin mixture. For instance,
to measure the temperature in m = 1/2 a sequence of linearly polarized microwave pulses
with a duration of 50µs is applied to transfer all significantly occupied spin components
m 6= 1/2 into the F = 7/2 hyperfine manifold of 40K. In the other hyperfine manifold
the atoms are not resonant with the detection light and are thus obscured during the
absorption imaging process, and the procedure described above can be applied to the
remaining spin component individually.
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Appendix C

Numerical simulations

In this thesis, we perform numerical simulations of 1D Boltzmann equations, collisionless
(5.11) or with the collision term (5.37). These are partial differential equations with one
time t and two phase-space variables x, p. To illustrate how we implement our simula-
tions, let us first remember the dimensionless units we used in chapter 6 in the derivation
of the dynamically induced long-range interaction. We scale all relevant quantities with

the trapping frequency ω: The length then given in units of l0 =
√

~

Mω , momenta as

p0 =
√
M~ω, time with t0 = 1/ω and energies in units of E0 = ~ω. For simplicity, we

start with the non-interacting spinless system, which is in dimensionless units described
by the equation

d

dt
W (x, p) = −p∂xW (x, p) + x∂pW (x, p), (C.1)

the phase-space representation of the harmonic oscillator. Partial differential equations of
this type appear frequently in fluid mechanics, with prominent examples such as Burgers’
or Navier-Stokes equations. Terms such as x∂p are called advective derivatives. We now
want to discretize Eq. (C.1) for numerical treatment. We discretize time, position and
momentum by introducing steps of constant length. Hence, the phase space is now
defined on a rectangular grid with tiles of size ∆x∆p. Throughout this thesis, we use
a square grid, where in dimensionless units ∆x = ∆p ≡ ∆. We use an even amount
of grid points and divide a square of phase-space into a grid of N × N points defined
as (xi, pj) = ∆(i − N/2, j − N/2). The discretized Wigner function is the defined as
W i

kl ≡ W (xk, pl, ti).

C.1 Finite differences

To discretize the derivative, we remember that if a function f(x) can be expanded in a
Taylor series,

f(x+∆) = f(x) +
∂f

∂x
∆+

∂2f

∂x2
∆2

2
+ . . . , (C.2)
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the first order term corresponds to the first derivative. For a discretized function fj =
f(xj) with f(xj +∆) = fj+1, this means

fj+1 = fj +

(

∂f

∂x

)

j

∆+

(

∂2f

∂x2

)

j

∆2

2
+ . . . . (C.3)

If we truncate the Taylor series after the first order to approximate fj+1, we obtain

fj+1 ≈ fj +

(

∂f

∂x

)

j

∆, (C.4)

and in discretized space, the derivative can be approximated as a finite difference quotient

(

∂f

∂x

)

j

=
fj+1 − fj

∆
+O(∆) (C.5)

The symbol O denotes terms of order ∆ and above, which tells us the error we have
made by truncating the Taylor expansion (C.3). On the grid, Eq. (C.5) means that
the derivative of function f at grid point j is given by (C.5) and hence depends on the
function at point j and the grid point to the right, j + 1.

Hence, this approximation is called the forward difference. We can also approximate
the expression

fj−1 ≈ fj −

(

∂f

∂x

)

j

∆, (C.6)

such that the discretized derivative is given by

(

∂f

∂x

)

j

=
fj − fj−1

∆
+O(∆), (C.7)

what is called the backwards difference. It depends on grid point j and its left neighbor,
j − 1. The difference of Equations (C.5) and (C.7),

fj+1 − fj−1 = 2

(

∂f

∂x

)

j

∆+ . . . (C.8)

provides us another discretized derivative,

(

∂f

∂x

)

j

=
fj+1 − fj−1

2∆
+O(∆2). (C.9)

This discretized derivative is called the central difference, and is of higher order and hence
higher accuracy, as the second term in the Taylor expansion drops out. If we extend this
formalism to the two phase-space variables, the right hand side of Eq. (C.1) can be
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written e.g. in three forms, depending on what finite difference we use to approximate
the derivatives of position and momentum:

W i+1

kl −W i
kl

∆t
= −pl

W i
k+1,l −W i

kl

∆
+ xk

W i
k,l+1

−W i
kl

∆
(C.10a)

W i+1

kl −W i
kl

∆t
= −pl

W i
kl −Wk−1,l

∆
+ xk

W i
kl −W i

k,l−1

∆
(C.10b)

W i+1

kl −W i
kl

∆t
= −pl

W i
k+1,l −W i

k−1,l

2∆
+ xk

W i
k,l+1

−W i
k,l−1

2∆
(C.10c)

Mixed cases, e.g. forward difference in momentum and backward in space would also be
possible. In the time domain, we can also choose between the forward difference

(

∂W (x, p, t)

∂t

)i

kl

=
W i+1

kl −W i
kl

∆t
, (C.11)

we used above, and the backward difference

(

∂W (x, p, t)

∂t

)i

kl

=
W i

kl −W i−1

kl

∆t
. (C.12)

Numerical methods using (C.11) are called explicit, where the function, propagated to
the next point in time depends explicitly on the previous function, while methods using
(C.12) are called implicit, as the (known) previous function depends on the function after
the time step, hence the map on the right hand side of a partial differential equation must
be inverted to obtain the time step. Mixed methods are also possible, with the Crank-
Nicolson technique [118] as a famous example.

C.2 MacCormack’s method

After the preparatory steps in the previous sections, we now introduce our numerical
method of choice, the MacCormack method. This method is an explicit method, simple
to implement and second-order accurate in space and time, even though it only uses
forward and backward differences ([119]). It was first developed in 1969 for Navier-Stokes
equations to describe impact craters of small hypervelocity projectiles on spacecraft [120].
It is easy to program [119] and does not introduce artificial numerical diffusion. In this
method, the time step is calculated as an “average” time derivative (∂W/∂t)avg in between
the points t and t+∆t in time. This is calculated using two steps, a predictor step and
a corrector step.

In MacCormack’s method, we first evolve the function W i
kl in time using only forward

derivatives on the right hand side of Eq. (C.1):

(

∂W

∂t

)i

kl

= −pl
W i

k+1,l −W i
kl

∆
+ xk

W i
k,l+1

−W i
kl

∆
. (C.13)
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The predicted value of the Wigner function after the time step,

W̄ i+1

kl = W i
kl +∆t

(

∂W

∂t

)i

kl

, (C.14)

is calculated using the Wigner function before the time step, assumed to be knows. This
intermediate value is of first order accuracy (see the forward difference (C.10a)). The
corrector step calculates a new value of (∂W̄/∂t) using backward differences on the right
hand side with the predicted values of the Wigner function W̄ i+1

kl as initial condition:

(

∂W̄

∂t

)i+1

kl

= −pl
W̄ i

kl − W̄ i
k−1,l

∆
+ xk

W̄ i
kl − W̄ i

k,l−1

∆
. (C.15)

The averaged time derivative introduced earlier is then obtained as the mean value of
the two time derivatives (C.13) and (C.15):

(

∂W

∂t

)

avg

=
1

2

[

(

∂W

∂t

)i

kl

+

(

∂W̄

∂t

)i+1

kl

]

. (C.16)

Using this expression, an average of two time steps performed with a forward and back-
ward difference respectively, we obtain the final expression for the Wigner function at
time i = 1:

W i+1

kl = W i
kl +∆t

(

∂W

∂t

)

avg

. (C.17)

The combination of forward and backward differences in both steps makes this method
second order accurate without the need to use more complicated higher terms in the
Taylor expansion (C.2), [119]). One can also choose to use backward differences in the
predictor and forward differences in the corrector step and in our implementation, we
alternate between these two possibilities at each time step. There is no mathematical
reason for this, just the experience that our simulations appear to be more stable in this
case.

C.3 Interactions and collisions

After demonstrating MacCormack’s technique on the simple non-interacting case (C.1),
we extend our method to include interactions. We recall the collisionless Boltzmann
equation with mean-field interactions, given in dimensionless units as

d

dt
Ŵ (x, p) + p∂xŴ (x, p) = i

[

V̂ (x), Ŵ (x, p)
]

+
1

2

{

∂xV̂ (x), ∂pŴ (x, p)
}

. (C.18)

The commutator contains no derivative, hence its discretization is very simple:

[

V̂ (x), Ŵ (x, p)
]i

kl
=
[

V̂ i
k , Ŵ

i
kl

]

. (C.19)
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For the anticommutator with derivatives, we note that it actually has the same form
as the trapping term, because the x appearing there is the derivative of the harmonic
potential. This means, we can add trap and mean-field V̂ (x) = V trap(x) + V̂ mf(x) and
evaluate the discretized derivative of V̂ (x) as a central difference:

(

∂V̂ (x)

∂x

)i

k

=
1

2∆

(

V i
k+1

− V i
k−1

)

. (C.20)

This is then used as the potential during the MacCormack step sequence.
We obtain the mean-field and collision term by using the standard discretization

scheme for integrals
∫

dxf(x) ≈ ∆
∑

j

fj . (C.21)

One exception is the part of the collision integral quadratic in the T -matrix, which
features terms such as Ŵ (x, p− 1

2
(q−

√

k2 +∆Q), where the value of the collision term
at a grid point i, j can depend on an off-grid value of the Wigner function due to a
quadratic Zeeman shift ∆Q. We interpolate such values using bilinear interpolation.
If the phase-space coordinates are inside a grid square, such that xk, < x < xk+1 and
pl < p < pl+1, we approximate the Wigner function at x, p with the expression

W (x, p) ≈
1

∆2
[Wkl(xk+1 − x)(pl+1 − p) +Wk+1,l(x− xk)(pl+1 − p)

+Wk,l+1(xk+1 − x)(p− pl) +Wk+1,l+1(x− xk)(p− pl)] (C.22)

and define it to be zero if it is outside of the grid area. In general, we choose the grid such
that the Wigner function is effectively zero at the boundary, where we employ periodic
boundary conditions to prevent numerical diffusion errors.

C.4 Grid sizes and parallelization

For a good balance of accuracy, stability and demand on computational power, we use
phase space grids ranging from 60× 60 to 120× 120, with rare exceptions to larger grids
for graphs such as Figure 9.5, where complex spatial structures emerge. A sometimes
counter-intuitive feature of numerical simulations of partial differential equations is that
larger grids, or rather smaller ∆ mean lower stability and we need to reduce the time
step as well. Simply speaking, the quotient vmax = ∆/∆t defines a “maximum velocity”,
and if any process in the system exceeds this velocity, the simulation becomes unstable.
The occurrence of such unstable situations is difficult to predict a priori for non-linear
equations.

In the collisionless case, a rough estimate for the run-time of our simulations is 32
hours on a 90× 90-grid for a single processor, and 14 days with the collision term, which
is the most demanding part. Since the discretized collision term is effectively just a huge
summation over many indices, our simulations parallelize well. The same simulations
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with the collision term mentioned above take about 2 days, when running in parallel on
8 processors. Our entire code is written in FORTRAN 95 and we use the current version
GNU and Intel mpi compilers.
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Appendix D

Details on the tensor expansion

In this appendix, we provide some further details on the tensor expansion of the Wigner
function of chapter 8. We explain how to calculate the coefficients αl that appear in the
tensor expansion of the mean-field potential and lay out the difference between a true
spin-3/2 system an the actual system described in that chapter, a subsystem of a spin-9/2
gas, where only the inner four components m = ±1/2,±3/2 have non-zero populations.
We begin by repeating the basic properties of the tensors Tm

l we introduced in section
8.1. For l > 0, they are traceless

Tr (Tm
l ) =

{

1, if l = 0

0, if l > 0.
(D.1)

With respect to the scalar product defined by the trace, all tensors orthonormal

Tr
(

Tm
l Tm′

l′

)

= δll′δmm′ . (D.2)

All of them are Hermitian 4× 4-matrices

Tm
l = (Tm

l )† . (D.3)

This means that they form a complete orthonormal basis for all 4×4 Hermitian matrices
and any such matrix M̂ can be expanded in terms of the tensors

M̂ =
∑

ml

Tm
l Mm

l . (D.4)

The expansion coefficients can be obtained by multiplying Eq. (D.4) with Tm′

l′ , taking
the trace and using property (D.3):

Mm
l = Tr

(

Tm
l M̂

)

. (D.5)

We note, that the coupling constants (2.16) are of the following form:

Uklmn =
∑

SM

gs〈SM |ik〉〈SM |jl〉

=
∑

SM

gSM
SM
ik MSM

lj , (D.6)
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where we defined the Hermitian matrices

MSM
mn = i〈SM |mn〉 (D.7)

with a factor of i, since the Clebsch-Gordan coefficients are real and antisymmetric with
respect to exchanging m,n for the fermionic case considered in this thesis. For simplicity
of notation, we introduce the index a = (l,m) to denote the tensor basis with a single
index a = 1, . . . , 16 only, such that Tm

l → T a.

Being Hermitian matrices, we can expand the matrices (D.7) in terms of T a and
obtain

MSM
mn =

∑

a

MSM
a T a

mn, (D.8)

with coefficients

MSM
a = Tr

(

T aM̂SM
)

. (D.9)

The product of elements of two such matrices, that appears in the interaction constants
(D.6) then expands as

MSM
ik MSM

lj =
∑

ab

MSM
a MSM

b T a
ikT

b
lj . (D.10)

The transformation of this expression into a sum of matrices BijBkl is called a Fierz
transformation. Since we have a complete orthonormal basis available, we only need to
know how the basis matrices themselves transform:

T a
ijT

b
kl =

∑

abcd

CabcdT
c
ilT

d
jk. (D.11)

A multiplication of Eq. (D.11) with T e
liT

f
kj with a subsequent trace operation reveals that

the Fierz coefficients are given by

Cabcd = Tr
(

(T d)TT bT cT a
)

. (D.12)

Hence, the coupling constants can be rewritten as

Uklmn =
∑

SM

∑

abcd

gSM
SM
a MSM

b Cabcd

(

T c
klT

d
mn

)

. (D.13)

It is a feature of such Fierz transformations, that when the basis matrices T a correspond
to irreducible representations of a symmetry group (here SU(4)), the coefficients only
have few distinct values. Here, the Cabcd are only non-zero if a = b and c = d. Hence
we define Cab ≡ Caabb. As a consequence, the coupling constants (D.13) do not “mix”
tensors with different indices and are given as

Uklmn =
∑

SM

∑

ab

αa (T
a
klT

a
mn) , (D.14)
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where

αa =
∑

SM

∑

b

gSM
SM
b MSM

b Cba

(

T b
klT

b
mn

)

, (D.15)

correspond to the coefficients introduced in section 8.1. This equation gives the pre-
scription on how to obtain the coefficients αa for arbitrary values of spin, assuming one
knows the full set of the corresponding tensors Tm

l with the right properties (rotational
invariance, orthogonality, etc.). This is explored in a recent paper for arbitrary spins
[86].

It was shown, that for a real spin-3/2 gas, i.e. a system, where the coupling constants
depend on the Clebsch-Gordan coefficients for F = 3/2:

MSM
a = i〈SM |F = 3/2,m;F = 3/2, n〉, (D.16)

the coefficients αa have only three distinct values [87]. Going back to the original indices
a → (l,m), we find that the αm

l do not depend on m and the coefficients for l = 1 and
l = 3 are degenerate:

α0

0 =
1

2
(g0 + 5g2) , αm

1 =
1

2
(−g0 − g2) , αm

2 =
1

2
(g0 − 3g2) , αm

3 =
1

2
(−g0 − g2) .

(D.17)
This is a case of an inherent SO(5)-symmetry in spin-3/2 systems [84, 87]. If g0 = g2 ≡ g,
this symmetry increases to SU(4) and all coefficients for l > 1 become degenerate

α0

0 =
3

2
g, αm

l>1
= −g. (D.18)

This is actually a feature of all SU(N)-systems (see e.g. [33, 104]). If tensors with
the rotational properties can be defined as above, the corresponding coefficients for the
interactions would be

α0

0 =
N − 1

2
g, αm

l>1
= −g. (D.19)

In contrast, in the system considered in chapter 8, the coupling constants are those
for a spin-9/2 system, where we truncate all coupling to outside the subset of spin
components given by m = ±1/2,±3/2. Hence,

MSM
a = i〈SM |F = 9/2,m;F = 9/2, n〉. (D.20)

With more scattering lengths involved, the expressions for the coefficients αm
l are con-
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siderably more complicated, as is evident from the list below:

α0

0 =
1

10
g0 +

83

264
g2 +

1623

5720
g4 +

58

165
g6 +

322

715
g8,

α0

1 = α1

1 = −
1

10
g0 −

13

60
g2 −

387

2860
g4 −

97

1650
g6 +

7

650
g8,

α2

1 = −
1

10
g0 +

29

1320
g2 +

9

1144
g4 −

16

165
g6 +

238

715
g8,

α0

2 =
1

10
g0 −

1

8
g2 −

87

520
g4 −

1

5
g6 −

7

65
g8,

α1

2 = α2

2 =
1

10
g0 +

2

33
g2 −

54

715
g4 −

8

33
g6 −

49

143
g8,

α3

2 = α4

2 =
1

10
g0 −

13

132
g2 −

321

2860
g4 −

59

330
g6 −

301

1430
g8,

α0

3 = −
1

10
g0 −

93

440
g2 −

711

5720
g4 −

3

55
g6 −

7

715
g8,

α1

3 = α2

3 = −
1

10
g0 −

197

1760
g2 −

1143

22880
g4 −

67

1100
g6 −

1267

7150
g8,

α3

3 = α4

3 = −
1

10
g0 −

149

1056
g2 −

1857

22880
g4 −

43

660
g6 −

161

1430
g8,

α5

3 = α6

3 = −
1

10
g0 −

4

33
g2 −

81

715
g4 −

16

165
g6 −

49

715
g8. (D.21)

Only a few values are degenerate in this case and the coefficients now explicitly depend
on m, a fact we suppressed in section 8.1 to keep the description simpler and closer to a
true spin-3/2 system.

That the “truncated” spin-9/2 system is nevertheless sufficiently close to the true
spin-3/2 case becomes evident, if we introduce the coefficients

aml =
M

4π~2
αm
l , (D.22)

i.e. we express them as scattering lengths. In units of Bohr radii aB, using the values
for 40K (see table 8.4), they are given as

a00 = 238.428 aB,

a01 = a11 = −73.7641 aB,

a21 = −79.672 aB,

a02 = −84.7898 aB,

a12 = a22 = −89.2074 aB,

a32 = a42 = −85.8012 aB,

a03 = −73.9663 aB,

a13 = a23 = −76.5611 aB,

a33 = a43 = −75.7148 aB,

a53 = a63 = −75.8078 aB. (D.23)
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Here, we see that the values for each l do not deviate too strongly, justifying the treatment
of the truncated spin-9/2 as a spin-3/2 system in section 8.1.
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Appendix E

Explicit form of irreducible tensors

for spin 3/2

In this appendix, we provide the full matrix expressions for the tensors Tm
l introduced

in chapter 8. We begin by repeating their definition:

T 0

0 =
1

2
✶, T 0

1 =
1
√
5
Sx, T 1

1 =
1
√
5
Sy, T 2

1 =
1
√
5
Sz,

T 0

2 =
1

2

(

S2

z −
5

4
✶

)

, T 1

2 =
1

2
√
3

(

S2

x − S2

y

)

, T 2

2 =
1

2
√
3
(SxSy + SySx) ,

T 3

2 =
1

2
√
3
(SzSx + SxSz) , T 4

2 =
1

2
√
3
(SySz + SzSy) ,

T 0

3 =

√
5

3

(

S3

z −
41

20
Sz

)

, T 1

3 =

√
5

3

(

S3

x −
41

20
Sx

)

, T 2

3 =

√
5

3

(

S3

y −
41

20
Sy

)

,

T 3

3 =
1

2
√
3

{

Sx, S
2

y − S2

z

}

, T 4

3 =
1

2
√
3

{

Sy, S
2

z − S2

x

}

, T 5

3 =
1

2
√
3

{

Sz, S
2

x − S2

y

}

,

T 6

3 =
1
√
3
(SxSySz + SzSySx) . (E.1)

These tensors are constructed using the 4×4 identity matrix ✶ and the spin-3/2 matrices

✶ =









1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1









,

Sy =
i

2









0 −
√
3 0 0√

3 0 −2 0

0 2 0 −
√
3

0 0
√
3 0









,

Sx =
1

2









0
√
3 0 0√

3 0 2 0

0 2 0
√
3

0 0
√
3 0









,

Sz =
1

2









3 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −3









.
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In full matrix form, the 16 tensors Tm
l are given by

T 0

0 =
1

2









1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1









,

T 1

1 =
i

2
√
5









0 −
√
3 0 0√

3 0 −2 0

0 2 0 −
√
3

0 0
√
3 0









,

T 0

2 =
1

2









1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1









,

T 2

2 =
i

2









0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0









,

T 4

2 =
i

2









0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0









,

T 1

3 =
1

4
√
5









0 −
√
3 0 5

−
√
3 0 3 0

0 3 0 −
√
3

5 0 −
√
3 0









,

T 3

3 =
1

4









0 −1 0 −
√
3

−1 0
√
3 0

0
√
3 0 −1

−
√
3 0 −1 0









,

T 5

3 =
1

2









0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0









,

T 0

1 =
1

2
√
5









0
√
3 0 0√

3 0 2 0

0 2 0
√
3

0 0
√
3 0









,

T 2

1 =
1

2
√
5









3 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −3









,

T 1

2 =
1

2









0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0









,

T 3

2 =
1

2









0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0









,

T 0

3 =
1

2
√
5









1 0 0 0

0 −3 0 0

0 0 3 0

0 0 0 −1









,

T 2

3 =
i

2
√
5









0
√
3 0 5

−
√
3 0 −3 0

0 3 0
√
3

−5 0 −
√
3 0









,

T 4

3 =
i

4









0 −1 0
√
3

1 0
√
3 0

0 −
√
3 0 −1

−
√
3 0 1 0









,

T 6

3 =
i

2









0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0









.
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